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Abstract

Confocal laser scanning microscopy is a powerful technique for studying
biological specimens in three dimensions (3D) by optical sectioning. It permits
to visualize images of live specimens non-invasively with a resolution of few
hundred nanometers. Although ubiquitous, there are uncertainties in the
observation process. As the system’s impulse response, or point-spread function
(PSF), is dependent on both the specimen and imaging conditions, it should be
estimated from the observed images in addition to the specimen. This problem is
ill-posed, under-determined. To obtain a solution, it is necessary to insert some
knowledge in the form of a priori and adopt a Bayesian approach. The state of
the art deconvolution and blind deconvolution algorithms are reviewed within a
Bayesian framework. In the first part, we recognize that the diffraction-limited
nature of the objective lens and the intrinsic noise are the primary distortions
that affect specimen images. An alternative minimization (AM) approach
restores the lost frequencies beyond the diffraction limit by using total variation
regularization on the object, and a spatial constraint on the PSF. Additionally,
some methods are proposed to ensure positivity of estimated intensities, to
conserve the object’s flux, and to well handle the regularization parameter.
When imaging thick specimens, the phase of the pupil function due to spherical
aberration (SA) cannot be ignored. It is shown to be dependent on the refractive
index mismatch between the object and the objective immersion medium, and
the depth under the cover slip. The imaging parameters and the object’s original
intensity distribution are recovered by modifying the AM algorithm. Due to
the incoherent nature of the light in fluorescence microscopy, it is possible to
retrieve the phase from the observed intensities by using a model derived from
geometrical optics. This was verified on the simulated data. This method could
also be extended to restore specimens affected by SA. As the PSF is space varying,
a piecewise convolution model is proposed, and the PSF approximated so that,
apart from the specimen, it is sufficient to estimated only one free parameter.

Keywords: confocal laser scanning microscopy, point-spread function, blind
deconvolution, Bayesian approach, maximum likelihood, EM algorithm, total
variation, maximum a posteriori, alternate minimization, spherical aberration.
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Resumé

La microscopie confocale à balayage laser, est une technique puissante pour
étudier les spécimens biologiques en trois dimensions (3D) par sectionnement
optique. Elle permet d’avoir des images de spécimen vivants à une résolution de
l’ordre de quelques centaines de nanomètres. Bien que très utilisée, il persiste
des incertitudes dans le procédé d’observation. Comme la réponse du système à
une impulsion, ou fonction de flou (PSF), est dépendante à la fois du spécimen
et des conditions d’acquisition, elle devrait être estimée à partir des images
observées du spécimen. Ce problème est mal posé et sous déterminé. Pour
obtenir une solution, il faut injecter des connaisances, c’est à dire, a priori dans le
problème. Pour cela, nous adoptons une approche bayésienne. L’état de l’art des
algorithmes concernant la déconvolution et la déconvolution aveugle est exposé
dans le cadre d’un travail bayésien. Dans la première partie, nous constatons
que la diffraction due à l’objectif et au bruit intrinsèque à l’acquisition, sont les
distorsions principales qui affectent les images d’un spécimen. Une approche
de minimisation alternée (AM), restaure les fréquences manquantes au-delà de
la limite de diffraction, en utilisant une régularisation par la variation totale
sur l’objet, et une contrainte de forme sur la PSF. En outre, des méthodes
sont proposées pour assurer la positivité des intensités estimées, conserver le
flux de l’objet, et bien estimer le paramètre de la régularisation. Quand il
s’agit d’imager des spécimens épais, la phase de la fonction pupille, due aux
aberrations sphériques (SA) ne peut être ignorée. Dans la seconde partie, il est
montré qu’elle dépend de la difference à l’index de réfraction entre l’objet et
le milieu d’immersion de l’objectif, et de la profondeur sous la lamelle. Les
paramètres d’imagerie et la distribution de l’intensité originelle de l’objet sont
calculés en modifiant l’algorithme AM. Due à la nature de la lumière incohérente
en microscopie à fluorescence, il est possible d’estimer la phase à partir des
intensités observées en utilisant un modèle d’optique géométrique. Ceci a été
mis en évidence sur des données simulées. Cette méthode pourrait être étendue
pour restituer des spécimens affectés par les aberrations sphériques. Comme la
PSF varie dans l’espace, un modèle de convolution par morceau est proposé, et la
PSF est approchée. Ainsi, en plus de l’objet, il suffit d’estimer un seul paramétre
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libre.

Mots-clés: microscopie confocale à balayage laser, fonction de flou, décon-
volution aveugle, approche bayésienne, maximum de vraisemblance, algorithme
EM, variation totale, maximum a posteriori, minimisation alternatée, aberrations
sphériques
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Preface

Fluorescent light microscope offers the unique opportunity of observing live cells
in action and permit cell biologists to study molecular and cellular mechanisms.
Confocal light microscope, a type of fluorescent microscope, has especially ad-
vanced in recent years allowing the imaging of specimens at tissue and cellular
levels. It is widely used in several disciplines, from cell biology and genetics to
microbiology and developmental biology. It has also several clinical applications
that allows rapid diagnosis and thus assist with early therapy. It is particularly
useful for localizing particles, tracking cell motility, qualitative, and quantitative
analysis. In comparison to conventional widefield microscope, it offers higher
axial resolution, better contrast, and sensitivity to single molecule fluorescence.
Recent advances in laser technology and computational power added impetus to
its further development. In the confocal microscope, a diffraction-limited laser
spot excites the sample, and the image is formed by collecting only the in-focus
fluorescence light. A series of optical sections are combined to visualize the three
dimensional (3D) structure of the sample. Although most of the out-of-focus
light is rejected by the pinhole, even with a useable physical pinhole size, a third
of the light collected is from the out-of-focus planes. The spatial resolution of
such a microscope is limited, and even under the most suitable imaging condi-
tions, it cannot resolve lesser than 200nm. Unfortunately, this limit in resolution
prohibits the viewing of sub-cellular structures below this size. Deconvolution
is a computational technique used to reverse the effects of diffraction and to re-
move the out-of-focus fluorescence. It is thus no surprise that the recent internet
search trends shows a very high correlation between the keywords ‘confocal mi-
croscopy’ and ‘deconvolution’ (cf. Fig. 1). From the figure, one might be tempted
to quickly dismiss the decrease in the search trend gradually over the years as the
loss of interest in this subject. However, such a conclusion would be incorrect,
for this search trend plot is normalized. A similar decrease was also noticed in
the proportion of internet users interested in science (if a search keyword is a re-
flection of a user’s interest in a subject). The reason for this is that with internet
becoming pervasively used, the number of internet users have exponentially in-
creased, but the growth of the scientific community has not been proportionally
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(a) (b)
Figure 1: (a) Internet search trend on the keywords ‘deconvolution’ and ‘con-

focal microscopy’ between the period 2004–2009 in the context of
biology and medicine (b) scatter plot between the two searches show-
ing a linear correlation (dotted line is the line of least square fit). Data
source: Google Trends.

fast.
If we would like to reconstruct the true object from the observation by decon-

volution, it requires the knowledge of the degradation process; the degradation
being mathematically given by the imaging system’s point-spread function (PSF).
Given the PSF, it is then possible to computationally restore the object’s true in-
tensities by deconvolution. However, the theoretical calculation of the PSF, from
acquisition parameters, is often inaccurate as these parameters might vary with
conditions. An empirically estimated PSF suffers from the same difficulty as well
apart from being noisy. The solution is that the restoration has to be done in a
blind manner from a single observation. In Fig. 2, the number of scientific cita-
tions per year is shown for the subject of deconvolution and blind deconvolution.
It is worthwhile noting that this problem has attracted a considerable academic
and industrial interests recently.

Often the biologist is faced with a difficult situation of choosing the objec-
tive lens, obtaining good 3D resolution, fast image acquisition, minimal photo-
damage or bleaching, and minimal aberrations. Such an ideal situation is almost
never met and biologists find trade-offs on these aspects of imaging. The aim
of this thesis is to bring us closer in achieving these objectives by using com-
putational methods. With the introduction of the new generation of multicore
processors with high memory, and graphical processing units (GPU), the power
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Figure 2: Annual scientific citations for the subject of deconvolution and blind
deconvolution. (Data source: ISI web of knowledge).

of parallel computation is inexpensive and ubiquitous. This has provided the nec-
essary computational stimulus to break the diffraction barrier.

In this thesis, we integrate the theoretical developments on the direct problem
of modeling the optics of the microscope, and on the inverse problem of restor-
ing the object and PSF identification. For the direct model, the physical model
of the PSF’s is discussed by taking into account the phenomenon of diffraction
and spherical aberrations. These analytical expressions are relevant, and parsimo-
nious because it is simplified by the insistence on the phase. The noise models
in fluorescence microscopes are discussed and a clear justification is presented for
not choosing the Poissonian model over the traditional linear Gaussian model.
The framework adopted for the reversal is that of Bayesian inference with a cor-
respondence between the a posteriori distribution and an energy functional that
is minimize by an estimator. The estimation techniques proposed here are vali-
dated on simulated and real data.

The organization of this thesis and our essential contributions are as follows.
In Chapter 1, we introduce fluorescent microscopes and compare the imaging
properties of a widefield and confocal. We look at the fundamental difficulties
faced in optical sectioning microscopy, and formalize the mathematical model for
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the image formation at the objective and at the detector. As stray illumination
affects the observed image as background fluorescence, we provide a method to
estimate it directly from the images without using the dark current images. Some
quality measures are defined that are used to compare the simulated restoration
results with the true object. We define the observation process as a perceptual
inference problem and propose the estimation of the properties of an underly-
ing scene from an image. We choose the Bayesian hypothesis as it provides a
natural framework for modeling this inference. The algorithms for blind and
non-blind deconvolution are reviewed in Chapter 2 based on this framework. A
joint maximum a posteriori (JMAP) is proposed for the problem of estimating
the underlying scene and the system PSF. As the blind deconvolution problem is
under-determined, it is difficult to uniquely recover the PSF or the object from
the observation. In order to assist the JMAP, a prior is proposed on the object and
the PSF. As biological specimens are complex and rich in structure, it is impor-
tant to understand them if we wish to recover them from the observation. Our
belief on the object is captured by using a Gibbs’ distribution, and a total vari-
ation functional is used as the energy term. The analytical PSF modeling based
on Stokseth’s approximation is introduced in the Chapter 3. We extended this
diffraction-limited PSF model to also encompass the spherical aberrations (SA)
occurring due to refractive index mismatch. To simplify the estimation of the
PSF, a spatial approximation of the diffraction-limited model in terms of a three-
dimensional separable Gaussian is proposed. Similarly, the PSF with SA is also
approximated so that in the limiting case, the problem is reduced to estimating
two or three of the free pupil function parameters. A simple numerical algo-
rithm for the theoretical PSF model is also given which could be implemented
by using discrete Fourier transforms. Chapter 4 is dedicated to the estimating
the imaged object and the microscope PSF using the JMAP. A new prior on the
object is introduced to that naturally handles negative intensities arising during
the deconvolution. As the regularization parameter varies with observation, a
new approach is proposed to learn it from the observed images. An alternate
minimization (AM) algorithm is finally proposed to solve the problem of esti-
mating two unknowns from a single cost function. This AM algorithm is tested
on images of degraded phantom objects, microspheres and real data. We arrive
at a conclusion interesting for biologists: our method of blind deconvolution
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allows for a two fold improvement in the spatial resolution. The scope of this
chapter is restricted to restoring images from a CLSM given the spatial invariance
nature of the diffraction-limited PSF. If empirically obtained PSFs are available,
they cannot be directly used as they are often low in contrast, noisy and larger
than the true PSF. Theoretically calculated PSFs are inadequate as they are not
microscope specific. In Chapter 5, we modify the JMAP algorithm in order to
restore the phase of the pupil function by reversing the roles of the object and
the PSF. Once the parameters of the phase are estimated, the PSF could be gen-
erated numerically by using the analytical PSF model. The process of generation
of the synthetic object is explicitly provided for validation, and the preliminary
results show the need for a good model of the PSF. Otherwise there is the risk of
providing objects less usable than the observation data. The blind parameter esti-
mation estimated the refractive indices close to their true values, but the error on
the estimation of the nominal depth of focus induces a small error in the position
of the object in volume imaged. Finally, in Chapter 6, this method is extended
to estimate the object and PSF under aberrations. In the presence of SA, the PSF
is depth varying and the spatial invariance assumption is nullified in the axial di-
rection. As a result, a new observation model is proposed, based on a piecewise
convolution process, to overcome this difficulty. We proceed by assuming that
the volume is juxtaposed by various strata in which the PSF is invariant. The
AM approach is adapted so that the parameters of the PSF and the object could
be estimated from the observation in the presence of SA.





CHAPTER 1

Introduction

“The eye of a human being is a microscope, which makes the world

seem bigger than it really is.”

-Gibran Khalil Gibran (Lebanese-American artist, poet and writer)

Light microscopes provide cell biologists the possibility of examining subcellular
activities in live samples with minimum disturbance to their movements. How-
ever, the road to achieving finer spatial image resolution is riddled with problems.
The physics of the light captured by the lens and the detector efficiency essentially
limits the quality of the observed images in optical fluorescence microscopy. The
goal of this chapter is to familiarize with these fundamental difficulties. In Sec-
tion 1.1, we briefly introduce the imaging capabilities of fluorescence microscopes
and in Section 1.2, we further explore the above sources of distortions. The jour-
ney towards overcoming these obstacles can be said to be partially accomplished if
we are able to satisfactorily derive mathematical models for them. In Section 1.3,
we formalize the problem with a physical image formation model at the micro-
scope objective and at the emission-photon detector. As the background fluores-
cence can affect the performance of restoration algorithms, a method is proposed
in this chapter for its estimation from observed images. Finally, we define a few
quality measures in Section 1.4 that are used for validating the restoration results
in the later chapters of this thesis. The limitations in the microscope optics is
introduced here but a detailed discussion is left for the following chapter.

1.1 Fluorescence Microscopy

Fluorescence microscopes are optical instruments capable of obtaining three
dimensional (3D) image sections of a specimen by focusing a high intensity

1



2 CHAPTER 1. INTRODUCTION

monochromatic laser beam. The image is created by scanning the laser across
the sample in a raster formation. Every point in the sample, on excitation, acts as
a secondary light source either naturally or because of the expression of a specific
labeling protein (such as the green fluorescence protein or GFP). The expression
results from a phenomenon called fluorescence, where the laser excited electrons
in the protein molecule, when relaxing back to their native ground states, emit
light of wavelength longer than the incident beam. To achieve maximum fluores-
cence intensity, the fluorochrome is usually excited at the peak wavelength of the
excitation curve, λex, and the emission is selected at the peak wavelength of the
emission curve, λem. The red-shift in the emitted light (Stokes shift) in compar-
ison to the excitation light facilitates in designing filters that can separate them.
Each dye has a distinct excitation and emission curve that are well separated from
that of all the other dyes; consequently, only the peak emission intensity of each
dye needs to be measured in order to obtain accurate quantization. By changing
the objective to focus at different depths inside the specimen, and by collecting
the emitted fluorescence at each plane, one can visualize the topologically com-
plex cells, tissues and embryos in 3D.

In Fig. 1.1, we see a simple schematic of a single photon (1p) confocal laser
scanning microscope (CLSM) (Minsky [1988]; Inoué [2006]), where the emission
field energy is collected by placing a photomultiplier tube (PMT) at the position
of the emission beam focus. The partially reflecting dichroic mirrors separate the
fluorescence light that comes through the objective and the unwanted reflected
excitation light. The difference from the classical fluorescent microscopes such as
a widefield microscope (WFM) is that, in the CLSM, a circular pinhole is added
before the detection stage. This pinhole restricts the total amount of light col-
lected to the plane that is in focus (as shown by solid line E in the schematic in
Fig. 1.1; dotted line represents the out-of-focus planes). Thus, the light rays that
are incorrectly aligned with the pinhole are eliminated from the final image. Un-
like in the original design of Minsky, the commercial adaptation of a CLSM uses
galvanometer mirrors to tilt the laser beam as it passes through the back focal
plane of the objective rather than moving the specimen stage. This prevents un-
due vibrations in live specimen imaging and permits one to obtain image sections
without motion related aberrations.
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Figure 1.1: Schematic of a confocal laser scanning microscope. A) Laser, B)
excitation filter, C) dichromatic mirror, D) objective lens, E) in-
focus plane of the specimen, F) pinhole aperture, G) photomulti-
plier tube ( c©Ariana-INRIA/I3S).

1.2 Fundamental Limits in Imaging

In this section we discuss primarily two main problems that limit the object re-
solving capability of a fluorescence microscope.

1.2.1 Optical Distortions

Diffraction-Limited Imaging

The optical system of a microscope is inherently diffraction limited (Pawley
[2006]; Born & Wolf [1999]) and the image of a point source, the point-spread
function (PSF), displays a lateral diffractive ring pattern (expanding with defocus)
introduced by the finite-lens aperture. This is because when light from a point
source passes through a small circular aperture, it does not produce a bright dot
as an image, but rather a diffused circular disc known as Airy disc surrounded by
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(a) (b)
Figure 1.2: Illustration of the diffraction pattern observed for a circular aper-

ture as (a) intensity image scaled between [0, 1] and (b) in 3D with
the intensity along the z axis ( c©Ariana-INRIA/I3S).

much fainter concentric circular rings (see Fig. 1.2). This example of diffraction is
of great importance because many optical instruments (including the human eye)
have circular apertures. If this smearing of the image of a point source is larger
than that produced by the aberrations of the system, the imaging process is said to
be diffraction-limited, and that is the best resolution which can be obtained from
that size of aperture. As the objective constitutes an important part of CLSM,
the quality of the image, and its resolution is dependent on the quality of the lens
used, its numerical aperture (NA), and the wavelength of excitation light used.

Out-of-focus Fluorescence

In addition to diffraction-limits, the optically sectioned images obtained from a
uniformly illuminated 3D object are often affected by some out-of-focus fluores-
cence contributions. Secondary fluorescence from the sections away (as shown
by dotted lines in the schematic) from the plane of focus often interferes with
the contrast and resolution of those features that are in focus (as shown by the
solid line in the schematic in Fig. 1.1). Let us take up the classical wide-field
microscope (WFM) as a case for comparison against the CLSM. For the sake of
simplicity, if we assume that their detectors are the same, then a WFM could be
seen as a CLSM but with a fully open pinhole. The WFM can collect more light
even from the deeper sections of a specimen but the data are sometimes rendered
useless as there is a significant amount of out-of-focus blur. The maximum inten-
sity in each plane decreases as O(z−2) (cf. Zhang [2007]), with z being the axial
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distance from the source. A completely closed pinhole (diameter < 1 Airy units
(AU)1) on the other hand, confines the light detected only to the in-focus plane
but at the expense of imaging high-contrast, low SNR (signal dependant noise)
images. For typical pinhole sizes, the maximum intensity from a point source in
CLSM decreases as O(z−4) (cf. Zhang [2007]) and the loss of in-focus intensity
inhibits imaging of weakly fluorescent regions. We remind that even with a use-
able pinhole diameter of 1AU, 30% of the light collected is from the out-of-focus
regions.

Aberrations

Under ideal conditions, a high NA objective lens focuses the incident planar
wavefront to a spherical wavefront. However, under practical situations, the re-
fracted wavefront so produced has to go through several optical elements and
also through the specimen before it is detected. In Fig. 1.3, we show the aberrated

Figure 1.3: Aberrated wavefront at the exit pupil. ( c©Ariana-INRIA/I3S).

wavefront arising at the exit pupil and the reference sphere2. By comparing the
emerging wavefront with the reference sphere, the amount of aberrations and its
severity could be established. Aberrant wavefront means that the final observed
images will be distorted as well. While there are many aberrations that occur, we
restrict our analysis to spherical aberration (SA) as this is the dominant and the

11AU=(1.22λex)/NA, where NA is the numerical aperture of the objective
2A wavefront that has the shape of the reference sphere will come to focus at the center of this

sphere.
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most observable form for CLSM. In this case, the rays that are farther away from
the center are refracted more than those closer to the axis. Although SA can be
corrected by carefully designing the objective lens, it is only effective if certain,
precise conditions are met regarding the size and refractive index (RI) of every
element between the focus plane and the camera. When imaging cells in aqueous
media, this is seldom the case, particularly when they are imaged with a cover-
slip (on an inverted microscope with no aberration correction). Even when using
a water lens with correction collar for coverslip thickness, these aberrations are
very common. In fact, next to the low quantum efficiency (QE) of the detector
(discussed in next subsection), it is definitely the greatest practical limitation to
high performance in live-cell confocal microscopy. We will discuss more about
SA in the Chapters 3, 5, and 6.

Optical Resolution

We can define the lateral resolution limit for a WFM with a perfect objective and
finite NA by the Rayleigh criterion (cf. Born & Wolf [1999]) as

r wfm
lateral= 0.61

λem

NA
. (1.1)

If the distance between two closely spaced point sources is lesser than r wfm
lateral

, then
they cannot be resolved. As r wfm

lateral
is the distance between the principal intensity

maximum and the first intensity minimum, two equal intensity sources are con-
sidered to be just resolved when the maxima of one coincides with the minima
of the other. The spherical waves issued from the wavefront interfere not only
in the image plane but also throughout the 3D space. Consequently, the image
of the point source located in the object plane is a 3D diffraction pattern, cen-
tered on the conjugate image of the point source located in the image plane. The
commonly used axial resolution for the confocal configuration is given below (cf.

Sheppard [1988]):

r wfm
axial = 0.885

λem

ni−
�

n2
i
−NA2

� 1
2

, (1.2)

with ni representing the RI of the imaging medium between the coverslip and the
front lens. It describes the distance between the maximum intensity of the central
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bright region and the first point of minimum intensity along the z-axis. If the
illumination and fluorescence emission wavelengths are approximately the same,
the confocal fluorescence microscope Airy disk size is the square of the widefield
microscope Airy disk. Thus, the lateral (and axial) extent of the point spread
function is reduced by about 30% compared to that in the WFM. Because of the
narrower PSF, the separation of points required to produce acceptable contrast
in the CLSM is reduced to a distance approximated by (cf. Dey, et al. [2004])

r clsm
lateral=

1

(2)
1
2

r wfm
lateral , (1.3)

r clsm
axial =

1

2
r wfm
axial . (1.4)

1.2.2 Noise Sources

The sources of noise in a digital microscope are either the signal itself or the
digital imaging system. Since we deal with CLSMs having PMT as its principal
detector element, we will discuss only two kinds of noises, photon or shot noise
and dark noise. Due to the quasi-random nature of the noise, knowledge of its
sources and mechanics helps us to better model them. For the sources of noise
in other detectors like charge-coupled device (CCD) of a WFM, we suggest the
following references: Stevens, et al. [1994] and Zhang [2007].

Shot Noise

Shot noise occurs when the energy carrying photons exhibits detectable statistical
fluctuations in the measurement. These fluctuations are particulary noticeable
in the image when the acquisition is under low illumination conditions and the
number of photons reaching the detector are small. In addition, the PMTs used
for detection usually have a lower QE or detection rate in comparison to the
modern day CCDs. Supposing that the average photon flux is qs , the statistical
variation in the observed photon number Ns is described as Ns ∼P (qs ). When
the photon flux is high, Ns will be asymptotically normally distributed with both
the mean and the variance equal to qs . This noise is signal intensity dependent,
which makes separation of the signal from the noise a very difficult task.
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Dark Noise

Under non-ideal imaging conditions, there is another type of noise generated as
a result of the dark current. Dark current occurs due to thermionic emissions in
the dynodes, leakage currents, field emissions, electronic emission by cosmic rays
and sometimes stray indoor illuminations. Although very small, if the detector
gain is large, its contribution to the final signal is significant. This dark noise
Nd has an average dark flux qd , and Nd ∼P (qd ). Fig. 1.4(a) shows the signal
observed in a Zeiss LSM 510 microscope when there is no excitation source, with
PMT gain adjusted to get the dynamic range, and when it is operating in the
“photon counting mode”. The detector gain and the offset are set so that the
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Figure 1.4: (a) Measured dark current images in the absence of any excitation

or sample, and the settings adjusted for permissible detector gain
and amplifier offset range ( c©INRA), and (b) histogram of the dark
image. The lateral pixel size,∆xy , is 89.98µm with 8-bit gray levels.

there is no saturation or clipping of intensities. The mean and the variance of the
dark current image were estimated using a maximum likelihood (ML) estimate.
The mean of the background signal was about 22.3±5% intensity units (IU) and
variance 16.98. When the gain is minimum, the mean was found to be 5.2482±
5% IU and variance 7.25. In practice, the dark noise can be minimized by cooling
the detector tube.
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Poissonian Assumption

From the histogram of Fig. 1.4(b), we observe that the distribution is approx-
imately Poisson in nature. Thus, the total observed photon number, Np ∼
P (qs +qd ), could be assumed to follow only a Poisson distribution (cf. Mandel
[1979]) and by neglecting the readout noise. If we characterize the noise by square
root of the variance, then the signal-to-noise ratio (SNR) is given by

SNR≈
qs+qd
�

qs+qd

� 1
2

=
�

qs+qd

� 1
2 . (1.5)

1.3 Mathematical Formulation

1.3.1 Physical Model

When the total magnification of the system is not unity (say M ), by the diffraction
theory (discussed in Chapter 3), the observed image i :R3 7→R (in the absence of
noise) can be written in the continuous domain as

i (xi ,yi , zi )=

∫∫∫

(xo ,yo ,zo)∈R
3

h(xi−M xo ,yi−M yo , zi−M 2zo)×

o(xo ,yo , zo)d zod yod xo , (1.6)

where o :R3 7→R is the original specimen under investigation, h :R3 7→R is the
system PSF, and (xi ,yi , zi ) and (xo ,yo , zo) are the 3D coordinates in the image and
the object spaces. Normalizing the coordinates as (x ′

o
,y ′

o
, z ′

o
)≡ (M xo ,M yo ,M 2zo),

we can say

i (xi ,yi , zi )=

∫∫∫

(xo ,yo ,zo)∈R
3

h(xi− x ′
o
,yi−y ′

o
, zi− z ′

o
)×

o

 
x ′

o

M
,
y ′

o

M
,

z ′
o

M 2

!
d x ′

o
d y ′

o
d z ′

o
. (1.7)
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The above expression can be simply written as

i (xi ,yi , zi )= (h ∗og )(x
′
o
,y ′

o
, z ′

o
) , (1.8)

where og (x
′
o
,y ′

o
, z ′

o
) is the geometrical optics prediction of the object and the in-

teraction between h and og is a ‘3D convolution’. We can see that re-normalizing
the object coordinates makes the model linear shift invariant (LSI) (cf. Goodman
[2004]). From the viewpoint of computational methods, this could be inverted
with the knowledge of the scanning system properties and also by information
about the object being scanned. It is for this reason that the knowledge of the
point-spread function (PSF), h, is of fundamental importance. The nature of the
PSF for fluorescence microscope has been studied extensively in Agard [1984],
Hudson, et al. [1996] and Zhang, et al. [2007]. In Chapter 3, we will introduce
to the reader a theoretical model of the PSF based on the scalar diffraction theory
and later its approximations adapted for blind deconvolution (BD). In the above
model, we assumed isoplanatism of the microscope objective or spatial-invariance
along the meridional sections, which is a valid supposition for a well aligned mi-
croscope. However, it is not often the case along the axial direction where the
PSF might change with depth. We will look at this problem in more detail in
Chapters 3, 5 and 6. Throughout this thesis, we will use the terms ‘object’ or
‘specimen’ interchangeably to refer to the ‘biological specimen’ or the underly-
ing scene we wish to study.

1.3.2 Background Fluorescence Model

We can assume that the imaging system has been a priori calibrated so that there
is negligible offset in the detector and that the illumination is uniform; i.e. no
misalignment in the laser. This assumption is justified in our case as is elucidated
by the following example.

In Fig. 1.5(a) and (c), we show the first and last observed optical sections ob-
tained by imaging a fluorescent microsphere immersed in water. The first and
the last slices were chosen because these are essentially sans features, and hence
free from the object fluorescence. Fig. 1.5(b) and (d) shows the estimated back-
ground, b̂ (x), obtained by morphologically opening the two sections by using
a circular structural element (cf. Gonzalez & Woods [1987]). Fig. 1.6 shows the
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histograms for the observed image volume and the volume after the background
was subtracted. When we compare the histograms, we observe how the entire his-
togram has been shifted towards the zero after the background subtraction (BS).
What we can also infer from the background estimated section is that there is a
uniformity in the illumination and no alignment problems. The mean value of
the background signal from this estimation procedure was found to be about 3.13
IU. Next, the overall histogram of the image volume, in Fig. 1.6, was smoothed

(a) (b)

(c) (d)
Figure 1.5: The estimated background fluorescence b̂ (x) in (b) and (d) are

from (a) the first slice and (c) the last slices of an observed pho-
ton counts having very sparse object fluorescence ( c©Ariana-
INRIA/I3S, INRA). The lateral sampling for this volume is ∆xy =

37.38nm and the axial sampling∆z is 151.45nm.

and a Poisson distribution was fit to the data. As before, the parameters of the
distribution were estimated using a ML estimate. The empirical mean of the dis-
tribution was estimated to be lie between 3.9683 and 3.9702 IU with a 95% confi-
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Figure 1.6: Histogram of the original and the background subtracted volume
( c©Ariana-INRIA/I3S).

dence. Since the object fluorescence was sparsely populated, we find that there is
not much difference between the mean estimates by considering the overall vol-
ume or the individual section. This is valid in most of the images taken using
a CLSM where the object fluorescence is sparse throughout the volume. How-
ever, we notice a significant difference between the background estimated using
the dark image with full amplifier gain and the above estimation for an observed
volume. This reinforces the idea that the background needs to be estimated for
every observation volume, and if the object fluorescence is sparse, the estimation
could be carried out on the observation. For more details on homogenous or
heterogenous background estimation in fluorescence microscopy, the interested
reader may refer to the following articles by van Kempen & van Vliet [2000] and
Chen, et al. [2006].

1.3.3 Image Formation in an Aberration-Free Microscope

In a discrete spatial support Ωs = {(x,y, z) : 0≤ x ≤Nx−1,0≤ y ≤Ny−1,0≤ z ≤
Nz−1}, we denote by O (Ωs )= {o=(oxy z) :Ωs ⊂N

3→R} the possible observable
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objects, and by h :Ωs 7→R the microscope PSF. When the imaging system has
been a priori calibrated, there is almost negligible offset in the detector and the
illumination is uniform. For an aberration-free model, the convolution is LSI,
hence in a matrix notation,

(h ∗o)(x)=HO , (1.9)

and the matrix H is block-circulant (if periodic boundary conditions are used). It
can be shown that if the matrix is block-circulant, it is diagonalized by the discrete
Fourier transform (DFT). In addition, we will assume that the encircled or volu-
metric energy is constant with respect to the blurring process. This assumption
is valid because blurring is a passive process and hence

∑

x∈Ωs

o(x)=
∑

x∈Ωs

(h ∗o)(x) . (1.10)

.
In the literature of restoration methods for fluorescence microscopy, there are

two models used to describe the image formation process at the detector. These
are the additive Gaussian white noise (AGWN) and the Poissonian model. If
{i (x) : x∈Ωs} denote the observed intensity (bounded and positive) of a volume,
for the Gaussian noise assumption, the observation model can be written as

i (x)= (h ∗o)(x)+w(x),∀x∈Ωs , (1.11)

where w(x)∼N (0,σ2
g
) is an AGWN with zero mean and variance σ2

g
. If we were

to approximate a Poissonian process by a Gaussian noise, the variance of the noise
will depend on the mean intensity, (h ∗o)(x). The high SNR case can be addressed
by employing the central limit theorem (CLT) for large photon numbers, where
the AGWN model performs satisfactorily. It is important to note that under
low SNR, the AGWN model provides a poorer description of the fluorescence
microscopy imaging than the following Poisson model.

For the Poissonian assumption, the observation model can be expressed as

γ i (x)=P (γ ([h ∗o](x)+ b (x))) ,∀x∈Ωs , (1.12)
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where P (·) denotes a voxelwise noise function modeled as an i.i.d.Poissonian
process. b : Ωs 7→R is a uniformly distributed intensity that models the low-
frequency background signal caused by scattered photons and autofluorescence
from the sample. 1/γ is the photon conversion factor, and γ i (x) is the photon
count at the detector.

The discussion of the mathematical approximation for image formation under
aberrations is left for Chapter 6.

Nyquist Sampling

The Nyquist sampling theorem tells us that for a bandlimited system, the ideal
sampling frequency should not be less than twice the cut-off frequency. For a
CLSM, the radial cut-off frequency is 4NA/λex, and hence the radial Nyquist
sampling is

∆clsm
xy
=
λex

8NA
. (1.13)

The axial cut-off frequency is related to the depth-of-field (DOF) of the micro-
scope (cf. Sheppard [1986a,b]). The DOF is the distance over which the in-
tensity is more than half of the maximum. Since the axial cut-off frequency is
2(ni− (n

2
i
−NA2)1/2)/λex the maximum axial pixel step should be

∆clsm
z
=

λex

4(ni− (n
2
i
−NA2)

1
2 )

. (1.14)

Effect of Pinhole Size

A sample of the plant Arabidopsis Thaliana, immersed in water, was imaged us-
ing a Zeiss LSM 510 microscope fitted with an objective lens of 1.2NA and 63X
magnification. The dimateres of the pinhole were changed, and the images were
taken for four different settings: 1AU, 2AU, 5AU and 10AU. The sizes of the
pinholes are the back-projected3 values in AU. Fig. 1.7 shows the central plane of
two such observed volume with minimum and maximum pinhole settings. One
can also notice that with the smaller pinhole (1AU), there is more contrast and

3Back-projected diameter is the diameter of a pinhole in the object space. It is calculated as the
ratio between the real physical diameter of the pinhole and the total magnification of the system
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Figure 1.7: The central axial plane of an imaged Arabidopsis Thaliana plant in

water under two different pinhole sizes (a) 1 AU and (b) 10 AU.
( c©INRA Sophia-Antipolis)
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detail in the image but the total signal collected is less as well. While, the im-
ages obtained from the larger pinhole (10AU), have larger signal (signal from the
region of interest and out-of-focus signal) but loss in contrast as well due to un-
wanted fluorescence from the neighboring slices. There is thus a trade-off to be
established between the pinhole size, amount of noise and the out-of-focus light.
1AU is the useable pinhole size for the confocal but for sizes more than 4AU, the
microscope behaves like a widefield as far as the photon statistics are concerned.
This is because as the total number of photons per pixel collected is relatively
large, then the Gaussian model is more applicable. Fig. 1.8 shows the plot of the
histogram for these two observed volumes. We remark that the histogram slowly
changes from a purely Poisson distribution for the 1AU to a mixture of Poisson
and Gaussian (MPG) (cf. Zhang [2007]) for the 10AU setting.
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Figure 1.8: Normalized histogram for the observed specimen under two pin-
hole settings ( c©Ariana/INRIA/I3S).
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1.4 Image Quality Measures

In this section, we define some measures that are used to assess the quality of the
restoration algorithms proposed in this thesis. These measures could be used dur-
ing simulations to quantify the results obtained by comparing the final estimate
with the true object. They were proposed to mimic the human ability to distin-
guishing a good quality image from a poorer one. However, they come no where
closer to our visual perception, and yet under the current circumstances these
serve as the best judge of the quality improvement. The search for a good quality
measure is still open and the authors Wang & Bovik [2009] proposed a measure
based on similarity. Although this similarity index measure is introduced here, it
will not be explored in this thesis.

1.4.1 Mean Squared Error

The mean squared error (MSE) is the ubiquitous preference as a metric in the field
of signal processing. It gives the cumulative squared error between the restored
and the original image.

Definition 1. Supposing the two images are o(x) and i (x), then the MSE between
them is defined by

MSE(o, i )
d e f
=

1

NxNyNz

∑

x

(i (x)−o(x))2 . (1.15)

A more general form is based on the `p norm of the difference:

dp(o, i )
d e f
=

�∑

x

|i (x)−o(x)|p
� 1

p

. (1.16)

The MSE however exhibits weak performance and has serious shortcomings for
our application, since we deal with finding the significant perceptual difference
between images. We have however used it only as a criterion to evaluate the error
in the estimated PSFs.
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1.4.2 Peak Signal-to-Noise Ratio

Definition 2. Peak signal-to-noise ratio or PSNR is a measure of the peak error
in the images. In the literature of image processing, MSE is often converted into
a PSNR measure as

PSNR
d e f
= 10log10

L2

MSE
, (1.17)

where L is the dynamic range of allowable image pixel intensities, and MSE is as
defined in Eq. (1.15).

Here, the ‘signal’ is the original object, and the ‘noise’ might either be the
error in reconstruction or the error in the observation. For 8 bit images L= 255
while for 12 bit images L= 4095. The PSNR is useful if images having different
dynamic ranges are being compared, but otherwise contains no new information
relative to the MSE. A lower value for MSE means lesser error, and as seen from
the inverse relation between the MSE and PSNR, this translates to a high value
of PSNR.

1.4.3 Information-Divergence Criterion

The information-divergence criterion, shortly known as i-divergence or general-
ized Kullback-Leibler measures the discrepancy between two non-negative distri-
butions. It was proved to be consistent (Jiang & Wang [2003]) with the axioms
of Csiszar [1991].

Definition 3. Consider the two non-negative distributions o and i . IDIV :Ωs×
Ωs 7→R is a function that measures the discrepancy or the distance between i :
Ωs 7→R

+ and o :Ωs 7→R
+ as

IDIV(o|i )
d e f
=
∑

x∈Ωs

o(x)log

�
o(x)

i (x)

�
−
∑

x∈Ωs

[o(x)− i (x)]. (1.18)

This is the dominant measure when it comes to evaluating deconvolution al-
gorithms as the most popular, nonlinear multiplicative restoration algorithm (cf.

Subsection 2.1.2), could also be derived by minimizing this criterion. However,
this is not a magical solution to the problem of visual quality assessment, but they
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are still better than the MSE. It is important to mention here that this measure is
asymmetrical and IDIV(o|i ) 6= IDIV(i |o), and the individual distributions need to
be strictly positive, i.e. o(x)> 0 and i (x)> 0, ∀x∈Ωs . The minimum IDIV(o|ô),
the better is the estimation procedure. A perfect deconvolution algorithm yields
the IDIV(o|ô) to be zero.

1.5 Conclusion

In this chapter, we introduced the optical sectioning properties of two fluores-
cent microscopes. The diffraction-limited nature of the microscope objective,
out-of-focus blur, aberrations, and statistical noise can affect an observed image’s
resolution. A mathematical formulation is derived for image formation at the
objective and at the detector, in the absence of lens aberrations. Often a low fre-
quency background fluorescence, when present, affects the restoration process.
This background changes with experiments, and has to estimated either from a
single specimen-independent observation section or by using the complete obser-
vation volume. It was shown that when the fluorescence is sparse in the volume,
both these methods yielded similar results. Some image quality measures were
defined for evaluating the restoration approaches to be presented in Chapters 4,
5 and 6.
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CHAPTER 2

State of the Art

“If you want to understand today, you have to search yesterday.”

-Pearl S. Buck (American writer)

The optical resolution of a confocal microscope, as defined in previous chapter, is
often limited to the spot size to which the excitation beam is focused. This size is
typically of the order of the wavelength of the light used. This defines the spatial
limit to which the light can focus in a microscope. There are many sub-diffraction
techniques that aim to break this barrier. In this chapter, we review some existing
methods of non-blind and blind deconvolution, as applied to microscopy, that
aim to achieve this as well. It is difficult to make an exhaustive review of all
the literature available in this field. So, we chose only those that resemble the
problem we are handling or methods that raised considerable interests on this
subject. As the framework is based on the Bayesian hypothesis, we believe it is
general enough to encompass the methods cited in literature. We also show how
some of the approaches listed in this chapter could be considered as special cases
of the application of Bayes’ theorem. In the end of this chapter, we list some
recent advances in sub-diffraction techniques in microscopy.

2.1 Deconvolution Algorithms

As the process of imaging could be mimicked by convolving the structure of an
object with a PSF, deconvolution is a mathematical procedure that aims to re-
verse this process to obtain the object. This reasons from the assumption that
the PSF is the same as that when the image was obtained, and that the signal and
the PSF data are free from noise. When analyzing the published literature on the
subject of image deconvolution for 3D fluorescence microscopy, we found that

21
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primarily they differ in the initial mathematical models they choose to describe
the observation, the model on the object, and their assumptions on the system’s
PSF. As a consequence, the optimization approach that each of them adopt for
the restoration process becomes different. A survey on deconvolution algorithms
was carried out earlier by Meinel [1986]; Carasso [1999]; Cannell, et al. [2006];
Sarder & Nehorai [2006] and more recently by Pankajakshan, et al. [2008b].
The most significant methods for fluorescence microscope are summarized in the
Tab. 2.1. In this subsection, we will only highlight the differences between these
algorithms by pointing out the advantages and drawbacks of each method. We
divided the following few subsections primarily based on the observation model
described in Section 1.3 and then the optimization method employed. We will
assume for the time being that the PSF h is known (either empirically or numer-
ically calculated).

2.1.1 Nearest and No Neighbors Method

A simplistic approach to deconvolution is the nearest neighbors (NN) by Agard
[1984]. This method assumes that the most blurring within a focal plane is due to
the light scattered from its two neighboring planes. They assume that the intra-
plane PSF is normally much smaller than the inter-plane PSF. So, if ô(x) is the
estimated object its z th slice can be estimated as

ô(x)=F−1
2D

�
( I (kx ,ky , z)−λo [H (kx ,ky , z−1)I (kx ,ky , z−1)+

H (kx ,ky , z+1)I (kx ,ky , z+1) ] )H−1(kx ,ky , z)

�
,∀x∈Ωs , (2.1)

where H (kx ,ky , z−1) and H (kx ,ky , z+1) are the two dimensional (2D) optical
transfer function4 (OTF) for the two neighboring planes of the in-focus plane.
λo ∈R is an empirical measure that adjusts the contribution of the two neigh-
boring planes to the central plane. Monck, et al. [1992] modified the above ap-
proach and proposed their no neighbors approach. The no neighbors method
assumes that the PSF is axially symmetrical, and that the blurred neighbors are
approximated by the blurred central plane. The influence of noise is assumed to

4The PSF and the OTF are related by the Fourier transform.
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Algorithms References

No noise
Nearest neighbors Agard [1984]
No neighbors Monck, et al. [1992]
Inverse filter Erhardt, et al. [1985]

Gaussian noise
Solution as linear equation

Tikhonov Tikhonov & Arsenin [1977]

Regularized linear Preza, et al. [1992]
least squares (RLS)

Wiener filter Tommasi, et al. [1993]

Solution as iterative algorithm
Jansson van Cittert (JVC) Agard [1984]

Nonlinear least squares (NLS) Foskett & Grinstein [1990]

Poisson noise (PN)
Maximum likelihood (ML) Holmes [1988]
for PN
Maximum a posteriori (MAP) Joshi & Miller [1993]; Van Kempen, et al. [1997],
for PN Verveer, et al. [1999]; Figueiredo & Nowak [2003],

Dey, et al. [2006]
Table 2.1: List of deconvolution algorithms in the literature of microscopy, classified by the type of noise handled.



24 CHAPTER 2. STATE OF THE ART

be negligibly small and ignored during computations. Although these two are
very classical approaches, we list them here because some of the current commer-
cial softwares still use them in their deconvolution toolbox. Since they assume
contribution from only two of the central plane’s neighboring slices, it is fast
to compute (only 2Nz number of 2D forward and inverse Fourier transforms),
and knowledge of the full PSF or the OTF is not necessary. The disadvantage of
these methods are that, in the presence of an analytical PSF/OTF model, it only
uses partial information, and hence the deconvolution could be said to be axially
incomplete for the volume.

2.1.2 In a Bayesian Framework

In this subsection, we will use the Bayes’ theorem to develop a framework that
can encompass most deconvolution methods. From the Bayesian hypothesis, the
posterior probability is

Pr(o|i )=
Pr(i |o)Pr(o)

Pr(i )
, (2.2)

where Pr(i |o) is the likelihood function for the specimen and it specifies the prob-
ability of obtaining an image i from an object, and Pr(o) is a p.d.f-the prior-from
which o is assumed to be generated (cf. Subsection 2.1.3). By using the Bayesian
formula above, a rigorous statistical interpretation of regularization immediately
follows. ô is obtained by using the maximum a posteriori (MAP) estimate or by
minimizing the cologarithm of the a posteriori as

ô(x)= argmax
o≥0

Pr(o|i ) (2.3)

= argmin
o≥0

(− log[Pr(o|i )]) . (2.4)

As Pr(i ) does not depend on o or h, it can be considered as a normalization
constant, and it shall hereafter be excluded from all the estimation procedures.
The minimization of the cologarithm of Pr(o|i ) in Eq. (2.4) can be rewritten as
the minimization of the following joint energy functional:

J (o|i )= Jobs(i |o)︸ ︷︷ ︸
Image energy

+ Jreg,o(o)︸ ︷︷ ︸
Prior object energy

. (2.5)
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Jobs : Ωs 7→R is a measure of fidelity to the data and it corresponds to the term
Pr(i |o) from the noise distribution. It has the role of pulling the solution towards
the observation data. We make a decision about the underlying scene based on
this cost function, and it specified as well the penalty paid by the system for
producing an incorrect estimate of the scene. Jreg,o : Ωs 7→R corresponds to the
penalty term Pr(o) on the object that ensures smoothness of the solution.

Direct Methods

The NN deconvolution algorithm for microscopy could not handle noise in the
data. Since its advent, there have been numerous direct deconvolution methods
viz. Wiener filter (Tommasi, et al. [1993]), inverse filter (Erhardt, et al. [1985]),
and linear least squares (LLS) (Tikhonov & Arsenin [1977]; Preza, et al. [1992]).
We present here the statistical interpretation of these methods.

If we assume that observation model follows the hypothesis as in Eq. (1.11),
then the likelihood becomes

Pr(i |o)=

 
1

2πσ2
n

!�Nx Ny Nz
2

�
∏

x∈Ωs

exp

 
−
(i (x)−[h ∗o](x))2

2σ2
n

!
, (2.6)

where ∗ denotes the 3D convolution operation and σ2
n

is the variance of the Gaus-
sian noise.

Definition 4. For p ≥ 1 and p ∈R+, we define the `p norm of o(x) as

‖o(x)‖p
def
=



∑

x∈Ωs

|o(x)|p



1
p

. (2.7)

The cologarithm of the likelihood function above becomes

Jobs(i (x)|o(x))= ‖i (x)− (h ∗o)(x)‖22, x∈Ωs , (2.8)

where the terms independent of i and o were dropped from Eq. (2.6). A remark
on the data fidelity term Jobs(o(x)) in Eq. (2.8) is that it is strictly convex and
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quadratic. In matrix notation, Eq. (2.8) becomes

Jobs(i (x)|o(x))= ‖I−HO‖22 , (2.9)

where H is the block-circulant PSF matrix (assuming periodic boundary condi-
tions). If we assume a `2 norm on the prior (to be discussed in Subsection 2.1.3
in detail), the term Jreg,o(o) on the object is

Jreg,o(o)= ‖RO‖22 . (2.10)

We can show that the gradient of Eq. (2.8), Jobs,i (i (x),o(x)), can be calculated as

∇oJobs,i = h(−x)∗ h(x)∗o(x)− h(−x)∗ i (x) , (2.11)

where h(−x) is the Hermitian adjoint of h(x). The minimization of Eq. (2.8)
with respect to o gives the following explicit solution:

ô(x)= f (x)∗ i (x),∀x∈Ωs , (2.12)

where f (x) is the inverse filter function. The above equation may also be written
in terms of the matrix notation as

Ô=FI. (2.13)

The inverse filter matrix, F, for the different algorithms are as defined in Tab. 2.2.
εh in Tab. 2.2, is a small positive constant that bounds the higher frequencies and

Method Inverse filter (F) References

Truncation

(
H−1,∀ |H (k)| ≥ εh

0, otherwise
Erhardt, et al. [1985]

Wiener filter F−1

 
H ∗(k)�

|H (k)|2+
�

Pn (k)
Po (k)

��

!
Tommasi, et al. [1993]

Linear least
�
(H∗H)−1 H∗

�
Gonzalez & Woods [1987]

square (LLS)
Regularized linear

�
H∗H+λoR∗R

�−1 H∗ Preza, et al. [1992]
least square (RLS)

Table 2.2: Deconvolution by direct inverse filtering.
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prevents noise amplification due to inversion. For the Wiener filter, Pn(k) and
Po(k) are the power spectral densities (PSD) of the noise and the object respec-
tively. H (k) is the 3D Fourier transform of the PSF, and H ∗(k) is its complex
conjugate. Note that when R= Id , where Id is the identity matrix, the prefer-
ence is for smaller norms and when λo = 0 the RLS reduces to the unregularized
LLS solution. When λo 6= 0, the RLS can be thought of as a MAP estimate on
observation data with AGWN. These methods are fast and have a closed form
solution for the estimate o(x). However, they intrinsically assume that the noise
is AGWN and are thus valid only for high SNR images. As an exact PSF inverse
does not exist for CLSM, these algorithms have difficulty in restoring the infor-
mation beyond a certain cut off frequency. Another difficulty is low contrast in
the estimates. In order to overcome some of these drawbacks, projection onto
convex sets (POCS) was proposed as an alternative by Bregman [1965]. It was
also later adopted to microscopy by Koshy, et al. [1990].

Maximum Likelihood under Gaussian Noise Assumption

Iterative image deconvolution algorithms are necessary when an exact inverse for
the PSF does not exist in closed form. They are based on probabilistic techniques,
and outperform direct inversion techniques, for the output has reduced noise am-
plification (cf. Pankajakshan, et al. [2008b]). They are more complex and compu-
tationally more intensive than the direct methods. However, computation is not
a problem anymore with advances parallel processing and multi-core processors.

For the additive Gaussian noise model of Eq. (1.11), the maximum likelihood
(ML) estimate is essentially the LLS solution for a known h(x), with the noise
being signal independent. The ML estimate (MLE) can also be thought to be ob-
tained from Eqs. (2.4) and (2.5) when Pr(o) = const. We will discuss this in more
detail in Subsection 2.1.3. The object estimation is done in an iterative manner
by adding a term proportional to the residual as

ô(n+1)(x)= ô(n)(x)+ r
�

ô(n)(x)
��

i (x)− (h ∗ ô(n))(x)
�

,∀n≥ 1 , (2.14)

where r
�

ô(n)(x)
�
= r0

�
1−2/b0|ô

(n)(x)− b0/2|
�

(r0 and b0 are constants). The
algorithm is initialized with ô(0)(x) equated to the observation i (x). This is
known as the Jansson Van Cittert (JVC) (cf. Agard [1984]) algorithm. In this



28 CHAPTER 2. STATE OF THE ART

fixed-point iterative scheme, at every iteration, an error image is calculated by
subtracting the estimated image from the recorded distorted image. To prevent
negative intensities or very bright intensities, the error image is multiplied by a
finite weight function that is defined over a positive intensity band. Finally, the
weighted error is subtracted from the specimen estimate to obtain the new esti-
mate. Foskett & Grinstein [1990], introduced the nonlinear least squares (NLS)
algorithm that modified the JVC to ensure positivity in the output. The nonneg-
ativity constraint guarantees that either the negative intensities are set to zero or
the final specimen intensity is positive. This method however amplifies the high
frequency noise at each iteration and thus requires a smoothing step at each iter-
ation. Unfortunately, the smoothing operation does not work well for low SNR
images. While JVC improves the resolution in the final estimated image, this
method is not good for removing the noise. This algorithm converges quickly,
but in the presence of noise, due to the residual term in the iterative step, it di-
verges fast.

Maximizing the likelihood in Eq. (2.6) or minimizing the energy in Eq. (2.8)
leads to the following modified JVC algorithm by Agard [1984]:

ô(n+1)(x)= ô(n)(x)+ r
�

ô(n)(x)
��
(h∗ ∗ i )(x)−

�
h∗ ∗ h ∗ ô(n)

�
(x)
�

,∀n≥ 1, (2.15)

and the h∗ is the adjoint of h, and h∗(x) = h(−x). We can see that this can be
seen as a steepest descent (SD) kind of algorithm with a variable step size. This
method is also known as the Landweber algorithm.

Maximum Likelihood under Poissonian Noise Assumption

If we accept the Poissonian hypothesis in Eq. (1.12), then the image i (x) can be
regarded as the realization of independent Poisson processes at each voxel. Hence,
the likelihood for the observation is written for this approximation as

Pr(i |o)=
∏

x∈Ωs

([(h ∗o)+ b](x))i (x)exp(−[(h ∗o)+ b](x))

i (x)!
, (2.16)
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where the mean of the Poisson process is [(h ∗o)+ b](x). The data energy func-
tion to be minimized is

Jobs(o(x))=
∑

x∈Ωs

[(h ∗o)+ b](x)− i (x)log[(h ∗o)+ b](x) . (2.17)

The function of the kind in Eq. (2.17), for the Poisson case, is called as ‘self-

concordant functions’ (cf. Boyd & Vandenberghe [2004]), and are convex although
not in the strict sense. In the absence of the background, we can immediately see
that minimizing Eq. (2.17) is equivalent to minimizing the i-divergence criterion
in Eq. (1.18), IDIV(i |h ∗o), between the observation and the blurred object. We
included the background term in the likelihood expression of Eq. (2.16). In lit-
erature, conventionally, the background is estimated, and subtracted from the
observation data. The resulting negative intensities are set to zero before de-
convolution. However, Dey, et al. [2004] showed that such a procedure would
cause unwanted oscillations in the restoration. When tests were done on sim-
ulated data, it was noticed that the final i-divergence, IDIV(o|ô), is higher for
background subtracted restoration than restoration without BS. The better way
to handle it is to include it in the likelihood expression.

An explicit iterative multiplicative algorithm (independently derived by
Richardson [1972] and Lucy [1974]) based on maximum likelihood expectation
maximization (MLEM) formalism can be obtained by minimizing the energy
function in Eq. (2.17) as

ô
(n+1)
ML (x)= ô

(n)
ML(x) ·




i (x)
h�

h ∗ ô
(n)
ML

�
+ b
i
(x)
∗ h(−x)




qo

,∀x∈Ωs , (2.18)

where qo ∈ [1, 1.5] controls the acceleration of the MLEM (cf. Sibarita [2005]).
(·) denotes the component wise Hadamard multiplication. The division here and
in the rest of this thesis is assumed to be component wise. The derivation of the
MLEM from Bayes’ theorem, and as derived by Richardson [1972] is summarized
in Appendix B.

It can be shown that for noise-free images, this EM algorithm converges to
the MLE. But, in the presence of noise, as it does not have any smoothness con-
straints, if unchecked, they evolve to a solution that displays many artifacts from
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noise amplification (for examples cf. Pankajakshan, et al. [2008b]). One possible
remedy is terminating the iteration (manually or by using a statistical criterion)
before the deterioration begins. Another solution is pre-filtering the observation
data before deconvolution. The general technique used to handle the Poissonian
noise is to transform the data using a variance stabilizing transform (VST) such as
the Anscombe transform. This transform may be defined on the observed data
i (x) as

g (x)= 2

È�
i (x)+

3

8

�
,∀x∈Ωs . (2.19)

It can be shown that the noise in the resulting transformed data is asymptotically
AGWN with zero mean and unit variance. The advantage of the VST is that the
resulting data-fidelity term is quadratic and strictly convex. Kervrann & Trubuil
[2004] used an adaptive window for denoising g (x), while de Monvel, et al.
[2001] used a Daubechies’ wavelet for denoising each direction of the image
stacks i (x). There are many other denoising techniques for removing the signal-
dependent noise (cf. Buades, et al. [2005]; Zhang [2007]; Chaux, et al. [2007];
Luisier, et al. [2010]) present in biological images. One might argue that by
applying a low-pass filter as a pre-processing step before deconvolution, as by
Van Kempen, et al. [1997], the results are improved in comparison to the decon-
volved images with no pre-filtering. In consequence, the deconvolution algorithm
is also less dependent on the object regularizing parameter, λo (as demonstrated in
Dieterlen, et al. [2004]). However, in the light of estimating the object through
deconvolution after denoising, it is difficult to analytically model the resulting
denoised image as a function of the original object and the PSF. Such pre-filtering
operations might influence the convolution model as it is not clear how the re-
sulting filtered data is eventually mapped to the original object. The number of
iterations for eventual convergence of the deconvolution algorithm also increases,
and there is no information on the residual noise. Dupé, et al. [2008] also argued
that such an approach is not recommended as the resulting transformed data does
not follow the model in Eq. (1.11). We will later also see through experiments on
simulated data how the estimation of the PSF, during blind deconvolution (BD),
is also affected due to denoising. It is necessary to understand that such interven-
tions are a post-hoc method of regularizing the ill-posed problem. It is a way of
bringing some knowledge or smoothness to the desired solution o. We propose
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in the next subsection, the Bayesian interpretation of regularization problems
through the MAP estimate.

Maximum A Posteriori under Poissonian Noise Assumption

The MAP estimate involves the simultaneous enforcing of smoothness on the ob-
ject (cf. Section 2.1.3), and blur removal by deconvolution. Dupé, et al. [2008]
used the VST to make their function convex and sparsely represent the object on
a dictionary of waveforms. Their estimation involved minimizing this convex
functional comprising a data-fidelity term and a non-smooth sparsity-promoting
penalty over the object representation coefficients. Another approach is to di-
rectly use the MAP estimate on the observation data and modify Eq. (2.18) to
also include the object regularization. We recall that the MLEM we mentioned
in Eq. (2.18) can also be thought of as a specific form of the MAP estimate when
the a priori model Pr(o) on o is uniform (or Jreg,o(o) is a constant). We refer
the reader to the article by Demoment [1989] for more details on this subject of
Bayesian interpretation of reconstruction and restoration. This second method
will be our preference throughout this thesis as it lets us preserve the original
data. Instead of relying on sequential algorithms to remove the noise and the
blur, we use a regularization that simultaneously adds smoothness constraints in
the deconvolution step. We discuss this, with more details, in Section 2.2.4. We
devote the next few paragraphs on the object models and later on the survey of
BD algorithms in microscopy.

2.1.3 Importance of Prior Object Model

The prior distribution Pr(o) should reflect our belief on the object o, and con-
straint the solution space to the most desired one. Priors express the relative
probability of different scenes occurring and carries information on the scene
structure. Hence, the choice of the prior assumption becomes very important in
a Bayesian framework. Recently emerging research has been in the search for a
good prior that models the object (cf. Weiss & Freeman [2007]) and the PSF. We
argue that the biological specimens we investigate could be characterized using
their statistics and hence they should be modeled in the stochastic sense using
priors. In this subsection, we will see how incorporation of object knowledge in
the reconstruction process may make the deconvolution problem well-posed.
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Figure 2.1: Monte Carlo simulation of Ising-Potts model with (a) λo ≈ 0, high

temperature, minimum interaction, and (b) λo = 1, low tempera-
ture, maximum interaction ( c©Ariana-INRIA/I3S).

Prior as Statistical Information

The ensemble model of an object class, refers to any probability distribution
Pr(o) on the object space O , and is of the following form:

Pr(o)=Z−1
λo

exp
�
−λoE(o)

�
,λo ≥ 0 , (2.20)

where E(o) is an energy function and 1/λo is the Gibbs parameter. This method
specifies probabilistically the relationship and interaction between neighboring
voxels. We associate with each site (x,y, z) ∈Ωs of the object, a unique neigh-
borhood ηxy z ⊆ Ωs \ (x,y, z), and we denote the collection of all neighbors
η= {ηxy z |(x,y, z)∈Ωs} as the neighborhood system. If we assume that the ran-
dom field, (O = o), on a support Ωs is Markovian with respect to the neighbor-
hood system η, then, Pr(oxy z |oΩs\x,y,z) = Pr(oxy z |oηxy z

). o is a Markov random
field (MRF) on (Ωs ,η), iff o denotes a Gibbs ensemble on Ωs and the energy is
a superposition of potentials associated to the cliques (a set of connected pixels).
Hence, E(o)=

∑
C∈C VC (o).

Fig. 2.1(a) and (b) shows the results of a Monte Carlo simulation of two sce-
nario of 2D lattice interactions. There are several forms of the energy func-
tion, E(o), based on either `1 (Dey, et al. [2006]; Pankajakshan, et al. [2007,
2009b]), `2 (Conchello & McNally [1996]), `1-`2 (Hom, et al. [2007]) norms, or
entropy (Verveer, et al. [1999]), wavelets (Figueiredo & Nowak [2003]), sparsity
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(Fergus, et al. [2006]) and median root priors (MRP) (Alenius & Ruotsalainen
[1997]). These are tabulated in Tab. 2.3 as well.

`1 Regularization

We consider once again the images in Fig. 1.7 of Subsection 1.3.3. The gradients of
these observed image volumes were numerically calculated and their histograms
plotted as in Fig. 2.2. We mentioned that as the size of the pinhole is increased,
the observed images have less detail due to neighboring slice fluorescence contri-
butions. We can observe this phenomenon in the histograms of the numerical
gradients, as they tend to have longer tails when the pinhole sizes are smaller in
comparison to larger pinhole sizes. In summary, the objects that are in-focus tend
to have longer tails in the gradients rather than objects that are out-of-focus. We
will see how this information can be captured while modeling the object prior
distribution in terms of the MRF.

We first define the following first-order, homogeneous, isotropic MRF, over a
six member neighborhood ηx ∈ η (cf. Fig. 2.3) of the site x∈Ωs ,

Pr[O = o]=Z−1
λo

exp

�
−λo

∑

x

|∇o(x)|
�

, with λo ≥ 0, (2.21)

where |∇o(x)| is a potential functional and λo is the regularization parameter. The
estimation of this regularization parameter is dealt with in Section 4.3.1. From
a numerical perspective, |∇o(x)| is not differentiable in zero. An approach to
circumvent this problem is to regularize it, and instead to consider the smooth,
discrete definition as

|∇o(x,y, z)|ε=
�
(o(x+1,y, z)−o(x,y, z))2+(o(x,y+1, z)−o(x,y, z))2+

(o(x,y, z+1)−o(x,y, z))2+ε2
� 1

2
, (2.22)

where ε is an arbitrarily small value (< 10−3). For the partition function, Zλo
=∑

o∈O (Ωs )
e x p(−λo

∑
x
|∇o(x)|ε), to be finite, we restrict the possible values of

o(x) so that the numerical gradient |∇o(x)| is also bounded. When this model
is used as a prior model for the object, we have the following smoothed total
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RegularizationE(o)References

`2

Gaussian
‖o(x)‖2

2

2σ2
o

Conchello&McNally[1996]

Tikhonov-Miller∑
x
|∇o(x)|2Tikhonov&Arsenin[1977];Miller[1970]

Good’sPrior∑
x

|∇o(x)|2

o(x)Verveer,etal.[1999]

MedianRootPrior∑
x

|o(x)−f(x)|2

f(x)Alenius&Ruotsalainen[1997]

f(x)isthemedianofo(x)

`1
∑
x
|∇o(x)|Rudin,etal.[1992];Charbonnier,etal.[1997]

Persson,etal.[2001];Dey,etal.[2006]
Pankajakshan,etal.[2008b]

`1−`2δ2∑
x
φo(

∇o(x)
δ)Charbonnier,etal.[1993];Chenegros,etal.[2006]

Hom,etal.[2007]
Entropyo(x)−m(x)−o(x)log(

o(x)
m(x))Verveer&Jovin[1997]

`pnormof∑
x
‖W(o(x))‖pFigueiredo&Nowak[2003];Pantin,etal.[2007]

waveletcoefficientsDupé,etal.[2008];Carlavan,etal.[2009]
Table2.3:Energyfunctionsforarandomfield(O=o).
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Figure 2.2: Histograms of the numerical gradients for four different confocal
pinhole settings ( c©Ariana-INRIA/I3S).

Figure 2.3: Markov random field over a six member neighborhood ηx for a
voxel site x∈Ωs ( c©Ariana-INRIA/I3S).

variational (TV) regularization functional (cf. Rudin, et al. [1992]):

Jreg,o(o(x))=λo

∑

x

|∇o(x)|ε . (2.23)
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Although a spectrum of regularization functionals exist in literature, we use the
`1 norm because it is known for its edge preserving qualities (cf. Rudin, et al.
[1992]; Charbonnier, et al. [1997]; Aubert & Kornprobst [2001]) and convexity.
This regularization provides non-isotropic smoothing in the contour edge direc-
tion and not in the orthogonal direction of the contour. For numerical calcula-
tions, we will use a smoothed isotropic approximation of |∇o(x)|ε as defined in
Dey, et al. [2006], and it will be henceforth be referred simply as |∇o(x)|. A direct
3D extension by Charbonnier, et al. [1997] of this iterative noise removal algo-
rithm is described by Persson, et al. [2001] for their work on 3D tomographic
images. Rodríguez & Wohlberg [2009] gave a brief survey on minimization of
TV type functionals. However, we use the 3D numerical implementation of
the regularization algorithm for CLSM as described by Dey, et al. [2004], and
in Pankajakshan, et al. [2008b]. This is summarized in Appendix D as well. The
resulting functional J (o, h|i ) is a sum of Eqs. (2.17) and (2.23). They are a com-
bination of two functions which are self-concordant (cf. Boyd & Vandenberghe
[2004]) and max-type (cf. Nesterov [2004]). Weiss [2008] showed that the
above functional could be minimized with a rate of convergence of the order
O(1/εlog(ε)).

A link between the TV and the undecimated Haar wavelet soft threshold
function is mentioned in Pantin, et al. [2007]. In the 1D case, these two are
equivalent. However, in higher dimensions, this relation does not hold any
more, but they do share some similarities. The TV introduces translation- and
rotation-invariance, while the undecimated Haar presents translation- and scale-
invariance.

Comments on Other Priors

A very instructive study on regularization, especially applied to fluorescence
microscopy, was carried out by Verveer, et al. [1999]. Both Gaussian and Pois-
son models were considered for the noise in combination with Tikhonov, en-
tropy, Good’s roughness regularization and also with no regularization (MLE
with flat prior). The Gaussian prior is widely used in fluorescence imaging be-
cause it prevents noise amplifications and has excellent convergence properties.
Tikhonov & Arsenin [1977]; Miller [1970] introduced a regularization based on
the `2 norm of the gradient of the image. However, `2 norms are isotropic as they
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smooth along both the tangent and the normal to the contour surface. For BD
applications, a `2 kind of regularization on the object does not make the separa-
tion of the PSF and the object easy as the solution space is very similar. It has also
been observed that natural image statistics rarely follow a `2 or Gaussian priors.
In addition, from the example given in Fig. 2.2, it was shown that the gradients
of biological specimens have heavy tailed distributions rather than Gaussian.

The MRP uses the output of a median filter as a parameter of the Gibbs prior
as given in Tab. 2.3. It has the advantage that it can control noise without edge
blurring. The desired object is assumed to be locally monotonic and the prior
uses a simple quadratic function of the difference between the value at the central
pixel and the median of its neighborhood. However, in this case, the estimate
of the object is forced to be smooth, and hence can lead to loss of low-contrast
information during the restoration.

Wavelet decomposition can perform quite well by analyzing the different
scales separately in the deconvolution process. In literature, there are many
papers that are based on deconvolution of 2D images by using wavelets. No-
table among them are by Starck & Bijaoui [1994]; Figueiredo & Nowak [2001];
Jalobeanu, et al. [2003]; Willett, et al. [2003]; Vonesch & Unser [2007]. How-
ever, development of a 3D deconvolution scheme using wavelets is difficult be-
cause only an approximate of the inverse kernel is known for 3D microscopy.
On the other hand, wavelet denoising can substitute as a form of regularization
before or after 3D deconvolution. In this way, denoising in the wavelet scales,
could be combined with regular deconvolution algorithms as mentioned in Sub-
section 2.1, enabling higher resolution (cf. Chaux, et al. [2007]).

2.2 Blind Deconvolution Algorithms

The aim of the BD for fluorescence microscopy is to answer the following simple
but not so apparent question: “How does one estimate an object’s true intensity
and the PSF of the microscope, given only a single observed volume?”

If we forget the effect of noise and consider the observation model (h ∗ o) in
the Fourier space asF (i )=F (h)·F (o), several solutions answer to this problem.
For example, if (h, o) is a solution, then the trivial case is that h is a Dirac function
and o = i or vice versa. If h is not irreducible, there exists h1 and h2 such that
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h = h1∗ h2, and the couples (h1∗ h2, o) and (h1, h2∗o) are also solutions. Another
ambiguity is in the scaling factor. If (h, o) is a solution, then (τh,o/τ), ∀τ> 0 are
solutions too. This last ambiguity can be removed, for example, by imposing a
forced normalization on h. Thus, broadly speaking, a way of reducing the space
of possible solutions and to regularize the problem is to introduce constraints on
h and o.

We reconsider the joint posterior probability density relationship once again
using the Bayes’ theorem

Pr(o, h|i )=
Pr(i |o, h)Pr(o)Pr(h)

Pr(i )
, (2.24)

where Pr(h) is the prior probability on the PSF. Conventional algorithms esti-
mate the object and the PSF directly from the above equation by MAP,

(ô, ĥ)= argmax
(o,h)≥0

{Pr(o, h|i )} . (2.25)

In order to simultaneously recover the two functions o and h, the following al-

ternate minimization (AM) or the zigzag approach is usually adopted:

ô
(n)

MAP
= argmax

o≥0

n
Pr(o, ĥ (n)|i )

o

= argmin
o≥0

n
− log

�
Pr
�

o, ĥ (n)|i
��o

, (2.26)

and followed by

ĥ
(n+1)
MAP

= argmax
h≥0

¦
Pr
�

ô(n), h|i
�©

= argmin
h≥0

¦
− log

�
Pr
�

ô(n), h|i
��©

. (2.27)

The AM is often employed when the objective function to be minimized has
two or more unknowns. In Bezdek, et al. [1987], the authors had shown that
this kind of coordinate descent approach is locally convergent to a minimizer,
and that the rate of convergence in each vector variable is linear. For BD, one
starts with an initial guess for ĥ (0)(x) and obtains the alternating sequence of
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conditional minimizers as

ĥ (0)→ ô(0)→ ĥ (1)→ ô(1)→ . . . (2.28)

By using the Markovian property for conditional probabilities, we can equiva-
lently say (cf. Chan & Shen [2005])

Pr(ĥ (n+1)|ô(n), ĥ (n), ô(n−1), ĥ (n−1), . . .)=Pr(ĥ (n+1)|ô(n)), (2.29)

Pr(o(n+1)|ĥ (n), ô(n−1), ĥ (n−1), ô(n−2), . . .)=Pr(ô(n)|ĥ (n)). (2.30)

We will see more on the application of this AM algorithm in Section 4.2.

2.2.1 Marginalization Approach

We can also approach the BD problem by marginalizing o (cf. Jalobeanu, et al.
[2007]; Blanc-Féraud, et al. [2009]) and estimate h or its vector θ∈Θ⊆R

d . Once
an estimate of the PSF or its parameters is obtained, we come back to the non-
blind complete case where the PSF is known, and use the methods suggested
in Subsection 2.1.2. For example, marginalizing the likelihood Pr(i |h) over all
possible object o ∈O gives

Pr(i |h)=
∫

O

Pr(i ,o|h) d o,

=

∫

O

Pr(i |o, h)Pr(o) d o. (2.31)

In the Bayesian approach, all the nuisance parameters could be integrated out
of the problem by using the marginalization. Hence, if the object or the PSF
are parameterized, these parameters could also be integrated out of the problem.
In this same manner, a marginalization could also be done over the a posteriori

rather than the likelihood as

Pr(h|i )=Pr(i |h)Pr(h),

=

∫

O

Pr(i |o, h)Pr(o)Pr(h) d o. (2.32)
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However, the greatest challenge with marginalizing on o is that the probabil-
ity density Pr(i |o, h)Pr(o) in Eq. (2.32) cannot be computed in closed form.
Levin, et al. [2009] proposed some alternate approximations that aim to over-
come this problem but for a sparse prior.

2.2.2 A Priori Point-Spread Function Identification

The PSF may also be identified separately from the original image, and later used
in combination with one of the image restoration algorithm that restores the
object. If a confocal image is collected by using the backscattered light signal, in
parallel with the fluorescent signal, the observation is filled with images of small
refractile point-like objects (cf. Pawley [2006]). These sources in the image may
be manually identified and treated (clipped and filtered) to extract the PSF (cf.

de Monvel, et al. [2001]). This is not BD as it involves manual intervention for
PSF identification from the observation images. The drawback of this kind of
method is that sometimes, the point sources are not easily identified, and there is
the noise factor to be handled as well.

2.2.3 Joint Maximum Likelihood Approach

For BD, we reconsider the likelihood in Eq. (2.16) now as

Pr(i |o, h)=
∏

x∈Ωs

([(h ∗o)+ b](x))i (x)exp(−[(h ∗o)+ b](x))

i (x)!
, (2.33)

where the mean of the Poisson process is given by [(h ∗o)+ b](x). An iterative
multiplicative algorithm for the object restoration was derived in Eq. (2.18). We
notice that in Eq. (2.33), the object o and h can be interchanged causing no change
to the original equation. Hence, the PSF could be restored by an iterative algo-
rithm similar to Eq. (2.18). The BD algorithm involves alternating between the
object minimization and the PSF minimization as

ô
(n+1)
ML (x)= ô

(n)
ML(x)




i (x)
h�

ô
(n)
ML∗ ĥ

(n)
ML

�
+ b
i
(x)
∗ ĥ
(n)
ML(−x)




qo

,∀x∈Ωs , (2.34)
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followed by

ĥ
(n+1)
ML (x)= ĥ

(n)
ML(x)




i (x)
h�

ô
(n+1)
ML ∗ ĥ

(n)
ML

�
+ b
i
(x)
∗ ô
(n+1)
ML (−x)




qh

,∀x∈Ωs , (2.35)

where n is the index of iteration of the algorithm. The parameters qo ,qh ∈ [1,1.5]
control the convergence of the two evolutions. When qo and qh are unity, then we
arrive at the naïve MLEM BD algorithm (cf. Holmes [1992] with band-limiting
constraints on the PSF), and when they are more than 1, they converge (and
sometimes diverge) faster. This form of grouped coordinate descent is commonly
used in BD. Most iterative BD algorithms are based on the Bayesian inference and
hence draw their inspiration from the above basic form of grouped co-ordinate
descent. The only distinction being the different constraints they impose on the
PSF and the object.

Biggs & Andrews [1997] suggested an approach for accelerating this algo-
rithm. Since the object estimate converges faster than the PSF estimates, acceler-
ation was achieved by performing several iterations for the PSF after each object
estimation. The number of cycles of PSF iterations to apply after each iteration
of the object estimate was experimentally chosen. Given an observation data,
the estimation of the parameters (qo ,qh) or the number of iterations in Biggs’
method remains still an open problem. Although this algorithm works well, it
suffers from some major drawbacks. Firstly, it requires information about the
experimental settings to place constraints on the spatial and spectral extent of the
PSF. In many cases this might not be available or might change with experimen-
tal conditions. Secondly, in its original form, it cannot be applied when there are
aberrations (for fluorescent microscope cf. Section 3.4) in the imaging process.

2.2.4 Joint Maximum A Posteriori Approach

In the classical MLEM, the number of iterations, or a threshold on the
MSE(ĥ (n−1), ĥ (n)) and MSE(ô(n−1), ô(n)) serve as stopping criteria. This is a
constraint introduced in the algorithm to prevent the algorithm from contin-
uing until divergence. The earliest BD approach that was applied to incoher-
ent quantum-limited imaging and application to fluorescent microscopes was by
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Holmes [1992]. At each iteration of the MLEM for the PSF, a unit summation
constraint is enforced. In addition, the energy of the PSF is constrained to lie
within an hourglass shaped region by using a Gerchberg & Saxton [1972] type
algorithm. This prevents portion of the background fluorescence b (x) from be-
ing erroneously considered as having originated from the PSF. Finally, bandlim-
iting and positivity criterions are introduced. The earliest such approach was
proposed by Ayers & Dainty [1988] and is referred to as iterative blind deconvo-
lution (IBD) (cf. Alg. 1).

For the PSF estimation, in confocal microscopy, most algorithms either as-
sume that the PSF has a uniform distribution with certain constraints like ban-
dlimits and positivity or follow a certain distribution. Many methods use an itera-
tive approach to estimate the PSF and the object with no prior information on the
object (Holmes [1992]; Michailovich & Adam [2007]). Markham & Conchello
[1999] worked on a parametric form for the PSF and developed an estimation
method utilizing this model. The difficulty in using this model for our applica-
tion is that the number of free parameters to estimate is large and the algorithm
is computationally expensive. Hom, et al. [2007] proposed a myopic deconvo-
lution algorithm that alternates between iteration to deconvolve the object and
estimate the PSF. In order to myopically reconstruct the PSF, they introduce a
constraint on the OTF. Whatever be the prior knowledge, the important point
that should be noted for application to BD is that the prior terms should enable
separation of the object and the PSF solution spaces. For a review of other exist-
ing methodologies in the field of BD, the interested reader may refer to the articles
by Campisi & Egiazarian [2007]; Bishop, et al. [2007]; Levin, et al. [2009].

2.2.5 Non-Bayesian Approaches

A popular BD method is the nonnegativity and support constraints recursive im-

age filtering algorithm or NAS-RIF (cf. Kundur & Hatzinakos [1996, 1998]). Al-
though this algorithm is known to have good convergence properties, it cannot
be used for deconvolving fluorescent microscope images as the PSF does not have
an exact inverse. Among the non-iterative BD algoritms, we found APEX in
Carasso [2001, 2003] to be fastest in terms of computational time and applica-
bility to a certain class of PSFs (low-exponent, Lévy stable probability density
functions) with Gaussian noise. Although the defocus blurs fall under the above
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Algorithm 1: Schema for the Iterative Blind Deconvolution Algorithm.

begin1

Input: Observed volume i (x) ∀x∈Ωs .
Data: Energy of the additive noise parameter εh , and maximum

number of iterations nmax.
Output: Deconvolved volume ô(x), and estimated PSF ĥ(x).
Initialization: n← 0, ô(n)(x)← i (x), ĥ (n)(x)← 1(x).2

while n≤ nmax, do3

Calculate Ô (n)(k), the DFT of ô(n)(x).4

Fourier space PSF projection: Ĥ (n)(k)=
I (k)

�
Ô(n)(k)

�∗

|Ô(n)(k)|2+
εh

|Ĥ (n−1)(k)|2

.
5

Calculate ĥ (n)(k) from Ĥ (n)(k) by IDFT.6

Real space PSF projection: Impose positivity and finite support7

constraints s. t.
∑

x∈Ωs
ĥ (n)(x)= 1.

Fourier space object projection: Ô (n+1)(k)=
I (k)

�
Ĥ (n)(k)

�∗

|Ĥ (n)(k)|2+
εh

|Ô(n)(k)|2

.
8

Calculate ô(n+1)(x) by IDFT of Ô (n+1)(k).9

Real Space Object Projection: Impose positivity and flux10

preservation constraints on ô(n+1)(x) s. t.∑
x∈Ωs

ô(n)(x)=
∑

x∈Ωs
i (x).

Assign: n← (n+1).11

end12

end13

category, the method is not suitable for fluorescent microscopes, as the PSFs in
this case are dependent on imaging conditions and the specimen.

2.3 Sub-Diffraction Microscopy

The resolution barrier posed by diffraction is not a true limit because this limit
is applicable only when operating in the far-field region (with the exception of
stimulated emission depletion microscopy, or STED microscopy). The near-field
scanning optical microscope (NSOM) uses a light source and detector which in
itself is nanometer in scale. Thus, the resolution in this case is not limited by
diffraction, but by the size of the aperture used for scanning and its distance from
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the fluorophore. The apertureless NSOM or ANSOM overcomes the problem
of limited photon counts posed by NSOM by creating some locally bright spots.
The stimulated emission depletion (STED) microscopy, on the other hand, uses
two overlapped laser pulses, the second of which has a zero intensity at its ori-
gin, and takes advantage of the non-linear de-excitation of fluorescent dyes. By
sending an excitation pulse followed by a depletion pulse, the size of the exci-
tation region is reduced. This is because the depletion beam is focused not as a
spot but as a ring. All the excited electrons return to the ground state except the
ones very close to the axis of the depletion beam. The photo-activated localiza-
tion microscopy (PALM) and stochastic optical resolution microscopy (STORM)
are based on the principle of photactivation of a very small selective fraction of
the fluorophores present. A Gaussian model is then used to fit the PSFs pro-
duced by imaging the individual photoactivated molecules. The image is built up
molecule-by-molecule, each of them being localized at different times. In WFM,
structured illumination (SI) is used to improve the resolution. A grid of strips
with predefined widths are projected onto the focal plane of the objective and
then shifted laterally to the sample. The images obtained as a result of this lat-
eral shifting is superimposed in the Fourier space, and the inverse Fourier trans-
form yields the super-resolved reconstructed image in the real space. A recent
development is the 4Pi microscope which is a CLSM that obtains high resolu-
tion by focusing the beam ideally on all sides and scan the object point-by-point.
In Vicidomini, et al. [2009], an AM algorithm was proposed for 4Pi-microscopy.
This method is involves alternatively estimating both the relative phase between
the focusing beams, and the object. However, an assumption of constant phase
throughout the observation, makes the model LSI.

2.4 Conclusion

The focus of this chapter is to review the available literature on deconvolution
and blind deconvolution methods in microscopy. These methods could also be
seen from a statistical angle by using the Bayes’ theorem. Direct and iterative
methods were studied as minimization of an energy function involving a data fi-
delity term and a prior term. To avoid amplification of the noise, and to make the
problem of deconvolution well posed, a prior model on the object is necessary.
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When maximizing the posterior p.d.f, the prior could be treated as a nuisance
parameter and integrated out of the problem. An alternative, is to model it by
using the Gibbs’ distribution. An `1 norm on the regularization is suggested for
the object prior due to its superior edge-preserving property. For restorations
under aberration-free conditions, a parametric model of the PSF is suggested and
its closed-form expression will be discussed in the following chapter. A JMAP ap-
proach is proposed and an alternate minimization procedure is derived for object
and PSF estimation.
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CHAPTER 3

Modeling the Microscope’s Optical

System

“Focusing isn’t just an optical activity, it is also a mental one.”

-Bridget Louise Riley (English Painter)

As a point-spread function (PSF) reflects the fluorescence activity at every
point in the specimen, it constitutes the essential building block for recreating an
object’s intensities. The algorithms for deconvolution in Chapter 4 rely on an
accurate knowledge of the PSF. This PSF can be determined either theoretically
using a mathematical model or empirically by acquiring 3D image of a fluorescent
microsphere (Hiraoka, et al. [1990]; McNally, et al. [1994]; Shaevitz & Fletcher
[2007]). As theoretical models are easier to calculate and use, most deconvolu-
tion algorithms in the literature use them. We derive in this chapter, the Debye’s
scalar diffraction model for a lens system which eventually serves as the basis
for obtaining an analytical expression for the PSF. In Section 3.1, we review the
background theory, and in Section 3.2 formulate the diffraction integrals for a
lens system. Based on these integrals, in Section 3.3, a simple method is pro-
vided to derive the diffraction-limited PSF from the pupil function. A spatial
approximation of this PSF using an anisotropic separable 3D Gaussian function
is discussed in Subsection 3.3.4. Spherical aberrations (SA) are the primary form
of aberrations affecting fluorescence microscope images. These are discussed in
Section 3.4, and a new but simple analytical expression for the PSF is given which
includes SA. Although electromagnetic fields are vectorial in nature, in this the-
sis, we consider only the scalar properties of light. Our reasons for ignoring the
vectorial nature of light is discussed at the end of this chapter in Subsection 3.5.1.

47
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3.1 Background

In this section, we recall some fundamental definitions and results that serve as
the base for the diffraction integral equations discussed later.

Maxwell and Helmholtz’s Equations

If E(x, t ) and H(x, t ) are orthogonally time-varying electric and magnetic fields
(cf. Fig. 3.1), in the absence of free charge, the Maxwell’s equations are (cf.

Born & Wolf [1999])

∇×E=−µm

∂

∂ t
H , (3.1)

∇×H= εm

∂

∂ t
E , (3.2)

∇·εmE= 0 , (3.3)

∇·µmH= 0 , (3.4)

where µm is the permeability, and εm is the permittivity of the medium. ∇×E

gives the curl of E, and∇·εmE gives the divergence of E. If the medium is homo-
geneous, εm is constant throughout the region of propagation. The medium is
said to be non-dispersive to light if εm is independent of the wavelength λ of the
light used. All media are nonmagnetic hence the permeability of the medium is
the same as that in vacuum.

Figure 3.1: An illustration of coherent, monochromatic light as an electromag-
netic wave. The electric and magnetic fields oscillate at directions
orthogonal to the propagation of the light ( c©Ariana-INRIA/I3S).
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The vector wave equation for any time varying field V(t ) is

∇2V(t )−
n2

c2

∂ 2

∂ t 2
V(t )= 0 , (3.5)

where ∇2 is the Laplacian operator with respect to the spatial coordinates,
nm = (εm/ε0)

1/2 is the RI of the medium, and c = 1/(µ0ε0)
1/2 the speed of light

in vacuum. However, for non homogeneous medium, the coupling between the
electric and magnetic fields cannot be rejected and hence the above equation has
to be modified to include also the variation in the RI. At the boundaries, coupling
is introduced between the electric and magnetic fields and in their individual com-
ponents as well. The error is small provided that the boundary conditions affect
an area that is only a small part of the area through which a wave may be passing.

We define a strictly monochromatic time-harmonic scalar field by

U (x, t )=Ux(x)exp(− jωt ) . (3.6)

The above scalar field also satisfies Eq. (3.5), and hence the Helmholtz equation

(∇2+k2)U = 0 , (3.7)

where k = (2πnµ0)/c = 2πn/λ is the wave number, and λ is the wavelength of
the light in free space (λ= c/µ0). If this field has no evanescent components, it
can be written as a weighted sum of plane waves of the form

U (x)=

∫

k

A(k)exp( jk ·x)dΩ, (3.8)

where k is a unit vector that describes the direction of propagation of the plane
waves (cf. Fig. 3.1).

3.1.1 Divergence Theorem

The divergence theorem or the Gauss’ theorem is the higher dimensional form
of the fundamental theorem of calculus.
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Figure 3.2: Surface and volume element depiction for Green’s identity and the
divergence theorem ( c©Ariana-INRIA/I3S).

Theorem 3.1.1. Let V be a simple solid region, and S the boundary surface of V ,

with the positive outward orientation n (as shown in Fig. 3.2). Let V be a vector field

whose component functions have continuous partial derivatives on an open region

that contains V . Then ∫

V

(∇·V)dV =

∮

S

V ·nd S . (3.9)

This theorem, relates the flux of a vector field through a surface S to its behavior
inside the surface. For example, if the vector field acts tangential to the surface,
the right hand side of Eq. (3.9) is zero. This implies that there are no flux lines
flowing into the volume. This is evident.

3.1.2 Green’s Second Identity

Green’s identities are a set of vector derivative/integral identities that can be use-
ful in deriving the Fresnel-Kirchoff diffraction equations and the Debye integral
approximation. Since we are only interested in the second identity, it is stated as
below.

Definition 5. If G and U are continuously differentiable scalar fields on V ⊂R
3,

then ∫

V

(G∇2U −U∇2G)dV =

∮

S

(G
∂

∂ n
U −U

∂

∂ n
G) ·d S . (3.10)
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G(P ) is a scalar field as a function of position P , and ∂ /∂ n is the par-
tial derivative along the outward normal direction in the surface element d S.
It is straightforward to show that, for the scalar fields G and U , satisfying the
Helmholtz equation Eq. (3.7), the left hand side of Green’s second identity
Eq. (3.10) is zero (also known as Helmholtz’s integral theorem).

3.2 Diffraction in a Lens System

We introduce below the diffraction theory for light propagation in a homoge-
neous medium. In Fig. 3.3, if P0 is the point of observation, for diffraction by

Figure 3.3: Diffraction by a planar screen illuminated by a single spherical wave
( c©Ariana-INRIA/I3S).

an aperture Σ, the Kirchoff, G, at an arbitrary point P1 that is a solution to
Eq. (3.10) is

G(P1)=
1

r01
exp( j k0 r01) . (3.11)
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where r01 is the distance from the aperture Σ to the observation point P0, k0=

2π/λ is the wave number in vacuum, and r01= ‖r01‖2.

∂

∂ n
G(P1)= cos(n,r01)

�
j k0−

1

r01

�
exp( j k0 r01)

r01
, (3.12)

where n is the outward normal to Σ, and cos(n,r01) is the cosine of the angle
between the normal n and r01.

Theorem 3.2.1. The theorems of Helmholtz Eq. (3.7) and the Kirchoff Eq. (3.11)
give the field at any point P0 expressed in terms of the boundary values of the wave

on any closed surface S surrounding that point. Accordingly,

U (P0)=
1

4π

∮

S

exp( j k0 r01)

r01

∂

∂ n
U −U

∂

∂ n

exp( j k0 r01)

r01
dS . (3.13)

This is the integral theorem of Helmholtz-Kirchoff and it represents the funda-
mental equation governing the scalar diffraction theory.

Remark 1. By the reciprocity theorem of Helmholtz (cf. Born & Wolf [1999]),
the effect of placing the point source at P2 and observing at P0 is equivalent to
placing the point-source atP0 and observing atP2.

Theorem 3.2.2. If we assume that an aperture Σ is illuminated by a single spherical

wave originating from P2 and that r01� λ, r21� λ, the disturbance at P0 with

Kirchoff’s boundary conditions is

U (P0)=
A

jλ

∫

Σ

exp( j k0(r21+ r01))

r21 r01

�
cos(n,r01)−cos(n,r21)

2

�
dS . (3.14)

Proof. By Th. 3.2.1 and applying the Kirchoff’s boundary conditions we get

U (P0)=
1

4π

∫

Σ

�
G
∂

∂ n
U −U

∂

∂ n
G

�
dS . (3.15)

The fringing effects can be neglected if the dimension of the aperture is much
larger than the wavelength λ of the light used. If k0� 1/r01, then Eq. (3.12) can
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be written as
∂

∂ n
G(P1)≈ j k0 cos(n,r01)

exp( j k0 r01)

r01
. (3.16)

Substituting Eq. (3.16) in Eq. (3.15), we get

U (P0)=
1

4π

∫

Σ

exp( j k0 r01)

r01

�
∂

∂ n
U − j k0U cos(n,r01)

�
dS . (3.17)

If we assume that the aperture is illuminated only by a single spherical wave aris-
ing fromP2, then

U (P1)=A
exp( j k0 r21)

r21
, (3.18)

where r21= ‖r21‖2. Hence,

U (P0)=
A

jλ

∫

Σ

exp( j k0(r21+ r01))

r21 r01

�
cos(n,r01)−cos(n,r21)

2

�
dS . (3.19)

Remark 2. The Fresnel-Kirchoff diffraction formula essentially confirms the
Huygens principle. The field at P0 arises from an infinite number of fictitious
secondary point sources located within the aperture. The secondary sources here
contain amplitude and phases that are related to the illumination wavefront, and
the angles of illumination and observation.

Remark 3. The Fresnel-Kirchoff diffraction approximation is similar to the
Rayleigh-Sommerfield theory (cf. Born & Wolf [1999]) for small diffraction an-
gles.

3.3 Diffraction-Limited Point-Spread Function

Model

In incoherent imaging, the distribution of intensity in the image plane is found
by integrating the intensity distributions in the diffraction images associated with
each point in the object. Thus, if o(x′) is the intensity at x′ in the object plane,



54 CHAPTER 3. MODELING THE OPTICS

the intensity at the point x in the image is obtained as (ignoring the influence of
noise)

i (x)=

∫

x′∈R3

o(x′)h(x−x′)dx′ . (3.20)

As was mentioned before, to accurately reconstruct an object’s intensity distribu-
tion o, knowledge of the PSF plays a very important role. Hence, considerable
effort has been directed at characterizing their properties (cf. Gibson & Lanni
[1989]). We summarize the most relevant models here as it helps us in later
studying them for the different imaging settings.

3.3.1 Debye Approximation

From the Fresnel-Kirchoff formulation in Eq. (3.14), the Debye integral approxi-
mation for a circular aperture can be obtained as

U (P0)=−
j

λ

∫

Σ

exp( j k0(r21+ r01))

r21 r01

�
1−cos(n,r21)

2

�
d S . (3.21)

In this we assume that the angle between the normal vector n and r01 is small,
then cos(n,r01)≈ 1. By changing the coordinates P0 = (ρcosψ,ρsinψ, z) and
P2=(r21 sinθi cosφ, r21 sinθi sinφ,−r21 cosθi ), it is straightforward to show that
(Zhang [2007])

U (P0)=−
j

λ

2π∫

0

α∫

0

A(θi )exp(− j kiρsinθi cos(φ−ψ))×

exp( j ki z cosθi )sinθi dθi dφ , (3.22)

where 0≤φ≤ 2π, 0≤ψ≤ 2π. The semi-aperture angle of the objective is 0≤
θi ≤ α. A is the apodization function, ki = 2πni/λ is the wave number of an
illumination wave, and λ/ni is the wavelength in the medium of RI ni . For a
lens with a uniform aperture, the apodization function is radially symmetrical
with respect to the optic axis and can be represented by A(θi ). The intensity
projected from an isotropically illuminating point source such as a fluorophore,
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on a (flat) pupil plane is bound by the energy conservation constraint. Therefore
the amplitude as a function of θi in the pupil plane should vary as (cosθi )

−1/2

and the energy as (cosθi )
−1 (Hanser, et al. [2003]). Thus, A(θi ) for illumination

is given by
A(θi )= (cosθi )

1
2 ; 0≤θi ≤α , (3.23)

and for the detection as

A(θi )= (cosθi )
− 1

2 ; 0≤θi ≤α . (3.24)

The ideal pupil functions along with the excitation and illumination pupils are
shown in Fig. 3.4. Eqs. (3.23) and (3.24) are known as the “sine condition” and

(a) (b) (c)
Figure 3.4: The amplitude of the pupil function of a CLSM for the (a) ideal, (b)

illumination, and (c) emission cases ( c©Ariana-INRIA/I3S).

they guarantee that a small region of the object plane in the neighborhood of the
optic axis is imaged sharply by a family of rays which can have any angular diver-
gence. This constitutes an aplanatic imaging system and it exhibits 2D transverse
shift invariance.

Remark 4. The Debye approximation holds good only if

(a) r21� a, (a is the radius of the aperture),

(b) the spherical wavelets from the aperture Σ are approximated by plane
wavelets,

(c) cos(n,r01)≈−1,

(d) the NA is very large and the Fresnel number is high.
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3.3.2 Stokseth Approximation

Stokseth [1969] also arrived at the approximation in Eq. (3.22) by extending the
work of Hopkins [1955]. Hopkins essentially worked out an approximation for
small amounts of defocus, while Stokseth’s is an approximation for small and
large defocus.

The PSF is defined here as the irradiance distribution in the image plane of a
point source in the object plane. Diffraction, as we know it, is a far-field effect,
and the light from an aperture is the Fourier transform of the aperture in the far-
field. As the OTF for incoherent illumination and the PSF are related by Fourier
transforms, we say

h(x)=F−1 (OTF(k)) , (3.25)

where x∈Ωs and k∈Ω f are the 3D coordinates in the image and the Fourier space
respectively. Ω f is the support in the Fourier space. If we consider a converging

Figure 3.5: Schematic showing the focusing of an excitation light by an ob-
jective lens. α is the maximum semi-aperture angle and ni is the
RI of the objective immersion medium. The NA= ni sinα is re-
lated to the amount of light entering the microscope ( c©Ariana-
INRIA/I3S).

spherical wave in the object space from the objective lens (as shown in Fig. 3.5),
the near-focus amplitude hA can be written as

hA(x)=

∫

k

OTFA(k)exp( jk ·x)dk . (3.26)

By making the axial Fourier space co-ordinate kz a function of lateral co-
ordinates, kz = (k

2
i
− (k2

x
+k2

y
))1/2, the computation of the PSF is reduced to Nz
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number of 2D Fourier transforms

hA(x,y, z)=

∫

kx

∫

ky

P (kx ,ky , z)exp( j (kx x+ky y))d ky d kx , (3.27)

where P (·, ·, ·) describes the overall complex field distribution in the pupil of a
non-aberrated objective lens. The pupil function is a description of the magni-
tude and phase of the wavefront that a point source produces at the exit pupil of
the imaging system. In simple terms, the above expression states that the field
distribution at a point (x,y, z) in the image space can be obtained by applying
Fourier transform on the overall pupil function. For a microscope suffering from
defocus, the pupil function obtained by Hopkins [1955] can be written as

P (kx ,ky , z)=





A(θi )exp( j k0ϕ(θi ,θs , z)), if

�
k2

x+k2
y

� 1
2

ki
< N A

ni
,

0, otherwise,
(3.28)

where NA= ni sinα, ϕ(θi ,θs , z) is the optical phase difference between the wave-
front emerging from the exit pupil and the reference sphere measured along the
extreme ray, and θi = arcsin(k2

x
+ k2

y
)1/2/ki and θs = arcsin(k2

x
+ k2

y
)1/2/ks (cf.

Fig. 3.6). θs and θi are related by Snell’s law as

ni sinθi = ns sinθs . (3.29)

The bandwidth of the pupil function here is (2πNA)/λ.
The phase ϕ(θi ,θs , z) is a sum of two terms, the defocus term ϕd (θi , z) and

the term due to aberrations ϕa(θi ,θs ):

ϕ(θi ,θs , z)=ϕd (θi , z)+ϕa(θi ,θs ) . (3.30)

For spherical aberration free imaging conditions, it is to be noted that θi ≈ θs ,
and hence ϕa(θi ,θs )≈ 0. This will be discussed in Subsection 3.4.1.

If f is the distance between the exit pupil and the geometrical image point,
then Stokseth obtained the exact expression for this defect of focus as

ϕd (θi , z;ni )=−ni

�
f + z cosθi− ( f

2+2 f z+ z2 cos2θi )
1
2

�
. (3.31)
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A small angle approximation can be obtained by making a series expansion of
cosθi and cos2θi , and omitting terms of θi with higher order than two

ϕd (θi , z;ni )=
1

2
ni zθ2

i

�
1−

z

f + z

�
,θi� 1 . (3.32)

For small defocus and small angles, z2 cos2θi ≈ z2, and hence Eq. (3.31) becomes

ϕd (θi , z;ni )≈ ni z(1−cosθi ) . (3.33)

3.3.3 Equivalence in the Models

If we reconsider Eq. (3.26), we can rewrite (k ·x) in the spherical coordinates as

k ·x= ki sinθi (x cosφ+y sinφ) , (3.34)

and
d 2k= k2

i
sinθi cosθi dθi dφ . (3.35)

By substituting Eqs. (3.28), (3.33), (3.34), (3.35) into Eq. (3.27), we get

hA(x,y, z)= k2
i

α∫

0

2π∫

0

(cosθi )
− 1

2 exp( j ki sinθi (x cosφ+y sinφ))×

exp( j ks z(1−cosθs ))sinθi cosθi dθi dφ . (3.36)

If x =ρcosψ and y =ρsinψ, then ρ=(x2+y2)1/2, and

hA(x,y, z)= k2
i

α∫

0

2π∫

0

(cosθi )
1
2 exp( j kiρsinθi cos(φ−ψ))×

exp( j ks z(1−cosθs ))sinθi dθi dφ . (3.37)

Remark 5. There are subtle differences between Eqs. (3.22) of Debye and (3.37)
from Stokseth, namely

(a) the extra terms exp( j k z) and exp( jπ/2) are canceled when the complex am-
plitude is squared to get the PSF, and
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(b) the normalizing constant is different but the final intensities are re-normalized
so that they both sum to unity.

3.3.4 Spatial Point-Spread Function Model

When we look at Eq. (2.33), theoretically speaking the estimation method on
the object and PSF should be the same (Shepp & Vardi [1982]) as h and o play a
symmetric role (Holmes [1992]; Biggs & Andrews [1997]). As was the case with
object restoration, if there is no constraint imposed on the PSF, the solution is
not unique. We saw at the beginning of Subsection 2.2 how a simple normaliza-
tion on the PSF can remove the scaling ambiguity. Such a forced normalization
ensures that the total energy of the PSF is bounded. Introducing constraints se-
quentially on the solution is a way of regularizing it and discarding other possi-
bilities. In Holmes [1992], the constraints are introduces on the PSF so that the
OTF lies within a specific volume. The PSF for the iterative algorithm is initial-
ized by using the imaging parameters such as the NA, λex, ni , etc. It is difficult to
know all these parameters as they are subject to changes during experimentation.
The working NA of an objective lens, for example, cannot be known exactly.
The PSF support is thus the maximum value it can take and does not reflect the
true value. We will discuss more on this subject in the following chapter. A reg-
ularization model on the PSF (the cost function being Jr e g ,h(h)) could also be
argued along the same lines as the constraints introduced earlier for o. However,
a TV kind of regularization on the PSF cannot model the continuity and regu-
larity in the PSF. Such a `1 kind of norm on the PSF regularization is suitable
only for PSFs that have edges, like motion blur (Chan & Wong [1998]). In such
cases, the recovered PSF will be very much dependent on the object or specimen.
Separation of the PSF and the object in this case becomes difficult as they have
the same or similar solution space. We shall demonstrate this with an example in
the next chapter. The regularization parameter, say λh , for such a model will be
highly dependent on the amount of defocus, and will vary drastically from one
image sample to another. To overcome these problems, the PSF could be intrin-
sically regularized through a parametric model. In this case the PSF estimation
problem is reduced to estimating the parameters of the model.
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Parametric Model

It is our contention that the best way to introduce constraints on the confocal PSF
is in the parametric space. We thus assume that the unknown linear PSF belongs
to a parametric family of functions h(ωh), where ωh ∈Θ⊆R

d , Θ denotes the
space for all possible PSF parameters, and d is the number of free parameters.
If the model is chosen well, the uncertainty lies in choosing the free parameters
ωh . By using the invariance property of ML estimation, we can say ĥM L(x) =

h(x;ω̂h,ML) is the MLE of the PSF. In a more general manner, any PSF can be
written as the decomposition on a set of basis functions Φ as

h(x)≈
Nb∑

l=1

wlΦl (x)= 〈w,Φ(x)〉 ,∀x∈Ωs , (3.38)

where wl denotes the corresponding weights, 〈·, ·〉 denotes vector dot product,
and Nb is the number of basis components that approximate the PSF.

The distortions during image acquisition normally act as passive operations
on the data, that is they neither absorb nor generate energy. Thus, when an object
goes out of focus it is blurred, but the volume’s total intensity remains constant.
Consequently, all energy arising from a specific point in the fluorescent specimen
should be preserved and

‖h(x)‖1=
∑

x∈Ωs

|h(x)|= 1 . (3.39)

From Eq. (3.52), it is clear that the intensity distribution of a point source will
always be positive and so

h(x)≥ 0,∀x∈Ωs . (3.40)

Finally, the PSF must satisfy an additional criterion of circular symmetry

h(−x,−y, z)= h(x,y, z),∀(x,y, z)∈Ωs . (3.41)

Radial symmetry is applicable only in cases where there is no additional aberra-
tions due to the objective lens system and when it is horizontally well aligned.
It is worthwhile to note that the constraints enforced via Eqs. (3.38)-(3.41) define
convex subsets in the space of possible PSF solutions.
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Separable Anisotropic Gaussian model One of the basis function that fits the
above listed profile is the Gaussian kernel (cf. Santos & Young [2000] for the 2D
case). If we assume aberration-free imaging, this model reduces the number of free
parameters to estimate to just two. This simplistic model yet retains a reasonable
fit to the actual PSF as was demonstrated by Zhang, et al. [2007] for a CLSM.
It was found that a 3D separable Gaussian model gives a relative squared error
(RSE)<9% for a pinhole diameter D<3AU and when the PSF peaks are matched
(i.e. ‖h(x)‖∞= 1), where we define the RSE as

RSE(hTh, h)
d e f
=
‖hTh(x)− h(x)‖22
‖hTh(x)‖

2
2

, (3.42)

and hTh(x) is the theoretical model given by Eq. (3.52). Thus, the diffraction-
limited PSF (with restrictions on the pinhole diameter D) can be approximated
as

h(x)= (2π)−
3
2 |Σ|−

1
2 exp

�
−

1

2
(x−µ)T Σ−1 (x−µ)

�
. (3.43)

where µ= (µx ,µy ,µz)
T is the mean vector, Σ= [σi j ]1≤i , j≤3 is the covariance

matrix, and µ(·), σ(·,·) ∈Θ. As a first approximation, for thin specimens, the
PSF is spatially zero centered, and µ = {0}. A mirror symmetry about the
central xy-plane results in a diagonal covariance matrix and hence its determi-
nant is |Σ|= σ4

r
σ2

z
, where σ11(= σ22) = σr and σ33= σz are the lateral and axial

spreads in the image space. The unknown parameters that define the PSF are
thus ωh = {σr ,σz}. It has to be mentioned that the PSF is anisotropic because,
for microscopy, σr 6=σz with σz >σr .

Nonseparable Gaussian model Another possible model that was proposed by
Schlecht, et al. [2006], and that fits well with the theoretically derived expression
in Eq. (3.52) is the following:

h(x,y, z)=(ah)
|z−µz |

�
2πσr (z)

�− 1
2 exp


−

�
x−µx

�2
+
�

y−µy

�2

2σr (z)


 ,(x,y, z)∈Ωs ,

(3.44)
where σr (z) = bh |z−µz |+ ch , µ= (µx ,µy ,µz)

T . We can safely assume that the
radial means are centered i.e. (µx ,µy) = (0,0). The parameter of this function,
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ωh are {ah , bh ,ch ,µz}. The base standard deviation is given by ch , while bh scales
the distance from the central focal plane according to (z−µz)∈Z.

However, the disadvantage of using this above function is that it does not
naturally sum to unity as in Eq. (3.39) and thus normalization has to be enforced.
The other drawback is that this function is separable in the radial plane, but the
lateral and axial planes are coupled. Finally, there are four parameters that define
this nonseparable function, which is two more than the separable 3D case. In
spite of these difficulties for Confocal PSF restoration, this model might be used
in modeling and estimating the WFM PSF as it gives a ‘better fit’ (in the least
squares sense) to the theoretical model.

Comments on the Approximations

• The parameters ωh in both Eqs. (3.43) and (3.44) are given in the image
space. To obtain their values in the object space, they have to be normalized
by the respective voxel sizes in the axial,∆xy , and radial space,∆z .

• If we consider the model in Eq. (3.43), it was shown by Zhang, et al. [2007]
that the parameters ωh = {σr ,σz} in the object space are dependent on
the following settings: excitation wavelength λex, RI ni and the numerical
aperture NA.

• From Eq. (3.52), we can intuitively infer that hTh approaches a Gaussian
distribution due to the 4th power in the amplitude PSF hA (if we momentar-
ily assume the equality of excitation and emission light wavelengths) based
only on the CLT. The Bessel function form of the hA ensures that it is sat-
isfied to a greater accuracy (cf. Fig. 3.8).

• In Fig. 3.8, we notice that the second power of the Bessel function has
large side lobes and a wider principal maxima (in comparison to the fourth
power). The WFM PSF, resembles this theoretical shape, and a separable
Gaussian approximation would only lead to large model residues.

3.4 Aberrations in Fluorescence Microscopy

Under ideal conditions, a high NA objective lens transforms the planar wavefront
incident on it to a spherical wavefront at the focal region. However, under prac-
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tical situations, the refracted wavefront so produced has to go through several
optical elements and through the specimen. Practical imaging systems are rarely
aberration-free. Due to this reason, the emerging wavefront is rarely spherical
in nature. Aberrant wavefront means that the resulting observed images will be
distorted as well. While there are many aberrations that exist for the microscope,
we restrict our analysis to spherical aberrations (SA), as this is the dominant and
the most observable form.

3.4.1 Spherical Aberrations

SA is an optical effect occurring when the oblique rays entering a lens are focused
in different locations than the central rays. SA is caused due to the mismatch
between the RI of the objective lens immersion medium and the specimen em-
bedding medium in fluorescence microscopy. When light crosses the boundary
between materials with different refractive indices, it bends across the bound-
ary surface differently depending on the angle of incidence (light refraction); the
oblique rays are bent more than the central rays (cf. Török, et al. [1995]). If the
mismatch is large, e.g. when going from oil lens immersion medium into a wa-
tery specimen embedding medium, SA causes the PSF to become asymmetric at
depths of even a few microns. Also, the amount of light collected from a point
source decreases with depth because of an axial broadening of the PSF. When
measured experimentally using fluorophores (Shaevitz & Fletcher [2007]), it was
found that the PSF changes from a fairly symmetric axial shape to an asymmetric
shape. It is important to remember the following features of a depth varying PSF
(DVPSF):

• in the absence of other aberrations, the PSF remains radially symmetrical;

• its peak intensity decreases with increase in the depth of focus, d 5;

• there is an increase in the FWHM of the PSF in the axial direction with
increase in d ;

5d is often referred to as the nominal focal position (NFP), and it is the depth of focus in a
matched medium. It is also approximately equal to the paraxial focus.
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Figure 3.6: Schematic describing the focusing of rays when traveling between
medium of different refractive indices. AFP is the actual focal po-
sition, and NFP is the nominal focal position in the absence of re-
fractive index change. ( c©Ariana-INRIA/CNRS).

• if we ignore dispersion and absorption within the sample, the `1-norm of
the total light intensity collected from a given object does not change with
depth.

3.4.2 Pupil Phase Factor

We consider the situation where the objective lens focuses through an interface
between media with different refractive indices as shown in Fig. 3.6. A point
source is located at a depth d below the cover slip in a mounting medium of index
ns , observed with an objective lens designed for an immersion medium with a RI
ni (cf. Fig. 3.6). In Eq. (3.27), we had ignored the aberrations by assuming that
ni ≈ ns and hence θi ≈ θs . When ni � ns (or ns � ni ), we have to calculate
the aberration function ϕa(θi ,θs ), due to the mismatch of ns and ni . The phase
change is determined by the difference between the optical path length traveled to
the pupil by a ray that leaves the source at an angle θs relative to the optic axis and
is refracted to the angle θi upon leaving the mounting medium, and the optical
path length that a ray with angle θi would have traveled if the mounting medium
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index were the ideal index ni . In their paper, Gibson & Lanni [1989] mention
that there are 8 parameters (out of a total of 18) that may vary from their design
conditions as recommended by the microscope manufacturer. However, when
a microscope is properly calibrated, there are only 3 parameters that essentially
vary under experimental conditions. These are

1. the specimen RI, ns ,

2. the immersion medium RI, ni , of the objective lens, and

3. the depth, d , under the coverslip wherein lies the plane of focus.

The RI of the immersion medium is sensitive to changes in temperature especially
if an oil immersion lens is used. An error in this parameter significantly affects
the PSF calculated (cf. Hell & Stelzer [2006] and Juskaitis [2006]).

Using simple geometrical optics, we can show that this shift in the optical
path can be analytically expressed as (cf. Born & Wolf [1999])

ϕa(θi ,θs ;d ,ni ,ns )= d (ns cosθs−ni cosθi ) . (3.45)

The above phase term relies on the assumption that the error due to mismatch in
the refractive indices between the cover glass ng and the objective lens has either
been compensated or is minimal. If the cover glass is used with an objective
lens that is significantly different than its design specification, an additional phase
term should be included, and d replaced by the thickness of the coverslip, tg . In
this case, the phase term would be

ϕa(θg ,θs ;d ,ni ,ns )= tg (ng cosθg −ni cosθi )+d (ns cosθs−ng cosθg ) , (3.46)

where ng is the RI of the cover glass, and θg is the angle relative to the optic axis
to which light is refracted in the cover glass.

Actual microscope objectives are only corrected to remove SA at specific
wavelengths usually, but not necessarily to the same wavelengths for which they
are chromatically corrected. Immersion oils used have not only a specific RI but
also a specific dispersion (cf. Hell & Stelzer [2006] for variation of the RI with
wavelength; a phenomenon known as dispersion). The lens from a specific man-
ufacturer require both to be corrected.
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3.4.3 Point-Spread Function Approximations

In Subsection 3.3.4, we introduced a spatial approximation for the diffraction-
limited PSF, and in this section, we propose an approximate for the PSF using
the pupil phase.

Nonlinear Phase Approximation

The phase term in Eq. (3.45) can be rewritten as

ϕa(θi ,θs ;d ,ni ,ns )= d secθi (ns cosθs cosθi−ni cos2θi ) ,

= d secθi (ns cosθs cosθi−ni (1−sin2θi )) , (3.47)

as cos2θi = (1− sin2θi ) and secθi = 1/cosθi . From Snell’s law, ns sinθs =

ni sinθi and from basic trigonometry we know that cos(θs−θi )= (cosθs cosθi+

sinθs sinθi ). Thus,

ϕa(θi ,θs ;d ,ni ,ns )= d secθi (ns cosθs cosθi−ni+ns sinθs sinθi ) ,

= d secθi

�
ns

�
cosθs cosθi sinθs sinθi

�
−ni

�
,

= d secθi (ns cos(θs−θi )−ni ) . (3.48)

If we assume that the difference is not very large, θs ≈θi , so that

ϕa(θi ,θs ;d ,ni ,ns )≈ d secθi (ns−ni ) . (3.49)

With this nonlinear phase approximation, we can say that the phase is dependent
only on the depth d and the difference in the indices (ns−ni ).

Linear Phase Approximation

The phase term in Eq. (3.30) can be approximated by a using a set of circular basis
functions called Zernike polynomials (Booth, et al. [1998]). These polynomials
form a complete orthogonal set on the unit disk. If the microscope is calibrated
and if the objective lens correctly chosen, there is no azimuthal variation, and
it is sufficient to consider Zernike circle polynomials of order n and zero kind
(Z0

n
(kr ;d ,ni )). Here kr = (k

2
x
+k2

y
)1/2 is the normalized radial coordinate in the
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pupil plane such that 0≤ kr ≤ 1. The phase could be expanded using these poly-
nomials as

ϕa(kr ;d ,ni ,ns )= d NA

 
4∑

n=0
cnZ0

n
(kr ;d ,ni ,ns )

!
, (3.50)

where the expansion coefficients (cn) needs to be calculated or determined. In
Dieterlen, et al. [2004], these polynomials were used to reconstruct an experi-
mentally obtained but noisy PSF. However, as our interest lies in reconstruct-
ing the object, we are interested only in defocus and the first order SA. That is,
ϕ(kr ;d ,ni ,ns ) is approximated to only the Zernikes of up to 4th order. In Fig. 3.7,
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we show the different Zernike polynomials for orders zero, two, four and six
respectively. We recall that for the PSF expression derived in Section 3.3.2, as
there are no aberrations, only the Zernikes up to 2nd order need to be calculated.
Although the secondary SA for order n =6 is not common in fluorescence mi-
croscopy, it is shown here as comparison with the primary SA.

Apodization Function Approximation

For the gradient calculations in Subsection 5.2.2, we make an approximation on
the apodization function A(θi ) of Eq. (3.28). We simply assume the apodization
function for excitation and emission are the same and

A(θi )≈ 1 . (3.51)

Using the above expression, the apodization resembles the ideal pupil in
Fig. 3.4(a) or the Piston in Fig. 3.7(a).

3.5 Three Dimensional Incoherent Point-Spread

Function

In this section we summarize the theory that has been discussed earlier for ob-
taining the theoretical PSF expression. In numerical calculations of the PSF, we
will primarily use the Stokseth approximation. For the diffraction-limited case,
Eq. (3.27) gives the complex amplitude PSF, with the pupil function as given in
Eq. (3.28) and the defocus phase in Eq. (3.33). While for the SA case, an additional
phase term should also be included as given by Eq. (3.45). These expressions are
simple to implement using Fourier transforms. For a 1p excitation, when the
fluorophore returns to the ground state, by the Stoke’s shift, the emitted wave-
length is longer than the excitation wavelength. From the Helmholtz reciprocity
theorem, the analytical PSF expression for a CLSM is written as a product of the
excitation distribution and the emission distribution as

hTh(x;λex,λem)=C |hA(x;λex)|
2×
∫∫

Σp

|hA(x− x1,y−y1, z;λem)|
2d x1d y1 , (3.52)
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where λex and λem are the excitation and emission wavelengths respectively,
Σp = {(x1,y1) : x2

1+ y2
1 ≤D2/4} characterizes the circular pinhole, D is the back-

projected diameter of the circular pinhole, and C is a scaling constant. From
Eq. (3.52), it is easy to see that the PSF satisfies the following properties:

hTh(x)≥ 0,∀x∈Ωs , (3.53)

and bounded as ∫

x∈Ωs

hTh(x)dx<∞ . (3.54)

In literature, the PSF expressions are primarily defined using the Bessel func-
tions, and we will derive them beginning with the following definitions:

Definition 6. Bessel function of first kind and integer order n

Jn(x)=
1

π

∫ π

0
cos(nθ− x sinθ) dθ, ∀x ∈R, n ∈N , (3.55)

Corollary 3.5.1. Bessel function of first kind and zero order

J0(x)=
1

π

∫ π

0
cos(x sinθ) dθ∀x ∈R , (3.56)

In Fig. 3.8, we consider J0(x), and its higher powers (two and four). We notice
that as the function’s power is raised, the side lobes become smaller. The full
width at half maximums (FWHM) of the central maxima also decreases. This
property was exploited in Subsection 3.3.4 to model spatial PSF approximation
for CLSM.

Eq. (3.27) can be modified to now include the additional phase term as

hA(x;λ)=C

α∫

0

A(θi )sinθi J0(kiρsinθi )exp( j k0ϕd (θs , z;ni ))×

exp( j k0ϕa(θi ,θs ;d ,ni ,ns ))dθi . (3.57)
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Figure 3.8: Plot of the Bessel function of first kind with order zero. As the
function’s power is raised, the side lobes becomes smaller and so
does the FWHM of the central maxima.

and

hA(x;λ)= 2πk2
i

exp( j ks z)C

α∫

0

(cosθi )
1
2 sinθi J0(kiρsinθi )×

exp( j k0ϕa(θi ,θs ;d ,ni ,ns ))exp(− j ks z cosθs )dθi . (3.58)

By using a normalized radial co-ordinate t = sinθi/sinα, the field atP0 becomes

hA(x;λ)= 2πk2
i

exp( j ks z)C

1∫

0

(1− t 2 sin2α)−
1
2 t sin2αJ0(k tρsinα)×

exp( j k0ϕa(t ;d ,ni ,ns ))exp(− j ks z(1− t 2 sin2α)
1
2 ) d t . (3.59)
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For small angles (i.e. NA≤ 0.7), sinθi ≈θi and hence

hA(x;λ)= 2πk2
i

sinαC

1∫

0

J0(k tρsinα)exp( j k0ϕa(t ;d ,ni ,ns ))t d t , (3.60)

and the quadratic aberration phase term is

ϕa(t ;d ,ni ,ns )= d
�
(n2

s
− t 2n2

i
sin2α)

1
2 − (n2

i
− t 2n2

i
sin2α)

1
2

�
. (3.61)

Definition 7. For a circularly symmetrical function f (ρ,θ)≡ f (ρ), the Fourier-

Bessel transform or Hankel transform of zero order is

B [ f (ρ)]= 2π

∞∫

0

ρ f (ρ)J0(2πρk) dρ . (3.62)

Thus, the Fourier transform of a circularly symmetric function is itself circu-
larly symmetrical.

Definition 8. We define a circle function as

circ(ρ)=





1, ρ< 1
1
2 , ρ= 1

0, otherwise.

(3.63)

Corollary 3.5.2. The Fourier-Bessel transform of the circle function can be written

as

B [circ(ρ)]= 2π

1∫

0

ρJ0(2πρk) dρ . (3.64)

Using a change of variable ρ′= 2πρk and the identity
∫ x

0 ξ J0(ξ )dξ = xJ1(x),

B [circ(ρ)]=
1

2πk2

2πk∫

0

ρ′J0(ρ
′)d r ′=

1

k
J1(2πk) , (3.65)

where J1(·) is a Bessel function of the first kind and order one.
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By using the notation of Fourier-Bessel transform or Hankel transform of
zero-order, Eq. (3.60) is simplified as

hA(x;λ)=C k2
i

sin2αB
�

exp( j k0ϕa(t ;d ,ni ,ns ))
�

. (3.66)

Numerically Computing the Point-Spread Function

From Eqs. (3.33) and (3.45), the phase of the refracted wavefront could be com-
puted, and the 2D pupil function derived for a fixed defocusing. The 2D PSF is
calculated as the fast fourier transform (FFT) of the 2D pupil. The 3D PSF is then
reconstructed as stacks of the 2D PSF. This numerical computation is applicable
to calculate the PSF for most fluorescent microscopes. For a CLSM, the resulting
emission PSF is convolved with a pinhole model. This method requires in total
2×Nz number of 2D FFTs, and two 3D FFTs for the pinhole convolution.

Fig. 3.9 shows a numerically computed confocal PSF by using the above tech-
nique and Eq. (3.52). The microscope uses an excitation beam with a peak wave-
length λex= 488nm, and the emission peak has a wavelength λem= 520nm. The
objective lens is is an immersion oil type (ni = 1.518) Plan-Neofluar, with a NA
of 1.3, and 40X magnification. The depth d under the coverslip is 15µm and into
a specimen immersed in water (ns = 1.33).

3.5.1 Validity of the Scalar Model

In this theoretical derivation of PSF expressions, the most important approxi-
mation used is the treatment of light as a scalar phenomenon. This neglects the
fundamentally vectorial nature of the electromagnetic fields. The scalar theory
yields accurate results if two conditions are met:

• the diffraction aperture Σ is very large in comparison to the wavelength of
light λ, and

• the diffracting fields must not be observed too close to the aperture i.e.

r01�λ, r21�λ.

It is important to mention that for all microscopes operating in the far-field re-
gion, the above approximations are justified.
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(a)

(b)
Figure 3.9: Maximum intensity projection (MIP) of a numerically computed

spherically aberrated confocal PSF (a) along the optic axis giving
the radial plane, and (b) along lateral plane giving the axial plane
( c©Ariana-INRIA/I3S).

3.6 Conclusion

In this chapter, we derived an analytical expression for the PSF based on Stok-
seth’s model. The model was extended to include spherical aberrations by mod-
ifying the phase of the pupil function. The aberrated pupil phase was derived
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from geometrical optics. The proposed nonlinear aberrated phase approximation
shows that it essentially depends on the depth d and the difference (ns−ni ). Lin-
ear approximations for the pupil phase based on Zernike polynomials were also
provided. These models could be numerically implemented by applying FFTs on
the complex pupil function. This analytical PSF model will be used in the next
chapters to generate a simulated observation and also for image restoration.



CHAPTER 4

Blind Deconvolution for Thin

Specimens

“It was six men of Hindustan to learning much inclined,

Who went to see the Elephant (Though all of them were blind)

That each by observation might satisfy the mind ...

And so these men of Hindustan disputed loud and long,

Each in his own opinion exceeding stiff and strong,

Though each was partly in the right and all were in the wrong ...”6

-John Godfrey Saxe (American Poet)

We propose an alternate minimization (AM) iterative algorithm for estimating
the parameters of the confocal laser scanning microscope’s (CLSM) point-spread
function (PSF), and the specimen fluorescence distribution. If the problem of
deconvolution is ill-posed, that of blind deconvolution is under-determined as
the number of unknowns to be estimated is increased without any increase in
the input observation data. To make the deconvolution problem well-posed, at
every iteration, the estimated object intensity is regularized using a total vari-
ational potential function. A new prior is suggested that ensures positivity of
the intensity estimation. As direct restoration from the observation data is very
difficult, an underlying model for the PSF is defined as well. An anisotropic, sep-
arable 3D Gaussian model is used to restrict the PSF solution space. The object
estimation method is treated in Subsection 4.2.1 and the PSF estimation in Sub-
section 4.2.2. In Subsection 4.2.3, we propose a method to handle the parameter
of the regularization model. We provide numerical simulations, in Section 4.3,

6The Blindmen and the Elephant, a poem based on a Buddhist fable, found in the Udana, chap-
ter 6, section 4.
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to support the Bayesian framework, and also demonstrate on fluorescent micro-
spheres and real data. The results from the phantom images show that the PSF
can be estimated to a high degree of accuracy, and those on real data show better
deconvolution as compared to a full theoretical PSF model. We conclude in Sec-
tion 4.4 with a discussion and proposed future work. The scope of this chapter is
restricted to restoring images from a CLSM given the spatial invariance nature of
the diffraction-limited PSF.

4.1 Introduction

As the PSF describes the response of the microscope to every point in a sample,
restoration by deconvolution could be achieved only if this information is avail-
able. The non-blind case involves using either the PSF obtained experimentally
(McNally, et al. [1994]; Shaevitz & Fletcher [2007]) by imaging a small fluores-
cent bead (so as to approximate a point object) positioned just under the cover
slip, or by numerically calculating it. Although an empirically obtained PSF
should be an ideal choice for a deconvolution algorithm, it suffers from low con-
trast, its FWHM is much larger than theoretically expected, and the images are
contaminated by noise and aberrations (cf. Chapter 5). On the contrary, analyt-
ical model of the PSF (Stokseth [1969]; Gibson & Lanni [1989]) are free from
noise and takes into account the acquisition system’s physical information as pa-
rameters. This information however might not be available or might change
during the course of the experiment (for example, due to heating of live sam-
ples). It was observed by Preza, et al. [1992] that an inaccurate PSF can affect
the performance of the deconvolution algorithm. We hence arrive at the blind
approach of estimating both the specimen and the unknown PSF. When imaging
biological cells, the amount of radiation must be limited. Plant cells are especially
attuned to light collection and do not have any protection against flux levels of
100−10,000 times higher than the normal levels (cf. Shaw [2006]). The amount
of incident light should be controlled to avoid cellular damage and photo bleach-
ing. Thus, there is often only a single observation of the specimen volume avail-
able for restoration. The non-repeatability of the experiments makes it difficult
to restore the lost frequencies beyond the diffraction limits unless some informa-
tion about the object or the PSF is provided. In the absence of any information
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on the object or the PSF, restoration from the observation data will be like the
deductions of the blind men in Saxe’s poem. In this chapter, we propose a BD
algorithm that estimates the diffraction-limited PSF (under aberration free con-
ditions) and use it to restore the true object fluorescence. The aberrations can
be ignored iff the NFP< 15µm, and so the method proposed in this chapter is
applicable only to thin samples where the effect of diffraction is dominant over
aberrations. The extension to thick specimens is discussed in Chapter 6.

4.2 Blind Deconvolution by Alternate Minimiza-

tion

As mentioned before, the simultaneous estimation of o and h directly from the
observed images is a very difficult task. At the beginning of Subsection 2.2, an
AM algorithm was summarized in Eqs. (2.26) and (2.27). This algorithm alterna-
tively estimates the o first while keeping the PSF function h constant, and then
update the PSF using the previous object estimate. In this section, we propose
the AM approach by making use of the proposed prior object model in Eq. (2.21)
and PSF model in Eq. (3.43).

4.2.1 Estimation of the Object

For the time being let us assume that either the PSF or its parameters ωh ∈Θ
are known (either by initialization or from previous estimates) and hence ĥ is
determinate. By substituting Eqs. (2.21) and (2.33) in Eq. (2.24), we get

Pr(o, ĥ|i )=Z−1
λo

exp

�
−λo

∑

x

|∇o(x)|
�
×

∏

x∈Ωs

��
ĥ ∗o+ b

�
(x)
�i (x)

exp
�
−
�

ĥ ∗o+ b
�
(x)
�

i (x)!
. (4.1)
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As in Eq. (2.26), by applying − log operator to the a posteriori above, the cost
function J (o, ĥ|i ) to be minimized with respect to o becomes

J (o, ĥ|i )=
∑

x∈Ωs

�
ĥ ∗o+ b

�
(x)−

∑

x∈Ωs

i (x)log
�

ĥ ∗o+ b
�
(x)+

λo

∑

x∈Ωs

|∇o(x)|+ log
�

Zλo

�
. (4.2)

If we choose h to be a Dirac, then the minimization of the above energy function
gives a denoised image while a non-Dirac PSF leads to simultaneous deconvolu-
tion and denoising. There are many approaches proposed in literature to mini-
mize the above cost function. In the following subsection, we will discuss one
such method based on the EM algorithm with TV regularization.

Expectation Maximization Algorithm with Total Variation Regularization

The Euler-Lagrange equation for minimizing J (o, ĥ|i ), given by Eq. (4.2), with
respect to o is

1− ĥ(−x)∗




i (x)
�

ĥ ∗o+ b
�
(x)


−λo div

�
∇o(x)

|∇o(x)|

�
= 0 , (4.3)

where ĥ(−x) is the Hermitian adjoint operation on ĥ(x) and div stands for the
divergence operator (cf. Dey, et al. [2006] for details). Eq. (4.3) can be solved
for the object o by adopting the MLEM algorithm (cf. Appendix B) with TV
regularization. We adopt an explicit scheme that proposes to minimize Eq. (4.2)
by the following multiplicative algorithm:

ô(n+1)(x)=




i (x)
�

ô(n)∗ ĥ+ b
�
(x)
∗ ĥ(−x)


 ·

ô(n)(x)

1−λo div
�
∇ô(n)(x)

|∇ô(n)(x)|

� (4.4)

where (·) denotes the Hadamard multiplication (component wise) and n the it-
eration number for the deconvolution algorithm. We stop the deconvolution
algorithm if the difference measure between two successive iterations is smaller
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than a specified threshold ε. The term div
�
∇ô(n)(x)/|∇ô(n)(x)|

�
can be numeri-

cally implemented with the use of central differences and the minmod scheme (cf.

Appendix D).

Positivity and Flux Constraints

The deconvolution algorithm that was described above suffers from an inherent
weakness. For large values of λo , even when the starting guess ô(n) (with n = 0)
is positive, the successive estimates need not necessarily have positive intensities.
We know that the true intensity of the object o(x) is always non-negative. Most
algorithms often truncate these negative intensities to zero or to a small positive
value. This however is a crude manner to handle the estimated intensities as it
can lead to loss of essential information and sometimes also introduce bias into
the calculations.

So how else can the problems associated with negative intensity estimates be
handled? Fortunately, the problem is entirely due to the poor statistical method-
ology adopted. The modification that we suggest is to include this knowledge of
non-negative true intensities into the prior term of Eq. (2.21). The distribution
that would express precisely this condition is

Pr[o(x)]∼





Z−1
λo

exp
�
−λo

∑
x
|∇o(x)|

�
, if o(x)≥ 0

0, otherwise.
(4.5)

For the sake of numerical differentiability, we approximate the prior Eq. (4.5)
using a sigmoid function as

Pr[o(x)]∼Z−1
new,λo

exp

�
−λo

∑

x

|∇o(x)|
� 

1

1+exp
�
βo (ε−o(x))

�
!

, (4.6)

where ε is a small value close to zero, andβo is a value that specifies the steepness
of the sigmoid function. Typically the values of βo and ε are chosen to be very
large and small respectively as precision might allow. Their values do not indi-
vidually affect the algorithm and hence need not be known accurately. Fig. 4.1
shows the variation in the sigmoid curve as a function of the steepness factor βo .
ε is kept fixed constant throughout and is close to zero. We see that as the value of
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βo increases, the Sigmoid curve approaches a hard-limiting function (at o(x)= 0)
while at βo = 0 it is an all-pass function.

The cost function in Eq. (4.2) becomes,

J (o, ĥ|i )=
∑

x∈Ωs

�
ĥ ∗o+ b

�
(x)−

∑

x∈Ωs

i (x)log
�

ĥ ∗o+ b
�
(x)+

λo

∑

x∈Ωs

|∇o(x)|+ log
�

Znew,λo

�
+ log

�
1+exp(βo(ε−o(x)))

�
, (4.7)

the Euler-Lagrange equation in Eq. (4.3) is now

1− ĥ(−x)

�
i (x)

(h ∗o+ b )(x)

�
−λo div

�
∇o(x)

|∇o(x)|

�
−

βo

exp(βo(ε−o(x)))

1+exp(βo(ε−o(x)))
= 0, (4.8)

and the multiplicative algorithm of Eq. (4.4) becomes

ô(n+1)(x)=




i (x)
�h

ô(n)∗ ĥ
i
+ b
�
(x)
∗ ĥ(−x)


 ·

ô(n)(x)

1−λo div
�
∇ô(n)(x)

|∇ô(n)(x)|

�
−βo

exp(βo(ε−o(x)))

1+exp(βo(ε−o(x)))

. (4.9)

Intuitively, we see that the cost function given by Eq. (4.7) ensures that the energy
for negative intensity pixels (o(x)<ε) are very high and hence are not reachable
(or not possible solutions) during the iteration procedure.

If the PSF is normalized and in the absence of a background signal, it is easy
to show that for each iteration of the MLEM algorithm (Eq. (4.4) with λo=0) the
following property is true: e=

∑
x∈Ωs

i (x)=
∑

x∈Ωs
ô(x). This property is known

as the flux or global photometry conservation and it guarantees that the total
number of counts of the reconstructed object is the same as the total number
of observation counts. However, this property is lost with regularization and
can be incorporated by modifying the cost function Eq. (4.2) to an additive form
similar to Bratsolis & Sigelle [2001] or by enforcing it in the following manner
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Figure 4.1: The function 1/(1+exp(βo(ε−o(x)))) in the new prior Pr(o(x)) as
a function of the object function o(x) for different steepness factors
βo ( c©Ariana-INRIA/I3S).

after every iteration:

ô(n+1)
new (x)=

 
e (0)

e (n+1)

!
ô
(n+1)
old

(x), (4.10)

where e (n+1)=
∑

x∈Ωs
ô
(n+1)
old

(x), and e (0)=
∑

x∈Ωs
ô(0)(x)=

∑
x∈Ωs

i (x).

4.2.2 Point-Spread Function Parameter Estimation

The method outlined in Subsection 4.2.1 requires the knowledge of the PSF ĥ(x)

or h(x;ω̂h). If we re-examine Eq. (2.27) in the light of the parametric model
proposed in Section 3.3.4, we can say ĥMAP(x)≈ h(x,ω̂h,MAP), and

ω̂h,MAP= argmax
ωh>0

{Pr(i |ô, h(ωh))Pr(ωh)} , (4.11)

where Pr(ωh) is the prior on the parameters ωh . If we assume that the parame-
ters are uniformly distributed in a set

�
ωh,LB,ωh,UB

�
, then Pr(ωh)=1/(ωh,UB−

ωh,LB), ∀ωh ∈
�
ωh,LB,ωh,UB

�
. We define the set

�
ωh,LB,ωh,UB

�
by S . From

Eqs. (2.33), (4.11) and with the invariance property of ML estimate, minimiz-
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ing the energy function with respect to the PSF (J (ô, h|i )) or the parameters
(J (ô,ωh |i )) are equivalent. Thus,

J (ô,ωh |i )=−
∑

x∈Ωs

i (x)log
�

h(ωh)∗ ô
�
(x)+

∑

x∈Ωs

�
h(ωh)∗ ô

�
(x) . (4.12)

If the true object o is assumed to be known a priori as ô, then estimation of the pa-
rameters of the PSF is straight forward as the cost function in Eq. (4.12) is convex
in the neighborhood of the optimalωh ∈S . This can be demonstrated by using
a simple simulation. In Fig. 4.2, the cost functionJ (ωh ,o|i ) is plotted when the
object o and the observation i are known. As we are in the simulation case, the
true parameters are known as well. However, what we show by this toy problem
is that, even when one of the parameters is known with an error of ±11%, the
other parameter could be estimated accurately. Since, the cost function is locally
convex about the optimal parameter value, we can hence use a gradient-descent
(GD) kind of algorithm (cf. Atkinson [1989]) for estimating the parameters. An-
alytically minimizing Eq. (4.12) with respect to the parameters leads us to the
following:

ω̂
(n+1)
h

= ω̂
(n)

h
−τ(n)∇ωh

J
�

ô,ω̂(n)
h
|i
�

,∀ω̂h ∈S , (4.13)

where τ(n) and ∇ωh
J (ô,ω̂(n)

h
|i ) are the step size and the search directions at

iteration n. The gradient of the cost function in Eq. (4.12) with respect to the
parameters can be calculated by using the chain rule as

∇θl
J (ô,ωh |i )=

∑

x∈Ωs

∂

∂ ωh

�
h(ωh)∗ ô

�
(x)−

∑

x∈Ωs

i (x)
�

h(ωh)∗ ô
�
(x)

∂

∂ ωh

�
h(ωh)∗ ô

�
(x), (4.14)

where �
∂

∂ ωh

h(ωh)

�

ωh=σr

=

 
−

2

σr

+
x2+y2

σ3
r

!
h(ωh) , (4.15)
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Figure 4.2: Variation of the energy function J (o,ωh |i ) with respect to (a) lat-

eral parameter σr , and (b) axial PSF parameter σz . For this simu-
lation, the true object o is known and the observation is generated
using a known 3D Gaussian model. The axial PSF parameter σz is
varied by a factor ±ε to monitor its effect on the estimated lateral
parameter σr and vice versa. The σ(r,true) and σ(z,true) shown are the
true parameter values ( c©Ariana-INRIA/I3S).

and �
∂

∂ ωh

h(ωh)

�

ωh=σz

=

 
−

1

σz

+
z2

σ3
z

!
h(ωh) . (4.16)

The separable nature of the Gaussian distribution reduces the complexity of the
algorithm, as the convolution with the 3D Gaussian PSF can be implemented
as three successive 1D multiplications in the separable Fourier domain. Only a
single DFT of the object estimate ô needs to be performed as an analytical closed
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form expression for the Fourier transform of the Gaussian and its derivative exists
and can be numerically calculated (cf. Appendix C). The GD computation is
terminated if the difference measure between two successive iterations is smaller
than ε (in practice 10−3 or 10−4). The estimated parameters from Eq. (4.13), can
now be used to numerically calculate the PSF by substituting the estimates into
the Eq. (3.43) after converting them into the image space parameters.

Theoretical Parameter Calculations

For faster convergence of the estimation algorithm, we calculate the theoretical
limits for the 3D separable Gaussian model based on the work of Zhang, et al.
[2007]. If the PSF models are supposed to be diffraction-limited and aberrations
ignored, the 3D lateral Gaussian spread for the non-paraxial case (i.e. NA> 0.7)
can be computed as

σ̂clsm
r,np =

0.421λexλem

ni

�
λ2

ex+λ
2
em

�1/2


 cos3/2α−1

7cos3/2α−3cos7/2α−4




1
2

. (4.17)

Similarly, the 3D axial Gaussian parameter for the non-paraxial case is

σclsm
z,np =

0.86λexλem

ni

�
λ2

ex+λ
2
em

�1/2
×




�
cos3/2α−1

�2

4cos5α−25cos7/2α+42cos5/2α−25cos3/2α+4




1
2

. (4.18)

For the paraxial case (NA≤ 0.7), the lateral Gaussian parameter for 3D PSF is

σ̂clsm
r, p
=

0.225λexλem

NA
�
λ2

ex+λ
2
em

�1/2
, (4.19)

and the axial Gaussian parameter

σ̂clsm
z, p
=

0.78niλexλem

NA2
�
λ2

ex+λ
2
em

�1/2
. (4.20)



4.2. BD BY ALTERNATE MINIMIZATION 85

Using l’hôpital’s rule, it was shown by Zhang, et al. [2007] that when NA=
ni sinα approaches zero, the nonparaxial parameters Eqs. (4.17) and (4.18) tend
to the paraxial parameters Eqs. (4.19) and (4.20).

Theoretical Parameter Limits

By using Eqs. (4.17) and (4.18), we numerically determined the range of values
that the PSF parameters could possibly take by evaluating them for 96 different
objective lens. These objectives were of immersion types dry, water, glycerol
and oil, with NA ranging from 0.025 (1× dry Plan-Neofluar lens) to 1.46 (100×
Plan-Apochromat oil immersion lens). We found that for an excitation source of
wavelength λex= 488nm and emission of λem = 520nm, σr ∈ [71, 4394]nm and
σz ∈ [128, 446703] nm.

4.2.3 Regularization Parameter Handling

A delicate situation is in the choice of the regularization parameter λo ; too small
values yield overly oscillatory estimates owing to noise or discontinuities, while
too large values yield overly smooth estimates. The selection or estimation of
the regularization parameter is thus a critical issue on which there are several
proposed approaches (for example cf. Jalobeanu, et al. [2002]). However, we are
looking for a simple technique that could be combined with the AM algorithm
and also fits well with the Bayesian framework. The difficulty in performing
marginalization with respect to λo is that the partition function is not easily com-
puted. An approach to circumvent this problem is to approximate the partition
function Znew,λo

as suggested by Mohammad-Djafari [1996]. Accordingly, we say
that

Pr(o|λo)∼
1

Znew,λo

exp

�
−λo

∑

x

|∇o(x)|
� 

1

1+exp
�
βo (ε−o (x))

�
!

, (4.21)

with the partition function approximated as

Znew,λo
≈λ

αλo
Nx Ny Nz

o , (4.22)



86 CHAPTER 4. BD FOR THIN SPECIMENS

where αλo
is a parameter of the partition function. The full posterior probability

density function in Eq. 2.24 now becomes

Pr(o, h,λo |i )=
Pr(i |o, h)Pr(h)Pr(o|λo)Pr(λo)

Pr(i )
, (4.23)

and we define the hyperprior Pr(λo) using the Gamma distribution λo∼Γ(ag , bg )

as
Pr(λo)∼λ

ag−1
o exp

�
−bgλo

�
, (4.24)

where ag is the shape and bg is the scale hyperparameters for the hyperprior.
The expectation for this distribution is given by E(λo) = ag/bg , and variance
V(λo) = ag/b 2

g
. In Fig. 4.3, we see that when the hyperparameters (ag , bg ) are

(1,0), the hyperprior in Eq. (4.24) becomes the uninformative uniform distribu-
tion. Most of the work on this subject is based on this model, and it was also used
in Pankajakshan, et al. [2009b] as well. On the other hand, when (ag , bg )= (0,0),
Eq. (4.24) leads to a noninformative Jeffreys hyperprior. Using the hyperprior

Figure 4.3: Gamma distribution for three different pairs of shape and scaling
parameters ( c©Ariana-INRIA/I3S).
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expression in Eq. (4.24), the cost function can be written in terms of the cologa-
rithm of Eq. (4.23) as

J (o, h,λo |i )=Jobs(i |o, h)+Jreg,h(h)+Jreg,o(o|λo)+Jhp(λo), (4.25)

where Jreg,o(o|λo) =− logPr(o|λo) and Jhp(λo) =− logPr(λo). The regulariza-
tion parameter could be estimated by

λ̂o =argmin
λo≥0

Jreg(o, h,λo |i ) (4.26)

=argmin
λo≥0

Jreg(o|λo)+Jhp(λo) , (4.27)

By substituting Eqs. (4.21) and (4.24) in Eq. (4.25),

J (o, h,λo |i )=Jobs(i |o, h)+Jreg,h(h)−

log

�
λ
−αλo

Nx Ny Nz
o exp

�
−λo

∑

x

|∇o(x)|
��
−

log
�
λ

ag−1
o exp

�
−bgλo

��
, (4.28)

and

J (o, h,λo |i )=Jobs(i |o, h)+Jreg,h(h)+(αλo
NxNyNz−ag +1)logλo+

λo

∑

x

|∇o(x)|+ bgλo . (4.29)

We get the gradient ofJ (o, h,λo |i )with respect to λo , from Eqs. (4.27) and (4.29),
by getting rid of the terms independent of λo as

∂

∂ λo

J (o, h,λo |i )=
∂

∂ λo

��
αλo

NxNyNz− (ag −1)
�

logλo+λo

∑

x

|∇o(x)|+

bgλo

�
, (4.30)
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∂

∂ λo

J (o, h,λo |i )=
�
αλo

NxNyNz−ag +1

λo

+
∑

x

|∇o(x)|+ bg

�
. (4.31)

The optimum value, λ̂o , is a solution of the following

�
αλo

NxNyNz−ag +1

λo

+
∑

x

|∇o(x)|+ bg

�
= 0,∀λo ≥ 0 . (4.32)

Since the object o(x) is unknown, we substitute it with its estimate ô(x),

λ̂o =




ag −1−αλo
NxNyNz∑

x
|∇ô(x)|+ bg


 , ∀ ag >

�
1+αλo

NxNyNz

�
. (4.33)

4.3 Results

In this section, we validate the proposed AM algorithm on both synthetic and
real data.

4.3.1 Algorithm Analysis

The global procedure alternatively minimizes the cost function in Eq. (4.2) first
with respect to o in Eq. (4.4) while keeping the PSF function h fixed, and then
updates the PSF Eq. (4.13) using the previous object estimate ô. Since the iter-
ative algorithm requires an initial guess for the true object, we use the mean of
the observed image (i.e. every site is assumed to have a constant intensity and is
equally likely) for the initialization. As there are no constraints on the PSF or
its support, initialization of the parameters to small values cannot guarantee its
convergence to the desired size (due to the Dirac trivial solution). To avoid this
problem, we choose the initial parameters to be utmost 2κ−1 Resels7 and 9κ−1

Resels for the lateral and axial case respectively, and descend down to the optimal
value.

BothJobs(i |o, h) andJreg,o(o) in Eq. (4.7) are convex though not in the strict

71 Resel= 0.61λex/NA; κ= 2.35
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Algorithm 2: The Proposed Blind Deconvolution Algorithm.

begin1

Input: Observed volume i (x), ∀∈Ωs .
Data: Initial parameters ω̂(0)

h
∈S (cf. Subsection 4.3.1),

convergence criterion ε, parameters (ag , bg ,αλo
).

Output: Deconvolved volume ô(x), PSF parameters
ω̂h ∈S ⊂R

2
+

.

Initialization: n← 0, ô(n)(x)←Mean(i (x)), ĥ (n)(x)← h(x;ω̂(n)
h
)2

Eq. (3.43).
λo estimation: λ̂o← (ag −1−αλo

)/(
∑

x(|∇ô(0)(x)|)+ bg ) from3

Eq. (4.33).
Estimate the background b̂ once (Subsection 1.3.2).4

while |ω̂(n)
h
−ω̂(n−1)

h
|/ω̂(n)

h
≥ ε do5

Using the minmod scheme in Appendix D, calculate6

div(∇ôn(x)/|∇ôn(x)|).
Deconvolution: Calculate ô(n+1) from Eq. (4.9).7

Projection Operation: Scale ô(n+1) for flux preservation8

Eq. (4.10).
Parameter estimation: Calculate ω̂(n+1)

h
from Eqs. (4.13)9

and (4.14).
Assign: ĥ (n+1)(x)← h(x;ω̂(n+1)

h
) and n← (n+1).10

end11

end12

sense. Although the convergence of the algorithm to the optimal solution is the-
oretically difficult to prove, numerical experiments indicate that the global pro-
cedure does converge when the initialization is carried out as described above.
When the gradient step αn in Eq. (4.13) is well chosen, the cost function J de-
creases at every iteration on o and ωh so that J (on+1,ωn+1

h
|i )<J (on ,ωn

h
|i )

and J is inferior bounded.

4.3.2 Experiments on Simulated Data

In this subsection, we present some results on simulated data. Performing ex-
periments on such a data set permits us to both quantitatively and qualitatively
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measure the improvement over the observation, and also compare the deconvo-
lution result with the original object. Since the PSF in this case is available, we
can also verify the effectiveness of the BD algorithms by estimating it.

Fig. 4.4(a) shows a 3D phantom test object of dimension 128×128×64, with
XY and Z pixels sampled at 20nm and 50nm respectively. The blurred images in
Fig. 4.4(c) were generated by blurring the object using an analytically modeled
PSF as in Fig. 4.4(b). A uniform level of 10 IU was added as an average intensity
to account for background and stray fluorescence. The noise is assumed to be
shot noise arising due to low-photon imagery, modeled as Poisson statistics with
γ = 100. For generating the PSF, the excitation λex and emission λem peak wave-
lengths were chosen as 488nm and 520nm. The objective is a C-Apochromat lens
with a NA of 1.2 and 63× magnification. The objective immersion medium is
water, ni = 1.33, and imaging is assumed to be done at a depth d = 0µm. The
diameter of the pinhole was assumed to be vanishingly small.

In Fig. 4.5(a) we show the normalized gradient ∇x (i (x))/|∇x (i (x))| of the
observation in Fig. 4.4(d), but along the x direction. While the divergence of the
normalized gradient is shown in Fig. 4.5(b). The vector field flow lines for the
gradient of the observation is shown along two directions in Fig. 4.6(a) and (b).
The contour levels are that of the original object, and it is displayed for visual-
izing the difference in flow lines in homogeneous regions and edges. The size
of the arrows give the amplitude of the field at the point in the volume, and the
direction. We notice that in the homogeneous regions, the size of the arrows
are very small. When no noise is present, they vanish completely. On the other
hand, at the edges, the field magnitude is large and so are the arrow lengths. In
Fig. 4.7, we compare the results of the restoration with other blind approaches
that was explained in Subsection 2.2. For visual comparison, we re-normalized all
the intensities to the levels of the simulated object. The stopping threshold ε and
the regularization parameter λo , dictates the amount of reduction in the blur and
noise-edge effects respectively. The stopping threshold ε, between two successive
iterations was fixed as 10−4. The regularization parameter λo is estimated once
from ô(0)(x), and is fixed constant for the rest of the iterations. This ensures that
the calculations are at a manageable level. We chose the parameters (ag , bg ,αλo

)

to be (0.5,0.5,−1) (cf. Fig. 4.3). The result of the proposed approach is shown in
Fig. 4.7(b) with the hyperparameter λ̂o = 0.0097. For comparisons, we chose to
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(a) Object volume, (b) point-spread function,

(c) blurred object, (d) observed volume
Figure 4.4: Numerical simulation of an object, point-spread function, blurred

object and observation. The pixel size is 20nm in the radial direc-
tion and with a step of 50nm in the axial directions. The number
of photon counts per pixel, γ , is assumed to be 100. While the PSF
is shown using a logarithmic contrast stretch, the object and the
observation are shown on a linear scale ( c©Ariana-INRIA/I3S).

accelerate naïve MLEM BD algorithm, with the qo parameter in Eq. (2.34) as 1.4.
The iteration was terminated at 30 in Fig. 4.7(c) by making a visual trade-off be-
tween deconvolution and ringing artifacts. The PSF solutions were band-limited
as in Holmes [1992]. If the algorithm was continued beyond 30 iterations, we be-
gan to notice the noise artifacts discussed also in the reference of Holmes [1992].
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(a) (b)
Figure 4.5: (a) The normalized gradient of a simulated observation

∇x (i (x))/|∇x (i (x))| along x direction, and its (b) total varia-
tion function div

�
∇x (i (x))/|∇x (i (x))|

�
( c©Ariana-INRIA/I3S).
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Figure 4.6: The gradient vector field flow lines along (a) xy plane and (b) y z

plane. The contours are shown to note the difference between the
homogeneous regions from the edges ( c© Ariana-INRIA/I3S).

We observed that for the IBD approach (Ayers & Dainty [1988]), a good initial-
ization is very important. Hence, we chose a 3D median filtered observation as
the initial estimate and hand picked the parameters of the algorithm for best re-
sults. The algorithm was accelerated by averaging the successive estimates with
an acceleration parameter of 0.7, the noise thresholding parameter as 0.1, and the
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(a) (b)

(c) (d)
Figure 4.7: (a) Original 3D object, and the blind restoration results using (b)

proposed approach, (c) an accelerated naïve MLEM approach at 30
iterations (Holmes [1992]) and (d) IBD (Ayers & Dainty [1988])
with the parameters given in the text ( c©Ariana-INRIA/I3S).

maximum number of iterations as 4. The initial PSF was obtained by calculat-
ing the parameters as in Subsection 4.2.2. As the deconvolution results quickly
diverged beyond the 4th iteration, the algorithm was manually terminated, and
the result at the 4th iteration is displayed in Fig. 4.7(d). It was found that our pro-
posed approach estimated the PSF much closer (with minimum RSE) to the true
analytically modeled PSF used to simulate the observations. The IBD algorithm
under estimates the FWHM of the PSF while the naïve MLEM blind approach
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over estimates it. If we increase the number of iterations of the MLEM blind
approach, eventually the PSFs tend to disappear completely favoring the Dirac
solution. This was discussed at the beginning of Subsection 2.2 and is also shown
in Chapter 5. In literature, denoising was applied as a prior step as a form of
regularization on the object. It was mentioned that this approach is not recom-
mended because there is no known relationship that models the resulting data to
the original observation. In our experiments, we verified that for the same num-
ber of iterations of the naïve MLEM BD, denoising before BD over estimates the
FWHM of the PSF than the regular approach (cf. Fig. 4.8).

Figure 4.8: `∞ normalized estimated PSFs obtained from the blind decon-
volution algorithms compared with the given analytical model
( c©Ariana-INRIA/I3S).

In Fig. 4.9(c) and (d), we demonstrate the deconvolution algorithm on simula-
tion with low photon counts (with γ = 10). For this case, λo was estimated to be
0.00451. Fig. 4.10 shows the reduction in the cost function with iterations of the
GD algorithm and the approach of the estimated lateral spread parameter σr to
the stable value, given the estimate of the object. The quality of the restoration
can be assessed by using the i-divergence in Eq. (1.18) to compare the restoration
with the original synthetic object. When the stopping criterion ε was reached,
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(c) (d)
Figure 4.9: (a) 3D phantom object shown with false coloring, (b) observed

image blurred by the analytical PSF model (Stokseth [1969]) and
Poisson noise (γ = 10, IDIV(i ,o) = 5.5544), (c) image restored after
MLEM+TV deconvolution using the estimated PSF (IDIV(ô,o) =
1.4334), (d) estimated diffraction-limited PSF. The original object,
observed image and the restoration result use the same linear scaling
of intensities while the PSF is on a logarithmic scale ( c© Ariana-
INRIA/I3S).

the final IDIV(o|ô) between o in Fig. 4.9(a) and ô in (c) is 1.4334. Fig. 4.11(a)
compares the estimated 3D PSF with the analytically modeled PSF in Eq. (3.52)
and the best 3D Gaussian fit (in the least-squared sense) for the analytical model.
The PSFs are shown along one direction of an off-central lateral plane, and the
highlighted section of the plot can be viewed in the inset. The maximum of the
residual error between the estimate and the true PSF is displayed on a logarith-
mic contrast stretch in Fig. 4.11(b). As is evident from the log of the residue, the
Gaussian model does not capture the side lobes in the analytical model, and yet
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,ô
|i)

 

 

2 4 6 8 10 12 14 16 18 20
0

506.9

Iterations

σ̂ r
(i
n

nm
)

 

 

σ
r
 estimate

Cost Function

σr,true

Figure 4.10: Progress of the AM algorithm iteration showing convergence of
the cost function and lateral parameter by the GD method (when
the original object is known). The Y axis is left-scaled for the
cost function J (ω̂h , ô|i ) and right-scaled for the PSF parameter
respectively ( c©Ariana-INRIA/I3S).

the RSE was found to be<0.07%. We noticed that the contour of the edges in the
deconvolved results are not restored well. The reason for this is that the object
we chose initially for simulation is not a band-limited object while the deconvo-
lution algorithm tries to approximate it as a band-limited object. This conflict
makes it appear like there is an artifact in the deconvolved result when in reality
this result is expected. We will discuss more on this subject in the next chapter.

4.3.3 Experiments on Fluorescent Microspheres

Validation of the algorithm is very important because it would be hard to say if
the observed structures are artifacts from restoration or actual biological struc-
tures. However, the results on real data are difficult to be validated unless a higher
resolution image of the same sample is available or the object that we are scanning
is known a priori. Hence, we dedicate this subsection to test our algorithm on
observed images of a fluorescent microsphere.

Imaging Setup

The Zeiss LSM 510 confocal microscope is mounted on a motorized inverted
stand (Zeiss Axiovert 200M) and is equipped with an ArKr excitation laser of
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Figure 4.11: (a) The analytically modeled (dash), estimated (continuous) and

the best 3D Gaussian fit PSFs (dash-dot) are displayed for one
direction, and the inset shows a section of the plot (highlighted)
for better visual inspection; (b) X-Z projection of the residual be-
tween the estimated and analytically modeled PSF is (`2 of resid-
ual< 0.07%) displayed on a logarithm contrast stretch ( c©Ariana-
INRIA/I3S).

wavelength of 488nm. The band pass (BP) filter transmits emitted light within
the band 505−550nm.

The acquisition software is Zeiss LSM 510 Meta R©, which stores the images
as 2D stacks. The LSM file format used is a set of 2D tiff images which could be
read using the standard image processing libraries. The header of this file contains
the acquisition information. As the image acquisition is done by raster scanning,
it is possible to have one or several passes for each line in the image and then
average the scans. Although this reduces the noise, but it can also destroy the
sample due to photobleaching. Line averaged observation also do not satisfy the
hypothesis we chose for the observation. Thus, no line averaging was done on
any of the real data chosen for testing the algorithm.
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Fluorescent Microspheres

These microspheres, manufactured by Invitrogen
TM

, have a specified nominal di-
ameter of 15µm. Molecular Probes R© uses its proprietary fluorescent dye tech-
nology to produce these polystyrene spheres coated with a fluorescent dye. The
fluorescence of the sample can be measured by exciting the dye at a specific wave-
length and recording the emission light at their respective maximum emission
wavelengths. Since these dyes have a penetration depth between 500−700nm,
and on emission, they resemble a spherical shell. These images are very handy be-
cause the object viewed has a definite geometry and size. In Fig. 4.13(a), we show

Figure 4.12: Illustrative diagram of a fluorescent microsphere used for the ex-
periment. The manufacturer specified diameter of the sphere is
15µm and it is surface coated with a fluorescent dye having a pen-
etration depth between 500−700nm ( c©Ariana-INRIA/I3S).

the raw data that is Nyquist sampled at 89.26nm along the lateral and 232.75nm
along the optic axis. The excitation peak wavelength, in this case, is 488nm and
emission is at 520nm. The backprojected pinhole size is 1AU and no line averag-
ing was done during the acquisition process. The total size of the image stack is
256×256×130 voxels or 22.85×22.85×30.03µm. The objective lens used is an
oil immersion ‘Plan Apochromat’ with NA 1.4 and 63×magnification. Although
the geometry of this test sample is nice, as the RI of the sphere is in general not
the same as that of the embedding media, they also degrade the PSF. In particu-
lar, when viewing the central plane, those rays approaching the focus from the
direction of the center of the sphere will be highly aberrated and will produce
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a radially asymmetrical PSF. Thus, images of the far side of the sphere will be
different than those of the near side. In order to remove these aberrations, only
one half of the volume stack was used. The whole volume was then regenerated
by mirroring only the upper half of the volume about the central axial plane.

(a) (b)
Figure 4.13: Blind deconvolution of the observed microsphere images. (a)

Raw observed images with voxel sizes ∆xy = 89.26nm and ∆z =

232.75nm, (b) the processed data using proposed approach with
λ̂o = 0.0046 and IDIV(ô, i )= 10.2 ( c©Ariana-INRIA/I3S).

We define the thickness of the shell by using the FWHM of the line profile
peak. For the observed images, the FWHM was measured as 930nm along the
central radial plane. This is much larger than the manufacture specified range. In
Dey, et al. [2004], these images were processed with a non-blind deconvolution
algorithm, and a numerically calculated PSF was used. It was mentioned that
when these images were processed using a deconvolution algorithm without reg-
ularization, the FWHM was 260nm, while with TV regularization, the thickness
was much closer at 400nm.

Microsphere Deconvolution Results

In Fig. 4.13(b), we show the deconvolution results obtained using our approach.
For this case the parameter λ̂o is estimated as 0.0046. The estimated background
b̂ is 30 IU, and the AM algorithm is continued until the convergence criterion is
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Figure 4.14: Intensity profile of the central axial plane for: the observation,
background subtracted and normalized observation, and the blind
restored volume ( c©Ariana-INRIA/I3S).

satisfied. We plot the intensity profiles for the observation and the restoration in
Fig. 4.14. The horizontal line in the figure which is shown to bisect the restora-
tion intensity profile is the line at the half intensity maximum. When the width
between the intersection points was measured, it was found to be 535.58nm. In
fact, this value lies between the manufactured specified range of the penetration
depth 500−700nm. We thus demonstrate the effectiveness of restoring known
objects without causing any artifacts and also our algorithm shows at least two-
fold improvement in the resolution.

4.3.4 Experiments on Real Data

Sample Description

There were two specimens that were chosen for testing the BD algorithm. The
first is an embryo of the Drosophila Melanogaster (cf. Fig. 4.15(a)). It is mounted
and tagged with the GFP. This preparation is used for studying the sealing of
the epithelial sheets (dorsal closure) midway during the embryogenesis. The ob-
jective lens is a Plan-Neofluar with 40× magnification having a NA of 1.3 and
immersed in oil (Immersol

TM
518F, Zeiss, RI ni = 1.518). The pinhole size is
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67µm. The images [Institute of Signaling, Development Biology and Cancer,
Nice UMR6543/CNRS/UNS] were from the sample just below the coverslip,
and acquired with a XY pixel size of 50nm and a Z step size of 170nm. The size
of the volume imaged is 25.59×25.59×2.55µm.

The second set of images [National Institute for Agricultural Research
(INRA), Sophia-Antipolis] are the root apex of the plant Arabidopsis Thaliana

immersed in water (cf. Fig. 4.16). The dissected roots of the plant were directly
put on a microscope slide in approximately 100µl of water and this was then
gently covered with a coverslip. This simple set up works very well when the
image acquisition recording times are not too long (about 30 mins). The micro-
scope specifications are the same as that used for acquiring the first data set but
the objective is a C-Apochromat water immersion lens with 63× magnification,
1.2 NA. The lateral pixel dimensions are 113nm and the Z step is 438nm for a
pinhole size of 110µm. This preparation was used to study Nematode infection
at the center of the root in the vascular tissue.

Deconvolution Results

A rendered sub-volume of observed and restored images for the Drosophila

Melanogaster is shown in Fig. 4.15. The observation contained a high level of
noise, and the optimum value of the regularization parameter λo is estimated
to be 0.0047. The deconvolution algorithm was stopped when the difference
between subsequent estimates was lower than ε = 0.002. The AM algorithm
converged after 40 iterations of the joint MLEMTV and the GD algorithm.
The PSF parameters were initialized to 300nm and 600nm for the lateral and
the axial case respectively, and the GD algorithm estimated them to be 257.9
and 477.9nm (Pankajakshan, et al. [2008a, 2009b]). These are larger (by about
16% and 14.5% for the lateral and the axial case respectively) than their corre-
sponding theoretically calculated values (Zhang, et al. [2007]). These results are
also fully in agreement with an independent experimental study performed by
de Moraes Marim, et al. [2008] with sub-resolution beads, which indicated a de-
viation of theoretical aberration-free PSF models from empirically determined
PSFs.

Fig. 4.17(a) shows a rendered sub-volume (as indicated in Fig. 4.16) of the ob-
served root apex and the corresponding restored result is shown in Fig. 4.17(b). It
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(a) (b)
Figure 4.15: (a) Rendered sub-volume of the original specimen

( c©Institute of Signaling, Developmental Biology & Cancer
UMR6543/I3S/UNS), and (b) restored image ( c©Ariana-
INRIA/I3S). The intensity is scaled to [0, 130] for display.

Figure 4.16: Observed root apex of an Arabidopsis Thaliana with a volume
146.448µm × 146.448µm × 30.222µm ( c©INRA). The sub-
volume chosen for restoration is emphasized.

is evident from these results that the microtubules [as identified by their specific
binding proteins (cf. Marc, et al. [1998]), microtubules binding domain (MBD)]
are much easily discerned in the restoration than in the original data.

In Subsection 1.3.3, with the help of observed images under different pin-
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(a) (b)
Figure 4.17: Rendered subvolume of the (a) observed image slices in Fig. 4.16

( c©INRA) and (b) restored image slices ( c©Ariana-INRIA/I3S).
λo = 0.002 and ε= 0.0001.

hole settings, we highlighted the trade-off biologists have to make between pin-
hole size, resolution, noise and speed of scanning. We mentioned how we could
consider the observation obtained from the 1AU pinhole setting as high res-
olution (albeit noisy), and the image’s z resolution degrades with increase in
the pinhole size but with SNR improving. We consider the microscope to
the WFM under the limiting case of a completely open pinhole. We tested
our algorithm on the observed images of the same plant specimen, but now
with a pinhole size of 2AU. The size of the chosen volume in Fig. 4.18(a) was
256× 256× 32 voxels, with the lateral and axial sampling sizes of 285.64nm
and 845.62nm. The theoretically calculated PSF parameters from Subsec-
tion 4.2.2 were (σ̂r,Th,σ̂z,Th) = (498.32,970.922) nm while our estimated param-
eters are (σ̂r,BID,σ̂z,BID) = (802.30,2851.90) nm. The parameters obtained by a
3D anisotropic Gaussian fit to the PSF, ĥMLEM, estimated by using naïve MLEM
(from Eq. (2.35)) is (σ̂r,MLEM,σ̂z,MLEM) = (147.52,366.60)nm. We found that the
results obtained in Fig. 4.18(c) is comparable with the resolution obtained using
the 1AU pinhole in Fig. 1.7(a). We see that the advantage of using the decon-
volution algorithm is that we can do fast scanning of large samples with lesser
noise and sometimes much better resolution. We show the naïve MLEM BD al-
gorithm results as a reference for comparison in Fig. 4.18(b) because, we noticed
that cell walls along specific directions were lost completely even though these
were present in the original observation. Although, there is some loss in contrast
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(a)

(b)

(c)
Figure 4.18: (a) Observed section of a volume with 2AU pinhole, (b) blind

naïve MLEM approach (cf. Holmes [1992]; Biggs & Andrews
[1997]), (c) proposed approach ( c©Ariana-INRIA/I3S). As the
samples are thin, in this figure, the z sections were enlarged in size
for ease of viewing.
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with our proposed approach, the structure of the plant cell walls are maintained
and enhanced.

4.4 Conclusion

In this chapter, we proposed and validated an alternate minimization (AM) algo-
rithm for the joint estimation of the microscope PSF and the specimen source
distribution for a CLSM. We choose the MLEM algorithm for the deconvolu-
tion process as it is best suited for the Poisson data, and TV as the regularization
model. As inference of the PSF directly from the observation is difficult, we
recommend using a separable 3D Gaussian model for the diffraction-limited con-
focal PSF. This is a better a priori model than introducing of constraints on the
OTF space because the imaging parameters are not necessary. The PSF approxi-
mation that is given in this chapter is currently relevant to imaging thin samples.
However, they could also be extended to encompass any PSF that can be decom-
posed in a similar manner. We experimented on simulated, microsphere images
and real data. For the simulated case, the method gives very good deconvolution
results and a PSF estimation close to the true value. There were some boundary
artifacts but this was caused due to the estimation of non-bandlimited synthetic
object. A point that we would like to drive home from these results is that it
is imperative to use a regularization on the object that we would like to restore.
In the absence of regularization, as in the case of the naïve MLEM BD, the algo-
rithm does converge but not to the trivial solution. Our proposed algorithm was
validated on a set of microsphere images with known fluorescence penetration
depth and object geometry. We were able to estimate the fluorescence penetra-
tion thickness after BD, and it was found to lie within the levels specified by the
manufacturer. BD results from low resolution data obtained with 2AU pinhole
was comparable to the high resolution data obtained by closing the pinhole to
1AU. Biologists who wish to acquire images faster, to prevent photobleaching,
may acquire lower resolution images and use the BD to obtain higher resolution
images with minimum noise. The TV regularization can sometimes causes a loss
in the contrast of the restored images. In order to overcome this difficulty, re-
cently, an extension to this approach was proposed by Brune, et al. [2009]. Their



106 CHAPTER 4. BD FOR THIN SPECIMENS

method enhances the contrast by using the concept of inverse scale spaces and
Bregman [1965] iterations.



CHAPTER 5

Pupil Phase Retrieval by Parameter

Estimation

“There are two kinds of light-the glow that illumines, and the glare

that obscures.”

-James Grover Thurber (American author and cartoonist)

The images of fluorescent microspheres are often used for deconvolving an ob-
served specimen volume. However, the qualities of such a derived PSF are depen-
dent on the lens type, alignment, correct coverslip thickness, immersion medium,
proximity of the specimen to the coverslip, and uniformity of the illumination
(Shaw [2006]). If the size of the microsphere is too small (sub-resolution), then
the observation is plagued with noise problems as the microsphere is only weakly
fluorescent. Lai, et al. [2005] noticed that an iterative deconvolution algorithm
is very sensitive to the amount of randomness in the experimental PSF. It can
also be shown that the recovered objects are significantly improved by using a
smoothed experimental PSF rather than using the experimental PSF directly.
Similarly, for the algorithm tested on simulated objects, it was found that the
MSE(o, ô) is significantly smaller for a filtered experimental PSF than using the
non-filtered one. Non sub-resolution spheres cannot be directly used as they are
too large to represent an ideal point source.
The motivation for this chapter is as follows:

• knowledge of the PSF of an imaging system helps in recovering the original
intensity distribution of an imaged object by deconvolution,

• experimentally obtained PSFs by imaging fluorescent spheres are low in
contrast and highly noisy,

107
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• depending on the microsphere size, the derived PSFs are larger in size than
the true PSF, and

• these derived PSFs cannot be reused if the experimental conditions are var-
ied.

Drawing inspiration from Chapter 4 on the subject of blind deconvolution, we
propose an approach based on Bayesian inference to recover both the imaged
object and the PSF from the experimental data. The difference here is that we are
more interested in estimating PSFs by taking into account spherical aberrations
(SA); but with some knowledge of the object. The observed objects have a specific
geometry and manufacture specified parameters. An extension of this work will
involve using this method on the images of biological specimens affected by SA.

5.1 Introduction

Theoretically calculated PSFs often lack experimental or microscope specific
signatures, while the empirically obtained images of microspheres have larger
FWHM (than theoretically predicted), if the microspheres are large, or (and) too
noisy if microspheres are too small (cf. Fig. 5.1 for example). As explained in Sec-
tion 3.3, the non-aberrated PSF model in Eq. (3.27) is valid only when imaging
thin samples (NFP < 20−100µm). When imaging into deeper sections within a
biological sample, in confocal or nonlinear microscopy, sample induced aberra-
tions are introduced. There is a dramatic reduction in both the signal level and the
resolution. While most systems are built to be diffraction-limited, it is not pos-
sible to ensure that they maintain this performance throughout. The observed
image quality is influenced by both the diffraction effect and SA. It was shown
by Pawley [2006] that when focusing into samples immersed in water by using
an oil immersion objective, the signal intensity level falls to 40% at 5µm and to
10% at 15µm beneath the coverslip (Booth, et al. [1998]). This is because, the RI
mismatch between the specimen and the immersion medium of the objective lens
becomes significant (Egner, et al. [1998]). This mismatch produces an additional
path difference in the emerging light wavefront. Hence, we use the modified PSF
expression in Eq. (3.27) to also include dependence on the depth as in Eq. (3.45).
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Figure 5.1: Axial intensity profiles of a calculated confocal PSF, a blurred
microsphere and the observed microsphere. The intensities are
scaled and the peaks matched for visual comparison ( c©Ariana-
INRIA/I3S).

This chapter is organized as follows. In Section 5.2, we modify the previ-
ously proposed joint maximum likelihood (JML) and joint maximum a posteri-

ori ( JMAP) to retrieve the pupil phase. The algorithm presented here retrieves
the pupil phase with a Bayesian viewpoint, and it draws its inspiration from the
works Hanser, et al. [2001, 2003] for WFM. We will provide some existing lit-
erature on the subject of BD, and we shall later see why these methods cannot
be applied for solving the above problem. To test our hypothesis, in Section 5.3,
we simulated a bandlimited object and generated the observation for experimen-
tation (cf. Appendix A). The iterative algorithm needs a good initialization and
this is handled in Subsection 5.3.2. We also show that this new model, when
used for deconvolution, provides a much more realistic reconstruction than the
conventional model. In Subsection 5.3.3, we will see how the existing methods
of deconvolution fail in the presence of aberrations. The role of the phase of the
emerging refracted wavefront in restoring the observed objects will also become
much more evident from the examples. Finally, we discuss the possibility of ex-
tending this work to retrieve the PSF directly from observed specimen data and
conclude in Section 5.4.
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5.2 Phase Retrieval with a Bayesian Viewpoint

In literature, prior work related to this subject is mostly on wavefront reconstruc-
tion using adaptive optics (AO) (cf. Hiraoka, et al. [1990]; Kam, et al. [1997];
Sherman, et al. [2002]; Booth, et al. [2002]; Kam, et al. [2007]). These AO meth-
ods are based on the idea of phase aberration compensation by physically adding
a special conjugate element in the optical system. A review of the recent trends
in this field was done by Booth [2007]. Such a compensation could also be com-
putationally achieved as shown by Kam, et al. [2001]. In Juskaitis [2006], the
amplitude and phase of the pupil function was measured by using a fiber-optic
interferometer. If either of this information is available, deconvolution could be
achieved for the samples that are imaged by using similar experimental settings.
In the following section we will discuss an approach of phase retrieval without
the use of such a complex setup and also extend it to the case of directly restoring
them from biological specimen images.

5.2.1 Joint Maximum Likelihood Approach

In Pankajakshan, et al. [2009a], we used the MLEM for removing the effect of the
microsphere size and later estimated the pupil phase parameters by minimizing
a cost function. The MLEM algorithm was discussed in Subsection 2.1.2 for the
case of direct object estimation from the observation data. The same approach
was used but the roles of the object and the PSF were reversed. In this chapter,
however, we will use a joint minimization technique that treats the problem of
size compensation inherently. Since the object that we are interested in restoring
is a microsphere, its geometry and manufacture specified diameter is known a

priori. We denote by ωo ∈Θ the unknown parameter(s) of the object, and by
ωh ∈Θ those of the pupil phase. The knowledge of these parameters allow us to
completely define the object and the PSF. With the parametrization of the object
and the PSF, the ML approach in Subsection 2.2.3 cannot be used in its direct
form. We thus rewrite the likelihood in terms of these parameters as

Pr(i |ωo ,ωh)=
∏

x∈Ωs

�
[(h(ωh)∗o(ωo))+ b](x)

�i (x)exp
�
−[(h(ωh)∗o(ωo))+ b](x)

�

i (x)!
.

(5.1)
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By applying the -log operator to Eq. (5.1), we get the following energy functional:

Jobs(i |ωo ,ωh)=
∑

x∈Ωs

�
(h(ωh)∗o(ωo))+ b

�
(x)−

∑

x∈Ωs

i (x)log
�
(h(ωh)∗o(ωo))+ b

�
(x)+

∑

x∈Ωs

i (x)! . (5.2)

Maximizing the likelihood in Eq. (5.1) with respect to the parametersωo andωh

and minimizing the cost function, J (i |ωo ,ωh), is equivalent. Thus,

(ω̂o ,ω̂h)= argmax
(ωo ,ωh )∈Θ

{Pr(i |ωo ,ωh)} (5.3)

= argmin
(ωo ,ωh )∈Θ

{Jobs(i |ωo ,ωh)} . (5.4)

The term i (x)!, in Eq. (5.1), is independent of the parameters to be estimated and
we drop it from the maximization process.

5.2.2 Joint Maximum A Posteriori Approach

It was shown by Dainty & Fiddy [1984] that when the observed intensity data
are available, unique reconstruction of the phase of the pupil is possible provided
there is a priori information on the phase or the object support. As the solution
space for the parameters is large, we add some realistic priors on the parameters
to restrict the possible outcomes. The Bayes’ theorem can be used to estimate
the unknown parametersωh andωo from the observation i . In this we treat the
observation, object parameters and the PSF parameters as probability-frequency
functions. Thus, using the Bayes’ inference, the conditional posterior probability
is

Pr(ωo ,ωh |i )=
Pr(i |ωo ,ωh)Pr(ωo)Pr(ωh)

Pr(i )
, (5.5)

where Pr(i ) is the prior on the observation. In the above expression, we assumed
that the object and the PSF parameters are independent of each other. So each of
them could be independently treated with hyperprior distributions Pr(ωo) and
Pr(ωh). The estimates for ωo and ωh can be obtained by the joint maximum a
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posteriori ( JMAP) or minimizing the cologarithm of the posterior as

(ω̂o ,ω̂h)= argmin
(ωo ,ωh )∈Θ

{Pr(ωo ,ωh |i )}

= argmin
(ωo ,ωh )∈Θ

{− log[Pr(ωo ,ωh |i )]} . (5.6)

The energy function in Eq. (5.4) can now be rewritten as sum of three individual
energy terms: the first is the data-fidelity term obtained from the observation
model Eq. (5.1), the second and the third energy terms, Jhp(ωo) and Jhp(ωh),
are generated from the hyperpriors, Pr(ωo) and Pr(ωh).

(ω̂o ,ω̂h)= argmin
(ωo ,ωh )∈Θ

{J (ωo ,ωh |i )} (5.7)

= argmin
(ωo ,ωh )∈Θ

{Jobs(i |ωo ,ωh)+Jhp(ωo)+Jhp(ωh)} . (5.8)

It is easy to note that Eq. (5.8) reduces to Eq. (5.4) when flat hyperpriors are
used. On the other hand, if we assign a Gamma prior distribution to each of the
parameters, then

Pr(ωo)∼ω
ao−1
o

exp(−boωo), (5.9)

and
Pr(ωh)∼ω

ah−1
h

exp(−bhωh), (5.10)

where (a(·), b(·)) are the parameters of the Gamma prior. The generalized energy
function in Eq. (5.8) is written by using the expressions in Eqs. (5.2), (5.9) and
(5.10) as

J (ωo ,ωh |i )=
∑

x∈Ωs

[(h(ωh)∗o(ωo))+ b](x)

−
∑

x∈Ωs

i (x)log[(h(ωh)∗o(ωo))+ b](x)+

No∑

l=1

(ao,l −1)log(ωo,l )− bo,lωo,l+

Nh∑

m=1
(ah,m−1)log(ωh,m)− bo,mωo,m (5.11)
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where ao,l and bo,l are the parameters of the hyperprior for the l th parameter
ωo,l of the object. Similarly, ah,m and bh,m are the parameters of the hyperprior
for the mth parameterωh,m of the PSF. In the above equation, we assumed these
parameters to be known a priori. This need not necessarily be the case.

In this MAP approach, the background fluorescence term b is determined
from a single “specimen-independent” slice as b̂ . It is only estimated once for the
whole volume, and is then assumed to be known during the estimation of the
objectωo and the PSF parametersωh . This estimation procedure is as described
in Subsection 1.3.2.

Object and Point-Spread Function Parameters Estimation

An observed source point appears shifted in depth from its true axial position
due to SA. If we assume that the sphere placed at a relative position (xo ,yo , zo)

in a given volume, then the observation will have its centroid in the image plane
position (xi ,yi , zi ), with xi ≈ xo , yi ≈ yo and zi 6= zo . In the spatial domain, the
object can be written as

o(x,y, z)=





1, ∀
�
(x− xo)

2+(y−yo)
2+(z− zo)

2� 1
2 ≤R

0, otherwise ,
(5.12)

where R is the radius of the sphere specified by the manufacturer. In the above
case, we assumed the true intensity to be unity and uniform within the sphere.
However, the true intensity need not necessarily be unity. We recall that due
to photon loss, the true uniform intensity of the observed sphere is unknown.
Thus, the two object parameters to be estimated are the intensity and the relative
position. If we assume that the apodization function A in Eq. (3.28) is uniform (as
in Subsection 3.4.3), this term can be absorbed into the intensity of the sphere in
Eq. (5.11). So this combined term to be estimated will be represented by a scalar
s , where s ∈R. In the case when the true intensity is unity, the apodization func-
tion A will be a uniformly constant value of s . The estimation of this entity will
be discussed separately in Subsection 5.2.2. So for the object, the only parameter
that needs to be estimated is the relative position zo , and henceωo = {zo}.

In the presence of SA, for a calibrated CLSM, it was mentioned in Subsec-
tion 3.4.2 that the variation of the PSF is essentially a factor of the following
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three parameters: RI of the objective immersion medium ni , index of the spec-
imen or mounting medium ns , and depth of the specimen under the cover slip
d . Thus, the PSF parameters to be estimated are ωh = {d ,ni ,ns}. This was also
shown to be the case in the PSF phase expressions derived in Eq. (3.45), and in
the nonlinear approximation of Eq. (3.49).

Summarizing, the above discussion, the energy function in Eq. (5.11) can be
rewritten as

J (ωo ,ωh , s |i )=
∑

x∈Ωs

[s (h(ωh)∗o(ωo))+ b̂](x)−

∑

x∈Ωs

i (x)log[s (h(ωh)∗o(ωo))+ b̂](x)+

No∑

l=1

(α̂o,l −1)log(ωo,l )−β̂o,lωo,l+

Nh∑

m=1
(α̂h,m−1)log(ωh,m)−β̂o,mωo,m . (5.13)

The object term o in the above expression is a normalized form of the object term
o in Eq. (5.11) so that o :Ωs 7→ [0,1].

As there is no closed form expression for calculation of ωo and ωh from
Eq. (5.13), we use a Newton’s optimization algorithm (cf. Nocedal & Wright
[1999]). The Newton’s method in optimization is a class of hill-climbing opti-
mization technique that seeks the stationary point of a function, where the gra-
dient of the function is zero. However, the Newton method is based on second-
order Taylor’s expansion of the penalty variation for a small change of parame-
ters:

δJωo
(ωo ,ωh , s |i ) def

= J (ωo+δωo ,ωh , s |i )−J (ωo ,ωh , s |i ) (5.14)

=G(ωo)
T ·δωo+

1

2
δωT

o
H(ωo)δωo+O(‖δωo‖

2
2) , (5.15)

where G(ωo)
def
= ∇ωo

J (ωo ,ω̂h |i ) and H(ωo)
def
= ∇2

ωo
J (ωo ,ω̂h |i ) are, respec-

tively, the partial gradient and Hessian ofJ (ωo ,ω̂h , s |i ). By ignoring the higher
order non-quadratic terms of the Taylor expansion, we can show that the optimal
step for the Newton’s algorithms is: −H(ωo)

−1G(ωo). The iterative algorithm
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for the object parameter estimation can be written as

ω̂(n+1)
o

= ω̂(n)
o
−τ(n)

o

�
H(ω̂(n)

o
)−1G(ω̂(n)

o
)
�

, s.t ω̂o ∈Θ. (5.16)

We note that the previous estimate of ω̂(n)
h

is used in the above iteration. This
estimation is followed by the phase parameter iterative algorithm

ω̂
(n+1)
h

= ω̂
(n)

h
−τ(n)

h

�
H(ω̂

(n)

h
)−1G(ω̂

(n)

h
)
�

, s.t ω̂h ∈Θ. (5.17)

For the Newton’s method,∇2
ωo
J (ωo ,ωh |i ) is the exact Hessian of the cost func-

tion with respect to the object parameterωo . The calculation of these two terms
will be discussed in the next two subsections. Usually Newton’s method is mod-
ified to include small steps τ(n)o and τ(n)

h
at each iteration. This is often done to

ensure that the Wolfe conditions (cf. Nocedal & Wright [1999]) are satisfied at
each step. The initial steps are chosen as τ(0)o = 1 and τ(0)

h
= 1, and they are usually

updated in the following manner:

τ(n+1)
o

=
τ(n)o

2
;τ(n+1)

h
=
τ(n)

h

2
. (5.18)

The Eqs. (5.16) and (5.17) are done alternatively so that every iteration n

J (ω̂n
o
,ω̂n

h
|i )<J (ω̂n−1

o
,ω̂n−1

h
|i ). (5.19)

The geometric interpretation of Newton’s method is that at every iteration,
J (ω̂o ,ω̂h |i ) is approximated by a quadratic function around ω̂h or ω̂o .

Gradient Calculation The general form of the energy function’s partial gradi-
ent as a function of the parametersωo andωh can be written as

∇ωo
J (ωo ,ωh |i )=

∑

x∈Ωs

h(x;ωh)∗
∂

∂ ωo

o(x;ωo)−

i (x)
h
(h(ωh)∗o(ωo))+ b̂

i
(x)

�
h(x;ωh)∗

∂

∂ ωo

o(x;ωo)

�
, (5.20)
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and

∇ωh
J (ωo ,ωh |i )=

∑

x∈Ωs

∂

∂ ωh

h(x;ωh)∗o(x;ωo)−

i (x)
h
(h(ωh)∗o(ωo))+ b̂

i
(x)

�
∂

∂ ωh

h(x;ωh)∗o(x;ωo)

�
. (5.21)

In Eqs. (5.20) and (5.21), we need to calculate the two derivatives ∂ o(x;ωo)/∂ ωo

and ∂ h(x;ωh)/∂ ωh . These two calculations are summarized below.

Gradient Calculations for the Object Function If the microsphere is not ax-
ially centered in the observed volume, then the relative true position z0 6= 0 and

o(x;ωo)∼ o(x,y, z− zo). (5.22)

It can be shown that

o
�

x,y, z− zo

�
= o(x,y, z)∗δ

�
0,0, zo

�
, (5.23)

=F−1
¨

O(k)exp

�
− j

2π

Nz

kz zo

�«
. (5.24)

So, the derivative with respect to the position zo , ∂ o(x;ωo)/∂ ωo , becomes

∂

∂ ωo

o(x;ωo)=
∂

∂ zo

o(x,y, z− zo), (5.25)

=−
j 2π

Nz

F−1
¨

kzO(k)exp

�
− j

2π

Nz

kz zo

�«
. (5.26)

By using Eqs. (5.20) and (5.26), we can calculate the gradients with respect to ωo

required at every iteration n of Eq. (5.16).

Gradient Calculation for the Point-Spread Function The calculations for
the PSF parameters in Eq. (5.17) are not so straightforward. The gradient of the
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theoretically calculated PSF in Eq. (3.52) can be written as

∂

∂ ωh

hT h(x;λex,λem)=
∂

∂ ωh




|hA(x;λex)|

2
∫

x2
1+y2

1≤
D2
4

|hA(x;λem)|
2d x1d y1





,

=|hA(x;λex)|
2 ∂

∂ ωh





∫

x2
1+y2

1≤
D2
4

|hA(x;λem)|
2d x1d y1




+

∂

∂ ωh

¦
|hA(x;λex)|

2
© ∫

x2
1+y2

1≤
D2
4

|hA(x;λem)|
2d x1d y1,

=|hA(x;λex)|
2

∫

x2
1+y2

1≤
D2
4

∂

∂ ωh

¦
|hA(x;λem)|

2
©

d x1d y1+

∂

∂ ωh

¦
|hA(x;λex)|

2
© ∫

x2
1+y2

1≤
D2
4

|hA(x;λem)|
2d x1d y1.

(5.27)

For Eq. (5.27), it is sufficient to calculate ∂ hA(x;λ)/∂ ωh for a general wavelength
λ and then use the same functions for λex and λem. Thus,

∂

∂ ωh

|hA(x;λ)|2=
∂

∂ ωh

{hA(x;λ)h∗
A
(x;λ)}

=
∂

∂ ωh

{hA(x;λ)}h∗
A
(x;λ)+ hA(x;λ)

∂

∂ ωh

{h∗
A
(x;λ)}

=

�
h∗

A
(x;λ)

∂

∂ ωh

{hA(x;λ)}
�
+

�
h∗

A
(x;λ)

∂

∂ ωh

{hA(x;λ)}
�∗

(5.28)
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Assuming the apodization function to be unity, the derivative of the amplitude
PSF can be written as

∂

∂ ωh

hA(x;λ)=
∂

∂ ωh

F−1{exp( j k0ϕ(θi ,θs , z;d ,ni ,ns ))}

=F−1
¨

∂

∂ ωh

exp( j k0ϕ(θi ,θs , z;d ,ni ,ns ))

«

=F−1
¨

j k0 exp( j k0ϕ(θi ,θs , z;d ,ni ,ns ))
∂

∂ ωh

ϕ(θi ,θs , z;d ,ni ,ns ))

«

= j k0F
−1
¨

exp( j k0ϕ(θi ,θs , z;d ,ni ,ns ))
∂

∂ ωh

ϕ(θi ,θs , z;d ,ni ,ns ))

«

(5.29)

But,

ϕ(θi ,θs , z;d ,ni ,ns )=ϕd (θs , z;d ,ni ,ns )+ϕa(θi ,θs , z;d ,ni ,ns ), (5.30)

= ns z(1−cosθs )+d (ns cosθs−ni cosθi ). (5.31)

It is straight forward to show that

�
∂

∂ ωh

ϕ(θi ,θs , z;d ,ni ,ns )

�

ωh=d

=(ns cosθs−ni cosθi ), (5.32)

and also

�
∂

∂ ωh

ns cosθs

�

ωh=ns

=
∂

∂ ωh

ns

�
k2

s
− (k2

x
+k2

y
)
� 1

2

ks

,

=
∂

∂ ωh

�
n2

s
−n2

k

� 1
2 , where nk =

λ

2π

�
k2

x
+k2

y

� 1
2 ,

=
ns

�
n2

s
−n2

k

� 1
2

,

=
ks

�
k2

s
− (k2

x
+k2

y
)
� 1

2

,

= secθs , (5.33)
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where secθs = cos−1θs . From the Eq. (5.33), we can say

�
∂

∂ ωh

ϕ(θi ,θs , z;d ,ni ,ns )

�

ωh=ni

=−d secθi , (5.34)

and
�

∂

∂ ωh

ϕ(θi ,θs , z;d ,ni ,ns )

�

ωh=ns

= z(1−secθs )+d secθs . (5.35)

Summarizing, the gradient of a theoretical PSF model hTh(x;ωh) with respect to
its parameters ωh , can be obtained by combining the Eqs. (5.27), (5.28), (5.29),
(5.32), (5.34) and (5.35).

Hessian Calculation Since the Hessian in Eq. (5.16) and (5.17) are difficult to
be calculated for each of the parameters, we make an approximation based on
the gradients. This is a quasi-Newton method, where an approximation for the
Hessian is used instead based on the successive gradient vectors. The Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method is one such approach to solve an un-
constrained nonlinear optimization problem (cf. Nocedal & Wright [1999]).

Object Intensity and Apodization Estimation

We discuss the estimation of the term s , that is a combination of the intensity
and the apodization function. We assumed that the apodization function is a
constant. Due to strict convexity of the energy function with respect to s , mini-
mizing it in Eq. (5.13) is equivalent to equating the gradient∇sJ (ω̂o ,ω̂h , s |i ) to
zero. That is,

∇sJ (ω̂o ,ω̂h , s |i )=
∂

∂ s

(∑

x∈Ωs

h
s (h(ω̂h)∗o(ω̂o))+ b̂

i
(x)−

∑

x∈Ωs

i (x)log
h

s (h(ω̂h)∗o(ω̂o))+ b̂
i
(x)

)
(5.36)

=0 , (5.37)
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where the terms independent of s was dropped from Eq. (5.13), and the parame-
ters ω̂o and ω̂o are assumed to be known or a priori estimated as describe in the
previous subsections.

∇sJ (ω̂o ,ω̂h , s |i )=
∑

x∈Ωs

�
h(ω̂h)∗o(ω̂o)

�
(x)−

∑

x∈Ωs

i (x)
h

s (h(ω̂h)∗o(ω̂o))+ b̂
i
(x)
·
�

h(ω̂h)∗o(ω̂o)
�
(x)= 0 (5.38)

and hence

∑

x∈Ωs

[h(ω̂h)∗o(ω̂o)](x)=
∑

x∈Ωs

i (x)
h

s (h(ω̂h)∗o(ω̂o))+ b̂
i
(x)
·

�
h(ω̂h)∗o(ω̂o)

�
(x),∀x∈Ωs . (5.39)

The above equality is possible iff each of the individual terms within the sum are
equal.

1(x)=
i (x)

[s (h(ω̂h)∗o(ω̂o))+ b̂](x)
,∀x∈Ωs , (5.40)

or equivalently,

s =
1

(NxNyNz)

∑

x∈Ωs

i (x)− b̂ (x)

[h(ω̂h)∗o(ω̂o)](x)
,∀x∈Ωs . (5.41)

In an iterative form, the above expression for calculating s can now be written as

ŝ n+1=
1

(NxNyNz)

∑

x∈Ωs

i (x)− b̂ (x)

[h(ω̂n
h
)∗o(ω̂n

o
)](x)

. (5.42)
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5.3 Implementation and Analysis

5.3.1 Simulating the Observation

For the implementation, a bandlimited object was simulated as explained in Ap-
pendix A. The radius of the microsphere for simulations was chosen as 250nm,
and is assumed to be embedded in a medium of RI ns = 1.33. Fig. 5.2(a) shows
this original object that we wish to image. This object is assumed to be imaged
by a Zeiss LSM 510 microscope fitted with a 40X, 1.3 NA ‘Plan-Neofluar’ oil im-
mersion lens (ni = 1.518). If the coverslip chosen has a RI very close to that of
the objective medium, the only source of aberrations are due to the reason that
ni 6= ns . The excitation and emission peaks are at wavelengths of 488nm (λex)
and 520nm (λem) respectively. The LSM pinhole is adjusted to a physical size
of 61µm, and the images are Nyquist sampled at lateral and axial pixel sizes of
46.92nm and 166.16nm. For the above imaging setup, the PSF is calculated from
Eq. (3.52) at a depth of 5µm, and the object is blurred as in Fig. 5.2(b) with a
constant background intensity of 10. The observation in Fig. 5.2(c) is generated
with γ = 100. We denote byωh,true= {1.518,1.33,10µm}, the true experimental
settings of the simulation. We can clearly notice the shift in axial center of gravity
(COG) from zo in the original object to zi for its blurred version. This axial shift
was discussed in Subsection 3.4.1. As mentioned before, we recall once again that
the radial center for the object (xo ,yo) and that in the image plane (xi ,yi ) remains
unchanged.

5.3.2 Initialization of the Algorithm

As the microsphere is not centered, its approximate initial relative position
(x (0)o ,y (0)o , z

(0)
o ) has to be calculated from the observed images. We propose a simple

approach in estimating the relative microsphere position in the observed images.
The only assumption made here is that the observation data has been treated so
that the volume is from a single microsphere. By knowing the physical diameter
of the microsphere (here 500nm), we can locate its initial position in the observed
volume by estimating the COG of the intensities (cf. Peng, et al. [2007]). We re-
mind that the lateral object position does not change during the observation pro-
cess, and hence the estimation of the lateral centroid of the observed microsphere
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(a) (b) (c)
Figure 5.2: Simulation of a (a) microsphere object, (b) the blurred observa-

tion showing the background fluorescence b = 10, (c) the blurred
observation with the background fluorescence and Poisson noise
with γ = 100. The object has a maximum intensity of 200IU
and is Nyquist sampled at 46.92nm and 166.16nm. ( c©Ariana-
INRIA/I3S).

corresponds to the true radial microsphere position. The above method gives
very precise lateral locations (x̂ (0)o , ŷ

(0)
o ). For example, Fig. 5.3 shows the segmen-

tation of the observation data in Fig. 5.2(c) by using the above method. However,
due to focal anomaly the axial relative location (ẑ (0)o ) of the object cannot be accu-
rately obtained from the observation data. In the example given above, the COG
of the observation, the nominal position was accurately estimated as 8 slices off
the central plane. However, this does not correspond with the actual position of
the object in the volume.

From geometrical optics (cf. Visser, et al. [1992]), if the objective is non-
paraxial, the estimated axial position from the observation, ẑ

(0)
o , is multiplied

by a factor (tan(arcsin(N A/n
(0)
i
))/(tan(arcsin(N A/n

(0)
s ))) to get the new relative

position (ẑ (0)o,new). While for the paraxial case, as the angles are small, the tan-
gent of the angles can be approximately equal to the sine of the angle, and thus
the multiplication factor becomes (n(0)s /n

(0)
i
). These new values are then used as

starting points for the iteration. It was found that the initialization process had a
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(a)

(b)
Figure 5.3: Segmentation of the MIP along the (a) optic axis projection giv-

ing radial segment and (b) lateral projection giving axial segment
( c©Ariana-INRIA/I3S).

maximum error of 1% off the true lateral position, and about 8.4% off the true
axial position. The error in the axial position is significant and hence it is not
correct to use these values directly as the true position. The parameters of the
PSF ω̂(0)

h
are assigned valid non-zero values as starting estimates. The refractive

indices are sampled from the interval [0,1.5] so that n
(0)
i
6= n

(0)
s . The initial depth

is chosen as any value greater than zero.

5.3.3 Preliminary Results on Simulated Data

In Fig. 5.4, we show the `∞ normalized axial intensity profiles for the true object
and the observation. The intensity profiles for two deconvolution results is also
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plotted. In the first profile, the observation is deconvolved with a defocus PSF
under no aberrations. While the second profile is the deconvolution with the
correct SA PSF. It can be seen that the observed intensity profile is axially shifted
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Figure 5.4: Axial intensity profiles for the true object, the observed object, the
restored intensity with a diffraction-limited PSF, and the restored
intensity with a spherically aberrated PSF. The x-axis gives the z-
plane numbers and the intensities are `∞ normalized for visual
comparison ( c©Ariana-INRIA/I3S).

from the true axial position by about 8 slices. After restoration with the SA PSF,
the estimated object’s axial location corresponds very well with the true position
of the object. The intensity profile is quite symmetrical in comparison to the
observed profile. However, when restoration is done using a diffraction-limited
approximation (ignoring aberrations), it led to error in the actual axial position.
We can also observe that the intensity is highly asymmetrical and is worse than
the observation profile.

We also discuss the results obtained by using the JMAP algorithm proposed in
Subsection 5.2.2. We follow the iteration progress for the cost function Eq. 5.11
and the different parameters for the simulation in Fig. 5.5. The refractive indices
ni and ns were estimated to be 1.5163 and 1.3201 which are accurately close to
their true values of 1.518 and 1.33 chosen for the simulation. Although these two
parameters were accurately determined with a maximum error of < 1%, there
were errors in estimating the relative true position of the object in the volume
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Figure 5.5: Graph showing the progression of the (a) cost function

J (ω̂o ,ω̂h |i ), (b) relative position ω̂o , (c) objective lens refractive
index n̂i , and (d) specimen medium refractive index n̂s estimation
with iterations ( c©Ariana-INRIA/I3S).

and the NFP d . The relative position of the object in the volume was found to be
about 4 slices below the central plane, and differs from the true position by about
2 slices. Due to this reason, the cost function does not reach its global minimum
as seen in Fig. 5.5(a). This problem could be a result of the approximation we
used during optimization and hence could be overcome by choosing the initial
depth d (0) closer to its true value.

We compare the results obtained with the naïve MLEM BD algorithm. In
Fig. 5.6, we show the results of applying Eqs. (2.34) and (2.35) to the observation
of Fig. 5.2(c). As this algorithm has to be be manually terminated, we show the
results for two iterations 70 and 200, with qo = 1 and qh = 1. Fig. 5.6(a) and (d)
shows the true SA PSF and the true object used for simulating the observation.
Since the algorithm does not have any information about the object or the PSF,
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the estimate of the object ô(n)(x) in Fig. 5.6(e) and (f), resembles the true PSF,
Fig. 5.6(a), in shape and in the position of the COG. Similarly, the estimate of
the PSF, ĥ (n)(x), in Fig. 5.6(b) and (c) resembles more the imaged microsphere,
Fig. 5.6(d), that is axially centered. Thus, having no prior knowledge on the
object or the PSF can make it difficult to distinguish them. The characteristics
of the PSF is absorbed by the estimated object and vice versa. Also, when we
do not stop the iterations, progressively the results start deteriorating with the
algorithm favoring a Dirac beyond 200 iterations of the naïve MLEM BD. We
perform another experiment, where the object is axially shifted from its centroid
by two planes, as in Fig. 5.7(a). Fig. 5.7(c) shows the same PSF used in Fig. 5.6(a).
Fig. 5.7(b) and (d) show ĥn(x) and ôn(x) with n= 70 iterations. This experiment
leads us to conclude that the true axial position of the object cannot be recovered
using this naïve MLEM BD.

5.3.4 Empirically derived Point-Spread Function

There are several methods available in literature for experimentally imaging mi-
crospheres notable ones are by Gibson & Lanni [1989]; Hiraoka, et al. [1990].
However, for our experiments, we are interested in artificially generating a con-
dition where there is an intentional mismatch in refractive indices between the
objective lens and the specimen medium. In order to achieve this, we used a
very simple imaging setup. Some fluorescent microspheres are stuck to the bot-
tom of a coverslip, and the coverslip is placed in water. In this way the depth is
fixed (thickness of the coverslip), and there are no additional aberrations. Fig. 5.8
shows the schematic of the experiment. If the immersion medium is either water
or glycerol, SA appears due to mismatch in index between ni and ng .

The use of very small spheres lead to bad SNR, so one often uses spheres of the
order of the microscope resolution. We used polystyrene latex microspheres from
TetraspeckTMwith the manufacturer specified diameter of about 170nm. These
spheres have a peak excitation/emission wavelengths of 505/515nm (green). The
coverslip is of type 1.5, and has a thickness of 170µm and RI of about 1.522.
The objective used is a ‘C-Apochromat’ water immersion lens of 63X magnifica-
tion and NA 1.2. The pinhole is set at a physical size of 112µm. The imaged
microspheres are larger than the recommended size for them to be considered as
point sources. However, this does not pose a problem as we have a method for
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(a) True PSF h(x) (b) ĥ (n)(x), n= 70 (c) ĥ (n)(x), n= 200

(d) true object o(x) (e) ô(n)(x), n= 70 (f) ô(n)(x), n= 200
Figure 5.6: Blind deconvolution results with the naïve MLEM algorithm after

70 and 200 iterations ( c©Ariana-INRIA/I3S).

compensating this in the estimation procedure. Fig. 5.9 shows the microspheres
distributed at various positions in the radial plane. Since they are all stuck to the
bottom of the cover slip, they are at the same depth. The images are sampled
at a radial sampling for 0.037µm and axial sampling of 0.151µm. From the ZY
section, we see that two spheres that are positioned at the same depth but at dif-
ferent radial position are very similar. This validates our assumption that the PSF
is approximately invariant to radial translations. Fig. 5.10(a) shows the radial and
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(a) True object o(x), (b) estimated object ô(n)(x)

(c) true PSF h(x) (d) estimated PSF ĥ (n)(x)
Figure 5.7: (a) Simulated true object o(x) shifted along the optic axis of a vol-

ume, (b) the estimated object ô(x) using the naïve MLEM BD, (c)
the true PSF h(x) used for simulation, and (d) the estimated PSF
ĥ(x) using the naïve MLEM BD. The iterations were manually ter-
minated after n= 70 ( c©Ariana-INRIA/I3S).

axial maximum intensity projection (MIP) of the cropped observation of a single
170nm microsphere stuck on to a 1.5 type cover slip. Since the objective used
was a water immersion lens, and we are imaging into a cover slip, the resulting
observed PSF was axially asymmetrical. These aberrated bead volumes were then
radially averaged, and Fig. 5.10(b) shows the corresponding MIP of the radial and
axial planes. This resulting radially averaged images could be used to test the al-
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Figure 5.8: The experimental set-up schematic for generating spherical aberra-
tion due to refractive index mismatch when imaging point sources
( c©Ariana-INRIA/I3S).

gorithms on PSF retrieval.
In Fig. 5.10(c), the radially average images were subjected to the VST in

Eq. 2.19, denoised using a TV scheme (Rudin, et al. [1992]) and then transformed
back. The denoising was individually performed on the 2D sections and they
were then stacked together. From these images, it can be seen that the effect of
denoising is to smooth the finer details of the PSF. Hence, this procedure is not
recommended to retrieve the PSF from the empirical images.

5.4 Conclusion

In this chapter, we propose an approach for estimating the PSF from an observa-
tion data given some knowledge of the object. The validation of the algorithm on
simulated data shows very promising results for the problem of PSF extraction
from observed intensities for a fluorescence microscope where SA is the domi-
nant form of aberration. In the case where sub-resolution microsphere is used,
sphere size correction will not be necessary and the object should be treated as a
Dirac. Future work is aimed at testing the proposed approach on images of flu-
orescent polystyrene latex TetraspeckTMmicrospheres from InvitrogenTM. One
possible extension of this work might involve applying this method to restoring
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Figure 5.9: Observed microspheres that are stuck to the bottom of a cov-
erslide and distributed along the radial plane ( c©INRA Sophia-
Antipolis). The objective used is a C-Apochromat water immersion
lens with a magnification of 63X and NA 1.2. ∆xy = 0.037µm and
∆z = 0.151µm.

images of biological specimens affected by spherical aberrations adding some con-
straints on the object (spatial or frequency). The task is not simple as there are
many possible solutions for the phase function, though a realization might be
possible through regularization. This work also opens up new possibilities into
the field of depth-varying image restoration.
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(a) (b) (c)
Figure 5.10: Maximum intensity projection along the (a) optic axis gives the lat-

eral plane (top) and radial axis gives axial plane (bottom) of an ob-
served microsphere; (b) the planes after circular averaging the data
(a); (c) after denoising the circularly averaged data in (b). The z-
sections are purposefully enlarged for ease of viewing ( c©Ariana-
INRIA/I3S, INRA Sophia-Antipolis).
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CHAPTER 6

Perspectives on Blind

Deconvolution for Thick Specimens

“You cannot depend on your eyes when your imagination is out of

focus.”

-Mark Twain (American humorist, writer and lecturer)

In this chapter, we look at the prospects of extending the phase and object esti-
mation procedure derived in Chapter 5 for restoring observed specimens. When
restoring thick sections (> 1µm) of specimens, the effects of spherical aberra-
tion becomes prominent. This is because the differences in refractive indices is
significant with depth below the coverslide. The linear space invariant approxi-
mation for the convolution operation in the model of Eq. (1.8) is no longer valid.
When handling space varying PSFs, we have to provide a new quasi-convolution
observation model. We remodel the blurring equation of Eq. 1.8 by using this
quasi-convolution operation and proposed methods to estimate the object from
spherically aberrated observation.

6.1 Introduction

Oil immersion lenses are designed for imaging specimens tightly pressed to the
coverslip. If a medium appears between the coverslip and the specimen or if
imaging through more than 20µm of cell volume, the light-focusing properties
of the oil immersion lens begins to falter (cf. Shaw [2006]), unless the specimen
has the same RI as that of oil. For example, when imaging biological tissues, there
is a dramatic reduction in both the signal level and the resolution. Booth, et al.

133
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[1998] mentions that when focusing into water, using an oil immersion objec-
tive, the signal level falls to 40% when focusing only 5µm beneath the coverslip
and is below 10% at 15µm. Török, et al. [1997] reviewed a number of theories
for describing specimen-induced SA in confocal microscopy. Török obtained nu-
merical results specifically for focusing though a stratified specimen medium. The
role of the specimen induced aberration is so significant, that it was suggested to
use as thin a sample as possible to minimize this effect. Practically, this poses a
lot of difficulty to biologists as more time needs to be invested and also this re-
moves all the advantages gained by optical sectioning. Thus, restoration of thick
samples becomes important and hence this chapter is targeted at BD using depth-
dependent PSFs.

In Fig. 6.1, we show an optical setup when imaging with oil immersion lenses
and with the specimen in water (cf. Kam, et al. [2007] for setup with AO correc-
tion). As the water/specimen index of refraction is different from the index of

Figure 6.1: Schematic of the optical set-up for spherical aberrations when an oil
immersion objective is used for imaging water embedded sample.
The solid lines shows rays focus under the coverslide requiring no
aberration correction while dashed lines shows focus change as a
result of sample in water ( c©Ariana-INRIA/I3S).

the objective immersion medium (say oil or glycerol), there is a rapid decrease
in resolution, contrast and peak intensity of the image. These degradations are
due to depth dependent SA. It can be theoretically shown that for a given object
function o(x) and for fixed acquisition settings (ni , ns ), the variation of the PSF
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h(x;ωh) and the blurred object
�

h(x;ωh)∗o(x)
�

with the depth d is such that,

‖h(x;d = 0)‖22> ‖h(x;d 6= 0)‖22 , and (6.1)

‖(h(x;d = 0)∗o(x))‖22> ‖(h(x;d 6= 0)∗o(x))‖22 . (6.2)

As explained in Chapter 3, their `1 norms satisfy the following constraints:

‖ h(x;d = 0)‖1= ‖h(x;d 6= 0) ‖1 , and (6.3)

‖ (h(x;d = 0)∗o(x)) ‖1=‖ (h(x;d 6= 0)∗o(x)) ‖1 . (6.4)

In Fig. 6.2, we computed the ratio of the `2 norms between ‖(o(x)∗ h(x;d ))‖22
and ‖(o(x)∗ h(x;d = 0))‖22 for different depths, and for a lens with NA= 1.4. In
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Figure 6.2: For a given simulated object o(x), the plot shows the ratio between
the `2 norm of an observation affected by spherical aberrations and
the observation under diffraction-limited case. The NA of the ob-
jective lens here is assumed to be 1.4. For low NA lenses the change
with depth is minimum ( c©Ariana-INRIA/I3S).

the literature of optics, this ratio is similar to the Strehl’s ratio (cf. Born & Wolf
[1999]), which calculates the proportion of observed peak intensity at the detec-
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tion plane from a point source to the theoretical maximum peak intensity of a
perfect imaging system working at the diffraction limit. If a lower NA objec-
tive (say 0.2) is used, the amount of aberration produced is also lower and it is
possible to image deeper sections of the specimen. If the outer part of the back
focal plane (BFP) of an oil immersion lens is not filled with plane laser light, it
behaves as though the aperture is lower, and the SA produced will also be lower.
In Kam, et al. [2007], it was mentioned how when focusing into water, with a
high NA lens, this ratio deteriorates rapidly with depth. The AO element that
corrects for the depth aberration, was able to greatly minimize the degradation
of the Strehl’s ratio. We shall see in this chapter how this aberration correction
could also be accomplished by employing methods that involve processing the
observed images.

Conventional non-blind and blind deconvolution algorithms cannot be used
in the presence of aberrations. This is because the assumption of depth invari-
ance is no longer justified. The aberrations in the observed sample renders the
conventional deconvolution methods useless. In this chapter, we will focus on
image restoration for biological specimens in the presence of these aberrations.
We propose a new approach that handles the problem of space varying PSF by
using a quasi-deconvolution algorithm.

6.2 Image Formation under Aberrations

6.2.1 Quasi Convolution Model

As the PSF changes with the depth, the assumption of space invariance in Eq. (1.8)
is not justified anymore. If the observed image is i (x), its mean g (x) is written
as a quasi-convolution in the continuous domain by the following superposition
integral (Preza & Conchello [2004]):

g (x)=

∫

x′∈Ωs

h(r−r′, z; z ′,∆ns )o(r
′, z ′)dx′ , (6.5)

where x′ = (x ′,y ′, z ′) and r′ = (x ′,y ′) are the 3D and 2D coordinates in the ob-
ject space. Similarly, x= (x,y, z) and r= (x,y) are the 3D and 2D coordinates in
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the image space. As the PSF varies with the depth, the calculation of Eq. (6.5)
becomes complicated with a requirement for different 3D PSFs for each plane of
the observation. In order to overcome this problem, we can use the modified ob-
servation model by Preza & Conchello [2004]; Bardsley, et al. [2006], with the
object space subdivided into non-overlapping strata. In this manner, the PSF is
computed only for fixed depths and is assumed to be invariant throughout a stra-
tum. A similar approach was used by Maalouf, et al. [2008] for space-varying
restoration but using a numerically calculated PSF.

As in Eq. 2.16, the data i (x) is assumed to be drawn from an independent
Poisson distribution with mean g (x) so that the likelihood becomes

Pr(i (x)|o(x),ωh)=
∏

x∈Ωs

(g (x))i (x)exp(−g (x))

i (x)!
, (6.6)

where ωh = {∆ns}. In the presence of any stray external fluorescence, g (x) also
includes the background term b (x) (cf. Subsection 1.3.2).

6.2.2 Influence of Refractive Index

We reconsider the pupil function in Eq. (3.28) of Chapter 3 with the aberrations
as

P (kx ,ky , z)=





exp( j k0ϕ(θi ,θs , z;d ,ni ,ns )), if

q
k2

x+k2
y

ki
< N A

ni

0, otherwise.
(6.7)

We ignore the apodization function and focus on the description of the pupil
using the phase ϕ(θi ,θs , z;d ,ni ,ns ). It was shown in Eq. (3.49) that the phase due
to SA could be approximated as a function of the depth and the indices difference,
∆ns =(ns−ni ). Thus, the phase is

ϕ(θi ,θs , z;d ,ni ,ns )≈ϕd (θi , z;ni )+ϕa(θs ;d ,ni ,∆ns ) (6.8)

= ni z(1−cosθi )+d∆ns secθs , (6.9)

and the amplitude PSF of Eq. 3.27 is simply written as hA(x;d ,∆ns ). As a result,
for a given lens system, the light distribution in the observed images is only af-
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fected by the relative change in the RI, and by the NFP. For example, when using
oil immersion lenses (ni = 1.518), the distortions for imaging a point source at a
depth of 100µm in glycerol solution (∆ns = 0.0434) is similar to that of imaging
a point source at a depth of 23µm in water (∆ns = 0.188). In Fig. 6.3, we nu-
merically computed the PSFs using the approximations derived in this chapter.
Note how the asymmetry of the PSF along the optic axis changes between the
oil immersion lens (negative SA) and the water immersion lens (positive SA), and
with the specimen medium.

The primary source of sample induced distortions is due to the RI variations
within the sample (cf. Török, et al. [1997]). However, the PSF cannot be numer-
ically computed if this variation is unknown. In Kam, et al. [2001], a ray tracing
method was proposed to obtain the PSFs, while in Simon, et al. [2008], a com-
bination of microholography and tomographic illumination was used to obtain
this variation. Once this information is known, these aberrations could be com-
pensated from the observation. We will see how Bayesian inference could also be
used to estimate this difference,∆ns , from the observed images.

6.3 Refractive Index Variation and Object Estima-

tion by Bayesian Inference

Based on our previous study on phase retrieval by parameter estimation (cf. Chap-
ter 5), we propose to recover both the object and the PSF by using the Bayesian
inference. Directly maximizing Eq. (6.6) gives the following familiar joint ML
estimate:

(ô,ω̂h)= argmax
(o≥0,ωh∈Θ)

{Pr(i |o,ωh)} , (6.10)

= argmin
(o≥0,ωh∈Θ)

Jobs(i (x)|o(x),ωh) (6.11)

We get the cost function Jobs(i (x)|o(x),ωh) by applying the − log operator on
the likelihood as

Jobs(i (x)|o(x),ωh)=
∑

x∈Ωs

g (x)− i (x)log g (x) , (6.12)
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(a) d = 0µm, ni = 1.518 b) d = 5µm, ni = 1.518 (c) d = 30µm, ni = 1.518

(d)d = 0µm, ni = 1.33 (e) d = 5µm, ni = 1.33 (f) d = 30µm, ni = 1.33
Figure 6.3: The numerically computed widefield microscope’s PSFs using the

approximation in Eq. (6.9), for variations in depth and refractive
indice. The PSFs in (a)-(c) are simulated for a point source in
water (ns = 1.33) and imaged with oil immersion objective lenses
(ni = 1.518), while the PSFs in (d)-(f) are for the point source
in glycerol (ns = 1.4746) and imaged with water immersion lens
(ni = 1.33). The depth under the coverslide is varied as 0µm, 5µm,
30µm ( c©Ariana-INRIA/I3S).

where g (x) is as given in Eq. (6.5).
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6.3.1 Joint Maximum a Posteriori Estimate

Since the object and index estimation are both ill-posed problems, we add a reg-
ularization on the object as in Chapter 4 and the on the index difference, ∆ns .
The regularization of the object could be accomplished by using the TV func-
tional as in Eq. (4.6) with a positive object flux. While for the RI, we assume it to
be Gaussian distributed so that

Pr(ωh)∼ exp
�
−

1

2

�
ωh−µωh

�T
Σ
−1
�
ωh−µωh

��
, (6.13)

where µωh
is the a priori difference mean, and Σ is the covariance matrix. The

regularization energy function can be written as

Jreg,ωh
=

1

2

�
ωh−µωh

�T
Σ
−1
�
ωh−µωh

�
. (6.14)

The combined cost function to be minimized can be written as

J (o(x),ωh |i )=Job s (i |o(x),ωh)+Jreg,o(o(x))+Jreg,ωh
(ωh) , (6.15)

=
∑

x∈Ωs

g (x)− i (x)log g (x)+λo

∑

x∈Ωs

|∇o(x)|+

1

2

�
ωh−µωh

�T
Σ
−1
�
ωh−µωh

�
(6.16)

The minimization of Eq. (6.16) could be achieved by using the AM algorithm of
Chapter 4, which gives the MAP estimates for the two functions as

ô(n+1)= argmin
(o≥0)

J (o(x),ω̂(n)
h
|i (x)) , followed by (6.17)

ω̂
(n+1)
h

= argmin
(ωh∈Θ)

J (ô(n)(x),ωh |i (x)) . (6.18)

The minimization in Eq. (6.17) could be achieved by a modified MLEM, as in
Preza & Conchello [2004], but with TV as the regularization. In Chapter 5, we
had discussed a quasi-Newton approach, BFGS, for estimating the parameters of
the phase and the object. The estimation of the index variation could be accom-
plished using the same approach, but with the assumption that, in the sample, it
is slowly varying.
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6.4 Future Directions

6.4.1 Multichannel Estimation

The aim of adding regularization during the deconvolution is to make the prob-
lem well-posed. In fluorescence microscopy, it is very difficult to get two succes-
sive scanned observations of the same sample. Regularization is a way of bypass-
ing this need to provide more observations of the same sample. As mentioned
earlier, the method of structured illumination overcomes this problem by super-
imposing two or three different laterally shifted images in the Fourier domain.

4’,5-diamidino-2-phenylindole or DAPI stain is used for tagging specimens,
and is usually excited using a ultra violet laser (cf. Fig. 6.4(b); data source:
Du, et al. [1998]). As the emission for this stain is fairly broad, the signal is
observed as blue/cyan in the range 400 to 600nm (cf. Fig. 6.4(b); data source:
Du, et al. [1998]). The peak appears at a wavelength of 461nm. By using different
filters, it is possible to acquire two different sets of images simultaneously based
on differences in the ranges of wavelengths (e.g. 390−465nm and 565−615nm).
We have thus at our disposal, two images observed from the convolution of the
same object but with two different PSFs. Thus, the information of a given object
is increased by using multichannel observations. A similar 2D blind deconvolu-
tion method for objects blurred with multiple FIR filters was demonstrated by
Harikumar & Bresler [1999].

6.4.2 Discussion

In this chapter, we proposed an approach to restore observations affected by
spherical aberration due to mismatch in the refractive index between objective
immersion medium and specimen medium. In the presence of SA, the LSI model
is not applicable, and a new quasi-convolution model is proposed. This model di-
vides the object space into non-overlapping strata, so that the algorithm in Eq. 4.9
can be run piece-wise over the whole volume (cf. Preza & Conchello [2004]).
Bayesian inference can be used to obtain the PSF by estimating the RI variation
over the volume. This work, thus opens up new avenues in space-varying restora-
tion and the study of specimen RI variation. Future work is aimed at testing this
approach on simulated and real images. The approach presented in this chapter is
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Figure 6.4: (a) Graph of molecular extinction coefficient, and (b) the fluores-

cence spectrum of DAPI dissolved in water. Data source: see text.

not restricted to CLSM or WFM, as there are no constraints on the image space
but only on the pupil phase. Thus, it could be extended to other newer imaging
techniques as well.



APPENDIX A

Simulating a Band-Limited Object

Since we frequently use simulated data set for testing or comparing the per-
formance of our algorithm, it is necessary to numerically approximate a band-
limited object that could be used to represent a real object that we are interested
in imaging. The geometry of the object we wish to scan here viz. the fluorophore
is a sphere. Such spheres serve as good models for fluorescent-coated beads.

These spheres can be generated from their analytical expressions in the fre-
quency domain as (cf. Hanser, et al. [2003]; Lai, et al. [2005])

O(k)=
sin(2πRkρ)− (2πRkρ)cos(2πRkρ)

π2(kρ)
3

(A.1)

where R is the radius of the desired sphere, and the sampling in the frequency
domain is carried out so that ∆kx

= 1/Nx , ∆ky
= 1/Ny , and ∆kz

=∆xy/(∆zNz).
∆xy and ∆z are the radial and the axial samplings in the image space, and kρ =

(k2
x
+k2

y
+k2

z
)1/2. To avoid Gibbs phenomenon, the numerical approximation of

O(k) was multiplied by a `∞ normalized 3D Gaussian function with variances
(Nx ,Ny ,Nz)/(2π).
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APPENDIX B

Maximum Likelihood Expectation

Maximization

Given the observation i (x) and the PSF h(x), when the requirement is only to
find the original object o(x), we use the Bayes’ theorem

Pr(o(x)|i (x′))=
Pr(i (x′)|o(x))Pr(o(x))

∑
x′′∈Ωs

Pr(i (x)|o(x′′))Pr(o(x′′))
;x,x′,x′′ ∈Ωs . (B.1)

Considering all the i (x′) and its dependance on o(x), we can say

Pr(o(x))=
∑

x′∈Ωs

Pr(o(x)i (x′)) (B.2)

=
∑

x′∈Ωs

Pr(o(x)|i (x′))Pr(i (x′)), (B.3)

since Pr(o(x)|i (x′)) =Pr(o(x)i (x′))/Pr(i (x′)). Substituting Eq. B.1 in Eq. B.3 we
can say

Pr(o(x))=
∑

x′∈Ωs

Pr(i (x′)|o(x))Pr(o(x))Pr(i (x′))
∑

x′′∈Ωs

Pr(i (x)|o(x′′))Pr(o(x′′))
(B.4)

We see that the left and the right hand sides of the above equation have both
the desired result, Pr(o(x)). Hence, we write the result in the following iterative
form:

Pr (n+1)(o(x))=Pr (n)(o(x))
∑

x′∈Ωs

Pr(i (x′)|o(x))Pr(i (x′))
∑

x′′∈Ωs

Pr(i (x′)|o(x′′))Pr(n)(o(x′′))
, (B.5)
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where n = {0,1,.. .}, and the initial Pr(0)(o(x)) is assumed to be known or esti-
mated. Using Bayes’ postulate, a uniform distribution is assumed for the initial
estimate so that

Pr (0)(o(x))=
ô(0)(x)

∑
x∈Ωs

o(x)
, (B.6)

and

Pr (n)(o(x))=
ô(n)(x)

∑
x∈Ωs

o(x)
. (B.7)

By the property of flux conservation,
∑

x∈Ωs
i (x)=

∑
x∈Ωs

o(x), hence

Pr(i (x))=
i (x)

∑
x∈Ωs

i (x)
(B.8)

=
i (x)

∑
x∈Ωs

o(x)
. (B.9)

Similarly,

Pr(i (x′)|o(x))=Pr(h(x′−x)) (B.10)

=
h((x′−x))
∑

x′′∈Ωs
h(x′′)

. (B.11)

So in an iterative form, Eq. B.5 becomes




ô(n+1)(x)
∑

x∈Ωs

ô(n)(x)


=




ô(n)(x)
∑

x∈Ωs

o(x)



∑

x′∈Ωs




h(x′−x)
∑

x′′∈Ωs

h(x′′)





 i (x′)

∑
x∈Ωs

o(x)




∑
x′′∈Ωs




h(x′−x′′)
∑

x′′∈Ωs

h(x′′)





 ô(n)(x′′)

∑
x∈Ωs

o(x)




(B.12)

or

ô(n+1)(x)= ô(n)(x)
∑

x′∈Ωs

h(x′−x)i (x′)
∑

x′′∈Ωs

h(x′−x′′)ô(n)(x′′)
(B.13)



APPENDIX C

Fourier Transform of a Gaussian

Definition 9. A function of three independent variables is called separable with
respect to a specific co-ordinate system if it can be written as a product of three
functions, each of which depends only on one of the independent variables. Thus,
the function f is separable in co-ordinates (x,y, z) if

f (x,y, z)= fX (x) fY (y) fZ (z). (C.1)

The 3D Gaussian function, h : N3→R+, is considered to be separable as
the function can be written individually as the combination of three 1D Gaus-
sian functions. The 3D convolution of h with the function o :N3→R+ is thus
reduced to three successive 1D multiplications in the Fourier domain with the
Fourier transform of o. Thus,

(h ∗o)(x,y, z)= (h(x)∗ (h(y)∗ (h(z)∗o(x,y, z)))), (C.2)

and

(h∗o)(x,y, z)=F−1
3D
×(F1D(h(z))×(F1D (h(y))×(F1D(h(x))×F3D (o(x,y, z))))).

(C.3)
The Fourier transform of a continuous function h(x) is given by

F (h(x))=H (kx)=

+∞∫

−∞

h(x)e− j 2πkx x d x , (C.4)

where j 2 =−1, h(x) = (1/(2π)1/2σx)exp(−x2/(2σ2
x
)) is the 1D Gaussian func-

tion, and kx is the co-ordinate in the frequency domain. A closed-form expression
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for H (kx) exists and the analytical expression can be written as

H (kx)=

+∞∫

−∞

1

((2π)
1
2σx)

exp

 
−

x2

2σ2
x

!
exp(− j 2πkx x) d x

= exp

 
−
(2πkxσx)

2

2

!
. (C.5)

From the above expression, it is clear that the Fourier transform of a Gaussian is
also a Gaussian. The proof is not straight forward and it is as below.

Proof. It is simple to show that differentiation of h(x) with respect to x is

d

d x
h(x)=

 
−x

σ2
x

!
h(x). (C.6)

Applying the Fourier transform to the above equation and using the differentia-
tion property of the Fourier transform, we get

( j 2πkx)H (kx)=
−1

σ2
x

+∞∫

−∞

x h(x)exp(− j 2πkx x) d x ,

=
− j

σ2
x

d

d kx

H (kx) . (C.7)

The above expression can be simplified to

1

H (kx)

d

d kx

H (kx)=−2πkxσ
2
x
. (C.8)

Integrating both sides, we get

kx∫

0

1

H (k ′
x
)

d

d k ′
x

H (k ′
x
) d k ′

x
=−2πσ2

x

kx∫

0

k ′
x

d k ′
x

, (C.9)

or equivalently

log(H (kx))− log(H (0))=−
σ2

x

2
(2πkx)

2. (C.10)



149

Thus, we arrive at the following expression:

H (kx)=H (0)exp

 
−
(2πσx kx)

2

2

!
, (C.11)

with H (0)= 1.
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APPENDIX D

Numerical Implementation for

Total Variation Regularization

The deconvolution algorithm introduced in Ch. 4.2.1 uses the TV regularization
as a constraint on the object. In this appendix, we provide the numerical approx-
imation of the TV regularization function used in the iterative algorithm.

In the continuous domain, the 3D TV semi-norm is written as

TV(o(x))=
∫

x∈R3

|∇o(x)|dx (D.1)

=

∫∫∫

(x,y,z)∈R3

 �
∂ o(x)

∂ x

�2

+

�
∂ o(x)

∂ y

�2

+

�
∂ o(x)

∂ z2

�2! 1
2

d x d y d z .

(D.2)

We recall the discrete smooth form of the above equation that was written in
Eq. (2.23) as

Jreg,o (o(x))=λo

∑

x∈Ωs

|∇o(x)|ε

=λo

∑

x∈Ωs

�
ε2+ |∇o(x)|2

� 1
2 . (D.3)

An arbitrary parameter ε< 10−3 is introduced to ensure that the norm |∇o(x)| is
differentiable. In order to estimate the object, by using Eq. (4.9), it is necessary
to calculate the discrete form of the term div(∇o(x)/|∇o(x)|).

Definition 10. We define the minmod function m(a, b ) as

m(a, b )
def
=

�
sign(a)+sign(b )

2

�
min(|a|, |b |) , (D.4)
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where the function sign(a) is

sign(a)=





1, a> 0,

−1, a< 0,

0, a= 0

(D.5)

A stable numerical scheme is the following (cf. Rudin, et al. [1992]; Dey, et al.
[2004]):

div

�
∇o(x)

|∇o(x)|

�
=

�
∆x
−

∆x
+

oi j k

�
ε2+(∆x

+
oi j k )

2+m(∆
y
+oi j k ,∆y

−oi j k )
2+m(∆z

+
oi j k ,∆z

−oi j k )
2
� 1

2
(D.6)

+
hx

hy
∆

y
−

∆
y
+oi j k

�
ε2+(∆

y
+oi j k )

2+m(∆z
+

oi j k ,∆z
−oi j k )

2+m(∆x
+

oi j k ,∆x
−oi j k )

2
� 1

2

+
hx

hz
∆z
−

∆z
+

oi j k

�
ε2+(∆z

+
oi j k )

2+m(∆x
+

oi j k ,∆x
−oi j k )

2+m(∆
y
+oi j k ,∆y

−oi j k )
2
� 1

2

�
1
hx

,

where the numerical forward and backward derivatives are defined as

∆x
±oi j k =

±(o(i±1) j k−oi j k)

hx

,

∆
y
±oi j k =

±(oi ( j±1)k−oi j k)

hy

, (D.7)

∆z
±oi j k =

±(oi j (k±1)−oi j k)

hz

.

(i , j ,k) ∈ Z are the indices on a 3D grid [0,Nx −1]× [0,Ny −1]× [0,Nz −1],
and (i∆xy , j∆xy ,k∆z) are their distances from the central plane. As mentioned
earlier, (∆xy ,∆xy ,∆z) are the Nyquist sampled voxel sizes. The advantage of
using the minmod function, m(a, b ), is that it equals zero iff a and b , in Eq. (D.4),
have the opposite sign. Thus, if ∆x,y,z

+ oi j k and ∆x,y,z
− oi j k do not have the same

sign, we choose∆x,y,z
± oi j k = 0.

In Eqs. (D.7) and (D.7), (hx , hy , hz) are chosen as hx = 1, hy = 1 and hz =

∆xy/∆z . In the boundaries of the image, we use the following limits (in the
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continuous domain):
∂

∂ ~n
o(x)= 0, (D.8)

where ~n is normal to the boundary ∂ Ωs of Ωs . For a discrete functional, this
leads to the following symmetric boundary conditions:

o0 j k = o1 j k , oi0k = oi1k , oi j 0= oi j 1 (D.9)

o(Nx+1) j k = o(Nx ) j k , oi (Ny+1)k = oi (Ny )k
, oi j (Nz+1)= oi j (Nz )

.
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