N

N

Analysis and Optimization of Peer-to-Peer Storage and
Backup Systems
Abdulhalim Dandoush

» To cite this version:

Abdulhalim Dandoush. Analysis and Optimization of Peer-to-Peer Storage and Backup Systems.
Networking and Internet Architecture [cs.NI]. Université Nice Sophia Antipolis, 2010. English. NNT:
. tel-00470493v2

HAL Id: tel-00470493
https://theses.hal.science/tel-00470493v2
Submitted on 8 Apr 2010 (v2), last revised 29 Apr 2010 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-00470493v2
https://hal.archives-ouvertes.fr

UNIVERSITE DE NICE-SOPHIA ANTIPOLIS

ECOLE DOCTORALE STIC
SCIENCES ET TECHNOLOGIES DE LINFORMATION ET DE LA COMMUNICATION

THESE

pour obtenir le titre de
Docteur en Sciences

de I'Université de Nice - Sophia Antipolis
Montion : Informatique

présentée et soutenue par

Abdulhalim Dandoush

Analysis and optimization of
peer-to-peer storage/backup systems

These dirigée par Philippe Nain et Sara Alouf

Soutenue le 29 Mars 2010

Jury:
Président : Alain JEAN-MARIE LIRMM, INRIA and CNRS, France
Directeur : Philippe = NAIN INRIA Sophia Antipolis, France
Co-Directeur : Sara ALOUF INRIA Sophia Antipolis, France

Rapporteurs : Phuoc TRAN-GIA University of Wuerzburg, Allemagne
Emilio LEONARDI Politecnico di Torino, Italie
Examinateurs : Sébastien CHOPLIN Ubistorage, France
Fabrice LE FESSANT INRIA Saclay, France
Walid DABBOUS INRIA Sophia Antipolis, France






THESE

[’ANALYSE ET L’OPTIMISATION DES SYSTEMES

DE STOCKAGE DE DONNEES
DANS LES RESEAUX PAIR-A-PAIR

ANALYSIS AND OPTIMIZATION OF

PEER-TO-PEER STORAGE/BACKUP SYSTEMS

ABDULHALIM DANDOUSH
April 2010






RESUME

Cette these évalue les performances de systémes de stockage de données sur des réseaux de pairs. Ces
systémes reposent sur trois piliers: la fragmentation des données et leur dissémination chez les pairs, la
redondance des données afin de faire face aux éventuelles indisponibilités des pairs et 'existence d’un
mécanisme de recouvrement des données perdues ou temporairement indisponibles. Nous modélisons
deux mécanismes de recouvrement des données par des chaines de Markov absorbantes. Plus précisément,
nous évaluons la qualité du service rendu aux utilisateurs en terme de longévité et de disponibilité des
données de chaque mécanisme. Le premier mécanisme est centralisé et repose sur l'utilisation d’un
serveur pour la reconstruction des donnée perdus. Le second est distribué : la reconstruction des frag-
ments perdus met en oeuvre, séquentiellement, plusieurs pairs et s’arréte des que le niveau de redon-
dance requis est atteint. Les principales hypotheses faites dans nos modeles sont validées soit par des
simulations soit par des traces réelles recueillies dans différents environnements distribués. Pour les
processus de téléchargement et de recouvrement des données nous proposons un modele de simulation
réaliste qui est capable de prédire avec précision le comportement de ces processus mais le temps de sim-
ulation est long pour de grands réseaux. Pour surmonter cette restriction nous proposons et analysons
un algorithme efficace au niveau flux. L’algorithme est simple et utilise le concept de (min-max). Il per-
met de caractériser le temps de réponse des téléchargements en paralléle dans un systeme de stockage
distribué.

Mots-cles: systémes pair-a-pair, évaluation de performance, chaine de Markov absorbante, approxima-
tion champ moyen, simulation au niveau paquet, simulation au niveau flux.



ABSTRACT

This thesis characterizes the performance of peer-to-peer storage systems in terms of the delivered data
lifetime and data availability. Two schemes for recovering lost data are modeled and analyzed: the first is
centralized and relies on a server that recovers multiple losses at once, whereas the second is distributed
and recovers one loss at a time. For each scheme, we propose simple Markovian models where the
availability of peers is exponentially distributed, and more elaborate models where the latter is hyper-
exponentially distributed. Our models equally apply to many distributed environments as shown through
numerical computations. These allow to assess the impact of each system parameter on the performance.
In particular, we provide guidelines on how to tune the system parameters in order to provide desired
lifetime and/or availability of data. The key assumptions made in the models are validated through
intensive packet-level simulations or real traces collected from different distributed environments. In
fact, we propose a realistic simulation model implemented on the Network Simulator (NS-2) for both
download and recovery processes. Although this simulator can accurately predict the behaviour of the
latter processes while considering the impact of several constraints such as the heterogeneity of peers
and the the underlying network topologies, this simulator requires however relatively long time. To
overcome this scalability limitation, we propose and analyze an algorithm, we called the “progressive-
filling flow-level algorithm” or PFFLA. The algorithm is efficient in time and quite simple and uses the
concept of “Progressive-Filling” (or max-min fairness), hence the name. The validation of this algorithm
consists in characterizing the distribution of the response time of parallel downloads in a distributed
storage system, through simulations.

Keywords: Peer-to-Peer systems, performance evaluation, absorbing Markov chain, mean-field approxi-
mation, packet-level simulation, fow-level simulation.



ACKNOWLEDGMENTS

This thesis is the result of some years of research that has been done since I came to MAE-
STRO’s group. Over time, I have met and worked with great people. It is a pleasure to convey
my gratitude to them all in my humble acknowledgment.

First and foremost I wish to thank my supervisors, Philippe NAIN (Leader of the MAESTRO
Team-Project at INRIA) and Sara ALOUF (Associate researcher at INRIA), whose expertise, un-
derstanding and patience, enriched me in many domains (e.g. Stochastic process, queueing
theory, fluid approximation). I appreciate their vast knowledge and skills in many research and
non-research areas. I will never forget their assistance in analyzing problems, understanding re-
sults, writing articles and reports. For sure, I am grateful to them for giving me the opportunity
to work on this exciting research topic and the freedom to carry it out.

I would like to thank Alain Jean-Marie (Research director at INRIA and LIRMM) for tak-
ing time out from his busy schedule to guide me finishing the last chapter of my thesis. His
invaluable advices on simulating parallel downloads and his exceptional insights into engineer-
ing and queueing systems greatly enriched my knowledge and my skills in different directions
(e.g. programming, generating traffic). Thanks to him I learned how to formulate and describe
distributed algorithms.

These dear three supervisors have provided me unflinching encouragement and support in
various ways and in several critical moments. Thanks God for give me the opportunity to work
with them.

I gratefully acknowledge Giovanni Neglia (Associate researcher at INRIA) for the helpful
discussions on several issues related to my thesis and on general subjects in our small life. T will
miss him a lot, he is someone special out of my friends.

Personal thanks to all my dear colleagues at MAESTRO, PLANETE and MASCOTTE Teams-
Projects for their loving kindness and for the amusing time shared together, in particular, to
Ahmad Al Hanbali, Mouhamad Ibrahim, Danil, Giuseppe, Saed, Ricardo, Utku, Vincenzo, Kon-
stantin, Alonso, Amar, Alberto, Imed, M. Jaber, B. Ben-Romdhane, Faker, Amin Ismail, J. Mon-
teiro, D. Mazauric and E. Isnard.

I am very thankful to our nice and lovely assistant Ephie Deriche for her help, kindness and
the never forgotten amazing discussions during the daily lunch.

Special thanks to Fabrice Huet, Florin and Fabien of the OASIS Team-Project for their help
in the Proactive tool. This tool helped me to do a huge computations in a short time.

Great thanks to INRIA that provides a very nice and rich environment of research which is
one of the best in all Europe (from my experience) and maybe in the world.

v



vi

Many thanks to all my teachers, doctors, professors and friends who taught me or let me
teach with them or discussed with me or corrected me such as Y. Lecourtier, C. Barakat, W.
Dabbous, E. Altman, M. Syska, J.-C. Bermond, F. Baude, A. Legout, F. Giroire, O. Dalle, J.
Moulierac, S. Pérennes, E. Lety, E. Isnard, S. Choplin, P. Tran-Gia, and K. Pawlikowski.

I am very thankful to my dear professors, teachers and assistants in Syria such as Rad-
wan Dandah, Ahmad Sakr Ahmad, Talal el Ateki, Kassem Kabalan, Jamal khalifah, Hassen el
Ahmad, Adnan Meatrmawi, Moustafa Dalila, Haitham el Radwan, Zoheir Wakkaf, Halah Mah-
moudi, Mariam Saii, Solafa Salameh, Moustafa Fawal and all the staff of the Computer Sciences,
Electronic and Telecommunication Faculties in the Tishreen University (Lattakia).

I would also like to thank all my family (in particular, my father Hammoud and mother
Houriah) for the support they provided me through my entire life. I last and not least acknowl-
edge my wife Soheir and my nice daughter Nour Houriah, without whose love and encourage-
ment, I would not have finished this thesis. I always thanks God who let me meet Soheir. She
is a great women.



vii

Abdulhalim DANDOUSH
INRIA Sophia Antipolis and University of Nice-Sophia Antipolis, France






CONTENTS

Résumé iii
Abstract iv
Acknowledgements \%
Figures Xiv
Tables 1
1 Background, Motivation and Related Work 3
1.1 P2Poverlay architectures . . . . . . . . . . ... .. 4
1.1.1 Unstructured P2Pnetwork . . . . . . . . . .. . ..o 4

1.1.2 Structured P2Pnetwork . . . . .. . .. ... .. ... 5

1.2 P2P backup and storage SyStemsS . . . . . . . v v v it e e e e e e e e e e 7
1.2.1 Redundancy mechanisms . . .. .. ... ... ... .. ... ....... 8

1.2.2 Recovery policies and mechanisms . . . . ... ... ... ......... 11

1.2.3 Some existing P2P backup and storage systems . . .. ... ........ 14

1.3 Related work and motivations . . . . . . . . ... ... ... 17
1.3.1 Works related to peers availability . ... ... ... ............ 18

1.3.2 Works related to download and recovery processes . . . ... ... .... 19

1.3.3 Works related to ata lifetime and availability . . . . . . ... ... ..... 20

1.4 Contribution and organization of this thesis . . . ... ... ... .. ....... 22

2 Performance evaluation of data lifetime and availability in distributed-repair sys-

tems 25
2.1 Introduction . . . . . . . . . i i e e e e e e e e 25
2.2 System description and assumptions . . . . . . ... ..o e e 27
2.3 Preliminariesand Notation. . . . . . . . . . . . . ... 31
2.4 Simple model, recovery process is exponentially distributed . . . . ... .. ... 32

1X



CONTENTS

2.4.1 Datalifetime . . ... .. . . . . ... e 32
2.4.2 Dataavailability . .. ... ... ... ... ... 34
2.5 Simple model, recovery process is hypo-exponentially distributed . . . . ... .. 36
2.5.1 Datalifetime . . ... .. .. . . . . .. 38
2.5.2 Dataavailability . ... ... .. ... ... ... ... .. 39
2.6 Extended model, recovery process is exponentially distributed . . . . . . ... .. 40
2.6.1 Datalifetime . . ... ... . ... 40
2.6.2 Dataavailability . .. ... ... ... ... ... . 42
2.7 Extended model, recovery process is hypo-exponentially distributed . . . . . . . . 42
2.7.1 Datalifetime . . ... ... . ... 46
2.7.2 DataAvailability . .. ... ... ... ... 47
2.8 Validation of the approximation made to compute the availability metrics . . . . . 49
2.9 Validation of the simple fluid model made in Sect. 2.4.2 . . ... ... ... ... 50
2.10 Deploy and tune the P2P backup and storage protocol . . .. ... ... ..... 50
2.11 Numerical results . . . . . . . . . . e e e 51
2.11.1 Parameter values . . . . . . . . . . ... 52
2.11.2 Comparison between simple and extended models . . . ... ... .. .. 54
2.11.3 Performance analysis . . . . . . . . . ... 55
2.11.4 Engineering the System . . . . . . . . . . ittt 55
2.12 ConcluSion . . . . ..o e e e e e e e e e e e 56

Performance evaluation of data lifetime and availability in centralized-repair sys-

tems 63
3.1 Introduction . . . . . . . . L e e e e e 63
3.2 System description, assumptions and notation . . . . . . .. ... ... ... ... 64
3.3 Simple model, recovery process is exponentially distributed . . . ... ... ... 66
3.3.1 Datalifetime . ... ... ... . e 66
3.3.2 Dataavailability . .. ... ... ... 68
3.4 Simple Model, recovery process is hypo-exponentially distributed . . . ... ... 70
3.4.1 Datalifetime . . ... .. .. . . ... e 72
3.4.2 Dataavailability . ... ... ... ... 73
3.5 General model, recovery process is hypo-exponentially distributed and peers
availability is hyper-exponentially distributed . . . . . ... .. ... ... .... 74
3.5.1 Datalifetime . . . . . . . . . . . e 79
3.5.2 Dataavailability . ... ... ... ... 80
3.6 Numericalresults . . . . . . . . . . . e e 82

3.6.1 Parametervalues . . . . . . . . . .. e e 82



CONTENTS xi

3.6.2 Setting the system’s key parameters. . . . . . . . .. ... ... ... 84
3.6.3 Impact of the size of blocks/fragments. . . . . . . ... ... ... ..... 84

3.7 ConcluSions . . . . . . v i e e e e e e e e e e e 85
4 Packet-level Simulation Model for Download and Recovery Processes 87
4.1 Introduction . . . . . . . . . i L e e e e e e e 87
4.2 MOtiVation . . . . . vt v e e e e e e e e e e e e e e e e 88
4.2.1 Choice of Simulation . . . . . . . .. .. . 90
4.2.2 Choice of NS-2 . . . . . . . . e 90

4.3 Simulation Assumptions and Network Topology . . . . . ... ... ... ..... 90
4.3.1 Network Topology . . . . . . . . . . . i ittt 93

4.4 Experiments SEtUP . . . . . . . vttt e e e e e e e e e e 94
4.5 Experimental Results . . . . . . . . . . . ... .. 96
4.5.1 Experimentl . . . . . . . . . .. e 96
4.5.2 Experiment5S . . . . . . . . .. e e e e e 98
4.5.3 Experiment 6 . . . . . . . . ... e e e e e e e 99
4.5.4 Experiments8and 9 . . ... . ... .. e 100
4.5.5 Experiment 10 . . . . . . . . .. L 101

4.6 ConcluSionS . . . . . v v i it e e e e e e e e e 101

5 Flow-Level Modeling of Parallel Download Process: First step toward a scalable

P2P simulator 109
5.1 Introduction andrelatedwork . . . . . . . . . . ... .. .. ... ... ... ... 109
5.2 System description and notation . . . . . . ... ... ... 112
5.3 Description of the algorithm . . . . . .. .. ... ... .. ... .......... 113
5.4 Experimentalresults . . . . . . . . . ... 116
5.4.1 Parametervalues . . . . . . . . . . . . . e 116
5.4.2 Simulatorsand MetricS. . . . . . . . . . . ... 118
543 Results. . . . . . . . . e e 119

5.5 Conclusion and futurework . . . . . . . .. ... ... 123
6 Conclusion and future work 129
6.1 Conclusion . . . . . . . . . . i e e e e 129
6.1.1 Delivered data lifetime and data availability . . . ... ... ........ 130
6.1.2 Validation of key assumptions . . . . . . . ... ... 132

6.1.3 First step toward a scalable simulator of the whole storage/backup system 133
6.2 Futurework . . . . . . .. 133



xii

CONTENTS

A Packet-level Simulation Model: Some Implementation Details

B Approximations with Processor Sharing

B.1 Distribution of the response time in the M/D/1/PS queue . . . .

B.2 Small load approximations . . . . . ... ... ... ... ... ..

C Présentation des Travaux de Thése en Francais

C.1 Introduction . . . . . . . . . . . v v i ittt
C.2 Architectures de réseau de recouvrementP2P . . . . ... .. ..
C.2.1 Réseau P2P non-structuré . . . . . . ... ... ......
C.2.2 RéseauP2Pstructuré . . . . . . . . . .. ... ... ..
C.3 Systémes P2P de stockage et de sauvegarde des données . . . . .
C.3.1 Les mécanismes de redondance . . . . ... ........
C.3.2 Les politiques et les mécanismes du processus de recouvrement
C.3.3 Examples de systemes P2P de stockage et de sauvegarde
C.4 Létat de lart et lesmotivations . . . . . .. ... ... ......
C.4.1 Ladisponibilité despairs. . . . . . . ... ... ... ...
C.4.2 La durée de vie et la disponibilité des données . . . . . . .
C.5 Contributiondelathese . ... ... ... ... ... .......

Bibliography

137

153



FIGURES

1.1

2.1

2.2

2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4

4.5
4.6

5.1

5.2

General data organization scheme in erasure coded systems. . . . . ... ... .. 10

Transition rates of the basic absorbing Markov chain {X¢(t), t > 0} in the distributed-

recovery implementation. . . . . . ... ... L. 32
The Markov chain {(X}(t),Y5(t)), t > O} with the distributed-repair scheme

whens=3,r=2andk=2. .. .. . . . . . .. e 38
Some transition rates of the Markov chain W whenn =2,s =4,r=2,and k=1. 57
The CCDF of the relative error induced by the approximation (2.5). . . . . .. .. 57
The CCDF of the relative error induced by the approximation (2.15). . ... ... 58
Validation of the fluid approximation: Relative error [M¢ ; — E[X¢|/ Mgqo oo 58
Contour lines of performance metrics (CSIL context, distributed-repair scheme). . 61

Transition rates of the absorbing Markov chain {X§(t),t >0} ... ... ... .. 67
The Markov chain {(Xf(t),Y§(t)),t >0}whens =2, r=2,k=2.. . . ... ... 72
Some transitions of the Markov chain Wwhenn =2,s =3, r=1,andk=1. .. 86
Contour lines of performance metrics (PlanetLab context, centralized repair). . . 86
Simulator architecture. . . . . . . . . . ... e 91
Three-level hierarchical random graph of Experiment 1. . . ... ... ... ... 94
Experiment 1: Fragment and block download times. . . ... ... ... ..... 105
Experiment 5 (top a+b): Download and distributed recovery processes, Experi-

ment 6 (down c+d): Fragment and recovery time, centralized recovery. . . . . . 106
Experiment 8 (top a+b) and 9 (down c+d): Fragment and block download times.107

Experiment 10: Fragment and block download times. . . . . . .. ... ... ... 108

Experiments 1 (left) and 2 (right): progressive-filling flow-level algorithm PFFLA
vs Packet-level simulation NS-2 . . . .. ... ... ... oo oo oL 122
Experiment 3: Packet-level simulation NS-2 vs progressive-filling flow-level algo-

rithm FLA & PS for p = 12%, C = 1500kbps, N/ = 500, Sy =8MB. . ... .. .. 123
xiii



Xiv

FIGURES

5.3 Experiments 4 (left) and 5 (right): progressive-filling flow-level algorithm PFFLA
vs Packet-level simulation NS-2. . . . . . . . ... ... .. . ..
5.4 Experiments 6 (left) and 7 (right): progressive-filling flow-level algorithm PFFLA
vs Packet-level simulation NS-2. . . . . . . . .. ... ... .o
5.5 Experiment 8: progressive-filling flow-level algorithm FLA vs Packet-level simu-
lation NS-2 for p = 50%, C = 1500kbps, ' =500,Sg =8MB.. ... .......
5.6 Experiments 9 (left) and 10 (right): progressive-filling flow-level algorithm PF-
FLA vs Packet-level simulation NS-2. . . . . ... ... ...............
5.7 Experiments 11 (left) and 12 (right): progressive-filling flow-level algorithm PF-
FLA vs Packet-level simulation NS-2. . . . . .. ... ... .. ...........
5.8 Experiments 13 (left) and 14 (right): progressive-filling flow-level algorithm PF-
FLA vs Packet-level simulation NS-2. . . . . .. ... ... ... ... ......
5.9 Experiment 15: progressive-filling flow-level algorithm FLA vs Packet-level sim-
ulation NS-2 for p = 36%, C4q = 1500kbps, C,, = 384kbps, N' = 1000, Sg =

5.10 Experiments 16 (left) and 17 (right): progressive-filling flow-level algorithm PF-
FLA vs Packet-level simulation NS-2. . . . . . . ... .. .. ... ... ......

5.11 Queue size effect in Packet-level simulation NS-2 for p = 70%, C = 1500kbps,
N =50,Sg =8MB. . . . . . e

A.1 Simulator architecture. . . . . . . . . . o o e e e e

C.1 L’organisation des données dans les systemes qui utilisent CCE. . . . .. ... ..



TABLES

2.1
2.2
2.3

2.4

3.1

4.1
4.2
4.3
4.4

5.1
5.2

Al
A2
A3

System parameters. . . . . . . . ..o Lo u e e e e e e e e e e e e e e 30
Data sets characteristics and corresponding peers parameters values. . . . . . . . 53
Expected data lifetime (expressed in hours) in a Condor scenario using a distributed-

recovery scheme. Comparison between E[T (&5 )] (extended model) and E[T¢(s+
r)] (simplemodel). . . . . . . ... e 59
Expected lifetime and first availability metric . . . . ... ... ... ....... 60

Expected lifetime and first availability metric: Centralized-repair scheme vs.

Distributed-repair scheme . . . . . . .. . . ... ... ... ... . 83
The basic prototypes of P2P_Storage Msg BufListclass . . . ... ... ... ... 93
EXperiments Setup . . . . . ¢ o v v vt e e e e e e e e e e e e 103
Summary of experimentsresults . . . . . . ... ... 104

Block download time or recovery process: Validation of the approximations in-
troduced in Egs. (4.1)-(4.3) . . . . . . . .. e e 104

Experiments SetUp . . . . . . . v i it e e e e e e e e e e e e e e e e 119

Measurements for the PFFLA and the packet-level simulation; comparison with

thePSmodel . . . . . . . . . . . 121
The basic prototypes of P2P_Storage Directoryclass . . . . . . .. ... ... ... 148
The basic prototypes of P2P_Storage Msg BufListclass . . . ... ... ... ... 149
The basic prototypes of P2P_Storage App and P2P_Storage Wrapper classes . . . . 150



TABLES




BACKGROUND, MOTIVATION AND
RELATED WORK

The growth of storage volume, bandwidth, and computational resources for PCs has funda-
mentally changed the way applications are constructed. Almost 10 years ago, a new network
paradigm has been proposed where computers can build a virtual network (called overlay) on
top of another network or an existing architecture (e.g. Internet). This new network paradigm
has been labeled peer-to-peer (P2P) distributed network. A peer in this paradigm is a com-
puter that plays the role of both supplier and consumer of resources, in contrast to the tra-
ditional client-server model where only servers supply, and computers consume. Applications
that use this distributed network provide enhanced scalability and service robustness as all the
connected computers or peers provide some services. Peers in the overlay can be thought of
as being connected by virtual or logical links, each of which corresponds to a path, perhaps
through many physical links, in the underlying network. As already mentioned, each peer re-
ceives/provides a service from/to other peers through the overlay network; examples of such
services are computing (sharing the capacity of its central processing unit), data upload (shar-
ing its bandwidth capacity), data storage (sharing its free storage space), as well as support to
locate resources, services and other peers.

This P2P model has proved to be an alternative to the Client/Server model and a promising
paradigm for Grid computing, file sharing, voice over IP, backup and storage applications. In
fact, file sharing is the dominant P2P application on the Internet (see [66, 55, 41, 38, 24, 25]),
allowing users to easily contribute, search and obtain content. P2P file sharing applications
received a special interest from users thanks to the increasing popularity of the mp3 musical

file format since 1991 and to the ability to share videos and films for free.
3



4 Background, Motivation and Related Work

To provide a proper background, we will briefly describe, in Section 1.1, the basic taxonomy
of P2P overlay network. For completeness and in view of the high popularity of P2P file sharing
applications, we will introduce some of them as examples of the overlay architectures even
if they are not the object of further study in this thesis. The techniques of P2P backup and
storage systems will be introduced then with some existing examples in Section 1.2. Section
1.3 overviews the related works and motivations. Last, Section 1.4 introduces our contribution

and presents the organization of this thesis.

1.1 P2P overlay architectures

Based on how the peers in the overlay network are linked to each other on top of the
physical network topology, and on how services are shared and located, we can classify the P2P
networks into two general topologies: unstructured and structured network.

1.1.1 Unstructured P2P network

Unstructured P2P networks organize peers or nodes into a random graph topology and
use floods or random walks to discover data stored by overlay nodes. In other words, nodes
connect themselves to the overlay without taking care of their neighbors IDs or names. This
approach supports arbitrarily complex queries and it does not impose any constraints on the
overlay topology or on data placement.

In general, three topologies of the unstructured architecture can be distinguished. First,
there are fully distributed P2P systems, like the original Gnutella protocol [41], where all peers
are completely equal and there is no central authority. As soon as a peer joins the system, it
establishes several connections with peers, called neighbors. To search an entity in the system,
a peer sends a query to its neighbors. If a neighbor stores the requested entity, it replies to the
requester. Otherwise, it forwards the query to its own neighbors, and so on until a given depth.
This depth is similar to time-to-live (TTL) of packets in IP networks. This type of search is called
flooding. However, the cost of flooding the network increases linearly with the number of nodes
which limits the system scalability if the depth is high. In addition, their is no guarantee on the
response time, in particular, for the non-popular files.

Second, hybrid peer-to-peer systems, like Kazaa [55], use the concept of supernodes: nodes
that handle indexing and caching blocks of data through small set of peers. Supernodes are
dynamically elected depending on the available bandwidth capacity and processing power.
Therefore, all queries are initially forwarded to supernodes to get served. Hence, discovery
time is reduced in comparison with fully decentralized systems. There is no unique point of

failure as the case of centralized peer-to-peer systems (explained below) and there is no need



1.1 P2P overlay architectures 5

to route messages by flooding as the case of fully distributed systems. A better implementation
of Gnutella relies on supernodes.

Third, centralized peer-to-peer systems, like Napster [66], rely on a central server for in-
dexing functions and for bootstrapping the entire system. In fact, Napster was the first P2P file
sharing systems and it is one of the pioneers of digital music. Although considered a P2P sys-
tem, this model follows the standard client-server paradigm because it uses a central server to
maintain the directories of the shared files stored on the system’s peers, to locate resources and
route requests between peers. However, downloading occurs in a P2P manner; peers connect
to each other to download pieces of data. This topology suffers from the single point of failure
problem (the central authority) and does not scale very well.

One of the enormously studied centralized P2P file sharing systems is BitTorrent [12]. It
relies on the terms seeds, leechers, torrents, trackers and peers/pieces selection algorithms. Files
are split into fixed-size fragments stored initially on the first publisher which is called a seed and
its availability in the network allows other users, called leechers, to connect and begin to receive
pieces of different fragments of the file. Once a peer has a complete fragment of the seed,
BitTorrent allows it to become a source (server) for that portion of the file. To share a document,
the seed first creates a torrent file that contains metadata about the document to be shared
and about the computer that coordinates the file distribution; the tracker. Peers that want to
download the document must first obtain its torrent file, and connect to the specified tracker,
which gives them a list of other peers that contain fragments of the document. Throughout
the transfer, each computer will query the tracker, telling it how much it has downloaded and
uploaded. In fact, finding torrent files and the single point of tracker failure are the major
problems in the design of BitTorrent. But, once the torrent file is located and the corresponding
tracker is available, BitTorrent provides better performance than the other file sharing protocols
thanks to the multiple (parallel) download mechanism of pieces of requested data and due to its
fragments and peers (uploaders and downloaders) selection algorithms, in particular the rarest
first, optimistic unchoking, and choking algorithms. However, some new BitTorrent clients (e.g.
recent Azureus clients [4]), have support for multible distributed trackers in a structured way to
improve the resources look-up phase and to overcome the problem of trackers failures that may
let the system to be unavailable. In other words, new BitTorrent implementations are moving

to work over a structured P2P architecture.

1.1.2 Structured P2P network

In structured P2P networks, nodes are assigned uniform random nodelds (node identifier)
from a large identifier space. Data items or objects are assigned unique identifiers called “keys”,
selected from the same identifier space. Chord [89], Tapestry [101] and Pastry [83] use a
circular identifier space of n-bit integers modulo 2™ (n = 160 for Chord and Tapestry, n = 128



6 Background, Motivation and Related Work

for Pastry). Content Addressable Network (CAN) [77] uses a d-dimensional cartesian identifier
space, with 128-bit nodelds that define a point in the space. If n is big, each “key” is dynamically
mapped by the overlay to a unique active node with a very high probability. This node is called
the key’s root or the node responsible for the “key”. To deliver messages efficiently to the root,
each node maintains a routing table consisting of the nodelds and IP addresses of the nodes
to which the local node maintains overlay links. Messages are forwarded across overlay links
to nodes whose nodelds are progressively closer to the key in the identifier space. Structured
P2P systems use consistent hash function (e.g. SHA-1 [87, 86]) to assign a global address or
identifier space to all nodes and all keys. Consistent hash functions are hash functions with
some additional advantageous properties, i.e., they let nodes join and leave the system with
minimal disruption [54]. Unlike unstructured P2P networks, the main concept in structured
networks is key-based routing. Key-based routing means that a set of keys is associated with
“values” (addresses of the contents) in the address space. Structured P2P networks are usually
considered as distributed hash table (DHT) which is a distributed dictionary in which every
entry is composed of a “key” and an associated “value” that indicates the location of the content
of that key.

It is proven that the cost of a look-up in most DHT-like systems grows only logarithmically
in the number of nodes in the system, and that this system provides a good data balance as with
high probability each node is responsible for 1/N of the identifier space, where N is the total
number of nodes in the system. Structured P2P networks ensures that any peer can efficiently
route a request to some peer that has the desired data object, even if the data object is rare.
Ensuring efficient routing can be achieved in unstructured P2P systems only for the popular
files. However, in a very dynamic and unstable environment, it is hard and costly to maintain a
structured network.

In P2P applications, three data organization schemes can be considered. First, a “key” can
be the identifier of the whole file of data (hashing value of its name or title or contents) as
in PAST [84], a persistent global storage utility that has been built using Pastry [83] overlay
network. Second, in other P2P applications, files are fragmented into equally sized fragments,
and a “key” in this data organization is the identifier of a fragment of data of a file as the case
of CFS [27], a Cooperative File System that has been built using Chord [89] to provide storage
services. A third data organization consists of dividing files into equally sized blocks of data,
each block of each file is fragmented into many equally sized fragments, and the “key” in this
last scheme will be the identifier of a block of data as the case of UbiStorage [92], a P2P backup
system. Each of these data organization schemes has its advantages and disadvantages. System
objectives, data download time, availability, and the system implementation and design issues

may favor one scheme over the others in a particular scenario.

Let us proceed to the evolution of P2P Backup and Storage Systems.



1.2 P2P backup and storage systems 7

1.2 P2P backup and storage systems

Parallel to the evolution of P2P file sharing systems, P2P backup or/and storage systems
have been developed. They are less popular systems because they are not dedicated exclu-
sively for sharing music or videos and because people do not trust P2P for storing their private
data. For later use, we will define two important metrics: data availability and data lifetime or
durability.

Over time, a peer or a node can be either connected to or disconnected from the storage
system. We refer to as on-time (resp. off-time) a time-interval during which a peer is always
connected (resp. disconnected). During a given time, we can represent the node availability
by the percentage of the sum of on-time durations over that time. So at any point in that time,
a peer can be available with some probability. During a peer’s off-time, the data items stored
on that peer are momentarily unavailable to the users of the system. In consequence, any data
item can be available at any time with some other probability related to node’s availability that
store this data item. To be able to download a data item, a node that stores a complete copy of
it or an enough number of nodes that store all its distinct fragments must be active (connected
to the system) for some time.

Some data items (or fragments of them) can be lost from the system due to permanent
departure of some nodes or disk failures. We define data lifetime as the time until the moment
at which the data is considered to be lost; can not be downloaded or reconstructed completely,
given that it was initially available completely. So, before to lose the data, data can be available
or not available temporarily but it is durable (not lost definitely).

We can distinguish between backup and storage systems. P2P backup systems aim to pro-
vide long data lifetime without constraints on the recovery or the reconstruction time. In other
words, data must be durably stored but not necessarily immediately available for download
on the contrary to storage systems. For this reason, backup systems designers are interested
in the permanent departures of peers rather than the intermediate disconnections even if the
disconnections durations are long. In this thesis, we will provide guidelines on how to engineer
both P2P backup and storage systems in order to satisfy given data lifetime and/or availability
requirements.

Some of the recent efforts for building highly available and durable systems based on
the P2P paradigm include Intermemory [45, 21], Freenet [24], OceanStore [59], CFS [27],
PAST [84], Farsite [14, 1], Total Recall [10], Wua.la [99] and Allmydata [2]. Although these
storage systems are scalable, tolerant against unexpected catastrophes and economically attrac-
tive compared to traditional client/server systems, they pose many problems such as reliability,
confidentiality and availability.

In these systems, peers are free to leave and join the system at any time. As a result of the



8 Background, Motivation and Related Work

intermittent availability of peers, ensuring high availability of the stored data is an interesting
and challenging problem. To ensure data reliability and availability in such dynamic systems,
redundant data is inserted into the system. Redundancy can be achieved either by replication
or by using erasure codes.

However, using redundancy mechanisms without recovering lost data is not efficient, as the
level of redundancy decreases when peers leave the system. Consequently, P2P storage systems
need to compensate the loss of data by continuously storing additional redundant data onto
new peers. We denote by new peer, an available peer that does not store already redundant
information of the considered data (e.g. a given block).

In the following sections, we will introduce the redundancy and recovery mechanisms, the
two key techniques of any P2P backup and storage system.

1.2.1 Redundancy mechanisms

Redundancy is a key mechanism in any reliable or storage system to ensure some level of
reliability and to increase data availability and durability. Concerning data storage, it was first
used in 1987 in the Redundant Arrays of Inexpensive Disks (RAID) systems [72]. RAID systems
allow computers to achieve high levels of storage reliability from inexpensive and less reliable
hard disk components, by arranging the devices into arrays for redundancy. Redundancy pro-
vides fault tolerance, so that all or part of the data stored in the array can be recovered in the
case of disk failure. In fact, there are three schemes in RAID to manage the stored data: (i)
replication or mirroring over more than one disk, (ii) striping, the splitting of data across more
than one disk, (iii) and use of the technique of error-correcting code (ECC) [49]. The basic idea
is to combine two or more physical hard disks into a single logical unit and based on how data
is managed (splitted, coded or replicated over disks), we can distinguish between seven levels
of RAID systems from RAID-0 up to RAID-6. For example, in RAID-1, the whole data or a hard
disk is mirrored without any coding or splitting over a second disk.

The cost typically associated with redundancy is a reduction of disk capacity available to the
users, since the implementations require either a duplication of the entire data set, or an error-
correcting code (ECC) [49], also known as a forward error correction (FEC) in information
theory.

There is a wide range of mechanisms available for producing redundant representations of
data. However, in the context of P2P backup and storage systems, we will distinguish between

two major mechanisms, replication and erasure coding (a case of FEC).

Replication

There are two replication levels used in P2P backup and storage systems:



1.2 P2P backup and storage systems 9

B The whole-file-level replication scheme. A file f is replicated r times over r different peers
(as in PAST [84]) so that the tolerance against failures or peers departure is equal to
r. In other words, r is the number of peers storing copies of data object that may leave
the network or fail without the data object being lost. The ratio 1/(r + 1) defines the
useful storage space in the system. Hereafter, we will refer to this replication scheme as

Replication.

B The fragment-level replication scheme. This scheme consists of dividing the file f into s
equally sized fragments, and then make r copies of each of them and place one fragment

copy per peer, as in CFS [27].

Erasure coding

This scheme consists of dividing the file f into b equally sized blocks (say Sg bits). Each
block of data D is partitioned into s equally sized fragments (say Fgc = Sg/s bits) to which,
using one of the erasure codes scheme (e.g. [78, 17]), r redundant fragments are added as
depicted in Figure 1.1. To download a block of data, any s fragments are needed out of the
s + v (downloading the size of the original block Sg). Recovering any fragment (if it is lost) or
adding a new redundant fragment of a given block of data requires the download of any other
s fragments out of the available fragments of that block. Therefore, for each stored block of
data, the tolerance against failures or peers departure is equal to r. The useful storage space
in the system is defined by the ratio s/(s + r). Intermemory [45, 21], OceanStore [59], Total
Recall [10] and UbiStorage [92] are some examples of existing P2P systems that use erasure
coding mechanisms to provide some level of system reliability and data availability.

A new class of codes, so-called regenerating codes (RC) has been proposed recently in [35].
RC can be considered a generalization of erasure code (EC), which reduces the communication
cost of EC by slightly increasing the storage cost. The size of fragments in RC is larger of that
in EC. In [35], the authors consider in Theorem 1, p. 5 a simple scheme in which they require
that any s fragments (the minimum possible) can reconstruct the original block of data. All
fragments have equal size Frc = 0 * Sg, where Sg stands for the size of the given block of data
to be stored. A newcommer (a new peer in our notation) produces a new redundant fragment
by connecting to any s nodes and downloading 0Sg/s bits from each. In this theorem, the
authors assume that the source node of the block of data will store initially n fragments of
size 0Sg bits on n storage nodes. In addition, newcommers arrive sequentially and each one
connects to an arl:saitrary k-subset of previous nodes (including previous newcommers). They
define 0. :=

2
sc—s+1
data that a newcomer must download. The worth case is occured when a data collector (client)

to be, in the worth case, the lower bound on the minimal amount of

need to recover the original block of data from only newcomers. In general, if 6 > 0. there



10 Background, Motivation and Related Work

exists a linear network code so that all data collectors can reconstruct the considered block by
downloading s fragments from any s nodes. So, using this simple scheme of RC, adding a new
redundant fragment of a given block requires a new peer to download 1/s percent of s stored
fragments (6Sg/s of each) so that the new peer regenerates one random linear combination of
the parts of fragments already downloaded; the new peer will store all the downloaded data
whose size is equal to the size of the stored fragments instead to download the equivalent
of original block size, in the case of EC, to regenerate one fragment and deleting later the
downloaded fragments. In the same way, downloading the block, by a data collector, in EC
requires the download of its size (s * Fgc = Sg), where in RC, it requires the download of
s* Frc = s * 0 * Sg = 0Sg, where 3 > 1. The authors show that § — 1 as s — oco. Until the
time of writing this thesis, the regenerating codes is not yet used in any P2P system.

+HE - .

Figure 1.1: General data organization scheme in erasure coded systems.

Let us use hereafter the notation of the erasure coding mechanism introduced in Sec-
tion 1.2.1 to capture the case of the three redundancy mechanisms; the whole-file-level repli-
cation scheme, the fragment-level replication and the erasure coding scheme. When the size of
the block D is equal to the whole size of the file f (b = 1), and after setting s = 1, the r re-
dundant fragments will be simple replicas of the unique file f as the case of the whole-file-level
replication scheme (e.g. Napster [66], PAST [84] and Gnutella [41]). For each block D of data
of the file f, and after setting s = 1, we obtain r simple replicas of D of the file f as the case
of the fragment-level replication scheme (e.g. CFS [27] and eDonkey [64]) where the size of
a fragment is equal to the whole size of a block of data. Even for erasure coding mechanism,



1.2 P2P backup and storage systems 11

some systems use it for b = 1 like Carbonite [23] and OceanStore [59], and then the whole
file of data is fragmented into s fragments to which, and using the erasure coding algorithm, r
redundant fragments are added. UbiStorage is an example of those systems splitting each file
into equally sized blocks (b # 1), and then splitting each block into s equally sized fragments
and adding to them r redundant fragments using erasure code. Note that when fixing the sizes
of blocks and fragments in the system, the values of s and r will be the same for all the blocks of
data stored in the system. This notation—and hence the modeling presented in this thesis—is
general enough to study any system that uses one of these schemes by playing with the values
of b and s.

Replication vs. erasure coding

The comparison between the redundancy mechanisms was the subject of several papers.

In [97], Weatherspoon and Kubiatowicz characterize the availability and durability gains
provided by an erasure-resilient system. They quantitatively compare replication-based and
erasure-coded systems. They show that erasure codes use an order of magnitude less bandwidth
and storage than replication for systems with similar durability.

In [8], the authors show that an erasure codes scheme makes backup systems more scalable
than replication and block-level replication schemes as the required availability gets higher.
They show as well that the scalability of the block-level scheme with respect to the total storage
required is even lower than that of the replication scheme. This is due to the fact that when
enough replicas of a given block of data fail such that any single block cannot be found, then the
entire file object that contains the considered block becomes unavailable. The erasure coding
approach reduces the traffic of the replication by using the computing power. In fact, the time
to encode and to decode the data in erasure coding are considered negligible with respect to
the download time of the data fragments; cf. [17].

Utard and Vernois perform in [93] another comparison between replication and erasure
coding mechanisms through a simple stochastic model for node behavior. They observe that
simple replication schemes may be more efficient than erasure codes only in the presence of low
peers availability. However, the authors of the P2P storage system TotalRecall [10] (presented
in Sect. 1.2.3) say that replication can be highly inefficient in low-availability environments
since many storage replicas are required to tolerate potential transient failures.

1.2.2 Recovery policies and mechanisms

P2P backup and storage systems need to compensate the loss of data due to peers departure
from the system by continuously storing additional redundant data onto other hosts to be able
to achieve high data durability or/and availability.



12 Background, Motivation and Related Work

In fact, similarly to file sharing systems, backup and storage systems may rely on a central
authority that reconstructs files or fragments when necessary; these systems will be referred
to as centralized-recovery systems. Alternatively, secure agents running on some active nodes
can reconstruct by themselves the data to be stored on the nodes disks. Such systems will be
referred to as distributed-recovery systems.

Recovery policies

Regardless of the recovery mechanism used, two repair policies can be enforced. In the
eager policy, when the system detects that one peer has left the network, it immediately initiates
the reconstruction of all data hosted by that failed peer, and stores them on new peers upon
recovery. So, in erasure-coded system, a fragment of a given block D of data is reconstructed
as soon as it has become unavailable due to a peer disconnection. Using this policy, data only
becomes unavailable when peers fail more quickly than failures can be detected and repaired.
This policy is simple but makes no distinction between permanent departures that need to be
recovered, and transient disconnections that may do not. Moreover, operating in this manner
generates a great number of reconstruction processes and therefore leads to a sudden increase
in bandwidth use upon each failure. Glacier [48] and CFS [27] are examples of systems that use
this policy. However, such a policy can be used in stable networks that have good connectivity
where peers tend likely to stay on-line as long as possible and when it is unacceptable to loose
data (e.g. the environment of INRIA where computers are online all the time except if an
unexpected error occurs such as a disk failure or a problem of energy).

Having in mind that connections may experience temporary, as opposed to permanent,
failures, one may want to deploy a system that defers the repair beyond the detection of a first
loss of data. So in this policy, the repair is delayed until the number of unavailable fragments
of a block D of data reaches a given threshold, denoted k. In this case, we must have k < r
since D is lost if more than r fragments are missing from the storage system. This alternative
policy inherently uses less bandwidth than the eager policy. However, it is obvious that an
extra amount of redundancy is necessary to mask and to tolerate peers departures for extended
periods of time as in TotalRecall [10]. This policy is called lazy repair because the explicit goal
is to delay repair work for as long as possible. This policy allows the reintegration of redundant
fragments back into the system instead of creating additional fragments ahead of time and
hence it reduces the global usage of the bandwidth in the system.

Both repair policies can be represented by the threshold parameter k € {1,2,...,r}, where
k can take any value in the set {2,...,r} in the lazy policy and k = 1 in the eager policy.



1.2 P2P backup and storage systems 13

Centralized-recovery scheme

Let us consider a block D of data and assume that the system misses k (threshold of recov-
ery) fragments so that lost fragments have to be restored.

In the centralized implementation, a central authority will: (1) download in parallel s frag-
ments of D from peers currently available, (2) reconstruct at once all the unavailable fragments,
and (3) upload the reconstructed fragments in parallel onto as many new peers for storage. The
central authority updates the database recording fragments locations as soon as all uploads ter-
minate. In fact, Step 2 executes in a negligible time compared to the execution time of Steps
1 and 3 and will henceforth be ignored in the modeling. Step 1 (resp. Step 3) ends executing
when the download (resp. upload) of the last fragment is completed.

Although this scheme is implemented only in centralized P2P systems when both b,s # 1
like UbiStorage [92], it is implemented in the distributed P2P systems when either b = 1 as in
Carbonite [23] or s = 1 as in CFS [27].

Hence, this recovery scheme can be seen as a repair policy in which all missing fragments
have to be reconstructed at the end of the recovery process. In fact, this recovery mechanism
can be done in a DHT-like systems for both b,s # 1 if the node responsible for a file stores
its b blocks on b nodes and each of these nodes becomes responsible for the received block.
Then, each node responsible for a block executes the three steps mentioned above so that it
plays the role of the centralized server for this given block. The b nodes and those that will
store fragments of data must be chosen among the neighbors of the node responsible for the
file (resp. the block). The identifiers of these neighbors nodes are equal to or larger than the
identifier assigned to the node responsible for the file (resp. the block) as the leaf set in Pastry
and the successors set in Chord. The size of these leaf set and successors set have to be always

larger than b and s + r respectively.

Distributed-recovery scheme

In the distributed implementation, a secure agent on one new peer is notified of the identity
of one out of the k unavailable fragments to reconstruct it. Upon notification, the secure agent
(1) downloads s fragments of D from the peers which are connected to the storage system, (2)
reconstructs the specified fragment and stores it on the peer’s disk; (3) subsequently discards
the s downloaded fragments so that only one fragment of a block of data may be held by a
peer. This operation iterates until less than k fragments are sensed unavailable and stops if the
number of missing fragments reaches k — 1. The recovery of one fragment lasts mainly for the
execution time of Step 1. We will thus consider the recovery process to end when the download
of the last fragment (out of s) is completed.

Again, this scheme can be done in a centralized system. The server can do the same steps (or



14 Background, Motivation and Related Work

ask a peer to do them) in the objective of recovering only one missing fragment and allowing
more time to reintegrate fragments that eventually “reappear” in the system due to a peer
reconnection. So, this scheme is actually a policy that recovers only one missing fragment at
the end of a single recovery process.

1.2.3 Some existing P2P backup and storage systems

Intermemory [45, 21] is one of the earliest distributed storage systems (proposed in 1998).
It was proposed in a period of growing interest in digital libraries and it was motivated by the
problem of preserving digital documents [82]. The system can be envisioned as either a public
peer-to-peer application where the peers are servers at libraries or a server-to-server application
where libraries and institutions cooperate to create a robust storage substrate for their archives.
It uses an erasure coding to provide a durable archival storage. It implements a distributed
block-store substrate on which arbitrary data structures, including conventional file systems,
can be built. The addressing approach combines hashing, pseudo-random generators, and a
distributed name server. The system uses database synchronization between random pairs of
Intermemory nodes to propagate metadata and data fragments efficiently and to provide an
automated self-repair mechanism. Many ideas from the original Intermemory project are now
contributing to the Intermemory.net commercial project.

Freenet [24] is one of the pioneers among anonymous publication systems that ensures
true freedom of communication over the Internet and prevents censorship of distributed data.
It is build on a routing overlay whose interface is similar to Tapestry’s one [101]. Freenet is
a loosely structured system that uses file and peer identifier similarity to produce an estimate
of where a file may be located, and a chain mode propagation approach to forward queries
from peer to peer where no peer is privileged over any other peer. It uses lazy replication to
increase accessibility of popular data thanks to its request mechanism in which popular data
are transparently replicated by the system and mirrored closer to requesters to improve the
response time in the requester region for the requested file. Requested files are copied as well
onto each peer along the way providing fault-tolerance against the failure of the source node.

Files in Freenet are identified by unique binary keys. Three types of keys are supported, the
simplest of which is based on applying a hash function (e.g. SHA-1 [87]) on a short descriptive
text string that accompanies each file as it is stored in the network by its original owner. Each
Freenet node maintains its own local data store, which it makes available to the network for
reading and writing, as well as a dynamic routing table containing the addresses of other nodes,
based on local knowledge, and the files they are thought to hold. To search for a file, the
user sends a request message specifying the key and a timeout (hops-to-live) value which is
decremented at each peer to prevent infinite loops.

In order to join the network, a peer has to know the address of one or more of the existing



1.2 P2P backup and storage systems 15

peers, and hence, the problem of establishing initial network connection holds. It has also
obvious disadvantages in terms of discovering documents, name collisions, etc. An unpopular
file might disappear from the network if the source peer fails.

A class of systems similar to Freenet but dedicated to long term archival is OceanStore [59].
It is designed using a cooperative utility model in which consumers pay the service providers
certain fees to ensure access to persistent storage. It provides a universal availability to its
users through a two-tiered storage system. The upper tier consists of powerful servers that are
well connected and have good bandwidth capacities. These servers work together to serialize
changes, archive results and provide a storage service with support of nomadic data; data that
is allowed to flow and be cached freely and data are separated from the phisical location. To
that end, an erasure coding and self-monitoring mechanisms are used. The second tier (called
lower tier) is for storage replication and consists of less powerful hosts, including users’ peers,
which mainly provide storage resources to the system. It has as a goal that data can be cached
anywhere, and anytime on lower tier peers. This policy is called promiscuous caching and
does not aim to ensure data durability, but rather to place data closer to the users in order
to guarantee the best download time of stored data. OceanStore uses a hierarchical hashing
method to verify the integrity of each fragment. It generates a hash of each fragment, and
recursively hashes over the concatenation of pairs of hashes to form a binary tree. OceanStore
servers use Tapestry to disseminate encoded file blocks efficiently, and clients can quickly locate
and retrieve nearby file blocks by their ID, despite server and network failures. One important
aspect of OceanStore that differs from existing systems is the fact that the archival mechanisms
are tightly coupled with the update activity based on the Byzantine agreement protocol [20].

Cooperative File System (CFS) [27] is a P2P read-only storage system that provides provable
guarantees for the efficiency, robustness, and load-balance of file storage and retrieval. CFS
achieves this with a completely decentralized architecture. In CFS, multiple providers of content
cooperate to store and serve each other data. Spreading the total load evenly over all participant
hosts lowers the total cost of the system, since each participant needs to provide capacity only
for the average load, not for the peak load, and hence, this solution can scale to large systems.
A file is divided into constituent fragments that are stored among different peers. CFS has
three layers: (i) File-System (FS) which interprets fragments as files and presents a file system
interface to applications, (ii) the DHash (Distributed Hash) layer performs fragment fetches
for the peer, distributes the fragments among the servers, and maintains cached and replicated
copies, DHash finds fragments using (iii) the Chord [89] location protocol, which operates
in time logarithmic in the number of servers. As mentioned in Section 1.2.1, CFS uses the
fragment-level replication scheme to increase availability, so DHash replicates each fragment
on r CFS servers to increase availability, maintains the r replicas automatically as servers come

and go, and places the replicas in a way that clients can easily find them. However, CFS (as



16 Background, Motivation and Related Work

Glacier [48]) eagerly maintains redundancy, which however does not explore the trade-offs of
cost and resilience. DHash places a fragment’s replicas at the r servers immediately after the
fragment’s successor on the Chord ring. Servers close to each other on the ID ring are not likely
to be physically close to each other, since a server’s ID is based on a hash of its IP address.
This provides the desired independence of failure. DHash can easily find the identities of these
servers from Chord’s 1 entry successor list (note that 1 > r must hold). CFS’s caching scheme is
similar to Freenet’s in the sense that both allow cached copies of data along the query path from
client to where the data was found. A problem that can arise in CFS (or in PAST [84]) is that if a
node joins and takes responsibility for a portion of the ID space, a considerable number of files
(or fragments) may need to be transferred to it. Thus, when nodes join or leave these systems,
a high cost will often result, as a burst of transfers is triggered. To avoid this problem, it may be
useful to store pointers to the right locations instead of transferring completely data, as done in
OceanStore. In addition, it is shown in [8] that the fragment-level replication scheme, which is
used in CFS, is the least efficient redundancy scheme.

TotalRecall [10] is a P2P storage system that guarantees a predefined high availability level
by automatically adapting the degree of redundancy and frequency of repair to the distribution
of peers failures. It uses a modified version of the DHash peer-to-peer object location service
described in the CFS paper [27]. After estimating the availability of peers, and predicting their
future availability based on past behavior, the system applies a replication mechanism in high-
availability environments and an erasure coding mechanism in low-availability environments.
To the contrary of finding in [93] as we have shown in Section 1.2.1, the authors of TotalRecall
show that replication can be highly inefficient in low-availability environments since many
storage replicas are required to tolerate potential transient failures. TotalRecall was one of the
first systems to exploit the fact that most peers have short session time but long life-time in
the system, and thus use lazy maintenance of redundantly stored content unlike CFS [27] and
Glacier [48] for example.

In [42], authors introduce Carbonite as a new replication algorithm for DHT-backup sys-
tems like CFS [27] and PAST [84]. Carbonite aims to provide high durability for backup systems
to the contrary of P2P Storage systems like TotalRecall [10] whose design was driven by the
goal of achieving a very high availability. Carbonite separates durability from availability so
that the recovery process must create new copies of data objects faster than permanent disk
failures but not faster than any temporary departure. Hence, Carbonite-based systems are not
suitable for P2P storage systems but they can provide a good solution for data backup with
less bandwidth cost than in storage systems like TotalRecall that repair unavailable data with a
high frequency to maintain high availability. This causes to waste bandwidth by creating new
replicas in response roughly to any failure (temporary or permanent). Authors conclude that

a careful choice of data placement policies can decrease repair time. To that end, Carbonite



1.3 Related work and motivations 17

remembers which replicas were stored on nodes that have failed so that it can reintegrate data
stored on them when they return back to the system. Once the recovery algorithm is triggered
at a given threshold of redundancy, Carbonite regenerates all missing replicas.

The UbiStorage [92] French company was created in the early 2006 and is currently ad-
dressing the on-line backup market for small and medium companies. It uses the Ubiquitous
Storage (US) [76, 88] prototype that aims to provide a virtual storage device to each user which
insures data durability. The main mechanism used to insure data durability is redundancy based
on erasure code. US uses a centralized authority to control the system and to locate data. How-
ever, current efforts try to control and administrate the system in a distributed way to increase
the system scalability and to make the system self-organized. Contrarily to TotalRecall, US does
not care about temporary disconnections of peers and pays attention only to disk failures or
permanent disconnections of peers. Although data are distributed on end user peers, US pro-
vides for its clients a special storage device, US box, that may still be accessible even if the peers
are turned off.

The Tahoe [95] project is a recent distributed filesystem, which addresses files backup on
multiple machines to protect against hardware failures throughout a decentralized architecture.
Blocks of data to be stored are encrypted, then split up into several redundant fragments using
“erasure coding”, with s = 3 and r = 7 by default. Tahoe is composed of three layers. The
lowest layer is effectively a Distributed Hash Table (DHT). In this DHT, there are a large number
of “slots” which are filled with arbitrary data. The middle layer is the Virtual Drive, which
organizes these slots into directories. The top-most layer is an application or presentation
service (interface); something that uses the virtual drive for some purpose. The most mature
interface is a RESTful HTTP interfaces, in which PUT, GET, and POST are used to add and
retrieve files and directories. Tahoe is a free software sponsored by allmydata.com. The Tahoe-
LAFS client is included in the new version of Ubuntu 9.10. Using this open-source software to
do some real experiments can be one of our objective in the next steps.

1.3 Related work and motivations

Although the literature on the architecture and file system of distributed backup and storage
systems is abundant as we saw in the previous section, most of these systems are configured
statically to provide durability and/or availability with only a cursory understanding of how
the configuration will impact overall performance. Some systems allow data to be replicated
and cached without constraints on the storage overhead or on the frequency at which data are
cached or recovered. These yield to waste of bandwidth and storage volume and do not provide
a clear predefined durability and availability level. Hence, the importance of the thorough

evaluation of P2P storage systems before their deployment.



18 Background, Motivation and Related Work

In this section, we first discuss some existing analytical, simulation and measurement works
that aim to understand and evaluate the peers availability and the download process in a dis-
tributed environment. These are two important factors in any analytical work that aims to eval-
uate and optimize the P2P backup and storage systems in terms of data lifetime and availability
as we will see throughout this thesis. Last we briefly review related performance evaluation
works of data availability and durability in the P2P backup and/or storage systems; the main

objective of this thesis.

1.3.1 Works related to peers availability

A major problem in any P2P application is that peers are free to join and leave temporarily
(for long or short time) the system at any time. Some peers can fail due to software or hardware
problems and so they leave permanently the system. This leave/join phenomenon is named
churn. In general, joining the system has no remarkable impact on the system. It can add some
delay in routing results until the system detects the new joint nodes and updates the pointers
of data location toward the right nodes. However, the departure and failure events have an
important negative impact because they may cause data loss.

In [80], Rhea et al. addressed the global churn rate in DHT-like systems. They performed
an empirical evaluation of the routing layers of existing DHT implementations, and they found
that these implementations are unable to withstand the short session times observed in the wild.
Moreover, beyond a certain level of churn, lookups in existing systems either take excessively
long to complete, or fail to complete altogether, or return inconsistent results. In addition, the
ability of new nodes to join the DHT is often impaired. So, they presented Bamboo, a DHT that
handles high levels of churn.

Binzenhofer and Leibnitz [11] proposed a distributed algorithm to estimate the churn rate in
DHT systems (structured overlay) by exchanging measurement observations among neighbors
list (e.g. successors in Chord or leafs in Pastry). They based on a peer behavior model in which
a peer can stay on-line or off-line for some time. The duration of an on-line and off-line session
are random variables that follow a generic distribution. They consider that a failed peer will
rejoin the system with its data at a later point in time. For the case of an exponential distribution
of the on-line/off-line durations, they derive a close form for the probability distribution of the
time between two observed leave or two observed join events.

Ramabhadran and Pasquale analyzed, in [75], the All-pairs-ping data set [90] that reports
measures of both uptime and downtime for PlanetLab [74] nodes. By plotting the cumulative
distribution function of each duration (uptime/downtime), they conjecture from the figures
that an exponential distribution is a reasonable fit for both uptime and downtime durations of
the PlanetLab nodes.

Characterizing machine availability both in local and wide area environments has been the



1.3 Related work and motivations 19

focus of [69]. In this paper, Nurmi, Brevik and Wolski investigate three sets of data, each mea-
suring machine availability in a different setting, and perform goodness-of-fit tests on each data
set to assess which out of four distributions best fits the data. They have found that a hyper-
exponential model fits more accurately the machine availability durations than the exponential,
Pareto, or Weibull distribution. Although, an exponential distribution seems good enough to
fit the machine availability distribution (uptimes durations) in PlanetLab-like environments as
concluded the authors of [75], considering a hyper-exponential distribution will give more ac-
curate and general work that is applicable to many distributed environments as the exponential
distribution is a special case of the hyper-exponential distribution. This work comes to support
key assumptions of our models.

1.3.2 Works related to download and recovery processes

One measure of the quality of the service given by the distributed storage/parallel download
infrastructure is the time it takes to retrieve the complete document. This in turn depends on
the throughput of the different flows created to obtain the fragments of this document. Their
values are, a priori, a function of the demand and capacities of the complete network entities:
clients, servers and links.

The basic problem of predicting the instantaneous shares of the bandwidth received by
each flow of a TCP-based network has received quite some attention in the last 15 years, in
connection with the notion of fairness; yet, there is no clear consensus in the literature on a
simple formula or algorithm to give a reasonable solution of this problem.

On the one hand, some authors have shown that the dynamics of TCP have been shown to
be quite chaotic is some situations. Other authors on the other hand, have argued that TCP
tends to share the bandwidth between flows reasonably. For instance, Heyman et al. [52],
followed by Fredj et al. [43], have studied a single bottleneck link shared by a given number of
identical sources that alternately send documents through the shared link and stop sending for a
randomly thinking time. They showed through simulations that TCP shares fairly the bottleneck
(that is, in equal shares) and they introduced analytical tools that can predict the expectation of
the transmitting rate. Varki proposed in [94] a simple approximation for the expected response
time based on the fork-join model. Massoulié and Roberts proposed in [63] a model similar
to that of [52] where the inter-flows arrival times are independent and identically-distributed
random variables (iid rv) and follow an exponential distribution. They studied the network as
M/G/1 PS queue. In [22], Chiu and Eun, the authors have focused on the average download
time of each user in a P2P network while considering the heterogeneity of service capacities
of peers. They point out that the common approach of analyzing the average download time
based on average service capacity is fundamentally flawed.

Other studies have put forward the concepts of max-min fairness, proportional fairness,



20 Background, Motivation and Related Work

balanced fairness and utility-based resource-sharing models (see e.g. [16] and the reference
therein). One conclusion of these studies is that throughput allocations resulting from the use
of the TCP protocol for infinitely long flows are usually not max-min fair. However, the results of
Bonald and Proutiére [15] suggested that when the flows are dynamic (flows are continuously
created and have a finite duration), the average throughput obtained by flows under various
sharing mechanism tend to be similar. It is quite possible that, from a practical perspective, the

predictions obtained with a max-min fair sharing mechanism may be “good enough”.

One purpose of this thesis is to assess whether max-min fairness for the allocation through-
put is a proper model when evaluating response times of parallel downloads through the de-
velopment and the analysis of an algorithm that we called the “progressive-filling flow-level
algorithm” or PFFLA. We will see in Chapter 5 that PFFLA can be used as the core of a flow-

level simulator of P2P storage systems.

1.3.3 Works related to ata lifetime and availability

Actually, few studies have developed analytical models, for both P2P backup and storage
systems, with the goal of understanding the trade-offs between the availability and lifetime of
data on the one hand and the redundancy involved in storing the data and the repair frequency
on the other hand. In addition, capturing the behavior of both eager and lazy repair policies
and both replication-based and erasure code-based systems in modeling, and accommodating
both temporary and permanent disconnections of peers are not well done.

In [8], Bhagwan, Savage and Voelker have provided a probabilistic analysis for the efficiency
of whole-file replication, fragment-level replication, and erasure coding redundancy schemes
that can be used to overcome the temporary disconnections of peers and to increase reliability
of the P2P storage systems. They studied as well the storage costs of maintaining a given level
of availability in the long term by regularly recovering missing data after every time t (e.g. ten
months). They showed that using erasure codes makes the system more scalable than whole-file
replication and fragment-level replication schemes as the required availability gets higher.

However, this study gives only the expected availability of any file stored in the system based
only on the replication factor and the expectation of peers availability. Moreover, the authors
neglect the bandwidth factor and they consider only the storage costs. They concluded that
even in environments with pervasive failure it is possible to offer a storage service with a high
degree of availability at a moderate cost in storage overhead. In this thesis, we will come to
an opposite conclusion in some scenarios. We will see that when the churn rate is high and
the required levels of both the availability and the durability metrics are high as well, the system
is infeasible if we want to consider a reasonable storage and bandwidth-use overhead when a

distributed repair scheme is considered. Our outcome is in agreement with the analysis done in



1.3 Related work and motivations 21

[13, 81].

In [13], Blake and Rodrigues have argued that the cost of dynamic membership makes
the cooperative storage infeasible in transiently available peer-to-peer environments. In other
words, when redundancy, data scale, and dynamics are all high, the needed inter-connections
capacities in the system are unreasonable when clients desire to download files during a rea-
sonable time. Rodrigues and Liskov [81] arrived at the same conclusion. In high churn environ-
ments, erasure codes provide a large benefit for building P2P storage systems but the bandwidth
cost is too high.

Utard and Vernois [93] have performed a comparison between the full replication mecha-
nism and erasure codes through a simple stochastic model for the node behavior. They observed
that simple replication schemes may be more efficient than erasure codes in presence of very
low peers availability.

Ramabhadran and Pasquale have analyzed in [75] a storage system that uses full replication
for data reliability. So, in this aspect, [75] is the closest work to ours even though the analysis
does not apply for erasure-coded systems (we will see later that our models apply to either
replicated or erasure-coded systems). The authors developed a Markov chain analysis, then de-
rived an expression for the lifetime of the replicated state and studied the impact of bandwidth
and storage limits on the system. However—and these are major differences with the work
presented here—transient disconnections are ignored in their model and only the distributed-
repair scheme is considered. The recovery process is considered to be exponentially distributed
for the sake of mathematical tractability and is made in the absence of studies characterizing
the “real” distribution of the recovery process. Last, the authors assumed in their model an
exponential distribution for the uptime durations of peers.

Duminuco, Biersack and En-Najjary [36] have proposed a proactive technique to reduce the
maintenance cost, namely the bandwidth use, based on an on-going estimation of the departure
rate of nodes that store blocks of data.

In [6], Bernard and Le Fessant have proposed a technique to estimate P2P backup systems
reliability and optimize their performance while introducing a new criterion “peers’ age or
lifetime”. The longer a peer has been in the system, the longer it is expected to stay in it. So,
by carefully selecting the peers on which backup data is stored, repairing cost can be highly
reduced while providing high durability level. The authors described a method to estimate the
age of peers and they validate their method by simulation.

In [28], Dalle et al. have developed a stochastic model based on a fluid approximation to
characterize the expectation and the standard deviation of the data lifetime in a P2P backup
system while taking into account the fact that many data blocks are lost at the same time when
a peer leaves permanently the system due to a disk failure. They do not consider churn and

do not study data availability. They studied a system that never produces replicas as a result



22 Background, Motivation and Related Work

of a transient failure, and hence when a disk crashes, it gets replaced by a new disk with no
data. A recovery mechanism is then triggered for each block of data that has, after a failure,
less than a predefined threshold. The recovery process tends to repair as fast as possible all the
missing fragments whenever enough fragments of the considered block of data are available in
the system. In addition, they considered that the system is much more affected by the fault of
an old disk than a young one because it hosts probably more fragments as fragments of each

block of data are uniformly distributed among peers.

1.4 Contribution and organization of this thesis

We address in this thesis the data lifetime and availability in distributed P2P backup and
storage systems. In such systems, data are no longer stored on expensive magnetic tapes but
on much cheaper hard disks. Although inexpensive, these storage systems pose many problems
of reliability, confidentiality, availability, routing, performance, etc.

The goal of my thesis is to develop and evaluate mathematical models to characterize funda-
mental performance metrics of P2P backup and storage systems; data lifetime and availability.
These systems use erasure codes redundancy mechanism to increase their reliability. Recall
that replication is a special case of erasure code. A distributed repair mechanism is used in the
first place and a centralized one in the second place to face the problems of nodes’ permanent
departure or failure or even the long transient disconnections when a high availability level is
needed.

Our first contribution to the analysis of data durability and availability in P2P storage sys-
tems is [3]. In this work, simplifying assumptions have been considered while modeling the
system. We have mainly assumed in [3] that both peer on-times durations and the recovery
process are exponentially distributed, following the assumptions and results of [75, 11, 31].
Based on these assumptions, we evaluated data lifetime and data availability through a marko-
vian analysis. Although the models are simple, they capture the behavior of both eager and lazy
repair policies and both replication-based and erasure code-based systems, and accommodate
both temporary and permanent disconnections of peers. For illustrative purpose and for having
simple and explicit formulas, we introduced fluid approximations of the systems at hand to
estimate the mean number of fragments available in each system. It is also possible to evaluate
the performance of the P2P storage systems, that use regenerating codes [35] as a redundancy
mechanism, using same models.

However, the recovery process in erasure-coded systems can differ from that in replicated
systems. The implications of the exponential assumption on the recovery process are not the
same in both systems. To understand how the recovery process could be better modeled, we im-

plemented these process in the network simulator NS-2 [39]. The implementation details have



1.4 Contribution and organization of this thesis 23

appeared in [31]. Then, we performed a simulation analysis of the download and the recovery
processes in erasure-coded systems; cf. [32, 31]. We ran several experiments and collected a
large number of samples of these processes in a large variety of scenarios. We used expecta-
tion maximization and least square estimation algorithms to fit the empirical distributions and
tested the goodness of our fits using statistical (Kolmogorov-Smirnov test) and graphical meth-
ods. We found that the download time of a fragment of data located on a single peer follows
approximately an exponential distribution in most (not in all) considered scenarios. We also
found that the recovery time essentially follows a hypo-exponential distribution with many dis-
tinct phases for same scenarios. In some other scenarios, we found however that an exponential
distribution can model the download and the recovery processes in a distributed P2P storage
systems.

Building on the findings of [32], we developed in [30] markovian models to study data
lifetime and availability in P2P storage systems assuming that the fragment download/upload
time is exponentially distributed. The models in [30] are therefore more realistic than those
in [3].

In light of the conclusions of [69], i.e., that machine availability is better modeled with a
hyper-exponential distribution than with an exponential, Pareto, or Weibull distribution, we
later extended in [29] and [33] the models of [3] and [30] respectively by assuming that peer
on-times durations are hyper-exponentially distributed. Doing so, our modeling is valid under
different distributed environments, cf. [26, 74, 69]. The work in [33] is under submission
to IFIP WG 7.3 International Symposium on Computer Performance, Modeling, Measurements
and Evaluation (Performance 2010).

Last, to overcome the limitation of scalability met in the packet-level simulator (NS-2),
we propose and analyze an algorithm, that we called the “progressive-filling flow-level algo-
rithm” or PFFLA. The algorithm is efficient in time and quite simple and uses the concept of
“Progressive-Filling” (or max-min fairness), hence the name. The validation of this algorithm
consists in characterizing the distribution of the response time of parallel downloads in a dis-
tributed storage system, through simulations. This is a joint work with Alain Jean-Marie (Re-
search director at INRIA and LIRMM, CNRS/Université Montpellier 2). This last piece of work
has been submited to the Third International Conference on Communication Theory, Reliability,
and Quality of Service (CTRQ 2010).

The outline of the remainder of this thesis is as follows.

Chapter 2 presents a markovian analysis and a simple fluid approximation for P2P storage
systems with a distributed repair mechanism under several assumptions on the peer availability
and the recovery process. Also, it provides some numerical results to support the mathematical
models. Similar to Chapter 2, Chapter 3 is devoted to the modeling of a P2P storage system

with centralized repair mechanism through a markovian analysis and a fluid approximation.



24 Background, Motivation and Related Work

In addition, we compare the performance of the two recovery mechanisms (centralized and
distributed repair). In Chapter 4, we describe a packet-level simulation model and provide
several experiments covering a large variety of scenarios while taking into consideration the
impact of the heterogeneity of peers, the underlying network topologies, the propagation delays
and the transport protocol. Chapter 5 introduces a simple, reliable and scalable “progressive-
filling flow-level algorithm” or PFFLA, that characterizes the distribution of the response time
of parallel downloads. PFFLA can be used as the core of any P2P simulator. Last, Chapter 6

concludes this thesis and discusses some open issues.



2

PERFORMANCE EVALUATION OF DATA
LIFETIME AND AVAILABILITY IN
DISTRIBUTED-REPAIR SYSTEMS

2.1 Introduction

In this chapter, we study the performance of distributed-repair P2P storage systems, in
terms of data lifetime and availability through markovian models. These systems rely on data
fragmentation and distributed storage. Files are partitioned into fixed-size blocks that are them-
selves partitioned into fragments. To ensure data reliability, redundant data is inserted in the
system. Redundancy is achieved, in practice, either by replication or by using erasure codes.
However, using redundancy mechanisms without repairing lost data is not efficient, as the level
of redundancy decreases when peers leave the system. Consequently, P2P storage systems need
to compensate the loss of data by continuously storing additional redundant data onto new
hosts. The distributed-repair scheme recovers one loss at a time.

The lifetime of data in the P2P system is a random variable (rv); we will investigate its
distribution function. Data availability metrics refer to the amount of redundant fragments. We
will consider two such metrics: the expected number of available redundant fragments, and
the fraction of time during which the number of available redundant fragment exceeds a given
threshold. The impact of each system parameter on the performance is evaluated. Guidelines
are derived on how to engineer the system and tune its key parameters in order to provide

desired lifetime and/or availability of data.
25



Chapter 2: Performance evaluation of data lifetime and availability in distributed-repair
26 systems

As we will show in Chapter 4 through simulations, the recovery process in distributed-
repair systems can be modeled, in some known scenarios, by either an exponential or hypo-
exponential distribution. This last assumption is nothing but a consequence of the finding that
successive download durations of a fragment can be seen as iid rvs with a common exponential
distribution function with parameter «, in addition to the assumption that concurrent fragments
downloads are not correlated. Indeed, each of the recovery durations is the summation of s
independently distributed exponential rvs having each its own rate [50]. We will see through
simulations, in Chapter 4, that these concurrent downloads are weakly correlated in some
interesting scenarios. The recovery process distribution essentially depends on the demand
and capacities of the complete network entities: peers upload/download, routers and links, in
addition to the volume of the background traffic.

Concerning peers availability, we will make two different assumptions as follow.

First, we simplify the study and assume that both peer on-times and off-times durations
are exponentially distributed, i.e., they follow the assumptions and results of [75] on the peers
availability as discussed in Section 1.3.

Second, in light of the conclusions of [69], i.e., that peers on-times duration are better
modeled with a hyper-exponential distribution than with an exponential, Pareto, or Weibull
distribution, the exponential assumption on the peers availability will therefore be relaxed later
in this chapter, and it will be shown later on that a more precise, more realistic modeling is
possible.

Therefore, we propose two simple models in which the peer availability is considered to
follow an exponential distribution. The recovery process is considered to follow an exponential
distribution in the first simple model, and a hypo-exponential distribution in the second simple
model. We then extend the two simple models to more general ones by assuming that peers
on-times durations, in both extended models, are hyper-exponentially distributed. Doing so,
our modeling is general, realistic and valid under different distributed environments. A simple
fluid model has been introduced under simple assumptions in order to have an explicit formula
of the availability metric.

The rest of this chapter is organized as follows. Section 2.2 introduces system description
and assumptions . In Section 2.3 we define some functions and introduce the notation. Sec-
tions 2.4 to 2.7 are devoted to the analysis of the distributed-repair P2P backup and storage
systems, in terms of data lifetime and availability, through simple and extended markovian
models as mentioned above. A simple fluid approximation is as well proposed in Section 2.4.
In Section 2.8, we validate the approximation made to compute the availability metrics in the
models thoughout simulation. Section 2.9 validates the simple fluid model made in Sect. 2.4.2.
In Section 2.10, guidelines are derived on how to engineer the system and tune its key parame-

ters, namely r and k, in order to provide desired lifetime and/or availability of data. Numerical



2.2 System description and assumptions 27

results that support the analysis and illustrate how to engineer the system are introduced in
Section 2.11.

2.2 System description and assumptions

In the following, we will distinguish the peers, which are computers where data is stored
and which form a storage system, from the users whose objective is to retrieve the data stored
in the storage system.

We consider a distributed storage system in which peers fully cooperate but randomly join
and leave. The following assumptions on the P2P backup and storage system design will be
enforced throughout the chapter:

m A single block of data D is partitioned into s equally sized fragments to which, using
erasure codes (e.g. [78]), r redundant fragments are added. The case of replication-
based redundancy is equally captured by this notation, after setting s = 1 and letting
the r redundant fragments be simple replicas of the unique fragment of the block. This
notation—and hence our modeling—is general enough to study both replication-based
and erasure code-based storage systems. Using our models, it is also possible to eval-
uate the performance of the systems that use regenerating codes [35] as a redundancy
mechanism. As we have seen in Section 1.2.1, the difference between erasure codes and
regererating codes is in the sizes of fragments and the required amount of data to be
downloaded in order to recovery lost fragments. However, evaluating the complication
cost of the implementation of the regenerating codes, with respect to their advantages, is

left for future work.
m Mainly for privacy issues, a peer can store at most one fragment of any data D.

B We assume the system has perfect knowledge of the location of fragments at any given
time, e.g. by using a Distributed Hash Table (DHT).

B The system keeps track of only the latest known location of each fragment.

m Over time, a peer can be either connected to or disconnected from the storage system.
At reconnection, a peer may or may not still store its fragments. We denote by p the
probability that a peer that reconnects still stores its fragments.

B The number of connected peers at any time is typically much larger than the number
of fragments associated with D, i.e., s + r. Therefore, we assume that there are always
at least s + r connected peers—hereafter referred to as new peers—which are ready to

receive and store fragments of D.



Chapter 2: Performance evaluation of data lifetime and availability in distributed-repair
28 systems

We refer to as on-time (resp. off-time) a time-interval during which a peer is always con-
nected (resp. disconnected). During a peer’s off-time, the fragments stored on this peer are
momentarily unavailable to the users of the storage system. At reconnection, and according
to the assumptions above, the fragments stored on this peer will be available only with a per-
sistence probability p (and with probability 1 — p they are lost). In order to improve data
availability and increase the reliability of the storage system, it is therefore crucial to recover

from losses by continuously monitoring the system and adding redundancy whenever needed.

We will investigate the performance of two different repair policies: the eager and the lazy
repair policies. In the eager policy, a fragment of D is reconstructed as soon as it has become
unavailable due to a peer disconnection. In the lazy policy, the repair is delayed until the
number of unavailable fragments reaches a given threshold, denoted k. In the latter case, we
must have k < r since D is lost if more than r fragments are missing from the storage system.
Both repair policies can be represented by the threshold parameter k € {1,2,...,r}, where k
can take any value in the set {2,...,r} in the lazy policy and k = 1 in the eager policy. Any
repair policy can be implemented either in a distributed or in a centralized (studied in the next
chapter) way. In the following description, we assume that the system misses k fragments so

that lost fragments have to be restored.

In the distributed implementation, a secure agent on one new peer is notified of the identity
of one out of the k unavailable fragments for it to reconstruct it. Upon notification, the secure
agent (1) downloads s fragments of D from the peers which are connected to the storage sys-
tem, (2) reconstructs the specified fragment and stores it on the peer’s disk; (3) subsequently
discards the s downloaded fragments so as to meet the privacy constraint that only one frag-
ment of a block of data may be held by a peer. This operation iterates until less than k fragments
are sensed unavailable and stops if the number of missing fragments reaches k — 1. The recov-
ery of one fragment lasts mainly for the execution time of Step 1. We will thus consider the

recovery process to end when the download of the last fragment (out of s) is completed.

Once a fragment is reconstructed, any other copy of it that “reappears” in the system due
to a peer reconnection is simply ignored, as only one location (the newest) of the fragment is
recorded in the system. Similarly, if a fragment is unavailable, the system knows of only one

disconnected peer that stores the unavailable fragment.

Given the system description, data D can be either available, unavailable or lost. Data D is
said to be available if any s fragments out of the s+ fragments can be downloaded by the users
of the P2P backup and storage systems. Data D is said to be unavailable if less than s fragments
are available for download, however the missing fragments to complete D are located at a
peer or a central authority on which a recovery process is ongoing. In fact, the two states of
data already described appear when the recovery process is modeled by a hypo-exponential

distribution as we will see later. Data D is said to be lost if there are less than s fragments in the



2.2 System description and assumptions 29

system including the fragments involved in a recovery process. We assume that, at time t = 0,
at least s fragments are available so that the document is initially available.

We now introduce the assumptions considered in our models.

Assumption 1: (off-times) We assume that successive durations of off-times of a peer are in-
dependent and identically distributed (iid) random variables (rvs) with a common expo-
nential distribution function with parameter A > 0.

Assumption 1 is in agreement with the analysis in [75].

Assumption 2: (on-times) For the sake of simplification, we first assume that successive du-
rations of on-times of a peer are iid rvs with a common exponential distribution function
with parameter pu. To have more elaborate models, we second assume that these suc-
cessive durations are iid rvs with a common hyper-exponential distribution function with
n phases; the parameters of phase i are {pj, ui}, with p; the probability that phase 1 is

selected and 1/ the mean duration of phase i. We naturally have ) ', p; = 1.

Assumption 2, with n > 1, is in agreement with the analysis in [69]; when n = 1, it is
in agreement with the analysis in [75]. According to Assumption 2 for n > 1, each time a
peer rejoins the system, it picks its on-time duration from an exponential distribution having
parameter ; with probability p;, for i € [1..n]. In other words, a peer can stay connected for a
short time in a session and for a long time in another one.

Assumption 3: (independence) Successive on-times and off-times are assumed to be inde-

pendent. Peers are assumed to behave independently of each other.

Assumption 4: (recovery durations) We assume in the first place that successive recovery
durations (download durations of the whole block or s fragments in parallel) are iid rvs
with a common exponential distribution function with parameter vy.

This last assumption is supported by our findings in [31] as explains chapter 4. We will see
in chapter 4 through experiments results how the recovery times distribution is impacted
by the characteristics of the the peers and the considered overlay network.

Assumption 5: (download durations) We assume in the second place that successive down-
load durations of a fragment, rather than the whole block of data as in Assumption 4, are
iid rvs with a common exponential distribution function with parameter «. We further

assume that concurrent fragments downloads are not correlated.

Assumption 5 is supported by our findings in [32, 31] as explains Chapter 4. The fragment

download/upload time was found to follow approximately an exponential distribution and we



Chapter 2: Performance evaluation of data lifetime and availability in distributed-repair
30 systems

Table 2.1: System parameters.
D Block of data

Original number of fragments for each block of data

(7]

T Number of redundant fragments

k Threshold of the recovery process

P Persistence probability

A Rate at which peers rejoin the system

Pi, Hiiz1,..n Parameters of the peers failure process

x Download rate of a piece of data (fragment)

2% Recovery rate of a missing fragment when the recovery process is

exponentially distributed

have found in simulations that these successive download durations are weakly correlated as
long as the total workload is equally distributed over the active peers and the core network has

a good connectivity and the peers upload/download capacities are asymmetric [85, 47].

Assumption 6: (recovery durations) A consequence of Assumption 5 is that each of the block
download durations and then the recovery durations of a missing fragment in this distributed-
repair scheme are iid rvs with a common hypo-exponential distribution function [50] with
s phases. Indeed, each of these durations is the summation of s independently distributed
exponential rvs.

It is worth mentioning that the simulation analysis of [32] has concluded that in most cases
the recovery time follows roughly a hypo-exponential distribution. This result is expected as
long as fragments downloads/uploads are exponentially distributed and very weakly correlated.
It was also found in [32] that a hypo-exponential model gives a more reasonable approximation
of the recovery process than an exponential model even in cases when the null hypothesis is re-
jected for a good significant level in a scenario when the core networks has a good connectivity
and the peers upstream and downstream bandwidths are asymmetric.

Given Assumptions 1-6, the models developed in this thesis are general, realistic and can
capture the behaviors of the P2P storage systems in large variety of scenarios and environments.
Table 2.1 recapitulates the parameters introduced in this chapter. We will refer to s, r and k as
the protocol parameters, p, A and {pi, Wi}i=1,.. n as the peers parameters, and « as the network
parameter.



2.3 Preliminaries and Notation 31

2.3 Preliminaries and Notation

We will focus in this section on the dynamic of peers in the storage system. In particular, we
are interested in computing the stationary distribution of peers. According to Assumptions 1-3
in the previous section, each time a peer rejoins the system, it picks its on-time duration from
an exponential distribution having parameter p; with probability p;, for i € [1..n]. In other
words, a peer can stay connected for a short time in a session and for a long time in another
one.

This dynamicity can be modeled as a general queueing network with an arbitrary but finite
number n of different classes of customers (peers) and an infinite number of servers. In this
network, a new customer enters directly, with probability p;, a server with a service rate ;.
Define PI(fi = (n1,...,nn)) = lim¢ o P(N7(t) = n1,...,Nx(t) = ny) to be the joint distribu-
tion function of the number of customers of class 1,...,n in steady-state (or, equivalently, the

number of busy servers) where N;(t) is the number of peers of class 1 in the system at time t

fori=1,...,n. We have the following known results [5, 58]:
n pni
PI(A) =1/G] | rfiz
i=1

where p; = Api/u is the rate at which work enters class i and G is the normalizing constant.

n
Eni = Z niPI(ﬁ):piHepl, fori=1,...,n

For later use, we will compute the probability of selecting a new peer in phase 1, denoted by
R(i), or equivalently the percentage of the connected peers in phase i as follows:

. E[ny Pi Pi/ i
R(1) = = = (2.1)
S B Xt ZiLipi/m
We introduce as well functions S and f such that for a given n-tuple @ = (as,...,an),

S(a@) := Y ', a;and f;(d) := ai/S(d).

We conclude this section by a word on the notation: a subscript “e” (resp. “h”) will indi-
cate that we are considering the recovery process to be modeled by an exponential (resp. a
hyper-exponential) distribution; in the basic (resp. extended) models, we will add to the rvs

“_.”

a superscript “e” (resp. “h”) referring to the assumption on the distribution of peers on-times:



Chapter 2: Performance evaluation of data lifetime and availability in distributed-repair

32 systems
su (s+1Dp (s+i+1u (s+7)n
:/‘\ TN v ~ /‘@/ ~ N
TPA +Y (r—U)pA+vyl{k<r—1i} PA+vyl{k =1}

Figure 2.1: Transition rates of the basic absorbing Markov chain {X§(t),t > 0} in the distributed-recovery
implementation.

exponential in the basic models and hyper-exponential in the extended models. The notation
éji refers to a row vector of dimension j whose entries are null except the i-th entry that is equal
to 1; the notation 1; refers to a column vector of dimension j whose each entry is equal to 1; and
the notation 0 refers to a null row vector of appropriate dimension. T{A} is the characteristic
function of event A. The notation [a]* refers to max{a, 0}. The set of integers ranging from a to
b is denoted [a..b]. Given a set of n rvs {Bi(t)}ic[1.n, ﬁ(t) denotes the vector (B1(t),...,Bn(t))
and B denotes the stochastic process {ﬁ(t), t >0}

2.4 Simple model, recovery process is exponentially distributed

In this section, we address the performance analysis of the P2P storage systems with the
distributed implementation of the recovery process as described in Section 2.2. For the sake
of simplification, we consider in this section that successive peers off-times (resp. on-times)
durations and the recovery durations are exponentially distributed with parameters A (resp. )
and vy following Assumptions 1,3 and 4 in Section 2.2. We will focus on a single block of data
and we will only pay attention to peers storing fragments of this block.

Let X¢(t) be a{a,0,1,...,r}-valued rv, where X§(t) =1 € 7 :={0,1,...,r} indicates that
s + 1 fragments are available at time t, and X§(t) = a indicates that less than s fragments are
available at time t. We assume that X£(0) € 72 so as to reflect the assumption that at least s
fragments are available at t = 0. Thanks to the assumptions made in Section 2.2, it is easily
seen that X¢ := {X§(t), t > 0} is an absorbing homogeneous Continuous-Time Markov Chain
(CTMC) with transient states 0,1,...,r and with a single absorbing state a representing the
situation when the block of data is lost. Non-zero transition rates of {X§(t), t > 0} are shown in
Fig. 2.1.

2.4.1 Data lifetime

This section is devoted to the analysis of the data lifetime. Let TS(i) := inf{t > 0: X§(t) = a}
be the time until absorption in state a starting from X§(0) = i, or equivalently the time at

which the block of data is lost. In the following, T¢(1) will be referred to as the conditional block



2.4 Simple model, recovery process is exponentially distributed 33

lifetime. We are interested in P(T$(i) < x), the probability distribution of the block lifetime
given that X§(0) =1ifor i € 7, and the expected time spent by the absorbing Markov chain in
transient state j, given that X§(0) = 1. The infinitesimal generator has the following canonical
form

TE a

e
1$ Q¢ | R¢
a 6 0

where fég is a non-zero column vector of size |7 = r + 1, and Qg is |7 8|-by-|7f| matrix. The
elements of R¢ are the transition rates between the transient states x € 7 and the absorbing
state a. The diagonal elements of dg are each the total transition rate out of the corresponding
transient state. The other elements of Q¢ are the transition rates between each pair of transient
states. The only non-zero element of R¢ in this simple model is sy for x = 0. Let us proceed to

the definition of the non-zero entries of Q€.

qé(i,i—1) = ¢, i=12,...,7r,
qg(l,l—l—]) = di+wy, i=0,1,...,7—1
QS(l)l) = —(Ci‘i‘di‘i‘Wi) ) i:O)])"')r)

withwi ==yIl{i <r—Xk}, ¢i:=(s+1i)pand di:= (r—i)pAforie 75
From the theory of absorbing Markov chains we know that (e.g. [68, Lemma 2.2])

P(TER) <x) =1—¢&1) - exp(xQE) - Try1 , x>0 ,1€TE, (2.2)
where eﬂrﬂ and TH] are vectors of dimension r + 1; all entries of é’;ﬂ are null except the

(14 1)-th entry that is equal to 1, and all entries of Tr+1 are equal to 1 (see Section 2.3 for all
the definitions). In particular [68, p. 46]

. S N—1 2
BITE(i)] = &)+ (Q2) Ton, ieTs, 2.3)

N
where the existence of (Qg) is a consequence of the fact that all states in 7,£ are transient

[68, p. 45]. Let T¢(4,5) Igg () I{XE(t) = j} dt be the total time spent by the CTMC in transient
state j given that X§(0) = 1. It can also be shown that [46]

. S o\ 1 .
ETEi) =—e}- (Q8) gl 1ieTs. (2.4)

where 'y denotes the transpose of any row vector y. In other words, E[T¢(1,7)] is the (i,j)-th

N
entry of matrix — (Qg) .



Chapter 2: Performance evaluation of data lifetime and availability in distributed-repair
34 systems

2.4.2 Data availability

In this section we introduce different metrics to quantify the availability of the block of
data. The fraction of time spent by the absorbing Markov chain {X¢(t), t > 0} in state j with
X&(0) =1is E[(1/TE(1) j 0 11{Xe = j} dt]. However, since it is difficult to find a closed-form
expression for this quantity, we will instead use the following approximation

1w ] ETEGL))
o 10xe _ ~ elbH
E[ = | e J}dt] =

Teld 1,j €{0,..., 1}, (2.5)

We will validate this approximation through simulation in Section 2.8. With this in mind,
we introduce
. Z [TE(L,5)] : = E[TE(i, ] .
e = er” € = —etnl/ T . 2.6
e,1 (1) J Te( ) ) e,Z(l) E[Te (1)] ) 1€ ( )

1 :
j=0 j=m

The first availability metric can be interpreted as the expected number of available redundant
fragments during the block lifetime, given that X¢(0) =i € 7. The second metric can be inter-
preted as the fraction of time when there are at least m redundant fragments during the block
lifetime, given that X§(0) =i € 7 2. Both quantities Mg, (1) and Mg)z(i) can be (numerically)
computed from (2.3) and (2.4). Numerical results are reported in Section 2.11 for i = r and
m=r—kin (2.6).

Continuous time Markov chain CTMC

Since it is difficult to come up with an explicit expression for either metric Mg (i) or
Mg, (1), we make the assumption that parameters k and r have been selected so that the
time before absorption is “large”. This can be formalized, for instance, by requesting that
P(TE(r) > q) > 1 — €, where parameters q and e are set according to the particular storage
application(s).

In this setting, one may represent the state of the storage system by a new irreducible and
aperiodic—and therefore ergodic—Markov chain Xg = {)N(g(t), t > 0} on the state-space 77
which is the same of the absorbing CTMC without the absorption sate considering that it can no
longer be reached. Let Qe = [G¢(1,i)lo<ij<r be its infinitesimal generator. Matrices Qe and Q
whose non-zero entries are given in Section 2.4.1, are identical except for 5(0,0) = —(do+wo).
More precisely, X¢ becomes a birth and death process (see Fig. 2.1). Let 7t(i) be the stationary
probability that Xg is in state i, then (e.g. [56])

-1
r i—1

i—1
n(i) = 1+ZHd+WJ HM ieTe 2.7)

C.
im1 j—0 j—o t1



2.4 Simple model, recovery process is exponentially distributed 35

From (2.7) we can derive the expected number of available redundant fragments through the

formula:

EIXZ =) inm(i). (2.8)

Simple fluid model

In order to have an expression for E[)N(g] more explicit than (2.8) we will use the idea of the
fluid approximation using [60, Thm. 3.1] for the case of the eager policy k = 1.

As X&(t) represents the number of available redundant fragments in the system. Thus,
r~1.X¢(t) would be the proportion of available redundant fragments. We must find a continuous
function f(x,1), where x € [0,1] and 1 is an integer component such that the infinitesimal

parameters corresponding to )N(g(t) are given by
qi,iJrl = T‘f(i/T, 1)» l 7é 0
The infinitesimal parameters for the CTMC, as we saw in the previous section, are given by:

dijit1 = (r—iUpA+y, 0<i<r—1

dii1 = (s+iu, 1<ilr
These transitions can be rewritten as

diit1 = r.f(i/n,1)
dii1 = r.f(i/r,—1)
where
fx1) = (1=x)pA+ T
fx,~1) = (Z+xu
Introduce the function F(x) := ) ;1 x f(x,1). Then
F(x) = (1—x)pA + % - (% T

This function is continuous and verifies the conditions of Theorem 3.1 in [60]. The Process
@ converges then in distribution to the Process &(t) solution of this ordinary differential

equation (ODE)

S S FE[) = &) (pA+ )+ pr+ —H




Chapter 2: Performance evaluation of data lifetime and availability in distributed-repair
36 systems

At stationarity, the solution of this ODE is the expected proportion of available redundant frag-
ments in the system. In other words,

PA 4 Y5
PA+ L

The expected number of available redundant fragments is thus approximately

E[E] = (2.9)

- TPA+ v —su
EXE(t)] ~ ——————— 2.10
(Xe(t)] > —— (2.10)

The expected number of the available fragments is thus approximately

(s+T1)pA+7y

E[XE(t)] + s ~
Xe(t)] +s A

(2.11)
Numerical results for E[X¢], or more precisely, for its deviation from M¢ ,(r) are reported in
Section 2.9. We will show that the fluid model converges very well when value of r increases

relatively to s or to the ratio r/s.

2.5 Simple model, recovery process is hypo-exponentially distributed

Similarly to Section 2.4, we address in this section the performance analysis of the dis-
tributed implementation of the P2P storage systems while considering Assumptions 1,3,5 and
6 introduced in Section 2.2. In other words, we consider that successive peers off-times (resp.
on-times) durations are exponentially distributed with parameters A (resp. ), and we assume
that successive download durations of a fragment are iid rvs with a common exponential dis-
tribution function with parameter «. We further assume that concurrent fragments downloads
are not correlated. Therefore, the recovery processes is a rv following a hypo-exponential dis-
tribution of s phases [50] having each its own rate. We will focus on a single block of data and
we will only pay attention to peers storing fragments of this block.

Let X§ (t) and Y£(t) be two rvs denoting respectively the number of fragments in the system
that are available for download and the state of the recovery process. Recall that the recovery
process consists of a series of s exponential distributions that can be seen as s stages and that the
distributed scheme repairs only one fragment at a time. We denote YZ(t) =j (G =0,1,...,s—1)
to express that j exponential rvs have been realized at time t, so that s — j are still to go. When
the last stage is completed, the recovery process is completed and Y§(t) = 0. The process Xj,(t)
takes value in the set {s — 1,s,...,s + 1}

Consider now the joint process (Xf (t), Y5.(t)). When X (t) > s, data D is available, regard-
less of Yy (t). When X{(t) < s (in particular s — 1) but s different fragments can be located

between the secure agent involved in the recovery process and the available fragments in the



2.5 Simple model, recovery process is hypo-exponentially distributed 37

system, namely Xf (t) 4+ Y5 (t) > s, D is unavailable but still alive. When Xf,(t) + Yg(t) < s or
X§(t) 4+ YE(t) > s but less than s distinct fragments are still accessible by the system, D is lost.
The latter situation will be modeled by a single state a. Introduce the set

Te={ (s—1,1),(s—1,2),....(s—1,s—1), } Dis unavailable
(S) ) ( S, ) ...,(3,8—1),
(s+1,0),(s+1,1),... (s+T,s—1),..., D is available
(s+1r—1,0),(s+r—1,1),...,(s+r—1,s—1),
(s+71,0) ]

T = s(r +1).

Thanks to the considered assumptions, it is easily seen that the two-dimensional process{(Xf,(t), Y5 (t)), t >
0} is an absorbing homogeneous Continuous-Time Markov Chain (CTMC) with transient states
the elements of 7,° and with a single absorbing state a representing the situation when D is
lost. Without loss of generality, we assume that X§,(0) > s. The infinitesimal generator has the

following canonical form
T8 a

¢ [ Qg |Re
a 6 0

The analysis of the absorbing Markov chain {(Xf(t), Y5(t)) : t > 0} that takes value in
7,2 U {a} is similar to the analysis in Section 2.4, we will then only sketch it. In particular, ﬁﬁ

[1PN]

and Qh have similar definitions as Re and Qe after replacing the subscript “e” with the subscript
“h” whenever needed. The elements of Rﬁ are lexicographically ordered alike the order in 7,¢.

The non-zero elements of ﬁﬁ and Qﬁ are as follows

h(s—1,3)=(s—1y, forj=1,...;s—=1; 7v5(s,j) =(s—j)u, forj=0,...,s —1.
W, for i=s,j=1,...,s—1;
an((1,3), A = T1,3)) = < iy, for i=s+1,...,s+7r—1,j=0,...,s—1;
or i=s+r1,j=0.
ap((i,3), (1,7 + 1)) = (s —j)«, for i=s,...,s+17—k,j=0;
or i=s—1,...,s4+r—1,j=1,...,s—2.
an((i,s—1),(i+1,0)) = «, for i=s—1,...;s+1r—2.
an((i,j), i+ 1,j)) = (s +r—1)Ap, for i=s—1,j=1,...,s—1,
or i=s,...,s4+1r—235=0,...,s—1.
(s+r—1,5),(s+7,0)=Ap+M{j=s—1}x, for j=0,...,s—1.
((L3), (03)) = —18(05) = X gere g R0 1, 7), for (1,1) € T,

q
q

o o

For illustration purposes, we depict in Fig. 2.2 an example of the absorbing CTMC with its
non-zero transition rates when s = 3, r = 2, and k = 2.



Chapter 2: Performance evaluation of data lifetime and availability in distributed-repair
38 systems

3Ap 2Ap

D is available
D is unavailable

I D is lost

Figure 2.2: The Markov chain {(Xf,(t), Y5 (t)), t > 0} with the distributed-repair scheme when s = 3,
r=2,and k = 2.

2.5.1 Data lifetime

Similar to what was done in Section 2.4.1, this section is devoted to the analysis of the
lifetime of D. Let TE(1,j) = inf{t > 0 : (X{(t), Y5(t)) = al(X§(0),YE(0)) = (i,j)} be the time
until absorption in state a, or equivalently the time until D is lost, given that the initial state
of D is (i,j). In the following, T£(i,j) will be referred to as the conditional block lifetime. We
are interested in P(TS(1,j) < x) and E[T:(i,]j)], respectively the probability distribution of the
conditional block lifetime and its expectation, given that (X} (0), Y5 (0)) = (i,j) € 7,f. From the
theory of absorbing Markov chains, we know that (e.g. [68, Lemma 2.2])

PITE(L]) < x) =1t exp (xQ8) - Tzep, x>0, (1)) € T (2.12)
h
where ind(i,j) refers to the index of the state (i,j) € 7,7 in the matrix (_jﬁ Recall that the
elements of Qﬁ are numbered according to the lexicographic order. Definitions of vectors é{
and 1; are given at the end of Section 2.3. Observe that the term g?;ie(‘ia') - exp (x(jﬁ) . T‘T}ﬂ in
the rh.s. of (2.12) is nothing but the summation of all |7,¢| elements in row ind(i,j) of matrix
exp (x@ﬁ)

We know from [68, p. 46] that the expected time until absorption can be written as
BTG5 = et (G8) T, (L)) €% (2.13)
L= Te| h T8> y) ho .

Lo\
where the existence of (Qﬁ) is a consequence of the fact that all states in 7,7 are transient
[68, p. 45]. Inverting Qﬁ analytically can rapidly become cumbersome as s or r increases. We
will instead perform numerical computations as reported in Section 2.11.

Consider now

T¢ ()
Te((4,9),(1,3) = JO I{(XR(t), YR(t) = (1,37} dt



2.5 Simple model, recovery process is hypo-exponentially distributed 39

that is the total time spent by the CTMC in transient state (i’,j’) given that {X£,(0), Y5(0)} =
(1,j). It can also be shown that [46, p. 419]

g ind(i,j) [(Re) | teind(i’j’ C o s
E[T((L9), (3] = =g (Q5) - @) (50 e T, (2.14)

where j denotes the transpose of a given vector . In other words, the expectation E [T£((1,7), (i,5'))]

o\
is the entry of matrix (—Qﬁ) at row ind(1,j) and column ind(i’,j’).

2.5.2 Data availability

In this section we introduce different metrics to quantify the availability of D. We are
interested in the fraction of time spent by the CTMC in any given state (i’,j’) before absorption.
However, this quantity is difficult to find in closed-form. Therefore, we resort to using the
following approximation

B {Tﬁ((i,i),(i’,i’))} _E[MR(G,5), G47,57)]

~ . 2.15
Tew,)) EITe(,))] (2.15)

Here, (i,j) is the state of D at t = 0. This approximation have been validated through sim-
ulations, as shown later in Section 2.8. With this approximation in mind, we introduce two
availability metrics: the first can be interpreted as the expected number of fragments of D that
are in the system during the lifetime of D; the second can be interpreted as the fraction of time
when at least m fragments are in the system during the lifetime of D. More formally, given that
(XE(0),Y5(0)) = (i,j) € 7;%, we define

.. L EITE((,5), (3,57)]
My (1,7) = — , (2.16)
hal(ii) (i/)j/ZEThel ETe(L,))]
BITe((L5) (i i/
My o((4,3), m) = > Ta((h,3), (550)] (2.17)

i/ jETE i/ >m B[R9
For instance, Mﬁ)z((s + 1,0),s) is the proportion of time when data D is available for users,
given that s + r fragments of D are initially available for download.

Similarly to was done in Section 2.4.2, we can assume that the parameters r and k are
tuned such that the time before absorption in state a is arbitrarily long, and then compute
the expected number of available fragments in the system through an ergodic Markov chain.
However, since the formula is not explicit, such an evaluation would be useless because we have
already closed-forms of the availability metrics. Introducing a fluid approximation as what was
done in Section 2.4.2 under the assumptions made in this Section is a complex task.

Let us proceed now to the extended models where the peers on-times are hyper-exponentially

distributed, with n phases.



Chapter 2: Performance evaluation of data lifetime and availability in distributed-repair
40 systems

2.6 Extended model, recovery process is exponentially distributed

We consider in this section that peers on-times are hyper-exponentially distributed, with n
phases (Assumption 2 for n > 1 in Section 2.2); the parameters of phase i are {py, 1}, with p;
the probability that phase 1 is selected and 1/u; the mean duration of phase i fori=1,...,n.
We naturally have ) ", p; = 1. Recall that the hyper-exponential distribution is a mixture or
weighted sum of exponentials, with density function equal to } ' ;pipi exp(—pix). According
to this assumption, each time a peer rejoins the system, it picks its on-time duration from
an exponential distribution having parameter p; with probability p;, for i € [1..n]. We also
consider that the recovery process is modeled by an exponential distribution (Assumption 4 in
Section 2.2). This model is a generalization of the basic model introduced in Section 2.4, since
setting n = 1 (then p; = 1) and u; = u returns the basic model.

The system state-space, unlike the basic model, will have to include knowledge of the peers
on-times phases to be able to incorporate hyper-exponential distribution into a Markov chain
model, where the Markov property must hold [98, p. 266]. It is no longer sufficient to consider
solely the number of available redundant fragments of D as was done in Section 2.4.

Let us consider a n-tuple i= (i1,...,in) with i, €{0,...,s+r}and a function S(f) =3
as already defined in the end of Section 2.3. It will be convenient for later use to introduce sets
L1:= {fe {0,...,s+1r™ S(f) =1I}forI =s,...,s+ r. The set £ consists of all system states in
which the number of fragments of D currently available is equal to I. For any I, the cardinal of
L1 is (If::]) (think of the possible selections of n — 1 boxes in a row of I + n — 1 boxes, so as
to delimit n groups of boxes summing up to I).
Let X(t) represent the system state at time t. The rv X}(t) takes value in {a} U 7]* where
TM:= Uil £1. The identity X?(t) = a indicates that less than s fragments of D are available at
time t, and X}}(t) = i= (i1,...,1n) indicates that i; € {0,...,s + v} fragments of D are stored
on a peer in phase 1 for 1 € {1,...,n}, such that the total number of available fragments S(f)
lies between s and s + 7.

The process X := {X"}(t),t > 0} is an absorbing Markov chain, with a single absorbing state

aand |7 = Y317 ("I™7) transient states.

2.6.1 Data lifetime

Introduce TM(£1) := inf{t > 0 : X}(t) = a/X}(0) € L£;), the time until absorption in state
a given that the initial number of fragments of D available in the system is equal to I. In this
section, we will derive the probability distribution and the expectation of T}{(L1).

Let QI and R™ have similar definitions to those Q¢ and R¢ which are defined in Section 2.4.1

after replacing the superscript “e” with “h” whenever needed. Non-zero elements of ﬁ? are



2.6 Extended model, recovery process is exponentially distributed 41

-,

given by r(1) = Y, iy for i € L. Introduce for i,j € 7t and L =1,...,n.

Ap= iy l{l <iy <s+r1}
By = pus +1—SHIPMO0 < iy < s+ 71},

-,

D; = ROYIS() < s+ 71—k},

Where the definition of R(1), the probability of selecting a new peer in phase 1 or equiva-

lently the percentage of the connected peers in phase 1, was intoduced in Section 2.3 (R(1) =

P/ 5 o
). Non-zero elements of QI = [qh(l’])]ikzh are

Y iapi/ €
q*g(i{—é;):m, s+1<SH <s+,
1<{i<s+r, fortl=1,...,n,
qQ(ifJﬁTﬁ):B;’ﬁDh, s<SH) <s+r—1,
n
al(i,i) =—) (Ai+By +Dg)), s<S{H)<s+, (2.18)
1=1

Similarly to (2.2) and (2.12), we can write

Sind({

p (TQ({?}) < x> = 1-enexp (xé*g) Ay x>0, {e T, (2.19)

—.

where ind(i) refers to the index of state i in matrix QQ and TQ({?}) is the time until absorption
in state a given that the system is in state i at time 0. Let 7t; denote the probability that the
system starts in state i€ £ at time 0 given that X!(0) € £1. We can write

~ I n )
o h 3 h _ 1
m = P (Xe(O) —1e LdX™M0) e £1> = <i1,iz, .,in> !—! R(LY. (2.20)

Clearly Zfecl ;=1 forI =s,...,s+ r. Using (2.19) and (2.20) and the total probability
theorem yields

P(ToL) <x) = Y (TR <x) (2.21)
{GEI
= 1= Y e e (xQE) T 0,ieTr (222
= i n—eh_l p e "]'ehl, X > , 1 E e - .
{‘E»C[

The expectation of the block lifetime when there are initially I fragments available in the system
is given by

Lind (i SN —1
L] - - X (@) ot

{E»C[



Chapter 2: Performance evaluation of data lifetime and availability in distributed-repair
42 systems

Similarly to (2.4) and (2.14), we can compute

E[TNCn L] = Y E[THLy6)]

]?ES]
Sind (i =1 _ind(§
= - Y S o (@) eV s<ry<s+r, 24
IGEI 165]

where TY(L1, L)) is the total time spent in transient states j e L; given that X(0) € £;. In
other words, TIY(L1, £j) represents the time during which ] fragments of D are available given
that there were I fragments of D in the system at time 0.

2.6.2 Data availability

The data availability are quantified, as motivated in Section 2.4.2 and Section 2.5.2, by the
following two metrics (for s <1 <s+ ).

s+r Th EI»LI)] . . s+r E [T;(EI,E])]
e1 (L1) ZI ) Me,z(ﬁl) = ]_me . (2.25)

after using the following approximation.

B |:T2(£I>E])} - E[TM Ly, £y)]

TELY) ETNL) (2.26)

The first availability metric can be interpreted as the expected number of available frag-
ments during the block lifetime, given that the initial number of fragments at time t = 0 is I.
The second metric can be interpreted as the fraction of time when there are at least m frag-
ments during the block lifetime, given that the initial number of fragments at time t = 0 is L.

Both quantities can be numerically computed.

2.7 Extended model, recovery process is hypo-exponentially dis-
tributed

In this section, we consider that the peers on-times are hyper-exponentially distributed, with
n phases (Assumption 2 for n > 1 in Section 2.2); the parameters of phase 1 are {pj, 1}, with p;
the probability that phase 1 is selected and 1/u; the mean duration of phase i fori=1,...,n.
We naturally have } ' ; p; = 1. As mentioned previously, according to this assumption, each
time a peer rejoins the system, it picks its on-time duration from an exponential distribution

having parameter p; with probability p;, for i € [1..n]. The probability of selecting an active
Pi/Ki

peer in phase i, denoted by R(i) = Z —
1=1F1 l

, is equal to the percentage of the connected



2.7 Extended model, recovery process is hypo-exponentially distributed 43

peers in phase i. We also consider that the recovery process is modeled by a hypo-exponential
distribution (Assumption 5 and 6 in Section 2.2). In fact, this section introduces a general
model that is applicable to many realistic distributed environments and scenarios as justified in
Chapter 4.

The system at time t can be described under the considered assumptions by both the number
of fragments that are available for download and the state of the recovery process. Unlike the
centralized-repair scheme, the distributed recovery process consists of only a download phase
at the end of which the secure agent running on the new peer reconstructs a single fragment
and stores it on the peer’s disk.

To model the system, we introduce n-dimensional vectors )?Q(t), ﬂ}(t), Z‘ﬁ(t), where n is
the number of phases of the hyper-exponential distribution of peers on-times durations, and
a 3n-dimensional vector W(t) = (XI(t), Y}(t), ZI(t)). Vectors Y}(t) and ZI'(t) describe the
recovery process. The formal definition of these vectors is as follows:

m XP(t) = (Xp (1), ... ,Xﬁyn(t)) where X{*((t) is a [0..s + r]-valued rv denoting the num-
ber of fragments of D stored on peers that are in phase | at time t. fk(t) must verify
S(XIMt)) € [s — 1.5 + 1.

mYR(t) = (Yfq(t),..., Y{t . (t)) where Y} (t) is a [0..s — 1]-valued rv denoting the number
of fragments of D being downloaded at time t to the secure agent from peers in phase 1
(one fragment per peer).

mZl(t) = (Z]4(t),..., Z} (1)) where Z}' (t) is a [0..s — T]-valued rv denoting the number
of fragments of D hold at time t by the secure agent and whose download was done from
peers in phase 1 (one fragment per peer). Observe that these peers may have left the

system by time t.

Given the above definitions, we necessarily have Y}‘h(t) < X‘}h(t) for 1 € [1..n] at any time t.
The number of fragments of D that are available for download at time t is given by S(f(“ﬁ(t))
(recall the definition of the function S in Section 2.3). During the recovery process, S(\?‘}}(t)) +
S(Zﬁ(t)) = s, such that S(VE(t)),S(Zﬁ(t)) € [1..s—1]. Because the distributed-recovery scheme
repairs fragments only one at a time, we have S(f(?{(t)) € [s—1..s+7]. The end of the download
phase is also the end of the recovery process. We will then have V]}i‘(t) = Zﬁ(t) = 0 until the
recovery process is again triggered.

According to the terminology introduced in Section 2.2, at time t, data D is available if
S()?Q(t)) > s, regardless of the state of the recovery process. It is unavailable if S()?‘ﬁ(t)) <'s
but S(Zﬁ(t))—the number of fragments hold by the secure agent—is larger than s — S(f(“ﬁ(t))
and at least s — S(X'(t)) fragments out of S(Z](t)) are different from those S(X]'(t)) fragments
available on peers. Otherwise, D is considered to be lost. The latter situation will be modeled

by a single state a.



Chapter 2: Performance evaluation of data lifetime and availability in distributed-repair
44 systems

If a recovery process is ongoing, the exact number of distinct fragments of D that are in the
system—counting both those that are available and those hold by the secure agent—may be
unknown due to peers churn. However, we are able to find a lower bound on it, namely,

b(XJ(t), Y1), Z max(Xp; 1(t), YR (t) + Zy(t)).

In fact, the uncertainty about the number of distinct fragments is a result of peers churn. That
said, this bound is very tight and most often gives the exact number of distinct fragments since
peers churn occurs at a much larger time-scale than a fragment download. In our modeling, we
consider an unavailable data D to become lost when the bound b takes a value smaller than s.
Observe that, if the recovery process is not triggered, then b()?‘ﬁ(t), 0,0) = S()?]‘?L(t)) gives the
exact number of distinct fragments.

According to the description and assumptions listed in Section 2.2, the state of data D at
time t can be represented by W(t) and the multi-dimensional process W= {W(t), t > 0}is an
absorbing homogeneous CTMC with a single absorbing state a. The set of transient states 7, is
the set of elements of [0..s + ™ x [0..s — 1]™ x [0..s — 1]™ that verify the constraints mentioned
above.

The matrix ﬁh and QQ have similar definitions as ﬁg and Qg after replacing the subscript and

the superscript with “h” whenever needed. The non-zero elements of ﬁﬁ are, for S(g‘ﬁ) €
[1..s—1] and S(zh) =5— S(gﬂ),

n

X 0,0) = > xym, for S(XM) =s.
1:1

r}}{(%h,y]‘},zh Z Xh 1M for S(x]‘}) =s—1.

(RN g 2N = Zymm 11{ (;eh,gh,zh)—s} for S(¥M) =s.

We next write the non-zero elements of Q% Let us drop hereafter and until the end of this
section the subscript h and the superscript h from the random variables and metrics to simplify
the readability of the equations.

The case when a peer leaves the system

There are three situations in this case. In the first situation, either the recovery process has
not been triggered or it has but no download has been completed yet. In the other two situa-
tions, the recovery process is ongoing and at least one download is completed. In the second
situation, the departing peer does not affect the recovery process (either it was not involved in
it or its fragment download is completed), which is not the case of the third situation, where the

secure agent must start downloading a fragment from another available peer that is uniformly



2.7 Extended model, recovery process is hypo-exponentially distributed 45

selected among all available peers not currently involved in the recovery process. The elements
of Q corresponding to these three situations are, for L € [1.n], m € [1..n], S(§) € [1..s — 1] and
S(z) =s—S(y),

q((%,0,0), (X — &},0,0)) = xyu,
€ls+1.s+1.

q((i,g,i)),(x— en)g Z)) Xl—yl]ﬂlb

for S(xX)els.s+r—1].

Y[ Xm — Ym — zZml T

q((i»g»z)»(i_él)y_el+e _‘)): )
" Y ik —yi—zd*

The case when a peer rejoins the system

There are three situations where reconnections may be relevant. In the first, either the
recovery process has not been triggered or it has but no download has been completed yet. In
both the second and third situations, the download phase of the recovery process is ongoing and
at least one download is completed. However, in the third situation, there is only one missing
fragment, so when the peer storing the missing fragments rejoins the system, the recovery

process aborts.

The elements of (j corresponding to these three situations are, for 1 € [1..n], S(y) € [1..s—1]
and S(z) = s — S(Y),

q((x,0,0), (X +€L,0,0)) = pi(s+1—S(X))pA, for S(X) € [s.s +1—1].
q((%,7,2), R+ €L,7,2)) =puls + 17— S(X))pA, for S(X) €[s—1.s+1—2].
q((%,7,2), (X + €L,0,0)) = p1 pA, for S(X) =s+r—1.

The case when one download is completed during the recovery process

There are three situations in this case, following which download has been completed.

If it is the first or any of the s —2 subsequent ones, then we obtain the two situations. In fact,
when a recovery process is initiated, the system state verifies S(X) € [s..s+1—k] and § = Z = 0.
The secure agent on the new peer selects s peers out of the S(X) peers that are connected to the
system and initiates a fragment download from each. Among the s peers that are selected, 1,
out of s would be in phase 1, for 1 € [1..n]. Let i= (i1,...,1n). We naturally have 0 < i; < xy,
for1 € [1..n], and S(f) = s. This selection occurs with probability

oo H{I:I ()1(11)
o T .
)
The probability that the first download to be completed out of s was from a peer in phase 1 is

equal to f1() = i/s (recall the definition of f in Section 2.3). Similarly, when the number of



Chapter 2: Performance evaluation of data lifetime and availability in distributed-repair
46 systems

ongoing downloads is Y, the probability that the first download to be completed out of S(y)
was from a peer in phase 1 is equal to f{(§) = yc1/S(y).

The third situation occurs when the last download is completed, which is essentially the
end of the recovery phase. The elements of Q corresponding to these three situations are, for
le[l.njand m € [1.n],

- -1

q((%,0,0), (%,1— &L, &) =socg(€,x) fi(d)
for S(X) € [s.s +1—Xkl, e [0..
al(X,4,2), X, §— e,z +el) = () il
for S(X)e[s—1.s+r—1], S(y)el2.s—1], S(Z)=s—S(y).
a((%,&m,2), (X +¢€},0,0)) = R(De,

And last :
aw, W) =—r(Ww)— > qw,W), for weT.
W eT —{W}
For illustration purposes, we depict in Fig. 2.3 some of the transitions of the absorbing CTMC
whenn=2,s=4,r=2 and k = 1.

2.7.1 Data lifetime

This section is devoted to the analysis of the lifetime of D. It will be convenient to introduce
sets
E1:=1{(%,0,0):Xx€[0.s + 1™ S(X) =1} for I € [s..s + 7].

The set &; consists of all states of the process W in which the number of fragments of D currently
available is equal to I and the recovery process either has not been triggered (for I € [s + 1 —
k+ 1..s+71]) or it has but no download has been completed yet (for I € [s..s+1r—k]). For any I,
the cardinal of &7 is (I+TL ]) (think of the possible selections of n — 1 boxes in a row of [+ n — 1
boxes, so as to delimit n groups of boxes summing up to I).

Introduce T(&p) ;= inf{t > 0: W(t) = aIW(O) € &1}, the time until absorption in state a—or
equivalently the time until D is lost—given that the initial number of fragments of D available
in the system is equal to I. In the following, T(&1) will be referred to as the conditional block
lifetime. We are interested in the conditional probability distribution function, P(T (&) < t),
and the conditional expectation, E[T(&;)], given that W(0) € & for I € [s..s + 1.

From the theory of absorbing Markov chains, we can compute P(T({w}) < t) where T({w})
is the time until absorption in state a given that the system initiates in state w € 7. We know
that (e.g. [68, Lemma 2.2])

PTW) <) =1—&n™ . exp (t(j) T, t>0,WeT (2.27)



2.7 Extended model, recovery process is hypo-exponentially distributed 47

where ind(w) refers to the index of state w in the matrix (j Definitions of vectors éji and T]'
were given at the end of Section 2.3. Observe that the term Ell;?( - exp <t@> . TIT\ in the right-
hand side of (2.27) is nothing but the summation of all |7 elements in row ind(w) of matrix
exp (t(j)

Let 7tz denote the probability that the system starts in state w = (%, 0,0) € & at time 0 given
that W(O) € &1. We can write

- . - I n “
=P (W(O) — W e EIW(0) € 51) - (x]“ Xn) E R(1)X. (2.28)

Clearly ZWE& g = 1 for I € [s..s + 1]. Using (2.27) and (2.28) and the total probability
theorem yields, for I € [s..s + 1],

PTE) <) = Y meP(T(W) < 1)

WeE

= 11— Z Tz € —»llTnTl - eXp (td) : TITI» t > 0. (2.29)

weé

We know from [68, p. 46] that the expected time until absorption given that the W(0) =

w € 7T can be written as

-\ —

o _ind (v T .
ET(w) =™ (Q) T,  WeT,
o\ 1
where the existence of (Q) is a consequence of the fact that all states in 7 are transient [68,

p. 45]. The conditional expectation of T(&7) is then (recall that the elements of £ are of the
form (%,0,0)

= ) mE[T({W)

we&

= — Z e *‘?‘d <(§>_ T, forle[s..s +1. (2.30)

we&

2.7.2 Data Availability

In this section we introduce different metrics to quantify the availability of D. But first, we
will study the time during which J fragments of D are available in the system given that there
were initially I fragments. To formalize this measure, we introduce the following subsets of 7,
forJ € [0..s + 7],

F={%1,7€T:S(x) =T}



Chapter 2: Performance evaluation of data lifetime and availability in distributed-repair
48 systems

The set Fj consists of all states of process W in which the number of fragments of D currently
available is equal to ], regardless of the state of the recovery process. The subsets ¥} form a
partition of 7. We may define now

T(&r)

T(&nL Fy) ::J

H{W(t) € FIW(0) ¢ 51} dt
0

T(&1, Fy) is the total time spent by the CTMC in the set Fj before being absorbed in state a,
given that W(0) € & Similarly, T({w},{w'}) is the total time spent by the CTMC in state w’
before being absorbed in state a, given that W(0) = w. We know from [46, p. 419] that

o N\ 1 Lo
E[T(0%), 0] =~ (Q) ™), woweT (2.31)

where ' denotes the transpose of a given vector y. In other words, the expectation E [T({w}, {w'})]

N 1
is the entry of matrix (—Q) at row ind(w) and column ind(w’). Using (2.28) and (2.31), we
derive forI € [s..s + 1] and J € [0..s + 1]

ET(ELF)] = ) E[T(EL W)
W eFy
= > > mE[T({whL W)
WeE W eF]
- Y T e (Q) e @32
WEE W EF)

We are now in position of introducing two availability metrics. The first metric, defined as

s+

T(E
M (&) ==E Z] T 7y)

, wherel € [s..s + 1],
T(&r)

can be interpreted as the expected number of fragments of D that are available for download—
as long as D is not lost—given that I fragments are initially available. A second metric is

- T(&,F)

ME,Z(gI)m) =E T((S’I) )

where I € [s..s + 1],
J=m

that we can interpret as the fraction of the lifetime of D when at least m fragments are available
for download, given that I fragments are initially available. For instance, MRZ(E’Sﬂ, s) is the
proportion of time when data D is available for users, given that s+r fragments of D are initially
available for download.

The expectations involved in the computation of the availability metrics are difficult to find
in closed-form. Therefore, we resort to using the following approximation

E [T(gl)]:]):| - E[T(&r, Fy)l

&) ET(&)] (2.33)




2.8 Validation of the approximation made to compute the availability metrics 49

where the terms in the right-hand side have been derived in (2.32) and (2.30). We will come
back to this approximation in Section 2.8. With this approximation in mind, the two availability
metrics become

s+r

EIT
Mh] (&) Z] [E[(Tgl’]:] , wherel € [s..s + 1], (2.34)

SZH E[T(gb}—]

Mhz gI’ E[T

, Wherel € [s..s +1]. (2.35)
J=

2.8 Validation of the approximation made to compute the avail-
ability metrics

In this section, we validate the approximations (2.5), (2.15), (2.26), and (2.33) which have
been made to compute the two availability metrics in our models presented in this chapter. In
order to do that, we need to simulate the Markov chain until absorption, and measure T(&1, Fj)
and T(&;) (we dropped the subscript and the superscript as this applies to any model). The
sample mean of their ratio should then be compared to the ratio of the analytical expression.
Each simulation scenario should be repeated many times in order to have a good estimation of
the mean with a good confidence interval.

We decided to simulate the simple Markov chains {X¢(t), t > 0} (Sect. 2.4) and {(Xf,(t), Y5 (t)), t >
0} (Sect. 2.5) as there state-spaces are smaller than that of the extended chains.

The environments that we simulated have the following characteristics: the expected off-
time is 1/A = 3 hour (resp. 1 hour); the expected on-time is 1/u = 5 hour (resp. 3 hour);
the persistence probability is p = 0.8 (resp. 0.7); the original number of fragments of D is
s = 8 (resp. 8); the block/fragment sizes are 16MB/2MB (resp. 8MB/1MB); the expected
block download time (resp. fragment download time) is 1/y = 30 minutes (resp. 1/x = 2
minutes). We simulated a total of 276 (resp. 10) different scenarios, each having different
values of r and k. We have varied r from 1 to 23 (resp. from 1 to 4) and k from 1 to r in both
models. For {X¢(t), t > 0} (resp. for {(Xf(t), Y§(t)), t > 0}), in each scenario, we have a total
of |[Tf] = (r+ 1) (resp. |T;f| = s(r + 1)) instances of (2.5) (resp. (2.15)), yielding a total of
Zfi 1(r+1)r = 4600 (resp. Zle 8(r+1)r = 320) different instances of the approximation over
all scenarios.

In order to obtain a maximum estimation error of about 1% with 95% (resp. 97%) confi-
dence interval, we need to have over 100 (resp. 150) sampled values. Hence, each scenario is
simulated 100 (resp. 150) times.

For each instance, we collect the 100 (resp. 150) simulated values of the ratio T(i,j)/T(i)
(resp. Tg((1,7),(1,37))/TE((1,7))) and compute their average. This is the estimation of the



Chapter 2: Performance evaluation of data lifetime and availability in distributed-repair
50 systems

left-hand side of (2.5) (resp. (2.15)) and will be considered as the “correct” value. The right-
hand side of (2.5) (resp. (2.15)) is the “approximate” value. We compute the relative error
between the correct value and the approximate value. Having collected all values of the relative
error from all 4600 (resp. 320) instances, we derive the empirical complementary cumulative
distribution function of the relative error, as depicted in Figures 2.4 and 2.5.

We have found that only 10% of the values are larger than 0.75 x 107> (resp. 0.9 x 1073)
and, most importantly, the maximum value of the relative error is 0.0028 (resp. 0.004). We
conclude that the approximation that we have made for computing the availability metrics is very
good and will definitely not imperil the correctness of any result based on it. Even though we have
not simulated the extended Markov chains presented in this chapter, we are convinced that the

approximation will be equally good.

2.9 Validation of the simple fluid model made in Sect. 2.4.2

In this section, we validate the fluid approximation made in Section 2.4.2. The environ-
ments that we considered for the numerical results have the following characteristics: the
expected off-time is 1/A = 3 hour; the expected on-time is 1/u = 5 hour; the persistence prob-
ability is p = 0.8; the original number of fragments of D is s = 8 (resp. 8); the block/fragment
sizes are 16MB/2MB; the expected block download time (resp. fragment download time) is
1/v = 30 minutes.

We have computed the expected number of available redundant fragments E[X€] (resp.
Mg)l(r)) from (2.10) (resp. from (2.6)). The results obtained from these two metrics are
almost identical. To illustrate the good convergence of the fluid approximation towards the
Markov chain, the deviation between E[)N(g] and ng](r) are computed. Figure 2.9 delimits
the regions where the deviation is within certain value ranges. For instance, in region V the
deviation is smaller than 1%o. If the storage system is operating with values of r and k from this

region, then it will be attractive to evaluate the data availability using E[X{] instead of M¢ ().

2.10 Deploy and tune the P2P backup and storage protocol

In this section, we discuss some practical issues related to how can we use our theoretical
framework to tune the key system parameters for fulfilling predefined data lifetime and/or
availability requirements.

We saw in the previous sections that the performance metrics depend on the transition
matrix Q which depends in turn on the peers or network parameters (p, A, and {ps, Hi}i=1,..n),

the recovery process parameters (y or «) and the protocol parameters (s, v and k).



2.11 Numerical results 51

Concerning the peers or network parameters, they can be set according to some measure-
ments on the storage environment’s peers that report the peers on-times, off-times durations
or the disk failure rate such as the work of Nurmi, Brevik and Wolski [69]. The distribution of
the recovery process and the values of its parameters (y or «) depend on the block/fragment
sizes and the upload/download capacities of peers, the work-load in the overlay network, and
the inter-network connections capacities. To fit the distribution of the recovery process into an
appropriate distribution and to estimate its parameter’s values, one may do some simulations
using for example our packet-level simulator presented in Chapter 4 or build on the flow-level
simulation model introduced in Chapter 5 to simulate a large network. Another solution is to
estimate the fragment/block download times using log files of some P2P applications or FTP
clients run on some peers involved in the P2P storage solution. If the goal is to estimate the
gross behavior of the system, we can consider the simple models, and then we need to estimate
the mean block download time or the recovery time.

The protocol parameter s depends on the choice of the size of data blocks and fragments.
Nowadays, block sizes in P2P storage systems are usually set to either 4MB, 8MB or 9MB and
fragment sizes are set somewhere between 256KB and 1MB. A helpful factor to choose from
these values can be the average size of the stored files in the system, so that the fragmentation
overhead associated with the transmission of data is still negligible with respect to the files
sizes. Concerning the two key parameters r and k, we compute numerically some contour
lines (curves along which the function has constant values) of each of the performance metric
functions studied in this thesis as a function of r and k at desired values, and we report them
in a figure. After that, we select the operating point of the P2P backup or storage system
that ensures the desired data lifetime, and availability for a reasonable storage overhead r/s
and acceptable recovery threshold k. One may be interested in only guaranteeing large data
lifetime. Values of r and k are then set according to the desired contour line of the CCDF of
data lifetime. Intuitively, smaller threshold values enable smaller amounts of redundant data
at the cost of higher bandwidth utilization. The trade-off here is between efficient storage use

(small r) and efficient bandwidth use (large k).

2.11 Numerical results

The models presented in Sections 2.6 and 2.7 are a generalization of those presented in Sec-
tions 2.4 and 2.5. As a matter of curiosity, we will compare in this section the results obtained
with the simple and the general models presented in Sections 2.5 and 2.7 when considering
an environment that is known to violate the exponential assumption on peers on-times made
in the simple models. This allows us to see whether the simple models (e.g. this introduced

in 2.5) are robust against a violation of this assumption. Once this question addressed, we



Chapter 2: Performance evaluation of data lifetime and availability in distributed-repair
52 systems

solve numerically our models to evaluate the lifetime and availability of data stored on P2P
storage systems running in different contexts. Last, we illustrate how our models can be used
to engineer storage systems as explained in Section 2.10.

2.11.1 Parameter values

Our mathematical models have been solved numerically using a set of parameters values.
However, as we do not have values of all the needed parameters in a distributed environment,
we will try to set reasonable and logical values when required for illustrative purpose.

Network parameters A, {pi, iti}i—1....n and p. We consider three sets of values that repre-

sent three different environments. These correspond to three data sets that have been studied
in the literature. The CSIL set reports uptime of machines in the Computer Science Instruc-
tional Laboratory (CSIL) at the University of California, Santa Barbara. As for the Condor set,
it reports CPU idle times of peers in a Condor pool [26] at the University of Wisconsin, in other
words, it reports the availability of peers to perform an external job (the Condor pool offers
processing time to the whole Internet). This can be seen as the time during which a peer may
participate in a storage system. The All-pairs-ping set has been obtained by Stribling [90] after
the processing of ping requests between each pair of PlanetLab [74] nodes. Each node pings
every other node roughly 4 times an hour. A 10-probes ping is considered successful only if at
least one probe response was received.

The sets CSIL and Condor are best fit by a hyper-exponential distribution according to the
analysis in [69], even though they report different flavors of peer “availability”. An exponential
distribution is found to “reasonably” fit the All-pairs-ping data set in [75]. The basic characteris-
tics of the three data sets considered here and the corresponding values of the peers parameters
are reported in Table 2.2. Out of the three mentioned scenarios, Condor experiences the high-
est dynamics environment. This behavior has been reported elsewhere concerning peers on
the Internet. For instance, it has been observed in [9, 10] that on average peers join/leave
the Internet 6.4 times per day and that sessions times are typically on the order of hundreds of
minutes on average. In this section, the Condor system will mirror the Internet context and CSIL
and PlanetLab environments will mirror a stable environment such as local area or research lab-
oratory networks where machines are usually highly available. As an exponential distribution
is found to “reasonably” fit the peers availability in the All-pairs-ping data-set, PlanetLab-like
systems can be studied using the simple models while the CSIL. and Condor contexts need the
more general models. Justifying this last point is the objective of the next section.

The value of A, or equivalently the mean off-time, has been set to have the same peers avail-
ability across all environments. This measure, given in row 16 of Table 2.2, is the probability
of finding a peer connected or equivalently the percentage of on-times in a peer life cycle. We

have set p = 0.7 in the Condor scenario as peers churn rate is very high and p = 0.3 or 0.4 oth-



2.11 Numerical results 53

Table 2.2: Data sets characteristics and corresponding peers parameters values

Data set CSIL Condor All-pairs-ping

Context LAN Internet PlanetLab

Covered period 8 weeks 6 weeks 21 months

Number of peers 83 210 200-550

On-times distribution Hs [69] H, [69] Exp. [75]
(best fit) (best fit) (reasonable)

On-times parameters

P1 0.464 0.592 1

P2 0.197 0.408 -

P3 0.339 - -

1/uq (hours) 250.3 0.094 181

1/u, (hours) 1.425 3.704 -

1/u3 (hours) 33.39 - -

Mean on-time (hours) 127.7 1.567 181 [75]

Mean off-time (hours) 48 1.567 or 0.522 61 [75]

Percentage of on-times 0.727 0.50r 0.75 0.750

Persistence probability p 0.3 0r 0.4 0.7 0.3

erwise. This is to reflect that disconnections in stable environments are likely due to software
or hardware problems.

Protocol parameters s, r and k. Nowadays, block sizes in P2P storage systems are usually
set to either 4MB, 8MB and 9MB (or 16MB for huge files as in Grid Delivery Network (GDN)
or backup systems) and fragment sizes are set somewhere between 256KB and 2MB. A helpful
factor to choose from these values can be the average size of the stored files in the system, so
that the fragmentation overhead associated with the transmission of data is still negligible with
respect to the files sizes. Concerning CSIL- and Condor-like systems, we will consider block
sizes of 4MB and fragment sizes of 1MB and then s = 4. Regarding PlanetLab context, we
considered block sizes of 8MB and fragment sizes of 1MB and then s = 8. In the CSIL scenario
(resp. PlanetLab-like scenario) where peers churn is low, we vary the redundancy r from 1
to 1.5s = 6 (resp. from 1 to s = 8). In the high dynamic scenario (Condor), we vary the
redundancy r from 1 to 3s = 12. In all the considered scenarios, we vary the threshold k from
ltor.

Observe that the optimal amount of redundancy r comes as a trade-off between high data
availability and high storage efficiency and depends on the recovery threshold k. Smaller

threshold values allow for smaller amounts of redundant data at the expense of higher band-



Chapter 2: Performance evaluation of data lifetime and availability in distributed-repair
54 systems

width utilization. The trade-off here is between efficient storage use (small r) and efficient
bandwidth use (large k).

Recovery process parameters « or y. Fragments download/upload times depend on the
upload/download capacities of the peers, the interconnection link capacities of the underlying
network and the load in the system. The measurement study [85] of P2P file sharing systems,
namely Napster and Gnutella, shows that 78% of the users have downstream bottleneck of at
least 100 Kbps. Furthermore, 50% of the users in Napster and 60% of the users in Gnutella
use broadband connections (Cable, DSL, T1 or T3) having rate between 1Mbps and 3.5Mbps.
Moreover, a recent experimental study [47] on P2P VoIP and file sharing systems shows that
more than 90% of users have upstream capacity between 30 Kbps and 384 Kbps, where the
downstream is of the order of some Mbps (like Cable/ADSL). For illustrative purpose and based
on the two mentioned studies and our experience from the simulation resultas presented in the
two next chapters, we assume that 1/x = 56, 88 or 104 seconds.

2.11.2 Comparison between simple and extended models

As mentioned previously, the simple models presented in Sections 2.4 and 2.5 are a special
case of the general models developed in Sections 2.6 and 2.7, namely when the number of
phases of the hyper-exponential distribution of on-times is n = 1. Because of the reduced state-
space, solving the simple models is much less time consuming than solving the general or the
extended models. The simple models can describe PlanetLab-like environments. However, one
question remains: do they model any environment?

To answer this question, we deliberately select a scenario in which peers have been identi-
fied to have a non-exponential on-times distribution, namely the Condor scenario, and evaluate
the lifetime of a block of data D using both models developed in Sections 2.5 and 2.7 and
compare the results. In [69], a 2-stage hyper-exponential distribution is found to best fit the
Condor data set, but the authors identify as well the parameter of the exponential distribution
that best fits the same data.

Table 2.3 reports the expected data lifetime obtained for s = 4, 1/A = 0.522 hour, 1/x =
22 x s = 88 seconds, and different amounts of redundancy r and recovery thresholds k. Results
provided by the general model with 1/u; = 0.094 hours, 1/u,; = 3.704 hours, p; = 0.592 and
p2 = 1 —p; are in column 3; those given by the simple model with 1/u = 1.543 hours (best
exponential fit found in [69]) and 1/u = 1.567 (first moment of the H, distribution) can be
found in columns 4 and 6 respectively. The relative error between E[T(Es,)] (extended model,
column 3) and E[T¢(s + r)] (simple model; columns 4 and 6) are reported in columns 5 and 7.

Table 2.3 reveals that the simple model returns substantially different results than those of
the general model. Since the distribution of peers on-times is hyper-exponential in the Condor

scenario, the results obtained through the general model are the correct ones. We conclude that



2.11 Numerical results 55

the simple models do not capture the essence of the system performance when peers on-times
are not exponentially distributed. Henceforth, we will use the simple models in scenarios with the
All-pairs-ping characteristics, and the general models in scenarios with the characteristics of either
CSILor Condor.

2.11.3 Performance analysis

We have solved numerically the data lifetime and availability metrics (e.g. (2.12), (2.13),
(2.16) and (2.17) given that all s + r fragments of D are initially available, considering either
Planet-lab, Condor or CSIL context. Results are reported partially in Table 2.4.

It appears that, whichever the scenario considered, the expected data lifetime increases
roughly exponentially with r and decreases with an increasing k. Regardless of the context
considered, the distributed scheme yields a significantly small expected data lifetime when
peers churn rate is high; cf. columns 3-4 in Table 2.4 where the performance in Condor-like
systems with distributed-repair scheme (or “repair one missing fragment at a time” policy)
is very poor. Observe also how the performance deteriorates as peer churn becomes more
important: compare for instance in Table 2.4 row 4 vs. 16 and 23, and row 10 vs. 18 and
25; these correspond to the same storage overhead r/s = 1 and the same value of recovery
threshold k = 1 and 2 respectively, but the context is different.

Regarding the expected number of available fragments, we again observe that the dis-
tributed scheme is not efficient when peers churn rate is high; cf. column 4 in Table 2.4 for
Condor-like systems. We conclude that when peers churn rate is high, the distributed-repair
scheme can not be efficient for storage objective, while the storage overhead should be kept within
a reasonable value (that is v/s < 2). The conclusion can be different for backup systems as sys-
tem designers are interested in the permanent departures of peers rather than the intermediate
disconnections. However, as the distributed-repair scheme involves less traffic than the central-
ized one, it will be a good implementation choice in large networks where hosts have a good
availability. In addition, the use of a regenerating code will improve the system performance
as less traffic needs to be transferred for recovering some unavailable fragments. Our models
are able in fact to evaluate systems that use this new class of codes in terms of durability and
availability. However, more efforts have to be done to understand the feasibility of these codes
with respect to the complication they add to the system.

2.11.4 Engineering the system

We illustrate now how our models can be used to set the system parameters r and k such
that predefined requirements on data lifetime and availability are fulfilled. We assume that the

context is similar to CSIL. We have picked two contour lines of each of the performance metrics



Chapter 2: Performance evaluation of data lifetime and availability in distributed-repair
56 systems

studied in this paper and report them in Fig. 2.7. Consider point A (resp. B) which corresponds
tor =5 and k = 3 (resp. k = 2). Recall that s = 4 (for both points). Selecting point A (resp. B)
as the operating point of the P2P storage system ensures the following: given that each data is
initiated with s + r = 9 available fragments, then (i) the expected data lifetime is 22.25 (resp.
188.91) months; (ii) 23.7% (resp. 3.13%) of the stored data would be lost after six months; (iii)
as long as D is not lost, 6.486 (resp. 7.871) fragments of D are expected to be available in the
system; (iv) during 99.9992% (resp. 99.9999%) of its lifetime, D is available for download; and
(v) during 99.79% (resp. 99.7%) of the lifetime of D, at least s+r—k = 6 (resp. s+r—k = 7) of
its fragments are available. Observe that the storage overhead, r/s, is 1.25 for both operating
points and it is the lazy policy that is enforced (k > 1). Observe how the performance metrics
improve when k is decreased, even by one. However, this incurs more bandwidth use because
the recovery will be more frequently triggered.

2.12 Conclusion

We have proposed simple and general analytical models for evaluating the performance of
two approaches for recovering lost data in distributed storage systems. Simple fluid model
has been introduced under simple assumptions in order to have an explicit formula of the
availability metric. We have analyzed the lifetime and the availability of data achieved by
distributed-repair systems through markovian analysis considering realistic assumptions. Nu-
merical computations have been performed to illustrate several issues of the performance. We
conclude that, using our theoretical framework, it is possible to tune and optimize the system
parameters for fulfilling predefined requirements. We find that, in stable environments such
as local area or research laboratory networks where machines are usually highly available, the
distributed-repair scheme (or “repair one missing fragment at a time” policy) offers a reliable,
scalable and cheap storage/backup solution. This is in contrast with the case of highly dy-
namic environments, where the distributed-repair scheme is inefficient as long as the storage
overhead is kept reasonable. P2P storage systems may be applicable in highly dynamic envi-
ronments with centralized-repair scheme (or “repair all missing fragment” policy) which is the

subject of the next chapter.



2.12 Conclusion

57

D is lost D is unavailable D is available

Figure 2.3: Some transition rates of the Markov chain Wwhenn=2,s=4,r=2,and k = 1.

CCDF of the relative error

Figure 2.4: The CCDF of the relative error induced by the approximation (2.5).



Chapter 2: Performance evaluation of data lifetime and availability in distributed-repair
58 systems

0.8F 1

0.6 7

0.4 1

0.2 1

CCDF of the relative error

x 107

Figure 2.5: The CCDF of the relative error induced by the approximation (2.15).

Distributed scheme

)
(e @) T T T T T
I: error > 10%

“ [ II: 5% < error < 10% i
< S} HI: 1% <error < 5% -
3 IV: 1% < error < 1
= - V: error < 1%o -
zo} |
~

L tam v, v,

0 10 20 30

Redundancy r

Figure 2.6: Validation of the fluid approximation: Relative error [M¢ ; — E[X¢|/ Mg ;.



2.12 Conclusion 59

Table 2.3: Expected data lifetime (expressed in hours) in a Condor scenario using a distributed-recovery
scheme. Comparison between E[T (&, )] (extended model) and E[T¢(s + 7)] (simple model).

s=4 H, fit [69] Exponential fit [69] equating 1st moments
E[T(Esir)] E[TS(s + 1] error E[TE(s +1)] error
k=1 r=2 1.437 0.78 -45.7% 1.017 -29.2%
r=4 5.866 3.453 -41.1% 4.09 -30.2%
rT=6 15.751 14.04 -10.8% 14.44 -8.32%
k=2 r=2 0.729 0.492 -3.5% 0.633 -13.1%
r=4 3.689 2.34 -36.5% 2.74 -25.7%
T=6 12.263 10.464 -14.67% 10.732 -12.48%




Chapter 2: Performance evaluation of data lifetime and availability in distributed-repair
60 systems

Table 2.4: Expected lifetime and first availability metric

Condor context E[TY(Es4+)] (in days) M]QLJ (Eir)
s=4 1/ =22 % s sec 1/ =22 % s sec
k=1 r=2 5.99e-02 5.44
r=4 0.244 6.761
rT=6 0.656 8.01
r=328 1.841 9.27
r=10 3.14 10.44
r=12 8.123 11.41
k=2 r=2 3.04e-02 5
r=4 0.154 6.31
T = 0.511 7.66
k=4 r=4 3.57e-02 5.43
CSIL context E[T/Y(Es4+)] (in months) M (Esir)
s=4 1/ = 22 sec 1/ =22 sec
k=1 r=2 3.002 5.980
r=4 209.36 7.962
k=2 r=2 0.202 5.011
r=4 24.42 6.985
k=4 r=4 0.162 5.053
CSIL context E[T/Y(€s4+)] (in months) M (Esir)
s=4 1/ = 56 sec 1/ = 56 sec
k=1 r=2 0.852 5.959
r=4 21.75 7.919
k=2 r=2 9.94e-02 5.000
r=4 4.097 6.952
k=4 r=4 7.878e-02 5.046
PlanetLab context E[TE(s +1,0)] (in months) M;, (s +1,0)
s = 1/ = 104 sec 1/ = 104 sec
k=1 r=2 0.11 8.04
T 1.05 8.68
T = 7.61 9.80
T = 46.24 12.12
k=2 r=4 0.37 8.19
r==6 3.20 9.25
r=328 23.34 11.37
k=4 r=238 4.34 9.81




2.12 Conclusion

— % —- E[Tq(E.+)] = 22.25 months
—— P(T4(Essr) > 6 months) = 0.763
--H- - Maa(Esiry s) = 0.99999258

LY CRLPY Mg 1(Estr) = 6.486

—-&-— Mg2(Essr,s +1T—Kk) =0.9979

threshold k
[\o)

redundancy r

(a) Settings of point A: s =4, r=5and k =3

% - E[T4(Es4+)] = 188.91 months
—— P(T4(&syr) > 6 months) = 0.9687
- Mao(Esir,s) = 0.999999

..... A Mgq(Esir) =7.8716

— O — Mg(Eir,s+1—k)=0.997

)

threshold k
(]

redundancy r

(b) Settings of point B: s =4, r=5and k =2

Figure 2.7: Contour lines of performance metrics (CSIL context, distributed-repair scheme).



Chapter 2: Performance evaluation of data lifetime and availability in distributed-repair
62 systems




3

PERFORMANCE EVALUATION OF DATA
LIFETIME AND AVAILABILITY IN
CENTRALIZED-REPAIR SYSTEMS

3.1 Introduction

In this chapter, we focus on the performance evaluation of centralized-repair P2P backup
and storage systems, in terms of data lifetime and availability through markovian models under
similar assumptions of those made in Chapter 2. The impact of each system parameter on the
performance is evaluated, and guidelines are derived on how to engineer the system and tune
its key parameters in order to provide desired lifetime and/or availability of data. As was
discussed in Section 1.2.2, in the centralized-repair scheme, a recovery process can compensate
at once multiple losses of a given block of data, requiring multiple fragments, namely s, of that
“block” to be downloaded in parallel for an enhanced service.

Concerning the assumptions we make on the recovery process, we first consider it to follow
an exponential distribution for the sake of simplification. Second, motivated by the simula-
tion results presented in Chapter 4, we consider that each of the durations of the centralized
recovery process is a rv following a hypo-exponential distribution with many distinct phases
(generalized Erlang distribution). This is nothing but a consequence of the finding that succes-
sive download (resp. upload) durations of a fragment can be seen as iid rvs with a common
exponential distribution function with parameter « (resp. 3), in addition to the assumption that

concurrent fragments downloads are not correlated. Indeed, each of the recovery durations is
63



Chapter 3: Performance evaluation of data lifetime and availability in centralized-repair
64 systems

the summation of s + k independently distributed exponential rvs (if k fragments are to be re-
constructed) having each its own rate [50]. Note however that we have found in simulations
that these are weakly correlated in some well-known scenarios as we will see in Chapter 4.

Concerning peers availability, we will make two different assumptions as follows. First,
we simplify the study and assume that the peers availability is modeled by an exponential
distribution, i.e., they follow the assumptions and results of [75] on the peers availability as
discussed in Section 1.3.

Second, in light of the conclusions of [69], we assume that peers availability is modeled
with a hyper-exponential distribution.

In summary, we propose two simple models in which the peer availability is considered to
follow an exponential distribution, and the recovery process is considered to follow an expo-
nential distribution in the first simple model, and a hypo-exponential distribution in the second
simple model. We will then extend only the second simple model by assuming that peers on-
times durations are hyper-exponentially distributed while keeping the hypo-exponential distri-
bution assumption on the recovery process. Doing so, our modeling is general, realistic and
valid under different distributed environments. The evaluation of an extension of the first
simple model is essentially the same as that of the general model presented in Section 3.5.

When the “block” download time can be modeled by an exponential distribution, then, the
recovery process would follow a hypo-exponential distribution of two phases, having each its
own rate. The rate of the first phase is independent of the system state or the number of miss-
ing fragments to recover because it always consists of downloading s equally sized fragments
(constituting a “block”). However, the rate of the second phase depends on the current state of
the system, i.e., the number of fragments to be reconstructed and uploaded. Therefore, model-
ing the system under such assumption will follow the same methodology of modeling the more
general model which we present in Section 3.5.

The rest of this chapter is organized as follows. Section 3.2 introduces system description,
assumptions and notation. Sections 3.3 to 3.5 are devoted to the analysis of the distributed-
repair P2P backup and storage systems, in terms of data lifetime and availability, through simple
and extended markovian models as mentioned above. A simple fluid approximation is as well
proposed in Section 3.3. Numerical results that support the analysis, illustrate how to engineer
the system in order to provide desired lifetime and/or availability of data, and discuss the
impact of parameter values are introduced in Section 3.6.

3.2 System description, assumptions and notation

We consider that same redundancy mechanisms and repair policies introduced in Sec-

tion 2.2 are enforced throughout this chapter. We make similar assumptions on peers off-



3.2 System description, assumptions and notation 65

times/on-times durations and on peers independency as what was introduced in the same sec-
tion (Sect. 2.2), in particular Assumptions 1-3.

We will investigate the performance of the centralized-recovery scheme. Assume that k < r
fragments are no longer available due to peer disconnections, and have to be restored. In
the centralized implementation, a central authority (or the block responsible node in DHT like
systems) will: (1) download in parallel s fragments from the peers which are connected, (2)
reconstruct at once all the unavailable fragments, and (3) upload the reconstructed fragments
in parallel onto as many new peers for storage (e.g. k). The central authority updates the
database recording fragments locations as soon as all uploads terminate. Step 2 executes in a
negligible time compared to the execution time of Steps 1 and 3 and will henceforth be ignored
in the modeling. Step 1 (resp. Step 3) ends executing when the download (resp. upload) of

the last fragment is completed.

Assumption 4: (recovery durations) For the sake of simplification, we assume in the first
place that successive recovery durations (total times required to perform the recovery
task) are iid rvs exponentially distributed with rate y(k), where k is the number of recon-
structed fragments.

Assumption 5: (download/upload durations) We assume in the second place that successive
download (resp. upload) durations of a fragment are iid rvs with a common exponential
distribution function with parameter « (resp. (). We further assume that concurrent
fragments downloads are not correlated.

Assumption 5 is supported by our findings in [32, 31] as explained in Chapter 4. The frag-
ment download/upload time was found to follow approximately an exponential distribution
in some interesting contexts (the core network has a good connectivity and the peers upload-
/download capacities are asymmetric). As for the concurrent downloads/uploads, we have
found in simulations that these are weakly correlated and close to be “independent” as long as
the total workload is equally distributed over the active peers.

Assumption 6: (recovery durations) A consequence of Assumption 5 is that the recovery pro-
cesses is a rv following a hypo-exponential distribution [50]. Indeed, each of these dura-
tions is the summation of s + k independently distributed exponential rvs (if k fragments

are to be reconstructed) having each its own rate.

It is worth mentioning that the simulation analysis of [32] has concluded that in some cases
the recovery time follows roughly a hypo-exponential distribution. It was also found in [32] that
a hypo-exponential model gives a more reasonable approximation of the recovery process than

an exponential model even in cases when the null hypothesis is rejected for a good significant



Chapter 3: Performance evaluation of data lifetime and availability in centralized-repair
66 systems

level in such a scenario when the core networks has a good connectivity and the peers upstream
and downstream bandwidths are asymmetric.

Recall that we consider two different assumptions on the distribution of peers on-times
(Assumption 2 in Section 2.2). The exponential distribution with parameter p is first used
in the simple model whose analysis takes place in Section 3.3 where the recovery process is
exponentially distributed and is second used in Section 3.4 where the recovery process is hypo-
exponentially distributed. The hyper-exponential distribution with n phases is considered in
the more general model whose analysis is presented in Section 3.5 where the recovery process
is hypo-exponentially distributed.

Last, we use same notation introduced at the end of Section 2.3 in Chapter 2.

3.3 Simple model, recovery process is exponentially distributed

In order to introduce a simple model, we consider in this section that successive peers off-
times (resp. on-times) durations and the recovery durations are exponentially distributed with
parameters A (resp. w) and y(k) (if k fragments are to be reconstructed).

Let X§(t) be a {a,0,1,...,r}-valued rv, where X{(t) =1 € 7¢:={0,1,...,r} indicates that
s + i fragments of D are available at time t, and X¢(t) = a indicates that less than s fragments
of D are available at time t. We assume that X£(0) € 7F so as to reflect the assumption that at
least s fragments are available at t = 0.

If at a given time t a peer disconnects from the storage system while X¢(t) = 0, then there
will be strictly less than s fragments of D in the system. Recovering then lost fragments is
impossible unless one of the peers having a fragment of D reconnects to the system and still
stored its data. Recall that the latter event occurs with probability p; in other words, recovering
D becomes a probabilistic event. The block of data D is available with probability 1 as long as
there are at least s fragments of D (implying X&(t) € 7. °). Otherwise, we consider the block D
to be lost.

Thanks to the considered assumptions, it is easily seen that X¢ := {X§(t), t > 0} is an absorb-
ing homogeneous continuous-time Markov chain (CTMC) with transient states 0,1,...,r and
with a single absorbing state a representing the situation when D is lost. Non-zero transition
rates of {X¢(t), t > 0} are displayed in Fig. 3.1.

3.3.1 Data lifetime

This section is devoted to the analysis of the data lifetime. Let TS(i) := inf{t > 0: X§(t) = a}
be the time until absorption in state a starting from X¢(0) = i. In the following, T&(i) will be

referred to as the conditional block lifetime.



3.3 Simple model, recovery process is exponentially distributed 67

yr—1NlHk<r—1}

yr—)lHk<r—1
PA+y(N Ik =1
™

absorbing
state

—

A > i A
Sp (s+1)u (s+i+1)n (s+1)pn

Figure 3.1: Transition rates of the absorbing Markov chain {X¢(t),t > 0}.

We are interested in P(T&(i) < x) and E[TE(1)], the probability distribution block lifetime
and the expectation of the block lifetime, respectively, given that X§(0) =1 fori € 72.
The infinitesimal generator has the following canonical form

TE a

e
T$ Q¢ | RS
a 6 0

where R¢ is a non-zero column vector of size |7 = r + 1, and Q¢ is |7.¢|-by-|7,¢| matrix. The
elements of R¢ are the transition rates between the transient states x € 7. and the absorbing
state a. The diagonal elements of Q¢ are each the total transition rate out of the corresponding
transient state. The other elements of Qg are the transition rates between each pair of transient
states. The only non-zero element of fég in this simple model is su for x = 0. Let us proceed to
the definition of the non-zero entries of Q.

qé(i,i—1) ai, i=12,...,1,

qé(i,i+1) = bi+Mli=r—Tlc,y, i=0,1,...;7—1, 3.1)
qs(i,r) = ¢y, 1=0,1,...,min{r — k, v — 2},

qs(i, i) = —(aj+bi+ci), 1=0,1,...,7,

where a; := (s + 1)y, bi = (r—1i)pAand c; :=y(r —1)I{i < r—k} for i € 7°. Note that Qg is
not an infinitesimal generator since entries in its first row (i = 0) do not sum up to 0.
From the theory of absorbing Markov chains, we know that (e.g. [68, Lemma 2.2])

—

PTEM) <x) = T—&l -exp (xcjg) A1, x>0, ieTE (3.2)

Definitions of vectors &' and T, are given at the end of Section 2.3.
We also know that the expectation of the time until absorption can be written as [68, p. 46]

) N1 o
E[T¢(A)] = —eif]”.(Qg> A1, 1eTE (3.3)

N
where the existence of (Qg) is a consequence of the fact that all states in 7, ¢ are transient
[68, p. 45].



Chapter 3: Performance evaluation of data lifetime and availability in centralized-repair
68 systems

Consider now

T

e

T = XS =t
that is the total time spent by the CTMC X¢ in transient state j given that Xg(0) = 1. It can also
be shown that [46]

. >\ —1 .
EMei)] = —efff-(Q5) -telll, ijeTs (3.4)

where 'y denotes the transpose of any row vector y. In other words, E[T¢(1,7)] is the (i,j)-th
entry of matrix — (Qg) -

Even when y(0) = --- = y(r), an explicit calculation of either P(TE(1) < x), E[TE(1)] or
E[TE(1,7)] is intractable, for any value of the threshold k in {1,2,...,r}. Numerical results for

E[TE(r)] and P(TE(r) > x) are instead reported in Section 3.6 when y(0) = --- = y(r).

3.3.2 Data availability

In this section we introduce different metrics to quantify the availability of the block of data.
Similar to what was done in the previous chapter, the fraction of time spent by the absorbing
Markov chain {X¢(t), t > 0} in state j starting at time t = O from state i is approximated by the

ratio

Note that we have validated this approximation by simulation in Section 2.8 as shown in Fig-
ures 2.4 and 2.5.

With this approximation in mind, we introduce the first availability metric

T

E[TE(i, ]
e1(l) = ZJ'E[[;%Z;])], ie 7, (3.5)
j=0 €

that we can interpret as the expected number of available redundant fragments during the
block lifetime, given that X§(0) =1 € 7 2.

A second metric is

(3.6)

that we can interpret as the fraction of time when there are at least m redundant fragments
during the block lifetime, given that X§(0) =1 € 7£.



3.3 Simple model, recovery process is exponentially distributed 69

Continuous time Markov chain CTMC

Since it is difficult to come up with an explicit expression for either metric Mg (i) or
ngz(i), we make the assumption that parameters k and r have been selected so that the time
before absorption is arbitrarily “large”. This can be formalized, for instance, by requesting that
P(TE(r) > q) > 1 — €, where parameters q and e are set according to the particular storage
application(s).

In this setting, one may represent the state of the storage system by a new Markov chain
Xe = {)N(g(t), t > 0}, which is irreducible and aperiodic — and therefore ergodic — on the state-
space 7F. Let (32 = [G¢(i,j)]ijere be its infinitesimal generator. Matrices (32 and Q¢—whose
non-zero entries are given in (3.1)—are identical except for ¢(0,0) = —(bo + co). Until the
end of this section we assume that y(i) =y fori € 7 2.

Let 7(i) be the stationary probability that X¢ is in state i. Our objective is to compute
E[)N(g] = Y i_oim(i), the (stationary) expected number of available redundant fragments. To this
end, let us introduce f(z) = Y {_, z'7t(i), the generating function of the stationary probabilities
= (m(0),7t(1),...,7(r)). .

Starting from the Kolmogorov balance equations Q¢ = 0, and using the normalizing equa-

tion 7+ 1,1 = 1, standard algebra yields

f f _ f T
(u+py\z)dd_(zz) — pAf(z) — s (z) ZW(O) oy (]z)_zz
L L
-y ' Z T m(i).
i=r—k+1

Letting z = 1 and using the identities f(1) = 1 and df(z)/dz|,—; = E[X¢], we find

T(pA+y) —su(l = 7(0) —y ¥ Sy inlr — i)

EDN(g] - w+pA+vy

3.7)

Unfortunately, it is not possible to find an explicit expression for E[X¢] since this quantity de-
pends on the probabilities 7t(0), 7t(r—(k—1)), t(r— (k—2)), ..., 7t(r), which cannot be computed

in explicit form. If k = 1 then

cor _ T(PA+y) —su(l - 7(0)
EIXS = o (3.8)

which still depends on the unknown probability 7t(0).

Below, we use a mean field approximation to develop an approximation formula for E[X¢]
for k = 1, in the case where the maximum number of redundant fragments r is large.
Simple fluid model

Using [60, Thm. 3.1] and similar to what was done in Section 2.4.2, we know that, when r

is large, the expected number of available redundant fragments at time t, E[X¢(t)], is solution



Chapter 3: Performance evaluation of data lifetime and availability in centralized-repair
70 systems

of the following first-order differential (ODE) equation

ylt) = —(+pA+y)ylt) —su+r(pA+y).

The equilibrium point of the above ODE is reached when time goes to infinity, which suggests

to approximate E[X¢], when r is large, by

Cel _ T(pPA+y) —su
EXS =~ y(oo)——Hp)\H . (3.9)

Observe that this simply amounts to neglect the probability 7t(0) in (3.8) for large r.

3.4 Simple Model, recovery process is hypo-exponentially distributed

We consider in this section that successive peers off-times (resp. on-times) durations are
exponentially distributed with parameters A (resp. ), and we assume that successive download
(resp. upload) durations of a fragment are iid rvs with a common exponential distribution
function with parameter « (resp. 3). We further assume that concurrent fragments downloads
are not correlated. A consequence, the recovery processes is a rv following a hypo-exponential
distribution of s 4+ k phases [50] (if k fragments are to be reconstructed) having each its own

rate.

Let Xf(t) and Y (t) be two rvs denoting respectively the number of fragments in the system
that are available for download and the state of the recovery process. Recall that, when k
fragments are to be reconstructed, the recovery process consists of a series of s + k exponential
distributions that can be seen as s + k stages. We denote Y{(t) =j G =0,1,...,s +k—1)
to express that j exponential rvs have been realized at time t, so that s + k — j are still to go.
When the last stage is completed, the recovery process is completed and Y§(t) = 0. Unlike
the distributed-recovery scheme, given that there could be as much as s + r fragments to be
reconstructed, the process Yf (t) takes value in the set {0,1,...,2s+7—1}. As for X} (t), it takes
value in the set {0,1,...,s + r}.

Consider now the joint process (Xf.(t), Y§(t)). When X{ (t) > s, data D is available, regard-
less of Y{(t). When X§ (t) < s but X§(t) + YE(t) > s, D is unavailable. When X§ (t) + Y5 (t) <s,



3.4 Simple Model, recovery process is hypo-exponentially distributed 71

D is lost. The latter situation will be modeled by a single state a. Introduce the set

T.o:={ (0,8),(0,s+1),...,(0,2s +1—1),
(1,s—1),(1,s),...,(1,2s + 11— 2), D is unavailable
(s,0),(s,1),...,(s,s+1—1),
(s+1,0),(s+1,1),...,(s+1,s+1—2),
o (s+Fr—=1,0),(s+r—1,1),...,(s+r—1,5),
(s+1,0)}
17,8 = (s +1)2—7(r—1)/2+1.

D is available

Thanks to the considered assumptions, it is easily seen that the two-dimensional process {(X7 (t), Y5(t)), t >
0} is an absorbing homogeneous Continuous-Time Markov Chain (CTMC) with transient states
the elements of 7,° and with a single absorbing state a representing the situation when D is
lost. Without loss of generality, we assume that Xf (0) > s. The infinitesimal generator has the

following canonical form
T8 a

T (Qh|R:
a ( 0|0 )
where ﬁﬁ is a non-zero column vector of size |7,¢|, and Qﬁ is | 7,¢|-by-|7,¢| matrix. The elements
of Ry, are the transition rates between the transient states (i,j) € 7,° and the absorbing state
a, namely, 1§ (i,j) = (s —j)u, fori = 1,...)s, and j = s —1i,...,s — 1. The elements of R}
are lexicographically ordered alike the order in 7,°. The diagonal elements of Qf, are each the
total transition rate out of the corresponding transient state. The other elements of Qf, are the
transition rates between each pair of transient states. The non-zero elements of Qf, are:
iu, for 1i=1,...,8,j=58,...,2s+7r—1—1;
or i=s+1,...,s+1—1,
qr((i,3), (i =1,j)) = j=0,...,2s+1—1—1;
or i=s+r1,j=0;
i4+j—s)u, for i=2,...,s,j=s+1—1,...,s—1.
(s —j)«, for i=s,...,s+1—X%,j=0;
or i=1,...,s—1,j=s—1,...,s—1;
qr((i,3), (L,i+ 1)) = or i=s,...,s+1—1j=1,...,s—1;
2s4+r—1i—j)p, for 1=0,...,s+1r—2,

j=s8,...,2s+1r—2—1.



Chapter 3: Performance evaluation of data lifetime and availability in centralized-repair
72 systems

D is available
D is unavailable

I D is lost

Figure 3.2: The Markov chain {(X{ (t),Y5(t)), t >0} whens =2, r =2,k =2.

ap((i,2s +rv—1—-1),(s+71,0)) =p, fori=0,...,s+r—1.

ap((i,3),G+1,j)) =(s+r—=1)Ap, fori=1,...,s,j=s—1,...,5s—1;
ori=s+1,...,s+1r—2,j=0,...,s—1.

ap((s+71—=1,j),(s +1,0)) = Ap, forj=0,...,s—1.

q}i((h])) (13])) = _rC(i>j) - Z(i/,j/)eThe_{(iyj)} q}eL((lJ)) (il,j/))> for (LJ) € T]f

Note that (_jﬁ is not an infinitesimal generator since entries in some rows do not sum up to
0. For illustration purposes, we depict in Fig. 3.2 an example of the absorbing CTMC with its
non-zero transition rates when s =2, r = 2, and k = 2.

3.4.1 Data lifetime

This section is devoted to the analysis of the lifetime of D. Let T¢(i,j) = inf{t > 0 :
(XE(1),Y5(t)) = al(X§(0),Y5(0)) = (i,j)} be the conditional block lifetime. We are interested
in P(TS(1,5) < x) and E[T£(1,7)] given that (X§(0),Y5(0)) = (i,j) € 7,5. From the theory of
absorbing Markov chains, we know that (e.g. [68, Lemma 2.2])

P(TE(L,)) <x)=1— éﬁe(f'j) exp (x@ﬁ) e, x>0, (1,j) € T (3.10)

where ind(i,j) refers to the index of the state (i,j) € 7, in the matrix (_jﬁ Recall that the
elements of (_jﬁ are numbered according to the lexicographic order. Definitions of vectors é’{
and 1; are given at the end of Section 2.3. Observe that the term 5};?‘1‘” - exp (x@ﬁ) . T‘T}ﬂ in
the rh.s. of (3.10) is nothing but the summation of all |7,¢| elements in row ind(i,j) of matrix

exp (x@ﬁ) .



3.4 Simple Model, recovery process is hypo-exponentially distributed 73

We know from [68, p. 46] that the expected time until absorption can be written as
d(i g ..
E[Ts(,5)) = —eje (Qh> e, (L) € T, (3.11)

N
where the existence of (Qﬁ) is a consequence of the fact that all states in 7, are transient

[68, p. 45]. Inverting Qﬁ analytically can rapidly become cumbersome as s or r increases. We
will instead perform numerical computations as reported in Section 5.4. Consider now

s (1)
Te((L, ), (1) = L {XE(), YE(0) = (1,5} dt

that is the total time spent by the CTMC in transient state (i’,j’) given that {X{,(0), Y5(0)} =
(1,7). It can also be shown that [46, p. 419]

E[TS((6,9), [1,37)] =~ (@) &), (1), 60,0 € 73, (3.12)

where § denotes the transpose of a given vector y. In other words, the expectation E [T¢((1,5), (i,77))]

S\
is the entry of matrix (—Qﬁ) at row ind(1,j) and column ind(i’,j’).

3.4.2 Data availability

In this section we introduce different metrics to quantify the availability of D. We are
interested in the fraction of time spent by the CTMC in any given state (i’,j’) before absorption.
However, this quantity is difficult to find in closed-form. Therefore, we resort to using the
following approximation

(3.13)

B [Tﬁ((i,i),(i’,i’))} - ElTR(G9), (i’,i’))].
L] E[Tg(1,])]
Here, (1,j) is the state of D at t = 0. This approximation have been validated through sim-
ulations in the distributed implementation of recovery process in Section 2.8. With this ap-
proximation in mind, we introduce two availability metrics: the first can be interpreted as the
expected number of fragments of D that are in the system during the lifetime of D; the second

can be interpreted as the fraction of time when at least m fragments are in the system during
the lifetime of D. More formally, given that (X{(0), Y5 (0)) = (i,j) € 7,5, we define

. JETS((,5), (1,5

M}el,‘l (I»J) = 1/ h el: = ) (314)
(i%,[he BTS(0,))

Me(Lim =y BRG] (3.15)

(VjeTy Vzm



Chapter 3: Performance evaluation of data lifetime and availability in centralized-repair
74 systems

3.5 General model, recovery process is hypo-exponentially distributed
and peers availability is hyper-exponentially distributed

We aim in the section to introduce a general model that is able to evaluate the centralized-
repair P2P backup and storage systems. We assume that the recovery process is hypo-exponentially
distributed and peers availability is hyper-exponentially distributed following the Assumptions
1, 2 for n > 1, 3 and 5-6 introduced in Sections 2.2 and 3.2.

At any time t, the state of a block D can be described by both the number of fragments that
are available for download and the state of the recovery process. When triggered, the recovery
process goes first through a “download phase” (fragments are downloaded from connected
peers to the central authority) then through an “upload phase” (fragments are uploaded to new
peers from the central authority).

More formally, we introduce n-dimensional vectors X[(t), Y¥(t), Z}(t), UR(t), and V}(t),
where n is the number of phases of the hyper-exponential distribution of peers on-times du-
rations, and a 5n-dimensional vector W/(t) = (XI'(t), Y1 (t), ZR(t), UR(t), VI(t)). Vectors YI(t)
and ZL‘(t) describe the download phase of the recovery process whereas ﬁﬂ(t) and Vﬁ(t) de-

scribe its upload phase. The formal definition of these vectors is as follows:

m XP(t) = (XR] (1),... ,Xﬂyn(t)) where Xﬁl(t) is a [0..s + r]-valued rv denoting the number

of fragments of D stored on peers that are in phase | at time t.

mYR(t) = (Yfq(t),..., Y{t . (t)) where Y} (t) is a [0..s — 1]-valued rv denoting the number
of fragments of D being downloaded at time t to the central authority from peers in phase
1 (one fragment per peer).

mZNt) = (Z]4(t),..., Z} (1)) where Z]!|(t) is a [0..s]-valued rv denoting the number of
fragments of D hold at time t by the central authority and whose download was done
from peers in phase 1 (one fragment per peer). Observe that these peers may have left

the system by time t.

m UR(t) = (UR(t),... ,U‘Rn(t)) where Uﬂyl(t) is a [0..s + 1 — 1]-valued rv denoting the
number of (reconstructed) fragments of D being uploaded at time t from the central

authority to new peers that are in phase 1 (one fragment per peer).

m Vi) = (Vi (4),..., VIt (1)) where Vit (t) is a [0..s + v — 1]-valued rv denoting the
number of (reconstructed) fragments of D whose upload from the central authority to
new peers that are in phase 1 has been completed at time t (one fragment per peer).

Given the above definitions, we necessarily have Y}}{l(t) < X]}{l(t) for 1 € [1..n] at any time t.

The number of fragments of D that are available for download at time t is given by S(f{{(t))



3.5 General model, recovery process is hypo-exponentially distributed and peers availability is
hyper-exponentially distributed 75

(recall the definition of the function S in Section 2.3). Given that s fragments of D need to be
downloaded to the central authority during the download phase of the recovery process, we
will have (during this phase) S(Y}(t)) + S(ZR(t)) = s, such that S(Y}}(t)), S(ZR(t)) € [1..s — 1.
Once the download phase is completed, the central authority will reconstruct at once all missing
fragments, that is s + v — S()?}}(t)). Therefore, during the upload phase, we have S(ﬂ]‘}(t)) +
S(V}}l‘(t)) =s+Tr— S(f(?{(t)). Observe that, once the download phase is completed, the number
of available fragments, S()zﬂ(t)), may well decrease to 0 with peers all leaving the system. In
such a situation, the central authority will reconstruct s + r fragments of D. As soon as the
download phase is completed V{L‘(t) =0 and S(Zﬂ(t)) = s. The end of the upload phase is also
the end of the recovery process. We will then have Y(t) = ZR(t) = UR(t) = V/}(t) = 0 until
the recovery process is again triggered.

According to the terminology introduced in Section 2.2, at time t, data D is available if
S()?Q(t)) > s, regardless of the state of the recovery process. It is unavailable if S(Xﬁ(t)) < s but
S(Zﬂ(t))—the number of fragments hold by the central authority—is larger than s — S()?}}(t))
and at least s — S(X¥(t)) fragments out of S(Z}(t)) are different from those S(X}*(t)) fragments
available on peers. Otherwise, D is considered to be lost. The latter situation will be modeled
by a single state a.

If a recovery process is ongoing, the exact number of distinct fragments of D that are in the
system—counting both those that are available and those hold by the central authority—may

be unknown due to peers churn. However, we are able to find a lower bound on it, namely;,
n
b(X[(t), ViH(t), Zi(t) == ) max{X]} (t), Yt (t) + Z] (1)),
=1

In fact, the uncertainty about the number of distinct fragments is a result of peers churn. That
said, this bound is very tight and most often gives the exact number of distinct fragments since
peers churn occurs at a much larger time-scale than a fragment download. In our modeling, we
consider an unavailable data D to become lost when the bound b takes a value smaller than s.
Observe that, if the recovery process is not triggered, then b(fﬂ(t), 0,0) = soth)) gives the
exact number of distinct fragments.

The system state at time t can be represented by the 5n-dimensional vector W(t). The
multi-dimensional process W = {W(t),t > 0} is an absorbing homogeneous continuous-time
Markov chain (CTMC) with a set of transient states T}? representing the situations when D is
either available or unavailable and a single absorbing state a representing the situation when
D is lost. As writing 7;" is tedious, we will simply say that 7, is a subset of [0..s 4+ 1]™ x [0..s —
1™ x [0..s]™ x [0..s + 1 — 1]™ x [0..s + 1 — 1]™. The elements of ’T}{‘ must verify the constraints
mentioned above.

Without loss of generality, we assume that S(XL‘(O)) > s. The infinitesimal generator has



Chapter 3: Performance evaluation of data lifetime and availability in centralized-repair
76 systems

the following canonical form

Al a
T [ QM| RR
a 0 0

where definitions of ﬁﬂ and Qﬂ are similar of R¢ and Q¢ introduced in Section 3.3. The non-

zero elements of R, are, for S(yh) € [1..S(xM)] and S(Z}}) = s — S(yh),

n
(%0,0,0,0,0) = ) xjtyy, for S(XP) =s.
1=1
n
TR 28,0,0) = 3yl bR A =5}, for  S(ER) € [.sl.
1=1

Let us proceed to the definition of the non-zero elements of Q% First, let us drop hereafter and
until the end of this section the subscript h and the superscript h from the random variables

and metrics to simplify the readability of the equations.
The case when a peer leaves the system

There are seven different situations in this case. In the first situation, either the recovery
process has not been triggered or it has but no download has been completed yet. In both
the second and third situations, the download phase of the recovery process is ongoing and
at least one download is completed. However, in the second situation, the departing peer
does not affect the recovery process (either it was not involved in it or its fragment download
is completed), unlike what happens in the third situation. In the third situation, a fragment
download is interrupted due to the peer’s departure. The central authority will then imme-
diately start downloading a fragment from another available peer that is uniformly selected
among all available peers not currently involved in the recovery process. The fourth situation
arises when a peer leaves the system at the end of the download phase. The fifth situation
occurs when an available fragment becomes unavailable during the upload phase. The sixth
situation occurs when a peer, to which the central authority is uploading a fragment, leaves
the system. The last situation arises because of a departure of a peer to which the central au-
thority has completely uploaded a reconstructed fragment. Note that the uploaded fragment
was not yet integrated in the available fragments. This is caused by the fact that the central
authority updates the database recording fragments locations as soon as all uploads terminate.
To overcom any departure or failure that occurs in the context of one of the last three situa-
tions, the central authority has then to upload again the given fragment to a new peer. A new

selected peer would be in phase m with probability R(m) for m € [1..n]. The elements of Q.



3.5 General model, recovery process is hypo-exponentially distributed and peers availability is
hyper-exponentially distributed 77

corresponding to these seven situations are, for 1 € [1..n] and m € [1..n],

for X)€[s+1.s+T1]

q((%)g)z)aya))(_’_é‘rli_)g)z)(_)’)a)) = [Xl_yl]JrHl)
for S(X)els.s+r—1], S(y)ell.s—1], S(2)=s-—S(y);
or S(xX)e2.s—1], S(y)el.S(X)—1], S(z)=s—S(y).

G200 (R_cli_cleemz0.0 Fm — Y — Zm)

X, ,Z,O’O , X_el) _el_i_em’z)o)o :ULHL m m )
a((x,y ), ( y ) S —p——
Jels.s+r—1], S(y)ell.s—1], S(2) =s—S({);

X
or S(X)e2.s—1], S(y)el..S(X)—1], S(2)=s—S(y).

q((X,0,Z,1,V), (X — &L,0,Z, i+ €™ V) = xyuR(m),
for S(X)el.s+r—2], S(Z)=s, S()ell.s+1r—S(X)—1],
S(F) =s+1—S(X) — S(id)
q((X,0,Z,1,V), (X,0,Z, 1 — €L + €™ ¥)) = uyyR(m),
for S(X)ell.s+r—2, S(Z)=s, S el.s+r—SX —1],
SW)=s+1—S(X)—S(W), l#m
q((x,0,Z,1,V), (X,0,Z, 10 + &M v —€L)) = viwR(m),
for S(X)e[l.s+r—2], S(Z)=s, S()ell.s+1r—S(X)—1],
SWV)=s+1—S5(X)—S(1)

The case when a peer rejoins the system

Recall that the system keeps trace of only the latest known location of each fragment. As
such, once a fragment is reconstructed, any other copy of it that “reappears” in the system due
to a peer reconnection is simply ignored, as only one location (the newest) of the fragment
is recorded in the system. Similarly, if a fragment is unavailable, the system knows of only
one disconnected peer that stores the unavailable fragment. In the following, only relevant
reconnections are considered. For instance, when the recovery process is in its upload phase,
any peer that rejoins the system does not affect the system state since all fragments have been
reconstructed and are being uploaded to their new locations.

There are three situations where reconnections may be relevant. In the first, either the
recovery process has not been triggered or it has but no download has been completed yet. In
both the second and third situations, the download phase of the recovery process is ongoing and
at least one download is completed. However, in the third situation, there is only one missing
fragment, so when the peer storing the missing fragments rejoins the system, the recovery
process aborts.



Chapter 3: Performance evaluation of data lifetime and availability in centralized-repair
78 systems

The elements of (j corresponding to these three situations are, for 1 € [1..n] and S(z) =
s —S(y)

q((x,0,0,0,0), (X +€},0,0,0,0)) = pi(s + T — S(X))pA,
for S(x)el[s.s+r—1].

q((%,4,%,0,0), (X + &%,1,Z,0,0)) = pi(s + 1 — S(X))pA,
for S(X)els.s+r—2], S(§)ell.s—1];
or S(xX)ell.s—1], S(y) € [1..5(x)].

a((%,4,2,0,0), (X +&},0,0,0,0)) = pypA,
forr SX)=s+1—1, S(y)el.s—1].

The case when one download is completed during the recovery process

When a recovery process is initiated, the system state verifies S(X) € [s..s + r — k] and
§=2Z=1 =19 =0. The central authority selects s peers out of the S(X) peers that are
connected to the system and initiates a fragment download from each. Among the s peers that
are selected, i; out of s would be in phase 1, for 1 € [1..n]. Let = (i1,...,in). We naturally

—.

have 0 <1i; < xy, forl € [1..n], and S(i) = s. This selection occurs with probability

g(i,x) := M
(*Y)

S

The probability that the first download to be completed out of s was from a peer in phase 1 is
equal to fl(f) = 11/s (recall the definition of f in Section 2.3). Similarly, when the number of
ongoing downloads is U, the probability that the first download to be completed out of S(ij)
was from a peer in phase 1 is equal to fi(§) = yi/S(Y).

The two possible transition rates in such situations are, for 1 € [1.n], m € [l..n] and

S(2) =s = S(y),

for S(X)el[s.s+r—k], im€[0.xcml, S(i)=s.

for S(xX)els.s+r—1], S(y)el.s—1]
(X) e [1..s = 1], S(y) € [1..S(xX)].

The case when one upload is completed during the recovery process

When the download phase is completed, the system state verifies S(zZ) = sand § = U =
¥ = 0. The central authority selects s + r — S(X) new peers that are connected to the system
and initiates a (reconstructed) fragment upload to each. Among the peers that are selected, i,
out of s + r — S(X) would be in phase 1, for 1 € [1..n]. Let i= (i1,...,1n). We naturally have

—.

0<{1 <s+r—S(xX),forl € [1.n], and S(i) = s+r—S(X). This selection occurs with probability

)= () [Tre

112,510/ 17



3.5 General model, recovery process is hypo-exponentially distributed and peers availability is
hyper-exponentially distributed 79

where the multinomial coefficient has been used. For 1 € [1..n] and S(Z) = s, we can write

) .
SWV)=s+1—S(X)—S(i).
q((%,0,Z,&L,9), (X +7V+¢L,0,0,0,0)) = B,
for S(X)e0.s+1—2], SHW)=s+1—S5(X)—1

Note that Q is not an infinitesimal generator since elements in some rows do not sum up to 0.
Those rows correspond to the system states where only s distinct fragments are present in the

system. The diagonal elements of Q are

aw, W) =—r(Ww)— > qw,W), for weT.
WeT —{w)

For illustration purposes, we depict in Fig. 3.3 some of the transitions of the absorbing CTMC
whenn=2,s=3,r=1,andk = 1.

3.5.1 Data lifetime

This section is devoted to the analysis of the lifetime of D. It will be convenient to introduce
sets

&1:=1{(%,0,0,0,0):X € [0..s + 7™, S(X) =} for I € [s..s + 7].

The set &; consists of all states of the process W in which the number of fragments of D currently
available is equal to I and the recovery process either has not been triggered (for I € [s + 1 —
k+ 1..s+1]) or it has but no download has been completed yet (for I € [s..s +1—Xk]). For any I,
the cardinal of &7 is (I:j]) (think of the possible selections of n — 1 boxes in a row of [+ n — 1
boxes, so as to delimit n groups of boxes summing up to I).

Introduce T(&;) := inf{t > 0: W(t) = a|lW(0) € &1}, the time until absorption in state a—or
equivalently the time until D is lost—given that the initial number of fragments of D available
in the system is equal to I. In the following, T(&1) will be referred to as the conditional block
lifetime. We are interested in the conditional probability distribution function, P(T (&) < t),
and the conditional expectation, E[T(&;)], given that W(0) € & for I € [s..s + 1.



Chapter 3: Performance evaluation of data lifetime and availability in centralized-repair
80 systems

From the theory of absorbing Markov chains, we can compute P(T({w}) < t) where T({w})
is the time until absorption in state a given that the system initiates in state w € 7. We know
that (e.g. [68, Lemma 2.2])

PT(W) <t)=1- 7™ . exp (t@) T, t>0,WeT (3.16)

where ind(w) refers to the index of state w in the matrix Q Definitions of vectors éji and Tj
were given at the end of Section 2.3.

Let 7tz denote the probability that the system starts in state w = (X, 6, 6, 6, 5) € &y at time 0
given that W(O) € &1. We can write

. . . I n “
g =P (W(O) — € EIW(0) e 51) - <><1, B Xn) E R(L)X. (3.17)

Clearly ZWE& g = 1 for I € [s..s + 1]. Using (3.16) and (3.17) and the total probability
theorem yields, for I € [s..s + 1],

PTEN <t = Y meP(T((W) <)

weép
= 1- Tk éll;?( w) - exp (t@) . TITI’ t>0. (3.18)
WeE
We know from [68, p. 46] that the expected time until absorption given that the wW(0) =
w € 7 can be written as

o =1
ET()) =~ ™ (Q) T, WeT,
The conditional expectation of T(&y) is then (recall that the elements of £ are of the form
(‘)_(f) 6) 6) 6) 6))

= ) mz E[T({W})]

we&y

= — Z Ty *‘?‘d <Q>7 Tip, forle[s..s +1. (3.19)

weéy

3.5.2 Data availability

In this section we introduce different metrics to quantify the availability of D. But first, we
will study the time during which J fragments of D are available in the system given that there
were initially I fragments. To formalize this measure, we introduce the following subsets of 7,
for] € [0..s + 7],



3.5 General model, recovery process is hypo-exponentially distributed and peers availability is
hyper-exponentially distributed 81

The set Fj consists of all states of process W in which the number of fragments of D currently
available is equal to ], regardless of the state of the recovery process. The subsets ¥} form a
partition of 7. We may define now

T(&r) . .
T(&L Fy) = J H{W(t) € FjIW(0) € 51} dt
0

T(&1, Fy) is the total time spent by the CTMC in the set Fj before being absorbed in state a,
given that W(0) € &;. Similarly, T({w},{w'}) is the total time spent by the CTMC in state W/
before being absorbed in state a, given that W(0) = w. We know from [46, p. 419] that

=\ ! ind (W o oy
E [T}, (00)] =~ ™ (Q) g™, woweT (3.20)

Using (3.17) and (3.20), we derive for I € [s..s + 7] and ] € [0..s + 1]

ET(ELF)] = ) E[T(EL W)
W EeF
= ) ) mE[T{whL W)
WeE W EeF]
= Y Y e (0) et (.21
wely W eFy

We are now in position of introducing two availability metrics. The first metric, defined as

S+r

T(&L F
MLL)](gI) —E Z ] M
J=0

, wherel € [s..s + 1],
T(&1)

can be interpreted as the expected number of fragments of D that are available for download—

as long as D is not lost—given that I fragments are initially available. A second metric is

s+r

Mc2(E,m) :=E Z % , Wherel € [s..s + 1],

J=m

that we can interpret as the fraction of the lifetime of D when at least m fragments are available
for download, given that I fragments are initially available. For instance, M 2(&syr, s) is the
proportion of time when data D is available for users, given that s+ fragments of D are initially
available for download.

The expectations involved in the computation of the availability metrics are difficult to find
in closed-form. Therefore, we resort to using the following approximation

E [T(gl)]:]):| _ E[T(&1, 7y
T(E) |~ ETE]

(3.22)



Chapter 3: Performance evaluation of data lifetime and availability in centralized-repair
82 systems

where the terms in the right-hand side have been derived in (3.21) and (3.19). We have already
seen through simulation in Section 2.8 that such an approximation converges very well to the
exact expectation with a very small relative error. With this approximation in mind, the two
availability metrics become

—  E[T(& Fy)]

MRJ (&) = ] ——~—-=, wherel¢c[s.s+71], (3.23)
];O E[T(&r)]
Ss+r
Mc2(E,m) = Z %, where I € [s..s + 1. (3.24)
J=m

3.6 Numerical results

In this section, we characterize the performance metrics defined in this chapter against the
system parameters. In particular, we consider the simple and the extended models introduced
in Sections 3.4 and 3.5 and we consider the Condor and the PlanetLab-like contexts whose
peers parameters and characteristics are reported in Table 2.2 in the previous chapter. Last, we
illustrate how our models can be used to engineer storage systems and we discuss the impact
of the blocks/fragments sizes on the performance.

3.6.1 Parameter values

As we have seen in Section 2.11.1 ,The set Condor is best fit by a 2 stages hyper-exponential
distribution according to the analysis in [69]. An exponential distribution is found to “reason-
ably” fit the All-pairs-ping data set in [75]. The descriptions of these data sets and their peers
parameters and characteristics are reported in Table 2.2 in Section 2.11.1. We have solved nu-
merically (3.10), (3.11), (3.14), (3.15), (3.18), (3.19), (3.23) and (3.24), given that all s + r
fragments of D are initially available, considering either Condor or PlanetLab context, using the
same set of parameters values discussed and introduced in Section 2.11.1 of the previous chap-
ter. We arbitrarily set the fragment upload rate value to 1/ = 6 sec in the Condor context and
1/f = 21 sec in the PlanetLab context. Results are reported partially in Table 3.1. It appears
that, whichever the scenario or the recovery mechanism considered, the expected data lifetime
increases roughly exponentially with r and decreases with an increasing k. Regardless of the
context considered, the distributed scheme yields a significantly smaller expected data lifetime
than the centralized scheme, especially when the storage overhead, r/s, is high; cf. columns
3-4 in Table 3.1. The difference in performance is more pronounced in the Condor context.
Regarding the expected number of available fragments, we again observe that the distributed
scheme is less efficient than the centralized one. Observe how the performance deteriorates

as peer churn becomes more important: compare for instance in Table 3.1 rows 6 vs. 20, and



3.6 Numerical results

83

Table 3.1: Expected lifetime and first availability metric: Centralized-repair scheme vs. Distributed-

repair scheme

Condor context E[TY(Es1+)] (in days) MQJ (Esir)
s=4 cent. repair dist. repair cent. repair dist. repair
k=1 r=2 0.48 5.99e-02 5.847 5.44
r=4 19.49 0.244 7.737 6.761
r=5 108.01 0.416 8.675 7.4
r==6 0.656 8.01
r=10 — 3.14 — 10.44
r=12 — 8.123 — 11.41
k=2 r=2 0.109 1.92e-02 5.365 4.940
r=4 5.11 9.62e-02 7.269 6.519
r=5 31.044 0.187 8.225 7.290
k=4  r1=4 0.186 1.86e-02 | 6.264 5.212 |
PlanetLab context E[T¢(s +1,0)] (in months) My, 4 (s+1,0)
s=38 cent. repair dist. repair cent. repair dist. repair
k=1 r=2 0.32 0.11 7.81 8.04
r=4 2.15 1.05 11.01 8.68
T==6 17.12 7.61 13.18 9.80
r=28 262.16 46.24 15.11 12.12
k=2 r=4 0.81 0.37 10.34 8.19
r==6 6.95 3.20 12.76 9.25
r=28 110.03 23.34 14.72 11.37
k=4 r=28 13.33 4.34 13.77 9.81

12 vs. 23 (these correspond to the same storage overhead and the same value of k). This is

particularly true for the distributed recovery mechanism. We conclude that when peers churn

rate is high, only the centralized repair scheme can be efficient should the storage overhead be

kept within a reasonable value (that is v/s < 2). As the distributed repair scheme may involves

less upload traffics than the centralized one, it will be a good implementation choice in large

networks where hosts have a good availability.



Chapter 3: Performance evaluation of data lifetime and availability in centralized-repair
84 systems

3.6.2 Setting the system’s key parameters

We illustrate now how our models can be used to set the system parameters r and k such
that predefined requirements on data lifetime and availability are fulfilled. We assume the re-
covery mechanism is centralized and the context is similar to PlanetLab. We have picked one to
two contour lines of each of the performance metrics studied in this paper and report them in
Fig. 3.4. Consider point A which corresponds to r = 6 and k = 1 (recall s = 8). Selecting this
point as the operating point of the P2P2P storage system ensures (roughly) the following: given
that each data is initiated with s + r available fragments, then (i) the expected data lifetime is
18 months; (ii) only 11% of the stored data would be lost after 3 months; (iii) as long as D is
not lost, 13 fragments of D are expected to be in the system; (iv) during 99.7% of its lifetime,
D is available for download; and (v) during 80% of the lifetime of D, at least s + r—k = 13
fragments of D are available for download in the system. Observe that the storage overhead,

/s, is equal to 0.75.

3.6.3 Impact of the size of blocks/fragments.

Given the size of data D, a larger size of fragments translates into a smaller s and a larger
expected fragment download time 1/«. We have computed all pairs (r, k) with s =8 and s = 16
that ensure P(T¢(s + r,0) > 3 months) = 0.87 in the PlanetLab context, i.e., only 11% of the
total data would be lost after 3 months. In particular, operating points r = 6 and k = 1 with
s =8 and r = 12 and k = 7 with s = 16 satisfy the above requirement, and additionally
yield the same storage overhead (namely, 0.75). But, and this is important, the former point
invokes the recovery process much more often (and potentially unnecessarily) than the latter
point, suggesting that large fragments size reduces the efficiency of the recovery mechanism. This
observation should be moderated by the fact that fragments size when s = 8 is twice their size
when s = 16, yielding a different bandwidth usage per recovery. We currently cannot say how
does the bandwidth usage per recovery vary with the size of fragments. However, we know for
sure that its effect will not be the same in both centralized and distributed schemes because of
the additional upload stages in the centralized implementation. Although the performance of
the system seems to be better when the number of fragments increases, due to decrease their
sizes, each fragment adds some coordination and control overhead. A careful analysis of this

issue is one objective of ongoing research.



3.7 Conclusions 85

3.7 Conclusions

We have proposed simple and general analytical models for evaluating the performance of
two approaches for recovering lost data in distributed storage systems. Simple fluid model has
been introduced under simple assumptions in order to have an explicit formula of the availabil-
ity metric. We have analyzed the lifetime and the availability of data achieved by distributed-
repair systems through markovian analysis considering realistic assumptions. Numerical com-
putations have been performed to illustrate several issues of the performance. We conclude
that, using our theoretical framework, it is possible to tune and optimize the system parameters
for fulfilling predefined requirements. In contrast with the distributed-repair scheme in the case
of highly dynamic environments, P2P storage systems with centralized-repair scheme (or “re-
pair all missing fragment” policy) are efficient in any environment while the storage overhead
is kept reasonable. Our analysis also suggests that the use of large size fragments reduces the
efficiency of the recovery mechanism.



Chapter 3: Performance evaluation of data lifetime and availability in centralized-repair

86 systems
D is unavailable D is available
ELO),(0,0),(2,1),(1,0),(1,1) B e -

. ‘ 3w

ﬂ ® (3,1),(0,0),(0,0),(0,0),(0,0)
2B e
ELO),(0,0),(2,1),(2,0),(0,1} (2,00, (0,0), (2,11, (1,0),(0,1] R(NB[ {(2,2),(0,0),(0,0),(0,0), (0,0}

- 211 Py T
ﬂsfssRmZR(z).]/s { 2B 2R(1)R(2)- 1/2 (R(Z)B
ELO),(0,0),(2,1),(0,0),(0,0) 2w (2,0),(0,0),(2,1),(0,0) “’@Zm T Ez,n (0,0) (z,n,(o,ouo,a
/Q(x 302 P & 2p1 Ap (oc

(1»1),(1,0)»(1»1),(0,0)»(0»0) w ~1(2,1),(1,0),(1,1),(0,0), (0,0)
D
(1,0),(1,0),(1,1),(0,0),(0,0) NO
[ o 2
g (2,0),(1,0),(1,1),(0,0),(0,0) W2
w . < (2,1),(2,0),(0,1),(0,0), (0,0)
) 2 NO
o e — =
2157 (2,1),(0,0),(0,0),(0,0),(0,0)

D is lost 2u; m
2

Figure 3.3: Some transitions of the Markov chain Wwhenn=2,s=3,r=1,andk=1.

—-4#-— E[TS(s +1,0)] =18 months

""" %--- P(T<(s +1,0) > 3 months) = 0.89
—A— Mj (s +71,0) =132

-- & - M{,((s+71,0),5) =0.997
——B—- M§,((s+71,0),s +1—k) =0.80

threshold k

redundancy r

Figure 3.4: Contour lines of performance metrics (PlanetLab context, centralized repair).



4

PACKET-LEVEL SIMULATION MODEL FOR
DOWNLOAD AND RECOVERY PROCESSES

4.1 Introduction

The P2P paradigm has emerged as a cheap, scalable, self-repairing and fault-tolerant storage
solution. We have shown in the first chapter, in Section 1.3, that recent modeling efforts, that
address the performance evaluation of data lifetime and availability, have assumed the recovery
process to follow an exponential distribution, an assumption made often because of the lack of
studies characterizing the “real” distribution of the recovery process, and for the aim of simpli-
fication. This chapter aims at filling this gap and better understanding the behavior of these
systems through simulation, while taking into consideration the impact of the heterogeneity of
peers, the underlying network topologies, the propagation delays and the transport protocol.
To that end, we implement the distributed storage protocol in the network simulator NS-2 [67]
and run ten experiments covering a large variety of scenarios. As described in this chapter, our
packet-level simulation model is realistic and captures the behavior of P2P storage systems. We
show through experimental results how the recovery times distribution is impacted essentially
by the inter-network links capacities, the volume of the background traffic, peers’ bandwidth
capacities, and the system workload. This distribution impacts, in turn, the modeling of data
lifetime and availability as we have shown in the second and the third chapters.

We will distinguish between three general scenarios in which the download and the recov-
ery processes have different distributions. In particular, in the first scenario, we show that the

fragment download/upload time follows approximately an exponential distribution as long as
87



88 Chapter 4: Packet-level Simulation Model for Download and Recovery Processes

the total workload is equally distributed over the active peers, the core network has a good
connectivity and the peers upload/download capacities are asymmetric. We have found that
the successive download durations are weakly correlated in such a scenario. We also show that,
as a consequence of the fragment download distribution and the weak coorelation, the block
download time and the recovery time essentially follow a hypo-exponential distribution with
many distinct phases (maximum of as many exponentials). In the second scenario, we will
show that the fragment download/upload time follows a general phase type distribution but
the block download time follows approximately an exponential distribution, under the follow-
ing configurations: the peers upload/download capacities are symmetric and there are some
bottlenecks in the backbone or among the local area network (LAN) routers. The characteristics
of the third scenario are as follows. The peers are very heterogeneous and the volume of the
non-P2P traffic is large with respect to the P2P traffic such that the total load in the system is
very high. We found that, in such a scenario, both fragment and block successive download
times are drawn from a general phase type distribution. Contrarily to the first scenario, the
successive fragment download times in such a scenario are strongly correlated.

For all the experimental results in all the scenarios, we use expectation maximization and
least square estimation algorithms to fit the empirical distributions. We also provide a good ap-
proximation of the number of phases of the hypo-exponential distribution that applies in several
considered experiments. Last, we test the goodness of our fits using statistical (Kolmogorov-
Smirnov test) and graphical methods.

The rest of this chapter is organized as follows. Section 4.2 introduces our motivation
to do a simulation analysis with the packet-level simulator NS-2. Section 4.3 is devoted to the
description of the model assumptions, selective implementation details and generating network
topologies. In Section 4.4, we summarize the key settings of the experiments. In Section 4.5,
we present the results of our simulations and the inference that we can draw from them. Last,
Section 4.6 concludes this chapter.

4.2 Motivation

There have been recent modeling efforts focusing on the performance analysis of P2P
backup and storage systems in terms of data durability and availability. In [75], Ramabhadran
and Pasquale analyze backup systems that use full replication as redundancy mechanism. They
develop a Markov chain analysis, then derive an expression for the lifetime of the replicated
state and study the impact of bandwidth and storage limits on the system. This study relies
on the assumption that the recovery process follows an exponential distribution. Observe that
in replication-based systems, the recovery process lasts mainly for the download of one frag-

ment of data that is equal to one block as the block here is not fragmented. In other words,



4.2 Motivation 89

the authors of [75] are implicitly assuming that the fragment download time is exponentially
distributed. In [28], Dalle et al. propose a stochastic model to characterize the expectation and
the standard deviation of the data lifetime in a P2P backup system, that use erasure coding as
redundancy mechanism, while assuming an exponential distribution on the recovery process.

In Sections 2.4 and 3.3 (appeared in [3]), we developed a more general model than that
in [75], which applies to both replicated and erasure-coded P2P backup and storage systems.
Also, unlike [75, 28], the model presented in [3] accounts for transient disconnections of peers,
namely, the churn in the system. But we also assumed the recovery process to be exponentially
distributed. However, this assumption can differ between replicated and erasure-coded sys-
tems, as in the latter systems the recovery process is much more complex than in the former
systems. Furthermore, the recovery process differs from centralized to distributed recovery
process implementation.

In all the models mentioned above, findings and conclusions rely on the assumption that the
recovery process is exponentially distributed. However, this assumption is not supported by any
experimental data. To the best of our knowledge, there has been no analytical or simulation
study characterizing this process under realistic settings and assumptions.

It is thus essential to characterize the distribution of download and recovery processes in
such systems. Evaluating these distributions is crucial to validate (or invalidate) some key
assumptions made in some related studies. Moreover, simulation is critical to the building
and better understanding of these systems with the presence of realistic topologies, underlying
network protocols, underlying traffic, propagation delays and heterogeneous peers.

The main objective of this chapter is the description of the simulation model itself, and then
the simulation analysis of download and recovery processes. The results show that (i) the frag-
ment download time follows closely an exponential distribution and (ii) fragment download
times are weakly correlated in some interesting scenarios. Given that in erasure-coded systems,
the block download time consists of downloading several fragments in parallel, it follows that
the recovery process should follow approximately a hypo-exponential distribution of several
phases. (This is nothing but the sum of several independent random variables exponentially
distributed having each its own rate [50]). We found that this is indeed the case in some inter-
esting contexts. We realized that beside the fact that the total workload is equally distributed
over the active peers, there are two main reasons for the weak correlation between concurrent
downloads as observed in some scenarios: (i) the good connectivity of the core network and (ii)
the asymmetry in peers upstream and downstream bandwidths. So, as long as the bottleneck is
the upstream capacity of peers, the fragment download times are close to be independent.

Building on these results, we have incorporated into the models of Sections 2.4, 3.3 and
2.6 (appeared in [3, 29]) the assumption that fragment download and upload times respec-

tively(instead of the block download times or the recover times) are exponentially distributed



90 Chapter 4: Packet-level Simulation Model for Download and Recovery Processes

with parameters « and . The resulting models, whose descriptions are in Sections 2.5, 3.4,
2.7 and 3.5, characterize data lifetime and availability in P2P storage systems that use either
replication or erasure codes, under more realistic assumptions in known scenarios.

4.2.1 Choice of Simulation

To collect traces of fragment download/upload times, of block download times and of re-
covery times, one can choose to perform simulations or experimentations either on testbeds or
on real networks. We would like to consider situations where peers are either homogeneous
or heterogeneous, different underlying network topologies, and different propagation delays in
the network. Also, we would like to consider systems with a large number of peers. To achieve
all this with experiments over real networks is very difficult. Setting up experiments over a ded-
icated network like Planet-Lab [74] would require a long time, and there will be limitations on
changing the topology and the peers characteristics. In addition, measurement-based studies
do not allow to evaluate performance in advance of building and deploying the system, hence
the importance of simulations at reasonable scale for the thorough evaluation of P2P storage
systems before their deployment.

4.2.2 Choice of NS-2

We find it most attractive to implement the distributed storage protocol in a well-known
network simulator. We choose NS-2 as network simulator because it is an open source dis-
crete event simulator targeted at networking research. NS-2 provides substantial support for
simulation of TCP and routing and it is well known and well validated.

Note that in view of the backup and storage systems specification and objectives which are
different, for instance, from file sharing, involving some hundreds to some thousands of peers
in a simulation has to conclude realistic results and helps to understand the system behavior.
However, this simulator can be used to validate principle algorithms or processes of a flow-level
simulators (e.g. the flow-level algorithm presented in Chapter 5) that probably will neglect
many factors such as the underlying network protocol, in order to have more scalable simu-
lations where a very large of nodes are to be involved which is not feasible in a Packet-level

simulator.

4.3 Simulation Assumptions and Network Topology

This section introduces the assumptions made in the simulation model and overviews the

hierarchical structure of the network topologies used in the simulations. We implemented



4.3 Simulation Assumptions and Network Topology 91

™ 4
P2PSS Application Storage Directory
join()
request_frag() add_peer()
handle_request() - reg_files()
handle_frag() distribute_fragments()
_ randomChoice()
(a0 ) recover(
sto
send_data(AppData) p. PP
process_data(AppData) :
files_set_
( P2PSS Agent Wrapper ) peers_set_
d(bytes) active_peers_set_
sen es Tl
M ¢ *recv(bytes) Y blocks_availability_ )

[ NS-2 Agent (FullTcp) )

t packets

Figure 4.1: Simulator architecture.

the P2P storage application in NS-2 (versions 2.29 and 2.33) following the architecture de-
picted in Fig. 4.1. We will describe the base classes (P2P_Storage Directory, P2P_Storage App,
P2P_Storage Wrapper and data structure) and other implementation details in Appendix A.

We assume that there is a given number of stored files in the system and before that peers
request data, the system directory object distributes the s + r fragments of each block of data
of all files over s + r peers chosen uniformly among all the registered peers in the system. In
fact, a DHT-like systems (e.g. [83, 54, 89]) do not choose randomly peers in the network to
store the fragments of each block but the distribution of data depends on the identifier space,
the identifier of each node (its position in the space) and the hash value of the block itself.
However, it is proved (e.g. in [83, 54, 89]) that DHT makes the number of keys per node
uniformly distributed with high probability. In other words, with high probability each node
is responsible for O(1/N) of the identifier space where N is the number of peers. It is proved
as well that the cost of the lookup phase (e.g. in Chord-like protocol in [89]) grows as the
logarithm of the number of nodes. As a result, and in view of the fact that we involve some
hundreds to some thousands of nodes, we neglect the lookup cost with respect to the download
or recovery times and we do not implement DHT to reduce the complexity. In other words, we
use the same class of the system directory for both recovery process implementations and we
assume that the system has a perfect knowledge of the data state.

We consider two different storage applications, a backup-like application and an e-library-

like application (“e” stands for “electronic”). In the first, a file stored in the system can be



92 Chapter 4: Packet-level Simulation Model for Download and Recovery Processes

requested for retrieval only by the peer that has produced the file. In the second, any file can
be downloaded by any peer in the system. In both applications, the storage protocol follows
the description presented in Sections 2.2 and 3.2.

Two types of requests are issued in the system. The first type is issued by the users of the
system: a user issues a request to retrieve its backup file in the backup-like application, or
a public document in the e-library-like application. The second type consists of management
requests. Usually, these are issued by the central authority (in the centralized implementation of
the recovery process) or by a peer (in the distributed implementation) as soon as the threshold
k is reached for any stored block of data. In the simulator, these management requests are
issued by the system storage directory object.

File download requests are translated into (i) a request to the directory service to obtain, for
each block of the desired file, a list of at least s peers that store fragments of this block, (ii) open-
ing TCP connections with each peer in the said list to download one fragment, (iii) registering
some statistical information such as the start and the completion time of the downloaded data.
All download requests issued by a given peer form a Poisson process. This assumption is met in
real networks as found in [47]. However, another random process can easily implemented.

Recovery requests are issued only in the scenarios where there is churn in the network. A
recovery request concerning a given block translates into (i) a request from the storage directory
service to a server in the centralized-repair scheme (we consider explicitly the first registered
peer as the server in order to simulate the centralized implementation) or any active peer that
is in charge of (ii) obtaining a list of at least s peers that store fragments of said block, (iii)
opening TCP connections with each peer in the said list to download one fragment. Once all
s fragments have been downloaded, the process proceeds with Steps 2 and 3, according to the
implementation, as explained in Sections 2.2 and 3.2. Last, the storage directory updates the
system state at the end of the operation, namely it increases the availability level of the blocks
of interest and points to the right locations of its fragments or otherwise it adds the lost block
in a black list if the operation failed.

Typically, applications access network services through sockets. NS-2 provides a set of well-
defined API functions in the transport agent to simulate the behavior of the real sockets. There-
fore, the P2P_Storage_Wrapper class handles calling the appropriate APIs when two applications
want to communicate in order to (i) attache first the Full Tcp agent to both NS nodes via attach-
agent and (ii) call then connect() instproc to set each agent’s destination target to the other and
last (iii) place one of them in LISTEN mode. We use in fact Full-Tcp agents since they support
bidirectional data transfers.

Similar to what is done in the web cash application (see tcpapp.cc) we can model the
underlying TCP connections as a FIFO byte stream, and then we will create same buffer man-

agement stuff. First, the P2P_Storage Ms_Buf that contains a part of the messages such as the



4.3 Simulation Assumptions and Network Topology 93

Table 4.1: The basic prototypes of P2P_Storage_Msg _BufList class

Method Functionality

void insert(P2P_Storage Msg_Buf *d) stores msgs of the sender until the reception of
their acks

P2P_Storage_Msg_Buf* detach() if the data is received by the destination, deletes
them from the FIFO buffer

int size() returns the current size of the buffer

Request message and the Fragment message. Second, P2P_Storage_Msg_BufList implements a
FIFO queues that will store all the sent messages (requests or data) on the sender side until
they correctly and completely arrive to the destination side. In other words, there is no sup-
port in the class “Agent” to transmit different applications data and messages. Instead, as all
data are delivered in sequence, we can view the TCP connections as a FIFO pipes, and the
transfer of the application data will be emulated as follows. We first provide buffer for the
application data at the sender to store the messages to be sent, next we use the Agent’s API
“sendmsg(int nbytes, const char *flags = 0)” to send a stream of an equivalent data size of the
stored messages, then we count the bytes received at the destination. When the receiver has got
all bytes of the current data or message transmission (first message in the FIFO on the sender
side toward the receiver), then the receiver gets the data directly from the FIFO’s sender. The
prototypes of the FIFO queues depicted in Table 4.1, where a FIFO queue is represented by the
P2P_Storage Msg_BufList class.

4.3.1 Network Topology

Having a representative view of enterprise networks or the Internet topology is very impor-
tant for a simulator to predict the behavior of a network protocol or application if it were to
be deployed. In fact, the simulated topology often influences the outcome of the simulations.
Realistic topologies are thus needed to produce realistic simulation results. Most of existing
simulation studies have used representations of a real topology (e.g. the Arpanet), simple mod-
els (e.g. a star topology), or random flat graphs (i.e. non-hierarchical) that are generated by
Waxman’s edge-probability function [96].

However, random models offer very little control over the structure of the resulting topolo-
gies. In particular, they do not capture the hierarchy that is present in the Internet. Recently,
tools such as BRITE [65] and GT-ITM [18] have been designed to generate more complex ran-
dom graphs, that are hierarchical, to better approximate the Internet’s hierarchical structure.

To produce realistic topologies for our simulations, we use the tool GT-ITM [18] to generate



94 Chapter 4: Packet-level Simulation Model for Download and Recovery Processes

M

622mbps
622mbps /

peer

LAN router

Stub Node (SN)

O
@ Transit Node (TN)

Figure 4.2: Three-level hierarchical random graph of Experiment 1.

random graphs. Three levels of hierarchy are used corresponding to transit domains, stub
domains, and local area networks (LANs) attached to stub domains. Each graph has one transit
domain of four nodes; each of the nodes is connected to two or three other transit nodes. Each
transit node is connected on average to two stub nodes, and each stub node is in turn connected
on average to four routers. Behind every router there is a certain number of fully-connected
peers constituting a LAN. An example of these random graphes is that used in Experiment 1
which is depicted in Fig. 4.2, where we have used the notation TN for “transit node” and SN
for “stub node”.

4.4 Experiments Setup

We ran a total of ten experiments. Experiments 1-5, 7 and 9-10 used the random graphs

generated with the GT-ITM tool as detailed before, whereas a simple star topology is used



4.4 Experiments Setup 95

in Experiments 6 and 8. Regarding the intra- and inter-domain capacities, we rely on the
information provided by RENATER [79] and GEANT [44] web sites. In those networks, the
links are well-provisioned. To have a more complete study, we will consider, in Experiments
4,5 and 10, links with smaller capacities, as can be seen in rows 4-6 of Table 4.2. Propagation
delays over TN-SN edges vary from edge to edge as can be seen in row 7 of Tables 4.2.

Let C,, and C4 denote respectively the upload and download capacity of a peer. To set these
values, we rely mainly on the findings of [47] and [53]. The experimental study of file sharing
systems and of the Skype P2P voice over IP system [47] found that more than 90% of users have
upload capacity C,, between 30Kbps and 384Kbps. However, the measurement study [53] done
on BitTorrent clients in 2007 reports that 70% of peers have an upload capacity C,, between
350Kbps and 1Mbps and even 10% of peers have an upload capacity between 10Mbps and 110
Mbps. The capacities that we have selected in the simulations vary between the values of the
ISDN and ADSL technologies; they can be found in rows 8-9 of Table 4.2. Observe that, except
in Experiments 7,8 and 9, peers are heterogeneous. We will attribute, except in Experiment
8, the propagation delays over routers-peers edges randomly between 1ms and 10,20,25 1nd
150ms as can be seen in row 10 of Table 4.2.

In Experiments 1, 2, 4-5 and 9 (resp. Experiments 10), there exists a background traffic
between three pairs of routers (resp. ten pairs of routers) across the common backbone. This
traffic consists of random exponential and CBR traffic over UDP protocol and FTP traffic over
TCP.

In each of the experiments, the amount of data transferred between routers and peers in
the system during the observed time (that is from 4e+5 up to 6e+6 seconds) are, on average,
4.5-12 GB of P2P application traffic, and when applicable except in Experiment 10, 150-500
MB of FTP, 200-600 MB of CBR, and 250-900 MB of the exponential traffic. In Experiment
10 the amount of P2P application traffic is 15G.B for 8e+6 seconds simulation times and on
average 1G.B of FTP, 1.5 G.B of CBR, and 800 MB of the exponential traffic.

Experiments 2 and 4 simulate a backup-like application whereas the other experiments
simulate an e-library-like application. Churn is considered only in Experiments 4-6. As a
consequence, redundancy is added and maintained only in these experiments. The storage
overhead r/s is either 1 or 0.5. We consider the distributed implementation of the recovery
process in Experiments 4 and 5, and the centralized implementation of the same in Experiment
6; the eager policy (k = 1) is considered in all three experiments. In other words, once a peer
disconnects from the system, all fragments that are stored on it must be recovered.

Churn is implemented as follows. We assume that each peer alternates between a con-
nected state, that lasts for a duration called “on-time”, and a disconnected state, that lasts for a
duration called “off-time”. We assume in the simulations that the successive on-times (respec-

tively off-times) of a peer are independent and identically distributed random variables with a



96 Chapter 4: Packet-level Simulation Model for Download and Recovery Processes

common exponential distribution function with parameter p; > 0 (respectively w, > 0). This
assumption is in agreement with the analysis in [75]. We consider 1/u; = 3 hoursand 1/u, =1
hours.

Download requests are generated at each peer according to a Poisson process. This assump-
tion is met in real networks as found in [47]. We assume all peers have the same request
generation rate, denoted A. We vary the value of A across the experiments as reported in row
16 of Table 4.2.

The last setting concerns the files that are stored in the P2P storage system. Fragment
sizes Sy (resp. block sizes Sg) in P2P systems are typically between 64KB and 4MB each (resp.
between 4MB and 9MB each). We will consider in most of our experiments Sy = 1 or 2MB
and Sg = 8MB, except in Experiment 4 where S = 512KB and Sg = 4MB. Therefore s = 8 in
Experiments 1-7 and s = 4 in Experiments 8-10. As for the file size, we assume for now that it
is equal to the block size. Therefore, the file download size is actually the block download size.
We leave the case of more general file sizes to a future study. In fact, we consider this because
the recovery process is related to the block download time and not to the file download time as
already explained in Sections 1.2.1, 2.2 and 3.2.

Table 4.2 summarizes the key settings of the experiments.

Similarly to any simulation that uses NS, we define the network topology and the system
parameters (such as maximum number of files, maximum number of peers, upload/download
capacities, delays, block size, fragment size, TCP segemt size, amount of redundancy and the
recovery threshold) at OTcl level in a TCL script (an example is provided in Appendix A).

4.5 Experimental Results

In this section, we present the results of our simulations and the inference that we can draw
from them. For each experiment, we collect the fragment download time, the block download
time and the recovery time when applicable. In Experiments 4 and 5 (distributed recovery),
the two latter durations are collected to the same dataset as there is no essential difference
between them. Having collected these samples, we compute the sample average and use MLE,
LSE and EM algorithms to fit the empirical distributions and we perform the Kolmogorov-
Smirnov test [62] on the fitted distribution. In the following, we will present selected results
from Experiments 1, 5-6 and 8-10. The results of the other experiments are briefly reported in
Tables 4.3-4.4.

4.5.1 Experiment 1

We have collected 76331 samples of the fragment download time (cf. column 2 of Table
4.3). The empirical cumulative distribution function (CDF) is depicted in Fig. 4.3(a). We can



4.5 Experimental Results 97

see that it is remarkably close to the exponential distribution. Two exponential distributions
are plotted in Fig. 4.3(a), each having a different parameter, derived from a different fitting
technique. The two techniques that we used are MLE and LSE. The parameter returned by MLE
is nothing but the inverse of the sample average and is denoted «; see row 2 of Table 4.3.

Beyond the graphical match between the empirical distribution and the exponential distri-
bution, we did a hypothesis test. Let X be a vector storing the collected fragment download
times. The Kolmogorov-Smirnov test compares the vector X with a CDF function, denoted cdf
(in the present case, it is the exponential distribution), to determine if the sample X could have
the hypothesized continuous distribution cdf. The null hypothesis is that X has the distribution
defined in cdf, the alternative one being that X does not have that distribution. We reject the
null hypothesis if the test is significant at the 1% level. In Experiment 1, the null hypothesis
with o = 1/40.35 is not rejected for 1 = 7%.

Regarding the block download times, we have collected 9197 samples. The sample average
is given in row 7 of Table 4.3). The empirical CDF is plotted in Fig. 4.3(b). We followed the
same methodology and computed the closest exponential distribution using MLE. However, the
match between the two distribution appears to be poor, and actually, the alternative hypothesis
is not rejected in this case.

Of course, a general Phase-type distribution (more than two inter-related exponentials oc-
curring in sequence, and/or in parrallel) can perfectly fit the collected data; where its param-
eters can be determined using an EM algorithm [34] (e.g. EMpht [71]). However, we would
like to find a distribution that on the one hand will likely fit the empirical data, and on the
other hand, will allow us to model such systems using some performance evaluation tools such
as Markov chains. To that end, we make the following analysis. To get a block of data, s frag-
ments, stored on s different peers, have to be downloaded. This is more efficiently done in
parallel and this is how we implemented it in the simulator. We have seen that the download
of a single fragment is well-modeled by an exponential random variable with parameter «.

Moreover, we have found that the concurrent downloads/uploads are weakly correlated and
close to be “independent” as long as the total workload is equally distributed over the active
peers. There are two main reasons for the weak correlation between concurrent downloads/u-
ploads as observed in simulations: (i) the good connectivity of nowadays core networks and
(ii) the asymmetry in peers upstream and downstream bandwidths, as on average, a peer tends
to have higher downstream than upstream bandwidth [47]. So, as the bottleneck would be the
upstream capacity of peers, the fragment download times are close to be iid rvs. Therefore,
downloading s fragments in parallel is distributed like the maximum of s exponential random
variables. Assuming these downloads to be mutually independent—assumption not necessarily
met in the simulations—the maximum is then the sum of s independent exponential random

variables with parameters s, (s — 1)«, ..., «, due to the memoryless property (see also [50]).



98 Chapter 4: Packet-level Simulation Model for Download and Recovery Processes

This distribution is called the hypo-exponential distribution and its expectation is
S
E[TI =1/} 1/i (4.1)
i=1

where T denotes the block download time (or equivalently the distributed recovery duration).

In Experiment 1, E[T] = 109.66 seconds, while the sample average is equal to 102.75; cf.
column 2 of Table 4.4. The relative error is 6.7%. The hypo-exponential distribution with s
phases and parameters s«, (s — 1), ..., « is plotted in Fig. 4.3(b). This distribution has a very
good visual match with the empirical CDF of the block download time.

As a next step, we apply an EM algorithm [34] to find the best hypo-exponential distribution
with s phases that fits the empirical data. In particular, we use EMpht [71], which is a program
for fitting phase-type distributions to collected data. We do not plot the outcome of this program
in Fig. 4.3(b) as it roughly overlaps with the hypo-exponential distribution with s phases
and parameters sx, (s — 1)«, ..., « that is already plotted there using the PHplot.m program
associated with EMpht. After performing the Kolmogorov-Smirnov test, we find that the null
hypothesis is not rejected for | = 7% (same significance level as for the fragment download
times).

We conclude the analysis of the first experiment’s results with three important points:

B The exponential assumption on the block download time is not met in realistic simula-

tions.

B The fragment download time could be modeled by an exponential distribution with pa-
rameter « equal to the inverse of its average, and these download times are weakly cor-
related and close to be independent in an ”Experiment 1”-like environment (similar peers
and network configurations).

B As a consequence, the block download time could be modeled by a hypo-exponential
distribution with s phases and parameters s, (s — 1)«, ..., «.

4.5.2 Experiment 5

In this experiment, peers are not always connected. Each time a peer disconnects from the
network, all the fragments that were stored on his disk will have to be recovered. The recovery
process is implemented in a distributed way.

The empirical CDF of the fragment download time and that of the block download time or
the recovery time are reported in Fig. 4.4. Following the same methodology as that used to an-

alyze the results of Experiment 1, we reach the same conclusions. The relevant parameters are



4.5 Experimental Results 99

reported in column 7 of Tables 4.3 and 4.4. However, the null hypothesis for the block down-
load time or the recovery process is not always “not rejected”. This is the case of Experiment 6,
as seen next.

4.5.3 Experiment 6

Experiment 6 is the only one that uses a centralized recovery process. Also, it uses a simple
star topology. In this experiment, the alternative hypothesis on the fragment download (resp.
recovery) processes distribution is not rejected, even if graphically the exponential (resp. hypo-
exponential) distribution fits reasonably the collected data.

There is a simple reason for that. We actually know that the download of a single fragment
cannot be infinitely small, as suggested by the exponential distribution. Let t,,, be the duration
of the fastest fragment download among all s downloads. All other (slower) downloads are
necessarily bounded by t,,. The effect of this minimum value can be neglected as long as t,, is
negligible with respect to the average fragment download time. Otherwise, we need to consider
that the fragment download/upload time is composed of two components: (i) a (constant)
minimum delay t,, and (ii) a random variable distributed exponentially with parameter &
(resp. @). This random variable models the collected data, shifted left by the value of t,,. The
minimum delay can be approximated as RTT + (Sg+ Headers)/ max{C,,}, where RTT stands for
round-trip time.

The value of t,, is clearly visible in Fig. 4.4(c). We plot in this figure the empirical CDF
of the fragment download time, the MLE exponential fit to the collected data and the MLE
exponential fit to the shifted data. The null hypothesis is not rejected in the later case but is
rejected in the former one (for the non-shifted data). This is the same case of the recovery
process, whose empirical CDF is plotted in Fig. 4.4(d). Repeating the same analysis than in
Section 4.5.1, and assuming that the fragment upload time follows an exponential distribution
with parameter (3, then the centralized recovery process, denoted T., would be modeled by a
hypo-exponential distribution with s + k phases (k = 1 in Experiment 6) having expectation

s k
ET =1/a) 1/iA+1/B) 1/i. (4.2)
i=1 j=1

Considering this distribution, we find that the null hypothesis of the Kolmogorov-Smirnov test
for the collected data with parameters 1/x = 40.72 and 1/ = 6.22 is rejected! for | = 7%,
while it is not rejected for the shifted data with parameters 1/& = 32.05 and 1/B =5.11.

'Even though it is rejected, this distribution is still much closer to the empirical data than the exponential
distribution.



100 Chapter 4: Packet-level Simulation Model for Download and Recovery Processes

Equations (4.1) and (4.2) should then be replaced with

E[Tl =tm+1/&) 1A, (4.3)

i=1

s k
BT =tm+1/8) 1/i+1/B) 1/j. (4.4)

i=1 j=1

The averages inferred from Egs. (4.1)-(4.4) are listed in rows 3 and 5 of Table 4.4, and
their relative errors with respect to the sample average are listed in rows 4 and 6 of the same
table. Observe that the inferred average improves across all experiments when considering
shifted data. The best improvement seen is that in Experiment 6. By considering that the
shifted recovery time is hypo-exponentially distributed with s+1 phases and parameters s&, (s—

Ne,..., &, /[3\, the relative error on the inferred average drops from 30.1% to 2.6%.

The conclusion of this discussion is that the exponential assumption on fragments down-
load/upload time is met in most cases. The same assumption does not hold on the block
download time. The recovery time and the block download time are well approximated by a
hypo-exponential distribution in “Experiments 1-6"-like environment (similiar peers/network

configuration).

4.5.4 Experiments 8 and 9

In experiment 8, peers are homogeneous while they are hetregeneous in Experiment 9 and
in both experiments, peers are always connected. The system workload is relatively big and
peers’s download/upload capacities are symmetric in Experiment 8 and close to be symmetric in
Experiment 9 in such a way that the bottleneck can be the upstream or the downstream capacity
of peers. In Experiment 9, there are background traffic. The concurrent fragment download
processes are not independent but correlated. We see from Figures 4.5(a) and 4.5(a) that the
fragment download time is remarkably not exponentially distributed in such configurations,
even for the shifted data, but it follows a phase type distribution unlike the case of Experiments
1-6.

Regarding the block download time, we plot in Figures 4.5 the empirical CDF of the data
download time and the MLE exponential fits to the shifted data. It is remarkable that the
exponential distribution fits well the data distribution. In fact, the null hypothesis is rejected
for the collected data but not rejected for the shifted data with | = 6% in Experiment 8 and

with 1 = 8% in Experiment 9.



4.6 Conclusions 101

4.5.5 Experiment 10

In experiment 10, peers are very heterogeneous and always connected. There are an im-
portant volume of the background traffic, between ten pairs of LAN routers across the transit
domain, with respect to the volume of the P2P application traffic so that the system workload
is relatively big and peers’s download capacities are twice bigger than the upload capacities.
As a result, several bottlenecks can be created in the core of the network or at the end-users
(peers). The concurrent and the successive fragment download time are strongly correlated.
We see from Figure 4.6(a) that the fragment download time is remarkably not exponentially
distributed in such configurations, even for the shifted data, but it follows a general phase type
distribution. In fact, the null hypothesis is rejected for the collected data and for the shifted
data even for 1 = 10%

Moreover, concerning the block download process, we plot in Figure 5.6(b) the empiri-
cal CDF of the data download time and the MLE exponential fits to the shifted data and the
hypo-exponential fit of s phases of the shifted data as well based on the MLE parameter of the
fragment download time. It is remarkable that neither the exponential distribution nor the
hypo-exponential fits match the collected data distribution. In fact, in such a scenario, mod-
eling the P2P storage systems using the mathematical framework presented in Chapters 2 and
3 yields to under-estimation or over-estimation of the data lifetime and availability. However,
such scenarios are not desired in nowadays networks and applications [73, 91, 40]. The Inter-
net service providers have been divided into two groups: infrastructure providers, who manage
the physical infrastructure, and service providers, who create virtual networks by aggregating
resources from multiple infrastructure providers and offer end-to-end services to the end users.
Such environment enables diverse network architectures to cohabit on a shared physical sub-
strate. And so, we can imagine that the P2P storage application will have in distribution a
predefined end-to-end bandwidth capacities where bottlenecks in the core of the network are
rarely appeared.

4.6 Conclusions

This chapter describes a realistic simulation model of the P2P storage system and sketches
its implementation on top of the Network Simulator NS (versions 2.29 and 2.33). We perform a
simulation analysis of the download and recovery processes in P2P backup and storage systems.
We set up ten simulations which enables us to collect fragment/block download times and
recoveries times under a variety of conditions. We show that the exponential assumption on
the block download time can be hold in some scenarios like Experiments 8 and 9. The same

assumption on fragments download/upload time is met in most considered contexts implying



102 Chapter 4: Packet-level Simulation Model for Download and Recovery Processes

that both the block download time and the recovery process could be modeled by a hypo-
exponential distribution with a pre-determined number of phases. The results of this chapter

support key assumptions made in the models presented in Chapters 2 and 3.



4.6 Conclusions 103
Table 4.2: Experiments setup

Experiment number ‘ 1 2 3 4 5
Topology random random random random random
Number of peers 960 480 960 640 800
TN-TN capacities (Gbps) 1 1 1 1 1
TN-SN capacities (Mbps) 622 622 622 10-34 34-155
SN-routers capacities (Mbps) 34-155 34-155 34-155 4-10 10-34
TN-SN delays (ms) 5-25 5-75 5-50 5-25 5-25
C,, of peers (Kbps) 150-1000 128-1000 128-1000 256-700 256-1000
Cgq of peers (Kbps) 8 x Cy 8 x Cy 8 x Cy 10 x Cy 4 x Cy
routers-peers delays (ms) 1-20 1-20 1-20 1-10 1-25
Background traffic yes yes no yes yes
Application type e-library backup e-library  backup e-library
Peers churn no no no yes yes
Recovery process — — — dist. dist.
T — — — s s
1/A (min.) 80 80 144e-3 160 13
Sg (MB) 8 8 8 4 8
St (KB) 1024 1024 1024 512 1024
s 8 8 8 8 8
Experiment number 6 7 8 9 10
Topology star random star random random
Number of peers 480 480 250 1225 1500
TN-TN capacities (Gbps) — 1 — 1 1
TN-SN capacities (Mbps) — 622 — 622 34-155
SN-routers capacities (Mbps) — 34-155 —_ 34-155 4-10
TN-SN delays (ms) — 5-50 — 1-10 1-10
C,, of peers (Kbps) 256-700 256 384 512 30-1000
Cgq of peers (Kbps) 2048 512 384 758 2x Cqy
routers-peers delays (ms) 1-25 1-20 2 1-10 1-150
Background traffic no no no yes yes
Application type e-library e-library e-library  e-library  e-library
Peers churn yes no no no no
Recovery process cent. — — — —
T s/2 — — — —
1/A (min.) 16 8 1/60 le-3 1.3e-4
Sg (MB) 8 8 4 8 8
St (KB) 1024 1024 1024 2048 2048
s 8 8 4 4 4




104 Chapter 4: Packet-level Simulation Model for Download and Recovery Processes

Table 4.3: Summary of experiments results

Experiment number 1 2 3 4 5

Average frag. down. time = 1/« (sec.) 40.35 44.89 30.66 34.74 108.86

Samples number 76331 12617 4851 9737 80301

tm (sec.) 8.77 8.63 8.71 6.84 8.74

1/& (sec.) 39.35 39.62  27.34 3211 103.64

Av. of recovery or block down. time (sec.) 102.75 105.25 82.88 92.48 278.71

Samples number 9197 1516 602 589 10025
‘ Experiment number 6 7 8 9 10

Average frag. down. time = 1/« (sec.) 40.722 141.89 135.87

Samples number 4669 71562 37200

tm (sec.) 16.4 33.71 25.377

1/& (sec.) 32.05 124.61 110.49

1/B,1/B (sec.) 6.22,5.11 — — — —

Av. of recovery or block down. time (sec.) 89.85 365.73 205.19

Samples number 561 8938 9300

Table 4.4: Block download time or recovery process: Validation of the approximations introduced in

Egs. (4.1)-(4.3)

Experiment number 1 2 3 4 5
Sample average 102.75 105.25 82.88 9248 278.71
Inferred average from Egs. (4.1), (4.2) | 109.66  122.00 83.33 94.40  295.86
Relative error (%) 6.7 15.9 0.5 2.1 6.2
Inferred average from Egs. (4.4), (4.3) 106.95 116.32 83.01 9410 290.41
Relative error (%) 4.1 10.5 0.2 1.8 4.2
Experiment number ‘ 6 7 8 9 10
Sample average 89.85 365.73  205.19

Inferred average from Egs. (4.1), (4.2) | 116.89 385.64  283.05

Relative error (%) 30.1 5.4 37.95

Inferred average from Egs. (4.4), (4.3) 92.21 372.38  255.56

Relative error (%) 2.6 1.8 24.55




4.6 Conclusions 105

0.9} R

0.8 .
=
8
5 0.7F |
<
2
.5 0.6 R
g s
e r
5 0.5F F R
2 3
iS)
204t .
=
E
6 0.3 *ll |

!
0.2 1 .
: —— CDF of fragment download time
0.1 e LSE exponential fit of data
= = =MLE exponential fit of data
O | | | T T T T
0 100 200 300 400 500 600 700 800
Fragment download time (seconds)
(a) Exponential fit of the fragment download time distribution
1
0.9} .
0.8} |

0.7

0.6

Cumulative distribution function
o
(9]
T

04r g
03r .
021 ]
: —— CDF of block download time

0.1 -4y | MLE exponential fit of data

g = = = Hypo—exponential fit of data

0 U/ I I I I I I I
0 100 200 300 400 500 600 700 800

Block download time (seconds)

(b) Fitting of the block download time distribution

Figure 4.3: Experiment 1: Fragment and block download times.



106

Chapter 4: Packet-level Simulation Model for Download and Recovery Processes

0.9 1 0.9

0.8 q 0.8F
=
8 g
g 0.7r 1 £ 07t
2 5
= £
S 06r q £ 0.6r
E =
2 2
5051 q EXRI
5 k]
2o04r B £ 04t
= K =
= i 2
£ 0.3F § 1 S 031

i .

3 i ©

02/ 1 02f

0.1 J’ CDF of ﬁagm.em download time o1k ,’ — CDF of recovery or block download time ||

a7 N R LSE exponential fit of data 1 -+ MLE exponential fit of data
0 i ) ) ) ) " - 'M]‘-‘E expo‘nemlal ‘hl of dai‘.a A = = =Hypo—exponential fit of data
0 I I I I T T ; ; T T
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 1100

Fragment download time (seconds)

Recovery or block download time (seconds)

(a) Exponential fit of the fragment download time dis- (b) Fitting of the recovery or block download time

tribution

Cumulative distribution function

distribution

—— CDF of fragment download time
-+ MLE exponential fit of data
= = =MLE exponential fit of shifted data

09r
0.8F
0.7p
0.6
0.5F

04F f

Cumulative distribution function

—— CDF of recovery time

‘‘‘‘‘ MLE exponential fit of data

““““ Hypo-exponential fit of data

= = =Hypo—exponential fit of shifted data

(c) Exponential fit of the fragment download time dis-

tribution

Figure 4.4: Experiment 5 (top a+b): Download and distributed recovery processes, Experiment 6 (down

50

100

150 200 250 300 350 400 450
Fragment download time (seconds)

150 200 250 300 350 400 450
Recovery time (seconds)

100

(d) Fitting of the recovery time distribution

c+d): Fragment and recovery time, centralized recovery.



4.6 Conclusions 107

14 I~
= 92 x o
14
=N

Cumulative distribution function
(=1
wn
.

Cumulative distribution function
(=1
wn

0.4 B 04 4
0.3 q 0.3 B
0.2 Bl 0.2 4
H —— CDF of fragment downlad time —— CDF of block downlad time
0.1x == MLE exponential fit of data M 0.1 == MLE exponential fit of data
= = =MLE exponential fit of shifted data = = =MLE exponential fit of shifted data
0 . . . T T T T 0 . . . . T T T T
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600 1800
Fragment download time (seconds) Block download time (seconds)

(a) Exponential fit of the fragment download time dis- (b) Fitting of the block download time distribution

tribution
1 1

0.9 q 0.9r q

0.8 q 0.8 q
k g
g 07 — 507t / i
E E G
£06 E Eo6f 4 il
2 I
205 1 Zost f¢ 4
4 3 r

¢

204 , S04 ¢ —
2 g 4
E
£o03 : Eo3f f :
= =3
@] o

0.2 b 0.2F B

—— CDF of shifted—fragment download time —— CDF of recovery time
ord S LSE exponential fit of shifted data M oy LSE exponential fit of shifted data |]
H = = =MLE exponential fit of shifted data = = - MLE exponential fit of shifted data
0 . . . T T T T T 0 . . . T T T T
0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400
Fragment download time (seconds) Recovery or block time (second)

(c) Exponential fit of the fragment download time dis- (d) Fitting of the block download time distribution
tribution

Figure 4.5: Experiment 8 (top a+b) and 9 (down c+d): Fragment and block download times.



108 Chapter 4: Packet-level Simulation Model for Download and Recovery Processes

1 R J- im D15
0.9f 2T 1
0.81 Z .

g
S 0.71 A ]
= ‘.
2 AS
§0.6F o 1
z 0.5 a
z A
o) A
204F [ 1
= ©
= I
E 03F [r .
=) e
@) F
0.2 [¥ .
,'- —— CDF of shifted fragment download timne
Olpp LSE exponential fit of shifted data I
= = =MLE exponential fit of shifted data
O | | I I I
0 500 1000 1500 2000 2500 3000

Fragment download time (seconds)

(a) Exponential fit of the fragment download time distribution

1

=

S 08r 1
Q

=

2

g

= 0.61 1
=]

2

%

2 04r 1
=

=]

g

5 0.2f I} 1
o , —— CDF of shifted block download time

E K4 = = = Hypo—exponential fit of shifted data
A R MLE exponential fit of shifted data
0 L ’ I 1 1 1
0 500 1000 1500 2000 2500

Block download time (seconds)

(b) Fitting of the block download time distribution

Figure 4.6: Experiment 10: Fragment and block download times.



S

FLOW-LEVEL MODELING OF PARALLEL
DOWNLOAD PROCESS: FIRST STEP
TOWARD A SCALABLE P2P SIMULATOR

5.1 Introduction and related work

I The growth of storage volume, bandwidth, and computational resources for PCs has fun-
damentally changed the way applications are constructed. Almost 10 years ago, a new network
paradigm has been proposed where computers or peers can build a virtual network (called over-
lay) on top of another network or an existing architecture (e.g. Internet). This new network
paradigm has been labeled peer-to-peer (P2P) distributed network. A peer in this paradigm is
a computer that play the role of both supplier and consumer of resources, in contrast to the tra-
ditional client-server model where only servers supply, and computers consume. Applications
that use this distributed network provides enhanced scalability and service robustness as all the
connected computers or peers provide some services.

This distributed network model has proved to be an alternative to the Client/Server model
and a cheap, scalable, self-repairing and promising paradigm for grid computing, grid delivery
network (GDN), file sharing, voice over IP (VoIP), backup and storage applications.

Such distributed systems rely on data fragmentation and distributed storage. Files are par-

titioned into fixed-size blocks that are themselves partitioned into fragments. Fragments are

lioint work with Alain Jean-Marie (Research director at INRIA and LIRMM, CNRS/Université Montpellier 2)
109



Chapter 5: Flow-Level Modeling of Parallel Download Process: First step toward a scalable
110 P2P simulator

usually stored on different peers. Given this configuration, a user wishing to retrieve a given
block of data would need to perform multiple downloads, generally in parallel for an enhanced
service. The transfer of sequences of packets on one long-term TCP connection (e.g. download
a fragment of data between two peers in a P2P system or between a client and a server through
FTP protocol) defines a “flow”. A flow can as well refer to the sequences of packets that consti-
tute a block of data and that follow several TCP connections simultaneously. In this work, we

will consider the former definition.

One measure of the quality of the service given by the distributed storage/parallel download
infrastructure is the time it takes to retrieve the complete document. This in turn depends on
the throughput of the different flows created to obtain the fragments of this document. Their
values are, a priori, a function of the demand and capacities of the complete network entities:
clients, servers and links.

The basic problem of predicting the instantaneous shares of the bandwidth received by
each flow of a TCP-based network has received quite some attention in the last 15 years, in
connection with the notion of fairness; yet, there is no clear consensus in the literature on a
simple formula or algorithm to give a reasonable solution of this problem. Such an algorithm
would be extremely useful to build flow-level simulators and, possibly, to perform probabilistic

performance calculations.

On the one hand, some authors have shown that the dynamics of TCP have been shown to
be quite chaotic is some situations. Other authors on the other hand, have argued that TCP
tends to share the bandwidth between flows reasonably. For instance, Heyman et al. [52],
followed by Fredj et al. [43], have studied a single bottleneck link shared by a given number of
identical sources that alternately send documents through the shared link and stop sending for a
randomly thinking time. They showed through simulations that TCP shares fairly the bottleneck
(that is, in equal shares) and they introduced analytical tools that can predict the expectation of
the transmitting rate. Varki proposed in [94] a simple approximation for the expected response
time based on the fork-join model. Massoulié and Roberts proposed in [63] a model similar
to that of [52] where the inter-flows arrival times are iid exponentially distributed random
variables. They studied the network as M/G/1 PS queue. In [22], Chiu and Eun, the authors
have focused on the average download time of each user in a P2P network while considering
the heterogeneity of service capacities of peers. They point out that the common approach
of analyzing the average download time based on average service capacity is fundamentally
flawed.

Other studies have put forward the concepts of max-min fairness, proportional fairness,
balanced fairness and utility-based resource-sharing models (see e.g. [16] and the reference
therein). One conclusion of these studies is that throughput allocations resulting from the use

of the TCP protocol for infinitely long flows are usually not max-min fair. However, the results of



5.1 Introduction and related work 111

Bonald and Proutiere [15] suggested that when the flows are dynamic (flows are continuously
created and have a finite duration), the average throughput obtained by flows under various
sharing mechanism tend to be similar. It is quite possible that, from a practical perspective, the
predictions obtained with a max-min fair sharing mechanism may be “good enough”.

The purpose of this chapter is to assess whether max-min fairness for the allocation through-
put is a proper model when evaluating response times of parallel downloads.

Given the variety of situations to be studied, we begin with the simplest scenario: a sym-
metric network in which we assume that capacity constraints are located at the client/server
nodes, and not inside the network. We also assume that all RTTs are equal. 2

We use an algorithm which calculates an instantaneous throughput for each individual flows
in a certain set of flows, given the upload and download capacities of the client and server
nodes. This algorithm can be seen as a variant of the “progressive filling” [16] or “water filling”
algorithm of [7]: we name it as the Progressive Filling Flow Level Algorithm (PFFLA). The
validation of this algorithm consists in characterizing the response time of parallel downloads
in a distributed storage system, through simulations. We have implemented the PFFLA in a
flow-level simulator of parallel downloads, and we have programmed a similar model over
NS2. The response times in the flow level simulator have been compared to that of the packet-
level simulations in NS (both distributions and averages). This experimental setting is, to
the best of our knowledge, original in at least three features. First, we consider finite flows
related to downloads in parallel, which are synchronized when they are created. In addition,
the performance metric is the globale response time, not that of individual flows. Second, we
consider that the possible bottlenecks for flows occur only at the edge of the network, never
inside. Finally, we consider large numbers of nodes (up to 500) and flows (up to 4-10°).

Our results show that the relative error between PFFLA and NS-2 for the expected value is
less than 2% for relatively large loads in the system (e.g. p = 70%) and less than 1% for low
loads in the symmetric up/down case and less than 5% respectively for relatively large loads in
the system (e.g. p = 50%) and less than 1% for low loads in the asymmetric case. We conclude
that PFFLA is a reliable mechanism to analyze the service response time in many systems based

on P2P and Grid computing concepts such as Storage Systems and Grid Delivery Networks.

The rest of this paper is organized as follows. Section 5.2 overviews the system assumptions
and notation. Section 5.3 describes the flow-level simulation algorithm “PFFLA”. In Section 5.4,
comparisons between packet-level and PFFLA are introduced and discussed. Last, Section 5.5

concludes the paper and highlights some future directions.

2The question of how to handle different round trip times is left for future work.



Chapter 5: Flow-Level Modeling of Parallel Download Process: First step toward a scalable
112 P2P simulator

5.2 System description and notation

In the following, we will distinguish the servers, which are computers that provide a storage
service, from the clients whose objective is to retrieve data from the servers to account for the
fact that flows (transfer of sequences of data units from a server to a client) have a direction.
In the terminology of P2P-based systems, each “peer” has the role of both a client and a server.
It is usual that the communication link from the network to the peer (upload link) and the one
from the peer to the network (download link) are not shared. Their capacity may actually not
even be the same, as with ADSL network accesses. In that case, the entities client and server
can be considered as two distinct nodes. On the other hand, if the network access is indeed
shared between input and output, the peer is represented by one node. In the following, we
shall only consider the first situation.

In this study, we are interested in systems where blocks of data are partitioned into several
equally sized fragments stored randomly over different servers. We will consider both homoge-
neous (upload/download capacities are identical) and asymmetric situations.

We consider a distributed system in which the following assumptions and notations will be
enforced throughout the paper.

Network assumptions:

m The considered network consists in a set of nodes A. In a P2P context, there will be
N/2 peers according to this notation. In other words, we will have N/2 servers and N /2
clients.

B The logical structure of the network is that of a star, with an infinite-capacity central node.
In other word, the interconnection network underlying the parallel download application
is assumed not to introduce capacity constraints. Only the upload or download links (the
branches of the star) have a limited capacity.

The capacity of upload links (from servers to the network) is C,,, the capacity of download
links (from network to clients) is Cg4.

B The temporal distance (measured as the round-trip time, RTT) is assumed to be the same
between pairs of nodes (clients or server).

Data and traffic assumptions:

m Each block of data D of size Sy is partitioned into s fragments of size Sg.

B We assume that the s servers that hold fragments of a given block of data D are uniformly

selected over all servers in the system, and are all distinct.



5.3 Description of the algorithm 113

B Each download request of a block of data issued by a client will generate s parallel re-
quests toward s servers to retrieve s distinct fragments of the requested block. A request
generates s flows.

The assumption on the uniform distribution of the blocks of some document corresponds
to the situation where a very large number of documents exist, and/or each fragment of each
document has been replicated a large number of times. In that situation, it is unlikely that the
set of blocks needed by two distinct requests will be correlated. The network being symmetric,
it is reasonable to assume that fragments have been uniformy distributed. The assumption that
different fragments of some document are stored on different peers is common in P2P-based
systems: it results mainly from privacy and data ownership issues.

5.3 Description of the algorithm

Before describing the algorithm we have used, we recall the principle of max-min fairness,
and the algorithm (referred to as the “Progressive Filling” algorithm in [16]).

The notion of max-min (or maximin) fairness originates from the field of political philosophy
and economics, and was introduced in the context of networking by Bertsekas and Gallager [7,
ch. 6] as a design objective for communication networks, in particular, the design of flow
control schemes. The main idea of max-min fairness is to maximize the allocation of each
flow f subject to the constraint that an incremental increase in f’s allocation does not cause a
decrease in some other flow’s allocation that is already as small as f’s or smaller [7, p. 526].

For the purpose of formalizing the description of the PFFLA algorithm, introduce the fol-
lowing notation. A node (server or client) will be represented by the link that connects it to
the network core. The network is assumed to be made of a set A of links. Each link a has a
capacity C,. The traffic is formed by a set F of flows. We assume that flows cannot be split
between several routes of the network. This implies that we can assume that each flow f has
a throughput 6¢ > 0, and crosses certain links of A. We write fVa to denote the fact that f
Crosses a.

Using this notation, the total flow on link a of the network is then given by:

F, = Zef.

fVa

The capacity constraint for the network is then:
Fa<Cq Vaed. (5.1)

A vector of throughputs {0¢} satisfying these constraints is said to be feasible.



Chapter 5: Flow-Level Modeling of Parallel Download Process: First step toward a scalable
114 P2P simulator

The existence of a max-min fair allocation of throughputs is not entirely obvious. Indeed,
satisfying the capacity constraints implies that the increase of some flow’s throughput may
result in the decrease of another flow’s throughput, and conversely.

Bertsekas and Gallager have proved that there exists one unique feasible allocation of
throughputs which is max-min fair. It can be constructed using the following algorithm.

The idea is to start with an all-zero rate vector and to increase the rates on all paths together
until F, = C, for one or more links a. At this point, each flow using a saturated link has
the same throughput at every other flow using that link. Thus, these saturated links serve as

bottleneck links for all flows using them.

At the next step, all flows not using the saturated links are incremented equally in rate
until one or more new links become saturated. The newly saturated links serve as bottleneck
links for those flows that pass through them but do not use the previously saturated links. The
algorithm continues until all flows pass through at least one saturated link. This process is often
visualized as progressively augmenting the throughput until capacities are “filled”, hence the
name of “progressive filling”. Information flows are also sometimes visualized as some “fluid”
which is poured into the network. For this reason, the algorithm is also referred to as a “water

filling” algorithm.

We have used in our analysis the following version of this algorithm.



5.3 Description of the algorithm 115

Data: A set of links A with their capacities C, and a set of flows F
Result: A throughput value for each flow, satisfying the throughput constraint (5.1)

begin
Remove from A nodes without flows ;

while A not empty do

foreach a € Ado
| Ng #{f € FIfVa};

end
calculate 0* = mingec 4 Co/Ng ;
calculate a* = argminge 4 Cq/Ng ;

foreach f, fVa* do
set ¢ = 0™ ;

foreach a, fVa do
| Cq¢ Cq—0*

end

remove f from F ;
end

remove from A links without flows ;
end

return {0¢}
end

Algorithm 1: Algorithm PFFLA

The fact that this algorithm produces a max-min allocation can be checked the same way as
for the Progressive Filling Algorithm: according to [7, p. 527], max-min solutions are charac-

terized by the “bottleneck” property:

VfeF, JacA fVa and ) 03 =Cq and VheF, hVa0,>0¢. (5.2)
geF,gVa
This property can be checked almost by construction on our algorithm.

More remarks concerning this algorithm:

B The algorithm eventually stops because at least one link is removed from A at each loop.
The number of loops is therefore bounded by the cardinal of the initial set of links. Since
several links can be removed in each loop, the algorithm may actually stop faster.

B When arg mingc 4 Co/N, contains more than one element, it does not matter which one
is chosen, in the sense that the outcome of the algorithm does not depend on that partic-

ular choice.



Chapter 5: Flow-Level Modeling of Parallel Download Process: First step toward a scalable
116 P2P simulator

This results, by contradiction, from the fact that the max-min allocation is unique. It can
also be proved that other links of the set are still in the “argmin” at the next step, so that
each of them will be chosen eventually. Equivalently, one may remove simultaneously
from the network all flows that are connected to links in the “argmin” set.

B It is possible to add constraints on the throughput of flows. For instance, the throughput
of a TCP flow on a lossless connexion with RTT T and maximum window size w is always
less than w/.

In our situation, we have made the assumption that the network can be represented by
a star, and the flows cross exactly two links: one upload link and one download link. The

algorithm is capable to handle general situations however.

5.4 Experimental results

5.4.1 Parameter values

We ran a total of seventeen experiments; ten in symmetric peers download/upload capaci-
ties scenarios (homogeneous networks) and seven in asymmetric scenarios.

The set-up of the simulation parameters is summarized in Table 5.1. The capacities that we
have selected in the simulations vary between the values of the ISDN and ADSL technologies
(384, 576 and 1500 kbps). In experiments 1-10, nodes are homogeneous: they have all the
same network access capacity. In Experiments 11-17, capacities of clients and servers are
asymmetric.

Download requests at each client node arrive according to some Poisson process of given
rate A. The different request processes are independent. This assumption is reasonable in
practice: Guha et al. have shown in [47] that in real networks, and when the number of clients
N. is large, the request arrival process can be reasonably modeled by a Poisson process. We
vary the value of the request generation rate across the experiments such that the total load in
the system p (see below) varies from low (e.g. 6%) up to high value (e.g. 70%) as reported in
Table 5.1.

The last setting concerns the blocks and fragments sizes that are stored in the system. Frag-
ment sizes Sg (resp. block sizes Sg) in P2P systems, for instance, are typically between 256KB
and 4MB each (resp. between 4MB and 9MB each). We will consider in most of our experiments
S = 2MB and Sg = 8MB, except in Experiment 1 where S¢ = 1TMB and Sg = 4MB. Therefore
s = 4 in all experiments. In the asymmetric scenarios, we have chosen the two capacities values
1500/384 kbps, except in Experiment 17 where the capacities values are 2000/384 kbps. So, in
all the asymmetric experiments, except in the last one, the capacity of a server is slightly larger

than 1/s times the capacity of a client.



5.4 Experimental results 117

For the packet-level simulation details, we consider a fixed constant value of 2ms for the
link propagation delays. The main TCP configurations are as follow: we use TCP segment size
(Spre) of 1460 Bytes, the upper bound on the advertised window for the TCP connection is
set to 40, the initial size of the congestion window on slow-start is 2, and the TCP/IP header
size (hip) is 40 Bytes. The P2P application layer header (ho), which is implemented over the
NS transport layer, is 13 Bytes for each fragment. The queue management type used in the
links is “DropTail” with size of 500 packets. The maximum window size is left to NS2’s default
of 64kB. Given our assumptions on propagation delay, this gives a maximum TCP throughput
of 64kB/8ms = 4MB/s, largely superior to the capacity of the links. Therefore, maximum
window effects are not expected to restrict the throughput of file transfers.

In the flow-level simulation, and when calculating the total amount of data sent in the TCP
flows, we neglect the fact that one data packet may be incomplete after segmentation. We
also neglect the packets sent during the opening and the closing of the TCP connection, and
we assume that no retransmission occurs. The total amount of data transported during the
download of one document is then calculated by multiplying the application data size by the

overhead factor due to packet headers, that is:
L(bits) = s x (Sg(bits) + hq(bits)) x (14 hip/Spre) - (5.3)

Consider a client node with link capacity C. The time to download a complete document would
be, when no interferences from other downloads occur:
(Se(bits) + hq(bits)) x (14 hip/Spkt)

o =5 X Clops) . (5.4)

On the other hand, if the global arrival rate of document requests is A, the rate of requests
arriving at a particular client is A/(/N/2). Accordingly, the load factor of a client link of capacity
C in the network is:

(Se(bits) + hq(bits)) x (1 +hip/Spkt)

C(bps)N /2 5-5)

p = As X

Consider now a server node with link capacity C. Given our assumption on the uniform
repartition of blocks on servers, the rate of arrivals of fragment requests at the servers is
As/(N/2). The duration of one request should be o/s since only one fragment is concerned.
Finally, the load factor of the server’s link is given by Equation (5.5) also.

In the homogeneous cases, this value of p can also be interpreted as the load of the whole
network (ratio of global data requests to global transfer capacity). In the asymmetric cases, we

take p as the load of the links with the smallest capacity.



Chapter 5: Flow-Level Modeling of Parallel Download Process: First step toward a scalable
118 P2P simulator

5.4.2 Simulators and Metrics

We have developed a packet-level simulator and a flow-level simulator for our model. The
packet-level simulator is build using NS2. Its implementation details can be found in [31].

The flow-level simulator consists in the embedding of Algorithm 1 into a discrete-event
simulator handling the arrival and the departure of flows. The principle is that every time the
set of flows present in the network changes, the bandwidth shares are re-computed with the
algorithm, and it is assumed that these throughputs are obtained instantaneously. The program
keeps track of the remaining quantities to be downloaded in each flow, and can compute the
date of the next event: arrival or end of download.

Both simulators are instrumented so as to produce response times for fragments and com-
plete documents.

The metric we are interested in is the download time of a document. For a given request, this
is the maximum between the download time of the s fragments of the document. Of course,
this is a random variable, and we measure its empirical distribution and empirical average. The
empirical average obtained with the packet-level and flow level simulators are denoted with
E[Tns) and E[Tgal, respectively. In the view of the fact that the flow-level simulator ignores the
delay for establishing and closing the TCP connections and propagation delays, there will be,
for any experiment, a very small difference between the minimum values obtained from both
simulators. Therfore, we denote by E[Tns] the measured download time for NS, corrected by
a constant value so that the minimal values for both simulators are the same. This last metric
will be used later to compare the average response times in both simulators. However, we have
not corrected this systematic error in the figures, presented later in this paper, for illustrative
purpose.

In addition, we have compared the average document download times with the average
response time in a simple queueing system. The rationale for this is that, if the throughput
of the connections were limited only by the client’s capacity, then the link would behave as a
Processor Sharing queue. This is because the size of the fragments is the same, so that the
response time of all s fragments is the same, and all s fragments can be actually considered as
a single “customer”. The client’s bandwidth is then shared between different requests. Since
requests arrive according to a Poisson process, the model is that of a M /D/1 processor sharing
(PS) queue. This model is expected to work well when the load is small: indeed, in that case
it is unlikely that flows will be limited on the server side. Since the average response time in
this queue, denoted by E[Tps], can be computed with a simple formula, we can easily test this

conjecture.

The average response time in the M/D/1/PS queue is known to be, in seconds, as follow



5.4 Experimental results 119

Table 5.1: Experiments setup

Experiment N/2 Ca/Cy SB/Sk 1/A o samples  Required time
number peers kbps MB sec. % hours
1 25 384/384 4/1 60 6 45000 20
2 25 576/576 8/2 39.88 12 77500 18
3 250 1500/1500 8/2 1.536 12 25000 15
4 250 1500/1500 8/2 1.024 18 25000 13
5 250 576/576 8/2 1913 25 30000 33
6 250 1500/1500 8/2 0.734 25 37000 31
7 250 1500/1500 8/2 0.510 36 40000 30
8 250 1500/1500 8/2 0.367 50 40000 36
9 250 1500/1500 8/2 0.306 60 67500 58
10 250 1500/1500 8/2 0.262 70 280000 264
11 25 1500/384 8/2 59.81 12 30000 23
12 250 1500/384 8/2 5.98 12 30000 54
13 500 1500/384 8/2 2.99 12 30000 25
14 250 1500/384 8/2 1.99 36 55000 54
15 500 1500/384 8/2 0.996 36 25000 11
16 500 1500/384 8/2 0.718 50 40000 18
17 500 2000/384 8/2 0.718 50 40000 19

(seee.g. [57]):

0 s(-Sg(bits) + hqa(bits)) x (T + hip/Spkt)
Ellysl = 1 = i) < (1= (s). (5.6)

We will compute the relative error (RR) between E[Tns] and E[Tps], on one hand, and
between E[Tns] and E[Tr 4] on the other hand. The relative error, for instance between results
from NS-2 and FLA is calculated as follow:

E[Tns) — ElTrral
E[Tns]

Known results on the PS queueing model also include the distribution of the response time.

RR(NS,FLA) =

The relevant formulas are provided in the Appendix B.

5.4.3 Results

We have run both the flow-level simulator and the packet-level simulator on the seventeen

sets of values described in Table 5.1.



Chapter 5: Flow-Level Modeling of Parallel Download Process: First step toward a scalable
120 P2P simulator

For the flow-level simulations, we have collected 100000 samples of the document down-
load time in every case. The number of samples collected with the packet-level simulation is
reported in Table 5.1.

We also report in Table 5.1 the execution time of the packet-level simulations, it varies
between some hours and some days. The experiments were run on a machine with the following
principal characteristics: multithreaded processor Intel(R) Core(TM)2 Duo of 2.66GHz, 4GB
RAM + 4GB swap running Fedora Core 5. The analysis of number of samples issued by unit
time of computation (figure not reported) reveals that this number decreases with the number
of nodes. Interestingly, it tends to slowly decrease when the load p of the network increases, but
it is actually increasing for high values of p. We do not have an explanation for this observation.

The execution times for the flow-level simulation are not reported in details. It varies be-
tween one second and several minutes on a machine with characteristics: processor Intel(R)
Core(TM)2 Duo of 2.00GHz, 2GB RAM running Fedora Core 5 (slightly less power than the
machine used for packet-level simulations). The simulation time per sample increases with the
load of the system, due to the fact that the load sharing must be re-computed every time a flow
starts or stops. For a given load, it also increases with the number of nodes.

We conclude that the flow-level algorithm is very efficient in terms of time. However, one

question remains: how good is it in term of accuracy?

To answer this question, we first depict in Figures 5.1-5.10 the empirical complementary
cumulative distribution function (CCDF) of the block download time obtained form both sim-
ulators, and for all the experiments. We report then in Table 5.2 the expected download time
obtained from both simulation levels and from the PS formula (5.6). Table 5.2 reports as well
the relative error between results.

The results show that for small system load, the download time predicted by the PFFLA fits
exactly that of the NS-2. The relative error between the average values is very small as shown
in Table 5.2. The average value calculated from the PS formula is also very close but the relative
error between average values of PS and NS-2 is slightly larger than that between PFFLA and NS-
2. This confirms that the prediction of the duration of TCP flow is accurate. Indeed, since these
are long flows, the slow start phase can be easily neglected. Other phenomena which typically
perturb the throughput of TCP (packet losses, buffer fluctuations) probably happen very rarely
in this case. The flow sharing algorithm apparently provides a very good approximation, for
average response times as well as for distributions.

When p is relatively large, some buffers can fill up more frequently, and then some flows
tend to be relatively long in the NS-2 simulation. However, the relative errors between average
values of PFFLA and NS-2 are slightly more important in this case but still very small, in par-
ticular, RR is less than 2% in the symmetric case and less than 5% in the asymmetric case. It is

clear from Figures 5.5- 5.6 that the distributions measured by both simulators are different in



5.4 Experimental results 121

Table 5.2: Measurements for the PFFLA and the packet-level simulation; comparison with the PS model

Experiment | N/2 ) E[Tns! E[Tr Al RR% E[Tps] RR%
number peers % sec. sec. (NS, FLA) sec. (NS, PS)
1 symm. 25 6 96.062 95.45 0.6% 95.44 0.6%
2 symm. 25 12 135.04 136.071 -0.7% 141.59 -4.8%
3 symm. 250 12 51.77 52.089 -0.6% 52.195 -0.8%
4 symm. 250 18 55.57 55.96 -0.7% 56.015 -0.8%
5 symm. 250 25 161.252  160.196 0.6% 166.132 -3%
6 symm. 250 25 61.068 61.517 -0.7% 61.243 -0.3%
7 symm. 250 36 73.547 73.346 0.2% 71.7692 2.4%
8 symm. 250 50 99.501 97.75 1.7% 91.864 7.6%
9 symm. 250 60 129.066 127.691 1% 114.83 11%
10 symm. 250 70 176.45 180.05 -2% 153.107 13.2%
11 asymm. 25 12 61.137 62.901 -2.8% 52.19 17%
12 asymm. 250 12 64.738 64.935 -0.3% 52.19 19.3%
13 asymm. 500 12 65.298 65.182 -0.18% 52.19 20%
14 asymm. 250 36 103.70 110.231 -6.2% 71.76 30.8%
15 asymm. 500 36 107.18 110.396 -3% 71.76 33%
16 asymm. 500 50 144.615 149.213 -3.1% 91.865 36%
17 asymm. 500 50 142.1 149.213 -5% 68.45 51.8%

the symmetric case for very high load, but average values turn out to be almost identical. The

same observation holds for asymmetric cases, see Figures 5.8(b) to 5.10.

The accuracy of the PS approximation for the average download time is acceptable for
symmetric cases up to p = 36%, and degrades above p = 50%. The accuracy for the complete
distribution can be assessed on Figure 5.4(b) for a load of p = 36%. In the asymmetric cases,
the approximation is bad at low loads, and very bad at large loads. The explanation for this
is the following. The download of a block at a client can be slowed down by two phenomena.
The first one is that a second request arrives at the node. This is taken into account by the PS
model. The second one is that one TCP flow is slowed down at the server side. This requires
that at least sC,,/C4 blocks are downloaded simultaneously from the server. In the symmetric
cases, this value is 4 and the event rarely happens, even for moderate loads. In the asymmetric
case, this value is 1 and this is much more frequent. See the Appendix B for more comments
on the PS approximation. In order to understand better the differences between flow-level

and packet-level distributions, a careful analysis of the congestion avoidance mechanism in



Chapter 5: Flow-Level Modeling of Parallel Download Process: First step toward a scalable
122 P2P simulator

congested networks and an extension of the algorithm to account for the overloaded system (p
around one) are the objective of ongoing research.

Another observation is that larger the network size, better the performance of PFFLA and
worse the performance of PS model as illustrated by Experiments 11, 12 and 13 (resp. 14 and
15). The number of peers in these experiments are 25, 250 and 500 respectively (resp. 250
and 500) for same load and capacities. However, the relative error occurred in Experiment
14 is less than that of 13 which is, in turn, less than that of Experiment 12. Respectively, the
relative error occurred in Experiment 16 is less than that of 15. Indeed, the performance does
not depend only on the system load but also on the number of peers and their capacities.

Clearly, larger the buffer sizes, better the performance in real networks. To address this
point, we depict in Figure 5.11 the CCDF of block download time for two values of the queue
limit (100 and 500 packets) in NS-2 simulation for 25 peers (50 nodes), C = 1500kbps and
p = 70%. The relative error between the two expected download time is 6.56% (159.575
seconds for 500 packets and 170.038 for 100 packets) and then the buffer size can affect the

performance of the system with high load.

We conclude that PFFLA is a reliable mechanism to analyze the service response time in
many non-overloaded systems based on P2P and Grid computing concepts such as Storage
Systems and Grid Delivery Networks. In particular, when the size of networks is relatively
large, PFFLA predictions are very accurate as long as the system is not overloaded or close to

be overloaded.

— - NS : — - NS
——FLA ——FLA

e
©
o
©

R~

> 9 >
T

s e 9o

R

I
=
T
S
=

©w
S
o

I
¥
S
&)

Complementary comulative distribution function
=]
[

Complementary comulative distribution function
o
O

=}
o

1 . =3 . ( L L L T L L
100 150 200 250 300 )50 100 150 200 250 300 350 400 450 500

Block download time (seconds) Block download time (seconds)

o
S

(@) p = 6%, C=384kbps, N'=50, Sg=4MB, (b) p = 12%, C=576kbps, N'=50, Sg=8MB,
Sr=1MB Sr=2MB

Figure 5.1: Experiments 1 (left) and 2 (right): progressive-filling flow-level algorithm PFFLA vs Packet-
level simulation NS-2



5.5 Conclusion and future work 123

—_

- - NS-2
——FLA ||
---PS

o
o
T

o
%
T

I
2
T

o
=
T

=]
'S
T

o
%)
T

S
)
T

Complementary comulative distribution function
o
W
T

e
=
T

(=]

150 200 250 300
Block download time (seconds)

[=)

Figure 5.2: Experiment 3: Packet-level simulation NS-2 vs progressive-filling flow-level algorithm FLA
& PS for p = 12%, C = 1500kbps, N' = 500, Sy = 8MB.

5.5 Conclusion and future work

In this report, we have proposed and analyzed the PFFLA algorithm. The algorithm is quite
simple and uses the concept of “Progressive-Filling” (or max-min fairness). We have imple-
mented the PFFLA in a flow-level simulator of parallel downloads, and we have programmed a
similar model over NS2. The response times in the flow level simulator have been compared to
that of the packet-level simulations in NS (both distributions and averages).

Our results conclude that PFFLA is a reliable mechanism to analyze the service response
time in many systems based on P2P and Grid computing concepts such as Storage Systems and
Grid Delivery Networks.

A conclusion from the literature is that different RTTs do introduce some “unfairness” in
bandwidth allocations. Our next step will therefore be to find a simple yet efficient modification
of Algorithm 1 to handle this situation.



Chapter 5: Flow-Level Modeling of Parallel Download Process: First step toward a scalable
124 P2P simulator

— = NS-2|
—FLA

- - NS-2
—FLA

4
)
4
o

I~
-
S 2o
Q9

14
=
o
=

Complementary comulative distribution function
< I o
=
T T T T T T T T T
Complementary comulative distribution function
o
O

s o
S

s o o
S 5 %

o
S

=)
=)

50 100 150 200 250 300 350 0 100 200 300 400 500 600 700 800
Block download time (seconds) Block download time (seconds)

=)

(a) p = 18%, C=1500kbps, N'=500, Sy =8MB. (b) p = 25%, C=576kbps, N'=500, Sz =8MB.

Figure 5.3: Experiments 4 (left) and 5 (right): progressive-filling flow-level algorithm PFFLA vs Packet-
level simulation NS-2.

- = NS-2| - =" NS-2

0.9 —FLA 09} —FLA
g £ PS
1 3t
é 0.8 E 0.8
g g
£ 07 £ 07
2 2
= =
2 0.61 Z 0.6
B B
2 g
£ 05 g 05
= =
£ £
S 041 S 041
z [~
g =
503 503
£ £
2 2
g 0.2 g 02
S S

0.1 0.1

0 . . - o I . . 0 I S I .
0 50 100 150 200 250 300 350 400 450 0 100 200 300 400 500 600
Block download time (seconds) Block download time (seconds)

(a) p = 25%, C=1500kbps, N'=500, Sy =8MB. (b) p = 36%, C=1500kbps, N'=500, Sy =8MB.

Figure 5.4: Experiments 6 (left) and 7 (right): progressive-filling flow-level algorithm PFFLA vs Packet-
level simulation NS-2.



5.5 Conclusion and future work 125

- = NS-2
—FLA |

091

0.8

0.6

0.5F

031

0.2

Complementary comulative distribution function

0.1F

e N

O L L 1
0 100 200 300 400 500 600 700 800
Block download time (seconds)

Figure 5.5: Experiment 8: progressive-filling flow-level algorithm FLA vs Packet-level simulation NS-2
for p = 50%, C = 1500kbps, A = 500, Sg = 8MB.

T T
_ 09 —— WFFLA 09 —— WFFLA
g S
3 k51
| 0.8 4 E| 0.8 4
g g
£ 071 1 £ 07 1
2 2
& =
Z 061 4 Z 0.6 1
B B
° o
g 2
£ 05f 1 205 1
= =
£ £
S 041 4 S04 1
z [~
g =
£ 03f 1 £03 1
= £
2 2
fEl 02r B E. 0.2 4
S S

0.11 4 0.1 4

0 I S n 0 . . = S
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Block download time (seconds) Block download time (seconds)

(a) p = 60%, C=1500kbps, N'=500, Sy =8MB. (b) p = 70%, C=1500kbps, N'=500, Sg =8MB.

Figure 5.6: Experiments 9 (left) and 10 (right): progressive-filling flow-level algorithm PFFLA vs Packet-
level simulation NS-2.



Chapter 5: Flow-Level Modeling of Parallel Download Process: First step toward a scalable
126 P2P simulator

- = NS-2 - = NS-2

Z 09 ——FLA _ 09F ——FLA
k) S
508 08
g g
£ 07 £ 07
= =
Z 06 Z 06
S S
2 2
05 £05
El =
E £
504 S04
= =
s g
503 £03
E £
2 2
Y 0.2 £l 0.2
S S

0.1 0.1

0 . . . . . . 0 . . . . .
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Block download time (seconds) Block download time (seconds)

(@ p = 12%, C4q=1500kbps, C, =384kbps, (b) p = 12%, C4 = 1500kbps, C,, = 384kbps, N
N'=50, Sg =8MB. = 500, Sg = 8MB.

Figure 5.7: Experiments 11 (left) and 12 (right): progressive-filling flow-level algorithm PFFLA vs
Packet-level simulation NS-2.

- —-NS-2 - —NS-2
—FLA —FLA

e
©
o
©

o
%o
4
%

e
)
S
3

1
=N
T
o
o

I
=
T
S
=

©w
S
o

I
&
S
1S}

Complementary comulative distribution function
=]
[

Complementary comulative distribution function
o
O

o
e

. I I . I . . I I
0 50 100 150 200 250 300 350 100 200 300 400 500 600
Block download time (seconds) Block download time (seconds)

o

(@ p = 12%, Cq=1500kbps, C,=384kbps, (b) p = 36%, Cq=1500kbps, C, =384kbps,
N'=1000, Sg =8MB. N'=500, Sg =8MB.

Figure 5.8: Experiments 13 (left) and 14 (right): progressive-filling flow-level algorithm PFFLA vs
Packet-level simulation NS-2.



5.5 Conclusion and future work

127

0.81

0.61

0.51

0.4

0.31

Complementary comulative distribution function

0.11

- - NS-2
—FLA ||

0 .
0 100

200 300
Block download time (seconds)

400 500 600 700

Figure 5.9: Experiment 15: progressive-filling flow-level algorithm FLA vs Packet-level simulation NS-2
for p = 36%, Cq = 1500kbps, C,, = 384kbps, A" = 1000, Sy = 8MB.

©

o
1)

o
9

N
T

0.5r

Complementary comulative distribution function

T
- - NS-2

—FLA

e 2 ©
9 = o

4
=N

S o 2
SRS

Complementary comulative distribution function
o
O

S

- = NS-2

—FLA

0 100 200 300 400 500 600 700
Block download time (seconds)

(@ p = 50%, Cq=1500kbps, C, =384kbps, (b) p

N'=1000, Sg =8MB.

800

900 1000

o

0 100 200 300 400 500
Block download time (seconds)

N'=1000, Sy =8MB.

600

700

800

= 50%, Caq=2000kbps, C. =384kbps,

Figure 5.10: Experiments 16 (left) and 17 (right): progressive-filling flow-level algorithm PFFLA vs

Packet-level simulation NS-2.



Chapter 5: Flow-Level Modeling of Parallel Download Process: First step toward a scalable
128 P2P simulator

—_

—-—"NS-2, Queue size = 100 pkt, E[T] = 170.038 sec.
—NS-2, Queue size = 500 pkt, E[T] = 150.575 sec. ||

o
o
T

o o
23 oo
T T

o
=N
T

o o <
&) w ~
T T T

Complementary comulative distribution function
=)
W
T

e
T

L L — L
200 400 600 800 1000 1200
Block download time (seconds)

OO

Figure 5.11: Queue size effect in Packet-level simulation NS-2 for p = 70%, C = 1500kbps, N' = 50, Sg
= 8MB.



6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

The growth of storage volume, bandwidth, and computational resources for PCs has al-
lowed to build a new network paradigm (called overlay) on top of an existing architecture (e.g.
Internet). This new network paradigm has been labeled peer-to-peer (P2P) distributed net-
work. A peer in this paradigm is a computer that play the role of both supplier and consumer of
resources, in contrast to the traditional client-server model where only servers supply, and com-
puters consume. Applications that use this distributed network provides enhanced scalability
and service robustness as all the connected computers or peers provide some services.

This distributed network model has proved to be an alternative to the Client/Server model
and a cheap, scalable, self-repairing and promising paradigm for grid computing, grid delivery
network (GDN), file sharing, voice over IP (VoIP), backup and storage applications.

We have addressed in this thesis the analysis and the optimization of the performance of
peer-to-peer backup and storage systems in terms of the delivered data lifetime and data avail-
ability. In such systems, data are no longer stored on expensive magnetic tapes but on much
cheaper hard disks. This systems rely on data fragmentation and distributed storage. Files are
partitioned into fixed-size blocks that are themselves partitioned into fragments. Since in a P2P
network, peers are free to leave and join the system at any time, ensuring high availability of
the stored data is an interesting and challenging problem. To ensure data reliability, redundant
data is inserted in the system. Redundancy is achieved, in practice, either by replication or by
using erasure codes. For the same amount of redundancy, erasure codes provide higher avail-

ability of data than replication. A new class of codes has been proposed recently in [35], the
129



130 Chapter 6: Conclusion and future work

so-called Regenerating Codes. This new redundancy scheme can be considered a generaliza-
tion of the erasure coding, that reduces the communication cost of erasure coding by slightly
increasing the storage cost.

However, using redundancy mechanisms without repairing lost data is not efficient, as the
level of redundancy decreases when peers leave the system. Consequently, P2P storage sys-
tems need to compensate the loss of data by continuously storing additional redundant data
onto new hosts. Systems may rely on a central authority that reconstructs fragments when
necessary; these systems were referred to as centralized-recovery systems. Alternatively, secure
agents running on new hosts can reconstruct by themselves the data to be stored on the hosts
disks. Such systems were referred to as distributed-recovery systems. Regardless of the recovery
mechanism used, two repair policies can be adopted. In the eager policy, when the system de-
tects that one host has left the network, it immediately initiates the reconstruction of the lost
data, and stored it on new peer upon recovery. The second policy is called lazy whose explicit
goal is to delay repair work for as long as possible. This alternative policy inherently uses less
bandwidth than the eager policy. However, it is obvious that an extra amount of redundancy is
necessary to mask and to tolerate host departures for extended periods of time.

Most of the existing P2P storage or backup systems are configured statically to provide
durability and/or availability with only a cursory understanding of how the configuration will
impact overall performance. Some systems allow data to be replicated and cached without
constraints on the storage overhead or on the frequency at which data are cached or recovered.
These yield to waste bandwidth and storage volume and do not provide a clear predefined
durability and availability level. Hence, the importance of the thorough evaluation of P2P
storage systems before their deployment.

In this thesis, we aimed at addressing fundamental design issues such as: how to tune the
system parameters so as to maximize data lifetime and availability while keeping a low storage
overhead and achievable bandwidth use?

For instance, Sébastien Choplin from UbiStorage informed us recently that UbiStorage is
moving to the decentralized architecture to overcome the single point of failure problem and
to obtain a more scalable backup and storage solution. They are implementing the storage
protocol over FreePastry with the simplest erasure coding scheme (ReedSolomon [78]). He
confirmed us that the choices of the key system parameters (s, r, and k) and the analysis of the
recovery process are required to optimise the performance of the system and to better use its

resources, especially when not only data backup but also data storage is wanted.

6.1.1 Delivered data lifetime and data availability

In Chapter 2, we have characterized the performance of P2P backup and storage systems in

terms of the delivered data lifetime and data availability, when the distributed-recovery scheme



6.1 Conclusion 131

is enforced. Both repair policy (eager and lazy) were modeled and analyzed. We have investi-
gated the distribution of the lifetime of data in a P2P system. We have evaluated two availability
metrics: the expected number of available redundant fragments, and the fraction of time dur-
ing which the number of available redundant fragment exceeds a given threshold. The impact
of each system parameter on the performance was evaluated. Guidelines have been derived on
how to engineer the system and tune its key parameters in order to provide desired lifetime
and/or availability of data.

In particular, we have proposed two simple models in which the peer availability is consid-
ered to follow an exponential distribution. The recovery process was considered to follow an
exponential distribution in the first simple model, and a hypo-exponential distribution in the
second simple model. We have then extended the two simple models to more general ones
by assuming that peers on-times durations, in both extended models, are hyper-exponentially
distributed. Doing so, our modeling is general, realistic and valid under different distributed
environments. A simple fluid model has been introduced under simple assumptions in order to
have an explicit formula of the first availability metric.

Numerical computations have been performed to illustrate several issues of the perfor-
mance. We found that, in stable environments such as local area or research laboratory net-
works where machines are usually highly available, the distributed-repair scheme (or “repair
one missing fragment at a time” policy) offers a reliable, scalable and cheap storage/backup so-
lution. This is in contrast with the case of highly dynamic environments, where the distributed-
repair scheme, using erasure code (EC) or replication, is inefficient for the storage solution as
long as the storage overhead is kept reasonable but it can offer the backup solution without
any guarantee for the reconstruction time of the backup files. P2P storage systems may be
applicable in highly dynamic environments with the distributed-repair scheme (or “repair one
missing fragment” policy) by using the regenerating codes (RC) [35], whose description is in-
troduced in Section 1.2.1, instead of erasure codes (e.g. [78]). However, the analysis of the
overhead cost resulting from the different redundancy schemes with respect to their advantages
(e.g. simplicity of replication, less storage space in both widely used EC: ReedSolomon [78]
and Tornado [17], and less bandwidth cost of maintenance in RC), is an interesting issue to be
addressed in the future.

In Chapter 3, we have focused our study on the quality of service delivered to each block of
data in centralized-repair P2P backup and storage systems, in terms of data lifetime and avail-
ability. We evaluated such systems through Markovian models under similar assumptions of
those made in Chapter 2. The impact of each system parameter on the performance is evalu-
ated, and guidelines are derived on how to engineer the system and tune its key parameters
in order to provide desired lifetime and/or availability of data. Our analysis also suggests that

the use of large size fragments reduces the efficiency of the recovery mechanism. Although the



132 Chapter 6: Conclusion and future work

performance of the system seems to be better when the number of fragments increases, due to
decrease their sizes, each fragment adds some coordination and control overhead. A careful
analysis of this issue is one objective of ongoing research.

6.1.2 Validation of key assumptions

The key assumptions made in the models presented in Chapter 2 and Chapter 3, in particular
on the on-time durations of peers and on the recovery durations respectively, were validated
through real traces collected from different distributed environments and intensive packet-level
simulations.

Our findings in Chapter 4 came to support the assumptions made on the recovery process
in the models presented in Chapter 2 and 3. The aim of Chapter 4 was the understanding
of the behavior of P2P storage systems through simulation, while taking into consideration
the impact of the heterogeneity of peers, the underlying network topologies, the propagation
delays and the transport protocol. To that end, we have implemented the distributed storage
protocol in the network simulator NS-2 [67] and run ten experiments covering a large variety
of scenarios. We have shown through experimental results how recovery times distribution
is impacted essentially by the demand and capacities of the complete network entities: peers
upload/download, routers and links, in addition to the volume of the background traffic.

We have distinguished between three general scenarios in which the download and the re-
covery processes are modeled by a different distribution. In particular, in the first scenario, we
have shown that the fragment download/upload time follows approximately an exponential
distribution as long as the total workload is equally distributed over the active peers, the core
network has a good connectivity and the peers upload/download capacities are asymmetric. We
have found that the successive download durations are weakly correlated in such a scenario.
We also show that, as a consequence of the fragment download distribution and the weakly cor-
relation, the block download time and the recovery time essentially follow a hypo-exponential
distribution with many distinct phases (maximum of as many exponentials). In the second sce-
nario, we have shown that the fragment download/upload time follows a general phase type
distribution but the block download time follows approximately an exponential distribution,
under the following configurations: the peers upload/download capacities are symmetric and
there are some bottlenecks in the backbone or among the local area network (LAN) routers.
The characteristics of the third scenario are as follows. The peers are very heterogeneous and
the volume of the non-P2P traffic is large with respect to the P2P traffic such that the total load
in the system is very high. We found that, in such a scenario, both fragment and block suc-
cessive download times are drawn from general phase type distribution. Contrarily to the first
scenario, the successive fragment download times in such a scenario are strongly correlated.

For all the experimental results in all the scenarios, we have used expectation maximization



6.2 Future work 133

and least square estimation algorithms to fit the empirical distributions. We also provided a
good approximation of the number of phases of the hypo-exponential distribution that applies
in several considered experiments. We tested the goodness of our fits using simple statistical
(Kolmogorov-Smirnov test) and graphical methods.

6.1.3 First step toward a scalable simulator of the whole storage/backup system

Although the NS-based simulator can accurately predict the behavior of the download and
the recovery processes while considering the impact of several constraints such as the hetero-
geneity of peers and the the underlying network topologies, this simulator requires however
very long time and can not be used to simulate the whole storage system; data life-time and
availability. To overcome this scalability limitation, we have proposed and analyzed, in Chap-
ter 5, an algorithm, that we called the “progressive-filling flow-level algorithm” or PFFLA. The
algorithm is efficient in time and quite simple and uses the concept of “Progressive-Filling” (or
max-min fairness), hence the name. We have implemented the PFFLA in a flow-level simulator
of parallel downloads. The response times in the flow level simulator have been compared
(both distributions and averages) to that of the packet-level simulations in NS using a mod-
ified model of the simulator presented in Chapter 4. Our results concluded that PFFLA is a
reliable algorithm to analyze the service response time in many systems based on P2P and Grid
computing concepts such as Storage Systems and Grid Delivery Networks.

6.2 Future work

Several markovian models are proposed in this thesis where most of the assumptions are
validated through the analysis of data collected from real environments or from the output
of stochastic simulations. Using an appropriate model for a given context, we can evaluate
the performance of the storage system in terms of data lifetime and availability and tune its
parameters to provide desired requirements. However, we would like to address several issues
in the next steps.

First, we have seen in Section 3.6.3 that increasing s, using smaller fragments size, increases
the efficiency of the recovery mechanism and then the performance of the whole storage appli-
cation. This observation should be moderated by the fact that different fragments size yielding
a different bandwidth usage per recovery. We would like to search how does the bandwidth
usage per recovery vary with the size of fragments while fixing the size of blocks of data. More-
over, when the number of fragments increases, more coordination and control overhead have
to be handled by the system. A careful analysis of this issue is still required in order to optimize

the system performance.



134 Chapter 6: Conclusion and future work

Another interesting issue is the analysis of the overhead cost resulting from the different
redundancy schemes with respect to their advantages; understanding the complexity versus
the advantages of Tornado [17] and regenerating codes [35] with respect to replication and the
simplest erasure coding scheme ReedSolomon [78]. This can be done through real experiments
using Tahoe-LAFS implementation [95] or by collaborating, for example, with UbiStorage that
has shared with us several discussions about some theoritical and practical issues related to the
P2P backup applications. An other method is to use a well-validated and scalable simulator for

these systems. Let us hereafter explain our prespective.

Deploying the system over a large number of peers and achieving real experiments over real
networks are very useful in order to carefully verify that the system performs as expected from
modeling or simulation. Such experiments will also help us to better understand the impact of
several neglected factors in modeling and simulation such as the complexity overhead to main-
tain the state of the system. However, to collect traces of fragment download/upload times,
of recovery times, and of data durability in such particular applications would require a very
long time, and there will be limitations on changing the topology and the peers characteristics.
Hence, the importance of using a “very realistic” simulator at reasonable scale (e.g. simulating

the systems using a “real implementation®), but how to do that? And is it possible?

Typically, simulators re-implement protocols from scratch, leading to a costly software effort
and divergence from actual implementation code. Furthermore, simulation code often does
not interact well with real implementations. Most commonly, simulation implementations of
protocols are rewritten for use as implementation code, often because the simulation code
makes use of abstractions and simplifications which are not present in real systems. Lacage is
working on a project [61] to realize one of the NS-3 goals [51] that facilitates, on one hand, the
reuse of existing softwares and applications under some compilation’s conditions (e.g. a release
of a storage protocol such as UbiStorage or Tahoe), and, on the other hand, provides Interfaces
to allow users to easily migrate between simulation and network emulation environments. In
particular, the goal of this project is to allow the integration of unmodified POSIX application
binaries in ns-3. This requires the implementation of the relevant parts of the POSIX API used by
the target applications but also the implementation of a specialized ELF loader to load multiple
per-node applications within the same simulation process. ELF stands for “Executable and
Linking Format”, formerly called Extensible Linking Format which is a common standard file
format for executables, object code, shared libraries, and core dumps.

In summary, we can validate a scalable stochastic simulator (e.g. a modified version of the
Algorithm PFFLA 1 that introduced in Chapter 5) through a real implementation using NS-3.
A stochastic simulator will be then used to simulate, in an efficient and reasonable time, the
storage protocol under any given topology and network/peers characteristics. For the moment,

we are planning to extend the current version of the Algorithm PFFLA 1 that was designed for



6.2 Future work 135

flows with identical RTTs. In fact, a conclusion from the literature is that different RTTs do
introduce some “unfairness” in bandwidth allocations. Our next step is to find a simple yet
efficient version of Algorithm 1 to handle the situation of different RTTs that introduces some
“unfairness” in bandwidth allocations.

Another issue is to introduce server and peer selection policies in the algorithm for an
enhanced service. Bernard and Le Fessant have concluded in [6] that by carefully selecting the
peers on which backup data is stored, repairing cost can be highly reduced while providing high
durability level. We are planning to use the technique of “fluid-diffusive” for providing simple
formulas of some performance metrics for the P2P storage systems that use some placement
policies. The “fluid-diffusive” approach has been proposed recently to be an alternative efficient,
in term of time, technique to model large P2P systems. Recently, Carofiglio et al. in [19]
have used this approach to analyze and to model general P2P systems. Unlike the first-order
fluid models (e.g. those proposed in Sections 2.4.2 and 3.3.2), the model proposed in [19]
captures the impact of stochasticity on the system dynamics based on a set of partial differential
equations. For more accurate prediction, we have to account for the time needed to locate a
specific content in the system, in particular when the system is large. One can rely on the work

done by Oechsner and Tran-Gia [70] in this direction.






A

PACKET-LEVEL SIMULATION MODEL:
SOME IMPLEMENTATION DETAILS

This appendix describes the base classes P2P_Storage_Directory, P2P_Storage_App,
P2P_Storage Wrapper and data structure. In fact, we follow the same methodology as the Web
cash application presented in the NS Manual (cf. [39, Chap. 40]), and use some of the technical
ideas presented in [39, Chap. 39,41] of the NS Manual and [37]. Therefore, we will discuss
some selected pieces of code and sketch the description of the basic APIs, through which appli-
cations find data and request services from underlying transport NS agents. We implemented
the P2P storage application in NS-2 (versions 2.29 and 2.33) following the architecture depicted
in Fig. A.1. P2P_Storage App class emulats a P2P storage application that takes care of asso-
ciating peers to NS-2 Nodes, handling messages, choosing files to be downloaded, requesting
list of peers holding desired data from P2P_Storage_Directory object, sending requests to those
peers, registering some information (e.g. download start times, finish times, total sending data,
effective load) in logs files, and joining/leaving the system. P2P_Storage Wrapper object is an
intermediate class that takes care of creating the TCP connections between applications and
passing data in an appropriate type between the FullTcp transport agent object in NS-2 and the

P2P_Storage App class. P2P_Storage Directory object is the “God” of the simulator. It registers
137



138

Annex

.

-
P2PSS Application

join()
request_frag()

handle_request()
handle_frag()

lea§e()

~

J

send_data(AppData)¢

process_data(AppData)

( P2PSS Agent Wrapper )

d(byt
send(by es)¢ *recv(bytes)

[ NS-2 Agent (FullTcp) )

t packets

Storage Directory

add_peer()
reg_files()
distribute_fragments()
randomChoice()
recover()

stopApp()

files_set_

peers_set_
active_peers_set_
blocks_availability_ )

Figure A.1: Simulator architecture.

applications (peers) and files, distributes their fragments in the system, memorize the locations

of fragments of each block for every registred files, calculates the availability of each block and

maintains a list of the active peers (running applications).

Similarly to any simulation that uses NS, we define the network topology and the system

parameters (such as maximum number of files, maximum number of peers, upload/download

capacities, delays, block size, fragment size, TCP segemt size, amount of redundancy and the

recovery threshold) at OTcl level in a TCL script as follows.

Listing A.1: Simulation scenario setup

set NS [new Simulator]

# Number of peers

set N_P 1000

set Inter_arrival_req 3

# Number of files

set N_F 10000

set max._request 1000



139

# Overhead storage r1/s
set oh_st 1.5
# Recovery threshold k
set k_th 1
# Application type, e—library—like=1
# Buckup—like type = 0
set app-type 1
# Data unit sizes
set S.F KB [expr 16 %x1024]
set S_b_KB [expr 4 %x1024]
set S_Frag KB [expr 1 %x1024]
# Set MSS for TCP
Agent/TCP/FullTcp set segsize_ 1460
# Peers upload capacities in bps
set C_up-max [expr 384 x 1000]
set C_up_min [expr 64 x 1000]

# Peers download capacity is higher than upload capacity

set C_.down_max [expr $C_up_max x 8]

set C_down_min [expr $C_up_min x 8]

# Bandwidth (BW) between routers of AS 34Mbps to 155Mbps

set linkBW_min [expr 34 x 1000000]

set linkBW_max [expr 155 x 1000000]

# BW between bacbone is 1 Gbps

set backbone [expr 1000 x 1000000]

# BW between backbone and transit acess to routers is 622 Mbps
set transit_access [expr 622 x 1000000]

# Create instance of system directory



140 Annex

set dir [new P2P_Storage_Directory $N_P $N_F S_F_.KB S_b_KB S_Frag_KB
$oh_st $Inter_arrival_req]
proc create_router_topology {} {

global ns linkBW_min linkBW_max transit_access backbone

}

#Creat peers of each sub domain
proc creat_peers_topology {router_index peer_index} {
global ns peer n C_up_.min C_up_max outdir
set DelayMin 1
set DelayMax 25
# random delay choices
set D [new RNG]

set Delay [expr round ([$D uniform $DelayMin $DelayMax])]

# Start applications

for {set i 0} {$i < $N_P} {incr i} {

$ns at [$ns now] "$app($i) start”



141

# new MashlInspector
$ns at 500000 ”finish”
# Run the simulation

$ns run

We instantiate then from P2P_Storage_Directory class, which is implemented as a child class
of TclObject, as shown in Listing A.2, the system directory object. The basic function members

of the class P2P_Storage_Directory are found in Table A.1.

Listing A.2: Definition of the system directory class

class P2P_Storage_Directory : public TclObject

{

public:

// The Constructor of the class
P2P_Storage_Directory(int num_peers,int num-_files,
long file_size , long block_size, long fragment_size,

double storage_overhead , double mean_interval););

protected:
// Tcl command interpreter
int command(int argc,const charxconstx argv);
void reg_peer (Nodex peer);
void reg_file(file_list_entryx file);
void del_peer(Nodex peer);
void stopApps ();
void go_off(long id, Node % node_);
void go_on(long id, Node * node_);



142

Annex

}s

int randomChoice( int min, int max );
double exponential (double mean_periode);
virtual void distribut_fragments();

void modify_peer_state (int peer_index,int changed_value);

To make it possible to create an instance of the system directory object in OTcl, we have to

define a linkage object that must be derived from TclClass. This is illustrated in Listing A.3. In

fact, once NS is started, it executes the constructor for the static variable

“class_p2p_storage_directory”, and thus an instance of “P2P_Storage _DirectoryClass” is created.

Listing A.3: The linkage object P2P_Storage_DirectoryClass between OTCL and C++ class

P2P_Storage _Directory

static class P2P_Storage_DirectoryClass

public:

public TclClass

P2P_Storage_DirectoryClass ()
TclClass ("P2P_Storage_Directory”) {}
TclObjectx create(int argc, ...)
{
if (arge !'= 11)
return NULL;
else
return (new P2P _Storage _Directory(
atol (argv[4]),atol (argv[5]),
atol (argv[6]), atol(argv[7]),
atol (argv[8]), atof(argv[9]),



143

atof (argv[10]) ) );

}

} class_p2p_storage_directory;

We assume that there is a given number of stored files in the system and before that peers
request data, the system directory object distributes the s + r fragments of each block of data
of all files over s + r peers chosen uniformly among all the registered peers in the system. This
is the task of the member functions “reg_file()” and “distribute_fragments()”, where the system
directory has a private vector containing pointers to the meta-data of the stored files. Listings
A.4 and A.5 depict the details of the meta-data (file structure) of any stored file and the member
files_set_ respectively. We use the same class of the system directory for both recovery process

implementations and we assume that the system has a perfect knowledge of the data state.

Listing A.4: The file list_entry data structure

typedef struct file_list_entry {
int file_id;
long file_size;
long block_size;
long frag_size;
int N_blocks; // file_size/block_size
int N_frags; // s

int total N _frags;//s+r

/* Map between each block’ id (key) and a list of s+r peer’s id,
on which the fragments are stored x/
map<int ,int %> >block_node_id_list_;
map<int , vector <Nodex> >block_node_list_;

map<int ,int> blocks_availability;



144 Annex

map<int , bool> black_list;//false==lost

Listing A.5: The private member files_set_ of the P2P_Storage_Directory class

vector<file_list_entry*> files_set_;

After creating the instance of the storage directory at the OTcl level, we allocate next the NS
nodes and we create the underlying network topology by using for example the GT-ITM tool
[18] (see more details in Section 4.3.1). We instantiate from P2P_Storage App class the applica-
tions (peers) where a pointer at the Node class must be set to the attached application running
on that Node (Agent) which will be used to pass data from an Agent to an Application. In fact,
we did minor changes to the files: tcp-full.cc, tep-full.h, node.cc, node.h, agent.cc and agent.h

to support the collaboration between nodes, agents and the P2P storage systems applications.

Listing A.6: OTcl level, creating nodes and application

set node($i) [$ns node]

set app($i) [new P2P_Storage_ App $dir
$node($i) S$app-type $C_up($i)

$C_down($i) $Inter_arrival_req max_request]

We consider in fact two different storage applications, a backup-like application and an e-
library-like application (“e” stands for “electronic”). In the first, a file stored in the system can
be requested for retrieval only by the peer that has produced the file. In the second, any file can
be downloaded by any peer in the system. In both applications, the storage protocol follows
the description presented in Sections 2.2 and 3.2.

Two types of requests are issued in the system. The first type is issued by the users of the
system: a user issues a request to retrieve its backup file in the backup-like application, or
a public document in the e-library-like application. The second type consists of management

requests. Usually, these are issued by the central authority (in the centralized implementation of



145

the recovery process) or by a peer (in the distributed implementation) as soon as the threshold
k is reached for any stored block of data. In the simulator, these management requests are

issued by the system storage directory object.

File download requests are translated into (i) a request to the directory service to obtain, for
each block of the desired file, a list of at least s peers that store fragments of this block, (ii) open-
ing TCP connections with each peer in the said list to download one fragment, (iii) registering
some statistical information such as the start and the completion time of the downloaded data.
All download requests issued by a given peer form a Poisson process. This assumption is met in

real networks as found in [47]. However, another random process can easily implemented.

Recovery requests are issued only in the scenarios where there is churn in the network. A
recovery request concerning a given block translates into (i) a request from the storage directory
service to a server in the centralized-repair scheme (we consider explicitly the first registered
peer as the server in order to simulate the centralized implementation) or any active peer that
is in charge of (ii) obtaining a list of at least s peers that store fragments of said block, (iii)
opening TCP connections with each peer in the said list to download one fragment. Once all
s fragments have been downloaded, the process proceeds with Steps 2 and 3, according to the
implementation, as explained in Sections 2.2 and 3.2. Last, the storage directory updates the
system state at the end of the operation, namely it increases the availability level of the blocks
of interest and points to the right locations of its fragments or otherwise it adds the lost block

in a black list if the operation failed.

The P2P storage application uses many timers to handle events. In particular, a timer for
scheduling the next file’s request, a timer for scheduling the next failure moment once a peer
becomes on line, and a timer for scheduling the next moment to rejoin the system once a peer
becomes off line. We define the FileRequestTimer, OffLineTimer and OnLineTimer classes that
are derived from the “TimerHandler” class, and write their “expire()” member functions to call
file_request(), leave() and join() APIs respectively. Then, we included an instance of each timer
object as a private member of P2P_Storage _App object. Listings A.7 and A.8 show the example

of FileRequestTimer and its expire member function implementation.



146 Annex

Listing A.7: FileRequestTimer implementation

class FileRequestTimer :public TimerHandler
{
protected:

P2P_Storage_App *app-;

public:
FileRequestTimer (P2P_Storage_App* app):
TimerHandler (), app-(app) {}

inline virtual void expire(Event x);

Listing A.8: Expire function of FileRequestTimer

void FileRequestTimer :: expire (Event x*) {

app-—>file_request ();

Typically, applications access network services through sockets. NS-2 provides a set of well-
defined API functions in the transport agent to simulate the behavior of the real sockets. There-
fore, the P2P_Storage _Wrapper class handles calling the appropriate APIs when two applications
want to communicate in order to (i) attache first the Full Tcp agent to both NS nodes via attach-
agent and (ii) call then connect() instproc to set each agent’s destination target to the other and
last (iii) place one of them in LISTEN mode. We use in fact Full-Tcp agents since they support
bidirectional data transfers.

Similar to what is done in the web cash application (see tcpapp.cc) we can model the
underlying TCP connections as a FIFO byte stream, and then we will create same buffer man-
agement stuff. First, the P2P_Storage_Ms_Buf that contains a part of the messages such as the
Request message and the Fragment message. Second, P2P_Storage Msg_BufList implements a

FIFO queues that will store all the sent messages (requests or data) on the sender side until



147

they correctly and completely arrive to the destination side. In other words, there is no support
in the class “Agent” to transmit different applications data and messages. Instead, as all data
are delivered in sequence, we can view the TCP connections as a FIFO pipes, and the transfer
of the application data will be emulated as follows. We first provide buffer for the application
data at the sender to store the messages to be sent, next we use the Agent’s API “sendmsg(int
nbytes, const char *flags = 0)” to send a stream of an equivalent data size of the stored mes-
sages, then we count the bytes received at the destination. When the receiver has got all bytes
of the current data or message transmission (first message in the FIFO on the sender side to-
ward the receiver), then the receiver gets the data directly from the FIFO’s sender. These are
the tasks of the functions “send_data()” and “send()” on the sender application side and “pro-
cess_data()” and “recv()” on the receiver side as shown in Fig.A.1 and described in Table A.3,
which use in turn the prototypes of the FIFO queues depicted in Table A.2, where a FIFO queue

is represented by the P2P_Storage _Msg_BufList class.



148

Annex

Table A.1: The basic prototypes of P2P_Storage_Directory class

Method

Functionality

map <int,vector<Node*>> get_peer_list_(int file_ID)

gets a list of peers (s usually) for each

block to download a specific file

void add_peer(Node* peer)

adds new peer to the directory

void reg_file(file_list_entry* file)

adds the file entry to the files_set_

void stopApps()

stops all the applications and frees
the memory when the maximum
simulation time or the maximum

number of requests are reached

void del_peer(Node* peer)

deletes peer from active_Peer_set_

when leaving the system

void go_off(long id, Node * node_)

reduces the blocks availability, checks

the recovery threshold, del_peer

void go_on(long id, Node * node_)

increases the blocks availability if not

recovered, add_active_peer

int randomChoice( int min, int max )

chooses an active peer randomly

virtual void distribute_fragments()

distributes the fragments of blocks of

the registered files

bool recovery(int block_id, int missing)

recovers missing fragments of a given

block




149

Table A.2: The basic prototypes of P2P_Storage_Msg_BufList class

Method

Functionality

void insert(P2P_Storage Msg Buf *d)

stores msgs of the sender until the reception of

their acks

P2P_Storage_Msg_Buf* detach()

if the data is received by the destination, deletes

them from the FIFO buffer

int size()

returns the current size of the buffer




150

Annex

Table A.3: The basic prototypes of P2P_Storage App and P2P_Storage_Wrapper classes

Method

Functionality

virtual void start()

after calling the constructor, App starts
requesting files with an inter-request times

chosen from an exponential distribution

double exponential(double lambda)

generates a random number from

an exponential distribution

int create_conn(Node *dst,int file_id,

int block_id, int frag_id)

establishes a connection with the destination

virtual void send_data(P2P_Storage _Msg m,

int s_id, int dst_id)

Application sends msg to the wrapper agent

virtual void send(int nbytes)

wrapper agent calls sendmsg() of

the tcp agent

void recv(int nbytes, int socket_id)

the NS agent announces the App each

time a packet arrives

void process_data(P2P_Storage_Msg msg,

int s_id)

handles the received data

void file_request(int file_id)

creates connections and sends requests to
get the file after calling the Directory

member function get_peer_list_(int file_id)

void request_frag(int conn_id, int f id,

b_id, int fr_id, int dst_id)

requests a fragment from a peer

void handle_request(P2P_Storage Msg m,

int conn_id)

handles a request, creates a fragment

message and sends it

void handle_frag(P2P_Storage _Msg m,

int conn_id)

called when the receiver gets all bytes

of the current transmission, updates

the related members, increases the number
of completed fragments, calls

reg_frag_traces() and frag_downloaded()

void reg_frag_traces(int file_id, int b_id,

int fr_id, int dst_id)

registers the information about a completely

received fragment

void frag_downloaded(int f, int b, int frag,

int conn,int dst)

after downloading a fragment, calls

close_connections()

void join()

informs the directory the active state







152 Annex




APPROXIMATIONS WITH PROCESSOR

SHARING

B.1 Distribution of the response time in the M /D/1/PS queue

According to Yashkov and Yashkova [100, Corollary 2.11] the distribution of the response
time in a M/D/1/PS queue with arrival rate A and service time d, say V(d), is given by its

Laplace transform as:

(S + )\)Zefd(er)\)

sZ+A(s+ (s +A) (1 —p)ledlstA)”’
153

E(e*V¥) = (1-p)




154 Annex

where the load factor is p = Ad. The inversion of this Laplace transform yields the series:

P(V(d) <d+t) (B.1)
= (1=p)e®) (1) ™lyong
n=0
Lon n nom At —nd)Fm
n;O<m>(2—p) (1—p) prp—
t—mnd A%(t —nd)?
{1 A Tt Gnema N Zn—m+2)

For every t € [0, 2d], this formula reduces to:

P(V(d) <d+1) (B.2)

2
= (1—ple® [1 + 2At + %tz}
2

(t—d)? {1 + gA(t —d) A (t— d)z}

)\2
)
+1=ple Phq(1- )5 S YURPIE

2
(1—2p)At—a) [1 +At—d)+ %(t— d)z] } .

B.2 Small load approximations

We briefly discuss now approximations that can be performed when the load or the arrival
rate is small.

Consider a client downloading s flows in parallel. The nominal duration of each flow is o/s,
so that the total duration is o if the flows are not disturbed.

Assume that the arrival of flows is a Poisson process of rate A at all nodes: at the client node
and the server nodes. Given some “tagged” download request, the probability that another

~Ax(2d) — ¢~2¢ because the request interferes if it

request interferes with it at the client is e
arrives less than d units of time before or after the arrival of our tagged request. The same
probability holds at each server.

The result of a request interfering at the client is that the tagged download is longer. If the

arrival date of the interfering request relative to the tagged request is u, the additional response

time of the tagged request is d — [ul.



B.2 Small load approximations 155

The result of a request interfering at the server depends on the capacity of the server. If the
capacity is enough, the interference will not slow down the flow, and the response time will
not change. This is the case for the symmetric cases in our experiments. If the capacity is not
enough, the flow will be slowed down. Take the case where the capacity of servers is precisely
that of one of the s parallel flows. This is the case for asymmetric cases in our experiments. If
an interference occurs at the server, the flow will be slowed down to half its throughput. The
result is then exactly the same as when two requests interfere at the client.

Suppose now that the arrival rate A and the load p are small. Ignoring the events that

happen with probability o(p), only three events are to be considered: a) no interferences; b)
one single interference at the client, none at the server; c) one single interference at the server,
none at the client. According to the discussion above, we can calculate the statistics of the
response time T in the two situations:
Large server capacity: the probability that T = d is the probability of events a) and c), since
¢) does not have an influence on T. This probability is: e 2° = 1 — 2p + o(p). For x € [0, d],
P(T>d+x)=P(b)and |ul < d—x) =2p(1 —x/d), and E[T] = d(1 + p). These formulas are
in accordance with Equations B.2 and (5.6). The prediction that P(T > d) ~ 2p can be observed
on Figures 5.1 to 5.4. The linear behavior of the distribution of P(T > x) for x € [d, 2d] is also
clear on these figures.

Minimal server capacity: the probability that T = d is the probability of event a), that is,
(e 2°)2 =1—4p+o(p). Forx € [0,d], P(T> d+x) =P(b) orc) and ju| < d—x) = 4p(1—x/d),
and E[T] = d(1 + 2p). These formulas are not in accordance anymore with the PS queueing
model. This explains the bad results of the approximation in Table 5.2 for asymmetric cases.
At the same time, this suggests a possible correction for the PS approximation formula. The
prediction that P(T > d) ~ 4p can however be observed on Figures 5.7 and 5.8(a) (with p =
12%). The almost-linear behavior of the distribution of P(T > x) for x € [d, 2d] is also clear on

these figures.






C

PRESENTATION DES TRAVAUX DE THESE

EN FRANCAIS

C.1 Introduction

La croissance du volume de stockage, de la bande passante et de la puissance de calcul
des ordinateurs personnels a changé fondamentalement la méthode de conception des appli-
cations. Depuis prés de dix ans, un nouveau paradigme pour les réseaux a été proposé, ou les
ordinateurs peuvent constituer un réseau virtuel (appelée réseau de recouvrement ou un over-
lay) au-dessus d’'un autre réseau ou d’une architecture existante (par exemple Internet). Ce
nouveau paradigme a été appelé réseau distribué pair-a-pair (P2P). Un pair dans ce paradigme
est un ordinateur qui joue le double réle de fournisseur et de consommateur de ressources,
contrairement au modele traditionnel client-serveur ot les serveurs fournissent les ressources,
et les clients les consomment. Conceptuellement, les applications utilisant les réseaux P2P
présentent une amélioration notable dans la robustesse des services et permettent un passage a

’échelle stable sans infrastructure supplémentaire puisque tous les pairs connectés fournissent
157



158 Annex

quelques ressources et services. Un pair dans le réseau de recouvrement ('overlay) peut étre
considéré comme étant relié par des liens virtuels ou logiques, chacun d’eux correspondant a un
chemin qui peut-étre composé de plusieurs liens physiques, dans le réseau sous-jacent. Comme
déja mentionné, chaque pair demande/propose un service de/vers les autres pairs a travers
le réseau overlay; des exemples de ces services sont le calcul (partage de la capacité de son
unité centrale), le téléchargement des données (partage de sa capacité de bande passante), le
stockage des données (partager son espace de stockage gratuit), ainsi que I'aide pour trouver
des ressources, services et autres pairs.

Ce modele P2P s’est avéré étre une alternative au modele Client/Serveur et étre un paradigme
prometteur pour le calcul sur la grille “grid computing”, le partage de fichiers, la voix sur IP,
les applications de sauvegarde et de stockage. Toutefois, le partage de fichiers est 'application
P2P dominante sur I'Internet (voir [66, 55, 41, 38, 24, 25]), permettant aux utilisateurs de
contribuer, rechercher et obtenir le contenu facilement. En effet, depuis 'apparition du format
mp3 en 1991, les applications P2P présentaient une solution efficace pour les partager gratu-
itement, d’ou la popularité croissante de ces applications. De plus, 'apparition des formats de
vidéos comprissées (divx) a encore augmenté leurs intéréts.

Afin de fournir une base appropriée, nous allons décrire brievement, dans la section C.2, la
taxonomie de base du réseau overlay P2P. Etant donnée la grande popularité des applications
P2P de partage de fichiers, nous allons introduire certaines d’entre elles comme des exemples
de T'utilisation des architectures P2P, méme si elles ne font pas 'objet d'une étude plus appro-
fondie dans cette these. Les techniques de sauvegarde et de stockage des systémes de P2P
seront présentées alors avec quelques exemples existants dans la Section C.3.3. La Section C.4
présente I'état de I'art et les motivations. Enfin, la Section C.5 présente brievement notre con-

tribution décrite dans cette thése.



C.2 Architectures de réseau de recouvrement P2P 159

C.2 Architectures de réseau de recouvrement P2P

En consiérant la facon dont les pairs dans le réseau de recouvrement sont liés les uns aux
autres au dessus de la topologie physique du réseau, et la facon dont les services sont partagés
et localisés, nous pouvons classer les réseaux P2P en deux classes de topologies: les réseaux

non-structurés et les réseaux structurés.

C.2.1 Réseau P2P non-structuré

Un réseau P2P non structuré organise les pairs ou les noeuds dans une topologie de graphe
aléatoir et utilise les techniques d’inondation ou les marches aléatoires pour découvrir les
données stockées par les noeuds qui sont connectés a 'overlay. En d’autres termes, les pairs
se connectent a I'overlay sans préoccuper des noms ou des identifiants de leurs voisins. Cette
approche prend en charge des requétes arbitrairement complexes et n'impose pas de contrainte
sur la topologie de 'overlay ou sur le placement des données.

En général, trois topologies non structurées peuvent étre distinguées.

Premiérement, il y a les systémes P2P entierement distribués, comme le protocole original
de Gnutella [41], ou tous les pairs sont parfaitement égaux et il n’existe aucune autorité cen-
trale. Dés qu’un pair rejoint le systéme, il établit plusieurs connexions avec quelques autres
pairs, appelés voisins. Pour rechercher une entité dans le systeme, un pair envoie une requéte
a ses voisins. Si un voisin connait 'entité demandée, il répond au demandeur. Sinon, il trans-
met la requéte a ses propres voisins, et ainsi de suite jusqu’a une profondeur donnée. Cette
profondeur est similaire au temps de vie (TTL) des paquets dans les réseaux IP. Ce type de
recherche est appelé inondation. Cependant, le cofit de I'inondation du réseau augmente de
facon linéaire avec le nombre de pairs ce qui limite le passage a I'échelle du systéme si la pro-
fondeur est élevée. En outre, il n’y a aucune garantie sur le temps de réponse, en particulier,
pour les fichiers non populaires.

Deuxiemement, les systemes P2P hybrides, tels que Kazaa [55], utilisent le concept de

supernoeuds: les noeuds qui gerent I'indexation des pairs, la distribution et la localisation



160 Annex

des blocs de données. Des supernoeuds sont élus de maniére dynamique en fonction de la
capacité de bande passante et de la puissance de traitement des noeuds. Toutes les requétes sont
initialement transmises aux supernoeuds pour recevoir un service. Par conséquent, le temps de
découverte des resources et des services est réduit par rapport a des systemes entierement
décentralisés. Il n'y a pas de point unique de défaillance comme dans le cas des systemes
centralisés (expliqué ci-dessous) et il n’est pas nécessaire d’acheminer des messages par des
inondations comme dans le cas des systemes entiérement distribués.

Troisiemement, les systemes centralisés, comme Napster [66], reposent sur un serveur cen-
tral pour les fonctions d’indexation et pour le “bootstrap” de I'ensemble du systéeme. En fait,
Napster a été le premier systeme P2P de partage de fichiers, utilisé notamment pour le partage
des fichiers de musique. Bien que considéré comme un systeme P2P, ce modele suit le modele
client-serveur, car il utilise un serveur central pour maintenir une liste des répertoires et des
fichiers partagés qui sont stockés sur les pairs, et pour trouver des ressources et router les de-
mandes entre les pairs. Toutefois, le téléchargement se produit de maniere P2P; les pairs se
connectent les uns aux autres pour télécharger des fragments de données. Cette topologie souf-
fre du fait qu’elle a un point de défaillance ('autorité centrale) et ne peut pas passer a grande

échelle.

C.2.2 Réseau P2P structuré

Dans les réseaux P2P structurés, les noeuds se voient attribuer un nodeld aléatoire unique
(identifiant de noeud) a partir d’'un espace d’identification assez large. Des identifiants uniques,
appelés “clés” sont assignés aux objets de données. Ils sont choisis dans le méme espace
d’identification. Chord [89], Tapestry [101] et Pastry [83] utilisent un espace d’identification
circulaire de n-bits entiers modulo 2™-bits (n = 160 pour Chord et Tapestry, et n = 128 pour
Pastry). Sin est grand, 'overlay attribue dynamiquement chaque clé a un unique noeud actif
avec une probabilité tres élevée. Ce noeud est appelé la racine de la clé, ou le noeud responsable
de la clé. Afin de délivrer des messages de maniére efficace a la racine, chaque noeud main-

tient une table de routage comprenant les nodelds et les adresses IP des noeuds vers lesquels le



C.2 Architectures de réseau de recouvrement P2P 161

noeud local maintient des liens virtuels (liens d’overlay). Les messages sont envoyés a travers
ces liens virtuels aux noeuds dont les nodelds sont progressivement de plus en plus pres de la

clé dans I'espace d’identification.

Les réseaux P2P structurés utilisent une fonction de hachage (e.g. SHA-1 [87, 86]) pour
allouer une adresse globale ou un espace d’identification a tous les noeuds et a toutes les clés.
Contrairement aux réseaux P2P non structurés, le concept principal dans les réseaux structurés
est le routage a base de clé. Le routage a base de clé signifie qu'un ensemble de clés est associé
a des “valeurs” (adresses des données) dans l’espace d’adressage. un réseau P2P structuré
est souvent considéré comme une table de hachage distribuée (DHT), qui est un dictionnaire
distribué dans lequel chaque entrée est composée d’'une “clé” et d’'une “valeur” associée qui

indique 'endroit du contenu de la clé demandée.

Dans les applications P2P, trois approches d’organisation de données peuvent étre con-
sidérées. D’abord, une “clé” peut étre I'identifiant de ’ensemble du fichier de données (valeur
de hachage de son nom, ou de son titre, ou de son contenu) comme dans PAST [84], un utili-
taire de stockage persistant qui a été construit en utilisant Pastry [83]. Dans d’autres applica-
tions P2P, les fichiers sont fragmentés en fragments de taille égale, et une “clé” est I'identifiant
d’un fragment de données d’un fichier comme dans le cas de CFS [27], un systéeme de fichiers
coopératif qui a été construit a 'aide de Chord [89] afin de fournir des services de stockage.
Un troisieme type d’organisation de données consiste a diviser les fichiers en blocs de données
de méme taille, chaque bloc est ensuite fragmenté en plusieurs fragments de méme taille, et
la “clé”, dans cette derniére approche, sera l'identifiant d'un bloc de données comme dans le
cas de UbiStorage [92], un systéeme P2P de sauvegarde de données. Chacune de ces approches
d’organisation des données a ses avantages et ses inconvénients. Les objectifs du systéme,
le temps de téléchargement des données, la disponibilité et la mise en oeuvre du systéme et
les problémes de conception peuvent favoriser une approche plutét qu'une autre selon les cas

particuliers.



162 Annex

C.3 Systemes P2P de stockage et de sauvegarde des données

Parallelement a ’évolution des systemes P2P de partage de fichiers, les systemes P2P de
stockage et de sauvegarde des données ont été développés. Ils sont moins populaires parce
qu’ils ne sont pas consacrés exclusivement au partage de musique ou de vidéos et parce que
les gens ne font pas confiance au P2P pour stocker leurs données privées. Pour une utilisation
ultérieure, nous allons définir deux mesures importantes, la disponibilité des données, et la

durée de vie des données ou longévité des données.

Dans le temps, un pair ou un noeud peut étre soit connecté soit déconnecté du systéme
de stockage. Nous faisons allusion a on-time (resp. off-time), comme un intervalle de temps
pendant lequel un pair est toujours connecté (resp. déconnecté). Pendant une période donnée,
nous pouvons représenter la disponibilité d’'un noeud par le pourcentage de la somme des
durées on-time durant cette période. Donc, a n'importe quel moment de cette période, un pair
ne peut étre disponible qu’avec une certaine probabilité. Au cours d’'une durée off-time d’un
pair, les objets de données, qui sont stockés sur ce pair, sont momentanément indisponibles
pour les utilisateurs du systeme. En conséquence, un objet de données peut étre disponible a
tout moment avec une certaine probabilité qui est liée a la disponibilité du noeud qui le stocke.
Pour pouvoir télécharger un élément de données, un noeud qui stocke une copie compléete de
celui-ci ou un nombre suffisant de noeuds qui stockent ses fragments distincts doivent étre actifs

(connectés au systéme) pendant un certain temps.

Certains éléments de données (ou des fragments de ces éléments) peuvent étre perdus
du systeme a cause de départs définitifs de certains noeuds ou de défaillances des disques.
Nous définissons la durée de vie des données comme la période allant jusqu’au moment ou
les données sont considérées étre perdues (ne peuvent plus étre téléchargées, ou reconstru-
ites completement). Ainsi, avant que les données ne soient perdues, ces données peuvent
étre disponibles ou non disponibles temporairement, mais ells sont durables (pas perdues

définitivement).

Nous distinguons les systémes de sauvegarde des systémes de stockage. Les systemes P2P



C.3 Systemes P2P de stockage et de sauvegarde des données 163

de sauvegarde visent a fournir la longévité des données sans contrainte sur le temps de recon-
struction des données (la disponibilité). En d’autres termes, les données doivent étre durable-
ment stockées, mais pas nécessairement immédiatement disponibles pour le téléchargement,
au contraire des systemes de stockage. Pour cette raison, les concepteurs de systémes de sauve-
garde sont intéressés par les départs permanents des pairs plutot que par les déconnexions in-
termédiaires, méme si les durées de déconnexions sont longues. Dans cette thése, nous allons
fournir des modeles qui permettent d’évaluer I'impact de chaque parametre du systéme sur
les performances. En particulier, nous montrons comment nos résultats peuvent étre utilisés
pour garantir la qualité de service de la durée de vie des données et/ou de la disponibilité.
Certains des efforts récents pour construire des systemes extrémement disponibles et durables
basés sur le paradigme P2P incluent Intermemory [45, 21], Freenet [24], OceanStore [59],
CFS [27], PAST [84], Farsite [14, 1], Total Recall [10], Wua.la [99] and Allmydata [2]. Bien
que ces systemes de stockage soient évolutifs, tolérants contre les catastrophes inattendues et
économiquement attrayants par rapport au traditionnel systéme client/serveur, ils posent de

nombreux problémes tels que la fiabilité, la confidentialité et la disponibilité.

Dans ces systémes, les pairs sont libres de partir ou de rejoindre le systeme a tout mo-
ment. En raison de la disponibilité intermittente des pairs, assurer une disponibilité élevée des
données stockées est un probleme intéressant et utile. Pour garantir la fiabilité et la disponi-
bilité des données dans ces systemes dynamiques, des données redondantes sont insérées dans
le systeme. La redondance peut étre réalisée par example par réplication, ou en utilisant des

codes correcteurs d’erreurs (CCE).

Cependant, utilisert des mécanismes de redondance sans récupérer les données perdues
n’est pas efficace, puisque le niveau de redondance diminue lorsque les pairs quittent le systeme.
En conséquence, les systemes P2P de stockage de données doivent compenser la perte de
données en stockant en permanence des données redondantes supplémentaires sur de nou-

veaux pairs.

Dans les sections suivantes, nous allons introduire les mécanismes de redondance et de

recouvrement de données, qui sont les deux principales techniques utilisés par les systéme P2P



164 Annex

de stockage et de sauvegarde des données.

C.3.1 Les mécanismes de redondance

La redondance est un mécanisme essentiel dans tous les systémes de stockage afin d’assurer
un certain niveau de fiabilité, de disponibilité et de durabilité des données. Il a d’abord été
utilisé, dans le stockage des données, en 1987 dans les systemes RAID (Redundant Arrays of
Inexpensive Disks) [72]. Les systemes RAID permettent aux ordinateurs d’atteindre des niveaux
élevés de fiabilité de stockage a partir de composants peu cofliteuses et peu fiables comme les
disques durs des ordinateurs personnels, en disposant ces dispositifs dans des tableaux pour
la redondance. La redondance permet la tolérance de panne, de sorte que tout ou partie des
données stockées dans le tableau peut étre récupérée en cas de défaillance des disques.

Il existe trois approches en RAID pour gérer les données stockées: (i) la réplication (mir-
roring) sur plus d’un disque, (ii) '’entrelacement (striping), la séparation des données a travers
plus d’'un disque, (iii) et I'utilisation des codes correcteurs d’erreurs (CCE) [49]. L’idée de base
est de combiner deux ou plusieurs disques durs physiques en une seule unité logique, et selon
la maniére dont les données sont gérées (splittées, codées ou répliquées sur les disques), on
peut distinguer sept niveaux de systemes RAID.

Il existe plusieurs mécanismes disponibles pour la production des données redondantes.
Toutefois, dans le cadre des systemes P2P de stockage et de sauvegarde, nous nous concen-

trerons sur deux mécanismes, la réplication et le CCE.

La réplication

Il existe deux niveaux de réplication utilisés dans les systémes P2P de stockage et de sauve-

garde de données:

B Réplication compléte du fichier. Un fichier f est répliqué r fois sur r pairs différents (comme
PAST [84]) de sorte que la tolérance aux pannes ou AUX départs des pairs est égal a r. En
d’autres termes, r est le nombre de pairs stockant des copies de données objet qui peuvent

quitter le réseau sans perdre I'objet de données. Le rapport 1/{r + 1} définit 'espace de



C.3 Systémes P2P de stockage et de sauvegarde des données 165

stockage utile dans le systéme. Ci-apres, nous ferons référence a ce niveau de réplication

par “réplication”.

B La réplication au niveau de fragments. Ce niveau de réplication consiste a diviser un fichier
f en s fragments de méme taille, puis a faire r copies de chacun d’entre eux, comme dans

CFS [27].

Code correcteur d’erreur CCE (Erasure coding)

Cette approche consiste a diviser le fichier f en b blocs de méme taille. Chaque bloc de
données est partitionné en s fragments de méme taille aussi, en utilisant un code correcteur
d’erreur, r fragments redondants sont ajoutés comme le montre la figure C.1. L’espace de

stockage utile dans le systeme est défini par le rapport s/(s + r). Plusieurs études [97, 8, 10]

+HE - |

Figure C.1: L'organisation des données dans les systémes qui utilisent CCE.

ont montré que 'approche CCE est plus efficae que les deux niveaux de réplication présentés
précédement pour les systemes de stockage car il réduit le trafic de la réplication en utilisant la

puissance de calcul.



166 Annex

C.3.2 Les politiques et les mécanismes du processus de recouvrement

Les systemes P2P de sauvegarde et de stockage nécessitent de compenser la perte de données,
suite au départ des pairs, en stockant en permanence des données supplémentaires sur d’autres
pairs redondants afin de pouvoir garentir un niveau élevé de durabilité des données et/ou de
disponibilité.

En fait, les systemes P2P de sauvegarde peuvent s’appuyer sur une autorité centrale qui re-
constitue des fichiers ou des fragments quand c’est nécessaire. Ces systemes seront dénommés
systemes de récupération centralisés. Alternativement, d’'une facon distribuée, des agents sécurisés
fonctionnant sur certains noeuds actifs peuvent reconstruire eux-mémes les données qui seront
stockées sur les disques des noeuds. Ces systémes seront dénommés systémes de récupération

distribués.

Les politiques du processus de recouvrement

Indépendamment du mécanisme de recouvrement utilisé, deux politiques de réparation
peuvent étre appliquées: la politique eager et la politique lazy. Dans la politique eager, lorsque
le systeme détecte que I'un des pairs a quitté le réseau, il lance immédiatement la reconstruction
de toutes les données hébergées par les pairs qui sont en panne ou déconnectés, et les stocke sur
d’autres pairs en guise de récupération. En utilisant cette politique, les données deviennent non
disponibles seulement quand la vitesse de disparition des pairsest plus rapide que la détection
des départs des pairs et a réparation de leurs données. Cette politique est simple, mais ne fait
aucune distinction entre les départs permanents des données qui ont besoin d’étre récupérées,
et les déconnexions transitoires pour lesquelles le recouvrement n’est pas forcément utile.

En prenant en considération que les connexions peuvent étre temporaires et pas toujours
permanents, on peut retarder la réparation jusqu’a ce que le nombre de fragments indisponible
d’un bloc D de données atteigne un seuil donné, noté k. Dans ce cas, on doit avoir k < r puisque
D est perdu si plus de r fragments sont manquants dans le systeme de stockage. Avec cette
politique, le processus de recouvrement utilise moins de bande passante qu’avec la politique

eager. Toutefois, il est évident qu'une quantité supplémentaire de redondance est nécessaire



C.3 Systemes P2P de stockage et de sauvegarde des données 167

pour tolérer les départs des pairs pour de longues périodes. Cette politique est appelée lazy
parce que l'objectif explicite est de retarder les processus de réparation aussi longtemps que
possible.

Les deux politiques de réparation peuvent étre représentées par le parametre de seuil k €
{1,2,...,7}, ot k peut prendre n’importe quelle valeur dans 'ensemble k € {2,...,r} dans la

politique lazy, et k = 1 dans la politique eager.

Mécanisme de récupération centralisé

Prenons un bloc D de données et supposons que le systeme a perdu k fragments (seuil de
récupération), de sorte que les fragments perdus doivent étre récupérés.

Dans la mise en oeuvre centralisée, une autorité centrale: (1) télécharge en paralléle s frag-
ments de D a partir des pairs actuellement disponibles, (2) reconstruit en une fois tous les frag-
ments non disponible, et (3) retourne (upload en anglais) les fragments reconstruits en paralléle
sur de nouveaux pairs pour le stockage. L’autorité centrale actualise la base de données enregis-
trant les placements des nouveaux fragments dés que la récupération est entierement terminée.
En fait, 'étape 2 s’exécute dans un temps négligeable par rapport au temps d’exécution des
étapes 1 et 3. L'exécution de 'étape 1 (resp. I'étape 3) se termine lorsque le téléchargement

(resp. le renvoi) du dernier fragment est terminé.

Mécanisme de récupération distribué

Dans I'implémentation distribuée, un agent sécurisé sur un nouveau pair est informé de
I'identité d’'un fragment parmi les k fragments indisponibles a reconstituer. Apres la notification,
I'agent (1) télécharge en paralléle s fragments de D a partir des pairs actuellement disponibles,
(2) reconstruit le fragment spécifié et le stocke sur le disque du nouveau pair, (3) supprime par
la suite les s fragments téléchargés afin de satisfaire la contrainte que seul un fragment d’un
bloc de données peut étre tenu par un pair. Cette opération est itérée jusqu’a ce que moins
de k fragments soient indisponibles. Le temps d’exécution de I'étape 1 est considéré comme

le temps du recouvrement d’'un fragment dans cette implémentation distribuée. Nous allons



168 Annex

donc considérer que le processus de récupération se termine avec le téléchargement du dernier

fragment parmis les s nécessaires.

C.3.3 Examples de systemes P2P de stockage et de sauvegarde

“Cooperative File System” (CFS) [27] est un systeme P2P de stockage de données qui offre
des garanties vérifiables pour I'efficacité, la robustesse, et la distribution équitable de la charge
de stockage des fichiers. L’architecture de CFS est totalement décentralisée. En CFS, plusieurs
fournisseurs de contenu coopérent pour stocker leurs données et servir chacun d’autres eux.
Chaque fichier est divisé en fragments qui sont stockés sur des pairs différents. CFS a trois
couches: (i) le systeme de fichiers (FS) qui interpréte les fragments sous forme de fichiers et
présente une interface de systeme de fichiers aux applications, (ii) le DHash (Distributed Hash),
couche qui effectue la récupération et la distribution des fragments de et sur les serveurs,
DHash trouve des fragments en utilisant (iii) le protocole de localisation Chord [89]. CFS
utilise le mécanisme de réplication au niveau fragment avec la politique eager pour augmenter
la disponibilité des données dans le systéme. Cependant, cela ne explore pas les compromis
de cofit et de résilience. DHash met les fragments redondants (d’'un fragment donné) sur les r
successeurs (serveurs) du pair responsable du fragment considéré dans 'anneau Chord.

TotalRecall [10] est un systeme de stockage P2P qui garantit un niveau prédéfini de haute
disponibilité en adaptant automatiquement le niveau de redondance et la fréquence des réparations
a la distribution des échecs des pairs. Il utilise une version modifiée de la DHash [27] pour
I'emplacement des objets. Apres I'estimation de la disponibilité de ses pairs, TotalRecall ap-
plique un mécanisme de réplication dans les environnements tres stables et un mécanisme
de CCE dans les environnements a faible disponibilité. TotalRecall a été 'un des premiers
systémes qui exploitent le fait que la plupart des pairs quittent temporairement le systeme, et
donc utilisent une politique lazy, contrairement au CFS par exemple.

La société francaise UbiStorage [92] a été créée au début des années 2006 et se penche
actuellement sur le marché de sauvegarde en ligne pour les petites et moyennes entreprises.

Elle utilise le prototype Ubiquitous Storage US [76, 88] qui vise a fournir un dispositif de



C.3 Systemes P2P de stockage et de sauvegarde des données 169

stockage virtuel a chaque utilisateur, et qui assure la durabilité des données. Le principal
mécanisme de redondance utilisé pour assurer la durabilité des données est basé sur le code
correcteur d’erreur CCE. US utilise une autorité centralisée pour controéler le systeme et localiser
les données. Toutefois, les efforts actuels tentent de controler et d’administrer le systeme d’'une

facon distribuée pour peremttre un passage a grande échelle.



170 Annex

C.4 L’état de l’art et les motivations

Bien que I'état de I'art sur I'architecture des systemes de fichiers et de sauvegarde distribuée
est abondant, la plupart de ces systemes sont configurés de facon statique pour offrir durabilité
et/ou disponibilité des données avec seulement une connaissance superficielle de la facon dont
la configuration aura un impact sur la performance globale. Certains systémes permettent aux
données d’étre reproduites et mises en cache sans contraintes sur le cofit de 'espace de stockage.
Ces configurations conduisent a gaspiller la bande passante et le volume de stockage et ne
fournissent pas un niveau prédéfini et clair de durabilité et de disponibilité. D’ot1 I'importance

de I’évaluation approfondie des systémes de stockage P2P avant leur mise en service.

C.4.1 La disponibilité des pairs

Un probléeme majeur dans toute application P2P est que les pairs sont libres de joindre et
de quitter temporairement (un temps long ou court) le systéme a tout moment. Certains pairs
peuvent échouer a cause de problemes matériels ou logiciels, puis ils quittent définitivement
le systeme. Ce phénomene de quitter de de se connecter de/au réseau est nommé churn. En
général, rejoindre le systéme n’a aucun impact remarquable sur le systeme. Toutefois, le départ
et les événements d’échec ont un impact négatif important parce qu’ils peuvent causer des
pertes de données.

BinzenhoFer et Leibnitz [11] ont proposé un algorithme distribué pour estimer le taux de
churn dans les systemes DHT (overlay structuré) en échangeant des observations de mesures
entre une liste de voisins (e.g. list de successeurs dans Chord ou leafs dans Pastry).

Ramabhadran et Pasquale ont analysé, dans [75], le All-pairs-ping data set [90] (trace de
données), qui rapporte des mesures pour le temps de disponibilité et le temps d’indisponibilité
pour les noeuds de PlanetLab [74]. En tracant la fonction de distribution de chaque durée
(temps de disponibilité/indisponibilité), ils ont trouvé qu'une distribution exponentielle est un
ajustement “fit” raisonnable a la fois pour les durées de disponibilité et d’indisponibilité des

noeuds de PlanetLab.



C.4 L’état de I'art et les motivations 171

Caractériser la disponibilité des machines dans des environnements locaux et étendus a été
I'objectif de [69]. Dans ce papier, Nurmi, Brevik et Wolski ont analysé un ensemble de trois
traces de données (data set en anglais), ou chaque trace mesure la disponibilité des machines
dans un contexte différent. Ils ont ajusté les distributions empiriques avec quatre distributions
statistiques sur chaque trace de données et ils ont évalué aussi la qualité de leur ajustement “fit”
par des outils statistiques. Ils ont trouvé que le modéle hyper-exponentiel correspond plus ex-
actement aux durées de disponibilité des machines que I’exponentiel, Pareto, ou la distribution

de Weibull. Cette étude supporte une hypothese principale dans nos modeles.

C.4.2 La durée de vie et la disponibilité des données

Peu d’études ont développé des modeles analytiques pour les systemes P2P de sauvegarde et
de stockage dans 'objectif de comprendre, d’'une part, les compromis possibles entre la disponi-
bilité et la durée de vie des données, et d’autre part, la redondance impliquée dans le stockage
des données et la fréquence de réparation. En plus, des modles qui capturent le comportement
des deux politiques du processus de recouvrement (eager et lazy), et les deux mécanismes de
réplication dans la modélisation, tout en incluant, a la fois, les déconnexions temporaires et
permanentes des pairs ne sont pas encore bien étudiés.

Dans [8], Bhagwan, Savage et Voelker ont proposé une analyse probabiliste de I'efficacité
de la réplication au niveau de I'ensemble du fichier et au niveau des fragments, ainsi que pour
lefficacité de CCE. IIs ont étudié le cofit pour maintenir un niveau donné de disponibilité a long
terme, par le recouvrement des données manquantes régulierement apres chaque instant t (par
exemple dix mois). Ils ont montré que l'utilisation de CCE rend le systeme plus évolutif que les
deux niveaux de la réplication.

Cependant, cette étude ne donne que la disponibilité prévue d’un fichier quelconque stocké
dans le systeme basée uniquement sur le facteur de réplication et sur la disponibilité des pairs.
En outre, les auteurs négligent le facteur de largeur de bande et ne considerent que les cofits
de stockage.

L’objectif principal de [75] est 'analyse d’'un systeme de stockage qui utilise la réplication



172 Annex

pour assurer la fiabilité des données. Cette analyse ne s’applique pas aux systemes basés sur
CCE.

Duminuco, Biersack et En-Najjary [36] ons proposé une méthode proactive pour réduire le
colit de maintenance, en particulier l'utilisation de bande passante, basée sur une estimation
du taux de départ des noeuds qui stockent des données.

Dans [6], Bernard et Le Fessant ont proposé une technique pour estimer la fiabilité des
systemes P2P de sauvegarde des données et optimiser leurs performances en introduisant un
nouveau critére, “I'age des pairs”. Plus le pair reste connecté au systéme, plus on peut supposer
qu’il restera en ligne. En sélectionnant soigneusement les pairs sur lesquels des données sont
stockées, les cofits de la réparation peuvent étre réduits de facon importante tout en assurant
un niveau élevé de durabilité. Les auteurs ont décrit une méthode pour estimer ’age des pairs
et ils valident leur méthode par des simulations.

Dans [28], Dalle et al. ont développé un modele stochastique basé sur une approximation
“fluid” pour caractériser la moyenne et I'écart type de la durée de vie des données dans un
systeme P2P de sauvegarde des données, tout en tenant compte du fait que de nombreux blocs
de données sont perdus au méme moment lorsqu’un pair quitte définitivement le systeme. Ils
ne considerent pas le taux de “churn” et n’étudient pas la disponibilité des données. IIs ont
étudié un systeme qui ne produit jamais de fragments redondants a la suite d’une déconnexion
temporaire. Un mécanisme de recouvrement est alors déclenché afin de récup’erer les frag-
ments manquants d’'un bloc de données, aprés un échec, si son disponibilité est inférieure a
un seuil prédéfini. Le processus de récupération tend a réparer le plus vite possible tous les
fragments manquants du bloc considéré de données, des qu'un nombre suffisant de fragments

sont disponibles dans le systéme.



C.5 Contribution de la thése 173

C.5 Contribution de la these

Nous abordons dans cette these, la durée de vie des données et leur disponibilité dans des
systemes distribuée P2P de stockage et de sauvegarde. Dans de tels systémes, les données
ne sont plus stockées sur des bandes magnétiques tres robustes, fiables et cheéres, mais sur
les disques durs des ordinateurs (pairs) disponibles dans le réseau. Bien que peu coliteux,
ces systemes de stockage posent de nombreux problémes de fiabilité, de confidentialité, de

disponibilité, de routage, de performance, etc.

Cette these évalue et compare les performances de systémes de stockage de données sur des
réseaux de pairs en termes de longévité des données et de leur disponibilité. Deux mécanismes
de récupération de données perdues sont considés. Le premier mécanisme est centralisé et
repose sur l'utilisation d’'un serveur pouvant récupérer plusieurs données a la fois alors que le

second mécanisme est distribué.

Notre premiere contribution a I'analyse de la durée de vie des données et de leur disponi-
bilité dans ces systemes est [3]. Dans cette étude, des hypotheses simples ont été considérées.
En particulier, nous avons supposé dans [3] que la disponibilité des machines et le processus
de récupération sont exponentiellement distribués, en suivant les hypothéses et les résultats
de [75, 11, 31]. Bien que les modeles soient simples, ils intégrent em méme temps le com-
portement des deux politiques de la réparation (eager et lazey), et les deux mécanismes de
recouvrement (réplication et CCE), et ils prennent en compte, les déconnexions temporaires et
permanentes des pairs. Afin d’avoir des formules simples et explicites, nous avons introduit des
approximations “fluid”, sous des hypothéses simples, qui estiment le nombre moyen de frag-
ments disponibles dans les systemes P2P de stockage et de sauvegarde basés sur la réplication

ou CCE.

Cependant, le processus de recouvrement dans les systémes basés sur CCE peut différer de
celui utilisé dans les systemes répliqués. Dans les systemes basés sur CCE, les fragments inac-
cessibles sont constamment récupérés, en exigeant le téléchargement en parallele de plusieurs

fragments (constituant "un bloc”). L’hypothése que le processus de récupération suit une dis-



174 Annex

tribution exponentielle, faite dans des efforts récents de modélisation y compris notre premiere
contribution, est faite surtout faute des études caractérisant la distribution “réelle” du processus
de récupération. Cette these vise a remplir ce manque par une étude empirique. A cette fin,
et pour comprendre comment le processus de récupération et le processus de téléchargement
peuvent étre mieux modélisés, nous avons implémenté ces processus dans le simulateur de
réseau au niveau packets NS-2 [39]. Les détails d'implémentation ont été présents dans [31].
Nous menons également plusieurs expériences couvrant une grande variété de scénarios. Nous
montrons que le temps de téléchargement des fragments suit approximativement une distribu-
tion exponentielle dans le plus part des experiences faites. Nous montrons aussi que le temps
de téléchargement des blocs et le temps de réparation suivent essentiellement une distribution

hypo-exponentielle ayant plusieurs phases distinctes, cf. [32].

S’appuyant sur les conclusions de [32], nous avons développé dans [30] des modeles
markoviens pour étudier la durée de vie des données et leur disponibilité dans des systemes
de stockage P2P en supposant que le temps de téléchargement des fragments suit une distribu-
tion exponentielle et que le processus de recouvrement suit une distribution hypo-exponentielle.

Les modeles en [30] sont donc plus généraux et réalistes que ceux considérés dans [3].

Pour chaque mécanisme de recouvrement nous avons considéré que la disponibilité des
machines est exponentiellement distribuée dans les modeles en [3, 30]. Cependant, dans
[69], il est montré que la disponibilité des machines est mieux modélisée avec une distribu-
tion hyper-exponentielle qu’avec une distribution exponentielle, Pareto, ou de Weibull. C’est
pourquoi, nous avons proposé dans [29] et [33] respectivement des modeles plus élaborés que
ceux présentés dans [3] et [30] ou la disponibilité des machines est hyper-exponentiellement
distribuée. Nos modeles s’appliquent a différents environnements distribués. Ils permettent
d’évaluer I'impact de chaque parametre du systéme sur les performances. En particulier, nous
montrons comment nos résultats peuvent étre utilisés pour garantir la qualité de service. Les
principales hypotheses faites dans nos modeles sont validées soit par des simulations au niveau

paquet soit par des traces réelles recueillies dans différents environnements distribués.

Bien que notre modele de simulation au niveau packet [31] soit capable de prédire avec



C.5 Contribution de la thése 175

précision le comportement des processus de recouvrement et de téléchargement, tout en con-
sidérant I'impact de plusieurs contraintes telles que 'hétérogénéité des pairs et la topologie du
réseau physique, le temps de simulation peut devenir excessivement long pour de tres grands
réseaux. Pour surmonter cette restriction de passage a I’échelle nous proposons et analysons un
algorithme efficace au niveau flux, que nous avons appelé le “progressive-filling flow-level algo-
rithm” or PFFLA. L’algorithme est simple et utilise le concept de “remplissage d’eau” (ou I'équité
min-max), d’ou le nom. Il permet de caractériser le temps de réponse des téléchargements en

paralléle dans un systéme de stockage distribué. Cet algorithme a ete validé par simulations.






BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

(6]

[7]

(8]

(9]

A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J.R. Douceur, J. Howell, J. R.
Lorch, M. Theimer, and R. P. Wattenhofer. Farsite: Federated, available, and reliable
storage for an incompletely trusted environment. In in Proc. of the 5th Symposium on
Operating Systems Design and Implementation (OSDI), USENIX, Boston, MA, USA, De-
cember 2002. 7, 163

Allmydata: Unlimited Online Backup, Storage, and Sharing. www.allmydata.com/. 7,
163

S. Alouf, A. Dandoush, and P. Nain. Performance analysis of peer-to-peer storage sys-
tems. In Proc. of 20th International Teletraffic Congress (ITC), volume 4516 of LNCS,
pages 642-653, Ottawa, Canada, 17-21 June 2007. 22, 23, 89, 173, 174

Azureus Wiki. http://azureuswiki.com/index.php/
DistributedTrackerAndDatabase. 5

F. Baskett, K.M. Chandy, R.R Muntz, and F.G Palacios. Open, closed, and mixed networks
of queues with different classes of customers. J. ACM, 22(2):248-260, 1975. 31

S. Bernard and F. Le Fessant. Optimizing peer-to-peer backup using lifetime estima-
tions. In Proc. of 2nd International Workshop on Data Management in Peer-to-Peer Systems
(Damap’09), Saint-Petersburg, Russia, March 22 2009. 21, 135, 172

D. Bertsekas and R. Gallager. Data Networks, 2nd ed. Prentice Hall, New Jersey, 1992.
111,113,115

R. Bhagwan, D. Moore, S. Savage, and G.M. Voelker. Replication strategies for highly
available peer-to-peer storage. In Future Directions in Distributed Computing, volume
2584 of Lecture Notes in Computer Science, pages 153-158. Springer, 2003. 11, 16, 20,
165,171

R. Bhagwan, S. Savage, and G. Voelker. Understanding availability. In Proc. of 2nd IPTPS,

Berkeley, California, February 2003. 52
177



178

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G.M. Voelker. Total Recall: System support
for automated availability management. In Proc. of ACM/USENIX NSDI 04, pages 337-
350, San Francisco, California, March 2004. 7,9, 11, 12, 16, 52, 163, 165, 168

A. Binzenhofer and K. Leibnitz. Estimating churn in structured p2p networks. In Proc.
of 20th International Teletraffic Congress (ITC), volume 4516 of LNCS, pages 630-641,
Ottawa, Canada, 17-21 June 2007. 18, 22,170, 173

Bittorrent. http://www.bittorrent.com, 2001. 5

C. Blake and R. Rodrigues. High availability, scalable storage, dynamic peer networks:
Pick two. In Proc. of HotOS IX, Lihue, Hawaii, May 2003. 21

W.J. Bolosky, J.R. Douceur, D. Ely, and M. Theimer. Feasibility of a serverless distributed
file system deployed on an existing set of desktop pcs. SIGMETRICS Perform. Eval. Rev.,
28(1):34-43, 2000. 7, 163

T. Bonald and A. Proutiere. Insensitive bandwidth sharing in data networks. Queueing
Systems, 44:69-100, 2003. 20, 111

Jean-Yves Le Boudec. Rate adaptation, Congestion Control and Fairness: A Tutorial. Ecole
Polytechnique Fédérale de Lausanne (EPFL), Dec 2008. 20, 110, 111, 113

J.W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain approach to
reliable distribution of bulk data. SIGCOMM Comput. Commun. Rev., 28(4):56-67, 1998.
9,11,131,134

K. Calvert, M. Doar, and E.W. Zegura. Modeling Internet topology. IEEE Communications
Magazine, June 1997. 93, 144

G. Carofiglio, R. Gaeta, M. Garetto, P. Giaccone, E. Leonardi, and M. Sereno. A fluid-
diffusive approach for modelling p2p systems. In MASCOTS ’06: Proceedings of the 14th
IEEE International Symposium on Modeling, Analysis, and Simulation, pages 156-166,
Washington, DC, USA, 2006. IEEE Computer Society. 135

M. Castro and B. Liskov. Practical Byzantine fault tolerance. In Proc. of OSDI 00, New
Orleans, Louisiana, February 1999. 15

Y. Chen, J. Edler, A. Goldberg, A. Gottlieb, S. Sobti, and P. Yianilos. A prototype im-
plementation of archival Intermemory. In Proc. of ACM DL 99, pages 28-37, Berkeley,
California, August 1999. 7, 9, 14, 163



BIBLIOGRAPHY 179

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Y. Chiu and D.Y. Eun. Minimizing file download time in stochastic peer-to-peer networks.
IEEE/ACM Trans. Netw., 16(2):253-266, 2008. 19, 110

B.G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon, M.F. Kaashoek, J. Kubia-
towicz, and R. Morris. Efficient replica maintenance for distributed storage systems. In
NSDI'06: Proceedings of the 3rd conference on Networked Systems Design & Implementa-
tion, pages 4-4, Berkeley, CA, USA, 2006. USENIX Association. 11, 13

I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed anonymous
information storage and retrieval system. In Proc. of Workshop on Design Issues in
Anonymity and Unobservability, Berkeley, California, volume 2009 of Lecture Notes in
Computer Science, pages 46—66, July 2000. 3, 7, 14, 158, 163

B. Cohen. The BitTorrent protocol specification. http://wiki.theory.org/
BitTorrentSpecification, January 2001. 3, 158

Condor: High throughput computing. http://www.cs.wisc.edu/condor/, 2007. 23,
52

F. Dabek, F. Kaashoek, D. Karger, R. Morris, and L. Stoica. Wide-area cooperative storage
with CFS. In Proc. of ACM SOSP 01, pages 202-215, Banff, Canada, October 2001. 6, 7,
9,10, 12,13, 15, 16, 161, 163, 165, 168

O. Dalle, F. Giroire, J. Monteiro, and S. Pérennes. Analysis of failure correlation impact
on peer-to-peer storage systems. In Proc. of 9th International Conference on Peer-to-Peer
Computing (P2P09), Seattle, USA, September 8-11 2009. To appear. 21, 89, 172

A. Dandoush, S. Alouf, and P. Nain. P2p storage systems modeling, analysis and eval-
uation. Technical Report RR-6392, INRIA Sophia Antipolis, December 2007. 23, 89,
174

A. Dandoush, S. Alouf, and P. Nain. Performance analysis of centralized versus dis-
tributed recovery schemes in P2P storage systems. In Proc. of IFIP/TC6 Networking 2009,
volume 5550 of LNCS, pages 676-689, Aachen, Germany, May 11-15 2009. 23, 174

A. Dandoush, S. Alouf, and P. Nain. A realistic simulation model for peer-to-peer stor-
age systems. In Proc. of 2nd International ICST Workshop on Network Simulation Tools
(NSTOOLS09), in conjunction with the 4th International Conference (VALUETOOLS09),
Pisa, Italy, October 19 2009. 22, 23, 29, 65, 118, 173, 174

A. Dandoush, S. Alouf, and P. Nain. Simulation analysis of download and recovery
processes in P2P storage systems. In Proc. of 21st International Teletraffic Congress (ITC),
Paris, France, September 2009. 23, 29, 30, 65, 174



180

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Abdulhalim Dandoush, Sara Alouf, and Philippe Nain. Lifetime and availability of data
stored on a P2P system: Evaluation of recovery schemes. Technical Report RR-7170,
INRIA Sophia Antipolis, January 2010. 23, 174

A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data
via the em algorithm. J. Royal Statist. Soc., 39(1):1-37, 1977. 97, 98

A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran. Network
coding for distributed storage systems. In Proc. of 26th IEEE Conference on Computer
Communications (INFOCOM), Anchorage, Alaska, USA, May 6-12 2007. 9, 22, 27, 129,
131,134

A. Duminuco, E. Biersack, and T. En-Najjary. Proactive replication in distributed stor-
age systems using machine availability estimation. In Proc. of the 2007 ACM CoNEXT
conference, pages 1-12, New York, NY, USA, 2007. ACM. 21, 172

K. Eger, T. Hobfeld, A. Binzenhofer, and G. Kunzmann. Efficient simulation of large-
scale P2P networks: Packet-level vs. flow-level simulations. In Proc. of UPGRADE-CN’07,
Monterey, California, June 2007. 137

eMule. http://www.emule-project.net, 2002. 3, 158

K. Fall and K. Varadhan. The NS manual, the VINT project, UC Berkeley, LBL, USC/ISI,
and Xerox PARC. http://www.isi.edu/nsnam/ns/ns-documentation.html, Novem-
ber 2008. 22, 137, 174

N. Feamster, L. Gao, and J. Rexford. How to lease the internet in your spare time. ACM
SIGCOMM Computer Communication Review, 37:61-64, 2007. 101

A.A. Fisk. Dynamic Query Protocol. http://www.ic.unicamp.br/ celio/peer2peer/
gnutella-related/gnutella-dynamic-protocol.htm, 2001. 3, 4, 10, 158, 159

U.C. Frank, B. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon, M. Kaashoek,
J. Kubiatowicz, and R. Morris. Efficient replica maintenance for distributed storage
systems. In In Proc. of NSDI, pages 45-58, 2006. 16

S. Ben Fredj, T. Bonald, A. Proutiere, G. Régnié, and J.W. Roberts. Statistical band-
width sharing: a study of congestion at flow level. SIGCOMM Comput. Commun. Rev.,
31(4):111-122, 2001. 19, 110

GEANT: a pan-European backbone which connects Europe’s national research and edu-
cation networks. http://www.geant .net/server/show/nav.159. 95



BIBLIOGRAPHY 181

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

A.V. Goldberg and P.N. Yianilos. Towards an archival Intermemory. In Proc. of ADL 98,
pages 147-156, Santa Barbara, California, April 1998. 7, 9, 14, 163

C. Grinstead and J. Laurie Snell. Introduction to Probability. American Mathematical
Society, 1997. 33, 39, 48, 68, 73, 81

A. Guha, N. Daswani, and R. Jain. An experimental study of the skype peer-to-peer VoIP
system. In Proc. of 5th IPTPS, Santa Barbara, California, February 2006. 30, 54, 92, 95,
96, 97, 116, 145

A. Haeberlen, A. Mislove, and P. Druschel. Glacier: highly durable, decentralized storage
despite massive correlated failures. In NSDI'05: Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implementation, pages 143-158, Berkeley,
CA, USA, 2005. USENIX Association. 12, 16

R.W. Hamming. Error detectmg and correcting codes. Bell System Technical Journal,
XXVI(2):147-160, April 1950. 8, 164

P. Harrison and S. Zertal. Queueing models of RAID systems with maxima of waiting
times. Performance Evaluation Journal, 64(7-8):664-689, August 2007. 26, 30, 36, 64,
65, 70, 89, 97

T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley. ns-3 project goals. In WNS2 06:
Proceeding from the 2006 workshop on ns-2: the IP network simulator, page 13, New
York, NY, USA, 2006. ACM. 134

D.P. Heyman, T.V. Lakshman, and A.L. Neidhardt. A new method for analysing feedback-
based protocols with applications to engineering web traffic over the internet. In SIG-
METRICS "97: Proceedings of the 1997 ACM SIGMETRICS international conference on Mea-
surement and modeling of computer systems, pages 24-38, New York, NY, USA, 1997.
ACM. 19, 110

T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson. Leveraging Bittorrent for end
host measurements. In Proc. 8th Passive and Active Measurement Conference, Louvain-la-
neuve, Belgium, April 2007. 95

D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin. Consistent
hashing and random trees: distributed caching protocols for relieving hot spots on the
world wide web. In STOC 97: Proceedings of the twenty-ninth annual ACM symposium
on Theory of computing, pages 654-663, New York, NY, USA, 1997. ACM. 6, 91

Kazaa media desktop. http://www.kazaa.com, 2001. 3, 4, 158, 159



182

[56]
[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]
[65]

[66]

[67]

[68]

[69]

[70]

L. Kleinrock. Queueing Systems, Vol. 1. J. Wiley, New York, 1975. 34
L. Kleinrock. Queueing Systems, Vol. 2. J. Wiley, New York, 1975. 119

H. Kobayashi and B. L. Mark. On queuing networks and loss networks. In Proc. 1994
Annual Conference on Information Sciences and Systems, Princeton, NJ, March 1994. 31

J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi,
S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. Oceanstore: An architec-
ture for global-scale persistent storage. In Proc. of ACM ASPLOS, pages 190-201, Boston,
Massachusetts, November 2000. 7,9, 11, 15, 163

T.G. Kurtz. Solutions of ordinary differential equations as limits of pure jump markov
processes. Journal of Applied Probability, 7(1):49-58, April 1970. 35, 69

Mathieu Lacage. Ns-3 unmodified posix api. http://code.nsnam.org/mathieu/ns-3-
simu/. 134

F.J. Massey. The kolmogorov-smirnov test for goodness of fit. J. Am. Statist. Assoc.,
46(253):68-78,1951. 96

L. Massoulié and J.W. Roberts. Bandwidth sharing and admission control for elastic
traffic. Telecommunication Systems, 15(1-2):185-201, 2000. 19, 110

J. McCaleb. eDonkey2000. http://www.eDonkey.com/, 2000. 10

A. Medina, A. Lakhina, I. Matta, and J. Byers. Brite: Boston University representative
Internet topology generator. http://www.cs.bu.edu/brite/. 93

Napster. http://www.napster.com, 1999. 3, 5, 10, 158, 160

The network simulator project, UC Berkeley, LBL, USC/ISI, and Xerox PARC. http:
//nsnam.isi.edu/nsnam/index.php/Main Page. 87, 132

M.F. Neuts. Matrix Geometric Solutions in Stochastic Models. An Algorithmic Approach.
John Hopkins University Press, Baltimore, 1981. 33, 38, 46, 47, 67, 72, 73, 80

D. Nurmi, J. Brevik, and R. Wolski. Modeling machine availability in enterprise and
wide-area distributed computing environments. In Proc. of Euro-Par 2005, volume 3648
of LNCS, pages 432-441, Lisbon, Portugal, August 2005. 19, 23, 26, 29, 51, 52, 53, 54,
59, 64, 82,171, 174

S. Oechsner and P. Tran-Gia. Performance evaluation of a reliable content mediation
platform. In Proc. of 20th International Teletraffic Congress (ITC), volume 4516 of LNCS,
pages 154-165, Ottawa, Canada, 17-21 June 2007. 135



BIBLIOGRAPHY 183

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

M. Olsson. The EMpht-programme. Technical report, Department of Mathematics,
Chalmers University of Technology, 1998. 97, 98

D.A. Patterson, G. Gibson, and R.H. Katz. A case for redundant arrays of inexpensive
disks (raid). In SIGMOD ’88: Proceedings of the 1988 ACM SIGMOD international con-
ference on Management of data, pages 109-116, New York, NY, USA, 1988. ACM. 8,
164

L. Peterson, S. Shenker, and J. Turner. Overcoming the internet impasse through virtual-
ization. In Proc. of the 3rd ACM Workshop on Hot Topics in Networks (HotNets-III, 2004.
101

PlanetLab. An open platform for developing, deploying, and accessing planetary-scale
services. http://www.planet-1lab.org/, 2007. 18, 23, 52, 90, 170

S. Ramabhadran and J. Pasquale. Analysis of long-running replicated systems. In Proc.
of IEEE Infocom, Barcelona, Spain, April 2006. 18, 19, 21, 22, 26, 29, 52, 53, 64, 82, 88,
89, 96,170,171, 173

C. Randriamaro, O. Soyez, G. Utard, and F. Wlazinski. Data distribution in a peer to peer
storage system. Journal of Grid Computing, 4(3):311-321, September 2006. 17, 168

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable content-
addressable network. In SIGCOMM ’01: Proceedings of the 2001 conference on Applica-
tions, technologies, architectures, and protocols for computer communications, pages 161—
172, New York, NY, USA, 2001. ACM. 6

LS. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of SIAM,
8(2):300-304, June 1960. 9, 27, 130, 131, 134

Renater: Le Réseau National de télécommunications pour la Technologie,
I’Enseignement et la Recherche. http://www.renater.fr. 95

S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in a dht. In Proc. of the
USENIX Annual Technical Conference, Boston, MA, June 27-July 2 2004. Awarded best
paper. 18

R. Rodrigues and B. Liskov. High availability in dhts: Erasure coding vs. replication. In
Peer-to-Peer Systems IV 4th International Workshop IPTPS 2005, Ithaca, New York, USA,
February 2005. 21

J. Rothenberg. Ensuring the longevity of digital documents. Scientific American, pages
642-47,1995. 14



184

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing
for large-scale peer-to-peer systems. In In Proc. of IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), volume 2218 of LNCS, pages 329-350,
Heidelberg, Germany, November 2001. 5, 6, 91, 160, 161

A. Rowstron and P. Druschel. Storage management and caching in PAST, a large-scale,
persistent peer-to-peer storage utility. In Proc. of ACM SOSP ’01, pages 188-201, Banff,
Canada, October 2001. 6, 7,9, 10, 16, 161, 163, 164

S. Saroiu, P.K. Gummadi, and S.D. Gribble. A measurement study of peer-to-peer file
sharing systems. In Proc. of Multimedia Computing and Networking (MMCN), San Jose,
Cailfornia, January 2002. Best Paper Award. 30, 54

Fips 180-1. secure hash standard. u.s. department of commerce nist, national technical
information service, springfield, va. http://www.itl.nist.gov/fipspubs/fip180-1.
htm, 1993. 6, 161

RFC 3174 - US Secure Hash Algorithm 1 (SHA1l). http://www.faqgs.org/rfcs/
rfc3174.html. 6, 14, 161

O. Soyez. Stockage dans les systemes pair a pair. PhD thesis, Jules Verne University of
Picardie, France, November 2005. 17, 168

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scalable
Peer-to-Peer lookup service for Internet applications. In In Proc. of ACM SIGCOMM,
pages 149-160, San Diego, California, August 2001. 5, 6, 15, 91, 160, 161, 168

J. Stribling. PlanetLab - All Pairs Pings. http://pdos.csail.mit.edu/ strib/pl_app,
2005. 18, 52,170

J. Turner and D. Taylor. Diversifying the internet. In In Proc. IEEE GLOBECOM, pages
755-760, 2005. 101

UbiStorage. http://http://www.ubistorage.com. 6,9, 13, 17, 161, 168

G. Utard and A. Vernois. Data durability in peer to peer storage systems. In Proc. of
IEEE/ACM CCGRID 2004 (GP2PC 2004), pages 90-94, Chicago, Illinois, April 2004. 11,
16, 21

E. Varki. Response time analysis of parallel computer and storage systems. IEEE Trans.
Parallel Distrib. Syst., 12(11):1146-1161, 2001. 19, 110



BIBLIOGRAPHY 185

[95]

[96]

[971]

[98]

[99]

[100]

[101]

B. Warner, Z. Wilcox-O’Hearn, and R. Kinninmont. Tahoe: A Secure Distributed Filesys-
tem. http://allmydata.org/ warner/pycon-tahoe.html. 17, 134

B.M. Waxman. Routing of multipoint connections. IEEE Journal on Selected Areas in
Communications, 6(9):1617-1622, 1988. 93

H. Weatherspoon and J. Kubiatowicz. Erasure coding vs. replication: A quantitative
comparison. In Proc. of IPTPS 02, Cambridge, Massachusetts, volume 2429 of Lecture
Notes in Computer Science, pages 328-337, March 2002. 11, 165

R.W. Wolff. Stochastic Modeling and the Theory of Queues. Prentice-Hall, 1989. 40
Waula: Secure Online Storage. http://www.wuala.com/. 7, 163

S. F. Yashkov and A. S. Yashkova. Processor sharing: A survey of the mathematical
theory. Automation and Remote Control, 2007. 153

B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J.D. Kubiatowicz. Tapestry:
A resilient global-scale overlay for service deployment. IEEE Journal on Selected Areas in
Communications, 22:41-53, 2004. 5, 14, 160



