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CHAPTER 1 

INTRODUCTION 

1.1. Problem Statement 

The premature deterioration of concrete bridge decks is a multi-billion dollar 

problem in the United States. In December 2003, the Federal Highway Administration 

estimated that approximately 27 percent of the 592,000 nation’s bridges are considered 

structurally deficient or functionally obsolete. It would cost about 80 billion dollars to 

bring all of the nation’s bridges to an acceptable and safe standard by either rehabilitation 

or replacement. Moreover, according to the data of the “national bridge inventory” 

obtained from the U.S. Department of Transportation, it is estimated that deficiencies 

occur mostly in the decks in more than half of the bridges in United States.  

Not only bridge deck deterioration is an economic problem; it is also a risk to 

those who traverse the structure. Forms of deterioration can range from slightly damaged 

deck surfaces, causing unpleasant sights and decreasing bridge deck serviceability, up to 

spalling of large pieces of concrete that reduces the structural integrity and it can be a 

danger for the public. Therefore, there is a compelling need to understand the behavior of 

bridge decks under service load and develop a reliable procedure to assess the 

serviceability of the deck, which will then serve as a decision-making tool for the 

rehabilitation or the replacement of the decks. 

In the United States, most of the bridge decks are constructed as reinforced 

concrete slabs supported by steel or precast prestressed girders, as shown in Figure  1.1. 

Such decks have traditionally been designed using the “strip method”, based on a 
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conventional beam theory, which assumes that the slab is continuous over fixed supports. 

As a result, the top part of the slab is reinforced with steel bars to resist the negative 

moments, and the bottom part of the slab is reinforced with steel bars to resist the positive 

moments. Temperature and shrinkage reinforcement is added orthogonally at the top and 

at the bottom. An example of bar placement is shown in Figure  1.2. When cracks occur in 

concrete, the top reinforcement can be subjected to environmental agents and aggressive 

chemicals; such as deicing salt, and it can start to corrode. The corrosion can result in a 

lateral expansion of the steel bars, leading to spalling of concrete cover and subsequent 

formation of potholes, as shown in Figure  1.3. 

Previous research in the United States and mainly in Canada showed that the 

flexural capacity of bridge decks can be increased by the presence of in-plane 

compressive forces, created when the deck is restrained by supports that cannot move 

laterally. This phenomenon is referred as “arching action” and is the basis of the 

empirical design provisions of the Ontario (Canada) Bridge Design Code (1993). This 

empirical method has been adopted in the current AASHTO LRFD code (2005), and it is 

referred to as isotropic reinforcement. According to the empirical method, arching action 

requires less steel reinforcement than that required by the strip method of AASHTO 

LRFD code (2005). Therefore, it is believed that the decks designed by empirical method 

are more resistant to deterioration due to fewer sources of corrosion (fewer steel rebars). 

At the present, there is no assessment method available to evaluate the 

serviceability and durability of bridge decks. Therefore, in this dissertation, a procedure 

for bridge decks evaluation is developed, which is focused on evaluation and comparison 

of bridge decks performance for the two aforementioned design procedures. A reliability 

based method associated with a state of the art nonlinear finite element analysis, 

calibrated using field tests, is developed in order to understand the structural behavior of 

the deck and to assess its performance.  
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1.2. Objectives and Scope of this Dissertation 

The main objective of this research is to develop a model that predicts the 

behavior of a reinforced concrete bridge deck subjected to live load using an advanced 

Finite Element program and assess its performance at the serviceability level. 

Comparison is made for the two design methods specified by the AASHTO LRFD code. 

This study is focused on reinforced concrete deck slab-on-girders with beam 

spacing up to 3 m. (10 ft) designed according to the two design methods specified by the 

AASHTO LRFD code. The design is also carried out for different girder spacing as well 

as different span length. 

The specific objectives of this thesis include: 

1. To develop an analytical model for the behavior of bridge decks, using Finite Element 

non-linear procedure, calibrated with the field test results including the actual support 

conditions. The developed procedure will be applied to determine the actual stress/strain 

distribution in the concrete deck slab due to trucks placed at different positions, and to 

evaluate the performance of bridge decks at the serviceability limit states.  

In this dissertation, two serviceability limit states are considered, and are defined 

as 1) cracking of reinforced concrete deck slab when stress in the deck exceeds tensile 

strength of concrete; and 2) control of crack opening which is based on the tensile stress 

in the reinforcement, as specified in AASHTO LRFD code (2005). Definitions of these 

serviceability limit states are explained in details in Chapter 6. 

2. To develop a reliability procedure for the analysis of the deck. Reliability indices are 

computed for the serviceability limit states for a wide range of girder spacings, span 

lengths, boundary conditions, and more significantly for both design methods specified 

by AASHTO LRFD code. The results of the reliability analysis will serve as a basis for a 

critical evaluation of the code provisions, proposed modifications and recommendations. 
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The research involves an experimental and analytical program. Figure  1.4 

presents a flowchart of this study and the performed tasks. 

The field tests were carried out on a steel girder bridge, with the girders spaced at 

3 m (10 ft). The results were used to quantify the level of fixity at the supports and to 

calibrate the FEM model.  

A non-linear finite element model for reinforced concrete was developed using 

the commercial software ABAQUS. Results of available laboratory experiments on slabs 

were compared with the analytical results in order to validate the developed material 

behavior model. The tested bridge was also analyzed using the same material model in 

order to investigate the effect of observed partial fixity of the boundary conditions.  

After the FEM model was validated and refined, several bridges with a reinforced 

concrete deck slab supported on steel girders were designed according to the two 

different design methods specified by the AASHTO LRFD code (2004); the traditional 

strip method and empirical design. The design was carried out for several girder spacings 

as well as different span lengths. These designed bridges were then modeled using the 

finite element program and the calibrated material behavior model. The results from the 

FEM program for each studied bridge configuration will serve in the calculation of 

resistance parameters in the reliability analysis. 

A reliability analysis at serviceability limit state was carried out for each 

considered bridge deck configuration. Two limit states were considered in this study, 1) 

cracking of concrete and 2) crack opening of concrete. Load parameters were calculated 

from live load data obtained from previous studies by Nowak and Kim (1997). Resistance 

parameters were formulated using the Rosenblueth’s 2K + 1 point estimate method, 

combined with FEM calculation for aforementioned designed bridge deck configurations. 

The computed resistance parameters were then applied along with live load parameters, 

available from previous research conducted at the University of Michigan, to obtain 

reliability indices. The serviceability of wide-spaced girder bridge decks was assessed 
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comparing the calculated reliabilities with the targeted reliability index. Finally, 

conclusions and recommendations were formulated. 

1.3. Structure of the Dissertation 

This dissertation is divided into 7 chapters as follows: 

Chapter 1: Introduction. A general overview of the problem is presented. The 

objective and scope of this study are given. An introduction to other chapters is 

presented. 

Chapter 2: Literature review. This chapter serves as a review of the work done by 

others on bridge deck behavior and analytical methods used to predict their response 

under different load cases. A review of research works in the area of reliability of bridges 

is also summarized. 

Chapter 3: Field testing procedure. This chapter presents the bridge testing 

program and describes the equipment and procedures used. Technical drawings and 

details of the tested bridge are presented for reference. 

Chapter 4: Analytical model for bridge structures. An introduction to the Finite 

Element Method is presented; the material model used in this research is described along 

with the modeling method. The validation of the material model using experimental 

results by other researchers is explained. In addition, calibration of the boundary 

conditions using the results from field tests is also discussed.  

Chapter 5: Structural Reliability. This chapter summarizes the reliability theory 

and methods of reliability calculations with the emphasis on the Rosenblueth’s 2K + 1 

point estimate method. In addition, load and resistance models used in common practice 

are also explained.  

Chapter 6: Analytical results of reliability analysis. This chapter explains load and 

resistance models as well as the limit state functions developed and used in this study. 
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Parameters used in the Rosenblueth’s 2K + 1 point estimate method are also presented. In 

addition, the two code-specified design methods for bridge decks used in this study are 

presented. Finally, the results of the reliability analysis for the studied bridge deck 

configurations are discussed. The serviceability of wide-spaced girder bridge decks is 

assessed and the obtained reliability indices are compared. 

Chapter 7: Summary and conclusions. This chapter summarizes the performed 

research and highlights the main findings. Conclusions are drawn and recommendations 

for future work are proposed. 
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Figure 1.1 Typical cross sections of a reinforced concrete deck slab supported by steel or 
prestressed concrete girders 
 

 
Figure 1.2 Deck cross section showing typical bar placement 
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Figure 1.3 Examples of extensive cracking and potholes in concrete bridge deck 
 
 



9 

Reliability Analysis of a Reinforced Concrete Deck Slab Supported on Steel Girders

Finite Element Analysis Field Testing

Material
Modeling

Boundary
Condition

Modeling of Bridge Deck
Testing of a steel Girder Bridge
with 11-axle Truck as Live load

Determination of Partial
Fixity at the Supports

Calibration and Validation of
FE model with Available

Experimental Data

Reliability
Analysis Load ParametersResistance Parameters

Reliability Indices

Conclusions

The Rosenblueth's 2K+1
point estimate method

 
 
Figure 1.4 Flow-chart of the research 
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CHAPTER 2 

LITERATURE REVIEW 

2.1. Behavior and Performance of Deck Slab 

2.1.1. Historical Review 

The effect of in-plane forces on the load carrying capacity of reinforced concrete 

slabs has been an active field of structural engineering research for several decades. In 

1956, Ockleston tested a three-story reinforced concrete building in Johannesburg, South 

Africa, and recorded collapse load three or four times the capacities predicted by yield-

line theory. Ockleston also identified this phenomenon as the effect of compressive 

membrane forces. After a study of the behavior of continuous prestressed concrete slabs, 

Guyon suggested that arching action should be taken into account in designing such slab 

to resist concentrated out-of-plane loads. Other experimental verifications of this effect 

were also carried out by Christiansen, Fredericksen and Park. 

In the late 1950’s, tests were conducted on single panels by Sozen and Gamble at 

the University of Illinois. When bounded by element which could develop horizontal 

reaction, such reinforced concrete panels were found to have flexural capacities 

considerably in excess of the load calculated by Johanson’s yield line theory. The 

additional capacity was attributed primarily to the effect of in-planes forces. Likewise, 

Newmark, in his famous 1948 paper on I-beam bridges, recommends using slab design 

moments which are 30% lower than the theoretical design moment calculated in his 

research because of this additional reserve of strength. He recognized that the strength 



11 

enhancement due to compression membrane action occurred only after yield and that 

eventual collapse took the form of punch-out shear. 

Research in this field originally concentrated on the behavior of building floor 

systems, and most tests were conducted using small-scale models. At the end of 1975, the 

Ontario Ministry of Transportation and Communications decided to develop a code for 

designing highway bridges. A series of tests were undertaken by academic researchers 

and the Ministry’s Research and Development Division. Results showed that large 

reserves of strength existed in deck slabs under static and fatigue loading. This research 

work was supplemented by field tests of actual bridges. It was concluded that a slab’s 

load carrying capacity was increased by in-plane restraints. 

Based on these findings, an empirical design method was proposed, involving an 

isotropic reinforcement layout in the deck. Required reinforcement is considerably less 

than that specified by the AASHTO Code. Some bridge decks in Ontario have been 

designed using the proposed empirical method. Field tests have been conducted in 

Canada on a composite prestressed concrete girder bridge with a deck detailed in 

accordance with the empirical method. The load-deflection curve at the loaded point was 

linear up to about 100 KIPS wheel load level. 

The convenience in construction of such decks, and the savings in the amount of 

reinforcement required, has attracted the attention of researchers in the United State. The 

New York Highway Department conducted a study of the strength of highway bridges 

decks. Under design loads, the stress in reinforcement was found not to exceed 12 KSI. 

When loaded to ultimate, all locations bounded by longitudinal girders failed by 

punching shear. Regardless of the reinforcing pattern used, failure loads always exceeded 

six times the design wheel load for slab bounds by girders. 
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2.1.2. Behavior of Deck Slabs and their Serviceability 

In most of the available literature, the analytical models do not take into account 

the deflection of the girders and the transverse deck slab behavior is analyzed using 

classical beam theory, assuming that the girders provide a rigid support. However, 

because of the girder flexibility, the maximum stresses in a bridge deck can vary 

significantly from the design values. Fang et al. (1988) showed that the negative bending 

moment in bridge decks and the resulting top tensile stresses are very low, much less than 

the positive bending moments and the bottom tensile stress. Their work indicates that, in 

general, the tensile strength of a concrete deck considerably exceeds the top tensile stress 

induced by traffic loads due to the deflection of girders. 

Cao et al. (1996 and 1999) developed a simplified analytical method for the slab-

on-girder bridge deck, and analyzed the behavior of a reinforced concrete bridge deck 

with flexible girders. The analysis was based on the plate theory and was validated using 

the results of the finite-element computations conducted on two different bridge decks. 

They concluded that the design formula in the AASHTO specification overestimates the 

negative bending moments in a slab-on-girder deck. They developed an analytical 

procedure for the evaluation of the maximum negative bending moments in a bridge deck 

by the superposition of the negative bending moment in a deck slab on rigid girders and 

the positive bending moment in a deck slab induced by girder deflection. They found that 

the reduction of the maximum negative bending moment in a deck slab due to girder 

deflection depends on the stiffness ratio of the deck to girder, and the ratio of the girder 

spacing to the span length of the bridge. The maximum negative moment decreases with 

an increase in span length and stiffness of the supporting girders. 

Cao et al. (1996) suggested eliminating most of the top reinforcing bars in a deck. 

They conducted a test to assess the maximum tensile stress, as well as the durability of 

the deck slab in the absence of a top reinforcement. For all considered truck-load 
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positions, the transverse tensile strains at the top of the deck were less than 30% of the 

expected cracking strain of the concrete. However, even though top transverse 

reinforcement is not required to carry traffic loads, they recommended further research on 

the control of temperature and shrinkage cracks. 

In general, the top reinforcing bars are most susceptible to corrosion. Therefore, 

the reduction of the amount of top reinforcement can slow down the deck deterioration. 

Mufti et al. (1999) suggested to simply eliminate the reinforcement in concrete bridge 

decks as one solution for corrosion. A number of tests were conducted to show that the 

behavior of such a deck slab is acceptable, providing a number of ties are installed to 

connect top flanges of adjacent girders. Extra shear studs are necessary in order to insure 

arching action without reinforcement. So far, several bridge decks without reinforcement 

were built. However, an extensive longitudinal cracking was observed between the 

girders. 

The performance of bridge decks is often attributed to serviceability limit state. 

Deck deterioration starts with corrosion of reinforcement when deck is subjected to 

sodium chloride deicers. The process speeds up in a presence of shrinkage cracks. It has 

been reported that the limitation or elimination of these cracks at early stages of deck 

construction significantly increases deck durability. In fact, the deck performance can be 

improved by a better design. The story of the construction of the New Jersey Turnpike 

(Riley 1993) is a good example of such improvement. Originally, bridges were opened to 

traffic in 1951 and after 8 years about 10 percent of slabs had to be replaced, and so far 

about 38 percent of the slabs were replaced. Originally designed deck slabs were 6 ½ IN. 

thick reinforced with bars #5 @ 7-1/2 IN. at the top and bottom in transversal direction 

and bars #4 @ 12 IN. at the top and #5 @ 10 IN. at the bottom in the longitudinal 

direction. After design revision in 1960’s, the replaced new decks have thickness close to 

1 FT (with latex modified concrete wearing surface) and they are reinforced with bars #6 

@ 6 IN. at the top and bottom in transversal direction, and bars #5 @ 6 IN. at the top and 
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the bottom in the longitudinal direction. These new deck slabs with an increased 

thickness and area of reinforcement do not show any deterioration signs after 25 years in 

service. As a result, it was concluded that the increased deck stiffness helps to limit 

restrained shrinkage cracking, and increased percentage of reinforcement can even 

eliminate these cracks. 

Some researchers have suggested that the other way to improve the durability of 

bridge decks can be by using better materials, for example higher strength concrete. 

However, greater compressive strength is not always better or necessary. Mistakes and 

misconceptions concerning structural concrete are discussed by Schrader (1993) in 

articles presented at the ACI seminars on “Repairing Concrete Bridges”. If extra strength 

is gained by adding cement, the cost will increase with only a negligible increase in load-

carrying capacity for reinforced concrete flexural designs. More importantly, there will 

be more shrinkage, especially if there also is as increase in water (even when 

water/cement ratio is kept constant). In addition, higher strength mixes generally become 

more brittle because they have higher modulus of elasticity and produce more hydratation 

heat; thus resulting in more cracking and internally developed stress. Such characteristics 

as flexural strength, thermal shock, and impact resistance, or fatigue strength will also be 

worse for high strength concrete than for ordinary one. From the aforementioned reasons, 

it can be stated that the idea of increasing slab stiffness by using higher strength concrete 

with higher modulus of elasticity is not a good one. 

Allen (1991) made an intensive investigation on the cracking and serviceability of 

reinforced concrete bridge deck. After observation of deck slab designed with the 

empirical method, he outlined some very important facts in the behavior of bridge deck 

which have been very often neglected when considering serviceability. Cracking strength 

of typical bridge decks is an important parameter in the performance of deck, 

compression membrane action is a post-yield phenomenon and strength enhancement due 

to compression membrane action adversely affects the serviceability of decks. Allen 
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visited at least 20 experimental isotropic decks built in North America. Nearly every 

isotropic bridge exhibited more cracking than a typical AASHTO LRFD reinforced deck, 

especially longitudinal crack in positive moment area. 

2.2. Design and Analysis of Bridge Deck 

Techniques used in the analysis and the design of slab-on-girder bridges have 

improved in the last years. Available theoretical methods are varied in their approaches as 

well as their accuracy and assumptions. Bridge superstructure can be idealized for 

theoretical analysis in many different ways. The different assumptions used in the 

formulation and calculations can lead to significant differences in the accuracy of the 

results. The major numerical approaches reported in the literature are: 

1. The orthotropic plate theory; the bridge superstructure is replaced with an 

equivalent plate having different elastic properties in two orthogonal directions. 

2. The Grillage analysis; the bridge is modeled by longitudinal grillage beam 

elements whose constants are usually calculated based on the composite girder-slab 

properties, and by transverse beam elements, based on the slab properties. 

3. Combination of plate and grid analysis. 

4. Finite Element Method. The structure is idealized by continuum elements such 

as shell, plate or solids elements. The different possible combinations of elements used in 

Finite Element have improved. In the past, the first 2-dimensional approaches were using 

shell elements for slab and beam elements for girders. Currently, with 3-dimensional 

approaches, shell elements are used for the girders and solid elements are used to model 

the slab. 

The plane grillage models (Cusens 1975 and Bhatt 1986) shown in Figure  2.1 are 

the most commonly used, particularly in design practice. The bridge deck slab is divided 

into a number of longitudinal and transverse beams lying in the same plane. Each 
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longitudinal beam represents a girder and part of the slab. The properties of such beams 

are determined by the position of the neutral axis, which is dependent on the composite or 

non-composite behavior of the bridge. A transverse grillage beam represents a strip of 

slab and makes the connection between longitudinal elements. Detailed recommendations 

on the implementation of a grillage analysis for slab bridges can be found in West (1973), 

Hambly (1991), and Zhang and Aktan (1997). Such simple FEM models allow only for a 

global evaluation of bridge behavior. The accuracy of these calculations depends on the 

assumed location of the neutral axis in bending elements (O’Brien and Keogh 1998). The 

determination of this location is difficult, especially in bridges where wide cantilevers, 

barriers, or sidewalks cause the neutral axis to change position across the bridge width. In 

such cases, a more complex, 3-dimensional grillage model can be used (O’Brien and 

Keogh 1998 and Zhang and Aktan 1997). In these models, grid beams placed on two 

levels are connected using rigid vertical links. Although both grillage analyses represent a 

simple geometry that is easy to model, they require an elaborate determination of beam 

properties, often based on questionable assumptions. 

For the case of finite element method, in some cases, the slab is divided using 

shell elements and girders are represented using beam elements (Mabsout et al. 1999 and 

Hays et al. 1997). Diaphragms (if considered) are also represented by beam elements. In 

such plane models (Mabsout et al. 1999), centroid of beams coincides with the centroid 

of the slab. To determine the cross-section properties of the beam, the actual distance 

between its neutral axis and the middle plane of the slab must be taken into account. 

Ebeido and Kennedy (1996) performed intensive finite element analysis on skew-

composite girder bridges. They use linear shell element with six degree of freedom at 

each node to model the concrete deck slab. Girders were modeled using three 

dimensional linear beam elements with also six degree of freedoms at each node. These 

beam elements were also used to model diaphragm and cross frame bracing. The 

nonlinear material model allowed for cracking of concrete in tension. The concrete under 
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compression was modeled by an elastic-plastic theory, using yield surfaces based on the 

equivalent pressure stress and the Von-Mises equivalent stress. Constraints were applied 

between the shell node of the concrete deck slab and the beam node of the longitudinal 

steel girders to ensure full interaction. They performed nonlinear analysis using 

ABAQUS by applying incremental load and used the Newton-Raphson procedure to 

achieve convergence. Fang, Worley and Burns (1986) performed testing on bridge deck 

slab designed with the empirical method. They used linear and quadratic thick shell 

elements with three degree of freedom at each nodes to model the slab and three 

dimensional beam elements with six degree of freedom at each nodes located at the girder 

mid-height as shown in Figure  2.2. No slip was assumed between the slab and the girder. 

The effect of concrete cracking was included in the modeling of the deck slab by the 

mean of the smeared cracking approach. A sequential linear approach was used as 

solving method. 

Despite the use of rigid link to connect space frame elements and shell elements, 

and to account for the eccentricity of the girders, it is still difficult with this method to 

include a precise composite action when determining beam stiffness. 

To overcome this problem, shell elements can be used to model the girders 

(Alaylioglu 1997 and Tarhini and Frederic 1992). This seems to be a better solution, 

especially for elements such as steel girders consisting of thin parts. Sometimes, the 

bridge behavior can be strongly affected by the structural components such as sidewalks, 

curbs, and barriers. In such cases, it can be incorrect to model them only by changing the 

thickness of shell elements. Tarhini and Frederic (1992) developed this 3-dimensional 

finite element analysis to study wheel load distribution shown in Figure  2.3. The concrete 

slab was modeled with a linear brick element, with three degree of freedom at each node. 

Linear shell element with six degree of freedom at each node was used to model the web 

and the flanges of the girders. Cross bracing and diaphragm are modeled with three-

dimensional beam element.  
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The application of solid elements also allows for a more detailed investigation of 

local stress and strain distribution. Modeling the slab with solid elements, and the girders 

and diaphragms with shell elements, seems to describe most adequately the bridge 

geometry and physical properties. 

The evaluation of FEM models for bridges shows a tendency towards more 

complex model geometries with a larger number of elements. At the same time, the 

determination of element properties is clearer and stands closer to reality. 

2.3. Reliability of Bridge Structure 

The older bridge code was based on the selection of reasonable upper-bound 

estimate of normal working loads, the use of elastic methods of structural analysis, and 

the provision of some margins in strength. These margins was chosen by the selection of 

allowable working stresses separated by a factor of safety from critical stress, such as the 

yield stress or ultimate stress of the material. These factors were not the same for all 

materials. In 1971, O’Connor expresses the possibility that statistical method of design 

may be adopted in which the emphasis is on probability of failure. This method has been 

adopted now in most bridge design codes and has two basic characteristics: 

1. It attempts to consider all possible limit state and, 

2. It is based on probabilistic methods 

The simplest limit state is the failure of a component under a particular applied 

load. This depends on two parameters: the magnitude of the load as in the sense of how it 

affects the structure, here called the load effect, and the resistance or the strength of the 

component. If the load effect exceeds the resistance, then the component will fail. 

However, both the magnitude of the load effect and the resistance may be subject to 

statistical variation. By knowing the statistical distribution of the load effect and 

resistance, it is then possible to calculate numerically a probability of failure. This 
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method allows for more efficient design and bridge test data can be used to improve the 

accuracy of load and resistance models by reducing the uncertainty caused by the 

idealized assumptions used in analysis.  

Live Load covers the forces produced by vehicles moving on the bridge. What is 

of interest for the designer is the effect of the live load. These effects depends on many 

parameters such as the span length, the truck weight, the axle weight and spacing, the 

position of the truck on the bridge, the volume of traffic (ADTT), girder spacing, and the 

stiffness of structural members. Agarwal and Wolkowicz (1976) and Nowak (1993) 

developed live load model for the AASHTO LRFD which provides an appropriate model 

at the stage of design. Live load models reflecting the actual traffic can be derived using 

Weigh In Motion measurement for a specific site (Nowak et al. 1994, Kim at al. 1996). 

The resistance of a bridge is also a random variable. Tantawi (1986) and Tabsh 

and Nowak (1991) studied the behavior of steel-concrete composite cross section. Nowak 

(1995) also derived statistical parameters for composite and noncomposite steel girder, 

prestressed concrete girder, and reinforced concrete T-beams. 
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Figure 2.1 Grillage model 
 
 
 
 

 
Figure 2.2 Actual composite girder and corresponding finite element model used by 
Burns et al. 
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Figure 2.3 Typical section of the model by Tarhini and Frederic 
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CHAPTER 3 

FIELD TESTING PROCEDURE 

3.1. Introduction 

From a list of bridges with large spacing between girders, provided by the 

Michigan Department of Transportation, a bridge suitable for field testing was selected. 

The main objective of the field tests was to determine the actual behavior of bridge 

superstructure supported by steel girders spaced at more than 10 FT. The selected bridge 

was tested using a three-unit 11-axles truck as live load (the largest live load legally 

permitted in the State of Michigan). The test results were used to calibrate the Finite 

Element Model and to analyze the effect of partial fixity of the support on the behavior of 

reinforced concrete bridge decks. 

3.2. Description of the Selected Bridge Structure 

The selected bridge, S06 of 82291, was built in 1974 and it is located on 

Pennsylvania Road over I-275, near New Boston, Michigan. It is a two span structure 

with a span length of 144 FT, and a cantilever of 12 FT. The total bridge length is 288 

FT, without any skew. The bridge has five steel girders spaced at 10 FT 3 IN, and the 

deck is 9 ½ IN thick (see Figure  3.1 and Figure  3.2). The depth of the steel girders is 60 

IN. The reinforced concrete deck carries one lane in each direction. 
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3.3. Instrumentation and Data Acquisition 

Measurements of mechanical, thermal, electrical, and chemical quantities are 

made by devices called sensors and transducers. The sensor is responsive to changes in 

the quantity to be measured, for example, stress, temperature, position, or displacement. 

The transducer converts such measurements into electrical signals, which, usually 

amplified, can be fed to the data acquisition for the readout and recording of the 

measured quantities. Some devices act as both sensor and transducer. 

3.3.1. Strain Measurement 

While there are several methods of measuring strain, the most common is with a 

strain gauge, a device whose electrical resistance varies in proportion to the amount of 

strain in the device. The most widely used gauge is the bonded metallic strain gauge. It 

consists of a very fine wire or, more commonly, metallic foil arranged in a grid pattern. 

The grid pattern maximizes the amount of metallic wire or foil subject to strain in the 

parallel direction. The cross sectional area of the grid is minimized to reduce the effect of 

shear strain and Poisson strain. The grid is bonded to a thin backing, called the carrier, 

which is embedded between two plastic strips. The separate layers of the gage are bonded 

together; therefore, the strain experienced by the test specimen is transferred directly to 

the strain gauge, which responds with a linear change in electrical resistance. 

Strain transducers are the essential component of the electrical measurement 

technique applied to the measurement of mechanical quantities, usually calibrated in 

shop; they have a high level of accuracy, and they are easy to install in the field. Figure 

 3.3 shows a typical transducer. 

In practice, the strain measurements rarely involve quantities larger than a few 

millistrain (ε x 10-3). Therefore, there is a need to measure very small changes in 

resistance. As a result, in most cases, strain gages have bridge configuration with a 
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voltage excitation source. The general Wheatstone bridge, developed by Sir Charles 

Wheatstone in 1843, allows the measurement of electrical resistance; it consists of four 

resistive arms with an excitation voltage applied across the bridge and an output voltage. 

The Wheatstone bridge is well suited for the measurement of resistance change in a strain 

gage, particularly, the full bridge circuit configuration, shown in Figure  3.4, which can 

eliminate temperature effects. 

In this study, the strain transducers were attached to the bottom flanges of the 

girders at a distance of 26 FT (Figure  3.5) from the support on the west span (it was not 

possible to install them closer to the midspan because it would have required closure of a 

traffic lane on I-275), and close to support (Figure  3.6) to measure the moment restraint 

provided by the support. Strain transducers were connected to the SCXI data acquisition 

system by the National Instruments (Figure  3.7). 

3.3.2. Data Acquisition System 

Strain transducers and LVDT’s are connected to the SCXI data acquisition system 

(manufactured by National Instruments). The data acquisition mode is controlled from 

the external PC notebook computer, and collected data are processed and directly saved 

in the PC’s hard drive. The data acquisition system connected to the PC notebook 

computer is shown in Figure  3.7. 

The data acquisition system consists of a four slot SCXI-1000 chassis, one SCXI-

1200 data acquisition module, two SCXI-1100 multiplexer modules, and one notebook 

computer with Labview software. A multiplexer is a switch arrangement that allows 

many input channels to share one amplifier and one analog-digital converter (Figure  3.8). 

The power for all components is provided by an electric generator. The generator also 

supplies excitation for strain transducers through the AC to DC converter. 
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The SCXI-1000 chassis integrates the operation of multiple SCXI modules with a 

SCXI-1200 module. The chassis bus includes guarded analog buses for signal routing and 

digital buses for transferring data and timing signals. 

The SCXI-1200 data acquisition module is a multifunction analog, digital, and 

timing module. It is connected directly to the standard PC parallel printer port. The 

module has a 12-bit analog to digital converter (ADC) and a sustained sampling rate of 

20 kHz in the Standard Parallel Port (SPP) mode. It acquires data from and controls 

several SCXI signal conditioning modules installed in the same chassis. 

The SCXI-1100 is a 32 differential channel multiplexer amplifier module. It can 

be configured to sample a variety of millivolt and volt signals by using the selectable gain 

and bandwidth settings. The signals from the strain transducers are connected to the 

SCXI-1100 module. Each SCXI-1100 module multiplexes the 32 channels into a single 

channel of the SCXI-1200 module. Several SCXI-1100 modules can be added to 

multiplex hundreds of signals into a single channel on a SCXI-1200 module. Conditioned 

signals from SCXI-1100 are passed along the SCXIbus in the backplane of the chassis to 

the SCXI-1200 data acquisition module. LabView was used to control the SCXI-1200 

module and signal conditioning functions on the SCXI modules. 

LabView is the data acquisition and control programming language installed in 

the PC. It has necessary library functions for data acquisition, analysis, and presentation. 

The data acquisition process, such as a sampling rate and data acquisition mode, is 

controlled with options in LabView. After the data acquisition, the voltage data can be 

converted into strains by using the data analysis routines in LabView. The results are 

displayed on the computer screen in real time and saved in the PC’s hard drive. With 

LabView, the SCXI system can be controlled according to the user’s needs, objectives, 

and routines. 

The current system is capable of handling 64 channels of strain or deflection 

inputs. Up to 32 additional channels can be added if required. A portable field computer 
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is used to store, process and display the data on site. A typical data acquisition setup is 

shown in Figure  3.9. The data from all instruments is collected after placing the trucks in 

desired positions or while trucks are passing on the bridge. For the normal speed tests, a 

sampling rate of 300 per second was used for calculation of dynamic effects. This is 

equivalent to 11.4 samples per meter at a truck speed of 95 km/h. The real time responses 

of all transducers are displayed on the monitor during all stages of testing, assuring safety 

of the bridge load test. 

3.4. Live Load for Field Testing 

Over the years, live loads on bridges have considerably increased. For example, in 

1950 the maximum observed gross vehicle weight (GVW) of a truck recorded in 

Michigan was approximately 110 KIP (Michigan Bridge Analysis Guide 1983); in 1995, 

in the weigh-in-motion study carried out by Nowak and Laman at the University of 

Michigan on several highway bridges in southeast Michigan, the maximum GVW of 250 

KIP was recorded. While in most states the maximum legal gross vehicle weight for 

commercial trucks is 80 KIP, in Michigan the maximum legal gross vehicle weight can 

exceed 170 KIP. There are more than 100,000 registered commercial trucks in Michigan; 

approximately 15% of these can carry more than 80 KIP and approximately 1% can carry 

over 170 KIP (Michigan Department of Transportation Position Paper on Trucks and 

Transportation, 1998), but since these trucks represent only a third of the 300,000 trucks 

operating in Michigan, it is estimated that less than 5% of all trucks in Michigan are over 

80 KIP.  

In the field tests, the measurements were taken using a three-unit 11-axle truck 

with known weight and axle configuration. The actual axle weights of the test trucks 

were measured at a weight station prior to the test. Figure  3.10 shows the three-unit 11-
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axle truck used in the test and Figure  3.11 shows its actual axle weight and axle spacing 

configuration. 

The truck was driven over the bridge at crawling speed to simulate static loading. 

For each run, the strain measurement was recorded simultaneously using all 10 strain 

transducers. Table  3.1 shows the sequence of test runs. 
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Table 3.1 Sequence of test runs 
Run # Loaded Lane Truck Position 

1 North Center 

2 South Center 

3 North Curb 

4 South Curb 

5 Center Center 
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Figure 3.1 Cross section of the tested steel girder bridge 
 
 
 

 
Figure 3.2 Strain transducers location on the tested bridge 
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Figure 3.3 A typical strain transducer 
 
 
 
 

 
Figure 3.4 Wheatstone full bridge circuit configuration 
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Figure 3.5 Removable Strain Transducer attached to the botttom flange 
 

 
 

Figure 3.6 Strain transducer attached near support 
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Figure 3.7 Data acquisition system connected to the PC notebook computer 
 
 
 

 
Figure 3.8 General data acquisition system 
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Figure 3.9 SCXI Data Acquisition System Setup 
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Figure 3.11 Three-unit 11-axle truck used in the field tests 
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Figure 3.12 Axle weight and axle spacing configuration 
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CHAPTER 4 

ANALYTICAL MODEL FOR BRIDGE STRUCTURES 

4.1. General 

One of the main objectives of the study was to develop a numerical model which 

would accurately predict the behavior of bridge structures, more particularly the behavior 

of reinforced concrete deck slab, and would be easily applicable for a wide range of 

highway bridges. 

To analyze a bridge superstructure, several methods can be used, depending on 

the bridge’s structural characteristics, geometric configuration, and support conditions. 

The conventional methods include orthotropic plate theory, plane grillage model, space 

frame method, finite strip method, and finite element method. The finite element method 

was implemented for analysis in this study because of its power and versatility. However, 

since one of the primary objectives of this research is to study the deck behavior, the 

modeling of the deck slab becomes more significant. Hence, the difficulty was to select a 

finite element model that can predict the behavior of the entire superstructure and can be 

at the same time sufficiently accurate to model the response of a reinforced concrete deck 

slab. 

This study was focused on bridges supported by steel girders, therefore, concrete 

and steel (structural steel and reinforcing steel) are two materials of importance in the 

analytical program. A conventional linear elastic analysis is insufficient, because it 

cannot predict the effect of concrete cracking and steel yielding in the structural behavior. 

As a result, material nonlinearity was included for both steel and concrete. Because the 
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expected bridge deflections could be large, geometrical nonlinearity was also included 

into the model. 

In order to validate the accuracy of the nonlinear material model for steel and 

concrete used in this study, results from three laboratory tests of slabs published in the 

literature as well as the field test data from the actual bridge described in Chapter 3 were 

used and compared with the finite element model calculations. The analysis was 

performed using ABAQUS finite element program available at the University of 

Michigan. 

4.2. Introduction to ABAQUS 

ABAQUS, Inc. is one of the world leading providers of software for advanced 

finite element analysis. It has been adopted by many major corporations across different 

engineering disciplines. ABAQUS, Inc. can provide solutions for linear, non-linear, and 

explicit problems. Their powerful graphic interface allows accuracy to define the model 

and is particularly useful to visualize and present analytical results. However, the easier 

finite element software is to use, the more careful the user has to be when interpreting the 

results. Indeed, it is always easier to obtain results from a finite element program than to 

prove their validity. Finite element software is a powerful tool, but it has to be used with 

caution. 

4.3. Description of Available Elements 

ABAQUS has an extensive element library to provide a powerful set of tools for 

solving various problems. All these elements are divided into different categories 

according to five mains characteristics: their family, their degrees of freedom, their 

number of nodes, their formulation and finally their integration. The elements are given 

names that identify each of these five very important aspects. 
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Figure  4.1 shows the element families that are most commonly used in a stress 

analysis. The main difference between the element families is the geometry type that each 

element family represents. 

The most important degrees of freedom for a stress/displacement simulation are 

translations, and for shell and beam elements, rotations at each node. They are the 

fundamental variables calculated in the analysis. Some additional degrees of freedom can 

exist in addition to displacement degrees of freedom at each node, as, for example, 

temperatures degree of freedom for thermal-stress analysis. 

Displacement or other degrees of freedom are calculated at the nodes. At any 

other point in the element, the displacements are obtained by interpolating from the nodal 

displacements. Usually, the interpolation order is determined by the number of node used 

in the element. For example, elements which have nodes only at their corners, such as a 

8-node brick shown in Figure  4.2(a), use a linear interpolation and are often called linear 

element or first-order elements. Elements with midside nodes, such as a 20-node brick 

shown in Figure  4.2(b), use quadratic interpolation and are often called quadratic 

elements or second-order elements. 

An element’s formulation refers to the mathematical theory used to define the 

element’s behavior. The most common formulations provided by ABAQUS are the 

Lagrangian formulation, mainly used in stress/displacement analysis, and the Eulerian 

formulations, mainly used in fluid mechanics simulations. In addition to these standard 

formulations, ABAQUS has also alternative formulations such as, for example, a hybrid 

formulation to deal with almost incompressible or inextensible behavior. 

ABAQUS uses numerical techniques to integrate various quantities over the 

volume of each element, such as for instance the displacement. The Gaussian quadrature 

is used for most elements; therefore, material responses are evaluated at each integration 

point in each element. Reduced or full integration can be chosen for most of the 

continuum elements. 
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Despite the fact that they provide less accuracy than the second order elements, 

first order elements were selected in this research because they require less computational 

time and more importantly, they seem to be more stable when used with the concrete 

damaged plasticity model. Reduced integration scheme was also used. Reduced 

integration uses a lower order integration to form the element stiffness. It reduces running 

time, especially for three dimensions. For example, 20-node brick fully integrated 

element has 27 integrations points (3x3x3), while 20-node brick with reduced integration 

has only 8 (2x2x2); therefore, element assembly is roughly 3.5 times more costly for the 

fully integrated element. 

When using the first order, reduced integration elements, hourglassing can be a 

problem. Since the elements have only one integration point, it is possible for them to 

distort in such way that the strains calculated at the integration point are all zero, which, 

in turn, leads to uncontrolled distortion of the mesh. To overcome this problem, the 

enhanced hourglassing control option was enabled, concentrated load were avoided and 

boundary conditions were distributed over a number of adjacent nodes. 

Finally, elements using hybrid formulation were found to give a more stable 

response than non-hybrid elements. Usually hybrid elements are intended for use with 

almost incompressible material behavior when a very small displacement produces 

extremely large changes in pressure. In this situation, a purely displacement-based 

solution is too sensitive to be used numerically. With the hybrid formulation, this 

singularity is removed from the system by treating the pressure stress independently. 

Hybrid element have more internal variables and are slightly more expensive but they 

showed better results when used with the concrete material model as shown later in this 

chapter. 



39 

4.4. Finite Element Analysis Methods for Bridges 

There are different analytical methods to analyze bridge superstructure. In the past 

decade, with the increase of computational power, these methods have improved in 

accuracy and computation time; however, each theoretical method varies with regard to 

approach, assumptions and limitations and therefore varies a lot in their applicability. 

While some methods focus on the overall behavior of the structure, others concentrate on 

the modeling of parts of the bridge, such as a girder, etc. These different methods have 

been presented in details in chapter 2. 

In this study, a three-dimensional model was selected to investigate the behavior 

of the considered bridges. As shown in Figure  4.3, the web and flanges of steel girders 

are modeled with 4-node shell elements. Each node has six degrees of freedom (three in 

translation and three in rotation). The reinforced concrete deck slab is modeled using 8-

node brick element, each node having three degree of freedom. Each reinforcing rebar is 

modeled by means of truss elements embedded into the deck slab at their exact depth and 

with accurate spacing. Since this study concentrated on stress distribution within the 

reinforced concrete deck slab, special attention was paid to the meshing process. As 

shown later in this chapter, it was observed that with this particular type of element, in a 

nonlinear analysis, four layers of elements were giving good results in terms of 

stress/strain distribution and load/deflection behavior. The structural effects of the 

secondary members such as sidewalk and parapet were also taken into account in the 

finite element model of the tested bridge. As shown in Figure  4.3, transverse bracing and 

cross framed diaphragms were also modeled using truss elements. 

4.5. Material Models 

The two materials used in this research are concrete and steel; reinforcing steel is 

used for the rebars and structural steel is used for the girders. Rather than attempting to 
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develop complicated material models with a complete mechanical description of the 

behavior of concrete, reinforcement, as well as their interaction, the built-in material 

models available in ABAQUS were used in this study. These models efficiently represent 

the main parameters governing the response of structural concrete. 

4.5.1. Material Model for Concrete 

The concrete model used in this study is the concrete damaged plasticity model 

available in ABAQUS. This model is based on the assumption of isotropic damage and is 

designed for applications in which concrete is subjected to arbitrary loading conditions. 

The model takes into consideration the degradation of the elastic stiffness induced by 

plastic straining both in tension and compression. 

The model assumes that the main two failure mechanisms are tensile cracking and 

compressive crushing of concrete. The evolution of the failure surface is controlled by 

two variables, pl
tε and pl

cε , which are referred to as tensile and compressive equivalent 

plastic strains, respectively.  

In this study, the Poisson coefficient (ν) of 0.15 was used for concrete and the 

concrete density of 150 PCF was used in the computation of the dead load. 

4.5.1.1 Uniaxial Tension Behavior 

Tensile behavior of concrete is a key factor in serviceability considerations such 

as the assessment of crack spacing and crack width, concrete and reinforcement stresses 

and deformations. The stress-strain response of a concrete member in uniaxial tension, 

Figure  4.4, is initially almost linear elastic. Near the peak load, the response softens due 

to microcracking, and, as the tensile strength is reached, a crack forms. However, the 

tensile stress does not instantly drop to zero; instead the carrying capacity decreases with 

increasing deformation, i.e. a strain-softening or quasi brittle behavior can be observed. 
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Hillerborg (1976) introduced the “fictitious crack model” after which the 

ABAQUS model is developed. Under uniaxial tension the stress-strain response follows a 

linear elastic relationship until value of the failure stress, 0tσ , is reached. The postfailure 

behavior is modeled with the “tension stiffening” option available in ABAQUS which 

allows the user to define the strain-softening behavior for cracked concrete (See Figure 

 4.5). 

The tension stiffening is very important not only to define the postcracked 

behavior of concrete, but also to model its interaction with the reinforcing rebars in a 

simple manner. Tension stiffening can be specified by means of postfailure stress-strain 

relation or by applying a fracture energy cracking criterion, as discussed below. 

In reinforced concrete, the postfailure behavior is described by the postfailure 

stress expressed as a function of the cracking strain, ck
tε . The cracking strain, as illustrated 

in Figure  4.6, is defined as the total strain minus the elastic strain; that is el
tt

ck
t εεε −= , 

where Et
el
t /σε = . Estimation of the needed tension stiffening depends of several factors 

such as the density of reinforcement, quality of the bond between rebar and concrete, 

relative size of concrete aggregate compared to the rebar diameter, and the mesh. A 

reasonable starting point for a typical reinforced concrete structure modeled with a fairly 

detailed mesh is to assume that the strain softening after failure reduces the stress linearly 

to zero at a total strain of about 10 times the strain at failure. However, the ABAQUS 

manual advices that this parameter should be calibrated for each particular case and 

moreover that, in some cases, the specification of a postfailure stress-strain relationship 

introduces unreasonable mesh sensitivity in the results, especially if cracking occurs in 

localized regions. Therefore, a second approach is available, the fracture energy cracking 

criterion first defined by Hilleborg (1976). Hilleborg defined the energy required to open 

a unit area of crack, Gf, as a material parameter using brittle mechanics concepts. With 

this approach the concrete behavior is described by a stress-displacement response rather 

than a stress-strain response. Under tension, a concrete specimen cracks across some 
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section. After it has been pulled apart sufficiently for most of the stress to disappear, its 

length is determined primarily by opening of the crack. The opening does not depend on 

the specimen length. In this model, the postfailure stress is specified as a tabular function 

of cracking displacement, as shown in Figure  4.7. Alternatively, the fracture energy can 

be specified directly as a material property, but then a linear loss of strength after 

cracking, as shown in Figure  4.8, is assumed. The cracking displacement at which 
complete loss of strength takes place is, therefore, 00 /2 tft Gu σ= . Recommended values 

of fracture energy Gf range from 0.22 LB/IN to 0.67 LB/IN. 

The ABAQUS manual (2004) stresses the importance of the tension stiffening 

parameters since, generally, more tension stiffening makes it easier to obtain numerical 

solutions. Too little tension stiffening will cause the local cracking failure in concrete to 

introduce temporarily unstable behavior in the overall response of the model. 

In this study, the tension stiffening was modeled using the stress-displacement 

approach proposed by Hillerborg. The postfailure stress was defined as a bilinear 

function of cracking displacement as shown in Figure  4.9. As a first approximation, the 

cracking displacement of point b, ub in Figure  4.9, is obtained using the fracture energy 
cracking criterion described by the equation 0/2 tfb Gu σ= . Instead of defining the stress 

value of point b, σb, equal to zero, as it would be the case in the traditional fracture 

energy cracking criterion, σb is set equal to a percentage of the cracking stress, σt0 

(between 10 to 20%). Then, a third point, point c in Figure  4.9, is defined to complete the 

bilinear tension stiffening. Usually, cracking displacement of point c, uc, is set as twice 

the cracking displacement ub, and the stress value of point c, σc is set at 1% of σt0 

(minimum stress value that can be input in this model). If numerical solutions cannot be 

obtained with these parameters, ub and uc can be increased as shown in Figure  4.9. 
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4.5.1.2 Uniaxial Compression Behavior 

Under uniaxial compression concrete has a linear response until the value of 

initial yield is reached, 0cσ . In the plastic regime, the response is typically characterized 

by stress hardening up to, cuσ , followed by a decrease of the carrying capacity with an 

increase of deformation, i.e. strain softening in compression, as shown in Figure  4.10. 

In this study, the compressive stress-strain curve was based on the model 

proposed by Hognestad (1951). The ascending branch is modeled with a parabolic 

function and the descending branch is modeled with a linear function. Figure  4.11 shows 

the stress-strain relationship of the conventional concrete by Hognestad. The following 

equations represent the model: 
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For 00 εεε <≤ c  ( )[ ]0
' 1 εε −−= ccc Zff      (4.2) 

 

where εc = strain in concrete at any particular point, fc = stress in concrete 

corresponding to εc, f′c = maximum compressive stress, εo = strain corresponding to f′c, 

taken as 2 f’
c/Ec, and Z = slope of the descending branch. The values of constants [ f’c, εo, 

Z] in Eqs. (4.1) and (4.2) used in this research are listed in Chapter 5. 

To define the stress-strain behavior of plain concrete in uniaxial compression 

outside the elastic range, ABAQUS requires the user to input a tabular data of the 

compressive stress as a function of the inelastic strain, in
cε . As illustrated in Figure  4.12, 

the compressive inelastic strain is defined as the total strain minus the elastic strain, that 

is el
cc

in
c εεε −= , where Ec

el
c /σε =  and the elastic modulus E is calculated using the 

following equation: 

 
KSIfE c 3605000,57 , ==        (4.3). 
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4.5.1.3 Concrete Plasticity 

One of the main parameters which define the concrete damaged plasticity model of 

ABAQUS is the yield function. The yield surface makes use of two stress invariants of 

the effective stress tensor, the hydrostatic pressure stress. 

 

( )σtracep
3
1

−=         (4.4) 

 

where the effective stress tensor is defined as: 

 

( )plD εεσ −= :         (4.5) 

 

and the Huber-Mises equivalent effective stress. 

 

( )SSq :
2
3

=          (4.6) 

 

where S is the effective stress deviator, defined as IpS +=σ  

The model makes use of the yield function of Lubliner et al. (1989), with the 

modifications proposed by Lee and Fenves (1998) to account for different evolution of 

strength under tension and compression. This yield criterion based on the Mohr-Coulomb 

and Drucker-Prager yield criterion presented in Figure  4.13 take into account the fact that 

an increase in hydrostatic compressive stress produces an increased ability of concrete to 

resist yield. Also, concrete exhibits different yield stresses in tension and compression. 

The Mohr-Coulomb and the Drucker-Prager yield criteria are a generalization of the 

Tresca and Huber-Von Mises criteria respectively that accounts for the influence of 

hydrostatic stress. 

In terms of effective stresses (Equation 4.5), the yield function takes the form 
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Here, maxσ  is the maximum principal effective stress, cb σσ / is the ratio of 

equibiaxial compressive yield stress to uniaxial compressive yield stress, and Kc is the 

ratio of the second stress invariant on the tensile meridian (q(T.M.) on Figure  4.14) to that 

on the compression meridian (q(C.M.) on Figure  4.14), at initial yield for any given value 

of the pressure invariant p such that the maximum principal stress is negative; it must 

satisfy the condition 15.0 ≤< cK . Typical yield surfaces are shown in Figure  4.14 for the 

deviatoric plane and Figure  4.15 for plane stress conditions. 

4.5.2. Modeling of Reinforcement in FEM 

In order to correctly analyze the behavior of reinforced concrete deck slab, it was 

very important to properly and accurately represent the different reinforcement 

configurations of each different deck such as, rebar diameter, rebar spacing and rebar 

depth. Up until now, most of the Finite Element softwares were modeling rebar by means 

of “layer” whose thickness, t, was calculated as a function of the rebar cross section area, 

A, and rebar spacing, s, using the equation t = A/s. These layers were then integrated in 

the stiffness matrix of the model to represent the effect of reinforcement on the structure 

behavior. This method was proved to be accurate to describe the overall behavior of the 
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structure but was not precise enough to accurately measure the stresses in the rebar. Since 

it is significant for this research to be able to read precisely these stresses, a new 

approach is proposed. Each individual rebar is modeled using a one dimensional truss 

element with a circular cross section area equal to the area of each rebar. They are 

defined with the metal plasticity model presented in the next paragraph to describe the 

behavior of the rebar material and are embedded in the mesh of a 8-node brick element 

used to model the concrete. With this modeling approach, the concrete behavior is 

considered independently of the rebar. The embedded element technique in ABAQUS is 

used to specify that an element or group of elements, the steel rebars, lies embedded in 

the host element, the concrete deck slab as shown in Figure  4.16. ABAQUS will search 

for the geometric relationships between nodes of the embedded elements and the host 

elements; if a node of an embedded element lies within a host element, the degree of 

freedom of that node is eliminated and the node becomes an embedded node. The degrees 

of freedom of the embedded node are constrained to the interpolated values of the 

degrees of freedom of the host element. 

Effects associated with the rebar/concrete interface, such as bond slip, are 

modeled approximately by introducing some tension stiffening into the concrete 

modeling, as presented earlier, to simulate load transfer across cracks through the rebar. 

Defining rebar as element by itself is a tedious and complex job but essential to correctly 

capture the behavior of the concrete deck slab. 

4.5.3. Material Model for Steel 

4.5.3.1 Steel in Tension 

The stress-strain characteristics of reinforcing steel used as reinforcing steel (hot-

rolled low-carbon steel bar), in tension, Figure  4.17, exhibits an initial linear elastic 
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portion, SSs E εσ = , a yield plateau at ys f=σ  beyond which the strain increases with 

little or no change in stress, and a strain-hardening range until rupture occurs at the 

tensile strength, sus f=σ . Various steel grades are usually defined in terms of yield 

strength fy. The extension of the yield plateau depends on the steel grade; its length 

generally decreases with increasing strength. In the present work, since the behavior of 

the reinforced concrete deck slab is not studied after yielding of the rebar, a perfect 

plastic idealization of the stress-strain response of reinforcement is sufficient for this 

study (Figure  4.18). Therefore, only the Young modulus Es, whose nominal value is 

taken as 29,000 KSI, and the yielding stress, whose nominal value is equal to 60 KSI, 

need to be inputted into ABAQUS. 

4.5.3.2 Plasticity and Yield Surface 

Perfect plasticity means that the yield stress does not change with plastic strain. 

The Von Mises yield surfaces are used in the model. As shown in Figure  4.19 it assumes 

that yielding of the metal is independent of the equivalent pressure stress, observation 

which is confirmed experimentally for most metals. This model, although quite simple is 

accurate enough for the present, as shown in the material verification part below. 

4.6. Solution Methods 

ABAQUS combines incremental and iterative procedures for solving nonlinear 

problems. These procedures involve the following principles: 

• The Newton-Raphson method to solve nonlinear equations 

• The determination of convergence 

• The definition of loads as a function of time 

• The automatic choice of time increment 
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The objective of the analysis is to determine the nonlinear load-displacement 

curve for a structure as shown in Figure  4.20. In a nonlinear analysis the solution cannot 

be calculated by solving a single system of linear equations, as it would be done in a 

linear problem. Instead, the solution is found by specifying the loading as a function of 

time and incrementing time to obtain the nonlinear response. Therefore, the simulation is 

divided into a number of time increments and finds the approximate equilibrium 

configuration at the end of each time increment. Using the Newton-Raphson method, it 

often takes ABAQUS several iterations to find an acceptable solution for each time 

increment. 

4.6.1. The Newton-Raphson Method 

Newton and Raphson used ideas of the calculus to generalize an ancient method 

to find the zeros of an arbitrary equation f(x) = 0. The underlying idea is the 

approximation of the function f(x) by the tangent lines as shown in Figure  4.21. Let r be a 

root (also called a "zero") of f(x), that is f(r) = 0. Assume that 0)(' ≠rf . Let x1 be a 

number close to r (which may be obtained by looking at the graph of f(x)). The tangent 

line to the graph of f(x) at (x1, f(x1)) has x2 as its x-intercept. From Figure  4.21, we see 

that x2 is getting closer to r. Easy calculations give 
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Since we assumed 0)(' ≠rf , we will not have problems with the denominator being 

equal to 0. We continue this process and find x3 from the equation 
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This process generates a sequence of numbers { }nx  that approximate r. This technique of 

successive approximations of real zeros is called Newton-Raphson Method. 

 

4.6.2. Steps, Increments and Iterations 

Since these terms will be used often in the next paragraph, it is important for the 

reader to understand the differences between a step, an increment and an iteration. A step 

is a subdivision of the time history of a simulation. Each step, defined by the user, 

consists of an analysis procedure options, loading options, etc…Different loads, 

boundary conditions, analysis procedures can be defined in each step. An increment is a 

subdivision of a step. In nonlinear analysis each step is divided in increments so that a 

nonlinear solution can be calculated. The user suggests to the software the size of the first 

increment, and ABAQUS automatically chooses the size of the subsequent increments. 

The user can also define a maximum and a minimum for the size of increments. An 

iteration is an attempt at finding an equilibrium solution within an increment. If the 

model is not in equilibrium at the end of the iteration, ABAQUS tries another iteration. If 

after a given number of iterations equilibrium is not reached, the software may reduce the 

increment size and try to find a solution. 

4.6.3. Convergence and increments 

Consider the external forces, P, and the internal (nodal) forces, I, acting on a body 

as shown in Figure  4.22. The internal loads acting on a node are caused by stresses in the 

elements that are attached to that node. The body is in equilibrium if and only if the 

summation of forces at each node is equal to zero, therefore the basic equation of 

equilibrium is P-I = 0.  
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In the analysis, the load is increased by a small increment ∆P and a correction 

displacement, ca, is calculated for the structure using ∆P and the structure’s tangent 

stiffness, K0, which is based on the structure configuration at u0 (see Figure  4.23), in the 

equilibrium equation: 

 

[ ]{ } { }K u F=          (4.10) 

 

Where [K] is the overall stiffness matrix, {u} is the vector of unknown nodal 

displacements, and {F} is the vector of applied equivalent forces on the system. Using ca, 

the structure configuration is updated to ua (ua = u0 + ca). Then, the software computes 

the structure’s internal forces, Ia, for this new configuration. The difference between the 

applied load and P, and Ia is calculated as, Ra = P – Ia where Ra is the residual force for 

this iteration. If Ra is zero at every degree of freedom in the model, point a in Figure  4.23 

would be on the load deflection curve and the structure would be in equilibrium. In a 

nonlinear problem, Ra will never be exactly zero, so it is compared to a tolerance value 

specified by the user. If Ra is less than this residual tolerance at all nodes, the solution is 

accepted as being in equilibrium. In this study the tolerance was set at 0.5% of the 

average force in the structure as recommended by the ABAQUS manual. 

If Ra is less than the current tolerance value, P and Ia are considered to be in 

equilibrium and ua is a valid equilibrium configuration for the structure. However, before 

ABAQUS accepts the solution, it also checks that the last displacement correction, ca, is 

small relative (less than 1% in this study) to the total incremental displacement. Both 

convergence checks must be satisfied before a solution is said to have converged. 

If one of the checks does not converge, ABAQUS performs another iteration to 

try to bring the internal and external forces into balance. First, a new stiffness matrix, Ka, 

is computed for the structure based on the updated configuration, ua. Using this new 

stiffness with the residual Ra in the equation 4.9 above, we obtain another displacement 
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correction, cb that brings the system closer to equilibrium as shown in Figure  4.24. A new 

force residual, Rb, is calculated using the internal forces from the structure’s new 

configuration, ub. Again, the largest force residual at any degree freedom is compared 

against the force residual tolerance, and the displacement correction for the second 

ieration, cb, is compared to the increment of displacement. If necessary, further iterations 

are performed. 

For each iteration, ABAQUS forms the stiffness matrix of the structure and solves 
the system of equations [ ]{ } { }K u F=  as it would do for a linear analysis. Therefore, the 

computational cost of each iteration is very similar to the cost of a complete linear 

analysis; and since numerous iterations are needed to obtain a solution, computational 

time for a nonlinear analysis can be many times greater than the computational time of a 

linear analysis. For example in this study, some analysis took as long as 24 hours of 

computational time. The number of iterations needed to find a converged solution for a 

time increment will vary depending on the degree of nonlinearity of the problem. With 

the default incrementation control, if the solution has not converged after 16 iterations or 

if the solution appears to diverge, the program stops the increment and starts again with a 

new increment size set to 25 % of its previous value. If the solution still fails to converge, 

the increment size is reduced again. This process is continued until a solution is found. If 

the time increment becomes smaller than the minimum defined by the user or more than 

5 attempts are needed, the program stops the analysis. If two consecutive increments 

converge in less than 5 iterations, the program automatically increases the increment size 

by 50%. Those default automatic incrementation controls were used for this study but 

could be adjusted for a given problem. 

4.7. Material Model Verification 

4.7.1. Example 1: One Way Reinforced Concrete Slab 
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4.7.1.1 Problem Description 

Jain and Kennedy (1974) performed an extensive test program on reinforced 

concrete slab. Their research was aimed to develop a precise knowledge of the yield 

criterion for slab. One of the specimens they tested is a 30 IN long by 18 IN wide slab as 

shown in Figure  4.25. The specimen is 1.5 IN thick. The reinforcement consist of plain 

mild steel BB rods with an 3/16 IN diameter spaced at 2.57 IN longitudinally and spaced 

at 2.15 IN transversely. The first layer of steel (longitudinal steel) was placed at 3/16 IN 

clear cover, and the second layer (transversal steel), orthogonal to the first, was placed 

directly over the first. Both ends of each reinforcing bar were hooked as a safeguard 

against bond failure. The slab was loaded with an uniaxial moment generated by means 

of two uniformly distributed line loads across the slab width and symmetrically placed 

about the middle line of the slab at 6 IN of each support. 

4.7.1.2 Modeling and Material Properties 

The symmetry of the slab problem suggests that only half of the slab needs to be 

modeled. 8-nodes linear brick elements with reduced integration are used to model the 

concrete. As described earlier in this chapter, the enhanced hourglass control and hybrid 

formulation are used for this element. Because bending is the primary mode of 

deformation, a minimum of four elements are needed through the thickness of the model 

to capture the response adequately and to have enough stress calculations points so that 

the response is reasonably smooth. 21 elements are used along the half slab and 26 

elements are used transversely (Figure  4.26). In order to avoid stress concentration at the 

support, an additional row of element is added behind the support. As shown in picture 

Figure  4.27, the reinforcing bars were modeled using truss element and were embedded 

into the slab elements. Perfect bond between concrete and the rebars was assumed. 
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The concrete damaged plasticity described earlier was used to implement the 

material properties into the Finite Element Program. The compressive strength of 

concrete, f’
c, was 4700 PSI, and the stress-strain curve was modeled using the Honegstad 

model described earlier (Figure  4.28). The postfailure stress was defined as a bilinear 

function of the cracking displacement curved with σt = 300 PSI, σb.= 50 PSI, ub = 0.01 

IN, σc = 3 PSI and uc = 0.1 IN. The steel was modeled with a perfect plastic curve. 

4.7.1.3 Solution Control Parameters and Loading 

Reinforced concrete solutions involve regimes where the load displacement 

response is unstable. The Riks procedure available in ABAQUS is designed to overcome 

difficulties associated with obtaining solution during the unstable phases of the response. 

It assumes proportional loading and develops the solution by stepping along the load-

displacement equilibrium line with the load magnitude included as an unknown. In this 

particular example, the analysis was run in displacement control. The total imposed 

displacement was equal to 0.3 IN and the first increment was set at 0.1% of this total 

displacement. The load was measured at the support and the deflection was measured at 

midspan. 

4.7.1.4 Analysis Results 

As we can see in the Figure  4.29, the results between the experiment and the 

Finite Element Model are in very good agreement in term of moment versus deflection. 

The Finite Element Model exhibits a slightly stiffer behavior in the post-cracking portion 

of the curve, but despite this, the program is still able to accurately capture the cracking 

and yielding load. The deformed shape of the slab is shown in Figure  4.30. 
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4.7.2. Two Way Reinforced Concrete Slab 

4.7.2.1 Problem Description 

McNeice (1967) carried out a number of tests on two way slab. The modeled slab 

was 36 IN square by 1.75 IN thick with an isotropic mesh of 0.85% placed at a depth of 

1.31 IN. The slab was supported at four corners and tested under a central load. The 

deflection was measured at several points at the edge of the slab and close to the center of 

the slab shown as points a, b, c, and d in Figure  4.31. 

4.7.2.2 Modeling and Material Properties 

The symmetry of the slab suggests that only a quarter of the slab needs to be 

modeled. As in the one way slab, 4 layers of 8-nodes linear brick elements with reduced 

integration are used to model the concrete. The enhanced hourglass control and the 

hybrid formulation are also used in this problem. In order to avoid stress concentration, 

one more row of element was added on the two external edges, behind the support, and 

rather than using a concentrated load, a pressure load was applied on a circular surface 

element of 1.5 IN diameter as shown on Figure  4.32. As shown in Figure  4.33 the 

reinforcing bars were modeled using truss element and were embedded into the slab 

elements. Perfect bond between concrete and the rebars was assumed. 

The concrete damaged plasticity described earlier was used to implement the 

material properties into the Finite Element Program. The compressive strength of 

concrete, f’
c, was 5500 PSI, and the stress-strain curve was modeled using the Honegstad 

model described earlier. The postfailure stress was defined as a bilinear function of the 

cracking displacement curved with σt = 250 PSI, σb.= 25 PSI, ub = 0.005 IN, σc = 3 PSI 

and uc = 0.1 IN. The steel was modeled with a perfect plastic curve. 
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4.7.2.3 Solution Control Parameters and Loading. 

Again in this example the solution involves regimes where the load displacement 

response is unstable. Therefore The Riks procedure available in ABAQUS is applied as 

well in this example to overcome difficulties associated with obtaining solution during 

the unstable phases of the response. In this particular example, the analysis was run in 

load control. A 3.2 KIP load was applied on the circular element described earlier and the 

first increment was set at 0.5 % of this total load. Deflections were measured at the four 

locations shown in Figure  4.31. 

4.7.2.4 Analysis Results 

Results obtained from each measured point, listed as points a, b, c, and d are 

shown in Figure  4.34, Figure  4.35, Figure  4.36, and Figure  4.37, respectively. The results 

between the experiment and the Finite Element Model are in very good agreement in 

terms of load versus deflection. Again, the Finite Element Model exhibits a slightly 

stiffer behavior in the cracked part of the curved, but despite this, the program is still able 

to accurately capture the behavior of the slab. The deformed shape of the slab is shown in 

Figure  4.38. 

4.7.3. Composite Bridge 

4.7.3.1 Problem Description 

This model test bridge was studied experimentally by Newmark et al (1946) and 

his results have been used by numerous authors to verify their model. The structure is a 

quarter scale model of a 15 FT simply supported steel I-beam bridge with five girders 

spaced at 18 IN. The girders are 8 IN- 6.5 LB Junior beam, the slab is 1 3/4 IN thick and 

made composite with the girder. The slab was reinforced with four layers of 1/8 IN 
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diameter rebars; two orthogonal layers at the top and two orthogonal at the bottom with a 

clear cover of 1/3 IN. The top longitudinal rebars are spaced at 6 IN, the top transversal at 

1.9 IN, the bottom longitudinal at 2 IN and the bottom transversal at 1.25 IN. In this 

example, the test was carried out into the post-elastic range as well, thus, providing a 

means of comparison for the proposed Finite Element Model with experimental results. 

The bridge was loaded with four concentrated loads simulating the rear wheel of two 

trucks, as shown in Figure  4.39, placed at midspan. These four loads were applied by 

means of a crew-jack bearing against a steel frame which was anchored to the floor. 

Deflections were recorded at each girder at the same transverse section at which the loads 

were applied. 

4.7.3.2 Modeling and Material Properties 

In this example, three layers of 8-node linear brick elements with reduced 

integration are used to model the concrete. The enhanced hourglass control and the 

hybrid formulation are also used in this problem. The girders were modeled with 4-node 

linear shell elements using reduced integration scheme. The enhanced hourglass control 

was enabled for these elements as well. The girders are modeled fully composite with the 

deck. In order to avoid stress concentration, one more row of element was added behind 

the support, and rather than using concentrated loads, a pressure load was applied on 

circular surface elements of 3.75 IN diameter as shown on Figure  4.40. As shown in 

Figure  4.41 the reinforcing bars were modeled using truss element and were embedded 

into the slab elements. Perfect bond between concrete and the rebars was assumed. 

The concrete damaged plasticity described earlier was used to implement the 

material properties into the Finite Element Program. The compressive strength of 

concrete, f’
c, was 3000 PSI, and the stress-strain curve was modeled using the Honegstad 

model described earlier. The postfailure stress was defined as a bilinear function of the 
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cracking displacement curved with σt = 400 PSI, σb.= 100 PSI, ub = 0.0035 IN, σc = 4 

PSI and uc = 0.1 IN. The steel was modeled with a perfect plastic curve. The yield stress 

was 45 KSI for the rebars and 41 KSI for the beams. 

4.7.3.3 Solution Control Parameters and Loading. 

Again in this example the solution involves regimes where the load displacement 

response is unstable. Therefore The Riks procedure available in ABAQUS is applied as 

well in this example to overcome difficulties associated with obtaining solution during 

the unstable phases of the response. In this example, the analysis was run in load control. 

A 11 KIP load was applied on each of the four the circular element described earlier and 

the first increment was set at 0.1 % of this total load. Deflections at midspan of each 

girder were measured. 

4.7.3.4 Analysis Results 

As we can see in Figure  4.42 to Figure  4.46 for girder A to girder E respectively, 

the results between the experiment and the Finite Element Model are in very good 

agreement in term of load versus deflection. This example proves that the modeling 

technique and the material model used in this study are accurate and efficient enough to 

precisely predict the reinforced concrete deck slab behavior. The deformed shape of the 

slab is shown in Figure  4.47 

4.8. Parameters Influencing Bridge Analysis 

4.8.1. Boundary Conditions 

Only simply supported bridges were considered in this study. However in older 

bridges, especially steel girder bridges, corrosion of the bearings usually causes 
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additional constraints for both rotations and longitudinal displacements. The effect of 

boundary conditions on the structure behavior were observed and reported by numerous 

authors (Bakht and Jaeger 1988, 1992, Schultz et al. 1995). They reported that small 

modifications in the boundary conditions have considerable effect in the bridge behavior. 

During field test conducted at the University of Michigan by Nowak et al. (1998, 2000, 

2001, 2002) large amount of compressive strain were observed and recorded near support 

of simply supported bridge. This partial fixity has an effect to significantly reduce the 

moment at midspan. Huria et al. (1993) even concluded that model parameters describing 

the boundary conditions are observed as more critical than material parameters. 

Therefore, it is important in this research to take in consideration the effect of the 

boundary conditions and try to estimate its effects on the reliability of the reinforced 

concrete bridge deck. The results obtained during the field test described in chapter 3 

were used to calibrate these boundary conditions. Three cases of boundary condition 

were considered in the Finite Element Model of the tested bridge as shown in Figure 

 4.48. In Figure  4.48 (a), the supports are modeled with a hinge and a roller. In Figure 

 4.48 (b), both supports are hinged. In Figure  4.48 (c), in order to model the support 

conditions of the in-situ bridge, a simple modification of support condition is proposed. 

This was done by assuming the rotational friction at the supports of the target bridge to be 

small enough and by attaching a horizontal spring, of stiffness k, to the roller supports of 

the bridge. The magnitude of stiffness k was calibrated using field measurement. Details 

of the calibration are explained in Section 4.9. 

4.8.2. Composite Action 

In composite section, both the concrete section and the steel section acts together 

to resist moments due to live load whereas in non-composite section, only the girders are 

taken into account to estimate the maximum stress induced by bending. In reinforced 
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concrete deck bridges supported by steel girder, composite action is present when there is 

no slippage between the bottom face of the slab and the top flange of the girder. 

Composite action changes the position of the neutral axis of the section and increases its 

moment of inertia; therefore it increases the stiffness and decreases the maximum 

compression bridge. In modern bridge, shear stud are used to guarantee the composite 

action, but it was observed during field test (Schultz, 1995; Nowak, 1998) that even in 

older bridges, designed as non-composite, the bond between concrete and steel is usually 

enough to carry shear forces induced by dead load and live loads. Consequently, full 

composite action was assumed in the Finite Element Analysis. 

4.8.3. Effect of non structural members 

Sidewalks, railing, parapet and diaphragm are considered as non-structural 

member. Their influence on girder distribution was first investigated by Mabsout, 

Tarhini, and Kobrosly (1997). They concluded that the presence of sidewalks and railings 

could increase the load carrying capacity by as much as 30% if included in the strength 

evaluation of bridges. Eamon (2000), found that in terms of load distribution, when 

considering bridges with barrier plus diaphragms and barrier plus sidewalk plus 

diaphragm, girder distribution is decreased at ultimate capacity from 5%-20% in most 

cases. Eom (2001) observed that the contribution of bending moment from the concrete 

slab can increase from 4% to 16% if sidewalks are included on both side of the bridge 

deck. 

Therefore, in this study, when calibrating the Finite Element Model to the field 

test results, the effect of parapet was included as shown in Figure  4.3. Barriers were not 

included because they were not continuous with the slab. However in the Finite Element 

Analysis used for the reliability study and presented in the next chapter, sidewalk, parapet 

and barrier were not modeled to try to reduce computational time of the simulations. 
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4.9. Calibration of the Finite Element Models 

The calibration process is used to determine unknown model parameters, by 

comparing calculated data with available field test data. In this study, the calibration 

process was used mainly to evaluate the boundary conditions. The tested bridge, 

presented in chapter 3, was modeled using 4-node linear shell element for the girders and 

8-node linear brick element for the deck as described earlier (Figure  4.49). Full 

composite action was assumed. Reinforcement was precisely included in the model 

according to the information obtained from the drawings of the bridge as shown in Figure 

 4.51 to Figure  4.54. Total bond in assumed between the rebars and the concrete. The 

material models for concrete and steel described earlier were also applied. As shown in 

Figure  4.49 and Figure  4.50, the parapet and the cross frame bracing were modeled using 

brick and truss elements respectively. Full composite action between the girder and the 

concrete deck was assumed. 

The load was applied in form of one 11-axle, three-unit truck, the same as the one 

used during the field test and described in Chapter 3. The input data included axle loads 

and axle spacings. Instead of using concentrated load for the axle, each tire contact area is 

modeled by a rectangle of 20 IN by 10 IN as shown in Figure  4.55 and the load due to 

each axle is modeled as a pressure, applied on the contact area, and equal to the axle load 

divided by two, to obtain the wheel load, and then divided by the area of the contact area 

(200 IN2). These rectangles are modeled using surface elements, which have the 

particularity to not have any cross section property therefore they do not contribute to the 

total stiffness of the bridge. Moreover, by using this method, stress concentrations are 

avoided which was a recurrent problem when using concentrated load. A general view of 

the truck load applied in the model is shown in Figure  4.55. 

The trucks were positioned as in the field test. The transverse position of the 

trucks was as measured during the actual test. The longitudinal position of the truck was 
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calculated as the position producing the maximum bending moment where the strain 

transducers were located. 

The stiffness of the spring used to model partial fixity of the support, as shown in 

Figure  4.48 (c), was calibrated by comparing the strain value measured during field test 

to the strain value calculated by the Finite Element Analysis. Figure  4.57 shows the 

spring used in the FE Model. In the case of a truck in the center of north lane, strain 

values obtained from FE model for the bottom flanges of a girder at approximately one 

third of the span as well as near support, are presented in Figure  4.58 and Figure  4.59, 

respectively. A view of the corresponding displaced shape of the bridge is shown in 

Figure  4.60. These obtained strains were then compared with the field test results. This 

comparison is made for each of the five transversal positions of the truck investigated 

during the field test and results are shown in Figure  4.61 to Figure  4.72. In each case, the 

upper curve represents the calculated values for a simple support with free longitudinal 

displacement at one end. The simple support condition is usually assumed by designers in 

the design process. Comparison with test results shows that for such boundary conditions, 

the resulting strains values were much greater than the actual measured strains. In the 

case where the longitudinal displacement is completely restrained at the bottom flange, 

calculated strains are lower than the actual measured strains (lower curve in Figure  4.61 

to Figure  4.72). Therefore, the boundary condition of the actual bridge is, as expected, in 

between these two boundary conditions. It was very difficult to find a configuration 

satisfying both the data near support and the data close to third span; however, after 

several trials, a stiffness k = 2000 KIP/IN was found to be an acceptable value to model 

the partial fixity of the boundary conditions, as can be seen in Figure  4.61 to Figure  4.72. 

A sixth fictitious position was also created by superposing the results of the truck 

on the north lane plus the results of the truck on the south lane. Since previous field test 

conducted with two trucks (Nowak et al. 1998, 2000, 2001, 2002) showed that the 

response of most bridges is still elastic at such load, these results are assumed to be 
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equivalent to those which would have been obtained with two trucks placed in the center 

of the two traffic lanes simultaneously. Results of this fictitious position are shown in 

Figure  4.73 and Figure  4.74. This also confirmed the accuracy of the selected stiffness 

value. 
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Figure 4.1 Commonly used element families 
 
 
 
 
 

       
 
 
 
 
Figure 4.2 Linear and quadratic brick 
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Figure 4.3 Model detailing 
 
 

 
Figure 4.4 Stress-strain response of concrete to uniaxial loading in tension 
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Figure 4.5 Stress-strain response of concrete to uniaxial loading in tension with 
ABAQUS 

 
Figure 4.6 Illustration of the definition of the cracking strain ck

tε  used to describe the 
tension stiffening 
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Figure 4.7 Concrete tension stiffening defined as a function of cracking displacement 

 
Figure 4.8 Concrete tension stiffening defined as a linear function of the cracking energy 
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Figure 4.9 Tension stiffening model used in this study 
 
 
 
 

 
Figure 4.10 Compressive stress-strain curve of concrete 
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Figure 4.11 Compressive stress-strain curve of concrete proposed by Honegstad 

 
Figure 4.12 Definition of the compressive inelastic strain in
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Figure 4.13 Mohr-Coulomb and Drucker-Prager yield surfaces in principal stress space 
 
 
 

 
 

Figure 4.14 Yield surface in the deviatoric plane, corresponding to different value of Kc 
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Figure 4.15 Yield surface in plane stress 
 

 
Figure 4.16 Embedded rebars element 
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Figure 4.17 Stress-strain characteristics of reinforcement in uniaxial tension 

 
Figure 4.18 Perfect-plastic idealization of steel reinforcement 
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Figure 4.19 Von Mises yield surface in principal stress space 
 

 
Figure 4.20 Nonlinear load-displacement curve 
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Figure 4.21 Graphic representation of the Newton-Raphson method 
 
 
 

 
Figure 4.22 Internal and external loads on a body 
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Figure 4.23 First iteration in an increment 
 
 
 

 
Figure 4.24 Second iteration in an increment 
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Figure 4.25 Configuration of the one way slab tested by Jain and Kennedy 

 
Figure 4.26 General view of the one way slab FE model 
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Figure 4.27 Modeling of the reinforcement in the one way slab FE Model 
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Figure 4.28 Compressive stress-strain curve of concrete used in the one way slab example 
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Figure 4.29 Comparison between experimental results and FE results of the one way slab 
example 

 
Figure 4.30 View of the deformed shape of the FE model of the one way slab example 
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Figure 4.31 Configuration of the two way slab tested by McNeice 
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Figure 4.32 General view of the two way slab FE Model, top view (a) and bottom view 
(b). 
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Figure 4.33 Modeling of the reinforcement in the two way slab FE Model 
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Figure 4.34 Comparison between experimental results and FE results of the two way slab 
example at point “a” 
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Figure 4.35 Comparison between experimental results and FE results of the two way slab 
example at point “b” 
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Figure 4.36 Comparison between experimental results and FE results of the two way slab 
example at point “c” 
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Figure 4.37 Comparison between experimental results and FE results of the two way slab 
example at point “d” 

 
Figure 4.38 View of the deformed shape of the FE model of the two way slab example 
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Figure 4.39 Cross section of the Newmark bridge 

 
Figure 4.40 General view of the Newmark bridge FE Model 
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Figure 4.41 Modeling of the reinforcement in the Newmark bridge FE Model – Top 
longitudinal reinforcement 
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Figure 4.42 Comparison between experimental results and FE results of the Newmark 
bridge at girder A 
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Figure 4.43 Comparison between experimental results and FE results of the Newmark 
bridge at girder B 
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Figure 4.44 Comparison between experimental results and FE results of the Newmark 
bridge at girder C 
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Figure 4.45 Comparison between experimental results and FE results of the Newmark 
bridge at girder D 
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Figure 4.46 Comparison between experimental results and FE results of the Newmark 
bridge at girder E 
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Figure 4.47 View of the deformed shape of the FE Model of the Newmark bridge 
 

 
Figure 4.48 Three cases of boundary conditions used in the Finite Element Analysis: (a) 
Simply supported, hinge-roller; (b) Hinge at both end of the girder, (c) Partially fixed 
support. 
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Figure 4.49 General view of the tested bridge FE 
Model

 
Figure 4.50 View of the girder and cross frame of the FE Model 
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Figure 4.51 View of the bottom longitudinal reinforcement in the FE Model 

 
Figure 4.52 View of the bottom transversal reinforcement in the FE Model 
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Figure 4.53 View of the top longitudinal reinforcement in the FE Model 

 
Figure 4.54 View of the top transversal reinforcement in the FE Model 
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Figure 4.55 Close view of the tire pressure applied on the deck 
 

 
Figure 4.56 General view of the 11-axle truck applied on the FE model 
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Figure 4.57 View of the spring used in the FE Model to simulate partial fixity 
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Figure 4.58 Comparison of test results with analytical results at third span – Truck in the 
center of north lane 
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Figure 4.59 Comparison of test results with analytical results near support – Truck in the 
center of north lane 
 
 
 

 
Figure 4.60 Displaced shape of the bridge model – Truck in the center of north lane 
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Figure 4.61 Comparison of test results with analytical results at third span – Truck in the 
center of south lane 
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Figure 4.62 Comparison of test results with analytical results near support – Truck in the 
center of south lane 
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Figure 4.63 Displaced shape of the bridge model – Truck in the center of south lane 
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Figure 4.64 Comparison of test results with analytical results at third span – Truck close 
to the curb of north lane 
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Figure 4.65 Comparison of test results with analytical results near support – Truck close 
to the curb of north lane 
 

 
Figure 4.66 Displaced shape of the bridge model – Truck close to curb of north lane 
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Figure 4.67 Comparison of test results with analytical results at third span – Truck close 
to the curb of south lane 
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Figure 4.68 Comparison of test results with analytical results near support – Truck close 
to the curb of south lane 
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Figure 4.69 Displaced shape of the bridge model – Truck close to the curb of south lane 
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Figure 4.70 Comparison of test results with analytical results at third span – Truck in the 
center of the bridge 
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Figure 4.71 Comparison of test results with analytical results near support – Truck in the 
center of the bridge 
 

 
Figure 4.72 Displaced shape of the bridge model – Truck in the center of the bridge 
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Figure 4.73 Comparison of test results with analytical results at third span – Simulation 
of two trucks in the center of south and north lane 
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Figure 4.74 Comparison of test results with analytical results near support – Simulation 
of two trucks in the center of south and north lane 
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CHAPTER 5 

STRUCTURAL RELIABILITY 

5.1. Introduction 

Because of all uncertainties related to material strengths and other characteristics, 

loads imposed on the structure, and even the analysis methods used for evaluation and 

design, it is impossible to achieve absolute safety of the structure. Indeed, loads and load-

carrying capacities are not perfectly known quantities, they are random variables. 

Therefore, structural reliability analysis requires the probabilistic modeling of these 

uncertainties and it provides the method for quantification of the probability that the 

structure does not satisfy the performance criteria. 

5.2. Fundamental Concepts 

A random variable is a function that maps events onto intervals on the axis of real 

numbers. A continuous or discrete random variable is described by its cumulative 

distribution function (CDF) which basically relates a specific value of the random 

variable to a probability of realization of that value. For continuous random variables, the 

probability density function (PDF) is defined as the first derivative of the CDF. The PDF 

(fx(x)) and the CDF (Fx(x)) for a continuous random variable are related as follows: 

 

)()( xF
dx
dxf XX =         (5.1) 

∫
∞−

=
x

XX dfxF ξξ )()(         (5.2) 
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In this study only continuous random variables are considered. The most 

important parameter of random variable is the mean value of x denoted by µx also called 

average value and defined as: 

 

∫
+∞

∞−

= dxxfx XX )(µ         (5.3) 

 

Another one is the standard deviation of x, σx, depends on the degree of distribution of 

the data around the mean. It is defined as the square root of the variance: 

 
2
XX σσ =          (5.4) 

 

where the variance is: 

 

∫
+∞

∞−

−= dxxfx XXX )()( 22 µσ        (5.5) 

 

Finally a nondimensional coefficient of variation, COVx, is defined as the standard 

deviation divided by the mean: 

 

X

X
XCOV

µ
σ
=          (5.6) 

 

Although there are many types of distributions of random variables (uniform, 

Gamma, Poisson, etc.), the most common types of distribution of random variables in the 

structural reliability theory are normal and lognormal. The PDF of a normal random 

variable is: 
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Where σx is the standard deviation of x and µx is the mean value of x as defined earlier in 

equation (5.3) and equation (5.4). A standard normal variable is a special case of normal 

variable in which the mean value is equal to zero and the standard deviation is equal to 

one. The PDF of a standard normal variable z is designated as φ(z), while the CDF is 

Φ(z). An example of a PDF and CDF of a standard normal random variable are given in 

Figure  5.1. 

 

The PDF of a lognormal random variable is: 
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where: 
( )1ln 22

)ln( += XX Vσ         (5.9) 

 
2

)ln()ln( 2
1)ln( XXX σµµ −=        (5.10) 

5.3. Reliability Analysis Method 

5.3.1. Limit State 

The concept of a limit state is used to help define failure in the context of 

structure reliability analyses. A limit state is the boundary between the desired and the 

undesired performance of a structure. For a bridge an undesired performance is loss of 

ability to carry traffic. The undesired performance can include collapse of the bridge 
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structure or excessive deflection causing discomfort for pedestrians and drivers. Limit 

states can be divided into two categories: 

Ultimate Limit States (ULS) are mostly related to the loss of load carrying 

capacity. When an Ultimate Limit State (ULS) is exceeded, a catastrophic failure of the 

structure occurs, such as collapse or loss of operability. ULSs can be the formation of a 

plastic hinge, crushing of concrete, buckling or loss of stability. These are the limit state 

considered in a reliability-based design code. 

Serviceability Limit States (SLSs) are related to gradual degradation and user’s 

comfort. These limit states are usually not associated with an immediate structural 

collapse. SLSs can be an excessive cracking on a bridge deck leading to potholes and 

spalling of concrete. 

The acceptability criteria are often based on engineering judgment (arbitrary 

decision). For example, consider a beam that fails if the moment due to the loads exceeds 

the moment carrying capacity. Then the corresponding limit state function can be written 

as follows: 

 

QRxxxxgg n −== ),.......,,,( 321       (5.11) 

 

where R represents the resistance (moment carrying capacity), Q represents the load 

effect (total moment applied) and xi represent the random variables of load and resistance 

such as dead load, live load, length, depth, etc. The limit state function represents the 

boundary beyond which the structure no longer functions. The probability of failure, Pf, is 

equal to the probability that the undesired performance will occur. Mathematically, this 

can be expressed in terms of the limit state function as: 

 

Pf = P(R-Q < 0) = P(g < 0)       (5.12) 
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If both R and Q are continuous random variables, then each has a probability 

density function (PDF) such as shown in Figure  5.2. Furthermore, R-Q is also a random 

variable with its own PDF. This is also shown in Figure  5.2. The probability of failure 

corresponds to the shaded area in Figure  5.2. Specifically the probability of failure is: 

 

iiQiRf dxxfxFP )()(∫
+∞

∞−

=        (5.13) 

 

where FR(x) is the CDF of resistance R and fQ(x) is the PDF of the load Q. 

Because there are often multiple random variables that determine R and Q, the 

evaluation of equation 5.13 cannot be calculated as this would require complex and time 

consuming numerical techniques. Moreover, there is often insufficient data to fully define 

the basic variables needed for this numerical procedure in order to obtain acceptable 

accuracy. Therefore, it is convenient to measure structural safety in terms of a reliability 

index. 

5.3.2. Reliability Index 

A formal definition of the reliability index is that it represents the shortest distance from 

the origin of standard space (reduced variable space) to the limit state line g(ZR, ZQ) = 0, 

in the reduced variables space, as shown in Figure  5.3, where ZR is the reduced random 

variable for resistance and ZQ is the reduced variable for load. The reduced form of a 

random variable, X,  is given by: 

 
X

X
X

XZ µ
σ
−

=          (5.14) 
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There are various procedures available for calculation of β. These procedures vary with 

regard to accuracy and required input data. 

The reliability index, β, is related to the probability of failure, Pf, by: 

 
1( )fPβ −= −Φ          (5.15) 

 

where Φ-1 is the inverse standard normal distribution function. A comparison of  the 

reliability index to probability of failure according the equation 5.15 is given in Table 

 5.1. The value of 3.5 in Table  5.1 represents the target reliability index for bridges of the 

AASHTO LRFD Code. However, this value is used for calibration only, and as it will be 

shown in this study, the actual components can have significantly different values of β. 

5.3.3. First Order Second Moment Methods (FOSM) 

The First Order Second Moment method is one the simplest procedures for 

calculating the reliability indices. First order implies that this method considers only 

linear limit state functions or linear approximation of them, while second moment refers 

to the fact that the first two moments of a random variable, the mean value and the 

standard deviation, are considered. The third and fourth moments are skewness and 

kurtosis, respectively, but these parameters are often unavailable and are rarely used. If 

both R and Q are independent normal random variables, then the reliability index, β, as 

originally defined by Cornell (1969) is expressed as: 

 

2 2

R Q

R Q

µ µ
β

σ σ

−
=

+
        (5.16) 
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Where µR and µQ are the means of R and Q, respectively, and σR, σQ are the standard 

deviations of R and Q, respectively. If both R and Q are lognormal variables, then, β can 

be derived equal to: 
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using equation 5.18 and 5.19, 

 
)1ln( 22

)ln( += XX COVσ         (5.18) 

2
)ln()ln( 2

1)ln( XxX σµµ −=        (5.19) 

 

where COVR, COVQ are the coefficients of variation of R and Q respectively. If COVR 

and COVQ are less or equal to 0.20, the value of β can be approximated by the following 

expression (Rosenblueth and Esteva 1972): 

 

2 2

ln( / )R Q

R QCOV COV

µ µ
β =

+
        (5.20) 

 

using the following equations 

 
2 2
ln( )X XVσ ≈          (5.21) 

ln( ) ln( )X Xµ µ≈         (5.22) 

 

where µR and µQ are the means of R and Q, respectively, and COVR, COVQ are the 

standard deviations of R and Q, respectively. 
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When the limit state function is a linear combination of n uncorrelated random 

variables X1, X2, …., Xn, of the form 

 

1 2 0 1 1 2 2 0
1

( , ,..., ) ...
n

n n n i i
i

g X X X a a X a X a X a a X
=

= + + + + = +∑   (5.24) 

 

where ai are constants, the reliability can be calculated using the following expression 
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where µXi and σXi are the means and standard deviations respectively of the normal 

random variables Xi. 

The First Order Second Moment method can also be used to compute the 

reliability index in case of nonlinear limit state functions. In this case, the limit state 

function is linearized using a Taylor series expansion about the mean values of the 

random variables (Madsen, Krenk and Lind 1986): 
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Reliability index can then be computed as: 
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The reliability index calculated by this method is called the First Order Second 

Moment (FOSM) mean value reliability index, as the Taylor series expansion is carried 

out about the mean values of the random variables. 

Because the FOSM mean value method is based on the approximation of non-

normal CDF’s of the state variables by normal variables, the method presents advantages 

as well as disadvantages. The main advantage of the method is its simplicity; only the 

first two moments of each random variable are needed and the calculations are trivial. 

Moreover, knowledge of the distribution of the random variable is not needed. 

However this can be considered as a disadvantage. If the knowledge of the 

distribution of the random variable is not needed, it means that this method does not 

account for it. Indeed, if the random variables are other than normally distributed, the 

method is not as accurate. This is particularly true if the upper tail of the load distribution 

and the lower tail of the resistance distribution cannot be correctly approximated by 

normal distributions. Another problem is that the reliability index depends on the 

formulation of the limit state function. This is referred in the literature as the invariance 

problem of the mean value FOSM method. 

5.3.4. Hasofer-Lind Reliability Index 

To overcome the invariance problem of the FOSM method, Hasofer and Lind 

(1974) proposed a modified reliability index formulation, the Advanced First Order 

Second Moment reliability moment (AFSOM). In this method, the limit state function is 

evaluated at a point known as the “design point” instead of the mean values. The design 

point is located on failure surface, g = 0, and since this point is a priori unknown, an 

iteration technique must be used to solve for the reliability index. As it was done in the 

FOSM method, the Hasofer-Lind method consists by first transforming each of the 

random variables into standard normal space, using equation 5.15. As before, the 
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Hasofer-Lind reliability index is defined as the shortest distance from the origin of the 

reduced variable space to the limit state function or failure surface g =0 as presented in 

Figure  5.4. Therefore, in the case of a linear limit state, equation 5.25 can be used. 

However, for a nonlinear limit state function, the iterative method mentioned earlier must 

be used. 

The iterative method requires a simultaneous solution of 2n + 1 equations with 2n 

+ 1 unknowns, where n is equal to the number of random variables. The process is 

repeated until values of β and αi converge: 
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Although it takes into account the nonlinearity of the limit state function, the 

Hasofer-Lind method, as for the FOSM method, does not take into account the 

distribution type of the random variables, and therefore is not accurate when used with 

distributions other than normal. 
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5.3.5. Rackwitz-Fiessler Procedure 

Rackwitz and Fiessler (1978) developed an iterative procedure to calculate 

reliability indices that this time can take into account the distribution of the random 

variables for both linear and nonlinear limit states. Each non normal random variable is 

converted at the design point into “equivalent normal” distribution. This is achieved by 

equaling the CDF and the PDF of the actual function to the normal CDF and normal PDF 

at the value of the variable x* on the failure boundary (g = 0) as described in equation 

5.29 and 5.30. 
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where Φ is the CDF for the standard normal distribution and φ is the PDF for the standard 

normal distribution. The initial design point {xi*} is obtained by assuming values for n-1 

of the random variables Xi, the mean values often being a reasonable choice, then, the 

remaining random variable is calculated using the limit state function g=0. By doing so, it 

is ensured that the design point is on the failure boundary. Then the process works the 

following way: 

1. From equation 5.29 and 5.30 we can obtain the expression for the equivalent 

normal mean and equivalent normal standard deviation for each random variable. 
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2. As in the previous method, the reduced variates are determined using equation 

5.33. 
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=          (5.33) 

3. Next, the partial derivative of the limit state function g is evaluated for each 

random variable Xi, and presented in a vector form as follow: 
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4. Then β is calculated using the following formula: 
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   (5.35) 

5. The sensitivity factors are calculated in a column vector as follows: 
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{ } { }T

G
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α =         (5.36) 

6. A new design point is determined in the original coordinates for n-1 values 

using 

 
*

i i

e e
i X i Xx µ α βσ= +         (5.37) 
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7. The value of remaining random variable is calculated using the limit state 

function g = 0. 

8. Steps 1-7 are repeated until reliability index converges. 

Typically, the Rackwitz-Fiessler procedure converges very quickly, and in most 

cases, after only a few iterations. In this research, since both the load and the resistance 

were assumed to have a lognormal distribution, the reliability indices calculated by the 

Rackwitz-Fiessler method and the reliability indices calculated by the FOSM method 

using equation 5.19 were found almost the same, therefore, the FOSM method, which is 

easier to apply, was chosen. 

5.4. Simulation Techniques 

In certain cases, the methods for the computation of reliability explained above 

can become very complicated. This happens especially when the limit state function is 

very complex or cannot be expressed in a closed form, as, for example in this study, the 

orthotropic plate equations governing the behavior of a bridge deck slab. In these 

situations, simulation methods are used. 

5.4.1. Monte Carlo Simulation 

The Monte Carlo technique is based on the generating of values for given 

distribution functions. For example let’s have the load effect Q, and the resistance R, as 

functions of random variables, R = f(x1, x2,……, xn) and Q = f(y1, y2,….., yn). By 

generating a large number of specific values for the random variables xi and yi, R and Q 

can then be evaluated, and their statistical parameters (mean and standard deviation) can 

be computed. With these statistical parameters, the reliability index can now be 

calculated using one of the methods described earlier, regardless of how complex the 

original limit state function is, as now it can be reduced to g = R – Q. Moreover, the 
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distribution of the random parameters affecting the load and the resistance (xi and yi) is 

included in the simulation process so that the generated values reflect the actual 

distributions of the random variables. For each random variable, the generation of values 

by the Monte Carlo simulation is done the following way. 

The first step is to generate random numbers, ui, that are uniformly distributed 

between 0 and 1 (there is an equal chance for any number within that range to be 

generated) 

Then for each random variable, X, the generated value is calculated using the 

equation: 

 
xi = Fx

−1 ( ui)          (5.38) 

where Fx
-1 is the CDF of the random variable. For a standard normal variable, equation 

5.38 becomes: 

 
xi = Φ−1 ( ui)          (5.39) 

where Φ−1 is the inverse of the standard normal cumulative distribution function. For any 

normally distributed random variable,  

 
1( )i X i Xx uµ σ−= +Φ         (5.40) 

Where µx and σx are the mean and standard deviation of the random variable being 

generated. 

For a lognormal random variable,  

 
1

ln lnexp ( )i X i Xx uµ σ−⎡ ⎤= +Φ⎣ ⎦       (5.41) 
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Finally, the limit state function can be evaluated directly for each generated set of 

variables, and after repeating the process many times, the probability of failure can be 

obtained. For example, if the limit state function is g = R – Q, the probability of failure 

can be estimated by: 

 

f
nP
N

=          (5.43) 

 

where n is the number of times that g ≤  0 and N is the total number of simulations. As 

the number of simulations increases, the obtained probability of failure is closer to the 

real value of the probability of failure. In order to estimate how many simulations are 

needed to achieve the acceptable accuracy, Soong and Grigoriu (1993) showed that the 

estimated probability of failure itself can be treated as a random variable with its own 

mean, standard deviation and coefficient of variation as shown in equation 5.44: 
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These relationships provide a way to determine how many simulations are required to 

estimate a probability and limit the uncertainty in the estimate. It is clear that the smaller 

the expected probability of failure, the larger the number of required simulations. 

5.4.2. Rosenblueth’s 2K + 1 Point Estimate Method 

In order to reduce the number of required simulations, several simulation 

techniques have been developed: The Latin Hypercube method, described by Iman and 

Conover (1980) is one of them. In this method, the range of possible values of each 

random variable is divided into strata, and a value from each stratum is randomly selected 

as a representative value. The representative values for each random variable are then 

combined so that each representative value is considered once and only once in the 

simulation process. However, in order to further reduce the number of required 

simulations, point estimation methods can be used. 

The point estimate method is very similar to the Monte Carlo simulation, but 

instead of generating a large number of random values to be used for the simulation, the 

function of random variables is evaluated at only a few pre-determined key points. The 

results obtained at these key points are then used to estimate the mean and variance (or 

coefficient of variation) of the function. These key point values have been derived to give 

a good accuracy. The 2K + 1 method developed by Rosenblueth (1975, 1981) has been 

widely used and proved to be accurate; however, the CDF of the function cannot be 

obtained by this method. Let’s consider a limit state function Y described by 

 

Y = f(X1, X2,…, Xi,…, Xk)       (5.45) 
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where f is some deterministic function, but not necessarily known in closed form, and X1, 

X2,...., Xi,..., Xk are random input variables. The Rosenblueth’s 2K + 1 point estimate 

method works the following way: 

1. Determine the mean value, µXi, and standard deviation σXi for each of the K 

input random variables. 

 

2. Define y0 as the value obtained from Equation 5.45 when all input variables are 

equal to their mean values. 

 

1 20 ( , ,..., ,..., )
i KX X X Xy f µ µ µ µ=       (5.46) 

 

3. For each random variable Xi, evaluate the function at two values of Xi which 
are shifted from the mean value 

iXµ  by 
iXσ±  while all other variables are assumed to be 

equal to their mean values. The function Y will be then evaluated at 2K additional points. 

These values of the function will be referred to as yi
+ and yi

-. The subscript denotes the 

variable which is shifted, and the superscript indicates the direction of the shift. In 

mathematical notation, 

 

( )1 2
, ,..., ,....

i i Ki X X X X Xy f µ µ µ σ µ+ = +      (5.47) 

( )1 2
, ,..., ,....
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4. For each random variable, calculate the following two quantities based on yi
+ 

and yi
-. 
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5. Calculate the estimated mean and coefficient of variation of Y as follows: 
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The two main advantages of this method are that first, there is no need to know 

the distribution of the input random variables, only two first moments are needed. 

Second, the number of simulations is relatively small compared to the Latin hypercube 

sampling or Monte Carlo simulation; for K random input variables, only 2K + 1 

simulations are needed. 

In this study the Rosenblueth’s 2K + 1 point estimate method is used and the Y 

function is evaluated at the 2K + 1 points using the Finite Element model presented in 

chapter 4. 

5.5. Bridge Load Model 

5.5.1. Introduction 

The load component of highway bridges can be divided into several groups, such 

as dead, live load, (static and dynamic), environmental loads (temperature, wind, 

earthquake, earth pressure, ice) and other loads (collision, braking load). Load 

components are treated as random variables, their variation is described by a cumulative 

distribution function (CDF), a mean value and a coefficient of variation. 
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The basic load combination for highway bridges considered in this study is the 

combination of dead load, live load and dynamic load. The time period considered in this 

study for reliability calculation is one year. 

5.5.2. Dead Load 

Dead load, usually denoted D, is the gravity load due to the self weight of the 

structural elements permanently attached to the bridge. The statistical parameters of dead 

load are summarized in Table  5.2. 

Because of different degree of variation it is recommended (Nowak 1993) to 

consider the following components of D: 

 

D1 = weight of factory made elements (steel, precast concrete) 

D2 = weight of cast in place concrete 

D3 = weight of wearing surface (asphalt) 

D4 = weight of miscellaneous weight (e.g. railing, luminaries) 

 

All component of dead load are typically treated as normal random variables. 

Usually, it is assumed that the total dead load remains constant throughout the life of the 

structure. 

5.5.3. Live Load 

Live load, L, covers a range of forces produced by vehicles moving on the bridge. 

Live load effect can be divided into two components, the static portion, L, and the 

dynamic portion, I. The effect of live load depends on many parameters (Nowak 1993) 

such as the span length, truck weight, axle loads, axle configuration, position of the 

vehicle on the bridge (longitudinal and transversal), traffic volume (ADTT) numbers of 
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vehicle on the bridge (multiple presence), girder spacing, and stiffness of structural 

members. 

Live Load model for AASHTO LRFD 1998 is interpreted from recent research 

related to the development of LRFD codes (Agarwal and Wolkowicz 1976, Nowak 

1993). The LRFD live loads are modeled on the basis of the available truck survey data 

(Nowak 1993) and are shown in Figure  5.5 and Figure  5.6. 

The available statistical parameters of bridge live load have been determined from 

truck surveys and simulation. Several sources of truck load data exist. Weigh-in-Motion 

(WIM) reported in the literature include studies done by the University of Colorado for 

the Federal Highway Highway Administration (FHWA) and Michigan Department Of 

Transportation (MDOT) (Goble 1991, Nowak and Nassif, 1991, Nowak and Kim 1996). 

The WIM system records truck weight and configuration as the vehicles pass over the 

bridge and is almost invisible to driver. One advantage of the database obtained from 

WIM is that all truck will be recorded, unlike data obtained from weigh station that heavy 

vehicle tend to avoid. Examples of recorded vehicle information recorded by Kim et al. 

are shown in Figure  5.7 and Figure  5.8. 

Based on further field observations, Nowak (1999) made the following 

observation and conclusions: with both lane loaded, every 15th truck on the bridge is 

accompanied by another truck side-by-side. With this occurrence, it is assumed that every 

10th time the truck weight is partially correlated and every 30th time the truck weight is 

fully correlated. By simulating this pattern, it was determined that over the 75 year 

assumed lifespan, for interior bridge girders the two lane loaded, fully correlated case 

governs, with each truck equal to the maximum two month truck. 

Live load effect is considered in terms of moment in the study. Live load is a time 

varying load and the truck occurrence and weight are random variables that require 

special procedures to predict extreme values for given time intervals. In this study 



121 

citation data are used to determine the maximum expected load effect for the evaluation 

time period of one year as detailed in the next chapter. 

5.5.4. Dynamic Live Load 

The dynamic load is a function of three major parameters: road surface roughness, 

bridge dynamics (natural period of vibration), and vehicle dynamics (type and condition 

of suspension system). Dynamic load effect, I, is considered as an equivalent static load 

effect added to the live load, L. The derivation of the statistical model for the dynamic 

behavior of bridges is presented by Hwang and Nowak (1991) and Nassif and Nowak 

(1995). The simulations and tests indicate that the dynamic load decreases for heavier 

truck (as a percentage of static live load). Therefore, the dynamic load factor, (DLF) is 

lower for two trucks than one truck. The dynamic load corresponding to an extremely 

heavy truck is close to the mean of dynamic load factor. In this study we assumed a 

dynamic coefficient of 0.1 for all configurations. The coefficient of variation of dynamic 

load is 0.80. The coefficient of variation of a joint effect of live load and dynamic load is 

0.18. 

5.6. Bridge Resistance Model 

The capacity of a bridge depends on the resistance of its component and 

connections. The component, R, is determined mostly by material strength and 

dimensions. Although in design these quantities are often considered deterministic, in 

reality there is some uncertainty associated with each quantity. Therefore R is considered 

as a random variable. The causes of uncertainty can be put into three categories: 

1. Material properties: uncertainty in the strength of material, the modulus of 

elasticity, cracking stresses, and chemical composition. 
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2. Fabrication: uncertainty in the overall dimensions of the component which can 

affect the cross section area, moment of inertia, and section modulus. 

3. Analysis: uncertainty resulting from approximate methods of analysis and 

idealized stress/strain distribution models. 

The resulting variation has been modeled by test, observation of existing 

structures and by engineering judgment. The resistance models can be developed using 

the available material test data. However structural members are often made of several 

materials like for instance reinforced concrete is a combination of concrete and steel. 

Therefore special methods of analysis are required. Since information on the variability 

of the resistance of such members is not always available, it is often necessary to develop 

resistance models using the available material test data and numerical simulations 

(Nowak 1993, Tabsh and Nowak 1991). In reliability analysis one popular way to model 

the resistance R is to consider the resistance as a product of the nominal resistance, Rn, 

used in design and three parameters that account for some of the sources of uncertainty 

mentioned above as expressed in the following equation: 

 

nR R M F P=          (5.50) 

 

Where M is the parameter reflecting variation in the strength of the material, F is the 

parameter reflecting uncertainties in fabrication (dimensions), and P is an analysis factor 

(also known as professional factor) which accounts for uncertainties due to the analysis 

method used. The mean value of R, µR, and the coefficient of variation, VR, is computed 

as follows: 

 

R n M F PRµ µ µ µ=         (5.51) 
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( ) ( ) ( )2 2 2
R M F PV V V V= + +        (5.52) 

 

Where µM, µF, and µP are the means of M, F, and P, and VM, VF, and VP are the 

coefficient of variation of M, F, and P, respectively. 

The statistical parameters are developed for steel girders (composite and non-

composite), reinforced concrete T-beams, and prestressed concrete AASHTO-type 

girders by Nowak (1993), and Tabsh and Nowak (1991). The statistical parameters of 

resistance for steel girdes, reinforced concrete T-beams and prestressed concrete girders 

are shown in Table  5.3. Factors M and F are combined. The parameters R are calculated 

as follows: 

 

R FM Pλ λ λ=          (5.53) 

 

( ) ( )2 2
R FM PV V V= +         (5.54) 

 

Where λR is the bias factor of R, λFM is the bias factor of FM, and λP is the bias factor of 

P. VR is the coefficient of variation of R, VFM is the coefficient of variation of FM, and 

VP is the coefficient of variation of P. 

In this study Rosenblueth’s 2K + 1 point estimate simulation method is used with 

the results of the finite element analysis to generate resistance parameter for the 

reinforced concrete deck slab as detailed in the next chapter. 
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Table 5.1 Reliability index versus probability of failure 
Reliability index, β Probability of failure 

0.0 00.500 10×  1/2 
1.0 00.159 10×  1/6 
2.0 10.228 10−×  1/35 
3.0 20.135 10−×  1/720 
3.5 30.233 10−×  1/4350 
4.0 40.317 10−×  41/ 3.1 10×  
5.0 60.287 10−×  61/ 3.5 10×  
6.0 90.987 10−×  91/1.0 10×  
7.0 110.128 10−×  111/ 7.7 10×  

 
Table 5.2 Statistical parameters of dead load 

Component Bias factor Coefficient of variation 
Factory-made members, D1 1.03 0.08 
Cast-in-place members, D2 1.05 0.10 

Asphalt, D3 3.5 IN (mean thickness) 0.25 
Miscellaneous, D4 1.03-1.05 0.08-0.10 

 
Table 5.3 Statistical parameters of resistance 

FM P R Type of structure 
λ V λ V λ V 

Non-composite steel girders       
Moment (compact) 1.095 0.075 1.02 0.06 1.12 0.1 
Moment (non-compact) 1.085 0.075 1.03 0.06 1.12 0.1 
Shear 1.12 0.08 1.02 0.07 1.14 0.105 

Composite steel girders       
Moment 1.07 0.08 1.05 0.06 1.12 0.1 
Shear 1.12 0.08 1.02 0.07 1.14 0.105 

Reinforced concrete       
Moment 1.12 0.12 1.02 0.06 1.14 0.13 
Shear w/steel 1.13 0.12 1.075 0.1 1.2 0.155 
Shear no steel 1.165 0.135 1.20 0.1 1.4 0.17 

Prestressed concrete       
Moment 1.04 0.045 1.01 0.06 1.05 0.075 
Shear w/steel 1.07 0.1 1.075 0.1 1.15 0.14 
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Figure 5.1 PDF φ(z) and CDF Φ(z) for a standard normal random variable 
 

 
Figure 5.2 Probability Density Function of load, resistance, and safety margin (Nowak & 
Collins 2000) 
 
 
 
 
 

z 

φ(z) 

0 

z 

Φ(z) 

0 

0.5 

1 

R, resistance 
Q, load effect 

R-Q, safety margin 

Probability 
of failure 

PDF 

0 



126 

 

 
Figure 5.3 Reliability index as shortest distance to origin 
 

 
Figure 5.4 Hasofer-Lind reliability index 
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Figure 5.5 HL-93 loading specified by AASHTO LRFD 2005 – Truck and uniform load 
 
 

 
Figure 5.6 HL-93 loading specified by AASHTO LRFD 2005 – Tandem and uniform 
load 
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Figure 5.7 Gross vehicle weight (GVW) of trucks surveyed on I-94 over M-10 in the 
Greater Detroit area (Michigan) 
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Figure 5.8 Axle weight (GVW) of trucks surveyed on I-94 over M-10 in the Greater 
Detroit area (Michigan) 
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CHAPTER 6 

RESULTS OF RELIABILITY ANALYSIS 

Reliability analysis involves formulation of limit states and development of the 

load and resistance models. Two limit states are considered in this study: Initiation of the 

first crack and the crack opening. The load parameters calculated from live load data 

obtained in previous work by Nowak and Kim (1997) are also explained. In the case of 

resistance parameters, a significant amount of time (more than 24 hours in some cases) is 

usually needed for nonlinear finite element computation of a bridge superstructure. 

Therefore, Rosenblueth’s 2K+1 point estimate method is used, which requires a 

minimum numbers of simulations to obtain the resistance parameters. Configurations of 

the considered bridges and the results of FEM computations which served in the 

calculation of resistance parameters are explained in details. Ultimately, results from the 

reliability analysis for each studied limit state are discussed and reliability indices 

obtained for each case are reported. 

6.1. Considered Parameters and Configuration of the Studied Bridges  

One of the objectives of this research is to evaluate the code provision with 

respect to serviceability and durability of deck slabs; therefore the two different design 

methods available in the AASHTO LRFD 2005 edition (traditional and empirical 

methods) were investigated for three different girder spacings (6 FT, 8 FT and 10 FT), 

two different span lengths (60 FT and 120 FT), two different boundary conditions (hinge-

roller and partially-fixed), and three different positions of the live load. Details of the 

considered parameters are explained as follows: 
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6.1.1. Empirical and Traditional Design Method for Bridge Decks 

The traditional (analytical) method is based on linear elastic theory to calculate 

the width of slab strip that must satisfy the specified strength and service limit states. On 

the other hand, the empirical approach requires that the designer has to satisfy a few 

simple requirements regarding the deck thickness and reinforcement details, and strength 

and serviceability limit states are assumed to be automatically satisfied without further 

design validations. 

Both methods may be used to design the slab. Even though, they yield different 

results, both methods are generally viable and reasonable. 

6.1.1.1 Traditional (analytical) Method Approach 

A deck slab can be considered as a one-way slab system because its aspect ratio 

(panel length divided by the panel width) is large. For example, a typical panel width 

(girder spacing) is 8-11 FT and a typical girder length is from 30 to 200 FT. The 

associated aspect ratios vary from 3.75 to 10. Deck panels with aspect ratios of 1.5 or 

larger can be considered as one-way systems. Such systems are assumed to carry the load 

effects in the short panel direction, that is, a beamlike manner. Assuming the load is 

carried to the girder by one-way action, the primary issue is the width of a strip (slab 

width) used in the analysis and subsequent design. Guidance is provided in the AASHTO 

Code. 

The strip width for a cast in place section is (IN) 

 Positive Moment: Strip Width = 26.0 + 6.6S    (6.1) 

 Negative Moment: Strip Width = 48.0 + 3.0S   (6.2) 

where S is the girder spacing in FT. A model of the strip on top of supporting girders is 

shown in Figure  6.1(a). A design truck is shown positioned for the near critical positive 

moment. The displacement of the slab-girder system is shown in Figure  6.1(b). This 
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displacement can be considered as a superposition of the displacements associated with 

the local load effects [Figure  6.1(c)] and the global load effects [Figure  6.1(d)]. The 

global effects consist of bending of the strip due to the displacement of the girders. A 

small change in load position does not significantly affect these displacements; hence this 

is a global effect. The local effect is principally attributed to the bending of the strip due 

to the application of the wheel loads on this strip. A small transverse movement 

significantly affects the local response. For decks, the local effect can be significantly 

greater than the global effect. The global effects can be neglected and the strip can be 

analyzed using the classical beam theory assuming that the girders provide a rigid 

support. To account for the stiffening effect of the support (girder) width, the design 

shears and moments can be taken as critical at the face of the support for monolithic 

construction and at one quarter flange width for steel girders. 

A complete example of the deck design using the traditional approach can be 

found in Appendix B. 

6.1.1.2 Empirical Method 

Empirical method is based on observation that the primary structural action of  a 

concrete deck is not flexure, but internal arching. The arching creates an internal 

compressive dome. Only a minimum amount of isotropic reinforcement is required for 

local flexure resistance and global arching effects. 

To use the Empirical method, the following conditions must be satisfied 

 

Conditions to satisfy 

-The supporting components (girders) are made of steel or concrete. 

-The deck is fully cast-in-place and water cured. 
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-The deck is of uniform depth, except for haunches at girder flanges and other 

local thickening. 

-The ratio of effective length to design depth does not exceed 18 and is not less 

than 6. 

-Core depth of the slab is not less than 4 IN. 

-The effective length does not exceed 13.5 FT. 

-The minimum depth of the slab is not less than 7 IN, excluding a sacrificial 

wearing surface where applicable. 

-There is an overhang beyond the centerline of the outside girder of at least 5 

times the depth of the slab; this condition is satisfied if the overhang is a t least 3 times 

the depth of the slab and a structurally continuous concrete barrier is made composite 

with the overhang. 

-The specified 28-day strength of the deck concrete is not less than 4000 PSI 

-The deck is made composite with the supporting structural components 

 

Reinforcement requirements 

-4 layers of isotropic reinforcement shall be provided. 

-Reinforcement shall be located as close to the outside surfaces as permitted by 

the cover requirements. 

-Reinforcement shall be provided in each face of the slab with the outermost 

layers placed in the direction of the effective length. 

-The minimum amount of reinforcement shall be 0.27 IN2/FT (0.0225 IN2/IN) of 

steel for each bottom layer and 0.18 IN2/FT (0.015 IN2/IN) of steel for each top layer. 

-Spacing of steel shall not exceed 18 IN. 

-Reinforcing steel shall be Grade 60 or better. 

-All reinforcement shall be straight bars, except that hooks may be provided 

where required. 
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A complete example of the deck design using the empirical design is shown in 

Appendix B. 

6.1.2. Girder Spacing 

As mentioned earlier, three girder-spacings were investigated in this research; 

namely 6, 8, 10 FT; for both the empirical method and the traditional method. The 

objective was to assess and compare the serviceability behavior of these two design 

methods when increasing the spacing between girders.  

In case of traditional method, the factored moment used for the three considered 

spacings are presented in Table  6.1 and Figure  6.2 shows the layout of the reinforcement 

corresponding to different girder spacings. Table  6.2 summarizes the reinforcement 

quantity for each of the four rebar layers for each configuration.  

In  case of empirical method, since this method does not take into account the 

girder spacings, only one layout for the three different girder spacings is needed as shown 

in Figure  6.3. Table  6.3 summarizes the reinforcement quantity for each of the four rebar 

layers.  

As mentioned earlier, the responses of these bridges obtained from FEM program 

were used in the calculation of resistance parameters. Figure  6.4 and Figure  6.5 show the 

reinforcement layout modeled in the Finite Element Model for the Empirical and the 

Traditional design method, respectively. A view of the 60 FT span Finite Element Model 

is shown in Figure  6.6, Figure  6.7 and Figure  6.8 for 6 FT, 8 FT and 10 FT spacing, 

respectively. 

6.1.3. Span Length 

As it is explained earlier in this chapter, the global effect in deck behavior, i.e. 

bending of the slab due to deflection of the girder, is not directly taken into account 
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during the design for any of the two methods. The traditional method considers only the 

bending of the strip due to application of the wheel loads on this strip. Since the global 

effect is controlled by the girder deflection, it was decided to investigate the behavior of 

the reinforced concrete deck slab for two different span lengths, 60 FT and 120 FT. The 

60 FT span bridge was designed for the three different girder spacings (6 FT, 8 FT, 10 

FT) while the 120 FT span bridge was only designed for the 10 FT girder spacing. Both 

deck design methods detailed earlier were investigated for the two different spans as well. 

Table  6.4 and Table  6.5 show the factored moment and factored shear in the girders 

computed in the design of the bridges according the AASHTO LRFD 2005 edition. A 

summary of the girder sections used in this research is presented in Table  6.6. A view of 

the 120 FT span Finite Element Model with 10 FT spacing between the girders is shown 

in Figure  6.9. A complete bridge design example is shown in Appendix A. 

6.1.4. Boundary Conditions 

Since it has been reported in the literature that the boundary conditions have great 

influence on bridge behavior, two different boundary conditions were investigated to 

estimate if these observations were also valid for the bridge deck behavior. The first 

configuration was the hinge-roller boundary conditions as shown in Figure  6.10(a). This 

is a boundary condition assumed in the design. The second configuration simulates 

partial fixity by adding a longitudinal spring to partially restrained longitudinal 

displacement as shown in Figure  6.10(b). The stiffness of the spring, K=2000 KIP/IN, 

used in the reliability analysis is the value found during the calibration process of  the 

Finite Element Model with the field test data detailed in Chapter 4. 
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6.1.5. Live Load Position 

The code specified live load, the HS-20 truck shown in Figure  6.11, was the load 

applied live load on the finite element. The spacing between two rear axles was 14 FT. 

As explained earlier, instead of using concentrated load for the axle, each tire contact area 

is modeled by a rectangle of 20 IN by 10 IN as shown in Figure  6.12 and the load due to 

each axle is modeled as a pressure, applied on the contact area, and equal to the axle load 

divided by two, to obtain the wheel load, and then divided by the area of the contact area 

(200 IN2). By using this method, stress concentrations, which were a recurrent problem 

when using concentrated load are avoided. A general view of the truck load applied to the 

model is shown in Figure  6.12. The spacing between tires on the same axle was set to 6 

FT as recommended in the code. 

Three different Truck positions were investigated to check the serviceability of 

the deck at critical locations. First, the truck was placed such that it would produce the 

maximum negative moment over the first interior girder; longitudinally, the rear axle was 

right over the support, and transversally the truck was located right above the girder (3 

FT on each side) as seen in Figure  6.13. This position was intended to investigate a 

longitudinal crack over the girder at the top of the deck as shown in Figure  6.14. For the 

second position, the truck was placed so that it would produce the maximum positive 

moment between the first two girders; longitudinally the rear axle was right over the 

support again, and transversally the left row of wheel was placed at 40% of the distance 

between the girders which is approximately the location of the maximum positive 

moment as seen in Figure  6.15. This position intended to investigate a longitudinal crack 

between the girders at the bottom of the deck as shown in Figure  6.16. Finally a third 

position was investigated, similar to the second position but this time the truck was 

placed longitudinally so that it would produce the maximum longitudinal moment as seen 
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in Figure  6.17. This position was intended to investigate longitudinal and transverse 

cracks at midspan, between girders, at the bottom of the deck as shown in Figure  6.18. 

Configurations of bridges constructed from combinations of the studied 

parameters described above are analyzed by FEM program and the results from FEM 

program which served in calculation of the resistance parameters are explained in details 

in section 6.4.Table  6.7 shows a summary of all the bridge deck configurations 

considered in this study. 

6.2. Limit state function 

The concept of limit state function, as related to the structural reliability, is 

discussed fully in chapter 5. 

The two limit states considered in this study are 1) the cracking of concrete and 2) 

the crack opening under live load. In this research, the first considered limit state, 

cracking of concrete, is defined as the exact moment when the tensile stress exceeds the 
modulus of rupture of concrete, σt0. The nominal value of σt0 was taken as '24.0 cf  ; as 

recommended in the AASHTO LRFD 2005 for normal weight concrete. Note that even 

though this equation does not always represent the actual value of modulus of rupture of 

concrete; however, it is adopted in the code and therefore is used as a nominal value in 

this research. Figure  6.24 shows a sample curve taken from the FEM results of the tensile 

stress in concrete versus the load applied. As seen from the figure, cracking occurred 

when the tensile stress in concrete reached its maximum tensile strength and started to 

decrease as the applied load increased. 

The second considered limit state is the opening of the crack. According to the 

AASHTO LRFD 1998 code provisions, reinforced concrete structure members shall be 

designed in such a way that the tensile stress in the steel reinforcement at the service limit 

state, fsa, does not exceed: 
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)( 3/1 ≤=         (6.3) 

where dc is the concrete cover measured from the extreme tension fiber to the center of 

the closest bar, but not to be taken greater than 2 IN; A is the area of concrete having the 

same centroid as the principal tensile reinforcement, divided by the numbers of bars; and 

Z is a crack width parameter taken as 130 KIP/IN for members in severe exposure, as 

considered in this research. This value of Z corresponds to a crack width of 

approximately 0.012 IN. The different values of fsa used in each studied bridge 

configuration are shown in Table  6.8 for negative moment section and in Table  6.9 for 

positive moment section.  

6.3. Load Model 

Conventional bridge load models for structural reliability calculation are 

discussed fully in chapter 5. 

One possible source of information regarding the weight and configuration of 

highways trucks is the citation data of overweight vehicles. This data was provided by the 

Michigan State Police Motor Carrier Division. The survey covered 2511 citations in the 

calendar year 1985. Citation data are very accurate and include only the heaviest trucks in 

the load model. 

The frequency histogram for the number of axles of citation trucks is shown in 

Figure  6.19. The traffic is dominated by 5 and 6 axle trucks. The third most frequent 

number of axles is 11. 

The frequency histogram for the gross vehicle weight (GVW) of all citations 

trucks is shown in Figure  6.20. Most of GVW’s are between 70 and 90 KIP. 

The axle weight, which is the most important value for this research, is also 

represented as by cumulative distribution function (CDF), as shown in Figure  6.21. The 
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distribution functions are plotted using normal probability paper. The vertical scale 

corresponds to the probability and the actual numbers are equal to the inverse normal 

probability. The maximum recorded axle weight of 41 KIP was taken as the axle creating 

the annual mean maximum moment. A dynamic live load of 10% was added. The 

coefficient of variation for the maximum axle moment can be calculated by 

transformation of the cumulative distribution function (CDF). The function can be raised 

to a certain power, so that the earlier mean maximum axle moment becomes the mean 

after the transformation. The slope of the transformed CDF determines the coefficient of 

variation. In this study the coefficient of variation was assumed to be 18% including the 

dynamic effect. It is important to note that even if dead loads are included into the Finite 

Element Model, only live loads are included into the reliability calculations. Indeed, this 

analysis intend to estimate reliability indices at serviceability level under live load, dead 

load is included into the Finite Element Model only to accurately reproduce the stress 

distribution state in the deck slab before application of the live load. Moreover, resistance 

of the deck slab was derived from the value of live load; therefore only live load 

parameters are included in the reliability calculation. 

6.4. Resistance Model 

Various conventional bridge resistance models for structural reliability calculation 

are discussed fully in chapter 5. In this study the Rosenblueth’s 2K+1 point estimate 

method used in combination with the Finite Element Analysis is used to determine the 

resistance parameters. 

6.4.1. Parameters Used in Finite Element Model 

Each bridge configuration investigated was modeled using exactly the same 

material model as described in Chapter 4. It is very important that in all Finite Element 
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Models, the same parameters are used in order to be able to compare the obtained results. 

For all cases, the Young modulus was computed according to the compressive strength, 

f’c, considered using the following equation: 

 
)(000,57 , PSIfE c=        (6.4) 

 

The nominal value of f’c considered in this study was 4000 PSI since it is the standard 

value used in the design of deck slab. The Poisson coefficient was set to 0.15 and the 

density to 150 PCF in each case. All programs used the same tension stiffening as shown 

in Figure  6.22. The nominal value of yield strength for all rebars was set to 60 KSI, and 

the bilinear model described in chapter 4 was used with a Young modulus equal to 

29,000 KSI.  

As described earlier, 4-nodes linear shell element for the girders and 4 layers of 8-

nodes linear brick element for the deck were used for all models. Full composite action 

was assumed. Reinforcement was included in the model, as described earlier, for the 

empirical reinforcement and the traditional reinforcement as shown in Figure  6.4 and 

Figure  6.5 using truss elements. Each rebar layer was precisely placed at the correct 

depth. Perfect bond is assumed between the rebars and concrete. 

6.4.2. Procedure to Obtain Resistance Parameters 

The Rosenblueth’s 2K+1 point estimate method, detailed in chapter 5, was used 

in this study to obtain the resistance parameters.  

The parameters used as random variables in the Rosenblueth’s 2K+1 point 

estimate method were 1) yield strength, fy, of the steel rebars #4, 2) yield strength, fy, of 

the steel rebars #5, 3) compressive strength, f’c, of concrete, 4) modulus of rupture, fr, of 
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concrete and 5) thickness, t, of the slab. The mean and standard deviation of these five 

random variables are shown in Table  6.10.  

Based on the Rosenblueth’s 2K+1 point estimate method explained in chapter 5, 

for each studied bridge configuration, a total of (2 x K + 1) simulations are required to 

obtain resistance parameters where K is the number of random variables considered. 

Therefore; in this study, a total of 11 simulations were run for each studied bridge 

configuration. The 11 simulations comprised of 1 run with each of the five considered 

random variables equal to their mean value and 10 runs each of the five considered 

random variables equal to their mean value shifted by + and – one standard deviation. 

Ultimately, a set of 11 simulations was carried out repeatedly for all studied bridge 

configurations listed in Table  6.7. 

To clarify the process of obtaining the resistance parameters, a procedure for a 

particular bridge configuration is explained in details as follows:  

The compressive stress-strain curve of concrete is plotted using three curves, the 

middle one corresponds to the mean and the other two represent one standard deviation 

below and above the mean in Figure  6.23. Let’s consider an FEM run corresponding to 

the mean value of this compressive stress-strain curve of concrete. The results obtained 

from this FEM run are shown in Figure  6.24 and Figure  6.25 where Figure  6.24 shows 

the tensile stress in concrete versus the applied load and Figure  6.25 shows the tensile 

stress in the reinforcement versus the applied load. From these two curves, the load 

corresponding to the limit state of cracking of concrete and the load corresponding to the 

limit state of the maximum allowable stress in reinforcement (crack opening), were 

obtained. These loads were then converted into moments depending on the considered 

bridge configuration as shown in Table  6.11. As a result, these moments represent the 

moment carrying capacity or resistance parameters of the considered bridge deck 

configuration.  
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This process was then repeated for each simulation of the studied random 

variables and for all bridge configurations considered in this research.  

It is important to note that the obtained moment carrying capacity is for live load 

only. Once all the moment carrying capacities are obtained, the mean and standard 

deviation for resistance are calculated using equation 5.49 presented in the previous 

chapter. It is also noted that by using this method, uncertainties originating from material 

properties, fabrication tolerances and analysis factor are taken into account. The 

reliability analysis procedure carried out in this study is explained in details in the 

following section. 

6.5. Reliability Analysis Procedure and Results 

6.5.1. Reliability Analysis Procedure  

The statistical parameters of load and resistance are now determined for each 

bridge configuration. Assuming that the load and resistance are lognormal random 

variables, the formula for reliability index can be expressed in terms of the given data 

(µR, µQ, COVR, COVQ) as follows: 
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where µR is the mean resistance, µQ is the mean load, COVR is the coefficient of variation 

of resistance, and COVQ is the coefficient of variation of load. Equation 6.5 is derived 

from Equation 6.6, which expresses the reliability index for normal random variables, 

using the relations expressed in equation 6.7 and 6.8 
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where µR is the mean resistance, µQ is the mean of load, σR is the standard deviation of 

resistance, and σQ is the standard deviation of load. 
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where µln(X) is the mean value of ln(X),and σln(X) is the standard deviation of ln(X). 

An detailed example of the calculations is shown in Table  6.12 and Table  6.13 for the 

empirical design method with a 60 FT span bridge, 10 FT girder spacing, negative 

moment (top of the slab) for the cracking limit state and the crack opening limit state 

respectively.  

6.5.2. Results of the Reliability Analysis 

Table  6.14 and Table  6.15 summarize the calculated reliability indices for all 

configurations investigated for the cracking limit state and the crack opening limit state, 

respectively. 

6.5.2.1 Discussion and Results for the Cracking Limit State 

The comparison of reliability indices between the two design methods as a 

function of the girder spacing is shown in Figure  6.26, Figure  6.27, and Figure  6.28 for 

the longitudinal cracking at the top of the deck close to support (negative moment), the 

longitudinal cracking at the bottom of the deck close to support (positive moment), and 

the longitudinal cracking at the bottom of the deck at midspan (positive moment), 

respectively. 
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The comparison of reliability indices between the two design methods as a 

function of the span length is shown in Figure  6.29, Figure  6.30, and Figure  6.31 for the 

longitudinal cracking at the top of the deck close to support (negative moment), the 

longitudinal cracking at the bottom of the deck close to support (positive moment), and 

the longitudinal cracking at the bottom of the deck at midspan (positive moment), 

respectively. 

Finally, the comparison of reliability indices between the two boundary 

conditions investigated, for the empirical design, as a function of girder spacing is shown 

in Figure  6.32, Figure  6.33, and Figure  6.34 for the longitudinal cracking at the top of the 

deck close to support (negative moment), the longitudinal cracking at the bottom of the 

deck at midspan (positive moment), and the transverse cracking at the bottom of the deck 

at midspan (positive moment), respectively. 

It was observed that for the longitudinal cracking, the reliability indices are very 

low, ranging from 0 to 2, for all deck configurations studied. Since we used annual mean 

maximum for the load, a reliability index of zero corresponds to a probability of 50% for 

the deck to crack within a year. Figure  6.26, Figure  6.27, and Figure  6.28 show that the 

reliability index slightly decreases when the girder spacing increases which indicates a 

slightly higher probability for deck supported on widely spaced girders to crack. Both 

design methods show similar reliability level at the cracking limit state, with traditional 

design showing just slightly higher values for wider girder spacing. It can be concluded 

that the ratio of reinforcement has a minimal influence on the cracking moment of decks 

with girder spacing ranging from 6 FT to 10 FT. Finally, no significant differences were 

noticed between crack at the top or bottom of the deck, as well as between the crack close 

to support and at midspan. 

Figure  6.29, Figure  6.30, and Figure  6.31 show that the reliability index slightly 

increases, from 0 to 2, when the span increases for both design methods regardless of the 

location of the crack. This effect is due to the fact that long span bridge decks have a 
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behavior closer to a beam behavior than a plate behavior. The longitudinal stiffness of a 

long span bridge relatively to the span length is smaller than the one of a short span. 

Therefore, the deck in a long span bridge deflects more, creating transverse compression 

in the deck; hence, decreasing the probability of longitudinal crack to occur. In addition, 

shorter bridge decks have a higher torsional stiffness than longer bridges. Therefore, 

shorter bridge decks experience more torsional stress than longer bridge decks, increasing 

the probability of cracking for shorter spans, especially close to support and in the corner 

of the deck.  

Figure  6.32 and Figure  6.33 show that the partial fixity slightly reduces the 

probability of longitudinal crack to appear in bridge deck supported on widely spaced 

girders. However, Figure  6.34 shows that the effect of boundary conditions is more 

significant for transverse cracking than longitudinal cracking. For the case of transverse 

cracking at the bottom of the deck at midspan, it is observed that partial fixity 

significantly increase the reliability indices (see Figure  6.34). These effects can be 

explained by the fact that partial fixity limits the longitudinal displacement of support 

and; therefore, increase the longitudinal compressive stresses in the structure. This 

increase of longitudinal compressive stresses in the deck increases the resistance of the 

deck to transverse cracks. Moreover, due to Poisson effect, this longitudinal compressive 

stress also creates, but at a smaller scale, transversal compressive stress. This slight 

increase in transversal compressive stress explains that the probability of the cracking to 

occur decreases when partial fixity at the support is applied; this phenomena is enhanced 

when the spacing between girders increases. 

6.5.2.2 Discussion and Results for the Crack Opening Limit State 

The comparison of reliability indices between the two design methods as a 

function of the girder spacing is shown in Figure  6.35, Figure  6.36, and Figure  6.37 for 
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the longitudinal crack opening at the top of the deck close to support (negative moment), 

the longitudinal cracking at the bottom of the deck close to support (positive moment), 

and the longitudinal cracking at the bottom of the deck at midspan (positive moment), 

respectively. 

The comparison of reliability indices between the two design methods as a 

function of the span length is shown in Figure  6.38, Figure  6.39, and Figure  6.40 for the 

longitudinal crack opening at the top of the deck close to support (negative moment), the 

longitudinal cracking at the bottom of the deck close to support (positive moment), and 

the longitudinal cracking at the bottom of the deck at midspan (positive moment), 

respectively. 

Finally, the comparison of reliability indices between the two boundary 

conditions investigated, for the empirical design, as a function of girder spacing is shown 

in Figure  6.41 and Figure  6.42 for the longitudinal cracking at the top of the deck close to 

support (negative moment), and the longitudinal cracking at the bottom of the deck at 

midspan (positive moment), respectively. 

It was observed that for the longitudinal crack opening limit state, the reliability 

indices are relatively high, ranging from 3.5 to 7, for all deck configurations studied. It 

means that the probability of the crack to open at the width recommended by the code is 

less than the probability of the crack to occur. However, this can also be explained by the 

fact that only live load was considered in this study. Shrinkage and difference 

temperature gradient analysis which would reduce the reliability indices were not 

included.  

Figure  6.35, Figure  6.36, and Figure  6.37 show that crack opening is more 

sensitive to girder spacing than cracking. The reliability index significantly decreases 

when the girder spacing increases which indicates a higher probability for deck supported 

on widely spaced girders to crack. Traditional design indicates higher values of reliability 

indices for wider spacing. It can be concluded that, contrary to cracking, crack opening is 
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significantly more influenced by the ratio of reinforcement. As a result, in the case of 

empirical design, because the design yields a constant ratio of reinforcement for all girder 

spacings (see Table  6.3), thus, the reliability indices decrease significantly as the girder 

spacing increased. On the contrary, the traditional design method yields the increase of 

the ratio of reinforcement as girder spacing increases (see Table  6.2); hence, the 

reliability only slightly decreases as the spacing increases. In addition, no significant 

differences were noticed between crack at the top or bottom of the deck, as well as 

between the crack close to support and at midspan.  

Similar to the cracking limit state, Figure  6.38, Figure  6.39, and Figure  6.40 show 

that reliability index for the crack opening limit state slightly increases when the span 

increases for both design methods, regardless of the location of the crack. Similar to the 

cracking limit state, this effect is due to the fact that long span bridge decks have a 

behavior closer to a beam behavior than a plate behavior and the torsional stiffness is 

greater for shorter bridge than for the longer ones.  

Figure  6.41 and Figure  6.42 show that a partial fixity slightly reduces the 

probability of longitudinal crack to open in bridge deck supported on widely spaced 

girders. As explained earlier, partial fixity increases longitudinal compressive stresses. 

Due to Poisson effect this longitudinal compressive stress also creates, but at a smaller 

scale, transversal compressive stress. This slight increase in transversal compressive 

stress explains a decrease of the probability of the crack to open at the maximum width 

recommended by the code when partial fixity at the support is applied. 

6.5.2.3 Effect of the annual mean maximum axle weight on reliability indices 

Figure  6.43 and Figure  6.44 show the comparison of reliability indices between 

the two design methods as a function of the annual mean maximum for a 60 FT span 
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bridge and 10 FT girder spacing at the cracking limit state and the crack opening limit 

state, respectively.  

Figure  6.45 and Figure  6.46 show the same comparison but for a 120 FT span 

bridge, for the cracking limit state and the crack opening limit state, respectively. 

It can be observed that, for all cases, the reliability indices decreases significantly 

when the annual mean maximum axle weight increases. This emphasizes the importance 

of an accurate estimation of the real traffic crossing bridges in order to predict their 

behavior at serviceability and also point out the importance of posting on a bridge. 
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Table 6.1 Factored moments computed using the traditional method for the three different 
spacing. 
 Girder Spacing 
  6FT 8FT 10FT 
Negative Moment exterior (KIP-FT/FT) -0.78 -0.78 -0.78 
Positive Moment (KIP-FT/FT) 8.71 10.61 13.11 
Negative Moment (KIP-FT/FT) -9.05 -11.91 -13.64 
Reaction first support (KIP/FT) 11.19 11.30 11.43 

 
Table 6.2 Summary of rebars quantity using the traditional method for the three different 
spacing 
  Girder Spacing = 6FT 
Position and Orientation Repartition Area (IN2/IN) 
Bottom Transverse #4 @ 9 IN 0.0222 
Top Tansverse #4 @ 7 IN 0.0286 
Bottom Longitudinal #4 @ 10 IN 0.02 
Top Longitudinal #4 @ 18 IN 0.0111 
  Total  0.0819 
   
  Girder Spacing = 8FT 
Position and Orientation Repartition Area (IN2/IN) 
Bottom Transverse #5 @ 11 IN 0.0282 
Top Tansverse #5 @ 9 IN  0.0344 
Bottom Longitudinal #4 @ 8 IN 0.025 
Top Longitudinal #4 @ 18 IN 0.0111 
  Total 0.0987 
   
  Girder Spacing = 10FT 
Position and Orientation Repartition Area (IN2/IN) 
Bottom Transverse #5 @ 9 IN 0.0344 
Top Tansverse #5 @ 7 IN 0.0443 
Bottom Longitudinal #4 @ 6 IN 0.0333 
Top Longitudinal #4 @ 18 IN 0.0111 
  Total 0.1231 
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Table 6.3 Summary of rebars quantity using the empirical method 
Position and Orientation Repartition Area (IN2/IN) 
Bottom Transverse #4 @ 13 IN 0.0154 
Top Transverse #4 @ 13 IN 0.154 
Bottom Longitudinal #5 @ 13 IN 0.0238 
Top Longitudinal #5 @ 13 IN 0.0238 
  Total 0.0784 

 
Table 6.4 Factored moments computed for the design of the bridge 

Total factored Moment (KIP-FT)Span 
(FT) 6 FT 8 FT 10 FT 
60.00 1966.61 2452.64 2936.50 
120.00 - - 9162.02 

 
Table 6.5 Factored shear computed for the design of the bridge 

Total Factored Shear (KIP) Span 
(FT) 6 FT 8 FT 10 FT 
60.00 160.71 198.64 236.25 
120.00 - - 366.66 

 
Table 6.6 Summary of the girder section used in this research 

Girder Section Span 
(FT) 6 FT 8 FT 10 FT 
60.00 W24 x 94 W27 x 102 W30 x 116 
120.00 - - W44 x 335 
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Table 6.7 Summary of the different bridge configuration studied 
  Span = 60 FT 

    
6 FT 
Trad 

6 FT 
Emp 

8FT 
Trad 

8 FT 
Emp 

10 FT 
Trad 

10 FT 
Emp 

n.s. √ √ √ √ √ √ 
p.s. √ √ √ √ √ √ 

normal 
B/C  

p.m. √ √ √ √ √ √ 
n.s.  √  √  √ 
p.s.       

partial 
fixity 
B/C p.m.   √   √   √ 

        
        

  Span = 120 FT 

    
6 FT 
Trad 

6 FT 
Emp 

8FT 
Trad 

8 FT 
Emp 

10 FT 
Trad 

10 FT 
Emp 

n.s.         √ √ 
p.s.     √ √ 

normal 
B/C 

p.m.         √ √ 
n.s: negative moment at the support 
p.s: positive moment at the support 
p.m: positive moment at midspan 
       Longitudinal crack investigated as well 
 
Table 6.8 Value of fsa for negative moment section 
 Traditional 
  6 FT 8 FT 10 FT 

Empirical

Z (IN) 130.00 130.00 130.00 130.00 
dc (IN) 2.25 2.31 2.31 2.25 
A (IN2) 31.50 41.63 32.38 58.50 

fsa (KSI) 31.41 28.37 30.84 25.56 
 
Table 6.9 Value of fsa for p moment section 
 Traditional 
  6 FT 8 FT 10 FT 

Empirical

Z (IN) 130.00 130.00 130.00 130.00 
dc (IN) 1.25 1.31 1.31 1.31 
A (IN2) 22.50 28.88 23.63 34.13 

fsa (KSI) 36.84 32.29 34.52 36.61 
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Table 6.10 Random variables parameters used in the 2K+1 point estimate method 
               

 nominal bias λ COV Mean µ Standard 
dev. σ µ+σ µ-σ 

fy (#4) 
(KSI) 60 1.128 0.026 67.68 1.76 69.44 65.92 

fy (#5) 
(KSI) 60 1.12 0.023 67.20 1.55 68.75 65.65 

f'c 

 (PSI) 4000 1.2125 0.154 4850.00 746.90 5596.90 4103.10

thickness 
(IN) 9 0.92 0.12 8.28 0.99 9.27 7.29 

fr  
(PSI) 480 1.213 0.2 582.24 116.45 698.69 465.79 

 
 
 
Table 6.11 Moment due to live load for different bridge configuration 

Girder 
spacing 

S 

 
6 FT -1.044 x P (KIP-FT)* 1.035 x P (KIP-FT)* 

8 FT -1.448 x P (KIP-FT)* 1.463 x P (KIP-FT)* 

10 FT -1.727 x P (KIP-FT)* 2.041 x P (KIP-FT)* 

* Dynamic effect not included 
 
 
 
 
 
 
 
 
 
 
 

P P 

Positive moment 

S P P 

Negative moment

S 



 

 
 
 
Table 6.12 Example of calculation of the reliability index for the empirical design, 60 FT span bridge, 10 FT girder spacing, negative 
moment (top of the slab) – cracking limit state 
 

 
 
 

RESISTANCE (KIP-FT) 
 

Variable 
        

β 

Fy #4 y1 46.98 46.98 46.98 0.00 

Fy #5 y2 46.98 46.98 46.98 0.00 

f'c y3 46.96 46.98 46.97 2.94E-04 

t y4 35.98 49.69 42.84 0.16 

fr y5 35.98 52.46 44.22 0.186 

46.99 40.31 0.25 9.97 

       

       
LOAD (KIP-FT) 

      µload COVload σload 
    

 
  38.96 0.18 6.48 
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Table 6.13 Example of calculation of the reliability index for the empirical design, 60 FT span bridge, 10 FT girder spacing, negative 
moment (top of the slab) – crack opening limit state 

 
 
 

RESISTANCE (KIP-FT) 
 

Variable 
  

 

   

 

 

β 

Fy #4 y1 117.94 117.94 117.93 0 

Fy #5 y2 117.94 117.94 117.93 0 

f'c y3 115.56 119.26 117.41 0.015 

t y4 91.62 143.17 117.40 0.219 

fr y5 102.24 127.25 114.74 0.108 

117.93 113.71 0.24 28.06 
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Table 6.14 Summary of reliability indices for all configurations investigated - cracking 
resistance 
(KIP-FT) load (KIP-FT) 

L S Design position boundary
µres σres µload σload 

β 

60 6 empirical n.s. roller 38.76 0.24 23.55 0.18 1.62 
60 6 empirical p.s. roller 42.58 0.25 23.34 0.18 1.9 
60 6 empirical p.m. roller 45.87 0.3 23.34 0.18 1.86 
60 8 empirical n.s. roller 43.65 0.23 32.65 0.18 0.59 
60 8 empirical p.s. roller 41.65 0.28 32.99 0.18 0.63 
60 8 empirical p.m. roller 56.06 0.33 32.99 0.18 1.34 
60 10 empirical n.s. roller 40.31 0.24 38.95 0.18 0.07 
60 10 empirical p.s. roller 45.31 0.37 46.03 0.18 -0.16 
60 10 empirical p.m. roller 73.23 0.31 46.03 0.18 1.21 
120 10 empirical n.s. roller 54.11 0.29 35.41 0.18 1.18 
120 10 empirical p.s. roller 47.13 0.33 41.84 0.18 0.23 
120 10 empirical p.m. roller 77.96 0.32 41.84 0.18 1.64 
60 6 traditional n.s. roller 37.36 0.24 23.55 0.18 1.52 
60 6 traditional p.s. roller 38.42 0.31 23.34 0.18 1.33 
60 6 traditional p.m. roller 43.39 0.29 23.34 0.18 1.79 
60 8 traditional n.s. roller 43.49 0.29 32.65 0.18 0.77 
60 8 traditional p.s. roller 41.62 0.28 32.99 0.18 0.63 
60 8 traditional p.m. roller 58.19 0.16 32.99 0.18 1.57 
60 10 traditional n.s. roller 49.64 0.29 38.95 0.18 0.65 
60 10 traditional p.s. roller 52.54 0.25 46.03 0.18 0.38 
60 10 traditional p.m. roller 73.06 0.3 46.03 0.18 1.24 
120 10 traditional n.s. roller 61.69 0.29 35.41 0.18 1.57 
120 10 traditional p.s. roller 47.92 0.16 41.84 0.18 0.57 
120 10 traditional p.m. roller 78.36 0.3 41.84 0.18 1.75 
60 6 empirical n.s. spring 44.07 0.3 23.55 0.18 1.71 
60 6 empirical p.m. spring 43.11 0.26 23.34 0.18 1.87 
60 6 empirical p.m.* spring 4545 0.2 1073.05 0.18 5.38 
60 8 empirical n.s. spring 46.04 0.31 32.65 0.18 0.88 
60 8 empirical p.m. spring 44.21 0.31 32.99 0.18 1.3 
60 8 empirical p.m.* spring 3130.1 0.2 1073.05 0.18 4.1 
60 10 empirical n.s. spring 52.36 0.29 38.95 0.18 0.78 
60 10 empirical p.m. spring 90.92 0.28 46.03 0.18 1.97 
60 10 empirical p.m.* spring 2562.63 0.19 1073.05 0.18 3.3 

n.s: negative moment at the support 
p.s: positive moment at the support 
p.m: positive moment at midspan 
p.m.*: positive moment at midspan - longitudinal crack 
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Table 6.15 Summary of reliability indices for all configurations investigated – crack 
opening 

Resistance 
(KIP-FT) Load (KIP-FT)

L S Design position boundary
µres σres µload σload 

β 

60 6 empirical n.s. roller 113.84 0.15 23.55 0.18 6.76 
60 6 empirical p.s. roller 128.486 0.22 23.34 0.18 5.98 
60 6 empirical p.m. roller 96.57 0.11 23.34 0.18 6.88 
60 8 empirical n.s. roller 112.29 0.22 32.65 0.18 4.35 
60 8 empirical p.s. roller 110.28 0.22 32.99 0.18 4.21 
60 8 empirical p.m. roller 114.91 0.16 32.99 0.18 5.17 
60 10 empirical n.s. roller 113.71 0.24 38.95 0.18 3.51 
60 10 empirical p.s. roller 147.95 0.32 46.03 0.18 3.09 
60 10 empirical p.m. roller 137.28 0.18 46.03 0.18 4.28 
120 10 empirical n.s. roller 132.18 0.21 35.41 0.18 4.7 
120 10 empirical p.s. roller 112.21 0.11 41.84 0.18 4.76 
120 10 empirical p.m. roller 127.61 0.16 41.84 0.18 4.63 
60 6 traditional n.s. roller 125.68 0.15 23.55 0.18 7.19 
60 6 traditional p.s. roller 126.6 0.19 23.34 0.18 6.44 
60 6 traditional p.m. roller 97.92 0.11 23.34 0.18 6.82 
60 8 traditional n.s. roller 121.37 0.21 32.65 0.18 4.7 
60 8 traditional p.s. roller 105.39 0.22 32.99 0.18 4.01 
60 8 traditional p.m. roller 116.4 0.16 32.99 0.18 5.22 
60 10 traditional n.s. roller 131.39 0.21 38.95 0.18 4.34 
60 10 traditional p.s. roller 130.7 0.2 46.03 0.18 3.84 
60 10 traditional p.m. roller 147.91 0.17 46.03 0.18 4.79 
120 10 traditional n.s. roller 149.76 0.2 35.41 0.18 5.31 
120 10 traditional p.s. roller 141.68 0.19 41.84 0.18 4.7 
120 10 traditional p.m. roller 146.47 0.14 41.84 0.18 5.51 
60 6 empirical n.s. spring 115.97 0.19 23.55 0.18 6.13 
60 6 empirical p.m. spring 116.41 0.15 23.34 0.18 6.79 
60 8 empirical n.s. spring 114.56 0.22 32.65 0.18 4.33 
60 8 empirical p.m. spring 123.07 0.18 32.99 0.18 5.18 
60 10 empirical n.s. spring 121.37 0.23 38.95 0.18 3.91 
60 10 empirical p.m. spring 143.24 0.18 46.03 0.18 4.5 

n.s: negative moment at the support 
p.s: positive moment at the support 
p.m: positive moment at midspan 
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Figure 6.1(a) Idealized strip design, (b) transverse section under load, (c) rigid girder 
model, and (d) displacement due to girder translation 
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Figure 6.2 Layout of the deck reinforcement for the three girders spacing according the 
traditional method 
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Figure 6.3 Layout of the deck reinforcement according the empirical method 
 
 
 
 

 
Figure 6.4 View of the Empirical reinforcement modeled in the Finite Element Model 
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Figure 6.5 View of the Traditional reinforcement modeled in the Finite Element Model 
 

 
Figure 6.6 View of the 60 FT span Finite Element Model with 6 FT girder spacing. 
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Figure 6.7 View of the 60 FT span Finite Element Model with 6 FT girder spacing. 
 

 
Figure 6.8 View of the 60 FT span Finite Element Model with 10 FT girder spacing. 
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Figure 6.9 View of the 120 FT span Finite Element Model with 10 FT girder spacing. 
 

 
Figure 6.10 Boundary conditions used in the reliability analysis 
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Figure 6.11 Characteristics of the design truck 
 

 
Figure 6.12 General view of the HS-20 load applied on the FE model 
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Figure 6.13 First investigated truck position – maximum negative moment 
 

 
Figure 6.14 Detail of the first investigated position – longitudinal crack at the top of the 
deck 
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Figure 6.15 Second investigated truck position – maximum positive moment 

 
 
Figure 6.16 Detail of the second investigated position – longitudinal crack at the bottom 
of the deck 
 

Longitudinal 
crack 
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Figure 6.17 Third investigated truck position – maximum positive moment at midspan 

 
Figure 6.18 Detail of the third investigated position – longitudinal and transversal crack 
at the bottom of the deck 
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Figure 6.19 Histogram of number of axles for citation trucks 
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Figure 6.20 Histogram of Gross Vehicle Weight for citation trucks 
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Figure 6.21 Cumulative Distribution Function of axle load for a year, citation data 
 
 
 

 
 
Figure 6.22 Tension stiffening used in the Finite Element Program 
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Figure 6.23 Compressive stress-strain of concrete implemented in the FEM 
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Figure 6.24 Tensile stress in concrete versus applied load 
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*Vary depending on bridge configuration considered 
 
Figure 6.25 Tensile stress in reinforcement versus applied load 
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Figure 6.26 Comparison of reliability indices between the two design methods as a 
function of the girder spacing for the longitudinal cracking, negative moment at the 
support (top of the slab) 
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Figure 6.27 Comparison of reliability indices between the two design methods as a 
function of the girder spacing for the longitudinal cracking, positive moment at the 
support (bottom of the slab) 
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Figure 6.28 Comparison of reliability indices between the two design methods as a 
function of the girder spacing for the longitudinal cracking, positive moment at midspan 
(top of the slab) 
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Figure 6.29 Comparison of reliability indices between the two design methods as a 
function of the span length for the longitudinal cracking, negative moment at the support 
(top of the slab) 
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Figure 6.30 Comparison of reliability indices between the two design methods as a 
function of the span length for the longitudinal cracking, positive moment at the support 
(bottom of the slab) 
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Figure 6.31 Comparison of reliability indices between the two design methods as a 
function of the span length for the longitudinal cracking, positive moment at midspan 
(bottom of the slab) 
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Figure 6.32 Comparison of reliability indices between the two boundary conditions as a 
function of the girder spacing for the longitudinal cracking, negative moment at support 
(top of the slab) 
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Figure 6.33 Comparison of reliability indices between the two boundary conditions as a 
function of the girder spacing for the longitudinal cracking, positive moment at midspan 
(bottom of the slab) 
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Figure 6.34 Comparison of reliability indices between the two boundary conditions as a 
function of the girder spacing for the transverse cracking, positive moment at midspan 
(bottom of the slab) 
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Figure 6.35 Comparison of reliability indices between the two design methods as a 
function of the girder spacing for the longitudinal crack opening, negative moment at the 
support (top of the slab) 
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Figure 6.36 Comparison of reliability indices between the two design methods as a 
function of the girder spacing for the longitudinal crack opening, positive moment at the 
support (bottom of the slab) 
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Figure 6.37 Comparison of reliability indices between the two design methods as a 
function of the girder spacing for the longitudinal crack opening, positive moment at 
midspan (bottom of the slab) 
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Figure 6.38 Comparison of reliability indices between the two design methods as a 
function of the span length for the longitudinal crack opening, negative moment at the 
support (top of the slab) 
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Figure 6.39 Comparison of reliability indices between the two design methods as a 
function of the span length for the longitudinal crack opening, positive moment at the 
support (bottom of the slab) 
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Figure 6.40 Comparison of reliability indices between the two design methods as a 
function of the span length for the longitudinal crack opening, positive moment at 
midspan (bottom of the slab) 
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Figure 6.41 Comparison of reliability indices between the two boundary conditions as a 
function of the girder spacing for the longitudinal crack opening, positive moment at the 
support (bottom of the slab) 
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Figure 6.42 Comparison of reliability indices between the two boundary conditions as a 
function of the girder spacing for the longitudinal crack opening, positive moment at 
midspan (bottom of the slab) 
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Figure 6.43 Comparison of reliability indices between the two design methods as a 
function of the annual mean maximum axle weight for the longitudinal cracking, negative 
moment at midspan (top of the slab) – span = 60 FT, Girder spacing = 10 FT 
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Figure 6.44 Comparison of reliability indices between the two design methods as a 
function of the annual mean maximum axle weight for the longitudinal crack opening, 
negative moment at midspan (top of the slab) – span = 60 FT, Girder spacing = 10 FT 
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Figure 6.45 Comparison of reliability indices between the two design methods as a 
function of the annual mean maximum axle weight for the longitudinal cracking, negative 
moment at midspan (top of the slab) – span = 120 FT, Girder spacing = 10 FT 
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Figure 6.46 Comparison of reliability indices between the two design methods as a 
function of annual mean maximum axle weight for the longitudinal crack opening, 
negative moment at midspan (top of the slab) – span = 120 FT, Girder spacing = 10 FT 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

7.1. Summary 

At present, there is no assessment method available to evaluate the serviceability 

and durability of bridge decks. In this dissertation, a procedure for bridge decks 

evaluation is developed, that is focused on evaluation and comparison of performance of 

reinforced concrete slab-on-girders with girder spacing up to 10 FT, designed according 

to the two methods specified by the AASHTO LRFD (2005) code (strip method and 

empirical method). Ultimately, a reliability based method associated with a state of the 

art non linear finite element analysis, calibrated using field tests, is developed in order to 

understand the structural behavior of the deck and to assess its performance.  

The field tests were carried out on a steel girder bridge, with the girders spaced at 

10 FT. The bridge was selected from a list of bridges with large spacing between girders, 

provided by the Michigan Department of Transportation. The field tests were carried out 

to determine the actual behavior of bridge superstructure supported by steel girders 

spaced at more than 10 FT. The results were used to calibrate the Finite Element Model 

and to analyze the effect of partial fixity of the support on the behavior of reinforced 

concrete bridge deck. The selected bridge was tested using a three-unit 11-axles truck as 

live load (the largest live load legally permitted in the State of Michigan) with known 

gross vehicle weight and axle configuration. The actual axle weights of the test truck 

were measured at a weigh station prior to the test. The truck was driven over the bridge at 

different transverse positions at crawling speed to simulate a static loading. For each run, 
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the strain measurement was recorded simultaneously on all the girders at two locations; 

close to support and 26 FT from the support. 

A non-linear finite element model for reinforced concrete was developed using 

the commercial software ABAQUS. Eventually, the results from the FEM program for 

each configuration of the studied bridges served in the calculation of resistance 

parameters in the reliability analysis. 

In the FEM model, a three-dimensional model was selected to investigate the 

behavior of the bridge decks. The web and flanges of the steel girders were modeled with 

4-node shell elements, each node having six degrees of freedom (three in translation and 

three in rotation). The reinforced concrete deck slab was modeled using 8-node brick 

elements, each node having three degrees of freedom. Each reinforcing rebar was 

modeled using truss elements embedded in the deck slab at the exactly determined depth 

and spacing. Since this study concentrated on stress distribution within the reinforced 

concrete deck slab, special attention was paid to the meshing process. It was observed 

that with the type of element selected in this study, a model with four layers of elements 

was giving good results in terms of stress/strain distribution and load/deflection behavior. 

The structural effects of the secondary members such as sidewalk and parapet were taken 

into account in the finite element model of the tested bridge. Transverse bracing and 

cross framed diaphragm were also modeled using truss elements. 

The three materials used in this research were concrete and two types of steel; 

reinforcing steel for the rebars and structural steel for the girders. Rather than attempting 

to develop complicated material models with a complete mechanical description of the 

behavior of concrete and reinforcement and their interaction, the built-in material models 

available in ABAQUS were used that efficiently represent the main parameters governing 

the response of structural concrete.  

The concrete model available in ABAQUS and used in this study includes 

inelastic damage behavior. This model is based on the assumptions of isotropic damage 
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and it is designed for applications with concrete subjected to arbitrary loading conditions. 

The model takes into consideration a degradation of the elastic stiffness induced by 

plastic straining both in tension and compression. The Honegstad model was applied to 

model the compression stress-strain curve of concrete, and a bilinear tension stiffening 

defined in terms of displacement is used to model post-cracking behavior. Regarding 

steel, a perfect elastic-plastic idealization of the stress-strain response of reinforcement 

was used in this study.  

Results of three available laboratory experiments on slabs were compared with 

the analytical results in order to validate the developed material behavior model. The 

tested bridge was also analyzed using the same material model in order to investigate the 

effect of partial fixity of the boundary conditions. The FEM results from all three cases 

considered were in very good agreement with the experimental results in terms of load 

versus deflection. Therefore, this proves that the modeling technique and the material 

model used in this study are accurate and efficient enough to accurately predict the 

reinforced concrete deck slab behavior. 

After the FEM model was validated and refined, a reliability analysis at 

serviceability limit state was carried out. The reliability analysis comprises of three main 

components: 1) Limit states, 2) Load parameters, and 3) Resistance parameters. 

Two limit states considered in this study were the cracking of concrete and the 

crack opening of concrete.  

The load parameters were calculated from live load data obtained from previous 

studies by Nowak and Kim (1997).  

In case of resistance parameters, a significant amount of time (more than 24 hours 

in some cases) is needed for nonlinear finite element computation of a bridge 

superstructure; therefore, the Rosenblueth 2K+1 point estimate method, which requires a 

minimum numbers of simulations, is chosen to obtain the resistance parameters. Several 

configurations of bridge deck slabs were considered. For bridge deck slabs designed 
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according to two different design methods specified by the AASHTO LRFD code (the 

traditional strip method and empirical design), the considered parameters include: three 

different girder spacings (6 FT, 8 FT and 10 FT); two different span lengths (60 FT and 

120 FT); and the effect of partial fixity of the boundary conditions. The random variables 

used in the Rosenblueth 2K + 1 point estimate method were: the compressive strength of 

concrete (f’c); the modulus of rupture of concrete (fr); the yield strength of steel rebars #4 

and #5; and the thickness of the slab.  

A total of 11 FEM computations were run for each studied bridge configuration. 

The 11 simulations comprised of 5 runs at the mean value of each of the five considered 

random variables, and 10 runs at + and – one standard deviation for each of the five 

considered random variables. Ultimately, a set of 11 simulations were carried out 

repeatedly for all studied bridge configurations to obtain the resistance parameters. 

The computed resistance parameters were then applied along with live load 

parameters to obtain reliability indices. Serviceability of bridge decks was then assessed 

by comparing the calculated reliability indices of all investigated configurations. Finally, 

conclusions and recommendations were formulated. 

7.2. Conclusions 

7.2.1. General conclusions 

1. The developed and calibrated nonlinear Finite Element Method procedure for 

the analysis of reinforced concrete slabs can effectively predict the behavior of bridge 

deck at serviceability level. A material model for concrete and steel is presented along 

with a modeling method capable of accurately represent reinforcement (rebar diameter, 

spacing, and depth) in the model. 
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2. An efficient procedure for evaluation of reinforced concrete deck slab at 

serviceability limit state is presented and validated. The procedure involves field testing 

of bridge decks to evaluate partial fixity of supports, development of FEM model for 

reinforced concrete bridge decks, calibration of FEM model using field tests, and 

development of the reliability analysis procedure for evaluation of the deck slab 

performance at serviceability. 

7.2.2. Conclusions for cracking limit state 

1. For the longitudinal cracking limit state, the reliability indices are very low, 

ranging from 0 to 2, for all deck configurations studied. Since we used annual mean 

maximum for the load, a reliability index of zero corresponds to a probability of 50% for 

the deck to crack within a year. It was observed that the reliability index for cracking 

slightly decreases when the girder spacing increases which indicates a slightly higher 

probability of cracking for decks supported on widely spaced girders. Both design 

methods show a similar reliability level at cracking limit state, with traditional design 

having just slightly higher values of the reliability for wider spacing. 

2. In all investigated cases, the partial fixity reduces the probability of 

longitudinal cracks to appear in a bridge deck supported on widely spaced girders. 

However, it was observed that the effect of boundary conditions is more significant for 

transverse cracking than for longitudinal cracking. In case of transverse cracking at the 

bottom of the deck at midspan, it is observed that partial fixity significantly increase the 

reliability indices. 

3. Results showed that the reliability indices increase, from 0 to 2, when the span 

increases for both design methods regardless of the crack location. 

4. For all cases, the reliability indices decreases significantly when the annual 

mean maximum axle weight increases. This emphasizes the importance of an accurate 
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estimation of the actual traffic on the bridge in order to predict the bridge behavior at 

serviceability and also point out the importance of bridge posting. 

7.2.3. Conclusions for crack opening limit state 

5. For the longitudinal crack opening limit state, it was observed that the 

reliability indices are relatively high, ranging from 3.5 to 7, for all deck configurations 

studied. It means that the probability of the crack to occur is higher than the probability 

of the crack to open at the width recommended by the code. However, this can also be 

explained by the fact that only live load was considered in this study. Shrinkage and 

differential temperature analysis that can reduce the reliability indices were not included. 

6. Results showed that crack opening is more sensitive to girder spacing than 

cracking; the reliability index significantly decreases when the girder spacing increases 

which indicates a higher probability of cracking for the deck supported on widely spaced 

girders. Traditional design results in higher values of the reliability index for wider 

spacing. Therefore, as expected, crack opening is significantly influenced by the 

reinforcement ratio. In case of empirical design, because the design yields a constant ratio 

of reinforcement for all girder spacings, the reliability indices decrease significantly as 

the girder spacing increases. On the contrary, in case of the traditional design method, the 

reinforcement ratio increases as girder spacing increases; hence, the reliability only 

slightly decreases as the spacing increases. 

7. The analysis of the cracking limit state indicates that reliability indices slightly 

increase, from 3 to 5, when the span increases for both design methods regardless of the 

crack location. 

8. The analysis of the cracking limit state indicates that the reliability indices 

decrease significantly when the annual mean maximum axle weight increases. This, 

again, emphasizes the importance of an accurate estimation of the actual traffic on the 
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bridge in order to predict the behavior at serviceability and also points out how important 

is bridge posting. 

7.3. Suggestions for future research 

An extensive analytical program has been carried out in this research to 

understand the behavior of reinforced concrete bridge deck slab at the serviceability 

level. The following future research work is recommended: 

To include restrained plastic shrinkage and temperature changes in the analysis to 

investigate early age transverse cracking. When these early age transverse cracks meet 

the longitudinal cracks due to live load as considered in thus study, the degradation of the 

deck slab can be dramatically increased. 

To perform a reduced scale laboratory testing on bridge deck slab to validate the 

finding of the analytical study and to investigate reliability of the deck slab at the ultimate 

limit state. The actual code provisions are based on bending design but several authors 

observed a punching shear failure of deck slab. Laboratory testing associated with a 

nonlinear Finite Element analysis can help to determine the failure mode of a bridge deck 

slab. 

To study the behavior of reinforced concrete deck slab supported on prestressed 

concrete girders. Recent field tests performed at the University of Michigan showed that 

the distribution of load on prestressed concrete girders was quite different than that 

observed for steel girders. According to the current code provisions, these two decks are 

designed using the same method. Analytical methods and field tests are needed to fully 

understand the behavior of the deck slab supported on prestressed girders. 

To define target reliability indices for bridge deck at serviceability and ultimate 

limit states. Since the definition of a target reliability index involves a lot of economical 
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considerations, a system reliability analysis should be performed including a life cost 

cycle analysis to adequately define the corresponding target reliability index. 
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APPENDIX A 

EXAMPLE OF DESIGN OF A COMPOSITE STEEL BRIDGE 

A.1. Description 

Design a simple span composite steel girder bridge shown in Figure  A.1 with the 

span of 60 FT. Roadway width is 34 FT curb to curb as shown in Figure  A.2 and Figure 

 A.3. The deck thickness is 9 IN. Allow for a future concrete wearing surface of 3 IN (125 

PCF). Use f’c=4000 PSI and A60 steel. 

A.2. General Design 

- The bridge is to carry an interstate traffic over a creek. 

- The roadway width: 34 FT curb to curb 

- Span: Simple span of 34 ft 

- Select bridge type: I-Girders 

A.3. Design basis 

I-Girder 

General [A6.10.1]. Design flexural members for 

 Strength limit state 

 Service limit state for control of permanent deflections 

 Fatigue and fracture limit state for details 

 Fatigue requirements for the webs 

 Constructibility 

 

 

 



190 

Member proportions of flexural components 

 

9.01.0 ≤≤
y

yc

I
I

        (A.1) 

 

where Iy is the moment of inertia of the steel section about the vertical axis in the 

plane of the web (IN4) and Iyc is the moment of inertia of the compression flange about 

the vertical axis in the plane of the web (IN4). 

 

Elastic analysis or Inelastic Analysis [A6.10.2.2] Elastic analysis will be 

performed. The span is simply supported; thus moment redistribution is not used. 

 

Homogeneous or Hybrid [A6.10.5.4] Rolled beams are homogeneous (flanges and 

the web are made of the same material). For homogeneous sections, the hybrid factor, Rh 

shall be taken as 1.0. 

A.4. Design of a Conventionally Reinforced Concrete Deck 

See example of deck design in Appendix B. 

A.5. Selection of Resistance Factors 

1. Strength Limit State φ [A6.5.4.2] 

Flexure  1.00 

Shear   1.00 

2. Other Limit States 1.00  [A1.3.2.1] 
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A.6. Selection of Load Modifiers 

     Strength ServiceFatigue 

1. Ductility, ηD [A1.3.3] 1.0  1.0  1.0 

2. Redundancy, ηR [A1.3.4] 1.0  1.0  1.0 

3. Importance, ηI  [A1.3.2.1] 1.0  N/A  N/A 

η= ηD ηR ηI [A1.3.2.1] 1.0  1.0  1.0 

A.7. Selection of Applicable Load Combinations 

Strength I Limit State (detailed in this example) 

U=η[1.25DC+1.50DW+1.75(LL+IM)     (A.2) 

 

Service I Limit State 

U=1.0(DC+DW)+1.0(LL+IM)      (A.3) 

 

Fatigue and Fracture limit State 

U=0.75(LL+IM): LL calculated for truck with rear axle spacing of 30 FT 

(A3.6.1.4.1)          (A.4) 

A.8. Calculation of Live Load Force Effects [A3.6.1.1.1] 

Select Number of Lanes [A3.6.1.1.1] 

 
34 2

12 12L
wN INT INT⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
      (A.5) 
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Multiple Presence factor: [A3.6.1.1.2] 

 Nb of loaded Lanes  m 

1  1.20 

2  1.00 

3  0.85 

>3  0.65 

 

Dynamic Load Allowance: [A3.6.2.1] 

Components  IM(%) 

 Deck joints  75 

 Fatigue  15 

 All other  33 

 Not applied to the design lane load 

 

Distribution Factors: Cross section type (a), S=8 FT, L=60 FT 

For preliminary design, the entire term containing Kg in the approximate formulas 

can be taken as 1.0. Although the Kg term varies slightly along the span, the value at the 

maximum positive moment section is used to compute the distribution factor for use 

along the entire span. Other options are to compute Kg based on the average or a 

weighted average of the properties along the span, or to use the actual values of Kg at 

each change of section to compute a variable distribution along the span. However, the 

distribution factor is typically not overly sensitive to the value of Kg that is assumed. 

The girders satisfy the limitations defining the range of applicability of the 

approximate formulas; these limitations are specified in the individual tables containing 

the formulas. For example, the number of girders in the cross section is greater than or 

equal to four, the transverse girder spacing is greater than or equal to 3.5 FT and less than 
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or equal to 16 ft and the span length is greater than or equal to 20 FT and less than or 

equal to 240 FT. The limitations on the slab thickness are also satisfied. The computation 

of the factors (in units of lane) is illustrated below 

A.8.1. Interior Beams 

The live load distribution factors for an interior girder for checking the strength 

limit state are determined using the approximate formulas given in the tables. Multiple 

presence factors (Article 3.6.1.1.2) are not explicit because these factors were included in 

the derivation of these formulas. Separate factors are given to compute the bending 

moment and shear. 

 

Distribution factors for moment [Table A4.6.2.2.2b-1] 

 

One design lane loaded 
1.0

3

3.04.0

0.1214
06.0 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+

s

g

Lt
K

L
SS   (A.6) 

    ( )
0.4 0.3

0.18 80.06 1.0 0.497
14 60

⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

Two design lanes loaded 
1.0

3

2.06.0

0.125.9
075.0 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+

s

g

Lt
K

L
SS   (A.7) 

    ( )
0.6 0.2

0.18 80.075 1.0 0.68 ( )
9.5 60

governs⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

Distribution factor for shear [Table A4.6.2.2.3a-1] 

 

One design lane loaded ⎟
⎠
⎞

⎜
⎝
⎛+

25
36.0 S      (A.8) 

    68.0
25
836.0 =⎟

⎠
⎞

⎜
⎝
⎛+  
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Two design lanes loaded 
2

3512
2.0 ⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛+

SS     (A.9) 

    )(81.0
35
8

12
82.0

2

governs=⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛+  

A.8.2. Exterior Beams: Lever Rule 

The live-load distribution factors for an exterior girder for checking the strength 

limit state are determined as the governing factors calculated using the lever rule 

assuming that the entire cross section deflects and rotates as a rigid body. The method is 

illustrated below. As stated in Article 3.6.1.1.2, multiple presence factors are applicable 

when the lever rule is used. Separate factors are computed for bending moment and shear. 

The lever rule involves the use of static to determine the lateral distribution of live 

load to the exterior girder. Wheel-load reaction at the exterior girder is calculated 

assuming the concrete deck is hinged at the interior girder (Figure  A.4). A wheel cannot 

be closer than 2 FT from the curb (Article 3.6.1.3.1). For the specified transverse wheel 

spacing of 6 FT, the wheel-load distribution to the exterior girder is computed as: 

 

Distribution factor for moment [Table A4.6.2.2.2d-1] 

 

    1 7 0.5
2 8
PR P+⎛ ⎞= =⎜ ⎟

⎝ ⎠
    (A.10) 

 

One design lane loaded 1.2 0.5 0.6 ( )governs× =  

 

Two or more design lanes loaded Modify interior-girder factor by e (Table 

4.6.2.2.2d-1) 
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1ed FT=  

 

The factor e is computed using the distance de, where de is the distance from the 

exterior girder to the edge of the curb or traffic barrier (less than or equal to 5.5 FT). de is 

negative if the girder web is outboard of the curb or traffic barrier. 

 
10.77 0.88

9.1
0.88 0.68 0.598

e = + =

× =

↓

 

 

 

 

Distribution factor for shear [Table A4.6.2.2.3b-1] 

 

    1 7 0.5
2 8
PR P+⎛ ⎞= =⎜ ⎟

⎝ ⎠
    (A.11) 

 

One design lane loaded 1.2 0.5 0.6 governs× =  

 

Two or more design lanes Loaded Modify interior-girder factor by e (Table 

4.6.2.2.3b-1) 

 

1ed ft=  

 

 

Distribution factor of the 

corresponding interior girder 
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10.6 0.7
10

0.7 0.81 0.57

e = + =

× =

↓

 

 

 

 

A.9. Distributed Live Load Moments 

A.9.1. Moment due to Truck and Lane Load 

The live load is a superposition of the old HS20 truck and of the old uniformly 

distributed lane loading (without the concentrated load) as shown in Figure  A.5. 

Moments and shears can be calculated separately for the truck and lane load and added. 

The impact coefficient of 33% is applied only to the truck loading. (Equations developed 

by Naaman et al.). 

 
( )32 8 14 336 1.842

2 (32 32 8) 0.64 144 0.64 60L
α

− ×
= = =

× + + + × + ×
   (A.12) 

( )

( )

( )2 2

9 21 4.5 17.5
8
9 1.84216 60 21 4.5 1.842 17.5 806.2 ,
8 60

0.08 4 286.9

truck

truck

lane

M P L
L

M KIP FT governs

M L KIP FT

α α

α

⎛ ⎞= + − −⎜ ⎟
⎝ ⎠
⎛ ⎞= × + − × − = −⎜ ⎟
⎝ ⎠

= − = −

 

 

P =16 kips (wheel load) 

 

 

 

Distribution factor of the 

corresponding interior girder 
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A.9.2. Moment Due to a Tandem and Lane Load 

The design Tandem Loading is similar as in the AASHTO Standard, with 25 

KIPS per axle (as shown Figure  A.6) compared to 24 KIPS per axle in AASHTO 

Standard. Dynamic load allowance applies to tandem loading. 

 

( )

( )

( )

tan

tan

2 2

4 25 100 0.723
4 25 0.64 100 0.64 60

50 2 1
4
60 0.72350 2 0.723 1 700.77 ,
4 60

0.08 4 287.83lane

L
LM

L

M KIP FT

M L KIP FT

β

β β

β

×
= = =

× + × + ×
⎛ ⎞= + − −⎜ ⎟
⎝ ⎠
⎛ ⎞= + − − = −⎜ ⎟
⎝ ⎠

= − = −

   (A.13) 

A.9.3. Moment for an Interior Beam 

( )0.68 806.2 1.33 286.9 921.29LL IMM kip ft+ = × + = −    (A.14) 

A.9.4. Moment for an Exterior Beam 

( )0.6 806.2 1.33 286.9 815.5LL IMM KIP FT+ = × + = −    (A.15) 

A.10. Distributed Shear Due to Live Load. 

A.10.1. Shear Due to a Design Truck 

The placement of the truck for maximum shear is shown in Figure  A.7 

 
424.5

4216 4.5 60.8
60

truck

truck

V P
L

V KIPS governs

⎛ ⎞= −⎜ ⎟
⎝ ⎠
⎛ ⎞= − =⎜ ⎟
⎝ ⎠

    (A.16) 
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A.10.2. Shear Due to a Tandem 

The placement of the tandem for maximum shear is shown in Figure  A.8 

 

tan

tan

250 1

250 1 48.33
60

V
L

V KIPS

⎛ ⎞= −⎜ ⎟
⎝ ⎠
⎛ ⎞= − =⎜ ⎟
⎝ ⎠

      (A.17) 

A.10.3. Shear Due to a Lane Load 

Lane loading is shown in Figure  A.9 

 
0.64

2
0.64 60 19.2

2

lane

lane

LV

V KIPS

×
=

×
= =

      (A.18) 

A.10.4. Shear For an Interior Beam 

( )0.81 60.8 1.33 19.2 81.49LL IMV KIPS+ = × + =     (A.19) 

A.10.5. Shear for an Exterior Beam 

( )0.6 60.8 1.33 19.2 60.25LL IMV KIPS+ = × + =     (A.20) 

A.11. Calculate the Effect of Other Loads 

As specified in the AASHTO Table 3.4.1-2, the Dead Load includes the weight of 

all components of the structure and utility loads. 

DC1=Dead load of structural components and their attachments, acting on the 

non-composite section 

DW=Future wearing surface 
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DC2=barriers that have a cross sectional area of 3.2 FT2 (acting on the composite 

section) 

 

Let’s assume a W27 X 102 steel beam. 

A.11.1. Interior Girders 

DC1: Deck Slab  (150)(8)(9/12)    =   900 lb/ft 

 Girder       =   102 lb/ft 

         ________ 

        = 1002 lb/ft 

 

DW: 3 IN concrete wearing pavement (125)(3/12)(8)= 250 lb/ft 

 

DC2:  Barrier, per girder   (2/5)(150)(3.2)= 192 lb/ft 

 

The unfactored moments and shears at critical section for an interior girder is 

summarized in Table  A.1. 

A.11.2. Exterior Girders 

DC1: Deck Slab  (150)(4 + 3.75)(9/12)   = 872 lb/ft 

 Girder       = 102 lb/ft 

         _______ 

        = 974 lb/ft 

 

DW: 3 IN concrete wearing (125)(3/12)(4+3.75-1.75) = 187.5 lb/ft 
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DC2: Barrier, one sixth share (2/5)(150)(3.2)  = 192 lb/ft 

 

The unfactored moments and shears at critical section for an interior girder is 

summarized in Table  A.2. 

A.12. Design of the Required Sections 

A.12.1. Strength Limit State 

 

Interior beam – factored shear and moment 

[ ]1 21.25 1.5 1.25 1.75( )
1[1.25(450.9) 1.5(112.5) 1.25(86.4) 1.75(921.29)] 2452.64

1[1.25(30.06) 1.5(7.5) 1.25(5.76) 1.75(81.49)] 198.64
U

u

U DC DW DC LL IM
M KIP FT
V KIPS

η= + + + +

= + + + = −
= + + + =

 (A.21) 

 

Exterior beam – factored shear and moment 

[ ]1 21.25 1.5 1.25 1.75( )
1[1.25(438.3) 1.5(84.375) 1.25(86.4) 1.75(815.5)] 2209.56

1[1.25(29.22) 1.5(5.625) 1.25(5.76) 1.75(60.25)] 157.6
U

u

U DC DW DC LL IM
M KIP FT
V KIPS

η= + + + +

= + + + = −
= + + + =

 (A.22) 

 

Consider loading and concrete placement sequence [A6.10.5.1.1.a] 

 

- Case 1: Weight of girder and slab (DC1) supported by steel girder alone. 

- Case 2: Superimposed dead load (wearing surface, curbs and railing)(DW and 

DC2) supported by long term composite section. 

- Case 3: Live load plus dynamic load (LL+IM) supported by short term 

composite section. 

Determine effective flange width [A4.6.2.6] for interior girders. The effective 

flange width is the least of: 
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 a) One quarter of the average span length 

 b) 12 times the average thickness of the slab, plus the greater of the 

web thickness or one-half the width of the top flange of the girder 

 c) Average spacing of adjacent girders 

 

Assume the girder top flange is 8 IN wide 

 
(60)(12 / 4) 180

min (12)(9) (8 / 2) 112
(8)(12) 96

i

IN
b IN

IN

=⎧
⎪= + =⎨
⎪ =⎩

      (A.23) 

 

Therefore b i= 96 IN 

 

For an exterior girder, the effective flange width is one half the effective flange 

width of the adjacent interior girder plus the least of: 

 

 a) One-eighth of the effective span length 

 b) 6 times the average thickness of the slab, plus the greater of one 

half of the web thickness or one quarter of the width of the top flange of 

the girder 

 c) The width of the overhang 

 
(60)(12 / 8) 90

min (6)(9) (8 / 2) 58
2

(3.75)(12) 45

i
e

IN
bb IN

IN

=⎧
⎪= + + =⎨
⎪ =⎩

     (A.24) 

Therefore 45 48 45 93
2

i
e

bb IN= + = + =  
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Modular ratio 

For f’c = 4000 PSI , n=8 

 

Steel section at midspan 

Try W27 x 102. Properties of W24 x 68 are taken from AISC Manual. The steel 

section is shown in Figure  A.10. 
 

tf = 0.83 IN 

tw = 0.515 IN 

INA = 3620 IN4 

 

Figure 11 shows the composite section with a net slab thickness of 9 IN, and an effective 

width of 96 IN. The calculations of composite section properties are summarized in Table 

 A.3. 

 

4

1162.35 8.42
138

21784.31 (1162.35 8.42) 11997.32NA

Ayy IN
A

I IN

= = =

= − × =
    (A.25) 

A.12.2. Plastic Moment Capacity 

Determine the plastic-moment capacity, Mp, of the composite section. The 

reinforcement of the deck according the traditional design is given as follows (see 

appendix B): 

- number of bars in the top of slab within the effective width = 5 #4 (0.2 IN2) 

- number of bars in the bottom of slab within effective width = 12 #4 (0.2 IN2) 

 

Calculate Mp using the equations provided in Appendix A to Section 6 of the 

specification [Appendix A6.1]. See Figure  A.12. 
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Use case V; neutral axis is in the slab above bottom bars (c < 6 IN) 

 
(60)(5)(0.2) 60

0.85 ' (0.85)(4)(96)(9) 2937.6

(60)(12)(0.2) 144

(0.83)(10.015)(50) 415.62

(0.515)(25.43)(50) 654.82

(0.83)(10.

rt yr rt

s c eff s

rb yr rb

c tf y

w w y

t bf y

P F A KIPS

P f b t KIPS

P F A KIPS

P A F KIPS

P A F KIPS

P A F

= = =

= = =

= = =

= = =

= = =

= = 015)(50) 415.62 KIPS=

   (A.26) 

 

Calculate Mp using the equations provided in Appendix A to Section 6 of the 

specification [Article A6.1]: 

 

We use Case V since 

415.62 654.82 415.62 144 1630.06
2.875 2937.6 60 998.4

9

rt
t w c rb s rt

s

CP P P P P P
t

KIPS

KIPS ok

⎛ ⎞
+ + + ≥ +⎜ ⎟

⎝ ⎠
+ + + =

× + =

    (A.27) 

 

( )

2

2

4.85 6

2

60 1.98 144 2.27 415.62 4.564.85 2937.6
654.82 17.69 415.62 30.822 9

2568.96

rb c w t rt
s

s

s
p rt rt rb rb cp cp c c w w t t

s

p

p

P P P P Py t IN IN
P

y PM P d P d T d P d P d Pd
t

M

M KIP FT

⎡ ⎤+ + + −
= = <⎢ ⎥

⎣ ⎦
⎛ ⎞

⎡ ⎤⎜ ⎟= + + + + + +⎣ ⎦⎜ ⎟
⎝ ⎠

× + × + × +⎛ ⎞ ⎡ ⎤×
= +⎜ ⎟ ⎢ ⎥× + ×× ⎣ ⎦⎝ ⎠
= −

  (A.28) 

( )1.0 2568.96 2568.96 2452.64 ,p uM KIP FT M KIP FT okφ = = − > = −  
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A.12.3. Member Proportions [A6.10.2.1] 

4

3 4

0.1 0.9

139

1 (0.83)(10.015) 69.48
12
69.480.1 0.499 0.9
139

yc

y

y

yc

I
I

I IN

I IN

ok

≤ ≤

=

= =

≤ = <

     (A.29) 

 

where Iyc is the moment of inertia of the compression flange about the vertical axis. 

A.12.4. Compactness of the Section 

Web Slenderness: because the neutral axis is not in the web, Dcp is taken equal to 

0, the web slenderness requirement is satisfied [A6.10.5.1.4b], the section is classified as 

a compact section and Mn = Mp. 

 

Compression flange slenderness [A6.10.5.2.2c]: No requirement at strength limit 

state for compact I-sections in positive flexure. 

 

Compression flange bracing: No requirement at strength limit state for compact 

composite I-sections in positive flexure. 

 

Calculate flexural resistance [A6.10.5.2.2a]:  

For simple spans, the nominal flexural resistance is taken as 

 

( )
2568.96

1.0 2754.9
2568.96 2452.64

n p

r n

r

M M KIP FT

M M
M KIP FT KIP FT ok

φ

= = −

= =

= − > −

    (A.30) 
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Check positive flexure ductility: 

The section must satisfy 

 

5.7
hs

p
ttdD ++

≤         (A.31) 

where: 

Dp = distance from the top of the slab to the neutral axis at the plastic moment = 

4.85 IN 

d = depth of the steel section = 27.09 IN 

ts = thickness of the concrete slab = 9 IN 

th = thickness of the concrete haunch = 0 IN 
27.09 9 4.94 4.85

7.5 7.5
s h

p
d t t IN D IN ok+ + +

= = > =  

 

All the requirements for flexure have been satisfied. 

A.13. Shear Design 

A.13.1. Beam with Unstiffened Web [A6.10.7.2] 

Figure  A.17 shows a flow chart for the calculation of shear resistance of 

unstiffened webs. 

 
1.0

2 27.09 2 0.83 49.38
0.515

290002.46 2.46 59.24 49.38
50

2.46

r v n n

f

w w

yw

w yw

V V V
d tD

t t

E
F

D E
t F

φ= =
− − ×

= = =

= = >

≤

     (A.32) 
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therefore,  

 

0.58 0.58(50)(25.43)(0.515) 379.79

1.0 379.79 198.64
n yw w

r n u

V F Dt KIP

V V KIP V ok

= = =

= = > =
   (A.33) 

A.13.2. Bearing Stiffener Design 

0.75 0.75(1.0)(379.79) 284.85 198.64b n uV kip V KIPφ = = > =   (A.34) 

The bearing stiffeners are not required. 

A.14. Constructability 

General proportions: ok 

 

Flexure: the section must satisfy compression flange slenderness, web slenderness 

and compression flange bracing requirements: ok 

A.15. Dimension and Detail Requirements 

 

Material thickness: Bracing and cross frames shall not be less than 0.3 in in 

thickness, web thickness of rolled beams shall not be less than 0.28 in. 

 

Optimal deflection control: allowable service load (recommended) 

 

Deflection 1 60 12 0.9
800 800

span IN×
≤ = =      (A.35) 

 

From [A3.6.1.3.2] deflection is taken as the larger of 
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(a) that resulting from the design truck alone 

(b) that resulting from 25% of the design truck taken together with the design lane 

load 

 

The distribution factor for deflection can be taken as the number of lanes divided 

by the number of beams [C2.5.2.6.2], because all design lanes should be loaded, and all 

supporting components should be assumed to deflect equally. 
 

2 0.4
5

nb of lanesDF
nb of girders

= = =       (A.36) 

A.15.1. Deflection: Design Truck Alone 

 
1 2

3

0.4(32)(1.33) 17.024
0.4(8)(1.33) 4.256

P P KIP
P KIP

= = =
= =

     (A.37) 

 

The maximum deflection (at the center) of a simply supported span due to a 

concentrated load at the center of the span, is equal to 
 

EI
PL

cl 48

3

=∆          (A.38) 

 

The deflection at any point, ∆x, due to point load P as shown in Figure  A.13 can 

found from AISC Manual. 
 

)(
6

222 xbL
EIL

Pbx
x −−=∆  , x < a.      (A.39) 

 

The position of the truck is shown in Figure  A.14 
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( )
1 2 3

2 2 2

3

1 3 (16 12)(60 12 / 2)
((60 12) (16 12) (60 12 / 2)

6(29000)(11997.32)(60 12)
2(60 12) 0.725

48(29000)(11997.32)

tr p p p

tr

P P

P IN

∆ = ∆ + ∆ + ∆

+ × ×
∆ = × × − × − ×

×

×
+ =

 (A.40) 

A.15.2. Deflection: 25% of the Design Truck Plus the Design Lane Load 

The deflection due to the lane load can be found from: 

 
4 4

max
5 5 0.4 0.64 /12 (60 12) 0.215

384 384(29000)(11997.32)
wL IN

EI
× × × ×

∆ = = =    (A.41) 

0.25(0.725)+0.215 = 0.39 IN, therefore truck deflection = 0.725 IN controls 

 

0.725 IN < 0.9 IN OK. 
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Table A.1 Unfactored moments and shears for an interior girder 
Load type W (LB/FT) Moment (KIP-FT) Shear (KIP) 

DC1 
DW 
DC2 

LL+IM 

1002 
250 
192 
N/A 

450.9 
112.5 
86.4 

921.29 

30.06 
7.5 
5.76 
81.49 

 
 
Table A.2 Unfactored moments and shears for an exterior girder 

Load type W (LB/FT) Moment (KIP-FT) Shear (KIP) 
DC1 
DW 
DC2 

LL+IM 

974 
187.5 
192 
N/A 

438.3 
84.375 
86.4 
815.5 

29.22 
5.625 
5.76 
60.25 

 
 
Table A.3 Composite section properties 
Component A y Ay Ay² Io I 

concrete 
steel 

Σ 

108 
30 
138 

4.5 
22.545 

486 
676.35 
1162.35 

2187 
15248.31 

729 
3620 

2916 
18868.31 
21784.31 
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Figure A.1 Elevation of the bridge 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.2 Plan view of the bridge 
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Figure A.3 Cross section of the bridge 
 
 

 
 
Figure A.4 Lever rule 
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Figure A.5 Truck placement for maximum moment plus lane load 
 

 
 
Figure A.6 Tandem placement for maximum moment plus lane load 
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Figure A.7 Truck placement for the maximum shear 
 

 
 
Figure A.8 Tandem placement for the maximum shear 
 

 
 
Figure A.9 Lane loading 
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Figure A.10 Steel section at midspan 
 
 

 
 
Figure A.11 Composite section at midspan 
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Figure A.12 Computation of plastic moment 
 
 
 
 
 
 

 
 
Figure A.13 Deflection due to load P 
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Figure A.14 Truck placement for the maximum deflection 
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Figure A.15 Flow chart for the plastic moment of compact section for flexural members, 

computation of y and Mp for positive bending sections 
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Figure A.16 Position of the neutral axis for the five different cases 
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where: 
Fyw = specified minimum yield strength of the web (KSI) 
D = web depth (IN) 
tw = Thickness of the web (IN) 
 
 
Figure A.17 Flow chart for the computation of shear resistance, nominal resistance of 
unstiffened webs 
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APPENDIX B 

EXAMPLE OF DECK SLAB DESIGN 

B.1. Description 

Both design method (traditional and empirical) are used to design the deck slab of 

the steel-beam bridge whose section is shown in Figure  B.1. The live load considered is 

the HL-93. The steel-beams supporting the deck are spaced at 8 FT on centers. The deck 

thickness is 9 IN. Allow for a future wearing surface of 3 IN thick bituminous overlay. 

Use f’c = 4000 PSI, fy = 60 KSI. 

B.2. Traditional Method 

B.2.1. Deck Thickness 

The minimum thickness for concrete deck slab is 7 IN [A9.7.1.1]. Traditional 

minimum depths of slab are based on the deck span length S to control deflection to give 

[Table A2.5.2.6.3-1] 

 
( ) ( ) INSh 24.4

30
10962.1

30
102.1

min =
+

=
+

=      (B.1) 

 

So we use hs = 9 IN for the structural thickness of the deck. 

 

 

B.2.2. Weight of Components 

For 1 FT width of a transverse strip 
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Barrier (Area = 3.2 FT2) 

0.150 3.2 0.48 /bP KIPS FT= × =        (B.2) 

 

Future wearing surface 

230.125 0.3125 /
12DWW KIPS FT= × =       (B.3) 

 

Slab 9 IN thick 

290.150 0.1125 /
12SW KIPS FT= × =       (B.4) 

 

Cantilever overhang 10 IN thick 

2100.150 0.125 /
12

KIPS FT× =        (B.5) 

 

B.2.3. Bending Moments Force Effects 

An approximate analysis of strips perpendicular to girders is considered 

acceptable [A9.6.1]. The extreme positive moment in any deck panel between girders 

shall be taken to apply to all positive moment regions. Similarly, the extreme negative 

moment over any girder shall be taken to apply to all negative moment regions 

[A4.6.2.1.1]. 

The strips shall be treated as continuous beams with span length equal to the 

center-to-center distance between girders. The girders shall be assumed to be rigid 

[A4.6.2.1.6]. 
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For ease in applying load factors, the moment will be determined separately for 

the deck slab, overhang, barrier, future wearing surface, and vehicle live load. 

A structural software was used to precisely determine those moments. 

 

Deck slab 

Placement of the deck slab dead load is shown in Figure  B.2 

Ms(+) = 0.55 KIPS-FT/FT at 3.2 ft right of the exterior girder 

Ms(-) = -0.77 KIPS-FT/FT over the second girder 

R1st support = 0.35 KIPS/FT 

 

Overhang 

Placement of the overhang dead load is shown in Figure  B.3 

Mo(-) = -0.879 KIPS-FT/FT over the exterior girder 

Mo(-) = -0.427 KIPS-FT/FT at 3.2 ft right of the exterior girder 

Mo(+) = 0.251 KIPS-FT/FT over the second girder 

R1st support = 0.61 KIPS/FT 

 

Barrier 

Placement of the barrier dead load is shown Figure  B.4 

Mb(-) = -1.206 KIPS-FT/FT over the exterior support 

Mb(-) = -0.586 KIPS-FT/FT at 3.2 ft right of the exterior girder 

Mb(+) = 0.345 KIPS-FT/FT over the second girder 

R1st support = 0.674 KIPS/FT 

 

Future Wearing Surface 

Placement of the future wearing surface dead load (curb to curb) in Figure  B.5 
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Mw(-) = 0 KIPS-FT/FT over the exterior girder 

Mw(+) = 0.15 KIPS-FT/FT at 3.2 ft right of the exterior girder 

Mw(-) = -0.21 KIPS-FT/FT over the second girder 

R1st support = 0.10 KIPS/FT 

B.2.4. Vehicular Live Load 

When decks are designed using the approximate strip method and the strip are 

transverse, they shall be designed for the 32 KIPS axle of the design truck [A3.6.1.3.3]. 

Wheel loads on an axle are assumed to be equal and spaced at 6 FT apart. The design 

truck shall be positioned transversely to produce maximum force effect such that the 

center of any wheel load is not closer than 1 FT from the face of the curb for the design 

of the deck overhang and 2 FT from the edge of the 12 FT wide design lane for the 

design of all other component. Tire contact area shall be assumed as a rectangle, but 

when calculating the force effect, wheel loads may be modeled as concentrated loads. 

The width of equivalent interior transverse strips (IN) over which the wheel loads 

can be considered distributed longitudinally in cast in place concrete decks is given as 

[Table A4.6.2.1.3-1] 

 

Overhang   45+10x 

Positive moment  26+6.6S      (B.6) 

Negative moment  48+3S 

 

Where S is the spacing of supporting components and x the distance from load to 

point of support, (both in FT). 
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The number of design lanes NL to be considered across a transverse strip is the 

integer value of the roadway width divided by 12 ft [A3.6.1.1.1]. 

 

For this example 

 
34int 2
12LN ⎛ ⎞= =⎜ ⎟
⎝ ⎠

        (B.7) 

 

The multiple presence factor m is 1.2 for one loaded lane, 1.0 for two loaded lane, 

and 0.85 for three loaded lanes 

 

Overhang Negative Live Load Moment. 

Because of the presence of a sidewalk, the live load cannot be put such it would 

create a negative moment over the first girder, therefore 

Mo(-) = 0/4.58 = 0 KIP-FT/FT over the exterior support. 

 

Maximum Positive Live Load Moment 

For repeating equal spans, the maximum positive, the maximum positive bending 

moment occurs near the 0.4 point of the first interior span. In the following figures, the 

placement of wheel loads is given for one or two loaded lanes. For both cases, the 

equivalent width of a transverse strip is 26+6.6(8) = 78.8 IN = 6.56 FT 

 

For one lane loaded 

M(+) = 1.2(23.41)/6.56 = 4.28 KIPS-FT/FT 

R1st support = 1.2(7.32)/6.56 = 1.34 KIPS/FT 

 

For two lane loaded 
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M(+) = 1.0(24.40)/6.56=3.72 kips-ft/ft 

R1st support = 1.0(7.59)/6.56 = 1.16 kips/ft 

Thus the one lane loaded case governs. 

 

Maximum Interior Negative Live Load moment 

The critical placement of live load for maximum negative moment is at the first 

interior deck support with one loaded lane (m = 1.2) as shown in the following figure. 

The equivalent transverse width strip is 48 + 3(8) = 72 IN = 6 FT. 

M(-) = 1.2(-23.17)/6=-4.63 KIPS-FT/FT over the first interior support. 

Note that the small increase due to a second truck is less than 20% (m = 1.00) 

required to control. Only the one lane case is investigated. 

B.2.5. Strength Limit State 

The gravity load combination can be stated as [Table A3.4.1-1] 

 
( )( )1.75

1

i i p pQ DC DW LL IM

where

η γ η γ γ

η

= + + +

=

∑
    (B.8) 

The factor for permanent loads γp is taken at its maximum value if the force 

effects are additive and at its minimum value if it subtracts from the dominant force 

effect [Table A3.4.1-2]. The dead load DW is for the future wearing surface and DC 

represents all the other dead loads. The dynamic load allowance IM [A3.6.2.1] is 33% of 

the live load force effect. 

 

Positive moment in the first interior span 
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( ) ( ) ( ) ( )( )( ) 1.25 0.55 0.9 0.427 0.586 1.5 0.15 1.75 1.33 4.28
9.96 /

M
KIPS FT FT

+ = + − − + +

= −
 

 

Negative moment over the first interior support 

 
( ) ( ) ( ) ( )( )( ) 1.25 0.77 0.9 0.251 0.345 1.5 0.21 1.75 1.33 4.63

11.51 /
M

KIPS FT FT
− = − + + + − + −

= − −
 

For selection of reinforcement, these moments could be reduced to their value at 

the face of the support [A4.6.2.1.6] but it was decided to not do it to on the conservative 

side. 

B.2.6. Selection of Reinforcement 

The material strengths are f’c = 4000 psi and fy = 60 ksi. Epoxy-coated 

reinforcement is used in the deck. The effective concrete depths for positive and negative 

bending will be different because of different cover requirements (see Figure  B.9). 

 

Concrete cover [Table A5.12.3-1] 

Deck surfaces subject to wear  2 IN 

Bottom of CIP slabs   1 IN 

 

Assuming #5 rebars, db=0.625 IN Ab=0.31 IN2 

dpos = 9 -1-5/16 = 7.69 IN 

dneg = 9 -2-5/16 = 6.69 IN 

 

A simplified expression for the required area of steel can be developed by 

neglecting the compressive reinforcement in the resisting moment to give [A5.7.3.2]. 
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'

2

0.85

n S y

S y

c

aM A f d

where
A f

a
f b

φ φ ⎛ ⎞= −⎜ ⎟
⎝ ⎠

=

       (B.9) 

 

assuming that the lever arm (d-a/2) is independent of AS, we can replace it by jd 

and solve for an approximate AS, required to resist φMn = Mu. 

 

( )
/u

S
y

MA
f jd

φ
≈          (B.10) 

 

If we substitute fy = 60 ksi, φ = 0.9 [A5.5.4.2.1], and assume that for lightly 

sections j = 0.92, a trial steel area can be expressed as 

 

49.68
u

S
Mtrial A

d
≈         (B.11) 

 

Because it is an approximate expression, it will be necessary to verify the moment 

capacity of the selected reinforcement. 

Maximum reinforcement [A5.7.3.3.1] is limited by the ductility requirement of    

c < 0.42d or a < 0.42 β1d. For our example, β1 = 0.85, so 

 

0.357a d≤          (B.12) 

 

Minimum reinforcement [A5.7.3.3.2] for components containing no prestressing 

steel is satisfied if: 

 

( )
'

0.03S c

y

A f
bd f

ρ = ≥         (B.13) 
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For the given material properties, the minimum area of steel per unit width of slab 

is 

 
( ) ( ) 20.03 4

min 1 0.002 /
60SA d d IN IN= =      (B.14) 

 

Maximum spacing of primary reinforcement [A5.10.3.2] for slab is 1.5 times the 

thickness of the member or 18 in. By using the structural slab thickness of 9 in, 

 

max 1.5 9 13.5S IN= × =        (B.15) 

 

Positive reinforcement 

 

( )
2

2

9.96 /
7.69

9.96 0.026 /
49.68 49.68 7.69

min 0.002 0.002 7.69 0.0154 / ,

u

pos

u
S

S

M KIPS FT FT
d IN

Mtrial A IN IN
d

A d IN IN ok

= −
=

≈ = =

= = × =

 

 

We try #5 @ 11 IN, provided AS = 0.31/11 = 0.0282 IN2/IN 

 
( )
( )'

0.0282 60
0.5

0.85 0.85 4
S y

c

A f
a IN

f b
= = =  

check ductility 

 

( )0.357 0.357 7.69 2.75 ,a d IN ok≤ = =  

 

check moment strength 
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( )( )

2
0.50.9 0.0282 60 7.69 11.33 /
2

11.33 / 10.08 / ,

n S y

n

n

aM A f d

M KIPS IN IN

M kips FT FT kips FT FT ok

φ φ

φ

φ

⎛ ⎞= −⎜ ⎟
⎝ ⎠

⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

= − > −

 

 

For transverse bottom bars, Use #5 @ 11 IN 

 

Negative moment reinforcement 

 

( )
2

2

11.51 /
6.69

11.51 0.0346 /
49.68 49.68 6.69

min 0.002 0.002 7.19 0.0144 / ,

u

pos

u
S

S

M kips ft ft
d in

Mtrial A IN IN
d

A d IN IN ok

= − −
=

≈ = =

= = × =

 

 

We try #5 @ 9 IN, provided AS = 0.31/9 = 0.034 IN2/IN 

 
( )
( )'

0.0344 60
0.6

0.85 0.85 4
S y

c

A f
a IN

f b
= = =  

 

check ductility 

 

( )0.357 0.357 6.69 2.39 ,a d IN ok≤ = =  

 

check moment strength 

 



230 

( )( )

2
0.60.9 0.0344 60 6.69 11.87 /
2

11.87 / 11.51 / ,

n S y

n

n

aM A f d

M KIPS FT FT

M KIPS FT FT KIPS FT FT ok

φ φ

φ

φ

⎛ ⎞= −⎜ ⎟
⎝ ⎠

⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

= − > −

 

 

For transverse top bars, Use #5 @ 9 IN 

 

Distribution Reinforcement 

 

Secondary reinforcement is placed in the bottom of the slab to distribute wheel 

loads in the longitudinal direction of the bridge to the primary reinforcement in the 

transverse direction. The required area is a percentage of the primary positive moment 

reinforcement. For primary reinforcement perpendicular to traffic [A9.7.3.2] 

 
220 67%

e

percentage
S

= ≤        (B.16) 

 

where Se is the effective span length [A9.7.2.3]. For steel I-beams, Se is the 

distance web to web, that is, Se = 8 FT, and 

 
220 77%, 67%

8
percentage use= =  

 

dist AS=0.67(pos AS) =0.67(0.0282) = 0.019 in2/in 

For longitudinal bottom bars, Use #4 @ 8 IN, AS = 0.025 IN2/IN 

 

Shrinkage and Temperature Reinforcement 
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The minimum amount of reinforcement in each direction shall be [A5.10.8.2] 

 

0.11 g
S

y

A
temp A

f
≥         (B.17) 

 

where Ag is the gross area of the section. For the full 9 IN thickness, 

 
290.11 0.0165 /

60Stemp A IN IN≥ =  

 

The primary and secondary reinforcement already selected provide more than this 

amount, however, for members greater than 6 IN in thickness, the shrinkage and 

temperature reinforcement is to be distributed equally in both faces. The maximum 

spacing of this reinforcement is 3 times the slab thickness or 18 in. For the top 

longitudinal bars, 

 

( ) 21 0.00825 /
2 Stemp A IN IN=  

 

Use #4 @ 18 in, AS = 0.0111 IN2/IN 

B.3. Empirical Design of Concrete Deck Slabs 

Research has shown that the primary structural action of concrete deck is not 

flexure, but internal arching. The arching creates an internal compressive dome. Only a 

minimum amount of isotropic reinforcement is required for local flexural resistance and 

global arching effects [C9.7.2.1] 
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Design conditions [A9.7.2.4] 

 

Design depth excludes the loss due to wear, h = 9 in. The following conditions 

must be satisfied: 

 

 -Supporting components are made of steel and/or concrete  YES 

 -The deck is fully CIP and water cured    YES 

 -6 < Se/h = 96/9 = 10.66 < 18      OK 

 -Core depth = 9 -2-1 = 6 IN > 4 IN      OK 

 -Effective length [A9.7.2.3] =96 IN < 162 IN   OK 

 -Minimum slab depth = 7 IN < 9 IN      OK 

 -Overhang = 45 IN ≥  5h = 45 IN      OK 

 -f’
c = 4000 PSI (minimum value)     OK 

 -Deck must be made composite with the girders   YES 

 

Reinforcement requirements [A9.7.2.5] 

 

 -Four layer of isotropic reinforcement, fy ≥  60 KSI 

 -Outer layers placed in direction of effective length 

 -Bottom layers: Min AS = 0.27 IN2/FT = 0.0225 IN2/IN, Use #5 @ 13 IN 

 -Top layers: Min AS = 0.18 IN2/FT = 0.015 IN2/IN, Use #4 @ 13 IN 

 -Maximum spacing = 18 IN 

 -Straight bars only, hooks allowed, no truss bars 

 -Only lap splices, no welded or mechanical splices permitted 
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The layout of the reinforcement according the traditional design is shown in 

Figure  B.10 and the layout of the reinforcement according the empirical design is shown 

in Figure  B.11. 
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Figure B.1 Bridge deck cross section 
 

 
Figure B.2 Deck slab dead load 
 

 
Figure B.3 Overhang dead load 
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-0.1125 KIP/FT 
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Figure B.4 Barrier dead load (15 IN from the edge of the bridge) 
 

 
Figure B.5 Wearing surface dead load 

 
Figure B.6 Live load, maximum positive moment one lane loaded 
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Figure B.7 Live load, maximum positive moment two lanes loaded 
 

 
Figure B.8 Live load, maximum negative moment 
 

 
Figure B.9 Concrete cover 
 
 

d p
os

 

d n
eg

 

9 
IN

 

2 IN clear

1 IN clear

16 KIPS 16 KIPS 

3 FT 3 FT 

16 KIPS 16 KIPS 16 KIPS 16 KIPS 

3.2 FT 6 FT 3.2 FT 6 FT 



237 

 

 
Figure B.10 Deck slab reinforcement according the Traditional Method 
 
 

 
Figure B.11 Deck slab reinforcement according the Empirical Method 
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