
HAL Id: tel-00473969
https://theses.hal.science/tel-00473969

Submitted on 17 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data Replication in three Contexts: Data Warehouse,
Cluster and P2P Systems

Esther Pacitti

To cite this version:
Esther Pacitti. Data Replication in three Contexts: Data Warehouse, Cluster and P2P Systems.
Human-Computer Interaction [cs.HC]. Université de Nantes, 2008. �tel-00473969�

https://theses.hal.science/tel-00473969
https://hal.archives-ouvertes.fr


Université de Nantes 
 

Ecole Doctorale 

Sciences et Technologies de l’Information et des Matériaux 

Rapport scientifique pour l’obtention de l’ 

Habilitation à Diriger les Recherches en Informatique 

 

 

 

Réplication asynchrone des données dans trois contextes:  

entrepôts, grappes et systèmes pair-à-pair  

 

Esther PACITTI 

8 juillet 2008 

 

 
 

Rapporteurs :         

Prof. Anne Doucet, Université Pierre et Marie Curie, Paris 6 

            Prof. Philippe Pucheral, Université de Versailles Saint-Quentin 

            Prof. Michel Scholl, Conservatoire National des Arts et Métiers, Paris 

Examinateurs :       

Dr. Serge Abiteboul, Directeur de Recherche, INRIA-Saclay (Président du Jury) 

 Prof. Noureddine Mouaddib, Université de Nantes 

 Prof. Josep Lluís Larriba Pey, Universitat Politècnica de Catalunya, Barcelone 



 

 

 

                                



 
ACKNOWLEDGEMENTS 

 

 

I want to thank all the people I met (so many friends) at all the institutions I worked for, which motivated my 
whole research work since I started in Brazil in 1985:  Federal University of Rio de Janeiro (NCE and COPPE), 
Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), University of Paris 5, INRIA (many many thanks 
to the INRIA teams Rodin, Caravel and Atlas) and University of Nantes. I am very grateful to Brazilian 
university leaders who always encouraged my research and pushed me to come to France for my Ph.D., 
providing me a fellowship and believing in me. I very much appreciated this. More recently, the people involved 
in the management of LINA, Prof. Frédéric Benhamou, Prof. Noureddine Mouaddib and Prof. Pierre Cointe 
encouraged my research on data replication. I am also very thankful to INRIA, with which I have been involved 
since 1995 (as a Ph.D. student) until today, as a member of the Atlas team, for providing an excellent 
environment to do research. In particular, my recent “delegation” at INRIA was crucial to help me produce this 
HDR report.  

Many thanks to the committee members: Prof. Anne Doucet (rapporteur), Prof. Philippe Pucheral (rapporteur), 
Prof. Michel Scholl (rapporteur), Dr. Serge Abiteboul (exminateur), Prof. Noureddine Mouaddib (examinateur), 
Prof. (examinateur) for their interest in my work.  Special thanks to Anne Doucet for helping in organizing the 
HDR defense. 

I also want to express my intense gratitude to the researchers who helped me during critical times of my research 
path: Prof. Tamer Özsu, Dr. Eric Simon, Prof. Dennis Shahsa, Prof. Ricardo Jimenez-Peris and Dr. Patrick 
Valduriez. I am also very thankful to Prof. Bettina Kemme who kindly helped in reviewing this report. 

I am very thankful to the members of the Atlas team who contributed to the research in data replication during 
our thursday meetings, providing useful suggestions and coming up with very good questions.  In particular, I 
am grateful to the Ph.D. students whom I had the chance and pleasure to work with: Cédric Coulon, Vidal 
Martins, Reza Akbarinia, Manal-El-Dick, Wence Palma. I would also like to thank  Elodie Lize for her kind 
assistance on the defense organization.  

And last but not least, I would like to thank my Brazilian and French families for believing and loving me, 
especially my husband Patrick and daughter Anna. 

Making research is sometimes very hard but we also can have much fun ! 

 

 

 

 

 

 

 

 

 

 



 

 

 

 



CONTENTS 
 

 

Résumé Etendu……………………………………………………………………………………………3 

1 INTRODUCTION ............................................................................................................................21 
2 LAZY SINGLE MASTER REPLICATION IN DATA WAREHOUSES...................................31 
3 LAZY MULTI-MASTER REPLICATION IN DATABASE CLUSTERS .................................41 
4 SEMANTIC RECONCILIATION IN P2P SYSTEMS.................................................................53 
5 DATA CURRENCY IN STRUCTURED P2P NETWORKS.......................................................67 
6 CONCLUSIONS AND FUTURE WORK......................................................................................73 
 

Selected Papers: 
Annex A    Update Propagation Strategies to Improve  Freshness in lazy master replicated databases………………93 
Annex B – Replica Consistency in Lazy Master replicated Databases………………………………………………111 
Annex C – Preventive Replication in Database Cluster……………………………………………………………...143 
Annex D – Scalable and Topology Aware Semantic Reconciliation on P2P Networks……………………………..173 
Annex E – Data Currency in Replicated DHTs………………………………………………………………………209 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

3

 

Résumé Etendu 

Motivations 

Dans une base de données distribuée, la réplication  de données permet d’augmenter la fiabilité 

et la disponibilité des données ainsi que les performances d’accès [SS05]. En général, l’unité 

(ou l’objet) de réplication est une table relationnelle (ou un fragment de table), un document ou 

un  fichier. La réplication consiste alors à  placer  plusieurs copies (ou répliques) de l’objet sur 

différents nœuds du réseau.  Cela  fournit une grande disponibilité des données. Si un nœud 

devient non opérationnel à la suite d’une panne par exemple, une autre copie  est toujours 

accessible sur un autre nœud. La réplication permet aussi d’améliorer les performances d’accès 

en augmentant la localité de référence. Lorsque le coût de communication est un facteur 

dominant, le placement d’une copie sur le nœud où elle est le plus souvent accédée favorise les 

accès locaux et évite les accès réseaux.  

Les avantages apportés par la réplication sont à comparer avec la complexité et les coûts 

supplémentaires de maintenance des copies qui doivent, en théorie rester identiques à tout 

moment. La mise-à-jour d’une copie doit être répercutée automatiquement sur toutes ses 

répliques. Le problème est compliqué par la présence de pannes de nœud ou réseau.  Le 

compromis recherché entre performance d’accès en consultation et en mise-à-jour des données 

rend difficile le choix du niveau de réplication. Celui-ci est très dépendant de la charge de 

travail demandée par les applications.  Le problème de la réplication de données reste donc un 

vaste thème de recherche et les solutions doivent être adaptées au contexte afin d’offrir un bon 

compromis entre des objectifs conflictuels tels que disponibilité, cohérence, performances, etc. 

Dans mon travail de recherche, je me suis concentrée sur le maintien de la cohérence des 

données répliquées dans trois contextes majeurs: les entrepôts de données, les grappes de bases 

de données, et les applications collaboratives en pair-à-pair (P2P). 

 

Entrepôts de Données  

Dans les entrepôts de données [Cod95], la configuration mono-maître est souvent utilisée, avec 

diverses variantes possibles: diffusion, mono-consolidation (consolidation avec un nœud), 

multi-consolidation (avec plusieurs nœuds), triangulaire. La gestion de la cohérence est difficile 

pour certaines configurations  comme la consolidation avec plusieurs nœuds, la configuration 

triangulaire ou leurs généralisations en combinant les configurations de base.   
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Grappes de bases de données 

Les grappes de bases de données (database clusters) sont typiquement utilisées par des 

applications de lectures intensives, ce qui facilite l'exploitation du parallélisme. Cependant, les 

grappes [ABKW98] peuvent également être utilisées par des applications avec beaucoup de 

mises-à-jour, par ex. par un ASP (Application Service Provider). Dans un contexte ASP, les 

applications et les bases de données des clients sont stockées chez le fournisseur et sont 

disponibles, typiquement depuis Internet, aussi efficacement que si elles étaient locales pour les 

clients. Pour améliorer les performances, les applications et les données peuvent être répliquées 

sur plusieurs noeuds. Ainsi, les clients peuvent être servis par n'importe quel noeud en fonction 

de la charge. Cette architecture fournit une haute disponibilité: dans le cas de la panne d'un 

noeud, d'autres noeuds peuvent effectuer le même travail. Le défi est alors de gérer la 

réplication multi-maître, totale et partielle,  en assurant la cohérence forte et le passage à 

l’échelle en nombres de nœuds. 

 

Applications Collaboratives en P2P  

Les systèmes P2P adoptent une approche complètement décentralisée [AMPV06a] au partage 

des ressources. En distribuant données et traitements sur tous les pairs du réseau, ils peuvent 

passer à très grande échelle sans recourir à des serveurs très puissants. La réplication de données 

dans les systèmes P2P [AMPV04] est un enjeu majeur pour les applications collaboratives, 

comme les forums de discussion, les calendriers partagés, ou les catalogues de e-commerce, etc.  

En effet, les données partagées doivent pouvoir être mises-à-jour en parallèle par différents 

pairs. Les premiers systèmes P2P existants supposent que les données sont statiques et 

n'intègrent aucun mécanisme de gestion des mises-à-jour et de réplication. Une mise-à-jour 

d'une donnée par le pair qui la possède implique une nouvelle version non propagée à ceux 

répliquant cette donnée. Il en résulte diverses versions sous le même identifiant et l'utilisateur 

accède à celle stockée par le pair qu'il contacte. Aucune forme de cohérence entre les répliques 

n'est alors garantie. Le défi est de gérer la cohérence éventuelle face au dynamisme des pairs 

tout en passant à l’échelle. 

 

Contributions 

Les contributions de recherche présentées dans ce rapport scientifique correspondent à la 

période 1999-2008 : 

1. Réplication mono-maître dans les entrepôts de données (1999-2001). Nous avons 

proposé des algorithmes efficaces pour le maintien de la cohérence des données répliquées 
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dans les entrepôts de données [PSM98,PV98,PMS99,PS00 PMS01]. Ce travail a été validé 

dans le cadre du projet européen DWQ (Data Warehouse Quality). 

2. Réplication multi-maître dans les grappes de bases de données (2002-2005). Nous avons 

proposé un nouvel algorithme de réplication de données, dit préventif, asynchrone et multi-

maître qui assure la cohérence forte dans les grappes de bases de données [POC03, 

CGPV04,CPV05a,CPV05b,PCVO05]. Ce travail a été validé dans le cadre du projet RNTL 

Leg@net avec le prototype RepDB*. 

3. Réconciliation de données dans les applications collaboratives en P2P (2006-2008). 

Nous avons proposé des algorithmes efficaces pour la gestion de données répliquées en 

P2P, notamment pour la réconciliation de données répliquées en mode optimiste [AMPV04, 

MPV05,MPJV06,MAPV06,MP06,AMPV06a,MPV06a,MPV06b,EPV07,MPEJ08]. Nous 

avons aussi proposé des optimisations qui exploitent la localité offerte par certains réseaux 

P2P. Nous avons validé ces algorithmes avec le prototype APPA, dans le cadre des ACI 

Masses de Données MDP2P et Respire, le projet européen STREP Grid4All et le projet 

RNTL Xwiki Concerto. 

4. Gestion de données courantes dans les DHTs répliqués (2007-2008). Nous avons 

proposé une solution complète pour déterminer les données courantes (les plus à jour) parmi 

les données répliquées dans les tables de hachage distribuées (DHTs) [APV07a]. Nous 

avons validé notre solution par une implémentation du DHT Chord sur un cluster de 64 

nœuds et par une simulation jusqu'à 10.000 pairs en utilisant SimJava. Ce travail a été 

réalisé dans le cadre de l’ACI Masses de Données Respire. 

Ces travaux ont fait l’objet de trois thèses de doctorat soutenues : Cédric Coulon (2005) sur 

la réplication préventive de données dans les grappes de bases de données ; Vidal Martins 

(2007) sur la réplication sémantique des données en P2P, et Reza Akbarinia (2007) sur les 

techniques d’accès aux données en P2P. Aujourd’hui, il y a deux thèses en cours (en seconde 

année) dans le prolongement de ces travaux : Manal El-Dick sur la gestion de cache en P2P et 

Wenceslao Palma sur la gestion des flux de données en P2P. 

Ces travaux ont été aussi validés par deux prototypes majeurs qui implémentent les 

techniques proposées : 

1. RepDB*: http://www.sciences.univ-nantes.fr/lina/ATLAS/RepDB. Service de 

réplication de bases de données autonomes dans une grappe de PC. Implémenté en Java 

sous Linux (20K lignes). Déposé à l’APP en 2004 (INRIA et U. Nantes), logiciel libre sous 

licence GPL. 
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2. APPA (Atlas P2P Architecture): http://www.sciences.univ-nantes.fr/lina/gdd/appa. 

Système de gestion de données pair-à-pair pour des applications collaboratives, en cours de 

réalisation en Java sous OpenChord. En particulier, nous développons le nouveau service 

P2P-LTR (P2P Log and Timestamping for Reconciliation)  qui permet la réconciliation 

pour l’édition collaborative.   

 

Réplication Mono-Maître dans les Entrepôts de Données 

Dans le contexte des entrepôts de données, qui servent principalement à la prise de décision, un 

objectif majeur est de concevoir des algorithmes de maintien de la cohérence des données 

répliquées : en minimisant le degré de fraîcheur ; en minimisant la surcharge de messages 

(éviter les votes) ; en étant assez extensible  pour différentes configurations ; en tolérant les 

pannes des nœuds. 

La minimisation du degré de fraîcheur compense la perte de la cohérence mutuelle due à la 

réplication asynchrone (car il y a perte de cohérence mutuelle).  Les solutions existantes pour la 

gestion de la cohérence pour la réplication mono-maître sont spécifiques pour certaines 

configurations. La gestion de la cohérence est une tâche difficile lorsque le placement des 

données détermine le routage des messages et  qu’un nœud  tombe en panne.  L’idée d’utiliser, 

de façon contrôlée, les services du réseau est alors très utile pour la réplication asynchrone.  

C’est la voie de recherche que nous avons choisie.  Au-delà des algorithmes proposés, nous 

avons aussi  proposé une architecture qui respecte l’autonomie des SGBD (vus comme des 

boites noires) et donc fonctionne avec tout type de SGBD. 

Gestion de la Fraîcheur  

Pour certaines applications, par ex. boursières, il est très important de minimiser le dégré de 

fraîcheur entre copies primaires (les copies en mise-à-jour) et copies secondaires (les copies en 

lecture seule). C’est pourquoi  l’approche push, où les mises-à-jour sont envoyées par les 

noeuds maîtres (stockant des copies primaires), a été choisie.  Un premier objectif est alors de 

minimiser le degré de fraîcheur  pour les configurations de type diffusion et mono-

consolidation.  

Dès qu’une transaction T de mise-à-jour est validée sur le maître, ses mises-à-jour sont 

propagées  vers les nœuds cibles dans un message, en différé. On appelle cette stratégie de 

propagation différé-différé   Pour minimiser le degré de fraîcheur,  nous avons proposé la 

propagation immédiate.  L’idée est de propager les opérations de mises-à-jour d’une  transaction 

T, qui met a jour une relation R, dès que la première opération d’écriture (noté w) sur R est 
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détectée. Pour garantir la sérialisabilité des opérations d’écriture, nous utilisons la primitive de 

réseau FIFO [HT93]. Pour le  nœud cible, trois stratégies de réception sont possibles [PSM98]: 

• immédiate : dés que la première opération d’écriture w arrive, la transaction de mise-à-jour 

sur la copie secondaire r  est déclenchée, mais  seulement validée après la réception du 

commit de T.  

• différé: le nœud  cible attend la réception complète de la transaction  (toutes les opérations 

une par une)  puis déclenche la transaction sur r.  

• à posteriori : le nœud  cible attend la réception complète de la transaction, puis (à la 

réception) déclencher la transaction sur r.  

La  combinaison de la stratégie de propagation immédiate avec les stratégies de réception  

produisent trois stratégies: immédiate-immédiate, immédiate-différé, immédiate-posteriori.  Nos 

résultats de performance (obtenus par simulation) ont montré que les stratégies immédiates 

peuvent améliorer jusqu’à 5 fois le degré de fraîcheur comparé à la stratégie différé-différé.  De 

plus, le traitement de la tolérance aux pannes des nœuds peut être facilement implémenté en 

utilisant des journaux, sans bloquer les protocoles de réplication.  L’Annexe A présente les 

détails de ces contributions qui correspond à la publication [PS00]. 

Gestion de la Cohérence des Données 

Certaines architectures d’entrepôts de données mettent en œuvre des configuration de 

réplication de type multi-consolidation et triangulaire. Un problème important est alors 

d’assurer la cohérence sans imposer un chemin de routage pour les transactions de mise-à-jour.  

Pour les configurations triangulaires, la propriété de causalité doit aussi être assurée. La 

diffusion FIFO ne suffit plus pour assurer la cohérence. Pour résoudre ce problème, nous avons 

proposé d’utiliser des estampilles avec les services de réseau.  

Bien que les services de réseau soient très attractifs, le nombre de messages augmente 

considérablement pour augmenter les garanties, limitant ainsi le passage à l’échelle. C’est 

pourquoi nous avons évité la primitive ordre total (très chère en messages) et utilisé la primitive 

FIFO (beaucoup plus efficace). Pour garantir l’ordre total, des estampilles globales C sont 

données aux transactions de mise-à-jour au moment de la validation de chaque transaction sur 

les nœuds maîtres. Pour cela, on suppose un système semi-asynchrone où les horloges sont  ε-

synchronisés et le temps de transmission maximal d’un message (Max) est connu [BGM04]. 

Pour gérer la cohérence des copies sur les nœuds cible,  nous avons  proposé  l’algorithme 

refresher [PMS99, PMS01].  
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Les transactions de mises-à-jour sont exécutées sur le noeud maître puis sont propagées à 

toutes les copies sous forme de transactions de rafraîchissement. À la réception de l'une de ces 

transactions, le noeud cible  place la transaction dans une file d'attente (il y a une file d'attente 

par maître que possède la copie primaire). La transaction de rafraîchissement attend alors un 

temps Max avant d'être élue et placée dans une file d'exécution. En attendant un temps Max 

après son départ, on s'assure alors qu'aucun message n'a été émis auparavant et transite encore 

sur le réseau (le réseau est fiable et un message met au maximum un temps Max pour arriver à 

destination). Le moment exact où le message sera élu pour exécution est donc: C + Max + ε. 

Cet algorithme assure l’ordre total des transactions de  rafraîchissement.  L’Annexe B présente 

les détails de ces contributions qui correspond à la publication [PMS01] 

 

Réplication Multi-Maître dans les Grappes de Bases de Données 

Pour les grappes de bases de données, nous avons adopté la réplication multi-maître qui permet 

de mettre à jour en parallèle (sur différents nœuds) les copies d’un même objet et ainsi de 

maximiser les performances.  Nous avons proposé un nouvel algorithme de réplication 

préventif,  en partant de  l'algorithme refresher.  Le principe de l'algorithme refresher  est de 

soumettre les transactions dans un ordre total sur les noeuds cibles en fonction de leur 

estampille d'arrivée. Pour accomplir ceci,  le nœud cible retarde l'exécution des transactions 

pour s'assurer qu'aucune transaction plus ancienne n'est en route vers le noeud. Cependant, cet 

algorithme  n'autorise que la mise-à-jour sur un seul nœud (mono-maître).  Nous abordons donc 

le problème où plusieurs maîtres peuvent faire des mises jour en parallèle. 

Réplication Preventive 

La réplication préventive [POC03, PCVO05] assure la cohérence  forte (il n’y a jamais 

d’incohérences) pour les configurations multi-maîtres (en réplication totale et partielle).  Pour la 

réplication totale (les données sont répliquées sur tous les nœuds), lorsqu’une transaction T 

arrive dans la grappe elle est diffusé en FIFO à tous les nœuds de la grappe y compris le nœud 

qui a reçu la transaction. Chaque nœud de la grappe retarde l’exécution de T, comme 

auparavant, et la cohérence forte est assurée pour les mêmes raisons.  En autorisant ainsi 

davantage de noeuds multi-maîtres, nous supprimons le goulot d'étranglement que représente un 

seul noeud maître. Cependant, le surcôut en mise-à-jour sur tous les nœuds peut être important, 

d’où la nécessité de la réplication partielle (les données sont répliquées sur certains nœuds). 

Pour la réplication partielle [CPV05a, CPV05b], nous ne faisons pas de restrictions ni sur le 

type de copies (copie primaire ou multi-maître) ni sur le placement des données (un noeud peut 
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posséder une partie seulement des copies et plusieurs types de copie: primaire, multi-maître, 

secondaire). Cependant, un noeud peut ne pas être en mesure d’exécuter toutes les transactions 

car il ne possède pas toutes les copies nécessaires. L'algorithme place alors la transaction en 

attente des jeux d'écritures qui sont diffusés par le noeud d'origine. L'algorithme de réplication 

partielle autorise donc un plus grand nombre de configurations mais introduit la diffusion d'un 

message de rafraîchissement. 

Pour chacune des versions de l'algorithme de réplication préventive (totale et partielle), nous 

avons proposé: une architecture pour le gestionnaire de réplication, une description détaillée des 

algorithmes et les preuves que ces algorithmes garantissent la cohérence forte sans introduire 

d'inter-blocages.  

Optimisations 

Afin de mieux supporter les applications à fortes charges transactionnelles où les mise-à-jour 

sont majoritaires, nous avons amélioré l'algorithme de réplication préventive. Nous avons dans 

un premier temps éliminé le délai introduit par l'ordonnancement des transactions en les 

exécutant de manière optimiste dès leur réception dans le noeud et non plus après le délai Max 

+ ε. Si les transactions n'ont pas été exécutées dans l'ordre correct (celui de leurs estampilles), 

alors elles sont annulées et ré-exécutées après ordonnancement. Le nombre d'abandons reste 

faible car dans un réseau rapide et fiable les messages sont naturellement ordonnés [PS98]. 

Avec cette optimisation, la cohérence forte est garantie car nous retardons la validation des 

transactions (et non plus la totalité de la transaction) exécutées de façon optimiste. Les 

transactions sont ordonnancées pendant leur exécution et non plus avant, supprimant ainsi les 

délais d'ordonnancement. 

La seconde optimisation concerne la soumission des transactions. Dans les algorithmes 

précédents, les transactions sont soumises à exécution une par une pour garantir la cohérence. 

Le module de soumission représente donc un goulot d'étranglement dans le cas où le temps 

moyen d'arrivée des transactions est supérieur au temps moyen d'exécution d'une transaction. 

Pour supprimer ce problème, nous avons autorisé l'exécution parallèle des transactions non 

conflictuelles. Cependant, pour garantir la cohérence des données, nous ordonnançons toujours 

le démarrage et la validation des transactions, ceci afin de garantir que toutes les transactions 

soient exécutées dans le même ordre sur tous les noeuds malgré le parallélisme. Nous avons 

prouvé que l'exécution en parallèle des transactions est équivalente à une exécution séquentielle. 

L’Annexe C présente les détails de ces contributions qui correspond à la publication [PCVO05]. 
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Validation 

Nous avons validé l'algorithme de réplication préventive en testant trois propriétés recherchées 

pour un algorithme de réplication asynchrone en grappe: 

• Le passage à l'échelle. Nous avons montré que l'augmentation du nombre de noeuds 

n'influence pas les performances quelques soient la charge et la configuration. Nous avons 

également montré l'influence de la configuration sur les temps de réponse. Quand la 

configuration et le placement des données sont adaptés au type de transactions soumises au 

système alors les performances deviennent optimales. 

• Les gains en performances. Si les performances ne se dégradent pas pour les transactions 

de mises-à-jour lorsqu'on augmente le nombre de noeuds, le débit du système pour les 

lectures augmente. 

• Le degré de fraîcheur: le retard en nombre de validations de transactions reste toujours 

faible quelque soit le banc d'essai et la configuration. C'est lorsque les transactions ne sont 

pas adaptées aux types de configurations que le degré de fraîcheur diminue. Dans ce cas 

certains noeuds (ceux qui possèdent le plus de copies) sont plus chargés que d'autres et 

mettent plus de temps à exécuter toutes les transactions qui leur sont soumis. 

De plus, nous avons montré que nos optimisations permettent un meilleur support face aux 

fortes charges. En effet, en exécutant les transactions en parallèle et en éliminant le délai 

d'ordonnancement, notre système supporte mieux l'émission massive de transactions. Les 

expérimentations ont prouvé que l'exécution optimiste des transactions n'entraînait un taux très 

faible d’abandons (1%), ce qui rend notre optimisation viable. Finalement, nous avons 

développé  le prototype RepDB* [CGPV04] qui implémente l'algorithme de réplication 

préventive avec toutes les optimisations.  

 

Réconciliation de Données pour les Application Collaboratives  en  P2P 

Les wikis sont maintenant très utilisés pour l’édition collaborative de documents sur le Web 

mais s’appuient sur un site central, qui peut être un goulot d’étranglement et un point critique en 

cas de panne. Une approche P2P permet de pallier à ces problèmes et offre d’autres avantages 

comme un meilleur contrôle des données privées (qui restent locales) et le support du travail en 

mode déconnecté. A partir d’une application de Wiki en P2P [Wik07], nous pouvons résumer 

les besoins de réplication pour les applications collaboratives comme suit : haut niveau 

d’autonomie, réplication multi-maître, détection et résolution de conflits, cohérence éventuelle 

des répliques, et indépendance des types de données. 
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La réplication optimiste supporte la plupart de ces besoins en permettant la mise-à-jour 

asynchrone des répliques de sorte que les applications puissent progresser même si quelques 

nœuds sont déconnectés ou en panne. En conséquence, les utilisateurs peuvent collaborer de 

manière asynchrone. Cependant, les solutions optimistes existantes sont peu applicables aux 

réseaux P2P puisqu’elles sont centralisées ou ne tiennent pas compte des limitations du réseau. 

Les approches centralisées sont inadéquates en raison de leur disponibilité limitée et de leur 

vulnérabilité aux fautes et aux partitions du réseau. D’autre part, les latences variables et les 

largeurs de bande, typiques des réseaux P2P, peuvent fortement influencer sur les performances 

de réconciliation puisque les temps d’accès aux données peuvent changer de manière 

significative de nœud à nœud. Par conséquent, afin d’établir une solution appropriée de 

réconciliation P2P, des techniques optimistes de réplication doivent être revues.  

Motivé par ce besoin, nous avons proposé une solution hautement disponible de 

réconciliation et qui passe à l’échelle pour des applications de collaboration P2P.  Pour ce faire, 

nous proposons des protocoles de réconciliation basés sur la sémantique qui assurent la 

cohérence éventuelle des répliques et tiennent compte des coûts d’accès aux données.  

 

Réconciliation Sémantique Distribuée  (DSR) 

L'algorithme DSR (Distributed Semantic Reconciliation)  [MPV05]  utilise le modèle action-

contrainte proposé pour le système IceCube [KRSD01, PSM03, SBK04] afin de capturer la 

sémantique de l'application et résoudre les conflits de mise-à-jour. Cependant, DSR est tout à 

fait différent d'IceCube car il adopte des hypothèses différentes et fournit des solutions 

distribuées. Dans IceCube, un seul nœud centralisé prend des actions de mise-à-jour de tous les 

autres nœuds pour produire un ordonnancement global. Ce nœud peut être un goulot 

d'étranglement. D'ailleurs, si le nœud qui fait la réconciliation tombe en panne, le système entier 

de réplication peut être bloqué jusqu'au rétablissement. En revanche, DSR est une solution 

repartie qui tire profit du traitement parallèle pour fournir la haute disponibilité et le passage à 

l’échelle.  

Nous avons structuré l'algorithme DSR en 5 étapes reparties pour maximiser le traitement 

parallèle et pour assurer l'indépendance entre les activités parallèles. Cette structure améliore les 

performances et la disponibilité de la réconciliation (c.-à-d. si un nœud tombe en panne, 

l'activité qu'il était en train d’exécuter est attribuée à un autre nœud disponible). 

Avec DSR, la réplication de données se passe comme suit. D'abord, les nœuds exécutent des 

actions locales pour mettre à jour une réplique d'un objet tout en respectant des contraintes 

définies par l'utilisateur. Puis, ces actions (avec les contraintes associées) sont stockées dans une 
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table de hachage distribuée (DHT) en se basant sur l’identifiant de l'objet. Enfin, les nœuds 

réconciliateurs retrouvent les actions et les contraintes dans la DHT et produisent un 

ordonnancement global en réconciliant les actions conflictuelles. Cette réconciliation est 

complètement distribuée et l’ordonnancement global est localement exécuté dans chaque nœud, 

assurant de ce fait la cohérence éventuelle [SBK04, SS05]. 

Dans cette approche, nous distinguons trois types de nœuds : le nœud de réplique, qui tient 

une réplique locale ; le nœud réconciliateur, qui est un nœud de réplique qui participe à la 

réconciliation distribuée ; et le nœud fournisseur, qui est un nœud dans la DHT qui stocke des 

données consommées ou produites par les nœuds réconciliateurs (par ex., le nœud qui tient 

l’ordonnancement s'appelle le fournisseur d’ordonnancement). 

Nous concentrons le travail de réconciliation dans un sous-ensemble de nœuds (les nœuds 

réconciliateurs) pour maximiser les performances. Si nous ne limitons pas le nombre de nœuds 

réconciliateurs, les problèmes suivants peuvent survenir. D'abord, les nœuds fournisseurs et le 

réseau entier deviennent surchargés à cause d’un grand nombre de messages visant à accéder au 

même sous-ensemble d’objets dans la DHT pendant un intervalle très court de temps. Ensuite, 

les nœuds avec de hautes latences et de faibles bandes passantes peuvent gaspiller beaucoup de 

temps avec le transfert de données, compromettant de ce fait le temps de réconciliation. Notre 

stratégie ne crée pas des déséquilibres dans la charge des nœuds réconciliateurs car les activités 

de réconciliation ne sont pas des processus intensifs. 

Réconciliation P2P (P2P-Reconciler) 

P2P-reconciler transforme l'algorithme DSR en protocole de réconciliation en développant des 

fonctionnalités additionnelles que DSR ne fournit pas. D'abord, il propose une stratégie pour 

calculer le nombre de nœuds qui devraient participer à la réconciliation afin d'éviter des 

surcharges de messages et assurer de bonnes performances [MAPV06, MPV06a]. En second 

lieu, il propose un algorithme distribué pour choisir les meilleurs nœuds réconciliateurs basés 

sur les coûts d'accès aux données, qui sont calculés selon les latences de réseau et les taux de 

transfert. Ces coûts changent dynamiquement pendant que les nœuds rejoignent et partent du 

réseau, mais notre solution fait face à un tel comportement dynamique. Troisièmement, il 

garantit la cohérence éventuelle des répliques en dépit de jonctions et départs autonomes des 

nœuds [MAPV06, MP06, MPV06a, MPJV06]. En outre, nous avons formellement montré que 

P2P-reconciler assure la cohérence éventuelle, est fortement disponible, et fonctionne 

correctement en présence des fautes. 
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Réconciliation consciente de la topologie (P2P-reconciler-TA) 

P2P-reconciler-TA [EMP07] est une optimisation du protocole P2P-reconciler qui vise à 

exploiter les réseaux P2P conscients de leurs topologies (en anglais, topology-aware P2P 

networks) pour améliorer les performances de réconciliation. Les réseaux P2P conscients de 

leurs topologies établissent les voisinages parmi les nœuds basés sur des latences de sorte que 

les nœuds qui sont proches les uns des autres en termes de latence dans le réseau physique 

soient aussi des voisins dans le réseau P2P logique. Pour cette raison, des messages sont routés 

plus efficacement sur les réseaux conscients de leurs topologies. L'algorithme DSR n'est pas 

affecté par la topologie du réseau. Cependant, un autre algorithme est nécessaire pour le choix 

des nœuds qui participent à la réconciliation.  

Plusieurs réseaux P2P conscients de leurs topologies peuvent être employés pour valider 

notre approche telle que Pastry [RD01a], Tapestry [ZHSR+04], CAN [RFHK+01], etc. Nous 

avons choisi CAN parce qu'il permet de construire le réseau P2P logique conscient de sa 

topologie d'une façon assez simple. De plus, il est facile de mettre en œuvre son mécanisme de 

routage, bien que moins efficace que d'autres réseaux P2P conscients de leurs topologies (par 

ex., le chemin de routage moyen dans CAN est habituellement plus long que dans d'autres 

réseaux P2P structurés).  

Les protocoles P2P-reconciler et P2P-reconciler-TA tirent profit de l'algorithme DSR pour 

réconcilier des actions conflictuelles. Cependant, ils sont très différents par rapport à l’allocation 

de nœuds réconciliateurs. P2P-reconciler-TA choisit d'abord les nœuds fournisseurs qui sont 

proches les uns des autres et sont entourés par un nombre acceptable de réconciliateurs 

potentiels. Puis, il transforme des réconciliateurs potentiels en réconciliateurs candidats. Au fur 

et à mesure que la topologie du réseau change suite à des jonctions, départs, et échecs de nœuds, 

P2P-reconciler-TA change également les nœuds fournisseurs choisis et les réconciliateurs 

candidats associés. Ainsi, les fournisseurs et les réconciliateurs candidats choisis changent d'une 

façon dynamique et auto-organisée selon l'évolution de la topologie du réseau. P2P-reconciler-

TA choisit des nœuds réconciliateurs à partir de l'ensemble de réconciliateurs candidats en 

appliquant une approche heuristique qui réduit rigoureusement l'espace de recherche et préserve 

les meilleures options. En outre, ce protocole également assure la cohérence éventuelle des 

répliques, rend la réconciliation hautement disponible même pour les réseaux très dynamiques, 

et fonctionne correctement en présence d’échecs.  L’Annexe D présente les détails de toutes  ces 

contributions qui correspond à la publication [MPEJ08]. 
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Validation 

Nous avons validé nos algorithmes par la création d’un prototype et d’un simulateur. Le 

prototype sur la plateforme distribuée Grid5000 nous a permis de vérifier l'exactitude de notre 

solution de réplication et de calibrer le simulateur. D'autre part, le simulateur a permis d’évaluer 

le comportement de notre solution sur des réseaux plus grands. L'évaluation de performances de 

DSR a montré qu'il surpasse la réconciliation centralisée en réconciliant un grand nombre 

d'actions. En outre, il fournit un plus grand degré de disponibilité, de passage à l’échelle, et de 

tolérance aux fautes. D'ailleurs, il passe à l’échelle très bien jusqu'à 128 nœuds réconciliateurs. 

Puisque le nombre de nœuds réconciliateurs ne limite pas le nombre de nœuds de répliques, il 

s’agit d’un excellent résultat. 

P2P-reconciler a été évalué avec des méthodes distinctes d’allocation de nœuds 

réconciliateurs. Les résultats expérimentaux ont prouvé que la réconciliation avec l'allocation 

basée sur le coût surpasse l'approche aléatoire par un facteur de 26. De plus, le nombre de 

nœuds connectés n'est pas important pour déterminer les performances de réconciliation. Ceci 

est du au fait que la DHT passe à l’échelle et les réconciliateurs sont aussi proches que possible 

des objets de réconciliation. Par ailleurs, la taille des actions affecte le temps de réconciliation 

dans une échelle logarithmique. En conclusion, P2P-reconciler restreint la surcharge du système 

puisqu'il calcule des coûts de communication en employant des informations locales et limite la 

portée de la propagation des événements (par ex., jonction ou départ). 

Nos résultats expérimentaux ont prouvé que P2P-reconciler-TA sur CAN surpasse P2P-

reconciler par un facteur de 2. C'est un excellent résultat si nous considérons que P2P-reconciler 

est déjà un protocole efficace et CAN n'est pas le réseau P2P conscient de topologie le plus 

efficace (par ex., Pastry et Tapestry sont plus efficaces que CAN). P2P-reconciler-TA exploite 

d'une manière très appropriée les réseaux conscients de topologie puisque ses meilleures 

performances sont obtenues quand le degré de proximité parmi les nœuds en termes de latence 

est le plus élevé. De plus, il passe à l’échelle au fur et à mesure que le nombre de nœuds 

connectés augmente. En conclusion, l'approche heuristique de P2P-reconciler-TA pour choisir 

les nœuds réconciliateurs est très efficace. 

 

 

Gestion de Données Courantes dans les DHTs Répliquées 

Les DHTs, comme CAN [RFHKS01] et Chord [SMKK+01], fournissent une solution efficace 

pour la recherche de données dans les systèmes P2P. Une DHT réalise une conversion entre une 

clef k et un pair p, appelé le responsable pour k, en utilisant une fonction de hachage, et permet 
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ainsi de trouver efficacement le pair qui est responsable pour une clef. Les DHTs fournissent 

typiquement deux opérations de base [HHHL+02]: put (k, data) stocke une clef k et une donnée 

data dans la DHT en utilisant une fonction de hachage; get (k) recherche la donnée stockée dans 

la DHT avec la clef k. Cependant, la disponibilité des données stockées n'est pas garantie. Pour 

améliorer la disponibilité des données, nous pouvons répliquer la paire (k, data) sur plusieurs 

pairs. Toutefois, la cohérence des répliques après mise-à-jour peut être compromise en raison 

des pairs qui ont quitté le réseau ou des mises-à-jour concurrentes. 

Nous avons proposé une solution complète pour déterminer les données courantes (les plus 

à jour) parmi les données répliquées dans les DHTs [APV07a]. Cette solution consiste en un 

service de gestion des mises-à-jour, UMS (Update Management Service), qui permet de gérer 

des données répliquées et de retrouver les copies courantes (les plus à jour). Pour ce faire, UMS 

s’appuie sur un service d'estampillage basé sur clef, KTS (Key-based Timestamp Service), qui 

permet de générer des estampilles logiques d'une façon complément distribuée. 

Gestion des Mises-à-jour (UMS) 

UMS permet d’insérer (opération insert) une donnée et sa clef en la répliquant dans la DHT et 

de retrouver (opération retrieve) la donnée répliquée la plus courante correspondant à une clef 

donnée. Le fonctionnement de UMS peut être résumé comme suit. Soit H un ensemble de 

fonctions de hachage. Pour chaque clef k et chaque fonction de hachage h, il y a un pair p 

responsable pour k. Nous appelons p le responsable de k par rapport à h, et le dénotons par 

rsp(k, h). Un pair peut être responsable pour k par rapport à une fonction h1 mais non 

responsable pour k par rapport à une autre fonction h2. Pour améliorer la disponibilité des 

données, le service UMS stocke chaque donnée sur plusieurs pairs en utilisant un ensemble de 

fonctions de hachage Hr⊂H. l'ensemble Hr s'appelle l'ensemble de fonctions de réplication. Le 

nombre de fonctions de réplication, c.-à-d. ⎪Hr⎪, peut être différent  pour différents réseaux 

P2P. 

Des répliques peuvent devenir obsolètes, par exemple en raison de l'absence de certains 

pairs au moment de la mise-à-jour. Afin de distinguer entre les répliques courantes (à jour) et 

obsolètes, avant de stocker les données, UMS leur ajoute une estampille logique qui est produite 

par le service KTS. En prenant une clef k et une donnée data, pour chaque h∈Hr, UMS stocke 

(k, {data, estampille}) sur le pair rsp(k, h). Suite à une demande pour une donnée qui est stockée 

avec une clef sur la DHT, UMS renvoie l'une des répliques qui a une estampille récente.  
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Estampillage (KTS) 

L'opération principale de KTS est l'opération gen_ts (k) qui, en prenant une clef k, produit un 

nombre réel en tant qu'estampille pour k. Les estampilles produites par KTS ont la propriété de 

monotonie, c.-à-d. que les estampilles produites pour la même clef sont monotonement 

croissantes.  

KTS produit les estampilles d'une façon complètement distribuée, en utilisant les compteurs 

locaux. A chaque moment, il produit au maximum une estampille pour une clef k. Donc, en 

considérant la propriété de monotonie, il y a un ordre total sur l'ensemble des estampilles 

produites pour une clef. Cependant, il n'y a aucun ordre total sur les estampilles produites pour 

des clefs différentes. En plus de gen_ts(k), KTS a une autre opération dénotée par last_ts (k) qui 

en prenant une clef k, renvoie la dernière estampille produite pour k. 

L'opération gen_ts(k) produit des estampilles monotonement croissantes pour les clefs. Une 

solution centralisée pour produire les estampilles n'est évidemment pas viable dans un système 

P2P car le pair central serait un goulot d’étranglement et un point d'échec. Et les solutions 

distribuées à l'aide d’horloges synchronisées ne s'appliquent pas non plus dans un système P2P. 

Nous avons proposé alors une technique distribuée pour produire des estampilles dans les 

DHTs. Elle utilise des compteurs locaux pour produire des estampilles et des algorithmes 

d’initialisation des compteurs qui garantissent la monotonie des estampilles, même en cas de 

pannes. L’Annexe E présente les détails de toutes  ces contributions qui correspond à la 

publication [APV07a]. 

Validation 

Nous avons validé notre solution par une implémentation sur un cluster de 64 nœuds de 

Grid5000 et par une simulation jusqu'à 10.000 pairs en utilisant SimJava [HM98]. Nous avons 

réalisé les services UMS et KTS sur notre propre implémentation de Chord [SMKK+01], une 

DHT simple et efficace. 

Nous avons comparé les performances de notre service UMS avec celles de BRK (un 

service réalisé dans le projet BRICK [KWR05]). Les résultats d’expérimentation et de 

simulation montrent que KTS et UMS donnent des gains majeurs, en termes de temps de 

réponse et de coût de communication, par rapport à BRK. Le temps de réponse et le coût de 

communication d'UMS ont une tendance logarithmique en nombre de pairs de la DHT. 

L'augmentation du nombre de répliques n'a pas d'impact sur le temps de réponse et le coût de 

communication de UMS. Mais cette augmentation a un grand impact négatif sur BRK. Nous 

avons aussi testé UMS et KTS dans des situations où la DHT est très dynamique, c.-à-d. les 
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pairs rejoignent  et quittent le système fréquemment. Les résultats ont montré que même dans 

ces situations, UMS et KTS fonctionnent très bien. En résumé, notre validation a montré que la 

gestion des données courantes peut être supportée efficacement dans les DHTs. 

 

Conclusions et Travaux Futurs  

Dans le contexte des entrepôts de données nous avons proposé des algorithmes pour la gestion 

de la cohérence pour la réplication asynchrone mono-maître.   Le principe de l'algorithme 

refresher est de soumettre les transactions dans un ordre total sur tous les nœuds cibles en 

fonction de leur estampille d'arrivée. Pour ce faire, l'algorithme refresher retarde (avec un délai 

d’attente) l'exécution des transactions pour s'assurer qu'aucune transaction plus ancienne n'est en 

route pour le noeud. L'algorithme refresher  impose une restriction sur le placement des données 

(le graphe de dépendances des noeuds ne doit pas former de cycles). Nos résultats de 

performance (obtenus par simulation) ont montré que des stratégies immédiates peuvent 

améliorer jusqu’à 5 fois le degré de fraîcheur comparé à des stratégies différées. 

Dans le contexte des grappes de bases de données,  nous avons présenté un nouvel 

algorithme de réplication dite préventive, basés sur l'algorithme refresh.  Nous avons ajouté le 

support de la réplication totale et partielle ainsi que d’importantes optimisations pour relâcher 

les délais d’attente.  Nous avons montré que ces algorithmes avaient de très bonnes 

performances et passaient à l’échelle. Nous avons réalisé ces algorithmes dans le prototype 

RepDB* avec les SGBD PostGreSQL et BerkeleyDB. 

Dans le contexte des applications collaboratives en P2P, nous avons proposé une solution 

de réconciliation fortement disponible qui passe à l’échelle et assure la cohérence éventuelle. 

Nous avons proposé l’algorithme DSR qui peut être exécuté dans différents environnements 

distribués (grappe, grille, ou P2P). Nous avons étendu DSR en un protocole de réconciliation 

P2P appelé P2P-reconciler. Puis nous avons proposé le protocole P2P-reconciler-TA, qui 

exploite les réseaux P2P conscients de leur topologie afin d’améliorer  les performances de la 

réconciliation. Nous avons validé nos solutions et évalué leurs performances par un prototype 

que nous avons déployé sur la plateforme Grid5000 et simulation.  Les résultats ont montré que 

notre solution de réplication apporte haute disponibilité, excellent passage à l’échelle, avec des 

performances acceptables et surcharge limitée. 

Nous avons aussi proposé  une solution complète au problème d’accès à des données 

courantes dans les DHTs [APV07a]. Nous avons proposé le service UMS qui permet de mettre 

à jour les données répliquées et l’accès efficace à des répliques courantes en utilisant une 

approche basée sur l’estampillage. Après la récupération d'une réplique, UMS détecte si elle est 
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courante ou pas, c.-à-d. sans devoir la comparer avec les autres répliques. Contrairement aux 

travaux existants, par exemple [KWR05], UMS n'a pas besoin de rechercher toutes les répliques 

pour trouver une réplique courante. En outre, les mises-à-jour concurrentes ne posent aucun 

problème pour UMS. Nous avons également proposé le service KTS qui produit des estampilles 

monotonement croissantes, de façon distribuée en utilisant les compteurs locaux. Nous avons 

validé UMS et KTS par une combinaison d'implémentation avec la DHT Chord sur un cluster 

de Grid5000 et simulation. Les résultats ont montré l'efficacité de ces deux services. 

Nos techniques de réplication en P2P ont été conçues dans le contexte du projet APPA 

[AMPV04 AMPV06a] qui fournit des services avancés de gestion de données dans les systèmes 

P2P. Dans le prolongement de nos travaux en réplication, nous poursuivons trois directions de 

recherche nouvelles dans APPA : un service de réconciliation basé sur des estampilles 

distribuées continues, un service de gestion de cache, et un service de gestion de flux en P2P. 

Réconciliation P2P 

Nous proposons une solution nouvelle à la réconciliation en P2P pour l’édition collaborative 

(dans le cadre du projet Xwiki Concerto). Elle combine l’approche à base de transformées 

opérationnelles (OT) [SCF98, FVC04 MOSI03] qui permet de réaliser la réconciliation de façon 

très efficace et simple, et un nouveau service appelé P2P-LTR (Logging and Timestamping for 

Reconciliation). P2P-LTR réalise la journalisation des actions en  P2P et intègre un service 

d’estampillage continu inspiré de  KTS et un algorithme pour retrouver l’ordre total des actions 

stockées dans le journal P2P. Un défi est la gestion d’estampilles continues qui doit être 

tolérante aux fautes, afin d’ordonnancer les actions (les modifications sur les documents) 

stockées dans les journaux.  

Gestion de Cache en P2P  

Bien que largement déployés pour le partage de fichiers, les systèmes P2P non structurés 

surexploitent les ressources réseaux.  Le trafic P2P monopolise la bande passante, notamment à 

cause de l’inefficacité des mécanismes de recherche aveugle qui inondent le réseau de messages 

redondants. 

Puisque les requêtes dans ces systèmes exhibent une forte localité temporelle, les techniques 

de mise en cache des réponses de requêtes (c.à.d. la localité des fichiers) pourraient optimiser la 

recherche et limiter le trafic redondant. En revanche, la gestion de caches constitue un défi 

majeur pour éviter  le surcoût de stockage. De plus, la majorité des approches existantes ne 
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prennent pas en compte la proximité réseau entre le client et le fournisseur du fichier, alors que 

les fichiers populaires sont naturellement répliqués en différentes localités. Ce problème 

contribue également à la surcharge du réseau et à la dégradation des temps de réponse. Nous 

proposons d’étudier des techniques de recherche qui profitent de la mise en cache des réponses 

des requêtes.  L’idée est d’exploiter la réplication désordonnée de fichiers en considérant leur 

localité, pour limiter la consommation de bande  passante dans les systèmes P2P non structurés. 

Nous nous intéressons aussi à gestion de cache web en P2P. Plusieurs travaux sur les caches 

web comme Akamai redistribuent le contenu des serveurs web pour un public plus large. Ces 

techniques absorbent la surcharge des serveurs webs, limitent les coûts de bande passante et 

optimisent le temps de latence perçus par les clients.  Cependant, ces services sont coûteux en 

termes de maintenance et d’administration. La technologie pair-à-pair est une nouvelle 

alternative pour redistribuer le contenu à une grande échelle et à bas coûts, tout en exploitant les 

ressources non utilisées des clients. Plusieurs défis se présentent lors de la conception d’un 

système de cache web P2P avec des performances comparables à celles des techniques 

traditionnelles, alors que l’on compte essentiellement sur des nœuds autonomes et dynamiques. 

Plus précisément, nous abordons les questions suivantes : quelles données doivent être 

mises en cache, sur quels nœuds placer le cache, comment gérer les mises-à-jour (et assurer la 

cohérence des données répliquées), et comment traiter efficacement le routage de requêtes en 

exploitant le système de caches distribués . 

Gestion de Flux de Données en P2P 

Des applications modernes comme la surveillance de réseau, l’analyse financière ou les réseaux 

de capteurs requièrent des requêtes continues pour traiter des flux de données (data streams).  

La gestion des flux de tuples produits en continu et de taille non bornée est un domaine de 

recherche important. La nature continue et non bornée des données a pour conséquence qu'il 

n'est pas possible de stocker les données sur disque. De plus, cela empêche l'application des 

optimisations développées sur les opérateurs traditionnels de gestion de données. Il n'est donc 

pas concevable de traiter les données avec une approche classique. 
D'autre part, le succès des applications P2P et ses protocoles a motivé d’aller au-delà des applications 

de partage de fichiers. C'est ainsi que le paradigme P2P s'est récemment imposé comme la clé  du passage 

à l'échelle dans les systèmes distribués.  Dans cette direction, nous intéressons à la conception et 

l’implémentation d'algorithmes  efficaces pour le traitement de requêtes sur des flux de données reposant 

sur  le paradigme P2P. 
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1 Introduction 

In this chapter, we present the main structure and goals of this research work on lazy data replication 
in different contexts:  small, large and very large scale systems. We first introduce the main concepts, 
relevant terms and some related work. Then we present the context of our research which includes the 
projects we have been involved. Finally, we present the report organization. 

 
 

1.1 Data Replication 
Data replication is  important in the context of distributed systems for several reasons [SS05]. 

First, replication improves  system availability by removing single points of failures (objects are 

accessible from multiple nodes). Second, it enhances  system performance by reducing the 

communication overhead (objects can be located closer to their access points) and increasing the 

system throughput (multiple nodes serve the same object simultaneously). Finally, replication 

improves system scalability as it supports the growth of the system with acceptable response 

times. 

Data replication consists of managing reads and writes over multiple copies of a single 

object, called replicas, stored in set of interconnected nodes. An object is the minimal unit of 

replication in a system. For instance, in a replicated relational database, if tables are entirely 

replicated then tables correspond to objects; however, if it is possible to replicate individual 

tuples, then tuples correspond to objects. Other examples of objects include XML documents, 

typed files, multimedia files, etc.  

A major issue concerning data replication is how to manage updates. Gray et al. [GHOS96] 

classify the replica control mechanisms according to two parameters: where updates take place 

(i.e. which replicas can be updated), and when updates are propagated to all replicas. According 

to the first parameter (i.e. where), replication protocols can be classified as single-master or 

multi-master solutions. With single master replication, updates on a replicated object are 

performed at a single master node, which holds the primary copy (read/write) of the replicated 

object. Slave nodes, holds secondary copies (read only) of the replicated object. With multi-

master replication, all involved nodes holds primary copies of replicated objects. According to 

the second parameter (i.e. when), update propagation strategies are divided into synchronous 

and asynchronous approaches. More specifically, in distributed database systems, data access is 

done via transactions. A transaction is a sequence of read and write operations followed by a 

commit. If the transaction does not complete successfully, we say that it aborts. The updates of a 

transaction that updates a replicated object must be propagated to all nodes that hold replicas of 

this object in order to keep these replicas consistent. Such update propagation can be done 
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within the transaction boundaries or after the transaction commit. The former is called 

synchronous (henceforth eager) replication, and the latter, asynchronous (hence forth lazy) 

replication.  

The replica control solutions are also affected by the way replicas are distributed over the 

network.  Replica placement over the network directly affects the replica control mechanisms. 

We discuss the basic alternative approaches for replica placement: full replication and partial 

replication. 

Full replication consists of storing a copy of every replica of an object at all participating 

nodes. This approach provides simple load balancing since all nodes have the same capacities, 

and maximal availability as any node can replace any other node in case of failure. Figure 1.1 

presents the full replication of two objects  R and S  over three nodes. 

 

 

Figure 1.1. Example of full replication  
with two objects R and S 

 

Figure 1.2. Example of partial replication  
with two objects R and S 

 
With partial replication, each node may hold a subset of replicated copies, so that the 

objects replicated at one node may be different of the objects replicated at another node, as 

shown in Figure 1.2. This approach incurs less storage space and reduces the number of 

messages needed to update replicas since updates are only propagated towards some nodes. 

Thus, updates produce less load for the network and nodes. However, if related objects are 

stored at different nodes, the propagation protocol becomes more complex as the replica 

placement must be taken into account. In addition, this approach limits load balance possibilities 

since certain nodes are not able to execute a particular set of transactions. 

One of the crucial problems of data replication is updating a replica. The eager replication 

approaches apply  updates to all replicas within the context of the transaction that initiates the 

updates, as shown in Figure 1.3. As a result, when the transaction commits, all replicas have the 

same state and mutual consistency is assured.  This is achieved by using concurrency control 

mechanisms like distributed two-phase-locking (D-2PL) [OV99] or timestamp based 

algorithms. In addition, a commitment protocol like two-phase-commit (2PC)  can be used to 

provide atomicity (either all transaction’s operations are completed or none of them are). Thus, 

R1 S 

s R2 

Node 1

Node 2 Node 3 

R1 S1 R3 S3 

R2 S2 

Node 1 

Node 2 
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eager replication enforces mutual consistency among replicas. Bernstein et al. [BHG87] define 

this consistency criteria as one-copy-serializability, i.e. despite the existence of multiple copies, 

an object appears as one logical copy (one-copy-equivalence), and a set of accesses to the object 

on multiple nodes is equivalent to serially execute these accesses on a single node. 
 

 

Figure 1.3. Principle of lazy replication 

 

Early solutions [Sto79] use synchronous single-master approaches to assure one-copy-

serializability. However, later solutions avoid this centralized solution and follow the multi-

master approach.  For instance, in the ROWA (read-one/write-all) approach [BHG87], read 

operations are done locally while write operations access all copies. ROWA is not fault-tolerant 

since the update processing stops whenever a copy is not accessible. ROWAA (read-one/write-

all-available) [BG84,GSC+83] overcomes this limitation by updating only the available copies. 

Another alternative are quorum protocols [Gif79,JM87,PL88,Tho79], which can succeed as 

long as a quorum of copies agrees on executing the operation. Other solutions combine 

ROWA/ROWAA with quorum protocols [ET89]. 

More recently, Kemme and Alonso [KAa00] proposed new protocols for eager replication 

that take advantage of group communication systems to avoid some performance limitations 

introduced by the standard eager solutions when using  D-2PL and 2PC. Group communication 

systems [CKV01] provide group maintenance, reliable message exchange, and message 

ordering primitives between groups of nodes. The basic mechanism behind these protocols is to 

first perform a transaction locally, deferring and batching writes to remote replicas until 

transaction commit time. At commit time all updates (called the write set) are sent to all replicas 

using a total order multicast primitive which guarantees that all nodes receive all write sets in 

exactly the same order. As a result, no two-phase commit protocol is needed and no deadlock 

can occur.          Following this approach, Jiménez-Peris et al. [JPAK03] show that the ROWAA 

approach, instead of quorums, is the best choice for a large range of applications requiring data 

replication in cluster environments. Next, in [LKPJ05] the most crucial bottlenecks of the 

existing protocols are identified, and optimizations are proposed to alleviate these problems, 

making one-copy-serializability feasible in wide-area-networks (WAN) environments of 

r R r 
1) T:w(R) 

3) commit 

2) propagate w(R) 
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medium size. Finally, [LKPJ07] proposes a replication solution adapted to edge computing 

which provides higher scalability with out the use of group communication at the WAN. 

The main advantage of eager replication is to provide mutual consistency within transaction 

management. This enables local queries to read consistent values. The drawback is that the 

transaction has to update all replicas before committing, thus increasing transaction response 

times, with limited scalability (up to ten nodes).  In addition, in the presence of failures these 

protocols may block. The use of group communication improves these limitations somewhat. A 

group communication system enables a node to multicast a message to all nodes of a group with 

a delivery guarantee, i.e. the message is eventually delivered to all nodes. Furthermore, it can 

provide multicast primitives with different delivery orders. In total order multicast, all messages 

sent by different nodes are delivered in the same total order at all nodes. In eager replication, 

this primitive was proposed [KA00a] to be used to guarantee that all nodes receive the write 

operations in exactly the same order, thereby ensuring identical serialization order at each node.  

In fact, the combination of the use reliable delivery (if one node receives the message all nodes 

receive the message unless they fail) and total order guarantees atomicity.  

With lazy replication, a transaction commits as soon as possible at the master node, and 

afterwards the updates are propagated towards all other replicas, as shown in Figure 1.4, and 

replicas are then updated in a separatetransactions. As a consequence mutual consistency is 

relaxed. The concept of freshness is used to measure the deviation between replicas (primary 

copies and secondary copies) when using lazy single master replication.  

Multi-master lazy replication (update anywhere) solutions can be classified as optimistic or 

non-optimistic according to their way of handling conflicting updates. In general, optimistic 

replication relies on the optimistic assumption that conflicting updates will occur only rarely, if 

at all. Tentative updates are applied locally, and later on conflicts are detected and resolved by 

some reconciliation engine [SS05]. As a result tentative updates may be aborted if necessary, 

and eventually mutual consistency is assured. Between two reconciliations, inconsistent states 

are allowed to be read by queries.   

In contrast, non-optimistic replication assumes that update conflicts are likely to occur and 

implements propagation mechanisms that prevent conflicting by establishing some transaction 

execution strategy, in the fly,  to assure total order. These protocols are said to assure strong 

consistency since an inconsistent state is never seen by queries. However, unfresh states are 

allowed to be read. This is why strong consistency is different from mutual consistency. 
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Figure 1.4. Principle of asynchronous propagation 

 

An advantage of lazy propagation is that the replica protocol does not block transaction 

processing due to unavailable replicas, which improves system liveness in the presence of 

failures and dynamicity. In addition, less communication overhead is needed to coordinate 

concurrent updates, thereby reducing the transaction response times and improving the system 

scalability. In particular, optimistic lazy replication is more flexible than other approaches as the 

application can choose the appropriate time to perform reconciliation. Thus, applications may 

progress even over a dynamic network, in which nodes can connect and disconnect at any time. 

The main drawback is that replicas may be inconsistent or unfresh in the presence of queries, 

which in some cases may be unacceptable. Non-optimistic lazy replication is not as flexible as 

the optimistic approach, but completely avoids inconsistent  reads, even if  unfresh reads  are  

accepted. 

1.2 Contributions 
In this report, we present our contributions to improve data freshness and to manage strong  

consistency  in single master and multi-master lazy replication  configurations,  respecting the 

autonomy of the database internals.  This means that all the components necessary to support 

our protocols are implemented outside de DBMS. These contributions were motivated by 

distributed database system applications such as small scale Oneline Analysis Processing 

(OLAP)   and small and large scale Oneline Transaction Processing (OLTP)  in  database cluster 

system.  

The   motivations of these applications are given in chapters 2 and 3, respectively.   

Let us now motivate the needs for replication in peer to peer (P2P) systems since it’s a 

recent research challenge.  Large-scale distributed collaborative applications are getting 

common as a result of rapid progress in distributed technologies (grid, P2P, and mobile 

computing). As an example of such applications, consider a second generation Wiki [Wik07] 

that works over a peer-to-peer (P2P) network and supports users on the elaboration and 

maintenance of shared documents in a collaborative and lazy manner. 

R R R 
1) T:w(R)

2) commit

3) propagate w(R) 



  

 

26

 

P2P systems adopt a completely decentralized approach to resource management 

[SMKK+01,RFHK+01,RD01,Gnu06,Kaz06]. By distributing data storage, processing, and 

bandwidth across autonomous peers in the network, they can scale without the need for 

powerful servers.  All P2P systems rely on a P2P network to operate. This network is built on 

top of the physical network (typically the Internet), and therefore is referred to as an overlay 

network. The degree of centralization and the topology of the overlay network tightly affect the 

properties of the P2P system, such as fault-tolerance, self-maintainability, performance, 

scalability, and security. For simplicity, we consider three main classes: unstructured, 

structured, and super-peer networks. 

P2P systems allow decentralized data sharing by distributing data storage across all peers of 

a P2P network. Since these peers can join and leave the system at any time, the shared data may 

become unavailable. To cope with this problem, a solution is to replicate data over the P2P 

network. Several data replication solutions have been proposed in P2P systems to improve 

availability within the overlay network [CMHS+02,ACDD+03, KBCC+00,AHA03]. Most of 

these solutions are based on lazy single master replication built for file systems. On the other 

hand, very few replication solutions have been proposed to handle the application requirements.  

Our research contributions for managing lazy multi-master data replication in P2P systems 

are related to specific collaborative applications. We adopt optimistic replication due to its 

flexibility which is necessary in dynamic and large scale environments. The first contribution in 

this subject is a P2P Topology Aware Semantic Reconciliation engine. Another important 

contribution is related to the improvement of performance on providing data availability in 

structured P2P systems in the presence of multiple replicas of a given object, given  dynamicity 

and failures.  In this context, we proposed a data replication service that uses the concept of 

currency over a distributed timestamp protocol.  

To conclude this section, we present a summary of the different contexts of our research on 

replication: 

Distributed OLTP and OLAP (1999 to 2001) [PMS99, PS00, PMS01]: 

• Mainly Lazy Single Master configurations 

• Small scale 

• Partial Replication 

• Database heterogeneity 

• Strong Consistency 
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Database Clusters (2002 to 2006) [POC03, CGPV04, PCVO05,CPV05a, CPV05b]: 

• Lazy Multi-Master and Single Master configurations 

• Large scale 

• Full and Partial Replication 

• Database heterogeneity 

• Strong Consistency 

 

P2P Data Management Systems (2003 until today) [AMPV04, MAPV06, MP06, 

EMP07, APV07a]: 

• Lazy Single Master and Multi-Master Replication 

• Dynamicity, high heterogeneity (DB, network, peers) 

• Large scale or very large scale 

• Full and Partial Replication 

• Eventual consistency 

 

Besides data replication, we also have important contributions on query processing in 

distributed P2P systems [AMPV06b, APV07b, APV07] but they are beyond the scope of 

this report. 

1.3 Research Projects 
Our research on data replication is motivated by   several   important research projects 

presented below:  

• ESPRIT Long Term Research (DWQ) Data Warehouse Quality. I worked on 

DWQ  as a  Ph.D. student in the  Rodin team at Inria Rocquencourt and 

afterwards, as a research collaborator in the Caravel team at Inria 

Rocquencourt. Our contribution was the development of  algorithms to improve 

data freshness and managing consistency in  lazy single master replication 

configurations for small scale heterogeneous  distributed and replicated data 

base systems. 

• RNTL Leg@net (Legacy applications on the Net). I worked on Leg@net first at 

University of Paris 5 and continued as assistant professor at University of 

Nantes, in the ATLAS team, a joint team between INRIA and LINA. I 

supervised the Ph.D. thesis of Cedric Coulon and  3  master theses.  Our 

contribution was the development of  lazy muti-master non-optimistic  
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replication algorithms and architectures  for large scale  database clusters  for 

OLTP  applications. We developed a significant research  prototype which was 

released as open software  (RepDB*). 

• STREP Grid4All and RNTL XWiki Concerto, as an associated professor at 

University of Nantes and member the ATLAS team. I supervised the Ph.D. 

these of Vidal Martins and Reza Arkbarinia  and 4 master these. I’am still 

working on these projects and supervising 2 engineers for prototyping our 

solutions. A significant research prototype, Atlas P2P Architecture (APPA) is 

being developed and incorporates the results of our work.  Our contributions are 

P2P data replication solutions and architectures for lazy multi-master 

replication for  collaborative applications  over  P2P systems. 

1.4 Research Prototypes 

The main results of my research have been the basis for the major research prototypes: 

RepDB*: 2002-2005 
http://www.sciences.univ-nantes.fr/lina/atlas/repdb/ 
 

  We have initially designed it in the context of the Leg@net RNTL project and further 

developed it in the context of the ARA Masses de données MDP2P project. RepDB* supports 

preventive data replication capabilities (multi-master modes, partial replication, strong 

consistency) which are independent of the underlying DBMS. It employs general, non intrusive 

techniques. It is implemented in Java on Linux and supports various DBMS: Oracle, 

PostgreSQL and BerkeleyDB. We validated RepDB* on the Atlas 8-node cluster at LINA and 

another 64-node cluster at INRIA-Rennes. In 2004, we registered RepDB* to the APP (Agence 

pour la Protection des Programmes) and released it as Open Source Software under the GPL 

licence. Since then, RepDB* has been available for downloading (with more than a thousand 

downloads in the first three months).  

 

 
Atlas Peer-to-Peer Architecture (APPA): 2006-now 
http://www.sciences.univ-nantes.fr/lina/atlas/appa/ 

APPA is a P2P data management system that provides scalability, availability and 

performance for applications which deal with semantically rich data (XML, relational, etc.). 
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APPA provides advanced services such as queries, replication and load balancing. It is being 

implemented on top of various P2P networks such as JXTA and OpenChord and tested on 

GRID5000. Three services related to data replication have been implemented so far: KTS, P2P-

Reconciler, and P2P-LTR. KTS (Key-based Timestamp Service) is a distributed service to 

manage timestamps in DHTs (distributed hash tables). It is useful to solve various DHT 

problems which need a total order on operations performed on each data, e.g. data currency. 

P2P-Reconciler is a P2P semantic optimistic reconciliation engine useful for managing multi-

master replication for P2P collaborative applications. We are currently developing another 

service P2P Log and Timestamper for Reconciliation (P2P-LTR) in the Strep Grid4All and 

RNTL Xwiki Concerto projects as the basis to perform reconciliation of replicated documents in 

a P2P wiki system. 

1.5 Report Organisation 
This document is organized as follows. Chapter 2, summarizes and discusses the main 

contributions related to lazy master replication in the context of OLAP and OLTP applications. 

Next, in Chapter 3, we present our contributions on lazy multi-master replication for OLTP 

applications in database clusters.  Chapter 4 presents our contributions on Topology Aware 

Semantic P2P Reconciliation and Chapter 5 presents our contributions on data availability in 

structured P2P systems. Finally, Chapter 6 concludes and discusses our current and future work.  

In addition to the 6 chapters that resumes our research work, we also present four annexes. Each 

annex corresponds to a published  paper related to a specific Chapter: Annex A and B (Chapter 

2),  Annex C (Chapter 3),  Annex D (chapter 4)  and  Annex E (Chapter 5) , and  details the 

contributions of these chapters. 
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2 Lazy Single Master Replication in Data Warehouses 

In this chapter, we  first present the main applications that motivated our research on lazy single 
master replication. Next, we  summarize: (i) the proposed  framework for lazy replication, (ii) two 
update propagation strategies to improve data freshness based on immediate propagation, (iii) 
consistency criteria’s in terms of group communication protocols for some  important configurations 
used in OLAP and OLTP (iv) the refresher algorithms used to enforce consistency for  acyclic 
configurations. Next, we compare the contributions with relevant related work. Finally we conclude 
the section. 

 
 

2.1 Motivations 
Over years companies have built operational database to support their day-to-day operations 

with On-Line Transaction Processing (OLTP) applications which are transactions oriented 

(airline reservation, banking, etc). They need extensive data control and availability, high multi-

user throughput and predicable, fast response times. The users are clerical. Operational 

databases are medium to large (up to several gigabytes). In effect, distributed databases have 

been used to provide integrated access to multiple operational databases and data replication is 

used to improve response time and availability. To improve response times and scalability up to 

ten nodes in the internet, lazy single master replication is proposed as an alternative solution to 

the early eager replication solution. The concept of freshness is then necessary to measure the 

deviation of primary and secondary copies. In addition, in partial lazy single master replication, 

consistency management is necessary to express in which order transactions that update 

replicated data must be executed to avoid inconsistent reads. 

Decision support applications have been termed On-Line Analytical Processing (OLAP) 

[Cod95] to better reflect their different requirements. OLAP applications, such as trend analysis 

or forecasting, need to analyze historical, summarized data coming from operational databases. 

They use complex queries over potentially very large tables and read intensive. Because of their 

strategic nature, response time is important. Performing OLAP queries directly over distributed 

operational databases raises two problems. First, is hurts the OLTP application performance by 

competing for local sources. Second, the overall response time of the OLAP queries can be very 

poor because large quantities of data need to be transferred over the network. Furthermore, most 

OLAP applications do not need the most current versions of the data and thus do not need direct 

access to operational data. Data warehousing is the solution to this problem, which extracts and 

summarizes data from operational data bases in a separate database, dedicated to OLAP. Data 

warehousing is often considered an alternative to distributed databases, but in fact these are 

complementary technologies. Lazy single master data replication is used to built distributed data 
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warehouse and needs high degree of fresh data to improve OLAP analysis quality. In addition, 

several distributed data warehousing architectures have been proposed and again,  consistency 

management is necessary to express in which order transactions that update replicated data must 

be executed to avoid inconsistent reads. 
 

2.2 Lazy Single Master Context 
With lazy single master replication, updates are performed on a primary copy are first 

committed at the master node. Afterwards, each secondary copy is updated, in a separate 

transactions, called refresh transaction.  Primary copied are updatable and secondary copies are 

read-only. In addition, there is a single primary copy for each secondary copy. Lazy single 

master replication have been widely implemented by current database systems [GHOS96, 

Lad90].  When we started on this topic, several manuals, documents and few papers provided 

informal definitions which were  general and not precise enough to address the problems related 

to the applications that motivated our research.   To express our contributions, we proposed a 

formal framework for lazy single master replication based in five basic parameters: ownership, 

configuration, transaction model, propagation and refreshment. Even though we focused on 

lazy single master replication, our framework is also valid for lazy multi-master replication. We 

will use the terms defined in this framework also to compare our work with related ones, later 

on in this chapter. We pay special attention to the propagation parameter since it  expresses 

important contributions in the field. Finally, we present the way we manage consistency in 

different lazy single master configurations. 

 

 

2.3 Basic Parameters 
The ownership parameter is inspired from  [GHOS96] and defines the nodes capabilities for 

updating replica copies (primary and secondary copies).  Three types of nodes are identified: 

Master, Slave and MasterSlave. A node is called Master if it stores only primary copies (upper 

case letter). Similarly if a nodes store only secondary copies (lower case letter), it is called slave 

node. Finally if a node stores primary and secondary copies, it is called MasterSlave. 

The configuration parameter defined the components nodes of a replication configuration 

used in distributed OLTP and data warehousing architectures.  We focus on three main 

configurations: 1Master-nSlaves (Figure 2.1.a ),  1Slave-NMaster (Figure 2.1.b), mMaster-

nSlave (Figure 2.1.c) and Master-MasterSlave-Slave (Figure 2.1.d).  
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                                         Figure 2.1: Lazy Single Master Configuration 

 

The transaction model parameter defines the properties of the transactions that access the 

replica copies at each node. We focus on three types of transactions: update transaction (noted 

T) that update primary copies, refresh transactions (notes RT) which carries the sequence of 

write operations of a specific update transaction used to refresh secondary copies and queries 

that read secondary copies at the slave nodes. 

 

 

2.4 Propagation and Refreshment 
 
The propagation parameter defines “when” the updates to a primary copy must be multicast 

towards the nodes storing its secondary copies. 

We focus on two types of propagation: deferred and immediate [PSM98]. Deferred 

propagation is found in commercial database systems and  immediate propagation is our 

proposal. When using deferred propagation strategy, the serial sequence of writes on a set of 

primary copies performed by an update transaction T is multicast together within a message M, 

after the commitment of T. When using an immediate propagation, each write operation 

performed by a transaction, is immediately multicast inside a message m, without waiting for 

the commitment of the original update transaction T.  

The refreshment parameter is defined by the triggering and ordering of a refresh transaction 

ate the slave node. The triggering component defines when the delivery (transaction 
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submission) of a refresh transactions starts with respect to the propagation strategy. Three 

triggering modes are proposed: deferred, immediate and wait. The couple formed by the 

propagation and trigger mode determines a specific update propagation strategy. We proposed 

two update propagation strategies:  immediate-immediate and immediate-wait.  

With deferred-immediate, as soon as a transaction is committed at the master node the 

corresponding refresh transaction is multicast towards the slaves nodes and, at the slave node, as 

soon as RT is received it is submitted to execution. This strategy corresponds to the ones 

available in some commercial systems.   

We proposed the following strategies  to improve data freshness since mutual consistency is 

relaxed. immediate-immediate propagation, involves the sending of each write operation 

performed by T towards each slave node, without waiting for the commitment of the original 

update transaction. At the slave node, a refresh transaction is started as soon as the first write 

operation is received from the master or MasterSlave node. Finally, immediate-wait is similar to 

immediate-immediate. However, a refresh transaction is submitted for execution only after the 

complete reception of all write operations of the original update transaction. These immediate 

strategies allow parallelism between the propagation of updates and the execution of the 

associated refresh transactions. Figure 2.2 shows these update propagation strategies.  

 
 

 

Figure 2.2: Update Propagation Strategies 

2.5 Validation of the Update Propagation Strategies 
To implement these strategies, we proposed  a lazy single master (1Master-nSlave) replication 

architecture  which respects the underlying DBMS heterogeneity and autonomy as a black box. 

Using this architecture, we simulated these propagation strategies over Oracle 7.3 to measure 

the gains on data freshness. More formally, given a replica X, which is either a secondary or 

primary copy, we define n(X,t) as the number of committed update transactions on X at global 
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time t. It was assumed that update transactions can have different sizes but their occurrence is 

uniformly distributed over time. Then, the degree of freshness of a secondary copy r at global 

time t is: f(r,t) = n(r,t)/n(R,t), where R is the primary copy of r. A degree of freshness close to 0 

means bad freshness while close to 1 means excellent. 

 Based on this measure, we studied exhaustively  the behaviour of the three update 

propagation strategies and the results  were very good (for complete performance results see 

Annex A). The results indicate that, for short transactions, the deferred approach performs 

almost as well as immediate-immediate and immediate-wait. The strategies exhibit different 

freshness results when long transactions occur. In these cases, the immediate strategies show 

much better results and the immediate-immediate strategy provides the best freshness results. 

For some important kinds of workloads, freshness may be five times better than that of the  

deferred strategy. On the other hand, immediate-wait only improves freshness when the update 

transaction arrival rate at the master is bursty (i.e. there are short periods (bursts) with high 

numbers of arriving transactions). The down side of immediate-immediate is the increase of 

query response times due to  transactions blocking when there are conflicts between refresh 

transactions and queries. However, using a multi-version concurrency control protocol at the 

slave node, this drawback can be drastically reduced without a significant loss of freshness. The 

improvement shown by the immediate strategies are beneficial for both OLTP and OLAP 

applications.  

 

2.6 Consistency Management 
 
The consistency parameter enables to express how to achieve refresh transaction total order at 

the slave nodes with respect to the corresponding update transactions at the master nodes, 

considering different types of configurations.  We express consistency in terms of acceptable 

group communication primitives. This is an important contribution because it was one of the 

first approaches to use group communication services [CKV01, Kemm00]] together with 

distributed transaction management for lazy replication. Briefly, group communication systems 

provide multicast services which may differ in the final order in which message are delivered at 

each node N [Kemm00]. Below we present the main services at were useful to define our 

consistency criteria’s: 

1. Basic service: A message is delivered whenever it is physically received from the 

network. Thus, each node receives the message in arbitrary order. 
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2. Reliable service: If a message is delivered in a node then all nodes receive the message 

unless they fail.  

3. FIFO service: If a node sends message m before message m’, then no node receives m’ 

unless it has previously received m. 

4. Causal order service: If a message m causally precedes a message m’ then no node 

receives m’ until it has previously received m.  

5. Total order service: All messages are delivered in the same total order at all sites, i.e. if 

any two nodes N and N’ receive some messages m and m’, then either both receive m 

before m’ or both receive m’ before m. 

 

Using these services, we express consistency as follow: 

• In  1Master-nSlave and nMaster-1Slave configurations, the message delivery order at 

each slave node must follow the same delivery order that would be obtained when using 

reliable FIFO  multicast service. 

• In  mMaster-nSlave configuration, the message delivery order at each slave node must 

follow the same delivery order that would be obtained when using a reliable FIFO  

Total order multicast service. 

• In  Master-MasterSlave-Slave configuration, the message delivery order at each slave 

node must follow the same delivery order that would be obtained when using reliable 

Causal order multicast service. 

 

2.7 Refresher Algorithms 
We proposed three Refresher algorithms that assure consistency (for all above 

configurations) [PMS99, PMS01] (see Annex B), each one related to a specific update 

propagation strategy. The three algorithms implement refresh transaction ordering in the 

following way. 

It was assumed that the underlying network implements reliable FIFO multicast and has a 

known upper bound Max. In addition, it was also assumed that clocks are synchronized, such 

that the difference between any two clocks is not higher than the precision ε.  All these 

assumption are acceptable and in the next chapter we relax some of them in the context of 

database clusters. The timestamp of  a message corresponds to the real time value at T’s 

commitment time.  
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To assure consistency for mMaster-nSlave and  Master-MasterSlave-Slave configurations,  

the refresher algorithm works as follows. A refresh transaction RT is committed at a Slave or 

MasterSlave node (1) once all its write operations have been done, (2) according to the order 

given by the timestamp C of its associated update transaction, and (3) at the earliest, at real time 

C + Max + ε. After this delay period, all older refresh transactions are guaranteed to be received 

at node. Thus total order is assured  among update transactions and refresh transaction at all 

involved slave nodes meeting the consistency requirements. 

A key aspect of the refresher algorithm is to rely on the upper bound Max on the 

transmission of a message by the global FIFO reliable multicast. Therefore, it is essential to 

have a value Max that is not overestimated. The computation of Max resorts to scheduling 

theory. Recent work in P2P systems accepts that bounds may be known in relaxed-synchronous 

systems [BGM04] which is  valid for distributed database systems.  Thus this assumption is 

acceptable. The value of Max usually takes into account four kind of parameters. First, there is a 

global reliable multicast itself. Second, are the characteristics of the message to multicast (e.g. 

arrival laws, size). For instance in [GM98], an estimation of Max  is given for sporadic message 

arrivals. Third, are the failures to be tolerated by the multicast algorithm  (e.g medium access 

protocol). It is possible to compute an upper bound Maxi for each type i of message to multicast. 

In that case, the refreshment algorithm at node N waits maxiЄJ  Maxi , where J is the set of 

message types that can be received by node N.  

Thus, an accurate estimation of Max depends on the accurate knowledge of the above 

parameters. However, accurate values of the application dependent  parameters can be obtained 

in performance sensitive replicated database applications. For instance, in the case of data 

warehouse applications that have strong requirements on freshness, certain characteristics of 

messages can be derived from the characteristics of the operational data sources (usually, 

transaction processing systems). Furthermore, in a given application, the variations in the 

transactional workload of the data sources can often be predicted. 

There are many alternatives to implement a total order primitive: based on tokens 

[MMS+96], sequencing [KT96], consensus [CT96], etc.  All these solutions require several 

message rounds [Kem00].  In contrast, for basic FIFO order multicast, a message is simply 

broadcast to all nodes [CT96,SR96]. Each node tags its message with sequence numbers. 

Clearly, reliable FIFO multicast is cheaper than the total order service which requires further 

communication in order to determine the total order. 

In summary, the approach taken by the refresher algorithm to enforce total order over an 

algorithm that implements a global FIFO reliable multicast trades the use of a worst case 
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multicast time at the benefit of reducing the number of messages exchanged on the network, for 

instance when using atomic broadcast. This is a well known tradeoff. This solution brings 

simplicity and ease of implementation.  

2.8 Related Work 
There are several propagation strategies for lazy single master replication configurations   based 

on push and pull approaches [Dav94, PA99]. Whenever the master node is the one that initiates 

update propagation then the update propagation strategy follows the push approach.  The push 

approach makes it possible to perform event-driven propagation (implemented by Sybase, 

Informix and Ingres). In contrast, when the slave requests update propagation, then it follows 

the pull approach. The drawback of the pull approach is the difficulty to achieve near-real-time 

update. The main advantage of pull approaches is that it provides scalability, reduces network 

load by propagating only the last value or aggregated data instead of the whole sequence of 

updates performed at the master node.  Capturing updates on primary copied is done using 

different capturing mechanisms such as Log Sniffing (ex: Sybase Replication Server) , using 

triggers (ex: Oracle) to start update propagation, or propagating SQL statements. 

Concerning freshness, it has been suggested [ABG90, SR90, AA95, PV98, GNPV07, 

BFGR06] that users should be allowed to specify freshness constraints. The types of freshness 

constraints that can be specified are the following: 

• Time-bound constraints. Users may accept divergence of physical copy values up to a 

certain time: xi may reflect the value of an update at time t while xj may reflect the value 

at t  - ∆ and this may be acceptable. 

• Value bound constraints. It may be acceptable to have values of all physical data items 

within a certain range of each other. The user may consider the database to be mutually 

consistent if the values not converge more than a certain amount (or percentage). 

• Drift constraints on multiple data items. For transactions that read multiple data items, 

the users may be satisfied if the time drift between the update timestamps of two data 

items is less then a threshold. 

In [CRR96] the authors proposes a solution that  defines a set of allowed configurations 

using configuration graphs where nodes are sites, and there is non-directed edge between two 

sites if one has the primary copy and the other a secondary copy for a give data item. In order to 

provide serializability the resulting configuration must be strongly acyclic. Clearly, this 

approach does not provide a solution  for some important cyclic configurations such as  the  
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Master-MasterSlave-Slave considered in our work.  In [BKRS+99], the authors proposed an 

alternative solution by requiring the directed configuration graph (edges are directed from 

primary copy to secondary copy) to have no cycles. One strategy transforms the graph into a 

tree where a primary copy is not necessarily directly connected with all its secondary copies but 

there exists a path from the primary to each secondary. Update propagation is then performed 

along the paths of the graph (edges are directed from primary to secondary copy to have no 

cycles).  This also requires to introduce more sophisticated update propagation strategies. 

Again, no algorithm is provided to refresh secondary copies in the cases of cyclic 

configurations, such as the  Master-MasterSlave-Slave considered in our work.   

2.9 Conclusion 
In this chapter, we presented our contributions on lazy single master replication [PSM98, 

PV98,PMS99, PS00, PMS01]. We first addressed the problem related to freshness improvement 

in lazy single master replicated schemes. More specifically, we dealt with update propagation 

from primary copy to secondary copies.  A complete framework  and functional architecture is 

proposed [PMS01] to define update propagation strategies. We proposed two new strategies 

called immediate-immediate and immediate-wait, which improve over the deferred strategy of 

commercial. These strategies allow parallelism between the propagation of updates and the 

execution of the associated refresh transactions. Immediate-Immediate is the best strategy (by a 

factor of 5) but may slow down queries. Immediate-wait is almost as good but never slows 

down queries. 

Next, we discussed the contributions related to refreshment algorithms which addresses the 

central problem of maintaining replicas’ consistency. It delays the execution of a refresh 

transaction until its deliver time. An observer of a set of replicas at some node never observes a 

state which is never seen by another observer of the same set of replicas at another node. The 

basic refresher algorithm may be implemented using the deferred-immediate propagation 

strategy as well as the immediate strategies to improve fresheness in data warehousing 

applications. Another important contribution is related to the notion of correct refreshment 

algorithm acceptable for some important configurations in terms of group communication 

protocols, which is a very important contribution. Annex A and B  presents [PS00] and 

[PMS01]  that provides all formalizations and performance evaluation results resumed in this 

chapter. 
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3 Lazy Multi-Master Replication in Database Clusters 

In this chapter we present preventive replication algorithms used to manage consistency in lazy multi-master 
replication configurations. This is done in the context of database clusters where scalability  is the main 
concern.  We first present the type of applications that motivated this research. Next, as the main 
contributions of the chapter, we present the type of lazy multi-master configurations we consider and the 
corresponding preventive replication algorithms necessary to assure consistency with some important 
optimizations. An important contribution of this  work is RepDB* which is an open source  software 
available  for downloading.  Finally, we compare our approach with important related work and conclude the 
chapter.    

3.1 Introduction        
High-performance and high-availability of database management have been traditionally achieved 

with parallel database systems [Val93], implemented on tightly-coupled multiprocessors. Parallel data 

processing is then obtained by partitioning and replicating the data across the multiprocessor nodes in 

order to divide processing. Although quite effective, this solution requires the database system to have 

full control over the data and is expensive in terms of software and hardware. 

Clusters of PC servers now provide a cost-effective alternative to tightly-coupled multiprocessors. 

They have been used successfully by, for example, Web search engines using high-volume server 

farms (e.g., Google). However, search engines are typically read-intensive, which makes it easier to 

exploit parallelism. Cluster systems can make new businesses such as Application Service Providers 

(ASP) economically viable. In the ASP model, customers’ applications and databases (including data 

and DBMS) are hosted at the provider site and need to be available, typically through the Internet, as 

efficiently as if they were local to the customer site. Notice that due to autonomy, it is possible that the 

DBMS at each node are heterogeneous. To improve performance, applications and data can be 

replicated at different nodes so that users can be served by any of the nodes depending on the current 

load [ABKW98]. This arrangement also provides high-availability since, in the event of a node failure, 

other nodes can still do the work. However, managing data replication in the ASP context is far more 

difficult than in Web search engines since applications can be update-intensive and both applications 

and databases must remain autonomous. The solution of using a parallel DBMS is not appropriate as it 

is expensive, requires heavy migration to the parallel DBMS and hurts database autonomy. 

We consider a database cluster with similar nodes, each having one or more processors, main memory 

(RAM) and disk. Similar to multiprocessors, various cluster system architectures are possible: shared-

disk, shared-cache and shared-nothing [Val93]. Shared-disk and shared-cache require a special 

interconnect that provides a shared space to all nodes with provision for cache coherence using either 

hardware or software. Shared-nothing (or distributed memory) is the only architecture that supports 

our autonomy requirements without the additional cost of a special interconnect. Furthermore, shared-

nothing can scale up to very large configurations. Thus, we strive to exploit a shared-nothing 

architecture. 



  

 

42

 

To improve performance in a database cluster, an effective solution is to replicate databases at 

different nodes so that users can be served by any of them depending on the current load [GNPV92, 

GNPV07] . This arrangement also provides high-availability since, in the event of a node failure, other 

nodes can still do the work. However, the major problem of data replication is to manage the 

consistency of the replicas in the presence of updates [GHOS96]. The basic solution in distributed 

systems that enforces strong replica consistency1 is synchronous (or eager) replication (typically using 

the Read-One-Write All – ROWA protocol [OV99]). Whenever a transaction updates a replica, all 

other replicas are updated inside the same distributed transaction. Therefore, the mutual consistency of 

the replicas is enforced. However, synchronous replication is not appropriate for a database cluster for 

two main reasons. First, all the nodes would have to homogeneously implement the ROWA protocol 

inside their local transaction manager, thus violating DBMS autonomy. Second, the atomic 

commitment of the distributed transaction typically relies on the two-phase commit (2PC) protocol  

which is known to be blocking (i.e., does not deal well with nodes’ failures) and has poor scale up. 

A better solution that scales up is lazy replication. Lazy replication allows for different replication 

configurations. A useful configuration is lazy master where there is only one primary copy. Although 

it relaxes the property of mutual consistency, strong consistency is assured. However, it hurts 

availability since the failure of the master node prevents the replica to be updated. A more general 

configuration is (lazy) multi-master where the same primary copy, called a multi-owner copy, may be 

stored at and updated by different master nodes, called multi-owner nodes. The advantage of multi-

master is high-availability and high-performance since replicas can be updated in parallel at different 

nodes. However, conflicting updates of the same primary copy at different nodes can introduce replica 

incoherence. In the rest of this chapter, we present our solution to this problem  using preventive 

replication for full and partial [PCVO95, CPV05a, CPVb05] replication configurations. 

3.2 Lazy Multi Master Configurations 
A primary copy, denoted by R, is stored at a master node where it can be updated while a secondary 

copy, denoted by ri, is stored at one or more slave nodes i in read-only mode. A multi-master copy, 

denoted by Ri, is a primary copy that may be stored at several multi-master nodes i.  Figure 3.1 shows 

various replication configurations, using two tables R and S. 

Figure 3.1a shows a bowtie (lazy master) configuration where there are only primary copies and 

secondary copies. This configuration is useful to speed-up the response times of read-only queries 

through the slave nodes, which do not manage the update transaction load. However, availability is 

limited since, in the case of a master node failure, its primary copies can no longer be updated. 

 

                                                           
1 For any two nodes, the same sequence of transactions is executed in the same order. 
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    Figure 3.1 Replication configurations 

Figure 3.1.b shows a fully replicated configuration. In this configuration, all nodes manage the 

update transaction load because whenever R or S is updated at one node, all other copies need be 

updated asynchronously at the other nodes. Thus, only the read-only query loads are different at each 

node. Since all the nodes perform all the transactions, load balancing is easy because all the nodes 

have the same load (when the specification of the nodes is homogeneous) and availability is high 

because any node can replace any other node in case of failure. 

Figure 3.1.c and  Figure 3.1.d  illustrate partially replicated configurations where all kinds of copies 

may be stored at any node. For instance, in Figure 3.1.c, node N1 carries the multi-master copy R1 and 

the primary copy S, node N2 carries the multi-master copy R2 and the secondary copy s1, node N3 

carries the multi-master copy R3, and node N4 carries the secondary copy s2. Compared with full 

replication, only some of the nodes  are affected by the updates on a multi-master copy (only those 

that hold common multi-master copies or one of their corresponding secondary copies in a separate 

step). Therefore, transactions do not have to be multicast to all the nodes. Thus, the nodes and the 

network are less loaded and the overhead for refreshing replicas is significantly reduced. 

With partial replication a transaction T may be composed of a sequence of read and write 

operations followed by a commit (as produced by the SQL statement in Figure 3.2 ) that updates 

multi-master copies. This is more general than in [POC03] where only write operations are considered. 

We define a refresh transaction (RT) as the sequence of write operations of a transaction T that 

updates a set of multi-master copies (R1,R2..Rn)  at node Ni . RT is  extracted from  the Log History of  

Ni and propagated only to the  nodes that holds secondary copies of R1,R2..Rn. A refreshment 

algorithm is the algorithm that manages, asynchronously, the updates on a set of multi-master and 

secondary copies, once one of the multi-master (or primary) copies is updated by T for a given 

configuration. 

Given a transaction T received in the database cluster, there is an origin node chosen by the load 

balancer that triggers refreshment, and a set of target nodes that carries replicas involved with T. For 

simplicity, the origin node is also considered a target node. For instance, in Figure 3.1.b whenever 

node N1 receives a transaction that updates R1, then N1 is the origin node and N1, N2, N3 and N4 are the 

target nodes.  
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To refresh multi-master copies in the case of full replication, it is sufficient to multicast the 

incoming transactions to all target nodes. But in the case of partial replication, even if a transaction is 

multicast towards all nodes, it may happen that the nodes are not  able to execute it because they do 

not hold all the replicas necessary to execute T locally. For instance, Figure 3.1.c allows an incoming 

transaction at node N1, such as the one in Figure 3.2  to read S in order to update R1. This transaction 

can be entirely executed at N1 (to update R1) and N2 (to update R2). However it cannot be executed at 

node N3 (to update R3) because N3 does not hold a copy of S. Thus, refreshing multi-master copies in 

the case of partial replication needs to take into account replica placement. 

 

 
UPDATE R1 SET att1=value 

  WHERE att2 IN 

  (SELECT att3 FROM S) 

COMMIT; 

Figure 3.2 Incoming transaction at node N1 

3.3 Consistency Management  
Informally, a correct refreshment algorithm guarantees that any two nodes holding a common set of 

replicas, R1, R2, …, Rn, must always produce the same sequence of updates on R1, R2, …, Rn. We 

provide a criterion that must be satisfied by the refreshment algorithm in order to be correct: 

Multi-Master  Full Replication: For any cluster configuration that meets a multi-master 

configuration requirement, the refresh algorithm  is correct if and only if the algorithm enforces total 

order for update transaction execution at each node. 

Multi-Master- Partial Replication: For any cluster configuration meets partially replicated 

configuration requirement, then  the refresh algorithm  is correct if and only if the algorithm enforces 

total order for update and refresh transactions execution at each involved node. 

 

3.4 Preventive Refresher for Full Replication 
The preventive refresher algorithm comes from the one presented for lazy  single master 

configurations. In this section, wee briefly recall how its works here for multi-master configurations. 

For all details (including partial replication configurations) see Annex C that corresponds to 

[PCVO05]. 

We assume that the network interface provides reliable  FIFO  multicast [HT93]. We denote by 

Max, the upper bound of the time needed to multicast a message from a node i to any other node j. We 

also assume that each node has a local clock. For fairness, clocks are assumed to have a drift and to be 
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ε-synchronized. This means that the difference between any two correct clocks is not higher that ε 

(known as the precision). 

Each transaction is associated with a chronological timestamp value C. The principle of the 

preventive refreshment algorithm is to submit a sequence of transactions in the same chronological 

order at each node. Before submitting a transaction at node i, we must check whether there is any older 

transaction en route to node i. To accomplish this, the submission time of a new transaction at node i is 

delayed by Max + ε. Thus the earliest time a transaction is submitted is C + Max + ε (henceforth 

delivery time).  

 

 

Figure 3.3 Refreshment Architecture 

Whenever a transaction Ti is to be triggered at some node i, node i multicasts Ti to all nodes 1, 2, 

…, n, including itself. This is the main difference compared to the refresher algorithm used to enforce 

consistency for NMaster-NSlave (bowtie) configurations. Once Ti is received at some other node j (i 

may be equal to j), it is placed in the pending queue in FIFO order with respect to the triggering node 

i. Therefore, at each multi-master node i, there is a set of queues, q1, q2, …, qn, called pending queues, 

each of which corresponds to a multi-master node and is used by the refreshment algorithm to perform 

chronological ordering with respect to the delivery times. Figure 3.3 shows part of the components 

necessary to run our algorithm. The Refresher reads transactions from the top of pending queues and 

performs chronological ordering with respect to the delivery times. Once a transaction is ordered,  the 

refresher writes it to the running queue in FIFO order, one after the other. Finally, Deliver keeps 

checking the head of the running queue to start transaction execution, one after the other, in the local 

DBMS. 

3.5 Preventive Replication for Partial Configurations 
With partial replication, some of the target nodes may not be able to perform a transaction T because 

they do not hold all the copies necessary to perform the read set of T (recall the discussion on Figure 

3.2). However the write sequence of T, which corresponds to its refresh transaction, denoted by RT, 

must be ordered using T's timestamp value in order to ensure consistency. So T is scheduled as usual 

but not submitted for execution. Instead, the involved target nodes wait for the reception of the 

corresponding RT. Then, at origin node i, when the commitment of T is detected (by sniffing the 
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DBMS’ log), the corresponding RT is produced and node i multicasts RT towards the target nodes. 

Upon reception of RT at a target node j, the content of T (still waiting) is replaced with the content of 

incoming RT and T can be executed. 

Let us now illustrate the algorithm with an example of execution. In Figure 3.4, we assume a 

simple configuration with 4 nodes (N1, N2, N3 and N4) and 2 copies (R and S). N1 carries a multi-owner 

copy of R and a primary copy of S, N2 a multi-owner copy of R, N3 a secondary copy of S, and N4 

carries a multi-owner copy of R and a secondary copy of S. The refreshment proceeds in 5 steps. In 

step 1, N1 (the origin node) receives T from a client which reads S and updates R1. For instance, T can 

be the resulting read and write sequence produced by the transaction of Figure 3.2. Then, in step 2, N1 

multicasts T to the involved target nodes, i.e. N1, N2 and N4. N3 is not concerned with T because it only 

holds a secondary copy s. In step 3, T can be performed using the refreshment algorithm at N1 and N4. 

At N2, T is also managed by the Refresher and then put in the running queue. However, T cannot yet 

be executed at this target node because N2 does not hold S. Thus, the Deliver needs to wait for its 

corresponding RT in order to apply the update on R (see step 4). In step 4, after the commitment of T 

at the origin node, the RT is produced and multicast to all involved target nodes. In step 5, N2 receives 

RT and the Receiver replaces the content of T by the content of RT. The Deliver can then submit RT. 

Partial replication may be blocking in case of failures. After the reception of T, some target nodes 

would be waiting for RT. Thus, if the origin node fails, the target nodes are blocked. However, this 

drawback can be easily solved by replacing the origin node by an equivalent node, a node that holds 

all the replicas necessary to execute T. Once the target node detects the failure of the origin node, it 

can request an equivalent node j to multicast RT given T’s identifier. At node j, RT was already 

produced in the same way as at the origin node: transaction T is executed and, upon detection of T’s 

commitment, an RT is produced and stored in a RT log, necessary to handle failure of the origin node. 

In the worst case where no other node holds all the replicas necessary to execute T, T is globally 

aborted.  
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Figure 3.4 Example of preventive refreshment with partial configurations 

3.6 Optimizations 

In a cluster network (which is typically fast and reliable), in most cases messages are naturally 

chronologically ordered [PS98]. Only a few messages can be received in an order that is different than 

the sending order. Based on this property, we can improve our algorithm by submitting a transaction to 

execution as soon as it is received, thus avoiding the delay before submitting transactions. Yet, we still 

need to guarantee strong consistency. In order to do so, we schedule the commit order of the 

transactions in such a way that a transaction can be committed only after Max + ε. Recall that to 

enforce strong consistency, all the transactions must be performed according to their timestamp order. 

So, a transaction is out-of-order when its timestamp is lower than the timestamps of the transactions 

already received. Thus, when a transaction T is received out-of-order, all younger transactions must be 

aborted and re-submitted according to their correct timestamp order with respect to T. Therefore, all 

transactions are committed in their timestamp order. 

Thus, in most cases the delay time (Max + ε) is eliminated. Let t be the time to execute transaction 

T. In the previous basic preventive algorithm, the time spent to refresh a multi-master copy, after 

reception of T, is Max + ε + t. Now, a transaction T is ordered while it is executed. So, the time to 
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refresh a multi-master copy is max[(Max + ε), t]. In most cases, t is higher than the delay Max + ε. 

Thus, this simple optimization can well improve throughput as we show in our performance study. 

 

 
 

Figure 3.5 Refreshment Architecture 

The average Figure 3.5 shows part of the components necessary to run our algorithm. The 

Refresher reads transactions from the head of pending queues and performs chronological ordering 

with respect to the delivery times. Once a transaction T is ordered, the Refresher notifies the Deliver 

that T is ordered and ready to be committed. Meanwhile, the Deliver keeps checking the head of the 

running queue to start transaction execution optimistically, one after the other, inside the local DBMS. 

However, to enforce strong consistency the Deliver only commits a transaction when the Refresher 

has signaled it. 

To improve throughput, we introduce concurrent replica refreshment. In the previous section, the 

Receiver writes transactions directly into the running queue (optimistically), and afterwards the 

Deliver reads the running queue contents in order to execute the transaction. On the other hand, to 

assure consistency, the same transactions are written as usually in the pending queues to be ordered by 

the Refresher. Hence, the Deliver extracts the transactions from the running queue and performs them 

one by one in serial order. So, if the Receiver fills the running queue faster than the Deliver empties it, 

and if arrival rate is higher than the average running rate of a transaction (typically in bursty 

workloads), the response time increases exponentially and performance degrades. 
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Figure 3.6 Example of concurrent execution of transactions 

To improve response time in bursty workloads, we propose to trigger transactions concurrently. In 

our solution, concurrency management is done outside the database to preserve autonomy (different 

from [POC03]). Using the existing isolation property of database systems, at each node, we can 

guarantee that each transaction sees a consistent database at all times. To maintain strong consistency 

at all nodes, we enforce that transactions are committed in the same order in which they are submitted. 

In addition, we guarantee that transactions are submitted in the order in which they have been written 

to the running queue. Thus, total order is always enforced. 

However, without access to the DBMS concurrency controller (for autonomy reasons), we cannot 

guarantee that two conflicting concurrent transactions obtain a lock in the same order at two different 

nodes. Therefore, we do not trigger conflicting transactions concurrently. To detect that two 

transactions are conflicting, we determine a subset of the database items accessed by the transaction 

according to the transaction. If the subset of a transaction does not intersect with a subset of another 

transaction, then the transactions are not conflicting. For example, in the TPC-C benchmark, the 

transactions’ parameters allow us to define a subset of tuples that could be read or updated by the 

transaction. If the subset of the transaction cannot be determined, then we consider the transaction to 

be conflicting with all other transactions. This solution is efficient if most transactions are known, 

which is true in OLTP environments. 

We can now define two new conditions to be verified by the Deliver before triggering and before 

committing a transaction: 

 

i. Start a transaction iff the transaction is not conflicting with transactions already started (but 

not committed) and iff no older transaction waits for the commitment of a conflicting transaction to 

start. 

ii. Commit a transaction iff no older transactions are still running. 

 

Figure 3.6 shows examples of concurrent executions of transactions. Figure 3.6.a illustrates a case 

where the transactions are triggered sequentially, which is equivalent to the case where all the 
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transactions are conflicting. Figure 3.6.b, Figure 3.6.c and Figure 3.6.d show parallel executions of 

transaction T1, T2 and T3. In Figure 3.6.b and Figure 3.6.c, transaction T2 finishes before T1 but waits 

for commit because T1 is still running (this is represented by a dashed line in the figure). In Figure 

3.6.b, T1, T2 and T3 are not conflicting, so they can run concurrently. On the other hand, in Figure 

3.6.c, T2 is conflicting with T3, so T3 must wait for the end of T2 before starting. Finally, in Figure 

3.6.d, T1 and T2 are conflicting, so T2 cannot start before the commitment of T1 and T3 cannot start 

before T2 because transactions must be executed in the order they are in the running queue. 

3.7 Validation 
We implemented our Preventive Replication Manager in our RepDB* prototype [CGPV04, RepDB] 

on a cluster of 64 nodes (128 processors) on a Grid5000[Gri06]. RepDB* is a data management 

component for replicating autonomous databases or data sources in a cluster system.  RepDB* 

supports preventive data replication capabilities (multi-master modes, partial replication, strong 

consistency) which are independent of the underlying DBMS. It employs general, non intrusive 

techniques. It is implemented in Java on Linux and supports various DBMS: Oracle, PostGreSQL and 

BerkeleyDB. We validated RepDB* on the Atlas 8-node cluster at LINA and another 64-node cluster 

at INRIA-Rennes. In 2004, we registered RepDB* to the APP (Agence pour la Protection des 

Programmes) and released it as Open Source Software under the GPL licence. Since then, RepDB* 

has been available for downloading (with more than a thousand downloads in the first three months).  

   In addition, we did an extensive performance validation  based on the implementation of Preventive 

Replication in our RepDB* prototype over a cluster of 64 nodes running PostgreSQL. Our 

experimental results using the TPC-C benchmark show that our algorithm scales up very well and has 

linear response time behavior. We also showed the impact of the configuration on transaction response 

time. With partial replication, there is more inter-transaction parallelism than with full replication 

because of the nodes being specialized to different tables and thus transaction types. Thus, transaction 

response time is better with partial replication than with full replication (by about 15%). The speed-up 

experiment results showed that the increase of the number of nodes can well improve the query 

throughput. Finally, we showed that, with our optimistic approach, unordered transactions introduce 

very few aborts (at most 1%) and that the waiting delay for committing transactions is very small (and 

reaches zero as transaction time increases). 

3.8 Related Work 
Synchronous (eager) replication can provide strong consistency for most configurations including 

multi-master but its implementation, typically through 2PC, violates system autonomy and does not 

scale up. In addition, 2PC may block due to network or node failures. The synchronous solution 

proposed in [KA00b] reduces the number of messages exchanged to commit transactions compared to 

2PC. It uses, as we do, group communication services to guarantee that messages are delivered at each 
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node according to some ordering criteria. However, DBMS autonomy is violated because the 

implementation must combine concurrency control with group communication primitives. In addition 

solutions based on total order broadcast is not well suited for large scale replication because as the 

number of nodes increases the overhead of messages exchanged may dramatically increase to assure 

total order. The Database State Machine [SPOM01, SPMO02] supports partial replication for 

heterogeneous databases and thus does not violate autonomy. However, its synchronous protocol uses 

two-phase locking that is known for its poor scalability, thus making it inappropriate for database 

clusters. 

Lazy replication typically trades consistency for performance. Early papers provide the user with a 

way to control inconsistency. A couple of weak consistency models have been constructed  that 

provide correctness criteria weaker than 1-copy-serializability. For instance, Epsilon-serializability 

[PL91] measures the distance between database objects like the difference in the value or the number 

of updates applied. The application can therefore specify the amount of inconsistency tolerated by a 

transaction. N-Ignorance [KB91] is based on quorums. It relaxes the requirement that quorums must 

intersect in such a way that the inconsistencies introduced by concurrent transactions are bounded. In 

Mariposa [SAS+96] the frequency of update propagation depends on how much the maintainer of a 

replica is willing to pay. Also the degree of data freshness in a query is determined by the price a user 

wants to pay. However, different from preventive replication, these approaches implement the 

protocols in the database internals, what normally imposes DBMS homogeneity. Besides, making the 

choice of the right bound of inconsistency is a non-trivial problem and users must have a good 

understanding of the inconsistency metrics.  

A refreshment algorithm that assures correctness for lazy master configurations is proposed in 

[PMS01]. This work does not consider multi-master and partial replication as we do.  

The synchronous replication algorithms proposed in [JPKA02] provides one-copy-serializability 

for multi-master and partial replication while preserving DBMS autonomy. However, they require that 

transactions update a fixed primary copy: each type of transaction is associated with one node so a 

transaction of that type can only be performed at that node. Furthermore, the algorithm uses 2 

messages to multicast the transaction, the first is a reliable multicast and the second is a total ordered 

multicast. The cost of these messages is higher than the single FIFO multicast message we use. 

However, one advantage of this algorithm is that it avoids redundant work: the transaction is 

performed at the origin node and the target nodes only apply the write set of the transaction. In our 

algorithm, all the nodes that hold the resources necessary for the transaction perform it entirely. We 

could also remove this redundant work to generalize the multicast of refresh transactions for all nodes 

instead of only for the nodes that do not hold all the necessary replicas. However, the problem is to 

decide whether it is faster to perform the transaction entirely or to wait for the corresponding write set 

from the origin node for short transactions. [JPKA02] also proposes similar optimizations that permit 
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to overlap transaction processing with the time it takes to deliver total order.  Finally their experiments 

do not show scale-up with more than 15 nodes while we go up to 64 in our experiments. 

More recent work has focused on snapshot isolation to improve the performance of read-only 

transactions. The RSI-PC [PA04] algorithm is a primary copy solution which separates update 

transactions from read-only transactions. Update transactions are always routed to a main replica, 

whereas read-only transactions are handled by any of the remaining replicas, which act as read-only 

copies. Postgres-R(SI) [WK05] proposes a smart solution that does not need to declare transactions 

properties in advance. It uses the replication algorithm of [JPKA02] which must be implemented 

inside the DBMS. The experiments are limited to at most 10 nodes. SI-Rep [YKPJ05] provides a 

solution similar to Postgres-R(SI) on top of PostgreSQL which needs the write set of a transaction 

before its commitment. Write sets can be obtained by either extending the DBMS, thus hurting DBMS 

autonomy, or using triggers. 

3.9 Conclusion 
In this chapter, we proposed  two algorithms for preventive replication in order to scale up to large 

cluster configurations [POC03, CGPV04,CPV05a,CPV05b,PCVO05]. The first algorithm supports 

fully replicated configurations where all the data are replicated on all the nodes, while the second 

algorithm supports partially replicated configurations, where only a part of the data are replicated. 

Both algorithms enforce strong consistency. Moreover, we presented two optimizations that improve 

transaction throughput; the first optimization eliminates optimistically the delay introduced by the 

preventive replication algorithm while the second optimization introduces concurrency control 

features outside the DBMS in which non conflicting incoming transactions may execute concurrently. 

We did an extensive performance validation based on the implementation of Preventive 

Replication in our RepDB* prototype over a cluster of 64 nodes running PostgreSQL. Our 

experimental results using the TPC-C benchmark show that our algorithm scales up very well and has 

linear response time behavior. The performance gains strongly depend on the types of transactions and 

of the configuration. Thus, an important conclusion is that the configuration and the placement of the 

copies should be tuned to selected types of transactions. Annex C presents [PCVO05] to give a 

complete view of our contributions (formalizations, proofs, performance evaluation, etc). 
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4 Semantic Reconciliation in P2P Systems  

In this chapter we present our contributions on large scale lazy multi-master master optimistic replication in 
P2P systems. We first present the kind of applications that motivated this research (P2P wiki). To enable the 
deployment of such applications in P2P networks, it is required a mechanism to deal with  data sharing in a 
dynamic, scalable and available way. We chose the lazy multi-master optimistic approach.  Previous work on 
optimistic replication has mainly concentrated on centralized systems. Centralized approaches are 
inappropriate for a P2P setting due to their limited availability and vulnerability to failures and partitions 
from the network. We focus on the design of a reconciliation algorithm  to be deployed in large scale 
cooperative applications, such as P2P Wiki. The main contribution is a distributed reconciliation algorithm 
designed for P2P networks (P2P-reconciler).  

 

4.1 Introduction 
 
Peer-to-peer (P2P) systems adopt a completely decentralized approach to data sharing and thus can 

scale to very large amounts of data and users. Popular examples of P2P systems such as Gnutella 

[Gnu06 ]  and KaaZa [Kaz06] have millions of users sharing petabytes of data over the Internet. Initial 

research on P2P systems has focused on improving the performance of query routing in unstructured 

systems, such as Gnutella and KaaZa, which rely on flooding. This work led to structured solutions 

based on distributed hash tables (DHT), e.g. CAN [SMKK+01], Chord [SMKK+01], and Pastry  

[RD01b].  

Large-scale distributed collaborative applications are getting common as a result of rapid progress 

in distributed technologies (grid, P2P, and mobile computing).  As an example of such applications, 

consider a second generation Wiki that works over a peer-to-peer (P2P) network and supports users on 

the elaboration and maintenance of shared documents in a collaborative and asynchronous manner. 

Consider also that each document is an XML file possibly linked to other documents. Wiki allows 

collaboratively managing a single document as well as composed, integrated documents (e.g. an 

encyclopedia or a knowledge base concerning the use of an open source operating system). Although 

the number of users that update in parallel a document d is usually small, the size of the collaborative 

network that holds d in terms of number of nodes may be large. For instance, the document d could 

belong to the knowledge base of the Mandriva Club, which is maintained by more than 25,000 

members [Man07] or it could belong to Wikipedia, a free content encyclopedia maintained by more 

than 75,000 active contributors [Wik07].   

Many users frequently need to access and update information even if they are disconnected from 

the network, e.g. in an aircraft, a train or another environment that does not provide good network 

connection. This requires that users hold local replicas of shared documents. Thus, a P2P Wiki 

requires optimistic  multi-master replication to assure data availability at anytime. With this approach, 

updates made offline or in parallel on different replicas of the same data may cause replica divergence 
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and conflicts, which should be reconciled. In order to resolve conflicts, the reconciliation solution can 

take advantage of application semantic to avoid inconsistent edition wrt. to the document contents.  

This motivated our research in semantic reconciliation. A detailed example of semantic reconciliation 

for text edition can be found  in [MPEJ08]. 

Optimistic replication is largely used as a solution to provide data availability for these 

applications. It allows asynchronous updating of replicas such that applications can progress even 

though some nodes are disconnected or have failed. This enables asynchronous collaboration among 

users. However, concurrent updates may cause replica divergence and conflicts, which should be 

reconciled. In most existing solutions [PSM03, SS05] reconciliation is typically performed by a single 

node (reconciler node) which may introduce bottlenecks. In addition, if the reconciler node fails, the 

entire replication system may become unavailable.  

A theory for semantic reconciliation was set in IceCube [KRSD01, PSM03] to run in a single 

node. According to this theory, the application semantics can be described by means of constraints 

between update actions. A constraint is an application invariant, e.g. a parcel constraint establishes the 

“all-or-nothing” semantics, i.e. either all parcel’s actions execute successfully in any order, or none 

does. For instance, consider a user that improves the content of a shared document by producing two 

related actions a1 and a2 (e.g. a1 changes a document paragraph and a2 changes the corresponding 

translation); in order to assure the “all-or-nothing” semantics, the application should create a parcel 

constraint between a1 and a2. These actions can conflict with other actions. Therefore, the aim of 

reconciliation is to take a set of actions with the associated constraints and produce a schedule, i.e. a 

list of ordered actions that do not violate constraints.  

Different from IceCube, we propose a fully distributed approach to perform P2P reconciliation in a 

distributed hash  table (DHT) overlay [DZDKS03] . DHTs typically provide two basic operations 

[DZDKS03]: put(k, data) stores a key k and its associated data in the DHT using some hash function; 

get(k) retrieves the data associated with k in the DHT.  

Variable latencies and bandwidths, typically found in P2P networks, may strongly impact the 

reconciliation performance once data access times may vary significantly from node to node. 

Therefore, in order to build a suitable P2P reconciliation solution, communication and topology 

awareness must be considered.   

4.2 P2P semantic reconciliation 
IceCube describes the application semantics by means of constraints between actions. An action is 

defined by the application programmer and represents an application-specific operation (e.g. a write 

operation on a file or document, or a database transaction). A constraint is the formal representation of 

an application invariant (e.g. an update cannot follow a delete). Constraints are classified as follows: 
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User-defined constraint2. Users and applications can create user-defined constraints to make their 

intents explicit. The predSucc(a1, a2) constraint  establishes causal ordering between actions (i.e. 

action a2 executes only after a1 has succeeded); the parcel(a1, a2) constraint is an atomic (all-or-

nothing) grouping (i.e. either a1 and a2 execute successfully or none does); the alternative(a1, a2) 

constraint provides choice of at most one action (i.e. either a1 or a2 is executed, but not both). 

System-defined constraint3. It describes a semantic relation between classes of concurrent actions. 

The bestOrder(a1, a2) constraint indicates the preference to schedule a1 before a2 (e.g. an application 

for account management usually prefers to schedule credits before debits); the mutuallyExclusive(a1, 

a2) constraint states that either a1 or a2 can be executed, but not both. 

Let us illustrate user- and system-defined constraints with the example that appears in Figure 4.1. In 

this example, an action is noted an
i, where n indicates the node that has executed the action and i is the 

action identifier. T is a replicated object, in this case, a relational table; K is the key attribute for T; A 

and B are any two other attributes of T. T1, T2, and T3 are replicas of T. And parcel is a user-defined 

constraint that imposes atomic execution for a3
1 and a3

2. Consider that the actions in Figure 4.1  (with 

the associated constraints) are concurrently produced by nodes n1, n2 and n3, and should be reconciled. 
 

a1
1: update T1 set A=a1 where K=k1 

a2
1: update T2 set A=a2 where K=k1 

a3
1: update T3 set B=b1 where K=k1 

a3
2: update T3 set A=a3 where K=k2 

Parcel(a3
1, a3

2) 

 
Figure 4.1 . Conflicting actions on T 

 
In Figure 4.1, actions a1

1 and a2
1 try to update a copy of the same data item (i.e. T’s tuple identified by 

k1). The IceCube reconciliation engine realizes this conflict and asks the application for the semantic 

relationship involving a1
1 and a2

1. As a result, the application analyzes the intents of both actions, and, 

as they are really in conflict (i.e. n1 and n2 try to set the same attribute with distinct values), the 

application produces a mutuallyExclusive(a1
1, a2

1) system-defined constraint to properly represent this 

semantic dependency. Notice that from the point of view of the reconciliation engine a3
1 also conflicts 

with a1
1 and a2

1 (i.e. all these actions try to update a copy of the same data item). However, by 

analyzing actions’ intents, the application realizes that a3
1 is semantically independent of a1

1 and a2
1 as 

a3
1 tries to update another attribute (i.e. B). Therefore, in this case no system-defined constraints are 

produced. Actions a3
1 and a3

2 are involved in a parcel user-defined constraint, so they are semantically 

related. 

The aim of reconciliation is to take a set of actions with the associated constraints and produce a 

schedule, i.e. a list of ordered actions that do not violate constraints. In order to reduce the schedule 

                                                           
2 User-defined constraint is called log constraint by IceCube. We prefer user-defined to emphasize the user intent. 
3 System-defined constraint is called object constraint by IceCube. We use system-defined to contrast with user intents. 
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production complexity, the set of actions to be ordered is divided into subsets called clusters. A cluster 

is a subset of actions related by constraints that can be ordered independently of other clusters. 

Therefore, the global schedule is composed by the concatenation of clusters’ ordered actions. To order 

a cluster, IceCube performs iteratively the following operations:  

Select the action with the highest merit from the cluster and put it into the schedule. The merit of 

an action is a value that represents the estimated benefit of putting it into the schedule (the larger the 

number of actions that can take part in a schedule containing ai
n is, the larger the merit of ai

n will be). 

If more than one action has the highest merit (different actions may have equal merits), the 

reconciliation engine selects randomly one of them.  

1. Remove the selected action from the cluster.  

2. Remove from the cluster the remaining actions that conflict with the selected action.  

This iteration ends when the cluster becomes empty. As a result, cluster’s actions are ordered. In 

fact, several alternative orderings may be produced until finding the best one.  

4.3 Overview 
We assume that P2P-reconciler is used in the context of a virtual community which requires a high 

level of collaboration and relies on a reasonable number of nodes (typically hundreds or even 

thousands of interacting users) [WI097]. The P2P network we consider consists of a set of nodes 

which are organized as a distributed hash table (DHT) [RFHK+01,SMKK+01]. A DHT provides a hash 

table abstraction over multiple computer nodes. Data placement in the DHT is determined by a hash 

function which maps data identifiers into nodes. In the remainder of this chapter we assume that the 

network is reliable and the lookup service of the DHT does not behave incorrectly. 

We have structured the P2P reconciliation in 6 distributed steps in order to maximize parallel 

computing and assure independence between parallel activities. This structure improves reconciliation 

performance and availability (i.e. if a node fails, the activity it was executing is assigned to another 

available node). 

With P2P-reconciler, data replication proceeds basically as follows. First, nodes execute local 

actions to update a replica of an object while respecting user-defined constraints. Then, these actions 

(with the associated constraints) are stored in the DHT based on the object’s identifier. Finally, 

reconciler nodes retrieve actions and constraints from the DHT and produce the global schedule, by 

reconciling conflicting actions in 6 distributed steps based on the application semantics. This schedule 

is locally executed at every node, thereby assuring eventual consistency [SBK04, SS05]. The 

replicated data is eventually consistent if, when all nodes stop the production of new actions, all nodes 

will eventually reach the same value in their local replicas. 

In this protocol, we distinguish three types of nodes: the replica node, which holds a local replica; 

the reconciler node, which is a replica node that participates in distributed reconciliation; and the 
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provider node, which is a node in the DHT that holds data consumed or produced by the reconcilers 

(e.g. the node that holds the schedule is called schedule provider). 

We concentrate the reconciliation work in a subset of nodes (the reconciler nodes) in order to 

maximize performance. If we do not limit the number of reconcilers, the following problems take 

place. First, provider nodes and the network as a whole become overloaded due to a large number of 

messages aiming to access the same subset of DHT data in a very short time interval. Second, nodes 

with high-latencies and low-bandwidths can waste a lot of time with data transfer, thereby hurting the 

reconciliation response time. Our strategy does not create improper imbalance in the load of reconciler 

nodes as reconciliation activities are not processing intensive.  

4.4 Reconciliation objects 
Data managed by P2P-reconciler during reconciliation are held by reconciliation objects that are 

stored in the DHT giving the object identifier. To enable the storage and retrieval of reconciliation 

objects, each reconciliation object has a unique identifier. P2P-reconciler uses the following 

reconciliation objects: 

Action log R (noted LR): it holds all actions that try to update any replica of the object R  

Clusters set (noted CS): recall that a cluster contains a set of actions related by constraints, and can 

be ordered independently from other clusters when producing the global schedule. All clusters 

produced during reconciliation are stored in the clusters set reconciliation object.  

Action summary (noted AS): it captures semantic dependencies among actions, which are described 

by means of constraints. In addition, the action summary holds relationships between actions and 

clusters, so that each relationship describes an action membership (an action is a member of one or 

more clusters).  

Schedule (noted S): it contains an ordered list of actions, which is composed from the concatenation 

of clusters’ ordered actions.  

Reconciliation objects are guaranteed to be available using known DHT replication solutions 

[KWR05]. P2P-reconciler’s liveness relies on the DHT liveness. 

4.5 P2P-reconciler Distributed Steps 
P2P-reconciler executes reconciliation in 6 distributed steps as showed in Figure 4.2. Any 

connected node can start reconciliation by inviting other available nodes to engage with it. In the 1st 

step (node allocation), a subset of engaged nodes is allocated to step 2, another subset is allocated to 

step 3, and so forth until the 6th step (details about node allocation are provided in the next sections). 

Nodes at step 2 start reconciliation. The outputs produced at each step become the input to the next 

one. In the following, we describe the activities performed in each step, and we illustrate parallel 

processing by explaining how these activities could be executed simultaneously by two reconciler 

nodes, n1 and n2. 
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Figure 4.2  P2P-reconciler steps 

 
Step 1 – node allocation: a subset of connected replica nodes is selected to proceed as reconciler 

nodes.   

Step 2 – actions grouping: reconcilers take actions from the action log and put actions that try to 

update common object items into the same group.  

Step 3 – clusters creation: reconcilers take action groups from the action log and split them into 

clusters of semantically dependent conflicting actions; system-defined constraints are created to 

represent the semantic dependencies detected in this step; these constraints and the action 

memberships that describe the association between actions and clusters are included in the action 

summary; clusters produced in this step are stored in the clusters set.  

Step 4 – clusters extension: user-defined constraints are not taken into account in clusters creation 

(e.g. although a3
1 and a3

2 belong to a parcel, the previous step does not put them into the same cluster, 

because they do not update a common object item). Thus, in this step, reconcilers extend clusters by 

adding to them new conflicting actions, according to user-defined constraints. These extensions lead to 

new relationships between actions and clusters, which are represented by new action memberships; the 

new memberships are included in the action summary.  

Step 5 – clusters integration: clusters extensions lead to cluster overlapping (an overlap occurs when 

the intersection of two clusters results a non-null set of actions); in this step, reconcilers bring together 

overlapping clusters. At this point, clusters become mutually-independent, i.e. there are no constraints 

involving actions of distinct clusters. 

Step 6 – clusters ordering: in this step, reconcilers take clusters from the clusters set and order 

clusters’ actions; the ordered actions associated with each cluster are stored in the schedule 

reconciliation object (S); the concatenation of all clusters’ ordered actions makes up the global 

schedule that is executed by all replica nodes.  

At every step, the P2P-reconciler algorithm takes advantage of data parallelism, i.e. several nodes 

perform simultaneously independent activities on a distinct subset of actions (e.g. ordering of different 

clusters). No centralized criterion is applied to partition actions. Indeed, whenever a set of reconciler 

nodes requests data from a provider, the provider node naively supplies reconcilers with about the 

same amount of data (the provider node knows the maximal number of reconcilers because it receives 

this information from the node that launches reconciliation). 
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Figure 4.3 P2P-reconciler at work 

4.5.1 P2P-reconciler at work 
We now illustrate the execution of the P2P-reconciler algorithm over a Chord DHT [SMKK+01] 

network. For simplicity, we consider only its first 3 steps and a few nodes at work. Figure 4.3 shows 8 

nodes and their respective roles in the reconciliation protocol. All of them are replica nodes. 

Reconciliation objects are stored at provider nodes according to the hashed values associated with the 

reconciliation object identifiers (e.g. Chord maps a hashed value v to the first node that has an 

identifier equal to or greater than v in the circle of ordered node identifiers). In this example, we 

assume that Chord maps the hashed value of the action log identifier to node 1; using the same 

principle, the clusters set, the schedule and the action summary are mapped respectively to nodes 8, 12 

and 15. Finally, node 9 is responsible for allocating reconcilers.  

Any node can start the reconciliation by triggering the step 1 of P2P-reconciler at the appropriate 

node (e.g. node 9), which selects the best reconcilers and notifies them the steps they should perform. 

In our example, node 9 selects node 2 to execute step 2, and  selects nodes 5 and 13 to perform step 3 

(details about node allocation are provided in the next sections). 

Node 2 starts the step 2 of reconciliation by retrieving actions from the action log (stored at node 

1) in order to arrange them in groups of actions on common object items. At the same time, nodes 5 

and 13 begin step 3 by requesting action groups to node 1; these requests are held in a queue at node 1 

while action groups are under construction. When node 2 stores action groups at action log, node 1 

replies the requests previously queued by nodes 5 and 13. At this moment, step 2 is terminated and 

step 3 proceeds. Notice that each reconciler works on independent data (e.g. nodes 5 and 13 receive 

distinct action groups from node 1). To assure this independence, provider nodes segment the data 

they hold based on the number of reconcilers (e.g. node 1 creates two segments of action groups, one 

for node 5 and another for node 13). 

When step 2 terminates, nodes 5 and 13 receive action groups from node 1 and produce the 

corresponding clusters of actions, which are stored at node 8. In turn, node 8 replies requests for 

clusters that reconcilers of step 4 have previously queued; and so forth, until the end of step 6. 
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4.6 Dealing with dynamism 
Whenever distributed reconciliation takes place, a set of nodes Nd may be disconnected. As a 

result, the global schedule is not applied by the nodes of Nd. Moreover, actions produced by Nd nodes 

and not yet stored in the P2P network are not reconciled. We need a new reconciliation object to 

assure eventual consistency in the presence of disconnections. Thus, we define schedule history, noted 

H, as a reconciliation object that stores a chronological sequence of schedules’ identifiers produced by 

reconciliations (H = (Sid1, …, Sidn)). A replica node can check whether it is up to date by comparing the 

identifier of the last schedule it has locally executed with Sidn. Fault-tolerance aspects relies on the 

DHT,  that normally achieved by replicating each  peer data at its  neighbor. 

4.7 DHT cost model 
 
A DHT network is usually built on top of the Internet, which consists of nodes with variable latencies 

and bandwidths. As a result, the network costs involved in DHT data accesses may vary significantly 

from node to node and have a strong impact in the reconciliation performance. Thus, network costs 

should be considered to perform reconciliation efficiently. We propose a basic cost model for 

computing communication costs in DHTs based on look-up, direct-cost and  transfer costs. The lookup 

cost, noted lc(n, id), is the latency time spent in a lookup operation launched by node n to find the data 

item identified by id. Similarly, direct cost, noted dc(ni, nj), is the latency time spent by node ni to 

directly access nj. And the transfer cost, noted tc(ni, nj, d), is the time spent to transfer the data item d 

from node ni to node nj, which is computed based on d’s size and the bandwidth between ni and nj. On 

top of it, we can build customized cost models.  

In the basic cost model, we define communication costs (henceforth costs) in terms of latency and 

transfer times, and we assume links with variable latencies and bandwidths. In order to exploit 

bandwidth, the application behavior in terms of data transfer should be known. Since this behavior is 

application-specific, we exploit bandwidth in higher-level customized models. 

4.8 P2P-reconciler node allocation 
The first step of P2P-reconciler aims to select the best nodes to proceed as reconcilers in order to 

maximize performance. The number of reconcilers has a strong impact on the reconciliation time. 

Thus, this section concerns the estimation of the optimal number of reconcilers per step as well as the 

allocation of the best nodes. We first  determine the maximal number of reconciler nodes using 

polynomial regression (for details see [MPV06a]). Then, we use the P2P-reconciler cost model for 

computing the cost of each reconciliation step. Next, the cost provider node selects reconcilers based 

on P2P-reconciler cost model. We proposed an approach for managing the dynamic behavior of P2P-

reconciler costs. 
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4.8.1 P2P-reconciler cost model 
The P2P-reconciler cost model is built on top of the DHT cost model by taking into account each 

reconciliation step and defining a new metric: node step cost. The node step cost, noted cost(i, n), is 

the sum of lookup (noted lc) , direct access (noted dc), and transfer costs (noted tc) estimated by node 

n for executing step i of P2P-reconciler algorithm.  

By analyzing the P2P-reconciler behavior in terms of lookup, direct access, and data transfer 

operations at every step, we produced a cost formula for each step of P2P-reconciler, which are shown 

in Table 4.1. There is no formula associated with step 1 because it is not performed by reconciler 

nodes. 

 

 
Step i Cost(i, n) 

2 lc(n, LR) + 2×dc(n, nLR) + tc(nLR, n, actSet) + lc(n, LR) + dc(n, nLR) + tc(n, nLR, grpSet) 

3 lc(n, LR) + 3×dc(n, nLR) + tc(nLR, n, grpSet) + lc(n, CS) + 2×dc(n, nCS) +  
tc(n, nCS, [cluSet + cluIds]) + lc(n, AS) + dc(n, nAS) + tc(n, nAS, [sdcSet + m3Set]) 

4 lc(n, CS) + 3×dc(n, nCS) + tc(nCS, n, cluSet) + 2×lc(n,AS) + 3×dc(n, nAS) + tc(n, nAS, m4Set) 
5 lc(n, AS) + 3×dc(n, nAS) + tc(nAS, n, mSet) + lc(n, CS) + dc(n, nCS) + tc(n, nCS, ovlCluSet) 

6 lc(n, CS) + 3×dc(n, nCS) + tc(nCS, n, itgCluSet) + lc(n, AS) + 2×dc(n, nAS) +  
tc(nAS, n, sumActSet) + lc(n, S) + dc(n,nS) + tc(n, nS, ordActSet) 

Table 4.1 P2P-reconciler cost model 
 
For instance in formula 2,  lc(n, LR)  is the lookup cost from node n to the node that holds LR, 

necessary to locate the provider of R. Due to space limitations we do not go further on the cost model  

discussion. Annex D, that corresponds to [MPEJ08],  presents all the precisions on how these formulas 

are estimated and  used.   

 

4.9 Node allocation  
Node allocation is the first step of P2P-reconciler protocol as shown in Figure 4.2. It aims to select for 

every succeeding step a set of reconciler nodes that can perform reconciliation with good performance. 

We define a new reconciliation object needed in node allocation. Then we describe how reconciler 

nodes are chosen, and we illustrate that with an example. 

We define communication costs, noted CC, as a reconciliation object that stores the node step costs 

estimated by every replica node and used to choose reconcilers before starting reconciliation.  

The node that holds CC in the DHT at a given time is called cost provider, and it is responsible for 

allocating reconcilers. The allocation works as follows. Replica nodes locally estimate the costs for 

executing every P2P-reconciler step, according to the P2P-reconciler cost model, and provide this 

information to the cost provider. The node that starts reconciliation computes the maximal number of 

reconcilers per step (maxRec), and asks the cost provider for allocating at most maxRec reconciler 
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nodes per P2P-reconciler step. As a result, the cost provider selects the best nodes for each step and 

notifies these nodes of the P2P-reconciler steps they should execute. 

In our solution, the cost management is done in parallel with reconciliation. Moreover, it is 

network optimized since replica nodes do not send messages to cost providers, informing their 

estimated costs, if the node step costs overtake the cost limit. For these reasons, the cost provider does 

not become a bottleneck. 

4.9.1 Managing the dynamic costs 
The costs estimated by replica nodes for executing P2P-reconciler steps change as a result of 

disconnections and reconnections. To cope with this dynamic behavior and assure reliable cost 

estimations, a replica node ni works as follows: 

Initialization: whenever ni joins the system, ni estimates its costs for executing every P2P-reconciler 

step. If these costs do not overtake the cost limit, ni supplies the cost provider with this information. 

Refreshment: while ni is connected, the join or leave of another node nj may invalidate ni’s estimated 

costs due to routing changes. Thus, if the join or leave of nj is relevant to ni, ni recomputes its P2P-

reconciler estimated costs and refreshes them at the cost provider. 

Termination: when ni leaves the system, if its P2P-reconciler estimated costs are smaller than cost 

limit (i.e. the cost provider holds ni’s estimated costs), ni notifies its departure to the cost provider. 

P2P-reconciler computes the cost limit based on these parameters: the expected average latency of 

the network (e.g. 150ms for the Internet), and the expected average number of hops to lookup a 

reconciliation object (e.g. log(n)/2 for a Chord DHT, where n represents the number of connected 

nodes and can be established as 15% of the community size).  
 

4.10 P2P-reconciler-TA protocol 
P2P-reconciler-TA is a distributed protocol for reconciling conflicting updates in topology-aware P2P 

networks. Given a set of nodes, we exploit topological information to select the “best” nodes to 

participate in the different steps of an algorithm, in a way that achieves an optimal performance. A 

P2P network is classified as topology-aware if its topology is established by taking into account the 

physical distance among nodes (e.g. in terms of latency times).  

Several topology-aware P2P networks could be used to validate our approach such as Pastry 

[RD01a], Tapestry [ZHSR+04], CAN [RFHK+01], etc. We chose to construct our P2P-reconciler-TA 

over optimized CAN because it allows building the topology-aware overlay network in a relatively 

simple manner. In addition, its routing mechanism is easy to implement, although less efficient than 

other topology-aware P2P networks (e.g. the average routing path length in CAN is usually grater than 

in other structured P2P networks).  
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Basic CAN [RFHK+01] is a virtual Cartesian coordinate space to store and retrieve data as (key, 

value) pairs. At any point in time, the entire coordinate space is dynamically partitioned among all 

nodes in the system, so that each node owns a distinct zone that represents a segment of the entire 

space. To store (or retrieve) a pair (k1, v1), key k1 is deterministically mapped onto a point P in the 

coordinate space using a uniform hash function, and then (k1, v1) is stored at the node that owns the 

zone to which P belongs. Intuitively, routing in CAN works by following the straight line path through 

the Cartesian space from source to destination coordinates.  

Optimized CAN aims at constructing its logical space in a way that reflects the topology of the 

underlying network. It assumes the existence of well-known landmarks spread across the network. A 

node measures its round-trip time to the set of landmarks and orders them by increasing latency (i.e. 

network distance). The coordinate space is divided into bins such that each possible landmarks 

ordering is represented by a bin. Physically close nodes are likely to have the same ordering and hence 

will belong to the same bin. 

Briefly, P2P-reconciler-TA works as follows. Based on the network topology, it selects the best 

provider and reconciler nodes. These nodes then reconcile conflicting updates and produce a schedule, 

which is an ordered list of non-conflicting updates. We proposed a dynamic distributed algorithm for 

efficiently selecting provider and reconciler nodes.  

4.11 Validation 
We validated and evaluated the performance of our reconciliation solutions through experimentation 

using the APPA prototype [AM07]. The validation of the APPA replication service took place over the 

Grid5000 platform [Gri06]. Grid5000 aims at building a highly reconfigurable, controllable and 

monitorable experimental Grid platform, gathering 9 sites geographically distributed in France 

featuring a total of 5000 nodes. Within each site, the nodes are located in the same geographic area 

and communicate through Gigabit Ethernet links as clusters. Communications between clusters are 

made through the French academic network (RENATER). Grid5000’s nodes are accessible through 

the OAR batch scheduler from a central user interface shared by all the users of the Grid. A cross-

clusters super-batch system, OARGrid, is currently being deployed and tested. The home directories of 

the users are mounted with NFS on each of the infrastructure’s clusters. Data can thus be directly 

accessed inside a cluster. Data transfers between clusters have to be handled by the users. The storage 

capacity inside each cluster is a couple of hundreds of gigabytes. Now more than 600 nodes are 

involved in Grid5000. Additionally, in order to study the scalability of the APPA replication service 

with larger numbers of nodes that are connected by means of links with variable latencies and 

bandwidths, we implemented simulators using Java and SimJava [HM98], a process based discrete 

event simulation package. Simulations were executed on an Intel Pentium IV with a 2.6 GHz 

processor, and 1 GB of main memory, running the Windows XP operating system. The performance 

results obtained from the simulator are consistent with those of the replication service prototype. 
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In the implementation intended for the Grid5000 platform, each peer manages multiple tasks in 

parallel (e.g. routing DHT messages, executing a DSR step, etc.) by using multithreading and other 

associated mechanisms (e.g. semaphores); in addition, peers communicate with each other by means 

of sockets and UDP depending on the message type. To have a topology close to real P2P overlay 

networks in this Grid platform, we determine the peers’ neighbors and we allow that every peer 

communicate only with its neighbors in the overlay network. Although the Grid5000 provides fast and 

reliable communication, which usually is not the case for P2P systems, it allows to validate the 

accuracy of APPA distributed algorithms and to evaluate the scalability of APPA services. We have 

deployed APPA over this platform because it was the largest network available to perform our 

experiments in a controllable manner. On the other hand, the implementation of the simulator 

conforms to the SimJava model with respect to parallel processing and peers communication. It is 

important to note that, in our simulator, only the P2P network topology and peer communications are 

simulated; full-fledged APPA services are deployed on top of the simulated network. 

The experimental results showed that our cost-based reconciliation outperforms the random 

approach by a factor of 26. In addition, the number of connected nodes is not important to determine 

the reconciliation performance due to the DHT scalability and the fact that reconcilers are as close as 

possible to the reconciliation objects. The action size impacts the reconciliation time in a logarithmic 

scale. Our algorithm yields high data availability and excellent scalability, with acceptable 

performance and limited overhead.  

In the same way, we also validated P2P-reconciler-TA. The experimental results show that our 

topology-aware approach achieves a performance improvement of 50 % in comparison with the P2P-

reconciler. In addition, P2P-reconciler-TA has proved to be scalable with limited overhead and thereby 

suitable for P2P environments. Our topology-aware approach is conceived for distributed 

reconciliation; however our metrics, costs functions as well as our selection approach are useful in 

several contexts. 

4.12 Related work 
In the context of P2P networks, there has been little work on managing data replication in the presence 

of updates. Most of data sharing P2P networks consider the data they provide to be very static or even 

read-only. Freenet [CMHS+02] partially addresses updates which are propagated from the updating 

peer downward to close peers that are connected. However, peers that are disconnected do not get 

updated. P-Grid [ACDD0+3, AHA03] is a structured P2P network that exploits epidemic algorithms 

to address updates. It assumes that conflicts are rare and their resolution is not necessary in general. In 

addition, P-Grid assumes that probabilistic guarantees instead of strict consistency are sufficient. 

Moreover, it only considers updates at the file level. In OceanStore [KBCC+00] every update creates a 

new version of the data object. Consistency is achieved by a two-tiered architecture: a client sends an 

update to the object’s primary copies and some secondary replicas in parallel. Once the update is 
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committed, the primary copies multicast the result of the update down the dissemination tree. 

OceanStore assumes an infrastructure comprised of servers that are connected by high-speed links. 

Different from the previous works, we propose to distribute the reconciliation engine in order to 

provide high availability.    

Table 4.2 compares the replication solutions provided by different types of P2P systems. Clearly, 

none of them provide eventual consistency among replicas along with weak network assumptions, 

which is the main concern of this work.  

The distributed log-based reconciliation algorithms proposed by Chong and Hamadi [CH06] 

addresses most of our requirements, but this solution is unsuitable for P2P systems as it does not take 

into account the dynamic behavior of peers and network limitations. Operational transformation 

[VCFS00, MOSI03, FVC04] also addresses eventual consistency among replicas specifically for text 

edition at the character level with  no flexibility wrt. to  semantic constraint specification. 

 
 

P2P 
System 

P2P  
Network 

Data  
Type 

Autonomy Replication  
Type 

Conflict 
Detection 

Consistency Network 
Assump. 

Napster Super-peer File Moderate Static data – – Weak 
JXTA Super-peer Any High – – – Weak 
Gnutella Unstructured File High Static data – – Weak 

Chord Structured (DHT) Any Low Single-master 
Multi-master 

Concurrency 
None 

Probabilistic 
Probabilistic Weak 

CAN Structured (DHT) Any Low Static data 
Multi-master 

– 
None 

– 
Probabilistic Weak 

Tapestry Structured (DHT) Any High – – – Weak 
Pastry Structured (DHT) Any Low – – – Weak 
Freenet Structured File Moderate Single-master None No guarantees Weak 
PIER Structured (DHT) Tuple Low – – – Weak 
OceanStore Structured (DHT) Any High Multi-master Concurrency Eventual Strong 
PAST Structured (DHT) File Low Static data – – Weak 
P-Grid Structured File High Multi-master None Probabilistic Weak 

Table 4.2 Comparing replication solutions in P2P systems 
 

In the context of APPA (Atlas Peer-to-Peer Architecture), a P2P data management system which 

we are building [AMPV06b, [MAPV06], we proposed the DSR-cluster algorithm [MPJV06, MPV05], 

a distributed version of the semantic reconciliation engine of IceCube [KRSD01, PSM03] for cluster 

networks. However, DSR-cluster does not take into account network costs during reconciliation. A 

fundamental assumption behind DSR-cluster is that the communication costs among cluster nodes are 

negligible. This assumption is not appropriate for P2P systems, which are usually built on top of the 

Internet. In this case, network costs may vary significantly from node to node and have a strong 

impact on the performance of reconciliation. 

4.13 Conclusion 
Our main contribution related to optimistic lazy multi-master replication is  P2P-reconciler, a 

distributed protocol for semantic reconciliation in P2P networks 

[MPV05,MPJV06,MAPV06,MP06,AMPV06a,MPV06a,MPV06b,EPV07,MPEJ08]. Other relevant 
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related contributions are: the cost model for computing communication costs in DHTs and an 

algorithm that takes into account these costs and the P2P-reconciler steps to select the best reconciler 

nodes. For computing communication costs, we use local information and we deal with the dynamic 

behavior of nodes.  

Another important contribution is the topology-aware approach to improve response times in P2P 

distributed semantic reconciliation. The P2P-reconciler-TA algorithm dynamically takes into account 

the physical network topology combined with the DHT properties when executing reconciliation. We 

proposed topology-aware metrics and cost functions to be used for dynamically selecting the best 

nodes to execute reconciliation, while considering dynamic data placement.  

We validated P2P-reconciler and P2P-reconciler-TA through implementation and simulation. The 

experimental results showed that our cost-based reconciliation has very impressive results in scaling 

up, showing the relevance of our work for P2P collaborative applications. In addition, experimental 

results show that our topology-aware approach achieves a performance improvement of 50 % in 

comparison with the P2P-reconciler. In addition, P2P-reconciler-TA has proved to be scalable with 

limited overhead and thereby suitable for P2P environments. Our topology-aware approach is 

conceived for distributed reconciliation; however our metrics, costs functions as well as our selection 

approach are useful in several contexts. Annex D presents [MPEJ08] to give a larger view of our 

contributions (formalization, detailed algorithms, performance evaluation, etc). 
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5 Data Currency in Structured P2P Networks 

Distributed Hash Tables (DHTs) provide a scalable solution for data sharing in P2P systems. To ensure high 
data availability, DHTs typically rely on data replication, yet without data currency guarantees. Supporting 
data currency in replicated DHTs is difficult as it requires the ability to return a current replica despite peers 
leaving the network or concurrent updates. In this chapter, we describe   an Update Management Service 
(UMS) to deal with data availability and efficient retrieval of current replicas based on timestamping. For 
generating timestamps, we proposed a Key-based Timestamping Service (KTS) which performs distributed 
timestamp generation using local counters. 

 

5.1 Introduction 
 
While there are significant implementation differences between DHTs [SMKK+1, SMKK+1, RD01b], 

they all map a given key k onto a peer p using a hash function and can lookup p efficiently, usually in 

O(log n) routing hops where n is the number of peers. DHTs typically provide two basic operations 

[SMKK+01]: put(k, data) stores a key k and its associated data in the DHT using some hash function; 

get(k) retrieves the data associated with k in the DHT.  

One of the main characteristics of P2P systems is the dynamic behavior of peers which can join 

and leave the system frequently, at anytime. When a peer gets offline, its data becomes unavailable. 

To improve data availability, most DHTs rely on data replication by storing (k, data) pairs at several 

peers, e.g. using several hash functions [RFHK+1]. If one peer is unavailable, its data can still be 

retrieved from the other peers that hold a replica. However, the mutual consistency of the replicas after 

updates can be compromised as a result of peers leaving the network or concurrent updates. Let us 

illustrate the problem with a simple update scenario in a typical DHT. Let us assume that the operation 

put(k, d0) (issued by some peer) maps onto peers p1 and p2 which both get to store the data d0. Now 

consider an update (from the same or another peer) with the operation put(k, d1) which also maps onto 

peers p1 and p2. Assuming that p2 cannot be reached, e.g. because it has left the network, then only p1 

gets updated to store d1. When p2 rejoins the network later on, the replicas are not consistent: p1 holds 

the current state of the data associated with k while p2 holds a stale state. Concurrent updates also 

cause inconsistency. Consider now two updates put(k, d2) and put(k, d3) (issued by two different peers) 

which are sent to p1 and p2 in reverse order, so that p1’s last state is d2 while p2’s last state is d3. Thus, a 

subsequent get(k) operation will return either stale or current data depending on which peer is looked 

up, and there is no way to tell whether it is current or not. For some applications (e.g. agenda 

management, bulletin boards, cooperative auction management, reservation management, etc.) which 

could take advantage of a DHT, the ability to get the current data is very important. 

Many solutions have been proposed in the context of distributed database systems for managing 

replica consistency [OV99] but the high numbers and dynamic behavior of peers make them no longer 

applicable to P2P [KWR05]. Supporting data currency in replicated DHTs requires the ability to return 
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a current replica despite peers leaving the network or concurrent updates. The problem is partially 

addressed in [DGY03] using data versioning.  Each replica has a version number which is increased 

after each update. To return a current replica, all replicas need to be retrieved in order to select the 

latest version. However, because of concurrent updates, it may happen that two different replicas have 

the same version number thus making it impossible to decide which one is the current replica.  In the 

remainder of this chapter we assume that the network is reliable and the lookup service of the DHT 

does not behave incorrectly. 

In  this chapter, we present our solution to data currency in DHT [APV07a] (see Annex E for all 

details). 

5.2 Data Currency in DHT using UMS and KTS 
We provided a complete solution to data availability and data currency in replicated DHTs  

[APV07a]. This solution is the basis for a service called Update Management Service (UMS) which 

deals with efficient insertion and retrieval of current replicas based on timestamping. Experimental 

validation has shown that UMS incurs very little overhead in terms of communication cost. After 

retrieving a replica, UMS detects whether it is current or not, i.e. without having to compare with the 

other replicas, and returns it as output. Thus, UMS does not need to retrieve all replicas to find a 

current one. UMS only requires the DHT’s lookup service with put and get operations. 

To provide high data availability, the data is replicated in the DHT using a set of independent hash 

functions Hr, called replication hash functions. The peer that is responsible for k wrt h at the current 

time is denoted by rsp(k,h). To be able to retrieve a current replica, each pair (k, data) is “stamped” 

with a logical timestamp, and for each h∈Hr, the pair (k, newData) is replicated at rsp(k,h) where 

newData={data, timestamp}, i.e. newData is a data composed of the initial data and the timestamp. 

Upon a request for the data associated with a key, we can thus return one of the replicas which are 

stamped with the latest timestamp. The number of replication hash functions, i.e. ⎪Hr⎪, can be 

different for different DHTs. For instance, if in a DHT the availability of peers is low, for increasing 

data availability a high value of ⎪Hr⎪ (e.g. 30) is used. 

To generate timestamps, UMS uses a distributed service called Key-based Timestamping Service 

(KTS). The main operation of KTS is gen_ts(k) which given a key k generates a real number as a 

timestamp for k. The timestamps generated by KTS have the monotonicity property, i.e. two 

timestamps generated for the same key are monotonically increasing. This property allows ordering 

the timestamps generated for the same key according to the time at which they have been generated. 

KTS has another operation denoted by last_ts(k) which given a key k returns the last timestamp 

generated for k by KTS. 

At anytime, gen_ ts (k) generates at most one timestamp for k, and different timestamps for k have 

the monotonicity property. Thus, in the case of concurrent calls to insert a pair (k, data), i.e. from 

different peers, only the one that obtains the latest timestamp will succeed to store its data in the DHT.  
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Through probabilistic analysis, we compute the expected number of replicas which UMS must 

retrieve for finding a current replica. Except for the cases where the availability of current replicas is 

very low, the expected number of retrieved replicas is typically small, e.g. if at least 35% of available 

replicas are current then the expected number of retrieved replicas is less than 3. 

5.3 Validation 
We validated our solution through implementation and experimentation over a 64-node cluster of 

GRID 5000 and evaluated its scalability through simulation over 10,000 peers using SimJava. We 

compared the performance of UMS and BRK (from the BRICK project [KWR05]) which we used as 

baseline algorithm. The experimental and simulation results show that using KTS, UMS achieves 

major performance gains, in terms of response time and communication cost, compared with BRK. 

The response time and communication cost of UMS grow logarithmically with the number of peers of 

the DHT. Increasing the number of replicas, which we replicate for each data in the DHT, increases 

very slightly the response time and communication cost of our algorithm. In addition, even with a high 

number of peer fails, UMS still works well. In summary, this demonstrates that data currency, a very 

important requirement for many applications, can now be efficiently supported in replicated DHTs. 

The current implementation of our prototype in APPA is based on Open Chord  [OCH] which is an 

open source implementation of the Chord protocol. Open Chord is distributed under the GNU General 

Public License (GPL). It provides all DHT functionalities which are needed for implementing UMS 

and KTS, e.g. lookup, get and put functions. 

In our prototype, peers are implemented as Java objects. They can be deployed over a single 

machine or several machines connected together via a network. Each object contains the code which is 

needed for implementing UMS and KTS. To communicate between peers, we use Java RMI  

[JRMI]which allows an object to invoke a method on a remote object.  

The prototype provides a GUI that enables the user to manage the DHT network (e.g. create the 

DHT, add/remove peers to/from the system, etc.), store/retrieve data in/from the DHT, monitor the 

data stored at each peer, the keys for which the peer has generated a timestamp, the set of its initiated 

counters, etc. 

5.4 Related Work 
In the context of distributed systems, data replication has been widely studied to improve both 

performance and availability. Many solutions have been proposed in the context of distributed 

database systems for managing replica consistency [OV99], in particular, using eager or lazy (multi-

master) replication techniques. However, these techniques either do not scale up to large numbers of 

peers or raise open problems, such as replica reconciliation, to deal with the open and dynamic nature 

of P2P systems. 
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Data currency in replicated databases has also been widely studied [BFGR06, GLR05, RBSS02]. 

However, the main objective is to trade currency and consistency for performance while controlling 

the level of currency or consistency desired by the user. Our objective in this paper is different, i.e. 

return the current (most recent) replica as a result of a get request. 

Most existing P2P systems support data replication, but without consistency guarantees. For 

instance, Gnutella [Gnu06] and KaZaA [Kaz06], two of the most popular P2P file sharing systems 

allow files to be replicated. However, a file update is not propagated to the other replicas. As a result, 

multiple inconsistent replicas under the same identifier (filename) may co-exist and it depends on the 

peer that a user contacts whether a current replica is accessed. 

PGrid is a structured P2P system that deals with the problem of updates based on a rumor-

spreading algorithm. It provides a fully decentralized update scheme, which offers probabilistic 

guaranties rather than ensuring strict consistency. However, replicas may get inconsistent, e.g. as a 

result of concurrent updates, and it is up to the users to cope with the problem. 

The Freenet P2P system [CMH02] uses a heuristic strategy to route updates to replicas, but does 

not guarantee data consistency. In Freenet, the query answers are replicated along the path between the 

peers owning the data and the query originator. In the case of an update (which can only be done by 

the data’s owner), it is routed to the peers having a replica. However, there is no guarantee that all 

those peers receive the update, in particular those that are absent at update time. 

The BRICKS project [KWR05] deals somehow with data currency by considering the currency of 

replicas in the query results. For replicating a data, BRICKS stores the data in the DHT using multiple 

keys, which are correlated to the key k by which the user wants to store the data. There is a function 

that, given k, determines its correlated keys. To deal with the currency of replicas, BRICKS uses 

versioning. Each replica has a version number which is increased after each update. However, because 

of concurrent updates, it may happen that two different replicas have the same version number thus 

making it impossible to decide which one is the current replica. In addition, to return a current replica, 

all replicas need be retrieved in order to select the latest version. In our solution, concurrent updates 

raise no problem, i.e. this is a consequence of the monotonicity property of timestamps which are 

generated by KTS. In addition, our solution does not need to retrieve all replicas, and thus is much 

more efficient.  

5.5 Conclusion 
We proposed an Update Management Service (UMS) to deal with data availability and efficient 

retrieval of current replicas based on timestamping. For generating timestamps, we propose a Key-

based Timestamping Service (KTS) which performs distributed timestamp generation using local 

counters. The validation of UMS-KTS shows excellent in scalability and outperforms significantly the 

BRICK solution. Annex E presents [APV07a] which provides all details of our contributions 

(formalizations, detailed algorithms, proofs, performance evaluation, etc).  
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Several important P2P applications can take advantage of KTS. For instance a reconciliation 

engine can exploit the use KTS to provide timestamps on tentative actions.  This actions may be then 

reconciled based on  the timestamp numbers.  This research topic is  presented as part of future work. 
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6 Conclusions and Future Work  

6.1 General Conclusions  
In this report, we presented our contributions on lazy data replication in different contexts (data 

warehouse, database clusters, P2P Systems). Since we presented the main related work in each 

chapter, we now summarize the main lessons learned. We learned that important parameters should be 

considered when using lazy replication for distributed applications: configuration, scalability, 

application consistency  requirements, database visibility, node dynamicity, node and network load 

balancing, and network characteristics. These parameters define the relevant requirements for  

consistency management. Table 6.1  summarizes our research contributions  considering all 

parameters, which we discuss below. 

The configuration parameter is related to where replicas can be updated. In a small scale 

distributed systems, normally lazy single master configurations are sufficient because for the type of 

application we consider (small scale OLAP and OLTP), the single master is rarely  a bottleneck.  

Furthermore  load balancing is not an issue. This context corresponds to that of  Chapter 2. With 

respect to network characteristics, since nodes are static we can safely employ FIFO reliable multicast  

without degrading the overall performance. In addition, for clock synchronization we can rely on 

network time protocols [Mil06]. With respect to consistency management, we expressed total order 

requirements in terms of group communication primitives. In this context, our solution for managing 

replica consistency is to improve data freshness by using immediate propagation strategies. To assure 

total order we proposed a refresher algorithm which delays the execution of refresh transactions until 

its deliver time.  Given our parameter setting, this solution is quite acceptable and simple to implement 

while respecting database autonomy. 

   In database clusters, from the user perspective, the system should appear as a single unit. 

Adaptability plays a crucial role in providing the user with the desired quality of service. Thus, several 

nodes must have the right to update replicated data to enable the system to adapt to manage load 

balance and failures. This context corresponds to that of Chapter III. In this context, nodes are static 

and the network is reliable and fast.  Again, we can safely employ FIFO reliable multicast  without 

degrading the overall performance. In addition, for clock synchronization we can rely on network time 

protocols. Again, with respect to consistency management, we expressed total order requirements in 

terms of group communication primitives.  In this context, our solution for managing replica 

consistency is to delay the execution of all update and refresh transactions (for partial replication) 

submitted to the cluster, until its deliver time at a specific node. The optimizations we proposed for 

preventive replication on submitting updated transactions optimistically yield excellent gains that 

almost compensate the delay time.  In most cases, it eliminates the delay time. In this context, the use 
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of total order primitives could be an alternative solution to multicast transactions towards all nodes in 

the cluster. However, the network performance could be degraded in bursty workloads, due to the 

overhead of message exchange, necessary to implement the total order service. In a large scale lazy 

multi-master replication architecture, the load balancing of transactions may improve the overall 

performance by choosing the best node to execute a transaction or query [GNPV02]. 

 

 
Table 6.1: Lazy Replication Parameters 

 

Node fault tolerance is easy to implement [PS00] in the replication solutions presented in Chapters 

2 and 3 because the algorithms rely on logs to keep track of propagated and received messages. Thus, 

in case of failures, the system is not blocked because there is no voting scheme and, upon recovery, 

the logs are used to resynchronize the recovering node. 

P2P applications  make data management much more difficult. Peers can leave and join the system 

dynamically. As the scale of P2P system gets very large, the probability of failures increases. P2P data 

replication must also be more general and we do not focus specifically on relational tables and  

transaction consistency requirements, as in preventive replication. Instead, we focus on P2P 

collaborative applications with some semantics, and general data objects. However, to enable the 

deployment of such applications in P2P networks, it is required a mechanism to deal with their high 

data sharing in dynamic, scalable and available way. Previous work on optimistic replication has 

mainly concentrated on centralized systems. Centralized approaches are inappropriate for a P2P setting 
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due to their limited availability and vulnerability to failures and partitions from the network. We 

focused on the design of a reconciliation algorithm designed to be deployed in large scale cooperative 

applications, such as P2P Wiki. Our main contribution was a distributed reconciliation algorithm 

designed for P2P networks (P2P-reconciler). Other important contributions are:  a basic cost model for 

computing communication costs in a DHT overlay network; a strategy for computing the cost of each 

reconciliation step taking into account the cost model; and an algorithm that dynamically selects the 

best nodes for each reconciliation step. Furthermore, since P2P networks are built independently of the 

underlying topology, which may cause high latencies and large overheads degrading performance, we 

also propose a topology-aware variant of our P2P-reconciler algorithm and show the important gains 

on using it. Our P2P-reconciler solution enables high levels of concurrency thanks to semantic 

reconciliation and yields high availability, excellent scalability, with acceptable performance and 

limited overhead. In addition, our topology aware approach improves the basic P2P reconciler by 

50%, which is a very impressive result.  This last result encouraged us to use topology awareness in 

current research work. This context corresponds to that of Chapter 4. 

Distributed Hash Tables (DHTs) provide a scalable solution for data sharing in P2P systems. To 

ensure high data availability, DHTs typically rely on data replication, yet without data currency 

guarantees. Supporting data currency in replicated DHTs is difficult as it requires the ability to return a 

current replica despite peers leaving the network or concurrent updates. We give a complete solution 

to this problem. We propose an Update Management Service (UMS) to deal with data availability and 

efficient retrieval of current replicas based on timestamping. For generating timestamps, we propose a 

Key-based Timestamping Service (KTS) which performs distributed timestamp generation using local 

counters. Through probabilistic analysis, we compute the expected number of replicas which UMS 

must retrieve for finding a current replica. Except for the cases where the availability of current 

replicas is very low, the expected number of retrieved replicas is typically small, e.g. if at least 35% of 

available replicas are current then the expected number of retrieved replicas is less than 3. This context 

corresponds to that of Chapter 5. 

We chose to develop our replication solutions of chapter 4 and 5 on top of DHT networks which 

enable to index data objects through  a  key value that may have some  semantic significance.  Using a 

DHT, data is uniformly distributed over the network, which is a good basis for scaling up and load 

balancing.  In addition, fault-tolerance relies on the DHT fault tolerance. In our solutions,  we assumed 

that the lookup service of the DHT does not behave incorrectly, that is, given a key k, it either finds 

correctly the responsible for k or reports an error, e.g. in the cases of network partitioning where the 

responsible is not reachable. To support this last assumption, network must be reliable and bounds 

must be approximatively known in order to have a reliable DHT stabilization algorithm. Finally, we 

also considered the use of some kind of detector [LCGS05]. These assumptions are quite acceptable in 

P2P dynamic networks [LCGS05]. To guarantee 100% of consistency, we would need to implement 

complex fault tolerance protocols [OV99] based on quorums, or some specific group communication 
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service on the DHT overlay level. However, these solutions are known not to scale up well, and  do 

not behave well in dynamic environments. This lessons was learned in the context of Chapters 4 and 5. 

6.2 Current and Future Work 
Based on our  previous work we just described and faced with some new challenges, we now present 

our perspectives in current and future work. 

6.2.1 P2P Logging and  Timestamping  for Reconciliation (P2P-LTR) 
As part of our current and future work, we consider the use of KTS (see Chapter 5) as a distributed 

P2P timestamper for general collaborative applications. For instance, consider several Xwiki users 

who update documents in parallel in a multi-master replication approach. The reconciliation of these 

updates needs to establish a total order on the updates to be applied at each master peer to provide 

eventual consistency.  Alternatively to semantic reconciliation, we adopt a text editing reconciliation 

algorithm based on operational transforms such as So6 [MOSI03, SCF98]. For the reconciliation 

engine, one solution to provide total order is to rely on  a centralized timestamper node that also stores 

the  log of reconciled updates.  However, the timestamper node  may be a single point of failure and 

performance  bottleneck.  In this context, we now address three new requirements: 

 

• Continuous P2P Timestamping; such  that difference between the timestamps of any two 

consecutive updates be one;    

• P2P-Log service, necessary to store the  timestamped updates (log) in the DHT; 

• Retrieval  service  to safely find the continuous timestamps updates stored in  

       P2P-Log, used later on to perform document reconciliation. 
 

We propose P2P-LTR service that addresses these new requirements. Concerning the Timestamps 

must be continuous (the difference between the timestamps of any two consecutive updates is one) 

instead of in monotonically increasing order.  This allows Xwiki users to safely get the next  missing 

patches of updates in the DHT (stored at log peers). So given the last  timestamp value  on a document 

d,  seen  locally,  the  master asks the timestamper responsible  peer  of  d,  to provide the  last 

timestamp  it gave  to any other multi-master peer of d . If  this value is greater than the master local 

timestamp value, then the master of d gets all missing timestamped updates stored previously in  the 

DHT. Thus the DHT acts as a highly available distributed log. Hence updates performed by masters 

are indexed using the document key and its timestamp value. We are currently working on this 

research topic, addressing  some fault-tolerance issues and developing a prototype of  P2P-LTR. 

To measure the reliability of P2P-LTR we plan to implement and run exhaustively our solution 

over the PlanetLab platform [Pla]. PlanetLab makes it easy to deploy the DHT we use (OpenChord) 

[OCH] as it lets Java RMI call cross firewalls. We expect that in practice eventual consistency may be 
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violated rarely.  However, we also accept that for the type of applications we consider a low level of 

inconsistency is acceptable (missing updates, out of order updates) and that the users can manage it.  

We plan to investigate the management of quality of data in such contexts.  

6.2.2 P2P Caching 
Motivated by the cost models proposed in our previous work on the  P2P-reconciler, we currently 

focus on reducing P2P network traffic by combining different techniques: search strategies, caching 

placement and location awareness for cache management  in unstructured and structured systems.  

 

Index Caching 

 

Despite the emergence of sophisticated overlay structures, unstructured P2P systems remain highly 

popular and widely deployed. They exhibit many simple yet attractive features, such as low-cost 

maintenance and high flexibility in data placement and node neighborhood. Unstructured P2P systems 

are heavily used for file-sharing communities due to their capacity of handling keyword queries i.e. 

instead of lookup on entire filenames. However, some studies [SGDGL02] observed that the P2P 

traffic is mainly composed of query messages and contributes the largest portion of the Internet traffic. 

The principal cause of the heavy P2P traffic is the inefficient search mechanism, blind flooding, 

which is commonly employed in unstructured P2P networks. Many researchers have focused on this 

critical issue that may compromise the benefits of such systems by drastically limiting their scalability. 

In fact, inefficient searches cause unnecessary messages that overload the network, while missing 

requested files. Several analyses [P02, LBBS02, Scrip] found the P2P file-sharing traffic highly 

repetitive because of the temporal locality of queries. They actually observed that most queries request 

a few popular files and advocated the potential of caching query responses, to efficiently answer 

queries without flooding over the entire network (a query response holds information about the 

location of the requested file). 

However, searches in general, suffer significantly from the dynamic nature of P2P systems where 

nodes are run by users with high autonomy and low availability. In fact, it is rather impossible to 

ensure the availability of a single file copy and thereby to satisfy queries for this file. In P2P file 

sharing, a node that requested and downloaded a file, can provide its copy for subsequent queries. As a 

consequence, popular files, which are frequently requested, become naturally well-replicated 

[CRBL+03]. Hence, search techniques should leverage the natural file replication to efficiently find 

results with minimum overhead. 

Another important factor that worsens the traffic issue consists in constructing P2P overlays 

without any knowledge of the underlying topology. A typical case that illustrates this problem is the 

following: a query can be directed to a copy of the desired file which is hosted by a physically distant 

node, while other copies may be available at closer nodes. Hence, file downloads can consume a 
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significant amount of bandwidth and thereby overload the network. In addition, the user experience 

dramatically degrades due to the relatively high latency perceived during transfer. 

Our proposal to reduce P2P network traffic is based on DiCAS [WXLZ06], an index caching and 

adaptive search algorithm. In DiCAS, query responses are cached, in the form of file indexes, in 

specific groups of nodes based on a specific hashing of the filenames. Guided by the predefined 

hashing, queries are then routed towards nodes which are likely to have the desired indexes. However, 

DiCAS is not optimized for keyword searches which are the most common in the context of P2P file 

sharing. Moreover, caching a single index per file does not solve the problem of file availability given 

the dynamic nature of P2P systems, while it may overload some nodes located by previous queries. 

DiCAS also lacks topological information to efficiently direct queries to close nodes. 

Aiming at reducing the P2P redundant traffic and addressing the limitations of existing solutions, 

we propose a solution [EPV07] that leverages the natural file replication and incorporates topological 

information in terms of file physical distribution, when answering queries. To support keyword 

searches, a Bloom filter is used to express keywords of filenames cached at each node, and is then 

propagated to neighbors. A node routes a query by querying its neighbors' Bloom filters. To deal with 

issues concerning availability and workload, a node caches several indexes per file along with 

topological information. As a consequence, a node answers a query by providing several possibilities, 

which significantly improves the probability of finding an available file. In addition, based on the 

topological information, we expect that queries are satisfied in a way that optimizes the file transfer 

and thus the bandwidth consumption. Our simulations shows that the cache hit and download distance 

is improved by using our approach with acceptable overhead. 

P2P Web Caching 

In the next step of our research in P2P caching, we propose to exploit a DHT to share content storage 

[RCFB07]. Much research work has been on addressed the search efficiency issue, including the 

designs of Chord, Tapestry, Can, etc. In these approaches, each peer and its stored contents are 

organized using a DHT. For a system with N nodes, the search cost (i.e. number of lookup hops) is 

bounded by O(LogN). For the current search solutions in the structured P2P, all peers are assumed to 

submit queries to uniformly search the contents stored in all peers. However, this assumption is not 

valid in practice. Often, the popularities of the contents are skewed. For example, web requests on the 

Internet space are highly skewed with a Zipf-like distribution. Therefore,  this skewed popularity 

causes unbalanced workload. In addition, due to the limited bandwidth, even though the search cost to 

some hot peers is still bounded by O(logN) hops, there can be a long latency for getting the data.   

One solution to improve the workload balance is to replicate these popular contents in the best 

nodes which requires to address  two key problems related to caching the replicas in structured P2P 

systems: where and how to cache the replicas of popular contents. 
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6.2.3 P2P Data Streaming 
Recent years have witnessed major research interest in data stream management systems. A data 

stream is a continuous and unbounded sequence of data items. There are many applications that 

generate streams of data including financial applications, network monitoring, telecommunication data 

management, sensor networks, etc. Processing a query over a data stream involves running the query 

continuously over the data stream and generating a new answer each time a new data item arrives. Due 

to the unbounded nature of data streams, it is not possible to store the data entirely in a bounded 

memory. This makes difficult the processing of queries that need to compare each new arriving data 

with past ones. We are interested in systems which have limited main memory but that can tolerate an 

approximate query result which has a maximum subset of the result.  

A common solution to the problem of processing join queries over data streams is to execute the 

query over a sliding window [GO03] that maintains a restricted number of recent data items. This 

allows queries to be executed in a finite memory and in an incremental manner by generating new 

answers when a new data item arrives.   

In current research, we address the problem of computing approximate answers to windowed 

stream joins over data streams. Our solution [PAPV08] involves a scalable distributed sliding window 

that takes advantage of the free computing power of DHT networks and can be equivalent to 

thousands of centralized sliding windows.  Then, we propose a mechanism called DHTJoin, which 

deals with efficient execution of join queries over all data items which are stored in the distributed 

sliding window. DHTJoin combines hash-based placement of tuples in the DHT and dissemination of 

queries using a gossip style protocol.  
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Abstract. Many distributed database applications need to
replicate data to improve data availability and query re-
sponse time. The two-phase commit protocol guarantees mu-
tual consistency of replicated data but does not provide good
performance. Lazy replication has been used as an alterna-
tive solution in several types of applications such as on-line
financial transactions and telecommunication systems. In this
case, mutual consistency is relaxed and the concept of fresh-
ness is used to measure the deviation between replica copies.
In this paper, we propose two update propagation strategies
that improve freshness. Both of them use immediate propa-
gation: updates to a primary copy are propagated towards a
slave node as soon as they are detected at the master node
without waiting for the commitment of the update transac-
tion. Our performance study shows that our strategies can
improve data freshness by up to five times compared with
the deferred approach.

Key words: Data replication – Distributed databases – Per-
formance evaluation

1 Introduction

In a distributed database system, data is often replicated
to improve query performance and data availability. Per-
formance is improved because replica copies are stored at
the nodes where they are frequently needed. Availability is
improved because replica copies are stored at nodes with
independent failure modes. An important goal of concur-
rency control for a replicated database system is to achieve
replica transparency. That is, as far as the users are con-
cerned, a replicated database system should behave like a
single copy database. Therefore, the interleaved execution
of transactions on a replicated database should be equivalent
to a serial execution of these transactions on a single copy
database. Hence,one-copy serializabilityis enforced and
replica consistency is acheived. Transaction processing in

? This work was partially supported by Esprit project EP 22469DWQ
“Foundations for Data Warehouse Quality”.

replicated databases has been well studied in [BHG87]. Sev-
eral protocols such as two-phase commit have been proposed
to achieve replica consistency [Gif79, Tho79, BHG87]. Al-
most all commercially available distributed database systems
providetwo-phase commitas an option [Sch76] to guarantee
the consistency of replicated data.

A central problem of several database applications with
real-time constraints, such as telecommunication systems,
operational data stores [Inm96] or on-line financial transac-
tions [Sha97], is to guarantee a high level of performance.
For example, in a global trading system distributed over a
wide-area network where exchange rates are replicated, it
is crucial to have fast access to replicated data from any
trader location. In addition, a change to a rate by a trader
at a location must be propagated as fast as possible to all
other locations to refresh replicated data. With a two-phase
commit protocol (henceforth 2PC), anupdate transaction
that updates a replica of an object is committed only af-
ter all nodes containing a corresponding replica copy agree
to commit the transaction, thereby enforcing that all replica
copies aremutually consistent. This approach is often re-
ferred to astight consistencyor synchronous replication
[CRR96]. Synchronous replication has some drawbacks in
practice [Moi96, Sch76]. Many database system vendors in-
dicate that in numerous applications such as the ones we are
interested in 2PC is impractical. The major argument is that
its reliance on 100% system availability makes maintaining
a productive level of transaction throughput for distributed
replication impossible.

A good overview of replication capabilities of some
commercially available distributed database systems can be
found in [Gol94]. Systems like Sybase 10 [Moi96], Oracle
7 [Dav94b] and IBM Datapropagator Relational [Dav94a]
support synchronous replication as well as anoptional pro-
tocol that defersthe updates of replicas. The deferred up-
date protocols supportloose consistency[Moi96] by allow-
ing some replica copies to be inconsistent for some time.
This approach is often referred to asasynchronousor lazy
replication. Lazy replication provides better responsiveness
since the waiting operations associated with multisite com-
mit protocols are avoided.
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With lazy replication, a transaction can commit only af-
ter updating at least one replica at some node. After the
transaction commits, the updates are propagated towards the
other replicas which are then updated in separate refresh
transactions. Thus, this scheme relaxes the mutual consis-
tency property of 2PC. Furthermore, the interval of time
between the execution of the original update transaction and
the corresponding refresh transactions may be large due to
the propagation and execution of the refresh transactions.
The degree offreshnessindicates the proportion of updates
that are reflected by a given replica but have nevertheless
been performed on the other replica copies.

In this paper, we address the problem of freshness in
lazy replication schemes. We present a lazy master replica-
tion framework and assume a functional architecture with
one master and multiple slave nodes. We propose an update
propagation strategy, calledimmediate-propagation, which
works as follows: updates to a replica at some master node
are immediately propagated towards the other replica copies
held by slave nodes without waiting for the commitment of
the original update transaction. Specifically, we propose two
variants: immediate-immediateand immediate-wait. With
immediate-immediate, a refresh transaction is started at a
slave node as soon as the first update operation is received
from the master node. Withimmediate-wait, a refresh trans-
action is started at a slave node after the complete recep-
tion of all updates (of the same transaction) from the master
node. We present experimental results that demonstrate the
improvement of freshness brought by these strategies with
respect to adeferredstrategy, as used by several commercial
relational database systems.

This paper is a significantly extended version of
[PSdM98]. The extensions are the following. First, we
present in more details the update propagation algorithms
and introduce the recovery procedures to deal with nodes
failures. Second, we extend our performance evaluation by
measuring query response times, the impact offreshnesson
the immediatestrategies when transactions abort and the im-
pact of freshnessfor different network delays. Finally, we
include a comparison with related work.

The rest of this paper is structured as follows. Section 2
introduces our replication framework and basic definitions.
Section 3 presents the system architecture of master and
slave nodes used by our update propagation strategies. Sec-
tion 4 describes the deferred strategy and the immediate
strategies. Section 5 presents our performance evaluation.
Section 6 discusses related work. Finally, Sect. 7 concludes.

2 Lazy master framework

With lazy master replication, updates on a primary copy are
first committed at the master node. Then, each secondary
copy is updatedasynchronously, in a separate refresh trans-
action. A replication design typically includes the definition
of the data to be replicated, the number of replica copies (i.e.,
primary and secondary copies), the nodes at which replica
copies must be placed and others characteristics. In [PV98],
we use a variety of terms to define a replication design.
However, several terms are ambiguous and some others are
still missing to make clear the characterization of a replica-

tion design. In this section, we define a framework that can
precisely specify a lazy master replication design.

Four parameters characterize our framework: ownership,
propagation, refreshment and configuration. However, the
parameters we present are also valid for lazy group replica-
tion. We use the termlazy master replication schemeto refer
to a replication design that fits in our framework. Therefore,
whenever the four parameters are set, a replication scheme
is established. We do not consider how to choose the data to
be replicated since we consider that this involves the knowl-
edge of the semantics of the distributed application.

The ownershipparameter [GHOS96] defines the node
capabilities for updating replica copies. A replica copy that
is updatable is called aprimary copy (denoted by capital
letters), otherwise it is called asecondarycopy (denoted by
lowercase letters). In the remainder of this paper, we assume
that replica copies are relations. For each primary copy, say
R, there is a set of secondary copiesr1, r2, .... We refer to
the set of primary and secondary copies asreplica copies. In
addition, we sometimes use the termreplicated datainstead
of replica copies. We identify three types of nodes:Master,
Slave and MasterSlave. Whenever a node stores only pri-
mary copies, it is be referred to as a master node. Similarly,
whenever a node stores only secondary copies it is called
a slave node. Finally, a node that stores both primary and
secondary copies is called a MasterSlave node.

We assume familiarity with transactional concepts
[BHG87]. We focus on three types of transactions that read
or write replica copies:update transactions, refresh trans-
actionsand queries. An update transaction (denoted byT )
updates a set of primary copiesR, S, .... Each time a transac-
tion is committed, a timestamp (denoted by C) is generated.

A refresh transaction (denoted byRT ) is composed by
the serial sequence of write operations performed by an up-
date transactionT . A refresh transaction is used to update
(henceforth refresh) at least one secondary copy. Finally, a
query,Q, consists of a sequence of read operations on sec-
ondary copies. We assume that once a transaction is submit-
ted for execution to a local transaction manager at a node,
all conflicts are handled by the local concurrency control
protocol.

The configuration parameter defines the component
nodes of a replication scheme. For instance, a1Master-
nSlavesconfiguration, typically called data dissemination,
consists of a replication scheme with asingle master node,
i, and n slaves ofi. In this paper, we focus on1Master-
nSlavesconfigurations.

The propagation parameter defines “when” the updates
to a primary copy must be multicast (henceforth propagated)
towards the nodes storing its secondary copies. We focus on
two types of propagation:deferredandimmediate. When us-
ing a deferredpropagation strategy, the serial sequence of
writes on a set of primary copies performed by an update
transaction is propagated together within a messageM , after
the commitment ofT . When using animmediatepropaga-
tion, each write operation performed by a transaction, for
instanceT , is immediately propagated inside a messagem,
without waiting for the commitment of the original update
transactionT .

The refreshmentparameter defines when the submission
of a refresh transaction starts with respect to a propagation
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Fig. 1. Architecture of a node:square boxesrepresent persistent data repos-
itories andoval boxesrepresent system components

Table 1. Update propagation strategies

Propagation Triggering mode Update propagation

Deferred Immediate Deferred-Immediate
Immediate Immediate Immediate-Immediate
Immediate Wait Immediate-Wait

strategy. We consider three trigger modes:deferred, imme-
diate and wait. The couple formed by the propagation and
the trigger mode determines a specific update propagation
strategy. For instance, with adeferred-immediatestrategy,
propagation involves the sending of anRT towards each
slave node which, as soon as it is received at a slave node,
is submitted for execution. Withimmediate-immediate, prop-
agation involves the sending of each write performed by a
T towards each slave node, without waiting for the commit-
ment of the original update transaction. At a slave node, a
refresh transaction is started as soon as the first write op-
eration is received from the master or MasterSlave node.
Finally, immediate-waitis similar to immediate-immediate,
except that a refresh transaction is submitted for execution
only after the complete reception of all write operations of
the original update transaction. Table 1 shows the update
propagation strategies we focus on.

In our framework, we assume that messages are ex-
changed among the nodes of the replicated system through
a reliable FIFO multicast protocol1 [HT94] because it is one
of the most simple multicast protocols.

3 System architecture

The objective of our architecture is to maintain the autonomy
of each node. This means that neither the local transaction
management protocols nor query processing are changed to
support lazy master replication. Each node, whether master

1 Messages are received in the same order as they are propagated.

or slave, supports a database system and three components.
The first component is the replication module, which itself
consists of three components:Log Monitor, Propagatorand
Receiver. The second component is theRefresher, which
provides different qualities of service by implementing dif-
ferent refreshment strategies to update secondary copies. The
last component, theNetwork Interface, is used to propagate
and receive messages on the network. For simplicity, it is
not shown in Fig. 1 and need not be discussed in this paper.
We now present in more details the functionality of these
components:

Log Monitor. It implements log sniffing [SKS86, KR87,
Moi96], which is a procedure used to extract the changes
to a primary copy by reading sequentially the contents
of a local history log (denoted byH). We do not con-
sider any particular log file format in our study. How-
ever, we safely assume that a log record contains all the
information we need such astimestamp, primary id,
and other relevant attributes (see Chap. 9 of [GR93] for
more details). When the log monitor finds a write oper-
ation onR, it reads the corresponding log record from
H and writes it into a stable storage calledinput logthat
is used by the Propagator. The reason we impose copy-
ing the history log entries to the input log is discussed
below, when we present thePropagator’sfunctionality.
We do not deal with conflicts between the write oper-
ations on the history log and the read operations per-
formed by the Log Monitor since this procedure is well
known and available in commercial systems [Moi96].

Receiver. It implements message reception at the slave
node. Messages coming from different masters are re-
ceived through a network interface that stores them in
a reception log. The receiver reads messages from the
reception logand stores them in pending queues. The
contents of these queues form the input to theRefresher.
A slave node detects its master node failure usingtime-
out procedures implemented in the network interface.
The node recovery procedures related to the Receiver
are discussed in Sect. 4.3.

Propagator. It implements the propagation of messages that
carry log records issued by the Log Monitor. Both types
of messages are written in theinput log. After correctly
propagating a message, its contents is written inside the
propagation log. If a node failure occurs during mes-
sage propagation (i.e., before writing the message con-
tents inside the propagation log), the input log is used
to re-propagate the lost message at node recovery time.
The Propagator continuously reads the records of the
input logand propagates messages through the network
interface. A master node is able to detect failures of
its slave nodes using the network interface. The node
recovery procedures related to the Propagator are dis-
cussed in Sect. 4.3.

Refresher. It implements refreshment strategies that define
whenrefresh transactions are executed. For each slave
node, there is a pending queuei, j, .... Each pending
queue stores a sequence of messages (write opetations)
comming from a specific master node (see Fig. 1) . The
Refresher reads the contents of each pending queue and,
following some refreshment strategy, executes refresh
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transactions to update the set of secondary copies. A
refresh transaction execution is performed by submitting
each write operation to thelocal transaction manager.
Since we focus on1Master-nSlavesconfiguration, we
consider a single pending queue.

4 Update propagation strategies

We consider three update propagation strategies:deferred-i-
mmediate, which is based on the common approach used by
lazy master replication schemes [Moi96], and ourimmedia-
te-immediateand immediate-waitstrategies. In this section,
we present them with respect to our architecture. We first
present the deferred and immediate propagation strategies
that establish the basis for other strategies. Without loss of
generality, we present our algorithms for a1Master-1Slave
configuration for a single primary copyR.

4.1 Propagation

To preserve serializability, the Log Monitor reads log records
from H in the order they were written. It is worth men-
tioning that the algorithm used to manageH in the local
database system is orthogonal to our strategies and has no
impact on the way they function. The Propagator also reads
log records from the input log in the order they were written
and propagates them in serial order. Each log record stored
in both H and the input log carries the information neces-
sary to perform an operation, that is, the following attributes
[GR93]: timestamp, primaryid,tuple id, field id,operation,
newvalue.

The master identifier,primary id, identifies the primary
copy R that is updated at the master node. Tuples are iden-
tified by their primary key. In addition, the updated field
within a tuple is identified byfield id. Next, operation
identifies the type of operation (update, delete, insert, abort
or commit) performed. In case of an update operation,
new value contains the new value of the field being up-
dated. When there is no ambiguity, we sometimes use the
term operation instead of log record.

The Propagator implements the algorithm given in Fig. 2.
With immediatepropagation, each write operation,wi, of R,
by transactionT is read from the input log and forwarded by
a propagatefunction in a messagemi containing the input
log record to the slave holding a copyr. Thus, for every
slave node, there will be as many messages as write oper-
ations inT . The performance impact of the possibly large
number of messages generated is analyzed in Sect. 5. It is
important to note that concurrent update transactions at the
master produce an interleaved sequence of write operations
in H for different update transactions. However, write oper-
ations are propagated in the same order as they were written
in the input log to preserve the master serial execution order.
Update transaction’sabort and commitat a master are also
detected by the Log Monitor.

With deferred propagation, the sequencew1, w2, ...wn

of operations onR performed by transactionT is packaged
within a single message (denoted byMi) that is propagated
to the slave holdingr, after readingT ’s commit from the

Propagator
input: Input Log
output: messages sent to slave nodes
variables:

o: a record read from the Input Log
m: carries o
Mi: carries a seq. of o associated with the same transaction
begin

repeat
read(Input Log,o);
if propagation = immediate

then
wrap o into a message m;
propagate (m);

else /* propagation = deferred */
if o = write for new transaction T

then
create a message M associated with T ;

if o = write for transaction T
then

add o to M ;
if o = commit

then
propagate(M );

else if o = abort
then

discard(M );
for ever;

end.

Fig. 2. Propagator algorithm

Immediate-Wait
input: a queue qr

output: submit refreshment transactions
variables:

o: the content of a message stored in qr

RV : vector of write operations for RT
begin

repeat
read(qr ,o);
if o corresponds to a new transaction

then
Create a new vector RV ;

if (o /= commit) and (o /= abort)
then

add o to its associated vector RV ;
if o = commit

then
add o to its vector RV ;
submit RV as an RT ;

if o = abort
then

discard the vector associated with o;
for ever.

end.

Fig. 3. Immediate-wait algorithm for queueqr

input log. The messageMi will form the body of the refresh
transactionRT that updatesr at the slave node. In case of
an abort of T , the correspondingMi under construction is
discarded using thediscard function.
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4.2 Reception and refreshment

Each Receiver reads the messagesMi in their reception or-
der from the reception log. In addition, each Receiver checks
the master identifierprimary id to select in which queue to
store the log record(s) that each message carries, whenever
there is more than one master node. Since we consider a sin-
gle master node and primary copyR, we simply useqr to
denote the pending queue that stores the messages to update
r. We assume that when a message carries a sequence, this
sequence is stored as a single record in the queue.

To update a secondary copyri, the Refresher conti-
nously reads the pending queue,qr, seeking for new incom-
ing records. Withdeferred-immediate, the Refresher reads
a sequencew1, w2, ..., wn within a single message fromqr

and subsequently submits it as a refresh transaction to the
local transaction manager. The effect of the serial execution
order of update transactionsT1, T2..., Tk performed at the
master is preserved at the slave because the corresponding
refresh transactionsRT1, RT2..., RTk are performed in the
same order.

With immediate-immediate, each time an operation is
read from a queue it is subsequently submitted to the lo-
cal transaction manager as part of some refresh transaction.
Here again, for the same reasons as before, the effect of the
serial execution order of the update transactions performed
at the master is preserved. When an abort operation for a
transactionT is read by the Refresher, it is also submitted
to the local transaction manager to abortRT .

With immediate-wait, refreshment is done in two steps.
In the first step, a message is read fromqr exactly as with
immediate-immediate. However, each operation associated
with a transactionT is stored into an auxiliary data structure,
called a reception vector (denoted byRV ). Thus, there is
one vector per transaction and each element of a vector is
an operation. When acommitoperation for a transactionT
is read from queueqr, it is appended to the corresponding
vectorRV and a refresh transactionRT is formed with the
sequence of operations contained inRV , and submitted to
the local transaction manager.

The period of time delimited by the reading, in a queue
qr, of the first operation for transactionT , and the reading
of the commitoperation forT , is called thewait period for
RT . Figure 3 summarizes the algorithm executed by the
Refresher for a given queueqr using immediate-wait.

For all the three strategies, when a refresh transaction
RT is committed, the Refresher marks all the messagesMi

or mi in the reception log asprocessed.

4.3 Dealing with node failures

We now present the connection and node recovery protocols
used to recover from node failures. They are based on those
used for transaction recovery (see [GR93]). Thus, we intro-
duce only the additional features needed for our replication
scheme. We first present how a master node initializes a con-
nection with a specific slave node. Then, we show how slave
and master node failures are handled. Since we assume that
network omissions are bounded and taken into account by
the multicast protocol, we can ignore network failures. For

pedagogical reasons, whenever necessary, we make clear the
distinction between master and slave node procedures.

4.3.1 Initialization

To start update propagation towards a slave node, a master
node must first initiate a connection. When update propaga-
tion is completed, the master can close the connection. In
order to preserve the autonomy of each DBMS, connection
and disconnection requests are captured by our replication
module through the local history log (denoted byH). The
result of a connection or disconnection request is done using
the connection table, which we describe below. Connection
and disconnection are requested using the following func-
tions.
Connect(Master id, Slave id, Replica id): Master id
requests a connection toSlave id in order to start update
propagation onReplica id. A corresponding log record is
generated and written in the local history log ofMaster id
with the following information:

<′′ Connect′′, Master id, Slave id, Replica id >.

Disconnect(Master id, Slave id, Replica id): Master id
requests a disconnection toSlave id in order to stop update
propagation onReplica id. A corresponding log record is
generated and written inMaster id local history with the
following information:

<′′ Disconnect′′, Master id, Slave id, Replica id >.

Each nodei (master or slave node) keeps control of
its connections using aconnection tablestored in the lo-
cal DBMS. Each entry of this table corresponds to a es-
tablished connection. The main attributes of this table are
Node id, Replica id andStatus. Node id identifies a node
that is connected to nodei andReplica id identifies the local
replica copy involved in a specific connection. Thestatus
attribute indicates the current status of the connection. The
interpretation of each attribute at a master or slave node is
as follows.
Master: Replica id is a primary-copy identifier. The Log
Monitor reads the connection table to check which primary
copies it must monitor.Node id is a slave node identifier
associated with a specific connection. By reading the set of
slave node identifiers from the connection table, the Prop-
agator is able to request a connection or disconnection and
detect a slave node failure. Thestatus attribute indicates
whether a connection isactive or inactive. The connection
table may be read and updated by the Propagator and Log
Monitor, in addition, it may be read by the local DBMS
users.
Slave: Replica id is a secondary-copy identifier.Node id
identifies a master node associated with a specific connec-
tion. A slave node uses the connection table to identify its
masters in order to create and destroy pending queues and
detect master node failures. Thestatus attribute indicates
whether a connection isactive or inactive. The connection
table may be read and updated by the Receiver and read by
the local DBMS users.

Node initialization starts by the creation of a connec-
tion table a each node. Recall that at each slave node, the
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Refresher manages a set of pending queues. Each pending
queue may store a sequence of write operations used to up-
date a set of secondary copies. When a master node is inac-
tive for propagating the updates on a specific primary copy,
a Disconnect record is stored in the corresponding pend-
ing queue at each slave node indicates that the queue is not
available for refreshment.

Connection and disconnection are handled as follows.
When the Log Monitor reads aConnect (or Disconnect)
record fromH, it writes it in the input log. Then, the Prop-
agator reads the Connect (or Disconnect) record from the
input log, and propagates the Connect (or Disconnect) mes-
sage towardsSlave id. In case of connection, it creates a
new connection entry in the local connection table. Other-
wise, it deletes the corresponding connection from the con-
nection table.

When a slave node receives the Connect message, its Re-
ceiver creates a new connection entry in the local connection
table and records the contents of the Connect message into
the pending queue corresponding to the master node. Thus,
a Connect record informs the Refresher that the queue is
available for refreshment. When a slave node receives the
Disconnect message, its Receiver deletes the corresponding
connection entry from the local connection table and records
the contents of the Disconnect message in the correspond-
ing pending queue. Thus, a Disconnect record informs the
Refresher that the queue is not available for refreshment.

Disconnection can be granted only after all the messages
sent by the master have been received by the slave. This is
easy because messages are propagated using a FIFO mul-
ticast protocol. Thus, when a slave receives a Disconnect
message, it is necessarily the last one for the corresponding
connection.

4.3.2 Recovery

We now present how master and slave nodes recover after
a node failure.

Slave failure

Slave failure is managed as follows. When a slave node
fails, all the connected masters must stop sending messages
to it. Failure detection is done by each master Propagator
by periodically checking whether the slave is up using the
network interface.

Slave recovery is performed in two steps. First, after
system recovery, the Receiver writes in each pending queue
a Reconnect record of the form:

<′′ Reconnect′′, Master id, Slave id, Replica id,
Message id >.

Message id indicates the last messageMi or mi (this is eas-
ily read by the Receiver based on thereception log) and is
used as re-synchronization point to re-start the master prop-
agation and the slave refreshment activities. The Refresher
reads a Reconnect record and is aware that the connection
with Master id is being re-established. In the second step,
the Receiver re-establishes its pending connections. It does
so by searching in the reception log for all messages received

from Master id but not yet processed by the Refresher, and
stores each message in the correct queueq.

Master failure

Master failure is handled as follows. When a master node
fails, all the connected slave nodes detect the failure through
their Receiver, which periodically checks for master node
availability using the network interface. As soon as a master
failure is detected, the slave Receiver writes aFail record
of the form

<′′ Fail′′, Master id >

in the correct pending queue. This record informs the Re-
fresher ofMaster id failure. When a master recovers, it
re-establishes its connections by propagating a Reconnect
message towards each slave node it was connected to. In
this case, theMessage id field is nil. When the slave node
receives a Reconnect message, it stores its contents in the
correct queueq. Thus, the Reconnect record indicates the
Refresher ofMaster id recovery. The Receiver re-starts
reception activities forMaster id. As in any database sys-
tem, the propagation log and reception log are supposed to
have enough disk space to deal with recovery.

Our node recovery protocol is non-blocking, because in
case of a master failure, the slave refreshment activities on
other secondary copies are not interrupted. Using the con-
nection table, a user at a slave node can detect the failure
of a master and make a choice on how to proceed with its
replication activities. For instance, the user may decide to
ignore the master failure at the expense of freshness.

5 Validation

To validate our update propagation strategies, we need to
demonstrate their performance improvement. Performance
evaluation of such strategies is difficult since several factors
such as node speed, multiprogramming level, network band-
witch and others, have a major impact on performance. Some
update propagation strategies have been evaluated analyti-
cally [GN95, GHOS96]. However, analytical evaluation is
typically very complex and hard to understand. In addition,
the results may not reflect the real behavior of the strate-
gies under various workloads. Therefore, instead of doing
performance analysis of our strategies, we prefer to use a
simulation environment that reflects as much as possible a
real replication context.

5.1 Simulation environment

There are many factors that may influence the performance
of our strategies, for instance, the processing capability of the
slave nodes and the speed of the network medium. We isolate
the most important factors such as: (i) transaction execution
time, reflected by the time spent to log the updates made
by a transaction into the history log (denoted byH), (ii)
refresh transaction (denoted byRT ) propagation time, that is
the time needed to propagate the necessary messages from a
master to a slave, and (iii) refresh transaction execution time.
Consequently, our simulation environment only focuses on
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the components of a node architecture that determine these
three factors. In the following, we present the component
modules of the simulation environment.

5.1.1 Modules

Our simulation environment is composed by the following
modules:Master, Network, Slaveand a database server. The
Master module simulates all relevant functionalities of a
master node such as log monitoring and message propa-
gation. The Network module implements and simulates the
most significant factors that may impact our update propaga-
tion strategies such as the delay to propagate a message. The
Slave module implements the most relevant components of
the slave node architecture such as Receiver, Refresher and
Deliverer. In addition, for performance evaluation purposes,
we add the Query component in the slave module, which im-
plements the execution of queries that read replicated data.
We do not consider node failures in our performance evalua-
tion because we focus on freshness improvement. Therefore,
the reception log as well as the recovery procedures are not
taken into account. Finally, a database server is used to im-
plement refresh transactions and query execution.

Our environment is implemented on a Sun Solaris work-
station in C language using pipes for inter-process commu-
nication. We use Oracle 7.3 to implement the database func-
tionalities such as transaction execution, query processing
and others.

5.2 Performance model

In this section, we formalize the concept offreshnessneeded
for our performance evaluation. Then we present the param-
eters we considered in our experimentations, as well as the
terms used to explain our results.

Freshness is formalized as follows. We may have differ-
ent transactions sizes but we assume that their occurrence
is uniformly distributed over time. Using this assumption of
uniformity, we define the concept ofshift to simplify the
definition of degree of freshness. Theshift of r at timetQ
with respect toR when a queryQ readsr at a slave node
is the difference between the number of committed update
transactions ofR (denoted byn(R)), and the number of
committed refresh transactions onr (denoted byn(r)):

shift(tQ, r) = n(R) − n(r) .

Thus, we define thedegree of freshness, f , as

f = 1 − shift(tQ, r)/n(R); f ∈ [0, 1] .

Therefore, a degree of freshness close to 0 indicates that
data freshness is bad, while a degree of freshness close to
1 indicates that data freshness is excellent. In the remain-
der of this paper, we use the terms freshness and degree of
freshness interchangeably.

Update transactions may be executed in different ways.
Thedensityof an update transactionT is the average interval
of time (denoted byε) between write operations inT as it is
reflected in the history log. If, on average,ε ≥ c, wherec is

Table 2. Definition of parameters

ε Density of aTi

λt mean time interval between trans.
λq mean time interval between queries
nbmaster Number of Master nodes
|Q| Query size
|RT | Refresh transaction size
ltr Long transaction ratio
abr Abort ratio
Protocols Concurrency control protocols
tshort Prop. time of a single record
δ Net. delay to prop. a message
tp Total propagation time

a predefined system parameter, thenT is said to besparse.
Otherwise,T is said to bedense. We focus ondenseupdate
transactions, i.e., transactions with a small time interval be-
tween each two writes. In addition, we vary the transactions
arrival rate distribution (denoted byλt), which is exponen-
tial and reflected in the history log. Updates are done on the
same attribute (denoted byattr) of a different tuple. Fur-
thermore, we take into account that transactions mayabort.
Therefore, we define an abort transaction percentage (de-
noted byabr) of 0, 5%, 10%, 20% that corresponds to the
percentage of transactions that abort in an experimentation.
Furthermore, we assume that a transaction abort occurs af-
ter half of its execution. For instanceabr = 10% means that
10% of the update transactions abort after the execution of
half of its write operations.

Network delay is calculated byδ + t, whereδ is the net-
work delay introduced to propagate each message andt is
the on-wire transmission time. In general,δ is considered to
be non-significant, andt is calculated by dividing the mes-
sage size by the network bandwidth [CFLS91]. In our exper-
iments, we use a short message transmission time (denoted
by tshort), which represents the time needed to propagate
a single log record. In addition, we consider that the time
spent to transmit a sequence of log records is linearly pro-
portional to the number of log records it carries. The network
delay to propagate each message,δ, is implicity modeled by
the system overhead to read from and write to sockets. The
total propagation time(denoted bytp) is the time spent to
propagate all log records associated with a given transaction.
Thus, if n represents the size of the transaction with imme-
diate propagation, we havetp = n× (δ + tshort), while, with
deferred propagation, we havetp = (δ +n× tshort). Network
contentionoccurs whenδ increases due to the increase of
network traffic. In this situation, the delay introduced byδ
may impact the total propagation time, especially with im-
mediate propagation.

Refreshment timeis the time spent to execute anRT . Up-
date propagation timeis defined as the time delay between
the commitment ofRT at the slave and the commitment of
its correspondingT at the master. Query arrival rate distribu-
tion (denoted byλq) is exponential. Query size is supposed
to be small and thus fixed to 5.

Refresh transaction execution time is a relevant factor in
our simulation environment (see Sect. 5.1) because it may
delay by δ a queryQ execution time at timetQ. Mean-
while the degree of freshness may be increased. Therefore,
to measure freshness, we fix a 50% conflict rate for each
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Table 3. Performance model

ε mean = 100ms
λt low: (mean = 10s),

bursty: (mean = 200ms)
λq Exponential:low (mean = 15s)
|Q| 5
|RT | 5; 50
nbmaster 1 to 8
Conflict 50%
Protocols S2PL, Multiversion
tshort 20 ms and 100 ms
ltr 0; 30%; 60%; 100%
abr 0; 5%; 10%; 20%

secondary copy because it gives high chances to have con-
flicting queries and refresh transactions. This means that
each refresh transaction coming from the master node master
nodes updates 50% of the tuples read by a query. Each time
an update transaction commits, a database variable, called
version master, is incremented. Similarly, each time a re-
fresh transaction commits another database variable, called
version slave, is incremented. For each query, the degree
of freshness is computed by subtractingversion slave from
version master.

We compare the impact of using two concurrency control
protocols on query response time. One protocol is the strict
two-phase locking protocol (henceforth, S2PL), which may
increase response time when a query conflicts with a refresh
transaction. Since Oracle 7.3 does not implement S2PL, we
simulate it using Oracle’sselect-from-where statement
followed by thefor update option.

The second protocol is a multiversion protocol, which
is implemented in different ways [BHG87] by several com-
mercial database systems. The main idea of a multiversion
protocol is to increase the degree of concurrency between
transactions through a mechanism that permits the execution
of both a query and a transaction in a conflict situation. Here,
we focus on theSnapshot-Isolation-based multiversion pro-
tocol available in Oracle 7.3. In this protocol, a transaction
T executing a read operation on a data item always reads the
most recent version of that data item that has been committed
before the beginning ofT , later calledStart Timestampof T .
Therefore,T reads asnapshotof the database as at the time
it started. Updates performed by transactions that are active
after the timeStart Timestampare invisible toT . An im-
portant point is that, with aSnapshot Isolationmultiversion
protocol, queries never conflict with refresh transactions.

We define two types of update transactions. Small update
transactions have size 5 (i.e., five write operations), while
long transactions have size 50. To understand the behavior
of each strategy in the presence of short and long transac-
tions, we define four scenarios. Each scenario determines a
parameter calledlong transaction ratio(denoted byltr). We
set ltr as follows:

– scenario 1:ltr = 0 (all update transactions are short),
– scenario 2:ltr = 30 (30 % of the executed update trans-

actions are long),
– scenario 3:ltr = 60 (60 % of the executed update trans-

actions are long),
– scenario 4:ltr = 100 (all transactions are long).
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When ltr > 0, the value ofMax is calculated using
the average time spent to propagate a long transaction (50×
tshort). On the other hand, whenltr = 0, the value ofMax
is calculated using the average time spent to propagate a
short transaction (5× tshort).

Refresh transaction execution is performed on top of Or-
acle 7.3 using C/SQL. For simulation purposes, each write
operation corresponds to an UPDATE command that is sub-
mitted to the server for execution. The definition and values
of the parameters of the performance model are summarized
in Tables 2 and 3. The results are average values obtained
for the execution of 40 update transactions.

5.3 Performance evaluation

The goal of our experimentations is to understand the be-
havior of the three propagation strategies onlow andbursty
scenarios, since these workloads are typical of advanced ap-
plications. The first experiment presents our results for the
low workload and the second one for thebursty workload.
In the third experiment, we study the impact on freshness
when update transactions abort. In the fourth experiment, we
verify the freshness improvement of each strategy when the
network delay to propagate a message increases. Finally, we
discuss our results. Table 4 summarizes each experiment.
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5.3.1 Experiment 1

The goal of this experiment is to analyze the query response
times and the degree of freshness obtained for alow update
transaction arrival rate at a master node.

As despicted in Fig. 4, whenltr = 0, the degree of fresh-
ness is almost 1, i.e., replicas are almost mutually consistent
with the three strategies. The reason is that, on average,
λt ' tp, that is the time interval between the execution of a
Ti and a subsequentTi+1 is sufficiently high to enable com-
pletion ofTi’s update propagation before the commitment of
Ti+1. However, for higherltr values, we haveλt < tp for the
three strategies. Thus, duringTi’s update propagation, some
transactionsTi+1...Ti+n may be committed, thereby decreas-

Table 4. Experiments goal

Experiment Measure Vary Workload

1 Freshness & ltr Low
Response Times

2 Freshness & ltr Bursty
Response Times

3 Freshness abr Bursty

4 Freshness & Net. Delay Bursty
Response Times

ing the degree of freshness. For allltr values, the degree of
freshness obtained withdeferred-immediateand immediate-
wait are close, because the refreshment time is near equal
for these two strategies. Furthermore, the total propagation
times are also close since there is no network contention.

With immediate-immediate, refreshment time is greater
than that of other strategies because the time interval be-
tween the execution of two write operations,wj and wj+1,
of RTi is impacted bytshort, δ and ε, thereby slowing
down refreshment time. However, compared to the other two
strategies,immediate-immediateupdate propagation time is
smaller, because propagation and refreshment are done in
parallel. That is,RTi execution starts after the reception of
the first write done byTi. Therefore,immediate-immediate
is the strategy that always presents the best degree of fresh-
ness. For all strategies, the degree of freshness does not vary
linearly with ltr since we are mixing transaction sizes and
our freshness measure is based on transaction size.

With immediate-immediate, query response time may in-
crease whenever a query conflicts with a refresh transaction,
because propagation and refreshment are done in parallel.
Therefore, refreshment time is impacted by the total prop-
agation time. However, the chance of conflicts is reduced
becauseλt ' λq. That is the reason why the mean query
response times are not seriously affected whenltr = 30 (see
Fig. 5). However, withltr = 60 andltr = 100, lock-holding
times are longer due to the transaction size that increases
the number of propagated messages, causing the increase
in query response times. Figure 5 shows a situation (with
ltr = 100) where response time may be doubled compared
to immediate-wait. We only show theimmediate-waitcurve
since response times for thedeferred-immediatestrategy are
very close. When using a multiversion protocol, query re-
sponse time for the three strategies in all cases is reduced to
an average of 1.2 s.

5.3.2 Experiment 2

The goal of this experiment is to analyze the degree of fresh-
ness and the query response times obtained for the three
strategies for abursty transaction arrival rate.

As depicted in Fig. 6, whenltr = 0 (short transactions),
the degree of freshness is already impacted because on av-
erage,λt < tp. Therefore, duringTi’s update propagation,
Ti+1, Ti+2...Ti+n may be committed. It is important to note
that deferred-immediatemay give a better degree of fresh-
ness compared toimmediate-wait, in bursty workloads, be-
causeδ increases sufficiently to increase theimmediateto-
tal propagation time. Therefore, the total propagation time
of a short transaction usingdeferred propagation may be
less than the total propagation time usingimmediateprop-
agation. On the other hand, even with network contention,
immediate-immediateyields a better degree of freshness than
both deferred-immediateand immediate-wait, because re-
freshment begins after the reception of the first write.

When long update transactions are executed, the degree
of freshness decreases becausetp increases andλt << tp.
Immediate-waitbegins to improve and becomes better than
deferred-immediatewhen ltr = 30, ltr = 60 andltr = 100.
This is becauseqr is quickly filled with a large number of
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operations such that, when the Refresher readsqr, seeking
for a newRTi, it may happen that all operations associated
with RTi may have been already received and stored inqr.
In this case, the additional wait period ofimmediate-wait
may be reduced to 0. This is clearly seen whenltr = 100
(all refresh transactions have the same size). Figure 7 shows
a snapshot of the degrees of freshness for a sequence of
queriesQi, Qi+1... at times tQi

, tQi+1, ... when ltr = 100.
For simplicity, we omit the time each query occurred since
we are intrested in the behavior of the degree of fresh-
ness. The results show that the degrees of freshness ob-
tained with immediate-immediateand immediate-waitare
close to equal. On the other hand, the degree of freshness
of deferred-immediatedecreases rapidly because there is no
parallelism of tasks as with the immediate strategies. So,
when update transaction sizes increase, update propagation
times rise much more compared to the immediate strategies.
This impacts the degrees of freshness much more seriously.

Response time is clearly impacted by theimmediate-
immediatestrategy (see Fig. 8) for the same reasons as in Ex-
periment 1. The difference here is thatλt << λq, therefore,
the chances of conflicts between a query and a refresh trans-
action augment and the mean query response time increases
much more, compared to the results obtained in thelow
workload case. This is well perceived whenltr increases.
Using a multiversion protocol, query response time for the
three strategies in all cases is also reduced to an average of
1.2 s without a significant decrease of the degree of fresh-
ness.

5.3.3 Experiment 3

The goal of this experiment is to show the effects of transac-
tionabortson the degree of freshness. We consider a single
master node in a bursty workload.

As shown in Fig. 9, forltr = 0 and various values ofabr
(5, 10, 20), the decrease of freshness introduced by update
transactions that abort withimmediate-immediateis insignif-
icant. In the worst case, it achieves 0.2. This behavior is the
same for other values ofltr (30, 60, 100). The same behavior
is also observed forimmediate-wait. These results show that
the time spent to discard the reception vectors andundore-
fresh transactions at a slave node are insignificant compared

to propagation time. Therefore, for the immediate strategies,
we may safely state that freshness is not affected in case of
update transaction aborts.

With deferred-immediate, the degrees of freshness may
even increase, because no processing is initiated at the slave
node until the complete commitment and propagation of an
update transaction. Therefore, while a transaction is aborting
at the master node, the slave node may be catching up.

5.3.4 Experiment 4

The goal of this experiment is to show the impact of network
delay for message propagation on the degree of freshness and
query response times. We consider a single master node in
a bursty workload.

Figure 10 compares the freshness results obtained when
δ = 100ms and δ = 20ms (δ denotes the network de-
lay to propagate a message). Whenδ = 20 and ltr =
100 immediate-immediateimproves 1.1 times better than
deferred-immediateand whenδ = 100,immediate-immediate
improves 5 times better. The improvements ofimmediate-
wait compared todeferred-immediateare close to these two
results. Similar results are obtained whenltr = 60. In ad-
dition, in the presence of long transactions, the decrease
of freshness whenδ = 100ms is significantly higher for
immediate-waitanddeferred-immediatecompared to the re-
sults obtained whenδ = 20ms. This is because the higher
the value ofδ is, the longer it takes to propagate a refresh
transaction and in average the values oftp may be much
higher thanλt. Finally, these experiments confirm the ben-
efits of having tasks being performed in parallel when using
immediate-immediate.

Figure 11 compares the response times obtained when
δ = 100ms and δ = 20ms. Whenever the value ofδ in-
creases, the locking time in conflict situations augments be-
cause the refreshment time is proportional to propagation
time. Whenδ = 100ms, the increase of query response is
high whenltr = 30 but insignificant whenδ = 20ms.

5.4 Discussion

We now summarize and discuss the major observations of
these experiments. With low workloads, the degree of fresh-
ness for one master node is slightly impacted if update trans-
actions are dense and long. In this case,immediate-wait
and deferred-immediategive similar degrees of freshness
because their total propagation times are close.Immediate-
immediateis the strategy that gives the best degree of fresh-
ness because propagation and refreshment are done in paral-
lel. Immediate-immediateis the only strategy that may intro-
duce an increase in query response time because propagation
and refreshment are done in parallel. Therefore, in conflict
situations, the increase of query response times may depend
on tshort, ε andδ. However, the mean query response time
is not seriously affected becauseλq > λt. Therefore, the
chances of conflicts are small.

When update transactions arrive in burst, the degree
of freshness decreases much more in the presence of long
transactions. Theimmediate-immediatestrategy still yields
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Fig. 9. Bursty workload -abort effects
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the best degree of freshness, even with network contention.
When the value ofltr grows, immediate-waitgives results
close to those ofimmediate-immediate. When all transac-
tions are long,immediate-waitperforms like immediate-
immediatebecause each pending queue is quickly filled with
operations due to the immediate propagation. Thus, the ef-
fect of thewait periodof immediate-waitmay be eliminated
because the operations that compose a refresh transaction
RT may be already available inqr whenever the refresher
seeks for a new refresh transaction. Withdeferred-immediate
the degree of freshness is much more impacted, compared
to immediate-immediateandimmediate-waitbecause there is
no parallelism advantage in improving the degree of fresh-
ness.

With immediate-immediate, the mean query response
time may be seriously impacted by the parallelism of prop-
agation and refreshment. Whenλq >> λt, the chances
of conflicts increase much more compared to the case of
low workload. Query response times are much lower with
immediate-waitbecause there is no parallelism between
propagation and refreshment. Here, the network delay to
propagate each operation has an important role and the
higher its value, the higher are the query response times
in conflict situations. In any case, the use of a multiversion
protocol on the slave node may significantly reduce query
response times, without a significant decrease in the degree
of freshness.

The abort of an update transaction withimmediate-
immediateand immediate-waitdoes not impact the degree
of freshness since the delay introduced to undo a refresh
transaction or discard a reception vector, respectively, are
insignificant compared to the propagation time. Finally, the
gains obtained withimmediate-immediateand immediate-
wait are much more significant when the network delay to
propagate a single operation augments. This clearly shows
the advantages of having tasks being executed in parallel.

6 Related work

To discuss related work, we use Table 5 which summarizes
the two major lazy replication schemes and their basic pa-
rameters.

Replication scheme A corresponds to lazy replication
where all replica copies are updatable (update anywhere). In
this case, there isgroup ownershipof the replicas. The com-
mon update propagation strategy for this scheme isdeferred-
immediate. However, conflicts may occur if two or more
nodes update the same replica copy. Policies for conflict
detection and resolution [Gol95, Bob96] can be based on
timestamp ordering, node priority and other strategies. The
problem with conflict resolution is that during a certain pe-
riod of time, the database may be in an inconsistent state.
Conflicts cannot be avoided, but their detection may happen
earlier by using an immediate propagation.

Replication scheme B is the focus of our work. There
are several refreshment strategies for this replication scheme.
With on-demandrefreshment, each time a query is submitted
for execution, secondary copies that are read by the query are
refreshed by executing all the refresh transactions that have
been received. Therefore, a delay may be introduced in query

Table 5. Replication schemes

Scheme Ownership Propagation Refreshment
A Group Deferred Immediate

Immediate (Reconciliation)

B Master Deferred Immediate
Immediate On demand
Periodic Group

Periodic

response time. Whengroup refresh is used, refresh transac-
tions are executed in groups according to the application’s
freshness requirements. With theperiodicapproach, refresh-
ment is triggered at fixed intervals. At refreshment time, all
received refresh transactions are executed. Finally, withperi-
odic propagation, changes performed by update transactions
are stored in the master and propagated periodically towards
the slaves. Immediate propagation may used be with all re-
freshment strategies.

Incremental agreementis an update propagation strat-
egy [CHKS95] that has some features in common with our
proposed strategies. However, it focuses on managing net-
work failures in replicated databases and does not address the
problem of improving freshness. Refreshment is performed
using the slave log, whereas we use the local transaction
manager.

The goal of epidemic algorithms [TTP+95] is to ensure
that all replicas of a single data item converge to a single
final value in a lazy group replication scheme. Updates are
executed locally at any node. Later, nodes communicate to
exchange up-to-date information. In our approach, updates
are propagated from each primary copy towards all its sec-
ondary copies instead.

In [AA95, ABGM90], authors propose weak consistency
criteria based on time and space, e.g., a replica should be re-
freshed after a time interval of after ten updates on a primary
copy. There, the concern is not anymore on fast refreshment,
and hence these solutions are not adequate to our problem.

In [PMS99], we have formally analyzed and extended the
configurations introduced here and focused on replica con-
sistency in different lazy-master-replicated database config-
urations. For each configuration, we defined sufficient con-
ditions that must be satisfied by a refreshment algorithm in
order to be correct. We proposed a refreshment algorithm,
which we proved to be correct for a large class of acyclic
configurations. In this paper, we focus on freshness improve-
ment for 1Master-nSlaves configurations only and provide
extensive experimental results.

The timestamp message delivery protocol found in
[Gol92] implements eventual delivery for a lazy group repli-
cation scheme [GHOS96]. It uses periodic exchange of mes-
sages between pairs of servers that propagate messages to
distinct groups of master nodes. At each master node, in-
coming messages are stored in a history log (as initially
proposed in [KR87]) and later delivered to the application
in a defined order. Eventual delivery is not appropriate in
our framework, since we are interested in improving data
freshness.

The stability and convergence of replication schemes A
and B are compared in [GHOS96] through an analytical
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model. The authors show that scheme A has unstable be-
havior as the workload scales up and that using scheme B
reduces the problem. They introduce several concepts such
as lazy master and ownership, which we use. They also ex-
plore the use of mobile and base nodes. However, immediate
propagation is not considered.

Formal concepts for specifying coherency conditions for
replication scheme B in large-scale systems are introduced in
[GN95]. The authors focus on thedeferredimmediatestrat-
egy. The proposed concepts enable computing an indepen-
dent measure of relaxation, calledcoherency index. In this
context, the concept ofversionis closely related to our no-
tion of freshness.

Freshness measures are related tocoherency conditions
that are widely explored in [AA95, ABGM90] and used in
information retrieval systems to define whencached data
must be updated with respect to changes performed on the
central object.

[AKGM96] proposes several derived data refresh strate-
gies such as no-batching, on-demand, periodic and others for
derived data refreshment. Replica refreshment and derived
data refreshment are done in separate transactions. The au-
thors address freshness improvement, although they focus
on the incoherency between derived data and the secondary
copy.

Oracle 7.3 [HHB96] implementsevent-drivenreplica-
tion. Triggers on the master tables make copies of changes to
data for replication purposes, storing the required change in-
formation in tables calledqueuesthat are periodically prop-
agated. Sybase 10 replication server replicates transactions,
not tables, across nodes in the network. TheLog Trans-
fer Managerimplements log monitoring like our approach.
However, these systems do not implement immediate prop-
agation and there is no multi-queue scheme for refreshment.

7 Conclusion

In this paper, we addressed the problem of improving fresh-
ness in lazy master replication schemes. More specifically,
we dealt with update propagation from primary copy to sec-
ondary copies. We presented a framework and a functional
architecture for master and slave nodes to define update
propagation strategies. Focusing on1Master-nSlaveconfig-
urations, we proposed two new strategies calledimmediate-
immediateand immediate-wait, which improve over the de-
ferred strategy of commercial systems.

To validate our strategies, we performed a thorough per-
formance evaluation through a simulation using Oracle 7.3.
The results indicate that, for short transactions, the deferred
approach performs almost as well asimmediate-immediate
and immediate-wait. The strategies exhibit different fresh-
ness results when long transactions occur. In these cases,
our strategies show much better results and theimmediate-
immediatestrategy provides the best freshness results. For
some important kinds of workloads, freshness may be five
times better than that of the deferred strategy. On the other
hand,immediate-waitonly improves freshness when the up-
date transaction arrival rate at the master is bursty. The
downside ofimmediate-immediateis the increase of query
response time due to the transaction blocking when there

are conflicts between refresh transactions and queries. How-
ever, we argue that, using a multiversion concurrency control
protocol at the slave node, this drawback can be drastically
reduced without a significant loss of freshness.

The improvement shown by ourimmediatestrategies
should be beneficial to distributed applications with real-
time constraints. For instance, in a global on-line financial
trading application exchange rates are replicated. At each
slave node, traders will always have afresher“view of the
world” and in many cases, the improvement will help avoid-
ing wrong decisions.
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Abstract. In a lazy master replicated database, a transaction can commit after updating one replica copy (primary
copy) at some master node. After the transaction commits, the updates are propagated towards the other replicas
(secondary copies), which are updated in separate refresh transactions. A central problem is the design of algorithms
that maintain replica’s consistency while at the same time minimizing the performance degradation due to the
synchronization of refresh transactions. In this paper, we propose a simple and general refreshment algorithm that
solves this problem and we prove its correctness. The principle of the algorithm is to let refresh transactions wait
for a certain “deliver time” before being executed at a node having secondary copies. We then present two main
optimizations to this algorithm. One is based on specific properties of the topology of replica distribution across
nodes. In particular, we characterize the nodes for which the deliver time can be null. The other improves the
refreshment algorithm by using an immediate update propagation strategy.

Keywords: replicated data, distributed database, data mart, data warehouse, replica consistency, lazy replication,
refreshment algorithm, correctness criteria

1. Introduction

Lazy replication (also called asynchronous replication) is a widespread form of data repli-
cation in (relational) distributed database systems [27]. With lazy replication, a transaction
can commit after updating one replica copy.1 After the transaction commits, the updates
are propagated towards the other replicas, and these replicas are updated in separate refresh
transactions. In this paper, we focus on a specific lazy replication scheme, calledlazy
masterreplication [18] (also called Single-Master-Primary-Copy replication in [4]). There,
one replica copy is designated as theprimary copy, stored at amasternode, and update
transactions are only allowed on that replica. Updates on a primary copy are distributed
to the other replicas, calledsecondary copies. A major virtue of lazy master replication is
its ease of deployment [4, 18]. In addition, lazy master replication has gained considerable
pragmatic interest because it is the most widely used mechanism to refresh data warehouses
and data marts [8, 27].

However, lazy master replication may raise a consistency problem between replicas.
Indeed, an observer of a set of replica copies at some node at timet may see a stateI of
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these copies that can never be seen at any time, before or aftert , by another observer of
the same copies at some other node. We shall say thatI is aninconsistentstate. As a first
example, suppose that two data martsS1 andS2 both have secondary copies of two primary
copies stored at two different data source nodes.2 If the propagation of updates coming from
different transactions at the master nodes is not properly controlled, then refresh transactions
can be performed in a different order atS1 andS2, thereby introducing some inconsistencies
between replicas. These inconsistencies in turn can lead to inconsistent views that are later
almost impossible to reconciliate [20].

Let us expand the previous example into a second example. Suppose that a materialized
view V of S1, considered as a primary copy, is replicated in data martS2. Now, additional
synchronization is needed so that the updates issued by the two data source nodesand the
updates ofV issued byS1 execute in the same order for all replicas inS1 andS2.

Thus, a central problem is the design of algorithms that maintain replica’s consistency
in lazy master replicated databases, while minimizing the performance degradation due
to the synchronization of refresh transactions. Considerable attention has been given to
the maintenance of replicas’ consistency. First, many papers addressed this problem in
the context of lazy group replicated systems, which require the reconciliation of updates
coming from multiple primary copies [1, 15, 18, 30, 33]. Some papers have proposed to
use weaker consistency criterias that depend on the application semantics. For instance,
in the OSCAR system [10], each node processes the updates received from master nodes
according to a specific weak-consistency method that is associated with each secondary
copy. However, their proposition does not yield the same notion of consistency as ours.
In [2, 3, 31], authors propose some weak consistency criterias based on time and space,
e.g., a replica should be refreshed after a time interval or after 10 updates on a primary
copy. There, the concern is not anymore on fast refreshment and hence these solutions
are not adequate to our problem. In [9], the authors give conditions over the placement
of secondary and primary copies into sites under which a lazy master replicated database
can be guaranteed to be globally serializable (which corresponds to our notion of con-
sistency). However, they do not propose any refreshment algorithm for the cases that do
not match their conditions, such as our two previous examples. Finally, some synchro-
nization algorithms have been proposed and implemented in commercial systems, such as
Digital’s Reliable Transaction Router [4], where the refreshment of all secondary copies
of a primary copy is done in a distributed transaction. However, to the best of our knowl-
edge, these algorithms do not assure replica consistency in cases like our second above
example.

This paper makes three important contributions with respect to the central problem men-
tionned before. First, we analyze different types of configurations of a lazy master replicated
system. A configuration represents the topology of distribution of primary and secondary
copies accross the system nodes. It is a directed graph where a directed arc connects a
nodeN to a nodeN ′ if and only if N holds a primary copy of some secondary copy in
N ′. We formally define the notion of correct refreshment algorithm that assures database
consistency. Then, for each type of configuration, we define sufficient conditions that must
be satisfied by a refreshment algorithm in order to be correct. Our results generalize already
published results such as [9].
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As a second contribution, we propose a simple and general refreshment algorithm, which
is proved to be correct for a large class of acyclic configurations (including for instance, the
two previous examples). We show how to implement this algorithm using system compo-
nents that can be added to a regular database system. Our algorithm makes use of a reliable
multicast with a known upper bound, that preserves a global FIFO order. Our algorithm also
uses a deferred update propagation strategy, as offered by all commercial replicated database
systems. The general principle of the algorithm is to make every refresh transaction wait a
certain “deliver time” before being executed.

As a third contribution, we propose two main optimizations to this algorithm. First,
using our correctness results on configurations types, we provide a static characterization
of nodes that do not need to wait. Second, we give an optimized version of the algorithm that
uses an immediate update propagation strategy, as defined in [28]. We give a performance
evaluation based on simulation that demonstrates the value of this optimization by showing
that it significantly improves the freshness of secondary copies.

This paper is a significantly extended version of [29]. The extensions are the following.
First, we provide all the proofs of the propositions defining our correctness criterias. Second,
we extend our performance evaluation by measuring freshness and the impact of update
transactions aborts for up to 8 master nodes. Third, we expand the related work section.

The rest of this paper is structured as follows. Section 2 introduces our lazy master
replication framework, and the typology of configurations. Section 3 defines the correctness
criteria for each type of configuration. Section 4 describes our refreshment algorithm, how
to incorporate it in the system architecture of nodes, and proves its correctness. Section
5 presents our two main optimizations. Section 6 introduces our simulation environment
and presents our performance evaluation. Section 7 discusses some related work. Finally,
Section 8 concludes.

2. Lazy master replicated databases

We define a (relational) lazy replicated database system as a set ofn interconnected database
systems, henceforth callednodes. Each nodeNi hosts a relational database whose schema
consists of a set of pairwise distinct relational schemas, whose instances are called relations.
A replication scheme defines a partitioning of all relations of all nodes into partitions, called
replication sets. A replication set is a set of relations having the same schema, henceforth
calledreplica copies.3 We define a special class of replicated systems, calledlazy master,
which is our framework.

2.1. Ownership

Following [18], theownershipdefines the node capabilities for updating replica copies. In
a replication set, there is a single updatable replica copy, calledprimarycopy (denoted by a
capital letter), and all the other relations are calledsecondarycopies (denoted by lower-case
letters). We assume that a node never holds the primary copy and a secondary copy of the
same replication set. We distinguish between three kinds of nodes in a lazy master replicated
system.
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Definition 2.1(Types of nodes).

1. A nodeM is said to be amasternode iff : ∀m ∈ M m is a primary copy.
2. A nodeS is said to be aslavenode iff : ∀s ∈ S sis a secondary copy of a primary copy

of some master node.
3. A nodeMS is said to be amaster/slavenode iff: ∃msandms′ ∈ MS, such thatms is a

primary copy andms′ is a secondary copy.

Finally, we define the following slave and master dependencies between nodes. A nodeM
is said to be amaster nodeof a nodeS iff there exists a secondary copyr in Sof a primary
copy R in M . We also say thatS is aslave node of M.

2.2. Configurations

Slave dependencies define a DAG, called configuration.

Definition 2.2(Configuration). A configuration of a replicated system is defined by a
directed graph, whose nodes are the nodes of the replicated system, and there is a directed
are from a nodeN to a nodeN ′ iff N ′ is a slave node ofN. NodeN is said to be a predecessor
of N ′.

In the following, we distinguish different types of configurations. Intuitively, to each con-
figuration will correspond a correctness criterion to guarantee database consistency. In the
figures illustrating the configurations, we use integers to represent nodes in order to avoid
confusion with the names of the relations that are displayed as annotation of nodes.

Definition 2.3(1 master-per-slave configuration). An acyclic configuration in which each
node has at most one predecessor is said to be a1master-per-slaveconfiguration.

Figure 1. Examples of configurations.

This configuration, illustrated in figure 1(a), corresponds to a “data dissemination”
scheme whereby a set of primary copies of a master or master/slave node is disseminated
towards a set of nodes. It characterizes for instance the case of several data marts built over
a centralized corporate data warehouse.
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Definition 2.4(1slave-per-master configuration). An acyclic configuration in which each
node has at most one successor is said to be a1slave-per-masterconfiguration.

This configuration, illustrated in figure 1(b), corresponds to what is often called a “data
consolidation” scheme, whereby primary copies coming from different nodes are replicated
into a single node. It characterizes for instance a configuration wherein a data warehouse
node (or even, an operational data store node) holds a set of materialized views defined over
a set of relations stored by source nodes. In this context, replicating the source relations
in the data warehouse node has two main benefits. First, one can take advantage of the
replication mechanism to propagate changes from the source towards the data warehouse.
Second, it assures the self-maintainability of all materialized views in the data warehouse,
thereby avoiding the problems mentioned in [35].

Definition 2.5(bowtie configuration). An acyclic configuration in which there exist two
distinct replicasX1 and X2 and four distinct nodesM1,M2, S1 and S2 such that (i)M1

holds the primary copy ofX1 andM2 the primary copy ofX2, and (ii) bothS1 andS2 hold
secondary copies of bothX1 andX2.

Such configuration, illustrated in figure 1(c), generalizes the two previous configurations
by enabling arbitrary slave dependencies between nodes. This configuration characterizes,
for instance, the case of several data marts built over several data sources. The benefits of
a replication mechanism are the same as for a data consolidation configuration.

Definition 2.6(triangular configuration). An acyclic configuration in which there exist
three distinct nodesM , MS and S such that (i)MS is a successor ofM , and (ii) S is a
successor of bothM andMS, is said to be atriangular configuration. NodesM , MSandS
are said to form a triangle.

This configuration, illustrated in figure 2 (a), slightly generalizes the two first configurations
by enabling a master/slave node to play an added intermediate role between a master node
and a slave node. This configuration was also considered in [9].

Figure 2. Examples of configurations.
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Definition 2.7(materialized view). A primary copy of a master/slave nodeMSwhich is
defined as the result of the query over a set of secondary copies ofMSis called amaterialized
view.

Definition 2.8(view triangular configuration). A derived configuration in which all the
primary copies hold by any nodeMSof any triangle are materialized views of local secondary
copies, is said to be aview triangularconfiguration.

This configuration, illustrated in figure 2(b), characterizes, for instance, the case of two
independent data marts defined over the same data warehouse in which one of the data mart
replicates some materialized view of the other data mart. Although they overlap, the bowtie
and the view triangular configurations are incomparable (none is included into the other).

2.3. Transaction model

Thetransaction modeldefines the properties of the transactions that access the replica copies
at each node. Moreover, we assume that once a transaction is submitted for execution to
a local transaction manager at a node, all conflicts are handled by the local concurrency
control protocol, in such a way that serializability of local transactions is ensured.

We focus on three types of transactions that read or write replica copies:update trans-
actions, refresh transactionsandqueries. All these transactions access only local data.

An update transactionis a local user transaction (i.e., executing on a single node) that
updates a set of primary copies. Updates performed by an update transactionT are made
visible to other transactions only afterT ’s commitment. We denoteTR1,Rk an update trans-
actionT that updates primary copiesR1, Rk. We assume that no user transaction can update
a materialized view.

A refresh transactionassociated with an update transactionT and a nodeN, is composed
by the serial sequence of write operations performed byT on the replica copies hold by
N. We denoteRTr1,rk a refresh transaction that updates secondary copiesr1, rk. Finally, a
query transaction, notedQ, consists of a sequence of read operations on replica copies.

2.4. Propagation

The propagation parameter defines “when” the updates to a primary copy must be multicast
towards the nodes storing its secondary copies. The multicast is assumed to be reliable and
to preserve the global FIFO order [22]: the updates are received by the involved nodes in
the order they have been multicast by the node having the primary copy.

Following [28], we focus on two types of propagation:deferredandimmediate. When
using adeferredpropagation strategy, the sequence of operations of each refresh transaction
associated with an update transactionT is multicast to the appropriate nodes within a single
messageM , after the commitment ofT . When using animmediatepropagation, each
operation of a refresh transaction associated with an update transactionT is immediately
multicast inside a messagem, without waiting for the commitment ofT .
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2.5. Refreshment

Therefreshment algorithmdefines: (i) thetriggering parameteri.e., when a refresh transac-
tion is started, and (ii) theordering parameteri.e., the commit order of refresh transactions.

We consider three triggering modes:deferred, immediateandwait. The combination
of a propagation parameter and a triggering mode determines a specific update propaga-
tion strategy. With adeferred-immediatestrategy, a refresh transactionRT is submitted
for execution as soon as the corresponding messageM is received by the node. With an
immediate-immediatestrategy, a refresh transactionRT is started as soon as the first message
m corresponding to the first operation ofRT is received. Finally, with animmediate-wait
strategy, a refresh transactionRT is submitted for execution only after the last messagem
corresponding to the commitment of the update transaction associated withRT is received.

3. Correctness criteria

In this section, we first formally define the notion of a correct refreshment algorithm, which
characterizes a refreshment algorithm that does not allow inconsistent states in a lazy master
replicated system. Then for each type of configuration introduced in Section 2, we provide
criteria that must be satisfied by a refreshment algorithm in order to be correct.

We now introduce useful preliminary definitions similar to those used in [19] in order
to define the notion of a consistent replicated database state. We do not consider node
failures, which are out of the scope of this paper. As a first requirement, we impose that
any committed update on a primary copy must be eventually reflected by all its secondary
copies.

Definition 3.1(Validity). A refreshment algorithm used in a lazy master replicated system
is said valid iff any node that has a copy of a primary copy updated by a committed transaction
T is guaranteed to commit the refresh transactionRT associated withT .

Definition 3.2(Observable State). LetN be any node of a lazy master replicated system,
the observable state of nodeN at local timet is the instance of the local data that reflects
all and only those update and refresh transactions committed beforet at nodeN.

In the next definitions, we assume a global clock so that we can refer to global times in
defining the notion of consistent global database state. The global clock is used for concept
definition only. We shall also use the notationIt [N](Q) to denote the result of a query
transactionQ run at nodeN at timet .

Definition 3.3Quiescent State). A lazy master replicated database system is in a quies-
cent state at a global timet if all local update transactions submitted beforet have either
aborted or committed, and all the refresh transactions associated with the committed update
transactions have committed.

Definition 3.4Consistent Observable State). LetN be any node of a lazy master replicated
systemD. Lett be any global time at which a quiescent state ofD is reached. An observable
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state of nodeN at timetN ≤ t is said to be consistent iff for any nodeN ′ holding a non-empty
setX of replica copies hold byN and for any query transactionQ overX, there exists some
time tN ′ ≤ t such thatItN [N](Q) = ItN′ [N

′](Q).

Definition 3.5Correct Refreshment Algorithm for a nodeN). A refreshment algorithm
used in a lazy master replicated systemD, is said to be correct for a nodeN of D iff it is
valid and for any quiescent state reached at timet , any observable state ofN at timetN ≤ t
is consistent.

Definition 3.6Correct Refreshment Algorithm). A refreshment algorithm used in a lazy
master replicated systemD, is said to be correct iff it is correct for any nodeN of D.

In the following, we define correctness criteria for acyclic configurations that are sufficient
conditions on the refreshment algorithm to guarantee that it is correct.

3.1. Global FIFO ordering

For 1master-per-slave configurations, inconsistencies may arise if slaves can commit their
refresh transactions in an order different from their corresponding update transactions.
Although in 1slave-per-master configurations, every primary copy has a single associated
secondary copy, the same case of inconsistency could occur between the primary and
secondary copies. The following correctness criterion prevents this situation.

Definition 3.7Global FIFO order). LetT1 andT2 be two update transactions committed
by the same master or master/slave nodeM . If M commitsT1 beforeT2, then at every node
having a copy of a primary copy updated byT1, a refresh transaction associated withT2 can
only commit after the refresh transaction associated withT1.

Proposition 3.1. If a lazy master replicated system D has an acyclic configuration which
is neither a bowtie nor a triangular configuration, and D uses a valid refreshment algorithm
meeting the global FIFO order criterion, then this refreshment algorithm is correct.

See the proof in the Section 9.1 of the appendix. A similar result was shown in [9] using
serializability theory.

3.2. Total ordering

Global FIFO ordering is not sufficient to guarantee the correctness of refreshment for
bowtie configurations. Consider the example in figure 1(c). Two master nodes, node 1 and
node 2, store relationsR(A) andS(B), respectively. The updates performed onR by some
transactionTR: insert R(A : a), are multicast towards nodes 3 and 4. In the same way,
the updates performed onSby some transactionTS: insertS(B : b), are multicast towards
nodes 3 and 4. With the correctness criterion of Proposition 3.1, there is no ordering among
the commits of refresh transactionsRTr andRTs associated withTR andTS. Therefore, it
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might happen thatRTr commits beforeRTs at node 3 and in a reverse order at node 4. In
which case, a simple query transactionQ that computes(R− S) could return an empty
result at node 4, which is impossible at node 3. The following criterion requires thatRTr

andRTs commit in the same order at nodes 3 and 4.

Definition 3.8(Total order). LetT1 andT2 be two committed update transactions. If two
nodes commit both the associated refresh transactionsRT1 andRT2, they both commitRT1

andRT2 in the same order.

Proposition 3.2. If a lazy master replicated system D that has a bowtie configuration but
not a triangular configuration, uses a valid refreshment algorithm meeting the global FIFO
order and the total order criteria, then this refreshment algorithm is correct.

See the proof in the Section 9.2 of the appendix.

3.3. Master/slave induced ordering

We first extend the model presented in Section 2 to deal with materialized views as follows.
From now on, we shall consider that in a master/slave nodeMShaving a materialized view,
sayV(s1), any refresh transaction ofs1 is understood to encapsulate the update of some
virtual copyV̂ . The actual replica copiesV andv are then handled as if they were secondary
copies ofV̂ . Hence, we consider that the update of the virtual copyV̂ is associated with:

• at nodeMS, a refresh transaction ofV , notedRTV ,
• at any nodeShaving a secondary copyv, a refresh transaction ofV notedRTV .

With this new modeling in mind, consider the example of figure 2(b). LetV(A) be the
materialized view defined from the secondary copys1. Suppose that at the initial timeto
of the system, the instance ofV(A) is: {V(A : 8)} and the instance ofS(B) is: {S(B : 9)}.
Suppose that we have two update transactionsTs andTV̂ , running at nodes 1 and 2 respec-
tively: Ts: [deleteS(B : 9); insertS(B : 6)], andTV̂ : [if existsS(B : x) andx≤ 7 then delete
V(A : 8); insertV(A : 5)]. Finally, suppose that we have the query transactionQ over V
andS, Q: [if exists V(A : x) andS(B : Y) andy < x thenbool= true elsebool= false],
wherebool is a variable local toQ.

Now, a possible execution is the following. First,Ts commits at node 1 and its update
is multicast towards nodes 2 and 3. Then,RTs1 commits at node 2. At this point of time,
sayt1, the instance ofs1 is {s1(B : 6)}. Then the update transactionTV̂ commits, afterwards
the refresh transactionRTV commits. The instance ofV is {V(A : 5)}. Then at node 3,RTv
commits (the instances ofv ands2 are{v(A : 5)} and{s2(B : 9)}), and finally,RTs2 commits
(the instances ofv ands2 are{v(A : 5)} and{s2(B : 6)}). A quiescent state is reached at this
point of time, sayt2.

However, there exists an inconsistent observable state. Suppose thatQ executes at time
t1 on node 2. Then,Q will return a valuetrue for bool. However, for any time betweent0
andt2, the execution ofQ on node 3 will return a valuefalsefor bool, which contradicts
our definition of consistency.
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The following criterion imposes that the commit order of refresh transactions must reflect
the commit order at the master/slave node.

Definition 3.9(Master/slave induced order). IfMS is a node holding a secondary copys1

and a materialized viewV, then any nodeNi , i > 1, having secondary copiessi andvi must
commit its refresh transactionsRTsi andRTvi in the same order asRTV andRTs1 commit
atMS.

Proposition 3.3. If a lazy master replicated system D that has a view triangular configu-
ration but not a bowtie configuration, uses a valid refreshment algorithm meeting the global
FIFO order and the master/slave induced order criteria then this refreshment algorithm is
correct.

See the proof in the Section 9.3 of the appendix.
As said before, a configuration can be both a bowtie and a view triangular configuration.

In this case, the criteria for both configurations must be enforced.

Proposition 3.4. If a lazy master replicated system D having both a view triangular
configuration and a bowtie configuration, uses a valid refreshment algorithm meeting the
global FIFO order, the master/slave induced order and the total order criteria, then this
refreshment algorithm is correct.

See the proof in the Section 9.3 of the appendix.

4. Refreshment algorithm

We start this section by presenting the system architecture assumed by our algorithms. Then,
we present our refreshment algorithm that uses a deferred update propagation strategy and
prove its correctness. Finally we discuss the rationale for our algorithm.

4.1. System architecture of nodes

To maintain the autonomy of each node, we assume that four components are added to
a regular database system, that includes a transaction manager and a query processor, in
order to support a lazy master replication scheme. Figure 3 illustrates these components for
a node having both primary and secondary copies. The first component, calledReplication
Module, is itself composed of three sub-components: a Log Monitor, a Propagator and a
Receiver. The second component, calledRefresher, implements a refreshment strategy. The
third component, calledDeliverer, manages the submission of refresh transactions to the
local transaction manager. Finally, the last component, calledNetwork Interface, is used to
propagate and receive update messages (for simplicity, it is not portrayed on figure 3). We
now detail the functionality of these components.

We assume that theNetwork Interfaceprovides a global FIFO reliable multicast [22] with
a known upper bound [13]: messages multicast by a same node are received in the order
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Figure 3. Architecture of a node.

they have been multicast. We also assume that each node has a local clock. For fairness
reasons, clocks are assumed to have a bounded drift and to beε synchronized. This means
that the difference between any two correct clocks is not higher than the precisionε.

TheLog Monitoruseslog sniffing[23, 30] to extract the changes to a primary copy by
continuously reading the content of a local History Log (notedH ). We safely assume (see
Chap. 9 of [17]) that a log record contains all the information we need such as the timestamp
of a committed update transaction, and other relevant attributes that will be presented in the
next section. Each committed update transactionT has a timestamp (henceforth denoted
C), which corresponds to the real time value atT ’s commitment time. When the log monitor
finds a write operation on a primary copy, it reads the corresponding log record fromH and
writes it into a stable storage, calledInput Log, that is used by the Propagator. We do not
deal with conflicts between the write operations on the History Log and the read operations
performed by the Log Monitor.

The Receiverimplements update message reception. Messages coming from different
masters or master/slaves are received and stored into aReception Log.The receiver then
reads messages from this log and stores them in FIFOpending queues.We denoteMax,
the upper bound of the time needed to multicast a message from a node and insert it into
a pending queue at a receiving node. A nodeN has as many pending queuesq1, . . . ,qn as
masters or master/slaves nodes from whichN has a secondary copy. The contents of these
queues form the input to the Refresher.

The Propagatorimplements the propagation of update messages constructed from the
Log Monitor. Such messages are first written into theInput Log. The propagator then
continuously reads theInput Logand propagates messages through the network interface.

TheRefresherimplements the refreshment algorithm. First, it reads the contents of the
pending queues, and based on its refreshment parameters, submits refresh transactions
by inserting them into arunning queue. The running queue contains all ordered refresh
transactions not yet entirely executed.

Finally, theDeliverer submits refresh transactions to the local transaction manager. It
reads the content of the running queue in a FIFO order and submits each write operation as
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part of a refresh transaction to the local transaction manager. The local transaction manager
ensures serializability of local transactions. Moreover, it executes the operations requested
by the refresh transactions according to the submission order given by theDeliverer.

4.2. Refreshment algorithm

As described in Section 2, the refreshment algorithm has a triggering and an ordering
parameters. In this section, we present the refreshment algorithm in the case of adeferred-
immediateupdate propagation strategy (i.e., using an immediate triggering), and focus on
the ordering parameter.

The principle of the refreshment algorithm is the following. A refresh transactionRT is
committed at a slave or master/slave node (1) once all its write operations have been done,
(2) according to the order given by the timestampC of its associated update transaction,
and (3) at the earliest, at real timeC + Max+ ε, which is called the deliver time, noted
deliver time. Therefore, as clocks are assumed to beε synchronized, the effects of updates
on secondary copies follow the same chronological order in which their corresponding
primary copies were updated.

Figure 4. Deferred-immediate refreshment algorithm.

We now detail the algorithm given in figure 4. Each element of a pending queue is a
message that contains: a sequence of write operations corresponding to a refresh transaction
RT, and the timestampC of the update transaction associated withRT. Since messages
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successively multicast by a same node are received in that order by the destination nodes, in
any pending queue, messages are stored according to their multicast order (or commitment
order of their associated update transactions).

Initially, all pending queues are empty, andcurr M andnew M are empty too. Upon
arrival of a new messageM into some pending queue signaled by an event, the Refresher
assigns variablenew M with the message that has the smallestC among all messages in
the top of all pending queues. If two messages have equal timestamps, one is selected
according to the master or master/slave identification priorities. This corresponds to Step 1
of the algorithm. Then, the Refresher comparesnew M with the currently hold message
curr M. If the timestamp ofnew M is smaller than the timestamp ofcurr M, thencurr M
gets the value ofnew M. Its deliver time is then calculated, and a local reverse timer is
set with valuedeliver time – localtime. This concludes Step 2 of the algorithm. Finally,
whenever the timer expires its time, signaled by an event, the Refresher writescurr M into
the running queue and dequeues it from its pending queue. Each message of the running
queue will yield a different refresh transaction. If an update message takesMax time to
reach a pending queue, it can be processed immediately by the Refresher.

4.3. Refreshment algorithm correctness

We first show that the refreshment algorithm is valid for any acceptable configuration. A
configuration is saidacceptableiff (i) it is acyclic, and (ii) if it is a triangular configuration,
then it is a view triangular configuration.

Lemma 4.1. The Deferred-immediate refreshment algorithm is valid for any acceptable
configuration.

Lemma 4.2(Chronological order). The Deferred-immediate refreshment algorithm en-
sures for any acceptable configuration that, if T1 and T2 are any two update transactions
committed respectively at global times t1 and t2 then:
• if t2− t1>ε, the timestamps C2 for T2 and C1 for T1 meet C2 > C1.
• any node that commits both associated refresh transactions RT1 and RT2, commits them

in the order given by C1 and C2.

Lemma 4.3. The Deferred-immediate refreshment algorithm satisfies the global FIFO
order criterion for any acceptable configuration.

Lemma 4.4. The Deferred-immediate refreshment algorithm satisfies the total order cri-
terion for any acceptable configuration.

Lemma 4.5. The Deferred-immediate refreshment algorithm satisfies the master/slave
induced order criterion for any acceptable configuration.

From the previous lemmas and propositions, we have:

Theorem 4.1. The Deferred-immediate refreshment algorithm is correct for any accept-
able configuration.
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4.4. Discussion

A key aspect of our algorithm is to rely on the upper boundMaxon the transmission time of
a message by the global FIFO reliable multicast. Therefore, it is essential to have a value of
Max that is not overestimated. The computation ofMax resorts to scheduling theory (e.g.,
see [34]). It usually takes into account four kinds of parameters. First, there is the global
reliable multicast algorithm itself (see for instance [22]). Second, are the characteristics of
the messages to multicast (e.g. arrival laws, size). For instance, in [14], an estimation of
Max is given for sporadic message arrivals. Third, are the failures to be tolerated by the
multicast algorithm, and last are the services used by the multicast algorithm (e.g. medium
access protocol). It is also possible to compute an upper boundMaxi for each typei of
message to multicast. In that case, the refreshment algorithm at nodeN waits untilmaxi∈J

Maxi whereJ is the set of message types that can be received by nodeN.
Thus, an accurate estimation ofMaxdepends on an accurate knowledge of the above pa-

rameters. However, accurate values of the application dependent parameters can be obtained
in performance sensitive replicated database applications. For instance, in the case of data
warehouse applications that have strong requirements on freshness, certain characteristics
of message can be derived from the characteristics of the operational data sources (usually,
transaction processing systems). Furthermore, in a given application, the variations in the
transactional workload of the data sources can often be predicted.

In summary, the approach taken by our refreshment algorithm to enforce a total order over
an algorithm that implements a global FIFO reliable multicast trades the use of a worst case
multicast time at the benefit of reducing the number of messages exchanged on the network.
This is a well known tradeoff. This solution brings simplicity and ease of implementation.

5. Optimizations of the refreshment

In this section, we present two main optimizations for the refreshment algorithm presented
in Section 4. First, we show that for some configurations, the deliver time of a refresh
transaction needs not to include the upper bound (Max) of the network and the clock
precision (ε), thereby considerably reducing the waiting time of a refresh transaction at
a slave or master/slave node. Second, we show that without sacrificing correctness, the
principle of our refreshment algorithm can be combined with immediate update propagation
strategies, as they were presented in [28]. Performance measurements, reported in Section 6,
will demonstrate the value of this optimization.

5.1. Eliminating the deliver time

There are cases where the waiting time associated with the deliver time of a refresh trans-
action can be eliminated. For instance, consider a multinational investment bank that has
traders in several cities, including New York, London, and Tokyo. These traders update a
local database of positions (securities held and quantity), which is replicated using a lazy
master scheme (each site is a master for securities of that site) into a central site that ware-
houses the common database for all traders. The common database is necessary in order
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for risk management software to put limits on what can be traded and to support an internal
market. A trade will be the purchase of a basket of securities belonging to several sites. In
this context, a delay in the arrival of a trade notification may expose the bank to excessive
risk. Thus, the time needed to propagate updates from a local site to the common database
must be very small (e.g., below a few seconds).

This scheme is a 1slave-per-master configuration, which only requires a global FIFO
order to ensure the correctness of its refreshment algorithm (see proposition 3.1). Since,
we assume a reliable FIFO multicast network, there is no need for a refresh transaction to
wait at a slave node before being executed. More generally, given an arbitrary acceptable
configuration, the following proposition characterizes those slave nodes that can process
refresh transactions without waiting for their deliver time.

Proposition 5.1. Let N a node of a lazy master replicated system D. If for any node N′

of D, X being the set of common replicas between N and N′, we have:
• cardinal (X) ≤ 1, or
• ∀X1, X2,∈ X, the primary copies of X1 and X2 are hold by the same node, then any valid

refreshment algorithm meeting the global FIFO order criterion is correct for node N.

Figure 5 illustrates a configuration meeting Proposition 5.1 for any node of the config-
uration. For instance, let us consider node 1. The set of replicas hold by both node 1 and
node 2 is the singletonr . The set of replicas hold by both node 1 and node 3 is the setr, s,
whose primaries are hold by node 1. Node 1 holds no replica in common with another node
except node 2 and node 3. Hence node 1 meets Proposition 5.1.

Proof: We proceed by contradiction assuming that an inconsistent state ofN can be
observed. There is a timet at which a quiescent state ofD is reached. There exist a node
N ′ ∈ D, a non-empty setX of replicas hold by bothN andN ′, a timetN ≤ t and a query
transactionQ over X such that, for any timet ′N ≤ t , we haveItN [N](Q) 6= ItN′ [N

′](Q).
We distinguish two cases:

• Case 1: cardinal (X)= 1. Let X1 be the unique replica ofX andN ′′ be the node holding
the primary copy ofX1. By definition, a valid refreshment protocol ensures that any

Figure 5. An example of a configuration where global FIFO order is sufficient.
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node having a secondary copy ofX1, commits the refresh transaction associated with a
committed transaction updatingX1 at nodeN ′′. The global FIFO order criterion forces
nodesN andN ′ to commit the refresh transactions in the same order as their associated
update transactions have committed at nodeN ′′. Hence, a contradiction.
• Case 2: X contains at least two distinct replicas. In the previous case, we have shown

that any secondary copy commits refresh transactions according to the commit order
of their associated update transactions at the primary copy. It follows that the different
results obtained by a query transactionQ at nodesN andN ′ come from a misordering of
two transactions commits. LetX1 andX2 the two distinct replicas ofX such that node
N commits an update/refreshment ofX1 before an update/refreshment ofX2 and node
N ′ commits first the update/refreshment ofX2 and then the update/refreshment ofX1.
By assumption, the primary copies ofX1 andX2 are hold by the same nodeN ′′. The
global FIFO order criterion forces nodesN andN ′ to reproduce the same commit order
as nodeN ′′. Hence, a contradiction. 2

From an implementation point of view, the same refreshment algorithm runs at each
node. The behavior of the refreshment algorithm regarding the need to wait or not, is
simply conditioned by a local variable. Thus, when the configuration changes, only the
value of the variable of each node can possibly change.

5.2. Immediate propagation

We assume that the Propagator and the Receiver both implement an immediate propagation
strategy as specified in [28], and we focus here on the Refresher. Due to space limita-
tions, we only present theimmediate-immediaterefreshment algorithm. We have chosen
the immediate-immediateversion because it is the one that provides the best performance
compared withdeferred-immediate, as indicated in [28].

5.2.1. Immediate-immediate refreshment.We detail the algorithm of figure 6. Unlike
deferred-immediate refreshment, each element of a pending queue is a messagem that
carries an operationo of some refresh transaction, and a timestampC. Initially, all pending
queues are empty. Upon arrival of a new messagem in some pending queue, signaled
by an event, the Refresher reads the message and ifm does not correspond to acommit,
inserts it into the running queue. Thus, any operation carried bym other than commit can
be immediately submitted for execution to the local transaction manager. Ifm contains a
commitoperation thennewm is assigned with the commit message that has the smallest
C among all messages in the top of all pending queues. Then,newm is compared with
curr m. If newm has a smallest timestamp thancurr m, thencurr m is assigned with
newm. Afterwards, the Refresher calculates thedeliver timefor curr m, and timer is set as
in thedeferred-immediatecase. Finally, when the timer expires, the Refresher writescurr m
into the running queue, dequeues it from its pending queue, sets the timer to inactive and
re-executes Step 1.
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Figure 6. Immediate-immediate refreshment algorithm.

5.2.2. Algorithm correctness.Like the deferred-immediate refreshment algorithm, the
immediate-immediate algorithm enforces refresh transactions to commit in the order of
their associated update transactions. Thus, the proofs of correctness for any acceptable
configuration are the same for both refreshment algorithms.

6. Performance evaluation

In this section, we summarize the main performance gains obtained by animmediate-
immediaterefreshment algorithm against adeferred-immediateone. More extensive per-
formance results are reported in [28]. We use a simulation environment that reflects as much
as possible a real replication context. We focus on a bowtie configuration which requires
the use of aMax+ ε deliver time, as explained in Section 5.2. However, once we have fixed
the time spent to reliably multicast a message, we can safely run our experiments with a
single slave and several masters.

Our simulation environment is composed ofMaster, Network, Slavemodules and a
database server. The Master module implements all relevant capabilities of a master node
such as log monitoring and message propagation. The Network module implements the most
significant factors that may impact our update propagation strategies such as the delay to
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reliably multicast a message. The Slave module implements the most relevant components
of the slave node architecture such as Receiver, Refresher and Deliverer. In addition, for
performance evaluation purposes, we add the Query component in the slave module, which
implements the execution of queries that read replicated data. Since, we do not consider
node failures, the reception log is not taken into account. Finally, a database server is used
to implement refresh transactions and query execution.

Our environment is implemented on a Sun Solaris workstation using Java/JDBC as the
underlying programming language. We use sockets for inter-process communication and
Oracle 7.3 to implement refresh transaction execution and query processing. For simulation
purposes, each write operation corresponds to an UPDATE command that is submitted to
the server for execution.

6.1. Performance model

The metrics used to compare the two refreshment algorithms is given by the freshness
of secondary copies at the slave node. More formally, given a replicaX, which is either
a secondary or a primary copy, we definen(X, t) as the number of committed update
transactions onX at global timet . We assume that update transactions can have different
sizes but their occurrence is uniformly distributed over time. Using this assumption, we
define the degree of freshness of a secondary copyr at global timet as:

f (r, t) = n(r, t)/n(R, t);
Therefore, a degree of freshness close to 0 means bad data freshness while close to 1

means excellent. The mean degree of freshness ofr at a global timeT is defined as:

meanf = 1/T
∫ T

0
f (r, t) dt

Table 1. Performance parameters.

Parameters Definition Values

λt mean time interval between Trans. bursty: (mean= 200ms)

λq mean time interval between Queries low (mean= 15s)

nbmaster Number of Master nodes 1 to 8

|Q| Query Size 5

|RT| Refresh Transaction Size 5; 50

ltr Long Transaction Ratio 0; 30%; 60%; 100%

abr Abort Ratio 0; 5%; 10%; 20%

tshort Multicast Time of a single record 20 ms and 100 ms

We now present the main parameters for our experimentations summarized in Table 1.
We assume that the mean time interval between update transactions, notedλt , as reflected
by the history log of each master, is bursty. Updates are done on the same attribute (noted
attr) of a different tuple. We focus ondenseupdate transactions, i.e., transactions with a
small time interval between each two writes. We define two types of update transactions.
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Small update transactions have size 5 (i.e., 5 write operations), while long transactions have
size 50. We define four scenarios in which the proportion of long transactions, notedltr ,
is set respectively to 0, 30, 60, and 100. Thus, in a scenario whereltr = 30, 30% of the
executed update transactions are long. Finally, we define an abort transaction ratio, noted
abr, of 0, 5%, 10%, 20%, that corresponds to the percentage of transactions that abort in an
experiment. Furthermore, we assume that a transaction abort always occurs after half of its
execution. For instanceabr= 10% means that 10% of the update transactions abort after
the execution of half of their write operations.

Network delay is calculated byδ + t , whereδ is the time between the insertion of a
message in the input queue of the Network module and the multicast of the message by that
module, andt is the reliable multicast time of a message until its insertion in the pending
queue of the Refresher. Concerning the value oft used in our experiments, we have a short
message multicast time, notedtshort, which represents the time needed to reliably multicast
a single log record. In addition, we consider that the time spent to reliably multicast a
sequence of log records is linearly proportional to the number of log records it carries.
The network overhead delay,δ, takes into account the time spent in the input queue of the
Network, it is implicity modeled by the system overhead to read from and write to sockets.
TheTotal propagation time(notedtp) is the time spent to reliably multicast all log records
associated with a given transaction. Thus, ifn represents the size of the transaction with
immediate propagation, we havetp = n × (δ + tshort), while with deferred propagation,
we havetp = (δ + n × tshort). Network contention occurs whenδ increases due to the
increase of network traffic. In this situation, the delay introduced byδ may impact the total
propagation time, especially with immediate propagation. Finally, whenltr > 0, the value
of Max is calculated using the maximum time spent to reliably multicast a long transaction
(50 ∗ tshort). On the other hand, whenltr = 0, the value ofMax is calculated using the
maximum time spent to reliably multicast a short transaction (50∗ tshort).

The refresh transaction execution time is influenced by the existence of possible con-
flicting queries that read secondary copies at the slave node. Therefore, we need to model
queries. We assume that the mean time interval between queries is low, and the number of
data items read is small (fixed to 5). We fix a 50% conflict rate for each secondary copy,
which means that each refresh transaction updates 50% of the tuples of each secondary
copy that are read by a query.

To measure the mean degree of freshness, we use the following variables. Each time an up-
date transaction commits at a master, variableversionmasterfor that master, is incremented.
Similarly, each time a refresh transaction commits at the slave, variableversionslave, is
incremented. Whenever a query conflicts with a refresh transaction we measure the degree
of freshness.

6.2. Experiments

We present three experiments. The results are average values obtained from the execution of
40 update transactions. The first experiment shows the mean degree of freshness obtained for
theburstyworkload. The second experiment studies the impact on freshness when update
transactions abort. In the third experiment, we verify the freshness improvement of each
strategy when the network delay to propagate a message increases.
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Figure 7. Bursty workload—response time.

We now summarize and discuss the major observations of our experiments. As depicted in
figure 7, whenltr = 0 (short transactions), the mean degree of freshness is already impacted
because on average,λt < tp. Therefore, duringTi ’s update propagation,Ti+1, Ti+2 · · · Ti+n

may be committed. Notice that even with the increase of network contention,immediate-
immediateyields a better mean degree of freshness. With 2, 4, and 8 masters, the results
of immediate-immediateare much better than those ofdeferred-immediate, asltr increases
(see figure 8). For instance, with 4 masters withltr = 30, the mean degree of freshness is 0.62
for immediate-immediateand 0.32 fordeferred-immediate. With 6 masters andltr = 60, the
mean degree of freshness is 0.55 forimmediate-immediate, and 0.31 fordeferred-immediate.
In fact, immediate-immediatealways yields the best mean degree of freshness even with
network contention due to the parallelism of log monitoring, propagation, and refreshment.

Figure 8. Bursty workload—mean degree of freshness.
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With immediate-immediate, the mean query response time may be seriously impacted
because each time a query conflicts with a refresh transaction, it may be blocked during
a long period of time since the propagation time may be added to the refresh transac-
tion execution time. Whenλq À λt , the probability of conflicts is quite high. There,
the network delay to propagate each operation has an important role and the higher its
value, the higher are the query response times in conflict situations. However, we ver-
ified that the use of a multiversion protocol on the slave node may significantly reduces
query response times, without a significant decrease in the mean degree of
freshness.

Theabortof an update transaction withimmediate-immediatedoes not impact the mean
degree of freshness since the delay introduced to undo a refresh transaction is insignificant
compared to the propagation time. As shown in figure 9, forltr = 0 and various values of
abr (5, 10, 20), the decrease of freshness introduced by update transactions that abort with
immediate-immediateis insignificant. In the worst case, it achieves 0.2. This behavior is the
same for other values ofltr (30, 60, 100).

Figure 9. Bursty workload—AbortEffects

Finally, the improvements brought byimmediate-immediateare more significant when the
network delay to propagate a single operation augments. Figure 10 compares the freshness
results obtained whenδ= 100 ms andδ= 20 ms. For instance, whenδ= 20 andltr = 100
immediate-immediateimproves 1.1 times better thandeferred-immediateand whenδ =
100, immediate-immediateimproves 5 times better. This clearly shows the advantages of
having tasks being executed in parallel.
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Figure 10. Increase of network delay—mean degree of freshness.

7. Related work

Apart from the work cited in Section 1, the closest work to ours is in [9]. The authors
show that for any strongly acyclic configuration a refreshment algorithm which enforces a
global FIFO ordering, guarantees a global serializability property, which is similar to our
notion of correction. Their result is analogous to our Proposition 3.1. They also propose
an algorithm, which assigns, when it is possible, a site to each primary copy so that the
resulting configuration is strongly acyclic. However, no algorithm is provided to refresh
secondary copies in the cases of non strongly acyclic configurations.

In [6] the authors propose two new lazy update protocols (DAG(WT) and DAG(T)) that
ensure serializabity for acyclic configurations and imposes a much weaker requirement on
data placement than [9]. Close to our approach, the DAG(T) protocol is based on timestamp
ordering. Notice, however that there timestamp is based on logical clocks.

Much work has been devoted to the maintenance of integrity constraints in federated
or distributed databases, including the case of replicated databases [7, 11, 19, 21]. These
papers propose algorithms and protocols to prevent the violation of certain kind of integrity
constraints by local transactions. However, their techniques are not concerned with the
consistent refreshment of replicas.

Table 2. Replication schemes.

Replication
scheme Ownership Propogation Refreshment

A Group Deferred Immediate
Immediate (Reconcilation)

B Master Deferred Immediate
Immediate On Demand
Periodic Group

Periodic

Table 2 summarizes the two major lazy replication schemes and their basic parameters.
Replication scheme A corresponds to lazy replication where all replica copies are updat-

able (update anywhere). In this case, there isgroup ownershipof the replicas. The common
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update propagation strategy for this scheme isdeferred-immediate.However,conflictsmay
occur if two or more nodes update the same replica copy. Policies for conflict detection and
resolution [16, 5] can be based on timestamp ordering, node priority and other strategies.
The problem with conflict resolution is that during a certain period of time, the database
may be in an inconsistent state.

For instance, in [30], the authors describe a lazy group replication scheme in which the
update propagation protocol applies updates to replicated data in their arrival order, possi-
bly restoring inconsistencies when arrivals violate the timestamp ordering of transactions.
Notice that conflicts cannot be avoided but their detection may happen earlier by using an
immediate propagation.

The timestamp message delivery protocol in [15] implements eventual delivery for a
lazy group replication scheme [18]. It uses periodic exchange of messages between pairs
of servers that propagate messages to distinct groups of master nodes. At each master
node incoming messages are stored in a history log (as initially proposed in [23]) and later
delivered to the application in a defined order. Eventual delivery is not appropriate in our
framework since we are interested in improving data freshness.

Replication scheme B is the focus of our work. There are several refreshment strategies
for this replication scheme. Withon demandrefreshment, each time a query is submitted
for execution, secondary copies that are read by the query are refreshed by executing all the
refresh transactions that have been received. Therefore, a delay may be introduced in query
response time. Whengroup refresh is used, refresh transactions are executed in groups
according to the application’s freshness requirements. With theperiodicapproach, refresh-
ment is triggered at fixed intervals. At refreshment time, all received refresh transactions are
executed. Finally, withperiodic propagation, changes performed by update transactions are
stored in the master and propagated periodically towards the slaves. Immediate propagation
may be used with all refreshment strategies.

The stability and convergence of replication schemes A and B are compared in [18]
through an analytical model. The authors show that scheme A has unstable behavior as the
workload scales up and that using scheme B reduces the problem. They introduce several
concepts such as lazy master and ownership which we use. They also explore the use of
mobility.

The goal of epidemic algorithms [33] is to ensure that all replicas of a single data
item converge to the same value in a lazy group replication scheme. Updates are exe-
cuted locally at any node. Later, nodes communicate to exchange up-to-date information.
In our approach, updates are propagated from each primary copy towards its secondary
copies.

Formal concepts for specifying coherency conditions in a replicated distributed database
have been introduced in [12]. The authors focus on adeferred-immediateupdate propagation
strategy and propose concepts for computing a measure of relaxation.4 Their concept of
versionis closely related to our notion of freshness.

Oracle 7.3 [24] implementsevent-drivenreplication. Triggers on the master tables make
copies of changes to data for replication purposes, storing the required change information in
tables calledqueuesthat are periodically propagated. Sybase 10 replication server replicates
transactions, not tables, across nodes in the network. TheLog Transfer Managerimplements
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log monitoring like our approach. However, these systems do not implement immediate
propagation and there is no multi-queue scheme for refreshment.

8. Conclusion

In a lazy master replicated system, a transaction can commit after updating one replica
copy (primary copy) at some node. The updates are propagated towards the other replicas
(secondary copies), and these replicas are refreshed in separate refresh transactions.

We proposed refreshment algorithms which address the central problem of maintaining
replicas’ consistency. An observer of a set of replicas at some node never observes a state
which is never seen by another oberver of the same set of replicas at another node.

This paper has three major contributions. Our first contribution is a formal definition of (i)
the notion of correct refreshment algorithm and (ii) correctness criteria for any acceptable
configuration.

Our second contribution is an algorithm meeting these correctness criteria for any ac-
ceptable configuration. This algorithm can be easily implemented over an existing database
system. It is based on a deferred update propagation, and it delays the execution of a refresh
transaction until its deliver time.

Our third contribution concerns optimizations of the refreshment algorithm in order to
improve the data freshness. With the first optimization, we characterized the nodes that
do not need to wait. The second optimization usesimmediate-immediateupdate propaga-
tion strategy. This strategy allows parallelism between the propagation of updates and the
execution of the associated refresh transactions.

Finally, our performance evaluation shows that theimmediate-immediatestrategy always
yields the best mean degree of freshness for a bursty workload.

9. Appendix

In this appendix, we detail the proofs of the four propositions given respectively in
Sections 3.1, 3.2 and 3.3. These propositions define correctness criteria of a refreshment
algorithm for different acyclic configurations. Section 9.1 deals with an acyclic configura-
tion which is neither a bowtie nor a triangular configuration. Section 9.2 deals with a bowtie
configuration which is not a triangular one. Finally, Section 9.3 deals with a view triangular
configuration.

9.1. Correctness criterion for an acyclic configuration which is neither a bowtie nor a
triangular configuration

As said in Section 3.1, the correctness criterion for an acyclic configuration which is neither
a bowtie nor a triangular configuration, is the following one:

Proposition 3.1. If a lazy master replicated system D has an acyclic configuration which
is neither a bowtie nor a triangular configuration and D uses a valid refreshment algorithm
meeting the global FIFO order criterion, then this refreshment algorithm is correct.
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To prove this proposition, we proceed by step. We first establish three preliminary lemmas.
The first one deals with each replica copy taken individually. The second one shows that
if the correctness criterion is violated, then necessarily there are two replicas such their
updates have been committed in a different order by two nodes. The last lemma enounces
all the possible cases for two replicas shared by two nodes. Finally, we prove the proposition.

We now enounce the first lemma. We consider each replica copy individually and show
that at each replica copy, updates are committed in the order they have been committed at
the primary copy.

Lemma 9.1. In a lazy master replicated system D, using a valid refreshment protocol
meeting the global FIFO order criterion, let t be any global time at which a quiescent state
of D is reached. For any node N, for any replica copy X hold by N, for any node N′ holding
X, for any query transaction Q over the only replica copy X, for any time tN ≤ t, there
exists a time tN ′ ≤ t such that ItN [N](Q) = ItN′ [N

′](Q).

Proof: We proceed by contradiction. We assume that there is a timetN ≤ t such that for
any timetN ′ ≤ t we have:ItN [N](Q) 6= ItN′ [N

′](Q). We distinguish two cases:

• either N holds the primary copy ofX. Hence the query overX at nodeN reflects all
the update transactions committed beforetN . According to the validity property, all the
associated refresh transactions will be committed at nodes having a secondary copy ofX.
Moreover the global FIFO order criterion forces the refresh transactions to be committed
in the order of their associated update transactions. Hence a contradiction.
• or N holds a secondary copy ofX. If N ′ holds the primary copy ofX, by analogy with

the previous case, we obtain a contradiction. If nowN ′ holds a secondary copy ofX,
then by the validity property and by the global FIFO order criterion, all the nodes having
a secondary copy ofX must reflect all the updates transactions committed beforetN and
in the order they have been committed on the primary copy ofX. Hence a contradiction.

2

We now show that if a query transaction over a common setX of replicas gives different
results at two nodesN andN ′, then there exist two replicasX1 andX2 in X such that their
updates have been committed in a different order by nodesN andN ′.

Lemma 9.2. In a lazy master replicated system D, using a valid refreshment protocol
meeting the global FIFO order criterion, let t be any global time at which a quiescent
state of D is reached. If there are nodes N and N′, a non-empty set X of replica copies
hold by N and N′, a query transaction Q over X, a time tN ≤ t such that for any time
tN ′ ≤ ItN [N](Q) 6= ItN′ [N

′](Q), then there are two distinct replicas X1 and X2 in X such
that their updates/refreshes have been committed in a different order by nodes N and N′.

Proof: We assume that there are nodesN and N ′, a non-empty setX of replica copies
hold by N and N ′, a query transactionQ over X, a time tN ≤ t such that for any time
tN ′ ≤ t ItN [N](Q) 6= ItN′ [N

′](Q). From lemma 9.1, this is impossible if the cardinal ofX is
one. Hence we assume thatX contains at least two distinct replicas. If the results ofQ overX
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differ at nodesN andN ′, it means that the transactions having updated/refreshed the replicas
in X have committed in a different order at nodesN andN ′. Hence there are two distinct
replicasX1 andX2 in X, with X1 6= X2, such that nodeN commits an update/refresh of
X1 before an update/refresh ofX2, and nodeN ′ commits an update/refresh ofX2 before
an update/refresh ofX1. Hence the lemma. 2

We now consider all the possible cases for two nodes of an acyclic configuration, holding
both at least two replica copies.

Lemma 9.3. In an acyclic configuration of a lazy master replicated system D, for any
two distinct nodes N and N′ holding both two distinct replica copies X1 and X2, the only
possible cases are:
1. either N has the primary copies of both X1 and X2; N ′ is a slave of N;
2. or N ′ has the primary copies of both X1 and X2; N is a slave of N′;
3. or both N and N′ have secondary copies of both X1 and X2.
4. or N has the primary copy of X1 and a secondary copy of X2; N ′ has secondary copies

of both X1 and X2.
5. or N ′ has the primary copy of X1 and a secondary copy of X2; N has secondary copies

of both X1 and X2.
6. or N has the primary copy of X2 and a secondary copy of X1; N ′ has secondary copies

of both X1 and X2.
7. or N ′ has the primary copy of X2 and a secondary copy of X1; N has secondary copies

of both X1 and X2.

Proof: We consider all the possible cases for two distinct nodesN andN ′ holding both a
replica copy ofX1 and a replica copy ofX2 with X1 6= X2. We have 16 possible cases for
the attribution of the primary/secondary copy ofX1 andX2 to N andN ′. Each case can be
coded with four bits with the following meaning:

• the first bit is one ifN holds the primary copy ofX1 and zero otherwise;
• the second bit is one ifN holds the primary copy ofX2 and zero otherwise;
• the third bit is one ifN ′ holds the primary copy ofX1 and zero otherwise;
• the fourth bit is one ifN ′ holds the primary copy ofX2 and zero otherwise;

Among them, seven are impossible, because for any replica, only one node holds the
primary copy. Hence, the impossible cases are 1010, 1110, 1011, 1111, 0101, 0111, 1101.

We now prove that the cases 1001 and 0110 are impossible. Let us consider the case
1001 whereN holds the primary copy ofX1 andN ′ holds the primary copy ofX2. We
then haveN is a slave ofN ′ (because ofX2) andN ′ is a slave ofN (because ofX1). The
configuration is then cyclic: a contradiction with our assumption. By analogy, the case 0110
is impossible.

Hence there are 16− 7− 2= 7 only possible cases, which are given in the lemma.2

We can now prove the proposition given at the beginning of Section 9.1.
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Proof of Proposition 3.1: We proceed by contradiction. There exist a nodeN and a
nodeN ′ with N 6= N ′ such thatX the set of replica hold by bothN andN ′ is non empty,
there exist a query transactionQ over X and a timetN ≤ t such that∀t ′N ≤ t, we have
ItN [N](Q) 6= ItN′ [N

′](Q). From Lemma 9.2, there exist two distinct replicasX1 andX2
in X such that their updates have been committed in a different order by nodesN andN ′.

We will now consider all the cases given by Lemma 9.3.

1. eitherN has the primary copies of bothX1 andX2; N ′ is a slave ofN; The global
FIFO order criterion enforcesN ′ to commit the refresh transactions in the order their
associated update transactions have been committed byN. Hence a contradiction.

2. or N ′ has the primary copies of bothX1 and X2; N is a slave ofN ′; This is the
symmetrical case of the previous one. We then obtain a contradiction.

3. or bothN and N ′ have secondary copies of bothX1 andX2. Notice that this case is
impossible in a 1slave-per-master configuration (bothN andN ′ would be slave of the
node holding the primary copy of X1). LetN1 be the node holding the primary copy of
X1. Let N2 be the node holding the primary copy ofX2. Since the configuration is not
a bowtie configuration, we necessarily haveN1= N2. The global FIFO order criterion
enforces bothN andN ′ to commit the refresh transactions in the order their associated
update transactions have been committed byN1= N2. Hence a contradiction.

4. or N has the primary copy ofX1 and a secondary copy ofX2; N ′ has secondary copies
of both X1 andX2. There exists a nodeN2 holding the primary copy ofX2 such that
N andN ′ are slaves ofN2 andN ′ is slave ofN. This case and all the following ones
would lead to a triangular configuration. Hence, a contradiction. 2

9.2. Correctness criterion for an acyclic configuration which is a bowtie configuration
but not a triangular one

As said in Section 3.2, the correctness criterion for an acyclic configuration which is a
bowtie configuration but not a triangular one, is the following one:

Proposition 3.2. If a lazy master replicated system D that has a bowtie configuration but
not a triangular configuration, uses a valid refreshment algorithm meeting the global FIFO
order and the total order criteria, then this refreshment algorithm is correct.

Proof of Proposition 3.2: We proceed by contradiction. There exist a nodeN and a
node N ′ with N 6= N ′ such thatX the set of replica hold by bothN and N ′ is non
empty, there exist a query programP over X and a timetN ≤ t such that∀t ′N ≤ t, we have
ItN [N](P) 6= ItN′ [N

′](P). From Lemma 9.2, there exist two distinct replicasX1 andX2 in
X such that their updates have been committed in a different order by nodesN andN ′.

We will now consider all the cases given by Lemma 9.3.

1. eitherN has the primary copies of bothX1 andX2; N ′ is a slave ofN; The global
FIFO order criterion enforcesN ′ to commit the refresh transactions in the order their
associated update transactions have been committed byN. Hence a contradiction.

2. or N ′ has the primary copies of bothX1 and X2; N is a slave ofN ′; This is the
symmetrical case of the previous one. We then obtain a contradiction.
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3. or bothN andN ′ have secondary copies of bothX1 andX2. LetN1 be the node holding
the primary copy ofX1. Let N2 be the node holding the primary copy ofX2. The total
order criterion enforces bothN and N ′ to commit the refresh transactions onX1 and
X2 in the same order. Hence, a contradiction.

4. or N has the primary copy ofX1 and a secondary copy ofX2; N ′ has secondary copies
of both X1 andX2. There exists a nodeN2 holding the primary copy ofX2 such that
N andN ′ are slaves ofN2 andN ′ is slave ofN. This case and all the following ones
would lead to a triangular configuration. Hence, a contradiction. 2

9.3. Correctness criterion for an acyclic configuration which is a view triangular one

As said in Section 3.3, the correctness criterion for an acyclic configuration which is a view
triangular one but not a bowtie configuration, is the following one:

Proposition 3.3. If a lazy master replicated system D that has a view triangular configu-
ration but not a bowtie configuration, uses a valid refreshment algorithm meeting the global
FIFO order and the master/slave induced order criteria, then this refreshment algorithm
is correct.

Proof of Proposition 3.3: We proceed by contradiction. There exist a nodeN and
a nodeN ′ with N= N ′ such thatX the set of replica hold by bothN and N ′ is non
empty, there exist a query programP over X and a timetN ≤ t such that∀t ′N ≤ t, we have
ItN [N](P) 6= ItN′ [N

′](P). From Lemma 9.2, there exist two distinct replicasX1 andX2 in
X such that their updates have been committed in a different order by nodesN andN ′.

We will now consider all the cases given by Lemma 9.3.

1. eitherN has the primary copies of bothX1 and X2; N ′ is a slave ofN; The global
FIFO order criterion enforcesN ′ to commit the refresh transactions in the order their
associated update transactions have been committed byN. Hence a contradiction.

2. or N ′ has the primary copies of bothX1 and X2; N is a slave ofN ′; This is the
symmetrical case of the previous one. We then obtain a contradiction.

3. or bothN andN ′ have secondary copies of bothX1 andX2. LetN1 be the node holding
the primary copy ofX1. Let N2 be the node holding the primary copy ofX2. Since the
configuration is not a bowtie configuration, we necessarily haveN1= N2. The global
FIFO order criterion forces bothN andN ′ to commit the refresh transactions onX1 and
X2 in the order their associated update transactions have been committed byN1= N2.
Hence, a contradiction.

4. or N has the primary copy ofX1 and a secondary copy ofX2; N ′ has secondary copies
of bothX1 andX2. There exists a nodeN2 holding the primary copy ofX2 such thatN
andN ′ are slaves ofN2 andN ′ is slave ofN. As the configuration is a view triangular
one,X1 is a materialized view from local secondary copies. The master/slave induced
order criterion enforces nodesN andN ′ to commit the refresh transactions ofX1 and
X2 in the same order. Hence, a contradiction. 2
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If now, the lazy master replicated system has both a view triangular configuration and a
bowtie configuration, then the correctness criterion becomes:

Proposition 3.4. If a lazy master replicated system D having both a view triangular
configuration and a bowtie configuration, uses a valid refreshment algorithm meeting the
global FIFO order, the master/slave induced order and the total order criteria then this
refreshment algorithm is correct.

Proof of Proposition 3.4: We proceed by contradiction. There exist a nodeN and
a nodeN ′ with N 6= N ′ such thatX the set of replica hold by bothN and N ′ is non
empty, there exist a query programP over X and a timetN ≤ t such that∀t ′N ≤ t, we have
ItN [N](Q) 6= ItN′ [N

′](P). From Lemma 9.2, there exist two distinct replicasX1 andX2 in
X such that their updates have been committed in a different order by nodesN andN ′.

We will now consider all the cases given by Lemma 9.3.

1. eitherN has the primary copies of bothX1 andX2; N ′ is a slave ofN; The global FIFO
order criterion forcesN ′ to commit the refresh transactions in the order their associated
update transactions have been committed byN. Hence a contradiction.

2. or N ′ has the primary copies of bothX1 and X2; N is a slave ofN ′; This is the
symmetrical case of the previous one. We then obtain a contradiction.

3. or bothN andN ′ have secondary copies of bothX1 andX2. LetN1 be the node holding
the primary copy ofX1. Let N2 be the node holding the primary copy ofX2. The total
order criterion forces bothN andN ′ to commit the refresh transactions onX1 andX2
in the same order. Hence, a contradiction.

4. or N has the primary copy of X1 and a secondary copy ofX2; N ′ has secondary copies
of bothX1 andX2. There exists a nodeN2 holding the primary copy ofX2 such thatN
andN ′ are slaves ofN2 andN ′ is slave ofN. As the configuration is a view triangular
one,X1 is a materialized view from local secondary copies. The master/slave induced
order criterion enforces nodesN andN ′ to commit the refresh transactions ofX1 and
X2 in the same order. Hence, a contradiction.

5. this case and all the following ones are symmetrical to the previous one. 2

Notes

1. From now on, we suppose that replicas are relations.
2. This frequent situation typically arises when no corporate data warehouse has been set up between data sources

and data marts. Quite often, each data mart, no matter how focused, ends up with views of the business that
overlap and conflict with views held by other data marts (e.g., sales and inventory data marts). Hence, the same
relations can be replicated in both data marts [20].

3. A replication set can be reduced to a singleton if there exists a single copy of a relation in the replicated system.
4. calledcoherency index.
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Abstract. In a database cluster, preventive replication can provide strong consistency without the limitations
of synchronous replication. In this paper, we present a full solution for preventive replication that supports
multi-master and partial configurations, where databases are partially replicated at different nodes. To increase
transaction throughput, we propose an optimization that eliminates delay at the expense of a few transaction aborts
and we introduce concurrent replica refreshment. We describe large-scale experimentation of our algorithm based
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1. Introduction

High-performance and high-availability of database management have been traditionally
achieved with parallel database systems [23], implemented on tightly-coupled multipro-
cessors. Parallel data processing is then obtained by partitioning and replicating the data
across the multiprocessor nodes in order to divide processing. Although quite effective, this
solution requires the database system to have full control over the data and is expensive in
terms of software and hardware.

Clusters of PC servers now provide a cost-effective alternative to tightly-coupled multi-
processors. They have been used successfully by, for example, Web search engines using
high-volume server farms (e.g., Google). However, search engines are typically read-
intensive, which makes it easier to exploit parallelism. Cluster systems can make new
businesses such as Application Service Providers (ASP) economically viable. In the ASP
model, customers’ applications and databases (including data and DBMS) are hosted at

∗Work partially funded by the MDP2P project of the ACI “Masses de Donniées” of the French Ministry of
Research.
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the provider site and need be available, typically through the Internet, as efficiently as if
they were local to the customer site. Notice that due to autonomy, it is possible that the
DBMS at each node are heterogeneous. To improve performance, applications and data can
be replicated at different nodes so that users can be served by any of the nodes depending
on the current load [1]. This arrangement also provides high-availability since, in the event
of a node failure, other nodes can still do the work. However, managing data replication
in the ASP context is far more difficult than in Web search engines since applications can
be update-intensive and both applications and databases must remain autonomous. The
solution of using a parallel DBMS is not appropriate as it is expensive, requires heavy
migration to the parallel DBMS and hurts database autonomy.

In this paper, we consider a database cluster with similar nodes, each having one or
more processors, main memory (RAM) and disk. Similar to multiprocessors, various
cluster system architectures are possible: shared-disk, shared-cache and shared-nothing
[23]. Shared-disk and shared-cache require a special interconnect that provide a shared
space to all nodes with provision for cache coherence using either hardware or software.
Shared-nothing (or distributed memory) is the only architecture that supports our autonomy
requirements without the additional cost of a special interconnect. Furthermore, shared-
nothing can scale up to very large configurations. Thus, we strive to exploit a shared-nothing
architecture.

The major problem of data replication is to manage the consistency of the replicas in the
presence of updates [6]. The basic solution in distributed systems that enforces strong replica
consistency1 is synchronous (or eager) replication (typically using the Read-One-Write
All—ROWA protocol [11]). Whenever a transaction updates a replica, all other replicas
are updated inside the same distributed transaction. Therefore, the mutual consistency of
the replicas is enforced. However, synchronous replication is not appropriate for a database
cluster for two main reasons. First, all the nodes would have to homogeneously implement
the ROWA protocol inside their local transaction manager, thus violating DBMS autonomy.
Second, the atomic commitment of the distributed transaction should rely on the two-phase
commit (2PC) protocol [11] which is known to be blocking (i.e. does not deal well with
nodes’ failures) and has poor scale up.

A better solution that scales up is lazy replication [14], where a transaction can commit
after updating a replica, called primary copy, at some node, called master node. After the
transaction commits, the other replicas, called secondary copies, are updated in separate
refresh transactions at slave nodes. Lazy replication allows for different replication con-
figurations [12]. A useful configuration is lazy master where there is only one primary
copy. Although it relaxes the property of mutual consistency, strong consistency is assured.
However, it hurts availability since the failure of the master node prevents the replica to
be updated. A more general configuration is (lazy) multi-master where the same primary
copy, called a multi-owner copy, may be stored at and updated by different master nodes,
called multi-owner nodes. The advantage of multi-master is high-availability and high-
performance since replicas can be updated in parallel at different nodes. However, conflict-
ing updates of the same primary copy at different nodes can introduce replica incoherence.

Preventive replication [13] is an asynchronous solution that enforces strong consistency.
Instead of using atomic broadcast, as in synchronous group-based replication [9], preventive
replication uses First-In First-Out (FIFO) reliable multicast which is a weaker constraint.
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It works as follows. Each incoming transaction is submitted, via a load balancer, to the
best node of the cluster. Each transaction T is associated with a chronological timestamp
value C, and is multicast to all other nodes where there is a replica. At each node, a delay
time d is introduced before starting the execution of T. This delay corresponds to the upper
bound of the time needed to multicast a message. When the delay expires, all transactions
that may have committed before C are guaranteed to be received and executed before T,
following the timestamp chronological order (i.e. total order). Hence, this approach prevents
conflicts and enforces consistency. Its implementation over a cluster of 8 nodes showed
good performance [13].

However, the original proposal has two main limitations. First, it assumes that databases
are fully replicated across all cluster nodes and thus propagates each transaction to each
cluster node. This makes it unsuitable for supporting large databases and heavy workloads
on large cluster configurations. Second, it has performance limitations since transactions
are performed one after the other, and must endure waiting delays before starting. Thus,
refreshment is a potential bottleneck, in particular, in the case of bursty workloads where
the arrival rates of transactions are high at times. This paper addresses these important
limitations. It is based on the solution initially proposed in [4] with significant extensions
regarding replication configurations, concurrency management, proofs of algorithms and
performance evaluation.

In this paper, we provide support for partial replication, where databases are partially
replicated at different nodes. Unlike full replication, partial replication can increase access
locality and reduce the number of messages for propagating updates to replicas. To increase
transaction throughput, we propose a refreshment algorithm that potentially eliminates the
delay time, and we introduce concurrent replica refreshment. We describe the implemen-
tation of our algorithm in our RepDB∗ prototype [19] over a cluster of 64 nodes running
the PostgreSQL DBMS. Our experimental results using the TPC-C Benchmark show that
it yields excellent scale-up and speed-up.

The rest of the paper is organized as follows. Section 2 introduces the global architec-
ture for processing user requests against applications into the cluster system. Section 3
defines the basic concepts for fully and partial replication. Section 4 describes preventive
refreshment for partially replication, including the algorithm and architecture. Section 5
proposes some important optimizations to the refreshment algorithm that improves trans-
action throughput. Section 6 describes our validation and experimental results. Section 7
discusses related work. Section 8 concludes.

2. Database cluster architecture

In this section, we introduce the architecture for processing user requests against appli-
cations into the cluster system and discuss our general solutions for placing applications,
submitting transactions and managing replicas. Therefore, the replication layer is identified
together with all other general components.

In this paper, we exploit a shared-nothing architecture. This is the only architecture
that allows sufficient node autonomy without the additional cost of special interconnects.
In our shared-nothing architecture, each cluster node is composed of five layers (see
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Figure 1. Peer-to-peer cluster architecture.

figure 1): Request Router, Application Manager, Transaction Load Balancer and Replication
Manager. A user request may be a query or update transaction on a specific application.
The general processing of a user request is as follows.

When a user request arrives at the cluster, traditionally through an access node, it is sent
randomly to a cluster node i. There is no significant data processing at the access node,
avoiding bottlenecks. Within that cluster node, the user is authenticated and authorized
through the Request Router, available at each node, using a multi-threaded global user
directory service. Notice that user requests are managed completely asynchronously. Next,
if a request is accepted, then the Request Router chooses a node j, to submit the request. The
choice of node j involves selecting all nodes in which the required application is available,
and, among these nodes, the node with the lightest load. Therefore, eventually i may be
equal to j. The Request Router then routes the user request to an application node using a
traditional load balancing algorithm.

Notice, however, that the database accessed by the user request may be placed at another
node k since applications and databases are both replicated and not every node hosts a
database system. In this case, the choice regarding node k will depend on the cluster
configuration and the database load at each node.

A node load is computed by a current load monitor available at each node. For each node,
the load monitor periodically computes application and transaction loads using traditional
load balancing strategies. For each type of load, it establishes a load grade and multicasts
the grades to all the other nodes. A high grade corresponds to a high load. Therefore, the
Request Router chooses the best node for a specific request using the node grades (light
node is better as discussed below).

The Application Manager is the layer that manages application instantiation and execu-
tion using an application server provider. Within an application, each time a transaction is
to be executed, the Transaction Load Balancer layer is invoked which triggers transaction
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execution at the best node, using the load grades available at each node. The “best” node
is defined as the one with lighter transaction load. The Transaction Load Balancer ensures
that each transaction execution obeys the ACID (atomicity, consistency, isolation, durabil-
ity) properties [14], and then signals to the Application Manager to commit or abort the
transaction.

The Replication Manager layer manages access to replicated data and assures strong
consistency in such a way that transactions that update replicated data are executed in the
same serial order at each node. We employ data replication because it provides database
access parallelism for applications. Our preventive replication approach avoids conflicts at
the expense of a forced waiting time for transactions, which is negligible due to the fast
cluster network system.

3. Replication model

In this section, we define all the terms and concepts of lazy replication for fully and
partially replicated databases necessary to understand our solutions. Then, we present the
consistency criteria for the three types of configurations: Lazy-Master, Multi-master and
Partially replicated.

3.1. Configurations

We assume that a replica is an entire relational table. Given a table R, we may have three
kinds of copies: primary, secondary and multi-master. A primary copy, denoted by R, is
stored at a master node where it can be updated while a secondary copy, denoted by ri, is
stored at one or more slave nodes i in read-only mode. A multi-master copy, denoted by
Ri, is a primary copy that may be stored at several multi-master nodes i. Figure 2 shows
various replication configurations, using two tables R and S.

Figure 2(a) shows a bowtie (lazy master) configuration where there are only primary
copies and secondary copies. This configuration is useful to speed-up the response times
of read-only queries through the slave nodes, which do not manage the update transaction
load. However, availability is limited since, in the case of a master node failure, its primary
copies can no longer be updated.

Figure 2. Replication configurations.
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Figure 2(b) shows a fully replicated configuration. In this configuration, all nodes manage
the update transaction load because whenever R or S is updated at one node, all other copies
need be updated asynchronously at the other nodes. Thus, only the read-only query loads
are different at each node. Since all the nodes perform all the transactions, load balancing
is easy because all the nodes have the same load (when the specification of the nodes is
homogeneous) and availability is high because any node can replace any other node in case
of failure.

Figures 2(c) and (d) illustrate partially replicated configurations where all kinds of copies
may be stored at any node. For instance, in figure 2(c), node N1 carries the multi-master
copy R1 and the primary copy S, node N2 carries the multi-master copy R2 and the secondary
copy s1, node N3 carries the multi-master copy R3, and node N4 carries the secondary copy
s2. Compared with full replication, only some of the nodes are affected by the updates
on a multi-master copy (only those that hold common multi-master copies). Therefore,
transactions do not have to be multicast to all the nodes. Thus, the nodes and the network
are less loaded and the overhead for refreshing replicas is significantly reduced.

With partial replication a transaction T may be composed of a sequence of read and
write operations followed by a commit (as produced by the SQL statement in figure 3) that
updates multi-master copies. This is more general than in [13] where only write operations
are considered. We define a refresh transaction as the sequence of write operations of
a transaction, as written in the Log History. In addition, a refreshment algorithm is the
algorithm that manages, asynchronously, the updates on a set of multi-master and secondary
copies once one of the multi-master (or primary) copies is updated by T for a given
configuration.

Given a transaction T received in the database cluster, there is an origin node chosen by
the load balancer that triggers refreshment, and a set of target nodes that carries replicas
involved with T. For simplicity, the origin node is also considered a target node. For instance,
in figure 2(b) whenever node N1 receives a transaction that updates R1, then N1 is the origin
node and N1, N2, N3 and N4 are the target nodes. In figure 2(c), whenever N3 receives a
transaction that updates R3, then the origin node is N3 and the target nodes are N1, N2 and N3.

To refresh multi-master copies in the case of full replication, it is sufficient to multicast
the incoming transactions to all target nodes. But in the case of partial replication, even
if a transaction is multicast towards all nodes, it may happen that the nodes are not be
able to execute it because they do not hold all the replicas necessary to execute T locally.
For instance, figure 2(c) allows an incoming transaction at node N1, such as the one in
figure 3 to read s1 in order to update R1. This transaction can be entirely executed at N1 (to
update R1) and N2 (to update R2). However it cannot be executed at node N3 (to update R3)

Figure 3. Incoming transaction at node N1.
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because N3 does not hold a copy of S. Thus, refreshing multi-master copies in the case of
partial replication needs to take into account replica placement.

3.2. Consistency criteria

Informally a correct refreshment algorithm guarantees that any two nodes holding a
common set of replicas, R1, R2, . . . , Rn, must always produce the same sequence of
updates on R1, R2, . . . , Rn. For each configuration and its sub-configurations, we provide
a criterion that must be satisfied by the refreshment algorithm in order to be correct. Group
communication systems provide multicast services that differ in the final order in which
messages are delivered at each node. We use these known orders [14] as a guide to express
our correctness criteria. An example of each configuration is presented in Section 3.1.

Lazy-Master configuration (figure 2(a)). In Lazy-Master configurations, inconsistency
may arise if slave nodes can commit their refresh transactions in an order different than their
corresponding master nodes. The following correctness criterion prevents this situation.

Definition 3.1 (Total order). Two refresh transactions RT1 and RT2 are said to be in total
order if any slave node that commits RT1 and RT2, commits them in the same order.

Proposition 3.1. For any cluster configuration C that meets a lazy-master configuration
requirement, the refresh algorithm that C uses is correct if and only if the algorithm enforces
total order.

Multi-Master configuration (Figure 2(d)). In Multi-Master configurations, inconsisten-
cies may arise whenever the serial execution orders of two transactions at two nodes are
not equal. Therefore, transactions must be executed in the same serial order at any node.
Thus, Global FIFO Ordering is not sufficient to guarantee the correctness of the refreshment
algorithm. Hence the following correctness criterion is necessary:

Definition 3.2 (Total order). Two transactions T1 and T2 are said to be executed in Total
Order if all multi-owner nodes that commit both T1 and T2 commit them in the same
order.

Proposition 3.2. For any cluster configuration C that meets a multi-master configuration
requirement, the refresh algorithm that C uses is correct if and only if the algorithm enforces
total order.

Partially-Replicated configurations (Figures 2(c) and (d)). In a Partially-Replicated con-
figuration, the inconsistency issues are similar to those found in each component sub-
configuration, namely multi-master and lazy-master. That is, two transactions T1 and T2

must be executed in the same order at the multi-owner nodes, and, in addition, their cor-
responding refresh transactions RT1 and RT2 must commit in the same order in which
the origin node commit T1 and T2. Therefore, the following correctness criterion prevents
inconsistencies:
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Proposition 3.3. If a cluster configuration C meets partially replicated configuration
requirement, then the refresh algorithm that C uses is correct if and only if for each
sub-configuration SC correctness is enforced (see Propositions 3.1 and 3.2).

Proposition 3.4. For any cluster configuration C that meets the partially replicated
requirements, the refresh algorithm that C uses is correct if and only if the algorithm enforces
total order.

4. Preventive refreshment

In this section, we first present the basic refreshment algorithm originally designed for full
replication. Then we present the extension of the algorithm to manage partial replication.
Afterwards we show the correctness of the algorithm for both fully and partially replicated
configurations. Finally, we describe the Replication Manager architecture that implements
these algorithms.

4.1. Full replication

We assume that the network interface provides global FIFO reliable multicast: messages
multicast by one node are received at the multicast group nodes in the order they have been
sent [7]. We denote by Max, the upper bound of the time needed to multicast a message
from a node i to any other node j. It is essential to have a value of Max that is not over
estimated. The computation of Max resorts to scheduling theory [22] and takes into account
several parameters such as the global reliable network itself, the characteristics of the
messages to multicast and the failures to be tolerated. We also assume that each node has a
local clock. For fairness, clocks are assumed to have a drift and to be ε-synchronized. This
means that the difference between any two correct clocks is not higher that ε (known as the
precision).

To define the refreshment algorithm, we need the formal correctness criterion presented
in Section 3.2 to define strong copy consistency. Inconsistencies may arise whenever the
serial orders of two transactions at two nodes are not equal. Therefore, they must be executed
in the same serial order at any two nodes. Thus, global FIFO ordering is not sufficient to
guarantee the correctness of the refreshment algorithm.

Each transaction is associated with a chronological timestamp value C. The principle of
the preventive refreshment algorithm is to submit a sequence of transactions in the same
chronological order at each node. Before submitting a transaction at node i, we must check
whether there is any older transaction en route to node i. To accomplish this, the submission
time of a new transaction at node i is delayed by Max+ε. Thus the earliest time a transaction
is submitted is C + Max + ε (henceforth delivery time).

Whenever a transaction Ti is to be triggered at some node i, node i multicasts Ti to all
nodes 1, 2, . . . , n, including itself. Once Ti is received at some other node j (i may be
equal to j), it is placed in the pending queue in FIFO order with respect to the triggering
node i. Therefore, at each multi-master node i, there is a set of queues, q1, q2, . . . , qn,
called pending queues, each of which corresponds to a multi-master node and is used by the
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Figure 4. Refreshment architecture.

refreshment algorithm to perform chronological ordering with respect to the delivery times.
Figure 4 shows part of the components necessary to run our algorithm. The Refresher reads
transactions from the top of pending queues and performs chronological ordering with
respect to the delivery times. Once a transaction is ordered, then the refresher writes it to
the running queue in FIFO order, one after the other. Finally Deliver keeps checking top of
the running queue to start transaction execution, one after the other, in the local DBMS.

Let us illustrate the algorithm by an example. Suppose we have two nodes i and j, masters
of the copy R. So at node i, there are two pending queues: q(i) and q( j) corresponding to
multi-master nodes i and j. T1 and T2 are two transactions which update R, respectively on
node i and on node j. Let us suppose that Max is equal to 10 and ε is equal to 1. So, on node i,
we have the following sequence of execution:

– At time 10: T2 arrives at node i with a timestamp C2 = 5

• q(i) = [T2 (5)], q( j) = []
• T2 is chosen by the Refresher to be the next transaction to perform at delivery time 16

(5 + 10 + 1), and the time is set to expire at time 16.

– At time 12: T1 arrives from node j with a timestamp C1 = 3

• q(i) = [T2 (5)], q( j) = [T1 (3)]
• T1 is chosen by the Refresher to be the next transaction to perform at delivery time 14

(3 + 10 + 1), and the time is re-set to expire at time 14.

– At time 14: the timeout expires and the Refresher writes T1 into the running queue.

• q(i) = [T2 (5)], q( j) = []
• T2 is selected to be the next transaction to perform at delivery time 16 (5 + 10 + 1)

– At time 16: the timeout expires. The Refresher writes T2 into the running queue.

• q(i) = [], q( j) = []
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Figure 5. Multi-master refresher algorithm.

Although the transactions are received in wrong order with respect to their timestamps
(T2 then T1) they are written into the running queue in chronological order according to
their timestamps (T1 then T2). Thus, the total order is enforced even if messages are not
sent in total order.

In figure 5, we can see the three steps of the algorithm used in the Refresher module. In
step 1, at the reception of a new message in a pending queue, we choose the most recent
message from the pending queues. In step 2, we calculate the delivery time according to
the timestamp of the message and the Max + ε, and then we set a local reverse timer that
will expire at the delivery time. Finally, in step 3, when the timer is over, the message is
submitted to the running queue for execution.
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4.2. Partial replication

With partial replication, some of the target nodes may not be able to perform a transaction
T because they do not hold all the copies necessary to perform the read set of T (recall
the discussion on figure 3). However the write sequence of T, which corresponds to its
refresh transaction, denoted by RT, must be ordered using T ’s timestamp value in order to
ensure consistency. So T is scheduled as usual but not submitted for execution. Instead, the
involved target nodes wait for the reception of the corresponding RT. Then, at origin node i,
when the commitment of T is detected (by sniffing the DBMS’ log—see Section 4.3), the
corresponding RT is produced and node i multicasts RT towards the target nodes. Upon
reception of RT at a target node j, the content of T (still waiting) is replaced with the content
of incoming RT and T can be executed.

Let us now illustrate the algorithm with an example of execution. In figure 6, we assume
a simple configuration with 4 nodes (N1, N2, N3 and N4) and 2 copies (R and S). N1 carries
a multi-owner copy of R and a primary copy of S, N2 a multi-owner copy of R, N3 a
secondary copy of S, and N4 carries a multi-owner copy of R and a secondary copy of S.

Figure 6. Example of preventive refreshment with partial configurations.
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The refreshment proceeds in 5 steps. In step 1, N1 (the origin node) receives T from a client
which reads S and updates R1. For instance, T can be the resulting read and write sequence
produced by the transaction of figure 3. Then, in step 2, N1 multicasts T to the involved
target nodes, i.e. N1, N2 and N4. N3 is not concerned with T because it only holds a secondary
copy s. In step 3, T can be performed using the refreshment algorithm at N1 and N4. At N2,
T is also managed by the Refresher and then put in the running queue. However, T cannot
yet be executed at this target node because N2 does not hold S. Thus, the Deliver needs
to wait for its corresponding RT in order to apply the update on R (see step 4). In step 4,
after the commitment of T at the origin node, the RT is produced and multicasts it to all
involved target nodes. In step 5, N2 receives RT and the Receiver replaces the content of T
by the content of RT. The Deliver can then submit RT.

Partial replication may be blocking in case of failures. After the reception of T, some
target nodes would be waiting for RT. Thus, if the origin node fails, the target nodes are
blocked. However, this drawback can be easily solved by replacing the origin node by an
equivalent node, a node that holds all the replicas necessary to execute T. Once the target
nodes detect the failure of the origin node, it can request an equivalent node j to multicast
RT given T ’s identifier. At node j, RT was already produced in the same way that at the
origin node: transaction T is executed and, upon detection of T ’s commitment, an RT is
produced and stored in a RT log (see Section 4.4), necessary to handle failure of the origin
node. In the worst case where no other node holds all the replicas necessary to execute
T, T is globally aborted. Reconsider the example in figure 6: if N1 fails at Step 3, N2 can
not receive the RT corresponding to the waiting T. So, once N2 detects that N1 is out of
service, it can identify that N4 has all copies necessary for T (remember that the global data
placement is known) and request the transfer of RT to N4. So, we assume that RT ’s logs are
kept at each node (see Section 4.4). In addition, if N4 is also out of service, then no node
can perform T. Thus, N2 would abort transaction T. Consistency is enforced because none
of the active nodes has performed the transaction. In this case, at recovery time, the failed
nodes would undo T.

4.3. Correctness of the refresher algorithm

In this section we show that the refresher algorithm is correct. The proofs for the lazy master
based configurations appear in [12] and we do not re-discuss them here. The proofs for
partial configurations we consider come directly from those of lazy-master and multi-master
configurations, as we will show.

Lemma 4.1. The refreshment algorithm is correct for multi-master configurations.

Proof: Let us consider any node N of a multi-master configuration holding multi-owner
copies. Let T be any transaction committed by node N. The propagator located at node N
will propagate the operations performed by T by means of a message using reliable mul-
ticast. Hence any node involved in the execution of the transaction receives the update
message. Since (i) the message containing the timestamp of any transaction T is the last one
related to that transaction, and (ii) the reliable multicast preserves the global FIFO order,
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when a node N’ receives the message containing the timestamp of T (i.e., at delivery time C
+ Max + ε), it has previously received all operations related to T and involving that node.
Hence the transaction can be committed when all its operations are done and earliest at
delivery time C + Max + ε. �

Lemma 4.2. The refreshment algorithm is correct for partial configurations.

Proof: Let us consider any node N of a partial configuration holding at least one multi-
owner copy. Let T be any transaction submitted to node N, so N is the origin node of
T. When the update message is received by any node involved in the execution of the
transaction, by Lemma 4.1, transaction T can be committed when all its operations are
done and earliest at delivery time C + Max + ε. But in the case where the node does not
hold all the copies necessary to the transaction, T waits. Since an origin node must hold
all the copies necessary to the transaction submitted by a client, the node N can perform T.
Then, node N produces and multicasts RT which contains the write set associated to T to all
waiting target nodes. So, the waiting target nodes can perform T by replacing the content of
the transaction by its write set. Hence the transaction is still committed earliest at delivery
time C + Max + ε. �

Lemma 4.3 (Transaction chronological order). The refreshment algorithm ensures that, if
T1 and T2 are any two transactions that start execution at global times t1 and t2, respectively,
then: if t2−t1 > ε, the timestamps C2 for T2 and C1 for T1 satisfy C2 > C1; any node that
commits both T1

′ and T2
′, commits them in the order given by C1 and C2.

Proof: Let us assume that t2–t1 > ε Even if the clock of the node committing T1 is ε ahead
with regard to the clock of the node committing T2, we have C2 > C1. We now assume that
we have C2 > C1 and we consider a node N that commits first T1

′ and then T2
′. According

to the algorithm, T2
′ is not committed before local time C2 + Max + ε. At that time, if N

commits T2
′ before T1

′, it means that N has not received the message related to T1. Since
clocks are ε synchronised, that message would have experienced a multicast delay higher
than Max. �

Lemma 4.4 (Total order). The refreshment algorithm satisfies the total order criterion
for any configurations.

Proof: If the refreshment algorithm is correct (Lemmas 4.1 and 4.2) and the transactions
are performed in chronological order on each node (Lemma 4.3), then the total order is
enforced. �

Lemma 4.5 (Deadlock). The refreshment algorithm ensures that no deadlock appears.

Proof: Let us consider a transaction T1 which has for origin node N1 and waits for its write
set at node N2 and a transaction T2 which has for origin node N2 and waits for its write set at
N1. A deadlock appears if and only if T1 is performed before T2 on N2 and if T2 is performed
before T1 on N1. Hence, the total order is not enforced. This contradicts Lemma 4.3 since
transactions are always performed in their chronological order at all the nodes. �
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Figure 7. Replication Manager architecture.

4.4. Replication Manager architecture

In this section, we present the Replication Manager architecture to implement the Preventive
Partial Replication algorithm (see figure 7). We add several components to a regular DBMS
while preserving node autonomy, i.e. without requiring the knowledge of system internals.
The Replica Interface receives transactions coming from the clients. The Propagator and
the Receiver manage the sending and reception (respectively) of transactions and refresh
transactions inside messages within the network.

Whenever the Receiver receives a transaction, it places it in the appropriate pending
queue, used by the Refresher, and in the running queue used by the Deliver to start its
execution. Next, the Refresher executes the refreshment algorithm to ensure strong consis-
tency. The Deliver submits transactions, read from the running queue, to the DBMS and
commits them only when the Refresher ensures that the transactions have been performed
in chronological order.

With partial replication, when a transaction T is composed of a sequence of reads and
writes, the Refresher at the target nodes must assure correct ordering. However, in case
where the node does not hold all the necessary copies, T ’s execution must be delayed until
its corresponding refresh transaction RT is received. This is because RT is produced only
after the commitment of the corresponding T at the origin node. At the target node, the
content of T (sequence of read and write operations) is replaced by the content of the RT
(sequence of write operations) in the Deliver. Thus, at the target node, when the Receiver
receives RT, it interacts directly with Deliver.

The Log Monitor constantly checks the content of the DBMS log to detect whether repli-
cas have been updated. For each transaction T that updated a replica, it produces a corre-
sponding refresh transaction. At the origin node, whenever the corresponding transaction is
composed of reads and writes and some of the target nodes do not hold all the necessary repli-
cas, the Log Monitor submits the refresh transaction to the propagator, which multicasts it to
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those nodes. Then, upon receipt of the refresh transaction, the target nodes can perform the
corresponding waiting transaction. To provide fault-tolerance in case of failure of the origin
node (see Section 4.2), Log Monitor stores RT, in addition to the origin node, in all the nodes
that are able to perform the transaction (nodes which hold all necessary replicas to perform a
transaction T). Thus, in case of failure of the origin node, one of these nodes can replace the
origin node and multicast the RT to the target nodes that can not perform the corresponding T.

5. Improving response time

In this section, we present optimizations for both Full and Partial Replication that improve
transaction throughput. First, we modify the algorithm to eliminate partially the delay times
(Max + ε) before submitting transactions. Then, we introduce concurrency control features
in the algorithm to improve transaction throughput. Finally, we show the correctness of
these optimizations.

5.1. Eliminating delay time

In a cluster network (which is typically fast and reliable), in most cases messages are
naturally chronologically ordered [16]. Only a few messages can be received in an order
that is different than the sending order. Based on this property, we can improve our algorithm
by submitting a transaction to execution as soon as it is received, thus avoiding the delay
before submitting transactions. Yet, we still need to guarantee strong consistency. In order
to do so, we schedule the commit order of the transactions in such a way that a transaction
can be committed only after Max + ε. Recall that to enforce strong consistency, all the
transactions must be performed according to their timestamp order. So, a transaction is
out-of-order when its timestamp is lower than the timestamps of the transactions already
received. Thus, when a transaction T is received out-of-order, all younger transactions must
be aborted and re-submitted according to their correct timestamp order with respect to T.
Therefore, all transactions are committed in their timestamp order.

Thus, in most cases the delay time (Max + ε) is eliminated. Let t be the time to execute
transaction T. In the previous algorithm [13], the time spent to refresh a multi-master copy,
after reception of T, is Max + ε + t. Now, a transaction T is ordered while it is executed.
So, the time to refresh a multi-master copy is max[(Max + ε), t]. In most cases, t is higher
than the delay Max + ε. Thus, this simple optimization can well improve throughput as we
show in our performance study.

Figure 8 shows part of the components necessary to run our algorithm. The Refresher
reads transactions from the head of pending queues and performs chronological ordering
with respect to the delivery times. Once a transaction T is ordered, the refresher notifies
Deliver that T is ordered and ready to be committed. Meanwhile, Deliver keeps checking
the head of the running queue to start transaction execution optimistically, one after the
other, inside the local DBMS. However, to enforce strong consistency Deliver only commits
a transaction when the Refresher has signaled it.

Let us illustrate the algorithm with an example from figure 8. Suppose we have a node i
that holds the master of the copy R. Node i receives T1 and T2, two transactions that update
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Figure 8. Refreshment architecture.

R, respectively from node i with a timestamp C1 = 10 and from node j with a timestamp
C2 = 15. T1 and T2 must be performed in chronological order, T1 then T2. Let us see what
happens when the messages are not received chronologically ordered at node i. In our
example, T2 is received before T1 at node i and immediately written into the running queue
and the corresponding pending queue. Thus, T2 is submitted to execution by the Deliver
but must wait the Refresher’s decision to commit T2. Meanwhile, T1 is received at node i, it
is similarly written into both pending and running queues. However the Refresher detects
that the younger transaction T2 has already been submitted before T1. So, T2 is aborted
and re-started, causing it to be re-inserted into the running queue (after T1). T1 is chosen
to be the next transaction to commit. Finally, T2 is performed and elected to commit by
Refresher. Thus, the transactions are committed in their timestamp order, even if they have
been received unordered.

Preventive algorithm details. We can define three different states for a transaction T rep-
resented in figure 9. When a transaction T arrives at the Replication Manager, its state is

Figure 9. Transition state graph for T.
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initialized to wait. Then, when T can be executed (a transaction can be executed when
the node holds all necessary replicas or when its corresponding RT is received), and when
the Refresher has ordered the transaction, the state of Transaction T is set to commit.
Finally, when the Deliver receives an out-of-order transaction T (its timestamp is lower
than the timestamps of the transactions already received), the state of the current running
transactions is set to abort.

The Preventive algorithm is described in detail in figures 10 and 11. Figure 10 describes
the Refresher algorithm. The Refresher selects the next totally ordered transaction. A
transaction is guaranteed to be totally ordered at its delivery time (C + Max + ε). Thus, in
step 1, on the arrival of a new transaction, the refresher chooses the oldest transaction T

Figure 10. Partial replication refresher algorithm with elimination of delay times.
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Figure 11. Partial replication deliver algorithm with elimination of delay times.
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from the top of the pending queues and computes T ’s delivery time. Next the Refresher
initializes a timer that will expire at T ’s delivery time. So, if the incoming transaction T is
not out-of-order according to the current selected transaction, curr T, nothing happens. In
the other case, the new T ’s delivery time is calculated according to T ’s timestamp. In step 2,
when the timer expires, the Refresher looks for the non aborted transactions corresponding
to curr T. Then, it sets the state of curr T to commit.

Figure 11 describes the Deliver algorithm in the optimistic arrival approach. Deliver reads
transactions from the running queue and executes them. If a transaction T is out-of-order,
Deliver aborts the current running transaction, curr T, and executes T followed by curr T.
Deliver commits a transaction when the Refresher sets its state to commit. In step 1, at the
end of the execution of the current transaction curr T, Deliver commits or rolls-back curr T
according to its state (commit or abort). Since we do not have access to the transaction
manager of the DBMS, we cannot abort directly the transactions and we must wait until
the end of the transaction to abort it. In step 2, Deliver sets the state of the newly received
transaction (new T) to wait and checks whether new T is not an out-of-order transaction. If
the transaction is out-of-order, the state of the current transaction (curr T) is set to abort. As
the Deliver has to wait the end the transaction to rollback the transaction, a copy of curr T
is reintroduced in the running queue and its state is set to wait while the aborted curr T
is running. Thus, a transaction T aborted due to an unordered message will be re executed
from a copy of curr T. In step 3, the Refresher selects the transaction at the top of the
running queue and performs it if the node holds all the copies necessary to the transaction,
Otherwise, the Refresher set the transaction in stand by. Finally, in step 4, on arrival of a
new refresh transaction new RT, the Deliver replaces the content of the waiting T by the
content of its corresponding RT. So, the current transaction can execute.

5.2. Improving transaction throughput

To improve throughput, we now introduce concurrent replica refreshment. In the previous
section, the Receiver writes transactions directly into the running queue (optimistically), and
afterwards the Deliver reads the running queue contents in order to execute the transaction,
and in the other hand, to assure consistency, the same transactions are written as usually
in the pending queues to be ordered by the Refresher. Hence, the Deliver extracts the
transactions from the running queue and performs them one by one in serial order. So, if the
Receiver fills the running queue faster than the Deliver empties it, and if the average arrival
rate is higher than the average running rate of a transaction (typically in bursty workloads),
the response time increases exponentially and performance degrades.

To improve response time in bursty workloads we propose to trigger transactions concur-
rently. In our solution, concurrency management is done outside the database to preserve
autonomy (different from [9]). Using the existing isolation property of database systems
[11], at each node, we can guarantee that each transaction sees a consistent database at
all times. To maintain strong consistency at all nodes, we enforce that transactions are
committed in the same order in which they are submitted. In addition, we guarantee that
transactions are submitted in the order in which they have been written to the running
queue. Thus, total order is always enforced.
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However, without access to the DBMS concurrency controller (for autonomy reasons),
we cannot guarantee that two conflicting concurrent transactions obtain a lock in the
same order at two different nodes. Therefore, we do not trigger conflicting transactions
concurrently. To detect that two transactions are conflicting, we determine a subset of the
database items accessed by the transaction according to the transaction. If the subset of a
transaction does not intersect with a subset of another transaction, then the transactions are
not conflicting. For example, in the TPC-C benchmark, the transactions’ parameters allow
us to define a subset of tuples that could be read or updated by the transaction. Notice that
if the subset of the transaction cannot be determined, then we consider the transaction to
be conflicting with all other transactions. This solution is efficient if most transactions are
known, which is true in OLTP environments.

We can now define two new conditions to be verified by the Deliver before triggering
and before committing a transaction:

(i) Start a transaction iff the transaction is not conflicting with transactions already started
(but not committed) and iff no older transaction waits for the commitment of a con-
flicting transaction to start.

(ii) Commit a transaction iff no older transactions are still running.

Figure 12 shows examples of concurrent executions of transactions. Figure 12(a) illus-
trates a case where the transactions are triggered sequentially, which is equivalent to the
case where all the transactions are conflicting. Figures 12(b), (c) and (d) show parallel exe-
cutions of transaction T1, T2 and T3. In figures 12(b) and (c), transaction T2 finishes before
T1 but waits for commit because T1 is still running (this is represented by a dashed line in
the figure). In figure 12(b), T1, T2 and T3 are not conflicting, so they can run concurrently.
On the other hand, in figure 12(c), T2 is conflicting with T3, so T3 must wait for the end
of T2 before starting. Finally, in figure 12(d), T1 and T2 are conflicting, so T2 cannot start
before the commitment of T1 and T3 cannot start before T2 because transactions must be
executed in the order they are in the running queue.

Figure 12. Example of concurrent execution of transactions.
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5.3. Correctness

In this section, we prove that the Preventive Replication algorithm is also correct with the
optimizations.

Lemma 5.1. The elimination of the delay Max + ε does not introduce inconsistency.

Proof: Let T1 and T2 be any two transactions with timestamps C1 and C2. If T1 is
older than T2 (C1 < C2) and T2 is received on node i before T1, then T2 is managed
optimistically. However T2 cannot be committed before C2 + Max + ε, and as T1 is re-
ceived at node i at the latest at C1 + Max + ε, then, T1 is received before T2 is committed
(C1 + Max + ε < C2 + Max + ε). Therefore, T2 is aborted, and both transactions are written
in the running queue, executed and committed according to their timestamp values. After-
wards, T1 is executed before T2, and the strong consistency is enforced even in the case of
unordered messages. �

Lemma 5.2. The parallel execution of transactions does not break the enforcement of
strong consistency.

Proof: Let T1 and T2 be any two transactions with timestamps C1 and C2 that start execution
at times t1 and t2, and commit at times c1 and c2, respectively. In the case where T1 and
T2 are received unordered, the transactions are aborted and re-executed in the correct order
as described in Lemma 5.2. Now, in the case where the transactions are received correctly
ordered, if T1 and T2 are conflicting, they start and commit one after the other according to
their timestamp values. Hence, if C1 < C2, then t1 < c1 < t2 < c2. If they are not conflicting,
T2 can start before T1 commits. However, a transaction is never committed before all older
transactions have been committed. If C1 < C2, then t1 < t2 and c1 < c2. Thus, the state of
the database viewed by a transaction before its execution and its commitment is the same
at all the nodes. Hence, strong consistency is enforced. �

6. Validation

In this section, we describe our implementation and our performance model. Then, we
describe two experiments to study scale up and speed-up.

6.1. Implementation

We implemented our Preventive Replication Manager in our RepDB∗ prototype [2, 19] on
a cluster of 64 nodes (128 processors). Each node has 2 Intel Xeon 2.4 GHz processors,
1 GB of memory and 40 GB of disk. The nodes are linked by a 1 Gb/s network. We use
Linux Mandrake 8.0/Java and CNDS’s Spread toolkit that provides a reliable FIFO message
bus and high-performance message service among the cluster nodes. We use PostgreSQL
Open Source DBMS at each node. We chose PostgreSQL because it is quite complete in
terms of transaction support and easy to work with.
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Our implementation has four modules: Client, Replicator, Network and Database Server.
The Client module simulates the clients. It submits transactions randomly to any cluster
node, via RMI-JDBC, which implements the Replica Interface. Each cluster node hosts a
Database Server and one instance of the Replicator module. For this validation, we imple-
mented most of the Replicator module in Java outside of PostgreSQL. For efficiency, we
implemented the Log Monitor module inside PostgreSQL. The Replicator module imple-
ments all system components necessary for a multi-master node: Replica Interface, Prop-
agator, Receiver, Refresher and Deliver. Each time a transaction is to be executed, it is first
sent to the Replica Interface that checks whether the incoming transaction updates a replica.
Whenever a transaction does not write a replica, it is sent directly to the local transaction
manager. Even though we do not consider node failures in our performance evaluation, we
implemented all the necessary logs for recovery to understand the complete behavior of the
algorithm. The Network module interconnects all cluster nodes through the Spread toolkit.

6.2. Performance model

To perform our experiments, we use the TPC-C Benchmark [18] which is an OLTP workload
with a mix of read-only and update intensive transactions. It has 9 tables: Warehouse, Dis-
trict, Customer, Item, Stock, New-order, Order, Order-line and History; and 5 transactions:
Order-status, Stock-level, New-order, Payment and Delivery.2

The parameters of the performance model are shown in Table 1. The values of these
parameters are representative of typical OLTP applications. The size of the database is
proportional to the number of warehouses (a tuple in the Warehouse table represents a
warehouse). The number of warehouses also determines the number of clients that submit
a transaction. As specified in the TPC-C benchmark, we use 10 clients per warehouse. For
a client, we fix the transaction arrival rate λclient at 10 s. So with 100 clients (10 warehouses
and 10 clients per warehouse), the average transactions’ arrival rate λ is 100 ms. In our
experiments, we vary the number of warehouses W to be either 1, 5 or 10. Then, the different
average transactions’ arrival rates are 1 s, 200 ms and 100 ms.

During an experiment, each client submits to a random node a transaction among the
4 TPC-C transactions used. In the end, each client must have submitted M transactions

Table 1. Performance parameters

Parameter Definition Values

W Number of warehouse 1, 5, 10

Clients Number of clients by warehouse 10

λclient Average arrival rate for each client 10 s

λ Average arrival rate 1 s, 200 ms, 100 ms

Conf. Replication of tables FR, PR

M Number of transactions submittedduring the tests for each client 100

Max + ε Delay introduced for submitting a Transaction 200 ms
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and must have maintained a percentage of mixed transactions: 6% for Order-status, 6% for
Stock-level, 45% for New-order and 43% for Payment.

The TPC-C defines a number of different types of transactions. New-order represents a
mid-weight, read-write transaction with a high frequency of execution. Payment represents
a lightweight, read-write transaction with a high frequency of execution. Order-status
represents a mid-weight, read-only transaction with a low frequency of execution. Stock-
level represents a heavy, read-only transaction with a low frequency of execution. Thus, we
can consider New-order and Payment as multi-master transactions.

Finally, for our experiments, we use two replication configurations. In the Fully Repli-
cated (FR) configuration all the nodes carry all the tables as multi-master copies. In the Par-
tially Replicated (PR) configuration, one fourth of the nodes hold tables needed by the Order-
status transaction as multi-master copies, another fourth holds tables needed by the
New-order transaction as multi-master copies, another fourth holds tables needed by the
Payment transaction as multi-master copies and the last fourth holds tables needed by
the Stock-level transaction as multi-master copies.

6.3. Scale up experiments

These experiments study the algorithm’s scalability. That is, for a same set of incoming
transactions (New-order and Payment transactions), scalability is achieved whenever in-
creasing the number of nodes yields the same response times. We vary the number of nodes
for each configuration (FR and PR) and for different numbers of warehouses (1, 5 and 10).
For each test, we measure the average response time per transaction. The duration of this
experiment is the time to submit 100 transactions for each client.

The experimental results (see figure 13) show that for all tests, scalability is achieved.
The performance remains relatively constant according to the number of nodes. Our al-
gorithm has linear response time behavior even when the number of node increases.
Let n be the number of target nodes for each incoming transaction, our algorithm re-
quires only the multicast of n messages for the nodes that carry all required copies

Figure 13. Scale up results.
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plus 2n messages for the nodes that do not carry all required copies. The perfor-
mance decreases as the number of warehouses increases (which increases the work-
load). In figure 13(a), although the workload is twice higher for 10 warehouses than for
5 warehouses, the response times remain twice as worse as expected, i.e., 400 ms for
5 warehouses and about 800 ms for 10 warehouses. This demonstrates that our algorithm
has good response time when the workload increases and we can expect similar behavior
with higher workloads.

The results also show the impact of the configuration on transaction response time.
As the number of transactions increases (with the number of nodes that receive incoming
transactions), PR increases inter-transaction parallelism more than FR by allowing different
nodes to process different transactions. Thus, transaction response time is slightly better
with PR (figure 13(a) than with FR (figure 13(b)) by about 15%. In PR, nodes only
hold tables needed by one type of transaction, so they do not have to perform the entire
updates of the other type of transactions. Hence, they are less overloaded than in FR. Thus
the configuration and the placement of the copies should be tuned to selected types of
transactions.

6.4. Speed-up experiments

These experiments study the performance improvement (speed-up) for read queries when
we increase the number of nodes. To test speed-up, we reproduced the previous experiments
and we introduced clients that submit queries. We vary the number of nodes for each
configuration (FR and PR) and for different number of warehouses (1, 5 and 10). The
duration of this experiment is the time to submit 100 transactions for each client.

The number of clients that submit queries is 128. The clients submit lightweight queries
(Order-status transaction) sequentially while the experiment is running. Each client is
associated to one node and we produce an even distribution of clients at each node. Thus,
the number of read clients per node is 128 divided by the number of nodes that support the

Figure 14. Speed-up results.
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Figure 15. Percentage of unordered messages and aborted transactions for 10 warehouses.

Order-status transaction. For each test, we measured the throughput of the cluster, i.e. the
number of read queries per second.

The experiment results (see figure 14) show that the increase in the number of nodes
improves the cluster’s throughput. For example in figure 14(a), whatever the number of
warehouses, the number of queries per seconds with 32 nodes (1500 queries per seconds)
is almost twice that with 16 nodes (800 queries per seconds). However, if we compare FR
with PR, we can see that the throughput is better with FR. Although the nodes are less
overloaded than in FR, performance is half of FR because only half of the nodes support the
transaction. This is due to the fact that, in PR, not all the nodes hold all the tables needed by
the read transactions. In FR, beyond 48 nodes, the throughput does not increase anymore
because the optimal number of nodes is reached, and the queries are performed as fast as
possible.

6.5. Effect of optimistic execution

Now, we study the effect of optimistically executing transactions as soon as they arrive.
Our first study shows the impact of the unordered messages on the number of aborted
transactions due to optimistic execution (see Section 5.1). Then, our second study shows
the gain of the optimistic approach on the refreshment delay.

In our first experiment, figures 15(a) and (b) show the percentage of the unordered
messages and the percentage of the aborted transactions for the scale up experiment
(Section 6.3). Below 5% of the messages are unordered, and only 1% of the transac-
tions are aborted. At most only 20% of the unordered messages introduce aborts because
two unordered messages are received in a very short period of time (around 2 ms). So, the
second message is received before the first message has been processed. Therefore, they
are reordered before the execution of the first message.

For PR, the Partially Replicated configuration (figure 15(b)), the percentage of the
unordered messages is lower than the percentage for FR, the Fully Replicated configuration
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Figure 16. Delay versus transaction size.

(figure 15(a)), because less messages are involved. Thus, the number of aborted transactions
is small enough to warrant the gain introduced by the elimination of the delay time.

In our second experiment, we study how the transaction size affects the elimination of
the refreshment delay. In the Optimistic Approach, transactions still need to be delayed
(Max + ε) before committing. Figure 16 shows the relative importance of the delay time
with respect to transaction size. Our test involves only 8 nodes with a FR configuration
because the waiting time is not affected by the increase of the number of nodes. We submit
100 transactions in a low workload and we vary the size of the transaction. Then, we
measure the delay time introduced by the refreshment algorithm. Recall that the normal
delay (Max) value is 200 ms without optimization.

An important observation is that the delay introduced by the refreshment quickly de-
creases as the transaction time increases. This is due to the fact that, since the transaction
is performed as soon as possible, the scheduling of a transaction is performed in parallel
with its execution. As the scheduling time is equal to Max + ε, the delay introduced is
equal to Max + ε minus the size of the transaction. For example, with a transaction size
of 50 ms, the delay is 150 ms. Thus, with transactions longer than 200 ms, the delay is
almost zero because the scheduling time is included in the execution time. Hence, the gain
is almost equal to Max, which is the optimal gain for the elimination of Max. Finally,
the number of aborted transactions is not enough significant, so we do not put it on the
figure.

7. Related work

Data replication has been extensively studied in the context of distributed database sys-
tems [11]. In the context of database clusters, the main issue is to provide scalability
(to achieve performance with large numbers of nodes) and autonomy (to exploit black-box
DBMS) for various replication configurations such as master-slave, multi-master and partial
replication.

Synchronous (eager) replication can provide strong consistency for most configurations
including multi-master but its implementation, typically through 2PC, violates system
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autonomy and does not scale up. In addition, 2PC may block due to network or node
failures. The synchronous solution proposed in [9] reduces the number of messages ex-
changed to commit transactions compared to 2PC. It uses, as we do, group communication
services to guarantee that messages are delivered at each node according to some ordering
criteria. However, DBMS autonomy is violated because the implementation must combine
concurrency control with group communication primitives. In addition solutions based on
total order broadcast is not well suited for large scale replication because as the number
of nodes increases the overhead of messages exchanged may dramatically increase to
assure total order. The Database State Machine [20, 21] supports partial replication for
heterogeneous databases and thus does not violate autonomy. However, its synchronous
protocol uses two-phase locking that is known for its poor scalability, thus making it
inappropriate for database clusters.

Asynchronous (lazy) replication typically trades consistency for performance. A refresh-
ment algorithm that assures correctness for lazy master configurations is proposed in [12].
This work does not consider multi-master and partial replication as we do. The preventive
replication solution in [13] is asynchronous and achieves strong consistency for multi-
master configurations. However, it introduces heavy message traffic in the network since
transactions are multicast to all cluster nodes. In [3], we extended preventive replication
to deal with partial replication. However, it also has performance limitations since transac-
tions are forced to wait a delay time before executing. The solution proposed in this paper
addresses these important limitations.

The algorithm proposed in [8] provides strong consistency for multi-master and partial
replication while preserving DBMS autonomy. However, it requires that transactions update
a fixed primary copy: each type of transaction is associated with one node so a transaction of
that type can only be performed at that node. This is a problem for update intensive applica-
tions. For example, with the TPC-C benchmark, two nodes support 88% of the transactions
(45% at one node for the New Order transactions and 43% at another node for the Payment
transactions). Furthermore, the algorithm uses 2 messages to multicast the transaction, the
first is a reliable multicast and the second is a total ordered multicast. The cost of these
messages is higher than the single FIFO multicast message we use. Furthermore, using a
logical total order message increases the overhead of physical messages exchanged when
increasing the number of nodes. However, one advantage of this algorithm is that it avoids
redundant work: the transaction is performed at the origin node and the target nodes only
apply the write set of the transaction. In our algorithm, all the nodes that hold the resources
necessary for the transaction perform it entirely. We could also remove this redundant work
to generalize the multicast of refresh transactions for all nodes instead of only for the nodes
that do not hold all the necessary replicas. However, the problem is to decide whether it
is faster to perform the transaction entirely or to wait for the corresponding write set from
the origin node for short transactions. Finally their experiments do not show scale-up with
more than 15 nodes while we go up to 64 in our experiments.

More recent work has focused on snapshot isolation to improve the performance of read-
only transactions. The RSI-PC [17] algorithm is a primary copy solution which separates
update transactions from read-only transactions Update transactions are always routed to a
main replica, whereas read-only transactions are handled by any of the remaining replicas,
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which act as read-only copies. Postgres-R(SI) [24] proposes a smart solution that does not
need to declare transactions properties in advance. It uses the replication algorithm of [8]
which must be implemented inside the DBMS. The experiments are limited to at most
10 nodes. SI-Rep [10] provides a solution similar to Postgres-R(SI) on top of PostgreSQL
which needs the write set of a transaction before its commitment. Write sets can be obtained
by either extending the DBMS, thus hurting DBMS autonomy, or using triggers.

8. Conclusion

In this paper, we introduced two algorithms for preventive replication in order to scale up
to large cluster configurations. The first algorithm supports fully replicated configurations
where all the data are replicated on all the nodes, while the second algorithm supports
partially replicated configurations, where only a part of the data are replicated. Both algo-
rithms enforce strong consistency. Then, we proposed a complete architecture that supports
a large numbers of configurations. Moreover, we presented two optimizations that improve
transaction throughput; the first optimization eliminates optimistically the delay introduced
by the preventive replication algorithm while the second optimization introduces concur-
rency control features outside the DBMS in which non conflicting incoming transactions
may execute concurrently.

We did an extensive performance validation based on the implementation of Preventive
Replication in our RepDB∗ prototype over a cluster of 64 nodes running PostgreSQL. Our
experimental results using the TPC-C benchmark show that our algorithm scales up very
well and has linear response time behavior. We also showed the impact of the configuration
on transaction response time. With partial replication, there is more inter-transaction paral-
lelism than with full replication because of the nodes being specialized to different tables
and thus transaction types. Thus, transaction response time is better with partial replica-
tion than with full replication (by about 15%). The speed-up experiment results showed
that the increase of the number of nodes can well improve the query throughput. Finally,
we showed that, with our optimistic approach, unordered transactions introduce very few
aborts (at most 1%) and that the waiting delay for committing transactions is very small
(and reaches zero as transaction time increases). To summarize, the performance gains
strongly depend on the types of transactions and of the configuration. Thus an important
conclusion is that the configuration and the placement of the copies should be tuned to
selected types of transactions.

Notes

1. For any two nodes, the same sequence of transactions is executed in the same order.
2. For our experiments, we do not use the delivery transaction because it is executed in a deferred mode that is

not relevant to test the response times on which our measures are based.
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8. R. Jiménez-Peris, M. Patiño-Martı́nez, B. Kemme, and G. Alonso, “Improving the scalability of fault-tolerant
database clusters: early results,” in Int. Conf. on distributed Computing Systems (ICDCS), 2002.

9. B. Kemme and G. Alonso, “Don’t be lazy be consistent: Postgres-R, a new way to implement database
replication,” in Int. Conf. on Very Large Databases (VLDB), 2000.

10. Y. Lin, B. Kemme, M. Patino-Martinez, and R. Jimenez-Peris, “Middleware based data replication providing
snapshot isolation,” in ACM SIGMOD Int. Conf. on Management of Data. Baltimore, USA, June 2005.
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Abstract. Collaborative applications are characterized by high levels of data sharing. Op-
timistic replication has been suggested as a mechanism to enable highly concurrent access 
to the shared data, whilst providing full application-defined consistency guarantees. Nowa-
days, there are a growing number of emerging cooperative applications adequate for Peer-
to-Peer (P2P) networks. However, to enable the deployment of such applications in P2P 
networks, it is required a mechanism to deal with their high data sharing in dynamic, scal-
able and available way. Previous work on optimistic replication has mainly concentrated on 
centralized systems. Centralized approaches are inappropriate for a P2P setting due to their 
limited availability and vulnerability to failures and partitions from the network. In this pa-
per, we focus on the design of a reconciliation algorithm designed to be deployed in large 
scale cooperative applications, such as P2P Wiki. The main contribution of this paper is a 
distributed reconciliation algorithm designed for P2P networks (P2P-reconciler). Other im-
portant contributions are:  a basic cost model for computing communication costs in a DHT 
overlay network; a strategy for computing the cost of each reconciliation step taking into 
account the cost model; and an algorithm that dynamically selects the best nodes for each 
reconciliation step. Furthermore, since P2P networks are built independently of the underly-
ing topology, which may cause high latencies and large overheads degrading performance, 
we also propose a topology-aware variant of our P2P-reconciler algorithm and show the 
important gains on using it. Our P2P-reconciler solution enables high levels of concurrency 
thanks to semantic reconciliation and yields high availability, excellent scalability, with ac-
ceptable performance and limited overhead. 

1 Introduction 
Large-scale distributed collaborative applications are getting common as a result of rapid progress in 
distributed technologies (grid, P2P, and mobile computing).  As an example of such applications, con-
sider a second generation Wiki that works over a peer-to-peer (P2P) network and supports users on the 
elaboration and maintenance of shared documents in a collaborative and asynchronous manner. Current 
wiki platforms rely on central servers that are costly and require an organization behind them to buy and 
maintain the hardware and to maintain the software. A P2P wiki would allow a community of users to 
collaborate by means of a wiki without having to create an organization to maintain the hardware re-
sources. The computational resources would be provided by the community as a whole. This P2P envi-
ronment would also allow for people updating the wiki whilst disconnected (e.g. whilst traveling) due to 
its reconciliation capabilities. In the P2P wiki example, consider that each document is an XML file pos-
sibly linked to other documents. Wiki allows collaboratively managing a single document (e.g. a scien-

                                                           
1 Work partially funded by ARA “Massive Data” of the French ministry of research (project Respire), the 
European Strep Grid4All project, the CAPES-COFECUB Daad project and the CNPq-INRIA Gridata 
project. 
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tific paper shared by a few of authors) as well as composed, integrated documents (e.g. an encyclopedia 
or a knowledge base concerning the use of an open source operating system). Although the number of 
users that update in parallel a document d is usually small, the size of the collaborative network that holds 
d in terms of number of nodes may be large. For instance, the document d could belong to the knowledge 
base of the Mandriva Club, which is maintained by more than 25,000 members [Man07] or it could be-
long to Wikipedia, a free content encyclopedia maintained by more than 75,000 active contributors 
[Wik07].   

Many users frequently need to access and update information even if they are disconnected from the 
network, e.g. in an aircraft, a train or another environment that does not provide good network connec-
tion. This requires that users hold local replicas of shared documents. Thus, a P2P Wiki requires multi-
master replication (any replica can perform updates, also known as update-everywhere replication) to 
assure data availability at anytime. In the multi-master approach, updates made offline or in parallel on 
different replicas of the same data may cause replica divergence and conflicts, which should be recon-
ciled. In order to resolve conflicts, the reconciliation solution can take advantage of application semantics 
as illustrated in Example 1. For simplicity, and without loss of generality, this example deals with a single 
document elaborated by three authors. The document is a scientific paper organized as a tree. Each node 
(element) in the tree structure corresponds to a section of the paper and holds the name of the responsible 
author.  

Example 1a shows the initial structure of the paper whereas Example 1b shows conflicting updates 
(in gray) over the initial structure. In Example 1b Phil tries to move the Background section under Paper 
thereby changing the Background path from Paper/Solution/Background to Paper/Background while 
Mary tries to insert two topics under Background using the path Paper/Solution/Background. If the move 
operation is accomplished before the insert operations, the Background’s path changes so that the insert 
operations do not find the Background element, and therefore such inserts are lost. We can automatically 
solve this problem by introducing the following application semantics: update operations precede move 
operations. In Example 1, according to this semantics, Topic 1 and Topic 2 are inserted in the path Pa-
per/Solution/Background, and then the entire subtree under Background is moved in such a way that the 
intents of both users (Phil and Mary) are preserved. 

  

 

Example 1. Producing a paper in a collaborative manner 
 
The semantics associated with a P2P collaborative editor can be richer than the simple semantics that 

we have just discussed. However, we made the example deliberately simple only to show that, by taking 
advantage of the application semantics on the reconciliation, we can eliminate spurious update conflicts 
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(e.g. insert and move operations over the same element are not really conflicting operations) and we can 
resolve the real existing conflicts in an automatic manner as users wish. 

Optimistic replication is largely used as a solution to provide data availability for these applications. 
It allows asynchronous updating of replicas such that applications can progress even though some nodes 
are disconnected or have failed. This enables asynchronous collaboration among users. However, concur-
rent updates may cause replica divergence and conflicts, which should be reconciled. In most existing 
solutions [PSM03, SS05] reconciliation is typically performed by a single node (reconciler node) which 
may introduce bottlenecks. In addition, if the reconciler node fails, the entire replication system may 
become unavailable.  

A theory for centralized semantic reconciliation was set by IceCube [KRSD01, PSM03]. According 
to this theory, the application semantics can be described by means of constraints between update actions. 
A constraint is an application invariant, e.g. a parcel constraint establishes the “all-or-nothing” semantics, 
i.e. either all parcel’s actions execute successfully in any order, or none does. For instance, consider a 
user that improves the content of a shared document by producing two related actions a1 and a2 (e.g. a1 
changes a document paragraph and a2 changes the corresponding translation); in order to assure the “all-
or-nothing” semantics, the application should create a parcel constraint between a1 and a2. These actions 
can conflict with other actions. Therefore, the aim of reconciliation is to take a set of actions with the 
associated constraints and produce a schedule, i.e. a list of ordered actions that do not violate constraints.  

Different from IceCube, we propose a fully distributed approach to perform P2P reconciliation in a 
distributed hash table (DHT) overlay. The DHT is an efficient distributed architecture to perform key-
based information retrieval in a P2P environment. Since our reconciliation solution relies on key-based 
information retrieval and aims at providing good performance, the choice of DHT seems natural. In addi-
tion, variable latencies and bandwidths, typically found in P2P networks, may strongly impact the recon-
ciliation performance once data access times may vary significantly from node to node. Therefore, in 
order to build a suitable P2P reconciliation solution, topology awareness must be considered.  In this 
paper we also introduce topology awareness to our distributed algorithms, to enhance the reconciliation 
performance.  

In this paper, we propose the P2P-reconciler, a new decentralized reconciliation protocol designed 
for P2P networks that we built upon the reconciliation theory set by IceCube. The main contributions of 
this paper are: (1) a DHT cost model for computing communication costs of a P2P network using a DHT 
overlay network; (2) the P2P-reconciler cost model for computing the cost of each reconciliation step 
based on DHT cost model; (3) the basic P2P-reconciler algorithm for semantic reconciliation in P2P 
networks, which selects the best reconciler nodes based on the P2P-reconciler cost model; (4) a topology-
aware approach for the P2P-reconciler (P2P-reconciler-TA); (5) experimental results that show: a)  that 
our cost-based approach yields high data availability and excellent scalability, with acceptable perform-
ance and limited overhead; b) the  important gains of the topology-aware approach (P2P-reconciler-TA) 
compared to the basic P2P-reconciler.  We also present the validation of P2P-reconciler through its im-
plementation in the APPA architecture [MAPV06] and give the proof of correctness of our protocols. 

The rest of this paper is organized as follows. Section 2 describes the basis of the P2P-reconciler pro-
tocol for semantic reconciliation in P2P networks. Section 3 introduces the DHT cost model. Section 4 
describes the P2P-reconciler cost model and the dynamic allocation algorithm for selecting the best rec-
onciler nodes. Section 5 presents the topology aware approach for the P2P-reconciler. Section 5 shows 
implementation and experimental results. Section 6 compares our work with the most relevant related 
works. Finally, Section 7 concludes this paper. Annex A shows the validation of P2P-reconciler built in 
the context of APPA and Annex B presents all proofs of correctness of our protocols. 



4 

2 P2P semantic reconciliation 
In this section, we first introduce the semantic reconciliation as proposed by IceCube. Then, we provide 
an overview of our P2P-reconciler. Next, we present P2P-reconciler in detail. Finally, we describe our 
strategy for dealing with the dynamic behavior of the P2P network. 

2.1 Representation of application semantics 

IceCube describes the application semantics by means of constraints between actions. An action is de-
fined by the application programmer and represents an application-specific operation (e.g. a write opera-
tion on a file or document, or a database transaction). A constraint is the formal representation of an ap-
plication invariant (e.g. an update cannot follow a delete). Constraints are classified as follows: 
− User-defined constraints2: user and application can create user-defined constraints to make their 

intents explicit. The predSucc(a1, a2) constraint  establishes causal ordering between actions (i.e. ac-
tion a2 executes only after a1 has succeeded); the parcel(a1, a2) constraint is an atomic (all-or-
nothing) grouping (i.e. either a1 and a2 execute successfully or none does); the alternative(a1, a2) con-
straint provides choice of at most one action (i.e. either a1 or a2 is executed, but not both). 

− System-defined constraints3: it describes a semantic relation between classes of concurrent actions. 
The bestOrder(a1, a2) constraint indicates the preference to schedule a1 before a2 (e.g. an application 
for account management usually prefers to schedule credits before debits); the mutuallyExclusive(a1, 
a2) constraint states that either a1 or a2 can be executed, but not both. 

Let us illustrate user- and system-defined constraints with Example 2. In this example, an action is 
noted an

i, where n indicates the node that has executed the action and i is the action identifier. T is a repli-
cated object, in this case, a relational table; K is the key attribute for T; A and B are any two other attrib-
utes of T. T1, T2, and T3 are replicas of T. And parcel is a user-defined constraint that imposes atomic 
execution for a3

1 and a3
2. Consider that the actions in Example 2 (with the associated constraints) are 

concurrently produced by nodes n1, n2 and n3, and should be reconciled. 
 

a1
1: update T1 set A=a1 where K=k1 

a2
1: update T2 set A=a2 where K=k1 

a3
1: update T3 set B=b1 where K=k1 

a3
2: update T3 set A=a3 where K=k2 

Parcel(a3
1, a3

2) 

Example 2. Conflicting actions on T 
 

In Example 2, actions a1
1 and a2

1 try to update a copy of the same data item (i.e. T’s tuple identified 
by k1). The IceCube reconciliation engine realizes this conflict and asks the application for the semantic 
relationship involving a1

1 and a2
1. As a result, the application analyzes the intents of both actions, and, as 

they are really in conflict (i.e. n1 and n2 try to set the same attribute with distinct values), the application 
produces a mutuallyExclusive(a1

1, a2
1) system-defined constraint to properly represent this semantic de-

pendency. Notice that from the point of view of the reconciliation engine a3
1 also conflicts with a1

1 and 
a2

1 (i.e. all these actions try to update a copy of the same data item). However, by analyzing actions’ in-
tents, the application realizes that a3

1 is semantically independent of a1
1 and a2

1 as a3
1 tries to update an-

other attribute (i.e. B). Therefore, in this case no system-defined constraints are produced. Actions a3
1 and 

a3
2 are involved in a parcel user-defined constraint, so they are semantically related. 

                                                           
2 User-defined constraints are called log constraints by IceCube. We prefer user-defined to emphasize the user intent. 
3 System-defined constraints are called object constraints by IceCube. We use system-defined in contrast to user in-
tents. 
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The aim of reconciliation is to take a set of actions with the associated constraints and produce a 
schedule, i.e. a list of ordered actions that do not violate constraints. In order to reduce the schedule pro-
duction complexity, the set of actions to be ordered is divided into subsets called clusters. A cluster is a 
subset of actions related by constraints that can be ordered independently of other clusters. Therefore, the 
global schedule is composed by the concatenation of clusters’ ordered actions. To order a cluster, 
IceCube performs iteratively the following operations:  

− Select the action with the highest merit from the cluster and put it into the schedule. The merit of an 
action is a value that represents the estimated benefit of putting it into the schedule (the larger the 
number of actions that can take part in a schedule containing ai

n is, the larger the merit of ai
n will be). 

If more than one action has the highest merit (different actions may have equal merits), the recon-
ciliation engine selects randomly one of them.  

− Remove the selected action from the cluster.  

− Remove from the cluster the remaining actions that conflict with the selected action.  

This iteration ends when the cluster becomes empty. As a result, cluster’s actions are ordered. In fact, 
several alternative orderings may be produced until finding the best one. Therefore, our approach does not 
employ timestamps. Indeed, actions are ordered based on the application semantics in such a way that the 
number of actions in the final schedule is maximized. 

Let us illustrate our ordering procedure with an example. Consider the actions a1, a2, a3 and the asso-
ciated constraints predSucc(a1, a2) and mutuallyExclusive(a1, a3). The constraint predSucc(a1, a2) states 
that a1 must precede a2 in the schedule according to the application semantics. Similarly, the constraint 
mutuallyExclusive(a1, a3) states that either a1 or a3 should be scheduled, but not both. In this scenario, a2 
cannot be the first action in the schedule since it should be preceded by a1. Thus, in the first iteration, we 
must choose between a1 and a3. The merit of a1 is 1 since a1 can be followed by a2, whereas the merit of 
a3 is 0. Therefore, the first action we put into the schedule based on actions’ merits is a1. Due to the mu-
tuallyExclusive(a1, a3) constraint, the selection of a1 leads to the removal of a3 and, as a result, a2 remains 
alone to the next iteration. Thus, in the second iteration, we put a2 into the schedule. In this example, the 
final schedule is ordered as follows: [a1, a2]. 

2.2 Overview on how P2P-reconciler works 

We assume that P2P-reconciler is used in the context of a virtual community which requires a high level 
of collaboration and it is deployed on a reasonable number of nodes (typically hundreds or even thou-
sands of interacting users) [WIO97]. The P2P network we consider consists of a set of nodes which are 
organized as a distributed hash table (DHT) [RFHK+01, SMKK+01]. A DHT provides a hash table ab-
straction over multiple computer nodes. Data placement in the DHT is determined by a hash function 
which maps data identifiers into nodes. 

In our solution, the replicated object is generic, i.e. it can be a relational table, an XML document, 
etc. We call object item a component of the object, e.g. a tuple in a relational table or an element in an 
XML document. A replica is a copy of an object (e.g. copy of a relational table or an XML document) 
while a replica item is a copy of an object item (e.g. a copy of a tuple or XML element). We assume 
multi-master replication, i.e. multiple replicas of an object R, noted R1, R2, …, Rn, are stored in different 
nodes which can read or write R1, R2, …, Rn. Conflicting updates are expected, but it is assumed that the 
application tolerates some level of replica divergence until reconciliation.  

We have structured the P2P reconciliation in 6 distributed steps in order to maximize parallelism and 
assure independence between parallel activities. This structure improves reconciliation performance and 
availability (i.e. if a node fails, the activity it was executing is assigned to another available node). 

With P2P-reconciler, data replication proceeds basically as follows. First, nodes execute local actions 
to update a replica of an object while respecting user-defined constraints. Then, these actions (with the 
associated constraints) are stored in the DHT based on the object’s identifier. Finally, reconciler nodes 
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retrieve actions and constraints from the DHT and produce the global schedule, by reconciling conflicting 
actions in 6 distributed steps based on the application semantics. This schedule is locally executed at 
every node, thereby assuring eventual consistency [SBK04, SS05]. The replicated data is eventually con-
sistent if, when all nodes stop the production of new actions, all nodes will eventually reach the same 
value in their local replicas. 

In this protocol, we distinguish three types of nodes: the replica node, which holds a local replica; the 
reconciler node, which is a replica node that participates in distributed reconciliation; and the provider 
node, which is a node in the DHT that holds data consumed or produced by the reconcilers (e.g. the node 
that holds the schedule is called schedule provider). 

We concentrate the reconciliation work in a subset of nodes (the reconciler nodes) in order to maxi-
mize performance. If we do not limit the number of reconcilers, the following problems take place. First, 
provider nodes and the network as a whole become overloaded due to a large number of messages aiming 
to access the same subset of DHT data in a very short time interval. Second, nodes with high-latencies 
and low-bandwidths can waste a lot of time with data transfer, thereby hurting the reconciliation response 
time. Our strategy does not create improper imbalances in the load of reconciler nodes since reconcilia-
tion activities are not computationally intensive.  

2.3 Detailed presentation of P2P-reconciler 

We now present P2P-reconciler in deeper detail. First, we introduce the reconciliation objects necessary 
for P2P-reconciler. Then, we describe the six steps of the reconciliation algorithm. Finally, we illustrate 
this algorithm at work over a Chord DHT. 

2.3.1 Reconciliation objects 

Data managed by P2P-reconciler during reconciliation are held by reconciliation objects that are stored in 
the DHT giving the object identifier. To enable the storage and retrieval of reconciliation objects, each 
reconciliation object has a unique identifier. P2P-reconciler uses the following reconciliation objects: 

− Action log R (noted LR): it holds all actions that try to update any replica of the object R (in the 
Example 2, all updates on T’s tuples performed on T1, T2 or T3 are stored in LT). Notice that an action 
is first stored locally in the replica node and afterwards in the provider node that holds LR. In 
Example 2, only one action log is involved (LT) because a single object is replicated (T). The action 
log makes up the input for reconciliation. 

− Clusters set (noted CS): recall that a cluster contains a set of actions related by constraints, and can 
be ordered independently from other clusters when producing the global schedule. All clusters pro-
duced during reconciliation are stored in the clusters set reconciliation object.  

− Action summary (noted AS): it captures semantic dependencies among actions, which are described 
by means of constraints. In addition, the action summary holds relationships between actions and 
clusters, so that each relationship describes an action membership (an action is a member of one or 
more clusters). An action membership is a pair of values (an

i, Cj), where an
i represents an action to be 

reconciled, and Cj indicates a cluster to which an
i belongs. 

− Schedule (noted S): it contains an ordered list of actions, which is composed from the concatenation 
of clusters’ ordered actions. Thus, we denote a schedule reconciliation object as S = S1 ⊕ S2 … ⊕ Sn, 
where each Si represents the sub-list of ordered actions coming from the cluster Ci and ⊕ means con-
catenation. 

Reconciliation objects are guaranteed to be available using known DHT replication solutions 
[APV07, KWR05]. P2P-reconciler’s liveness relies on the DHT liveness. 
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2.3.2 P2P-reconciler algorithm 

P2P-reconciler executes reconciliation in 6 distributed steps as shown in Figure 1. Any connected node n 
can try to start reconciliation by inviting other available nodes to engage with it. Only one reconciliation 
can run at a time, thus if reconciliation is already running when n try to start it, n does not succeed and it 
must try again later. However, if n succeeds, the 1st step (node allocation) allocates a subset of engaged 
nodes to step 2, another subset is allocated to step 3, and so forth until the 6th step (details about node 
allocation are provided in the next sections). Nodes at step 2 start reconciliation. The output produced at 
each step becomes the input to the next one. In the following, we describe the activities performed in each 
step, and we illustrate parallel processing by explaining how these activities can be executed simultane-
ously by two reconciler nodes, n1 and n2. 

 

 

Figure 1. P2P-reconciler steps 
 

− Step 1 – node allocation: a subset of connected replica nodes is selected to proceed as reconciler 
nodes (detailed in Section 4).   

− Step 2 – actions grouping: reconcilers take actions from the action log and put actions that try to 
update common object items into the same group. In Example 2, suppose that n1 takes {a1

1, a2
1} and 

n2, {a3
1, a3

2} as input. By hashing the identifiers of the replica items handled by these actions (respec-
tively k1, k1, k1, and k2), n1 puts a1

1 and a2
1 into the group G1 (a1

1 and a2
1 handle the same object 

item identified by k1) whereas n2 put a3
1 into G1 and a3

2 into G2 (a3
1 and a3

2 handle respectively the 
object items identified by k1 and k2). Thus, groups G1 = {a1

1, a2
1, a3

1} and G2 = {a3
2} are produced 

in parallel and are stored in the action log reconciliation object (LT). Clearly, in order to identify con-
flicting actions, we need to be able to distinguish object items from each other. This can be done by 
using keys or other means. For instance, two xml elements associated with different paths can be 
considered different object items. In this case, the element path works as an identifier. From the per-
spective of correctness, it does not matter if two distinct object items are considered the same object 
item by the reconciliation engine since the responsibility of judging conflicts is assigned to the appli-
cation, which deeply knows the context. The responsibility of the reconciliation engine is to put to-
gether actions that are potentially in conflict. Of course, from the perspective of performance, the lack 
of a good strategy for differentiating object items can lead to larger clusters and, as a result, worse 
performance. 

− Step 3 – clusters creation: reconcilers take action groups from the action log and split them into 
clusters of semantically dependent conflicting actions (two actions a1 and a2 are semantically inde-
pendent if the application judges safe to execute them together, in any order, even if they update a 
common object item; otherwise, a1 and a2 are semantically dependent); system-defined constraints 
are created to represent the semantic dependencies detected in this step; these constraints and the ac-
tion memberships that describe the association between actions and clusters are included in the action 
summary; clusters produced in this step are stored in the clusters set. In Example 2, consider that n1 
takes G1 and n2 takes G2 as input. In this case, n1 splits G1 into clusters C1 = {a1

1, a2
1} (a mutuallyEx-

clusive(a1
1, a2

1) system-defined constraint is produced to represent the semantic dependency between 
a1

1 and a2
1) and C2 = {a3

1} (a3
1 tries to update the same object item as a1

1 and a2
1, but a3

1 touches a 
distinct attribute, B; therefore, a3

1 does not conflict with a1
1 and a2

1); at the same time, n2 turns G2 
into cluster C3 = {a3

2}. All these clusters are stored in the clusters set reconciliation object (CS). In 
addition, n1 stores in the action summary (AS) the mutuallyExclusive(a1

1, a2
1) constraint and the fol-
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lowing memberships: {(a1
1, C1), (a2

1, C1), (a3
1, C2)}. Similarly, n2 stores in AS this set of member-

ships: {(a3
2, C3)}. 

− Step 4 – clusters extension: user-defined constraints are not taken into account in clusters creation 
(e.g. although a3

1 and a3
2 belong to a parcel, the previous step does not put them into the same clus-

ter, because they do not update a common object item). Thus, in this step, reconcilers extend clusters 
by adding to them new conflicting actions, according to user-defined constraints. These extensions 
lead to new relationships between actions and clusters, which are represented by new action member-
ships; the new memberships are included in the action summary. In Example 2, assume that n1 takes 
C1 = {a1

1, a2
1} as input whereas n2 takes C2 = {a3

1} and C3 = {a3
2} (each node deals with 2 actions). 

Then, n1 realizes that C1 does not need extensions, because its actions are not involved in user-
defined constraints; in parallel, due to the parcel constraint, n2 extends C2 and C3 as follows: C2 � C2 
∪ {a3

2}, and C3 � C3 ∪ {a3
1}. In addition, n2 updates the action summary with these action member-

ships: {(a3
2, C2), (a3

1, C3)}. 

− Step 5 – clusters integration: clusters extensions lead to cluster overlapping (an overlap occurs 
when the intersection of two clusters results in a non-null set of actions); in this step, reconcilers 
bring together overlapping clusters. In Example 2, consider that n1 takes {(a3

1, C2), (a3
1, C3), (a3

2, C2), 
(a3

2, C3)} as input whereas n2 takes {(a1
1, C1), (a2

1, C1)} (each node deals with the memberships of 2 
actions). Thus, n1 realizes that a3

1 is a member of C2 and C3, so n1 integrates them as follows: C4 � 
C2 ∪ C3 = {a3

1, a3
2}; at the same time, n2 realizes that a1

1 and a2
1 have just one membership, so n2 

does not perform integrations. At this point, clusters become mutually-independent, i.e. there are no 
constraints involving actions of distinct clusters. 

− Step 6 – clusters ordering: in this step, reconcilers take clusters from the clusters set and order clus-
ters’ actions; the ordered actions associated with each cluster are stored in the schedule reconciliation 
object (S); the concatenation of all clusters’ ordered actions makes up the global schedule that is exe-
cuted by all replica nodes. In Example 2, suppose that n1 takes C1 as input whereas n2 takes C4. As a 
result, n1 produces the sub-list of ordered actions S1 = [a1

1], because C1 actions are mutually exclu-
sive; in parallel, n2 produces the sub-list of ordered actions S4 = [a3

1, a3
2], because C4 actions are in-

volved in a parcel constraint. The global schedule is S � S1 ⊕ S4 = [a1
1, a3

1, a3
2]. 

At every step, the P2P-reconciler algorithm takes advantage of data parallelism, i.e. several nodes 
perform simultaneously independent activities on a distinct subset of actions (e.g. ordering of different 
clusters). No centralized criterion is applied to partition actions. Indeed, whenever a set of reconciler 
nodes requests data from a provider, the provider node naively supplies reconcilers with about the same 
amount of data (the provider node knows the maximal number of reconcilers because it receives this 
information from the node that launches reconciliation). 

 

Figure 2. P2P-reconciler at work 
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2.3.3 P2P-reconciler at work 

We now illustrate the execution of the P2P-reconciler algorithm over a Chord DHT network. For simplic-
ity, we consider only its first 3 steps and a few nodes at work. Figure 2 shows 8 nodes and their respective 
roles in the reconciliation protocol. All of them are replica nodes. Reconciliation objects are stored at 
provider nodes according to the hashed values associated with the reconciliation object identifiers (e.g. 
Chord maps a hashed value v to the first node that has an identifier equal to or greater than v in the circle 
of ordered node identifiers). In this example, we assume that Chord maps the hashed value of the action 
log identifier to node 1; using the same principle, the clusters set, the schedule and the action summary 
are mapped respectively to nodes 8, 12 and 15. Finally, node 9 is responsible for allocating reconcilers.  

Any node can start the reconciliation by triggering the step 1 of P2P-reconciler at the appropriate 
node (e.g. node 9), which selects the best reconcilers and notifies them about the steps they should per-
form. In our example, node 9 selects node 2 to execute step 2, and it selects nodes 5 and 13 to perform 
step 3 (details about node allocation are provided in the next sections).�

Node 2 starts the step 2 of reconciliation by retrieving actions from the action log (stored at node 1) 
in order to arrange them in groups of actions on common object items. At the same time, nodes 5 and 13 
begin step 3 by requesting action groups to node 1; these requests are held in a queue at node 1 while 
action groups are under construction. When node 2 stores action groups at action log, node 1 replies the 
requests previously queued by nodes 5 and 13. At this moment, step 2 is terminated and step 3 proceeds. 
Notice that each reconciler works on independent data (e.g. nodes 5 and 13 receive distinct action groups 
from node 1). To assure this independence, provider nodes segment the data they hold based on the num-
ber of reconcilers (e.g. node 1 creates two segments of action groups, one for node 5 and another for node 
13). 

When step 2 terminates, nodes 5 and 13 receive action groups from node 1 and produce the corre-
sponding clusters of actions, which are stored at node 8. In turn, node 8 replies requests for clusters that 
reconcilers of step 4 have previously queued; and so forth, until the end of step 6. 

2.4 Dealing with dynamism 

Whenever distributed reconciliation takes place, a set of nodes Nd may be disconnected. As a result, the 
global schedule is not applied by nodes of Nd. Moreover, actions produced by Nd nodes and not yet stored 
in the P2P network are not reconciled. In this subsection, we explain how P2P-reconciler assures eventual 
consistency despite disconnections. Fault-tolerance aspects are not studied in this paper since they are 
orthogonal to what is presented.  

We need a new reconciliation object to assure eventual consistency in the presence of disconnections. 
Thus, we define schedule history, noted H, as a reconciliation object that stores a chronological sequence 
of schedules’ identifiers produced by reconciliations (H = (Sid1, …, Sidn)). A replica node can check 
whether it is up to date by comparing the identifier of the last schedule it has locally executed with Sidn. 

P2P-reconciler deals with dynamism as follows. Each node locally stores the identifier of the last 
schedule it has locally executed (noted Slast). In addition, every node knows the schedule history’s unique 
identifier. Thus, when a node n of Nd reconnects, it proceeds as follows: (1) n checks whether Slast is equal 
to Sidn, and, if not (i.e. n’s replicas are out of date), n locally applies all schedules that follow Slast in his-
tory H; (2) actions locally produced by n and not yet stored in the P2P network are put into the action log 
for later reconciliation. 

3 DHT cost model 
A DHT network is usually built on top of the Internet, which consists of nodes with variable latencies and 
bandwidths. As a result, the network costs involved in DHT data accesses may vary significantly from 
node to node and have a strong impact in the reconciliation performance. Thus, network costs should be 
considered to perform reconciliation efficiently. In this section, we propose a basic cost model for com-
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puting communication costs in DHTs. On top of it, we can build customized cost models (e.g. we elabo-
rated a customized cost model for selecting reconciler nodes to P2P-reconciler – Section 4).  

In the basic cost model, we define communication costs (henceforth costs) in terms of latency and 
transfer times, and we assume links with variable latencies and bandwidths. In order to exploit bandwidth, 
the application behavior in terms of data transfer should be known. Since this behavior is application-
specific, we exploit bandwidth in higher-level customized models. 

Most DHT data access operations consist of a lookup for finding the address of the node n that holds 
the requested information followed by direct communication with n [HHLT+03]. In the lookup step, sev-
eral hops may be performed according to nodes’ neighborhoods. Therefore, our DHT cost model relies on 
three metrics: lookup cost, direct cost, and transfer cost. The lookup cost, noted lc(n, id), is the latency 
time spent in a lookup operation launched by node n to find the data item identified by id. Similarly, di-
rect cost, noted dc(ni, nj), is the latency time spent by node ni to directly access nj. And the transfer cost, 
noted tc(ni, nj, d), is the time spent to transfer the data item d from node ni to node nj, which is computed 
based on d’s size and the bandwidth between ni and nj.  

3.1.1 Lookup cost 

Lookup costs change dynamically as nodes join and leave the P2P network. In this subsection, we show 
how to compute lookup costs and deal with dynamic changes.  

Node n could easily compute the lookup cost lc(n, id) by executing the lookup operation and measur-
ing the associated time. However, this approach overloads the node that replies the lookup operation as it 
receives a lot of lookup messages. Furthermore, the network is overloaded. To avoid these problems, we 
propose that each node computes its lookup costs incrementally, by taking advantage of cost information 
held by its neighbors. With this approach, a node n only keeps the lookup costs to a few of identifiers (i.e. 
one identifier for each reconciliation object); in addition, n keeps the direct costs to a few of nodes (i.e. 
n’s neighbors). It would be unfeasible and not recommendable to keep information about the full identi-
fier space or all nodes. Our approach is feasible because in a DHT a node n looks for an identifier id by 
communicating with the n’s neighbor that is closest to id.  

We illustrate our solution with an example. In Figure 3a, let n4 be a node that replies lookup opera-
tions searching for id=x; let arrows indicate the route of a lookup operation (e.g. if n2 looks for x it makes 
this route: n2 → n3 → n4); let a number over an arrow be the latency between the associated nodes. In this 
example, the lookup cost lc(n2, x) is 100 (i.e. 40 + 60), and lc(n1, x) is 150 (i.e. 50 + 40 + 60). Instead of 
executing the lookup operation to compute lc(n1, x), n1 can ask n2 for lc(n2, x) and add to this cost the 
latency between n1 and n2 (i.e. lc(n1, x) � lc(n2, x) + 50). The advantage of this incremental approach is 
locality and to avoid network overload. 

 

 

Figure 3. Computing lookup costs 
 
Joins and leaves change the neighborhoods of nodes and, accordingly, the routes of lookup messages. 

As a result, lookup costs must be refreshed. However, we should avoid the refreshment at distant nodes to 
avoid network overload. To cope with this problem, we introduce two definitions: 

 
− Cost limit: it is the maximal acceptable cost for looking up an identifier. The meaning of acceptable 

cost relies on the application on top of DHT. For instance, in the case of P2P-reconciler, which se-
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lects a subset of replica nodes to proceed as reconciler nodes, it is not acceptable that the lookup cost 
of a particular reconciler overtakes the average lookup cost of the P2P network as a whole, because 
the number of reconcilers is usually much smaller than the number of replica nodes.  

− Relevant joins and leaves: a join or leave is relevant for a node n if it changes the cost for looking 
up an identifier in which n is interested, such that the old or the new lookup cost does not overtake 
cost limit. Nodes refresh their lookup costs only in the presence of relevant joins and leaves.  

We illustrate our approach for refreshing lookup costs with an example. In Figure 3b, let cost limit be 
110; and consider that n5 joins the DHT of Figure 3a taking the place of n3 in the route towards id=x. The 
join of n5 is relevant only to n2 as n2 updates lc(n2, x) from 100 (a value that does not overtake cost limit) 
to 120. In contrast, the join of n5 is not relevant to n3 and n4 since the associated lookup costs remain 
unchanged. This join is not relevant to n1 either, because both, the old lookup cost (i.e. 150) and the new 
one (i.e. 170), overtake cost limit. Thus, n1, n3 and n4 do not participate in the refresh operation. 

3.1.2 Direct cost 

Direct costs change dynamically as nodes join and leave the P2P network. In this subsection, we show 
how to compute direct costs and deal with dynamic changes. 

We first define home(id) as the provider node that holds the identifier id. The direct cost dc(n, 
home(id)) represents the latency time spent by node n to directly access home(id). This cost can be ex-
actly computed or estimated. With the exact approach, n measures the latency between n and home(id). In 
contrast, with the estimated approach, n measures the latencies between n and a subset of nodes and then 
computes the corresponding average value, which represents the estimated latency between n and 
home(id). The exact approach is precise, but it can overload home(id) as it becomes a central point of 
access for a lot of nodes. On the other hand, the estimated approach does not rely on accessing home(id), 
thereby avoiding its overload, but it is not precise. We compare both approaches and, due to the small 
difference between the corresponding reconciliation times (i.e. 7%), we consider that the estimated ap-
proach should be employed in order to avoid overload.  

Notice that the estimated approach requires a subset of nodes to estimate the latency between n and 
home(id). This subset should be n’s neighbors for DHTs whose neighborhoods do not rely on physical 
distances among nodes (e.g. Chord) since, in this case, estimation is not biased and the information 
needed is already available at n (cost zero). However, if the DHT is location-aware, i.e. n’s neighbors are 
closer to n than other nodes (e.g. CAN with design improvements), the use of n’s neighbors would lead to 
a biased estimation. Thus, in this case, the subset of nodes should be randomly selected from a bootstrap 
list (list of nodes that are likely connected).  

Joins and leaves may change the home(id). Thus, direct costs must also be refreshed. In our solution, 
dc(n, home(id)) is refreshed at node n whenever home(id) changes and the associated lookup cost (i.e. 
lc(n, id)) is smaller than the cost limit. To compute the refreshed value, we use the same strategy em-
ployed for computing the initial value. The principle of this approach is to avoid the execution of re-
freshment operations at far distant nodes, and its advantage is to avoid network overload. 

4 P2P-reconciler node allocation 
The first step of P2P-reconciler aims to select the best nodes to proceed as reconcilers in order to maxi-
mize performance. The number of reconcilers has a strong impact on the reconciliation time. Thus, this 
section concerns the estimation of the optimal number of reconcilers per step as well as the allocation of 
the best nodes. We first present how to determine the maximal number of reconciler nodes. Then, we 
introduce the P2P-reconciler cost model for computing the cost of each reconciliation step. Next, we 
describe how the cost provider node selects reconcilers based on P2P-reconciler cost model. Finally, we 
present our approach for managing the dynamic behavior of P2P-reconciler costs. 
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4.1 Determining the number of reconcilers  

At the beginning of reconciliation, a subset of replica nodes must be allocated to P2P-reconciler steps in 
order to proceed as reconciler nodes. This allocation is dynamic as it depends on the reconciliation con-
text (i.e. number of actions to be reconciled, network properties, etc.). Since P2P-reconciler is distributed, 
we can increase the number of reconciler nodes to reduce the reconciliation time. However, as we in-
crease the number of reconcilers we also increase the number of exchanged messages and the work per-
formed by provider nodes. As a result, beyond a given bound, increasing the number of reconcilers yields 
the opposite effect: the reconciliation time augments. In order to compute this bound, that represents the 
maximal number of reconcilers per step, we perform the following activities. 

− First, we configure the reconciliation context by setting up some parameters (e.g. number of actions, 
number of connected replica nodes, number of reconciler nodes, minimal and maximal network la-
tencies, network bandwidths), and then we simulate reconciliation several times, taking as a result a 
reconciliation sample. For each simulation, we change the topology of the physical and overlay net-
works or the set of actions to be reconciled or both, always respecting the parameters’ values. A 
simulation runs locally in a single node. An important aspect is that only network communication is 
simulated (everything else is done by the actual P2P-reconciler protocol). 

− Second, we search an equation y = f(x) that describes the reconciliation behavior by performing a 
polynomial regression [KKMN98] with sample’s data. This equation allows us to forecast the recon-
ciliation time of any reconciliation in the same context. The independent variable x is the number of 
reconciler nodes whereas the dependent variable y is the reconciliation time. We have always got an 
excellent correlation between x and y by using a polynomial of degree 3 as shown in Figure 4 (in 
Figure 4, r is the correlation coefficient and it can vary from 0 to 1; 1 denotes a perfect correlation).  

− Third, we compute the derivative equation y’ = f’(x); this derivative equation enables us to find which 
value of x produces the minimal value of y. The point (x, y) where y is minimal is called minimal 
point. Since f’(x) is a second-order polynomial as shown in Figure 4, the curve described by f(x) has 
exactly one minimal point and one maximum point, which correspond to the roots of f’(x). 

− Finally, we calculate the minimal point, which represents the number of reconcilers that minimizes 
the reconciliation time in the given context. This optimal number of reconcilers is the same for every 
step. At the beginning of our research we tried to find a different number of reconcilers for each step, 
but we realized that, in practice, this approach did not improve our results. This can be explained by 
the trade-off between the providers’ workload and the network traffic. The best performance is 
achieved with a number of reconcilers that optimize the network traffic without overloading the pro-
vider nodes. 

The larger the number of actions to be reconciled and the higher the network speed are, the larger the 
maximal number of reconcilers per step. In order to determine the number of reconcilers, we do not fix 
parameters like network bandwidth, latency, and others. Everything is variable. Regarding network 
bandwidth, we provide a list of possible values varying from 64 Kbps to 20 Mbps. The bandwidth values 
follow a Pareto distribution so that low bandwidths are more frequently assigned than high bandwidths. 
This means, the network topology of a single experiment has variable bandwidths. With respect to laten-
cies, we provide the minimum and maximum latencies corresponding to the type of network we intend to 
simulate (e.g. Cluster, Grid, Internet, etc.) and, inspired by BRITE [Bri08], we place nodes in a 2-
dimensional Cartesian coordinate space, called plane, so that the latency between two nodes ni and nj is 
proportional to the geometrical distance between ni and nj on the plane. This approach assures variable 
latencies among nodes. Details about our network simulator can be found in [Sim07]. 

We address the problem of obtaining sufficient samples by relying on peers’ collaboration. In 
[Mar07] we show that the only information needed to compute the maximal number of reconcilers per 
step is the equation y’ = f’(x); after determining this equation, sample’s data are disposable. Therefore, in 
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order to obtain this equation, a node n proceeds as follows. First, n locally looks for an existing equation 
that corresponds to its need. If n does not succeed, n requests the equation’s coefficients from its 
neighbors. If no neighbor can provide this information, n locally produces a reconciliation sample and 
computes the associated equation, which is stored at n for future reuse. With time, a lot of samples are 
produced and the associated equations are shared among peers. As a result, the simulation is often 
avoided and, in this case, there is no overhead. For this reason, we did not consider integrating the simula-
tion costs into global reconciliation cost. Our experiments have shown that the time needed to produce a 
complete sample and compute the associated equation varies from 20s to 60s depending on the number of 
actions to be reconciled. 
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Figure 4. Examples of polynomial regression 

Finally, the relationship between the increase on the provider/reconciler interactions and the optimal 
number of reconcilers is not straightforward. It depends on the processing power of provider nodes, the 
amount of data to be transferred, the subjacent bandwidths and latencies, and so forth. However, it is very 
difficult to compute the optimal number of reconcilers analytically. Therefore, we decided to take advan-
tage of simulation by producing a powerful simulator, which works with variable bandwidths, latencies, 
number of nodes, and data transfer sizes. In addition, our simulator is very easy to configure. 

4.2 P2P-reconciler cost model 

The P2P-reconciler cost model is built on top of the DHT cost model by taking into account each recon-
ciliation step and defining a new metrics: node step cost. The node step cost, noted cost(i, n), is the sum 
of lookup, direct access, and transfer costs estimated by node n for executing step i of P2P-reconciler 
algorithm.  

By analyzing the P2P-reconciler behavior in terms of lookup, direct access, and data transfer opera-
tions at every step, we produced a cost formula for each step of P2P-reconciler, which are shown in Table 
1. There is no formula associated with step 1 because it is not performed by reconciler nodes. 

As an example, let us explain cost(2, n). In the second step of P2P-reconciler (i=2), node n takes ac-
tions from the action log R (LR) and arranges them in groups of actions that try to update common object 
items; these groups are stored at LR. Thus, the first term in the associated formula (lc(n,LR)) represents the 
lookup cost for finding LR provider. The second term (2×dc(n,nLR)) corresponds to the direct costs for 
taking actions from LR provider (request and reply). The third term (tc(nLR, n, actSet) stands for the trans-
fer cost of the action set from nLR to n. The fourth term (lc(n,LR)) represents the lookup cost for finding 
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again LR provider. The fifth term (dc(n,nLR)) corresponds to the direct cost for storing groups in LR pro-
vider (only request). And the last term (tc(n, nLR, grpSet)) stands for the transfer cost of the action groups 
produced in this step from n to nLR. Similarly, all formulas can be explained. 
 

Step i Cost(i, n) 
2 lc(n, LR) + 2×dc(n, nLR) + tc(nLR, n, actSet) + lc(n, LR) + dc(n, nLR) + tc(n, nLR, grpSet) 

3 
lc(n, LR) + 3×dc(n, nLR) + tc(nLR, n, grpSet) + lc(n, CS) + 2×dc(n, nCS) +  
tc(n, nCS, [cluSet + cluIds]) + lc(n, AS) + dc(n, nAS) + tc(n, nAS, [sdcSet + m3Set]) 

4 lc(n, CS) + 3×dc(n, nCS) + tc(nCS, n, cluSet) + 2×lc(n,AS) + 3×dc(n, nAS) + tc(n, nAS, m4Set) 

5 lc(n, AS) + 3×dc(n, nAS) + tc(nAS, n, mSet) + lc(n, CS) + dc(n, nCS) + tc(n, nCS, ovlCluSet) 

6 
lc(n, CS) + 3×dc(n, nCS) + tc(nCS, n, itgCluSet) + lc(n, AS) + 2×dc(n, nAS) +  
tc(nAS, n, sumActSet) + lc(n, S) + dc(n,nS) + tc(n, nS, ordActSet) 

Table 1. P2P-reconciler cost model 

4.3 Node allocation  

Node allocation is the first step of P2P-reconciler protocol as shown in Figure 1. It aims to select for 
every succeeding step a set of reconciler nodes that can perform reconciliation with good performance. In 
this subsection, we define a new reconciliation object needed in node allocation, and then we describe 
how reconciler nodes are chosen, and we illustrate that with an example. 

We define communication costs, noted CC, as a reconciliation object that stores the node step costs 
estimated by every replica node and used to choose reconcilers before starting reconciliation.  

The node that holds CC in the DHT at a given time is called cost provider, and it is responsible for al-
locating reconcilers. The allocation works as follows. Replica nodes locally estimate the costs for execut-
ing every P2P-reconciler step, according to the P2P-reconciler cost model, and provide this information to 
the cost provider. The node that starts reconciliation computes the maximal number of reconcilers per 
step (maxRec), as described in Section 4.1, and asks the cost provider for allocating at most maxRec rec-
onciler nodes per P2P-reconciler step. As a result, the cost provider selects the best nodes for each step 
and notifies these nodes of the P2P-reconciler steps they should execute. 

In our solution, the cost management is done in parallel with reconciliation. Moreover, it is network 
optimized since replica nodes do not send messages to the cost provider, informing about their estimated 
costs, if the node step costs overtake the cost limit. For these reasons, the cost provider does not become a 
bottleneck. 

We now illustrate the allocation algorithm using an example. Table 2 shows the lookup and direct 
costs of 4 nodes belonging to a Chord DHT network [SMKK+01] with 1024 connected nodes. In a DHT, 
a node that is close to a reconciliation object (e.g. n0 is close to LR) may be far distant of others (e.g. n0 is 
far distant of CS and S). As a result, a node that is suitable for a P2P-reconciler step may not be worth in 
other steps. For this reason, every P2P-reconciler step has its own set of reconcilers. 

Table 3 presents the transfer costs associated with the same nodes of Table 2. For simplicity, we as-
sumed that all links between reconciler nodes and provider nodes have 1Mbps of bandwidth. The sizes of 
transferred data items are estimated based on the number of actions to be reconciled, the average action 
size, and the number of reconciler nodes. For space reasons, we do not detail this estimation. 

Table 4 shows the estimated costs that the cost provider receives from the replica nodes. These costs 
are computed by applying on the P2P-reconciler cost model (Table 1) the lookup and direct costs of the 
DHT cost model (Table 2) and the transfer costs (Table 3). We show in bold the less expensive cost asso-
ciated with each P2P-reconciler step. Thus, in our example, if the maximal number of reconcilers per step 
is 1, the cost provider selects as reconciler for each P2P-reconciler step the node of  Table 4 whose cost is 
in bold (i.e. Step2 = {n0}, Step3 = {n0}, Step4 = {n1}, Step5 = {n2}, Step6 = {n3}), and notifies its decision to 
these nodes. 
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Reconciliation objects DHT costs  

per node LR AS CS S 
lc(n0, id) 0 685 1085 1036 
dc(n0, home(id)) 43 162 222 218 
lc(n1, id) 832 0 1361 1069 
dc(n1, home(id)) 163 282 193 185 
lc(n2, id) 974 1101 0 1483 
dc(n2, home(id)) 146 28 351 351 
lc(n3, id) 1159 729 976 0 
dc(n3, home(id)) 163 283 183 175 

Table 2. Lookup and direct costs based on the DHT cost model. Each column holds a reconciliation object and each 

cell provides a specific lookup or direct cost (e.g. the cell in the 1st line and 2nd column indicates that n0 spends 

685ms to lookup AS whereas the cell in the 2nd line and 2nd column indicates that a direct access between n0 and 

home(AS) costs 162ms. 

 
Data item Description Size (Mbits) Cost (ms) 
actSet Set of actions 1.202 1202 
grpSet Set of action groups 0.343 343 
cluSet Set of clusters 0.336 336 
cluIds Clusters’ identifiers 0.120 120 
sdcSet Set of system-defined constraints 0.343 343 
m3Set Set of memberships (produced at step 3)  0.801 801 
m4Set Set of memberships (produced at step 4) 0.183 183 
mSet Set of all memberships 0.435 435 
ovlCluSet Set of overlapping clusters 0.336 336 
itgCluSet Set of integrated clusters 0.267 267 
sumActSet Set of summary actions 4.166 4166 
ordActSet Set of ordered actions 0.305 305 

Table 3. Transfer costs with 1Mbps of bandwidth. 
 

P2P-reconciler steps (i) Nodes 2 3 4 5 6 
n0 1674 4449 4126 3249 8752 
n1 3698 5294 3305 3171 8496 
n2 3931 5187 3858 2307 8782 
n3 4352 5946 4351 3508 7733 

Table 4. Node step costs 
 

4.4 Managing the dynamic costs 

The costs estimated by replica nodes for executing P2P-reconciler steps change as a result of disconnec-
tions and reconnections. To cope with this dynamic behavior and assure reliable cost estimations, a rep-
lica node ni works as follows: 

− Initialization: whenever ni joins the system, ni estimates its costs for executing every P2P-reconciler 
step. If these costs do not overtake the cost limit, ni supplies the cost provider with this information. 

− Refreshment: while ni is connected, the join or leave of another node nj may invalidate ni’s estimated 
costs due to routing changes. Thus, if the join or leave of nj is relevant to ni, ni recomputes its P2P-
reconciler estimated costs and refreshes them at the cost provider. 
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− Termination: when ni leaves the system, if its P2P-reconciler estimated costs are smaller than the 
cost limit (i.e. the cost provider holds ni’s estimated costs), ni notifies its departure to the cost pro-
vider. 

− Crash: two actions follow the crash of a node ni from the perspective of cost management. First, the 
cost provider discards the ni estimated costs. This happens either as a result of an unsuccessful at-
tempt of allocating ni or due to the expiration of the validity of the ni estimation (the cost provider as-
sociates a time to live with each cost estimation). Second, each node nj that has ni as neighbor and re-
alizes the ni absence recomputes nj’s estimated costs, if necessary. This computation is required if and 
only if nj looks for some reconciliation object by routing lookup operations through ni. In this case, nj 
additionally propagates the refreshed costs to its neighbors. 

P2P-reconciler computes the cost limit based on these parameters: the expected average latency of the 
network (e.g. 150 ms for the Internet), and the expected average number of hops to lookup a reconcilia-
tion object (e.g. log(n)/2 for a Chord DHT, where n represents the number of connected nodes and can be 
established as 15% of the community size).  

Annex A presents the use of P2P-reconciler in the replication service of APPA (Atlas Peer-to-Peer 
Architecture). Annex B presents all proofs of correctness that P2P-reconciler assures eventual consistency 
among replicas, providing highly available reconciliation for dynamic networks, and work correctly in the 
presence of failures.  

5 P2P-reconciler-TA protocol 
P2P-reconciler-TA is a distributed protocol for reconciling conflicting updates in topology-aware P2P 
networks. Given a set of nodes, we exploit topological information to select the “best” nodes to partici-
pate in the different steps of an algorithm, in a way that achieves an optimal performance. A P2P network 
is classified as topology-aware if its topology is established by taking into account the physical distance 
among nodes (e.g. in terms of latency times).  

Several topology-aware P2P networks could be used to validate our approach such as Pastry 
[RD01a], Tapestry [ZHSR+04, ZKJ01], CAN [RFHK+01], etc. We chose to construct our P2P-
reconciler-TA over optimized CAN because it allows building the topology-aware overlay network in a 
relatively simple manner. In addition, its routing mechanism is easy to implement, although less efficient 
than other topology-aware P2P networks (e.g. the average routing path length in CAN is usually greater 
than in other structured P2P networks).  

Basic CAN [RFHK+01] is a virtual Cartesian coordinate space to store and retrieve data as (key, 
value) pairs. At any point in time, the entire coordinate space is dynamically partitioned among all nodes 
in the system, so that each node owns a distinct zone that represents a segment of the entire space. To 
store (or retrieve) a pair (k1, v1), key k1 is deterministically mapped onto a point P in the coordinate space 
using a uniform hash function, and then (k1, v1) is stored at the node that owns the zone to which P be-
longs. Intuitively, routing in CAN works by following the straight line path through the Cartesian space 
from source to destination coordinates.  

Optimized CAN aims at constructing its logical space in a way that reflects the topology of the under-
lying network. It assumes the existence of well-known landmarks spread across the network. A node 
measures its round-trip time to the set of landmarks and orders them by increasing latency (i.e. network 
distance). The coordinate space is divided into bins such that each possible landmarks ordering is repre-
sented by a bin. Physically close nodes are likely to have the same ordering and hence will belong to the 
same bin. 

We claim that the switch from Chord (P2P-reconciler) to CAN (P2P-reconciler-TA) does not invali-
date our results based on the following argument. The most important DHT property in our experiments 
from the perspective of performance is the average number of hops needed to find the node that holds a 
given key. Let N be the number of connected nodes and d be the number of dimensions into which the d-
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dimensional CAN space is divided. Chord requires (log N)/2 hops on average to find a key whereas CAN 
needs (d/4)(N1/d) hops on average. Since d=2 in our experiments, (log N)/2 < (N1/2)/2. That means, due to 
the need of a larger number of hops to find a key over CAN, the expected performance over CAN is 
worse than Chord. This fact makes our results still better. 

Briefly, P2P-reconciler-TA works as follows. Based on the network topology, it selects the best pro-
vider and reconciler nodes. These nodes then reconcile conflicting updates and produce a schedule, which 
is an ordered list of non-conflicting updates. In this work, we focus on node allocation by proposing a 
dynamic distributed algorithm for efficiently selecting provider and reconciler nodes. We first introduce 
some definitions, and then we present the allocation algorithm in detail. 

5.1 Definitions 

P2P-reconciler-TA uses the following reconciliation objects: action log (LR), action summary (AS), clus-
ters set (CS), and schedule (S). The action log contains update actions to be reconciled; the action sum-
mary holds constraints among actions; the clusters set stores clusters of conflicting actions; and the 
schedule holds an ordered list of actions that do not violate constraints. For availability reasons, we pro-
duce k replicas of each reconciliation object and store these replicas into different providers. We note 
these terms as follows: 
− RO: set of reconciliation objects { LR, AS, CS, S}. 

− ro: a reconciliation object belonging to RO (e.g. CS, LR, etc.). 

− roi: the replica i of the reconciliation object ro (e.g. CS1 is the replica 1 of CS), where 1 � i � k; the 
coordinates (xi, yi) are associated with roi and determines the roi placement over the CAN coordinate 
space; roi is stored at the provider node proi whose zone includes (xi, yi). 

− Pro: set of k providers proi that store replicas of the reconciliation object ro. 

− best(Pro): the most efficient provider node holding a replica of ro. 

 
We apply various criteria to select the best provider nodes. One of such criteria establishes that a pro-

vider node should not be isolated in the network, i.e. it should be close to a certain number of neighbors 
that can become reconcilers, and therefore are called potential reconcilers. The physical proximity in 
terms of latency is not enough; a potential reconciler should also be able to access provider’s data by an 
acceptable cost. Thus, such a potential reconciler is considered a good neighbor of the associated provider 
node. We now present metrics and terms applied in provider node selection: 
 
− accessCost(n, p): the cost for a node n accessing data stored at the provider node p in terms of la-

tency and transfer times. The transfer time relies on the message size, which is usually variable. For 
simplicity, we consider a message of fixed size (e.g. 4 Kb). Equation 1 shows that the accessCost(n, 
p) is computed as the latency between n and p (noted latency(n, p)) plus the time to transfer the mes-
sage msg from p to n (noted tc(p, n, msg)). 

accessCost(n, p) = latency(n, p) + tc(p, n, msg) (1) 
 

− maxAccessCost: the maximal acceptable cost for any node accessing data stored in provider nodes; if 
accessCost(n, p) > maxAccessCost, n is considered far away from p, and therefore it is not a good 
neighbor of p. 

− potRec(p): number of potential reconcilers that are good neighbors of p. 

− minPotRec: minimal number of potential reconcilers required around a provider node p in order to 
accept p as a candidate provider; if potRec(p) < minPotRec, p is considered isolated in the network. 
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− candidate provider: any provider node p with potRec(p) � minPotRec is considered a candidate in 
the provider selection. 

− cost provider: node that stores costs used in the node selection. 

− QoN(p): quality of network around the provider node p. It is defined as the average access cost asso-
ciate with good neighbors of p, and it is computed by equation 2. In this equation, ni represents a 
good neighbor of p. 
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Another criterion for selecting a provider node is its proximity to other providers. During a recon-
ciliation step, a reconciler node often needs to access various reconciliation objects. By approximating 
provider nodes we reduce the associated access costs. We now present some terminology for reconciler 
selection: 

− candidate reconcilers: set of nodes that are candidate to become reconcilers. This set includes all 
good neighbors of selected providers.  

− step: a reconciliation stage. 

5.2 Detailed algorithm 

P2P-reconciler-TA selects provider nodes and candidate reconcilers as follows. Every provider node 
regularly evaluates its network quality and, according to the number of potential reconcilers around it, the 
provider announces or cancels its candidature to the cost provider node. The cost provider, in turn, man-
ages candidatures by monitoring which providers have the best network quality. Whenever the best pro-
viders change, the cost provider performs a new selection and notifies its decision to provider nodes. 
Following this notification, provider nodes inform their good neighbors whether they are candidate rec-
oncilers or not. With the selection of new providers, current estimated reconciliation costs are discarded 
and new estimations are produced by the new candidate reconcilers. Thus, selected provider nodes and 
candidate reconcilers are dynamically changing according to the evolution of the network topology. We 
now detail each step of node allocation. 

5.2.1 Computing provider node’s QoN 

A provider node computes its network quality by using equation 2 and the input data supplied by its good 
neighbors. Good neighbors introduce themselves to the provider nodes as follows. Consider that node n 
has just joined the network. For each reconciliation object ro ∈ RO, n looks for the closest node that can 
provide ro, noted pro, and if accessCost(n, pro) is acceptable, n introduces itself to pro as a good neighbor 
by informing accessCost(n, pro). Node n finds the closest pro as follows. First, n uses k hash functions to 
obtain the k coordinates (xi, yi) corresponding to each replica roi. Then, n computes the Cartesian distance 
between n’s coordinates and each (xi, yi). Finally, the closest pro is the one whose zone includes the closest 
(xi, yi) coordinates. The closest pro is called the n’s reference provider wrt. ro. Figure 5 illustrates how 
node n finds its reference provider wrt. the action summary reconciliation object (AS).  

Provider nodes and the associated potential reconcilers cope with the dynamic behavior of the P2P 
network as follows. A provider node dynamically refreshes its QoN based on its good neighbors’ joins, 
leaves, and failures. Joins and leaves are notified by the good neighbors whereas failures are detected by 
the provider node based on the expiration of a ttl (time-to-live) field. On the other hand, a good neighbor 
dynamically changes a reference provider pro whenever pro gives up the responsibility for ro. If pro dis-
connects or transfers ro to another provider, pro notifies these events to its good neighbors. However, if 
pro fails its good neighbors detect such failure and change the corresponding reference provider. 
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5.2.2 Managing provider candidature 

The network quality associated with a provider node dynamically changes as its potential reconcilers join, 
leave, or fail. Thus, a provider node often refreshes its candidature as follows. When the neighborhood 
situation of a provider p switches from isolated (i.e. p has a few of potential reconcilers around it) to 
surrounded (i.e. potRec(p) � minPotRec) p announces its candidature to the cost provider. In contrast, 
when p switches from surrounded to isolated, p cancels its candidature. Finally, if p’s QoN varies while it 
remains surrounded of potential reconcilers, p updates its QoN. Figure 6 illustrates AS candidate providers 
for minPotRec = 4. Since we replicate reconciliation objects, we assume that at least one provider node is 
available for each reconciliation object. In [Mar07], we prove that our solution assures high availability of 
replicated objects in the DHT. 

5.2.3 Selecting provider nodes 

For each reconciliation object, P2P-reconciler-TA must select the best provider node. This selection 
should take into account the proximity among providers since different providers are accessed in the same 
reconciliation step. We reduce the search space of best providers by applying the heuristic illustrated in 
Figure 7. First, we select the best(PAS) and the best(PCS) (Figure 7a). These nodes must be as close as 
possible from each other because AS and CS are the most accessed reconciliation objects and both are 
often retrieved in the same step. Next, we select the best(PLR) and the best(PS) based on the pair 
(best(PAS), best(PCS)) previously selected (Figure 7b); best(PLR) must be as close as possible to the 
best(PAS) since a reconciler accesses both best(PLR) and best(PAS) in the same step whereas best(PS) must 
be as close as possible to the best(PCS) for the same reason. Figure 7c shows the selected providers of our 
illustrative scenario (i.e. pAS1, pCS3, pS1, and pLR5). 

The candidate providers filtered to participate of the provider selection vary with time. To face this 
dynamic behavior of candidatures, the cost provider automatically launches a new provider selection 
whenever the set of filtered candidates changes. 

5.2.4 Notifying provider selection 

Changing the selected provider leads to changes in the set of candidate reconcilers and invalidates all 
estimated reconciliation costs. As a result, the cost provider discards estimated costs and notifies the re-
sult of provider selection to provider nodes. The provider nodes, in turn, proceed as follows. If the pro-
vider p switches from selected to unselected, p notifies its good neighbors that from now on they are no 
longer candidate reconcilers. In contrast, if the provider p switches from unselected to selected, p notifies 
its good neighbors that from now on they are candidate reconcilers.  

 
Figure 5. Finding the AS reference provider 

 
Figure 6. Managing provider candidature 
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(a) Selecting (AS, CS) pair (b) Selecting LR and S providers (c) Selected providers 

Figure 7. Selecting provider nodes 

6 Validation 
We validated and evaluated the performance of our reconciliation solutions through experimentation and 
simulation. The experimentation over Grid5000 (see Annex A) was useful to validate the algorithms and 
calibrate our simulator. The simulator allowed us to scale up to higher numbers of nodes. In this section, 
we first introduce our performance model, and then we report the main performance evaluation results. In 
[Sim07], we describe in detail how we simulate large P2P networks. 

6.1 Performance model 

We evaluated the performance of P2P-reconciler, and P2P-reconciler-TA. Our performance model takes 
into account the strategy for selecting provider and reconciler nodes, the action log size (i.e. the number 
of actions to be reconciled), and the network topology. Some parameters are applicable to all evaluated 
algorithms whereas other parameters are protocol-specific. Table 5 summarizes such parameters arrang-
ing them in three groups: general parameters, parameters that are specific for the P2P-reconciler protocol, 
and parameters specific for P2P-reconciler-TA.  

In all experiments, we need to determine the number of actions to be reconciled, noted Nb-Actions. 
The network topology must also be set before any experiment. The network topology is defined by the 
number of connected nodes, noted Nb-Nodes, the bandwidth of the links among these nodes, noted 
Bandwidth, the average link latency, noted Avg-Latency, and the associated standard deviation, noted Sd-
Latency. Indeed, we provide the minimal and maximal latencies corresponding to the type of network we 
intend to simulate (e.g. cluster, Grid, Internet, etc.), and after the node placement we compute the result-
ing average latency and the associate standard deviation. For topologies with variable bandwidths, the 
bandwidth values follow a Pareto distribution (low bandwidths are more frequently assigned than high 
bandwidths). We chose the Pareto distribution because it models more realistically the distribution of 
bandwidths in which the number of sites with higher bandwidths decreases exponentially. We produced 3 
different networks for each set of parameter values. We also produced 3 action logs for each action log 
size. By combining different action logs with different networks for the same set of parameter values, we 
generate several distinct reconciliation scenarios that avoid over fitted results.  

The P2P-reconciler protocol has only one specific parameter, namely the strategy for selecting recon-
ciler nodes; this parameter is called Allocation. We define three allocation strategies: random selection 
(RDM); cost-based selection using precise costs for direct communication (CB/P); and cost-based selec-
tion using estimated costs for direct communication (CB/E). Recall from Section 3 that the precise ap-
proach may overload provider nodes and the network as a whole whereas the estimated approach, al-
though not precise, avoids overloads. For every allocation strategy, all experiments use the optimal num-
ber of reconcilers. 

The P2P-reconciler-TA protocol has specific parameters for node allocation and network simulation. 
Concerning node allocation, three strategies are possible: random selection of provider and reconciler 
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nodes (RDM), cost-based selection of reconciler nodes only (REC), and cost-based selection of both 
provider and reconciler nodes (PRV-REC). Recall from Section 5 that we replicate each reconciliation 
object to assure high availability. Hence, each reconciliation object has various candidate provider nodes. 
In the latter allocation strategy (i.e. PRV-REC), the parameter Nb-Providers specifies how many candi-
date providers should be considered for each reconciliation object in order to select an efficient set of 
provider nodes. We adopt such a heuristic approach to reduce the search space, thereby avoiding an ex-
haustive search. 

We based our performance evaluation on the IceCube’s benchmark [PSM02, PSM03] and we set up 
application parameters as IceCube. In short, the benchmark is based on a calendar application which 
consists of an appointment database shared by multiple users. User commands may request a meeting, 
possibly proposing several alternative times, and cancel a previous request. Database-level actions add or 
remove a single appointment. The user-level request command is mapped onto an alternative constraint 
containing a set of add actions; similarly for cancel. Each such action contains the time, duration, partici-
pants and location of the proposed appointment. The calendar inputs are based on traces from actual Out-
look calendar. This was artificially scaled up in size, and were modified to contain conflicts and alterna-
tives and to control the difficulty of reconciliation. 

We have shown in [MAPV06] that if we run our P2P reconciliation approach over a high-speed net-
work we improve the reconciliation performance with respect to the centralized counterpart (i.e. 
IceCube). However, the focus of our work is to provide high data availability in a P2P scenario where 
individual sites are not very reliable and might be disconnected for variable periods of time, with good 
scalability, acceptable performance, and limited overhead. We have not aimed to achieve optimal per-
formance in any scenario since this might be unfeasible. Since a P2P network usually has a large number 
of connected nodes which can leave at any time, in the P2P scenario, availability and scalability are the 
most important properties as far as a reasonable performance is provided. 

 
 Parameter Definition Values 

Nb-Actions Number of actions to be reconciled 106 – 10000 
Nb-Nodes Number of connected nodes 1024 –  32768 
Bandwidth Network bandwidth Kbps: 64, 128, 256, 512 

Mbps: 1, 2, 8, 10, 20 
Avg-Latency Average latency (in ms) 51 – 263 

General 

Sd-Latency Standard deviation of latencies (in ms) 15 – 96 
P2P-reconciler Allocation Strategy for selecting reconciler nodes CB/P; CB/E; RDM 

Allocation Strategy for selecting providers and reconcilers RDM; REC; PRV-REC P2P-reconciler-TA 
Nb-Providers Number of candidate providers per rec. object 3 – 8 

Table 5. Evaluation parameters 

6.2 Experimental results 

We now present our main experimental results. We first show the performance of the P2P-reconciler 
protocol. Then, we present the evaluation of the P2P-reconciler-TA protocol. 

The first experiment aims to evaluate the behavior of the cost-based approach as the number of ac-
tions increases. In this evaluation, we configured the network with variable latencies, constant bandwidth 
(1 Mbps), and 1024 connect nodes. The number of actions varies from 106 to 10,000. Figure 8 shows that 
the reconciliation time using cost-based selection of reconciler nodes (CB/P-1-1024) remains advanta-
geous wrt. the random approach (RDM-1-1024) as the number of actions increases. 

The second experiment studies the reconciliation performance with variable bandwidths. Values be-
tween 64Kbps and 20 Mbps were assigned to connected nodes according to the Pareto distribution (low 
bandwidths are more frequently assigned than high bandwidths). We also varied the number of actions to 
be reconciled in order to observe the scalability of P2P-reconciler. Figure 9 shows that the inclusion of 
transfer costs in the P2P-reconciler cost model is advantageous in scenarios with variable bandwidths, as 
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is the case of the Internet. The performance improvement provided by the cost-based approaches (CB/P 
1024 and CB/E 1024) wrt. the random approach (RDM 1024) achieved a factor of 26 in Figure 9; recall 
that in Figure 8 we show the same performance improvement varying only latencies, and the correspond-
ing factor is 1.6. The scalability also improved since in Figure 9 the reconciliation times using cost-based 
approaches (CB/P 1024 and CB/E 1024) are represented by straight lines. In addition, the performance of 
the precise and the estimated cost-based approaches are quite similar (although the corresponding lines 
overlap in the scale of Figure 9, there is a difference of about 10%). 

Finally, we deepen the investigation of P2P-reconciler scalability by means of two experiments. In 
the first one, we studied the impact of the number of connected nodes on the reconciliation time (the 
larger the number of nodes is, the larger the average number of hops to lookup an identifier in the DHT). 
The network had variable latencies and bandwidths; 10,000 actions were reconciled. We varied the num-
ber of connected nodes from 1024 to 32768. Recall from the motivating application (i.e. the P2P Wiki) 
that, although the number of users updating a single data object in parallel is usually small, the size of the 
collaborative network to which this object belongs may be large. Figure 10 represents the reconciliation 
time with a straight line, which means an excellent scalability wrt. the number of connected nodes. In the 
second experiment, we studied the impact of the action size on the reconciliation time, by varying it from 
10 bytes to 1024 bytes. Figure 11 shows that this result is also quite good since an increase of two orders 
of magnitude on the action size produced a corresponding increase of about 2.6 times on the reconcilia-
tion time (from 20s to 52s). 

Liveness is an important issue in dynamic systems. P2P-reconciler provides a greater degree of avail-
ability, scalability and fault-tolerance than the centralized solution. In addition, the performance of P2P-
reconciler is good since it takes 20s to reconcile 10,000 actions in a network with variable latencies and 
bandwidths (recall that P2P-reconciler depends on network communication). The centralized solution is 
unsuitable for P2P networks due to its low availability in dynamic environments. 

We now present performance results concerning the P2P-reconciler-TA protocol. The first experi-
ment aims to observe the scalability of P2P-reconciler-TA by studying the impact of the number of con-
nected nodes on the reconciliation time (the larger the number of nodes is, the larger the average number 
of hops needed to lookup an identifier in the DHT). We configured the network with variable bandwidths  
and we varied the number of connected nodes (Nb-Nodes) from 1024 to 4096. The number of reconciled 
actions (Nb-Actions) was 1005. Erro! A origem da referência não foi encontrada. represents the recon-
ciliation time with a straight line, which means an excellent scalability wrt. the number of connected 
nodes. 

Recall from Section 5 that reconciliation objects are replicated and stored in the DHT according to 
multiple hash functions in order to assure high availability. As a result, for each reconciliation object, 
P2P-reconciler-TA must select the best provider node. Despite the limited number of replicas (typically 
around 10) the search space is quite large since the combination of provider nodes must be taken into 
account. We aim at drastically reducing the search space of best providers while preserving the best alter-
natives in the reduced search space. This allows us to efficiently select provider nodes. So, our second 
experiment studies the selection of provider nodes by varying the number of candidate providers per 
reconciliation object. The candidates are chosen according to their network quality (the network quality 
around the provider node p is defined as the average access cost, in terms of latency and transfer times, 
associated with p’s neighbors that are closest to p). Erro! A origem da referência não foi encontrada. 
shows that our heuristic achieves the best performance with small numbers of candidates (Nb-Providers = 
3 or 4). This is an excellent result since the smaller the number of candidates is, the smaller the search 
space (e.g. Nb-Providers = 3 with 4 involved reconciliation objects results a search space of size 34 = 81). 
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Figure 8. Reconciliation time varying  
the number of actions 
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Figure 9. Reconciliation time varying  
actions and bandwidths 
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Figure 10. Reconciliation time varying  
the number of nodes 
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Figure 11. Reconciliation time varying action size 
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Figure 12. Reconciliation time varying  
the Nb-Nodes 
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Figure 13. Reconciliation time varying  
Nb-Providers 

 
The main motivation for proposing P2P-reconciler-TA is to improve the performance of P2P-

reconciler by taking advantage of topology-aware networks. Thus, our last experiment compares the per-
formance of P2P-reconciler and P2P-reconciler-TA while running both protocols in the same context (i.e. 
number of actions to reconcile, number of connected nodes, network bandwidths and latencies, etc.). 
Figure 14 shows that P2P-reconciler-TA over CAN outperforms P2P-reconciler by a factor of 2 (i.e. a 
performance improvement of 50%). This is an excellent result if we consider that P2P-reconciler is al-
ready an efficient protocol and CAN is not the most efficient topology-aware P2P network (e.g. Pastry 
and Tapestry are more efficient than CAN). 
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Figure 14. Reconciliation time varying the number of actions 

7 Related work 
In the context of P2P networks, there has been little work on managing data replication in the presence of 
updates. Most of data sharing P2P networks consider the data they provide to be very static or even read-
only. Freenet [CMHS+02] partially addresses updates which are propagated from the updating peer 
downward to close peers that are connected. However, peers that are disconnected do not get updated. P-
Grid [ACDD+03, AHA03] is a structured P2P network that exploits epidemic algorithms to address up-
dates. It assumes that conflicts are rare and their resolution is not necessary in general. In addition, P-Grid 
assumes that probabilistic guarantees instead of strict consistency are sufficient. Moreover, it only consid-
ers updates at the file level. In OceanStore [KBCC+00] every update creates a new version of the data 
object. Consistency is achieved by a two-tiered architecture: a client sends an update to the object’s pri-
mary copies and some secondary replicas in parallel. Once the update is committed, the primary copies 
multicast the result of the update down the dissemination tree. OceanStore assumes an infrastructure 
comprised of servers that are connected by high-speed links. Different from the previous works, we pro-
pose to distribute the reconciliation engine in order to provide high availability.    

Table 6 compares the replication solutions provided by different types of P2P systems. Clearly, none 
of them provide eventual consistency among replicas along with weak network assumptions, which is the 
main concern of this work.  

The distributed log-based reconciliation algorithms proposed by Chong and Hamadi [CH06] ad-
dresses most of our requirements, but this solution is unsuitable for P2P systems as it does not take into 
account the dynamic behavior of peers and network limitations. Operational transformation [VCFS00] 
also addresses eventual consistency among replicas, but this approach is specific for collaborative edition 
and it assumes synchronous collaboration (i.e. concurrent updates of replicas). Our approach assures 
eventual consistency among replicas, which enables asynchronous collaboration among users. In addition, 
we provide multi-master replication and we do not assume servers linked by high-speed links. 

In the context of APPA (Atlas Peer-to-Peer Architecture), a P2P data management system which we 
are building [AMPV06b, MAPV06], we proposed the DSR-cluster algorithm [MPJV06, MPV05], a dis-
tributed version of the semantic reconciliation engine of IceCube [KRSD01, PSM03] for cluster net-
works. However, DSR-cluster does not take into account network costs during reconciliation. A funda-
mental assumption behind DSR-cluster is that the communication costs among cluster nodes are negligi-
ble. This assumption is not appropriate for P2P systems, which are usually built on top of the Internet. In 
this case, network costs may vary significantly from node to node and have a strong impact on the per-
formance of reconciliation. 
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P2P 
System 

P2P  
Network 

Data  
Type 

Autonomy Replication  
Type 

Conflict 
Detection 

Consistency Network 
Assump. 

Napster Super-peer File Moderate Static data – – Weak 
JXTA Super-peer Any High – – – Weak 
Gnutella Unstructured File High Static data – – Weak 

Chord Structured (DHT) Any Low 
Single-master 
Multi-master 

Concurrency 
None 

Probabilistic 
Probabilistic 

Weak 

CAN Structured (DHT) Any Low 
Static data 
Multi-master 

– 
None 

– 
Probabilistic 

Weak 

Tapestry Structured (DHT) Any High – – – Weak 
Pastry Structured (DHT) Any Low – – – Weak 
Freenet Structured File Moderate Single-master None No guarantees Weak 
PIER Structured (DHT) Tuple Low – – – Weak 
OceanStore Structured (DHT) Any High Multi-master Concurrency Eventual Strong 
PAST Structured (DHT) File Low Static data – – Weak 
P-Grid Structured File High Multi-master None Probabilistic Weak 

Table 6. Comparing replication solutions in P2P systems 

8 Conclusion 
In this paper, we proposed the P2P-reconciler, a distributed protocol for semantic reconciliation in P2P 
networks. Our main contributions are a cost model for computing communication costs in DHTs and an 
algorithm that takes into account these costs and the P2P-reconciler steps to select the best reconciler 
nodes. For computing communication costs, we use local information and we deal with the dynamic be-
havior of nodes. In addition, we limit the scope of event propagation (e.g. joins or leaves) in order to 
avoid network overload. 

Furthermore, we proposed a topology-aware approach to improve response times in P2P distributed 
semantic reconciliation. The P2P-reconciler-TA algorithm dynamically takes into account the physical 
network topology combined with the DHT properties when executing reconciliation. We proposed topol-
ogy aware metrics and cost functions to be used for dynamically selecting the best nodes to execute rec-
onciliation, while considering dynamic data placement.  

We validated P2P-reconciler through implementation and simulation. The experimental results 
showed that our cost-based reconciliation outperforms the random approach by a factor of 26. In addition, 
the number of connected nodes is not important to determine the reconciliation performance due to the 
DHT scalability and the fact that reconcilers are as close as possible to the reconciliation objects. The 
action size impacts the reconciliation time in a logarithmic scale. Compared with the centralized solution, 
which is more efficient but low available, our algorithm yields high data availability and excellent scal-
ability, with acceptable performance and limited overhead.  

In the same way, we also validated P2P-reconciler-TA. The experimental results show that our topol-
ogy-aware approach achieves a performance improvement of 50 % in comparison with the P2P-
reconciler. In addition, P2P-reconciler-TA has proved to be scalable with limited overhead and thereby 
suitable for P2P environments. Our topology-aware approach is conceived for distributed reconciliation; 
however our metrics, costs functions as well as our selection approach are useful in several contexts. 
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We propose a solution for data replication in P2P networks that assures eventual consistency among rep-
licas. Such solution is built in the context of APPA (Atlas Peer-to-Peer Architecture). APPA is a data 
management system that provides scalability, availability and performance for P2P advanced applica-
tions, which must deal with semantically rich data (e.g. XML documents, relational tables, etc.) using a 
high-level SQL-like query language. The replication service is placed in the upper layer of APPA archi-
tecture; the APPA architecture provides an application programming interface (API) to make it easy for 
P2P collaborative applications to take advantage of data replication. The architecture design also estab-
lishes the integration of the replication service with other APPA services by means of service interfaces. 
This section introduces the APPA architecture, and then describes the proposed APPA replication service. 

�����

APPA has a layered service-based architecture. Besides the traditional advantages of using services (en-
capsulation, reuse, portability, etc.), this enables APPA to be network-independent so it can be imple-
mented over different structured (e.g. DHT) and super-peer P2P networks. The main reason for this 
choice is to be able to exploit rapid and continuing progress in P2P networks. Another reason is that it is 
unlikely that a single P2P network design will be able to address the specific requirements of many dif-
ferent applications. Obviously, different implementations will yield different trade-offs between per-
formance, fault-tolerance, scalability, quality of service, etc. For instance, fault-tolerance can be higher in 
DHTs because no node is a single point of failure. On the other hand, through index servers, super-peer 
networks enable more efficient query processing. Furthermore, different P2P networks could be combi-
ned in order to exploit their relative advantages, e.g. DHT for key-based search and super-peer for more 
complex searching. Figure 15 shows the APPA architecture, which is composed of three layers of ser-
vices: P2P network services, basic services and advanced services. 

 
P2P network services. This layer provides network independence with services that are common to dif-
ferent P2P networks: 

 
− Peer id assignment: assigns a unique id to a peer using a specific method, e.g. a combination of 

super-peer id and counter in a super-peer network. 

− Peer linking: links a peer to some other peers, e.g. by locating a zone in CAN. 

− Key-based storage and retrieval (KSR): stores and retrieves a (key, object) pair in the P2P network, 
e.g. through hashing over all peers in DHT networks or using super-peers in super-peer networks. An 
important aspect of KSR is that it allows managing data using object semantic. Object semantic 
means that an object stored in the P2P network consists of a set of data attributes which can be ac-
cessed individually for read or write purposes. This approach is appropriate for optimizing object ac-
cess performance since we do not need to transfer the entire object through the network at each object 
access operation as the existing P2P networks use to do.  

− Key-based time stamping (KTS): generates monotonically increasing timestamps which are used 
for ordering the events occurred in the P2P system. 

− Peer communication: enables peers to exchange messages (i.e. service calls). 

Basic services. This layer provides elementary services for the advanced services using the P2P network 
layer: 
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− Persistent data management (PDM): provides high availability for the (key, object) pairs which are 
stored in the P2P network. 

− Communication cost management: estimates the communication costs for accessing a set of objects 
that are stored in the P2P network. These costs are computed based on latencies and transfer rates, 
and they are refreshed according to the dynamic connections and disconnections of nodes. 

− Group management: allows peers to join an abstract group, become members of the group and send 
and receive membership notifications. This is similar to group communication systems [CKV01, 
CJKR+03]. 

Advanced services. This layer provides advanced services for semantically rich data sharing includ-
ing schema management, replication [APV07, EMP07, MAPV06, MP06, MPJV06], query processing 
[AMPV06b, APV06], security, etc. using the basic services. 

 

 

Figure 15. APPA architecture 
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The APPA replication service [EMP07, MAPV06, MP06, MPJV06] is integrated to the PDM (Persistent 
Data Management) and KSR (Key-based Storage and Retrieval) services in order to store and retrieve 
data objects used during reconciliation in a highly available manner. PDM takes advantage of multiple 
hash functions to precisely place object replicas in the P2P network. With PDM, it is possible to imple-
ment the lock and unlock operations over a replicated (k, object) pair stored in the P2P network. In addi-
tion to PDM, the replication service is integrated to the CCM service (Communication Cost Manage-
ment), which estimates the communication costs for accessing objects that are stored in the P2P network. 
These costs are estimated by taking into account latencies and transfer rates as well as the dynamic behav-
ior of nodes that can join and leave the network at any time. The integration of APPA replication service 
with PDM and CCM is made by means of service interfaces.  

In order to make it easy for P2P collaborative applications to take advantage of the APPA replication 
service, we have defined an application programming interface (API) that abstracts the APPA architecture 
and works as a façade for the APPA system as a whole by receiving service invocations and internally 
dispatching such invocations. 

We proved the APPA’s network-independence by implementing APPA over a super-peer network 
(JXTA) and two distinct structured networks (Chord and CAN). JXTA provides a good support for the 
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APPA's P2P Network services. The functionality provided by APPA's peer id assignment, peer linking, 
and peer communication services are already available in the JXTA core layer. Thus, APPA simply uses 
JXTA’s corresponding functionality. In contrast, JXTA does not provide an equivalent service for key-
based storage and retrieval (KSR). Thus, we implemented KSR on top of Meteor [Met06] which is an 
open-source JXTA service. APPA’s advanced services, like replication and query processing, are pro-
vided as JXTA community services. The key advantage of APPA implementation is that only its P2P 
network layer depends on the JXTA platform. Thus, APPA is portable and can be used over other plat-
forms by replacing the services of the P2P network layer.  

Chord [SMKK+01] and CAN (Content Addressable Network) [RFHK+01] are two of the most 
known DHTs. Chord is a simple and efficient DHT that can lookup a data, which is stored at some node 
in the network, in O(log n) routing hops, where n is the number of nodes. Its lookup mechanism is prova-
bly robust in the face of frequent node failures and re-joins, and it can answer queries even if the system 
is continuously changing. CAN is based on a logical d-dimensional Cartesian coordinate space, which is 
partitioned into hyper-rectangles, called zones. Each node in the system is responsible for a zone. A data 
is hashed to a point in the coordinate space, and it is stored at the node whose zone contains the point’s 
coordinates. In CAN, a stored data can be retrieved in O(dn1/d) where n is the number of nodes. 

The validation of the APPA replication service took place over the Grid5000 platform [Gri06]. 
Grid5000 aims at building a highly reconfigurable, controllable and monitorable experimental Grid plat-
form, gathering 9 sites geographically distributed in France featuring a total of 5000 nodes. Within each 
site, the nodes are located in the same geographic area and communicate through Gigabit Ethernet links 
as clusters. Communications between clusters are made through the French academic network (RE-
NATER). Grid5000’s nodes are accessible through the OAR batch scheduler from a central user interface 
shared by all the users of the Grid. A cross-clusters super-batch system, OARGrid, is currently being 
deployed and tested. The home directories of the users are mounted with NFS on each of the infrastruc-
ture’s clusters. Data can thus be directly accessed inside a cluster. Data transfers between clusters have to 
be handled by the users. The storage capacity inside each cluster is a couple of hundreds of gigabytes. 
Now more than 600 nodes are involved in Grid5000. Additionally, in order to study the scalability of the 
APPA replication service with larger numbers of nodes that are connected by means of links with variable 
latencies and bandwidths, we implemented simulators using Java and SimJava [HM98], a process based 
discrete event simulation package. Simulations were executed on an Intel Pentium IV with a 2.6 GHz 
processor, and 1 GB of main memory, running the Windows XP operating system. The performance 
results obtained from the simulator are consistent with those of the replication service prototype. 

In the implementation intended for the Grid5000 platform, each peer manages multiple tasks in paral-
lel (e.g. routing DHT messages, executing a DSR step, etc.) by using multithreading and other associated 
mechanisms (e.g. semaphores); in addition, peers communicate with each other by means of sockets and 
UDP depending on the message type. To have a topology close to real P2P overlay networks in this Grid 
platform, we determine the peers’ neighbors and we allow that every peer communicate only with its 
neighbors in the overlay network. Although the Grid5000 provides fast and reliable communication, 
which usually is not the case for P2P systems, it allows to validate the accuracy of APPA distributed 
algorithms and to evaluate the scalability of APPA services. We have deployed APPA over this platform 
because it was the largest network available to perform our experiments in a controllable manner. On the 
other hand, the implementation of the simulator conforms to the SimJava model with respect to parallel 
processing and peers communication. It is important to note that, in our simulator, only the P2P network 
topology and peer communications are simulated; full-fledged APPA services are deployed on top of the 
simulated network. 

�

�

�

�
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This annex contains the proofs that P2P-reconciler assures eventual consistency among replicas and 
works correctly in the presence of failures. The proofs for P2P-reconciler-TA are identical to the corre-
sponding proofs of the P2P-reconciler. 

�������	��
��
�������

We first prove that P2P-reconciler assures eventual consistency among replicas. This proof assumes that 
the reconciliation objects stored in DHT are available according to the high availability property of the 
APPA’s PDM service. In addition, we assume that P2P-reconciler is used in the context of a virtual com-
munity. Members of a virtual community have common interests and actively participate on collaborative 
applications. However, they can leave the community at any time thereby ceasing forever their participa-
tion. Thus, the active nodes involved in a collaborative application may change with time. 
�

Definition B.1 (active node) A node is active with respect to a collaborative application if it is connected 
to the application or “temporarily” disconnected. A temporary disconnection can be caused by a failure 
or a transient pause on the collaboration, and therefore it is followed by at least one more reconnection. 
�

Lemma B.1 All active nodes apply reconciled actions to the local replicas in the same order. 
Proof We first show that reconciled actions coming from different executions of the P2P-reconciler 
protocol are ordered. 
− Each execution of the P2P-reconciler produces a schedule. Since a schedule is an ordered list of ac-

tions that do not violate constraints, actions of the same schedule are ordered. 
− Assume now that S1 → S2 → … → Sk is a sequence of schedules produced by the P2P-reconciler 

protocol respectively at times t1, t2, …, tk. Since it is disallowed to launch parallel executions of P2P-
reconciler, t1 < t2 < … < tk, and then we use the execution sequence to order schedules. This ordering 
is stored in the schedule history reconciliation object in the form of an ordered list of schedule identi-
fiers (i.e. H = [S1

id, S2
id, …, Sk

id]). If schedules are ordered and reconciled actions inside every sched-
ule are also ordered, then all reconciled actions produced by distinct executions of the P2P-reconciler 
are ordered. 
Since all active nodes apply reconciled actions to its local replicas according to the order established 

in the schedule history H, all active nodes apply reconciled actions in the same order             � 
 

Lemma B.2 All active nodes eventually apply all reconciled actions to their local replicas. 
������ We have to show that if all active nodes stop the production of update actions so that at time ti 
the P2P-reconciler concludes its last reconciliation (i.e. at ti all actions are reconciled), then there is a time 
tj, tj > ti, at which all active nodes will have applied all schedules produced by the P2P-reconciler proto-
col. Let H be the schedule history (noted H = [S1

id, S2
id, …, Sk

id]), n be an active node, and Sl
id be the iden-

tifier of the last schedule locally applied by n (n knows Sl
id). P2P-reconciler works as follows. Whenever 

n connects, it locally applies all schedules that succeed Sl
id in the H’s ordered list in order to refresh its 

local replicas with actions that were reconciled while n was disconnected. In addition, n repeats this re-
freshment operation whenever n disconnects in order to apply actions that were reconciled while it was 
connected, if any exists. Since n is an active node, it is either connected or temporarily disconnected (i.e. 
it will reconnect at least one more time) at time ti. Thus, if n is connected at time ti, n will apply all sched-
ules produced by the P2P-reconciler when it disconnects at time td (td > ti). However, if n is disconnected 
at time ti, n will apply all schedules when it reconnects at time tr (tr > ti). Consider now that the set TFS 
(Times at which Final Sates were achieved) holds all times tr and td associated with all active nodes. Since 
no more update actions are produced after ti, the time tj at which all active nodes will have applied all 
schedules produced by the P2P-reconciler protocol is the maximal value belonging to TFS.                ��
�
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Theorem B.1 The P2P-reconciler protocol assures eventual consistency among replicas that are stored 
in active nodes of a collaborative application. 
Proof�����In this proof we assume that all replicas R1, R2, …, Ri, of the object R have the same initial state. 
Thus, we have to show that the same set of reconciled actions is applied to all such replicas in the same 
order. If R1, R2, …, Ri are held by active nodes of a collaborative application, all reconciled actions are 
eventually applied to these replicas (Lemma B.2) in the same order (Lemma B.1).              � 

�
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We prove in this section that P2P-reconciler is correct as it assures eventual consistency among replicas 
even in the presence of failures. This proof assumes that the reconciliation objects stored in DHT are 
available according to the high availability property of the APPA’s PDM service. It also assumes syn-
chronous network communication for supporting the subset of messages that the P2P-reconciler protocol 
cannot lose. We use nstart to denote the node that starts the reconciliation. 
 
Lemma B.3 The P2P-reconciler protocol is resilient to failure on the nstart node.  
Proof The nstart node is responsible for locking the schedule history, notifying the start of reconciliation 
to provider nodes, and requesting the cost provider for allocating reconciler nodes. Thus, if nstart fails 
while launching the reconciliation, the following problems could happen: (1) the schedule history could 
remain forever locked; and (2) the provider nodes could wait forever for reconciler requests. We have to 
show that the P2P-reconciler protocol avoids such problems. In our solution, provider nodes are able to 
estimate the time required to perform the reconciliation. As a result, if a provider node n realizes that it is 
inactive for a long time wrt. the estimated reconciliation time, n infers that the reconciliation has crashed 
and initiates a recovery procedure, which first notifies the abnormal end of reconciliation to other provi-
der nodes, and then requests that the schedule history provider unlocks the schedule history. Notice that 
any provider node is able to detect the reconciliation crash and perform the recovery procedure. For this 
reason, there is no problem if n fails while recovering. In this case, another provider node will detect the 
crash later on and repeat the recovery procedure; duplicated notifications of crash and duplicated requests 
for unlock the schedule history are discarded. Since provider nodes no longer wait for requests and the 
schedule history is unlocked, the P2P-reconciler protocol is resilient to failure on the nstart node.             ��
�

Lemma B.4 The P2P-reconciler protocol is resilient to failure on the cost provider node.  
Proof The cost provider node is responsible for selecting and notifying reconciler nodes. Thus, if cost 
provider fails, the following problems could happen: (1) none reconciler node is allocated; or (2) only a 
subset of selected nodes is notified of allocation. We have to show that reconciliation can be normally 
restarted after the cost provider failure. In practice, problem 1 is equivalent to nstart failure, i.e. if none 
reconciler is allocated, the schedule history could remain forever locked and the provider nodes could 
wait forever for reconciler requests. We proved in Lemma B.3 that the P2P-reconciler protocol works 
properly in this case. On the other hand, if some reconcilers are already notified when the cost provider 
fails, two scenarios are possible: (a) the reconciliation succeeds even with the reduced number of allo-
cated reconcilers; or (b) the reconciliation crashes at time tc due to the lack of reconcilers. In the latter 
case, it is likely that the reconciliation objects have been updated. Thus, the recovery procedure works as 
follows. The provider node n that detects the reconciliation crash notifies this fact to other provider nodes, 
which, in turn, undo updates performed on reconciliation objects up to time tc, and then quit the recon-
ciliation. In addition, n requests that the schedule history provider unlocks the schedule history. As ex-
plained in the proof of Lemma B.3, there is no problem if n fails while performing the recovery proce-
dure. Since provider nodes undo updates on reconciliation objects before quitting the reconciliation and 
the schedule history is unlocked, the reconciliation can be normally restarted and, as a result, the P2P-
reconciler protocol is resilient to failure on the cost provider node.                � 
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Lemma B.5 A reconciliation step “i” terminates properly if at least one reconciler node allocated to step 
“i” works properly until the end of “i”.  
Proof P2P-reconciler protocol is composed of one allocation step (step 1) followed by five reconci-
liation steps (steps from 2 to 6). We have to show that if at least one reconciler node works properly until 
the end of each step from 2 to 6, the reconciliation as a whole succeeds. We first show that one reconciler 
is enough to successfully terminate step 2, and then we generalize the main principles for other steps. 
− In step 2, reconciler nodes take actions from the action log providers and store back groups of poten-

tially conflicting actions. On the one side, reconcilers remain requesting actions and storing back 
groups until the action log provider indicates that there are no more actions to group. On the other 
side, the action log provider supplies actions to reconcilers and waits for the corresponding acknowl-
edgements that indicate the successful processing of such actions. These acknowledgements are car-
ried by requests for storing groups. After a given delay, actions that were not acknowledged are redis-
tributed to reconcilers that have requested more actions. This redistribution repeats until all actions 
have been acknowledged. In addition, the action log provider discards duplicated requests for storing 
groups, if any exists. Suppose now that only a reconciler n works properly during step 2. In this case, 
n repeatedly requests actions and stores back the associated groups until the action log provider indi-
cates the end of actions and, as a result, step 2 terminates successfully. 

− The general principles applied on step 2 (i = 2) are described as follows. Let maxRec be the maximal 
number of reconcilers per step. Step i is divided into k cycles, where 1 ≤ k ≤ maxRec. At each cycle, 
all reconcilers that still work properly request inputs from provider nodes and give back the associ-
ated acknowledgements in order to indicate the successful processing of inputs. This goal is achieved 
with no additional network traffic as the acknowledgments are inserted in the regular messages of the 
P2P-reconciler protocol. Provider nodes on the other hand discard duplicated update requests, if any 
exists, and control the end of step cycles. Because of the number of inputs to be distributed is equal to 
maxRec, if all reconcilers work properly in step i, i only needs one cycle to successfully terminate. 
However, if only one reconciler works properly during step i, maxRec cycles need to be performed 
until the end of step i. 
Since all steps from 2 to 6 apply the general principles explained above, every reconciliation step i 

terminates properly if at least one reconciler node works properly until the end of i.                        � 
�

Lemma B.6 The P2P-reconciler protocol is resilient to failures on reconciler nodes.  
Proof� We have to show that after a reconciler failure either the reconciliation terminates correctly or it 
can be normally restarted later on. Let n be the faulty reconciler node. We directly infer from Lemma B.5 
that if n is not the last alive reconciler of a reconciliation step then the reconciliation terminates correctly. 
Otherwise, the reconciliation crashes due to the lack of reconcilers for concluding the step to which n is 
allocated. We proved in Lemma B.4 that in this case the reconciliation can be normally restarted. Since 
after a reconciler failure either the reconciliation terminates correctly or it can be normally restarted, the 
P2P-reconciler protocol is resilient to failures on reconciler nodes.                ��
�

Theorem B.2 The P2P-reconciler protocol is correct even in the presence of failures. 
Proof� The execution of P2P-reconciler protocol involves four types of nodes: the node that starts the 
reconciliation (nstart), the cost provider, the reconciler nodes, and other nodes that hold reconciliation 
objects in DHT. Since we assume available reconciliation objects, we do not discuss failures at nodes that 
hold these objects. Thus, we have only to show that the P2P-reconciler protocol is resilient to failures on 
nstart, cost provider, and reconciler nodes. This is proved respectively in Lemmas B.3, B.4, and B.6�        ������� 
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ABSTRACT 
Distributed Hash Tables (DHTs) provide a scalable solution for 
data sharing in P2P systems. To ensure high data availability, 
DHTs typically rely on data replication, yet without data currency 
guarantees. Supporting data currency in replicated DHTs is 
difficult as it requires the ability to return a current replica despite 
peers leaving the network or concurrent updates. In this paper, we 
give a complete solution to this problem. We propose an Update 
Management Service (UMS) to deal with data availability and 
efficient retrieval of current replicas based on timestamping. For 
generating timestamps, we propose a Key-based Timestamping 
Service (KTS) which performs distributed timestamp generation 
using local counters. Through probabilistic analysis, we compute 
the expected number of replicas which UMS must retrieve for 
finding a current replica. Except for the cases where the 
availability of current replicas is very low, the expected number 
of retrieved replicas is typically small, e.g. if at least 35% of 
available replicas are current then the expected number of 
retrieved replicas is less than 3. We validated our solution through 
implementation and experimentation over a 64-node cluster and 
evaluated its scalability through simulation up to 10,000 peers 
using SimJava. The results show the effectiveness of our solution. 
They also show that our algorithm used in UMS achieves major 
performance gains, in terms of response time and communication 
cost, compared with a baseline algorithm. 

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems – distributed databases, 
concurrency, query processing. 

General Terms 
Algorithms, performance, reliability. 

Keywords 
Peer-to-Peer, distributed hash table (DHT), data availability, data 
currency, data replication 

1. INTRODUCTION  
Peer-to-peer (P2P) systems adopt a completely decentralized 
approach to data sharing and thus can scale to very large amounts 
of data and users. Popular examples of P2P systems such as 
Gnutella [9] and KaaZa [12] have millions of users sharing 
petabytes of data over the Internet. Initial research on P2P 
systems has focused on improving the performance of query 
routing in unstructured systems, such as Gnutella and KaaZa, 
which rely on flooding. This work led to structured solutions 
based on distributed hash tables (DHT), e.g. CAN [19], Chord 
[29], and Pastry [23]. While there are significant implementation 
differences between DHTs, they all map a given key k onto a peer 
p using a hash function and can lookup p efficiently, usually in 
O(log n) routing hops where n is the number of peers [5]. DHTs 
typically provide two basic operations [5]: put(k, data) stores a 
key k and its associated data in the DHT using some hash 
function; get(k) retrieves the data associated with k in the DHT.  
One of the main characteristics of P2P systems is the dynamic 
behavior of peers which can join and leave the system frequently, 
at anytime. When a peer gets offline, its data becomes 
unavailable. To improve data availability, most DHTs rely on 
data replication by storing (k, data) pairs at several peers, e.g. 
using several hash functions [19]. If one peer is unavailable, its 
data can still be retrieved from the other peers that hold a replica. 
However, the mutual consistency of the replicas after updates can 
be compromised as a result of peers leaving the network or 
concurrent updates. Let us illustrate the problem with a simple 
update scenario in a typical DHT. Let us assume that the 
operation put(k, d0) (issued by some peer) maps onto peers p1 and 
p2 which both get to store the data d0. Now consider an update 
(from the same or another peer) with the operation put(k, d1) 
which also maps onto peers p1 and p2. Assuming that p2 cannot be 
reached, e.g. because it has left the network, then only p1 gets 
updated to store d1. When p2 rejoins the network later on, the 
replicas are not consistent: p1 holds the current state of the data 
associated with k while p2 holds a stale state. Concurrent updates 
also cause inconsistency. Consider now two updates put(k, d2) and 
put(k, d3) (issued by two different peers) which are sent to p1 and 
p2 in reverse order, so that p1’s last state is d2 while p2’s last state 
is d3. Thus, a subsequent get(k) operation will return either stale 
or current data depending on which peer is looked up, and there is 
no way to tell whether it is current or not. For some applications 
(e.g. agenda management, bulletin boards, cooperative auction 
management, reservation management, etc.) which could take 
advantage of a DHT, the ability to get the current data is very 
important. 
Many solutions have been proposed in the context of distributed 
database systems for managing replica consistency [17] but the 
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high numbers and dynamic behavior of peers make them no 
longer applicable to P2P [6]. Supporting data currency in 
replicated DHTs requires the ability to return a current replica 
despite peers leaving the network or concurrent updates. The 
problem is partially addressed in [13] using data versioning.  Each 
replica has a version number which is increased after each update. 
To return a current replica, all replicas need to be retrieved in 
order to select the latest version. However, because of concurrent 
updates, it may happen that two different replicas have the same 
version number thus making it impossible to decide which one is 
the current replica. 
In this paper, we give a complete solution to data availability and 
data currency in replicated DHTs. Our main contributions are the 
following: 

• We propose a service called Update Management Service 
(UMS) which deals with improving data availability and 
efficient retrieval of current replicas based on timestamping. 
After retrieving a replica, UMS detects whether it is current 
or not, i.e. without having to compare with the other replicas, 
and returns it as output. Thus, in contrast to the solution in 
[13], UMS does not need to retrieve all replicas to find a 
current one. In addition, concurrent updates raise no problem 
for UMS. 

• We give a probabilistic analysis of UMS’s communication 
cost. We compute the expected number of replicas which 
UMS must retrieve for finding a current replica. We prove 
that it is less than the inverse of the probability of currency 
and availability, i.e. the probability that a replica is current 
and available. Thus, except for the cases where the 
availability of current replicas is very low, the expected 
number of replicas which UMS must retrieve is typically 
small. 

• We propose a new Key-based Timestamping Service (KTS) 
which generates monotonically increasing timestamps, in a 
distributed fashion using local counters. KTS does 
distributed timestamp generation in a way that is similar to 
data storage in the DHT, i.e. using peers dynamically chosen 
by hash functions. To maintain timestamp monotonicity, we 
propose algorithms which take into account the cases where 
peers leave the system either normally or not (e.g. because 
they fail). To the best of our knowledge, this is the first paper 
that introduces the concept of key-based timestamping, and 
proposes efficient techniques for realizing this concept in 
DHTs. Furthermore, KTS is useful to solve other DHT 
problems which need a total order on operations performed 
on each data, e.g. read and write operations which are 
performed by concurrent transactions. 

• We provide a comprehensive performance evaluation based 
on the implementation of UMS and KTS over a 64-node 
cluster. We also evaluated the scalability of our solution 
through simulation up to 10,000 peers using SimJava. The 
experimental and simulation results show the effectiveness 
of our solution. 

The rest of this paper is organized as follows. In Section 2, we 
first propose a model for DHTs which will be useful to present 
our solution, and then we state the problem. Section 3 presents 
our update management service for DHTs. In Section 4, we 
propose a distributed timestamping service to support updates. 
Section 5 describes a performance evaluation of our solution 

through implementation and simulation. In Section 6, we discuss 
related work. Section 7 concludes. 

2. DHT MODEL AND PROBLEM 
STATEMENT 
In this section, we first present a model of DHTs which is needed 
for describing our solution and proving its properties. Then, we 
precisely state the problem. 

2.1 DHT Model 
A DHT maps a key k to a peer p using a hash function h. We call 
p the responsible for k wrt h. A peer may be responsible for k wrt 
a hash function h1 but not responsible for k wrt another hash 
function h2. The responsible for k wrt h may be different at 
different times, i.e. because of peers' joins and leaves. We can 
model the mapping mechanism of DHT as a function that 
determines at anytime the peer that is responsible for k wrt h; we 
call this function DHT’s mapping function. 

Definition 1: DHT’s mapping function. Let K be the set of all 
keys accepted by the DHT, P the set of peers, H the set of all 
pairwise independent hash functions which can be used by the 
DHT for mapping, and T the set of all numbers accepted as time. 
We define the DHT’s mapping function as m: K×H×T → P such 
that m(k,h,t) determines the peer p∈P which is responsible for 
k∈K wrt h∈H at time t∈T. 
Let us make precise the terminology involving peers’ 
responsibility for a key. Let k∈K, h∈H and p∈P, and let [t0..t1) be 
a time interval such that t1>t0. We say that p is continuously 
responsible for k wrt h in [t0..t1) if it is responsible for k wrt h at 
anytime in [t0..t1). In other words, (∀t∈T, t0≤t<t1 ) ⇒ ( 
p=m(k,h,t)). If p obtains and loses the responsibility for k wrt h 
respectively at t0 and t1, and is continuously responsible for k wrt 
h in [t0..t1), then we say that [t0..t1) is a p’s period of responsibility 
for k wrt h. The peer that is responsible for k wrt h at current time 
is denoted by rsp(k,h). We also denote by prsp(k,h) the peer that 
was responsible for k wrt h just before rsp(k,h). The peer that will 
become responsible for k wrt h just after rsp(k,h) is denoted by 
nrsp(k,h). 

Example 1. Figure 1 shows the peers responsible for k∈K wrt 
h∈H since t0. The peer that is currently responsible for k wrt h is 
p1, thus p1=rsp(k,h) and p3=prsp(k,h). In the time interval [t1..t2), 
p2 is continuously responsible for k wrt h. It has obtained and lost 
its responsibility respectively at t1 and t2, thus [t1..t2) is p2’s period 
of responsibility for k wrt h. Also [t0..t1) and [t2..t3) are 
respectively p4’s and p3’s periods of responsibility for k wrt h. 

 
Figure 1. Example of peers’ responsibilities 

In the DHT, there is a lookup service that can locate rsp(k,h) 
efficiently. The lookup service can return the address of rsp(k,h) 
usually in O(Log ⎪P⎪) routing hops, where ⎪P⎪ is the number of 
peers in the system. 
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2.2 Problem Statement 
To improve data availability we replicate the pairs (k, data) at 
several peers using several hash functions. We assume that there 
is an operation that stores a pair (k, data) at rsp(k,h) which we 
denote by puth(k, data). This operation can be issued concurrently 
by several peers. There is another operation, denoted by geth(k), 
that retrieves the data associated with k which is stored at rsp(k,h).  
Over time, some of the replicas stored with k at some peers may 
get stale. Our objective is to provide a mechanism which returns 
efficiently a current replica in response to a query requesting the 
data associated with a key. 
Formally, the problem can be defined as follows. Given a key 
k∈K, let Rk be the set of replicas such that for each r∈Rk, the pair 
(k, r) is stored at one of the peers of the DHT. Our goal is to 
return efficiently an r∈Rk which is current, i.e. reflects the latest 
update. 

3. UPDATE MANAGEMENT SERVICE 
To deal with data currency in DHTs, we propose an Update 
Management Service (UMS) which provides high data availability 
through replication and efficient retrieval of current replicas. 
UMS only requires the DHT’s lookup service with puth and geth 
operations. To return current replicas, it uses timestamps attached 
to the pairs (k, data). In this section, we give an overview of our 
timestamping solution and present in more details UMS’ update 
operations. We also analyze UMS’s communication cost. 

3.1 Timestamping 
To provide high data availability, we replicate the data in the 
DHT using a set of pairwise independent hash functions Hr⊂H 
which we call replication hash functions. To be able to retrieve a 
current replica we “stamp” each pair (k, data) with a logical 
timestamp, and for each h∈Hr we replicate the pair (k, newData) 
at rsp(k,h) where newData={data, timestamp}, i.e. newData is a 
data composed of the initial data and the timestamp. Upon a 
request for the data associated with a key, we can thus return one 
of the replicas which are stamped with the latest timestamp. The 
number of replication hash functions, i.e. ⎪Hr⎪, can be different 
for different DHTs. For instance, if in a DHT the availability of 
peers is low, for increasing data availability a high value of ⎪Hr⎪ 
(e.g. 30) is used. Constructing Hr, which is a set of pairwise 
independent hash functions, can be done easily, e.g. by using the 
methods presented in [14]. 
To generate timestamps, we propose a distributed service called 
Key-based Timestamping Service (KTS). The main operation of 
KTS is gen_ts(k) which given a key k generates a real number as a 
timestamp for k. The timestamps generated by KTS have the 
monotonicity property, i.e. two timestamps generated for the same 
key are monotonically increasing. This property permits us to 
order the timestamps generated for the same key according to the 
time at which they have been generated. 

Definition 2: Timestamp monotonicity. For any two timestamps 
ts1 and ts2 generated for a key k respectively at times t1 and t2, if 
t1<  t2 then we have ts1 <  ts2. 
At anytime, KTS generates at most one timestamp for a key (see 
Section 4 for the details). Thus, regarding to the monotonicity 
property, there is a total order on the set of timestamps generated 

for the same key. However, there is no total order on the 
timestamps generated for different keys. 
KTS has another operation denoted by last_ts(k) which given a 
key k returns the last timestamp generated for k by KTS. 

3.2 Update Operations 
To describe UMS, we use the KTS.gen_ts and KTS.last_ts 
operations discussed above. The implementation of these 
operations is detailed in Section 4. UMS provides insert and 
retrieve operations (see Figure 2). 

Insert(k, data): inserts a pair (k, data) in the DHT as follows. 
First, it uses KTS to generate a timestamp for k, e.g. ts. Then, for 
each h∈Hr it sends the pair (k, {data, ts}) to the peer that is 
rsp(k,h). When a peer p, which is responsible for k wrt one of the 
hash functions involved in Hr, receives the pair (k, {data, ts}), it 
compares ts with the timestamp, say ts0, of its data (if any) 
associated with k. If ts>ts0, p overwrites its data and timestamp 
with the new ones. Recall that, at anytime, KTS.gen_ ts (k) 
generates at most one timestamp for k, and different timestamps 
for k have the monotonicity property. Thus, in the case of 
concurrent calls to insert(k, data), i.e. from different peers, only 
the one that obtains the latest timestamp will succeed to store its 
data in the DHT. 

Retrieve(k): retrieves the most recent replica associated with k in 
the DHT as follows. First, it uses KTS to determine the latest 
timestamp generated for k, e.g. ts1. Then, for each hash function 
h∈Hr, it uses the DHT operation geth(k) to retrieve the pair {data, 
timestamp} stored along with k at rsp(k,h). If timestamp is equal 
to ts1, then the data is a current replica which is returned as output 

insert(k, data) 
begin 
   ts := KTS.gen_ts (k); 
   for  each  h∈Hr  do 
      newData := {data, ts}; 
      DHT.puth(k, newData); 
end; 
 
retrieve(k) 
begin   
   ts1 := KTS.last_ts(k); 
   datamr := null; 
   tsmr := - ∞; 
   for  each  h∈Hr  do begin 
       newData := DHT.geth(k); 
 data := newData.data; 
 ts := newData.ts; 

if (ts1 = ts) then begin   
         return data; // one current  
                     // replica is found  
         exit;  
 end 

else if  (ts > tsmr) then  begin 
   datamr := data;//keep the most  
   tsmr := ts;//recent replica and 
             //its timestamp 
end; 

   end; 
return datamr  

end; 

Figure 2. UMS update operations 



and the operation ends. Otherwise the retrieval process continues 
while saving in datamr the most recent replica. If no replica with a 
timestamp equal to ts1 is found (i.e. no current replica is found) 
then the operation returns the most recent replica which is 
available, i.e. datamr.  

3.3 Cost Analysis 
In this section, we give a probabilistic analysis of the 
communication cost of UMS in terms of number of messages to 
retrieve a data item. For a non replicated DHT, this cost, which 
we denote by cret, is O(log n) messages where n is the number of 
peers. The communication cost of retrieving a current replica by 
UMS is cums = ckts + nums ∗ cret, where ckts is the cost of returning 
the last generated timestamp by KTS and nums is the number of 
replicas that UMS retrieves, i.e. the number of times that the 
operation geth(k) is called. As we will see in the next section, ckts 
is usually equal to cret, i.e. the cost of contacting the responsible 
of a key and getting the last timestamp from it. Thus, we have cums 
= (1 + nums) ∗ cret.   
The The number of replicas which UMS retrieves, i.e. nums, 
depends on the probability of currency and availability of 
replicas. The higher this probability, the lower nums is. Let Hr be 
the set of replication hash functions, t be the retrieval time, and pt 
be the probability that, at time t, a current replica is available at a 
peer that is responsible for k wrt some h∈Hr. In other words, pt is 
the ratio of current replicas, which are available at t over the peers 
responsible for k wrt replication hash functions, to the total 
number of replicas, i.e. ⎪Hr⎪. We call pt the probability of 
currency and availability at retrieval time. We give a formula for 
computing the expected value of the number of replicas, which 
UMS retrieves, in terms of pt and ⎪Hr⎪. Let X be a random 
variable which represents the number of replicas that UMS 
retrieves. We have Prob(X=i) = pt ∗ (1- pt)i-1, i.e. the probability 
of having X=i is equal to the probability that i-1 first retrieved 
replicas are not current and the ith replica is current. The expected 
value of X is computed as follows:  
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Equation 1 expresses the expected value of the number of 
retrieved replicas in terms of pt and ⎪Hr⎪. Thus, we have the 
following upper bound for E(X) which is solely in terms of pt: 
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From the theory of series [2], we use the following equation for 
0≤ z <1: 
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Using Equations 3 and 2, we obtain:  
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Theorem 1: The expected value of the number of replicas which 
UMS retrieves is less than the inverse of the probability of 
currency and availability at retrieval time. 

Proof: Implied by the above discussion.� 
Example. Assume that at retrieval time 35% of replicas are 
current and available, i.e. pt=0.35. Then the expected value of the 
number of replicas which UMS retrieves is less than 3. 
Intuitively, the number of retrieved replicas cannot be more than 
⎪Hr⎪. Thus, for E(X) we have: 
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4. KEY-BASED TIMESTAMP SERVICE 
The main operation of KTS is gen_ts which generates 
monotonically increasing timestamps for keys. A centralized 
solution for generating timestamps is obviously not possible in a 
P2P system since the central peer would be a bottleneck and 
single point of failure. Distributed solutions using synchronized 
clocks no longer apply in a P2P system. One popular method for 
distributed clock synchronization is Network Time Protocol 
(NTP) which was originally intended to synchronize computers 
linked via Internet networks [16]. NTP and its extensions (e.g. [8] 
and [18]) guarantee good synchronization precision only if 
computers have been linked together long enough and 
communicate frequently [18]. However, in a P2P system in which 
peers can leave the system at any time, these solutions cannot 
provide good synchronization precision. 
In this section, we propose a distributed technique for generating 
timestamps in DHTs. First, we present a technique based on local 
counters for generating the timestamps. Then we present a direct 
algorithm and an indirect algorithm for initializing the counters, 
which is very important for guaranteeing the monotonicity of 
timestamps. We also apply the direct algorithm to CAN and 
Chord. Finally, we discuss a method for maintaining the validity 
of counters.  

4.1 Timestamp Generation 
Our idea for timestamping in DHTs is like the idea of data storage 
in these networks which is based on having a peer responsible for 
storing each data and determining the peer dynamically using a 
hash function. In KTS, for each key we have a peer responsible 
for timestamping which is chosen dynamically using a hash 
function. Below, we discuss the details of timestamp 
responsibility and timestamp generation. 

4.1.1 Timestamping Responsibility 
Timestamp generation is performed by KTS as follows. Let k∈K 
be a key, the responsible of timestamping for k is the peer that is 
responsible for k wrt hts, i.e. rsp(k, hts), where hts is a hash 
function accepted by the DHT, i.e. hts∈H. Each peer q that needs 
a timestamp for k, called timestamp requester, uses the DHT’s 
lookup service to obtain the address of rsp(k, hts) to which it sends 
a timestamp request (TSR). When rsp(k, hts) receives the request 
of q, generates a timestamp for k and returns it to q. Figure 3 
illustrates the generation of a timestamp for k initiated by peer q. 



If the peer that is rsp(k, hts) leaves the system or fails, the DHT 
detects the absence of that peer, e.g. by frequently sending “ping” 
messages from each peer to its neighbors [19], and another peer 
becomes responsible for k wrt hts. Therefore, if the responsible of 
timestamping for k leaves the system or fails, another peer 
automatically becomes responsible of timestamping for k, i.e. the 
peer that becomes responsible for k wrt hts. Thus, the dynamic 
behavior of peers causes no problem for timestamping 
responsibility. 

 
      Figure 3. Example of timestamp generation 

4.1.2 Guaranteeing Monotonicity 
Let us now discuss what a responsible of timestamping should do 
to maintain the monotonicity property. Let k be a key, p the peer 
that is responsible of timestamping for k, and tsk a timestamp for k 
which is generated by p. To provide the monotonicity property, 
we must guarantee two constraints: (1) tsk is greater than all 
timestamps for k which have been previously generated by p 
itself; (2) tsk is greater than any timestamp for k generated by any 
other peer that was responsible of timestamping for k in the past. 
To enforce the first constraint, for generating timestamps for each 
key k, we use a local counter of k at p which we denote as cp,k. 
When p receives a timestamp request for k, it increments the value 
of cp,k by one and returns it as the timestamp for k to the 
timestamp requester.  
To enforce the second constraint, p should initialize cp,k so that it 
is greater than or equal to any timestamp for k previously 
generated by other peers that were responsible of timestamping 
for k in the past. For this, p initializes cp,k to the last value of cq,k 
where q is the last peer that has generated a timestamp for k. In 
Section 4.2, we discuss how p can acquire cq,k. The following 
lemma shows that the initialization of cp,k as above enforces the 
second constraint. 
Lemma 1: If each peer p, during each of its periods of 
responsibility for k wrt hts, initializes cp,k before generating the 
first timestamp for k, then each generated timestamp for k is 
greater than any previously generated one.  
Proof: Follows from the fact that initializing cp,k makes it equal to 
the last timestamp generated for k, and the fact that timestamp 
generation is done by increasing the value of cp,k by one and 
returning its value as output. □ 
After cp,k has been initialized, it is a valid counter, i.e. p can use it 
for generating timestamps for k. If p loses the responsibility for k 
wrt hts, e.g. because of leaving the system, then cp,k becomes 
invalid. The peer p keeps its valid counters in a Valid Counters 
Set which we denote by VCSp. In other words, for each k∈K, if 

cp,k is valid then cp,k is in VCSp. Each peer p∈P has its own VCSp 
and respects the following rules for it: 

1. When p joins the P2P system, it sets VCSp = ∅. 

2. ∀k∈K, when p initializes cp,k, it adds cp,k to VCSp. 

3. ∀k∈K, when  p loses the responsibility for k wrt hts, if cp,k is 
in VCSp then p removes it from VCSp. 

When p receives a timestamp request for a key k, it checks for the 
existence of cp,k in VCSp. If cp,k is in VCSp then p generates the 
timestamp for k using cp,k. Otherwise p initializes cp,k, appends it 
to VCSp and then generates the timestamp using cp,k (see Figure 
4).  
The data structure used for VCSp is such that given a key k 
seeking cp,k in VCSp can be done rapidly, e.g. a binary search tree. 
Also, for minimizing the memory cost, when a counter gets out of 
VCSp, p releases the memory occupied by the counter, i.e. only 
the counters involved in VCSp occupy a memory location. To 
prevent the problem of overflow, we use a large integer, e.g. 128 
bits, for the value of cp,k. 
The following theorem shows that using VCSp and respecting its 
rules guarantees the monotonicity property. 
Theorem 2: If the peer p, which is responsible for k wrt hts, for 
generating timestamps for k uses cp,k that is in VCSp, then each 
generated timestamp for k is greater than any previously 
generated one. 
Proof: Let [t0, t1) be a p’s period of responsibility for k wrt hts and 
let us assume that p generates a timestamp for k in [t0, t1). Rules 1 
and 3 assure that at t0, cp,k is not in VCSp. Thus, for generating the 
first timestamp for k in [t0, t1), p should initialize cp,k and insert it 
into VCSp (Rule 2). Therefore, in each of its periods of 
responsibility for k wrt hts, p initializes cp,k before generating the 
first timestamp for k. Thus, each peer p, during each of its periods 
of responsibility for k wrt hts, initializes cp,k before generating the 
first timestamp for k, so by Lemma 1 the proof is complete. □ 
The other KTS operation last_ts(k), which we used in Section 3,  
can be implemented like gen_ts except that last_ts is simpler: it 
only returns the value of cp,k and does not need to increase its 
value. 

  p  q 

TSR (k) 

    ? rsp(k,hts) 

 rsp(k,hts)=p 

DHT’s Lookup Service 

tsk 

gen-ts(k) // timestamp generation by KTS 
begin  
   p := DHT.lookup(k, hts); 
   return gen-ts(p, k); 
end; 
 
gen-ts(p, k) //generating a timestamp  
            // for a key k by peer p  
            // that is rsp(k, hts) 
begin  
   cp,k := search_counter(VCSp, k); 
   if (cp,k is not in VCSp) then  
   begin 
      new(cp,k);//allocate memory for cp,k 
      KTS.CounterInitialize(k, cp,k); 
      VCSp := VCSp + {cp,k}; 
   end; 
   cp,k.value := cp,k.value + 1; 
   return cp,k.value; 
end; 

Figure 4. Timestamp  generation 



4.2 Counter Initialization 
Initializing the counters is very important for maintaining the 
monotonicity property. Recall that for initializing cp,k, the peer p, 
which is responsible of timestamping for k, assigns to cp,k the 
value of cq,k where q is the last peer that has generated a 
timestamp for k. But, the question is how p can acquire cq,k. To 
answer this question, we propose two initialization algorithms: 
direct and indirect. The direct algorithm is based on transferring 
directly the counters from a responsible of timestamping to the 
next responsible. The indirect algorithm is based on retrieving the 
value of the last generated timestamp from the DHT.  

4.2.1 Direct Algorithm for Initializing Counters 
With the direct algorithm, the initialization is done by directly 
transferring the counters from a responsible of timestamping to 
the next one at the end of its responsibility. This algorithm is used 
in situations where the responsible of timestamping loses its 
responsibility in a normal way, i.e. it does not fail. 

Let q and p be two peers, and K’⊆K be the set of keys for which q 
is the current responsible of timestamping and p is the next 
responsible. The direct algorithm proceeds as follows. Once q 
reaches the end of its responsibility for the keys in K’, e.g. before 
leaving the system, it sends to p all its counters that have been 
initialized for the keys involved in K’. Let C be an empty set, q 
performs the following instructions at the end of its responsibility: 

    for each cq,k ∈ VCSq do 

     if (k∈K’) then 
        C := C + {cq,k}; 

  Send C to p;  

At the beginning of its responsibility for the keys in K’, p 
initializes its counters by performing the following instructions: 

   for each cq,k ∈ C do begin    
    new(cp,k); 

    cp,k.value := cq,k.value; 

    VCSp := VCSp + {cp,k}; 

  end; 

4.2.1.1 Application to CAN and Chord 
The direct algorithm initializes the counters very efficiently, in 
O(1) messages, by sending the counters from the current 
responsible of timestamping to the next responsible at the end of 
its responsibility. But, how can the current responsible of 
timestamping find the address of the next responsible? The 
DHT’s lookup service does not help here because it can only 
lookup the current responsible for k, i.e. rsp(k, hts), and cannot 
return the address of the next responsible for k. To answer the 
question, we observe that, in DHTs, the next peer that obtains the 
responsibility for a key k is typically a neighbor of the current 
responsible for k, so the current responsible of timestamping has 
the address of the next one. We now illustrate this observation 
with CAN and Chord, two popular DHTs. 
Let us assume that peer q is rsp(k,h) and peer p is nrsp(k,h) where 
k∈K and h∈H. In CAN and Chord, there are only two ways by 
which p would obtain the responsibility for k wrt h. First, q leaves 
the P2P system or fails, so the responsibility of k wrt h is assigned 
to p. Second, p joins the P2P system which assigns it the 

responsibility for k wrt h, so q loses the responsibility for k wrt h 
despite its presence in the P2P system. We show that in both 
cases, nrsp(k,h) is one of the neighbors of rsp(k,h). In other 
words, we show that both CAN and Chord have the important 
property that nrsp(k,h) is one of the neighbors of rsp(k,h) at the 
time when rsp(k,h) loses the responsibility for k wrt h. 
CAN. We show this property by giving a brief explanation of 
CAN’s protocol for joining and leaving the system [19]. CAN 
maintains a virtual coordinate space partitioned among the peers. 
The partition which a peer owns is called its zone. According to 
CAN, a peer p is responsible for k wrt h if and only if h(k), which 
is a point in the space, is in p’s zone. When a new peer, say p, 
wants to join CAN, it chooses a point X and sends a join request 
to the peer whose zone involves X. The current owner of the zone, 
say q, splits its zone in half and the new peer occupies one half, 
then q becomes one of p’s neighbors. Thus, in the case of join, 
nrsp(k,h) is one of the neighbors of rsp(k,h). Also, when a peer p 
leaves the system or fails, its zone will be occupied by one of its 
neighbors, i.e. the one that has the smallest zone. Thus, in the case 
of leave or fail, nrsp(k,h) is one of the neighbors of rsp(k,h) , and 
that neighbor is known for rsp(k,h). 
Chord. In Chord [29], each peer has an m-bit identifier (ID). The 
peer IDs are ordered in a circle and the neighbors of a peer are the 
peers whose distance from p clockwise in the circle is 2i for 0≤ i≤ 
m. The responsible for k wrt h is the first peer whose ID is equal 
or follows h(k). Consider a new joining peer p with identifier IDp. 
Suppose that the position of p in the circle is just between two 
peers q1 and q2 with identifiers ID1 and ID2, respectively. Without 
loss of generality, we assume that ID1<ID2, thus we have 
ID1<IDp<ID2. Before the entrance of p, the peer q2 was 
responsible for k wrt h if and only if ID1<h(k)≤ID2. When p joins 
Chord, it becomes responsible for k wrt h if and only if 
ID1<h(k)≤IDp. In other words, p becomes responsible for a part of 
the keys for which q2 was responsible. Since the distance 
clockwise from p to q2 is 20, q2 is a neighbor of p. Thus, in the 
case of join, nrsp(k,h) is one of the neighbors of rsp(k,h). When, a 
peer p leaves the system or fails, the next peer in the circle, say 
q2, becomes responsible for its keys. Since the distance clockwise 
from p to q2 is 20, q2 is a neighbor of p.  
Following the above discussion, when a peer q loses the 
responsibility for k wrt h in Chord or CAN, one of its neighbors, 
say p, is the next responsible for all keys for which q was 
responsible. Therefore, to apply the direct algorithm, it is 
sufficient that, before losing its responsibility, q sends to p its 
initialized counters, i.e. those involved in VCSq. 

4.2.2 Indirect Algorithm for Initializing Counters 
With the direct algorithm, the initialization of counters can be 
done very efficiently. However, in some situations the direct 
algorithm cannot be used, e.g. when a responsible of 
timestamping fails. In those situations, we use the indirect 
algorithm. For initializing the counter of a key k, the indirect 
algorithm retrieves the most recent timestamp which is stored in 
the DHT along with the pairs (k, data). As described in Section 
3.2, peers store the timestamps, which are generated by KTS, 
along with their data in the DHT. 
The indirect algorithm for initializing the counters proceeds as 
follows (see Figure 5). Let k be a key, p be the responsible of 
timestamping for k, and Hr be the set of replication hash functions 



which are used for replicating the data in the DHT as described in 
Section 3.2. To initialize cp,k , for each h∈Hr, p retrieves the 
replica (and its associated timestamp) which is stored at rsp(k, h). 
Among the retrieved timestamps, p selects the most recent one, 
say tsm, and initializes cp,k to tsm + 1. If no replica and timestamp 
is stored in the DHT along with k, then p initializes cp,k to 0. 
If p is at the beginning of its responsibility of timestamping for k, 
before using the indirect algorithm, it waits a while so that the 
possible timestamps, which are generated by the previous 
responsible of timestamping, be committed in the DHT by the 
peers that have requested them. 
Let cret be the number of messages which should be sent over the 
network for retrieving a data from the DHT, the indirect algorithm 
is executed in O(⎪Hr⎪∗cret) messages. 

Let us now compute the probability that the indirect algorithm 
retrieves successfully the latest version of the timestamp from the 
DHT. We denote this probability as ps. Let t be the time at which 
we execute the indirect algorithm, and pt be the probability of 
currency and availability at t (see Section 3.3 for the definition of 
the probability of currency and availability). If at least one of the 
peers, which are responsible for k wrt replication hash functions, 
owns a current replica then the indirect algorithm works 
successfully.  Thus, ps can be computed as follows: 
ps = 1 – (the probability that no current replica is available at 
peers which are responsible for k wrt replication hash functions) 
Thus, we have: 

rH
ts pp )1(1 −−=                                                

In this equation, ⎪Hr⎪ is the number of replication hash functions. 
By increasing the number of replication hash functions, we can 
obtain a good probability of success for the indirect algorithm. 
For instance, if the probability of currency and availability is 
about 30%, then by using 13 replication hash functions, ps is more 
than 99%.  
By adjusting the number of replication hash functions, the 
probability of success of the indirect algorithm is high but not 
100%. Thus, there may be some situations where it cannot 
retrieve the latest version of timestamp, in which case the counter 
of the key is not initialized correctly. To deal with these situations 
in a correct way, we propose the following strategies: 

• Recovery. After restarting, the failed responsible of 
timestamping contacts the new responsible of timestamping, 
say p, and sends it all its counters. Then, the new responsible 
of timestamping compares the received counters with those 
initialized by the indirect algorithm and corrects the counters 
which are initialized incorrectly (if any). In addition, if p has 
generated some timestamps with an incorrect counter, it 

retrieves the data which has been stored in the DHT with the 
latest value of the incorrect counter and reinserts the data 
into the DHT with the correct value of the counter. 

• Periodic inspection. A responsible of timestamping which 
takes over a failed one, and which has not been contacted by 
it, periodically compares the value of its initialized counters 
with the timestamps which are stored in the DHT. If a 
counter is lower than the highest timestamp found, the 
responsible of timestamping corrects the counter. 
Furthermore, it reinserts the data which has been stored in 
the DHT with the latest value of the incorrect counter (if 
any). 

4.3 Validity of Counters 
In Section 4.1, the third rule for managing VCSs states that if a 
peer p loses the responsibility for a key k wrt hts, then p should 
remove cp,k from VCSp (if it is there). We now discuss what p 
should do in order to respect the third rule for VCSp. If the reason 
for losing responsibility is that p has left the P2P system or failed, 
then there is nothing to do, since when p rejoins the P2P system, it 
sets VCSp=∅. Therefore, we assume that p is present in the P2P 
system and loses the responsibility for k wrt hts because some 
other peer joins the P2P system and becomes responsible for k. 
We can classify DHT protocols in two categories: Responsibility 
Loss Aware (RLA) and Responsibility Loss Unaware (RLU). In an 
RLA DHT, a peer that loses responsibility for some key k wrt h 
and is still present in the P2P system detects its loss of 
responsibility. A DHT that is not RLA is RLU. 
Most DHTs are RLA, because usually when a new peer p 
becomes rsp(k, h), it contacts prsp(k,h), say q, and asks q to return 
the pairs (k, data) which are stored at q. Thus, q detects the loss of 
responsibility for k. Furthermore, in most of DHTs, p is a new 
neighbor of q (see Section 4.2.1), so when p arrives q detects that 
it has lost the responsibility for some keys. For the DHTs that are 
RLA, the third rule of VCS can be enforced as follows. When a 
peer p detects that it has lost the responsibility for some keys wrt 
hts, it performs the following instructions:  

For each cp,k∈VCSp do 

     If p≠rsp(k,hts) then  
       remove cp,k from VCSp  

If the DHT is RLU, then Rule 3 can be violated. Let us illustrate 
with the following scenario. Let k be a key and p the peer that is 
rsp(k,hts) which generates some timestamp for k, i.e. cp,k is in 
VCSp. Suppose another peer q joins the P2P system, becomes 
rsp(k, hts) and generates some timestamps for k. Then q leaves the 
DHT, and p becomes again rsp(k,hts). In this case, if p generates a 
timestamp for k using cp,k ∈VCSp, the generated timestamp may 
be equal or less than the last generated timestamp for k, thus 
violating the monotonicity property as a result of violating Rule 3. 
To avoid such problems in a DHT that is RLU, we impose that 
rsp(k,hts) assumes that after generating each timestamp for k, it 
loses its responsibility for k wrt hts. Thus, after generating a 
timestamp for k, it removes cp,k from VCSp. Therefore, Rule 3 is 
enforced. However, by this strategy, for generating each 
timestamp for k we need to initialize cp,k, and this increases the 
cost of timestamp generation. 

Indirect_Initialization(k, var cp,k) 
begin   
   tsm := -1; 
   for each  h∈Hr  do begin 
      {data, ts} := DHT.geth(k); 

if (tsm < ts) then  
         tsm := ts;  
   end; 
   cp,k.value := tsm + 1; 
end; 

Figure 5. Indirect algorithm for initializing counters 



5. PERFORMANCE EVALUATION 
In this section, we evaluate the performance of our Update 
Management Service (UMS) through implementation and 
simulation. The implementation over a 64-node cluster was useful 
to validate our algorithm and calibrate our simulator. The 
simulation allows us to study scale up to high numbers of peers 
(up to 10,000 peers).  
The rest of this section is organized as follows. In Section 5.1, we 
describe our experimental and simulation setup, and the 
algorithms used for comparison. In Section 5.2, we first report 
experimental results using the implementation of UMS and KTS 
on a 64-node cluster, and then we present simulation results on 
performance by increasing the number of peers up to 10,000. In 
Sections 5.3, we evaluate the effect of the number of replicas, 
which we replicate for each data in the DHT, on performance. In 
Section 5.4, we study the effect of peers’ failures on performance. 
In Section 5.5, we study the effect of the frequency of updates on 
performance. 

5.1 Experimental and Simulation Setup 
Our implementation is based on Chord [29] which is a simple and 
efficient DHT. Chord's lookup mechanism is provably robust in 
the face of frequent node fails, and it can answer queries even if 
the system is continuously changing. We implemented UMS and 
KTS as a service on top of Chord which we also implemented. In 
our implementation, the keys do not depend on the data values, so 
changing the value of a data does not change its key. 
We tested our algorithms over a cluster of 64 nodes connected by 
a 1-Gbps network. Each node has 2 Intel Xeon 2.4 GHz 
processors, and runs the Linux operating system. We make each 
node act as a peer in the DHT. 
To study the scalability of our algorithms far beyond 64 peers, we 
implemented a simulator using SimJava [27]. To simulate a peer, 
we use a SimJava entity that performs all tasks that must be done 
by a peer for executing the services KTS and UMS. We assign a 
delay to communication ports to simulate the delay for sending a 
message between two peers in a real P2P system. Overall, the 
simulation and experimental results were qualitatively similar. 
Thus, due to space limitations, for most of our tests, we only 
report simulation results. 
The simulation parameters are shown in Table 1. We use 
parameter values which are typical of P2P systems [25]. The 
latency between any two peers is a normally distributed random 
number with a mean of 200 ms. The bandwidth between peers is 
also a random number with normal distribution with a mean of 56 
(kbps). The simulator allows us to perform tests up to 10,000 
peers, after which simulation data no longer fit in RAM and 
makes our tests difficult. Therefore, the number of peers is set to 
be 10,000, unless otherwise specified.  
In each experiment, peer departures are timed by a random 
Poisson process (as in [21]). The average rate, i.e. λ, for events of 
the Poisson process is λ=1/second. At each event, we select a peer 
to depart uniformly at random. Each time a peer goes away, 
another joins, thus keeping the total number of peers constant (as 
in [21]).  
Peer departures are of two types: normal leave or fail. Let failure 
rate be a parameter that denotes the percentage of departures 
which are of fail type. When a departure event occurs, our 

simulator must decide on the type of this departure. For this, it 
generates a random number which is uniformly distributed in 
[0..100]; if the number is greater than failure rate then the peer 
departure is considered as a normal leave, else as a fail. In our 
tests, the default setting for fail rate is 5%. 
In our experiments, each replicated data is updated by update 
operations which are timed by a random Poisson process. The 
default average rate for events of this Poisson process is 
λ=1/hour. 
In our tests, unless otherwise specified, the number of replicas of 
each data is 10, i.e. ⎪Hr⎪=10. 

Table 1. Simulation parameters 
Simulation 
parameter 

Values 

Bandwidth Normally distributed random number, 
Mean = 56 Kbps, Variance = 32 

Latency Normally distributed random number, 
Mean = 200 ms, Variance = 100 

Number of peers  10,000 peers  

⎪Hr⎪ 10  

Peers' joins and 
departures 

Timed by a random Poisson process 
with λ=1/second 

Updates on each data Timed by a random Poisson process 
with λ=1/hour 

Failure rate 5% of departures 

 
Although it cannot provide the same functionality as UMS, the 
closest prior work to UMS is the BRICKS project [13]. To assess 
the performance of UMS, we compare our algorithm with the 
BRICKS algorithm, which we denote as BRK. We tested two 
versions of UMS. The first one, denoted by UMS-Direct, is a 
version of UMS in which the KTS service uses the direct 
algorithm for initializing the counters. The second version, 
denoted by UMS-Indirect, uses a KTS service that initializes the 
counters by the indirect algorithm. 
In our tests, we compare the performance of UMS-Direct, UMS-
Indirect and BRK in terms of response time and communication 
cost. By response time, we mean the time to return a current 
replica in response to a query Q requesting the data associated 
with a key. The communication cost is the total number of 
messages needed to return a current replica in response to Q. For 
each experiment, we perform 30 tests by issuing Q at 30 different 
times which are uniformly distributed over the total experimental 
time, e.g. 3 hours, and we report the average of their results. 

5.2 Scale up 
In this section, we investigate the scalability of UMS. We use 
both our implementation and our simulator to study the response 
time and communication cost of UMS while varying the number 
of peers. 
Using our implementation over the cluster, we ran experiments to 
study how response time increases with the addition of peers. 
Figure 6 shows the response time with the addition of peers until 
64. The response time of all three algorithms grows 



logarithmically with the number of peers. However, the response 
time of UMS-Direct and UMS-Indirect is significantly better than 
BRK. The reason is that, by using KTS and determining the last 
generated timestamp, UMS can distinguish the currency of 
replicas and return the first current replica which it finds while 
BRK needs to retrieve all available replicas, which hurts response 
time. The response time of UMS-Direct is better than UMS-
Indirect because, for determining the last timestamp, UMS-Direct 
uses a version of KTS that initializes the counters by the direct 
algorithm which is more efficient than the indirect algorithm used 
by UMS-Indirect. Note that the reported results are the average of 
the results of several tests done at uniformly random times. 

Experimental Results
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Figure 6. Response time vs. number of peers 

 

Simulation Results

0
3
6
9

12
15
18
21
24
27

2000 4000 6000 8000 10000

Number of peers

R
es

po
ns

e 
Ti

m
e 

(s
)

BRK
UMS-Ind irect
UMS-Direct

 
Figure 7. Response time vs. number of peers 

Simulation Results

0
10
20
30
40
50
60
70
80
90

100

2000 4000 6000 8000 10000
Number of peers

To
ta

l m
es

sa
ge

s

BRK
UMS-Ind irect
UMS-Direct

 
Figure 8. Communication cost vs. number of peers 

Using simulation, Figure 7 shows the response time of the three 
algorithms with the number of peers increasing up to 10000 and 
the other simulation parameters set as in Table 1. Overall, the 
experimental results correspond qualitatively with the simulation 
results. However, we observed that the response time gained from 
our experiments over the cluster is slightly better than that of 
simulation for the same number of peers, simply because of faster 
communication in the cluster. 
We also tested the communication cost of UMS. Using the 
simulator, Figure 8 depicts the total number of messages while 
increasing the number of peers up to 10,000 with the other 
simulation parameters set as in Table 1. The communication cost 
increases logarithmically with the number of peers. 
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Figure 9. Response time vs. number of replicas 
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Figure 10. Communication cost vs. number of replicas 

5.3 Effect of the Number of Replicas 
In this section, we study the effect of the number of replicas, 
which we replicate for each data in the DHT, on the performance 
of MUS. 
Using the simulator, Figures 9 and 10 show how respectively 
response time and communication cost evolve while increasing 
the number of replicas, with the other simulation parameters set as 
in Table 1. The number of replicas has a strong impact on the 
performance of BRK, but no impact on UMS-Direct. It has a little 
impact on the performance of UMS-Indirect because, in the cases 
where the counter of a key is not initialized, UMS-Indirect must 
retrieve all replicas from the DHT. 

5.4 Effect of Failures  
In this section, we investigate the effect of failures on the 
response time of UMS. In the previous tests, the value of failure 



rate was 5%. In this section, we vary the value of fail rate and 
investigate its effect on response time. 
Figure 11 shows how response time evolves when increasing the 
fail rate, with the other parameters set as in Table 1. An increase 
in failure rate decreases the performance of Chord’s lookup 
service, so the response time of all three algorithms increases. For 
the cases where the failure rate is high, e.g. more than 80%, the 
response time of UMS-Direct is almost the same as UMS-
Indirect. The reason is that if a responsible of timestamping fails, 
both UMS-Direct and UMS-Indirect need to use the indirect 
algorithm for initializing the counters at the next responsible of 
timestamping, thus their response time is the same. 
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Figure 11. Response time vs. failure rate 
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Figure 12. Response time vs. frequency of updates 

5.5 Effect of Update Frequency 
In this section, we study the effect of the frequency of updates on 
the performance of UMS. In the previous experiments, updates on 
each data were timed by a Poisson process with an average rate of 
1/hour. In this section, we vary the average rate (i.e. frequency of 
updates) and investigate its effect on response time. 
Using our simulator, Figures 12 shows how response time evolves 
while increasing the frequency of updates with the other 
simulation parameters set as in Table 1. The response time 
decreases by increasing the frequency of updates. The reason is 
that an increase in the frequency of updates decreases the distance 
between the time of the latest update and the retrieval time, and 
this increases the probability of currency and availability, so the 
number of replicas which UMS retrieves for finding a current 
replica decreases. 

6. RELATED WORK 
In the context of distributed systems, data replication has been 
widely studied to improve both performance and availability. 
Many solutions have been proposed in the context of distributed 
database systems for managing replica consistency [17], in 
particular, using eager or lazy (multi-master) replication 
techniques. However, these techniques either do not scale up to 
large numbers of peers or raise open problems, such as replica 
reconciliation, to deal with the open and dynamic nature of P2P 
systems. 
Data currency in replicated databases has also been widely 
studied, e.g. [1], [10], [11], [14], [22] and [26]. However, the 
main objective is to trade currency and consistency for 
performance while controlling the level of currency or 
consistency desired by the user. Our objective in this paper is 
different, i.e. return the current (most recent) replica as a result of 
a get request. 
Most existing P2P systems support data replication, but without 
consistency guarantees. For instance, Gnutella [9] and KaZaA 
[12], two of the most popular P2P file sharing systems allow files 
to be replicated. However, a file update is not propagated to the 
other replicas. As a result, multiple inconsistent replicas under the 
same identifier (filename) may co-exist and it depends on the peer 
that a user contacts whether a current replica is accessed. 
PGrid is a structured P2P system that deals with the problem of 
updates based on a rumor-spreading algorithm [7]. It provides a 
fully decentralized update scheme, which offers probabilistic 
guaranties rather than ensuring strict consistency. However, 
replicas may get inconsistent, e.g. as a result of concurrent 
updates, and it is up to the users to cope with the problem. 
The Freenet P2P system [3] uses a heuristic strategy to route 
updates to replicas, but does not guarantee data consistency. In 
Freenet, the query answers are replicated along the path between 
the peers owning the data and the query originator. In the case of 
an update (which can only be done by the data’s owner), it is 
routed to the peers having a replica. However, there is no 
guarantee that all those peers receive the update, in particular 
those that are absent at update time. 
Many of existing DHT applications such as CFS [4],  Past [24] 
and OceanStore [20] exploit data replication for solving the 
problem of hot spots and also improving data availability. 
However, they generally avoid the consistency problem by 
restricting their focus on read-only (immutable) data. 
The BRICKS project [13] deals somehow with data currency by 
considering the currency of replicas in the query results. For 
replicating a data, BRICKS stores the data in the DHT using 
multiple keys, which are correlated to the key k by which the user 
wants to store the data. There is a function that, given k, 
determines its correlated keys. To deal with the currency of 
replicas, BRICKS uses versioning. Each replica has a version 
number which is increased after each update. However, because 
of concurrent updates, it may happen that two different replicas 
have the same version number thus making it impossible to decide 
which one is the current replica. In addition, to return a current 
replica, all replicas need be retrieved in order to select the latest 
version. In our solution, concurrent updates raise no problem, i.e. 
this is a consequence of the monotonicity property of timestamps 



which are generated by KTS. In addition, our solution does not 
need to retrieve all replicas, and thus is much more efficient.  

7. CONCLUSION 
To ensure high data availability, DHTs typically rely on data 
replication, yet without currency guarantees for updateable data. 
In this paper, we proposed a complete solution to the problem of 
data availability and currency in replicated DHTs.  Our main 
contributions are the following. 
First, we proposed a new service called Update Management 
Service (UMS) which provides efficient retrieval of current 
replicas. For update operations, the algorithms of UMS rely on 
timestamping. UMS supports concurrent updates. Furthermore, it 
has the ability to determine whether a replica is current or not 
without comparing it with other replicas. Thus, unlike the solution 
in [13], our solution does not need to retrieve all replicas for 
finding a current replica, and is much more efficient. 
Second, we gave a probabilistic analysis of UMS’s 
communication cost by computing the expected number of 
replicas which UMS must retrieve. We proved that this number is 
less than the inverse of the probability of currency and 
availability. Thus, except for the cases where the availability of 
current replicas is very low, the expected number of retrieved 
replicas is typically small, e.g. if at least 35% of replicas are 
current and available then this number is less than 3. 
Third, we proposed a Key-based Timestamping Service (KTS) 
which generates monotonically increasing timestamps in a 
completely distributed fashion, using local counters. The dynamic 
behavior of peers causes no problem for KTS. To preserve 
timestamp monotonicity, we proposed a direct and an indirect 
algorithm. The direct algorithm deals with the situations where 
peers leave the system normally, i.e. without failing. The indirect 
algorithm takes into account the situations where peers fail. 
Although the indirect algorithm has high probability of success in 
general, there are rare situations where it may not be successful at 
finding the current replica. We proposed two strategies to deal 
with these situations. 
Fourth, we validated our solution through implementation and 
experimentation over a 64-node cluster and evaluated its 
scalability through simulation over 10,000 peers using SimJava. 
We compared the performance of UMS and BRK (from the 
BRICK project) which we used as baseline algorithm. The 
experimental and simulation results show that using KTS, UMS 
achieves major performance gains, in terms of response time and 
communication cost, compared with BRK. The response time and 
communication cost of UMS grow logarithmically with the 
number of peers of the DHT. Increasing the number of replicas, 
which we replicate for each data in the DHT, increases very 
slightly the response time and communication cost of our 
algorithm. In addition, even with a high number of peer fails, 
UMS still works well. In summary, this demonstrates that data 
currency, a very important requirement for many applications, can 
now be efficiently supported in replicated DHTs. 
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