
HAL Id: tel-00471241
https://theses.hal.science/tel-00471241v1
Submitted on 7 Apr 2010 (v1), last revised 8 Apr 2010 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SSTA Framework Based on Moments Propagation
Zeqin Wu

To cite this version:
Zeqin Wu. SSTA Framework Based on Moments Propagation. Micro and nanotechnolo-
gies/Microelectronics. Université Montpellier II - Sciences et Techniques du Languedoc, 2009. English.
�NNT : �. �tel-00471241v1�

https://theses.hal.science/tel-00471241v1
https://hal.archives-ouvertes.fr

University of Montpellier II

Science and Technology of Languedoc

Thesis

Doctor of Philosophy

Discipline : Electronics, Optronics and Systems

Doctoral School : Information, Structure and Systems

Doctoral Education : Automatic Systems and Microelectronics

WU Zeqin

December 11, 2009

SSTA Framework Based on Moments Propagation

Committee

ROBERT Michel Professor President

PIGUET Christian Research Director CSEM Reporter

BELLEVILLE Marc Research Director CEA Reporter

WILSON Robin Research Director ST Examinator

AMARA Amara Professor Examinator

MAURINE Philippe Associate Professor Examinator

DUCHARME Gilles Professor Supervisor

AZEMARD Nadine Researcher CNRS Supervisor

MAS André Professor Invitee

I

Table of Contents

List of Figures v

List of Tables ix

Preface xi

Chapter 1 Introduction 1

1.1 Timing Verification . 3

1.1.1 Propagation delay . 3

1.1.2 Timing constraints . 6

1.1.3 Source of variations . 8

1.1.4 Mathematical description 9

1.2 Corner-based Timing Analysis 11

1.2.1 Basic concepts of timing analysis 11

1.2.2 Modeling variations with corners 12

1.2.3 Estimation of circuit delay 13

1.3 On the Need of Statistical Static Timing Analysis 14

1.3.1 Increasing pessimism of corner-based methods 15

1.3.2 SSTA moving from interesting to necessary 18

Table of Contents

II

1.4 Outline of the Thesis . 20

Chapter 2 SSTA: State of the Art 21

2.1 Review of SSTA . 22

2.1.1 Parametric methods . 22

2.1.2 Monte Carlo methods . 25

2.2 Basic Statistical Models and Techniques 25

2.2.1 Process variations modeling 26

2.2.2 Gate-level performance modeling 29

2.2.3 Propagation techniques . 30

2.3 Challenges for SSTA . 31

2.3.1 Weaknesses of existing models and techniques 32

2.3.2 Outlook for SSTA . 34

2.4 Summary . 35

Chapter 3 Path-based SSTA Framework 37

3.1 Flow of the Path-based SSTA Framework 38

3.1.1 Setup . 39

3.1.2 Input . 42

3.1.3 SSTA engine . 43

3.1.4 Output . 43

3.2 Conditional Moments . 45

Table of Contents

III

3.3 Moments Propagation . 47

3.3.1 Interpolation . 48

3.3.2 Discrete version . 49

3.3.3 Continuous version . 51

3.4 Path Delay Distribution . 53

3.5 Estimation of Delay Correlation 54

3.5.1 Cell-to-cell delay correlation 54

3.5.2 Path-to-path delay correlation 58

3.6 Validation and Discussion . 58

3.6.1 Validation . 59

3.6.2 Quality of the SSTA engine 63

3.6.3 Discussion . 65

3.7 Summary . 65

Chapter 4 Statistical Timing Library 67

4.1 Timing Characterization . 68

4.1.1 Input signal model . 70

4.1.2 Output load variations . 77

4.1.3 Comparison . 78

4.1.4 Weaknesses . 79

4.2 Acceleration Techniques . 79

4.2.1 Reducing dimension . 80

4.2.2 Discussion . 83

4.3 Summary . 85

Table of Contents

IV

Chapter 5 Comparisons and Applications 87

5.1 Gain of SSTA . 88

5.2 Ordering of Critical Paths . 91

5.3 Study of Cell-to-cell Delay Correlation 96

5.3.1 Effect of technology . 97

5.3.2 Effect of input slope and output load 98

5.3.3 Effect of cell type, I/O pin and I/O edge 101

5.4 Summary . 104

Chapter 6 Conclusions and Future Work 105

6.1 Conclusions . 106

6.2 Future Work . . 107

Appendix A: List of Equations 109

Appendix B: Author’s Publications 123

References 125

V

List of Figures

Figure 1.1 Illustration of propagation delay and slope 4

Figure 1.2 Pin-to-pin gate delays of a two-input OR gate 5

Figure 1.3 Diagram of digital IC: a set of flip-flops linking circuit blocks 7

Figure 1.4 Setup time and hold time constraints of flip-flop 𝐹𝐹𝑍1 8

Figure 1.5 Environmental variations across an IC 9

Figure 1.6 Illustration of timing graph . 12

Figure 1.7 A PERT task graph . 14

Figure 1.8 Variability trends in key process parameters with shrinking feature sizes . . . 15

Figure 1.9 Increasing pessimism of CTA and tightening timing constraints 19

Figure 2.1 Classifications of existing SSTA methods 23

Figure 2.2 Illustration of SSTA algorithms 24

Figure 2.3 Variation in ILD thickness across the wafer and across the die 26

Figure 2.4 An example of the grid model . 28

Figure 2.5 An example of the quad-tree model 29

Figure 2.6 Accuracy of the linear approximation of the MAX operation 34

List of Figures

VI

Figure 3.1 Flow of our path-based SSTA framework 39

Figure 3.2 Structure of the statistical timing library 41

Figure 3.3 Illustration of approximating a complicated function with a lookup table . . . 42

Figure 3.4 Procedure of the SSTA engine . 44

Figure 3.5 Illustration of moments propagation 47

Figure 3.6 Illustration of bilinear interpolations 49

Figure 3.7 Discretization of 𝑁(𝜇𝜏𝑖𝑛
, 𝜎𝜏𝑖𝑛

2) setting 𝐼 = 6 50

Figure 3.8 Validation of the technique to compute CDCs (65 nm) 61

Figure 3.9 Validation of the technique to compute PDCs (65 nm) 61

Figure 3.10 Illustration of preferable overestimation on 𝑉𝑎𝑟 𝑝𝑑𝑑𝑎𝑡𝑎 − 𝑝𝑑𝑐𝑙𝑘 63

Figure 4.1 Conventional approximations of input slope and output load 69

Figure 4.2 Comparison of signals and LL distributions 71

Figure 4.3 Notations of input signal model 71

Figure 4.4 Proposed simple functions . 74

Figure 4.5 Normalized and transformed signals 76

Figure 4.6 Average errors of approximated signals (65 nm) 76

Figure 4.7 𝑀 inverters as output load . 77

Figure 4.8 Illustrations of FIR and N-FIR . 80

Figure 4.9 Illustration of normalized conditional moments of output slope 81

Figure 4.10 Illustration of normalized conditional moments of cell delay 82

List of Figures

VII

Figure 4.11 Reduction of points to characterize 83

Figure 4.12 Comparisons of normalized curves 84

Figure 5.1 Gains of SSTA for circuits b05 and b07 89

Figure 5.2 Delays of ordered critical paths (b07, 65 nm) 93

Figure 5.3 Normalized delays of ordered critical paths (b07, 65 nm) 93

Figure 5.4 Interpretation of discrepancy between orderings 96

Figure 5.5 Histograms of CDC coefficients 98

Figure 5.6 Effects of 𝜇𝜏𝑖𝑛 ,1
, 𝜇𝜏𝑜𝑢𝑡 ,1 and 𝑟1 on CDCs (𝑁𝑂𝑅 − 𝐴/𝑍 − 𝑅/𝐹) 99

Figure 5.7 Relationship of CDCs and different compound ratios (𝑁𝑂𝑅 − 𝐴/𝑍 − 𝑅/𝐹) . . 100

Figure 5.8 Relationship of CDCs and 𝑟𝑠𝑢𝑚 for various cell types, I/O pins and I/O edges . 101

Figure 5.9 Effects of fixed factors on CDCs 103

List of Figures

VIII

IX

List of Tables

Table 3.1 Information about the cell netlists and the statistical process models 40

Table 3.2 Comparison of discrete and continuous propagation techniques (65 nm) 53

Table 3.3 CDCs varying with cell type, output load and I/O edge (130nm, 1500 runs) . . . 55

Table 3.4 Validation in the 130 nm technology 59

Table 3.5 Validation in the 65 nm technology 60

Table 3.6 Information about the accuracy of computed CDCs and PDCs 62

Table 3.7 Computational cost of MC simulations and our SSTA engine 64

Table 3.8 Influences of CDCs and slope variations 65

Table 4.1 Comparisons of path delay standard deviations computed with statistical timing

 libraries based on different combinations of input signal and output load models . 78

Table 5.1 Average delay gains of the SSTA engine (without interconnects)

 over CTA (RTL Compiler) . 91

List of Tables

X

XI

Preface

s technology enters the nanometer era, the traditional Corner-based Timing Analysis

(CTA) is predicted to no longer fully address the needs of IC designers in the near future.

This prediction has urged the rapid development of Statistical Static Timing Analysis (SSTA).

Since 2003, thousands of papers have been published in this field. However, SSTA is still in the

very beginning state and much work needs to be done to improve it. Our research is on this front

topic.

This thesis is organized into six chapters. The first chapter defines the problem of timing verifica-

tion and discusses the need of SSTA. Chapter 2 focuses on the present state of SSTA. In

Chapter 3, we introduce our path-based SSTA framework. Chapter 4 presents an improved

method for timing characterization, which is a step to collect data to feed our SSTA engine. In

Chapter 5, we apply the proposed SSTA framework and compare its results with those of

CTA. Finally, Chapter 6 gives the conclusions and future work.

I would like to thank Philippe MAURINE and Nadine AZEMARD for providing me with the

opportunity to do this research and their helps during these years. I also would like to acknowl-

edge Gilles DUCHARME for his comments and corrections all along the redaction of this thesis.

I also thank all my colleagues of LIRMM.

 WU Zeqin

 October 2009

A

Preface

XII

1

Chapter

1

Introduction

This chapter first introduces the notions of propagation delay and timing constraint. Then, the

problem of timing verification is defined. Section 1.2 presents briefly the traditional Corner-

based Timing Analysis (CTA), which has been widely used for timing verification in the past

twenty years. In Section 1.3, we analyze the pessimism of CTA and conclude that this pessim-

ism is increasing as the feature sizes are shrinking, which results in the need of Statistical Static

Timing Analysis (SSTA). Finally, the outline of the thesis is given.

Chapter 1 Introduction

2

ontinuing advances in design techniques and fabrication process technology are leading to

the design and manufacturing of very high performance Integrated Circuits (IC), i.e. high

speed and low power consumption IC. The ever higher demand of performance from consumers

allows for less and less design margins. In consequence, the propagation delay of an IC needs to

be checked against increasingly tighter timing constraints that are related to the expected perfor-

mance. At the same time, with the rapid decrease of minimum feature sizes, the effects of fabrica-

tion process fluctuations on timing characteristics are becoming significant. As a result, the tradi-

tional Corner-based Timing Analysis
1
 (CTA) is predicted to no longer fully address the needs of

IC designers in the near future.

CTA has been a simple and efficient method for the timing verification of modern IC designs. By

describing process and environmental variations with corners, gate-level delays (the basic primi-

tives) of IC turn into deterministic quantities, and therefore are easy to be propagated. In micronic

technologies, process variations are relatively small compared to supply voltage and temperature

variations, so that modeling variations with extreme values produces acceptable outcomes. How-

ever, as technology enters the nanometer era (< 90 nm), it becomes difficult to construct guaran-

teed bounds on the circuit delay probability distribution without being overly conservative. Such

pessimism of corner-based design methodologies leads to an increase in design effort, or a reduc-

tion of the relative timing performance to previous generation levels [1]. As a consequence,

Statistical Static Timing Analysis (SSTA), which is considered as the replacement of CTA, has

been developed and received considerable attention in the domain of Computer-Aided-Design

(CAD) in the last few years. Rather than simply determine corners and attempt to arrive at a

single value for delays, statistical timing engines propagate probability distributions. This statis-

tical technique is more reasonable than CTA in nature and offers much more accurate estimation

of actual circuit performance. Recent works [1], [2] claim that SSTA is absolutely necessary for

future IC design.

1
 Also called Static Timing Analysis (STA). In this thesis, we use CTA in order to avoid confusion with another

abbreviation: Statistical Static Timing Analysis (SSTA).

C

Section 1.1 Timing Verification

3

1.1 Timing Verification

A successful digital IC design must provide the intended functionality and operate at the speed

defined in the design requirements. Manufactured circuits that do not meet the specified timing

constraints may be functionally incorrect and hence cannot be sold, or have to give up the mar-

ket-related design goal by slowing down the speed. Consequently, a designer must perform

timing verifications at numerous development steps before fabrication.

The essential objective of timing verification is to guarantee that circuit propagation delay satis-

fies the timing constraints given by the specifications. This is done by identifying the critical

paths of a circuit, i.e. those paths that have the maximum delay. This information about critical

paths can be used to decrease circuit delay, which is necessary if some timing constraints are

violated, and is required to increase the clock frequency during design optimization. In addition,

there are timing-verifiers that downsize high-speed gates along non-critical paths in order to save

power consumption.

In the process of timing verification, the most crucial task is to estimate propagation delay, which

is greatly affected by two sources of variations. The first source comprises environmental varia-

tions, such as supply voltage and temperature dispersions that arise during circuit operation. The

second source comes from process variations due to manufacturing dispersions. In order to tole-

rate these variations, the timing behaviors of circuits need to be checked against the timing con-

straints under all possible combinations of environmental and process characteristics.

1.1.1 Propagation delay

In physics, propagation delay is the amount of time for a signal to travel to its destination. In

digital circuits, it is usually defined as the interval between the time when the input waveform

crosses the 50% point of its maximum supply voltage value 𝑉𝑑𝑑 , and the time when the corres-

ponding output waveform crosses the same threshold. The transition time (or slope) of a wave-

form is the time needed to switch from one stable state to another, such as from 0 to 𝑉𝑑𝑑 or the

contrary. To avoid the effects of noises, especially those appearing at the head and the tail of a

waveform, this transition time is defined as the time spent by the signal to go from x% to y% of

Chapter 1 Introduction

4

𝑉𝑑𝑑 . In this thesis, all slopes are measured using the 20% – 80% specification. Figure 1.1 illu-

strates the definitions of propagation delay and slope. Note that a waveform can be classified into

one of the two types:

 rising edge is the transition of a digital signal from 0 to 𝑉𝑑𝑑 ;

 falling edge is the 𝑉𝑑𝑑 to 0 transition.

A digital IC consists of millions of transistors, organized into logic gates. Thus, propagation

delay through a logic gate, called gate delay, is the fundamental element for timing verification.

The factors that affect gate delay include:

a) gate type (𝐼𝑁𝑉, 𝐴𝑁𝐷,𝑂𝑅,…), input pin (𝐴, 𝐵, …), and output edge (either rising edge

or falling edge, abbreviated respectively to 𝑅, 𝐹);

b) process parameters 𝑃 = (𝑝1, 𝑝2, … , 𝑝𝐿)，where 𝑝𝑙 , (𝑙 = 1, 2, … , 𝐿) represent physical

parameters, such as effective channel length 𝐿𝑒𝑓𝑓 , oxide thickness 𝑡𝑜𝑥 , etc;

c) environmental parameters: temperature 𝑇 and supply voltage 𝑉𝑑𝑑 ;

d) operating conditions: input slope 𝜏𝑖𝑛 and output load
2
 𝐶𝑜𝑢𝑡 .

2
 Load indicates all objects that are connected to the output of a gate: a capacitor, a resistor, a mixture of them, etc.

Figure 1.1 Illustration of propagation delay and slope

http://en.wikipedia.org/wiki/Digital_signal

Section 1.1 Timing Verification

5

In general, gate delay is a complicated nonlinear function of the above factors, especially in the

case where two or more inputs of a multiple-input gate switch simultaneously. To make gate

delay modeling possible, it is necessary to set the assumption that only one input switches at any

time for a multiple-input gate. Under such an assumption, given the gate type, input pin and

output edge, the pin-to-pin gate delay can be modeled by:

 𝑔𝑑 = 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒 𝑃, 𝑇, 𝑉𝑑𝑑 , 𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡 (1.1)

where 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒 is a function specific to gate type, input pin and output edge. As an example,

for the two-input 𝑂𝑅 gate in Figure 1.2, there are four possible functions. Hence, under the

single switching input assumption, the gate delay will take one of the four values outputted by the

following functions 𝑓𝑂𝑅,𝐴,𝑅 , 𝑓𝑂𝑅,𝐴,𝐹 , 𝑓𝑂𝑅,𝐵,𝑅 , 𝑓𝑂𝑅,𝐵,𝐹 according to gate type, input pin, and output

edge.

Note that in the rest of this thesis, the delay of gate 𝑘 will be denoted by 𝑔𝑑𝑘 for simplicity. This

implies that the indices of the function 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒 and all its parameters are known from the

context.

 𝑔𝑑 = 𝑓𝑂𝑅,𝐴,𝑅 𝑃, 𝑇, 𝑉𝑑𝑑 , 𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡 𝑔𝑑 = 𝑓𝑂𝑅,𝐴,𝐹 𝑃, 𝑇, 𝑉𝑑𝑑 , 𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡

 𝑔𝑑 = 𝑓𝑂𝑅,𝐵,𝑅 𝑃, 𝑇, 𝑉𝑑𝑑 , 𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡 𝑔𝑑 = 𝑓𝑂𝑅,𝐵,𝐹 𝑃, 𝑇, 𝑉𝑑𝑑 , 𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡

Figure 1.2 Pin-to-pin gate delays of a two-input OR gate

Chapter 1 Introduction

6

With the above gate delay definition, propagation delay can be extended to circuit-level. Consider

a combinational circuit block which is composed of 𝐾 gates and has 𝐼 input pins 𝐴𝑖 , (𝑖 =

1, 2, … , 𝐼) and 𝐽 output pins 𝑍𝑗 , (𝑗 = 1, 2, … , 𝐽). As defined in Section 1.1.1, a transition is a

change of states. Therefore, we may define ℾ as the set of all possible transitions at all the input

pins 𝐴𝑖 , (𝑖 = 1, 2, … , 𝐼) of the circuit. But only a subset Γ𝐴𝑖 ,𝑍𝑗 of ℾ produces an effective signal

propagation
3
 from the input pin 𝐴𝑖 to the output pin 𝑍𝑗 .

For 𝛾𝑖𝑛 ∈ Γ𝐴𝑖 ,𝑍𝑗 , we can first calculate all gate delays 𝑔𝑑𝑘 , (𝑘 = 1, 2, … , 𝐾) considering the con-

text of operation, i.e. the related 𝑃𝑘 , 𝑇𝑘 , 𝑉𝑑𝑑 ,𝑘 , 𝜏𝑖𝑛 ,𝑘 , 𝐶𝑜𝑢𝑡 ,𝑘 , (𝑘 = 1, 2, … , 𝐾) are known for each

gate; Next, the circuit delay 𝑐𝑑𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
 from the input pin 𝐴𝑖 to the output pin 𝑍𝑗 is computed by:

𝑐𝑑𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
= 𝑕(𝑔𝑑1, 𝑔𝑑2 , … , 𝑔𝑑𝐾) 1.2

The function 𝑕 in Equation (1.2) is simple, and involves only the essential operations SUM

and MAX/MIN. However, since timing verification has entered the statistical era, estimation of

𝑐𝑑𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛 has become a challenging task due to the fact that the MAX/MIN of random variables

is difficult to determine.

1.1.2 Timing constraints

In the present-day field of microelectronics, almost all digital ICs can be simply described as a set

of flip-flops that link different circuit blocks together. Figure 1.3(a) shows a diagram, in which

a cloud represents a circuit block made of logic gates, while flip-flops are used to synchronize

actions of circuit blocks with the help of a global clock signal. In Figure 1.3(a), considering

propagation delay, it is rare that the output data of 𝑍11 and 𝑍12 , which is required respectively by

𝐴21 and 𝐴22 , arrives at the same moment. With flip-flops and an active clock edge used as con-

trol signal, difference in propagation delays is eliminated and the needed values are transferred

simultaneously to the corresponding input 𝐴21 and 𝐴22 of the following circuit block.

3
 The propagation delay is non-null.

Section 1.1 Timing Verification

7

A simplified flip-flop is shown in Figure 1.3(b) and consists of a data input D, a clock input

CLK, and an output Q which always takes on the state of the input D when the active clock edge

is switching. However, such synchronous scheme is prone to the following meta-stability

problem that happens when a data is changing at the instant of an active clock edge: the output

may behave unpredictably, take much more time to settle to its correct state, or even oscillate

several times before settling. This problem can be avoided by ensuring that the data is held valid

and constant for specified period before and after the clock rising edge, called the setup time and

the hold time respectively. The setup time is the minimum time before the arrival of an active

clock edge during which the input data must be valid for reliable latching. Similarly, the hold

time represents the minimum time during which the data input must be held stable after the active

clock edge.

Figure 1.4 illustrates the setup time and hold time constraints with a simple block. If the clock

period 𝑇𝐶𝐿𝐾 is given, then for any input transition 𝛾𝑖𝑛 ∈ Γ𝐴𝑖 ,𝑍𝑗 , the two timing constraints can be

expressed mathematically by:

𝑔𝑑 𝐶𝐿𝐾0→𝐶𝐿𝐾𝐴1
+ 𝑔𝑑 𝐶𝐿𝐾𝐴1→𝐴1

+ 𝑐𝑑𝐴1 ,𝑍1 ,𝛾𝑖𝑛
< 𝑔𝑑 𝐶𝐿𝐾0→𝐶𝐿𝐾𝑍1

− 𝑑𝑠𝑒𝑡𝑢𝑝 + 𝑇𝐶𝐿𝐾 (1.3)

𝑔𝑑 𝐶𝐿𝐾0→𝐶𝐿𝐾𝐴1
+ 𝑔𝑑 𝐶𝐿𝐾𝐴1→𝐴1

+ 𝑐𝑑𝐴1 ,𝑍1 ,𝛾𝑖𝑛
> 𝑔𝑑 𝐶𝐿𝐾0→𝐶𝐿𝐾𝑍1

+ 𝑑𝑕𝑜𝑙𝑑 (1.4)

where 𝑔𝑑 𝑋→𝑌 indicates any possible delay propagating from pin 𝑋 to pin 𝑌, and 𝑑𝑠𝑒𝑡𝑢𝑝 , 𝑑𝑕𝑜𝑙𝑑

are respectively the setup time and the hold time of the flip-flop 𝐹𝐹𝑍1
.

(a) Diagram of digital IC (b) Simplified flip-flop

Figure 1.3 Diagram of digital IC: a set of flip-flops linking circuit blocks

Chapter 1 Introduction

8

Theoretically, if the setup time constraint (1.3) is violated, slowing down the clock will increase

the clock period 𝑇𝐶𝐿𝐾 and enable the right value to be latched. On the other hand, if a hold time

violation problem occurs, it cannot be solved by giving up the design specifications and will lead

to functional faults.

1.1.3 Source of variations

Among all the factors that affect propagation delay discussed in Section 1.1.1, gate type, input

pin, and output edge are known and fixed; the others are variational. These variations are directly

or indirectly caused by two types of sources. First, environmental variations, as the name

suggests, are variations of the surrounding environment in which a circuit sits during its operation.

These variations include temperature variations and variations in supply voltage. Figure 1.5

gives an example of the environmental variations across an IC. The uneven supply voltage distri-

bution and the spatial variations of temperature shown in Figure 1.5, come from the variation

in switching activities. From the two panels of this figure, it is obvious that the components

contained within the IC work under different supply voltage and temperature conditions. To

avoid the loss of accuracy when estimating propagation delay, a reasonable model to describe and

predict the environmental variations is required. But the modeling task is challenging because

this category of variations is time-dependent.

Figure 1.4 Setup time and hold time constraints of flip-flop 𝐹𝐹𝑍1

Section 1.1 Timing Verification

9

The second source of variations is process variations from perturbations in the fabrication

process and physical limitations. These manufacturing variations cause deviations (from intended

or designed values) of physical parameters and thus have significant impact on propagation delay.

Unlike time-varying environmental variations, physical parameters are essentially permanent

after the fabrication. However, during the design procedure, the randomness of some of these

process variations must be taken into account. This randomness leads to the fact that propagation

delays in Equations (1.1) – (1.2), are randomly distributed, which is the main difficulty in

timing verification.

1.1.4 Mathematical description

Consider a simplified circuit: a combinational circuit block links respectively 𝐼 identical flip-

flops 𝐹𝐹𝐴𝑖 at input pins 𝐴𝑖 , (𝑖 = 1, 2, … , 𝐼) and 𝐽 identical flip-flops 𝐹𝐹𝑍𝑗 at output pins 𝑍𝑗 , 𝑗 =

1, 2, … , 𝐽 . Under the assumption that physical parameters 𝑃 = (𝑝1, 𝑝2, … , 𝑝𝐿) are randomly

distributed, all timing parameters in Equations (1.3) – (1.4) are random except for the clock

period 𝑇𝐶𝐿𝐾 . Thus, we define two random variables 𝑆𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
 and 𝐻𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛

, called respectively

Setup Slack and Hold Slack, as:

 (a) Variations in supply voltage (b) Temperature variations

Figure 1.5 Environmental variations across an IC [3]

Chapter 1 Introduction

10

𝑆𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
≝ 𝑔𝑑

 𝐶𝐿𝐾0→𝐶𝐿𝐾𝐴𝑖
+ 𝑔𝑑

 𝐶𝐿𝐾𝐴𝑖→𝐴𝑖
+ 𝑐𝑑𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛

 − 𝑔𝑑
 𝐶𝐿𝐾0→𝐶𝐿𝐾𝑍𝑗

− 𝑑𝑠𝑒𝑡𝑢𝑝 (1.5)

𝐻𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
≝ 𝑔𝑑

 𝐶𝐿𝐾0→𝐶𝐿𝐾𝐴𝑖
+ 𝑔𝑑

 𝐶𝐿𝐾𝐴𝑖→𝐴𝑖
+ 𝑐𝑑𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛

 − 𝑔𝑑
 𝐶𝐿𝐾0→𝐶𝐿𝐾𝑍𝑗

+ 𝑑𝑕𝑜𝑙𝑑 (1.6)

where 𝛾𝑖𝑛 ∈ Γ𝐴𝑖 ,𝑍𝑗 . We assume that the setup time 𝑑𝑠𝑒𝑡𝑢𝑝 of each flip-flop follows the same

probability distribution, and so does the hold time 𝑑𝑕𝑜𝑙𝑑 . With 𝑆𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
 and 𝐻𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛

, we

rewrite the two timing constraints as:

𝑆𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
< 𝑇𝐶𝐿𝐾 1.7

𝐻𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
> 0 (1.8)

Before defining the problem of timing verification, we further assume that:

a) supply voltage and temperature of each gate are respectively bounded by known values

𝑉𝑚𝑖𝑛 , 𝑉𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 , 𝑇𝑚𝑎𝑥 , i.e. 𝑉𝑑𝑑 ∈ 𝑉𝑚𝑖𝑛 , 𝑉𝑚𝑎𝑥 and 𝑇 ∈ 𝑇𝑚𝑖𝑛 , 𝑇𝑚𝑎𝑥 ;

b) the probability distribution 𝐹𝑙 of each process parameter 𝑝𝑙 , (𝑙 = 1, 2, … , 𝐿) is known;

c) for any two gates 𝑘 and 𝑚, their process parameters 𝑝𝑙,𝑘 and 𝑝𝑙,𝑚 are dependent.

Given a clock signal, a clock period 𝑇𝐶𝐿𝐾 , and a probability 𝜃 ∈ 0, 1 , then 𝑆𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
 and

𝐻𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
 must satisfy the condition:

𝑃𝑟 𝑆𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
 < 𝑇𝐶𝐿𝐾 ∩ 𝐻𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛

> 0

𝛾𝑖𝑛 ∈𝛤𝐴𝑖 ,𝑍𝑗

𝐽

𝑗=1

𝐼

𝑖=1

 ≥ 𝜃 (1.9)

Note that the two timing constraints in Equations (1.7) – (1.8) are similar because they bound

random variables. What is more, the setup time constraint can conversely be used to determine

the initial clock signal and the appropriate clock period. Hence, in the rest of this thesis, we will

mainly discuss the setup time problem.

Section 1.2 Corner-based Timing Analysis

11

1.2 Corner-based Timing Analysis

Although theoretically, timing verification can be undertaken using electrical circuit simulation,

such an approach is too slow to be practical. In the past decades, Corner-based Timing Analysis

(CTA) offered quick and reasonably accurate estimations of propagation delays. This timing

method assumes that the best-corners or worst-corners of the process and environmental parame-

ters occurs simultaneously, and verifies timing behaviors under these extreme conditions. In other

words, variations are replaced by deterministic quantities. The basic idea behind this approach is

that if a circuit works correctly in extreme cases, then it will also work correctly under normal

conditions.

1.2.1 Basic concepts of timing analysis

A circuit may be represented as a timing graph 𝔾 = 𝕍, 𝔼 , where 𝕍 is a set of nodes, and 𝔼 is a

set of edges. A node 𝑣𝑖 ∈ 𝕍 corresponds to a net in the circuit. The edge 𝑒𝑣𝑖 ,𝑣𝑗 ∈ 𝔼 represents the

propagation delay between two adjacent nodes 𝑣𝑖 and 𝑣𝑗 . Each edge 𝑒𝑣𝑖 ,𝑣𝑗 has a pin-to-pin gate

delay 𝑔𝑑𝑣𝑖 ,𝑣𝑗 as the weight; and each node has a delay related term 𝑡𝑣𝑖 , called arrival time. Note

that a timing graph is oriented from the primary inputs to the primary outputs of the correspond-

ing circuit.

A simple combinational circuit and its corresponding timing graph (without considering inter-

connects) are illustrated respectively in Figure 1.6(a) and 1.6(b). Compared with the circuit

diagram, an edge 𝑒𝑣𝑖 ,𝑣𝑗 corresponds to a pin-to-pin gate delay, and a node 𝑣𝑖 is either a net, or a

primary input pin, or a primary output pin.

Another useful term is timing path. In the context of digital circuit, a timing path is a set of con-

nected edges between an input node 𝐴𝑖 and an output node 𝑍𝑗 , such as 𝑒𝐴1 ,𝐺1
, 𝑒𝐺1 ,𝑍1

 and

 𝑒𝐴3 ,𝐺2
, 𝑒𝐺2 ,𝑍1

 in Figure 1.6(b). Path delay is the sum of weights of all edges on a timing path.

Note that path delay is a little different from the pin-to-pin circuit delay defined in Equation

(1.2): in Figure 1.6(b), the pin-to-pin circuit delay 𝑐𝑑𝐴2 ,𝑍1 ,𝛾𝑖𝑛
 may be one of the two path

Chapter 1 Introduction

12

delays: 𝑔𝑑𝐴2 ,𝐺1
+ 𝑔𝑑𝐺1 ,𝑍1

 and 𝑔𝑑𝐴2 ,𝐺2
+ 𝑔𝑑𝐺2 ,𝑍1

, each of which corresponds to an input transition

𝛾𝑖𝑛 applied at the input pins 𝐴1 , 𝐴2 and 𝐴3.

1.2.2 Modeling variations with corners

As stated before, the key idea of CTA is that randomly distributed process variables and time-

dependent environmental parameters are replaced by fixed and deterministic corners. For the

setup time check, these parameters are set at their worst values so that the maximum circuit delay

can be computed. These corners of parameters can be identified according to a sensitivity analy-

sis of the function 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒 in Equation (1.1).

The worst corners of supply voltage 𝑉𝑑𝑑 and temperature 𝑇 are respectively 𝑉𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 . In

addition, from Section 1.1.4, the probability distributions 𝐹𝑙 of 𝑝𝑙 , (𝑙 = 1, 2, … , 𝐿) are known,

so that for a given probability 𝛽 ∈ 0, 1 , the upper extreme bound 𝑝𝑢𝑝𝑟 ,𝑙 and the lower extreme

bound 𝑝𝑙𝑤𝑟 ,𝑙 of each process parameter can be derived by:

 1 − 𝐹𝑙 𝑝𝑢𝑝𝑟 ,𝑙 = 𝑃𝑟(𝑝𝑙 ≥ 𝑝𝑢𝑝𝑟 ,𝑙) =

𝛽

2

 𝐹𝑙 𝑝𝑙𝑤𝑟 ,𝑙 = 𝑃𝑟 𝑝𝑙 ≤ 𝑝𝑙𝑤𝑟 ,𝑙 =
𝛽

2

 (1.10)

We assume that for each process parameter 𝑝𝑙 , the function 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒 is either monotone

decreasing or monotone increasing. Without loss of generality, suppose that 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒 is

 (a) A simple combinational circuit diagram (b) Corresponding timing graph

Figure 1.6 Illustration of timing graph

 Section 1.2 Corner-based Timing Analysis

13

decreasing for each 𝑝𝑙 , then the maximum gate delay can be obtained with 𝑉𝑚𝑖𝑛 , 𝑇𝑚𝑎𝑥 and

𝑝𝑙𝑤𝑟 ,𝑙 , (𝑙 = 1, 2, … , 𝐿). In practice, the probability distribution 𝐹𝑙 of 𝑝𝑙 is assumed to be Gaussian,

denoted as 𝑝𝑙~𝑁 𝜇𝑝𝑙 , 𝜎𝑝𝑙
2 , and the parameters 𝜇𝑝𝑙 , 𝜎𝑝𝑙

2 of these distributions are estimated by

empirical data. In addition, 𝛽 is usually set to 0.003, which gives the worst process corners

𝑝𝑙𝑤𝑟 ,𝑙 = 𝜇𝑝𝑙 − 3 ∙ 𝜎𝑝𝑙 .

1.2.3 Estimation of circuit delay

From the discussion in Section 1.2.2, corners are set for the parameters 𝑃, 𝑉𝑑𝑑 , 𝑇 in Equa-

tion (1.1). 𝐶𝑜𝑢𝑡 is considered as a known constant, because the variations in 𝐶𝑜𝑢𝑡 are small

enough to be neglected. As regards 𝜏𝑖𝑛 , if 𝑃, 𝑉𝑑𝑑 , 𝑇 are at their worst corners, it will also reach its

worst corner value, guarantying the worst estimation of delay. Finally, we use lookup table and

bilinear interpolation [4] techniques to approximate the complicated function 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒 . A

lookup table is generated with the help of numerical results from circuit simulation. Typically, for

the worst combination 𝑉𝑚𝑖𝑛 , 𝑇𝑚𝑎𝑥 and 𝑝𝑙𝑤𝑟 ,𝑙 , (𝑙 = 1, 2, … , 𝐿), the function in Equation (1.1) is

reduced to a simple one depending only on 𝜏𝑖𝑛 and 𝐶𝑜𝑢𝑡 . Thus, for any logic gate, applying a

linear ramp signal of slope 𝜏𝑖𝑛 at one of the input pins and a capacitor of charge 𝐶𝑜𝑢𝑡 at the output

pin, the pin-to-pin worst gate delay is obtained by circuit simulation.

Having modeled gate delays with lookup tables, the next step is to estimate circuit-level delay

and verify the timing constraint. The corner-based model permits us to rewrite condition (1.9) as:

𝑃𝑟 𝑚𝑎𝑥
𝛾𝑖𝑛 ∈ℾ

∗
 𝑆𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛

 < 𝑇𝐶𝐿𝐾 ∩ 𝑚𝑖𝑛
𝛾𝑖𝑛 ∈ℾ

∗
 𝐻𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛

 > 0 ≥ 𝜃 (1.11)

where ℾ∗ = 𝛤𝐴𝑖 ,𝑍𝑗
𝐽
𝑗=1

𝐼
𝑖=1 is a subset of ℾ, which is the set of all possible input transitions

defined in Section 1.1.1. Combining Equations (1.5) – (1.6) with Equation (1.11), the

setup time and the hold time checks can be respectively translated into the computation of

𝑚𝑎𝑥𝛾𝑖𝑛 ∈ℾ∗ 𝑐𝑑𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
 and 𝑚𝑖𝑛𝛾𝑖𝑛 ∈ℾ∗ 𝑐𝑑𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛

 . For this purpose, we convert the timing graph

in Figure 1.6(b) into one that has a single source node 𝐼 and a single sink node 𝑂. This con-

verted timing graph is shown in Figure 1.7. After this slight modification, the timing verifica-

tion problem can be solved using Performance Evaluation and Review Technique (PERT) [5]

Chapter 1 Introduction

14

of operational research. As an example, for the setup time check, the arrival time 𝑡𝐺1
 of node 𝐺1

is given by:

𝑡𝐺1
= 𝑚𝑎𝑥 𝑡𝐴1

+ 𝑔𝑑𝐴1 ,𝐺1
, 𝑡𝐴2

+ 𝑔𝑑𝐴2 ,𝐺1
 (1.12)

Here 𝑔𝑑𝐴1 ,𝐺1
 and 𝑔𝑑𝐴2 ,𝐺1

 represent the pin-to-pin gate delays. If we apply iteratively Equation

(1.12) for each node in the graph, the maximum circuit delay can be easily computed.

1.3 On the Need of Statistical Static Timing Analysis

CTA assumes that all physical and environmental parameters are at their worst or best conditions

simultaneously. From the point of view of probability theory, this conservative case is next to

impossible to appear in reality. Consequently, such an assumption induces pessimism in delay

estimation, and thereby in circuit design. As the magnitude of process variations grows, this

pessimism increases significantly, leading to the understanding that traditional corner-based

design methodologies will not meet the needs of designers in the near future. Therefore, Statis-

tical Static Timing Analysis (SSTA), where process variations and timing characteristics are

considered as random variables, has gained favor in the past six years. By propagating delay

Figure 1.7 A PERT task graph

 Section 1.3 On the Need of Statistical Static Timing Analysis

15

probability distributions through a circuit instead of pessimistic delay quantities, we may arrive at

a much more accurate estimate of circuit delay.

1.3.1 Increasing pessimism of corner-based methods

As feature sizes continue to shrink, process variations 𝜎𝑝𝑙 are increasing relative to their means

𝜇𝑝𝑙 . Figure 1.8 shows the increase in the variability of key process parameters, such as oxide

thickness 𝑡𝑜𝑥 and transistor width 𝑊. As an example, the proportion of variations in gate-length

𝐿𝑒𝑓𝑓 to its corresponding mean has increased from 35% in a 130 nm technology to almost 60%

in a 65 nm technology. Besides, these increasing variations must be coupled with the fact that the

number of process parameters whose variability must be taken into account has exploded in the

past years. Due to these trends, some weaknesses of corner-based methods are becoming obvious.

Figure 1.8 Variability trends in key process parameters with shrinking feature sizes [6]

Chapter 1 Introduction

16

To illustrate the weakness of replacing random process variations with corners, we consider a

simplified case where the propagation delay 𝑔𝑑 of an inverter is a sum function of all the process

parameters:

𝑔𝑑 = 𝑝𝑙

𝐿

𝑙=1

 (1.13)

Here, 𝑝𝑙 , (𝑙 = 1,2, … , 𝐿) are assumed Gaussian distributed with mean 𝜇𝑝𝑙 and variance 𝜎𝑝𝑙
2 . Be-

sides, for any 𝑙1 ≠ 𝑙2, we suppose the correlation 𝑐𝑜𝑟 𝑝𝑙1 , 𝑝𝑙2 = 0 and 𝜇𝑝𝑙1 = 𝜇𝑝𝑙2 , 𝜎𝑝𝑙1 = 𝜎𝑝𝑙2 .

Note that 𝑝𝑙1 , 𝑝𝑙2 are two different parameters of the same gate while 𝑝𝑙,𝑘 , 𝑝𝑙,𝑚 (𝑘 ≠ 𝑚) indicate

parameters of the same type for two different gates.

Then the probability distribution of gate delay 𝑔𝑑~𝑁 𝜇𝑔𝑑 , 𝜎𝑔𝑑
2 is computed by:

 𝜇𝑔𝑑 = 𝜇𝑝𝑙

𝐿

𝑙=1

= 𝐿 ∙ 𝜇𝑝1

 𝜎𝑔𝑑 = 𝜎𝑝𝑙
2

𝐿

𝑙=1

= 𝐿 ∙ 𝜎𝑝1

 (1.14)

The worst gate delay 𝑤𝑔𝑑 is computed by CTA as:

𝑤𝑔𝑑 = 𝜇𝑝𝑙 + 3 ∙ 𝜎𝑝𝑙

𝐿

𝑙=1

= 𝐿 ∙ 𝜇𝑝1
+ 3𝐿 ∙ 𝜎𝑝1

 (1.15)

Comparing the worst gate delay 𝑤𝑔𝑑 and the statistical 3𝜎 corner of gate delay yields:

𝜔 =
𝑤𝑔𝑑 − 𝜇𝑔𝑑 + 3 ∙ 𝜎𝑔𝑑

𝜇𝑔𝑑
=

3 𝐿 − 𝐿 ∙ 𝜎𝑝1

𝐿 ∙ 𝜇𝑝1

= 3 1 − 𝐿−0.5 ∙
𝜎𝑝1

𝜇𝑝1

 (1.16)

If 𝐿 = 3 and 𝜎𝑝1
𝜇𝑝1
 = 0.15, then the normalized rate 𝜔 is about 0.2, indicating that the overes-

timate of worst gate delay is 20% of the delay mean. As shown in Figure 1.8, for any 𝑝𝑙 , the

ratio 𝜎𝑝𝑙 𝜇𝑝𝑙 increases with each generation of technology, which results in the increase of the

rate 𝜔.

 Section 1.3 On the Need of Statistical Static Timing Analysis

17

Note also that the pessimism of 𝑤𝑔𝑑 becomes more serious if the number of process parameters 𝐿

is larger. This is the case in reality. As an example, the BSIM v3 model has about 𝐿 = 50 random

process parameters, whereas the v4 version needs 𝐿 = 80 parameters or so [7]. If 𝜔𝑣3 and 𝜔𝑣4

represent the rates of these two BSIM models and have the same ratio 𝜎𝑝1
𝜇𝑝1
 , then according to

Equation (1.16), we have 𝜔𝑣4 − 𝜔𝑣3 𝜔𝑣3 ≈ 0.03, which means that the pessimism will

increase 3% if the inverter above is modeled by the BSIM v4 instead of the v3 version. Mathe-

matically, according to Equations (1.14) – (1.15), we have:

lim
𝐿→+∞

𝑃𝑟 𝑔𝑑 > 𝑤𝑔𝑑 = lim
𝐿→+∞

𝑃𝑟 𝑔𝑑 > 𝜇𝑔𝑑 + 3 𝐿 ∙ 𝜎𝑔𝑑 = 0 (1.17)

which implies that the probability of gate delay exceeding the worst delay converges to zero if

the number of parameters 𝐿 increases. In other words, 𝑤𝑔𝑑 is too pessimistic.

Another weakness of CTA comes from gate-to-gate delay correlation. To see this more clearly,

set the number of process parameters to 𝐿 = 1, and combine Equation (1.14) with (1.15):

𝑤𝑔𝑑 = 𝜇𝑝1
+ 3 ∙ 𝜎𝑝1

= 𝜇𝑔𝑑 + 3 ∙ 𝜎𝑔𝑑 (1.18)

Then a path with 𝐾 gates has the worst path delay 𝑤𝑝𝑑 given by:

𝑤𝑝𝑑 = 𝑤𝑔𝑑𝑘

𝐾

𝑘=1

= 𝜇𝑔𝑑𝑘 + 3 ∙ 𝜎𝑔𝑑𝑘

𝐾

𝑘=1

= 𝜇𝑔𝑑𝑘

𝐾

𝑘=1

+ 3 ∙ 1 ∙ 𝜎𝑔𝑑𝑘𝜎𝑔𝑑𝑚

𝐾

𝑚=1

𝐾

𝑘=1

 (1.19)

As well, we estimate the statistical 3𝜎 corner of path delay by:

𝜇𝑝𝑑 + 3 ∙ 𝜎𝑝𝑑 = 𝜇𝑔𝑑𝑘

𝐾

𝑘=1

+ 3 ∙ 𝜌𝑘𝑚 ∙ 𝜎𝑔𝑑𝑘𝜎𝑔𝑑𝑚

𝐾

𝑚=1

𝐾

𝑘=1

 (1.20)

where 𝑝𝑑 is the path delay following the Gaussian distribution 𝑝𝑑~𝑁 𝜇𝑝𝑑 , 𝜎𝑝𝑑
2 and 𝜌𝑘𝑚 is the

correlation between 𝑔𝑑𝑘 and 𝑔𝑑𝑚 , i.e. 𝜌𝑘𝑚 = 𝑐𝑜𝑟 𝑔𝑑𝑘 , 𝑔𝑑𝑚 . Comparing Equation (1.19)

with (1.20), we can find that the value “1” in Equation (1.19) corresponds to the gate-to-gate

delay correlation 𝜌𝑘𝑚 in Equation (1.20). As we know 𝜌𝑘𝑚 ∈ −1,1 , 𝑤𝑝𝑑 is therefore over-

estimating by setting the correlation 𝑐𝑜𝑟 𝑔𝑑𝑘 , 𝑔𝑑𝑚 to its maximal value “1”. Similarly, the

Chapter 1 Introduction

18

circuit-level correlation or the path-to-path delay correlation, especially those in Equations

(1.5) – (1.6), (1.9) are also estimated conservatively, either by “1” or “−1”.

From the discussion above, the pessimism of CTA results becomes more problematic when:

a) the ratio of process variations to their nominal values is higher;

b) the number of process parameters 𝐿 is larger;

c) the true correlation between delays is not close to either “1” or “−1”.

1.3.2 SSTA moving from interesting to necessary

When process variations were relatively small compared to supply voltage and temperature varia-

tions, working with corners produced acceptable outcomes. However, the increasing variability in

the manufacturing process and the ever tighter timing constraints lead to more and more efforts

when designing circuit with corner-based methodologies.

Figure 1.9 illustrates the increasing pessimism of CTA and the tightening timing constraints.

As shown in this figure, if the feature size decreases from 130 nm to 65 nm, i.e. nominal values

of process parameters decrease, then the propagation delay will reach a lower level, which allows

us to design ICs with tighter timing constraints (smaller clock periods 𝑇𝐶𝐿𝐾2
< 𝑇𝐶𝐿𝐾1

). At the

same time, as discussed in Section 1.3.1, the results of CTA at 65 nm are more pessimistic

than those at 130 nm. In Figure 1.9, 𝑤1, 𝑤2 denote the worst delays, and the statistical 3𝜎

corner of delay distributions are:

𝑠𝑖 = 𝜇𝑖 + 3𝜎𝑖 (𝑖 = 1, 2) (1.21)

where 𝜇𝑖 and 𝜎𝑖 are the corresponding delay mean and standard deviation. Then, the increasing

pessimism leads to:

𝑤2 − 𝑠2 > 𝑤1 − 𝑠1 (1.22)

In consequence, the timing margin, defined as 𝑇𝐶𝐿𝐾 − 𝑤, gets smaller with each generation of

technology. It is predicted that, in the near future, worst delays estimated by CTA could not be

bounded by defined clock periods, i.e. we could not design an IC to satisfy the timing con-

straints using corner-based CAD tools. Such an outlook has resulted in a rapid development of

SSTA in recent years.

 Section 1.3 On the Need of Statistical Static Timing Analysis

19

There is no doubt that SSTA is a leading-edge technology. As the new promising generation of

timing analysis, SSTA attacks the limitations of CTA by modeling process variations with

probability distributions. Even though the accuracy of SSTA approaches is not fully clear yet,

some statistical CAD tools have appeared and are already being used in the industry.

The authors of [2] believe that designs at 90 nm can benefit from the application of SSTA. But

many industry experts feel that SSTA will not see widespread adoption until the 45 nm node

becomes prevalent. [1] argues that SSTA is just about a must at 45nm, and definitely necessary at

32nm. To date, most designers see traditional CTA and SSTA as complementary.

Figure 1.9 Increasing pessimism of CTA and tightening timing constraints

Chapter 1 Introduction

20

Traditional CTA required over a decade to move from academic proposal to broad industry adop-

tion. As well, algorithms for IC design based on statistical descriptions of process variations will

probably take a decade to achieve meaningful industrial usage. It remains to be seen how long the

process of widespread industrial adoption will take for SSTA. In addition to research on

improved and enhanced SSTA, researchers are increasingly turning their attention to optimization

of circuit design with the help of statistical techniques.

1.4 Outline of the Thesis

The previous sections give answers to the following three questions: What is the role of timing

analysis in the IC design flow? What is CTA? Why SSTA is becoming necessary?

Chapter 2 focuses on the present state of SSTA, including: the classification of SSTA

methods, an overview of existing statistical timing techniques and their weaknesses, and the

outlook of SSTA.

In Chapter 3, we introduce our path-based SSTA framework. With the help of conditional

moments, the proposed SSTA engine computes path delays by propagating iteratively mean and

variance of gate delay, which allows taking into account effects of input slope and output load.

Moreover, we propose a technique to estimate cell-to-cell delay correlation. This chapter closes

with a validation and a discussion of the framework.

In Chapter 4, we improve the conventional method of doing timing characterization, which is

a step to collect data to feed the SSTA engine. The improvements include a Log-Logistic distri-

bution based input signal and a technique to capture output load variations. Another concerning

problem – acceleration of characterization, is addressed in this chapter as well.

In Chapter 5, we apply the SSTA framework and compare its results with those of CTA. First,

some comparisons are given to show the gain of SSTA. Next, the discrepancy between orderings

of critical paths obtained respectively by SSTA and by CTA is interpreted. Finally, we study the

factors that affect cell-to-cell delay correlation for optimization of circuit design.

Finally, Chapter 6 gives the conclusions and future work.

21

Chapter

2

SSTA: State of the Art

This chapter provides an overview of the current state of Statistical Static Timing Analysis

(SSTA). Most of existing SSTA can be classified into parametric and Monte Carlo methods.

Section 2.1 summarizes these two categories of methods, and compares their advantages and

disadvantages. In Section 2.2, some widely adopted models and techniques are presented. In

Section 2.3, we discuss the common weaknesses of existing techniques and the outlook for

SSTA.

Chapter 2 SSTA: State of the Art

22

n recent years, the ever increasing variations of process parameters have raised concerns over

the ability of Corners-based Timing Analysis (CTA) to accurately estimate circuit perfor-

mance. It is now common belief that traditional deterministic Computer-Aided-Design (CAD)

tools will not meet the needs of circuit designers in the future. As a result, Statistical Static

Timing Analysis (SSTA), which is considered as a promising alternative, has developed greatly.

Many companies now feel that the levels of variability are so high that the day of statistical CAD

has arrived.

2.1 Review of SSTA

Some of the initial research works of SSTA date back to the introduction of timing analysis in the

1960s [8] as well as the early 1990s [9], [10]. However, the vast majority of research works on

SSTA date from 2001, with thousands of papers published in this field in the last six years.

Most of the existing SSTA methods can be classified into two categories: parametric and Monte

Carlo methods. Parametric methods [10] – [23] model process variations with random variables,

and translate these variations to gate delays and arrival times through approximating polynomial

models. These methods typically propagate arrival times through the timing graph by performing

SUM and MAX/MIN operations. In contrast, Monte Carlo methods [24] – [27] employ compli-

cated electrical models, fed by random inputs, to accurately reflect timing behaviors. This is

feasible because circuit component behaviors obey to deterministic electrical laws whose parame-

ters follow probability distributions.

2.1.1 Parametric methods

According to the algorithm to explore timing graphs, the existing parametric methods fall into

one of the two categories shown in Figure 2.1: block-based algorithm [11] – [20] and path-

based algorithm [10], [21] – [23]. A block-based algorithm performs a topological PERT-like

(Performance Evaluation and Review Technique) traversal of the timing graph. Compared with

the CTA algorithm presented in Section 1.2.3, the only difference is that gate delays and

arrival times are replaced by statistical distributions instead of being deterministic quantities. The

I

Section 2.1 Review of SSTA

23

arrival time at each node is computed using two basic operations:

a) for all input edges of a particular node, the edge delay is convoluted (statistical SUM

operation) with the arrival time at the source node of the edge;

b) given these resulting arrival time distributions, the final arrival time distribution at the

node is estimated using approximated MAX operations.

The computation of the SUM operation is not difficult; however, finding the statistical MAX of

two correlated arrival times is not trivial.

The key advantage of a block-based SSTA method is that the runtime is linear with circuit size

[11] – [13]. Due to this competitive advantage, the block-based algorithm has been used in many

current researches. Furthermore, a block-based method lends itself to incremental analysis, which

is advantageous for optimization applications [13]. On the negative side, block-based methods

suffer from a lack of accuracy especially for the approximated MAX operation [28].

In a path-based algorithm, a set of paths, which are likely to become critical, is identified, and

the delay distribution of each path is computed by convoluting (i.e. summing) the delay distribu-

tions of all its edges. Finally, the circuit delay distribution is computed by performing a statistical

MAX operation over all the path delays.

The main advantage of this algorithm is that the analysis is split into two parts: the computation

of each path delay distribution followed by the statistical MAX operation over these distributions

[29]. Hence, much of the initial research in SSTA pertained to path-based algorithm. On the

Figure 2.1 Classifications of existing SSTA methods

Chapter 2 SSTA: State of the Art

24

negative side, the difficulty of the algorithm is in finding the above set of candidate paths so that

no path with significant probability of being critical is excluded [29].

These two parametric statistical timing algorithms differ in accuracy and computational cost [28].

The path-based algorithm is simple and relatively accurate while the block-based algorithm con-

siders the whole circuit and is of low computational cost. In Figure 2.2, we compare these two

algorithms using the timing graph shown in Figure 1.7. Figure 2.2(a) illustrates the necessary

levels to complete the topological traversal, and Figure 2.2(b) shows the five possible timing

paths.

It should be stated that the computational costs of parametric methods are far lower than those of

Monte Carlo methods discussed in the next section. This is the only, but decisive, advantage of

parametric methods. However, for broader adoption, the weaknesses of the current parametric

SSTA should be overcome. According to [29], the main drawback is that they are based on

models, where some of the timing and process variation effects are ignored or simplified, such as:

a) nonlinearity of gate delays as a function of the process parameters, input slope and output

load;

b) approximations of the MAX operation;

c) interdependency among input/output edges and gate delay;

d) assumptions about probability distributions of process variations;

e) gate-level delay and path-level delay correlations.

 (a) Levels (LVi) of the block-based algorithm (b) Set of paths (PHi) for the path-based algorithm

Figure 2.2 Illustration of SSTA algorithms

Section 2.2 Basic Statistical Models and Techniques

25

2.1.2 Monte Carlo methods

The Monte Carlo (MC) technique is the other important approach for SSTA. Given a model of

process variations, the classical MC-based method draws random samples in the process parame-

ter space, and addresses the timing verification problem with circuit simulation tools. The main

hurdle is the high computational cost. Thus, MC methods have been mostly relegated to a sup-

porting role as the “gold standard” for validating the accuracy of proposed parametric SSTA

methods.

However, MC techniques have recently attracted new attention as a candidate for a reliable and

accurate timing verification, because MC techniques can account for any complicated model if

one is willing to accept its excessive runtime costs. Moreover, the task of developing and inte-

grating MC techniques is easy, because the available CTA engines can mostly be reused in

developing new MC-based SSTA tools.

In recent works [25] – [27], the authors use techniques, such as importance sampling, Latin

hypercube sampling, to improve the performance of MC-based methods. However, more

research is required to examine if these sampling techniques are effective in the domain of timing

analysis.

2.2 Basic Statistical Models and Techniques

The majority of SSTA methods proposed in the last few years are based on parametric models.

Thus, in this section, we focus on these parametric models and related techniques. In general, a

parametric timing method, either block-based or path-based, contains the following three basic

steps:

a) process variations modeling;

b) gate-level performance modeling;

c) propagation techniques.

Chapter 2 SSTA: State of the Art

26

2.2.1 Process variations modeling

For the purpose of design analysis, it is beneficial to divide the process variations into two cate-

gories: inter-die and intra-die variation. Inter-die variation is the variation that occurs from die-

to-die and wafer-to-wafer. Intra-die variation is the component of variations that causes parame-

ters to vary across different locations within a single die. For example, the inter-die and intra-die

variation of inter-level dielectric thickness 𝑇𝐼𝐿𝐷 are illustrated in Figure 2.3. It is reasonable to

capture these two types of variations separately as:

𝑇𝐼𝐿𝐷 = 𝑇𝐼𝐿𝐷,𝑛𝑜𝑚 + ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑒𝑟 + ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑟𝑎 (2.1)

where 𝑇𝐼𝐿𝐷,𝑛𝑜𝑚 is the nominal value of ILD thickness, ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑒𝑟 is the variation due to inter-die

sources, and ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑟𝑎 is the intra-die variation.

(a) Inter-die variation (b) Intra-die variation

Figure 2.3 Variation in ILD thickness across the wafer and across the die [6]

 Section 2.2 Basic Statistical Models and Techniques

27

The simplest way to model process variations is to consider the intra-die variation as a random

variable ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑟𝑎 independent of the random variable ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑒𝑟 , so that for any two gates 𝑘1

and 𝑘2 in the same die, we have:

 ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑒𝑟 ,𝑘1
= ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑒𝑟 ,𝑘2

 𝑐𝑜𝑟 ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑟𝑎 ,𝑘1
, ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑟𝑎 ,𝑘2

 = 0

 (2.2)

According to Figure 2.3(b), the variation across the die shows a spatial trend. So a better solu-

tion is to divide further the intra-die variation into two components: spatially correlated compo-

nent and random component. Then Equation (2.1) can be rewritten as:

𝑇𝐼𝐿𝐷 = 𝑇𝐼𝐿𝐷,𝑛𝑜𝑚 + ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑒𝑟 + ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 + ∆𝑇𝐼𝐿𝐷,𝑟𝑎𝑛 (2.3)

The spatial component ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 in Equation (2.3) is a function of the location on the die.

Among the techniques to model spatial variation, the grid model [11] and the quad-tree model

[12] are usually quoted in papers on SSTA.

For the grid model [11], the die region is partitioned into 𝑁 squares, as shown in Figure 2.4,

each of which is associated with one spatially correlated random variable. This implies that the

spatial component is the same at any location on a given square. As gates close to each other are

more likely to have similar characteristics than those placed far away, it is reasonable to assume

high correlation among spatial components in close squares and low correlation in far-away

squares. In Figure 2.4, according to the locations of gates 𝑘1, 𝑘2, 𝑘3 , 𝑘4, we have:

 ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘1
= ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘2

 𝑐𝑜𝑟 ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘1
, ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘3

 ≈ 1

 𝑐𝑜𝑟 ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘1
, ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘4

 ≈ 0

 (2.4)

In addition, another assumption for the grid model is that spatial correlation exists only among

the same type of parameters in different squares and there is no spatial correlation between

different types of parameters. For example, 𝑇𝐼𝐿𝐷 are independent with other parameters such as

𝐿𝑒𝑓𝑓 or 𝑇𝑜𝑥 in any square.

Chapter 2 SSTA: State of the Art

28

For the quad-tree model, proposed in [12], the die area is divided into several regions using

quad-tree partitioning, where at level 𝑖, the die is partitioned into 2𝑖 × 2𝑖 , (𝑖 = 0, 1, 2, …) squares.

All of the squares of the tree are associated with an independent random variable. A three-level

tree is illustrated in Figure 2.5.

For the process parameter 𝑇𝐼𝐿𝐷 , an independent random variable ∆𝑇𝐼𝐿𝐷,𝑖,𝑗 is associated with the

variation in square 𝑗 at level 𝑖. For example, in Figure 2.5, the spatial variation in 𝑇𝐼𝐿𝐷 of gate

𝑘1, 𝑘2 is express as follows:

 ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘1
= ∆𝑇𝐼𝐿𝐷,0,1 + ∆𝑇𝐼𝐿𝐷,1,1 + ∆𝑇𝐼𝐿𝐷,2,1

 ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘2

= ∆𝑇𝐼𝐿𝐷,0,1 + ∆𝑇𝐼𝐿𝐷,1,4 + ∆𝑇𝐼𝐿𝐷,2,11

 (2.5)

In Equation (2.5), the occurrence of the same random variable ∆𝑇𝐼𝐿𝐷,0,1 in both formulas

models the spatial correlation between ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘1
 and ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘2

.

Figure 2.4 An example of the grid model

 Section 2.2 Basic Statistical Models and Techniques

29

2.2.2 Gate-level performance modeling

Unlike CTA that approximates the function 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒 in Equation (1.1) with lookup tables

and the bilinear interpolation technique, parametric SSTA models gate delay with polynomials

derived from Taylor expansion. Most of the parametric models make the assumptions that:

a) 𝑉, 𝑇 and 𝜏𝑖𝑛 are at their corresponding corners;

b) 𝐶𝑜𝑢𝑡 is a constant;

c) probability distribution 𝐹𝑙 of 𝑝𝑙 , (𝑙 = 1, 2, … , 𝐿) is known.

Figure 2.5 An example of the quad-tree model

Chapter 2 SSTA: State of the Art

30

Then, the function 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒 can be approximated using the first or second order Taylor

expansion:

𝑔𝑑 ≈ 𝑔𝑑𝑛𝑜𝑚 + 𝑎𝑙 ∙ ∆𝑝𝑙

𝐿

𝑙=1

 (2.6)

𝑔𝑑 ≈ 𝑔𝑑𝑛𝑜𝑚 + 𝑎𝑙 ∙ ∆𝑝𝑙

𝐿

𝑙=1

+ 𝑏𝑙 ∙ ∆𝑝𝑙
2

𝐿

𝑙=1

+ 𝑐𝑙1𝑙2 ∙ ∆𝑝𝑙1∆𝑝𝑙2

𝐿

∀𝑙1≠𝑙2

 (2.7)

where 𝑔𝑑𝑛𝑜𝑚 is the nominal value of 𝑑; 𝑎𝑙 and 𝑏𝑙 are the first and the second order sensitivities

of 𝑔𝑑 to ∆𝑝𝑙 , respectively; and 𝑐𝑙1𝑙2 are the sensitivity to the joint variation of ∆𝑝𝑙1 and ∆𝑝𝑙2 .

When all ∆𝑝𝑙 are assumed to be Gaussian random variables, Equation (2.6) is called the

canonical model, and has been widely used for SSTA [11] – [13]; whereas Equation (2.7) is

called the quadratic model, and has been studied in [14] – [16], [19] – [20]. However, these

parametric models based on Gaussian assumptions are limited in their modeling capability

because not all process variations follow the Gaussian distribution. Therefore, [17] – [18] extend

the work by adding non-Gaussian terms to Equation (2.6).

2.2.3 Propagation techniques

After the gate-level performances of all circuit components have been modeled, circuit delay

needs to be determined. Essential operations are the SUM and the MAX of random variables. The

gate-to-gate delay correlation, which is difficult to estimate, needs to be considered for these

operations. In addition, the statistical MAX operation is computationally expensive to be deter-

mined exactly, which is one of the most challenging problems in the domain of SSTA.

In the SUM operation, if both 𝑋 and 𝑌 are random variables, then 𝑍 = 𝑋 + 𝑌 will also be a

random variable whose mean and variance can be found as:

 𝜇𝑍 = 𝜇𝑋 + 𝜇𝑌

 𝜍𝑍
2 = 𝜍𝑋

2 + 𝜍𝑌
2 + 𝜌𝑋𝑌 ∙ 𝜍𝑋𝜍𝑌

 (2.8)

where 𝜌𝑋𝑌 is the correlation between 𝑋 and 𝑌.

Section 2.3 Challenges for SSTA

31

As the MAX operation is nonlinear, 𝑊 = 𝑚𝑎𝑥 𝑋, 𝑌 is not a Gaussian random variable even

when both 𝑋 and 𝑌 are Gaussians and independent. In [30], the author proposes a moment match-

ing approach to approximate the distribution of 𝑊 with that of a Gaussian random variable 𝑊 .

Define 𝑉 = 𝑋 − 𝑌 and the following standard Gaussian Probability Density Function (PDF) and

Cumulative Distribution Function (CDF):

 𝜑 𝑥 =

1

 2𝜋
∙ 𝑒

−𝑥2

2

 𝛷 𝑥 = 𝜑 𝑢 𝑑𝑢
𝑥

−∞

 (2.9)

Then, 𝑊 is given by:

𝑊 = 𝛷
𝜇𝑉
𝜍𝑉
 ∙ 𝑋 + 1 − 𝛷

𝜇𝑉
𝜍𝑉
 ∙ 𝑌 + 𝜑

𝜇𝑉
𝜍𝑉
 ∙ 𝜍𝑉 (2.10)

where

 𝜇𝑉 = 𝜇𝑋 − 𝜇𝑌

 𝜍𝑉 = 𝜍𝑋
2 + 𝜍𝑌

2 − 𝜌𝑋𝑌 ∙ 𝜍𝑋𝜍𝑌
1 2

 (2.11)

2.3 Challenges for SSTA

Although SSTA has made significant progresses in the past six years, it is still in the neonatal

state and much work needs to be done to improve it. To date, most SSTA researchers have main-

ly focused on the basic SSTA techniques – the SUM and MAX operations required for the

propagation of arrival times from the source node to the sink node of the timing graph. For wider

adoption of SSTA, its capabilities must be extended to match the current state of CTA, such as a

corresponding SSTA design flow including statistics-based optimization. For this reason, this

section presents not only the weaknesses to overcome, but also the outlook of SSTA.

Chapter 2 SSTA: State of the Art

32

2.3.1 Weaknesses of existing models and techniques

There are many sources of weaknesses in the existing parametric SSTA techniques and most of

them derive from the model used for the analysis. Some of the common sources can be classified

into the following categories:

 Unsatisfying models of process variations

Most of the initial work in SSTA assumed Gaussian distributions for process parameters.

Actually, some of them follow significantly non-Gaussian distributions. For example, via

resistances exhibit an asymmetric probability distribution [17], and the dopant concentra-

tion density seems to be well modeled by a Poisson distribution [18]. Thus, under the

Gaussian assumption for all process parameters, the accuracy of timing analysis is not

guaranteed.

Another modeling problem is the correlation between process parameters. The models

presented in Section 2.2.1 are only suitable to capture variations of the same type of

parameter.

Besides, the availability of data to construct statistical process models remains scarce.

 Limitations of gate delay models

The majority of the existing parametric SSTA techniques are based on polynomial model

of timing performance. Many of these techniques consider only few process parameters,

like 𝑉𝑡𝑕 , 𝐿𝑒𝑓𝑓 , 𝑡𝑜𝑥 , and have reported high modeling accuracy. However, due to the

increase in process variability, parametric models with more parameters are expected to

be necessary to achieve the same accuracy [31].

In addition, the intrinsic nature of timing performance depending on process parameters is

complex and nonlinear. Consequently, linear models are not enough for acceptable

approximations. As for second order models, the cost of better accuracy is the much high-

er computational complexity. As an example, a quadratic expression with 30 uncorrelated

 Section 2.3 Challenges for SSTA

33

variables has over 400 terms if cross-terms are considered. Therefore, existing parametric

SSTA methods need to be revisited.

Apart from the tradeoff between accuracy and runtime, another common limitation of

existing parametric models, according to Equation (1.1), is that some effects, besides

those listed in Section 2.1.1, are ignored or simplified; to name a few:

a) the random variations in input slope and output load,

b) the time-dependent variations in supply voltage and temperature,

c) the effects of input pin on gate delay,

d) interdependency among input/output edges and gate delay.

 Inaccurate approximation of MAX operation

The linear approximation of MAX operation in Equations (2.10) – (2.11) is simple

and independent of parametric models, but its accuracy is not satisfying. Even if arrival

times are assumed to be Gaussian distributed, the MAX of them will be a non-Gaussian

distribution. The error of this approximation will be larger if the input arrival times have

similar means and dissimilar variances [30]. This case occurs when two converging paths

with similar nominal values have a different number of gates. A simple example is illu-

strated in Figure 2.6. Suppose two independent Gaussian random variables 𝑋 and 𝑌

have the same zero mean and different variances, i.e. 𝑋~𝑁 0, 𝜍𝑋
2 , 𝑌~𝑁 0, 𝜍𝑌

2 with

𝜍𝑋
2 ≠ 𝜍𝑌

2. The density of 𝑊 and 𝑊 are respectively, from Monte Carlo simulation and the

approximation in Equations (2.10) – (2.11), shown in Figure 2.6. The error of the

estimator 𝑊 is significant.

In addition, with non-Gaussian variations to gate-level performances found by the authors

of [14] – [18], the linear approximation is even worse. The new corresponding MAX

approximations in these papers are closely related to their proposed parametric models.

Hence, a model-independent MAX approximation that can operate on non-Gaussian ran-

dom variables is required.

Chapter 2 SSTA: State of the Art

34

In [32], timing performances are modeled with skew-normal distributions which embed

the Gaussian distribution to allow for non-zero skewness. Empirically, this technique

offers better accuracy than the linear approximation of MAX for a broad set of models.

However, the computational cost of such an approximation is high.

2.3.2 Outlook for SSTA

CTA has evolved over the last two decades and is able to handle a number of practical issues, like

crosstalk noise, power and ground noise, clock skew, etc. However, most SSTA researchers have,

to date, mainly focused on the basic statistical timing techniques: process models, gate-level

performance models, and approximations of MAX. For wider adoption of SSTA, these tech-

niques must be perfected to match the mature state of CTA.

Recently, a few methods have been proposed to address some of these issues in SSTA. The

authors in [33] propose a statistical gate-delay modeling technique that considers multiple input

switching. In [34], a probabilistic collocation-based method is presented to efficiently construct

Figure 2.6 Accuracy of the linear approximation of the MAX operation

Section 2.4 Summary

35

statistical gate-delay models. Finally, a statistical framework for modeling the effect of crosstalk-

induced coupling noise on timing was presented in [35].

In addition to crosstalk noise, SSTA of sequential circuits is another area that still requires

significant investigation. Several issues related to sequential timing, such as accurate modeling of

variations and dependences in the clock tree, clock skew analysis and clock schedule verification

for multiple clock domains, still need to be resolved. Recently, several research efforts have

focused on these issues [36] – [37].

Finally, for statistics-based optimization, efficient methods for slack computation are needed.

Some initial methods for slack computation in SSTA are given in [38] – [39]. Other topics, like

gate sizing and buffer insertion, are addressed in [40] – [42].

To summarize, SSTA must move beyond pure timing analysis to yield analysis and optimization

of circuit design to be truly useful for the designers. If the data from industry shows that SSTA-

based designs have substantially higher manufacturing yield than CTA-based designs, the wide

adoption of SSTA will be guaranteed.

2.4 Summary

MC-based SSTA methods are accurate, whereas parametric methods are of a very low computa-

tional cost. In general, a parametric method uses the first or second order Taylor approximation to

model gate delay based on a process variation model, like grid model and quad-tree model. Then,

circuit delays are computed by approximating the MAX operation with a linear function. These

models of process variations and gate delay, plus MAX approximations still have many weak-

nesses to overcome. SSTA is promising in nature, but a lot of work needs to be done for its wide

adoption.

Chapter 2 SSTA: State of the Art

36

37

Chapter

3

Path-based SSTA Framework

This chapter first describes the flow of the proposed SSTA framework. After the introduction of

conditional moments in Section 3.2, we focus on moments propagation in Section 3.3,

which is the key part of our SSTA engine. Section 3.4 shows how to compute path delay

distributions. Section 3.5 discusses the estimation of delay correlations. Finally, the valida-

tion and a discussion of this SSTA framework are given.

Chapter 3 Path-based SSTA Framework

38

onte Carlo (MC) methods are accurate, but suffer from their very high computational

cost. On the contrary, although the existing parametric methods of SSTA are efficient,

industry and researchers are doubtful of their accuracy because of diverse weaknesses and limita-

tions, as presented in Chapter 2. A good compromise would be a method that can make an

acceptable trade-off between accuracy and efficiency. In this chapter, we present our path-based

SSTA framework, which offers high efficiency while somewhat keeping the advantage of MC

methods. Such features are achieved by propagating iteratively means and variances of cell
1

delay with the help of conditional moments. These moments, conditioned on input slope and

output load, are pre-characterized by MC simulations, and organized as a tree of lookup tables,

called a statistical timing library. This characterization step is a one-time job, i.e. the high time-

cost simulation is only needed to build the statistical timing library. This creates a semi-MC

framework that allows us to:

a) avoid cell delay modeling errors;

b) take into account the effects on cell delay: input pin, output edge, input slope, and output

load;

c) deal with a large number of process parameters having any type of distribution.

3.1 Flow of the Path-based SSTA Framework

For ease of description, the SSTA flow is divided into four parts, as shown in Figure 3.1:

 Setup – construct a statistical timing library;

 Input – define environmental conditions and extract a set of candidate paths for a given

circuit design;

 SSTA engine – compute the circuit delay;

 Output – generate the statistical timing report.

Details about this flow are given in the rest of this section.

1
 A cell is either a gate or a flip-flop.

M

Section 3.1 Flow of the Path-based SSTA Framework

39

3.1.1 Setup

This initial step of the flow is to prepare a statistical timing library that feeds the SSTA engine.

Figure 3.1 indicates that the characterization of the library is done with a statistical process

model and the cell netlists under HPSICE [43], which provides the necessary data to construct the

library.

A cell netlist define the structure and the default characteristics of the cell. A statistical process

model describes process parameters with probability distributions, like Gaussian, Uniform or

Poisson. The parameters of these distributions are estimated by empirical data from existing IC.

Figure 3.1 Flow of our path-based SSTA framework

Chapter 3 Path-based SSTA Framework

40

In this thesis, the 130 nm and 65 nm statistical process models provided by ST Microelectronics
2
,

are described as follows:

a) For each process parameter 𝑝𝑙 , as in Section 2.2.1, we have:

𝑝𝑙 = 𝑝𝑛𝑜𝑚 ,𝑙 + ∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙 + ∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙 (3.1)

where 𝑙 = 1, 2, … 𝐿 ; 𝑝𝑛𝑜𝑚 ,𝑙 is the nominal value of 𝑝𝑙 ; the intra-die random variable

∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙 is independent of the inter-die random variable ∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙 . Note that most of the

process parameters only have the inter-die component because the intra-die variation is

small enough to be neglected.

b) The probability distributions of ∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙 and ∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙 are known.

c) For any 𝑙1 ≠ 𝑙2, (𝑙1, 𝑙2 = 1, 2, … 𝐿), 𝑝𝑙1 and 𝑝𝑙2 are independent.

d) For any two cells 𝑘1 and 𝑘2 in the same die, ∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙,𝑘1
 and ∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙,𝑘2

 are independent,

i.e. there is no spatial correlation.

Table 3.1 gives the information about the cell netlists and the statistical process models. In the

130 nm technology, all intra-die variations ∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙 , 𝑙 = 1, 2, … 𝐿 are neglected.

Knowing the distribution of each 𝑝𝑙 , we do MC simulation under various conditions and organize

the output data as a tree of lookup tables. In Figure 3.2, the statistical timing library has a tree

structure with levels: cell type, input/output (I/O) pin, I/O edge, temperature, supply voltage and

timing variables. The tree leaves are lookup tables, each of which contains an input slope index,

an output load index and moments conditioned on these indices.

2
 an Italian-French electronics and semiconductor manufacturer

Table 3.1 Information about the cell netlists and the statistical process models

technology cell netlists BSIM model

number of statistical

process parameters 𝐿

inter-die intra-die

130 nm CORE9GPLL v3 52 0

65 nm CORE65LPHVT v4 76 2

http://en.wikipedia.org/wiki/Italy
http://en.wikipedia.org/wiki/France
http://en.wikipedia.org/wiki/Electronics
http://en.wikipedia.org/wiki/Semiconductor

Section 3.1 Flow of the Path-based SSTA Framework

41

In Figure 3.3, a lookup table and the corresponding function that it approximates are given.

The input slope index 𝜏𝑖𝑛 = 𝜏1, 𝜏2, … , 𝜏9 and the output load index 𝐶𝑜𝑢𝑡 = 𝑐1, 𝑐2, … , 𝑐6 are chosen

according to:

 the upper and lower limits of 𝜏𝑖𝑛 and 𝐶𝑜𝑢𝑡 ,

 the sensitivities of conditional moments on 𝜏𝑖𝑛 and 𝐶𝑜𝑢𝑡 .

For any couple 𝜏𝑚 , 𝑐𝑛 , (𝑚 = 1, 2, … , 9) and (𝑛 = 1, 2, … , 6), the output slope mean 𝜇𝑚𝑛 con-

ditioned on 𝜏𝑚 and 𝑐𝑛 is estimated with data from simulations. Then for any point in the rectan-

gular region 𝜏1, 𝜏9 × 𝑐1, 𝑐6 , its conditional output slope mean is obtained using bilinear inter-

polation. The corresponding conditional variance is computed in a similar way.

Figure 3.2 Structure of the statistical timing library

Chapter 3 Path-based SSTA Framework

42

As discussed above, the library has taken into account all factors that affect cell delay, because:

a) Process variations are captured during simulation, and contained in conditional variances;

b) Cell type, input pin, output edge, temperature and supply voltage are tree levels;

c) Input slope and output load are indices of lookup tables.

3.1.2 Input

The input for the SSTA engine includes environmental conditions and path netlists. Environmen-

tal conditions are temperature and supply voltage. As mentioned in Section 1.1.3, the task of

modeling time-dependent environmental variations is difficult. Thus, the statistical timing library

only supports temperatures −45℃, 25℃, 125℃ and supply voltages 1.1𝑉, 1.2𝑉, 1.3𝑉.

Path netlists is the set of critical paths. In this thesis, given a circuit design, we first implement a

CTA, and then collect the top 𝑁 paths in decreasing order of path delay [44]. This work of path

collection is done using RTL Compiler [45]. Obviously, the accuracy of the SSTA engine will

improve if the number of paths 𝑁 increases. However, considering computational cost, we need

Figure 3.3 Illustration of approximating a complicated function with a lookup table

Section 3.1 Flow of the Path-based SSTA Framework

43

to determine 𝑁 carefully. Besides, even though 𝑁 has been well chosen, different subsets of all

possible paths could lead to significantly different results. Consequently, the efficient generation

of a set of candidate paths in a circuit is central to path-based methods.

3.1.3 SSTA engine

Figure 3.4 shows the procedure of the SSTA engine. Given a set of 𝑁 paths, the engine com-

putes the path delay distributions one by one. Then, the circuit delay 𝑐𝑑 is computed by:

𝑐𝑑 = 𝑚𝑎𝑥 𝑝𝑑1, 𝑝𝑑2, … , 𝑝𝑑𝑁 (3.2)

Assuming that path delays are Gaussian distributed, the distribution of 𝑐𝑑 is computed using the

algorithms in [46], which is based on the linear approximation of MAX in Equations (2.10) –

(2.11). We know that path delay is obtained by summing all delays of cells on a path. Hence,

even if cell delays are not Gaussians, it is still reasonable to set Gaussian distributions to path

delays as a first approximation, because a sum of independent random variables rapidly con-

verges (for most practical correlation structures involved in circuit delay computation) to a

Gaussian random variable due to the central limit theorem [47].

As for cell-level delays, we make no assumption on their distributions, and just propagate means

and variances. For cell 𝑘, cell type, I/O pin, I/O edge, temperature 𝑇, supply voltage 𝑉𝑑𝑑 and

output load 𝐶𝑜𝑢𝑡 ,𝑘 are known from the procedure of path collection; input slope of a cell is the

output slope of the previous cell, i.e. 𝜇𝜏𝑖𝑛 ,𝑘
= 𝜇𝜏𝑜𝑢𝑡 ,𝑘−1

 and 𝜎𝜏𝑖𝑛 ,𝑘

2 = 𝜎𝜏𝑜𝑢𝑡 ,𝑘−1
2 . Then, the moments

𝜇𝑔𝑑𝑘 , 𝜎𝑔𝑑𝑘
2 , 𝜇𝜏𝑜𝑢𝑡 ,𝑘

, 𝜎𝜏𝑜𝑢𝑡 ,𝑘
2 are computed with the help of lookup tables and bilinear interpolation.

3.1.4 Output

A statistical timing report includes the information as follows:

a) cell-level results: cell delay means and variances, cell-to-cell delay correlation;

b) path-level results: path delay distributions, path-to-path delay correlation;

c) circuit-level results: circuit delay distribution.

Chapter 3 Path-based SSTA Framework

44

Figure 3.4 Procedure of the SSTA engine

Section 3.2 Conditional Moments

45

3.2 Conditional Moments

The mean and variance of a random variable 𝑋, if they exist, are respectively denoted as 𝐸 𝑋

and 𝑉𝑎𝑟 𝑋 , where 𝑉𝑎𝑟 𝑋 = 𝐸 𝑋2 − 𝐸2 𝑋 . They are also called moments of 𝑋.

A conditional moment is the moment of one random variable conditioned on the value of another

random variable. If 𝑋 and 𝑌 are two random variables, then the conditional mean 𝐸(𝑋|𝑌 = 𝑦) is

the mean of 𝑋 given the value 𝑌 = 𝑦. In our case, 𝑋 is continuous while 𝑌 can be either discrete

or continuous. Given the Probability Density Function (PDF) of 𝑋 conditioned on 𝑌 = 𝑦 ,

denoted as 𝑓 𝑥 𝑦 , we define:

𝐸 𝑋 𝑌 = 𝑦 = 𝑥 ∙ 𝑓 𝑥 𝑦 𝑑𝑥
∞

−∞

 (3.3)

Unlike the conventional mean 𝐸 𝑋 , which is a constant for a specific probability distribution,

𝐸(𝑋|𝑌 = 𝑦) is a function of 𝑦, that is to say, the conditional mean varies along with the value

taken by 𝑌.

Similarly, the conditional variance 𝑉𝑎𝑟(𝑋|𝑌 = 𝑦) is the variance of 𝑋 given the value 𝑌 = 𝑦,

defined by:

𝑉𝑎𝑟 𝑋 𝑌 = 𝑦 = 𝐸 𝑋2 𝑌 = 𝑦 − 𝐸2 𝑋 𝑌 = 𝑦 (3.4)

With these definitions of conditional moments, the mean and the variance of 𝑋 can be decom-

posed as:

 𝜇𝑋 = 𝐸 𝑋 = 𝐸 𝐸(𝑋|𝑌 = 𝑦)

 𝜎𝑋

2 = 𝑉𝑎𝑟 𝑋 = 𝐸 𝑉𝑎𝑟 𝑋 𝑌 = 𝑦 + 𝑉𝑎𝑟 𝐸 𝑋 𝑌 = 𝑦

 (3.5)

The proofs of these two decompositions are given in [48]. Next, from Equation (3.5), we

derive two groups of equations adapted to the cases where 𝑌 follows respectively a discrete and

continuous distribution.

Chapter 3 Path-based SSTA Framework

46

If 𝑌 follows a discrete probability distribution:

 𝑃𝑟 𝑌 = 𝑦𝑖 = 𝛼𝑖 > 0 𝑖 = 1,… , 𝐼

 𝛼𝑖

𝐼

𝑖=1

= 1

 (3.6)

then we have:

 𝜇𝑋 = 𝛼𝑖 ∙ 𝐸 𝑋 𝑌 = 𝑦𝑖)

𝐼

𝑖=1

 𝜎𝑋
2 = 𝛼𝑖 ∙ 𝑉𝑎𝑟 𝑋 𝑌 = 𝑦𝑖) + 𝐸 𝑋 𝑌 = 𝑦𝑖) − 𝐸(𝑋) 2

𝐼

𝑖=1

 (3.7)

Here is a concrete illustration of these two decompositions. Suppose that 𝑋 follows a continuous

distribution with PDF 𝑓 𝑥 and 𝑌 follows the discrete distribution in Equation (3.6). In addi-

tion, suppose there exists some dependency between 𝑋 and 𝑌. We draw a sample of 𝑋, 𝑌 from

their joint distribution and divide it into 𝐼 groups, each of which has the same value 𝑦𝑖 , (𝑖 =

1, … , 𝐼) . In this case, 𝐸 𝑋 𝑌 = 𝑦𝑖) and 𝑉𝑎𝑟 𝑋 𝑌 = 𝑦𝑖) represent respectively the mean and

variance of 𝑋 in group 𝑦𝑖 . Then, 𝐸 𝑋 is the sum of all 𝐸 𝑋 𝑌 = 𝑦𝑖) weighted by 𝛼𝑖 . As

for 𝑉𝑎𝑟 𝑋 , it consists of two parts: variance between groups 𝐸 𝑋 𝑌 = 𝑦𝑖) − 𝐸(𝑋) 2 and

variance within group 𝑉𝑎𝑟 𝑋 𝑌 = 𝑦𝑖). In other words, total variance can be explained by the sum

of inter-variance and intra-variance both weighted by 𝛼𝑖 .

On the other hand, if Y follows a continuous distribution with PDF 𝑓(𝑦), then we have:

 𝜇𝑋 = 𝐸(𝑋|𝑌 = 𝑦) ∙ 𝑓(𝑦)𝑑𝑦

 𝜎𝑋
2 = 𝑉𝑎𝑟 𝑋 𝑌 = 𝑦 + 𝐸(𝑋|𝑌 = 𝑦) − 𝜇𝑋

2 ∙ 𝑓(𝑦)𝑑𝑦

 (3.8)

Equations (3.7) – (3.8) give an alternative to compute the mean and variance of 𝑋 if these

two moments cannot be obtained directly with traditional methods. These equations require some

dependency between 𝑋 and 𝑌 , which allows implementing the idea of moments propagation.

Section 3.3 Moments Propagation

47

3.3 Moments Propagation

This section presents the technique to propagate moments of timing variables iteratively along a

timing path. We assume that all timing variables follow continuous distributions.

Let us define the problem of moments propagation. Suppose the context is known, including: cell

type, I/O pin, I/O edge, supply voltage, temperature, and output load. Then, for the considered

cell, given the moments 𝜇𝜏𝑖𝑛 , 𝜎𝜏𝑖𝑛
2 of input slope, we seek to get the output slope moments

𝜇𝜏𝑜𝑢𝑡 , 𝜎𝜏𝑜𝑢𝑡
2 and the cell delay moments 𝜇𝑔𝑑 , 𝜎𝑔𝑑

2 .

Figure 3.5 illustrates the procedure of propagation. Knowing 𝜇𝜏𝑖𝑛 ,1
 and 𝜎𝜏𝑖𝑛 ,1

2 , we look up the

statistical timing library according to the context, and do bilinear interpolations for moments of

output slope and cell delay conditioned on input slope and output load, i.e. 𝐸(𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 ,1, 𝐶𝑜𝑢𝑡 ,1),

𝑉𝑎𝑟(𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 ,1, 𝐶𝑜𝑢𝑡 ,1), 𝐸(𝑔𝑑1|𝜏𝑖𝑛 ,1, 𝐶𝑜𝑢𝑡 ,1), and 𝑉𝑎𝑟(𝑔𝑑1|𝜏𝑖𝑛 ,1, 𝐶𝑜𝑢𝑡 ,1). After that, 𝜇𝜏𝑜𝑢𝑡 ,1
, 𝜎𝜏𝑜𝑢𝑡 ,1

2 ,

𝜇𝑔𝑑1
 and 𝜎𝑔𝑑1

2 are computed by equations presented later. Lookup, interpolate and compute, these

three steps are repeated for the second cell by taking 𝜇𝜏𝑖𝑛 ,2
= 𝜇𝜏𝑜𝑢𝑡 ,1

 and 𝜎𝜏𝑖𝑛 ,2

2 = 𝜎𝜏𝑜𝑢𝑡 ,1
2 .

Figure 3.5 Illustration of moments propagation

Chapter 3 Path-based SSTA Framework

48

Note that only the moments of timing variables instead of distributions are known. For example,

cell delay may follow any continuous distribution defined with two parameters on condition that

its mean and variance exist, like Uniform, Gaussian, etc. In addition, the output load of any cell

takes its nominal value, because its variation has been captured during timing characterization.

3.3.1 Interpolation

In Figure 3.3, the lookup table only provides conditional means 𝜇𝑚𝑛 of 𝜏𝑜𝑢𝑡 for some finite

number of 𝜏𝑖𝑛 and 𝐶𝑜𝑢𝑡 , where 𝜇𝑚𝑛 = 𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 = 𝜏𝑚 , 𝐶𝑜𝑢𝑡 = 𝑐𝑛 . However, the function to

approximate is continuous. In this case, a simple solution is the bilinear interpolation technique,

which is an extension of linear interpolation for interpolating functions of two variables on

a regular grid. The idea is to perform linear interpolation first in one direction, and then again in

the other direction.

Figure 3.6 gives an example. For simplicity, we denote 𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 = 𝜏𝑚 , 𝐶𝑜𝑢𝑡 = 𝑐𝑛 as

𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑚 , 𝑐𝑛 . Suppose 𝜏𝑖𝑛 = 𝜏 ∈ 𝜏6, 𝜏7 and 𝐶𝑜𝑢𝑡 = 𝑐 ∈ 𝑐2, 𝑐3 , we first interpolate in the

direction of 𝐶𝑜𝑢𝑡 , and then in the direction of 𝜏𝑖𝑛 :

 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 ≈
𝑐3 − 𝑐

𝑐3 − 𝑐2
∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐2 +

𝑐 − 𝑐2

𝑐3 − 𝑐2
∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐3

 𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 ≈
𝑐3 − 𝑐

𝑐3 − 𝑐2
∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐2 +

𝑐 − 𝑐2

𝑐3 − 𝑐2
∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐3

 (3.9)

𝐸 𝜏𝑜𝑢𝑡 |𝜏, 𝑐 ≈
𝜏7 − 𝜏

𝜏7 − 𝜏6
∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 +

𝜏 − 𝜏6

𝜏7 − 𝜏6
∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 (3.10)

With the lookup tables stored in statistical timing library, for any 𝜏 ∈ 𝜏1, 𝜏9 and 𝑐 ∈ 𝑐1, 𝑐6 , we

may get the following four conditional moments by bilinear interpolation: 𝐸 𝜏𝑜𝑢𝑡 |𝜏, 𝑐 ,

𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏, 𝑐 , 𝐸 𝑔𝑑|𝜏, 𝑐 and 𝑉𝑎𝑟 𝑔𝑑|𝜏, 𝑐 .

As mentioned above, output load 𝑐 of any cell is set to its nominal value whereas input slope 𝜏𝑖𝑛

is a random variable. Thus, in Sections 3.3.2 and 3.3.3, we only talk about the technique to

capture variations of 𝜏𝑖𝑛 .

http://en.wikipedia.org/wiki/Linear_interpolation
http://en.wikipedia.org/wiki/Interpolation
http://en.wikipedia.org/wiki/Regular_grid

Section 3.3 Moments Propagation

49

3.3.2 Discrete version

If 𝑋 and 𝑌 in Equation (3.7) represent respectively the output slope 𝜏𝑜𝑢𝑡 and the input slope

𝜏𝑖𝑛 of a cell, then to compute 𝜇𝜏𝑜𝑢𝑡 , 𝜎𝜏𝑜𝑢𝑡
2 , a discrete distribution of 𝜏𝑖𝑛 as in Equation (3.6) is

necessary. However, at the beginning of Section 3.3, all timing variables were assumed to

follow continuous distributions. Thus, to make use of Equation (3.7), we need to discretize the

distribution of input slope.

For the purpose of discretization, the type of probability distribution must be known to compute

the probability of each discrete point. Typically, we assume that all slopes are Gaussian distri-

buted, which is a common assumption in most of the initial works on SSTA [11] – [13], [22].

Note that this Gaussian assumption is not set to cell delays, which are not required to be discrete.

Figure 3.6 Illustration of bilinear interpolations

Chapter 3 Path-based SSTA Framework

50

To discretize 𝑁(𝜇𝜏𝑖𝑛 , 𝜎𝜏𝑖𝑛
2), we divide the interval 𝜇𝜏𝑖𝑛 − 3𝜎𝜏𝑖𝑛 , 𝜇𝜏𝑖𝑛 + 3𝜎𝜏𝑖𝑛

 into 𝐼 equidistant

parts: 𝑠0, 𝑠1 , 𝑠2, 𝑠3 , … , 𝑠𝐼−1, 𝑠𝐼 , where 𝐼 is an even integer, 𝑠0 = 𝜇𝜏𝑖𝑛 − 3𝜎𝜏𝑖𝑛 and

𝑠𝐼 = 𝜇𝜏𝑖𝑛 + 3𝜎𝜏𝑖𝑛 . Then the discrete distribution is determined by:

𝑦𝑖 =
𝑠𝑖−1 + 𝑠𝑖

2
 𝑖 = 1,… , 𝐼 (3.11)

𝛼𝑖 =

 𝑓 𝜏𝑖𝑛 𝑑𝜏𝑖𝑛

𝑠1

−∞

 𝑖 = 1

 𝑓 𝜏𝑖𝑛 𝑑𝜏𝑖𝑛

𝑠𝑖

𝑠𝑖−1

 𝑖 = 2, … , 𝐼 − 1

 𝑓 𝜏𝑖𝑛 𝑑𝜏𝑖𝑛

+∞

𝑠𝐼−1

 𝑖 = 𝐼

 (3.12)

where 𝑓 𝜏𝑖𝑛 is the Gaussian PDF of 𝜏𝑖𝑛 . An example of discretization is given in Figure 3.7.

After the discretization, we compute 𝜇𝜏𝑜𝑢𝑡 , 𝜎𝜏𝑜𝑢𝑡
2 , 𝜇𝑔𝑑 and 𝜎𝑔𝑑

2 by:

 𝜇𝜏𝑜𝑢𝑡 = 𝛼𝑖 ∙ 𝐸 𝜏𝑜𝑢𝑡 |𝑦𝑖 , 𝑐

𝐼

𝑖=1

 𝜎𝜏𝑜𝑢𝑡
2 = 𝛼𝑖 ∙ 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝑦𝑖 , 𝑐 + 𝐸 𝜏𝑜𝑢𝑡 |𝑦𝑖 , 𝑐 − 𝜇𝜏𝑜𝑢𝑡

2

𝐼

𝑖=1

 (3.13)

Figure 3.7 Discretization of 𝑁(𝜇𝜏𝑖𝑛 , 𝜎𝜏𝑖𝑛
2) setting 𝐼 = 6

Section 3.3 Moments Propagation

51

 𝜇𝑔𝑑 = 𝛼𝑖 ∙ 𝐸 𝑔𝑑|𝑦𝑖 , 𝑐

𝐼

𝑖=1

 𝜎𝑔𝑑
2 = 𝛼𝑖 ∙ 𝑉𝑎𝑟 𝑔𝑑|𝑦𝑖 , 𝑐 + 𝐸 𝑔𝑑|𝑦𝑖 , 𝑐 − 𝜇𝑔𝑑

2

𝐼

𝑖=1

 (3.14)

3.3.3 Continuous version

The discrete version in Equations (3.13) – (3.14) requires an additional Gaussian assumption

plus a step of discretization, which increases the CPU time. In this section, we present another

version derived from Equation (3.8), and compare these two versions of moments propagation.

As the discrete version, 𝑋 and 𝑌 in Equation (3.8) are replaced respectively by 𝜏𝑖𝑛 and 𝜏𝑜𝑢𝑡 .

Then, to compute the integrals, we suppose that in certain interval conditional moments

𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝑐 and 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝑐 depend linearly on 𝜏𝑖𝑛 , as:

 𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝑐 = 𝑏1 + 𝑏2 ∙ 𝜏𝑖𝑛

 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝑐 = 𝑏3 + 𝑏4 ∙ 𝜏𝑖𝑛

 (3.15)

where 𝑏1, 𝑏2, 𝑏3, 𝑏4 are values to be identified. The assumed relationships in Equation (3.15)

are reasonable, because the interpolation techniques presented in Section 3.3.1 are based on

the assumption that in any interval 𝜏𝑚 , 𝜏𝑚+1 conditional moments are linear in 𝜏𝑖𝑛 .

Combining Equation (3.8) with (3.15), we can compute 𝜇𝜏𝑜𝑢𝑡 , 𝜎𝜏𝑜𝑢𝑡
2 :

𝜇𝜏𝑜𝑢𝑡 = 𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝑐 ∙ 𝑓 𝜏𝑖𝑛 𝑑𝜏𝑖𝑛

= 𝑏1 + 𝑏2 ∙ 𝜏𝑖𝑛 ∙ 𝑓(𝜏𝑖𝑛)𝑑𝜏𝑖𝑛

= 𝑏1 + 𝑏2 ∙ 𝜇𝜏𝑖𝑛 (3.16)

Chapter 3 Path-based SSTA Framework

52

𝜎𝜏𝑜𝑢𝑡
2 = 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝑐 + 𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝑐 − 𝜇𝜏𝑜𝑢𝑡

2
 ∙ 𝑓(𝜏𝑖𝑛)𝑑𝜏𝑖𝑛

= 𝑏3 + 𝑏4 ∙ 𝜏𝑖𝑛 + 𝑏2 ∙ 𝜏𝑖𝑛 − 𝑏2 ∙ 𝜇𝜏𝑖𝑛
2
 ∙ 𝑓(𝜏𝑖𝑛)𝑑𝜏𝑖𝑛

= 𝑏3 + 𝑏4 ∙ 𝜏𝑖𝑛 ∙ 𝑓(𝜏𝑖𝑛)𝑑𝜏𝑖𝑛 + 𝑏2 ∙ 𝜏𝑖𝑛 − 𝑏2 ∙ 𝜇𝜏𝑖𝑛
2
∙ 𝑓(𝜏𝑖𝑛)𝑑𝜏𝑖𝑛

= 𝑏3 + 𝑏4 ∙ 𝜇𝜏𝑖𝑛 + 𝑏2 ∙ 𝜎𝜏𝑖𝑛
2

 (3.17)

where 𝑓(𝜏𝑖𝑛) is the PDF of 𝜏𝑖𝑛 . Note that in Equations (3.16) – (3.17), 𝑓(𝜏𝑖𝑛) is not explicitly

known, while 𝜇𝜏𝑖𝑛 and 𝜎𝜏𝑖𝑛
2 are required.

Typically, suppose 𝜇𝜏𝑖𝑛 ∈ (𝜏6 , 𝜏7) and 𝑐 ∈ (𝑐2, 𝑐3), then according to the bilinear interpolation

techniques, we have:

𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝑐 ≈
𝜏7 − 𝜏𝑖𝑛
𝜏7 − 𝜏6

∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 +
𝜏𝑖𝑛 − 𝜏6

𝜏7 − 𝜏6
∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐

=
𝜏7 ∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 − 𝜏6 ∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐

𝜏7 − 𝜏6
+
𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 − 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐

𝜏7 − 𝜏6
∙ 𝜏𝑖𝑛 (3.18)

𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝑐 ≈
𝜏7 − 𝜏𝑖𝑛
𝜏7 − 𝜏6

∙ 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 +
𝜏𝑖𝑛 − 𝜏6

𝜏7 − 𝜏6
∙ 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐

=
𝜏7 ∙ 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 − 𝜏6 ∙ 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐

𝜏7 − 𝜏6
+
𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 − 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐

𝜏7 − 𝜏6
∙ 𝜏𝑖𝑛 (3.19)

Combining Equation (3.15) with (3.18) – (3.19), we identify 𝑏1, 𝑏2, 𝑏3, 𝑏4:

 𝑏1 =

𝜏7 ∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 − 𝜏6 ∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐

𝜏7 − 𝜏6

 𝑏2 =
𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 − 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐

𝜏7 − 𝜏6

 𝑏3 =
𝜏7 ∙ 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 − 𝜏6 ∙ 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐

𝜏7 − 𝜏6

 𝑏4 =
𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 − 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐

𝜏7 − 𝜏6

 (3.20)

Section 3.4 Path Delay Distribution

53

Similarly, 𝜇𝑔𝑑 and 𝜎𝑔𝑑
2 are computed by replacing the conditional moments of 𝜏𝑜𝑢𝑡 with those of

𝑔𝑑 in Equations (3.16) – (3.17) and (3.20).

In Table 3.2, we compare the accuracy of the discrete and continuous propagation techniques.

Under diverse conditions, like different input slope mean 𝜇𝜏𝑖𝑛 and variance 𝜎𝜏𝑖𝑛
2 , the standard

deviations are computed respectively by the two versions of techniques, denoted as 𝜎 𝜏𝑜𝑢𝑡 and

𝜎 𝑔𝑑 ; the results from MC simulation are considered as “golden values”, denoted as 𝜎𝜏𝑜𝑢𝑡 and 𝜎𝑔𝑑 .

The errors in Table 3.2 are the average values of 200 different cases. Considering accuracy and

computational cost, especially the additional step of discretization for the discrete version, it

seems appropriate to propagate moments using the continuous version.

3.4 Path Delay Distribution

For a timing path of 𝐾 cells, if the moments propagation technique allows iteratively computing

cell delay moments 𝜇𝑔𝑑𝑘 , 𝜎𝑔𝑑𝑘
2 , (𝑘 = 1, 2, … , 𝐾), then the path delay 𝑝𝑑, which is the sum of all

cell delays, has the mean and variance given by:

 𝜇𝑝𝑑 = 𝜇𝑔𝑑𝑘

𝐾

𝑘=1

 𝜎𝑝𝑑
2 = 𝜌𝑘𝑚 ∙ 𝜎𝑔𝑑𝑘𝜎𝑔𝑑𝑚

𝐾

𝑚=1

𝐾

𝑘=1

 (3.21)

where 𝜌𝑘𝑚 is the correlation 𝑐𝑜𝑟 𝑔𝑑𝑘 , 𝑔𝑑𝑚 .

Table 3.2 Comparison of discrete and continuous propagation techniques (65 nm)

𝜎 𝜏𝑜𝑢𝑡 − 𝜎𝜏𝑜𝑢𝑡
𝜎𝜏𝑜𝑢𝑡

%
𝜎 𝑔𝑑 − 𝜎𝑔𝑑

𝜎𝑔𝑑
%

𝐼𝑁𝑉 𝑁𝑂𝑅 𝐼𝑁𝑉 𝑁𝑂𝑅

discrete

𝐼 = 4 5.7% 5.4% 2.3% 4.0%

𝐼 = 6 5.1% 4.3% 1.6% 2.9%

𝐼 = 8 4.9% 3.9% 1.4% 2.6%

continuous 4.7% 3.7% 1.0% 2.3%

Chapter 3 Path-based SSTA Framework

54

In probability theory, the central limit theorem states conditions under which the sum of a suffi-

ciently large number of independent random variables, each with finite mean and variance, will

be approximately Gaussian distributed. Even though 𝑔𝑑𝑘 and 𝑔𝑑𝑚 , (𝑘 ≠ 𝑚) are not independent,

it is reasonable to assume that path delay is a Gaussian random variable. Thus, to get the distribu-

tion 𝑁 𝜇𝑝𝑑 , 𝜎𝑝𝑑
2 , according to Equation (3.21), all that remains is to estimate the cell-to-cell

delay correlation 𝜌𝑘𝑚 , which is the topic of the next section.

3.5 Estimation of Delay Correlation

Delay correlation is one of the most difficult problems in SSTA. This is because cell delay

depends in a complex manner on a number of factors, which makes complex the computation of

delay correlation as well. In this section, we introduce a technique to estimate delay correlation.

3.5.1 Cell-to-cell delay correlation

A common way to estimate Cell-to-cell Delay Correlation (CDC) is to approximate the depen-

dency of cell delay on process parameters with a Taylor expansion, and then to translate the

correlation between process parameters into correlation between cell delays. For example, setting

the number of process parameters to 𝐿 = 2, delay of cell 𝑘 is modeled as:

𝑔𝑑𝑘 ≈ 𝑔𝑑𝑛𝑜𝑚 ,𝑘 + 𝑎1𝑘 ∙ ∆𝑝1𝑘 + 𝑎2𝑘 ∙ ∆𝑝2𝑘 (3.22)

Then the CDC between 𝑔𝑑1 and 𝑔𝑑2 is computed by:

𝑐𝑜𝑟 𝑔𝑑1, 𝑔𝑑2 =
𝑐𝑜𝑣 𝑔𝑑1, 𝑔𝑑2

𝜎𝑔𝑑1
𝜎𝑔𝑑2

 (3.23)

where 𝑐𝑜𝑣 𝑔𝑑1, 𝑔𝑑2 is the covariance between 𝑔𝑑1 and 𝑔𝑑2 . Suppose that ∆𝑝1𝑘 and ∆𝑝2𝑘 are

independent, then we have:

𝑐𝑜𝑣 𝑔𝑑1, 𝑔𝑑2 = 𝑐𝑜𝑣 𝑎11 ∙ ∆𝑝11 , 𝑎12 ∙ ∆𝑝12 + 𝑐𝑜𝑣 𝑎21 ∙ ∆𝑝21 , 𝑎22 ∙ ∆𝑝22

= 𝑎11𝑎12 ∙ 𝑐𝑜𝑣 ∆𝑝11 , ∆𝑝12 + 𝑎21𝑎22 ∙ 𝑐𝑜𝑣 ∆𝑝21 , ∆𝑝22 (3.24)

Section 3.5 Estimation of Delay Correlation

55

If ∆𝑝𝑙𝑘 , (𝑙 = 1,2) are further divided into independent inter-die and intra-die component as:

∆𝑝𝑙𝑘 = ∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙𝑘 + ∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙𝑘 (𝑙 = 1,2) (3.25)

then 𝑐𝑜𝑣 ∆𝑝𝑙1, ∆𝑝𝑙2 , (𝑙 = 1,2) in Equation (3.24) are given by:

𝑐𝑜𝑣 ∆𝑝𝑙1, ∆𝑝𝑙2 = 𝜎∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙1
𝜎∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙2

∙ 𝑐𝑜𝑟 ∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙1, ∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙2 +

𝜎∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙1
𝜎∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙2

∙ 𝑐𝑜𝑟 ∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙1, ∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙2 (𝑙 = 1,2) (3.26)

Given a statistical process model, 𝑐𝑜𝑟 𝑔𝑑1, 𝑔𝑑2 is computed by combining Equations (3.23)

– (3.24) and (3.26).

The above technique of computation explains CDC in terms of correlation between process

parameters. Theoretically, apart from process parameters, all factors that affect cell delay, like

cell type, output load, etc., should be considered. Table 3.3 demonstrates that CDC varies with

cell type (𝐼𝑁𝑉, 𝑂𝑅, 𝐵𝑈𝐹), output load (1𝑓𝐹, 10𝑓𝐹, 100𝑓𝐹) and I/O edge (𝑅/𝐹, 𝐹/𝑅, 𝑅/𝑅, 𝐹/

𝐹). In this table, the CDC coefficients are estimated with data from MC simulations. As shown in

Table 3.3, the effects of cell type and I/O edge on CDC are obvious. In addition, it seems that

coefficients are brought down by increasing output load.

Table 3.3 CDCs varying with cell type, output load and I/O edge (130 nm, 1500 runs)

𝐼𝑁𝑉 𝐵𝑈𝐹

10𝑓𝐹 10𝑓𝐹 10𝑓𝐹 10𝑓𝐹

𝑅/𝐹 𝐹/𝑅 𝑅/𝑅 𝐹/𝐹

𝐼𝑁𝑉

1𝑓𝐹
𝑅/𝐹 0.97 0.73 0.90 0.94

𝐹/𝑅 0.61 0.97 0.94 0.92

10𝑓𝐹
𝑅/𝐹 0.99 0.76 0.91 0.95

𝐹/𝑅 0.66 0.99 0.95 0.92

100𝑓𝐹
𝑅/𝐹 0.98 0.62 0.89 0.88

𝐹/𝑅 0.64 0.99 0.89 0.87

𝑂𝑅

1𝑓𝐹
𝑅/𝑅 0.84 0.65 0.87 0.89

𝐹/𝐹 0.62 0.98 0.91 0.76

10𝑓𝐹
𝑅/𝑅 0.71 0.55 0.76 0.83

𝐹/𝐹 0.54 0.96 0.84 0.62

100𝑓𝐹
𝑅/𝑅 0.62 0.49 0.64 0.78

𝐹/𝐹 0.38 0.93 0.77 0.52

Chapter 3 Path-based SSTA Framework

56

As cell delay depends on a number of factors, which affects CDC as well, we propose a technique

to compute directly CDC, which avoids handling complex relationship between process parame-

ters. Suppose that process parameters 𝑝1, 𝑝2, … , 𝑝𝐿 are classified into three groups:

 𝑃𝑁𝑀 = 𝑝1
𝑁𝑀 , 𝑝2

𝑁𝑀 , … , 𝑝𝑛1
𝑁𝑀

 𝑃𝑃𝑀 = 𝑝1

𝑃𝑀 , 𝑝2
𝑃𝑀 , … , 𝑝𝑛2

𝑃𝑀

 𝑃𝑆 = 𝑝1
𝑆 , 𝑝2

𝑆 , … , 𝑝𝑛3
𝑆

 𝐿 = 𝑛1 + 𝑛2 + 𝑛3 (3.27)

where 𝑃𝑁𝑀 comprises process parameters characterizing only 𝑁 -transistors; 𝑃𝑃𝑀 is the group

only related 𝑃-transistors; and the parameters of 𝑃𝑆 describe both 𝑁- and 𝑃-transistors. Corres-

ponding to this classification, cell delay is modeled as:

𝑔𝑑 ≈ 𝑔𝑑𝑁𝑀 + 𝑔𝑑𝑃𝑀 + 𝑔𝑑𝑆 (3.28)

where 𝑔𝑑𝑁𝑀 , 𝑔𝑑𝑃𝑀 and 𝑔𝑑𝑆, according to Equation (1.1), are defined by:

 𝑔𝑑𝑁𝑀 = 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒 𝑃
𝑁𝑀 , 𝑇, 𝑉𝑑𝑑 , 𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡

 𝑔𝑑𝑃𝑀 = 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒 𝑃

𝑃𝑀 , 𝑇, 𝑉𝑑𝑑 , 𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡

 𝑔𝑑𝑆 = 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒 𝑃
𝑆 , 𝑇, 𝑉𝑑𝑑 , 𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡

 (3.29)

As stated in Section 3.1.1, for any 𝑙1 ≠ 𝑙2, (𝑙1, 𝑙2 = 1, 2, … 𝐿), 𝑝𝑙1 and 𝑝𝑙2 are independent.

Thus, it is reasonable to assume:

 𝑐𝑜𝑟 𝑔𝑑𝑁𝑀 , 𝑔𝑑𝑃𝑀 = 0

 𝑐𝑜𝑟 𝑔𝑑𝑁𝑀 , 𝑔𝑑𝑆 = 0

 𝑐𝑜𝑟 𝑔𝑑𝑃𝑀 , 𝑔𝑑𝑆 = 0

 (3.30)

With the assumptions above and the cell delay model in Equation (3.28), CDC between 𝑔𝑑𝑘

and 𝑔𝑑𝑚 can then be computed according to:

𝜌𝑘𝑚 =
𝑐𝑜𝑣 𝑔𝑑𝑘 , 𝑔𝑑𝑚

𝜎𝑔𝑑𝑘𝜎𝑔𝑑𝑚
 (3.31)

Section 3.5 Estimation of Delay Correlation

57

where

𝑐𝑜𝑣 𝑔𝑑𝑘 , 𝑔𝑑𝑚 = 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑁𝑀 + 𝑔𝑑𝑘

𝑃𝑀 + 𝑔𝑑𝑘
𝑆 , 𝑔𝑑𝑚

𝑁𝑀 + 𝑔𝑑𝑚
𝑃𝑀 + 𝑔𝑑𝑚

𝑆

= 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑁𝑀 , 𝑔𝑑𝑚

𝑁𝑀 + 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑁𝑀 , 𝑔𝑑𝑚

𝑃𝑀 + 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑁𝑀 , 𝑔𝑑𝑚

𝑆 +

𝑐𝑜𝑣 𝑔𝑑𝑘
𝑃𝑀 , 𝑔𝑑𝑚

𝑁𝑀 + 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑃𝑀 , 𝑔𝑑𝑚

𝑃𝑀 + 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑃𝑀 , 𝑔𝑑𝑚

𝑆 +

𝑐𝑜𝑣 𝑔𝑑𝑘
𝑆 , 𝑔𝑑𝑚

𝑁𝑀 + 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑆 , 𝑔𝑑𝑚

𝑃𝑀 + 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑆 , 𝑔𝑑𝑚

𝑆

= 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑁𝑀 , 𝑔𝑑𝑚

𝑁𝑀 + 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑃𝑀 , 𝑔𝑑𝑚

𝑃𝑀 + 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑆 , 𝑔𝑑𝑚

𝑆 (3.32)

In Equation (3.1), the variations of each process parameter 𝑝𝑙 are divided into a inter-die

component ∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙 and a intra-die component ∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙 , which are independent of each other.

Similarly, we decompose 𝑔𝑑𝑁𝑀 with independent inter-die and intra-die components as:

𝑔𝑑𝑁𝑀 = 𝑔𝑑𝑖𝑛𝑡𝑒𝑟
𝑁𝑀 + 𝑔𝑑𝑖𝑛𝑡𝑟𝑎

𝑁𝑀 (3.33)

Adding the approximation below:

𝑐𝑜𝑟 𝑔𝑑𝑘,𝑖𝑛𝑡𝑒𝑟
𝑁𝑀 , 𝑔𝑑𝑚,𝑖𝑛𝑡𝑒𝑟

𝑁𝑀 ≈ 1 (3.34)

and knowing that 𝑐𝑜𝑟 𝑔𝑑𝑘,𝑖𝑛𝑡𝑟𝑎
𝑁𝑀 , 𝑔𝑑𝑚,𝑖𝑛𝑡𝑟𝑎

𝑁𝑀 = 0, then the covariance 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑁𝑀 , 𝑔𝑑𝑚

𝑁𝑀 is com-

puted by:

𝑐𝑜𝑣 𝑔𝑑𝑘
𝑁𝑀 , 𝑔𝑑𝑚

𝑁𝑀 = 𝑐𝑜𝑣 𝑔𝑑𝑘,𝑖𝑛𝑡𝑒𝑟
𝑁𝑀 , 𝑔𝑑𝑚,𝑖𝑛𝑡𝑒𝑟

𝑁𝑀 + 𝑐𝑜𝑣 𝑔𝑑𝑘,𝑖𝑛𝑡𝑒𝑟
𝑁𝑀 , 𝑔𝑑𝑚,𝑖𝑛𝑡𝑟𝑎

𝑁𝑀 +

𝑐𝑜𝑣 𝑔𝑑𝑘,𝑖𝑛𝑡𝑟𝑎
𝑁𝑀 , 𝑔𝑑𝑚,𝑖𝑛𝑡𝑒𝑟

𝑁𝑀 + 𝑐𝑜𝑣 𝑔𝑑𝑘,𝑖𝑛𝑡𝑟𝑎
𝑁𝑀 , 𝑔𝑑𝑚,𝑖𝑛𝑡𝑟𝑎

𝑁𝑀

≈ 𝜎𝑔𝑑𝑘 ,𝑖𝑛𝑡𝑒𝑟
𝑁𝑀 ∙ 𝜎𝑔𝑑𝑚 ,𝑖𝑛𝑡𝑒𝑟

𝑁𝑀 (3.35)

Another two terms 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑃𝑀 , 𝑔𝑑𝑚

𝑃𝑀 and 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑆 , 𝑔𝑑𝑚

𝑆 in Equation (3.32) are obtained in

a similar way. Finally, we have:

𝑐𝑜𝑣 𝑔𝑑𝑘 , 𝑔𝑑𝑚 ≈ 𝜎𝑔𝑑𝑘 ,𝑖𝑛𝑡𝑒𝑟
𝑁𝑀 ∙ 𝜎𝑔𝑑𝑚 ,𝑖𝑛𝑡𝑒𝑟

𝑁𝑀 + 𝜎𝑔𝑑𝑘 ,𝑖𝑛𝑡𝑒𝑟
𝑃𝑀 ∙ 𝜎𝑔𝑑𝑚 ,𝑖𝑛𝑡𝑒𝑟

𝑃𝑀 +

𝜎𝑔𝑑𝑘 ,𝑖𝑛𝑡𝑒𝑟
𝑆 ∙ 𝜎𝑔𝑑𝑚 ,𝑖𝑛𝑡𝑒𝑟

𝑆 (3.36)

Chapter 3 Path-based SSTA Framework

58

From Equation (3.36), an immediate drawback of the technique appears: 𝜎𝑔𝑑 ,𝑖𝑛𝑡𝑒𝑟
𝑁𝑀 , 𝜎𝑔𝑑 ,𝑖𝑛𝑡𝑒𝑟

𝑃𝑀 ,

𝜎𝑔𝑑 ,𝑖𝑛𝑡𝑒𝑟
𝑆 of each cell must be characterized. This additional information requires a lot of CPU time

when constructing the statistical timing library.

3.5.2 Path-to-path delay correlation

To compute circuit delay with the algorithms in [46] based on Equations (2.10) – (2.11),

Path-to-path Delay Correlation (PDC) is required. Suppose two paths constituted respectively

by 𝐾1 and 𝐾2 cells, then the PDC is computed by:

𝑐𝑜𝑟 𝑝𝑑1, 𝑝𝑑2 =
𝑐𝑜𝑣 𝑝𝑑1, 𝑝𝑑2

𝜎𝑝𝑑1
𝜎𝑝𝑑2

 (3.37)

Adopting the setting of Section 3.5.1 to compute CDC, we have:

𝑐𝑜𝑣 𝑝𝑑1, 𝑝𝑑2 = 𝑐𝑜𝑣 𝑔𝑑𝑘1

𝐾1

𝑘1=1

, 𝑔𝑑𝑘2

𝐾2

𝑘2=1

 = 𝑐𝑜𝑣 𝑔𝑑𝑘1
, 𝑔𝑑𝑘2

𝐾2

𝑘2=1

𝐾1

𝑘1=1

 (3.38)

If the two paths have common cells, i.e. 𝑘1 and 𝑘2 indicate the same cell, then:

𝑐𝑜𝑣 𝑔𝑑𝑘1
, 𝑔𝑑𝑘2

 = 𝜎𝑔𝑑𝑘1
∙ 𝜎𝑔𝑑𝑘2

 (3.39)

otherwise:

𝑐𝑜𝑣 𝑔𝑑𝑘1
, 𝑔𝑑𝑘2

 ≈ 𝜎𝑔𝑑𝑘1 ,𝑖𝑛𝑡𝑒𝑟
𝑁𝑀 ∙ 𝜎𝑔𝑑𝑘2 ,𝑖𝑛𝑡𝑒𝑟

𝑁𝑀 + 𝜎𝑔𝑑𝑘1 ,𝑖𝑛𝑡𝑒𝑟
𝑃𝑀 ∙ 𝜎𝑔𝑑𝑘2 ,𝑖𝑛𝑡𝑒𝑟

𝑃𝑀 +

𝜎𝑔𝑑𝑘1 ,𝑖𝑛𝑡𝑒𝑟
𝑆 ∙ 𝜎𝑔𝑑𝑘2 ,𝑖𝑛𝑡𝑒𝑟

𝑆 (3.40)

3.6 Validation and Discussion

In this section, our SSTA engine is validated by comparing its results with those from MC simu-

lations. Next, the advantages and the computational cost of the engine are presented. Finally, we

discuss some ideas to improve the engine.

Section 3.6 Validation and Discussion

59

3.6.1 Validation

As presented in Section 3.1, we first characterized conditional moments of timing variables,

and then constructed the statistical timing library. In the second step, a certain number of critical

paths were extracted from the considered circuits using CTA under the software RTL Compiler.

Then, we performed SSTA with the timing engine implemented by the statistical computing and

graphic tool R [49]. Finally, we ran MC simulations for comparison.

As shown in Tables 3.4 – 3.5, the validation is done respectively in the 130 nm and 65 nm

technology. The three considered circuits are b01, b05 and b07 of the ITC99 benchmark. In these

two tables, relative errors on estimated means and standard deviations of path delays are respec-

tively less than 5% and 10%. These errors are acceptable in the context of timing analysis.

Moreover, most of the standard deviations are a little overestimated, which will reduce the

probability of violating the setup and hold time constraints if ICs are designed with this SSTA

framework.

Table 3.4 Validation in the 130 nm technology

name path
logical

depth

path delay (ps) error %

MC simulations

(1500 runs)

SSTA

(continuous version)
𝜇 𝑝𝑑 − 𝜇𝑝𝑑

𝜇𝑝𝑑
%

𝜎 𝑝𝑑 − 𝜎𝑝𝑑

𝜎𝑝𝑑
%

𝜇𝑝𝑑 𝜎𝑝𝑑 𝜇 𝑝𝑑 𝜎 𝑝𝑑

b01

1 5 665.5 40.0 690.5 42.7 3.8% 6.3%

2 6 590.7 34.9 605.8 36.4 2.6% 4.1%

3 7 598.3 35.3 610.3 35.5 2.0% 0.6%

4 5 660.3 39.4 680.2 42.1 3.0% 6.4%

5 6 644.1 38.7 658.9 41.0 2.3% 5.6%

b05

1 13 1185.8 70.2 1206.6 71.8 1.8% 2.2%

2 17 1106.4 66.5 1098.6 67.1 −0.7% 0.9%

3 18 991.3 61.7 1027.0 65.3 3.6% 5.5%

4 20 1249.3 75.8 1242.7 75.7 −0.5% −0.1%

5 19 1294.6 78.2 1291.9 78.5 −0.2% 0.4%

b07

1 10 722.0 44.2 725.2 44.4 0.4% 0.5%

2 10 738.7 45.3 750.6 46.3 1.6% 2.2%

3 9 720.2 43.9 727.4 46.1 1.0% 4.8%

4 11 740.5 45.6 735.4 47.1 −0.7% 3.2%

5 9 722.1 44.2 730.1 46.3 1.1% 4.5%

Chapter 3 Path-based SSTA Framework

60

The validation of the techniques to compute CDCs and PDCs is given respectively in Figures

3.8 and 3.9. Denote correlation coefficients computed by the SSTA engine as 𝜌 . Considering

coefficients 𝜌 from MC simulations as reference, the absolute errors 𝑒𝑎𝑏𝑠 and relative errors 𝑒𝑟𝑒𝑙

are computed by:

 𝑒𝑎𝑏𝑠 = 𝜌 − 𝜌

 𝑒𝑟𝑒𝑙 =
 𝜌 − 𝜌

𝜌
%

 (3.41)

In Figure 3.8, the majority of points are in the region with 𝑒𝑎𝑏𝑠 ≤ 0.2. In addition, most of the

points outside this dashed region, i.e. 𝑒𝑎𝑏𝑠 > 0.2, are overestimated, which lead to overestimation

on path delay standard deviations according to Equation (3.21). This explains why, in Table

3.5, all relative errors of path delay standard deviations expect for path 1 of circuit b05 are posi-

tive. In Figure 3.9, all points are in the region with 𝑒𝑟𝑒𝑙 ≤ 20%. Thus, the accuracy of PDCs

computed by the SSTA engine is better than that of CDCs.

Table 3.5 Validation in the 65 nm technology

name path
logical

depth

path delay (ps) error %

MC simulations

(1500 runs)

SSTA

(continuous version)
𝜇 𝑝𝑑 − 𝜇𝑝𝑑

𝜇𝑝𝑑
%

𝜎 𝑝𝑑 − 𝜎𝑝𝑑

𝜎𝑝𝑑
%

𝜇𝑝𝑑 𝜎𝑝𝑑 𝜇 𝑝𝑑 𝜎 𝑝𝑑

b01

1 9 500.2 26.8 489.7 27.5 −2.1% 2.5%

2 8 495.0 27.4 492.6 27.9 −0.5% 1.8%

3 7 461.9 25.9 460.2 26.4 −0.4% 2.1%

4 9 496.2 27.1 498.5 27.4 0.5% 1.1%

5 7 475.7 26.2 475.8 27.1 0.0% 3.7%

b05

1 25 1067.6 57.8 1050.2 57.3 −1.6% −0.8%

2 23 1077.7 58.5 1069.5 59.9 −0.8% 2.5%

3 22 1080.9 57.7 1073.7 59.5 −0.7% 3.1%

4 22 1110.4 59.0 1113.2 60.4 0.3% 2.3%

5 23 1077.7 58.5 1069.5 59.9 −0.8% 2.5%

b07

1 12 657.4 34.3 642.2 34.9 −2.3% 1.7%

2 11 657.0 34.2 656.7 36.2 −0.1% 5.8%

3 13 659.1 35.2 647.6 36.1 −1.8% 2.6%

4 10 674.9 36.2 685.9 38.3 1.6% 5.8%

5 11 654.4 35.6 655.2 38.0 0.1% 6.8%

 Section 3.6 Validation and Discussion

61

Figure 3.9 Validation of the technique to compute PDCs (65 nm)

Figure 3.8 Validation of the technique to compute CDCs (65 nm)

Chapter 3 Path-based SSTA Framework

62

In order to obtain detailed information, we compute the following proportions:

 𝑝𝑜𝑒 =

1

𝑁
∙ 𝑖𝑓 𝜌 𝑖 − 𝜌𝑖 < 0, 𝑡𝑕𝑒𝑛 1, 𝑒𝑙𝑠𝑒 0

𝑁

𝑖=1

 𝑝𝑢𝑒 =
1

𝑁
∙ 𝑖𝑓 𝜌 𝑖 − 𝜌𝑖 > 0, 𝑡𝑕𝑒𝑛 1, 𝑒𝑙𝑠𝑒 0

𝑁

𝑖=1

 𝑝𝑎𝑏𝑠 =
1

𝑁
∙ 𝑖𝑓 𝑒𝑎𝑏𝑠 ≤ 0.2, 𝑡𝑕𝑒𝑛 1, 𝑒𝑙𝑠𝑒 0

𝑁

𝑖=1

 𝑝𝑟𝑒𝑙 =
1

𝑁
∙ 𝑖𝑓 𝑒𝑟𝑒𝑙 ≤ 20%, 𝑡𝑕𝑒𝑛 1, 𝑒𝑙𝑠𝑒 0

𝑁

𝑖=1

 (3.42)

where 𝑁 is the sample size, and 𝑝𝑜𝑒 , 𝑝𝑢𝑒 , 𝑝𝑎𝑏𝑠 , 𝑝𝑟𝑒𝑙 represent respectively the proportion of points

overestimated, underestimated, in the region 𝑒𝑎𝑏𝑠 ≤ 0.2 and 𝑒𝑟𝑒𝑙 ≤ 20%. Table 3.6 gives these

proportions in percentage. The most important information in this table is that 81% of the CDCs

are overestimated while 84% of the PDCs are underestimated, which is the expected results.

To explain why overestimate of CDC and underestimate of PDC are preferable, we return to the

problem of timing verification. For ease of description, consider the setup time constraint below:

𝑝𝑑𝑑𝑎𝑡𝑎 − 𝑝𝑑𝑐𝑙𝑘 < 𝑇𝐶𝐿𝐾 (3.43)

where 𝑇𝐶𝐿𝐾 is the clock period and 𝑝𝑑𝑑𝑎𝑡𝑎 , 𝑝𝑑𝑐𝑙𝑘 are respectively delays of data path and clock

path. Comparing with Equation (1.3), 𝑝𝑑𝑑𝑎𝑡𝑎 corresponds to the left hand side and 𝑝𝑑𝑐𝑙𝑘 to

the first two terms of the right hand side. Note that 𝑇𝐶𝐿𝐾 is a constant while 𝑝𝑑𝑑𝑎𝑡𝑎 , 𝑝𝑑𝑐𝑙𝑘 are

random variables. Then, we have:

𝑉𝑎𝑟 𝑝𝑑𝑑𝑎𝑡𝑎 − 𝑝𝑑𝑐𝑙𝑘 = 𝜎𝑑𝑎𝑡𝑎
2 + 𝜎𝑐𝑙𝑘

2 − 2 ∙ 𝜌𝑑𝑐 ∙ 𝜎𝑑𝑎𝑡𝑎 ∙ 𝜎𝑐𝑙𝑘 (3.44)

where 𝜎𝑑𝑎𝑡𝑎
2 , 𝜎𝑐𝑙𝑘

2 are respectively the variance of 𝑝𝑑𝑑𝑎𝑡𝑎 and 𝑝𝑑𝑐𝑙𝑘 ; 𝜌𝑑𝑐 is the PDC between

𝑝𝑑𝑑𝑎𝑡𝑎 and 𝑝𝑑𝑐𝑙𝑘 and varies in the interval 0,1 .

Table 3.6 Information about the accuracy of computed CDCs and PDCs

 𝑁 𝑝𝑜𝑒% 𝑝𝑢𝑒% 𝑝𝑎𝑏𝑠% 𝑝𝑟𝑒𝑙%

CDC 10532 81% 19% 76% 55%

PDC 780 16% 84% 100% 100%

 Section 3.6 Validation and Discussion

63

According to Equation (3.44), 𝑉𝑎𝑟 𝑝𝑑𝑑𝑎𝑡𝑎 − 𝑝𝑑𝑐𝑙𝑘 will increase if one or more of the fol-

lowing cases appears:

a) 𝜎𝑑𝑎𝑡𝑎 increases;

b) 𝜎𝑐𝑙𝑘 increases;

c) 𝜌𝑑𝑐 decreases.

In other words, both the overestimation of CDC and the underestimation of PDC result in the

overestimation of 𝑉𝑎𝑟 𝑝𝑑𝑑𝑎𝑡𝑎 − 𝑝𝑑𝑐𝑙𝑘 . As illustrated in Figure 3.10, if the distribution with

overestimated variance satisfies the setup time constraint, then so will the actual distribution.

Thus, this overestimation of 𝑉𝑎𝑟 𝑝𝑑𝑑𝑎𝑡𝑎 − 𝑝𝑑𝑐𝑙𝑘 , i.e. overestimate of CDC and underestimate

of PDC, is a little conservative but preferable, which validates the techniques of computing delay

correlations.

3.6.2 Quality of the SSTA engine

Accuracy and computational cost are the two most important criteria to evaluate the quality of a

SSTA method. In Section 3.6.1, an overview on the accuracy of the proposed SSTA engine

Figure 3.10 Illustration of preferable overestimation on 𝑉𝑎𝑟 𝑝𝑑𝑑𝑎𝑡𝑎 − 𝑝𝑑𝑐𝑙𝑘

Chapter 3 Path-based SSTA Framework

64

has been given. In this section, we turn our attention to its computational cost. Table 3.7(a)

gives some examples of CPU time gains of the SSTA engine compared to MC simulations. In

this table, to compute delay distribution of the same path, the SSTA engine implemented by the

statistical computing software R [49] is over 105 times faster than MC simulations ran under

HSPICE [43]. Table 3.7(b) gives the running environments of these two methods.

Table 3.8 shows the influences of CDCs and slope variations on the accuracy of estimated path

delay standard deviations. Apart from the technique to compute CDCs in Equations (3.31)

and (3.36), the following two extreme cases are considered:

 CDCs 𝜌𝑘1𝑘2
 are set to “1” for any 𝑘1, 𝑘2;

 CDCs 𝜌𝑘1𝑘2
 are set to “0” except for 𝑘1 = 𝑘2.

As shown in Table 3.8, the two extreme cases above respectively lead to an average relative

error 23.7% and −56.3%. The last column gives −2.7% if slope variations are not taken into

account, which gives a difference of about 8% (i.e. −2.7% − 5.0%) compared to the average

using Equations (3.31) and (3.36). In other words, slope variations should not be neglected,

otherwise about 8% of standard deviation is lost.

Table 3.7 Computational cost of MC simulations and our SSTA engine

(a) Some comparisons of computational cost

path
logical

depth

CPU time (s) 𝑠𝑡/𝑒𝑡
(simulation time : 𝑠𝑡

SSTA time : 𝑒𝑡)
MC simulations

(1500 runs)

SSTA

(continuous version)

1 5 2794.02 0.02 1.40 × 105

2 10 5245.12 0.03 1.75 × 105

3 15 6914.28 0.06 1.15 × 105

4 20 9881.50 0.08 1.24 × 105

5 25 12020.70 0.11 1.09 × 105

(b) Running environments of MC simulations and the SSTA engine

 platform CPU number of CPU CPU frequency memory software

MC simulations Unix Ultra SPARC III 8 900MHz 32G HSPICE

SSTA Windows Intel Pentium D 1 2800MHz 1G R

Section 3.7 Summary

65

3.6.3 Discussion

The outstanding characteristic of the proposed SSTA engine is the independency of moments

propagation on statistical process model and approximation of MAX operation. In other words, if

a universally accepted statistical process model appears, the propagation technique could be

adapted to still be valid. Moreover, we use the algorithms in [46] based on the linear approxima-

tion of MAX to compute circuit delay to date. However, if we improve the engine by also propa-

gating the third moment of cell delays, then the Gaussian assumption on path delay can be

changed to, for example, a skew-Normal one. This allows using the skew-Normal based MAX

approximation in [32], which would provide better accuracy on computation of circuit delay.

On the downside, the technique to compute delay correlation in Section 3.5 depends on statis-

tical process model. What is more important, it cannot take into account correlation between

input slopes. These weaknesses should be addressed in the future.

3.7 Summary

The SSTA engine presented in this chapter is implemented by moments propagation, which

overcomes some of the weaknesses of existing parametric methods. From the point of view of

accuracy, path delay means and standard deviations computed by this engine have relative errors

Table 3.8 Influences of CDCs and slope variations

path
logical

depth
𝜎𝑝𝑑 (ps)

𝜎 𝑝𝑑 − 𝜎𝑝𝑑

𝜎𝑝𝑑
%

𝜌𝑘1𝑘2
 computed

by Equations

(3.31) and (3.36)

∀𝑘1 , 𝑘2

𝜌𝑘1𝑘2
= 1

𝜌𝑘1𝑘2

= 1, 𝑘1 = 𝑘2

𝜌𝑘1𝑘2
= 0, 𝑘1 ≠ 𝑘2

 𝜎𝜏𝑖𝑛 ,𝑘
2 = 0

for each cell 𝑘,

1 5 22.9 7.0% 23.1% −33.2% −3.0%

2 10 36.2 7.7% 25.1% −50.8% 2.4%

3 15 45.4 0.9% 21.6% −61.7% −6.3%

4 20 57.7 6.4% 24.8% −66.4% −1.2%

5 25 57.8 2.8% 23.8% −69.2% −5.4%

average 5.0% 23.7% −56.3% −2.7%

Chapter 3 Path-based SSTA Framework

66

respectively less than 5% and 10%. The technique to compute delay correlation in general over-

estimates CDCs and underestimates PDCs, which is a preferable result. As for CPU time, it is

about 105 times faster than a 1500 runs MC simulation for the same path.

67

Chapter

4

Statistical Timing Library

This chapter introduces techniques to improve the quality of our statistical timing library and to

reduce the CPU time of timing characterization. In Section 4.1, we present an input signal

model derived from the Log-Logistic (LL) distribution, and an output load model based on

inverters. Section 4.2 proposes techniques to reduce dimensions to save CPU time during the

procedure of characterization.

Chapter 4 Statistical Timing Library

68

oments propagation techniques, in which cell delays means and variances are computed,

are the kernel of the SSTA engine. The accuracy of this propagation technique is mainly

determined by the quality of the statistical timing library. This quality depends on the accuracy of

conditional moments, as well as the number of conditional moments contained in each lookup

table. As conditional moments are estimated by data from Monte Carlo (MC) simulations, their

accuracy can be improved by increasing the number of runs. In addition, the dependency of

conditional moments on input slope and output load are approximated by lookup tables and

bilinear interpolations. Thus, increasing the number of lookup values can produce better results.

In fact, to improve the quality of the library, the most crucial technique is to reduce the errors

induced by input signals and output load models when doing timing characterization. Section

4.1 gives details on this topic.

4.1 Timing Characterization

Timing characterization is the procedure to pre-characterize timing information for each type of

cell by MC simulations. In our context, timing information includes conditional moments of cell

delay and output slope for diverse combination of factors. Among these factors, cell type,

input/output pin, and input/output edge are deterministic; temperature and supply voltage are set

to be constants; samples of process parameters are randomly generated; as for input slope and

output load, the conventional method is to use a linear ramp model and capacitors, as shown in

Figure 4.1.

In Figure 4.1(a), the left panel is the considered 𝑂𝑅 cell in a circuit; in the right panel, we

extract only the 𝑂𝑅 cell and its output load is replaced by a capacitor, the charge of which is the

sum of charges of all connected pins in the left panel. Figure 4.1(b) shows an input signal from

circuit simulation and its approximation: linear ramp model. The straight dashed line typically

passes through the two points 𝑡1, 0.2 ∙ 𝑉𝑑𝑑 and 𝑡2, 0.8 ∙ 𝑉𝑑𝑑 . Then, the signal is determined by

𝜏𝑖𝑛 and 𝑉𝑑𝑑 .

M

Section 4.1 Timing Characterization

69

Note that timing characterization is done with standalone cells instead of a complete circuit. This

is because we have no information about how a cell would be connected during the procedure of

constructing statistical timing library. In addition, the structure of connection is different from

one circuit design to another. In consequence, we use input signal and output load models to

approximate what could happen at the input and output pins of a cell in real circuits.

This conventional method is simple and efficient. However, as the magnitude of process varia-

tions grows, such a method cannot provide acceptable results any more, especially when captur-

ing variations of timing variables. In fact, charges of capacitors are constants during MC simula-

tion, i.e. they do not depend on random process parameters, whereas charges of input pins do

(a) Approximation of output load with capacitor

(b) Linear ramp (dashed line) approximation of input signal (solid line)

Figure 4.1 Conventional approximations of input slope and output load

Chapter 4 Statistical Timing Library

70

depend on these parameters and, therefore, are random. Thus, conditional variances will be

underestimated if characterization is done using capacitors.

In order to increase the quality of approximations, we propose an input signal model based on the

Log-Logistic (LL) Cumulative Distribution Function (CDF), and use inverters to replace capaci-

tors for output load.

4.1.1 Input signal model

In this section, we only focus on rising edges for simplicity, because rising edges and falling

edges are similar in terms of shape.

First, we study the input signal characteristics. In the context of digital IC, a signal can be

described by a voltage function 𝐻 𝑡 depending on time 𝑡. Figure 4.2(a) gives the derivatives

𝑑𝐻 𝑡

𝑑𝑡
 of some typical signals of different slopes. From this figure, it is obvious that the linear

ramp model, the derivative of which is a constant, is of low accuracy. In Figure 4.2(b), LL

Probability Density Functions (PDF) 𝑓𝐿𝐿 𝑥 of different parameters are plotted. These PDFs

have similar forms to some of the signal derivatives, especially those located on the left part of

Figure 4.2(a), e.g. signals with slope less than 120 ps in the figure, which in practice occur

80% of times [50]. In addition, if we normalize a signal 𝐻 𝑡 by its total amplitude 𝑅 and trans-

form it to satisfy the condition
𝐻 𝑡

𝑅
∈ 0,1 , then beyond a certain moment 𝑡𝑚𝑖𝑛 ,

𝐻 𝑡

𝑅
 looks like

a CDF, because:

 it is monotone increasing on 𝑡𝑚𝑖𝑛 , ∞),


𝐻 𝑡𝑚𝑖𝑛

𝑅
= 0 and 𝑙𝑖𝑚𝑡→∞

𝐻 𝑡

𝑅
= 1.

Therefore, it is feasible to approximate input and output signal functions with LL CDFs:

𝐹 𝑥; 𝛼, 𝛽 =
𝛼

𝑥

𝛽

+ 1

−1

 𝑥 > 0 (4.1)

where 𝛼, 𝛽 > 0 are two parameters to identify. As shown above, the expression of LL CDFs is

simple, which is the main advantage of using LL-based approximation.

Section 4.1 Timing Characterization

71

Before proceeding, the notations for the definition of LL-based models are given in Figure 4.3.

Note that the part that is below the zero line is a normal electronic phenomenon while the signal

is switching. In order to model this special part, a signal is divided into two segments: 𝑡 ≤ 𝑡𝑚𝑖𝑛

and 𝑡 > 𝑡𝑚𝑖𝑛 .

Figure 4.3 Notations of input signal model

 (a) Derivatives of some signals (b) PDFs (derivatives of CDFs) of LL distributions

Figure 4.2 Comparison of signals and LL distributions

Chapter 4 Statistical Timing Library

72

According to the notations, we define:

 𝜏𝑖𝑛 =

5

3
∙ 𝑡2 − 𝑡1

 ∆𝑉 = 0 − 𝑉𝑚𝑖𝑛 = 𝑉𝑚𝑖𝑛

 ∆𝑡 = 𝑡𝑚𝑖𝑛 − 𝑡0

 (4.2)

Denote 𝐻 (𝑡) the approximating function. Based on Equation (4.1), we have the model below:

𝑉 = 𝐻 𝑡 =

 −
∆𝑉
∆𝑡 ∙

 𝑡 + ∆𝑡 − 𝑡𝑚𝑖𝑛 𝑡 ≤ 𝑡𝑚𝑖𝑛

 𝑉𝑑𝑑 + ∆𝑉 ∙
𝛼

 𝑡− 𝑡𝑚𝑖𝑛 𝜏𝑖𝑛

𝛽

+ 1
−1

− ∆𝑉 𝑡 > 𝑡𝑚𝑖𝑛

 (4.3)

where 𝜏𝑖𝑛 is known; 𝑡𝑚𝑖𝑛 may be any value greater than ∆𝑡, and indicates the location of the

approximated signal; 𝛼, 𝛽, ∆𝑡, ∆𝑉 are values to identify.

In Figure 4.1(b), the linear ramp is only determined by the input slope 𝜏𝑖𝑛 . For the LL-based

model, the idea is to compute 𝛼, 𝛽, ∆𝑡, ∆𝑉 from 𝜏𝑖𝑛 so that the approximated signal is determined

by 𝜏𝑖𝑛 as well. For this purpose, we build functions:

 ∆𝑉 = 𝑔∆𝑉 𝜏𝑖𝑛

 ∆𝑡 = 𝑔∆𝑡 𝜏𝑖𝑛

 𝛽 = 𝑔𝛽 𝜏𝑖𝑛

 (4.4)

Once ∆𝑉, ∆𝑡, 𝛽 are obtained, then according to Equation (4.3), parameter 𝛼 may be computed

with the two points 𝑡1, 0.2 ∙ 𝑉𝑑𝑑 and 𝑡2, 0.8 ∙ 𝑉𝑑𝑑 . To identify the functions in Equation

(4.4), we follow the three steps below:

a) collect data from MC simulations;

b) analyze the dependency of ∆𝑉, ∆𝑡, 𝛽 on 𝜏𝑖𝑛 by plots, and propose simple explicit func-

tions of 𝑔∆𝑉 𝜏𝑖𝑛 , 𝑔∆𝑡 𝜏𝑖𝑛 and 𝑔𝛽 𝜏𝑖𝑛 ;

c) estimate parameters of the proposed functions using the Least Squares Method (LSM)

[51].

Section 4.1 Timing Characterization

73

First of all, we collect from MC simulations, 1000 output signals of different cells under diverse

operating conditions, such as temperature, supply voltage, input slope, output load, etc. For each

signal, nine points for the segment 𝑡 > 𝑡𝑚𝑖𝑛 corresponding to 𝜔 ∙ 𝑉𝑑𝑑 , 𝜔 = 0.1, 0.2, … 0.9 ,

plus 𝑡0, 0 and 𝑡𝑚𝑖𝑛 , 𝑉𝑚𝑖𝑛 , are measured. Next, according to Equation (4.2), we compute

𝜏𝑖𝑛 , ∆𝑉, ∆𝑡. Finally, for each signal, we estimate 𝛼, 𝛽 in Equation (4.3) with the nine measured

points 𝑡 > 𝑡𝑚𝑖𝑛 using LSM.

In Figure 4.4(a), there exists a trend that ∆𝑉 decreases along with the increase of 𝜏𝑖𝑛 ; Figure

4.4(b) shows a linear increasing trend of ∆𝑡 on 𝜏𝑖𝑛 ; in Figure 4.4(c), 𝛽 seems to decrease if 𝜏𝑖𝑛

increases. Thus, we propose the simple functions below:

 ∆𝑉 =

𝐶∆𝑉
𝐴∆𝑉 + 𝐵∆𝑉 ∙ 𝜏𝑖𝑛

 ∆𝑡 = 𝐴∆𝑡 + 𝐵∆𝑡 ∙ 𝜏𝑖𝑛

 𝛽 =
𝐶𝛽

𝐴𝛽 + 𝐵𝛽 ∙ 𝜏𝑖𝑛
+ 𝐷𝛽

 (4.5)

The first two functions are derived from the model of overshoot [52]. The last one comes from

Figure 4.4(c), which is similar to Figure 4.4(a). Using LSM, we have:

 𝐴∆𝑉 = 15.52

 𝐵∆𝑉 = 1.81 × 1011

 𝐶∆𝑉 = 0.45

 𝐴∆𝑡 = 4.7 × 10−11

 𝐵∆𝑡 = 0.04

 𝐴𝛽 = 0.33

 𝐵𝛽 = 6.9 × 109

 𝐶𝛽 = 1.32

 𝐷𝛽 = 1.51

Given an input slope 𝜏𝑖𝑛 , with Equation (4.5) and their estimated parameters, we may com-

pute ∆𝑉, ∆𝑡, 𝛽. After that, 𝛼 is obtained from the LL CDF.

The part 𝑡 > 𝑡𝑚𝑖𝑛 of Equation (4.3) may be rewritten as:

𝑡 = 𝑡𝑚𝑖𝑛 + 𝜏𝑖𝑛 ∙ 𝛼 ∙
𝑉𝑑𝑑−𝑉

𝑉 +∆𝑉

−

1

𝛽
 𝑡 > 𝑡𝑚𝑖𝑛 (4.6)

Chapter 4 Statistical Timing Library

74

 (a) ∆𝑉 =
0.45

15.52+1.81×10
11
∙𝜏𝑖𝑛

 (b) ∆𝑡 = 4.7 × 10−11 + 0.04 ∙ 𝜏𝑖𝑛

(c) 𝛽 =
1.32

0.33+6.9×10
9
∙𝜏𝑖𝑛

+ 1.51

Figure 4.4 Proposed simple functions

Section 4.1 Timing Characterization

75

Replacing 𝑡, 𝑉 in Equation (4.6) with the two points 𝑡1, 0.2 ∙ 𝑉𝑑𝑑 and 𝑡2, 0.8 ∙ 𝑉𝑑𝑑 , we get:

𝑡2 − 𝑡1 = 𝜏𝑖𝑛 ∙ 𝛼 ∙

0.2

0.8 +
∆𝑉
𝑉𝑑𝑑

−
1
𝛽

−
0.8

0.2 +
∆𝑉
𝑉𝑑𝑑

−
1
𝛽

= 0.6 ∙ 𝜏𝑖𝑛 (4.7)

Then, parameter 𝛼 is computed by:

𝛼 = 0.6 ∙

0.2

0.8 +
∆𝑉
𝑉𝑑𝑑

−
1
𝛽

−
0.8

0.2 +
∆𝑉
𝑉𝑑𝑑

−
1
𝛽

−1

 (4.8)

Because of the dispersion of the points about the estimated LSM functions, the above way to

identify parameters 𝛼, 𝛽, ∆𝑡, ∆𝑉 leads to loss of accuracy. However, among the information about

a signal, only 𝜏𝑖𝑛 is available during the procedure of computation in Figure 3.4. Besides, such

a way is simple to apply under HSPICE [43], which is not good at handling complex mathemati-

cal functions.

Next, we compare the accuracy of linear ramp and LL-based model following the procedure

below:

a) Collect 500 output signals under various conditions, like cell type, temperature, etc.;

b) For each signal, measure the 20% – 80% slope and approximate the signal respectively by

linear ramp and LL-based model;

c) Normalize all measured and approximated signals by its own slope, and transform the

point 𝑡0, 0.5 ∙ 𝑉𝑑𝑑 of each signal to point 0, 0.5 ∙ 𝑉𝑑𝑑 , as shown in Figure 4.5;

d) Define a series of points, e.g. −1.5, −1.4, … , 0, … , 1.4, 1.5, and compute errors point by

point for each linear ramp and LL-based approximation;

e) Compute the average errors of signal samples: all linear ramp approximations, LL-based

approximations with slopes respectively less than 100 ps and 200 ps, and all LL-based

approximations, as shown in Figure 4.6.

Chapter 4 Statistical Timing Library

76

Figure 4.6 Average errors of approximated signals (65 nm)

Figure 4.5 Normalized and transformed signals

Section 4.1 Timing Characterization

77

In Figure 4.6, linear ramp model has positive errors on both sides of the vertical axis, while

LL-based model has negative errors on the right side. In addition, LL-based approximations are

better for small slopes than large slopes. In this figure, it is not clear whether LL-based model is

more accurate or not. However, latter comparisons in Section 4.1.3 show that LL-based model

is better in capturing slope variations during characterization.

4.1.2 Output load variations

The main drawback of modeling output load with capacitors during timing characterization, as in

Figure 4.1(a), is that they are not able to capture output load variations, or more precisely, the

impact of load variations on cell timings. This weakness is due to the fact that the charge of a

capacitor keeps constant, whereas in real circuit, the charges of input pins of all cells depend on

process parameters, and therefore are random variables.

In order to better represent what happens around a cell in real circuits, our timing characterization

uses inverters instead of capacitors to model output load. As shown in Figure 4.7, we connect

𝑀 inverters at the output pin of the considered cell. The sum of input charges of all inverters is

considered as the nominal value of output load. Note that these inverters can be of different input

charges. As mentioned before, input charges of cells, inverters included, depend on process

parameters, which are random during MC simulations. Thus, the model using inverters captures

output load variations during characterization. In others words, output load variations are con-

tained in conditional variances of timing variables.

Figure 4.7 𝑀 inverters as output load

Chapter 4 Statistical Timing Library

78

4.1.3 Comparison

The validation of the SSTA engine given in Tables 3.4 – 3.5 is done with a statistical timing

library constructed by data that is collected with the LL-based signal model and inverters as

output load. In other words, these tables validate the proposed signal model and the use of inver-

ters as output load model. In order to demonstrate the effects of using these models, we compare

standard deviations of path delays estimated by data from MC simulations, which are considered

as reference values, with those computed using statistical timing libraries based on the following

combinations of input signal and output load models:

 LL-based signal and inverters,

 linear signal and inverters,

 LL-based signal and capacitors.

Table 4.1 gives some examples. Comparing the average relative errors of these combinations,

we find a difference in percentage of about 16 between the first two combinations, and about 12

between combinations 1 and 3. In addition, results of the last two columns are all underestimated,

which are unexpected in case of statistical timing analysis. This table gives the conclusion that

both LL-based input signal and inverters output load improve the accuracy of computing path

delay standard deviations.

Table 4.1 Comparisons of path delay standard deviations computed with statistical timing

libraries based on different combinations of input signal and output load models (65 nm)

path
logical

depth
𝜎𝑝𝑑 (ps)

𝜎 𝑝𝑑 − 𝜎𝑝𝑑

𝜎𝑝𝑑
%

LL-based signal

+ inverters

(combination 1)

linear signal +

inverters

(combination 2)

LL-based signal

+ capacitors

(combination 3)

1 5 22.9 7.0% −6.8% −4.6%

2 10 36.2 7.7% −4.5% −4.8%

3 15 45.4 0.9% −14.6% −10.7%

4 20 57.7 6.4% −11.1% −5.7%

5 25 57.8 2.8% −17.2% −7.2%

average 5.0% −10.84% −6.6%

Section 4.2 Acceleration Techniques

79

4.1.4 Weaknesses

The weakness of LL-based signal model can be found in Figure 4.2. The derivatives
𝑑𝐻 𝑡

𝑑𝑡
 of

signals from circuit simulations converge rapidly to 0 after the corresponding maximum point;

whereas the PDFs of LL distributions seem to converge to 0 not as fast as the derivatives of

signals do. This problem is also shown in Figure 4.6, where LL-based model has negative

errors on the right side of the vertical axis. Thus, this weakness of signal model would be a point

to address for higher accuracy of approximation.

As regards the output load model, its weakness is obvious, because we have no argument to

support:

a) the use of inverters instead of other cells,

b) the structure of inverters which have different charges at input pin,

c) the number of inverters connected at the output pin of the considered cell.

4.2 Acceleration Techniques

Timing characterization is implemented by running MC simulations, which demand very high

computational cost. Even though this step of characterization is only a one-time job as stated in

Chapter 3, it is important to accelerate its procedure to reduce runtime. Such a goal can be

achieved by reducing either the number of runs, or the number of points to characterize, or both.

The first way will lead to a loss of accuracy when estimating conditional moments if we continue

using classic MC techniques. Theoretically, we may use variants, like importance sampling to

reduce the number of runs without losing too much accuracy in estimating conditional moments.

However, applying this variant sampling technique on dozens of process parameters is compli-

cated and its accuracy is not clear.

The second way will worsen the accuracy of the approximating function shown in Figure 3.3,

if it leads to a reduction of the number of points contained in each lookup table. This conclusion

is because when approximating a nonlinear function with linear interpolation, the accuracy will

Chapter 4 Statistical Timing Library

80

be worse with fewer interpolating points. Note that the number of points that need to be characte-

rized is not exactly the same as the number of points of each lookup table. The technique of

acceleration presented below reduces the number of points to characterize while keeping the

same number of points in each lookup table.

4.2.1 Reducing dimension

In Figure 4.8(a), the curves show how the conditional output slope mean of an inverter

𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡 varies along with 𝜏𝑖𝑛 . Each of these curves corresponds to a value of the output

load 𝐶𝑜𝑢𝑡 . They are constant in region 1 , called Fast Input Range (FIR), while in region 2 ,

called Non-Fast Input Range (N-FIR), 𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡 varies. Figure 4.8(b) shows that there

exists FIR and N-FIR as well for the conditional output slope variance 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡 . Note

that the FIRs for 𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡 and 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡 are identical for a given value of

output load.

(a) Conditional means of output slopes (b) Conditional variances of output slopes

Figure 4.8 Illustrations of FIR and N-FIR

 Section 4.2 Acceleration Techniques

81

Given a value 𝑐 of 𝐶𝑜𝑢𝑡 , we define 𝜏𝑡𝑕
𝑐 the threshold between FIR and N-FIR corresponding to 𝑐.

If 𝜏𝑖𝑛 ∈ 0, 𝜏𝑡𝑕
𝑐 , then 𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡 = 𝑐 and 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡 = 𝑐 are constants, which we

denote respectively as 𝜇
𝜏𝑜𝑢𝑡
𝑓𝑡 𝑐 and 𝜎

𝜏𝑜𝑢𝑡
𝑓𝑡 𝑐

2

, or as 𝜇𝑓𝑡 and 𝜎𝑓𝑡
2 for simplicity.

Next, we divide the axes 𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡 and 𝜏𝑖𝑛 in Figure 4.8(a) by 𝜇𝑓𝑡 . This normalization,

shown in Figure 4.9(a), transforms all the curves in Figure 4.8(a) into a unique one (up to

slight discrepancies) that we call the standard curve. This standard curve is independent of 𝐶𝑜𝑢𝑡 .

Similarly, normalizing in the same way 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡 and 𝜏𝑖𝑛 by respectively 𝜎𝑓𝑡
2 and 𝜇𝑓𝑡

also produces a standard curve for 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡 .

As shown in Figure 3.2, output slope 𝜏𝑜𝑢𝑡 and cell delay 𝑔𝑑 are the two considered timing

variables. If we do the same normalization to the conditional delay moments of the same type of

cell as above, we find as well standard curves independent of 𝐶𝑜𝑢𝑡 , as illustrated in Figure 4.10.

(a) Standard curve for 𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡 (b) Standard curve for 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡

Figure 4.9 Illustration of normalized conditional moments of output slope

Chapter 4 Statistical Timing Library

82

Hence, functions of conditional moments depending on the two factors 𝜏𝑖𝑛 and 𝐶𝑜𝑢𝑡 , can be

transformed into functions of only one factor
𝜏𝑖𝑛

𝜇𝑓𝑡
 as follows:

𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡

𝜇𝑓𝑡
= 𝑕1

𝜏𝑖𝑛
𝜇𝑓𝑡

𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡

𝜎𝑓𝑡
2 = 𝑕2

𝜏𝑖𝑛
𝜇𝑓𝑡

𝐸 𝑔𝑑|𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡

𝜇𝑓𝑡
= 𝑕3

𝜏𝑖𝑛
𝜇𝑓𝑡

𝑉𝑎𝑟 𝑔𝑑|𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡

𝜎𝑓𝑡
2 = 𝑕4

𝜏𝑖𝑛
𝜇𝑓𝑡

 (4.9)

where 𝜇𝑓𝑡 and 𝜎𝑓𝑡
2 are identified, according to [50], by:

 𝜇𝑓𝑡 = 𝐴 + 𝐵 ∙ 𝐶𝑜𝑢𝑡

 𝜎𝑓𝑡
2 = 𝐵2 ∙ 𝐶𝑜𝑢𝑡

2

 (4.10)

(a) Standard curve for 𝐸 𝑔𝑑|𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡 (b) Standard curve for 𝑉𝑎𝑟 𝑔𝑑|𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡

Figure 4.10 Illustration of normalized conditional moments of cell delay

 Section 4.2 Acceleration Techniques

83

Here, a small number of simulations yields to an accurate estimate of 𝐴, 𝐵 and this requires very

little runtime.

4.2.2 Discussion

In Chapter 3, the input slope and output load indices of each lookup table have respectively 9

and 6 values. Therefore, a table has 54 points to characterize. However, with the Equations

(4.9) – (4.10), only ten points or so need to be characterized. In Figure 4.11, we plot all the

normalized points contained in a table of conditional output slope mean. This figure shows that

this procedure leads, with 10 points, to approximately the same accuracy as that of a 54 points

table.

Although this technique accelerates the procedure of timing characterization, its accuracy should

be carefully studied before application. To illustrate this, Figure 4.12 compares the normalized

curves of a 𝑁𝑂𝑅, 𝑁𝐴𝑁𝐷, 𝐼𝑁𝑉 cell respectively for cases 𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡 , 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡 ,

𝐸 𝑔𝑑|𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡 and 𝑉𝑎𝑟 𝑔𝑑|𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡 .

Figure 4.11 Reduction of points to characterize

Chapter 4 Statistical Timing Library

84

 (a) Normalized curves for case of 𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡 (b) Normalized curves for case of 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡

 (c) Normalized curves for case of 𝐸 𝑔𝑑|𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡 (d) Normalized curves for case of 𝑉𝑎𝑟 𝑔𝑑|𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡

Figure 4.12 Comparisons of normalized curves

Section 4.3 Summary

85

From this figure, if we consider one of the normalized curves as standard curve for the 𝑁𝐴𝑁𝐷

and 𝑁𝑂𝑅 cell, then their accuracies will not be as good as for an inverter. In consequence, to

profit from this acceleration technique, we should study its accuracy for more cells or find out a

way to identify standard curves which provide acceptable results.

4.3 Summary

Instead of the conventional method, we use the LL distributions to approximate input signals and

inverters to model output load during timing characterization. These improvements allow us to

better capture slope and load variations. In addition, to save CPU time of characterization, the

reducing dimension technique is proposed. However, more work should be done to apply this

promising technique into practice.

Chapter 4 Statistical Timing Library

86

87

Chapter

5

Comparisons and Applications

In this chapter, we put the SSTA framework into practice and compare its results with those of

CTA. Section 5.1 gives some examples to show the gain of our SSTA engine. In Section

5.2, we talk about ordering of critical paths, i.e. order of paths in terms of decreasing delays.

The discrepancy between orderings obtained respectively by SSTA and CTA is explained. In

Section 5.3, we study the factors that affect cell-to cell delay correlation. This is a first step

toward the goal of optimizing circuit design with delay correlations.

Chapter 5 Comparisons and Applications

88

s the next generation of timing tool, Statistical Static Timing Analysis (SSTA) is com-

pared to its predecessor Corner-based Timing Analysis (CTA) in various aspects, such as

accuracy and runtime. An important concern among these aspects is the gain of using SSTA

relative to CTA, because this gain, in a sense, declares whether SSTA is a promising replacement.

In Section 5.1, we focus on the gain of using our SSTA engine.

5.1 Gain of SSTA

The goal of IC design is to produce a circuit which implements intended functions, occupies

minimal area and meets the timing constraints. To be more precise, if a designer is given a

number of circuit implementations of the same functionality, he would select the implementation

with the minimal area among those meeting a particular delay. This is reasonable because a cir-

cuit with smaller area usually consumes less power during operation. Thus, to demonstrate the

gain of SSTA, a common way is, for a function to implement and a given delay (or a clock pe-

riod), to compare area of circuits, which are obtained respectively with CTA and SSTA.

For this comparison, we first construct area-delay curves to circuits b05 and b07 of the ITC99

benchmarks according to the following procedure:

a) Define a series of clock periods 𝑇𝐶𝐿𝐾𝑚 , (𝑚 = 1, 2, … , 7) respectively for b05 and b07;

b) For each clock period 𝑇𝐶𝐿𝐾𝑚 , produce an implementation 𝐼𝑃𝑁𝑚 with RTL Compiler [45],

and note the corresponding circuit area 𝑐𝑠𝑚 ;

c) For the implementation 𝐼𝑃𝑁𝑚 , extract a set 𝑈100,𝑚 of 100 critical paths in terms of

decreasing worst delays 𝑤𝑝𝑑𝑢 , 𝑢 ∈ 𝑈100,𝑚 obtained by CTA;

d) Under the worst environmental conditions: 125℃ (temperature) and 1.1𝑉 (supply vol-

tage), compute path delay means 𝜇𝑝𝑑𝑢 and variances 𝜎𝑝𝑑𝑢
2 for the set 𝑈100,𝑚 with our

SSTA engine;

e) Compute 𝑤𝐼𝑃𝑁𝑚
 and 𝑠𝐼𝑃𝑁𝑚

 by:

 𝑤𝐼𝑃𝑁𝑚
= 𝑚𝑎𝑥

𝑢∈𝑈100 ,𝑚

 𝑤𝑝𝑑𝑢

 𝑠𝐼𝑃𝑁𝑚
= 𝑚𝑎𝑥

𝑢∈𝑈100 ,𝑚

 𝜇𝑝𝑑𝑢 + 3 ∙ 𝜎𝑝𝑑𝑢
 (5.1)

A

Section 5.1 Gain of SSTA

89

f) Plot the points of CTA 𝑐𝑠𝑚 , 𝑤𝐼𝑃𝑁𝑚
 and SSTA 𝑐𝑠𝑚 , 𝑠𝐼𝑃𝑁𝑚

 and approximate the area-

delay curves by these points and linear interpolation, as shown in Figure 5.1.

(a) Area-delay curves of b05

(b) Area-delay curves of b07

Figure 5.1 Gains of SSTA for circuits b05 and b07

Chapter 5 Comparisons and Applications

90

In Figure 5.1(a), the length of the solid double arrow 𝐺𝑆𝑏05,130 represents the difference of area

between the CTA curve and the SSTA curve when circuit delay is set to 2200 ps (as an example)

in the case of 130 nm technology. The length of the solid double arrows 𝐺𝑆𝑏05,65, 𝐺𝑆𝑏07,130 and

𝐺𝑆𝑏07,65 have similar meanings. From this figure, it is obvious that, for a given delay, the area of

circuits implemented with SSTA is smaller than the area of the corresponding implementations

using CTA in both 130 nm and 65 nm cases. Define the percentage of gains in area as:

𝑟𝐺𝑆 =
𝐺𝑆

𝑆𝐶𝑇𝐴
% (5.2)

where 𝑆𝐶𝑇𝐴 is the corresponding area value of CTA. Then, 𝑟𝐺𝑆 for the delay 2200 ps in Figure

5.1(a) and 1200 ps (also set as an example) in Figure 5.1(b) are:

 𝑟𝐺𝑆𝑏05,130
= 5.5%

 𝑟𝐺𝑆𝑏05,65
= 12.8%

 𝑟𝐺𝑆𝑏07,130
= 6.1%

 𝑟𝐺𝑆𝑏07,65
= 13.7%

According to the area-delay curves in Figure 5.1, there exist very few values of delay where

the horizontal double arrows (i.e. area gains) are bounded. For example, in Figure 5.1(a), the

SSTA curve of 65 nm gives no value of area at 2600 ps while the CTA curve does. This forbids a

proper comparison of area. Thus, for an alternative comparison, we consider the vertical

distances between each couple of curves which corresponds to gains of delay (dashed double

arrows in Figure 5.1) for a given area. These distances can be computed at more area points,

which allows considering the two following average gains of delays:

𝐺𝐷 =
1

7
∙ 𝑤𝐼𝑃𝑁𝑚

− 𝑠𝐼𝑃𝑁𝑚

7

𝑚=1

 (5.3)

𝑟𝐺𝐷 =
1

7
∙

𝑤𝐼𝑃𝑁𝑚
− 𝑠𝐼𝑃𝑁𝑚

𝑤𝐼𝑃𝑁𝑚

7

𝑚=1

% (5.4)

where 𝑤𝐼𝑃𝑁𝑚
, 𝑠𝐼𝑃𝑁𝑚

 are defined in Equation (5.1).

Section 5.2 Ordering of Critical Paths

91

Table 5.1 shows the gains defined in Equations (5.3) – (5.4). According to this table, we

can draw the following two conclusions:

a) In terms of circuit, 𝐺𝐷 values of circuit b05 are about two times larger than those of

circuit b07 in both 130 nm and 65 nm technology. The two couples of 𝑟𝐺𝐷 values are

much closer, e.g. 12.6% vs. 13.5% and 25.2% vs. 24.6%. These comparisons indicate

that 𝐺𝐷 increases along with path logical depth whereas the normalized gain 𝑟𝐺𝐷 does not

depend on circuit.

b) In terms of technology, both 𝐺𝐷 and 𝑟𝐺𝐷 of the two circuits in the 65 nm technology are

much larger than those in the 130 nm technology. It is predicted that these two average

gains of delays will become more and more important as the feature size shrinks from 65

nm to 45 nm, 32 nm, etc.

5.2 Ordering of Critical Paths

For the time being, most IC designers still use tools based on CTA, and consider SSTA as a

complement to CTA, which may lead to cases where results of SSTA and those of CTA do not

coincide. In this section, we show and explain the discrepancy between orderings obtained

respectively by SSTA and CTA.

A typical Computer-Aided-Design (CAD) tool based on CTA, like RTL Compiler [45], may

extract a set of 𝑁 critical paths for optimization of circuit design. These 𝑁 critical paths are

ordered by decreasing worst delay according to CTA, i.e. the first critical path has the maximal

worst delay; the second one has the second maximal value, and etc. However, if path delays of

Table 5.1 Average delay gains of the SSTA engine (without interconnects) over CTA (RTL Compiler)

name technology
maximal

path depth
𝐺𝐷 (ps) 𝑟𝐺𝐷 (%)

b05
130 nm 18 310 12.6%

65 nm 27 622 25.2%

b07
130 nm 12 185 13.5%

65 nm 17 321 24.6%

Chapter 5 Comparisons and Applications

92

the same set are computed by SSTA, the ordering of these paths may be different with that of

CTA.

To illustrate the differences of orderings, we follow the procedure below for the circuit b07 in the

65 nm technology:

a) Choose two valid clock periods, for example: 𝑇𝐶𝐿𝐾 =1400, 2000 ps;

b) For each clock period, produce an implementation and extract a set 𝑈100 of 100 critical

paths;

c) For each critical path 𝑢𝑖 ∈ 𝑈100 , compute the worst delay 𝑤𝑝𝑑𝑢𝑖
 by CTA and the corres-

ponding delay under the 125℃ (temperature) and 1.1𝑉 (supply voltage) operating condi-

tion by SSTA:

𝑠𝑝𝑑𝑢𝑖
= 𝜇𝑝𝑑𝑢𝑖

+ 3 ∙ 𝜎𝑝𝑑𝑢𝑖
 (5.5)

d) For each critical path 𝑢𝑖 ∈ 𝑈100 , compute the path rank according to worst delay by CTA

as:

𝑟𝑘𝑢𝑖 = 𝑖𝑓 𝑤𝑝𝑑𝑢𝑗
≥ 𝑤𝑝𝑑𝑢𝑖

, 𝑡𝑕𝑒𝑛 1, 𝑒𝑙𝑠𝑒 0

100

𝑗=1

 (5.6)

To break ties (𝑟𝑘𝑢𝑖1 = 𝑟𝑘𝑢𝑖2 = ⋯ = 𝑟𝑘𝑢𝑖𝑘
= 𝑀, for 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘), we use the fol-

lowing rule:

 𝑟𝑘𝑢𝑖1 = 𝑀 − 𝑘 + 1

 𝑟𝑘𝑢𝑖2 = 𝑀 − 𝑘 + 2

⋯⋯

 𝑟𝑘𝑢𝑖𝑘
= 𝑀

 (5.7)

e) Plot the CTA points 𝑟𝑘𝑢𝑖 , 𝑤𝑝𝑑𝑢𝑖
 and those of SSTA 𝑟𝑘𝑢𝑖 , 𝑠𝑝𝑑𝑢𝑖

 with 𝑖 = 1,… , 100, as

shown in Figure 5.2;

f) Plot the normalized points 𝑟𝑘𝑢𝑖 ,
𝑠𝑝𝑑 𝑢𝑖
𝑤𝑝𝑑 𝑢𝑖

 with 𝑖 = 1,… , 100, as shown in Figure 5.3.

 Section 5.2 Ordering of Critical Paths

93

Figure 5.3 Normalized delays of ordered critical paths (b07, 65 nm)

Figure 5.2 Delays of ordered critical paths (b07, 65 nm)

Chapter 5 Comparisons and Applications

94

According to the above procedure, all paths in Figures 5.2 – 5.3 are ordered by decreasing

worst delays from CTA. Note the extreme pessimism of CTA with respect to SSTA in Figure

5.3, CTA overestimating by 20% to 30% the delay values. Also remark that delays obtained by

SSTA are ordered differently from CTA. Indeed, in Figure 5.2, comparing the fifty most criti-

cal paths provided by CTA and SSTA respectively for cases 𝑇𝐶𝐿𝐾 =1400 ps and 2000 ps, we find

out 42 (respectively 40) common paths among them.

To explain this difference of orderings, we consider a timing path of 𝐾 cells. For each cell, we

compute worst cell delay 𝑤𝑔𝑑𝑘 by CTA, and cell delay mean 𝜇𝑔𝑑𝑘 , variance 𝜎𝑔𝑑𝑘
2 with the SSTA

engine under the worst environmental condition: 125℃ and 1.1𝑉. We can always write 𝑤𝑔𝑑𝑘 in

terms of 𝜇𝑔𝑑𝑘 , 𝜎𝑔𝑑𝑘
2 as a function of 𝜃𝑘 in the following way:

𝑤𝑔𝑑𝑘 = 𝜇𝑔𝑑𝑘 + 𝜃𝑘 ∙ 𝜎𝑔𝑑𝑘 𝑘 = 1, 2, … , 𝐾 (5.8)

Then, according to Equations (3.21) and (5.8), the statistical 3𝜎 corner of path delay 𝑠𝑝𝑑 and

the worst path delay 𝑤𝑝𝑑 can be decomposed as:

𝑠𝑝𝑑 = 𝜇𝑝𝑑 + 3 ∙ 𝜎𝑝𝑑 = 𝜇𝑔𝑑𝑘

𝐾

𝑘=1

+ 3 ∙ 𝜌𝑘𝑚 ∙ 𝜎𝑔𝑑𝑘𝜎𝑔𝑑𝑚

𝐾

𝑚=1

𝐾

𝑘=1

 (5.9)

𝑤𝑝𝑑 = 𝑤𝑔𝑑𝑘

𝐾

𝑘=1

= 𝜇𝑔𝑑𝑘

𝐾

𝑘=1

+ 3 ∙
𝜃𝑘 ∙ 𝜎𝑔𝑑𝑘

3

𝐾

𝑘=1

= 𝜇𝑔𝑑𝑘

𝐾

𝑘=1

+ 3 ∙ 1 ∙
𝜃𝑘 ∙ 𝜎𝑔𝑑𝑘

3

𝜃𝑚 ∙ 𝜎𝑔𝑑𝑚
3

𝐾

𝑚=1

𝐾

𝑘=1

 (5.10𝑎)

= 𝜇𝑔𝑑𝑘

𝐾

𝑘=1

+ 3 ∙ 1 ∙
𝑤𝑔𝑑𝑘 − 𝜇𝑔𝑑𝑘

3

𝑤𝑔𝑑𝑘 − 𝜇𝑔𝑑𝑘

3

𝐾

𝑚=1

𝐾

𝑘=1

 (5.10𝑏)

Comparing Equation (5.9) with (5.10𝑎), the constant “1” in Equation (5.10𝑎) is replaced

by the quantity 𝜌𝑘𝑚 . Similarly, 𝜎𝑔𝑑𝑘 ∙ 𝜃𝑘 3 changes to 𝜎𝑔𝑑𝑘 in Equation (5.9). Therefore, the

discrepancy of orderings comes from two factors: cell-to-cell delay correlation 𝜌𝑘𝑚 and standard

 Section 5.2 Ordering of Critical Paths

95

deviation of cell delay 𝜎𝑔𝑑𝑘 .

On one hand, in the context of timing analysis, 𝜌𝑘𝑚 varies in the interval 0,1 . It is rare that

𝜌𝑘𝑚 = 1 if 𝑘 ≠ 𝑚. However, “1” is set to 𝜌𝑘𝑚 in Equation (5.10𝑎), which introduces a first

difference between 𝑤𝑝𝑑 and 𝑠𝑝𝑑 .

On the other hand, according to the traditional CTA presented in Section 1.2, 𝑤𝑔𝑑𝑘 is com-

puted by setting worst corner to each process parameter 𝑝𝑙 . Therefore it is unlikely that 𝜃𝑘 is

equal to 3 in Equation (5.10𝑎), which is second source of difference in orderings.

To identify which factor has more influence on the difference of orderings, we compute 𝑠𝑝𝑑
′ and

𝑠𝑝𝑑
′′ with:

𝑠𝑝𝑑
′ = 𝜇𝑝𝑑 + 3 ∙ 𝜎𝑝𝑑

′ (5.11)

𝑠𝑝𝑑
′′ = 𝜇𝑝𝑑 + 3 ∙ 𝜎𝑝𝑑

′′ (5.12)

where

𝜎𝑝𝑑
′ = 1 ∙ 𝜎𝑔𝑑𝑘𝜎𝑔𝑑𝑚

𝐾

𝑚=1

𝐾

𝑘=1

 (5.13)

𝜎𝑝𝑑
′′ = 𝜌𝑘𝑚 ∙

𝜃𝑘 ∙ 𝜎𝑔𝑑𝑘
3

𝜃𝑚 ∙ 𝜎𝑔𝑑𝑚

3

𝐾

𝑚=1

𝐾

𝑘=1

 (5.14)

Comparing Equation (5.9) with (5.13), we find out that 𝜎𝑝𝑑
′ eliminates the influence of 𝜌𝑘𝑚 .

In the same manner, going from Equation (5.14) to (5.9) eliminates the influence of 𝜃𝑘 , from

Equation (5.10𝑎) to (5.13) eliminates the influence of 𝜃𝑘 , and from Equation (5.14) to

(5.10𝑎) eliminates the influence of 𝜌𝑘𝑚 .

Chapter 5 Comparisons and Applications

96

The four curves 𝑤𝑝𝑑 , 𝑠𝑝𝑑 , 𝑠𝑝𝑑
′ , 𝑠𝑝𝑑

′′ in terms of path rank 𝑟𝑘𝑢 as defined in Equations (5.6) –

(5.7) are plotted in Figure 5.4. From this figure, we can see that the two curves 𝑤𝑝𝑑 and 𝑠𝑝𝑑
′′

have a similar shape, and the same holds for the other couple of curves 𝑠𝑝𝑑 and 𝑠𝑝𝑑
′ . These simi-

larities lead to the conclusion that the discrepancy of orderings comes mainly from the presence

of 𝜃𝑘 .

Another way of looking at this figure is to consider the gaps between curves. The gaps 𝑤𝑝𝑑 and

𝑠𝑝𝑑
′ are much larger than those between 𝑠𝑝𝑑 and 𝑠𝑝𝑑

′ . This indicates that the majority of delay

gains in using SSTA can be attributed to the gain 𝜎𝑔𝑑𝑘 ∙ 𝜃𝑘 3 − 1 of each cell.

5.3 Study of Cell-to-cell Delay Correlation

In Section 5.2, we highlighted the impact of Cell-to-cell Delay Correlation (CDC) 𝜌𝑘𝑚 on

path delay variances. From Equation (3.21), reducing CDCs results in smaller path delay

Figure 5.4 Interpretation of discrepancy between orderings

 Section 5.3 Study of Cell-to-cell Delay Correlation

97

variances and thus constitute, at path level, a main design optimization objective. However, it is

not clear whether reducing CDCs meets or not the goal of optimization at circuit level, i.e. to

lower the variance defined below:

𝑉𝑎𝑟 𝑝𝑑𝑑𝑎𝑡𝑎 − 𝑝𝑑𝑐𝑙𝑘 = 𝜎𝑑𝑎𝑡𝑎
2 + 𝜎𝑐𝑙𝑘

2 − 2 ∙ 𝜌𝑑𝑐 ∙ 𝜎𝑑𝑎𝑡𝑎 ∙ 𝜎𝑐𝑙𝑘 (5.15)

where 𝑝𝑑𝑑𝑎𝑡𝑎 , 𝑝𝑑𝑐𝑙𝑘 are respectively delays of data path and clock path; 𝜌𝑑𝑐 is the Path-to-path

Delay Correlation (PDC) between 𝑝𝑑𝑑𝑎𝑡𝑎 and 𝑝𝑑𝑐𝑙𝑘 . More details about Equation (5.15)

were given in Section 3.6.1.

As stated before, reducing CDCs gives smaller 𝜎𝑑𝑎𝑡𝑎
2 , 𝜎𝑐𝑙𝑘

2 AND if at the same time this reduction

increases 𝜌𝑑𝑐 , then 𝑉𝑎𝑟 𝑝𝑑𝑑𝑎𝑡𝑎 − 𝑝𝑑𝑐𝑙𝑘 will be smaller. In all other cases, we cannot predict the

behavior of this variance and optimization procedure can only be undertaken from case to case,

by looking at the values of the elements in Equation (5.15). In this section, we take a first step

to solve this problem by analyzing how the relative factors influence CDC values.

According to Equation (1.1), cell delay is determined by the following two categories of

factors:

a) variational factors: process parameters, temperature, supply voltage, input slope and out-

put load

b) fixed factors: cell type, input pin and output edge

These factors affect CDC as well. However, when computing delays with the SSTA engine,

temperature and supply voltage are considered as constants and thus have no influence on CDC.

In addition, the relationship between a cell delay and process parameters is not explicitly known.

Thus, in Section 5.3.1, we focus only on the effect of technology, i.e. the overall effect of

process parameters. Two other variational factors: input slope and output load, are studied in

Section 5.3.2. The effect of fixed factors is the topic of Section 5.3.3.

5.3.1 Effect of technology

In Table 3.1, the 130 nm and 65 nm technologies are different in number of inter-die and intra-

die process parameters. At the same time, process variations of the two technology generations

are of great difference. To study the effect of technology, we first extract a total of 3000 paths

Chapter 5 Comparisons and Applications

98

from the following circuits: b01, b03, b05, b06 and b07. Then, CDC coefficients of all these

paths are computed by the SSTA engine. Finally, from these CDCs, a sample of size 2 × 105

from each technology is drawn randomly for comparison.

Figure 5.5 shows the histograms of CDC coefficients. From this figure, CDC coefficients of

the 130 nm technology have mean value 0.916 much larger than that of the 65 nm technology

which is 0.668. This is explained by the fact that no intra-die process parameter is defined in the

130 nm technology, which results in high CDCs according to Equations (3.31) and (3.36). In

consequence, CDC coefficients of paths implemented in the 65 nm technology are more repre-

sentative. This technology is preferred in the rest of this section.

5.3.2 Effect of input slope and output load

As presented in Chapter 3, input slope 𝜏𝑖𝑛 of each cell is considered as a random variable. In

this initial work, we only focus on effect of input slope mean 𝜇𝜏𝑖𝑛 . As regards output load, it is

replaced by output slope mean 𝜇𝜏𝑜𝑢𝑡 for convenience, which is linear to typical value of output

load. Besides, to eliminate effect of fixed factors, among all CDC coefficients, we choose those

(a) 130 nm technology (b) 65 nm technology

Figure 5.5 Histograms of CDC coefficients

 Section 5.3 Study of Cell-to-cell Delay Correlation

99

with two cells that are of same type, input/output (I/O) pin and I/O edge. For example, CDC of

“𝑁𝑂𝑅 − 𝐴/𝑍 − 𝑅/𝐹” indicates CDC between two 𝑁𝑂𝑅 cells with a rising edge applied at input

pin 𝐴 and a falling edge appearing at output pin 𝑍.

Figure 5.6 shows the effects of 𝜇𝜏𝑖𝑛 ,1
, 𝜇𝜏𝑜𝑢𝑡 ,1

 and
𝜇𝜏𝑖𝑛 ,1

𝜇𝜏𝑜𝑢𝑡 ,1

 (denoted as 𝑟1) on CDC of “𝑁𝑂𝑅 −

𝐴/𝑍 − 𝑅/𝐹”. In this figure, 𝜇𝜏𝑖𝑛 ,1
 and 𝜇𝜏𝑜𝑢𝑡 ,1

 are respectively input slope and output slope mean

for the first cell of the couple related to CDC; 𝑟1 does make sense in the context of digital IC. If

this ratio is less than a certain threshold, the input slope falls into the Fast Input Range (FIR)

defined in Section 4.2.1; if not, it is in the Non-Fast Input Range (N-FIR). As shown in

Figure 4.8, output slope means are constants in the FIR; while they vary in the N-FIR. As well,

cell delay varies differently in these two ranges, and so does CDC.

In Figure 5.6, there exist linear trends of CDC depending respectively on 𝜇𝜏𝑖𝑛 ,1 and 𝑟1. As the

latter term takes into account the effect of 𝜇𝜏𝑜𝑢𝑡 ,1
, plus its meaning explained above, we choose it

as the considered factor.

Knowing that correlation is commutative, i.e. 𝑐𝑜𝑟 𝑋, 𝑌 = 𝑐𝑜𝑟(𝑌, 𝑋) for any two random

variables 𝑋 and 𝑌, slope factors of the second cell of each couple are added using a commutative

 (a) Relationship of CDCs and 𝜇𝜏𝑖𝑛 ,1
, 𝜇𝜏𝑜𝑢𝑡 ,1

 (b) Relationship of CDCs and 𝑟1

Figure 5.6 Effects of 𝜇𝜏𝑖𝑛 ,1
, 𝜇𝜏𝑜𝑢𝑡 ,1

 and 𝑟1 on CDCs (𝑁𝑂𝑅 − 𝐴/𝑍 − 𝑅/𝐹)

Chapter 5 Comparisons and Applications

100

function. Therefore, with three simple commutative functions, we define the following compound

ratios:

 𝑟𝑠𝑢𝑚 = 𝑟1 + 𝑟2

 𝑟𝑑𝑖𝑓 = 𝑟1 − 𝑟2

 𝑟𝑝𝑑𝑡 = 𝑟1 ∙ 𝑟2

 (5.16)

where 𝑟2 =
𝜇𝜏𝑖𝑛 ,2

𝜇𝜏𝑜𝑢𝑡 ,2

. For the same sample as that in Figure 5.6, we compute the compound ratios

in Equation (5.16) for each CDC coefficient, and plot them in Figure 5.7. According to this

figure, there is no clear relationship of CDC on 𝑟𝑑𝑖𝑓 ; CDC and 𝑟𝑝𝑑𝑡 seem to have a polynomial

relationship; and CDCs seem linear to 𝑟𝑠𝑢𝑚 , which is preferable to describe effect of input and

output slope on CDC.

To confirm the linear dependency of CDC on 𝑟𝑠𝑢𝑚 , we repeat the above procedure for various

cell types, I/O pins and I/O edges. Figure 5.8 gives four examples. Note that the couple of cells

related to the corresponding CDC coefficient have the same cell type, I/O pin and I/O edge. If we

Figure 5.7 Relationship of CDCs and different compound ratios (𝑁𝑂𝑅 − 𝐴/𝑍 − 𝑅/𝐹)

 Section 5.3 Study of Cell-to-cell Delay Correlation

101

do linear regression for each cloud of points, as shown in the figure, the error of combination

“𝐼𝑁𝑉 − 𝐴/𝑍 − 𝑅/𝐹” is higher than the other three whereas the linear trend is obvious in all cases.

5.3.3 Effect of cell type, I/O pin and I/O edge

As described in Section 5.3.1, we have a sample of computed CDC coefficients in the 65 nm

technology. However, to address the topic of this section, effect of input and output slope should

be eliminated by filtering the sample. Typically, we consider the coefficients related to the couple

of cells that satisfy the condition below:

 𝑟1 =

𝜇𝜏𝑖𝑛 ,1

𝜇𝜏𝑜𝑢𝑡 ,1

∈ 0.85, 0.9

 𝑟2 =
𝜇𝜏𝑖𝑛 ,2

𝜇𝜏𝑜𝑢𝑡 ,2

∈ 0.85, 0.9

 (5.17)

 where 𝜇𝜏𝑖𝑛 ,1
, 𝜇𝜏𝑜𝑢𝑡 ,1

, 𝜇𝜏𝑖𝑛 ,2
, 𝜇𝜏𝑜𝑢𝑡 ,2

 are respectively slope means of the first and the second cell of

the corresponding couple. The interval 0.85, 0.9 is selected for the following reasons:

Figure 5.8 Relationship of CDCs and 𝑟𝑠𝑢𝑚 for various cell types, I/O pins and I/O edges

Chapter 5 Comparisons and Applications

102

 If we use the condition 𝑟1 = 𝑟2 = 0.85, then the size of the sample after the filtration will

be too small for study.

 For any CDC coefficient of the filtered sample, its corresponding compound ratio 𝑟𝑠𝑢𝑚

defined in Equation (5.16) is a value the interval 1.7, 1.8 , i.e. the difference of any

two compound ratios is 0.1, which is acceptable relative to the range of 𝑟𝑠𝑢𝑚 (about 7 in

Figure 5.8).

 Among all intervals 0.05 ∙ 𝑗 − 1 , 0.05 ∙ 𝑗 𝑗 = 1, 2, … , 80 as conditions of filtration,

the selected interval gives the sample with largest size.

Considering the filtered sample, we focus on CDC coefficients whose combination of the first

cell is “𝐼𝑁𝑉 − 𝐴/𝑍 − 𝐹/𝑅”; as for the combination of the second cell, it may be all possibilities

limited to the four cell types: 𝑁𝐴𝑁𝐷, 𝐴𝑂𝐼1, 𝑂𝑅, 𝐴𝑁𝐷. In addition, for each couple of combina-

tions, e.g. “𝐼𝑁𝑉 − 𝐴/𝑍 − 𝐹/𝑅” (first cell) and “𝑁𝐴𝑁𝐷 − 𝐴/𝑍 − 𝑅/𝐹” (second cell), we com-

pute the average of all corresponding CDC coefficients. The result is shown in Figure 5.9(a).

Following the same procedure, we change the combination of the first cell to “𝑂𝑅 − 𝐵/𝑍 − 𝐹/𝐹”

and obtain Figure 5.9(b). From these two figures, we conclude that:

a) CDCs change along with cell type. In Figure 5.9(a), for the same I/O pin “𝐴/𝑍” and I/O

edge “𝑅/𝑅”, the difference between CDCs of cell 𝑂𝑅 and cell 𝐴𝑁𝐷 is about 0.1.

b) Effect of I/O pin is not obvious. In both Figures 5.9(a) and (b), CDCs of same cell, I/O

edge and different I/O pins are close.

c) Effect of I/O edge is significant. In Figure 5.9(a), all combinations of the second cell

with the I/O edge “𝐹/𝑅”, which is identical to the I/O edge of the first one, have high

CDCs. On the contrary, those CDCs of couples with different I/O edges, including “𝑅/𝐹”,

“𝑅/𝑅” and “𝐹/𝐹”, are relatively low. These three cases show a decreasing trend of CDCs

following the order “𝐹/𝐹”, “𝑅/𝑅” and “𝑅/𝐹”. Comparing this order with the I/O edge of

the first cell “𝐹/𝑅” shows that effect of input edge is more important than that of output

edge. This is also supported in Figure 5.9(b) by the fact that CDC with combination of

the second cell “𝑁𝐴𝑁𝐷 − 𝐴/𝑍 − 𝐹/𝑅” is higher than that of “𝑁𝐴𝑁𝐷 − 𝐴/𝑍 − 𝑅/𝐹”

knowing that the I/O edge of the first cell is “𝐹/𝐹”.

1
 A compound cell with three input pins

 Section 5.3 Study of Cell-to-cell Delay Correlation

103

(a) “𝐼𝑁𝑉 − 𝐴/𝑍 − 𝐹/𝑅” (combination of the first cell)

(b) “𝑂𝑅 − 𝐵/𝑍 − 𝐹/𝐹” (combination of the first cell)

Figure 5.9 Effects of fixed factors on CDCs

Chapter 5 Comparisons and Applications

104

5.4 Summary

This chapter discusses essential applications of our SSTA engine and comparisons of SSTA and

CTA. Table 5.1 shows the delay gain of SSTA with respect to CTA: about 13% and 25%

respectively in the 130 nm and 65 nm technology. The gain is predicted to be more and more

significant as the feature size continues to shrink, which implies that SSTA is a promising timing

tool. Section 5.2 interprets that the discrepancy between orderings obtained respectively by

SSTA and CTA comes from two factors: cell-to-cell delay correlation and standard deviation of

cell delay. In Section 5.3, a study is performed and feeds to conclude that CDCs increase

linearly with the compound ratio and effect of I/O edge is significant.

105

Chapter

6

Conclusions and Future Work

In Section 6.1, we review the objective of this research and show how the proposed SSTA

framework achieved this objective. The main results of our research are also summarized.

Section 6.2 closes this thesis by making suggestions for future work.

Chapter 6 Conclusions and Future Work

106

6.1 Conclusions

Corner-based Timing Analysis (CTA) becomes more and more pessimistic along with the ever

shrinking feature size. This trend has resulted in the rapid development of Statistical Static

Timing Analysis (SSTA) in recent years. However, this new generation of timing analysis, both

parametric and Monte Carlo methods, has not yet been widely adopted in the industry. On one

hand, MC-based methods are accurate, but suffer from the very high computational cost. On the

other hand, parametric methods require very little runtime whereas industry and researchers are

doubtful of their accuracy due to various weaknesses. The objective of the research was to pro-

pose a SSTA framework which performs as fast as parametric methods while not losing too much

accuracy compared to MC simulations.

The path-based SSTA framework proposed in this thesis computes path delay distributions by

propagating iteratively mean and variance of cell delay with the help of conditional moments.

These moments, conditioned on input slope and output load, are stored in a statistical timing

library. Compared to existing parametric methods, this semi-MC framework may:

a) avoid cell delay modeling errors;

b) take into account the effects on cell delay: input pin, output edge, input slope, and output

load;

c) deal with a large number of process parameters having any type of distribution.

The main difficulty of the SSTA framework is the construction of the statistical timing library.

The accuracy of conditional moments in the library is improved by using input signal based on

log-logistic distributions and inverters as output load to do timing characterization. In addition,

the runtime of characterization could be greatly decreased by the reducing dimension technique,

which will be validated in the near future.

From the point of view of accuracy, the SSTA engine allows us to estimate path delay means and

standard deviations with relative errors respectively less than 5% and 10%. As for CPU time, it

is about 105 times faster than a 1500 runs MC simulation for the same path. These figures show

that our research objective has been reached.

Section 6.2 Future Work

107

Also, compared to results of CTA, our SSTA engine has about 13% and 25% of delay gains

respectively in 130 nm and 65 nm technology. Such gains will be more significant in the follow-

ing generations of technology. Another comparison with CTA is about orderings of critical paths.

The discrepancy of orderings obtained respectively by SSTA and CTA comes from two factors:

cell-to-cell delay correlation and standard deviation of cell delay. The study of cell-to-cell corre-

lation leads to the conclusion that this statistical term increases linearly with the compound ratio

𝑟𝑠𝑢𝑚 and is affected by I/O edge.

6.2 Future Work

The SSTA framework proposed in this thesis provides acceptable results and runs much faster

than MC simulations. However, some work could be done to improve its accuracy and reduce

CPU time. This includes:

a) As mentioned in Chapter 1, environmental variations are time-varying. Thus, the accu-

racy of the SSTA engine could be improved by taking into account effects of supply

voltage and temperature variations.

b) In addition to mean and variance, it is possible to propagate skewness of cell delay distri-

butions. Then, path delays could be assumed to follow, for example, the skew-Normal

distributions. This allows the use of the skew-Normal based MAX approximation in [32],

which would provide better accuracy on computation of circuit delay.

c) As for CPU time, the promising acceleration technique in Section 4.2 should be vali-

dated and applied.

As stated in Chapter 2, SSTA must move beyond pure timing analysis to yield analysis and

optimization of circuit design to be truly useful for the designers. For this purpose, the problem of

optimizing circuit designs with delay correlations, apart from the initial work presented in

Chapter 5, should be further addressed.

Finally, the proposed SSTA framework has been validated using MC simulations as reference.

To be adopted by industry, this framework should be tested with real circuits.

Chapter 6 Conclusions and Future Work

108

109

Appendix

A

List of Equations

Appendix A: List of Equations

110

A.1 Equations in Chapter 1

𝑔𝑑 = 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒 𝑃, 𝑇, 𝑉𝑑𝑑 , 𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡 (1.1)

𝑐𝑑𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
= 𝑕(𝑔𝑑1, 𝑔𝑑2 , … , 𝑔𝑑𝐾) 1.2

𝑔𝑑 𝐶𝐿𝐾0→𝐶𝐿𝐾𝐴1
+ 𝑔𝑑 𝐶𝐿𝐾𝐴1→𝐴1

+ 𝑐𝑑𝐴1 ,𝑍1 ,𝛾𝑖𝑛
< 𝑔𝑑 𝐶𝐿𝐾0→𝐶𝐿𝐾𝑍1

− 𝑑𝑠𝑒𝑡𝑢𝑝 + 𝑇𝐶𝐿𝐾 (1.3)

𝑔𝑑 𝐶𝐿𝐾0→𝐶𝐿𝐾𝐴1
+ 𝑔𝑑 𝐶𝐿𝐾𝐴1→𝐴1

+ 𝑐𝑑𝐴1 ,𝑍1 ,𝛾𝑖𝑛
> 𝑔𝑑 𝐶𝐿𝐾0→𝐶𝐿𝐾𝑍1

+ 𝑑𝑕𝑜𝑙𝑑 (1.4)

𝑆𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
≝ 𝑔𝑑

 𝐶𝐿𝐾0→𝐶𝐿𝐾𝐴𝑖
+ 𝑔𝑑

 𝐶𝐿𝐾𝐴𝑖→𝐴𝑖
+ 𝑐𝑑𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛

 − 𝑔𝑑
 𝐶𝐿𝐾0→𝐶𝐿𝐾𝑍𝑗

− 𝑑𝑠𝑒𝑡𝑢𝑝 (1.5)

𝐻𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
≝ 𝑔𝑑

 𝐶𝐿𝐾0→𝐶𝐿𝐾𝐴𝑖
+ 𝑔𝑑

 𝐶𝐿𝐾𝐴𝑖→𝐴𝑖
+ 𝑐𝑑𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛

 − 𝑔𝑑
 𝐶𝐿𝐾0→𝐶𝐿𝐾𝑍𝑗

+ 𝑑𝑕𝑜𝑙𝑑 (1.6)

𝑆𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
< 𝑇𝐶𝐿𝐾 1.7

𝐻𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
> 0 (1.8)

𝑃𝑟 𝑆𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛
 < 𝑇𝐶𝐿𝐾 ∩ 𝐻𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛

> 0

𝛾𝑖𝑛 ∈𝛤𝐴𝑖,𝑍𝑗

𝐽

𝑗=1

𝐼

𝑖=1

 ≥ 𝜃 (1.9)

 1 − 𝐹𝑙 𝑝𝑢𝑝𝑟 ,𝑙 = 𝑃𝑟⁡(𝑝𝑙 ≥ 𝑝𝑢𝑝𝑟 ,𝑙) =

𝛽

2

 𝐹𝑙 𝑝𝑙𝑤𝑟 ,𝑙 = 𝑃𝑟 𝑝𝑙 ≤ 𝑝𝑙𝑤𝑟 ,𝑙 =
𝛽

2

 (1.10)

𝑃𝑟 𝑚𝑎𝑥
𝛾𝑖𝑛 ∈ℾ

∗
 𝑆𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛

 < 𝑇𝐶𝐿𝐾 ∩ 𝑚𝑖𝑛
𝛾𝑖𝑛 ∈ℾ

∗
 𝐻𝑆𝐴𝑖 ,𝑍𝑗 ,𝛾𝑖𝑛

 > 0 ≥ 𝜃 (1.11)

𝑡𝐺1
= 𝑚𝑎𝑥 𝑡𝐴1

+ 𝑔𝑑𝐴1 ,𝐺1
, 𝑡𝐴2

+ 𝑔𝑑𝐴2 ,𝐺1
 (1.12)

Appendix A: List of Equations

111

𝑔𝑑 = 𝑝𝑙

𝐿

𝑙=1

 (1.13)

 𝜇𝑔𝑑 = 𝜇𝑝𝑙

𝐿

𝑙=1

= 𝐿 ∙ 𝜇𝑝1

 𝜍𝑔𝑑 = 𝜍𝑝𝑙
2

𝐿

𝑙=1

= 𝐿 ∙ 𝜍𝑝1

 (1.14)

𝑤𝑔𝑑 = 𝜇𝑝𝑙 + 3 ∙ 𝜍𝑝𝑙

𝐿

𝑙=1

= 𝐿 ∙ 𝜇𝑝1
+ 3𝐿 ∙ 𝜍𝑝1

 (1.15)

𝜔 =
𝑤𝑔𝑑 − 𝜇𝑔𝑑 + 3 ∙ 𝜍𝑔𝑑

𝜇𝑔𝑑
=

3 𝐿 − 𝐿 ∙ 𝜍𝑝1

𝐿 ∙ 𝜇𝑝1

= 3 1 − 𝐿−0.5 ∙
𝜍𝑝1

𝜇𝑝1

 (1.16)

lim
𝐿→+∞

𝑃𝑟 𝑔𝑑 > 𝑤𝑔𝑑 = lim
𝐿→+∞

𝑃𝑟 𝑔𝑑 > 𝜇𝑔𝑑 + 3 𝐿 ∙ 𝜍𝑔𝑑 = 0 (1.17)

𝑤𝑔𝑑 = 𝜇𝑝1
+ 3 ∙ 𝜍𝑝1

= 𝜇𝑔𝑑 + 3 ∙ 𝜍𝑔𝑑 (1.18)

𝑤𝑝𝑑 = 𝑤𝑔𝑑𝑘

𝐾

𝑘=1

= 𝜇𝑔𝑑𝑘 + 3 ∙ 𝜍𝑔𝑑𝑘

𝐾

𝑘=1

= 𝜇𝑔𝑑𝑘

𝐾

𝑘=1

+ 3 ∙ 1 ∙ 𝜍𝑔𝑑𝑘𝜍𝑔𝑑𝑚

𝐾

𝑚=1

𝐾

𝑘=1

 (1.19)

𝜇𝑝𝑑 + 3 ∙ 𝜍𝑝𝑑 = 𝜇𝑔𝑑𝑘

𝐾

𝑘=1

+ 3 ∙ 𝜌𝑘𝑚 ∙ 𝜍𝑔𝑑𝑘𝜍𝑔𝑑𝑚

𝐾

𝑚=1

𝐾

𝑘=1

 (1.20)

𝑠𝑖 = 𝜇𝑖 + 3𝜍𝑖 (𝑖 = 1, 2) (1.21)

𝑤2 − 𝑠2 > 𝑤1 − 𝑠1 (1.22)

Appendix A: List of Equations

112

A.2 Equations in Chapter 2

𝑇𝐼𝐿𝐷 = 𝑇𝐼𝐿𝐷,𝑛𝑜𝑚 + ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑒𝑟 + ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑟𝑎 (2.1)

 ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑒𝑟 ,𝑘1
= ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑒𝑟 ,𝑘2

 𝑐𝑜𝑟 ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑟𝑎 ,𝑘1
, ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑟𝑎 ,𝑘2

 = 0

 (2.2)

𝑇𝐼𝐿𝐷 = 𝑇𝐼𝐿𝐷,𝑛𝑜𝑚 + ∆𝑇𝐼𝐿𝐷,𝑖𝑛𝑡𝑒𝑟 + ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 + ∆𝑇𝐼𝐿𝐷,𝑟𝑎𝑛 (2.3)

 ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘1
= ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘2

 𝑐𝑜𝑟 ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘1
, ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘3

 ≈ 1

 𝑐𝑜𝑟 ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘1
, ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘4

 ≈ 0

 (2.4)

 ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘1
= ∆𝑇𝐼𝐿𝐷,0,1 + ∆𝑇𝐼𝐿𝐷,1,1 + ∆𝑇𝐼𝐿𝐷,2,1

 ∆𝑇𝐼𝐿𝐷,𝑠𝑝𝑙 ,𝑘2

= ∆𝑇𝐼𝐿𝐷,0,1 + ∆𝑇𝐼𝐿𝐷,1,4 + ∆𝑇𝐼𝐿𝐷,2,11

 (2.5)

𝑔𝑑 ≈ 𝑔𝑑𝑛𝑜𝑚 + 𝑎𝑙 ∙ ∆𝑝𝑙

𝐿

𝑙=1

 (2.6)

𝑔𝑑 ≈ 𝑔𝑑𝑛𝑜𝑚 + 𝑎𝑙 ∙ ∆𝑝𝑙

𝐿

𝑙=1

+ 𝑏𝑙 ∙ ∆𝑝𝑙
2

𝐿

𝑙=1

+ 𝑐𝑙1𝑙2 ∙ ∆𝑝𝑙1∆𝑝𝑙2

𝐿

∀𝑙1≠𝑙2

 (2.7)

 𝜇𝑍 = 𝜇𝑋 + 𝜇𝑌

 𝜍𝑍
2 = 𝜍𝑋

2 + 𝜍𝑌
2 + 𝜌𝑋𝑌 ∙ 𝜍𝑋𝜍𝑌

 (2.8)

 𝜑 𝑥 =

1

 2𝜋
∙ 𝑒

−𝑥2

2

 𝛷 𝑥 = 𝜑 𝑢 𝑑𝑢
𝑥

−∞

 (2.9)

Appendix A: List of Equations

113

𝑊 = 𝛷
𝜇𝑉
𝜍𝑉
 ∙ 𝑋 + 1 − 𝛷

𝜇𝑉
𝜍𝑉
 ∙ 𝑌 + 𝜑

𝜇𝑉
𝜍𝑉
 ∙ 𝜍𝑉 (2.10)

 𝜇𝑉 = 𝜇𝑋 − 𝜇𝑌

 𝜍𝑉 = 𝜍𝑋
2 + 𝜍𝑌

2 − 𝜌𝑋𝑌 ∙ 𝜍𝑋𝜍𝑌
1 2

 (2.11)

A.3 Equations in Chapter 3

𝑝𝑙 = 𝑝𝑛𝑜𝑚 ,𝑙 + ∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙 + ∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙 (3.1)

𝑐𝑑 = max 𝑝𝑑1, 𝑝𝑑2, … , 𝑝𝑑𝑁 (3.2)

𝐸 𝑋 𝑌 = 𝑦 = 𝑥 ∙ 𝑓 𝑥 𝑦 𝑑𝑥
∞

−∞

 (3.3)

𝑉𝑎𝑟 𝑋 𝑌 = 𝑦 = 𝐸 𝑋2 𝑌 = 𝑦 − 𝐸2 𝑋 𝑌 = 𝑦 (3.4)

 𝜇𝑋 = 𝐸 𝑋 = 𝐸 𝐸(𝑋|𝑌 = 𝑦)

 𝜍𝑋

2 = 𝑉𝑎𝑟 𝑋 = 𝐸 𝑉𝑎𝑟 𝑋 𝑌 = 𝑦 + 𝑉𝑎𝑟 𝐸 𝑋 𝑌 = 𝑦

 (3.5)

 𝑃𝑟 𝑌 = 𝑦𝑖 = 𝛼𝑖 > 0 𝑖 = 1,… , 𝐼

 𝛼𝑖

𝐼

𝑖=1

= 1

 (3.6)

Appendix A: List of Equations

114

 𝜇𝑋 = 𝛼𝑖 ∙ 𝐸 𝑋 𝑌 = 𝑦𝑖)

𝐼

𝑖=1

 𝜍𝑋
2 = 𝛼𝑖 ∙ 𝑉𝑎𝑟 𝑋 𝑌 = 𝑦𝑖) + 𝐸 𝑋 𝑌 = 𝑦𝑖) − 𝐸(𝑋) 2

𝐼

𝑖=1

 (3.7)

 𝜇𝑋 = 𝐸(𝑋|𝑌 = 𝑦) ∙ 𝑓(𝑦)𝑑𝑦

 𝜍𝑋
2 = 𝑉𝑎𝑟 𝑋 𝑌 = 𝑦 + 𝐸(𝑋|𝑌 = 𝑦) − 𝜇𝑋

2 ∙ 𝑓(𝑦)𝑑𝑦

 (3.8)

 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 ≈
𝑐3 − 𝑐

𝑐3 − 𝑐2
∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐2 +

𝑐 − 𝑐2

𝑐3 − 𝑐2
∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐3

 𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 ≈
𝑐3 − 𝑐

𝑐3 − 𝑐2
∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐2 +

𝑐 − 𝑐2

𝑐3 − 𝑐2
∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐3

 (3.9)

𝐸 𝜏𝑜𝑢𝑡 |𝜏, 𝑐 ≈
𝜏7 − 𝜏

𝜏7 − 𝜏6
∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 +

𝜏 − 𝜏6

𝜏7 − 𝜏6
∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 (3.10)

𝑦𝑖 =
𝑠𝑖−1 + 𝑠𝑖

2
 𝑖 = 1,… , 𝐼 (3.11)

𝛼𝑖 =

 𝑓 𝜏𝑖𝑛 𝑑𝜏𝑖𝑛

𝑠1

−∞

 𝑖 = 1

 𝑓 𝜏𝑖𝑛 𝑑𝜏𝑖𝑛

𝑠𝑖

𝑠𝑖−1

 𝑖 = 2,… , 𝐼 − 1

 𝑓 𝜏𝑖𝑛 𝑑𝜏𝑖𝑛

+∞

𝑠𝐼−1

 𝑖 = 𝐼

 (3.12)

 𝜇𝜏𝑜𝑢𝑡 = 𝛼𝑖 ∙ 𝐸 𝜏𝑜𝑢𝑡 |𝑦𝑖 , 𝑐

𝐼

𝑖=1

 𝜍𝜏𝑜𝑢𝑡
2 = 𝛼𝑖 ∙ 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝑦𝑖 , 𝑐 + 𝐸 𝜏𝑜𝑢𝑡 |𝑦𝑖 , 𝑐 − 𝜇𝜏𝑜𝑢𝑡

2

𝐼

𝑖=1

 (3.13)

Appendix A: List of Equations

115

 𝜇𝑔𝑑 = 𝛼𝑖 ∙ 𝐸 𝑔𝑑|𝑦𝑖 , 𝑐

𝐼

𝑖=1

 𝜍𝑔𝑑
2 = 𝛼𝑖 ∙ 𝑉𝑎𝑟 𝑔𝑑|𝑦𝑖 , 𝑐 + 𝐸 𝑔𝑑|𝑦𝑖 , 𝑐 − 𝜇𝑔𝑑

2

𝐼

𝑖=1

 (3.14)

 𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝑐 = 𝑏1 + 𝑏2 ∙ 𝜏𝑖𝑛

 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝑐 = 𝑏3 + 𝑏4 ∙ 𝜏𝑖𝑛

 (3.15)

𝜇𝜏𝑜𝑢𝑡 = 𝑏1 + 𝑏2 ∙ 𝜇𝜏𝑖𝑛 (3.16)

𝜍𝜏𝑜𝑢𝑡
2 = 𝑏3 + 𝑏4 ∙ 𝜇𝜏𝑖𝑛 + 𝑏2 ∙ 𝜍𝜏𝑖𝑛

2
 (3.17)

𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝑐 =
𝜏7 ∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 − 𝜏6 ∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐

𝜏7 − 𝜏6
+

𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 − 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐

𝜏7 − 𝜏6
∙ 𝜏𝑖𝑛 (3.18)

𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝑐 =
𝜏7 ∙ 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 − 𝜏6 ∙ 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐

𝜏7 − 𝜏6
+

𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 − 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐

𝜏7 − 𝜏6
∙ 𝜏𝑖𝑛 (3.19)

 𝑏1 =

𝜏7 ∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 − 𝜏6 ∙ 𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐

𝜏7 − 𝜏6

 𝑏2 =
𝐸 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 − 𝐸 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐

𝜏7 − 𝜏6

 𝑏3 =
𝜏7 ∙ 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐 − 𝜏6 ∙ 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐

𝜏7 − 𝜏6

 𝑏4 =
𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏7, 𝑐 − 𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏6, 𝑐

𝜏7 − 𝜏6

 (3.20)

Appendix A: List of Equations

116

 𝜇𝑝𝑑 = 𝜇𝑔𝑑𝑘

𝐾

𝑘=1

 𝜍𝑝𝑑
2 = 𝜌𝑘𝑚 ∙ 𝜍𝑔𝑑𝑘𝜍𝑔𝑑𝑚

𝐾

𝑚=1

𝐾

𝑘=1

 (3.21)

𝑔𝑑𝑘 ≈ 𝑔𝑑𝑛𝑜𝑚 ,𝑘 + 𝑎1𝑘 ∙ ∆𝑝1𝑘 + 𝑎2𝑘 ∙ ∆𝑝2𝑘 (3.22)

𝑐𝑜𝑟 𝑔𝑑1, 𝑔𝑑2 =
𝑐𝑜𝑣 𝑔𝑑1, 𝑔𝑑2

𝜍𝑔𝑑1
𝜍𝑔𝑑2

 (3.23)

𝑐𝑜𝑣 𝑔𝑑1, 𝑔𝑑2 = 𝑎11𝑎12 ∙ 𝑐𝑜𝑣 ∆𝑝11 , ∆𝑝12 + 𝑎21𝑎22 ∙ 𝑐𝑜𝑣 ∆𝑝21 , ∆𝑝22 (3.24)

∆𝑝𝑙𝑘 = ∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙𝑘 + ∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙𝑘 (𝑙 = 1,2) (3.25)

𝑐𝑜𝑣 ∆𝑝𝑙1, ∆𝑝𝑙2 = 𝜍∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙1
𝜍∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙2

∙ 𝑐𝑜𝑟 ∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙1, ∆𝑝𝑖𝑛𝑡𝑒𝑟 ,𝑙2 +

𝜍∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙1
𝜍∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙2

∙ 𝑐𝑜𝑟 ∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙1, ∆𝑝𝑖𝑛𝑡𝑟𝑎 ,𝑙2 (𝑙 = 1,2) (3.26)

 𝑃𝑁𝑀 = 𝑝1
𝑁𝑀 , 𝑝2

𝑁𝑀 , … , 𝑝𝑛1
𝑁𝑀

 𝑃𝑃𝑀 = 𝑝1

𝑃𝑀 , 𝑝2
𝑃𝑀 , … , 𝑝𝑛2

𝑃𝑀

 𝑃𝑆 = 𝑝1
𝑆 , 𝑝2

𝑆 , … , 𝑝𝑛3
𝑆

 𝐿 = 𝑛1 + 𝑛2 + 𝑛3 (3.27)

𝑔𝑑 ≈ 𝑔𝑑𝑁𝑀 + 𝑔𝑑𝑃𝑀 + 𝑔𝑑𝑆 (3.28)

 𝑔𝑑𝑁𝑀 = 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒 𝑃
𝑁𝑀 , 𝑇, 𝑉𝑑𝑑 , 𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡

 𝑔𝑑𝑃𝑀 = 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒 𝑃

𝑃𝑀 , 𝑇, 𝑉𝑑𝑑 , 𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡

 𝑔𝑑𝑆 = 𝑓𝑡𝑦𝑝𝑒 ,𝑝𝑖𝑛 ,𝑒𝑑𝑔𝑒 𝑃
𝑆 , 𝑇, 𝑉𝑑𝑑 , 𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡

 (3.29)

Appendix A: List of Equations

117

 𝑐𝑜𝑟 𝑔𝑑𝑁𝑀 , 𝑔𝑑𝑃𝑀 = 0

 𝑐𝑜𝑟 𝑔𝑑𝑁𝑀 , 𝑔𝑑𝑆 = 0

 𝑐𝑜𝑟 𝑔𝑑𝑃𝑀 , 𝑔𝑑𝑆 = 0

 (3.30)

𝜌𝑘𝑚 =
𝑐𝑜𝑣 𝑔𝑑𝑘 , 𝑔𝑑𝑚

𝜍𝑔𝑑𝑘𝜍𝑔𝑑𝑚
 (3.31)

𝑐𝑜𝑣 𝑔𝑑𝑘 , 𝑔𝑑𝑚 = 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑁𝑀 , 𝑔𝑑𝑚

𝑁𝑀 + 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑃𝑀 , 𝑔𝑑𝑚

𝑃𝑀 + 𝑐𝑜𝑣 𝑔𝑑𝑘
𝑆 , 𝑔𝑑𝑚

𝑆 (3.32)

𝑔𝑑𝑁𝑀 = 𝑔𝑑𝑖𝑛𝑡𝑒𝑟
𝑁𝑀 + 𝑔𝑑𝑖𝑛𝑡𝑟𝑎

𝑁𝑀 (3.33)

𝑐𝑜𝑟 𝑔𝑑𝑘,𝑖𝑛𝑡𝑒𝑟
𝑁𝑀 , 𝑔𝑑𝑚,𝑖𝑛𝑡𝑒𝑟

𝑁𝑀 ≈ 1 (3.34)

𝑐𝑜𝑣 𝑔𝑑𝑘
𝑁𝑀 , 𝑔𝑑𝑚

𝑁𝑀 ≈ 𝜍𝑔𝑑𝑘 ,𝑖𝑛𝑡𝑒𝑟
𝑁𝑀 ∙ 𝜍𝑔𝑑𝑚 ,𝑖𝑛𝑡𝑒𝑟

𝑁𝑀 (3.35)

𝑐𝑜𝑣 𝑔𝑑𝑘 , 𝑔𝑑𝑚 ≈ 𝜍𝑔𝑑𝑘 ,𝑖𝑛𝑡𝑒𝑟
𝑁𝑀 ∙ 𝜍𝑔𝑑𝑚 ,𝑖𝑛𝑡𝑒𝑟

𝑁𝑀 + 𝜍𝑔𝑑𝑘 ,𝑖𝑛𝑡𝑒𝑟
𝑃𝑀 ∙ 𝜍𝑔𝑑𝑚 ,𝑖𝑛𝑡𝑒𝑟

𝑃𝑀 +

𝜍𝑔𝑑𝑘 ,𝑖𝑛𝑡𝑒𝑟
𝑆 ∙ 𝜍𝑔𝑑𝑚 ,𝑖𝑛𝑡𝑒𝑟

𝑆 (3.36)

𝑐𝑜𝑟 𝑝𝑑1, 𝑝𝑑2 =
𝑐𝑜𝑣 𝑝𝑑1, 𝑝𝑑2

𝜍𝑝𝑑1
𝜍𝑝𝑑2

 (3.37)

𝑐𝑜𝑣 𝑝𝑑1, 𝑝𝑑2 = 𝑐𝑜𝑣 𝑔𝑑𝑘1

𝐾1

𝑘1=1

, 𝑔𝑑𝑘2

𝐾2

𝑘2=1

 = 𝑐𝑜𝑣 𝑔𝑑𝑘1
, 𝑔𝑑𝑘2

𝐾2

𝑘2=1

𝐾1

𝑘1=1

 (3.38)

𝑐𝑜𝑣 𝑔𝑑𝑘1
, 𝑔𝑑𝑘2

 = 𝜍𝑔𝑑𝑘1
∙ 𝜍𝑔𝑑𝑘2

 (3.39)

𝑐𝑜𝑣 𝑔𝑑𝑘1
, 𝑔𝑑𝑘2

 ≈ 𝜍𝑔𝑑𝑘1 ,𝑖𝑛𝑡𝑒𝑟
𝑁𝑀 ∙ 𝜍𝑔𝑑𝑘2 ,𝑖𝑛𝑡𝑒𝑟

𝑁𝑀 + 𝜍𝑔𝑑𝑘1 ,𝑖𝑛𝑡𝑒𝑟
𝑃𝑀 ∙ 𝜍𝑔𝑑𝑘2 ,𝑖𝑛𝑡𝑒𝑟

𝑃𝑀 +

𝜍𝑔𝑑𝑘1 ,𝑖𝑛𝑡𝑒𝑟
𝑆 ∙ 𝜍𝑔𝑑𝑘2 ,𝑖𝑛𝑡𝑒𝑟

𝑆 (3.40)

Appendix A: List of Equations

118

 𝑒𝑎𝑏𝑠 = 𝜌 − 𝜌

 𝑒𝑟𝑒𝑙 =
 𝜌 − 𝜌

𝜌
%

 (3.41)

 𝑝𝑜𝑒 =

1

𝑁
∙ 𝑖𝑓 𝜌 𝑖 − 𝜌𝑖 < 0, 𝑡𝑕𝑒𝑛 1, 𝑒𝑙𝑠𝑒 0

𝑁

𝑖=1

 𝑝𝑢𝑒 =
1

𝑁
∙ 𝑖𝑓 𝜌 𝑖 − 𝜌𝑖 > 0, 𝑡𝑕𝑒𝑛 1, 𝑒𝑙𝑠𝑒 0

𝑁

𝑖=1

 𝑝𝑎𝑏𝑠 =
1

𝑁
∙ 𝑖𝑓 𝑒𝑎𝑏𝑠 ≤ 0.2, 𝑡𝑕𝑒𝑛 1, 𝑒𝑙𝑠𝑒 0

𝑁

𝑖=1

 𝑝𝑟𝑒𝑙 =
1

𝑁
∙ 𝑖𝑓 𝑒𝑟𝑒𝑙 ≤ 20%, 𝑡𝑕𝑒𝑛 1, 𝑒𝑙𝑠𝑒 0

𝑁

𝑖=1

 (3.42)

𝑝𝑑𝑑𝑎𝑡𝑎 − 𝑝𝑑𝑐𝑙𝑘 < 𝑇𝐶𝐿𝐾 (3.43)

𝑉𝑎𝑟 𝑝𝑑𝑑𝑎𝑡𝑎 − 𝑝𝑑𝑐𝑙𝑘 = 𝜍𝑑𝑎𝑡𝑎
2 + 𝜍𝑐𝑙𝑘

2 − 2 ∙ 𝜌𝑑𝑐 ∙ 𝜍𝑑𝑎𝑡𝑎 ∙ 𝜍𝑐𝑙𝑘 (3.44)

A.4 Equations in Chapter 4

𝐹 𝑥; 𝛼, 𝛽 =
𝛼

𝑥

𝛽

+ 1

−1

 𝑥 > 0 (4.1)

 𝜏𝑖𝑛 =

5

3
∙ 𝑡2 − 𝑡1

 ∆𝑉 = 0 − 𝑉𝑚𝑖𝑛 = 𝑉𝑚𝑖𝑛

 ∆𝑡 = 𝑡𝑚𝑖𝑛 − 𝑡0

 (4.2)

Appendix A: List of Equations

119

𝑉 = 𝐻 𝑡 =

 −
∆𝑉
∆𝑡 ∙

 𝑡 + ∆𝑡 − 𝑡𝑚𝑖𝑛 𝑡 ≤ 𝑡𝑚𝑖𝑛

 𝑉𝑑𝑑 + ∆𝑉 ∙
𝛼

 𝑡− 𝑡𝑚𝑖𝑛 𝜏𝑖𝑛

𝛽

+ 1
−1

− ∆𝑉 𝑡 > 𝑡𝑚𝑖𝑛

 (4.3)

 ∆𝑉 = 𝑔∆𝑉 𝜏𝑖𝑛

 ∆𝑡 = 𝑔∆𝑡 𝜏𝑖𝑛

 𝛽 = 𝑔𝛽 𝜏𝑖𝑛

 (4.4)

 ∆𝑉 =

𝐶∆𝑉
𝐴∆𝑉 + 𝐵∆𝑉 ∙ 𝜏𝑖𝑛

 ∆𝑡 = 𝐴∆𝑡 + 𝐵∆𝑡 ∙ 𝜏𝑖𝑛

 𝛽 =
𝐶𝛽

𝐴𝛽 + 𝐵𝛽 ∙ 𝜏𝑖𝑛
+ 𝐷𝛽

 (4.5)

𝑡 = 𝑡𝑚𝑖𝑛 + 𝜏𝑖𝑛 ∙ 𝛼 ∙
𝑉𝑑𝑑−𝑉

𝑉 +∆𝑉

−

1

𝛽
 𝑡 > 𝑡𝑚𝑖𝑛 (4.6)

𝑡2 − 𝑡1 = 𝜏𝑖𝑛 ∙ 𝛼 ∙

0.2

0.8 +
∆𝑉
𝑉𝑑𝑑

−
1
𝛽

−
0.8

0.2 +
∆𝑉
𝑉𝑑𝑑

−
1
𝛽

= 0.6 ∙ 𝜏𝑖𝑛 (4.7)

𝛼 = 0.6 ∙

0.2

0.8 +
∆𝑉
𝑉𝑑𝑑

−
1
𝛽

−
0.8

0.2 +
∆𝑉
𝑉𝑑𝑑

−
1
𝛽

−1

 (4.8)

Appendix A: List of Equations

120

𝐸 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡

𝜇𝑓𝑡
= 𝑕1

𝜏𝑖𝑛
𝜇𝑓𝑡

𝑉𝑎𝑟 𝜏𝑜𝑢𝑡 |𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡

𝜍𝑓𝑡
2 = 𝑕2

𝜏𝑖𝑛
𝜇𝑓𝑡

𝐸 𝑔𝑑|𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡

𝜇𝑓𝑡
= 𝑕3

𝜏𝑖𝑛
𝜇𝑓𝑡

𝑉𝑎𝑟 𝑔𝑑|𝜏𝑖𝑛 , 𝐶𝑜𝑢𝑡

𝜍𝑓𝑡
2 = 𝑕4

𝜏𝑖𝑛
𝜇𝑓𝑡

 (4.9)

 𝜇𝑓𝑡 = 𝐴 + 𝐵 ∙ 𝐶𝑜𝑢𝑡

 𝜍𝑓𝑡
2 = 𝐵2 ∙ 𝐶𝑜𝑢𝑡

2

 (4.10)

A.5 Equations in Chapter 5

 𝑤𝐼𝑃𝑁𝑚 = 𝑚𝑎𝑥
𝑢∈𝑈100 ,𝑚

 𝑤𝑝𝑑𝑢

 𝑠𝐼𝑃𝑁𝑚 = 𝑚𝑎𝑥
𝑢∈𝑈100 ,𝑚

 𝜇𝑝𝑑𝑢 + 3 ∙ 𝜍𝑝𝑑𝑢
 (5.1)

𝑟𝐺𝑆 =
𝐺𝑆

𝑆𝐶𝑇𝐴
% (5.2)

𝐺𝐷 =
1

7
∙ 𝑤𝐼𝑃𝑁𝑚 − 𝑠𝐼𝑃𝑁𝑚

7

𝑚=1

 (5.3)

𝑟𝐺𝐷 =
1

7
∙

𝑤𝐼𝑃𝑁𝑚 − 𝑠𝐼𝑃𝑁𝑚
𝑤𝐼𝑃𝑁𝑚

7

𝑚=1

% (5.4)

𝑠𝑝𝑑𝑢𝑖
= 𝜇𝑝𝑑𝑢𝑖

+ 3 ∙ 𝜍𝑝𝑑𝑢𝑖
 (5.5)

Appendix A: List of Equations

121

𝑟𝑘𝑢𝑖 = 𝑖𝑓 𝑤𝑝𝑑𝑢𝑗
≥ 𝑤𝑝𝑑𝑢𝑖

, 𝑡𝑕𝑒𝑛 1, 𝑒𝑙𝑠𝑒 0

100

𝑗=1

 (5.6)

 𝑟𝑘𝑢𝑖1 = 𝑀 − 𝑘 + 1

 𝑟𝑘𝑢𝑖2 = 𝑀 − 𝑘 + 2

⋯⋯

 𝑟𝑘𝑢𝑖𝑘
= 𝑀

 (5.7)

𝑤𝑔𝑑𝑘 = 𝜇𝑔𝑑𝑘 + 𝜃𝑘 ∙ 𝜍𝑔𝑑𝑘 𝑘 = 1, 2, … , 𝐾 (5.8)

𝑠𝑝𝑑 = 𝜇𝑔𝑑𝑘

𝐾

𝑘=1

+ 3 ∙ 𝜌𝑘𝑚 ∙ 𝜍𝑔𝑑𝑘𝜍𝑔𝑑𝑚

𝐾

𝑚=1

𝐾

𝑘=1

 (5.9)

𝑤𝑝𝑑 = 𝜇𝑔𝑑𝑘

𝐾

𝑘=1

+ 3 ∙ 1 ∙
𝜃𝑘 ∙ 𝜍𝑔𝑑𝑘

3

𝜃𝑚 ∙ 𝜍𝑔𝑑𝑚
3

𝐾

𝑚=1

𝐾

𝑘=1

 (5.10𝑎)

= 𝜇𝑔𝑑𝑘

𝐾

𝑘=1

+ 3 ∙ 1 ∙
𝑤𝑔𝑑𝑘 − 𝜇𝑔𝑑𝑘

3

𝑤𝑔𝑑𝑘 − 𝜇𝑔𝑑𝑘

3

𝐾

𝑚=1

𝐾

𝑘=1

 (5.10𝑏)

𝑠𝑝𝑑
′ = 𝜇𝑝𝑑 + 3 ∙ 𝜍𝑝𝑑

′ (5.11)

𝑠𝑝𝑑
′′ = 𝜇𝑝𝑑 + 3 ∙ 𝜍𝑝𝑑

′′ (5.12)

𝜍𝑝𝑑
′ = 1 ∙ 𝜍𝑔𝑑𝑘𝜍𝑔𝑑𝑚

𝐾

𝑚=1

𝐾

𝑘=1

 (5.13)

Appendix A: List of Equations

122

𝜍𝑝𝑑
′′ = 𝜌𝑘𝑚 ∙

𝜃𝑘 ∙ 𝜍𝑔𝑑𝑘
3

𝜃𝑚 ∙ 𝜍𝑔𝑑𝑚

3

𝐾

𝑚=1

𝐾

𝑘=1

 (5.14)

𝑉𝑎𝑟 𝑝𝑑𝑑𝑎𝑡𝑎 − 𝑝𝑑𝑐𝑙𝑘 = 𝜍𝑑𝑎𝑡𝑎
2 + 𝜍𝑐𝑙𝑘

2 − 2 ∙ 𝜌𝑑𝑐 ∙ 𝜍𝑑𝑎𝑡𝑎 ∙ 𝜍𝑐𝑙𝑘 (5.15)

 𝑟𝑠𝑢𝑚 = 𝑟1 + 𝑟2

 𝑟𝑑𝑖𝑓 = 𝑟1 − 𝑟2

 𝑟𝑝𝑑𝑡 = 𝑟1 ∙ 𝑟2

 (5.16)

 𝑟1 =

𝜇𝜏𝑖𝑛 ,1

𝜇𝜏𝑜𝑢𝑡 ,1

∈ 0.85, 0.9

 𝑟2 =
𝜇𝜏𝑖𝑛 ,2

𝜇𝜏𝑜𝑢𝑡 ,2

∈ 0.85, 0.9

 (5.17)

123

Appendix

B

Author’s Publications

Appendix B: Author’s Publications

124

[P1] V. MIGAIROU, R. WILSON, S. ENGELS, Z. WU, N. AZEMARD, and P. MAURINE,

"A Simple Statistical Timing Analysis Flow and its Application to Timing Margins Eval-

uation", Proc. PATMOS, 2007, pages 138 – 147.

[P2] B.REBAUD, M.BELLEVILLE, C.BERNARD, Z .WU, M.ROBERT, P.MAURINE, and

N. AZEMARD, "Setup and Hold Timing Violations Induced by Process Variations, in a

Digital Multiplier", Proc. ISVLSI, 2008, pages 316 – 321.

[P3] Z. WU, P. MAURINE, N. AZEMARD, and G. DUCHARME, "SSTA Considering Ef-

fects of Structure Correlations, Input Slope and Output Load Variations", Proc. FTFC,

2008, pages 39 – 44.

[P4] B.REBAUD, M.BELLEVILLE, C.BERNARD, Z .WU, M.ROBERT, P.MAURINE, and

N. AZEMARD, "Impact de la Variabilité des Caractéristiques Temporelles des Cellules

Combinatoires et Séquentielles sur un Opérateur Numérique", Proc. FTFC, 2008, pages

45 – 50.

[P5] Z. WU, P. MAURINE, N. AZEMARD, and G. DUCHARME, "SSTA with Correlations

Considering Input Slope and Output Load Variations", Proc. VLSI-SOC, 2008, pages 164

– 167.

[P6] Z. WU, P. MAURINE, N. AZEMARD, and G. DUCHARME, "Conditional Moments

Based SSTA Considering Switching Process Induced Correlations", Proc. DCIS, 2008.

[P7] Z. WU, P. MAURINE, N. AZEMARD, and G. DUCHARME, "SSTA Considering

Switching Process Induced Correlations", Proc. APCCAS, 2008, pages 562 – 565.

[P8] Z. WU, P. MAURINE, N. AZEMARD, and G. DUCHARME, "Interpretation of SSTA

Results", Proc. FTTC, 2009.

[P9] Z. WU, P. MAURINE, N. AZEMARD, and G. DUCHARME, "Interpreting SSTA Re-

sults with Correlations", Proc. PATMOS, 2009.

125

References

[1] R. WILSON, “Statistical Timing Analysis Moves from Interesting to Necessary”, Elec-

trical Design News, June 2006.

[2] D. MALINIAK, “Timing Analysis Rounds the Corner to Statistics”, Electronic Design,

December 2005.

[3] V. MIGAIROU, “Conception et Vérification des Circuits CMOS Digitaux Basées sur les

Statistiques : Application à l'Evaluation des Marges Temporelles de Conception”, Thèse,

Chapitre 1, Université de Montpellier II, 2007.

[4] http://en.wikipedia.org/wiki/Bilinear_interpolation

[5] J. MODER, C. Phillips, and E. Davis, Project Management with CPM, PERT and Prece-

dence Diagramming, Chapter 9, Van Nostrand Reinhold, 1983.

[6] D. BONING and S. NASSIF, “Models of Process Variations in Device and Interconnect”,

Design of High Performance Microprocessor Circuits, Chapter 6, Wiley-IEEE Press,

2000.

[7] http://www-device.eecs.berkeley.edu/~bsim3/bsim_ent.html

[8] T. KIRKPATRICK and N. CLARK, “PERT as an aid to logic design”, IBM Journal of

Research and Development, vol. 10, no. 2, pages 135 – 141, 1966.

[9] H. JYU, S. MALIK, S. DEVADAS, and K. KEUTZER, “Statistical Timing Analysis of

Combinational Logic Circuits”, IEEE Trans. VLSI Systems, vol. 1, no. 2, pages 126 – 137,

1993.

[10] R. BRAWHEAR, N. MENEZES, C. OH, L. PILLAGE, and M. MERCER, “Predicting

Circuit Performance Using Circuit-level Statistical Timing Analysis”, Proc. DATE, 1994,

pages 332 – 337.

http://193.49.104.5/Document.htm&numrec=031996613917840
http://193.49.104.5/Document.htm&numrec=031996613917840
http://en.wikipedia.org/wiki/Bilinear_interpolation
http://www-device.eecs.berkeley.edu/~bsim3/bsim_ent.html

References

126

[11] H. CHANG and S. SAPATNEKAR, “Statistical Timing Analysis Considering Spatial

Correlations Using a Single PERT-like Traversal”, Proc. ICCAD, 2003, pages 621 – 625.

[12] A. AGARWAL, D. BLAAUW, and V. ZOLOTOV, “Statistical Timing Analysis for In-

tra-die Process Variations with Spatial Correlations”, Proc. ICCAD, 2003, pages 900 –

907.

[13] C. VISWESWARIAH, K. RAVINDRAN, K. KALAFALA, S. WALER, and S. NA-

RAYAN, “First-order Incremental Block-based Statistical Timing Analysis”, Proc. DAC,

2004, pages 331 – 336.

[14] L. ZHANG, W. CHEN, Y. HU, J. GUBNER, and C. CHEN, “Correlation-preserved non-

Gaussian Statistical Timing Analysis with Quadratic Timing Model”, Proc. DAC, 2005,

pages 83 – 88.

[15] Y. ZHAN, A. STROJWAS, X. LI, and L. PILEGGI, “Correlation-aware Statistical Tim-

ing Analysis with non-Gaussian Delay Distribution”, Proc. DAC, 2005, pages 77 – 82.

[16] V. KHANDELWAL and A. SRIVASTAVA, “A General Framework for Accurate Statis-

tical Timing Analysis Considering Correlations”, Proc. DAC, 2005, pages 89 – 94.

[17] H. CHANG, V. ZOLOTOV, S. NARAYAN, and C. VISWESWARIAH, “Parameterized

Block-based Statistical Timing Analysis with non-Gaussian Parameters, Nonlinear Delay

Functions”, Proc. DAC, 2005, pages 71 – 76.

[18] J. SINGH and S. SAPATNEKAR, “Statistical Timing Analysis with Correlated non-

Gaussian Parameters Using Independent Component Analysis”, Proc. DAC, 2006, pages

155 – 160.

[19] L. CHENG, J. XIONG, and L. HE, “Non-Linear Statistical Static Timing Analysis for

non-Gaussian Variation Sources”, Proc. DAC, 2007, pages 250 – 255.

[20] Z. FENG, P. LI, and Y. ZHAN, “Fast Second-order Statistical Static Timing Analysis Us-

ing Parameter Dimension Reduction”, Proc. DAC, 2007, pages 244 – 249.

[21] F. NAJM and N. MENEZES, “Statistical Timing Analysis Based on a Timing Yield

Model”, Proc. DAC, 2004, pages 460 – 465.

[22] C. AMIN, N. MENEZES, K. KILLPACK, F. DARTU, U. CHOUDHURY, N. HAKIM,

and Y. ISMAIL, “Statistical Static Timing Analysis: How simple can we get?”, Proc.

DAC, 2005, pages 652 – 657.

References

127

[23] K. HELOUE and F. NAJM, “Statistical Timing Analysis with Two-sided Constraints”,

Proc. ICCAD, 2005, pages 829 – 836.

[24] L. SCHEFFER, “The Count of Monte Carlo”, Proc. TAU, 2004.

[25] S. TASIRAN and A. DEMIR, “Smart Monte Carlo for Yield Estimation”, Proc. TAU,

2006.

[26] R. KANJ, R. JOSHI, and S. NASSIF, “Mixture Importance Sampling and its Application

to the Analysis of SRAM Designs in the Presence of Rare Failure Events”, Proc. DAC,

2006, pages 69 – 72.

[27] V. VEETIL, D. BLAAUW, and D. SYLVESTER, “Criticality Aware Latin Hypercube

Sampling for Efficient Statistical Timing Analysis”, Proc. TAU, 2007.

[28] M. BUHLER, J. KOEHL, J. BICKFORD, J. HIBBELER, U. SCHLICHTMANN, R.

SOMMER, M. PRONATH, and A. RIPP, “DATE 2006 Special Session: DFM/DFY De-

sign for Manufacturability and Yield - Influence of Process Variations in Digital, Analog

and Mixed-signal Circuit Design”, Proc. DATE, 2006, pages 1 – 6.

[29] D. BLAAUW, K. CHOPRA, A. SRIVASTAVA, and L. SCHEFFER, “Statistical Timing

Analysis: From Basic Principles to State of the Art”, IEEE Trans. CAD, vol. 27, no. 4,

pages 589 – 607, 2008.

[30] C. CLARK, “The Greatest of a Finite Set of Random variables”, Journal Operation Re-

search, vol. 9, no. 2, pages 145 – 162, 1961.

[31] L. XIE, A. DAVOODI, J. ZHANG, and T. WU, “Adjustment-based Modeling for Statis-

tical Static Timing Analysis with High Dimension of Variability”, Proc. ICCAD, 2008,

pages 181 – 184.

[32] K. CHOPRA, B. ZHAI, D. BLAAUW, and D. SYLVESTER, “A New Statistical MAX

Operation for Propagating Skewness in Statistical Timing Analysis”, Proc. ICCAD, 2006,

pages 237 – 243.

[33] A. AGARWAL, F. DARTU, and D. BLAAUW, “Statistical Gate Delay Model Consider-

ing Multiple Input Switching”, Proc. DAC, 2004, pages 658 – 663.

[34] Y. KUMAR, J. LI, C. TALARICO, and J. WANG, “A Probabilistic Collocation Method

Based Statistical Gate Delay Model Considering Process Variations and Multiple Input

Switching”, Proc. DATE, 2005, pages 770 – 775.

References

128

[35] M. AGARWAL, K. AGARWAL, D. SYLVESTER, and D. BLAAUW, “Statistical Mod-

eling of Cross-coupling Effects in VLSI Interconnects”, Proc. ASP-DAC, 2005, pages 503

– 506.

[36] R. CHEN and H. ZHOU, “Clock Schedule Verification under Process Variations”, Proc.

ICCAD, 2004, pages 619 – 625.

[37] L. ZHANG, Y. HU, and C. CHEN, “Statistical Timing Analysis in Sequential Circuit for

On-chip Global Interconnect Pipelining”, Proc. DAC, 2004, pages 904 – 907.

[38] K. CHOPRA, S. SHAH, A. SRIVASTAVA, D. BLAAUW, and D. SYLVESTER, “Pa-

rametric Yield Maximization Using Gate Sizing Based on Efficient Statistical Power and

Delay Gradient Computation”, Proc. ICCAD, 2005, pages 1023 – 1028.

[39] J. XIONG, V. ZOLOTOV, N. VENKATESWARAN, and C. VISWESWARIAH, “Criti-

cality Computation in Parameterized Statistical Timing”, Proc. DAC, 2006, pages 63 – 68.

[40] M. GUTHAUS, N. VENKATESWARAN, C. VISWESWARIAH, and V. ZOLOTOV,

“Gate Sizing Using Incremental Parameterized Statistical Timing Analysis”, Proc. IC-

CAD, 2005, pages 1029 – 1036.

[41] D. SINHA, N. SHENOY, and H. ZHOU, “Statistical Gate Sizing for Timing Yield Opti-

mization”, Proc. ICCAD, 2005, pages 1140 – 1146.

[42] V. KHANDELWAL, A. DAVOODI, A. NANAVATI, and A. SRIVASTAVA, “A Prob-

abilistic Approach to Buffer Insertion”, Proc. ICCAD, 2003, pages 560 – 567.

[43] http://www.synopsys.com/

[44] S. YEN, D. DU, and S. GHANTA, “Efficient Algorithms for Extracting the K Most Criti-

cal Paths in Timing Analysis”, Proc. DAC, 1989, pages 649 – 654.

[45] http://www.cadence.com/

[46] D. SINHA, H. ZHOU, and N. SHENOY, “Advances in Computation of the Maximum of

a Set of Random Variables”, Proc. ISQED, 2006, pages 306 – 311.

[47] A. SRIVASTAVA, D. SYLVESTER, D. BLAAUW, Statistical Analysis and Optimiza-

tion of VLSI: Timing and Power, Chapter 3, Springer, 2005.

[48] P. BILLINGSLEY, Probability and Measure, 2nd edition, page 477, Wiley New York,

1986.

[49] http://www.r-project.org/

http://www.synopsys.com/
http://www.r-project.org/

References

129

[50] B. LASBOUYGUES, “Analyse Statique Temporelle des Performances en Présence de

Variations de Tension d’Alimentation et de Température”, Thèse, Chapitre 2, Université

de Montpellier II, 2006.

[51] http://en.wikipedia.org/wiki/Least_squares_method

[52] P. MAURINE, “Modélisation et Optimisation des Performances de la Logique Statique

en Technologie CMOS Submicronique”, Thèse, Chapitre 3, Université de Montpellier II,

2001.

http://193.49.104.5/Document.htm&numrec=031996613917840
http://en.wikipedia.org/wiki/Least_squares_method

References

130

SSTA Framework Based on Moments Propagation

Abstract

Corner-based Timing Analysis (CTA) becomes more and more pessimistic along with the shrinking

feature size. This trend has urged the need of Statistical Static Timing Analysis (SSTA). However, this

new generation of timing analysis has not yet widely adopted in the industry due to various weaknesses.

The path-based SSTA framework proposed in this thesis computes path delay distributions by propagating

iteratively mean and variance of cell delay with the help of conditional moments. These moments, condi-

tioned on input slope and output load, are stored in a statistical timing library. This framework performs as

fast as parametric methods while not losing too much accuracy compared to Monte Carlo simulations,

which meets the objective of the research. Another contribution of this thesis is the improvement of the

techniques to do timing characterization. We use input signals based on log-logistic distributions and

inverters as output load to capture slope and load variations. In addition, the runtime of characterization

could be greatly saved by the reducing dimension technique, which would be validated in the near future.

In the part of applications, our SSTA engine shows significant delay gains with respect to CTA. The

discrepancy of critical paths orderings obtained respectively by SSTA and CTA is explained as well.

Finally, a study of cell-to-cell correlation is given.

