Contribution ï¿œ la

 ri¿œœsolution numï¿œrique des problï¿øemes de Helmholtz
Magdalena Grigoroscuta-Strugaru

INRIA Magique-3D and LMA, University of Pau

Advisors:

Mohamed Amara (INRIA, LMA) Henri Calandra (TOTAL)
Rabia Djellouli (CSUN, INRIA)

Outline

Outline

- Motivation and Context

Outline

- Motivation and Context
- Solution methodologies for Helmholtz problems

Outline

- Motivation and Context
- Solution methodologies for Helmholtz problems
- A new DG method

Outline

- Motivation and Context
- Solution methodologies for Helmholtz problems
- A new DG method
- A modified DG method

Outline

- Motivation and Context
- Solution methodologies for Helmholtz problems
- A new DG method
- A modified DG method
- An improved modified DG method

Outline

- Motivation and Context
- Solution methodologies for Helmholtz problems
- A new DG method
- A modified DG method
- An improved modified DG method
- Summary and perspectives

Motivation and Context

Motivation and Context

Applications

Motivation and Context

Applications

- Geophysical exploration

Motivation and Context

Applications

- Geophysical exploration
- Radar

Motivation and Context

Applications

- Geophysical exploration
- Radar
- Sonar

Motivation and Context

Applications

- Geophysical exploration
- Radar
- Sonar
- Medical imaging

Motivation and Context

Applications

- Geophysical exploration
- Radar
- Sonar
- Medical imaging
- Nondestructive testing

Motivation and Context

Numerical Difficulties

Motivation and Context

Numerical Difficulties

Motivation and Context

Numerical Difficulties

Motivation and Context

Numerical Difficulties

$$
k a=1, \quad \frac{h}{a}=\frac{1}{10}
$$

Motivation and Context

Numerical Difficulties

Motivation and Context

Numerical Difficulties

$$
k a=3
$$

Motivation and Context

Numerical Difficulties

Motivation and Context

Numerical Difficulties

Motivation and Context

Numerical Difficulties

Motivation and Context

Numerical Difficulties

$k a=3, \quad \frac{h}{a}=\frac{1}{30} \Longrightarrow k h=\frac{1}{10}$

Motivation and Context

Numerical Difficulties

Resolution necessary to achieve 10% on the relative error

Motivation and Context

Numerical Difficulties

Resolution necessary to achieve 10% on the relative error

』 $k h \neq$ constant

Motivation and Context

Numerical Difficulties

$$
\frac{\left|u-u_{h}\right|_{1}}{|u|_{1}} \leq C_{1} k h+C_{2} k^{3} h^{2} ; \quad k h<1
$$

(Babuška et al (95, 00))

Motivation and Context

Numerical Difficulties
 "Realistic" simulation (Tezaur et al (02))

$$
k a=10
$$

System of about 9.6 million complex unknowns

Motivation and Context

Motivation and Context

Prominent Plane Waves Based Approaches

- Weak Element Method (Rose (75))
- Partition of Unity Method
(Babuška-Melenk (97), Laghrouche-Bettes (00))
- Ultra-Weak Variational Method (Cessenat-Desprï¿œes (98))
- Least Squares Method (Monk-Wang (99))
- Discontinuous Galerkin Method: DGM (Farhat et al (01, 03, 04, 05))

Motivation and Context

DGM Formulation (Farhat et al)

Motivation and Context

DGM Formulation (Farhat et al) Mathematical model

Motivation and Context

DGM Formulation (Farhat et al)
 Mathematical model

Motivation and Context

DGM Formulation (Farhat et al)
 Mathematical model

Motivation and Context

DGM Formulation (Farhat et al)
 Mathematical model

$\Delta u+k^{2} u=0$ in Ω

Motivation and Context

DGM Formulation (Farhat et al)
 Mathematical model

$$
\begin{array}{r}
\Delta u+k^{2} u=0 \text { in } \Omega \\
\partial_{n} u=\mathrm{i} k u+g \text { on } \Sigma
\end{array}
$$

Motivation and Context

DGM Formulation (Farhat et al) Approximation

Motivation and Context

DGM Formulation (Farhat et al) Approximation

Motivation and Context

DGM Formulation (Farhat et al) Approximation

$$
\begin{gathered}
u \equiv \sum_{l=1}^{4} u_{l}^{K} \phi_{l}^{K} \text { in } K \\
\phi_{l}^{K}=e^{\mathrm{i} k x \cdot d_{l}}
\end{gathered}
$$

Motivation and Context

DGM Formulation (Farhat et al) Approximation

$$
\begin{gathered}
u \equiv \sum_{l=1}^{4} u_{l}^{K} \phi_{l}^{K} \text { in } K \\
\phi_{l}^{K}=e^{\mathrm{i} k x \cdot d_{l}} \\
\lambda=\lambda^{K} \in \mathbb{C} \text { on } \partial K \cap \partial K^{\prime}
\end{gathered}
$$

Motivation and Context

DGM Formulation (Farhat et al)
 Variational Formulation

$$
\left\{\begin{aligned}
\boldsymbol{a}(u, \boldsymbol{v})+b(\boldsymbol{v}, \lambda) & =\boldsymbol{F}(\boldsymbol{v}) \\
b(u, \boldsymbol{\mu}) & =\mathbf{0}
\end{aligned}\right.
$$

Motivation and Context

DGM Formulation (Farhat et al)

Variational Formulation

$$
\begin{gathered}
\left\{\begin{aligned}
a(u, v)+b(\boldsymbol{v}, \lambda) & =\boldsymbol{F}(\boldsymbol{v}) \\
b(u, \boldsymbol{\mu}) & =\mathbf{0}
\end{aligned}\right. \\
a(u, v)=\sum_{K \in \tau_{h}}\left(\int_{K}\left(\nabla u . \nabla \bar{v}-k^{2} u \bar{v}\right) d x-\mathrm{i} k \int_{\partial K \cap \Sigma} u \bar{v} d s\right)
\end{gathered}
$$

Motivation and Context

DGM Formulation (Farhat et al) Variational Formulation

$$
\begin{gathered}
a(u, v)+b(\boldsymbol{v}, \lambda)=\boldsymbol{F}(\boldsymbol{v}) \\
b(u, \mu)=0 \\
b(v, \mu)=\sum_{K \in \tau_{h}} \int_{\partial K \cap \partial K^{\prime}} \mu \bar{v} d s
\end{gathered}
$$

Motivation and Context

DGM Formulation (Farhat et al) Variational Formulation

$$
\left\{\begin{array}{c}
\boldsymbol{a (u , v) + b (\boldsymbol { v } , \lambda)}=\boldsymbol{F}(\boldsymbol{v}) \\
b(u, \boldsymbol{\mu})=0 \\
\boldsymbol{F}(\boldsymbol{v})=\sum_{K \in \tau_{h}} \int_{\partial K \cap \Sigma} g \bar{v} d s
\end{array}\right.
$$

Motivation and Context

DGM Formulation (Farhat et al)

Algebraic Formulation

$$
\begin{aligned}
\boldsymbol{A} u+\boldsymbol{B} \boldsymbol{\lambda} & =\boldsymbol{f} \\
\boldsymbol{B}^{T} u & =\mathbf{0}
\end{aligned}
$$

Motivation and Context

DGM Formulation (Farhat et al)

Algebraic Formulation

Motivation and Context

DGM Formulation (Farhat et al) Main Features

Motivation and Context

DGM Formulation (Farhat et al)

Main Features

- Plane waves for local approximation of the field

Motivation and Context

DGM Formulation (Farhat et al)

Main Features

- Plane waves for local approximation of the field
- Lagrange multipliers to enforce continuity

Motivation and Context

DGM Formulation (Farhat et al)

Main Features

- Plane waves for local approximation of the field
- Lagrange multipliers to enforce continuity
- Analytical evaluation of the elementary matrices

Motivation and Context

DGM Formulation (Farhat et al)

Main Features

- Plane waves for local approximation of the field
- Lagrange multipliers to enforce continuity
- Analytical evaluation of the elementary matrices
- Global system: symmetric and sparse

Motivation and Context

DGM Formulation (Farhat et al)

Main Features

- Plane waves for local approximation of the field
- Lagrange multipliers to enforce continuity
- Analytical evaluation of the elementary matrices
- Global system: symmetric and sparse
- Size of the global system $\equiv \#$ Lagrange multipliers

Motivation and Context

DGM Formulation (Farhat et al)

Performance

Motivation and Context

DGM Formulation (Farhat et al)

Performance
DGM outperforms high order FE methods:

Motivation and Context

DGM Formulation (Farhat et al)

Performance

DGM outperforms high order FE methods:

- R-4-1, R-8-2 require 5 to 7 times fewer dof than Q2

Motivation and Context

DGM Formulation (Farhat et al)

Performance

DGM outperforms high order FE methods:

- R-4-1, R-8-2 require 5 to 7 times fewer dof than Q2
- Q-16-4 requires 6 times fewer dof than Q4

Motivation and Context

DGM Formulation (Farhat et al)

Performance

DGM outperforms high order FE methods:

- R-4-1, R-8-2 require 5 to 7 times fewer dof than Q2
- Q-16-4 requires 6 times fewer dof than Q4
- Q-32-8 requires 25 times fewer dof than Q4

Motivation and Context

DGM Formulation (Farhat et al)

Issues

Motivation and Context

DGM Formulation (Farhat et al)

Issues

Inf-Sup condition: Discrete spaces compatibility

Motivation and Context

DGM Formulation (Farhat et al)

Issues

Inf-Sup condition: Discrete spaces compatibility

\# plane waves vs. \# Lagrange multipliers
?

Motivation and Context

DGM Formulation (Farhat et al)

Issues

Inf-Sup condition: Discrete spaces compatibility

R-8-2 element

Relative error, ka=10

Motivation and Context

DGM Formulation (Farhat et al)

Issues

Inf-Sup condition: Discrete spaces compatibility

Relative error, $\mathrm{ka}=10$

R-8-2 element

R-8-3 element

Motivation and Context

DGM Formulation (Farhat et al)

Issues

Inf-Sup condition: Numerical instabilities

Motivation and Context

DGM Formulation (Farhat et al)

Issues

Inf-Sup condition: Numerical instabilities

R-4-2 element

Total relative error, $\mathrm{ka}=1$

Motivation and Context

DGM Formulation (Farhat et al)

Issues

Inf-Sup condition: Numerical instabilities

R-4-2 element

Total relative error, $\mathrm{ka}=1$

Motivation and Context

DGM Formulation (Farhat et al)

Issues

Inf-Sup condition: Numerical instabilities

R-8-2 element

Total relative error, $\mathrm{ka}=1$

Motivation and Context

Our objective: build on top of DGM

Motivation and Context

Our objective: build on top of DGM - Preserve the good features of DGM

Motivation and Context

Our objective: build on top of DGM

- Preserve the good features of DGM
- Overcome the numerical instabilities

Motivation and Context

DGM Formulation: Another point of view

$$
\left\{\begin{aligned}
\Delta u+k^{2} u & =0 & \text { in } \Omega \\
\partial_{n} u & =\mathrm{i} k u+g & \text { on } \Sigma
\end{aligned}\right.
$$

Motivation and Context

DGM Formulation: Another point of view

$$
\left\{\begin{aligned}
\Delta u+k^{2} u & =0 & \text { in } \Omega \\
\partial_{n} u & =\mathrm{i} k u+g & \text { on } \Sigma
\end{aligned}\right.
$$

- Split the solution u :

$$
u=\varphi+\Phi(\lambda)
$$

Motivation and Context

DGM Formulation: Another point of view

$$
\begin{aligned}
& \left\{\begin{array}{lr}
\Delta \varphi^{K}+k^{2} \varphi^{K}=0 & \text { in } K \\
\\
\Delta \Phi^{K}(\lambda)+k^{2} \Phi^{K}(\lambda)=0 & \text { in } K
\end{array}\right.
\end{aligned}
$$

Motivation and Context

DGM Formulation: Another point of view

$$
\left.\begin{array}{l}
\left\{\begin{aligned}
\Delta \varphi^{K}+k^{2} \varphi^{K} & =0
\end{aligned} \quad \text { in } K\right. \\
\partial_{n} \varphi^{K}=\mathrm{i} k \varphi^{K}+g \\
\text { on } \partial K \cap \Sigma
\end{array}\right\} \begin{aligned}
& \Delta \Phi^{K}(\lambda)+k^{2} \Phi^{K}(\lambda)=0 \text { in } K \\
& \partial_{n} \Phi^{K}(\lambda)= \mathrm{i} k \Phi^{K}(\lambda) \\
& \text { on } \partial K \cap \Sigma \Sigma
\end{aligned}
$$

Motivation and Context

DGM Formulation: Another point of view

$$
\left\{\begin{aligned}
\Delta \varphi^{K}+k^{2} \varphi^{K} & =0 & & \text { in } K \\
\partial_{n} \varphi^{K} & =\mathrm{i} k \varphi^{K}+g & & \text { on } \partial K \cap \Sigma \\
\partial_{n} \varphi^{K} & =0 & & \text { on } \partial K \cap \Omega
\end{aligned}\right.
$$

$$
\left\{\begin{aligned}
\Delta \Phi^{K}(\lambda)+k^{2} \Phi^{K}(\lambda) & =0 & & \text { in } K \\
\partial_{n} \Phi^{K}(\lambda) & =\mathrm{i} k \Phi^{K}(\lambda) & & \text { on } \partial K \cap \Sigma \\
\partial_{n} \Phi^{K}(\lambda) & =\lambda & & \text { on } \partial K \cap \Omega
\end{aligned}\right.
$$

Motivation and Context

DGM Formulation: Another point of view

$$
\begin{aligned}
& \int \Delta \varphi^{K}+k^{2} \varphi^{K}=0 \quad \text { in } K \\
& \partial_{n} \varphi^{K}=\mathrm{i} k \varphi^{K}+g \text { on } \partial K \cap \Sigma \\
& \partial_{n} \varphi^{K}=0 \\
& \text { on } \partial K \cap \Omega \\
& \int \Delta \Phi^{K}(\lambda)+k^{2} \Phi^{K}(\lambda)=0 \quad \text { in } K \\
& \begin{array}{lll}
\partial_{n} \Phi^{K}(\lambda) & =\mathrm{i} k \Phi^{K}(\lambda) & \\
\text { on } \partial K \cap \Sigma \\
\partial_{n} \Phi^{K}(\lambda) & =\lambda & \\
\text { on } \partial K \cap \Omega
\end{array} \\
& \lambda^{K^{\prime}}=-\lambda^{K} \text { on } \partial K \cap \partial K^{\prime}
\end{aligned}
$$

Motivation and Context

DGM Formulation: Another point of view

$$
\begin{aligned}
& \left\{\begin{array}{rll}
\Delta \varphi^{K}+k^{2} \varphi^{K} & =0 & \text { in } K \\
\partial_{n} \varphi^{K} & =\mathrm{i} k \varphi^{K}+g & \text { on } \partial K \cap \Sigma \\
\partial_{n} \varphi^{K} & =0 & \text { on } \partial K \cap \Omega
\end{array}\right. \\
& \left\{\begin{aligned}
\Delta \Phi^{K}(\lambda)+k^{2} \Phi^{K}(\lambda)=0 & \text { in } K \\
\partial_{n} \Phi^{K}(\lambda)=\mathrm{i} k \Phi^{K}(\lambda) & \text { on } \partial K \cap \Sigma \\
\partial_{n} \Phi^{K}(\lambda)=\lambda & \text { on } \partial K \cap \Omega
\end{aligned}\right. \\
& \begin{array}{ll}
\lambda^{K^{\prime}}=-\lambda^{K} \text { on } \partial K \cap \partial K^{\prime} & \\
{[u]=[\varphi+\Phi(\lambda)]=0 \text { on each interior edge }}
\end{array}
\end{aligned}
$$

Motivation and Context

DGM Formulation: Another point of view

- Solve local variational problems in each K :

$$
\int_{\partial K}\left(\partial_{n} v-\mathrm{i} k v \chi_{\Sigma}\right) \bar{w} d s=L(w)
$$

Motivation and Context

DGM Formulation: Another point of view

- Solve local variational problems in each K :

$$
\int_{\partial K}\left(\partial_{n} v-\mathrm{i} k v \chi_{\Sigma}\right) \bar{w} d s=L(w)
$$

- Solve one global variational problem:

$$
\sum_{e \subset \Omega} \frac{1}{|e|} \int_{e}[\Phi(\lambda)] \bar{\mu}=-\sum_{e \subset \Omega} \frac{1}{|e|} \int_{e}[\varphi] \bar{\mu}
$$

A new DGM

New solution methodologies

A new DGM: first idea

Restore the weak continuity of the field in the least-squares sense:

New solution methodologies

A new DGM: first idea

5 Restore the weak continuity of the field in the least-squares sense:

$$
\sum_{e \subset \Omega} \frac{1}{|e|} \int_{e}[\Phi(\lambda)][\overline{\Phi(\mu)}]=-\sum_{e \subset \Omega} \frac{1}{|e|} \int_{e}[\varphi][\overline{\Phi(\mu)}]
$$

New solution methodologies

A new DGM: first idea

5 Restore the weak continuity of the field in the least-squares sense:
$\sum_{e \subset \Omega} \frac{1}{|e|} \int_{e}[\Phi(\lambda)][\overline{\Phi(\mu)}]=-\sum_{e \subset \Omega} \frac{1}{|e|} \int_{e}[\varphi][\overline{\Phi(\mu)}]$
Gain: Hermitian and positive semi-definite global matrix

New solution methodologies

A new DGM: Illustrative example of the improvement for a fixed resolution

Relative error, ka=10

New solution methodologies

A new DGM: Illustrative example of the improvement for a fixed resolution

Relative error, ka=30

New solution methodologies

A new DGM: Persistance of the numerical instabilities

R-8-2 element

Total relative error, $\mathrm{ka}=1$

New solution methodologies

A new DGM: second idea

Reformulate the local variational problem:

New solution methodologies

A new DGM: second idea

Reformulate the local variational problem:

$$
\int_{\partial K}\left(\partial_{n} v-\mathrm{i} k v \chi_{\Sigma}\right)\left(\partial_{n} \bar{w}+\mathrm{i} k \bar{w} \chi_{\Sigma}\right)=L(\boldsymbol{w})
$$

New solution methodologies

A new DGM: second idea

Reformulate the local variational problem:

$$
\int_{\partial K}\left(\partial_{n} v-\mathrm{i} k v \chi_{\Sigma}\right)\left(\partial_{n} \bar{w}+\mathrm{i} k \bar{w} \chi_{\Sigma}\right)=L(\boldsymbol{w})
$$

Gain: Hermitian and positive definite local matrix

New solution methodologies

A new DGM: Illustrative example of the improvement for a fixed frequency

R-8-2 element
Total relative error, $\mathrm{ka}=1$

New solution methodologies

A new DGM: Solution strategy

- Solve local variational problems in each K :

$$
a_{K}(v, w)=\int_{\partial K}\left(\partial_{n} v-\mathrm{i} k v \chi_{\Sigma}\right)\left(\partial_{n} \bar{w}+\mathrm{i} k \bar{w} \chi_{\Sigma}\right)
$$

New solution methodologies

A new DGM: Solution strategy

- Solve local variational problems in each K :

$$
a_{K}(v, w)=\int_{\partial K}\left(\partial_{n} v-\mathrm{i} k v \chi_{\Sigma}\right)\left(\partial_{n} \bar{w}+\mathrm{i} k \bar{w} \chi_{\Sigma}\right)
$$

- Solve one global variational problem:

$$
\begin{array}{r}
\boldsymbol{A}(\boldsymbol{\lambda}, \boldsymbol{\mu})=\sum_{e \subset \Omega}\left(\boldsymbol{\beta}_{e} \int_{e}[\Phi(\lambda)][\overline{\Phi(\mu)}]\right. \\
+\gamma_{e} \int_{e}\left[\left[\partial_{n} \Phi(\lambda)\right]\right]\left[\left[\partial_{n} \overline{\Phi(\mu)]}\right]\right)
\end{array}
$$

New solution methodologies

A new DGM: Accomplishment

- A priori error estimates
- Application in geophysical exploration

New solution methodologies

A new DGM: A priori error estimates

$$
\left\|u-u_{h}\right\|_{0, \Omega} \leq \hat{C} \inf _{\mu_{h}, v_{h}}\left[\sum _ { K \in \tau _ { h } } \frac { 1 } { k ^ { 4 } h _ { K } ^ { 3 } } \left(\left\|\lambda-\mu_{h}\right\|_{0, \partial K \cap \Omega}^{2}\right.\right.
$$

$$
\left.\left.+\quad\left\|\lambda-\partial_{n} v_{h}\right\|_{0, \partial K \cap \Omega}^{2}\right)\right]^{1 / 2}
$$

New solution methodologies

A new DGM: A priori error estimates. Application

$$
\begin{aligned}
& \widetilde{\mathrm{R}} \text { - } m \text { - } n \text { element (} m \geq 2 N+1 \text {): } \\
& \left\|u-u_{h}\right\|_{0, \Omega} \leq \frac{\hat{C}}{k^{2}}\left[h^{n}|\Phi(\lambda)|_{n+2, \Omega}\right. \\
& +h^{n-1}|\Phi(\lambda)|_{n+1, \Omega} \\
& +h^{N-2}\left(\sum_{l=0}^{N} k^{N+1-l}|\Phi(\lambda)|_{l, \Omega}\right. \\
& \left.\left.+|\Phi(\lambda)|_{N+1, \Omega}+h|\Phi(\lambda)|_{N+2, \Omega}\right)\right]
\end{aligned}
$$

New solution methodologies

A new DGM: Application in geophysical exploration

New solution methodologies

A new DGM: Application in geophysical exploration

- Objective: produce images of the subsurface from tomography measurements

New solution methodologies

A new DGM: Application in geophysical exploration

- Objective: produce images of the subsurface from tomography measurements

New solution methodologies

A new DGM: Application in geophysical exploration

- Objective: produce images of the subsurface from tomography measurements
- Wave propagation in time domain: Discrete Fourier Transform

New solution methodologies

A new DGM: Application in geophysical exploration

- Objective: produce images of the subsurface from tomography measurements
- Wave propagation in time domain: Discrete Fourier Transform
- Solve Helmholtz equation (reduced wave equation)

New solution methodologies

A new DGM: Application in geophysical exploration

- Objective: produce images of the subsurface from tomography measurements
- Wave propagation in time domain: Discrete Fourier Transform
- Solve Helmholtz equation (reduced wave equation)
- Build the solution in time domain: Inverse Discrete Fourier Transform

New solution methodologies

A new DGM: Application in geophysical exploration

Homogeneous medium

New solution methodologies

A new DGM: Application in geophysical exploration

R-4-1 element

$$
\frac{1}{30} \leq k h \leq 2
$$

Homogeneous medium

New solution methodologies

A new DGM: Application in geophysical exploration

R-4-1 element

$$
\frac{1}{30} \leq k h \leq 2
$$

Homogeneous medium

New solution methodologies

A new DGM: Application in geophysical exploration

R-4-1 element

$$
\frac{1}{30} \leq k h \leq 2
$$

Homogeneous medium

New solution methodologies

A new DGM: Application in geophysical exploration

R-4-1 element

$$
\frac{1}{30} \leq k h \leq 2
$$

Homogeneous medium

New solution methodologies

A new DGM: Application in geophysical exploration

R-4-1 element

$$
\frac{1}{30} \leq k h \leq 2
$$

Homogeneous medium

New solution methodologies

A new DGM: Application in geophysical exploration

R-4-1 element

$$
\frac{1}{30} \leq k h \leq 2
$$

Homogeneous medium

New solution methodologies

A new DGM: Application in geophysical exploration

R-4-1 element

$$
\frac{1}{30} \leq k h \leq 2
$$

Homogeneous medium

New solution methodologies

A new DGM: Application in geophysical exploration

R-4-1 element

$$
\frac{1}{30} \leq k h \leq 2
$$

Homogeneous medium

New solution methodologies

A new DGM: Application in geophysical exploration

R-4-1 element

$$
\frac{1}{30} \leq k h \leq 2
$$

Homogeneous medium

New solution methodologies

A new DGM: Application in geophysical exploration

R-4-1 element

$$
\frac{1}{30} \leq k h \leq 2
$$

Homogeneous medium

New solution methodologies

A new DGM: Application in geophysical exploration

R-4-1 element

$$
\frac{1}{30} \leq k h \leq 2
$$

Homogeneous medium

New solution methodologies

A new DGM: Application in geophysical exploration

R-4-1 element

$$
\frac{1}{30} \leq k h \leq 2
$$

Homogeneous medium

New solution methodologies

A new DGM: Application in geophysical exploration

Stratified medium

New solution methodologies

A new DGM: Application in geophysical exploration

R-4-1 element

$$
\frac{1}{50} \leq k h \leq 2
$$

Stratified medium

New solution methodologies

A new DGM: Application in geophysical exploration

R-4-1 element

$$
\frac{1}{50} \leq k h \leq 2
$$

Stratified medium

New solution methodologies

A new DGM: Application in geophysical exploration

R-4-1 element

$$
\frac{1}{50} \leq k h \leq 2
$$

Stratified medium

New solution methodologies

A new DGM: Application in geophysical exploration

R-4-1 element

$$
\frac{1}{50} \leq k h \leq 2
$$

Stratified medium

New solution methodologies

A new DGM: Application in geophysical exploration

R-4-1 element

$$
\frac{1}{50} \leq k h \leq 2
$$

Stratified medium

New solution methodologies

A new DGM: Application in geophysical exploration

R-4-1 element

$$
\frac{1}{50} \leq k h \leq 2
$$

Stratified medium

New solution methodologies

A new DGM: Application in geophysical exploration

R-4-1 element

$$
\frac{1}{50} \leq k h \leq 2
$$

Stratified medium

New solution methodologies

A new DGM: Application in geophysical exploration

R-4-1 element

$$
\frac{1}{50} \leq k h \leq 2
$$

Stratified medium

New solution methodologies

A new DGM: Application in geophysical exploration

R-4-1 element

$$
\frac{1}{50} \leq k h \leq 2
$$

Stratified medium

New solution methodologies

A new DGM: Application in geophysical exploration

R-4-1 element

$$
\frac{1}{50} \leq k h \leq 2
$$

Stratified medium

New solution methodologies

A new DGM: Application in geophysical exploration

R-4-1 element

$$
\frac{1}{50} \leq k h \leq 2
$$

Stratified medium

New solution methodologies

A new DGM: Application in geophysical exploration

- Multi-frequency solver

New solution methodologies

A new DGM: Application in geophysical exploration

- Multi-frequency solver
- Resolution: 3 to 300 elements per wavelength

New solution methodologies

A new DGM: Application in geophysical exploration

- Multi-frequency solver
- Resolution: 3 to 300 elements per wavelength
- R-4-1 element: accurate and stable element

New solution methodologies

A new DGM: Stability of the R-4-1 element

New solution methodologies

A new DGM: Summary

DGM:

- Solve local variational problems in each K :

$$
\boldsymbol{a}_{K}(v, \boldsymbol{w})=\int_{\partial K}\left(\partial_{n} v-\mathrm{i} k v \chi_{\Sigma}\right) \overline{\boldsymbol{w}} d \boldsymbol{s}
$$

- Solve global variational problem:

$$
A(\lambda, \mu)=\sum_{e \subset \Omega} \frac{1}{|e|} \int_{e}[\Phi(\lambda)] \bar{\mu}
$$

New solution methodologies

A new DGM: Summary

A new DGM:

- NEW local variational problems in each K :

$$
a_{K}(v, w)=\int_{\partial K}\left(\partial_{n} v-\mathbf{i} k v \chi_{\Sigma}\right)\left(\partial_{n} \bar{w}+\mathrm{i} k \bar{w} \chi_{\Sigma}\right) d s
$$

- Solve global variational problem:

$$
A(\lambda, \mu)=\sum_{e \subset \tilde{\Omega}} \frac{1}{|e|} \int_{e}[\Phi(\lambda)] \bar{\mu}
$$

New solution methodologies

A new DGM: Summary

A new DGM:

- NEW local variational problems in each K :

$$
a_{K}(v, \boldsymbol{w})=\int_{\partial K}\left(\partial_{n} v-\mathrm{i} k v \chi_{\Sigma}\right)\left(\partial_{n} \overline{\boldsymbol{w}}+\mathrm{i} k \overline{\boldsymbol{w}} \chi_{\Sigma}\right) d s
$$

- NEW global variational problem:

$$
\begin{gathered}
A(\lambda, \mu)=\sum_{e \subset \Omega}\left(\beta_{e} \int_{e}[\Phi(\lambda)][\overline{\Phi(\mu)}]+\right. \\
\left.\gamma_{e} \int_{e}\left[\left[\partial_{n} \Phi(\lambda)\right]\right]\left[\left[\partial_{n} \overline{\Phi(\mu)}\right]\right]\right)
\end{gathered}
$$

New solution methodologies

A new DGM: Summary

- Numerical instabilities: improvement, but not enough

Total relative error, $\mathrm{ka}=1$

New solution methodologies

A new DGM: Summary

- Numerical instabilities: improvement, but not enough

R-8-2 element
Total relative error, $\mathrm{ka}=1$

- Source of the instabilities: local problems nearly singular

New solution methodologies for Helmholtz problems

A modified DGM (mDGM)

New solution methodologies

mDGM: main idea

Modify the local problems:

$$
\begin{gathered}
\left\{\begin{aligned}
\Delta \varphi^{K}+k^{2} \varphi^{K} & =0 \text { in } K \\
\partial_{n} \varphi^{K}-\mathrm{i} k \varphi^{K} & =g \text { on } \partial K \cap \Sigma \\
\partial_{n} \varphi^{K} & =0 \text { on } \partial K \cap \Omega
\end{aligned}\right. \\
\left\{\begin{array}{rll}
\Delta \Phi^{K}(\lambda)+k^{2} \Phi^{K}(\lambda) & =0 \text { in } K \\
\partial_{n} \Phi^{K}(\lambda)-\mathrm{i} k \Phi^{K}(\lambda) & =0 & \text { on } \partial K \cap \Sigma \\
\partial_{n} \Phi^{K}(\lambda) & =\lambda \text { on } \partial K \cap \Omega
\end{array}\right.
\end{gathered}
$$

New solution methodologies

mDGM: main idea

Modify the local problems:

$$
\left.\begin{array}{c}
\left\{\begin{aligned}
& \Delta \varphi^{K}+k^{2} \varphi^{K}=0 \\
& \text { in } K \\
& \partial_{n} \varphi^{K}-\mathrm{i} k \varphi^{K}=g \\
& \text { on } \partial K \cap \Sigma \\
& \partial_{n} \varphi^{K}-\mathrm{i} \alpha \varphi^{K}=0
\end{aligned} \text { on } \partial K \cap \Omega\right.
\end{array}\right\} \begin{array}{rll}
\Delta \Phi^{K}(\lambda)+k^{2} \Phi^{K}(\lambda) & =0 \text { in } K \\
\partial_{n} \Phi^{K}(\lambda)-\mathrm{i} k \Phi^{K}(\lambda) & =0 & \text { on } \partial K \cap \Sigma \\
\partial_{n} \Phi^{K}(\lambda)-\mathrm{i} \alpha \Phi^{K}(\lambda) & =\lambda \text { on } \partial K \cap \Omega
\end{array}
$$

New solution methodologies

mDGM: main idea

Modify the local problems:

$$
\begin{aligned}
& \int \Delta \varphi^{K}+k^{2} \varphi^{K}=0 \text { in } K \\
& \partial_{n} \varphi^{K}-\mathrm{i} k \varphi^{K}=\boldsymbol{g} \text { on } \partial K \cap \Sigma \\
& \partial_{n} \varphi^{K}-\mathrm{i} \alpha \varphi^{K}=0 \text { on } \partial K \cap \Omega \\
& \left\{\begin{aligned}
& \Delta \Phi^{K}(\lambda)+k^{2} \Phi^{K}(\lambda)=0 \\
& \text { in } K \\
& \partial_{n} \Phi^{K}(\lambda)-\mathrm{i} k \Phi^{K}(\lambda)=0 \\
& \text { on } \partial K \cap \Sigma \\
& \partial_{n} \Phi^{K}(\lambda)-\mathrm{i} \alpha \Phi^{K}(\lambda)=\lambda
\end{aligned} \quad \text { on } \partial K \cap \Omega\right.
\end{aligned}
$$

Gain: Well-posed local problems for $\alpha \in \mathbb{R}_{+}^{*}$

New solution methodologies

mDGM: main idea

Modify the local problems:

$$
\begin{aligned}
& \int \Delta \varphi^{K}+k^{2} \varphi^{K}=0 \text { in } K \\
& \partial_{n} \varphi^{K}-\mathrm{i} k \varphi^{K}=g \text { on } \partial K \cap \Sigma \\
& \partial_{n} \varphi^{K}-\mathrm{i} \alpha \varphi^{K}=0 \text { on } \partial K \cap \Omega \\
& \left\{\begin{aligned}
& \Delta \Phi^{K}(\lambda)+k^{2} \Phi^{K}(\lambda)=0 \\
& \text { in } K \\
& \partial_{n} \Phi^{K}(\lambda)-\mathrm{i} k \Phi^{K}(\lambda)=0 \\
& \text { on } \partial K \cap \Sigma \\
& \partial_{n} \Phi^{K}(\lambda)-\mathrm{i} \alpha \Phi^{K}(\lambda)=\lambda
\end{aligned} \quad \text { on } \partial K \cap \Omega\right.
\end{aligned}
$$

Gain: Well-posed local problems for $\alpha \in \mathbb{R}_{+}^{*}$ Price: Both u and $\partial_{n} u$ are discontinuous

New solution methodologies

mDGM: Solution strategy

- Solve local variational problems in each K :

$$
\int_{\partial K}\left(\partial_{n} v-\mathbf{i} k v\right) \overline{\boldsymbol{w}} d s=L(\boldsymbol{w})
$$

New solution methodologies

mDGM: Solution strategy

- Solve local variational problems in each K :

$$
\int_{\partial K}\left(\partial_{n} v-\mathbf{i} k v\right) \overline{\boldsymbol{w}} d s=L(\boldsymbol{w})
$$

- Solve one global variational problem:

$$
\begin{gathered}
\sum_{e \subset \Omega}\left(\beta_{e} \int_{e}[\Phi(\lambda)][\overline{\Phi(\mu)}]+\gamma_{e} \int_{e}\left[\left[\partial_{n} \Phi(\lambda)\right]\right]\left[\left[\partial_{n} \overline{\Phi(\mu)}\right]\right]\right)= \\
\quad-\sum_{e \subset \Omega}\left(\beta_{e} \int_{e}[\varphi][\overline{\Phi(\mu)}]+\gamma_{e} \int_{e}\left[\left[\partial_{n} \varphi\right]\right]\left[\left[\partial_{n} \overline{\Phi(\mu)}\right]\right]\right)
\end{gathered}
$$

New solution methodologies

mDGM: Performance assessment

R-8-2 element

New solution methodologies

mDGM: Performance assessment

R-8-3 element

Total relative error, $\mathrm{ka}=1$

New solution methodologies

mDGM: Performance assessment

R-8-4 element

Total relative error, $\mathrm{ka}=1$

New solution methodologies

mDGM: Performance assessment

R-8-5 element

Total relative error, $\mathrm{ka}=1$

New solution methodologies

mDGM: Implementation issue

$$
\begin{aligned}
& \boldsymbol{F}_{j l}=\sum_{e \subset \Omega}\left(\boldsymbol{\beta}_{e} \int_{e}\left[\Phi_{h}\left(\mu_{l}\right)\right]\left[\overline{\Phi_{h}\left(\mu_{j}\right)}\right]\right. \\
& \left.+\gamma_{e} \int_{e}\left[\left[\partial_{n} \Phi_{h}\left(\mu_{l}\right)\right]\right]\left[\left[\partial_{n} \overline{\Phi_{h}\left(\mu_{j}\right)}\right]\right]\right)
\end{aligned}
$$

\boldsymbol{F} is Hermitian

New solution methodologies

mDGM: Implementation issue

$$
\begin{aligned}
& \boldsymbol{F}_{j l}=\sum_{e \subset \tilde{\Omega}}\left(\boldsymbol{\beta}_{e} \int_{e}\left[\Phi_{h}\left(\mu_{l}\right)\right]\left[\overline{\Phi_{h}\left(\mu_{j}\right)}\right]\right. \\
& \left.+\gamma_{e} \int_{e}\left[\left[\partial_{n} \Phi_{h}\left(\mu_{l}\right)\right]\right]\left[\left[\partial_{n} \overline{\Phi_{h}\left(\mu_{j}\right)}\right]\right]\right)
\end{aligned}
$$

\triangle
F is Hermitian, but NOT in practice

New solution methodologies

mDGM: Implementation issue

Before

After

R-8-2 element

Total relative error, $\mathrm{ka}=1$

New solution methodologies

mDGM: Implementation issue

Before

After

R-8-3
element

Total relative error, $\mathrm{ka}=1$

New solution methodologies

mDGM: Implementation issue

Before

After

R-8-4 element

Total relative error, $\mathrm{ka}=1$

New solution methodologies

mDGM: Implementation issue

Before

After

R-8-5 element

Total relative error, $\mathrm{ka}=1$

New solution methodologies

mDGM: Numerical issue

R-8-2 element

The smallest eigenvalue, $\mathrm{ka}=1$

New solution methodologies

mDGM: Numerical issue

R-8-2 element

The smallest eigenvalue, $\mathrm{ka}=1$

\triangle
Loss of the linear independence

New solution methodologies

mDGM: Numerical issue

R-8-2 element

R-7-2 element
The smallest eigenvalue, $\mathrm{ka}=1$

New solution methodologies

mDGM: Numerical issue

R-8-2 element

R-7-2 element
Total relative error, $\mathrm{ka}=1$

New solution methodologies

mDGM: Numerical issue

R-7-2 element

Total relative error, $\mathrm{ka}=1$

New solution methodologies

mDGM: Summary

Local problems:

- DGM:

$$
a_{K}(v, w)=\int_{\partial K}\left(\partial_{n} v-\mathrm{i} k v \chi_{\Sigma}\right) \bar{w} d s
$$

- mDGM:

$$
a_{K}(v, w)=\int_{\partial K}\left(\partial_{n} v-\mathrm{i} k v\right) \bar{w} d s
$$

New solution methodologies

mDGM: Summary

Global problems:

- DGM:
$\boldsymbol{A}(\boldsymbol{\lambda}, \boldsymbol{\mu})=\sum_{e \subset \tilde{\Omega}} \frac{1}{|e|} \int_{e}[\Phi(\lambda)] \bar{\mu}$
- mDGM:

$$
\begin{gathered}
A(\lambda, \mu)=\sum_{e \subset \subset}\left(\beta_{e} \int_{e}[\Phi(\lambda)][\overline{\Phi(\mu)}]\right. \\
\left.\quad+\gamma_{e} \int_{e}\left[\left[\partial_{n} \Phi(\lambda)\right]\right]\left[\left[\partial_{n} \overline{\Phi(\mu)}\right]\right]\right)
\end{gathered}
$$

New solution methodologies

mDGM: Summary

- Numerical instabilities: improvement, but not enough

R-7-2 element
Total relative error, $\mathrm{ka}=1$

New solution methodologies

mDGM: Summary

- Numerical instabilities: improvement, but not enough

R-7-2 element
Total relative error, $\mathrm{ka}=1$

- Source of the instabilities: loss of the linear independence

New solution methodologies for Helmholtz problems

An improved modified DGM (imDGM)

New solution methodologies

imDGM: main idea

Reformulate the local variational problems:

New solution methodologies

imDGM: main idea

Reformulate the local variational problems:
$\int_{\partial K}\left(\partial_{n} v-\mathrm{i} k v\right)\left(\partial_{n} \bar{w}+\mathrm{i} k \bar{w}\right) d s=L(w)$

New solution methodologies

imDGM: main idea

Reformulate the local variational problems:
$\int_{\partial K}\left(\partial_{n} v-\mathrm{i} k v\right)\left(\partial_{n} \bar{w}+\mathrm{i} k \bar{w}\right) d s=L(w)$
Gain: Hermitian and positive definite local matrix

New solution methodologies

imDGM: Performance assessment

R-7-2 element

The smallest eigenvalue, $\mathrm{ka}=1$

New solution methodologies

imDGM: Performance assessment

Total relative error, $\mathrm{ka}=1$

New solution methodologies

imDGM: Comparison with DGM and LSM (Monk-Wang, 1999)

New solution methodologies

imDGM: Comparison with DGM and LSM (Monk-Wang, 1999)

- An improved modified DGM (imDGM)

$$
A(\lambda, \mu)=\sum_{e \subset \Omega}\left(\beta_{e} \int_{e}[\Phi(\lambda)][\overline{\Phi(\mu)}]+\gamma_{e} \int_{e}\left[\left[\partial_{n} \Phi(\lambda)\right]\right]\left[\left[\partial_{n} \overline{\Phi(\mu)}\right]\right]\right)
$$

- Least-Squares Method (LSM)

$$
\left.A(u, v)=\sum_{e \subset \Omega}\left(k^{2} \int_{e}[u][\bar{v}]+\int_{e}\left[\left[\partial_{n} u\right]\right]\right]\left[\left[\partial_{n} \bar{v}\right]\right]\right)
$$

- Discontinuous Galerkin Method (DGM)
$\boldsymbol{A}(\lambda, \mu)=\sum_{e \subset \tilde{\Omega}}\left(\boldsymbol{\beta}_{e} \int_{e}[\Phi(\lambda)] \bar{\mu}\right)$

New solution methodologies

imDGM: Comparison with DGM and LSM

Total relative error, $\mathrm{ka}=1$

New solution methodologies

imDGM: Comparison with DGM and LSM

R-7-2 element

Total relative error, $k a=20$

New solution methodologies

imDGM: Performance assessment for a fixed resolution: $\mathrm{kh}=2$

ka R-7-2 R-11-3

R-7-2 element

R-11-3 element

New solution methodologies

imDGM: Performance assessment for a fixed resolution: $\mathrm{kh}=2$

R-11-3 element

New solution methodologies

imDGM: Performance assessment for a fixed resolution: $\mathrm{kh}=2$

$$
\begin{array}{ccc}
\text { ka } & \text { R-7-2 } & \text { R-11-3 } \\
\hline 50 & 28 \% & 0.05 \% \\
100 & 51 \% & 0.07 \%
\end{array}
$$

R-7-2 element

R-11-3 element

New solution methodologies

imDGM: Performance assessment for a fixed resolution: $\mathrm{kh}=2$

| | ka | R-7-2 |
| :---: | :---: | :---: | R-11-3 \quad| 50 | 28% |
| :---: | :---: |
| 0.05% | |
| 100 | 51% |
| 200 | 69% |
| | 0.07% |
| | |

R-7-2 element

R-11-3 element

New solution methodologies

imDGM: Performance assessment for a fixed resolution: $\mathrm{kh}=2$

ka	R-7-2	R-11-3
50	28%	0.05%
100	51%	0.07%
200	69%	0.20%

R-7-2 element

R-11-3 element

New solution methodologies

imDGM: Performance assessment for a fixed resolution: $\mathrm{kh}=2$

| | ka | R-7-2 |
| :---: | :---: | :---: | R-11-3

R-7-2 element

R-11-3 element

Computational cost increased by 50% Gain of more than two orders of magnitude

New solution methodologies

imDGM: Comparison with DGM and LSM for a fixed frequency

R-11-3 element

Total relative error, $\mathrm{ka}=\mathbf{2 0 0}$

New solution methodologies

imDGM: Comparison with DGM and LSM for a fixed frequency

Total relative error, $\mathrm{ka}=400$

Summary and Perspectives

Summary and Perspectives

Accomplishment

Summary and Perspectives

Accomplishment

- Small systems: Hermitian and positive definite

Summary and Perspectives

Accomplishment

- Small systems: Hermitian and positive definite
- Global system: Hermitian, sparse and positive semi-definite

Summary and Perspectives

Accomplishment

- Small systems: Hermitian and positive definite
- Global system: Hermitian, sparse and positive semi-definite
- Performance: outperforms DGM (accuracy and stability)

Summary and Perspectives

Short-term goals

- Assess the performance of higher-order elements

Summary and Perspectives

Short-term goals

- Assess the performance of higher-order elements
- Experiment other shape functions

Summary and Perspectives

Short-term goals

- Assess the performance of higher-order elements
- Experiment other shape functions
- Unstructured mesh

Summary and Perspectives

Short-term goals

- Assess the performance of higher-order elements
- Experiment other shape functions
- Unstructured mesh
- Apply iterative methods for the global system

Summary and Perspectives

Short-term goals

- Assess the performance of higher-order elements
- Experiment other shape functions
- Unstructured mesh
- Apply iterative methods for the global system
- Extend the mathematical analysis to imDGM

Conclusion and Perspectives

Mid-term goals

- Three-dimensional acoustic scattering problems

Conclusion and Perspectives

Mid-term goals

- Three-dimensional acoustic scattering problems
- Elasto-acoustic scattering problems

Thank you for your attention!

