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Introduction [en]

Advances in infrared and submillimetre observations have led, in recent years, to a better under-

standing of the composition of the interstellar matter and of the physical and chemical processes

in the interstellar medium (ISM). These observations give evidence for polycyclic aromatic hy-

drocarbons (PAHs) being an ubiquitous component of matter in the ISM. Interstellar PAHs are

key species to describe the transition between molecules and dust particles and are major actors

in the physics and chemistry of the ISM.

In order to understand the formation mechanisms and the evolution of these species in astro-

physical environments, combined theoretical, experimental and modelling studies are needed.

From the experimental point of view these studies are challenging as they require to reproduce

in the laboratory the physical conditions that prevail in the interstellar space, cold environment

and absence of collisions on long time scales.

The PIRENEA experiment, installed at CESR in Toulouse, takes up this challenge combining

the electromagnetic trapping and the mass spectrometry performances of an ion cyclotron reso-

nance cell with cryogenic cooling. In addition, it presentsspecific interfaces for photophysical

and chemical studies on molecules and nanograins of astrophysical interest.

In this thesis I have used this original set-up to study the photophysical properties of different

PAHs and derivatives, with the aim to provide insight into the following questions:

- how do these species fragment when exposed to irradiation with UV photons?

- is the carbon skeleton affected by fragmentation?

- which species are the most photostable?

- what can we learn from their spectroscopic signatures?

- how can we identify PAHs in the ISM?

We are going to show to what extent PIRENEA can be used to contribute to these subjects.





Introduction [fr]

Les observations dans le domaine infrarouge et sub-millimetrique ont permis, ces dernières an-

nées, de progresser dans la compréhension de la compositionde la matière interstellaire et des

processus physico-chimiques qui se déroulent au sein du milieu interstellaire (MIS). Ces obser-

vations suggèrent fortement que les molécules polycycliques aromatiques hydrogénées (PAH)

sont omniprésentes dans le MIS. Les PAH interstellaires sont des espèces clés dans la transition

entre molécules et grains et jouent un rôle important dans laphysique et la chimie du MIS.

Afin de caractériser les mécanismes qui sont à la base de la formation et de l’évolution de ces

espèces dans les milieux astrophysiques, il est nécessairede combiner des études théoriques, ex-

périmentales et des modèles de physico-chimie. D’un point de vue expérimental, cela demande

de recréer en laboratoire des conditions proches de celles présentes dans le milieux interstel-

laires: basse température et isolation des espèces sur des échelles de temps longues.

Le dispositif PIRENEA, installé au CESR à Toulouse, a l’originalité de coupler les perfor-

mances d’un instrument de spectrométrie de masse à résonance cyclotronique ionique et à trans-

formée de Fourier avec un environnement cryogénique. Il présente de plus des interfaces spé-

cifiques pour étudier la photophysique et la chimie de macromolécules et nanograins d’intérêt

astrophysique.

Dans ce travail de thèse j’ai utilisé ce dispositif pour effectuer une étude expérimentale sur

les PAH et leurs derivés, avec l’objectif d’aborder les questions suivantes:

- quelle est la fragmentation de ces espèces induite par l’irradiation avec des photons UV?

- le squelette carboné est-il affecté par le processus de fragmentation?

- quelles sont les espèces le plus resistantes à la photodissociation?

- que peut-on apprendre des signatures spectroscopiques deces espèces?

- comment peut-on identifier les PAH dans le MIS?

Au cours de ce travail nous montrerons dans quelle mesure lesexpériences avec PIRENEA

peuvent contribuer à apporter une réponse à ces questions.





Chapter 1

Scientific context

Inter sidera versor...

I move through stars...

The understanding of physical and chemical processes in theinterstellar medium (ISM) is

currently an important challenge for our knowledge of the Universe since these processes play

a key role in star and planet formation and the evolution of galaxies.

At the end of its life a massive star explodes violently in a supernova event. These explosions

eject large amounts of material from the interiors of stars into interstellar space and enrich

interstellar matter with heavy elements produced by thermonuclear burning. Less massive stars

also contribute, through stellar winds, to the enrichment of the ISM by the injection of molecules

and dust, including polycyclic aromatic hydrocarbons (PAHs) that are the subject of our study.

The ISM itself is, in turn, the birthplace of future generations of stars. This complex feedback

involving the cycle of matter drives the evolution of our Galaxy and determines the structure,

composition and observational characteristics of the interstellar matter.

1.1 The components of the interstellar matter

The ISM consists of gas (99%) and grain particles (1%) and contains about 10% of the mass

of our galaxy. Its chemical composition is dominated by hydrogen (70.4% in mass) and helium

(28.1%), whereas heavier elements (C, N, O, Fe, Mg, Si...) contribute for the remaining 1.5%.
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1.1.1 The gas component

The interstellar gas is organised in a variety of phases characterised by different temperatures,

hydrogen densities and ionisation states. Early models, McKee & Ostriker (1977), classify the

ISM into three phases: the cold neutral medium (CNM), the warm ionised or warm neutral

medium (WIM or WNM) and the hot ionised medium (HIM), which issometimes referred to

as the intercloud medium or the coronal gas. These phases appear to contain a variety of cloud

types, spanning a wide range of physical and chemical conditions. The table reported in Fig. 1.1

summarises the classification of the different cloud types proposed by Snow & McCall (2006).

We can distinguish:

• Diffuse clouds: these are the most tenuous clouds, fully exposed to the interstellar ra-

diation field. Typical temperatures are in the range 30-100 K. In diffuseatomicclouds

hydrogen is mainly in neutral atomic form and atoms with ionisation potentials less than

that of hydrogen (e.g. carbon) are almost fully ionised providing abundant electrons.

Nearly all molecules are quickly destroyed by photodissociation in these clouds so very

little chemistry occurs.

In diffusemolecularclouds, instead, the radiation field is sufficiently attenuated to have

a substantial fraction of hydrogen in molecular form (fn
H2

> 0.1). Enough interstellar ra-

diation is however present to ionise atomic carbon or photodissociate CO so that carbon

is predominantly still in the form ofC+. Small molecules, like for instance CO, CH, CN,

C2, C3, are observed in these clouds.

• Translucent clouds: in these cloudsC+ is no longer the dominant form of carbon which

is mostly present in neutral atomic or molecular form. They can represent the outer edges

of dense molecular clouds and their characteristics (temperature, density) fall in between

diffuse and dense molecular clouds.

• Dense molecular clouds: densest regions of the ISM (104−106 cm−3) in which H2 is

the dominant molecular species. The reactive C is replaced by the stable CO, which is

commonly used to trace the interstellar molecular gas. Starformation occurs within these

regions as a natural consequence of their high densities andlow temperatures (10-50 K).

These clouds offer also a UV-shielded environment for the formation and survival of com-

plex molecules. Many of the approximately 150 currently known interstellar molecules

were found through observations of microwave rotational transitions in such clouds.

Other regions exist among the above described environments. HII regions, for example, are

regions in which hydrogen is ionised and has a temperature ofabout 104 K. They are formed by



1.1 The components of the interstellar matter 23

Figure 1.1: Classification of interstellar cloud types (Figure taken from Snow & McCall (2006)).

In the tableAV is the total visual extinction,nH the total number density of hydrogen and fn the

local fraction of a molecule in terms of number densities (for instance fnCO = n(CO)/nC). T(K)

is the temperature of the gas.

young massive stars that emit large amounts of UV photons beyond the Lyman limit (hν > 13.6

eV) ionising and heating their surroundings. As such they can be considered signposts of sites

of massive star formation in the Galaxy.

Other interesting environments are the so-called photodissociation regions (PDRs, sometimes

also called photon-dominated regions). The term PDRs is used nowadays to designate all

regions of the ISM where far-ultraviolet (FUV) photons dominate the physical and chemical

processes. In these regions penetrating FUV photons (with energies between 6 and 13.6 eV)

dissociate and ionise molecular species. They are well observed near bright stars.

1.1.2 The dust component

Dust is formed at high densities and high temperatures in theenvelopes of evolved stars. The

interstellar dust component embodies only 1% of the interstellar medium mass but it plays a

key role through its effects on radiation, heating the gas byphotoelectric effect and acting as

catalyst for the formation of molecules. There is some direct and indirect evidence for the

existence of small solid particles in the ISM. Direct evidence is supplied by the observation

of the increasing extinction of radiation coming from starswith the path length through the

ISM and by the observation of thermal infrared emission. Indirect evidence is provided by

data on the abundance of elements in the interstellar gas showing that the elements that are

most likely to form refractory solids are generally underabundant with respect to solar values.

The dust absorbs UV-visible light coming from stars and re-emit it in the infrared. Due to

strong absorption bands in the Earth atmosphere, only a few spectral windows in the IR can be

observed with ground-based telescopes and most of the available information in this spectral

range comes from space telescopes.
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1.1.2.1 Extinction and emission of dust

In the model of Désert et al. (1990), three main dust components have been identified to account

for both the extinction curve (cf. Fig. 1.2) and the IR emission features (cf. Fig. 1.3):

Figure 1.2: Extinction curve of the diffuse ISM in the visible and UV with the contribution

of three dust populations (PAHs, VSGs, BGs) derived by Désert et al. (1990). The crosses

represent the observed average extinction curve of the ISM from Savage & Mathis (1979).

1. Big Grains (BGs): mainly silicate grains (∼ 0.1µm) which dominate the far-IR to sub-

millimeter emission in our Galaxy;

2. Very Small Grains (VSGs): carbon-based nanoparticles that are responsible for the con-

tinuum emission between 20 and∼ 80 µm;

3. Polycyclic Aromatic Hydrocarbons (PAHs): large aromatic molecules composed of car-

bon rings saturated with hydrogen atoms responsible for themid-IR emission. These

molecules can reach a size of a few nanometers and are stochastically heated (undergo

fluctuations in their temperature) upon the absorption of a single UV photon. Désert et al.

(1990) attributed to PAHs the far-UV rise of the extinction curve (cf. Fig. 1.2). Labora-

tory measurements suggest that PAHs contribute also to the so called UV "bump" (Joblin

et al. 1992).

This dust model has been improved, in recent years, thanks tothe studies performed by Draine

& Li (2001, 2007).
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Figure 1.3: Dust emission spectrum in the IR with the contribution of each dust component

(Figure taken from Désert et al. (1990)). Observations (crosses) are for the emission of the

"cirrus" in the interstellar diffuse medium.

The visible extinction curve also shows weak fine structures, called the diffuse interstellar bands

(DIBs) (cf. Fig. 1.4), which span the wavelength range from the near UV (∼ 0.4 µm) to the

near infrared (∼ 1.3 µm) (Herbig 1995). Historically they are called "diffuse" because of their

widths (typically between 0.4 and 40 Å), that are broad compared to the narrow atomic lines.

Here again PAH molecules are considered as good candidates to account at least for some of

the DIBs (see chapter 4).

1.2 Interstellar polycyclic aromatic hydrocarbons (PAHs)

1.2.1 The PAH model

The presence of PAHs in astrophysical environments was proposed by Léger & Puget (1984)

and Allamandola et al. (1985) to account for the so-called unidentified infrared (UIR) bands,

a set of emission bands observed in many dusty environments excited by UV photons whose

major features are located at 3.3, 6.2, 7.7, 8.6, 11.3 and 12.7 µm. These bands are attributed

to the vibrations of aromatic C–H and C–C bonds, for this reason they are also called aromatic
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Figure 1.4: Diffuse Interstellar Bands (DIBs). (Figure from Draine (2003) based on Jenniskens

& Désert (1994)). The values indicate the positions of the DIBs in Å.

infrared bands (AIBs). The emission mechanism at the originof these bands is a stochastic

heating process as initially proposed by Andriesse (1978) and Sellgren (1984). The molecules

reach high temperatures after the absorption of a single UV photon and then cool down through

the emission of IR photons giving rise to the AIBs.

PAH emission mechanism

The absorption of a UV photon corresponds to an electronic transition between the electronic

ground state and an excited electronic state. Fig. 1.5 represents the case of an ion which is

relevant for PAH molecules because these species are expected to be at least partly ionised in the

astronomical environments where they are observed (Allamandola et al. 1985; D’Hendecourt

& Léger 1987; Omont 1986). The electronic states are doublets (D0, D1, D2...) in the case

of fully hydrogenated cation species but partially hydrogenated ones (radicals) can have higher

multiplicity. This electronic excitation can be followed by a variety of de-excitation processes:

- ionisation
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- photodissociation

- electronic radiative transitions, either fluorescence when they take place between states of

the same multiplicity or phosphorescence between states ofdifferent multiplicity

- IR emission (t1/2∼ 5 s).

In general, the electronic excitation is isoenergeticallyconverted in a very short time (10−12−
10−8 s) into a highly vibrationally excited level of the electronic ground state (process called

internal conversion, IC). Fast (10−12−10−10 s) internal vibrational redistribution (IVR) leads

then to a statistical distribution of the energy between thevibrational modes and the slow IR

emission takes place (Léger et al. 1989).

Figure 1.5: Schematic energy level diagram for a ionised PAHshowing the various radiative

and nonradiative channels (from Léger et al. (1989)).

1.2.2 Expected physical state of interstellar PAHs and observational con-

straints

PAHs can be divided into two main classes: pericondensed (compact structure) and catacon-

densed PAHs (more open structure). The class of pericondensed PAHs contains C atoms that

are members of three separate rings (e.g. coronene). If, on the contrary, no C atom in the PAH

belongs to more than two rings, the PAH is classified as catacondensed (cf. Fig. 1.6).
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Figure 1.6: Structures of some representative pericondensed and catacondensed polycyclic aro-

matic hydrocarbons. (Figure from Salama et al. (1996)).
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PAHs are estimated to account for a substantial fraction of the total interstellar carbon bud-

get (up to 20% according to Joblin et al. (1992)) and are seen as an intermediate stage between

the gas and dust carbon phases of interstellar matter. They are expected to exist in a wide vari-

ety of environments, in a complex statistical equilibrium of different charge and hydrogenation

states (Joblin et al. 1996b; Bakes et al. 2001a,b; Le Page et al. 2001, 2003). Observational stud-

ies on PDRs by Rapacioli et al. (2005) and Berné et al. (2007),in particular, have evidenced that

the mid-IR emission in these regions can be accounted for by three different populations, namely

neutral PAH0, cationic PAH+ and VSGs. It was suggested that VSGs are in fact made of PAHs

in a condensed form, and that these VSGs are photodestroyed at the surface of UV-irradiated

clouds. PAH clusters were investigated as plausible candidates for these VSGs by Rapacioli

et al. (2006).

The previous observational studies also imply that free PAHs are only present at the surface of

clouds, which is consistent with previous studies (Bernardet al. 1992; Boulanger et al. 1990).

The spectral decomposition between PAH0 and PAH+ from Rapacioli et al. (2005) was used

by Flagey et al. (2006) to analyse the galactic diffuse ISM emission and derive a fraction of

50% of PAH cations in this medium. The ionisation state of these species is governed by

the "ionisation parameter",γ = G0
√

T/nH , with G0 the intensity of the UV radiation field in

Habing’s units, T the gas temperature andnH the total hydrogen nuclei density (Tielens 2005).

PAHs are also expected to contribute to the heating of the gasthrough photoelectric effect (Ver-

straete et al. 1990; Bakes & Tielens 1994).

The population of PAHs is expected to include derivatives such as dehydrogenated and hy-

drogenated species and PAHs with substituents at the periphery (see for instance Joblin et al.

(1996a); Bernstein et al. (1996)). The composition and structure of PAHs can reflect, in a more

complicated way, the history of formation and processing ofthese species.

The size of interstellar PAH molecules is still unclear. Allain et al. (1996) derived a minimum

size of about 50 carbon atoms for interstellar PAHs based on the loss ofC2H2 whereas Hudgins

& Allamandola (1999) have proposed that PAHs with 50-80 carbon atoms dominate the mid-IR

emission. Geballe et al. (1994) derived a size of 60 carbon atoms based on the observation of the

overtone of the 3.3µm band observed at 1.68µm. Studies testing the photo-physical stability

of PAHs have pointed to the presence of even larger moleculesdepending on the surrounding

environments (Schutte et al. 1993; Le Page et al. 2003).

PAHs are thought to be formed in the outflows of evolved carbonaceous stars, however the de-

tailed mechanisms leading to their formation and growing are not well understood yet. Some

studies suggest that the pyrolysis of hydrocarbon molecules can lead to the formation of PAHs

in a process analogous to soot formation in combustion processes (Frenklach & Feigelson 1989;

Cherchneff et al. 1992). They could also be formed from the fragmentation of C dust particles in

shocked regions and from photosputtering in diffuse IS clouds (Scott et al. 1997). Cernicharo
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et al. (2001) have suggested that photon-driven polymerisation of acetylene could lead to the

formation of benzene (C6H6). Other observational studies have also emphasised that PAHs are

efficiently produced by UV destruction of VSGs in photo-dissociation regions (Rapacioli et al.

2005; Berné et al. 2007).

Concerning destruction, photofragmentation by UV radiation is considered as the main destruc-

tion process for PAH molecules (Allain et al. 1996). This process has been proposed in PDRs

as a mechanism for the production of small hydrocarbons (Pety et al. 2005).

1.2.3 Towards the identification of interstellar PAHs

The identification of interstellar PAHs relies on the match between their spectroscopic fin-

gerprints and the astronomical spectra. The radio range is commonly used to identify new

molecules but, unfortunately, PAHs are usually very symmetrical and present very low (or zero)

permanent dipole moments, therefore they do not have a pure rotational spectrum. An exception

is corannulene,C20H10, which has a large dipole moment of 2.07 D. This species has recently

been searched for using the IRAM 30 m radiotelescope. An upper limit for the fraction of car-

bon locked in corannulene of about 1.0×10−5 , relative to the total abundance of carbon in

PAHs, has been obtained by Pilleri et al. (2009).

Transitions in the region of the AIBs, near and medium-IR, reflect mainly the vibrations of C–H

and C–C chemical bonds so they are common to the whole class ofPAHs. The observed spectra

in this range likely result from the emission of a mixture of PAH molecules, therefore they are

not suited to identify individual species. Spectral features in the far-IR range, on the other hand,

are much more specific to the exact molecular identity (Joblin et al. 2002; Mulas et al. 2006;

Mattioda et al. 2009). These bands arise at the end of the cooling cascade of the UV-excited

molecules and contain the low-frequency vibrational modesassociated with collective oscilla-

tions of the carbon skeleton. These far-IR bands will be searched for by the recently launched

Herschel Space Observatory.

It should be also possible to identify PAHs through their electronic transitions in the near-UV

to near-IR ranges as carriers of some of the DIBs. Several laboratory measurements have been

performed on PAH cations in an attempt to identify among themthe DIB carriers (see for in-

stance Salama et al. (1999) and Halasinski et al. (2005)). The search for the identification of

individual PAH molecules has not been successful so far. Only Iglesias-Groth et al. (2008) re-

cently claimed a tentative identification of ionised naphthalene,C10H8
+, along one line of sight

in the ISM. The number of species that has to be considered is extremely large as the electronic

spectrum is quite sensitive to the molecular structure (forinstance different degrees of hydro-

genation have to be studied for a given carbon skeleton), so it would be impractical to perform

laboratory measurements on all of the possible species. Before selecting the most appropri-
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ate candidates for their study as potential DIB carriers, itis useful to analyse the physical and

chemical properties of PAH cations in order to predict whichof these species are most likely to

survive in the interstellar environments where the DIBs areformed.

An important step to accomplish is then to understand the nature of PAHs: where they come

from and how they evolve due to environmental conditions (UVirradiation, gas and dust inter-

actions). To provide such information a detailed modellingof the photophysics of these species

is mandatory. This modelling requires experimental studies and complementary theoretical

studies to get an accurate description of the different processes involved such as the absorption

of UV photons, the photofragmentation and the IR emission. These requirements lead to fun-

damental studies on laboratory analogues of interstellar PAHs and the development of specific

laboratory set-ups, such as the PIRENEA experiment, that has been used in this work.

1.3 Laboratory approach

To characterise the properties of analogues of interstellar PAHs and related species, laboratory

experiments try to reproduce the physical conditions prevailing in interstellar space: cold envi-

ronment (10 - 50 K), very low densities (50 to 106 species / cm3) and presence of UV photons

(hν ≤ 13.6 eV). We can distinguish three main kind of laboratory studies that have been per-

formed so far on PAHs for applications in astrochemistry: i)experiments on the photophysics

(involving study of the radiative exchanges, IR emission, photodissociation...), ii) reactivity

experiments, iii) spectroscopic studies.

1.3.1 Photophysics

Because of the isolation conditions present in space, processes that occur on long time scales

are of prime interest when studying interstellar molecules, in particular slow IR emission and

photofragmentation at the dissociation threshold. These processes are difficult to study in many

experimental set-ups due to the presence of collisions or tothe lifetime intrinsic to the technique.

In experiments with molecules travelling in jets, for instance, species can be fully isolated only

for milliseconds. Face to these difficulties different trapping techniques have been developed in

the last years. In the present work we make use of a technique called Fourier transform ion cy-

clotron resonance mass spectrometry (FT-ICR MS), discussed in detail in the following chapter,

to study the photodissociation of several PAH cations. A review of previous photodissociation

/ photostability studies performed so far on PAHs will be presented in chapter 3.
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1.3.2 Reactivity

To understand the chemistry of PAHs it is necessary to study experimentally and theoretically

reactions of these species with atoms, radicals and molecules involved in the chemistry of as-

trophysical environments. The selected ion flow tube (SIFT)technique allows the study of the

reactivity of positive or negative ions with atoms and molecules under thermalised conditions

over a wide range of temperature. PAH / gas reactions have been studied with this method by Le

Page et al. (1999) and Betts et al. (2006).

Another method to investigate chemical reactions taking place at the very low temperatures

of molecular clouds, is the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uni-

forme) technique. This latter involves the expansion of a gas or mixture of gases through a

Laval nozzle from a high pressure reservoir into a vacuum chamber. As it expands, the nozzle

collimates the gas into a supersonic beam, which is axially and radially uniform in temperature,

density and velocity. The density of the flow (1016−1018cm−3) is large enough to ensure local

thermal equilibrium This technique has been used to study the reactivity of the anthracene ion

(C14H10
+) with OH and CH radicals by Goulay et al. (2005, 2006).

Reactivity studies have been performed also using ion trap techniques. Keheyan (2001) has stud-

ied the reactivity at room temperature of naphtalene (C10H8
+), pyrene (C16H10

+) and coronene

(C24H12
+) radical cations and derivatives with small molecules of interstellar interest. Recently

the reactivity of dehydrogenated coronene cation (C24H11
+) with H2O molecules at low temper-

atures (between 30 and 300 K) has been investigated by Bruneleau (2007) using the PIRENEA

set-up.

1.3.3 Electronic spectroscopy

Spectroscopic signatures are the only direct diagnostics to identify the presence of a particular

species in interstellar space. The second part of this work focuses on the visible spectroscopy

of ionised PAHs so we summarise here the main spectroscopic techniques that have been de-

veloped and used so far on PAHs to study their electronic properties either in the solid or in the

gas phase. Each one of these techniques presents its specificities, advantages and limitations so

they can be considered complementary to each other in the information they provide.

1.3.3.1 Matrix Isolation Spectroscopy (MIS)

In this technique, molecules are co-deposited at low temperature (4-10 K) with rare gas atoms.

When dilution is high, molecules are well separated and haveno short range interaction one

with another (Joblin et al. 1995). This allows the simulation of the cold temperatures and isola-

tion conditions present in space. Among the rare gases commonly used as matrix-cage materials
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(Ne, Ar, Kr and Xe), solid neon provides the best (less polarizable) medium for the study of the

electronic spectra of ions (Salama & Allamandola 1991).

Many PAH cation absorption spectra have been obtained so farusing matrix isolation spec-

troscopy (MIS) (Salama et al. 1994; Szczepanski et al. 1995;Ruiterkamp et al. 2002). Two

major limitations must, however, be taken into account withthe MIS data: spectral shifts and

band broadening induced by the interaction with the matrix and the difficulty to control the

species that are present in the matrix.

The predicted limit for the neon-matrix to gas-phase shift is∼ 0.5% in energy (Romanini et al.

1999; Salama et al. 1999). Shifts and broadenings are therefore a minor problem in infrared

spectra while in the UV-visible range, where the energies involved are higher, matrix-induced

perturbations are stronger. Another concern is related to the procedure that is usually applied

to produce ions in the matrix. It consists in irradiating thedeposit made of PAHs and rare-gas

atoms with a VUV source. This results in the production of cations but other fragment species

could be produced as well. The MIS technique has the advantage of being quite easy to perform

and remains essential for selecting species which are the most promising interstellar candidates.

1.3.3.2 Photoelectron spectroscopy (PES)

This is the first technique that has been used to obtain some information on the electronic tran-

sitions of cations. The energy of an electronic state can be related to the kinetic energy of the

photoelectrons emitted by photoionisation of the neutral precursor. Conservation of energy then

requires that :

E(A)+hν = E(A+)+Ec

where E(A) and E(A+) are respectively the energies of the neutral and ionised molecules,hν
is the photon energy andEc the kinetic energy of the emitted photoelectron. The numberof

emitted photoelectrons as a function of their kinetic energy can be measured using any ap-

propriate electron energy analyser and a photoelectron spectrum can thus be recorded. Photo-

electron spectroscopy (PES) has been extensively applied to study PAHs mainly in the seven-

ties (Schmidt 1977; Bosci et al. 1974; Maier & Turner 1972). One of the major limitations of

this technique is the low resolution on the photoelectron kinetic energy, typically in the order of

∼ 100cm−1. The method used to produce neutral species can also limit the attainable spectral

resolution.

1.3.3.3 Resonantly Enhanced Multi-Photon Ionization (REMPI) spectroscopy

A REMPI experiment uses two lasers applied in sequence. The first laser promotes the molecules

of interest into an excited intermediate electronic state,a second probe laser is then used to ion-
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ize the excited species. Mass spectrometry is generally used to identify the produced species.

To achieve low temperatures, the molecules can be produced in a supersonic expansion.

REMPI provides spectroscopic information that can be unavailable to single photon spectro-

scopic methods (cf. Hager & Wallace (1988)), however, only neutral species with suitable ex-

cited electronic states can be detected. The spectra of different PAH species have been measured

with this technique (Güthe et al. 2001; Kokkin et al. 2008).

1.3.3.4 Cavity Ring-Down Spectroscopy (CRDS)

CRDS is based on the measurement of the exponential decay,I0 exp(−γt), or "ring down", of

photons trapped inside an optical cavity. The ring down rate, γ, is proportional to the cavity

losses per round trip. A pulsed laser is normally used to inject photons in the cavity by trans-

mission through one of the mirrors and the photon ring down ismonitored by detecting the light

leaking out through the other cavity mirror. As the laser wavelength is tuned, measuring the

ring down rate allows a direct determination of the sample absorption (Romanini et al. 1997,

1999). The high sensitivity of this method rests upon the long residence time of the photons in-

side the cavity. Another important feature of CRDS is that itis insensitive to the large intensity

fluctuations typical of pulsed lasers.

CRDS measurements are often combined with a jet expansion toachieve low molecular tem-

peratures by cooling down the molecular vibrational and rotational degrees of freedom. They

provide electronic spectra of cold isolated gas phase cations that can be directly compared to

astronomical observations (Biennier et al. 2003; Biennier2004; Sukhorukov et al. 2004; Tan &

Salama 2006).

1.3.3.5 Dissociation spectroscopy of van der WaalsPAH+ - rare gas complexes

This technique consists in studying the dissociation spectrum of van der Waals (vdW) com-

plexesPAH+-rare gas produced in a supersonic molecular beam. The recording of the spectra

involves the use of a multiphoton laser ionization step, of asecond delayed laser pulse to excite

electronic transitions in the ionised complex and of a time of flight (TOF) mass spectrometer

to detect thePAH+ fragment produced by ejection of the rare gas atom. The recording of this

PAH+ fragment ion signal versus the visible laser wavelength, while scanning it, provides the

action spectrum of the complex cation at low temperature because of the low binding energy

of the complex. This spectrum differs however from the spectrum of PAH+ by a small vdW

red-shift.

This method has been successfully applied for the study of several PAH cations (Pino et al.

1999, 2001, 2007; Bréchignac & Pino 1999; Bréchignac et al. 2001; Boudin et al. 2001).
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1.3.3.6 Our technique: Multiphoton dissociation spectroscopy

Another approach to study PAH cation spectroscopy in the gas-phase is the coupling of an ion

trap, where ions can be easily collected and thermalised, with multiphoton dissociation (MPD)

spectroscopy. Molecular ions are formedin situ from the neutral precursors in an isolated

environment and mass-selected, thus removing any ambiguity on the identity of the recorded

species, with the exception of possible simultaneously produced isomers which are not distin-

guishable with mass spectrometry. The technique is based onthe fragmentation of a specific

cation by multiphoton absorption. Fragmentation occurs when the laser wavelength is tuned

on an absorption band, the obtained action spectrum (ion yield as a function of the laser wave-

length), can then be related to the absorption spectrum of the ionic species.

Compared to the previous technique, this one offers the advantage of studying directly the

species of interest (not a complex). The disadvantage is that a chemical bond has to be broken

and this requires significant energy that leads to hot dissociating ions. It also requires powerful

multiphoton sources, especially in the IR where free electron lasers have to be used. In the visi-

ble spectral range, Rolland et al. (2003) have performed MPDspectroscopy of the phenanthrene

and anthracene cations.

1.3.4 Vibrational spectroscopy

It is worth to mention here also some of the numerous studies performed to characterise the PAH

absorption and emission spectra in the IR in the attempt to reproduce the AIB interstellar fea-

tures. The IR spectra of several neutral PAHs have been studied by Kurtz (1992) and Joblin et al.

(1994, 1995) in the gas phase. Most available IR spectra, however, come from laboratory exper-

iments in cold solid inert-gas matrices (cf. for instance Szczepanski et al. (1992), Szczepanski

& Vala (1993), Hudgins & Allamandola (2000), Mattioda et al.(2005)).

As explained above, the major limitation of this technique is the interaction of species with the

atoms of the matrix, that induces spectral shifts. Furthermore the low temperatures (4K in Ne,

10K in Ar matrices) do not allow emission measurements.

Absorption IR spectra of PAH cations isolated in an ion trap have also been measured using

multiphoton dissociation technique at the FELIX facility (Free Electron Laser for Infrared Ex-

periment) by Oomens et al. (2006, 2000, 2001, 2003).

The best approach to study the IR spectroscopy of PAHs in the laboratory for astrophysical ap-

plications should be to record their IR emission following the absorption of UV photons. Very

few studies have been performed so far on the IR emission spectra of excited PAHs (Shan et al.

1991; Brenner & Barker 1992; Cook et al. 1998; Kim & Saykally 2003), and none of them

provides well-characterised excitation conditions. Suchexperiments remain challenging.
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1.4 Objectives of this work

The aim of this work is to meet the two following targets:

• provide information on the behaviour of PAHs under UV photonirradiation;

• characterise the visible spectroscopic properties of several PAH cations and derivatives as

an identification tool of these molecules in space;

Both studies have been carried out using the PIRENEA experiment that provides the possibility

to isolate gas-phase ions in physical conditions that mimicthose found in interstellar space.

After a description of the PIRENEA set-up and its main characteristics in the second chapter,

the manuscript will be divided into two parts. The first part is devoted to the study of the pho-

todissociation cascade of different PAH cations. The general question is which are their main

dissociation channels and how the photodissociation process contributes to the production of

smaller species such as small hydrocarbons and carbon chains. The results of these experi-

ments can provide guidelines to infer which type of hydrocarbon species can be searched for in

the interstellar medium.

In the second part of the manuscript, the visible spectroscopy of several gas-phase PAH cations

and derivatives is studied. Due to the low density of trappedions, a MPD technique is used

to indirectly obtain the visible absorption spectrum of these species. The validity of our ex-

perimental method is confirmed by comparison with availablegas-phase spectra of cold PAHs.

Theoretical calculations and modelling are also used to complement experimental data.

The last chapter finally summarises the main results and presents some perspectives.



Chapter 2

Set-up description

Quidquid agis, prudenter agas et respice finem!

Whatever you do, do it wisely and consider the goal!

2.1 Introduction

PIRENEA (Piège à Ions pour la Recherche et l’Etude de Nouvelles Espèces Astrochimiques)

is an original home-built experimental set-up conceived toperform photo-physical and chem-

ical studies on large molecules and nano-sized particles ofastrophysical interest in isolation

conditions approaching those of interstellar space in terms of collisions and interactions with

photons (i.e. low temperatures (10-50 K), low density (50 to106 species/cm3) and presence of

UV photons.

The beginning of the project dates 1998, when the team composed by C. Joblin, M. Armengaud

and P. Frabel at the CESR (Centre d’Etude Spatiale des Rayonnements) in Toulouse, with the

collaboration of P. Boissel, conceived and implemented thecentral part of the experiment. The

set-up is based on a Fourier Transform Ion Cyclotron Resonance (FT-ICR) ion trap mass spec-

trometer with the additional characteristics of a cryogenic environment.

In the following sections we will describe the experimentalset-up with its different sub-systems,

the experimental sequence that includes the production, trapping and detection of the ions and

the performances of the system. Theoretical aspects on FT-ICR mass spectrometry reported

later rest on an extensive literature available on this subject (Amster 1996; Guan & Marshall

1995; Marshall & Schweikhard 1992; Marshall et al. 1998). The photophysical interface (Xe

arc lamp and lasers), used in this work, and the chemical interface will be described in details

at the end of the chapter.
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2.2 Specificities of the system

2.2.1 The cryogenic - ultra-high vacuum environment

The ion trap, central core of the experiment, is enclosed in avacuum chamber with a total

volume of 35 l (cf. Fig. 2.1). Ultra-high vacuum is provided by a pumping group composed of

• a primary pump, (Pfeiffer) with a limit pressure of about 10−3 mbar measured by a Pirani

gauge;

• a turbo-molecular pump (Pfeiffer) for the secondary pump. The pressure is measured by

a cold-cathode Penning gauge, down to 10−11 mbar.

A set of copper cryogenic shields, cooled down by a two-stagecryogenerator (Coolpak, Ley-

bold), provides a low temperature environment that is importantto limit the ion excitation by

the thermal background. The actual performances of the shields are a temperature of 80 K on

the external shield and 35 K on the ICR cell for a residual pressure≤ 10−10 mbar (at room

temperature this residual pressure is∼ 10−9 mbar).

2.2.2 The magnetic field

A magnetic field of 5 Teslas, oriented along thez axis of the cell (see Fig. 2.3), is generated

by an unshielded superconducting magnet. The magnet (Oxford Instrument) is composed of

several coaxial solenoids and cooled down by a two-stage cryostat. Liquid Helium (4.2 K) is

used as a coolant in the inner stage while liquid Nitrogen (77K) is contained in the outer jacket

of the cryostat. The magnetic field is homogeneous at the centre of the cell over a cylindrical

volume of internal diameter 5 cm and length 10 cm (cf. Pech (2001)). A cartography of the

magnetic field in PIRENEA has shown that the achieved homogeneity is of the order of∼ 30

ppm. The whole system (vacuum chamber, cryogenic shields, trap etc.) can be moved along

tracks to facilitate insertion in the magnet bore.

2.2.3 The ICR cell

The ICR cell of PIRENEA has an opened cylindrical geometry. The open-cell design offers

some practical advantages like the elimination of chargingand contamination on trap plates and

both simplified and more efficient introduction of charged particle beams. This latter factor is

particularly important for mass spectrometers having external ion sources and is essential in our

set-up in which ions are formed outside the cell and the region of homogeneous magnetic field.

Moreover this geometry has been chosen in PIRENEA to providewide optical access to the

center of the trap to the laser beam and to the lamp used to perform photophysical experiments.
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Figure 2.1: Picture of the PIRENEA experimental set-up
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Figure 2.2: Schematic view of PIRENEA
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Figure 2.3: Representation of the ICR cell with the magneticfield oriented along the z axis.

The trap has a diameter of 62 mm and a linear length of 160 mm andis composed of three

groups of electrodes, each one devoted to a different function: trapping, excitation and detection

of ions. The different groups of electrodes are shown in Fig.2.5. Trapping electrodes consist

of two external rings (T1 andT4) and of two intermediate segmented rings (T2 andT3) while

the central electrode, segmented in 4 plates, includes the detection and the excitation electrodes

(D1,D2 andE1,E2). This particular configuration differs from classical trap geometries in which

trapping electrodes are usually perpendicular to the othergroups of electrodes (cf. Fig. 2.4). The

electrodes are made of a non-magnetic material called "ARCAP", which is an alloy of copper

and nickel. Electric isolation between the electrodes is obtained by ceramics rings.

2.3 Experimental procedures

2.3.1 Sample preparation and ion production

PAH samples are prepared using commercially available PAH powders (Sigma-Aldrich, purity

97 %) diluted in toluene. Powder and solvent are mixed using amagnetic beater until an homo-

geneous solution is obtained. The solution is then dripped on a solid target (shown in Fig. 2.6)

which is subsequently heated until a solid uniform deposit is obtained by evaporation of the

solvent. The solid target is put on a metal holder and admitted in the vacuum chamber through

a transfer line after pumping in an intermediate chamber (cf. Fig. 2.1).

To be sure that the sample will not undergo evaporation inside the vacuum chamber, the
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Figure 2.4: Examples of different trap geometries: cubic (a), cylindrical (b) and hyperbolic (c).

Excitation, detection and trapping plates are indicated respectively with the letters E, D and T

(figure taken from Grosshans et al. (1991)).

saturated vapour pressure of the studied molecules has to bedetermined using, for instance, the

Clapeyron law

Psat = P0 exp

(

−∆H
kBT

)

(2.1)

whereP0 is the reference pressure,∆ H is the enthalpy variation,kB the Boltzmann constant

and T the temperature. In the case of coronene (C24H12), for example, using the empirical

values determined by Verstraete (1990),P0 = 1011 torr and∆ H = 3060 + 39.8 M, we obtain at

room temperature (300 K) a vapour pressure of about 1.9 10−11 mbar. The residual pressure

in the chamber being about 10−10 mbar, the evaporation of the sample is not a concern for the

quality of the vacuum in the chamber. Furthermore, the samples that are feeded into the central

chamber are cooled down radiatively by the cold environment. This further decreases their

vapor pressure so that even in the case of smaller PAHs (higher vapour pressure), like pyrene,

the residual pressure is not an issue.

The target is located outside the magnetic field (z = 537 mm relative to the trap center) and

outside the z axis (radial distance r = 30 mm) in order to provide optical access for the laser

and lamp beams. Desorption and ionisation of molecular species result from laser ablation

of the solid target using the fourth harmonics,λ = 266 nm, of a Nd:YAG laser (Minilite II,

Continuum). Neutral PAHs have strong absorption transitions at this wavelength so they can

easily absorb the laser photons and get ionised. A variable optical attenuator is used to reduce
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Figure 2.5: Picture of the ICR cell of PIRENEA showing the different groups of electrodes.

the laser beam intensity and optimise ablation conditions depending on the sample. The neutral

species, evaporated by the laser shot, are immediately condensed on the low-temperature walls,

while some of the ions enter the trap guided by the magnetic field.

In each experiment time sequencing and data collection are controlled through a LabView-based

data acquisition interface.

2.3.2 Trapping of ions

The magnetic field applied along the z-direction confines theions in the x and y directions

according to their cyclotron motion (see the following section). To trap them along the z-axis

an electrostatic potential, either positive or negative depending on the charge of the species, is

applied on the trapping electrodes. Typical potential values used in our experiments are between

9 and 18 V on the external trapping electrodes,T1 andT4 (cf. Fig.2.5), and between 2 and 4

V on the intermediate electrodes,T2 andT3. In Fig. 2.7 we show a representation of the three-

dimensional quadrupolar electrostatic field created inside the cell for applied trapping potentials

of respectively 2 and 9 V. We can observe that this leads to a potential of 0.13 V at the centre of
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Figure 2.6: Target on its metal support with a coronene deposit.

the cell. Equipotential contours have been generated with the ion modelling software SIMION

(version 8.0).

To empty the cell at the end of an acquisition sequence, negative potentials (if the studied species

are cations or positive otherwise) are applied on the trapping electrodes to eject the ions.

2.3.3 Description of ion motions inside the cell

An ion of massm and chargeq = zemoving with a velocityv in the presence of a spatially

uniform magnetic field B, is subject to a force given by:

m
dv
dt

= qv×B (2.2)

Let vxy =
√

vx
2+vy

2 denote the ion velocity in thexy plane (i.e. the plane perpendicular to

B). Because of angular accelerationdv/dt = vxy
2/r, the previous equation becomes

mvxy
2

r
= qvxyB (2.3)

Angular velocity,ω (in rad/s) about the z axis is defined byω = vxy/r = 2πνc. Using this

relation in the last equation we obtain the cyclotron frequency,νc, associated to the ion motion:

νc =
qB

2πm
=

zeB
2πm

(2.4)
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Figure 2.7: SIMION generated equipotential contours (red lines) of the electrostatic field inside

the cylindrical ICR cell of PIRENEA. In the example shown, trapping potentials are set equal

to 9 V on the external electrodes and equal to 2 V on the intermediate ones. Top: view of a

longitudinal section of the cell (x-z plane). Bottom: 3D view of the section represented in the

top panel.

A remarkable feature of this equation is that all ions of a given mass-to-charge ratio (m/z)

have the same ICR frequency independent of their velocity. ICR frequencies for ions formed

from typical molecules (15≤ m/z≤ 10000) range from a few MHz down to a few KHz (cf.
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Fig. 2.8).

Figure 2.8: ICR orbital frequency in Hz as a function of ionicmass-to-charge ratio, m/z, for

different magnetic field strengths (Figure taken from Marshall et al. (1998)).

In the presence of a trapping potential, pure cyclotron frequency is perturbed by the ra-

dial component of the electric field. The three-dimensionalquadrupolar electrostatic trapping

potential inside the cell has the form:

Φ(x,y,z) = V0

( α
2d2(2z2−x2−y2)

)

(2.5)

in which V0 is the potential applied on the trapping electrodes,d is the distance between

the trapping electrodes (equal to the trap length) andα is a constant that depends on the trap

shape. The radial electric field that acts on the ion producesan outward-directed electric force

that opposes the inward-directed Lorentz magnetic force. We can obtain the equation for ion

motion in thexyplane combining Eq. 2.5 with Eq. 2.3

mω2r = qBωr−
qV0α
d2 r (2.6)

This is a quadratic equation inω. Making the substitutionω = 2πνc and solving it forν we

obtain two solutions:

νc
′ =

νc

2
+

√

(

νc

2

2
)

−
νz

2

2
(2.7)
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νm =
νc

2
−

√

(

νc

2

2
)

−
νz

2

2
(2.8)

in which νc
′ is the reduced cyclotron frequency,νc the original "unperturbed" cyclotron

frequency,νm is the magnetron frequency andνz the oscillation frequency along the z axis.

This latter can be determined solving the equation for the ion z-motion derived from Eq. 2.5

m
d2z
dt2

=−q
dΦ(z)

dz
=−

2qV0αz
d2 (2.9)

νz =
1

2π

√

2qV0α
md2 (2.10)

To summarise, the ions trapped in the ICR cell follow three different oscillatory motions

(illustrated in Fig. 2.9) of respective frequenciesνc
′, νm and νz. The three frequencies are

related by the following expressions

νc
′+νm = νc (2.11)

νc
′×νm =

νz
2

2
(2.12)

The magnetron and trapping frequencies are usually much less than the cyclotron frequency.

In the case of the coronene cation,C24H12
+, (m/z = 300.0939), for example, we have calculated,

in our experimental conditions, the following values for the four different frequencies:νc =

255.755 kHz,νm = 33 Hz,νz = 4102 Hz andνc
′ = 255.722 kHz.

2.3.4 Excitation and detection of ions

Excitation

The analysis of ions by FT-ICR mass spectrometry is based on the detection of the image current

induced by the cyclotron ion motion on the central electrodes of the cell. Once trapped in

the cell, all the ions with the same mass-to-charge ratio turn at their characteristic cyclotron

frequency. The cyclotron radius of thermal ions is usually small compared with the dimension

of the cell and cannot induce a detectable signal, considering further that the phase of each ion

orbital motion is random. Thus for an ensemble of ions, any charge induced in either of the two

opposed detection plates will be balanced, on the average, by an equal charge induced by an ion

whose phase is 180 degrees different. In these conditions the net difference in detected charge

between the two plates is zero.

A radio frequency (r.f.) sinusoidal voltage is applied to the excitation plates to induce a spatial
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Figure 2.9: Motions followed by an ion trapped in the ICR cell.

Figure 2.10: Incoherent cyclotron movement of an ion packet(on the left) converted into a

coherent movement (on the right) by resonant radio-frequency excitation at frequencyνc
′.

coherence in the ion packet and, thus, a detectable signal. Only ions that have their cyclotron

frequency in resonance with the applied electric field are driven into a coherent motion, ions that

are not in resonance do not absorb energy and remain at the centre of the cell. The coherently

orbiting ion packet induces a differential current betweenthe two opposed detection electrodes.
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This time-domain signal, amplified and digitalised, is finally Fourier-transformed to retrieve a

frequency domain spectrum. The mass spectrum is obtained from the frequency spectrum by

applying a calibration formula derived from the cyclotron equation and using two calibration

masses (Pech 2001; Ledford et al. 1984). If the r.f. voltage is applied continuously (or if it

is strong enough) the ions that absorb energy will spiral outward until they collide with an

excitation or detection plate where they will be neutralised. This technique, called ejection, is

used to remove from the cell mass-selected ions within a mixture if they are of no immediate

interest (for instance13C isotopic peaks in the case of PAHs).

In the experiments described here excitation is performed adopting the stored waveform inverse

Fourier transform (SWIFT) excitation technique (Marshallet al. 1985) and using a broadband

excitation to cover a mass range as broad as possible (this depends on the power of the amplifier

for the excitation of the ions). The SWIFT technique consists in calculating the excitation signal

from the inverse Fourier transform of the frequency range ofinterest and in supplying signals

with a constant amplitude over the whole selected frequencyrange.

Detection

Image current detection is non-destructive as the ions remain in the analyser cell after the de-

tection process has been completed. In this way trapped species can be subjected to consecutive

analysis sequences without being lost. This allows to studysequential processes that can be

quite complex, for instance isolation of the parent ions, fragmentation, selection of a daughter

species and reactivity of this daughter species with molecules.

Detection is defined by two important parameters:

• the number of detected data points (N) (in our experiment 211 < NPIRENEA< 220)

• the signal sampling frequency,∆νsample= 1/∆tsample( 0.05 <∆tPIRENEA< 10µs/point).

As we will see in section 2.4.2, mass resolution improves in direct proportion to the length of

the transient that is recorded (cf. Fig. 2.12), so for a givennumber of data points the resolution

improves using small sampling frequencies (larger∆tsample). The sampling frequency should

however be at least twice the frequency of the ions (Nyquist sampling criterion). Also this

requires to have a transient signal that is longer that the recording time (cf. Sect. 2.4.2).

2.4 Performance of the ICR trap

Fourier transform mass spectrometry (FTMS) is capable of achieving much higher mass res-

olution than any other type of mass spectrometry (except forthe recently developed orbitrap

technique, Makarov (2000); Hu et al. (2005)) and is capable of providing mass accuracies of
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Figure 2.11: Example of a detection sequence: detection of coronene ionsC24H
+
12 and its13C

isotopes.

the order of a few ppm over a fairly wide mass-to-charge range. Moreover, as it allows for exten-

sive manipulation of stored ion populations, it representsa versatile tool for solving analytical

problems in chemical and biological sciences, and it has, therefore, a variety of possible appli-

cations such as surface analysis, polymer studies, fullerene characterisation and proteomics (see

the review papers of Dienes et al. (1996) and Bogdanov & Smith(2005) and references therein

and the books of Asamoto (1991) and Lehman & Bursey (1976)).

In this section we will detail the characteristics of the FT-ICR trap of PIRENEA.

2.4.1 Number of ions in the cell

Ideally we can associate the ion cloud in the cell to an homogeneous sphere of radius R and

uniform charge densityρ. The total charge Q in the sphere is then equal to 4πR3ρ while the

potential created on the sphere surface isVsphere= Q/4πε0R. In order to trap ions thisVsphere

potential created by the cloud must be lower than the trapping potential. Typical trapping po-

tentials that we have used in the experiments are 4 and 18 V, respectively applied on the inter-

mediate and external trapping rings (cf. section 2.2.3), which correspond to a potential of∼ 0.2

V at the centre of the trap (value calculated with SIMION). Assuming for the sphere a diameter
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Figure 2.12: Illustration of the relationship between the length of the transient and the resolution

that can be achieved: in the top mass spectrum resolution is∼ 90000 while in the bottom

spectrum∼12000 (Figure taken from Amster (1996)).

equal to the trap diameter we can obtain an upper limit to the number of ions in the cell. A value

of 106 ions has been estimated for the ICR cell of PIRENEA (cf. Pech (2001)). Ions exceeding

this upper limit will be ejected from the trap. Space-chargeeffects due to Coulomb interactions

between ions can also induce frequency shift and inhomogeneous line broadening (Seung-Jin

& Seung 1997).

2.4.2 Mass resolution and mass accuracy

Resolution is the capability to separate closely spaced peaks. In mass spectrometry the mass

resolution is usually defined by the ratiom/∆m, where∆m is the full linewidth at half maximum

(FWHM) of a spectral mass peak. From the first derivative of Eq. 2.4 with respect tomwe obtain

the useful relation

dνc

dm
= −

νc

m
(2.13)

νc

dνc
= −

m
dm

(2.14)
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For a normal Lorentzian peak shape∆m = 2
√

3/τ, whereτ is the signal relaxation time

(time needed by ions to dampen back to their thermal energy cyclotron radius orbit). Therefore

m
∆m

∝
qBτ
m

(2.15)

So the longer it takes for the ions excited radius of orbit to dampen back to the thermal

energy radius, the longer one can observe the time domain signal and the better the spectral

resolution will be. At higher pressuresτ is smaller and resolution diminishes, we can then un-

derstand the importance of working in low pressure conditions. A narrow peak, however, does

not necessarily guarantee high resolution. Under some circumstances peaks that are closely

spaced in frequency will coalesce into a single peak. The mechanism proposed for this be-

haviour is a collective motion of ion packets with close frequencies owing to an interaction

between electric fields associated with each ion packet (Huang et al. 1994). The time needed

for this collective motion to develop is a function of the number of ions in the cell, the frequency

spacing between the ions, the amplitude of the trapping potential, the size of the analyser cell

and the radius of the orbit of the ions (Nikolaev et al. 1995).

2.4.3 Detectable mass range

The lowest detectable value of m/z is limited by the highest frequencies provided by the excitation-

detection electronics, whereas the highest m/z value depends on the trapping performances of

the cell. Eq. 2.7 shows that the magnetron and reduced cyclotron frequencies converge to a

common valueνc
′ = νm = νc/2 when

(ωc

2

)2
=

ωz
2

2
(2.16)

Substituting the expressions ofωc andωz in the previous equation we obtain the relation

mcritical =
qB2d2

4V0α
(2.17)

Form/z> mcritical/z, ion cyclotron motion is no longer stable and the ions spiraloutward until

they are lost from the trap. The use of lower trapping potentials can help to increase the upper

mass limit. The ICR cell of PIRENEA is designed to trap ions with m/z from 12 up to 30000.

2.5 Chemical interface

PIRENEA is equipped with four gas inlet lines, each one including a one-liter tank in which the

gas is stored and a solenoid valve that controls the injection time. A metering leak valve allows
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to regulate the flow rate and therefore the pressure, in the vacuum chamber.

Non-reactive molecular or atomic gases can be injected in the vacuum chamber and reactivity of

ions at different temperatures can be studied. Because of the interaction with the cold surfaces,

one of the major difficulties in these reactivity experiments is to quantify the density of the gas

to derive absolute reaction rates.

A method has been developed and tested on PIRENEA to quantifythe gas density in the cell

using the collisional damping of the ion cyclotron signal. This method was used to study the

reactivity ofC24H
+
11 with H2O (see Bruneleau (2007)).

Buffer gas

As discussed in section 2.3.4, selective ejection of ions can be carried out in order to isolate

a particular species inside the cell when a mixture is present. This process is systematically

performed at the beginning of each experiment in order to remove from the trap isotopes created

with the main species by the laser ablation. During the ejection process, however, the ion cloud

is perturbed to some extent and can undergo some expansion asremaining ions may retain some

residual excitation energy. A cold buffer gas (helium) is then injected to cool the molecules

through elastic collisions. The buffer gas acts as a medium to enable the ions to exchange

kinetic energy with the cold walls of the trap so that the ion cloud can relax to the centre of

the cell. Typical gas pressures of∼0.1 mbar are usually set in the buffer gas tank that lead to

pressures in the range of 10−7 mbar in the ICR cell.

2.6 Photophysical interface

2.6.1 The Xe arc lamp

A 150 W Xe arc lamp (Photomax model 60100, Oriel) is used to perform photo-dissociation

studies. The lamp radiation is focused at the center of the cell by an aluminium elliptical mirror.

This spectral source produces a broad continuum between 200and 1600 nm, close to that of

a 6000 K blackbody with additional lines (cf. Fig. 2.13). A water filter is installed below the

lamp to remove infrared radiation beyond 950 nm and long-pass coloured filters, whose cut-off

wavelengthλc is defined at 50% of transmission, can be inserted to further select a particular

range of wavelengths.

2.6.2 Lasers

In this section, we will describe the main characteristics of the ablation laser and of the two

different OPO lasers used to perform spectroscopy experiments.
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Figure 2.13: Xe arc lamp spectrum between 200 and 800 nm givenby the constructor.

2.6.2.1 The Minilite II laser (Continuum)

This Nd:YAG laser is optically pumped using a flashlamp. It emits light with a wavelength

of 1064 nm, with a 50 mJ energy and a pulsewidth of 5-7 ns. The high-intensity pulses may

be efficiently frequency doubled to generate laser light at 532 nm, or higher harmonics at 355

and 266 nm. In our experiments we used the fourth harmonics,λ = 266 nm, to perform laser

desorption and ionisation from the solid target. At this wavelength the typical output energy is

∼ 4 mJ.

2.6.2.2 Introduction to optical parametric oscillators (O.P.O.)

An optical parametric process relies on the nonlinear response of a medium (usually a crystal)

to a driving field (the pump laser beam). In this process, the pump photon, propagating into the

crystal, splits into a pair of less energetic ones. The resulting two photons will not, in general,

have the same energies. The higher energy photon produced isreferred to as the signal, while

the lower energy photon is called the idler.

Energy and the momentum vector must be conserved in this process. Energy conservation
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Figure 2.14: An optical parametric process.

is satisfied when the sum of signal and idler frequencies equals the pump frequency, that is

hνp = hνs+hνi (2.18)

wherehν is the photon energy. Linear momentum is conserved when

−→
kp =

−→
ks +
−→
ki (2.19)

where
−→
k is the photon momentum vector.

Linear momentum will not, in general, be conserved, becausethe two resultant photons have

different frequencies than the pump and velocity is dependent on frequency. To achieve the

simultaneous conservation of energy and momentum the system takes advantage of the bire-

fringence of a transparent nonlinear crystal called BBO (beta-barium borate). Such materials

have different indices of refraction for different polarizations of light. One index varies with

changes in propagation direction with respect to the crystal angle.

The angle tuning to produce a particular signal / idler pair is called phase matching. An ad-

vanced computer control system settles the phase matching while moving over wide wavelength

ranges. When the signal and idler beams exit the OPO oscillator, a pair of dichroics separate

the two signals. At 710 nm the signal and idler become degenerate (have the same wavelength)

so the dichroics cannot separate the two signals in the 690-730 nm region and the OPO laser

cannot be used in this wavelength range.

In our experiments two different OPO laser systems have beenused to perform multiphoton

dissociation spectroscopy. Both systems were pumped by a 355 nm Nd:YAG laser beam. The

main characteristics of the two lasers are described below.

The Surelite OPO laser (Continuum)

The broad band OPO laser (bandwidth > 50cm−1) provides an output signal continuously

tunable between 410 nm and 2.6µm, with a pulse repetition rate of 10 Hz and a pulse duration
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of 4 ns. The mean energy per pulse is E = 15 mJ± 20 % between 440 and 500 nm (Emax =18

mJ at 470 nm), dropping to 5 mJ at 420 nm.

The Panther EX laser (Continuum)

The Panther EX OPO generates an output signal continuously tunable between 410 and 2550

nm. It operates at 10 Hz with a 5 ns pulse duration and a 5cm−1 bandwidth. The system is also

equipped of a doubling stage (doubler) capable to extend thelower wavelength limit from 410

down to 205 nm. The doubler can provide up to 10 mJ of UV energy (depending on the pump

laser). The output mean energy per pulse, in the visible range, is shown in Fig. 2.15.

Figure 2.15: Panther EX OPO output mean energy per pulse measured in the visible range as a

function of wavelength.



Chapter 3

Photofragmentation of isolated PAH

cations

Omnia mutantur, nihil interit.

Everything changes, nothing perishes.

3.1 Introduction

Molecular photodissociation is the main limiting process for the survival of PAHs in the ISM.

As seen in the first chapter upon absorption of UV photons, a highly vibrationally excited PAH

molecule can relax through the emission of IR photons. In competition with this process the

molecule may undergo fragmentation that can lead to hydrogen loss or to the destruction of the

carbon skeleton. The study of the evolution of PAH moleculesunder UV irradiation is then of

great importance to get an insight into the nature of speciesthat can survive in the ISM.

There have been a significant number of experimental works onthe photostability and photodis-

sociation of PAHs. Dunbar (1992) performed time-resolved photodissociation mass spectrom-

etry (TRPDMS) of PAH ions in an FT-ICR ion trap. In these experiments a laser pulse excite

ions above the dissociation threshold, then the extent of photodissociation is determined as a

function of the delay between the laser pulse and the ICR detection sequence.

Boissel et al. (1993, 1997) studied the photodissociation of PAH cations in an FT-ICR cell using

the near UV-visible radiation of a Xe arc lamp. The same technique was used by Ekern et al.

(1997, 1998) to record fragmentation products of a larger number of PAH cations. The authors

classified the studied species as either photostable, losing hydrogen only, losing carbon and hy-

drogen or photodestroyed for particular photon fluxes. Further works using this technique have
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been performed by Banisaukas et al. (2004) and Dibben et al. (2001).

Another method extensively used to investigate photodissociation is the photoelectron photoion

coincidence (PEPICO) spectroscopy (Ruehl et al. 1989; Baeret al. 1979). In this technique,

ions are accelerated by a homogeneous electric field perpendicular to the photon beam while

the photoelectrons are accelerated in the opposite direction. Emitted photoelectrons are col-

lected in coincidence with the produced fragments so that their abundance can be measured as

a function of the incident photon energy.

A series of studies using time-resolved photoionisation mass spectrometry (TPIMS) has been

published by the group of Lifshitz (Gotkis & Lifshitz 1992; Gotkis et al. 1993; Ling & Lifshitz

1995, 1997, 1998). In these experiments the rate of dissociation of the cation under investi-

gation is monitored versus the excitation energy or versus time. Finally several studies using

collision-induced dissociation (CID) have been performedby Wang et al. (1997), Guo et al.

(1999) and Shushan & Boyd (1980).

To retrieve molecular parameters of the dissociating species, in particular dissociation rate con-

stants, as a function of the internal energy content, a modelling of these experimental results is

necessary. These molecular parameters enter then in astrophysical models that try to estimate

the lifetime of PAH species and their size distribution in interstellar environments in relation

with their structure, degrees of ionisation and dehydrogenation (see for instance Allain et al.

(1996), Le Page et al. (2001, 2003), Jochims et al. (1994) andJochims et al. (1999)).

Recently the connection between PAHs and small hydrocarbons has gained significant inter-

est thanks to the detection of species likeC3H2, C2H andC4H in PDRs (Teyssier et al. 2004;

Pety et al. 2005) whose abundances cannot be accounted for byPDR models. The study in the

laboratory of the products and pathways of the photodissociation of PAHs in interstellar-like

conditions is the first step to understand how PAHs could contribute to the formation of these

smaller species, and to evidence the most photostable structures that are produced.

3.2 Study of the photodissociation pathways

3.2.1 Objectives

The aim of this study is to provide information on both destruction of PAHs by UV radiation and

formation channels of small hydrocarbons and carbon clusters. The general question is whether

the considered species can easily release some smaller fragments under photon irradiation in the

gas-phase. Four different medium-sized PAHs, the pyrene cation (C16H10
+), the perylene cation

(C20H12
+), the pentacene cation (C22H14

+) and the naphtho[2,3-a]pyrene cation (C24H14
+), il-

lustrating the two main structural classes of pericondensed and catacondensed PAHs, are chosen

for this study. A comparison among the photodissociation products and pathways identified for
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each species is made at the end of the chapter.

3.2.2 Fragmentation by multiple photon absorption

Continuous UV-visible irradiation from a Xe arc lamp (wavelengths between 200 and 800 nm)

is used to perform dissociation of the selected species. As discussed by Boissel et al. (1997)

such irradiation leads to sequential photon absorptions bythe trapped species and, consequently,

to an increase of their internal energyU. In Fig. 3.1 the internal energy distribution of a popula-

tion of anthracene cations,C14H10
+, after three seconds of irradiation is reported together with

curves showing the fragmentation rate and the IR cooling rate, in the energy region where they

are comparable.

The whole process has, in fact, to be considered as a competition between the heating by ab-

sorption of photons and the radiative cooling. This competition leads to a statistical distribution

of the internal energy of the ions and when the heating is sufficient the distribution extends

up to the zone where fragmentation occurs. Otherwise stated, dissociation proceeds when the

internal energy becomes higher than a critical valueEth, which corresponds to the dissociation

threshold. In Fig. 3.1, for instance, dissociation only occurs for ions that are located in the high

energy tail of the distribution when they absorb an additional photon.

The dissociation threshold is a function of the size of the considered species and of the chemi-

cal bond that has to be broken. For the medium-sized PAHs considered here (with a number of

carbon atomsNc≤ 24)Eth is on the order of 10 eV (for instanceEth∼ 7 eV for the anthracene

cation,C14H10
+, cf. Fig. 3.1).

3.2.3 Experimental methods

The experimental procedure consists in the following steps:

• production and isolation of the ions of interest in the ICR cell of the PIRENEA set-up;

• cooling down of the ions by collision with a buffer gas (helium);

• photon irradiation of the selected species;

• recording of the dissociation products by mass spectrometry.

Parent ions are isolated using a SWIFT waveform (cf. sect. 2.3.4) to eject isotopic species, as

shown in Fig. 3.2 for the pentacene cation. Selected speciesare then subjected to broad-band

visible and UV radiation from the Xe arc lamp.
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Figure 3.1: Representation of the calculated internal energy distribution (curve a), the fragmen-

tation rate (kDISS) and the IR cooling rate (kIR) for a population of anthracene cations irradiated

by 1.73 eV photons. Figure adapted from Boissel et al. (1997).

For all the considered PAHs an inventory of the formed species is made and the main frag-

mentation patterns are identified. Photofragmentation pathways can be investigated by two

methods. In the first method, each fragment ion is isolated with a second SWIFT waveform

and then photolysed to determine its fragmentation pattern. In the second method, individual

fragment ions are continuously ejected during lamp irradiation eliminating daughter species

produced by the fragmentation of the ejected ions. Evolution of an ion population can also

be measured by isolating the species of interest and detecting its fragments as a function of

irradiation time.
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Figure 3.2: Left panel: detection of pentacene ions,C22H
+
14, and its13C isotopes. Right panel:

isolation of12C22H14
+ parent ions after ejection of the isotopes.

3.3 Results

3.3.1 The Pyrene cation (C16H10
+, m/z = 202)

Figure 3.3 displays the photodissociation spectrum recorded for the pyrene cation after 10 s

of irradiation with the Xe arc lamp. As the experiment is performed under continuous irradia-

tion most of the peaks are not primary daughter species but produced by further fragmentation.

Dehydrogenation of the parent ion up to six hydrogen atoms isobserved together with the for-

mation of smaller hydrocarbons and carbon cluster ions.

In order to investigate the different fragmentation pathways, each of the fragment peaks was

isolated, in turn, and briefly irradiated to determine its dissociation products. In Fig. 3.4, we

show the evolution of the relative abundances of theC16H8
+ fragment (doubly dehydrogenated

pyrene) and its fragmentation products as a function of the irradiation time. The main dissocia-

tion pathway appears to be hydrogen atom loss but other dissociation paths involving the loss of

acetylene (C2H2) and diacetylene (C4H2) molecules are also identified. The latter dissociations

mainly occur from even-mass speciesCnH2m
+ with the exception ofC16H5

+ for which the loss

of C2H2 is also observed.

The complete photofragmentation cascade is shown in the bottom panel of Fig. 3.3. It can be

noticed that all the detected hydrocarbonsCnHx
+, with n < 16, completely dehydrogenate lead-

ing to the formation of the corresponding carbon clustersC+
n , the only exception isC+

11 which

comes from the fragmentation ofC+
14.
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Figure 3.3: Top: FT-ICR mass spectrum of the pyrene cation after 10 s of irradiation with the

Xe arc lamp. Bottom: identified pyrene photodissociation paths.
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Longer irradiation up to one minute was performed. This led to the formation of decreasing in

size hydrocarbon and carbon cluster cations down toC+
7 (cf. Table 3.1).

Figure 3.4: Normalised intensities ofC16H8
+ (m/z = 200) and its photofragments as a function

of irradiation time.

3.3.2 The Perylene cation (C20H12
+, m/z = 252)

In the top panel of Fig. 3.5 we show the photofragmentation spectrum ofC20H12
+ recorded

after 1 s of irradiation with the Xe arc lamp. Three major peaks are observed at respectively

m/z = 251, m/z = 250 and m/z = 226. The primary dissociation channel appears to be the loss

of a single hydrogen atom, similarly to what is observed for the pyrene cation. Mass selective

ejection is used to identify further dissociation paths, inparticular possible loss ofH2 (or 2H

atoms) is investigated. We have performed irradiation of the perylene cation with the m/z = 251

ions simultaneously ejected (cf. Fig. 3.5), the m/z = 250 peak is significantly decreased show-

ing that most of dehydrogenation occurs by sequential H lossas shown on coronene (C24H12)

by Joblin et al. (2009). In the same spectrum we can also notice the presence of the m/z =

226 peak (C18H10
+) produced by acetylene loss from the parent ions (cf. the bottom panel

of Fig. 3.5). Longer irradiation times (up to one minute) lead to further dehydrogenation of

the parent species (dehydrogenation up to eight hydrogen atoms was observed). These results

are consistent with previous studies performed by Ekern et al. (Ekern et al. 1998). We did not



64 Photofragmentation of isolated PAH cations

Figure 3.5: Top left: FT-ICR mass spectrum of the perylene cation (m/z 252) after 1 s of

irradiation with the Xe arc lamp. Top right: Investigation of the fragmentation pathways of

C20H12
+ parent ions through ejection of particular fragment ions during the lamp irradiation;

FT-ICR spectrum taken after 1 s of irradiation with simultaneous ejection of the m/z = 251 ions.

Bottom: FT-ICR spectrum taken after 8 s of irradiation with simultaneous ejection of the m/z =

251 and m/z = 250 ions. The m/z = 226 peak indicates the loss of an acetylene (C2H2) molecule

from the parent ions.

observe, in this case, the formation of carbon clusters but this was probably due to a reduced re-

flectivity of the elliptical mirror which focuses the lamp radiation at the centre of the trap when
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Figure 3.6: Perylene photodissociation patterns.

we performed the experiment. The identified photodissociation paths are illustrated in Fig. 3.6.

3.3.3 The Pentacene cation (C22H14
+, m/z = 278)

Continuous irradiation of the pentacene cation leads to dehydrogenation of the parent ion up

to ten hydrogen atoms and to the formation of several hydrocarbons and carbon cluster ions

(cf. Fig. 3.7). Interestingly, as observed also for the two PAHs previously examined, pyrene

and perylene, the partial dehydrogenation of the parent ions ends up with the production of

CnH4
+. The absence of more dehydrogenated species suggests that further photodissociation

step will proceed through destruction of the carbon skeleton possibly involving a structural

rearrangement.

The main identified dissociation patterns in the case of the pentacene cation dissociation cascade

are the loss of a single hydrogen atom, the loss of an acetylene molecule and the loss ofCnHm

molecules withn = 1, 2. In particular the loss ofC2H4 from the pentacene parent ion was

evidenced through selective ejection of the other daughterspecies during irradiation. Moreover

the loss of CHn species appears to be responsible for the formation of theC+
21 carbon cluster

from the dehydrogenated pentacene fragments. All the othersmaller carbon clusters observed

in the cascade likely originate from the fragmentation ofC+
21. Among themC+

10 is the species

that exhibits the most intense peak.
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Figure 3.7: Top: FT-ICR mass spectrum of the pentacene cation after 1 minute of irradiation

with the Xe arc lamp. The zoom on the spectrum evidences the presence of two separate peaks

at slightly different m/z values: m/z = 252.00 (C+
21) and m/z = 252.09 (C20H12

+). Bottom:

identified pentacene photodissociation paths.
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3.3.4 The Naphtho[2,3-a]Pyrene cation (C24H14
+, m/z = 302)

Previous work has shown that the naphtho[2,3-a]pyrene cation completely dehydrogenates when

exposed to irradiation by the Xe arc lamp (Ekern et al. 1997).This behaviour is confirmed also

by our experiment, however, contrary to what previously observed, the destruction of the car-

bon skeleton occurs before completely dehydrogenation of the parent ions as shown in Fig. 3.9

where fragments having mass-to-charge ratio lower than m/z= 288 (C+
24) are already distin-

guishable before the formation of this carbon cluster.

The global photodissociation cascade of the naphtho[2,3-a]pyrene cation after one minute of

irradiation with the Xe arc lamp is displayed in Fig. 3.8. Theorigin of each observed peak was

investigated, as usual, through isolation of selected species and selective ejection of fragments

during irradiation. The identified photodissociation patterns are illustrated in Fig. 3.8. The for-

mation of several carbon clusters proceeds in this case fromthe common progenitorC+
24. The

strongest peak, among these carbon clusters, appears to be the one corresponding toC+
14, as

already observed by Joblin (2003). The differentC+
24 isomeric forms are not distinguishable

by mass spectrometry, and several of them could probably be simultaneously produced in our

experiment (cf. Sect. 4.8). We can therefore expect different dissociation paths for these species

involving the loss of C,C2 andC3 fragments.
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Figure 3.8: Top: FT-ICR mass spectrum of the naphtho[2,3-a]pyrene cation after 1 minute

of irradiation with the Xe arc lamp. Bottom: proposed photodissociation pathways for the

naphtho[2,3-a]pyrene cation.
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Figure 3.9: FT-ICR mass spectrum ofC24H14
+, naphtho[2,3-a]pyrene cation, after 10 s of irra-

diation with the Xe arc lamp. Formation of theC22H12
+ fragment species is observed.

3.4 Discussion

Comparing the results obtained for the four medium-sized PAH cations examined here, we can

draw some general conclusions on the behaviour of these species exposed to the continuous

irradiation from a Xe arc lamp. The experiment probes the energy region where fragmentation

is in competition with radiative cooling, so a key region forthe study of the survival of PAHs

in the interstellar medium. Stepwise elimination of singlehydrogen atoms appears as the main

dissociation pathway for all the considered species.

Complete dehydrogenation of the parent ion was observed only for the naphtho[2,3-a]pyrene

species while all the other examined cations showed only partial dehydrogenation ending up

with the production ofCnH4
+ species. Studies on the structures and formation ofCnHx

+ species

by Lee et al. (1997), in a laser desorption ion source, have shown that a new bicyclic isomer

appears atn = 15 for x≥ 4 during the formation process of these species and that thisisomer

became more rapidly abundant with increasingn suppressing both linear and monocyclic struc-

tures in most cases. Calculations of the stable structures of C16H4
+ isomers also confirm that

the bicyclic structure is, for this species, the most stableone (Lee et al. 1997). A structural rear-

rangement could then be responsible for the absence of dehydrogenation fromCnH4
+ species.

Besides hydrogen atom loss, acetylene molecule loss was observed for all the studied species.

This fragmentation pathway is expected in the case of non compact PAHs but there are several
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exceptions at this behaviour (Ekern et al. 1998). The pyrenecation, being a compact PAH,

seems here to be an exception.

TheC2H2 dissociation pathway was mainly observed from the even-mass fragmentsCnH2m
+.

Species with an odd number of hydrogen atoms are, in fact, expected to be more fragile and to

easily lose one H as observed forC24H2n+1
+ species (n = 0 - 5) by Joblin et al. (2009). Further

dissociation reactions were also evidenced: the loss of a diacetylene molecule in the case of the

pyrene cation and the loss ofCHn andC2H4 species in the case of the pentacene cation. These

dissociation pathways were already observed for these species in CID experiments (Shushan &

Boyd 1980).

An inventory of the fragments produced in the photodissociation cascades of the four different

PAH cations studied here is presented in Table 3.1. Formation of carbon clusters ions is ob-

served for all the studied species. Different dissociationpaths can be inferred mainly involving

the loss of C,C2 andC3 neutral fragments. In particular it must be noticed that thepresence

of C+
14 in the dissociation cascade always entails the detection ofC+

11 andC+
10 species whileC+

18

is responsible for the formation ofC+
15. These observations are consistent with previous photo-

todissociation studies onCn
+ by Geusic et al. (1987) and Pozniak & Dunbar (1997).

The results obtained here put forward the possible contribution of medium-sized (Nc≤ 24) PAH

dissociation to the formation of small hydrocarbons and carbon clusters. As already emphasised

by Allain et al. (1996), the loss ofC2H2 appears as the main channel for the destruction of the

carbon skeleton of PAHs. Still, an important aspect to consider is the competition between

dehydrogenation and recombination with H atoms that can be efficient in interstellar environ-

ments considering the high abundance of H atoms. This competition has an essential role in the

survival of the carbon skeleton since highly dehydrogenated forms may rapidly isomerise into

bicyclic forms that photodissociate through carbon loss.

Le Page et al. (2001, 2003) developed a model to study the hydrogen coverage of PAHs calculat-

ing the equilibrium between the processes of photodissociation and recombination with hydro-

gen atoms. The authors found that small PAHs with fewer than about 15-20 carbon atoms are

quickly destroyed in the normal UV field, while intermediate-size PAHs (20-30 carbon atoms)

lose most of their peripheral hydrogen atoms and larger PAHsmay be fully hydrogenated and

even surhydrogenated with competition from the protonatedform. It must be noticed, however,

that the carbon loss channel has been neglected in this model. Our results have shown that

acetylene loss can be an important fragmentation channel for medium-sized PAHs and it should

then be taken into account.

Quantitative studies on the photophysics of each ion would be necessary to use the results

presented here in astrophysical models. These studies would require, in particular, the determi-

nation, for each species, of molecular parameters such as the absorption cross sections at the

different wavelengths considered, the photodissociationrates, the branching ratios (fractions
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of parent ions which fragment through each individual fragmentation path) and the threshold

energies for dissociation.
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PYRENE PERYLENE PENTACENE NAPHTHO[2,3-a]PYRENE

Fragments

m/z Formula m/z Formula m/z Formula m/z Formula

201 C16H9
+ 251 C20H11

+ 277 C22H13
+ 301 C24H13

+

200 C16H8
+ 250 C20H10

+ 276 C22H12
+ 300 C24H12

+

199 C16H7
+ 249 C20H9

+ 275 C22H11
+ 299 C24H11

+

198 C16H6
+ 248 C20H8

+ 274 C22H10
+ 298 C24H10

+

197 C16H5
+ 247 C20H7

+ 273 C22H9
+ 297 C24H9

+

196 C16H4
+ 246 C20H6

+ 272 C22H8
+ 296 C24H8

+

176 C14H8
+ 245 C20H5

+ 271 C22H7
+ 295 C24H7

+

174 C14H6
+ 244 C20H4

+ 270 C22H6
+ 294 C24H6

+

173 C14H5
+ 226 C18H10

+ 269 C22H5
+ 293 C24H5

+

172 C14H4
+ 224 C18H8

+ 268 C22H4
+ 292 C24H4

+

171 C14H3
+ 222 C18H6

+ 252 C20H12
+ 291 C24H3

+

170 C14H2
+ 252 C21

+ 290 C24H2
+

169 C14H+ 250 C20H10
+ 289 C24H+

168 C14
+ 248 C20H8

+ 288 C24
+

152 C12H8
+ 246 C20H6

+ 276 C22H12
+

150 C12H6
+ 240 C20H4

+ 274 C22H10
+

149 C12H5
+ 226 C18H10

+ 272 C22H8
+

148 C12H4
+ 224 C18H8

+ 270 C22H6
+

146 C12H2
+ 222 C18H6

+ 268 C22H4
+

144 C12
+ 216 C18

+ 266 C22H2
+

132 C11
+ 180 C15

+ 252 C20H12
+

123 C10H3
+ 168 C14

+ 250 C20H10
+

122 C10H2
+ 132 C11

+ 248 C20H8
+

121 C10H+ 120 C10
+ 246 C20H6

+

120 C10
+ 240 C20

+

100 C8H4
+ 216 C18

+

99 C8H3
+ 180 C15

+

98 C8H2
+ 168 C14

+

97 C8H+ 144 C12
+

85 C7H+ 132 C11
+

84 C7
+ 120 C10

+

Table 3.1: List of the fragments detected in the photodissociation cascade of each of the

four considered PAH cations: pyreneC16H10
+, peryleneC20H12

+, pentaceneC22H14
+ and

naphtho[2,3-a]pyreneC24H14
+.



Chapter 4

Visible photodissociation spectroscopy of

PAH+

Per aspera ad astra.

Through difficulties to the stars.

4.1 Diffuse Interstellar Bands and PAHs: the astrophysical

problem

Diffuse Interstellar Bands (DIBs) are a set of discrete absorption features superposed on the

interstellar extinction curve. The first two bands were discovered in 1921 by Heger (1921) and

nowadays close to 400 DIBs are catalogued (Hobbs et al. 2008). Since Merrill (Merrill 1934),

who first recognised them as ubiquitous interstellar features, DIBs were seen towards more than

a hundred sight lines, showing varying relative strengths from one environment to another. They

fall in the range from∼ 0.4 to∼ 1.3 µm, and exhibit a full width at half maximum ranging from

less than 1 up to 40 Å (Tielens & Snow 1995). The correlation between their intensity and

the interstellar extinction constrains their origin to theinterstellar medium, while their indepen-

dence towards light polarisation (caused by interaction between starlight and the dust particles)

is in favour of gas-phase carriers (Herbig 1995), however nodefinitive match between any DIB

and any individual molecule still exists.

Potential DIB carriers proposed so far range from carbon chains (Maier 1998) to PAHs and their

cations (Léger & D’Hendecourt 1985; van der Zwet & Allamandola 1985; Crawford et al. 1985;

Allamandola et al. 1985; Salama et al. 1999), to fullerenes (Kroto & Jura 1992). PAH cations
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seem to be the most promising candidates as carriers of the DIBs since these species have elec-

tronic transitions in the spectral region of interest, are stable against UV photo-dissociation and

their estimated abundance is large enough to be consistent with the observed DIB strengths.

During the past two decades an extensive laboratory effort has been done to find the most suit-

able techniques to characterise the spectroscopic signatures of these species under conditions

that are relevant for astrophysical applications. This represents a demanding experimental task

because of the difficulty of producing and isolating such large nonvolatile and often reactive

molecules and because of the huge number of possible candidates to test. In Chapter 1 we

summarised the main spectroscopic techniques used so far toface this problem. In this chapter

we report the study we performed to measure the visible multiphoton dissociation spectra of

gas-phase cationic PAHs, produced and isolated in the PIRENEA ion trap mass spectrometer

and irradiated with a mid-band OPO tunable laser.

4.2 Presentation of the study

4.2.1 Objectives

The purpose of our study is to obtain gas-phase spectroscopic data on different ionised PAHs

and derivatives, that can be useful for the pre-selection ofthe most promising candidates for

some of the DIBs. The band profile obtained with this technique is not that of cold ions, which

is a necessary condition to match the experimental spectra to the astronomical ones and defini-

tively identify DIB carriers. That is why the technique applied here can only be used to make

a pre-selection of possible DIB candidates. However the coupling with the ICR cell allows to

easily study various species including dehydrogenated PAHcations and carbon cluster cations.

We have investigated, in particular, the 430-480 nm spectral range in which the strongest optical

DIB, the 4428 Å band, falls. In Fig. 4.1 we report a table whichcompares the characteristics

of the electronic bands of cold gas-phase PAH ions measured so far to the characteristics of the

strong 4428 Å DIB.

No successful identification was possible yet. This emphasises the need for more observa-

tional data and dedicated surveys on different interstellar environments and lines of sight, to

correlate these bands with local physical conditions. Fromthe laboratory point of view, there is

a need for a systematic study on all the species considered aspotential DIB carriers.

Using the PIRENEA set-up we have measured the MPD spectra of six different species of in-

creasing size, namely the pyrene cation (C16H10
+), the 1–methylpyrene cation (CH3−C16H9

+),

the coronene cation and its dehydrogenated derivatives (C24Hp
+ with p= 0, 10, 11, 12) (see

Fig. 4.2 and Fig. 4.10).

The matrix and gas-phase spectra of pyrene and 1–methylpyrene cations have already been
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Figure 4.1: Electronic state peak positions and band widthsof cold gas-phase PAH ions mea-

sured in the laboratory and compared to the characteristicsof the strong 4428 Å DIB (Figure

taken from Salama (2008)).

measured before. The comparison of our measurements with these data and, in particular,

with gas-phase data on cold ions, allows us to assess the validity of our experimental method

in obtaining the band positions. In the case of the coronene cation and its dehydrogenated

derivatives, includingC24
+ that has recently been proposed among the possible candidates for

some of the DIBs, including the 4428 Å DIB (Duley 2006), the spectra measured here are the

first available data in the gas-phase.

All the experimental data are complemented with the use of time-dependent density functional

theory (TD-DFT) calculations, which allow us to identify the measured bands.

The ionic species produced with our technique can include different isomeric forms (species

with the same chemical formula but different structures). This aspect is investigated in the case

of C24
+ for which we have computed the electronic spectra of different isomers and compared

them to the measured experimental spectrum. Finally, a modelling study is performed at the

end of the chapter to derive the absorption cross-sections.The measured action spectra do

not provide direct information on the absorption cross-section of the ions however this latter

is related to the measured dissociation yield and we will show that it can be derived from the
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(a) (b)

(c) (d)

(e)

(f)

Figure 4.2: Structures of the studied molecules: (a) pyrenecation; (b) coronene cation; (c) sim-

ply dehydrogenated coronene cation; (d) doubly dehydrogenated coronene cation; (e) and (f)

the two stable conformations of the 1–methylpyrene cation,each viewed from two different

angles to better show the 3–D configuration of the methyl group.

experimental data by describing the photophysics of the ions in our experimental conditions, as

illustrated for two of the studied species: the coronene andthe pyrene cations.

4.2.2 Experimental procedure

As previously described, PAH molecular ions are produced inthe PIRENEA set-up by laser

ablation-ionisation from a solid target and trapped in the ICR cell. The species of interest can

then be selected by ejection of all the unwanted species (isotopomers and parent ions if the

species of interest is a fragment). Dehydrogenated speciescan be formed in the ICR cell by

UV-photofragmentation of the parent ion with the Xe arc lampand then mass-selected. As seen

in chapter 2 in the selective ejection process the ion cloud is perturbed to some extent making it



4.2 Presentation of the study 77

necessary to inject buffer gas (He) in order to relax it.

Once cooled down, selected ions are irradiated with the OPO laser. At the beginning of each ex-

periment, preliminary tests are systematically made to optimise the ion signal, the laser energy

that has to be used to perform dissociation and the overlap between the laser spot and the ion

cloud (see section 4.4). The spectra are recorded monitoring the relative fragmentation yield of

the species (ratio between the photofragment abundance andthe total abundance of ions, parent

ion plus photofragments) as a function of the OPO laser wavelength. The Panther EX laser

was used to perform dissociation of all the species apart from C24H11
+ andC24

+ whose spectra

were recorded using the broad band Surelite OPO laser that was initially the only one available

on the experimental set-up. We have scanned with the laser the spectral range between 430

and 480 nm, with a 2 nm scan step, recording a 10 mass-spectra average (10 laser cycles) at

each wavelength. The laser energy is generally kept constant during the wavelength scan with

the exception of theC24
+ spectrum (see discussion in section 4.8). The recorded spectra are

discussed separately in the next sections.

4.2.3 Computational details

To help the interpretation of the measured spectra we computed the energies and intensities for

vertical transitions to the low-lying electronic states ofthe species under investigation. We

used the density functional theory (DFT) (Hohenberg & Kohn 1964; Kohn & Sham 1965;

Jones & Gunnarsson 1989) and its time-dependent extension (TD-DFT) (Runge & Gross 1984;

Casida 1995; Bauernschmitt & Ahlrichs 1996), which are the methods of choice for such large

molecules. We used the TURBOMOLE V6.0.1 package (Ahlrichs et al. 1989) making use

of the resolution of identity approximation for computing the electronic Coulomb interac-

tion (Eichkorn et al. 1995). This approach is based on the expansion of molecular electron

densities in a set of atom-centered auxiliary basis sets leading to expressions involving three-

center electron repulsion integrals; this usually leads toa more than tenfold speedup compared

to the conventional method based on four-center electron repulsion integrals.

The calculation of the electronic absorption spectra requires the previous knowledge of the

ground-state optimised geometries. In all cases, with the exception of coronene cation (see

section 4.3.3), no symmetry constraints were adopted by assuming the C1 point group. The

ground-state of the pyrene cation (C16H10
+), 1-methylpyrene cation (CH3−C16H9

+), coronene

cation (C24H12
+), C24H10

+ andC24
+ was found to be a doublet, while forC24H11

+ our calcu-

lations predict a triplet ground-state.

Based on calibration calculations performed for small PAHs, we used the split valence polari-

sation (SVP) basis set (Schafer et al. 1992) in conjunction with the BP86 exchange-correlation

functional, a combination of the Becke’s 1988 exchange functional (Becke 1988), and the
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Vosko-Wilk-Nusair (Vosko et al. 1980) and Perdew’s 1986 (Perdew 1986) correlation func-

tionals. Despite the smallness of the basis set, the computed transition energies in the spectral

range of interest (430 - 480 nm) are found to be systematically in closer agreement with experi-

ments as compared to results obtained with the larger basis TZVP of triple zeta valence quality

(Schafer et al. 1994). Typical errors in the computed valuesare of the order of a few tenths of

eV.

4.3 Results

4.3.1 The pyrene cation (C16H10
+)

The MPD spectrum of the pyrene cation (see (a) in Fig. 4.2) measured with the PIRENEA ex-

periment is shown in Fig. 4.3. We have recorded fragmentation of the ions after one laser pulse

with a laser energy of 6 mJ.

We can distinguish in the spectrum a main band at about 436 nm followed by two other peaks at

about 444 and 450 nm. The band measured at 436 nm compares quite well with measurements

in the gas phase made by Biennier (2004) who assigned this feature to the (0-0) vibrational band

of theD5←− D0 electronic transition (cf. Table 4.1). Our spectrum is alsoin good agreement

with neon-matrix data taken by Salama & Allamandola (1992).The blue shift of about 3.5 nm

that we measure relative to the matrix spectrum is consistent with the shifts measured by Bien-

nier (2004) and with the predicted limits of the neon-matrixto gas-phase shift (Romanini et al.

1999; Salama et al. 1999).

Our theoretical calculations predict, in the considered spectral range, one electronic transition at

426 nm, with an oscillator strengthf = 0.206 (cf. Table 4.1). This value is in line with previous

calculations made by Hirata et al. (1999) and is in very good agreement with our experimental

result (∆λ = 10 nm or∆E = 0.07 eV with respect to our measured position).

The two features observed at 444 and 450 nm are probably a vibronic progression of the ob-

served electronic transition, since our calculations do not predict any other suitable electronic

transition in this energy range. The fact that they are on thered side of the 0–0 band probably

means that they are hot bands of the same electronic transition, in which the absorption takes

place from a vibrationally excited state of theD0 electronic state to a vibrationally less excited

state of theD5 electronic state. This indicates that the studied ions wereinitially carrying some

internal energy possibly transferred to them during the collisions with the buffer gas. The buffer

gas, injected to enable the ions to exchange kinetic energy with the cold walls of the trap so that

the cloud can cool down, mediates, as a side effect, the exchange of energy among translational

and internal degrees of freedom of the molecules. Thereforeif the ion cloud has a large residual

energy, this can populate significantly some vibrational levels of the ions.
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More vibronic structure can be present on the blue side of theband origin but we have not

detected it because it is outside the probed spectral range.

Figure 4.3: MPD spectrum of gas-phase pyrene cation isolated in the ICR cell of PIRENEA.

Computed transitions are superimposed on the experimentalspectrum and represented by ver-

tical bars with an height proportional to the computed oscillator strength.

4.3.2 The 1–methylpyrene cation (CH3−C16H9
+)

Figure 4.4 shows the spectrum measured for the 1–methylpyrene cation. We performed exper-

iments with one laser pulse, with a laser energy of 3 mJ. The recorded spectrum presents three

bands at the following positions: 442, 454 and 480 nm.

We can compare our results with the spectrum of UV-irradiated 1-methylpyrene isolated in

a neon matrix recorded by Léger et al. (1995) (cf. Table 4.1).The authors measured four bands

respectively at 418, 444, 456 and 482.5 nm. Considering thatsome of the species present in

the matrix could be PAH radicals that have lost an H atom, the authors incorporated atomic

hydrogen (H0) in the matrix and examined the evolution of the relative intensities of the bands
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Figure 4.4: MPD spectrum of gas-phase 1–methylpyrene cation measured with the PIRENEA

set-up. The electronic transitions calculated for the two different isomers (e) and (f) (see

Fig. 4.2) are represented in continuous and dashed lines, respectively.

in order to determine to which species they belong. They therefore tentatively attributed to

the 1–methylene –pyrene cation, presumably formed inside the matrix after irradiation, all the

above-mentioned bands apart from the one at 456 nm ascribed to 1–methylpyrene cation.

Taking into account the precision of our technique and the matrix to gas-phase shift, all these

bands are likely to correspond, in position, to the bands measured in the matrix at 444, 456 and

482.5 nm. Band profiles and relative intensities also compare well with matrix data (cf. Léger

et al. (1995)). The gas-phase spectrum of 1-methylpyrene cation has been previously measured

by Tan & Salama (2006). The authors assigned to theD5←− D0 electronic transition of the

molecule a spectral feature measured at∼441 nm and estimated for it an oscillator strength

f ∼ 0.2. This value matches well with our theoretical calculations, which predict an electronic

transition with the same oscillator strength at∼440 nm (cf. Table 4.1) and with our experimental

measurement. Unfortunately, the authors only report on a narrow spectral window around the

∼441 nm feature, saying nothing about the other features. Given the technique we use here, the
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additional features we see at 454 and 480 nm cannot be ascribed to the 1–methylene–pyrene

cation, but only to the 1–methylpyrene cation. TD–DFT calculations, on the other hand, only

predict one additional transition in that spectral region,namely the,D4←−D0, at a wavelength

of 507 nm with an oscillator strength off = 1.9×10−2. This band probably corresponds to the

transition we observed at 480 nm. The band at 454 nm in our spectrum could, in principle, be

due to hot bands, as discussed above for pyrene, but then it should not be present in the cold

neon-matrix spectra. Our calculations show, however, thatthere are two stable configurations

for the methyl group, differing by a 180o rotation of the torsional angle (see (e) and (f) in

Fig. 4.2).

The conformation (f) in Fig. 4.2 results to be marginally more stable by∼0.04 eV, but such a

difference is so small that it is within the error of DFT. Withsuch a small energy difference,

both structures can be expected to be simultanously presentboth in our experiment and in cold

matrix spectra. Their electronic transitions differ slightly in position and intensity, so that all

well–resolved bands are expected to be double. We thereforeattribute the two bands at 442 and

454 nm to the sameD5←− D0 transition, predicted to be at 436 nm withf = 0.241 for the (f)

isomer and at 440 nm withf = 0.234 for the (e) isomer.

4.3.3 The coronene cation (C24H12
+)

Dissociation of the coronene cation (see (b) in Fig. 4.2) wasperformed with one OPO laser shot

and with a laser energy of 14 mJ. Our spectrum (see Fig. 4.5) presents a broad feature at about

457 nm with some vibronic structure on the blue side of the band.

Identification of this band through comparison with theoretical calculations is not trivial for sev-

eral reasons: with our experimental technique we have no information on the absolute intensity

of the transition and the small spectral range analysed makes it difficult to unambiguously as-

sign bands. To ease the problem of the small spectral window,we can first compare calculations

with experimental matrix data taken from (Ehrenfreund et al. 1992) that include all the visible

spectral range, and systematically assign the transitionson it.

TD–DFT predicts four electronic transitions between 400 and 500 nm, respectively at 425, 433,

478, and 491 nm (cf. Table 4.2). In the matrix spectrum published by Ehrenfreund et al. (1992),

the most intense band in this interval is detected at 459 nm and matches the one we detect at

457 nm. We tentatively assign it to theD10←−D0, calculated to be at 433 nm with an oscillator

strengthf = 2.7×10−2. The partially resolved structure on the blue side, which isvisible both

in our experiments and in the neon-matrix spectrum, is likely to be a vibronic sequence of the

same electronic transition. The band that we detect at 432 nmwould then be theD11←− D0,

calculated to be at 425 nm with an oscillator strengthf = 8.0×10−3. We further detect an-

other weak band at 473 nm, which is also visible in the neon-matrix spectrum in Ehrenfreund
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Experiment TD-DFT

Transition PIRENEA Previous BP/SVP Previous

Pyrene+ (C16H
+
10)

D5←− D0 436 439.5c, 436.2d 426(0.206) 419(0.291)b

D4←− D0 486.8a 508(0.012) 498(0.017)b

1-Methylpyrene+ (CH3-C16H
+
9 )

isomer (e) isomer (f)

D5←− D0 442 444.0e,∼441f 436(0.241)

454 456.0e 440(0.234) 440(0.233)g

D4←− D0 480 482.5e 508(0.019) 509(0.017) 507(0.019)g

a Argon matrix (Vala et al. 1994);b TD-DFT calculations at the BLYP/6-31G∗∗ level (Hirata

et al. 1999);c Neon matrix (Salama & Allamandola 1992);d Multiplex integrated cavity

output spectroscopy (Biennier 2004);e Neon matrix (Léger et al. 1995);f Cavity ring-down

spectroscopy (Tan & Salama 2006);g TD-DFT calculations at the BP86/SVP level (Tan &

Salama 2006).

Table 4.1: Positions of the bands (expressed in nm) as measured in the MPD experiments with

PIRENEA for the pyrene cation (C16H10
+) and the 1-methylpyrene cation (CH3−C16H9

+).

Band origins are identified through the comparison with the electronic transitions and the cor-

responding oscillator strengths (within parentheses) as computed using the split valence po-

larization (SVP) basis set in conjunction with the BP86 exchange-correlation functional. For

comparison we list also previous experimental and theoretical data.
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et al. (1992), even if unlisted in this paper, which would be the D9←− D0, calculated to be

at 478 nm with an oscillator strengthf = 9.2×10−3. Finally, the band detected at 502 nm in

the neon-matrix spectrum would then be theD5←− D0, calculated to be at 491 nm with an

oscillator strengthf = 7.6×10−3, even if at least part of this band could be due to a coincident

very strong band in benzo(g,h,i)perylene (Salama et al. 1999), which could be present as an

impurity in the coronene vapour or could be formed in the matrix experiment by fragmentation

of coronene.

The ground state of the coronene cation slightly breaks theD6h symmetry due to the Jahn–Teller

effect. This affects excited states in a different way (somestates are not affected at all, depend-

ing on symmetry of the state) and is relatively subject to numerical errors, since Jahn–Teller

minima are usually very shallow. Symmetry–broken states, in principle, should be properly

treated by taking into account the dynamic interaction of the two splitted electronic configura-

tions, since they are separated by a very small energy barrier.

We can estimate the expected error range of the calculationsby comparing the same vertical

electronic transitions, as computed by enforcingD6h symmetry, with those calculated in the ge-

ometry obtained optimising the ground state (which resultsin D2h symmetry due to Jahn–Teller

distortion). The comparison between the two theoretical calculations (cf. Table 4.2), obtained

with and without the D6h symmetry constraint, and corresponding to very close geometries,

show the sensitivity of band positions and intensities to the conformation of the molecule. This

stresses the difficulty in interpreting the intensities in MPD spectra in terms of absorption in-

tensities: since several photons are needed to achieve photodissociation, all but the first one

are absorbed by a hot molecule, in which the band position andintensities may be shifted by

variable amounts. This means that a band whose position is more sensitive to geometry changes

will appear weaker on MPD spectra, since the absorption of the subsequent photons will be less

likely. Conversely, a band relatively insensitive to smallgeometry changes will appear stronger.

4.3.4 Simply dehydrogenated coronene cation (C24H11
+)

TheC24H11
+ spectrum (cf. Fig. 4.6) is very similar to the one measured for the coronene cation,

we observe, in particular, the same broad band at∼ 458 nm with a vibronic progression on the

blue side of the band. We further observe a small feature standing out at∼ 442 nm and another

weak band at 478 nm. TD–DFT predicts four electronic transitions between 400 and 500 nm,

respectively at 420, 432, 471, and 492 nm (cf. Table 4.2). We tentatively assign the main

observed band at 458 nm to theT10←− T0 transition, calculated at 432 nm with an oscillator

strengthf = 2.2×10−2. The feature observed at 442 nm, instead, cannot be attributed to the

predicted transition at 420 nm because it is too strong compared to the calculated intensity (f =

2.3×10−3), so it probably belongs to the vibronic progression of the 458 nm band. Another
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Experiment TD-DFT

Transition PIRENEA Previous BP/SVP Previous

Coronene+ (C24H
+
12)

D2h D6h

D12←− D0 419.8(0.007)

D11←− D0 432 425(0.008) 420.3(0.007)

D10←− D0 457 459.0a 433(0.030) 427(0.030)b

D9←−D0 470(0.008)

D7←−D0 473 478(0.009)

D6←−D0 505(0.002)

D5←−D0 502a 491(0.008)

Simply dehydro-coronene+ (C24H
+
11)

T12←− T0 420(0.002)

T10←− T0 458 432(0.022)

T7←− T0 471(0.016)

T6←− T0 478 492(0.006)

Doubly dehydro-coronene+ (C24H
+
10)

D17←− D0 442 421(0.018)

D16←− D0 458 433(0.033)

D11←− D0 475(0.019)

D9←−D0 485(0.009)

a Neon matrix (Ehrenfreund et al. 1992);b TD-DFT calculations at the BLYP/6-31G∗

level (Weisman et al. 2003).

Table 4.2: Positions of the bands (expressed in nm) as measured in the PIRENEA experiment

in the wavelength range 430 - 480 nm for the coronene cation (C24H12
+) and two of its de-

hydrogenated derivatives (C24H11
+ andC24H10

+). Electronic transitions and the corresponding

oscillator strengths (within parentheses) are computed using the split valence polarization (SVP)

basis set in conjunction with the BP86 exchange-correlation functional. Previous experimental

and theoretical data are reported, for comparison, in the case of coronene cation.
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Figure 4.5: MPD spectrum of the coronene cation measured with the PIRENEA set-up. Only

the electronic transitions calculated with D2h symmetry are shown.

transition is predicted by calculations at∼ 471 nm with an oscillator strengthf = 1.6×10−2.

In our spectrum we cannot identify any other feature next to this position, however, considering

the broadening that affects our spectra, this transition could be blended with the broad structure

of the 458 nm band. More precise spectroscopic techniques should improve the identification.

Finally, the weak band detected at 478 nm could likely be theT6←− T0 transition, calculated to

be at 492 nm with an oscillator strengthf = 5.7×10−3.

4.3.5 Doubly dehydrogenated coronene cation (C24H10
+)

C24H10
+ (see (d) in Fig. 4.2) can, in principle, have six nonequivalent isomers corresponding to

different distances between the photoejected H atoms, which cannot be distinguisheda priori in

our setup. Previous photodissociation experiments performed on the coronene cation in PIRE-

NEA, provide however strong evidence that only isomer with adjacent H atoms missing have

to be considered (Joblin et al. 2009). This is further confirmed by calculations on the binding
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Figure 4.6: MPD spectrum of the simply-dehydrogenated coronene cation measured with the

PIRENEA set-up.

energies of the isomers which show that this isomer is, by far, the most stable one (about 1.2

eV lower in energy). MPD of this species is performed with onelaser pulse at 12 mJ. In the

C24H10
+ spectrum (cf. Fig. 4.7) two closely spaced electronic transitions stand out, at∼ 442

and 458 nm. We observe also what could be interpreted as a vibronic progression on the red

side of the 458 nm band.

The presence of these hot bands, as discussed in the case of pyrene cation, is not unexpected,

as the ion cloud may retain some residual excitation energy due to the photofragmentation of

the parent and to the procedure of ejection of other species.

The strongest calculated transition in this spectral rangeis predicted to be theD16←− D0

at 433 nm, withf = 3.3× 10−2 (cf. Table 4.2). This transition is therefore the most likely

assignment for the strongest peak we observe at 458 nm. The band we observe at 442 nm can

then be associated to theD17←− D0 transition predicted to be at 421 nm withf = 1.8×10−2

(see Table 4.2). The other two transitions predicted by calculations at respectively 475 and 485

nm are probably blended with the observed vibronic progression.
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Figure 4.7: MPD spectrum of doubly-dehydrogenated coronene cation measured with the PIRE-

NEA set-up.

4.3.6 Completely dehydrogenated coronene cation (C+
24)

C+
24 was produced by UV-photofragmentation of the parent ion with the Xe arc lamp. MPD of

this species was performed with ten laser pulses and withoutkeeping constant the laser energy.

We can distinguish in the measured spectrum two main features standing out at about 439 and

444 nm, and a series of smaller peaks between 450 and 480 nm.

Previous experiments performed on the photodissociation of the coronene cation in PIRE-

NEA, evidenced the presence of two different fragmentationpaths, which suggests that differ-

ent isomeric forms ofC+
24 could be simultaneously produced in the dissociation process (Joblin

2003). Jones et al. (Jones & Seifert 1999) have calculated energies and structures of various

isomeric forms ofC24, in particular they have found 12 different stable isomers for this species

(cf. Fig. 4.10).

The results of these studies show that fullerene or graphitic-type structures are the lowest energy

structures, however neither fullerene-like nor graphite-like isomers have been experimentally
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Figure 4.8: MPD spectrum of completely dehydrogenated coronene cation measured with the

PIRENEA set-up.

observed so far forC+
24 (von Helden et al. 1993; Shelimov et al. 1994). Experimentalmeasure-

ments, in fact, seem rather to give evidence for the presenceof bicyclic rings in the gas phase.

To identify the bands observed in our measurements we computed the electronic transitions of

C+
24 relative to all the twelve structures predicted by Jones andwe compared them to our spec-

trum. The results of our calculations are listed in Table 4.3.

Calculated electronic transitions with oscillator strengths f ≤ 0.001 are not reported (for in-

stance the cage isomer 2 has no transitions withf ≥ 0.001 in the considered spectral range).

Values relative to the ring form (isomer 6) are not reported as well because calculations do not

predict any transition in the spectral range considered in our experiment.

Comparing the experimental spectrum to calculations, the planar isomer seems to be a plausible

candidate for identification of the structure detected in our experiment, having two close bands

at respectively 446 and 451 nm (for both bands∆λ = 7 nm with respect to our measured po-

sitions) with similar oscillator strenghts. Other possible candidates are the two-rings isomers

9, 10 and 11 (cf. Fig. 4.9), which also have transitions that are close (within the precision of

the calculations) to the experimental measurements in the considered spectral window. Inter-
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estingly, the oscillator strengths obtained for the electronic transitions of isomers 10 and 11 are

almost two orders of magnitudes larger than those found for the planar form in the same region.

As we do not know the absolute intensity of the measured bandsa definite identification based

only on this comparison is not possible. Furthermore, the simultaneous presence of more than

one isomer cannot be excluded. Considering their close positions, some of the electronic tran-

sitions could be merged resulting in only two distinct peaksin our spectrum.

Comparing the spectrum ofC+
24 to those recorded for the other dehydrogenated coronene deriva-

tives, we can also observe the effect of progressive dehydrogenation of the parent cation, which

results in a blue shift of the main electronic transitions (cf. Malloci et al. (2008)).

Figure 4.9: Calculated electronic transitions, with corresponding oscillator strengths, of four

different isomers ofC24
+, whose geometry is represented in Fig. 4.10, which seem to beplau-

sible structures produced in our experiment.
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PIRENEA Cage (1)∗ Cage (2)∗ Planar (3)∗

λ (nm) λ (nm) f λ (nm) f λ (nm) f

439 407.4 0.002 401.5 0.002

444 408.8 0.001 414.5 0.010

439.6 0.001 446.8 0.006

483.9 0.003 451.2 0.004

Graphitic (4)∗ Cage (5)∗ Double rings (7)∗ Double rings (8)∗

λ (nm) f λ (nm) f λ (nm) f λ (nm) f

416.2 0.004 435.8 0.001 401.9 0.046 415.9 0.109

418.4 0.002 486.5 0.002 402.4 0.009

421.1 0.002 497.7 0.004 404.1 0.003

422.4 0.002 408.9 0.046

426.9 0.002 413.4 0.016

465.8 0.002 422.1 0.054

469.8 0.009 458.3 0.001

473.0 0.192

498.9 0.019

Double rings (9)∗ Double rings (10)∗ Double rings (11)∗ Linear (12)∗

λ (nm) f λ (nm) f λ (nm) f λ (nm) f

406.5 0.155 408.6 0.029 400.5 0.012 492.5 1.526

438.6 0.003 437.4 0.148 429.2 0.866 497.5 0.658

440.2 0.006 439.8 0.007 454.2 0.014

460.9 0.044 452.6 0.467 457.3 0.202

472.9 0.139

∗ cf. Fig. 4.10

Table 4.3: Calculated electronic transitions and corresponding oscillator strengths for ten dif-

ferent isomers of theC24
+ cation compared to the spectral features measured in the PIRENEA

experiment. All the calculations are made using the split valence polarization (SVP) basis set

in conjunction with the BP86 exchange-correlation functional.
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Figure 4.10: Structures and energies of the isomers ofC24 (Figure taken from Jones & Seifert

(1999)).

4.4 Modelling the photophysics of PAH cations

The dissociation yield that is measured in our experiments depends on the absorption cross-

section,σabs, of the studied species and on the local intensity of the radiation field over the ion

cloud. In order to retrieve the value ofσabs it is necessary to interpret the experimental data

using a model that describes the photophysics of the ions. Toachieve this goal we have used a

kinetic Monte Carlo code (Rapacioli et al. 2006; Joblin et al. 2002) that provides a description

of the photoabsorption and dissociation processes and the time evolution of the internal energy

of the considered species as a function of the flux density of photons. The method has been

initially described by Boissel et al. (1997).

In our experimental conditions, involving low values of thelaser fluence, multiphoton events

are negligible. However during a laser pulse (tpulse= 5 ns), the ion has enough time to absorb

sequential photons leading to an increase of its internal energy. If this energy is above the dis-

sociation threshold the ion may fragment. The absorption rate constant,kabs, can be expressed
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by the following equation

kabs=
σabs

S
φ =

σabs

S
λ
hc

Elaser

tpulse
(4.1)

whereσabs is the absorption cross-section of the electronic state of the molecule averaged over

the spectral profile of the laser, S the laser spot surface,φ is the photon flux (number of photons

per unit time),λ is the wavelength of the excitation photon andElaser andtlaser are respectively

the laser pulse energy and the pulse duration. According to Boissel et al. (1997) the fragmenta-

tion ratekd as a function of the internal energy U, is given by

kd(U) = Ad
ρ(U−Ed)

ρ(U)
(4.2)

whereρ is the density of states of the parent ion,Ed is the binding energy which is taken to be

4.8 eV for the loss of an H atom (Pino et al. 2007; Jolibois et al. 2005) andAd is a preexponen-

tial factor. The density of states is calculated using the list of modes determined by DFT for the

parent ion and applying the Beyer-Swinehart algorithm (Stein & Rabinovitch 1973). The value

of Ad was calculated using the results of Jochims et al. (1994):kd = 104 s−1 at U = 9.06 and

12.05 eV forC16H10
+ andC24H12

+ respectively.

We have observed that the experimental conditions stronglyinfluence the measurement of the

dissociation yield. Two additional parameters, in particular, have to be considered when mod-

elling the data: the overlap between the laser spot and the ion cloud, which can change due to

possible variations of the ion cloud size, shape and position, and the photon local density in the

laser spot, which in turn depends on the laser beam profile.

The ion cloud spatial distribution and position inside the cell depend on the details of ion for-

mation and injection into the trap, which can to some extent vary from shot to shot. This affects

the overlap between the laser spot and the ion cloud, and consequently the measured dissocia-

tion yield of the species. This is taken into account in our measurements by averaging, at each

wavelength, the recorded dissociation yield over several spectra.

The second effect we have to consider is the variation of the local photon flux (number of pho-

tons per unit time per unit surface) in the laser spot. This parameter plays an important role on

dissociation, especially in the case of molecules that needto absorb a large number of photons

to dissociate (e.g. coronene cation). The OPO beam intensity follows a gaussian profile over

an elliptical surface with semi-axis of respectively 3 and 2.55 mm (values obtained from the

FWHM of the x and y beam profiles, cf. Fig. 4.11). The beam profile gives us the spatial distri-

bution of the laser intensity over the laser spot surface from which we can determine the spatial

distribution of the photon flux in the laser spot.

Using the Monte Carlo model, we were able to derive the numberof photons absorbed per

pulse and the corresponding dissociation counts for different values of the absorption cross-

section (see Figs. 4.14 and 4.13). As can be seen, the dissociation is dominated, in the case of
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Figure 4.11: Intensity mean profiles (averaged over 50 lasershots) of the Panther EX OPO laser

beam along the x and y directions measured with a LaserCam-HRbeam profiler (Coherent) at

1 m from the laser.

Figure 4.12: Image of the OPO laser beam mean profile (averaged over 50 laser shots) in the x-y

plane. The different colours corresponds to decreasing laser intensities going from the centre of

the spot to the edges.
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the pyrene cation, by the ions that have absorbed at least three photons of 2.84 eV (λ = 436

nm) while for the coronene cation, the absorption of four photons of 2.71 eV (λ = 457 nm) is

required to efficiently dissociate.

Studies on the photofragmentation of the fluorene cation using sequential multiphoton absorp-

tion have shown that the absorption cross-section may vary with the number of absorbed pho-

tons (Nguyen-Thi et al. 2006b,a). We have considered this hypothesis in our calculations run-

ning simulations for the pyrene cation with a variable cross-section but we could not evidence

such an effect from our measurements.

Figure 4.13: Relative dissociation counts as a function of the photon flux density obtained from

the model considering different values for the absorption cross-sections, for pyrene cation (left

panel) and coronene cation (right panel).

To derive the absorption cross-section from the fit of the experimental data with our model,

we have measured the dissociation yield as a function of the laser energy. We observed an

increase of this yield with the energy up to a saturation value that is on average 50% and 60%

for C16H10
+ andC24H12

+ respectively, and up to 80% when considering individual shots (cf.

Tab. 4.4). An important aspect that arise from these measurements is that while in the case

of the pyrene cation the mean and maximum values of the dissociation yield are always very

similar, meaning that the ions are efficiently dissociated at each laser shot. This is not the case

for the coronene cation for which dissociation can noticeably vary from one shot to another.

This effect is related to the variation of the local photon flux in the laser beam, discussed above,

to which bigger molecules are more sensitive. We can furtherinfer from these data that the size

of the ion cloud is of the same order as the laser beam.
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Figure 4.14: Photoabsorption events (abs_n is the fractionof events with n absorbed photons,

abs_n+ with more than n photons) and total dissociation yield (Ydiss) calculated with the model

as a function of the photon flux density. The left panel shows the results obtained for the

pyrene cation forσabs= 1.6×10−16cm2 while the right panel shows the results obtained for the

coronene cation forσabs= 0.6×10−16cm2.

The calculated dissociation yield is obtained combining the results of the Monte Carlo simu-

lations (Fig. 4.13) and the spatial information on the photon flux density derived from measure-

ments of the laser beam profile. Relative dissociation yields were used to obtain values that are

independent of the ion cloud size. The fitting of the experimental data allows then to constrain

the absorption cross-section of the studied species. We derived a value of 1.6×10−16cm2 for

the pyrene cation atλ = 436 nm and of 0.6×10−16cm2 for the coronene cation atλ = 457 nm

(cf. Fig. 4.15).

The value obtained for the pyrene cation results to be the same estimated by Biennier (2004).

In the case of the coronene cation our data represent the firstestimation of its cross-section

coming from gas-phase experimental measurements. An absorption cross-sectionσabs≃ 0.9×
10−16cm2 for the 459 nm band can be derived from the matrix data of Ehrenfreund et al. (1992).

This value is very close to our result. All these results justify a posteriori that our physical

description, in which we consider only sequential absorption of photons and neglect true multi-

photon events, is correct.
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Energy OPO (mJ) Max Diss Yield (%) Mean Diss Yield (%)

Pyrene+ [C16H
+
10] at λ = 436 nm

4 20.6 19.4

8 39.5 34.5

12 47.9 43.5

16 48.6 46.2

20 55.6 51.2

Coronene+ [C24H
+
12] at λ = 457 nm

10 48.2 28.7

12 64.9 38.2

14 85.7 42.6

16 81.0 52.3

20 88.3 62.0

Table 4.4: Measurements of the dissociation yield of coronene and pyrene cations as a function

of the OPO laser energy. For a given energy the mean and maximum values of the dissociation

yield are calculated over a series of 20 dissociation spectra.

Figure 4.15: Relative dissociation yields measured experimentally (dots) and normalised to the

lowest value, compared with the results obtained from the model considering different values

for the absorption cross-sections (lines), for pyrene cation (left panel) and coronene cation (right

panel).
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4.5 General remarks and astrophysical implications

The ion-trap technique used here offers a relatively straightforward way to produce, isolate and

study species, which is difficult to achieve with other techniques. The drawback of the tech-

nique is that the multiple photon absorption process raisesconsiderably the internal energy of

the probed molecular ions so even if the species are cold before the beginning of the MPD

scan, they are hot after absorbing the first of the series of photons needed to dissociate them.

In these hot molecules band positions and intensities may differ from those of the cold ions,

making more difficult the analysis of the resulting MPD spectrum. Furthermore, possible ex-

citation of the ground state levels through fast energy redistribution must be taken into account

(cf. sect. 4.3.1).

Despite these difficulties the results obtained here have shown a good agreement with previous

experimental data, when available, and have provided a firstunderstanding of the electronic

structure of species never studied before. Theoretical calculations helped us to identify the

measured bands and represent, in some cases, an essential tool for the interpretation of the ex-

perimental spectra, as shown in the case of 1–methylpyrene cation (cf. sect. 4.3.2) and ofC+
24

(cf. sect. 4.8).

From an astrophysical point of view, our spectra are not directly comparable to observational

data for the reasons explained above, however they give us the possibility to outline which

species are suitable candidates as carriers of the DIBs. Among the species studied here, only

three of them exhibit spectral features at a position close to the 4428 Å DIB: the 1–methylpyrene

cation (λPIRENEA= 442 nm), the doubly dehydrogenated coronene cation (λPIRENEA= 442 nm)

and the completely dehydrogenated coronene cation (λPIRENEA= 444 nm). For the first of them,

CH3−C16H9
+, measurements made on cold gas-phase ions by Tan & Salama (2006) have al-

ready shown that the characteristics of the observed band are not correlated with those of the

4428 Å DIB. Still, an interesting result we have obtained with our measurements is the iden-

tification of the simultaneous presence of two different structures for this species. This aspect

could not be evidenced in matrix experiments in which the contribution of another species (the

1–methylene–pyrene cation) was invoked to interpret the spectrum.

In the case of the doubly dehydrogenated coronene cation, two electronic transitions are present

in the considered spectral range, at 442 and 458 nm, the second one being much stronger. This

automatically excludes this species as a possible carrier for the 4428 Å DIB.

ConcerningC24
+, proposed to be a possible DIB carrier by Duley (2006), our gas-phase spec-

trum was found to have two main bands at 439 and 444 nm. Becauseof the small spectral

window sampled in our experiment, we are not able to concludeif both these bands belong to

a same species or if they have to be attributed to different isomers. The first scenario would

excludeC+
24 as a possible carrier for the 4428 Å band. In the case of the simultaneous presence
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of different isomers (a combination of bicyclic rings 9, 10 and 11, cf. section 4.8), instead, we

could propose that one of them absorbs only at 444 nm and not at439 nm. In particular, among

the considered species, isomer 11 presents a strong isolated band close to the 4428 Å DIB

position. This second scenario is however questionnable. If C24
+ species coming from the

dehydrogenation ofCmHn
+ PAHs (withm≥ 24) can survive in the interstellar medium, as sug-

gested by Le Page et al. (2003), different isomeric forms areexpected to exist and different

bands should be simultaneously present. A natural way to produceC24
+ is by dehydrogenation

of coronene, which is expected to be a prototype of medium-sized interstellar PAHs. We have

seen that the spectrum ofC24
+ produced in these conditions already leads to two distinct bands

that are not observed in the ISM.



Chapter 5

Summary and perspectives

Mihi cura futuri.

My concern is the future.

The PIRENEA set-up has been used in this work to study the properties of polycyclic aro-

matic hydrocarbons (PAHs), a class of large molecules proposed to account for the AIBs, a set

of discrete emission bands dominating the mid-infrared spectra of many galactic and extragalac-

tic objects. Two different questions have been approached:(i) investigate the photodissociation

of PAHs under UV photon irradiation in astrophysically relevant conditions, (ii) characterise

the visible spectroscopic properties of several PAH cations and dehydrogenated derivatives.

The main results obtained are summarised in the following section.

5.1 Summary of the results

5.1.1 Photofragmentation of isolated PAH ions

The photofragmentation of four different medium-sized PAHcations has been performed with

the continuous irradiation of a Xe arc lamp. The main fragmentation pathways of each species

have been identified showing that:

• The loss of a single hydrogen atom is the primary fragmentation channel for all the studied

species.

• Completely dehydrogenation of the parent ion was observed only for the naphtho[2,3-

a]pyrene species while all the other examined cations showed only partial dehydrogena-

tion ending up with the production ofCnH4
+ species.
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• Elimination of an acetylene molecule was observed for all the studied species. Other

fragmentation pathways involving the loss of a diacetylenemolecule and small hydrocar-

bons (CnHm, with n = 1, 2) were also observed respectively in the case of the pyrene and

pentacene cations.

• All the examined species exhibited, in their dissociation cascade, the presence of several

carbon clusters. Dissociation paths involving the loss of C, C2 andC3 neutral carbon

fragments were evidenced for these species.

These results put forward the possible contribution of PAHsto the formation of small hydrocar-

bons and carbon clusters in the interstellar medium as already suggested from observations of

PDRs.

5.1.2 Visible photodissociation spectroscopy ofPAHs+

The MPD technique used in this work enabled us to indirectly study the visible absorption spec-

trum of non volatile reactive ions isolated in a cold ICR cell. Since all species with a different

m/z ratio are ejected before recording the spectrum, the technique is free from contaminants

(with the exception of isomers) that are difficult to avoid byother methods. The technique has

the limitation of recording an action spectrum that does notprovide direct information on the

cross-section. For this reason theoretical calculations and modelling have been used to comple-

ment it, in particular a kinetic Monte Carlo code has been used, for two of the studied species,

to constrain the photophysics of these ions and to derive their absorption cross-section. The

obtained results can be summarised as follows:

• Comparison with gas-phase spectra of cold PAHs has shown a very good agreement with

the measured band positions in the case of pyrene and 1–methylpyrene cations, con-

firming the validity of our experimental method in obtainingthe band positions in the

gas-phase. Still the technique does not allow to measure theband profile of cold ions.

• The gas-phase spectra of the coronene cation,C24H12
+, and some of its dehydrogenated

derivatives (C24Hp
+ with p = 0, 10, 11), have been measured and discussed here for the

first time. The progressive dehydrogenation is shown to induce a blue shift in the band

positions as predicted by theory.

• Different isomeric forms were considered in the case ofC+
24 species. By comparison with

theoretical calculations different isomers were identified as possible structures produced

in our experiment.

• Absorption cross-sections were derived for the pyrene and coronene cations. The ob-

tained values seem to be in satisfactory agreement with previous experimental results.
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Our results have shown that none of the species studied here can be retained as a possible carrier

for the 4428 Å DIB.

5.2 Perspectives

The photodissociation study performed here offers a qualitative analysis of the behaviour of

PAHs exposed to continuous UV-visible radiation. More workshould however be performed to

obtain molecular data that can be used in astrophysical models, for instance time-resolved ex-

periments could be used to measure photo-dissociation kinetics and the dissociation constants.

The determination of branching ratios should also be considered. This study cannot be accom-

plished with the use of the Xe lamp because under continuous irradiation all the species, parent

ions and fragments, simultaneously absorb photons and fragment preventing from measure-

ments of the branching ratios. The use of a source of FUV photons (10.5 eV), currently under

installation on PIRENEA, in future experiments could help in this analysis.

Concerning the study of the spectroscopic properties of PAHcations in the gas-phase, both

laboratory experiments and calculations are challenging as shown by the lack, still today, of

accurate quantitative data on the photo-absorption properties of a large number of PAH ions

and derivative species. Even if the technique presented here does not provide spectra which are

directly comparable to the astronomical ones, these data are useful for the pre-selection of the

most promising interstellar candidates for the DIBs.

Perspectives for this work will include: (i) the extension of the spectral window of investiga-

tion to a larger spectral range; (ii) the recording of spectra of other species which are relevant

according to astrophysical models, and the estimation of the corresponding absorption cross-

sections; (iii) from an experimental point of view a better control of the ion temperature in the

trap; (iv) from a theoretical point of view the modelling of the vibrational dynamics of hot ions

to more accurately reconstruct the absorption spectrum from the MPD measurements.





Conclusions [en]

An original set-up dedicated to astrochemistry, PIRENEA (Piège à Ions pour la Recherche et

l’Etude de Nouvelles Espèces Astrochimiques), has been used in this work to study the prop-

erties of polycyclic aromatic hydrocarbons (PAHs), a classof large molecules that has been

proposed to be abundant in the ISM.

In this study, we have first investigated the photodissociation of different medium-sized

PAHs under UV photon irradiation, which is the main process responsible for the destruction

of these species in the interstellar medium. We have identified the main fragmentation paths

and obtained the photofragmentation cascade of the studiedspecies. These experimental results

fit into a scenario in which PAHs could contribute to the formation of small hydrocarbons and

carbon clusters in the interstellar medium as has been already suggested from observations of

photodissociation regions.

As the only direct diagnostics for the presence of particular species in the ISM are their spectral

fingerprints, we have also characterised the visible spectroscopic properties of several PAH

cations and dehydrogenated derivatives using a laser multiphoton dissociation technique. Our

results have provided first information on the electronic spectra of species never studied before.

Furthermore we have shown how, with the help of a model that describes the photophysics of

these ions, we can derive their absorption cross-section.

The identification of specific PAHs in space is, probably, still a long way. However new

generations of laboratory experiments are in progress and upcoming data with space missions,

in particular the Herschel Space Observatory, will soon offer concrete opportunities for a better

understanding of the nature of these species and their formation mechanisms.





Conclusions [fr]

PIRENEA (Piège à Ions pour la Recherche et l’Etude de Nouvelles Espèces Astrochimiques),

qui est un dispositif expérimental dédié à l’étude de la physico-chimie interstellaire, a été utilisé

dans ce travail pour effectuer une étude expérimentale sur les molécules polycycliques aroma-

tiques hydrogénées (PAH), une classe de macromolécules reconnue comme une composante

très importante de la matière interstellaire.

Au cours de ce travail, nous avons tout d’abord étudié la photodissociation de différentes

espèces PAH de taille moyenne irradiées par des photons UV, processus qui est principalement

responsable de la destruction de ces molécules dans le milieu interstellaire. Pour chaque espèce

étudiée, nous avons déterminé la cascade des fragments produits et identifié les principales voies

de fragmentation. Ces résultats expérimentaux s’intègrent dans un scénario, déjà suggéré par

les observations des régions de photodissociation du milieu interstellaire, selon lequel les PAH

peuvent contribuer à la formation de petits hydrocarbures et agrégats carbonés dans ces milieux.

Les signatures spectrales représentent le seul moyen direct pour pouvoir diagnostiquer la présence

d’une espèce donnée dans le milieu interstellaire. Nous avons donc caractérisé les propriétés

spectroscopiques de différents PAH et de leurs dérivés déshydrogénés dans le domaine visible

en utilisant une technique de dissociation multiphotonique par laser. Nos résultats ont fourni les

premières données spectroscopiques sur des espèces jamaisétudiées auparavant. Nous avons

aussi montré, en utilisant un modèle décrivant la photophysique de ces ions, qu’il est possible

par l’analyse de ces mesures de déterminer la section efficace d’absorption de ces ions.

L’identification de PAH spécifiques dans l’espace nécessite, probablement, encore du temps

pour aboutir. Néanmoins une nouvelle génération d’expériences de laboratoire, qui est en train

d’être mise en place, ainsi que les prochaines données provenant des missions spatiales, comme

l’Observatoire Spatial Herschel, vont bientôt offrir de nouvelles opportunités pour caractériser

la nature de ces espèces et les mécanismes qui sont à la base deleur formation.
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BG Big Grain
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CNM Cold Neutral Medium

CRDS Cavity Ring-Down Spectroscopy
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FELIX Free Electron Laser for Infrared Experiment
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PES PhotoElectron Spectroscopy
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Abstract

One of the interesting discoveries of infrared astronomy isthe ubiquitous presence of polycyclic aro-

matic hydrocarbons (PAHs) in interstellar and circumstellar environments. These macromolecules play

a key role in the physics and chemistry of the interstellar medium (ISM). However, despite a lot of

observational, laboratory and modelling studies, no definite identification of individual species has been

possible yet. The identification process requires both an understanding of the nature of these large carbon

molecules, which is driven by their formation and further evolution under the action of UV photodisso-

ciation and chemistry, and the search for specific spectroscopic fingerprints. These subjects are experi-

mentally approached in this work, taking advantage of the PIRENEA set-up dedicated to astrochemistry.

In the first part of this thesis a study of the photodissociation cascade of several medium-sized PAHs

isolated in the ion trap of PIRENEA is performed. The aim of this study is to provide information on

both destruction of PAHs by UV radiation and formation channels of small hydrocarbons and carbon

clusters through destruction of a larger precursor. An inventory of the formed species is made and the

main fragmentation patterns are identified.

The second part of the thesis focuses on the visible spectroscopy of different PAH cations and de-

hydrogenated derivatives. Multiphoton dissociation spectroscopy is performed to measure the electronic

spectra of these species. The experimental results are interpreted with the help of theoretical spectra

calculated in the frame of the time-dependent density functional theory and laboratory data obtained in

rare-gas matrices. The photophysics of the laser-irradiated ions is also modelled to derive, for some of

the studied species, the absorption cross-sections of the measured electronic transitions. The purpose of

this second study is to obtain gas-phase spectroscopic dataon different ionised PAHs and derivatives, that

can be useful for the pre-selection of the most promising candidates for some of the diffuse interstellar

bands, a set of absorption bands observed in the ISM since almost a century but still unidentified.





Résumé

Une des découvertes majeures faites par l’astronomie infrarouge est la présence de molécules polycy-

cliques aromatiques hydrogénées (PAH) dans les milieux interstellaires et circumstellaires. Ces macro-

molécules jouent un rôle essentiel dans la physique et chimie du milieu interstellaire (MIS). Cependant

aucune espèce individuelle n’a pu être identifiée jusqu’à présent malgré de nombreuses études observa-

tionnelles, des travaux de modélisation et des expériencesdédiées en laboratoire.

Progresser dans cette identification nécessite de caractériser la nature de ces PAH qui est conditionnée par

les processus de formation et d’évolution par photodissociation UV et réactivité chimique. Il s’agit en-

suite d’obtenir des signatures spectroscopiques spécifiques. Ces sujets sont abordés expérimentalement

dans ce travail en utilisant l’expérience PIRENEA dédiée à l’étude de la physico-chimie interstellaire.

Dans la première partie de cette thèse, nous avons mesuré la photodissociation de ces espèces isolées

dans le piège à ions de PIRENEA. L’objectif scientifique de cette étude est d’apporter des informations

sur le processus de destruction des PAH par irradiation UV-visible et d’évaluer leur contribution à la

formation de petits hydrocarbures et d’agrégats carbonés dans le MIS. Un inventaire des espèces pro-

duites par photodissociation a été fait pour chacune des molécules considerées et les principales voies de

dissociation ont été identifiées.

Dans la deuxième partie du travail, je présenterai une étudesur la spectroscopie visible de différents

cations PAH et dérivés déshydrogénés réalisée par dissociation multiphotonique. Les résultats expéri-

mentaux ont été comparés à des spectres théoriques obtenus avec un modèle de la théorie de la fonc-

tionnelle de la densité et à des données spectroscopiques mesurées en matrices de gaz rare. Un modèle

décrivant la photophysique des ions a été utilisé pour déterminer les sections efficaces d’absorption de

certaines espèces étudiées. Ces données peuvent être utiles pour la pré-sélection de candidats aux bandes

diffuses interstellaires, bandes qui sont observées en absorption dans le MIS depuis près d’un siècle et

qui restent non identifiées.


