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Preface 

 

s technology enters the nanometer era, the traditional Corner-based Timing Analysis 

(CTA) is predicted to no longer fully address the needs of IC designers in the near future. 

This prediction has urged the rapid development of Statistical Static Timing Analysis (SSTA). 

Since 2003, thousands of papers have been published in this field. However, SSTA is still in the 

very beginning state and much work needs to be done to improve it. Our research is on this front 

topic. 

This thesis is organized into six chapters. The first chapter defines the problem of timing verifica-

tion and discusses the need of SSTA. Chapter 2 focuses on the present state of SSTA. In 

Chapter 3, we introduce our path-based SSTA framework. Chapter 4 presents an improved 

method for timing characterization, which is a step to collect data to feed our SSTA engine. In 

Chapter 5, we apply the proposed SSTA framework and compare its results with those of 

CTA. Finally, Chapter 6 gives the conclusions and future work. 
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Chapter 

1 

Introduction 

 

This chapter first introduces the notions of propagation delay and timing constraint. Then, the 

problem of timing verification is defined. Section 1.2 presents briefly the traditional Corner-

based Timing Analysis (CTA), which has been widely used for timing verification in the past 

twenty years. In Section 1.3, we analyze the pessimism of CTA and conclude that this pessim-

ism is increasing as the feature sizes are shrinking, which results in the need of Statistical Static 

Timing Analysis (SSTA). Finally, the outline of the thesis is given. 



Chapter 1  Introduction 

2 

 

ontinuing advances in design techniques and fabrication process technology are leading to 

the design and manufacturing of very high performance Integrated Circuits (IC), i.e. high 

speed and low power consumption IC. The ever higher demand of performance from consumers 

allows for less and less design margins. In consequence, the propagation delay of an IC needs to 

be checked against increasingly tighter timing constraints that are related to the expected perfor-

mance. At the same time, with the rapid decrease of minimum feature sizes, the effects of fabrica-

tion process fluctuations on timing characteristics are becoming significant. As a result, the tradi-

tional Corner-based Timing Analysis
1
 (CTA) is predicted to no longer fully address the needs of 

IC designers in the near future. 

CTA has been a simple and efficient method for the timing verification of modern IC designs. By 

describing process and environmental variations with corners, gate-level delays (the basic primi-

tives) of IC turn into deterministic quantities, and therefore are easy to be propagated. In micronic 

technologies, process variations are relatively small compared to supply voltage and temperature 

variations, so that modeling variations with extreme values produces acceptable outcomes. How-

ever, as technology enters the nanometer era (< 90 nm), it becomes difficult to construct guaran-

teed bounds on the circuit delay probability distribution without being overly conservative. Such 

pessimism of corner-based design methodologies leads to an increase in design effort, or a reduc-

tion of the relative timing performance to previous generation levels [1]. As a consequence, 

Statistical Static Timing Analysis (SSTA), which is considered as the replacement of CTA, has 

been developed and received considerable attention in the domain of Computer-Aided-Design 

(CAD) in the last few years. Rather than simply determine corners and attempt to arrive at a 

single value for delays, statistical timing engines propagate probability distributions. This statis-

tical technique is more reasonable than CTA in nature and offers much more accurate estimation 

of actual circuit performance. Recent works [1], [2] claim that SSTA is absolutely necessary for 

future IC design. 

 

                                                      
1
 Also called Static Timing Analysis (STA). In this thesis, we use CTA in order to avoid confusion with another 

abbreviation: Statistical Static Timing Analysis (SSTA). 

C 



Section 1.1  Timing Verification 

3 

 

1.1  Timing Verification 

A successful digital IC design must provide the intended functionality and operate at the speed 

defined in the design requirements. Manufactured circuits that do not meet the specified timing 

constraints may be functionally incorrect and hence cannot be sold, or have to give up the mar-

ket-related design goal by slowing down the speed. Consequently, a designer must perform  

timing verifications at numerous development steps before fabrication. 

The essential objective of timing verification is to guarantee that circuit propagation delay satis-

fies the timing constraints given by the specifications. This is done by identifying the critical 

paths of a circuit, i.e. those paths that have the maximum delay. This information about critical 

paths can be used to decrease circuit delay, which is necessary if some timing constraints are 

violated, and is required to increase the clock frequency during design optimization. In addition, 

there are timing-verifiers that downsize high-speed gates along non-critical paths in order to save 

power consumption.  

In the process of timing verification, the most crucial task is to estimate propagation delay, which 

is greatly affected by two sources of variations. The first source comprises environmental varia-

tions, such as supply voltage and temperature dispersions that arise during circuit operation. The 

second source comes from process variations due to manufacturing dispersions. In order to tole-

rate these variations, the timing behaviors of circuits need to be checked against the timing con-

straints under all possible combinations of environmental and process characteristics. 

1.1.1 Propagation delay 

In physics, propagation delay is the amount of time for a signal to travel to its destination. In 

digital circuits, it is usually defined as the interval between the time when the input waveform 

crosses the 50% point of its maximum supply voltage value 𝑉𝑑𝑑 , and the time when the corres-

ponding output waveform crosses the same threshold. The transition time (or slope) of a wave-

form is the time needed to switch from one stable state to another, such as from 0 to 𝑉𝑑𝑑  or the 

contrary. To avoid the effects of noises, especially those appearing at the head and the tail of a 

waveform, this transition time is defined as the time spent by the signal to go from x% to y% of 
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𝑉𝑑𝑑 . In this thesis, all slopes are measured using the 20% – 80% specification. Figure 1.1 illu-

strates the definitions of propagation delay and slope. Note that a waveform can be classified into 

one of the two types:  

 rising edge is the transition of a digital signal from 0 to 𝑉𝑑𝑑 ; 

 falling edge is the 𝑉𝑑𝑑  to 0 transition. 

 

A digital IC consists of millions of transistors, organized into logic gates. Thus, propagation 

delay through a logic gate, called gate delay, is the fundamental element for timing verification. 

The factors that affect gate delay include:  

a) gate type (𝐼𝑁𝑉, 𝐴𝑁𝐷,𝑂𝑅,…), input pin (𝐴, 𝐵, …), and output edge (either rising edge 

or falling edge, abbreviated respectively to 𝑅, 𝐹); 

b) process parameters 𝑃 = (𝑝1, 𝑝2, … , 𝑝𝐿)，where 𝑝𝑙 , (𝑙 = 1, 2, … , 𝐿) represent physical 

parameters, such as effective channel length 𝐿𝑒𝑓𝑓 , oxide thickness 𝑡𝑜𝑥 , etc; 

c) environmental parameters: temperature 𝑇 and supply voltage 𝑉𝑑𝑑 ; 

d) operating conditions: input slope 𝜏𝑖𝑛  and output load
2
 𝐶𝑜𝑢𝑡 .  

                                                      
2
 Load indicates all objects that are connected to the output of a gate: a capacitor, a resistor, a mixture of them, etc. 

 

 

Figure 1.1 Illustration of propagation delay and slope 

http://en.wikipedia.org/wiki/Digital_signal
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In general, gate delay is a complicated nonlinear function of the above factors, especially in the 

case where two or more inputs of a multiple-input gate switch simultaneously. To make gate 

delay modeling possible, it is necessary to set the assumption that only one input switches at any 

time for a multiple-input gate. Under such an assumption, given the gate type, input pin and 

output edge, the pin-to-pin gate delay can be modeled by:  

  𝑔𝑑 = 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒  𝑃, 𝑇, 𝑉𝑑𝑑 , 𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡                                              (1.1) 

where 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒  is a function specific to gate type, input pin and output edge. As an example, 

for the two-input 𝑂𝑅 gate in Figure 1.2, there are four possible functions. Hence, under the 

single switching input assumption, the gate delay will take one of the four values outputted by the 

following functions  𝑓𝑂𝑅,𝐴,𝑅 , 𝑓𝑂𝑅,𝐴,𝐹 , 𝑓𝑂𝑅,𝐵,𝑅 , 𝑓𝑂𝑅,𝐵,𝐹  according to gate type, input pin, and output 

edge. 

 

Note that in the rest of this thesis, the delay of gate 𝑘 will be denoted by 𝑔𝑑𝑘  for simplicity. This 

implies that the indices of the function 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒  and all its parameters are known from the 

context. 

 

    𝑔𝑑 = 𝑓𝑂𝑅,𝐴,𝑅 𝑃, 𝑇, 𝑉𝑑𝑑 , 𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡               𝑔𝑑 = 𝑓𝑂𝑅,𝐴,𝐹 𝑃, 𝑇, 𝑉𝑑𝑑 , 𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡   

 

 

    𝑔𝑑 = 𝑓𝑂𝑅,𝐵,𝑅 𝑃, 𝑇, 𝑉𝑑𝑑 , 𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡                𝑔𝑑 = 𝑓𝑂𝑅,𝐵,𝐹 𝑃, 𝑇, 𝑉𝑑𝑑 , 𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡   

 

Figure 1.2 Pin-to-pin gate delays of a two-input OR gate 
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With the above gate delay definition, propagation delay can be extended to circuit-level. Consider 

a combinational circuit block which is composed of 𝐾  gates and has 𝐼  input pins 𝐴𝑖 , (𝑖 =

1, 2, … , 𝐼) and 𝐽 output pins 𝑍𝑗 , (𝑗 = 1, 2, … , 𝐽). As defined in Section 1.1.1, a transition is a 

change of states. Therefore, we may define ℾ as the set of all possible transitions at all the input 

pins 𝐴𝑖 , (𝑖 = 1, 2, … , 𝐼) of the circuit. But only a subset Γ𝐴𝑖 ,𝑍𝑗  of ℾ produces an effective signal 

propagation
3
 from the input pin 𝐴𝑖  to the output pin 𝑍𝑗 .  

For 𝛾𝑖𝑛 ∈ Γ𝐴𝑖 ,𝑍𝑗 , we can first calculate all gate delays 𝑔𝑑𝑘 , (𝑘 = 1, 2, … , 𝐾) considering the con-

text of operation, i.e. the related 𝑃𝑘 , 𝑇𝑘 , 𝑉𝑑𝑑 ,𝑘 , 𝜏𝑖𝑛 ,𝑘 , 𝐶𝑜𝑢𝑡 ,𝑘 , (𝑘 = 1, 2, … , 𝐾) are known for each 

gate; Next, the circuit delay 𝑐𝑑𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
 from the input pin 𝐴𝑖  to the output pin 𝑍𝑗  is computed by: 

𝑐𝑑𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
= 𝑕(𝑔𝑑1, 𝑔𝑑2 , … , 𝑔𝑑𝐾)                                                            1.2  

The function 𝑕 in Equation (1.2) is simple, and involves only the essential operations SUM 

and MAX/MIN. However, since timing verification has entered the statistical era, estimation of 

𝑐𝑑𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛  has become a challenging task due to the fact that the MAX/MIN of random variables 

is difficult to determine. 

1.1.2 Timing constraints 

In the present-day field of microelectronics, almost all digital ICs can be simply described as a set 

of flip-flops that link different circuit blocks together. Figure 1.3(a) shows a diagram, in which 

a cloud represents a circuit block made of logic gates, while flip-flops are used to synchronize 

actions of circuit blocks with the help of a global clock signal. In Figure 1.3(a), considering 

propagation delay, it is rare that the output data of 𝑍11  and 𝑍12 , which is required respectively by 

𝐴21  and 𝐴22 , arrives at the same moment. With flip-flops and an active clock edge used as con-

trol signal, difference in propagation delays is eliminated and the needed values are transferred 

simultaneously to the corresponding input 𝐴21  and 𝐴22  of the following circuit block. 

 

                                                      
3
 The propagation delay is non-null. 
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A simplified flip-flop is shown in Figure 1.3(b) and consists of a data input D, a clock input 

CLK, and an output Q which always takes on the state of the input D when the active clock edge 

is switching. However, such synchronous scheme is prone to the following meta-stability     

problem that happens when a data is changing at the instant of an active clock edge: the output 

may behave unpredictably, take much more time to settle to its correct state, or even oscillate 

several times before settling. This problem can be avoided by ensuring that the data is held valid 

and constant for specified period before and after the clock rising edge, called the setup time and 

the hold time respectively. The setup time is the minimum time before the arrival of an active 

clock edge during which the input data must be valid for reliable latching. Similarly, the hold 

time represents the minimum time during which the data input must be held stable after the active 

clock edge.  

 

Figure 1.4 illustrates the setup time and hold time constraints with a simple block. If the clock 

period 𝑇𝐶𝐿𝐾  is given, then for any input transition 𝛾𝑖𝑛 ∈ Γ𝐴𝑖 ,𝑍𝑗 , the two timing constraints can be 

expressed mathematically by: 

𝑔𝑑 𝐶𝐿𝐾0→𝐶𝐿𝐾𝐴1  
+ 𝑔𝑑 𝐶𝐿𝐾𝐴1→𝐴1 

+ 𝑐𝑑𝐴1 ,𝑍1 ,𝛾𝑖𝑛
< 𝑔𝑑 𝐶𝐿𝐾0→𝐶𝐿𝐾𝑍1  

− 𝑑𝑠𝑒𝑡𝑢𝑝 + 𝑇𝐶𝐿𝐾                 (1.3) 

𝑔𝑑 𝐶𝐿𝐾0→𝐶𝐿𝐾𝐴1  
+ 𝑔𝑑 𝐶𝐿𝐾𝐴1→𝐴1 

+ 𝑐𝑑𝐴1 ,𝑍1 ,𝛾𝑖𝑛
> 𝑔𝑑 𝐶𝐿𝐾0→𝐶𝐿𝐾𝑍1  

+ 𝑑𝑕𝑜𝑙𝑑                                (1.4) 

where 𝑔𝑑 𝑋→𝑌   indicates any possible delay propagating from pin 𝑋 to pin 𝑌, and 𝑑𝑠𝑒𝑡𝑢𝑝 , 𝑑𝑕𝑜𝑙𝑑  

are respectively the setup time and the hold time of the flip-flop 𝐹𝐹𝑍1
. 

       

(a) Diagram of digital IC                   (b) Simplified flip-flop 

 

Figure 1.3 Diagram of digital IC: a set of flip-flops linking circuit blocks 
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Theoretically, if the setup time constraint (1.3) is violated, slowing down the clock will increase 

the clock period 𝑇𝐶𝐿𝐾  and enable the right value to be latched. On the other hand, if a hold time 

violation problem occurs, it cannot be solved by giving up the design specifications and will lead 

to functional faults. 

1.1.3 Source of variations 

Among all the factors that affect propagation delay discussed in Section 1.1.1, gate type, input 

pin, and output edge are known and fixed; the others are variational. These variations are directly 

or indirectly caused by two types of sources. First, environmental variations, as the name    

suggests, are variations of the surrounding environment in which a circuit sits during its operation. 

These variations include temperature variations and variations in supply voltage. Figure 1.5 

gives an example of the environmental variations across an IC. The uneven supply voltage distri-

bution and the spatial variations of temperature shown in Figure 1.5, come from the variation 

in switching activities. From the two panels of this figure, it is obvious that the components 

contained within the IC work under different supply voltage and temperature conditions. To 

avoid the loss of accuracy when estimating propagation delay, a reasonable model to describe and 

predict the environmental variations is required. But the modeling task is challenging because 

this category of variations is time-dependent. 

 

 

Figure 1.4 Setup time and hold time constraints of flip-flop 𝐹𝐹𝑍1
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The second source of variations is process variations from perturbations in the fabrication 

process and physical limitations. These manufacturing variations cause deviations (from intended 

or designed values) of physical parameters and thus have significant impact on propagation delay. 

Unlike time-varying environmental variations, physical parameters are essentially permanent 

after the fabrication. However, during the design procedure, the randomness of some of these 

process variations must be taken into account. This randomness leads to the fact that propagation 

delays in Equations (1.1) – (1.2), are randomly distributed, which is the main difficulty in 

timing verification. 

1.1.4 Mathematical description 

Consider a simplified circuit: a combinational circuit block links respectively 𝐼 identical flip-

flops 𝐹𝐹𝐴𝑖  at input pins 𝐴𝑖 , (𝑖 = 1, 2, … , 𝐼) and 𝐽 identical flip-flops 𝐹𝐹𝑍𝑗  at output pins 𝑍𝑗 ,  𝑗 =

1, 2, … , 𝐽 . Under the assumption that physical parameters 𝑃 = (𝑝1, 𝑝2, … , 𝑝𝐿)  are randomly 

distributed, all timing parameters in Equations (1.3) – (1.4) are random except for the clock 

period 𝑇𝐶𝐿𝐾 . Thus, we define two random variables 𝑆𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
 and 𝐻𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛

, called respectively 

Setup Slack and Hold Slack, as: 

     

 

          (a) Variations in supply voltage            (b) Temperature variations 

 

Figure 1.5 Environmental variations across an IC [3] 
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𝑆𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
≝  𝑔𝑑

 𝐶𝐿𝐾0→𝐶𝐿𝐾𝐴𝑖  
+ 𝑔𝑑

 𝐶𝐿𝐾𝐴𝑖→𝐴𝑖 
+ 𝑐𝑑𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛

 −  𝑔𝑑
 𝐶𝐿𝐾0→𝐶𝐿𝐾𝑍𝑗  

− 𝑑𝑠𝑒𝑡𝑢𝑝      (1.5) 

𝐻𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
≝  𝑔𝑑

 𝐶𝐿𝐾0→𝐶𝐿𝐾𝐴𝑖  
+ 𝑔𝑑

 𝐶𝐿𝐾𝐴𝑖→𝐴𝑖 
+ 𝑐𝑑𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛

 −  𝑔𝑑
 𝐶𝐿𝐾0→𝐶𝐿𝐾𝑍𝑗  

+ 𝑑𝑕𝑜𝑙𝑑       (1.6) 

where 𝛾𝑖𝑛 ∈ Γ𝐴𝑖 ,𝑍𝑗 . We assume that the setup time 𝑑𝑠𝑒𝑡𝑢𝑝  of each flip-flop follows the same  

probability distribution, and so does the hold time 𝑑𝑕𝑜𝑙𝑑 . With 𝑆𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
 and 𝐻𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛

, we 

rewrite the two timing constraints as: 

𝑆𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
< 𝑇𝐶𝐿𝐾                                                                                     1.7  

𝐻𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
> 0                                                                                        (1.8) 

Before defining the problem of timing verification, we further assume that:  

a) supply voltage and temperature of each gate are respectively bounded by known values 

𝑉𝑚𝑖𝑛 , 𝑉𝑚𝑎𝑥  and 𝑇𝑚𝑖𝑛 , 𝑇𝑚𝑎𝑥 , i.e. 𝑉𝑑𝑑 ∈  𝑉𝑚𝑖𝑛 , 𝑉𝑚𝑎𝑥   and 𝑇 ∈  𝑇𝑚𝑖𝑛 , 𝑇𝑚𝑎𝑥  ; 

b) the probability distribution 𝐹𝑙  of each process parameter 𝑝𝑙 , (𝑙 = 1, 2, … , 𝐿) is known; 

c) for any two gates 𝑘 and 𝑚, their process parameters 𝑝𝑙,𝑘  and 𝑝𝑙,𝑚  are dependent. 

Given a clock signal, a clock period 𝑇𝐶𝐿𝐾 , and a probability 𝜃 ∈  0, 1 , then 𝑆𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
 and 

𝐻𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
 must satisfy the condition: 

𝑃𝑟         𝑆𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
 < 𝑇𝐶𝐿𝐾 ∩  𝐻𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛

> 0  

𝛾𝑖𝑛 ∈𝛤𝐴𝑖 ,𝑍𝑗

𝐽

𝑗=1

𝐼

𝑖=1

 ≥  𝜃                      (1.9) 

Note that the two timing constraints in Equations (1.7) – (1.8) are similar because they bound 

random variables. What is more, the setup time constraint can conversely be used to determine 

the initial clock signal and the appropriate clock period. Hence, in the rest of this thesis, we will 

mainly discuss the setup time problem. 
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1.2  Corner-based Timing Analysis 

Although theoretically, timing verification can be undertaken using electrical circuit simulation, 

such an approach is too slow to be practical. In the past decades, Corner-based Timing Analysis 

(CTA) offered quick and reasonably accurate estimations of propagation delays. This timing 

method assumes that the best-corners or worst-corners of the process and environmental parame-

ters occurs simultaneously, and verifies timing behaviors under these extreme conditions. In other 

words, variations are replaced by deterministic quantities. The basic idea behind this approach is 

that if a circuit works correctly in extreme cases, then it will also work correctly under normal 

conditions. 

1.2.1 Basic concepts of timing analysis 

A circuit may be represented as a timing graph 𝔾 =  𝕍, 𝔼 , where 𝕍 is a set of nodes, and 𝔼 is a 

set of edges. A node 𝑣𝑖 ∈ 𝕍 corresponds to a net in the circuit. The edge 𝑒𝑣𝑖 ,𝑣𝑗 ∈ 𝔼 represents the 

propagation delay between two adjacent nodes 𝑣𝑖  and 𝑣𝑗 . Each edge 𝑒𝑣𝑖 ,𝑣𝑗  has a pin-to-pin gate 

delay 𝑔𝑑𝑣𝑖 ,𝑣𝑗  as the weight; and each node has a delay related term 𝑡𝑣𝑖 , called arrival time. Note 

that a timing graph is oriented from the primary inputs to the primary outputs of the correspond-

ing circuit. 

A simple combinational circuit and its corresponding timing graph (without considering inter-

connects) are illustrated respectively in Figure 1.6(a) and 1.6(b). Compared with the circuit 

diagram, an edge 𝑒𝑣𝑖 ,𝑣𝑗  corresponds to a pin-to-pin gate delay, and a node 𝑣𝑖  is either a net, or a 

primary input pin, or a primary output pin. 

Another useful term is timing path. In the context of digital circuit, a timing path is a set of con-

nected edges between an input node 𝐴𝑖  and an output node 𝑍𝑗 , such as  𝑒𝐴1 ,𝐺1
, 𝑒𝐺1 ,𝑍1

  and 

 𝑒𝐴3 ,𝐺2
, 𝑒𝐺2 ,𝑍1

  in Figure 1.6(b). Path delay is the sum of weights of all edges on a timing path. 

Note that path delay is a little different from the pin-to-pin circuit delay defined in Equation 

(1.2):  in Figure 1.6(b), the pin-to-pin circuit delay 𝑐𝑑𝐴2 ,𝑍1 ,𝛾𝑖𝑛
 may be one of the two path  
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delays: 𝑔𝑑𝐴2 ,𝐺1
+ 𝑔𝑑𝐺1 ,𝑍1

 and 𝑔𝑑𝐴2 ,𝐺2
+ 𝑔𝑑𝐺2 ,𝑍1

, each of which corresponds to an input transition 

𝛾𝑖𝑛  applied at the input pins 𝐴1 , 𝐴2 and 𝐴3. 

 

1.2.2 Modeling variations with corners 

As stated before, the key idea of CTA is that randomly distributed process variables and time-

dependent environmental parameters are replaced by fixed and deterministic corners. For the 

setup time check, these parameters are set at their worst values so that the maximum circuit delay 

can be computed. These corners of parameters can be identified according to a sensitivity analy-

sis of the function 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒  in Equation (1.1).  

The worst corners of supply voltage 𝑉𝑑𝑑  and temperature 𝑇 are respectively 𝑉𝑚𝑖𝑛  and 𝑇𝑚𝑎𝑥 . In 

addition, from Section 1.1.4, the probability distributions 𝐹𝑙  of 𝑝𝑙 , (𝑙 = 1, 2, … , 𝐿) are known, 

so that for a given probability 𝛽 ∈  0, 1 , the upper extreme bound 𝑝𝑢𝑝𝑟 ,𝑙  and the lower extreme 

bound 𝑝𝑙𝑤𝑟 ,𝑙  of each process parameter can be derived by:  

 
 
 

 
  1 − 𝐹𝑙 𝑝𝑢𝑝𝑟 ,𝑙 = 𝑃𝑟(𝑝𝑙 ≥ 𝑝𝑢𝑝𝑟 ,𝑙) =

𝛽

2
 

 𝐹𝑙 𝑝𝑙𝑤𝑟 ,𝑙 = 𝑃𝑟 𝑝𝑙 ≤ 𝑝𝑙𝑤𝑟 ,𝑙 =
𝛽

2
         

                                                        (1.10) 

We assume that for each process parameter 𝑝𝑙 , the function 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒  is either monotone 

decreasing or monotone increasing. Without loss of generality, suppose that 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒  is 

   

 

        (a) A simple combinational circuit diagram        (b) Corresponding timing graph 

 

Figure 1.6 Illustration of timing graph 
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decreasing for each 𝑝𝑙 , then the maximum gate delay can be obtained with 𝑉𝑚𝑖𝑛 , 𝑇𝑚𝑎𝑥  and 

𝑝𝑙𝑤𝑟 ,𝑙 , (𝑙 = 1, 2, … , 𝐿). In practice, the probability distribution 𝐹𝑙  of 𝑝𝑙  is assumed to be Gaussian, 

denoted as 𝑝𝑙~𝑁 𝜇𝑝𝑙 , 𝜎𝑝𝑙
2  , and the parameters 𝜇𝑝𝑙 , 𝜎𝑝𝑙

2  of these distributions are estimated by 

empirical data. In addition, 𝛽  is usually set to 0.003, which gives the worst process corners 

𝑝𝑙𝑤𝑟 ,𝑙 = 𝜇𝑝𝑙 − 3 ∙ 𝜎𝑝𝑙 . 

1.2.3 Estimation of circuit delay 

From the discussion in Section 1.2.2, corners are set for the parameters 𝑃, 𝑉𝑑𝑑 , 𝑇 in Equa-

tion (1.1). 𝐶𝑜𝑢𝑡  is considered as a known constant, because the variations in 𝐶𝑜𝑢𝑡  are small 

enough to be neglected. As regards 𝜏𝑖𝑛 , if 𝑃, 𝑉𝑑𝑑 , 𝑇 are at their worst corners, it will also reach its 

worst corner value, guarantying the worst estimation of delay. Finally, we use lookup table and 

bilinear interpolation [4] techniques to approximate the complicated function 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒 . A 

lookup table is generated with the help of numerical results from circuit simulation. Typically, for 

the worst combination 𝑉𝑚𝑖𝑛 , 𝑇𝑚𝑎𝑥  and 𝑝𝑙𝑤𝑟 ,𝑙 , (𝑙 = 1, 2, … , 𝐿), the function in Equation (1.1) is 

reduced to a simple one depending only on 𝜏𝑖𝑛  and 𝐶𝑜𝑢𝑡 . Thus, for any logic gate, applying a 

linear ramp signal of slope 𝜏𝑖𝑛  at one of the input pins and a capacitor of charge 𝐶𝑜𝑢𝑡  at the output 

pin, the pin-to-pin worst gate delay is obtained by circuit simulation. 

Having modeled gate delays with lookup tables, the next step is to estimate circuit-level delay 

and verify the timing constraint. The corner-based model permits us to rewrite condition (1.9) as: 

𝑃𝑟   𝑚𝑎𝑥
𝛾𝑖𝑛 ∈ℾ

∗
 𝑆𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛

  < 𝑇𝐶𝐿𝐾 ∩  𝑚𝑖𝑛
𝛾𝑖𝑛 ∈ℾ

∗
 𝐻𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛

  > 0  ≥  𝜃                          (1.11) 

where ℾ∗ =    𝛤𝐴𝑖 ,𝑍𝑗
𝐽
𝑗=1

𝐼
𝑖=1   is a subset of ℾ, which is the set of all possible input transitions 

defined in Section 1.1.1. Combining Equations (1.5) – (1.6) with Equation (1.11), the 

setup time and the hold time checks can be respectively translated into the computation of 

𝑚𝑎𝑥𝛾𝑖𝑛 ∈ℾ∗  𝑐𝑑𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
  and 𝑚𝑖𝑛𝛾𝑖𝑛 ∈ℾ∗  𝑐𝑑𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛

 . For this purpose, we convert the timing graph 

in Figure 1.6(b) into one that has a single source node 𝐼 and a single sink node 𝑂. This con-

verted timing graph is shown in Figure 1.7. After this slight modification, the timing verifica-

tion problem can be solved using Performance Evaluation and Review Technique (PERT) [5] 
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of operational research. As an example, for the setup time check, the arrival time 𝑡𝐺1
 of node 𝐺1 

is given by: 

𝑡𝐺1
= 𝑚𝑎𝑥 𝑡𝐴1

+ 𝑔𝑑𝐴1 ,𝐺1
, 𝑡𝐴2

+ 𝑔𝑑𝐴2 ,𝐺1
                                                 (1.12) 

Here 𝑔𝑑𝐴1 ,𝐺1
 and 𝑔𝑑𝐴2 ,𝐺1

 represent the pin-to-pin gate delays. If we apply iteratively Equation 

(1.12) for each node in the graph, the maximum circuit delay can be easily computed. 

 

1.3  On the Need of Statistical Static Timing Analysis 

CTA assumes that all physical and environmental parameters are at their worst or best conditions 

simultaneously. From the point of view of probability theory, this conservative case is next to 

impossible to appear in reality. Consequently, such an assumption induces pessimism in delay 

estimation, and thereby in circuit design. As the magnitude of process variations grows, this 

pessimism increases significantly, leading to the understanding that traditional corner-based 

design methodologies will not meet the needs of designers in the near future. Therefore, Statis-

tical Static Timing Analysis (SSTA), where process variations and timing characteristics are 

considered as random variables, has gained favor in the past six years. By propagating delay 

 

 

Figure 1.7 A PERT task graph 
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probability distributions through a circuit instead of pessimistic delay quantities, we may arrive at 

a much more accurate estimate of circuit delay. 

1.3.1 Increasing pessimism of corner-based methods 

As feature sizes continue to shrink, process variations 𝜎𝑝𝑙  are increasing relative to their means 

𝜇𝑝𝑙 . Figure 1.8 shows the increase in the variability of key process parameters, such as oxide 

thickness 𝑡𝑜𝑥  and transistor width 𝑊. As an example, the proportion of variations in gate-length 

𝐿𝑒𝑓𝑓   to its corresponding mean has increased from 35% in a 130 nm technology to almost 60% 

in a 65 nm technology. Besides, these increasing variations must be coupled with the fact that the 

number of process parameters whose variability must be taken into account has exploded in the 

past years. Due to these trends, some weaknesses of corner-based methods are becoming obvious. 

 

 

 

Figure 1.8 Variability trends in key process parameters with shrinking feature sizes [6] 
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To illustrate the weakness of replacing random process variations with corners, we consider a 

simplified case where the propagation delay 𝑔𝑑 of an inverter is a sum function of all the process 

parameters: 

𝑔𝑑 =  𝑝𝑙

𝐿

𝑙=1

                                                                                 (1.13) 

Here, 𝑝𝑙 , (𝑙 = 1,2, … , 𝐿) are assumed Gaussian distributed with mean 𝜇𝑝𝑙  and variance 𝜎𝑝𝑙
2 . Be-

sides, for any 𝑙1 ≠ 𝑙2, we suppose the correlation 𝑐𝑜𝑟 𝑝𝑙1 , 𝑝𝑙2 = 0 and 𝜇𝑝𝑙1 = 𝜇𝑝𝑙2 , 𝜎𝑝𝑙1 = 𝜎𝑝𝑙2 . 

Note that 𝑝𝑙1 , 𝑝𝑙2  are two different parameters of the same gate while 𝑝𝑙,𝑘 , 𝑝𝑙,𝑚  (𝑘 ≠ 𝑚) indicate 

parameters of the same type for two different gates. 

Then the probability distribution of gate delay 𝑔𝑑~𝑁 𝜇𝑔𝑑 , 𝜎𝑔𝑑
2   is computed by: 

 
 
 
 

 
 
  𝜇𝑔𝑑 =  𝜇𝑝𝑙

𝐿

𝑙=1

= 𝐿 ∙ 𝜇𝑝1
      

 

 𝜎𝑔𝑑 =   𝜎𝑝𝑙
2

𝐿

𝑙=1

=  𝐿 ∙ 𝜎𝑝1

                                                                (1.14) 

The worst gate delay 𝑤𝑔𝑑  is computed by CTA as: 

𝑤𝑔𝑑 =   𝜇𝑝𝑙 + 3 ∙ 𝜎𝑝𝑙 

𝐿

𝑙=1

= 𝐿 ∙ 𝜇𝑝1
+ 3𝐿 ∙ 𝜎𝑝1

                              (1.15) 

Comparing the worst gate delay 𝑤𝑔𝑑  and the statistical 3𝜎 corner of gate delay yields: 

𝜔 =
𝑤𝑔𝑑 −  𝜇𝑔𝑑 + 3 ∙ 𝜎𝑔𝑑  

𝜇𝑔𝑑
=

3 𝐿 −  𝐿 ∙ 𝜎𝑝1

𝐿 ∙ 𝜇𝑝1

= 3 1 − 𝐿−0.5 ∙
𝜎𝑝1

𝜇𝑝1

              (1.16) 

If 𝐿 = 3 and 𝜎𝑝1
𝜇𝑝1
 = 0.15, then the normalized rate 𝜔 is about 0.2, indicating that the overes-

timate of worst gate delay is 20% of the delay mean. As shown in Figure 1.8, for any 𝑝𝑙 , the 

ratio 𝜎𝑝𝑙 𝜇𝑝𝑙  increases with each generation of technology, which results in the increase of the 

rate 𝜔. 
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Note also that the pessimism of 𝑤𝑔𝑑  becomes more serious if the number of process parameters 𝐿 

is larger. This is the case in reality. As an example, the BSIM v3 model has about 𝐿 = 50 random 

process parameters, whereas the v4 version needs 𝐿 = 80 parameters or so [7]. If 𝜔𝑣3 and 𝜔𝑣4 

represent the rates of these two BSIM models and have the same ratio 𝜎𝑝1
𝜇𝑝1
 , then according to 

Equation (1.16), we have  𝜔𝑣4 − 𝜔𝑣3 𝜔𝑣3 ≈ 0.03, which means that the pessimism will 

increase 3% if the inverter above is modeled by the BSIM v4 instead of the v3 version. Mathe-

matically, according to Equations (1.14) – (1.15), we have: 

lim
𝐿→+∞

𝑃𝑟 𝑔𝑑 > 𝑤𝑔𝑑  = lim
𝐿→+∞

𝑃𝑟  𝑔𝑑 >  𝜇𝑔𝑑 + 3 𝐿 ∙ 𝜎𝑔𝑑   = 0                   (1.17) 

which implies that the probability of gate delay exceeding the worst delay converges to zero if 

the number of parameters 𝐿 increases. In other words, 𝑤𝑔𝑑  is too pessimistic. 

Another weakness of CTA comes from gate-to-gate delay correlation. To see this more clearly, 

set the number of process parameters to 𝐿 = 1, and combine Equation (1.14) with (1.15): 

𝑤𝑔𝑑 = 𝜇𝑝1
+ 3 ∙ 𝜎𝑝1

= 𝜇𝑔𝑑 + 3 ∙ 𝜎𝑔𝑑                                                    (1.18) 

Then a path with 𝐾 gates has the worst path delay 𝑤𝑝𝑑  given by: 

𝑤𝑝𝑑 =  𝑤𝑔𝑑𝑘

𝐾

𝑘=1

=   𝜇𝑔𝑑𝑘 + 3 ∙ 𝜎𝑔𝑑𝑘 

𝐾

𝑘=1

=  𝜇𝑔𝑑𝑘

𝐾

𝑘=1

+ 3 ∙    1 ∙ 𝜎𝑔𝑑𝑘𝜎𝑔𝑑𝑚

𝐾

𝑚=1

𝐾

𝑘=1

           (1.19) 

As well, we estimate the statistical 3𝜎 corner of path delay by: 

𝜇𝑝𝑑 + 3 ∙ 𝜎𝑝𝑑 =  𝜇𝑔𝑑𝑘

𝐾

𝑘=1

+ 3 ∙    𝜌𝑘𝑚 ∙ 𝜎𝑔𝑑𝑘𝜎𝑔𝑑𝑚

𝐾

𝑚=1

𝐾

𝑘=1

                                   (1.20) 

where 𝑝𝑑 is the path delay following the Gaussian distribution 𝑝𝑑~𝑁 𝜇𝑝𝑑 , 𝜎𝑝𝑑
2   and 𝜌𝑘𝑚  is the 

correlation between 𝑔𝑑𝑘  and 𝑔𝑑𝑚 , i.e. 𝜌𝑘𝑚 = 𝑐𝑜𝑟 𝑔𝑑𝑘 , 𝑔𝑑𝑚 . Comparing Equation (1.19) 

with (1.20), we can find that the value “1” in Equation (1.19) corresponds to the gate-to-gate 

delay correlation 𝜌𝑘𝑚  in Equation (1.20). As we know 𝜌𝑘𝑚 ∈  −1,1 ,  𝑤𝑝𝑑  is therefore over-

estimating by setting the correlation 𝑐𝑜𝑟 𝑔𝑑𝑘 , 𝑔𝑑𝑚   to its maximal value “1”. Similarly, the 
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circuit-level correlation or the path-to-path delay correlation, especially those in Equations 

(1.5) – (1.6), (1.9) are also estimated conservatively, either by “1” or “−1”.  

From the discussion above, the pessimism of CTA results becomes more problematic when: 

a) the ratio of process variations to their nominal values is higher; 

b) the number of process parameters 𝐿 is larger; 

c) the true correlation between delays is not close to either “1” or “−1”. 

1.3.2 SSTA moving from interesting to necessary 

When process variations were relatively small compared to supply voltage and temperature varia-

tions, working with corners produced acceptable outcomes. However, the increasing variability in 

the manufacturing process and the ever tighter timing constraints lead to more and more efforts 

when designing circuit with corner-based methodologies.  

Figure 1.9 illustrates the increasing pessimism of CTA and the tightening timing constraints. 

As shown in this figure, if the feature size decreases from 130 nm to 65 nm, i.e. nominal values 

of process parameters decrease, then the propagation delay will reach a lower level, which allows 

us to design ICs with tighter timing constraints (smaller clock periods 𝑇𝐶𝐿𝐾2
< 𝑇𝐶𝐿𝐾1

). At the 

same time, as discussed in Section 1.3.1, the results of CTA at 65 nm are more pessimistic 

than those at 130 nm. In Figure 1.9, 𝑤1, 𝑤2  denote the worst delays, and the statistical 3𝜎 

corner of delay distributions are: 

𝑠𝑖 = 𝜇𝑖 + 3𝜎𝑖                     (𝑖 = 1, 2)                                                  (1.21) 

where 𝜇𝑖  and 𝜎𝑖  are the corresponding delay mean and standard deviation. Then, the increasing 

pessimism leads to: 

𝑤2 − 𝑠2 > 𝑤1 − 𝑠1                                                                               (1.22)  

In consequence, the timing margin, defined as 𝑇𝐶𝐿𝐾 − 𝑤, gets smaller with each generation of 

technology. It is predicted that, in the near future, worst delays estimated by CTA could not be 

bounded by defined clock periods, i.e. we could not design an IC to satisfy the timing con-

straints using corner-based CAD tools. Such an outlook has resulted in a rapid development of 

SSTA in recent years. 
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There is no doubt that SSTA is a leading-edge technology. As the new promising generation of 

timing analysis, SSTA attacks the limitations of CTA by modeling process variations with 

probability distributions. Even though the accuracy of SSTA approaches is not fully clear yet, 

some statistical CAD tools have appeared and are already being used in the industry. 

 

The authors of [2] believe that designs at 90 nm can benefit from the application of SSTA. But 

many industry experts feel that SSTA will not see widespread adoption until the 45 nm node 

becomes prevalent. [1] argues that SSTA is just about a must at 45nm, and definitely necessary at 

32nm. To date, most designers see traditional CTA and SSTA as complementary. 

 

 

Figure 1.9 Increasing pessimism of CTA and tightening timing constraints 
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Traditional CTA required over a decade to move from academic proposal to broad industry adop-

tion. As well, algorithms for IC design based on statistical descriptions of process variations will 

probably take a decade to achieve meaningful industrial usage. It remains to be seen how long the 

process of widespread industrial adoption will take for SSTA. In addition to research on       

improved and enhanced SSTA, researchers are increasingly turning their attention to optimization 

of circuit design with the help of statistical techniques.  

1.4  Outline of the Thesis 

The previous sections give answers to the following three questions: What is the role of timing 

analysis in the IC design flow? What is CTA? Why SSTA is becoming necessary? 

Chapter 2 focuses on the present state of SSTA, including: the classification of SSTA     

methods, an overview of existing statistical timing techniques and their weaknesses, and the 

outlook of SSTA.  

In Chapter 3, we introduce our path-based SSTA framework. With the help of conditional 

moments, the proposed SSTA engine computes path delays by propagating iteratively mean and 

variance of gate delay, which allows taking into account effects of input slope and output load. 

Moreover, we propose a technique to estimate cell-to-cell delay correlation. This chapter closes 

with a validation and a discussion of the framework. 

In Chapter 4, we improve the conventional method of doing timing characterization, which is 

a step to collect data to feed the SSTA engine. The improvements include a Log-Logistic distri-

bution based input signal and a technique to capture output load variations. Another concerning 

problem – acceleration of characterization, is addressed in this chapter as well. 

In Chapter 5, we apply the SSTA framework and compare its results with those of CTA. First, 

some comparisons are given to show the gain of SSTA. Next, the discrepancy between orderings 

of critical paths obtained respectively by SSTA and by CTA is interpreted. Finally, we study the 

factors that affect cell-to-cell delay correlation for optimization of circuit design. 

Finally, Chapter 6 gives the conclusions and future work. 
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Chapter 

2 

SSTA: State of the Art 

 

This chapter provides an overview of the current state of Statistical Static Timing Analysis 

(SSTA). Most of existing SSTA can be classified into parametric and Monte Carlo methods. 

Section 2.1 summarizes these two categories of methods, and compares their advantages and 

disadvantages. In Section 2.2, some widely adopted models and techniques are presented. In 

Section 2.3, we discuss the common weaknesses of existing techniques and the outlook for 

SSTA. 
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n recent years, the ever increasing variations of process parameters have raised concerns over 

the ability of Corners-based Timing Analysis (CTA) to accurately estimate circuit perfor-

mance. It is now common belief that traditional deterministic Computer-Aided-Design (CAD) 

tools will not meet the needs of circuit designers in the future. As a result, Statistical Static  

Timing Analysis (SSTA), which is considered as a promising alternative, has developed greatly. 

Many companies now feel that the levels of variability are so high that the day of statistical CAD 

has arrived. 

2.1  Review of SSTA 

Some of the initial research works of SSTA date back to the introduction of timing analysis in the 

1960s [8] as well as the early 1990s [9], [10]. However, the vast majority of research works on 

SSTA date from 2001, with thousands of papers published in this field in the last six years. 

Most of the existing SSTA methods can be classified into two categories: parametric and Monte 

Carlo methods. Parametric methods [10] – [23] model process variations with random variables, 

and translate these variations to gate delays and arrival times through approximating polynomial 

models. These methods typically propagate arrival times through the timing graph by performing 

SUM and MAX/MIN operations. In contrast, Monte Carlo methods [24] – [27] employ compli-

cated electrical models, fed by random inputs, to accurately reflect timing behaviors. This is 

feasible because circuit component behaviors obey to deterministic electrical laws whose parame-

ters follow probability distributions. 

2.1.1 Parametric methods 

According to the algorithm to explore timing graphs, the existing parametric methods fall into 

one of the two categories shown in Figure 2.1: block-based algorithm [11] – [20] and path-

based algorithm [10], [21] – [23]. A block-based algorithm performs a topological PERT-like 

(Performance Evaluation and Review Technique) traversal of the timing graph. Compared with 

the CTA algorithm presented in Section 1.2.3, the only difference is that gate delays and 

arrival times are replaced by statistical distributions instead of being deterministic quantities. The 

I 
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arrival time at each node is computed using two basic operations:  

a) for all input edges of a particular node, the edge delay is convoluted (statistical SUM    

operation) with the arrival time at the source node of the edge; 

b) given these resulting arrival time distributions, the final arrival time distribution at the 

node is estimated using approximated MAX operations.  

The computation of the SUM operation is not difficult; however, finding the statistical MAX of 

two correlated arrival times is not trivial. 

 

The key advantage of a block-based SSTA method is that the runtime is linear with circuit size 

[11] – [13]. Due to this competitive advantage, the block-based algorithm has been used in many 

current researches. Furthermore, a block-based method lends itself to incremental analysis, which 

is advantageous for optimization applications [13]. On the negative side, block-based methods 

suffer from a lack of accuracy especially for the approximated MAX operation [28]. 

In a path-based algorithm, a set of paths, which are likely to become critical, is identified, and 

the delay distribution of each path is computed by convoluting (i.e. summing) the delay distribu-

tions of all its edges. Finally, the circuit delay distribution is computed by performing a statistical 

MAX operation over all the path delays. 

The main advantage of this algorithm is that the analysis is split into two parts: the computation 

of each path delay distribution followed by the statistical MAX operation over these distributions 

[29]. Hence, much of the initial research in SSTA pertained to path-based algorithm. On the 

 

 

Figure 2.1 Classifications of existing SSTA methods 
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negative side, the difficulty of the algorithm is in finding the above set of candidate paths so that 

no path with significant probability of being critical is excluded [29]. 

These two parametric statistical timing algorithms differ in accuracy and computational cost [28]. 

The path-based algorithm is simple and relatively accurate while the block-based algorithm con-

siders the whole circuit and is of low computational cost. In Figure 2.2, we compare these two 

algorithms using the timing graph shown in Figure 1.7. Figure 2.2(a) illustrates the necessary 

levels to complete the topological traversal, and Figure 2.2(b) shows the five possible timing 

paths.  

 

It should be stated that the computational costs of parametric methods are far lower than those of 

Monte Carlo methods discussed in the next section. This is the only, but decisive, advantage of 

parametric methods. However, for broader adoption, the weaknesses of the current parametric 

SSTA should be overcome. According to [29], the main drawback is that they are based on  

models, where some of the timing and process variation effects are ignored or simplified, such as:  

a) nonlinearity of gate delays as a function of the process parameters, input slope and output 

load;  

b) approximations of the MAX operation;  

c) interdependency among input/output edges and gate delay;  

d) assumptions about probability distributions of process variations; 

e) gate-level delay and path-level delay correlations. 

         

     (a) Levels (LVi) of the block-based algorithm        (b) Set of paths (PHi) for the path-based algorithm 

 

Figure 2.2 Illustration of SSTA algorithms 
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2.1.2 Monte Carlo methods 

The Monte Carlo (MC) technique is the other important approach for SSTA. Given a model of 

process variations, the classical MC-based method draws random samples in the process parame-

ter space, and addresses the timing verification problem with circuit simulation tools. The main 

hurdle is the high computational cost. Thus, MC methods have been mostly relegated to a sup-

porting role as the “gold standard” for validating the accuracy of proposed parametric SSTA 

methods. 

However, MC techniques have recently attracted new attention as a candidate for a reliable and 

accurate timing verification, because MC techniques can account for any complicated model if 

one is willing to accept its excessive runtime costs. Moreover, the task of developing and inte-

grating MC techniques is easy, because the available CTA engines can mostly be reused in  

developing new MC-based SSTA tools.  

In recent works [25] – [27], the authors use techniques, such as importance sampling, Latin 

hypercube sampling, to improve the performance of MC-based methods. However, more     

research is required to examine if these sampling techniques are effective in the domain of timing 

analysis. 

2.2  Basic Statistical Models and Techniques 

The majority of SSTA methods proposed in the last few years are based on parametric models. 

Thus, in this section, we focus on these parametric models and related techniques. In general, a 

parametric timing method, either block-based or path-based, contains the following three basic 

steps: 

a) process variations modeling; 

b) gate-level performance modeling; 

c) propagation techniques. 
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2.2.1 Process variations modeling 

For the purpose of design analysis, it is beneficial to divide the process variations into two cate-

gories: inter-die and intra-die variation. Inter-die variation is the variation that occurs from die-

to-die and wafer-to-wafer. Intra-die variation is the component of variations that causes parame-

ters to vary across different locations within a single die. For example, the inter-die and intra-die 

variation of inter-level dielectric thickness 𝑇𝐼𝐿𝐷  are illustrated in Figure 2.3. It is reasonable to 

capture these two types of variations separately as: 

𝑇𝐼𝐿𝐷 = 𝑇𝐼𝐿𝐷,𝑛𝑜𝑚 + ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑒𝑟 + ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑟𝑎                                                  (2.1) 

where 𝑇𝐼𝐿𝐷,𝑛𝑜𝑚  is the nominal value of ILD thickness, ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑒𝑟  is the variation due to inter-die 

sources, and ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑟𝑎  is the intra-die variation. 

 

 

 

(a) Inter-die variation     (b) Intra-die variation 

 

Figure 2.3 Variation in ILD thickness across the wafer and across the die [6] 
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The simplest way to model process variations is to consider the intra-die variation as a random 

variable ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑟𝑎  independent of the random variable ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑒𝑟 , so that for any two gates 𝑘1 

and 𝑘2 in the same die, we have: 

 

 ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑒𝑟 ,𝑘1
= ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑒𝑟 ,𝑘2

               
 

 𝑐𝑜𝑟 ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑟𝑎 ,𝑘1
, ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑟𝑎 ,𝑘2

 = 0

                                                       (2.2)  

According to Figure 2.3(b), the variation across the die shows a spatial trend. So a better solu-

tion is to divide further the intra-die variation into two components: spatially correlated compo-

nent and random component. Then Equation (2.1) can be rewritten as: 

𝑇𝐼𝐿𝐷 = 𝑇𝐼𝐿𝐷,𝑛𝑜𝑚 + ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑒𝑟 + ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 + ∆𝑇𝐼𝐿𝐷,𝑟𝑎𝑛                          (2.3) 

The spatial component ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙  in Equation (2.3) is a function of the location on the die. 

Among the techniques to model spatial variation, the grid model [11] and the quad-tree model 

[12] are usually quoted in papers on SSTA.  

For the grid model [11], the die region is partitioned into 𝑁 squares, as shown in Figure 2.4, 

each of which is associated with one spatially correlated random variable. This implies that the 

spatial component is the same at any location on a given square. As gates close to each other are 

more likely to have similar characteristics than those placed far away, it is reasonable to assume 

high correlation among spatial components in close squares and low correlation in far-away 

squares. In Figure 2.4, according to the locations of gates 𝑘1, 𝑘2, 𝑘3 , 𝑘4, we have: 

 

 
 
 

 
 

 ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘1
= ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘2

               
 

 𝑐𝑜𝑟 ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘1
, ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘3

 ≈ 1
 

 𝑐𝑜𝑟 ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘1
, ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘4

 ≈ 0

                                                 (2.4)  

In addition, another assumption for the grid model is that spatial correlation exists only among 

the same type of parameters in different squares and there is no spatial correlation between 

different types of parameters. For example, 𝑇𝐼𝐿𝐷  are independent with other parameters such as 

𝐿𝑒𝑓𝑓  or 𝑇𝑜𝑥  in any square. 
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For the quad-tree model, proposed in [12], the die area is divided into several regions using 

quad-tree partitioning, where at level 𝑖, the die is partitioned into 2𝑖 × 2𝑖 , (𝑖 = 0, 1, 2, … ) squares. 

All of the squares of the tree are associated with an independent random variable. A three-level 

tree is illustrated in Figure 2.5.  

For the process parameter 𝑇𝐼𝐿𝐷 , an independent random variable ∆𝑇𝐼𝐿𝐷,𝑖,𝑗  is associated with the 

variation in square 𝑗 at level 𝑖. For example, in Figure 2.5, the spatial variation in 𝑇𝐼𝐿𝐷  of gate 

𝑘1, 𝑘2 is express as follows: 

 

 ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘1
= ∆𝑇𝐼𝐿𝐷,0,1 + ∆𝑇𝐼𝐿𝐷,1,1 + ∆𝑇𝐼𝐿𝐷,2,1  

 
 ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘2

= ∆𝑇𝐼𝐿𝐷,0,1 + ∆𝑇𝐼𝐿𝐷,1,4 + ∆𝑇𝐼𝐿𝐷,2,11

                                        (2.5)  

In Equation (2.5), the occurrence of the same random variable ∆𝑇𝐼𝐿𝐷,0,1  in both formulas 

models the spatial correlation between ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘1
 and ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘2

.  

 

 

Figure 2.4 An example of the grid model 
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2.2.2 Gate-level performance modeling 

Unlike CTA that approximates the function 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒  in Equation (1.1) with lookup tables 

and the bilinear interpolation technique, parametric SSTA models gate delay with polynomials 

derived from Taylor expansion. Most of the parametric models make the assumptions that: 

a) 𝑉, 𝑇 and 𝜏𝑖𝑛  are at their corresponding corners; 

b) 𝐶𝑜𝑢𝑡  is a constant; 

c) probability distribution 𝐹𝑙  of 𝑝𝑙 , (𝑙 = 1, 2, … , 𝐿) is known.  

 

 

 

Figure 2.5 An example of the quad-tree model 
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Then, the function 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒  can be approximated using the first or second order Taylor  

expansion: 

𝑔𝑑 ≈ 𝑔𝑑𝑛𝑜𝑚 +  𝑎𝑙 ∙ ∆𝑝𝑙

𝐿

𝑙=1

                                                                                         (2.6) 

𝑔𝑑 ≈ 𝑔𝑑𝑛𝑜𝑚 +  𝑎𝑙 ∙ ∆𝑝𝑙

𝐿

𝑙=1

+  𝑏𝑙 ∙ ∆𝑝𝑙
2

𝐿

𝑙=1

+  𝑐𝑙1𝑙2 ∙ ∆𝑝𝑙1∆𝑝𝑙2

𝐿

∀𝑙1≠𝑙2

                   (2.7) 

where 𝑔𝑑𝑛𝑜𝑚  is the nominal value of 𝑑; 𝑎𝑙  and 𝑏𝑙  are the first and the second order sensitivities 

of 𝑔𝑑 to ∆𝑝𝑙 , respectively; and 𝑐𝑙1𝑙2  are the sensitivity to the joint variation of ∆𝑝𝑙1  and ∆𝑝𝑙2 . 

When all ∆𝑝𝑙  are assumed to be Gaussian random variables, Equation (2.6) is called the  

canonical model, and has been widely used for SSTA [11] – [13]; whereas Equation (2.7) is 

called the quadratic model, and has been studied in [14] – [16], [19] – [20]. However, these  

parametric models based on Gaussian assumptions are limited in their modeling capability   

because not all process variations follow the Gaussian distribution. Therefore, [17] – [18] extend 

the work by adding non-Gaussian terms to Equation (2.6).  

2.2.3 Propagation techniques 

After the gate-level performances of all circuit components have been modeled, circuit delay 

needs to be determined. Essential operations are the SUM and the MAX of random variables. The 

gate-to-gate delay correlation, which is difficult to estimate, needs to be considered for these 

operations. In addition, the statistical MAX operation is computationally expensive to be deter-

mined exactly, which is one of the most challenging problems in the domain of SSTA. 

In the SUM operation, if both 𝑋  and 𝑌  are random variables, then 𝑍 = 𝑋 + 𝑌  will also be a  

random variable whose mean and variance can be found as: 

 

 𝜇𝑍 = 𝜇𝑋 + 𝜇𝑌                          
 

 𝜍𝑍
2 = 𝜍𝑋

2 + 𝜍𝑌
2 + 𝜌𝑋𝑌 ∙ 𝜍𝑋𝜍𝑌

                                                               (2.8) 

where 𝜌𝑋𝑌  is the correlation between 𝑋 and 𝑌. 
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As the MAX operation is nonlinear, 𝑊 = 𝑚𝑎𝑥 𝑋, 𝑌  is not a Gaussian random variable even 

when both 𝑋 and 𝑌 are Gaussians and independent. In [30], the author proposes a moment match-

ing approach to approximate the distribution of 𝑊 with that of a Gaussian random variable 𝑊 . 

Define 𝑉 = 𝑋 − 𝑌 and the following standard Gaussian Probability Density Function (PDF) and 

Cumulative Distribution Function (CDF): 

 
 
 

 
  𝜑 𝑥 =

1

 2𝜋
∙ 𝑒

−𝑥2

2   
 
 

 𝛷 𝑥 =  𝜑 𝑢 𝑑𝑢
𝑥

−∞

                                                                          (2.9) 

Then, 𝑊  is given by: 

𝑊 = 𝛷  
𝜇𝑉
𝜍𝑉
 ∙ 𝑋 +  1 − 𝛷  

𝜇𝑉
𝜍𝑉
  ∙ 𝑌 + 𝜑  

𝜇𝑉
𝜍𝑉
 ∙ 𝜍𝑉                                  (2.10) 

where 

 

 𝜇𝑉 = 𝜇𝑋 − 𝜇𝑌                                   
 

 𝜍𝑉 =  𝜍𝑋
2 + 𝜍𝑌

2 − 𝜌𝑋𝑌 ∙ 𝜍𝑋𝜍𝑌 
1 2 

                                                                 (2.11) 

2.3  Challenges for SSTA 

Although SSTA has made significant progresses in the past six years, it is still in the neonatal 

state and much work needs to be done to improve it. To date, most SSTA researchers have main-

ly focused on the basic SSTA techniques – the SUM and MAX operations required for the   

propagation of arrival times from the source node to the sink node of the timing graph. For wider 

adoption of SSTA, its capabilities must be extended to match the current state of CTA, such as a 

corresponding SSTA design flow including statistics-based optimization. For this reason, this 

section presents not only the weaknesses to overcome, but also the outlook of SSTA. 
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2.3.1 Weaknesses of existing models and techniques 

There are many sources of weaknesses in the existing parametric SSTA techniques and most of 

them derive from the model used for the analysis. Some of the common sources can be classified 

into the following categories: 

 Unsatisfying models of process variations 

Most of the initial work in SSTA assumed Gaussian distributions for process parameters. 

Actually, some of them follow significantly non-Gaussian distributions. For example, via 

resistances exhibit an asymmetric probability distribution [17], and the dopant concentra-

tion density seems to be well modeled by a Poisson distribution [18]. Thus, under the 

Gaussian assumption for all process parameters, the accuracy of timing analysis is not 

guaranteed.  

Another modeling problem is the correlation between process parameters. The models 

presented in Section 2.2.1 are only suitable to capture variations of the same type of 

parameter.  

Besides, the availability of data to construct statistical process models remains scarce. 

 Limitations of gate delay models 

The majority of the existing parametric SSTA techniques are based on polynomial model 

of timing performance. Many of these techniques consider only few process parameters, 

like 𝑉𝑡𝑕 , 𝐿𝑒𝑓𝑓 , 𝑡𝑜𝑥 , and have reported high modeling accuracy. However, due to the       

increase in process variability, parametric models with more parameters are expected to 

be necessary to achieve the same accuracy [31]. 

In addition, the intrinsic nature of timing performance depending on process parameters is 

complex and nonlinear. Consequently, linear models are not enough for acceptable       

approximations. As for second order models, the cost of better accuracy is the much high-

er computational complexity. As an example, a quadratic expression with 30 uncorrelated 



 Section 2.3  Challenges for SSTA 

33 

 

variables has over 400 terms if cross-terms are considered. Therefore, existing parametric 

SSTA methods need to be revisited. 

Apart from the tradeoff between accuracy and runtime, another common limitation of   

existing parametric models, according to Equation (1.1), is that some effects, besides 

those listed in Section 2.1.1, are ignored or simplified; to name a few:  

a) the random variations in input slope and output load, 

b) the time-dependent variations in supply voltage and temperature, 

c) the effects of input pin on gate delay, 

d) interdependency among input/output edges and gate delay. 

 Inaccurate approximation of MAX operation 

The linear approximation of MAX operation in Equations (2.10) – (2.11) is simple 

and independent of parametric models, but its accuracy is not satisfying. Even if arrival 

times are assumed to be Gaussian distributed, the MAX of them will be a non-Gaussian 

distribution. The error of this approximation will be larger if the input arrival times have 

similar means and dissimilar variances [30]. This case occurs when two converging paths 

with similar nominal values have a different number of gates. A simple example is illu-

strated in Figure 2.6. Suppose two independent Gaussian random variables 𝑋 and 𝑌 

have the same zero mean and different variances, i.e. 𝑋~𝑁 0, 𝜍𝑋
2 , 𝑌~𝑁 0, 𝜍𝑌

2  with 

𝜍𝑋
2 ≠ 𝜍𝑌

2. The density of 𝑊 and 𝑊  are respectively, from Monte Carlo simulation and the 

approximation in Equations (2.10) – (2.11), shown in Figure 2.6. The error of the 

estimator 𝑊  is significant. 

In addition, with non-Gaussian variations to gate-level performances found by the authors 

of [14] – [18], the linear approximation is even worse. The new corresponding MAX    

approximations in these papers are closely related to their proposed parametric models. 

Hence, a model-independent MAX approximation that can operate on non-Gaussian ran-

dom variables is required. 
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In [32], timing performances are modeled with skew-normal distributions which embed 

the Gaussian distribution to allow for non-zero skewness. Empirically, this technique    

offers better accuracy than the linear approximation of MAX for a broad set of models. 

However, the computational cost of such an approximation is high. 

2.3.2 Outlook for SSTA 

CTA has evolved over the last two decades and is able to handle a number of practical issues, like 

crosstalk noise, power and ground noise, clock skew, etc. However, most SSTA researchers have, 

to date, mainly focused on the basic statistical timing techniques: process models, gate-level 

performance models, and approximations of MAX. For wider adoption of SSTA, these tech-

niques must be perfected to match the mature state of CTA.  

Recently, a few methods have been proposed to address some of these issues in SSTA. The  

authors in [33] propose a statistical gate-delay modeling technique that considers multiple input 

switching. In [34], a probabilistic collocation-based method is presented to efficiently construct

 

Figure 2.6 Accuracy of the linear approximation of the MAX operation 



Section 2.4  Summary 

35 

 

statistical gate-delay models. Finally, a statistical framework for modeling the effect of crosstalk-

induced coupling noise on timing was presented in [35].  

In addition to crosstalk noise, SSTA of sequential circuits is another area that still requires    

significant investigation. Several issues related to sequential timing, such as accurate modeling of 

variations and dependences in the clock tree, clock skew analysis and clock schedule verification 

for multiple clock domains, still need to be resolved. Recently, several research efforts have 

focused on these issues [36] – [37]. 

Finally, for statistics-based optimization, efficient methods for slack computation are needed. 

Some initial methods for slack computation in SSTA are given in [38] – [39]. Other topics, like 

gate sizing and buffer insertion, are addressed in [40] – [42]. 

To summarize, SSTA must move beyond pure timing analysis to yield analysis and optimization 

of circuit design to be truly useful for the designers. If the data from industry shows that SSTA-

based designs have substantially higher manufacturing yield than CTA-based designs, the wide 

adoption of SSTA will be guaranteed. 

2.4  Summary 

MC-based SSTA methods are accurate, whereas parametric methods are of a very low computa-

tional cost. In general, a parametric method uses the first or second order Taylor approximation to 

model gate delay based on a process variation model, like grid model and quad-tree model. Then, 

circuit delays are computed by approximating the MAX operation with a linear function. These 

models of process variations and gate delay, plus MAX approximations still have many weak-

nesses to overcome. SSTA is promising in nature, but a lot of work needs to be done for its wide 

adoption. 
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Chapter 

3 

Path-based SSTA Framework 

 

This chapter first describes the flow of the proposed SSTA framework. After the introduction of 

conditional moments in Section 3.2, we focus on moments propagation in Section 3.3, 

which is the key part of our SSTA engine. Section 3.4 shows how to compute path delay 

distributions. Section 3.5 discusses the estimation of delay correlations. Finally, the valida-

tion and a discussion of this SSTA framework are given. 
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onte Carlo (MC) methods are accurate, but suffer from their very high computational 

cost. On the contrary, although the existing parametric methods of SSTA are efficient, 

industry and researchers are doubtful of their accuracy because of diverse weaknesses and limita-

tions, as presented in Chapter 2. A good compromise would be a method that can make an 

acceptable trade-off between accuracy and efficiency. In this chapter, we present our path-based 

SSTA framework, which offers high efficiency while somewhat keeping the advantage of MC 

methods. Such features are achieved by propagating iteratively means and variances of cell
1
 

delay with the help of conditional moments. These moments, conditioned on input slope and 

output load, are pre-characterized by MC simulations, and organized as a tree of lookup tables, 

called a statistical timing library. This characterization step is a one-time job, i.e. the high time-

cost simulation is only needed to build the statistical timing library. This creates a semi-MC 

framework that allows us to:  

a) avoid cell delay modeling errors; 

b) take into account the effects on cell delay: input pin, output edge, input slope, and output 

load; 

c) deal with a large number of process parameters having any type of distribution. 

3.1  Flow of the Path-based SSTA Framework 

For ease of description, the SSTA flow is divided into four parts, as shown in Figure 3.1: 

 Setup – construct a statistical timing library; 

 Input – define environmental conditions and extract a set of candidate paths for a given 

circuit design; 

 SSTA engine – compute the circuit delay; 

 Output – generate the statistical timing report. 

Details about this flow are given in the rest of this section. 

                                                 
1
 A cell is either a gate or a flip-flop. 

M 
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3.1.1 Setup 

This initial step of the flow is to prepare a statistical timing library that feeds the SSTA engine. 

Figure 3.1 indicates that the characterization of the library is done with a statistical process 

model and the cell netlists under HPSICE [43], which provides the necessary data to construct the 

library.  

A cell netlist define the structure and the default characteristics of the cell. A statistical process 

model describes process parameters with probability distributions, like Gaussian, Uniform or 

Poisson. The parameters of these distributions are estimated by empirical data from existing IC. 

 

 

Figure 3.1 Flow of our path-based SSTA framework 
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In this thesis, the 130 nm and 65 nm statistical process models provided by ST Microelectronics
2
, 

are described as follows: 

a) For each process parameter 𝑝𝑙 , as in Section 2.2.1, we have: 

𝑝𝑙 = 𝑝𝑛𝑜𝑚 ,𝑙 + ∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙 + ∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙                                                  (3.1) 

where 𝑙 = 1, 2, … 𝐿 ; 𝑝𝑛𝑜𝑚 ,𝑙  is the nominal value of 𝑝𝑙 ; the intra-die random variable 

∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙  is independent of the inter-die random variable ∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙 . Note that most of the 

process parameters only have the inter-die component because the intra-die variation is 

small enough to be neglected. 

b) The probability distributions of ∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙  and ∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙  are known. 

c) For any 𝑙1 ≠ 𝑙2, (𝑙1, 𝑙2 = 1, 2, … 𝐿), 𝑝𝑙1  and 𝑝𝑙2  are independent. 

d) For any two cells 𝑘1 and 𝑘2 in the same die, ∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙,𝑘1
 and ∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙,𝑘2

 are independent, 

i.e. there is no spatial correlation. 

Table 3.1 gives the information about the cell netlists and the statistical process models. In the 

130 nm technology, all intra-die variations ∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙 ,  𝑙 = 1, 2, … 𝐿  are neglected. 

 

Knowing the distribution of each 𝑝𝑙 , we do MC simulation under various conditions and organize 

the output data as a tree of lookup tables. In Figure 3.2, the statistical timing library has a tree 

structure with levels: cell type, input/output (I/O) pin, I/O edge, temperature, supply voltage and 

timing variables. The tree leaves are lookup tables, each of which contains an input slope index, 

an output load index and moments conditioned on these indices.  

                                                 
2
 an Italian-French electronics and semiconductor manufacturer 

Table 3.1 Information about the cell netlists and the statistical process models 
 

technology cell netlists BSIM model 

number of statistical 

process parameters 𝐿 

inter-die intra-die 

130 nm CORE9GPLL v3 52 0 

65 nm CORE65LPHVT v4 76 2 

 

http://en.wikipedia.org/wiki/Italy
http://en.wikipedia.org/wiki/France
http://en.wikipedia.org/wiki/Electronics
http://en.wikipedia.org/wiki/Semiconductor
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In Figure 3.3, a lookup table and the corresponding function that it approximates are given. 

The input slope index 𝜏𝑖𝑛 = 𝜏1, 𝜏2, … , 𝜏9 and the output load index 𝐶𝑜𝑢𝑡 = 𝑐1, 𝑐2, … , 𝑐6 are chosen 

according to:  

 the upper and lower limits of 𝜏𝑖𝑛  and 𝐶𝑜𝑢𝑡 , 

 the sensitivities of conditional moments on  𝜏𝑖𝑛  and 𝐶𝑜𝑢𝑡 . 

For any couple  𝜏𝑚 , 𝑐𝑛 , (𝑚 = 1, 2, … , 9) and (𝑛 = 1, 2, … , 6), the output slope mean 𝜇𝑚𝑛  con-

ditioned on 𝜏𝑚  and 𝑐𝑛  is estimated with data from simulations. Then for any point in the rectan-

gular region  𝜏1, 𝜏9 ×  𝑐1, 𝑐6 , its conditional output slope mean is obtained using bilinear inter-

polation. The corresponding conditional variance is computed in a similar way.   

 

 

Figure 3.2 Structure of the statistical timing library 



Chapter 3  Path-based SSTA Framework 

42 

 

 

As discussed above, the library has taken into account all factors that affect cell delay, because: 

a) Process variations are captured during simulation, and contained in conditional variances; 

b) Cell type, input pin, output edge, temperature and supply voltage are tree levels; 

c) Input slope and output load are indices of lookup tables. 

3.1.2 Input 

The input for the SSTA engine includes environmental conditions and path netlists. Environmen-

tal conditions are temperature and supply voltage. As mentioned in Section 1.1.3, the task of 

modeling time-dependent environmental variations is difficult. Thus, the statistical timing library 

only supports temperatures −45℃, 25℃, 125℃ and supply voltages 1.1𝑉, 1.2𝑉, 1.3𝑉. 

Path netlists is the set of critical paths. In this thesis, given a circuit design, we first implement a 

CTA, and then collect the top 𝑁 paths in decreasing order of path delay [44]. This work of path 

collection is done using RTL Compiler [45]. Obviously, the accuracy of the SSTA engine will 

improve if the number of paths 𝑁 increases. However, considering computational cost, we need 

 

 

Figure 3.3 Illustration of approximating a complicated function with a lookup table  
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to determine 𝑁 carefully. Besides, even though 𝑁 has been well chosen, different subsets of all 

possible paths could lead to significantly different results. Consequently, the efficient generation 

of a set of candidate paths in a circuit is central to path-based methods.  

3.1.3 SSTA engine 

Figure 3.4 shows the procedure of the SSTA engine. Given a set of 𝑁 paths, the engine com-

putes the path delay distributions one by one. Then, the circuit delay 𝑐𝑑 is computed by: 

𝑐𝑑 = 𝑚𝑎𝑥 𝑝𝑑1, 𝑝𝑑2, … , 𝑝𝑑𝑁                                                                  (3.2)  

Assuming that path delays are Gaussian distributed, the distribution of 𝑐𝑑 is computed using the 

algorithms in [46], which is based on the linear approximation of MAX in Equations (2.10) – 

(2.11). We know that path delay is obtained by summing all delays of cells on a path. Hence, 

even if cell delays are not Gaussians, it is still reasonable to set Gaussian distributions to path 

delays as a first approximation, because a sum of independent random variables rapidly con-

verges (for most practical correlation structures involved in circuit delay computation) to a  

Gaussian random variable due to the central limit theorem [47]. 

As for cell-level delays, we make no assumption on their distributions, and just propagate means 

and variances. For cell 𝑘, cell type, I/O pin, I/O edge, temperature 𝑇, supply voltage 𝑉𝑑𝑑  and 

output load 𝐶𝑜𝑢𝑡 ,𝑘  are known from the procedure of path collection; input slope of a cell is the 

output slope of the previous cell, i.e. 𝜇𝜏𝑖𝑛 ,𝑘
= 𝜇𝜏𝑜𝑢𝑡 ,𝑘−1

 and 𝜎𝜏𝑖𝑛 ,𝑘

2 = 𝜎𝜏𝑜𝑢𝑡 ,𝑘−1
2 . Then, the moments 

𝜇𝑔𝑑𝑘 , 𝜎𝑔𝑑𝑘
2 , 𝜇𝜏𝑜𝑢𝑡 ,𝑘

, 𝜎𝜏𝑜𝑢𝑡 ,𝑘
2  are computed with the help of lookup tables and bilinear interpolation. 

3.1.4 Output 

A statistical timing report includes the information as follows:  

a) cell-level results: cell delay means and variances, cell-to-cell delay correlation;  

b) path-level results: path delay distributions, path-to-path delay correlation; 

c) circuit-level results: circuit delay distribution.  
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Figure 3.4 Procedure of the SSTA engine  
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3.2  Conditional Moments 

The mean and variance of a random variable 𝑋, if they exist, are respectively denoted as 𝐸 𝑋  

and 𝑉𝑎𝑟 𝑋 , where 𝑉𝑎𝑟 𝑋 = 𝐸 𝑋2 − 𝐸2 𝑋 . They are also called moments of 𝑋. 

A conditional moment is the moment of one random variable conditioned on the value of another 

random variable. If 𝑋 and 𝑌 are two random variables, then the conditional mean 𝐸(𝑋|𝑌 = 𝑦) is 

the mean of 𝑋 given the value 𝑌 = 𝑦. In our case, 𝑋 is continuous while 𝑌 can be either discrete 

or continuous. Given the Probability Density Function (PDF) of 𝑋  conditioned on 𝑌 = 𝑦 ,   

denoted as 𝑓 𝑥 𝑦 , we define: 

𝐸 𝑋 𝑌 = 𝑦 =  𝑥 ∙ 𝑓 𝑥 𝑦 𝑑𝑥
∞

−∞

                                                              (3.3) 

Unlike the conventional mean 𝐸 𝑋 , which is a constant for a specific probability distribution, 

𝐸(𝑋|𝑌 = 𝑦) is a function of 𝑦, that is to say, the conditional mean varies along with the value 

taken by 𝑌.  

Similarly, the conditional variance 𝑉𝑎𝑟(𝑋|𝑌 = 𝑦) is the variance of 𝑋 given the value 𝑌 = 𝑦, 

defined by: 

𝑉𝑎𝑟 𝑋 𝑌 = 𝑦 = 𝐸 𝑋2 𝑌 = 𝑦 − 𝐸2 𝑋 𝑌 = 𝑦                                   (3.4) 

With these definitions of conditional moments, the mean and the variance of 𝑋 can be decom-

posed as: 

 
 𝜇𝑋 = 𝐸 𝑋  = 𝐸 𝐸(𝑋|𝑌 = 𝑦)                                                

 
 𝜎𝑋

2 = 𝑉𝑎𝑟 𝑋 = 𝐸 𝑉𝑎𝑟 𝑋 𝑌 = 𝑦  + 𝑉𝑎𝑟 𝐸 𝑋 𝑌 = 𝑦  

                             (3.5) 

The proofs of these two decompositions are given in [48]. Next, from Equation (3.5), we 

derive two groups of equations adapted to the cases where 𝑌 follows respectively a discrete and 

continuous distribution.  
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If 𝑌 follows a discrete probability distribution:  

 
 
 

 
 

 𝑃𝑟 𝑌 = 𝑦𝑖 = 𝛼𝑖 > 0            𝑖 = 1,… , 𝐼
 

  𝛼𝑖

𝐼

𝑖=1

= 1                                                        

                                                (3.6) 

then we have: 

 
 
 

 
  𝜇𝑋 =   𝛼𝑖 ∙ 𝐸 𝑋 𝑌 = 𝑦𝑖)

𝐼

𝑖=1

                                                          

 

 𝜎𝑋
2 =  𝛼𝑖 ∙  𝑉𝑎𝑟 𝑋 𝑌 = 𝑦𝑖) +   𝐸 𝑋 𝑌 = 𝑦𝑖) − 𝐸(𝑋) 2 

𝐼

𝑖=1

                             (3.7) 

Here is a concrete illustration of these two decompositions. Suppose that 𝑋 follows a continuous 

distribution with PDF 𝑓 𝑥  and 𝑌 follows the discrete distribution in Equation (3.6). In addi-

tion, suppose there exists some dependency between 𝑋 and 𝑌. We draw a sample of  𝑋, 𝑌  from 

their joint distribution and divide it into 𝐼 groups, each of which has the same value 𝑦𝑖 , (𝑖 =

1, … , 𝐼) . In this case, 𝐸 𝑋 𝑌 = 𝑦𝑖)  and 𝑉𝑎𝑟 𝑋 𝑌 = 𝑦𝑖)  represent respectively the mean and 

variance of 𝑋  in group 𝑦𝑖 . Then, 𝐸 𝑋  is the sum of all 𝐸 𝑋 𝑌 = 𝑦𝑖)  weighted by 𝛼𝑖 . As 

for  𝑉𝑎𝑟 𝑋 , it consists of two parts: variance between groups  𝐸 𝑋 𝑌 = 𝑦𝑖) − 𝐸(𝑋) 2  and   

variance within group 𝑉𝑎𝑟 𝑋 𝑌 = 𝑦𝑖). In other words, total variance can be explained by the sum 

of inter-variance and intra-variance both weighted by 𝛼𝑖 . 

On the other hand, if Y follows a continuous distribution with PDF 𝑓(𝑦), then we have: 

 
 
 

 
  𝜇𝑋 =  𝐸(𝑋|𝑌 = 𝑦)  ∙ 𝑓(𝑦)𝑑𝑦                                                  

 

 𝜎𝑋
2 =   𝑉𝑎𝑟 𝑋 𝑌 = 𝑦 +  𝐸(𝑋|𝑌 = 𝑦)  − 𝜇𝑋 

2 ∙ 𝑓(𝑦)𝑑𝑦

                             (3.8) 

Equations (3.7) – (3.8) give an alternative to compute the mean and variance of 𝑋 if these 

two moments cannot be obtained directly with traditional methods. These equations require some 

dependency between 𝑋 and 𝑌 , which allows implementing the idea of moments propagation. 
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3.3  Moments Propagation 

This section presents the technique to propagate moments of timing variables iteratively along a 

timing path. We assume that all timing variables follow continuous distributions. 

Let us define the problem of moments propagation. Suppose the context is known, including: cell 

type, I/O pin, I/O edge, supply voltage, temperature, and output load. Then, for the considered 

cell, given the moments 𝜇𝜏𝑖𝑛 , 𝜎𝜏𝑖𝑛
2  of input slope, we seek to get the output slope moments 

𝜇𝜏𝑜𝑢𝑡 , 𝜎𝜏𝑜𝑢𝑡
2   and the cell delay moments 𝜇𝑔𝑑 , 𝜎𝑔𝑑

2 . 

Figure 3.5 illustrates the procedure of propagation. Knowing 𝜇𝜏𝑖𝑛 ,1
 and 𝜎𝜏𝑖𝑛 ,1

2 , we look up the 

statistical timing library according to the context, and do bilinear interpolations for moments of 

output slope and cell delay conditioned on input slope and output load, i.e. 𝐸(𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 ,1, 𝐶𝑜𝑢𝑡 ,1), 

𝑉𝑎𝑟(𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 ,1, 𝐶𝑜𝑢𝑡 ,1), 𝐸(𝑔𝑑1|𝜏𝑖𝑛 ,1, 𝐶𝑜𝑢𝑡 ,1), and 𝑉𝑎𝑟(𝑔𝑑1|𝜏𝑖𝑛 ,1, 𝐶𝑜𝑢𝑡 ,1). After that, 𝜇𝜏𝑜𝑢𝑡 ,1
, 𝜎𝜏𝑜𝑢𝑡 ,1

2 ,  

𝜇𝑔𝑑1
 and 𝜎𝑔𝑑1

2  are computed by equations presented later. Lookup, interpolate and compute, these 

three steps are repeated for the second cell by taking 𝜇𝜏𝑖𝑛 ,2
= 𝜇𝜏𝑜𝑢𝑡 ,1

 and 𝜎𝜏𝑖𝑛 ,2

2 = 𝜎𝜏𝑜𝑢𝑡 ,1
2 . 

 

 

Figure 3.5 Illustration of moments propagation 
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Note that only the moments of timing variables instead of distributions are known. For example, 

cell delay may follow any continuous distribution defined with two parameters on condition that 

its mean and variance exist, like Uniform, Gaussian, etc. In addition, the output load of any cell 

takes its nominal value, because its variation has been captured during timing characterization. 

3.3.1 Interpolation 

In Figure 3.3, the lookup table only provides conditional means 𝜇𝑚𝑛  of 𝜏𝑜𝑢𝑡  for some finite 

number of 𝜏𝑖𝑛  and 𝐶𝑜𝑢𝑡 , where 𝜇𝑚𝑛 = 𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 = 𝜏𝑚 , 𝐶𝑜𝑢𝑡 = 𝑐𝑛 . However, the function to 

approximate is continuous. In this case, a simple solution is the bilinear interpolation technique, 

which is an extension of linear interpolation for interpolating functions of two variables on 

a regular grid. The idea is to perform linear interpolation first in one direction, and then again in 

the other direction.  

Figure 3.6 gives an example. For simplicity, we denote 𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 = 𝜏𝑚 , 𝐶𝑜𝑢𝑡 = 𝑐𝑛  as 

𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑚 , 𝑐𝑛 . Suppose 𝜏𝑖𝑛 = 𝜏 ∈  𝜏6, 𝜏7  and 𝐶𝑜𝑢𝑡 = 𝑐 ∈  𝑐2, 𝑐3 , we first interpolate in the 

direction of 𝐶𝑜𝑢𝑡 , and then in the direction of 𝜏𝑖𝑛 : 

 
 

  𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 ≈
𝑐3 − 𝑐

𝑐3 − 𝑐2
∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐2 +

𝑐 − 𝑐2

𝑐3 − 𝑐2
∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐3 

 

 𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 ≈
𝑐3 − 𝑐

𝑐3 − 𝑐2
∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐2 +

𝑐 − 𝑐2

𝑐3 − 𝑐2
∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐3 

                        (3.9) 

𝐸 𝜏𝑜𝑢𝑡 |𝜏, 𝑐 ≈
𝜏7 − 𝜏

𝜏7 − 𝜏6
∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 +

𝜏 − 𝜏6

𝜏7 − 𝜏6
∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐                            (3.10) 

With the lookup tables stored in statistical timing library, for any 𝜏 ∈  𝜏1, 𝜏9  and 𝑐 ∈  𝑐1, 𝑐6 , we 

may get the following four conditional moments by bilinear interpolation: 𝐸 𝜏𝑜𝑢𝑡 |𝜏, 𝑐 , 

𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏, 𝑐 , 𝐸 𝑔𝑑|𝜏, 𝑐  and 𝑉𝑎𝑟 𝑔𝑑|𝜏, 𝑐 .  

As mentioned above, output load 𝑐 of any cell is set to its nominal value whereas input slope 𝜏𝑖𝑛  

is a random variable. Thus, in Sections 3.3.2 and 3.3.3, we only talk about the technique to 

capture variations of 𝜏𝑖𝑛 . 

http://en.wikipedia.org/wiki/Linear_interpolation
http://en.wikipedia.org/wiki/Interpolation
http://en.wikipedia.org/wiki/Regular_grid
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3.3.2 Discrete version 

If 𝑋 and 𝑌 in Equation (3.7) represent respectively the output slope 𝜏𝑜𝑢𝑡  and the input slope 

𝜏𝑖𝑛  of a cell, then to compute 𝜇𝜏𝑜𝑢𝑡 , 𝜎𝜏𝑜𝑢𝑡
2 , a discrete distribution of 𝜏𝑖𝑛  as in Equation (3.6) is 

necessary. However, at the beginning of Section 3.3, all timing variables were assumed to 

follow continuous distributions. Thus, to make use of Equation (3.7), we need to discretize the 

distribution of input slope.  

For the purpose of discretization, the type of probability distribution must be known to compute 

the probability of each discrete point. Typically, we assume that all slopes are Gaussian distri-

buted, which is a common assumption in most of the initial works on SSTA [11] – [13], [22]. 

Note that this Gaussian assumption is not set to cell delays, which are not required to be discrete. 

 

 

Figure 3.6 Illustration of bilinear interpolations 
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To discretize 𝑁(𝜇𝜏𝑖𝑛 , 𝜎𝜏𝑖𝑛
2 ), we divide the interval   𝜇𝜏𝑖𝑛 − 3𝜎𝜏𝑖𝑛 ,  𝜇𝜏𝑖𝑛  + 3𝜎𝜏𝑖𝑛

   into 𝐼 equidistant 

parts:  𝑠0,  𝑠1 ,  𝑠2,  𝑠3 , … ,  𝑠𝐼−1,  𝑠𝐼 , where 𝐼  is an even integer, 𝑠0 = 𝜇𝜏𝑖𝑛 − 3𝜎𝜏𝑖𝑛  and 

𝑠𝐼 =  𝜇𝜏𝑖𝑛 + 3𝜎𝜏𝑖𝑛 . Then the discrete distribution is determined by: 

𝑦𝑖 =
𝑠𝑖−1 + 𝑠𝑖

2
                     𝑖 = 1,… , 𝐼                                                            (3.11) 

𝛼𝑖 =

 
 
 
 

 
 
   𝑓 𝜏𝑖𝑛  𝑑𝜏𝑖𝑛

𝑠1

−∞

                     𝑖 = 1                  

 

  𝑓 𝜏𝑖𝑛  𝑑𝜏𝑖𝑛

𝑠𝑖

𝑠𝑖−1

                    𝑖 = 2, … , 𝐼 − 1

 

  𝑓 𝜏𝑖𝑛  𝑑𝜏𝑖𝑛

+∞

𝑠𝐼−1

                     𝑖 = 𝐼                 

                                     (3.12) 

where 𝑓 𝜏𝑖𝑛   is the Gaussian PDF of 𝜏𝑖𝑛 . An example of discretization is given in Figure 3.7. 

 

After the discretization, we compute 𝜇𝜏𝑜𝑢𝑡 , 𝜎𝜏𝑜𝑢𝑡
2 , 𝜇𝑔𝑑  and 𝜎𝑔𝑑

2  by: 

 
 
 

 
  𝜇𝜏𝑜𝑢𝑡 =  𝛼𝑖 ∙ 𝐸 𝜏𝑜𝑢𝑡 |𝑦𝑖 , 𝑐 

𝐼

𝑖=1

                                                          

 

 𝜎𝜏𝑜𝑢𝑡
2 =  𝛼𝑖 ∙  𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝑦𝑖 , 𝑐 +   𝐸 𝜏𝑜𝑢𝑡 |𝑦𝑖 , 𝑐 − 𝜇𝜏𝑜𝑢𝑡  

2
 

𝐼

𝑖=1

                      (3.13) 

 

Figure 3.7 Discretization of 𝑁(𝜇𝜏𝑖𝑛 , 𝜎𝜏𝑖𝑛
2 ) setting 𝐼 = 6 
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  𝜇𝑔𝑑 =  𝛼𝑖 ∙ 𝐸 𝑔𝑑|𝑦𝑖 , 𝑐 

𝐼

𝑖=1

                                                     

 

 𝜎𝑔𝑑
2 =  𝛼𝑖 ∙  𝑉𝑎𝑟 𝑔𝑑|𝑦𝑖 , 𝑐 +   𝐸 𝑔𝑑|𝑦𝑖 , 𝑐 − 𝜇𝑔𝑑  

2
 

𝐼

𝑖=1

                               (3.14)  

3.3.3 Continuous version 

The discrete version in Equations (3.13) – (3.14) requires an additional Gaussian assumption 

plus a step of discretization, which increases the CPU time. In this section, we present another 

version derived from Equation (3.8), and compare these two versions of moments propagation.  

As the discrete version, 𝑋 and 𝑌 in Equation (3.8) are replaced respectively by 𝜏𝑖𝑛  and 𝜏𝑜𝑢𝑡 . 

Then, to compute the integrals, we suppose that in certain interval conditional moments 

𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝑐  and 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝑐  depend linearly on 𝜏𝑖𝑛 , as: 

 
 𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝑐 = 𝑏1 + 𝑏2 ∙ 𝜏𝑖𝑛     

 
 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝑐 = 𝑏3 + 𝑏4 ∙ 𝜏𝑖𝑛

                                               (3.15) 

where 𝑏1, 𝑏2, 𝑏3, 𝑏4 are values to be identified. The assumed relationships in Equation (3.15) 

are reasonable, because the interpolation techniques presented in Section 3.3.1 are based on 

the assumption that in any interval  𝜏𝑚 , 𝜏𝑚+1  conditional moments are linear in 𝜏𝑖𝑛 .  

Combining Equation (3.8) with (3.15), we can compute 𝜇𝜏𝑜𝑢𝑡 , 𝜎𝜏𝑜𝑢𝑡
2 : 

𝜇𝜏𝑜𝑢𝑡 =  𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝑐  ∙ 𝑓 𝜏𝑖𝑛  𝑑𝜏𝑖𝑛                                                                                      

= 𝑏1 + 𝑏2 ∙  𝜏𝑖𝑛  ∙ 𝑓(𝜏𝑖𝑛 )𝑑𝜏𝑖𝑛                                                                                         

= 𝑏1 + 𝑏2 ∙ 𝜇𝜏𝑖𝑛                                                                                                       (3.16) 
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𝜎𝜏𝑜𝑢𝑡
2 =   𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝑐 +  𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝑐 − 𝜇𝜏𝑜𝑢𝑡  

2
 ∙ 𝑓(𝜏𝑖𝑛 )𝑑𝜏𝑖𝑛                            

=   𝑏3 + 𝑏4 ∙ 𝜏𝑖𝑛 +  𝑏2 ∙ 𝜏𝑖𝑛 − 𝑏2 ∙ 𝜇𝜏𝑖𝑛  
2
 ∙ 𝑓(𝜏𝑖𝑛 )𝑑𝜏𝑖𝑛                                         

=  𝑏3 + 𝑏4 ∙  𝜏𝑖𝑛  ∙ 𝑓(𝜏𝑖𝑛 )𝑑𝜏𝑖𝑛 +  𝑏2 ∙ 𝜏𝑖𝑛 − 𝑏2 ∙ 𝜇𝜏𝑖𝑛  
2
∙ 𝑓(𝜏𝑖𝑛 )𝑑𝜏𝑖𝑛           

=  𝑏3 + 𝑏4 ∙ 𝜇𝜏𝑖𝑛  +  𝑏2 ∙ 𝜎𝜏𝑖𝑛  
2

                                                                      (3.17) 

where 𝑓(𝜏𝑖𝑛 ) is the PDF of 𝜏𝑖𝑛 . Note that in Equations (3.16) – (3.17), 𝑓(𝜏𝑖𝑛 ) is not explicitly 

known, while 𝜇𝜏𝑖𝑛  and 𝜎𝜏𝑖𝑛
2  are required. 

Typically, suppose 𝜇𝜏𝑖𝑛 ∈ (𝜏6 , 𝜏7) and 𝑐 ∈ (𝑐2, 𝑐3), then according to the bilinear interpolation 

techniques, we have: 

𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝑐 ≈
𝜏7 − 𝜏𝑖𝑛
𝜏7 − 𝜏6

∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 +
𝜏𝑖𝑛 − 𝜏6

𝜏7 − 𝜏6
∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐                                                          

=
𝜏7 ∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 − 𝜏6 ∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 

𝜏7 − 𝜏6
+
𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 − 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 

𝜏7 − 𝜏6
∙ 𝜏𝑖𝑛                      (3.18) 

𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝑐 ≈
𝜏7 − 𝜏𝑖𝑛
𝜏7 − 𝜏6

∙ 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 +
𝜏𝑖𝑛 − 𝜏6

𝜏7 − 𝜏6
∙ 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐                                                   

=
𝜏7 ∙ 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 − 𝜏6 ∙ 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 

𝜏7 − 𝜏6
+
𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 − 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 

𝜏7 − 𝜏6
∙ 𝜏𝑖𝑛    (3.19) 

Combining Equation (3.15) with (3.18) – (3.19), we identify 𝑏1, 𝑏2, 𝑏3, 𝑏4: 

 
 
 
 
 

 
 
 
  𝑏1 =

𝜏7 ∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 − 𝜏6 ∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 

𝜏7 − 𝜏6
         

 

 𝑏2 =
𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 − 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 

𝜏7 − 𝜏6
                        

 

 𝑏3 =
𝜏7 ∙ 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 − 𝜏6 ∙ 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 

𝜏7 − 𝜏6 

 𝑏4 =
𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 − 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 

𝜏7 − 𝜏6
              

                                          (3.20)
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Similarly, 𝜇𝑔𝑑  and 𝜎𝑔𝑑
2  are computed by replacing the conditional moments of 𝜏𝑜𝑢𝑡  with those of 

𝑔𝑑 in Equations (3.16) – (3.17) and (3.20). 

In Table 3.2, we compare the accuracy of the discrete and continuous propagation techniques. 

Under diverse conditions, like different input slope mean 𝜇𝜏𝑖𝑛  and variance 𝜎𝜏𝑖𝑛
2 ,  the standard 

deviations are computed respectively by the two versions of techniques, denoted as 𝜎 𝜏𝑜𝑢𝑡  and 

𝜎 𝑔𝑑 ; the results from MC simulation are considered as “golden values”, denoted as 𝜎𝜏𝑜𝑢𝑡  and 𝜎𝑔𝑑 . 

The errors in Table 3.2 are the average values of 200 different cases. Considering accuracy and 

computational cost, especially the additional step of discretization for the discrete version, it 

seems appropriate to propagate moments using the continuous version.  

 

3.4  Path Delay Distribution 

For a timing path of 𝐾 cells, if the moments propagation technique allows iteratively computing 

cell delay moments 𝜇𝑔𝑑𝑘 , 𝜎𝑔𝑑𝑘
2 , (𝑘 = 1, 2, … , 𝐾), then the path delay 𝑝𝑑, which is the sum of all 

cell delays, has the mean and variance given by:  

 
 
 

 
  𝜇𝑝𝑑 =   𝜇𝑔𝑑𝑘

𝐾

𝑘=1

                            

 

 𝜎𝑝𝑑
2 =    𝜌𝑘𝑚 ∙ 𝜎𝑔𝑑𝑘𝜎𝑔𝑑𝑚

𝐾

𝑚=1

𝐾

𝑘=1

                                                 (3.21) 

where 𝜌𝑘𝑚  is the correlation 𝑐𝑜𝑟 𝑔𝑑𝑘 , 𝑔𝑑𝑚  .  

Table 3.2 Comparison of discrete and continuous propagation techniques (65 nm) 
 

 

𝜎 𝜏𝑜𝑢𝑡 − 𝜎𝜏𝑜𝑢𝑡
𝜎𝜏𝑜𝑢𝑡

% 
𝜎 𝑔𝑑 − 𝜎𝑔𝑑

𝜎𝑔𝑑
% 

𝐼𝑁𝑉 𝑁𝑂𝑅 𝐼𝑁𝑉 𝑁𝑂𝑅 

discrete 

𝐼 = 4 5.7% 5.4% 2.3% 4.0% 

𝐼 = 6 5.1% 4.3% 1.6% 2.9% 

𝐼 = 8 4.9% 3.9% 1.4% 2.6% 

continuous 4.7% 3.7% 1.0% 2.3% 
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In probability theory, the central limit theorem states conditions under which the sum of a suffi-

ciently large number of independent random variables, each with finite mean and variance, will 

be approximately Gaussian distributed. Even though 𝑔𝑑𝑘  and 𝑔𝑑𝑚 , (𝑘 ≠ 𝑚) are not independent, 

it is reasonable to assume that path delay is a Gaussian random variable. Thus, to get the distribu-

tion 𝑁 𝜇𝑝𝑑 , 𝜎𝑝𝑑
2  , according to Equation (3.21), all that remains is to estimate the cell-to-cell 

delay correlation 𝜌𝑘𝑚 , which is the topic of the next section. 

3.5  Estimation of Delay Correlation 

Delay correlation is one of the most difficult problems in SSTA. This is because cell delay   

depends in a complex manner on a number of factors, which makes complex the computation of 

delay correlation as well. In this section, we introduce a technique to estimate delay correlation. 

3.5.1 Cell-to-cell delay correlation 

A common way to estimate Cell-to-cell Delay Correlation (CDC) is to approximate the depen-

dency of cell delay on process parameters with a Taylor expansion, and then to translate the 

correlation between process parameters into correlation between cell delays. For example, setting 

the number of process parameters to 𝐿 = 2, delay of cell 𝑘 is modeled as: 

𝑔𝑑𝑘 ≈ 𝑔𝑑𝑛𝑜𝑚 ,𝑘 + 𝑎1𝑘 ∙ ∆𝑝1𝑘 + 𝑎2𝑘 ∙ ∆𝑝2𝑘                                                     (3.22) 

Then the CDC between 𝑔𝑑1 and 𝑔𝑑2 is computed by: 

𝑐𝑜𝑟 𝑔𝑑1, 𝑔𝑑2 =
𝑐𝑜𝑣 𝑔𝑑1, 𝑔𝑑2 

𝜎𝑔𝑑1
𝜎𝑔𝑑2

                                                                 (3.23) 

where 𝑐𝑜𝑣 𝑔𝑑1, 𝑔𝑑2  is the covariance between 𝑔𝑑1  and 𝑔𝑑2 . Suppose that ∆𝑝1𝑘  and ∆𝑝2𝑘  are 

independent, then we have: 

𝑐𝑜𝑣 𝑔𝑑1, 𝑔𝑑2 = 𝑐𝑜𝑣 𝑎11 ∙ ∆𝑝11 , 𝑎12 ∙ ∆𝑝12 + 𝑐𝑜𝑣 𝑎21 ∙ ∆𝑝21 , 𝑎22 ∙ ∆𝑝22                                 

= 𝑎11𝑎12 ∙ 𝑐𝑜𝑣 ∆𝑝11 , ∆𝑝12 + 𝑎21𝑎22 ∙ 𝑐𝑜𝑣 ∆𝑝21 , ∆𝑝22                          (3.24) 
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If ∆𝑝𝑙𝑘 , (𝑙 = 1,2) are further divided into independent inter-die and intra-die component as: 

∆𝑝𝑙𝑘 = ∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙𝑘 + ∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙𝑘                   (𝑙 = 1,2)                         (3.25) 

then 𝑐𝑜𝑣 ∆𝑝𝑙1, ∆𝑝𝑙2 , (𝑙 = 1,2) in Equation (3.24) are given by: 

𝑐𝑜𝑣 ∆𝑝𝑙1, ∆𝑝𝑙2 = 𝜎∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙1
𝜎∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙2

∙ 𝑐𝑜𝑟 ∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙1, ∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙2 +                                                 

𝜎∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙1
𝜎∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙2

∙ 𝑐𝑜𝑟 ∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙1, ∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙2            (𝑙 = 1,2)           (3.26) 

Given a statistical process model, 𝑐𝑜𝑟 𝑔𝑑1, 𝑔𝑑2  is computed by combining Equations (3.23) 

– (3.24) and (3.26). 

The above technique of computation explains CDC in terms of correlation between process  

parameters. Theoretically, apart from process parameters, all factors that affect cell delay, like 

cell type, output load, etc., should be considered. Table 3.3 demonstrates that CDC varies with 

cell type (𝐼𝑁𝑉, 𝑂𝑅, 𝐵𝑈𝐹), output load (1𝑓𝐹, 10𝑓𝐹, 100𝑓𝐹) and I/O edge (𝑅/𝐹, 𝐹/𝑅, 𝑅/𝑅, 𝐹/

𝐹). In this table, the CDC coefficients are estimated with data from MC simulations. As shown in 

Table 3.3, the effects of cell type and I/O edge on CDC are obvious. In addition, it seems that 

coefficients are brought down by increasing output load. 

 

Table 3.3 CDCs varying with cell type, output load and I/O edge (130 nm, 1500 runs) 
 

 

𝐼𝑁𝑉 𝐵𝑈𝐹 

10𝑓𝐹 10𝑓𝐹 10𝑓𝐹 10𝑓𝐹 

𝑅/𝐹 𝐹/𝑅 𝑅/𝑅 𝐹/𝐹 

𝐼𝑁𝑉 

1𝑓𝐹 
𝑅/𝐹 0.97 0.73 0.90 0.94 

𝐹/𝑅 0.61 0.97 0.94 0.92 

10𝑓𝐹 
𝑅/𝐹 0.99 0.76 0.91 0.95 

𝐹/𝑅 0.66 0.99 0.95 0.92 

100𝑓𝐹 
𝑅/𝐹 0.98 0.62 0.89 0.88 

𝐹/𝑅 0.64 0.99 0.89 0.87 

𝑂𝑅 

1𝑓𝐹 
𝑅/𝑅 0.84 0.65 0.87 0.89 

𝐹/𝐹 0.62 0.98 0.91 0.76 

10𝑓𝐹 
𝑅/𝑅 0.71 0.55 0.76 0.83 

𝐹/𝐹 0.54 0.96 0.84 0.62 

100𝑓𝐹 
𝑅/𝑅 0.62 0.49 0.64 0.78 

𝐹/𝐹 0.38 0.93 0.77 0.52 
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As cell delay depends on a number of factors, which affects CDC as well, we propose a technique 

to compute directly CDC, which avoids handling complex relationship between process parame-

ters. Suppose that process parameters 𝑝1, 𝑝2, … , 𝑝𝐿 are classified into three groups: 

 
 
 

 
 

 𝑃𝑁𝑀 =  𝑝1
𝑁𝑀 ,  𝑝2

𝑁𝑀 , … , 𝑝𝑛1
𝑁𝑀 

 
 𝑃𝑃𝑀 =  𝑝1

𝑃𝑀 ,  𝑝2
𝑃𝑀 , … , 𝑝𝑛2

𝑃𝑀  
 

 𝑃𝑆 =  𝑝1
𝑆 ,  𝑝2

𝑆 , … , 𝑝𝑛3
𝑆             

             𝐿 = 𝑛1 + 𝑛2 + 𝑛3                      (3.27) 

where 𝑃𝑁𝑀  comprises process parameters characterizing only 𝑁 -transistors; 𝑃𝑃𝑀  is the group 

only related 𝑃-transistors; and the parameters of 𝑃𝑆 describe both 𝑁- and 𝑃-transistors. Corres-

ponding to this classification, cell delay is modeled as: 

𝑔𝑑 ≈ 𝑔𝑑𝑁𝑀 + 𝑔𝑑𝑃𝑀 + 𝑔𝑑𝑆                                                                         (3.28) 

where 𝑔𝑑𝑁𝑀 , 𝑔𝑑𝑃𝑀  and 𝑔𝑑𝑆, according to Equation (1.1), are defined by: 

 

 
 
 

 
 

 𝑔𝑑𝑁𝑀 = 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒  𝑃
𝑁𝑀 , 𝑇, 𝑉𝑑𝑑 , 𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡  

 
 𝑔𝑑𝑃𝑀 = 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒  𝑃

𝑃𝑀 , 𝑇, 𝑉𝑑𝑑 , 𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡  
 

 𝑔𝑑𝑆 = 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒  𝑃
𝑆 , 𝑇, 𝑉𝑑𝑑 , 𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡       

                                      (3.29) 

As stated in Section 3.1.1, for any 𝑙1 ≠ 𝑙2, (𝑙1, 𝑙2 = 1, 2, … 𝐿), 𝑝𝑙1  and 𝑝𝑙2  are independent. 

Thus, it is reasonable to assume: 

 
 
 

 
 

 𝑐𝑜𝑟 𝑔𝑑𝑁𝑀 , 𝑔𝑑𝑃𝑀 = 0
 

 𝑐𝑜𝑟 𝑔𝑑𝑁𝑀 , 𝑔𝑑𝑆 = 0   
 

 𝑐𝑜𝑟 𝑔𝑑𝑃𝑀 , 𝑔𝑑𝑆 = 0   

                                                                             (3.30) 

With the assumptions above and the cell delay model in Equation (3.28), CDC between 𝑔𝑑𝑘  

and  𝑔𝑑𝑚  can then be computed according to: 

𝜌𝑘𝑚 =
𝑐𝑜𝑣 𝑔𝑑𝑘 , 𝑔𝑑𝑚  

𝜎𝑔𝑑𝑘𝜎𝑔𝑑𝑚
                                                                              (3.31) 
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where 

𝑐𝑜𝑣 𝑔𝑑𝑘 , 𝑔𝑑𝑚  = 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑁𝑀 + 𝑔𝑑𝑘

𝑃𝑀 + 𝑔𝑑𝑘
𝑆 , 𝑔𝑑𝑚

𝑁𝑀 + 𝑔𝑑𝑚
𝑃𝑀 + 𝑔𝑑𝑚

𝑆                                            

= 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑁𝑀 , 𝑔𝑑𝑚

𝑁𝑀 + 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑁𝑀 , 𝑔𝑑𝑚

𝑃𝑀 + 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑁𝑀 , 𝑔𝑑𝑚

𝑆  +                    

𝑐𝑜𝑣 𝑔𝑑𝑘
𝑃𝑀 , 𝑔𝑑𝑚

𝑁𝑀 + 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑃𝑀 , 𝑔𝑑𝑚

𝑃𝑀 + 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑃𝑀 , 𝑔𝑑𝑚

𝑆  +                     

𝑐𝑜𝑣 𝑔𝑑𝑘
𝑆 , 𝑔𝑑𝑚

𝑁𝑀 + 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑆 , 𝑔𝑑𝑚

𝑃𝑀 + 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑆 , 𝑔𝑑𝑚

𝑆                                    

= 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑁𝑀 , 𝑔𝑑𝑚

𝑁𝑀 + 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑃𝑀 , 𝑔𝑑𝑚

𝑃𝑀 + 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑆 , 𝑔𝑑𝑚

𝑆                 (3.32) 

In Equation (3.1), the variations of each process parameter 𝑝𝑙  are divided into a inter-die 

component ∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙  and a intra-die component ∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙 , which are independent of each other. 

Similarly, we decompose 𝑔𝑑𝑁𝑀  with independent inter-die and intra-die components as: 

𝑔𝑑𝑁𝑀 = 𝑔𝑑𝑖𝑛𝑡𝑒𝑟
𝑁𝑀 + 𝑔𝑑𝑖𝑛𝑡𝑟𝑎

𝑁𝑀                                                                     (3.33) 

Adding the approximation below: 

𝑐𝑜𝑟 𝑔𝑑𝑘,𝑖𝑛𝑡𝑒𝑟
𝑁𝑀 , 𝑔𝑑𝑚,𝑖𝑛𝑡𝑒𝑟

𝑁𝑀  ≈ 1                                                                (3.34) 

and knowing that 𝑐𝑜𝑟 𝑔𝑑𝑘,𝑖𝑛𝑡𝑟𝑎
𝑁𝑀 , 𝑔𝑑𝑚,𝑖𝑛𝑡𝑟𝑎

𝑁𝑀  = 0, then the covariance 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑁𝑀 , 𝑔𝑑𝑚

𝑁𝑀  is com-

puted by: 

𝑐𝑜𝑣 𝑔𝑑𝑘
𝑁𝑀 , 𝑔𝑑𝑚

𝑁𝑀 = 𝑐𝑜𝑣 𝑔𝑑𝑘,𝑖𝑛𝑡𝑒𝑟
𝑁𝑀 , 𝑔𝑑𝑚,𝑖𝑛𝑡𝑒𝑟

𝑁𝑀  + 𝑐𝑜𝑣 𝑔𝑑𝑘,𝑖𝑛𝑡𝑒𝑟
𝑁𝑀 , 𝑔𝑑𝑚,𝑖𝑛𝑡𝑟𝑎

𝑁𝑀  +                            

𝑐𝑜𝑣 𝑔𝑑𝑘,𝑖𝑛𝑡𝑟𝑎
𝑁𝑀 , 𝑔𝑑𝑚,𝑖𝑛𝑡𝑒𝑟

𝑁𝑀  + 𝑐𝑜𝑣 𝑔𝑑𝑘,𝑖𝑛𝑡𝑟𝑎
𝑁𝑀 , 𝑔𝑑𝑚,𝑖𝑛𝑡𝑟𝑎

𝑁𝑀                                  

≈ 𝜎𝑔𝑑𝑘 ,𝑖𝑛𝑡𝑒𝑟
𝑁𝑀 ∙ 𝜎𝑔𝑑𝑚 ,𝑖𝑛𝑡𝑒𝑟

𝑁𝑀                                                                                 (3.35) 

Another two terms 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑃𝑀 , 𝑔𝑑𝑚

𝑃𝑀  and 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑆 , 𝑔𝑑𝑚

𝑆   in Equation (3.32) are obtained in 

a similar way. Finally, we have: 

𝑐𝑜𝑣 𝑔𝑑𝑘 , 𝑔𝑑𝑚  ≈ 𝜎𝑔𝑑𝑘 ,𝑖𝑛𝑡𝑒𝑟
𝑁𝑀 ∙ 𝜎𝑔𝑑𝑚 ,𝑖𝑛𝑡𝑒𝑟

𝑁𝑀 + 𝜎𝑔𝑑𝑘 ,𝑖𝑛𝑡𝑒𝑟
𝑃𝑀 ∙ 𝜎𝑔𝑑𝑚 ,𝑖𝑛𝑡𝑒𝑟

𝑃𝑀 +                                        

𝜎𝑔𝑑𝑘 ,𝑖𝑛𝑡𝑒𝑟
𝑆 ∙ 𝜎𝑔𝑑𝑚 ,𝑖𝑛𝑡𝑒𝑟

𝑆                                                                            (3.36) 
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From Equation (3.36), an immediate drawback of the technique appears: 𝜎𝑔𝑑 ,𝑖𝑛𝑡𝑒𝑟
𝑁𝑀 , 𝜎𝑔𝑑 ,𝑖𝑛𝑡𝑒𝑟

𝑃𝑀 ,

𝜎𝑔𝑑 ,𝑖𝑛𝑡𝑒𝑟
𝑆  of each cell must be characterized. This additional information requires a lot of CPU time 

when constructing the statistical timing library. 

3.5.2 Path-to-path delay correlation 

To compute circuit delay with the algorithms in [46] based on Equations (2.10) – (2.11), 

Path-to-path Delay Correlation (PDC) is required. Suppose two paths constituted respectively 

by 𝐾1 and 𝐾2 cells, then the PDC is computed by: 

𝑐𝑜𝑟 𝑝𝑑1, 𝑝𝑑2 =
𝑐𝑜𝑣 𝑝𝑑1, 𝑝𝑑2 

𝜎𝑝𝑑1
𝜎𝑝𝑑2

                                                                   (3.37) 

Adopting the setting of Section 3.5.1 to compute CDC, we have: 

𝑐𝑜𝑣 𝑝𝑑1, 𝑝𝑑2 = 𝑐𝑜𝑣   𝑔𝑑𝑘1

𝐾1

𝑘1=1

,  𝑔𝑑𝑘2

𝐾2

𝑘2=1

 =   𝑐𝑜𝑣 𝑔𝑑𝑘1
, 𝑔𝑑𝑘2

 

𝐾2

𝑘2=1

𝐾1

𝑘1=1

          (3.38) 

If the two paths have common cells, i.e. 𝑘1 and 𝑘2 indicate the same cell, then:  

𝑐𝑜𝑣 𝑔𝑑𝑘1
, 𝑔𝑑𝑘2

 = 𝜎𝑔𝑑𝑘1
∙ 𝜎𝑔𝑑𝑘2

                                                                                (3.39) 

otherwise: 

𝑐𝑜𝑣 𝑔𝑑𝑘1
, 𝑔𝑑𝑘2

 ≈ 𝜎𝑔𝑑𝑘1 ,𝑖𝑛𝑡𝑒𝑟
𝑁𝑀 ∙ 𝜎𝑔𝑑𝑘2 ,𝑖𝑛𝑡𝑒𝑟

𝑁𝑀 + 𝜎𝑔𝑑𝑘1 ,𝑖𝑛𝑡𝑒𝑟
𝑃𝑀 ∙ 𝜎𝑔𝑑𝑘2 ,𝑖𝑛𝑡𝑒𝑟

𝑃𝑀 +                         

𝜎𝑔𝑑𝑘1 ,𝑖𝑛𝑡𝑒𝑟
𝑆 ∙ 𝜎𝑔𝑑𝑘2 ,𝑖𝑛𝑡𝑒𝑟

𝑆                                                                (3.40) 

3.6  Validation and Discussion 

In this section, our SSTA engine is validated by comparing its results with those from MC simu-

lations. Next, the advantages and the computational cost of the engine are presented. Finally, we 

discuss some ideas to improve the engine. 
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3.6.1 Validation 

As presented in Section 3.1, we first characterized conditional moments of timing variables, 

and then constructed the statistical timing library. In the second step, a certain number of critical 

paths were extracted from the considered circuits using CTA under the software RTL Compiler. 

Then, we performed SSTA with the timing engine implemented by the statistical computing and 

graphic tool R [49]. Finally, we ran MC simulations for comparison. 

As shown in Tables 3.4 – 3.5, the validation is done respectively in the 130 nm and 65 nm 

technology. The three considered circuits are b01, b05 and b07 of the ITC99 benchmark. In these 

two tables, relative errors on estimated means and standard deviations of path delays are respec-

tively less than 5% and 10%. These errors are acceptable in the context of timing analysis. 

Moreover, most of the standard deviations are a little overestimated, which will reduce the    

probability of violating the setup and hold time constraints if ICs are designed with this SSTA 

framework.  

 

Table 3.4 Validation in the 130 nm technology 
 

name path 
logical 

depth 

path delay (ps) error  %  

MC simulations 

(1500 runs) 

SSTA 

(continuous version) 
𝜇 𝑝𝑑 − 𝜇𝑝𝑑

𝜇𝑝𝑑
% 

𝜎 𝑝𝑑 − 𝜎𝑝𝑑

𝜎𝑝𝑑
% 

𝜇𝑝𝑑  𝜎𝑝𝑑  𝜇 𝑝𝑑  𝜎 𝑝𝑑  

b01 

1 5 665.5 40.0 690.5 42.7 3.8% 6.3% 

2 6 590.7 34.9 605.8 36.4 2.6% 4.1% 

3 7 598.3 35.3 610.3 35.5 2.0% 0.6% 

4 5 660.3 39.4 680.2 42.1 3.0% 6.4% 

5 6 644.1 38.7 658.9 41.0 2.3% 5.6% 

b05 

1 13 1185.8 70.2 1206.6 71.8 1.8% 2.2% 

2 17 1106.4 66.5 1098.6 67.1 −0.7% 0.9% 

3 18 991.3 61.7 1027.0 65.3 3.6% 5.5% 

4 20 1249.3 75.8 1242.7 75.7 −0.5% −0.1% 

5 19 1294.6 78.2 1291.9 78.5 −0.2% 0.4% 

b07 

1 10 722.0 44.2 725.2 44.4 0.4% 0.5% 

2 10 738.7 45.3 750.6 46.3 1.6% 2.2% 

3 9 720.2 43.9 727.4 46.1 1.0% 4.8% 

4 11 740.5 45.6 735.4 47.1 −0.7% 3.2% 

5 9 722.1 44.2 730.1 46.3 1.1% 4.5% 
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The validation of the techniques to compute CDCs and PDCs is given respectively in Figures 

3.8 and 3.9. Denote correlation coefficients computed by the SSTA engine as 𝜌 . Considering 

coefficients 𝜌 from MC simulations as reference, the absolute errors 𝑒𝑎𝑏𝑠  and relative errors 𝑒𝑟𝑒𝑙  

are computed by: 

 

 𝑒𝑎𝑏𝑠 =  𝜌 − 𝜌     
 

 𝑒𝑟𝑒𝑙 =
 𝜌 − 𝜌 

𝜌
%

                                                                             (3.41) 

In Figure 3.8, the majority of points are in the region with 𝑒𝑎𝑏𝑠 ≤ 0.2. In addition, most of the 

points outside this dashed region, i.e. 𝑒𝑎𝑏𝑠 > 0.2, are overestimated, which lead to overestimation 

on path delay standard deviations according to Equation (3.21). This explains why, in Table 

3.5, all relative errors of path delay standard deviations expect for path 1 of circuit b05 are posi-

tive. In Figure 3.9, all points are in the region with 𝑒𝑟𝑒𝑙 ≤ 20%. Thus, the accuracy of PDCs 

computed by the SSTA engine is better than that of CDCs. 

Table 3.5 Validation in the 65 nm technology 
 

name path 
logical 

depth 

path delay (ps) error  %  

MC simulations 

(1500 runs) 

SSTA 

(continuous version) 
𝜇 𝑝𝑑 − 𝜇𝑝𝑑

𝜇𝑝𝑑
% 

𝜎 𝑝𝑑 − 𝜎𝑝𝑑

𝜎𝑝𝑑
% 

𝜇𝑝𝑑  𝜎𝑝𝑑  𝜇 𝑝𝑑  𝜎 𝑝𝑑  

b01 

1 9 500.2 26.8 489.7 27.5 −2.1% 2.5% 

2 8 495.0 27.4 492.6 27.9 −0.5% 1.8% 

3 7 461.9 25.9 460.2 26.4 −0.4% 2.1% 

4 9 496.2 27.1 498.5 27.4 0.5% 1.1% 

5 7 475.7 26.2 475.8 27.1 0.0% 3.7% 

b05 

1 25 1067.6 57.8 1050.2 57.3 −1.6% −0.8% 

2 23 1077.7 58.5 1069.5 59.9 −0.8% 2.5% 

3 22 1080.9 57.7 1073.7 59.5 −0.7% 3.1% 

4 22 1110.4 59.0 1113.2 60.4 0.3% 2.3% 

5 23 1077.7 58.5 1069.5 59.9 −0.8% 2.5% 

b07 

1 12 657.4 34.3 642.2 34.9 −2.3% 1.7% 

2 11 657.0 34.2 656.7 36.2 −0.1% 5.8% 

3 13 659.1 35.2 647.6 36.1 −1.8% 2.6% 

4 10 674.9 36.2 685.9 38.3 1.6% 5.8% 

5 11 654.4 35.6 655.2 38.0 0.1% 6.8% 
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Figure 3.9 Validation of the technique to compute PDCs (65 nm) 

 
 

Figure 3.8 Validation of the technique to compute CDCs (65 nm) 
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In order to obtain detailed information, we compute the following proportions: 

 
 
 
 
 
 
 

 
 
 
 
 
  𝑝𝑜𝑒 =

1

𝑁
∙ 𝑖𝑓 𝜌 𝑖 − 𝜌𝑖 < 0, 𝑡𝑕𝑒𝑛 1, 𝑒𝑙𝑠𝑒 0 

𝑁

𝑖=1

    

 

 𝑝𝑢𝑒 =
1

𝑁
∙ 𝑖𝑓 𝜌 𝑖 − 𝜌𝑖 > 0, 𝑡𝑕𝑒𝑛 1, 𝑒𝑙𝑠𝑒 0 

𝑁

𝑖=1

    

 

 𝑝𝑎𝑏𝑠 =
1

𝑁
∙ 𝑖𝑓 𝑒𝑎𝑏𝑠 ≤ 0.2, 𝑡𝑕𝑒𝑛 1, 𝑒𝑙𝑠𝑒 0 

𝑁

𝑖=1

    

 

 𝑝𝑟𝑒𝑙 =
1

𝑁
∙ 𝑖𝑓 𝑒𝑟𝑒𝑙 ≤ 20%, 𝑡𝑕𝑒𝑛 1, 𝑒𝑙𝑠𝑒 0 

𝑁

𝑖=1

  

                                    (3.42) 

where 𝑁 is the sample size, and 𝑝𝑜𝑒 , 𝑝𝑢𝑒 , 𝑝𝑎𝑏𝑠 , 𝑝𝑟𝑒𝑙  represent respectively the proportion of points 

overestimated, underestimated, in the region 𝑒𝑎𝑏𝑠 ≤ 0.2 and 𝑒𝑟𝑒𝑙 ≤ 20%. Table 3.6 gives these 

proportions in percentage. The most important information in this table is that 81% of the CDCs 

are overestimated while 84% of the PDCs are underestimated, which is the expected results.  

 

To explain why overestimate of CDC and underestimate of PDC are preferable, we return to the 

problem of timing verification. For ease of description, consider the setup time constraint below: 

𝑝𝑑𝑑𝑎𝑡𝑎 − 𝑝𝑑𝑐𝑙𝑘 < 𝑇𝐶𝐿𝐾                                                         (3.43) 

where 𝑇𝐶𝐿𝐾  is the clock period and  𝑝𝑑𝑑𝑎𝑡𝑎 , 𝑝𝑑𝑐𝑙𝑘  are respectively delays of data path and clock 

path. Comparing with Equation (1.3), 𝑝𝑑𝑑𝑎𝑡𝑎  corresponds to the left hand side and 𝑝𝑑𝑐𝑙𝑘  to 

the first two terms of the right hand side. Note that 𝑇𝐶𝐿𝐾  is a constant while 𝑝𝑑𝑑𝑎𝑡𝑎 , 𝑝𝑑𝑐𝑙𝑘  are 

random variables. Then, we have: 

𝑉𝑎𝑟 𝑝𝑑𝑑𝑎𝑡𝑎 − 𝑝𝑑𝑐𝑙𝑘  = 𝜎𝑑𝑎𝑡𝑎
2 + 𝜎𝑐𝑙𝑘

2 − 2 ∙ 𝜌𝑑𝑐 ∙ 𝜎𝑑𝑎𝑡𝑎 ∙ 𝜎𝑐𝑙𝑘                         (3.44) 

where 𝜎𝑑𝑎𝑡𝑎
2 , 𝜎𝑐𝑙𝑘

2  are respectively the variance of 𝑝𝑑𝑑𝑎𝑡𝑎  and 𝑝𝑑𝑐𝑙𝑘 ; 𝜌𝑑𝑐  is the PDC between 

𝑝𝑑𝑑𝑎𝑡𝑎  and 𝑝𝑑𝑐𝑙𝑘  and varies in the interval  0,1 . 

Table 3.6 Information about the accuracy of computed CDCs and PDCs 
 

 𝑁 𝑝𝑜𝑒% 𝑝𝑢𝑒% 𝑝𝑎𝑏𝑠% 𝑝𝑟𝑒𝑙% 

CDC 10532 81% 19% 76% 55% 

PDC 780 16% 84% 100% 100% 
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According to Equation (3.44), 𝑉𝑎𝑟 𝑝𝑑𝑑𝑎𝑡𝑎 − 𝑝𝑑𝑐𝑙𝑘   will increase if one or more of the fol-

lowing cases appears: 

a) 𝜎𝑑𝑎𝑡𝑎  increases; 

b) 𝜎𝑐𝑙𝑘  increases; 

c) 𝜌𝑑𝑐  decreases. 

In other words, both the overestimation of CDC and the underestimation of PDC result in the 

overestimation of 𝑉𝑎𝑟 𝑝𝑑𝑑𝑎𝑡𝑎 − 𝑝𝑑𝑐𝑙𝑘  . As illustrated in Figure 3.10, if the distribution with 

overestimated variance satisfies the setup time constraint, then so will the actual distribution. 

Thus, this overestimation of 𝑉𝑎𝑟 𝑝𝑑𝑑𝑎𝑡𝑎 − 𝑝𝑑𝑐𝑙𝑘  , i.e. overestimate of CDC and underestimate 

of PDC, is a little conservative but preferable, which validates the techniques of computing delay 

correlations. 

 

3.6.2 Quality of the SSTA engine 

Accuracy and computational cost are the two most important criteria to evaluate the quality of a 

SSTA method. In Section 3.6.1, an overview on the accuracy of the proposed SSTA engine 

      
 

Figure 3.10 Illustration of preferable overestimation on 𝑉𝑎𝑟 𝑝𝑑𝑑𝑎𝑡𝑎 − 𝑝𝑑𝑐𝑙𝑘   
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has been given. In this section, we turn our attention to its computational cost. Table 3.7(a) 

gives some examples of CPU time gains of the SSTA engine compared to MC simulations. In 

this table, to compute delay distribution of the same path, the SSTA engine implemented by the 

statistical computing software R [49] is over 105  times faster than MC simulations ran under 

HSPICE [43]. Table 3.7(b) gives the running environments of these two methods. 

 

Table 3.8 shows the influences of CDCs and slope variations on the accuracy of estimated path 

delay standard deviations. Apart from the technique to compute CDCs in Equations (3.31) 

and (3.36), the following two extreme cases are considered: 

 CDCs 𝜌𝑘1𝑘2
 are set to “1” for any 𝑘1, 𝑘2; 

 CDCs 𝜌𝑘1𝑘2
 are set to “0” except for 𝑘1 = 𝑘2. 

As shown in Table 3.8, the two extreme cases above respectively lead to an average relative 

error 23.7% and −56.3%. The last column gives −2.7% if slope variations are not taken into 

account, which gives a difference of about 8% (i.e.  −2.7% − 5.0% ) compared to the average 

using Equations (3.31) and (3.36). In other words, slope variations should not be neglected, 

otherwise about 8% of standard deviation is lost. 

Table 3.7 Computational cost of MC simulations and our SSTA engine 
 

(a) Some comparisons of computational cost 

path 
logical 

depth 

CPU time (s) 𝑠𝑡/𝑒𝑡 
(simulation time : 𝑠𝑡 

SSTA time : 𝑒𝑡) 
MC simulations 

(1500 runs) 

SSTA 

(continuous version) 

1 5 2794.02 0.02 1.40 × 105  

2 10 5245.12 0.03 1.75 × 105  

3 15 6914.28 0.06 1.15 × 105  

4 20 9881.50 0.08 1.24 × 105  

5 25 12020.70 0.11 1.09 × 105  
 

(b) Running environments of MC simulations and the SSTA engine 

 platform CPU number of CPU CPU frequency memory software 

MC simulations Unix Ultra SPARC III 8 900MHz 32G HSPICE 

SSTA Windows Intel Pentium D 1 2800MHz 1G R 
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3.6.3 Discussion 

The outstanding characteristic of the proposed SSTA engine is the independency of moments 

propagation on statistical process model and approximation of MAX operation. In other words, if 

a universally accepted statistical process model appears, the propagation technique could be 

adapted to still be valid. Moreover, we use the algorithms in [46] based on the linear approxima-

tion of MAX to compute circuit delay to date. However, if we improve the engine by also propa-

gating the third moment of cell delays, then the Gaussian assumption on path delay can be 

changed to, for example, a skew-Normal one. This allows using the skew-Normal based MAX 

approximation in [32], which would provide better accuracy on computation of circuit delay. 

On the downside, the technique to compute delay correlation in Section 3.5 depends on statis-

tical process model. What is more important, it cannot take into account correlation between 

input slopes. These weaknesses should be addressed in the future. 

3.7  Summary 

The SSTA engine presented in this chapter is implemented by moments propagation, which 

overcomes some of the weaknesses of existing parametric methods. From the point of view of 

accuracy, path delay means and standard deviations computed by this engine have relative errors 

Table 3.8 Influences of CDCs and slope variations 
 

path 
logical 

depth 
𝜎𝑝𝑑  (ps) 

𝜎 𝑝𝑑 − 𝜎𝑝𝑑

𝜎𝑝𝑑
% 

𝜌𝑘1𝑘2
 computed 

by Equations 

(3.31) and (3.36) 

∀𝑘1 , 𝑘2 

𝜌𝑘1𝑘2
= 1 

 
𝜌𝑘1𝑘2

= 1, 𝑘1 = 𝑘2

𝜌𝑘1𝑘2
= 0, 𝑘1 ≠ 𝑘2

  𝜎𝜏𝑖𝑛 ,𝑘
2 = 0 

for each cell 𝑘, 

1 5 22.9 7.0% 23.1% −33.2% −3.0% 

2 10 36.2 7.7% 25.1% −50.8% 2.4% 

3 15 45.4 0.9% 21.6% −61.7% −6.3% 

4 20 57.7 6.4% 24.8% −66.4% −1.2% 

5 25 57.8 2.8% 23.8% −69.2% −5.4% 

average 5.0% 23.7% −56.3% −2.7% 
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respectively less than 5% and 10%. The technique to compute delay correlation in general over-

estimates CDCs and underestimates PDCs, which is a preferable result. As for CPU time, it is 

about 105 times faster than a 1500 runs MC simulation for the same path. 
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Chapter 

4 

Statistical Timing Library 

 

This chapter introduces techniques to improve the quality of our statistical timing library and to 

reduce the CPU time of timing characterization. In Section 4.1, we present an input signal 

model derived from the Log-Logistic (LL) distribution, and an output load model based on 

inverters. Section 4.2 proposes techniques to reduce dimensions to save CPU time during the 

procedure of characterization. 
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oments propagation techniques, in which cell delays means and variances are computed, 

are the kernel of the SSTA engine. The accuracy of this propagation technique is mainly 

determined by the quality of the statistical timing library. This quality depends on the accuracy of 

conditional moments, as well as the number of conditional moments contained in each lookup 

table. As conditional moments are estimated by data from Monte Carlo (MC) simulations, their 

accuracy can be improved by increasing the number of runs. In addition, the dependency of 

conditional moments on input slope and output load are approximated by lookup tables and 

bilinear interpolations. Thus, increasing the number of lookup values can produce better results. 

In fact, to improve the quality of the library, the most crucial technique is to reduce the errors 

induced by input signals and output load models when doing timing characterization. Section 

4.1 gives details on this topic.  

4.1  Timing Characterization 

Timing characterization is the procedure to pre-characterize timing information for each type of 

cell by MC simulations. In our context, timing information includes conditional moments of cell 

delay and output slope for diverse combination of factors. Among these factors, cell type,    

input/output pin, and input/output edge are deterministic; temperature and supply voltage are set 

to be constants; samples of process parameters are randomly generated; as for input slope and 

output load, the conventional method is to use a linear ramp model and capacitors, as shown in 

Figure 4.1. 

In Figure 4.1(a), the left panel is the considered 𝑂𝑅 cell in a circuit; in the right panel, we 

extract only the 𝑂𝑅 cell and its output load is replaced by a capacitor, the charge of which is the 

sum of charges of all connected pins in the left panel. Figure 4.1(b) shows an input signal from 

circuit simulation and its approximation: linear ramp model. The straight dashed line typically 

passes through the two points  𝑡1, 0.2 ∙ 𝑉𝑑𝑑   and  𝑡2, 0.8 ∙ 𝑉𝑑𝑑  . Then, the signal is determined by 

𝜏𝑖𝑛  and 𝑉𝑑𝑑 . 

M 
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Note that timing characterization is done with standalone cells instead of a complete circuit. This 

is because we have no information about how a cell would be connected during the procedure of 

constructing statistical timing library. In addition, the structure of connection is different from 

one circuit design to another. In consequence, we use input signal and output load models to 

approximate what could happen at the input and output pins of a cell in real circuits. 

This conventional method is simple and efficient. However, as the magnitude of process varia-

tions grows, such a method cannot provide acceptable results any more, especially when captur-

ing variations of timing variables. In fact, charges of capacitors are constants during MC simula-

tion, i.e. they do not depend on random process parameters, whereas charges of input pins do 

 

 

(a) Approximation of output load with capacitor 

 

 

 

(b) Linear ramp (dashed line) approximation of input signal (solid line) 

 

Figure 4.1 Conventional approximations of input slope and output load 
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depend on these parameters and, therefore, are random. Thus, conditional variances will be  

underestimated if characterization is done using capacitors. 

In order to increase the quality of approximations, we propose an input signal model based on the 

Log-Logistic (LL) Cumulative Distribution Function (CDF), and use inverters to replace capaci-

tors for output load. 

4.1.1 Input signal model 

In this section, we only focus on rising edges for simplicity, because rising edges and falling 

edges are similar in terms of shape.  

First, we study the input signal characteristics. In the context of digital IC, a signal can be    

described by a voltage function 𝐻 𝑡  depending on time 𝑡. Figure 4.2(a) gives the derivatives 

𝑑𝐻 𝑡 

𝑑𝑡
 of some typical signals of different slopes. From this figure, it is obvious that the linear 

ramp model, the derivative of which is a constant, is of low accuracy. In Figure 4.2(b), LL 

Probability Density Functions (PDF) 𝑓𝐿𝐿 𝑥  of different parameters are plotted. These PDFs 

have similar forms to some of the signal derivatives, especially those located on the left part of 

Figure 4.2(a), e.g. signals with slope less than 120 ps in the figure, which in practice occur    

80% of times [50]. In addition, if we normalize a signal 𝐻 𝑡  by its total amplitude 𝑅 and trans-

form it to satisfy the condition 
𝐻 𝑡 

𝑅
∈  0,1 , then beyond a certain moment 𝑡𝑚𝑖𝑛 , 

𝐻 𝑡 

𝑅
 looks like 

a CDF, because: 

 it is monotone increasing on  𝑡𝑚𝑖𝑛 , ∞ ), 

 
𝐻 𝑡𝑚𝑖𝑛  

𝑅
= 0 and 𝑙𝑖𝑚𝑡→∞

𝐻 𝑡 

𝑅
= 1. 

Therefore, it is feasible to approximate input and output signal functions with LL CDFs: 

𝐹 𝑥; 𝛼, 𝛽 =   
𝛼

𝑥
 
𝛽

+  1 

−1

                  𝑥 > 0                                  (4.1) 

where 𝛼, 𝛽 > 0 are two parameters to identify. As shown above, the expression of LL CDFs is 

simple, which is the main advantage of using LL-based approximation. 
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Before proceeding, the notations for the definition of LL-based models are given in Figure 4.3. 

Note that the part that is below the zero line is a normal electronic phenomenon while the signal 

is switching. In order to model this special part, a signal is divided into two segments: 𝑡 ≤  𝑡𝑚𝑖𝑛  

and 𝑡 >  𝑡𝑚𝑖𝑛 . 

 

 

 

Figure 4.3 Notations of input signal model 

        

 

                    (a) Derivatives of some signals             (b) PDFs (derivatives of CDFs) of LL distributions 

 

Figure 4.2 Comparison of signals and LL distributions 
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According to the notations, we define: 

 
 
 

 
  𝜏𝑖𝑛 =

5

3
∙  𝑡2 − 𝑡1               

 
 ∆𝑉 =  0 − 𝑉𝑚𝑖𝑛  =  𝑉𝑚𝑖𝑛  

 
 ∆𝑡 = 𝑡𝑚𝑖𝑛 − 𝑡0                    

                                                              (4.2) 

Denote 𝐻 (𝑡) the approximating function. Based on Equation (4.1), we have the model below: 

𝑉 = 𝐻  𝑡 =

 
 
 

 
 

 
 −
∆𝑉
∆𝑡 ∙

 𝑡 + ∆𝑡 − 𝑡𝑚𝑖𝑛                                                   𝑡 ≤  𝑡𝑚𝑖𝑛  
 
 

  𝑉𝑑𝑑 + ∆𝑉 ∙   
𝛼

 𝑡− 𝑡𝑚𝑖𝑛  𝜏𝑖𝑛 
 
𝛽

+  1 
−1

− ∆𝑉            𝑡 >  𝑡𝑚𝑖𝑛  

                 (4.3) 

where 𝜏𝑖𝑛  is known; 𝑡𝑚𝑖𝑛  may be any value greater than ∆𝑡, and indicates the location of the 

approximated signal; 𝛼, 𝛽, ∆𝑡, ∆𝑉 are values to identify. 

In Figure 4.1(b), the linear ramp is only determined by the input slope 𝜏𝑖𝑛 . For the LL-based 

model, the idea is to compute 𝛼, 𝛽, ∆𝑡, ∆𝑉 from 𝜏𝑖𝑛  so that the approximated signal is determined 

by 𝜏𝑖𝑛  as well. For this purpose, we build functions: 

 
 
 

 
 

 ∆𝑉 = 𝑔∆𝑉 𝜏𝑖𝑛  
 

 ∆𝑡 = 𝑔∆𝑡 𝜏𝑖𝑛    
 

 𝛽 = 𝑔𝛽 𝜏𝑖𝑛      

                                                                           (4.4) 

Once ∆𝑉, ∆𝑡, 𝛽 are obtained, then according to Equation (4.3), parameter 𝛼 may be computed 

with the two points  𝑡1, 0.2 ∙ 𝑉𝑑𝑑   and  𝑡2, 0.8 ∙ 𝑉𝑑𝑑  . To identify the functions in Equation 

(4.4), we follow the three steps below: 

a) collect data from MC simulations; 

b) analyze the dependency of ∆𝑉, ∆𝑡, 𝛽 on 𝜏𝑖𝑛  by plots, and propose simple explicit func-

tions of 𝑔∆𝑉 𝜏𝑖𝑛  , 𝑔∆𝑡 𝜏𝑖𝑛   and 𝑔𝛽 𝜏𝑖𝑛  ; 

c) estimate parameters of the proposed functions using the Least Squares Method (LSM) 

[51]. 
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First of all, we collect from MC simulations, 1000 output signals of different cells under diverse 

operating conditions, such as temperature, supply voltage, input slope, output load, etc. For each 

signal, nine points for the segment  𝑡 >  𝑡𝑚𝑖𝑛   corresponding to 𝜔 ∙ 𝑉𝑑𝑑 ,  𝜔 = 0.1, 0.2, … 0.9 , 

plus  𝑡0, 0  and  𝑡𝑚𝑖𝑛 , 𝑉𝑚𝑖𝑛  , are measured. Next, according to Equation (4.2), we compute 

𝜏𝑖𝑛 , ∆𝑉, ∆𝑡. Finally, for each signal, we estimate 𝛼, 𝛽 in Equation (4.3) with the nine measured 

points  𝑡 >  𝑡𝑚𝑖𝑛   using LSM. 

In Figure 4.4(a), there exists a trend that ∆𝑉 decreases along with the increase of 𝜏𝑖𝑛 ; Figure 

4.4(b) shows a linear increasing trend of ∆𝑡 on 𝜏𝑖𝑛 ; in Figure 4.4(c), 𝛽 seems to decrease if 𝜏𝑖𝑛  

increases. Thus, we propose the simple functions below: 

 
  
 

  
  ∆𝑉 =  

𝐶∆𝑉
𝐴∆𝑉 + 𝐵∆𝑉 ∙ 𝜏𝑖𝑛

   
 

 ∆𝑡 = 𝐴∆𝑡 + 𝐵∆𝑡 ∙ 𝜏𝑖𝑛        
 

 𝛽 =  
𝐶𝛽

𝐴𝛽 + 𝐵𝛽 ∙ 𝜏𝑖𝑛
+ 𝐷𝛽

                                                                     (4.5) 

The first two functions are derived from the model of overshoot [52]. The last one comes from 

Figure 4.4(c), which is similar to Figure 4.4(a). Using LSM, we have: 

 
 
 

 
 

 𝐴∆𝑉 = 15.52           
 

 𝐵∆𝑉 = 1.81 × 1011

 
 𝐶∆𝑉 = 0.45              

                  
 𝐴∆𝑡 = 4.7 × 10−11

 
 𝐵∆𝑡 = 0.04             

                  

 
  
 

  
 

 𝐴𝛽 = 0.33              
 

 𝐵𝛽 = 6.9 × 109    
 

 𝐶𝛽 = 1.32              
 

 𝐷𝛽 = 1.51              

  

Given an input slope 𝜏𝑖𝑛 , with Equation (4.5) and their estimated parameters, we may com-

pute ∆𝑉, ∆𝑡, 𝛽. After that, 𝛼 is obtained from the LL CDF. 

The part  𝑡 >  𝑡𝑚𝑖𝑛   of Equation (4.3) may be rewritten as: 

𝑡 = 𝑡𝑚𝑖𝑛 + 𝜏𝑖𝑛 ∙ 𝛼 ∙  
𝑉𝑑𝑑−𝑉 

𝑉 +∆𝑉
 
−

1

𝛽
                      𝑡 >  𝑡𝑚𝑖𝑛                 (4.6)  
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    (a) ∆𝑉 =  
0.45

15.52+1.81×10
11
∙𝜏𝑖𝑛

          (b) ∆𝑡 = 4.7 × 10−11 + 0.04 ∙ 𝜏𝑖𝑛  

 

 

(c) 𝛽 =  
1.32

0.33+6.9×10
9
∙𝜏𝑖𝑛

+ 1.51 

 

Figure 4.4 Proposed simple functions 
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Replacing 𝑡, 𝑉  in Equation (4.6) with the two points  𝑡1, 0.2 ∙ 𝑉𝑑𝑑   and  𝑡2, 0.8 ∙ 𝑉𝑑𝑑  , we get:  

𝑡2 − 𝑡1 = 𝜏𝑖𝑛 ∙ 𝛼 ∙

 
 
 
 
 

 
0.2

0.8 +
∆𝑉
𝑉𝑑𝑑

 

−
1
𝛽

−  
0.8

0.2 +
∆𝑉
𝑉𝑑𝑑

 

−
1
𝛽

 
 
 
 
 

= 0.6 ∙ 𝜏𝑖𝑛             (4.7) 

Then, parameter 𝛼 is computed by: 

𝛼 = 0.6 ∙

 
 
 
 
 

 
0.2

0.8 +
∆𝑉
𝑉𝑑𝑑

 

−
1
𝛽

− 
0.8

0.2 +
∆𝑉
𝑉𝑑𝑑

 

−
1
𝛽

 
 
 
 
 
−1

                          (4.8) 

Because of the dispersion of the points about the estimated LSM functions, the above way to 

identify parameters 𝛼, 𝛽, ∆𝑡, ∆𝑉 leads to loss of accuracy. However, among the information about 

a signal, only 𝜏𝑖𝑛  is available during the procedure of computation in Figure 3.4. Besides, such 

a way is simple to apply under HSPICE [43], which is not good at handling complex mathemati-

cal functions. 

Next, we compare the accuracy of linear ramp and LL-based model following the procedure 

below: 

a) Collect 500 output signals under various conditions, like cell type, temperature, etc.; 

b) For each signal, measure the 20% – 80% slope and approximate the signal respectively by 

linear ramp and LL-based model; 

c) Normalize all measured and approximated signals by its own slope, and transform the 

point  𝑡0, 0.5 ∙ 𝑉𝑑𝑑   of each signal to point  0, 0.5 ∙ 𝑉𝑑𝑑  , as shown in Figure 4.5; 

d) Define a series of points, e.g. −1.5, −1.4, … , 0, … , 1.4, 1.5, and compute errors point by 

point for each linear ramp and LL-based approximation; 

e) Compute the average errors of signal samples: all linear ramp approximations, LL-based 

approximations with slopes respectively less than 100 ps and 200 ps, and all LL-based 

approximations, as shown in Figure 4.6. 
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Figure 4.6 Average errors of approximated signals (65 nm) 

 

 

Figure 4.5 Normalized and transformed signals 
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In Figure 4.6, linear ramp model has positive errors on both sides of the vertical axis, while 

LL-based model has negative errors on the right side. In addition, LL-based approximations are 

better for small slopes than large slopes. In this figure, it is not clear whether LL-based model is 

more accurate or not. However, latter comparisons in Section 4.1.3 show that LL-based model 

is better in capturing slope variations during characterization. 

4.1.2 Output load variations 

The main drawback of modeling output load with capacitors during timing characterization, as in 

Figure 4.1(a), is that they are not able to capture output load variations, or more precisely, the 

impact of load variations on cell timings. This weakness is due to the fact that the charge of a 

capacitor keeps constant, whereas in real circuit, the charges of input pins of all cells depend on 

process parameters, and therefore are random variables. 

In order to better represent what happens around a cell in real circuits, our timing characterization 

uses inverters instead of capacitors to model output load. As shown in Figure 4.7, we connect 

𝑀 inverters at the output pin of the considered cell. The sum of input charges of all inverters is 

considered as the nominal value of output load. Note that these inverters can be of different input 

charges. As mentioned before, input charges of cells, inverters included, depend on process  

parameters, which are random during MC simulations. Thus, the model using inverters captures 

output load variations during characterization. In others words, output load variations are con-

tained in conditional variances of timing variables. 

 

 

 

Figure 4.7 𝑀 inverters as output load 
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4.1.3 Comparison 

The validation of the SSTA engine given in Tables 3.4 – 3.5 is done with a statistical timing 

library constructed by data that is collected with the LL-based signal model and inverters as 

output load. In other words, these tables validate the proposed signal model and the use of inver-

ters as output load model. In order to demonstrate the effects of using these models, we compare 

standard deviations of path delays estimated by data from MC simulations, which are considered 

as reference values, with those computed using statistical timing libraries based on the following 

combinations of input signal and output load models: 

 LL-based signal and inverters, 

 linear signal and inverters, 

 LL-based signal and capacitors. 

Table 4.1 gives some examples. Comparing the average relative errors of these combinations, 

we find a difference in percentage of about 16 between the first two combinations, and about 12 

between combinations 1 and 3. In addition, results of the last two columns are all underestimated, 

which are unexpected in case of statistical timing analysis. This table gives the conclusion that 

both LL-based input signal and inverters output load improve the accuracy of computing path 

delay standard deviations. 

Table 4.1 Comparisons of path delay standard deviations computed with statistical timing 

libraries based on different combinations of input signal and output load models (65 nm) 
 

path 
logical 

depth 
𝜎𝑝𝑑  (ps) 

𝜎 𝑝𝑑 − 𝜎𝑝𝑑

𝜎𝑝𝑑
% 

LL-based signal 

+ inverters 

(combination 1) 

linear signal + 

inverters 

(combination 2) 

LL-based signal 

+ capacitors 

(combination 3) 

1 5 22.9 7.0% −6.8% −4.6% 

2 10 36.2 7.7% −4.5% −4.8% 

3 15 45.4 0.9% −14.6% −10.7% 

4 20 57.7 6.4% −11.1% −5.7% 

5 25 57.8 2.8% −17.2% −7.2% 

average 5.0% −10.84% −6.6% 
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4.1.4 Weaknesses 

The weakness of LL-based signal model can be found in Figure 4.2. The derivatives 
𝑑𝐻 𝑡 

𝑑𝑡
 of 

signals from circuit simulations converge rapidly to 0 after the corresponding maximum point; 

whereas the PDFs of LL distributions seem to converge to 0 not as fast as the derivatives of 

signals do. This problem is also shown in Figure 4.6, where LL-based model has negative 

errors on the right side of the vertical axis. Thus, this weakness of signal model would be a point 

to address for higher accuracy of approximation. 

As regards the output load model, its weakness is obvious, because we have no argument to 

support: 

a) the use of inverters instead of other cells,  

b) the structure of inverters which have different charges at input pin, 

c) the number of inverters connected at the output pin of the considered cell. 

4.2  Acceleration Techniques 

Timing characterization is implemented by running MC simulations, which demand very high 

computational cost. Even though this step of characterization is only a one-time job as stated in 

Chapter 3, it is important to accelerate its procedure to reduce runtime. Such a goal can be 

achieved by reducing either the number of runs, or the number of points to characterize, or both.  

The first way will lead to a loss of accuracy when estimating conditional moments if we continue 

using classic MC techniques. Theoretically, we may use variants, like importance sampling to 

reduce the number of runs without losing too much accuracy in estimating conditional moments. 

However, applying this variant sampling technique on dozens of process parameters is compli-

cated and its accuracy is not clear. 

The second way will worsen the accuracy of the approximating function shown in Figure 3.3, 

if it leads to a reduction of the number of points contained in each lookup table. This conclusion 

is because when approximating a nonlinear function with linear interpolation, the accuracy will 
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be worse with fewer interpolating points. Note that the number of points that need to be characte-

rized is not exactly the same as the number of points of each lookup table. The technique of 

acceleration presented below reduces the number of points to characterize while keeping the 

same number of points in each lookup table. 

4.2.1 Reducing dimension 

In Figure 4.8(a), the curves show how the conditional output slope mean of an inverter 

𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡   varies along with 𝜏𝑖𝑛 . Each of these curves corresponds to a value of the output 

load 𝐶𝑜𝑢𝑡 . They are constant in region  1 , called Fast Input Range (FIR), while in region  2 , 

called Non-Fast Input Range (N-FIR), 𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡   varies. Figure 4.8(b) shows that there 

exists FIR and N-FIR as well for the conditional output slope variance 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡  . Note 

that the FIRs for 𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡   and 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡   are identical for a given value of 

output load. 

 

 

(a) Conditional means of output slopes          (b) Conditional variances of output slopes 

 

Figure 4.8 Illustrations of FIR and N-FIR 
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Given a value 𝑐 of 𝐶𝑜𝑢𝑡 , we define 𝜏𝑡𝑕
𝑐  the threshold between FIR and N-FIR corresponding to 𝑐. 

If 𝜏𝑖𝑛 ∈  0, 𝜏𝑡𝑕
𝑐  , then 𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡 = 𝑐  and 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡 = 𝑐  are constants, which we 

denote respectively as 𝜇
𝜏𝑜𝑢𝑡
𝑓𝑡  𝑐  and  𝜎

𝜏𝑜𝑢𝑡
𝑓𝑡  𝑐  

2

, or as 𝜇𝑓𝑡  and 𝜎𝑓𝑡
2  for simplicity.  

Next, we divide the axes 𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡   and 𝜏𝑖𝑛  in Figure 4.8(a) by 𝜇𝑓𝑡 . This normalization, 

shown in Figure 4.9(a), transforms all the curves in Figure 4.8(a) into a unique one (up to 

slight discrepancies) that we call the standard curve. This standard curve is independent of 𝐶𝑜𝑢𝑡 . 

Similarly, normalizing in the same way 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡   and 𝜏𝑖𝑛  by respectively 𝜎𝑓𝑡
2  and 𝜇𝑓𝑡  

also produces a standard curve for 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡  . 

 

As shown in Figure 3.2, output slope 𝜏𝑜𝑢𝑡  and cell delay 𝑔𝑑 are the two considered timing 

variables. If we do the same normalization to the conditional delay moments of the same type of 

cell as above, we find as well standard curves independent of 𝐶𝑜𝑢𝑡 , as illustrated in Figure 4.10.  

 

(a) Standard curve for 𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡            (b) Standard curve for 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡   

 

Figure 4.9 Illustration of normalized conditional moments of output slope 
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Hence, functions of conditional moments depending on the two factors 𝜏𝑖𝑛  and 𝐶𝑜𝑢𝑡 , can be 

transformed into functions of only one factor 
𝜏𝑖𝑛

𝜇𝑓𝑡
 as follows:  

 
 
 
 
 
 

 
 
 
 
  
𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡  

𝜇𝑓𝑡
= 𝑕1  

𝜏𝑖𝑛
𝜇𝑓𝑡

     

 

 
𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡  

𝜎𝑓𝑡
2 = 𝑕2  

𝜏𝑖𝑛
𝜇𝑓𝑡

 

 

 
𝐸 𝑔𝑑|𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡  

𝜇𝑓𝑡
= 𝑕3  

𝜏𝑖𝑛
𝜇𝑓𝑡

       

 

 
𝑉𝑎𝑟 𝑔𝑑|𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡  

𝜎𝑓𝑡
2 = 𝑕4  

𝜏𝑖𝑛
𝜇𝑓𝑡

  

                                                          (4.9) 

where 𝜇𝑓𝑡  and 𝜎𝑓𝑡
2  are identified, according to [50], by: 

 

 𝜇𝑓𝑡 = 𝐴 + 𝐵 ∙ 𝐶𝑜𝑢𝑡
 

 𝜎𝑓𝑡
2 = 𝐵2 ∙ 𝐶𝑜𝑢𝑡

2       

                                                                                 (4.10) 

 

(a) Standard curve for 𝐸 𝑔𝑑|𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡            (b) Standard curve for 𝑉𝑎𝑟 𝑔𝑑|𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡   

 

Figure 4.10 Illustration of normalized conditional moments of cell delay 
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Here, a small number of simulations yields to an accurate estimate of 𝐴, 𝐵 and this requires very 

little runtime. 

4.2.2 Discussion 

In Chapter 3, the input slope and output load indices of each lookup table have respectively 9 

and 6 values. Therefore, a table has 54 points to characterize. However, with the Equations 

(4.9) – (4.10), only ten points or so need to be characterized. In Figure 4.11, we plot all the 

normalized points contained in a table of conditional output slope mean. This figure shows that 

this procedure leads, with 10 points, to approximately the same accuracy as that of a 54 points 

table. 

 

Although this technique accelerates the procedure of timing characterization, its accuracy should 

be carefully studied before application. To illustrate this, Figure 4.12 compares the normalized 

curves of a 𝑁𝑂𝑅, 𝑁𝐴𝑁𝐷, 𝐼𝑁𝑉 cell respectively for cases 𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡  ,  𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡  , 

𝐸 𝑔𝑑|𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡   and 𝑉𝑎𝑟 𝑔𝑑|𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡  . 

 

 

Figure 4.11 Reduction of points to characterize 
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      (a) Normalized curves for case of 𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡         (b) Normalized curves for case of 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡   

 

 

        (c) Normalized curves for case of 𝐸 𝑔𝑑|𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡           (d) Normalized curves for case of 𝑉𝑎𝑟 𝑔𝑑|𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡   

 

Figure 4.12 Comparisons of normalized curves 
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From this figure, if we consider one of the normalized curves as standard curve for the 𝑁𝐴𝑁𝐷 

and 𝑁𝑂𝑅 cell, then their accuracies will not be as good as for an inverter. In consequence, to 

profit from this acceleration technique, we should study its accuracy for more cells or find out a 

way to identify standard curves which provide acceptable results. 

4.3  Summary 

Instead of the conventional method, we use the LL distributions to approximate input signals and 

inverters to model output load during timing characterization. These improvements allow us to 

better capture slope and load variations. In addition, to save CPU time of characterization, the 

reducing dimension technique is proposed. However, more work should be done to apply this 

promising technique into practice. 
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Chapter 

5 

Comparisons and Applications 

 

In this chapter, we put the SSTA framework into practice and compare its results with those of 

CTA. Section 5.1 gives some examples to show the gain of our SSTA engine. In Section 

5.2, we talk about ordering of critical paths, i.e. order of paths in terms of decreasing delays. 

The discrepancy between orderings obtained respectively by SSTA and CTA is explained. In 

Section 5.3, we study the factors that affect cell-to cell delay correlation. This is a first step 

toward the goal of optimizing circuit design with delay correlations. 
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s the next generation of timing tool, Statistical Static Timing Analysis (SSTA) is com-

pared to its predecessor Corner-based Timing Analysis (CTA) in various aspects, such as 

accuracy and runtime. An important concern among these aspects is the gain of using SSTA 

relative to CTA, because this gain, in a sense, declares whether SSTA is a promising replacement. 

In Section 5.1, we focus on the gain of using our SSTA engine. 

5.1  Gain of SSTA 

The goal of IC design is to produce a circuit which implements intended functions, occupies 

minimal area and meets the timing constraints. To be more precise, if a designer is given a   

number of circuit implementations of the same functionality, he would select the implementation 

with the minimal area among those meeting a particular delay. This is reasonable because a cir-

cuit with smaller area usually consumes less power during operation. Thus, to demonstrate the 

gain of SSTA, a common way is, for a function to implement and a given delay (or a clock pe-

riod), to compare area of circuits, which are obtained respectively with CTA and SSTA. 

For this comparison, we first construct area-delay curves to circuits b05 and b07 of the ITC99 

benchmarks according to the following procedure: 

a) Define a series of clock periods 𝑇𝐶𝐿𝐾𝑚 , (𝑚 = 1, 2, … , 7) respectively for b05 and b07; 

b) For each clock period 𝑇𝐶𝐿𝐾𝑚 , produce an implementation 𝐼𝑃𝑁𝑚  with RTL Compiler [45], 

and note the corresponding circuit area 𝑐𝑠𝑚 ; 

c) For the implementation 𝐼𝑃𝑁𝑚 , extract a set 𝑈100,𝑚  of 100 critical paths in terms of        

decreasing worst delays 𝑤𝑝𝑑𝑢 ,  𝑢 ∈ 𝑈100,𝑚  obtained by CTA; 

d) Under the worst environmental conditions: 125℃  (temperature) and 1.1𝑉  (supply vol-

tage), compute path delay means 𝜇𝑝𝑑𝑢  and variances 𝜎𝑝𝑑𝑢
2  for the set 𝑈100,𝑚  with our 

SSTA engine; 

e) Compute 𝑤𝐼𝑃𝑁𝑚
 and 𝑠𝐼𝑃𝑁𝑚

 by: 

 

 𝑤𝐼𝑃𝑁𝑚
= 𝑚𝑎𝑥

𝑢∈𝑈100 ,𝑚

 𝑤𝑝𝑑𝑢                   
 

 𝑠𝐼𝑃𝑁𝑚
= 𝑚𝑎𝑥

𝑢∈𝑈100 ,𝑚

 𝜇𝑝𝑑𝑢 + 3 ∙ 𝜎𝑝𝑑𝑢  
                                                  (5.1) 

A 
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f) Plot the points of CTA  𝑐𝑠𝑚 , 𝑤𝐼𝑃𝑁𝑚
  and SSTA 𝑐𝑠𝑚 , 𝑠𝐼𝑃𝑁𝑚

  and approximate the area-

delay curves by these points and linear interpolation, as shown in Figure 5.1. 

 

   

(a) Area-delay curves of b05 

 

 

(b) Area-delay curves of b07 

 

Figure 5.1 Gains of SSTA for circuits b05 and b07 
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In Figure 5.1(a), the length of the solid double arrow 𝐺𝑆𝑏05,130  represents the difference of area 

between the CTA curve and the SSTA curve when circuit delay is set to 2200 ps (as an example) 

in the case of 130 nm technology. The length of the solid double arrows 𝐺𝑆𝑏05,65, 𝐺𝑆𝑏07,130  and 

𝐺𝑆𝑏07,65  have similar meanings. From this figure, it is obvious that, for a given delay, the area of 

circuits implemented with SSTA is smaller than the area of the corresponding implementations 

using CTA in both 130 nm and 65 nm cases. Define the percentage of gains in area as: 

𝑟𝐺𝑆 =
𝐺𝑆

𝑆𝐶𝑇𝐴
%                                                                                 (5.2) 

where 𝑆𝐶𝑇𝐴  is the corresponding area value of CTA. Then, 𝑟𝐺𝑆  for the delay 2200 ps in Figure 

5.1(a) and 1200 ps (also set as an example) in Figure 5.1(b) are: 

 
  
 

  
 

 𝑟𝐺𝑆𝑏05,130
= 5.5%   
 

 𝑟𝐺𝑆𝑏05,65
= 12.8%  
 

 𝑟𝐺𝑆𝑏07,130
= 6.1%   
 

 𝑟𝐺𝑆𝑏07,65
= 13.7%  

  

According to the area-delay curves in Figure 5.1, there exist very few values of delay where 

the horizontal double arrows (i.e. area gains) are bounded. For example, in Figure 5.1(a), the 

SSTA curve of 65 nm gives no value of area at 2600 ps while the CTA curve does. This forbids a 

proper comparison of area. Thus, for an alternative comparison, we consider the vertical       

distances between each couple of curves which corresponds to gains of delay (dashed double 

arrows in Figure 5.1) for a given area. These distances can be computed at more area points, 

which allows considering the two following average gains of delays: 

𝐺𝐷    =
1

7
∙   𝑤𝐼𝑃𝑁𝑚

− 𝑠𝐼𝑃𝑁𝑚
 

7

𝑚=1

                                                            (5.3) 

𝑟𝐺𝐷    =
1

7
∙  

𝑤𝐼𝑃𝑁𝑚
− 𝑠𝐼𝑃𝑁𝑚

𝑤𝐼𝑃𝑁𝑚

7

𝑚=1

%                                                           (5.4) 

where 𝑤𝐼𝑃𝑁𝑚
, 𝑠𝐼𝑃𝑁𝑚

 are defined in Equation (5.1).
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Table 5.1 shows the gains defined in Equations (5.3) – (5.4). According to this table, we 

can draw the following two conclusions: 

a) In terms of circuit, 𝐺𝐷     values of circuit b05 are about two times larger than those of     

circuit b07 in both 130 nm and 65 nm technology. The two couples of 𝑟𝐺𝐷     values are 

much closer, e.g. 12.6% vs. 13.5% and 25.2% vs. 24.6%. These comparisons indicate 

that 𝐺𝐷     increases along with path logical depth whereas the normalized gain 𝑟𝐺𝐷     does not 

depend on circuit. 

b) In terms of technology, both 𝐺𝐷     and 𝑟𝐺𝐷     of the two circuits in the 65 nm technology are 

much larger than those in the 130 nm technology. It is predicted that these two average 

gains of delays will become more and more important as the feature size shrinks from 65 

nm to 45 nm, 32 nm, etc. 

 

5.2  Ordering of Critical Paths 

For the time being, most IC designers still use tools based on CTA, and consider SSTA as a 

complement to CTA, which may lead to cases where results of SSTA and those of CTA do not 

coincide. In this section, we show and explain the discrepancy between orderings obtained   

respectively by SSTA and CTA. 

A typical Computer-Aided-Design (CAD) tool based on CTA, like RTL Compiler [45], may 

extract a set of 𝑁  critical paths for optimization of circuit design. These 𝑁  critical paths are  

ordered by decreasing worst delay according to CTA, i.e. the first critical path has the maximal 

worst delay; the second one has the second maximal value, and etc. However, if path delays of 

Table 5.1 Average delay gains of the SSTA engine (without interconnects) over CTA (RTL Compiler) 
 

name technology 
maximal 

path depth 
𝐺𝐷     (ps) 𝑟𝐺𝐷     (%) 

b05 
130 nm 18 310 12.6% 

65 nm 27 622 25.2% 

b07 
130 nm 12 185 13.5% 

65 nm 17 321 24.6% 
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the same set are computed by SSTA, the ordering of these paths may be different with that of 

CTA.  

To illustrate the differences of orderings, we follow the procedure below for the circuit b07 in the 

65 nm technology: 

a) Choose two valid clock periods, for example: 𝑇𝐶𝐿𝐾 =1400, 2000 ps; 

b) For each clock period, produce an implementation and extract a set 𝑈100  of 100 critical 

paths; 

c) For each critical path 𝑢𝑖 ∈ 𝑈100 , compute the worst delay 𝑤𝑝𝑑𝑢𝑖
 by CTA and the corres-

ponding delay under the 125℃ (temperature) and 1.1𝑉 (supply voltage) operating condi-

tion by SSTA: 

𝑠𝑝𝑑𝑢𝑖
= 𝜇𝑝𝑑𝑢𝑖

+ 3 ∙ 𝜎𝑝𝑑𝑢𝑖
                                                             (5.5) 

d) For each critical path 𝑢𝑖 ∈ 𝑈100 , compute the path rank according to worst delay by CTA 

as: 

𝑟𝑘𝑢𝑖 =  𝑖𝑓  𝑤𝑝𝑑𝑢𝑗
≥ 𝑤𝑝𝑑𝑢𝑖

, 𝑡𝑕𝑒𝑛 1, 𝑒𝑙𝑠𝑒 0 

100

𝑗=1

                           (5.6) 

To break ties (𝑟𝑘𝑢𝑖1 = 𝑟𝑘𝑢𝑖2 = ⋯ = 𝑟𝑘𝑢𝑖𝑘
= 𝑀, for 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘), we use the fol-

lowing rule: 

 
 
 
 

 
 
 

 𝑟𝑘𝑢𝑖1 = 𝑀 − 𝑘 + 1
 

 𝑟𝑘𝑢𝑖2 = 𝑀 − 𝑘 + 2
 

⋯⋯         
 

 𝑟𝑘𝑢𝑖𝑘
= 𝑀               

                                                                          (5.7) 

e) Plot the CTA points  𝑟𝑘𝑢𝑖 , 𝑤𝑝𝑑𝑢𝑖
  and those of SSTA  𝑟𝑘𝑢𝑖 , 𝑠𝑝𝑑𝑢𝑖

  with 𝑖 = 1,… , 100, as 

shown in Figure 5.2; 

f) Plot the normalized points  𝑟𝑘𝑢𝑖 ,
𝑠𝑝𝑑 𝑢𝑖
𝑤𝑝𝑑 𝑢𝑖

  with 𝑖 = 1,… , 100, as shown in Figure 5.3. 
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Figure 5.3 Normalized delays of ordered critical paths (b07, 65 nm) 

 

 

Figure 5.2 Delays of ordered critical paths (b07, 65 nm) 
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According to the above procedure, all paths in Figures 5.2 – 5.3 are ordered by decreasing 

worst delays from CTA. Note the extreme pessimism of CTA with respect to SSTA in Figure 

5.3, CTA overestimating by 20% to 30% the delay values. Also remark that delays obtained by 

SSTA are ordered differently from CTA. Indeed, in Figure 5.2, comparing the fifty most criti-

cal paths provided by CTA and SSTA respectively for cases 𝑇𝐶𝐿𝐾 =1400 ps and 2000 ps, we find 

out 42 (respectively 40) common paths among them.  

To explain this difference of orderings, we consider a timing path of 𝐾 cells. For each cell, we 

compute worst cell delay 𝑤𝑔𝑑𝑘  by CTA, and cell delay mean 𝜇𝑔𝑑𝑘 , variance 𝜎𝑔𝑑𝑘
2  with the SSTA 

engine under the worst environmental condition: 125℃ and 1.1𝑉. We can always write 𝑤𝑔𝑑𝑘  in 

terms of 𝜇𝑔𝑑𝑘 , 𝜎𝑔𝑑𝑘
2  as a function of 𝜃𝑘  in the following way: 

𝑤𝑔𝑑𝑘 = 𝜇𝑔𝑑𝑘 + 𝜃𝑘 ∙ 𝜎𝑔𝑑𝑘                 𝑘 = 1, 2, … , 𝐾                            (5.8) 

Then, according to Equations (3.21) and (5.8), the statistical 3𝜎 corner of path delay 𝑠𝑝𝑑  and 

the worst path delay 𝑤𝑝𝑑  can be decomposed as: 

𝑠𝑝𝑑 = 𝜇𝑝𝑑 + 3 ∙ 𝜎𝑝𝑑 =  𝜇𝑔𝑑𝑘

𝐾

𝑘=1

+ 3 ∙    𝜌𝑘𝑚 ∙ 𝜎𝑔𝑑𝑘𝜎𝑔𝑑𝑚

𝐾

𝑚=1

𝐾

𝑘=1

                          (5.9) 

𝑤𝑝𝑑 =  𝑤𝑔𝑑𝑘

𝐾

𝑘=1

=  𝜇𝑔𝑑𝑘

𝐾

𝑘=1

+ 3 ∙   
𝜃𝑘 ∙ 𝜎𝑔𝑑𝑘

3

𝐾

𝑘=1

                                                                  

=  𝜇𝑔𝑑𝑘

𝐾

𝑘=1

+ 3 ∙    1 ∙  
𝜃𝑘 ∙ 𝜎𝑔𝑑𝑘

3
  

𝜃𝑚 ∙ 𝜎𝑔𝑑𝑚
3

 

𝐾

𝑚=1

𝐾

𝑘=1

                              (5.10𝑎) 

=  𝜇𝑔𝑑𝑘

𝐾

𝑘=1

+ 3 ∙    1 ∙  
𝑤𝑔𝑑𝑘 − 𝜇𝑔𝑑𝑘

3
  
𝑤𝑔𝑑𝑘 − 𝜇𝑔𝑑𝑘

3
 

𝐾

𝑚=1

𝐾

𝑘=1

                    (5.10𝑏) 

Comparing Equation (5.9) with (5.10𝑎), the constant “1” in Equation (5.10𝑎) is replaced 

by the quantity 𝜌𝑘𝑚 . Similarly, 𝜎𝑔𝑑𝑘 ∙ 𝜃𝑘 3  changes to 𝜎𝑔𝑑𝑘  in Equation (5.9). Therefore, the 

discrepancy of orderings comes from two factors: cell-to-cell delay correlation 𝜌𝑘𝑚  and standard 
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deviation of cell delay 𝜎𝑔𝑑𝑘 . 

On one hand, in the context of timing analysis, 𝜌𝑘𝑚  varies in the interval  0,1 . It is rare that 

𝜌𝑘𝑚 = 1 if 𝑘 ≠ 𝑚. However, “1” is set to 𝜌𝑘𝑚  in Equation (5.10𝑎), which introduces a first 

difference between 𝑤𝑝𝑑  and 𝑠𝑝𝑑 . 

On the other hand, according to the traditional CTA presented in Section 1.2, 𝑤𝑔𝑑𝑘  is com-

puted by setting worst corner to each process parameter 𝑝𝑙 . Therefore it is unlikely that 𝜃𝑘  is 

equal to 3 in Equation (5.10𝑎), which is second source of difference in orderings.  

To identify which factor has more influence on the difference of orderings, we compute 𝑠𝑝𝑑
′  and 

𝑠𝑝𝑑
′′  with: 

𝑠𝑝𝑑
′ = 𝜇𝑝𝑑 + 3 ∙ 𝜎𝑝𝑑

′                                                                           (5.11) 

𝑠𝑝𝑑
′′  = 𝜇𝑝𝑑 + 3 ∙ 𝜎𝑝𝑑

′′                                                                          (5.12) 

where 

𝜎𝑝𝑑
′ =    1 ∙ 𝜎𝑔𝑑𝑘𝜎𝑔𝑑𝑚

𝐾

𝑚=1

𝐾

𝑘=1

                                                                    (5.13) 

𝜎𝑝𝑑
′′ =    𝜌𝑘𝑚 ∙  

𝜃𝑘 ∙ 𝜎𝑔𝑑𝑘
3

  
𝜃𝑚 ∙ 𝜎𝑔𝑑𝑚

3
 

𝐾

𝑚=1

𝐾

𝑘=1

                                   (5.14) 

Comparing Equation (5.9) with (5.13), we find out that 𝜎𝑝𝑑
′  eliminates the influence of 𝜌𝑘𝑚 . 

In the same manner, going from Equation (5.14) to (5.9) eliminates the influence of 𝜃𝑘 , from 

Equation (5.10𝑎) to (5.13) eliminates the influence of 𝜃𝑘 , and from Equation (5.14) to 

(5.10𝑎) eliminates the influence of 𝜌𝑘𝑚 . 
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The four curves 𝑤𝑝𝑑 , 𝑠𝑝𝑑 , 𝑠𝑝𝑑
′ , 𝑠𝑝𝑑

′′  in terms of path rank 𝑟𝑘𝑢  as defined in Equations (5.6) – 

(5.7) are plotted in Figure 5.4. From this figure, we can see that the two curves 𝑤𝑝𝑑  and 𝑠𝑝𝑑
′′  

have a similar shape, and the same holds for the other couple of curves 𝑠𝑝𝑑  and 𝑠𝑝𝑑
′ . These simi-

larities lead to the conclusion that the discrepancy of orderings comes mainly from the presence 

of 𝜃𝑘 . 

 

Another way of looking at this figure is to consider the gaps between curves. The gaps 𝑤𝑝𝑑  and 

𝑠𝑝𝑑
′  are much larger than those between 𝑠𝑝𝑑  and 𝑠𝑝𝑑

′ . This indicates that the majority of delay 

gains in using SSTA can be attributed to the gain 𝜎𝑔𝑑𝑘 ∙  𝜃𝑘 3 − 1  of each cell. 

5.3  Study of Cell-to-cell Delay Correlation 

In Section 5.2, we highlighted the impact of Cell-to-cell Delay Correlation (CDC) 𝜌𝑘𝑚  on 

path delay variances. From Equation (3.21), reducing CDCs results in smaller path delay 

 
 

Figure 5.4 Interpretation of discrepancy between orderings 
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variances and thus constitute, at path level, a main design optimization objective. However, it is 

not clear whether reducing CDCs meets or not the goal of optimization at circuit level, i.e. to 

lower the variance defined below: 

𝑉𝑎𝑟 𝑝𝑑𝑑𝑎𝑡𝑎 − 𝑝𝑑𝑐𝑙𝑘  = 𝜎𝑑𝑎𝑡𝑎
2 + 𝜎𝑐𝑙𝑘

2 − 2 ∙ 𝜌𝑑𝑐 ∙ 𝜎𝑑𝑎𝑡𝑎 ∙ 𝜎𝑐𝑙𝑘                              (5.15) 

where 𝑝𝑑𝑑𝑎𝑡𝑎 , 𝑝𝑑𝑐𝑙𝑘  are respectively delays of data path and clock path; 𝜌𝑑𝑐  is the Path-to-path 

Delay Correlation (PDC) between 𝑝𝑑𝑑𝑎𝑡𝑎  and 𝑝𝑑𝑐𝑙𝑘 . More details about Equation (5.15) 

were given in Section 3.6.1. 

As stated before, reducing CDCs gives smaller 𝜎𝑑𝑎𝑡𝑎
2 , 𝜎𝑐𝑙𝑘

2  AND if at the same time this reduction 

increases 𝜌𝑑𝑐 , then 𝑉𝑎𝑟 𝑝𝑑𝑑𝑎𝑡𝑎 − 𝑝𝑑𝑐𝑙𝑘   will be smaller. In all other cases, we cannot predict the 

behavior of this variance and optimization procedure can only be undertaken from case to case, 

by looking at the values of the elements in Equation (5.15). In this section, we take a first step 

to solve this problem by analyzing how the relative factors influence CDC values.  

According to Equation (1.1), cell delay is determined by the following two categories of 

factors:  

a) variational factors: process parameters, temperature, supply voltage, input slope and out-

put load 

b) fixed factors: cell type, input pin and output edge 

These factors affect CDC as well. However, when computing delays with the SSTA engine, 

temperature and supply voltage are considered as constants and thus have no influence on CDC. 

In addition, the relationship between a cell delay and process parameters is not explicitly known. 

Thus, in Section 5.3.1, we focus only on the effect of technology, i.e. the overall effect of 

process parameters. Two other variational factors: input slope and output load, are studied in 

Section 5.3.2. The effect of fixed factors is the topic of Section 5.3.3. 

5.3.1 Effect of technology 

In Table 3.1, the 130 nm and 65 nm technologies are different in number of inter-die and intra-

die process parameters. At the same time, process variations of the two technology generations 

are of great difference. To study the effect of technology, we first extract a total of 3000 paths 
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from the following circuits: b01, b03, b05, b06 and b07. Then, CDC coefficients of all these 

paths are computed by the SSTA engine. Finally, from these CDCs, a sample of size 2 × 105 

from each technology is drawn randomly for comparison. 

Figure 5.5 shows the histograms of CDC coefficients. From this figure, CDC coefficients of 

the 130 nm technology have mean value 0.916 much larger than that of the 65 nm technology 

which is 0.668. This is explained by the fact that no intra-die process parameter is defined in the 

130 nm technology, which results in high CDCs according to Equations (3.31) and (3.36). In 

consequence, CDC coefficients of paths implemented in the 65 nm technology are more repre-

sentative. This technology is preferred in the rest of this section. 

 

5.3.2 Effect of input slope and output load 

As presented in Chapter 3, input slope 𝜏𝑖𝑛  of each cell is considered as a random variable. In 

this initial work, we only focus on effect of input slope mean 𝜇𝜏𝑖𝑛 . As regards output load, it is 

replaced by output slope mean 𝜇𝜏𝑜𝑢𝑡  for convenience, which is linear to typical value of output 

load. Besides, to eliminate effect of fixed factors, among all CDC coefficients, we choose those 

   

(a) 130 nm technology           (b) 65 nm technology 

 

Figure 5.5 Histograms of CDC coefficients 
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with two cells that are of same type, input/output (I/O) pin and I/O edge. For example, CDC of 

“𝑁𝑂𝑅 − 𝐴/𝑍 − 𝑅/𝐹” indicates CDC between two 𝑁𝑂𝑅 cells with a rising edge applied at input 

pin 𝐴 and a falling edge appearing at output pin 𝑍. 

Figure 5.6 shows the effects of 𝜇𝜏𝑖𝑛 ,1
, 𝜇𝜏𝑜𝑢𝑡 ,1

 and 
𝜇𝜏𝑖𝑛 ,1

𝜇𝜏𝑜𝑢𝑡 ,1

 (denoted as 𝑟1) on CDC of “𝑁𝑂𝑅 −

𝐴/𝑍 − 𝑅/𝐹”. In this figure, 𝜇𝜏𝑖𝑛 ,1
 and  𝜇𝜏𝑜𝑢𝑡 ,1

 are respectively input slope and output slope mean 

for the first cell of the couple related to CDC; 𝑟1 does make sense in the context of digital IC. If 

this ratio is less than a certain threshold, the input slope falls into the Fast Input Range (FIR) 

defined in Section 4.2.1; if not, it is in the Non-Fast Input Range (N-FIR). As shown in 

Figure 4.8, output slope means are constants in the FIR; while they vary in the N-FIR. As well, 

cell delay varies differently in these two ranges, and so does CDC. 

In Figure 5.6, there exist linear trends of CDC depending respectively on 𝜇𝜏𝑖𝑛 ,1 and 𝑟1. As the 

latter term takes into account the effect of 𝜇𝜏𝑜𝑢𝑡 ,1
, plus its meaning explained above, we choose it 

as the considered factor. 

 

Knowing that correlation is commutative, i.e. 𝑐𝑜𝑟 𝑋, 𝑌 = 𝑐𝑜𝑟(𝑌, 𝑋)  for any two random    

variables 𝑋 and 𝑌, slope factors of the second cell of each couple are added using a commutative 

    

         (a) Relationship of CDCs and 𝜇𝜏𝑖𝑛 ,1
, 𝜇𝜏𝑜𝑢𝑡 ,1

   (b) Relationship of CDCs and 𝑟1 

 

Figure 5.6 Effects of 𝜇𝜏𝑖𝑛 ,1
, 𝜇𝜏𝑜𝑢𝑡 ,1

 and 𝑟1 on CDCs (𝑁𝑂𝑅 − 𝐴/𝑍 − 𝑅/𝐹) 
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function. Therefore, with three simple commutative functions, we define the following compound 

ratios: 

 
 
 

 
 

 𝑟𝑠𝑢𝑚 = 𝑟1 + 𝑟2 
 

 𝑟𝑑𝑖𝑓 =  𝑟1 − 𝑟2 
 

 𝑟𝑝𝑑𝑡 = 𝑟1 ∙ 𝑟2    

                                                                               (5.16) 

where 𝑟2 =
𝜇𝜏𝑖𝑛 ,2

𝜇𝜏𝑜𝑢𝑡 ,2

. For the same sample as that in Figure 5.6, we compute the compound ratios 

in Equation (5.16) for each CDC coefficient, and plot them in Figure 5.7. According to this 

figure, there is no clear relationship of CDC on 𝑟𝑑𝑖𝑓 ; CDC and 𝑟𝑝𝑑𝑡  seem to have a polynomial 

relationship; and CDCs seem linear to 𝑟𝑠𝑢𝑚 , which is preferable to describe effect of input and 

output slope on CDC. 

 

To confirm the linear dependency of CDC on 𝑟𝑠𝑢𝑚 , we repeat the above procedure for various 

cell types, I/O pins and I/O edges. Figure 5.8 gives four examples. Note that the couple of cells 

related to the corresponding CDC coefficient have the same cell type, I/O pin and I/O edge. If we 

        
 

Figure 5.7 Relationship of CDCs and different compound ratios (𝑁𝑂𝑅 − 𝐴/𝑍 − 𝑅/𝐹) 
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do linear regression for each cloud of points, as shown in the figure, the error of combination 

“𝐼𝑁𝑉 − 𝐴/𝑍 − 𝑅/𝐹” is higher than the other three whereas the linear trend is obvious in all cases. 

 

5.3.3 Effect of cell type, I/O pin and I/O edge 

As described in Section 5.3.1, we have a sample of computed CDC coefficients in the 65 nm 

technology. However, to address the topic of this section, effect of input and output slope should 

be eliminated by filtering the sample. Typically, we consider the coefficients related to the couple 

of cells that satisfy the condition below: 

 
 
 

 
  𝑟1 =

𝜇𝜏𝑖𝑛 ,1

𝜇𝜏𝑜𝑢𝑡 ,1

∈  0.85, 0.9 

 

 𝑟2 =
𝜇𝜏𝑖𝑛 ,2

𝜇𝜏𝑜𝑢𝑡 ,2

∈  0.85, 0.9 

                                                         (5.17) 

 where 𝜇𝜏𝑖𝑛 ,1
, 𝜇𝜏𝑜𝑢𝑡 ,1

, 𝜇𝜏𝑖𝑛 ,2
, 𝜇𝜏𝑜𝑢𝑡 ,2

 are respectively slope means of the first and the second cell of 

the corresponding couple. The interval  0.85, 0.9  is selected for the following reasons: 

        
 

Figure 5.8 Relationship of CDCs and 𝑟𝑠𝑢𝑚  for various cell types, I/O pins and I/O edges 
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 If we use the condition 𝑟1 = 𝑟2 = 0.85, then the size of the sample after the filtration will 

be too small for study. 

 For any CDC coefficient of the filtered sample, its corresponding compound ratio 𝑟𝑠𝑢𝑚  

defined in Equation (5.16) is a value the interval  1.7, 1.8 , i.e. the difference of any 

two compound ratios is 0.1, which is acceptable relative to the range of 𝑟𝑠𝑢𝑚  (about 7 in 

Figure 5.8). 

 Among all intervals   0.05 ∙  𝑗 − 1 , 0.05 ∙ 𝑗  𝑗 = 1, 2, … , 80  as conditions of filtration, 

the selected interval gives the sample with largest size. 

Considering the filtered sample, we focus on CDC coefficients whose combination of the first 

cell is “𝐼𝑁𝑉 − 𝐴/𝑍 − 𝐹/𝑅”; as for the combination of the second cell, it may be all possibilities 

limited to the four cell types: 𝑁𝐴𝑁𝐷, 𝐴𝑂𝐼1, 𝑂𝑅, 𝐴𝑁𝐷. In addition, for each couple of combina-

tions, e.g. “𝐼𝑁𝑉 − 𝐴/𝑍 − 𝐹/𝑅” (first cell) and “𝑁𝐴𝑁𝐷 − 𝐴/𝑍 − 𝑅/𝐹” (second cell), we com-

pute the average of all corresponding CDC coefficients. The result is shown in Figure 5.9(a). 

Following the same procedure, we change the combination of the first cell to “𝑂𝑅 − 𝐵/𝑍 − 𝐹/𝐹” 

and obtain Figure 5.9(b). From these two figures, we conclude that: 

a) CDCs change along with cell type. In Figure 5.9(a), for the same I/O pin “𝐴/𝑍” and I/O 

edge “𝑅/𝑅”, the difference between CDCs of cell 𝑂𝑅 and cell 𝐴𝑁𝐷 is about 0.1. 

b) Effect of I/O pin is not obvious. In both Figures 5.9(a) and (b), CDCs of same cell, I/O 

edge and different I/O pins are close. 

c) Effect of I/O edge is significant. In Figure 5.9(a), all combinations of the second cell 

with the I/O edge “𝐹/𝑅”, which is identical to the I/O edge of the first one, have high 

CDCs. On the contrary, those CDCs of couples with different I/O edges, including “𝑅/𝐹”, 

“𝑅/𝑅” and “𝐹/𝐹”, are relatively low. These three cases show a decreasing trend of CDCs 

following the order “𝐹/𝐹”, “𝑅/𝑅” and “𝑅/𝐹”. Comparing this order with the I/O edge of 

the first cell “𝐹/𝑅” shows that effect of input edge is more important than that of output 

edge. This is also supported in Figure 5.9(b) by the fact that CDC with combination of 

the second cell “𝑁𝐴𝑁𝐷 − 𝐴/𝑍 − 𝐹/𝑅” is higher than that of “𝑁𝐴𝑁𝐷 − 𝐴/𝑍 − 𝑅/𝐹” 

knowing that the I/O edge of the first cell is “𝐹/𝐹”. 

                                                      
1
 A compound cell with three input pins 
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(a) “𝐼𝑁𝑉 − 𝐴/𝑍 − 𝐹/𝑅” (combination of the first cell) 

 

 

(b) “𝑂𝑅 − 𝐵/𝑍 − 𝐹/𝐹” (combination of the first cell) 

 

Figure 5.9 Effects of fixed factors on CDCs 
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5.4  Summary 

This chapter discusses essential applications of our SSTA engine and comparisons of SSTA and 

CTA. Table 5.1 shows the delay gain of SSTA with respect to CTA: about 13% and 25% 

respectively in the 130 nm and 65 nm technology. The gain is predicted to be more and more 

significant as the feature size continues to shrink, which implies that SSTA is a promising timing 

tool. Section 5.2 interprets that the discrepancy between orderings obtained respectively by 

SSTA and CTA comes from two factors: cell-to-cell delay correlation and standard deviation of 

cell delay. In Section 5.3, a study is performed and feeds to conclude that CDCs increase 

linearly with the compound ratio and effect of I/O edge is significant. 
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Chapter 

6 

Conclusions and Future Work 

 

In Section 6.1, we review the objective of this research and show how the proposed SSTA 

framework achieved this objective. The main results of our research are also summarized. 

Section 6.2 closes this thesis by making suggestions for future work. 
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6.1  Conclusions 

Corner-based Timing Analysis (CTA) becomes more and more pessimistic along with the ever 

shrinking feature size. This trend has resulted in the rapid development of Statistical Static  

Timing Analysis (SSTA) in recent years. However, this new generation of timing analysis, both 

parametric and Monte Carlo methods, has not yet been widely adopted in the industry. On one 

hand, MC-based methods are accurate, but suffer from the very high computational cost. On the 

other hand, parametric methods require very little runtime whereas industry and researchers are 

doubtful of their accuracy due to various weaknesses. The objective of the research was to pro-

pose a SSTA framework which performs as fast as parametric methods while not losing too much 

accuracy compared to MC simulations. 

The path-based SSTA framework proposed in this thesis computes path delay distributions by 

propagating iteratively mean and variance of cell delay with the help of conditional moments. 

These moments, conditioned on input slope and output load, are stored in a statistical timing 

library. Compared to existing parametric methods, this semi-MC framework may:  

a) avoid cell delay modeling errors; 

b) take into account the effects on cell delay: input pin, output edge, input slope, and output 

load; 

c) deal with a large number of process parameters having any type of distribution. 

The main difficulty of the SSTA framework is the construction of the statistical timing library. 

The accuracy of conditional moments in the library is improved by using input signal based on 

log-logistic distributions and inverters as output load to do timing characterization. In addition, 

the runtime of characterization could be greatly decreased by the reducing dimension technique, 

which will be validated in the near future. 

From the point of view of accuracy, the SSTA engine allows us to estimate path delay means and 

standard deviations with relative errors respectively less than 5% and 10%. As for CPU time, it 

is about 105 times faster than a 1500 runs MC simulation for the same path. These figures show 

that our research objective has been reached.  
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Also, compared to results of CTA, our SSTA engine has about 13% and 25% of delay gains 

respectively in 130 nm and 65 nm technology. Such gains will be more significant in the follow-

ing generations of technology. Another comparison with CTA is about orderings of critical paths. 

The discrepancy of orderings obtained respectively by SSTA and CTA comes from two factors: 

cell-to-cell delay correlation and standard deviation of cell delay. The study of cell-to-cell corre-

lation leads to the conclusion that this statistical term increases linearly with the compound ratio 

𝑟𝑠𝑢𝑚  and is affected by I/O edge. 

6.2  Future Work 

The SSTA framework proposed in this thesis provides acceptable results and runs much faster 

than MC simulations. However, some work could be done to improve its accuracy and reduce 

CPU time. This includes: 

a) As mentioned in Chapter 1, environmental variations are time-varying. Thus, the accu-

racy of the SSTA engine could be improved by taking into account effects of supply    

voltage and temperature variations. 

b) In addition to mean and variance, it is possible to propagate skewness of cell delay distri-

butions. Then, path delays could be assumed to follow, for example, the skew-Normal 

distributions. This allows the use of the skew-Normal based MAX approximation in [32], 

which would provide better accuracy on computation of circuit delay. 

c) As for CPU time, the promising acceleration technique in Section 4.2 should be vali-

dated and applied.  

As stated in Chapter 2, SSTA must move beyond pure timing analysis to yield analysis and 

optimization of circuit design to be truly useful for the designers. For this purpose, the problem of 

optimizing circuit designs with delay correlations, apart from the initial work presented in 

Chapter 5, should be further addressed. 

Finally, the proposed SSTA framework has been validated using MC simulations as reference. 

To be adopted by industry, this framework should be tested with real circuits. 
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A.1 Equations in Chapter 1 

𝑔𝑑 = 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒  𝑃, 𝑇, 𝑉𝑑𝑑 , 𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡                                                                                                  (1.1) 

𝑐𝑑𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
= 𝑕(𝑔𝑑1, 𝑔𝑑2 , … , 𝑔𝑑𝐾)                                                                                                           1.2  

𝑔𝑑 𝐶𝐿𝐾0→𝐶𝐿𝐾𝐴1  
+ 𝑔𝑑 𝐶𝐿𝐾𝐴1→𝐴1 

+ 𝑐𝑑𝐴1 ,𝑍1 ,𝛾𝑖𝑛
< 𝑔𝑑 𝐶𝐿𝐾0→𝐶𝐿𝐾𝑍1  

− 𝑑𝑠𝑒𝑡𝑢𝑝 + 𝑇𝐶𝐿𝐾                       (1.3) 

𝑔𝑑 𝐶𝐿𝐾0→𝐶𝐿𝐾𝐴1  
+ 𝑔𝑑 𝐶𝐿𝐾𝐴1→𝐴1 

+ 𝑐𝑑𝐴1 ,𝑍1 ,𝛾𝑖𝑛
> 𝑔𝑑 𝐶𝐿𝐾0→𝐶𝐿𝐾𝑍1  

+ 𝑑𝑕𝑜𝑙𝑑                                      (1.4) 

𝑆𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
≝  𝑔𝑑

 𝐶𝐿𝐾0→𝐶𝐿𝐾𝐴𝑖  
+ 𝑔𝑑

 𝐶𝐿𝐾𝐴𝑖→𝐴𝑖 
+ 𝑐𝑑𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛

 −  𝑔𝑑
 𝐶𝐿𝐾0→𝐶𝐿𝐾𝑍𝑗  

− 𝑑𝑠𝑒𝑡𝑢𝑝         (1.5) 

𝐻𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
≝  𝑔𝑑

 𝐶𝐿𝐾0→𝐶𝐿𝐾𝐴𝑖  
+ 𝑔𝑑

 𝐶𝐿𝐾𝐴𝑖→𝐴𝑖 
+ 𝑐𝑑𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛

 −  𝑔𝑑
 𝐶𝐿𝐾0→𝐶𝐿𝐾𝑍𝑗  

+ 𝑑𝑕𝑜𝑙𝑑          (1.6) 

𝑆𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
< 𝑇𝐶𝐿𝐾                                                                                                                                          1.7  

𝐻𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
> 0                                                                                                                                             (1.8) 

𝑃𝑟         𝑆𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
 < 𝑇𝐶𝐿𝐾 ∩  𝐻𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛

> 0  

𝛾𝑖𝑛 ∈𝛤𝐴𝑖,𝑍𝑗

𝐽

𝑗=1

𝐼

𝑖=1

 ≥  𝜃                                     (1.9) 

 
 
 

 
  1 − 𝐹𝑙 𝑝𝑢𝑝𝑟 ,𝑙 = 𝑃𝑟⁡(𝑝𝑙 ≥ 𝑝𝑢𝑝𝑟 ,𝑙) =

𝛽

2
 

 𝐹𝑙 𝑝𝑙𝑤𝑟 ,𝑙 = 𝑃𝑟 𝑝𝑙 ≤ 𝑝𝑙𝑤𝑟 ,𝑙 =
𝛽

2
         

                                                                                           (1.10) 

𝑃𝑟   𝑚𝑎𝑥
𝛾𝑖𝑛 ∈ℾ

∗
 𝑆𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛

  < 𝑇𝐶𝐿𝐾 ∩  𝑚𝑖𝑛
𝛾𝑖𝑛 ∈ℾ

∗
 𝐻𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛

  > 0  ≥  𝜃                                         (1.11) 

𝑡𝐺1
= 𝑚𝑎𝑥 𝑡𝐴1

+ 𝑔𝑑𝐴1 ,𝐺1
, 𝑡𝐴2

+ 𝑔𝑑𝐴2 ,𝐺1
                                                                                           (1.12) 
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𝑔𝑑 =  𝑝𝑙

𝐿

𝑙=1

                                                                                                                                              (1.13) 

 
 
 
 

 
 
  𝜇𝑔𝑑 =  𝜇𝑝𝑙

𝐿

𝑙=1

= 𝐿 ∙ 𝜇𝑝1
      

 

 𝜍𝑔𝑑 =   𝜍𝑝𝑙
2

𝐿

𝑙=1

=  𝐿 ∙ 𝜍𝑝1

                                                                                                                 (1.14) 

𝑤𝑔𝑑 =   𝜇𝑝𝑙 + 3 ∙ 𝜍𝑝𝑙 

𝐿

𝑙=1

= 𝐿 ∙ 𝜇𝑝1
+ 3𝐿 ∙ 𝜍𝑝1

                                                                                 (1.15) 

𝜔 =
𝑤𝑔𝑑 −  𝜇𝑔𝑑 + 3 ∙ 𝜍𝑔𝑑  

𝜇𝑔𝑑
=

3 𝐿 −  𝐿 ∙ 𝜍𝑝1

𝐿 ∙ 𝜇𝑝1

= 3 1 − 𝐿−0.5 ∙
𝜍𝑝1

𝜇𝑝1

                                       (1.16) 

lim
𝐿→+∞

𝑃𝑟 𝑔𝑑 > 𝑤𝑔𝑑  = lim
𝐿→+∞

𝑃𝑟  𝑔𝑑 >  𝜇𝑔𝑑 + 3 𝐿 ∙ 𝜍𝑔𝑑   = 0                                             (1.17) 

𝑤𝑔𝑑 = 𝜇𝑝1
+ 3 ∙ 𝜍𝑝1

= 𝜇𝑔𝑑 + 3 ∙ 𝜍𝑔𝑑                                                                                                  (1.18) 

𝑤𝑝𝑑 =  𝑤𝑔𝑑𝑘

𝐾

𝑘=1

=   𝜇𝑔𝑑𝑘 + 3 ∙ 𝜍𝑔𝑑𝑘 

𝐾

𝑘=1

=  𝜇𝑔𝑑𝑘

𝐾

𝑘=1

+ 3 ∙    1 ∙ 𝜍𝑔𝑑𝑘𝜍𝑔𝑑𝑚

𝐾

𝑚=1

𝐾

𝑘=1

               (1.19) 

𝜇𝑝𝑑 + 3 ∙ 𝜍𝑝𝑑 =  𝜇𝑔𝑑𝑘

𝐾

𝑘=1

+ 3 ∙    𝜌𝑘𝑚 ∙ 𝜍𝑔𝑑𝑘𝜍𝑔𝑑𝑚

𝐾

𝑚=1

𝐾

𝑘=1

                                                            (1.20) 

𝑠𝑖 = 𝜇𝑖 + 3𝜍𝑖                     (𝑖 = 1, 2)                                                                                                      (1.21) 

𝑤2 − 𝑠2 > 𝑤1 − 𝑠1                                                                                                                                  (1.22)  
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A.2 Equations in Chapter 2 

𝑇𝐼𝐿𝐷 = 𝑇𝐼𝐿𝐷,𝑛𝑜𝑚 + ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑒𝑟 + ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑟𝑎                                                                                          (2.1) 

 

 ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑒𝑟 ,𝑘1
= ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑒𝑟 ,𝑘2

               
 

 𝑐𝑜𝑟 ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑟𝑎 ,𝑘1
, ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑟𝑎 ,𝑘2

 = 0

                                                                                                (2.2) 

𝑇𝐼𝐿𝐷 = 𝑇𝐼𝐿𝐷,𝑛𝑜𝑚 + ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑒𝑟 + ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 + ∆𝑇𝐼𝐿𝐷,𝑟𝑎𝑛                                                                       (2.3) 

 
 
 

 
 

 ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘1
= ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘2

               
 

 𝑐𝑜𝑟 ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘1
, ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘3

 ≈ 1
 

 𝑐𝑜𝑟 ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘1
, ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘4

 ≈ 0

                                                                                                       (2.4)  

 

 ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘1
= ∆𝑇𝐼𝐿𝐷,0,1 + ∆𝑇𝐼𝐿𝐷,1,1 + ∆𝑇𝐼𝐿𝐷,2,1  

 
 ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘2

= ∆𝑇𝐼𝐿𝐷,0,1 + ∆𝑇𝐼𝐿𝐷,1,4 + ∆𝑇𝐼𝐿𝐷,2,11

                                                                                 (2.5)  

𝑔𝑑 ≈ 𝑔𝑑𝑛𝑜𝑚 +  𝑎𝑙 ∙ ∆𝑝𝑙

𝐿

𝑙=1

                                                                                                                    (2.6) 

𝑔𝑑 ≈ 𝑔𝑑𝑛𝑜𝑚 +  𝑎𝑙 ∙ ∆𝑝𝑙

𝐿

𝑙=1

+  𝑏𝑙 ∙ ∆𝑝𝑙
2

𝐿

𝑙=1

+  𝑐𝑙1𝑙2 ∙ ∆𝑝𝑙1∆𝑝𝑙2

𝐿

∀𝑙1≠𝑙2

                                               (2.7) 

 

 𝜇𝑍 = 𝜇𝑋 + 𝜇𝑌                          
 

 𝜍𝑍
2 = 𝜍𝑋

2 + 𝜍𝑌
2 + 𝜌𝑋𝑌 ∙ 𝜍𝑋𝜍𝑌

                                                                                                                   (2.8) 

 
 
 

 
  𝜑 𝑥 =

1

 2𝜋
∙ 𝑒

−𝑥2

2   
 
 

 𝛷 𝑥 =  𝜑 𝑢 𝑑𝑢
𝑥

−∞

                                                                                                                               (2.9) 
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𝑊 = 𝛷  
𝜇𝑉
𝜍𝑉
 ∙ 𝑋 +  1 − 𝛷  

𝜇𝑉
𝜍𝑉
  ∙ 𝑌 + 𝜑  

𝜇𝑉
𝜍𝑉
 ∙ 𝜍𝑉                                                                       (2.10) 

 

 𝜇𝑉 = 𝜇𝑋 − 𝜇𝑌                                   
 

 𝜍𝑉 =  𝜍𝑋
2 + 𝜍𝑌

2 − 𝜌𝑋𝑌 ∙ 𝜍𝑋𝜍𝑌 
1 2 

                                                                                                       (2.11) 

 

A.3 Equations in Chapter 3 

𝑝𝑙 = 𝑝𝑛𝑜𝑚 ,𝑙 + ∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙 + ∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙                                                                                                          (3.1) 

𝑐𝑑 = max 𝑝𝑑1, 𝑝𝑑2, … , 𝑝𝑑𝑁                                                                                                                   (3.2)  

𝐸 𝑋 𝑌 = 𝑦 =  𝑥 ∙ 𝑓 𝑥 𝑦 𝑑𝑥
∞

−∞

                                                                                                           (3.3) 

𝑉𝑎𝑟 𝑋 𝑌 = 𝑦 = 𝐸 𝑋2 𝑌 = 𝑦 − 𝐸2 𝑋 𝑌 = 𝑦                                                                                 (3.4) 

 
 𝜇𝑋 = 𝐸 𝑋  = 𝐸 𝐸(𝑋|𝑌 = 𝑦)                                                

 
 𝜍𝑋

2 = 𝑉𝑎𝑟 𝑋 = 𝐸 𝑉𝑎𝑟 𝑋 𝑌 = 𝑦  + 𝑉𝑎𝑟 𝐸 𝑋 𝑌 = 𝑦  

                                                              (3.5) 

 
 
 

 
 

 𝑃𝑟 𝑌 = 𝑦𝑖 = 𝛼𝑖 > 0            𝑖 = 1,… , 𝐼
 

  𝛼𝑖

𝐼

𝑖=1

= 1                                                        

                                                                                        (3.6) 
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  𝜇𝑋 =   𝛼𝑖 ∙ 𝐸 𝑋 𝑌 = 𝑦𝑖)

𝐼

𝑖=1

                                                          

 

 𝜍𝑋
2 =  𝛼𝑖 ∙  𝑉𝑎𝑟 𝑋 𝑌 = 𝑦𝑖) +   𝐸 𝑋 𝑌 = 𝑦𝑖) − 𝐸(𝑋) 2 

𝐼

𝑖=1

                                                        (3.7) 

 
 
 

 
  𝜇𝑋 =  𝐸(𝑋|𝑌 = 𝑦) ∙ 𝑓(𝑦)𝑑𝑦                                                  

 

 𝜍𝑋
2 =   𝑉𝑎𝑟 𝑋 𝑌 = 𝑦 +  𝐸(𝑋|𝑌 = 𝑦)  − 𝜇𝑋 

2 ∙ 𝑓(𝑦)𝑑𝑦

                                                         (3.8) 

 
 

  𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 ≈
𝑐3 − 𝑐

𝑐3 − 𝑐2
∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐2 +

𝑐 − 𝑐2

𝑐3 − 𝑐2
∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐3 

 

 𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 ≈
𝑐3 − 𝑐

𝑐3 − 𝑐2
∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐2 +

𝑐 − 𝑐2

𝑐3 − 𝑐2
∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐3 

                                          (3.9) 

𝐸 𝜏𝑜𝑢𝑡 |𝜏, 𝑐 ≈
𝜏7 − 𝜏

𝜏7 − 𝜏6
∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 +

𝜏 − 𝜏6

𝜏7 − 𝜏6
∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐                                                   (3.10) 

𝑦𝑖 =
𝑠𝑖−1 + 𝑠𝑖

2
                     𝑖 = 1,… , 𝐼                                                                                                  (3.11) 

𝛼𝑖 =

 
 
 
 

 
 
   𝑓 𝜏𝑖𝑛  𝑑𝜏𝑖𝑛

𝑠1

−∞

                     𝑖 = 1                  

 

  𝑓 𝜏𝑖𝑛  𝑑𝜏𝑖𝑛

𝑠𝑖

𝑠𝑖−1

                    𝑖 = 2,… , 𝐼 − 1

 

  𝑓 𝜏𝑖𝑛  𝑑𝜏𝑖𝑛

+∞

𝑠𝐼−1

                     𝑖 = 𝐼                 

                                                                      (3.12) 

 
 
 

 
  𝜇𝜏𝑜𝑢𝑡 =  𝛼𝑖 ∙ 𝐸 𝜏𝑜𝑢𝑡 |𝑦𝑖 , 𝑐 

𝐼

𝑖=1

                                                          

 

 𝜍𝜏𝑜𝑢𝑡
2 =  𝛼𝑖 ∙  𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝑦𝑖 , 𝑐 +   𝐸 𝜏𝑜𝑢𝑡 |𝑦𝑖 , 𝑐 − 𝜇𝜏𝑜𝑢𝑡  

2
 

𝐼

𝑖=1

                                                 (3.13) 
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  𝜇𝑔𝑑 =  𝛼𝑖 ∙ 𝐸 𝑔𝑑|𝑦𝑖 , 𝑐 

𝐼

𝑖=1

                                                     

 

 𝜍𝑔𝑑
2 =  𝛼𝑖 ∙  𝑉𝑎𝑟 𝑔𝑑|𝑦𝑖 , 𝑐 +   𝐸 𝑔𝑑|𝑦𝑖 , 𝑐 − 𝜇𝑔𝑑  

2
 

𝐼

𝑖=1

                                                          (3.14)  

 
 𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝑐 = 𝑏1 + 𝑏2 ∙ 𝜏𝑖𝑛     

 
 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝑐 = 𝑏3 + 𝑏4 ∙ 𝜏𝑖𝑛

                                                                                                       (3.15) 

𝜇𝜏𝑜𝑢𝑡 = 𝑏1 + 𝑏2 ∙ 𝜇𝜏𝑖𝑛                                                                                                                              (3.16) 

𝜍𝜏𝑜𝑢𝑡
2 =  𝑏3 + 𝑏4 ∙ 𝜇𝜏𝑖𝑛  +  𝑏2 ∙ 𝜍𝜏𝑖𝑛  

2
                                                                                               (3.17) 

𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝑐 =
𝜏7 ∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 − 𝜏6 ∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 

𝜏7 − 𝜏6
+                                                                          

𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 − 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 

𝜏7 − 𝜏6
∙ 𝜏𝑖𝑛                                                            (3.18) 

𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝑐 =
𝜏7 ∙ 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 − 𝜏6 ∙ 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 

𝜏7 − 𝜏6
+                                                            

𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 − 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 

𝜏7 − 𝜏6
∙ 𝜏𝑖𝑛                                             (3.19) 

 
 
 
 
 

 
 
 
  𝑏1 =

𝜏7 ∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 − 𝜏6 ∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 

𝜏7 − 𝜏6
         

 

 𝑏2 =
𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 − 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 

𝜏7 − 𝜏6
                        

 

 𝑏3 =
𝜏7 ∙ 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 − 𝜏6 ∙ 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 

𝜏7 − 𝜏6 

 𝑏4 =
𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 − 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 

𝜏7 − 𝜏6
              

                                                                          (3.20) 
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  𝜇𝑝𝑑 =   𝜇𝑔𝑑𝑘

𝐾

𝑘=1

                            

 

 𝜍𝑝𝑑
2 =    𝜌𝑘𝑚 ∙ 𝜍𝑔𝑑𝑘𝜍𝑔𝑑𝑚

𝐾

𝑚=1

𝐾

𝑘=1

                                                                                                        (3.21) 

𝑔𝑑𝑘 ≈ 𝑔𝑑𝑛𝑜𝑚 ,𝑘 + 𝑎1𝑘 ∙ ∆𝑝1𝑘 + 𝑎2𝑘 ∙ ∆𝑝2𝑘                                                                                         (3.22) 

𝑐𝑜𝑟 𝑔𝑑1, 𝑔𝑑2 =
𝑐𝑜𝑣 𝑔𝑑1, 𝑔𝑑2 

𝜍𝑔𝑑1
𝜍𝑔𝑑2

                                                                                                        (3.23) 

𝑐𝑜𝑣 𝑔𝑑1, 𝑔𝑑2 = 𝑎11𝑎12 ∙ 𝑐𝑜𝑣 ∆𝑝11 , ∆𝑝12 + 𝑎21𝑎22 ∙ 𝑐𝑜𝑣 ∆𝑝21 , ∆𝑝22                                  (3.24) 

∆𝑝𝑙𝑘 = ∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙𝑘 + ∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙𝑘                   (𝑙 = 1,2)                                                                           (3.25) 

𝑐𝑜𝑣 ∆𝑝𝑙1, ∆𝑝𝑙2 = 𝜍∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙1
𝜍∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙2

∙ 𝑐𝑜𝑟 ∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙1, ∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙2 +                                                       

𝜍∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙1
𝜍∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙2

∙ 𝑐𝑜𝑟 ∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙1, ∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙2            (𝑙 = 1,2)           (3.26) 

 
 
 

 
 

 𝑃𝑁𝑀 =  𝑝1
𝑁𝑀 ,  𝑝2

𝑁𝑀 , … , 𝑝𝑛1
𝑁𝑀 

 
 𝑃𝑃𝑀 =  𝑝1

𝑃𝑀 ,  𝑝2
𝑃𝑀 , … , 𝑝𝑛2

𝑃𝑀  
 

 𝑃𝑆 =  𝑝1
𝑆 ,  𝑝2

𝑆 , … , 𝑝𝑛3
𝑆             

             𝐿 = 𝑛1 + 𝑛2 + 𝑛3                                                             (3.27) 

𝑔𝑑 ≈ 𝑔𝑑𝑁𝑀 + 𝑔𝑑𝑃𝑀 + 𝑔𝑑𝑆                                                                                                                  (3.28) 

 
 
 

 
 

 𝑔𝑑𝑁𝑀 = 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒  𝑃
𝑁𝑀 , 𝑇, 𝑉𝑑𝑑 , 𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡  

 
 𝑔𝑑𝑃𝑀 = 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒  𝑃

𝑃𝑀 , 𝑇, 𝑉𝑑𝑑 , 𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡  
 

 𝑔𝑑𝑆 = 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒  𝑃
𝑆 , 𝑇, 𝑉𝑑𝑑 , 𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡       

                                                                               (3.29) 
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 𝑐𝑜𝑟 𝑔𝑑𝑁𝑀 , 𝑔𝑑𝑃𝑀 = 0
 

 𝑐𝑜𝑟 𝑔𝑑𝑁𝑀 , 𝑔𝑑𝑆 = 0   
 

 𝑐𝑜𝑟 𝑔𝑑𝑃𝑀 , 𝑔𝑑𝑆 = 0   

                                                                                                                       (3.30) 

𝜌𝑘𝑚 =
𝑐𝑜𝑣 𝑔𝑑𝑘 , 𝑔𝑑𝑚  

𝜍𝑔𝑑𝑘𝜍𝑔𝑑𝑚
                                                                                                                          (3.31) 

𝑐𝑜𝑣 𝑔𝑑𝑘 , 𝑔𝑑𝑚  = 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑁𝑀 , 𝑔𝑑𝑚

𝑁𝑀 + 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑃𝑀 , 𝑔𝑑𝑚

𝑃𝑀 + 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑆 , 𝑔𝑑𝑚

𝑆                        (3.32) 

𝑔𝑑𝑁𝑀 = 𝑔𝑑𝑖𝑛𝑡𝑒𝑟
𝑁𝑀 + 𝑔𝑑𝑖𝑛𝑡𝑟𝑎

𝑁𝑀                                                                                                                    (3.33) 

𝑐𝑜𝑟 𝑔𝑑𝑘,𝑖𝑛𝑡𝑒𝑟
𝑁𝑀 , 𝑔𝑑𝑚,𝑖𝑛𝑡𝑒𝑟

𝑁𝑀  ≈ 1                                                                                                              (3.34) 

𝑐𝑜𝑣 𝑔𝑑𝑘
𝑁𝑀 , 𝑔𝑑𝑚

𝑁𝑀 ≈ 𝜍𝑔𝑑𝑘 ,𝑖𝑛𝑡𝑒𝑟
𝑁𝑀 ∙ 𝜍𝑔𝑑𝑚 ,𝑖𝑛𝑡𝑒𝑟

𝑁𝑀                                                                                       (3.35) 

𝑐𝑜𝑣 𝑔𝑑𝑘 , 𝑔𝑑𝑚  ≈ 𝜍𝑔𝑑𝑘 ,𝑖𝑛𝑡𝑒𝑟
𝑁𝑀 ∙ 𝜍𝑔𝑑𝑚 ,𝑖𝑛𝑡𝑒𝑟

𝑁𝑀 + 𝜍𝑔𝑑𝑘 ,𝑖𝑛𝑡𝑒𝑟
𝑃𝑀 ∙ 𝜍𝑔𝑑𝑚 ,𝑖𝑛𝑡𝑒𝑟

𝑃𝑀 +                                                        

𝜍𝑔𝑑𝑘 ,𝑖𝑛𝑡𝑒𝑟
𝑆 ∙ 𝜍𝑔𝑑𝑚 ,𝑖𝑛𝑡𝑒𝑟

𝑆                                                                            (3.36) 

𝑐𝑜𝑟 𝑝𝑑1, 𝑝𝑑2 =
𝑐𝑜𝑣 𝑝𝑑1, 𝑝𝑑2 

𝜍𝑝𝑑1
𝜍𝑝𝑑2

                                                                                                         (3.37) 

𝑐𝑜𝑣 𝑝𝑑1, 𝑝𝑑2 = 𝑐𝑜𝑣   𝑔𝑑𝑘1

𝐾1

𝑘1=1

,  𝑔𝑑𝑘2

𝐾2

𝑘2=1

 =   𝑐𝑜𝑣 𝑔𝑑𝑘1
, 𝑔𝑑𝑘2

 

𝐾2

𝑘2=1

𝐾1

𝑘1=1

                         (3.38) 

𝑐𝑜𝑣 𝑔𝑑𝑘1
, 𝑔𝑑𝑘2

 = 𝜍𝑔𝑑𝑘1
∙ 𝜍𝑔𝑑𝑘2

                                                                                                        (3.39) 

𝑐𝑜𝑣 𝑔𝑑𝑘1
, 𝑔𝑑𝑘2

 ≈ 𝜍𝑔𝑑𝑘1 ,𝑖𝑛𝑡𝑒𝑟
𝑁𝑀 ∙ 𝜍𝑔𝑑𝑘2 ,𝑖𝑛𝑡𝑒𝑟

𝑁𝑀 + 𝜍𝑔𝑑𝑘1 ,𝑖𝑛𝑡𝑒𝑟
𝑃𝑀 ∙ 𝜍𝑔𝑑𝑘2 ,𝑖𝑛𝑡𝑒𝑟

𝑃𝑀 +                                                 

𝜍𝑔𝑑𝑘1 ,𝑖𝑛𝑡𝑒𝑟
𝑆 ∙ 𝜍𝑔𝑑𝑘2 ,𝑖𝑛𝑡𝑒𝑟

𝑆                                                                (3.40) 
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 𝑒𝑎𝑏𝑠 =  𝜌 − 𝜌     
 

 𝑒𝑟𝑒𝑙 =
 𝜌 − 𝜌 

𝜌
%

                                                                                                                                   (3.41) 

 
 
 
 
 
 
 

 
 
 
 
 
  𝑝𝑜𝑒 =

1

𝑁
∙ 𝑖𝑓 𝜌 𝑖 − 𝜌𝑖 < 0, 𝑡𝑕𝑒𝑛 1, 𝑒𝑙𝑠𝑒 0 

𝑁

𝑖=1

    

 

 𝑝𝑢𝑒 =
1

𝑁
∙ 𝑖𝑓 𝜌 𝑖 − 𝜌𝑖 > 0, 𝑡𝑕𝑒𝑛 1, 𝑒𝑙𝑠𝑒 0 

𝑁

𝑖=1

    

 

 𝑝𝑎𝑏𝑠 =
1

𝑁
∙ 𝑖𝑓 𝑒𝑎𝑏𝑠 ≤ 0.2, 𝑡𝑕𝑒𝑛 1, 𝑒𝑙𝑠𝑒 0 

𝑁

𝑖=1

    

 

 𝑝𝑟𝑒𝑙 =
1

𝑁
∙ 𝑖𝑓 𝑒𝑟𝑒𝑙 ≤ 20%, 𝑡𝑕𝑒𝑛 1, 𝑒𝑙𝑠𝑒 0 

𝑁

𝑖=1

  

                                                                            (3.42) 

𝑝𝑑𝑑𝑎𝑡𝑎 − 𝑝𝑑𝑐𝑙𝑘 < 𝑇𝐶𝐿𝐾                                                                                                                           (3.43) 

𝑉𝑎𝑟 𝑝𝑑𝑑𝑎𝑡𝑎 − 𝑝𝑑𝑐𝑙𝑘  = 𝜍𝑑𝑎𝑡𝑎
2 + 𝜍𝑐𝑙𝑘

2 − 2 ∙ 𝜌𝑑𝑐 ∙ 𝜍𝑑𝑎𝑡𝑎 ∙ 𝜍𝑐𝑙𝑘                                                        (3.44) 

 

A.4 Equations in Chapter 4 

𝐹 𝑥; 𝛼, 𝛽 =   
𝛼

𝑥
 
𝛽

+  1 

−1

                  𝑥 > 0                                                                                     (4.1) 

 
 
 

 
  𝜏𝑖𝑛 =

5

3
∙  𝑡2 − 𝑡1               

 
 ∆𝑉 =  0 − 𝑉𝑚𝑖𝑛  =  𝑉𝑚𝑖𝑛  

 
 ∆𝑡 = 𝑡𝑚𝑖𝑛 − 𝑡0                     

                                                                                                                    (4.2) 
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𝑉 = 𝐻  𝑡 =

 
 
 

 
 

 
 −
∆𝑉
∆𝑡 ∙

 𝑡 + ∆𝑡 − 𝑡𝑚𝑖𝑛                                                   𝑡 ≤  𝑡𝑚𝑖𝑛  
 
 

  𝑉𝑑𝑑 + ∆𝑉 ∙   
𝛼

 𝑡− 𝑡𝑚𝑖𝑛  𝜏𝑖𝑛 
 
𝛽

+  1 
−1

− ∆𝑉            𝑡 >  𝑡𝑚𝑖𝑛  

                            (4.3) 

 
 
 

 
 

 ∆𝑉 = 𝑔∆𝑉 𝜏𝑖𝑛  
 

 ∆𝑡 = 𝑔∆𝑡 𝜏𝑖𝑛    
 

 𝛽 = 𝑔𝛽 𝜏𝑖𝑛     

                                                                                                                                         (4.4) 

 
  
 

  
  ∆𝑉 =  

𝐶∆𝑉
𝐴∆𝑉 + 𝐵∆𝑉 ∙ 𝜏𝑖𝑛

   
 

 ∆𝑡 = 𝐴∆𝑡 + 𝐵∆𝑡 ∙ 𝜏𝑖𝑛        
 

 𝛽 =  
𝐶𝛽

𝐴𝛽 + 𝐵𝛽 ∙ 𝜏𝑖𝑛
+ 𝐷𝛽

                                                                                                                       (4.5) 

𝑡 = 𝑡𝑚𝑖𝑛 + 𝜏𝑖𝑛 ∙ 𝛼 ∙  
𝑉𝑑𝑑−𝑉 

𝑉 +∆𝑉
 
−

1

𝛽
                      𝑡 >  𝑡𝑚𝑖𝑛                                                                       (4.6)  

𝑡2 − 𝑡1 = 𝜏𝑖𝑛 ∙ 𝛼 ∙

 
 
 
 
 

 
0.2

0.8 +
∆𝑉
𝑉𝑑𝑑

 

−
1
𝛽

−  
0.8

0.2 +
∆𝑉
𝑉𝑑𝑑

 

−
1
𝛽

 
 
 
 
 

= 0.6 ∙ 𝜏𝑖𝑛                                               (4.7) 

𝛼 = 0.6 ∙

 
 
 
 
 

 
0.2

0.8 +
∆𝑉
𝑉𝑑𝑑

 

−
1
𝛽

−  
0.8

0.2 +
∆𝑉
𝑉𝑑𝑑

 

−
1
𝛽

 
 
 
 
 
−1

                                                                             (4.8) 



Appendix A:  List of Equations 

120 

 

 
 
 
 
 
 

 
 
 
 
  
𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡  

𝜇𝑓𝑡
= 𝑕1  

𝜏𝑖𝑛
𝜇𝑓𝑡

     

 

 
𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡  

𝜍𝑓𝑡
2 = 𝑕2  

𝜏𝑖𝑛
𝜇𝑓𝑡

 

 

 
𝐸 𝑔𝑑|𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡  

𝜇𝑓𝑡
= 𝑕3  

𝜏𝑖𝑛
𝜇𝑓𝑡

       

 

 
𝑉𝑎𝑟 𝑔𝑑|𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡  

𝜍𝑓𝑡
2 = 𝑕4  

𝜏𝑖𝑛
𝜇𝑓𝑡

  

                                                                                                          (4.9) 

 

 𝜇𝑓𝑡 = 𝐴 + 𝐵 ∙ 𝐶𝑜𝑢𝑡
 

 𝜍𝑓𝑡
2 = 𝐵2 ∙ 𝐶𝑜𝑢𝑡

2       

                                                                                                                               (4.10) 

 

A.5 Equations in Chapter 5 

 

 𝑤𝐼𝑃𝑁𝑚 = 𝑚𝑎𝑥
𝑢∈𝑈100 ,𝑚

 𝑤𝑝𝑑𝑢                   
 

 𝑠𝐼𝑃𝑁𝑚 = 𝑚𝑎𝑥
𝑢∈𝑈100 ,𝑚

 𝜇𝑝𝑑𝑢 + 3 ∙ 𝜍𝑝𝑑𝑢  
                                                                                                     (5.1) 

𝑟𝐺𝑆 =
𝐺𝑆

𝑆𝐶𝑇𝐴
%                                                                                                                                               (5.2) 

𝐺𝐷    =
1

7
∙   𝑤𝐼𝑃𝑁𝑚 − 𝑠𝐼𝑃𝑁𝑚  

7

𝑚=1

                                                                                                              (5.3) 

𝑟𝐺𝐷    =
1

7
∙  

𝑤𝐼𝑃𝑁𝑚 − 𝑠𝐼𝑃𝑁𝑚
𝑤𝐼𝑃𝑁𝑚

7

𝑚=1

%                                                                                                             (5.4) 

𝑠𝑝𝑑𝑢𝑖
= 𝜇𝑝𝑑𝑢𝑖

+ 3 ∙ 𝜍𝑝𝑑𝑢𝑖
                                                                                                                          (5.5) 
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𝑟𝑘𝑢𝑖 =  𝑖𝑓  𝑤𝑝𝑑𝑢𝑗
≥ 𝑤𝑝𝑑𝑢𝑖

, 𝑡𝑕𝑒𝑛 1, 𝑒𝑙𝑠𝑒 0 

100

𝑗=1

                                                                                  (5.6) 

 
 
 
 

 
 
 

 𝑟𝑘𝑢𝑖1 = 𝑀 − 𝑘 + 1
 

 𝑟𝑘𝑢𝑖2 = 𝑀 − 𝑘 + 2
 

⋯⋯         
 

 𝑟𝑘𝑢𝑖𝑘
= 𝑀               

                                                                                                                                 (5.7) 

𝑤𝑔𝑑𝑘 = 𝜇𝑔𝑑𝑘 + 𝜃𝑘 ∙ 𝜍𝑔𝑑𝑘                 𝑘 = 1, 2, … , 𝐾                                                                              (5.8) 

𝑠𝑝𝑑 =  𝜇𝑔𝑑𝑘

𝐾

𝑘=1

+ 3 ∙    𝜌𝑘𝑚 ∙ 𝜍𝑔𝑑𝑘𝜍𝑔𝑑𝑚

𝐾

𝑚=1

𝐾

𝑘=1

                                                                                (5.9) 

𝑤𝑝𝑑 =  𝜇𝑔𝑑𝑘

𝐾

𝑘=1

+ 3 ∙    1 ∙  
𝜃𝑘 ∙ 𝜍𝑔𝑑𝑘

3
  

𝜃𝑚 ∙ 𝜍𝑔𝑑𝑚
3

 

𝐾

𝑚=1

𝐾

𝑘=1

                                                   (5.10𝑎) 

=  𝜇𝑔𝑑𝑘

𝐾

𝑘=1

+ 3 ∙    1 ∙  
𝑤𝑔𝑑𝑘 − 𝜇𝑔𝑑𝑘

3
  
𝑤𝑔𝑑𝑘 − 𝜇𝑔𝑑𝑘

3
 

𝐾

𝑚=1

𝐾

𝑘=1

                                        (5.10𝑏) 

𝑠𝑝𝑑
′ = 𝜇𝑝𝑑 + 3 ∙ 𝜍𝑝𝑑

′                                                                                                                                 (5.11) 

𝑠𝑝𝑑
′′  = 𝜇𝑝𝑑 + 3 ∙ 𝜍𝑝𝑑

′′                                                                                                                                (5.12) 

𝜍𝑝𝑑
′ =    1 ∙ 𝜍𝑔𝑑𝑘𝜍𝑔𝑑𝑚

𝐾

𝑚=1

𝐾

𝑘=1

                                                                                                              (5.13) 
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𝜍𝑝𝑑
′′ =    𝜌𝑘𝑚 ∙  

𝜃𝑘 ∙ 𝜍𝑔𝑑𝑘
3

  
𝜃𝑚 ∙ 𝜍𝑔𝑑𝑚

3
 

𝐾

𝑚=1

𝐾

𝑘=1

                                                                             (5.14) 

𝑉𝑎𝑟 𝑝𝑑𝑑𝑎𝑡𝑎 − 𝑝𝑑𝑐𝑙𝑘  = 𝜍𝑑𝑎𝑡𝑎
2 + 𝜍𝑐𝑙𝑘

2 − 2 ∙ 𝜌𝑑𝑐 ∙ 𝜍𝑑𝑎𝑡𝑎 ∙ 𝜍𝑐𝑙𝑘                                                        (5.15) 

 
 
 

 
 

 𝑟𝑠𝑢𝑚 = 𝑟1 + 𝑟2 
 

 𝑟𝑑𝑖𝑓 =  𝑟1 − 𝑟2 
 

 𝑟𝑝𝑑𝑡 = 𝑟1 ∙ 𝑟2    

                                                                                                                                     (5.16) 

 
 
 

 
  𝑟1 =

𝜇𝜏𝑖𝑛 ,1

𝜇𝜏𝑜𝑢𝑡 ,1

∈  0.85, 0.9 

 

 𝑟2 =
𝜇𝜏𝑖𝑛 ,2

𝜇𝜏𝑜𝑢𝑡 ,2

∈  0.85, 0.9 

                                                                                                                     (5.17) 
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SSTA Framework Based on Moments Propagation 

Abstract 

Corner-based Timing Analysis (CTA) becomes more and more pessimistic along with the shrinking 

feature size. This trend has urged the need of Statistical Static Timing Analysis (SSTA). However, this 

new generation of timing analysis has not yet widely adopted in the industry due to various weaknesses. 

The path-based SSTA framework proposed in this thesis computes path delay distributions by propagating 

iteratively mean and variance of cell delay with the help of conditional moments. These moments, condi-

tioned on input slope and output load, are stored in a statistical timing library. This framework performs as 

fast as parametric methods while not losing too much accuracy compared to Monte Carlo simulations, 

which meets the objective of the research. Another contribution of this thesis is the improvement of the 

techniques to do timing characterization. We use input signals based on log-logistic distributions and 

inverters as output load to capture slope and load variations. In addition, the runtime of characterization 

could be greatly saved by the reducing dimension technique, which would be validated in the near future. 

In the part of applications, our SSTA engine shows significant delay gains with respect to CTA. The 

discrepancy of critical paths orderings obtained respectively by SSTA and CTA is explained as well. 

Finally, a study of cell-to-cell correlation is given. 

 

 


