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Licia CAPRA (Université Collège de Londres, GB) Examinateur
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Abstract

The pervasive computing vision introduced by Mark Weiser in the early 90’s, results
from the convergence of powerful, small, affordable computing devices with networking
technologies that tie them all together. Still, the development of software systems for
pervasive computing environments requires dealing with numerous challenges that are
primarily due to the dynamics, mobility and heterogeneity inherent to these environments.

Middleware technologies that deal with the dynamics and homogenize the diversity
of technologies appear as a major enabler for the development of pervasive computing
software systems. Further, service-oriented middleware (SOM) where functional and non-
functional capabilities provided by pervasive networked resources are abstracted as services
appear to be the most appropriate for pervasive computing environments. However, the
dynamic discovery and composition of networked services by applications, which constitute
two of the main functionalities of a SOM, require service requesters and providers to agree
on both the functional and non-functional semantics of service capabilities. This, cannot
be achieved on a syntactic basis in open pervasive computing environments. A promising
approach then, relies on the semantic modelling of services functional and non-functional
capabilities.

In the above direction, this thesis introduces a semantic, service-oriented middleware
for pervasive computing. The most significant contributions are: (1) an extensible semantic
service model and its associated conformance relations; (2) an efficient semantic service
registry for highly interactive pervasive environments; and (3) the support for adaptive
QoS-aware service composition that allows taking full advantage of the diverse capabilities
of each pervasive environment.
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Notation Meaning

O Set of ontologies
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C Set of capabilities supported by pervasive services
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I Set of service inputs
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P Set of non-functional properties
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Chapter 1

Introduction

Pervasive computing [Weiser, 1991] envisions the unobtrusive diffusion of computing and

networking resources in physical environments, enabling users to benefit from their pro-

vided functionalities anywhere and at any time. This is further realized in a user-centric,

interactive way, i.e., where the system seamlessly adapts to the characteristics, preferences

and current situation of the user and his/her surrounding environment. Assisting mobile

users in their daily tasks by combining available networked functionalities and adapting

to the specifics of each pervasive environment is one of the major challenges in achieving

the pervasive computing vision. To illustrate the kind of situations that we expect to

make commonplace through our research, we present the following scenario inspired from

[Ducatel et al., 2001, Ben Mokhtar et al., 2006a]:

”...Today, Rozalie is taking a long haul flight to Australia, where she has an important

working seminar. For such a working trip, Rozalie can now travel much lighter than a

decade ago, when she had to carry a collection of so-called personal computing devices

(laptop PC, mobile phone, electronic organizer, and even portable beamers and printers).

Her computing system is now reduced to a single device, EASY-Com, that she wears on

her wrist. Rozalie does not have to stop at the security check, as EASY-Com deals with her

ID verification while she is walking through metal detectors and passport controls. Today,

exceptionally, Rozalie arrives early at the airport. When she enters the V.I.P room, nobody

is there. She decides to watch a movie while waiting for the boarding announcement and

1



2 CHAPTER 1 : Introduction

having a massage in a massage chair. EASY-Com uses the EASY-Movie application, one

of the various embedded applications on Rozalie’s wrist. EASY-Movie is able to discover

and browse the content of available video servers, as well as to select the most appropriate

display devices in Rozalie’s reach (e.g., the one having the largest screen). Furthermore,

EASY-Movie is able to adapt the surrounding environment to Rozalie’s preferences (e.g.,

room lighting, movie sound level). Hence, EASY-Movie starts displaying the movie selected

by Rozalie on a large plasma screen that was disseminating the news. Half an hour later,

EASY-Com informs Rozalie that she has to go for boarding. After getting on the plane and

paying attention to the security demonstration, Rozalie is asked by EASY-Movie whether

she would like to continue watching the movie on the personal LCD panel mounted on the

seat back in front of her. When she arrives to Sydney’s airport, a rented car has been

booked for her and is in the airport parking. While walking to the car, she receives a phone

call from her husband Stan. This phone call is managed by the EASY-Phone application,

which allows Rozalie to benefit from the devices in her reach to improve the quality of her

vocal and video communications. The car opens as she approaches thanks to EASY-Com,

which manages to identify her to the car identification system. When she enters the car,

EASY-Phone transfers her phone call to the car audio system, which is more comfortable

than her hands-free headset. Furthermore, as her husband is using their home video system,

the video signal is now displayed by EASY-Phone on the car LCD screen...”.

In this scenario, a number of key concepts of pervasive computing are highlighted,

among which the ability of users to access relevant functionalities anywhere and at any

time. For instance, while waiting for her flight at the airport, during her flight or inside

a rental car, Rozalie discovers and accesses the diverse networked functionalities available

in her vicinity. This feature is governed by the environment’s dynamics. While moving,

Rozalie may notice the appearance of new functionalities and the disappearance of others.

For instance, the identification system of the rental car becomes active when Rozalie

approaches the car. Another feature of pervasive environments is the ability of applications

to adapt to the current situation of the user: upon the discovery of the LCD panel in front

of Rozalie’s seat on the plane, the EASY-Movie application proposes to display the movie

on that screen. Finally, a key feature is the combination of functionalities available at the
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specific time and location to realize user tasks: EASY-Movie combines the video streaming

functionality of a video server with the display functionality of a plasma screen and the

room lighting system.

1.1 Towards Service-Oriented Pervasive Computing

Realizing the above illustrated vision of pervasive computing requires dealing with a num-

ber of issues, mainly due to the environment’s heterogeneity, dynamics and user-centrism.

Middleware technologies that deal with the dynamics, homogenize the diversity of tech-

nologies in pervasive environments while providing base support to user-centric consid-

erations appear as a major enabler for the development of pervasive computing software

applications.

Among the various investigated middleware paradigms, service-oriented middleware

(SOM) appears to be most appropriate for pervasive environments. Indeed, building upon

the Service-Oriented Architecture (SOA), functionalities provided by software and hard-

ware resources of the pervasive environment may conveniently be abstracted as services.

These services are independent software entities with well defined interfaces, and may be

accessed without any knowledge about their underlying technologies, such as hardware

platforms, operating systems, programming languages. In this context, the role of SOM

is to provide applications with middleware functionalities that allow them to dynamically

discover and access networked services that fit their requirements, and to dynamically com-

pose these services to help users in realizing their daily tasks. Hence, service discovery,

access and composition are three essential SOM functionalities, which obtain particular

meaning and importance in pervasive environments.

Nevertheless, the affluence of SOM technologies and platforms that have been put for-

ward to address the heterogeneity and dynamics of pervasive environments has engendered

a new kind of heterogeneity, i.e., middleware heterogeneity. Specifically, this heterogeneity

concerns the protocols associated to base middleware functionalities, which are service dis-

covery and service access. This heterogeneity is further increased by the heterogeneity of

networks in which service providers and requesters may reside. Thus, a SOM for pervasive
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computing should provide multi-protocol and multi-network interoperability mechanisms.

As a result, service providers and requesters are able to locate and interact with each other

even if they employ heterogeneous underlying middleware and networking technologies.

Still, even after interoperability has been established at the networking and middleware

levels, the dynamic discovery and composition of networked services by applications fur-

ther require service providers and requesters to agree on the semantics of services, so that

they can integrate and interact in a way that guarantees dependable service provisioning

and consumption. Such an agreement may be carried out at the syntactic level, assuming

that service providers and requesters use a common syntax for denoting service semantics.

This assumption is actually made by most software platforms for pervasive computing

(e.g., Aura [Sousa and Garlan, 2002], Gaia [Shiva Chetan and Campbell, 2005], WSAMI

[Issarny et al., 2005], Oxygen [Walker, 2004], Pico [Kumar et al., 2003]). However, such

strong assumption that services are described with identical terms worldwide, is hardly

achievable in open pervasive environments. This raises the issue of syntactic heterogene-

ity of service descriptions. Then, a promising approach towards addressing syntactic

heterogeneity relies on semantic modelling of service features by employing technolo-

gies that come from the knowledge representation domain and have been identified in

this decade as a key enabler for the Semantic Web [Berners-Lee et al., 2001]. Semantic

modelling enables global common understanding of service semantics as well as machine

reasoning on it. Research efforts have then investigated semantic-aware middleware for

pervasive computing [Masuoka et al., 2003, Singh et al., 2005, Chakraborty et al., 2006,

Chakraborty et al., 2005]. Nevertheless, assessing the conformance between service seman-

tics as announced by service providers and requested by service requesters induces costly

semantic reasoning (in terms of time and computation), which makes existing solutions

inappropriate for the highly interactive and resource constrained pervasive environment.

Besides dealing with the functional features of services, user-centrism of pervasive

environments calls for the awareness of service non-functional features, i.e., Quality of

Service (QoS). QoS is the set of information related with a service (e.g., latency, availability,

security), which affects the service’s ability to satisfy users requirements [Liu, 2006]. QoS

plays a decisive role in enhancing the user’s experience of the pervasive environment.
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Hence, service discovery, access and composition functionalities provided by a SOM should

be aware of the QoS characteristics of services, and should take into account the respective

requirements of users. Same as for functional features, semantic modelling of service non-

functional features enables their common understanding by service consumers and service

providers in open pervasive environments.

From the above discussion, it is evident that even if key enablers of pervasive comput-

ing such as service-orientation and semantic technologies have been the focus of intensive

research, there are still major challenges for realizing the pervasive computing vision.

These challenges can be addressed by an efficient, semantic, QoS-aware middleware for

service-oriented pervasive computing that supports multi-network and multi-protocol in-

teroperability.

1.2 Thesis Contribution and Document Structure

To address the above challenges, this thesis introduces a semantic, service-oriented mid-

dleware for pervasive computing. The most significant contributions of the proposed mid-

dleware are structured along this document as follows:

In Chapter 2, we present our vision of pervasive computing environments and analyse

the challenges that underpin the realization of such vision. We further discuss the princi-

ples of service-oriented pervasive computing and survey related research efforts in the area

of middleware for pervasive computing. From this analysis, we derive our motivation for

a new semantic middleware for service-oriented pervasive computing. We further outline

the architecture of the proposed middleware, which comprises of a set of functionalities

developed in the next chapters of the thesis.

In Chapter 3, after a survey of existing semantic service description languages, we

identify the requirement for a new semantic service model to support interoperability

between these languages, which is at the heart of interoperability enabled by our mid-

dleware. The proposed model supports the specification of both semantic and syntactic

service descriptions. For semantic-based service descriptions, our model further enhances

the specification of semantic annotations where an additional source of heterogeneity has
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been identified. This enables service providers and requesters to provide more accurate

semantic specifications, which allows our middleware to perform more accurate semantic

service matching. The formal specification of service conversations as finite state automata

is supported by our model [Ben Mokhtar et al., 2005b]. This enables the automated rea-

soning about service behaviour independently from the underlying conversation specifi-

cation language. Hence, pervasive service conversations described with different service

conversation languages can be integrated towards the realization of a user task. Finally,

our model supports the specification of service non-functional properties based on existing

QoS models to meet the specific requirements of each pervasive application.

In Chapter 4, we present an efficient semantic service registry for pervasive comput-

ing environments [Ben Mokhtar et al., 2006c, Ben Mokhtar et al., 2006b]. The proposed

registry supports a set of conformance relations for matching both syntactic and rich

semantic service descriptions as well as their heterogeneous non-functional properties

[Ben Mokhtar et al., 2007b]. As finding a service that exactly matches a client request

is rather the exception than the rule in pervasive environments, our registry identifies the

semantic distance between semantic service descriptions, and rates services with respect

to their suitability for a specific client request, so that selection can be made among them.

The evaluated semantic distance takes into account both functional and non-functional

characteristics of services. Additionally, our registry supports the efficient reasoning on

semantic service descriptions, which makes it applicable for highly interactive pervasive

environments. Service descriptions in our registry are semantically organized to enable

both efficient service publication and location. Thanks to the proposed optimizations we

prove that our registry performs better than existing semantic service registries that opt

for overloading the service publication phase to achieve efficiency at service location.

In Chapter 5, we present our service composition middleware functionality [Ben Mokhtar et al., 2005b,

Ben Mokhtar et al., 2006a]. This functionality supports flexible QoS-aware service compo-

sition towards the realization of user-centric tasks abstractly described in the user’s hand-

held [Ben Mokhtar et al., 2005c, Ben Mokhtar et al., 2005a, Ben Mokhtar et al., 2007a].

Flexibility is enabled by a set of composition algorithms that may be run according to

the current resource constraints of the user’s device. These algorithms further support
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the assessment of the QoS requirements of user tasks by aggregating the QoS provided by

the composed networked services. Unlike existing research efforts on service composition

that assume complex behaviour for either services or tasks but not both, our proposed

composition algorithms support the integration of services that have a complex behaviour

to realize a user task also specified with a complex behaviour. This allows taking the full

advantage of the diverse pervasive functionalities in the vicinity of a user at the specific

time and place. Furthermore, we prove that our service composition is performed effi-

ciently as it relies on our efficient semantic service registry to discover services and on

efficient formal verification algorithms to build the user task realizations.

Chapter 6 presents a prototype implementation of our semantic service-oriented mid-

dleware complemented with the multi-network and multi-protocol interoperability meth-

ods coming from the MUSDAC middleware [Raverdy et al., 2006]. The overall prototype,

which constitutes an innovative, efficient and comprehensive solution towards the realiza-

tion of the pervasive computing vision, is evaluated in terms of the execution overhead of

each of its constituent middleware functionalities presented in this thesis.

Chapter 7 summarizes our contributions presented in this thesis and discusses further

research perspectives to be explored beyond this thesis.
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Chapter 2

Middleware for Service-Oriented

Pervasive Computing: Vision and

State Of The Art

A computer is a machine able to store and process information according to a program.

Computers had an incredible evolution in the last century going from room-size expensive

calculators manipulated by experts in the 50’s, to affordable personal computers in the

90’s. Nowadays, computing facilities are embedded in thin devices, which start to vanish

in our environments, in various forms (e.g., smart phones, embedded car systems, wear-

able computers, e-fridges). Nevertheless, the real advance enabled by such evolution does

not come from any of these individual devices; it emerges from the interaction of all of

them [Weiser, 1991]. Indeed, together with the evolution of computing, networking has

also known a great evolution in the last fifty years. Thus, before the advent of computer

networking that was initially performed over telecommunication networks, communication

between computers was performed by humans, carrying information from one big calcula-

tor to another. Now, the current situation of computer networking is largely dominated by

wireless networks enabling ”communication on the move” [Zahariadis and Doshi, 2004].

The future of networking is further towards the so-called fourth-generation networking

where all existing network technologies including wired and wireless ones are integrated

9
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into a single pervasive network.

2.1 Pervasive Computing Environments

The convergence of powerful, small, affordable computing devices with a network that

ties them all together, and software systems that seamlessly adapt to the surrounding

environment leads to the vision of pervasive computing. The essence of this vision is that

everywhere around us the environment is populated with computing and communication

facilities gracefully integrated with human users [Satyanarayanan, 2001].

Figure 2.1: Pervasive Computing Environments

Figure 2.1 represents various pervasive computing environments (in, e.g., home, car,

airport, office) populated with a number of networked devices called pervasive devices in

the following (e.g., home appliances, computers, plasma screens, car GPS system). Such

devices may range from resource rich (e.g., workstation in the home, plugged laptop in
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the office) to more or less resource constrained devices (e.g., PDA or smart phone carried

by the user in the airport, sensors in the home). These constraints may be in terms of

CPU, memory, storage, display capabilities, battery power and bandwidth. Devices may

further be stationary (e.g., a video server, a large screen) or mobile (e.g., a PDA, a car

embedded system), and provide hardware and software functionalities to the pervasive

environment, called pervasive functionalities (e.g., display functionality of a screen, video

streaming functionality of a video server). Also, pervasive devices are permanently or

punctually connected to the pervasive networking environment that may be constituted

of heterogeneous networks including wired (e.g., WAN, LAN, ADSL Internet connexion)

and/or wireless networks (e.g., PAN, Bluetooth, WiFi in ad hoc or infrastructure mode).

As depicted in Figure 2.1, a user carrying a pervasive device may move from one

environment to another. Building pervasive applications realizing user tasks for mobile

users by seamlessly combining the functionalities of pervasive devices and adapting the

resulting combination to the specifics of each pervasive environment is one of the major

challenges in achieving pervasive computing. This requires dealing with a number of

challenges that are mainly due to:

1. The environment’s heterogeneity: pervasive devices and the pervasive functional-

ities they provide are heterogeneous in terms of underlying technologies, and may

reside in heterogeneous networks, which restricts the ability to integrate them for

realizing user tasks.

2. The environment’s dynamics: the mobility of some pervasive devices and the limited

resources of others increase the dynamics of pervasive computing environments. This

dynamics is perceived in terms of the number and lifetime of pervasive functionalities

a user can access to at a specific time and location. In particular, new devices may

appear in the environment while other devices may become out of reach due to a

lack of resources (e.g., battery down), or due to the range of radio transmissions.

3. Resource constraints of thin devices: the limited resources of some devices that

may participate in the realization of a user task have to be considered.
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4. User centrism: in pervasive computing environments, the user is the center of

attention. He/she must be served by the environment as seamlessly and as natu-

rally as possible. User centrism calls for efficient solutions with acceptable response

times enabling the interactivity with the user. It also requires the awareness on the

surrounding environment, which includes the awareness of the non-functional charac-

teristics of pervasive functionalities in order to enable the selection of functionalities

that best conform to the user’s needs.

Middleware, which is a software layer that stands between the networked operating sys-

tem and applications and deals in a reusable way with problems like distribution, hetero-

geneity and mobility, frequently encountered in distributed systems [Issarny et al., 2007],

appears as a major enabler for the development of pervasive applications. However, re-

alizing user tasks for mobile users requires the middleware to deal with the previously

identified challenges by providing:

1. Abstraction of the heterogeneous computing and networking environment for en-

abling the interoperation between pervasive devices independently from their under-

lying networking and computing technologies.

2. Abstraction of the pervasive functionalities provided by pervasive devices enabling

the location of relevant pervasive functionalities available in the user’s vicinity.

3. Middleware functionalities for enabling the dynamic publication, location and access

of pervasive functionalities on the network and further the dynamic integration of

these functionalities for realizing user tasks.

4. Middleware awareness of non-functional features of pervasive functionalities, which

plays a decisive role in enhancing users’ experience of the pervasive environment.

Among the various investigated middleware paradigms that distinguish by the coordi-

nation model they offer to applications, RPC-based middleware appears to be most appro-

priate for building user-centric tasks. Indeed, RPC allows invoking procedures on remote

hosts enabling the user to be at the heart of the interactions with pervasive devices, while
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other coordination models such as the tuple space and message-oriented models, which

rely on indirect interactions through a shared memory or distributed message-queues re-

spectively, can less naturally serve user centrism.

Among the various middleware paradigms that rely on the RPC coordination model,

service-oriented middleware (SOM) is the one that best fits the requirements of perva-

sive computing. Indeed, compared to object-oriented (OO) and component-oriented (CO)

middleware, SOM discussed in the next section, allows the development of pervasive ap-

plications in terms of loosely coupled pervasive services.

2.2 Service-Oriented Pervasive Computing

Service-Oriented Middleware (SOM) for pervasive computing is a middleware paradigm

that employs the Service-Oriented Architecture (SOA) [M. P. Papazoglou, 2003] for mod-

elling pervasive environments. Using SOA, pervasive functionalities provided by pervasive

devices are abstracted as services. These services are independent software entities with

well defined interfaces that may be accessed without any knowledge of their underlying

technologies.

Figure 2.2: SOA Actors

The SOA architectural style is structured around the three basic actors depicted in

Figure 2.2: Service Provider is the role assumed by a software entity offering a service,

Service Requester is the role of a client entity seeking to consume a specific service, and

Service Registry is the role of an entity maintaining information on available services and

the way to access them. An additional role introduced as part of the extended SOA
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[M. P. Papazoglou, 2003] is identified as Service Aggregator, which is the role of an entity

that composes existing services and offers them as a new service to client applications. As

depicted in Figure 2.3, service aggregator acts both as service provider by providing com-

posite services to applications and as service requester by consuming existing networked

services.

Figure 2.3: The Role of Service Aggregator

Figure 2.4, based on [M. P. Papazoglou, 2003], presents in more detail the notion of

a service and illustrates the basic SOA functionalities performed by the SOA actors. For

enabling the identification of provided and required services for providers and requesters,

services are described in a structured way by using a Service Description formalism or

language. There, the service Capability, Interface, Behaviour, QoS characteristics as well

as the address for accessing the service may be specified. The service capability describes

the functionality provided by the service, i.e., what the service does. The service interface

describes the list of Operations by which the service realizes its capability. A service

operation represents the unit of interaction with the service, it has a Signature, i.e., a

structure in terms of data to be exchanged with the service. The service behaviour,

called also Conversation, defines the temporal relationships and properties between the

service operations necessary for a valid interaction with the service. Service QoS properties

describe the non-functional characteristics of the service, such as security or transactional

properties.

In Figure 2.4, SOA actors are associated with the basic SOA functionalities they per-

form. These functionalities are:
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Figure 2.4: SOA Conceptual Elements

1. Service Publication: allows service providers to register their services in a service

registry.

2. Service Location: allows service requesters to retrieve desired services from a service

registry.

3. Service Matching : performed by a service registry, allows selecting among the regis-

tered services those that best conform to a service request.

4. Service Access allows a requester to establish a connection with a selected service,

i.e., Service Binding, after which Service Interaction occurs as a set of successive

invocations of service operations.

5. Service Composition allows the integration of multiple services into a single compos-

ite service, which may be achieved at design-time (static) or at run-time (dynamic).

Service composition decomposes into four other sub-functionalities:
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• Service Conformance ensures the integrity of a composite service by assessing

the compatibility of its description with those of its constituent component

services

• Service Coordination controls the execution of services taking part in a compo-

sition

• Service Monitoring allows observing the execution status of composite services

to possibly trigger service adaptation

• QoS-awareness verifies the fulfilment of the QoS requirements of composite

services based on the QoS provided by the integrated component services

Table 2.1 introduces the set of abstractions for designing pervasive computing sys-

tems using SOA. Specifically, pervasive devices that provide pervasive functionalities are

abstracted as service providers that provide service capabilities. Users of the pervasive

computing environment that request functionalities are viewed as service requesters. Ad-

vertising pervasive functionalities by pervasive devices and identifying relevant pervasive

functionalities for the user correspond respectively to service publication and service lo-

cation in the context of SOA. The realization of user tasks by composing pervasive func-

tionalities of a pervasive computing environment translates to the dynamic composition of

services. Finally, awareness of the surrounding environment to serve user-centrism includes

the awareness of the QoS provided by pervasive services.

Based on SOA and more generally on the RPC coordination model, a number of

middleware platforms for realizing the pervasive computing vision have been proposed in

the literature as surveyed in the next section.

2.3 Middleware for Pervasive Computing Environments: State

of The Art

We survey in this section research efforts investigating middleware platforms for pervasive

computing. Specifically, proprietary middleware that rely on specific middleware technolo-

gies and focus on issues related with the dynamic composition of pervasive applications
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Pervasive Computing SOA

Pervasive Device Service Provider

Pervasive Functionality Service Capability

Pervasive Application Realizing a

User Task

Composite Service

User Service Requester

Advertising pervasive functionali-

ties

Service Publication

Identifying relevant pervasive func-

tionalities

Service Location

User Task Realization Dynamic Service Composition

Table 2.1: Service-Oriented Pervasive Environments

are presented in Section 2.3.1. Then, interoperable middleware that provide solutions for

dealing with middleware heterogeneity in pervasive computing environments are surveyed

in Section 2.3.2. Finally, we discuss existing research efforts investigating semantic-aware

middleware in Section 2.3.3 and provide an overall discussion in Section 2.3.4.

2.3.1 Proprietary Middleware

There have been a number of research projects investigating middleware platforms for

pervasive computing. We survey in the following the Aura, Gaia, Oxygen, Pico and

WSAMI projects, which are all focusing on enabling the dynamic composition of pervasive

service capabilities.

The Aura project [Sousa and Garlan, 2002] defines an architecture that allows users to

dynamically realize daily tasks modelled as abstract software applications, in a transparent

way, without manually dealing with the configuration and reconfiguration issues of these

applications. User tasks defined in Aura are composed of abstract services to be found in

the environment. One of the main innovative features of Aura is that user tasks adapt

themselves according to the resources available in each pervasive computing environment,

thus taking the full advantage of the diverse capabilities of each environment. Furthermore,

each environment is able to renegotiate task support with respect to the run time variation
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of service capabilities and resources. The main issues addressed by the Aura system are

thus related with the management of the environment’s dynamics through the dynamic

configuration and reconfiguration of user tasks.

The Gaia project [Roman et al., 2002, Shiva Chetan and Campbell, 2005] is a distributed

middleware infrastructure that coordinates networked devices and software components in

a physical space, called an active space, in order to enable the dynamic deployment and

execution of software applications. In this middleware, an application is mapped to avail-

able resources of a specific active space. This mapping can be either assisted by the user

or automatic. Gaia supports the dynamic reconfiguration of pervasive applications. For

instance, it allows changing the composition of an application dynamically upon a user

request (e.g., the user may specify a new device providing a component that should replace

a component currently used). Furthermore, Gaia supports the mobility of applications be-

tween active spaces by saving the state of the application. Similarly to Aura, Gaia focuses

on the dynamic aspect of pervasive environments and provides the support for dynamically

mapping applications to available resources of a specific active space.

Pico (Pervasive Information Community Organization) [Kumar et al., 2003], is a mid-

dleware framework intended for time-critical applications (e.g., tele-medicine, military

applications). This middleware supports the automated, continual, unobtrusive provision

of services. It consists of autonomous software entities called delegents (or intelligent

delegates) and hardware devices that provide services called camileuns (which stands for

connected, adaptive, mobile, intelligent, learned, efficient, ubiquitous nodes). The main

objective of Pico is to allow the dynamic creation of delegent communities in order to

perform tasks on behalf of users. While Pico relies on different paradigms compared to

Aura and Gaia (e.g., software agents), it tackles similar issues, related with the adaptation

to the dynamically changing pervasive environments through the dynamic composition of

pervasive service capabilities.

The WSAMI project [Issarny et al., 2005] supports the abstract specification of per-

vasive computing applications in the form of software architectures, together with their

dynamic composition according to the environment. The proposed middleware builds on
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the Web services architecture1, whose pervasiveness enables service availability in most en-

vironments. In addition, dynamic composition of applications is dealt with in a way that

enforces quality of service for deployed applications in terms of security and performance

through the systematic customization of connectors that dynamically integrate relevant

middleware-related services. One of the major benefits of WSAMI compared to the above

middleware infrastructures is its ability to be deployed on resource-constrained devices,

which enables infrastructure less, totally decentralized pervasive computing environments.

Oxygen [Walker, 2004] is an MIT project that aims at enabling pervasive, human-

centred computing through a combination of system, software and networking technolo-

gies developed for the purpose of the project. In Oxygen, users naturally interact with the

system using speech and vision technologies. This system relies on a variety of computa-

tional and handheld devices. Specifically, computational devices called Enviro21s (E21s)

are devices embedded in home, office, and car environments and are responsible of sens-

ing these environments. On the other hand, handheld devices, called Handy21s (H21s),

are carried by users and allow them to interact with the environment and perform daily

tasks. Furthermore, the project rely on specific networking and software technologies,

i.e., the self-configuring networks (N21s), and the self-adaptive software (O2S). The oxy-

gen project developed technology-specific software, hardware and networking technologies,

through which rich pervasive computing environments have been built. Some of these pro-

totyped technologies are being tested by the Oxygen industry partners. While this project

developed advanced, highly adaptive, user-centric applications, their assumptions on the

availability of specific technologies such as H21 devices with specific interfaces that com-

municate over specific networks is restrictive. The current situation of pervasive computing

is much more heterogeneous than that, and we can hardly envision that H21 devices and

associated software and networking technologies will be available worldwide in the near

future.

While the above middleware infrastructures deal with a lot of issues related with the

environment dynamics (e.g., dynamic configuration, reconfiguration of pervasive software

systems), they poorly deal with the environment heterogeneity. Indeed, existing middle-

1Web Services: http://www.w3.org/2002/ws/
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ware generally employ or specify reference protocols to discover and communicate with

networked software services, thus enabling compliant software systems to interoperate.

The ultimate objective of these approaches is to introduce a reference middleware for per-

vasive computing to be deployed everywhere. However, the emergence of such middleware

platforms that have been put forward towards the realization of the pervasive comput-

ing vision including those surveyed above, has generated a new problem: middleware

heterogeneity. Indeed, two software applications that rely on two different middleware

infrastructures are unable to communicate with each other, thus calling for interoperable

middleware.

2.3.2 Interoperable Middleware

In the context of service-oriented pervasive computing, middleware heterogeneity manifests

itself in the two major middleware functionalities, i.e., service discovery, which includes

service publication, location and matching; and service access.

To deal with middleware heterogeneity, a number of middleware platforms have investi-

gated interoperability methods [Grace et al., 2003, Bromberg and Issarny, 2005, Raverdy et al., 2006].

ReMMoC (Reflective Middleware for Mobile Computing) [Grace et al., 2003], is a con-

figurable and reconfigurable middleware that enables software applications to be developed

independently of specific middleware technologies. Such applications are then able to dis-

cover and interoperate with a range of heterogeneous services, thanks to the ReMMoC-

awareness of the middleware technologies available in the current environment. Specifi-

cally, upon the detection of the specific service discovery and access protocols employed

in the current environment, ReMMoC reconfigures by loading the appropriate component

frameworks enabling service requesters to use those protocols. This is enabled through a

single common interface provided for all the supported underlying protocols.

INDISS (Interoperable Discovery System for Networked Services) [Bromberg and Issarny, 2005]

introduces a transparent approach to service discovery protocol interoperability. Specifi-

cally, the interoperability layer is located on top of the network layer and directly translates

protocol messages to/from the various service discovery protocols. Contrary to ReMMoC
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that requires service requesters to support multiple protocols and realizes interoperability

through protocol substitution, INDISS realizes interoperability transparently to service

requesters and providers through protocol translation. Those continue to use their na-

tive middleware and related discovery and access protocols. Similarly to INDISS, the

same authors present NEMESYS (Network Meta communication System for Middleware

Interoperability) [Bromberg, 2006], which realizes interoperability between service access

protocols.

Another solution to interoperability proposed in the MUSDAC (MUlti-protocol Service

Discovery and ACcess) middleware [Raverdy et al., 2006], enables explicit translation of

service discovery protocol messages. In this middleware, the interoperability layer is lo-

cated on top of the existing service discovery protocols, and provides an explicit discovery

API to service requesters. Then, incoming service service advertisements are translated

to a common XML format proprietary to the MUSDAC platform. This enables MUSDAC

to match service requests against service advertisements independently from their initial

service description format. Further to dealing with service discovery protocols heterogene-

ity, MUSDAC enables service discovery over multi-network environments, which is a key

requirement in pervasive computing environments.

While the above three solutions deal with middleware heterogeneity, they suffer from

a common limitation, which also concerns the proprietary middleware platforms. Indeed,

the openness of pervasive computing environments requires that service requesters and

providers agree on both the functional and non-functional semantics of service capabili-

ties, so that they can integrate and interact in a way that guarantees dependable service

provisioning and consumption. In all the above surveyed approaches, this agreement is

performed at the syntactic level, assuming that service requesters and providers use a

common syntax for denoting service semantics. However, such vision, based on the strong

assumption that service providers and requesters describe services with identical terms

worldwide, is hardly achievable in open pervasive environments. This raises the issue of

syntactic heterogeneity of service descriptions. A promising approach towards address-

ing syntactic heterogeneity relies on semantic modelling of the services’ functional and

non-functional features.
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2.3.3 Semantic-aware Middleware

A field of research from the artificial-intelligence domain that deals with the definition

of the semantics of information is called knowledge representation. From this field, an

appropriate model to represent knowledge is ontologies [Singh and Huhns, 2005], which

constitute a rich model for formally specifying information and a variety of structural

and non-structural relationships between information. Specifically, an ontology is a for-

mal explicit description of terms in a domain of discourse (classes, sometimes called con-

cepts), properties of each concept describing various features and attributes of the con-

cept (slots, sometimes called roles or properties), and restrictions on slots (facets (some-

times called role restrictions)). Most ontology models support the following relationships

[Singh and Huhns, 2005]:

1. Inheritance, called also subsumption relation (is-a, is-subtype-of or is-subclass-of, the

converse of is-superclass-of ), is the relation between a class and one or more refined

versions of it. Each subclass shares the same features of its superclass, adding its

own features to it. Inheritance allows concepts to be organized in hierarchies.

2. Aggregation called also Meronymy relation (part-whole or part-of) defines how classes

representing components of something are related with a class defining the entire

assembly.

3. Instantiation is the relation that associates classes with concrete ”real-life” objects,

called individuals or instances.

One of the most widely used languages for specifying ontologies, which is a W3C

recommendation, is the Web Ontology Language (OWL2). OWL has its formal founda-

tion in Description Logics (DL) [Donini et al., 1996]; hence, the semantic specification of

information using ontologies in OWL enables semantic reasoning on this information.

Semantic reasoning performed by a DL-reasoner allows inferring implicit relationships

between concepts from the explicit definitions of these concepts in an ontology, which

2OWL: http://www.w3.org/TR/owl-features/
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is called ontology classification. Figure 2.5, produced with the Protégé3 ontology editor,

shows an example of an ontology classification using a DL-reasoner. The left part of

the figure shows the specification of a Pizza ontology4 (asserted hierarchy of concepts),

while the right part shows the same ontology after classification (inferred hierarchy of

concepts). In the figure, some concepts defined under the concept NamedPizza in the

ontology, e.g., American pizza, have been classified under the concept CheesyPizza after

reasoning carried out based on the description of their ingredients.

Figure 2.5: Asserted (left) and Inferred (right) Hierarchies of Concepts

Using ontologies, various elements of service descriptions can be formally specified,

leading to a consistent interpretation of the information exchanged between different par-

ticipants in the service-oriented pervasive computing environment. A number of research

efforts have thus investigated middleware platforms that support semantic specification of

services for pervasive computing [Masuoka et al., 2003, Singh et al., 2005, Chakraborty et al., 2006,

Chakraborty et al., 2005]. These solutions mainly focus on providing middleware function-

3Protégé: http://protege.stanford.edu/
4Pizza Ontology: http://www.co-ode.org/ontologies/pizza/
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alities enabling semantic service discovery and composition as surveyed hereafter.

The Task Computing project [Masuoka et al., 2003] is an effort for ontology-based

dynamic service composition in pervasive computing environments. It relies on an existing

service discovery protocol, i.e., UPnP (Universal Plug and Play5), enriched with semantic

service descriptions given in OWL-S6 (Ontology Web Language for Services). Each user of

the pervasive computing environment carries a service composition tool on his/her device

that discovers on the fly available services in the user’s vicinity and suggests to the user a

set of possible compositions of these services. While this approach validates the relevance

of ontology languages in pervasive computing environments, it presents some limitations.

For instance, suggesting to the user all the possible compositions of networked services

requires that the user selects the right composition among the suggested ones, which can

be inconvenient for mobile users of the pervasive computing environment, particularly, if

the number of possible compositions is high. Finally, the discovery protocol employed in

this approach, which has been designed for the networked home environment is not well

suited for highly dynamic, large scale environments [Flores-Cortes et al., 2006].

IGPF (Integrated Global Pervasive Computing Framework) [Singh et al., 2005] intro-

duces a semantic Web services-based middleware for pervasive computing. This mid-

dleware builds on top of the semantic Web paradigm [Berners-Lee et al., 2001] to share

knowledge between the heterogeneous devices that populate pervasive computing environ-

ments. The idea behind this framework is that information about the pervasive computing

environments (i.e., context information) is stored in knowledge bases on the Web. This

allows different pervasive computing environments to be semantically connected and to

seamlessly pass user information (e.g., files/contact information), which allows users to

receive relevant services. Based on this knowledge bases, the middleware supports the

dynamic composition of pervasive computing services modelled as Web services. These

composite services are then shared across various pervasive computing environments via

the Web. This solution suffers from the strong assumption that pervasive devices have a

permanent connection to the Internet, which may not be always be the case (e.g., sponta-

5UPnP: http://www.upnp.org
6OWL-S: http://www.daml.org/services/owl-s/
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neous, infrastructure less connections between mobile users).

The Ebiquity group describes a semantic service discovery and composition proto-

col for pervasive computing. The service discovery protocol called GSD (Group-based

Service Discovery) [Chakraborty et al., 2006], groups service advertisements using an on-

tology of service functionalities. In this protocol, service advertisements are broadcasted

to the network and cached by the networked nodes. Then, service discovery requests

are selectively forwarded to some nodes of the network using group information prop-

agated with service advertisements. Based on the GSD service discovery protocol, the

authors define a service composition functionality for infrastructure-less mobile environ-

ments [Chakraborty et al., 2005]. Composition requests are sent to one of the composition

managers of the environment which performs a distributed discovery of the required com-

ponent services.

The above three semantic-aware middleware for pervasive computing provide base

support for the semantic discovery and composition of pervasive services. However, the

efficiency of the proposed solutions with respect to the resource constraints of pervasive

devices is not assessed. Indeed, semantic-awareness realized through semantic reasoning on

ontologies is a resource consuming process, which is not suitable to be employed in resource

constrained devices without appropriate optimizations [Ben Mokhtar et al., 2006b].

2.3.4 Discussion

Due to the specifics of pervasive computing environments, the development of pervasive

applications realizing user tasks for mobile users by seamlessly integrating pervasive func-

tionalities provided by pervasive devices raises a number of middleware requirements iden-

tified in Section 2.1. After the survey of existing research efforts in the area of middleware

for pervasive computing these requirements can be refined as follows:

• The support of middleware interoperability to enable pervasive users to discover

and interact with pervasive services independently from the underlying technologies.

Middleware interoperability decomposes into service discovery protocol interoper-

ability and service access protocol interoperability.
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• The support of multi-network management to enable pervasive users to reach per-

vasive services available on heterogeneous networks

• The support of semantic-awareness to enable the consistent interpretation of the

information advertised about pervasive services and requested by users

• The support of the dynamic publication, location, access and composition of pervasive

services

• Efficiency of the provided middleware functionalities should be assessed to fit the

resource constraints of thin devices

• The support of QoS-awareness to enable the realization of user-centric tasks

While the essence of the above requirements is well understood, and solutions to in-

dividual requirements have been proposed that may form the foundations of a compre-

hensive middleware for pervasive environments, a number of problems remain. First and

foremost, these issues have always been considered separately. For instance, to the best of

our knowledge, middleware interoperability solutions have only addressed syntactic service

discovery. At the same time, semantic-aware middleware neither manage discovery and

access protocol-heterogeneity nor network-heterogeneity. Furthermore, efficiency issues,

specifically those due to semantic-awareness, are poorly investigated. In the following, we

outline the architecture of a semantic middleware for pervasive computing that compre-

hensively deals with all the above issues.

2.4 Semantic, Service-Oriented Middleware for Pervasive Com-

puting

We sketch in this section the architecture of a semantic middleware for pervasive computing

(Figure 2.6). This middleware provides pervasive applications (highest layer in the figure)

with a set of semantic SOM functionalities (upper middle layer in the figure) that realize the

basic SOA functionalities meeting the requirements of pervasive computing environments.

These functionalities are:
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1. Semantic-, QoS-aware Service Composition: integrates multiple semantic services

into a single composite service that realizes or participates in the realization of a

user task. Service composition considers both functional and QoS capabilities of

the composed services to satisfy users’ requirements. Service Registry : stores service

descriptions given in a common language to which heterogeneous service descriptions

are translated by the multi-protocol management functionality described below. This

registry can be centralized, semi-distributed or fully distributed according to the

deployment policy of the middleware. For instance, a semi-distributed deployment

of our proposed middleware is described in Chapter 6. Our proposed service registry

further supports the efficient semantic, QoS-aware service publication, location and

matching as follows:

• Semantic-, QoS-aware Service Publication: allows service providers to pub-

lish semantic-enhanced service descriptions covering both service functional and

QoS properties.

• Semantic-, QoS-aware Service Discovery : allows service requesters to retrieve

semantic-enhanced services by specifying functional and QoS requirements.

• Semantic-, QoS-aware Service Matching : allows selecting among the registered

services those that best conform to a service request in terms of semantically

specified service functional and QoS properties.

The semantic SOM layer is built on top of the middleware communication layer (lower

middle layer in the figure), which provides two essential functionalities for dealing with

middleware and network heterogeneity, i.e., the multi-protocol and multi-network man-

agement. Multi-network management enables the dissemination of service discovery and

access requests in the whole environment despite the heterogeneity of the underlying net-

works. Multi-protocol management includes service discovery protocol interoperability

and service access protocol interoperability. It allows a service requester that relies on a

specific service discovery and access protocol to discover and interact with services that

rely on different discovery and access protocols. Both service discovery and access proto-

col interoperability rely on the translation of service discovery and access messages (e.g.,
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Figure 2.6: Semantic Service-Oriented Middleware for Pervasive Computing

discovery and access requests) from one protocol-specific format to another. Additionally,

service discovery protocol interoperability requires the translation of service advertisements

into a common service description language for enabling service matching and composi-

tion to be performed independently from the specific underlying languages. The resulting

homogeneous service descriptions are stored by the service registry of our middleware.

Finally, the pervasive device software platform (lowest layer in the figure) integrates the

networked operating system, device drivers and software libraries providing base system

and network functionalities on which the middleware executes.

In the following chapters of this thesis we detail the different middleware functional-

ities that constitute our proposed middleware. Specifically, we describe in Chapter 3 a

model for the semantic specification of pervasive services to be supported by our proposed
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semantic service registry. We then present in Chapter 4 our efficient semantic service

registry for pervasive computing environments and its provided SOM functionalities, i.e.,

efficient, QoS-aware, semantic service publication, location and matching. In Chapter 5,

we present our QoS-aware service composition middleware functionality for the dynamic

realization of user tasks. We finally present in Chapter 6 a prototype implementation and

evaluation of our middleware by integrating the multi-protocol and multi-network middle-

ware functionalities coming from the MUSDAC platform [Raverdy et al., 2006] with the

previously presented SOM functionalities.
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Chapter 3

Semantic Specification of Pervasive

Services

The semantic specification of pervasive services is at the heart of a semantic SOM. It

enables service providers to describe their capabilities and service requesters to formulate

their requests. Specifically, all the SOM functionalities of our middleware rely on service

descriptions. Indeed, service publication (resp. service location) uses a service description

to advertise (resp. discover) a set of capabilities provided (resp. required) by a pervasive

service (resp. user task). Service matching compares service descriptions provided by

pervasive services and those required by user tasks. Finally, service composition integrates

capabilities identified in service descriptions to realize user tasks.

According to the SOA architectural style presented in Section 2.2 (p. 13), service descrip-

tion should enable the specification of :

1. Provided capabilities of pervasive services and required capabilities of user tasks.

The semantics underlying service capabilities should be specified using references to

existing ontologies.

2. Conversations of pervasive services and user tasks for modelling their behaviour.

The specification of service conversations should rely on a formal model in order to

enable the automated reasoning on service behaviour. Such reasoning enables the

31



32 CHAPTER 3 : Semantic Specification of Pervasive Services

valid integration of services having a complex behaviour for the realization of a user

task also described with a complex behaviour.

3. Non-functional properties of pervasive services and user tasks (i.e., QoS information).

This specification should be extensible to support the definition of domain-specific

non-functional requirements.

4. Binding information of pervasive services necessary for the service invocation, such as

the service access protocol, message formats, serialization, transport and addressing

information.

A number of languages have been proposed in the literature to support the semantic

specification of services (e.g., OWL-S, WSMF, SWSF and SAWSDL). These languages

support the requirements for semantic service specification discussed above. However,

to enable multi-protocol interoperability as envisioned by our SOM, a service registry

should support the publication of services described using different service description

languages as well as multi-language service matching to answer heterogeneous service

requests. This can be done by translating all the service descriptions at service publication

(resp. location) time, into a common language, which can be one of the existing languages,

so that service matching can be performed independently from the underlying service

description languages. Towards this purpose, a conceptual model that homogenizes the

different terminologies, raises ambiguity between contradicting elements of the different

languages and provides the formal ground to perform semantic service matching is required.

After a survey of existing semantic service description languages in Section 3.1, we

present in this chapter a conceptual model for the semantic specification of pervasive

services in Section 3.2 and a formalization of this model in Section 3.3. The instantiation of

this model through a combination of the languages BPEL4WS and SAWSDL is presented

in Chapter 6.



3.1 Semantic Service Description Languages: State Of The Art 33

3.1 Semantic Service Description Languages: State Of The Art

OWL-S

OWL-S (previously named DAML-S)1, is an ontology defined using the Ontology Web

Language (OWL)2 to describe Web services capabilities. Using OWL-S, a service descrip-

tion is composed of three parts: the service profile, the process model and the service

grounding. The service profile gives a high level description of a service and its provider

and is generally used for service publication and discovery. It includes: (1) An informal

description of the service oriented to a human user; (2) A description of the service’s ca-

pabilities, in terms of Inputs, Outputs, Pre-conditions and Effects (IOPE); and (3) An

extensible set of attributes describing complementary information about the service, like

the service type, category, etc. The process model describes the service conversation as a

process, while the service grounding specifies the information necessary for service invoca-

tion. There have been efforts for formally specifying OWL-S conversations using process

algebra [Narayanan and McIlraith, 2002].

WSMF

The Web Service Modeling Framework (WSMF)3 consists of four main elements: Ontolo-

gies, Goals, Web services, Mediators. Ontologies in WSMF are defined using the Web

Service Modeling Language (WSML). They are used for defining the semantics underly-

ing service descriptions. Goals describe the objectives that a service requester has, which

are fulfilled through the execution of Web services. A goal contains the description of

a required capability as well as a required interface. A Web service is a computational

entity able to achieve users goals. It is described using a provided capability, a provided

interface and non-functional properties. Capabilities are defined with a set of precondi-

tions, assumptions, postconditions and effects. A service interface describes how a service

capability can be achieved. This can be described either in terms of a set of interactions

1OWL-S: http://www.daml.org/services/owl-s/
2OWL: http://www.w3.org/TR/owl-features/
3WSMF: http://www.wsmo.org/
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with the service, i.e., service conversation, or as an orchestration of other Web services.

Finally, mediators are used to resolve mismatches between the other three elements (i.e.,

ontologies, goals and services). Service conversations in WSMF have also been associated

with a formal semantics in [Wang et al., 2007].

SWSF

The Semantic Web Services Framework is an effort by the Semantic Web Services Ini-

tiative4. It is composed of two parts: the Semantic Web Services Language (SWSL) and

the Semantic Web Services Ontology (SWSO). While, SWSL is a language for ontology

specification, SWSO is the conceptual model by which services can be described (i.e., the

service ontology itself). There are two versions of SWSO, the First-Order Logic Ontology

for Web Services (FLOWS) and the Rules Ontology for Web Services (ROWS). Similarly

to OWL-S, FLOWS (as ROWS) is composed of three ontologies: the Service Descriptors,

the Process Model and the Grounding ontology. Service descriptors provide basic informa-

tion about Web service capabilities and properties. The FLOWS process model ontology

is an extension of the Process Specification Language (PSL ISO 18629) with concepts from

the Web services domain to specify Web service conversations. FLOWS is associated

with the Web Service Description Language (WSDL5) for providing Web service binding

information.

SAWSDL

The Semantic Annotation for WSDL and XML Schema (SAWSDL)6 is a W3C candidate

recommendation. SAWSDL defines how to add semantic annotations to various parts of a

WSDL document and its associated XML schema files. These annotations are defined by

means of three SAWSDL attributes: the modelReference is used to link WSDL elements

(e.g., operation names, input, output messages) or XML Schema elements representing

data types, with concepts in existing ontologies while the liftingSchemaMapping and low-

4SWSF: http://www.swsi.org/
5WSDL: http://www.w3.org/TR/wsdl
6SAWSDL: http://www.w3.org/2002/ws/sawsdl/
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eringSchemaMapping attributes are used to specify mappings between semantic data and

XML structures. This mapping is necessary when, for instance, a service requester that

relies on an XML message structure wants to invoke a service that semantically matches

its requirements but relies on a different XML message structure. SAWSDL does not sup-

port the specification of service conversations. Nevertheless, it is usually combined with

WS-BPEL7, an OASIS candidate standard for the specification of business processes, for

describing service conversations. Formal specification of WS-BPEL conversations has been

defined using various formalisms (e.g., Finite state automata [Wombacher et al., 2004],

process algebra[Cámara et al., 2006]).

Discussion

The four languages described above are compliant with our requirements for the semantic

specification of pervasive services. Indeed, all of them support the semantic specification of

a service as an entity providing a number of capabilities. A capability is described with a set

of inputs, outputs and possibly pre-conditions and post-conditions. The semantics of each

of these elements is defined with references to existing ontologies. Furthermore, a capability

is given a set of non-functional properties (e.g., QoS properties) and a conversation. All of

these languages describe a basic set of non-functional properties and support extensions

for the definition of application-specific attributes. Finally, conversation specifications

are given a formal semantics yet relying on different formal languages. However, the

emergence of such service description languages that have been defined to address the

syntactic heterogeneity of service descriptions contribute to the middleware heterogeneity

problem discussed in Chapter 2. Indeed, these languages employ different terminologies

to design similar service elements (Table 3.1 describes the terminology employed by each

language for specifying SOA concepts introduced in Section 2.2, p. 13).

Furthermore, they rely on different formalisms to define the semantics of services con-

versations, which restricts the ability of integrating them towards the realization of user

tasks. Finally, the way semantic annotation of service elements is performed differs from

7WS-BPEL: www.oasis-open.org/committees/wsbpel/
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OWL-S WSMO FLOWS SAWSDL

Capability Service Profile Capability Service De-

scriptor

Operation

Behaviour Process

Model

Interface Process

Model

Not sup-

ported

Input Input Assumption Input Input

Output Output Effect Output Output

Non-

functional

property

Service Pa-

rameter

non-

functional

property

Properties

from OWL-S

and WSMO

Not sup-

ported

Table 3.1: SOA Concepts Supported by Semantic Service Specification Languages

one approach to another. Specifically, when a service element (e.g., output message) is

annotated with an ontology concept this may be interpreted as:

• The service provides an output of type the concept itself or any of its sub-concepts

in the ontology hierarchy (e.g., a car selling service may provide any type of car with

respect to the ontology hierarchy) or

• The service provides an output of type the concept itself or some of its sub-concepts

in the ontology hierarchy (e.g., a car selling service may provide some type of cars)

Existing approaches for semantic service specification and matching assume one of the

two types of annotation. For instance, Paolucci et al. in [Paolucci et al., 2002] supports

the first type, while [M’Bareck and Tata, 2007] supports the second type of annotation.

This introduces ambiguity in service descriptions that a SOM for pervasive computing

has to deal with.

Considering all these types of heterogeneity, a service requester that relies on a service

description language is not able to discover and interact with service providers that use an-

other service description language. A SOM for pervasive computing should deal with such

heterogeneity to allow a service requester to discover and interact with a service provider

even if these two actors are using different service description languages. Furthermore,
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existing syntactic-based middleware already available in pervasive environments should

also be supported by a SOM to achieve full interoperation.

Interoperability can be achieved by translating heterogeneous service advertisements

into a common semantic service description language. This allows performing service

matching and composition independently from the underlying service description lan-

guages. This calls for a conceptual model, which we present in this chapter, that homog-

enizes the terminologies between the heterogeneous service description languages, raises

ambiguity underlying semantic annotation by enabling the explicit specification of anno-

tation types and provides the formal ground for enabling the definition of service matching

relations.

3.2 Semantic Service Specification Model

The UML diagram depicted in Figure 3.1 shows a graphical representation of our semantic

service model. This diagram introduces the various elements of our model and the key

relationships between these elements.

3.2.1 Provided and Required Capabilities

At the heart of our model is the concept of Service, which is defined as an aggregation of

a non-empty set of independent Capabilities and a possibly empty set of Non-Functional

Properties. A capability is defined as an aggregation of a potentially empty set of In-

puts, a non-empty set of Outputs, an optional Category, an Automaton for describing its

Conversation and a possibly empty set of properties. Capabilities having a conversation

that involve other capabilities are said to be composite capabilities, whereas the others

are said to be elementary capabilities. Elementary capabilities correspond to the unit of

interaction with the service, i.e., service operations. The inputs and outputs of a service

capability describe respectively the information necessary for the execution of the capa-

bility and the information resulting from the execution of the capability. A capability is

also characterized by its category, which is a description of the functionality provided by

the capability. Each input, output and category of a capability is defined with a Name,
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Figure 3.1: Semantic Service Specification Model

and a possible Semantic Annotation which is used to express the semantics underlying the

input, output or the category to which it is associated. The semantic annotation of service

elements is optional in order to support both semantic and syntactic-based languages. A

Semantic annotation is a reference to an existing ontology concept. It is defined with the

Name of the concept, a reference to the Ontology in which the concept is defined, and the

Annotation type associated with the semantic annotation. The annotation type is used

to specify what is intended by the employment of a semantic concept when annotating

an entity. Two annotation types associated with a concept are supported in our model:

all-values-from and some-values-from noted ⊗ and ⊕ respectively. For instance, if a pro-

vided capability has an output information annotated with a concept associated with the

all-values-from annotation type, this means that the latter output can have as type the

concept itself or any of its sub-concepts. On the contrary, if an output is annotated with a
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concept having a some-values-from semantics, this means that it can have as type the con-

cept itself or some of its sub-concepts. In contrast with existing approaches that assume

one of the two annotation types, our model supports both types in order to allow service

providers and service requesters to give more accurate annotations of their provided and

required capabilities.

Figure 3.2 shows an example of a required and a provided capability inspired from the

scenario introduced in Chapter 1. Both the required and the provided capabilities use (the

classified fragment of) the Resource Ontology depicted in Figure 3.3. The provided ca-

pability, named Airport Entertainment Server, is offered by the airport infrastructure. It

allows travellers who are waiting for their flight to listen to music or watch short movies on

their mobile devices. This capability takes as input a ResourceName and provides users

with corresponding video and sound resources. Hence, this capability has two outputs

that are annotated with the concepts Video Resource and Sound Resource respectively.

Semantic annotation is represented in the figure with the notation Ontology#Concept-

Annotation Type. Both these outputs are associated with the all-values-from annotation

type because the server does not have have any restriction regarding file types. For in-

stance, for music resources, it can provide either mp3, ogg or midi files according to the

user’s preferences. Moreover, this capability is of category Digital Server associated with

the some-values-from annotation type as it can act as a Music or a Video server but not

as a Game Server. On the other hand, the required capability, that may reside in the

handheld of a mobile user has the same input as the provided capability and an output of

type EntertainmentResource associated with the type some-values-from. This means that

the user looks for any type of resource among video, game and sound that corresponds to

the topic he/she gives as input. The category of this capability, i.e., Entertainment Server

is also given a some-values-from annotation type, which means that any server among

video, music and game server would satisfy the request.
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Figure 3.2: Required and Provided Capabilities

Figure 3.3: Example of an Ontology of Resources

3.2.2 Conversation Specification

The automaton, if any, associated with a provided capability, describes the conversation

that the service requester has to perform in order to get the functionality advertised by

the capability. In the case of required capabilities, a conversation prescribes a possible way

of composing this capability out of the environment’s capabilities. A service conversation

is defined as a finite state automaton having a finite set of States, a finite set of Symbols,

a Transition Function, an InitialState and a finite set of FinalStates. The automaton

symbols are themselves capabilities. This means that a capability may itself be composed

of other capabilities.
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Figure 3.4 shows the description of the EASY-COM user task introduced in the sce-

nario presented in Chapter 1. This task is modelled as a service that has two required

capabilities, i.e., the EASY-Phone capability and the EASY-Movie capability. The EASY-

Movie capability is represented with its associated inputs, outputs, category, properties

and conversation. This conversation is modelled as an automaton where each transition

label refers to another required capability. For instance, the capability SearchServer de-

picted in the beginning of the automaton refers to the capability of the same name depicted

in Figure 3.2.

Figure 3.4: EASY-COM Service

As part of the specification of service conversations, our model supports the represen-
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tation of data flow between capabilities. A data flow is specified when output information

produced by a capability is consumed as input information of another capability. This

can be graphically represented as part of the automaton model by introducing vertices

for representing capabilities and labelled edges representing the dependencies between

capabilities. Labels on edges represent the flow of data among capabilities. Figure 3.5

represents the conversation of the EASY-Movie user task integrating our graphical repre-

sentation of data flow. In this figure, multiple data flow specifications have been defined

between the capabilities. For instance, a data flow is defined between the Browse and

the DisplayStream capabilities. This means that the VideoStream, which results from the

selection of a movie on a video server is used as an input of the display functionality of a

display device.

Figure 3.5: Data Flow Graphical Representation

3.2.3 Non-functional Properties

In our model, non-functional properties can be specified at two levels: at the compos-

ite capability level, i.e., global non-functional properties and at the elementary capability

level, i.e., local non-functional properties. Global non-functional properties apply to the

composite capability as a whole, while local non-functional properties describe features

of the elementary capability itself. In both cases, a non-functional property is related to
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QoS. These properties can be either Quantitative or Qualitative [Liu, 2006]. Quantitative

non-functional properties, also referred to as metrics are related to quantifiable QoS at-

tributes of the service (e.g., latency, availability). Qualitative non-functional properties,

also referred to as policies, are defined using non-quantifiable QoS attributes that dictate

the non-functional behaviour of the service (e.g., security, trust). In our model, these

properties are defined with semantic annotations while quantitative properties are defined

as numeric expressions.

Figure 3.6: Specifying Non-Functional Properties

Figures 3.4 and 3.6 exemplify the specification of global and local non-functional prop-

erties respectively. In the first figure, the EASY-Movie composite capability has two

required non-functional properties. The first property, i.e., latency<5 expresses the fact

that the composed user task should have a global execution time less than 5 units of

time, while the second property, which is related to availability, expresses the need that

the composed user task should have a percentage of availability greater than 50%. These

properties have to be fullfilled by a composition of provided capabilities. On the other

hand, the local non-functional properties associated with the elementary capabilities Air-

port Entertainment Server and Search Server in Figure 3.6 express respectively properties

provided and required by these capabilities and do not relate to any other capabilities.

Both capabilities have qualitative and quantitative non-functional properties. The first

three properties of the provided capability are quantitative properties. Their names cor-
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respond to concepts representing quantitative properties taken from the QoS Ontology

defined in [Liu, 2006] and depicted in Figure 3.7. In that ontology, dark colored boxes

correspond to qualitative QoS properties while light colored boxes correspond to quan-

titative QoS properties. Quantitative properties are described using numeric expressions

(e.g., Price = 10). Furthermore, a qualitative property is described in both the provided

and the required capabilities, which is related to the networking resources being used by

each of the capabilities.

Figure 3.7: Example of QoS Ontology

3.3 Formalizing the Semantic Service Model

We introduce in this section a formalization of our semantic service model, which serves as

a basis for defining our proposed conformance relations and service composition algorithms

presented in Chapters 4 and 5, respectively.

Consider a finite set of services S, a finite set of capabilities C, a finite set of non-

functional properties P, a finite set of ontologies O, and a finite set of concepts N across

the set of ontologies O. A service s in S is defined as a set of capabilities and non-functional

properties as follows:
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(s ∈ S) ⇔ (∃C ⊂ C,∃P ⊂ P : s =< C, P >)

Provided and Required Capabilities

A capability c from the set of capabilities C is defined by a tuple c =< I, O, cat, P, A >

where :

• I is the set of inputs consumed by c;

• O is the set of outputs produced by c;

• cat is the category of c;

• P ⊂ P is the set of non-functional properties characterizing c and

• A =< Q,Σ, δ, st0, F > is a finite state automaton describing the conversation of the

capability c, as detailed below:

An input, output or category is defined as a tuple: < Name, SemanticAnnotation >,

where SemanticAnnotation is provided only for semantic enhanced services, as: SemanticAnnotation =<

o, n, at > where o ∈ O, n ∈ N and at ∈ {⊕,⊗} characterizes the annotation type.

The annotation type associated with a semantic concept is defined as follows. Consider

the set {n1, n2, ..., nn} of all the sub-concepts of a concept n in an ontology O including n

itself. The semantics of n⊕ and n⊗ is defined as follows:

n⊕ = n1 ∨ n2 ∨ ... ∨ nn and

n⊗ = n1 ∧ n2 ∧ ... ∧ nn.

Conversation Specification

The automaton A =< Q,Σ, δ, st0, F > describing the conversation of a capability c is

defined as follows:

• Q is a finite set of states;
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• Σ ⊂ C is a finite set of symbols representing capabilities, i.e., the alphabet of the

language the automaton accepts;

• δ is the transition function, that is δ : Q × Σ → Q;

• st0 is the start state, that is, the state in which the automaton is when no input has

been processed yet (obviously, st0 ∈ Q)

• F is a set of states of Q (i.e., F ⊂ Q), called accept states.

Van der Aaalst et al. in [van der Aalst et al., 2000] identified twenty control patterns

for representing service conversations and for providing a comprehensive comparison of

existing conversation languages with respect to these patterns. In our model, we support

the set of basic control patterns identified in this work, as they are supported by most

conversation specification languages, and advanced patterns can be build based on this

elementary set. Figure 3.8 represent the rules that we define for mapping these basic

control flow patterns into finite state automata. In this figure an elementary capability c

is represented with an automaton < Q,Σ, δ, st0, F >, where :

• Q = {st0, st1} ;

• Σ = {c} ;

• δ(st0, c) = st1 ;

• st0 is the start state ;

• F = {st1}.

A composite capability, i.e., a capability that uses one or more of the basic control flow

patterns, is translated to an automaton by recursively applying the mapping rules defined

in Figure 3.8 as follows: consider a set of capabilities c1, c2, ..., cn ,represented by the

automata < Q1, Σ1, δ1, st0,1, F1 >, < Q2, Σ2, δ2, st0,2, F2 >, ..., < Qn, Σn, δn, st0,n, Fn >,

respectively, a composite capability c is represented by the automaton < Q,Σ, δ, st0, F >

according to the control pattern it uses, as follows:

• c=Sequence(c1, c2, ..., cn)

– Q =
⋃

Qi;

– Σ =
⋃

Σi

⋃

{ǫ};
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Figure 3.8: Basic Control Flow Patterns Modelled with Finite State Automata

– δ :
⋃

(Qi × Σi) →
⋃

Qi

(x, y) 7→ δ(x, y) = δi(x, y) when (x, y) ∈ Qi × Σi and δ(x, y) = st0,i+1 when x ∈ Fi
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(i 6= n) and y = ǫ;

– st0 = st0,1;

– F = Fn.

• c=ExcusiveChoice(c1, c2, ..., cn)

– Q = (
⋃

Qi) ∪ stInit;

– Σ =
⋃

Σi

⋃

{ǫ};

– δ :
⋃

(Qi × Σi) →
⋃

Qi

(x, y) 7→ δ(x, y) = δi(x, y) when (x, y) ∈ Qi × Σi and δ(x, y) = st0,i when x = stInit

and y = ǫ;

– st0 = stInit;

– F =
⋃

Fi.

• c=SimpleMerge(c1, c2, ..., cn)

– Q = (
⋃

Qi) ∪ {stInit, stFinal};

– Σ =
⋃

Σi

⋃

{ǫ};

– δ :
⋃

(Qi × Σi) →
⋃

Qi

(x, y) 7→ δ(x, y) = δi(x, y) when (x, y) ∈ Qi × Σi and δ(x, y) = st0,i when x = stInit

and y = ǫ and δ(x, y) = stFinal when x ∈ Fi and y = ǫ

– st0 = stInit;

– F = stFinal.

• c=ParallelSplit(c1, c2): is treated as

c=ExclusiveChoice(Sequence(c1, c2),Sequence(c2, c1))

• c=Synchronisation(c1, ..., cn): is treated as

c=SimpleMerge(ParallelSplit(c1, ..., cn))

We integrate the data flow definition within our automata model using the following

function:

Φ : Σ −→ 2Σ×N 2

c 7−→ Φ(c) = {< ci, oi, ii >: i = 0..n}
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This is interpreted as: the output oi produced by the capability c is consumed by the

capability ci as the input ii.

Non-Functional Properties

The set P of non-functional properties is defined as the union of two sets: P = PQL∪PQN :

where PQL is the set of qualitative properties, and PQN is the set of quantitative properties.

A qualitative property pql ∈ PQL is defined as a tuple with a name and a value. The name

corresponds to a concept describing qualitative non-functional properties and the value is

defined as a semantic annotation. In other words: pql =< Name, V alue >, Name ∈ NQL

where NQL ⊂ N is a set of concepts describing qualitative properties, and V alue ∈ N .

A quantitative property pqn ∈ PQN is defined with a couple < Name, V alue > where

Name ∈ NQN is a concept describing quantitative properties and V alue is a numeric

expression built using the operators =, <,≤, >,≥ and values from R.

3.4 Concluding Remarks

Semantic service specification has been a very active field of research in the last few

years, which has led to the emergence of a number of semantic service specification lan-

guages. To enable the full potential of pervasive computing environments, a SOM should

enable service requesters that rely on a specific service description language to discover,

access and compose services that are described using different service description lan-

guages, including semantic and syntactic ones. Towards this purpose, we presented in this

chapter a semantic service model enabling the specification of service functional and non-

functional capabilities as well as service conversations, which serves as a basic enabler for

both semantic-based and syntactic-based multi-language interoperability. Multi-language

interoperability achieved by the multi-protocol management functionality of our middle-

ware (introduced in Section 2.4) consists on translating incoming service advertisements

and service requests into a language compliant with our service model as presented in

Chapter 6.
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Chapter 4

Efficient Semantic Service Registry

for Pervasive Computing

Environments

Service publication, location and matching supported by a service registry are essential

functionalities of a SOM. To fit the requirements of pervasive computing environments,

these middleware functionalities have to deal with a number of issues. Specifically, service

matching have to consider the heterogeneity of service descriptions. Indeed, service de-

scriptions coming from different middleware platforms may have different levels of expres-

siveness (e.g., rich semantic service descriptions, syntactic service descriptions). Semantic

service descriptions may further be specified using different annotation types. Further-

more, preferences among non-functional properties of services have to be considered in

order to provide the users with services that best fit their requirements. Finally, the ef-

ficiency of the registry has to be considered to fit resource constrained devices on which

the middleware may be deployed. The efficiency of the semantic service registry depends

mainly on the efficiency of the semantic matching of service capabilities. Based on the

semantic service description languages, such as the ones surveyed in Chapter 3, a number

of research efforts focus on matching between services to assess the suitability of advertised

services against a service request. However, these solution do not address the matching of

51
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heterogeneous service descriptions that further include both functional and non-functional

properties of services. Moreover, optimizations to semantic service matching performed by

service registries are realized by overloading service publication with costly computations

in order to achieve efficiency at service location time.

We survey in Section 4.1 existing semantic service matching algorithms, analyse the

computational cost of such matching and discuss existing optimizations to semantic service

matching. We then present our registry and the SOM functionalities it realizes in Section

4.2. We finally assess the efficiency of our overall solution in Section 4.3 and present

concluding remarks in Section 4.4.

4.1 Efficient Semantic Service Matching: State Of The Art

4.1.1 Matching Semantic Service Capabilities

A number of research efforts have been conducted in the area of matching semantic Web

services based on the signatures of their provided capabilities. Signature matching deals

with the identification of subsumption relationships between the concepts describing inputs

and outputs of capabilities [Zaremski and Wing, 1995]. The subsumption relation allows

relating concepts to more generic concepts in an ontology based on their formal definitions

given in description logics. After subsumption reasoning on an ontology, the resulting

ontology hierarchy is referred to as the classified ontology. This reasoning is performed by

a description logics reasoner.

A base algorithm for service signature matching has been proposed by Paolucci et al.

in [Sycara et al., 2003, Paolucci et al., 2002]. This algorithm allows matching a required

capability, described as a set of provided inputs and required outputs, with a number of

provided capabilities, described each as a set of required inputs and provided outputs.

Inputs and outputs are semantically annotated with ontology concepts using the all-value-

from annotation type. Specifically, the algorithm defines four levels of matching between

a provided and a required ontology concept representing an input or an output. These

four levels are:
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• exact : if the concepts are equivalent or if the required concept is a direct subclass of

the provided one,

• plug in: if the provided concept subsumes the required one and the latter is not a

direct subclass of the former,

• subsumes: if the required concept subsumes the provided one, and

• fail : if there is no subsumption relation between the two concepts.

Based on these four levels of match between concepts, the matching algorithm defines

a scoring function used for service ranking, ordered in the following way: exact > plug in

> subsumed > fail.

Other solutions extending the above signature matching of semantic Web services have

been proposed in the literature [Majithia et al., 2004, Trastour et al., 2001, Filho and van Sinderen, 2003].

However, all these algorithms neither consider the matching of service non-functional prop-

erties, nor the computational cost associated with their matching functions.

Another kind of matching, called specification matching has been investigated in the

literature [Zaremski and Wing, 1997, Sirin et al., 2005, Sycara et al., 1999]. Specification

matching deals with matching pre- and post-conditions that describe the functional se-

mantics of services. For instance, in [Zaremski and Wing, 1997], specification matching

is performed using theorem proving, i.e., inferring general subsumption relations between

logical expressions that specify pre- and post-conditions of services. A more practical

way to perform specification matching is to use query containment [Sirin et al., 2005,

Sycara et al., 1999]. This is done by modelling both service advertisements and service

requests as queries with a set of constraints (e.g., required inputs and outputs are mod-

elled as restrictions on their types). Starting from the specified constraints, the possible

values of both queries are evaluated, and possible inclusions between the results of the

queries are inferred. Specifically, a query q1 is contained in q2 if all the answers of q1 are

included in the answers of q2. Compared to signature matching, specification matching

realized through query containment requires to have a central knowledge base with all the

ontology instances, which is hardly achievable in open pervasive computing environments.
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We thus focus in this thesis on matching based on semantic-enhanced service signatures.

The key issue for efficient signature matching lies in the performance of the underlying

semantic reasoning on ontologies as discussed in the following section.

4.1.2 Cost of Semantic Service Matching

From the experiments presented in [Ben Mokhtar et al., 2006b], it has been identified that

the computational cost of semantic reasoning is inappropriate with respect to the interac-

tive feature of pervasive computing environments. Indeed, assessing the conformance of a

service request against a single service advertisement involving ten concepts that belong

to a single ontology of a hundred concepts, generates an execution overhead in the order

of four to five seconds1. This experiment has been realized using all the three publicly

available reasoners from the scientific community, i.e., Racer2, FaCT++3 and Pellet4, and

results where similar for all three reasoners. This processing overhead has further to be

multiplied by the number of services with which the conformance of the request is checked

and the number of ontologies employed for describing each service.

In more detail, to perform semantic service matching, each pair of concepts ci, cj

describing service elements (e.g., inputs, outputs) has to be compared. To do this, a

memory model representing the ontology defining these concepts is created in order to

reason over its structure. Then, these ontologies have to be classified in order to infer all

the subsumption relations between concepts from their formal definitions. A parsing of

the classified ontologies is then performed to locate the concepts ci and cj and assess the

relationship between them among the following:

• c1 subsumes c2 if c1 is an ancestor of c2 in the classified ontology hierarchy,

• c2 subsumes c1 if c2 is an ancestor of c1 in the classified ontology hierarchy,

• empty if there is no subsumption relation between c1 and c2 in the classified ontology.

1Experiment Conditions: Notebook with a 1.6 GHz Intel Centrino processor and 512 MB of RAM
2Racer: http://www.sts.tu-harburg.de/ r.f.moeller/racer/
3FaCT++: http://owl.man.ac.uk/factplusplus/
4Pellet: http://www.mindswap.org/2003/pellet/
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Finally, the overall relation between the service request and the service advertisement

can be assessed from the identified subsumption relations previously computed for each

pair of concepts as discussed in Section 4.1.1.

In [Ben Mokhtar et al., 2006b], it is also established that ontology parsing (i.e., cre-

ation of the memory model representing the ontology) and ontology classification are the

most costly phases in semantic service matching (i.e., 80% of the total execution overhead)

(see Chapter 6 for a detailed evaluation). Thus, optimizations need to be investigated in

order to adapt this costly process to the constraining features of pervasive computing

environments.

4.1.3 Optimizations to Semantic Service Matching

Two kinds of optimizations can be investigated to reduce the cost of semantic service

matching :

1. Enabling efficient subsumption assessment between ontology concepts. This can be

achieved by performing ontology classification offline and investigating mechanisms

for rapidly inferring subsumption between concepts at runtime.

2. Organizing semantic service advertisements in service registries, so that the number

of matchings performed for resolving a service request is reduced.

Optimizing subsumption assessment between ontology concepts is similar to optimiz-

ing subsumption assessment between classes in object-oriented programming languages. In

this area, algorithms for encoding multiple-inheritance class hierarchies have been investi-

gated (e.g., [Caseau, 1993, Krall et al., 1997, Ait-Kaci et al., 1989, van Bommel and Beck, 1999]).

The rationale behind the encoding of class hierarchies is to assign a numeric code to each

class in order to assess the relationship between two classes by numerically comparing their

codes instead of browsing the whole hierarchy. However, employing existing algorithms for

encoding ontologies also needs to deal with issues typical to knowledge representation, such

as support for conflict-free encoding for large ontologies while achieving efficient matching.

For organizing semantic service advertisements in service registries, solutions may be

sought in service classifications. The OWL-S service description language provides the
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means for defining hierarchies of service descriptions called profile hierarchies5. These

hierarchies are similar to the object-oriented inheritance hierarchies. For instance, when a

new service profile is defined, it may be specified as a subclass of an existing profile class.

This allows the new service to inherit all the properties of all the classes specified in its

super-hierarchy of classes. While this approach allows the classification of service profiles

according to the classes from which they inherit, it does not allow considering possible

relations between service capabilities that do not have a common set of properties but still

provide similar functional features.

Service classification can also be based on the service category using existing tax-

onomies such as NAICS6 or UNSPSC7. However, service categories alone do not give

enough information about the service functionality.

Other solutions that combine both encoding and registry organization techniques have

been investigated. In this area, [Constantinescu and Faltings, 2003] propose to numeri-

cally encode service descriptions and use the Generalized Search Tree (GiST) algorithm

proposed by Hellerstein in [Hellerstein et al., 1995] for creating and maintaining the reg-

istry of numerically encoded services. Combining both encoding and indexing techniques

allows performing efficient service location, in the order of milliseconds for trees of 10000

entries. However, insertion within trees of this size to realize service publication, is still a

heavy process that takes approximately 3 seconds.

In [Srinivasan et al., 2004], the authors propose an approach to optimizing service lo-

cation in a UDDI registry augmented with OWL-S for the description of semantic Web

services. In this approach, the authors propose to exploit the service publication phase

to perform semantic reasoning and pre-compute information that will help to efficiently

answer service requests. Performance evaluation of this approach shows that the service

publication phase employing this algorithm takes around seven times the time taken by

UDDI to publish a service. On the other hand, the time to process a service request is in

the order of milliseconds.

5OWL-S Profile Hierarchies: http://www.daml.org/services/owl-s/1.1/ProfileHierarchy.html
6NAICS taxonomy: http://www.census.gov/epcd/www/naics.html
7UNSPSC taxonomy: http://www.unspsc.org/
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While the two above approaches opt for overloading the service publication phase with

costly computations in order to later achieve efficiency upon resolving service requests,

we aim at achieving both lightweight service publication and location, as both operations

need to be performed on resource constrained-devices.

4.1.4 Discussion

The survey of existing research efforts towards semantic service matching demonstrates

that the proposed matching algorithms consider service descriptions coming from a single

service description language. They focus on matching service functional properties and

do not enable the evaluation of the degree of match between services with respect to both

functional and non-functional properties. Furthermore, the efficiency of the proposed

semantic service matching algorithms is not assessed. Finally, solutions to optimized

semantic service discovery achieve efficiency of semantic service location by overloading

service publication. Thus, the quest for an efficient service registry for pervasive computing

environments is still open. This registry should:

• Enable flexible service matching that supports both semantic and syntactic service

descriptions for enabling multi-language interoperability

• Support semantic descriptions with different annotation types

• Assesses the conformance and evaluate the degree of conformance between service

capabilities based on both service functional and non-functional properties

• Support an appropriate ontology encoding mechanism to perform efficient semantic

service matching

• Enable organizing of service descriptions to support both efficient service publication

and location
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4.2 Efficient Semantic Service Registry

Figure 4.1 introduces the architecture of our efficient semantic service registry for pervasive

computing. This registry allows heterogeneous service capabilities to be registered and

retrieved by translating their corresponding descriptions to the model introduced in the

previous chapter.

This registry is composed of three of the functionalities of our SOM. Specifically, ser-

vice matching, presented in Section 4.2.1 presents a set of conformance relations to assess

the suitability of a service advertisement with a service request. Efficient semantic service

matching presented in Section 4.2.2 allows efficiently assessing the conformance between

two service descriptions through appropriate ontology encoding algorithms. Service pub-

lication, presented in Section 4.2.4, is used to efficiently classify service advertisements

in the registry. Finally, service location, presented in Section 4.2.5 is used to efficiently

retrieve a ranked list of service descriptions that conform to a service request. In addition,

an index, presented in Section 4.2.3, in maintained to efficiently access to the classified

service advertisements.

We present in the following sections each of these SOM functionalities.

Figure 4.1: Registry Architecture Overview
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4.2.1 Service Matching

Based on our semantic service model presented in Chapter 3, we present in this section

a set of conformance relations for matching the description of a required service with the

description of a provided service. The conformance relations presented in this section deal

with both functional and non-functional capabilities of services. They are based on the

relation ConceptMatch(), which is used for matching two concepts n1, n2 from the set

of concepts of an ontology O associated with their respective annotation type, either ⊕

or ⊗. Based on this relation we present the relations ElementMatch() and Function-

alCapabilityMatch() for matching two capability elements, and two service capabilities

(respectively). We finally, present a set of functions to evaluate the semantic distance

between capabilities.

Matching Two Semantic Concepts

. The relation ConceptMatch(n1,n2), where n1 is a provided concept and n2 is a required

concept, decomposes in three cases with respect to the annotation type associated with

the concepts n1 and n2 as follows:

ConceptMatch(n⊗
1 ,n⊗

2 ) ⇔ n⊗
1 = (c1 ∧ c2 ∧ c3 ∧ ...) ∧

n⊗
2 = (c′1 ∧ c′2 ∧ c′3 ∧ ...) ∧

∀c′j ,∃ci : c′j = ci

⇔ Subsume(n1,n2)

ConceptMatch(n⊗
1 ,n⊕

2 ) ⇔ n⊗
1 = (c1 ∧ c2 ∧ c3 ∧ ...) ∧

n⊕
2 = (c′1 ∨ c′2 ∨ c′3 ∨ ...) ∧

∃ci,∃c′j : ci = c′j

⇔ n⊗
1 = (c1 ∧ c2 ∧ c3 ∧ ...) ∧

n⊕
2 = (c′1 ∨ c′2 ∨ c′3 ∨ ...) ∧
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{ci} ∩ {c′j} 6= ∅

⇔ Subsume(n1,n2) ∨

Subsume(n2,n1) ∨

∃c ∈ O : Subsume(n1,c) ∧ Subsume(n2,c)

ConceptMatch(n⊕
1 ,n⊕

2 ) ⇔ n⊕
1 = (c1 ∨ c2 ∨ c3 ∨ ...) ∧

n⊕
2 = (c′1 ∨ c′2 ∨ c′3 ∨ ...) ∧

∀ci,∃c′j : ci = c′j

⇔ Subsume(n2,n1)

Where the relation Subsume() between two concepts n1 and n2 of an ontology O holds

if and only if the concept n1 subsumes the concept n2 in O, i.e., n1 is more generic than

or is equivalent to n2 in O after ontology classification.

Figure 4.2: Ontology Example

The first case describes the situation where both the provided and the required concepts

are associated with the all-values-from annotation type. This means that either concept
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can be replaced by a conjunctive clause including the concept itself and all the concepts

from its respective sub-hierarchy. Hence, the matching between these two concepts holds if

and only if n1 subsumes n2. For instance, according to the ontology of resources depicted

in Figure 4.2, ConceptMatch(WirelessNetwork⊗,WiFi⊗) holds because:

(WirelessNetwork⊗ ≡ WirelessNetwork∧WiFi∧Bluetooth∧ 802.11g∧ 802.11b) ⇒ (WiFi⊗ ≡ WiFi∧

802.11g ∧ 802.11b)

The second case describes the situation where a required concept is associated with

a some-values-from annotation type while the provided concept is associated with a all-

values-from annotation type. In this case, as the required concept translates into a dis-

junction of its sub-concepts it can be satisfied if there is an intersection between the

sub-concepts of the former and the sub-concepts of the latter. For instance, both Concept-

Match(WirelessNetwork⊗,WiFi⊕) and ConceptMatch(802.11g⊗,WiFi⊕) hold because:

(WirelessNetwork⊗ ≡ WirelessNetwork∧WiFi∧Bluetooth∧ 802.11g∧ 802.11b) ⇒ (WiFi⊕ ≡ WiFi∨

802.11g ∨ 802.11b)

and

(802.11g⊗ ≡ 802.11g) ⇒ (WiFi⊕ ≡ WiFi ∨ 802.11g ∨ 802.11b)

Additionally, in this case a matching may hold also if there no subsumption between the

provided and the required concept but there is an intersection between their sub-concepts.

This is due to the multiple-inheritance structure of ontologies. For instance, a matching

holds between the concepts: InformationResource⊗ and EntertainmentResource⊕ in

Figure 4.2, as there is an intersection between the sub-hierarchies of these two concepts.

Finally, the last case represents the situation where both the provided and the required

concepts are associated with the annotation type some-values-from. In this case the match-

ing holds only if the required concept subsumes the provided one. In all the other cases, the

matching can not be assessed. For instance, ConceptMatch(WiFi⊕,WirelessNetwork⊕)

holds because:
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(WiFi⊕ ≡ WiFi∨ 802.11g∨ 802.11b) ⇒ (WirelessNetwork⊕ ≡ WirelessNetwork∨WiFi∨Bluetooth∨

802.11g ∨ 802.11b)

Notice that our matching relation does not consider the case where the provided con-

cept has a some-values-from annotation type while the required one has an all-values-from

annotation type, i.e., ConceptMatch(n⊕
1 ,n⊗

2 ). In this case, whatever is the Subsume()

relation between the two concepts, we can not insure that the matching holds. The only

assertion that we can make is that if the relation Subsumption(n1,n2) does not hold this

implies that the relation ConceptMatch(n1,n2) does not hold neither. In other words:

¬ Subsume(n1,n2) ⇒ ¬ ConceptMatch(n⊕
1 ,n⊗

2 )

Indeed, if n1 does not subsume n2, i.e., n2 is more generic than n1 or n2 is not in

the same hierarchy as n1 at all, the annotation type of n1 translates into a disjunction of

concepts that contains at most a sub-part of the sought concept n2. This does not satisfy

n2 as its annotation type translates into a concept conjunction of all its sub-hierarchy of

concepts and not only part of them. Furthermore, ConceptMatch() can not be asserted

if the relation Subsumption(n1,n2) holds, but in this case, contrary to the previous one,

there is still a chance for the provided concept to satisfy the required concept at runtime.

If we consider the previous example, neither ConceptMatch(WirelessNetwork⊕,WiFi⊗)

nor ConceptMatch(802.11g⊕,WiFi⊗) holds because:

(WirelessNetwork⊕ ≡ WirelessNetwork∨WiFi∨Bluetooth∨ 802.11g∨ 802.11b) ; (WiFi⊗ ≡ WiFi∧

802.11g ∧ 802.11b)

and

(802.11g⊕ ≡ 802.11g) ; (WiFi⊗ ≡ WiFi ∧ 802.11g ∧ 802.11b)

While in the second case it is obvious that the provided concept does not satisfy the

required one, we can not exclude a possible matching of the provided concept with the

required one in the first case at runtime. Thus, as we aim at automated semantic service

matching, we opt for ignoring this possibility by considering that if a required concept is

associated with an all-value-from annotation type while the provided concept is associated
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with a some-values-from annotation type the matching fails.

Matching Two Capability Elements

Elements describing service capabilities, i.e., input, output, category, can be associated

with a semantic annotation or be syntactically defined with their names (if the semantic

annotation field is empty, with respect to our model of Figure 3.1). In the case of two

semantic elements, matching is performed using the ConceptMatch() relation, while it

is realized through a syntactic comparison of element names if one of the two compared

elements (or both of them) are syntactically described. More formally, the relation Ele-

mentMatch() is defined as follows:

if e1.SemanticAnnotation 6= ∅ and e2.SemanticAnnotation 6= ∅:

ElementMatch(e1,e2) ⇔ ConceptMatch(e1.SemanticAnnotation,e2.SemanticAnnotation)

else

ElementMatch(e1,e2) ⇔ e1.Name = e2.Name

Matching Two Service Capabilities

Using the relation ElementMatch(), we define the relation FunctionalCapabilityMatch()

for matching functional properties of a provided capability c1 =< I1, O1, cat1, P1, A1 >

with a required capability c2 =< I2, O2, cat2, P2, A2 > in C as follows:

FunctionalCapabilityMatch(c1,c2) =

∀ in2 ∈ I2, ∃ in1 ∈ I1: ElementMatch(in1, in2) and

∀ out2 ∈ O2, ∃ out1 ∈ O1: ElementMatch(out1, out2) and

ElementMatch(cat1, cat2)

Matching non functional properties of capabilities is performed using the relation Prop-

ertiesCapabilityMatch() defined as follows:

PropertiesCapabilityMatch(c1,c2) =

∀ pql ∈ P2.PQL, ∃ pql’ ∈ P1.PQL: ConceptMatch(pql’, pql) and
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∀ pqn ∈ P2.PQN , ∃ pqn’ ∈ P1.PQN : NumericExpressionMatch(pqn’, pqn)

In this relation, qualitative non-functional properties are compared using the Con-

ceptMatch() relation while quantitative properties are compared with the NumericEx-

pressionMatch() relation. This relation is used to compare two numeric expressions using

the operators =, <,≤, >,≥ and values from R. This relation holds between two numeric

expressions pqn1 and pqn2, if the values that satisfy pqn1 are a subset of the values that

satisfy pqn2. For instance, NumericExpressionMatch(Latency = 3.5,Latency < 5) holds

because the value 3.5 that satisfies the first expression is included in the interval [0, 5[ that

satisfies the second expression.

Figure 4.3: Matching and Evaluating the Semantic Distance Between Capabilities

Matching service conversations is performed by the service composition functionality

of our middleware as presented in Chapter 5.

A complete example of matching capabilities is depicted in Figure 4.3. In this example,
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two provided capabilities (Adv1 and Adv2) are matched with the required capability Req.

The required capability is specified on the device of Rozalie who is looking for entertain-

ment capabilities in the various pervasive environments that she crosses during her travel.

In particular, Rozalie is looking for digital servers, which she can access by giving the title

of an entertainment resource and getting the corresponding resource. According to the

ontology of Figure 4.2 employed by Rozalie, this resource could be either a music, video

or gaming resource. The required capability further identifies some required properties

regarding latency and availability, as well as network connectivity and price. In this ex-

ample, two entertainment capabilities are available in the environment. Specifically, the

previously introduced Airport Entertainment Server (Adv1 in the figure) and the Carla

Music Server (Adv2 in the figure). The first capability is offered by the airport networking

infrastructure, thus providing strong QoS properties (e.g., high availability, low latency).

However this capability is not free-of-charge. On the other hand, another traveller in the

airport, namely Carla, allows other users to use her music resources for free, but without

good QoS guarantees. Both provided capabilities match the required capability. Indeed,

the input of the required capability, i.e., ResourceName⊗, matches the inputs required

by both provided capabilities, i.e., ResourceName⊗ as they reference the same concept in

the Resource Ontology and they all employ the same annotation type. Furthermore, the

outputs and categories of both provided capabilities match the output and category of the

required capability. For instance, both of the two outputs of the capability Adv1 match

the output of the required capability because:

ConceptMatch(V ideoResource⊗,EntertainmentResource⊕) holds and

ConceptMatch(SoundResource⊗,EntertainmentResource⊕) holds

These two matchings hold because both:

ConceptMatch(SoundResource⊗,EntertainmentResource⊕)

and

ConceptMatch(V ideoResource⊗,EntertainmentResource⊕) holds
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Indeed,

ConceptMatch(SoundResource⊗,EntertainmentResource⊕) holds because:

SoundResource.AnnotationType = ⊗ and

EntertainmentResource.AnnotationType = ⊕ and

Subsume(EntertainmentResource,SoundResource).

Similarly, in the second case, we have:

ConceptMatch(V ideoResource⊗,EntertainmentResource⊕) holds because:

V ideoResource.AnnotationType = ⊗ and

EntertainmentResource.AnnotationType = ⊕ and

Subsume(EntertainmentResource,V ideoResource)

On the other hand the output of the capability Adv2 also matches the output of the re-

quired capability. Indeed,

ConceptMatch(SoundResource⊕,EntertainmentResource⊕) holds because:

SoundResource.AnnotationType = ⊕ and

EntertainmentResource.AnnotationType = ⊕ and

Subsume(EntertainmentResource,SoundResource)

Finally, matching the categories provided by the capabilities Adv1 and Adv2 against

the category of the required capability can be performed in a similar way as shown for

output matching.

Regarding non-functional properties, the first three non-functional properties of the

required capability are quantitative non-functional properties. They, are all satisfied by

the properties of Adv1 and Adv2. For instance, the property Latency < 10 of the required

capability is satisfied by both properties Latency < 4 and Latency < 9 of Adv1 and Adv2

respectively. Finally, the last non-functional property of the required property, which is a
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qualitative non-functional property, is also matched by both Adv1 and Adv2. Indeed,

ConceptMatch(WiFi802.11b⊗,Wireless⊕) holds because:

WiFi802.11b.AnnotationType = ⊗ and

Wireless.AnnotationType = ⊕ and

Subsume(Wireless,WiFi802.11b)

On the other hand,

ConceptMatch(Bluetooth⊗,Wireless⊕) holds because:

Bluetooth.AnnotationType = ⊗ and

Wireless.AnnotationType = ⊕ and

Subsume(Wireless,Bluetooth)

Semantic Service Distance

When a match is assessed between two capabilities c1 and c2 in C using the relations defined

in the previous sections, we use the function CapabilityDoM(c1, c2) (where DoM stands

for Degree of Match) to estimate the semantic distance between these capabilities. The

semantic distance allows a service registry to select service capabilities that best conform

to a service request.

The CapabilityDoM() function is based on the two functions FunctionalDoM() and

PropertiesDoM() that define the degree of match between functional and non-functional

properties of capabilities respectively. More precisely:

CapabilityDoM(c1, c2)=λ1FunctionalDoM(c1, c2) + λ2 PropertiesDoM(c1, c2)

where the weights λ1 > 0 and λ2 > 0 allow specifying the preference between functional

and non-functional properties. For instance, a user may prefer a service that does not

exactly conform to its required functional properties but adequately fulfils its required
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QoS properties (e.g., security level).

Functional Degree of Match Between Capabilities

The degree of match between the functional properties of capabilities is evaluated by the

aggregation of the degree of match between pairs of inputs, outputs an category elements

identified after the assessment of the ConceptMatch() relation, as follows:

FunctionalDoM(c1, c2)= Min(
∑|I1|

i=1 ConceptDoM(I2.in
′
i, I1.ini)+

∑|O2|
i=1 ConceptDoM(O1.outi, O2.out′i)+

ConceptDoM(cat1, cat2))

Where ConceptDoM() is a function that evaluates the degree of match between two

semantic concepts in N . Syntactic elements of service capabilities are not considered

in the evaluation of the degree of match between capabilities because they are :

• Either syntactically identical, and we assume that they should be also semantically

identical, thus the semantic distance between them is equal to 0, which does not

affect the overall semantic distance

• Or they are syntactically different, where we assume that they are also semantically

different.

This degree of match between semantic concepts depends on the annotation type as-

sociated with these concepts as well as on their closeness in the classified ontology.

Specifically, for evaluating the degree of match between a provided concept n1 and a

required concept n2 we distinguish five cases:

1. Both the provided and the required concepts are associated with an all-values-from

annotation type and the provided concept subsumes the required concept,
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2. The required concept is associated with a some-values-from annotation type, the pro-

vided concept is associated with an all-values-from annotation type and it subsumes

the required concept,

3. The required concept is associated with a some-values-from annotation type, the

provided concept is associated with an all-values-from annotation type and it is

subsumed by the required concept,

4. The required concept is associated with a some-values-from annotation type, the

provided concept is associated with an all-values-from annotation type and it is

neither subsumed by, nor it subsumes the required concept,

5. The required concept is associated with a some-values-from annotation type, the

provided concept is associated with a some-values-from annotation type and it is

subsumed by the required concept.

In the above cases, the first and the second cases are preferred over the third and fourth

cases, which are preferred over the last case. The preferences between these different cases

is translated in the ConceptDoM() function by the use of coefficients τ1, τ2 and τ3, where

τ1 < τ2 < τ3. Figure 4.4 illustrates the different cases for calculating the degree of match

between concepts employing the ontology of Figure 4.5. In the figure, coloured areas

specify concepts associated with the all-values-from annotation type, while hatched areas

specify concepts associated with the some-values-from annotation type. The intersection

between the two areas corresponds to the set of provided concepts that satisfy a request.

The first and the second cases are associated with the coefficient τ1 because in both cases

the provided concepts satisfy all the required concepts. The third and the fourth cases

are associated with the coefficient τ2 because the required concepts are satisfied by an

identified subset of the provided concepts. Finally, the last case is associated with the

coefficient τ3 because the matching holds but the subset of the provided concepts that

satisfy the required concepts can not be identified at service matching time.

In addition, for each situation, provided concepts that are closest to the required one

in the classified ontology are preferred among the others.
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More formally the ConceptDoM() function is defined as follows:

• If n2.AnnotationType = ⊗ and n1.AnnotationType=⊗ and Subsume(n1,n2) ⇒ Concept-

DoM(n1, n2) = τ1 × |n1.Level − n2.Level|

• If n2.AnnotationType = ⊕ and n1.AnnotationType=⊗ and Subsume(n1,n2) ⇒ Concept-

DoM(n1, n2) = τ1 × |n1.Level − n2.Level|

• If n2.AnnotationType = ⊕ and n1.AnnotationType=⊗ and Subsume(n2,n1) ⇒ Concept-

DoM(n1, n2) = τ2 × |n1.Level − n2.Level|

• If n2.AnnotationType = ⊕ and n1.AnnotationType=⊗ and ∃c : Subsume(n1,c) and Sub-

sume(n2,c) ⇒ ConceptDoM(n1, n2) = τ2 × |c.Level − n2.Level|

• If n2.AnnotationType = ⊕ and n1.AnnotationType=⊕ and Subsume(n2,n1) ⇒ Concept-

DoM(n1, n2) = τ3 × |n1.Level − n2.Level|

where ni.Level specifies the level of the concept ni in the classified ontology hierarchy.

A complete example of evaluating the semantic distance between capabilities is de-

picted in Figure 4.3. While provided capabilities Adv1 and Adv2 both match the required

capability in terms of functional and non-functional properties, they do not have the same

semantic distance with respect to the required capability, i.e., their semantic distance is τ2

and 2 ∗ τ3 respectively. Functional degree of match between the capability Adv1 and the

required capability is calculated as follows:

FunctionalDoM(Adv1,Req)=

ConceptDoM(ResourceName⊗,ResourceName⊗) +

Min(ConceptDoM(V ideoResource⊗,EntertainmentResource⊕),

ConceptDoM(SoundResource⊗,EntertainmentResource⊕)+

ConceptDoM(DigitalServer⊕,DigitalServer⊕)

ConceptMatch(ResourceName⊗,ResourceName⊗)=

τ1 × |ResourceName.Level − ResourceName.Level|=0

ConceptDoM(V ideoResource⊗,EntertainmentResource⊕) =

τ2 × |V ideoResource.Level − EntertainmentResource.Level|=
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Figure 4.4: Degree of Match Between Concepts

τ2

ConceptDoM(SoundResource⊗,EntertainmentResource⊕) =
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τ2 × |SoundResource.Level − EntertainmentResource.Level|=

τ2

Thus:

Min(ConceptDoM(V ideoResource⊗,EntertainmentResource⊕),

ConceptDoM(SoundResource⊗,EntertainmentResource⊕))=τ2

Finally:

ConceptDoM(DigitalServer⊕,DigitalServer⊕) =0

Hence,

FunctionalDoM(Adv1,Req)= 0 + τ2 + 0 = τ2

Non-Functional Degree of Match Between Capabilities

The degree of match between non-functional properties of capabilities is evaluated using

the function PropertiesDoM() as follows:

PropertiesDoM(Adv, Req) =
n

∑

i=1

wi ∗ pi (4.1)

where, n is the number of non-functional properties of Req, wi is the relative importance

of the considered property, i.e., the lower the weight wi assigned to the property pi is,

compared to the weights assigned to the other properties, the more pi is preferred in

relation to other properties. This allows a service requester to specify priorities between

non-functional properties. For instance, a service requester may prefer using a service that

ensures a higher security level even if this service has higher latency than other services.

In this case, the weight given to the property Security should be lower than the weight

given to the property Latency.

Since properties are heterogeneous − i.e., some are qualitative, some are quantitative

and further expressed in different units − data normalization is needed in order to evaluate
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the PropertiesDoM(). The first normalization that we introduce is assigning numeric val-

ues to qualitative properties such that they can participate in the PropertiesDoM() func-

tion. These values are given by the function ConceptDoM() defined earlier. This allows

evaluating a provided qualitative property with respect to a required property. Indeed, the

smaller the ConceptDoM() between a provided qualitative property and a required one is,

the better. The second normalization that we apply is the standard deviation normaliza-

tion on the various properties as in [Liu, 2006]. This normalization is performed as follows:

Properties that are stronger with greater values (e.g., availability) are normalized according

to the following equation:

p′(advi) =



















0 if (p(advi) − m(p) > 2 ∗ ∆(p))

1 if (p(advi) − m(p) < −2 ∗ ∆(p))

0.5 − p(advi)−m(p)
4∗∆(p) otherwise

(4.2)

While properties that are stronger with smaller values (e.g., latency, normalized qualitative

properties), are normalized according to the following equation (so that smaller values

contribute more to the PropertiesDoM() function):

p′(advi) =



















1 if (p(advi) − m(p) > 2 ∗ ∆(p))

0 if (p(advi) − m(p) < −2 ∗ ∆(p))

p(advi)−m(p)
4∗∆(p) + 0.5 otherwise

(4.3)

where p(advi) is the value of property p for the provided capability advi, and m(p) and

∆(p) are the mean value and standard deviation for the property p, respectively.

Figure 4.3 describes an example of evaluating the degree of match between non-

functional properties of capabilities. First, as these properties are heterogeneous, qual-

itative properties are normalized to numeric values using their ConceptDoM(). Results

are given in columns Adv1’ and Adv2’ of the table for the capabilities Adv1 and Adv2 re-

spectively. Using these values, we normalize all the properties using the standard deviation

normalization. Results are given in columns Adv
′′

1 and Adv
′′

2 . Having all the values nor-

malized, it is easy to evaluate the PropertiesDoM() for each provided capability as follows:
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PropertiesDoM(Adv1, Req) = 0.75 ∗ w1 + 0.25 ∗ w2 + 0.25 ∗ w3 + 0.25 ∗ w4,

PropertiesDoM(Adv2, Req) = 0.25 ∗ w1 + 0.75 ∗ w2 + 0.75 ∗ w3 + 0.75 ∗ w4

where w1, w2, w3 and w4 are the weights attributed to each of the properties Price,

Latency, Availability and Network, respectively. Assuming that they all have the same

relative importance, i.e., wi = 1, the first capability has a better semantic distance in

terms of non-functional properties, i.e., PropertiesDoM(Adv1, Req)= 1.5 < Properties-

DoM(Adv2, Req)= 2.5.

The set of conformance relations presented in this section are used by our semantic

service registry to efficiently publish and locate provided and required service capabilities,

respectively. Thus, these relations have to be performed efficiently to fit the requirements

of resource constrained devices on which our registry may be deployed as presented in the

following section.

4.2.2 Efficient Semantic Service Matching

In order to assess the conformance between two capabilities our registry has to perform

semantic reasoning on ontologies. Indeed, the FunctionalCapabilityMatch() relation uses

the relation Subsumes() to assess the subsumption relation between two concepts. How-

ever, assessing subsumption between concepts is a costly operation that cannot be em-

ployed on resource constrained devices without appropriate optimizations.

In order to deal with this issue our registry employs two complementary mechanisms :

1. Ontologies are classified offline, i.e., not at service matching time, and the resulting

classified ontologies are encoded using an ontology encoding algorithm.

2. Each concept used to annotate an element in a service or a request description,

(i.e., input, output, category and non-functional properties) is given with the triple

<Ontology,Code,Version> where Ontology is a unique identifier of the ontology, Code

is the code corresponding to the entity being annotated and Version is the version of
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the code. The information regarding the version of the code is used to ensure consis-

tency of codes in the face of the dynamics and evolution of ontologies. The resulting

service or request description that contains the triples <Ontology,Code,Version> for

each semantic annotation is said to be pre-encoded.

In using these measures, we assume that service advertisements and requests are pre-

encoded when a service location request is processed and specifically when the matching

between capabilities is performed. This assumption can be supported by various scenarios.

For instance, the service developer may use a tool for semantically annotating the service

description and for automatically encoding the employed semantic concepts. Specifically,

such tool should maintain a local repository of ontologies and as soon as ontologies are

added to the local repository, the tool classifies and encodes them following an appropriate

ontology encoding algorithm. As ontology classification and encoding need to be performed

only once, it is not necessary to repeat these actions at service matching time. Further, each

time a service developer selects a concept from an ontology to annotate a service element

in a service description, the code corresponding to that element can be automatically

inserted into the service description. In Chapter 6, we present such tool for generating

pre-encoded semantic service descriptions.

If the service developer does not use such tool to annotate services, and consequently

the resulting service descriptions and service requests are not pre-encoded, other scenarios

are still conceivable. For instance, a service for encoding service descriptions may be pro-

vided in the pervasive computing environment. This service takes a non-encoded semantic

service description and generates a description where each semantic concept is associated

with its corresponding code in the classified ontology. This scenario is enabled thanks to

the fact that the ontology encoding process does not need to be performed in a centralized

way by a single entity. Indeed, one of the major requirements for the ontology encoding

algorithm (discussed below) is its execution determinism, i.e., taking an ontology O as in-

put, for any execution of the algorithm, the generated encoded ontology given as output,

should always be the same.

Finally, if a service encoding facility is not available in the environment, the service
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registry may implement the encoding algorithm and encode itself service advertisements

as soon as a provider advertises a service. While this last solution implies an additional

overhead when inserting a service in the service registry service location can still be efficient

if service requests are pre-encoded.

Encoding Classified Ontologies

As mentioned already in Section 4.1, encoding classified ontologies can be done using algo-

rithms developed for other related problem areas, such as the encoding of class hierarchies

in object-oriented programming languages.

Nevertheless, the encoding algorithm used to encode the classified ontology should have

the following properties:

1. The encoding algorithm should be deterministic, i.e., for any execution of the algo-

rithm on a classified ontology, the algorithm should always give the same code to

each concept. This allows ontology encoding to be performed in a distributed way.

2. There should be a function to infer if the matching holds between two concepts by

only comparing the concepts’ codes without looking neither at the original ontology

nor at the classified ontology. Specifically, due to the multiple inheritance structure

of ontologies and for being able to deal with our introduced annotation types, this

function should be able to identify:

• Subsumption between two concepts by comparing their codes,

• Intersection between the sub-hierarchies of two concepts by comparing their

codes.

3. The encoding algorithm should support conflict-free encoding for large ontologies

For instance, the encoding that consists of using a n × n binary matrix (where n is

the number of concepts in the original ontology) with a 1 on position (i,j) if the concept i

is an ancestor of the concept j in the ontology is not an appropriate encoding algorithm.

Indeed, it does not fulfil the second requirement from the above requirements, since to infer
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the subsumption between two concepts we need to have the whole matrix representing

the encoded ontology instead of having just the codes associated with the corresponding

concepts. Three other encoding techniques have been investigated in the literature and

surveyed in [Ben Mokhtar et al., 2007b, Preuveneers and Berbers, 2006]:

• Bit-vector based encoding (e.g., [Caseau, 1993, Krall et al., 1997, Ait-Kaci et al., 1989,

van Bommel and Beck, 1999]). These solutions aim at assigning a bit-vector to each

concept of the hierarchy, minimizing the number of bits being employed. However

these solutions require the re-encoding of conflicting codes whenever a subsumption

check results in a false positive. Thus, these solutions are inappropriate for encoding

ontologies as they restrict ontology evolution.

• Interval based encoding (e.g., [Zibin and Gil, 2001, Constantinescu and Faltings, 2003,

Agrawal et al., 1989]). In this category of encoding algorithms, a concept in an on-

tology is associated with an interval. This interval is then divided into sub-intervals

to encode its child concepts. Using this encoding technique, the subsumption as-

sessment between concepts translates to an interval inclusion assessment, which can

be performed efficiently (numeric comparison of the higher and lower interval lim-

its) without looking at the whole encoded hierarchy. Furthermore, this encoding

technique supports conflict free encoding. Indeed, instead of dividing an interval

into subintervals of the same size, which would lead to limited scalability of the en-

coding algorithm, Constantinescu et al. define a linear inverse exponential function,

linKinvexpP (x) = 1

p
int( x

k
) +(x mod k)∗ 1

k
∗ 1

p
int( x

k
) , where p and k are two parameters

to be fixed. Using this function, each time a child concept is added into the ontology

its interval is smaller than its brother concepts, which enables a better scalability

with respect to ontology evolution. Finally, this solution supports conflict-free en-

coding, as intervals encoding brother concepts are completely independent from each

other.

• Prime number based encoding (e.g., [Preuveneers and Berbers, 2006]). This

solution uses prime numbers to encode classified ontologies by assigning to each

concept a code calculated by the multiplication of its parent’s code and a new prime
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number that have not been associated to any other node in the hierarchy. The

function used to control subsumption between two concepts consists in performing

an integer division of the greater code by the smaller one. If the remainder of the

division is equal to zero, the concept with the smallest code subsumes the other

concept. This algorithm also supports conflict free encoding due to the unlimited

number of prime numbers.

Both the second and the third encoding algorithms satisfy all the requirements identi-

fied above except the identification of the intersection between the sub-hierarchies of two

concepts. This is due to the fact that both these encoding algorithms start by encoding

the ontology hierarchies from root nodes, which allows to identify the common ancestors

of two nodes but not the common sub-hierarchies. A solution to this is to use the same

encoding principles and encode hierarchies by starting from their leaf nodes. This allows

a node to have the knowledge of its sub-hierarchy.

Figure 4.5 shows an example of encoding the classified hierarchy of the resource ontol-

ogy using prime number-based encoding and starting from leaf nodes. Using this encoding

algorithm, matching two concepts is carried out as follows:

1. Subsumption between two concepts represented by their respective codes is checked

by performing the division of the greater code by the smaller one. If the remainder

of the division is 0, the concept having the greater code subsumes the second one.

Else, there is no subsumption relation between the two concepts.

2. The existence of a common sub-hierarchy between two concepts is assessed when a

common divisor between the codes of the two concepts is found. This can done by

performing successive divisions of the two codes by prime numbers until a common

divisor is found. Yet, the maximum number of divisions to be performed for finding

a common divisor is limited by the number of leaf nodes of the classified ontology

hierarchy.

We recall here that among the five cases of matching semantic concepts identified in

Section 4.2.1 according to the annotation types associated with the concepts, there are four
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Figure 4.5: Encoded Resource Ontology

cases where the matching is assessed through subsumption check and only a single case

where matching is assessed through intersection check between concept sub-hierarchies.

Hence, using this encoding technique, the costly semantic reasoning on ontologies trans-

lates to a numeric comparison of codes performed through a single, or at most, a number

of arithmetic divisions.

A number of heuristics for minimizing code lengths have been presented in [Preuveneers and Berbers, 2006].

An evaluation of this encoding algorithm in terms of the generated code lengths is further

presented in Chapter 6.

4.2.3 Registry Service Index

In our registry, service advertisements are classified into graphs of ”similar” capabilities for

efficiently inserting and retrieving capabilities into/from the registry. Then, publication

of a service and location of a service require to perform capability matching with nodes of

those graphs. In order to reduce the number of graphs with which capability matching is

performed, the registry maintains an index table. This table gives for each ontology used

in the registry, the set of graphs that contain capabilities that reference this ontology.

This table allows preselecting a set of graphs that are more likely to contain the capability
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to be retrieved from (resp. to be inserted in) the registry, i.e., the graphs that use the

same ontologies as the latter capability. Specifically, in order to locate which graphs use

the same ontologies as a required (resp. provided) capability, we retrieve from the index

table the sets of graphs referencing each ontology used by the required (resp. provided)

capability. The intersection between all these sets of graphs gives the graphs that use at

least all the ontologies referenced by the required (resp. provided) capability.

Figure 4.6 gives an example of the index table maintained by our registry. This figure

illustrates the fact that a graph may use different ontologies (e.g., Graph 4 uses both the

Food and Wine ontologies). Furthermore, different graphs may use the same ontologies

(e.g., both Graph 2 and Graph 3 use the Accommodation ontology). If a required capability

uses the Accommodation and Business ontologies, we perform the intersection between the

set of graphs using the Accommodation ontology and those using the Business ontology,

and the result of this intersection is a set containing Graph 2, i.e., {Graph2, Graph3} ∩

{Graph1, Graph2} = {Graph2}. This means that Graph 2 is likely to contain capabilities

that match the required capability and that all the other graphs do not contain any

capability that match the sought capability.

Figure 4.6: Indexing Graphs of Related Capabilities

4.2.4 Service Publication

In order to organize the service registry, service publication constructs directed acyclic

graphs (DAGs) of capabilities provided by the advertised services. More formally, a graph
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G of capabilities is defined by a set of Nodes constituting the graph and referred to by the

notation Nodes(G), and a function Successors() that gives for each node of G the set of its

direct successors in the graph. A node N ∈ Nodes(G) contains a set of service capabilities,

referred to by the notation Capabilities(N ). The function Successors() is defined as follows:

Successors: Nodes(G) −→ 2Nodes(G)

n ∈ Nodes(G) 7−→ Successors(n) ⊂ Nodes(G)

Based on the function Successors(), we define the function Predecessors() as follows:

let < x, y >∈ Nodes(G)2 and two nodes in the graph G:

y ∈ Predecessors(x) ⇔ x ∈ Successors(y)

Using these two functions, we define the set Roots(G) ⊂ Nodes(G), which is the set of

nodes from G that do not have predecessors in G. Respectively, we define the set Leaves(G)

⊂ Nodes(G), which is the set of nodes from G that do not have successors in G. More

formally:

x ∈ Roots(G) ⇔ Predecessors(x) = ∅

x ∈ Leaves(G) ⇔ Successors(x) = ∅

The set of nodes that contains all the successors of a node N of a graph G and recursively

all their successors is named the subgraph of N and is noted SubGraph(N ). More formally

this set is defined as follows:

if N ∈ Leaves(G) ⇒ SubGraph(N )=∅

else ∀x ∈ Successors(N) : SubGraph(N) = SubGraph(N) ∪ SubGraph(x)

Similarly, we define the set of all the predecessors of a node N and recursively their pre-

decessors in a graph G by the set parent graph noted ParentGraph(N). More formally,
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this set is defined as follows:

if N ∈ Roots(G) ⇒ ParentGraph(N) = ∅

else ∀x ∈ Predecessors(N) : ParentGraph(N) = ParentGraph(N) ∪ ParentGraph(x)

The relation used to build the graphs is the FunctionalCapabilityMatch() relation.

Grouping of capabilities in a graph is based on the two following principles:

1. If FunctionalCapabilityMatch(c1,c2) holds and FunctionalCapabilityMatch(c2,c1)

holds between two capabilities c1 and c2, then c1 and c2 will be stored in a single

node N of the graph G as these capabilities are equivalent to each other in terms of

functional properties. More formally:

({c1, c2} ∈ Capabilities(N)2) ⇔ (FunctionalCapabilityMatch(c1,c2) ∧

FunctionalCapabilityMatch(c2,c1))

⇔ (FunctionalDoM(c1,c2) = FunctionalDoM(c2,c1) = 0)

2. If FunctionalCapabilityMatch(c1,c2) holds and FunctionalCapabilityMatch(c2,c1)

does not hold, the capability c1 will be stored in a node N1 and the capability c2

will be stored in a different node N2 such that there exist a directed path from N1

to N2 in the graph. More formally:

(N1 ∈ParentGraph(N2)) ⇔ (FunctionalCapabilityMatch(c1,c2) ∧

¬ FunctionalCapabilityMatch(c2,c1))

As capabilities contained in the same node N of a graph are semantically equivalent,

the comparison of a new capability with capabilities of a node using the FunctionalCa-

pabilityMatch() relation can be done by comparing the new capability with any of the
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capabilities of that node. We note by Capability(N ) one of the capabilities contained in

the node N .

Using this grouping principles, the most generic capabilities of a particular domain

will be stored in root nodes of graphs, while the most specific capabilities will be stored

in leaf nodes of graphs. The set of root nodes of a graph Gi, i.e., Roots(Gi), contains

capabilities that are said to be more generic than other capabilities of the graph because

they provide generic outputs that may match a larger number of concepts compared with

the capabilities contained in the rest of the graph and require inputs that may be matched

with a larger number of concepts compared with the capabilities contained in the rest of the

graph. On the contrary, leaf nodes of a graph Gi, i.e., Leaves(Gi), contain capabilities that

are said to be more specific than the other capabilities of the graph because they provide

specific outputs that may be harder to match compared with the capabilities contained in

the rest of the graph and require inputs that may be harder to match with inputs provided

by required capabilities compared to the capabilities contained in the same graph.

When a new service is registered with the registry, the set of capabilities that it provides

are classified among the existing graphs. The algorithm of classifying new capabilities is

based on the following two properties:

Prop 1 : ¬ FunctionalCapabilityMatch(Capability(Rooti), Adv): Rooti ∈ Roots(G) ⇒

∀ N ∈ SubGraph(Rooti): ¬ FunctionalCapabilityMatch(Capability(N), Adv)

Prop 2 : ¬ FunctionalCapabilityMatch(Adv, Capability(Leafi)): Leafi ∈ Leaves(G) ⇒

∀ N ∈ ParentGraph(Leafi): ¬ FunctionalCapabilityMatch(Adv, Capability(N))

The proofs of these properties are given in Appendix A. These properties are used to

check whether a provided capability Adv will be inserted in a graph Gi without having to

assess the FunctionalCapabilityMatch() relation with all the capabilities of that graph.

Specifically, using Property [Prop 1], if the matching holds between a capability Adv and a

capability of a root node of a graph Gi, we can infer that this capability will be inserted in

a node of the graph that has a predecessor in Gi. Indeed, Property [Prop 1] expresses that
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if the FunctionalCapabilityMatch() relation between a capability of a root node Rooti of

a graph Gi and the provided capability does not hold then, this relation will neither hold

between Adv and any capability contained in nodes from the sub-graph of Rooti. Thus,

thanks to this property, it is not necessary to assess the FunctionalCapabilityMatch()

relation between all the capabilities of the graph and Adv.

Respectively, using Property [Prop 2], if the matching holds between a capability Adv

and a leaf node of a graph Gi, we can infer that this capability will be inserted in a node

of the graph that has a successor in Gi. Indeed, if a matching holds between Adv and

a capability c contained in a leaf node Leafi of Gi, this means that Adv is more generic

than c. Thus, the node that will contain Adv will be in the parent graph of Leafi in Gi.

On the contrary, if the matching between Adv and c does not hold, using Property [Prop

2] we can infer that Adv will not be the predecessor of any of the successors of the node

Leafi in the graph Gi, without assessing the relation FunctionalCapabilityMatch() with

other capabilities contained in the parent graph of Leafi.

The detailed algorithm for inserting a service advertisement in the registry performed

by the service publication functionality is given in Algorithm 1:

Figure 4.7 gives an example of inserting a capability into a graph. This graph contains

capabilities that use the resource ontology depicted in Figure 4.2 (p. 60). The most generic

capability, i.e., the Airport Digital Streaming Capability, is contained in the root node of

the graph, while the most specific capabilities are contained in leaf nodes, e.g., My MP3

Server capability. In this example, the capability to be inserted into the registry is the

Stephan Music Server Capability or StephanC for short. The graph depicted in the figure

is the only graph that has been pre-selected, because it is the only graph that is indexed

by the Resource ontology. Using the algorithm defined above the first step for inserting

the new capability (after graph selection) is to check whether the capability StephanC will

have a predecessor in the graph by evaluating the FunctionalCapabilityMatch() between

a capability from the unique root node of the graph, i.e., Airport Digital Streaming Server

capability or AirportC for short, and StephanC. As the matching holds, StephanC will have
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Algorithm 1 InsertService(in: serviceDescription, G1..m, out: G′
1..k)

1: for each Capability ci in serviceDescription do

2: for each Graph Gi using the same ontologies as ci do

3: //Find Predecessors of ci in Gi

4: for each Node Rooti in Roots(Gi) do

5: if FunctionalCapabilityMatch(Capability(Rooti), ci) then

6: Check with Ni ∈ SubGraph(Rooti)

7: until ¬ FunctionalCapabilityMatch(Successor(Ni), ci)

8: Draw an edge from Ni to ci

9: end if

10: end for

11: //Find Successors of ci in Gi

12: for each Leafi in Leaves(Gi) do

13: if FunctionalCapabilityMatch(ci, Capability(Leafi)) then

14: Check with Ni ∈ ParentGraph(Leafi)

15: until ¬ FunctionalCapabilityMatch(ci, Predecessor(Ni))

16: Draw an edge from ci to Ni

17: end if

18: end for

19: end for

20: end for

a predecessor in the graph. The next step is to match with the successors of AirportC, i.e.,

CarlaC and RozalieC to find that predecessor. However, as the matching with both these

capabilities does not hold, it is not necessary to go further in the successors of these nodes;

AirportC should be the predecessor of StephanC. The second part of the algorithm consists

of finding successors of StephanC in the graph by matching with leaf nodes of the graph,

i.e., MyMp3C, OggStreamingC and CarlaC. As the matching fails with CarlaC this means

that neither this capability, nor any of its predecessors will be a successor of StephanC.

On the contrary, as the matching holds with both MyMp3C, OggStreamingC, we continue

the matching with the predecessors of this node until the matching fails, i.e., with the

AirportC. Thus the successor of StephanC should be the node containing the RozalieC

capability. Finally, the edge between the node containing the AirportC capability and the

node containing the RozalieC capability is removed.
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Figure 4.7: Service Publication Example

4.2.5 Service Location

Service location is responsible for efficiently answering service requests. For each capability

described in the service request, service location first preselects the graphs that are most

likely to match that capability, i.e., the graphs that use the same ontologies as the required

capability (See Section 4.2.3). Then among these graphs the service location functionality

filters out the graphs that will not contain the sought capability by using Property [Prop

1] defined above. Specifically, those graphs for which FunctionalCapabilityMatch() does

not hold between capabilities contained in their root nodes and the required capability will

be filtered out. This allows efficiently locating the graph that contains capabilities that

match the required capability. Indeed, if FunctionalCapabilityMatch() holds between a

capability contained in a root node of a graph and the required capability, the capability
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Algorithm 2 MatchService(in: serviceDescription, G1..m, (out: capabilitySet )

1: for each ci in serviceDescription do

2: for each Gi using the same ontologies as ci do

3: while not ci matched do

4: for each Rootk in Roots(Gi) do

5: if FunctionalCapabilityMatch(Rooti, ci) then

6: Add M to capabilitySet with M in SubGraph(Rooti)

7: end if

8: end for

9: end while

10: end for

11: Select from capabilitySet the capability M such that:

12: FunctionalDoM(M, ci) is minimal and

13: PropertiesDoM(M, ci) is minimal

14: end for

that best matches the request in terms of functional and non-functional properties is

contained in the sub graph of that node. To locate that capability, we first estimate the

FunctionalCapabilityMatch() between nodes in the subgraph of the latter root node and

the required capability. Once that node is located, the selection between its capabilities is

based on non-functional properties by using the PropertiesDoM() relation (Section 4.2.1).

The algorithm performed by the service location functionality is described in Algorithm

2:

In this solution, capabilities that best match the required capability in terms of func-

tional properties are selected. Then, among these semantically equivalent capabilities the

one that best conforms to the request in terms of non-functional properties is chosen. A

more flexible but more costly way for selecting the capability that best conforms to the

request, where the preference between functional and non-functional features is specified

by the application, could be performed by using the customizable degree of match function

as defined in Section 4.2.1:

CapabilityDoM(c1,c2)= λ1 × FunctionalDoM() + λ2 × PropertiesDoM()

where λ1 and λ2 specify the preference among functional and non-functional properties
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of a capability. In this case, this relation has to be performed for all the capabilities of the

subgraph of the root node for which the matching holds with the required capability.

4.3 Assessing the Efficiency of the Semantic Service Registry

As the main function of both service publication and location algorithms is parsing a set

DAGs and performing matches on the capabilities of the visited nodes its complexity can

be approximated with the complexity of elementary graph algorithms (e.g., the breadth-

first search algorithm whose complexity is linear in the size of the graph). Furthermore,

the processing done in each node for matching capabilities is composed of a set of divisions

for assessing subsumption between concepts and is thus linear in the number of concepts

being compared (i.e., inputs, outputs, category of provided and required capabilities).

Thus, compared to existing research efforts that investigate efficient semantic service

discovery ([Constantinescu and Faltings, 2003], [Srinivasan et al., 2004]) our solution per-

forms better as we achieve efficiency for both service publication and service location while

existing solutions overload service publication to achieve efficiency at service location time.

We complement this theoretical assessment with a practical assessment through the

performance evaluation of our efficient semantic service registry in Chapter 6.

4.4 Concluding Remarks

We presented in this chapter an efficient semantic service registry for pervasive computing

environments. This registry supports the publication, location and matching of heteroge-

neous service descriptions enabling multi-language interoperability. This registry supports

a set of conformance relations for matching both syntactic and rich semantic service de-

scriptions as well as their heterogeneous non-functional properties. These conformance

relations also identify the degree of conformance between service descriptions, and rate

services with respect to their suitability for a specific service request, so that selection can

be made among them.

A theoretical assessment of the service matching, publication and location algorithms
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validates the efficiency of our registry. Indeed, thanks to an appropriate ontology encod-

ing algorithm, which translates the costly semantic reasoning on ontologies to a numeric

comparison of codes and to the organizing of semantic service descriptions, our service

registry achieves efficient both service publication and location contrary to existing effi-

cient semantic registries that opt for overloading the service publication phase to achieve

efficiency at service location. A practical assessment through the performance evaluation

of the various algorithms performed by our registry is further presented in Chapter 6. Our

semantic service registry can be centralized, semi-distributed or fully distributed accord-

ing to the deployment policy of our middleware. A semi-distributed deployment scheme

coming from the MUSDAC platform is discussed in Chapter 6.
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Chapter 5

Service Composition in Pervasive

Computing Environments

Although there is value in accessing a single service, the greater value is clearly derived

through enabling a flexible composition of services [Singh and Huhns, 2005]. In pervasive

computing environments, service composition can be a major enabler for the user-centrism

paradigm by enabling the user to be at the heart of the realization of his/her daily tasks

through the integration of relevant pervasive services available in the vicinity. In service-

oriented pervasive computing, user tasks can be represented as abstract composite services

with an associated conversation to be realized by dynamically integrating pervasive services

available at the specific time and location. Provided as a functionality of a SOM, service

composition builds upon other SOM functionalities. Specifically, service composition uses

service location to dynamically discover relevant pervasive services. It further uses service

access for the interaction with pervasive services taking part in the resulting composition.

Finally, it may use service publication for advertising the composite service as a new

pervasive service.

To fit the requirements of pervasive computing environments, service composition has

to deal with a number of challenging issues. First, service composition has to consider het-

erogeneity of pervasive services, i.e., syntactic/semantic services, with/without associated

conversations. In the case of services with associated conversations, service composition

91
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has to be performed so that data and ordering constraints of services and tasks are ful-

filled. Additionally, service composition has to assess the fulfilment of user tasks required

non-functional properties from the aggregation of non-functional properties provided by

the composed services. Finally, appropriate composition algorithms enabling on the one

hand efficiency, to fit the resource constraints of thin devices, and on the other hand flex-

ibility, to allow the user to benefit from the diversity of services available in the vicinity,

are required. To deal with this trade-off between efficiency and flexibility, the middle-

ware should adapt the flexibility of the composition algorithm according to the available

resources of the devices on which the composition is carried out.

After an analysis of the related work in service composition in Section 5.1, we present

in this chapter our solution to service composition in pervasive computing environments

that deals with the above requirements. This solution takes the form of a set of middleware

functionalities. A service discovery client, presented in Section 5.3, uses the middleware

functionalities presented in Chapter 4 for pre-selecting a set pervasive services candidate

for the composition. Service conformance, presented in Section 5.4, filters out from the

pre-selected services those that do not conform to the data and ordering constraints of

the user task. Service coordination, presented in Section 5.5, reconstitutes the user task

conversation by integrating the selected services’ conversations. Finally, QoS-aware com-

position, presented in Section 5.6 assesses the fulfilment of the global QoS requirements of

the user task. We conclude this chapter by an assessment of the efficiency of our proposed

solutions in Section 5.8 and a set of concluding remarks in Section 5.9.

5.1 Service Composition: State Of The Art

A large number of solutions for service composition have been proposed in the literature

during the last decade. These solutions can be classified in two main categories depending

on whether the composition is carried out based on the service interfaces, i.e., interface-

based service composition or based on service conversations, i.e., conversation-based service

composition. Interface-based service composition assumes services described as a list of in-

dependent capabilities, without associated conversations, while conversation-based service
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composition assume services described with associated conversations. In both categories,

user tasks may be specified with or without an associated conversation.

5.1.1 Interface-Based Service Composition

Approaches to interface-based service composition are represented in the second column

of Figure 5.1. This type of composition decomposes in two cases according to whether

the task is specified with or without an associated conversation, i.e., service chaining al-

gorithms and conversation-driven service selection algorithms. Service chaining, including

forward chaining and backward chaining, is used when both networked services and the

target user task are described as individual capabilities without associated conversations.

In these composition models, individual service capabilities are combined with each other

based on the conformance of their signatures. The objective of this combination is to ob-

tain a composite service that conforms to the signature specification of the target user task.

Forward chaining starts by selecting services that match the task’s provided inputs (and

preconditions) and chains services forward based on their signature compatibility until all

the task’s required outputs (and effects) are generated. On the contrary, backward chain-

ing starts by selecting services that generate the task’s required outputs (and effects) and

chains services backward until all the inputs (and preconditions) of the selected services

can be satisfied by the task’s provided inputs (and preconditions). A number of research

proposals adopt these composition models [Ramasamy, 2006, Masuoka et al., 2003]. While

this approach allows combining services without any previous knowledge about how ser-

vices should be chained, its complexity is high as all the possible chaining schemes need

to be investigated. Furthermore, as the chaining process is ”blind” (i.e., capabilities are

chained only on the basis of the compatibility of their signatures), unexpected capabilities

may be employed, which generates uncertainty regarding how user’s information is ma-

nipulated. Some approaches improve this solution by providing task decomposition rules

in order to orient the service chaining process [Dan et al., 2003].

Conversation-driven service selection assumes user tasks described with an associated

conversation and services described as independent capabilities. This model has been
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often employed for dynamic service composition in pervasive computing environments

[Chakraborty et al., 2005, Aggarwal et al., 2004, Benatallah et al., 2003]. In this model,

provided service capabilities are matched against capabilities required in the target user

task. The various approaches that follow this model differ from each other according

to the expressiveness of the supported service description language and its associated

matching algorithm. As this approach follows a user task conversation specification, the

resulting composition meets the user’s requirements without unobtrusively using the user

provided information through the employment of unexpected capabilities. However, this

composition model does not consider the behaviour of services when integrating them,

which does not guarantee correct composition of services.

5.1.2 Conversation-Based Service Composition

Conversation-based service composition assumes that services to be combined have a com-

plex behaviour. This category of composition algorithms is represented by the third column

of Figure 5.1. It is divided in three different cases, i.e., goal-driven conversation selection

and goal-driven conversation integration where the user task is specified without an asso-

ciated conversation, and conversation-driven conversation integration where both services

and tasks are specified with associated conversations.

Goal-driven conversation selection allows the selection of a service conversation that

satisfies a user task specified as a single required capability as proposed in [Bernstein and Klein, 2002].

In this approach a process query language, i.e., PQL, is employed to find service conver-

sations that contain a fragment that satisfies the user task. Thus, it is implicitly assumed

that the user’s request can be performed by a single service as opposed to integrating

multiple service conversations.

On the contrary, goal-driven conversation integration [Brogi and Popescu, 2005], aims

at integrating a set of service conversations to realize a user task described as a single

required capability. In this composition model, the conversations of a set of preselected

services are integrated in such way that the resulting composition satisfies some properties

on the one hand (e.g., deadlock freedom) and conforms to the target user task by consuming
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all its provided inputs and generating all its required outputs on the other hand.

As is the case of chaining algorithms, both these two composition models generate a

degree of uncertainty regarding the way networked services are combined. Indeed, verifying

that the resulting service composition is deadlock free does not guarantee that the user’s

information has not been transformed using unexpected and inappropriate capabilities

(e.g., capabilities that a user would not have employed himself to achieve his objective)

just in order to meet the target user task’s input/output specification.

Figure 5.1: Composition Models

The last composition model, i.e., conversation-driven conversation integration assumes
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a complex behaviour for both user tasks and services. In this model, conversations of

networked services are integrated towards the realization of the user task’s conversation.

This composition model is further the most comprehensive of all the considered models

as it supports maximum expressiveness for task and service functional descriptions. The

benefit of this composition model is that:

1. The user task’s behaviour is used as a basis for service composition, which ensures

that the user requirements are fulfilled by construction.

2. A valid consumption of the composed services is ensured as their conversations are

fulfilled.

Further, as shown in Figure 5.2, conversation-driven conversation integration allows

reconstructing the user task conversation using different composition schemes. In this

figure, a user task, depicted in the middle of the figure, is composed in four different

pervasive environments using four different scenarios. In the first scenario, the task is re-

alized through the integration of individual capabilities of pervasive services. The second

scenario describes the case where a single service that conforms to the user task conver-

sation is selected. The third scenario represents the case where the user task is realized

through the composition of fragments from two service conversations. The last composi-

tion scheme is the most flexible where the realization of the user task is performed through

the interleaving of two service conversations.

Conversation-driven conversation integration is investigated in [Berardi et al., 2003],

where service conversations are represented as finite-state automata. In this approach, the

authors propose an exponential-time algorithm that searches for a possible service compo-

sition by reducing this problem to the satisfiability of a DPDL (Deterministic Propositional

Dynamic Logic) formula. However, this solution does consider neither service semantic

specifications nor service and task non-functional properties. Furthermore, this algorithm

employs costly formal verification algorithms, the efficiency of which is not assessed for

resource-constrained devices.

Hence, the quest is still open for a solution to service composition that supports the

integration of service conversations to realize the conversation of a user task. This func-
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Figure 5.2: Flexibility of the Conversation-Driven Conversation Integration

tionality should further support the semantic specification of service and task capabilities,

enable QoS-aware service composition and provide the means to adapt its flexibility ac-

cording to the required efficiency with respect to the limited resources of thin devices.

5.2 Semantic-, QoS-aware Conversation-driven Conversation In-

tegration: Overview

To deal with the above requirements, we present in this chapter, a solution to the semantic-

, QoS-aware conversation-driven conversation integration. The objective of this solution

is to provide a ranked list of concrete realizations of a user task. Each of these realizations

semantically conforms to the target user task in terms of functional and non-functional

properties. This solution, provided as a part of our SOM decomposes into four middleware

functionalities, i.e., service discovery client, service conformance, service coordination and

QoS-aware composition. Each of these functionalities is formalized as a set of communi-

cating functions as presented in Figure 5.3.

In this figure, the service discovery client (Section 5.3) modelled with the function Ser-

viceDiscoveryClient() uses a (local or remote) service registry to select a set of services

s1, ..., sn1 candidate to take part of the realization of the user task T based on their pro-
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vided capabilities. Specifically, each service si provides capabilities that are semantically

equivalent to some of the user task required capabilities and that further fulfil the user

task local QoS properties. Then, the service conformance (Section 5.4) filters among the

previously selected services those that have incompatible data or ordering constraints with

those of the user task. This is performed using the function DataConstraintSelection()

for data constraint verification and one of the functions OrderingConstraintSelectionIG()

() or OrderingConstraintSelectionIL() for ordering constraint verification. This gener-

ates two possible sets of services candidate to take part in the user task realization, which

differ from each other in the flexibility they enable for carrying out user task realizations.

Hence, based on these two sets of services the service coordination functionality attempts

to reconstitute the task conversation using four different algorithms, i.e., ConversationIn-

tegration(), ConversationInterleaving(), AdaptiveIntegration() and AdaptiveInterleav-

ing() (Section 5.5). All these algorithms assess the fulfilment of the user task global QoS

requirements from the aggregation of the QoS provided by the composed services using

formalisms presented in Section 5.6. These four algorithms differ in their flexibility and

corresponding computation cost towards the user task realization as discussed in Section

5.8.

5.3 Service Discovery Client

The service discovery client selects from a set of services those providing capabilities that

conform in terms of both functional and non-functional properties to capabilities of the

user task. This functionality is a client functionality of the service location functionality

provided by the service registry of our SOM. More formally, according to our conceptual

model introduced in Chapter 3, consider a user task T =< PT , CT > where CT is the

set of capabilities characterizing the user task and PT is the set of its non-functional

properties. Each capability ci of the set CT is called sub-task in the following. For instance,

the EASY-COM user task presented in Chapter 3 is composed of two independent sub-

tasks, i.e., EASY-Movie and EASY-Phone. These sub-tasks are independent from each

other, thus the realization of the user task translates into the realization of each of its
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Figure 5.3: Overall Service Composition Process

sub-tasks independently. The non-functional properties associated with the user task,

i.e., PT apply to all the sub-tasks of the user task. For instance, if the user task has a

required non-functional property related with the network connection, e.g., Network is-

a WiFi 802.11G, then all the sub-tasks of the user task will have in addition to their

local non-functional properties this global requirement of the user task. Each sub-task of

the user task can be either elementary or composite, i.e., without or with an associated
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conversation, respectively.

As the realization of each sub-task is performed using the same algorithms, we focus

in the following on user tasks that are constituted of a single sub-task, and for the sake of

clarity, we refer to the single sub-task of a user task by the user task itself. In this case, the

user task can be defined either as: T =< PT , IT , OT , catT > if it is composed of a single

elementary sub-task or as: T =< PT , AT > if it is constituted of a composite sub-task.

In these definitions, IT , OT and catT are the set of inputs, outputs and the category of

the user task, PT is the set of non-functional properties of the user task including both

global and local non-functional properties, and AT is the conversation of the user task

expressed as a finite state automaton. In this chapter we focus on user tasks associated

with a conversation. The case where the user task is expressed as an elementary (resp.,

a set of elementary) sub-task(s) can be treated using our solutions for efficient semantic

service discovery presented in Chapter 4.

Figure 5.4: User Task Conversation

The automaton describing the task’s conversation, i.e., AT =< QT , ΣT , δT , st0T
, FT >,

is composed of a set of states QT , which includes among others an initial state , i.e., st0T

and a set of final states, i.e., FT , a transition function δT and a set of symbols ΣT . This set

of symbols contains the capabilities that constitute the task’s conversation. These capabil-

ities, called required capabilities in the following, are assumed to be elementary. Pervasive
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service conversations are on the contrary assumed to be nested, i.e., capabilities taking

part in a conversation may themselves be composed of other capabilities. Nevertheless,

our composition model considers only the highest level of nesting for the realization of the

user task. The other levels of nesting are used for invoking the composed service when the

realized user task is being executed.

Figure 5.4 and Figure 5.5 describe the conversations of a user task and a set of pervasive

services, respectively, inspired from the scenario introduced in Chapter 2. For readabil-

ity reasons, the transitions taking part in these conversations are labelled with capability

names. The complete descriptions of the involved capabilities are given in Table 5.1. In

Figure 5.4 each capability involved in the task’s conversation is elementary, i.e., it is not

composed of other capabilities. On the other hand, in Figure 5.5 each capability involved

in the services’ conversations may be either elementary or composite. For instance, the

GetLocalResource capability provided by the user’s PDA may have an associated conver-

sation in which a login capability may be specified to restrict its utilization only to the

PDA holder. This internal conversation is used at service invocation time.

The service discovery client returns to the client application a list of services, where

each service provides at least one capability that semantically conforms both in terms of

functional and (local) non-functional properties to a capability of the user task. More

formally, the service discovery client can be modelled with a function as follows:

ServiceDiscoveryClient: T −→ 2S

T ∈ T 7−→ {s1, ..., sn1} such that:

∀si ∈ {s1, ..., sn1} :

∃cT ∈ ΣT ,∃csi
∈ Σsi

:

FunctionalCapabilityMatch(csi
,cT ) ∧

PropertiesCapabilityMatch(csi
,cT )

where the relations FunctionalCapabilityMatch() and PropertiesCapabilityMatch()

are defined in Chapter 4 and n1 is the number of services that have been selected by the
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Service Capability In Out

Search Entertainment

resource

Resource Name Entertainment Re-

source Reference

Search Display Display features Display Reference

User Task Get Resource Resource Reference

Retrieval Mode Resource

Display resource Resource

Get Context Requested Context Context Information

Get Local Resource Resource Name Resource

Local Display Resource

Search Resource Resource Name Video Resource ID

Airport Entertain-

ment Server

Audio Resource ID

Get Resource Resource ID Resource

Get Context Informa-

tion

Requested Context Context Information

Get Number Of Per-

sons

Number of Persons

Context Manage-

ment System

Get Lighting level Lighting level

Get Coordinates Coordinates

Get Temperature Temperature

Get Sound Level Sound Level

Display Image Image Resource

Plasma Display Display Video

Stream

Video Stream

Display Audio

Stream

Audio Stream

Display Digital Re-

source

Digital Resource

Carla Music Server Search Music re-

source

Resource Name Audio Resource Ref-

erence

Get Audio Resource Audio Resource Ref-

erence

Audio Resource

Get Local Resource Resource Name Resource

PDA Local Display Digital Resource Ref-

erence

Search Displays Display features Display Reference

Table 5.1: Capabilities of the EASY-Movie User Task and Selected Pervasive Services
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Figure 5.5: Selected Pervasive Services

service discovery client.

For the user task of Figure 5.4, all the services of Figure 5.5 are returned by the service

discovery client because they provide at least one capability that semantically conforms

to one of the user task required capabilities. Table 5.2 summarizes for each capability of

the user task the capabilities of services such that a matching holds.

5.4 Service Conformance

Service conformance is responsible for filtering out from the set of services that have been

returned by the discovery client those that will not be useful for the composition. Specif-

ically, service conformance analyses pervasive service conversations and filters out those

services that have incompatible data constraints, which are specific data flow specifica-

tions (Section 5.4.1), and ordering constraints (Section 5.4.2), with the target user task
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Task Capability Service Capability Service

Search Entertainment Re-

source

-Search Resource -Airport Entertainment

Server

-Search Music Resource -Carla Music Server

Search Display Search Displays PDA

Get Resource -Get Resource -Airport Entertainment

Server

-Get Audio Resource -Carla Music Server

Get Context Get Context Context Management Sys-

tem

Get Local Resource Get Local Resource PDA

Local Display Local Display PDA

Table 5.2: Matching Between Capabilities of the EASY-Movie User Task and Selected

Pervasive Services

conversation.

5.4.1 Data Flow and Data Constraints

Our model for semantic service specification supports the specification of data flow be-

tween capabilities. According to our model presented in Chapter 3, a data flow is defined

between two capabilities when output information produced by one capability serves as

input information for another capability. This is defined with the function:

ΦD : ΣT −→ 2ΣT×N 2

c 7−→ {< ci, oi, ii >: i = 0..n}

where ΣT is the set of required capabilities of the user task and N is a finite set of

concepts over the finite set of ontologies O.

This is interpreted as: the output oi produced by the capability c is consumed by the

capability ci as the input ii.
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While data flow defines data transfer between the capabilities of the user task enabling

an orchestration of the composed pervasive services, it does not play a role in the filtering

of services. Indeed, the only condition that has to be checked is the compatibility between

the capabilities inputs and outputs associated in a data flow definition. This compati-

bility, which can be assessed using the ConceptMatch() relation (defined in Chapter 4),

is performed when the user task is specified and is valid by definition when the services

are initially selected by the service discovery client. This is verified by Property [Prop 3],

proved in Appendix A.

[Prop 3)]: ∀n1, n2 ∈ N 2, ConceptMatch(n1,n2):

[∃n′
1, n

′
2 ∈ N 2: ConceptMatch(n′

1,n1) ∧ ConceptMatch(n′
2,n2) ⇒ ConceptMatch(n′

1,n
′
2)]

This property specifies that if the relation ConceptMatch() holds between two concepts

n1 and n2 in a data flow definition of the user task, then this relation also holds between

two concepts n′
1 and n′

2 of pervasive service capabilities that have been pre-selected by the

service discovery client because n′
1 matches n1 and n′

2 matches n2.

In addition to the specification of data flow between capabilities of the user task,

our model supports the specification of data constraints. Specifically, a data constraint

between two capabilities of the user task specifies a data flow that must be performed

between two capabilities of the same pervasive service. Thus, data constraints, contrary

to simple data flow specification, directly influence the service filtering process performed

by the service conformance functionality.

Figure 5.6 describes the data flow and data constraints specified in the user task of

our example. In this figure, a data constraint is specified between the capabilities Search

Entertainment Resource and Get Resource. This means that these two capabilities have

to be provided by the same service, as the service supporting browsing and selecting a

specific resource is most likely the service that delivers it.
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Figure 5.6: Data Flow and Data Constraints Example

More formally, the data constraints are modelled as a sub-set of the data flow specifi-

cations, i.e., the function ΦC , that gives for a capability the set of data constraints with

other capabilities is a restriction of the function ΦD to a subset of ΣT .

Data constraints are assessed by the service conformance functionality by checking for

each data constraint definition whether the two capabilities on which the constraint is

defined, belong to the same service.

The functionality provided by service conformance regarding data constraints can be

modelled with the following function:

DataConstraintSelection: T × Sn1 −→ 2S

< T, s1, ..., sn1 >7−→ {s1, ..., sn2}:

∀si ∈ {s1, ..., sn2},

∀(ci, cj) ∈ ΣT
2, (i, o) ∈ N 2 :< cj , o, i >∈ ΦC(ci),

(∃c′i ∈ Σsi
:

FunctionalCapabilityMatch(c′i,ci) ∧

PropertiesCapabilityMatch(c′i,ci))
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⇒

(∃c′j ∈ Σsi
:

FunctionalCapabilityMatch(c′j,cj) ∧

PropertiesCapabilityMatch(c′j,cj))

where S = {s1, ..., sn1 = ServiceDiscovery(T ) and n2 ≤ n1 is the number of services that

fulfil task data constraints.

5.4.2 Ordering Constraints

Ordering constraints are due to the structure of pervasive service conversations. As service

conversations are specified using finite state automata, the elementary workflow patterns

are translated to a combination of the sequence and the choice between capabilities (see

Chapter 3). If two capabilities are specified one in sequence of the other in a service

conversation, we say that these two capabilities have an ordering constraint between each

other. For enforcing a valid consumption of the composed pervasive services, the dy-

namic realization of user tasks has to fulfil pervasive service ordering constraints. We

present in the following, two functions for the filtering of pervasive services. The first

function, i.e., OrderingConstraintSelectionIG(), allows selecting pervasive services that

provide fragments of the user task conversation. These fragments are then used by the

service coordination functionality to reconstitute the task conversation. The second func-

tion, i.e., OrderingConstraintSelectionIL(), allows further to the first one, the selection

of services that enable the reconstitution of user tasks by interleaving their conversations.

We distinguish between these two selection modes because they provide two levels of flex-

ibility for the user task realization. Each of these two levels of flexibility come with their

associated cost and our objective is to allow the middleware to choose the most appropri-

ate composition model with respect to the available resources of their mobile devices. A

discussion about the cost of each solution is given in Section 5.8.
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Ordering Constraint-based Service Selection for the Support of Conversation Integra-

tion

We present in this section the first function, which allows the selection of pervasive services

that have compatible ordering constraints with the user task conversation. This selection

can be done using automata analysis algorithms. First, an automaton that allows filtering

the services that have incompatible ordering constraints with the user task conversation

is built from the user task automaton. This automaton, referred to in the following as the

filtering automaton for the support of conversation integration, and noted FAIG, is then

compared with the automaton of each selected pervasive service to check whether there

exists an intersection between the languages generated by the two automata.

The filtering automaton is built by performing the following transformations to the

task’s automaton AT :

1. All the non-final states excluding the initial state, become final if they are not already

final.

2. ǫ-transitions are added from the initial state to all the states of the automaton

More formally, consider the automaton AT =< QT , ΣT , δT , st0T
, FT >, the filtering

automaton FAIG =< QFA, ΣFA, δFA, st0FA, FFA > is defined as follows:

• QFA = QT

• ΣFA = ΣT ∪ {ǫ}

• δFA = δT ∪ < st0FA, ǫ, sti >, ∀sti ∈ QT − {st0FA}

• st0FA = st0T

• FFA = QT − st0T
if ¬(st0T

∈ FT )

Service conformance assesses the fulfilment of the ordering constraints of selected per-

vasive services by comparing their conversations with the filtering automaton of the user

task. Those services that have incompatible ordering constraints with the user task con-

versation are filtered out. This assessment can be performed using automata compatibility
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checking algorithms. Specifically, we define the relation ConversationMatch() to compare

two conversations specified using finite state automata. Let A1 =< Q1, Σ1, δ1, st01, F1 >,

A2 =< Q2, Σ2, δ2, st02, F2 > be two automata, this relation is defined as follows:

ConversationMatch(A1,A2) ⇔ ∃R on Q1 × Q2 such that:

∀ < st1, st
′
1 >∈ R, ∀c ∈ Σ1:

δ1(st1,c)=st2 ⇒ ∃c′ ∈ Σ2 :

FunctionalCapabilityMatch(c’,c) ∧

PropertiesCapabilityMatch(c’,c) ∧

δ2(st
′
1,c

′)=st′2 ∧

< st2, st
′
2 >∈ R

where R is a binary relation defined on the set Q1 × Q2. This relation is commonly

named automata simulation in the automata theory, and we say that the automaton A2

simulates the automaton A1 or that A1 is simulated by A2.

A pervasive service is selected by the service conformance functionality if the Conver-

sationMatch() relation holds between the filtering automaton and a sub-automaton of this

service automaton. More formally, the selection (for the support of conversation integra-

tion) performed by the service conformance functionality regarding ordering constraints

can be modelled with the following function:

OrderingConstraintSelectionIG: T × Sn2 −→ 2S

< T, {s1, ..., sn2} >7−→ {s1, ..., sn3}:

FAIG = FilteringAutomatonIG(T ) ∧

∀si ∈ {s1, ..., sn3},

∃A′ : SubAutomaton(Asi
,A′):

ConversationMatch(A′,FAIG)

where: S = {s1, ..., sn2} is a set of services selected by the service discovery client and fulfil
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the task data constraints (see Figure 5.3). Further, Asi
is the automaton representing the

conversation of the service si, FilteringAutomatonIG() is a function for generating the

filtering automaton FAIG enabling the support of conversation integration related with

the task T.

The relation SubAutomaton() is defined as follows. Let A1 =< Q1, Σ1, δ1, st01, F1 >,

A2 =< Q2, Σ2, δ2, st02, F2 > be two automata:

SubAutomaton(A1,A2) ⇔ - Q2 ⊆ Q1

- Σ2 ⊆ Σ1

- δ2 : Q2 × Σ2 → Q2

< st, c > 7→ δ2(st, c) = δ1(st, c)

- ∀st ∈ Q2,∀c ∈ Σ2 : δ2(st, c) = ∅ ⇒ st ∈ F2

- st02 = st01

- F2 ⊂ F1

Note that from the definition, all the states of the sub-automaton A2 that do not have

outgoing transitions, are final.

Figure 5.7 describes the filtering automaton FAIG associated with the user task of

Figure 5.4. Using this service selection function, the service Carla Music Server is selected

by the service conformance functionality as the whole automaton describing this service

conversation is simulated by the filtering automaton of Figure 5.7. Moreover, the service

Plasma Display is also selected even if its conversation additionally provides capabilities

that are not required in the user task conversation. Indeed, there exist a sub-automaton

of this automaton, i.e., the one containing the transition labelled with the Display Digital

Stream capability, that is simulated by the filtering automaton of Figure 5.7. While all

the capabilities of the Airport Entertainment Server match some capabilities of the user

task (see Table 5.2), only a part of its conversation,i.e., the one containing the transition

labelled with the Get Resource capability, is selected using this selection function. This
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Figure 5.7: Filtering Automaton for the Support of Conversation Integration

is due to the fact that the selection function does not support the interleaving of service

conversations. In the following section, we present a function that allows the selection of

services for the support of conversation interleaving.

Ordering Constraint-based Service Selection for the Support of Conversation Inter-

leaving

As in the previous case, the selection of pervasive services for the support of conversa-

tion interleaving is carried out using automata analysis algorithms. Specifically, a filtering

automaton is built from the user task automaton. This automaton, noted FAIL in the fol-

lowing, can then be compared with the automaton of a pervasive service to check whether

there exists an intersection between the languages generated by these automata.

The filtering automaton is built by performing the following transformations to the
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task’s automaton AT :

1. If there exists a path from the non-final state sti to the non-final state stj in the

automaton AT (by excluding loop transitions), add an ǫ-transition from sti to stj

2. All the non-final states excluding the initial state become final if they are not already

final.

More formally, consider the automaton AT =< QT , ΣT , δT , st0T
, FT >, the filtering au-

tomaton for the support of conversation interleaving FAIL =< QFA, ΣFA, δFA, st0FA, FFA >

is defined as follows:

• QFA = QT

• ΣFA = ΣT ∪ {ǫ}

• δFA = δT ∪ < sti, ǫ, stj >, ∀ < sti, stj >∈ Q2
T such that:

– ∃{st1, ..., stn} ⊂ QT : ∀i, j ∈ {0..n} : sti 6= stj , and ∃{c0, ..., cn} ⊂ ΣT :

– δT (sti, c0) = st1

– δT (st1, c1) = st2

– ...

– δT (stn−1, cn−1) = stn

– δT (stn, cn) = stj

• st0FA = st0T

• FFA = QT − st0T
if ¬(st0T

∈ FT )

Figure 5.8 describes the filtering automaton FAIL for the support of conversation

interleaving extracted from the task automaton of Figure 5.4. Contrary to the previous

service selection function, using this automaton, all the conversation of the service Airport

Entertainment Server is selected as a potential candidate for the realization of the user

task. Indeed, the whole automaton representing this service conversation can be simulated

by the filtering automaton of Figure 5.8.
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Figure 5.8: Filtering Automaton for the Support of Conversation Interleaving

As in the previous case, service conformance assesses the fulfilment of the ordering con-

straints of pervasive services by comparing their conversations with the filtering automaton

of the user task. Specifically, a pervasive service is selected by the service conformance

functionality if the ConversationMatch() relation holds between the filtering automaton

and a sub-automaton of this service. This selection can be modelled using the following

function (see Figure 5.3):
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OrderingConstraintSelectionIL: T × Sn2 −→ 2S

< T, {s1, ..., sn2} >7−→ {s1, ..., sn3}:

FAIL = FilteringAutomatonIL(T ) ∧

∀si ∈ {s1, ..., sn3},

∃A′ : SubAutomaton(Asi
,A′):

ConversationMatch(A′,FAIL)

where: S = {s1, ..., sn2} is a set of services selected by the service discovery client and

that fulfil the task data constraints. Furthermore, Asi
is the automaton representing the

conversation of the service si, FilteringAutomatonIL() is a function for generating the

filtering automaton FAIL enabling the support of conversation interleaving related with

the task T.

While the selection performed by the second function is more flexible, it is also more

costly. Indeed, the set of services selected by the second function is a superset of the

set of services selected by the first function. This may return more service composition

solutions, i.e., greater flexibility. However, as the filtering automaton built in the second

case contains a number of additional ǫ−transitions, the cost of the ConversationMatch()

function is consequently increased, as further detailed in Section 5.8).

Summarizing, the functionality provided by the service conformance functionality can

be expressed using two functions: ServiceConformanceIG() and ServiceConformanceIG()

as follows (see Figure 5.3):

ServiceConformanceIG(T) = OrderingConstraintSelectionIG

(T ,DataConstraintSelection

(T ,ServiceDiscoveryClient(T )))

ServiceConformanceIL(T) = OrderingConstraintSelectionIL

(T ,DataConstraintSelection
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(T ,ServiceDiscoveryClient(T )))

where, T is a user task.

5.5 Service Coordination

Based on the service conformance functionality, we present in this section the service co-

ordination functionality. Service coordination is responsible of generating a set of concrete

realizations of the user task. Each of these realizations fulfils the task’s non-functional

properties (as presented in Section 5.6) and references capabilities of pervasive services.

We present four solutions for the dynamic realization of user tasks. These solutions differ

in the flexibility they enable for finding user task realizations. Specifically, the first solution

presented in Section 5.5.2, allows integrating service conversations to realize the user task.

The second solution presented in Section 5.5.3, allows integrating service conversations by

additionally enabling the interleaving of their conversations. Finally, the third and fourth

solutions presented in Section 5.5.4, adapt the user task’s conversation according to its

data flow specification to further increase the probability of finding a composition. The

difference between these latter two solutions resides in the support of conversation inter-

leaving. By distinguishing between these solutions, we can provide the user with the most

appropriate solution with respect to the available computing resources on his/her device.

Thus, in a resource rich environment, the most flexible solution, which increases the prob-

ability of finding a user task realization, would be employed, while a less flexible solution

would be used in a resource constrained environment. In the following, we formally define

the problem of task realization, and then detail the solutions introduced above.

5.5.1 Problem Definition

Consider a user task T =< PT , AT >, where PT is the set of non-functional properties

of the task and AT is the automaton describing the task’s conversation. The set of ser-

vices candidate for the composition of a user task T are given by: ServiceConformance(T ),
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where the ServiceConformance() function can be either ServiceConformanceIG() or ServiceConformanceIL()

defined in the previous section. The objective of the service coordination functionality is

then to find a ranked list of concrete realizations of the user task: T1 =< PT1 , AT1 >,

T2 =< PT2 , AT2 >, ... , Tn =< PTn
, ATn

> such that:

∀Ti =< PTi
, ATi

>, where ATi
=< QTi

, ΣTi
, δTi

, st0Ti
, FTi

>:

• ∀p ∈ PT ,∃p′ ∈ PTi
:

– ConceptMatch(p’,p), if p and p’ are qualitative properties

– NumericExpressionMatch(p’,p), if p and p’ are quantitative properties

• QTi
= QT

• ΣTi
⊂ ∪Σsi

∀si ∈ ServiceConformance(T ): ∀ci ∈ ΣT ,∃cj ∈ ΣTi
:

– FunctionalCapabilityMatch(cj,ci)

– PropertiesCapabilityMatch(cj,ci)

• δTi
= δT

• FTi
= FT

• TaskDoM(Ti,T ) < TaskDoM(Ti+1,T )

where: the relations ConceptMatch(), NumericExpressionMatch(), FunctionalCa-

pabilityMatch() and PropertiesCapabilityMatch() are defined in Chapter 4.

The concrete realizations of the user task are ranked according to their degree of match

with the initial task using the TaskDoM() function defined as follows:

TaskDoM(Ti, T ) = PropertiesDoM(Ti, T ) + ConversationDoM(Ti, T )
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where the PropertiesDoM() function between tasks is defined similarly to the Prop-

ertiesDoM() function between capabilities (see Chapter 4), as:

PropertiesDoM(Ti, T ) =
∑n

i=1 wi ∗ pi

where wi is the relative importance of the property pi and n = |PT | is the number of global

non-functional properties required by the user task.

The ConversationDoM() function allows the evaluation of the semantic distance between

two conversations that conform to each other. It is defined as the sum of the seman-

tic distances between each pair of capabilities that match from the first and the second

conversation. More formally, if we consider a user task T =< PT , AT > and a concrete re-

alization of this task Ti =< PTi
, ATi

>. Assume that the sets of capabilities ΣT and ΣTi
are

ordered in the form: ΣT = {c1T , ..., cnT }, ΣTi
= {c1Ti

, ..., cnTi
} such that ∀j ∈ {1, ..., n}:

CapabilityMatch(cjTi
,cjT ). The ConversationDoM() function is defined as:

ConversationDoM(Ti, T )=
∑n

i=1 CapabilityDoM(ci,cT )

where n=|ΣT | is the number of required capabilities of the user task.

5.5.2 Integrating Service Conversations

We present in this section the first solution to the dynamic realization of the user task.

This solution uses the first service conformance function defined in Section 5.4.2, i.e.,

ServiceConformanceIG(), which allows the selection of services that can potentially be

integrated without the support of conversation interleaving.

In this solution, we first need to build an automaton that connects the automata of

the selected services together. The resulting automaton is called the raw automaton and

noted RAIG in the following. This automaton contains a new start state and empty

transitions that connect this state with the start states of all selected services automata.
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The raw automaton also contains empty transitions that connect the final states of each

selected automaton with the new start state, which allows, if needed, the integration

of the same service multiple times in the same composition. More formally, consider a

set of services s1, s2, ..., sn3 selected by the service conformance functionality with their

associated conversations A1, A2, ..., An3 respectively, where Ai =< Qi, Σi, δi, st0i, Fi >.

The raw automaton RAIG =< QRA, ΣRA, δRA, st0RA, FRA > generated by a function

RawAutomatonIG(s1, s2, ..., sn3
), is defined as follows:

- QRA = ∪n
i=1Qi ∪ st0RA

- ΣRA = ∪n
i=1Σi ∪ {ǫ}

- δRA : QRA× ΣRA → QRA

st, c 7→ δRA(st,c)=δi(st,c) when st ∈ Qi and c ∈ Σi

δRA(st,c)=st0i when st = st0RA and c = ǫ

δRA(st,c)=st0RA when st ∈ FRA and c = ǫ

- FRA = ∪n
i=1Fi

Figure 5.9 presents the raw automaton built from the user task of Figure 5.4. Based

on this automaton, service coordination uses the relations ConversationMatch() defined

in Section 5.4.2 to find user task realizations. Specifically, there exists a realization of the

user task if the raw automaton ARA simulates the task automaton AT . More formally,

this can be represented by the function ConversationIntegration() as follows:

ConversationIntegration: T × Sn3 −→ 2T

< T, s1, ..., sn3 > 7−→ {T1, ..., Tn}:

RAIG = RawAutomatonIG(s1, ..., sn3
) ∧

∀Ti ∈ T ,

Ti = SubAutomaton(RAIG):

ConversationMatch(AT ,ATi
)
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Figure 5.9: Raw Automaton

The user task realizations should further fulfil the task’s non-functional properties.

This verification is discussed in Section 5.6.
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5.5.3 Support of Conversation Interleaving

We present in this section the second solution to dynamic user task realization. This solu-

tion supports the interleaving of pervasive service conversations. It uses the second service

conformance function defined in Section 5.4.2, i.e., ServiceConformanceIL(), which allows

the selection of services that can potentially be integrated with possible interleaving of their

conversations. Again in this solution, we need to build a raw automaton, noted RAIL in

the following, from the set of selected services. However, this automaton is different from

the raw automaton used in the previous solution. The raw automaton built to support

conversation interleaving represents the asynchronous free product of the selected services

automata. More formally, consider the set of selected services s1, s2, ..., sn with their asso-

ciated conversations A1, A2, ..., An respectively, where Ai =< Qi, Σi, δi, st0i, Fi >. The raw

automaton RAIL =< QRA, ΣRA, δRA, st0RA, FRA > resulting from the asynchronous free

product of the automata A1, A2, ..., An performed by the function RawAutomatonIL(), is

defined as follows:

- QRA ⊂ Q1 × Q2 × ... × Qn

- ΣRA = ∪n
i=1Σi ∪ {ǫ}

- δRA : QRA× ΣRA → QRA

(< st1, ..., stn >, c)7→ δRA(< st1, ..., stn >,c)=< st′1, ..., st
′
n > if

∃k ∈ {1...n} such that:

st′j = stj ∀j 6= k ∧

δk(stk,c)=st′k

- st0RA =< st01, st02, ..., st0n >

- FRA ⊂ {< st1, st2, ..., stn >∈ QRA|st1 ∈ F1 ∧ st2 ∈ F2 ∧ ... ∧ stn ∈ Fn}

Based on this raw automaton, service coordination uses the relation Conversation-

Match() defined in Section 5.4 to find user task realizations. Specifically, there exists a

realization of the user task if the raw automaton RAIL simulates the user task automaton

AT . More formally, this can be represented by the function ConversationInterleaving()

as follows:
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ConversationInterleaving: T × Sn3 −→ 2T

< T, s1, ..., sn3 > 7−→ {T1, ..., Tn}:

RAIL = RawAutomatonIL(s1, ..., sn3
) ∧

∀Ti ∈ T ,

Ti = SubAutomaton(RAIL):

ConversationMatch(AT ,ATi
)

5.5.4 Support of Adaptive User Tasks

We present in this section the two last solutions to the dynamic realization of the user

task. These solutions allow finding a greater number of concrete realizations of the user

task than the first two. They are based on the following observation: The user task is

defined by a service developer. Its conversation represents one of the possible ways of

satisfying the user’s intention. Indeed, a user task can be compared to a cooking recipe.

In this recipe, it is first important to find and employ the advertised ingredients, i.e., the

capabilities required by the task. Then, it is important to respect the main steps of the

preparation. For instance, we can not fry the onions before peeling them, i.e., data and

ordering constraints. However, in some cases, if allowed by the recipe, it is possible to

invert some phases of the preparation. For instance, putting the eggs before the flour or

the flour before the eggs in the mixture does not change the taste of the pie. Similarly,

in the dynamic realization of user tasks it may be possible to change the structure of the

user task in order to increase the probability of finding a composition. The modification

in the structure of the task constitutes in changing the order between capabilities. This

can be done under the condition that there is no data flow between the capabilities to be

rescheduled. More specifically, we generate from the user task conversation an automaton

that contains all the rescheduling possibilities that fulfil the task data flow specification.

This automaton called the rescheduling automaton and noted SA in the following, is built

based on a dependency graph between capabilities. This graph is extracted from the

graphical representation of the data flow of the user task by removing the automaton
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states. For instance, the dependency graph extracted from the data flow specification of

Figure 5.6 is represented in Figure 5.10. This graph decomposes in three independent

sub-graphs. Then, the rescheduling automaton is built based on the dependency graph by

the function RescedulingAutomaton() as follows:

1. Create an initial state for the rescheduling automaton

2. If there is no more capabilities in the dependency graph, stop

3. Else: for each capability c that does not have a predecessor in the dependency graph

generate from the current state sti of the rescheduling automaton the transitions

< sti, c, stj > and remove c from the current dependency graph

4. Redo the same process with the generated states stj

The rescheduling automaton built from the dependency graph of Figure 5.10 is depicted

in Figure 5.11.

Figure 5.10: Data Dependency Graph

The rescheduling automaton can then be compared using the ConversationMatch()

with either the raw automaton RAIG or RAIL to find user task realizations without or



5.5 Service Coordination 123

Figure 5.11: Rescheduling Automaton

with the support of conversation interleaving, respectively. This generates two additional

solutions to the user task realization that support the adaptation of the user task, defined

with the two functions AdaptiveIntegration() and AdaptiveInterleaving() as follows (see

Figure 5.3, p. 99):

AdaptiveIntegration: T × Sn3 −→ 2T

< T, s1, ..., sn3 > 7−→ {T1, ..., Tn}:

RAIG = RawAutomatonIG(s1, ..., sn3
) ∧

SA = ReschedulingAutomaton(T ) ∧

∀Ti ∈ T ,

ATi
= SubAutomaton(RAIG):

ConversationMatch(SA,ATi
)
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AdaptiveInterleaving: T × Sn4 −→ 2T

< T, s1, ..., sn4 > 7−→ {T1, ..., Tn}:

RAIL = RawAutomatonIL(s1, ..., sn4
) ∧

SA = ReschedulingAutomaton(T ) ∧

∀Ti ∈ T ,

ATi
= SubAutomaton(RAIL):

ConversationMatch(SA,ATi
)

Computed realizations will not exactly conform to the initial task conversation, but

they will still fulfil the task data flow specification. While this solution increases the

probability of finding service compositions, it is more costly than the first and second

solutions, as the automata used as input of the ConversationMatch() relation are larger

in terms of the number of states and transitions to be processed.

5.6 Matching Global Non-Functional Properties of Composed

User Tasks

We present in this section our solution for evaluating non-functional properties of composed

user tasks. This evaluation is performed by the service coordination functionality, which

is responsible for assessing, simultaneously to building user task realizations, whether

these realizations fulfil the user task non-functional properties. As introduced in our

model for semantic service specification (see Chapter 3), non-functional properties can

be of two types: qualitative and quantitative. The evaluation of qualitative properties of

user tasks is straightforward, as these properties are defined semantically by referencing

ontology concepts. Indeed, to assess the fulfilment of these properties, we only need to

assess for each qualitative property the ConceptMatch() relation (see Chapter 4) with the

corresponding property of each composed pervasive service. For instance, if the user task

has a global non-functional property concerning the network connection, e.g., Network is-a



5.6 Matching Global Non-Functional Properties of Composed User Tasks 125

WiFi 802.11G, then each composed pervasive service must have a value of this property

that matches the task’s value.

Assessing the fulfilment of quantitative properties of the user task requires special

care, as values of these properties provided by the composed pervasive services have to

be aggregated to infer the estimated value for the composed user task. For instance, if

the user task has a global non-functional property related with the execution latency, e.g.,

Latency < 5, then an aggregation of the latency values advertised by pervasive services

have to be calculated following the structure of the user task conversation.

To perform this estimation, we extract from the task’s conversation the mathematical

formula for calculating each quantitative non-functional property. These formulae are

extracted in advance and stored with the task’s description.

A number of research efforts propose reduction rules to compute quantitative prop-

erties of a workflow [Cardoso et al., 2004, Menasce, 2004, Zeng et al., 2004]. We use the

model proposed by J. Cardoso et al. in [Cardoso et al., 2004] to extract the formula of

each property of the user task corresponding to the task’s automaton structure. In this

approach, a mathematical model is used to compute quantitative properties for a given

workflow process. More precisely, an algorithm repeatedly applies a set of reduction rules

on a workflow until only one atomic node remains. This remaining node contains the for-

mula for estimating the considered property corresponding to the workflow under analysis.

The algorithm uses a set of six reduction rules: (1) sequential, (2) parallel, (3) conditional,

(4) fault-tolerant, (5) loop and (6) network. However, as our automata model is an ab-

straction of a set of elementary workflow patterns, we only need to keep the reduction

rules for sequential, conditional, and loop systems.

Furthermore, we provide two estimations for each quantitative property: (1) a history-

based probabilistic estimation and (2) a pessimistic estimation. The former corresponds

to an average estimation, while the latter corresponds to a worst case estimation. We

consider both the previous estimations, which depend on the user’s task requirement (e.g.,

deterministic or probabilistic) in the user’s request. For example, if the user demands a

deterministic QoS, our approach compares the requested QoS with the pessimistic estima-

tion of the composite service. If the user requires an average QoS, the latter is compared
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against the probabilistic estimation.

Figure 5.12 and Tables 5.3 and 5.4 show how we perform these estimations. Figure

5.12 describes the reduction rules to be applied for sequence, choice and both simple and

dual loop constructs. In the figure, capabilities represented on each transition (named ci)

provide some quantitative attributes (i.e., availability, latency and cost1 noted ai, li, and

cti, respectively, in the two tables). We focus on the three dimensions: availability, latency

and cost, because they are considered as important QoS dimensions of user tasks (e.g.,

[Cardoso et al., 2004]). Furthermore, other quantitative dimensions can be calculated in

a similar way.

Beside these attributes, capabilities involved in the choice and loops constructs, provide

additional information, i.e., the probability to be selected (pi). These probabilities are only

used in the case of a probabilistic estimations. The formulae to be applied in this case

are described in Table 5.3. Note that in this Table, for each loop case, the probabilities pi

described in Figure 5.12, are changed to p′i after reduction, where: p′i = pi

1−p
. On the other

hand, evaluating a worst case estimation of the quantitative properties is done by using

the same reduction rules and applying the formulae described in Table 5.4. In this case

some other information is required for the two loop cases that is the maximum number of

times a loop has been executed. This information is represented by N in Table 5.4.

Seq Choice Simple Loop Dual Loop

Availability a1 ∗ a2
∑

aipi
(1−p)∗ao

1−pao

(1−p)∗ao

1−aoa
o′

Latency l1 + l2
∑

lipi
lo

1−p

lo+l
o′−(1−pl

o′ )
1−p

Cost ct1 + ct2
∑

ctipi
cto
1−p

cto+ct
o′−(1−p)ct

o′

1−p

Table 5.3: Probabilistic Quantitative Properties Evaluation

The QoS formulae for estimating the latency and availability of the user task of Figure

5.4 extracted by applying the above reduction rules are depicted in Figure 5.13.

1In the following, by cost we mean any resource-related cost, e.g., CPU load, memory, price.
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Figure 5.12: Reduction Rules for Estimating Quantitative Properties

Seq Choice Simple Loop Dual Loop

Availability a1 ∗ a2 Min(ai) N ∗ ao ∗ Min(ai) N ∗ ao ∗ ao′ ∗ Min(ai)

Latency l1 + l2 Max(li) N ∗ lo + Max(li) N ∗ (lo + lo′) + Max(li)

Cost ct1 + ct2 Max(cti) N ∗ cto + Max(cti) N ∗ (cto + cto′) + Max(cti)

Table 5.4: Pessimistic Quantitative Properties Evaluation

5.7 On the fly User Task Realization for Meeting Pervasive Com-

puting Requirements

All the presented task realization algorithms are based on the ConversationMatch() re-

lation. For meeting pervasive computing requirements, this relation, which semantically

compares two automata is assessed on the fly by the service coordination functionality of

our SOM. This is performed by simultaneously parsing the structure of the two automata
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Figure 5.13: QoS Formulae of the EASY-Movie User Task

to be compared.

Specifically, the algorithm parses each state of the smallest automaton (which is as-

sumed to be simulated by the other automaton), i.e., A1, starting with its start state and

following its transitions. Simultaneously, a parsing of the second automaton, i.e., A2, is

carried out in order to find for each state of the automaton A1 a state of the automaton

A2 that can simulate it. An automaton state sti is simulated by another automaton state

sri when :

• For each outgoing transition of the former, i.e., δA1
(sti,c)=stj , there is at least one

equivalent outgoing transition of the latter, i.e., δA2
(sri,c

′)=srj , such that:

– FunctionalCapabilityMatch(c′,c)
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– PropertiesCapabilityMatch(c′,c)

• All the states following sti are simulated by states following sri

An example of using the on the fly conformance between automata for realizing a user

task by integrating a set of services conversations is depicted in Figure 5.14. In this figure,

the task automaton is represented on the left part of the figure, the raw automaton RAIG

is represented in the right part of the figure and the on the fly verification is shown step

by step.

For instance, the state st5 of the task’s automaton can be simulated by the state

sr1 of the raw automaton because the set of outgoing transitions of st5, i.e., the transi-

tion labelled with the capability LocalDisplay is a subset of the set of outgoing transi-

tions of the state sr1, i.e., the transitions labelled with the capabilities LocalDisplay and

GetLocalResource, respectively.

Using this same algorithm and by using the simple raw automaton RAIG, we can

perform the user task realization with the support of conversation interleaving. This

avoids building the raw automaton RAIL, which results from the product of a set of

service automata and may have a size that grows exponentially according to the involved

automata sizes. This is done by managing service sessions. Specifically, a service session

characterizes the exploration state of a service conversation (while parsing its automaton

structure). A session is opened when a service conversation starts and ends when this

conversation finishes. Several sessions with several pervasive services can be opened at

the same time. This allows interleaving the interactions with distinct networked services.

Indeed, a session opened with a service A can remain opened (temporary inactive) during

the interaction of the client with another service B.

Figure 5.14 also describes the different steps performed to assess the Conversation-

Match() relation, while managing sessions for enabling the interleaving of service con-

versations. An example of managing sessions is given in Step (1) of the task realiza-

tion. In this step, the capability SearchEntertainmentResource of the task’s automa-

ton is matched against the capability SearchResource of the raw automaton provided

by the AirportEntertainmentServer Service. The next step is to find the capability
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SearchDisplay of the task’s automaton (Step (2)). However, this capability is not pro-

vided by the AirportEntertainmentServer service. This leads to open a session with

the SearchDisplays service as this service provides the sought capability. In the mean-

while, the session opened with the AirportEntertainmentServer remains opened (ver-

tical red arrow in the figure). After matching the capability SearchDisplay, the capa-

bility GetResource is sought in Step (3). A semantically equivalent capability, i.e., the

GetResource capability, is accessible in the AirportEntertainmentServer Service from

the previously opened session.

An important condition that has to be observed when managing sessions is that each

opened session must be closed, i.e., it must arrive to a final state of the service automaton

before the task realization is completed.

The verification of the conformance to the QoS constraints of the user task is also

performed on the fly by the service coordination functionality simultaneously to the user

task realization. Specifically, the service coordination functionality uses the QoS formula

corresponding to each QoS metric extracted as explained in Section 5.6, and each time a

service capability is being integrated, these formulae are used to check the fulfilment of

the task’s global QoS requirements. This verification is performed by starting with the

QoS formula for each QoS dimension, in which we initially assume that all capabilities

will provide the best value of the considered QoS dimension (for example, latency =

0, availability = 1). Then, each time we examine a service capability, we replace the

corresponding best value in the formula of the considered dimension, with the real QoS

value of the capability. This allows evaluating at each step of the integration the values

of all QoS dimensions in the case that the current capability is selected. These values are

then compared to the corresponding values required by the user task, and if the constraints

are not met, the path in the global automaton that includes this capability is rejected.

The service coordination functionality gives a set of sub-automata from the raw au-

tomaton that conforms to the task’s automaton structure. Each of these automata is a

user task realization that conforms to the conversation of the target user task in terms of

functional and non-functional properties, further enforcing valid service consumption.

Figure 5.15 gives an example of the on the fly verification of the task’s QoS requirements
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Figure 5.14: On The Fly User Task Realization

and the generation of user task realizations. In this figure each pervasive service provides

(right part of the figure) an estimation of its provided Latency and Availability QoS

dimensions. The user task, has two QoS requirements i.e., Latency < 8 and Availability >

50% (left higher part of the figure). There are two resulting user task realizations (left

middle and left lower parts of the figure) that both fulfil the task non-functional properties.

Once the set of possible task realizations is given, the ordering of these realizations is

performed using the TaskDoM() function defined in Section 5.5.1. The best among these

realization is then returned to the client in the form of an executable description. The
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Figure 5.15: QoS-aware User Task Realization

client finally executes this realization by using a local or a remote execution engine.
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5.8 Assessing the Efficiency of the Composition Model

We discuss in this section the computation cost of our overall service composition SOM

functionality. This functionality decomposes in different other functionalities. First, the

computation cost of the service discovery client depends on the efficiency of the underly-

ing semantic service registry, which is discussed in Chapter 4. Then, the complexity of

all the other functionalities (including the various service conformance and coordination

functions) mainly depends on the complexity of the ConversationMatch() relation. The

complexity of this relation can be approximated by process algebra simulation (bisimula-

tion) algorithms that assess the conformance of two processes by comparing their corre-

sponding automata. A detailed analysis of the cost of process simulation (bisimulation)

algorithms is described in [Moller and Smolka, 2003]. Specifically, bisimulation between

two non-deterministic finite state automata that have a total of n states and m transitions

can be decided in polynomial time, O(nm) time to be exact [Kanellakis and Smolka, 1990].

This result was subsequently improved upon in [Paige and Tarjan, 1987], where an algo-

rithm that runs in O(m log n) time has been defined. The condition to be observed in

both cases is that the two automata to be compared can be represented with right-linear

grammars. We prove in this thesis (Appendix A) that all the automata (of the user task

and pervasive services) generated using our rules for mapping basic control patterns to

finite state automata defined in Chapter 3 can be represented with right-linear grammars.

Hence, the complexity of our ConversationMatch() relation can be approximated with

the complexity of the process bisimulation algorithm defined in [Paige and Tarjan, 1987],

which is in the order of O(mlog n) for two automata that have a total of n states and m

transitions. Consequently, our solution to the dynamic user task realization, which essen-

tially relies on the ConversationMatch() relation, performs better than existing related

work in the area of conversation-based service composition ([Berardi et al., 2003]), which

rely on exponential time verification algorithms.

From this statement, we can now discuss the efficiency of the service conformance

and coordination functionalities. As the cost of the ConversationMatch() relation grows

(linearly) with the size of the compared automata it is obvious that the selection and
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task realization algorithms that support the interleaving of service conversations, i.e.,

OrderingConstraintSelectionIL(), ConversationInterleaving() and AdaptiveInterleav-

ing() are more costly than the functions OrderingConstraintSelectionIG(), Conversation-

Integration() and AdaptiveIntegration(), as their employed filtering and row automata,

i.e., FAIL and RAIL, respectively, are larger. Consequently, a client may choose the most

appropriate task realization solution according to its available resources.

Another point that we can discuss is the impact the selection process performed by

the service conformance functionality regarding ordering constraints. This functionality

assesses the ConversationMatch() relation for each service returned by the service discov-

ery client. This verification can be avoided as the service coordination also assesses the

ConversationMatch() relation with the raw automaton, which is composed of a set of per-

vasive services. However, verifying the compatibility of service ordering constraints priori

to the task realization phase can be performed in a distributed manner by the distributed

instances of the middleware that host the service registry, contrary to the task realization

that have to be performed in a single node. Hence, suppressing the pre-selection phase

implies that a potentially larger number of service descriptions may be sent to the node

that performs the service integration, which may overload the network on the one hand,

and generate an additional overhead on the ConversationMatch() relation on the other

hand.

To complement this theoretical assessment, a practical assessment evaluating the per-

formance of the on the fly user task realization, with and without QoS-awareness, in terms

of execution overhead is presented in Chapter 6.

5.9 Concluding Remarks

We presented in this chapter our solution to the dynamic user task realization. This

solution supports the integration of service conversations to realize the conversation of a

user task, providing the user with four different levels of flexibility. It further supports

the semantic specification of service and task capabilities and enable QoS-aware service

composition.
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The theoretical assessment of our solution shows that the cost of our algorithms grows

linearly with the size of the automata to be compared, which is more efficient than existing

related work in the area of conversation-based service composition. This result is further

consolidated with a practical assessment provided in the following chapter.
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Chapter 6

PERSE: Pervasive Semantic-aware

Middleware

We present in this chapter the PERvasive SEmantic (PERSE) middleware, which provides

a comprehensive solution for service discovery and composition in pervasive computing

environments. This middleware integrates the SOM functionalities presented in this thesis,

i.e., service publication, location, matching (Chapter 4) and service composition (Chapter

5), complemented with multi-network and multi-protocol management provided by the

MUSDAC middleware [Raverdy et al., 2006].

The remainder of this chapter is structured as follows. First, we present in Section 6.1

an overview of the MUSDAC middleware. Then, we introduce in Section 6.2 the PERSE

middleware. Finally, we present a prototype implementation and performance evaluation

of this middleware in Section 6.3.

6.1 Baseline MUSDAC Middleware for Multi-Network, Multi-

Protocol Service Discovery in Pervasive Computing Environ-

ments

The MUSDAC middleware enables multi-network, multi-protocol service discovery and

access in pervasive computing environments. For multi-network management, MUSDAC

137
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dynamically composes nearby networks through application-level routing components pro-

vided on devices having multiple network interfaces, which enables the dissemination of

service location and access requests in the whole environment.

Multi-protocol interoperability decomposes into service discovery protocol interoper-

ability and service access protocol interoperability. Service access protocol interoperability

is performed by translating service access messages from one protocol to another. Service

discovery protocol interoperability decomposes in two parts, i.e., the translation between

protocol messages and the translation of heterogeneous service advertisements into a com-

mon XML format (the MUSDAC service description format).

As depicted in Figure 6.1, the MUSDAC architecture is composed of three main com-

ponents:

• The Manager deals with service publication for local service providers, i.e., providers

that reside on the same network, and performs service location, matching and access

for local and remote service requesters.

• Service Discovery and Access (SDA) Plugins allow the interaction with service providers

and requesters using specific service discovery protocols to collect service information

and perform service access.

• Bridges interconnect diverse networks accessed through the network interfaces of

a device, and manage the dissemination of service location requests as well as the

access to remote services.

While MUSDAC constitutes an innovative solution for multi-network multi-protocol

service discovery in pervasive computing environments it focuses on interoperability among

syntactic SDPs. Furthermore, MUSDAC relies on a proprietary service description format

that does not support the specification of service non-functional properties and does not

support service composition. We introduce in the following section a middleware that

integrates the functionalities provided by MUSDAC into a PERvasive SEmantic-aware

middleware.
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Figure 6.1: MUSDAC Architecture

6.2 The PERSE Middleware Architecture

We present in this section, the architecture of the PERSE middleware, and its deployment.

As depicted in Figure 6.2, PERSE is composed of two main layers: the communication

middleware layer and the semantic SOM functionalities layer. The semantic SOM layer

implements the SOM functionalities presented in Chapter 4 and Chapter 5 of this thesis.

The communication middleware deals with multi-network, multi-protocol service discovery

and access.

The deployment of PERSE builds upon the deployment mechanism of the MUSDAC

middleware. Specifically, PERSE registers as a service, i.e., the PERSE Service, using

each service discovery protocol available in the local network. Then, client applications

explicitly interact with the PERSE Service using their preferred discovery and access

protocol. The PERSE Service interface is composed of a set of capabilities enabling a

client to perform a semantic-enhanced service discovery and to realize user tasks. It also

allows service providers to publish semantic-enhanced service advertisements. Providing

such an explicit interface enables the extension of existing protocols with new features such
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Figure 6.2: PERSE Middleware

as support of rich semantic annotations (e.g., support of annotation type) QoS-awareness

as well as service composition.

A node that hosts the PERSE Service is dynamically elected to control the network.

Specifically, PERSE-aware devices exchange their profile information and then use a multi-

criteria algorithm to elect their PERSE Service (benefit value based on number of SDPs

supported, device expected lifetime, device processing capabilities). Once elected, the

PERSE Service periodically sends presence beacons so that other PERSE-aware devices
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in the network can detect its absence (i.e., no presence beacon received after a given time)

as well as duplicates, and elect a new PERSE Service.

6.2.1 Multi-Network Management

Network heterogeneity leads to many independent networks being available to users at a

location, which can be loosely interconnected with today’s mobile devices. Innovative so-

lutions are then required for the efficient inter-network publication, location and matching

of service requests and advertisements. To deal with multi network management, PERSE

builds upon the MUSDAC multi-network management functionality. Specifically, PERSE

operates independently in each network of the pervasive environment, and each instance of

PERSE selects with which other instances (in nearby/distant networks) to interact with.

PERSE instances residing in different networks communicate with each other using their

Dissemination Manager, i.e., Bridge in MUSDAC.

6.2.2 Service Discovery in PERSE

The PERSE Service translates service advertisements to a common language, i.e., the

Interoperable Service Description Language (ISDL) described in Section 6.2.5. For each

legacy SDP, the translation is performed by its corresponding plugin (in communication

middleware layer). Then the generated service description is stored in the local service

registry (semantic SOM layer), which performs local service publication (as described in

Chapter 4). A client looking for a service in the pervasive environment first discovers

the PERSE Service using its preferred SDP and sends its service request expressed using

ISDL. Upon the reception of a service request PERSE performs local service location

implemented by the semantic service registry (semantic SOM layer). Also, PERSE uses

the dissemination manager (multi-network management) to propagate the service request

to nearby networks. A PERSE Service receiving a remote service request processes it as

a local one (i.e., performs local service location and disseminates the request to the other

reachable networks) but returns the results to the originating dissemination manager.

Finally, local PERSE Service in contact with the client collects local and remote results
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and returns them to the client.

6.2.3 Service Composition in PERSE

Clients that want to realize an abstract user task available in their device send a com-

position request to the PERSE Service. The PERSE Service performs local and remote

service location (if needed) to pre-select a set of services candidate to the composition.

An executable description of the user task is then generated by the PERSE Service using

the service conformance and coordination functionalities as presented in Chapter 5. The

execution of this task can then be performed by an execution engine available either on

the user’s device or hosted in another node in the network.

6.2.4 Service Access in PERSE

PERSE integrates the service access functionality provided by MUSDAC. It supports client

access to services hosted in remote networks and assume that both clients and services use

SOAP as access protocol (e.g., UPnP, Web services). In this case, message translation is

simplified, as only the only the message headers needs to be modified (for managing appli-

cation level routing) while the content of the access message remains the same. Accessing a

remote service via PERSE is performed through the creation of a communication channel.

The creation of this channel is transparent to the client as it is done when accessing the

remote service for the first time. When the client initiates an interaction with a service,

it uses a local address that have been added to the service description by the PERSE

Service, instead of the target service address. The communication channel is composed of

the client address, the local address (provided by the PERSE service) and the dissemina-

tion list, i.e., the list of all the bridges in between and the target service. Once created,

messages from the client are translated (i.e., change in the header of the SOAP message)

and encapsulated in a message sent over the communication channel. Each dissemination

manager that receives an access message checks the unique identifier of the communication

channel for this message and forwards it until it reaches the target service. The result is

returned in a similar way to the client.
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6.2.5 Interoperable Service Description Language

SDP interoperability is achieved in PERSE through the translation of heterogeneous ser-

vice advertisements to a common language. Based on the conceptual model presented in

Chapter 3, we define the Interoperable Service Description Language (ISDL) as a concrete

realization of this model. For the implementation of ISDL, we opted for an XML-based

schema defining a container, which is combined with the two emergent standard service

description languages namely SAWSDL and WS-BPEL. ISDL is not yet another service de-

scription language. It acts primarily as a top-level container for additional files describing

facets of the service. SAWSDL is used to describe the capability interfaces, while WS-

BPEL is used to express conversations associated with capabilities. We employ SAWSDL

for the definition of capability interfaces, as it supports both semantic and syntactic spec-

ification of service attributes (e.g., inputs, outputs). Thus, both legacy syntactic descrip-

tions and rich semantic descriptions can be translated to SAWSDL. On the other hand,

WS-BPEL is a comprehensive language for workflow specification, which is adequate for

conversation specification. It has largely been adopted both in the industrial community

and in academia. WS-BPEL supports only syntactic conversation specification, however,

if combined with SAWSDL, semantic conversations can be defined. Additional files may

be optionally linked to the ISDL container to describe a service’s non-functional properties

using existing QoS models (e.g., SLAng1, EASY [Ben Mokhtar et al., 2007b]). Figure 6.3

shows an example of a ISDL description. In this example, the service is composed of two

capabilities. The first capability has a complete functional and non-functional description

that comprises a reference to a SAWSDL file defining the capability interface, a WS-BPEL

description that defines the conversation associated with the capability, as well as a QoS

description given in a SLAng and an OWL file respectively. The second capability of this

service is only given with an interface description defined in a SAWSDL file.

One of the particular features of ISDL is the support of heterogeneous service descrip-

tion languages. This is realized through the translation of the incoming heterogeneous

service descriptions into ISDs. These descriptions are then stored by the service registry

1http://www.cs.ucl.ac.uk/staff/j.skene/slang/



144 CHAPTER 6 : PERSE: Pervasive Semantic-aware Middleware

Figure 6.3: Example of an ISD Description

and used to assess the conformance with incoming service requests. Figure 6.4 gives an

overview of how various legacy service descriptions are translated to ISDL. In this figure

five different scenarios are identified.

The first scenario describes the case of a legacy service specified with the name of its

provided functionality (e.g., a SLP service). In this case, the SLP2ISDL plugin translates

the SLP description to a ISD description. This description contains the SLP grounding

information and links to a SAWSDL description that contains a single operation having

as name the name of the SLP service without any input and output specification.

The second scenario describes the case of a service that provides a list of operations

described syntactically with their signatures, as it is the case for UPnP services or Web

services. In this scenario, the corresponding plugin (e.g., UPnP2ISDL or WSDL2ISDL)

translates the given description to a ISD description, which links to a SAWSDL description

that comprises a list of WSDL operations corresponding to the operations specified in the

legacy description without semantic annotations.

The third scenario describes the case of a service described as a set of semantically

annotated operations (e.g., given as a SAWSDL description). In this case, the mapping is
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straightforward as it consists of linking the ISD description to the given SAWSDL file or

to map the terminology of the given file to SAWSDL if different.

The fourth scenario describes the case of a syntactic capability described with an as-

sociated conversation of operations (e.g., a service described as a WSDL operation that

is realized through the execution of a WS-BPEL conversation). In this case the ISD

description contains the specification of both a ISD interface and a conversation. The

ISD interface points to a SAWSDL description that contains a single operation without

semantic specification used to describe the capability. On the other hand, the ISD con-

versation links to a WS-BPEL description that describes the conversation associated with

the operation. This WS-BPEL description uses itself another WSDL file that specifies the

operations used in the conversation.

The last scenario describes the case of a semantic capability having an associated

conversation of semantic operations (e.g., an OWL-S service with a profile that describes

the semantic capability and a process model that describes the associated conversation).

In this case, the generated conversation also comprises both a ISD interface and a ISD

conversation. However, compared with the previous case, the SAWSDL description used

to describe the capability comprises semantic annotations of the capability elements (i.e.,

inputs, outputs). Furthermore, the WS-BPEL file describing the conversation associated

with the capability uses another SAWSDL description in which the operations are also

semantically annotated.

To perform efficient semantic service matching, SAWSDL descriptions attached with

a ISDL descriptions are pre-encoded. We developed an application that allows generating

encoded SAWSDL descriptions. This application helps a service developer in semantically

annotating its service descriptions by graphically loading ontology description files. It

further implements the prime-number based encoding and allows the integration of codes

associated with ontology concepts as part of the generated SAWSDL description. The

GUI of this application is shown in Figure 6.5.
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Figure 6.4: Interoperability Enabled by ISDL

6.3 Prototype Implementation and Performance Evaluation

We have implemented a prototype of PERSE using Java 1.5. Selected legacy plugins have

been developed for SLP using jSLP, UPnP using Cyberlink, and UDDI using jUDDI.

To evaluate the efficiency of PERSE, we have been interested in the evaluation of:

1. The performance of the prime-number based ontology encoding algorithm in terms

of code lengths in Section 6.3.1. Indeed, as service descriptions are to be stored in

devices with potentially limited storage capabilities, we have been interested in the

comparison of code lengths generated by our employed prime-number based encoding

algorithm compared to other existing encoding algorithms.
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Figure 6.5: SAWSDL Editor

2. The processing time to create ISDL descriptions as a result of the translation of a

legacy description, in Section 6.3.2. This evaluation estimates the cost of interoper-

ability realized through language to language translation.

3. The cost of semantic service matching performed using online reasoning on ontologies

compared with our efficient interoperable service matching in Section 6.3.3. We

further present in this section the processing time of matching various combinations

of heterogeneous service requests and descriptions as well as the scalability of our

service matching function.

4. The efficiency of the PERSE semantic service registry in Section 6.3.4. Specifically,

we have been interested in the evaluation of the time to organize the semantic service

registry, the time to publish and locate a semantic service description as well as the

comparison of the scalability of our registry compared with a WSDL service registry.

5. The processing time for service composition with and without the support of QoS in

Section 6.3.5.
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Ontology Classes Caseau Krall Prime Max/Avg

SUMO 630 48 30 83 / 42

Wine & Food 133 39 33 53 / 23

Pizza 99 40 37 40 / 23

Gene Ontology 20945 2155 151 361 / 82

Java 1.30 5438 1568 68 112 / 31

OpenCyc 25565 1420 350 681 / 272

Table 6.1: Comparison of Encoding Length of a Single Class (in bits)

6.3.1 Performance of the Prime Number-Based Ontology Encoding Algorithm

We have been interested in this experiment by the performance of the prime number based

encoding algorithm in terms of code lengths compared to other encoding algorithms. We

have performed the encoding of a set of multiple ontologies, including: the Suggested Upper

Merged Ontology [Niles and Pease, 2001]; the OpenCyc upper ontology2; several well-

known ontology tutorial examples3,4; the Gene Ontology5, which provides a vocabulary of

genes from any organism; and the Java 1.30 types hierarchy, which is part of a subtyping

benchmark6. Table 6.1 provides an overview of the code lengths achieved by various

encoding algorithms described in Chapter 4 and the prime number based algorithm. The

results for existing algorithms show the largest encoding length for a class in the hierarchy,

expressed in bits. For the binary matrix method, this is equal to the size of the hierarchy.

For the prime-based algorithm, the last column shows: the largest encoding lengths for

the heuristic that minimizes the largest encoding length; and the average encoding length

for the heuristic that minimizes the total encoding length. Besides achieving conflict-

free incremental encoding, the encoding lengths produced by the prime number based

algorithm are comparable if not better than the ones of existing algorithms.

2OpenCyc: http://www.opencyc.org/
3OWL Guide: http://www.w3.org/TR/owl-guide/
4Pizza Ontology: http://www.co-ode.org/ontologies/pizza/
5Gene Ontology: http://www.geneontology.org/
6Java subtyping benchmarks: http://www.zibin.net/subtyping-benchmarks.html
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6.3.2 Cost of Legacy to ISDL Translation

We have been interested in this experiment by measuring the cost of multi-protocol in-

teroperability, and particularly the cost of translating legacy service descriptions to ISDL

descriptions. This experiment has been carried out on a Windows XP PC with a 2.6 GHz

processor and 512 MB of memory. Results presented below are the average of ten runs.

The standard deviation for the results presented in this experiment is negligible (less than

1%). As presented in [Raverdy et al., 2006], providing interoperability on top of simple,

limited SDPs such as SLP may incur a significant overhead (i.e., overhead of over 200

milliseconds for a native discovery time of less than 1 millisecond for a similar configu-

ration). It was analyzed that this overhead was by and large (two-thirds or almost 140

milliseconds) triggered by the SOAP-based interface of the interoperability service. This

overhead however becomes negligible when interoperating with other SD service such as

UDDI that have a native discovery time between 1 and 6 seconds).

For our PERSE prototype, the processing time for the translation of service descrip-

tions (requests and advertisements) from selected legacy SDPs to ISDL descriptions are

provided in Table 6.2. The first line of this table represents the time to process a discov-

ery request using SLP, UPnP and WSDL excluding the time to parse XML descriptions.

The second line represents the time to process a discovery request in addition to the time

to translate the request to ISDL. Finally, the third line represents the overhead of the

translation. In this experiment times are given in micro-seconds.

As can be observed, the overhead of the translation to ISDL increases with the com-

plexity of the original description, and in particular the complexity and size of the original

XML data to process. Nevertheless, the overhead for translating WSDL descriptions to

ISDL is less than the overhead for translating UPnP description. This is due to the sim-

ilarity between SAWSDL and WSDL, which eases the translation process. It should be

noted that, in the case of UPnP and WSDL, the libraries used by the legacy plugins al-

ready retrieve and parse all the necessary information (e.g., the device and service XML

descriptions in UPnP). All the processing in the legacy plugins is thus performed in mem-

ory. Overall, the translation time is not significant (tens to hundreds of micro-seconds)
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compared to the overall discovery time.

SLP UPnP WSDL

Discovery Request 22.8 32.4 243

Discovery Request+Translation to

ISDL

23.4 85.1 287

Overhead of the translation 0.6 52.7 44

Table 6.2: Legacy to ISDL Translation (in micro-seconds)

6.3.3 Performance of the Interoperable Service Matching

We present in this section three main experiments. The first experiment measures the per-

formance of semantic service matching performed using online semantic reasoning. The

second experiment measures the performance of the interoperable service matching per-

formed in PERSE between heterogeneous service advertisements and service requests. The

last experiment measures the scalability of a PERSE service registry. These three experi-

ments have been carried out on a Windows XP PC with a 2.6GHz processor and 512 MB

of memory.

The first experiment, which measures the performance of semantic matching using

online reasoning, includes the use of three DL-reasoners to infer the subsumption relation-

ships between concepts, i.e., Racer7, FaCT++8 and Pellet9. We provide this evaluation

employing each one of the aforementioned three reasoners in order to assess their impact

on the semantic matching process.

This experiment provides the time taken by each reasoner to match the concepts in-

volved in a single service request and a single service advertisement for an increasing

number of concepts. Both the request and the advertisement use the Pizza ontology10.

This ontology contains 99 OWL classes, 4 datatype properties, 11 object properties, 24

annotation properties and 5 individuals.

7Racer: http://www.sts.tu-harburg.de/ r.f.moeller/racer/
8FaCT++: http://owl.man.ac.uk/factplusplus/
9Pellet: http://www.mindswap.org/2003/pellet/

10http://www.co-ode.org/ontologies/pizza/
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In this experiment, we increase the number of concepts involved in the service request

from 4 to 14. The time measured time includes (1) the time to parse the service adver-

tisement and the service request; (2) the time to load to the reasoner and classify the

ontologies involved in the service advertisement and request descriptions; and (3) the time

to match the concepts involved in the advertisement and the request, i.e., to assess the

relations between these concepts within the classified ontologies.

Figure 6.6 shows the results of this experiment. We notice that for all the three

reasoners the processing time increases proportionally to the number of concepts involved

in the service description and service request. Furthermore, the matching time for all the

three reasoners is in the order of 4 to 6 seconds. In all the cases, the most expensive phase

is the one of loading and classifying the involved ontologies (in this case a single ontology):

from 76% to 78%. From this experiment we conclude that the semantic matching using

online semantic reasoning is a very heavy process. Let’s compare it with our efficient

semantic service matching performed in PERSE.
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Figure 6.6: Matching Using Online Semantic Reasoning

The second experiment measures the processing time of the matching algorithm per-

formed in PERSE for different combinations of service requests and advertisements. Re-
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sults are depicted in Figure 6.7. In this experiment, the registry contains only one service

having one capability with a single input and a single output (except for SLP services that

are only described with capability names). For each couple service advertisement/service

request, we measure the time to parse the two descriptions and the time to assess the

matching between them.

We can notice that there are three different cases of matching depicted in the figure

with three different coloured zones:

• syntactic matching of capability names performed when a SLP description is matched

against any other description, i.e., first line and first column of the table.

• syntactic matching of capability signatures performed when both the advertisement

and the request are defined as a set of capabilities and one (or both of them) does

not have a semantic specification, i.e., the rest of the table except the bottom right

double-cell.

• efficient semantic matching, performed when both the service advertisement and

the service request have a pre-encoded semantic specification, i.e., the bottom right

double-cell of the table.

From the results of this experiment we can notice that:

• The time to parse service and request descriptions is almost the same for all the

kinds of descriptions, because they are all ISDL descriptions.

• Syntactic matching based on capability names is the most efficient, which is due to

the fact that there are less information to compare (only capability names)

• Thanks to our encoding mechanism, semantic matching in PERSE performs as effi-

ciently as syntactic matching of capability signatures.

• Our efficient semantic matching performed in PERSE is around 2500 time faster

than semantic matching based on online reasoning on ontologies
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Overall, it can be concluded that as for cost interoperability, the cost of the matching

algorithm performed by PERSE is also negligible when compared to the total discovery

time (and in particular the processing time for SOAP communication).

Figure 6.7: PERSE Matching Performance

The third experiment that we present in this section measures the scalability of our

semantic service matching performed in a PERSE service registry. In this experiment we

increase the number of services in the registry from 1 to 128 services of different types (SLP,

UPnP, WSDL and SAWSDL) and we perform the matching between a service request and

services of the same type. All the times are in milliseconds and do not include the time

for parsing service descriptions.

In this experiment, semantic services (i.e., described using SAWSDL) are organized into

graphs of similar capabilities as presented in Chapter 4. In this experiment we have been

interested in two extreme scenarios of registry organization: the case where all the semantic

services are semantically different from each other, i.e., the registry is not organized (curve

SAWSDL Worst) and the case where all the services are semantically equivalent to each

other, i.e., there is a single graph, with a single node that contains all the service capabilities

(curve SAWSDL Best). A case where the registry is partially grouped (real case scenario)

would be represented with a curve between these two extreme curves.
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The results of this experiment are depicted in Figure 6.8. From this experiment we

can notice that matching cost increases substantially when registry holds more than 100

services for the cases of UPnP, WSDL and unorganized semantic services (SAWSDL worst

case). Nevertheless, when semantic services are related to each other (SAWSDL best case),

thanks to our grouping algorithm, the scalability of the semantic matching is similar to

the scalability of SLP based matching.
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Figure 6.8: PERSE Registry Scalability

6.3.4 Efficiency of the PERSE Service Registry

We have considered in the last experiment of the previous section the two extreme cases of

semantic service grouping, i.e., all the services of the registry are similar or all the services

are different. This allowed us to determine an interval in which a normal case scenario of

semantic service grouping would be situated. We focus in this section on the performance

of a fully semantic PERSE registry where services are assumed to be grouped according

to a specific grouping scenario. Specifically, we consider from 1 to 100 semantic services

using 22 different ontologies and grouped in 12 groups of various sizes.

We conducted four different experiments to evaluate:
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1. The processing overhead for organizing the registry.

2. The time for service publication into the organized registry.

3. The time for service location in the organized vs unorganized registry.

4. The scalability of our semantic service registry compared with a classical WSDL

registry.

These four experiments have been conducted on a Toshiba Satellite notebook with

a 1.6 GHz Intel Centrino processor and 512 MB of RAM. Note that for all these four

experiments each value is calculated from an average of ten runs.

Figure 6.9 shows the results of our first experiment, which evaluates the time to create

graphs of services in an empty registry. A scenario for this experiment would be realized

when a registry leaves the network and when another one is elected and has to host the set

of service descriptions available in its vicinity. Figure 6.9 shows three measurements: (1)

the time to parse the service descriptions; (2) the time to organize the service capabilities

into graphs; and (3) the total time, i.e., time to parse and create the graphs. From this

figure, we notice that the time to create the graphs is negligible compared to the time to

parse service descriptions, i.e., XML parsing time, which is mandatory due to the use of

Web services and Semantic Web technologies.

The results given by the second experiment that we performed are depicted in Figure

6.10. This experiment shows the time to insert a new service advertisement in a registry.

This figure shows 3 measurements: (1) the time to parse the ISDL description of the new

service; (2) the time to classify the service capabilities within the registry graphs; and (3)

the total time, i.e., the time to parse and classify the service capabilities. Results show that

the time to classify service capabilities in a set of existing graphs is negligible compared

to XML parsing time of the service description. We also notice that this time is nearly

constant. This is due to the fact that the number of semantic matchings performed in

the registry in order to insert a capability depends neither on the total number of services

on the registry nor on the number of graphs. The time to insert a capability depends

on the number of root and leaf nodes in the registry graphs as well as the number of
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Figure 6.9: Time to Organize a PERSE Registry
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Figure 6.10: Publication Time in a PERSE Registry

capabilities contained in the graph in which the capability will be inserted. This is due to

the fact that graphs are indexed using the ontologies that are being used in the capabilities’

descriptions, which allows pre-selecting a subset of graphs that are likely to be appropriate
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for the insertion of the new capability. Thus, only a few number of semantic matches are

performed in order to insert a capability in a registry.

The results of the third experiment that we performed are depicted in Figure 6.11.

In this experiment, we evaluate the time to match a service request with services hosted

by a registry. Furthermore, we compare the time to match a request in an organized

registry with the time to match a request in an unorganized registry. Results are given

without the XML parsing time of the request description. In this figure, we notice that

without registry organization, the average overhead for matching is around 50% of the

time to match when the registry is organized. Moreover, we notice that the time to match

a request in the classified registry is nearly constant, which is due to the graphs indexing

and the registry organization. We also notice that the response time to match a required

capability, excluding XML parsing time, is in the order of few milliseconds compared to

the original ontology-based semantic matching (few seconds).
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Figure 6.11: Benefit Of Grouping Service Advertisements

The last experiment that we performed is a comparison of the response time given by

the classical syntactic-based matching performed by a WSDL registry and the optimized

semantic matching performed by PERSE. The results are given in Figure 6.12. This figure

shows that the response time given by the WSDL registry is increasing with the number

of services available in the registry, while PERSE has an almost stable response time,
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which is due to the following reasons: (1) using PERSE, the services are parsed once at

the publishing phase and their capabilities are classified, which avoids matching a request

with all the services of the registry; (2) due to the numeric encoding of ontologies, the

semantic matching performed by PERSE reduces to a numeric comparison of codes, while

in the case of the WSDL registry the matching is performed by syntactically comparing the

WSDL descriptions. We conclude that, using PERSE, semantic matching, which allows

to leverage the openness of pervasive computing environments, can be performed more

efficiently than classical syntactic matching. Furthermore, thanks to registry indexing

and structuring, PERSE is more scalable than existing unorganized syntactic based and

semantic based registries.
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Figure 6.12: WSDL vs PERSE Service Registries

6.3.5 Performance of the QoS-Aware, Conversation-Based Service Composi-

tion

After the evaluation of the cost of interoperability and the performance of our PERSE

service registry we present in this section the performance evaluation of the semantic

service composition performed in PERSE.
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We have implemented a prototype of our composition algorithm that supports the in-

tegration of service conversations (called PERSE-Composition in the following), presented

in Chapter 5. All the experiments presented in this sections have been carried out on a

Linux platform running on a laptop with an Intel Pentium 4, 2.80 GHz CPU and 512 MB

of memory. The performance of PERSE-Composition is proportional to the complexity

of the task and services’ conversations. Specifically, the response time of the algorithm

is proportional to the number of possible (intermediate) composition paths investigated

during the execution of the algorithm. There are two main factors contributing to the

increase of the intermediate composition paths: (1) the number of semantically equiva-

lent capabilities provided by networked services; (2) the number of capabilities required

in the task’s conversation. We have carried out three experiments. The first two evaluate

the impact of each factor on the performance of PERSE-Composition, while the third

experiment evaluates the impact of QoS-awareness in PERSE-Composition. In all these

experiments, each value is calculated from an average of ten runs.

Figure 6.13 considers the first factor. In this figure, the number of capabilities provided

by networked services is increasing from 10 to 100 capabilities that are semantically equiv-

alent. Two cases for the user task are considered: the case where the task is composed of

a single capability, and the case where the task is composed of 5 semantically equivalent

capabilities in sequence. We compare the performance of with the XML parsing of the

services and task descriptions. The resulting curves show that the cost of our algorithm

is lower than the XML parsing time. Furthermore, the time to find a service composition

is proportional to the number of available services and to the task size.

Figure 6.14 considers the second factor. In this figure, the number of capabilities

provided by the networked services is fixed to the worst case coming from the previous

experiment, i.e., 100 semantically equivalent capabilities, while the number of capabili-

ties required in the task’s conversation is increasing from 1 to 20. The experiment that

is depicted in this figure corresponds to the comparison of the performance of PERSE-

Composition with the XML parsing of the services and the task conversation descriptions.

The figure shows an extreme scenario for our algorithm, as each capability required in the

task’s conversation is matched against 100 capabilities, and the resulting number of pos-
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Figure 6.13: Performance of the Composition Algorithm (Increasing the Number of Ser-

vices)

sible compositions is equal to: 100nb in each case, where nb is the number of capabilities

required in the task’s conversation. We can see that for a number of possible compositions

less than 10010, our algorithm takes less time than the XML parsing time.

In realistic cases, both the user task and networked services will contain various ca-

pabilities organized using various workflow constructs, thus leading to the decrease of

possible resulting compositions. Consequently, the response time will be reasonable for

the pervasive computing environment. Indeed, we have applied our algorithm in a real

case example in which the task’s conversation contains twenty required capabilities and

the selected services provide thirty capabilities, including various control constructs (e.g.

sequence, choice, loop). In spite of the large number of capabilities required in the task’s

conversation, the algorithm spent only 32 milliseconds to find the two resulting composi-

tions among 36 intermediate compositions, against 152 milliseconds for the XML parsing

time.

The last experiment that we performed measures the impact of introducing QoS-

awareness in PERSE-Composition. Specifically, we have compared the results of the pre-
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Figure 6.14: Performance of the Composition Algorithm (Increasing the Task Size)

vious experiment with the same experiment modified by introducing QoS constraints in

the user task and QoS properties in each service description. The introduced QoS con-

straints and properties are related with with service latency and availability. Results are

depicted in Figure 6.15. These results show that the impact of introducing QoS-awareness

is amounts to a small increase in the XML parsing time, which is due to the addition of

XML tags for describing QoS, while at the same time to a considerable decrease of the

execution time of our algorithm. This is attributed to the rejection of a number of paths

that do not fulfil the QoS requirements of the user task during the integration of service

conversations.
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Figure 6.15: Performance of QoS-aware Service Composition



Chapter 7

Conclusion

The pervasive computing vision is increasingly enabled by the large success of wireless

networks and devices. In pervasive environments, functionalities provided by heteroge-

neous software and hardware resources may be discovered and integrated transparently

towards assisting users in the realization of their daily tasks. Building upon the service

oriented architecture paradigm allows having a homogeneous view of the heterogeneous

functionalities populating pervasive environments, as services have standard descriptions

and are discovered and communicate using standard protocols. Having such homogeneous

view enables the dynamic discovery access and composition of services towards the re-

alization of user tasks. However, the emergence of a large number of candidate service

description, discovery and access ”standards”, and their associated middleware platforms

has generated middleware heterogeneity for which interoperability methods have to be

developed to deal with the openness of pervasive computing environments. In addition

to middleware heterogeneity, pervasive computing environments are characterized with

network heterogeneity, which further restricts the ability to discover, access and compose

services available in the vicinity.

Middleware heterogeneity, which essentially concerns service discovery and access pro-

tocols, has been the focus of intensive research in the last decade [Grace et al., 2003,

Bromberg and Issarny, 2005, Raverdy et al., 2006]. However, existing solutions rely on

the syntactic conformance of service interfaces supported by syntactic protocols. Such
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assumption requires a common agreement on the syntax employed for describing service

capabilities world-wide, which is hardy achievable in open pervasive environments. This

raises the issue of syntactic heterogeneity of service interfaces.

Similarly to service discovery and access, most existing solutions to service composition

in pervasive environments poorly deal with syntactic heterogeneity, since they assume that

services being integrated have been pre-developed to conform syntactically in terms of in-

terfaces [Sousa and Garlan, 2002, Shiva Chetan and Campbell, 2005, Issarny et al., 2005,

Walker, 2004, Kumar et al., 2003]. Furthermore, existing service discovery and composi-

tion solutions provide limited support of service QoS properties, which is a key requirement

towards the realization of the user-centric vision aimed at by the pervasive paradigm.

Building upon semantic Web technologies, and particularly ontologies, allows the

unambiguous semantic specification of service functional and QoS properties in perva-

sive computing environments as investigated in [Masuoka et al., 2003, Singh et al., 2005,

Chakraborty et al., 2006, Chakraborty et al., 2005]. However, such rich specifications re-

quire the use of costly semantic reasoning on the employed ontologies in order to asses

the conformance of service capabilities against service requests, which is inappropriate re-

garding the resource constraints and the highly interactive feature of pervasive computing

environments.

Hence, the realization of the pervasive computing vision calls for an efficient, seman-

tic, QoS-aware middleware for service-oriented pervasive computing that supports multi-

network and multi-protocol interoperability.

7.1 Contribution

To address the above challenges, we presented in this thesis a semantic, service-oriented

middleware for pervasive computing and a prototype implementation of this middleware,

i.e., the PERSE middleware.

This middleware provides a service model to support interoperability between hetero-

geneous both semantic and syntactic service description languages. It further enhances

the specification of semantic services with the explicit specification of annotation types to
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deal with a new source of semantic heterogeneity identified in this thesis, which is related

with the sense associated with a semantic annotation. This enables service providers and

requesters to provide more accurate semantic specifications, which allows our middleware

to perform more accurate semantic service matching. Our model further supports the

formal specification of service conversations as finite state automata, which enables the

automated reasoning about service behaviour independently from the underlying conversa-

tion specification language. Hence, pervasive service conversations described with different

service conversation languages can be integrated towards the realization of a user task.

Finally, our model supports the specification of service non-functional properties based on

existing QoS models to meet the specific requirements of each pervasive application.

As part of the PERSE prototype, we presented the instantiation of our model into

the Interoperable Service Description Language, i.e., ISDL language. ISDL is an XML-

based schema defining a container, which is combined with the two emergent standard

service description languages namely SAWSDL for the specification of syntactic and se-

mantic service capabilities and WS-BPEL for the specification of service conversations.

Then, interoperability is achieved by translating heterogeneous service descriptions into

ISDL. The performance evaluation of the computation cost of legacy to ISDL translation

demonstrated that this cost is not significant compared to the overall discovery time.

As part of our middleware, we presented an efficient semantic service registry for per-

vasive computing environments. This registry supports a set of conformance relations for

matching both syntactic and rich semantic service descriptions as well as their heteroge-

neous non-functional properties. These conformance relations also identify the semantic

distance between service descriptions, and rate services with respect to their suitability

for a specific service request, so that selection can be made among them.

In addition to the support of interoperable service matching and service ranking, our

registry proves to be highly efficient thanks to an appropriate ontology encoding algorithm,

which translates the costly semantic reasoning on ontologies to a numeric comparison of

codes. Furthermore, service descriptions in our registry are semantically organized to

enable both efficient both service publication and location.

The performance evaluation of our registry as part of the PERSE prototype, shows that
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semantic service matching carried out by our registry performs as efficiently as syntactic-

based service matching. Furthermore, thanks to the combination of ontology encoding and

registry organization, PERSE service registry achieves efficient both service publication

and location contrary to existing efficient semantic service registries that overload the

service publication phase to achieve efficiency at service location.

To support mobile users of the pervasive environment in the realization of their daily

tasks our middleware provides a service composition middleware functionality. Contrary

to existing research efforts on service composition that assume complex behaviour for ei-

ther services or tasks, our functionality enable the flexible QoS-aware composition of a set

of services described with a complex behaviour to realize a user task also described with a

complex behaviour. Flexibility is enabled by a set of composition algorithms that may be

carried out according to the current resource constraints of the user’s device. These algo-

rithms further support the assessment of the QoS requirements of user tasks by aggregating

the QoS provided by the composed networked services. Furthermore, this integration is

performed efficiently as it relies on our efficient semantic service registry to discover ser-

vices and on efficient formal verification algorithms to build the user task realizations.

Specifically, the theoretical assessment of our various composition algorithms proves that

their computation cost grows linearly with the complexity of the composed services and the

target user task. Furthermore, the performance evaluation of our conversation integration

algorithm performed as part of PERSE, show that in more realistic cases, the overhead

of this algorithm is negligible compared to XML parsing of service descriptions. We have

further done experiments for evaluating the impact of introducing QoS-awareness. Re-

sults show the introduction of QoS constraints improves the performance the conversation

integration algorithm.

Finally, the PERSE prototype implementation of our middleware, which constitutes

an innovative, efficient and comprehensive solution towards the realization of the perva-

sive computing vision, has been successfully integrated in the IST Amigo project, which

envisions ambient intelligence in the networked home environments1. The PERSE pro-

1Amigo: http://www.extra.research.philips.com/euprojects/amigo/
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totype has further been demonstrated in the Phillips research homelab2 as well as in

[Ben Mokhtar et al., 2007c].

7.2 Perspectives

Besides the contributions presented above, short term and long term perspectives are still

to be investigated to enable the full potential of the pervasive computing vision. Short term

perspectives represent enhancements of our proposed middleware functionalities while long

term perspectives can be realized through the extension of our middleware with additional

functionalities.

Among the short term perspectives that can be investigated is the extension of our

semantic service model with the specification of service preconditions and effects along

with efficient solutions for matching them. This would increase the richness of service

descriptions and would lead to more accurate service matching. However, existing solu-

tions for matching service preconditions and effects rely either on costly theorem proving

algorithms [Zaremski and Wing, 1997] or on the querying of centralized knowledge bases

[Sycara et al., 1999]. Both these solutions are not appropriate to be employed in the in-

herently distributed, resource constrained pervasive environment.

Another short term perspective that can be investigated is the support of ontology

extension by service providers and requesters. Indeed, due to the offline encoding of

ontology hierarchies, our current solution provides the mean of using (different versions

of) existing ontologies for semantic service annotation, while ontology evolution is assumed

to performed only by the ontology developers. Enabling service providers and requesters

to extend existing ontologies by defining their customized concepts can be done by the

support of more complex semantic annotations. Instead of referring to a single concept

for annotating a service element, a service description will support semantic annotations

expressed as logical expression (e.g., conjunction, disjunction between existing ontology

concepts).

We mainly focused in this thesis on the realization of user-centric tasks by dealing

2http://www.research.philips.com/technologies/misc/homelab/
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with various forms of heterogeneity and device resource constraints characterizing per-

vasive computing environments. Long term perspectives include the extension of our

middleware with mobility-awareness. For instance, service location can be enhanced with

mobility-awareness by performing signal strength analysis [Liu, 2006] or by considering the

service providers and requesters mobility patterns [Mcnamara et al., 2006]. Furthermore,

solutions to the dynamic service reconfiguration can be investigated to deal with the ap-

pearance of (better) services and the disappearance of services taking part of a user task

being executed [Zarras et al., 2006]. Additionally, the extension of our middleware with

the support of (distributed) context management would give our middleware the aptitude

to be aware of user characteristics, system behaviour and state of the physical environ-

ment [Fournier et al., 2006]. This can improve the enforcement of service non-functional

properties assumed so far to be provided by services.



Appendix A

Proofs

A.1 Proof of the property [Prop 1]

Prop 1 : ¬ FunctionalCapabilityMatch(Capability(Rooti), Adv): Rooti ∈ Roots(G) ⇒

∀ N ∈ SubGraph(Rooti): ¬ FunctionalCapabilityMatch(Capability(N), Adv)

We prove [Prop 1] by contradiction. Assume ¬ [Prop 1], i.e.:

¬ FunctionalCapabilityMatch(Capability(Rooti), Adv): Rooti ∈ Roots(G) and (1)

¬ (∀ C ∈ SubGraph(Rooti): ¬ FunctionalCapabilityMatch(Capability(N), Adv)) (2)

(2) ⇔ ∃ C ∈ SubGraph(Rooti): FunctionalCapabilityMatch(Capability(N), Adv)

On the other hand: C ∈ SubGraph(Rooti) ⇒ FunctionalCapabilityMatch(Capability(Rooti),

Capability(N)) from the definition of the function SubGraph(); thus:

(2) ⇔ ∃ C ∈ SubGraph(Rooti): FunctionalCapabilityMatch(Capability(Rooti), Capabil-

ity(N)) and FunctionalCapabilityMatch(Capability(N), Adv)

From the transitivity property of the function FunctionalCapabilityMatch(), we have: (2)

⇔ FunctionalCapabilityMatch(Capability(Rooti), Adv)
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Replacing (2) in the list of our assumptions with this equivalence results into:

¬ FunctionalCapabilityMatch(Capability(Rooti), Adv) and FunctionalCapabilityMatch(Capability(Rooti),

Adv). This can never be true, and therefore, the assumption is false and [Prop 1] is true.

A.2 Proof of the property [Prop 2]

Prop 2 : ¬ FunctionalCapabilityMatch(Adv, Capability(Leafi)): Leafi ∈ Leaves(G) ⇒

∀ N ∈ ParentGraph(Leafi): ¬ FunctionalCapabilityMatch(Adv, Capability(N))

We prove [Prop 2] by contradiction. Assume ¬ [Prop 2], i.e.:

¬ FunctionalCapabilityMatch(Adv, Capability(Leafi)): Leafi ∈ Leaves(G) and (1)

¬ (∀ C ∈ ParentGraph(Leafi): ¬ FunctionalCapabilityMatch(Adv, Capability(N))) (2)

(2) ⇔ ∃ C ∈ ParentGraph(Leafi): FunctionalCapabilityMatch(Adv, Capability(N))

On the other hand: C ∈ ParentGraph(Leafi) ⇔ FunctionalCapabilityMatch(Capability(N),

Capability(Leafi)) from the definition of the function ParentGraph(); thus:

(2) ⇔ ∃ C ∈ ParentGraph(Leafi): FunctionalCapabilityMatch(Adv, Capability(N)) and

FunctionalCapabilityMatch(Capability(N), Capability(Leafi))

From the transitivity property of the function FunctionalCapabilityMatch(), we have: (2)

⇔ FunctionalCapabilityMatch(Adv, Capability(Leafi))

Replacing (2) in the list of our assumptions with this equivalence results into:

¬ FunctionalCapabilityMatch(Adv, Capability(Leafi)) and FunctionalCapabilityMatch(Adv,

Capability(Leafi)). This can never be true, and therefore, the assumption is false and [Prop

2] is true.
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A.3 Proof of the property [Prop 3]

[Prop 3)]: ∀n1, n2 ∈ N 2, ConceptMatch(n1,n2):

[∃n′
1, n

′
2 ∈ N 2: ConceptMatch(n′

1,n1) ∧ ConceptMatch(n2,n
′
2) ⇒ ConceptMatch(n′

1,n
′
2)]

The prove of this property is trivial and relies on the transitivity property of the relation

ConceptMatch() proved below.

A.4 Proof of the transitivity of the relation FunctionalCapabili-

tyMatch()

Lets C1, C2 and C3 be three capabilities. Lets prove that:

FunctionalCapabilityMatch(C1,C2) ∧ FunctionalCapabilityMatch(C2,C3) ⇒ Function-

alCapabilityMatch(C1,C3)

Lets assume:

FunctionalCapabilityMatch(C1,C2) ∧ FunctionalCapabilityMatch(C2,C3)

FunctionalCapabilityMatch(C1,C2) ⇔

∀ in2 ∈ I2, ∃ in1 ∈ I1: ConceptMatch(in1, in2) and (1)

∀ out2 ∈ O2, ∃ out1 ∈ O1: ConceptMatch(out1, out2) and (2)

ConceptMatch(cat1, cat2) (3)

FunctionalCapabilityMatch(C2,C3) ⇔

∀ in3 ∈ I3, ∃ in2 ∈ I2: ConceptMatch(in2, in3) and (4)

∀ out3 ∈ O3, ∃ out2 ∈ O2: ConceptMatch(out2, out3) and (5)

ConceptMatch(cat2, cat3) (6)
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From the transitivity property of the relation ConceptMatch() we have:

(4) ∧ (1) ⇒ ∀ in3 ∈ I3, ∃ in1 ∈ I1: ConceptMatch(in1, in3) (7)

(5) ∧ (2) ⇒ ∀ out3 ∈ O3, ∃ out1 ∈ O1: ConceptMatch(out1, out3) (8)

(6) ∧ (3) ⇒ ConceptMatch(cat1, cat3) (9)

According to the definition of the FunctionalCapabilityMatch() relation we can infer that:

(7) ∧ (8) ∧ (9) ⇒ FunctionalCapabilityMatch(C1,C3).

A.5 Proof of transitivity of the relation ConceptMatch()

Lets n1, n2 and n3 be three concepts in an ontology. Lets prove that:

ConceptMatch(n1,n2) ∧ ConceptMatch(n2,n3) ⇒ ConceptMatch(n1,n3)

Lets assume:

ConceptMatch(n1,n2) ∧ ConceptMatch(n2,n3)

According to the annotation semantics of n1, n2 and n3 and the definition of the

ConceptMatch() relation, there are four possible cases:

Case 1: n⊗
1 , n⊗

2 , n⊗
3

In this case we have:

ConceptMatch(n⊗
1 ,n⊗

2 ) ⇒ Subsume(n1,n2)(1)

ConceptMatch(n⊗
2 ,n⊗

3 ) ⇒ Subsume(n2,n3)(2)

Using the transitivity property of the relation Subsume() we have:

(1) and (2) ⇒ Subsume(n1,n3)
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From the definition of the relation ConceptMatch() we have:

Subsume(n1,n3) ⇔ ConceptMatch(n⊗
1 ,n⊗

3 )

Case 2: n⊗
1 , n⊕

2 , n⊕
3

In this case we have:

ConceptMatch(n⊗
1 ,n⊕

2 ) ⇒ n⊗
1 = c1 ∧ c2 ∧ c3 ∧ ... ∧

n⊕
2 = c′1 ∨ c′2 ∨ c′3 ∨ ... ∧

∃ci,∃c′j : ci = c′j (3)

ConceptMatch(n⊕
2 ,n⊕

3 ) ⇒ n⊕
2 = c′1 ∨ c′2 ∨ c′3 ∨ ... ∧

n⊕
3 = c′′1 ∨ c′′2 ∨ c′′3 ∨ ... ∧

∀c′j ,∃c′′k : c′j = c′′k (4)

(3) and (4) ⇒ ∃ci,∃c′′k : ci = c′′k

From the definition of the relation ConceptMatch() we have:

ConceptMatch(n⊗
1 ,n⊕

3 )

Case 3: n⊕
1 , n⊕

2 , n⊕
3

In this case we have:

ConceptMatch(n⊕
1 ,n⊕

2 ) ⇒ Subsume(n2,n1)(5)

ConceptMatch(n⊕
2 ,n⊕

3 ) ⇒ Subsume(n3,n2)(6)

Using the transitivity property of the relation Subsume() we have:
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(5) and (6) ⇒ Subsume(n3,n1)

From the definition of the relation ConceptMatch() we have:

Subsume(n3,n1) ⇔ ConceptMatch(n⊕
1 ,n⊕

3 )

Case 4: n⊗
1 , n⊗

2 , n⊕
3

In this case we have:

ConceptMatch(n⊗
1 ,n⊗

2 ) ⇒ n⊗
1 = c1 ∧ c2 ∧ c3 ∧ ... ∧

n×
2 = c′1 ∧ c′2 ∧ c′3 ∧ ... ∧

∀c′j ,∃ci : ci = c′j (7)

ConceptMatch(n×
2 ,n⊕

3 ) ⇒ n×
2 = c′1 ∧ c′2 ∧ c′3 ∧ ... ∧

n⊕
3 = c′′1 ∨ c′′2 ∨ c′′3 ∨ ... ∧

∃c′j ,∃c′′k : c′j = c′′k (8)

(7) and (8) ⇒ ∃ci,∃c′′k : ci = c′′k

From the definition of the relation ConceptMatch() we have:

ConceptMatch(n⊗
1 ,n⊕

3 )

In all the four cases, we have:

ConceptMatch(n1,n2) ∧ ConceptMatch(n2,n3) ⇒ ConceptMatch(n1,n3)
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A.6 Complexity of the ConversationMatch() relation

In the classic formalization of generative grammars a grammar G=< N, Σ, P, S > consists

of the following components:

• N is a finite set of non-terminal symbols.

• Σ is a finite set of terminal symbols that is disjoint from N.

• P is a finite set of production rules.

• S is a starting non-terminal from N.

Right regular grammar is a formal grammar G =< N, Σ, P, S > such that all the

production rules in P are of one of the following forms:

1. A → a - where A is a non-terminal in N and a is a terminal in Σ

2. A → aB - where A and B are in N and a is in Σ

3. A → ǫ - where A is in N and ǫ denotes the empty string, i.e. the string of length 0.

Lets prove that all the automata (of the user task and pervasive services) generated

using our rules for mapping basic control patterns to finite state automata defined in

Chapter 3 and represented in Figure 3.8 (p. 47) can be represented with right regular

grammars. There are six different cases:

• c is an elementary capability G :< N, Σ, P, S >

– N=A

– Σ = c

– P= {A → c}

– S=A

G is by definition right regular.
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• c=Sequence(c1, c2, ..., cn) where Gci
=< N i, Σi, P i, Si > is assumed to be right regu-

lar. Let’s prove that the grammar representing c is right regular:

The grammar representing the capability c is given by : G =< N, Σ, P, S > where:

– N =
⋃

N i

– Σ =
⋃

Σi

– P contains the following production rules:

All the production rules from P i in the following form are kept in P:

{Ai
j → aAi

k}

All the production rules from P i (i 6= n) in the following form:

{Ai
j → a}

are replaced in P by productions in the following form:

{Ai
j → aSi+1}, which are right regular by substitution as all the production

rules starting with Si+1 are right regular

All the production rules from P i (i 6= n) in the following form:

{Ai
j → ǫ}

are replaced in P by productions in the following form:

{Ai
j → Si+1}, which are right regular by substitution as all the production rules

starting with Si+1 are right regular

– S = S1

As all the production rules of G are either coming from the grammars Gi that are

right regular or are right regular by definition, then G is also right regular.

• c=ExcusiveChoice(c1, c2, ..., cn) where Gci
=< N i, Σi, P i, Si > is assumed to be right

regular. Let’s prove that the grammar representing c is right regular:

The grammar representing the capability c is given by : G =< N, Σ, P, S > where:

– N =
⋃

N i ∪ Sinit, (i = 1..n)
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– Σ =
⋃

Σi, (i = 1..n)

– P =
⋃

P i ∪ {Sinit → Si}, (i = 1..n)

– S = Sinit

As all the production rules of G are either coming from the grammars Gi that are

right regular or are right regular by definition, then G is also right regular.

• c=SimpleMerge(c1, c2, ..., cn, c′) where Gci
=< N i, Σi, P i, Si > is assumed to be right

regular. The capability c is treated as

c=Sequence(ExclusiveChoice(c1, c2, ..., cn),c′)

By substitution from the definition of the grammars representing the Sequence() and

ExclusiveChoice() control patterns, the grammar representing the SimpleMerge()

control pattern is also right regular.

• c=ParallelSplit(c1, c2), where Gci
=< N i, Σi, P i, Si > is assumed to be right regular.

The capability c is treated as

c=ExclusiveChoice(Sequence(c1, c2),Sequence(c2, c1))

By substitution from the definition of the grammars representing the Sequence() and

ExclusiveChoice() control patterns, the grammar representing the ParallelSplit()

control pattern is also right regular.

• c=Synchronisation(c1, ..., cn), where Gci
=< N i, Σi, P i, Si > is assumed to be right

regular. The capability c is treated as

c=SimpleMerge(ParallelSplit(c1, ..., cn))

By substitution from the definition of the grammars representing the SimpleMerge()

and ParallelSplit() control patterns, the grammar representing the Synchronisa-

tion() control pattern is also right regular.

In all the above six cases there exist a grammar G representing the basic control

patterns that we use for generating the automata for user tasks in pervasive services,

which is right regular.
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