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Introduction

The agent-based modelling (ABM) paradigm has seen ever increasing use in the
social sciences over the last decade (Tesfatsion and Judd, 2006; Amblard, 2007).
Its methodological origins can be traced at least as far back as Clarkson and Si-
mon (1960); Orcutt (1960). It remains however to be fully accepted as a standard
scientific method in the social sciences even though its fundamental theoretical
advantages are well understood (Bradburd et al., 2006; Colander et al., 2008).
The main aim of this work is to evaluate the potential of agent-based modelling
to enlarge our understanding of urban economic systems.1

The great increase in computing power over the last few decades has brought
about the possibility of modelling economic systems in a new way. The use of
simulations has become standard practice in physics where they have achieved
great success. The widespread use of simulation methods has been slower to
develop in the social sciences in large part due to the greater complexity of the
entities modelled. This has created a situation in which those who are specialised
in the social sciences do not usually have the skills required to create simulation
models of socio-economic systems. On the other hand specialists in simulation
methods, including computer scientists and physicists, do not often have a solid
background in the social sciences. It is important therefore, to bring together
skills from different areas to further the development of simulation modelling of
social systems. Much work has been done by physicists in modelling financial
systems where the availability of enormous amounts of data permits a strongly
empirical approach (Bouchaud, 2009; Rickles, forthcoming). Methods from phys-
ics can more easily be applied to urban systems when there is high quality data
available (Jensen, 2006). In this thesis I model urban systems which, though
often lacking the level of high-quality data that is available for financial mar-
kets, have many characteristics which make them suitable for the application of
simulation methods.

In this Introduction, I will summarise the approach followed in the thesis.
First, I present the original motivations for embarking on this project, namely

1The research in this thesis has given rise to three papers: Mc Breen et al. (2006) upon
which on chapter 1 is based. A slightly modified version of Chapter 2 has been submitted to the
Journal of Artifial Societies and Social Simulation, under the title ‘An Agent-based Model of a
Monocentric Urban Rental Housing Market’. A paper based on chapter 3 has been submitted
to The Journal of Real Estate Finance and Economics, under the title ‘Information and Search
on the Housing Market: An Agent-based Model’.



2 Introduction

modelling the interactions between urban transport systems and the localisa-
tion of activities. I then explain the theoretical advantages and some of the
practical difficulties encountered in using agent-based models to study socio-
economic systems. The specific systems studied are presented thereafter. The
process of distillation of model hypotheses that leads to a combination of object
and method, which allows pertinent insights to be achieved, is emphasised. The
characteristics of systems that lend themselves to successful multi-agent mod-
els are subsequently discussed as well as some general guidelines that help in
achieving interesting results from such simulation models.

Original motivation

The original motivation of this project was to investigate the potential of multia-
gent systems to furnish insights into the functioning of urban systems. Urban sys-
tems are of critical importance to the general economy, indeed most wealth is cre-
ated in cities (Fujita and Thisse, 2003). Urban systems are complex evolving sys-
tems of large numbers of spatially distributed interacting heterogeneous agents.
Hence it is an area in which simulations have great scope to surpass analytic
models.

My intention was not to study the full range of multiagent systems. This
extends from small scale ‘toy models’ such as Schelling (1978), to large scale
integrated land use-transport models of entire urban areas (Salvini and Miller,
2005). These large engineering style models require a considerable amount of
data, intensive calibration efforts and can never fully escape a black box aspect to
the finished product, for a review see Timmermans (2003). My aim was to create
models with motivated hypotheses, whose dynamics can be fully understood and
which replicate the major dynamic features of real-world systems.

The initial focus was the interactions of transport systems and the localisa-
tion decisions of agents. Currently, models that predict the performance of the
transport infrastructure starting from a given localisation of agents are quite
well-developed (de Palma and Marchal, 2002; Arentze and Timmermans, 2004).
The reverse approach, starting from the transportation infrastructure and at-
tempting to predict the future urban form, that is the aggregation of localisation
choices that are made in the long term, are understandably less developed. The
final goal is to take into account the entire interaction loop between the joint
evolution of the transport system and the localisation of population and activ-
ities. Such prospective models are in the development stage (Waddell, 2002;
Timmermans, 2003). Agent models have the potential to model interactions of-
ten ignored in economic models but which are crucial to an understanding of
urban development, see Glaeser et al. (2000).

In practice this initial motivation has led to the creation of three models of
urban systems. I examine the stability of a standard congestion model of Vickrey
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(1969) in Chapter 1. An agent-based model based on the classic monocentric
urban economic model of Alonso (1964), which includes both a spatial and a
market aspect, is developed in Chapter 2. Finally an aspatial model of the
rental housing market, in which particular attention has been given to the search
behaviours of agents is presented in Chapter 3.

Advantages and difficulties of agent-based models

The advantages of agent-based simulation methods are numerous and far-reaching.
Among the principal advantages is the ability to model dynamic evolutions.
Agent-based simulations offer great flexibility in modelling heterogeneous agents’
characteristics and their interactions. The understanding of the emergence of
macro forms and macro dynamics from the microscopic interactions of agents is
a particular advantage of multi-agent systems. Indeed, agent-based models can
be validated simultaneously by both the system-level and micro-level behaviour
(LeBaron and Tesfatsion, 2008). Agent-based models also offer the possibility
of modelling systems in a very natural and coherent way that is not possible
for analytical models. For example, agents can meet and bargain for goods in
imitation of real markets (Kirman and Vriend, 2001).

The dynamic nature of agent-based models permits the investigation of ana-
lytical equilibria and their stability. An example will be shown in chapter 1
through an agent-based simulation of the classic Vickrey (1969) model of traffic
congestion. The stability of equilibria is a question often neglected in analytic
economic models. My aim has been to use simple agent behaviours to explore
the driving forces behind the modelled system’s dynamics, with an emphasis on
controlling their global stability.

The greater flexibility of simulations with respect to analytic models allows
a much more realistic set of hypotheses to be made. These hypotheses relate
to the entities themselves, their environments, and their interactions. Multiple
interaction forms are possible and may be direct or indirect. In the latter case,
agents interact with each other via their effects on their shared environment. A
major advantage of agent-based models is the natural integration of heterogen-
eities in agents’ characteristics, which is a crucial element for realistic economic
models (Kirman, 1992). This will be seen particularly in Chapters 1 and 3 where
heterogeneities in agents’ characteristics are in fact necessary in order to obtain
stable models. Blundell and Stoker (2005) present empirical methods for dealing
with aggregation problems due to heterogeneities.

I have tested in this thesis the value of extending existing analytic models
using agent-based simulations. One clear advantage of this approach is that it
provides a solid theoretical basis for modelling decisions. We can also expect a
better acceptance and diffusion of agent-based methods and insights when these
are clearly founded in the existing economic theory. It is however certain that
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agent-based models have the potential to move beyond the constraints of close
connections to existing theory. These issues will be mainly dealt with in Chapter
3.

The difficulties associated with agent-based simulation methods are also nu-
merous, and I shall now underline why considerable thought must be given to
how to overcome or at least to attenuate these difficulties before embarking on
a multi-agent modelling project. It is possible for the uninitiated to believe that
agent-based methods can furnish insights into almost any system. In practice,
there are many difficulties, notably in the validation and in the calibration of the
simulation models to empirical data.

Data in the quantities and of the appropriate kinds required to calibrate
large-scale multi-agent models are very hard to obtain. This leads to many dif-
ficulties in their calibration. Even with good data, its transformation into a
usable form for the model and the subsequent calibration process are both ex-
tremely onerous. The calibration of large-scale complex simulation models of
inherently unpredictable socio-economic systems appears to be a very problem-
atic undertaking. Indeed, even the simplest multi-agent models are relatively
rich in parameters whose calibration is not straightforward.

Every agent-based model can be considered as a small world of which every
detail must be described. Models often have many more hypotheses than the
number of parameters to calibrate would indicate. These potentially ‘hidden’
hypotheses can concern among others: the orders of interactions (random or se-
quential), the distributions of agents’ characteristics (e.g. uniform or Gaussian),
the closed or open nature of the system, the nature of information available to
agents (local or global) etc..

Finding existing theoretically or empirically founded hypotheses for agent
behaviours is also a difficult task, see Roth (2007). Most of the economic literat-
ure has not been concerned with understanding the actual behaviours of human
agents. Such research has mostly been conducted in psychology, cognitive science
and recently in the new field of behavioural economics.

Using insights from psychology, behavioural economics has highlighted many
of the erroneous assumptions used in analytical economic models (Camerer et al.,
2003). While this work is encouraging for agent-based models, the integration
of these insights is often not obvious. Insights from cognitive science are also
a useful resource and agent-based methods are seen as a promising approach
within cognitive science (Conte, 2002). Work on the real decisions made by
human agents that are, contrary to neo-classical economic theory, neither fully
rational nor omniscient nor completely selfish, is of huge potential use for agent-
based models.

While basing simulation models upon existing analytic ones is often very pro-
ductive, integration of some analytical assumptions into agent behaviours is not
straightforward. Indeed, wishing to cling too tightly to analytical foundations
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may hamper the full flowering of agent-based research. Different examples of this
danger will be seen in Chapters 2 and 3. In different fields and for different spe-
cific models, analytical foundations, when they exist, shall have varying degrees
of relevance. As the rest of the thesis shows, the true extent of the difficulties and
advantages of agent-based modelling are only discovered in practice. I believe,
and hope to have shown, that the advantages make the task worth the effort.

I shall now describe the specific models that I have studied with agent-based
models.

Traffic congestion

In Chapter 1, I examine the stability of a well known traffic congestion model
(Vickrey, 1969). The stability of this Nash equilibrium had not been established
and traffic simulations inspired by this model, see de Palma and Marchal (2002),
have shown instabilities when attempting to add day-to-day evolutions to the
basic model. We wished to develop an agent-based model to examine the stability
of the original model and to investigate the possibility of adding simple agent
dynamics to large-scale traffic simulations. It has been argued persuasively that
microscopic economic models are a necessary step towards a better understanding
of the dynamics of transport systems generally (Arnott, 2001).

The classic Vickrey (1969) model of traffic congestion is a ‘within-day’ dy-
namic model, in which agents are assumed to optimise their departure time for
the morning commute. In doing this, they trade off the cost of not arriving at
the desired time and the cost of experiencing higher congestion levels. This is
extended here to a ‘doubly dynamic’ agent-based model, in which the departure
time distribution evolves from day-to-day. Agents learn through experimenta-
tion: with a certain probability each day, they try a new departure time. If their
personal total cost reduces they adopt this new departure time. It is shown that
with perfectly homogeneous agents that the original model’s Nash equilibrium
solution cannot be found dynamically and the system is indeed highly unstable
(Mc Breen et al., 2006).

In order to gain insights into the causes of the system’s instability, a number
of extensions are explored. Firstly, the difficulty of using analytic methods to
model such systems is demonstrated. This model inspired the investigation of a
simple two-departure-time model. Stability is achieved through the introduction
of heterogeneities in agents’ desired arrival times. This alters the structure of the
model by reducing the intensity of competition for the same arrival times. An
extension illustrating the possibility of studying this dynamic stochastic model
with a deterministic approximation is also presented in Appendix B. These
investigations evoke the intriguing possibility of using simulations as exploratory
models that can subsequently be simplified to a corresponding analytical model
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in order to conduct a more rigorous analysis (Varenne, 2008).

Monocentric Urban Model

In Chapter 2, I examine the potential of simple agent-based models to reproduce,
and hence help to better understand, the spatial dynamics of urban real estate
markets. The focus is on the interactions of transport systems and localisation
decisions. In order to do this I decided to begin from the foundation provided
by standard urban economic theory (Fujita, 1989), and add agent dynamics to
this static analytic framework in the hope of generating interesting new results.
Progress has already been made in this direction by Caruso et al. (2007) who
build upon the monocentric urban model using cellular automata. The model
developed is a spatial model that includes transport costs from an exogenous
centre. These costs then determine the localisation of decisions of agents.

In our model, each cell in a simple grid represents a residence owned by a
landlord who wishes to maximise her revenue. A certain number of potential
tenants arrive each iteration and attempt to find the best possible housing. Each
iteration, a certain number of tenants leave the town. The behaviours to be
specified are the price setting decisions of landlords and the search mechanisms
of tenants. The model is explored in both one and two dimensions.

It will be shown that the inclusion of a simple search mechanism leads to
market frictions and a vacancy rate that is a well-known phenomenon in all
search markets. The vacancy rate cannot be understood from the static standard
model. A search market is a market in which a key Walrasian assumption of
perfectly informed agents does not hold. Instead of a single market with a virtual
auctioneer who decides prices so that demand equals supply, agents must search
for trading opportunities, incurring costs. Decisions to trade depend upon the
perceived utility of continued search. This is shown in Chapters 2 and 3 to be
the main difference between this dynamic agent-based interaction model and the
standard urban economic model.

However, the agents’ behaviours in this spatial model are somewhat arbitrary.
In Chapter 3, the focus is on the behaviours and interaction mechanisms of
landlords and potential tenants in an aspatial rental housing market.

Housing Search Market

In order to generate pertinent and novel results I had learned from previous
work that the choice of object is as important as the choice of method. Having
assessed the strengths and weaknesses of agent-based models, I decided that
a rental housing market model was probably the simplest search model with
which to study the behaviour of agents on both sides of the market (Mc Breen
et al., 2009). These behaviours give rise to complex correlations in the evolution
of prices, times-on-the-market and traded volumes (Fisher et al., 2003). This
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would hopefully lead to the subsequent reinjection of these modelled behaviours
and interactions into a spatial model. I felt that this would be a more productive
approach than developing the market and spatial aspects simultaneously. This
approach allows greater freedom in studying dynamic market evolutions.

Real estate markets are clearly vitally important systems in a modern eco-
nomy. Search frictions, that is the difficulty for tenants of finding suitable housing
and for landlords of finding suitable tenants, present in rental real estate markets,
are of general interest for all search markets. This is a key area in which a robust
microscopic dynamic simulation model has considerable capacity for extensions,
first of all to other real estate markets and also to labour markets.

I simulated a closed rental housing market with search and matching frictions,
in which both landlord and tenant agents are imperfectly informed. Homogen-
eous landlords set rents to maximise revenue, using information on the market to
estimate the relationship between posted rent and time-on-the-market (TOM).
Tenants, heterogeneous in income, engage in undirected search, accepting res-
idences based on their idiosyncratic tastes for housing and a reservation utility
based on information on the distribution of offers. The steady-state to which the
simulation evolves shows price dispersion, nonzero search times and vacancies.

I analyse the effects of increasing the information available to both categories
of agent. When tenants see a larger part of the distribution of offers, they learn
to refuse high rents and so their average utility rises. In contrast, when landlords
are homogeneous and their information levels are reduced, their utilities can
improve as their overestimations of the best posted rent increase these rents. Less
surprisingly, the better informed landlords are better off when heterogeneities in
information levels are introduced. The effects of a vacancy tax are also analysed,
both statically and dynamically. It is found that, for certain parameter values,
a level of taxation exists at which the welfare benefits of reduced vacancies,
TOM and rents dominate the negative supply effects of the tax. The dynamic
adjustment to large changes in the tax rate are shown to cause even larger short-
term fluctuations in the market state. This highlights the potential perils of
forcing abrupt adaptions in search markets, as the repercussions maybe difficult
to predict with confidence.

Agent-based modelling guidelines

In the course of this exploratory project, progress should be measured not only by
the results obtained but also by the new understanding of what types of objects
are most suitable for this form of modelling. It will be seen in Chapter 2 that
attempting to include too many dimensions (degrees of freedom) into a simple
model limits the relevance of the results that can be extracted. I argue that this is
not the optimal approach, and that when simpler separate models of parts of the
system can be constructed, the insights gained can lead to a more satisfactory
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composite model. It will be argued in Chapters 2 and 3 that it is preferable
whenever possible to create initially a robust model of the simplest constituent
parts of a system in order to better understand the composite system. In this
thesis, this has meant concentrating on an aspatial housing market, in Chapter
3, rather than continuing to develop a spatial housing market model before the
dynamics and interactions of agents within the market are fully understood.

It has been learnt in the course of this thesis that certain attributes are
very often helpful in producing stable and well-behaved simulation models. In
standard economic models with perfectly informed agents, results are obtained
assuming the existence of the equilibrium. When dynamic interactions are in-
cluded between explicitly modelled agents, this luxury is cast aside. It has been
discovered that models that mimic closely standard analytic assumptions such
as well-informed homogeneous agents, are prone to instability. This is because
the excess resemblance between agents causes them to adopt similar behaviours
in similar situations, and hence, system-wide instability. The introduction of
stochasticity can also has a system-wide stabilising effect. This initially coun-
terintuitive result occurs because the heterogeneity in agent behaviours causes a
stable average distribution of behaviours to be adopted and hence avoids a situ-
ation in which all agents do the same thing at the same time. The potentially
stabilising effect of heterogeneities has been remarked upon in Kirman (1992).

Modelling systems containing large number of agents helps to prevent any
single agent, or small group of agents, excessively influencing the overall beha-
viour and stability of the model. Modelling the behaviour of complex individual
agents in systems with a small number of agents is an approach that can be ad-
opted, but is not one in which insights and intuitions coming from the study of
physical systems can best be employed. This is why in all the systems modelled
in this thesis there are a large number of agents who adopt relatively uncomplic-
ated behaviours. It is hoped that, while the real variation in human behaviour
in these systems is much greater than that modelled, this approach can succeed
in capturing enough of the real determinants of agents’ behaviours to make the
macro-level insights pertinent.

The fact that in a world where everybody does the same thing, strange things
happen is a result that comes naturally from simulations. The fact that more
realistic assumptions very often lead to more realistic outcomes is a encouraging
aspect of agent-based simulation methods. It underlines the advantages of ad-
opting this intuitive and flexible approach to modelling socio-economic systems.
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Traffic Congestion

1.1 Introduction

Traffic congestion is a major phenomenon in modern urban systems. There are
two major dynamics in traffic congestion systems, the dynamics of traffic within
a single day (or single rush-hour) and that between days. Correctly modelling
the day-to-day evolution of the within day traffic variations is essential to captur-
ing important dynamic effects that can come with modifying road infrastructure.
For instance the effect of increasing the capacity of congested roads is not simply
to reduce the travel time but also to shorten the duration of rush-hour. This hap-
pens because the increased capacity induces road users to depart closer to peak
congestion times as the corresponding travel times have reduced. Conversely, the
increase in peak congestion levels is less than may naively be expected when ca-
pacity is reduced, as road users alter their departure times to avoid the increased
travel times.

The motivation for the models presented in this Chapter is essentially threefold.
The primary motivation is to investigate the nature of the day-to-day stability
of the equilibrium of the within-day-time dynamic congestion bottleneck model
of Vickrey (1969). The second is to investigate if agent dynamics might be ap-
plicable in operational models in which aggregate dynamics have been shown to
be unstable (de Palma and Marchal, 2002). Although real world road networks
show day-to-day oscillations, models that are stable at the system level permit
clearer policy comparisons.1 The motivation for Section 1.5 of this chapter is to
investigate if a doubly dynamic analytical solution can be found for this prob-
lem, in order to better understand the sources of instability. This investigation
inspired the simulation of even simpler systems whose dynamics may be related
to the bottleneck model and whose stability can more easily be explored.

We present firstly the agent-based study of the simple bottleneck congestion
model.2 This model uses simulated individuals or ‘agents’ to study the effect
of departure time choice on the formation of traffic jams, taking into account

1This is especially desirable when major sources of real-world oscillations are absent from
the model, for example accidents and variations in the weather.

2The research in this chapter was conducted with Fabrice Marchal, and with Eric Bertin
for Section 1.5 .
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the cost of the journey and the cost of not arriving at exactly the desired time,
known as the schedule delay cost. This model is based on the pioneering work of
Vickrey (1969), who examined the effect of Departure Time Choice on congestion
for a road with limited capacity. The behaviours of modelled agents reflect their
desire to reduce the total cost of the morning commute. This costs include both
congestion costs and the cost of not arriving at the desired time. Our agent
model is scalable to city sized models.

Simulations with homogeneous agent systems, in which all agents wish to
arrive at the same time, are shown to be unstable experimentally. The propor-
tion of agents who review their departure times in the same iteration effects the
stability of the system. When the agents are given a normal distribution of pre-
ferred arrival times the system is stabilised while the level of congestion remains
significant. The variance of the distribution of agents’ preferred arrival times and
the reviewing rate are two important parameters that determine the qualitative
behaviour of the model. A graph of the stability of the system against these two
parameters highlights the parameter space of stable behaviour. The introduction
of agents with different propensities to review their departure time is found to
have a very slight stabilising effect.

A number of models have been proposed to examine within-day congestion
on a single route network, for a review see Lindsey and Verhoef (2001). For in-
stance, the instantaneous propagation model of Mahmassani and Herman (1984),
where an increase in input flow is immediately absorbed by an equal increase in
density everywhere along the road and the ‘no-propagation’ model introduced by
Henderson (1977) where travel time depends only on the density at the moment
of entry onto the road, are examples.

Deterministic day-to-day evolution processes have been studied with static
within-day configurations by, for example, Friesz et al. (1994); Zhang and Nagurney
(1996). Stochastic day-to-day evolution processes have been proposed by Cas-
cetta (1989); Davis and Nihan (1993); Watling and Hazelton (2003), again without
within-day dynamics. A doubly dynamic stochastic simulation model was de-
veloped by Cascetta and Cantarella (1991). Cantarella and Cascetta (1995)
studied both deterministic and stochastic non-agent day-to-day evolution pro-
cesses with the potential for extension to within-day dynamics. The major ad-
vantage of agent-based simulation models of transport is their capacity to study
both dynamics simultaneously while including the heterogeneous characteristics
of agents.

Departure time choice is also being studied currently in the context of activity-
based models, see Ettema and Timmermans (2003). In activity-based models the
demand for transport is derived from the desire to perform activities at different
locations and times. Trip chaining through many activities is a feature of these
models. The model presented in this chapter examines a prototype congestion
model that could be included in an activity-based model.
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The ultimate function of any congestion model is to be applied in a realistic
network. Lim and Heydecker (2005) have studied dynamic departure time choice
and route choice on a network. Peeta and Zilliaskopoulos (2001) present a review
of dynamic traffic assignment.

This study is based on the work of Vickrey (1969), extended by Arnott et al.
(1993). The Nash equilibrium is known for this analytic model, though the
behavioural processes that could lead to this equilibrium have not, to the authors’
knowledge, been studied before using an agent model. The agent-based modelling
approach allows these processes to be investigated in more detail than in previous
analytical and numerical studies of the single bottleneck model (de Palma et al.,
1983; Ben-Akiva et al., 1984; Arnott et al., 1993).

It is shown that the system evolves towards the Vickrey equilibrium under
certain conditions. The overall behaviour of the system can change qualitatively
when the agents are heterogeneous instead of homogeneous. Three forms of
heterogeneity were introduced in the model.

Section 1.2 presents a brief recall of the Vickrey model, which has been treated
in greater detail elsewhere (Vickrey, 1969; Arnott et al., 1993; Marchal, 2001).
Section 1.3 discusses the agent-based model, the results obtained with homo-
geneous agents and the cause of the oscillations. In Section 1.4, the effects of
three forms of heterogeneity in the agent population are examined. In particular,
we examine the interplay between two important parameters of the model, the
reviewing rate and the level of heterogeneity. A graph of stability in the space
of these two parameters shows the regions of qualitatively interesting behaviour.
Section 1.5 presents an analytical specification of the doubly dynamic congestion
model, and simulations of a simpler congestion system as well as a deterministic
version of the agent-based model. Section 1.6 concludes the chapter.

1.2 Vickrey’s model

In this model, a fixed number N of individuals wish to travel by car on a road
with limited capacity to arrive at the same destination at the same time, denoted
t∗. The model examines the departure time choice in this situation.

The capacity of the bottleneck is denoted, S (in cars per unit time), the
optimal usage of the infrastructure is such that everybody passes the bottleneck
in time T = N/S. If the departure rate is greater than the capacity, a traffic
jam is created. This translates into an increased travel time with an associated
increase in cost. There are also schedule delay costs, a cost for arriving early
and a higher cost for arriving late, both of which increase linearly with time, see
Figure 1.1.

Since the fixed travel costs don’t change the dynamics of the model, they are
normalised to zero. That is, if there is no congestion the arrival time is the same
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as the departure time.
The Nash equilibrium is the situation in which no individual can reduce the

cost they pay by changing their departure time. In order to better understand
the departure rate function of the equilibrium we need first to examine how the
level of congestion at any time is calculated and also how the total cost of a
journey is calculated.

1.2.1 Congestion

Knowing the level of congestion at a certain time enables us to calculate at what
time someone who departs at that time will arrive. The traffic jam introduces
memory into the system because at any time the size of the jam depends on the
number of people who have already left and at what time they departed. The
amount of congestion (number of vehicles) encountered by someone who leaves
at time t, is given by

Q (t) =

∫ t

t′=t̃

r(t′)− S ∗ (t− t̃). (1.1)

where r(t) is the departure rate (number of vehicles) at time t, S is the capacity,
which is the rate at which commuters leave the traffic jam (vehicles per unit
time), and t̃ is the moment the traffic jam began. The first term on the right
hand side in Equation (1.1) is the number of vehicles that have joined the traffic
jam since it began, the second term is the number of vehicles that have left the
traffic jam since it began. The travel time for someone who leaves at td is given
by

tt (td) =
Q (td)

S
. (1.2)

The arrival time, ta, is given by ta = td + tt(td).

1.2.2 Cost

The cost c (td) for an individual who departs at time td is a combination of the
travel costs and the schedule delay costs. More precisely, it is the addition of
the travel time multiplied by the value of time α, and either the length of time
by which the individual arrives early multiplied by a constant β, or the length
of time by which the individual arrives late multiplied by a constant γ. It is
assumed, in accordance with empirical results (Small, 1982), that

γ > α > β (1.3)
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In Figure 1.1 we can see that the cost of arriving late, γ increases more quickly
then the cost of arriving early, β. α includes the value of time and physical
transport costs.
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Figure 1.1: The schedule delay cost as a function of the within-day arrival time.

The cost function is

C (td) = αtt (td) + β {t∗ − (td + tt (td))}+

+γ {(td + tt (td))− t∗}+ (1.4)

where {a}+ = max(0, a).

1.2.3 System optimum

The system optimum configuration is that which has the minimum possible total
cost across all users. The departure rate of the system optimum is shown in
Figure 1.2 and the corresponding cost function for each departure time in Figure
1.3.

1.2.4 Nash Equilibrium

The Nash equilibrium departure rate is shown in Figure 1.2 along with that of the
system optimum, for which there is no congestion and the route is used at its full
capacity. When the departure rate is greater than the route’s capacity the level of
congestion builds. Figure 1.2 shows that the congestion builds up to a moment at
which the departure rate falls brutally and the congestion level begins to reduce.
This is the moment at which the agent who arrives exactly at the desired time
departs. This agent pays no schedule delay cost, but pays the highest congestion
costs of all agents. The congestion level builds and then falls at constant rates,
such that the associated changes in congestion costs compensate exactly the
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Figure 1.2: The departure rates for the Nash equilibrium and the system op-
timum. The capacity of the road is 2 cars per unit time. When this is exceeded
a traffic jam forms.

-1000 -500 0 = t* 500

Departure Time

0

500

1000

1500

2000

2500

3000

T
ot

al
 C

os
t

Nash Equilibrium
System Optimum

γβ

❘ ❘

Figure 1.3: The cost functions for the Nash equilibrium, and the system optimum
for which there is no congestion. The vertical lines show when the first and last
drivers leave.

changing schedule delay costs. The flat Nash equilibrium cost function is drawn
in Figure 1.3.

1.3 Agent-based model

Urban transport systems contain large numbers of heterogeneous agents who
nonetheless make relatively simple strategic decisions. For example: What time
to leave and what route to take? Agent-based models are very flexible with
regard to the inclusion agent heterogeneities and also in the representation of
transport networks. These facts combined with the straightforward nature of
the trade-offs made by agents’ mean that agent-based model are well adapted to
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modelling road congestion.
In this model each simulated agent represents an individual and is given

a simple behavioural rule which is followed in order to reduce the cost of the
journeys undertaken. An agent who reviews his departure time calculates the
cost of a randomly chosen departure time, and will change his departure time if
this cost is sufficiently cheaper than his current cost. Simulations were performed
with agents who had various sensitivities to cost differences.

Agents have a certain probability, or reviewing rate, of changing their depar-
ture time at each iteration. This reviewing rate is an important parameter of the
model that must be carefully calibrated for operational models. The qualitative
effects of changing this parameter are discussed below. In one version of the
model tested, the propensity to review one’s departure time varied across agents
(Section 1.4.3).

At each iteration the agents who review their departure time are chosen ran-
domly, and the new departure time tested is chosen randomly from a uniform
distribution of size 2T centred on the current departure time, T being the min-
imum time in which all agents can pass through the bottleneck.3 All the agents
who review their departure time calculate the cost of the new departure time
assuming that no other agent changes their departure time.

We define one iteration as the time needed statistically for all agents to re-
view their departure time once. These normalised iterations permit comparisons
across varying reviewing rates and are used hereafter.

1.3.1 Homogeneous agents

Homogeneous agents all wish to arrive at the same time, t∗, and follow the same
rules. For every agent the travel cost per unit time is α = 2, the cost of arriving
early is β = 1, and the cost of arriving late is γ = 4.

The first simulation is performed with 2000 agents who began with their
departure times distributed so that overall the departure rate function is that of
the system optimum. 5% of agents review their departure times each iteration.
The within day time is broken into 2000 discrete units of time, therefore the
minimum time in which all agents can pass the bottleneck is T = 1000. The
agents who review their departure times choose a new departure time, at random,
from a flat distribution between a time T before and a time T after their current
departure time. The average travel cost for such a simulation can be seen in
Figure 1.4. The agents in this simulation and in all other simulations presented
here are assumed to be infinitely sensitive to reductions in cost. When the
reduction in cost required for agents to change their departure time increased to
20 percent the only effect is to slow the overall evolution of the system. Instability
is unaffected.

3This distribution is the same size as the domain of the simulation.
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Figure 1.4: Average cost for 2000 homogeneous agents with a 5% reviewing rate
at each iteration.

The average cost does not converge but oscillates below 800 which is the
value of the equilibrium. Figure 1.5 shows two departure rates, one for which the
average cost is close to the equilibrium value A, and one for which the average
cost is significantly below the equilibrium value, B. The departure rate at A has
a form closer to that of the equilibrium.
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Figure 1.5: The departure rate functions at points A and B of Figure 1.4.

1.3.2 Explanation of the oscillations

The fundamental reason for the oscillations is that an agent who changes to
reduce his own cost often has a much greater effect on the collective cost. When
an agent changes from a departure time where he suffers no congestion to one
where he encounters a traffic jam, he increases the travel time for all who join the
traffic jam after him. These costs imposed on others are known as externalites.
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An agent who changes to avoid the traffic jam reduces the cost for all who joined
the traffic jam after him on previous days.

The trajectory of the global cost depends on the average evolution of the
departure times:

• The effect of an agent who leaves earlier during rush hour is to increase
the congestion experienced by those who leave between his new and old
departure times.

• The effect of an agent who leaves later during rush hour is to decrease
the congestion experienced by those who leave between his old and new
departure times.

The oscillations are due to the competition between homogeneous agents who all
have the same preferred arrival time t∗. We now examine the effect of introducing
heterogeneous agents on the system’s stability. In Section 1.5 we attempt to
further understand the causes of the instability using an analytical specification.

1.4 Heterogeneous agents
Homogeneous agents is a very strong assumption to make. In order to add more
realism and hopefully find a more stable global system we introduce hetero-
geneous agents to the simulation. The first heterogeneity introduced is in the
schedule delay costs, that is the costs of arriving either early or late. Later the
agents are given a distribution of preferred arrival times. The effect of assign-
ing to agents different probabilities of reviewing their departure times are also
investigated.

1.4.1 Distribution of schedule delay costs

We assume that the agents do not all have the same aversion to arriving early
or late. Previously for homogeneous agents, the travel cost per unit time was
α = 2, the cost of arriving early was β = 1, and the cost of arriving late was
γ = 4. Now, the schedule delay costs β and γ, see Equation (1.4), for each agent
are multiplied by the agent’s Schedule Delay Multiplier Ψ. The travel time costs
α, see Equation (1.4), is the same for all agents.

α′ = α
β′ = Ψβ
γ′ = Ψγ

Studies by de Palma and Fontan (2001); Raux et al. (2003) have shown that
there is a normal like distribution to the value of time among commuters. A study
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Figure 1.6: Left : Number of agents for each schedule delay cost multiplier for
6000 agents. The multipliers are distributed following a log-normal distribution
with σ = 1, 7 and m = 2, 4. Right: The evolution of the average cost for the
same distribution.

undertaken in Lyon by Raux et al. (2003) calculated this distribution to be given
by the parameters m = 2.4 (mean) and σ = 1.7 (variance). The multiplier of
schedule delay costs of each of the 6000 agents is assigned randomly from such
a distribution, see Figure 1.6-Left. The schedule delay costs are calibrated so
that on average the cost when the agents are distributed randomly at the system
optimum is comparable to that for homogeneous agents i.e. 400.

We can see from Figure 1.6-Right that the average cost paid by the agents,
who began with their departure times distributed so that the overall rate of
departure was that of the system optimum, reduces. This is because the agents
with high schedule delay costs arrive near the desired time while the other agents
avoid the high levels of congestion around the preferred arrival time. There are
still significant oscillations that would render it very difficult to calibrate the
model with real world data.

1.4.2 Distribution of preferred arrival times

It is clearly unrealistic that everybody wishes to arrive at exactly the same time.
Heterogeneity in preferred arrival times has already been explored analytically
in a similar set-up (Arnott et al., 1988)4 Here each agent was given a preferred
arrival time (PAT) chosen randomly from a normal distribution around t∗, many
different variances of the normal distribution are tested below.

The amplitude of oscillations for a normal distribution of variance σ = T/10

4They studied the benefits of both time-varying congestion tolls, and capacity investments,
with commuters that were heterogeneous in their preferred arrival times (PATs). They found
that the estimated travel cost savings can be biased when computed using average travel
cost parameters, rather than actual distributions. The benefits from capacity investments are
underestimated in their model when commuters differ in preferred arrival times, while the
savings from time-varying congestion tolls are overestimated.
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Figure 1.7: Comparison of average costs and congestion costs for homogeneous
agents and agents with a Gaussian distribution of preferred arrival times of vari-
ance σ = T/10.

were significantly less than those found for homogeneous agents, see Figure 1.7-
Left. The average costs are of roughly the same magnitude, though slightly re-
duced for heterogeneous agents, due to the reduction in the schedule delay costs.
More importantly, the cost for heterogeneous agents is much more stable. The
stability of the average cost for heterogeneous agents comes from the stabilisation
of the congestion cost, Figure 1.7-Right.

The stability of the average cost is a result of the greater reluctance of the het-
erogeneous agents to change their departure times and the fact that the changes
they do make are smaller in magnitude, see Figures 1.8 & 1.9. The agents tend
to find a niche, a small range of departure times, that consistently give the lowest
cost.
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Figure 1.8: The cumulative number of changes of departure time for heterogen-
eous and homogeneous agents.
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Figure 1.9: The average magnitude of changes since the beginning of the simu-
lation for both types of agents.

Heterogeneity (in PAT) and the reviewing rate

In order to calibrate any model it is necessary to understand the qualitative effects
of important parameters. In which regions of parameter space do we find macro
level behaviour that resembles observations? Two parameters of this simple
model that have important effects are the reviewing rate, the proportion of agents
that try a new departure time at each iteration, and the level of heterogeneity,
i.e. the variance of the distribution of PATs.

The stability is measured by the standard deviation between 400 normalised
iterations and 800 normalised iterations. During this time the agents try, on
average, a new departure time 400 times.

From Figure 1.10 we can see that the reviewing rate has a straightforward
effect on the stability. When the reviewing rate is increased the system becomes
less stable. It is also clear that increasing the variance of the Gaussian distri-
bution of PATs increases the stability of the system. At low reviewing rates the
system is effectively stable once the variance of PATs is greater than 50, which is
one twentieth of the time in which all the agents can pass through the bottleneck,
T = 1000. At higher reviewing rates the system reaches its maximum stability
for a variance of PATs of around 100, or T/10.

Figure 1.11 shows that for each point in Figure 1.10 the level of congestion re-
mains significant. The average level of congestion initially increases with greater
agent heterogeneity because the level of congestion stabilises and collapses of the
congestion cease to occur, see Figure 1.7.

The parameter space of stable behaviour, with a significant level of congestion,
is contained between T/20 and T/5 for the variance of PATs with a reviewing
rate of less than 15%. It remains to be established if the actual heterogeneity of
real people corresponds to the space of stable behaviour of this model.
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Figure 1.10: The standard deviation of the average cost over 400 normalised it-
erations, as a percentage of the average cost. The varying inputs are the variance
of the Gaussian distribution of arrival times and the reviewing rate.
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1.4.3 Heterogeneous reviewing rates

We investigate if assigning agents a distribution of reviewing rates as opposed
to a common reviewing rate effects the stability of the model. The agents are
assigned a reviewing rate chosen randomly from a Gaussian distribution around
the central value. The variance of this distribution is 1/3 of the central value,
hence only a very small number of the agents never change their departure time,
see Figure 1.12. We then compare the stability of the system to the case where
there is one common reviewing rate equal to the mean of the distribution.
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Figure 1.12: The number of agents assigned each reviewing rate.

This heterogeneity in the reviewing rates only marginally increases the stabil-
ity, Figure not shown. On average the standard deviation of the average cost over
400 normalised iterations, for the same variance of the distribution of preferred
arrival times, reduces by just under 3%.

1.5 An analytic investigation

In order to better understand the stationary state of the doubly dynamic model
(within-day and day-to-day), we examine the possibility of creating a determin-
istic analytical analogue whose investigation could shed light on the origin of the
oscillations in the agent-based model with homogeneous agents.

We begin by specifying an analytical analogue of the day-to-day dynamic
evolution of the departure time distribution, Section 1.5.1. A notable feature of
this is the congestion function proposed. The form of the schedule delay costs
are also altered to be more analytically tractable by using a continuous function.

Secondly we investigate a one-dimensional deterministic iterative map (Bar-
Yam, 1997) with two departure times, Section 1.5.2. The single dimension of this
model is the proportion of agents departing at either time. When agents make a
binary decision between the more expensive and less expensive departure time,
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with no reference to the magnitude of the difference in cost, the system is un-
stable, but once agents propensity to change their departure time is proportional
to the difference in cost, the system becomes stable, with homogeneous desired
arrival times.

Thirdly a deterministic simulation analogue of the agent model with a full
distribution of departure times is presented in Appendix B. It is found that
the system oscillates for all parameters with both continuous and discontinuous
schedule delay costs. Indeed, with discontinuous schedule delay costs for certain
parameters the average cost is highly unstable, approaching chaos. This aspect
of the model is not further investigated as the important insights into the causes
of instability can be obtained from the work presented.

1.5.1 Analytic specification

The departure rate function rn(t) determines the congestion function Q̂n(t) (in
units of time), where t is within daytime and n specifies the day. Q̂n(t) determines
the arrival times corresponding to each departure time. Hence the total cost cn(t),
on day n for each departure time t, can be deduced. It is simply the combination
of the congestion and schedule delay costs, see Equation (1.4). The travel cost
function cn(t) then determines the evolution of the departure rate function from
day n to day n+ 1.

The following specification is examined. At any moment the level of conges-
tion changes following the equation

dQ̂(t)

dt
= r(t)− f(Q̂) (1.5)

a possible form of the function f(Q̂) is given by f(Q̂) = 1 − e−Q̂. This form
was chosen for analytical convienience. On the right hand-side of Equation 1.5,
the first term represents the arrival rate at the bottleneck and the second, f(Q̂)
the rate at which cars leave the bottleneck. The second term is zero when there
is no queue, and rises quickly towards one as the size of the queue increases.
Therefore, a queue will begin to form once r(t) is positive, and this queue will
dissipate at a near constant rate once it reaches a significant size. This is a close
approximation to the congestion technology presented in Section 1.2.1, where no
congestion forms at low departure rates, and cars leave any queue at a constant
rate equal to the bottleneck’s capacity. The solution to this system for Q̂(t) is5

Q̂(t) = ln[1 +

∫ t

0

eR(t)−R(t′)−(t−t′)r(t′)dt′] (1.6)

where R(t) =
∫ t

0
r(t)dt. This is a means of translating the departure rate function

to the corresponding function of the travel costs.
5Result due to Eric Bertin.
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A first order continuous schedule-delay-cost functional form, more appropri-
ate for an analytical study is given below. It should be noted that, for the
coherence of the model, the cost function needs to be qualitatively parabolic and
that the costs of arriving late must rise more quickly than the costs of arriving
early. Such a function is k̃(t̃), which is the schedule delay cost for those that
arrive at t̃,

k̃(t̃) = e−A(t̃−t∗+L) + eB(t̃−t∗+L) (1.7)

where t∗ is the shared preferred arrival time and B > A > 0 . The first term
represents the costs of early arrival and the second term represents the costs of
late arrival. Note that t̃ is the arrival time corresponding to the departure time
t and that t̃ = t+ Q̂(t). Hence the delay cost function in terms of the departure
time is

k(t) = e−A(t+Q̂(t)−t∗+L) + eB(t+Q̂(t)−t∗+L). (1.8)

In order that k̃(t∗) is a minimum of the function, we set

L =
ln(A/B)

A+B
. (1.9)

The total cost function is cn(t) = Qn(t) + kn(t) or explicitly

cn(t) = ln[1 +

∫ ∞
0

eR(t)−R(t′)−(t−t′)r(t′)dt′] + e−A(t+Q̂(t)−t∗+L) + eB(t+Q̂(t)−t∗+L).

(1.10)
This is the cost function from which the evolution of the departure rate function
must be determined:

drn(t)

dn
= F (cn(t)) . (1.11)

The system of Equations (1.10) & (1.11) is clearly not easily solved, even for the
most simple reasonable function F (cn(t)). They represent a non-linear integro-
differential system with memory, due to the congestion term.

However, with a simpler system it might be possible to produce analytical
results pointing out the fundamental factors contributing to the instability of
the agent model, including notably the form of the schedule delay costs and the
sensitivity to cost differences.

1.5.2 Two departure time iterative map

A simple iterative map with only two departure times was constructed in order
to test the stability of as simple a system as possible, centred on a trade-off
between travel costs and schedule delay costs.

Iterative maps are among the simplest dynamical systems. They are a func-
tion that is applied recursively at each time step in a simulation. We can contrast
their behaviour with that of the second major branch of dynamical systems which
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are known as continuous flows. In flows the system’s evolution is represented by
differential equations. Flow dynamical systems cannot have chaotic behaviour
with less than three dimensions, among the best known of which is the Lorenz
system. In contrast, the evolution of discrete one dimensional iterative maps can
be chaotic. Iterative maps are systems whose rules of evolution can be straight-
forwardly stated but whose actual evolution can have very complex behaviours.
The ability to depict their evolution on two-dimensional graphs facilitates the
identification of fixed points and an analysis of the fixed points stability, as will
be shown in Figures 1.14-Right & 1.16-Right. It is for this reason that we now
examine a one-dimensional iterative map representing a simple system with con-
gestion, and hence a trade-off between travel times and schedule delay costs.

The model determines the repartition between departure times td(1) and
td(2). The map from one iteration to the next xi = F (xi−1) is

if ci−1(1) > ci−1(2) then xi = xi−1 − εxi

if ci−1(2) > ci−1(1) then xi = xi−1 + ε(1− xi) (1.12)

where x, belonging to [0, 1], is the proportion of agents departing at td(1), ε is
the ‘reviewing rate’ and i indicates the iteration. This mapping means that if
the cost for one departure time is less than at the other, a fraction ε of those
departing at the more expensive time will change their departure time.

The two travel times, dropping the subscript for the iteration, are

tt(1) = td(1) + x/S

tt(2) = td(2) + (1− x)/S + [ta(1)− td(2)] θ (ta(1)− td(2)) (1.13)

where S is the capacity of the bottleneck (number of vehicles per unit time).
θ (z − y) = 0 if z < y and θ (z − y) = 1 if z > y. The third term on the right-
hand side of the second travel time tt(2), is the additional congestion experienced
by those departing at this time due to congestion from the first group. The arrival
times are given by ta(j) = td(j) + tt(j), where j = (1, 2).

The cost functions are, similarly to Equation (1.4) for the agent model,

C (j) = αtt (j) + β {t∗ − ta(j)}+ + γ {ta(j)− t∗}+

where {a}+ = max(0, a) and t∗ is as before the preferred arrival time of all agents.
The discrete map

xi = F (xi−1)

can be found straightforwardly for all xi−1. If discretisation effects can be dis-
counted (in the limit of large numbers), there will always be a fixed point once
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td(1) and td(2) are close enough so that c1 = c2 for some x in [0, 1]. The stability
of the fixed points is however uncertain.

The correct interpretation of ε is as the product of the probability to review
one’s departure time and the probability of accepting the new departure time
tested. In short, it is the probability of changing departure time when the other
departure time is cheaper.

ε = Prob(review) ∗ Prob(accept) = Prob(change)

It should be noted that in the agent versions Prob(review) is constant while
Prob(accept) varies as it depends on the overall configuration of departure times.

The setup and parameter values used to obtain the results shown in Figures
1.13 & 1.14 are presented here.6 The total number of commuters is normalised
to one infinitely divisible agent. The within-day duration is normalised to 1 and
the capacity S is 2. When all agents depart at the same time their travel time
is 1/2. The schedule-delay-cost form described in Section 1.2.2 was used. As in
the agent-based model the travel cost is α = 2, the cost of arriving early is β = 1
and the cost of arriving late is γ = 4. The parameters new to this model are
td(1) = 1/3, td(2) = 2/3 and here t∗ = 6/10 with ε = 1/10.

Figures 1.13 for ε constant shows for one thousand uniformly distributed
proportions x of agents leaving at td(1), both the travel costs and the schedule
delay costs. In Figure 1.13-Left the travel costs for those who leave at td(2) are
never zero, because when many agents depart at td(1) there is still congestion at
this time from those who left at td(2). The td(2) travel cost line is horizontal at
higher x, because the total number of people in the traffic jam at this point in
time is constant as x increases.

The total costs and the map from x to F (x), see Equation (1.12), are shown
in Figure 1.14. The fixed point, where xi−1 = F (xi−1), can clearly be seen in
Figure 1.14-Right. It is clear that |slope F (xi)|< 1 at the fixed point, this is
the criteria that determines whether or not the fixed point is stable. Figure 1.15
shows the evolution from x0 = 0.5, and confirms the instability deduced from
Figure 1.14-Right.

Two alterations extensions are made to this model, firstly a first-order con-
tinuous schedule delay cost function is tested and secondly the role of the ε
parameter in the stability of the model is also examined.

Continuous schedule delay costs

The first order continuous schedule delay costs introduced in Section 1.5.1 are
applied in this two departure time deterministic model. The travel cost is α = 2,

6One thousand discrete possible proportions of agents departing at td(1) uniformly distrib-
uted on the domain [0,1] are presented in Figures 1.13 & 1.14 .
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Figure 1.13: Left : Travel costs for both departure times. Right : The correspond-
ing schedule delay costs.
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28 Chap 1 - Traffic Congestion

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

Time

x

 

 

Figure 1.15: The evolution of the proportion of agents departing at td(1), with
ε = 0.1 and 1st order discontinuous scheduling delay costs.

the new schedule delay cost parameters are A = 1 and B = 4, see Equation (1.8).
The other parameters were unchanged.

The results can be seen in Figure 1.16. Figure 1.16-Left shows the schedule
delay costs for both departure times and Figure 1.16-Right shows the map from
xi−1 to xi. We can see from Figure 1.16-Right that the system is unstable, and
graphs of the system’s evolution, not shown, confirm this.

Reduced cost sensitivity

In order to test the effects of reducing the sensitivity to cost the following form
of the reviewing rate parameter was used, ε = |c1 − c2|/ (c1 + c2). Figure 1.17
shows results with the first-order continuous schedule delay costs in Equation
(1.8). In Figure 1.17-Left we see the one-dimensional map whose absolute slope
is less than one at the fixed point, and in Figure 1.17-Right we see the evolution
of xi over time. The stability of the system is evident. The same qualitative
effects were found with both forms of schedule delay costs.

A constant value for ε assumes that agents are infinitely sensitive to differences
in cost. When this strong hypothesis is relaxed and agents become less likely to
change departure times as the difference in cost is reduced, stability is brought
to the system. It can be expected that the same qualitative effect would occur
in the agent-based model if the probability of accepting a tested departure time
was proportional to the difference in cost. In the agent model it has been tested
with homogeneous agents, whether requiring agents’ cost reductions to exceed
a fixed threshold in order to change their departure time reduces stability. It
was found that the evolution of the system was slowed but that the instability
was unaffected, as mentioned in Section 1.3.1. It would be worth testing the
effect of a proportional probability to accept tested departure times for agents.
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Figure 1.16: Left : The schedule delay costs for both departure times with ε = 0.1
when the schedule delay costs are those presented in Section 1.5.1. Right : The
corresponding one-dimensional map from xi to F (xi).

Nevertheless, the essential insight is clear, hypersensitivity increases instability.
The nature of the oscillations in the two-departure-time model appears to

be of a different nature from those observed in the agent model. In the agent
model the oscillations are a result of competition over a distribution of departure
times in which externalities play a major role. The oscillations are of a period
that is much greater than one day. The two-departure-time model’s instability
is, in contrast, a classic unstable fixed point of an iterative map. The periods
of oscillations are of the order of two days long. The stable configuration in
the agent model with heterogeneous agents is not a fixed point, but a stable
distribution of departure times with continuing micro level adjustments.

1.6 Conclusions

One aim of this research was to investigate the stability of the single bottleneck
model. It was found that the Nash equilibrium distribution is never reached in
simulations using simple agents with local information only. This is in part due
to the fact that global knowledge is required to achieve the level of coordination
required of agents to reach the theoretical distribution. It is unlikely that any
reasonable disaggregated dynamic evolution mechanism can achieve this theor-
etical configuration.

Another aim of this research was to find a robust and convergent model
of departure time choice that could subsequently be extended to a much more
complex and realistic road network. It is clear that some level of heterogeneity is
required in order to achieve stability. Basing the model on a network would add in
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Figure 1.17: Left : The fixed point is stable when the propensity to change the
departure time is proportional to the difference in cost. Right : It can be seen to
coverage very quickly to a fixed value.

itself an element of heterogeneity that could have a stabilising effect. Numerical
experiments have shown that evolution mechanisms applied to networks can be
more stable than single origin-destination models (Marchal, 2001). A behavioural
rule that converges with sufficiently heterogeneous agents on a single road has
been found.

The model of a traffic bottleneck has significant instabilities when imple-
mented with homogeneous agents. These instabilities are due, in part, to the
difference between the benefit an agent accrues from changing its departure time
and the effect of this change on the overall system.

The explorations of the two departure time iterative and the deterministic
analogue of the agent model lead to the following conclusion regarding the origins
of the instability of the agent model with homogeneous itself. There are three
fundamental causes of the instabilities: competition, externalities and sensitiv-
ity. The competition among homogeneous agents who all wish to arrive at the
same time is central to the oscillations. The externalities, i.e. costs imposed on
others, caused by agents’ are a fundamental feature of congested systems. In-
deed, competition and externalities together define congestion systems. The high
sensitivity to cost differences in the agent-based model is a particular feature of
this model that could be relaxed and hence reduce the instability. It is unlikely
that this alone would eliminate the oscillations for reasonable sensitivities.

The structural change to the model brought about through the introduction
of a distribution of preferred arrival times reduces the level of competition. This
eliminates the oscillations. A tentative stab at a general rule for agent-based
systems can be postulated from this: changes to behaviour within a constant
model structure have less effect than changes to the model structure itself with
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behaviours held constant. An example of this shall be seen again in Section 3.5,
where heterogeneities are introduced in landlords’ maintenance costs to stabilise
the system.

Understanding the dynamics of the agent model on a simple example is a
pre-requisite to incorporation in a more complex system where the same thor-
ough analysis becomes impossible. We believe that we have found suitable agent
dynamics that are sufficiently well ‘controlled’ and understood, to be incorpor-
ated in realistic simulations, such as the activity-based models MATSim (2009)
or Arentze and Timmermans (2004).

The lessons on the causes of instability learned from this agent-based model
and its deterministic extensions very probably apply in general to agent-based
models. They are that large numbers of similar agents behaving in similar ways
at the same time cause instability. Hence the addition of realism in terms of
heterogeneities and stochastic elements produces often, not only conceptually
more satisfactory models, but also more stable ones. In addition models with
externalities by which the decisions of individual agents may affect many others
are likely to be particularly prone to instabilities.
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Monocentric Urban Model

2.1 Introduction

Agent-based models have the potential to model phenomena that are not tract-
able in analytic models. Urban systems have many spatially distributed, het-
erogeneous agents, with complex patterns of interaction. This makes it a field
in which agent-based models have great potential with respect to the standard
analytic models. A theoretically unlimited level of heterogeneity amongst agents’
characteristics is possible, as amongst their levels of information and decision-
making processes. Exploiting these advantages in practice is not straightforward.
However, progress towards greater realism can certainly be made. Standard
urban economic models contain perfectly homogeneous agents with perfect in-
formation and unlimited cognitive ability, see Fujita (1989).

The motivation for the work presented in this chapter is to investigate the po-
tential of simple spatial agent-based models to move beyond the standard urban
economic model. Many interesting empirical spatial phenomena have been ob-
served in urban systems, see for example Anas et al. (1998). These include
secondary centres, urban sprawl, income and racial segregation. Endogenous
dynamics in the location of amenities have begun to be added to the standard
model by Tivadar and Jayet (2006), building upon a static model of Brueckner
et al. (1999). However this model serves to underline the much greater potential
of simulations for modelling complex evolving systems. A secondary motivation
is the possibility of developing agent dynamics that could be included in an in-
tegrated operational models of land-use and transport, see Hunt et al. (2005).
Parker and Filatova (2008) review analytical, cellular and agent-based models of
residential development. Filatova et al. (2009) present an extention of the mono-
centric urban economic model using negociations betwees agents but without
vacancies that are an endogenous feature of this model.

Our point of departure is the classic urban model of Alonso (1964), which
is an adaptation of the model of von Thunen (1826). This model was later
extended by Mills (1967); Muth (1969). In this model, commuting costs are
directly proportional to the euclidean distance from the town centre. In the basic
version this is the only transport cost that affects the utility of a tenant. The
tenants are identical and the landlords all use the same rules of rent adjustment.
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The heterogeneity of landlords is in the position of their residences.
Our agent model is aimed at reproducing the main results of the theoretical

urban model while allowing to go a step further once we achieve to reproduce the
benchmark theoretical situation. The focus of our analysis is on the rental market
mechanism, namely the search behaviours of tenants looking for apartments and
of landlords looking for tenants. We present an agent-based model of a town
in which the rents charged emerge from the local interactions between potential
tenants and landlords. The tenants maximise their utilities which depend on
their income, rent and transport costs. The landlords adjust the rents in order
to maximise their revenue. They have access to private information only. Their
information on the demand for housing is the number of people who express
an interest in their property when it is on the market. Increases in rent are
proportional to the demand.

The mechanism of rent adjustment modelled is the essential dynamic ingredi-
ent of interest in the model. The rent adjustment mechanism remains applicable
under alterations of the input demand, transport infrastructure and utility func-
tions of agents. The explicit modelling of agents’ search behaviours lead to an
endogenous vacancy rate, this is in contrast to the static standard urban eco-
nomic model. These search processes are the focus of Chapter 3, where a more
thorough analysis, along with the relevant references to the existing search mar-
ket literature, can be found. The dynamics of rent adjustment need to be efficient
in order to be implemented in a simulation of a large urban system. This minim-
alist modular approach offers many methodological advantages. Note also that
this model began on a two-dimensional grid, though the initial results presented
shall be in one dimension. It shall be shown that modelling the emergence of
non-trivial endogenous dynamic spatial configurations is not straightforward.

This is a stylised model of the effects of transport costs on the formation
of urban rents. Transport is only one of many factors influencing residential
location choice, others include schools, neighbourhood effects, job location and
amenities, see Sheppard (1999) and references therein.

A brief summary of the analytical monocentric urban economic model is
presented below, Section 2.2. Section 2.3 presents the agent-based model. Sec-
tion 3.4 presents the results including parameter sensitivity tests. In Section 2.5
some brief extensions to heterogeneous agents are presented. Section 2.6 con-
cludes. Results and parameter sensitivity tests for a two dimensional town are
in Appendix C.

2.2 Theoretical benchmark

As discussed in the general introduction, it is important in the development of
agent-based models to have a theoretical benchmark in order to test and compare
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the simulation model in its simplest form. Our theoretical benchmark is an urban
monocentric model of an open city. We consider that tenants consume a constant
amount of housing, which is normalized to one. Everybody works in the city
centre and the transport cost for an agent is proportional to her distance from
the centre. The utility for a tenant living at distance d from the centre is:

U(d) = Y −R(d)− Td (2.1)

where, Y is the income, R(d) is the rent at distance d and T is the cost per unit
distance of travelling to and from the centre.

At equilibrium, the utilities of all the inhabitants are equal. The analytical
model shows that the equilibrium rents depend only on this distance d and they
decline linearly with distance from the centre due to the linear form of the trans-
port cost function. At the edge of the town, the rent R(dmax) is equal to the
agricultural rent Ragr. The utility at any point in the town must also be greater
than the outside utility U∗, that is, the utility level that tenants could enjoy in
another town.

We assume here that tenants’ income Y = 1. In order for the town to exist
(Population P > 0), the space of possible normalisations for U∗ and Ragr is
given by 0 < U∗ < Y − Ragr or U ∗ +Ragr < 1. For simplicity, we assume
that U∗ = Ragr = 0.Therefore, for a tenant living in the town centre the rent is
given by R(0) = Y −U∗ = 1. It follows that the edge of the town is at distance:
dmax = (Y − U∗)/T = 1/T from the centre.

In one dimension (and with one residence per unit distance), the theoretical
population is P = 2dmax, the factor two is due to the fact that the centre is
placed in the middle of the simulation domain. Similarly, the population of the
two-dimensional town (with one residence per unit area) P = πd2

max. This is a
simplified version of the canonic monocentric city model of Alonso as the surface
consumed by any tenant is constant.

2.3 Model

The model describes the interactions of two types of agents, tenants and land-
lords, who interact in an urban environment of homogeneous residences distrib-
uted on a 2D grid. There are no owner-occupiers in the model. In this Section
the overall simulation procedure is presented and then the characteristics of both
categories of agent are described.

2.3.1 Simulation procedure

At each iteration, a certain percentage L of tenants chosen randomly, leave the
town. The landlords of those newly vacated houses update the rents.
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Subsequently a number of potential tenants, determined exogeneously, arrive
in town and search for accommodation.1 Each new arrival chooses one residence
to visit, from among those offering a positive utility as described in Section 2.3.2.

Those searching for accommodation visit their chosen residences.2 The resid-
ences are attributed to the agents as follows. The first to visit an available house
moves in. Those who visit a house that is already occupied cease searching, i.e.
tenants visit only one residence. Landlords however can receive many visitors
during the same iteration. Landlords who received visits, and hence have found
a tenant, remember the number of visitors. Finally, landlords of houses on the
market that remain vacant decrease the rent.

This mechanism models the flux of tenants that arrive and which residences
they visit and the market frictions which lead to vacancies at the steady-state.
The rents are adjusted accordingly. The numbers and types of tenants who arrive
and depart are exogenous parameters of the model.

2.3.2 Tenants

The tenants aim to maximise their utility. The utility U that a tenant derives
from a residence at distance d from the centre is is given by

U = Y −R− Td (2.2)

Real agents face many other costs. However, as these are not modelled dynam-
ically in the model, they are normalised to zero. All tenants work in the city
centre and the transport cost for an agent is proportional to her distance from
the centre. When tenant agents arrive in town they choose one residence to visit
from among those offering a positive utility. They make this choice using the
probabilistic ‘logit’ function given in Equation (2.3). The ‘logit’ probability (Ben-
Akiva and Lerman, 1985) of choosing a particular (positive utility) residence i
is:

Pi =
eUi/θ∑
j Uj/θ

(2.3)

θ is the parameter that determines the sensitivity of agents to differences in the
utilities of the residences available. This function means that residences offering
higher utilities to agents are more likely to be visited, but that searchers do not
generally choose the same option when many apartments are available. This is

1As a fixed number of homogeneous tenants search each iteration, we can consider that
either, new searchers arrive every iteration or, that those that find a residence are replaced by
a new searcher in the next iteration.

2With homogeneous agents, the order in which they do this does not count. Visit order is
randomised in simulations with heterogeneous agents.
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Figure 2.1: The rent increase function as a function of the number of visits κ. κ
is expressed in terms of the rent increase parameter D. MR is the maximum per-
centage increase. HereMR = 20% is shown at its default value in one dimensional
simulations.

a form of ‘directed search’ in the search market literature terminology. That
is, searchers are more likely to visit attractive offers rather than seeing offers
randomly as is the case in ‘undirected search’ models (Rogerson et al., 2005),
and in the model in the subsequent chapter.

2.3.3 Landlords

Each landlord owns one residence and adjusts the rent according to the observed
demand. Increases in rents are proportional to number of visitors who sought to
rent the residence the last time it was on the market. Landlords reduce the asking
rent of residences that remain vacant by a fixed percentage ρ each iteration.

When a tenant leaves a residence the landlord must decide what rent to ask.
This decision is based on the current rent ri and the number of potential tenants
κ who showed an interest in the residence the last time it was on the market.3
It also depends on two parameters of the model: MR the maximum percentage
increase possible and D the rent increase parameter. The rent after a tenant has
left is increased by a percentage Λ. Figure 2.1 shows the form of this function.
Λ rises linearly with the number of visitors κ and is regulated by the parameter
D. Formally

Λ = min
{
MR,

κ

D

}
(2.4)

3Note that κ ≥ 1 as at least the tenant who lived in the residence visited.
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Note that when only one tenant visited the last time a residence was on the
market, the rent shall increase by

(
100
D

)
%.

The rents are only increased after a tenant has left. If the residence is not
taken in the first iteration, the landlords decrease their rent by a percentage ρ
every iteration until a tenant is found. The formula for setting the rent of houses
that are vacant after being on the market for at least one iteration is

ri+1 = ri(1− ρ/100) (2.5)

This rule causes the rent of overpriced residences to decrease exponentially.
The rent increases of landlords can overshoot or underestimate the true mar-

ket price for many reasons. Due to the stochastic nature of the tenants’ visits,
real demand may be over or under estimated. The market conditions can also
evolve significantly between the moment the agents visit and the moment when
the residence is once more put on the market.

Figure 2.2 shows how a landlord at a distance 100 from the town centre adjusts
the rent under changing market conditions.4 The simulation began with the town
at the standard theoretical urban economic equilibrium, i.e. no vacancies and all
rents equal to tenant’s willingness to pay.5 The unit distance transport costs were
at their default value of T = 5 for a one-dimensional town from 0 to 300 iterations
and were then increased to T = 5.5. This causes the maximum affordable rent
for tenants at any point outside the town centre to decrease, see Equation (2.2).
After 800 iterations the transport cost was reduced back to T = 5.

We can clearly see in Figure 2.2 that rents reduce quickly once tenants can no
longer afford the rent due to the increased transport cost. The sharp reduction
in rent is of almost 20% (from approximately 540 to 450). This takes place in less
than 25 iterations as the rate of rent reductions per iteration ρ is 1%. However,
rents are slow to increase after the transport cost reduction at 800 iterations.
This is a result of landlords the relative rarity of their opportunities to raise
rents, and to a lesser degree the result of having information on the demand
for only one residence. They must have a number of tenants arrive and leave
before they can fully adjust to the changed conditions. As all landlords follow
the same behaviours the market takes a long time to reach its equilibrium. This
asymmetry will be further explored in Section 2.4.1. We note also that after
convergence to a steady-state the rent increases are mostly overshoots.

4The parameters were the default values for a one dimensional town given in Tables 2.1 &
2.2, except for the percentage of inhabitants who leave L = 3% and the number percentage
reduction in vacant rents ρ = 1%.

5That is, landlords charge rents that are equal to the maximum that tenants can afford.
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Figure 2.2: The rents asked by a landlord at distance 100 from the town centre.
The transport cost was increased at 300 iterations from 5 to 5.5. The maximum
affordable rent is the highest rent a tenant with income Y = 1000 can pay at
this distance from the centre.

Table 2.1: Initialisation parameters of the model

Symbol Meaning Default Value -1D Default Value -2D

Y Income 1000 1000
RI Initial Rent 500 300
NI No of Initial Inhabitants 400 800
S Size of simulation domain 500 1235 (35*35)

2.3.4 Parameters

In Tables 2.1 & 2.2 the parameters of the model and their default values in one
and two dimensions are given. Tables 2.1 gives the initialisation parameters.

The dynamic parameters, shown in Table 2.2, are those that influence the
evolution of the model. In the simulation results presented in the subsequent
Sections the default values of the parameters were used unless otherwise specified.

2.4 Results
In this Section, results including parameter sensitivity tests are presented for
a one-dimensional town. Results and parameter sensitivity tests for a two-
dimensional town are presented in Appendix C.
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Table 2.2: Dynamic parameters of the model

Symbol Meaning Default Value-1D Default Value-2D

D Parameter of rent increases 20 20
MR Maximum rent increase 20 100
Λ New arrivals per iteration 60 120
L % who leave each iteration 2 2
ρ % reduction of vacant rents 1.5 1.5
θ Sensitivity to Utilities 7 7
T Unit distance transport cost 5 60

2.4.1 One-dimensional town

In the one dimensional town the exogenous centre is in the middle of the simu-
lation domain.6

In Figures 2.3 & 2.4 we see that the model converges to an equilibrium quickly
when RI = 900, which is above the average theoretical rent of 500.7 The conver-
gence is much slower when RI = 450. This asymmetry in convergence speed from
above and below the theoretical rent can be understood by examining landlords’
rent adjustments shown in Figure 2.2. There we see that landlords who charge
excessive rents quickly reduce them to the going market rate while increases oc-
cur over a much longer period of time. This is a direct consequence of landlords
basing rent increase decisions on limited information and the limitation of the
largest allowed increase. When a tenant leaves, they ignore the current market
situation and use previously gathered information on the attractiveness of their
residence. A model in which landlords use more up-to-date public information
to decide what rent to offer is presented in Chapter 3.

Figure 2.3-Right shows that once the average utility is close to zero no further
evolution occurs. Figure 2.4-Left shows the vacancy rate corresponding to the
simulations shown in Figure 2.3. The vacancy rate is the percentage of residences
that can offer positive utilities that are unoccupied. The evolutions of the average
rent paid and the average transport cost to their steady-state values of 500 for
a simulation initialised with RI = 450 can be seen in Figure 2.4-Right. This
is in agreement with theory, see Arnott and Stiglitz (1981), for which in a one
dimensional town the aggregate land rents and transport costs are equal.8

6Similar results could also be obtained by considering the centre to be at one extreme of
the ‘town’.

7Those in the centre pay 1000 and those on the periphery pay nothing and hence in a
one-dimensional town the average rent is 500 .

8Note that our simulations are also in agreement with the theory in two dimensions where
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Figure 2.3: Left : Graph of the population in a one-dimensional town with the
number of initial inhabitants N = 400 for initial rents of RI = 450 and RI = 900.
Right : The average utility of tenants for the same simulations as Left.
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Figure 2.4: Left : Graph of the vacancy rate in a one-dimensional town with the
number of initial inhabitants N = 400 for initial rents of RI = 450 and RI = 900.
Right : The evolution of the average rent paid and the average transport cost with
RI = 450.
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Figure 2.5: The form of the asking rents at various points in the revolution to
their steady-state configuration for an initialisation with RI = 450.

The evolution from the flat initial rent values to that of the steady-state
configuration is shown in Figure 2.5 for an initialisation with RI = 450. It
can be seen that the slope of the rents adjusts relatively quickly (after just 100
iterations) towards that of the theory. Therefore residences offer similar utilities
to tenants. Subsequently rents rise slowly to their theoretical values.

For the default parameters it is clear that the rents converge to those of the
theoretical equilibrium. This is the case as long as the demand is sufficient, as
will be shown in Section 2.4.2. However, the steady-state configuration differs
from the theoretical equilibrium due to the presence of vacancies. Without these
vacancies, rents would rise continually.

Once the simulation has converged, the reductions in rents due to these va-
cancies equilibrate with the increases due to the arrivals of new searchers. The
steady-state configuration’s vacancy rate is the rate at which the reductions in
rent due to vacancies are balanced by the increases due to arrivals. This is
explored further in Section 2.4.2.

2.4.2 Sensitivity Testing-1D

The sensitivity of the steady-state configuration to variations in all of the para-
meters in Table 2.2 in one dimension are presented in this Section. Every para-
meter other than that being varied is held at its default value, given in Table
2.2.

All the results presented are for simulations over 2000 iterations that began
with RI = 900. The main convergence criteria is the average utility of tenants.
In Figure 2.5 we saw that rents are very close to the theoretical equilibrium val-
ues once the default simulation has converged. Figure 2.3-Right shows that for

the aggregate land rents are half the aggregate transport costs.
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Figure 2.6: Left : The vacancy rate and average utility for variations in the rent
increase parameter D, see Section 2.3.3. Right : The vacancy rate and average
utility for variations in the maximum rent raise allowedMR. Both Figures present
results for a one-dimensional town.

a simulation that began with this high level of rents, with the default parameter
values, the model converges after about 200 iterations. Parameter values for sim-
ulations in which, after 2000 iterations, average tenant utilities are significantly
above zero, reflect a low demand regime in which both the vacancy rate and rents
differ from the theoretical benchmark.

Figure 2.6-Left shows that as the rent increase parameter D rises, the vacancy
rate falls. This is because rent increases are smaller and hence fewer excessive
rents are posted. At low D rent increases are large and hence many rents are
above affordable rates. The rents that are accepted are close to the equilibrium
as can be seen by the low average utility.

In Figure 2.6-Right the effect of varying the maximum allowed rent raise MR

can be seen. The vacancy rate increases as a concave function of MR. Higher
values of MR mean that there are a greater number of excessive rents demanded.
The growth in the vacancy rate approaches an asymptotic value because for
higher MR less rent increases exceed its value.

Figure 2.7-Left shows that at very low demand, that is small Λ, rents are
relatively low and the vacancy rate is high. That is because the landlords adjust
to the low demand by reducing rents. The population then falls until the same
number of agents arrive and leave. Here the default departure rate is L = 2%,
which means that 8 agents leave each iteration if the town is full. Note that
the number of arrivals is a constant exogenous parameter while the number of
departures depends on the population. Hence if the arrival rate is below this
value the market adjusts through both increased vacancies and reduced rents.
This is an interesting regime of the model as supply and demand determine both
rents and vacancy rates, while at high demand the market adjusts through the
vacancy rate only. In this regime the populated area is smaller as residences
further from the centre are spurned by searchers.
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Figure 2.7: Left : The vacancy rate and average utility for variations in the
number of searchers Λ arriving each iteration. Right : The vacancy rate and
average utility for variations in the percentage of departures L. Both figures
present results for a one-dimensional town.

Figure 2.7-Left shows that as demand rises rents approach their maximum
affordable values (average utility is close to 0). Once the demand is sufficient
to force rents close to the maximum value it is surprising that after this point,
as the demand rises, so does the vacancy rate. This is due to the large demand
causing very high rent increases. Landlords then take many iterations to bring
prices back to affordable levels. This effect saturates due to the maximum rent
raise parameter MR which eventually limits the effect of additional demand.

In Figure 2.7-Right we see that increases in the percentage of departing ten-
ants increases the vacancy rate, as is to be expected. At low departure rates
tenants stay longer in residences. At very low departure rates the rents are
closer to the maximum affordable rents, as seen by the lower average utility.
This is due to the very low vacancy rate which increases effective demand for
those residences on the market.

Figure 2.8-Left shows that there are two regimes for the effects of varying the
reductions in rent ρ. At low levels increasing the rate reductions decreases the
vacancy rate, as rents return more quickly to affordable values after they have
been increased. However, the vacancy rate begins to rise once ρ > 4. The large
rent reductions cause the rents charged in the town to reduce, as can be seen
from the rising average utilities above this value of ρ. When the utilities available
to tenants are large, they no longer search for residences in the town periphery.
This is because these residences could not offer competitive utilities to tenants,
even with zero rents. This causes the vacancy rate to rise.

In Figure 2.8-Right we see that increases in the sensitivity to differences in
utility do not change the steady-state configuration above a value of 2. Below this
value the vacancy rate rises as most tenants choose to visit the same apartments.
An elevated vacancy rate means many landlords reducing their asking rents, and
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Figure 2.8: Left : The vacancy rate and average utility for variations in the
percentage reductions of the rents of vacant residences ρ. Right : The vacancy
rate and average utility for variations in searchers’ sensitivity to differences in
utility, θ. Both figures present results for a one-dimensional town.

so tenant utilities are higher at low θ.

Vacancy rates rise slightly for θ > 2. At higher θ tenants choices of residence
to visit are more random. This is probably leads to less individual rent raises
being limited by MR and so the overall level of rent increases is higher. This
means that rents take longer to return to affordable values, and the vacancy
rate rises as a consequence for higher θ. This effect is more visible in the two-
dimensional case, see Figure C.4-Right in Appendix C.9

It should be noted that these sensitivity tests were performed in the high
demand limit, Λ = 60, this value was chosen to obtain a speedier convergence
when market moves upwards. The role of theta in the low demand regime,
Λ < 15 may be different. At low demand, high theta may increase the size of the
population as residences with lower utilities further from the centre are accepted.

The size of the town increases for lower transport costs. Therefore sensitivity
tests for the unit distance transport cost T are performed, with an arrival rate
that is Λ̂ = 15% of the town size for each transport cost. 10 Figure 2.9-Left
shows that that the vacancy rate and average utility vary only slightly.

9The rent increase function, Equation (2.4), is linear in the number of visitors κ. This
means that, at the steady-state, the overall increase in rents depends linearly on the number
of searching tenant agents, unless MR limits these rent raises. When θ is higher this happens
less often and so rent increases are on average larger. This means that more residences are
over-priced at any given moment and so the vacancy rate is greater.

10The default transport cost T is 5 and tenants’ income Y is 1000. Hence furthest distance
from the centre at which residences can offer positive utilities to tenants is 200, as Y/T =
1000/5 = 200. The maximum population of the town is therefore 400 as the town can extend
in 2 directions from the centre. The default number of arrivals is Λ = 60 which is 15% of 400.
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Figure 2.9: The vacancy rate and average utility for variations in the transport
cost. This figures presents results for a one-dimensional town.

2.4.3 Comparison to theoretical benchmark

In order to emphasize the main differences between this dynamic simulation
model and static analytical models, we compare the simplified version of the
canonical monocentric city model to an implementation of this model in two
dimensions.

Overall, the town at the steady-state is similar to the theoretical equilibrium.
It is of the same size and the slope of the rents differs only in stochastic variations.
The level of the rents are almost the exactly same.

The major difference to the standard static model is the presence of vacancies
at the steady-state of this dynamic simulation, see Figure 2.1011. Why is the
population of the dynamic equilibrium less than that of the static equilibriumÂă?
The vacancy rate is due on the one hand to search frictions as tenants can visit
only one residence per iteration and on the other hand to landlords’ misreadings
of the market which cause them to excessively increase the post rents which
then take time to fall to affordable levels. The need for a certain number of
empty residences reflects a real phenomenon of urban real estate rental housing
markets, Rosen and Smith (1983). Indeed, this is a well known phenomenon
more generally in markets involving costly search, see references the Sections 3.1
and 3.2.2 in the next Chapter.

2.5 Elements of heterogeneity

We now present two elementary forms of heterogeneity added to the basic two-
dimensional model. Firstly, two types of tenants with different incomes and

11It has been verified that discretisation effects are not responsible for the offset between the
populations of the simulation and the theory.
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Figure 2.10: Graph of the population and town size for different values in the
linear transport cost for both theory and simulation. In these simulations the
town size was 51*51.

transport costs. Secondly, a stylised high-speed transport link is used to demon-
strate that the rent adjustment mechanism will translate any change in demand
into the corresponding rents.

2.5.1 Heterogeneous tenants

We simulate a two-dimensional town in which tenants’ transport costs are pro-
portional to the linear distance from the centre. One group of tenants have an
income, Y=1000 and transport cost T=40, for the second group Y=2000 and
T=160. The searchers visit apartments in a random order each iteration. The
theoretical ‘bid rent theory’ rents, see Fujita (1989), are shown in Figure 2.11,
along with the simulated rents at the dynamic user equilibrium.

A visual representation of the town is shown in Figure 2.12, where we see the
segregation of the two populations, with the wealthier agents living in the centre
to avoid their high transport costs and the poorer agents living in the suburbs.

2.5.2 Heterogeneous transport infrastructure

A stylised ‘high speed route’ is added to the town transport infrastructure which
modifies the simple proportional relation between linear distance and transport
cost. We simulate the effect of a high-speed route from east to west through the
town centre. Inside the shaded areas shown in Figure 2.13 the transport costs
per unit distance to the centre were cheaper. Anywhere outside the shaded cone
(and its extension) the transport costs are 1.3 times higher.
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Figure 2.11: The theoretical rent values are shown in blue. We see clearly the
point at which both populations of tenants are prepared to pay the same rent.
The two populations are segregated either side of this point.

Figure 2.12: Positions of the two types of tenant agent in the town. The rich
agents are green, the poor agents are orange while those who have just arrived
are red.
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Figure 2.14-Left shows the initial utilities when all landlords charge the same
rent. The high-speed route’s effect on the transport costs can be seen clearly.
This form of the transport cost was chosen to demonstrate visually the ability of
the rent adjustment mechanism to adapt to any form of demand, as can be seen
from the steady state rent configuration, see Figure 2.14-Right.

2.6 Conclusions

A model of the search behaviour of tenants and landlords has been presented.
Tenants are more likely to visit high utility residences and landlords set the asking
rent depending on privately observed demand. The major result of this model is
the presence of an endogenous vacancy rate which is due to the explicit modelling
of search behaviour. This discrepancy from the standard neo-classical model of
economics is attributed in the literature on real estate and labour markets to
search frictions (Wheaton, 1990; Rogerson et al., 2005). Here we have begun
to explicitly model these search frictions, heretofore frequently subsumed into
exogenous ‘matching functions’, (Rogerson et al., 2005). Agent-based models
have a real methodological advantage in exploring these frictions.

The major weakness of this model is the asymmetric timescales of adjustments
in rent, when the market goes up and down. This is the result of landlords basing
rent increases on limited information on the market from previous periods and the
constrained rent increases. A much more realistic hypothesis is to assume that
landlords have information on the current market state each time they attempt
to rent their residence, and optimise their asking rent based on this information.
One factor inhibiting the use of such global information in this spatial set-up is
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Figure 2.14: Left : The initial utilities when all rents are equal to 300. Green
areas have higher than average utilities and red areas have lower than average
utilities. The form is totally determined by the transport costs. Right : The
equilibrium rents. Red areas represent high rents and blue areas have low rents,
very low rents are grey.

the fact that landlords are heterogeneous by their position in the town. Therefore
to exploit global information, they would need to be able to interpret the rents
asked at different positions in the town into rents that they themselves could
reasonably propose. Such mechanisms can be imagined12. However, the solution
chosen in the next chapter, for simplicity, was to concentrate on the market
mechanism in an aspatial urban rental market.

The dynamics of the market adjustments need to be rendered more realistic
before they can be integrated as a module within an integrated transport-land
use modelling framework such as Waddell (2002) or an activities-based transport
model such as MATSim (2009). These models hope to represent many aspects of
the urban economy: mode choice, route choice, activity planning, demographic
change, real-estate markets and also rental housing markets. In order to function
in an integrated simulation, each module needs to be able to perform its function
efficiently and robustly with a simple communication protocol with other mod-
ules. The input for this model is the list of potential tenants and their utility
functions (Demand) and the list of available housing with their prices (Supply).
The output is the modified list of available housing and the new rents. The
values of the rent adjustment parameters for each landlord must be initialised at
the beginning and could be altered during the simulation.

It is worth pointing out that the rent-adjustment mechanism can be applied to
any rental market once we make the assumption that sellers have no information
outside of their own personal experience. It is also possible that the mechan-

12Landlords need only have an idea of the income of tenants, of their transport costs and of
the utilities available to tenants from other apartments on the market.
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ism described here could be combined with another mechanism that takes into
account some global information. The model of rent adjustment can easily be
transferred to other rental markets where the owners lack perfect information on
the market.

The mechanism of dynamic rent adjustment with utility-maximising tenants
and ill-informed landlords is computationally efficient. The behaviour depends
upon a few key dynamic parameters whose overall effect has been examined. It is
a promising basis from which to explore more realistic models of housing markets
and indeed search markets generally.

The conclusion is drawn that to best exploit the insights gleaned from this
exploratory model, the emphasis should be put on modelling the market structure
and the behaviours of agents. Attempting to model the emergence of spatial
phenomena at the same time as exploring the intricacies of the market mechanism
is not the most efficient approach at this stage. Indeed a well understood market
mechanism is probably essential to beginning a serious agent-based study of
the emergence of non-trivial spatial phenomena such as secondary urban centres
(Anas et al., 1998) segregation by income or race (Fujita, 1989; Schelling, 1978)
or the localisation of amenities (Brueckner et al., 1999).
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Housing Search Market

3.1 Introduction

In the urban rental housing market two categories of agents meet. The first
category consists of landlords who post rents. The second category consists of
tenants who choose among offers. These markets are imperfect as can be seen
by the existence of vacancies, price dispersion and nonzero search times for all
agents. One source of imperfection is that both categories of agents are imper-
fectly informed about the characteristics of the market, and acquiring information
is costly. Take for instance the tenants. Visiting more apartments gives them
more information but is costly and so tenants may accept an offer quickly to avoid
further search costs. Moreover the market state (rents, individual apartments on
the market etc) changes over time, making previously acquired information less
useful or even misleading. The landlords in turn observe times-on-the-market
required to find a tenant for a given rent. For the reasons discussed above this
observation does not give them perfect information about the preferences of the
tenants.

These imperfections in comparison to the theoretical perfectly competitive
market are referred to as frictions and more particularly as search frictions in
the labour and housing market literatures. The impact of frictions has been
extensively studied in search-matching models of the labour market. A survey of
search theoretic models of the labour market by Rogerson et al. (2005) presents
the various approaches to modelling the main search related frictions: how agents
meet and how wages are determined.

The first major contribution to the housing market literature based on this
pre-existing labour market literature is that of Wheaton (1990). He created a
model of the owner-occupier market in which buyers are also sellers and the
cost of search effort and its efficiency are defined by an exogenous matching
function. This model was later extended to a spatial rental market by Desgranges
and Wasmer (2000) who studied notably a tax on vacancies. The ‘thin’ nature
of the housing rental market due to the heterogeneity of housing and tenants’
idiosyncratic tastes has been used to explain vacancies by Arnott (1989). The
existence of vacancies is shown to have a social function as it expands the choice
set of tenants. Further theoretical models of the housing market are discussed
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in Section 3.2.1. All of these static analytical models contain strong simplifying
assumptions which ignore important aspects of the housing market. Among these
assumptions are the ‘law of one price’, the absence of heterogeneities and perfect
information. Certain of these assumptions are relaxed in the models mentioned
above but never all together in a general equilibrium model.

We propose a multi-agent model as a basis for relaxing many of the assump-
tions of analytical models in order to obtain a more realistic dynamic model of
urban housing markets. Our aim is to build a model close enough to the existing
search literature for its results to be comparable, while allowing the extension of
these existing models in different directions.

We develop a simulation model of a closed urban housing market focusing on
the role of information. Landlords deduce times-on-the-market (TOM) corres-
ponding to posted rents from market signals and optimise their expected profit on
this basis. Tenants with heterogeneous incomes have idiosyncratic preferences for
housing units and engage in undirected search, selecting their reservation utility
using imperfect information on the distribution of posted rents. Our agent model
departs from theoretical models in that tenant agents do not know perfectly the
rent offer distribution. More importantly, landlord agents do not know the ac-
ceptance probability of all tenants searching on the market. The discrepancy in
the results which ensue from these differences is highlighted.

The evolution of urban rents is influenced by many factors including interest
rates, conditions of credit, land supply and zoning, the economic environment,
incomes, demographics etc. All of these factors cannot be easily integrated into
a single model. The question for the modeller is which set of hypotheses can
most faithfully capture this complexity while retaining a simplicity of conception
that allows pertinent insights to be obtained from the model.1 Here, we shall
attempt to determine the generic effects that result from the fundamental market
structure of heterogeneous agents searching in an uncertain market in order to
maximise their utilities.

The sensitivity of the steady-state configuration to variations in model para-
meters are tested in Section 3.4 and Appendix D. The major results concern
the different influences of the level of information on both sides of the market.
Landlords are penalised when they are better informed, as when they are less
well-informed underestimations of the TOM move the market to higher rents.
However, when landlords are heterogeneous in information, the better informed
are better off. The effects of alterations in the discount rate and tenant agents’
idiosyncratic preferences are also explored, as is the introduction of a tax on
vacancies. When the vacancy tax is altered and the subsequent dynamic evolu-
tion of the market studied, overshoots in many market measures are seen. The
market adjusts in a non-trivial way to the shock of the sudden introduction or

1A notable and very detailed multi-agent model of the 1970’s French labour market was
constructed by Ballot (2002).
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abolition of the tax. This suggests that interventions in this market should be
made gradually when possible.

Section 3.2 presents related theoretical, empirical and simulation literature.
In Section 3.3 the model is presented. The comparative static results are presen-
ted in Section 3.4 and a dynamic model with a vacancy tax in Section 3.5. A
comparison of these results with the literature is discussed in Section 3.6. Section
3.7 concludes.

3.2 Related literature

3.2.1 Theoretical literature

Read (1993, 1997) developed two models of the rental market with rent dispersion
and vacancies. Read (1993) is a partial equilibrium model with rent dispersion
and vacancies where searchers with heterogeneous information engage in directed
search. Read (1997) is a partial equilibrium model where tenants, who have het-
erogeneous incomes, engage in stochastic search. The imperfect information of
tenants leads to equilibrium rent dispersion. Yavas (2001) showed that rent dis-
persion can occur due simply to uncertainty in demand when rents are adjusted
competitively and search is costless for tenants.

Two parallel paths have been followed in search-matching models of the la-
bour market, which accounts for the large majority of the search literature in
economics. Models aimed at analysing varying unemployment rates have fo-
cused on the matching function and search behaviours on the part of search-
ing workers (Pissarides, 1990; Mortensen and Pissarides, 1994). Models aiming
to explain the observed dispersion of wages have highlighted the behaviours of
wage posting firms that benefit from the existence of frictions to offer wages be-
low the Walrasian wage (Burdett and Mortensen, 1989, 1998; Mortensen, 1990).
Mortensen (2000) builds a model merging the two approaches. He underlines the
contribution of doing so: by allowing for a general equilibrium in which the wage
distribution and the unemployment rate interact, this model allows the study of
the welfare effect of a minimum wage or of an unemployment subsidy policy.

3.2.2 Empirical literature

We review here the empirical work on the main phenomena related to frictions
in the housing market : agent’s information, vacancies, time on the market and
price setting, and price dispersion.

The role of information in the evolution of housing markets has received much
attention. Fisher et al. (2003) studied the correlations in prices and liquidity
changes over the housing market cycle. It is well known that when prices rise
liquidity is high and when prices fall liquidity is low. They attributed this to
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the differing rates at which agents update their beliefs. For example, when
liquidity is low, there are few market signals for sellers to follow, causing them
to be slow to update their beliefs. Clayton et al. (2008) examined a number of
possible explanations of the correlations in price and liquidity changes, and found
evidence supporting sellers slow rate for updating their beliefs. In our model,
the rate at which information arrives affects the quality of landlord’s estimation
of the market state.

We now turn to the role of vacancies. Blanck and Winnock (1953) made a
major contribution to the understanding of vacancies’ role in determining urban
housing price dynamics. They showed that price dynamics appear to be led by
changes in the vacancy rate. A more thorough analysis was performed by Rosen
and Smith (1983) who provided evidence, in a cross city analysis, of the existence
of natural vacancy rates that are crucial in determining the strong correlations
between fluctuations in the vacancy rate and the evolution of rents. Numerous
authors report similar results including Gabriel and Nothaft (1988) in the rental
housing market, Shilling et al. (1987); Grenadier (1995) in the office rental market
and Hwang and Quigley (2006) in the purchasing housing market.

The price setting behaviour of imperfectly informed agents in search markets
- who trade-off higher prices with longer selling times - is an important guide
in model building. This has been closely studied, primarily in the residential
purchasing market. Yavas and Yang (1995); Knight (2002); Anglin et al. (2003)
have looked at the role of posted price on the final price obtained and the time
on the market. Merlo and Ortalo-Magne (2004) have also looked at posted price
changes and found that when reductions in asking price occur, they are generally
substantial rather than incremental.

Price dispersion is a near universal aspect of search markets. Clear evidence
has been presented by Leung et al. (2006), for the Hong Kong purchasing market.
The duration of residence is another important element in any housing model.
Empirical data in various rental housing markets in the USA has been presented
by Deng et al. (2003) and across tenure types by de Una-Alvarez et al. (2008)
for the Spanish market.

3.2.3 Simulation literature

Agent-based modelling is the analysis of complex systems through the explicit
modelling of the individual behaviours of agents. The agents themselves, their
behaviours and their possible interactions are defined initially and the simulation
evolves independently in rounds of interaction. The results of the simulation are
the sequence of decisions taken by agents and their outcome can be analysed
using standard empirical methods. Aspects of the model specification can be
altered and the corresponding changes in the outcome analysed. In this way,
according to Bradburd et al. (2006) “...agent-based modeling permits formation
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of testable hypotheses about the likely impacts of comparable changes in actual
markets or systems”.

Simulation models have considerable advantages over analytical approaches
when modelling dynamic processes and heterogeneities among agents. The diffi-
culty of studying out-of-equilibrium dynamics in current analytical search mod-
els with price dispersion has been underlined by Postel-Vinay and Robin (2006).
Bradburd et al. (2005, 2006) use agent-based simulations to relax the assumption
of a single price with random matching and Nash bargaining in two rental hous-
ing models. They do not model search behaviour in their static models. They
examine the distributional effects of rent controls (Bradburd et al., 2006) and
‘access discrimination’ (Bradburd et al., 2005), modelled as a reduced matching
probability. In contrast, our dynamic simulation explicitly models search with
rent posting, which is more realistic in the rental housing market.

3.3 Model

We present our rental housing search model in which homogeneous landlords
post rents and make take-it-or-leave-it offers to the tenants, who are heterogen-
eous in income. These landlords face a trade-off between setting a higher rent
and finding a tenant more quickly. Their optimising behavior is based on their
knowledge of the market state, both in terms of rent offers and corresponding
times-on-the-market. They withdraw from the market if their expected benefit
from participation is negative.

Tenants are supposed to observe a sample of the offer distribution and to
visit one randomly chosen residence each iteration. They accept offers based on
an optimising behaviour that trade-offs a quicker match, and therefore reduced
search costs, against a lower rent. Tenants must decide their reservation utility
Ures, that is the minimum utility they are willing to accept from a residence. This
reservation utility is chosen to determine whether a residence they have viewed is
better in expectation than the outside opportunity, which is to continue searching
with the associated costs.

We see in the top part of Figure 3.1, the timing of the tenant agents’ reser-
vation utility decision and its consequences. At time zero tenant agents decide
their reservation utility Ures, which determines their search time T (Ures) in ex-
pectation. While searching they experience a (negative) utility flow UT

s . Ures also
determines, in expectation, their utility flow once housed UT

h . The expected dur-
ation of residence of tenants X is an exogenous constant, and hence T (Ures)+X
is the total time over which tenant agents optimise their expected utility.

The bottom part of Figure 3.1 shows the timing of the landlords rent posting
decision and its consequences. Landlords choose their posted rent R at time
zero, which determines their expected time-on-the-market T (R) and clearly their
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Figure 3.1: Tenants’ and landlords’ timing of decisions and their utilities. When
landlords revise the rent of vacant residences the procedure is repeated.

utility flow once their residence is occupied. Landlords obtain the utility flow
UL
vac while their residence is vacant, and the utility flow UL

occ once their residence
is occupied. Note that if landlords review the posted rent of a vacant apartment,
the moment of decision is taken once more to be time zero.

In the following, we outline more specifically the proposed agent behaviours,
the simulation procedure as well as the dimensions of heterogeneity and the
parameters whose influence on simulation outcomes shall be explored.

3.3.1 Tenants

We now describe in detail how tenant agents trade-off between, on one hand,
minimising the cost of searching and on the other hand, maximising the even-
tual utility obtained from housing. Tenants decide their reservation utility Ures
and obtain Uh from the market, after experiencing a negative utility UT

s while
searching.

We assume that each tenant has two utility functions. A housed utility func-
tion one that is defined below when housed and another utility function while
searching, see Equation (3.2). Once housed each tenant has a separable utility
function whose housing part is given by

UT
h = Y −R (Ures) + η ≥ 0 (3.1)

where UT
h is the instantaneous utility flow, Y is housing budget, R is the rent paid

(which depends on Ures) and η is the idiosyncratic preference of an agent for an
apartment, discovered by the agent once the apartment is visited. η ∼ N(0, σ),
where σ is the variance of the normally distributed idiosyncratic preferences. σ
is expressed as a percentage of the housing budget, as shown in Table 3.1 in
Section 3.3.4.
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While searching, the agent’s instantaneous utility flow from housing is given
by

UT
s = Y − CT < 0 (3.2)

where CT is the monetarised cost of searching, including both actual costs (tem-
porary accommodation costs, transport costs, lost earnings and estate agency
fees) and non-monetary inconveniences.2 It is homogeneous across tenant agents,
in order to simplify the model.

Tenant agents have heterogeneous incomes which translate into heterogeneous
housing budgets for the purpose of this model. In the closed town unhoused
tenant agents search every iteration. A searching agent sees one randomly chosen
apartment from the distribution of offers, which is referred to as undirected search
in the search literature. Searching agents have knowledge of a percentage ST , of
the full distribution of offers. Upon visiting an apartment, agents have to decide
whether to accept it or keep searching. This will depend upon their idiosyncratic
preference for the apartment, the posted rent, their housing budget and the cost
of search.

Ures is optimised to yield the maximum utility per unit time over the expected
period of search and residence. Tenant agents idiosyncratic preferences play no
role in this decision in this version of the model.3 The expected benefit per unit
time for a given reservation utility is given by

BT (Ures) =
UT
s

X + T (Ures)

T (Ures)∫
0

exp(rt)dt+

E
[
U T

h

]
X + T (Ures)

T (Ures)+X∫
T (Ures)

exp(rt)dt (3.3)

where UT
s is the utility flow experienced while searching, X is the expected

duration of residence, T (Ures) is the expected search time, r is the discount rate
and E

[
U T

h

]
is the expected utility flow per iteration once housed if the chosen

reservation utility is Ures, see Equation (3.5). Equation (3.3) is rewritten:

2Note that this negative utility can be interpreted as causing either reduced consumption
of the composite good (all non-housing expenses) to cover temporary accommodation costs or
that UT

s represents a non-monetary disutility, or a combination of both.
3However the existence of idiosyncratic preferences should push reservation utility higher,

as it becomes more beneficial to wait for an apartment with a particularly high idiosyncratic
value, when the variance of preferences σ is higher. This effect is present even when preferences
for apartments are on average zero.
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BT (Ures) =
UT
s

X + T (Ures)
[1− exp (−rT (Ures))] +

E
[
U T

h

]
X + T (Ures)

[exp (−rT (Ures)) ∗ (1− exp (−rX))] . (3.4)

The first line in Equations (3.3) & (3.4) are the total expected discounted search
cost divided by the full expected duration of search and residency. The second
line is the discounted total expected utility flow during residency divided by the
full expected duration of search and residency. Equation (3.3) is similar to that
used by Igarashi (1991) for the expected discounted housing costs of a searcher.
This equation differs from that of Igarashi, as here we take the expected benefit
per unit time. Also we do not explicitly include in the agents’ optimisation the
discounted expected housing utility upon reentering the market after the tenant
eventually leaves the residence.

The expected probability of accepting the residence seen in any given iteration
is simply the number of residences the agent is prepared to accept divided by the
total number of residences, both quantities being taken from the residences that
the agent sees. As this is a Poisson process, the expected search time T (Ures)
in iterations is equal to the inverse of the probability of accepting a residence
at each iteration. The expected utility flow per iteration once housed E

[
U T

h

]
,

is given by the average utility of residences which are expected to yield utilities
larger than Ures :

E
[
U T

h

]
=

∑
UT
h ∗ φ (U (Ures))∑
φ (U (Ures))

, (3.5)

where φ (U(a)) = 1 if U > a and φ (U(a)) = 0 if U ≤ a. It is assumed that
η = 0, and the sums are over all offers seen. Note that the instantaneous utility
enjoyed is often greater than Ures.

Observe that the probability of accepting an apartment increases when the
outside opportunity is less promising. Once a residence is rejected it cannot be
revisited, unless it remains vacant and is randomly reselected.

Each tenant is fully described by his housing budget, Y . In this simple model,
this represents the maximum price she is willing to pay to rent an apartment
(assuming neutral idiosyncratic preferences) and is a fixed percentage of income.
The housing budgets in this model are uniformly distributed among fifty groups
of tenants in the range [100,198]. Housed tenants have a constant probability of
moving out of a residence in any given iteration; this is a reasonable approxim-
ation for the rental market, see de Una-Alvarez et al. (2008).

All tenant agents participate in the housing market. Searching tenant agents
recalculate their reservation utility each iteration. When offered rents would im-
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prove their utility, but this utility is still negative, tenants cannot accept the
housing. Their negative search utility UT

s is then interpreted as the inconveni-
ence of long-term temporary accommodation (or even homelessness) rather than
a monetary cost. These non-monetary disutilities are excluded from the aver-
age tenant welfare, i.e. negative utilities are not counted in the average tenant
welfare.

3.3.2 Landlords

Landlords’ have three possible states, having a tenant, on the market and off
the market. The corresponding utilities are, UL

occ = R − CL the rent minus
the maintenance cost, UL

vac = −CL the cost of a vacancy, and 0 their outside
opportunity, that is the utility they can expect if they withdraw from the market.

Landlords’ decision variable is what rent to post. In making this decision, they
are assumed to trade-off speed of sale with rent procured. Landlords calculate
their most advantageous rent, that is the rent that in expectation provides the
highest benefit per iteration.

The function that gives this expected benefit is BL(R) :

BL(R) =
−CL

X + T (R)

∫ T (R)

0

e−rtdt+

R− CL
X + T (R)

∫ X+T (R)

T (R)

e−rtdt (3.6)

where r is the discount rate, X is the exogenous expected time a tenant will
stay in the apartment, CL is the maintenance cost per iteration and T (R) is the
expected time-on-the-market, whose calculation is described below.

Equation 3.6 is rewritten:

BL(R) =
−CL

X + T (R)
[1− exp (−rT (R))] +

R− CL
X + T (R)

[exp (−rT (R)) ∗ (1− exp (−rX))] . (3.7)

The first line in Equations (3.6) & (3.7) is the total expected discounted costs
incurred while searching for a tenant, divided by the full expected time-on-the-
market and residency duration. The second term is the total expected discounted
utility flow during occupancy, divided by the full expected time-on-the-market
and residency duration. Average landlord welfare is the average utility over all
landlords.
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To avoid errors by landlords that would lengthen search times for tenant
agents, the chosen rent cannot be more than Imax% above the highest accepted
rent seen. The percentage of rent increases equal to the maximum allowed is
near 2% for the default value of Imax = 10, see Figure D.2 in Appendix D. Note
that the overall time over which the profit is determined varies with T (R).

A landlord is fully described by their maintenance costs CL (default value
100, see Table 3.1). The off-market cost associated with ownership is normalised
to zero4 and hence a landlord is never willing to post a rent below CL. Here,
landlords are homogeneous in their maintenance costs. They may withdraw from
the market if they do not expect to benefit from participation. Contracts are
for fixed rents and have an exogenous probability 1

X
of being terminated each

iteration.

Expected time on the market

Landlords can be assumed to be generally aware of the market price for their
class of apartment and to have a somewhat vaguer idea of the time required to
sell an apartment, as this is harder to observe. Research has shown (Yavas and
Yang, 1995; Knight, 2002; Anglin et al., 2003) that in the selling market a house
with a higher asking price generally takes longer to sell, particularly in thick
markets.

Landlords’ perceptions of the market state are characterised by the expected
search time required to find a tenant for a given asking rent. Landlords are
assumed to have access to information on a certain percentage of residences on
the market over the last F iterations. Concretely, they know for these residences
for how many iterations they were on the market at their most recent market
price, within the last F iterations. They also know whether or not they have
been rented, as shown in Figure 3.2.

The above procedure generates two histograms, one of the cumulative times
on the market within each rent interval (of size RI , see Table 3.2) and another
of the number of sales within each interval. This allows landlords to calculate
the probability per iteration of finding a tenant for a range of price intervals,
making the implicit assumption that the probability to sell was constant over
the last F iterations. This probability is simply the number of agreed rents
divided by the cumulative times on the market. The assumption of a constant
hasard means that the landlords assume an exponential probability distribution
for the time-on-the-market for a constant rent, see Kiefer (1988).

The probability of renting per iteration λ, is simply the inverse of the probable
time required to rent E

(
T̂
)
(where T̂ is time-on-the-market).

4This is equivalent to assuming that the expected utility flow in another activity, or ‘outside
opportunity’ is equal to zero.
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E
(
T̂
)

=

∞∫
0

tλ exp(−λt)dt =
1

λ
(3.8)

The landlords then calculate the expected TOM within each rent interval
from the data and estimate the best least-squares fit of the exponential function
for the expected TOM T(R) as a function of the rent R,5

T (R) = V exp(ZR) (3.9)

where V and Z are fit parameters.
The memory of recent sales is extended when necessary in order to keep the

number of recent sales in memory above the minimum of 100 (default value). This
means that landlords always have enough information on sale times to perceive
the basic relation between time-on-the-market and posted rents.

now

not counted

rent change

counted

rented

put on market

F t

Figure 3.2: The periods of time-on-the-market known to landlords.

The behaviour of landlords is not a realistic representation of actual landlord
price-setting decisions. However, we believe that it is an elegant way to simulate
the trade-off between speed of sale and rent procured made by real landlords
who have imperfect information on the market.

Rent revision

When a residence remains on the market at the end of an iteration, landlords
review their chosen rent with probability 1/F . They repeat the procedure de-
scribed above and choose the rent that they believe will bring the maximum
profit.

5Each point T (R) = ω is given a weight equal to the natural logarithm of the number of
rentals N(R) in the rent interval centred on R plus one , that is weight = ln (N(R) + 1).
This weighting as opposed to a linear weighting gives greater importance to rarer information
(higher agreed rents) and hence leads to a reduction in posted rents.
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Figure 3.3: Left : Example of an estimated relation (red line) between asking rent
and TOM per rental. The size of the ‘error bars’ is the statistical weight given to
each point in the least-squares fit of the exponential. Right : The corresponding
expected profits.

Withdrawing and returning to the market

If the expected profit estimated for a residence is negative, the residence is with-
drawn from the market. Landlords who have withdrawn residences from the
market review the market situation with probability 1/F every iteration, and
return to the market if the expected profit is positive.

3.3.3 Simulation procedure

Our model repeats the following steps until a steady state is reached:

• Searchers visit a randomly chosen apartment, and accept or reject it.

• A portion of landlords (1/F ) whose apartments remain vacant decide if
they shall change their rent or withdraw from the market.

• A portion of landlords (1/F ) who have withdrawn from the market decide
if they shall return.

• A certain fraction (1/X) of tenants, randomly chosen, leave.

• Landlords of newly empty apartments choose their asking rents.

• The next iteration begins.

3.3.4 Parameters

Tables 3.1 & 3.2 along with the form of the distribution of the housing budgets
of tenants defines a simulation run. In Table 3.1 the parameters directly involved
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Table 3.1: Parameters determining agent decisions
Symbol Meaning Default Value of

Parameters

Landlords’ parameters

SL % of sales seen 20%
F Timescale rent changes (and memory) (iterations) 15
Imax Maximum rent increase 10%
CL Maintenance cost occupied 100

Tenants’ parameters

X Expected length of residence (iterations) 240
σ Idiosyncrasy of tenants preferences (% Y ) 5
ST Percentage of offers seen 5%
CT Search costs 200
Y Housing budget [100-198]

Shared parameters

r Discount rate (default 3% annual rate) 0.0005

Table 3.2: Set-up parameters
Symbol Meaning Default Value of

Parameters
size Town size 10000
Z Number of initialising iterations 10
RI Estimation rent interval size 2
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in the decisions of agents are listed, along with their default values. In Table 3.2
set-up parameters that do not play a direct role in agent behaviours are listed,
along with their default values.

The default value ofX, the expected length of residence, which can reasonably
be assumed as being of the order of 4 years, see de Una-Alvarez et al. (2008),
means that five iterations corresponds to one month and hence 60 iterations
represents a year. Hence landlords’ knowledge of recent rentals, F, stretches
three months into the past and they change their rent in expectation every three
months. The default discount rate is hence equivalent to an annual rate of 3%.
It should be noted that these are simply default values. The effects of varying
the parameters on the steady state configuration are discussed below and in
Appendix D.

3.3.5 Initialisation

In order that landlords have some information on the market so that they can
set rents, we use the following initialisation procedure. Ten thousand landlords
and tenants are created. The landlords all have an on-the-market maintenance
cost CL of 100 and an initial asking rent randomly chosen in the interval 100-120.
The tenant agents have a uniform distribution of housing budgets between 100
and 198 in 50 discrete groups.

Over the first Z iterations, tenant agents see five apartments and select the
lowest asking rent if it offers the agent a positive utility. This preference for lower
rent residences initialises the market in such a way that the information available
to landlords indicates that higher rents mean longer waiting times. After the Z
initialisation iterations are complete, the mechanism described in Section 3.3.3
is implemented, in which searchers see only one residence per iteration.

3.4 Results

3.4.1 Base case

We present simulation results for a ‘city’ with an inelastic supply of ten thousand
apartments owned by ten thousand different landlords and ten thousand tenant
agents wishing to be accommodated. All the parameters values are the default
values presented in Tables 3.1 & 3.2.

The simulation converges to a steady state as can be seen in Figure 3.4-Left,
for any initialisation. The rent and TOM fluctuate in a narrow range, see Figure
3.4-Left. The vacancy rate is about 15%, and the percentage of landlords who
have withdrawn from the market is negligible. The ‘Population’ is the number
of housed tenants (and therefore also the number of landslords with occupied
residences). The number of unhoused tenants is equal to the difference between
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Figure 3.4: Left : The steady state Population and number of landlords off-the-
market. The "Pop : high initial rents" curve is from an initialisation following
the procedure in Section 3.3.5 with initial rents distributed between 180 and 200.
The "Pop : low initial rents" curve corresponds to a standard initialisation as
described in Section 3.3.5. Right : The average TOM of residences accepted over
the last 15 iterations and their average rent for a standard initialisation.

the ‘Population’, shown in figures throughout this Section, and the total number
of tenant agents (10,000). The number of landlords searching for tenants is
equal to the difference between the ‘Population’ plus the number of landlords
‘Off-the-market’ and the total number of landlords (10,000).

The dispersion in both accepted and posted rents can be seen in Figure 3.5-
Left. The curves are the cumulated distributions of rents set and accepted over 15
iterations. In Figure 3.5-Right we can see that, as expected, lower rents are more
likely to be accepted. Figure 3.5-Left shows that most landlords offer rents close
to the standard ‘going rate’. The few who ask higher rents are less likely to find
tenants. We can see that the basic model converges to a reasonable steady-state
with a positive vacancy rate, rent dispersion and nonzero search times.

The simulations results show that a dispersion of rents occurs at steady-state.
The heterogeneity of tenants’ incomes and the presence of market frictions (un-
directed search with a unitary arrival rate of offers) contribute to this dispersion.
Additional factors contributing to the dispersion of prices are the idiosyncratic
preferences of tenants and stochastic information effects: agents observe samples
of market signals and therefore take different decisions. This is particularly true
for low levels of information and for landlords, as will be discussed in Section
3.4.3.

The maximum rent posted by landlords is lower than the highest tenants’
reservation rent, it is below 150 in Figure 3.5-Left. Landlords find that for higher
rents it takes longer to find a tenant (because those tenants with low incomes
can no longer afford it, and wealthier tenants prefer cheaper accommodation)
and so offer relatively low rents. The lower bound of offered rent in our results
is greater than the lowest of the tenants’ housing budgets: although landlords
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Figure 3.5: Left : Rents posted and accepted in last 15 iterations at the steady
state, after 2000 iterations. Right : The probability of renting each iteration as
a function of posted rent. There is some "noise" at the higher rents due to the
small number of rentals.

might get profit with any rent strictly above 100, the minimum offered rent in our
simulation is above 110, see Figure 3.5-Left, and the lowest income tenants are
homeless. This is in part due to high search costs CV compared to the expected
benefit of having a residence on the market with a low posted rent. Landlords
always trade-off longer search times for higher rents. The expected duration of
residence is long compared to search times and hence search costs. For the lowest
rents, the gains from minor reductions in search times are less than the loss from
lower rents over the entire residence duration.6

3.4.2 Effects of agent’s characteristics on the market state

After having shown that the basic model leads to a reasonable steady-state,
we shall show its evolution upon changes in the information parameters, the
discount rate, tenants’ idiosyncratic preferences and landlords’ vacancy costs.
The effects of the other parameters (memory length, maximum rent increase,
tenants’ expected duration of residence, city size) are shown in Appendix D.

Note that at constant population, rent changes are predominately transfers in
surplus between tenants and landlords. Changes in population or the withdrawal
of landlords from the market are the major factors in changing the total welfare.

3.4.3 Varying information levels

Two very important parameters of this model are the percentages of offers seen
by tenants ST and the percentage of times-on-the-market of recent rentals and of

6Simulations have been run with a 70 cost of landlords. The lower bound of the distribution
of market rents remains above a hundred. This is due to the inelastic supply of residences in
this model.
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Figure 3.6: Left : The variations in population and the number of landlords off-
the-market as a function of the percentage of offers seen by tenants. Right : The
average rent and the average time-on-the-market (TOM).

vacant residences seen by landlords SL. In order to avoid discrepancies between
the optimisation decisions made by agents and the welfare measurement, we
present here results obtained for a discount rate equal to zero. Figure 3.13,
in Section 3.4.4, shows that the difference between simulation results with the
default value r = 3 and r = 0 are not significant.

Tenants

The population is not greatly affected above a low threshold by alterations in the
percentage of offers seen by tenants, ST (Figure 3.6-Left). Information effects at
low levels of ST on the average rent and TOM can be seen in Figures 3.6-Left
& Right, and on agents’ welfares in Figure 3.7-Left. The percentage of offers
seen by tenants ceases to alter the steady state configuration above a threshold
value which can be seen to be approximately 0.5% or 5 observations from Figure
3.7-Right. It appears that a relatively low level of information gives an accurate
impression of the market state to tenants. This is, in part at least, due to the
range of the real distribution of offers being narrow. Moreover the fact that
searchers renew their information every iteration excludes any persistence of
erroneous perceptions. Search times of the majority of tenants, with the default
level of information ST = 5%, are of the order of 3 or 4 iterations, as can be
seen in Figure 3.7-Right. When tenants are very badly informed, they are likely
to choose a reservation utility equal to the best offer seen. This is because they
expect the additional waiting costs to be very low in comparison to the expected
gain from waiting. We see in comparing Figures 3.6 & 3.7-Left with Figure 3.7-
Right that once the expected search times of tenants cease to follow the increase
in the distribution seen, the effect of increasing tenants’ information is negligible.

Increasing tenants’ information from very low levels improves their welfare as
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Figure 3.7: Left : The average welfares of tenant and landlord agents are shown
as a function of the percentage of offers seen by tenants. Right : The number of
residences seen by tenant agents with respect to the percentage of the distribution
that they see, and the expected search times of ‘middle income’ tenants.
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Figure 3.8: Left : The variations in population and the number of landlords off-
the-market as a function of landlords’ information. Right : The average rent and
the average time-on-the-market (TOM).

they are more likely to refuse higher rents.

Landlords

Increasing landlords’ information decreases their welfare as rents decrease (Fig-
ures 3.8-Right & 3.9-Left). The population also increases, as shown in Figure
3.8-Left.

Landlords’ estimation of search times for different rents is based on a smooth-
ing procedure (the exponential fit) over noisy data. Landlords need accurate two
dimensional information to decide their asking rent, that is rents offered and their
associated times-on-the-market. The times-on-the-market of many residences in
each rent interval are required for accurate estimates of the rent/ times-on-the-
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Figure 3.9: Left : The average welfares of tenant and landlord agents are shown
for variations in the level of landlord’s information. Right : The average vari-
ance of the distributions of posted and accepted rents over 1000 iterations, after
convergence to a steady state.

market relationship. Therefore their information, which also depends on their
memory length F , is not perfect even with SL = 100%. Figure 3.9-Right shows
that the variance in posted and accepted rents decreases as landlords see larger
(and hence more similar) information samples.

Figure 3.10 shows that the less informed are landlords, the greater their un-
derestimation of TOM and hence their overestimation of the optimal rent. Errors
made by ill-informed landlords tend to lead to higher asking rents because they
are less likely to see the long waiting times (TOM) for higher rents. These are
rare events which they are more likely to overlook due to their more limited
vision. As the landlords are homogeneous, and make the same errors on aver-
age, this pushes the market prices upwards. Note that every high posted rent, if
refused by tenants, increases their expected search times as tenants’ search is un-
directed. This necessarily affects searchers’ optimal reservation utilities, pushing
the market towards higher rents. In contrast, increasing landlords’ information
makes them sharper competitors, leading to reduced rents.

Heterogeneous landlords

In order to further test the effect of landlords’ information on the steady-state
of the market we perform simulations with landlords who are heterogeneous in
information. There are two types of landlord, those with the default level of
information SL = 20 and those with SL = 5, values that were chosen because
Figure 3.9 shows that the steady state changes significantly between these two
values when they are shared by all landlords.

Figure 3.11-Right shows the increases in average rents and times-on-the-
market with the proportion of ill-informed landlords. This is because, as de-
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Figure 3.10: The average estimated best rent, over 1000 iterations after conver-
gence to a steady-state, in simulations in which SL for all agents has the value
on the x-axis. The average best rent that an agent seeing 100% of available
information is also shown.
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Figure 3.11: Left : The variations in population and the number of landlords
off-the-market as a function of the percentage of landlords who see 5% of the
available information while all other landlords see 20%. Right : The correspond-
ing average rent and the average time-on-the-market (TOM).
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Figure 3.12: Left : The average welfares of tenants and both types of landlord as
a function of the percentage of landlords who see 5% of the available informa-
tion while all other landlords see 20%. Right : The corresponding average total
welfare.

scribed in Section 3.4.3, errors made by ill-informed landlords tend to lead to
higher asking rents. This changes the distribution seen by tenants who have no
option but to lower their reservation utilities. As a consequence, well-informed
landlords react to the reduced TOM by increasing their offers. Figure 3.11-Left
shows that consequently the population falls as more landlords are ill-informed.
Overall the welfare reduces because higher rents reduce the population, Figure
3.12-Right.

In Figure 3.12-Left we see that, following the rent increase, the welfare of
both types of landlords increases as the proportion of ill-informed landlords rises.
However, the better informed always have higher welfares. This results from
their more accurate appreciation of the state of the market, see Figure 3.12-Left.
In summary, there are positive externalities (or, more precisely, market effects)
of ill-informed on well-informed landlords, the former moving the market rent
upwards.

3.4.4 Discount rate

The discount rate was varied from less than 1% per annum to over 17% per an-
num. It should be noted that the effects of changing the discount rate arise from
changes in all four terms in the right-hand sides of Equations (3.3) & (3.6) and the
subsequent market interactions. Increasing the discount rate means that agents’
impatience rises. Therefore, landlords have a tendency to post lower rents, while
those tenants who have sufficiently high incomes are willing to accept higher
rents. It is not obvious which of these contradictory effects should dominate.
In general, one may anticipate that the effect of changes in the discount rate
depends on the relative market power of the two kinds of agents.
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Figure 3.13: Left : The variations in population and the number of landlords off
the market. Right : The average rent and the average time-on-the-market for
residences rented over the last 15 iterations. Both graphs for a variation in the
annual discount rate of both agent types.
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Figure 3.14: The average welfares of tenant and landlord agents are shown for
variations in the annual discount rate.

For the default values of the other parameters, the average rent is lower
with a higher discount rate. Indeed, Figures 3.13 show that increases in the
discount rate lead to a reduction in average rents and TOM, and to an increase
in population. Correspondingly, the average welfare of tenants is improved and
that of landlords disimproved with increasing discount rates, as can be seen in
Figure 3.14. This is consistent with the observation that in our setting, as was
discussed in Section 3.4.3, changes in landlords’ behaviour have a greater impact
on market outcomes than do changes in tenants behaviour.

3.4.5 Idiosyncratic preferences

We now present the effect of varying tenants’ idiosyncratic preferences for res-
idences visited σ. Recall from Section 3.3.1 that the utility of housing is given
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Figure 3.15: Left : The variations in population and the number of landlords off-
the-market. Right : The average rent and the average time-on-the-market (TOM)
for residences rented over the last 15 iterations. Both graphs for a variation in
the idiosyncratic preferences of tenant agents.

in Equation (3.1) as Uh = Y − R (Ures) + η, where η ∼ N(0, σ), σ being the
variance of the normally distributed idiosyncratic preferences and expressed as a
percentage of the housing budget. As in Section 3.4.3 we present results with a
discount rate of zero.7

The average rent increases with σ, as tenants agree to higher rents for apart-
ments they particularly like, see Figure 3.15. Among accepted rents over the
F iterations of the landlords’ memory, there is a selection of lucky searchers
(those who drew a high η). This reduces the average TOM of high rents. There-
fore landlords post higher rents, which shifts the distribution of accepted rents
upwards.

The rise in rents excludes many potential tenants from the market. This
explains why the level of vacancies strongly increases with σ (the number of
residences off the market is close to 0 while the city population decreases signi-
ficantly). Hence the same number of landlords, all attracted by the high rents,
search among a smaller number of tenants and so TOM rises. Note that on
average, the city is populated by wealthier tenants, which sustains higher rents.

Figure 3.16 shows the result of two opposing effects on tenants’ average wel-
fare from changes in σ: firstly the selection of lucky tenants, who enjoy higher
utility levels and secondly the reduction in population seen in Figure 3.15-Left.
We see that at low σ the first effect dominates. However for higher σ, the increase
in rent penalises tenants on average by more than they gain from being able to

7It would also be possible to consider tenant agents who decide not to search when their
expected benefit from searching B is negative. η would then be discovered only when searching.
We can anticipate that prior knowledge of σ, the variance of eta, would affect the participation
decision.



76 Chap 3 - Housing Search Market

0 5 10 15
 σ  - Idiosyncratic preference

0

10

20

30

40

50

W
el

fa
re

Average tenant welfare
Average landlord welfare

Figure 3.16: The variance of the average welfares of tenants and landlords for a
variation in the idiosyncratic preferences of tenant agents.

choose apartments for which they have a greater personal preference.

3.4.6 Vacancy tax

A tax on vacancy housing in large cities (population >200,000) has been imple-
mented in France as a means of increasing the housing supply. Taxes on vacant
housing have been implemented or considered in many countries, for example
Chen (2000). Our tax set-up is similar to that of Desgranges and Wasmer (2000)
who examined a tax on vacant housing using a static equilibrium search model.
They find reduced rents with vacancy taxes, which improve housed tenants’ situ-
ation. However in the medium term, the tax decreases the welfares of landlords
due to reduced rents and that of searchers due to a reduction in supply.

Here, we consider a tax τ that adds to landlords’ maintenance costs CL during
the landlord’s search period as shown in Equation (3.10).

BL(R) =
−(CL + τ)

X + T (R)

∫ T (R)

0

e−rtdt+

R− CL
X + T (R)

∫ X+T (R)

T (R)

e−rtdt (3.10)

For this Section and Section 3.5 the results shown are with landlords who are
heterogeneous in their maintenance costs CL. The landlords were given uniformly
distributed maintenance costs in 30 groups in the domain [0,129]. They all still
have a zero utility outside option, and hence those with higher CL are more
likely to withdraw from the market. This heterogeneity was added to stabilise
the model. When their only heterogeneity is in the stochastic information they
receive, this results in large fluctuations. Figure 3.19-Left shows the relative
stability of the current set-up.
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Figure 3.17: Left : The variations in population and the number of landlords off
the market. Right : The average rent and the average time-on-the-market for
residences rented over the last 15 iterations. Both graphs for variations in the
vacancy costs, CV of landlords.

Figures 3.17 show the effects on the steady-state of adding the tax τ . Small
negative values of τ corresponding to a subsidy for participating in the market
were also examined. For these simulations the discount rate r = 5%, the average
duration of residency X = 180 iterations (or 3 years), the variance of tenants’
idiosyncratic preferences was σ = 2% of Y , their housing budget. All other
parameters took their default values given in Tables 3.1 & 3.2.

We see in Figure 3.17-Left, that increasing the tax increases the population
initially. This occurs because the increased costs of vacancy for landlords cause
them to reduce rents, Figure 3.17-Right. Hence more tenants are able to afford
housing. Figure 3.17-Right, also shows that the average time on the market also
decreases with an increasing vacancy tax. However, as the tax becomes larger
it impacts on the supply of housing, as landlords no longer find it beneficial
to participate in the market. Those that do must increase rents to cover their
increased costs due to the tax. The number of landlords who have withdrawn
from the market can be seen to rise monotonically with the imposed tax, Figure
3.17-Left.

In Figure 3.18 the total welfare can be seen to follow the value of the popula-
tion, and inversely that of the rent. Tenants’ average welfare is initially improved
as the subsidy is reduced and then the tax is increased. However, the reduction
in supply penalises all agents at high tax levels. We can see that the increase
in welfare for tenant agents dominates the reduction in welfare for landlords at
certain tax levels. As a consequence there may exist in real world situations an
optimal tax where the negative welfare effect of reduced supply is dominated by
positive effects from lower rents and vacancies.
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Figure 3.18: The welfare at the steady state corresponding to the results in
Figures 3.17.
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Figure 3.19: The landlords’ vacancy costs are increased from τ = 0 to τ = 300
at 1500 iterations and decreased again from τ = 300 to τ = 0 at 3000 iterations.
Left : The evolution of population, vacancies and the number of landlords off the
market, after an initial convergence from the intialisation described in Section
3.3.5. Right : The evolution of the average rent and the TOM.

3.5 Dynamic variation of landlords vacancy costs

We simulate the introduction and then abrogation of a tax on vacancies, with
landlords that are heterogeneous in their maintenance costs as in Section 3.4.6.
The tax τ was raised from 0 to 300 at 1500 iterations and then reduced again
from 300 to 0 at 3000 iterations, see Equation (3.10). Figure 3.19 shows the
evolution of the population, the number of vacant residences and the number of
residences off the market. An asymmetry in the two transitions can be seen.

Figure 3.19-Right shows the variation in times-on-the-market and average
rents over the 4500 iterations. A significant overshoot in the average rents agreed
can be seen at both 1500 and 3000 iterations. After the introduction of the tax
landlords have higher costs, with initially unaltered perceptions of TOM. This
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leads directly to a reduction in posted rents and an increase in the number of
residences off the market, Figure 3.19-Left, as the profits that can be obtained
from participation in the market have reduced. The population rises in the very
short term as the rents have reduced.

After the abolition of the tax at 3000 iterations landlords have lower search
costs (i.e. TOM*vacancy costs) and so can afford to increase rents. This creates
the initial spike. It is worth noting that landlords always have a memory of
15 iterations in their impression of the market state. When their vacancy costs
(which include the tax) reduce they have the impression that the market will
support much higher rents. Only after they have increased their rents and tenants
react by rejecting a greater proportion of offers, can they learn the true market
situation. The population adjustment is much smoother in the second transition.
TOM appears to adjust swiftly and smoothly to changes in the tax rate Figure
3.19-Right.

Tenants can only select from among the offered rents and the richer tenants
will normally select from the cheap part of the offered rents distribution. However
poorer tenants will be unable to afford residences as rents rise. This effect is felt
by landlords through increased times-on-the-market when they post higher rents.
Eventually the competing forces of higher profits due to higher rents and lower
profits due to longer waiting times that are the result of heterogeneities in tenant
housing budgets, find an equilibrium, see Figure 3.19-Right.

The detail of the adjustments in TOM and in average rents after both trans-
itions in landlords’ vacancy tax rate can be seen in Figure 3.20. Figure 3.20-Left
shows the significant downward adjustment in the values of both the average rent
and TOM, after the vacancy tax is introduced at 1500 iterations. There are then
a series of oscillations in the average rent. Falling TOMs then make higher rents
seem optimal, and average rents rise again. There are concurrent adjustments
in the numbers of residences, Figure 3.21-Left. The reduction in the number of
vacant residences on the market pushes rents back up after the initial reduction.
Once the number of vacancies has converged to its new steady-state value (at
about 1525 iterations, Figure 3.21-Left) there are oscillations of decreasing amp-
litude in the average rent. Most of the adjustment is effectuated within the first
150 iterations (or two and a half years).

Figure 3.20-Right shows the considerable overshoot in rents demanded after
landlord vacancy costs decrease at 3000 iterations. After the elimination of the
tax, landlords have lower costs of vacancy: and so can afford to increase rents.
This creates the initial spike in rents. Once a significant number of tenants
begin to refuse these higher rents due to their housing budget constraint, land-
lords’ TOM increase. This increase in TOM reduces the gains of landlords, who
then reduce rents to decrease TOM. The TOM converges in about 60 iterations,
corresponding to one year. The period over which landlords’ collective misappre-
ciation of the market causes them to post rents above the eventual steady-state
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Figure 3.20: Left : The variations in TOM and average rents, around the trans-
ition of landlords’ vacancy costs from τ = 0 to τ = 300 at 1500 iterations. Right :
The variations in TOM and average rents, around the transition of landlords’
vacancy costs from τ = 300 to τ = 0 at 3000 iterations.

is under 100 iterations (about 11
2
years) . The increase in observed TOM causes

a reduction in their offered rents as is seen in Figure 3.20-Right.
Figures 3.21 show in greater detail the transitions in population, vacancies

and residences off the market after the changes in vacancy costs at 1500 and 3000
iterations. Figure 3.21-Left shows the initial increase in the number of landlords
who remove their residence from the market. This appears to overshoot before
begin a slow adjustment to the new steady-state. The number of vacancies de-
creases dramatically after the introduction of the vacancy tax at 1500 iterations.
The full adjustment can be seen to take up to 200 iterations. This corresponds
to slightly over 3 years with the default parameters.

Figure 3.21-Right shows the adjustment after the abolition of the vacancy
tax. Note particularly that the number of vacant residences appears to overshoot
when costs fall again at 3000 iterations. The system takes not much more than
100 iterations to fully readjust. With the default parameters this corresponds
to just over 11

2
years. The asymmetry in adjustment speeds is due to the fact

that most landlords with vacant apartments take into account in their posted
rent the increase in vacancy costs in F = 15 iterations. However, when vacancy
costs decrease the landlords who will eventually readjust their posted rents have
to wait a time considerably longer, as the expected duration of tenants residency
is X = 240.

An abrupt positive shock to landlords’ market power can have exaggerated
short term effects before the market finds its new equilibrium. More generally,
shocks to the housing market may have the potential to provoke disproportionate
effects due to agents basing their decision on outdated information. Such effects
have been postulated to explain part of the dynamics of real estate markets,
see Fisher et al. (2003) and Clayton et al. (2008). These results suggest that
interventions on the housing market should be gradual when possible, to avoid
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Figure 3.21: Left : The variations in population,vacancies and the number of land-
lords off the market, around the transition of landlords’ vacancy costs from τ = 0
to τ = 300 at 1500 iterations. Right : The variations in population,vacancies and
the number of landlords off the market, around the transition of landlords’ va-
cancy costs from τ = 300 to τ = 0 at 3000 iterations.

abrupt over-reactions.

3.6 Discussion of results

We know that a perfectly competitive market should have rents offered at land-
lords’ maintenance costs (Bertrand price competition): in a situation where every
tenant would be able to choose the best offer among several of them, any land-
lord making an offer below others would very quickly attract a tenant. Rents
would thus be pushed down to landlords’ maintenance costs i.e. at 100. What
drives the market away from this configuration is primarily the frictions due to
the search process. Due to search costs, the matching of a tenant and a landlord
produces a benefit to both of them. Because tenants can visit only one residence
per time unit and accept or refuse it without recall, landlords have the power to
extract a part of this benefit, which explains rents above landlords’ maintenance
costs.

We know from existing theoretical labour-market models that in a model with
frictions and homogeneous workers, the equilibrium would be with a single wage,
equal to the workers reservation wage. In this situation, firms are able to extract
the whole surplus from the match and as a result, no searcher participates in the
market, which is known as the Diamond paradox (Diamond, 1971). However, if
workers differ in their reservation wages, due to heterogeneous outside options
for instance, a distribution of wages emerges (Albrecht and Axell, 1984; Eckstein
and Wolpin, 1990). This also ties in with the consumer search literature, where
price dispersion has been shown to result from sellers playing mixed strategies
against potential buyers who have different reservation prices, see McMillan and
Rothschild (1994). Following an analogous mechanism, in our housing-market
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model landlords facing tenants with heterogeneous reservation rents react by
setting different offers

In contrast to those theoretical models, differences in reservation rents in our
model result not only from the heterogeneity in the value of the outside option
on the part of searchers. They also come from the existence of idiosyncratic
preferences and from the heterogeneity in the information received by different
agents: tenants seeing different samples from the distribution of offers decide
different reservation rents.

The distribution of offered rents differs from the uniform distribution of reser-
vation rents: although high income agents can accept any rent sufficiently below
their reservation rent to cover the associated search costs, we observe that the
maximum rent offered by landlords is lower than the maximum reservation rent.
Landlords find that for higher rents it takes longer to find a tenant (because
those tenants with low incomes can no longer afford it, and wealthier tenants
prefer cheaper accommodation which they know to exist from their information
on offered rents) and so offer relatively low rents compared to richer tenants
housing budgets. Existing theoretical models can give us clues to better under-
stand the distribution of offered and accepted rents. In a search model with
heterogeneous workers, it has been shown that the distribution of offered wages
differs from the distribution of reservation wages because unemployed individuals
with high outside opportunity only flow to jobs with high wages (Eckstein and
Van den Berg, 2007). Similarly in our model, high income agents can accept
any rent that is sufficiently below their reservation rent to cover the associated
search costs. In contrast, low budget searchers can only accept low rent offers.
Therefore, the acceptance probability of low rent offers is higher, which distorts
the distribution of offered rents with respect to the distribution of reservation
rents.

Furthermore, Bontemps et al. (1999) demonstrate theoretically that with het-
erogeneous searching workers and heterogeneous firms, the minimum offered wage
is higher than the minimum reservation wage. This parallels the observation in
our model that the maximum rent offered by landlords is lower than the max-
imum reservation rent. Actually, landlords find that for higher rents it takes
longer to find a tenant (because those tenants with low incomes can no longer
afford it, and wealthier tenants prefer cheaper accommodation) and so offer rel-
atively low rents compared to richer tenants housing budgets.

What is new in this model with respect to theoretical models is that landlords
need sufficient information in two dimensions to have an accurate appreciation
of the market state. The dramatic difference in the sensitivity to changes in
the two information parameters (ST for tenants and SL for landlords) is due to
the fundamental asymmetry in the market exposed in Sections 3.3.1 & 3.3.2.
Landlords individually post prices which cannot be negotiated, while tenants
decide whether or not to accept the offer received.
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The idiosyncratic preferences of tenants are also absent from the search mod-
els cited in this Section, though they were introduced in housing search models
by Arnott (1989). The addition of these preferences adds an important realistic
element to the model and their stochastic nature has a stabilising influence.

3.7 Conclusion

Our dynamic model includes imperfect information and heterogeneous interact-
ing agents. It leads to price dispersion, nonzero search times and vacancies,
three essential ingredients of any realistic housing model. The matching prob-
ability depends endogenously on the posted price of apartments. It is a general
equilibrium model that provides a basis for examining policy questions such as
rent control and its welfare and distributional effects, the welfare effects of the
taxation of vacant housing or the general equilibrium effect of providing social
housing.

In our model landlords are Stackleberg leaders who set rents which tenant
agents accept or refuse. This is a reasonable representation of the rental market.
Landlords act upon their partial knowledge of the market in order to maximise
their profits. Their knowledge of the market state is in the form of probable
times-on-the-market before renting for the full range of possible rents. This al-
lows the calculation of the expected profit and hence rational maximisation. The
heuristics of real world agents are simulated here by a regression and profit cal-
culation, with a larger number of individual information points than real agents
normally know. Greater information for landlords disimproves their overall util-
ity due to greater competition, see Section 3.4.3.

Tenants, with idiosyncratic preferences and heterogeneous in income, are also
partially informed of the state of the market and use their information to decide
the minimum utility they are willing to accept from a residence. Their search is
undirected, that is they have equal probability of seeing any available offer in a
given iteration. Greater information for tenants improves their overall welfare.

We have examined the comparative static and dynamic effects of a tax on
vacancies on the market. The main aim of vacancy taxes is to benefit tenants
by increasing supply in the short term and hence reduce rents. Here we find
an optimal tax where the benefits of reduced steady-state vacancies and average
rents dominate negative supply effects.

Making the tenant side of the market open - that is having a constant flow of
arrivals of tenant agents - instead of a fixed number of searching tenants would
allow the composition of the town to be more endogenous. This would also mean
that the vacancy rate would represent market frictions only and not a mixture
of market frictions and those tenants who are unable to pay market rates as is
currently the case. Note that in Sections 3.4.6 & 3.5, part of the vacancy rate
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is due to landlords with higher maintenance costs seeing no benefit in market
participation. Transferring our model to one where tenant agents engage in
directed search is also a promising extension.

One of the most interesting possible extensions is to alter the number of units
owned by landlords. Heterogeneities in the level of information among landlords
could represent the difference between large commercial landowners, who would
also have greater private information, and small private owners. For example,
large landlords are likely to be better able to absorb vacancies (as discussed by
Blanck and Winnock (1953)), and more able to adapt their rental strategies to
market conditions.

The current set-up allows the investigation of the distributive effects of policy
decisions among tenant agents of varying incomes. Rent control is one possible
example, as is the level of information among tenants. These two effects have
been examined in static simulation models by Bradburd et al. (2005, 2006). It
would be interesting to test whether the effects are similar in our more realistic
model.

There is great scope to complexify the model for both types of agent. Tenants
could be differentiated by their work places, housing preferences, household sizes,
transportation modes etc. Landlords could own different numbers of apartments,
and apply different rent setting rules.

The modelling of construction, demolition, depreciation, conversion and re-
furbishment of buildings would be an important extension for modelling price
and liquidity dynamics. Coupling the rental market to the ownership market
is another important possible extension. A simulation model of the ownership
market needs to take into account the fact that the presence of the same agents
on both sides of the market is a critical difference from the rental market.

Our main aim has been to construct a model that allows hypotheses on the
functioning of the urban rental market to be investigated. We believe that a
dynamic model based on straightforward micro-economic behaviours with im-
perfect information is a good approach. We believe we have found robust and
simple agent dynamics (or rules) that reproduce the essential features of the
rental housing market and results from analytical search models that have been
developed to analyse labour as well as housing markets. This is an exploratory
research project that suggests there is a real potential for dynamic and disag-
gregated simulation models to provide deeper insights into the functioning urban
housing markets.



Conclusion

The original motivation for this thesis was to explore the potential of agent-
based models to deepen our understanding of urban systems. As described in
the general introduction to this thesis, agent-based models are well adapted to
modelling the interactions of heterogeneous spatially dispersed agents in urban
systems. Agent-based models are dynamic simulations that can easily incorpor-
ate heterogeneity in agents’ characteristics. They can be combined with complex
representations of spatial structures, such as those of geographical information
systems (GIS), and realistic transport networks. The agent-based method of
modelling agents is a very natural and intuitive one. However, capitalising on
this potential is not a straightforward task. Windrum et al. (2007) have reviewed
approaches to the difficult problem of agent-based model validation.

In this exploratory theoretical thesis, existing analytic models of urban sys-
tems have been taken as a starting point for a more thorough exploration of
the systems’ dynamics. Robust theoretical models of the dynamics of important
urban systems, notably housing markets, are an important step in establishing a
more constructive dialogue between theoretical and empirical research in urban
economics.

In the model presented in Chapter 1, the equilibrium of the standard con-
gestion model was shown to be unstable. The potential of heterogeneities to
stabilise the system’s behaviour was demonstrated. The presence of external-
ities, and competition between highly sensitive agents are responsible for the
instability of the model. Further non-agent analysis of this model set-up clari-
fied the potential of smoothing cost functions to reduce the instability. It was
also established that replacing agents’ sensitive binary decision-making criteria
with probabilistic rules increases system level stability. These lessons are very
probably applicable to many agent-based simulation models.

It should be noted that transport systems are particularly suited to simula-
tion models as they are systems of large numbers of agents following relatively
straightforward behaviours that repeat on a daily basis. Ample amounts of data
are becoming available to calibrate these models, notably through the use of GPS
tracking. It is for this reason that transport simulations are at the forefront of
the progression of simulation methods in the social sciences

The model presented in Chapter 2 is a spatial rental market based upon the
standard monocentric model of urban economics. Landlords base rent adjust-
ments on privately observed demand and tenants engage directed search, i.e. they
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are more likely to visit the apartment offering higher utilities. Heterogeneity in
tenants’ preferences is implicitly assumed. The major insight of this extension
of the static monocentric model is the endogenous presence of vacancies due to
the search frictions modelled.

The model sufferers from problems in dynamic adjustments due to landlords
using only private, and often out of date, information to update their beliefs on
the state of the market. This led to most of the exploration of the model being
conducted in a high demand regime, in which the dynamic behaviour is more
reasonable. This model demonstrates the difficulties engendered by including
many degrees of freedom in an exploratory model. It has also been established
that modelling the endogenous development of nontrivial spatial phenomena is
not a straightforward task. The lessons learned from this model were applied in
the subsequent model of an aspatial housing search market where the focus is on
the search behaviours and market interactions of agents.

Chapter 3 models the rental housing market using agent behaviours based on
the search theory literature. Landlords use information on recent market evolu-
tions to set their posted rent, trading-off the expected time required to finding
a tenant and the revenues received. Tenants trade-off the utility received from
housing against the associated search costs. The model has interesting informa-
tion effects on the landlords’ side of the market. When landlords are homogen-
eous, they are better off when ill-informed as their tendency to underestimate
times-on-the-market causes them to raise rents in an effectively coordinated way.
This counter-intuitive result no longer holds when landlords are heterogeneous,
as then better information benefits individual landlords. The previous effect can
still influence the market as is seen in the fact that with a higher proportion
of ill-informed landlords, rents are higher. Tenants utilities are improved when
their information is increased. However, in a system where landlords have market
power due to the ownership of a scarce good, changes in their behaviours move
the market in a much more significant way.

The effects of a vacancy tax were also explored. The presence of an optimal
tax for certain model parameters was demonstrated. The potential of the mod-
elled behaviours to produce complex dynamic effects was established when the
introduction of a vacancy tax was simulated. There are nontrivial information
updating effects, due to alterations in the number of rentals after changes in the
tax level. This is a promising basis upon which to study the correlations of price
adjustments, trading volumes and times-on-the-market in real estate markets.

The main extensions envisaged to the research presented in this thesis con-
cern the third and most promising model. The theoretical justification of the
assumptions used is well developed. Large real estate market databases exist,
such that many intricate correlations between market variables are accessible to
empirical study (Clayton et al., 2008). The current model has many features
that can be adapted to the owner-occupier market. Following the research of
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Stein (1995) it can be hoped that through the inclusion of credit constraints
in the buying and selling decisions of agents it will be possible to capture the,
at least partially endogenous, oscillations that appear to be a fundamental part
of the housing market. Novy-Marx (2009) has shown the interest of including
the inelastic adjustments of supply to changes in the market state. In standard
search theory this elasticity is implicitly infinite. This effect probably plays a
role in housing market oscillations that include intricate correlations between
prices, times-on-the-market and trading volumes. Agents’ heterogeneities and
information effects play crucial roles in these dynamics. I hope to have shown
in Chapter 3 that the complex correlations seen in the purchasing market can
very likely be modelled as an extension of the approach applied in this thesis to
rental housing markets.

I believe that it is probable that the major medium-term benefits of agent-
based simulations shall be in their use as thought experiments whose theoretical
insights shall give pointers towards areas or questions that can benefit from
greater empirical study. This is due on the one hand, to the difficulty of calibrat-
ing agent-based simulations and the large data requirements discussed previously.
On the other hand, it is also based on the simulations presented and the belief
that they show a progression towards models that can provide useful insights
into real-world systems. Theoretical models have often inspired empirical work
in the past and it is also reasonable to hope that the extensions of this work on
the housing market will inspire innovative empirical research.

As simulation techniques become more widely integrated in the social sciences
the need for collaboration with hard science simulators may decrease. However,
the different ways of thinking of complex systems of large numbers of heterogen-
eous interacting agents should always have cause for mutual inspiration.

I hope that the research presented here and its extensions, will play a role
in helping economics to become a science that is more inspired by the actual
actions and interactions of real-world agents, and less constrained by analytic-
ally convenient abstract hypotheses concerning behaviour. Much research has
already moved in this direction notably in behavioural, experimental and neuro
economics. The work presented in this thesis does not directly exploit the more
evolved insights from these domains.

However by helping to open up the range of productive uses for simulations
in economic modelling, I believe it has contributed to the advancement of more
empirically inspired theoretical models in economics. This is an important step in
developing a deeper understanding of complex evolving socio-economic systems.





APPENDIX A

Details of the agent simulation

The purpose of this Appendix is to give sufficient information to reproduce all
the results presented in for the agent-based model in Chapter 1 .1

A.1 Homogeneous agents

All simulations for homogeneous agents were performed with 2000 agents. The
temporal size of the simulation was equal to the number of agents in all cases,
i.e. there were 2000 discrete time units. The capacity of the bottleneck, S, was
2 cars per unit time, this is equal to the departure rate at the social optimum,
see Figure 1.2.

For every simulation the agents were assigned their initial departure times
such that the overall departure function was that of the social optimum, see
Figure 1.2. The agents depart at the capacity of the bottleneck and the first and
last to arrive pay the same schedule delay costs.

In every simulation the percentage of agents randomly chosen to try a new
departure time was kept constant. The agents chosen each picked a "test" de-
parture time chosen randomly from a flat distribution, the same size as the
temporal domain of the simulation, centred on the current departure time. In
order to calculate the cost of the new departure time the entire cost function was
recalculated assuming that only this agent changed. It should be noted that in
the limit of large numbers of agents this is unnecessary. If the cost of the new
departure time was less then that paid in the previous iteration by the agent,
the agent adopted this new departure time.

At each iteration the congestion experienced by those who departed at each
discrete time were calculated, using Equations (1.1) & (1.2). The resulting con-
gestion function was used to calculate the arrival time of every agent. The travel
time on uncongested roads was normalised to zero as the constant portion of the
travel cost does not affect the dynamics we wished to investigate. The total cost
paid by each agent was then calculated by combining the congestion cost and the
schedule delay cost as in Equation (1.4). The values of α, β and γ in Equation
(1.4) were α = 2, β = 1 and γ = 4.

1Note that the code for all the models presented here is available from the author upon
request: jmcbreen@ens-lyon.fr
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A.2 Heterogeneous agents
In this section we specify how the simulations with heterogeneous agents differed
from those with homogeneous agents.

A.2.1 Distribution of schedule delay costs

In the simulations performed with agents who had a distribution of schedule
delay cost parameters, presented in Section 1.4.1, 6000 agents were used and
there were 6000 discrete time units in the simulation.

When the agents were initialised, each was assigned a "schedule delay mul-
tiplier" chosen randomly from a log-normal distribution of mean, m = 2.4 and
variance, σ = 1.7. In order to calculate the schedule delay cost for each agent
the values of β and γ were multiplied by the "schedule delay multiplier" of each
agent, the value of α remained 2 for all agents and the capacity S was unchanged.
In order that the initial average cost should be comparable to that for homogen-
eous agents the schedule delay costs of each agent were divided by 32. This was
also required to maintain the relevance of the congestion costs versus exploding
schedule delay costs.

A.2.2 Distribution of preferred arrival times

All simulations with agents who had a distribution of preferred arrival times were
performed with 2000 agents in simulations with 2000 discrete time units.

When the agents were initialised they were each assigned a preferred arrival
time,t∗, from a Gaussian distribution whose variance varied from simulation to
simulation. This value of t∗ was then used in Equation (1.4) for the calculation
of the schedule delay costs.

The values of α, β, γ and the capacity, S were the same as for homogeneous
agents.
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Deterministic congestion model

Another extension was to consider a deterministic simulation analogue of the
agent-based model with homogeneous agents, described in Section 1.3. The set-
up was quite similar to the two departure time model presented in Section 1.5.2
except that here, there is a full distribution of discrete departure times.

B.1 Agent reference model
In the agent reference model the following applies:

For each discrete departure time, the number of agents who will choose that
departure time over their current departure time is proportional to the total
number of agents who have departure times with higher costs. That is, the
increase in the departure rate for a given departure time is proportional to the
number of agents for whom this departure time represents an opportunity.

For the same departure time, the number of agents who will choose a different
departure time is proportional to the total number of departure times that have
lower costs. That is, the probability of changing, for an agent currently leaving
at a given departure time, is proportional to the number of departure times that
represent an opportunity.

B.2 Deterministic analogue
In terms of agents the hypotheses of this model are: there are N infinitely divis-
ible agents1 who are infinitely sensitive to cost. A certain proportion who leave
at each departure time, review their departure time every iteration.

The simulation has N possible discrete departure times and everybody wishes
to arrive at t∗. The capacity is such that the shortest time in which all the agents
can pass the bottleneck is T = N/2. The capacity of the bottleneck is hence 2
agents per time unit.

1That is level of departures at any time is a real number, and the integral of departures is
a constant N . In the agent model there is necessarily an integer number of departures at each
departure time.
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The evolution of the departure rate at a given departure time follows closely
that outlined above in Section B.1. It is shown formally below, where i stands
for iteration and j is the departure time:

ri(j) = ri−1(j)−
ε

100
ri−1(j) +

εN

100
∗ Θi(j)

Ωi

(B.1)

where ε is the reviewing rate and Θ(j) is the total number of agents at other
departure times who paid, at iteration i − 1, a total cost greater than that of
departure time j. The normalising factor Ωi is the cumulative number of agents
who would like to move to each individual departure time:

Ωi =
N∑
j

Θi(j)

and

Θi(j) =
N∑
l 6=j

ri−1(l)θ (ci−1(j)− ci−1(l))

where r(j) is the departure rate at time j, θ (z − y) = 0, if z < y and θ (z − y) = 1
if z > y. In Equation (B.1) the second term is the constant proportion of those
leaving at departure time j who review their departure time. The third term
is the proportion of all those currently reviewing their departure time who shall
choose departure time j. Note that it is possible here to review one’s departure
time and choose to depart again at the same departure time.

The evolution mechanism desribed above corresponds closely to that of the
agent-based model. In both models agents are no more likely to try a good
departure time over a bad one.2

Results shown in Figures B.2 & B.1 are for simulations that began with
departure times distributed at the social optimum, i.e. with no congestion. The
first order continuous schedule delay costs(SDCs) described in Section 1.5.1 were
applied to obtain the results in Figure B.1. The travel cost is α = 2, the schedule
delay cost parameters are A = 1 and B = 4, see Equation (1.8).

We can see in Figure B.1-Right that the evolution of the average cost is
unstable. Figure B.1-Left shows that there are repeated waves of more expensive
departure times becoming progressively earlier (moving down from left to right).
This is because the traffic jam begins earlier each day as agents avoid the peak
congestion time and the costs of arriving late. This movement is halted when

2There there is however one other small difference, in the agent model those trying a new
departure time chose a departure time from a uniform distribution equal in size to the simula-
tion domain centred on their current departure time. In this deterministic version all departure
times within the domain of model were equally likely to be tested.
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Figure B.1: Left : The evolution of the average costs through 500 iterations,
with 1st order continuous SDCs. Right : The evolution of the total cost across
departure times and from day-to-day over the last 50 iterations shown in Figure
B.1Left.

later departure times become attractive, in a sufficient number, and so attract
more agents to these later departure times. The total congestion level falls, as
many agents move to the end of the congestion period and so impose less costs
on the fewer agents who depart after them.

The evolution of the congestion level and hence the total cost depends upon
the number of agents at each departure time and the number of opportunities
that they see, leading to a non-trivial evolution pattern.

The 1st order discontinuous-schedule-delay-cost form described in Section
1.2.2 for the agent model, was used for the simulation results shown in Figure
B.2. As in the agent-based and the two-departure-time models the travel cost is
α = 2, the cost of arriving early is β = 1 and the cost of arriving late is γ = 4.

Figure B.2-Right shows that the evolution of the average cost with schedule
delay costs that are discontinuous in the first derivative is more unstable than
in Figure B.1. Figure B.2-Left shows that the cheapest departure times again
become progressively later in repeated waves, but this time their evolution is
more complicated. Indeed, higher period oscillations of the average cost have
been observed with first-order discontinuous schedule delay costs.

The lesson of this demonstration, which enables the system’s dynamics to be
more clearly seen, is on the one hand that continuous functions lead to more
stable behaviour and on the other hand that the evolution of the congestion
level for a given departure time depends in a nontrivial manner on the entire
distribution of departure times.
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Figure B.2: Left : The evolution of the average costs through 500 iterations, with
1st order discontinuous SDCs. Right : The evolution of the total cost across
departure times and from day-to-day over the last 50 iterations shown in Figure
B.2Left



APPENDIX C

2D Monocentric urban model

In Figure C.1 we can see for the two-dimensional town a speedy convergence
from high a initialisation RI = 500 and a much slower convergence from a low
initialisation RI = 250.1 This is similar to the one-dimensional case.

The two dimensional sensitivity tests are presented here. All the results
presented are for simulations over 2000 iterations that began with RI = 500.
Recall that the average rent in the fully populated town of the theoretical equi-
librium is 333. The main convergence criteria is the average utility of tenants.
Figures C.1-Left & Right show that for the default parameters that began with
this high level of rents, the simulation converges after about 500 iterations.
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Figure C.1: Left : Graph of the vacancy rates in a two-dimensional town with
initial rents of RI = 250 and RI = 500. Right : The average utility of tenants for
the same simulations as Left.

Figure C.2-Left shows that as the rent increase parameter D rises the vacancy
rate falls, this is as in the one-dimensional case.

In Figure C.2-Right the effect of varying the maximum allowed rent raiseMR

can be seen. At very lowMR the average utility is relatively high as rent increases
are severely limited. Rents need to be lower for the overall level of reductions

1Note that for a two-dimensional city, the average rent paid at the theoretical equilibrium
is 333 1

3 . This can be found by dividing the total rent paid by the population πr2max. The total
rent is

∫ rmax

0
πr2(Y − rT )dr, which is the integral from the centre up to the maximum radius

of the town of the population at distance r from the centre, multiplied by the rent charged at
distance r.
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Figure C.2: Left : The vacancy rate and average utility for variations in the rent
increase parameter D, see Section 2.3.3. Right : The vacancy rate and average
utility for variations in the maximum rent raise allowedMR. Both figures present
results for a two-dimensional town.
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Figure C.3: Left : The vacancy rate and average utility for variations in the
number of searchers Λ arriving each iteration. Right : The vacancy rate and
average utility for variations in the percentage of departures L. Both figures
present results for a two-dimensional town.

to equal the overall level of increases. It is clear that at very low MR this effect
must also exist in one dimension.

Figure C.3-Left shows that, as for the one-dimensional model at very low
demand, that is small Λ, rents are lower and the vacancy rate is high. Here the
default departure rate is L = 2%, which means that approximately 16 agents
leave each iteration if the town is full. Hence if the arrival rate is below this
value the market adjusts through both increased vacancies and reduced rents.
The increasing vacancy rate, with increasing demand in the high demand regime,
is as in the one dimensional case.

In Figure C.3-Right we see that increases in the percentage of departing
tenants increases the vacancy rate, as the case in one dimension.

Figure C.4-Left shows that there are two regimes for the effects of varying
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Figure C.4: Left : The vacancy rate and average utility for variations in the
percentage reductions of the rents of vacant residences ρ. Right : The vacancy
rate and average utility for variations in searchers sensitivity to differences in
utility. Both figures present results for a two-dimensional town.

the reductions in rent parameter ρ, just as in the 1D case. Here, the vacancy
rate begins to rise once ρ > 4.

In Figure C.4-Right we see that increases in the sensitivity to differences in
utility do not change the steady-state configuration above a value of 7. The
regime in which rising sensitivity to utility differences increases the vacancy
rate due to less rent increases being restricted by MR as described for the one-
dimensional case in Section 2.4.2 can more clearly be seen in the two-dimensional
case.

In Figure C.5 we see that with a fixed percentage of arrivals the effect on
the steady-state of varying the transport cost is neglibile in terms of the vacacy
rate and the utilities of tenants (and therefore also in terms of rents). As in the
one dimensional case, a fixed percentage of the town size Λ̂ = 15% arrives each
iteration2. The size of the town clearly varies with a changing transport cost as
shown in Figure 2.10.

2The default transport cost in two dimensions T is 60. The corresponding town size is of
the order of 800. The default number of arrivals in two dimensions is Λ = 120 which is 15% of
800.
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Figure C.5: The vacancy rate and average utility for variations in the transport
cost T . This figure presents results for a two-dimensional town.
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Sensitivity tests: Search market

D.1 Reviewing frequency
Alterations in the steady-state configuration due to changes in the reviewing
frequency parameter, F, are shown in Figure D.1.

As F rises initially the population increases and rents fall. When landlords
review their rents less frequently (higher F ) they appear less able to extract a
surplus from imperfectly informed tenants.

D.2 Maximum rent increase
Changes in the maximum allowed rent increase Imax do not have a dramatic
effect on the steady-state configuration, see Figure D.2. Average rents initially
increase slightly, as is to be expected. The percentage of maximum rent increases
also decreases.

D.3 Occupation duration
Increases in the expected duration of residence X, increase the average rent as
the profits from higher rents for landlords become greater, see Figure D.3. This
has the effect of reducing the population as some tenants can no longer afford
the market rents.

D.4 Size
The size parameter S plays an important role, as the level of information available
to agents depends directly on the size of the city. As the city size increases, so
does the occupation rate due to less errors being made by landlords in setting
rents, and by tenants in refusing rents that they should normally accept. The
information effect in present for both landlords and tenants, and in both cases
pushes rents lower and therefore the population higher, with increasing size. As
seen in section 3.4.3 the information effect is stronger for landlords. We note
that even for a town size of 45,000 residences, the information effect has not yet
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Figure D.1: Left : The variations in population and the number of landlords
off-the-market as a function of the landlord memory and updating parameter F .
Right : The average rent and the average time-on-the-market (TOM).
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Figure D.2: Left : The steady-state levels of population and the number of land-
lords off-the-market, for changes in the maximum allowed increase of rent. Right :
The percentage of maximum rent increases averaged over 1000 iterations.
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Figure D.3: Left : The variations in population and the number of landlords off-
the-market as a function of the landlord expected duration of residence parameter
X. Right : The average rent and the average time-on-the-market (TOM).
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Figure D.4: Left : The variations in population and the number of landlords off-
the-market as a function of town size. Right : The corresponding average rent
and the average time-on-the-market (TOM).

converged to an asymptotic value. This value is likely to be above many urban
rental markets’ supply of close substitutes once questions of type and location
are taken into account. We feel that the presence of finite size effects is a positive
feature of the model.

D.5 Landlords’ maintenance costs

As landlords’ maintenance costs CL rise from low levels the average rent falls as
does the TOM. Rising maintenance costs, which are paid whether the apartment
is occupied or not, both increase the cost of search and decrease the benefit
of renting at a given rent. There are hence two adjusting forces in landlords’
reactions to rising maintenance costs.The first is to reduce rents to reduce TOM.
The second is to increase rents to raise the benefits of renting in order to cover
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Figure D.5: Left : The variations in population and the number of landlords
off-the-market as a function of landlords’ maintenance costs. Right : The corres-
ponding average rent and the average time-on-the-market (TOM).

the increasing costs. The first effect dominates in reponse to maintenance cost
increases from low levels and the second dominates when maintenance cost are
already high, Figures D.5-Left & Right.

The population variation follows that of the average rent, Figure D.5-Left.
The number of landlords withdrawing from the market increases markedly once
landlords’ maintenance costs are above the average steady-state rent with the
default parameters, which is about 117, see Figure 3.4-Right.
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Le paradigme du modèle multi-agent (Agent Based Modelling ABM) a vu s’accro-
itre comme jamais son utilisation dans les sciences sociales au cours de la dernière
décennie (Tesfatsion and Judd, 2006; Amblard, 2007). Ses origines méthodolo-
giques remontent au moins aussi loin que Clarkson and Simon (1960); Orcutt
(1960). Il lui reste cependant à être totalement accepté en tant que méthode
scientifique standard dans les sciences sociales bien que ses avantages théoriques
fondamentales sont bien compris Bradburd et al. (2006); Colander et al. (2008).
Le but principal de ce travail est d’évaluer le potentiel du modèles multi-agents
pour agrandir notre compréhension des systèmes économiques urbains.

La forte augmentation en puissance de calcul au cours des dernières décennies
nous a permis d’appréhender la modélisation des systèmes économiques d’une
nouvelle manière. L’utilisation des simulations est devenue une pratique standard
en physique où elles ont obtenu un grand succès. La généralisation de l’utilisation
de simulations a été plus lente à se développer dans les sciences sociales en
grande partie à cause de la grande complexité des entités modélisées. Cela a
crée une situation dans laquelle ceux spécialisés en sciences sociales n’avaient pas
habituellement les compétences requises pour créer des modèles de simulations
des systèmes socio-économiques. Alors que d’un autre coté, les spécialistes en
méthodes de simulations, incluant les informaticiens et physiciens, n’ont que peu
souvent une formation solide en sciences sociales. Il est donc important, de
faire se rejoindre ces compétences provenant de différents domaines pour amener
plus loin les modèles de simulations de systèmes sociaux. Beaucoup de travail
a été fait par les physiciens dans la modélisation de systèmes financier où la
disponibilité de grandes quantités de données a permis une approche très concrète
(Bouchaud, 2009; Rickles, à paraître). Les méthodes physiques peuvent être
appliquées encore plus facilement aux systèmes urbains quand des données de
grande qualité sont disponibles (Jensen, 2006). Dans cette thèse, je modélise des
systèmes urbains qui, bien que manquant souvent de données de grande qualité
par rapport à celles disponibles pour les marchés financiers, ont beaucoup de
caractéristiques qui les rendent convenable pour l’application de méthodes de
simulations.

Dans cette introduction, je résumerai l’approche suivie pendant la thèse.
D’abord je présenterai les principales motivations d’entreprendre ce projet, à
savoir modéliser les interactions entre les systèmes de transports urbains et la loc-
alisation des activités. J’expliquerai ensuite les avantages théoriques et quelques-
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unes des difficultés rencontrés dans l’utilisation des modèles multi-agents dans
l’étude des systèmes socio économiques. Les systèmes spécifiques qui on été
étudiés sont présentés ensuite. Le procédé de distillation des hypothèses du
modèle qui mène à une combinaison objet-méthode, permettant d’atteindre des
résultats pertinents, est mis en valeur. Les caractéristiques des systèmes qui eux
même contribuent à des modèles multi-agent réussis, sont par la suite discutés
ainsi que quelques indications aidant à l’obtention de résultats intéressant issus
de tels modèles.

La motivation initiale de ce projet était d’étudier le potentiel des systèmes
mutli-agent pour fournir un aperçu du fonctionnement des systèmes urbains.
Les systèmes urbains sont d’une importance capitale pour l’économie générale,
en effet la plupart des richesses est créée dans les villes (Fujita et Thisse, 2003).
Les systèmes urbains sont des systèmes évolutifs complexes de grands nombres
d’agents hétérogènes répartis spatialement et interagissant. C’est donc un do-
maine dans lequel les simulations ont un grand champ pour surpasser les modèles
analytiques.

Mon intention n’était pas d’étudier une gamme complète de systèmes multi-
agent. Cela s’étend de ‘modèle jouet’ petit échelle comme Schelling (1978) à
des modèles grandes échelles qui intégre les interactions entre le transport et
l’occupation des sols de la totalité des zones urbaines (Salvini et Miller, 2005).
Ces grand modèles nécessitent une quantité de données considérable, d’intensifs
efforts de calibration and ne peuvent jamais complètement échapper à un aspect
‘boite noire’ au produit fini, pour étude voir Timmermans (2003). Mon but était
de créer des modèles avec des hypothèses motivées dont la dynamique peut être
totalement comprise et qui reproduit les caractéristiques dynamiques majeures
des systèmes du monde réel.

Le point principal était les interactions des systèmes de transports et les dé-
cisions de localisations des agents. Actuellement, les modèles qui prédisent les
performances des infrastructures de transports partant d’une localisation donnée
des agents sont assez bien développés (de Palma et Marchal, 2002; Arentze et
Timmermans, 2004). L’approche inverse, partant d’une infrastructure de trans-
port et essayant de prédire la future forme urbaine, qui est le regroupement des
choix de localisations qui sont fait sur le long terme, sont de façon compréhens-
ible moins développées. Le but final est de prendre en compte la boucle entière
d’intéraction entre l’évolution conjointe du système de transport et la localisa-
tion des populations et des activités. De tels modèles prospectifs sont en stade
de développement (Waddell, 2002; Timmermans, 2003). Les modèles basés agent
ont le potentiel de modéliser des interactions souvent ignorées dans les modèles
économiques mais qui sont cruciaux pour la compréhension du développement
urbain (Glaeser et al. 2000).
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En pratique cette motivation initiale a abouti à la création de trois mod-
èles de systèmes urbains. J’examinerai la stabilité d’un modèle de congestion
standard de Vickrey (1969) au chapitre 1. Un modèle multi-agents sur le modèle
économique urbain monocentrique classique d’Alonso (1964), qui inclus à la fois
l’aspect spatial et l’aspect marché, est développé en chapitre 2. Enfin un modèle
non spatial du marché des logements locatifs, dans lequel une attention par-
ticulière a été donnée aux comportements de recherche des agents, est présenté
au chapitre 3.

Les avantages des méthodes de simulations multi-agents sont nombreux et
considérables. Parmi les principaux avantages on trouve la capacité à modéliser
des évolutions dynamiques. Les simulations multi-agents offre une grande flex-
ibilité dans la modélisation des caractéristiques d’agents hétéroclites et leurs in-
teractions. La compréhension de l’émergence de formes macro et de dynamiques
macro à partir des interactions microscopique des agents est un avantage excep-
tionnel des systèmes multi-agents. En effet, les modèles multi-agents peuvent être
validé simultanément par à la fois les comportements niveau système et le com-
portement niveau micro (LeBaron et Tesfatsion, 2008). Les modèles multi-agents
offrent aussi la possibilité de modéliser les systèmes d’une manière naturelle et
cohérente qui n’est pas accessible aux modèles analytiques. Par exemples, des
agents peuvent se rencontrer et négocier des biens en imitation des marchés réels
(Kirman et Vriend, 2001).

La nature dynamique des modèles multi-agents permet la recherche des équi-
libres analytiques et leur stabilité. Un exemple sera étudié au chapitre 1 à travers
une simulation multi-agents sur le modèle classique de Vickrey (1969) des em-
bouteillages. La stabilité des équilibres est une question souvent négligée dans
les modèles économiques analytiques. Mon but a été d’utiliser des comporte-
ments simples d’agent pour explorer les forces motrices derrière les dynamiques
du système modélisé, tout en mettant l’accent sur le contrôle de leur stabilité.

La plus grande flexibilité des simulations par rapport aux modèles analytiques
permet un panel beaucoup plus réaliste d’hypothèses à faire. Ces hypothèses font
le rapprochement entre les entités elles-mêmes, leurs environnements, et leurs
interactions. Des formes multiples d’interactions sont possibles et peuvent être
directes ou indirectes. Dans ce dernier cas, les agents interagissent entre eux via
leur impacte sur leur environnement partagé. Un avantage majeur des modèles
multi-agents est l’intégration naturelle des hétérogénéités des caractéristiques
des agents, qui est un élément crucial pour des modèles économiques réalistes
(Kirman, 1992). Cela sera abordé en particulier aux chapitres 1 et 3, où les
hétérogénéités dans les caractéristiques des agents sont en fait nécessaires dans
le but d’atteindre des modèles stables. Blundell et Stoker (2005) présentent des
méthodes concrètes pour gérer les problèmes d’agrégation dus aux hétérogénéités.
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J’ai testé au cours de cette thèse la validité de modèles analytiques existant
utilisant des simulations multi-agentss. Un avantage clair de cette approche
est qu’elle fournit une solide base théorique pour la modélisation de décisions.
On peut aussi s’attendre à une meilleure acceptation et diffusion des méthodes
et aperçus multi-agents quand ceux-ci sont clairement fondés sur la théorie
économique existante. Ces questions seront principalement traitées au chapitre 3.

Les difficultés associées aux méthodes de simulation basée agents sont aussi
nombreuses, et je dois maintenant souligner pourquoi une grande considération
doit être donnée sur comment surmonter ou au moins atténuer ces difficultés
avant de se lancer dans un projet de modélisation multi-agents. Il est possible
pour le non initié de croire que les méthodes multi-agentss peuvent fournir des
résultats dans presque tout système. En pratique, il y a beaucoup de difficultés,
notamment dans la validation et dans la calibration des modèles de simulation
aux données concrètes.

Les données en grande quantité et de types appropriés requises pour calibrer
des modèles multi agents grande échelle sont très difficiles à obtenir. Cela entrain
beaucoup de difficultés dans leur calibration. Même avec de bonnes données, sa
transformation sous forme utilisable pour le modèle et le procédé de calibration
ultérieur sont extrèmement onéreux. La calibration de modèles de simulation
complexes grande échelle de systèmes socio-économiques par nature imprévisibles
apparaît être une entreprise très problématique. En effet, même les plus simples
modèles mutli-agents sont relativement riches en paramètres dont la calibration
n’est pas simple.

Tous les modèle multi-agents peuvent être considérés comme un petit monde
duquel chaque détail doit être décrit. Les modèles ont souvent beaucoup plus
d’hypothèses que le nombre de paramètres à calibrer pourrait l’indiquer. Ces hy-
pothèses potentiellement cachés peuvent concerner entre autres : l’ordre des in-
teractions (aléatoire ou séquentiel), la distribution des caractéristiques des agents
(par exemple, uniforme ou gaussienne), la nature fermé ou ouverte du système,
la nature de l’information disponible aux agents (locale ou globale) etc.

La découverte d’hypothèses existantes établies théoriquement ou concrète-
ment pour le comportement des agents est aussi une tache difficile, voir Roth
(2007). La plupart de la littérature économique ne s’est pas préoccupé de la com-
préhension des comportements actuels des agents humains. Une telle recherche
est principalement conduite en psychologie, en science cognitive and récemment
dans le domaine nouveau de l’économie comportementale.

Utilisant des indices de la psychologie, l’économie comportementale a mis en
évidence beaucoup de suppositions erronées utilisées dans les modèles économique
analytiques (Camerer et al. 2003). Alors que ce travail est encourageant pour
les modèles multi-agents, l’intégration des ces indices n’est pas souvent évidente.
Les indices provenant des sciences cognitives sont aussi une ressource utile et les
méthodes multi-agents sont vues comme une approche prometteuse à l’intérieure
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des sciences cognitives (Conte 2002). Le travail sur les réelles décisions prises
par les agents humains qui ne sont, contrairement à la théorie néo-classique de
l’économie, ni complètement rationnel ou omniscient ou totalement égoïste, a un
immense potentiel d’utilisation pour les modèles multi-agents.

Alors que baser les modèles de simulations multi-agents sur d’autres existants
analytiques est souvent très productif, l’intégration de certaines suppositions
analytiques à l’intérieur du comportements des agents n’est pas simple. En effet,
souhaiter coller trop fortement aux bases analytiques peut entraver le complet
épanouissement de la modélisation multi-agent. Différents exemples de ce danger
seront abordés aux chapitres 2 et 3. Dans différents domaines et pour différents
modèles spécifiques, les bases analytiques quand elles existent, doivent avoir des
degrés variables de pertinence. Comme le montre le reste de la thèse, la étendue
réelle des difficultés et avantages de la modélisation multi-agent sont seulement
découverts en pratique. Je crois, et espère avoir montré, que les avantages valent
les efforts dues à cette tache.

Je dois maintenant décrire les modèles spécifiques que j’ai étudiés avec les
modèles multi-agents.

Dans le premier chapitre, j’examine la stabilité d’un modèle bien connu de la
congestion routière. La stabilité de cet équilibre de Nash n’a pas été établie et
les simulations de circulation inspirées par ce modèle, voir de Palma et Marchal
(2002), ont montré des instabilités lorsque l’on tente d’ajouter des évolutions au
jour le jour au modèle de base. Nous avons souhaité développer un modèle multi-
agents pour examiner la stabilité du modèle d’origine et examiner la possibilité
d’ajouter des comportements dynamiques simples aux agents dans des simula-
tions de circulation à grande échelle. Il a été argumenté de façon convaincante
que les modèles économiques microscopiques sont une étape nécessaire vers une
meilleure compréhension de la dynamique des systèmes de transport en règle
générale (Arnott, 2001).

Le modèle standard d’embouteillage par Vickrey (1969) est un modèle dy-
namique ‘intra-journalière’, où les agents sont censés optimiser leur heure de dé-
part pour la navette du matin. Pour ce faire, ils marchandent le coût de ne pas
arriver à l’heure et le coût du pire embouteillage. Ceci est ici étendu à un modèle
de ‘dynamique double’ multi-agents, dans lequel la distribution de l’heure de dé-
part évolue de jour en jour. Les agents apprennent à-travers l’expérience : avec
une certaine probabilité chaque jour, ils tentent une nouvelle heure de départ. Si
leur coût total personnel réduit, ils adoptent cette nouvelle heure de départ. Il
est montré qu’avec des agents parfaitement homogènes, la solution d’équilibre au
modèle standard de Nash ne peut pas être obtenue dynamiquement : le système
est alors instable (Mc Breen et al. 2006).

Afin de mieux comprendre les causes de l’instabilité du système, un certain
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nombre d’extensions sont explorées. Tout d’abord, la difficulté de l’utilisation
des méthodes analytiques pour modéliser de tel système est démontrée. Ce mod-
èle a inspiré l’étude d’un modèle simple à deux heures de départ. La stabilité est
atteinte grâce à l’introduction d’hétérogénéités dans les heures d’arrivée désirées
par les agents. Cela modifie la structure du modèle en réduisant l’intensité de
la concurrence pour les mêmes heures d’arrivée. Une extension pour illustrer la
possibilité d’étude de ce modèle stochastique dynamique avec une approxima-
tion déterministe est aussi présentée dans l’Appendice B. Ces études évoquent
l’intrigante possibilité d’utiliser des simulations comme des modèles d’exploration
qui peuvent ensuite être simplifiée en un modèle analytique, en vue de procéder
à une analyse plus rigoureuse (Varenne, 2008).

Dans le chapitre 2, j’examine le potentiel des modèles d’agents pour re-
produire, et donc pour aider à mieux comprendre, les dynamiques spatiales des
marchés de l’immobilier urbain. L’accent est mis sur les interactions des systèmes
de transport et les décisions de localisation. Pour ce faire, j’ai décidé de commen-
cer par la base fournie de la théorie économique standard urbaine (Fujita, 1989),
et d’ajouter des dynamiques d’agents à ce cadre analytique statique dans l’espoir
de générer des résultats intéressants nouveaux. Des progrès ont été réalisés dans
ce sens par Caruso et al. (2007) qui s’appuient sur le modèle urbain à un centre
en utilisant des automates cellulaires. Le modèle développé est un modèle spatial
qui prend en compte les coûts de transport à partir d’un centre exogène. Ces
coûts déterminent alors la localisation des décisions d’agents.

Dans notre modèle, chaque cellule d’une simple grille représente une résidence
appartenant à un propriétaire qui souhaite maximiser ses revenus. Un certain
nombre de locataires arrivent, à chaque itération, et tentent de trouver le meil-
leur logement. A chaque itération, un certain nombre de locataires quittent la
ville. Les comportements à préciser sont le prix fixé par les propriétaires et les
mécanismes de recherche des locataires. Le modèle est étudié à une et deux
dimensions.

Il sera démontré que l’inclusion d’un mécanisme simple de recherche conduit à
des logements vacancts ; ce qui constitue un phénomène bien connu de toutes les
marchés de recherche. Le taux de vacances ne peut être compris avec le modèle
standard statique. Une marché de recherche est un marché pour lequel une des
hypothèses Walrasiennes clés sur les agents économiques, d’être parfaitement in-
formés, ne tiennent pas. Au lieu d’un marché unique, avec un commissaire priseur
virtuel qui décide des prix de sorte que la demande soit égale à l’offre, les agents
doivent chercher des débouchés commerciaux, ce qui a un coût. Les décisions
d’échanges dépendent de la perception de l’utilité de poursuivre les recherches.
Cela est montré être la principale différence entre ce modèle d’interaction dy-
namique d’agents et le modèle standard économique urbain (chapitres 2 et 3).
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Toutefois, les comportements des agents dans ce modèle spatial sont quelque
peu arbitraires. Dans le chapitre 3, l’accent est mis sur les comportements et les
mécanismes d’interaction des propriétaires et des potentiels locataires dans un
marché du logement locatif aspatial.

En vue de produire des résultats pertinents et nouveaux, j’avais appris à partir
de travaux antérieurs, que le choix de l’objet est aussi important que le choix de la
méthode. Après avoir évalué les forces et les faiblesses des modèles multi-agents,
j’ai décidé qu’un modèle du marché locatif des logements est probablement le
plus simple modèle de recherche pour lequel on peut étudier le comportement
des agents des deux côtés du marché. Ces comportements donnent lieu à des
corrélations complexes dans l’évolution des prix, des délais de marché et des
volumes échangés (Fisher et al. 2003). Cela laisse espérer aboutir à la réinjection
ultérieure de ces comportements modélisés et les interactions dans un modèle
spatial. Je sentais que ce serait une approche plus productive que de développer
les aspects spatiaux du marché simultanément. Cette approche permet une plus
grande liberté dans l’étude des évolutions de marché dynamique.

Les marchés immobiliers sont clairement des systèmes d’une importance vitale
pour l’économie moderne. Les frictions de recherche, qui sont la difficulté pour
les locataires de trouver un logement et pour les propriétaires de trouver des
locataires, présents dans les marchés immobiliers, sont d’intérêt général pour
toutes les recherches de marché. Il s’agit d’un domaine clé dans lequel un modèle
robuste de simulation, microscopique et dynamique, a une capacité d’extension,
tout d’abord à d’autres marchés de l’immobilier, ensuite au marché du travail.

J’ai simulé un marché clos de logements locatifs avec recherche et désaccord
correspondant, dans laquelle les deux agents (propriétaire et locataire) sont im-
parfaitement informés. Un ensemble homogène de propriétaires louent afin de
maximiser leur revenu, utilisant de l’information sur le marché pour estimer la
relation entre les loyers affichés et le temps sur le marché (TOM), (c.-à.-d. le
temps qu’un propri’etaire devraient normalement attendre avant de trouver un
locataire). Les locataires, hétérogènes en termes de revenu, s’engagent dans une
recherche aléatoire, en acceptant les résidences en fonction de leurs goûts par-
ticuliers pour le logement et une utilité de réservation basée sur l’information
de la répartition des offres. L’état d’équilibre vers laquelle la simulation évolue
montre une dispersion des prix, des temps de recherche non nul et des logements
vacants.

J’analyse les effets de l’accroissement de l’information disponible pour les
deux catégories d’agents. Lorsque les locataires voient une plus grande partie de
la distribution des offres, ils apprennent à refuser des loyers élevés et leur util-
ité moyenne augmente. En revanche, lorsque les propriétaires sont homogènes
et leur niveau d’information est réduit, leur bien-être peuvent s’améliorer tant
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que leurs surestimations du meilleur loyer affiché augmentent les loyers. Moins
surprenant, les propriétaires les mieux informés sont mieux lorsque des hétéro-
généités dans les niveaux d’information sont introduites. Les effets d’une taxe
sur les logements vacancts sont également analysés, à la fois en terme statique
et dynamique. Il a été constaté que, pour certaines valeurs de paramètre, un
niveau de taxation existe pour lequel les bénéfices du bien-ê tre de la réduc-
tion des logements vacants, TOM et loyers, dominent les effets négatifs de la
taxe sur l’offre. L’ajustement dynamique aux grands changements dans le taux
d’imposition est montré causer des fluctuations à court terme encore plus grandes
sur l’état marché. Cela souligne les risques potentiels des interventions fortes,
tant que les répercussions peuvent être difficiles de prédire avec certitude.

Dans le cadre de ce projet exploratoire, des progrès doivent être effectués,
non seulement sur les résultats obtenus, mais aussi sur la nouvelle compréhen-
sion des types d’objets les plus adaptés à cette forme de modélisation. Il sera vu
au chapitre 2 que tenter d’inclure un trop grand nombre de dimensions (degrés
de liberté) dans un modèle simpliste limite la pertinence des résultats extraits.
Je soutiens que ce n’est pas l’approche optimale, et que lorsque des modèles
distincts plus simple de parties du système peuvent être construits, les connais-
sances acquises peuvent conduire à un modèle composite plus satisfaisant. Il
sera soutenu dans les chapitres 2 et 3 qu’il est préférable, dans la mesure du
possible, de créer d’abord un modèle robuste des éléments constitutifs les plus
simples d’un système, en vue de mieux comprendre le système composite. Dans
cette thèse, cela signifie se concentrer sur un marché aspatial de l’habitation, au
chapitre 3, plutôt que de continuer à développer un modèle spatial de marché du
logement, avant que les dynamiques et les interactions des agents dans le marché
ne soient bien comprises.

Il a été appris au cours de cette thèse que certains attributs sont très souvent
utile dans la production de modèles stables, ayant de bons comportements lors de
la simulation. Dans les modèles économiques standard, avec des agents parfaite-
ment informés, les résultats sont obtenus en supposant l’existence de l’équilibre.
Lorsque les interactions dynamiques sont incluses explicitement entre agents
modélisés, ce luxe est mis de côté. Il a été découvert que les modèles qui simulent
étroitement les hypothèses analytiques standard, telles que les agents homogènes
bien informés, sont sujettes à l’instabilité. La raison est que l’excès de ressemb-
lance entre les agents les amènent à adopter des comportements similaires dans
des situations similaires et, par conséquent, le système est instable dans son en-
semble. L’introduction de stochasticité peut aussi avoir un effet stabilisateur sur
l’ensemble du système. Ce premier résultat contre intuitif se produit en raison
de l’hétérogénéité des comportements des agents, ce qui induit une distribution
moyenne stable des comportements à adopter et, par conséquent, évite une situ-



Resumé 111

ation dans laquelle tous les agents fassent la même chose au même moment.
L’effet stabilisateur potentiel des hétérogénéités a été poinés par Kirman (1992).

Modéliser des systèmes contenant un grand nombre d’agents permet d’empêcher
qu’un seul agent, ou bien un petit groupe d’agents, soient trop influent sur le com-
portement global et la stabilité du modèle. Modéliser le comportement d’agents
individuels complexes dans les systèmes avec un petit nombre d’agents, est une
approche que l’on peut adopter, mais ce n’est pas celui pour lequel les idées et les
intuitions, qui viennent de l’étude des systèmes physiques, peuvent être les mieux
utilisées. C’est pourquoi, dans tous les systèmes modélisés dans cette thèse, il
existe un grand nombre d’agents qui adoptent des comportements relativement
simples. Il est à espérer que, tandis que la variation réelle du comportement hu-
main dans ces systèmes est beaucoup plus grande que celle modélisée, cette ap-
proche puisse réussir à capter suffisamment les déterminants des comportements
réels des agents, pour se faire des idées pertinentes à un niveau plus global.

Le fait que dans un monde où tout le monde fait la même chose, des choses
étranges se produire est un résultat qui vient naturellement à partir des simu-
lations. Le fait que des hypothèses plus réalistes conduisent très souvent à des
résultats plus réalistes est un aspect encourageant des méthodes de simulation
d’agents. Ceci souligne les avantages de l’adoption de cette approche souple et
intuitive pour la modélisation des systèmes socio-économiques.
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Abstract

Simulations have considerable potential for the analysis of the evolution of economics systems,
a subject often neglected by mainstream economics where the focus is on static equilibria. This
thesis investigates the potential of this approach in urban economics. The purpose is to examine
how global phenomena emerge from the interactions of economic agents. This is a promising
method as classical economics, lacking the appropriate analytic tools, concentrates on the exis-
tence of equilibria and refrains from investigating their stability. This study demonstrates the
potential of simulations in three models.

Firstly, in a standard model of traffic congestion it is shown that the Nash equilibrium is unstable
and cannot be reached dynamically. Secondly, it is shown that simulations of the formation
of urban land rents, reproduce elements of the theoretical equilibrium, and also endogenous
vacancies, which are an important real-world phenomenon. Thirdly, an agent-based model of
the housing market, which reproduces important empirical phenomena such as price dispersion,
non-zero search times and vacancies, has been developed. The model provides a basis for the
exploration of the complex dynamics of this market.

Keywords

Agent-based Simulations – Urban Economics – Urban Dynamics – Traffic Congestion –

Stability – Real Estate – Search Markets

Résumé

Les simulations représentent une méthode de choix pour analyser la dynamique d’évolution des
systèmes, que l’économie classique laisse de côté car elle s’intéresse essentiellement à l’équi-
libre. Dans ce travail, nous avons étudié l’intérêt d’une telle approche dans le cas des systèmes
d’économie urbaine. Il s’agit de comprendre comment des interactions entre des agents écono-
miques émergent dans l’etat global du système, en s’intéressant notamment à la dynamique de
convergence vers un éventuel équilibre. Cette méthode est prometteuse, car faute de méthodes
analytiques performantes, l’économie classique ne s’intèresse en général qu’aux équilibres, sans se
soucier des possibilités concrétes pour l’atteindre. Notre étude a montré l’intérêt des simulations
dans trois cas précis.

D’abord, dans un modèle classique de la congestion routière il est demontré que l’équilibre prédit
par la théorie économique était instable, et qu’il ne pouvait pas être atteint en pratique. Ensuite,
il est demontré que des simulations de la formation de la rente foncière urbaine dans un modèle
simple, permettaient de retrouver certains aspects de l’équilibre classique, mais rajoutaient de
manière endogène un élément important : le taux de vacances observé dans la réalité. Enfin,
nous avons développé un modèle multi-agents du marché immobilier, qui permet de retrouver
des phénomènes empiriques importants telle que la dispersion des prix, des temps de recherche
non nuls et des logements vacants. Le modèle autorise aussi une exploration de la dynamique
complexe de ce marché.
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Simulations Multi-agents– Economie Urbaine – Dynamiques Urbaines– Congestion Rou-

tière – Stabilité – Marché Immobilier – Marchés de Recherche


