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Avant-propos

Ce mémoire est issu des travaux effectués au sein de l’Institut Fresnel depuis mon recrutement à
l’Université Paul Cézanne en tant que maître de conférences. Je n’y aborde donc pas du tout mes re-
cherches effectuées lors de mon DEA de Physique théorique sur les vortex dans l’hélium superfluide, ni
celles liées à ma thèse sur la modélisation biologiquement réaliste de neurones isolés ou en réseaux, ni
celles sur la modélisation du cytosquelette cellulaire réalisées lors de mon post-doc. C’est très certaine-
ment parce que j’ai déjà changé plusieurs fois de thématiques de recherches en quelques années que, par
contrecoup, je me suis consacré quasiment exclusivement à l’étude des fibres optiques microstructurées
depuis mon arrivée à l’Institut Fresnel. Ce sujet de recherche très ciblé est en fait, dans le détail des tra-
vaux réalisés, nettement plus varié qu’il ne le semble au premier abord. En effet, il couvre au moins trois
aspects qui me semblent tout aussi pertinents les uns que lesautres et qui se fécondent mutuellement.

En premier lieu la partie élaboration de méthodes numériques pour l’étude des fibres microstructu-
rées (ou de tout autre guide d’ondes invariant par translation suivant un axe principal) est certainement
celle à laquelle j’ai consacré le plus de temps et d’efforts.Il ne pouvait en être autrement pour deux rai-
sons. L’équipe de recherche de l’Institut Fresnel à laquelle j’ai la chance d’appartenir, à savoir l’équipe
CLARTE, a une très solide réputation dans la modélisation des phénomènes électromagnétiques depuis
les travaux conduits dans les années soixante-dix sur les réseaux de diffraction au sein du Laboratoire
d’Optique Électromagnétique. La seconde raison est qu’il n’y avait pas à mon arrivée à l’Institut Fresnel
de méthode satisfaisante pour étudier les fibres optiques microstructurées et que l’étude de guides d’onde
éventuellement aussi complexes ne peut pas s’envisager avec une unique méthode numérique.

Le second aspect de cette thématique de recherches est l’étude des propriétés physiques de ces fibres
d’un nouveau type. Les résultats acquis n’auraient bien évidemment pas pu l’être sans le développement
des méthodes numériques et leurs efficaces programmations informatiques.

Le dernier aspect concerne la conception de profils de fibres ayant des propriétés particulièrement
intéressantes pour les applications, que ces dernières soient dans le domaine des télécoms ou dans le
moyen infrarouge. Cet aspect est celui qui m’a permis d’interagir le plus fortement avec des équipes
d’expérimentateurs capables de fabriquer et de caractériser ces fibres microstructurées. Là encore, les
avancées réalisées n’ont pu l’être que grâce aux résultats plus fondamentaux acquis auparavant sur les
propriétés physiques de ces fibres. Ces études plus appliquées ont elles-mêmes généré des questions
s’intégrant complètement dans l’aspect précédent.

Ces mouvements de va-et-vient font qu’il est difficile de trouver une présentation linéaire idéale de
ces travaux de recherche. C’est donc une solution de compromis que j’espère être la meilleure possible
que j’ai choisie, et qui est décrite dans la table des matières. Cet ordre de présentation est celui que
j’avais choisi pour les parties que j’avais rédigées pour notre ouvrage collectifFoundations of Photonic
Crystal Fibrespublié par Imperial College Press en 2005. Ce mémoire est en partie basé sur ce travail
mais de nombreux progrès réalisés depuis y sont incorporés,je pense notamment aux nouvelles méthodes
numériques disponibles, aux résultats sur les fibres de typeARROW, à la généralisation du diagramme
de transition du second mode, ou à l’obtention d’une fibre à cœur creux à bandes photoniques interdites
en verre de haut indice pour les grandes longueurs d’ondes. Par ailleurs, quelques petites erreurs ou
imprécisions ont été corrigées. Une autre approche assez répandue dans ce type de document aurait été
de rédiger une courte synthèse des travaux de recherche effectués. Ce n’est pas celle que j’ai suivie ici
pour deux raisons. La première est que n’ayant pas rédigé de thèse en optique guidée ni même dans un
quelconque thème de la photonique, j’ai souhaité rédiger unmémoire relativement complet, qui puisse
(me) servir de référence. La seconde est l’existence de notre ouvrage collectif. J’y ai passé beaucoup de
temps, peut-être trop du point de vue de l’efficacité administrativo-universitaire, tout d’abord en mettant
en forme nos résultats précédents et en effectuant des travaux que je n’ai pas publiés dans des articles
mais qui me semblait indispensables à l’ouvrage. Maintenant que le livre est sorti depuis trois ans, et
que de nouvelles méthodes ont été élaborées, que des résultats supplémentaires ont été obtenus, que des
imprécisions ont été repérées, j’ai considéré comme nécessaire et opportun de rédiger ce mémoire sous
cette forme.

Pour finir cet avant-propos, je tiens à signaler que tous le calculs associés aux figures présentées ont



x

été effectués par des codes numériques que j’ai programmés ou dont je dispose du code source pour les
avoir conçus et pour avoir supervisé dans le détail leur réalisation par mes doctorants ou post-doctorants1.

1Je ne parle bien évidemment pas là des bibliothèques de calcul scientifiques comme PETSc, Lapack, Linpack, AMOS, . . .
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Chapitre 1

Introduction à l’étude des fibres optiques
microstructurées
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1.1 Un aperçu des fibres optiques microstructurées

Les fibres optiques microstructurées sont constituées d’unarrangement d’inclusions d’indice optique
différent de celui de la matrice dans laquelle elles se trouvent. Ces inclusions peuvent être circulaires ou
non, d’indice optique plus élevé ou non que celui de la matrice. Leur arrangement peut correspondre
à un sous ensemble d’un réseau périodique ou au contraire être disposé aléatoirement. Le nombre de
ces inclusions peut être de seulement trois à plusieurs centaines. On comprend donc bien que les fibres
microstructurées sont des guides d’onde d’une très grande variété et que leurs propriétés de guidage de
la lumière vont pouvoir être ajustées de façon précise du fait de l’étendue de l’espace des paramètres les
décrivant.

1.2 Les modes à pertes dans les fibres optiques microstructurées

1.2.1 Introduction

Une des caractéristiques essentielles des fibres optiques microstructurées est que leurs modes sont
des modes à pertes. C’est-à-dire que la constante de propagation des ces modes n’est pas purement réelle
mais possède une partie imaginaire non-nulle. Cette propriété a d’importantes conséquences aussi bien
sur les méthodes numériques permettant de les étudier que sur les propriétés physiques de ces mêmes
fibres.

Afin de détailler ce caractère à pertes des modes des fibres microstructurées, nous allons introduire
un type de fibre microstructurée très commun, celui des fibresmicrostructurées faites d’inclusions de bas
indice dans une matrice de haut indice et dont le coeur est constitué d’une région de la matrice : on parle
usuellement de fibres microstructurées à coeur plein (on verra ultérieurement que cette appellation est
incomplète). Pour simplifier la présentation nous considérerons que la zone regroupant un nombre limité
d’inclusions, appelée gaine optique, est de taille finie. Audelà cette zone, la matrice s’étend jusqu’à une
éventuelle gaine.
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Si l’on considère que la gaine est placée loin de la gaine optique et du coeur de la fibre, et que
l’on peut par conséquent négliger son influence, le guidage dans le coeur est alors uniquement dû au
nombre fini d’inclusions de bas indices plongées dans une matrice infinie de haut indice.A priori, la zone
d’inclusions n’isole pas parfaitement le coeur de la fibre dureste de la matrice puisque les inclusions ne
forment pas un ensemble connexe permettant ainsi une connexion entre la matrice extérieure et celle du
coeur. Physiquement, on peut imaginer que la lumière fuit ducoeur vers la matrice extérieure au travers
des portions de matrice existant entre les inclusions, et par conséquent, on peut s’attendre à l’existence
de pertes de confinement.

Dans le cas d’une interprétation par un guidage par réflexiontotale interne modifiée, dans laquelle
la gaine optique contenant les inclusions est remplacée parun matériau homogène ayant un indice de
réfraction inférieur à celui de la matrice (et donc du coeur), le coeur est complètement isolé de la matrice
extérieure. Il n’y a plus de connexion directe entre eux. Cependant, l’étendue spatiale de cette région
annulaire de bas indice est finie, et par conséquent des pertes par effet "tunnel" sont inévitables.

Que l’on suive le premier ou le second raisonnement, on arrive à la même conclusion : pour un
nombre fini d’inclusions, des pertes doivent se produire lors de la propagation du mode dans la fibre
microstructurée. Nous appellerons ces pertes : pertes de guidage ou pertes de confinement ou encore
pertes géométriques.

1.2.2 Modes à pertes d’un guide d’onde

Les pertes de confinement étant inévitables, les modes d’unefibre microstructurée décroissent lors
de la propagation. Ils ne sont donc plus appelés modes guidésmais modes à pertes. Ces modes ne sont
pas exclusifs des fibres microstructurées puisqu’ils apparaissent dans les fibres optiques convention-
nelles sous certaines conditions [1, 2]. Les équations vérifiées par les champs électromagnétiques étant
linéaires, les pertes sont proportionnelles à l’intensitédes champs. Des calculs simples montrent que dans
ce cas la décroissance des champs doit être exponentielle lelong de la direction de propagation. Ceci se
traduit par le fait que la constante de propagation du mode concerné, usuellement notéeβ, acquière une
partie imaginaire non nulle. Dans le cas des guides d’onde invariants le long de leur axe principal (usuel-
lementz), on sait que les modes sont caractérisés par une distribution des champs transverses invariante
selon la coordonnéez, qui est modulée par un facteur de phase de la formeexp(iβz). Pour les modes à
pertes,β ∈ C, et le facteur phase s’écrit :exp(iℜe(β)z) exp(iℑe(β)z) (ℜ etℑm étant respectivement la
partie réelle et la partie imaginaire). Pour qu’un mode décroisse dans la direction de propagation il faut
que les parties réelle et imaginaire deβ soient de même signe.

La prise en compte d’une partie imaginaire non nulle dans la constante de propagation afin de dé-
crire la décroissance des champs n’est qu’un des aspects desmodes à pertes (et certainement le plus
accessible). En effet l’utilisation d’une partie imaginaire complexe entraîne un certain nombre de dif-
ficulté s. Tout d’abord,β étant complexe, la valeur de la norme de la composante tranverse du vecteur
d’onde, notéek⊥, est elle aussi complexe puisqu’on a la relation :k2

⊥ + β2 = n2k2
0 dans laquellen

est l’indice de réfraction au point où la relation est considérée. Ceci a deux conséquences : la première
est que cela complique le choix de la racine carrée dans la relation précédente, c’est-à-dire qu’il faudra
définir la bonne coupure dans le plan complexe. La seconde estque les champs deviennent divergents
à grandes distances du coeur. Ceci entraîne que les champs nesont plus de carré intégrable ce qui nous
sort du cadre confortable des fonctions deL2(R2). Une autre conséquence est que les modes à pertes ne
sont plus orthogonaux entre eux au sens usuel[3], et que la complétude n’est plus assurée[2]. Ces consé-
quences semblent réduire la pertinence de la notion de modespuisque la non-orthogonalité des modes
génère un couplage entre eux.

Par ailleurs, comme il n’y a pas de relation d’ordre dansC, on ne pourra pas aisément classer les
modes à pertes comme on a peut le faire pour les modes guidés. Comme ces modes à pertes vont interve-
nir régulièrement au sein de ce document et que nous ne disposons pas encore d’une théorie parfaitement
achevée ou que cette dernière est encore inconnue du rédacteur, nous allons adopter une approche heu-
ristique afin de mieux cerner ces modes et leurs propriétés.
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1.2.3 Approche heuristique des propriétés physiques des modes à pertes

Pour comprendre les propriétés inhabituelles des modes à pertes il faut garder à l’esprit que les modes
sont définis pour une fibre qui est infiniment longue. La décroissance exponentielle du mode pour lesz
croissants étant équivalente à une croissance exponentielle pour lesz décroissants, les champs modaux
divergent donc quandz tend vers−∞. Nous allons montrer que cela implique que les champs doivent
diverger radialement dans le plan de section de la fibre.

Pour des raisons de simplicité, nous considérons une fibre à saut d’indice composé d’un coeur ayant
un indice de réfractionnco, d’une gaine optique d’indicenCL elle-même entourée d’une matrice d’indice
optique égal à celui du coeur c-a-dnco (voir la figure1.1). Dans une telle fibre tous les modes sont à pertes
du fait des pertes par effet "tunnel"[4, 5]. Intéressons nous au mode fondamental (à pertes), se propageant
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FIG. 1.1 – Modes à pertes et divergence radiale des champs.

vers lesz croissants, de cette structure. Dans le coeur, la distribution spatiale de la densité de puissance est
similaire à celle du mode fondamental d’un fibre à saut d’indice sans pertes. Elle est centro-symétrique
avec un maximum au centre du coeur. Dans la gaine optique, leschamps sont évanescents, et la densité
d’énergie décroît exponentiellement avec la distance au coeur de la fibre. La constante de propagation et
la norme du vecteur d’onde étant la même dans le coeur et dans la matrice entourant la gaine optique,
la quantité de puissance, qui a atteint le bord extérieur de la gaine optique, rayonne vers l’extérieur en
faisant un angleα avec ce bord :

α = cos−1

(ℜe(β)

nCOk0

)

. (1.1)

En termes de rayons optiques, un rayon originaire du bord de la gaine optique enz va parvenir à la côte
de référencez0 > z à une distance radialer(z) du centre du coeur telle que :

r(z) = ρCL + (z0 − z) tan α (1.2)

Toute la puissance émise du bord extérieur de la gaine optique dans un cylindre de longueur infinitésimale
dz situé enz se retrouve, à la côtez0, dans la section annulaire de rayonr(z) et de largeurdr = dz tan α.
La puissance émise dans cette couronne est par conséquent lapuissance totale émise à la côtéz pardz
divisé par l’aire de la couronne2πrdr. La puissance totale rayonnée par le cylindre infinitésimale étant
proportionnelle à la densité totale à la côtez et par conséquent àexp(−2ℑm(β)z)dz1, en dehors de la

1Le facteur 2 dans l’exponentielle provient de la puissance qui est une fonction quadratique des champs.
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gaine optique la densité de puissanceS(r) est proportionnelle à :

S(r) ∝ 1

r tan α
exp

[

−2ℑm(β)

(

z0 −
r − ρCL

tan α

)]

. (1.3)

La densité de puissance au centre du coeur enr = 0 enz0 étant proportionnelle àexp(−2ℑm(β)z0) , la
densité de puissance normalisée évaluée dans la matrice enz0 est donnée par :

S(r)

S(0)
∝ 1

r tan α
exp

[

2ℑm(β)

(

r − ρCL

tan α

)]

. (1.4)

ℑm(β) étant positive, on voit que la puissance diverge exponentiellement avec la distance radiale à l’axe
de la fibre.

Ce résultat peut sembler contre-intuitif mais cette divergence exponentielle de la puissance aux
grandes valeurs der est une des propriétés fondamentales des modes à pertes. Dans la pratique une
telle distribution de la puissance et des champs associés n’est pas réalisable. Les fibres réelles sont tou-
jours de taille finie et par conséquent, un raisonnement équivalent à celui qui vient d’être fait ci-dessus
doit être limité par la valeur dezs dez à laquelle la fibre débute. Si on tient compte de cette modification,
on trouve encore une croissance exponentielle de la puissance dans la section de la fibre, mais elle cesse
enr(zs), et elle devient nulle pour des valeurs der supérieures àr(zs). La puissance totale passant au
travers de la section de la fibre pour tous lesz possibles est égale à celle entrant enzs. La croissance
exponentielle dans le section de la fibre n’est pas en contradiction avec la conservation de l’énergie : elle
en est une conséquence directe. Ceci reste valable dans le cas d’un fibre infiniment longue, mais le flux
de puissance au travers de la section totale est alors infini quelque soitz.

1.2.4 Mise en garde mathématique

Dans l’exemple décrit précédemment, on a considéré au moinsimplicitement que les pertes par effet
tunnel étaient petites, et que leurs effets sur le mode devaient rester faibles. On a en quelque sorte adapté
les modes guidés (ℑm(β) = 0) de la fibre conventionnelle pour les transformer en modes à pertes en
permettant à la constante de propagationβ d’avoir une petite partie imaginaire. Mathématiquement cela
reviendrait à modifier le problème avec des conditions aux limites sans pertes en un problème avec des
conditions aux limites avec de faibles pertes sans pour autant reformuler tout le problème. Mais, ce type
de problème usuellement référencé comme un problème avec des conditions aux limites ouvertes (’open
boundary conditions’ en anglais) n’est pas facile à manipuler du point de vue mathématique.

Encore récemment, la seule manière rigoureuse de traiter les problèmes de ce type était de les éviter :
au lieu de considérer le système comme étant composé du coeurde la fibre et de la gaine optique avec
des conditions aux limites ouvertes au delà, nous aurions à considérer le système composé du coeur de la
gaine et du reste de l’univers de manière à préserver la conservation de l’énergie. Le défaut principal de
ce type d’approche est que les solutions sont alors associées à un continuum de valeurs réelles deβ. Les
modes à pertes, qui nous permettent d’analyser la physique des fibres ayant des gaines optiques finies
ou infinies ne sont pas les solutions naturelles du problème physique incluant la fibre et tout son milieu
extérieur.

Mais les solutions des véritables problèmes ayant des conditions aux limites ouvertes sont les modes
à pertes. Cependant, avec ces conditions, le système d’intérêt pratique (le coeur de la fibre, ou le coeur
et sa gaine optique) ne satisfait plus la conservation de l’énergie. Les opérateurs mathématiques à em-
ployer ne sont plus alors hermitiens, ce qui les rend nettement plus difficiles à étudier. Premièrement,
les fonctions propres de ces opérateurs non-hermitiens ne forment plus une base orthogonale complète,
mais un ensemble de fonctions non-orthogonales entre ellesqui peut être complète ou incomplète. Par
conséquent, décomposer un champ sur cet ensemble n’est pas immédiat, et les outils usuels faisant in-
tervenir la décomposition modale (i.e. la majorité des techniques employées en optique guidée) ne sont
plus utilisables. Deuxièmement, l’obtention de manière rigoureuse des solutions du problème physique
fait apparaître des difficultés. Les travaux présentés danscette habilitation n’en sont pas exempts : ainsi
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dans l’établissement de l’une des trois méthodes numériques développées pour étudier les fibres mi-
crostructurées, à savoir la méthode multipolaire2, l’établissement de la méthode multipolaire n’est pas
mathématiquement rigoureuse puisque une des étapes n’est pas justifiée. En effet, dans l’obtention de
l’identité de Wijngaard (détaillée dans la partie 1 de l’annexe B de la référence [6]), on fait appel à la
fonction de Green :

Ge = − i

4
H

(1)
0 (kM

⊥r). (1.5)

La valeurkM
⊥ n’est pas déterminée à cette étape de la démonstration, maispour des modes à perteskM

⊥
sera complexe avec une partie imaginaire positive entraînant que la fonction de Green utilisée n’est plus
de carré intégrable. La convolution avec cette fonction de Green faite dans la suite de l’établissement de
la méthode n’est donc plus mathématiquement justifiée. L’établissement de la méthode multipolaire pour
les modes guidés est bien rigoureuse pour les modes guidés, elle ne l’est plus, dans sa forme actuelle
en tout cas, pour les modes à pertes. On rencontrera des difficultés mathématiques liées elles-aussi aux
modes à pertes dans les sections relatives à la méthode de type éléments finis qui sera exposée dans le
chapitre2 dédié aux méthodes numériques pour l’étude fibres microstructurées.

Alors que la méthode multipolaire et la méthode éléments finis sont construites de manière totalement
différente : les deux fournissent des résultats dont l’accord est excellent pour de très nombreuses configu-
rations. Ceci nous rassurea posteriorisur la validité de nos approches en attendant qu’une clarification
mathématique ne soit fournie par nos collègues mathématiciens.

Ce travail de fond semble être en cours puisque l’étude des systèmes aux conditions aux limites
ouvertes est un sujet actuel de recherche. On peut citer notamment les travaux de P.T. Leung et K.M.
Wang [7–14]. Ces travaux semblent suggérer3 qu’un ensemble de modes à pertes d’une classe au moins
de problèmes aux conditions aux limites ouvertes, similaire à ceux qui nous intéressent, forme une base
complète et orthogonale si l’espace fonctionnel employé etson produit scalaire sont correctement définis.
Dans les travaux mentionnés ci-dessus, les solutions du problème ne constituent pas un continuum mais
un ensemble discret et complet de modes à pertes. Il n’est pasencore clairement établi que la modélisa-
tion des fibres microstructurées avec leurs modes à pertes rentre exactement dans le cadre mathématique
déterminé par Leunget al.mais c’est certainement ce type de travaux qui nous apportera les justifications
qui nous font défaut actuellement en terme de rigueur mathématique.

2Ceci ne signifie pas que les autres méthodes présentées dans ce mémoire en sont exemptes.
3Les précautions prises dans cette formulation sont volontaires et ne sont dues qu’à la compréhension partielle des travaux

mentionnés par l’auteur de ce mémoire.
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2.1 Introduction

2.2 The multipole method

2.2.1 Introduction

We will now present theMultipole Methodwhich has been used to study microstructured optical
fibers (MOFs) since 2001. The multipole method presented here [15, 16] is a generalization to mode
searching in conical mounting of a previous multipole method already developed a few years earlier [17]
at the Fresnel Institute. In fact, these multipole methods are natural extension of the usual method used
to find the modes in step-index optical fibres (we will clarifythis in the following sections). This method
has five advantages which have proved to be useful in the investigation of MOF properties.

– The longitudinal or axial propagation constant of the modeβ may be complex, and this is crucial
since the imaginary part of the propagation constantβ is not null due to the leaky nature of the
MOF modes (See the section1.2on leaky modes in the introduction p.5).

– The angular frequencyω, related to the free space wavenumber byω = k0c, is an input parameter
andβ is given by the calculations. The method is hence well suitedfor computations involving
material dispersion.

– As the MOF represents a new type of waveguide, MOF research needs methods that can deal with
a wide variety of structures, allowing systematic studies of MOF properties to be performed. It
appears that this is partially the case for the Multipole Method : it can be used on a wide range
(several orders of magnitude) of wavelengths relative to MOF dimensions.

– It can deal with the two main types of MOF : solid core MOF and air core photonic crystal fibres.
core MOF.

– The last advantage comes from McIsaac’s theoretical work [18, 19] on the symmetry properties
of waveguide modes according to waveguide symmetries. These powerful theoretical results are
well suited to MOF due to the usual structure of their inclusions (generally a subset of a triangular
lattice, see Fig.2.1). These symmetry properties permit us to reduce the number of numerical
computations, which is useful for the systematic study of MOF, and they will be described more
precisely in the following sections of this chapter.

2.2.2 The multipole formulation

In order to make the Multipole Method intuitive and to avoid an overload of notation and calculus,
which can be quite tedious, we start with asimplified approach[20]. First of all, we have to define
the geometry of the microstructured optical fiber to be studied and we have to fix the choice of the
propagating electromagnetic fields.

The geometry of the modelled microstructured optical fiber

In this chapter we will limit our study to MOF models involving non-overlappingcircular inclusions.
This restriction to circular inclusions is not fundamentalfor the formulation but it allows more straight-
forward computations. On the contrary, the fact that the inclusions arenon-overlappingis a fundamental
hypothesis of our method (the justification comes from the necessity to fulfill the hypotheses of Graf’s
theorems). The other fundamental hypothesis is the longitudinal invariance of the MOF model. The geo-
metry we are dealing with is described in Fig.2.2, which represents a transversexy cross section of the
fibre (thez axis being along the fiber axis). This shows a silica matrix ofrefractive indexne, perforated
with a finite numberNi of inclusions indexed byj and of diameterdj , whose centers are specified by
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Low index

CORE

CLADDING REGION

Low index

High index

FIG. 2.1 – Cross section of a typical microstructured optical fiber. The inclusions have a lower refractive
index than the background medium, or matrix. The inclusionsare arranged following a subset of a trian-
gular lattice. In this example, there are three rings of inclusions. The solid core consists of one missing
inclusion at the center of the structure. We call the region containing the inclusions thecladding region.

cj . The refractive index of inclusionj is nj . Outside this hole region, the MOF is enclosed in ajacket
(radiusr > R0, region(d) in Fig. 2.2), the indexn0 of which may be complex. One possibility is to take
a jacket with refractive index equal to unity, simulating a MOF in air or vacuum.

The choice of the propagating electromagnetic fields

We characterize in the complex representation the electricand magnetic fieldsE andH in the MOF
by specifying the componentsEz andHz along the fibre axis, with transverse fields following from
Maxwell’s equations [2]. In fact, it is convenient to work withscaled magnetic fields: K = ZH, where
Z = (µ0/ε0)

1/2 denotes theimpedance of free space. Each mode is characterized by itspropagation
constantβ, and the transverse dependence of the fields is such that

E(r, θ, z, t) = E(r, θ)ei(βz−ωt) , (2.1)

K(r, θ, z, t) = K(r, θ)ei(βz−ωt) , (2.2)

with ω denoting the angular frequency, related to the free space wavenumber byω = kc. Note thatβ is
complex for leaky modes, the imaginary part ofβ accounting for attenuation along thez axis. Here we
will use the modeeffective index, which is related toβ by neff = β/k.

Each of the fields (V = Ez or V = Kz) satisfies theHelmholtz equation

(△ + (kM
⊥ )2)V = 0 (2.3)

in the matrix, wherekM
⊥ =

√

k2n2
M − β2, and

(△ + (ki
⊥)2)V = 0 (2.4)

in inclusioni, whereki
⊥ =

√

k2n2
i − β2. Care is required when computing the complex square roots [21].

A simplified approach of the Multipole Method

The multipole method simply results from considering the balance of incoming and outgoing fields.
Its aim is to solve the problem of scattering from a system consisting of multiple inclusions. In this
section we go through each step of the multipole method in a very simplified manner, with simplified
notations, to extract the physics behind the Multipole Method.
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FIG. 2.2 – Geometry of the MOF considered, together with the contributions to the fields just outside a
generic holei. Regions of convergence of multipole expansions are indicated by dashed lines. Note that
QP is rj in (2.22), while SP is rl andOP is r. Solid lines indicate physical boundaries, dashed lines
indicate regions of convergence (see section2.2.2for a complete description).

Fourier-Bessel Series We consider a single inclusion in the matrix (see the hashed region in Fig.2.3),
with its center at the origin of the coordinate systemO. In cylindrical coordinates a fieldV (r, θ) is 2π
periodic along the angular coordinate (V (r, θ + 2π) = V (r, θ)). In any homogeneous annulus around
the inclusion (the grey region delimited by the two dashed circles in Fig.2.3), for fixed r, V (r, θ) is a
regular and2π-periodic function ofθ, so that we can expandV (r, θ) in a Fourier series :
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FIG. 2.3 – Scheme for the simplified approach of the multipole method. The first inclusion is the hashed
disk in the matrix, with center at the originO. The dashed circles represent the borders of an homogenous
annulus (grey region) around the inclusions, this region isalso called the convergence region. Si is a
source localized inside the inclusion and Se represents a source outside the convergence region. The
second inclusion is the small hashed disk in the lower part ofthe schematic diagram.
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V (r, θ) =
∑

n∈Z

fn(r) exp(inθ). (2.5)

Note that sinceV (r, θ) is regular in the annulus, the Fourier coefficientsfn(r) are regular functions ofr.
Using the Fourier expansion in the Helmholtz equation Eq.2.3, the following identity is obtained :

∑

n∈Z

[

d2fn(r)

dr2
+

1

r

dfn(r)

dr
+

(

(kM
⊥ )2 − n2

r2

)

fn(r)

]

exp(inθ) = 0 . (2.6)

By making use of the uniqueness of the Fourier expansion, we are led to an equation valid for alln

d2fn(r)

dr2
+

1

r

dfn(r)

dr
+

(

(kM
⊥ )2 − n2

r2

)

fn(r) = 0 . (2.7)

With a linear change of variablesu = kM
⊥ r this equation becomes

d2fn(u)

du2
+

1

u

dfn(u)

du
+

(

1 − n2

u2

)

fn(u) = 0 . (2.8)

Eq.2.8 is theBessel differential equationof ordern [22]. The functionsfn(u) are therefore linear com-
binations of Bessel functions of the first and second kind of order n (Jn(u) andYn(u) respectively),
or, equivalently, of Bessel and Hankel functions of the firstkind of ordern, the latter being defined by
H

(1)
n (u) = Jn(u) + iYn(u) :

fn(u) = AnJn(u) + BnH(1)
n (u) . (2.9)

Replacingfn(r) in the Fourier expansion Eq.2.5, we have

V (r, θ) =
∑

n∈Z

(

AnJn(kM
⊥ r) + BnH(1)

n (kM
⊥ r)

)

exp(inθ) . (2.10)

The expansion of the fieldV in Eq.2.10is called aFourier-Bessel series. Any function which is regular
and satisfies the Helmholtz equation in an annulus can be expressed as a Fourier-Bessel series.

Physical Interpretation of Fourier-Bessel Series (no inclusion) The Fourier-Bessel series can be
split into two very different parts : the Bessel functions ofthe first kind are regular everywhere, whereas
the Hankel functions have a singularity at0 where they diverge. Furthermore, Hankel functions of the
first kind satisfy the outgoing wave equation, whereas Bessel functions of the first kind do not.

To understand the meaning of the two parts of the Fourier-Bessel function, we consider the same
annulus as above, but without the inclusion. The whole spaceis now homogeneous. If a source is placed
inside the inner circle of the annulus (Si in Fig. 2.3), the field it radiates has a singularity inside the inner
circle of the annulus, and it satisfies the outgoing wave condition. In the annulus, it consequently cannot
be represented by a Bessel series, but only by a superposition of Hankel functions. Conversely, a source
placed beyond the outer ring of the annulus (Se in Fig. 2.3) radiates a field which is regular in the annulus
and in the region delimited by the inner circle of the annulus. Its field expansion in the annulus cannot
therefore contain Hankel functions, but only Bessel functions.

Eq.2.10can be written as
V (r, θ) = R(r, θ) + O(r, θ) (2.11)

with

R(r, θ) =
∑

n∈Z

AnJn(kM
⊥ r) exp(inθ) (2.12)

O(r, θ) =
∑

n∈Z

BnH(1)
n (kM

⊥ r) exp(inθ) . (2.13)

R is theregular part ofV . It describes fields radiated from sources situated beyond the outer circle of
the annulus.O is the singular part of V . It describes fields radiated from sources situated inside the
inner circle of the annulus. Note that if a source is placed inside the annulus, the field it radiates has a
singularity in the annulus. A field radiated by a source inside the annulus cannot therefore be described
by a Fourier-Bessel series in that annulus.
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Change of Basis In the local coordinate system with origin in Se, the field radiated by Se is an outgoing,
singular field. In an annulus surrounding Se, the radiated field is described by a series of Hankel functions
Os(rs, θs), with (rs, θs) being the local coordinates associated with Se. In the coordinate system with
centerO, the same field is regular and incident into the annulus surroundingO defined by the two dashed
circles in Fig.2.3: the nature of the field depends on the system of coordinates.We can construct a linear
operator associating the outgoing field in one coordinate system with the resulting incoming field in
another coordinate system. We define the operatorH by

R = HOs , (2.14)

whereR is the regular field in an annulus aroundO (Eq.2.13). In practice, operatorH will be represented
by a matrix linking the Fourier-Bessel coefficientsAn of R to the Fourier-Bessel coefficientsBn of Oe.
The coefficients of the matrix are well known, and given by Graf’s theorem, as will be shown later in the
mathematical derivation of the Multipole Method (see section 2.2.2).

Fourier-Bessel Series and one Inclusion : Scattering Operator We now put the inclusion back in
the annulus, and consider fields originating outside the annulus, e.g. from Se. In the annulus, the field
radiated from Se is regular and follows from Eq.2.14. The field reaching the inclusion will be scattered.
The scattered field radiates away from the inclusion : there are now sources inside the region delimited
by the inner circle of the annulus. The scattered field is hence described in the annulus by an outgoing
fieldO while the incoming field is associated withR. Since we only consider linear scattering,R andO
are linked by alinear scattering operator, S, defined by

O = SR . (2.15)

OnceH andS are known, we can compute the scattered field using Eq.2.14and2.15. In practice, the
scattering operator is represented by a matrix linking the Fourier-Bessel coefficientsAn of R andBn

of O. For simple geometries of inclusions (e.g.circular inclusions), the coefficients of the matrix can be
expressed in exact analytic form. For inclusions with arbitrary geometry, the matrix can be computed
numerically[23, 24].

Fourier-Bessel Series and Two Inclusions : The Multipole Method We now consider two inclusions
(1 and2), and a source Se exterior to both inclusions.R1, the incoming regular field for inclusion1 now
results from the superposition of the fieldOs radiated from Se and the scattered fieldO2 from inclusion
2. Using the change of basis operatorsHs,1 andH2,1 defined as in Eq.2.14, we have

R1 = H2,1O2 + Hs,1Os . (2.16)

Similarly,R2, the regular incoming field for inclusion2 is given by

R2 = H1,2O1 + Hs,2Os . (2.17)

The two equations above simply make it explicit that the incoming field on one inclusion results from the
superposition of the field radiated by the other inclusion and the source. Using the scattering operators
S1 andS2 for inclusions1 and2 respectively, we have

{

O1 = S1(H2,1O2 + Hs,1Os)

O2 = S2(H1,2O1 + Hs,2Os) .
(2.18)

This linear system of equations links the two unknown scattered fieldsO1 andO2 to the known source
field Os through change of basis and scattering operators. Once the scattering and change of basis ope-
rators are computed, one can deduce the fields scattered fromthe system constituted of both cylinders
through solving Eq.2.18. It is straightforward to generalize the technique used here to more than two
cylinders.
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In practice, all operators are represented by matrices and the fieldsO andR by the vectors consis-
ting of the Fourier-Bessel coefficients of the fields. The matrices are readily computed, so that given the
Fourier-Bessel expansion of a source fieldOs, the Fourier-Bessel coefficients describingO1 andO2 fol-
low from solving the matrix equations equivalent to Eq.2.18. OnceO1 andO2 are known, the regular part
of the field around inclusions1 and2 can be deducede.g.from the scattering matrices through Eq.2.15.
The fields are then known in any homogeneous annulus surrounding the inclusions. In fact it appears that
the superposition of outgoing fieldsOs, O1 andO2 describes the field accurately everywhere.

Using change of basis operators, we have converted the computation of the field scattered from a
complex system consisting of several inclusions to the computation of scattering operators of single
inclusions. Guided modes of a structure consisting of several inclusions correspond to non-zero fields
around the inclusion in the absence of any exterior sources.To find modes, one therefore has to find
inclusion-parameters for which Eq.2.18has solutions with non-zeroO1 andO2 in the absence of theOs

term. This definition of a mode for a guiding structure is essentially the same as that which can be used
to compute the modes of an ordinary step index optical fiber [1].

In the next few subsections we describe the multipole methodmore rigorously, explicitly defining all
required fields, operators and vectors, and detailing the domains of validity of the expansions. Further-
more, we adapt the method to the case in which the matrix containing the inclusions is surrounded by a
jacket.

Rigorous Formulation of the Field Identities

In the vicinity of thelth cylindrical inclusion (see Fig.2.2), we represent the fields in the matrix in
local coordinatesrl = (rl, θl) = r − cl and express the fields in Fourier-Bessel series. WithJm(z) and

H
(1)
m (z) being the usual Bessel function of orderm and the Hankel function of the first kind of orderm

respectively, we have for the electric field

Ez =
∑

m∈Z

[

AEl
mJm(kM

⊥rl) + BEl
mH(1)

m (kM
⊥rl)

]

eimθl (2.19)

and similarly for the z-component of the scaled magnetic field Kz, but with coefficientsAKl
m andBKl

m . In
2.19theJm terms represent the regular incident part1 REl of the fieldEz for cylinder l since it is finite
everywhere, including inside the inclusion, while theH

(1)
m terms represent the outgoing wave part2 OEl

of the field, associated with a source inside the cylinder. Wethus haveEz = REl + OEl.

Local expansion2.19 is valid only in an annulus extending from the surface of the cylinder to the
nearest cylinder or source (region(a) in Fig. 2.2). The same expression may be used around the jacket
boundary which we designate by the superscript0 (regiond in Fig. 2.2).

Another description of the fields is originally due to Wijngaard [25]. He reasoned that a field in a
region can be written as a superposition of outgoing waves from all source bodies in the region. If the
waves originate outside the region, their expansion is in terms ofJ-type waves, which are source free.
Of course this physical argument can be supplemented by rigorous mathematical arguments [25–27], as
discussed in AppendixA.1. For MOFs, theWijngaard expansiontakes the form

Ez =

Ni
∑

l=1

∑

m∈Z

BEl
mH(1)

m (kM
⊥|rl|)eim arg(r−cl)

+
∑

m∈Z

AE0
m Jm(kM

⊥r)eimθ , (2.20)

1The Bessel functionsJm are continuous and finite in a bounded domain, so the field theydescribe must therefore have its
origin in sources outside that domain.

2Hankel functionsH(1)
m satisfy the outgoing wave condition and diverge at0 ; their contribution to the field in an annulus

surrounding an inclusion is therefore associated with fields originating in sources in or on the inclusion, and radiating away
from it.
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and is valid everywhere in the matrix. Each term of the firstm series is an outgoing wave field with
a source at cylinderl, while the final term, indexed by0, is the regular field originating at the jacket
boundary.

Equating2.19and2.20, thus enforcing consistency, yields, in the vicinity of cylinder l,

∑

m∈Z

AEl
mJm(kM

⊥rl)e
imθl =

N
∑

j=1
j 6=l

∑

m∈Z

BEj
m H(1)

m (kM
⊥rj)e

imθj

+
∑

m∈Z

AE0
m Jm(kM

⊥r)eimθ, (2.21)

since theH(1)
m (kM

⊥rl) terms are common to both expansions. Note that the sum on the left hand side of
Eq. 2.21 is associated with the regular incident field for inclusionl, while the double sum on the right
hand side is associated with the outgoing field originating from all other inclusions (j 6= l), and the last
sum represents the field coming from the jacket. Hence Eq.2.21simply results from considering in detail
the origin of the field incident on inclusionl.

Evaluating Eq.2.21is not straightforward since different terms refer to different origins. We therefore
use the Graf’s addition theorem [22] which lets us transform the cylindrical waves between different
origins. A full discussion is given in AppendixA.2, where we show that it may be viewed as a change of
basis transformation. For example the contribution to the local regular field in the vicinity of cylinderl
due to cylinderj (line b, Fig.2.2) is

∑

n∈Z

AElj
n Jn(kM

⊥rl)e
in arg(rl) =

∑

m∈Z

BEj
m H(1)

m (kM
⊥rj)e

im arg(rj) , (2.22)

where

AElj
n =

∑

m∈Z

Hlj
nmBEj

m , (2.23)

Hlj
nm = H

(1)
n−m(kM

⊥clj)e
−i(n−m) arg(clj ) , (2.24)

andclj = cj − cl, as shown in AppendixA.2.1. The physics behind Eq.2.22 is quite intuitive, and
corresponds to theChange of Basisparagraph in Sec.2.2.2: the right hand term is associated with an
outgoing wave originating from sources inside inclusionj. In any annulus not intersecting or including
inclusionj, and in particular in an annulus centered on inclusionl, this field is regular and satisfies the
Helmholtz equation. It can hence be expressed in terms of a series of Bessel functions, which is exactly
what Eq.2.22does.

At this point we introduce the notationAElj = [AElj
n ], which lets us generate vectors of mathematical

objects. A similar notation is used for matrices,i.e., Hlj = [Hlj
nm]. In matrix form, then, we represent

the basis change2.23as

AElj = HljBEj. (2.25)

Similarly, the contribution to the regular incident field atcylinder l due to the jacket (linee, Fig.2.2)
is

∑

n∈Z

AEl0
n Jn(kM

⊥rl)e
in arg(rl) =

∑

m∈Z

AE0
m Jm(kM

⊥r)eimθ , (2.26)

where the change of basis (derived in AppendixA.2.2) is

AEl0 = J l0AE0 , (2.27)

with

J l0 =
[

J l0
nm

]

=
[

(−1)(n−m)Jn−m(kM
⊥cl)e

i(m−n) arg(cl)
]

. (2.28)
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Accumulating these contributions for all cylinders and thejacket we have, in the annulus (a) around
cylinder l (see Fig.2.2)

AEl =

Ni
∑

j=1
j 6=l

AElj + AEl0 =

Ni
∑

j=1
j 6=l

HljBEj + J l0AE0, (2.29)

a result that holds for both theEz andKz fields.
In a similar way, the outgoing field in the vicinity of the jacket boundary due to cylinderj (line c,

Fig. 2.2) is
∑

n∈Z

BE0j
n H(1)

n (kM
⊥r)einθ =

∑

m∈Z

BEj
m H(1)

m (kM
⊥rj)e

im arg(rj) , (2.30)

with the change of basis represented by

BE0j = J 0jBEj , (2.31)

where
J 0j =

[

J 0j
nm

]

=
[

Jn−m(kM
⊥cj)e

−i(n−m) arg(cj)
]

, (2.32)

as shown in AppendixA.2.3.
By adding the contributions for all cylinder sources we reexpress the first term on the right-hand side

of the Wijngaard expansion2.20in a form valid just inside the jacket (regiond)

Ni
∑

l=1

OEl =
∑

n∈Z

BE0
n H(1)

n (kM
⊥r)einθ = OE0 , (2.33)

where

BE0 =

Ni
∑

l=1

BE0l =

Ni
∑

l=1

J 0lBEl, (2.34)

a result that also holds for bothEz andKz.

Boundary Conditions and Field Coupling

While the field identities of the previous section apply individually to each field component, cross
coupling between them occurs at boundaries. In what follows, it is most convenient to formulate the
boundary conditions in terms of cylindrical reflection coefficients as derived in AppendixA.3. For circu-
lar inclusions, for the reflected fields outside each cylinder we have

BEl
n = REEl

n AEl
n + REKl

n AKl
n ,

BKl
n = RKEl

n AEl
n + RKK l

n AKl
n ,

(2.35)

where the expression for the reflection coefficients are given in EqsA.29 in AppendixA.3. The reflection
matrices are derived for each inclusion treated in isolation, and are thus known in closed form for circular
inclusions, in which case they are diagonal. For non-circular inclusions, they could be replaced by either
analytic expressions for other special cases, or numericalestimates from a differential or integral equation
treatment [17, 23]. In these cases they generally also have off-diagonal elements.

Equations (2.35) can be written as

[

BEl

BKl

]

=

[

REEl REKl

RKEl RKK l

] [

AEl

AKl

]

, (2.36)

or
B̃l = R̃lÃl , (2.37)
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with REE,l = diag(REEl
n ) and similar definitions for the other reflection matrices. Wealso need an interior

form at the jacket boundary (pointd in Fig. 2.2),

Ã0 = R̃0B̃0 (2.38)

whereÃ0, B̃0 andR̃0 are defined as in Eqs.2.36–2.37, and the coefficients of̃R0 are given by Eqs.A.25.
In this form the outgoing field (̃B0) generated by all inclusions (linec) is reflected by the jacket to
generate the regular field (Ã0), which feeds into the incident field for inclusionl (line e in Fig. 2.2). It is
straightforward to adapt̃R0 to cases where multiple films surround the hole region.

Derivation of the Rayleigh Identity

With the structure of the field coupling derived in Section2.2.2, we now form field identities applying
to the vector components̃Al andB̃l. From Eq.2.29we have

Ãl =

Ni
∑

j=1
j 6=l

H̃
lj
B̃j + J̃

l0
Ã0 , (2.39)

whereH̃
lj

= diag(Hlj,Hlj), andJ̃
l0

= diag(J l0,J l0). Equation2.39 is the representation of the
regular incident field at cylinderl in terms of outgoing components̃Bj from all other cylinders and an
incident field contributioñA0 from the jacket.

Combining Eq.2.39for all cylindersl = 1 . . . Ni and introducingA =
[

Ãl
]

andB =
[

B̃l
]

, we

derive
A = H̃B + J̃

B0
Ã0 , (2.40)

whereH̃ =
[

H̃
lj
]

for l, j = 1...Ni with H̃
ll ≡ 0 and

J̃
B0

=
[

J̃
l0

]

=
[

(J̃
10

)T , (J̃
20

)T , · · · , (J̃
Ni0

)T
]T

, (2.41)

where theT indicates the transpose. Similarly, the vector outgoing field in the vicinity of the jacket due
to all the cylinders is given by

B̃0 =

Ni
∑

j=1

J̃
0l
B̃l = J̃

0B
B (2.42)

from Eq.2.34. Here

J̃
0B

=
[

J̃
0l

]

=
[

J̃
01

, J̃
02

, · · · J̃
0Ni

]

. (2.43)

Combining Eqs.2.37, Eqs.2.38, 2.40and2.42and eliminatingÃ0 andB̃0 we form a homogeneous
system of equations (which represents theRayleigh identity, which we will also call thefield identity) in
the source coefficients

[

I− R

(

H̃ + J̃
B0

R̃0J̃
0B

)]

B ≡ MB = 0, (2.44)

where the right-hand side indicates the absence of externalsources, and

R = diag
[

R̃1, R̃2, · · · , R̃Ni

]

. (2.45)

Non-trivial solutions to the homogeneous system (2.44) correspond to non-zero fields propagating in the
z-direction. The solutions represent a non-zero field existing without any exterior source of energy, in
other words propagating (possibly leaky) fibre modes. We will see in the next Chapter how this equation
can be solved to obtain the modes of a MOF structure.
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2.2.3 Symmetry properties of MOF

Symmetry properties of modes

In the previous section, we use a generalization of the studycarried out by Lord Rayleigh [28] more
than a century ago. In the following we will use the formalization of a work initiated in the same period,
i.e. in 1894, by Pierre Curie [29] concerning symmetry properties in electromagnetics.

This formalization was realized by P. McIsaac in two seminalarticles [18, 19]. All the theoretical
results presented here can be found in much more detail in these two articles.

Using group representation theory, he classified the electromagnetic modes of waveguide structures,
according to the symmetry properties of the configuration. Due to the symmetry properties exhibited by
the structure of most MOF, his results are very useful for classifying, before any computation, the modes
existing in the studied MOF.

A structure which possesses only rotationnal symmetry withno reflection symmetry, and for which
2π/n (n being an integer) is the smallest angle associated with a symmetry operation is said to possess3

the symmetry groupCn of order n. Fig. 2.4 shows the cross sections of several structures withCn

symmetry. If a structure has ann-fold rotation symmetry together with at least one plane of relection

(a) C1 symmetry (b) C2 symmetry

FIG. 2.4 – Two examples of a structure with aCn symmetry. The structure is invariant through a rotation
of 2π/n and there is no reflection symmetry.

symmetry, then there are exactlyn planes of reflection symmetry. All these planes intersect along the
axis of the rotational symmetry and the angular space between them is equal toπ/n. The symmetry
group for this kind of structure is calledCnv (see Fig.2.5).

McIsaac assigned the modes of a waveguide to classes depending on the azimuthal symmetry of the
modal fields patterns, and he called these classesmode classes. Each mode class contains an infinite
number of modes. For a waveguide withCn symmetry there are n different mode classes, and for a
waveguide withCnv symmetry there aren + 1 distinct mode classes ifn is odd andn + 2 classes ifn is
even. In each class, all the modes are either non-degenerateor two-fold degenerate (see table2.1).

The special case ofC∞v which corresponds to the limiting casen → ∞ is also treated in McIsaac’s
study [18, 19].

In his nomenclature, McIsaac labels the two mode classes containing nondegenerate modes as the
first and the second mode classes (p=1,2). The two remaining mode classes containing nondegenerate
modes existing ifn is even are placed at the end of the list (p=n+1,n+2). In each class of symmetry, modes
have different symmetry properties which can be used to simplify the computation of the modal fields
and propagation constants. Indeed, McIsaac showed that foreach symmetry class these computations

3A structure with theC1 symmetry has actually no symmetry.
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(a) C2v (b) C3v

(c) C6v
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(d) C∞v

FIG. 2.5 – Four examples of a structure with aCnv symmetry. The structure is invariant through a rotation
of 2π/n and there is a least one reflection symmetry. The dashed linesrepresent the symmetry planes.
TheC∞v symmetry is the limit casen → ∞.

need to take into account only a limited angular sector, the minimal sector, with vertex at the center of
the waveguide and appropriate boundary conditions along the edges of the sector.

It must be noted that only the nondegenerate modes satisfy all the symmetries of the waveguide, and
on the contrary the degenerate modes will possess only a subgroup of the symmetries. We now focus on
Cnv waveguides (theCn case being also treated in McIsaac’s articles) since this point group is the most
frequently encountered group in MOF studies. Both the angleof the minimal sector of each mode class
and the boundary conditions are prescribed by the theory. Two kinds of boundary conditions are defined :
the short-circuit boundary condition,i.e. the tangential electric field has to vanish at the boundary, and
the open-circuit boundary condition,i.e. the tangential magnetic field has to vanish at the boundary. The
boundary lines of the minimal sector must coincide with two of the planes of reflection symmetry of the
waveguide. In Fig.2.6, we give the minimal sectors for waveguides withC6v symmetry. For this point
group, there are 8 mode classes. For non-degenerate mode classesp = 1, 2, 7, 8 the angle of the minimal
sector is equal toπ/6, and for the four degenerate mode classesp = 3, 4 andp = 5, 6 the angle is equal
to π/2.

In Fig. 2.7, we give the minimal sectors for waveguides withC4v symmetry. For this point group,
there are 6 mode classes. For non-degenerate mode classesp = 1, 2, 5, 6 the angle of the minimal sector
is equal toπ/4, and for the two degenerate mode classesp = 3, 4 the angle is equal toπ/2.

In Fig. 2.8, we give the minimal sectors for waveguides withC3v symmetry. For this point group,
there are 4 mode classes, two being non-degenerate with an minimal geometrical sector equal toπ/2 and
the two others being degenerate with an angle of the minimal sector equals toπ.
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n Number of non- Number of pairs of two-fold Total number
degenerate mode classes degenerate mode classes of mode classes

odd 2 (n-1)/2 n+1
even 4 (n-2)/2 n+2

TAB . 2.1 – Table of mode classes and degeneracies for uniform waveguides withCnv symmetry.

π/6π/6 π/6 π/6

p=1 p=7p=2 p=8
(a) Mode classesp = 1, 2, 7 and8 are non-degenerate.

π/2

p=3 and p=4 p=5 and p=6

π/2 π/2 π/2

(b) Mode classesp = 3, 4 andp = 5, 6 are two-fold degenerate.

FIG. 2.6 – Minimal sectors for waveguides withC6v symmetry. Solid lines indicate zero tangential
electric field, and dashed lines indicate zero tangential magnetic field.

In Fig. 2.9, we give the minimal sectors for waveguides withC2v symmetry. For this point group,
there are 4 mode classes, all of them being non-degenerate. The angle of the minimal sector is equal to
π/2 for the 4 mode classes.

The application of McIsaac’s theoretical results forC6v MOFs has already been used to show that
the fundamental mode of these fibres is degenerate [30]. Consequently, these perfect fibers are not bire-
fringent. Clear illustrations of this property will be given in section2.2.6.

2.2.4 Implementation

In this section, we discuss the implementation of the Multipole Method to find the modes and dis-
persion characteristics of a given fibre structure. The homogeneous equation2.44corresponds to a non-
trivial field vectorB only if the determinant of the matrixM is effectively zero. Once the structure
and wavelength are given, the matrixM depends only onβ, or, equivalently, its effective indexneff.
The search for modes therefore becomes a matter of finding zeros of the complex function det(M) of
the complex variableneff. To investigate this numerically, field expansions such as Eq. 2.19 must be
truncated, say withm running from−M to M . M will be called thetruncation order parameter.

We know from the previous section on symmetry properties, that the modes of fibres with aCnv

symmetry are either nondegenerate or doubly degenerate. Since det(M) is the product of the eigenvalues
of M, we must look for minima in which one or two of the eigenvalueshave magnitudes that are
substantially smaller than the others. However, a minimum of the determinant may also correspond to an
artefact resulting from many eigenvalues being small simultaneously (which we call a false minimum).
To distinguish these from genuine solutions, we consider the singular values [31] of M, which, for our
case, correspond to the magnitudes of the eigenvalues. False minima can be distinguished by a singular
value decomposition at the putative minimum.

The null vectors corresponding to small singular values areapproximate solutions to the field iden-
tity 2.44. For non-degenerate modes, the null vector is unique to within an arbitrary multiplicative
constant. For a two-fold degenerate mode, we let the basis states be prescribed by symmetry proper-
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p=1 p=5p=2 p=6

π/4 π/4 π/4π/4

(a) Mode classesp = 1, 2, 5 and6 are non-degenerate.

π/2

p=3 and p=4

π/2

(b) Mode classesp = 3, 4 are two-fold
degenerate.

FIG. 2.7 – Minimal sectors for waveguides withC4v symmetry. Solid lines indicate zero tangential
electric field, and dashed lines indicate zero tangential magnetic field.

π/3

p=1

π/3

p=2
(a) Mode classesp = 1, 2 are non-degenerate.

ππ

p=4p=3

(b) Mode classesp = 3, 4 are degenerate.

FIG. 2.8 – Minimal sectors for waveguides withC3v symmetry. Solid lines indicate zero tangential
electric field, and dashed lines indicate zero tangential magnetic field.

ties (see Section2.2.3), though any linear combination of these is equally justified.

Finding modes

For this task we need an algorithm aimed at finding all the zeros of the determinant ofM in a region
of the complexneff plane. The algorithm should be economical in function callsas each evaluation of
the determinant is computationally very expensive for large structures. As it can be seen in Fig.2.10, the
zeros are very sharp, so that a very accurate first estimate ofthe zero is necessary for most simple root-
finding routines. More specific algorithms for finding zeros of analytic or meromorphic functions [32, 33]
have good convergence for simple structures (with six cylinders for example) but fail for more complex
structures, even with good initial guesses. The present approach to root finding seems computationally
efficient. We first compute a map of the modulus of the determinant over the region of interest, and
then use the local minima of this map as initial points for a mixed zooming and modified Broyden [34]
algorithm (an iterative minimization algorithm, guaranteed to converge for parabolic minima).

The initial scanning region has to be chosen in accordance with the physical problem studied : if the
fibre is air cored and air guided modes are sought, we chooseℜe(neff)< 1, whereas if the fibre has a solid
core we usually choose to search for modes in a region whereℜe(neff) is between the optical indices of
the inclusions and the matrix. In the latter case hundreds ofmodes may exist for smallℜe(neff) which are
of little interest because of their high losses. We therefore often concentrate on a smallerneff scanning
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p=1 and p=2

π/2 π/2 π/2π/2

p=3 and p=4

FIG. 2.9 – Minimal sectors for waveguides withC2v symmetry. Mode classesp = 1, 2, 3 and4 are non-
degenerate. Solid lines indicate zero tangential electricfield, and dashed lines indicate zero tangential
magnetic field.
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FIG. 2.10 – Map of the logarithm of the magnitude of the determinant of M versus the real and the
imaginary parts of the complex refractive indexn. The minimum (in the black region) is associated with
the fundamental mode of the test MOF described in section2.2.5.

region near the highest index of the structure. A scanning region for ℑm(neff) giving good results in
almost any case is10−12 < ℑm(neff) < 10−3.

Dispersion characteristics

The above process of finding modes is carried out for a specificwavelength. We could reiterate the
search for modes for many different wavelengths to obtain dispersion characteristics, but this process
would be quite laborious. We have found two alternative methods to be of value. One computes and
identifies the modes for three or four different wavelengths, then uses a spline interpolation to estimate
the neff values for other wavelengths and refines the estimate with the mixed zooming and Broyden
algorithm. Each newly determined point of theneff(λ) curve can be used to enhance the spline estimate.
The second (and often more efficient) method is to compute themodes for only one wavelengthλ0,
then slightly perturb the wavelength to getneff(λ0 + δλ) usingneff(λ0) as a first guess, and then use a
first order estimate ofneff at the next wavelength. One can then computeneff(λ + mδλ) using a first
order estimate computed from the two preceding values. For both methods, the wavelength step has
to be chosen to be very small : For small steps more points are necessary to compute the dispersion
characteristics in a given wavelength range, but for large steps the first order guess becomes inaccurate
and the convergence of the zooming and the Broyden algorithmbecomes unacceptably slow. Having
small steps and therefore numerous numerical values on the dispersion curve is also of benefit when
evaluating second order derivatives, as is necessary when computing the group velocity dispersion.

Material dispersion can be included easily by changing the optical indices according to the current
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wavelength at each step using, for example, Sellmeier approximation [35] for silica.
The method described here can be adapted to study the change of neff of a mode for any continuously

varying parameter, for example cylinder radius, cylinder spacing or optical index. One problem that can
occur when following the evolution of a mode with a continously varying parameter is mode crossing.
This results in wrong data, but can easily be detected in mostcases through a discontinuity of derivatives,
and can also easily be eliminated by restarting the algorithm with the correct mode on the other side of
the crossing. The correct choice forδλ strongly depends on wavelength and structure, so that no general
advice can be given.

Using the symmetries within the Multipole Method

The incorporation of field symmetry in the multipole formulation has two benefits. Firstly, it enables
definitive statements to be made about the degeneracies of modes, even in the presence of the accidental
degeneracies which arise when normally distinct modal trajectories cross each other. Secondly, it greatly
reduces computational burdens, enabling accurate answersfor quite large MOF structures to be obtained
rapidly on PC’s.

In applying the multipole formulation to largeC6v MOFs, it is highly advantageous to exploit the
symmetry properties in Fig.2.5(c)to reduce the size of the matrixM. This can be achieved since only
multipole coefficients for inclusions lying in the minimal sector indicated in Fig.2.6need be specified ;
those for holes outside the minimal sector can be obtained bymultiplying by the appropriate geometric
phase factor (related toexp(2πi/6)). The resulting reduction in the order of the matrixM depends on
the type of the mode, being maximal for the non-degenerate modes in Fig.2.6(a), and still being around
3.5 for degenerate modes (see Fig.2.6(b)), leading to considerable reductions in processing time.

Another way to obtain ℑm(β)

One of the challenges of MOF consists in finding leaky modes with losses as small as possible. We are
thus faced with a practical problem. The real part ofβ (ℜe(β)) is of the same magnitude ask0 whereas
its imaginary part (ℑm(β)) can be extraordinary smaller, say10−15 k0 ! In such circumstances, how can
we obtainℑm(β) with a sufficiently good precision ? For this purpose, the losses cannot be determined
directly via the poles of the scattering matrix. The fact that we are unable to do this is, of course, linked
with the computer precision. We are therefore “doomed” to adopt a new strategy by making use of an
energy conservation criterion. More precisely, let us consider the closed surface depicted in Fig.2.11. If
we assume that we will only be dealing with lossless materials, we have the following identity ;

∫

Σ
ℜe{S

e

} · n|Σ ds = 0 (2.46)

whereS is the complex Poynting vector, namelyS = 1
2E × H. As a result,S can be expressed as

follows :
S
e

(x, y, z) = S(x, y)e−2ℑm(β)z (2.47)

with S = 1
2E × H . The equation2.46can be recast as per :

∫

Σ1

ℜe{S} · (−e
z)ρ dρdθ + e−2ℑm(β)z0

∫

Σ2

ℜe{S} · (ez)ρ dρdθ

∫

ΣR

ℜe{S}e−2ℑm(β)z · (er)R dθdz = 0 (2.48)

If we let Sz = S · ez andSr = S · er, we are led to :

(e−2ℑm(β)z0 − 1)

∫

(θ,ρ)∈[0,2π[×[0,R]
ℜe{Sz}ρ dρdθ +

(
∫ z0

0
e−2ℑm(β)z dz

)

R

∫ 2π

0
ℜe{Sr} dθ = 0 . (2.49)
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Now
∫ z0

0 e−2ℑm(β)z dz = − 1
2ℑm(β) (e

−2ℑm(β)z0 − 1), thereforeℑm(β) can be expressed as follows :

ℑm(β) =
R

∫ 2π
0 ℜe{Sr} dθ

∫

(θ,ρ)∈[0,2π[×[0,R] ℜe{Sz}ρ dρdθ
(2.50)

Via the previous identity, we then deduce the imaginary partof neff by

ℑm(neff) =
ℑm(β)

k0
. (2.51)log10�j ~T2;1j� z0""1"2d1d2NN th x y

R �1
�2�R ez

�ez ur
FIG. 2.11 – Scheme used to compute indirectly the losses. The surface Σ is defined as the boundary
of a “slice” of a circular cylinder of radiusR and lengthz. Σ is also defined in the following way :
Σ = Σ1 ∪ Σ2 ∪ ΣR, whereΣ1 = {(r, θ, z) ∈ R

3, r ≤ R, θ ∈ [0, 2π[, z = 0}, Σ2 = {(r, θ, z) ∈ R
3, r ≤

R, θ ∈ [0, 2π[, z = z0} andΣR = {(r, θ, z) ∈ R
3, r = R, θ ∈ [0, 2π[, z ∈ [0, z0]}

Software and Computational Demands

We have developed a FORTRAN 90 code to exploit the above considerations. For symmetric struc-
tures the suggested optimizations are used and the softwarecan therefore deal, even on PC’s, with large
structures (modes for fibres with 180 holes have so far been computed on current personal computers).
Once the structure has been defined, the software is able to find automatically all the modes within a
given region of the complex plane forneff and can optionally track a mode as a function of wavelength
to obtain dispersion characteristics. Material dispersion can be included, if desired.

Computational demands are relatively modest : the completeset of modes with the truncation order
parameterM = 5 in the region of interest1.4 < ℜe(neff) < 1.45 for the structure (with a silica matrix)
used in Fig.2.15 can be computed on a current personal computer in less than one minute using less
than 2Mb of memory. Of course the load rises for larger structures, but the complete set of modes for
a structure having three layers of holes in a hexagonal arrangement takes less than a quarter of an hour
(and about 15Mb memory) on a workstation. dispersion curvescan be computationally more expensive :
the loss curves in Chapter 7 took from about half an hour (ford/Λ = 0.075 where we usedM = 5) to
several hours (ford/Λ = 0.7 whereM = 7 was needed for accuracy).

2.2.5 Validation of the Multipole Method

Even though the Multipole Method is mathematically rigorous, the computed results must be va-
lidated. Indeed, the computations are numerical, not analytic and the implementation itself could be
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erroneous. This validation will be realized in two steps : first the numerical convergence and the self-
consistency of the method will be checked, and finally we willcompare results obtained from the Multi-
pole Method with those compused using other numerical methods.

Convergence and self-consistency

The main approximation used in numerical computations via the Multipole Method is the truncation
of the Fourier-Bessel series used to described the electromagnetic fields. In order to check the conver-
gence of the numerical results, the effective indices of thecomputed modes must converge asM , the
truncation order parameter (see section2.2.4), is increased. Our test configuration will be the following:
The MOF has aC6v symmetry, the distance between the centres of a pair of adjacent holesΛ, called
the pitch, is equal to 6.75µm, the hole diameterd is fixed at 5.0µm, andλ = 1.55µm. The silica
matrix is considered as infinite and its relative permittivity is taken from the Sellmeier expansion at the
corresponding wavelength [35] (εr = 2.0852042). As can be seen in the first three columns of table2.2,
the convergence ofneff with respect toM is indeed verified. The data are plotted in figure2.12. For
M < 17, the determinant is always below 1.0e-10, and forM ≥ 17 the determinant is greater than
2.0e-9. This means that a value of M that is too high can lead toa bad determination of the effective
index due to cumulative numerical errors in matrix computations. An other example of the convergence
of the Multipole Method can be found in the following publication [16].

TAB . 2.2 – Convergence ofneff with the truncation order parameterM . Results are for the p=3 funda-
mental mode of the test MOF described in section2.2.5. W E

l,m is also defined in this section : it measures
the accuracy of the equality between the local and the globalexpansions of the z-component of the
electric field.

M ℜe(neff) ℑm(neff) WE
1,1 WE

2,1

3 1.43880301866122 3.3100275e-07 0.1329E-01 0.4563E-01
4 1.43877685791377 3.8506149e-08 0.5049E-02 0.8909E-02
5 1.43877422802377 4.2758291e-08 0.4549E-02 0.7941E-02
6 1.43877411171115 4.3250423e-08 0.1890E-02 0.3811E-02
7 1.43877411102638 4.3251229e-08 0.3527E-03 0.7641E-03
8 1.43877410938293 4.3257450e-08 0.2330E-03 0.4270E-03
9 1.43877410904527 4.3258245e-08 0.1574E-03 0.3146E-03
10 1.43877410903106 4.3258173e-08 0.4535E-04 0.9578E-04
11 1.43877410902931 4.3258227e-08 0.1086E-04 0.2190E-04
12 1.43877410902817 4.3258264e-08 0.1132E-04 0.2290E-04
13 1.43877410902807 4.3258229e-08 0.4683E-05 0.9681E-05
14 1.43877410902806 4.3258211e-08 0.8615E-06 0.1803E-05
15 1.43877410902810 4.3258235e-08 0.7263E-06 0.1504E-05
16 1.43877410902803 4.3258193e-08 0.4118E-06 0.8553E-06
17 1.43877410902643 4.3259535e-08 0.1005E-06 0.1869E-06

In the multipole formulation we have two different expansions for the field around each inclusion,
the local one (Eq.2.19) and the global one also called the Wijngaard expansion (Eq.2.20). These two
representations coincide only for untruncated Fourier-Bessel series so their numerical difference can be
used as an accurate indicator of truncation errors and of theprecision of the mode location. We introduce
for the z-component of the electric field, the quantityW E

l,k defined by :

W E
l,k =

∫

Cl,k
|E local

z (θl,k) − E
Wijngaard
z (θl,k)|dθl,k

∫

Cl,k
|EWijngaard

z (θl,k)|dθl,k

. (2.52)

The doubletl, k stands for thelth cylinder of thekth elementary sector of the MOF structure. A similar
quantity can be defined for the scaled magnetic field. As can beseen in table2.2or in figures2.12(b)and
2.13(b)W E

l,k decreases whileneff stabilises, as expected.
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FIG. 2.12 – Convergence ofneff and ofW E with respect toM . The data are the same as in table2.2.
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FIG. 2.13 – Convergence ofneff and ofW E with M , the MOF is the same as in Fig.2.12except that the
hole diameters are equal to 1.5µm. (1.0e − 0N means1.0 10−0N )

.

From numerical simulations, we have found that the truncation order parameterM should be made
larger by a factor of around 1.5 times the largest argument ofthe Bessel functions on the boundary of the
inclusions. This empirical rule is clearly illustrated in Fig. 2.12and Fig.2.13: in the first case where the
hole diameter is equal to 5µm, M=8 is required to get the correctneff with a 10−9 accuracy and in the
second case where the hole diameter is equal to 1.5µm, M=3 is enough.

Comparison with other methods

The results obtained by applying the Multipole Method to MOFwere compared to one of the first
results obtained through a finite element method [36]. The results are in very good agreement and the
existing differences are mainly due to the limitations caused by the numerical implementation (the mesh
does not follow the symmetry properties of the structure) ofthe finite element method [37]. Another
numerical implementation of the same multipole method was successfully compared to a beam propa-
gation method [38] and to a plane-wave method [30] (the two implementations of the Multipole Method
giving the same results). For the last case, it was shown thatif enough plane-waves (more than216) are
considered then the two methods give the same results concerning the fundamental mode degeneracy4

for the simple MOF structure described in the beginning of the previous section.

4The plane-wave method is not able to take into account the mode losses, so the imaginary part of the mode effective index
cannot be computed.
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2.2.6 First numerical examples

We now illustrate the numerical implementation of the Multipole Method through several basic nu-
merical examples. These examples will exhibit the most frequently encountered symmetries in MOF :
C2v, C4v andC6v. We will not follow an arithmetical order but start with the most pedagogical example :
theC6v six hole MOF.

A detailed C6v example : the six hole MOF

The cross section of this MOF can be seen in Fig.2.16. The geometrical parameters of the fibre are
the same as the ones of the six hole MOF used in section2.2.5(Λ = 6.75µm, d = 5.0 µm), and the
wavelength is also the same :λ = 1.55µm, but the relative permittivityεr is set to 2.1025.M is equal
to 8 in all the numerical simulations of this section. In table 2.3, we give the effective indicesneff of
the main modes of thisC6v MOF. It is easy to see that the modes labelled C3/4-a of mode classes 3
and 4 have both the highest real part ofneff and the lowest imaginary part,i.e. the lowest losses. These
modes correspond to the fundamental mode of the MOF. We already know from the results described in
section2.2.3that the modes of mode classes 3 and 4 are two-fold degeneratein a C6v structure : this
is exactly what is found for theC6v example. In Fig.2.15, we give the moduli of the electromagnetic
field longitudinal componentsEz andHz for the two mode classes 3 and 4. As expected, the fields of
these two degenerate modes do not have all the symmetry properties of the MOF structure but only a
subset. It can be easily checked that these fields fulfil the symmetry properties described in Fig.2.6(b).
The longitudinal component of the Poynting vector is shown in Fig.2.14, and it is the same for the two
degenerate modes whilst being well localized in the core of the MOF.

In order to complete the description of the degenerate fundamental mode, the transverse electroma-
gnetic vector fields for the two mode classes are given in Fig.2.16. Since in the Multipole Method the
electromagnetic fields are complex (see Eqs. (2.2)), we must consider both the real part and the imagi-
nary part of the fieldsE(r, θ) andK(r, θ) because of the factorei(βz−ωt) in the full expression of the
propagating electromagnetic fields. This explains why theyare both drawn in the vector field figures.
Since the vector fields built from the real and the imaginary parts ofE(r, θ) (or K(r, θ)) are parallel in
the MOF core, we conclude that the physical field,i.e. the real part ofE(r, θ, z, t), is linearly polarized
in the MOF core for the degenerate fundamental mode.

We now describe more briefly the main higher order modes of this six hole MOF. First of all we must
recall that there is no order relation inC, and consequently it is not possiblea priori to classify the leaky
higher order modes found in this structure with the definition used when the effective indices are purely
real. If the imaginary part varied monotonicaly with respect to the real part, it would have been possible
to keep a simple ordering for the modes. But as can be seen in Fig. 2.17, this is no longer the case after
the sequence C3/4-a (fundamental mode), C2-a, C5/6-a, and C1-a. In the following pages we give for
the higher order modes (C2-a, C5/6-a, and C1-a) the moduli ofthe electromagnetic fields and Poynting
vector longitudinal components followed by the transverseelectromagnetic vector fields. It has not yet
been proven that this order (C2-a, C5/6-a, and C1-a) is conserved for allC6v MOF5.

Another useful issue is the possible correspondence between C6v MOF and conventionalC∞v step-
index optical fiber modes. Due to their different symmetry properties, it is not possible to follow com-
pletely forC6v MOF modes the well known classification of guided modes in conventional step-index
optical fiber :HEν,m, EHν,m, TEm, TMm. On one hand, in aC∞v waveguide, the HE/EH classification
uses modes such that the componentsEz andHz are given by a single Fourier-Bessel component when
the center of the fiber is the origin of the coordinates. On theother hand, in aC6v waveguide, several
Fourier-Bessel components are required to described a mode(see Eq.2.31in section2.2.2and section
A.2.2in Appendix B). Consequently, if bothEz andHz of a MOF mode can be approximated by a single
Fourier-Bessel component then the correspondence with HE/EH modes is straightforward. Most of the
time, however, this is not the case. Nevertheless for a few modes such correspondence can bo made, the
results are given in the following table.

5mode crossing could appear between these MOF modes similarly as for conventional step-index optical fibre higher order
modes (see Fig.12-4 of chapter 12 in reference [2]).
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TAB . 2.3 – Mode class, degeneracy, and effective index for the main modes of theC6v six hole MOF of
section2.2.5. The results are computed atλ = 1.55µm.

Mode class Degeneracy ℜe(neff) ℑm(neff) Label in Fig.2.17
1 1 1.4307554 0.19457921E-05 C1-a

1.4061823 0.88085482E-03 C1-b
2 1 1.4310182 0.70048952E-06 C2-a

1.4041826 0.29291417E-03 C2-b
3, 4 2 1.4387741 0.43257457E-07 C3/4-a

1.4211904 0.21562081E-04 C3/4-b
1.4176892 0.46170513E-04 C3/4-c

5, 6 2 1.4308483 0.13214492E-05 C5/6-a
1.4138932 0.17521791E-03 C5/6-b
1.4025688 0.90274454E-04 C5/6-c
1.4052517 0.51396894E-03 C5/6-d

7 1 1.4203103 0.11466473E-04 C7-a
8 1 1.4217343 0.29251040E-04 C8-a

TAB . 2.4 – Correspondence between the main fourC6v MOF modes for the six hole MOF example as
defined in the text and conventional step-index fiber modes.

MOF Conventional fibre
Symmetry class Mode label Mode

3/4 C3/4-a HE1,1

2 C2-a TE1

5/6 C5/6-a HE2,1

1 C1-a TM1

A more general analysis can be made by comparing the general forms of the HE and EH longitu-
dinal components as presented in table 12-3 of chapter 12 in reference [2] with the expansions of the
longitudinal components in terms of Fourier series given intable IV of reference [18]. Equating these
expansions show that MOF modes of a given symmetry class may correspond to the superposition of
specific HE/EH modes. Conversely, some EH/HE modes can only be of specific symmetry classes. Ne-
vertheless as already stated no general one to one relationship can be deduced from these results.
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two symmetry classes p=3 and p=4. The modulus is normalized to unity.



32 2.2 The multipole method

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

.....

.....
.....

.....
.....

......
......

.......
.........

...............
.................

..............................
.........

.......
......

......
......

.....
.....
.....
.....
.

.....

.....
.....

.....
.....

......
......

.......
.........

...............
........................................................................................................... .....

.....
.....
.....
.....
.

.....

.....
.....

.....
.....

......
..............................................................................................................................

.........
.......

......
......

......
.....
.....
.....
.....
.

.....
.....
.....

.....
.....

......
......

.......
.........

...............
........................................................................................................... .....

.....
.....
.....
.....
.

.....
.....
.....

.....
.....

......
..............................................................................................................................

.........
.......

......
......

......
.....
.....
.....
.....
.

..................................................................................................................................................................

0    

0.25 

0.5  

0.75 

1    

(a) |Ez| for p=3
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(b) |Kz| for p=3
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(c) |Ez| for p=4
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(d) |Kz| for p=4

FIG. 2.15 – Moduli of electromagnetic field longitudinal components for theC6v six hole MOF example,
in the core region, for the degenerate fundamental mode which belongs to the symmetry classes p=3 and
p=4,neff = 1.4387741 + i 0.4325745 10−7 . The field moduli are normalized to unity.
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FIG. 2.16 – Transverse electromagnetic vector fields for the degenerate fundamental mode of theC6v six
hole MOF example. The real part of the field is represented by plain thick vectors and the imaginary part
is represented by dashed thin vectors.
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FIG. 2.17 – Imaginary part ofneff versus its real part for the main modes given in table2.3 for theC6v

six hole MOF of section2.2.5. A log-scale is used for the imaginary part.
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FIG. 2.18 – Moduli of electromagnetic field and Poynting vector longitudinal components of theC6v six
hole MOF example, in the core region, for the higher order mode of symmetry class p=2 with the highest
effective index real part,neff = 1.4310182 + i 0.70048952 10−6 . The maxima of the field moduli are
normalized to unity.
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FIG. 2.19 – .
Transverse electromagnetic vector fields of theC6v six hole MOF example, for the higher order mode

of symmetry class p=2 with the highest effective index real part. The real part of the field is represented
by plain thick vectors and the imaginary part is representedby dashed thin vectors.
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(a) |Ez| for p=5
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(b) |Kz | for p=5
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(c) |Sz| for p=5 and 6

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

−7 0 7
−7

0

7

.....
.....
.....

.....
.....

......
......

.......
........

..............
...................

..............................
.........

.......
......

......
.....
.....
.....
.....
.....
..

.....
.....
.....
.....

......
......

......
.......

.........
...................

...................................................................................................... .....
.....
.....
.....
.....
.

.....
.....
.....
.....

.....
......

..............................................................................................................................
.........

.......
......

......
......

.....
.....
.....
.....
.

.....

.....
.....
.....

......
......

......
.......

.........
...................

...................................................................................................... .....
.....
.....
.....
.....
.

.....

.....
.....
.....

.....
......

..............................................................................................................................
.........

.......
......

......
......

.....
.....
.....
.....
.

..................................................................................................................................................................

0    

0.25 

0.5  

0.75 

1    

(d) |Ez| for p=6
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(e) |Kz | for p=6

FIG. 2.20 – Moduli of electromagnetic field and Poynting vector longitudinal components of theC6v six
hole MOF example, in the core region, for the higher order modes of symmetry classes p=5 and p=6 with
the highest effective index real part,neff = 1.4308483 + i 0.13214492 10−5 . The maxima of the field
moduli are normalized to unity.
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FIG. 2.21 – Transverse electromagnetic vector fields of theC6v six hole MOF example, for the degenerate
mode of symmetry classes p=5 and p=6. The real part of the fieldis represented by plain thick vectors
and the imaginary part is represented by dashed thin vectors.
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FIG. 2.22 – Moduli of electromagnetic field and Poynting vector longitudinal components, in the core
region, for the higher order mode of symmetry class p=1 with the highest effective index real part,
neff = 1.4307554 + i 0.19457921 10−5 . The maxima of the field moduli are normalized to unity.
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FIG. 2.23 – Transverse electromagnetic vector fields for the higher order mode of symmetry class p=1
with the highest effective index real part. The real part of the field is represented by plain thick vectors
and the imaginary part is represented by dashed thin vectors.
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A C2v example : a birefringent MOF

MOF have already been used to realize highly birefringent optical fibers [39] by means of the high
index contrast and the numerous possible designs for the holes and their positions. In what follows we
give a simple example which exibits a high birefringence : aC2v six hole MOF with two types of hole.
The MOF is nearly the same as that used in section2.2.5: Λ = 6.75µm, the diameters of the four small
holes is fixed at 5.0µm, but two symmetrically positioned small holes are now big holes of diameters
equal to 7.0µm, and we chooseλ = 1.55µm andεr = 2.0852042.M is equal to 8 in all the numerical
simulations of this section. We already know from the results described in section2.2.3that none of the
modes are degenerate. This is exactly what we found in table2.5where we give the effective indicesneff

of the main modes of thisC2v MOF.

TAB . 2.5 – Mode class, and effective index for the main modes of aC2v six hole MOF. The results are
obtained atλ = 1.55µm. According to McIsaac’s theory none of the possible modes ofthis C2v MOF
can be degenerate.

Mode class ℜe(neff) ℑm(neff) Label in Fig.2.24
1 1.4245641 0.266614E-08 C1-a

1.4302611 0.16786253E-05 C1-b
1.4059800 0.4446967E-07 C1-c
1.4096020 0.45426880E-03 C1-d
1.3969515 0.30692507E-03 C1-e

2 1.4251917 0.125315E-08 C2-a
1.4302577 0.6052240E-06 C2-b
1.3992741 0.7157604E-06 C2-c
1.4078141 0.15989247E-03 C2-d
1.3970789 0.68785361E-04 C2-e

3 1.4373840 0.2127787E-07 C3-a
1.4163151 0.56123303E-06 C3-b
1.4189536 0.15076718E-04 C3-c
1.4053802 0.16153919E-04 C3-d
1.3946933 0.10998837E-02 C3-e

4 1.4375326 0.45399096E-07 C4-a
1.4165924 0.93230300E-06 C4-b
1.4194844 0.49669065E-04 C4-c
1.4063350 0.23955853E-04 C4-d
1.3982127 0.24979563E-02 C4-e

There are at least two interesting points concerning the modes in thisC2v si holes MOF. First of all,
the determination of the fundamental mode is not straightforward : is it the mode labelled C2-a which has
the lowest losses (see table2.5and Fig.2.25) or the C4-a mode which have the highest real part ofneff.
We will describe a way to determine which one is the fundamental mode of the structure in the chapter
7, which is dedicated to MOF properties. The second point to consider is the lifting of the degeneracy
of the C3/4-a mode described previously in theC6v MOF into two distinct modes : C3-a and C4-b. The
longitudinal components of these two modes are shown below in Fig.2.26.

A C4v example : a square MOF

We conclude the illustration of the ordinary symmetric structures in MOF with aC4v example (the
fiber contains eight identical holes of diameter 5.0µm, the pitch is 6.75µm, andεr = 2.0852042). In this
case, only the classes 3 and 4 are degenerate as expected fromMcIsaac’s theory. The fundamental mode
belongs to these classes, and it is the mode labelled C3/4-a :the correponding longitudinal components
are plotted in Fig.2.28. The first modes of this structure are given in Table2.6and in Fig.2.27.
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FIG. 2.24 – Imaginary part ofneff versus its real part for the modes given in table2.5for theC2v six hole
MOF. A log-scale is used for the imaginary part.
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FIG. 2.25 – Moduli of electromagnetic field and Poynting vector longitudinal components, in the core
region of theC2v six hole MOF example for the mode which belongs to the symmetry classes p=2,
neff = 1.4251917 + i 0.12531510−8 . The field moduli are normalized to unity.

2.2.7 Conclusion

In this long section, the Multipole Method has been explain in some detail. It appears that the sym-
metry properties of MOF modes obtained from McIsaac’s theoretical work can be take into account
naturally with this method. Only circular inclusions have been considered but more general inclusion
shapes can be treated provided that the inclusions do not overlap. In this last case, the scattering matrix
of each of the noncircular inclusions must be provided. Thanks to its speed and accuracy and to the way
in which it can deal with material dispersion, the MultipoleMethod is the reference method to study
finite size MOF properties including their losses when the fibers are made of circular inclusions.
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FIG. 2.26 – Moduli of electromagnetic field and Poynting vector longitudinal components, in the core
region of theC2v six hole MOF example for the modes of symmetry classes p=3 (neff = 1.4373840 +
i 0.2127787 10−7) and p=4 (neff = 1.4375326 101 + i 0.4539909 10−7 ). The field moduli are normalized
to unity.

TAB . 2.6 – Mode class, degeneracy, and effective index for the main modes of the squareC4v eight hole
MOF. The results were computed atλ = 1.55µm.

Mode class Degeneracy ℜe(neff) ℑm(neff) Label in Fig.2.27
1 1 1.433960 0.2984848E-06 C1-a

1.423173 0.1387057E-04 C1-b
2 1 1.433891 0.2937135E-06 C2-a

1.423461 0.1499999E-04 C2-b
1.410688 0.6201385E-04 C2-c

3, 4 2 1.439607 0.8965050E-08 C3/4-a
1.430761 0.1801941E-05 C3/4-b
1.427466 0.5028845E-05 C3/4-c
1.419888 0.2701725E-05 C3/4-d
1.415520 0.8361918E-04 C3/4-e
1.413382 0.8869551E-04 C3/4-f

5 1 1.433642 0.3221663E-06 C5-a
1.423361 0.1371652E-04 C5-b
1.411219 0.1878240E-03 C5-c

6 1 1.434133 0.2827584E-06 C6-a
1.423380 0.1427653E-04 C6-b
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FIG. 2.27 – Imaginary part ofneff versus its real part for the modes given in table2.6 for theC4v eight
hole MOF. A log-scale is used for the imaginary part.The upper right inset is a zoom around the positions
of C1-b and C-6b, the lower left inset is a zoom around the positions of C1-a and C-6a.
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FIG. 2.28 – Moduli of electromagnetic field longitudinal components, in the core region for the dege-
nerate fundamental mode which belongs to the symmetry classes p=3 and p=4,neff = 1.4396074 +
i 0.8965065 10−8 . In (c) modulus of the Poynting vector : it is the same for the two symmetry classes
p=3 and p=4. The field moduli are normalized to unity.
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2.3 The differential method with the fast fourier factorization as a mode
searching method

In order to concentrate on the modal problem and to avoid repeating what we have already published
in articles dedicated to the Fast Fourier Factorization method (FFF)[40, 41], we refer to these references
for the description of the FFF. We simply recall that the key point of the FFF is to rewrite the formulation
of the linear relation betweenE andD in a truncated Fourier space. We found that, locally[40, 41] :

[D] = Qε[E] (2.53)

in which the column matrices[D] and [E] are made up of three blocks, each of these blocks(r, θ, z)
containing2N + 1 Fourier components, andQε is a square matrix. The size of this matrix is3(2N +
1) since it comprises the Toeplitz matrices :Jn2

rK, JnrnθK, Jn2
θK, built from the extended unit vectors

(denoted byn) normal to the surfaces of the inclusions [40, 42]. The matrixQε also contains the Toeplitz
matricesJǫK andJ1/ǫK−1 arising from the application of the correct factorization rules, described by L.
Li[ 43], used to reformulate the constitutive relationD = ǫE in the truncated Fourier space (see section
4.7 of reference [44] and quoted references for the detailed properties of Toeplitz matrices).

Qǫ =





JǫKJn2
θK + J1

ǫ K
−1Jn2

rK −
(

JǫK − J1
ǫ K

−1
)

JnrnθK 0
−

(

JǫK − J1
ǫ K

−1
)

JnrnθK JǫKJn2
rK + J1

ǫ K
−1JN2

θ K 0
0 0 JǫK



 (2.54)
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FIG. 2.29 – Modulated area with the used notations in the differential method.

This rewriting of the constitutive relation is used explicitly in a region called the "modulated area"
(see Figures2.29). This area which lies between the inscribed circular cylinder Cmin with radiusRmin

and the circumscribed circular cylinderCmax with radiusRmax, contains all the diffracting cylindrical
objects. For MOFs, this region contains the inclusions which confine the electromagnetic fields. In the
modulated area, Maxwell’s equations are reduced to a set of first order differential equations written in a
four block matrix form (one block for each field component used in the theory) :

d

dr









[Eθ]
[Ez]
[Hθ]
[Hz]









= iM(r)









[Eθ]
[Ez]
[Hθ]
[Hz]









(2.55)

in whichM(r) is a square matrix, depending on the blocks of the matrixQε, with dimension4(2N + 1)
and whose general expression valid for anisotropic, lossless or lossy, and/or inhomogeneous media can be
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found in reference[40]. the expression ofM(r) for the present case (z-invariance and isotropic medium)
is given below and was found in reference[41].

M (r) =









− 1
r
αQ−1

ǫ,rrQǫ,rθ + i
r
Id − 1

r
αQ−1

ǫ,rrQǫ,rz
γ0

ωr
αQ−1

ǫ,rr ωµ0Id − α
ωr2 Q−1

ǫ,rrα

−γ0Q−1
ǫ,rrQǫ,rθ −γ0Q−1

ǫ,rrQǫ,rz
γ2
0

ω
Q−1

ǫ,rr − ωµ0Id − γ0

rω
Q−1

ǫ,rrα

ω
“

Qǫ,θθ − Qǫ,θrQ−1
ǫ,rrQǫ,rθ

”

− γ0

µ0ωr
α α2

µ0ωr2 + ω
“

Qǫ,zrQ−1
ǫ,rrQǫ,rz − Qǫ,zz

”

i
r
Id − γ0Qǫ,zrQ−1

ǫ,rr Qǫ,zrQ−1
ǫ,rr

α
r

ω
“

Qǫ,θθ − Qǫ,θrQ−1
ǫ,rrQǫ,rθ

”

− γ2
0

µ0ω
Id

γ0

µ0ωr
α + ω

“

Qǫ,θz − Qǫ,θrQ−1
ǫ,rrQǫ,rz

”

Qǫ,θrQ−1
ǫ,rrγ0 −Qǫ,θrQ−1

ǫ,rr
α
r









(2.56)
The α matrix in M(r) coefficients is a diagonal matrix such thatαnm = nδnm, it comes from the
derivation according toθ. TheM(r) matrix depends only on ther-coordinate and its size is(4(2N+1))2.
The equations (2.55-2.56) are a new formulation of both the Maxwell’s equations and the constitutive
relations in cylindrical coordinates in the truncated Fourier space.

2.3.1 First Approach

Modes are homogeneous solutions of Maxwell’s equations solutions, of the formf(r, θ) exp(i(βz−ωt)),
in whichβ is the modal propagation constant andω is the angular frequency.

In a homogeneous and isotropic medium, the Fourier coefficients of the electromagnetic field com-
ponents :Ez,n andHz,n satisfy the propagation equation (see eq. (2.7), written in cylindrical coordinates.
We simply slightly change the notations to adapt it to the description of this differential method :

(kt,jr)
2 d2uz,n

d (kt,jr)
2 + (kt,jr)

duz,n

d (kt,jr)
+

[

(kt,jr)
2 − n2

]

uz,n = 0 (2.57)

with uz,n ∈ {Ez,n,Hz,n}, k2
t,j = k2

j − β2 , k2
j = ω2µ0ǫj , andj ∈ {int, ext}. The solutions are :

{

Hz,n = A
(j)
h,nJn (kt,jr) + B

(j)
h,nH+

n (kt,jr)

Ez,n = A
(j)
e,nJn (kt,jr) + B

(j)
e,nH+

n (kt,jr) .
(2.58)

In order to simplify the equations, we introduce the following column matrices with dimension
2(2N + 1) :

[A(r)] =



















...

A
(j)
e,nJn (kt,jr)

...

A
(j)
h,nJn (kt,jr)

...



















and [B(r)] =



















...

B
(j)
e,nH+

n (kt,jr)
...

B
(j)
h,nH+

n (kt,jr)
...



















(2.59)

We have omitted thej superscript in the left hand sides of eqs. (2.59). We recall that atr = Rmin,
j = int and atr = Rmax, j = ext. The scattering matrixS of the entire modulated area is defined by :

[

[B(Rmax)]
[A(Rmin)]

]

= S

[

[B(Rmin)]
[A(Rmax)]

]

=

[

S11 S12

S21 S22

] [

[B(Rmin)]
[A(Rmax)]

]

(2.60)

To avoid a divergence of the field at the origin (H+
n (r) → ∞ whenr → 0) we must haveB(int)

e,n = 0

andB
(int)
h,n = 0∀n, i.e. [B(Rmin)] = [0]. In the external region, the amplitudesB

(ext)
e,n andB

(ext)
h,n , which

are the coefficients of Hankel functions, are associated with outgoing waves whereas the amplitudes
A

(ext)
e,n andA

(ext)
h,n , which are the multiplicative coefficients of Bessel functions, are associated with in-

cident waves. Then, recalling that modes are homogeneous solutions of Maxwell’s equations, we must
haveA

(ext)
e,n = 0 andA

(ext)
h,n = 0∀n, i.e. [A(Rmax)] = [0]. Using eq. (2.60), we obtain that, for modal
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fields, the column matrices[A(Rmin)] and[B(Rmax)] must be solutions of the following homogeneous
set of equations :

S−1

[

[B(Rmax)]
[A(Rmin)]

]

=

[

0
0

]

(2.61)

Thus, the unknown amplitudes appear to be the eigenvectors associated with null eigenvalues of the
inverse scattering matrixS−1. Once determined, eq. (2.58) allows us to compute the fields.

2.3.2 Improved Approach in theS-matrix Propagation Algorithm with the Z-Matrix

In most cases, numerical instabilities do not permit us to integrate the differential set (2.55) directly
from r = Rmin to r = Rmax ; that is why we use theS-matrix propagation algorithm[45]. In fact, for
a fixed value of the argumentkt,intRmin (see eq.2.58), the spatial extension of the divergence due to
the singularity of the Hankel functions atr = 0 spreads out along ther axis when the Bessel ordern
increases towards its maximum value fixed by the truncation order N. Consequently, the initial vectors of
the integration evaluated atr = Rmin and calculated from the eq.(34) of reference[40], may contain high
values which grow during the integration process and can make some blocks of the transmission matrix
T ill-conditioned. We recall the reader that theT -matrix links the fields atr = Rmin and the fields at
r = Rmax. In order to avoid this numerical contamination, the principle of theS-matrix propagation
algorithm is to split the modulated area inL slices. For each slice(s) limited by the circular cylinders
with radiusrs andrs+1 (r1 = Rmin and rL+1 = Rmax), the differential set (2.55) is integrated. At
r = rs for s ∈ [2, L], we add for each interface an infinite thin homogeneous layerwith permittivity ǫext.
Consequently, the column matrices defined by expression (2.59) can be generalized to the interfaces
within the modulated area (see also Fig. 6 of reference[40]). We obtain the correspondingT -matrix
denotedT (s) of the (s) slice which links the fields atrs and the fields atrs+1. We use theS-matrix of
the(s) interfacer = rs, denotedS(s), and fully defined in eq. (40) of reference[40]. TheS-matrix S(s)

was defined in order to be better conditioned than theT -matrixT (s). We recall that theS22 block is such
that :

S
(s+1)
22 = S

(s)
22 Z(s) (2.62)

with
Z(s) = {T (s)

11 + T
(s)
12 S

(s)
12 }−1. (2.63)

At the end of theS-matrix propagation algorithm process, we obtain theS-matrix at the(L+1) interface.
This matrix is simply the requiredS matrix associated with the whole modulated area (see eq. (2.60)).

The modal problem initially described by equation (2.61), with the large4(2N + 1) square matrix
S−1, may be performed using the benefits of theS-matrix propagation algorithm. From eq. (2.62), we
deduce{S(s)

22 }−1 = Z(s){S(s+1)
22 }−1 . Then we multiply each side by the same vector[A(Rmin)] :

{S(s)
22 }−1 [A(Rmin)] = Z(s){S(s+1)

22 }−1 [A(Rmin)] . (2.64)

Using eq.(40) of reference[40] or eq.(3.74) page 65 of reference [46] and identifying the left and right
hand terms in eq. (2.64) we obtain :

[A(rs)] = Z(s) [A(rs+1)] . (2.65)

In order to complete the field expansion at the interfacers, we use again the equation (40) of reference[40],
and we get :

[B(rs)] = S
(s)
12 [A(rs)] . (2.66)

For theLth slice, using eq. (2.65) we note that the modal fields at theLth interface are solution of :

[A(rL)] = Z(L) [0] or equivalently (2.67)

{Z(L)}−1 [A(rL)] = [0] (2.68)
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and the fields at the others interfaces are deduced through aniterative method by equations (2.65) and
(2.66).

Equation (2.68) is a new formulation of the modal problem. Solving this equation presents two im-
portant advantages. First, the block{Z(L)}−1 = T

(L)
11 + T

(L)
12 S

(L)
12 (see eq. (2.63)) is well-conditioned

by definition if the number of slices in theS-matrix propagation algorithm is sufficient. The{Z(L)}−1

matrix is better conditioned than theS−1-matrix and its size is halved. These properties allow us to
study waveguides with a microstructured region,i.e. a modulated region in the FFF terminology, more
extended along ther variable than the simple formulation we proposed previously[41]. We illustrate this
improvement in section2.3.4. Mode details concerning the different approaches we developed previously
in the frame of the differential method to solve the modal problem can be found in the first section of
chapter 6 of reference [46]. We can note that, as in section2.3.1, the fields can be computed in the en-
tire device cross section from the eigenvectors of the{Z(L)}−1 matrix associated with a null eigenvalue
using eqs (2.65,2.66). In what follows, we will simply denote the{Z(L)}−1 matrix byZ−1 and we will
denote the FFF based mode searching method we develop the FFF-MS.

The search algorithm we use within the FFF-MS is similar to the one detailed in the chapter 5 of
reference[6]. However, since the computation of theS−1 scattering matrix of the whole MOF is more
time consuming with this method than with the Multipole Method, we reduce as much as possible the
number of evaluations of theZ−1 matrix even if this slightly reduces the capability of the algorithm to
find automatically the modes of a given structure.

2.3.3 Modes and symmetries

Device with Sub-periodicity According to the Angular Variable θ

Typical MOF cross sections have often a sub-periodicity with respect to the angular variableθ, at
least as a first approximation (see section2.2.3). Nearly all the MOFs already realized fulfill theCnv

symmetry,i.e. a sub-periodicity of2π/n with symmetry planes (n ∈ N
∗) ; most of them belong to the

C6v one. This property and the useful and general work of McIsaac[18, 19] relating waveguide symmetry
properties and mode classification, using a group-theoretic approach, have already motivated the exploi-
tation of the putative sub-periodicity according toθ within the Multipole Method. To use the symmetry
properties of the structures studied has the following advantages : it allows a clear mode classification
according to McIsaac’s results. In addition, by reducing the size of the matrices in the numerical imple-
mentation of the method, it reduces the computation time andit avoids the loss of accuracy induced by
the increase of the number of numerical operations when the matrix size is increased. For the already
mentioned multipole method, all these benefits have alreadybeen obtained[6, 16, 47]. It is then obvious
that such an improvement should be obtained in the frameworkof the FFF-MS. It is worth mentioning
that both the MM and Finite Element Method[6] deal with the real space. Consequently, the symmetry
relations are defined and used in this space. Bai and Li have established a formulation of the differen-
tial method for diffraction problems of crossed-gratings using Cartesian coordinates using the structure
symmetries[48, 49]. In our work, the FFF method is formulated in the Fourier space for cylindrical coor-
dinates (see section 3 of reference [40]), and symmetry properties have to be found in the Fourier space
using angular periodicities of microstructured optical fibres.

The sub-periodicity inθ directly implies some properties for the Fourier expansions of the optogeo-
metric quantities (̄̄ǫ, nr, nθ, ...) used by the FFF, and then induce a splitting of the differential set into
several independent sub-sets as we show in the following.

First, let us define the Fourier expansion of a geometrical quantity denotedw(θ) with sub-periodT
such thatNT T = 2π whereNT is the number of sub-periodicity (for aC6v structure, we haveNT = 6).
On the2π-period, the Fourier expansion ofw(θ) is written :

w(θ) =

∞
∑

n=−∞
wneinθ with wn =

1

2π

∫ 2π

0
w(θ)e−inθdθ. (2.69)
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The Fourier expansion ofw(θ) on the sub-periodT is written :

w(θ) =
∞
∑

n=−∞
w′

nein 2π
T

θ with w′
n =

1

T

∫ T

0
w(θ)e−in 2π

T
θdθ. (2.70)

After a few calculations, we obtain the known result :

∀n ∈ Z,

{

if n 6= mNT ,m ∈ Z thenwn = 0,
if n = mNT ,m ∈ Z thenwn = wmNT

= w′
m

(2.71)

The Fourier spectrum ofw(θ) on the 2π-range is the Fourier spectrum ofw(θ) on the sub-period
T with an enlargement of factorNT . Let us illustrate the consequences of this property (2.71) on a
simple example in whichNT = 3. The Fourier coefficients ofw(θ) in the T -range called (w′

n) are
{

..., w′
−4, w

′
−3, w

′
−2, w

′
−1, w

′
0, w

′
1, w

′
2, w

′
3, w

′
4, ...

}

and, according to the property (2.71), the Fourier co-
efficients ofw on the2π-range called (wn) are

{

..., 0, 0, w′
−2, 0, 0, w

′
−1, 0, 0, w

′
0, 0, 0, w

′
1, 0, 0, w

′
2, 0, 0, ...

}

.
Consequently, the Toeplitz matrix ofw(θ) denotedJwK (see section 4.7 of reference [44] and quoted re-
ferences for the detailed properties of Toeplitz matrices)on the2π-period contains non-null diagonals
regularly separated by(NT − 1) null diagonals.

Moreover, when we invert such a matrix, asJwK, or multiply two such matrices, the matrix structure
is preserved even if the matrix obtained is not usually a Toeplitz matrix.

The blocks of the integration matrixM(r) in eq. (2.55) are not Toeplitz matrices since some of them
contain the matrixα and the blocks of the matrixQǫ[40], nevertheless these blocks keep the diagonal
structure of the matrixJwK. Consequently, the differential set (2.55) is split into NT = 3 independent
differential sub-sets which link the Fourier coefficients of the field components (Eθ, Ez, Hθ or Hz)
among the following classes of expansion orders :{−4,−1, 2},{−3, 0, 3} and{−2, 1, 4}.

To conclude, when we consider a sub-periodicity withNT sub-periods, the differential set (2.55)
is split into NT independent and different sub-sets. However each block of theQǫ matrix contains the
same terms for all the differential sub-sets. The computational time depends approximatively on the
cube of the matrix integration size, equal to4(2N + 1), whereas the size of the integration matrix of
each sub-set is4(2N + 1)/NT or less. So the duration of an integration for all the differential sub-
sets scales asNT (4(2N + 1)/NT )3 = (4(2N + 1))3/N2

T , while the computational time of the global
differential set scales as(4(2N +1))3. Hence taking into account the sub-periodicity permits us to reduce
approximatively the computation time by a factorN2

T (36 for aC6v structure).

Using the Mode Symmetries within the FFF-MS

In the previous section, we have shown that these sub-periodicities imply the splitting of the Fourier
coefficient set of the modal electromagnetic fields intoNT independent sub-sets, all these sub-sets being
required to compute the modal fields. In the present section,we first show that it is sufficient to study
one or two sub-sets to describe completely the modal field of aCNT v structures. This result is related to
the exhaustive description of symmetry classes and field expressions of waveguide modes established by
McIsaac[18, 19] and improved by Fini[47]. Secondly, we explain explicitly how the modal fields (Fourier
amplitudes) are computed in the FFF-MS using the improved approach in theS-matrix propagation
algorithm.

For a sub-periodicity orderNT , we choose to noteIi theNT sub-sets of Fourier coefficient orders in
the following way :

Ii = {nNT + i − 1, n ∈ Z} with i ∈ [1, NT ] . (2.72)

We only consider aCNT v symmetry MOF, theCNT
case can be found in a similar way. WhenNT is

odd, we know from McIsaac’s work that there areNT + 1 mode classes. The number of non-degenerate
mode classes is equal to 2 and the number of pairs of two-fold degenerate mode classes is(NT − 1)/2.
WhenNT is even, the number of non-degenerate mode classes is equal to 4 and the number of pairs of
two-fold degenerate mode classes is ((NT −2)/2). We complete the three first columns given in Table IV
of reference[18] with the sub-sets of Fourier coefficients needed to describe the fields in the FFF-MS for
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each mode class (see Table (2.7)). We notice that some mode classes (Ck andCk+1) need two sub-sets of
Fourier coefficients. In Table (2.8), we illustrate the splitting of the Fourier coefficients into sub-sets for
aCNT v symmetry waveguide forNT from 1 to 8. In Table (2.8), we illustrate the splitting of the Fourier

NT
Mode
class p

Ezpq
FFF-MS Fourier

coefficients sub-sets
even
odd

1
n=+∞

P

n=0
F1qn(r) cos (NT nθ) I1

even
odd

2
n=+∞

P

n=0
G1qn(r) sin (NT nθ) I1

even
odd

k

n=+∞
P

n=0

n

Fkqn(r) cos
h

(NT n − k−1
2

)θ
i

+Pkqn(r) cos
h

(NT n + k−1
2

)θ
io

I 1+k
2

, INT +
3−k
2

even
odd

k+1

n=+∞
P

n=0

n

G(k+1)qn(r) sin
h

(NT n − k−1
2

)θ
i

+R(k+1)qn(r) sin
h

(NT n + k−1
2

)θ
io

I 1+k
2

, INT +
3−k
2

even NT + 1
n=+∞

P

n=0
F(NT +1)qn(r) cos

ˆ

NT

`

n + 1
2

´

θ
˜

I
1+

NT
2

even NT + 2
n=+∞

P

n=0
G(NT +2)qn(r) sin

ˆ

NT

`

n + 1
2

´

θ
˜

I
1+

NT
2

TAB . 2.7 – Fourier series representations of the longitudinal electric field for waveguides withCNT v

symmetry (the first three columns come from Table IV in reference[18]). Like in this reference, theq
subscript indicates theqth mode of the considered mode class. See eq. (2.72) for the definition of theIi.

coefficients into sub-sets for aCNT v symmetry waveguide forNT from 1 to 8.

NT →
Mode class p↓ 1 2 3 4 5 6 7 8

1 I1 I1 I1 I1 I1 I1 I1 I1

2 I1 I1 I1 I1 I1 I1 I1 I1

3 - I2 I2,I3 I2,I4 I2,I5 I2,I6 I2,I7 I2,I8

4 - I2 I2,I3 I2,I4 I2,I5 I2,I6 I2,I7 I2,I8

5 - - - I3 I3,I4 I3,I5 I3,I6 I3,I7

6 - - - I3 I3,I4 I3,I5 I3,I6 I3,I7

7 - - - - - I4 I4,I5 I4,I6

8 - - - - - I4 I4,I5 I4,I6

9 - - - - - - - I5

10 - - - - - - - I5

TAB . 2.8 – Sub-sets of the Fourier coefficients in the FFF-MS associated with the different mode classes
as defined by McIsaac for aCNT v waveguide for several values ofNT .

In the previous paragraph, we determine the FFF-MS sub-setsof Fourier coefficients that describe
each mode class forCNT v waveguides. Now, we express the Fourier amplitudes of the FFF-MS modal
fieldsw′

n given by equation (2.70) by comparison with the Fourier expansion expressions given by the
third column of Table (2.7), distinguishing non-degenerate mode classes and degenerate mode classes.
For aCNT v symmetry waveguide, we notice that a couple of successive mode classes (p = 1 and2 ; k
andk + 1 ; NT + 1 andNT + 2) need the same FFF-MS Fourier coefficient sub-sets (for example I1 for
p = 1 and2). Thus, we limit the following discussion to even values ofNT ; the odd case can be deduced
immediately by eliminating the mode classesNT+1 etNT+2.

Fields expansions in Table (2.7) are expressed in a cosine or sine function basis (cos (NT nθ) and
sin (NT nθ)), and the Fourier amplitudesFpqn(r), Gpqn(r), Ppqn(r), and Rpqn(r) are real numbers.
Using the Euler formula, we find the Fourier expansion of the FFF-MS expressed on the exponential
function basis (eiNT nθ) in equation (2.70) and the corresponding Fourier amplitudes (w′

n) are complex
numbers. Consequently, we deduce from the cosine function that Fourier amplitudesFpqn(r) andPpqn(r)
satisfy :w′

−m = w′
m with m ≥ 0 for mode classesp = 1, k andNT + 1, and we deduce from the sine
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function that Fourier amplitudesGpqn(r) andRpqn(r), satisfy :w′
−m = −w′

m with m ≥ 0 for mode
classesp = 2, k + 1 andNT + 2.

Now we can come back to the link between theZ-matrix and the above results. We start with the
two pairs of non-degenerate mode classes (p = 1 and 2 ;NT + 1 andNT + 2). The determinant map
of the Z−1 sub-matrix associated with the sub-sets (I1 or I

1+
NT
2

) provides the effective index of both

mode classes. On one hand, the modal fields (i.e. the eigenvectors associated with a null eigenvalue,
see equation (2.68)) corresponding to a Fourier expansion expressed only withcosine functions (mode
classesp = 1 andNT +1), contain Fourier amplitudes with identical signs as shownabove. On the other
hand, the modal fields corresponding to a Fourier expansion expressed only with sine functions (mode
classesp = 2 andNT + 2), contain Fourier amplitudes with opposite signs.

We now consider the case of degenerate mode classes (p = k andk +1) : the determinant map of the
Z−1 sub-matrix associated with the sub-sets (I 1+k

2
or INT + 3−k

2
) provides the same effective index. The

Fourier coefficients of the modal fields are linear combinations of eigenvectors (associated with a null-
eigenvalue) of theZ−1 sub-matrix corresponding to the subsetsI 1+k

2
andINT + 3−k

2
. Before combining

the eigenvectors, we must normalize them. We choose to normalize through the value of the smallest
order Fourier coefficient. The linear combination becomes asummation when the Fourier expansions are
expressed with a cosine function (mode classp = k) and a difference when the Fourier expansions are
expressed with a sine function (mode classp = k + 1).

As an example, we consider a waveguide withC6v symmetry (seventh column of Table (2.8)). The
Fourier expansion ofEzpq is written for the mode classp = 1 (first line of Table (2.7)) :

Ez1q =
+∞
∑

n=0

F1qn(r) cos (NT nθ) . (2.73)

Identifying with equation (2.70), we finally obtain :

Ez1q =
+∞
∑

n=−∞
w′

neiNT nθ with w′
m = w′

−m =
F1qm(r)

2
(m ≥ 0). (2.74)

The eigenvector deduced from the equation (2.68) and corresponding to the sub-setI1 contains these
Fourier coefficientsw′

n. We can compute theEzpq Fourier expansion for the other mode classes in the
same way.

2.3.4 Validation of the FFF based mode searching method by comparison with the Mul -
tipole Method results

In order to validate the FFF-MS as a modal method for studyingMOFs we use the MM as a reference
method since it is the most accurate method currently available in the case of circular and homogeneous
inclusions due to the fact that it is then partially analytic[6]. Our first test system is theC6v, one ring
solid core MOF described in reference [6] ; the hole diameterd is equal to 1µm, the pitchΛ is equal
to 2.3µm, the matrix indexnmat = 1.4439035654 (the number of significant digits given here has no
relation to the accuracy with which the refractive index of silica is known at that wavelength, the given
values are the ones used in the numerical simulations), and the cylinder indexncyl = 1. The second test
structure is aC2v six-hole solid core MOF. It is worth mentioning that all the results computed with the
FFF shown in this section and the following ones are obtainedon a desktop computer with reasonable
computation times.

A C6v MOF

The MM finds an effective index valueneff for the fundamental mode such thatneff = 1.4207845 +
i 7.20952 10−4 for λ = 1.56µm for a value of the parameterM , which controls the number of coef-
ficients in the Fourier-Bessel expansion, equal to 12 (i.e.2M + 1 coefficients). ForN = 60, our mode
searching algorithm findsneff = 1.42078315 + i 7.20465 10−4 . In this case the relative error between
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FFF-MS and MM for the effective index modulus is around10−6. We test the convergence capability of
theFFF-MS according the Fourier expansion orderN ; this is done in Fig.2.30for the fundamental mode
of our test structure. If the correct factorization rules used for the description of the constitutive relation
linking E andD are not included, we are no longer in the frame of the FFF but within the classical dif-
ferential method (CDM)[50]. It has already been shown that in this case the convergenceis much slower
and even not attainable (see Fig. 6 and 10 of reference [42]) for diffraction problems in TM polarization.
The results shown in Fig.2.30clearly demonstrate that the effective index computed using the FFF-MS
converges toward the value obtained from the MM when the Fourier expansion orderN is increased.
As expected, we can also state that, in a modal problem, the FFF-MS convergence is much faster than
that of the similar mode searching method based on the classical differential method (denoted CDM-MS
below).

In order to quantify these convergences, we compute the relative error between the FFF-MS results
and the MM ones and also the relative error between the CDM-MSand the MM results. Sinceneff is a
complex number we use the normalized modulus of the difference between the two values. As can be
seen in Fig.2.31, as soon asN = 60, the relative error for the FFF-MS is around10−6 for N = 60
and reduces to3. 10−7 for N = 162. The fall of the relative error obtained for 35 slices in theS-matrix
propagation algorithm betweenN = 84 and N about 100 is due to the FFF-MS values crossing the MM
value. This fall shows that only the global behavior of the convergence curves must be considered. The
field maps of the fundamental mode found with the FFF-MS naturally fulfill the symmetry properties
(see section2.3.3) as shown in Fig.2.32, and these maps are identical to those obtained with the MM.

Since we have solved the issue of the numerical instabilities occuring in the previous formulation
of the FFF-MS applied to mode searching[41], we can now study structures with more than one ring
of inclusions, as is proven below. For a two-ring MOF with thesame optogeometric parameters as the
one ring MOF described above, the MM givesneff = 1.4210361 + i 2.38070 10−5 for M = 12 at
λ = 1.56µm. In this case, the FFF-MS givesneff = 1.42103506 + i 2.36453 10−5 for N = 60 and
L = 45 andneff = 1.421036081+ i 2.37984 10−5 for N = 150 andL = 105. Consequently, the relative
error is1.3 10−6 for the real part of the effective index and6.8 10−3 for the imaginary part for the first
set of convergence parameters, and the relative error decreases to1.3 10−8 for the real part ofneff and to
3.6 10−4 for its imaginary part for the second set of parameters.

For a three-ring MOF at the same wavelength, the MM givesneff = 1.4210465 + i 8.118 10−7 for
M = 12 whereas the FFF-MS givesneff = 1.4210445 + i 7.928 10−7 for N = 60 andL = 70 and
neff = 1.4210465 + i 8.117 10−7 for N = 150 andL = 160. TheL values have been chosen in order to
describe each inclusion layer, in the two MOFS, with the samenumber of layers in theS-algorithm. The
relative error on the effective index is1.4 10−6 for the real part and2.3 10−2 for the imaginary part for
the first set of convergence parameters, and the relative error decreases to1.1 10−8 for the real part, and
to 1.7 10−3 for the imaginary part for the second set of parameters.

We can conclude that the FFF-MS is now able to find accurately the effective indices of MOFs made
of several rings of inclusions. It is worth mentioning that three ring MOFs are not only academic test
fibers but also fabricated fibers as shown in reference[51].

As shown theoretically in the previous sections, the FFF-MSis also able to deal with the other
symmetry classes. As an example we give the results for two higher order modes of our test MOF.
The first one we consider belongs to the symmetry classp = 2. The effective index obtained with the
MM for M = 12 is 1.3873312 + i 4.2278502 10−3 whereas with the FFF-MS we obtained a value of
1.38732918 + i 4.22616 10−3 for N = 60. The convergence test for the FFF-MS is shown in Fig.2.33
and the computed field map of this mode is depicted in Fig.2.34. The third mode we study belongs
to the symmetry classp = 1. The effective index found with the MM forM = 12 is 1.3889179 +
i 5.7618884 10−3 , with the FFF-MS we obtained a value of1.38891464 + i 5.75947 10−3 for N = 60.
We can identify two properties when we compare the results for these two modes (see Fig.2.35). First,
for both modes the convergence of the FFF-MS is much faster than that of the CDM-MS. Second, the
CDM-MS convergence is slower for thep = 1 mode (TM like) than for thep = 2 mode (TE like)
and this is not the case for the FFF-MS results (note the logarithmic y scale) . These properties clearly
illustrate the improvement ensured by the FFF ; this recent method being initially proposed to solve the
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FIG. 2.30 – Convergence tests for the FFF-MS and CDM-MS for the effective index of the fundamental
mode of theC6v one ring test MOF described in the text versus the Fourier expansion orderN . Inset :
zoom of FFF-MS results and MM value.
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MS for 25, 35 and 45 slices in theS-algorithm, and with the MM result, versus the Fourier expansion
order N (for the MM the number of Fourier-Bessel coefficientsis equal to 12).

convergence problem of the CDM in diffraction studies for the TM polarization case [45].

In Table2.9we recapitulate the comparisons between the effective indices obtained with the FFF-MS
and the MM for the one ring MOF. As can be seen, for all the possible mode classes of theC6v MOF the
FFF-MS provides accurate results. To complete the validation of the FFF-MS and to prove its usefulness
in MOF studies, we also compare the modal dispersion computed with the two numerical methods for
the fundamental mode of the two ring MOF already studied. As can be seen in Fig.2.36, the agreement
between the two methods is excellent both for the real part and the imaginary part of the effective index.

In table 2.10, we give the resources needed on the same computer needed by the MM and the FFF-
MS in order to find the fundamental mode of several MOF configurations. As expected, the MM is much
more rapid than the FFF-MS since the MM involves less numerical computations. Nevertheless, it can
be seen that for complex structures which are not treatable by the MM, the duration and the memory
required by the FFF-MS are similar to the ones it requires fortheC6v homogeneous case. It is also worth
mentioning that the program for the MM has been optimized several times from its first version in 2001,
this is not yet the case for the FFF-MS program which is a recent one. This difference can enhance the
gap, due to methods themselves, seen in the computational durations observed in table2.10.
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FIG. 2.32 – [Moduli of electromagnetic field longitudinal components for the fundamental mode, in
the core region for the degenerate fundamental mode which belongs to the symmetry classp = 3,
neff = 1.4210465 + i 8.117 10−7 for N = 150. The field moduli are normalized to unity.
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FIG. 2.33 – Convergence tests for the CDM-MS and FFF-MS versus the Fourier expansion order N for
the effective index of the higher mode of symmetry classp = 2 with the highest effective index real part.
The studied MOF is the six-hole test MOF described in the text. Inset : zoom of FFF-MS results and MM
value.

A C2v six-hole MOF

To conclude our tests of the FFF-MS method and its numerical implementation for calculating leaky
modes in MOFs, we now consider aC2v six-hole MOF similar to the one described in reference[6]. The
MOF profile is aC2v six-hole MOF with two types of holes. The pitchΛ = 2.3µm and the diameter
of the four small holes is set to 1µm and two symmetrically positioned small holes are now big holes
of diameters equal to 1.4µm. Due to their symmetry, there are only four symmetry classes(instead of
eight in theC6v case) none of them being degenerate[6]. Two core localized modes without nodes can
be identified with the fundamental modes of the fibre, they belong respectively to the symmetry classes
p = 3 andp = 4. The real part for the effective index of thisp = 4 mode is bigger than that of the
p = 3 mode whereas it is the contrary for the imaginary part. With the FFF-MS forN = 60, we obtain
neff(p = 3) = 1.41792219 + i 5.11104 10−4 andneff(p = 4) = 1.41845587 + i 5.27561 10−4 instead
of neff(p = 3) = 1.4179265 + i 5.11457 10−4 andneff(p = 4) = 1.418460 + i 5.27845 10−4 with the
MM for M = 12. The good agreement between these results clearly shows that the FFF-MS can deal
with other symmetries than the usualC6v one, and can still reach a high accuracy.
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higher modes of symmetry classesp = 1 andp = 2 with the highest effective index real part. The results
for the FFF-MS and the CDM-MS are shown. The studied MOF is the six-hole test MOF described in
the text.

2.3.5 Sectorial MOFs

To illustrate the capabilities of the FFF-MS to study the modal properties of MOFs with arbitrary
profiles that are not treatable by the multipole method extended[52] or not, we now describe some pro-
perties of sectorial MOFs. This type of MOF can be encountered when an extrusion process is used to
build the fibre instead of the more conventional stack and draw technique[53, 54].
This structure with sectorial inclusions described in cylindrical coordinates is similar to lamellar gra-
tings in Cartesian coordinates[45] since the cross section profile is invariant according to the integration
variabler (the lamellar grating profile is invariant according to the integration variable commonly cho-
sen asy). For both cases, theQǫ matrix (see eq. (2.53) and ref. [40]) is independent of the integration
variable (r or y). In addition the integration matrixM also becomes independent ofy for lamellar gra-
tings. In this case, the Rigorous Coupled-Wave (RCW) methodis preferentially used (see chapter 6 in
reference [45] and also reference [55]) : the solutions of the differential set are explicitly known through
the eigenvalues and eigenvectors of the integration matrix. To the contrary, the RCW method cannot
be used in cylindrical coordinates with sectorial inclusions since the integration matrixM(r) remains
dependent onr owing to the terms1r and 1

r2 (see equations (7-9) in reference[41]). Consequently, the
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Mode MM ℜe(neff) MM ℑm(neff) FFF-MS ℜe(neff) FFF-MSℑm(neff) Relative Relative
class error onℜe(neff) error onℑm(neff)

1 1.388917884 5.7618884 10−3 1.388918390 5.7616371 10−3 3.6 10−7 4.4 10−5

2 1.387331199 4.2278502 10−3 1.387332286 4.2277231 10−3 7.8 10−7 3.0 10−5

3, 4 1.420784521 7.2095221 10−4 1.420784943 7.2094414 10−4 3.0 10−7 1.1 10−5

5, 6 1.386872247 5.0376883 10−3 1.386873053 5.0374468 10−3 5.8 10−7 4.8 10−5

7 1.332197539 1.9429823 10−2 1.332198974 1.9428629 10−2 1.1 10−6 6.1 10−5

8 1.351325880 2.1553168 10−2 1.351326338 2.1552000 10−2 4.0 10−7 5.4 10−5

TAB . 2.9 – Comparison between the FFF-MS and the MM for the first modes of each symmetry class of
theC6v MOF described in the text. The results are computed atλ = 1.56µm. For the MM the number
of Fourier-Bessel coefficients is equal to 12, for the FFF-MSthe numberN of Fourier coefficients is set
to 162. The relative error is computed from the normalized modulus of the difference between the two
effective index values. The symmetry classes 3 and 4 are degenerate ; so are the classes 5 and 6.
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FIG. 2.36 – Comparison between the FFF-MS (lines) and the MM (crosses) for the dispersion of the
degenerate fundamental mode (p=3 or 4) for the one (Nr = 1) and two ring (Nr = 2) C6v MOFs
described in the text, and for the modal dispersion of the second mode (p=2) for the same one ring MOF.
For the MM the number of Fourier-Bessel coefficients is equalto 12, and for the FFF-MSN is set to 60.

staircase approximation[56] which is based on the use of the RCW method cannot be used. Nevertheless,
for sectorial inclusions, theθ component of the normal vector to the inclusion surface is equal to unity
along a radial axis of the modulated area :r ∈ [Rmin, Rmax], Jn2

θK = Id andJn2
θK = JnθnrK = 0. This

property allows us to reduce the matrixQǫ to :

Configuration MM time MM RAM FFF-MS time FFF-MS RAM
homogeneousC6v (M=12) 10s (M=12) 9Mo (N=60) 191s (N=60) 16 Mo

(N=162) 2700s (N=162) 50 Mo
inhomogeneousC6v - - (N=60) 210s 16 Mo

sectorialC3v - - (N=60) 1062s 16 Mo

TAB . 2.10 – Computer resources needed, on the same computer, by the FFF-MS and the MM to compute,
the fundamental mode for different MOF profiles. Note that several MOF structures can not be treated by
the Multipole Method. The number of coefficients in the Fourier-Bessel expansion in the MM is equal to
(2M + 1), and the number of coefficients in the Fourier expansion in the FFF-MS is equal to(2N + 1).
The considered sectorialC3v MOF is described in section2.3.5and the considered inhomogeneousC6v

MOF is described in section2.3.6.
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Qǫ =





JǫK 0 0
0 J1

ǫ K
−1 0

0 0 JǫK



 (2.75)

This matrix clearly illustrates the use of the inverse factorization rules[43] on the normal component
of D to the considered surface,i.e. Dθ. The one-ring Cnv sectorial MOF geometry is described by the
following geometric parameters :θm, the angle associated with one sector,Rmin, the minimal sector
radius,Rmax, the maximum sector radius, andn the number of sectors. We start with the last validation
test of our method : aC3v sectorial MOF studied in reference [57]. We choose this example because the
inclusions are not circular and it illustrates symmetry properties not yet studied in the previous sections
of the present work. It has also the advantage that the results (Table 2 in reference [57]) are obtained with
two different methods : a finite element method with transparent boundary conditions (FEM-TBC) and
a Fourier decomposition method with adjustable boundary conditions (FDM-ABC)[58]. The sectorial
MOF parameters are :λ = 1.55µm, Rmin = 1µm, Rmax = 2µm, θm = 54o, nmatrix = 1, and
nsector = 1.44402362.

neff degenerate fundamental mode (p=3,4) second mode (p=2)
FDM-ABC 1.35584 + i5 10−5 1.23957 + i5.09 10−4

FEM-TBC (p=3)1.35581 + i4.96 10−5 1.23950 + i5.67 10−4

(p=4)1.35580 + i4.95 10−5

FFF-MSN = 60 1.3558867 + i5.012 10−5 1.239615 + i5.138 10−4

FFF-MSN = 150 1.3558863 + i5.011 10−5 1.239619 + i5.140 10−4

TAB . 2.11 – Comparison between the FFF-MS, the FDM-ABC and the FEM-TBC for the effective index
of the fundamental mode of the one ringC3v MOF described in the text.

As can be seen from Table2.11, the variation of the real part ofneff for the fundamental mode of
the one ringC3v MOF betweenN = 60 andN = 150 is equal to4 10−7 and the three methods give
quite similar results. The extent of the modulated area is 1µm, as in theC6v one ring MOF studied in
section2.3.4and the wavelength is also similar. Besides as pointed out inthe previous paragraph, secto-
rial inclusions allow us to use the simpler expression givenby eq. (2.75) for the matrixQǫ than that of
circular inclusions. Hence we can expect that the accuracy of the computed results of this sectorial MOF
for N = 150 is at least equal to the one obtained for the circular inclusion MOF, i.e., around3 10−7 for
the real part ofneff . We can use a similar argument for the imaginary part. Consequently, the accuracy
obtained with the FFF-MS is better than that given with the FDM-ABC and the FEM-TBC in refe-
rence [57]. We also notice that the degeneracy of the fundamental mode, theoretically predicted forC3v

structures by McIsaac’s work[18] (see Fig.2.8 page24), is obtained directly by the formalism detailed
in section2.3.3for the FFF-MS unlike for the FEM-TBC in which a non degenerate fundamental mode
is found (see Table2.11). The field maps computed with the FFF-MS for the longitudinal component of
the electric field are shown in Fig.2.37. As shown by the theory the irreducible geometric angular sec-
tor where simple Dirichlet boundary condition apply for this field component, for the symmetry classes
p = 3 or 4, is π and notπ/3.

Part of the cross section of a six sectorial cylinder MOF is depicted in Fig.2.38. We start our study
by a MOF of this type with the same air filling fraction as the test example MOF we described in
the section2.3.4. We haveRmin = 1.8µm, Rmax = 2.8µm, andθm = 19.5652o . In this case, the
effective index value is quite similar to the one already computed with the 6 circular hole MOF : we
find neff = 1.42050642 + i 7.6390 10−4 for N = 60. ForN = 120, our search algorithm findsneff =
1.42050887 + i 7.6427 10−4 for the fundamental mode of this sectorial MOF. Figure2.39 shows the
convergence test for this structure. The small loops which appear in the curve are not yet explained but
they might be linked to the field expansions.

Going back to Fig.2.38, we show the field map of the fundamental mode of a six sectorial cylinder
MOF that can not be studied even with an extended version of the MM since the circles which include
the inclusions are tangent. Mode searching in such structure is straightforward with the FFF-MS and
does not require special treatment.
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FIG. 2.37 – Moduli of electric field longitudinal component of the C3v sectorial MOF described in the
text for the degenerate fundamental mode, for the symmetry classesp = 3 and4, neff = 1.3558863 +
i5.011 10−5 for N = 150. The field moduli are normalized to unity.

In Fig. 2.40, we give the trajectory in the complex plane of the sectorialMOF fundamental mode
effective index as a function of its geometrical parameters. The decrease of the inner radiusa induces
an important decrease ofℜe(neff) without any significant change in the losses. This can be qualitatively
understood as follows : the fields tend to spread over the low-index inclusions lowering the effective
index. To the contrary, the increase of the outer radiusb induces a fall in the losses, keeping nearly
constant the real part ofneff . This behaviour can also be explained ; the change on the structure does
not modify the inner part of the confining region which controls the field shape and so consequently
ℜe(neff), but this change isolates more deeply the fibre core from the outside region, reducing strongly
ℑm(neff). The increase of the angleθm implies a decrease of both the real and the imaginary parts of
neff . We can again explain this quite simply : this changes altersthe inner shape of the core through an
increase of the low-index region inducing a decrease ofℜe(neff), and in the same time it isolates the core
from the outside (decrease ofℑm(neff)).

2.3.6 Inhomogeneous MOFs

In this penultimate section, we illustrate the capability of the FFF-MS to deal with inhomogeneous
inclusions. We start with a validation study using a single high index cylinder with a parabolic refractive
index profile in a homogeneous matrix. Then we study a MOF madeof six inhomogeneous inclusions.

The first device is studied with two different algorithms. The first one considers an inhomogeneous
circular cylinder centered at the coordinate origin and does not use the FFF-MS but a semi-analytical
calculus detailed below. In order to model a fibre with an inhomogenous radial index profile which is
centered at the origin, the interior region of this fibre is split (in the same way as the modulated area in
theS-matrix propagation algorithm) intoP homogeneous layers. For each homogeneous layer(p) with
p ∈ [1, P ] between the two circular cylinders with radiusrp andrp+1, the corresponding refractive index
is chosen as the average of the parabolic index profile between rp andrp+1. The higher the P value, the
better the index profile is decribed, and the transmission matrix of all the P layers becomes the product
of the P transmission matrices of the homogeneous layers. Infact, the transmission matrix (and theS-
matrix) of a layer between two circular cylinders centered at the origin and filled with an homogeneous
medium may be deduced directly from the explict expressionsof the fields in such a medium (with the
Ψ(j)(r) matrix in equation (34) of reference[40]) by writing the continuity of the fields at each interface.
So, no integration is required and the differential set (2.55) is not used.

It is important to distinguish the present splitting of a radially inhomogeneous circular cylinder into
P slices with the moot procedure invoking the staircase approximation[56]. With this last method, the
arbitrary diffracting surface is split into several lamellar diffracting surfaces. However, the discretization
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FIG. 2.38 – Modulus of electric field longitudinal component, for the degenerate fundamental mode
which belongs to the symmetry classesp = 3 andp = 4 for theC6v sectorial MOF with (Rmin = 1.5µm,
Rmax = 3.4µm, andθm = 40◦, neff = 1.4032977 + i 2.9369 10−6 for N = 60 andL = 25. The field
moduli are normalized to unity. The thin circles correspondto the theoretical upper bound of the circle
diameters for the MM.

of the smooth profile in a staircase form introduces edges leading to diverging fields and thus worsening
the convergence rate. In our case, there is no diffracting surface but only fictitious surfaces created at the
interfaces of the homogeneous layers. In other words, the splitting concerns the index profile and not a
diffracting surface.

The second algorithm deals with the same inhomogeneous fibrebut not centered at the coordinate
origin, and it uses the complete FFF-MS described in the present work : the differential set (2.55) must
be integrated numerically.

To describe the refractive index profile of both the test fiberof this paragraph and the MOF we
consider below we write forr ∈ [0, rmax] : n(r) = ncyl,cent − (ncyl,cent − ncyl,bord)(r/rmax)2 in
which ncyl,cent is the minimal refractive index at the inclusion center andncyl,bord the refractive index
at the inclusion boundary (r = rmax). For the test fibre we set : radiusrmax = 0.5µm, ncyl,cent = 1.5,
ncyl,bord = nmat = 1.47, λ = 0.4µm,n(r) = ncyl−(ncyl−nmat)(r/rmax)2. For the fundamental mode
HE11, an approximate semi-analytical solution associated withan infinite parabolic profile is known[2].
It gives for the approximate effective index valueneff = 1.48727747. It is important to notice that in
the special case in which the center of the fibre corresponds to the coordinate origin we can use the
first algorithm described in the beginning of this section. In this case, we obtainneff = 1.48727514 for
N = 1 andP = 200. This accurate value will be our reference value for the nexttest. In order to validate
the second algorithm associated with the FFF, we study the same inhomogeneous fibre but not centered
at the origin (we set the fibre center position such asRcenter = 3µm). In this case, the symmetry is
broken ; thus more Fourier coefficients are needed to correctly describe the fields and we must use the
algorithm of the FFF. The convergence test for this configuration is given in Fig.2.41. We clearly see
that The convergence is easily reached in this example ; we obtain neff = 1.48727382 for N = 30 and
L = 50.

The MOF model we consider now is the one-ring MOF already described in section2.3.4but in
the present case the refractive index profile of each inclusion follows a radial parabolic law. We recall
that in the type of MOFs studied, the inclusion refractive index is lower than that of the matrix (in the
previous paragraph the isolated fibre has a higher refractive index than the matrix one). We introduce
∆ncyl = (ncyl,cent − ncyl,bord) the refractive index gap of the inclusions (not the gap between the
inclusion and the matrix indices). These parabolic profilesare depicted in Fig.2.42. We may discuss the
accuracy of the results according to the expansion orderN , and to the number of integration steps (and
the number ofS-slicesL). In the case of the homogeneous inclusions, we know that thehigher theN
value, the better the discontinuities of theǫ, n2

θ, n2
r andnθnr functions are described according toθ. In
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FIG. 2.40 – Evolution of the effective indexneff as a function of the three geometrical parametersa, b,
θm describing theC6v sectorial MOF. The labels are written for the extremal values of the parameters.

the same way, the higher the number of integration steps, thebetter the radial refractive index profile is
defined along a radial axis. For inhomogeneous inclusions ina matrix such thatncyl,bord = nmat, the
refractive index profile becomes continuous in the whole space. This property explains why, in this case,
the Gibbs phenomenon due to discontinuities with respect toθ does not occur. However, the shape of the
parabolic refractive index profile requires more Fourier coefficients (higher value ofN ) but also more
integration steps according tor, in order to describe accurately the structure compared to ahomogeneous
profile. For these reasons, we have observed that the accuracies obtained for a MOF with inhomogeneous
inclusions but continuous refractive index profile remainsof the same order of magnitude as those of a
similar MOF with homogeneous inclusions when theN andL values are identical. In Fig.2.43, we show
the rebuilt profile of the whole MOF from the Fourier series used in the FFF-MS and not the theoretical
profile. As can be seen, the resulting profile is regular, and fits well the parabolic law. In Fig.2.44, we give
the computed effective indices of the fundamental mode for the inclusion parabolic profiles described in
Fig. 2.42. As expected both the real part and the imaginary part of the effective indices decrease when
∆ncyl increases.
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FIG. 2.42 – Chosen parabolic profile of the inhomogeneous inclusions for several values of the refractive
index gap∆ncyl between the inclusion center and the inclusion outer boundary. The analytic form of the
refractive index profile is given in the text.

2.3.7 Conclusion

Thanks to various and complete comparisons with the multipole method and with more recent nume-
rical methods, we can state that the FFF-MS, a mode searchingmethod based on the differential method
with the Fast Fourier Factorization, can find the different modes of solid core MOFs with a high accuracy
both for the real part and the imaginary part of the effectiveindex. This method can deal with both the
fundamental mode and higher order modes. It can study arbitrary refractive index profile MOFs contrary
to the multipole method. New results are given forC6v sectorial MOFs and inhomogeneous MOFs. The
counterpoints to the versatility of the developed method are its lower accuracy, which however is lar-
gely sufficient to compute accurately the modal dispersion,and its need for larger computer resources
compared to the multipole method.

In the case of a profile periodic according to the angular variable, the symmetry properties of the
modes are established, not in the real space as for the MM, butin Fourier space. The results given are
valid both for all waveguides fulfillingCn or Cnv symmetries, not just MOFs, and apply to all differential
methods formulated using cylindrical coordinates (not just the FFF). These results allow both a clear
mode classification and a large reduction of the necessary computational resources.
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3.1 Types of microstructured optical fibres or types of modes?

Before dealing with type of microstructured optical fibres (MOFs) we must emphasize that a related
crucial question is "What is the studied mode in the considered structure ?". Most of the time, the sought
after mode is the fundamental mode of the fibre core that is to say the mode with the effective index with
the highest real part in this particular region. In solid core MOFs made of low index inclusions in a high
index matrix with a fibre core associated with a missing inclusion, the previous answer is easily checked
but it is not the case in a hollow core MOF in which one may guidethe light in the fibre core only for some
specific range of wavelengths. In this last case, modes with an effective index, with a higher real part than
the fundamental mode guided in the core by a photonic band gap, may exist in the structure but they are
not located in the core but around it. In other words, most of the times when one describes the types of
MOFs it is assumed that one particular mode (or a set of modes)are considered. As a consequence, we
must define for each type of MOFs what is the studied mode. In the present chapter, we consider only
the fundamental mode and the second order modes located in the core region (exception in sections3.2.3
and 3.2.4). In what follows, we list the three main types of MOFs that can be found. Their guiding
mechanisms are presented in their respective sections of this chapter. Furthermore, the main properties
of each kind of the mentioned type of fibres are described in the corresponding section emphasizing
especially solid core microstructured optical fibres with low index inclusions. More complex cases can
be generated if more complicated cladding structures or core region are considered [59]. The three main
types of MOFs we consider are :

1. solid core MOFs in section3.2

2. hollow core MOFs or photonic crystal fibres in section3.3

3. AntiResonant Reflecting Optical Waveguide MOFs (ARROW MOFs) in section3.4

3.2 Main linear properties of modes in solid core microstructured optical
fibres with low index inclusions

3.2.1 Solid core microstructured fibre with low index inclusions and band diagram point
of view

This case is represented by solid core MOFs made of low index inclusions in a high index matrix
with a fibre core associated with a set of missing inclusions forming the fibre core. In this kind of MOFs,
the modes of interest are that located in the core and with thehighest possible real part of the effective
index together with the lowest imaginary part (which is linked to the losses, see section3.1). We use this
case to introduce the different points of view that can be used to get some physical insights concerning
the properties of the MOF modes. One can use the homogenization technique to reduce the MOF to a
conventional W-fibre in which the low index region represents the low index inclusion region of the MOF
(see Figure3.23in section3.2.4and references[20, 60]). One can also consider the properties of the band
diagram of the microstructured region, if this last is a subset of periodic lattice of inclusions, as will be
shown.

In this paragraph, we focus on the guiding mechanism of solidcore microstructured fibre with low
index inclusions using a band diagram point of view that willalso be used in the two subsequent sections
(3.3 and3.4 ). We start it by a brief survey of the band diagram description. The way we can compute
band diagrams simitar to the scheme shown in Fig.3.1, is briefly explained in AppendixB.

Several representations are possible :(λ/Λ,ℜe(neff )) used frequently in this dissertation (see Fig.3.1),
(Re(β−k0)Λ, k0Λ) like in references [61–63], (k0Λ, Re(neff )) like in reference [63–65], (k0Λ, Re(β)Λ)
like in reference [66] (equivalent to the one used in Fig.3.34).

At least two features must be underlined. First, as one can see in Fig. 3.1, the bandgap diagram
exhibits three full finite photonic bandgaps which means that no mode exits in the periodic structure for
these regions of the parameter space. Secondly, one mode of this structure is of particular interest since
it represents an upper bound for the allowed effective indices of the modes of the periodic structure (see
how it can be estimated using a simple but efficient fibre modelin reference [67]).
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As can be seen in Figure3.2, the dispersion curve of the modes localized in the core of a finite size
MOF (not the modes of the periodic structure used to compute the band diagram) are either above the
upper mode allowed in the periodic microstructured cladding that is to say the so called the fundamental
space filling mode, or inside the bandgaps.

As it will be discussed in sections3.2.3and3.2.4, the existence of the second mode cut-off will be
proved and described whereas that of the fundamental mode does not exist even if a partial delocalization
occurs for it.

normalized wavelength λ/Λ

FSM )

One mode of the photonic crystal cladding

Fundamental space filling mode (n_

Full semi−infinite bandgap

1st BG

2nd BG

3rd BG Full finite photonic bandgap

Re(n_eff)

n_cyl

n_mat

FIG. 3.1 – Schematic band diagram of a periodic array of inclusions of low refractive indexncyl in a high
refractive index matrixnmat. The fundamental space filling mode is the mode of the periodic structure
with the highest effective index (black thick curve). The semi-infinite photonic bandgap is the region in
the plane(λ/Λ,ℜe(neff )/nmat) above the dispersion curve of the fundamental space filling mode. The
three white regions below the fundamental space filling moderepresent the parameter space in which no
modes can propagates in the periodic structures,i.e. full finite photonic bandgaps.

This interpretation of the guiding mechanism is not complete and at least two warnings must be
given. First, it is not valid when ones considers MOFS made offew inclusions since in this case it is hard
to speak about a periodic structure (see the different examples described in section2.2.6). Nevertheless,
if the holes are big enough, the modes are confined with small losses in these small structures even in
the six hole MOF. For some already fabricate MOFs [51], the number of hole rings is equal to three. In
these case, the losses and the exact dispersion curves can not be computed directly and accurately if one
considers an artificially periodized structure instead of the finite size one.

The second warning is related to an idea formulated as soon as2000 by Ferrando[64]. In the frame
of the band diagram point of view it is often argued that thereare two fully distinct guiding mechanisms
in MOFs : the modified total internal reflection one and the bandgap one. Nevertheless, when a MOF
with a defect (relatively to the inclusions of the microstructured cladding region) located in the fibre
core is considered two types of defect can be defined : adonordefect that is a low index inclusion with a
smaller diameter or anacceptordefecti.e.an inclusion with a bigger diameter than the other inclusions12.
In these two cases, the modes of the structures arise from themodes of the periodic structures : for the
donor case they move upward to the semi-infinite bandgap for example, or to a lower bandgap whereas
for the acceptor case, they move downward to the first bandgapfor example. If we focus on a donor
type MOF then one can obtain modes in the semi-infinite bandgap that arise from the first inter-band and
modes in the first bandgap that come from the second inter-band. Both types of mode originated from
the existence of a donor defect in the periodic structure. Ifthe solid core MOF is seen as the limit case of
a vanishing low index inclusion then it is difficult to split artificially the guiding mechanisms among the
modes of the fibre between modified total internal reflexion (for the modes located in the semi-infinite
photonic bandgap) and bandgap guidance (for the modes located in the finite photonic bandgaps). This
remark and the first one involve that, even if it is quite convenient to split in two the guiding mechanisms

1These terms have been chosen so as to follow the ones in Solid State Physics due to the analogy that can be made between
our problem and the one of electrons in potentials.

2We can also consider as a donor (resp. acceptor) defect an inclusion with a lower (rep. bigger) refractive index than thatof
the inclusions.
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in MOFs to categorize them and to explain their properties, we must keep in mind that the intrinsic
phenomenom is the complicated interaction of light with thefinite number of inclusions around the fibre
core.

normalized wavelength λ/Λ

Fundamental mode of the finite fiber

Higher order mode of the finite fiber

Bandgap guided mode of the finite fiber

No mode localized in the core above this line

n_cyl

Re(n_eff)

n_mat

FIG. 3.2 – Schematic band diagram of a periodic array of inclusions of low refractive indexncyl in a high
refractive index matrixnmat such thatncyl < nmat together with the dispersion curves of several modes
of a finite size MOF such that . As can be seen, forbidden bandgaps may exist for the microstructured
cladding but they do not have any impact on the properties of the modes of the finite size MOF located
in the semi-infinite bandgap.

The structure presented in Fig.3.2 is a special case in which the fibre core has the same refractive
index as that of the matrix of the cladding region (ncore = nmat). If the core is for example a cylinder
made of a refractive index such thatncyl < ncore < nmat then the situation is more complex but
understandable using the same diagram but with an added horizontal line associated with thencore value
(see Fig3.3). With this particular configuration, even the fundamentalmode will exhibit a cutoff like
phenomena when the real part of its effective index becomes larger that of the low index core3. In both
cases this mode is a leaky mode.

normalized wavelength λ/Λ

Bandgap guided mode of the finite fiber

No mode localized in the core above this line

Fundamental mode of the finite fiber
(localized outside the core)

Re(n_eff)

n_mat

n_core

n_cyl

FIG. 3.3 – Schematic band diagram of a periodic array of inclusions of low refractive indexncyl in a high
refractive index matrixnmat such thatncyl < nmat together with the dispersion curve of the fundamental
mode of the finite size MOF such thatncyl < ncore < nmat. In this case, the fundamental mode has a
transition, it delocalizes from the low index core to the higher index region surrounding it when the
wavelength decreases.

We start our description with the main linear properties of the fundamental mode of a solid core MOF
based on aC6v triangular lattice of low index circular inclusions (the optical indices of these inclusions
ni will be fixed to 1.0 in all this section). The second mode of this structure will also be studied in order
to clarify the notion of single-modeness in MOF. We define transition regions for these two modes, so

3This phenomenon can be compared to the transition of the fundamental mode at the small wavelength edge of bangaps in
PCF.
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that it will be possible to determine the different operation regimes of solid coreC6v MOFs.
Finally, we study of the chromatic dispersion of the fundamental mode, and we show that chromatic

dispersion in MOF can be fully managed in a useful way for practical applications using new MOF
designs.

3.2.2 Basic properties of the losses

All the modes of the MOF structure that we considered in the previous chapter are leaky modes. The
confinement losses (See section1.2 of chapter1.2 page5) of these modesL (in decibel per meter) are
related to the imaginary part ofneff through the relation :

L =
40π

ln(10)λ
ℑm(neff)10

6 (3.1)

in which λ is given in micrometres. These losses are due to the finite number of air holes. It is worth
mentioning that these losses occur even if the material absorption is fully neglected. The results given
in this section concern the degenerate fundamental mode of solid coreC6v MOF such as that depicted
in Fig.2.5(c). We limit the present study to the case of MOF cores composed of a single missing air
hole in the finite size triangular lattice (See Fig.3.4). The matrix is considered as infinite. When a silica
matrix is considered, its permittivity is taken from the Sellmeier expansion at the corresponding wave-
length [35] (εr = 2.0852042 forλ = 1.55µm or equivalentlynM = 1.444024). When a high refractive
index material is considered, we choose the valuenM = 2.5 which is representative of chalcogenide
glasses[68–71].

FIG. 3.4 – cross section of the modelled MOF with 3 rings of holes (holes are shown colored with
different grey according to their ring number),Nr = 3. Λ is the pitch of theC6v triangular lattice, andd
is the hole diameter. The solid core is formed by one missing hole in the center of the structure.

In Fig. 3.5(a)we give the confinement losses, for a silica matrix, versus the ratio4 d/Λ (d is the hole
diameter andΛ is the pitch of the triangular lattice of inclusions) and thenumberNr of hole rings sur-
rounding the MOF core. The losses decrease monotonically with both the number of low-index inclusion
rings and the ratiod/Λ [38]. We can notice that with the logarithmic scale for the losses the gap between
successive values ofNr is nearly constant, and this means that for this kind of MOF the confinement
losses decrease nearly exponentially withNr

5. In Fig. 3.5(b), we give the same confinement losses as in
Fig. 3.5but for an high index glass such thatnM = 2.5. We can observe that the behaviour is exactly the
same but the loss level is lower for the MOF with the same geometry due to the higher refractive index
contrast between the matrix and the inclusions.

To compare more quantitatively the impact of the refractiveindex, we introduce the ratio of the
fundamental mode guiding lossesL(m + 1) for a microstructured fibre made ofNr = m + 1 hole

4It is straightforward to see that this ratiod/Λ must be less than unity.
5The behaviour of the losses withNr will be discussed in more detail in section3.2.4.
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FIG. 3.5 – Confinement losses (in dB/km with a log-scale) versus the ratio (d/Λ) and the numberNr of
hole rings around the solid core. The MOF are based on aC6v triangular lattice of air holes in an inifinite
matrix. The pitchΛ is equal to 2.3µm, andλ = 1.55µm.Nr is the number of air hole rings surrounding
the solid core.

rings over the fundamental mode lossesL(m) for a Nr = m fibre [51]. Slight variations of this ratio
L(m+1)/L(m) occur for different and smallm values. In order to give an unique but meaningful value
for this ratio, we compute its average, denotedα(Nr + 1)/α(Nr), for m ∈ [1, 4]. In figure3.6, we show
this average ratio as a function ofd/Λ for the two already studied refractive indices. The lower the loss
ratio the more efficient the confining capacity of the fibre. Ascan be seen in this figure (note they-axis
logarithmic scale), the matrix refractive indexn = 2.5 ensures a much stronger confinement than the
n= 1.444024 matrix refractive index. Consequently, fewer rings of holes are needed to obtain the same
guiding losses even for small values ofd/Λ. It is worth mentioning that no material losses are taken into
account in these numerical results.
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FIG. 3.6 – Average ratio of the losses of aNr = m + 1 MOF over the losses ofNr = m (see the text for
the definition of the average) for the fundamental mode as a function ofd/Λ for two matrix refractive
indicesnM = 1.444024 andnM = 2.5.

In Fig. 3.7, we give the losses as a function of the pitchΛ for several values of the ratiod/Λ for a
3-ring silica MOF. For a fixed value ofd/Λ, they decrease monotonically with the pitchΛ. It can also be
seen in Fig.3.5 and Fig.3.7 that the MOF confinement losses can be made as low as 0.1 dB/km so the
total losses in MOF can be limited by Rayleigh scattering andabsorption rather that by the confinement
losses [37].

The real part of the effective indexneff = β/k as a function ofNr the number of hole rings for
several values ofd/Λ is shown in Fig.3.8. We see thatℜe(neff) increases withNr and that the larger
the ratiod/Λ the faster the limit value ofℜe(neff), corresponding to an infinite number of hole rings, is
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FIG. 3.7 – Confinement losses (in dB/km with a log-scale) versus the pitchΛ for several values of the
ratio d/Λ for a 3-ring MOF. The MOF are based on aC6v triangular lattice of air holes in silica (see the
text). The wavelengthλ is equal to 1.55µm.

reached. This behaviour in a solid core MOF can be easily understood as follows : the larger the ratio
d/Λ, the better the confinement of the mode is improved byNr, and consequently the faster the real
part of the effective index reaches its limit value. This dependency ofℜe(neff) with Nr has important
consequences for the control of chromatic dispersion (see3.2.5).
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FIG. 3.8 – Real part of the effective indexneff = β/k as a function ofNr the number of hole rings
around the MOF core for several values ofd/Λ. The wavelengthλ is equal to 1.55µm, and the pitchΛ is
equal to 2.3µm. The diameter of the inclusionsd is successively equal to 0.6, 0.8 and 1.0µm, whilst the
corresponding real part of the effective index associated with Nr = 1 is succesively equal to 1.427698
,1.424475, and 1.421159.

3.2.3 Single-modedness of solid coreC6v MOF

One of the earliest known and most exciting properties of MOFs is that they can beendlessly single-
mode[72]. However, as mentioned earlier, a MOF in which a finite number of rings of holes is solely
responsible for the confinement of light carries an infinite number of modes, all of which are leaky. By
using Fig.3.9, it is possible to consider the relative losses of the modes :If the losses of the different
modes of a MOF are such that after a given length of propagation all modes except for one have faded
away, the MOF can be considered to be single-mode for that length of propagation. Such a definition
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of single modedness is unsatisfactory in several ways : not only does it depend on the actual length
of propagation, but it also depends on the pitch (see the losses of the three modes for small pitches in
Fig. 3.9) and the number of rings of holes. Since the losses decrease with the number of rings of holes,
for an infinite number of rings no MOF can be single-mode with such a definition.
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FIG. 3.9 – Losses for the fundamental mode and for two higher order modes, for a 3 ring MOF, as a
function of the pitch. The wavelengthλ is equal to 1.55µm, andd/Λ = 0.4 (see section2.2.6page30
for the used mode labels).

A cutoff for the second mode

This definition through the relative losses of the main modesis not satisfactory. To obtain a more
definitive characterization of single-modeness one approach is to study the second mode of aC6v MOF6

as a function of MOF parameters. This kind of study was realized for the leaky modes of W-fibres by
Maeda and Yamada [4] in the late seventies. In the case of MOF, the chosen parameter is the ratioλ/Λ,
i.e. the normalized wavelength. The second mode properties willbe studied at fixedd/Λ [74], and the
ratio λ/Λ will be varied by changing the pitchΛ and keeping constant the wavelengthλ at 1.55µm. In
doing so the refractive index of the silica matrix keeps a constant valuenM =

√
εM = 1.444024. Since

λ is constant the confinement losses are directly proportional to the imaginary part ofneff.
In Fig. 3.10, we give the losses as a function ofλ/Λ for a MOF such thatd/Λ = 0.55 for several

values of the number of ringsNr. A transition in the loss curves can be observed for all studied Nr

values, and the higher theNr value the steeper the transition.
In fact, several parameters7 can be used to observe this transition :
– the normalized effective radiusReff/Λ whereReff is defined by the following formula in which

the functionSz is the real part of the longitudinal component of the Poynting vector :

Reff =
3

2

∫

Szr
2drdθ

∫

Szrdrdθ
(3.2)

– the normalized effective area [35] Aeff defined as :

Aeff =
(
∫

|Ez|2drdθ)2
∫

|Ez|4drdθ
(3.3)

6We define the second mode as the mode with the nearest real partto that of the fundamental one. See section2.2.6and
ref. [73].

7For the two first parameters, the integrals are taken over thecladding region of the MOF because, as already stated, the
associated fields diverge at infinity.
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– the ratio of the magnetic field monopole coefficient(BH
0 ) to the magnetic field dipole coefficient

(BH
1 ) for a cylinder in the first ring of the MOF.

M =
BH

0

BH
1

(3.4)

– the second derivative of the logarithm of the losses with respect to the logarithm of the pitchQ
i.e. :

Q =
∂2[logℑm(neff)]

∂[log Λ]2
(3.5)

The most sensitive quantity was found to beQ [20, 60, 74] (this quantity will be called loss transition
parameter). This exhibits a sharp negative minimum giving an accurate value of the transition position
(see Fig.3.10). Using this quantity, it can be shown that the width of the transition defined as the width
of theQ minimum at mid-height tends to zero asNr tends to infinity as shown in Fig.3.12. To illustrate
the transition we give in Fig.3.11the fields for the mode above, during and after the transition. When
the mode is well confined in the MOF core, the losses decrease exponentially with the number of hole
rings like in Fig.3.5. On the contrary above the transition (i.e.at long normalized wavelength) the mode
spreads into all the cladding region defined by the hole lattice and the mode loss follows approximately
a power law as a function ofNr. In this latter case the mode is well described as a space-filling cladding
resonance [67, 75, 76].
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FIG. 3.10 – Variation of different physical quantities during the transition of the second mode, for a MOF
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2, Reff/Λ, andM as defined in the text, forNr = 8. The points (a-d) indicate the
positions of the field plots of Fig.3.11.

This second mode is in fact a defect mode, the observed transition defined by the observed minimum
of Q constituting a change from a confined state for highλ/Λ values to an extended state for lowλ/Λ
values [20]. We define the locus of this transition as the cutoff of the second mode. This cutoff is an
intrinsic property of the mode and is not due to the finite sizeof the cladding region.

A phase diagram for the second mode

We have just defined the second mode cutoff in a MOF by varyingλ/Λ at a fixed value ofd/Λ. In
this paragraph, we limit the study to an 8-ring MOF for a fixed value ofnM [20, 74], the dependencies
according toNr andnM being discussed in the subsequent paragraph. In Fig.3.13 we give the loss
curves as a function ofλ/Λ for several values of the geometrical parameterd/Λ. The transition between
a localised mode and an extended mode remains sharp ford/Λ > 0.45, whereas ford/Λ < 0.45 the
transition becomes more and more gradual, disappearing entirely aroundd/Λ ≃ 0.4.
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In the(d/Λ, λ/Λ) plane, the loci of the cutoffs define a curve which splits the MOF parameter space
into two regions. Below this cutoff curve, the second mode isconfined, and above it is extended or
unconfined. The best fit of this limit curve obtained from finite size MOF studied with the Multipole
Method is :

λ

Λ
≃ αs.m.(

d

Λ
− (

d

Λ
)s.m.)

γs.m. (3.6)

whereαs.m. = 2.8 ± 0.12, γs.m. = 0.89 ± 0.02, and( d
Λ)s.m. = 0.406 ± 0.003.

For d/Λ < (d/Λ)s.m., the second mode is always space filling, and consequently the fundamental
mode is the only one to be potentially confined whatever the wavelength : the MOF is endlessly single-
mode.

Using periodic boundary conditions in a plane wave basis andfew points computed from the nor-
malized effective area, Mortensen has obtained for the parameter(d/Λ)s.m. an approximate value of
0.45 [77]. From the experimental point of view, Folkenberg and his colleagues found that the above
cutoff locus formula is in very good agreement with their experimental results obtained from high qua-
lity MOF [78]. On the theoretical side, Mortensenet al. have exhibited an adapted V-parameter for
microstructured optical fibres which follows nicely Eq. (3.6) [79]. More recently, we used a simple self-
referenced nondestructive method based on azimuthal analysis of the far-field pattern at the output of
the tested fibre to measure the cutoff wavelength of the second mode [73]. The considered silica MOF
had 5 rings of air holes (6 holes being missing in the last ring), and an average pitch of 2.6µm and an
average diameter of 1.43µm. The measured cutoff wavelength was1370± 10nm whereas the computed
cutoff of the model fibre was around 1410 nm. This fairly good agreement is obtained while the criterion
used for the experimental determination of the cutoff does not correspond exactly to the one based onQ
minimum described in this section.

Towards a generalized phase diagram for the second mode

In this paragraph, we describe the influence ofNr on the position of the second mode transition
and give results for both bigger and smaller valuer ofnM than that of silica [80]. We conclude with a
generalized phase diagram for the second mode valid for a large range of matrix refractice indices [80].

As can be seen in Fig.3.14, Q also have peaks for a high refractive index matrix (nM = 2.5).
Furthermore, it appears that the behavior of theQ curves depends onNr, as shown in Fig.3.15

and3.16. Fig.3.15showsQ as a function of the normalized wavelength for two differentvalues ofd/Λ,
Nr ranging between7 and12, andnmat = 2.5. For the same matrix index the magnitude of theQ
minima|Qmin| as a function ofNr is shown on Fig.3.16, for four differentd/Λ ratios.

Depending on the value ofd/Λ, two different behaviors can be distinguished : ford/Λ ratios greater
than or equal to0.425 the minimum ofQ becomes narrower (complete study not shown) and deeper
with increasingNr. Fig. 3.16shows that, in that case,|Qmin| diverges withNr, and as can be seen from
the curve ford/Λ = 0.43 the rate at which|Qmin| diverges increases quickly withd/Λ. The divergence
of |Qmin| implies that the cutoff transition becomes sharper with increasing number of rings, consistent
with the fact that the cutoff should be infinitely sharp for infinite Nr (see Fig.3.12and reference [20]).
Consequently the second mode does undergo a cutoff at finite wavelength for infinite solid core MOFs
with d/Λ ≥ 0.425.

On the contrary, ford/Λ = 0.420 andd/Λ ratios below this value, the minimum ofQ vanishes
slowly with increasingNr. This behavior indicates that no transition should occur for the infinite solid
core MOF, and therefore that the infinite solid core MOF is endlessly single mode ford/Λ ≤ 0.420.
The critical value(d/Λ)S.M. below which the solid core MOF made of low index inclusions isendlessly
single mode must therefore lie between0.420 and0.425.

We repeated this analysis fornmat = 1.1 andnmat = 1.444024 (Fig. 3.17). In all cases(d/Λ)S.M.

is strictly bounded by0.420 and0.425. Hence,(d/Λ)S.M. can depend only very weakly on the matrix
index.(d/Λ)S.M. can be considered as a critical geometrical parameter associated with the second mode
cutoff or similarly with the endlessly single mode behaviorof MOFs.

Consequenlty, the results given in the previous paragraph are in fact only valid for the studied 8-ring
and are not correct for infinite MOF.
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Fig. 3.17shows the phase diagram of the second mode (ie (λ/Λ)S.M. as a function ofd/Λ) for the
three studied matrix indices, obtained forNr = 7, along with the extrapolated phase diagram for the
infinite solid core MOF withnmat = 2.5. The latter results from an extrapolation of the(λ/Λ)S.M. data
computed for several values ofNr, using a nonlinear least squares algorithm. Note that for values ofd/Λ
close to(d/Λ)S.M. the cutoff curves for finite and infiniteNr differ substantially.

Increasing the index contrast shifts the cutoff curve towards longer wavelengths ; however, the limit
of the endlessly single mode regime is conserved. Birks’ analysis of scaling laws of photonic states
with refractive index contrast[81] shows that ifλ, Λ, nM or nh vary, photonic states change so that
quantityν = 2πΛ(n2

M − n2
inclusion)1/2/λ remains invariant within the scalar approximation : for two

structures with fixedd/Λ, but differentnM andninclusion (saynM andninclusion andn′
M andn′

inclusion

respectively), the cutoff will occur at different wavelengthsλ andλ′ in order to keepν constant at a value
of νS.M.. Following this argument we have

(λ/Λ)′S.M. = (λ/Λ)S.M.

(

n′2
M − n′2

inclusion

n2
M − n2

inclusion

)1/2

. (3.7)

We can hence draw a unified phase diagram using quantityν instead ofλ/Λ (Fig. 3.17, grey curves) :
MOFs with aν value lying above theνS.M. curve are multi-mode, whereas MOFs with aν value be-
low the νS.M. curve are single-mode. As can be seen in Fig.3.17, the νS.M. curves for differentnM

are surprisingly consistent keeping in mind that the scaling laws used are valid only within the scalar
approximation.

In conclusion, we have shown that the ratio(d/Λ)S.M. delimiting the endlessly single mode regime in
MOFs is largely independent of the matrix refractive index,and can therefore be considered as a critical
geometrical parameter for the second mode cutoff. We also observed that the differences between the
behavior of finite and infinite structures are more pronounced near(d/Λ)S.M..
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|Ez| |Hz| ℜe(Sz)

(a) :λ/Λ = 0.810, neff = 1.372409 + i5.204 × 10−5

(b) : λ/Λ = 0.599, neff = 1.394026 + i1.572 × 10−5

(c) : λ/Λ = 0.537, neff = 1.401100 + i4.918 × 10−6

(d) : λ/Λ = 0.445, neff = 1.412521 + i1.306 × 10−9

FIG. 3.11 – Field distributions of the second mode across the transition. The letters in brackets refer to
the points marked on Fig.3.10. For all structuresd/Λ = 0.55, λ = 1.55 µm, andNr = 8.
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3.2.4 Modal transition without cutoff of the fundamental mode

It is well known that the fundamental mode of conventional optical fibres does not undergo any
cutoff, but for W-fibres this is no longer true [4, 82]. Keeping in mind the useful analogies already
drawn between these W-fibres and MOFs, it is a pertinent question to investigate the putative cutoff of
the fundamental mode in MOF. In what follows we give some results concerning fundamental mode
transition in MOF with a finite numberNr of hole inclusions.

Existence of a new kind of transition

The transition of the fundamental mode can be observed via a similar study as that conducted for
the second mode. In Fig.3.18, we give the variations of three physical quantities already described in
the previous section, and once again these quantities are plotted as a function ofλ/Λ. One can see that
in a log-log plot the slope of the losses changes rapidly in a narrow region of theλ/Λ axis. As shown
in Fig. 3.19, the change ofℑm(neff) is accompanied by a rapid variation in the field distributions. For
large values ofλ/Λ the mode has a large effective radius,i.e. it is cladding filling, and has high losses
decreasing through a power law with respect toNr. For small values ofλ/Λ the mode is confined in the
core and losses depend more strongly on the number of rings, they decrease exponentially with respect
to Nr.
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FIG. 3.18 – Variation of different physical quantities during the transition of the fundamental mode, for
a MOF withd/Λ = 0.3 used atλ = 1.55 µm. Curves (1) to (4) areℑm(neff) for 3, 4, 6 and8 rings,
curves (5) and (6) areReff/Λ andQ for Nr = 3 respectively. The points (a-d) indicate the positions of
the field plots in Fig.3.19.
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|Ez| |Hz| ℜe(Sz)

(a) :λ/Λ = 0.674, neff = 1.427710 + i1.281 × 10−8

(b) : λ/Λ = 1.41, neff = 1.410578 + i1.505 × 10−4

(c) : λ/Λ = 4.61, neff = 1.389655 + i8.804 × 10−3

(d) : λ/Λ = 6.09, neff = 1.381267 + i1.881 × 10−2

FIG. 3.19 – Field distributions of the fundamental mode across the transition. The letters in brackets refer
to the points marked on Fig.3.18. For all structuresd/Λ = 0.55, andλ = 1.55 µm, andNr=8. In plots
(c) and (d), the fields diverge due to high losses of the associated leaky modes.
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Even though the fundamental mode transition seems at first sight very similar to that for the second
mode, they are not equivalent. The dependence of the locus ofthe negativeQ peak on the number of
rings is more important, and its width does not seem to becomeinfinitely sharp with increasingNr [60].
This second issue is addressed more quantitatively in Fig.3.20: the half-width of the negativeQ peak
converges with respect toNr to a finite value at least for low enoughd/Λ ratio (See also Fig.3.12
concerning the width of the second mode cutoff, in which the width decreases to zero with increasing
Nr).
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width of the peak converges to a non-vanishing value. Herebf ≃ 2.97. This figure must be compared to
Fig. 3.12obtained for the second mode.

Besides this, the loss transition parameterQ has a positive peak before the negative one. Conse-
quently, instead of a transition point we must define a transition region. We define this transition region
as the interval between the positive and the negative peak observed in theQ curve as illustrated in
Fig. 3.21.

A crucial difference with the second mode transition (whichcan be seen as a cutoff as shown in the
previous paragraphs) is the field localization. For the second mode as can be seen in Fig.3.11, the z-
component of the Poynting vector is no longer localized in the fibre core in the long wavelength regime.
This is not the case for the fundamental mode, for which this longitudinal component does not vanish in
the fibre core while the losses have already overcome the negative Q peaki.e. the beginning of the high
loss regions. Since in all the considered cases in the present study the fundamental mode is a leaky mode,
the fact that this mode does not fully leave the fibre core means that we can not speak about a cutoff for
the fundamental mode as we did for the second mode but only a transition.

This lack of cutoff for the fundamental mode is not so surprising as it will be discussed int the
paragraph "Simple physical models below and above the transition region" page81.

A phase diagram for the fundamental mode

Using the same procedure as that described in section3.2.3, one can establish the upper limit of the
transition region (theQ minima in Fig3.21). The associated curve (See the upper curve in Fig.3.22) is
obtained through the best fit of the computedQ minima values8 for Nr = 4 using a similar function to
that employed in Eq. (3.6).

8Nr=4 is the largest number of rings for which we could directly extract with the Multipole Method the locus of the
minimum ofQ for values ofd/Λ up to 0.75 , for higherNr, ℑm(neff) is smaller than the available numerical accuracy. The
procedure described in section2.2.4page26 was not used for the shown results. With it we can expect to increase the size of
the largest studied structures.



3.2 Main linear properties of modes in solid core microstructured optical fibres 81

C
u

to
ff

re
g

io
n

Losses

confined mode unconfined mode

λ/Λ

10−4

10−8

0.01 0.1 1 10 100
-50

-40

-30

-20

-10

0

10

20

30

4 rings 5 rings3 rings

QQ

1

ℑ
m

(n
e
ff
)

FIG. 3.21 – The different operation regions of a solid coreC6v MOF with low index inclusions. The
curves show the fundamental mode losses andQ for MOF with d/Λ = 0.3 for Nr = 3, 4, and5. The
locus ofQ extrema delimit the fundamental mode transition region (the grey region). The width of the
transition region remains finite whenNr → ∞.

λ

Λ
≃ αf.u.(

d

Λ
− (

d

Λ
)f.u.)

γf.u. (3.8)

whereαf.u. = 2.63 ± 0.03, γf.u. = 0.83 ± 0.02, and( d
Λ)f.u. ∈]0; 0.06[.

Forλ/Λ above the limiting value defined by Eq. (3.8), the fundamental mode is always space filling
(core and cladding), we will qualify it as unconfined but we recall that this is different from the second
mode case (as explained in the previous paragraph). With increasingNr, this upper limit of the transition
region shifts slightly towards larger values ofλ/Λ for d/Λ & 0.3 and towards smaller values ofλ/Λ for
d/Λ . 0.3 [20].

The lower limit of the transition region represents the locus of the positiveQ peaks (see the lower
curve in Fig.3.22). Due to numerical limitations relating to the smallest reachableℑm(neff) (limitations
described in section2.2.4 page23), the left side of the positiveQ peak have been obtained only for
Nr = 3 in a wide range ofd/Λ with the current numerical implementation of the MultipoleMethod9.
The upper and lower limits of the transition region split theMOF parameter space(d/Λ, λ/Λ) in three
regions : the unconfined fundamental mode region, the transition region, and the confined fundamental
mode region.

Simple physical models below and above the transition region

We must stress that the fundamental mode transition diagrampresented here (Fig.3.22) has been
obtained with finite (and relatively small) values ofNr, but as can be seen in Fig.3.21, the upper and
lower limits of the transition region along theλ/Λ axis depend only slightly onNr. One must keep in
mind that in all cases experimental MOF consist of a finite number of inclusion rings, so the results
presented here retain their predictive value.

A more detailed study of the fundamental mode transition anda deep asymptotic analysis of this
phenomenon can be found in references [20, 60, 83]. We give below only the main qualitative results.
MOFs have already been modeled for short wavelengths as stepindex fibres with varying cladding in-
dex [72, 76, 84]. In the proposed approximate models, both the short and long normalized wavelength
limits are treated : a W-fibre model called CF2 is used for short wavelengths, and a step-index fibre model
called CF1 is used for long wavelengths. These models are depicted in Fig.3.23.

9As already mentioned, this limit value ofNr can be increased using the procedure described section2.2.4.
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FIG. 3.22 – Diagram of the operation regimes of solid coreC6v MOFs with low index inclusions. The
shaded grey region correspond to the fundamental mode transition region. The dashed line corresponds
to the second mode transition locus as computed via Eq. (3.6).
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FIG. 3.23 – Models of conventional optical fibres used for the asymptotic analysis of MOF in the long
(CF1) and short (CF2) normalized wavelength limits.nM is the matrix index andni is the inclusion
index (See the text for more details).

At long normalized wavelengths, we have observed that the fundamental mode fills the entire confi-
ning region,i.e. the core and the cladding so we can consider a homogenized fibre with a core radius
ρ equal toNrΛ + d/2 and an average effective index[n̄] embedded in the matrix. This effective index
is computed by means of homogenization argument [85] using the air filling fraction of the fibre. The
modal index is calculated using the analytical formula given in table 12-12 of reference [2] concerning
a step-index uniaxial fibre with a core radius equal toNrΛ + d/2 surrounded by a matrix of indexnM .
The agreement between the results given by this step-index model fibre and those given by the Multipole
Method for the MOF are excellent forλ/Λ ≥ 0.5. Thus in this regime, the mode properties only depend
on the total fibre radius and ond/Λ. MOF modes are fairly lossy in this regime, since the effective indices
in the core region of sizeρ = NrΛ + d/2 are smaller than the matrix index. The loss decreases with in-
creasingNr following a power law. Consequently,Nr has to be impractically large to obtain MOFs with
acceptable losses for applications. Besides, some important quantities such as the chromatic dispersion
depend onNr [37]. At first sight, this regime of long normalized wavelength does not seem to be useful
for practical applications.

In the short normalized wavelength region, we have observedthat the fundamental mode is comple-
tely confined in the core region. Hence the fibre model is now a step-index W-fibre with a core made
of silica of which the radiusρc is approximately10 0.64Λ [36]. The intermediate region of the W-fibre
is an annulus extending from the core radius to the end of the cladding region (ρ = NrΛ + d/2). The
index of this annulus is taken asnFSM , the effective index of the fundamental space filling mode11 (see
section3.2.1) [67, 72]. Using this CF2 model, it can be shown that the losses vary as(λ/Λ)2 for a fixed

10This value of 0.64Λ for the fibre core gives the best estimates for the actual value of the real part of the effective index of
the fundamental mode given by more accurate methods (such asthe finite element or multipole methods).

11nF SM is the highest possible real effective index for a mode localized between the low index inclusions constituting a
periodic lattice embedded in a high index infinite matrix.
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number of ringNr, and decrease exponentially with increasingNr at fixedλ/Λ [20]. These behaviours
are actually observed on the corresponding curves computedwith the Multipole Method for the finite
MOFs forλ/Λ < 0.3. In this regime, the real part ofneff converges with increasingNr and so does the
chromatic dispersion.

Consequently, the small normalized wavelength region, or equivalently the regime in which the CF2
model is valid, is much more appropriate for practical MOF designs than the region associated with the
CF1 model (long normalized wavelength). However, the further the CF2 region is penetrated toward
short wavelength the stronger the analogy becomes between MOF and conventional optical fibres.

The region of the parameter space(d/Λ, λ/Λ) between the regions in which the CF1 and CF2 models
are valid is called the transition region. In this region, the properties of the fundamental mode change ;
they depend on the MOF parameters (d/Λ, Nr) and they differ from those of conventional step-index or
W-profile fibres. This transition region seems to be fruitfulfor applications.

3.2.5 Chromatic dispersion

The chromatic dispersion, or equivalently the group velocity dispersion, plays a crucial role in
conventional fibre optics [86] both in linear and nonlinear [35] phenomena. This key role is also present
when microstructured optical fibres are considered [87–89]. Fairly early in MOF history, it became ap-
parent that these new waveguides can exhibit peculiar and interesting dispersion properties and that they
may be good candidates for dispersion management in opticalsystems [84, 90, 91].

The systematic study of chromatic dispersion in MOF [91] really began with the development of
a vector simulation method with periodic boundary conditions [92]. Nevertheless we know from the
previous section3.2.4that the MOF properties will converge with respect toNr in the short normalized
wavelength (λ/Λ) region of the operation regime diagram but that this is no longer true in the peculiar
and promising transition regime. Therefore one must be ableto take into account the finite cross section
of MOF to describe accurately the chromatic dispersion and to compute their losses [37].

In this section, mixing the contents of several articles [37, 91, 93, 94] we describe how the chromatic
dispersion can be managed in MOFs. We then show how it is possible using the great versatility of MOF
design to get both ultraflattened chromatic dispersion and low losses.

Material and waveguide chromatic dispersion

The dispersion parameterD is computed through the usual formula from the real part of the effective
indexℜe(neff) [86] :

D = −λ

c

∂2ℜe(neff)

∂λ2
(3.9)

D depends onλ, d,Λ, Nr, and also onnM the matrix index12. Most of the time, for glasses,nM(λ)
depends itself onλ (in dispersive media) [95].

To explain the procedures used to study the chromatic dispersion we must first recall a few results
obtained for step-index optical fibres [86]. In a weakly guiding step index fibre, it can be shown thatD
is approximately composed of two components : one coming from the bulk material dispersionDM and
one coming from the waveguide itselfDW . So we have

D ≃ DM + DW with (3.10)

DM =
−λ

c

d2nM

dλ2
(3.11)

DW = −(
λ

c
)
∂2[ℜe(neff)|nM (λ)=constant]

∂λ2
(3.12)

DM can be easily computed using a Sellmeier type expansion fornM [35, 95]. An explicit expression
for DW in terms of the usual step-index fibre parameters is available [86] but this is useless in the present

12In what follows we consider that the low index inclusions aresimply holes of which the index is constant and equal to
unity.
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study which concerns MOF. We will assume that this splittingof the total chromatic dispersionD into
two distinct terms is still approximately valid for MOF. it is worth mentioning that all the numerical
simulations we did confirm the quality of this appromixation. It will be useful in understanding the
global chromatic dispersion behavior in MOF13.

In the case in which no material dispersion is taken into account i.e.nM (λ) = constant, the effective
index neff of a guided mode only explicitly depends on the pitchΛ of the inclusion lattice and the
diameterd of these inclusions, and also on the wavelengthλ. Hence as pointed out by Ferrando and
his colleagues [91], that sinceneff is dimensionless, the dependence on the three above parameters can
only occur through a dimensionless ratio. So, we can write the following when no material dispersion is
involved :

neff(λ, d,Λ)|nM (λ)=constant = neff(d/λ,Λ/λ) (3.13)

We now have to introduce a geometric transformation of the triangular inclusion lattice region of the
MOF. Let us consider a set of inclusions defined byΛref andd. We can build from this a new cladding
with the same filling ratiof = d/Λref simply by rescaling both these quantities :Λ andd(Λ/Λref). If
we now realize a scale transformation of the wavelength and look for the resulting scaling properties of
DW , it can be shown using Eq.(3.13) that :

DW (λ,Λ/Λref , f) =
Λref

Λ
DW (λΛref/Λ, 1, f) (3.14)

This scaling relation for waveguide dispersion allows us tocompute straightforwardly the waveguide
chromatic dispersion for all the rescaled MOF from the results obtained for the reference MOF : this
is shown in Fig.3.24. The scaling factorΛ/Λref can be used to modify the slopes of the chromatic
dispersion curves : the higher the factor, the higher the absolute value of the slope. AΛ/Λref increase
also induces an increase in the wavelength associated with zeroDW bounded by the first local maximum
and the first local minimum of the waveguide dispersion (See Fig. 3.24).

On the other side, it is not possible to compute theDW dependency ond/Λ using a similar argument :
only numerical simulations will answer this question. Several curves are given for different filling ratios
f = d/Λ in Fig. 3.25. One can notice that the slope of the nearly linear part of these curves existing
between the first local extrema is not really changed when thefilling ratio is modified.

To achieve a specific total dispersion, one must compensate the material dispersionDmat with DW

using the approximate relation Eq. (3.10). If the goal is to get flattened or ultraflattened chromatic dis-
persion in a target wavelength interval then one must control DW to make it follow a trajectory parallel
to that of−Dmat in the target interval [91]. If this wavelength interval belongs to the interval in which
the material dispersion behaves linearly (approximatively between 1.4µm and 2.5µm for silica) then a
systematic approach can be used to obtain an initial MOF structure having an approximate ultraflattened
dispersion curve.

We first have to adjust the slope ofDW using the scaling factorΛ/Λref in order to make it parallel to
−Dmat. Then we can play withd/Λ to modify the average value of the total chromatic dispersion, the
co-linearity ofDW and−Dmat being nearly conserved in the studied wavelength interval.This scheme
gives a first estimate MOF structure having the required total chromatic dispersion. Successive iterations
of this process improve the quality of the results. To end theMOF design we must come back to the
complete model : we have to take into account the material dispersion in our computation of chromatic
dispersion curves. In some cases the gap between the complete model and the approximate one can be
important compared to the required precision concerning the chromatic dispersion management.

This design scheme has also other important drawbacks. If the mean wavelength of the target interval
is not included in the quasi-linear part of the waveguide dispersion then the scheme is no longer valid
and only poor improvement can be obtained with sucessive iterations.

13We are not saying that this approximation will be used to compute the total chromatic dispersion in MOF (See section2.2.4
page25).
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curve is obtained forΛref = 2.3µm with the Multipole Method and the other curves are obtained using
the scaling law decribed by Eq. (3.14).

The influence of the number of ringsNr on chromatic dispersion

Another limitation of the design process described in the previous section is that the number of hole
rings is not taken into account : we have worked with a fixed value forNr, and as shown in section3.2.4,
depending on the position of the MOF in the phase diagram the MOF properties can depend strongly on
Nr. This is exactly what we observe in the chromatic dispersionfor several MOF configurations.

Directly linked to this issue are the losses. If one wants to practice chromatic dispersion management
for applications using MOF the losses must be taken into account. A way to reduce the losses is to
increaseNr as shown in the beginning of this chapter in section3.2.2and in Fig.3.26(b), but we already
know from section3.2.4 that the behaviour of the losses with respect toNr strongly depends on the
values ofλ/Λ andd/Λ.

The influence of the value of the refractive index on chromatic dispersion

As shown by Fig.3.29, the magnitude of the refractive index has also a strong influence on the
waveguide chromatic dispersion [96]. Its amplitude is increased both for its positive and negative peaks,
and these two extrema are shifted to longer wavelengths. This properties could be useful to manage
chromatic dispersion in the mid-infrared in chalcogenide MOFs since these glasses have a more negative
material dispersion that is shifted to longer wavelengths than silica [68, 70, 97].

A more accurate MOF design procedure

In Fig. 3.30, we show the variation of the total chromatic dispersion with respect to the numbers of
rings for six different MOF geometries, all located in the parameter region in which the MOF properties
converge with increasingNr. All the curves show a simple variation withNr, which can be modeled
accurately by an exponential formD1 exp(−κNr) + Dlim. Such a fitting form has three parameters
(D1, κ,Dlim), which can be determined accurately from the results ofNr =3 to 6. We have established
that the exponential fit thereafter accurately describes the dispersion of much larger structures and even
the limiting parameterDlim, the dispersion of a mode pinned by a single defect in an infinite lattice.
In fact, using the limiting dispersionDlim determined numerically for a set of wavelengthsλ, we can
also determineSlim = ∂Dlim/∂λ, the limiting chromatic dispersion slope. These two quantities describe
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the chromatic dispersion of the defect mode for the infinite lattice, and naturally tell us the chromatic
variation of dispersion for large MOF structures.

This procedure has important advantages since MOFs with relatively small numbers of rings are
relatively quickly modeled, and it directly takes into account material dispersion. Actually, this procedure
can be used as the second step of MOF design for dispersion management based on the scheme previously
described. Its main drawback is that it is much more time consuming compared to the first step.

In Fig. 3.31 we show the variations of these important parametersDlim andSlim as a function of
the hole diameterd for different pitchesΛ. This figure illustrates well how one can isolate a MOF
exhibiting a target dispersion value for a sufficiently large number of ringsNr, which is flat over an
interval containing the chosen wavelength value. Indeed such a MOF will have the desired value of
Dlim and simultaneously a value ofSlim close to zero. Note that the pitches exhibited in Fig.3.31were
chosen carefully to exemplify this desirable behavior. We have also shown that, for the data of Fig.3.31,
the minima ofSlim as a function ofd occur in the same diameter interval of[0.65; 0.7] micrometres
for all MOFs havingNr ≥ 6. From Fig.3.31, if one requires a positive nearly-zero flat chromatic
dispersion then, using these curves, one should begin with its dispersion engineering with a MOF such
thatΛ = 2.45µm andd = 0.6µm. Of course, Fig.3.31can be used to isolate MOF geometries having
different characteristics, such as a prescribed slope witha fixed average value of dispersion over a given
wavelength range. Note that, whereas the above designs haveeffectively a constant near zero chromatic
dispersion forNr ≥ 6, their geometric losses impose much more stringent requirements on the number of
rings, and the effective area of the fundamental modeAeff ≃ 36.5µm2 for Nr = 6 : it requiresNr ≥ 18
(1026 holes) to deliver losses below 1 dB/km atλ = 1.55µm. Even though some laboratories have
already drawn 11-ring fibres [98] (containing around 396 holes), there is clearly a technological issue.
To overcome these limitations of conventional MOF, innovative MOF designs have been proposed [94].
These consist of a solid core MOF in which the diameters of theinclusions increase with increasing
distance from the fibre axis until the diameters reach a maximum value. With this new design and using
three different hole diameters, it requires only seven rings (168 inclusions) to reach the0.2 dB/km
level atλ = 1.55µm with an amplitude of dispersion variation below3.0 10−2ps.nm−1.km−1 between
λ = 1.5µm andλ = 1.6µm.
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3.3 Two examples of hollow core MOFs with air-guided modes

3.3.1 An hollow core MOF made of silica and the band diagram point of view

These fibres represent the second family of MOFs. They are associated with one of the most astoni-
shing property of MOFs : the possibility of guidance in a hollow core14 [100–103]. This type of structure
is realized by a periodic15 lattice of low index inclusions in a high index matrix with a fibre core asso-
ciated with a low index inclusion with a possible different size and/or refractive index than that of the
microstructured region. This kind of fibre is also called photonic crystal fibres since the cladding region
is a photonic crystal, or hollow core MOFs. The basic guidingmechanism relies on the existence of a for-
bidden bandgap created the cladding that inhibits light propation in this region and consequently confines
light in the core region even if it has a lower refractive index than the average one of the cladding. The
corresponding schematic band diagram is shown in Figure3.32.

normalized wavelength λ/Λ
in the hollow core

Light line in medium such that n=n_cyl

n_mat

n_cyl

Re(n_eff)

Bandgap guided fundamental mode in the hollow core
Bandgap guided higher order mode

FIG. 3.32 – Schematic band diagram of a periodic array of inclusions of low refractive indexncyl in
a high refractive index matrixnmat such thatncyl < nmat together with the dispersion curves of the
fundamental mode and a higher order mode of the finite size MOFsuch thatncore = ncyl. In this case,
the fundamental mode dispersion curve is localized in bandgap below the light line associated with the
cylinder medium.

The first MOF described in this section is the same as that usedin reference [104]. The pitchΛ is
equal to 5.7816µm, the diameterDco of the center hole is equal to 13.1µm, the diameterd of the
circular inclusion in the cladding region is 4.026µm, the matrix relative permittivity is equal to 1.9321
(i.e.nM = 1.39) irrespective of the wavelength, and the inclusion relative permittivity is 1.0 (i.e.ni = 1).
We must mention that in our case we do not take into account material losses16.

The photonic crystal cladding

One way to obtain an air-guided mode in the hollow core MOF is to surround the core with a cladding
region of inclusions having a complete photonic bandgap in the transverse direction of the fibre around
the desired wavelength. In order to get this full bandgap several rules can be followed [61, 105, 106]. It
is worth noting that the dispersion curves must computed in aconical (out-of-plane) propagation confi-
guration in relation to the cylindrical inclusions[107]. These dispersion curves are associated with the
Bloch wave of an infinite lattice[105, 106, 108]. Figure 3.33 shows such curves for several values of

14Light propagation in hollow core waveguides was already discussed as soon as 1964 by Marcatili in the frame of metallic
ones [99].

15The term is not exact. We will consider in fact a subset of periodic lattice.
16For realistic modeling, both matrix and inclusion materialabsorption must be taken into account. As will be shown laterin

this section, the geometrical losses due to the finite numberof inclusion ringsNr around the core decrease nearly exponentially
with respect toNr so above a threshold value ofNr, and outside the wavelength associated to surface mode avoided crossings,
the main contribution to the losses comes from material absorption.
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the propagation constantβ for the lattice associated with the cladding region of the hollow core MOF
described above. Since for the study of these dispersion curves, we consider only lossless materials and
an infinite lattice,β is real for the Bloch waves.
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FIG. 3.33 – Dispersion curves of the Bloch waves associated witha triangular lattice of circular cy-
lindrical inclusions (ni = 1.0) in an infinite silica matrix (nM = 1.39). The geometrical parameters
are :Λ = 5.7816µm, inclusion diameterd = 4.026µm. These curves have been obtained for an out-
of-plane propagation,i.e. β 6= 0. Thex-axis is associated with the route of the transverse wave vector
along the edge of the irreducible Brillouin zone (see Appendix B.1.3page201). The y-axis represents
the normalized frequencyωΛ/(2πc) in which ω is the frequency (angular) andc is the speed of light in
vacuum.

Computing these diagrams for several values of the normalized wave vector propagation constant
βΛ, and determining their putative bandgaps leads to Fig.3.34(such bandgap diagrams are often called
finger diagrams). As can be seen, several complete photonic bandgaps exist for the studied lattice. Since
we are looking for an air-guided mode we must have17 ℜe(β)/k0 < 1. This condition means that the
dispersion curve of the air-guided mode of the finite hollow core MOF will be localized in the half-plane
above the light lineβ = k0 on the bandgap diagram. This is indeed the case, as can be seenin Fig. 3.34.

One can see in this figure that the dispersion curve of the fundamental mode of the finite MOF crosses
the fourth bandgap instead of being inside it. This crossingcan be understood from the fact that the modal
dispersion curve has been computed for finite structures (Nr=3) while the band diagram comes from an
infinite lattice.

To get these band diagrams, we can solve the periodic problemin conical mouning setting the pro-
pagation constanta priori. The results are the allowed angular frequenciesω associated with the Bloch
modes of the periodic structures. This representation(βΛ, k0Λ) in Fig. 3.33 is similar to the one used
in reference [66]. Such representation comes from the way the Bloch modes areobtained. Most of the
times, band diagrams are computed with a plane wave method inwhich the unknown is the frequency and
not the propagaton constantβ [105]. In our case, since we want to be able to directly take into account
the material dispersion, it is more convenient to solve a problem in which the wavelength is fixed and
β is unknown. In the appendixB we describe how we solve this problem using a finite element method

17We take the real part ofβ due to the expected leakiness of the mode for the finite MOF.
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with periodic boundary conditions. Figures3.34has also been obtained with this method but with the
formulation in whichβ is fixed andω is the unknown like with a conventional plane wave method.

In Fig. 3.35, we give a more complete band diagram corresponding to the same structure but compu-
ted directly in the(λ/Λ,ℜe(neff )) representation with the Finite Element Method.
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FIG. 3.34 – Bandgap diagrams associated with the dispersion curves of Fig.3.33 (infinite lattice) and
part of the dispersion curve of the fundamental mode for a three-ring finite size MOF. Only the2nd, 3rd,
and4th bandgaps are shown. Each bandgap is localized between the two curves corresponding to the
lower and upper boundaries of the bands (same line style). The thin straight dashed line is the light line
β = k0.
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as in Fig.3.34but for a wider wavelength range. The modes of the periodic structures are computed for
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each wavelength.

The finite structure

A few results concerning finite size effects in hollow core MOF are now described. Due to the large
diameter of the central hole we needed to use a fairly large value for the truncation order parameterM
(see section2.2.4page23) to ensure a good convergence of the field expansions. Consequently we take
M=19 in the multipole method for the numerical computationsassociated with the finite structures.

The finite MOFs studied in the following have the same parameters (Λ, d) as the infinite lattice used in
the previous section. Nevertheless two other parameters are needed to described the finite structure :Dco
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the diameter of the hollow core which will be kept constant (Dco = 13.1µm), and the number of low in-
dex inclusionsNr which will be varied. The lossesℑm(β) of the fundamental mode of finite size MOFs

1.0e-04

1.0e-03

3.428 (Nr=3)

3.416 (Nr=2) 3.440 (Nr=4)3.456 (PBG )

ℑ
m

(β
)

λ
3.441 (Nr=5)

fund. mode, Nr=2

fund. mode, Nr=3

fund. mode, Nr=4

fund. mode, Nr=5

fund. mode, Nr=6

FIG. 3.36 – Lossesℑm(β) of the fundamental mode of several finite size MOFs (Nr = 2, 3, 4, and5)
versus the wavelength (note they log-scale). The wavelengths of the different finite structures associated
with the lowest lossesλopt are materialized with vertical lines. The wavelength corresponding to the
middle of the photonic bandgap (PBG) of the infinite latticeλ̄gap is also shown.

versus the wavelength are shown in Fig.3.36. These losses are computed for several values ofNr. As can
be seen and as expected, the losses decrease with increasingNr. More interesting is their wavelength de-
pendence : there is an optimal wavelength valueλopt for which the losses are minimal (λopt = 3.416µm
for Nr =2, λopt = 3.428µm for Nr =3, λopt = 3.440µm for Nr =4, λopt = 3.4413µm for Nr =5, and
λopt = 3.4494µm for Nr =6). This behaviour is due to the guidance mechanism in the hollow core : the
photonic bandgap effect.

It can also be noticed that the loss minima become sharper asNr increases. This property is also
related to the photonic band gap : the larger the value ofNr, the sharper the resonance.

1.0e-04

1.0e-03

2 3 4 5 6

ℑ
m

(n
ef

f)

Nr

λ = λopt

λ = 3.428 µm

FIG. 3.37 – Losses of the fundamental mode of finite MOFs versus the number of low index inclusion
ringsNr for a fixed wavelengthλ = 3.428µm and for the optimal wavelengthλopt in each case (see the
text).

The losses of the fundamental mode as a function ofNr are shown in Fig.3.37. For a fixed wave-
length, the losses decrease nearly exponentially withNr. Otherwise if we consider the lowest loss values
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found for eachNr, i.e. the losses computed atλopt, the loss decreases is even better fitted by a decaying
exponential. The exponential decay of the imaginary part ofneff has already been found for solid core
MOF in the CF2 regime (the regime in which the fundamental mode is confined, see section3.2.4).

We now come back to the band diagram and to the dispersion curves of finite size MOF fundamental
modes. Figure3.38 is a zoom of Fig.3.34 in which we add the dispersion curves of the fundamental
mode computed forNr = 2, 3, 4, and5. It can be easily seen that the dispersion curves are very similar
and that they cross the bandgap even forNr = 5. If we pick up the optimal value ofβ denoted byβopt

which is associated withλopt (using the results of the numerical simulations), it can be observed that
even forNr = 5, the value ofβopt is not yet in the bandgap of the infinite structure. Nevertheless, it
seems that asNr increases,ℜe(βopt) approaches the middle of the bandgap. This comparison between
the infinite lattice properties and those of finite MOFs clearly shows the crucial interest in being able to
study finite structures when accurate results are needed as is the case for applications.

10.45

10.5

10.55

10.6

10.65

10.7

10.362 10.431

10.39710.351

k 
Λ

β Λ

fund. mode, Nr=2
fund. mode, Nr=3
fund. mode, Nr=4
fund. mode, Nr=5

4th band gap
light line

FIG. 3.38 – Crossing of the dispersion curves of the fundamentalmode of several finite size MOFs
(Nr = 2, 3, 4,and5) with the4th bandgap of the infinite lattice (See Fig.3.34). The bandgap is localized
between the two plain curves corresponding to the lower and upper boundaries of the band (same line
style). Theℜe(β) values of the fundamental mode of the finite size MOFs, computed for the wavelength
λopt associated with the lowest losses, are indicated by vertical lines (Nr = 2, ℜe(βopt) ≃ 10.431 ;
Nr = 3, ℜe(βopt) ≃ 10.397 ; Nr = 4, ℜe(βopt) ≃ 10.362 ; Nr = 5, ℜe(βopt) ≃ 10.3515). The thin
straight dashed line is the light lineβ = k0.

We now describe in more detail the field properties obtained for the finite MOF fundamental mode at
a fixed wavelengthλ = 3.428µm. The computed effective indexneff = β/k0 is equal to0.98111152 +
i0.18086 10−3 for Nr = 3 andneff = 0.9808734 + i 0.4724251 10−3 for Nr = 2. This structure pos-
sesses theC6v symmetry therefore we know that the fundamental mode is two-fold degenerate (see
section2.2.3page21). This property is illustrated Figs.3.39and3.40. The vector fields of the funda-
mental mode are also given in Fig.3.41 : it can be seen that in the core the fields are nearly linearly
polarized.

3.3.2 An optimized hollow core MOF made of high index glass for the far infrared

In the previous section, we described an hollow core MOF witha silica matrix that ensures the
propagation in its core around3.44µm. Nevertheless, the loss level is over the 100 dB/m limit eliminating
this configuration for any practical applications. In the present section we describe how it is possible to
obtain an hollow core MOF operating at 9.3µm with reasonable losses using a high refractive index
glass and specific design. It is worth mentioning that a lot ofstudies have already been dedicated to the
study or the characterization of hollow core MOFs made from asilica matrix with an air hole cladding
to guide light around1.5µm[100, 101, 103, 104, 109–112]. In the present section, our goal is to show
how we can design a photonic crystal fibre (PCF) in which a far infrared beam (λ = 9.3µm) can
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FIG. 3.39 – Modulus of the Poynting vector for the fundamental mode of the hollow core fibre with
Nr = 2 : it is the same for the two symmetry classes p=3 and p=4. The modulus is normalized to unity.

propagate in its hollow core. The guiding of infrared light in hollow core MOFs has already been studied
within a silica PCF but this kind of design [113] is limited to wavelength below 3.45µm due to the huge
material losses of silica for larger wavelength. Even if theoverall losses of the fundamental mode of these
PCFs can be much smaller than the material losses since most of the electromagnetic field propagates
in the hollow core, these PCFs still have too important losses. Furthermore, the absorption of the field
in the region surrounding the core can heat this region too much or even deteriorate it, knowing that the
larger the wavelength the bigger the material losses for silica in the mid or far infrared. Consequently,
we decide to find another kind of solution to solve this issue.We chose to investigate the use of high
index chalcogenide glasses that are known to have a transparency window in the infrared[68–70, 114].
More recently, it has been shown that these glasses can be used to drawn regular MOFs with several
rings of inclusions using the stack and draw process[51]. Consequently, we decide to consider the TAS
glass (Te2As3Se5) that is transparent from 2 to 12µm which was used to obtain step-index fibres [115].
Few numerical studies deal with high index MOFs and only someof them are dedicated to high index
PCFs[61, 62, 116]. Nevertheless, none of these works consider refractive indices as high as the one of
TAS glass around 9.3µm as studied in this section.

Getting the bandgap at the sought wavelength

To ensure the propagation in the hollow core, we need to find a bandgap generated by the cladding
that spans over the wavelength of interest. This wavelengthmust be located below the light line in air.
To obtain this result we compute several band diagrams with arefractive index for the matrix fixed to
the value of the TAS glass at 9.3µm, i.e. 2.9095 [115, 117]. Fig. 3.42shows such diagrams computed
for four different values of thed/Λ ratio. The bandgap that fulfills the above requirements is the shaded
one. In order to define the more useful bandgap that is to say the one that will provide the lowest losses
for the finite structures, we must study the relative width ofthis bandgap according to thed/Λ ratio. The
results are given in Fig.3.43. We choosed/Λ = 0.775 because this ratio ensures a large relative width.
We take this value, located on the right side of the relative width maximum plateau, to avoid the rapid
decrease observed on the left part of the relative width curve so as to optimize the parameters according
to drawing constraints.

For thisd/Λ ratio, the centre of the bandgap of interest is located atλ/Λ = 0.6925. Consequently,
for λ = 9.3µm, the pitchΛ must be set to 6.44µm. The diameter of the air holes must be equal to 4.991
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µm to get the optimald/Λ ratio18.

Finite structures : influence of the core diameter

It is well known from previous studies [112, 113, 116, 118] based on silica PCFs that the core
size and shape are key parameters for the modal properties ofthe finite structures due to the impact
of surface modes [119]. In order to illustrate this issue and to determine the optimal value of the core
diameterDcore, we compute the dispersion curves for several core sizes (see Fig.3.44). We clearly see
the strong influence of the core size. As can be seen on this figure, for Dcore = 12.58µm, we obtain
fundamental mode losses that are nearly four times smaller than the ones from other configurations. We
note that the real part of the effective index is also higher for this optimal core diameter. To complete these
curves, we give in Fig.3.45, the modulus of thez-component of the Poynting vector for the fundamental
mode of the PCFs withNr = 4 for three core diametersDcore. We see that the shape of the field map
also depends strongly on the core diameter. At least for the optimal Dcore value, these results can be
explained quantitatively using the ARROW model (AntiResonant Reflecting Optical Waveguides) [120].
The generalized application of such a guiding mechanism leads to the third kind of MOFs that is studied
in section3.4. In the present structure this mechanism allows a better confinement of the core modes that
are already confined by the cladding due to the existing photonic bandgap.

Indeed, if one consider a slab of thicknesse with a low refractive index denoted bynlow that will be
the waveguide, covered by a layer of thicknesst with an high refrative indexnhigh then the anti-resonant
condition for a guided wave with wavelengthλ in the low index layer determines thet∗ values ensuring
the confinement of the mode [120] :

t∗ =
λ(2N + 1)

4nhigh

√

1 − n2
low

n2
high

+ λ2

4n2
highe2

with N = 0, 1, 2, 3, . . . (3.15)

To adapt this mode to a circular hollow core MOF, we can consider that the thicknesse is equal to
Dcore/2. The high index ring around the core will acts as the antiresonant layer. Consequently, for a PCF
with a fixedd/Λ ratio, the core diameter sets the thickness of the high indexring through the relation :

t = 2Λ − d

2
− Dcore

2
(3.16)

Combining eqs. (3.15) and (3.16), we get a nonlinear equation that allows us to compute the core
diameters fulfilling the antiresonant condition. For the optogeometric parameters used for Fig.3.44,
we getDcore = 15.66µm (N = 1) andDcore = 12.3µm (N = 2). As can be seen, the ARROW
approximate model gives valid quantitative results in spite of the crude approximations made to move
from the PCF to the slab.

This antiresonant phenomenon is also reponsible for the elliptic shape of the field map observed on
Fig. 3.45(one can note that the bi-lobe shape field map corresponds to an increase of the field in the core
near the border of the high index region as can be seen in the original ARROW model [120]).

To complete the results, we can also compute the dispersion curves of the fundamental mode in order
to find the minimal losses and its respective wavelength (seeFig. 3.46). This figure confirms that the
influence of the core diameter is crucial : both the loss minimum and its wavelength are very sensitive to
its value. It also shows that the core diameter range in whichboth low losses and a wavelength around
the targeted 9.3µm is small : between 12.58µm and 13.08µm. The other interesting interval for the
core diameter is around 15.33µm (see Fig.3.46) would require to modify again the pitch of the structure
to get the wanted wavelength for the bandgap.

Using the losses from dispersion curves (see Fig.3.44), we can compute the spectral width of the
PCF transmission as a function of the core diameter. Two definitions of the width are used : a relative
one defined as an increase of10% of the losses compared to the minimum and an absolute one defined

18We must emphasize that the values are much more accurate thanthat can be reached during the fabrication process of such
high index chalcogenide MOFs.
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as an increase of10dB. These results clearly show the advantage to use an optimized value for the core
diameter.

An optimized structure

We now set the core diameter to the central value of the above interval, i.e. 12.83µm. To optimize
further the guiding properties of the fibre, we need to readjust the other structure parametersΛ andd so
as to get the losses minimum exactly around 9.3µm. To realize this we must diminishΛ keeeping the
d/Λ ratio equal to0.775. A simple rule of three givesΛ = 6.41µm and finally we getd = 4.968µm19.

With this structure, the fundamental mode field map is elliptical as can be seen in Fig.3.48, and we
obtain the fundamental mode dispersion curves shown Fig.3.49. The losses of this mode at 9.3µm for
severalNr values are given in in the left part of table3.1 for a lossless matrix. As soon asNr > 6 the
losses are below 1 dB/m. This level is nearly three times below the ones measured at 3.14µm with a
silica based PCFs [113]. Nevertheless, in order to improve our fibre model, we can take into account the
material losses of the TAS glass [117]. The measured material attenuation is1.5 dB/m at9.3µm which
provides a relative electric permittivity equal to1.4910−6. The corresponding results are given in the
right part of table3.1. We see that the global losses of the fundamental mode are below the material
losses forNr ≥ 6 since most of the electromagnetic fields are confined on the hollow core and not in
the glass matrix. ForNr = 7, these losses are nearly five times smaller than the ones of the silica PCF
mentioned in ref. [113].

Nr Re[neff ] Im[neff ] Pertes (dB/m) Re[neff ] Im[neff ] Pertes (dB/m)
3 0.91950645 0.99669946E-04 584.89 0.91950645 0.99763273E-04 585.439
4 0.91956213 0.83702342E-05 49.115 0.91956213 0.84636519E-05 49.667
5 0.91956602 0.10102266E-05 5.928 0.91956602 0.11036755E-05 6.476
6 0.91956664 0.927366E-07 0.544 0.91956664 0.18618142E-06 1.092
7 0.9195667 0.100995e-07 0.059 0.9195667 0.1035440e-06 0.607

TAB . 3.1 – Losses of the fundamental mode of the PCF at9.3µm for several values of the number of
hole ringsNr (Λ = 6.41µm, d = 4.968µm, andDcore = 12.83µm). In the left part of the table, no
material losses are taken into account. In the right part, the material losses (1.5 dB/m) are taken into
account through a relative electric permittivity fixed to 1.49e-6.

19Actually, the core diameter should be adapted due to theΛ dependency in formula3.16, but we neglect it in this first
approach
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(a) |Ez| for p=3
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(b) |Kz| for p=3
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FIG. 3.40 – Moduli of electromagnetic field longitudinal components, for the air-guided mode in the
hollow core MOF (Nr = 2), this mode belongs to the symmetry classes p=3 and p=4. The field moduli
are normalized to unity.
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FIG. 3.41 – Transverse electromagnetic vector field for the degenerate air-guided mode of the hollow
core MOF (Nr = 2). The real part of the field is represented by plain thick vectors and the imaginary
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FIG. 3.42 – Band diagrams obtained for several triangular lattices of circular air holes in a TAS matrix
such thatnmat = 2.9095. The shaded region is the bandgap of interest.

7.0e-03

7.5e-03

8.0e-03

8.5e-03

9.0e-03

9.5e-03

1.0e-02

1.1e-02

1.1e-02

 0.72  0.73  0.74  0.75  0.76  0.77  0.78  0.79  0.8  0.81  0.82  0.83

B
a
n

d
g

a
p

 r
e
la

ti
v
e
 w

id
th

 (
a
. 
u

.)

d/Λ

FIG. 3.43 – Relative width of the main bandgap aroundneff = 1 as a function of the normalized air hole
diameter.



100 3.3 Two examples of hollow core MOFs with air-guided modes

 0.8

 0.9

 0.9

 1.0

 1.0

 1.1

8.9 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8

R
e(

n
ef

f)

wavelength (µm)

BG limits
D = 11.58 µm
D = 12.58 µm
D = 13.58 µm
D = 14.08 µm
D = 14.58 µm

(a) ℜe(neff )

1e+01

1e+02

1e+03

1e+04

8.9 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8

L
o

ss
es

 (
d

B
/m

)

wavelength (µm)

D = 11.58 µm
D = 12.58 µm
D = 13.58 µm
D = 14.08 µm
D = 14.58 µm

(b) Losses(dB/m)

FIG. 3.44 – Dispersion curves of the fundamental mode of the PCF for 5 different diametersDcore of the
hollow core.Λ = 6.44µm,d = 4.991µm,Nr = 4. The two thin dashed curves represent the boundaries
of the main photonic bandgap obtained in Fig.3.42.

(a) D = 14.58µm (b) D = 12.83µm (c) D = 12.58µm

FIG. 3.45 – Modulus of thez-component of the Poynting vector for the fundamental mode of the PCFs
Nr = 4 for three core diametersDcore. The modulus is normalized to unity.
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FIG. 3.48 – Modulus of thez-component of the Poynting vector for the fundamental mode of the PCFs
Nr = 5 for Dcore = 12.83µm. The modulus is normalized to unity.
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3.4 One detailed example of ARROW MOF to understand their proper-
ties

3.4.1 ARROW microstructured optical fibres and its interpretations

This third type of MOFs is similar to the second in the sense that the propagation is made possible
in a core with a lower refractive index than the average one ofthe surrounding region20. Nevertheless
in the contradistinction to this previous case, the refractive index contrast is reversed : the inclusions
have an higher index than the matrix that contains these inclusions and forms the fibre core. To interpret
the physical mechanism behind the propagation in the low index core three complementary points of
view are useful : the AntiResonant Reflecting Optical Waveguide model (acronym ARROW)[120, 121],
the band diagram one, and the analysis based on the avoided crossings of leaky modes. We find again
an issue already tackled in section3.2.1. We had concluded that even if the different simplified models
were useful to understand the key properties of the considered structures with much less computational
effort, and to bring more physical insights than the"ab initio" Maxwell equation problem, they could
nevertheless hide some of the properties of the structure.

3.4.2 The ARROW model and its application to MOFs

We briefly presented this model[120] in the previous section to study the influence of the core size
diameter on the fundamental mode of an hollow core MOF. In thepresent section, the high index region
is no longer the ring made of the matrix glass but the high index inclusions [122–124]. To propagate a
beam in a core made of matrix with a refractive indexnmat such thatnmat < ncyl, the effective index of
the mode must fulfill the inequalityneff < nmat. If in order to simplify the analysis we consider only
grazing beam thenneff ≃ nmat. The corresponding mode will leak from the core to the inclusion region
when its effective index corresponds to that of the high index inclusions. This phenomenon can occur
at the cutoff of the inclusions modes. Consequently, in thisfirst approach, the edges of the transmission
bands are defined by the cutoff wavelengths of the high index inclusion modes [123, 125].

It is worth insisting that in the frame of this approach, we actually get the high loss region of the spec-
trum determined by isolated high index inclusions and not bythe lattice of these inclusions. Furthermore,
the model gives no clear explanation for the guiding mechanism between these high loss edges.

To illustrate these properties, we chose an ARROW MOF described in reference [123]. It is a one
ring C6v MOF with circular inclusions with diametersd equal to 3.315µm, cylinder refractive index
ncyl = 1.8, matrix refractive indexnmat = 1.44, and the pitchΛ being set to 5.64µm. The dispersion
curves and the losses of the fundamental mode (core localized) are given in Fig.3.50. As can be seen
on the right graph, the high losses regions that determine the edges of the transmission bandgaps are
nearly the same21 for several high index inclusion ringsNr and for two values of the pitchΛ. We can
note on this figure some irregularities on the dispersion curves and on the losses that will be explained
at the end of this section dedicated to ARROW MOFs. In Fig.3.51we show the same dispersion curves
of the ARROW MOF fundamental mode together with the ones of single high index cylinder, with the
same diameter as the one of the MOF, in the same matrix. We can note that the cutoff wavelengths of
the single cylinder correspond only approximately to the edges of the transmission band of the ARROW
MOF. The exact behaviour will be described after the next subsection. The fact that no modes of the
isolated cylinder of the ARROW MOF exists between the edges of the observed transmission band is not
sufficient to explain the propagation of the fundamental in the fibre core. To do this we must study the
ARROW MOF cladding, this is detailed in the following section.

3.4.3 ARROW MOFs and band diagrams

To take into account the lattice and consequently the coupling between the inclusions, we simply
have to compute the band diagram associated with the inclusion region (see AppendixB) [125]. We note

20The used average is not the key issue of this assertion.
21This assertion will be detailed and slightly modified later.
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that in this case a new parameter is introduced in the model : the lattice pitchΛ which was absent in
the ARROW model. As shown by Fig.3.52and as expected, the dispersion curves of the fundamental
mode are approximately within the bandgap of the band diagram associated with the inclusion region.
The long wavelength parts of fundamental mode dispersion curves go beyond the limits of the bandgaps,
this may be due to finite size effects. The differences between the dispersion curves obtained for different
values ofNr are more important in the long wavelength part of these regions. It is worth mentionning
that these parts of the dispersion curves have a more negative slope than the ones in the middle of the
bandgaps. Actually, the fundamental core localized mode starts to delocalize towards the cladding region
for these wavelengths. We can notice that both the width and the height of the bandgaps, just below the
neff = 1 limit, increase with the wavelength for such structure but the losses of the fundamental mode
decrease with the wavelength as can be seen in Fig.3.50(b)(see also Fig.2 in ref. [123]). This behaviour
is different from the one observed for hollow core PCFs.
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FIG. 3.52 – Real parts of the effective indices of the fundamental mode of the finite studied ARROW
MOF (for Nr = 1, 2) together with the band diagram corresponding to the elementary cell of the AR-
ROW MOF cladding. The modes of the periodic structures are computed for discrete values of the wa-
velength. They appear as dots forming either a continuum or isolated spots for each wavelength. Some
regions do not contain any mode of the periodic structure : they represent the bandgaps.

3.4.4 ARROW MOFs and avoided crossings

In the two previous subsection, we have described two modelsthat help to understand the main pro-
perties of ARROW MOFs. Nevertheless, some of these properties are not given by the models. Actually,
as can be seen in Fig.3.50(a), the dispersion curve of the fundamental mode show several discontinui-
ties. One such discontinuity is shown more clearly in Fig.3.53. These observed discontinuities are not
computational artefacts since we obtain them with two fullydifferent modal methods (see chapter2). We
can also notice that the discontinuities occur at the same wavelengths for the one ring MOF (Nr = 1)
and the two ring MOF (Nr = 2).

Figure 3.54 shows thez-component of the Poynting vector modulus for several increasing wave-
lengths around the observed transition in the core mode dispersion curve shown in Fig.3.53. We clearly
see that the core mode undergoes a spatial transition from the core fibre to the high-index inclusions. In
the present case, we can note that this transition is abrupt,the typical wavelength scale being approxi-
mately 1.0 10−3 µm. In the vicinity of the transition wavelength and for neighbouring values of the
effective index real part, one can check that there are no guided modes of a single high index cylinder
in a infinite matrix undergoing a cut-off[1]. Nevertheless, it is possible to find leaky modes for such an
isolated cylinderi.e., mode with a non null effective index imaginary part.

Consequently, we can analyze the core mode transition associated with the observed discontinuities
in Fig. 3.53as an avoided crossing between the ARROW MOF core localized leaky mode and a defect
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leaky mode generated by the set of high-index cylinders.

Some general properties of avoided crossings in ARROW MOFs

Avoided crossings between defect and core modes have already been oberved and studied in Bragg
MOFs [126] or in hollow core band-gap MOFs [118]. Since the observed defect modes are linked to
the isolated cylinder leaky modes, the avoided crossings will occur in ARROW MOFs whatever the
cylinder optogeometrical parameters are (including the ones associated with the single guided mode
regime). We can also note that both the observed avoided crossings with the isolated cylinder leaky
modes and the behaviour of the core modes in ARROW band gap lower edges (short wavelength) are
similar phenomena : a structure core mode transition induced by the coupling with the existing leaky
modes of the confining elementsi.e. the high refractive index cylinders. To illustrate these properties,
we give in Fig.3.55the dispersion curves showing two other avoided crossings,one associated with the
isolated cylinder leaky mode HE53 and another one associated with the EH14 cylinder leaky mode.

The dispersion curves concerning the lower transition of the core mode is associated with the avoided
crossing with the isolated cylinder leaky mode EH14. The EH14 leaky mode has much higher losses
than the two others leaky modes (HE53 and EH33) below the common cut-off limit given by the matrix
refractive index. For the upper edges (long wavelength) of ARROW band gaps (see as an example the
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FIG. 3.55 – Avoided crossings between the structure core mode and leaky modes of high refractive index
cylinder (EH14, HE53, EH33) ; the cylinder parameters and the refractive indices are the same as the ones
used previously. Dispersion curves for two smaller values of the pitchΛ are also given. HOCLM means
higher order core localized mode.

leftmost curve entitledCore mode (next upper band)in Fig. 3.55), we observe that the involved modes in
the avoided crossings are usually multiple cylinder leaky modes coming from the coupling between some
modes of the isolated high refractive index cylinders. Suchmodes are more clearly defined on ARROW
MOFs with several rings of high index inclusions since the proportion of cylinders on the external border
decreases which induces an increase of the homogeneity of the pertubative coupling terms.

In order to quantify the avoided crossing properties we introduce the quantityR = ∂2ℜe(neff )/∂λ2.
As can be seen in Fig.3.55and more precisely in Fig.3.56, the spectral sharpness of the transition de-
creases with the pitch for a fixedd value (even if a factor1/Λ2 is taken into account to compensate for
the core size change). In the same way, the strength of the transition (quantified bymax(|R|)) decreases
with the pitch. The product of the two quantities stays nearly constant in the studied range of parameters.
These properties can be explained as follows in terms of coupling between the high refractive index cy-
linder modes and the core localized mode : a decrease of the pitch induces a stronger coupling between
these modes, and consequently the coupling spreads over a greater spectral range and its maximum inten-
sity decreases. This kind of behaviour for the modal interaction is similar to the one already described by
Engenesset al.[126] in Bragg MOF. We have also studied the influence of the refractive index contrast
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on the transition (see Fig.3.56), and as expected, a contrast decrease induces a decrease ofits strength
and an increase of its relative spectral range. In Bragg MOF avoided crossings may occur for all the core
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modes that have the same azimuthal symmetry and polarization as the defect mode[126]. Consequently,
some symmetry selection rules may be applied to select the avoided crossings. On the contrary, in AR-
ROW MOFs since the modes are expressed as a Fourier-Bessel series a single azimuthal number of the
mode is not defined[6] therefore one can’t expect the kind of selection rules mentionned above (other
selection rules exist due to the fibre C6v symmetry).

3.5 Conclusion

In this Chapter, we have explained some of the main properties of solid and hollow core MOFs even
though only linear phenomena were considered. The single-mode property of solid core MOF is now
clearly defined, together with their operation regimes. We have focused on MOF based on subsets of
triangular lattices but other kind of structures can be studied based on honeycomb [127] or square [128]
lattices nevertheless the qualitative conclusions drawn in this chapter should applied for these structures.
We have considered circular inclusions but elliptical inclusions [52, 129] or inclusions with even more
complicated shapes could in principle be studied with the Multipole Method as long as these inclusions
can be included in non overlapping circles, or with the differential method in more general cases. These
specific properties of MOFs with a solid or an hollow core havemade these fibres truly useful for several
applications like supercontinuum generation[54, 88, 130–135], sensing[136, 137], fibre laser[138–141],
high power or infrared waveguides[142, 143].





Conclusion

Je pense que la terminologie "nouveaux guides d’onde" pour désigner les fibres optiques microstruc-
turées est complétement justifée même si les modes à pertes que l’on rencontre si souvent dans ces
dernières étaient déjà présents dans les fibres conventionnelles. Mais ils étaient alors peu étudiés, sauf
dans les fibres à profil en W, du fait de leur non utilité pratique.

Ces nouvelles fibres changent le nombre de dimensions de l’espace des paramètres caractérisant le
guide d’onde et donc augmentent de manière considérable lescaractéristiques possibles des propriétés
du guidage (c’est ce qui permet notamment d’obtenir la propagation "infiniment" monomode des fibres
optiques microstructurées à cœur plein). Nous pouvons désormais accéder à des contrastes d’indices de
plus de 50 % avec les fibres air/silice et de 200 % avec les fibresair/verres de chalcogénures au lieu
de moins de 1% dans les fibres conventionnelles. Nous avons aussi la possibilité de jouer sur le profil
géométrique de la section du guide, via les inclusions, et non plus uniquement sur le diamètre du cœur et
sur la couche qui l’entoure comme dans les fibres à profil en W.

La contrepartie de cette grande variété des structures possibles est qu’il faut disposer d’outils de
simulation numérique performants afin d’obtenir et d’étudier les propriétés physiques de ces fibres op-
tiques microstructurées. J’ai co-développé deux méthodesrigoureuses de type vectorielle au cours des
huit dernières années (la méthode multipolaire et la méthode différentielle avec factorisation rapide de
Fourier en tant que méthode modale), et j’en maîtrise complétement une troisième (la méthode de type
élements finis appliquée à la recherche des modes que cela soit en configuration scalaire ou en vecto-
rielle, pour des structures finies ou périodiques). Avec pour chacune des trois méthodes, des programmes
sources modifiables en fonction des nouveaux besoins qui se présentent.

Les caractériques remarquables du guidage de la lumière parces fibres optiques microstructurées font
qu’elles sont utilisées dans de nombreuses applications : génération de supercontinuum, guidage de laser
de puissance, laser fibré, capteurs, compensation de dispersion chromatique, . . .. Tous ces dévelopements
théoriques et expérimentaux ont eu lieu en douze ans, ce qui est remarquable et ont déjà donné lieu
indirectement à un prix Nobel de Physique, celui de 200522.

De nouvelles structures de fibres microstructurées ont déjàété proposées pour élargir encore la maî-
trise du guidage en leur sein. Il s’agit de fibres où les inclusions sont recouvertes d’une couche métal-
lique. Ceci entraîne alors qu’en plus des propriétés usuelles on peut éventuellement avoir de nouveaux
phénomènes comme les plasmons qui entrent en jeu pour modifier les propriétés des fibres. Par ailleurs,
les progrès réalisés dans la fabrication des fibres microstructurées en verres de haut indice ayant des
coefficients nonlinéaires de 100 à 1000 fois plus élevés que celui de la silice sont désormais suffisants
pour affirmer que de telles fibres vont pouvoir être utiliséespour l’optique nonlinéaire. A la vue de ces
deux constatations, je compte bien poursuivre mes recherches dans le domaine des fibres optiques mi-
crostructurées en développant les outils numériques nécessaires et en étudiant leurs propriétés linéaires
et nonlinéaires. J’ai déjà publié très récemment quelques travaux exploratoires concernant l’effet Kerr
optique.

22Le prix Nobel de physique 2005 a été attribué (la moitié du prix) à John L. Hall et à Theodor W. Hänsch "for their contribu-
tions to the development of laser-based precision spectroscopy, including the optical frequency comb technique". L’autre partie
a été attribué à Roy J. Glauber "for his contribution to the quantum theory of optical coherence".
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MicrostructuredOptical Fibers(MOFs) have received considerable attention sincepioneering
work demonstratedsome of their remarkable properties,such as guidancein hollow cores[1],
unprecedented dispersion characteristics [2-7], "endlessly" single-modedness [8], and the
support of modeswith extremely low or high effective area [2,9]. These unique properties
have far-reaching consequences in fundamental and applied areas as diverse as frequency
comb generation [10], supercontinuumgeneration [3,11,12] anddispersionmanagement[5].

One of the most important MOF configurations consistsof a silica fiber with a solid core
surrounded by a silica cladding pierced by rings of air holes, that are typically hexagonally
packed(Fig. 1, lower right inset). These holes can be thought of as acting to depress the
average cladding refractive index, so that light escaping the core has to tunnel through an
equivalent low-index layer. An intriguing difference betweensuchMOFs and conventional
fibers is associated with the distinction between guided and non-guided modes. In
conventional fibers the distinction is clear-cut: guided modesare lossless and thus have real
propagation constants β, related to a real effective index neff by neff= β/k0 =2πβ/λ, where
λ and k0 are the light's wavelength and vacuumwavenumber, respectively. For non-guided
modesβ andneff are complex, where the imaginary part of neff is linearly related to the loss
coefficient at fixedwavelength. In MOFs with a finite numberNr of rings of confining holes,
all modescan tunnel through the confinement region to some extent and are consequently
lossy; thus all modes have complexvaluesof β andneff [13-15].

In two recent papers [16,17] criteria were established for recognizing the transition of the
second mode1 from being unconfinedto confined,which we identify with cutoff. Mortensen
[16] usedthe rapid decreasein the mode's effective area at thetransition,whereas Kuhlmey et
al. [17] usedeffective area and four other criteria to pinpoint the transition. Curve 3 in Fig. 1
shows the locus of the transition of the secondmodeas a function of wavelength normalized
to hole spacing Λ, for MOFs of varioushole diameters d in silica. Note that this curve crosses
the horizontal axis at d/Λ=0.406. Though the transition is gradualfor MOFs with only a few
rings of air holes,it becomessharper whenthe number of air holes increases [17].

1 The second mode is defined as the modehaving, for a given fiber geometry, the second largest real part of neff. It
usuall y has the secondlowest loss,and its field distribution is similar to the TE1 modeof conventional fibers.
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Using thesame criteria as in [17], it appears thatthefundamental mode2 alsoundergoes a
cutoff transition between confined and non-confined states. For long wavelengths, the
fundamental mode fills the entire fiber cross-section, whereas for small wavelength it
becomes confinedin thecore. However, insteadof having the sharp transition betweenthose
states exhibited by the second mode, the transition is characterized by two loci, with a
transition region of finite width in between.This wasestablishedfor structuresof up to Nr=10
rings of holes,with conclusions for larger structuresfollowing by extrapolation . Above the
highest of theseloci [curve (1)], in the region denoted byCF1, the fundamental mode fills the
entire fiber cross section, and its properties can be accurately predicted on the basis of a
conventional fiber model (CF1, using the same symbol for the model and the region of
parameter spacein which it is valid) that we describe below. Below the secondlocus [curve
(2)], in theregion denoted byCF2, thefundamental modeis tightly confinedin the core,with
its properties given by a secondconventional fiber model (CF2). In the transition region
betweenCF1 and CF2, the fundamental modechanges its character and its behavior is thus
not only sensitive to the MOF design (i.e., to d/Λ andNr), but is also unlike that of the modes
of conventional fibers. We stress that, as we decrease the wavelength from large values,the
fiber at first shows no localized modes (region CF1), but that one of its extended modes
undergoesasmooth transition to emerge asa localizedmodein regionCF2.

We establishedthe modeboundaries of Fig. 1 using a multipole method [13,14], which
can calculate MOF modes and their lossesaccurately over a wide parameter range. We
studied the comportment of MOFs at the telecommunications wavelength of λ=1.55µm, and
varied the hole spacing Λ, while keeping the hole diameter to spacing ratio d/Λ constant. The

2 Thefundamental modeis defined as themodehaving, for a given fiber geometry, thelargest real part of neff. It is the
modewith the lowest losses and for the fibers studied here is doubly degenerate. It is most similar in terms of field
distribution to theHE1,1 modeof conventional fibers.

Fig. 1. Operation regimes of MOFs. Lower right inset: cross section of a MOF with 3 ringsof holes.
Other insets: asymptotic models for large (CF1) and small (CF2) wavelengths. The shaded transiti on
region represents the parameter subspacewhere MOFs cannotbe described by either asymptotic model
and thereforebehave most unlike conventional optical fibers. Data setsare described in thetext.
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MOFs were taken to consist of air holes (refractive index unity) in a matrix with refractive
index nm=1.44402362. For given d/Λ, we studied the variation of the loss [Im(neff)] as a
function of normalizedwavelength λ/Λ. At small λ/Λ, the loss increases gently, before rising
very steeply in the transition region, and then increasing slowly once again in the second
conventional fiber region (seeFig. 2.A). To locate the boundaries of regionsaccurately, we
usedthe second derivative of the log-log plot of the losses, a function which peaks at the
boundariesbetweenregions[17]. Carrying out this procedure for varioushole diameters, we
established the two boundary curves for the fundamental mode,shown for the first time in
Fig. 1. These curves tend to approach oneanother for decreasing hole size,andreach λ=0 for
hole sizes d/Λ somewhere between0 and0.06 inclusive. Countingonly modesconfined to the
core, MOFs in silica can be said to be "endlessly" single-moded in the region below the CF1
areaof Fig. 1, and to the left of d/Λ = 0.406,where thesecond mode boundary drops to zero
[17]. This observation corroborates and somewhat sharpens the prediction of endless single
modebehavior madeby Birks et al. [8].

In the CF1 region of Fig.1, the fundamental mode fills the entire confining region. Its
behavior is modeled accurately by usinghomogenization arguments [18] to establish effective
dielectric constants and thereby refractive indices for the cladding region. Homogenization
theory predicts an effective dielectric constant given by the mean of the dielectric constants of
air and silica for the electric field parallel to the fiber axis. In contrast, for small d/Λ the
Maxwell-Garnett formula can be used to derive effective constants for the transverse electric
field component [18]. With f being the air filli ng fraction of the fiber we have:

nz = [ f nair
2 +(1-f) nm

2]1/2
, (Extraordinary index) (1)

≅⊥n nm[( T - f )/(T+f)]1/2
, (Ordinary index)

whereT =(nm
2 + nair

2)/(nm
2 - nair

2).

(2)

The effective modal indexis thencalculated using the theory [19] of propagation in an
optical fiber with core of radius NrΛ constituting a uniaxial material, and a silica jacket.
Fig. 2.B shows the real and imaginary parts of the effective index of a MOF for different
numbers of rings as a function of the fiber sizeNrΛ and theresults given by thehomogenized
modeloutlinedabove.The agreement is excellent for λ/Λ ≥ 0.5. Thus in this regime the mode
propertiesremarkably only dependon the total fiber size NrΛ, regardlessof Nr. MOF modes

Fig. 2. A: Imaginary part of neff as a function of wavelength on pitch, rescaled by (λ/Λ)2, for a sili ca
structure with 3 layers of holes, with d/Λ taking the values0.075 (topcurve), 0.15,0.3,0.45,0.6,0.75,0.8
and 0.85.B: Imaginary (thin curves) and real (thick curves) part of neff as a function of f iber radius NrΛ
divided by λ for MOFs with d/Λ=0.3, for 4 (red), 6 (blue) and 8 (green) rings of holes, and for the
corresponding homogenized fiber (black). All calculations in this report were donefor varying pitch at
fixed λ=1.55µm, where thelosses in dB/m are given by 3.52x107Im(neff).
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tend to be quite lossy here, since the effective indices in the core region are smaller than nm.
Note that the losses do decrease as the number Nr of layers of confining air holes increases,
but do so following a power law. Consequently, Nr generally has to be impractically large to
generate MOFs with suff iciently low loss for technological applications, and key quantities
li ke the modal dispersion dependsensitively onNr, even whenthis numberis large. Therefore,
practicalapplications of MOFs are unlikely for designs in theCF1 region of Fig. 1.

For short wavelengths, MOFs have already beensuccessfully modeled by severalauthors
asstepindexfibers with varyingcladding index[5,8,11,12,20,21]. In the modelCF2 shown in
Fig. 1 the refractive indexof thecladding is given by the effective indexof the fundamental
space-fillin g mode (FSM) [8]. Best agreement was foundfor a core radius of approximately
a=0.64Λ [21]. Based on an asymptotic analysis of this model, it appears that at short
wavelengths nFSM canbeapproximated by

nFSM= nm – n2(λ/Λ) 2 (3)

where n2 can be obtained from a transcendental equation derived from the framework
established by Birks et al. [8]. It is then readily shown that theimaginary part of the effective
indexvaries as (λ/Λ) 2 for a fixed number Nr of rings of air holes, and decays exponentially
with Nr at fixed k0Λ, asexpectedfor tunneling losses.Fig. 2.A shows theimaginary part of neff

dividedby (λ/Λ)2 asa function of λ/Λ, for several d/Λ ratios.Thecurvestend to a constant
for approximately λ/Λ ≤0.3, indicating clearly that the asymptotic dependencebecomes valid
for reasonable wavelength to pitch ratios. In this regime, and contrary to the behavior in the
CF1 regime, the real part of neff, and derived characteristics such as modal dispersion
converge with increasingNr.

3

It is thus clear that the region CF2 of Fig. 1 is appropriate for practical MOF designs:
Confinement of the fundamental modeimproves exponentially asmore rings are added,and
characteristics such as modal dispersion converge with an increasing number of rings.
However, the further the CF2 region is penetrated, the closer the analogy becomes between
the MOF and conventional fibers. Thus, the new design possibilit ies offered by MOFs are
essentially available only in thetransitionregionandits border with theregionCF2.

3 Note that nFSM alsohas importancein relation to theboundary of CF1, which appears to occur when neff = nFSM .

Figure 3: Width of thetransition between the large wavelength asymptotic
regime (CF1) and the intermediate regime as a function of Nr

-b, for the
fundamental mode(A, bf≈ 2.97) and the second mode (B, b2≈ 1.55). For
the second mode the width of the intermediate regime tends to zero with
increasing number of rings, whereas a finite transition region remains for
the fundamental mode, even for Nr→∞.
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As mentionedearlier, the sharpness of the transition region with increasing Nr evolves
differently for the fundamental and the second mode. This is illustrated in Fig. 3, where we
plot the width of the transition region (more precisely the width of the peakof the second
derivatives of the curvesin Fig. 1.A) versus1/Nr

b, where b is adjusted to give the best straight-
line behavior of all datasets in each frame. As the number of confining rings Nr increases,the
width of the transition region tends to zero for the second mode (Fig. 3.B), whereasfor the
fundamental mode this width remains finite (Fig. 3.A). Thus, in an infinite system, the
transition region for the second mode disappears, whereas for the fundamental mode there is
always a parameter region in which this mode behaves fundamentally differently than the
modesof a conventional fiber. Note the linearity of the data for different hole diameters in
Fig. 3, showingthatthepower law exponentsfor both modes are independent of d/Λ.

The points in Fig. 1 indicate experimental and theoretical data from recent publicationsof
MOF designs with unconventional properties. The first data set concerns MOFs used
experimentally for supercontinuum generation, takenfrom Refs. [3,11-12]. They all li e in the
CF2 regime, and indeedthe key property for supercontinuumgeneration – highly shifted zero
dispersion wavelength and small core size – can be delivered by the CF2 model, already
known to be successful for suchMOFs [11,12]. Data set 2 shows the location of experimental
zero-dispersion wavelength measures,which were comparedto theoretical valuesfrom a CF2
model in theoriginal publication [5]. For the two lower points (b and d) which lie in the CF2
region, comparison with the CF2 model gave good agreement, for point c agreement was
approximateandfor point a, lying in thetransition region, the agreement was unsatisfactory.

The third data set consists of regions of observed or predicted flat or oscillating
dispersion, taken from Refs. [2,4,6,7,21]. All data points herein are located exactly in the
transition region, using the increased and highly configurable wavelength dependence of
structural dispersion to compensate material dispersion. The consequences of being in the
transition region, and therefore close to cutoff , are that confinement losses are highly
wavelength dependent, and that the waveguide dispersion is sensitive to the actual fiber
geometry. Suchhighsensitivity to structural imperfectionswas observed byMonro et al. [22],
andindeedthe fiberparameters usedby these authors are in thetransitionregion (data line4).

In studying the influenceof the number of rings on dispersion [7], we observed that the
dispersion doesnot necessarily converge with the ring number. Data set 5 shows the location
of an example where the dispersion converges with Nr in a limited wavelength range before
diverging with Nr. The divergent wavelength range crosses the transition line from the
intermediate to the homogenized regime CF1, where we have seen Nr dictates mode
properties.

Althoughwe triedto map as manypublishedMOF designs as possible onto Fig. 1, a few
were omitted: some were overlapping the transition region and the CF2 region andhad more
conventional dispersion properties, while others were beyond the scope of this study (e.g.
grossly non-circular holes). One theoretical study by Monro et al. [2] had two examples of
MOFs lying in the CF1 region, with both displaying conventional dispersion. It should be
emphasized that noexperimental MOF hasbeenpublished with parameters in the CF1 region.

In conclusion, we find that the fundamental MOF mode exhibits a transition between
being confined around the core region, and fillin g the entire (finite) fiber cross-section.
Thereby, we have shown that MOFs have an edge in the sense of offering modal
characteristics unlike those achievable with conventional fibers when operated in the
transition region, shown in Fig. 1. They may deliver useful (albeit conventional) design
characteristics in the region CF2, but are unlikely to deliver low-loss and stable secondary
characteristics such as dispersion in the region CF1. We have shown that these theoretical
insights are in keeping with successful MOF designs from the literature,andwe are confident
they will prove useful in guiding further innovative applicationsof this exciting newclassof
optical fiber.
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Chromatic dispersion and losses of

microstructured optical fibers

Boris Kuhlmey, Gilles Renversez, and Daniel Maystre

Using a rigorous and vector multipole method, we compute both losses and dispersion properties of
microstructured optical fibers with finite cross sections. We restrict our study to triangular lattices of
air-hole inclusions in a silica matrix, taking into account material dispersion. The fiber core is modeled
by a missing inclusion. The influence of pitch, hole diameter, and number of hole rings on chromatic
dispersion is described, and physical insights are given to explain the behavior observed. It is shown
that flattened dispersion curves obtained for certain microstructured fiber configurations are unsuitable
for applications because of the fibers’ high losses and that they cannot be improved by a simple increase
of the number of air-hole rings. © 2003 Optical Society of America
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1. Introduction and Background

Microstructured optical fibers �MOFs� are generally
made from regular lattices of cylindrical inclusions,
for example, air holes, in a dielectric matrix. MOF
cores usually consist of a defect of the lattice, which
can be an inclusion of a different type or size or, in
bulk core MOFs, a missing inclusion. In recent pub-
lications,1,2 attention was drawn to the peculiar and
interesting dispersion properties that MOFs can ex-
hibit and that indicate that MOFs may be good can-
didates for dispersion management in optical
communication systems. In this paper we use a
fully vector and rigorous multipole method3,4 that
was recently developed by the present authors and by
Mc Phedran and Botten5 in Sydney to explore the
dependence of chromatic dispersion on wavelength
and MOF geometry. We concentrate here on a silica
bulk core MOF with a triangular lattice of air holes
�see Fig. 1�. The most important point in which the
research reported here contrasts with that on MOF
dispersion published previously is that the multipole
method described herein is able to deal with finite

cross-section MOFs. We could therefore study the
influence of the extent of the confining air-hole region
on dispersion and on its associated losses.

Our multipole method is a standard multipole
method extended to conical mounts. It is based on
local expansions of the vector fields in Fourier Bessel
series and uses addition theorems to link these local
expansions. Boundary conditions are implemented
analytically for circular inclusions, so the only ap-
proximations are the truncation of the Fourier Bessel
series �see Refs. 4 and 6 for a complete study� as well
as the fundamental hypothesis of the invariance of
the fiber along its axis. If the inclusions overlap, our
method is not appropriate. With the MOF geometry
and the wavelength as inputs, the method gives the
modes of the MOF as an output. Material disper-
sion can thus be included in a natural way in the
MOF geometry, for example by use of Sellmeier ex-
pansions.7,8

A mode of a MOF is characterized by its field pat-
tern and propagation constant � �or, equivalently, by
its effective index neff � ��k0, where k0 is the free-
space wave number�. Because of the losses that re-
sult from the finite transverse extent of the confining
structure, the effective index is a complex value; its
imaginary part ��neff� is related to the losses � in
decibels per meter through the relation

� �
20

ln�10�

2�

�
��neff� � 106 , (1)
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where � is given in micrometers. Dispersion param-
eter D is computed through the usual formula from
the real part of effective index ��neff� �Ref. 8�:

D � �
�

c

�2
��neff�

��2 . (2)

As in ordinary waveguides, the dispersion of guided
modes results from both material and waveguide dis-
persion. The remarkable feature of MOFs is that
the waveguide dispersion can be modified signifi-
cantly by means of a wide range of geometrical pa-
rameters, namely, the positions and sizes of the
different holes. The behavior of waveguide disper-
sion can be understood from heuristic considerations
of effective media: At short wavelengths, light can
distinguish the details of the structure, resulting in a
greater concentration in the high-index region �i.e.,
the core whose index is that of the matrix�. In this
situation the effective index is smaller than the re-
fractive index of the matrix. At longer wavelengths
the structure tends to a homogeneous one, and the
effective index of the mode will consequently be
upper-bounded by the homogenized refractive index
of the structure, which is much lower than the refrac-
tive index of the matrix as a result of the air inclu-
sions. These heuristic considerations are unable to
predict MOF chromatic dispersion precisely: A pre-
cise numerical study is required. Moreover, in prac-
tical applications the losses have a vital importance.

Detailed studies of losses in MOFs versus pitch of the
air-hole lattice, the hole diameter, and the hole ring
number have already been carried out by the multi-
pole method.4,9 A vector method that uses periodic
boundary conditions10 has already been used to study
dispersion in MOFs,11 but in this model the influence
of the number of hole rings cannot be investigated,
and, above all, the losses cannot be computed.

2. Validation

The method has been checked thoroughly by compar-
ison with other numerical methods, namely; a ficti-
tious source12 and other multipole methods13,14 �more
details of these comparisons can be found in an ear-
lier paper by the present authors and others.4

The symmetry properties of fibers are accurately
satisfied6: For a MOF with a rotational symmetry of
order 6, the fundamental mode is twofold degenerate,
as expected from Mc Isaac’s theory.15

The method that we codeveloped and its numerical
implementation have also been compared with a
plane-wave method for a microstructured optical fi-
ber with a ring of six air holes of diameter d � 5 �m
with pitch 	 � 6.75 �m and a fixed background index
n � 1.45 at � � 1.55 �m; the computed value ��neff�
of the fundamental mode is 1.4447672.6

With respect to chromatic dispersion, our results
are in good agreement �see Table 1� both with the
dispersion and with its slope as measured by Gander
and his colleagues and with the dispersion calculated
by the same authors,16 who used an expansion of the
fields in terms of Hermite–Gaussian functions1 for a
microstructured optical fiber �d � 0.621 �m, with a
pitch 	 � 2.3 �m� at � � 0.813 �m. Our results are
also in good agreement �see Table 1� with the disper-
sion and the slope dispersion calculated by Brechet et
al. for the same structure by a finite-element meth-
od.17

3. Results

In the examples given in what follows, we simulate a
MOF made from a subset of triangular array of cy-
lindrical air inclusions �ni � 1� of lattice pitch 	.
The inclusions have identical circular cross sections
of diameter d; the core is formed by a missing inclu-

Table 1. Comparison of Dispersion D and Its Slope Measured and Calculated at � � 0.813 �m by Gander et al.
a

Dispersion Dispersion Slope

Measured Calculated Measured Calculated


77.7b 
77b 0.464a


78.6c 0.450c


76.95 �Nr � 4�d 0.455 �Nr � 4�d


76.78 �Nr � 3�d 0.458 �Nr � 3�d

aThey did not compute the dispersion slope, and the Nr value is not given in their text, so only an estimated value can be deduced from
the scanning-electron micrograph of the MOF that they show as Fig. 2 of their paper16; the results by Brechet et al.17 with a finite-element
method at � � 0.813 �m and the results with our multipole method for two values of Nr at the same wavelength are also shown here. Unit
for dispersion, ps nm
1 km
1; unit for the dispersion slope, ps nm
2 km
1.

bResults of Gander et al.16

cResults of Brechet et al.17

dResults of our multipole method for two values of Nr.

Fig. 1. Cross section of the model MOF with three rings of holes
�the holes are shown colored gray�; Nr � 3. 	 is the pitch of the
triangular lattice, and d is a holes diameter. The solid core con-
sists of one missing hole in the center of the structure.
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sion �see Fig. 1�. The finite thickness of the hole
region about the core can be described by the number
of rings of holes Nr. The matrix and the jacket are
made from silica, so the guiding structure is formed
by a finite number of low-index inclusions in infinite
silica bulk �the Sellmeier expansion is taken from
Ref. 8�. Because the hole region surrounding the
core is bounded, it is clear that propagating modes
are leaky.

We limit our study to the properties of fundamental
mode dispersion, and the wavelengths that we con-
sider here are included in the range 0.6–3 �m. As
shown in Fig. 2 for a fixed hole diameter, a small pitch
generates oscillations of the dispersion, and several
zero-dispersion wavelengths can be found. With a
larger pitch, the dispersion increases monotonically
with wavelength. This property can be understood
as follows: For large pitch, the MOF core is large
too, the waveguide effects on dispersion are therefore
weak; thus the material dispersion dominates. Con-
versely, for smaller pitches the waveguide dispersion
takes over, and we observe oscillations of the disper-
sion curve; the amplitude of these oscillations in-
creases as the pitch decreases. In the short-
wavelength limit, material dispersion is so negative

that waveguide dispersion cannot compensate for its
effect. This remark explains why, for submicromet-
ric wavelengths, all the dispersions tend toward ma-
terial dispersion.

From Fig. 2 it can be noticed that there is a pitch
value �	 � 2.675 �m� for which the dispersion curve
is flat over a large range of wavelengths when the
average value is taken as 27.9 ps nm
1 km
1 near
1.85 �m, with the amplitude of dispersion oscillation
equal to 0.2 ps nm
1 km
1 in a wavelength interval
of 0.3 �m. For the same pitch but with Nr � 4 �data
not shown� the dispersion curve is much less flat than
with Nr � 3, and the average level of the dispersion
has decreased; it is 23.7 ps nm
1 km
1 near 1.85 �m,
with an amplitude of oscillation of 3.8 ps nm
1 km
1

in a wavelength interval of 0.5 �m. Notice that in
both cases the corresponding losses �5.9 � 105 dB
km
1 for Nr � 3 and 6.1 � 104 dB km
1 for Nr � 4�
prohibit the use of these MOFs for practical applica-
tions. One can try to overcome this drawback by
again increasing the number of rings, but this change
entails a new change of the dispersion curve, as we
show in detail in what follows. This example clearly
shows the necessity for studying both losses and dis-
persion to achieve realistic dispersion engineering.

Another conclusion to draw from Fig. 2 is the ex-
istence of a wavelength, �cross � 1.93 �m, for which
the losses are almost independent of pitch 	, at least
in the range of 	 from 1.55 to 3.2 �m. This phenom-
enon occurs for other values of Nr: For Nr � 4, �cross

is �2.15 �m �see Fig. 3�; for Nr � 2, �cross is �1.63 �m
�data not shown�. The value of �cross increases
slowly with Nr. A straight scale-law argument can-
not be used because the hole’s diameter is kept con-
stant for the various structures. Besides, in as
much as material dispersion depends on the actual
wavelength, one must take care in using scaling ar-
guments to try to explain this behavior. Material
dispersion could also have an influence on the extent
of the crossing region. Currently, the crossing re-
gion is approximately 0.1 �m large. From a math-

Fig. 2. �a� Dispersion and �b� losses for a three-ring MOF as a
function of wavelength and pitch 	. The material dispersion is
also shown. Hole diameter d, 0.8 �m.

Fig. 3. Losses for a four-ring MOF as a function of wavelength
and pitch 	. Hole diameter d, 0.8 �m. The y scale is linear,
unlike for Fig. 2�b�.
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ematical point of view, for a fixed value of Nr the
crossing phenomenon corresponds to point ��cross,
	cross� of surface ���, 	� where the curve defined by
����	 � 0 crosses the curve given by �2

���	2 � 0.
It seems more difficult to give the physical meaning of
this phenomenon.

It can be seen from Fig. 4 that the oscillation am-
plitudes in dispersion curves increase with hole di-
ameter �for d � 1.00 �m, i.e., d�	 � 0.645, the
oscillation amplitude �becomes 300 ps nm
1 km
1�.
This behavior can be explained by consideration of
MOF core size and by a competition between material
dispersion and waveguide dispersion, similar to that
given above for the influence of the pitch. It is worth
noting that the value Dmax of the dispersion’s local
maximum increases with hole diameter for all dis-
persion curves that we have computed. For three-
ring MOFs with a fixed pitch 	 � 1.55 �m, the
wavelength �Dmax

associated with the local maximum
Dmax of dispersion increases with the diameter of the
holes. One can use this property to shift the disper-
sion curves efficiently to obtain the required �Dmax

.
One can try to reduce the huge losses more than

1.0 � 102 dB km
1 near � � 1.3 �m for all the curves
plotted in Fig. 4�a�� by increasing the number of hole

rings Nr, but once again dispersion profiles are mod-
ified. We now describe the influence of this crucial
parameter. As shown in Fig. 5�a�, when there is no
local maximum of dispersion for MOFs with few
rings, the dispersion decreases as the number of rings
is increased. The difference between successive dis-
persion curves of two MOFs decreases as the number

Fig. 4. �a� Dispersion and �b� losses for a three-ring MOF as a
function of wavelength and hole diameter d. The material dis-
persion is also shown. Pitch 	, 1.55 �m.

Fig. 5. �a� Dispersion and �b� losses as a function of the wave-
length, and number of rings Nr the types of curves have the same
values for �a� and �b��. Pitch 	 2.0 �m; hole diameter d, 0.5 �m.
�c� Dispersion for three wavelengths as a function of the number of
rings Nr for the same MOF.
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of rings increases, as shown in Fig. 5�c�. This figure
clearly shows that the dispersion converges to a limit
when the number of rings is increased. The conver-
gence speed depends on the wavelength: The larger
the wavelength, the slower the convergence in Fig.
5�c� for � � 1.52 �m the limit is not yet reached with
eight rings�. It is worth noting that the losses asso-
ciated with the flattened dispersion curve obtained
with the seven-ring MOF of Fig. 5�a� are still large
�more than 1.0 � 104 dB km
1 near � � 1.3 �m�.
This influence of Nr on dispersion can be understood
in the following way: When losses are weak, a sup-
plementary ring will not change the mode drastically.
In contrast, when the mode is not well confined in the
core, a supplementary ring will modify the mode sig-
nificantly. We can thus assume that the field pat-
tern associated with the mode converges with
increasing Nr; the convergence is slower for larger
wavelengths because modes are less confined for
these wavelengths. As opposed to the example in
Fig. 5�a�, for structures whose dispersion does exhibit
oscillatory behavior e.g., structures of small pitch in
Fig. 2�a�, which have a high diameter�pitch ratio�, an
increase of Nr results in amplification of the oscilla-
tion amplitude �see Fig. 6�.

4. Conclusion and Discussion

As was shown in Section 3, one cannot keep the flat-
tened dispersion with a fixed D value obtained for
certain MOFs and at the same time reduce the MOFs’
losses through a simple increase of their number of
air-hole rings.

It must also be pointed out that an increase of the
number of rings can reduce the losses of higher-order
modes. As a consequence, a monomode fiber may
become multimode for some configurations. Never-
theless, if large differences between the real parts of
neff for the modes are found, mode coupling between
the fundamental mode and the higher-order mode
should be suppressed. We continue to study these
effects and the influence of the jacket on dispersion.

The high loss figures that we have reported
throughout this paper might give the wrong impres-

sion that low losses are not feasible in microstruc-
tured fibers, but low-loss MOFs are possible with
appropriate geometric parameters9 see also the loss
curve at small wavelengths for d � 1.0 �m in Fig.
4�b��. For example, with 	 � 2.26 �m, d � 1.51 �m,
and Nr � 3 the losses that we compute are below 1 �
10
4 dB km
1 at a wavelength of 0.76 �m. The
same structure with Nr � 7 corresponds to that stud-
ied experimentally by Kubota and his colleagues.18

The measured global losses at a wavelength of 0.85
�m are 7.1 dB km
1, which clearly shows that the
losses in MOFs can be limited by Rayleigh scattering,
structural imperfections, and absorption and not by
the geometrical losses. But interesting dispersion
properties seem to imply geometrical parameters
that are not necessarily compatible with low losses
and few air-hole rings.

The issue for dispersion engineering applications is
to find MOF parameters that produce both ultraflat-
tened dispersion curves �negative, positive, or nearly
zero� about the specified wavelength �for example, 1.3
or 1.55 �m� and low losses �near or below 1 dB km
1�.
Consequently, for such engineering the finite size of
the fiber cross section must be considered. Accurate
design of such MOFs is currently under study.19

This research benefited from travel support from
the French and Australian governments.
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We numerically demonstrate ultraf lattened chromatic dispersion with low losses in microstructured optical
fibers (MOFs). We propose using two different MOF structures to get this result. Both structures are based
on a subset of a triangular array of cylindrical air holes; the cross sections of these inclusions are circular, and
a missing hole in the fiber’s middle forms the core. In this MOF structure the diameters of the inclusions
increase with distance from the fiber axis until the diameters reach a maximum. With this new design and
with three different hole diameters, it requires only seven rings to reach the 0.2-dB�km level at l � 1.55 mm
with a variation amplitude of dispersion below 3.0 3 1022 ps nm21 km21 of l � 1.5 1.6 mm. With the usual
MOF (made from holes of identical diameter), we show that at least 18 hole rings are required for losses to
decrease to ,1 dB�km at l � 1.55 mm. © 2003 Optical Society of America

OCIS codes: 060.2270, 060.2280, 060.2400, 060.2430.

Microstructured optical f ibers (MOFs) were quite
recently proposed as new tools for dispersion man-
agement in optical communication systems.1 Several
studies2,3 in which a vector method with periodic
boundary conditions was used4 were made to design
such MOFs; nevertheless, as was recently shown,5

one must take the finite cross sections of MOFs into
account to describe accurately the chromatic disper-
sion properties of such fibers and to compute the
losses. Moreover, comparison of the computed dis-
persion curves and the experimental results remains
difficult.6

A mode of a MOF is characterized by the mode’s
field pattern and its effective indices neff � b�k0,
where b is its propagation constant and k0 � 2p�l
is the free-space wave number. Because of the f inite
transverse extent of the confining structure, the
effective index is a complex value; its imaginary part
��neff� is related to losses L (in decibels per meter)
through the relation L � 40p ��neff� 3 106��l ln�10��,
where l is given in micrometers. Dispersion pa-
rameter D is computed through the usual for-
mula from the real part of effective index ��neff �
(Ref. 7): D �2�l�c�≠2 ��neff ��≠l2. We have devel-
oped a multipole method8 that allows us to compute
accurately the complex effective index of the modes of
a wide variety of MOFs. Our method has been veri-
fied by comparison with other numerical methods.5,9,10

In what follows, we simulate plain core MOFs made
from a subset of a triangular array of cylindrical air
inclusions �ni � 1�. The inclusion spacing, or pitch, is
denoted L. The inclusions are circular, possibly with
various diameters, and lie about a core that is in fact a
missing central inclusion. The matrix and the jacket
are made from silica, so the guiding structure is formed
by a finite number Nr of rings of air holes in infinite
bulk silica whose Sellmeier expansion (which does not
include material losses) is taken from Ref. 7. Our aim
in this study is to establish MOF designs that com-

bine ultraf lattened chromatic dispersion together with
low losses near the telecommunication wavelength l �

1.55 mm. We exhibit two designs that achieve this ob-
jective. The first contains air holes of one diameter
and requires 18 rings of holes for losses smaller than
1 dB�km. The second utilizes air holes with three dif-
ferent diameters, which yield ultraf lat dispersion and
even lower loss levels with only seven rings.

Chromatic dispersion in MOFs arises from that of
the silica �Dmat� and also from the waveguide disper-
sion �DW � associated with the structure of the confin-
ing region. Note that our multipole method provides
directly the total dispersion �D�, so we deduce DW from
the relation DW � D 2 Dmat. As was pointed out by
Ferrando et al.,2 it is convenient to achieve a specif ic
total dispersion by controlling DW to make it follow a
trajectory parallel to that of 2Dmat in the target wave-
length interval. The parameters with which one can
achieve this are hole diameter d, pitch L, and number
of rings Nr .

5

From a previous theoretical work,11 we choose
d�L , 0.406 to guarantee single-mode operation of
the MOF design.

In Fig. 1 we show the variation of total dispersion
D with the number of rings of six normal MOF ge-
ometries, all located in the region of stable dispersion.
All curves show a simple variation with Nr , which
can be modeled accurately by an exponential form
D1 exp�2kNr� 1 Dlim. Such a fitting form has three
parameters �D1, k, Dlim�, which can be determined
accurately from the results of Nr � 3 6. This pro-
cedure has important advantages because MOFs
with relatively small numbers of rings are relatively
quickly modeled; yet we have established that the
exponential f it thereafter accurately describes the
dispersion of much larger structures and even limiting
parameter Dlim, the dispersion of a mode pinned by
a single defect in an infinite lattice. In fact, using
the limit dispersion Dlim determined numerically for a
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Fig. 1. Dispersion decay at l � 1.55 mm as a function of
the total number of hole rings Nr for several MOF struc-
tures. L is the hole spacing, and d is the hole diameter.
The points correspond to the computed numerical disper-
sion; the curves, to exponential based f its.

set of values of wavelength l, we can also determine
Slim � ≠Dlim�≠l, the limit dispersion slope.

In Fig. 2 we show the variations of these important
parameters Dlim and Slim as a function of hole diame-
ter d for several pitches L. This f igure illustrates
well how one can isolate a MOF that exhibits a tar-
get dispersion value for a sufficiently large number of
rings Nr, which is f lat over a range about the cho-
sen wavelength value. Indeed, such a MOF will have
the desired value of Dlim and simultaneously a value
of Slim close to zero. Note that the pitches exhibited
in Fig. 2 were chosen carefully to exemplify this de-
sirable behavior. We have also shown that, for the
data of Fig. 2, the minima of Slim as a function of d
occur in the same diameter interval �0.65; 0.7 mm� for
all MOFs that have Nr $ 6. From Fig. 2, if one re-
quires a positive nearly zero f lat chromatic dispersion,
then, using these curves, one should start the disper-
sion engineering with a MOF such that L � 2.45 mm
and d � 0.6 mm. Of course, Fig. 2 can be used to iso-
late MOF geometries that have different characteris-
tics, such as a prescribed slope with a fixed average
value of dispersion over a wavelength range.

In Fig. 3 we show dispersion characteristics for three
MOF designs. At the top, the total dispersion is linear
with negative slope �D�a��, constant near zero �D�b��,
and nearly constant near 25 ps nm21 km21 �D�c��.
These curves arise because of the balance between
waveguide dispersion DW curves and that of 2Dmat

shown in the bottom part of the figure. Note that,
whereas these designs have appropriate dispersion
characteristics for Nr $ 6, their geometric losses im-
pose much more stringent requirements on the number
of rings, and the effective area of the fundamental
mode Aeff is �36.5 mm2 for Nr � 6. For example,
for the MOF with ultraf lat dispersion close to zero,
Nr $ 18 (1026 holes) is required for losses to be kept
below 1 dB�km at l � 1.55 mm. Some laboratories
have already drawn 11-ring fibers6 (around 396 holes),
there is clearly a technological interest in investi-
gating designs that can deliver tailored dispersion
characteristics with many fewer MOF rings.

To provide MOF designs that display a desirable
combination of ultraf lat dispersion, low-loss and
quasi-single-mode operation, and a practical value of
Nr, a natural strategy is to allow the hole diameter to
differ from one ring to another (see Fig. 2, inset) with
exterior rings that have large holes to lower the losses.
We start the design process with a three-ring MOF;
d1 is arbitrarily set to d1 � 0.5 mm. In pursuing
designs of this sort it is advantageous to employ the
following scaling relation for waveguide dispersion
(this is a generalization of a result given in Ref. 2):

DW �l,L�Lref , f1, f2, . . . , fn�

�
Lref

L
DW �lLref�L, 1, f1, f2, . . . , fn� , (1)

Fig. 2. Limit dispersion (solid lines, left y scale) and
limit dispersion slope (dashed lines, right y scale) at
l � 1.55 mm as a function of hole diameter d only, for
several pitches. The chosen parameter values for L and
d correspond to the small limit slope region. Inset, cross
section of the modeled MOF with three rings of holes (holes
are shown shaded), Nr � 3. L is the hole spacing and
dn is the hole diameter of the nth ring. The solid core
consists of one missing hole in the center of the structure.

Fig. 3. Waveguide dispersion DW , dispersion D, and
sign-changed material dispersion 2Dmat for three six-ring
MOF structures. The line style of a MOF structure is
identical for DW and D. L and the diameters are given in
micrometers. (a) L � 2.3, d � 0.7; (b) L � 2.45, d � 0.6;
(c) L � 2.3, d � 0.6.
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Fig. 4. Waveguide dispersion DW , dispersion D for the
MOF structures that we proposed, and sign-changed ma-
terial dispersion 2Dmat. Unless stated, the total number
of rings Nr in the MOF is three. The line style of a MOF
structure is identical for DW and D. L and the diame-
ters are given in micrometers. dn is the hole diameter of
the nth ring, and dn12n2 denotes the hole diameter of the
n1th to n2th rings. (1) L � 1.9, d1 � 0.559, d2 � 0.782,
d3 � 0.894; (2) L � 1.8, d1 � 0.529, d2 � 0.741, d3 � 0.847;
(3) L � 1.7, d1 � 0.5, d2 � 0.7, d3 � 0.8; (4) Nr � 4 7, L �

1.7, d1 � 0.5, d2 � 0.7, d3 7 � 0.8; (5) L � 1.65, d1 � 0.485,
d2 � 0.679, d3 � 0.776.

where Lref is the pitch of a reference lattice and fn
is the ratio dn�L. Using the above scaling law and a
rough optimization process on d2, d3, and L, we found
an ultraf lat dispersion over a long wavelength interval
(approximately �1.45, 1.65� mm) for d2 � 0.7 mm, d3 �

0.8 mm, and L � 1.7 mm [D�3� in Fig. 4]. It must be
pointed out that the MOF design can be started from
other values of d1: For example, with d1 � 0.6 mm
we found d2 � 0.8 mm, d3 � 1.0 mm, and L � 2.0 mm
(data not shown).

Using the scaling law [expression (1)], we can
easily derive other structures that have ultraf lat-
tened chromatic dispersion but near a different value
of D. Three examples of such structures, derived
from the reference configuration �d1 � 0.5 mm, d2 �

0.7 mm, d3 � 0.8 mm, L � 1.7 mm�, are given in Fig. 4
�L � 1.65 mm �D�5��, 1.8 mm �D�2��, 1.9 mm �D�1��	.
Note that varying the pitch too far results in struc-
tures that no longer exhibit ultraf lat dispersion; this
is so because of the finite length of the ultraf lat region
in the chosen reference MOF design (data not shown).

We now control losses by adding further rings of
holes with f ixed diameter 0.8 mm. As can be seen
from Fig. 4, adding rings 4–7 has almost no effect on
the dispersion properties of the MOF �D�4�� but results
in acceptably low values of geometric loss for tech-
nological applications: With Nr � 6, the losses are
below 10 dB km21, and with Nr � 7 the losses are be-
low 0.2 dB km21. For Nr � 6, the amplitude of disper-
sion variation is less than 3.0 3 1022 ps nm21 km21

in the wavelength interval [1.5; 1.6] mm. These de-
signs thus attain our goal of achieving ultraf lat dis-

persion combined with low geometric loss in a MOF
feasible by use of current fabrication technology. Note
that one can use designs in which the outer boundary
of the confining region is either hexagonal or circular.
For the well-conf ined modes that we deal with here
(Aeff � 10.5 mm2 for Nr � 6), this difference has no
practical effect on dispersion (data not shown). One
interesting consequence of using three different hole di-
ameters is that the possibility arises of having modes
higher than the fundamental confined between rings
of holes with different diameters. Indeed, the second
mode in the seven-ring structure of Fig. 4 is conf ined
between the first and second rings of holes and has
losses approximately ten thousand times larger than
that of the fundamental. This mode would not couple
readily to the fundamental mode in the design, because
mode energy is concentrated in different regions for the
two modes and the real parts of their effective indices
are quite different.

In conclusion, we have numerically demonstrated
that nearly zero or nonzero ultraf lattened chromatic
dispersion with low loss can be achieved by use of ei-
ther of two types of MOF design. The more complex
design, proposed in this Letter, which has three differ-
ent hole diameters, allows us to achieve low losses with
many fewer air holes than with the conventional de-
sign. The design principles introduced here, together
with the powerful control of dispersion given by the
MOF geometry, should facilitate effective chromatic
dispersion management over a wide spectral range in
optical f ibers.

This work benefited from travel support from the
French and Australian governments.
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Arguably, the most striking property of microstruc-
tured optical fibers (MOFs) is that they can be end-
lessly single mode.1 In conventional step-index fibers
there exist a finite number of modes that are strictly
guided, characterized by the fact that their propaga-
tion constants b are real. All other modes are leaky,
with propagation constants that have nonzero imagi-
nary parts. The number of guided modes increases
with decreasing wavelength, and it is only at wave-
lengths longer than the cutoff wavelength that the fi-
ber is single mode.2,3 In contrast, ideal (or infinite)
solid-core MOFs, which consist of single defects in in-
finite two-dimensional photonic crystals, can remain
single mode at all wavelengths if the holes are suffi-
ciently small.4,5 Those fibers are said to be endlessly
single mode.

Previous studies of the second mode cutoff in
MOFs have led to a so-called phase diagram that par-
titions the parameter space into three regions, de-
pending on whether the MOF is single mode, multi-
mode, or endlessly single mode. However, this phase
diagram was established solely for silica MOFs.4,6

Given that MOFs can be made from a variety of di-
electrics and that some of the most promising MOF
applications, notably nonlinear ones, rely on high-

refractive-index materials such as chalcogenides,7 it
is important to know whether high-index solid-core
MOFs can exhibit the endlessly single-mode property
within a realistic range of fiber parameters and
wavelengths. We numerically investigate the effect of
matrix refractive index nmat of the MOF’s matrix ma-
terial on the phase diagram by using the multipole

method.6,8 We accurately determine the critical rela-
tive hole size that delimits the endlessly single-mode
region, which is independent of nmat.

Our studies also highlight finite size effects, which
were ignored in previous studies and have an effect
on the precise value of the critical relative hole size
that delimits the endlessly single-mode region. Fi-
nally, using approximate scaling laws for binary step-
index structures, we derive a generalized phase dia-
gram that is valid for a large range of refractive-
index contrasts.

We consider solid-core MOFs consisting of a finite
number Nr of rings of triangularly arranged holes
with circular cross sections (diameter d, refractive in-
dex ni) in an infinite matrix (refractive index, nmat);
the core is a missing hole at the center. The center-
to-center distance between holes (the pitch) is de-
noted L and is fixed at a value of 2.3 mm, and the ef-
fective index of modes is defined as neff=b /k0, in
which k0=2p /l is the free-space wave number and l
denotes the wavelength. We study the second mode
cutoff of such MOFs to define their phase diagram in
parameter space sd /L ,l /Ld.

For such MOFs with finite Nr, the cutoff is not so
clearly defined as for infinite MOFs. Indeed, in that
case all modes are leaky; their propagation constants
have nonzero imaginary parts. For these fibers the
cutoff is a transition between two states of the same
mode, one localized in the core and the other extend-
ing into the cladding. This transition has been stud-
ied, e.g., in terms of the sudden expansion of the sec-
ond mode’s effective area5 or, equivalently, in terms of
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a qualitative change of behavior of losses as a func-
tion of wavelength.4 Here we use the latter definition
of the cutoff, relying on peaks of quantity Q, defined
here as

Q =
]

2flog Imsneffdg

]flog lg2
, s1d

in which Imsneffd is the imaginary part of neff. Quan-
tity Q is related to the curvature in a log–log plot of
the losses as a function of wavelength, and its peaks
are associated with qualitative changes in the nature
of the mode. For a detailed discussion of the meaning
of Q we refer the reader to Refs. 4, 6, 9, and 10. neff is
the effective index of the second mode and was com-
puted by the multipole method.6,8,11

First, we concentrate on MOFs with a high matrix
refractive index, nmat=2.5. Figure 1 shows Q as a
function of normalized wavelength l /L for various
diameter-to-pitch ratios; Nr=7. The minimum of
those curves precisely defines the normalized cutoff
wavelength sl /LdS.M..

4 Further, as the Q peaks reflect
the change of slope of Imsneffd, the larger and nar-
rower the peaks are, the sharper the transition be-
tween confined and unconfined modes is. Whereas in
the research reported in Ref. 4 the Q minima were
studied at fixed Nr, it appears that the behavior of
the Q curves depends on Nr, as shown in Figs. 2 and
3. Figure 2 shows Q as a function of the normalized
wavelength for two values of d /L , Nr ranging from 7
to 12, and nmat=2.5. For the same matrix index the
magnitude of the Q minima uQminu as a function of Nr

is shown in Fig. 3 for four d /L ratios.
Depending on the value of d /L, two different be-

haviors can be distinguished: for d /L ratios greater
than or equal to 0.425 the minimum of Q becomes
narrower (complete study not shown) and deeper
with increasing Nr. Figure 3 shows that, in that case,
uQminu diverges with Nr and, as can be seen from the
curve for d /L=0.43, the rate at which uQminu diverges
increases quickly with d /L. The divergence of uQminu
implies that the cutoff transition becomes sharper

with increasing numbers of rings, consistent with the
fact that the cutoff should be infinitely sharp for in-
finite Nr.

9 Consequently the second mode does un-
dergo a cutoff at finite wavelength for infinite MOFs
with d /L ù 0.425.

For d /L=0.420 and d /L ratios below this value,
however; the minimum of Q vanishes slowly with in-
creasing Nr. This behavior indicates that no transi-
tion should occur for the infinite MOF and therefore
that the infinite MOF is endlessly single mode for
d /L ø 0.420. The critical value sd /LdS.M. below
which the MOF is endlessly single mode must there-
fore lie in the interval [0.420, 0.425].

Second, we investigate the effect of nmat on the sec-
ond mode transition. We repeat the above analysis of
Q behavior for nmat=1.1 and nmat=1.444024 (Fig. 3).
In all cases sd /LdS.M. is strictly bounded by 0.420 and
0.425. Hence, from a numerical point of view,
sd /LdS.M. can depend only weakly on the matrix in-
dex; the theoretical aspects of this critical value are
briefly discussed at the end of this Letter. sd /LdS.M.

can be considered a critical geometrical parameter
associated with the second mode cutoff or similarly
with the endlessly single-mode behavior of MOFs.
Note that nmat=1.444024 was used in Ref. 4, in which
sd /LdS.M. was found to be 0.406. However, in that Let-
ter a different criterion to establish the endlessly

Fig. 1. Q as a function of normalized wavelength l /L for
eight d /L ratios for a seven-ring MOF made from a high—
index matrix snmat=2.5d with L=2.3 mm. Thinner curves
(left) are associated with the left-hand y scale (lowest d /L
and uQu values); the thicker curves use the right-hand y
scale.

Fig. 2. Q as a function of l /L for d /L=0.42 (thinner
curves) and for d /L=0.425 (thicker curves) for several val-
ues of Nr.

Fig. 3. uQminu as a function of Nr for three values of matrix
index nmat for several close d /L values.
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single-mode limit was used, based on a study at fixed
Nr. The fact that the Q minima disappear with in-
creasing Nr at values close to but greater than 0.406
had been overlooked.

Third, we sum all our numerical results in the
MOF parameter space sd /L ,l /Ld. Figure 4 shows a
phase diagram of the second mode [i.e., sl /LdS.M. as a
function of d /L] for the three matrix indices studied,
obtained for Nr=7, along with the extrapolated phase
diagram for the infinite MOF with nmat=2.5 that re-
sults from an extrapolation of the sl /LdS.M. data com-
puted for several values of Nr by use of a nonlinear
least-squares algorithm. Note that for values of d /L
close to sd /LdS.M. the cutoff curves for finite and infi-
nite Nr differ substantially. One must keep in mind
that sl /LdS.M. is defined by the Q minimum and not
directly by Imsneffd. The nontrivial behavior of
sl /LdS.M. with Nr should be studied by use of a
W-profile fiber model, for example.

Increasing the index contrast shifts the cutoff
curve toward longer wavelengths; however, the limit
of the endlessly single-mode regime is conserved.
Birks’s analysis of scaling laws of photonic states
with refractive-index contrast12 shows that if
l , L , nmat, or ni varies, photonic states change, such
that quantity n=2pLsnmat

2 −ni
2d1/2 /l remains invari-

ant within the scalar approximation: For two struc-
tures with fixed d /L but different nmat and ni (say,
nmat and ni and nmat8 and ni8, respectively), the cutoff
will occur at different wavelengths l and l8 to keep n
constant at a value of nS.M.. Following this argument,
we have

sl/LdS.M.8 = sl/LdS.M.Snmat8
2 − ni8

2

nmat
2 − ni

2 D1/2

. s2d

We can hence draw a unified phase diagram by using
quantity n instead of l /L (Fig. 4, lighter curves):
MOFs with n values that lie above the nS.M. curve are
multimode, whereas MOFs with n values below the
nS.M. curve are single mode. As can be seen from Fig.
4, the nS.M. curves for different nmat are surprisingly
consistent. (Keep in mind that the scaling laws used
are valid only within the scalar approximation.) Fur-
thermore, in the limit l→0, the scalar approxima-
tion applied to the MOF becomes exact, and Eq. (2) is
exactly verified. Consequently, the critical geometri-
cal ratio sl /LdS.M. associated with the limit case l

→0 is necessarily the same for all the indices studied
(see Refs. 1, 2, and 12 for the details of the scalar ap-
proximation).

In conclusion, we have explicitly shown that the ra-
tio sd /LdS.M. that delimits the endlessly single-mode
regime in solid-core MOFs is independent of the ma-
trix refractive index and can therefore be considered
a critical geometrical parameter for the second mode
cutoff. We observed that the differences between the
behavior of finite and infinite structures are more
pronounced near sd /LdS.M.. We have derived a gener-
alized phase diagram for solid-core MOFs. In particu-
lar, our results demonstrate that the endlessly
single-mode region is preserved for the promising
chalcogenide MOFs.
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The differential theory of diffraction by arbitrary cross-section cylindrical objects is developed for the most gen-
eral case of an incident field with a wave vector outside the cross-section plane of the object. The fast Fourier
factorization technique recently developed for studying gratings is generalized to anisotropic and/or inhomo-
geneous media described in cylindrical coordinates; thus the Maxwell equations are reduced to a first-order
differential set well suited for numerical computation. The resolution of the boundary-value problem, including

an adapted S-matrix propagation algorithm, is explained in detail for the case of an isotropic medium. Nu-
merical applications show the capabilities of the method for resolving complex diffraction problems. The
method and its numerical implementation are validated through comparisons with the well-established mul-
tipole method. © 2006 Optical Society of America

OCIS codes: 050.1960, 060.0060.

1. INTRODUCTION

Cylindrical devices commonly appear in diffraction and

propagation theory, and their interest has recently in-

creased with the advent of microstructured optical fibers

(MOFs).1 An efficient method called the multipole method

(MM) has already been developed to study devices com-

posed of cylindrical inclusions.1–3 Nevertheless, it has at

least two major limitations: All the inclusions must be in-

cluded in nonoverlapping circles and the refractive index

of the matrix containing the inclusions must be homoge-

neous. In addition, the reflection matrix relating the inci-

dent and the scattered field for each individual inclusion

must be obtained by other means in the case of a noncir-

cular inclusion or inhomogeneous circular inclusion. In

what follows, we present the application of the fast Fou-

rier factorization (FFF) method to diffraction theory. This

new method has none of the known limitations of the

MM. Briefly, the FFF method rewrites the Maxwell equa-

tions through the use of a Fourier series. Although an iso-

lated cylindrical object is a priori nonperiodic, it becomes

2� periodic with respect to the polar angle � when it is

described in cylindrical coordinates. This periodicity al-

lows us to describe both the electromagnetic field and the

diffracting object in terms of a Fourier series. As was pre-

viously done in grating theory,4 it is now possible to re-

duce the Maxwell equations to a first-order differential

set that must be numerically integrated. Of course the

numerical treatment requires truncating the Fourier se-

ries of the field, a process that has created great numeri-

cal problems for decades but recently received a solution

through what is now called the FFF method. In a recent

paper5 we proved that such a method was able to give fast

converging results when a cylindrical object was illumi-

nated under TM polarization. The aim of the present pa-

per is to extend the theory to the most general case in

which the diffraction device is illuminated with a field

propagating outside the cross-section plane of the device,

which leads to a full vectorial problem that does not re-

duce to the two classical TE and TM cases of polariza-

tions. Moreover, the propagation equations will be derived

in anisotropic media to open a way to resolve the diffrac-

tion problem of a wave by an arbitrary cylinder made of

an arbitrary (lossy or lossless) anisotropic medium. In

Sections 2 and 3 we present the FFF principles to obtain

the set of differential equations defined in the area where

the diffracting device locates. In Section 4 we discuss the

complete solution of the diffracting problem in the case of

an isotropic medium. In some cases, the diffracting object

is invariant by a rotation of angle T=2� /NT (NT is the

number of subperiods of the 2� range). In Section 5 the

numerical theory is adapted to take into account this sub-

periodicity on the T range of the polar angle coordinate �.

Finally, we validate the numerical implementation of our

method with the well-established MM (Refs. 2 and 3)

through several examples including the excitation of the

fundamental mode of a six-hole MOF; we also discuss

some aspects of the numerical efficiency and accuracy of

the FFF method.

2. PRESENTATION OF THE PROBLEM

We consider a cylindrical object described in both a Car-

tesian coordinate system Oxyz with �ex ,ey ,ez� unit vec-

tors and in cylindrical coordinates r ,� ,z with �er ,e� ,ez� as
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unit vectors. Its surface �S� is defined by an arbitrary di-

rectrix located in the cross-section plane �Oxy� containing

the origin as shown in Fig. 1 or outside the origin (see Fig.

2). Generatrices are straight lines parallel to the z axis.

The equation of the directrix is f�r ,��=0 or r=g���, in

which f and g are given functions. The surface �S� divides

the space into two regions. The first one, the internal re-

gion denoted int, is contained inside the surface and is

filled with a linear, inhomogeneous and anisotropic me-

dium, dielectric or conducting (nonmagnetic), and its com-

plex permittivity tensor is denoted �int
��r ,��. The second

region, denoted ext, is the outside region and is filled with

a homogeneous exterior medium, and its real permittivity

is denoted �ext. The present method requires that we in-

troduce three areas defined by two circular cylinders with

directrix Cmin and Cmax. The directrix Cmin is the in-

scribed circle of the directrix of surface �S�, and Cmax is

the circumscribed circle (see Fig. 1). The area included be-

tween both circular cylinders is called the modulated

area. Inside this area the permittivity is described by a

2� periodic with respect to � tensor ���r ,��. Unless defined

otherwise, both lower-case and capital letters in bold rep-

resent vectors.

An incident plane wave with wave vector kext with

transverse component kt,ext and z component �0 falls

on the device (Fig. 3). We introduce two angles:

�inc= �−ex ,kt,ext� and �= �kt,ext ,kext���−� /2 ,� /2�. We as-

sume that the plane-wave components have a harmonic

exp�−i�t� time dependence. Thus the incident vector field

of E and H reads

�
E�inc��r,�,z,t� = Ae exp�i��0z − �t��

� exp�ikt,extr cos�� − �inc − ���

H�inc��r,�,z,t� = Ah exp�i��0z − �t��

� exp�ikt,extr cos�� − �inc − ���
� , �1�

in which �=2� /�0
�	0�0, �0=−kext sin���, kt,ext

=�kext
2−�0

2 with kext= �2� /�0���ext /�0 where �0 is the

wavelength in vacuum. Moreover, the polarization of the

incident electric field is defined by the azimuthal angle 


contained in the plane perpendicular to the wave vector

kext and with basic vectors �p1 ,p2� [p1 is chosen to be in-

cluded in the plane �kext ,ez�, see Fig. 4]. The relation be-

tween the E�inc� amplitude noted as Ae and the H�inc� am-

plitude noted as Ah with the incident wave vector reads

thanks to the Maxwell equations in homogeneous regions:

�
Ae = �cos�
�p1 + sin�
�p2��E�inc��

Ah = −
1

Z

kext

�kext�
� Ae � with Z =

1

next

�	0

�0

,

�2�

in which �E�inc�� and �kext� are the norms of their respective

vectors E�inc� and kext. If the permittivity is a complex

number, the cut of the square root next=��ext is then cho-

sen as the second bisector as explained in Ref. 6. The total

field has the same time dependence as the incident wave,

and the invariance of the device with respect to z leads to

an exp�i�0z� dependence. Moreover, the cylindrical coordi-

Fig. 1. Cross section of an arbitrary shaped cylindrical object
filled with an anisotropic and inhomogeneous media and de-

scribed by a directrix r=g��� containing the origin in the Oxy

plane and generatrices parallel to the z axis.

Fig. 2. Same kind of arbitrary cross section as in Fig. 1 with the
origin outside the directrix.

Fig. 3. Incident wave vector in the exterior homogeneous region
and notations.

Fig. 4. Definitions and notations for the azimuthal angle 
 of

the incident electric field (p1 belongs to the plane defined by ez

and kext).
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nate system naturally implies a 2� periodicity with re-

spect to �. In view of a numerical implementation of the

theory, an electromagnetic and geometric quantity

u�r ,� ,z , t� will be represented by its Fourier series trun-

cated to the Nth order:

u�r,�,z,t� = exp�i��0z − �t�� 	
n=−N

+N

un�r�exp�in�� with un�r�

=
1

2�



0

2�

u�r,��exp�− in��d�. �3�

3. FAST FOURIER FACTORIZATION
METHOD IN CYLINDRICAL COORDINATES
EXTENDED TO A CONICAL MOUNTING

The aim of this work is to establish, in cylindrical coordi-

nates, a set of equations satisfied by the electromagnetic

field suitable for numerical computations. We make use of

the recent progress in grating theory published under the

name of fast Fourier factorization (FFF), but the case of

cylindrical coordinates is not treated in the book describ-

ing the method.4 The FFF method starts from the classi-

cal differential method7 with efficient improvements in

the factorizations rule concerning Fourier developments.

In fact, we have to consider new factorization rules that

take into account the Fourier truncation of developments

and the discontinuities of any optogeometric quantities

(across the diffracting surface). One of the key steps of the

FFF method is to find the correct formulation in the Fou-

rier space of the product between �� and E in the constitu-

tive relation that must be injected into the Maxwell equa-

tions. Doing so, the Maxwell equations are restated in the

Fourier space to obtain a set of coupled linear ordinary

differential equations.

A. Formulation of the Linear Relation between E and D
in a Truncated Fourier Space

1. Factorization Rules
As has been already treated in the paper concerning TM

polarization,5 the FFF method consists in finding the best

formulation in a truncated Fourier space of the product

between the tensor ���r ,�� and E in the modulated region

when we want to calculate D given by

D = ���r,��E. �4�

In fact, the function ���r ,�� is discontinuous across the sur-

face �S�. The mathematical basis of the FFF method was

established by Li8 with factorization rules that allow one

to obtain a solution of this problem. The first rule states

that the Fourier components h̃n of the product h̃�x� of two

periodic, piecewise-smooth bounded functions f̃�x� and

g̃�x� that are not discontinuous at the same value of x are

given by Laurent’s rule:

h̃n = �f̃g̃�n = 	
m=−N

+N

f̃n−mg̃m. �5�

To simplify the equations that follow, we introduce the

Toeplitz matrix �f̃� defined by ��f̃��n,m= f̃n−m and the col-

umn vector �g̃� with elements g̃m. Thus the last equation

reads in matrix notation:

�f̃g̃� = �f̃��g̃�. �6�

The second rule given by Li8 states that a product of two

piecewise-smooth, bounded periodic functions that have

only pairwise-complementary jump discontinuities (i.e.,

that have a continuous product) cannot be factorized by

Laurent’s rule, but it can be factorized by the inverse rule:

�f̃g̃�n = 	
m=−N

+N �1

f̃
�−1�

n,m

g̃m. �7�

Or in matrix notation,

�f̃g̃� =�1

f̃
�−1

�g̃�. �8�

Finally, the most general situation concerns a product of

two piecewise-smooth, bounded periodic functions that

have discontinuities at the same value of x with non-

complementary jump discontinuities. Such a product can

be correctly factorized neither by Laurent’s rule nor by

the inverse rule. This last case occurs in Eq. (4).

2. Intermediate Notations
The basic idea of the FFF method is to use the first two

rules to write a new formulation of Eq. (4), thanks to a

suitable continuation of the concept of normal vector. We

consider at each point of the surface �S� the normal vector

of �S� noted as N whose components are Nr ,N� ,Nz, and

two orthogonal tangential vectors of �S� denoted T1 with

components �T1r ,T1� ,T1z� and T2 with components

�T2r ,T2� ,T2z� such that N=T2�T1 (see Fig. 5). The pro-

jections of the fields E and D on T1, N, and T2 define

three field components continuous across the surface

�S� : ET1
, DN, and ET2

; they permit us to create a column

denoted F� respectively made with these components,

whose size is 3�2N+1�. If we define a generalization of the

scalar product applied to a vector ṽ and a matrix P by

Fig. 5. Tangential and normal vectors of a cylindrical object.
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v · P = �
vr

v�

vz

� · �
Prr Pr� Prz

P�r P�� P�z

Pzr Pz� Pzz

� = �
vrPrr + v�P�r + vzPzr

vrPr� + v�P�� + vzPz�

vrPrz + v�P�z + vzPzz

� ,

�9�

we obtain

F� = O�E �10�

with

O� = �
T1r T1� T1z

�N · ���r �N · ���� �N · ���z

T2r T2� T2z

� . �11�

Thus for the electric field we can write E=C�F� with C�

=O�
−1. Tedious algebraic calculations lead to

C� =
1

N · �� · N�
��N · ��� Ù T2�r Nr − ��N · ��� Ù T1�r

��N · ��� Ù T2�� N� − ��N · ��� Ù T1��

��N · ��� Ù T2�z Nz − ��N · ��� Ù T1�z

� .

�12�

Then D=��E=��C�F�, and finally,

D = ��C�O�E. �13�

3. New Relation between �D� and �E�
We will write this last equation in the truncated Fourier

space using the factorization rules mentioned above.

Since ��C� is discontinuous and F� is continuous, we apply

Laurent’s rule for these two factors. Introducing the col-

umn �D� made of three blocks �Dr�, �D��, and �Dz�, each

block containing the Fourier coefficients of the corre-

sponding vector component, we write �D�= ���C���F��. Then

the inverse rule is used since F�=O�E is continuous while

O� and E are discontinuous: �O�E�= �O�
−1�−1�E�

= �C��−1�E�. Finally, we find

�D� = Q��r��E�, �14�

with

Q��r� = ���C���C��
−1. �15�

B. Maxwell Equations in a Truncated Fourier
Space
Differentiating the series in Eq. (3) with respect to � re-

sults in multiplying the nth term by “in”. Thus introduc-

ing a diagonal matrix � such that ���nm=n�nm, the deri-

vation reads in matrix notation as

��U�

��
= i��U�. �16�

According to the z and t dependence of the total fields, the

Maxwell equations written in the cylindrical coordinate

system become

1

r
��Ez� − �0�E�� − ��Br� = 0, �17�

i�0�Er� −
d�Ez�

dr
− i��B�� = 0, �18�

1

r
�E�� + r

d�E��

dr
− i��Er�� − i��Bz� = 0, �19�

1

r
��Hz� − �0�H�� + ��Dr� = 0, �20�

i�0�Hr� −
d�Hz�

dr
+ i��D�� = 0, �21�

1

r
�H�� + r

d�H��

dr
− i��Hr�� + i��Dz� = 0. �22�

From Eq. (14) we obtain the expression of each block of

�D� in the cylindrical coordinate system in terms of the E

blocks. We introduce the following notation for the Q�

matrix:

Q� = �
Q�,rr Q�,r� Q�,rz

Q�,�r Q�,�� Q�,�z

Q�,zr Q�,z� Q�,zz

� . �23�

Equation (20) leads to

�Er�r�� = Q�,rr
−1�0

�
�H��r�� −

�

r�
�Hz�r�� − Q�,r��E��r��

− Q�,rz�Ez�r��� , �24�

and Eq. (17) becomes

�Hr�r�� =
1

	0�
�

r
�Ez�r�� − �0�E��r��� . �25�

These two last equations and Eq. (23) permit us to rewrite

Eqs. (18), (19), (21), and (22). Finally, we obtain a set of

first-order differential equations written in a four-block

matrix form:

d

dr�
�E��

�Ez�

�H��

�Hz�
� = iM�r��

�E��

�Ez�

�H��

�Hz�
� , �26�

with
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M�r� = �
−

1

r
�Q�,rr

−1Q�,r� +
i

r
Id −

1

r
�Q�,rr

−1Q�,rz

�0

�r
�Q�,rr

−1 �	0Id −
�

�r2
Q�,rr

−1�

− �0Q�,rr
−1Q�,r� − �0Q�,rr

−1Q�,rz

�0
2

�
Q�,rr

−1 − �	0Id −
�0

r�
Q�,rr

−1�

��Q�,zrQ�,rr
−1Q�,r� − Q�,z�� −

�0

	0�r
�

�2

�	0r2
+ ��Q�,zrQ�,rr

−1Q�,rz − Q�,zz�
i

r
Id − �0Q�,zrQ�,rr

−1 Q�,zrQ�,rr
−1

�

r

��Q�,�� − Q�,�rQ�,rr
−1Q�,r�� −

�0
2

	0�
Id

�0

	0�r
� + ��Q�,�z − Q�,�rQ�,rr

−1Q�,rz� Q�,�rQ�,rr
−1�0 − Q�,�rQ�,rr

−1
�

r

� ,

�27�

where Id is the identity matrix. It is important to notice

that the M�r� matrix depends only on the r coordinate and

that its size is 4�2N+1��4�2N+1�. In brief, Eq. (26) is a

new formulation of the Maxwell equations in cylindrical

coordinates in a truncated Fourier space, which is valid in

any lossless or lossy, anisotropic and/or inhomogeneous

medium.

4. RESOLUTION OF THE DIFFRACTION
PROBLEM IN THE CASE OF AN ISOTROPIC
AND HOMOGENEOUS MEDIUM

The resolution of the diffraction problem is much simpler

if the diffracting object is made of an isotropic and homo-

geneous material, since the field in such a region can then

be expressed in terms of Bessel functions. Thus, from now

on, we consider that the region (int) is filled with an iso-

tropic and homogeneous medium. Its permittivity tensor

is reduced to a complex number �int (see Fig. 1).

A. Linear Relation between E and D in the Case of an
Isotropic Medium
In the present case, the tensor �� in Eq. (4) (defined in the

modulated area) becomes a function ��r ,��. So we have

N ·�� ·N=��r ,���N ·Id� ·N=��r ,��. Moreover, �N ·���ÙT2

=��r ,��NÙT2=��r ,��T1 and �N ·���ÙT1=��r ,��NÙT1=

−��r ,��T2. Thus the term ��C� reduces to

�
�N� Nr 0

− �Nr N� 0

0 0 1
� .

Considering f̃�x� and g̃�x� as 2� periodic functions discon-

tinuous at different values of x and using the first factor-

ization rule, we obtain the following results: �f̃g̃�= �f̃��g̃�.
By the use of this property into the Toeplitz matrices �C��
and ��C�� in Eq. (14), we obtain the same formula as in

the work on the TM case5:

Q�

= �
����N�

2� + �1

�
�−1

�Nr
2� − ��� − �1

�
�−1��NrN�� 0

− ��� − �1

�
�−1��NrN�� ����Nr

2� + �1

�
�−1

�N�
2� 0

0 0 ���
� .

�28�

Since �D� and �E� have dimension 3�2N+1�, the size of

this matrix is 3�2N+1��3�2N+1�. Moreover, we notice

that the matrix Q� contains the Toeplitz matrices �Nr
2�,

�N�
2�, and �NrN��. But Nr and N� are defined only on the

surface �S�; that is why we need to extend their definition

inside the whole modulated area. The extension can be

done in different ways. If the surface is well defined along

the interval �0,2�� of � (g is continuous on �0,2��), the

unit vector normal to the surface �S� can read as

N�r = g���,�� = � grad�f�

�grad�f���
r=g���

with f�r,�� = r − g���

= 0. �29�

From its definition, N depends only on � and is defined on

�S� only. But we extend its definition to the entire modu-

lated area �RminrRmax� by introducing a new vector

continuous across the diffracting surface �S� and defined

by

"r � �Rmin,Rmax�, N�r,�� = � grad�f�

�grad�f���
r=g���

. �30�

A second way to extend the normal vector consists in con-

sidering only the value of N at the intersection points be-

tween the surface �S� and the circle in the cross section of

radius r, and taking an arbitrary vector elsewhere, pro-

viding that we avoid discontinuities and strong variations

to avoid the Gibbs phenomenon. The main disadvantage

of the second method is the longer needed computation

time related to the fact that the normal vector now de-

pends on r and �, which requires computing the Fourier

coefficients of its three components at any integration
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step that will occur in the numerical resolution of the

boundary-value problem.

B. Field Expressions in the Homogeneous Regions
According to the r dependence of the M�r� matrix, no ex-

plicit expression of the field in the modulated area can be

found. On the other hand, the Maxwell equations in the

homogeneous regions (j=int or ext) permit us to obtain a

set of independent second-order differential equations

governing the Fourier coefficients of the z component of

the magnetic and electric field Gz,n depending on kt,jr:

�kt,jr�2
d2Gz,n

d�kt,jr�2
+ kt,jr

dGz,n

d�kt,jr�
+ ��kt,jr�2 − n2�Gz,n = 0

with Gz,n � �Ez,n,Hz,n�, �31�

the solutions of which are

Hz,n = Ah,n
�j� Jn�kt,jr� + Bh,n

�j� Hn
+�kt,jr�,

Ez,n = Ae,n
�j� Jn�kt,jr� + Be,n

�j� Hn
+�kt,jr�. �32�

with kt,j
2=kj

2−�0
2 and kj

2=�2	0�j. The others compo-

nents of the field are given by

Hr =
1

kt,j
2i�0

�Hz

�r
−

i��j

r

�Ez

��
� ,

H� =
1

kt,j
2 i�0

r

�Hz

��

+ i��j

�Ez

�r
� ,

Er =
1

kt,j
2i�0

�Ez

�r
+

i�	0

r

�Hz

��
� ,

E� =
1

kt,j
2 i�0

r

�Ez

��

− i�	0

�Hz

�r
� . �33�

Equations (32) and (33), which allow us to find the com-

ponents of the field developments, can be written in a ma-

trix form. Thus we define a matrix ��j��r� made of 4�4

blocks, each block size being �2N+1�. This matrix links

the vector �F�r�� containing the components of succes-

sively E�, Ez, H�, and Hz with the vector �V�j��r�� contain-

ing the components Ae,n
�j� Jn�kt,jr�, Ah,n

�j� Jn�kt,jr�,
Be,n

�j� Hn
+�kt,jr�, and Bh,n

�j� Hn
+�kt,jr� by

�F�r�� = ��j��r��V�j��r�� with ��j��r�

= �
1

r
p�j� qe

�j�
1

r
p�j� qh

�j�

Id 0 Id 0

−
�j

	0

qe
�j�

1

r
p�j� −

�j

	0

qh
�j�

1

r
p�j�

0 Id 0 Id

� , �34�

in which

�p�j��nm = −
�0

kt,j
2
n�nm, �35�

�qe
�j��nm = −

i�	0

kt,j
2 n

r
− kt,j

Jn+1�kt,jr�

Jn�kt,jr� ��nm, �36�

�qh
�j��nm = −

i�	0

kt,j
2 n

r
− kt,j

Hn+1
+ �kt,jr�

Hn
+�kt,jr� ��nm. �37�

We notice that the size of vectors �F�r�� and �V�j��r�� is

4�2N+1�.

C. Integration of the Differential Set with the S-matrix
Propagation Algorithm
A basic integration with a shooting method through the

modulus area gives the transmission matrix T of the dif-

fracting device. However, the T matrix may be ill-

conditioned because of numerical contaminations. Impor-

tant index gap or strong growth of the function f�r ,��
increases such numerical contaminations. To improve the

convergence of the results, the S-matrix propagation al-

gorithm is used.4,9 In this subsection, this algorithm is

presented in a matrix formulation. The modulated area is

divided into L slices of which the circular boundary cylin-

ders have radius rs, s� �1,L+1� (r1=Rmin and rL+1=Rmax).

We introduce a infinitely thin homogeneous layer with a

permittivity of �ext between each slice except at Rmin (see

Fig. 6). The resolution of the diffraction problem uses a

shooting method that consists of turning the boundary-

value problem into an initial-value problem. At the sth

slice, we take 4�2N+1� independent initial column vectors

noted as �Vp� : ��Vp��i=�pi with i� �1,4�2N+1��. In what

follows, the sign Ù will denote a matrix, used in the inte-

gration process, built from a list of column vectors. These

columns form the identity matrix

V̂�rs� = �. . .,�Vp�, . . . � = Id, �38�

and the corresponding fields read F̂�rs�=��ext��rs�Id

=��ext��rs� at rs [if s=1 we take ��int��r1�]. The matrix F̂�rs�

Fig. 6. Notations of the splitting of the modulated area for the

S-propagation algorithm (the coefficients Af,n
�s� and Bf,n

�s� with f=e or

h are amplitudes of the field in the infinite thin homogeneous

layer at r=rs).

Boyer et al. Vol. 23, No. 5 /May 2006/J. Opt. Soc. Am. A 1151



Diffraction theory : Application of the Fast Fourier Factor ization method to cylindrical devices . . . 149

contains the column vectors ��F�rs���i with i� �1,4�2N

+1��, used as initial values of the field, and we integrate

the differential set of Eq. (26) using a suitable algorithm

(combining Runge–Kutta and Adams–Moulton algo-

rithms). Compared with Ref. 3, the notations of the ��j�

matrix are changed [see Eqs. (31) and (42) in Ref. 3]: The

��j� matrices are normalized by the Bessel and the Han-

kel functions so as to inject well-conditioned matrices as

an initial value in the integration process. This new nota-

tion induces that the vector �V�j�� contains the Bessel and

the Hankel functions. At the end of the integration, the

result is a matrix noted as F̂integ�rs+1� giving the field at

rs+1, from which we derived from Eq. (34) the matrix

V̂�rs+1� = ���ext��rs+1��−1F̂integ�rs+1�;

using Eq. (38), we obtain

V̂�rs+1� = ���ext��rs+1��−1F̂integ�rs+1�V̂�rs�.

This last equation shows that the transmission matrix

T�s� that links the coefficients of the developments of the

field at rs to the coefficients of the development of the field

at rs+1 is given by

T�s� = ���ext��rs+1��−1F̂integ�rs+1�. �39�

The integration through each slice provides a T�s� matrix

that links the field at rs+1 to the field at rs. From this ma-

trix, we deduce a S�s� matrix that links the fields at rs and

r1, defined by

"s � �1,L + 1�, �
]

Be,n
�s� Hn

+�kt,extrs�

]

Bh,n
�s� Hn

+�kt,extrs�

]

Ae,n
�1�Jn�kt,intr1�

]

Ah,n
�1� Jn�kt,intr1�

]

�
=�S11

�s� S12
�s�

S21
�s� S22

�s���
]

Be,n
�1�Hn

+�kt,intr1�

]

Bh,n
�1� Hn

+�kt,intr1�

]

Ae,n
�s� Jn�kt,extrs�

]

Ah,n
�s� Jn�kt,extrs�

]

� . �40�

Here the index �s� of the amplitudes Ae,n
�s� , Ah,n

�s� , Be,n
�s� , and

Bh,n
�s� can be replaced by (int) when s=1 and (ext) when s

=L+1. For the particular case of s=1, the S�s� matrix be-

comes the identical matrix and kt,ext becomes equal to

kt,int. We have checked that all blocks of this matrix are

well conditioned (see also Ref. 4). Briefly, the T�s� matrix

links the fields at layer �s� and the fields at layer �s+1�
while the S�s� matrix links the scattered fields and the in-

cident fields. The S�s� matrix blocks of the �s+1�th inter-

face are expressed according to those of the sth interface

and to the T�s� matrix blocks Tmn
�s� of the sth slice:

S22
�s+1� = S22

�s��T11
�s� + T12

�s�S12
�s��−1,

S12
�s+1� = �T21

�s� + T22
�s�S12

�s���T11
�s� + T12

�s�S12
�s��−1,

S21
�s+1� = S21

�s� − S22
�s+1�T12

�s�S11
�s�,

S11
�s+1� = T22

�s�S11
�s� − S12

�s+1�T12
�s�S11

�s�. �41�

At the end of the integration across the modulated area,

we obtain the S matrix of the whole scattering device,

which depends only on the surface �S� and on the optical

parameters of the media. This matrix links the diffracted

field at Rmax and Rmin to the incident field at Rmax and

Rmin. In fact, expressing the exponential function in Eq.

(1) in terms of Bessel functions,10 the incident field can be

defined in the form

�Hz
�inc� = exp�i�0z�	

n−�

+�

Ah,z exp�− in�inc�i
nJn�kt,extr�exp�in��

Ez
�inc� = exp�i�0z�	

n−�

+�

Ae,z exp�− in�inc�i
nJn�kt,extr�exp�in���.

�42�

Inside the internal region containing the origin of coordi-

nates, we must state Be,n
�int�=Bh,n

�int�=0 "n to avoid a diver-

gence of the field �Hn
+�0�→�"n�. This condition allows us

to derive through Eq. (40)

�
]

Ae,n
�int�

]

Ah,n
�int�

]

� = S22�
]

Ae,zi
n exp�− in�inc�

]

Ah,zi
n exp�− in�inc�

]

� ,

�
]

Be,n
�ext�

]

Bh,n
�ext�

]

� = S12�
]

Ae,zi
n exp�− in�inc�

]

Ah,zi
n exp�− in�inc�

]

� . �43�

5. NUMERICAL APPLICATION ON
PARTICULAR CASES

A. First Validation Study
The present theory has been implemented using the

FORTRAN programming language. It is worth noticing that

the results of the TM and TE polarization studied
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previously5 are associated with the particular case of

conical diffraction with �0=0. In this case, the current nu-

merical implementation written for conical diffraction

gives the same results as the ones computed previously in

Ref. 5. To validate and illustrate in more detail the FFF

method applied to cylindrical coordinates, we first study

the simple case of one circular cylinder centered outside

the origin with a radius R and the center with �R0 ,�0� po-

lar coordinates (see Fig. 7). The r coordinate defined on

the circle and related to the maximal angle �m defined is

noted as rm=�R0
2−R2. On the � range where the circle is

defined in the cross section ���0−�m ,�0+�m��, the diffract-

ing surface directrix equation is given by

r��� = R0 cos��� ± �R2 − R0
2 sin2���,

��r� = cos−1 r2 + r0
2 − R2

2r0r
� , �44�

where the � sign is related to r� �R0−R ,rm� and the �

sign is related to r� �rm ,R0+R�. In the modulated area,

the permittivity is described by a step function ��r ,�� with

respect to �; thus obtaining its Fourier development and

the Toeplitz matrix ��� remains easy. The N���� function is

given by

N���� =
r0

R
sin�� − �0�. �45�

We mention that the r component of the surface’s normal

vector is deduced by Nr= ±�1−N�
2. Outside ��0−�m ,�0

+�m� we could state that the N�
2 function is extended to

unity. In this case, the N�
2, Nr

2, and NrN� functions would

have the advantages of the continuity and of the r inde-

pendency. Since these functions would be r independent,

their Toeplitz matrices would be calculated once before

the integration process. However, it is interesting to point

out that, along a circle with radius r included in the

modulated area, the N�
2�r ,�� is defined only by one or two

points with the same �N�
2� value. Then we have chosen a

straight extension of a N�
2�r ,�� function with a constant

value of N�
2 evaluated at ��r�. The main advantage of

such an extension is the simplicity of the calculation of its

developments: �N�
2�0=N�

2���r�� and �N�
2�n=0, "n�0. On

the other hand, the NrN��r ,�� function becomes discon-

tinuous, which leaves the determination of its Fourier co-

efficients easy but increases the Gibbs phenomena. The

numerical results show that the two extensions lead to

similar convergence when the order of the Fourier devel-

opments is increased.

The differential cross section (DCS) that is determined

with the asymptotic form of the Hankel functions of the

diffracted field for r→� is given by

���� = 2�
k0

2

kt,ext
2��� 2

�kt,ext
	

n=−�

+�

�− i�nBe,n
�ext�ein��2

+
	0

�ext

�� 2

�kt,ext
	

n=−�

+�

�− i�nBh,n
�ext�ein��2� . �46�

To validate our theory and its numerical implementation,

we compare the FFF method results with the ones ob-

tained with the MM.1,3 We study the scattering by a

single cylinder (see Fig. 7) and compute the DCS with the

two methods. Figure 8 shows the results of the DCS for

�0=1 	m and �0=0.5 	m with a logarithmic scale for the

Y axis; as can be seen, the FFF method results agree

Fig. 7. Cross section of a circular cylinder centered outside the

origin and filled with isotropic and homogeneous media with R

=1 	m, R0=2 	m, �0=0°, nint=1.6+0.2i, and next=1, and
notations.

Fig. 8. DCS (�=0° to 180°) for the circular cylinder in Fig. 7

with �inc=0°, �=30°, 
=0°, and N=50; comparison of the FFF

method and MM for �0=1 	m and �0=0.5 	m.

Fig. 9. Cross section of two identical circular cylinders on the X

axis centered outside the origin with d=1 	m, �=1.5 	m, nint

=1.4, and next=1.
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fairly well with the MM ones. Then we consider the DCS

of two identical circular cylinders located on the X axis as

shown in Fig. 9; we obtain the results shown in Fig. 10,

and again the agreement between the two methods is ex-

cellent.

B. Numerical Efficiency and Accuracy of the Fast
Fourier Factorization Method
In this subsection we discuss in more detail the numerical

efficiency of the FFF method. For the structures already

studied (Figs. 7 and 9), the single-cylinder case is in fact

more difficult to model than the two-cylinder case. Conse-

quently, we focus on this demanding structure for our con-

vergence tests. In Fig. 11 we show the DCS of the single

cylinder for �=30° versus the development order N for

several values of the number of S-algorithm slices. We

give both the classical differential method7 and the FFF

method results. We clearly see that the FFF method is

more accurate than the classical differential method. For

this angle of 30° and for both methods, we also see that an

increase of the number of slices in the S algorithm im-

proves the results. In Fig. 12 we give the same study but

for �=150°. Once again, the FFF method converges more

quickly than the classical method. Note that, as for �

=30°, the possible crossings between the line correspond-

ing to the value computed with the MM and the conver-

gence curves for small N values are not meaningful. Only

the global behavior of these convergence curves are use-

ful. To avoid such putative crossings in our convergence

study, we give in Fig. 13 the average relative errors be-

tween the computed DCS values and the MM one for all

the angles in the range [0°, 360°]. The improvement

brought by the FFF method is evident (note the log scale

on the Y axis). We finally obtain a relative difference of

2.10−4 between the FFF method results and the MM ones

for N=140 and L=55. The results obtained with the FFF

method are less accurate than the ones obtained with the

MM for the different examples of DCS shown in Figs. 11

and 12. Nevertheless, the relative discrepancies between

the two methods are fully acceptable. One can ask why

such differences can still be observed whereas both the

FFF method and the MM are rigorous methods, in which

the unique approximations are the truncations of the

used series. For the FFF method, we need to truncate the

Fourier series of the electromagnetic fields (four compo-

nents are needed to describe them in a conical mounting)

and the ones of the permittivity of the diffracting device.

In the case of the MM, we have to truncate only the

Fig. 10. DCS (�=0° to 360°) for the two identical circular cylin-

ders on the X axis shown in Fig. 9 with �0=2 	m, �inc=45°, �

=30°, 
=0°, and N=60; comparison between the FFF method
and the MM.

Fig. 11. Convergence test according to the order of the trun-

cated Fourier series �N� of the point at 30° in the DCS of the FFF
method (FFFM) (illustrated by Fig. 8) and of the classical differ-

ential method with �0=1 	m and with different values of L

(number of slices for the S algorithm) compared with the MM
value.

Fig. 12. Convergence test according to the order of the trun-

cated Fourier series �N� of the point at 150° in the DCS of the
FFF method (FFFM) (illustrated by Fig. 8) and of the classical

differential method with �0=1 	m and with different values of L

(number of slices for the S algorithm) compared with the MM
value.

Fig. 13. Average relative error between the DCS of the FFF
method (FFFM) (illustrated by Fig. 8) and of the classical differ-
ential method and the DCS of the MM according to the order of

the truncated Fourier series �N� with �0=1 	m and with differ-

ent values of L (number of slices for the S algorithm).
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Fourier–Bessel series of two field components (Ez and Hz

are needed in conical mounting) since any series are

needed of the permittivity. There are at least two other

reasons explaining the better accuracy of the MM for the

examples shown here. First, for homogeneous and circu-

lar inclusions, the reflection matrix relating the incident

and the scattered field in the MM are known analytically.

On the contrary, in the framework of the FFF, the inclu-

sions are described through the permittivity tensor ��

(more precisely by its Fourier components) in the modu-

lated area. Second, there is a crucial difference between

the two methods: for the MM no numerical integration is

necessary, while resolution such as the one associated

with Eq. (26) of the FFF method requires such an integra-

tion; only analytical changes of basis using Graf ’s

theorem2,10 are used for the rewriting of the Fourier–

Bessel series, which lead to an explicit linear problem.

All these reasons also explain why the MM is much

faster than the FFF method for the homogeneous and cir-

cular examples treated in this study, even if all the nu-

merical computations can still be achieved on a single PC.

It is worth considering how the MM accuracy evolves

when noncircular inclusions are considered, and hence

when a numerical integration is required. The results

given in Ref. 11 concerning homogeneous and elliptical in-

clusions can give us a first evaluation since a numerical

integration is required to compute the reflection matrix of

the ellipses. The final results obtained by the MM lose ap-

proximately three significant digits when these noncircu-

lar inclusions are studied. We do not observe such wors-

ening of the accuracy within the FFF method when

similar ellipses are considered instead of circular inclu-

sions since the circles are not treated differently than the

ellipses.

To conclude this subsection, we remind the reader that

circular and homogeneous inclusions are a special case in

which the Multipole Method is certainly the best possible

numerical method since several steps are done analyti-

cally. The purpose of the FFF method is not to study such

simple, but more complicated structures; a trade-off is ob-

tained between the accuracy speed and the generality of

the studied structures.

C. Devices with Subperiodicity According to �

As with MOFs, any device may present a cross section

with a subperiodicity according to �. This property can be

taken into account in the integration process to reduce

the computation time. Let us assume that the device pre-

sents a subperiod T such that NTT=2� where NT is the

number of periodicity. Thus the spectra of the functions

��r ,�� and N�
2�r ,�� are wider than those obtained without

subperiodicity. More precisely, we consider a function f̃���
(�, N�

2 or NrN�) subperiodic with period T. The Fourier co-

efficients of f̃ on the 2� range f̃n �"n�N� and the Fourier

coefficients of f̃ on the T range f̃n� �"n�N� are linked by

the following relations: if n=kNT �"k�N�, then f̃n= f̃k� and

f̃n=0 otherwise. Consequently, the Toeplitz matrix of the

function f̃ is made of nonnull diagonals regularly sepa-

rated by NT−1 null diagonals. For instance, if N=4 and

NT=3, the Toeplitz matrix of the function f̃ is

�f̃� =�
f̃0�

0 0 f̃1�
0 0 f̃2�

0 0

0 f̃0�
0 0 f̃1�

0 0 f̃2�
0

0 0 f̃0�
0 0 f̃1�

0 0 f̃2�

f̃−1� 0 0 f̃0�
0 0 f̃1�

0 0

0 f̃−1� 0 0 f̃0�
0 0 f̃1�

0

0 0 f̃−1� 0 0 f̃0�
0 0 f̃1�

f̃−2� 0 0 f̃−1� 0 0 f̃0�
0 0

0 f̃−2� 0 0 f̃−1� 0 0 f̃0�
0

0 0 f̃−2� 0 0 f̃−1� 0 0 f̃0�

� . �47�

We notice that the matrix �f̃� is block diagonalizable.

This matrix structure is preserved when such a matrix is

reversed or when two such matrices are multiplied; that

is why every block of the integration matrix M�r� given by

Eq. (26) has this matrix structure. Finally, we conclude

that Eq. (26) is split into NT independent differential sets

with matrix sizes equal to 4�2N+1� /NT or less. Since the

integration computation time depends roughly on the

cube of the matrix integration size, the time of a succes-

sive integration of each differential subset scales as

NT�4�2N+1� /NT�3= �4�2N+1��3 /NT
2, while the time of the

global differential set [Eq. (26)] scales as �4�2N+1��3. It

means that taking into account the subperiodicity accord-

ing to � of the diffracting surface permits us to gain a fac-

tor of NT
2 on the computation time. Moreover, each differ-

ential subset depends on the reduced Toeplitz matrix:

�f̃� = �
f̃0� f̃1� f̃2�

f̃−1� f̃0� f̃1�

f̃−2� f̃−1� f̃0�
� ,

which simplifies the calculation of the Fourier develop-

ments of �, N�
2, and NrN� functions defined only on the T

period. The subperiodicity according to � was first suc-

cessfully implemented on an elliptical cross-section sur-

face centered to the origin since it is � periodic �NT=2�
and then on the circular cylinder defined on a period T

(data not shown). We note that this study on subperiodic-

ity can be linked to the seminal work of McIsaac12 con-

cerning waveguide symmetry properties and with the pa-

per written by Bai and Li.13 The authors of Ref. 13 have

explicitly shown how the use of group theory permits one

to fairly reduce the computation time on crossed grating

analysis. More recently, Fini14 has revisited McIsaac’s

work to improve the efficiency of several numerical meth-

ods if rotational symmetry properties are present in the

device.

D. Excitation of the Fundamental Leaky Mode of a
Microstructured Optical Fiber
The subperiodicity of the diffracting device is particularly

useful in the case of MOFs. These fibers are usually made

of several rings of circular cylinders (filled with vacuum)

regularly distributed according to the angular coordinate

� in a infinite matrix. We thus consider a solid core MOF

(Fig. 14) composed of six identical circular cylinders with
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a diameter d=1 	m and the same distance to the origin

(pitch) R0=�=2.3 	m ��0=0° �; it means that the subpe-

riod is 2� /6 �NT=6�. In addition, the whole structure has

symmetry planes, so in the formulation used in wave-

guide theory,12 this fiber follows the C6v symmetries. The

cylinder index is nint=1 and the matrix index is next

=1.44390356. In our notation [Eq. (3)], the parameter �0

becomes the studied propagation constant usually noted

as �. The effective index is defined by neff=� /k0. The well-

established MM1–3 can also be formulated as a modal

method, and consequently it can find the modes of MOFs

composed with arbitrary inclusions contained in disjoined

circular cylinders. It gives a complex effective index equal

to neff=1.420784+ i7.20952�10−4 with �0=1.56 	m for

the fundamental mode, i.e., this mode is a leaky mode

(even if the optical indices of the inclusions and the ma-

trix are purely real). In addition, we know that the fun-

damental mode is twice degenerated.1,12 Its component

fields Ez belong either to the C4 symmetry class [symmet-

ric according to the Y axis, u��−��=u���, and antisym-

metric according to the X axis, u�−��=−u���] or to the C3

symmetry class (antisymmetric according to the Y axis

and symmetric according to the X axis). This classification

of symmetry is more precisely explained in the work of

McIsaac.12 We search now to apply these symmetry prop-

erties on the diffracting problem. The mode that belongs

to the C3 symmetry class is excited when �inc=90° and

the second one (C4 symmetry class) when �inc=0°.

In the framework of our diffraction method, we have

first tried to excite the fundamental mode described above

with suitable incident wave parameters [Eq. (1)]. We

know that the real parameter �0 is equal to −kext sin��� in

which kext=k0next; hence we have searched the angle pa-

rameter � such that �0=k0 Re�neff�, and we have approxi-

mately found �=−79.73° about ��=−arcsin�Re�neff� /next��.
Doing so, we have neglected the imaginary part of neff.

Consequently, the fundamental mode is only partially ex-

cited. Figure 15 shows the computation time versus N for

both the six circular cylinder MOFs defined on the 2� pe-

riod and for the one defined on the T=2� /6 period. These

results clearly illustrate the improvement brought about

by the subperiodicity concerning the computation time.

Figure 16 illustrates the normalized �Ez� map associated

with the partial excitations of the fundamental mode be-

longing to the C3 symmetry class and Fig. 17 to the C4

symmetric class (N=60 and 
=0°). The fields seem well

located around the circular cylinders and the similarity

with the MM1 field maps is already clear even if the result

Fig. 14. Cross section of a MOF composed of six identical circu-

lar cylinders with d=1 	m, �=2.3 	m, nint=1, and next=1.4439.

Fig. 15. Computation time for the six circular cylinders as a

function of the order of the truncated Fourier series �N�, with
and without taking advantage of the symmetry.

Fig. 16. Normalized �Ez� field map obtained thanks to the par-
tial excitation (see Fig. 18 for the complete excitation) of the
MOF fundamental mode belonging to the C3 symmetry class [

�inc=90°, 
=0°, �0=1.56 	m, N=60, and �0=k0 Re�neff�
=1.420784]. The studied fiber is the same as in Fig. 14.

Fig. 17. Normalized �Ez� field map obtained thanks to the par-
tial excitation (see Fig. 19 for the complete excitation) of the
MOF fundamental mode belonging to the C4 symmetry class

��inc=0° �. The studied fiber is the same as in Fig. 14.
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shown in Fig. 16 is a diffraction phenomenon and not a

true mode.

To excite completely the fundamental mode by a inci-

dent wave, we now take into account the imaginary part

of neff. The complex number �0=k0neff implies that � also

becomes a complex number. However, this implies that all

the components of the incident fields are proportional to

the same complex number cos���. In this case, the field

amplitudes Ae,z and Ah,z deduced from Eq. (2) also become

complex numbers proportional to cos���:

Ae,z = cos���cos�
��E�inc��, �48�

Ah,z =
1

Z
cos���sin�
��E�inc��. �49�

Since all the other incident field components are propor-

tional to Ae,z and Ah,z, they are also proportional to cos���.
Consequently, it is not even necessary to determine the

cos��� factor if we are only interested in normalized fields.

In our example, we choose �0=k0neff. Figures 18 and 19

show the normalized �Ez� maps associated with the accu-

rate excitation of the C3 (and C4) symmetry class mode,

respectively. Figure 20 illustrates the modulus of the z

component of the Poynting vector noted as Sz for both

electromagnetic field maps �N=60�. We recognize the

same field maps as the ones obtained with the MM used

in its mode-searching operation.1

6. CONCLUSION

The described FFF method introduces Toeplitz matrices

for permittivity ��� and �1/�� and also Toeplitz matrices

for geometric quantities such as the normal vector compo-

nents of the diffracting surface: �N�
2�, �Nr

2�, and �N�Nr�.
The convergence results depend directly on these matrix

conditions. The numerical implementation on the circle

case in which the ��r ,�� and N�
2�r ,�� functions present

important variations according to � shows satisfying re-

sults for N=50. Moreover, the integration of the differen-

tial set in the modulated area fairly simplifies when the

possible subperiodicity of the diffracting device is taken

into account. We apply the FFF method to simple struc-

tures made of circular inclusions so as to be able to com-

pare it with a known method. However, the FFF method

described here in cylindrical coordinates can compute the

fields diffracted by more complex structures than the ones

shown in this present work: Some other different diffract-

ing surfaces have been successfully studied (elliptical cyl-

inder, rectangular cylinder, etc.), and the most general

case of anisotropic and/or inhomogeneous media can also

be analyzed. An association between the FFF method in

the homogeneous and isotropic case and the MM has al-

ready been used to study a MOF with elliptical

inclusions.11 Our future work will deal with the adapta-

tion of the FFF method applied to light diffraction to the

search of modes into arbitrary cross-section MOFs to

overcome the known limitations of the MM1 (inclusions

must be inscribed in nonoverlapping circles, the matrix

Fig. 18. Normalized �Ez� field map obtained thanks to the com-
plete excitation (see Fig. 16 for the partial excitation) of the MOF

fundamental mode belonging to the C3 symmetry class (�inc

=90°, 
=0°, �0=1.56 	m, N=60, and �0=k0neff=1.420784

+ i7.20952�10−4). The studied fiber is the same as in Fig. 14.

Fig. 19. Normalized �Ez� field map obtained thanks to the com-
plete excitation (see Fig. 17 for the partial excitation) of the MOF

fundamental mode belonging to the C4 symmetry class (�inc=0°;
other parameters are identical to the ones of Fig. 18) of the fun-
damental mode. The studied fiber is the same as in Fig. 14.

Fig. 20. Normalized �Sz� field map computed from the electro-
magnetic fields associated with Fig. 18 (the result is similar
when the results associated with Fig. 19 are considered).
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permittivity must be homogeneous). In this case, the dif-

fraction problem becomes an homogeneous problem, i.e.,

an eigenvalue problem.
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Abstract: We report recent progress on fabrication of solid core 
microstructured fibers in chalcogenide glass. Several complex and regular 
holey fibers from Ga5Ge20Sb10S65 chalcogenide glass have been realized. 
We demonstrate that the “Stack & Draw” procedure is a powerful tool 
against crystallisation when used with a very stable chalcogenide glass. For 
a 3 ring multimode Holey Fiber, we measure the mode field diameter of the 
fundamental mode and compare it successfull y with calculations using the 
multipole method. We also investigate, via numerical simulations, the 
behaviour of fundamental mode guiding losses of microstructured fibers as 
a function of the matrix refractive index, and quantify the advantage 
obtained by using a high refractive index glass such as chalcogenide instead 
of low index glass. 
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1. Introduction 

Chalcogenide glasses offer several interesting optical properties including a large wavelength 
transparency window (from about 1 µm to above 10 µm) and a high refractive index (greater 
than 2). Depending on composition, the nonlinear coefficient n2 has been measured to be 
between 100 to 1000 times larger than for silica glass [1]. Theses high values are very 
attractive for applications such as all optical signal processing, optical demultiplexing, raman 
amplification, and broad band spectrum generation [2], [3]. Chalcogenide glass based optical 
fibers are also attractive as a transport medium for high power infrared (IR) lasers such as CO2 
lasers and are currently actively studied in optical sensor systems using IR optical detection 
[4]. Furthermore, several chalcogenide based glasses offer the possibilit y of relatively high 
concentration rare earth doping for amplification and lasing applications [5].  

For many applications, single mode guiding is required. In the recent past, single mode 
guiding in chalcogenide glass fibers in a step index configuration has been demonstrated, 
using, in general, rod in tube or double crucible processes [6]. Theses methods require 
signif icant care and expertise in order to prevent crystallisation effects, bubbles, 
contaminations at the core/cladding interface and ellip ticity of the core. Moreover, great 
precision in the index of refraction is needed in order to ensure single mode guiding.  

For single mode fibers in a step index configuration, very small or very large mode field 
diameters (MFD) are diff icult to obtain since the precision required for the core and clad 
refractive index are incompatible with the bulk glass forming techniques used. Nevertheless, 
large MFDs are useful to minimise the risks of glass damage during the transport high power 
laser beams and small MFDs enable the enhancement of nonlinear effects.  

A solution to the above problem may be found in Holey Fibers (HF) also named 
microstructured fibers [7]. These fibers exhibit remarkable optical properties: very small or 
very large mode areas [8]; widely tuneable dispersion [9]; endlessly single mode operation 
[10]. These fibers consist of a periodic lattice of low index inclusions (very often simple 
holes) arranged around a solid core that run along the fiber length. In silica glass, the most 
common fabrication method is the “Stack & Draw”  technique. Glass capillaries are stacked in 
a hexagonal lattice of several rings, and surrounded by a glass jacket to form the fiber 
preform. This process enables the realisation of complex structures and it is reproducible. 

So far, in the case of chalcogenide glass, there are few articles dealing with holey fibers 
[11, 12]. In [11], a first holey fiber based on the Gallium Lanthanum Sulphide glasses system 
was realized with one ring of non regularly arranged holes. In [12], a section of As-Se holey 
fiber is presented, here the pre-form was fabricated by stacking one ring of tubes and 7 rings 
of rods around a central rod with no outer glass jacket, giving one ring of “guiding” holes and 
7 rings of very small interstitial holes formed from the gaps between the glass rods. In the 
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present paper, we report recent progress on the fabrication of holey fibers with GaGeSbS 
chalcogenide glass using the “Stack & Draw” procedure. The fabricated fibres present 
multiple hole rings formed by stacking multiple capillary layers, as is required to offer control 
over modal and dispersion properties while ensuring low propagation loss. We measure the 
mode field diameter and compare it with calculations using the well  established multipole 
method. 

2. Glass fabrication  

The nominal glass composition is Ga5Ge20Sb10S65 (2S2G) [13]. High purity raw materials 
(5N) are placed in a sealed silica tube under vacuum (10-5 mb), heated at 800°C for 12h and 
then quenched in water. The index of refraction is 2.25 at 1550 nm and the nonlinear 
coefficient, n2, is measured to be 120 times greater than that of silica. This particular glass is 
transparent from 0.6 µm to 10 µm (low loss fiber fabrication is possible from 1 to 6 µm). The 
glass transition temperature, Tg, was measured with a differential scanning calorimeter 
(DSC). Tg is measured to be at 305 °C as indicated by Fig. 1 which shows the thermal flux 
versus temperature. Between 305 °C and 500°C, this composition exhibits no crystallisation 
peak in the DSC curve when heated at a rate of 10°C/min. 

  
Fig. 1. determination of transiti on temperature Tg by DSC measurement for 2S2G glass 

 
Furthermore, there is shallow variation of viscosity with temperature allowing stable fiber 

draw over a range of several tens of °C. These properties make this glass an ideal candidate 
for the “Stack and Draw” technique. 

To make the core rod, the glass is quenched in water and then annealed near the glass 
transition temperature for 30 min and cooled down to room temperature. For tube fabrication, 
a glass melt at 700°C is spun at 3000 rpm at ambient temperature during several minutes [Fig. 
2(a)]. During cooling, the viscosity increases and after a few minutes the vitrif ied tube is 
formed Fig. 2(b). The tube size used here is typically 12cm*12mm*5mm (length*outer 
diameter*inner diameter). 

 

  
Fig. 2. (a) rotational casting set up Fig. 2. (b) chalcogenide tube 

formed by rotational casting 
 
3. Holey fiber f abri cation and characterization 

A chalcogenide (2S2G) tube, placed in a suitable furnace in a drawing tower is drawn down to 
form capillaries with an outer diameter typically of 665 µm. These tubes are stacked in 
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hexagonal lattice, with a rod of identical diameter in the central region, and placed in a larger 
jacket tube to create the pre-form. The jacket tube is then collapsed around the microstructure 
via an initial rapid descent through the furnace of the drawing tower, with very lit tle 
deformation of the capillary tubes. The fiber is then drawn at a rate of 5 m/min at a 
temperature of around 480 °C. A variable gas pressure system enables precise control of hole 
size during the draw. 

Figure 3(a) shows the cross section of the solid core chalcogenide HF, which is based on 
the subset of a triangular lattice. The fiber consists of 3 rings of holes (Nr=3). The outer 
diameter, Φext, of the HF is 147µm, the distance between hole centers (pitch) is Λ=8 µm, the 
average hole diameter is d=3.2 µm and the ratio d/ Λ is estimated at 0.4. In the upper right 
region the holes are larger than in the other regions. This is almost certainly due to the pre-
form being off centre in the furnace, creating a non uniform viscosity. The higher temperature 
region experiences lower viscosity and presents less resistance to the pressure inside the 
capillaries/holes. 
 

 
 

Fig. 3. (a) cross section of 3 
rings HF; Φext=147 µm 

Fig. 3. (b) experimental Mode Field 
Diameter measurement 

 
The output profile of the guided mode near to 1550 nm was investigated using a near field 
measurement. An indium metal coating was applied to inhibit cladding mode guidance. Light 
from a broadband source at 1550 nm was injected into the chalcogenide HF via a standard 
single mode fiber and the output from the fiber end was imaged onto an infrared camera. As 
shown in Fig. 3(b), the output profile can be accurately fitted with a Gaussian function. The 
mode field diameter (MFD) at 1/e2 of maximum intensity was measured to be 8.3 µm, 
comparable to the MFD of conventional single mode fiber. Using the well -established 
multipole method [15,16], we compute the MFD for this irregular profile. We obtain a MFD 
of 10.75 µm on the x axis (see Fig. 4(b) for the axis definition) and 11.45 µm on the y axis, 

for a perfect C6v (i.e. a structure invariant by 2�/6 rotations and by plane symmetries) 
microstructured fiber defined by the average geometrical parameters defined above. The 
relative error between the experimental result and the numerical simulations is about 25% 
which is larger than the estimated measurement error. If we consider several irregular profiles 
with circular holes mimicking the measured profile, the computed MFD are still in  the range 
[10.4, 11.8] µm. Consequently, we must assume other hypothesis to explain the MFD relative 
error. This important relative error may be due to small longitudinal variations along the fiber 
of this imperfect structured profile. It may also result from slight variations of the matrix 
refractive index in the core and cladding regions since the capillaries and the central rod come 
from two different batches of 2S2G glass. If this hypothesis is right and since we have 
observed a MFD smaller than the computed one, we may assume that the central rod 
refractive index is slightly higher than for the capillaries. Concerning the single-modedness  
of the fabricated fiber, since the average hole diameter over pitch ratio is equal to 0.4, the 
fiber is near the upper border of the endlessly single-mode region defined for solid core C6v 
microstructured fiber with an infinite number of hole rings (see Fig. 4 in Ref. [14]). As 
demonstrated in this reference, we can't neglect the cladding size effect for the single-mode 
behaviour of the considered fiber in which the number Nr is equal to three. Therefore the 
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endlessly single modedness of the fabricated fiber is not guaranteed. Furthermore the 
imperfect profile and the supposed index difference mentioned above may also modify the 
single mode properties compared to the perfect C6v microstructured fiber used in the above 
numerical study. 

Another 3 rings Holey Fiber was realized under the same experimental conditions, but 
with a better control of the hole diameter and with capillaries and central rod from the same 
batch. Figure 4(a) shows a picture of the fiber. The step Λ is about 7.7 µm and the diameter d 
of the holes is 4.85 µm. The ratio d/Λ of 0.63 indicates multimode guiding at 1550 nm even 
with only three hole rings [13]. About 10 centimetres of the holey fiber, held straight, was 
used in the previous injection set up, with only the fundamental mode excited. Figure 4(b) 
shows the near field intensity distribution of the microstructure with a guiding beam at 1550 
nm.  

  
Fig. 4. (a) cross section of 3 rings HF; Φext=137 µm Fig. 4. (b) Near field intensity 

distribution  in the Holey Fiber 

The regular structure enabled us to compare more accurately the experimental and the 
theoretical mode field diameter measurements. Following a Gaussian approximation 
experimental measurements give the MFD at 9.3 µm on the x-axis and 9.66 µm on the y-axis. 
Calculation results with the multipole method gives a MFD of 8.64 µm on the x axis and 9.03 
on the y axis. The agreement between experiment and theory is much better for this fiber, with 
an average error of 7%.  

4. Discussion 

In this work, we have presented a single mode and a multimode holey fiber with 3 rings. The 
profile of the second fiber is, to the best of our knowledge, the first demonstration of a regular 
(regular d and Λ) multi -hole layer index guiding fibre based on chalcogenide glass. Here we 
have focused on the fabrication of HF with a MFD near that of standard single mode silica 
fiber in order to facilit ate coupling. We believe that this work can be extended to produce very 
small MFDs with only 3 or 4 rings of holes. Indeed, the high index of refraction of 
chalcogenide glasses enables a better confinement of the light. In paper [17], for an index of 
refraction of 2.5, d/Λ=0.4, Λ=2.3 µm, λ=1550nm and 4 rings, calculations show that guiding 
losses are less than 5 dB/km, significantly lower than the 1-2 dB/m Ga5Ge20Sb10S65 material 
losses around 1550 nm. Such a structure could be of significant interest for the realization of 
compact non linear devices. The demonstration of the advantage obtained with respect to 
guiding losses with the high refractive index of chalcogenide glasses is made below, using 
numerical simulations. It is well  known that an increase of the number of hole rings, Nr, 
induces a decrease in the fundamental mode loss, L [16]. In the considered wavelength range, 
L decreases geometrically with Nr. We introduce the ratio of the fundamental mode guiding 
losses L(m+1) for a microstructured fiber made of Nr=m+1 hole rings over the fundamental 
mode losses L(m) for a Nr=m fiber. Slight variations of this ratio L(m+1)/L(m) occur for 
different and small m values. In order to give an unique but meaningful value for this ratio, we 

compute its average, denoted <L(m+1)/L(m)> for m ��������	 In Fig. 5, we show this average 
ratio as a function of d/Λ for two matrix refractive indices. A lower loss ratio denotes a fiber 
with more effi cient confining capacity. As can be seen in Fig. 5 (note the y axis logarithmic 
scale), a matrix refractive index of n=2.25 ensures much stronger confinement than 
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n=1.444024. Consequently, fewer rings of holes are needed to obtain the same guiding losses 
even for small values of d/Λ. It is worth mentioning that no material losses are taken into 
account in these numerical results. For the fabricated structures, the overall losses are set by 
the high intrinsic material losses. 

 
Fig. 5. Average ratio of the losses of a Nr=m+1 microstructured fiber (�(m+1)) over the losses 

of a Nr=m fiber (�� (m)) for the fundamental mode as a function of d/Λ for two matrix 

refractive indices n=1.444024 and n=2.25 (Λ= 2.3 µm and λ=1.55 µm), see the text for the 
definition of the average. 

     Furthermore, compared to a step index single mode fiber in chalcogenide glasses, HFs 
offer more tolerance for the realization of single mode guiding. Actually, numerical and 
theoretical results [14] demonstrate that the critical ratio (d/Λ)s.m delimit ing the endlessly 
single mode regime in C6v solid core microstructured fibers with an infinite number of hole 
rings Nr is in the interval [0.42, 0.425]. For finite size HF this critical ratio (d/Λ)s.m depends 
on Nr, and it converges towards the infinite cladding critical ratio as Nr increases. Using the 
multipole method, we obtain that, for a 6 ring microstructured fiber with a pitch equal to 8 
µm, a ratio d/Λ  =0.35 ensures single mode guiding (in the sense defined in reference [14]) at 
1.55 µm. Besides, if we change the matrix refractive index of 1% around 2.25, the single 
modedness is preserved. In the case of a step index single mode fiber, the composition of core 
and cladding glasses must be perfectly controlled and many iterations are often necessary to 
produce the required index of refraction. Accuracy better than 10-3 in refractive index for the 
core and cladding glasses is often required to obtain single mode guiding. 

5. Conclusion 

The first Holey Fibres in GaGeSbS chalcogenide glass have been manufactured. We have 
demonstrated the possibilit y of fabrication of complex structures up to three rings using the 
“Stack & Draw” technique. The use of a stable glass with excellent thermo-mechanical 
properties is key in allowing us to use tried and tested fabrication techniques. We believe that 
the combination of this technique and chalcogenide glass holds great potential for the 
realization of both small and large effective area fibers, with applications not only around 
1550 nm but also in the mid infrared window. The abilit y to precisely control geometry from 
preform assembly through to final f ibre fabrication opens up the possibilit y for the fabrication 
of infrared air guiding photonic band-gap fibres. In this work, we found an experimental mode 
field diameter in good agreement with calculations. In future work, we plan to improve the 
purity of our chalcogenide glass and our drawing process in order to reduce the overall losses. 
We also plan to characterize the single mode behaviour of our HF and their modal properties 
including losses and chromatic dispersion.  
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Abstract

We propose a new and efficient numerical method to find spatial solitons in optical fibres with a

nonlinear Kerr effect including microstructured ones. A nonlinear non-paraxial scalar model of

the electric field in the fibre is used (nonlinear Helmholtz equation) and an iterative algorithm is

proposed to obtain the nonlinear solutions using the finite element method. The field is

supposed to be harmonic in time and along the direction of invariance of the fibre but

inhomogeneous in the cross section. In our approach, we solve a nonlinear eigenvalue problem

in which the propagation constant is the eigenvalue. Several examples dealing with step-index

fibres and microstructured optical fibres with a finite size cross section are described. In each

geometry, a single self-coherent nonlinear solution is obtained. This solution, which also

depends on the size of the structure, is different from the Townes soliton—but converges

towards it at small wavelengths.

Keywords: spatial solitons, Kerr nonlinearity, microstructured optical fibres, nonlinear optics,

self-coherent solutions, Townes solitons

1. Introduction

Rigorous techniques for modelling the linear properties of

microstructured optical fibres have been available for several

years [1], and have been successfully used to study losses and

chromatic dispersion of the fundamental mode [2], as well

as the second mode cut-off [3]. A detailed review of these

techniques with further references can be found in chapter 7

of [4].

Modelling the nonlinear properties of fibres (and in

particular the optical Kerr effect) is inherently more complex,

and while several techniques have been proposed (see

e.g. [5, 6]), none is completely satisfactory. On the one hand,

there are numerous works based on the nonlinear Schrödinger

equation (NLSE), which do not deal with the finite size of the

waveguide cross section, but focus on the transient evolution

of pulse propagation along the fibre axis. The NLSE and its

vector version are derived from Maxwell’s equations assuming

that the term ∇(∇ · E) in ∇ × ∇ × E can be neglected

and that the slowly varying envelope approximation (SVEA)

can be used [7]. On the other hand, there are (fewer)

works based directly on Maxwell equations or their scalar

approximation, which take into account the optogeometric

profile of the fibre and do not introduce the SVEA. The NLSE

and its vector version lead to a parabolic system of equations,

whereas methods based directly on Maxwell’s equations result

in an elliptic system in the harmonic case. The differences

between the two approaches have been studied extensively

in [7–9]. In spite of many achievements of the NLSE (see [6]),

some questions have been asked concerning its validity or its

accuracy in several cases. In particular, Karlsson et al have

shown that the use of the NLSE can give rise to wrong results

for the self-phase modulation of a pulse that propagates in a

bulk medium with a Kerr nonlinearity [10, 11]. Later, Ciattoni

et al even show in [12] that several generalizations of the

standard NLSE, aimed at describing non-paraxial propagation

1464-4258/08/125101+13$30.00 © 2008 IOP Publishing Ltd Printed in the UK1
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in Kerr media, are not able to recover available exact results

for TE and TM (1 + 1)-D bright spatial solitons. Only few

works among the numerous articles published about spatial

optical solitons deal with the genuine non-paraxial propagation

of solitons. In [13], using a non-paraxial beam propagation

method, the time evolution of solitons in a Kerr medium has

been studied without introducing the SVEA. For several cases

related either to wide angle propagation, fast varying envelope,

or large spatial frequencies, it is obtained that the NLSE is

not able to predict even quantitatively the time evolution given

by the more accurate model based on the scalar nonlinear

Helmholtz equation [13]. In [14], the time evolution of spatial

solitons is computed in a (2 + 1)-D homogeneous Kerr-type

nonlinear dielectric for a TM-problem using a finite-difference

time-domain (FD-TD) method and the corresponding problem

is solved using the NLSE. The FD-TD method shows that co-

propagating in-phase spatial solitons diverge to arbitrarily large

separations if the ratio of soliton beam width to wavelength is

of order one or less. This is not the case for the NLSE for

which the two in-phase solitons remain bounded to each other,

executing a periodic separation [14]. An even more striking

result was obtained by Feit and Fleck in 1988. They have

shown that, for a nonlinear medium with a cubic nonlinearity,

if the non-paraxiality of the beam propagation is taken into

account then a finite size focusing of the optical beam is

reached while with the paraxial wave equation a catastrophic

collapse occurs [15].

The study presented here belongs to the second group

mentioned above: it is based on the direct numerical solution

of a non-paraxial scalar approximation of Maxwell’s equations

with non-saturable Kerr-type nonlinearities. It deals with

stationary solutions and not pulse propagation. It uses the finite

element method [4, 16]. We improve on previous studies in

several ways. First of all, in our approach, we solve a nonlinear

eigenvalue problem in which the propagation constant is an

unknown of the problem; it is not fixed a priori or computed

from the field map. Secondly, while the numerical method

we propose is closely related to that proposed by Ferrando

et al [17, 18] (we also choose a scalar nonlinear Helmholtz

equation to compute the spatial solitons), we do not artificially

periodize the cross section of the fibre. Its symmetry properties

are thus fulfilled more easily, since no unit cell must be defined

to implement the periodic boundary conditions. Thirdly, and

more importantly, we do not use the ‘fixed-power’ algorithm

proposed in [17, 18]. In this algorithm, at each step of the

iterative process defined to obtain the nonlinear solution, the

power of the intermediate solution is renormalized to the power

arbitrarily fixed at the beginning of the algorithm [16]. Our

new algorithm determines the power of the solution by itself,

relying only on residue minimization. Finally, in contrast

to related work by Snyder et al [19, 20], our algorithm can

deal with inhomogeneous media [21]. As mentioned above,

this is achieved by using a finite element method to solve

the nonlinear problem. Although other techniques can also

deal with the inhomogeneous refractive index of the fibre

matrix [22], the finite element method has proved to be

very efficient for the determination of propagating modes in

microstructured optical fibres [23]. It is also flexible enough to

represent the geometry of complex structures, and it permits a

natural treatment of inhomogeneous media [21].

So as to focus on the main novel idea of our approach,

only the properties of the fundamental nonlinear solutions are

studied in the present paper. It is important to note that our

numerical method could also deal with both high-order linear

modes and higher-order nonlinear solutions.

In order to avoid any misunderstanding of the present

study, we clearly state that it is not directly comparable to

Bose–Einstein condensate (BEC) ones. Nonlinear optical

solitons and matter–wave condensates are sometimes linked

together due to the use of the NLSE (see for example [24]).

Since the scalar equation we consider is different from the

NLSE one, we are not allowed to take advantage of the

powerful functional density method which is often used in

the BEC field [25, 26]. This remark leads to at least two

important consequences. The first concerns the method we

have developed. It cannot be easily compared to those

developed or improved for the NLSE (see section 5 of [27]

and [28]) since the considered equations are different. These

equations may share some general common properties but this

has not been mathematically proved, at least to the best of our

knowledge. Another point related to the method is that one aim

of the present study is to set the basis of a non-paraxial method

(solving an eigenvalue problem) in the frame of a scalar

approach that can be extended to the genuine non-paraxial

vector case obtained directly from Maxwell’s equations. The

second consequence concerns the results we obtain. We do

not state that all the results obtained using our method differ

from those coming from the NLSE in all cases. It is clear that

when the required hypotheses are fulfilled the NLSE and our

method must give similar results. But since the nonlinear scalar

Helmholtz equation is nearer to Maxwell’s equations than

the NLSE one, the former must be considered, for stationary

solutions with the exp(−iβz) term, as the reference one.

The paper is organized as follows. In section 2,

the first steps of our self-coherent algorithm are described.

The nonlinear equation derived from Maxwell’s equations

is defined, and the treatment of the nonlinear term and the

iterative process to solve the nonlinear problem are explained.

Section 3 presents how a unique self-coherent nonlinear

solution can be obtained. This is explained in detail for a

step-index fibre, and then more briefly for a microstructured

optical fibre. In the last part of section 3, we study the

convergence of the iterative process and the physical properties

of the self-coherent solution obtained. A comparison with

the ‘fixed-power’ algorithm is also performed to validate our

self-coherent solution. Finally, in section 4, the physical

meaning of the self-coherent solution is described. The fibre

geometry dependence, including the finite size effect of the

microstructured fibres, is demonstrated and a comparison with

the Townes soliton [29, 30] is shown so as to prove the

originality of our nonlinear solution.

2. Introduction to the new solution technique

The scalar model is considered for the propagating solution

obtained under the weak guidance (weak refractive index

2
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contrast) hypothesis [31, 32]. In this case, the electric field E is

supposed to have only a non-vanishing transverse component

of known (arbitrary) direction given by the unit vector ê.

Moreover, its divergence is usually neglected, so that ∇·E = 0

is assumed. In the linear case, the electric field corresponding

to a propagation mode is therefore a field of the form

E = Re
[

φ(x, y)e−i(ωt−βz)
]

ê (1)

in which ω = k0c is the pulsation, k0 = 2π/λ is the

wavenumber and β is the propagation constant. The problem

reduces to determining the function φ(x, y) and the constant β

for a given value of k0 by solving the scalar eigenvalue problem

�tφ + k2
0εrφ = β2φ, (2)

where �t is the transverse Laplacian. This equation is

obtained from Maxwell’s equations with materials of relative

permittivity εr and using all the hypotheses above. The

dispersion curves are the set of pairs (k0, β) for which a

solution of equation (2) exists.

The relative permittivity is itself a function of the field

intensity and the following dependence is assumed:

εr(φ) = n2
0 + 1Inln

2
Kerr|φ|2 (3)

in which 1Inl is the indicative function equal to one in

the nonlinear case (where the fibre is made of an optical

Kerr material) and zero elsewhere, and where n0 (the linear

refractive index) and n2
Kerr = 3χ (3)/2ǫ0cn0 (the Kerr

coefficient) are constants characterizing the material [17, 33].

As the nonlinearities depend only on the modulus of the

field and not on its instantaneous value, it may be possible to

obtain solutions that can be represented by equation (1). This

is our fundamental hypothesis. We are therefore looking for

solutions (β, φ) of the nonlinear equation

�tφ + k2
0(n

2
0 + 1Inln

2
Kerr|φ|2)φ = β2φ. (4)

When a single Kerr material is used, setting the reduced field

φr = nKerrφ (5)

allows one to reduce equation (4) to

�tφr + k2
0(n

2
0 + 1Inl|φr|

2)φr = β2φr, (6)

which is independent of the Kerr coefficient. Clearly, this

means that the refractive index profile leading to the self-

coherent solution φr depends on the linear part of the medium

but not on the value of the Kerr coefficient nKerr: only

the quadratic dependence matters. The physical field φ =

φr/nKerr, however, depends on the coefficient nKerr: the smaller

nKerr, the larger the power injected to produce the self-coherent

solution.

We use a finite element method [4] to solve equation (4).

As mentioned in section 1, this method is well adapted.

This is not the case of the well-known multipole method [1]

for which the refractive index of the matrix surrounding the

inclusion must be homogeneous. The more recent fast Fourier

factorization mode searching method is able to deal with an

inhomogeneous medium [22]. Nevertheless, like the multipole

method, it has been directly developed in the vector case not in

the scalar one. Furthermore, since one of the final goals of our

work is to solve the full vector nonlinear problem, it is more

convenient for us to use the finite element method for which

we already have both the scalar and the vector formulations of

the linear problem.

In the present case of a scalar model, we use a

classical finite element approximation based on piecewise

linear interpolation on a triangular mesh. Moreover, the

solutions are supposed to be close to the modes of the linear

fibre and therefore the proposed algorithm is a simple Picard

iteration, in which a propagation mode is computed in a linear

fibre with a refractive index profile determined by the field

intensity obtained at the previous iteration.

The starting point of our algorithm is thus the linear fibre;

i.e., no nonlinear Kerr effect is considered. For a given k0,

some modes are computed (by solving a matrix eigenvalue

problem to find the βs and the corresponding electric fields)

and the mode of interest is selected (e.g., the fundamental

mode). The corresponding electric field (whose amplitude is

arbitrarily fixed in the linear fibre only) is used to compute the

new refractive index profile, then new modes are computed

with this given refractive index. The mode of interest is

selected and used to modify again the refractive index profile

that gives a new eigenvalue problem. This process is repeated

until the refractive index profile and the β value reaches a fixed

point.

This process seems quite simple but there is a fundamental

flaw: the amplitude of the eigenmodes is irrelevant and the

numerical solutions of the intermediary eigenvalue problems

have an uncontrolled amplitude. To the contrary, the nonlinear

problem depends fundamentally on the amplitude of the field,

and therefore this amplitude has to be determined a posteriori

for the mode of interest. The chosen solution ψ(x, y) of the

numerical eigenvalue problem has thus to be scaled by a scalar

factor χ to obtain the reduced field

φr = χψ (7)

which corresponds to normalizing the field ψ . A suitable

numerical value of χ may be obtained by cancelling a weighted

residual of equation (6), with the solution ψ itself taken as the

weight factor (so as to minimize the error where the field has

the largest values).

In detail, here is how this normalization procedure is

applied. First, (ψi , βi ) at step i (i � 1) are computed as

particular solutions to the eigenvalue problem

�tψi + k2
0(n

2
0 + 1Inl|φr,i−1|

2)ψi − β2
i ψi = 0, (8)

in which, at i = 1, φr,0 is the solution of the linear problem.

Then, the value of χi is computed so as to optimize the self-

coherence of φr,i = χiψi by cancelling the residue

∫

K

[

�tψi + k2
0(n

2
0 + |χiψi |

2)ψi − β2
i ψi

]

ψi dS = 0, (9)

where the integral is computed on the cross section K of the

Kerr medium region (ψi represents the complex conjugate of

3
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ψi ). Using this equation as is would lead to an ill-conditioned

expression for χi , due to the subtraction of two terms of very

similar magnitude. Using the following identity derived from

equation (8),

∫

K

[

(�tψi +k2
0n2

0ψi −β2
i ψi )ψi

]

dS =

∫

K

k2
0 |φr,i−1|

2ψiψi dS,

(10)

a numerically well-conditioned expression for χi can be

obtained:

χ2
i =

∫

K
|ψi |

2|φr,i−1|
2 dS

∫

K
|ψi |4 dS

. (11)

The whole procedure is summarized in the following

algorithm [16]:

begin:

• Set ψ0 = 0 (linear case), χ0 = 1, i = 1

• repeat

– Compute the eigenfunctions ψi and the correspond-

ing βi via the finite element solution of the eigenvalue

problem defined by equation (8) and select the one of

interest (e.g., the fundamental).

– Compute χi via formula (11).

– Set i ← i + 1.

• until the absolute value of the relative difference between

βi and βi−1 denoted by δrelat
i is smaller than a prescribed

tolerance.

• The (χcohψcoh/nKerr = φcoh, βcoh) of the last iteration is

the self-coherent solution.

end.

Therefore, the proposed algorithm allows us to find a self-

coherent solution from an initial solution of the linear problem

normalized at one (χ0 = 1). We call this algorithm the SCLinN

algorithm. This process renormalizes the field at each iteration

and we can thus deduce the ‘self-coherent’ power a posteriori:

it is defined as the integral of χ2
cohψ

2
coh.

3. Towards a unique self-coherent solution

Numerical experiments show that the SCLinN algorithm seems

sensitive to the amplitude and the shape of the initial field

used to start the iteration. To study this feature, a scan of the

amplitude and of the shape of the initial solution is performed.

To evaluate quantitatively the quality of a solution obtained at

the convergence according to the starting point, we propose a

criterion: the residue given by the left-hand side of equation (9)

is calculated numerically with the finite element approximation

of ψi .

The numerical tests concern two types of fibre: step-index

fibres and microstructured optical fibres. Moreover, we are

only interested in the fundamental mode in the linear case. The

nonlinear solution associated with this fundamental mode will

be referred to as the nonlinear fundamental ‘mode’. We put

‘mode’ in between quotation marks, as it is not a mode such as

defined in the linear case—there is no superposition principle.

Our finite element code has been validated for the computation

of modes in linear microstructured fibres, by comparing the
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Figure 1. Logarithm of the residue obtained at the convergence,
computed using the left-hand side of equation (9), versus the field
amplitude χ0 for two different wavelengths and three different core
radii of the step-index fibre.

results with the well-established multipole method [1, 2] and

with the more recent fast Fourier factorization mode searching

method which is more versatile [22].

To correctly describe the field in the fibre and to minimize

the computation time, an adaptive mesh refinement is used:

the stronger the field, the finer the mesh. In addition,

the convergence of the SCLinN algorithm has been shown

in [16], and in all the following tests we choose the prescribed

tolerance δrelat
i < 10−10.

3.1. Scanning the amplitude of the linear initial field for the

step-index fibre

We start by studying the influence of the amplitude χ0 of the

initial (linear) field φr,0. For this, we inject χ0ψ0 at the first

iteration in the nonlinear term in equation (8):

�tψ1 + k2
0(n

2
0 + 1Inl|χ0ψ0|

2)ψ1 − β2
1ψ1 = 0, (12)

in which the amplitude χ0 is arbitrarily fixed. Therefore, the

initialization of the SCLinN by a unique initial guess is replaced

by a one-dimensional scan of the amplitude of the linear initial

solution. We denote this process the SCLin1D algorithm.

In addition, to start the study of SCLin1D , a cylindrical

fibre with a Kerr material (nKerr = 3.2 × 10−20 m2 W−1) in

the circular core of radius 2.0 µm is considered. The linear

part of the refractive index of this core is n0 = 1.45. The

core is embedded in an infinite cladding with a linear refractive

index n = 1.435 (weak guidance approximation WGA). The

Dirichlet condition at the edge of the geometry is also applied

(in the present paper we do not address the computation of the

leaky modes [1, 4]).

Figure 1 gives the effect of the initial field amplitude on the

residual values defined by the left-hand side of equation (9), for

different wavelengths and geometries.

Figure 1 shows the minimum residue for the nonlinear

solution at the convergence of the iterative process (i.e. when

δrelat
i < 10−10, the fixed point is reached). The influence of
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(a)  Final residue versus initial parameters

    0 and    0 /   
lin.

χ σ σ
(b)  Final residue versus final parameters

    coh
 and    

coh
 /   

lin. (see the text for a

 complete description)

χ σ σ

Figure 2. Maps of the residue computed for the nonlinear solution as a function of the input parameters characterizing the initial field (a) and
as a function of the output parameters characterizing the nonlinear field (b) of the step-index fibre described in the text at λ = 1.0 µm.
σlin corresponds to the standard deviation of the solution of the linear problem approximated by a Gaussian function.

the mesh has been ruled out by verifying that the minimum

corresponds to the same χ0 for different meshes. It may

be deduced that a single nonlinear solution is found for

each wavelength: it is the self-coherent nonlinear solution.

Obviously there exists another minimum residue for χ0 = 0,

corresponding to the solution of the linear problem.

3.2. Scanning both the amplitude and the width of the initial

field

In a further investigation, the residue is considered by scanning

the initial solution not only in amplitude but also in shape.

At the first iteration, instead of the solution of the linear

problem, we inject a Gaussian function χ0e−(r/σ0)
2

, where

r =
√

x2 + y2 and where σ0 represents the standard deviation

of the function. Therefore, the initialization of the SCLin1D

algorithm is replaced by a two-dimensional scan on χ0 and σ0.

We call this process the SCGauss2D algorithm.

The computation is started with one value of σ0 and

the scan in χ0 is performed, then another value of σ0 is

taken, and so on. Finally, the residue at the convergence of

SCGauss2D is obtained, according to the two parameters χ0 and

σ0 characterizing the initial field, as shown in figure 2(a).

A narrow valley of minimal residues is observed. This

means that for one σ0 there exists a single χ0 such that one

‘good’ final nonlinear solution is obtained: it is the self-

coherent solution. Notice that the linear case corresponds to

a vertical line in the figure 2(a) at σ0/σlin = 1 when the

Gaussian profile closely matches the profile of the fundamental

mode as in the WGA. Figure 2(a) suggests that there exists a

continuum of solutions depending on the value of σ0 given for

each minimum of the residue. Thus, the question is whether

the nonlinear solutions obtained with the solution of the linear

problem or each Gaussian function (characterized by σ0) as the

starting point are the same: is the self-coherent solution really

unique?

Figure 2(b) shows the absolute value of the logarithm

of the residue according to the final solution parameters

(χcoh, σcoh), in which we approximate this nonlinear solution

with a Gaussian fit. This figure shows that these final

parameters have nearly the same value. Therefore, from a

full map of the initial parameters, the SCGauss2D algorithm

provides a localized surface formed by the final parameters

characterizing the computed nonlinear solution. In addition,

the minimum residues are localized in a small part of this

surface. These results allow us to confirm the assumption

that the SCGauss2D algorithm finds a single nonlinear solution:

the self-coherent nonlinear solution. This solution is a scalar

spatial Kerr soliton in the step-index fibre.

Since for both studied cases (SCLin1D and SCGauss2D

algorithms) only a unique residue minimum associated to a

nonlinear solution (corresponding to the same β value) is found

for all the step-index fibres and wavelengths we have tested,

we can assume that this observed rule is general for this kind

of fibres.

3.3. Results for the microstructured optical fibre

Microstructured optical fibres (MOFs) have more degrees of

freedom related to the geometries and index contrasts than

step-index fibres [4]. The study of these fibres allows us to

extend the domain of validity of our algorithm and to compare

our results with those previously published in [17]. The case

of a solid core MOF made of four rings of air holes embedded

in a Kerr material matrix (nKerr = 3.2 × 10−20 m2 W−1) is

considered here. The linear part of the refractive index in the

matrix is n0 = 1.45. The pitch � (space between the centre of

two adjacent air hole centres) is equal to 10.0 µm and the air

hole radius is equal to 2.75 µm.

As for the step-index fibre, the results obtained with

SCLin1D show two minima for the residue: one associated

with the solution of the linear problem (χ0 = 0) and

one corresponding to the nonlinear solution. Whatever

the amplitude of the solution of the linear problem, a

single nonlinear solution—the self-coherent solution—is again

found.

For the SCGauss2D algorithm the Gaussian function is

injected only in the matrix and not in air holes since the
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Figure 3. Field distribution in the microstructured optical fibre at λ = 5.0 µm for two initial Gaussian fields ((a) and (b)) and for the
fundamental soliton ((c) and (d)).

field is usually very weak in the air holes due to the index

contrast between the matrix and the inclusions. As for the

step-index fibre, there is a narrow valley (similar to that of

figure 2(a)) corresponding to the minimal values of the residue

as a function of the initial parameters χ0 and σ0/σlin. The

map of the final residue versus the final parameters χcoh and

σcoh/σlin obtained is similar to that of figure 2(b).

Figure 3 shows the field distribution when the Gaussian

function is used as an initial field, as well as the effect

of the nonlinearity when SCGauss2D has converged. (Using

the symmetry properties of the fibre, only a quarter of the

geometry needs to be modelled, which significantly reduces the

cost of the numerical computations.) These figures illustrate

the independence of the final self-coherent nonlinear solution

according to the spatial extent of the input initial field.

Therefore both for step-index fibres and for MOFs,

SCLin1D and SCGauss2D lead to the same solution: the self-

coherent solution. Actually, the most natural choice for the

physical studies is to use SCLin1D in which the starting point

depends on the solution of the linear problem.

Note that a very fine scan must be performed to obtain the

minimum value of the residue equal to the machine accuracy

(10−15). Consequently, in practice, the speed and accuracy

of the algorithm SCLin1D are improved by using the golden

section search in one dimension [34]. For each wavelength

studied, the search is performed on the value of χ0. The

typical shape of the function to be minimized is that in figure 1.

Using this improvement, the algorithm is able to reach machine

accuracy for the minimal values of the computed residues.

3.4. Physical significance of the self-coherent solution:

comparison with the ‘fixed-power’ method

A ‘fixed-power’ method was proposed by Ferrando et al

in [17, 18] to find nonlinear solutions in MOFs with a Kerr term

in the matrix refractive index. We call this process, in which the

power is given a priori, the algorithm F PFer . Our algorithm

SCLinN can be easily modified (to study the ‘fixed-power’

method) by replacing equation (11) with χ2
i = P/

∫

K
|ψi |

2 dS,

in which P is the fixed value of the power. We call our finite

element method implementation of the ‘fixed-power’ process

the F PF E M algorithm.

To compare the physical properties of the solutions given

by F PFer , F PF E M , and SCLin1D , we use the quantities
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Figure 4. Dependence of the gap function � on the nonlinear
coefficient γ for various air hole radii a at λ = 1.55 µm. These
results are obtained by using the algorithm F PF E M , and γc is defined
in the text.

defined in [17]: the dimensionless nonlinear coefficient γ =

Pn2
Kerr/A0 and the gap function � = (βNL −βlin)/k0, in which

P is the total power, and A0 = π(�/2)2 characterizes the core

size (for the step-index fibre, A0 = π R2
core, in which Rcore

is the radius of the core). βlin and βNL are the propagation

constants of the solution of the linear and nonlinear problems,

respectively.

Our first study consists in comparing the results of the

two implementations of the ‘fixed-power’ method: F PFer

and F PF E M . The computations are provided for a silica

microstructured optical fibre with a pitch equal to 23.0 µm,

for various air hole radii at λ = 1.55 µm [17]. The

MOF considered in F PF E M has a finite size and is made

of four rings of air holes, while the geometry for F PFer is

periodic. The evolution of the gap function � according to the

nonlinear coefficient γ is computed (see figure 4) for various

air hole radii. This figure shows an approximate limit power

corresponding to γc = 1.7 × 10−3. As soon as γ > γc the

numerical process is divergent. Figure 4 shows that the value

of γc found with F PF E M is the same as that obtained with

F PF E M (see figure 3(a) in [17]).

The second study consists in understanding the physical

significance of the self-coherent solution. To achieve this,
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(a)  Comparison for the step-index fibre

described  in section 3.1 at λ = 1.0    m 

and the corresponding residue

µ
(b)  Comparison for two MOFs with different

radii a at λ = 5.0    m and one associated 

residue for a =1.5    m 
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Figure 5. Comparison between F PF E M and SCLin1D for the fundamental ‘mode’ for different fibres. γc corresponds to the critical power;
above this value F PF E M diverges.

the physical powers obtained by F PF E M and SCLin1D are

compared. Therefore, this study consists in getting the value

of the ‘self-coherent power’ (i.e., Pcoh =
∫

F
|χcoh|

2|ψcoh|
2 dS)

obtained using SCLin1D . Then, the value of the physical

power equal to Pphys. = Pcoh/n2
Kerr is deduced. Finally,

some ascending values of power are injected as input in

F PF E M until the value of the physical power Pphys. obtained

with SCLin1D is reached. Figure 5 gives the results of this

comparison for several fibres: the step-index one, figure 5(a),

and two microstructured optical ones with different air hole

sizes, figure 5(b).

Figure 5(a) shows the comparison between F PF E M and

SCLin1D for the step-index fibre described in section 3.1 at λ =

1.0 µm. The ‘fixed-power’ algorithm F PF E M diverges for

power γ above the critical power γc (see figure 4). Contrary to

the results provided by F PFer in [17], the critical γ computed

with F PF E M depends slightly on the air hole radius a. As will

be shown in the next paragraph, this dependence is confirmed

using SCLin1D . This issue is also discussed in section 4.

The self-coherent algorithm SCLin1D finds the self-

coherent solution at the corresponding critical power directly.

As mentioned at the end of section 3.1, two minimal values

of the residue are found. The first one corresponds to the

linear case γ = 0 and the second one corresponds to the

self-coherent nonlinear solution. This solution is obtained both

with SCLin1D and with SCGauss2D . The other solutions found

with the ‘fixed-power’ method at lower powers are not the self-

coherent solution because they do not correspond to a minimal

residue.

To complete this observation, the study is repeated for

various MOFs (figure 5(b)). The computed results for these

two MOF geometries lead to the same conclusion as that

already drawn for the step-index fibre: the self-coherent

solution obtained with the algorithm SCLin1D gives directly

(and so, much more rapidly) the limit of the highest power

solution reachable (γ = γc) with the algorithm F PF E M .

Therefore, with our new SCLin1D algorithm and for each

fibre, a single self-coherent solution corresponding to the

spatial soliton with the highest possible energy just before the

self-focusing instability is easily obtained.

The last study is to compare the convergence of SCLin1D

with the one of the ‘fixed-power’ method F PF E M (figure 6).

This figure shows the comparison of the convergence for

two different powers (represented by the γ coefficient) in the

MOF described in section 3.3. Figure 6 proves that SCLin1D

converges much more rapidly than F PF E M . After 50 steps

the convergence of F PF E M is not reached, whereas SCLin1D

requires 13 steps to converge. In addition, at the critical power

(γ = γc), that is to say for the self-coherent solution, the

effective index cannot be found with F PF E M because this

algorithm does not reach the required accuracy (for δrelat
i <

10−10) unlike the self-coherent algorithm SCLin1D .

4. Beyond the Townes soliton

As illustrated in figure 5, the self-coherent solution

corresponds to the spatial soliton with the highest reachable

power before the self-focusing instability. Therefore, we can

wonder whether this solution is the solution obtained for a

homogeneous silica medium with a nonlinear Kerr term [29].

To analyse this issue, SCLin1D is implemented for this case

and the results are compared with those given by the following

fibre geometries (figure 7): the step-index fibres with various

core radii in the case of the WGA described in section 3.1, and

different solid core microstructured optical fibres with various

air hole radii.

Figure 7 shows that the self-coherent solution of the

nonlinear step-index fibre depends on the core radius. This

means that, even in the nonlinear case, the core/cladding

interface is important. The curves given in figure 7 also

prove that the nonlinear solution obtained in the step-index

fibres differs from that of the homogeneous medium. As
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Figure 6. Convergence of SCLin1D compared with F PF E M for the fundamental ‘mode’ of the MOF described in section 3.3 at λ = 5.0 µm.
δrelat

i is the absolute value of the relative difference between the values of β at the steps i − 1 and i . To make the comparison with the F PF E M

results easier, the value of neff for the self-coherent solution at step 13 of the SCLin1D is extended to step 50.

Figure 7. Comparison of the nonlinear effective index of the spatial
soliton versus the wavelength in different nonlinear waveguides and
in a homogeneous nonlinear medium. The solid core MOFs studied
have four rings of air holes with various radii a and � = 6.0 µm.
The index contrast of the step-index fibres with various core radii
fulfils the WGA.

expected, the higher the core radius (i.e. the structure tends

to the homogeneous medium), the smaller the difference with

the homogeneous medium. The same phenomenon is observed

for the MOFs, where the self-coherent solution does not

correspond to that obtained in the homogeneous medium. In

addition, the smaller the air hole radius (i.e. the structure

tends to the homogeneous medium), the smaller the difference

with the homogeneous case. Figure 7 also shows that for

smaller wavelengths the role of the air holes decreases, the

self-coherent solution being more confined. Notice that, in

the ‘fixed-power’ study [17], the ratio λ/� is small. This

explains the weak influence of the fibre geometry on the

critical nonlinear coefficient γc. As a consequence, the diagram

of existence of spatial solitons (figure 3(b) in [17]) must

be modified so as to take into account the influence of the

waveguide geometry. In the parameter space (γ, a) and

using the terminology defined in [17], the frontier between

the spatial soliton region and the self-focusing region is not

exactly a vertical line defined by a unique critical nonlinear

coefficient γc. It is rather a line segment such that the lower

the nonlinear coefficient the bigger the hole radius. The limit

case corresponds to a step-index fibre with nonlinear core

surrounded by an air ring with the hole diameter d = 2a =

�/2 (see figure 7).

Therefore, the spatial solitons obtained with our algorithm

for nonlinear optical waveguides differ from that of a nonlinear

homogeneous medium.

The second point concerns the study of the Townes

soliton [17, 29, 30]. The Townes soliton corresponds to the

solution of a propagation problem in a nonlinear homogeneous

medium. It corresponds to the critical solution before the

self-focusing instability. We recall that the genuine Townes

soliton, as defined in the seminal article written by Chiao

et al, is obtained without using the SVEA (see equations (5)

and (6) in [29]) but the propagation constant of the soliton

is computed from the field profile. The problem solved (see

the paragraph below equation (6) in [29]) is not an eigenvalue

problem. To assert the difference between our self-coherent

solution obtained for each structure with the Townes soliton,

the power and the profiles of these solutions are studied. The

first step is to get the profile R(r) of the Townes soliton as the

solution of the one-dimensional (1D) equation:

�t R − R + R3 = 0, R
′

(0) = 0 and

R(∞) = 0. (13)

To solve this two-point boundary value problem a shooting

method is used [34]. The profile of the solution is obtained

and shown in figure 1 of [29]. We have also calculated the

critical power coefficient Ncr [30] given by

Ncr =

∫

�

|R|2r dr ≈ 1.862 (14)

where � corresponds to the 1D domain.

To compare our self-coherent solution with the Townes

one, an expression of the self-coherent power Ncoh associated

8
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with the critical power coefficient Ncr is defined. In physical

units, the lower bound of the critical power P lb
cr is given

by [30, 33]

Ncr =
4πn0n2

λ2
P lb

cr (15)

where n2 represents the nonlinear coefficient characterizing the

Kerr medium. The scalar optical Kerr effect can be defined

as follows: εr(φ) = (n0 + n2|φ|2)2 ≈ n2
0 + 2n0n2|φ|2, and

we have defined n2
Kerr = 2n0n2, in which n2 is the nonlinear

coefficient characterizing the material [5]. However, in our

case, an eigenvalue-like problem is solved. Indeed, unlike the

Townes soliton studies [29, 30], the propagation constant β

is considered so as to describe completely the features of the

nonlinear self-coherent solution. To take into account the βcoh

eigenvalue of our approach, the physical power Pphys defined

directly from the Poynting theorem is calculated. In this case,

Pphys =
βcoh

k̃0

P lb
cr =

Pcoh

n2
Kerr

=
Pcoh

2n0n2

, (16)

in which Pcoh =
∫

�
|χcoh|

2|ψcoh|
2 dS is the self-coherent power

obtained at the convergence of SCLin1D , and k̃0 = 2πn0/λ is

defined so as to compare with the critical power coefficient Ncr

given in [30]. Consequently, we get

P lb
cr =

k̃0

2n0n2βcoh

Pcoh. (17)

Therefore, the coefficient Ncoh permitting us to compare

our scalar spatial Kerr solitons with the Townes soliton can be

defined, by using P lb
cr of the equation (17) in expression (15),

as

Ncoh =
4π2n0

βcohλ3
Pcoh. (18)

Figure 8 shows the comparison between the coefficient

Ncoh for step-index fibres with various core radii, for solid core

MOFs with various air hole sizes, and for the homogeneous

medium with the critical power coefficient Ncr of the Townes

soliton. These results confirm those obtained in figure 7, and

they illustrate the influence of the fibre geometry. In addition,

figure 8 shows that the smaller the wavelength (the field is more

confined in the MOF core), the smaller the difference between

the Townes soliton and the self-coherent solutions.

Figure 8 also gives the evolution of the value of Ncoh in the

homogeneous medium case, with respect to the wavelength. As

explained above, our numerical approach SCLin1D takes into

account the β value. Nevertheless, it is very near the constant

one of the genuine Townes soliton (1.4555 instead of 1.45). A

more detailed wavelength dependence cannot be obtained with

the current numerical accuracy of the effective indices. We can

recall that it is known from the seminal work of Chiao et al

that for the Townes soliton this dependence is really weak (see

page 480 of [29], second column).

It is interesting to notice that the nonlinear self-coherent

solution (obtained with SCLin1D from equation (6), φ and β

being unknown) in the homogeneous medium corresponds well

to the Townes soliton (obtained from equation (13) with a

shooting method).

Figure 8. Evolution of the value of the self-coherent power
coefficient Ncoh for various step-index fibres, for different solid core
MOFs, and for the homogeneous medium as a function of the
wavelength. The horizontal dashed line is the critical power
coefficient Ncr = 1.862 of the Townes soliton.

Figure 9 illustrates the dependence of the nonlinear self-

coherent profile as a function of the wavelength and of the

fibre geometry. The global shapes of these spatial solitons

are similar that of the Townes soliton (see figure 1 in [29] and

figure 1 in [30] that show clearly that the Townes soliton can

be approximated with a Gaussian curve) but the amplitudes are

different. As expected at a fixed wavelength, the spatial width

of these spatial solitons decreases with the radius a of the air

holes but the maximal amplitude increases. Nevertheless, the

ratio Pcoh/βcoh which appears in formula (18) decreases with

a, inducing an overall decrease of the critical power coefficient

Ncoh (see also figure 8).

The next point concerns the influence of the finite size of

the structure. The solid core MOF considered in figure 10 has

the same geometry as that described in section 3.3 but the air

hole radius is equal to 1.0 µm. The results are given for several

numbers of air hole rings Nr. As can be seen in figure 10, the

curve order is reversed between the linear and the nonlinear

cases for the MOFs.

In the linear case and at a fixed wavelength, the effective

index increases when Nr increases, which is well known [4]. In

the nonlinear case, the evolution of Nr is physically coherent

with the wavelength dependence already observed in figure 7:

the more the structure confines the field, the lower is the

nonlinear effective index. Obviously, if the air hole radius

increases, the influence of the finite size structure becomes

negligible. These results prove that the nonlinear self-coherent

solution depends not only on the MOF structure but also on its

finite size.

Last, figure 11(a) gives the evolution of the linear and

nonlinear effective indices and normalized effective area versus

the wavelength obtained with SCLin1D for a step-index fibre

described in section 3.1.

Figure 11(a) shows that the larger the wavelength, the

stronger the nonlinear effect. To confirm this observation,

figure 11(b) shows that the effective area obtained in the

nonlinear case is constant in comparison with the linear case.
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(a) λ =3.5    mµ (b) λ =10.0    mµ

Figure 9. Field profiles for three MOFs with four air hole rings at two wavelengths. The coloured region represents the first air hole of the
MOF according to the radius and the associated values of the ‘self-coherent power’.

Figure 10. Effect of the number of air hole rings Nr in a solid core
MOF (� = 6.0 µm and a = 1.0 µm) on the effective index
according to the wavelength in the linear and nonlinear cases.

Thus, the field scattering which increases with the wavelength

is challenged by the nonlinear effect.

From the results of this section, we can infer that

differences from Townes soliton properties will be observed

in waveguides in which the ratio of the wavelength over the

characteristic size of the nonlinear core is above a constant

slightly smaller that unity. Such a ratio is only three times that

measured in a nonlinear glass planar waveguide [35] and can

be overcome in structures like nanowires [36].

5. Discussion

The self-coherent algorithm SCLin1D has been presented for

the scalar approach within the weak guidance approximation.

Neglecting the term ∇[E · ∇ǫr/ǫr], we obtain the equation

�E + k2
0ǫrE = 0. However, for the step-index fibre, while the

weak index contrast is fulfilled in the linear case, as soon as

we have considered the Kerr effect the index contrast increases

and the WGA is not valid any more (see figure 12(a)). For

the microstructured optical fibre, even the linear case does not

obey this approximation (see figure 12(b)). Indeed, the WGA

is only validated if the relative index variation is negligible

on a distance of one wavelength [31]. Consequently, so as

to obtain more accurate results, future studies must deal with

the full vector problem. Such an extension of the present

work is possible since our original numerical method can be

formulated in the vector case [4, 23].

The second issue is the value of the physical power

Pphys. = Pcoh/n2
Kerr of the nonlinear self-coherent solution.

This implies that the stronger the Kerr coefficient n2 (or

n2
Kerr = 2n0n2), the weaker the physical power. Nevertheless,

even if we choose chalcogenide glasses which are known to

have a high Kerr nonlinearity [37, 38], the power of the self-

coherent solution is huge as already computed for the Townes

soliton power [29]. With n2
Kerr = 10−17 m2 W−1, one gets a

soliton power of 2.6 × 104 W at 2 µm for the MOF described

in section 3.3 and 7.4 × 105 W at 10 µm. These results

suggest that the scalar self-coherent solution cannot easily be

validated by experiments. In the scalar approach used in our

study, from a practical point of view the induced increase

in the refractive index of the core or of the matrix is so

important that either other nonlinear effects should be taken

into account or the medium is damaged [39]. However, spatial

optical solitons have already been observed in planar nonlinear

glass waveguides using a 4 × 105 W input at 620 nm using

75 fs pulses [35]. It will be interesting to know if, in the

vector case, the physical power of the self-coherent soliton will

decrease or not so as to make it more accessible to experimental

observation.

The third issue of the discussion concerns the stability

of the self-coherent solutions. This is a difficult problem

since, in the present cases, it requires one to solve a 3D

propagation problem along the waveguide axis. For the fixed-

power solutions, Ferrando et al [17] have already proved that

the spatial solitons are stable under arbitrary perturbations.

They also showed that spatial solitons found at fixed power
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(a) Evolution of the effective indices (b) Evolution of the effective area normalized

with the core area A
0
 =   R 2

core
π

Figure 11. Evolution of the linear and nonlinear effective indices and normalized effective area versus the wavelength for the step-index fibre
described in section 3.1. For the nonlinear case, the SCLin1D algorithm is used.

(a)  Refractive index profile for the step-

index fibre at λ = 1.0    m (see section 3.1

 for a complete description of the structure)

µ
(b)  Refractive index profile according to the

horizontal axis of the microstructured fibre at 

λ = 5.0    m (see section 3.3 for a complete 

description of the structure)

µ

Figure 12. Effective index profile computed from equation (3) in the linear and nonlinear case for the fundamental ‘mode’ of the two fibre
types described in the text.

are stable under both small transverse displacements relative

to the hole cladding and non-perfect launching conditions. In

the case of the self-coherent spatial solitons described in the

present article, a stability analysis should also be performed.

Although this issue is crucial in the case of nonlinear studies,

it is beyond the scope of this initial work.

The last issue concerns the comparison with NLSE

studies, as already mentioned in section 1. The counterpart

of our non-paraxial description of spatial solitons is that

the results we obtain are less general than the NLSE ones

which can be related to both nonlinear optics and Bose–

Einstein condensates [24]. Our results are not obtained

with the powerful methods coming from quantum mechanics

(like functional density approach) [25, 26] but with a more

numerical method well adapted to our non-paraxial problem.

Nevertheless, as long as stationary states are considered, our

approach, which considers the nonlinear Helmholtz equation

as an eigenvalue problem (with the propagation constant as

an unknown), is a better model of Maxwell’s equations in a

nonlinear Kerr-type medium.

6. Conclusions

We have demonstrated that the nonlinear self-coherent solution

found in step-index fibres and solid core MOFs, corresponding

to the spatial soliton with the highest reachable energy avoiding

the self-focusing instability, is different from the Townes

soliton. This solution generalizes the Townes soliton within
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finite size waveguides. This result, built in the frame of a non-

paraxial and scalar approach for stationary solutions, relies on

a new algorithm implemented using the finite element method.

To find the nonlinear self-coherent solution, two distinct

criteria are defined: the convergence of the algorithm to

the required accuracy (the fixed point) and the minimum

of the residue at this point. By solving the eigenvalue

problem, a single nonlinear solution verifying these criteria is

found, for given wavelength and fibre geometry. This single

solution of the eigenvalue problem is obtained with various

initial guesses: the solution of the associated linear problem

(SCLin1D algorithm) and some Gaussian functions (SCGauss2D

algorithm).

So as to verify the numerical results obtained with the

self-coherent algorithm SCLin1D , several comparisons have

been performed. We can adapt our numerical method to

obtain a ‘fixed-power’ algorithm denoted F PF E M . The results

computed with F PF E M are in good agreement with already

published data for MOFs given in [17], called here F PFer .

The comparison between F PF E M and SCLin1D has shown that

the self-coherent solution is obtained at the critical power just

before the self-focusing instability. The SCLin1D algorithm is

shown to be more reliable and more efficient than F PF E M to

find the critical power of the spatial solitons.

Then, the physical meaning of the self-coherent nonlinear

solution of a step-index fibre with a Kerr material core and of

solid core MOFs with Kerr material matrix is discussed. Two

comparisons are made: one with the self-coherent solution

computed for a homogeneous Kerr material and the second

one with the usual Townes soliton computed for the same

structure. From the mathematical point of view the former

problem is a nonlinear eigenvalue problem while the latter is

a two-point boundary value problem (since the dependence

on the propagation is not taken into account.) We have

shown that the self-coherent spatial solitons found for the

step-index fibres and for MOFs are different from those of

the homogeneous nonlinear medium and from the genuine

Townes soliton. In the various structures considered in the

present paper, the dependence of the self-coherent solutions is

described as a function of the wavelength. We have observed

that, as expected, these self-coherent spatial solitons converge

towards the Townes soliton at small wavelengths. We have

also observed that the amplitude of the nonlinear self-coherent

solution depends on the waveguide geometry: the core size for

the step-index fibre, and the air hole radius and number of air

hole rings for the solid core MOFs.

Finally, the study of the refractive index induced by the

nonlinear self-coherent solution has been performed. The weak

guidance approximation and the scalar model are no longer

valid if the self-coherent solution is considered. To tackle this

problem, a study of the full-vectorial version of the proposed

method, including a study of the losses, is under development.
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We report several small-core chalcogenide microstructured fibers fabricated by the “Stack & Draw” tech-
nique from Ge15Sb20S65 glass with regular profiles. Mode field diameters and losses have been measured
at 1:55 μm. For one of the presented fibers, the pitch is 2:5 μm, three times smaller than that already
obtained in our previous work, and the corresponding mode field diameter is now as small as 3:5 μm.
This fiber, obtained using a two step “Stack&Draw” technique, is single-mode at 1:55 μm from a practical
point of view. We also report the first measurement of the attenuation between 1 and 3:5 μm of a chal-
cogenide microstructured fiber. Experimental data concerning fiber attenuation and mode field diameter
are compared with calculations. Finally, the origin of fiber attenuation and the nonlinearity of the fibers
are discussed. © 2008 Optical Society of America

OCIS codes: 160.2750, 060.2310, 060.2270, 060.2280.

1. Introduction

To extend the wavelength range available for light
guiding in microstructured fibers (MFs) toward the
midinfrared is a challenging task, which would allow
the extension of techniques successfully used be-
tween 0.5 and 1:7 μm to longer wavelengths [1,2].
At least two bands are of particular interest, from
3–5 μm and from 8–12 μm due to low atmospheric ab-
sorption, for applications such as light-imaging de-
tection and ranging (LIDAR), or hyperspectral
imaging. Other applications, such as superconti-
nuum generation [3,4] or sensors [5,6], may also be

envisaged. To reach such goals, chalcogenide glasses
are doubtlessly good candidates due to their low bulk
material losses in the midinfrared spectral region
and to their high nonlinear coefficient [7,8]. Only a
few chalcogenide microstructured fibers have al-
ready been reported in the literature because fiber
fabrication has proved to be an extremely difficult
technical task. The first report concerned an irregu-
lar structure obtained by extrusion and made of only
one ring of holes [9] and where no optical character-
ization was given. More recently, we have shown by
using the chalcogenide glass 2S2G (Sb10S65Ge20Ga5)
that the “Stack & Draw” procedure is a useful tool to
build complex and regular MFs made of several rings
of holes [10]. In this previous study, no attenuation
measurement could be realized due to the strong

0003-6935/08/326014-08$15.00/0
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losses of the fibers, and the smallest pitch obtained
was 7:7 μm. Furthermore, only a multimode MF was
obtained. In the work presented here, we describe
the fabrication, characterization, and modeling of
MFs made of chalcogenide glasses from the system
Sb-S-Ge (2SG). This glass was chosen to allow a re-
duction in the overall losses of the fabricated MFs.
The glass losses are given from 1.5 up to 7:5 μm with
a minimum of 0:05dB=m at 2:3 μm and with a value
of 0:39dB=m at 1:55 μm. To the best of our knowl-
edge, no such results have already been published
for this glass. The overall MF losses are measured
at 1:55 μm for all three fabricated MFs, and a full at-
tenuation curve is given from 1 to 3:5 μm for one of
the fibers. We also describe the first chalcogenide
small solid core MF (mode field diameter less than
4 μm) that exhibits single-mode behavior at 1:55 μm.
This MFwas obtained using a two step drawing tech-
nique and its pitch is 2:5 μm, which is more than
three times smaller than that previously obtained.
Its effective area is measured at 10 μm2, which is se-
ven times smaller than the one previously reported
[10]. The main application of such a MF would be
nonlinear based devices such as a supercontinuum
sources in the midinfrared [11,12]. In the present
study, we also give numerical results concerning
mode field diameters and attenuation computed with
or without material losses. Good agreement between
calculations and experimental data is obtained for
the three considered MFs, allowing us to define some
practical rules to improve future fabrication. To the
best of our knowledge, no such comparisons have al-
ready been published previously for chalcogenide
MFs. It is worth mentioning that the first two fibers
we present are necessary for the present study nota-
bly because they enable a better understanding of
the origins of the overall losses in chalcogenide MF
obtained with the “Stack & Draw” procedure. Loss
issues are much more crucial in chalcogenide MF
than in silica ones in which the losses are already
at the dB=km level [13–15].
The article is organized as follows: in Section 2

glass synthesis is described. The fabrication and
characterization of a 2SG monoindex rod are de-
scribed in Section 3. The description of fiber fabrica-
tion and their geometrical characterization is given
in Section 4. Section 5 deals with optical character-
ization of the three MFs with optical losses and mode
field diameters compared to numerical simulation
results. Finally, the origins of the overall losses are
discussed in Section 6, first using numerical simula-
tions and second considering fabrication issues. The
single mode behavior of the MF with the smallest
core at 1:55 μm is demonstrated using numerical si-
mulations. In Section 6 we also evaluate the effective
nonlinearity in this small-core chalcogenide MF.

2. Glass Synthesis

Among the wide variety of chalcogenide glasses, we
have selected the 2SG (Sb20S65Ge15) glass because it
presents a good compromise between its linear and

nonlinear properties. The index of refraction is 2.37
at 1:55 μm, and the n2 is very similar to that of the
2S2G glass (3.2 10–18m2=W at 1064nm, 120 times
higher than that of silica glass) [10]. The glass is
transparent for bulk samples between 600nm and
11 μm, giving the glass a red color. The phonon en-
ergy of this chalcogenide glass is around 350 cm−1

[16]. The partial transparency of this material in
the visible is a useful aid for the glass and fiber fab-
rication process, as eventual defects such as bubbles,
crystals, and refractive index variations can be easily
visualized. This is not the case when working with
selenide or telluride based glasses, which are opaque
in the visible wavelength region. In our previous
work [10], we have used another sulfide glass from
the Sb-S-Ge-Ga system. The current compositional
change is mainly due to the purification process
for this glass, which enables a decrease of the global
fiber loss (see Section 3). The previous glass suffered
from the inclusion of gallium, which has a low vapor
pressure, meaning that complete distillation of 2S2G
glass is not possible. The absence of gallium from the
current glass removes this problem. The degree of
purity of the final material is determined by the con-
tent of impurities in the constituent elements, by in-
troduction of impurities from the apparatus walls
and by contamination of the batch components dur-
ing their loading into the silica tube where the glass
is synthesized. The glass is prepared from high pur-
ity raw materials (5N: 99.999%): antimony, germa-
nium, and sulfur are supplied by Alfa Aesar,
Umicore, and Strem, respectively. However the sul-
fur used still has high levels of OH, water, and
carbon. The required amounts of the different ele-
ments are placed in a silica ampoule under vacuum
(10−5 mbar). Then the sulfur is purified using dehy-
dration and distillation procedures. After sealing,
the ampoule is introduced in a rocking furnace and
progressively heated up to 800 °C. The ampoule is
maintained at this temperature for 12h, before being
quenched in water to allow glass formation and avoid
any crystallization process. The vitreous sample is
then annealed for several hours at the glass tempera-
ture (Tg ¼ 250 °C) to relax the internal mechanical
stress induced by quenching, and it is slowly cooled
to room temperature. A glass rod is subsequently
obtained.

3. Shaping of the Glass and Monoindex Optical Fiber

Fabrication

The realization of microstructured optical fibers re-
quires the preparation of glass tubes. One glass tube
is used for the fiber jacket and another is used to
draw the capillaries that will form the holes of the
fiber. Tubes are fabricated by centrifugation of a
700 °C glass melt spinning at 3000 rpm at ambient
temperature during several minutes (see Fig. 1).
During the rotation cooling occurs, the viscosity
increases, and the formation of a vitreous tube is
obtained after a few minutes. The glass rod is ob-
tained as described in the Section 2.
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Before the fabrication of the MF, we have drawn a
single index fiber from the previous glass rod to con-
trol its quality by measuring the optical losses. The
material losses of the monoindex fiber have been
measured using the cutback technique with a Four-
ier transform infrared spectrometer (Bruker) from
1.5 to 8 μm. Figure 2 shows the typical attenuation
curve of 2SG glass single index fiber after purifica-
tion, obtained via cutback on 20m of fiber. Several
extrinsic absorption bands are present, especially
those associated with the S–H vibration at 4 and
3:1 μm, which are due to a reaction between the glass
and the remaining water in the batch. The carbon
particles and water that are present in the initial sul-
fur are not completely removed during the purifica-
tion process. The extinction coefficient of the S–H
band is equal to 2:5dB=m=ppm [17], which means
that the quantity of S–H in our glass is below
5ppm. The presence of remaining carbon particles
that induce strong scattering behavior [18] explains
the increasing loss observed below 2 μm. The losses
above 6 μm are induced by oxides and multiphonon
absorptions. The losses at 1:55 μm are equal to

0:39dB=m. The minimum attenuation is 0:05dB=m
around 2:30 μm. The reduction of the S–H absorption
band to a reasonable level opens up significant trans-
mission windows in the 3–5 μm region of interest, no-
tably between 4.5 and 5 μm, as well as between 3 and
3:8 μm, with attenuation below 0:5dB=m. The low
loss level reached for the measured attenuation spec-
trum justifies the choice of the 2SG glass.

To ensure the refractive index homogeneity of the
microstructured area, it is necessary that this zone is
made with identical glass. We therefore draw the
core rod for the MF from the same 2SG tube used
for capillaries, collapsed by drawing in a negative
pressure regime. As a consequence, the material
losses of a monoindex fiber made from this rod are
increased from the intrinsic losses, and aremeasured
to be 4:26 dB=m at 1:55 μm, 2:4dB=m at 2:5 μm, and
2dB=m at 5 μm. The origin of this loss increase is the
same as the origin of the increased loss observed for
the fabricated fibers, as described in Section 6. Each
MF presented here is made of capillaries and core
rods originating from the same glass batch.

4. Microstructured Fiber Fabrication

The fabrication of the MF is realized through the
“Stack & Draw” technique which consists of the fab-
rication of a preform presenting the required geome-
trical arrangement of air holes around a solid glass
core [10,19,20]. Capillaries are stacked in a triangu-
lar lattice around the solid core rod of identical dia-
meter, and placed in a larger jacket tube to create the
preform. To exacerbate nonlinear effects a small-core
diameter is needed [21,22]. To decrease the core size,
a microstructured cane with a diameter of 3mm is
drawn from the previous preform and is then in-
serted into a second jacket tube of 4mm inner dia-
meter (see Fig. 3). The jacket tube is collapsed
onto the microstructured rod and this preform is
drawn again, down to the final optical fiber. In this
way the core/clad diameter ratio is reduced without
reducing the overall fiber diameter. We call this
process the two step “Stack & Draw” technique as
opposed to direct fiber draw from the initial preform
(one step “Stack & Draw” technique).

Fig. 1. Chalcogenide glass tube.

Fig. 2. Typical attenuation curve of 2SG glass monoindex fiber,
Φext ¼ 400 μm.

Fig. 3. Jacketing of the stack, drawing and jacketing of the mi-
crostructured stick to get small-core MF.
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It is well known that the high index of refraction of
chalcogenide glass enables a better confinement of
light in conventional solid core MFs compared to si-
lica. While the number of rings can be reduced for an
equivalent core size, several rings are nevertheless
necessary to reduce the confinement losses to below
the intrinsic glass loss [10,23]. Our previous work
[10] shows that, in many cases, three rings of holes
are sufficient to ensure guiding losses belowmaterial
losses of around 1dB=m. In the present paper we re-
port the fabrication of small-coreMFs from 2SG glass
with structures based on three rings of holes. Table 1
summarizes the fabrication process and the geome-
trical specifications of each fiber. Three different fi-
bers have been studied, MF1, MF2a, and MF2b.
Figure 4 shows the cross section of fiber MF1, with

three rings of holes (Nr ¼ 3). The outer diameter
(Φext) is 150 μm, the distance between hole centers
(pitch) is Λ ¼ 11:1 μm, the average hole diameter is
4:7 μm, and the deduced ratio d=Λ is 0.423. The aver-
age size of the triangular interstitial holes is 1:2 μm.
One can observe from Fig. 4 that interstitial holes

are present across the fiber cross section. These extra
holes come from the spaces which exist between the
capillaries when they are stacked. The collapse of the
external tube was not sufficient in this case to close
these holes during the jacketing step of the fabrica-
tion of the preform. A second three hole ring MF was
realized (MF2a) with an outer diameter Φext of
275 μm, a pitch Λ of 14 μm, an average hole diameter
of 6 μm, and an estimated ratio of d=Λ at 0.429. The
preform used for fiber MF2a was subsequently
drawn down to form a cane and jacketed with a sec-
ond 2SG tube to decrease the core/cladding diameter

ratio (Fig. 3). The obtained preform was drawn under
the same atmosphere and temperature conditions as
MF2a. This fiber (fiberMF2b) is represented in Fig. 5,
together with a zoom of the microstructured region.
The characteristics are Φext ¼ 150, Λ ¼ 2:5 μm. This
pitch is three times smaller than that of fibers ob-
tained in our previous work [10]. The measured hole
diameter d is 1:1 μm with a relatively high uncer-
tainty. Other fiber draws with similar structures
and using the same draw conditions have shown that
the d=Λ ratio is conserved in the process used to
draw MF2b from MF2a. Using the d=Λ ration of
M2a (0.429), we estimate a d value of 1:07 μm using
the measured pitch of 2:5 μm, in agreement with the
above value. The measured core size is 4 μm.

The two vertical lines at the bottom of Fig. 5 (left)
are due to the transversal breaking of the fiber when
it was cleaved before analysis. The large hole visible
in the lower part of the holey cladding is explained by
the presence of an interstitial hole between the stack
and the external tube before the jacketing step. The
collapse of the external tube was not sufficient in this
case to close this hole. Moreover these holes at the
edge of the holey region, are the largest of the pre-
form in this kind of stack, and the gas pressure used
during the drawing of the fiber leads to their growth.
One can note that the third ring is not complete.

5. Optical Characterization and Modeling Results

Optical measurements were made on the fibers using
near-field microscopy. An indium metal coating was
applied to inhibit cladding mode guidance. Mono-
chromatic light (λ ¼ 1:55 μm) guided in a single-mode
silica optical fiber is butt-coupled to the 2SGMF. The
typical fiber length used for the measurements was
50 cm. The image of the fiber output was visualized
on an IR camera (Electrophysics) as shown in Figs. 6,
7(a), and 7(b). The output profiles can be accurately
fitted with Gaussian functions.

The mode field diameter (MFD) of MF1 at 1=e2 of
maximum intensity of the fundamental mode is mea-
sured using a Gaussian curve fitted to the mode pro-
file [see Fig. 8(a)]. Along the x axis, the measured
value is 11:0 μm, while the expected value calculated
based on the fiber geometry is 10:7 μm, representing
a relative error of 3%. Along the y axis, the measured
value is 12:2 μm, versus a calculated value of 11:3 μm,
representing a relative error of 8%. We believe that
the source of these discrepancies can be at least
partially explained by uncertainty in the measured
size of the triangular interstitial holes. Attenuation

Table 1. Summary of the Different Drawings

Fiber Process Φfiber (μm)a d (μm) Λ (μm) Deduced d=Λ ratio Losses (dB=m) at 1:55 μm

MF1 One step stack and draw technique 150 4.7 11.1 0.423 13
MF2a One step stack and draw technique 275 6.0 14.0 0.429 15
MF2b b Two step stack and draw technique 150 1.07 2.5 0.429 34

a
Φfiber is the fiber outer diameter. The losses are measured with monochromatic light at 1:55 μm.

bFor fiber MF2b, the value of the hole diameter d has been estimated from the measured pitch and the measured d=Λ ratio of the MF2a,
the measured value of the diameter being 1:1 μm (see the text for the details).

Fig. 4. Picture of the cross section of 2SG fiber MF1.
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for this fiber was measured to be 13 dB=m at 1:55 μm
using the cutbackmethod on a 50 cm fiber length. For
the numerical simulations, it is possible to compute
the overall losses with and without taking into
account the material losses. For the fundamental
mode at 1:55 μm, the computed losses are around
10−2 dB=mwithout material loss and 4:35dB=mwith
material loss. The measured loss is 8:5dB=m above
this minimal threshold. We discuss in Section 6 the
reasons for this difference.
For the second mode at the same wavelength,

the computed losses are approximately equal to
0:14dB=m (without material losses) whereas they
are around 4:57dB=m with them. The similar level
of computed losses of the fundamental mode and
of the second mode explains why this higher order
mode was easily observed [see Fig. 8(b)]. To the best
of our knowledge, this figure represents the first sec-
ond mode profile observed in a chalcogenide MF.
The measurement of optical attenuation for MF2a

at 1:55 μmwas made using the same technique as for
MF1. The attenuation value at 1:55 μm has been
found to be 15dB=m measured by the cutback meth-
od on 50 cm of fiber. The losses have also been re-
corded between 1 to 3:5 μm using a sensitive FTIR
spectrometer (Thermo Electron 5700) adapted to
small-core fiber (see Fig. 9). The image of the fiber
output is visualized on a thermal camera (FLIR)
working from 3 to 5 μm. As for the previous fiber,
an indium metal coating was applied to inhibit clad-
ding mode guidance.
The measurement of attenuation on the FTIR

spectrometer is made with a shorter length of fiber
(≤30 cm) than that realized withmonochromatic light

at 1:55 μm, with a shorter cutback length, perhaps
explaining the difference of the attenuation value
at 1:55 μm between these two measurements (see
Fig. 9). The absorption band centered on 2:9 μm is
due to OH absorption. The peaks at 2.05 and 3:1 μm
are due to resonances from the main SH absorption
peak at 4:1 μm (see Fig. 2). Figure 9 shows that be-
tween 2.3 and 2:7 μm the losses are below 12dB=m.

Figure 10 shows the profile of the output beam at
1:55 μm for theMF2b fiber. Using a Gaussian approx-
imation, experimental measurements give a mode
field diameter (MFD) of 3:5 μm for the x axis and
3:3 μm for the y axis. The corresponding computed
values are, respectively, 3:7 μm and 3:5 μm, giving a
relative error between experimental and computed
values of less than 6%. The losses at 1:55 μm for this
fiber are 34dB=m. The computed losses for the fun-
damental mode at the same wavelength are found to
be around 17:5dB=m without material losses and
around 22:3dB=mwith them.We were not able to ex-
cite the second mode using the same method as for
MF1. We refer to Section 6 for the discussion of these
results.

6. Discussion

Here we discuss the origins of the overall losses in
the different fibers shown in the previous sections.
This issue is crucial since the losses are the current
limiting factor of our MF. Next, we briefly compare
our results with the ones obtained with soft-glass
MFs. We conclude by the determination of the non-
linear parameter of the chalcogenide small-core
MF described in the Section 5. The results presented
here and previous reports [10] show that the “Stack
& Draw” technique is a valid method for the fabrica-
tion of chalcogenide MFs of at least up to three rings.
Some difficulties must still be overcome to obtain a
regular microstructure: homogeneity in hole dia-
meters and control of the interstitial holes. We
now control the size of the holes by a gas setup sys-
tem linked to the preform, but the jacketing step and
the use of a glass with excellent thermomechanical
properties remain the keys for total control of the
profile and of the overall losses.

Measurements show an important difference of
loss level between the initial material losses

Fig. 5. Picture of the cross section of 2SG fiber MF2b,
Φcore ¼ 4 μm.

Fig. 6. Near-field observation of the guided beam at 1:55 μm in
the MF1

Fig. 7. Near-field observation of the guided beam at 1:55 μmwith
indium coating.
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(4:26dB=m at 1:55 μm, see the last paragraph of Sec-
tion 3) and the MF ones, 13dB=m for MF1 and
15dB=m for MF2a at the same wavelength. The dif-
ference is greater for MF2b, 34dB=m at 1:55 μm. To
reduce the losses for future MFs, the results obtained
from numerical simulations are useful to understand
these discrepancies. They clearly indicate that the
limiting factor for the fundamental mode losses of
MF1 and MF2a is the material loss. For the second
mode of MF1, the scenario is the same: the guiding
losses alone are around 0:15dB=m, and the overall
losses reach 4:57dB=m when material loss is consid-
ered. No second mode experimental losses are avail-
able but we can expect that they are slightly more
important than those of the fundamental mode as
suggested by the numerical simulations.
For MF2b, the calculated guiding losses are equal

to 17:5dB=m for the fundamental mode and around
9100dB=m for the second one. When the material
losses are taken into account the fundamental
mode, losses are equal to 22:3dB=m, whereas the
measured losses are 34dB=m. For the second mode,
the computed losses with a lossy material are around
9105dB=m. Consequently, even if the second mode is
only starting to delocalize in the microstructured re-
gion [23–25], the loss ratio between the two modes
explains why the second mode was not found experi-

mentally in MF2b. The MF2b is effectively single-
mode for any practical purpose. The easiest way to
reduce the fundamental mode losses for future small-
core MFs is to decrease the guiding losses. If a simi-
lar fiber to MF2b is considered but with a complete
third ring of holes (see Fig. 5) then the guiding loss is
decreased to 0:11dB=m. With the material losses ta-
ken into account, the overall loss would reach
4:36dB=m for the fundamental mode, which is equal
to the level obtained from the numerical simulation
for MF1 and MF2a. For the second mode with the
same conditions, the calculated loss is 4000dB=m.
As a result, it should be possible using the same
synthesis and drawing processes to get a small-core
single-mode chalcogenide MF with overall losses
around 15dB=m found for MF2a at 1:55 μm. Further
increase in the number of hole rings is unnecessary
since, in this case, the overall loss of the fundamental
mode is set by the material loss of 4:35dB=m, while
the addition of a fourth ring of holes would decrease
the second mode loss to 2266 dB=m.

We now discuss the excess loss compared to the
computed loss even when homogeneous material loss
is considered. This excess is probably due to interface
problems between the capillaries during the differ-
ent drawing steps. These problems are characterized
by scattering centers (bubbles or crystals), local glass
inhomogeneity, and a non total mixing of the glass at
the interfaces that induce diffusion, especially at low
wavelengths. Indeed, we observe that when intersti-
tial holes are present in the preform, especially
around the core, the losses tend to decrease. This is
because the presence of these holes diminishes the
surface of glass–glass interfaces. Another source of
optical losses can be the photosensitivity of germa-
nium sulphide glasses, including photorefraction
and photoinduced anisotropy under sub-bandgap ex-
citation [26].

For soft glasses, the measured losses are 10dB=m
at 1:55 μm for a MF made of the SF-57 Schott glass
[27] and slightly above 4dB=m at the same wave-
length for a MF made of the SF-6 Schott glass [28].
Another study on TeO2-based fibers has shown

Fig. 8. Experimental profiles at 1:55 μmm in the MF1.

Fig. 9. Attenuation curve of MF2a between 1 and 3:5 μm.
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optical losses around 4:5dB=m at 1:55 μm [29]. These
losses are lower than the ones reported in the present
study at the same wavelength for theMFs. Neverthe-
less, the chalcogenide MFs are promising due to
their high nonlinear optical properties. Furthermore,
these soft glasses have higher losses than the 2SG
glass for wavelengths above 2:5 μm. The losses of our
2SG rod are 2:4dB=m at 2:5 μm and the measured
losses of our MF2a fiber are below 12dB=m bewteen
2.3 and 2:7 μm (see Fig. 9).
To end this discussion, we evaluate the nonlinear

parameter of the small-core fiber MF2b. Since the
fundamental mode is well confined in the chalcogen-
ide matrix, we can use the formula γ ¼ 2πn2=ðλAeff Þ
[20]. The effective area Aeff is around 10 μm2. We note
that this effective area is seven times smaller than
that already obtained in [10]. Since n2 is around
10−18 m2=W, γ is approximately equal to 1:3W−1 m−1.
This value is much smaller than the maximal theo-
retical γ computed recently for an As22Se3 conven-
tional fiber taper [30]. Nevertheless, if we take
into account the lengths L of the devices, the compar-
ison is more favorable. We are able to get meter-long
small-core MF, therefore the product ðγLÞMF is equal
to 1:3W−1, whereas for the taper length L is around
20mm, giving a product ðγLÞtaper equal to 3:3W−1.
For future nonlinear devices, MFs have several ad-
vantages. First, the MF can be made polarization-
maintaining; as a result the nonlinear parameter
can be multiplied by a factor 9=8 as explained in Ap-
pendix B of [20]. Second, the MF profile can be de-
signed to manage chromatic dispersion [31,32] to
obtain an anomalous dispersion regime at the sought
wavelength. Third, several meters of regular and re-
producible MF can be obtained using the standard
“Stack & Draw” process.

7. Conclusion

Several 2SG chalcogenide MFs with regular profile
have been fabricated with the “Stack & Draw” pro-

cess. For the first time, to the best of our knowledge,
a small-core (4 μm) chalcogenide MF with single-
mode behavior, at least at 1:55 μm, has been ob-
tained. All the described fibers have been optically
characterized. The numerical results concerning
the MFD are in good agreement with the experimen-
tal data. Concerning optical losses, the numerical
results are coherent with the measured results. Com-
parison between the two has allowed us to optimize
the future small-core MF profile to reduce the overall
losses. A challenging task will be the further reduc-
tion of material loss and the supplementary losses
induced by capillary surface problems. Success in
these tasks will enable a reduction of the overall loss
level for chalcogenide MF to below 3dB=m, which
will open up new opportunities in nonlinear photo-
nics in fibers. Furthermore, due to their infrared
transmittance, the chalcogenide MFs will also be stu-
died to observe nonlinear phenomena above 2 μm.

We acknowledge the French Délégation Générale
pour l’Armement (contracts 05.34.053 and 05.34.008)
and the French ANR (FUTUR contract) for their
financial support.
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Annexe A

Some details of the Multipole Method
derivation

A.1 Derivation of the Wijngaard identity

To generalize the Wijngaard expansion of the field to MOF, we define a functionU(x, y) as

U(x, y) =

{

Ez, r < R0,

0, elsewhere.
(A.1)

ThusU is continuous inside the hole region, because of the continuity of the tangential field component,
while its normal derivative is discontinuous at the boundaries of the inclusions. BothU and its normal
derivative are discontinuous at the jacket boundaryC (r = R0). As a consequence, it can be deduced
from Eqs.2.3and2.4 thatU satisfies, in the sense of distributions [144],

△U + k2
⊥U = s (A.2)

wherek⊥ = ki
⊥ in inclusioni, andk⊥ = ke

⊥ elsewhere. Sources is a singular distribution given by

s =

Nc
∑

j=1

SjδCj − TδC − div(nQδC) (A.3)

with Sj defined at the boundaryCj of the j-th hole as the jump of the normal derivative ofU . Further,
Q andT are, respectively, the limits ofU and its normal derivative atr = R0, where the normaln is
outwardly oriented. The distributionAδC is defined by [144]

〈AδC , ϕ〉 =

∫

C
A(M)ϕ(M)dM (A.4)

M being a point ofC, dM the length of an elementary segment ofC andϕ an infinitely differentiable
function with bounded support.

EquationA.2 can be rewritten as

△U + (ke
⊥)2U =

[

(ke
⊥)2 − (k⊥)2

]

U + s (A.5)

and so in the hole regionU follows from the convolution

U = Ge ⋆
[

s +
(

(ke
⊥)2 − (k⊥)2

)

U
]

, (A.6)

whereGe is the Green function of the Helmholtz equation :Ge = −iH
(1)
0 (ke

⊥r)/4. From Eqs.A.3 and
A.6 U can be reexpressed as

U =

Nc
∑

j=1

Ge ⋆ Dj + Ge ⋆ D, (A.7)
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with

Dj = SjδCj +
[

(ke
⊥)2 − (kj

⊥)2
]

Uj (A.8)

D = −TδC − div(nQδC), (A.9)

Uj =

{

U in thej-th inclusion

0 elsewhere.
(A.10)

Each termVj = Ge ⋆ Dj of the sum on the right-hand side of Eq.A.7 is generated by sources placed
inside or at the boundary of thej-th inclusion and satisfies a radiation condition outside this hole. It can
be identified at any point outside this inclusion as the field scattered by it. Of course, since it satisfies
the homogeneous Helmholtz equation outside thej-th inclusion, in the sense of distributions, it can be
represented in the entire matrix region as a Fourier Bessel series

Vj =
∑

m

BEj
m H(1)

m (ke
⊥rj)e

imθj . (A.11)

The termGe⋆D on the right-hand member of Eq.A.7 is generated by sources jacket boundary and it thus
has no singularity inside this boundary. It can be identifiedas the incident field generated by the jacket
and illuminating the matrix-inclusion region. It can also be represented in a Fourier Bessel expansion

Vinc =
∑

m

AE0
m Jm(ke

⊥r)eimθ. (A.12)

From Eqs.A.7, A.11 andA.12, it can now be shown that in the entire matrix region, the fieldEz can be
represented by the Wijngaard expansion2.20. The same argument can be used for thez component of
the magnetic fieldHz.

A.2 Change of basis

Three changes of basis transformations are required : (i) conversion of outgoing fields sourced on
one cylinder to regular fields in the basis of another cylinder ; (ii) conversion of the regular field sourced
on the jacket boundary to a regular field in the basis of each cylinder ; and (iii) conversion of outgoing
fields sourced at the cylinders to an outgoing field close to the jacket boundary. These are considered
separately below.

A.2.1 Cylinder to cylinder conversion

Here we consider an outgoing cylindrical harmonic wave sourced from cylinderj and derive its
regular representation in the coordinate system of cylinder l. From Graf’s Theorem [22], we derive

H(1)
m (ke

⊥rj)e
im arg(rj) =

∞
∑

n=−∞
Jn(ke

⊥rl)e
in arg(rl)

H
(1)
n−m(ke

⊥clj)e
−i(n−m) arg(clj), (A.13)

so that the total field due to cylinderj is expressed as

∞
∑

m=−∞
Bj

mH(1)
m (ke

⊥rj)e
im arg(rj) =

∞
∑

n=−∞
Alj

n Jn(ke
⊥rl)e

in arg(rl), (A.14)

whereAlj
n , defined in Eqs.2.23 and2.24, denotes the contribution to thenth multipole coefficient at

cylinder l due to cylinderj.
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A.2.2 Jacket to cylinder conversion

From Graf’s Theorem [22] we now have

Jm(ke
⊥r)eimθ =

∞
∑

n=−∞
Jn(ke

⊥rl)e
in arg(rl)(−1)n−m

Jn−m(ke
⊥cl)e

−i(n−m) arg(cl), (A.15)

and from this, the change of basis transform is

∞
∑

m=−∞
A0

mJm(ke
⊥r)eimθ =

∞
∑

n=−∞
Al0Jn(ke

⊥rl)e
in arg(rl), (A.16)

whereAl0
n denotes the multipole coefficient in the basis of cylinderl due to the regular field radiating

from the jacket. Equation2.27is the matrix formA.16.

A.2.3 Cylinder to jacket conversion

The relevant transformation from Graf’s theorem [22] is now

H(1)
m (ke

⊥rl)e
im arg(rl) =

∞
∑

n=−∞
H(1)

n (ke
⊥r)einθ

Jn−m(ke
⊥cl)e

−i(n−m) arg(cl). (A.17)

The contribution from cylinderl to the outgoing field near the jacket boundary is

∞
∑

m=−∞
Bl

mH(1)
m (ke

⊥rl) eim arg(rl) =
∞

∑

n=−∞
B0l

n H(1)
n (ke

⊥r) einθ, (A.18)

which can be written in the matrix notation2.31.

A.3 Boundary conditions : reflection matrices

We consider a cylinder centered at the origin of refractive index n− and radiusa embedded in a
medium of refractive indexn+. To derive the reflection matrices of this cylinder we express theEz and
Hz fields in terms of Fourier-Bessel series in the local cylindrical coordinates(r, θ) inside and outside
the cylinder,

E∓
z (r, θ)=

∞
∑

m=−∞

[

AE∓
m Jm(k∓

⊥r) + BE∓
m H(1)

m (k∓
⊥r)

]

eimθ, (A.19)

for r < a (−) and r > a (+), with similar expressions forKz. Here,k±
⊥ = (k02

n2
± − β2)1/2 are

the transverse wave numbers inside (outside) the cylinder.We introduce the vectorsAE± = [AE±
m ] and

BE± = [BE±
m ], as well as theirK counterparts, and the condensed notation introduced in Eqs. 2.36

and2.37 for Ã± andB̃±. The interpretation of theJ andH terms was given in Section2.2.2. At the
cylinder boundary, reflection and transmission occurs and the waves mix with each other, which, because
of the linearity of the Maxwell equations, can be expressed as a matrix relation between the various
coefficients, as

{

Ã− = T̃−Ã+ + R̃−B̃−,

B̃+ = R̃+Ã+ + T̃+B̃−.
(A.20)

Here,R− andR+ are referred to as interior and exterior reflection matricesof the cylinder, over whereas
T+ andT− are transmission matrices, which do not matter in the analysis below. Note that the first
equation of set (A.20) leads to Eq.2.38, whereas the second leads to Eq.2.37.
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TheR± matrices can be derived from the continuity of the tangential field components at the cylinder
boundary. To do this we need the expressions for theθ components of the fields, which can be expressed
as a function of thez components as [2]

Eθ(r, θ) = i
k2
⊥

(

β
r

∂Ez
∂θ − k ∂Kz

∂r

)

, (A.21)

Kθ(r, θ) = i
k2
⊥

(

β
r

∂Kz
∂θ + kn2 ∂Ez

∂r

)

, (A.22)

wheren is the refractive index. The partial derivatives that appear straightforwardly follow from Eqs.A.19
We can now write the continuity conditions for thez components by equating Eqs.A.19 on the

boundary. Since the resulting equation is valid for allθ, terms with differentm decouple and we find for
eachm

AE−
m J−

m + BE−
m H−

m = AE+
m J+

m + BE+
m H+

m, (A.23)

with the same result forKz. Here we introduced the condensed notationJ±
m = Jm(k±

⊥a), etc.
In the same way we can equate the interior and exterior expressions forEθ andKθ. We then obtain

two equalities of Fourier series ineimθ, in which, again, terms with differentm decouple. These equa-
tions, which are not written out here, in combination with Eq. A.23 and itsKz counterpart are sufficient
to obtain theR matrices.

We first concentrate on the interior reflection matrixR̃− ; we obtain its coefficients by setting the
exterior incoming field to zero :̃A+ = 0. It is now straightforward to solve, for a givenm, the linear set
of equation given to expressAE−

m andAK−
m in terms ofBE−

m andBK−
m by eliminatingBE+

m andBK+
m . We

obtain
{

AE−
m = REE

m
−
BE−

m + REK
m

−
BK−

m ,

AK−
m = RKE

m
−
BE−

m + RKK
m

−
BK−

m ,
(A.24)

with

REE−
m =

1

δm

{

(

α+
J−H+ − α−

H+J−
)

×

(

n2
−α+

H−H+ − n2
+α−

H+H−
)

− m2J−
mH−

mH+2
m τ2

}

,

REK−
m =

1

δm

{

2mτ

πka

k+
⊥

k−
⊥

H+2
m

}

,

(A.25)

RKE−
m = −n2

−REK−
m ,

RKK−
m =

1

δm

{

(

α+
H−H+ − α−

H+H−
)

×

(

n2
−α+

J−H+ − n2
+α−

H+J−
)

− m2J−
mH−

mH+2
m τ2

}

,

where

α±
J±H± =

k±
⊥
k

J ′±
m H±

m (A.26)

with otherα coefficients defined analogously. Further

δm = (α−
H+J− − α+

J−H+)(n2
−α+

J−H+ − n2
+α−

H+J−)

+ (mJ−
mH+

mτ)2 (A.27)

and

τ =
β

ak−
⊥k+

⊥
(n2

+ − n2
−) . (A.28)
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To obtain the exterior reflection matrix̃R+ we setB̃− = 0, and eliminate theA−
m coefficients. This

yields

REE+
m =

1

δm

{

(

α+
J−H+ − α−

H+J−
)

×

(

n2
−α+

J−J+ − n2
+α−

J+J−
)

− m2J+
mH+

mJ−2
m τ2

}

,

REK+
m =

1

δm

{

2mτ

πka

k−
⊥

k+
⊥

J−2
m

}

,

(A.29)

RKE+
m = −n2

+REK+
m ,

RKK+
m =

1

δm

{

(

α+
J−J+ − α−

J+J−
)

×

(

n2
−α+

J−H+ − n2
+α−

H+J−
)

− m2J+
mH+

mJ−2
m τ2

}

.



198 A.3 Boundary conditions : reflection matrices



Annexe B

Computing band diagram using the Finite
Element Method

B.1 Periodic waveguides

B.1.1 Bloch Modes

Though real structures are finite and one is often interestedin the study of defects, the determination
of modes in ideal periodic structures is of foremost importance. It allows us to compute band diagrams
that are truly useful in MOFs studies (see Chapter3).

The Floquet-Bloch theory reduces the problem to the study ofa single cell as discussed in refe-
rences [6, 105, 106]. The purpose of this section is to show how to combine this feature with finite
element modelling in order to obtain numerical solutions for propagating modes in periodic structures.
We consider a structure still invariant along thez-axis but now also periodic in thexy-plane. Given two

β = kz

kx

ky

Uk(x, y, z, t) = U(x, y)ei(kxx+kyy+βz−ωt)

FIG. B.1 – A system with a continuous translational invariance along thez-axis together with a two-
dimensional periodicity in thexy-plane and the general form of propagating modesUk(x, y, z, t).

linearly independent vectorsa andb in thexy-plane, the set of pointsna+ mb is called thelattice. The
primitive cellY is a subset ofR2 such that for any pointr′ of R

2 there exist uniquer = xex + yey ∈ Y
andn,m ∈ Z such thatr′ = r+na+mb. A functionU(r) is Y -periodic if U(r+na+mb) = U(r) for
anyn,m ∈ Z. The waveguide isY -periodic if εr(x, y) andµr(x, y) areY -periodic functions. Possible
PEC’s and PMW’s have boundaries that form aY -periodic pattern.

The problem reduces to looking for solutionsUk that have the form[6, 145] :

Uk(r) = eik·rU(r) = ei(kxx+kyy)U(x, y) , ∀ (x, y) in R
2 (B.1)

whereU(x, y) is aY -periodic function andk = kxe
x + kye

y ∈ Y ∗ ⊂ R
2 is a parameter (the or quasi-

momentum in solid state physics).Y ∗ ⊂ R
2 is thedual cell (first Brillouin zone), i.e. the primitive cell

of the reciprocal latticedetermined by the two vectorsa∗ andb∗ such thata∗ · a = 2π, a∗ · b = 0,
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b∗·a = 0, b∗·b = 2π (it is worth noting that this dot product is in fact a duality product :k·r =< k, r >).
Such solutionsUk are said to be(k, Y )-periodic in the sequel (though they are not periodic but almost-
periodic).

To specify the class of solutions of our spectral problem, one introduces the Hilbert space

[L2
♯ (k, Y )]

3
=

{

Uk|Y ∈ [L2(Y )]3 , Uk is (k, Y )-periodic
}

(B.2)

of (k, Y )-periodic square integrable functions with values inC
3.

The pair(Ek,Hk) associated with the Bloch vectork is called anelectromagnetic propagating Bloch
modeif Ek andHk are(k, Y )-periodic fields satisfying the spectral problem :

{

curlβ Hk = −iωε0εr(x, y)Ek

curlβ Ek = iωµ0µr(x, y)Hk

(B.3)

with :










(β, ω,k) ∈ R+ × R+ × Y ∗

(Ek,Hk) 6= (0,0)

Ek,Hk ∈ [L2
♯ (k, Y )]

3

(B.4)

Looking for solutions that are Bloch functions in[L2
♯ (k, Y )]

3 ensures the well-posedness of this spectral
problem, as a replacement for the Sommerfeld radiation condition (or other decaying conditions for the
far field) which is usually imposed in the presence of compactobstacles in the medium.

The finite element formulation is completely identical to the non-periodic one. The only difference
is that the study is now reduced to the primitive cellY which is meshed and in which the integrations are
performed. Some technique must be found to ensure that the solution is a(k, Y )-periodic Bloch mode.
This can be imposed by using special boundary conditions as explained in the next section.

B.1.2 The Bloch conditions

Uk(x − 1, y) =

Uk(x, y)e−ikx Uk(x, y)

Uk(x + 1, y) =

Uk(x, y)e+ikx

Uk(x, y − 1) =

Uk(x, y)e−iky

Uk(x, y + 1) =

Uk(x, y)e+iky

FIG. B.2 – Bloch theorem and virtual periodic mesh withΛ = 1.

In order to find Bloch modes with the method, some changes haveto be made with respect to classical
boundary value problems which will be named [146]. For the sake of simplicity, one considers first a
square cellY =]0, 1[×]0, 1[ as an example. To avoid tedious notation, the case of a scalarfield Uk(x, y)
(time andz dependence are irrelevant here and it is no particular problem to extend this method to vector
quantities and edge elements) is considered on the square cell Y with Bloch conditions relating the
lefthand and the righthand sides (Fig.B.2). The set of nodes is separated into three subsets : the nodeson
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the left side,i.e. with x = 0, corresponding to the column array of unknownsul, the nodes on the right
side, i.e. with x = 1, corresponding to the column array of unknownsur, and the internal nodes,i.e.
with x ∈]0, 1[, corresponding to the column array of unknownsu. One has the following structure for
the matrix problem (corresponding in fact to natural boundary conditions,i.e. Neumann homogeneous
boundary conditions, as the degrees of freedom on the boundaries have to be kept as unknowns in the
problem) :

A





u
ul

ur



 = b (B.5)

whereA is the (square Hermitian) matrix of the system andb is the right hand side. The solution to be
approximated by the numerical method is a Bloch functionUk(x, y) = U(x, y)ei(kxx+kyy) with U being
Y -periodic and in particularU(x+1, y) = U(x, y). Therefore, the relation between the lefthand and the
righthand sides is :

Uk(1, y) = U(1, y)ei(kx+kyy) = Uk(0, y)eikx ⇒ ur = ule
ikx (B.6)

The set of unknowns can thus be expressed as a function of the reduced setu andul via :




u
ul

ur



 = P

(

u
ul

)

with P =





1 0
0 1
0 1eikx



 (B.7)

where1 and0 are identity and null matrices respectively with suitable dimensions. The finite element
equations related to the eliminated nodes have now to be taken into account. Due to the periodicity of
the structure, the elements on the left of the right side correspond to elements on the left of the left side
(Fig. B.2). Therefore their contributions (i.e. the equations corresponding tour) must be added to the
equations corresponding toul with the right phase factor, i.e.e−ikx , which amounts to multiplying the
system matrix byP∗ (the Hermitian ofP). Finally, the linear system to be solved is :

P∗AP

(

u
ul

)

= P∗b (B.8)

where it is worth noting that the system matrix is still Hermitian, which is important for numerical
computation. Now a generalized eigenvalue problem (with natural boundary conditions)Au = λBu is
transformed to a Bloch mode problem according toP∗APu′ = λP∗BPu′ which is still a large sparse
Hermitian generalized eigenvalue problem.

B.1.3 A first numerical example

As an illustration, the Bloch finite element method will be used to reproduce the results presented in
[107], where they were obtained using a plane wave method. The inclusion parameters areR = 0.48Λ
for the radius andεr = 1.0) for the relative permittivity. The matric hasεr = 13.0.

The basic cell is a rhombus made of two equilateral triangles: the lattice vectors area = Λex and
b = Λ

2 ex + Λ
√

3
2 ey whereΛ is the nearest neighbour distance,i.e. the length of the sides of the cells.

This cell contains a circular air inclusion (radiusR = 0.48Λ, so that the filling fractionf = 0.8358, and
εr = 1.0) surrounded by solid dielectric material (εr = 13.0). The vectors of the reciprocal lattice are
a∗ = 2π

Λ ex − 2π
√

3
3Λ ey andb∗ = 4π

√
3

3Λ ey and the first Brillouin zone is hexagonal. The irreducible part
can be represented by the triangle with verticesΓ = (0, 0), M = (0, 2π√

3Λ
), andK = ( 2π

3Λ , 2π√
3Λ

). The
basic cell is meshed with4628 triangles. These data are summarised in FiguresB.3 andB.4. Note that
the circular inclusion is too large to fit as a single piece inside the basic cell hence the splitting into four
parts in the corners.

The Bloch boundary conditions connect the degrees of freedom on opposite sides of the rhombus :
the degrees of freedom on the lower lefthand side are equal tothe corresponding ones on the upper

righthand side multiplied by a phase factor equal toei(−kx
Λ
2
−ky

√
3Λ
2

) and the degrees of freedom on the
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(a) Meshing of a basic rhombic cell
with 4628 triangles.

y

b

a

x

(b) Representation of some lattice cells
with the lattice vectorsa = Λex and

b = Λ
2
ex + Λ

√
3

2
ey.

x

y

ei(kxΛ/2)−(ky

√
(3)Λ/2)

e−i(kxΛ/2)+(ky

√
(3)Λ/2)

(c) Factors used to set the Bloch
conditions on the adjacent borders of

the basic cell

FIG. B.3 – Example of two-dimensional periodic structure : the triangular lattice of cicular inclusions.
The basic cell is rhombic with a side lengthΛ with a circular air inclusion with a radiusR = 0.48Λ.

lower righthand side are equal to the corresponding ones on the upper lefthand side multiplied by a phase

factor equal toei(+kx
Λ
2
−ky

√
3Λ
2

).
The dispersion curves shown on Fig.B.5 correspond to pulsationsω (only theω such thatω < 2πc

Λ
are represented here) of the propagation modes associated with a given value of the propagation constant
β (βΛ = 0.0, 2.0, 4.).

The value1.0 is given toΛ for the numerical computations. The boundary of the irreducible Brillouin
zone is sampled with 120 points (40 on each side of the triangle). The results are in good agreement with
those of [107].

B.1.4 Band diagram and bandgaps

As can be seen in Fig.B.5, the formulation chosen to solve the system (B.3) fixes theβ-value and
compute the possibleω. Another way to proceed is avalaible as mentioned in Chapter3) and can be
more useful from the practical point of view for MOF studies :it is to fix ω (or equivalentlyλ) and
to computed the possibleβ. This approach has at least two advantages. First, it permits to take into
account easily the material dispersion since this last depends onλ and not onβ. Secondly, the results
can be compared directly with the ones obtained for finite size MOFs by the multipole or the FFF-mode
searching methods described in chapter2.

As a result, at a fixed wavelength we compute the propagation constantsβ of the modes allowed
in the periodic structures using the method described in theprevious section of this appendix. Actually,
we compute only a finite number of these modes in some given range for the propagation constant. We
repeat this operation for all the wavelengths of interest inorder to get the correspondingband diagram.

Since one of the key features is the existence ofbandgapwithin these band diagrams, we must not
miss some modes of the periodic structures to ensure a valid building of the band diagram. To limit the
number of these missing modes, we follow not only the bordersof the irreducible Brillouin zone like
we did to get Fig.B.5 but we also sample the whole region in a regular way as shown inFig. B.4(b).
Proceeding in this way we obtain band diagram like the one shown in Fig. B.6. The periodic structure
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kx

M

Γ

K

b*

a*

ky

(a) Some cells of the reciprocal lattice with the
lattice vectors

0
2 

π 
/ (

 3
1/

2  Λ
)

0 2 π / (3 Λ)

Γ

KM

(b) Example of sampling points in the irreducible
part of the Brillouin zone (IBZ) for a triangular

lattice. 210 points are used in this case to sample in
2D the IBZ. Among them, 57 points are on the

three side of the triangleΓ − M − K.

FIG. B.4 – For the two-dimensional periodic structure of Fig.(B.3, representation of some cells of the
reciprocal lattice with the lattice vectorsa∗ = 2π

Λ ex − 2π
√

3
3Λ ey andb∗ = 4π

√
3

3Λ ey and the irreducible
part of the first Brillouin zone represented by the triangle with verticesΓ = (0, 0), M = (0, . 2π√

3Λ
), and

K = ( 2π
3Λ , 2π√

3Λ
).

modelized is the one used in section3.3.1. The pitchΛ = 5.7816µm, the hole diameter is4.026µm and
the refractive index of theses holes is fixed to 1.0, the matrix relative electric permittivity being 1.9321
(nmat = 1.39).

From these diagrams built from a finite set of modes, one can extract numerically the limits of the
observed bandgaps. We also build such a tool to get automatically the contours of the bandgaps. This
tools is able to determine them for all the tested configurations. Several examples are shown in Fig.B.7 :
one extracted from the results shown on Fig.B.6 and two others from configuration with higher values
of nmat.
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(a) βΛ = 0.0
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(b) βΛ = 2.0
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(c) βΛ = 4.0

FIG. B.5 – Dispersion curves corresponding to Bloch waves in classical (a) and conical mounting for
two values ofβ (b) and (c) in the lattice of Fig. (B.3). In these examples only the bordersΓ−M −K−Γ
of the irreducible Brillouin zone are sampled.
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(a) Whole view of the band diagram.
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(b) Zoom of the band diagram around the light
line.

FIG. B.6 – Computed Band diagram of a triangular lattice of circular inclusions of low refractive index
ncyl = 1 in a high refractive index matrixnmat = 1.39. The white region represent the parameter space
in which no modes can propagates in the periodic structures,i.e. f ull finite photonic bandgaps.
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7.9 µm, andΛ = 10µm.

0.50

1.00

1.50

2.00

2.50

 0.6  0.65  0.7  0.75  0.8  0.85  0.9  0.95  1  1.05  1.1

n
ef

f

Λ/λ

(b) nmat = 2.9095 and diameterd is
7.625 µm, andΛ = 10 µm.

FIG. B.7 – Computed Band diagram of three different triangular lattices of circular inclusions of low
refractive indexncyl = 1 in high refractive index matrices.
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air guidance, voir guiding mechanism
angular frequency,17
AntiResonant Reflecting Optical Waveguide mo-

del, voir ARROW
approximate models,85
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band diagram,69, 206
ARROW,106

bandgap,206
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Bessel equation,19
Bloch

conditions,204
modes,204
vector,203
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boundary conditions,23, 26, 199
Brillouin zone,203, 205

irreducible,207
Broyden algorithm,28
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change of basis,20, 22, 198
chromatic dispersion,87
cladding region,17, 93
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component

transverse,34
confined state,75
conical mounting,16
constante de propagation,10
constitutive relation,48
convergence region,18
cross section,34, 58
cumulative numerical errors,32
cutoff, 75

Q parameter,75
fundamental mode,70
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second mode,74

defect

acceptor,69
donor,69

degeneracy,27
non-degenerate,25
two-fold degenerate,25

determinant,27
differential method

classical,55
dispersion,29
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number of rings,89
scaling properties,88
ultraflattened,88, 90

curve,29, 31, 69, 88, 93, 94, 99, 106, 108, 206
limiting , 89
material,87
parameter,87
slope,89
waveguide,87

refractive index,89
dual cell (first Brillouin zone),203

effective area
normalized,74

effective index,17, 72
effective radius

normalized,74
electromagnetic propagating Bloch mode,204
endlessly single-mode,73
equation

first order differential,48
extended state,75

factorization rules,48
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convergence,55
fibre

microstructured
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solid core,68, 71

photonic crystal,93
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field

regular incident,22
field identity,24
finger diagram,94
finite element method

band diagram,203
bloch conditions,204
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periodic boundary conditions,94

Fourier coefficients,49
Fourier-Bessel series,19
free space wavenumber,17
fundamental mode,34, 71
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gaine optique,9
glass

chalcogenide,71, 89, 98
high refractive index,97
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Graf’s addition theorem,16, 22
group velocity dispersion,87
guiding mechanism,69

bandgap guidance,69
modified total internal reflexion,69

HE/EH classification,34
Helmholtz equation,17
hollow core

see fibre,93
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impedance of free space,17
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circular,16
inhomogeneous,61
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parabolic refractive index,61
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lattice,203
light line, 94
loss

curve,74
decrease,75
minima,96

loss transition parameter,75, 84
losses

confinement,71

magnetic field
scaled,17

matrix
scattering

inverse,50
scatteringS, 20, 44, 49
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transmission,50, 61
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method
Fast Fourier Factorization,48
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minimal sector,26
mode,24

air-guided,94
avoided crossing,106, 108, 110
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class,25
confined,75, 82
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extended,75
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transition diagram,85
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fundamental space filling,69, 86
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second,74

transition,74
transition,82
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modes guidés,10
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MOF
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design procedure,90
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surface mode,99

sectorial,58
Multipole Method,16

simplified approach,16
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phase diagram, see cutoff75,75

generalized,76
photonic bandgap
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semi-finite,69

photonic bandgaps,94
photonic crystal

cladding,93
photonic crystal fibre, voir MOF
pitch,32
Poynting vector,30
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propagation constant,17, 94

Rayleigh identity,24
Rayleigh scattering,72
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reflection matrices,199
region of convergence,18
regular

field, 19
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scattering operator
linear,20

second mode, voir mode
Sellmeier expansion,30, 71
single-mode

endlessly,76
singular

singular,19
symmetry properties,25
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symmetry group
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transition
fundamental mode,82
fundamental mode region,87
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transition diagram
fundamental mode,85

transition region
fundamental

mode,84
transmission matrices,199
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truncation errors,32
truncation order parameter,27, 32
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