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Introduction 
 

 

 

 

 

 

Product miniaturization is a strong tendency for several reasons: energy saving, mass 

reduction, lower CO2 release, etc. In addition to the miniaturization, the integration of 

complex functions and intelligence makes them more competitive. However, size reduction 

and increasing complexity lead to important challenges that need research and developments. 

The miniaturized product design turns into micromechatronics design by the integration of 

mechanical, optical, acoustic and electronic components. Because of the use of various 

technologies that are not compatible and the need of 3D structures, assembly systems are 

required with performances adapted to the small sizes. For the miniaturization of products, in 

particular in very competing sectors of high technology, it becomes increasingly necessary to 

develop flexible technologies allowing reliable manufacture of very small components with a 

high quality level at low cost. In fact, micromanipulators and microassembly systems are 

needed in order to manufacture these products. Considering the need of flexibility, 

microrobotics appears as an effective way to work in the microworld. 

 

Microrobotics is the science and technology that involves the design, fabrication and control 

of microrobots. To succeed in microrobotics, an interdisciplinary approach is necessary. The 

concerned fields are electronics, computer science, artificial intelligence, mechatronics, 

nanotechnology, and bioengineering [ROB].  

 

Typically, microrobots have dimensions ranging from a fraction of a millimeter up to several 

millimeters, miniaturized and sophisticated machines designed to perform a specific task or 

high precision repeated tasks. 

 
A flapping microrobot on a finger [BEN 2009]. 

 

In the above figure, a flapping microrobot is designed, bio-inspired by a flying insect. This 
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microrobot use two piezoelectric bimorph actuators connected. This design gives each wing 

two degrees of freedom (DOFs). 

 

The domain of microrobotics leads to a great number of  challenges in terms of physics, 

control, mechanical structures, actuations, etc., that is why it is so attractive for the 

researchers. The microworld gives a different world in terms of force interactions, perception, 

design, and realization. In fact, when the dimension goes down to submillimetric range, the 

manipulation of micro-objects is difficult because of the scale effects. The main difference 

between microscopic and macroscopic scales is due to the change of dominant forces. From 

the geometry dimension 1µm to 1 mm, the object contact is influenced by all of the 

electrostatic force, the surface tension, the capillary force and the Van Der Waals force. These 

mixed actions make the micromanipulation and microassembly a real challenge. 

 

In order to achieve micromanipulation tasks, microrobots with some specific characteristics 

are required. Resolution and accuracy in the submillimetric range are needed in order to 

interact with micrometer sized objects. The size of the robot itself must be very low in order 

to facilitate handling of micro-objects and enable the execution of tasks in confined 

environments. 

 

The traditional solutions used to build microrobots are based on active materials and closed-

loop control. These active materials present some drawbacks making both their modeling and 

efficient control designs a hard task. Their behaviors are often complex, nonlinear and 

sometimes non stationary. Closed-loop control of the microrobots requires the design and the 

integration of very small sensors and the use of bulky and expensive instruments for signal 

processing and real-time operating. These solutions are confronted with many difficulties. 

 

In order to avoid the drawbacks of traditional microrobots and open a new approach to design 

microrobots, the work presented in this thesis deals with the study of a new generation of 

microrobots using a modular concept and an open loop control strategy:  digital microrobots. 

 

Chapter 1 presents the research background and the motivation. The structure of microrobots 

based on microactuators and kinematic chains is studied. The various microactuation 

principles are investigated. Based on the microactuation principles, two kinds of control 

strategy are presented: one is the proportional signal control and the other is the repeated 

control (step by step). Perception technologies in microscale are also presented. 

 

The chapter 2 presents the concept of digital microrobotics. We give the potential 

performances of a microrobot based on the association of several bistable modules. Notably, 

we obtain a microrobot that can reach a discrete workspace of which each reachable position 

is repeatable, stable with a blockage force through an open-loop control. 

 

In chapter 3, an entire bistable module is designed. Three components are designed to obtain a 

bistable module with two stable and blocked positions switched by integrated actuators. 
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Firstly, bistable mechanisms are studied to establish a basic model. This model can ensure the 

bistable behavior of this mechanism. Secondly, several actuators that can be used to actuate 

the bistable mechanism are studied. Thirdly, a special compliant mechanism is designed to 

give a blockage force in stable position. 

 

In chapter 4, according to the microfabrication limits, final dimensions of the bistable 

modules are defined. Several microfabrication processes have been tried. The use of a SOI 

wafer permits us to obtain the desired structure.  

 

In chapter 5, static and dynamic characteristics of bistable modules have been studied. Static 

characteristics include the force versus displacement relation of bistable mechanisms and the 

voltage versus displacement of actuators. Dynamic characteristics consist in the study of the 

switching to those two stable positions. Based on the dynamic analysis, we propose a control 

strategy for switching between the stable positions with performances adapted to 

microrobotics tasks. 
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Chapter 1 Microrobotics 

"Look back to the old, if you would learn the new." 

– Confucius  

(551 B.C. – 479 B.C.) 

 

 

1.1 Introduction 

Miniaturized systems integrating complex functions and intelligence are more and more 

present. Modern industry aims to develop manufacturing and assembly systems enabling to 

produce smaller and smaller goods. Moreover, even if the interfaces with the human require 

human scale dimensions, the active part has to be smaller and smaller. For example, the size 

of the switch (3 mm) under the keys of mobile phones has been divided by 3 in less than five 

years and in some cases, this switch is transformed into a small joystick to perform more 

complex functions. 

 

To succeed in this miniaturisation, more and more products design becomes 

micromechatronics design in the sense that the functions are realized by the integration of 

mechanical, optical, acoustic and electronic components. 

 

In order to adapt the miniaturization of the products to their fickleness and fast obsolescence, 

in particular in very competing sectors of high technology, it becomes increasingly necessary 

to develop flexible technologies allowing reliable manufacture of very small components and 

products with a high quality level and at low cost. For mini and micromechatronic products 

manufacturing, micromanipulators and micro-assembly systems are required. Considering the 

need of flexibility, microrobotics appears then as an effective way to work in the microworld. 

Fig. 1.1 shows the assembled microobjects with 250 µm dimension with microrobot system. 

 

Microrobots are robots designed to perform tasks in the microworld, i.e. the world of the 

objects of which dimensions are micrometric; their workspace can be some micrometers to 

some millimeters. 
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Fig. 1.1. Assembled microobjects [TAM 09]. 

 

According to the mode of work, two kinds of microrobots can be considered. 

This first kind of microrobots has micrometer dimension, usually are made as mobile robots 

which can work in confined environment. Shown in Fig. 1.2, a mobile microrobot has 200 µ 

µm in length [DON 06]. It is actuated by electrostatic force. Two kinds of motions (rotation 

and translation) can be controlled. 

 

This kind of microrobots presents advantages such as adapted dimension, good agility and 

untethered operation. However, it has drawbacks, such as missing integrated sensors, only 

plane DOFs and limited force. 

 

 
Fig. 1.2. A mobile microrobot. A: scratch drive actuator, B: cantilevered steering arm (B) [DON 06]. 

 

The second kind of microbots consists in robots which dimensions are not microscopic but are 

small enough to allow submicrometric resolution to manipulate micro-objects. This kind of 

microrobot are kitted out with micrometric size end-effector that permits to manipulate micro-

objects. 

 

Fig. 1.3 shows a microrobot from Kleindiek Nanotechnik kitted out with a 10 µm size gripper 

[KLE]. For physical reasons, end-effectors of the microrobots have to be at micrometric size. 
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Since they are directly in contact with the micro-objects, they are included in the microworld. 

Unlike the last kind, it needs to work in a specific plane area. This kind of microrobot can 

work in the 3D area. 

 
Fig. 1.3. A centimeter robot mounted end-effector. A: Robot mechanism, B: end-effectors [KLE].  

 

When components have submillimeter dimensions, their manipulation is technically 

embarrassed because of scale-effects which increase when the dimensions decrease. Indeed, 

the range of the micromanipulation is currently defined as the manipulation of objects whose 

volume is between 10 and 10
4
 µm

3
 or who's the greatest dimension varies from some tens to 

some hundreds of µm. We are near the low limit of the classic mechanics. The laws of the 

Newtonian physics are most of the time valid and the quantic effects can be neglected. 

However, the main difference between microscopic and macroscopic scales is due to the 

change of dominant forces. Let us consider L as a length that is characteristic of a problem, 

the value of L
3
 being inferior to the one of L

2
 in the [0, 1] interval, the volume forces become 

negligible compared to the surface forces. Therefore, the forces relying on contact surface 

(electrostatic force, surface tension, van der waals force) become important in the microworld 

(see Fig. 1.4).  

 

Moreover, precise determinations of the interaction force need deep studies crossing the 

model at the micro/nano-scale and the deformation of the surface. As in Fig.1.4, the forces are 

getting on for sphere/plan. Because of the mixture action of these forces, it leads to 

micromanipulation a big difficulty.  

 

The scale effect arises many challenges, it requires new robotic functions, actuations, 

perceptions, handling and controls. These functions can not be directly transferred from the 

macroscale robotics and new principles of design have to be studied. The integration of these 

functions in a complete micromanipulation system and micro-assembly is also an ambition on 

which several proposals have been done but getting a station or a set of stations which are 

precise, repeatable, safe, efficient and flexible remain a challenge. 
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Fig. 1.4. The different forces in the microworld for a sphere/ plane interaction. 

 

In this chapter, we first give some application fields. After that, we focus on the main 

components of microrobots: the structure, the actuators, the sensors and the control.  

  

1.2 Application fields of microrobots 

1.2.1 Microrobots in microfactories 

The integration of microrobots inside microfactories which work as production systems is a 

challenge. This integration can be considered at different levels from the teleoperated station 

until the totally automated microproduction systems. The microfactory concept is the answer 

to the need of microrobotics systems integrated in automated stations. 

 

An example of microfactory was developed by Mechanical Engineering laboratory (MEL). It 

is shown in Fig. 1.19. The entire system contains a micro-lathe, a micro-milling machine, a 

micro-press machine, a micro-transfer arm and a micro-manipulator. All the components are 

integrated into a portable box with 625 x 490 x 380 mm
3
 in sizes. This microfactory is 

controlled by two multi-DOFs joysticks and vision assistance. 
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Fig. 1.5. A microfactory by Mechanical Engineering Laboratory (MEL), Japan [MEL]. 

 

Femto-st has developed several stations dedicated to micromanipulation and microassembly. 

One of stations is composed of 5 high accuracy axis (3 linear axis and 2 rotational axis) 

carrying a microgripper. This microgripper was designed in Femto-st (old Laboratoire 

D'automatique Besançon) and patented in 2002. This robotic device is associated to a vision 

device, which is a motorized binocular microscope. An environmental control is ensured by 

dust filtration (class 100). Robot is controlled by two computers, one for operator inputs 

(joystick, keyboard) and the other for real-time video stream. Video is used by both operator 

and computer for manual control and computer vision control. 

 

As well as technical demonstrator and experimental platform, this microassembly robotic 

system is used to experiment research work on microassembly. 

 
Fig. 1.6. Microassembly station at Femto-st/As2m.""""
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Fig. 1.6 shows the large view of the micromanipulation/microassembly SAMMI platform. 

The robot is fixed on a vibration filtering table and protected by a laminar flow cabinet. 

Computers and joystick are visible on the right. 

 
Fig. 1.7. Large view of assembly area.""""

A component placed on a compliant table with 400 µm in length is handled by microgripper 

visible on the center of Fig. 1.7. Two pieces with 100 µm are assembled in this station (see 

Fig. 1.8). 

 
Fig. 1.8. Two assembled components by microgripper [TAM 09a]. 
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This kind of system based on microrobots aims to perform automatic control of 

micromanipulation and microassembly tasks. These tasks allow us to fabricate complex 

devices and products for industrial or consumption applications.  

1.2.2 Microrobots in biology and medical applications 

Another field of application for microrobotics is in the biology. In the biology field, cells have 

typical micrometer dimensions. Researchers in this field wish to manipulate biologic cells, 

including positioning, sorting, selecting and separating biological cells. These manipulations 

permit to study various behaviors of different cells. Furthermore, in the genetic engineering, 

they also require manipulations to decode the gene, or even improve the human gene. 

 
Fig. 1.9. Microinjection of the cell [TMW]. 

 

These manipulations need high accuracy and precise tools enable to perform complex tasks on 

fragile objects, in changing environments (see Fig. 1.9). 

 

In the medical field, Microrobots may be used to inspect, treat or eliminate medical problems. 

The use of microrobots can inspect inside of human body, and reduce the pain using 

traditional inspecting approach. Moreover, some problems may arise due to the accumulation 

of unwanted organic substances, which interfere with the normal body functions, such as 

tumors, life threatening blood clots, accumulation of scar tissue, arterial blockage, and 

localized sites of infection. The microrobots can be introduced into the body through the 

circulatory system. 

 

One of the effective approaches to kill the cancerous cells would be to enclose the entire 

tumor in a nano box and destroying everything in the box. The prospective scene in Fig. 1.10 

shows a microrobot going to take out the cancerous cell in the human body. 
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Fig. 1.10. Prospective view of microrobot in the human body [BMM]. 

 

1.3 Design of microrobots 

Either for assembly or packaging of micro-objects including MEMS and MOEMS or the 

characterization of mechanical or biologic objects, specific microrobots have been designed. 

They are different from the traditional robots in the sense that their architecture, their 

actuation or their control are often different. We have seen that the main reason of this 

difference is the predominance of surface forces in the microworld. Microrobots have to feel 

their environment and their action on the objects they are touching. The sensing system has to 

be adapted to microscale, by which informations are given as the base for an automatic 

process. 

 

The design of microrobots concerns the design of the carrier and the end-effector. 

Concerning the design of the end-effectors which permit to handle and release the 

components, lot of works have been done in the world [LANG 08]. Indeed, because surface 

effects become predominant at microscale, the release of objects is difficult to perform and 

the study of necessary strategies is particularly interesting. Moreover, handling systems are 

often designed based on the use of smart materials that lead to control difficulties [LANG 08]. 

 

Concerning the carrier, usually, they are designed based on the miniaturization of 

mascroscopic concepts, and the size is centimetric or decimetric. The analyses of kinematics 

structure adapted to micromanipulation have been done most of the time for the handling 

system and not for the whole microrobotic structure. 

 

Therefore, according to these considerations, we consider the design of microrobots through 

three main aspects: 
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- microrobot kinematics; 

- adapted actuators for the microrobot kinematics; 

- control and perception.  

 

1.4 Kinematics for microrobots 

The kinematic chains of traditional robots are built by three components: actuators 

(electromagnetic motors), links (most frequently rigid bodies), and joints (kinematic pairs) to 

obtain the desired degrees of freedoms (DOFs). However, microrobots can not be built on the 

same approach because of the physical reasons described previously. Special kinematics for 

microrobots has to be designed. 

 

Kinematics chains aim to build connections from energy input (actuators) to mechanical 

energy output (end-effectors) to create desired motions. Different approaches are developed to 

design kinematic chains of the microrobots such as the bimorph mechanism [CAR 98], the 

parallel mechanisms, the topology syntheses of mechanism [KOTA 01], etc. 

 

Before talking about these various mechanisms, we firstly introduce different connection 

joints. The transmission of the rotation and translation motions is realized by the connection 

joints. There are many traditional joints, such as hinges, sliders and universal joints. However, 

in microrobotics, there is another type of joint called compliant joint. The researches already 

done show that the use of compliant joints presents many advantages in the microworld. 

1.4.1 Compliant joints 

The traditional joints use the sliding area to create motions. Unlike this kind of joints, the 

compliant joint uses deformation to create motions. The compliance of the structure is defined 

by the structure geometry.  

 

Two kinds of compliant joint are mentioned: the revolute joints (see Fig. 1.11a) and the 

translational joints (see Fig. 1.11b). 

 
(a) 
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(b) 

Fig. 1.11. (a) rotation of joint (b) translational joints. 
 

 

The compliance of the joint depends on geometry and dimensions. For example, rotation 

stiffness of the compliant joint (see Fig. 1.12) can be given by: 

2

2

L

EI
k =  

E is Young's modulus, I is the moment of inertia. 

 
Fig. 1.12. Deformation of a compliant joint. 

 

These compliant joints eliminate friction, backlash and wear. Further benefits include sub-

micron accuracy due to their continuous monolithic construction. Such accuracy is important 

in many micro or nano-applications. The monolithic fabrication also enables a low-cost 

process. However, it presents some drawbacks such as the limited motion range, changing 

rotation centre, etc. 

1.4.2 Bimorph mechanisms 

The bimorph mechanism is a kind of mechanism widely used in microrobotics, as bimetal 

beam, bimorph actuator, etc. Generally, Bimorph mechanism consists of two active layers. 

The displacement can be created because of the asymmetric deformation via: 



Chapter 1 Microrobotics 

15 

 

• Thermal activation (a temperature change causes one layer to expand more than the 

other). 

• Electrical activation as in a piezoelectric bimorph (electric field(s) cause one layer to 

extend and the other layer to contract). 

 

 
(a) 

 
(b) 

Fig. 1.13. (a) classic bimorph mechanism (b) a model of a bimorph mechanism. 
 

As shown in Fig. 1.13b, the input displacement δi of spring leads to an output deflections δo. 

In fact, in the real situation, the pin connection is replaced by a compliant joint, and the 

elongation of spring is made by actuating active material or electrothermal expansion effect. 

 

Another example uses this principle (see Fig. 1.14). A PZT stack is used as the input end, the 

output ends are two fingers [CAR 98]. The input PZT gives the external beam (as spring) 

elongation, which leads to the internal beam deflection at the position A. So, the position B is 

led to a bigger deflection. 
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In fact, the use of the piezoelectric material, electro polymer bimorph, etc, can take the same 

principle to amplify the motion range. To sum up, the key of this amplification mechanism is 

to create the deformation difference between two materials. 

 

 
Fig. 1.14. Example of bimorph principle [CAR 98]. 

 

1.4.3 Topology synthesis of compliant mechanisms 

Compliant mechanism synthesis has been performed by large number of researches. This 

method includes two common tasks: (a) topology generation (b) size and shape optimization 

[KOTA 01]. 

 

Topology generation provides qualitative results of a kinematics. This mechanism may not be 

the best solution in the size and shape. Therefore, once the topology is generated, the next step 

is to perform a size and shape optimization. 

 

The goal of this first stage in compliant mechanism design is to generate a topology 

(configuration) to meet defined input-output force-displacement relationship. There are two 

commonly used schemes for initial discretization in the topology synthesis: the use of 

homogenization method and the use of an initial beam/truss element network. 

 

As can be seen from the flowchart in Figure 3, the proposed approach includes 3 major 

components:  

 

• The embedded finite element analysis that solves the structural deformation. 

 

• The curve comparison algorithm that measures the deviation between the deformed 

and target curves. 
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• The overall optimization problem that searches for the optimal topology and 

dimensions. 

 
Fig. 1.15. Flowchart of compliant mechanism synthesis [KOTA 01]. 

 

Fig. 1.16 shows an example of amplification mechanism designed by compliant mechanism 

synthesis, which amplify the input motion 20 times. 

 

 
Fig. 1.16. Example of topology synthesis mechanism [KOTA 01]. 
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This method is complex and requires special computer program to perform the design. But, it 

gives optimized solution to satisfy the requirement between input and output. The main 

developed program resolves the single input-output problem. Recently, some researches are 

done in developing algorithm to resolve multi-input and multi-output problem [GROS 08]. 

1.4.4 Parallel microrobots 

Parallel robots have played an important role over the last 20 years wherever they were used 

in the macro or micro world. A parallel robot is a closed-loop mechanism in which the mobile 

platform is connected to the base by at least 2 serial kinematics chains.  

 
(a) 

  
                                      (b)                                                                   (c) 

Fig. 1.17. (a) Steward platform (b) Delta robot (c) Schematic of the Delta robot (from US patent No. 
4,976,582). 
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Typical parallel robots are Stewart platforms or Delta robots (see Fig. 1.17). The joints have 

rotation DOF as the passive connection which can support the platform and increase the 

stiffness of the whole structure. 

 

This traditional robot requires accurate assembly of sensors, actuators and connection joints. 

Due to previously presented scale effects, traditional assembly can not be realized in the 

microworld. However, researches found that the use of monolithic structures fabricated by 

microfabrication technology present many advantages. Thanks to these techniques, the 

parallel microrobot with integrated actuators and the various parts can be fabricated. It is a 

potential candidate for microrobotics applications.  

 

D. Mukhopadhyay [MUK 08] proposed a parallel mechanism (see Fig. 1.18). It is a planar 

xyθ positioner with linear electrostatic actuators.  

 
(a) 

 
 (b) 

 Fig. 1.18. (a) Schematic of a xyθ positioner (b) Fabricated positioner [MUK 08]. 
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This parallel mechanism consists of a platform connected to the base by three identical 

kinematic chains. Each chain consists of a prismatic joint connected to a fixed base on one 

end and to a rigid link on the other end via a compliant joint. This parallel mechanism can be 

open-loop controlled by identifying the Jacobian matrix. Since there is no any sensor, the 

repeatability and the accuracy can no be ensured. 

 

The use of microfabrication technology permits to fabricate parallel microrobots with high 

resolutions, monolithic structure and micrometer dimensions. However, repeatability and 

accuracy can not be ensured because the sensors are not integrated. 

 

1.5 Actuators for microrobotics  

Microactuators are key components for MEMS or microrobots. Microactuators transform 

electrical energy, thermal energy, magnetic energy, etc. into mechanical energy.  

 

Thanks to the efforts of researchers, various microactuation principles such as thermal 

expansion, magnetic actuation, electrostatic actuation, piezoelectric actuation and shape 

memory alloys have been developed. Many original, smart microactuators have been designed, 

fabricated and tested. In the next section, a brief review based on actuation principles is 

presented. 

1.5.1 Electrothermal microactuators 

Thermal expansion is the property of materials to change in volume in response to a change in 

temperature, where the change is approximately proportional to the material's coefficient of 

thermal expansion. The table gives the coefficient of linear thermal expansion of three types 

of materials: metal, semiconductor and insulator. 

 
Tab. 1.1. Coefficient of linear thermal expansion of different materials. 

Material Coefficient of linear thermal expansion (1/C) 

Metal 13 to 25×10
-6

 

Semiconductor 3 to 6×10
-6

 

Silicon 

oxide 
0.5×10

-6
 

Insulator 

Glass 8×10
-6
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As shown in the table 1.1, the linear expansion leads to very few changes in length and 

researchers have design various mechanisms to amplify this linear motion. 

 
Fig. 1.19. Example of amplification of thermal actuators (a, b) U-shape, (c, d) V-shape, cascaded V-shape. 
 

Fig. 1.19 shows the U and V shape thermal microactuators and their mutant shapes. The U-

shape microactuator consists of two beams: a thin beam and a thick beam. Because of the 

asymmetric expansion in these two beams, transverse motion is obtained. The V-shape 

thermal microactuator consists of a curved beam. The symmetric expansion creates a flexion 

in the middle of the beam. 

 

Since the asymmetric expansion results from Joule effect, this approach permits to build an 

actuator with a single layer (unique material). The temperature change can be achieved 

internally by electrical resistive heating (Joule heating) or externally by a heat source capable 

of transferring the heat to the actuator. 

 

Fig. 1.20 presents a bi-metallic thermal actuator. In this configuration, both materials are 

heated to the same temperature, but deflection results from different coefficient of thermal 

expansion. 
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Fig. 1.20. Bi-material thermal microactuator. 

 

The advantages of thermal microactuators are the fast heating (electro-thermal effect) and 

compatibility with microfabrication technology. The drawback is the reverse transformation. 

The cooling will reduce the response time of the actuator. 

1.5.2 Electromagnetic microactuators 

Ferromagnetic material (such as Ni, Fe, Co, NiFe, NdFeB) presents attractive effects when 

subjected to a magnetic field [GIB 04]. Ferromagnetism is the basic mechanism which is 

widely used for most phenomena of magnetism. 

 

The ferromagnetic material can be soft magnetic material or hard material, while soft 

materials such as permalloy (FeNi) are relatively easy to prepare in film form by 

electrodeposition and sputtering. 

 

 
Fig. 1.21. Electromagnetic force. 

 

Although soft magnetic materials can be obtained easier than hard magnetic materials, hard 

magnetic or permanent magnetic materials would be more appropriate in some cases. For 
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example, hard magnetic materials with a high remanent magnetization can be conveniently 

used in bi-directional (push-pull) microactuators [CHO 00].  

 

In order to make an electromagnetic microactuator, a ferromagnetic material and a coil are 

required (see Fig. 1.21). However, the fabrication of a microcoil is a hard task. This is why 

traditional electromagnetic motor are not widely used in the microworld. 

 

L.K. Lagorce [LAG 99] designed an electromagnetic microactuator based on polymer 

magnets. The basic structure of the fabricated cantilever beam microactuator is illustrated in 

Fig. 1.22. A polymer magnet magnetized in thickness direction is screen-printed onto the free 

end of a copper cantilever beam. On the other side of the substrate, a planar square coil 

produces the magnetic field gradient necessary for the actuation of the magnet. Because 

Polymer magnet is a permanent magnet, the change of the electric current direction can result 

in a change of the deflection of the magnet. 

 

 
Fig. 1.22. Electromagnetic microactuators based on polymer magnets [LAG 99]. 

 

Magnetostrictive materials are a type of material which deforms due to the applied magnetic 

field; it has been firstly discovered by James Joule. Typical magnetostrictive material is 

known as Terfenol-D, including rare earth elements with iron which has the available strains 

of more than 1000 parts per million at room temperature with a relatively small applied fields 

[TDD] [ROT 92]. Fig. 1.23 shows the strain versus magnetic field (H) that presents saturation 

at high field. 

 

The use of electromagnetic materials presents fast response time, great force, wireless 

actuation, bi-direction actuation (for hard magnetic materials), etc.  However, the fabrication 

of coil limits their applications in the microworld [CHO 00] [OKA 09]. 
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Fig. 1.23. Magnetic field Vs strain for a Terfenol-D material. 

1.5.3 Electrostatic microactuators 

Electrostatic charge can exert a force between the charged objects according to the Coulomb 

law [CL]. Although only a small force can be obtained, this could be useful in the microworld.  

 

The simplest type of electrostatic actuators consists of a movable plate which is pulled toward 

a parallel electrode under the application of a voltage difference. This type of actuator is 

illustrated in Fig. 1.24. 

 
Fig. 1.24. Parallel plate electrostatic actuator. 

 

The movable electrode is suspended by a mechanical spring, which is usually a simple 

microfabricated cantilever. When a voltage is applied across the electrodes, opposite charges 

on each plate attract each other. However, unless they touch, the electrodes only draw 

sufficient current to charge the actuator's effective capacitance, resulting in low power 

requirements.  

The attractive force is given by: 

2

2

2d

SV
Fe

ε
=  

S: area 
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d: gap 

ε : Permittivity 

 

The spring force increases linearly with the gap between these two plates, but the electrostatic 

force increases faster while there is a small gap. So there is a maximal applied voltage, when 

we go though this voltage, these two plates will be contacted, this is called pull-in effect.  

 

The spring force is given by: 

)( 0 ddkFs −=  

k: the spring constant 

d0:  initial gap 
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Using these equilibrium conditions, the maximum applied voltage can be found: 
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The gap is: 
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d =  

This gap is the maximum motion distance. If the motion is beyond this distance, these 

parallel-plate actuators suffer from instability for voltages beyond a threshold known as the 

"pull-in" voltage. For voltages beyond the pull-in voltage, the electrostatic force grows more 

quickly than the mechanical spring force, causing the two plates to contact each other.  

 

Hence, these actuators can not be stable operated for deflections larger than this unstable 

position. However, many types of mechanical springs, including fixed-fixed beams, exhibit 

nonlinear deflection characteristics, leading to a larger usable deflection range. To avoid the 

pull-in effect, Comb drive electrostatic microactuators are a good solution. As parallel-plate 

actuators, comb drives consist of one fixed and one movable electrode. The electrodes are 

shaped as interdigitated combs as shown in Fig. 1.25.  

 

This configuration leads to a constant force over the whole range of deflection of the movable 

comb. As long as each comb finger is perfectly centered between two opposed comb fingers, 

the transverse force acting on that finger will be null. 

 

The electrostatic actuator offers a very high efficiency actuation because of low current 

consumption, and the response time is very fast. They could be designed and fabricated easily 
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by micromachining technology. But, when the electric field must act over larger distances, a 

higher voltage will be required to maintain a given force. 

 

 
Fig. 1.25. Principle of the comb drives electrostatic microactuator. 

 

1.5.4 Piezoelectric microactuators 

Piezoelectric actuators are the most widely used actuators as active material because of their 

high operating frequency range and power density.  

 

Piezoelectric materials change their shapes under an electric field. This change can be 

described by defined directions. Since the polarization of piezoelectric materials leads to an 

anisotropy deformation, the direction of the piezoelectric material is defined as in Fig. 1.26. 

 
Fig. 1.26. Numbering of the direction for the piezoelectric parameters. 
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Typical piezoelectric materials include quartz (SiO2), lead zirconate titanate (PZT), lithium 

niobate, and polymers (polyvinyledene fluoride (PVDF)). Fig. 1.27 shows the deformation of 

a piezoelectric material under different electric fields. The coefficients d15, d33, d31 represent 

the deformation ratio versus voltage in the different directions. 

 

 
Fig. 1.27. The piezoelectric material under voltage. 

 
Tab. 1.2. The range of the coupling coefficients. 

Coupling coefficients 
Materials 

d31 (10
-12

 C/N) d33 (10
-12 

C/N) d15 (10
-12

 C/N) 

PZT From -100 to-300 From 300 to 600 From 500 to 800 

Quartz -2.3 -0.67 4.6 

 

According to this table, the motion range of piezoelectric material is very small. The actuator 

is usually realized by building a piezoelectric stack or a piezoelectric unimorph or bimorph to 

amplify the motion range. Many devices, such as microgrippers, micropositionners and 

oscillators have been realized using this principle. 

 

Unimorph piezoelectric structure is made by bonding a piezoelectric material with another 

material (usually metal). Unimorph structure results in out of plane displacement under 

voltage [see Fig. 1.28 a]. Two piezoelectric unimorph beams build a microgripper to 

manipulate microobjects. 
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(a) 

  

 
(b) 

Fig. 1.28 (a) Microgripper including two unimorphs (Y. Haddab of Femto-st institute) [Yas 04](b) Two 
DOF microgripper (J. Agnes of Femto-st, institute) [AGN 03]. 

 

Although most of piezoelectric microactuators are based on traditional machining, 

piezoelectric thick film integrated silicon substrate has received considerable attentions in 

recent years for potential applications in MicroElectroMechanical Systems (MEMS) devices 

[MURA 05] [AKA 04] [WANG 07]. These piezoelectric thick film are made by dispersing 

submicro-sized (100-300nm) PZT powder (APC 850) into PZT sol-gel precursor solution 

(Zr/Ti = 53/47). PZT films were patterned by photolithography with S1818 photoresist and 

wet etched in HF/HCl [HAI 09]. 

 

1.5.5 Shape memory alloys microactuators 

Shape memory alloys (SMA) are materials that present the property to recover its initial shape 

after a deformation due to heating induced phase changing. The phase from martensite to 

austenite is induced by a thermal energy. 

 

The principle of SMA is shown in Fig. 1.29. SMA material endures firstly an elastic 

deformation at temperature T. When it is heated to temperature T+ŁT, it turns back to 

original shape, and it keeps this form at temperature T. When SMA material is deformed 

plastically, the induced plastic deformation can not be reversed completely. 
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The transition from the martensite phase to the austenite phase is dependent on the 

temperature and stress. While martensite can be formed from austenite by rapidly cooling 

carbon-steel, this process is not reversible, so steel does not have shape memory properties. 

 
Fig. 1.29.  Principle of SMA. 

 

Shape-memory alloys (SMAs) have a lot of desirable properties: high power to weight (or 

force to volume) ratio, thus the ability to recover large transformation stress and strain upon 

heating and cooling, pseudoelasticity (or superelasticity), high damping capacity, good 

chemical resistance and biocompatibility [OTS 99] [HUM 99]. 

 

Besides the traditional applications, thin film SMA has been recognized as a promising and 

high performance material in MEMS applications, since it can be patterned with standard 

lithography techniques and fabricated in batch process [KAL 97] [MAK 00a] [MAK 00b]. 

The main advantages of TiNi thin film include high power density, large displacement and 

actuation force, low operation voltage, etc [FU 04]. 

 

 

Ferromagnetic shape memory alloys 
 

Ferromagnetic shape-memory alloys (FSMA or MSH) are materials that exhibit large changes 

in shape and size due to an applied magnetic field. The key factor behind this phenomenon is 

martensite transformation of the crystal lattice below a certain temperature. In fact, a FSMA is 

first a SMA but it presents more interesting property that different variants of martensite can 

be changed under magnetic fields. 

 

In FSM materials, when a sample is exposed to an external magnetic field in the martensitic 

phase, the magnetic field tends to realign the magnetic moments along the field. The resulting 

deformation can be as large as 10 % [GAU 08a], [GAU 08b]. 
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Fig. 1.30. Principle of FSMAs. 

 

Therefore, the material is an attractive candidate for a new class of magnetic actuators or 

microactuators. Since then, various ferromagnetic shape memory alloys are investigated. 

1.5.6 Electroactive Polymers microactuators 

Electroactive polymers (EAPs) are polymers whose shape is modified under voltage (see Fig. 

1.31). They present a large amount of deformation and sustaining large forces possibilities. 

Due to the similarities with biological tissues in terms of achievable stress and force, they are 

often called artificial muscles, and have the potential for application in the field of robotics, 

where large linear movements are often needed. 

 

 
Fig. 1.31 Principle of electroacticve polymers [LMTS]. 

 

EAP can have several configurations, but are generally divided in two main classes: Dielectric 

EAPs and Ionic EAPs. 

 

Dielectric EAPs: the actuation results from electrostatic forces between two electrodes which 

squeeze the polymer. This kind of EAP is actuated by large voltages (usually several thousand 

of volts), but very low electrical power consumption. Dielectric EAPs require no power to 

keep the actuator at a given position. 

 

Ionic EAPs: the actuation results from the displacement of ions inside the polymer. Only a 

few volts are needed for actuation, but the ionic flow implies a higher electrical power needed 

for actuation, and energy is needed to keep the actuator at a given position. Examples of ionic 

EAPS are conductive polymers, ionic polymer-metal composites (IPMCs) [FUK 05] [SHA 

98]. 
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1.5.7 Summary on the actuators based on smart materials 

Each of the previous microactuators offers advantages and drawbacks. There is no 

microactuator with perfect performance. Usually we should find the tradeoff between the 

power/mass ratio, machining, integration, etc. to choose a microactuator for a specific 

application.  

 

We can classify these microactuations by three classes from the point of view of energy 

transformation. The first class is the transformation from magnetic to mechanic energy. The 

second one is the transformation from thermal to mechanic energy. The third one is the 

transformation from electric to mechanic energy. 

 

Table 1.3 summarizes the main characteristics between different principles of microactuators. 

The characteristics of the microactuation include work per unit volume, work per unit volume, 

typical response time, microfabrication process, connection approach. 

 
Tab. 1.3. Comparison between different microactuation principle. 

Energy 
transformation 

Actuator Method and 
Device 

Work per 
Unit Vol 
(J/cm3) 

Bi-
direction 
actuation 

Typical 
Response 

MicroFabrica
tion 

Connection 

Magnetic Yes yes  

Magnetic shape memory 

alloys 
No 

 

yes 
Magnetomechanic 

Magnetrotrictive 

0.9 

Yes 

1ms-

10ms 

yes 

No connection 

needed 

Thermal expansion 0.02 No yes 
Thermomechanic 

Shape memory alloys 6 No 

100-

800ms yes 

By convection 

or wire 

Piezoelectric 0.02 Yes yes 

Electrostatic 0.4 No yes Electromechanic 

Electroactive polymers  No 

1ms-

100ms 
yes 

wire 

1.5.8 Control of the microrobot 

1.5.8.1 Control of the microactuator 

Microactuators are designed based on these microactuation principles. They produce 

mechanical deformations by response of the energy input. The mechanical deformation 

presents intrinsic drawbacks. The typical intrinsic characteristics are [RAK 06a] [RAK 06b] 

[RAK 09a] [RAK 09b]: 

• Hysteresis 

• Creep 
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• Plasticity 

• Relaxation 

• Fatigue 

Fig. 1.32 shows the creep and hysteresis phenomena of piezoelectric bimorph beam.  

                   
                                       (a)                                                                                     (b) 

Fig. 1.32. (a) A creep phenomena of piezoelectric bimorph beam [RAK 09a]. (b) Hysteresis of a 
piezoelectric bimorph beam [RAK 09a]. 

 

These characteristics lead to unwanted behaviors when they are used in microactuator. It will 

reduce repeatability and accuracy. A precise mathematical model could be built to make a 

precise open-loop control. Otherwise, Closed-loop control techniques can be a solution to 

reach substantial performance (accuracy, repeatability, disturbances and vibration rejection.) 

[RAK 09a] [RAK 09b]. However, the integration of smaller sensor into a small actuator is 

also a hard problem. 

 

Furthermore, the change of work conditions will result into the loss of high precision. There 

are a lot of factors which influence the control of microactuator such as the temperature, 

noises, and humidity [RAK 09a] [RAK 09b]. These uncertain factors increase hugely the 

difficulty to perform a precise control. 

1.5.8.2 Microrobots controlled by proportional signals 

As presented previously, the active material presents small deformations, For example, a 

piezoelectric ceramic of 1 mm in length produces a displacement of 1 µm under electric field 

[CHA 09]. The use of amplification mechanism can increase this displacement. 

 

The final displacement of a single DOFs microrobot is controlled by amplitude of input signal, 

we call it proportional control. This kind of control can be used to control the bimorph 

mechanism, compliant mechanism, mechanism based on topology synthesis, and parallel 

mechanism, etc. 
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Fig. 1.33 presents an amplification mechanism which is designed by topology synthesis. This 

mechanism is built with an electrostatic actuators and an amplification mechanism. A voltage 

is applied to the electrostatic actuators, and the output tip moves. Their final position is 

maintained by the input voltage. It is possible to reach a high precision using calibration 

techniques. This single DOF mechanism can reach the desired position by a simple 

proportional signal. 

 

 
Fig. 1.33. Single input-output mechanism [KOTA 01]. 

 

A parallel mechanism is designed by Q. Yao (see Fig. 1.34 and Fig. 1.35) [YAO 08]. It is a 3 

DOFs parallel mechanism actuated by linear piezoelectric actuators. Three identical 

piezoelectric actuators are placed at a vertical angle (Z). This configuration permits to create a 

displacement in plane (X and Y) and out-of-plane (Z).  

 
Fig. 1.34. A parallel mechanism with piezoelectric actuators. 
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Fig. 1.35.  The overall image of this mechanism [YAO 08]. 

 

The displacement can be defined by this formula; 
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aij: the Jacobian matrix (3 х N, and N is the number of bistable modules) 

abri; the relative angle. 

 

This parallel mechanism can be controlled by proportional signal. Their final position is 

maintained by the input voltage on the actuators. Although this is assembled parallel 

mechanism with a centimeter dimensions, it presents high resolution because of high 

resolution of piezoelectric actuators. 

 

However, as introduced in the last section, microactuators present many drawbacks [RAK 09a] 

[RAK 09b]: creep, plasticity, and hysterisis. These difficulties have to be resolved to reach 

desired performance. Some researches proposed some solutions of closed-loop control, such 

as robust control, state feedback control based on Kalman estimator [HAD 09]. 
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1.5.8.3 Microrobots controlled by periodic signals 

Unlike the last approach, which amplifies the range by the compliant mechanism, and uses the 

input electric power to maintain their position, this approach uses periodic signals to increase 

the motion range, and uses the friction to maintain their position. 

 

Applying repeated control signals on the microactuator, a repeated and high resolution motion 

can be created. These approaches can create a theoretical unlimited range. Microactuators 

using this control approach are the stick-slip motors and ultrasonic motors. Sawtooth signals 

or harmonic signals are applied in order to obtain an accumulation of the displacement. 

Step motor 

 

The typical example is the step motor, such as piezoelectric motor, electrostatic motor, and 

inchworm. Step motors are actuated by the surface contact alternating between sticking to 

each other and sliding over each other, with a corresponding change in the friction force. 

Usually, the static friction coefficient between two surfaces is larger than the kinetic friction 

coefficient. If an applied force is large enough to overcome the static friction, then the 

reduction of the friction to the kinetic friction can cause a sudden jump. This will lead to a 

small forward step. If repeat signals are applied on actuators, the small step can be 

accumulated to obtain great motion range. 

 

Fig. 1.36 shows the motion during a period cycle. The microactuator can be a piezoelectric 

bimorph beam, it deforms under the applied voltage. A step is created after a period cycle.  

Repeated motions can be obtained due to repeated applied signals. Because the piezoelectric 

material has a fast response, the speed can be controlled by the frequency or the amplitude of 

the signal. 
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Fig. 1.36. Principle of stick-slip motion [RAK 09a]. 

 

This principle offers high resolution and theoretically unlimited range. It could be a good 

solution to make a microrobot. 

 

Fig. 1.37 shows an example of the stick-slip piezoelectric motor; it has 2DOFs: translation 

and rotation.  

 

 
Fig. 1.37. The fabricated stick-slip motor with 2DOFs [RAK 09a]. 

 

Two pairs of electrode are designed on the actuators (see Fig. 1.38). The actuation of each 

pair of electrode on the piezoelectric material can create in plane displacement. 



Chapter 1 Microrobotics 

37 

 
Fig. 1.38. Configuration of 2DOFs piezoelectric actuator, (a) Four used electrodes, (b) motion following 

Opxp, (c) Motion following Opyp [RAK 06a]. 
 

Shown as Fig. 1.39, the saw-tooth voltage is applies with amplitude U = +/−150V a frequency 

100 Hz. A resolution of 100 nm is reached. 

 

 
Fig. 1.39. Measurement of steps in linear motion (voltage U = 150V) [RAK 06b]. 
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However, since each step depends on the state of the surface (roughness, flatness, etc), it is 

impossible to repeat exactly the same step. When it goes through a great displacement range, 

the error accumulation in each step leads to an unpredictable final position in the open-loop 

control mode. 

Ultrasonic motors 

 

An ultrasonic motor takes use of the induced ultrasonic vibration of a component, the stator, 

placed against another component, the rotor (rotation) or the slider (translation) to actuate this 

moving part. 

 

Ultrasonic motors utilize the resonance to amplify the vibration of the stator in contact with 

the rotor. Ultrasonic motors also offer unlimited rotation or sliding distances. 

 

 
Fig. 1.40. Example of ultrasonic motor. 

 

The surface acoustic wave induced by periodic signal pushes the rotor by friction. Two 

different ways are generally available to control the friction along the stator-rotor contact 

interface, traveling-wave vibration and standing-wave vibration. 

 

They have important advantages such as high holding torque, high response characteristics, 

high torque density, silent operation, no electromagnetic noise and compact size. 

Consequently, Ultrasonic motors have been used for precise and accurate speed and position 

applications in recent years.  

Summary  

Proportional control and step control are widely used in microrobotics. Using these two 

approaches, we can reach high resolution and accuracy position by building precise 

mathematical models. However, in the microworld, drawbacks of microactuator make it big 

challenges. 
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1.6 Perception for microrobotics 

When the dimension of manipulated objects is very small, it becomes difficult to have a 

perception of the scene which is sufficient for the control of microrobotic systems. Indeed, it 

is necessary to combine different views on the operations to obtain position information, 

orientation and involved force (see example Fig. 1.41). The multi-sensory perception is a 

fundamental function for the development of cells of automated micro assembly. 

 

 
Fig. 1.41. Two views for micromanipulation. 

 

Visual perceptions [BER 06] permit to characterize and locate parts and handled tools of 

manipulation, and control the quality of microassembly. Work in this area concerns the 

development of vision algorithms taking into account the specificities of imagery, this scale 

(small field of vision, poor depth of field, small working distance, high dependency lighting) 

[VIK 99] [RAL 00] [FAT 07] [FED 98]. The reference command based on vision has enabled 

the automation of micro assembly task for objects whose characteristic dimensions are greater 

than 100 µm [TAM 09]. 

 

The perception of force can control the interaction between end-effector and component, and 

ensure the integrity of both pieces handled and the fragile tools used. It is based on two 

approaches working in this area:  

 

The first concerns the characterization and development of deformation sensors integrates the 

tools of micromanipulation and treatment of the measured effort which is very noisy at this 

scale. As in Fig. 1.42, a microgripper integrates the strain gauge to estimate the force. 
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Fig. 1.42. Microgripper with integrated force sensor [MEN 01]. 

 

The second approach the estimation of force by state feedback (synthesis of observers). The 

work adapted in the microworld is extent of forces from the micro-Newton to few tens milli-

Newton.  

 

The measurement may be capacitive [ENI 00] [SUN 02] piezoelectric [29.30], frequency (on 

a vibrating beam) [BLO 89] [FAB 94] [ARA 04a] or a deformations gauge [ARA 04b] [PAK 

03] [MOL 05]. We must also note the work on the use of impedancemeter for measuring 

position and force. Because of the use of active materials, it is complex to implement 

especially due to nonlinearities and high sensitivity to the environment (e.g. temperature for 

the piezoelectric material) [IVA 09]. 

 

1.7 Conclusion 

Microrobotics is micromechatronic system that performs micromanipulation or 

microassembly tasks in the microworld. The traditional robots are difficult to be fabricated at 

the microscale due to the scale down effects. Microrobots are constituted by microactuators 

and kinematics chains and perception systems. These various microactuators present different 

advantages and drawbacks. 

 

Electrothermal microactuations 

This actuation takes use of the thermal expansion to create motion. This thermal expansion 

effect results in limited displacement range. That is why various different amplification 

mechanisms have been designed, such as U-shape or V-shape mechanisms. Since the 

actuation is induced by electric-thermal effect, the response could be fast. However, the 

cooling is the main difficulty to reduce the response time. 

 

Electromagnetic microactuations 
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Ferromagnetic material is actuated by applying magnetic field. Since it dose not require the 

wire connection, the wireless actuation can be made. To build complete electromagnetic 

microactuators, the coil, ferromagnetic material should be fabricated. The fabrication 

techniques limit the applications of this kind of microactuators. 

 

Electrostatic microactuations 
Electrostatic microactuators are made by two approaches: the parallel plate and the comb-

drive actuator. The charge difference creates motions. This kind of actuator presents pull-off 

effect which may limit the application in some cases. 

 

Microactuations based on active materials 
The microactuators based on active materials make use of the deformation under electric or 

magnetic fields. Although they present high resolution and fast response, only small 

deformation is induced. The adapted kinematic chains should be designed to obtain the 

desired motion range. 

 

Based on these microactuation techniques, two kinds of control have been proposed: the 

control based on the proportional signal and the periodic signal. In the first kind, we apply the 

proportional signal to reach and maintain the desired position. In the second kind, we apply 

the periodic signal to create the repeated step with high resolution to reach the desired 

position.  

 

To make a whole microrobot system, two kinds of perception are required: the position and 

the force. Visual perceptions permit to know the position information by developing the 

vision algorithm. The force information can be obtained by integrating the proprioceptive 

force sensors.  
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Chapter 2 Digital microrobotics 

 

"If at first the idea is not absurd, then there is no hope for it." 

– Albert Einstein 

(1879 – 1955) 

 

 

2.1 Introduction 
 

 

During the last decade, significant research activities have been performed in the field of 

microrobotics. As seen in the previous chapter, microrobotics deals with the design, the 

fabrication and the control of microrobots. These microrobots are intended to perform various 

tasks in the so-called Microworld (i.e. the world of submillimetric objects) in particular 

micromanipulation of single objects (artificial or biological) for positioning, characterization 

or sorting as well as for industrial microassembly. Achieving efficient robotic tasks at this 

scale remains a great challenge and requires some specific characteristics:  

 

- Resolution and accuracy in the submillimetric range are needed in order to interact 

with micrometer sized objects. That is why methods and strategies used to build 

conventional robots are often not applicable in the microworld. 

 

- New mechatronic approaches, new actuators and new robot kinematics are required. 

Researches done in the world have shown that the use of active materials to actuate 

microrobots gives better performance than the use of more traditional actuators. 

Piezoelectric materials, shape memory alloys (SMA) and active polymers have been 

successfully used to actuate various types of microrobots. However, despite their 

intrinsic high resolution, these active materials present some drawbacks, making both 

their modeling and efficient controllers design a hard task. Their behavior is often 

complex, nonlinear and sometimes non stationary.  

 

- Closed-loop control of the microrobots requires the design and the integration of very 

small sensors and the use of bulky and expensive instruments for signal processing 

and real-time operating. Packaging technology and integration of the sensors and 

actuators is also a heavy problem. This is why building multi-degrees of freedom 

(DOF) microrobots able to perform complex tasks is difficult.  
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- The size of the robot itself must be very low in order to facilitate handling of micro-

objects and enable the execution of tasks in confined environments. 

 

The work presented in this thesis deals with the study and the design of a new generation of 

microfabricated microrobots using a modular concept and an open loop control strategy. 

These new microrobots named digital microrobots are built from several bistable modules 

fabricated in a monolithic manner. Every module has two mechanical stable and repeatable 

states driven by a binary signal. The position of the whole microrobot is controlled by a 

digital word representing the state of the modules. This opens a new paradigm in the 

microrobotics field, allowing the design of various kinematics adapted to the microworld and 

it addresses scientific and technological breakthroughs. 

 

This new concept shows many advantages: 

 

- Repeatability and accuracy are obtained thanks to the mechanical bistable 

performance of the modules.  

 

- Neither proprioceptive sensors nor bulky and expensive instruments are needed to 

control the microrobot. 

 

- Fast and/or large displacements can be obtained using the parallel control of the 

state of the modules. 

 

- Microrobots can be built in great quantities (and potentially at low cost). 

 

- Low power consumption can be obtained as power is not needed to maintain the 

modules in a given state but only during the transition phases. 

 

Moreover, this subject includes highly innovative and interdisciplinary aspects: 

 

- High modularity: various robot kinematics can be designed and state combination 

can be chosen in order to perform complex micro robotics tasks. 

 

- Microrobot manufacturing using micro fabrication technology: one of the goals of 

this project is to design microrobots using clean room microfabrication. These 

technologies allow the development of high density microrobots, containing many 

modules in order to increase performance and reduce costs. 

 

The aim of this work is to obtain a significant increase of the performance of the microrobots. 

Moreover, the modular and bistable approach allows exploring new robot kinematics. A 

module for digital microrobotics will be designed, and it can offer a resolution of less than 

10µm and a blocked force more than 1mN. 
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In the next, we will first present the fundamentals of digital microrobotics. The characteristics 

of digital microrobots are then compared to those of current microrobots. After that, an 

overview about the digital approach in the macroworld and in the microworld is given. 

Finally, according to the requirements of digital microrobotics, special features of bistable 

modules are expressed. 

 

2.2 Fundamentals of digital microrobotics 
 

Before describing the principles of bistable modules and digital microrobots, the notion of 

stability is reminded.  

2.2.1 Definition of stability 

 

Let us consider that the state of a given system does not change with time (which means that 

the system is in a state of equilibrium). We apply small external disturbances on the system. If 

the system tends to leave this state, the state is said unstable. Contrariwise, if the system 

remains in this state, the state is said stable. The theory of elastic stability of structure was 

defined firstly by Timoshenko and Young [TIM]. 

 

More precisely, in a state of equilibrium, if small external disturbances are applied and the 

structure reacts by simply performing oscillations around the equilibrium state, the 

equilibrium is called stable” (Simitses, 1976) [SIM 76]. However, if the small external 

disturbances cause the system to diverge from its equilibrium state, then the equilibrium 

position is called unstable. If, on the other hand, the system reacts to the disturbances and 

remains in the disturbed position, then the equilibrium position is neutral. For each of these 

definitions, the external disturbances may be as small as desired (Simitses, 1976) [SIM 76]. 

 
Fig. 2.1. Example of a ball in different positions. 

 

The stability of a system may be illustrated using the system in Fig. 2.1 different positions of 

the ball represent the possible states of the system. Due to the gravity, the different positions 

show different stable behaviors. 
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Tab. 2.1. Ball in the different positions. 

Ball Initial position Disturbed position Potential energy 

A 1 1 Local minimum 

B 2 1 or 3 Local maximum 

C 3 3 Local minimum 

D 4 Unknown Constant 

 

In fact, the stability depends only on the possessed potential energy. Positions with local 

minimum energy are stable positions. A local maximum energy leads to an unstable position. 

The state trajectory of dynamic system tends to a position with minimum energy. 

 

According to the definition of stability, we can define the bistable mechanism. 

 

2.2.2 Bistable elementary modules 

 

A digital microrobot is built based on bistable elementary modules. Fig. 2.2 shows the 

principle of elementary modules. 

 

 
Fig. 2.2. An elementary module has two stable positions. 

 

The bistable elementary module includes the bistable mechanism. We define state 0 and 1 as 

the two stable states. Between these two stable states there are motions of translation or 

rotation. The bistable mechanism is switched between these two stable positions by 

microactuators. 
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2.2.3 Digital microrobots based on bistable modules 

 

A single bistable module can reach only two stable positions. In order to obtain more stable 

states, several bistable modules can be connected together. The number of logical states can 

be an exponent function of the number of bistable modules (see Fig. 2.3). 

  
nstatesicalTotal 2log =  where n is the number of bistable modules. 

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12

Nomber of bistable module

T
o

ta
l 

s
ta

te
s

Total states

 
Fig. 2.3. The number of stable positions vs the number of modules. 

 

Fig. 2.4 shows examples of serial robot axis that use several bistable modules. The 

displacement can be reached by switching the modules. 

 
Fig. 2.4. Examples of digital microrobot axis. 
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For example, using 5 bistable modules allow reaching 32 logical states. If we choose a 

configuration where the module’s displacements are: d, 2d, 4d…16d (see Fig. 2.5), where d is 

the minimum displacement needed. The maximum obtained displacement is: 
TdD ]1,1,1,1,1[]16,8,4,2,1[ ××=  

dd
i

i 312
5

1

1 =×= ∑
=

−                                                                  2.1 

 

According to the formula, there are 2
5
 states which a with discrete distribution. d is the 

resolution of the discrete workspace. 

 
Fig. 2.5. The workspace of five cascaded bistable modules.  

 

2.3 Comparison between digital microrobotics and current 
microrobotics 
 

The microrobotics concept shows many advantages. Good repeatability and accuracy are 

obtained thanks to the mechanical performance of the bistable modules. Neither 

proprioceptive sensors nor bulky and expensive instruments are needed. Low power 

consumption can be obtained because external energy is not needed to maintain the modules 

in a given state but only during the transition phases. Moreover, the immunity to noise and 

environment changes is improved.  

 

Using a parallel control of the modules, fast displacements can be obtained. Microrobots can 

be built in great quantities (and potentially at low cost) with microfabrication. Using bistable 
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structures give an approach that turns the difficulties of non-linear control into mechanical 

structure design. Digital microrobotics takes advantage of microfabricated mechanical 

bistable structures and open-loop digital control to offer a unique method to build efficient 

microrobots. However, some drawbacks exist: accumulation of errors, limited load, and 

discrete reachable area. 

 

Tab. 2.2 gives a detailed comparison between the characteristics of current microrobots and 

the proposed digital microrobots. This comparison is based on informations from [ROB 

99][QIU 04] [JIN 05] [DONG 02] [GUM]. 

 
Tab. 2.2. A Comparison between current microrobots and digital microrobots. 

 

Characteristic Current microrobots 
Digital 

Microrobots 

Actuation 

approach 

Proportional 

actuation 

Incremental 

actuation 

Discrete 

actuation 

Size Medium Medium 

Small 

(microfabrica

tion) 

Cost High Medium Low 

Control 

Closed loop 

Non-linear 

control 

Closed loop 

control 

Open loop 

(no sensors 

needed) 

Energy 

consumption 

High to 

medium 

High to 

medium 
Low 

Sensitivity to 

noise 
High Low Low 

Use of sensors Yes Yes No 

Displacement Continuous Discrete Discrete 

 

2.4 Digital approach in the literature 

2.4.1 Digital approach in the macroworld 

 

The history of discrete actuation can date back to the adaptive structure. An adaptive structure 

is an engineering structure which has the ability to adapt, evolve or change its properties or 

behavior in response to the environment changes [WAG]. 

 

Originally, adaptive structures were developed primarily for space missions. In 1990, Wada 

[WAD 90] discussed an overview of adaptive structures, included several different types of 

adaptive structures. Based on adaptive structures, a new concept of variable geometry truss 

(VGT) is proposed. From 1980's the VGT became a source of interest in the field of robotics. 

Miura and Furuya [MIU 95] in Japan and Rhodes and Mikulas [RHO 85], in the U.S.A. 

explore new possibilities of adaptive structures.  
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A number of researchers studied VGT manipulators (see Fig. 2.6), and compared them to 

traditional types of robotic manipulators. Hughes et al. [HUG 91] compare a VGT 

manipulator to “the Canadarm” (“Canadarm” is the shuttle manipulator developed in Canada, 

and currently used on NASA space shuttles), in weight, degrees of freedom, maximum tip 

load, etc. The kinematics, dynamics, and vibrations of VGT manipulators have become 

important research topics. Robertshaw and Reinholtz presented an analysis of vibrations in 

VGTs [ROB 98].  

 
Fig. 2.6. 8-possible configuration of a 3-Bit Planar VGT [ROB 98]. 

 

G.S. Chirikjian and co-workers presented firstly the concept of the binary paradigm for 

robotic manipulators. A lot of work has been done about kinematics analyses, and trajectory 

planning for the VGT manipulator [CHI 92] [SUT 01] [CHI 94] [CHI 95b].  

 

A planar binary VGT manipulator were designed and built [SUT 01]. It consists of three 

modules of 8-bit VGTs stacked on top of each other (see Fig. 2.7). This manipulator has the 

ability to fold back to reach its own base.  

 
Fig. 2.7. Three modules of 8-bits manipulator. 
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V.A.Sujan [SUJ 04] from MIT (Massachusetts Institute of Technology) designed a device 

called “Binary Robotic Articulated Intelligent Device (BRAID)” (see Fig. 2.8). It consists of 

compliant mechanisms with large numbers of embedded actuators and is a step toward 

practical implementation of binary devices for space robotic systems. 

 
Fig. 2.8. Binary Robotic Articulated Intelligent Device (BRAID) [SUJ 04]. 

 

Actuation of each module is accomplished using a muscle-type (SMA) actuator. One position 

is maintained by the electric power input, and the other position can be obtained by the 

restoring force provided by the elastic flexure joints.  

 

Assembling electro active polymers (EAP) and two buckled beams, a bistable element was 

made in MIT [WIN 06] [PLA 07]. Fig. 2.9(a) shows that the buckled beams are switched by 

applying voltage on actuators.  

 

Six bistable mechanisms pile up to reach 36 different states. An open-loop control can 

orientate the mirror into 36 postures (see Fig. 2.9 (b)). 

 

This discrete actuation in the macroworld presents advantages and drawbacks [CHI 94] [CHI 

95b] [CHI 92] [CHI 95a] [SUJ 04] [WIN 06]:  
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(a) 

 

(b) 

Fig. 2.9. (a) Bistable element in two positions (b) BRAID Prototype[WIN 06] [PLA 07]. 
 

Advantages: 

� High repeatability. 

� Low cost. 

� High capacity load to manipulator weight ratio. 

� No need for feedback control. 

� Less complexity in computer controlled interfacing. 
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� Allow tasks to be performed even when some actuators fail. 

 

Drawbacks: 

� Discrete reachable states. 

� Requirement of more cascaded modules to improve its performance (number of 

reached states). 

� Requirement of a large amount of computations in inverse kinematics if a large 

number of modules is used. 

 

2.4.2 Discrete actuation in the microworld 

 

In the microworld, no microrobotics application using digital actuated structures can be 

found. However, there are some close designs in the microworld. 

 

R.Y. Robert [ROB 99] designed a new mechanical binary-to-analog converter which was 

fabricated by the surface micromachine technology in 2000.  Fig. 2.10 (a) shows one bit of 

this converter. The left input beam is controlled by the thermal actuators array. The output 

displacement can be reached by the output lever beam. Four converters (see Fig. 2.10 (b)) are 

cascaded for accumulating the output displacement by connecting the next bit's analog input 

to the previous bit's analog output. Despite the use of the gap stop, their accuracy will lost in 

the translation into next bit. 
 

 
(a)  
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 (b)  

Fig. 2.10. (a) One bit of converter (b) four bits of converter [ROB 99]. 

2.4.3 Bistable mechanisms in the microworld 

 

A bistable mechanism is a type of mechanism with two stable positions which can be 

switched between them. These stable positions can be maintained by their own behaviors, and 

no power is required to maintain their positions. As the example in Fig. 2.11 (a), a bistable 

mechanism has two stable positions (1 and 3) and an unstable position 2. This light switch is a 

typical bistable mechanism (see Fig. 2.11 (b)). The spring is connected with the switch button, 

which can be stopped in two positions. 

 
Fig. 2.11.  (a) A light switch (b) typical schematic of the light switch. 
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This bistable mechanism are used in the microworld. Many applications have been made, 

such as microrelays [QIU 05], microswitches [HWA 03] [FRE 04] [KWON 05] [KRY 08], 

and microvalves. 

 

In the Compliant Mechanism Laboratory at Brigham Young University (BYU), many studies 

about bistable mechanisms have been made, and various bistable mechanisms have been 

fabricated. 

 

Fig. 2.12 shows a bistable mechanism fabricated by surface micromachining technology (the 

pins and compliant beams are fabricated using this technology). 

 

 
Fig. 2.12. Bistable mechanism in open and closed positions [BAK 00]. 

 

Another bistable is presented in Fig. 2.13. It is a V-shape bistable beam, fabricated by surface 

micromachine technology. A thermal microactuator is used to switch between the two stable 

states. 

 

 
Fig. 2.13. Bistable mechanism in up and down positions [WIL 04]. 
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M.R. Luharuka [LUH 07] presents a rotation bistable mechanism. Fig. 2.14 shows two stable 

states. This bistable mechanism is fabricated in a soft magnetic material called Permalloy 

(80% Ni, 20% Fe). 

 

 
Fig. 2.14. A rotation bistable mechanism [LUH 07]. 

 

In 2004, J. Qiu [QIU 04] presented a curved-beam bistable mechanism for performing a relay 

(see Fig. 2.15), in which the actuator and the bistable structure were made in a wafer using the 

bulk micromachine technology. The thermal actuator is activated by joule effect, and 

produces enough force to switch on or off the curved-beam. 

 
Fig. 2.15. A relay based on curved-beams and activated by a thermal actuator [QIU 04]. 

 

B. Charlot [CHA 08] presented a bistable beam using pre-stress. The pre-stress is obtained in 

a thin SiO2 layer, and the pre-stressed beam is fabricated by sophisticated machine (Electro 

beam lithography) (see Fig. 2.16). This bistable beam is switched by electrostatic force. 
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 (a)                                                                                      (b) 

Fig. 2.16. (a) Schematic of a bistable pre-stressed beam (b) photo of the design (using a SEM: Scanning 
Electron Microscope) [CHA 08]. 

 

Tab. 2.3 compares the different bistable micromechanisms (BMMs). 
  

Tab. 2.3. Comparison of different fabricated BMMs. 

Actuation principle 
Bistable 

Mechanism 
Application 

Micromaching 
(material) 

Distance 
between two 
stable states  

(µm) 

Electrothermal [QIU 05] Curved beams Relay 

Bulk 

micromachining 

(Si) 

120 

Electrostatic [HWA 03] 

[FRE 04] [KWON 05] 

[KRY 08] 

Curved or pre 

stressed beam 
Latch, relay SOI technology(Si) 

5,15-120 

Electromagnetic [CAO 

07][KO 06] 
Curved beams Switch 

MetalMUMPs 

Process (Ni) 

100 

 

2.5 Requirements for microrobotics 

 

As we saw in the previous section, several bistable mechanisms have been developed in the 

microworld. However, building bistable modules for microrobotics requires specific features 

not available in the existing designs. The open loop control approach requires that the two 

stable positions are well defined. This can be obtained only if the two stable positions are 

blocked. Generally, only one position is blocked because of the constraints of the monolithic 

microfabrication process. While the existing modules are adequate for electrical switches and 

relays, new structures with two blocking systems must be developed for microrobotics 

applications. Moreover, a microrobot will be built using several bistable modules in series or 

parallel configurations. In a microrobot, a bistable module must carry the manipulated micro-

object and partially the robot structure. This is why the weight of the robot structure must be 

taken into account. 
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2.6 Conclusion 

 

In this chapter we have presented the fundamentals of a new generation of microrobots: 

digital microrobots. This new concept is based on the use of bistable modules. Digital 

microrobotics takes advantage of microfabricated mechanical bistable structures and open-

loop digital control to offer a unique method to build efficient microrobots. However, 

realization of digital microrobots requires the raise of several scientific and technological 

bolts. Robust and repeatable bistable mechanical structures must be designed considering high 

technological constraints. Microfabrication of microrobots needs the integration of several 

micro actuators in a narrow area. The actuation technologies should be developed to adapt to 

the bistable structures. The modular approach allows building various robots architectures. 

 

Through this project, we wish to open new possibilities in the microrobotics field to execute 

more and more complex tasks and thus to rapidly adapt to the building requirement of the 

current and future microproducts.  
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Chapter 3 Bistable module design 
 

 
“As far as the laws of mathematics refer to reality, they are not certain, and as far as they are certain, they do not 

refer to reality.” 

- Albert Einstein 

(1879 – 1955) 

 

 

3.1 Introduction 

 

In the previous chapter, a new generation of microrobots called digital microrobots has been 

introduced. This new kind of microrobot is based on the use of bistable modules. Taking the 

advantage of obtaining stable positions of bistable modules, only an open loop control is needed 

to generate the motions from one position to another. However, for each bistable module, we 

need to obtain two stable, repeatable and blocked positions that are not offered by the proposed 

microfabricated structures in the literature. 

 

In this chapter, we explain the design of the bistable module. Three parts have to be designed to 

enable the bistability with blocked positions: the bistable structure, the stop blocks that permits to 

obtain the blocked positions, and the actuation that permits to go from a stable position to the 

other. 

3.2 Design of bistable mechanisms 

3.2.1 Examples of bistable mechanism 

 

In the work of B.D. Jensen (1998) [JEN 98], a classification of bistable structures is presented 

and gives a good overview of mechanism configurations. Five classes have been proposed: the 

snap through buckled beam, the cam mechanism, the double-slider mechanisms with a pin 

joining the sliders, the double-slider mechanisms with a link joining the sliders and the slider-

crank or slider-rocker mechanisms. Fig. 3.1 gives a representation of all these classes. 
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Fig. 3.1. (a) Snap-through buckled beams (b) Bistable cam mechanisms (c) Double-slider mechanisms with a 
pin joining the sliders (d) Double-slider mechanisms with a link joining the sliders (e) Slider-crank or slider-

rocker mechanisms (f) Four-link mechanisms [JEN 98].  
 

Concerning the compliant buckled beam in Fig. 3.1 (a), the compliant beam bends to accumulate 

and release energy. A vertical force enables to switch between these two stable positions. About 

the bistable cam mechanism presented in Fig. 3.1 (b), if a spring-loaded follower goes through 

two local minima of potential energy as it travels around the cam, then a bistable mechanism is 

generated. Multiple stable positions may even be created using this method. In Fig. 3.1 (c), the 

presented double-sliders mechanism with a pin joining the sliders consists in two sliders joined 

by a pin joint and a spring placed to accumulate and release energy. Two stable positions can be 

obtained in the slide surface. Just below, we detail this mechanism. The double-slider 

mechanisms with a link joining the sliders presented in Fig. 3.1 (d) is a bistable mechanism if a 

spring is placed between either of the sliders and the ground link. In Fig. 3.1 (e), the slider-crank 

or slider-rocker mechanism is also a mechanism having two stable positions. To finish, the four-

link mechanism in Fig. 3.1 (f) is made by rigid bars and a rotation spring. 

 

We propose to go back to the double sliders mechanism to explain the principle of the two stable 

positions. An elastic structure or mechanism usually goes back to its original position after 

unloading the applied force, but some structures go to another stable position. Such a structure is 
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called a bistable structure. On the Fig. 3.1 (c), the initial position is called first stable position, 

and the other is called second stable position. The middle position is an unstable position and 

external force is necessary to switch from one stable position to the other one, passing through 

the unstable position. The bistable mechanism shows similar characteristics between actuation 

force and displacement and between elastic deformation energy and displacement. As shown in 

Fig.3.2, there are two phases to switch from one state to the other. From the first stable position 

(S1) to the unstable position (Sun) is the phase of accumulating energy. From the unstable position 

(Sun) to second bistable position (S2) is the phase of releasing energy. The actuation force firstly 

increases until the maximal force, and then it decreases until the unstable position. After it goes 

across the unstable position, the force is changing to be negative. Finally, the second position is 

reached. 

 

 
Fig. 3.1. Switching mechanical characteristics. 

 

3.2.2 Generic representation of bistable mechanism 

 

Although it seems that these five classes present different mechanisms, they can be derived from 

the same one. Through the comparison of these mechanisms, we can propose a generic 

representation of the bistable mechanisms as given on Fig. 3.2.   
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Fig. 3.2. A generic bistable mechanism. 

 

In Fig. 3.2, k1, k2, k3, and k4 are four springs representing the elastic elements which are used to 

accumulate and release energy. Three rotation joints are connected by rigid links. The stiffness of 

these springs can be defined. 

 

For the first class, we fix the two rotation joints, limit the slider in vertical, set the same stiffness 

of k2 and k3, and set infinity stiffness to k1 and k4 (k1=k4= ∞ , k2= k3=k). We obtain the same 

mechanism as the first class shown in Fig. 3.3. 

 

 
Fig. 3.3. Equivalent model of curved bistable mechanism. 

 

For the second class: Cam mechanism. This kind of mechanism makes use of the curve surface to 

generate two stable positions. In fact, this can be realized by fixing the two rotations joints, and 

limit the slider in vertical (see Fig. 3.4). 
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Fig. 3.4. Equivalent model of the cam mechanism. 

 
 

For the third class, if we fix the two rotation joints, and limit the slider in vertical, we will obtain 

an equivalent bistable mechanism. 
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Fig. 3.5. Equivalent model of the double-slider mechanisms with a pin joining the sliders. 

 

For the fourth class, we set k2 and k3 infinity stiffness, and k1 and k4 an equal stiffness. We can 

build a slider-crank or a slider-rocker mechanism (see Fig. 3.16). 

 
Fig. 3.6. Slider-crank or slider-rocker mechanisms. 

 

For the fifth class, when we remove k2, we obtain an equivalent mechanism again. 
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Fig. 3.7. Double-slider mechanisms with a link joining the sliders. 

 

For the sixth class, we set k2 and k3 infinity stiffness, and k1 and k4 an equal stiffness. We can build 

a four bar mechanism. 
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Fig. 3. 8. Four-link mechanism. 

 

Thus, the study of a bistable mechanism can be made by studying the generic bistable mechanism. 

By setting the stiffness of the four springs (k1, k2, k3, k4), we can achieve the same performance as 

these diverse bistable mechanisms. 

 

3.2.3 Study of bistable mechanism with ideal joints 

 

Based on the generic bistable mechanism, we determine its characteristics to get the desired 

performance. To build the general model of bistable mechanism, some assumptions should be 

mentioned: using ideal joints (no friction, no backlash), rigid links (no deformation) and the 

springs (only axial displacement).  

 

In Fig. 3.9, the four springs deform under a vertical force, the springs’ stiffness are k1, k2, k3, and 

k4, respectively, and their lengths are listed in the table. 

The total potential energy is: 

2
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2

1

2

1

2

1

2

1
∆+∆+∆+∆= kkkkU total                                     (3.1)  

                         

∆1, 2, 3, 4 are the length change of spring. 
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Fig. 3.9. Calculation model of basic bistable mechanism. 

 

 
Tab. 3.1. The change of springs and their deformation energy. 

Spring Initial length Changed Length Displacement Deformation Energy 
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The geometry equations: 
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These four equations give the solutions on the
′

1L ,
′

2L , 
′

3L and
′

4L . Using the total energy 

equation to derive about x and y, we obtain: 
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This energy method permits to find out the analytical solutions of bistable mechanism with 

perfect springs and rotation joints. The force-displacement relation and the deformation energy-

displacement relation can be obtained. 

 

Let us consider two typical cases. 

Case 1: set  k1= k4 = ∞ , L2=L3=L, and k2=k3=k. 

 

 
Fig. 3.10. Schematic of bistable mechanism of case 1. 

 

The force and displacement relations can be found. 
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To show the tendancy about force Vs displacement, we take values for example: L=1 mm, 

H=200 µm and k=100 N/m. 
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Fig. 3.11. Force –displacement and energy –displacement relations of case 1. 

 

 

 

 

 

 

 

 

Case 2: set  k2= k3 = ∞ , L2=L3=L, L1=L4, and k1=k4=k. 
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Fig. 3.12. Schematic of bistable mechanism of case 2. 

 

The force and the displacement are given by 
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For example, we take the following values: L=1 mm, H=200 mm and k=100 N/m. 
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Fig. 3.13. Force –displacement and energy –displacement relations of case 2. 

 

Thus, to build a bistable mechanism for our digital microrobot application, the symmetric setting 

should be respected, or it leads to horizontal displacement. The springs and the joints should be 

taken into account. In fact, we can fabricate the spring, but it is not worth to fabricate the perfect 

joint. Moreover, the friction problem and the clearance lead to inefficient joint. The compliant 

joints are used in stead of the conventional joints. 

 

3.2.4 Study of bistable mechanism with compliant joints 

 

In microrobotics, for the reasons explained in chapter 1, compliant joints are used to replace ideal 

joints to obtain the rotation as shown in Fig. 3.14.  
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Fig. 3.14. The ideal joint and the compliant joints. 

 

The rotation is generated by the deformation of the compliant joints. This deformation increases 

the deformation energy. Thus, the previous model is modified by adding the energy of the 

compliant joint.  

 

The modified model is presented in the Fig. 3.15. The torsional spring and the elastic beam have 

a stiffness ks and kb respectively. 

 

 

 
Fig. 3.15. The model of bistable mechanism with compliant joint. 

 

 

 

For the elastic beam, the compressed length and the deformation energy are: 
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For the compliant joint, the compressed length and the deformation energy are: 
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The total deformation energy in the bistable mechanism can be formulated by eq. 3.12 and eq. 

3.14. 
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The applied force can be derived.  
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We ignore the high order of the function, so we obtain an approximate force,  
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For F=0, we have three real solutions which represent two stable positions and one unstable 

position. In our case, the stiffness of these two elastic elements are: 

L

EI
ks

1.0
= ,  

L

EA
kb

8.0
=  

ks is the rotation spring stiffness described by moment/angle. 

kb is the compressed stiffness described by force/displacement. 

For example, we use the values in the table, the curve can be plotted: 

 
Tab. 3.2 Values of parameters. 

 

E b h1 L h2 I A h 

38;"IRc 322"µo 38"µo 6"oo 72"µo d,j3`5134"o`6 d,j4"o`4 82"µo 

 



Chapter 3 Bistable module design 

74 

 
Fig. 3.16. The force-displacement and energy-displacement relations. 

 

We can observe that the choice of the compliant joints results into the bistable behaviors, but 

their deformation energy can not be released; there is about 30% of residual deformation energy. 

Unlike the energy in the elastic beams which can be totally released, this energy in the compliant 

joints increase with the displacement of the bistable mechanism. In some cases, the elastic beam's 

deformation energy take fewer fractions in the total energy than the compliant joint's deformation 

energy, which will make the second stable position very close to the unstable position.  In Fig. 

3.17, the initial height h leads to different bistable behaviors. It shows, when h<35 µm, that the 

unstable position (local maximum energy point) is very close to the second stable position (local 

minimum energy point), which may cause the loss of the second stable position. 
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Fig. 3.17. The F-D and E-D relation due to different initial heights.   

 

To ensure a good bistability, the energy kept in the elastic beam should be bigger or at least equal 

to the energy kept in the compliant joint.  
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)()( je EMaxEMax ≥                                                            (3.19) 

This condition can ensure that the maximum deformation energy is twice the residual energy. 

 

For the elastic beam, the compressed length and the deformation energy are: 

2222 )( YHLHLL −+−+=∆                                              (3.20) 
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When Y=H, we obtains the maximum value. 
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For the compliant joint, the changed angle is: 
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When Y=2H, the maximum value is obtained. 
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So, according to 3.19, we obtain: 
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The ratio of stiffness between the elastic elements and compliant joints should be bigger than 

2

32

H
 (H: the initial height) to ensure a good bistability. 

 

So, to build a bistable mechanism, a compliant joint and an elastic beam are required. In the real 

situation, the two components can be designed freely.  

For example, the elastic beam can be a single beam with a constant section, and a spring 

mechanism as in Fig. 3.18. 
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Fig. 3.18. (a) An elastic beam. (b) A spring mechanism. 

 

The compliant joints can be realized with shapes shown in Fig. 3.19.  

 
Fig. 3.19. Examples of compliant joints. 

 

A bistable mechanism is built as shown in Fig. 3.20. The symmetric configuration is built to 

obtain unidirectional motion (y). 

 
Fig. 3.20. The designed bistable mechanism. 

 

Their stiffness can be calculated by: 
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Tab. 3.3. The criterion values. 

H (µm) 35 40 45 

2

32

H
 101061.2 ×   101000.2 ×  101058.1 ×  

 

In this case, the initial height should be bigger than 40 µm to obtain good bistability. In fact, the 

compliant joint performance depends on their width and length. A thinner and longer compliant 

joint tends to perfect joint, but we should find the tradeoff between the compliance and the 

reliability. 

 

3.2.5 Conclusion 

 

This section proposed a generic model dedicated to the design of the bistable module. This 

generic model allows us to obtain the same performance as the various bistable mechanisms by 

designing the stiffness of the spring and the initial height. 

 

Based on this generic module, a highly reliable bistable mechanism could be designed. Due to the 

fabrication difficulties of the ideal joints, the compliant joints are used to build a monolithic 

bistable mechanism. 

 

In order to obtain bistable behaviors for the mechanism with the compliant joints, there are two 

important factors which should be taken into account: the stiffness of the elastic elements and the 

compliant joints, and the initial height. The dimensions of bistable mechanism are defined by the 

geometry. The spring with lower stiffness is much better as the compliant joint. The final 

dimension will be defined in the next chapter. 

3.3 Design of the microactuators  

 

We need to choose and design microactuators that offer enough mechanical energy to switch the 

bistable mechanism from the stable positions to the unstable position (after overcoming unstable 

position, the bistable structure goes itself to the other stable position). In order to design the 

suitable actuators, there are two factors that should be considered: the material and the machining 

method. 
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Generally, there are two cases: the use of the same material and the use of different materials. 

The second one requires machining or assembling the second material, which would lead to 

complicated microfabrication process. In this section, we propose several actuation principles. 

 

3.3.1 Integrated actuation based on smart materials 

 

Smart materials, such as piezoelectric, electrostrictive, and magnetostrictive materials present 

good performance which can be interesting to actuate bistable mechanisms. 

 

According to the last section, during the switching of the bistable mechanism, the elastic element 

is firstly compressed and then recalled (see Fig. 3.21).  This can be made by using the active 

materials due to the change of length under electric field (see Fig. 3.22). So, the deformation of 

the elastic element can be realized directly using the smart material. 

 
Fig. 3.21. The elastic beam is compressed from first stable position to second stable position. 

 

 
Fig. 3.22. Bi-directional actuation of piezoelectric materials 

 

We propose a bistable mechanism integrating the microactuators. Considering the different active 

materials, the piezoelectric material is firstly taken into account. A proposed design is shown in 

Fig. 3.23. The bistable mechanism is made in piezoelectric material on which the electrodes are 

deposited on both the front and back sides. 
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Fig. 3.23 Bistable mechanism integrating the actuators 

 

According to the piezoelectric coupled equation: 

{ } [ ]{ } [ ]{ }EdTsS tE +=                                                         (3.28) 

 

Where S is the strain, s is the compliance, T is the stress and [d] is the matrix for the converse 

piezoelectric effect. The superscript E indicates a zero or valued constant electric field. 

The strain-charge for a material, such as a polarized piezoelectric ceramic (tetragonal PZT or 

BaTiO3) may also be written as (ANSI IEEE 176): 
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The deformation of piezoelectric material is induced by the electric field and the external force.  

 

 
Fig. 3.24. The defined direction (1,2,3) for deformation. 
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This calculation model can be considered in Fig. 3.25. 

 
Fig. 3.25. Calculation model of piezoelectric bistable mechanism. 

 

Because we make a thin-long beam in the direction of 1 under electric field E3, we take into 

account the strain in the direction of 1. Based on the Eq. 3.29, we have the equation: 

331313212111 EdTsTsTsS +++=                                               (3.30) 

 

Since there is no external force, there are no stresses (T1, T2 and T3). According to 3.30, the 

compressed length of the beam can be estimated as below,  

∫ ==∆
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ULd
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0

31
1                                                           (3.31) 

As shown in Fig. 3.26, from the initial position to the unstable position, the piezoelectric elastic 

beam is compressed:  

L

h
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2
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Fig. 3.26. The model of the compressed piezoelectric material. 

"""""""""""""""""""

The required actuation voltage is: 
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In fact, in order to actuate the bistable mechanism, torsional springs should be considered in the 

model because they require more energy to be actuated. Here we give a simple model to 

understand the principle. 

 

By taking d=100 µm, L=4 mm, d31=200 pC/N, we obtain the result given in Fig. 3.27. 
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Fig. 3.27. The applied voltage Vs the displacement. 

 

According to this calculation, 25V applied on piezoelectric actuator can produce about 40 µm 

displacement, which can switch the bistable mechanism. The piezoelectric material may be 

machined using laser micromachining or special MEMS process. 

 

Using the same design, electrostrictive material or magnetostrictive material can be used to build 

this kind of bistable mechanism. The magnetostrictive material takes the advantage of the 

wireless actuation, and only the magnetic field should be created to actuate the bistable 

mechanism (see Fig. 3.28).  
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Fig. 3.28. The magnetostriction bistable mechanism 

 

Considering the Terfenol-D material, according to the coupled equation: 

qH
E H

y

+=
σ

ε                                                          (3.34) 

ε : Strain 

σ :  Stress (Pa) 
H
YE : Young modulus (Pa) 

q : Coupling factor (m/A) 

H : Magnetic field density (A/m) 

 

According to the eq. 3.34, the compressed length of the magnetostriction material is: 

∫ ==∆
L

qHLL
0

ε                                                             (3.35) 

 

As the basic model, it needs that the compressed length of elastic spring is: 

L

h
LhLL

2

2
22 ≈−+=∆ """"""""""""""""""""""""""(3.36) 

 

So, the required actuation magnetic field is: 
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For example, we use these values q= 91015 −× , L=4 mm, Fig. 3.29 can be obtained. 

 

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

1.40E+01

0.00E+00 1.00E-05 2.00E-05 3.00E-05 4.00E-05 5.00E-05

Displacement (µm)

M
a
g

n
e
ti

c
 f

ie
ld

 (
A

/h
)

 
Fig. 3.29. The applied magnetic field Vs the displacement. 

 

According to this calculation, 300 A/m magnetic field densities applied on the actuator permits to 

switch the bistable mechanism. This magnetic field can be created by an external electromagnetic 

coil. But, special micromachining process should be developed to micromachine material. 

 

Therefore, the use of active materials allows actuating the bistable mechanism by itself. It 

presents many advantages: reduction of the fabrication process, and compact dimension. 

However, these active materials need to be machined by special process. New processes should 

be developed.  
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3.3.2 External actuation based on thermal actuators 

 

Thermal actuation is also a solution to switch the bistable mechanism, as shown in Fig. 3.30. It is 

a typical U-shape actuator. The U-shape uses the asymmetric dilatation to induce an in-plane 

displacement. This actuation can be divided into two processes: the electro-thermal processes, 

secondly and the thermal-mechanism process. 

 
Fig. 3.30. U-shape thermal actuator. 

3.3.2.1 Thermal-mechanical model 

 
Fig. 3.31. The model of thermal actuator. 

 

Symbols of dimension are in the Fig. 3.31. E is the young's modulus, I is the moment of inertia. 

For the hot beam, the force-displacement and moment-angle equations are: 
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For the cold beam, the force-displacement and moment-angle equations are: 
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In the vertical direction, the total forces are: 
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There, α is coefficient of thermal expansion and T∆  is the increased temperature. 

 

There are 6 unknowns and 6 equations, we can calculate out the solution: 
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The displacement without force (F=0) is given by: 
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The blockage force (D=0): 
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The comparison between the calculated model and the FEA simulation is given in Fig. 3.32. 

By taking Lh=4 mm, Lc1=500µm, Wh=30µm, Wc= 120µm, we obtain the result given in Fig. 3.27. 
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Fig. 3.32. Temperature-displacement comparison between model and FEA. 

 

We can observe that the model gives a solution accurate enough when the temperature is below 

300 °C. 

 
Fig. 3.33. Temperature-blockage force comparison between model and FEA. 
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According to the Fig. 3.33, the blockage force is obtained by limiting the tip's displacement. 

Since in this linear model the buckling effect is not taken into account, the thermal actuator can 

not give a linear force after buckling. In fact, the buckling effect takes place in the compressed 

hot beam and causes the reduction of the stiffness. 

 

Therefore, to design this kind of microactuator, the buckling effect of hot beam should be taken 

into account. It should have an enough stiffness to avoid the buckling effect during actuation of 

bistable mechanism. 

3.3.2.2 Electro-thermal model 

 

Since the beam is heated by the electric current, it is necessary to estimate the transformation 

from electrical energy to thermal energy. 

According to the previous calculation, we need to heat the hot beam until 300
o
C to obtain enough 

force to actuate the bistable mechanism. 

The resistance of hot beam is: 
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Where ρ is the resistivity, l is the length, S is the section area. 

The resistance of cold beam is: 
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In the hot beam, the kept energy while increased to 300oC is: 

TMCE ∆××=                                                                 (3.47) 

mJE 88.53001078.2705 8 =×××= −                                         (3.48) 

where 

C:     Thermal capacity of silicon (705J·kg
-1

·K
-1

) 

M:    Mass of hot beam (27.8 µg) 

∆T:  Increased temperature (300K) 

 

In the cold beam, the kept energy is fourth time lower. 

mJEc 53.1=  

So, the total energy induced is: 

mJEtotal 21.7=  

 

Since there is almost no other kind of energy loss (convection, and radiation) [QIU 04], the 

applied voltage can be estimated. 
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Thus, an applied voltage of 20V during 10ms will heat enough to actuate the bistable mechanism. 

 

 
Fig. 3.34. Electro-thermal-mechanical simulation result. 

 

To verify the estimation, an electro-thermal-mechanical simulation is performed with ANSYS. 

The result is shown in Fig. 3.34. A voltage of 20V can produce 174 µm displacements, which is 

enough to switch the bistable mechanism. 

 

 

3.3.3 Electrostatic actuators 
 

There are two kinds of electrostatic actuators, the parallel plate and the comb drive. Since the 

parallel plate presents the pull-in effect which leads to small distance, here we consider only the 

comb-drive. Comb drive electrostatic actuators can give a constant force and large displacement. 

 

 
Fig. 3.35. A single finger of comb-drive. 
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where 

V = applied electric voltage 

rε = relative permittivity of dielectric 

0ε = permittivity of free space (8.85 pF/m) 

n = number of electrode pairs 

t = thickness of electrodes 

g = gap between electrodes 

 

In order to estimate the number of the fingers required to actuate the bistable mechanism, the 

fabrication process is taken into account. The Bosch DRIE process limits the minimum width of a 

beam to 5µm. A thickness of 100 µm is used. The constant force can be obtained: 
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105

1001085.8101001
6
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=

−

−−

                            (3.51) 

 

In order to actuate the bistable mechanism, a force of 1mN is needed, so the number of fingers is: 

 

N= 565
77.1

1000
≈                                                         (3.52) 

This will take a length of L:  

 

cmL 13.11020565 6 =××= −                                            (3.53) 

 

This dimension is too long to fit in the bistable module. 

 

 

 

3.3.4 Conclusion 

 

The various actuation principles show different performance which are summarized in Tab. 3.4. 

 
Tab. 3.4. Comparison of different kinds of possible actuator. 

Actuator Structure Micromachining Dimension 

Active material 
Integrated with the 

bistable mechanism 
Active material 

Change with bistable 

mechanism 

Thermal actuator U-shape Silicon Medium 

Electrostatic actuator Comb-drive Silicon Large 
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Active materials present good performance. Their dimensions are not limited and compact 

dimensions. Furthermore, wireless actuation is also possible. However, we can not fabricate this 

design, because our clean room does not provide these active material microfabrications, the 

development of new process is required that is not possible in the context of this thesis. 

 

In that condition, we decided to use external actuation. Since the dimensions of electrostatic 

actuators take a large of space, the thermal actuator is chosen in this work. 

 

3.4 Stop blocks design 

3.4.1 Overall design 

 

As we have seen above, we need two stable positions, each of them having a blockage force. Two 

stop blocks have to be designed to ensure the two final positions and blockage forces. The first 

one can be integrated in the structure of the module as a bump in the frame that maintains the 

whole system. This bump is defined to limit in the desired position the displacement of the 

bistable structure. 

 

The second one is more complicated to design. In chapter 2, we have noticed that no solution 

have been proposed in the MEMS literature to enable such a double wish.  In fact, a solution 

would exist if we are able to pre-constrain the structure during the microfabrication process. Such 

a solution should be inspired from [CHA 08] but the process is very difficult to perform and the 

obtained pre-stress is far from the desired blockage force. So, we have to design a mechanical 

solution based on compliancy to obtain the second stop block. 

3.4.2 Detailed design of the compliant stop block 

 

The designed stop block is shown in Fig. 3.36. We use deformable beams that are forced slip into 

the stop block. Once it is actuated, it is limited by the stop block. This compliant stop block 

requires a large stiffness in the direction of shuttle's motion, and a relative small stiffness in the 

perpendicular direction in order to deform. 
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                           (a) Before activation 

 
                   (b) After activation 

Fig. 3.36. The designed stop block. 
 
 

In order to ensure the successful activation into the first stop block, the deformable beam should 

be designed carefully. 

 

The deformable beams have a displacement δ, L is the length of deformable beam, E is the 

Young's module and the I is the moment of inertia. The cantilever end deflection δ to applied 

stress σ: 
2

)1(3







−
=

t

L

E

υσ
δ                                                      (3.54) 

 

Where ν is the Poisson's ratio, E is the Young's modulus, L is the beam length and t is the 

cantilever thickness (see Fig. 3.37). To avoid the material fracture, we give a value of maximal 

stress of 300Mpa. 

 

Since the activation process can be built a model of contact analysis, a FEA is done by using the 

commercial software ANSYS. We give dimensions of L=310µm and t=15µm to perform this 

simulation.  



Chapter 3 Bistable module design 

93 

 
Fig. 3.37. The activation simulation of the stop block. 

 

The simulation shows that it can be activated by an external force (see Fig. 3.37). The contact 

surface does not give a great friction when the deformable beams have a lower stiffness in the 

normal direction. Compliant stop block takes use of the curved surface to create blocked 

positions. Firstly, the beams contacts the surfaces due to an external force, then slip following 

with the curved surface, lastly get into the blocking position and we stop applying this external 

force. The design of this deformable beam should be done carefully to avoid the fracture. Their 

dimension can be defined according to the fracture criteria. 

3.5 The bistable module 

 

Based on the design of the bistable structure, the thermal actuators and the stop blocks, a 

complete view of a bistable module is given in Fig. 3.38. 

 

 
Fig. 3.38. An entire bistable module. 
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Two pairs of thermal actuators are used, and the two locations of the stop blocks are defined in 

the Fig. 3.39. 

 
Fig. 3.39. The location of the two stop blocks. 

 

Since the microfabrication gives errors, dimensions of fabricated bistable modules will differ 

with the designed dimensions. According to the fact that we suppose microfabrication give 2% 

errors, we give estimations with a coefficient 0.98 and 1.02 on the dimensions (see Fig. 3.40). 

 

 

 
Fig. 3.40. Force versus displacement curve with or without errors. 

 

Three dimensions give different unstable positions (see Tab. 3.5). 
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Tab. 3.5. Unstable position of three dimensions. 

Three dimensions Unstable position Error 

Designed dimensions 50.7µm 0 

Dimensions x 0.98 49.2µm -1.5µm 

Dimensions x 1.02 52.1µm 1.4µm 

 

This fabrication error causes uncertainty in the unstable position. The design of the stop block 

must ensure that the unstable position is between the two stop blocks. Therefore, for the first time, 

we define the stop blocks with three different distances (see Fig. 3.41). This configuration can 

tolerant with +-0.02 error about the fabrication. 

 

 
Fig. 3.41. Three locations of the stop blocks. 

 

 

Three distances for stop blocks give each a blockage force 1.25µN (a), 2.6µN (b), 5.2µN (c). The 

fact is that the blocked force becomes small while it gets close to the unstable position. So, to 

obtain a sufficient blockage force for microrobotics applications, we need to choose a distance 

great enough. 

 

The two pairs of actuators are used to move in each direction. Fig. 3.42 shows that the activation 

of A2 actuators will pull the bistable mechanism from stable position 1 to stable position 2. For 

getting the stable position 1, we activate the A1 actuators. Due to the stop blocks, we have two 

accurate positions.  
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Fig. 3.42. Two pairs of thermal actuators for two stable positions. 

 

 

 

3.6 Cascaded bistable modules 

 

3.6.1 Design example 

 

If N bistable modules are cascaded, we obtain a microrobot axis consisting in a serial chain 

allowing getting 2
N
 states. In the plane of this overall structure, there are two possible forces Fx 

and Fy (see Fig. 3.43).  
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Fig. 3.43. N cascaded bistable modules. 

The Fy force is in the direction of the actuation of the bistable mechanism, which depends on the 

states of the bistable mechanism. 

 
Fig. 3.44. Locations of the stop blocks in the cascaded bistable modules. 
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Since stop blocks are placed in different position, different blockage forces are obtained shown in 

Fig. 3.44, and the minimum blockage force is generated by the first stop block location. 

 

3.6.2 Out-of-plane analysis 

 

N cascaded bistable modules are considered in this section (see Fig. 3.45). Since the two curved-

beams will support all the structure in the first bistable module, it is necessary to study the gravity 

influence on the structure. 

 
Fig. 3.45. N cascaded bistable modules with an object. 

 

In order to find the out-of plan stiffness caused by gravity, we performed a calculation model 

presented in Fig. 3.46.  

 

In this calculation model, the two bistable curved beams are considered as two springs with 

stiffness of k, and the actuators and the frame are considered as a rigid beam. Only the spring 

causes a flexion. The gravity center of every bistable module is located in the middle of the two 

springs. 
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Fig. 3.46. The equivalent out-of plane model of a bistable module. 

 

For N bistable modules, we simplify the model as in Fig. 3.47. The total moment 
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Fig. 3.47. Model of n cascaded bistable modules. 
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The total displacement of manipulated object G is given by: 
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The spring is a variable section cantilever beam, of which stiffness k can be determined by a 

classic cantilever model:  
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(3.57) 
 

Where E is the Young’s modulus, I is the moment of inertia and l is the length of the cantilever 

beam. 

 

Each bistable module has a mass of 2.128mg (Dimensions are obtained using the same as the 

example). We simulate the deflection of cascaded structure at the tip caused by a silicon sphere 

with a diameter of 300µm (mass: 0.0325mg). The comparison of the tip's flexion between the 

model and the FEA is presented in Tab. 3.6 for cascaded bistable modules with 1 to 4 modules. 
 

Tab. 3.6. Tip's flexion comparison between the model and the FEA. 

n 
Model 

(µm) 
FEA (µm) 

1 0.24 0.22 

2 2.11 1.9.1 

3 16.8 14.4 

4 41.6 38.2 

The tip's flexion is accumulated with the increase of the bistable modules. The analysis shows 

that there isn't much stress in the first bistable module. Nevertheless, there is a large flexion on 

the tip of the structure. According to eq. 3.56 and eq. 3.57, we obtain: 
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∝
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hIknδ                                                   (3.58) 

 

where I is moment of inertia and h is the thickness of the structure. 

According to the eq. 3.58, the tip's flexion could be reduced with the increase of the thickness of 

the structure. In our case, the tip’s flexion is 1.6µm with a thickness of 100µm, which can be 

neglected. 
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In fact, increasing the thickness can increase not only the out-of-plane stiffness, but also the in 

plane stiffness. 

 

3.6.3 Electric connections 

When several module bistables are cascaded, the electric connections have to be taken into 

account. We propose a connection approach (see Fig. 3.48), the movable party and the fixed party 

is connected by metal wire. Metal wire can be realized by process of wire bonding. In order to 

avoid connection forces too great, the metal wire should have an enough length (see Eq. 3.59).  

3

3

L

EI
F

δ
=                                                                      (3.59) 

 
Fig. 3.48. Schematic of wire connections. 

3.7 Conclusion 

 

This chapter presented the design of a whole bistable module. Firstly, a synthesis of bistable 

mechanism has been made. By comparing the different mechanisms a generic bistable model has 

been proposed. Based on this basic model, the bistable behavior has been studied. A criterion is 

proposed to ensure a good bistability. 

 

In the second section, various actuators have been studied to actuate these bistable mechanisms. 

The smart materials present good performance and it would be very interesting to integrate both 

the bistable mechanism and the actuators. Moreover, the use of the magnetostrictive materials 

would allow wireless actuation. Although this solution shows many advantages, the new 
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microfabrication process of active materials requires to be developed. Considering the valuable 

time, we propose to use two pairs of thermal actuator to switch the bistable mechanism. 

 

In the third section, the stop blocks have been designed. The stop blocks permit to give a 

blockage force in each of the stable positions. This stop block is designed using the compliant 

beam. A first activation is necessary to make the shuttle into the stop block. The use of 

microfabrication gives a monolithic structure, but it is difficult to realize the blocked force in 

such structure. This proposed compliant stop blocks allow us to create blockage force by 

activation. 

 

Finally, an entire bistable module has been designed with the bistable mechanism, the actuators 

and the stop blocks. Two analysis of the proposed structure has been made. The first was an out-

of-axis analysis of the displacement that lead to conclusion that the structure enables a very good 

guiding. The second is the analysis of the out of plane displacement of a cascaded system 

consisting in modules in series. In fact, the bistable module has to be designed to support 

cascaded structure 

 

The following chapters will describe the microfabrication of the bistable module and its static and 

dynamic analysis. 
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Chapter 4 Microfabrication of bistable modules 
 

 

 
"Learning without thinking is useless; thinking without learning is dangerous." 

– Confucius  

(551 B.C. – 479 B.C.) 

 

 

4.1 Introduction 
 

We have previously presented the design of an entire bistable module. In order to fabricate the 

bistable modules by using microfabrication technologies, we need to define their dimensions 

adapted the MEMS fabrication process. In this chapter, we treat the constraint induced by the 

MEMS fabrication process to obtain the final design of the bistable structures. 

 

As presented in chapter 2, a bistable module is a structure or mechanism with two stable 

positions, which can be switched between these two stable positions, no external energy is 

required to maintain these two stable positions. 
 

 
Fig. 4.1. Remind of a bistable module. 

 

In the chapter 3, we designed a bistable module which is shown in the Fig. 4.2. This bistable 

module includes two pairs of thermal microactuators, bistable mechanism and stop blocks. 

This design allows us to obtain two blocked, repeatable positions. 
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Fig. 4.2. Designed bistable module. 

 

4.2 MEMS and microrobotics 
 

In order to introduce the MEMS process for our microrobot microfabrication, we give a 

MEMS microfabrication review in this section. 

Microrobots can be fabricated by traditional machining and assembly; these microrobots 

usually have dimensions of centimeter. In order to fabricate much smaller with higher 

accuracy and precision, MEMS fabrications should be introduced for microrobot fabrication. 

MEMS are the acronym of MicroElectroMechanical Systems, which is intended to integrate 

more functionality into a single silicon chip (acoustic, electronic, mechanical, and optical 

functionalities). The use of the MEMS fabrication allows us to make small and precise 

devices. 

 

The MEMS Microfabrication is the set of design and fabrication tools that machine and form 

structures and elements at the microworld. In general, microfabrication is such a process that 

selectively etches away parts of the silicon wafer or adds new structural layers to form the 

mechanical and electromechanical devices. These main processes include deposition, 

lithography, and etching.  

 

  
Fig. 4.3. A fabricated microgripper by FEMTO TOOLS [FEM]. 

 

A microgripper is fabricated in silicon wafer with classic MEMS fabrication (see Fig. 4.3), 
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which is a product of the FEMTO TOOLS. This microgripper has the integrated sensor and 

actuator. It can be used to manipulate fragile objects by controlling the force. 

 

Shown in the Fig. 4.4, it is a bio-inspired design by SilMach [SIL]. Wings of a dragonfly are 

fabricated on a silicon wafer. It has a weight of 20mg for the length of 6cm. it could fly with 

the integration of actuators, power system and electronic circuits. 
 

 
Fig. 4.4. A dragonfly was made by silicon (SilMach) [SIL]. 

 

Another example is the mobile microrobot presented in chapter 1. It is actuated by 

electrostatic force, and two kinds of motion (translation and rotation) can be generated. This 

roobt can be controlled wireless. 
 

 
Fig. 4.5. A mobile microrobot. A: scratch drive actuator, B: cantilevered steering arm (B) [DON 06]. 

 

In fact, there are two major MEMS fabrication technology: Bulk and surface 

microfabrications. Wafer bonding can be used as the post process of bulk micromachining. 

LIGA (lithographe, galvanoformung, abformung) has been used in high-aspect ratio 

applications. 
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4.2.1 Surface microfabrication 
 

Surface micromachining is based on the deposition and etching of different structural layers 

on top of substrate. Surface micromachining starts with a silicon wafer or other substrate and 

grows layers on top. These layers are selectively etched by photolithography and either a wet 

etch involving an acid or a dry etch involving an ionized gas, or plasma. Fig. 4.6 shows a 

typical surface micromachining process.  

 

Firstly, a sacrificial layer is deposited and pattered (see Fig. 4.6 a,b). Secondly the structure 

layer is deposited and patterned (see Fig. 4.6 c). Lastly the sacrificial layer is cleaned to release 

the structure layer (see Fig. 4.6 d). 

 

 
Fig. 4.6. A typical surface micromachining process. 

 

As the structures are built on top of the substrate and not inside it, the substrate's properties 

are not as important as in bulk micromachining, and the expensive silicon wafers can be 

replaced by cheaper substrates, such as glass or plastic. Another advantage is a multi layer 

structure can be built by this surface micromachining. Nevertheless, as thin film is deposited, 

it is difficulty of built thick structures. 

4.2.2 Bulk microfabrication 
 

Bulk micromachining defines structures by selectively etching inside a substrate, usually 

silicon. Whereas surface micromachining creates structures on top of a substrate, bulk 

micromachining produces structures inside a substrate. Usually, silicon wafers are used as 

substrates for bulk micromachining, as they can be anisotropically wet etched, forming highly 

regular structures. Wet etching typically uses alkaline liquid solvents, such as potassium 

hydroxide (KOH) or tetramethylammonium hydroxide (TMAH) to dissolve silicon which has 

been left exposed by the photolithography masking step. 
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Fig. 4.7. A typical bulk machining.  

 

Bulk micromachining starts with a silicon wafer or other substrates which is selectively 

etched, using photolithography to transfer a pattern from a mask to the surface (see Fig. 4.7). 

This silicon layer is etched by deep reactive ion etching (DRIE) in the front side (see Fig. 4.7 

b), and then the back side is etched potassium hydroxide (KOH) to free the structure (see Fig. 

4.7 c). 

 

Bulk micromachining has the limits to form complex three dimensional microstructures 

because of the single layer. One of the solutions is to bond the different elements through the 

separate fabrication of a complex system. 

 

Wafer bonding is a technique that enables virtually seamless integration of multiple wafers. 

Wafer bonding for MEMS can be categorized into three major types: anodic bonding, 

intermediate layer bonding-assisted bonding and direct bonding.  

 

Anodic bonding is usually established between a sodium glass and silicon for MEMS. A 

voltage is applied between the glass and silicon, and at the same time, the heater also provides 

the bonding temperature around 180~500 
0
C.  

 

Intermediate layer assisted bonding requires an intermediate layer that can be metal, polymer, 

solders, glass, etc., to fulfill the bonding between wafers.  

 

Direct bonding is also called silicon fusion bonding, which is used for silicon wafer to silicon 

wafer bonding. This type of bonding is based on the chemical reaction between OH-groups 

present at the surface of native silicon or grown oxides covering the wafers. 

 

The typical product of wafer bonding is the silicon on insulator (SOI) wafer (Fig. 4.8). A SOI 

wafer has three layers which include one thin silicon dioxide layer in the middle and the two 
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silicon layers outside. 

 
Fig. 4.8. A SOI wafer. 

 

This bonding technique is extensively used in building complex structures consisting of 

several wafers, but is also used in packaging of Microsystems. 

4.2.3 LIGA 
 

LIGA (see Fig. 4.9) is an acronym for lithography, electroforming and micromolding (in 

German, lithographe, galvanoformung, abformung), which is a process developed by a team 

at the Institute for Nuclear Process Engineering (Institut für Kernverfahrenstechnik IKVT) at 

the Karlsruhe Nuclear Research Center. 

 

LIGA was one of the first major techniques to allow manufacturing of high-aspect-ratio 

structures with lateral precision below one micrometer. 

 

The LIGA process is not possible with silicon-based micromachining techniques. 

Nevertheless, it is possible to make more complex microstructures. Various plastics, metal 

ceramics or combinations of these can be used by this LIGA process to fabricate difficult and 

complex structures. 
 

 
Fig. 4.9. Example of the LIGA process [MIC]. 

 

The MEMS fabrication technique could be potential choices for our microrobot fabrications. 

They offer many advantages such as small dimension, high accuracy, bulk production, and 

low cost etc. In fact, MEMS technology has the ability to integrate sensors, actuators, and 

electronics into a small silicon piece, which could be a solution to make full autonomy 

microrobots in the future. 
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4.3 Final design of the bistable module 

4.3.1 Influences of the microfabrication process 

 

Due to the diversity working principles involved in MEMS. Some possible failure 

mechanisms for MEMS have been identified as shown in the following items. Most of them 

are MEMS specific problems, notably. 
 

� Mechanical fatigue 

� Mechanical fracture 

� Stiction 

� Vibration and shock 

 

Mechanical fatigue is the material failure when a material is subjected to cyclic loading. This 

effect is an accumulation of damage due to cycling loading. Although the cyclic stress is 

below the material ultimate strength, the structure will crack and even fail. The fatigue 

behavior of polysilicon is generally modeled with a stress versus life or known as an S-N 

curve as shown in Fig. 4.10. 

 
Fig. 4.10. A typical S-N curve of polysilicon [ALS 07]. 

 

We can observe that the cycling load reduces the material fracture stress. Eventually, the 

material cracks at a stress lower than its original material strength. However, if the material is 

loaded at a lower stress level, the fatigue effect could be reduced greatly. Therefore, in the 

design of MEMS devices, mechanical fatigue effect are taken into account and a lower stress 

level are designed to increase the working life. 
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Mechanical fracture is the breaking of an object into two, or more, parts when the stress in the 

structure exceeds the fracture limit. Since MEMS devices are fabricated by brittle material 

(silicon), the fracture of mechanical structure leads to a catastrophic failure. Generally, the 

movable structure undergoes great displacement and stress. The fracture of a brittle material is 

a stochastic parameter which requires statistical information [BAG 03] [TSU 98]. When a 

large number of seemly identical structures are tested, it has been found that the fracture 

strength actually scatters around a certain mean value. The probability of fracture actually 

follows the Weibull distribution function [WEI] [GRE 97]. The design of MEMS devices 

should put the maximal stress well below the mean fracture strength to ensure reliability. 

 

 
Fig. 4.11. Weibull distribution of the probability of fracture versus stress [WEI]. 

 

Stiction is an effect that two surfaces have an adhesion contact. It is difficult to separate the 

two surfaces due to the fragile nature of the microstructure. This phenomenon is called a 

stiction failure in MEMS. This effect happens usually during MEMS fabrication due to the 

capillary force. The capillary forces between the microstructure and substrate cause the two 

surfaces to adhere together. In fact, this effect occurs mainly in the surface micromachining. 

Various techniques [SPEN 02] [SPEN 03] have been suggested to prevent the stiction 

problem. Some techniques include roughening and skewing the surfaces, using getters, and 

leaky dielectrics have been proposed. 

 

MEMS devices are often exposed to vibrating and shocks environment during their 

fabrication and in-field usages. They should have the ability to undertake the large 

acceleration impact. This shock can lead to lift-off or even fracture of a microstructure [TAN 

00]. Moreover, when the vibration frequency is close to the resonant frequency of the MEMS 

device, it can induce large vibration amplitude and lead the device to failure. This problem 

should be concerned when we design MEMS devices. 
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4.3.2 Bistable module layout 

 

There are many factors to be considered at the same time. To define suitable dimensions of 

the bistable module for microfabrication, we propose a design plan shown in Fig. 4.12. 

 

Firstly, the material is chosen, and then the fabrication process is determined according to the 

choice of material, after that, the dimension of microactuator is defined; lastly, the dimensions 

of the bistable mechanism are defined. 
 

 
Fig. 4.12. Steps to define the dimensions of bistable mechanisms. 

 

4.3.2.1 Material and fabrication process definition 
 

The bistable mechanism can be fabricated by any elastic material. However, the thermal 

microactuator requires that the material has a low resistivity to ensure a low working voltage. 

The resistivity of semi-conductor material silicon can be changed by doping, so silicon with 

low resistivity is thus used. 

 

Since the whole bistable module is in the same silicon layer, to avoid short circuits, the 

actuators need to be separated from the other parts of the bistable module. However, for 

keeping the integrity of bistable module, the backside layer is also used. So there are two 

layers at least to fabricate this bistable module. 

 

As previously introduced, there are two choices to machine the micromechanical component: 

the surface microfabrication technology and the bulk microfabrication technology. The 

thickness should be more than 100µm to neglect out-of-plane displacement according to the 

previous calculation,. So, the surface microfabrication technology can not be used. At the 

same time, the bistable module needs two layers: the device layer and the handle layer. 

Although the use of bulk microfabrication and the wafer bonding can be a solution, since the 

silicon on insulator (SOI)  wafer offers three layers: device layer, sacrificial oxide layer and 

handle layer, it could reduce the fabrication process. So the SOI wafer and the bulk 
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microfabrication process will be used to fabricate the bistable modules. As shown in Fig. 4.13, 

the handle layer is used to support all the structure, and the bistable module is fabricated in 

the device layer. 

 
(a) 

 

 
 (b)  

Fig. 4.13. (a) 3D view of the bistable module. (b) plane of the bistable module. 
 

4.3.2.2 Design of microactuator 
 

According to the chosen material and MEMS fabrication process, we will define the 

dimensions of the microactuator. The goal is to build a microactuator with the maximum 

mechanical output energy under the previous considerations. A mechanical power output of a 

microactuator is determined by its motion range and stiffness. The maximal power output is 

limited by fabrication and the working environment. We are trying to build an optimal thermal 

actuator which can offer more mechanical energy output. The dimensions (see Fig. 4.14) of 

thermal actuator are defined according to the work of S.Murater [MUR 05]. In its work, he 
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proposed the following principles to obtain more displacement: 

 

• The ratio lc  / lh is equal to 0.8, where lh is length of hot beam, and lc is length of cold 

beam. 

• The length of hot beam is as long as possible (lh maximum). Until their stiffness is too 

small to be fabricated. 

• The width of cold beam is as small as possible (wc minimum). Until the entire weight 

is so big that it produces too much out-of-plane displacement. 

• The width of the hot beam is as small as possible (wh minimum). Until it reaches the 

fabrication limits, and may lead to the bulking problem. 

• g (gap between hot and cold beam) can be optimized according to the above 

parameters. 

 

 

  
Fig. 4.14. Dimensions of thermal actuator [MUR 05]. 

 

Based on these principles, the dimensions can be given. However, to define dimensions under 

the MEMS fabrication limits consideration of two main factors permits to resolve the 

fabrication problems: their maximum stress and their first frequency. The maximum stress has 

to be taken into consideration to avoid the fatigue and the fracture problems; the first 

frequency has to be designed to avoid vibration and shock problems.   

 

In thermal microactuator, these two factors can be adjusted by the geometry of the actuator. In 

fact, there are many possibilities that can satisfy all the limits. We propose a thermal actuator 

with the dimensions given in Fig. 4.15. These dimensions have a maximum stress of 200 Mpa 

and a first frequency of 2.98 Khz. This design gives a theoretically working life of 10 million 

cycles. 
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Fig. 4.15. Dimensions of thermal actuator. 

 

From the work of S.Murater [MUR 05], the free displacement of thermal actuator has a linear 

relation with the applied voltage's square. The mechanical energy output can be defined by 

3.1. 
 

2

2

1
kDEmech =                                                                     (3.1) 

Where 

 

k        : Stiffness of thermal actuator 

D       : Tip displacement of thermal actuator 

Emech   : Mechanical energy 

U       : Applied voltage 

Therefore, we can obtain a relation between the voltage input and the mechanical energy 

output: 
 

42 UDEmech ∝∝                                                                (3.2) 

 

In fact, this mechanical energy can be increased due to the heat accumulation in the hot beam. 

it is limited by the maximum temperature. We proposed a maximum temperature of 300
o
C to 

avoid too much heat in the whole structure. 
 

As shown in Fig. 4.16, this thermal actuator offers 15µN force and 62nJ mechanical energy in 

the condition of 300
o
C with 1µm thickness. 
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Fig. 4.16. Force and mechanical energy output of thermal actuator. 

 

4.3.2.3 Design of bistable mechanism 
 

According to the performance of thermal actuator, the adapted bistable mechanism can be 

designed. Indeed, smaller bistable mechanisms can be switched easier. Nevertheless, from the 

aspect of fabrication, smaller dimensions may lead to failure due to too small stiffness. 

Therefore, taking into account both the fabrication process and the thermal microactuator, the 

dimensions of the bistable mechanism should be big enough to avoid the fabrication problems 

and small enough to be actuated by microactuators.  
 

As talked in the chapter 3. 1, the ratio of stiffness between the elastic element and compliant 

joint should be bigger than 
2

32

H
 (H: the initial height) to ensure a good bistability. The 

bistable behavior can be insured with these dimensions (see Fig. 4.17).  

 

The dimensions, including the compliant joint width, length, initial height and beam length 

can be defined preliminary by fabrication limits and the requirement of microactuators. These 

dimensions give a maximum stress of 100Mpa and first frequency of 3.69 KHz. This design 

gives a working life of 10 million cycles. 
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Fig. 4.17. Dimension of bistable mechanism. 

 

This bistable mechanism (with a 1µm thickness) requires that the maximal force is 1µN and 

the total mechanical energy is 50nJ. (see Fig. 4.18) 
 

 
Fig. 4.18. Required force and energy for the bistable mechanism. 

 

In the Tab. 4.1, we detail the main fabrication problems and their solutions. 
 

Tab. 4.1. The fabrication problem and solutions 
 Solutions 

Problem Thermal actuator Bistable mechanism 

Mechanical fatigue Maximal stress: 200Mpa Maximal stress: 100Mpa 

Mechanical fracture Maximal stress: 200Mpa Maximal stress: 100Mpa 

Stiction Avoid the use of the surface micromachining 
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Vibration and shock 
First frequency is bigger than 

2.98Khz 

First frequency is bigger than 

3.69Khz 

 

We obtain a whole module with dimensions shown in Fig. 4.19. 

 

 
Fig. 4.19. Globe view with dimensions. 

The design of thermal actuator and bistable mechanism needs the consideration not only the 

aspect of their own performance (bistable behavior, electro-thermal-mechanical behavior) but 

also the fabrication limits. A designed structure with lower maximal stress and a higher first 

frequency can avoid fabrication problems (mechanical fatigue, mechanical fracture, vibration 

and shock). The other fabrication problem (ex, Stiction) should also be taken into account. 

Indeed, specific MEMS devices require that we research all the solutions. Sometimes, we 

need to redesign the structure when we encounter new fabrication problem. 
 

In the following sections, we will present the microfabrication process of bistable module. 

This microfabrication is made by the standard clean room process. Firstly, the various 

processes are investigated and developed. Then, the etching of each layer is detailed in the 

following. 

4.4 SOI micromachining 
 

To micromachine the SOI wafer (see Fig. 4.20), three layers should be considered, the device 

layer, the handle layer and the sacrificial layer. The silicon layers (device layer and handle 

layer) can be etched by DRIE or KOH, and the sacrificial layer is cleaned by HF. 

 
Fig. 4.20. Structure of SOI Wafer. 

 

This SOI wafer has a device layer of 100µm thickness, a handle of 300µm thickness and a 
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sacrificial oxide layer of 1µm thickness. 

 

In fact, the whole process depends on the etching order of each layer. We enumerate all 

possible processes in table 4.2 for the SOI wafer and investigate each of them. 
 

 
Tab. 4.2. The possible micromaching processes of SOI. 

Process  Step 1 Step 2 Step 3 Problems 

1 Device layer Handle layer Sacrificial layer 
The sacrificial layer 

is broken 

2 Device layer Sacrificial layer Handle layer 
Difficult to clear 

sacrificial layer. 

3 Handle layer Sacrificial layer Device layer 
Result in under 

etching 

4 Handle layer Device layer Sacrificial layer 
The sacrificial layer 

is broken 

 

In the process 1, the device layer is firstly totally etched. After that, the handle layer is etched 

until the stop layer. Finally, sacrificial layer is cleaned by hydrofluoric (HF) acid. Since the 

sacrificial layer is very thin, it can be broken during the final etching period of the handle 

layer. Nevertheless, If we put a protection layer after the etching of the device layer, this can 

avoid the broken of sacrificial layer. Finally, we clean the protection layer. 

 

In the process 2, the device layer is firstly totally etched. After that, the sacrificial layer is 

cleaned by hydrofluoric (HF) acid. Finally, the handle layer is etched. Since the etching line is 

very small, the liquid HF can not clean the sacrificial layer. The use of vapor HF can clean 

sacrificial layer, however, the deep handle layer makes the etching speed variable, it is 

difficult to predict the exact time of etching. So, this process leads to an unavoidable under-

etching. 

 

In the process 3, the handle layer is firstly etched. After that, the sacrificial layer is cleaned 

from backside. Finally, the device is etched. Since there are big cavities in the backside, the 

liquid HF can clean this layer. There is no stop layer, so it results into an under-etching of 

device layer. 

 

In the process 4, the etching starts from the handle layer. After that the device layer is etched, 

and finally the sacrificial layer is cleaned. The same problem occurs as the process 1, that is, 

the sacrificial layer can be broken during the final etching period of the device layer. 
 

As a summary, the process 2 and 4 can not be adopted in the fabrication of bistable module. 

Fortunately, the process 1 and 3 can provide the completed structures, which are attempted in 

process of fabrication. Results show that the process 3 will lead to more under-etching, but the 

process 1 can totally avoid this phenomenon. So, the process 1 will be applied in the 
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following sections. 

 

Before these steps, the 1µm pad must be deposited to apply the electric current to the thermal 

microactuator. 
 

4.4.1 The power pads 

 

The thermal microactuator is made from the low resistivity silicon. |In order to apply the 

electric current into the silicon, metal pads is made. To avoid voltage loss in the contact pads, 

aluminum is used as the contact pad material according to experiences. 

 

The 1µm aluminum layer is sputtered by Alcatel SCM450 for about 10min (see Fig. 4.21-1). 

More vacuum level leads to more pure aluminum deposition. Pumping for at least 180min can 

make a good vacuum level. After aluminum deposition, a layer of photoresist S1815 is spin-

coated, patterned and developed (see Fig. 4.21-2, 3). Then, the aluminum is etched by acid 

which takes about 35min (see Fig. 4.21-4). 

 

Finally, it is put in vacuum and high temperature condition (400°C) for an hour to allow the 

diffusion of the aluminum atoms into silicon layer (see Fig. 4.21-5). The temperature and the 

duration have been optimized to ensure a lower contact resistance. These conditions allow 

obtaining a small contact resistance between 6 and 10 ohms. 
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Fig. 4.21. Process to make the contact pads. 

4.4.2 The etching of the device layer 

 

After the contact pads have been made, the device layer will be etched by DRIE. The DRIE is 

used to etch the silicon for obtaining a flat etching side. The classic etching side is shown in 

Fig. 4.22. These effects can be reduced. 

 
Tab. 4.3 DRIE etching sidewall. 

A Under etching 

B Verticality 

C Scalloping 

D Notching 

E Grass 
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Fig. 4.22. Classic etching sidewall of DRIE. 

 

To reduce these effects, an optimized recipe has been developed in our clean room, the 

following takes use of this developed recipe. 
 

 
Fig. 4.23. Etching of device layer. 

 

Firstly, a layer of 2.8µm photoresist (SPR220.3.0) is spin-coated at 3000 rpm on the device 

layer, exposed under the 300mJ/cm
2
 dose and then developed to reveal the pattern as 

illustrated in Fig. 4.23- 6. The development of this SPR220.3.0 has to be carefully watched 
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because this process is fast. The time of development should be limited to 8-10 seconds to 

avoid over-developed. To guaranty the same etching speed in the surface, an etching line of 

20µm all over the wafer is designed in the mask. The Si etching is done in Alcatel 601E 

machine as the Fig. 4.23- 8. This etching is stopped by the layer (SiO2).  

4.4.3 The etching of the handle layer 
 

After the etching of the device layer, the handle layer is be etched. Before that, a layer of 

photoresist is sputtered to cover the etched structure for protecting the structure during the 

handle layer etching, which is shown in Fig. 4.24- 10. 

 

 
Fig. 4.24. Etching of handle layer. 

An aluminum mask is sputtered to etch the 300µm handle layer by radio-frequency (RF) 

configuration of DRIE in figure Fig. 4.24- 11. A typical photoresist is spin-coated, patterned 

and developed (see Fig. 4.24-11, 12 13). After that, the aluminum is etched by acid. Then, the 

silicon of handle layer is etched by DRIE (Fig. 4.24- 15) until stopped by the sacrificial layer. 

This handle layer has a thickness of 300µm. Our etching speed is about 5µm/min. In order to 

allow the etching heat to be transferred, a break time is set for each 20min. The oxide layer is 

cleared by HF from the backside in Fig. 4.24-16, at last we put the wafer into acetone to clear 

the photoresist as shown in Fig. 4.24-17. 
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4.5 The fabricated bistable modules 

We obtain the bistable modules after performing all steps. Some SEM photos about the 

fabricated bistable modules are shown in Fig. 4.25. 

  
                                         (a)                                                                              (b) 

    
                                      (c)                                                                                        (d) 

 
(e) 
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(f) 

Fig. 4.25. (a,b,c,d)Scanning electron microscope (SEM) pictures of microfabricated module. (e) The width 
measurement of bistable beam using the SEM picture. (f) Measurement of the distance between the 

bistable mechanism and the second stop block using the SEM picture.  
 

As shown in Fig. 4.25-e, the width of the bistable beam is 15.5µm while designed dimension is 

15µm. The distance between the bistable mechanism and the second stop block is 64.98µm 

while the designed dimension is 65µm (see Fig. 4.25-g). 

 

Measurements show that there is only small error between the measurement and the designed 

dimensions. This fabrication process allows us to obtain the desired structure. The 

performance of bistable module will be tested in the next chapter.  

 

However, there are tiny photoresist residues in the surface of the bistable mechanism (see Fig. 

4.25) which are residues of the protection layer of photoresist. This tiny residue does not 

influence the structure, so we did not try to clean it totally. 
 

4.6 Conclusion 
 

MEMS Microfabrication is a set process for specific MEMS device. The process should be 

investigated and developed. Each process requires much time to be developed. Four possible 

processes have been studies to fabricate the bistable modules. 

 

According to the studies, the use of the process 1 can obtain the desired structure (see Tab. 

4.4). 
 



Chapter 4 Microfabrication of bistable modules 

125 

Tab. 4.4. The process summary to fabricate the bistable module. 

 

In order to perform the in-plane test for the next, we need to fabricate the off-chip bistable 

modules. Three solutions have been tried: the saw cut, electrical discharge machining and the 

fracture line. 

 

The first approach takes use of the saw to cut the wafer into small pieces. The direct cut will 

make the suspended structures failure due to the vibrations. However, if we glue the wafer on 

a plastic paper, it is difficult to take it off. 

 

The second approach takes use of the electrical discharge machining, this technique permit to 

machine the object in the plane. The difficult is that it does not have an accurate alignment 

and fixation system. We do not have time to design a suitable system. 

 

The third approach takes use of the fracture line. We create intentionally fracture party 

connecting the bistable module and the wafer. After the process is finished, we take the 

bistable module off the wafer by breaking this fracture connection. This solution permits us to 

obtain whole bistable modules off the wafer. The fracture line need be designed repeatedly to 

adapt to the process. 

 

As discussed in the process 1, after the etching of the device layer, the structure is already 

separated with the wafer. The use of the protection layer can be embedded bistable module. 

These bistable modules can be taken off when we clean the protection layer. Using this 

approach, three different stable positions of bistable module are fabricated (see Fig. 4.1). The 

locations of the stop block are 5µm, 10µm and 20µm, respectively. Using the off-chip bistable 

module, we will perform the static and dynamic tests in the next chapter. 

 

This proposed process gives a yield until 90%. Most of the structure can be used because of 

Step Process Mask Comments 

1 Deposition of aluminum (device layer)  

2 Spin-coating the photoresist S1518  

3 Lithography 1 

4 Development  

5 Etching acid  

6 recruit at 400°C  

Pattern the electric connection to the thermal 

actuators. The recruit gives a good electric 

contact. 

7 Spin-coating the photoresist SPR220-3.0  

8 Lithography 2 

9 development  

10 Etching (DRIE)  

The etching the device layer utilizes the 

DRIE in low frequency. 

11 Deposition of aluminium (handle layer)  

12 Spin-coating the photoresist S1518  

13 lithography 3 

14 development  

15 Etching (DRIE)  

The etching of the handle layer permits to 

free the structure by an aluminum mask. 
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the use of a protection layer. Some photos are shown in Fig.4. 26 and Fig.4. 27. 
 

 
Fig.4. 26. Fabricated bistable modules. 

 

Furthermore, the use of the same fabrication process, we fabricated two cascaded and three 

cascaded bistable modules (see Fig.4. 27).  
 

 

   
                                         (a)                                                                                      (b) 

Fig.4. 27. (a) Two cascaded bistable module, (b) Three cascaded bistable modules. 
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Chapter 5 Characteristics of bistable module 
 

 

 
 

"Imagination is more important than knowledge. For knowledge is limited, whereas imagination embraces the 

entire world, stimulating progress, giving birth to evolution." 

Albert Einstein 

(1879 – 1955) 

 

 

5.1 Introduction 
 

As seen previously, the digital microrobot consists of bistable modules link to offer discrete 

workspace. Each point of workspace is reachable through an open-loop control strategy 

because it needs a particular configuration of each module must have two stable and 

repeatable positions. The switch of the module for a position to the other is done by our open 

loop control strategy. 

 

In this chapter, we will study the behavior of a module and the way it reaches a stable position. 

That is why we will study the characteristics of the bistable modules. We first describe the 

process to activate a module and then the static and dynamic characteristics. The static 

characteristics show the force versus displacement of the bistable mechanism using an 

accurate force sensor, and the voltage versus displacement of thermal actuator. The dynamic 

characteristics show the behavior of switching the bistable mechanism. In the last section, a 

control strategy is proposed to master the entire switching procedures. 
 

5.2 Activation process 
 

The stop block is designed to limit the motion of the bistable mechanism and give blockage 

force in each of the stable positions. The Fig. 5.1 gives the designed stop block for the side 

where a compliant structure is needed as described in the previous chapter. Two deformable 

beams are designed to create this stop blocks. 
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Fig. 5.1. The designed stop block. 

 

The activation that consists in inserting the center shuttle between the two stable positions is 

performed by using an external force. We use a probe to slowly push the center shuttle of 

bistable mechanism into the stop blocks. Since the two deformable beams deform 

symmetrically, the direction of the force should be aligned with the center shuttle. In the 

meantime, the out-of-plane force should be null. The experimentation set-up is shown in Fig. 

5.2. 

 

The bistable module and the probe are mounted on an anti-vibration table. The probe is fixed 

on an x-y-z stage, which can be moved with micrometric resolution. An optical microscope is 

put on the scene allowing us to operate the activation process. The activation needs that the 

probe pushes the center shuttle with a different distance (40 um, 50 um and 60 um) for each of 

three stop blocks. 
 

 
Fig. 5.2. Activation of bistable module using a probe. 

 

Fig. 5.3 shows the results before and after activation. Despite the contact area (classic DRIE sidewall) 

presents rather great roughness, all of the activation of bistable mechanism was successful. 

 



Chapter 5 Characteristics of bistable module 

129 

        
(a)                                                (b) 

 
 (c) 

Fig. 5.3. (a) Before activation. (b) After activation. (c) SEM photo of 3D stop block after activation. 
 

5.3 Static characteristics 
 

The static characteristics describe the static response of the entire bistable module (including 

the bistable mechanism and the thermal micro-actuators). For the bistable mechanism, the 

force-displacement relation is measured, which shows the bistable behavior. For the thermal 

micro-actuators, the voltage-displacement relation is measured. 

5.3.1 Force-displacement relation of a bistable module  
 

In order to measure this relationship, a commercial force sensing probe is used [FEM] (see Fig. 

5.4). It is mounted on an x-y positioning table. The force information and the displacement are 

recorded. The result curve is shown in Fig. 5.5. 

 

A finite element analysis (FEA) is also made by using the commercial FEA software ANSYS. 

The results from the FEA and the static experimentation are presented in Fig. 5.5. The results 

show that the experimentation matches the FEA very well.  
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Fig. 5.4. Experimental set-up (a commercial force sensing probe (ST-S270 from FEMTO TOOLS [FEM] 

with a sensitivity of 899.2 µN/V). 
 

As a typical bistable mechanism, it presents first a positive stiffness, which increases with the 

actuation force. After going through the position at maximum actuation force, it presents a 

negative stiffness, which means that the actuation force decreases until zero. In fact, it is an 

unstable position for the bistable mechanism. After passing through this position, it goes to 

the other stable position without external force. 
 

 
Fig. 5.5. Force (F) Versus displacement (Y) characteristic. 

 

The result shows that the model gives 20% error comparing with the FEA and the 

experimentations. That is because the stiffness of the compliant joints and the compressed 

beam can not be defined precisely. We use the classical beam theory to obtain the stiffness. 

However, the FEA and experimentation meet very well. Although the fabrication gives the 

final dimension errors, they result in a 5% error in this force-displacement relation, which 

does not make any changes on the bistable behavior. 
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5.3.2 Blockage force evaluation  
 

The blockage force can be evaluated using the same force sensor as previously (ST-S270 from 

FEMTO TOOLS [23] with a sensitivity of 899.2µN/V). An optical microscope is installed on 

the scene to observe the measurement. We move the force sensor to push the blocked bistable 

mechanism, at the moment when the bistable mechanism moves we can obtain the blockage 

force. 
 

Tab. 5.1. The measured blockage force (see Fig. 5.6). 
Stop block Type 1 (a=2.5µm) Type 2(b=5µm) Type 3(c=10µm) 

Measured blockage force 212µN 540µN 1310µN 

 

 
Fig. 5.6. Three locations of the stop blocks. 

 

The blockage force gives stable position with high repeatability. Unlike traditional 

microrobots which rely on the high quality of sensor system and closed-loop control to 

guarantee the repeatability, the use of stop blocks permits to mechanically limit positions and 

ensure the repeatability. 

5.3.3 Voltage-displacement relation of thermal micro-actuators  
 

The thermal actuator generates an in-plane displacement while the electric current passes 

through it (see Fig. 5.7). 

 
Fig. 5.7. A pair of thermal actuators. 

 

A slow ramp voltage is applied to avoid the voltage impact. The result shows that the 
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displacement of the thermal actuator is not linear with the applied voltage (see Fig. 5.8). This 

simulation is made using electro-thermal-mechanical couple field analysis, which permits to 

take into account all three thermal mechanisms: conduction, convection and radiation. 

 
Fig. 5.8. Static behavior of the thermal actuator. 

 

The result is shown in Fig. 5.8. We can observe that the FEA gives more error, when the 

voltage increases, that is because the resistivity of silicon changes with the temperature and 

we did not have this exact change curve. The displacement versus voltage tests shows that this 

actuator produces 160 µm displacement for 20 V. According to the estimation in the chapter 4, 

80 µm displacement of the actuator is enough to switch this bistable mechanism.  

 
Fig. 5.9. Dynamic response of the thermal actuator. 
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Fig. 5.9 shows the response of the actuator to a square input voltage of 8V. The settling time is 

about 0.3s for a rising edge and 0.89s for a falling edge. Since the electro-thermal effect is 

fast, we obtain a short settling time for the rising edge. However, the energy dissipation is 

slower than the heating, so we obtain a longer time for the falling edge. 

 

This performance allows us to continuously switch the bistable mechanism with a delay of 

about 0.89 s. This delay is caused by energy dissipation in the actuators. In fact, each 

switching takes about 12mJ thermal energy in the thermal actuator which needs to be 

transferred into the substrate to be cooled for the next switching. 

5.4 Dynamic characteristics 

5.4.1 Introduction 
 

We have to study the behavior of the mechanism from a stable position to the other stable 

position and analyse according to microrobotics needs. These characteristics are important for 

microrobotics and micro-positioning applications. Micromanipulation tasks, such as pick-and-

place, micro-positioning etc., are based on state changes. Dynamic characteristics show the 

duration, speed, accuracy, repeatability of state changes. We will study these characteristics in 

this section. 

 

In this test, the bistable modules are prepared for an in-plane measurement. For this 

measurement, we use a high resolution (10 nm) interferometer from SIOS Technology to test 

the dynamic response of bistable mechanism. All the test devices are mounted in an anti-

vibration table (see Fig. 5.10). 
 

 
Fig. 5.10. Experimental set-up. 

Interferometer Bistable module 

X and Y table 
Cable 
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Fig. 5.11. Switching test using the high resolution interferometer. 

 

Since the bistable module is activated, the bistable mechanism is in the blocked position (see 

Fig. 5.12). Two transitions of switching will be studied. For the transition to stop block 2, we 

power the actuators (A2). For the transition to stop block 1, we power the actuators (A1). 

 
Fig. 5.12. Locations of the stop block. 

 

5.4.2 Transition from stop block 1 to stop block 2 

To switch from stable position 2 to stable position 1, the voltage is applied on the thermal 

actuators (A2) (considering the impact of thermal actuators, a ramp voltage is applied). The 

interferometer detects the motion of the bistable mechanism. The result is shown in Fig. 5.13. 
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Fig. 5.13. Response from stable position 1 to the position 2. 

 

Since there are gaps between the actuator and the bistable mechanism, they will be in contact 

after some time. The bistable mechanism can be switched when the applied voltage reaches 

17V. 

 
Fig. 5.14. Details of the transition to stable position 2. 

 

In Fig. 5.14, the first phase from stable position 1 to unstable position is controlled by actuators. 

The duration is about 117 ms for a displacement of 25 µm. The unstable position can be 

located (red point). The second phase is faster. It requires only some nanoseconds to reach the 

stable position 2. This transition dose not presents overshoot and oscillation. 

Unstable position 

Stable position 2 

Stable position 1 
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Since the final position is blocked by stop block, the accuracy and repeatability are ensured. A 

lot of test has been done which show the same result. 
 

5.4.3 Transition from stop block 2 to stop block 1 

A ramp voltage is applied to the thermal actuators (A1) to actuate the bistable mechanism 

from stable position 2 to stable position 1. Fig. 5.15 shows the results. 

 
 (b) 

Fig. 5.15. Response from position 2 to position 1. 
 

As previously, since there are gaps between the actuator and the bistable mechanism, they will 

contact after some time. The bistable mechanism can be switched when the applied voltage 

reaches 17 V. 

 

In Fig. 5.16, the first phase (from the stable position 2 to unstable position) is similar to the 

transition (from the stable position 1 to unstable position). However, during the second phase 

from unstable position to the stable position 1, vibrations appear (see Fig. 5.16). This is 

because the stop block 1 is made up of deformable beams which present compliancy. The 

overshoot of this vibration is 4.5 µm. The unstable position can be located. The final position 

is no static error the same as the initial stable position 1. 
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Fig. 5.16. Details of the transition to stable position 1. 

 

We performed the same test on three types of locations of stop block. They present similar 

curve, we give a table to compare the different results (see Tab. 5.2). 
 

Tab. 5.2. Experiment results of three locations of stop blocks. 

Measured 
distance 

between stable 
states (µm) 

Time from S1 to 
S2 (ms) 

Switching 
voltage (V) 

Unstable 
position FEA 

(µm) 

Unstable 
position 

experiment 
(µm) 

6.75 25.5 15.2 66 66.6 

11.12 60.6 15.9 66 67.6 

25.12 117.3 16.7 66 69.1 

 

The actuation time between the two stable positions almost depends on thermal actuators 

because the free motion of bistable mechanism from the unstable position to stable position is 

so fast that it can be ignored (usually 100-300ns, see Fig. 5.16). This actuation time can be 

optimized by studying the control of thermal actuator. 
 

5.5 Control strategy 
 

According to the result of last section, the actuation of bistable mechanism from stable 

position 2 to stable position 1 shows vibration around the stable position, which is not suitable 

for microrobotics or micro-positioning. To control the switching and avoid the vibration, we 

propose an open-loop control strategy to obtain a damped transition. 

Unstable position 

Stable 

position 2 

Stable position 1 
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Fig. 5.17. Two phases of the switching of bistable mechanism. 

 

The strategy is based on the use of two pairs of thermal actuators during switching operation. 

The idea is using one pair of thermal actuators (A2) to catch the bistable mechanism when it 

is just actuated from the unstable position by the other pair of actuators (A1) (see Fig. 5.18). 

The interferometer is used to detect the position of the bistable mechanism. 

 
Fig. 5.18. A schematic of control system of bistable module. 

 

First of all, the first phase is the accumulation of the deformation energy, which is controlled 

by actuator (A1). This phase carries out by applying a ramping voltage (see middle curve of 

Fig. 5.19). Since there are some gaps between actuators and the bistable mechanism, the time 

of touching is at 1.63s. When the unstable position reaches (the time is at 1.69s), the first 

phase is finished. 

 

After then, it goes through the unstable position, and enters the second phase (the deformation 

energy releasing).  In this phase deformation energy is releasing. The actuator (A2) is used to 

control this phase (see bottom curve of Fig. 5.19). The bistable mechanism is maintained by 
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the actuator (A2) until 1.83s, it is released, and reaches the second stable position (see top 

curve of Fig. 5.19).  

 
Fig. 5.19. Control sequenes (Voltage A2 and Voltage A1) and the response of bistable mechanism . 

 

Fig. 5.20 shows the comparison between the transition with and without control. We can 

observe that the use of this control can reduce the vibration. The whole switching time is 

about 205ms, and it does not present overshoot and vibration. 

 

In fact, each phase is controlled by each pair of actuators, so two phases of the switching can 

be controlled totally using two pairs of actuators. This control results show that the vibration 

of bistable mechanism is reduced significantly. At the same time, there is no overshoot when 

the final target position is considered. Therefore, with this control strategy, we can obtain the 

switching of bistable mechanism in two directions without vibrations. 
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Fig. 5.20. Comparison between the transition with control and without control. 

 

5.6 Conclusions 
 

We have presented the static characteristics of bistable mechanisms that consist in the force 

versus displacement relation, three bistable mechanisms with blocked positions of 6.75 µm, 

11.12 µm and 25.12 µm present bistable behaviors. Each one has a blockage force of 212 µN, 

540 µN and 1310 µN. Static characteristics of thermal actuator include the voltage versus 

displacement relation. It produces 160 µm displacements for 20 V which is enough to switch 

the bistable mechanism. The step voltage test of thermal actuator shows a settling time of 0.3 

s for a rising edge and 0.89 s for a falling edge.  

 

We have shown the dynamic characteristics that the switching between these two stable 

positions. The dynamic motion of bistable mechanism for two transitions has been studied. 

For the transition to the stop block 2, it presents smooth transition with no overshoot and no 

vibration. For the transition to the stop block 1, it presents vibrations due to the compliant 

stop block.  

 

To resolve this problem, a control strategy has been implemented. The main idea was to use 

two pairs of the actuator to reduce this vibration. These two pairs of thermal actuator are 

cooperated used to control the entire switching procedures. The use of this control can avoid 

the vibration and the overshoot. 
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Conclusion and perspectives 
 

 

 

 

 

 

In our research work, we have proposed the development of a new kind of microrobots that 

can perform high accurate positioning without the need of high level control. This new 

generation of microrobots is called digital microrobots. The digital microrobot offers a new 

approach for the design of microrobots architectures based on elementary bistable modules. 

Each module has two mechanical stable and repeatable states driven by a simple binary signal. 

The position of the whole microrobot is controlled by a digital word representing the state of 

the modules. Digital microrobotics also takes the advantage of microfabrication technology 

and open-loop control. 

 

This new concept shows many advantages:  

• repeatability and accuracy are obtained thanks to the mechanical bistable performance 

of the modules; 

• neither proprioceptive sensors nor bulky and expensive instruments are needed to 

control the microrobot; 

• fast and large displacements can be obtained using the parallel control of the state of 

the modules; 

• digital microrobots can be built in great quantities and potentially at low cost; 

• low power consumption can be obtained as power is not needed to maintain the 

modules in a given state but only during the transition phases. 

 

6.1. Contributions of this research  
 

We have investigated the numerous proposals to realize bistable mechanisms. A basic bistable 

mechanism was proposed which permits to obtain a general model. According to this model, 

three positions including two stable positions and an unstable position can be predicted. 

Considering the real situations, two kinds of models are taken into account: the perfect joint 

connection and the compliant joint connection. The perfect joint connection can guarantee the 

symmetric force-displacement performance of bistable mechanism during the whole 

switching phase and all the deformation energies can be released after switching. However, it 

is difficult to fabricate this kind of joint in the microworld. The compliant joint is adopted in 

our design. The compliant joint connection uses beam deformation to create the rotation 
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motion. Since the energy in this compliant joint can not be released totally, the model is 

modified to consider this energy. In fact, this residual energy from the compliant joints may 

result in bad stable position. To solve this problem, we presented the following criterion: the 

maximal energy in the elastic beam is bigger than the maximal energy in the compliant joint. 

Good stable position can be ensured by this criterion. 

 

To switch the bistable mechanism, various actuation principles have been studied such as 

piezoelectric materials, magnetostrictive materials, thermal actuators and electrostatic 

actuators. Active materials present good performance due to the integration of both the 

bistable mechanism and the actuators. This design permits to obtain compact structures. 

However, this proposition needs the microfabrication of the active materials which require the 

development of new processes. Thermal actuator is also a solution. The U-shape actuator is 

suitable for the microfabrication. However, the design of this actuator should be done 

carefully. If the actuation leads to the hot beam buckling and the stiffness of this actuator is 

reduced greatly, as a result, it can not provide big actuation force. Electrostatic actuators can 

also be used but they take more space compared to the previous actuators.  

 

Unlike the traditional microrobots, in digital microrobots, the stable position is maintained by 

the mechanism. In order to reject perturbations, a blockage force is required. The stop blocks 

are designed to limit the motion range of the bistable mechanism and provide a blockage 

force in each of the stable positions. Stop blocks have been designed to offer blockage forces 

in each of the stable positions. The stable position can be maintained if the external charge 

does not exceed this force. The repeatability can be ensured due to this stop block and it is 

mechanically ensured. 

 

Based on the three components (bistable mechanism, thermal actuator, stop blocks), an entire 

bistable module was designed. A process using SOI wafers is developed to fabricate thie 

bistable modules. This process consists of three masks for etching the three layers: aluminum 

layer, device layer and handle layer. Static and dynamic characteristics show that the 

switching of the bistable mechanism can be done by actuating the thermal actuators. Each 

stable position can be reached. We also proposed a control strategy to resolve the vibration 

problem in one of the switching positions. 

6.2. Perspectives 
 

This research opens a window for future studies on digital microrobotics. An entire bistable 

module has been designed, fabricated and tested and two blocked positions are obtained. This 

can be the basis of the design of complex architectures such as multi-DDL microrobots, pure 

rotation microrobots, etc. The architecture can be built according to various robot kinematics. 

Three kinds of approaches are possible: serial, parallel and hybrid (serial/parallel). 
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6.2.1 Serial mechanism based on bistable modules 
 

The serial mechanism is achieved by connecting each module to the previous one. Fig. 6.1 

presents an example of two DOFs mechanism. 
 

 
Fig. 6.1. Two DOFs plane serial mechanism. 

 

This configuration leads to a discrete rectangle workspace and a simple control strategy. 

However, this serial mechanism also results into lower whole stiffness. In our proposed 

bistable module, the integration of thermal actuators is used to switch the bistable mechanism. 

These actuators need to be powered by external electric wire connections. In this serial 

mechanism these connections become very difficult to realize because they limit the motion 

of the serial mechanism. A wireless actuation approach is preferred and some solutions are 

conceivable in the future. 

6.2.2 Digital microrobot based on parallel mechanisms 
 

Parallel mechanism can be created according to the classic general parallel mechanisms. 

Bistable modules are mounted directly on the base. The kinematic chains connect these 

bistable modules to create a parallel mechanism. This kind of architecture avoids the 

connection problem described previously. 

 

Fig. 6.2 shows a proposal for a parallel mechanism. Firstly, two bistable modules are 

connected by rigid bodies and compliant joints (see Fig. 6.2(a)). This mechanism gives plane 

rotation and translation and four states can be reached. Using the same connection, this 

mechanism can be extended to three bistable modules (see Fig. 6.2(b)). It gives 2
3
=8 states as 

shown in Fig. 6.2(c) by using the same extension, this parallel mechanism is extended to five 

bistable modules; this extension is theoretically unlimited. This configuration leads to 2
5
 = 32 

stable positions. It offers three DOFs including two translations and one rotation. 
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                                         (a)                                               (b)                                                (c) 

Fig. 6.2. (a) Two bistable modules (b) three bistable modules (c) five bistable modules. 
 

6.2.3 Digital microrobot based on both serial and parallel mechanisms  
 

Both of the serial and parallel mechanism presents advantages and drawbacks. If the digital 

microrobot is built using both the serial and parallel mechanisms, the difficulty from both of 

them will be reduced such as small stiffness (serial mechanism), small workspace (parallel 

mechanism), etc. We propose a structure based on a hybrid approach. Fig. 6.3 shows a platform 

which connects three discretely-actuated axes by rotation joints. This design gives a plane 

discrete workspace (x, y, θ).  

 
 

Fig. 6.3. A proposed design based on the serial and parallel mechanism. 
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Résumé 

Au cours de la dernière décennie, des travaux de recherche importants ont été effectués dans le domaine de la 

microrobotique. Ces travaux concernent la conception, la fabrication et la commande de microrobots destinés à 

exécuter diverses tâches dans le micromonde (le monde des objets de taille micrométrique). Il s’agit notamment 

de tâches de manipulation d’objets artificiels ou biologiques à des fins de positionnement, de caractérisation ou de 

tri mais aussi pour le micro-assemblage industriel. Les recherches effectuées ont montré l’efficacité des matériaux 

actifs pour l’actionnement des microrobots. Toutefois, en dépit de leur haute résolution intrinsèque, ces matériaux 

présentent des inconvénients qui rendent la commande des microrobots difficile. Le comportement de ces 

matériaux et plus généralement des actionneurs qui les utilisent est souvent complexe, non linéaire et parfois non 

stationnaire. L’implantation de lois de commande nécessite donc l’emploi de capteurs et d’instruments coûteux et 

encombrants pour le traitement des signaux et l'exécution en temps réel. Dans le but de lever les difficultés citées 

précédemment et d’ouvrir des perspectives nouvelles pour la conception et la commande de microrobots, nous 

proposons une nouvelle approche pour la microrobotique appellée « microrobotique numérique » qui utilise un 

concept de modularité et une commande en boucle ouverte. Ces nouveaux microrobots sont construits à partir de 

« modules élémentaires » possédant deux états mécaniques stables et répétables. La position de l'extrémité du 

microrobot dépend de l’état des différents modules bistables qui le composent. Cette approche introduit un 

nouveau paradigme en microrobotique permettant la conception de cinématiques diverses adaptées au 

micromonde. Les principaux avantages de cette nouvelle microrobotique sont la modularité, l’absence de capteurs, 

la flexibilité, la possibilité de réaliser des robots microfabriqués et l’absence d’asservissement. Cette thèse 

propose la conception, la microfabrication et la caractérisation d’un module bistable. 

 

Mots-clés: Microrobotique, mécanisme bistable, actionneur thermique, actionnement discret, mécanisme 

compliant, SOI wafer, commande en boucle ouverte. 

 

 

Abstract 

During the last decade, significant research activities have been performed in the field of microrobotics, which 

deals with the design, the fabrication and the control of microrobots. These microrobots are intended to perform 

various tasks in the so-called Microworld (i.e. the world of submillimetric objects), in particular 

micromanipulation tasks of single objects (artificial or biological) for positioning, characterizing or sorting as well 

as for industrial microassembly. Researches already done have shown that the use of active materials to actuate 

microrobots gives better performances than the use of traditional actuators. However, despite their intrinsic high 

resolution, these materials present some disadvantages, making the design of efficient controllers a hard task. 

Their behavior is often complex, nonlinear and sometimes non stationary. Closedloop control of the microrobots 

requires the integration of very small sensors and the use of bulky and expensive instruments for signal processing 

and real-time operating. Packaging and integration of the sensors and actuators are also hard problems. This is 

why building multidegrees of freedom microrobots able to perform complex tasks is difficult. To get over these 

difficulties, we propose an approach to perform the microfabrication of microrobots using a modular concept and 

an open loop control strategy. These microrobots, named “digital microrobots” are based on the design of 

microrobots from several “elementary modules”, each offers a very good repeatability and stable positions. A 

binary signal switches the module between the two stable states. The position of the whole microrobot is 

controlled by a digital word representing the state of the modules. A paradigm is opened in the microrobotics field, 

allowing the design of various kinematics adapted to the microworld. The main advantages of this new 

microrobotic are modularity, absence of sensors, the flexibility, microfabricated robots and open-loop control. 

 

Keywords: Microrobotics, bistable mechanism, thermal actuator, discrete actuation, compliant mechanism, SOI 

wafer, open loop-control. 

 


