
HAL Id: tel-00475917
https://theses.hal.science/tel-00475917

Submitted on 23 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Clustering-based Approximate Answering of Query
Result in Large and Distributed Databases

Mounir Bechchi

To cite this version:
Mounir Bechchi. Clustering-based Approximate Answering of Query Result in Large and Distributed
Databases. Human-Computer Interaction [cs.HC]. Université de Nantes, 2009. English. �NNT : �.
�tel-00475917�

https://theses.hal.science/tel-00475917
https://hal.archives-ouvertes.fr

Année

École Centrale de Nantes Université de Nantes École des Mines de Nantes

ÉCOLE DOCTORALE STIM
« SCIENCES ET TECHNOLOGIES DE L’INFORMATION ET DES MATÉRIAUX »

No attribué par la bibliothèque

Clustering-based Approximate Answering
of Query Result in Large and Distributed

Databases

THÈSE DE DOCTORAT
Discipline : Informatique
Spécialité : Bases de Données

Présentée
et soutenue publiquement par

Mounir BECHCHI
Le 15 septembre 2009 à l’UFR Sciences & Techniques, Université de Nantes,

devant le jury ci-dessous

Président : Pr. Anne Doucet LIP6, Université Paris 6
Rapporteurs : Mokrane Bouzeghoub, Pr. PRiSM, Université de Versailles

Florence Sèdes, Pr. IRIT, Université Paul Sabatier
Examinateurs : Noureddine Mouaddib, Pr. LINA, Université de Nantes

Guillaume Raschia, M.C. LINA, Université de Nantes

Directeur de thèse : Noureddine Mouaddib
Co-encadrant : Guillaume Raschia

Laboratoire: LABORATOIRE D’INFORMATIQUE DE NANTES ATLANTIQUE.
UMR CNRS . , rue de la Houssinière, BP – Nantes, CEDEX . No ED 503-055

favet neptunus eunti

CLUSTERING-BASED APPROXIMATE ANSWERING
OF QUERY RESULT IN LARGE AND DISTRIBUTED

DATABASES

Réponses Approchées de Résultats de Requêtes par
Classification dans des Bases de Données Volumineuses

et Distribuées

Mounir BECHCHI

)*

Université de Nantes

Mounir BECHCHI
Clustering-based Approximate Answering of Query Result in Large and
Distributed Databases
IV+XVIII+134 p.

This document was edited with these-LINA v. 2.7 LATEX2e class of the “Association of
Young Researchers on Computer Science (LOGIN)” from the University of Nantes (available on
: http://login.irin.sciences.univ-nantes.fr/). This LATEX2e class is under the
recommendations of the National Education Ministry of Undergraduate and Graduate Studies
(circulaire no 05-094 du March) of the University of Nantes and the Doctoral School of
« Technologies de l’Information et des Matériaux(ED-STIM) ».

Print : CorpsTheseMounir.tex – 04/10/2009 – 15:16.

Last class review: these-LINA.cls,v 2.7 2006/09/12 17:18:53 mancheron Exp

http://login.irin.sciences.univ-nantes.fr/
http://www.sup.adc.education.fr/bib/Acti/These/circulaire.rtf
http://www.univ-nantes.fr/
http://edstim.univ-nantes.fr/

Abstract

Database systems are increasingly used for interactive and exploratory data retrieval. In such re-
trievals, users queries often result in too many answers, so users waste significant time and efforts
sifting and sorting through these answers to find the relevant ones. In this thesis, we first propose an
efficient and effective algorithm coined Explore-Select-Rearrange Algorithm (ESRA), based on the
SAINTETIQ model, to quickly provide users with hierarchical clustering schemas of their query re-
sults. SAINTETIQ is a domain knowledge-based approach that provides multi-resolution summaries
of structured data stored into a database. Each node (or summary) of the hierarchy provided by ESRA
describes a subset of the result set in a user-friendly form based on domain knowledge. The user then
navigates through this hierarchy structure in a top-down fashion, exploring the summaries of interest
while ignoring the rest. Experimental results show that the ESRA algorithm is efficient and provides
well-formed (tight and clearly separated) and well-organized clusters of query results. The ESRA al-
gorithm assumes that the summary hierarchy of the queried data is already built using SAINTETIQ
and available as input. However, SAINTETIQ requires full access to the data which is going to be
summarized. This requirement severely limits the applicability of the ESRA algorithm in a distributed
environment, where data is distributed across many sites and transmitting the data to a central site is
not feasible or even desirable. The second contribution of this thesis is therefore a solution for sum-
marizing distributed data without a prior “unification” of the data sources. We assume that the sources
maintain their own summary hierarchies (local models), and we propose new algorithms for merging
them into a single final one (global model). An experimental study shows that our merging algorithms
result in high quality clustering schemas of the entire distributed data and are very efficient in terms
of computational time.
Keywords: Relational databases, Database summaries (the SAINTETIQ model), Clustering of query
results, Distributed clustering.

Résumé

Les utilisateurs des bases de données doivent faire face au problème de surcharge d’information lors
de l’interrogation de leurs données, qui se traduit par un nombre de réponses trop élevé à des requêtes
exploratoires. Pour remédier à ce problème, nous proposons un algorithme efficace et rapide, ap-
pelé ESRA (Explore-Select-Rearrange Algorithm), qui utilise les résumés SAINTETIQ pré-calculés
sur l’ensemble des données pour regrouper les réponses à une requête utilisateur en un ensemble de
classes (ou résumés) organisées hiérarchiquement. Chaque classe décrit un sous-ensemble de résul-
tats dont les propriétés sont voisines. L’utilisateur pourra ainsi explorer la hiérarchie pour localiser
les données qui l’intéressent et en écarter les autres. Les résultats expérimentaux montrent que l’al-
gorithme ESRA est efficace et fournit des classes bien formées (i.e., leur nombre reste faible et elles
sont bien séparées). Cependant, le modèle SAINTETIQ, utilisé par l’algorithme ESRA, exige que
les données soient disponibles sur le serveur des résumés. Cette hypothèse rend inapplicable l’algo-
rithme ESRA dans des environnements distribués où il est souvent impossible ou peu souhaitable de
rassembler toutes les données sur un même site. Pour remédier à ce problème, nous proposons une
collection d’algorithmes qui combinent deux résumés générés localement et de manière autonome
sur deux sites distincts pour en produire un seul résumant l’ensemble des données distribuées, sans
accéder aux données d’origine. Les résultats expérimentaux montrent que ces algorithmes sont aussi
performants que l’approche centralisée (i.e., SAINTETIQ appliqué aux données après regroupement
sur un même site) et produisent des hiérarchies très semblables en structure et en qualité à celles
produites par l’approche centralisée.
Mots-clés : Base de données relationnelles, Résumés de données (Le modèle SAINTETIQ), Classifica-
tion des résultats de requêtes, Classification distribuée.

Acknowledgements

I would like to thank, first and foremost, my adviser Prof. Noureddine Mouaddib for his
guidance and support throughout my graduate career.

A special thank goes to my co-adviser, Dr. Guillaume Raschia for his patience, understan-
ding, and the stimulating discussions we have had over the years.

I would also like to gratefully acknowledge my colleagues and friends at LINA : Manal
El-Dick, Lorraine Goeuriot, Rabab Hayek, Lamiaa Naoum and Amenel Voglozin.

I would like to thank Myriam who shared every nuance of the last five years with me. Her
love and support has given me the strength and confidence to complete this endeavor. Finally,
I am forever indebted to my family, my mother Zohra, my father Mohammed, my two sisters
Fatima and Rajae, and my brother Mohssine, for their understanding, endless love, patience,
and encouragement.

Mounir

Table of Contents

Table of Contents IX

List of Tables XIII

List of Figures XV

—Body of the Dissertation—

Introduction 1

1 Advanced Query Processing in Databases 9
1.1 Handling the Empty-Answer Problem . 10
1.1.1 Query Relaxation . 10
1.1.2 Similarity Search . 14
1.2 Handling the Many-Answers Problem . 19
1.2.1 Automated Ranking of Query Results . 19
1.2.2 Clustering of Query Results . 28
1.3 Flexible/User-Friendly Database Querying . 33
1.3.1 Preference Queries . 33
1.3.2 Fuzzy Queries . 36
1.3.3 Keyword Search . 40
1.4 Discussion . 44

2 Knowledge-based Clustering of Result Set 47
2.1 Overview of the SAINTETIQ System . 50
2.1.1 A Two-Step Process . 50
2.1.2 Features of the Summaries . 52
2.1.3 Scalability Issues . 55
2.1.4 Discussion about SAINTETIQ . 56
2.2 Querying the SAINTETIQ Summaries . 57
2.2.1 Running Example . 58

IX

X TABLE OF CONTENTS

2.2.2 Expression of Queries . 58
2.2.3 Evaluation of Queries . 59
2.2.4 Search Algorithm . 61
2.3 Multi-Scale Summarized Answers . 63
2.4 Rearranging the Result Set . 66
2.5 Extension to any Fuzzy Predicate . 69
2.5.1 Query Rewriting . 69
2.5.2 Results Sorting . 72
2.6 Experimental Results . 73
2.6.1 Data Set . 73
2.6.2 Results . 73
2.7 Conclusion . 79

3 Merging Distributed Database Summaries 81
3.1 Problem Analysis . 83
3.1.1 Problem Statement . 83
3.1.2 Running Example . 84
3.1.3 Basic Approaches . 85
3.2 Alternative approaches . 93
3.2.1 Horizontally Distributed Data . 93
3.2.2 Vertically Distributed Data . 97
3.2.3 Highlights of the Proposed Algorithms . 102
3.3 Joining validity assessment . 103
3.3.1 Background . 103
3.3.2 Level-based Analysis . 104
3.3.3 Summary Tree Dissimilarity . 105
3.3.4 Discussion . 106
3.4 Experimental Results . 107
3.4.1 Data Set . 107
3.4.2 Results . 108
3.5 Related work . 114
3.6 Conclusions . 117

Conclusion and Perspectives 119

TABLE OF CONTENTS XI

Bibliography 121

List of Tables

—Body of the Dissertation—

1.1 Dissimilarity relation defined on the attribute Job 15
1.2 The Threshold Algorithm - an example with 3 lists 27
1.3 Excerpt of the BookDB relation . 36
1.4 Excerpt of the EmpDB relation . 39
1.5 Fuzzy relations : (a) EmpDBAge=young (b) EmpDBSalary=reasonable 39
1.6 The fuzzy relation EmpDB(Age=young AND Salary=reasonable) 39

2.1 Raw data (R) . 51
2.2 Grid-cells mapping . 51
2.3 Example of linguistic label combination . 60
2.4 Q1 results . 62

3.1 Utility vectors and ξ-values . 104
3.2 δLO-values . 106
3.3 σ-values . 107
3.4 σk-values - (I1, I2) . 112
3.5 σk-values - (H1, H2) . 113
3.6 σk-values - (K1, K2) . 113

XIII

List of Figures

—Body of the Dissertation—
1 (a) The warehouse approach (b) The metasearch approach 2
2 ESRA architecture for the warehouse approach . 6
3 ESRA architecture for the metasearch approach 7

1.1 Lattice of generalized queries of q (cf. [Mot86b]) 12
1.2 TAH defined on the attribute Salary . 13
1.3 Lattice of possible sub-queries of q . 14
1.4 Nearest neighbor query types . 18
1.5 Example of hierarchical categorization of query results 30
1.6 Example of a grid in two dimensions . 32
1.7 An example of a personalization graph, indicating among others a preference for

movies of duration around 2h and a big concern about the genre of a movie.
The first value between brackets indicates the preference for the presence of
the associated value, the second indicates the preference for the absence of the
associated value. The function e stands for an elastic preference. (cf. [KI05]) . . 34

1.8 An example of fuzzy partition defined for the attribute Salary 37
1.9 The fuzzy sets (values) young and reasonable . 38
1.10 The DBLP database . 41
1.11 Tuple trees for query q = ‘Hristidis Vagelis and Papakonstantinou Yannis’ 43
1.12 Basic database searching process . 44
1.13 A classification of advanced database query processing techniques 45

2.1 Fuzzy linguistic partition defined on the attribute Income 50
2.2 Fuzzy linguistic partition defined on the attribute Age 51
2.3 Example of SAINTETIQ hierarchy . 52
2.4 Summary Notations . 53
2.5 Evolution of the Summary Utility U . 55
2.6 Summary hierarchy HR of the data set R . 58
2.7 Comparison of linguistic label sets z.A and QA (cf. [VRUM04]) 61

XV

XVI LIST OF FIGURES

2.8 Summary z1 . 65
2.9 An example of ESA’s results . 66
2.10 Rearranging ESA’s results . 67
2.11 The user label well-located (dashed line) is rewritten with the summary labels

downtown and town . 70
2.12 The behavior of σ . 71
2.13 Time cost comparison . 74
2.14 Compression rate comparison . 75
2.15 Dissimilarity comparison . 76
2.16 The number of SHOWTUPLES/SHOWCAT operations 77
2.17 Effectiveness of ESRA regarding the precision of the user query 78

3.1 (a) Horizontally fragmented data (b) Vertically fragmented data 81
3.2 Summary hierarchy HR of the data set R . 85
3.3 HR1

and HR2
. 85

3.4 HR′

1
and HR′

2
. 86

3.5 z! = r1111∪̃ r211 . 86
3.6 z! = r′12!̃" r′22 . 87
3.7 GO-GMA on HR1

and HR2
. 91

3.8 LO-GMA on HR1
and HR2

. 92
3.9 UIA2in1 (i.e., HR2

in HR1
) . 94

3.10 UAA of HR1
and HR2

. 96
3.11 SOJA1→2 on HR′

1
and HR′

2
. 98

3.12 TAJA on HR′

1
and HR′

2
. 101

3.13 Time cost comparison - (I1, I2) . 109
3.14 Time cost comparison - (J1, J2) . 109
3.15 Time cost comparison - (H1, H2) . 110
3.16 Average depth comparison - (I1, I2) . 111
3.17 Average width comparison - (I1, I2) . 111
3.18 Average depth comparison - (H1, H2) . 112
3.19 Average width comparison - (H1, H2) . 112

Introduction

With the advent of the World Wide Web, the mass of data daily pouring onto us or at least
standing at our free disposal is increasing with an enormous pace. This immense quantity of
available data offers us not only an unprecedented wealth of riches and possibilities, it also
introduces a new challenge : retrieving relevant data accurately and quickly without being dis-
tracted by irrelevant data. In fact, searching the World Wide Web is often like finding a needle
in a haystack since the right information users want likely would remain buried under a mass of
irrelevancies. This thesis presents new techniques to meet this challenge. In the following, we
describe the context, the motivation, the main contributions and the structure of the thesis.

Context

With the rapid development of the World Wide Web, more and more accessible databases
are available online. Such databases are usually called “Web databases”. From this angle, the
World WideWeb can be divided into two parts [Ber01] : Surface Web and DeepWeb (or Hidden
Web). The Surface Web refers to the static Web pages which can be accessed directly through
URL links such as personal homepages, while the Deep Web refers to the Web pages which are
hidden behind query interfaces (usually an HTML form) and are dynamically generated byWeb
databases such as www.amazon.com, www.eBay.com, www.cars.com and www.realestate.com.
The Deep Web is becoming a very important information resource. In fact, a recent survey
[Ber01] indicates that the Web has about 550 billion Web pages and only about 1% of them are
in the Surface Web while the rest is in the Deep Web.

There are mainly two categories of Web databases in the Deep Web. One is the unstruc-
tured Web database that returns unstructured data objects, e.g., text or image, in response to
user queries. The other is the structured (or relational) Web database that returns data objects
as structured records with multiple fields, e.g., a query against the Web database of the book
vendor www.amazon.com returns the title, authors, publisher, price, ISBN, etc. of qualifying
books. In this thesis we mainly focus on structured Web databases for the following reasons.
Firstly, a recent study [CHL+04] indicates that 80% of online databases are structured data-
bases. Secondly, the large amounts of structured data, amassed in structured Web databases, are
of greater interest to users who are looking for information in specific domains such as book,

1

2 Introduction

real estate, automobile, or air travel. For simplicity, we use the term “Web database” in the
following sections to refer to “structured Web database”.

Data residing in Web databases are guarded by query interfaces and, therefore, beyond the
reach of traditional search engines. In fact, standard search engines such as Google that gather
information by crawling the Web cannot index the content of these Web databases, as the en-
gine would have to fill meaningful inputs in query interfaces for retrieving such dynamically
generated data. This means that the main way people access Web databases is through their
query interfaces. However, while there are myriad useful Web databases for any domain of in-
terest (e.g., www.amazon.com, www.barnesandnoble.com, www.alapage.com, etc. for books),
users often have difficulty in first finding the right Web databases to query in order to retrieve
the desired information. Furthermore, these Web databases provide similar or related content
but with varied coverage and querying capabilities. Consequently, users often need to interact
with multiple Web databases, understand their query syntaxes, formulate separate queries, and
compile query results from different Web databases. This can be an extremely time-consuming
and labor-intensive process. To enable a “one-stop” access for such a wealthy amount of high
quality data, there are two major kinds of design choices among others1 : “warehouse” and
“metasearch” approaches (see Figure 1). Both approaches take a set of Web databases related
to a particular domain, and they provide people a uniform access to them.

Figure 1 – (a) The warehouse approach (b) The metasearch approach

1Some Deep Web portal services provide Deep Web directories which classify Web databases in some taxo-
nomies. For example, CompletePlanet (www.completeplanet.com), the biggest Deep Web directory, has collected
more than 7000 Web databases and classified them into 42 topics.

Introduction 3

In the warehouse approach, e.g., Google Shopping2 and MSN Shopping3, the data is ex-
tracted from multiple Web databases in an offline manner. Then, this extracted data is stored in
a centralized database system (or repository) that is responsible of query processing, i.e., user
queries are answered solely based on the data stored in the centralized warehouse.

On the other hand, the metasearch approach, e.g., Wise-Integrator [HMYW04] and Meta-
Querier [CHZ05], provides users with an integrated interface over the query interfaces of mul-
tiple Web databases. The metasearcher performs three main tasks to process a user’s query
filled in the integrated interface : it determines the appropriate Web databases to invoke for a
given user query (database selection), it rewrites the query in a suitable form for each selected
Web database (query rewriting), and finally it retrieves and merges the results from these Web
databases (result merging) before returning them to the user.

Each of the above approaches has its specific advantages and disadvantages. For instance,
the warehouse approach has the advantage of efficient query processing, but its main weakness
is that the data warehouse needs to be updated frequently to reflect the changes (i.e., updates)
in the integrated Web databases. This disadvantage of using a centralized data repository is
overcome by the metasearch approach since user queries are executed directly at the integrated
Web databases and the results are merged on the fly to answer a query. The main disadvantage
of this latter approach, however, is that the user has to wait a long time before the results can be
displayed.

Motivation

In recent years, there has been a great deal of interest in developing effective and efficient
techniques for exploratory search in Web databases. This interest stems from the fact that the in-
creased visibility of these structured data repositories made them accessible to a large number of
lay users, typically lacking a clear view of their content, moreover, not even having a particular
item in mind. Rather, they are attempting to discover potentially useful items. In such retrievals,
whether the warehouse approach or the metasearch approach is followed, queries often result
in too many answers. Not all the retrieved items are relevant to the user. Unfortunately, she/he
often needs to examine all or most of them to find the interesting ones. This too-many-answers
phenomenon is commonly referred to as “information overload” - a state in which the amount
of information that merits attention exceeds an individual’s ability to process it [SV98].

2www.google.com/advanced_product_search
3www.shopping.msn.com

4 Introduction

Information overload often happens when the user is not certain of what she/he is looking
for, i.e., she/he has a vague and poorly defined information need or retrieval goal. In such a
situation, she/he generally pose a broad query in the beginning to avoid exclusion of potentially
interesting results and next, she/he starts browsing the answer looking for something interes-
ting. Information overload makes it hard for the user to separate the interesting items from the
uninteresting ones, thereby leading to potential decision paralysis and a wastage of time and
effort. The dangers of information overload are not to be underestimated and are well illus-
trated by buzzwords such as “Infoglut” [All92], “Information Fatigue Syndrome” [Lew96],
“TechnoStress” [WR97], “Data Smog” [She97], “Data Asphyxiation” [Win98] and “Informa-
tion Pollution” [Nie03]. Whole new fields of psychology have been opened just to deal with the
information overload and with our difficulties and perplexity resulting therefrom.

In the context of today’s Web databases, automated ranking and clustering of query re-
sults are used to reduce information overload. Automated ranking-based techniques first seek
to clarify or approximate the user’s retrieval goal. Then, they assign a score to each answer,
representing the extent to which it is relevant to the approximated retrieval goal. Finally, the
user is provided with a ranked list, in descending order of relevance, of either all query results
or only a top-k subset. In contrast, clustering-based techniques assist the user to clarify or refine
the retrieval goal instead of trying to learn it. They consist in dividing the query result set into
dissimilar groups (or clusters) of similar items, allowing users to select and explore groups that
are of interest to them while ignoring the rest. However, both of these techniques present two
major problems :

1. the first is related to relevance. With regard to automated ranking-based techniques, the
relevance of the results highly depends on their ability to accurately capture the user’s
retrieval goal, which is not an obvious task. Furthermore, such techniques also bring
the disadvantage of match homogeneity, i.e., the user is often required to go through a
large number of similar results before finding the next different result. With regard to
clustering-based techniques, there is no guarantee that the resulting clusters will match
the meaningful groups that a user may expect. In fact, most clustering techniques seek to
only maximize (or minimize) some statistical properties of the clusters (such as the size
and compactness of each cluster and the separation of clusters relative to each other) ;

2. the second is related to scalability. Both ranking and clustering are performed on query
results and consequently occur at query time. Thus, the overhead time cost is an open
critical issue for such a posteriori tasks. This problem is further exacerbated in the case
of the metasearch approach due to the communication delay required to gather the results

Introduction 5

from multiple Web databases located at different sites connected by a network.

As a consequence, investigations into new effective and efficient techniques for dealing with
the huge amount of data reachable by querying Web databases remain topical.

Contribution

In this thesis we investigate a simple but useful strategy to alleviate the two previously
mentioned problems (i.e., relevance and scalability), in both the warehouse and the metasearch
approaches. Generally speaking, we propose novel algorithms to quickly provide users with
approximate but very convenient for decision support, representations of their query results.
These algorithms operate on pre-computed knowledge-based summaries of the data, instead of
the data itself. The underlying summarization technique used in this thesis is the SAINTETIQ
model [RM02, SPRM05], which is a domain knowledge-based approach that enables summa-
rization and classification of structured data stored into a database. SAINTETIQ first uses prior
domain knowledge to transform raw data into high-level representations (summaries) that are
more suitable for decision making. Then it applies a hierarchical clustering algorithm on these
summaries to provide multi-resolution summaries (i.e., summary hierarchy) that represent the
database content at different abstraction levels.

The main contributions of this thesis are the following.
In the warehouse approach, our first contribution [BVRM08] consists in proposing an effec-

tive and efficient algorithm coined Explore-Select-Rearrange (ESRA) that provides users with
hierarchical clustering schemas of their query results. Given a user query, the ESRA algorithm
(i) explores the summary hierarchy (computed offline using the SAINTETIQ model) of the
whole data stored in the warehouse ; (ii) selects the most relevant summaries to that query ; (iii)
rearranges them in a hierarchical structure based on the structure of the pre-computed summary
hierarchy and (iv) returns the resulting hierarchy to the user. Each node (or summary) of the
resulting hierarchy describes a subset of the result set in a user-friendly form based on domain
knowledge. The user then navigates through this hierarchy structure in a top-down fashion,
exploring the summaries of interest while ignoring the rest. Note that the data warehouse is
accessed only when the user requests to download (Upload) the original data that a potentially
relevant summary describes. The above process is sketched in Figure 2. Experimental results
show that the ESRA algorithm is efficient and provides well-formed (tight and clearly separated)
and well-organized clusters of query results. Thus, it is very helpful to users who have vague
and poorly defined retrieval goals or are interested in browsing through a set of items to explore

6 Introduction

what choices are available.

Figure 2 – ESRA architecture for the warehouse approach

The ESRA algorithm assumes that the summary hierarchy of the queried data is already built
using SAINTETIQ and available as input. However, the SAINTETIQ model requires full access
to the data which is going to be summarized, i.e., all data has to be located at the site where it
is summarized. This requirement severely limits the applicability of the ESRA algorithm in the
metasearch approach since collecting data at one location is against the main motivation (i.e.,
decentralized management of distributed data) behind this approach. The second contribution
[BRM07, BRM08] of this thesis is a solution for summarizing distributed data without a prior
“unification” of the data sources. We assume that the underlying Web databases maintain their
own summary hierarchies (local models), and we propose new algorithms for merging them
into a single final one (global model). The main idea of these algorithms consists in applying
innovative merges on the local models to provide the global one without scanning the raw data.
The global summary hierarchy can then be used, as in the warehouse approach, to answer a
query submitted to the metasearcher. Note that in the case where Web databases use the ESRA
algorithm to handle queries, our merging algorithms can be directly applied to local ESRA’s
results (partial results) to provide the user with a single, global hierarchical clustering schema
of the global result set (see Figure 3). This architecture is consistent since ESRA’s results are
also summary hierarchies. An experimental study shows that our merging algorithms result in
high quality clustering schemas of the entire distributed data and are very efficient in terms of
computational time.

Introduction 7

Figure 3 – ESRA architecture for the metasearch approach

Roadmap

The rest of this thesis is organized as follows. In Chapter 1, we first survey techniques
that have been proposed in the literature to provide users with effective and efficient ways
to access Web databases, and then propose a categorization of these techniques based on the
problem that they are supposed to address. Then, in Chapter 2 we present the ESRA algorithm
and the query answering system that supports ESRA-based summary hierarchies. Our solutions
for summarizing distributed data are presented in Chapter 3. Finally, we conclude and discuss
future directions of research.

CHAPTER 1
Advanced Query

Processing in Databases
Introduction

As internet becomes ubiquitous, many people are searching their favorite houses, cars, mo-
vies, cameras, restaurants, and so on over the Web. Most web sites4 use databases to store their
data and provide SQL-based query interfaces for users to interact with databases. Database sys-
tems provide well-maintained and high-quality structured data. However, unlike Web search
engines that take a few keywords, look up the index and provide a listing of best-matching web
pages, they expect users to know the name of the relation to query, the field to look in, and at
times even the field type [Nam05]. Moreover, database query processing models have always
assumed that the user knows what she/he wants and is able to formulate a query that accurately
expresses her/his needs. Therefore, most database systems have always used a boolean model
of query processing where there is a set of answer tuples that exactly satisfy all the constraints
of the query and thus are equally relevant to the query.

While extremely useful for the expert user, the above retrieval model is inadequate for lay
users who cannot articulate the perfect query for their needs - either their queries are very spe-
cific, resulting in no (or too few) answers, or are very broad, resulting in too many answers.
Hence, to obtain a satisfactory answer from a database, users must reformulate their queries a
number of times before they can obtain a satisfactory answer. However, this process is frustra-
ting, tedious and time-consuming.

In this chapter, we review and discuss several research efforts that have attempted to handle
the dual issues of empty and many answers. Although the list of approaches described below
is not exhaustive, it provides a representative list of some commonly used approaches. The
remaining of this chapter is organized as follows. In Section 1.1, we review a number of ap-

4A July 2000 study [Ber01] estimated 96, 000 relational databases were online and the number has increased
by 7 times in 2004 [CHL+04].

9

10 CHAPTER 1 — Advanced Query Processing in Databases

proaches for handling the empty-answer problem, that is, the problem of not being able to
provide the user with any data fitting her/his query. Section 1.2 presents some works addres-
sing the many-answers problem, i.e., the situation where the user query results in overabundant
answers. Then, in Section 1.3 we give an overview of flexible and user-friendly querying tech-
niques, the main objective of which is to provide intelligent interfaces to access databases in
a more human-oriented fashion and hence diminish the risk of both empty and many answers.
Finally, a discussion is presented in Section 1.4.

1.1 Handling the Empty-Answer Problem

Most probably, one has encountered answers like “no houses, hotels, vehicles, flights, etc.
could be found that matched your criteria ; please try again with different choices”. The case of
repeatedly receiving empty query result turns out to be extremely disappointing to the user, and
it is even more harmful for the e-merchant.

This problem, which is known as empty-answer problem, happens when the user submits
a very restrictive query. A simple way to remedy this problem is to retry a particular query re-
peatedly with alternative values of certain conditions until obtaining satisfactory answers from
a database. This solution, however, can be applied only if the user is aware of the close alter-
natives, otherwise it is infeasible (especially for users who lack knowledge about the contents
of the database they wish to access). Many techniques are proposed to overcome this problem,
namely query relaxation (Section 1.1.1) and similarity based search (Section 1.1.2).

1.1.1 Query Relaxation

Query relaxation aims to modify the failed query to provide the user with some alterna-
tive answers or at least to identify the cause of the failure, rather than just to report the empty
result. A database system with such capability is also known as a cooperative information sys-
tem [GGM94].

Consider a database EmpDB with information on employees, including their Name, Age,
Gender, Salary, Job and Department, and a query “get all employees who make less
than 15Ke and work in the R&D department”. Note that this query may fail for two different
reasons [Mot86b] : either no employee in R&D department makes less than 15Ke or the com-
pany does not have an R&D department. The former is a genuine null answer (i.e., the null
answer is appropriate since query fails to match any data), while the latter is a fake null ans-
wer (i.e., it is due to the erroneous presupposition that the company has an R&D department).

CHAPTER 1 — Advanced Query Processing in Databases 11

Unfortunately, current database systems will simply return a null answer. Clearly, a fake null
is unsatisfactory, since it may be interpreted by the user as a genuine null and consequently
also as an affirmation of the user’s presupposition (i.e., the company has an R&D department).
Suppose asking this query to a human expert. In the first case, the response would be “there are
no employees in the R&D department who earn less than 15Ke but there are some who make
less than 20Ke”. However, the response in the second scenario would be “there is no R&D
department”.

The first system with such human behavior was developed by Kaplan (CO-OP5 [Kap83])
and was designed for natural language interaction. The main idea of CO-OP is to follow up a
query that failed with several more general queries (i.e., the query with some of its conditions re-
laxed). If even these general queries fail, then the conclusion is that some of the presuppositions
of the user who composed the original query are erroneous. If all these general queries succeed,
a query that fails produces a genuine null. Furthermore, assume q′ and q′′ are both relaxations
of the failed query q, but q′′ is more general than q′. If both succeed, then the partial answer
returned by q′ is better (i.e., the best the system could do to satisfy the initial query q). If both
fail, then the erroneous presupposition indicated by q′′ is stronger. This leads to the conclusion
that only Minimal Generalizations that Succeed (MGSs) and maXimal Generalizations that Fail
(XGFs) are significant. Indeed, XGFs provide explanation for the failure and some assistance
for relaxing the query into a non-failing query, whereas MGSs produce alternative answers to
the failing query.

Since then, several systems that adapt CO-OP’s techniques to relational databases have
been proposed, including SEAVE [Mot86b, Mot86a], CoBase [CCH94, CYC+96] and God-
frey’s system [God97]. These systems differ only in the way they perform generalizations.
SEAVE [Mot86a, Mot86b] considers all possible generalizations of the query. CoBase [CCH94,
CYC+96] uses prior knowledge of the domain to guide the generalization process. Godfrey’s
system [God97] generalizes the query by only removing some of its conditions.

SEAVE

Given a query that fails, SEAVE6 [Mot86b, Mot86a] constructs a lattice of its generalized
queries and uses it to find all MGSs/XGFs. The query generalizations are obtained by relaxing
to a degree some of the conditions in the query.

5A COOPerative Query System.
6Supposition Extraction And VErification.

12 CHAPTER 1 — Advanced Query Processing in Databases

As an example (cf. [Mot86b]), consider the following query q over the Employees’ relation
EmpDB :

q ≡

SELECT *
FROM EmpDB

WHERE Age ≤ 30

AND Gender = F
AND Salary ≥ 40Ke

Figure 1.1 shows a portion of the lattice of relaxations of q generated by SEAVE, where
nodes indicate generalizations (or presuppositions) and arcs indicate generalization relation-
ships. (x, y, z) denotes a query which returns the employees whose age is under x, whose sex is
y, and whose yearly salary is at least z. The symbol * indicates any value ; once it appears in a
query, this query cannot be generalized any further. Assume in this example that q fails and all
its relaxed queries are successful queries except those that are marked

√
in Figure 1.1 (i.e., q1,

q3 and q8). Thus, the failed relaxed queries q1 and q3 are XGFs, whereas the successful relaxed
queries q2, q4, q6 and q15 are MGSs. The queries q2, q4, q6 and q15 produce alternative answers
to the original query q : (q2) all employees under 30 who earn at least 40Ke ; (q4) all female
employees under 32 who earn at least 40Ke ; (q6) all female employees under 31 who earn at
least 39Ke ; and (q15) all female employees under 30 who earn at least 37Ke . These answers
can be delivered by SEAVE to the user as “the best it could do” to satisfy the query q.

Figure 1.1 – Lattice of generalized queries of q (cf. [Mot86b])

The main drawback of SEAVE is its high computational cost, which comes from compu-
ting and testing a large number of generalizations (i.e., various combinations of the values of
attributes) to identify MGSs/XGFs.

CHAPTER 1 — Advanced Query Processing in Databases 13

CoBase

The CoBase7 [CCH94, CYC+96] system augments the database with Type Abstraction Hie-
rarchies (TAHs) to control the query generalization process. A TAH represents attribute values
at different levels of granularity. The higher levels of the hierarchy provide a more abstract data
representation than the lower levels (or attribute values). Figure 1.2 shows an example of TAH
for attribute Salary in which unique salary values are replaced by qualitative ranges of high,
medium, or low. CoBase automatically generates the TAHs by clustering all the tuples in the
database [CCHY96, MC93]. To relax a failing query, CoBase uses some types of TAH-based
operators such as generalization (moving up the TAH) and specialization (moving down the
TAH). For example, based on the type abstraction hierarchy given in Figure 1.2, the condition
‘Salary = 20Ke’ could be generalized (i.e., move-up operator) to ‘Salary = medium’.

Figure 1.2 – TAH defined on the attribute Salary

CoBase considerably reduces the number of generalizations to be tested. Note that how
close the results are to the user’s initial expectations depends on the TAHs used.

Godfrey’s System

In [God97], Godfrey proposed to generalize the user failed query by just removing some
of its conditions. Thus, instead of searching all MGSs/XGFs, the proposed system looks for all
maXimal Succeeding and Minimal Failing Sub-queries (XSSs and MFSs, respectively) of the
failed query. The author also proves that this problem is NP-hard. Indeed, the size of the search
space grows exponentially with the number of attributes used in the failed query, i.e., if a query
involves m attributes, there exist (2m − 2) sub-queries that have to be examined, disregarding
the query itself and the empty query ∅. For instance, the lattice of the possible sub-queries of q
is illustrated in Figure 1.3, using the same notation as in Figure 1.1.

Hence, recently some heuristics [Mus04, ML05, NK04] have been proposed to prune the
search space. In [Mus04] and [ML05], Muslea et al. respectively used decision tree [Qui93]

7A Cooperative DataBase System

14 CHAPTER 1 — Advanced Query Processing in Databases

Figure 1.3 – Lattice of possible sub-queries of q

and Bayesian network [FGL98] learning techniques on a randomly-chosen subset of the target
database to identify potential relaxations (or sub-queries) of the failing query to be tested. Then,
they use nearest-neighbor techniques to find the relaxed query that is the most similar to the
failing query. Nambiar et al. [NK04] employed approximate functional dependency [KM92] to
get the importance degree of the schema attributes in a database, according to which the order
of the relaxed attributes is specified. The data samples used to compute the importance degree
are also chosen randomly. Note that both Muslea et al’s [Mus04, ML05] and Nambiar et al’s
[NK04] approaches reduce the search space considerably, but the output relaxed queries, while
succeed, are not necessary XSSs.

1.1.2 Similarity Search

A similarity-based search uses a notion of non-exact matching. In other words, when avai-
lable data stored in the database do not exactly match a user’s query, database records which
best fit (i.e., which are the most similar to) the query are retrieved and ranked according to their
similarity to the query.

Consider a tourist looking for a hotel, with a rent price at 100e a day, and located in the city
center. She/he will unfortunately fail to find such a hotel by means of the traditional database
systems if the city center does not have any hotel rented at that price. However, a similarity-
based search system would return the most similar hotels (i.e., hotels having attributes values
very close to those specified in the query) instead of the empty result set. In fact, the user might
accept a hotel near the city center and the rent price can also be a little lower or higher 100e

per day.
In the literature, several approaches have been proposed to enhance conventional databases

CHAPTER 1 — Advanced Query Processing in Databases 15

with similarity search capabilities, such as ARES [IH86], VAGUE [Mot88], IQE [NK03] and
Nearest-Neighbors [RKV95]. The former three approaches [IH86, Mot88, NK03] make use of
an explicit operator ‘similar-to’, which extends the usual equality. The latter [RKV95] views
the records in the database as points in a multidimensional space and the queries about these
records are transformed into the queries over this set of points.

ARES

ARES8 [IH86] is the first system that has addressed the basic issue of similarity matching.
It introduces a new operator named ‘similar-to’ and denoted ≈, meaning “approximately equal
to”.≈ can be used as a comparison operator inside queries instead of the usual equality operator
(=) in order to express vague conditions, e.g., A ≈ v will select values of an attribute A that
are similar to a constant v. The interpretation of ≈ is based on dissimilarity relations tied to
each domain. A dissimilarity relation, DRA(A1, A2, Distance), on the domain DA of attribute
A contains triples of the form (v1, v2, dist), where v1 ∈ DA , v2 ∈ DA and dist represents
the distance (dissimilarity) value between v1 and v2 (a smaller value means v1 and v2 are more
similar). Table 1.1 illustrates an example dissimilarity relation for the attribute Job of a relation
EmpDB.

Table 1.1 – Dissimilarity relation defined on the attribute Job

Job1 Job2 Distance

Student PhD. Student 1

Student Supervisor 3

Supervisor PhD. Student 2

.

In a given query, which contains vague conditions (i.e., conditions involving the similarity
operator ≈), the following process takes place. First of all, for each vague condition, the user
gives a maximum accepted distance value. ARES then accesses dissimilarity relations to pro-
duce a boolean query which will be processed by a conventional database system. For example,
the vague condition A ≈ v is transformed to the boolean one A ∈ {x ∈ DA|(v, x, dist) ∈
DRA ∧ dist ≤ τ}, where τ is the maximum allowed distance given by the user on DA. In
other words, x and v are considered somewhat close as far as dist ≤ τ . The produced query

8Associative Information REtrieval System

16 CHAPTER 1 — Advanced Query Processing in Databases

will then select acceptable tuples for which a global distance is calculated, by summing up the
elementary distances tied to each vague condition in the query. Finally, the tuples are sorted
in ascending order according to their global distance (dissimilarity) values and the system will
output as many tuples as possible within the limit that has been specified by the user.

The main drawback of ARES is its high storage and maintenance costs of dissimilarity re-
lations : each dissimilarity relation needsm2 entries with respect tom different attribute values
in the corresponding conventional relation ; and when a new attribute value is added, 2m + 1

additional entries are necessary for the corresponding dissimilarity relation [DKW02]. Moreo-
ver, ARES does not allow defining dissimilarity between attribute values for infinite domains
because the dissimilarities can only be defined by means of tables.

VAGUE

VAGUE9 [Mot88] is a system that resembles ARES in its overall goals. It is an extension
to the relational data model with data metrics and the SQL language with a comparator ≈.
Indeed, each attribute domainD is endowed with a metricMD to define distance (dissimilarity)
between its values.MD is a mapping from the cartesian productD×D to the set of non-negative
reals which is :

• reflexive, i.e.,MD(x, x) = 0, for every value x in D ;
• symmetric, i.e.,MD(x, y) = MD(y, x), for all values x and y in D ; and
• transitive, i.e.,MD(x, y) ≤MD(x, z) + MD(z, y), for all values x, y and z in D.

Furthermore,MD is provided with a radius r. This notion is very similar to the maximum
dissimilarity allowed in ARES. Thus, two values v1 and v2 in D are considered to be similar
if MD(v1, v2) ≤ r. During query processing, each vague condition expressed in the query is
translated (in a similar way to ARES) into a boolean one using the appropriate metric and the
resulting query is used to select tuples. Then, an ordering process takes place, relying on the
calculation of distances (by means of associated metrics) for the elementary vague conditions.
The global distance attached to a selected tuple in case of a disjunctive query is the smallest
of distances related to each vague condition. For conjunctive queries, the global distance is
obtained as the root of the sum of the squares (i.e., the Euclidean distance) of distances tied to
each vague condition.

9A User Interface to Relational Databases that Permits VAGUE Queries

CHAPTER 1 — Advanced Query Processing in Databases 17

Note that in VAGUE, the users cannot provide their own similarity thresholds for each vague
condition but when a vague query does not match any data, VAGUE doubles all searching radii
simultaneously. Thus the search performance can be considerably deteriorated.

IQE

Another system that supports similarity-based search over relational databases is the IQE10

system [NK03]. IQE converts the imprecise11 query into equivalent precise queries that ap-
pear in an existing query workload. Such queries are then used to answer the user-given im-
precise query. More precisely, given the workload, the main idea of IQE is to map the user’s
imprecise query qi to a precise query qp by tightening the operator in the query condition.
For example, tightening the operator ‘similar-to’ (≈) to ‘equal-to’ (=) in the imprecise query
‘Salary ≈ 40Ke’ gives us the precise query ‘Salary = 40Ke’. Then IQE computes the
similarity of qp to all queries in the workload. To estimate the similarity between two queries,
IQE uses the document similarity metric (Jaccard Similarity [HGKI02]) over the answer sets of
the two queries. A minimal similarity threshold τ is used to prune the number of queries similar
to qp. Finally, the answer to qi is the union of the answers of the precise queries similar to qp,
with each tuple in the union inheriting the similarity of its generating precise query. Although
IQE is a useful system, a workload containing past user queries is required, which is unavailable
for new online databases.

Nearest Neighbors

In the approach known as nearest neighbors, database records and queries are viewed as
points (i.e., feature vectors) in a multidimensional space S with a metric MS (e.g., the Eu-
clidean distance). Here a typical query is given by an example [Zlo75] and its result set cor-
responds to the set of database records which are close to it according toMS . For instance, in
image databases, the user may pose a query asking for the images most similar to a given image.
This type of query is known as nearest neighbor query [RKV95] and it has been extensively stu-
died in the past [BBKK97, IM98, AMN+98, BGRS99, WB00, Cia00, FSAA01, FTAA01].

10Imprecise Query Engine
11The authors refer to queries that involve the similarity operator (≈) as imprecise queries while those involving

only the usual equality (=) are referred as precise queries.

18 CHAPTER 1 — Advanced Query Processing in Databases

The two most important types of nearest neighbor queries (NNQ) in databases are :

• ε-Range Query. The user specifies a query object q ∈ S and a query radius ε. The system
retrieves all objects from the database DB ⊂ S that have a distance from q not exceeding
ε (Figure 1.4-(a)). More formally, the result set RQq

ε is defined as follows :

RQq
ε = {t ∈ DB|MS(q, t) ≤ ε}

• k-Nearest Neighbor Query. The user specifies a query object q and the cardinality k of
the result set. The system retrieves the k objects from the database DB ⊂ S that have
the least distance from q (Figure 1.4-(b)). More formally, the result set NNq

k is defined as
follows :

∀t ∈ NNq
k , ∀t

′ ∈ DB\NNq
k ,MS(q, t) < MS(q, t′)

Figure 1.4 – Nearest neighbor query types

A naive solution for answering a given NNQ query is to scan the entire database and test for
each object if it is currently among the results. Obviously, this solution is very expensive and not
feasible for a very large set of objects. Several multidimensional index structures, that enable
to prune large parts of the search space, were proposed. The most popular are R-Tree [Gut88]
and its variants R*-tree [BKSS90], X-Tree [BKK96], SS-Tree [WJ96], etc. For a more detailed
elaboration on multidimensional access methods and on the corresponding query processing
techniques, we refer the interested reader to [GG98] and [BBK01].

While the approaches described in both previous subsections differ in their implementa-
tion details, their overall goal is the same — allowing the database system to return answers,
related to the failed query, which is more convenient than returning nothing. In the following
section, we review some works addressing the many-answers problem, i.e., the situation where
the original query results in overabundant answers.

CHAPTER 1 — Advanced Query Processing in Databases 19

1.2 Handling theMany-Answers Problem

Due to the ever increasing amount of information stored each day into databases, user’s
queries often result in too many answers - many of them irrelevant to the user. This phenomenon
is also commonly referred to as ‘information overload’, as the user expends a huge amount of
effort sifting through the result set looking for interesting results.

The many-answers problem often stems from the specificity of the user query that is too
general. A solution to reduce the number of answers consists in narrowing the query by adding
new conditions. However, it is quite impossible to find conditions that can effectively restrict
the retrieved data without any knowledge of the database content. To circumvent this initial
issue, several techniques have been proposed, including automated ranking (Section 1.2.1) and
clustering (Section 1.2.2) of query results.

1.2.1 Automated Ranking of Query Results

Automated ranking of query results is a popular aspect of the query model in Information
Retrieval. It consists in providing a user with a list ranked in descending order of relevance
(though the user may not have explicitly specified how) of either all query results or only the
top-k subset, rather than thousands of answers ordered in a completely uninformative way. In
contrast, the Boolean query model used in traditional database systems does not allow for any
form of relevance ranking of the retrieved tuple set. Indeed, all tuples that satisfy the query
conditions are returned without any relevance distinction between them. Thus, the result of any
query is simply a partition of the database into a set of retrieved tuples, and a set of not-retrieved
tuples. It is only recently that top-k queries have been introduced (see [IBS08] for a survey).
Top-k queries provide the user with the kmost relevant results of a given query ranked according
to some scoring function. Consider a realtor database HouseDB with information on houses
for sale, including their Price, Size, Age, City, Zip, Location, SchoolDistrict,
View, #Bedrooms, #Bathrooms, Garage and BoatDock. The following query is an
example of a top-k query :

SELECT Price AS p, Size AS s, Age AS a
FROM HouseDB

WHERE Zip = 75000
ORDER BY f(dPrice(p), dSize(s), dAge(a))

LIMIT 5

where LIMIT limits the number of results reported to the user, dA(x)measures the extent (score)

20 CHAPTER 1 — Advanced Query Processing in Databases

to which the value x of attribute A is relevant to the user and f determines how to combine the
ranking according to each feature in an overall ranking. As one can observe, a fundamental re-
quirement of top-k based approaches is that they require a scoring function that specifies which
result from a large set of potential answers to a query is most relevant to the user. Achieving
this requirement is generally not a straightforward endeavor, especially when users do not really
know what might be useful or relevant for them.

Automatic methods of ranking answers of database (DB) queries have been recently in-
vestigated to overcome this problem, most of them being an adaptation of those employed in
Information Retrieval (IR). Before discussing these methods in detail, we first review existing
Information Retrieval ranking techniques. Then, we discuss related work on top-k query pro-
cessing techniques in relational database systems.

1.2.1.1 IR Ranking Techniques

Automated ranking of query results has been extensively investigated in Information Re-
trieval [SM86, Rob97, BP98, BH98, Kle99, BRRT01, NZJ01]. Indeed, the web pages that are
returned as a result to a query expressed by a set of keywords are automatically ranked so that
the more ‘relevant’ the page is to the query, the higher it is ranked. Furthermore, among the web
pages that are equally relevant, those that are more ‘important’ should precede the less ‘impor-
tant’ ones. Models that have been used for this purpose include vector space and probabilistic
information retrieval models which are eventually combined with link-based ranking methods
to offer the user not only relevant documents but also high quality Web pages.

Vector Space Model

Vector space model [SM86] represents documents as term vectors in an N -dimensional
space where N corresponds to the number of terms in the collection. Each element in a vector
captures a term and its weight, defined as w = tf ∗ idf, where tf is the term frequency in
the document and idf is the inverse document frequency reflecting the general importance of
the term in the entire document collection. Specifically, idf decreases the weight of terms that
occur in numerous documents and, therefore, have low discriminating value. Queries are also
represented as vectors of keywords. Hence, given a keyword query, the retrieved documents
are ranked based on their similarity to the query. A range of measures exists to calculate this
similarity ; the most common one is the cosine similarity measure [BYRN99] defined as the
Cosine of the angle between the query and the document vector representations.

CHAPTER 1 — Advanced Query Processing in Databases 21

Probabilistic Model

In the probabilistic model [Rob97], documents and queries are also viewed as vectors, whe-
reas the vector space similarity measure is replaced by a probabilistic matching function. More
precisely, given a document collection D and a query q, probabilistic-based approaches for-
mally rank documents by decreasing order of their odds of relevance to non-relevance using a
score function defined as follows :

score(d) =
P (Rel|d)

P (Rel|d)
=

P (d|Rel)P (Rel)
P (d)

P (d|Rel)P (Rel)
P (d)

≈ P (d|Rel)

P (d|Rel)

where Rel denotes the set of relevant documents, Rel = (D \ Rel) the set of irrelevant ones
and P (Rel|d) (resp., P (Rel|d)) the probability of relevance (resp., non-relevance) of document
d w.r.t. the query q. The higher the ratio of the probability of relevance to non-relevance is w.r.t.
a document d, then the more likely document d is to be relevant to a user query q.

In the above formula, the second equality is obtained using the Bayes formula [Bay63], whe-
reas the final simplification follows from the fact that p(Rel) and p(Rel) are the same for every
document d and thus are mere constant values that do not influence the ranking of documents.
Note that Rel and Rel are unknown at query time and consequently are estimated as accura-
tely as possible, on the basis of whatever data has been made available to the system for this
purpose. The usual techniques in Information Retrieval make some simplifying assumptions,
such as estimating Rel through user feedback, approximating Rel as D (since Rel is usually
small compared toD) and assuming some form of independence between query terms (e.g., the
Binary Independence Model, the Linked Dependence Model, or the Tree Dependence Model
[YM98, GF04]). INQUERY [CCH92] is an example of this model.

Link-based Ranking Methods

The link-based ranking methods are based on how the pages on the Internet link to each other
[BP98, BH98, Kle99, BRRT01, NZJ01]. Indeed, the relevance of a page is not only decided
by the page content, but is also based on the linkage among pages. An example of a ranking
algorithm based on link analysis is the PageRank algorithm [BP98] introduced by Google12.
PageRank computes Web page scores by exploiting the graph inferred from the link structure of
the Web. Its underlying motivation is that pages with many backlinks are more important than
pages with only a few backlinks. So basically, a page’s rank in Google’s search results is higher

12http ://www.google.com

22 CHAPTER 1 — Advanced Query Processing in Databases

if many, preferably important, pages link to that page. The higher the PageRank is, the more
relevant the page is (according to Google). Another example of a ranking algorithm using link
analysis is the HITS13 algorithm [Kle99]. The HITS algorithm suggests that each page should
have a separate ‘authority’ rating (based on the links going to the page) and a ‘hub’ rating (based
on the links going from the page). The intuition behind the algorithm is that important hubs have
links to important authorities and important authorities are linked by important hubs.

For more details and more general sources about Information Retrieval ranking methods,
please refer to [MRS08].

1.2.1.2 DB Ranking Techniques

Automated ranking of database query results has been extensively investigated in recent
years. Examples include [CD03], [CDHW04], [SWHL06], [WFSP00] and [MBKB02]. These
approaches take a user’s query - which typically specify simple selection conditions on a small
set of attributes - and use diverse knowledge sources to automatically estimate the ranking
of its results. For instance, the systems proposed in [CD03], [CDHW04] and [SWHL06] use
workload and/or database statistics while [WFSP00] and [MBKB02] use relevance feedback
from the user.

Chaudhuri et al’s System

In [CD03], the authors proposed a ranking function (QFW) that leverages workload infor-
mation to rank the answers to a database query. It is based on the frequency of occurrence
of the values of unspecified14 attributes. For example, consider a home-buyer searching for
houses in HouseDB. A query with a not very selective condition such as ‘City = Paris AND
#Bedrooms = 2’ may result in too many tuples in the answer, since there are many houses
with two bedrooms in Paris. The proposed system uses workload information and examines at-
tributes other than City and #Bedrooms (i.e., attributes that are not specified in the query) to
rank the result set. Thus, if the workload contains many more queries for houses in Paris’s 15th
arrondissement (precinct) than for houses in Paris’s 18th arrondissement, the system ranks two
bedroom houses in the 15th arrondissement higher than two bedroom houses in the 18th arron-
dissement. The intuition is that if the 15th arrondissement is a wonderful location, the workload

13Hyperlink-Induced Topic Search
14In the case of information retrieval, ranking functions are often based on the frequency of occurrence of query

values in documents (term frequency, or tf). However, in the database context, tf is irrelevant as tuples either
contain or do not contain a query value. Hence ranking functions need to consider values of unspecified attributes.

CHAPTER 1 — Advanced Query Processing in Databases 23

will contain many more queries for houses in the 15th than for houses in the 18th. More for-
mally, consider one relation R. Each tuple in R has N attributes A1, . . . , AN . Further, let q be
a user’s query with some number of attributes specified (e.g., A1, A2 . . . Ai and i < N) and the
rest of them unspecified (e.g., Ai+1, . . . , AN). The relevance score of an answer t is defined as
follows :

QFW (t) =
N∑

k=i+1

F (t.Ak)

Fmax

where F (t.Ak) is the frequency of occurrence of value t.Ak of attribute Ak in the workloadW

and Fmax the frequency of the most frequently occurring value inW .

PIR

In the PIR15 system [CDHW04], the authors adapted and applied principles of probabilis-
tic models from Information Retrieval to structured data. Given a query, the proposed ranking
function depends on two factors : (a) a global score that captures the global importance of uns-
pecified attribute values, and (b) a conditional score that captures the strengths of dependencies
(or correlations) between specified and unspecified attribute values. For example, for the query
‘City = Marseille AND View = Waterfront’, a house with ‘SchoolDistrict = Excel-
lent’ gets a high rank because good school districts are globally desirable. A house with also
‘BoatDock = Yes’ gets a high rank because people desiring a waterfront are likely to want a
boat dock. These scores are estimated using past workloads as well as data analysis, e.g., past
workload may reveal that a large fraction of users seeking houses with a waterfront view have
also requested boat docks. More precisely, under the same notations and hypotheses that we
have used for the previous approach, the relevance score of a tuple t is computed as follows :

PIR(t) =
P (Rel|t)
P (Rel|t)

≈
N∏

k=i+1

P (t.Ak|W)

P (t.Ak|R)
∗

N∏

k=i+1

i∏

l=1

P (t.Al|t.Ak,W)

P (t.Al|t.Ak, R)

where the quantities P (t.Ak|W) and P (t.Ak|R) are simply the relative frequencies of each
distinct value t.Ak respectively in the workload W and in the relation R, while the quantities
P (t.Al|t.Ak,W) and P (t.Al|t.Ak, R) are estimated by computing the confidences of pair-wise
association rules [AMS+96] inW and R, respectively. Note that the score in the above formula
is composed of two large factors. The first factor is the global part of the score, while the se-
cond one is the conditional part of the score. This approach is implemented in STAR [KDH+07].

15Probabilistic Information Retrieval

24 CHAPTER 1 — Advanced Query Processing in Databases

Note that in both Chaudhuri’s system [CD03] and the PIR system [CDHW04], the atomic
quantities F (x), P (x|W), P (x|R), P (y|x,W) and P (y|x,R) are pre-computed and stored in
special auxiliary tables for all distinct values x and y in the workload and the database. Then
at query time, both approaches first select the tuples that satisfy the query condition, then scan
and compute the score for each such tuple using the information in the auxiliary tables, and
finally returns the top-k tuples. The main drawback of both [CD03] and [CDHW04] is their high
storage and maintenance costs of auxiliary tables. Moreover, they require a workload containing
past user queries as input, which is not always available (e.g., new online databases).

QRRE

In the QRRE16 system [SWHL06], the authors proposed an automatic ranking method,
which can rank the query results from an E-commerce Web database R using only data ana-
lysis techniques. Consider a tuple t = 〈t.A1, . . . , t.AN〉 in the result set Tq of a query q that is
submitted by a buyer. QRRE assigns a weight wi to each attribute Ai that reflects its importance
to the user. wi is evaluated by the difference (e.g., The Kullback-Leibler divergence [DHS00])
between the distribution (histogram) of Ai’s values over the result set Tq and their distribution
(histogram) over the whole database R. The bigger the divergence, the more Ai is important for
a buyer. For instance, suppose the database HouseDB contains houses for sale in France and
consider the query q with the condition ‘View = Waterfront’. Intuitively, the Price values of
the tuples in the result set Tq distribute in a small and dense range with a relatively high average,
while the Price values of tuples in HouseDB distribute in a large range with a relatively low
average. The distribution difference shows a close correlation between the unspecified attribute,
namely, Price, and the query ‘View = Waterfront’. In contrast, attribute Size is less impor-
tant for the user since its distribution in houses with a waterfront view may be similar to its
distribution in the entire database HouseDB. Besides the attribute weight, QRRE also assigns
a preference score pi to each attribute value t.Ai. pi is computed based on the following two
assumptions :

1. a product with a lower price is always more desired by buyers than a product with a
higher price if the other attributes of the two products have the same values. For example,
between two houses that differ only in their price, the cheapest one is preferred. Hence,
QRRE assigns a small preference score to a high Price value and a large preference
score to a low Price value ;

16Query Result Ranking for E-commerce

CHAPTER 1 — Advanced Query Processing in Databases 25

2. a non-Price attribute value with higher ‘desirableness’ for the user corresponds to a higher
price. For example, a large house, which most buyers prefer, is usually more expensive
than a small one. Thus, in the case of a non-Price attribute Ai, QRRE first converts its
value t.Ai to a Price value pv which is the average price of the products for Ai = t.Ai

in the database R. Then, QRRE assigns a large preference score to t.Ai if pv is large.

Finally, the attribute weight and the value preference score are combined to calculate the
ranking score for each tuple t ∈ Tq, as follows :

QRRE(t) =
n∑

i=1

wipi

The tuples’ ranking scores are sorted and the top-K tuples with the largest ranking scores are
presented to the user first. QRRE is a useful automated ranking approach for the many-answers
problem. It does not depend on domains nor require workloads. However, this approach may
imply high response times, especially in the case of low selectivity queries, since different
histograms need to be constructed over the result set (i.e., at query time).

Feedback-based Systems

Another approach to rank query’s results, which is different from those discussed above, is to
prompt the user for feedback on retrieval results and then use this feedback on subsequent retrie-
vals to effectively infer which tuples in the database are of interest to the user. Relevance Feed-
back techniques were studied extensively in the context of image retrieval [WFSP00, MBKB02]
and were usually paired with the query-by-example approach [Zlo75]. The basic procedure of
these approaches is as follows :

1. the user issues a query ;

2. the system returns an initial set of results ;

3. the user marks some returned tuples as relevant or non-relevant ;

4. the system constructs a new query that is supposed to be close to the relevant results and
far from those which are non-relevant ; and

5. the system displays the results that are most similar to the new query.

This procedure can be conducted iteratively until the user is satisfied with the query results.
Relevance feedback-based approaches provide an effective method for reducing the number of
query results. However, they are not necessarily popular with users. Indeed, users are often re-
luctant to provide explicit feedback, or simply do not wish to prolong the search interaction.

26 CHAPTER 1 — Advanced Query Processing in Databases

Furthermore, it is often harder to understand why a particular tuple is retrieved after the rele-
vance feedback algorithm has been applied.

Once the scoring function is defined, the DB ranking techniques discussed in this subsection
adapt and use available top-k query processing algorithms [IBS08] in order to quickly provide
the user with the k most relevant results of a given query. In the following subsection, we briefly
review top-k query processing methods in relational database systems.

1.2.1.3 Efficient Top-k Query Processing

Assume a relationR with attributesA1, . . . , AN and a query q overR. Further, one supposes
that each tuple t = 〈t.A1, . . . , t.AN〉, in the result set Tq of q, has N attribute-oriented scores
s1, . . . , sN . Each si measures the extent (score) to which the value t.Ai of tuple t on attribute Ai

is relevant to the user. For the top-k problem, Tq could alternatively be seen as a set ofN sorted
lists Li of |Tq| (the number of tuples in Tq) pairs (t, si), t ∈ Tq. Hence, for each attribute Ai,
there is a sorted list Li in which all |Tq| results are ranked in descendant order. Entries in the
lists could be accessed randomly from the tuple identifier or sequentially from the sorted score.
The main issue for top-k query processing is then to obtain the k tuples with the highest overall
scores computed according to a given aggregation function agg(s1, . . . , sN) of the attribute
scores si. The aggregation function agg used to combine ranking criteria has to be monotone ;
that is, agg must satisfy the following property :

agg(s1, . . . , sN) ≤ agg(s′1, . . . , s
′
N) if si ≤ s′i for every i

The naive algorithm consists in looking at every entry (t, si) in each of the sorted lists Li,
computing the overall grade of every object t, and returning the top k answers. Obviously, this
approach is unnecessarily expensive as it does not take advantage of the fact that only the k best
answers are part of the query answer and the remaining answers do not need to be processed.

Several query answering algorithms have been proposed in the literature to efficiently pro-
cess top-k queries. The most popular is the Threshold Algorithm (TA) independently proposed
by several groups [FLN01, NR99, GBK00].

The TA algorithm works as follows :

1. do sorted access in parallel to each of the N sorted lists. As a tuple t is seen under sorted
access in some list, do random access to the other lists to find the score of t in every list
and compute the overall score of t. Maintain in a set TOP the k seen tuples whose overall
scores are the highest among all tuples seen so far ;

CHAPTER 1 — Advanced Query Processing in Databases 27

2. for each list Li, let s∗i be the last score seen under sorted access in Li. Define the threshold
to be τ = agg(s∗1, . . . , s

∗
N). If TOP involves k tuples whose overall scores are higher than

or equal to τ , then stop doing sorted access to the lists. Otherwise, go to step 1 ;

3. return TOP.

Table 1.2 – The Threshold Algorithm - an example with 3 lists

Position L1 L2 L3

1 (t5, 21) (t4, 34) (t3, 30)

2 (t2, 17) (t1, 29) (t4, 14)

3 (t4, 11) (t0, 29) (t0, 9)

4 (t3, 11) (t3, 26) (t5, 7)

5 (t6, 10) (t5, 9) (t2, 1)

6 (t7, 10) (t9, 7) (t8, 1)

Table 1.2 shows an example with three Lists L1, L2 and L3. Assume that the top-k query
requests the top-2 tuples and the aggregation function agg is the summation function SUM. TA
first scans the first tuples in all lists which are t5, t4, and t3. Hence the threshold value at this time
is τ = 21+34+30 = 85. Then TA calculates the aggregated score for each tuple seen so far by
random accesses to the three lists. We get the aggregated score for t5 SUM(t5) = 21+9+7 = 37,
for t4 SUM(t4) = 11+34+14 = 59 and for t3 SUM(t3) = 11+26+30 = 67. TA maintains the
top-2 tuples seen so far which are t3 and t4. As neither of them has an aggregated score greater
than the current threshold value τ = 85, TA continues to scan the tuples at the second positions
of all lists. At this time, the threshold value is recomputed as τ = 17 + 29 + 14 = 60. The new
tuples seen are t1 and t2. Their aggregated scores are retrieved and calculated as SUM(t1) =

0 + 29 + 0 = 29 and SUM(t2) = 17 + 0 + 1 = 18. TA still keeps tuples t3 and t4 since their
aggregated scores are higher than those of both t1 and t2. Since only t3 has an aggregated score
greater than the current threshold value τ = 60, TA algorithm continues to scan the tuples in
the third positions. Now the threshold value is τ = 11 + 29 + 9 = 49 and the new tuple seen is
t0. TA computes the aggregated score for t0 which is 38. t3 and t4 still maintain the two highest
aggregated scores which are now greater than the current threshold value τ = 49. Thereby, TA
terminates at this point and returns t3 and t4 as the top-2 tuples. Note that, in this example, TA
avoids accessing the tuples t6, t7, t8 and t9.

For more details about top-k processing techniques in relational databases, we refer the
interested reader to [IBS08].

28 CHAPTER 1 — Advanced Query Processing in Databases

1.2.2 Clustering of Query Results

Clustering of query results is the operation of grouping the set of answers into meaningful
clusters (or groups). This allows the user to select and browse clusters that most closely match
what she/he is looking for while ignoring the irrelevant ones. This idea has been traditionally
used for organizing the results of Web search engines [JR71, vRC75, Cro80, Voo85, HP96,
JMF99, ZE99, ZHC+04, CKVW06, FG05] but has only recently been adapted in the context
of relational database [CCH04, BRM05, LWL+07]. In the following, we review existing search
results clustering techniques in both information retrieval (IR) and relational database (DB)
systems.

1.2.2.1 IR clustering techniques

Document clustering has been used in information retrieval for many years. Originally, it
aimed at improving search efficiency by reducing the number of documents that needed to
be compared to the query. The rationale was that by partitioning the document collection in
clusters, an information retrieval system could restrict the search to only some of them. It was
only with the work of Jardine and Van Rijsbergen that clustering became associated with search
effectiveness [JR71].

The motivation for the use of clustering as a way to improve retrieval effectiveness lies in
the cluster hypothesis. The cluster hypothesis, as proposed by Jardine and van Rijsbergen, states
that the association between documents conveys information about the “relevance of documents
to the request” [JR71]. In other words, if a document is relevant to an information need expres-
sed in a query17, then similar documents are also likely to be relevant to the same information
need. So, if similar documents are grouped into clusters, then one of these clusters contains
the relevant documents (or most of them). Therefore, finding this cluster could improve search
effectiveness.

There are various ways in which the cluster hypothesis could be exploited. One way is to
implement cluster-based retrieval. In cluster-based retrieval, the strategy is to build a clustering
of the entire collection in advance and then retrieve clusters based on how well their represen-
tations (e.g., a set of keywords) match the upcoming query. A hierarchical clustering technique
is typically used in these approaches, and different strategies for matching the query against
the document hierarchy have been proposed, most notably a top-down or a bottom-up search

17In information retrieval systems, the information need is what the user desires to know from the stored data, to
satisfy some intended objective (e.g., data analysis, decision making). However, the query is what the user submits
to the system in an attempt to fulfill that information need.

CHAPTER 1 — Advanced Query Processing in Databases 29

and their variants [JR71, vRC75, Cro80, Voo85]. Similarly, search engines (e.g., Yahoo) and
product catalog search (e.g., eBay) use a category structure created in advance and then group
search results into separate categories. In all these approaches, if a query does not match any
cluster representation of one of the pre-defined clusters or categories, then it fails to match any
documents even if the document collection contains relevant results. It is worth noticing that
this problem is not intrinsic to clustering, but is due to the fact that keyword representation of
clusters is often insufficient to apprehend the meaning of documents in a cluster.

An alternative way of using the cluster hypothesis is in the presentation of retrieval results,
that is by presenting, in a clustered form, only documents that have been retrieved in response to
the query. This idea was first introduced in the Scatter/Gather system [HP96] which is based on
a variant of the classical k-means algorithm [HW79]. Since then, several classes of algorithms
have been proposed such as STC [ZE99], SHOC [ZHC+04], EigenCluster [CKVW06], SnakeT
[FG05]. Note that such algorithms introduce a noticeable time overhead to the query processing,
due to the large number of results returned by the search engine. The reader is referred to
[MRS08] for more details on IR clustering techniques.

All the above approaches testify that there is a significant potential benefit in providing
additional structure in large answer sets.

1.2.2.2 DB clustering techniques

The SQL group-by operator allows grouping query results. It classifies the results of a query
into groups based on a user-selected subset of fields. However, it partitions the space only by
identical values. For instance, if there are 1000 different zip-codes, ‘group-by Zip’ returns
1000 groups. In the last few years, traditional clustering techniques have been employed by the
database research community to overcome this shortcoming [CCH04, BRM05, LWL+07].

Chakrabarti et al’s System

In [CCH04], the authors proposed an automatic method for categorizing query results. This
method dynamically creates a navigation tree (i.e., a hierarchical category structure) for each
query q based on the contents of the tuples in the answer set Tq. A hierarchical categorization of
Tq is a recursive partitioning of the tuples in Tq based on the data attributes and their values, i.e.,
the query results are grouped into nested categories. Figure 1.5 shows an example of a hierar-
chical categorization of the results of the query ‘City = Paris AND Price ∈ [150, 300]Ke’.
At each level, the partitioning is done based on a single attribute in the result set Tq, and this

30 CHAPTER 1 — Advanced Query Processing in Databases

attribute is the same for all nodes at that level. Furthermore, once an attribute is used as a ca-
tegorizing attribute at any level, it is not repeated at a later level. For example, Price is the
categorizing attribute of all nodes at Level 2. The partitions are assigned descriptive labels and
form a categorization of the result set based on that attribute. For example, the first child of the
root in Figure 1.5 has label ‘Location = 18th arrondissement’ while its own first child has
label ‘Price ∈ [200, 225]Ke’.

Figure 1.5 – Example of hierarchical categorization of query results

The order in which the attributes appear in the tree, and the values used to split the domain
of any attribute are inferred by analyzing the aggregate knowledge of previous user behaviors
— using the workload. Indeed, the attributes that appear most frequently in the workload are
presented to the user earlier (i.e., at the highest levels of the tree). The intuition behind this
approach is that the presence of a selection condition on an attribute in a workload reflects the
user’s interest in that attribute. Furthermore, for each attribute Ai, one of the following two
methods is used to partition the set of tuples tset(C) contained in a category C depending on
whether Ai is categorical or numeric :

• If Ai is a categorical attribute with discrete values {v1, . . . , vk}, the proposed algorithm
simply partitions tset(C) into k categories, one category Cj corresponding to a value vj .
Then, it presents them in the decreasing order of occ(Ai = vj), i.e., the number of queries
in the workload whose selection condition on Ai overlaps with Ai = vj ;

• Otherwise, assume the domain of attribute Ai is the interval [vmin, vmax]. If a significant
number of query ranges (corresponding to the selection condition on Ai) in the work-
load begins or ends at v ∈ [vmin, vmax], then v is considered as a good point to split

CHAPTER 1 — Advanced Query Processing in Databases 31

[vmin, vmax]. The intuition here is that most users would be interested in just one bucket,
i.e., either in the bucket Ai ≤ v or in the bucket Ai > v but not both.

This approach provides the user with navigational facilities to browse query results. Howe-
ver, it requires a workload containing past user queries as input, which is not always available.
Furthermore, the hierarchical category structure is built at query time, and hence the user has to
wait a long time before the results can be displayed.

OSQR

In [BRM05], the authors proposed OSQR18, an approach for clustering database query re-
sults based on the agglomerative single-link approach [JMF99]. Given an SQL query as input,
OSQR explores its result set, and identifies a set of terms (called the query’s context) that are
the most relevant to the query ; each term in this set is also associated with a score quantifying
its relevance. Next, OSQR exploits the term scores and the association of the rows in the query
result with the respective terms to define a similarity measure between the terms. This similarity
measure is then used to group multiple terms together ; this grouping, in turn, induces a cluste-
ring of the query result rows. More precisely, consider a query q on a table R, and let Tq denote
the result of the query q. OSQR works as follows :

1. scan Tq and assign a score sx to each attribute value x (or term) in Tq. The terms’ scores
(similar to tf ∗ idf scores used in information retrieval) are defined in such a way that
higher scores indicate attributes values that are popular in the query result Tq and are rare
in R \ Tq ;

2. compute the context of q as the set of terms qcontext with scores exceeding a certain thre-
shold (a system parameter) ;

3. associate to each term x in qcontext the cluster Cx, i.e., the set of tuples of Tq in which
the attribute value x appears. The tuples in Tq that are not associated with any term x ∈
qcontext are termed ‘outliers’. These rows are not processed any further ;

4. iteratively merge the two most similar clusters until a stopping condition is met. The
similarity sim(Cx, Cy) between each pair of clusters Cx and Cy (x, y ∈ qcontext) is defined
as follows :

sim(Cx, Cy) =
sy|Cx − Cy| + sx|Cy − Cx|

sy|Cx| + sx|Cy|

where |.| denotes the cardinality of a set.
18Overlapping cluStering of Query Results

32 CHAPTER 1 — Advanced Query Processing in Databases

OSQR’s output is a dendrogram that can be browsed from its root node to its leaves, where
each leaf represents a single term x in qcontext and its associated tuple set Cx.

The above approach has many desirable features : it generates overlapping clusters, asso-
ciates a descriptive ‘context’ with each generated cluster, and does not require the query work-
load. However, note that some query results (tuples that are not associated with any term in
qcontext) are ignored and therefore not included in the output result. Moreover, this approach
may imply high response times, especially in the case of low selectivity queries, since both
scoring and clustering of terms are done on the fly.

Li et al’s System

In a recent work [LWL+07], the authors generalized the SQL group-by operator to enable
grouping (based on the proximity of attribute values) of database query results. Consider a
relation R with attributes A1, . . . , AN and a user’s query q over R with a group-by clause
on a subset X of R’s numeric attributes. The proposed algorithm first divides the domain of
each attribute Ai ∈ X into pi disjoint intervals (or bins) to form a grid of

∏
1≤i≤|X| pi bu-

ckets (or cells). Next, this approach identifies the set of buckets C = {b1, . . . , bm} that holds
the results of q, and associates to each bucket bi a virtual point vi, located at the center of
that bucket. Finally, a k-means algorithm [HW79] is performed on these virtual points (i.e.,
{v1, . . . , vm}) to obtain exactly k clusters of q’s results. The k parameter is given by the end-
user. For example, consider a user’s query that returns 10 tuples t1, . . . , t10 and the user needs
to partition these tuples into 2 clusters, using two attributes A1 and A2. Figure 1.6 shows an
example of a grid over t1, . . . , t10 by partitioning attributes A1 and A2. The bins on A1 and A2

are {[0, 3), [3, 6), [6, 9)} and {[0, 10), [10, 20), [20, 30)}, respectively. The two clusters C1 (i.e.
A1 ∈ [0, 3]∧A2 ∈ [10, 30]) and C2 (i.e., A1 ∈ [6, 9]∧A2 ∈ [0, 10]) are returned to that user. C1

contains 6 tuples t1, t3, t4, t6, t9 and t10, whereas C2 contains 4 tuples t2, t5, t7 and t8.

Figure 1.6 – Example of a grid in two dimensions

CHAPTER 1 — Advanced Query Processing in Databases 33

This approach is efficient. Indeed, it relies on a bucket-level clustering, which is much more
efficient than the tuple-level one, since the number of buckets is much smaller than the number
of tuples. However, the proposed algorithm requires the user to specify the number of clusters k,
which is difficult to know in advance, but has a crucial impact on the clustering result. Further,
this approach generates flat clustering of query results and some clusters may contain a very
large number of results, although, this is exactly the kind of outcome this technique should
avoid.

1.3 Flexible/User-Friendly Database Querying

A typical problem with traditional database query languages like SQL is a lack of flexibility.
Indeed, they are plagued by a fundamental problem of specificity (as we have seen in Sections
1.1 and 1.2) : if the query is too specific (with respect to the dataset), the response is empty ;
if the query is too general, the response is an avalanche. Hence, it is difficult to cast a query,
balanced on this scale of specificity, that returns a reasonable number of results. Furthermore,
they expect users to know the schema of the database they wish to access.

Recently, many flexible/user-friendly querying techniques have been proposed to overcome
this problem. The main objective of these techniques is to provide human-oriented interfaces
which allow for a more intelligent and human-consistent information retrieval and hence, di-
minish the risk of both empty and many answers. Examples include preference queries (Sec-
tion 1.3.1), fuzzy queries (Section 1.3.2) and keyword search (Section 1.3.3).

1.3.1 Preference Queries

The first way of introducing flexibility within the query processing is to cope with user pre-
ferences. More precisely, the idea is to select database records with Boolean conditions (‘hard’
constraints) and then to use preferences (‘soft’ constraints) to order the previously selected re-
cords.

Lacroix and Lavency [LL87] were the first to introduce the notion of a preference query to
the database field. They proposed an extension of the relational calculus in which preferences
for tuples satisfying given logical conditions can be expressed. For instance, one could say :
pick the tuples of R satisfying Q ∧ P1 ∧ P2 ; if the result is empty, pick the tuples satisfying
Q∧P1∧¬P2 ; if the result is empty, pick the tuples satisfyingQ∧¬P1∧P2. In other words,Q is
a ‘hard’ constraint, whereas P1 and P2 are preferences or ‘soft’ constraints. Since then extensive

34 CHAPTER 1 — Advanced Query Processing in Databases

investigation has been conducted, and two main types of approaches have been distinguished in
the literature to deal with the user’s preferences, namely, quantitative and qualitative[Cho03].

1.3.1.1 Quantitative Preferences

The quantitative approach expresses preferences using scoring functions, which associate a
numeric score with every tuple of the query, e.g. “I like tuple t with score 0.5”. Then tuple t1

is preferred over tuple t2 if and only if the score of t1 is higher than the score of t2. Agrawal
et al. [AW00] provided a framework for expressing and combining such kinds of preference
functions.

Figure 1.7 – An example of a personalization graph, indicating among others a preference for
movies of duration around 2h and a big concern about the genre of a movie. The first value
between brackets indicates the preference for the presence of the associated value, the second
indicates the preference for the absence of the associated value. The function e stands for an
elastic preference. (cf. [KI05])

Recently, Koutrika et al. [KI05] presented a richer preference model which can associate
degrees of interest (like scores) with preferences over a database schema. Thus, from this aspect,
it seems to follow a quantitative approach. These preferences are all kept in a user profile. A
user profile is viewed as a directed graph G〈V , E〉 (called Personalization Graph), where V is the
set of nodes and E the set of edges. Nodes in V are (a) relation nodes, one for each relation in the
schema, (b) attribute nodes, one for each attribute of each relation in the schema, and (c) value
nodes, one for each value that is of any interest to a particular user. Edges in E are (a) selection
edges, representing a possible selection condition from an attribute to a value node, and (b)
join edges, representing a join between attribute nodes. An example of a user profile is given in
Figure 1.7. Furthermore, the authors proposed a query personalization algorithm which exploits
the user profile to dynamically enrich (personalize) user queries prior to their execution. For
example, the personalization of a user query can add selection conditions to a query, meaning
that the user obtains a subset of the answer to the initial query. In general, it is expected that this

CHAPTER 1 — Advanced Query Processing in Databases 35

subset contains the most interesting tuples (with respect to the user preferences) of the global
answer.

Koutrika et al’s approach [KI05] provides one of the first solutions towards modelling of
user preferences in Database systems in the form of a structured profile. In [KBL07], the authors
elaborated a taxonomy of the most important knowledge composing a user profile and proposed
a generic model that can be instantiated and adapted to each specific application. [KBL07] also
extended the query personalization algorithm proposed in [KI05] to a context where the queried
data are stored in different databases located on distant sites.

1.3.1.2 Qualitative Preferences

The qualitative approach intends to directly specify preferences between the tuples in the
query answer, typically using binary preference relations, e.g., “I prefer tuple t1 to tuple t2”.
These kinds of preference relations can be embedded into relational query languages through
relational operators or special preference constructors, which select from their input the set of
the most preferred tuples. This approach is, among others, taken by Chomicki [Cho02, Cho03]
using the winnow operator 1 and Kießling [Kie02] in his PreferenceSQL best match only mo-
del.

To get an idea of the representation for this approach, consider the following preference
from [Cho03], which specifies a preference of white wine over red when fish is served, and
red wine over white, when meat is served, over a relation MealDB with attributes Dish (d),
DishType (dt), Wine (w), WineType (wt) :

(d, dt, w, wt) 1 (d′, dt′, w′, wt′) ≡ (d = d′ ∧ dt = fish ∧ wt = white
∧ dt′ = fish ∧ wt′ = red)
∨ (d = d′ ∧ dt = meat ∧ wt = red
∧ dt′ = meat ∧ wt′ = white)

Another example representation of a qualitative preference, over a relation CarDB with
attributes Make, Year, Price and Miles, is the following preference for cheap cars manu-
factured by Benz, and prior to 2005 but not before 2003, using PreferenceSQL from [Kie02] :

SELECT *
FROM CarDB

WHERE Make = Benz
PREFERRING (LOWEST(Price) AND Year BETWEEN 2003, 2005)

36 CHAPTER 1 — Advanced Query Processing in Databases

Note that the qualitative approach is more general than the quantitative one, since one can
define preference relations in terms of scoring functions, whereas not every preference relation
can be captured by scoring functions. For example, consider the relation BookDB(ISBN,
Vendor, Price) and its instance shown in Table 1.3. The preference “if the same ISBN,
prefer lower price to higher price” gives the preferences “b2 to b1” and “b1 to b3”. There is no
preference between the first three books (i.e., b1, b2 and b3) and the fourth one (i.e., b4). Thus,
the score of the fourth tuple should be equal to all of the scores of the first three tuples. But
this implies that the scores of the first three tuples are the same, which is not possible since the
second tuple is preferred to the first one which in turn is preferred to the third one.

Table 1.3 – Excerpt of the BookDB relation

ID ISBN Vendor Price
b1 0679726691 BooksForLess 14.75

b2 0679726691 LowestPrices 13.50

b3 0679726691 QualityBooks 18.80

b4 0062059041 BooksForLess 7.30

1.3.2 Fuzzy Queries

The second and most popular approach of flexible query processing advocates the use of the
fuzzy sets theory. More precisely, the idea is to allow end-users to formulate database queries
using fuzzy terms that best capture their perception of the domain and then to use them to filter
and rank relevant data.

1.3.2.1 Fuzzy Sets Theory

Fuzzy set theory, introduced by Zadeh [Zad56, Zad75, Zad99], is a mathematical tool for
translating user’s perception of the domain (often formulated in a natural language) into com-
putable entities. Such entities are called fuzzy terms (linguistic labels). Fuzzy terms are repre-
sented as fuzzy sets and may be fuzzy values (e.g., young), fuzzy comparison operators (e.g.,
much greater than), fuzzy modifiers (e.g., very, really) or fuzzy quantifiers (e.g., most).

CHAPTER 1 — Advanced Query Processing in Databases 37

Mathematically, a fuzzy set F of a universe of discourse19 U is characterized by a member-
ship function µF given by :

µF : U −→ [0, 1]

u −→ µF (u)

where µF (u), for each u ∈ U , denotes the degree of membership of u in the fuzzy set F . An
element u ∈ U is said to be in the fuzzy set F if and only if µF (u) > 0 and to be a full member
if and only if µF (u) = 1. We call support and kernel of the fuzzy set F respectively the sets :

support(F) = {ui ∈ U | µF (ui) > 0} and kernel(F) = {ui ∈ U | µF (ui) = 1}.

Furthermore, if m fuzzy sets F1, F2, . . . and Fm are defined over U such that ∀i = [1..m],-
Fi 4= ∅, Fi 4= U , and ∀u ∈ U,

∑m
i=1 µFi

(u) = 1, the set {F1, . . . , Fm} is called a fuzzy partition
[Rus69] of U .

Figure 1.8 – An example of fuzzy partition defined for the attribute Salary

For example, consider the attribute Salary with domain DSalary = [0, 110]Ke . A typi-
cal fuzzy partition of the universe of discourse DSalary (i.e., the employees’ salaries) is shown
in Figure 1.8, where the fuzzy sets (values) none, miserable, modest, reasonable, comfortable,
enormous and outrageous are defined. Here, the crisp value 60Ke has a grade of member-
ship of 0.5 for both the reasonable and the comfortable fuzzy sets, i.e., µreasonable(60Ke) =

µcomfortable(60Ke) = 0.5.

1.3.2.2 Practical Extensions of SQL

In the literature, several extensions of SQL have been proposed to allow the use of fuzzy
terms in database queries. Examples include the work of Tahani [Tah77], FQUERY [ZK96] and
SQLf [BP92, BP95, BP97].

19Fuzzy sets can be defined in either discrete or continuous universes.

38 CHAPTER 1 — Advanced Query Processing in Databases

Tahani’s Approach

Tahani [Tah77] was the first to propose a formal approach and architecture to deal with
simple fuzzy queries for crisp relational databases. More specifically, the author proposed to
use in the query condition fuzzy values instead of crisp ones. An example of a fuzzy query
would be “get employees who are young and have a reasonable salary”. This query contains
two fuzzy predicates ‘Age = young’ and ‘Salary = reasonable’, where young and reasonable
are words in natural language that express or identify a fuzzy set (Figure 1.9).

Figure 1.9 – The fuzzy sets (values) young and reasonable

Tahani’s approach takes a relation R and a fuzzy query q over R as inputs and produces a
fuzzy relationRq, that is an ordinary relation in which each tuple t is associated with a matching
degree γq within [0, 1] interval. The value γq indicates the extent to which tuple t satisfies the
fuzzy predicates involved in the query q. The matching degree, γq, for each particular tuple t is
calculated as follows. For a tuple t and a fuzzy query q with a simple fuzzy predicate A = l,
where A is an attribute and l is a fuzzy set defined on the attribute domain of A, γA=l is defined
as follows :

γA=l(t) = µl(t.A)

where t.A is the value of tuple t on attribute A and µl is the membership function of the fuzzy
set l.

For instance, consider the relation EmpDB in Table 1.4. The fuzzy relation corresponding to
the fuzzy predicate ‘Age = young’ (resp., ‘Salary = reasonable’) is shown in Table 1.5-(a)
(resp., Table 1.5-(b)). Note that when γq(t) = 0, the tuple t does not belong to the fuzzy relation
Rq any longer (for instance, tuple #1 in Table 1.5-(a)).

The matching function γ for a complex fuzzy query with multiple fuzzy predicates is obtai-
ned by applying the semantics of the fuzzy logical connectives, that are :

γp1∧p2
(t) = min(γp1

(t), γp2
(t))

γp1∨p2
(t) = max(γp1

(t), γp2
(t))

γ¬p1
(t) = 1− γp1

(t)

where p1, p2 are fuzzy predicates.

CHAPTER 1 — Advanced Query Processing in Databases 39

Table 1.4 – Excerpt of the EmpDB relation

Id Salary Age ...
1 45000 62

2 38750 24

3 37500 28

Table 1.5 – Fuzzy relations : (a) EmpDBAge=young (b) EmpDBSalary=reasonable

Id Salary Age ... γAge=young

1 45000 62 0.0

2 38750 24 0.5

3 37500 28 0.25

Id Salary Age ... γSalary=reasonable

1 45000 62 1

2 38750 24 0.75

3 37500 28 0.25

(a) (b)

Table 1.6 shows the fuzzy relation corresponding to the query ‘Age = young AND Salary

= reasonable’. Note that the min and max operators may be replaced by any t-norm and t-
conorm operators [KMP00] to model the conjunction and disjunction connectives, respectively.

Table 1.6 – The fuzzy relation EmpDB(Age=young AND Salary=reasonable)

Id Salary Age ... γ(Age=young ∧ Salary=reasonable)

1 45000 62 0.0

2 38750 24 0.5

3 37500 28 0.25

FQUERY

In [ZK96], the authors proposed FQUERY, an extension of the Microsoft Access SQL lan-
guage with capability to manipulate fuzzy terms. More specifically, they proposed to take into
account the following types of fuzzy terms : fuzzy values, fuzzy comparison operators, and
fuzzy quantifiers. Given a query involving fuzzy terms, the matching degree of relevant ans-
wers is calculated according to the semantics of fuzzy terms [Zad99]. In addition to the syntax

40 CHAPTER 1 — Advanced Query Processing in Databases

and semantics of the extended SQL, the authors have also proposed a scheme for the elici-
tation and manipulation of fuzzy terms to be used in queries. FQUERY has been one of the
first implementations demonstrating the usefulness of fuzzy querying features for a traditional
database.

SQLf

In contrast to both Tahani’s approach and FQUERY which concentrated on the fuzzification
of conditions appearing in the ‘WHERE’ clause of the SQL’s SELECT statement, the query
language SQLf [BP92, BP95, BP97] allows the introduction of fuzzy terms into SQL wherever
they make sense. Indeed, all the operations of the relational algebra (implicitly or explicitly
used in SQL’s SELECT instruction) are redefined in such a way that the equivalences that
occur in the crisp SQL are preserved. Thus, the projection, selection, join, union, intersection,
cartesian product and set difference operations are considered. Special attention is also paid to
the division operation which may be interpreted in a different way due to many possible versions
of the implication available in fuzzy logic [BPR05, BPR07]. Other operations typical for SQL
are also redefined, including the ‘GROUP BY’ clause , the ‘HAVING’ clause and the operators
‘IN’ and ‘NOT IN’ used along with sub-queries. A query in SQLf language has the following
syntax :

SELECT [n|t|n, t] set of attributes
FROM set of relations
WHERE set of fuzzy predicates

where the parameters n and t of the select block limit the number of the answers by using a
quantitative condition (the best n answers) or a qualitative condition (ones which satisfy the
fuzzy predicates according to a degree higher than t).

For more details and more general sources about fuzzy querying, please refer to [Gal08].

1.3.3 Keyword Search

Keyword-searchable database systems offer a simple keyword-based search interface where
users need to neither understand the underlying database schemas and structures in advance
nor know complex query languages like SQL. Instead, users are only required to submit a
list of keywords, and the system will return ranked answers based on their relevance to query
keywords.

CHAPTER 1 — Advanced Query Processing in Databases 41

Figure 1.10 – The DBLP database

Consider the example of Figure 1.10, which illustrates a small subset of the DBLP data-
base. If a user wants to get the papers co-authored by ‘Hristidis Vagelis’ and ‘Papakonstantinou
Yannis’, she/he should learn the schema of the DBLP database first, and then she/he must write
intricate SQL queries like this :

(SELECT title
FROM Paper, Writes, Author
WHERE Paper.pid = Writes.pid
AND Writes.aid = Author.aid
AND Author.name = ‘Hristidis Vagelis’)
⋂

(SELECT title
FROM Paper, Writes, Author
WHERE Paper.pid = Writes.pid
AND Writes.aid = Author.aid
AND Author.name = ‘Papakonstantinou Yannis’)

Obviously, this model of search is too complicated for ordinary users. Several methods aim
at decreasing this complexity by providing keyword search functionality over relational data-
bases. With such functionality, a user can avoid writing an SQL query ; and she/he can just

42 CHAPTER 1 — Advanced Query Processing in Databases

submit a simple keyword query ‘Hristidis Vagelis and Papakonstantinou Yannis’ to the DBLP
database. Examples include BANKS [BHN+02, KPC+05, HWYY07, KS06, DXW+07], DBX-
plore [ACD02] and DISCOVER [HP02, HGP03, LYMC06]. The former system [BHN+02,
KPC+05, HWYY07, KS06, DXW+07] models the database as a graph and retrieves results
by means of traversal, whereas the latter ones [ACD02, HP02, HGP03, LYMC06] exploit the
database schema to compute the results.

BANKS

BANKS20 [BHN+02] views the database as a directed weighted graph, where each node re-
presents a tuple, and edges connect tuples that can be joined (e.g., according to primary-foreign
key relationships). Node weight is inspired by prestige ranking such as PageRank [BP98] ; node
that has large degree21 get a higher prestige. Edge weight reflects the importance of the rela-
tionship between two tuples or nodes22 ; lower edge weights correspond to greater proximity or
stronger relationship between the involved tuples. At query time, BANKS employs a backward
search strategy to search for results containing all keywords. A result is a tree of tuples (called
tuple tree), that is, sets of tuples which are associated on their primary-foreign key relationships
and contain all the keywords of the query. Figure 1.11 shows two tuple trees for query q =

‘Hristidis Vagelis and Papakonstantinou Yannis’ on the example database of Figure 1.10. More
precisely, BANKS constructs paths starting from each node (tuple) containing a query keyword
(e.g., a2 and a4 in Figure 1.11) and executes a Dijkstra’s single source shortest path algorithm
for each one of them. The idea is to find a common vertex (e.g., p2 and p4 in Figure 1.11)
from which a forward path exists to at least one tuple corresponding to a different keyword
in the query. Such paths will define a rooted directed tree with the common vertex as the root
containing the keyword nodes as leaves, which will be one possible answer (tuple tree) for a
given query. The answer trees are then ranked and displayed to the user. The ranking strategy of
BANKS is to combine nodes and edges weights in a tuple tree to compute a score for ranking.

Recently, [KPC+05, HWYY07] applied bi-directional (instead of Backward) search, which
improves efficiency. [KS06, DXW+07] studied theoretical aspects of efficient query processing
for top-k keyword queries in BANKS.

20Browsing ANd Keyword Searching
21A degree of a node is the number of edges incident to this node.
22The intuition is that a node that has many links with others has relative small possibility of having a close

relationship to any of them, and thus edges incident on it have large weights.

CHAPTER 1 — Advanced Query Processing in Databases 43

Figure 1.11 – Tuple trees for query q = ‘Hristidis Vagelis and Papakonstantinou Yannis’

DBXplorer

DBXplorer [ACD02] models the relational schema as a graph, in which nodes map to da-
tabase relations and edges represent relationships, such as primary-foreign key dependencies.
Given a query consisting of a set of keywords, DBXplorer first searches the symbol table to
find the relations of the database that contain the query keywords. The symbol table serves as
an inverted list and it is built by preprocessing the whole database contents before the search.
Then, DBXplorer uses the schema graph to find join trees that interconnect these relations. A
join tree is a subtree of schema graph that satisfies two conditions : one is that the relation
corresponding to a leaf node contains at least one query keyword ; another is that every query
keyword is contained by a relation corresponding to a leaf node. Thus, if all relations in a join
tree are joined, the results might contain rows having all keywords. For each join tree a relevant
SQL query is then created and executed. Finally, results are ranked and displayed to the user.
The score function that DBXplorer uses to rank results is very simple. The score of a result is
the number of joins involved. The rationale behind this simple relevance-ranking scheme is that
the more joins are needed to create a row with the query keywords, the less clear it becomes
whether the result might be meaningful or helpful.

DISCOVER

DISCOVER [HP02] also exploits the relational schema graph. It uses the concept of a can-
didate network to refer to the schema of a possible answer, which is a tree interconnecting the
set of tuples that contain all the keywords, as in DBXplorer. The candidate network generation
algorithm is also similar. However, DISCOVER can be regarded as an improvement of DBX-
plorer. In fact, it stores some temporary data to avoid re-executing joins that are common among
candidate networks. DISCOVER, like DBXplorer, ranks results based on the number of joins

44 CHAPTER 1 — Advanced Query Processing in Databases

of the corresponding candidate network.
In [HGP03], the approach of DISCOVER is extended with information-retrieval techniques

for ranking (e.g., tf ∗ idf [Sal89]). [HGP03] also proposed some efficient query-processing al-
gorithms to obtain top-k results. Recently, the ranking method proposed in [HGP03] has been
improved by Liu et al. [LYMC06] by using several refined weighting schemes.

Note that all afore-mentioned approaches (BANKS, DBXplore and DISCOVER) are useful
to users who do not know SQL or are unfamiliar with the database schema. However, they
present a semantic challenge because the metadata of attributes and relations that are in an SQL
statement are lacking in keyword search. Furthermore, because a keyword may appear in any
attributes and in any relations, the result set may be large and include many answers users do
not need.

1.4 Discussion

Database search processes basically involve two steps, namely query formulation and query
evaluation (Figure 1.12). In the query formulation step, the user formulates her/his information
need (or retrieval goal) in terms of an SQL query. The query evaluation step runs this query
against the database and returns data that match it exactly.

Figure 1.12 – Basic database searching process

Thus, formulating a query that accurately captures the user’s retrieval goal is crucial for
obtaining satisfactory results (i.e., results that are both useful and of manageable size for human
analysis) from a database. However, it is challenging to achieve for several reasons :

• users may have ill-defined retrieval goals, i.e. , they do not really know what might be
useful for them, merely an expectation that interesting data may be encountered if they
use the database system (e.g., “I can’t say what I want, but I will recognize it when I see
it”) ;

• even if users have well-defined retrieval goals, they may not know how to turn them into
regular SQL queries (e.g., “I know what I want, but I don’t know how to get it”). This

CHAPTER 1 — Advanced Query Processing in Databases 45

may be either because they are not familiar with the SQL language or with the database
schema. It may also be due to an expressiveness limit of SQL. In fact, an information
need is a mental image of a user regarding the information she/he wants to retrieve and it
is difficult to capture it using an unnatural exact language such as SQL.

Note that even if users have well-defined retrieval goals and know how to formulate them
in terms of SQL queries (e.g., “I know what I want and I know how to get it”), they may not
obtain what they need (e.g., “I am not satisfied”). This occurs if the database they wish to access
contains no data that satisfy their retrieval goals.

One can clearly notice that the Many-Answers and the Empty-Answer problems are imme-
diate consequences of the above problems. In fact, if the user has an ill-defined retrieval goal,
her/his queries are often very broad, resulting in too many answers ; otherwise, they are very
specific and often return no answers.

Figure 1.13 – A classification of advanced database query processing techniques

In Figure 1.13, we propose a classification of the techniques presented and discussed in this
chapter. This classification is based on the situation or problem, from those mentioned above,
that they are supposed to address.

The first category (Group A in Figure 1.13) contains query relaxation (Section 1.1.1) and
similarity-based search (Section 1.1.2) techniques. These techniques address situations in which
a user approaches the database with a query that exactly captures her/his retrieval goal but she/he

46 CHAPTER 1 — Advanced Query Processing in Databases

is delivered an empty result set. These techniques allow the database system to retrieve results
that closely (though not completely) match the user’s retrieval goal.

The second (GroupB in Figure 1.13) contains preference-based (Section 1.3.1), fuzzy-based
(Section 1.3.2) and keyword-based search (Section 1.3.3) techniques. These techniques provide
human-oriented interfaces which allow users to formulate their retrieval goals in a more natural
or intuitive manner. Note, however, that these techniques, while useful, do not help users to
clarify or refine their retrieval goals ; therefore they are not designed for the problem of ill-
defined retrieval goal.

Finally, the third category (GroupC in Figure 1.13) contains automated ranking and clustering-
based techniques. These techniques address situations in which a database user has an ill-defined
retrieval goal. Automated ranking-based techniques (Section 1.2.1) first seek to clarify or ap-
proximate the retrieval goal. For this purpose, they use either past behavior of the user (derived
from available workloads) or relevance feedback from the user. Then, they compute a score, by
means of a similarity measure, of each answer that represents the extent to which it is relevant
to the approximated user’s retrieval goal. Finally, the user is provided with a ranked list, in des-
cending order of relevance, of either all query results or only a top-k subset. The effectiveness of
these approaches highly depends on their ability to accurately capture the user’s retrieval goal,
which is a tedious and time consuming task. Note that such approaches also bring the disad-
vantage of match homogeneity, i.e., the user is often required to go through a large number of
similar results before finding the next different result. In contrast, clustering-based techniques
(Section 1.2.2) assist the user to clarify or refine the retrieval goal instead of trying to learn
it. They consist in dividing the query result set into homogeneous groups, allowing the user to
select and explore groups that are of interest to her/him. However, such techniques seek to only
maximize some statistical property of the resulting clusters (such as the size and compactness
of each cluster and the separation of clusters relative to each other), and therefore there is no
guarantee that the resulting clusters will match the meaningful groups that a user may expect.
Furthermore, these approaches are performed on query results and consequently occur at query
time. Thus, the overhead time cost is an open critical issue for such a posteriori tasks.

In the next chapter of this thesis, we focus on the Many-Answers problem that is critical
for very large database and decision support systems. Thus, we investigate a simple but useful
strategy to handle this problem.

CHAPTER 2
Knowledge-based

Clustering of Result Set
Introduction

Database systems are being increasingly used for interactive and exploratory data retrieval.
In such retrieval, user’s queries often result in too many answers. Not all the retrieved items
are relevant to the user ; typically, only a tiny fraction of the result set is relevant to her/him.
Unfortunately, she/he often needs to examine all or most of the retrieved items to find the inter-
esting ones. As discussed in Chapter 1, this phenomenon (commonly referred to as ‘information
overload’) often happens when the user submits a ‘broad’ query, i.e., she/he has an ill-defined
retrieval goal.

For example, consider a realtor database HouseDB with information on houses for sale
in Paris, including their Price, Size, #Bedrooms, Age, Location, etc. A user who ap-
proaches that database with a broad query such as ‘Price ∈ [150ke, 300ke]’ may be overloa-
ded with a huge list of results, since there are many houses within this price range in Paris.

A well-established theory in cognitive psychology [Mil62, Man67] contends that humans
organize items into logical groups as a way of dealing with large amounts of information. For
instance, a child classifies his toys according to his favorite colors ; a direct marketer classifies
his target according to a variety of geographic, demographic, and behavioral attributes ; and a
real estate agent classifies his houses according to the location, the price, the size, etc. Further-
more, the Cluster Hypothesis [JR71] states that “closely associated items tend to be relevant
to the same request”. Therefore, clustering analysis [Ber06] which refers to partitioning data
into dissimilar groups (or clusters) of similar items is an effective technique to overcome the
problem of information overload. However, applying traditional clustering methods directly to
the results of a user’s query presents two major problems :

1. the first is related to relevance. Most clustering algorithms seek to only maximize some
statistical property of the clusters (e.g., the size and compactness of each cluster and the

47

48 CHAPTER 2 — Knowledge-based Clustering of Result Set

separation of clusters relative to each other), and therefore there is no guarantee that the
resulting clusters will match the meaningful groups that a user may expect ;

2. the second is related to scalability. Clustering analysis is a time-consuming process, and
doing it on the fly (i.e., at query time) may compromise seriously the response time of the
system.

Now suppose that the user poses her/his query to a real estate agent. The estate agent often
provides that user with better results than the ones obtained using traditional database systems,
as she/he has a large amount of knowledge in the field of house buying. Let us briefly discuss two
important features of the estate agent which account for this ability fitting the user’s information
need :

1. the first is her/his ability to organize, abstract, store and index her/his knowledge for future
use. In fact, besides organizing her/his knowledge into groups [Mil62, Man67], the estate
agent stores (in her/his memory) these groups as a knowledge representation and such
groups often become an automatic response of her/him. This interesting statement comes
from the central tenet of semantic network theory [Qui68, CQ69], which argues that in-
formation is stored in human memory as a network of linked concepts (e.g., the concept
‘house’ is related by the word ‘is’ to the concept ‘home’). Moreover, psychological ex-
periments [Mil56, Sim74, HBMB05] show that humans can deal with a large amount of
information, exceeding their memory limitations, when such information are supplemen-
ted with additional features such as a relationship to a larger group (or concept). Hence,
cognitive theories assume that humans arrange their knowledge in a hierarchical struc-
ture that describes groups at varying levels of specificity. Furthermore, Ashcraft [Ash94]
found that humans assign meaningful words from natural language to groups and retrieve
information by those words (i.e., group representatives) rather than blindly traversing all
information ;

2. the second feature is her/his ability to assist the user to refine and clarify her/his informa-
tion need as well as to make a decision. In fact, the estate agent establishes a dialog with
the user during which she/he asks pertinent questions. Then, for each user’s response (i.e.,
a new information need), the estate agent uses her/his knowledge to provide the user with
concise and comprehensive information. Such information is retrieved by matching user
query words with group representatives [Ash94] stored in her/his memory.

The SAINTETIQ [RM02, SPRM05, VRUM04] summarization technique provides a domain
knowledge-based solution for clustering and querying large databases. We believe this tech-
nique has the potential to overcome the two previously mentioned problems (i.e., relevance and

CHAPTER 2 — Knowledge-based Clustering of Result Set 49

scalability), since it emulates the interaction a user might have with a real estate agent to some
extent. In fact, SAINTETIQ [RM02, SPRM05] first transforms raw data into high-level repre-
sentations (summaries) that fit the user’s perception of the domain, by means of linguistic labels
(e.g., cheap, reasonable, expensive, very expensive) defined over the data attribute domains and
provided by a domain expert or even an end-user. Then it applies a hierarchical clustering al-
gorithm on these summaries to provide multi-resolution summaries (i.e., summary hierarchy)
that represent the database content at different abstraction levels. The summary hierarchy can
be seen as an analogy for knowledge representation estate agent. Furthermore, the summary
hierarchy can be directly queried [VRUM04] to quickly provide the user with concise, useful
and structured answers as a starting point for an online analysis. Each answer item describes a
subset of the queried data in a human-readable form using linguistic labels. Moreover, answers
of a given query are nodes of the summary hierarchy and every subtree rooted by an answer
offers a ‘guided tour’ of a data subset to the user. Hence, this framework is intended to help the
user iteratively refine her/his information need in the same way as done by the estate agent.

There are, however, two limitations that may restrict the effectiveness of this approach and
which will be addressed in this chapter. First, since the summary hierarchy is independent of
the query, the set of starting point answers could be large and, consequently, dissimilarity bet-
ween items is susceptible to skew. It occurs when the pre-computed summary hierarchy is not
perfectly adapted to the user query. To tackle this problem, we first propose a straightforward
approach using the clustering algorithm of SAINTETIQ to optimize the high-level answers. The
optimization requires post-processing and therefore incurs overhead time cost. Thus, we finally
develop an efficient and effective algorithm that organizes answers based on the hierarchical
structure of the pre-computed summary hierarchy, such that no post-processing task (but the
query evaluation itself) have to be performed at query time. Furthermore, the current querying
process cannot handle free vocabulary, i.e., summaries are exclusively queried by the linguistic
labels used to build them. We propose a query rewriting process that deals with user-specific
linguistic labels to overcome this limitation.

The rest of the chapter is organized as follows. First, we present the SAINTETIQ model
and its properties and we illustrate the process with a toy example. Then, in Section 2.2 we
detail the use of SAINTETIQ outputs in a query processing and we describe the formulation of
queries and the retrieval of clusters. Thereafter, we discuss in Section 2.3 how such results help
facing the many-answers problem. The algorithm that addresses the problem of dissimilarity
(discrimination) between the starting point answers by rearranging them is presented in Section
2.4. Section 2.5 introduces an extension of the above process that allows every user to use

50 CHAPTER 2 — Knowledge-based Clustering of Result Set

her/his own vocabulary when querying the database. An experimental study using real data is
presented in Section 2.6. Section 2.7 concludes.

2.1 Overview of the SAINTETIQ System

In this section, we first introduce the main ideas of SAINTETIQ [RM02, SPRM05]. Then,
we give useful definitions and properties regarding our proposal. Finally, we briefly discuss
some other data clustering techniques, and argue that SAINTETIQ is more suitable for interac-
tive and exploratory data retrieval.

2.1.1 A Two-Step Process

SAINTETIQ takes tabular data as input and produces multi-resolution summaries of records
through an online mapping process and a summarization process.

2.1.1.1 Mapping Service

SAINTETIQ system relies on Zadeh’s fuzzy set theory [Zad56], and more specifically on
linguistic variables [Zad75] and fuzzy partitions [Rus69], to represent data in a concise form.
The fuzzy set theory is used to translate records in accordance with a Knowledge Base (KB)
provided by a domain expert or even an end-user. Basically, the operation replaces the original
values of each record in the table by a set of linguistic labels defined in the KB. For instance,
with a linguistic variable on the attribute Income (Figure 2.1), a value t.Income = 95000e

is mapped to {0.3/tiny, 0.7/very small} where 0.7 is a membership grade that tells how well the
label very small describes the value 95000. Extending this mapping to all the attributes of a
relation could be seen as mapping the records to a grid-based multidimensional space. The grid
is provided by the KB and corresponds to the user’s perception of the domain.

Figure 2.1 – Fuzzy linguistic partition defined on the attribute Income

Thus, tuples of Table 2.1 are mapped into three distinct grid-cells denoted by c1, c2 and
c3 in Table 2.2. young and adult are linguistic labels provided by the KB on the attribute Age

CHAPTER 2 — Knowledge-based Clustering of Result Set 51

(Figure 2.2).

Figure 2.2 – Fuzzy linguistic partition defined on the attribute Age

Table 2.1 – Raw data (R)

ID Age Income

t1 22 95000

t2 19 99000

t3 27 120000

Table 2.2 – Grid-cells mapping

Cell Age Income Extent tuple count

c1 1.0/young 0.3/tiny t1, t2 0.4=0.3+0.1

c2 1.0/young 1.0/very small t1, t2, t3 2.1=0.7+0.9+0.5

c3 0.5/adult 1.0/very small t3 0.5

In Table 2.2, 0.3/tiny says that tiny fits the data only with a small degree (0.3). The degree
is computed as the maximum of membership grades of tuple values to tiny in c1. Besides, the
value 0.4 in the tuple count column gives the proportion of records in R that belong to c1. It is
computed as the sum of the membership grades of all the tuples within c1. In fact, each tuple can
belong to more than one cell with varying degrees of membership. The membership grade of
the tuple t to the cell c is defined as the minimum of the membership grades of the t’s attribute
values to the corresponding linguistic labels in c. For instance, t1 and t2 are members of c1 with
membership grades of 0.3 and 0.1, respectively.

The KB leads to the point where tuples become indistinguishable and then are grouped into
grid-cells such that there are finally many more records than cells. Each new (coarser) cell stores

52 CHAPTER 2 — Knowledge-based Clustering of Result Set

a record count and attribute-dependant measures (min, max, mean, standard deviation, etc.). It
is then called a summary.

2.1.1.2 Summarization Service

The summarization service (SEQ) is the second and the most sophisticated step of the SAIN-
TETIQ system. It takes grid-cells as input and outputs a collection of summaries hierarchically
arranged from the most generalized one (the root) to the most specialized ones (the leaves).
Summaries are clusters of grid-cells, defining hyperrectangles in the multidimensional space.
In the basic process, leaves are grid-cells themselves and the clustering task is performed on L

cells rather than n tuples (L << n).
From the mapping step, cells are introduced continuously in the hierarchy with a top-down

approach inspired of D.H. Fisher’s Cobweb, a conceptual clustering algorithm [Fis87]. Then,
they are incorporated into best fitting nodes descending the tree. Three more operators could
be apply, depending on partition’s score, that are create, merge and split nodes. They allow
developing the tree and updating its current state. Figure 2.3 represents the summary hierarchy
built from the cells c1, c2 and c3 of Table 2.2. For the sake of simplicity, we have only reported
the linguistic labels (intent) and the row IDs (extent) that point to tuples described by those
linguistic labels.

Figure 2.3 – Example of SAINTETIQ hierarchy

2.1.2 Features of the Summaries

In this section, we introduce the basic definitions and properties related to the SAINTETIQ
model that are used throughout this thesis. For more details on SAINTETIQ, one can refer to
[RM02, SPRM05].

CHAPTER 2 — Knowledge-based Clustering of Result Set 53

Definition 2.1. Summary.
Let E = {A1, . . . , AN} be a set of attributes and R a relation defined on the cartesian product
of domains (DAi

) of dimensions (Ai) in E. Assume that the N -dimensional space A1 × A2 ×
. . .×AN is equipped with a grid that defines basicN -dimensional areas, called cells, in E. The
summary z of the relation R is the bounding box of the cluster of cells populated by records of
R.

The above definition is constructive since it proposes to build generalized summaries (hy-
perrectangles) from cells that are specialized ones. In fact, it is equivalent to performing an
addition on cells such that :

z = c1 + c2 + . . . + cm

where {c1, . . . , cm} is the set ofm cells (summaries) covered by z. The operator+ stands for the
union of the descriptions of cells to build the including hyperrectangle as a resulting summary.

A summary z is then an intentional description 〈z.A1, . . . , z.AN〉 (or simply 〈z.E〉) asso-
ciated with a set of tuples Rz as its extent and a set of cells Lz that are populated by records
of Rz. Each z.Ai is a description of the content of the summary z, expressed as a subset of the
set of linguistic labels that partition the value domain of Ai. Hereafter, we shall use LRz and
Lz interchangeably to denote the set of cells populated by records of Rz. These notations are
illustrated in Figure 2.4 for the summary z (the root) of the hierarchy shown in Figure 2.3.

Figure 2.4 – Summary Notations

Thus, summaries are areas ofE with hyperrectangle shapes provided by KB. They are nodes
of the summary hierarchy built by the SAINTETIQ system.

54 CHAPTER 2 — Knowledge-based Clustering of Result Set

Definition 2.2. Summary Hierarchy.
A summary hierarchy HR of R is a collection Z of summaries verifying :
• ∀z, z′ ∈ Z, z ! z′ ⇐⇒ Rz ⊆ Rz′ ;
• ∃! z ∈ Z such that Rz = R and Lz =

⋃

z′∈Z

Lz′ (i.e., z is the summary of R).

The relation over Z (i.e., !) provides a generalization-specialization relationship between
summaries. And assuming summaries are hyperrectangles in a multidimensional space, the par-
tial ordering defines nested summaries from the larger one to single cells themselves.

In order to provide the end-user with a reduced set of representatives from the data, we
need to extract a subset of the summaries in the summary hierarchy. The straightforward way
of performing such a task is to define a summary partitioning.

Definition 2.3. Summary Partitioning. The set P of leaves of every rooted sub-tree of the sum-
mary hierarchy HR provides a partitioning of relation R.

We denote by Pz the top-level partition of z in the summary hierarchy. It is then the most
general partitioning of Rz we can provide from the hierarchy. Note that the most specialized
one is the set of cells covering Rz, that is Lz.

A partitioning can be obtained a posteriori to meet user requirements regarding compression
rate. For instance, general trends in the data could be identified in the very first levels of the tree,
whereas precise information has to be looked for around leaf-level. Moreover, such partitioning
verifies two basic properties : disjunction and coverage.

Property 2.1. Disjunction. Summaries z and z′ are disjoint iff ∃i ∈ [1..N], z.Ai ∩ z′.Ai = ∅.

Regarding this property, summaries of a partition do not overlap with each other, if we
except overlapping of adjacent fuzzy sets (e.g., in Figure 2.4, if tiny and very small do not
overlap at all, the cells c1 and c3 do not intersect).

Property 2.2. Coverage. R =
⋃

z∈P

Rz

A partition P guarantees complete coverage of relation R since, by definition, representa-
tives of every branch are included into P.

Moreover, SAINTETIQ process relies on an objective function, the Summary Utility (U) de-
fined in [RM02], that guides local search through the space of possible summary trees. U is a
combination of two well-knownmeasures : typicality [RM75] and contrast [Tve77]. Those mea-
sures maximize between-summary dissimilarity and within-summary similarity. Thus, going

CHAPTER 2 — Knowledge-based Clustering of Result Set 55

from the root (the highest partition) to the leaves (the lowest one) of the summary tree, the
internal cohesion increases while the contrast between summaries decreases. Thanks to the ag-
gregative function, trade-off values are found in the middle of the hierarchy and correspond
to summaries with a high level of generalization while still informative. Figure 2.5 shows the
evolution of those measures regarding the level of the hierarchy built on a CIC customer data
set (see Section 2.6) that contains 33735 tuples. On this example, trade-off values are found at
level 2. Note that this monotonicity relies on some cognitive assessments [RM75].

Figure 2.5 – Evolution of the Summary Utility U

2.1.3 Scalability Issues

In this section, we discuss the efficiency of the SAINTETIQ process and especially, its sum-
marization service (SEQ). The mapping service will not be further discussed as it is a straight-
forward rewriting process.

The time complexity TSEQ of the summarization service can be expressed as :

TSEQ(L) = kSEQ · L · logd L ∈ O(L · log L)

where L is the number of cells of the output hierarchy and d its average width. In the above
formula, the coefficient kSEQ corresponds to the set of operations performed to find the best
learning operator (create, merge or split) to apply at each level of the hierarchy, whereas logd L

is an estimation of the average depth of this hierarchy.
Note that the number of leaves L is bounded by pN (i.e., the size of the grid-based multi-

dimensional space) where p represents the average number of linguistic labels defined for each
feature in E. Of course, the exact number will greatly depend on the data set, and more speci-
fically, on the existing correlations between attribute values. For example, in a bank’s database

56 CHAPTER 2 — Knowledge-based Clustering of Result Set

with attributes Occupation and Income, it is likely that we will not find the combination of
unemployed and enormous income. Thus, in ‘real life’ situations, L is expected to be far smaller
than pN [SPRM05].

2.1.4 Discussion about SAINTETIQ

Cluster analysis is one of the most useful tasks in data mining [MR05] process for disco-
vering groups and identifying interesting distributions and patterns in the underlying data. The
clustering problem is about partitioning a given data set into groups (clusters) such that the data
points in a cluster are more similar to each other than to points in different clusters.

Up to now, many clustering methods [Ber06] have been proposed and, among them, grid-
based clustering methods (e.g., STING [WYM97], BANG [SE98], WaveCluster [SCZ00], etc.).
Grid-based clustering methods first partition the data by applying a multidimensional grid struc-
ture on the feature space. Second, statistical information (e.g., min, max, mean, standard devia-
tion, distribution) is collected for all the database records located in each individual grid cell and
clustering is performed on populated cells to form clusters. These methods have been proved as
valuable tools for analyzing the structural information of very large databases. One of the most
appealing factors is the excellent runtime behavior. In fact, their processing time only depends
on the number of populated cells L which is usually much less than the number of database
records n (L << n) [Ber06].

The SAINTETIQ model, besides being a grid-based clustering method, has many other ad-
vantages that are relevant for achieving the targeted objective of this thesis. First, SAINTETIQ
uses prior domain knowledge (the Knowledge Base) to guide the clustering process, and to pro-
vide clusters that fit the user’s perception of the domain. As mentioned in the introduction of
this chapter, this distinctive feature differentiates it from other grid-based clustering techniques
which attempt to only maximize some statistical property of the clusters, and therefore there
is no guarantee that the resulting clusters will match the meaningful groups that a user may
expect. Second, the flexibility in the vocabulary definition of KB leads to clustering schemas
that have two useful properties : (1) the clusters have ‘soft’ boundaries, in the sense that each
record belongs to each cluster to some degree, and thus undesirable threshold effects that are
usually produced by crisp (non-fuzzy) boundaries are avoided ; (2) the clusters are presented
in a user-friendly language (i.e., linguistic labels) and hence the user can determine at a glance
whether a cluster’s content is of interest. Finally, SAINTETIQ applies a conceptual clustering
algorithm for partitioning the incoming data in an incremental and dynamic way. Thus, changes
in the database are reflected through such an incremental maintenance of the complete hierar-

CHAPTER 2 — Knowledge-based Clustering of Result Set 57

chy [SPRM05].
Of course, for new application, the end-user or the expert has to be consulted to create lin-

guistic labels as well as the fuzzy membership functions. However, it is worth noticing that,
once such knowledge base is defined, the system does not require any more setting. Further-
more, the issue of estimating fuzzy membership functions has been intensively studied in the
fuzzy set literature [Gal08], and various methods based on data distribution and statistics exist
to assist the user designing trapezoidal fuzzy membership functions.

As one can observe, a SAINTETIQ summary hierarchy is similar to a multidimensional in-
dex structure. Indexes based on tree structures are widely used for organizing multidimensional
large data sets and accelerating access to them. The most popular are R-Tree [Gut88] and its
variants R*-tree [BKSS90], X-Tree [BKK96], SS-Tree [WJ96], etc. R-Tree-based approaches
partition the data domain into buckets (i.e., intervals in several dimensions) and build a height-
balanced tree that represents the data as nested structured buckets of increasing resolution. Each
leaf node is a bucket containing at most M pointers to the tuples it covers and each inner node
contains at mostM pointer to lower nodes in the tree structure.M is an input parameter which
depends on the hard disk drive’s properties (e.g., capacity and sector size). Theses approaches,
even though they are very efficient for multidimensional data querying, are not very useful in
the context of data discovery, analysis and exploration. Indeed, the buckets (grid-cells) depends
on the distribution of the record values rather than the user’s perception of the domain. Further-
more, the grouping process depends on the parameter M and consequently, tuples within each
group do not meet the cluster hypothesis “closely associated tuples tend to be relevant to the
same query”.

In the next section, we present the querying mechanism [VRUM04] that allows users to
efficiently access the hierarchical summaries produced by SAINTETIQ.

2.2 Querying the SAINTETIQ Summaries

In an exploratory analysis of a massive data set, users usually have only a vague idea of
what they could find in the data. They are then unable to formulate precise criteria to locate
the desired information. The querying mechanism [VRUM04] presented here allows such users
to access a database (previously summarized) using vague requirements (e.g., cheap) instead
of crisp ones (e.g., [100ke, 200ke]). In fact, users only need to select the right criteria from
an existing set of linguistic labels defined on each attribute domain in the KB, to filter a set of

58 CHAPTER 2 — Knowledge-based Clustering of Result Set

clusters (summaries) that can then be browsed to find potentially interesting pieces of informa-
tion. However, choosing the linguistic labels from a controlled vocabulary compels the user to
adopt a predefined categorization materialized by the grid-cells. In section 2.5, we deal with
user-specific linguistic labels to overcome this pitfall.

In this section, we first introduce a toy example that will be used throughout that chapter.
Then, we present all aspects of the querying mechanism from the expression and meaning of a
query to its matching against summaries.

2.2.1 Running Example

To illustrate the querying mechanism, we introduce here a sample data set R with 30 re-
cords (t1 − t30) represented on three attributes : Price, Size and Location. We suppose
that {cheap (ch.), reasonable (re.), expensive (ex.), very expensive (vex.)}, {small (sm.), me-
dium (me.), large (la.)} and {downtown (dw.), suburb (su.)} are sets of linguistic labels defined
respectively on attributes Price, Size and Location. Figure 2.6 shows the summary hie-
rarchy HR provided by SAINTETIQ performed on R.

Figure 2.6 – Summary hierarchy HR of the data set R

2.2.2 Expression of Queries

The querying mechanism described here intends to evaluate questions such as “find medium
or large houses in the suburb”. In the prototype developed for querying, questions are expressed

CHAPTER 2 — Knowledge-based Clustering of Result Set 59

using a user-friendly interface that composes the corresponding query in an SQL-like language.
For the previous question, the query formed is :

Example 2.1.

Q1 ≡

SELECT *
FROM R

WHERE Location IN {suburb}
AND Size IN {medium OR large}

In the following, we denote by X the set of attributes specified in the user’s input query Q

and by Y the set of missing attributes which is the complement ofX relatively toR :X∪Y = R

and X ∩ Y = ∅. Further, for each attribute A ∈ X , QA denotes the set of required features de-
fined on attribute A.

Example 2.2. Consider the query Q1 of Example 2.1. We have :

X ={Location, Size}
Y ={Price}
QLocation ={suburb}
QSize ={medium,large}

When users formulate a query, they expect data satisfying the selection criteria to be put
forward. The interpretation we adopted is that user’s queries are under a conjunctive form :
modalities on an attribute are connected with an OR and attributes are connected with an AND
operator. Hence, the query Q1 is interpreted as “find records in R that are described by suburb
on the attribute LocationAND by eithermediumOR large on the attribute Size”. The AND
operator is used because the process should select only data that comply with the characteriza-
tion on both Location and Size. On the other hand, the use of the OR operator is due to a
data constraint : database records are single-valued tuples.

2.2.3 Evaluation of Queries

This section deals with matching one particular summary against a query to decide whether
it corresponds to that query and can then be considered as a result. The query is transformed
into a logical proposition P used to qualify the link between the summary and the query. P is
under a conjunctive form in which all linguistic labels appear as literals. In consequence, each
set of linguistic labels yields one corresponding clause (see Example 2.3).

60 CHAPTER 2 — Knowledge-based Clustering of Result Set

Example 2.3. The logical proposition corresponding to the query Q1 is :

P1 = (medium ∨ large) ∧ suburb.

Let v be a valuation function. It is obvious that the valuation of P depends on the summary
z : a literal d in P is positively valuated (v(d) = TRUE) if and only if d appears in z. So we
denote by v(P (z)) the valuation of proposition P in the context of z. An interpretation of P

relatively to query Q leads to discarding summaries that do not satisfy P . But, as shown in
Example 2.4, some summaries might satisfy P and yet not match the intended semantics of the
query.

Example 2.4. Table 2.3 shows the characteristics of houses for sale covered by a summary
z′ along with z′ itself. If z′ is tested for conformance with Q1 (Example 2.3), we can see that
v(P1(z′)) = TRUE, but nowhere can one find a house responding to query Q1.

Table 2.3 – Example of linguistic label combination

ID_Sum Size Location

c1 small suburb
c2 medium downtown
c3 large downtown

z′ {small,medium,large} {downtown,suburb}

Recall that z.A denotes the set of linguistic labels that appear in a summary z on attribute
A. When matching z with a query Q, three cases might occur :
a : no correspondence. v(P (z)) = FALSE. For one attribute or more, z has no required
feature, i.e., it shows none of the linguistic labels mentioned in queryQ : ∃A ∈ X, z.A∩
QA = ∅ ;

b : exact correspondence. The summary z matches the query Q semantics. It is considered
as a result. The following expression holds : ∀A ∈ X, z.A ⊆ QA ;

c : no decision can be made. There is one attribute A for which z exhibits one or many
linguistic labels besides those strictly required (i.e., those in QA) : ∃A ∈ X, z.A \ QA 4=
∅.
The presence of required features in each attribute of z suggests, but does not guarantee,
that results may be found in the subtree rooted by z. Exploration of the subtree is neces-
sary to retrieve possible results : for each branch, it will end up in situations categorized

CHAPTER 2 — Knowledge-based Clustering of Result Set 61

by case a or case b. Thus, at worst at leaf level, an exploration leads to accepting or
rejecting summaries ; the indecision is always solved.

Figure 2.7 – Comparison of linguistic label sets z.A and QA (cf. [VRUM04])

The situations stated above reflect a global view of the matching of a summary z with a
query Q. They can also be interpreted, from a crisp set point of view, as a combination of
comparisons, still involving z.A andQA, concerning one required attribute A. Figure 2.7 shows
all comparisons using a set representation with z.A symbolized by a dashed circle and QA by a
solid circle.

2.2.4 Search Algorithm

The Explore-Select Algorithm (ESA) applies the matching procedure from the previous sec-
tion over the whole set of summaries, organized in a hierarchy, to select relevant summaries.
Since the selection should take into account all summaries that correspond to the query, the
exploration of the hierarchy is complete. Algorithm 1 (shown on the next page) describes ESA
with the following assumptions :

• the function returns a list of summaries ;
• function Corr symbolizes the matching test reported in Section 2.2.3 ;
• operator ‘+’ performs a list concatenation of its arguments ;
• function Add is the classical constructor for lists, it adds an element to a list of the suitable
type ;

• Lres is a local variable.
The ESA algorithm is based on a depth-first search and relies on a property of the hierarchy :

the generalization step in the SAINTETIQ model guarantees that any label that exists in a node
of the tree also exists in each parent node. Inversely, a label is absent from a summary’s intent
if and only if it is absent from all subnodes of this summary. This property of the hierarchy
permits branch cutting as soon as it is known that no result will be found. Depending on the
query, only a part of the hierarchy is explored.

62 CHAPTER 2 — Knowledge-based Clustering of Result Set

Algorithm 1 Function Explore-Select(z, Q)
Lres ← 〈〉
if Corr(z,Q) = indecisive then
for all child node zchild of z do

Lres ← Lres+ Explore-Select(zchild, Q)

end for
else
if Corr(z,Q) = exact then
Add(z, Lres)

end if
end if
return Lres

Thus, results of Q1 (Example 2.1), when querying the hierarchy shown in Figure 2.6, look
like :

Table 2.4 – Q1 results

Id_Sum Price Size Location

z1

cheap
reasonable
expensive

medium
large

suburb

In this case, the ESA algorithm first confronts z (root) with Q1. Since no decision can be
made, Q1 is respectively confronted to z0 and z1, the children of z. The subtree rooted by z0

is then ignored because there is no correspondence between Q1 and z0. Finally z1 is returned
because it exactly matches Q1. Thus, the process tests only 30% of the whole hierarchy.

Note that, the set of records Rz1
summarized by z1 can be returned if the user requests it

(SHOWTUPLES option). This is done by simply transforming the intent of z1 into a query qz1

and sending it as a usual query to the database system. The WHERE clause of qz1
is gene-

rated by transforming the linguistic labels (fuzzy sets) contained in the intent of z1 into crisp
ones. In other words, each linguistic label l on an attribute A is replaced by its support, i.e.,
the set of all values in the domain of A (DA) that belong to l with non-zero membership :
support(l) = {u ∈ DA | µl(u) > 0}. Then, the obtained crisp criteria on each summary’s
attribute are connected with OR operator and summary’s attributes are connected with AND

CHAPTER 2 — Knowledge-based Clustering of Result Set 63

operator to generate the WHERE clause. Thus, performing a SHOWTUPLES operation takes
advantage of the optimization mechanisms that exist in the database system. Furthermore, tuples
covered by z1 can also be sorted, thanks to their satisfaction degrees to the user’s query, using an
overall satisfaction degree. We assign to each tuple the degree to which it satisfies the fuzzy cri-
teria of the query. Usually, the minimum and maximum functions stand for the conjunctive and
disjunctive connectives. There are many propositions in the literature for defining aggregation
connectives [KMP00].

The ESA algorithm is particularly efficient. In the worst case (exploration of the hierarchy
is complete), its time complexity is given by :

TESA(L) = ε · L− 1

d− 1
∈ O(L)

where L is the number of leaves (cells) of the queried summary hierarchy, d its average width
and coefficient ε corresponds to the time required for matching one summary in the hierarchy
against the query. In the above formula, [L−1

d−1] gives an estimation of the number of nodes in the
summary hierarchy.

In the following section, we discuss how ESA’s answers help facing the many-answers pro-
blem.

2.3 Multi-Scale Summarized Answers

Given a query Q, the ESA algorithm produces a set of clusters (summaries) from a SAIN-
TETIQ hierarchy instead of a list of tuples tset(Q). Each answer item z describes a subset of
the query result set tset(Q). Hence, the user can unambiguously determine whetherRz contains
relevant tuples only by looking at the intentional description of z and particularly on unspecified
attributes (Y) because all answer tuples satisfy the specified conditions related to attributes in
X . Three cases might occur :
1 : summary z doesn’t fit the user’s need. It means that for at least one unspecified attribute

A ∈ Y , all linguistic labels (the set z.A) are irrelevant to the user. For instance, consider
the Q1 results (Table 2.4). z1 doesn’t contain any relevant tuple if the user is actually
looking for very cheap houses because very cheap /∈ z1.P rice. In other words, none of
the records in Rz1

is mapped to very cheap on attribute Price and consequently a new
broad query with less selective conditions may be submitted or the task may be abandoned
(we denote this with the IGNORE option).

64 CHAPTER 2 — Knowledge-based Clustering of Result Set

2 : summary z exactly fits the user’s need. It means that for eachA ∈ Y , all linguistic labels
in z.A are relevant to the user. Assume that the user is interested in cheap, reasonable as
well as expensive houses. Thus, all tuples contained in Rz1

are relevant to her/him. In
such cases, she/he uses SHOWTUPLES option to access tuples stored in Rz1

.
3 : summary z partially fits the user’s need. In this case, there is at least one attributeA ∈ Y

for which z.A exhibits too many linguistic labels w.r.t. the user’s requirement. For ins-
tance, the set Rz1

partially matches the needs of a user who is looking for cheap as
well as reasonable houses because Rz1

contains also tuples that are mapped to expen-
sive on attribute Price. In this case, a new query with more selective conditions (e.g.,
Price IN {cheap OR reasonable}) may be submitted or a new clustering schema of
the set Rz, i.e., which allows to examine more precisely the dataset, is required. Since z

is a subtree of the summary hierarchy, we present to the user the children of z (SHOW-
CAT option). Each child of z represents only a portion of tuples in Rz and gives a more
precise representation of the tuples it contains. For example, {z10,z11} is a partitioning of
Rz1

into two subsets Rz10
and Rz11

; z10 exactly fits user needs. Since the entire tree is
pre-computed, no clustering at all would have to be performed at feedback time.

More generally, a set of summaries or clusters S = {z1 . . . zm} is presented to the user as
a clustering schema of the query result tset(Q). The three options IGNORE (case 1), SHOW-
TUPLES (case 2) and SHOWCAT (case 3) give the user the ability to browse through the S

structure (generally a set of rooted subtrees), exploring different datasets in the query results
and looking for potentially interesting pieces of information. Indeed, the user may navigate
through S using the basic exploration model given below :

i) start the exploration by examining the intensional description of zi ∈ S (initially i = 0) ;
ii) if case 1, ignore zi and examine the next cluster in S, i.e., zi+1 ;
iii) if case 2, navigate through tuples of Rzi

to extract every relevant tuple and thereafter,
go ahead and examine zi+1 ;

iiii) if case 3, navigate through children of zi, i.e., repeat from step (i) with S, the set of chil-
dren of zi. More precisely, examine the intensional description of each child of zi starting
from the first one and recursively decide to ignore it or examine it (SHOWTUPLES to
extract relevant tuples or SHOWCAT option for further expansion). At the end of the
exploration of the children of zi, go ahead and examine zi+1.

For instance, suppose a user is looking for medium, large as well as expensive houses in
the suburb but issues the broad query Q1 (Example 2.1) : “find medium or large houses in the

CHAPTER 2 — Knowledge-based Clustering of Result Set 65

Figure 2.8 – Summary z1

suburb”. The set of summaries S presented to that user is {z1}, where z1 is a subtree (Figure 2.8)
in the pre-computed summary hierarchy shown in Figure 2.6. In this situation, the user can
explore the subtree rooted by z1 as follows to reach relevant tuples : analyze the intent of z1 and
explore it using SHOWCAT option, analyze the intent of z10 and ignore it, analyze the intent
of z11 and use SHOWTUPLES option to navigate through the tuples in Rz11

(i.e., t25 − t30) to
identify each relevant tuple.

Note that when the set S = {z} is a singleton, i.e., z is a node of the pre-computed clustering
tree, its exploration is straightforward. Indeed, given a summary of the tree rooted by z that the
user wishes to examine more closely (SHOWCAT option), its children are well separated since
SAINTETIQ is designed to discover summaries (clusters) that locally optimize the objective
function U. Furthermore, the number of clusters presented to the user, at each time, is small ;
the highest value is equal to the maximum width of the pre-computed tree.

However, since the summary hierarchy is independent of the query, the set of starting point
answers S could be large and consequently dissimilarity between summaries is susceptible to
skew. It occurs when the summary hierarchy is not perfectly adapted to the user query. In this
situation, it is hard for the user to separate the interesting summaries from the uninteresting
ones, thereby leading to potential decision paralysis and a wastage of time and effort.

In the next section, we propose an original rearranging query results algorithm to tackle this
problem.

66 CHAPTER 2 — Knowledge-based Clustering of Result Set

2.4 Rearranging the Result Set

The problem of discrimination (dissimilarity) between ESA’s results occurs when these re-
sults are scattered over the queried summary hierarchy. This situation is illustrated in Figure
2.9, where the set of summaries S = {z00, z01, z1000, z101, z11} is returned by ESA as the result
of a query Q over the summary hierarchy H .

Figure 2.9 – An example of ESA’s results

A straightforward way to address this problem would be to, first, execute the SAINTETIQ
summarization service (SEQ) on the cells populated by records of tset(Q), i.e., the cells covered
by summaries of S. Then, we present to the user the top-level partition of the result tree. We
will refer to this approach as ESA+SEQ (i.e., search step followed by summarization step) for
the remainder of this chapter.

Size reduction and discrimination between items in S are clearly achieved at the expense
of an overhead computational cost. Indeed, the search step time complexity TESA is in O(L)

where L is the number of leaves of the queried summary hierarchy (see Section 2.2.4). Further-
more, the summarization step time complexity TSEQ is in O(L′ · log L′) with L′ the number of
cells populated by answer records (see Section 2.1.3). Therefore, the global time complexity
TESA+SEQ of the ESA+SEQ approach is in O(L · log L) : L ; L′ since the query is expected
to be broad. Thus, ESA+SEQ doesn’t fit the querying process requirement (see experimental
results in Section 2.6), that is to quickly provide the user with concise and structured answers.

To tackle this problem, we propose an algorithm coined Explore-Select-Rearrange Algo-
rithm (ESRA) that rearranges answers, based on the hierarchical structure of the queried sum-
mary hierarchy, before returning them to the user. The main idea of this approach is rather
simple. It starts from the summary partition S (a clustering schema of the query results) and
produces a sequence of clustering schemas with a decreasing number of clusters at each step.

CHAPTER 2 — Knowledge-based Clustering of Result Set 67

Each clustering schema produced at each step results from the previous one by merging the ‘clo-
sest’ clusters into a single one. Similar clusters are identified thanks to the hierarchical structure
of the pre-computed summary hierarchy. Intuitively, summaries which are closely related have a
common ancestor lower in the hierarchy, whereas the common ancestor of unrelated summaries
is near the root. This process stops when it reaches a single hyperrectangle (the root z!). Then,
we present to the user the top-level partition (i.e., children of z!) in the obtained tree instead of
S.

For instance, when this process is performed on the set of summaries S = {z00, z01,-
z1000, z101, z11} shown in Figure 2.9, the following sequence of clustering schemas is produced :

The hierarchy H ′ obtained from the set of query results S is shown in Figure 2.10. Thus,
the partition {z′, z′′′} is presented to the user instead of S. This partition has a small size and
defines well separated clusters. Indeed, all agglomerative methods, including the above rear-
ranging process, have a monotonicity property [HTF01] : the dissimilarity between the merged
clusters is monotonically increasing with the level. In the above example, it means that the dis-
similarity value of the partition {z′, z′′′} is greater than the dissimilarity value of the partition
{z00, z01, z1000, z101, z11}.

Figure 2.10 – Rearranging ESA’s results

Algorithm 2 (shown on the next page) describes ESRA. It is a modified version of ESA
(Algorithm 1) with the following new assumptions :

• it returns a summary (z!) rather than a list of summaries ;
• function AddChild appends a node to caller’s children ;
• function NumberofChildren returns the number of caller’s children ;

68 CHAPTER 2 — Knowledge-based Clustering of Result Set

• function uniqueChild returns the unique child of the caller ;
• function BuildIntent builds caller’s intent (hyperrectangles) from intents of its children ;
• Zres and Z ′ are local variables of type summary.

Algorithm 2 Function Explore-Select-Rearrange(z, Q)
Zres← Null

Z ′ ← Null

if Corr(z,Q) = indecisive then
for all child node zchild of z do

Z ′ ← Explore− Select−Rearrange(zchild, Q)

if Z ′ 4= Null then
Zres.addChild (Z ′)

end if
end for
if Zres.NumberofChildren() > 1 then

Zres.BuildIntent()
else

Zres← Zres.uniqueChild()
end if

else
if Corr(z,Q) = exact then

Zres ← z

end if
end if
return Zres

The ESRA cost is only a small constant factor γ larger than that of ESA. In fact, the rearran-
ging process is done at the same time the queried summary hierarchy is being scanned. It means
that no post-processing task (but the query evaluation itself) have to be performed at query time.
More precisely, the time complexity of the ESRA Algorithm is in the same order of magnitude
(i.e., O(L)) than the ESA Algorithm :

CESRA(L) = (γ + ε) · L− 1

d− 1
∈ O(L)

where the coefficient γ is the time cost for the additional operations (addChild, uniqueChild
and BuildIntent). L is the number of leaves (cells) of the queried summary hierarchy and d its

CHAPTER 2 — Knowledge-based Clustering of Result Set 69

average width.

A limitation of our proposal relies in the fact that ESRA restrains the user to queries using a
controlled vocabulary (i.e., the summary vocabulary). Indeed, consider a user looking for cheap
houses. What is meant by cheap can vary from one user to another one, or from one kind of
users to another one (e.g., cheap does not have the same meaning for house buyers and for
apartment tenants). In the following, we deal with user-specific linguistic labels to overcome
this problem.

2.5 Extension to any Fuzzy Predicate

We aim at allowing the user to formulate conditions in selection queries in her/his own
language. Regarding the query cost and accuracy, the ideal solution consists in building a sum-
mary hierarchy for every user such that queries and summaries share the same vocabulary.
Thus, ESRA can be used in its current state. But maintaining user-specific summaries is hardly
conceivable in a system with multiple users. Two alternatives are then envisaged.

The first one is to consider group profiles in order to reduce the number of managed summa-
ries (e.g., one for buyers and the other for tenants). In this case, ESRA can also be used directly
since users formulate queries within the vocabulary of their groups. In this approach, users
would subscribe to groups that share the same (or similar) vocabulary as theirs. In addition,
they have to be familiar with their group’s linguistic labels before using them accurately. As a
result, this option is not much more convenient than using ad-hoc linguistic labels predetermi-
ned by a domain expert. Moreover, it only transposes the problem of user-specific summaries
maintenance to group-specific ones.

The second alternative, investigated in this section, consists in building only one SAINTE-
TIQ summary hierarchy using an ad-hoc vocabulary, and querying it with user-specific linguis-
tic labels. In fact, we consider one summary hierarchy of the database which is created using
a priori defined linguistic labels that constitute the summary vocabulary. At the same time, the
user defines her/his own linguistic labels to formulate free fuzzy predicates within selection
queries and then searches the summary hierarchy thanks to a vocabulary mapping step.

2.5.1 Query Rewriting

Since the vocabulary of the query predicates is different from the one in the summaries, the
query must be rewritten before it can be answered using ESRA. The query rewriting process

70 CHAPTER 2 — Knowledge-based Clustering of Result Set

proposed here uses a fuzzy set-based mapping operation to translate query predicates from the
user-specific vocabulary to the summary language.

Consider a fuzzy query expressed using user-specific linguistic labels. Each linguistic label
lu, defined on an attribute A with domain DA, is rewritten by the smallest superset of linguistic
labels ls taken from the summary vocabulary, using the usual fuzzy intersection :

lu ∩ ls 4= ∅ iff ∃x ∈ DA, min(µlu(x), µls(x)) > 0

For instance, in the query “Location IN {well-located}”, the user-specific label well-
located is rewritten with the two summary linguistic labels downtown and town (Figure 2.11).
Thus, the resulting query is “Location IN {downtown OR town}”.

Figure 2.11 – The user label well-located (dashed line) is rewritten with the summary labels
downtown and town

In this scenario, the user query Q has been rewritten in a conservative manner so that “no-
thing is lost”. Thus, an empty set of summaries (S = ∅) as an answer guarantees that there
is really no result tuples for the query, i.e., tset(Q) = ∅. A non-empty set S = {z1 . . . zm}
denotes the possibility that answer tuples exist, but nothing can be guaranteed, i.e., tset(Q) ⊆
⋃

1≤i≤m Rzi
. Of course, tuples of

⋃
1≤i≤m Rzi

\ tset(Q) do not satisfy Q. However, they are
close to Q and consequently interesting since the user is in an exploratory analysis and tries to
discover the content of the database and the choices available to her/him.

In some cases, it could be more suitable to guarantee that answers exist instead of guaran-
teeing empty answers only. To achieve this, the user linguistic label lu is rewritten by the subset
of linguistic labels ls taken from the summary vocabulary, using the usual fuzzy inclusion :

ls ⊆ lu iff ∀x ∈ DA, µls(x) ≤ µlu(x)

For instance, the linguistic label well-located (Figure 2.11) is only mapped to downtown.
Thus, in this case, the resulting query is “Location IN {downtown}”.

In this second rewriting scenario, a non-empty set S = {z1 . . . zm} as an answer guarantees
that all tuples covered by its summaries are really in the result of the query, i.e.,

⋃
1≤i≤m Rzi

⊆

CHAPTER 2 — Knowledge-based Clustering of Result Set 71

tset(Q). However, there could be others that satisfy predicates and do not belong to S, i.e.,
tset(Q) \

⋃
1≤i≤m Rzi

.

Note that both scenarios can be used together for the same query, as one guarantees null
answers and the other guarantees non-null answers. This dual approach can be viewed as rea-
soning with both Possibility and Necessity [DPU02] of the query result. Moreover, these two
scenarios are the boundaries of a spectrum of possible strategies : the generalized expression
of the rewriting process consists in defining a similarity measure σ and a threshold τ to decide
whether or not the mapping of two linguistic labels is valid. Thus, a user label lu is mapped to
a summary label ls if and only if σ(lu, ls) is greater than or equal to τ .

In this work, we use the following similarity measure given by [BMRB96] :

σ(lu, ls) =
M(lu ∩ ls)

M(ls)
,

assuming the usual definition of the fuzzy intersection µlu∩ls = min(µlu , µls) and the following
fuzzy measureM :

M(l) =

{ ∑
x∈DA

µl(x) if DA is finite∫
DA

µl(x).dx otherwise.
This choice is motivated by the fact that fuzzy set-based mapping operation can be gi-

ven a semantics in terms of degree of satisfiability [BMRB96]. Indeed, σ(lu, ls) evaluates the
satisfiability of the user label lu by a summary label ls. Note that this measure is not symme-
trical because lu is taken as a reference. The behavior of σ(lu, ls) is graphically illustrated on
figure 2.12.

Figure 2.12 – The behavior of σ

Note that when τ = 0+ (respectively τ = 1), we fall back into the Possibility (respectively
Necessity) scenario. Note also that since crisp sets are special cases of fuzzy sets, this rewriting
process can also be used to rewrite crisp queries (e.g., ‘Price ∈ [150ke, 300ke]’).

72 CHAPTER 2 — Knowledge-based Clustering of Result Set

Once the query is rewritten, ESRA could be performed in order to provide the summarized
answer. The relevance of summaries in the result depends on the query mapping and especially
the satisfiability degree of the rewritten predicates. Thus, we propose in the following an appro-
priate scoring function to sort ESRA’s results.

2.5.2 Results Sorting

Consider a query Q, expressed using the user’s vocabulary. Further, let X be the set of
attributes specified in Q, and let z be a summary returned by ESRA when performed on Q′, the
rewritten version of Q. We denote by QA and z.A the set of linguistic labels that appear on
attribute A in Q and z, respectively.

In the following, we define a scoring function Score(Q, z) that measures how well the sum-
mary z fits the user query Q. Score(Q, z) is based on the satisfiability degrees [BMRB96] of
linguistic labels of Q by linguistic labels of z. More specifically, for each attribute A ∈ X ,
we first use σ(lu, ls) to compute the satisfiability degree of each label lu ∈ QA by each label
ls ∈ z.A. Then, we combine all these pairwise degrees to compute σG(QA, z.A), the global
satisfiability degree of QA by z.A. The simplest way to do this is by using a disjunctive aggre-
gation that aggregates values as an OR operator, so that the result of the combination is high if
some (at least one) values are high. Disjunctive combination is typically performed in fuzzy set
theory by T-conorm operators, whose most used instance is ‘max’. Thus, we obtain :

σG(QA, z.A) = max
lu∈QA,ls∈z.A

σ(lu, ls)

The function σG establishes a comparison, attribute by attribute. Thus, we have as many
values of comparison as there are attributes in X . A last aggregation step of those values is
done using the product T-norm operator in order to obtain Score(Q, z) :

Score(Q, z) =
∏

A∈X

σG(QA, z.A)

We use the product T-norm operator since it takes into account all σG values and balances
the summary score value across each of the conditions in the query.

Thus, for each summary z from the set S of summaries returned by ESRA, we first compute
its score Score(Q, z). Then, we sort these summaries by their scores in decreasing order and
finally return the ordered list Ssorted to the user. Furthermore, when a user decides to explore a

CHAPTER 2 — Knowledge-based Clustering of Result Set 73

summary z in the list Ssorted using the SHOWCAT option, we sort the set of z’s children accor-
ding to their scores in decreasing order. Note that all basic values σ(lu, ls) needed are available
because the intentional description of z includes the intentional description of its children. Like-
wise, when a user decides to explore z using SHOWTUPLES option, each tuple t can be sorted
by Score(Q, t). In this case, the satisfiability degree σ(lu, t.A) of each label lu ∈ QA by each
value t.A of t on A is given by µlu(t.A).

2.6 Experimental Results

Evaluating and comparing the effectiveness of different approaches that address the Many-
Answers problem in databases is challenging. Unlike Information Retrieval where there exist
extensive user studies and available benchmarks (e.g., the TREC23 collection), such infrastruc-
tures are not available today in the context of Relational Databases. Nonetheless, in this section,
we discuss the efficiency and the effectiveness of ESA, ESA+SEQ and ESRA algorithms based
on a real database.

2.6.1 Data Set

Through an agreement, the CIC Banking Group provided us with an excerpt of statistical
data used for behavioral studies of customers. The dataset is a collection of 33735 customers de-
fined on 10 attributes (e.g., age, income, occupation, etc.). On each attribute, marketing experts
defined between 3 and 8 linguistic labels leading to a total of 1036800 possible label combi-
nations (i.e., 1036800 possible cells). Note that all the experiments were done on a 1.7GHz
P4-based computer with 768MB memory.

2.6.2 Results

All experiments reported in this section were conducted on a workload composed of 150

queries with a random number of selection predicates from all attributes (i.e., each query has
between 1 and 3 required features on 1, 2, 3 or 4 attributes).

23http ://trec.nist.gov

74 CHAPTER 2 — Knowledge-based Clustering of Result Set

Quantitative Analysis

The CIC dataset is summarized by the SAINTETIQ system as described in Section 2.1. The
dataset, consisting of 33735 records, yields a summary tree with 13263 nodes, 6701 leaves or
cells, maximum depth of 16, average depth of 10.177, maximum width of 14 and an average
width of 2.921. The data distribution in the summary tree reveals a 0.6% (6701

1036800) occupation
rate.

From the analysis of theoretical complexities, we claim that ESA and ESRA are much faster
than the post-clustering approach ESA+SEQ. That is the main result of Figure 2.13 that shows
the performance evolution according to the number of cells populated by query answer records.
Furthermore, we plot the number of summary nodes visited (#Visited Nodes) per query (right
scale) and finally, the normalized ESRA time cost (tN. ESRA) to evaluate the performance of ESRA
regardless of how the query fits the pre-clustering summary hierarchy. tN. ESRA is computed as
follows :

tN. ESRA =
tESRA · #Tree Nodes
#Visited Nodes

.

Figure 2.13 – Time cost comparison

As one can observe, Figure 2.13 verifies experimentally that ESA+SEQ is quasi-linear (O(L·
log L)) in the number of cells L whereas ESA, ESRA and N. ESRA are linear (O(L)). Besides,
the time cost incurred by rearranging query results (i.e., tESRA− tESA) is insignificant compared

CHAPTER 2 — Knowledge-based Clustering of Result Set 75

to the search cost (i.e., tESA). For instance, for L = 1006, tESA and tESRA are 0.235sec and
0.287sec, respectively. Thus, the ESRA algorithm is able to drastically reduce the time cost of
clustering query results.

Qualitative Analysis

Due to the difficulty of conducting a large-scale24 real-life user study, we discuss the effecti-
veness of the ESRA algorithm based on structural properties of results provided to the end-user.
It is worth noticing that the end-user benefit is proportional to the number of items (clusters or
tuples) the user needs to examine at any time as well as to the dissimilarity between these items.

We define the ‘Compression Rate’ (CR) as the ratio of the number of clusters (summaries)
returned as a starting point for an online exploration over the total number of cells covered
by such summaries. Note that CR = 1 means no compression at all, whereas smaller values
represent higher compression. As expected, Figure 2.14 shows that CR values of ESRA and
ESA+SEQ are quite similar and much smaller than that of ESA. Thus, size reduction is clearly
achieved by the ESRA algorithm.

Figure 2.14 – Compression rate comparison

We could also see that the dissimilarity (Figure 2.15) of the first partitioning that ESRA
24A potential problem with real-user evaluation techniques is that users’ opinions are very subjective. Hence,

even if we obtain positive feedback from a small set of test users, we cannot be more convinced and affirmative
about the effectiveness of our approach.

76 CHAPTER 2 — Knowledge-based Clustering of Result Set

presents to the end-user is greater than that of ESA and is in the same order of magnitude than
that provided by ESA+SEQ. It means that ESRA significantly improves discrimination between
items when compared against ESA and is as effective as the post-clustering approach ESA+SEQ.
Furthermore, the dissimilarity of the ESA result is quite similar to that of the most specialized
partitioning , i.e., the set of cells. Thus the rearranging process is highly required to provide the
end-user with well-founded clusters.

Figure 2.15 – Dissimilarity comparison

Now assume that the user decides to explore a summary z returned by ESRA. We want to
examine the number of hops NoH (i.e., the number of SHOWTUPLES/SHOWCAT operations)
the user might employ to reach a relevant tuple. NoH ranges from 1 up to dz + 1, where dz is
the height of the tree rooted by z (i.e., subtree Hz). The best case (NoH = 1) occurs when z

exactly fits the user’s need, whereas the worst case (NoH = dz + 1) occurs when the relevant
information is reached by following a path of maximal length in Hz. Note that these two sce-
narios are on opposite extremes of the spectrum of possible situations : the generalized case
(0 ≤ NoH ≤ dz + 1) is that the user’s need is successfully served by a node at height h such
that 0 ≤ h ≤ dz.

In the following experiment (Figure 2.16), one considers a user query q with selectivity of
η, i.e., the number of tuples returned by q divided by the total number of tuples in the database
(33735). We look for all the possible summaries (subtrees) in the pre-computed summary hierar-
chy that can be returned as the result of q and, for each one, we compute its maximum depth, its

CHAPTER 2 — Knowledge-based Clustering of Result Set 77

average depth and the average length of all paths emanating from that node (summary). Then,
we pick out the highest (maximum) value observed for each of these measures. The three values
obtained, for each value of η (η ∈ {0.2%, 0.4% . . . 2%}), evaluate respectively :

(1) the worst number of hops required to reach the deepest leaf node (Worst NoH2C) contai-
ning relevant data ;

(2) the average number of hops needed to reach any leaf node (Average NoH2C) containing
relevant data (i.e., not necessarily the deepest one) ;

(3) the average number of hops required to reach any node (Average NoH2N) containing
relevant data (i.e., not necessarily a leaf node).

Figure 2.16 – The number of SHOWTUPLES/SHOWCAT operations

Figure 2.16 shows that the Worst NoH2C and the Average NoH2C are relatively high, but
bounded respectively by the maximum (16) and the average (10.177) depth of the pre-computed
tree. It is worth noticing that, in real life situation, the user finds out that her/his need has been
successfully served by an inner node of the tree rooted by z. Thus, the Average NoH2N is
more adapted to evaluating the effectiveness of our approach (ESRA). As one can observe, the
Average NoH2N is quite small given the number of tuples in the q result set. For instance,
NoH2N = 3.68 is the number of hops the user takes to reach relevant information within a set
of 674 tuples (η = 2).

78 CHAPTER 2 — Knowledge-based Clustering of Result Set

Finally, we aim to compare the number of results the user has to examine until she/he reaches
relevant data when answers are rearranged using ESRA or not. To this end, we pick first ran-
domly one summary z from the pre-computed tree such that z covers 30 cells. Then, we generate
the query q that returns z. In this experiment, we assume that z exactly fits the user’s need, i.e.,
the user is interested in all tuples (Rz) that match q. Further, we assume that user submits a broad
query q′ instead of q, i.e., q′ is a relaxation of q and consequently matches a superset ofRz. Note
that when no processing has been performed on q′ results, the user has to examine N cells and
for each one perform one SHOWTUPLES operation in order to get all relevant tuples (Rz),
where N is the number of cells that satisfy q′. However, when q′ is processed using the ESRA
algorithm, the user has to examine only ENoH clusters and then perform one SHOWTUPLES
operation ; ENoH is the effective number of hops (or SHOWCAT operations) required to reach
z. This is because the summary z exactly matches the query q′ (relaxation of q), and conse-
quently it is returned as a whole by ESRA. Figure 2.17 shows the evolution of ENoH

N
according

to the precision of q′, i.e, the number of relevant cells (i.e., 30) divided by the number of cells
that match the query q′ (i.e.,N). As one can observe, ENoH

N
is much smaller than 1. For instance,

it is equal to 0.0013 (5
3603) for a query precision of 0.83% (30

3603%). It means that only 5 hops
are required to locate the summary z within a clustering schema of q′ results that covers 3603

cells. Thus, ESRA is able to drastically reduce the ‘Information Overhead’ that users experience
when submitting a broad query.

Figure 2.17 – Effectiveness of ESRA regarding the precision of the user query

Those experimental results validate the claim of this work, that is to say the ESRA algorithm

CHAPTER 2 — Knowledge-based Clustering of Result Set 79

is very efficient (Figure 2.13) and provides useful clusters of query results (Figure 2.14 and
Figure 2.15) and consequently, makes the exploration process more effective (Figure 2.16 and
Figure 2.17).

2.7 Conclusion

Interactive and exploratory data retrieval are more and more suitable to database systems.
Indeed, regular ‘blind’ queries often retrieve too many answers. Users then need to spend time
sifting and sorting through this information to find relevant data.

In this chapter, we proposed an efficient and effective algorithm coined Explore-Select-
Rearrange Algorithm (ESRA) that uses database SAINTETIQ summaries to quickly provide
users with concise, useful and structured representations of their query results. Given a user
query, ESRA (i) explores the summary hierarchy (computed offline using SAINTETIQ) of the
whole data stored in the database ; (ii) selects the most relevant summaries to that query ; (iii)
rearranges them in a hierarchical structure based on the structure of the pre-computed summary
hierarchy and (iv) returns the resulting hierarchy to the user. Each node (or summary) of the
resulting hierarchy describes a subset of the result set in a user-friendly form using linguistic
labels. The user then navigates through this hierarchy structure in a top-down fashion, exploring
the summaries of interest while ignoring the rest.

Experimental results showed that the ESRA algorithm is efficient and provides well-formed
(tight and clearly separated) and well-organized clusters of query results. Thus, it is very helpful
to users who have vague and poorly defined retrieval goals or are interested in browsing through
a set of items to explore what choices are available.

The ESRA algorithm assumes that the summary hierarchy of the queried data is already built
using SAINTETIQ and available as input. However, the SAINTETIQ model requires full access
to the data which is going to be summarized, i.e., all data has to be located at the site where
it is summarized. This requirement severely limits the applicability of the ESRA algorithm in
a distributed environment, where data are distributed across many sites and their centralization
cannot scale in terms of communication, storage and computation. In the next chapter, we study
the behaviors and properties of the SAINTETIQ summarization technique in order to extend its
ability to deal with distributed databases.

CHAPTER 3
Merging Distributed
Database Summaries

Introduction

Nowadays, data are often stored in different databases located on distant sites (e.g., PCs
connected to the Internet) rather than being stored in a centralized database. This is due to
several reasons, including the following :

• many organizations and companies are scattered worldwide geographically. Each site
generates its own data and manages its own data repository. For instance, supermarket
chains such as Carrefour, Monoprix etc. have some data which is located in Paris and
some data in Nantes ;

• computer systems have limits. These limitations can be seen in the amount of memory the
system can address, the number of hard disk drives which can be connected to it or the
number of processors it can run in parallel. In practice this means that, as the quantity of
information in a centralized database becomes larger, a single system can no longer cope
with all the information that needs to be stored and queried.

Figure 3.1 – (a) Horizontally fragmented data (b) Vertically fragmented data

In a distributed environment, data may be horizontally or vertically partitioned (fragmented
[OV99]) among different sites. Figure 3.1 illustrates these two cases. In case of horizontal par-
titioning, the feature space is the same for the different databases. Essentially this boils down

81

82 CHAPTER 3 — Merging Distributed Database Summaries

to different data sites collecting the same kind of information over different (possibly overlap-
ping) groups of individuals, e.g., site S1 and site S2 in Figure 3.1. On the other hand, in case of
vertical partitioning, different databases define different feature spaces (with a set of possibly
overlapping attributes). Basically this means that data is collected by different sites on the same
individuals but with different feature sets, e.g., site S ′

1 and site S ′
2 in Figure 3.1.

Due to some concerns related to confidentiality, storage, communication bandwidth and/or
power limitation, the data cannot be transmitted to a central site. Consequently, the current cen-
tralized version of SAINTETIQ (Section 2.1, Chapter 2) is either not desirable (privacy reasons)
or not feasible (resource limitations). For instance, in medical databases, only anonymous and
statistical information are available since individual information (such as the name, the address
and the phone number) may violate the patient confidentiality. Even if privacy is not an obstacle,
transmitting the entire local data set to a central site and performing the clustering are, in some
application areas, quite difficult, if not almost impossible. In astronomy, for instance, data sets
gathered by telescopes and satellites spread all over the world, are measured in gigabytes and
even terabytes.

To enable summarization of distributed data without a prior “unification” of the data sources,
we propose new algorithms that take two summary hierarchies (local models) as input, instead
of the raw data, and merge them to output a global summary hierarchy of the entire distributed
data :

• Union by Incorporation Algorithm (UIA) and Union by Alignment Algorithm (UAA) to
deal with horizontally distributed data. They rely on a summary union operator which
aggregates two input summaries (or clusters) representing two different sets of database
records with the same set of attributes ;

• Subspace-Oriented Join Algorithm (SOJA) and Tree Alignement-based Join Algorithm
(TAJA) to deal with vertically distributed data. They rely on a summary join operator
which appends two input summaries (or clusters) representing the same set of database
records but with two different feature sets.

The main concern of this chapter is to introduce and compare those algorithms and study
the pros and cons of each one. This raises some questions :

• How can we define the set of the best representatives (or summaries) of a given data set
according to the input summaries ?

• What are the main criteria (time complexity, model consistency, etc.) that need to be
taken care of in order to ensure that our merging algorithms (UIA, UAA, SOJA and TAJA)

CHAPTER 3 — Merging Distributed Database Summaries 83

overcome the SAINTETIQ limitations in distributed systems ?
• How good are the merged (global) hierarchies ?
The rest of this chapter is organized as follows. In the next section, we discuss in detail the

problem of summarizing distributed data. Our merging algorithms (UIA, UAA, SOJA and TAJA)
are presented in Section 3.2. Section 3.3 introduces how to evaluate the correctness of merging
algorithm results using an appropriate and consistent clustering validity index. Moreover, an
experimental study is presented in Section 3.4. In Section 3.5, we briefly discuss some works
which are related to the issue addressed in this chapter. Section 3.6 concludes.

3.1 Problem Analysis

In this section, we define the problem of summarizing distributed data and present a toy
example that will be used throughout this chapter. Then, we describe some basic approaches to
address such problem and point out their limitations.

3.1.1 Problem Statement

Let E = {A1, . . . , AN} be a set of attributes, and let {X,Y, Z} be a partition of E. Assume
that theN -dimensional space A1×A2× . . .×AN is equipped with a grid that defines basicN -
dimensional areas called cells in E. The cells are obtained, for example, by partitioning every
initial feature domain into several sub-domains using linguistic labels from a Knowledge Base
(KB). Assume also that there exist four relational database tables R1, R2, R′

1 and R′
2 located

respectively on distant sites S1, S2, S ′
1 and S ′

2. R1 and R2 are defined on E, i.e., R1 and R2

are horizontal fragments of the global relation R1 ∪ R2. R′
1 and R′

2 are defined respectively on
different feature sets E1 = X ∪ Y and E2 = Y ∪ Z. Furthermore, we assume that there is a
common feature ID, accessible to S ′

1 and S ′
2, that can be used to associate a given sub-tuple in

site S ′
1 to a corresponding sub-tuple in site S ′

2. In other words, R′
1 and R′

2 are vertical fragments
of the global relation R′

1 !" R′
2
25. Note that the latter assumption is required for a reasonable

solution to the problem of summarizing distributed data and is not overly restrictive. Indeed,
even if there is no such ID, any entity resolution method [BGL06, SD06] could provide the
association. Moreover, we assume consistency [BK99, SK05] between values of attributes that
appear in R′

1 and R′
2, i.e., if a tuple with ID id1 has A-value v in R′

1 then we assume that tuple
with ID id1 in R′

2 will also have value v for its A attribute.

25The natural join of R′

1 and R′

2 over the common feature ID (i.e., R′

1 !"ID R′

2)

84 CHAPTER 3 — Merging Distributed Database Summaries

Definition 3.1. Problem Definition.
We define the problem of summarizing horizontally (resp., vertically) distributed data as
follows : compute HR1∪R2

(resp., HR′

1
!"R′

2
), the summary hierarchy of data located at S1 and

S2 (resp., S ′
1 and S ′

2).

The traditional solution to the above problem is to simply transfer R1 and R2 (resp., R′
1 and

R′
2) to a central site where their union (resp., join) is performed, and then the summary hierarchy

of distributed data is computed by applying SAINTETIQ over R1 ∪ R2 (resp., R′
1 !" R′

2). Such
an approach, however, is either infeasible or undesirable for several reasons :

• Storage cost : the central storage system needs to be very large in order to host all data
from the distributed sites.

• Computational cost : the central system has to be very powerful in order to deal with huge
data volumes.

• Communication cost : moving distributed data to a central location might take an extre-
mely long time and require huge network bandwidth.

• Private and sensitive data : moving raw data to the central site is not desirable since it puts
privacy at risk.

On the other hand, it is possible to summarize the data locally where it has been generated
and stored. The resulting summary hierarchies (local models) can then be sent to a central site
where they are merged to obtain the summary hierarchy (global model) of the entire distributed
data. This approach is very attractive because : (1) local models can be computed quickly and
independently from each other ; (2) local models are much smaller than raw data and sending
them, instead of raw data, reduces transmission cost ; (3) sharing only local models, instead of
raw data, would give reasonable security since it overcomes partially the issues of privacy and
security of raw data. We therefore discuss new algorithms for merging local models.

3.1.2 Running Example

To illustrate our proposal, we introduce here a sample data set R(ID, A,B,C) with 30 re-
cords represented on four attributes : ID, A, B and C. We suppose that {a1, a2, a3}, {b1, b2, b3}
and {c1, c2} are sets of linguistic labels defined respectively on the attributes A, B and C. Fi-
gure 3.2 shows the summary hierarchy HR provided by SAINTETIQ performed on the data set
R.

CHAPTER 3 — Merging Distributed Database Summaries 85

Figure 3.2 – Summary hierarchy HR of the data set R

To serve merging processes, we first perform a horizontal (resp., vertical) fragmentation of
R : we then obtain two relations R1(ID, A,B,C) and R2(ID, A,B,C) (resp., R′

1(ID, A,B) and
R′

2(ID, B, C)). Then we also apply SAINTETIQ on these four derived relations to produce the
corresponding summary hierarchies (Figure 3.3 and Figure 3.4) that should be merged.

Figure 3.3 – HR1
and HR2

3.1.3 Basic Approaches

In this section, we discuss first ideas for merging two summary hierarchies and describe
their drawbacks. But before proceeding further, we define new operators that will be used in the
following.

86 CHAPTER 3 — Merging Distributed Database Summaries

Figure 3.4 – HR′

1
and HR′

2

3.1.3.1 Merging Operators

Definition 3.2. Summary Union Operator (∪̃).
Let z1 and z2 be two summaries (Definition 2.1, Chapter 2) of E = {A1, . . . , AN}, i.e., z1 and
z2 are areas of E. We define a union operator for z1 and z2 as :

z! = z1∪̃z2 ⇐⇒
Lz% = Lz1

∪ Lz2

Rz% = Rz1
∪Rz2

Recall that, for a given summary z, Lz denotes the set of cells covered by z, Rz denotes its
extent, and 〈z.A1, . . . , z.AN〉 (or simply 〈z.E〉) denotes its intent (z.Ai is the set of linguistic
labels that appear in z on the attribute Ai).

Figure 3.5 represents the summary resulting from the union of the summaries r1111 and r211

of HR1
and HR2

(Figure 3.3), respectively.

Figure 3.5 – z! = r1111∪̃ r211

CHAPTER 3 — Merging Distributed Database Summaries 87

Definition 3.3. Summary Join Operator (!̃").
Let {X,Y, Z} be a partition of E = {A1, . . . , AN}, and let z1 and z2 be respectively summaries
of E1 = {X,Y } and E2 = {Y, Z}, i.e., z1 is an area of E1 and z2 is an area of E2. We define a
join operator for z1 and z2 as :

z! = z1!̃"z2 ⇐⇒
Lz% =

∅ if z1 and z2 are both cells and
〈z1.Y 〉 4= 〈z2.Y 〉,

{〈z1.X, z1.Y, z2.Z〉} if z1 and z2 are both cells,

⋃

c1∈Lz1 ,c2∈Lz2

Lc1!"c2
otherwise.

Rz% = Rz1
!" Rz2

In the above definition, for a given summary z1 and a given set of attributes Y = {Y1, . . .-
, Ym} ⊆ E, 〈z1.Y 〉 is used to denote 〈z1.Y1, . . . , z1.Ym〉. Furthermore, z1.Y 4= z2.Y is a compact
notation for “ ∃ Yi ∈ Y such that z1.Yi 4= z2.Yi ”.

z! = z1!̃"z2 is a summary of E = E1 ∪ E2 = {X,Y, Z}, i.e., z! is an area of E. It is worth
noticing that z! could be empty as soon as Rz% = ∅ or Lz% = ∅.

Figure 3.6 represents the summary resulting from the join of the summaries r′12 and r′22 of
HR′

1
and HR′

2
(Figure 3.4), respectively.

Figure 3.6 – z! = r′12!̃" r′22

88 CHAPTER 3 — Merging Distributed Database Summaries

Definition 3.4. Partition Union Operator (∪̂).
LetR1 andR2 be two relations defined onE = {A1, . . . , AN}, and let P1 and P2 be respectively
summary partitioning (Definition 2.3, Chapter 2) of R1 and R2. The union of P1 and P2 is
defined as the set of summaries Π = P1∪̂P2 which verifies the following conditions :

(1) ∀z ∈ Π, ∃ F ⊆ P1 ∪ P2 such that z = ∪̃z′∈F z′, i.e., z is either an element of P1 ∪ P2 or
a union of elements of P1 ∪ P2 ;

(2) ∀z, z′ ∈ Π, z and z′ are disjoint (Property 2.1, Chapter 2) ;

(3) for each Π′ 4= Π that verifies (1) and (2), |Π| > |Π′|.

Recall that |.| denotes the cardinality of a set. Considering the above definition, if all sum-
maries of P1 ∪ P2 are pairwise disjoint (resp., overlapping), then Π = P1 ∪ P2 (resp., Π =

{∪̃z∈P1∪P2
z}). Note that P1∪̂P2 is trivially a summary partitioning of R1 ∪R2.

Definition 3.5. Partition Join Operator (!̂").
Let {X,Y, Z} be a partition of E = {A1, . . . , AN}, R′

1 and R′
2 two relations defined respecti-

vely on E1 = X ∪ Y and E2 = Y ∪ Z, P1 a summary partitioning of R′
1 and P2 a summary

partitioning of R′
2. The join of P1 and P2 is defined as :

P1!̂"P2 =
{
z1!̃"z2 | (z1 ∈ P1) ∧ (z2 ∈ P2)

}

P1!̂"P2 is a summary partitioning ofR′
1 !" R′

2. Indeed, we can easily check that P1!̂"P2 veri-
fies the disjunction property (Property 2.1, Chapter 2) and the coverage property (Property 2.2,
Chapter 2). Hereafter, we shall use P1"̂ P2 to denote the set of summaries of P1 such that :

P1"̂ P2 = {z1 ∈ P1| (∃ z2 ∈ P2) ∧ (z1!̃"z2 ∈ P1!̂"P2)}

Recall that the most specialized summary partitioning of a given relationR is the set of cells
LR that are populated by records of R. Thus from Definition 3.4 and Definition 3.5, we have
the following equalities :

LR1∪R2
= LR1

∪̂LR2

LR′

1
!"R′

2
= LR′

1
!̂"LR′

2

It means that the most specialized summary partitioning of distributed data can be obtained
directly from those of local data, and therefore, no mapping process is needed (Section 2.1.1.1,
Chapter 2).

CHAPTER 3 — Merging Distributed Database Summaries 89

It is worth noticing that the exact values of attribute-dependent (e.g., mean, maximum, mi-
nimum and standard deviation) and attribute-independent (e.g., record count) statistical infor-
mation of each cell c!, a cell resulting from the union or join of two initial cells c1 and c2, can-
not be computed without either centralization of data or communication between sites. Indeed,
such parameters are calculated directly from data. Nevertheless, if univariate-distribution laws
(e.g., normal, uniform, etc.) of attributes values in c1 and c2 are known, an approximation of c!’s
attribute-dependent measures can be calculated. An approximation of c!’s attribute-independent
parameters is a bit more complicated, but not impossible. First, the multivariate-distribution law
is approximated using the univariate-distribution laws. Then, it could be used to estimate c!’s
attribute-independent measures.

3.1.3.2 The Greedy Merging Algorithm (GMA)

The Greedy Merging Algorithm (GMA) is the straightforward way of summarizing distribu-
ted data. It operates exhaustively on all the populated cells to find out the best partitioning of
the global data set. Indeed, depending on the assumed case - horizontally or vertically distribu-
ted data - GMA takes the union or the join of the sets of leaves (cells) of the input hierarchies
and generates their optimal partitioning schema. We define here the optimality as the result of
performing the following algorithm on a set of summaries Z :

1. compute the partition lattice L of Z ;

2. for each partition P ∈ L, build summary descriptions (hyperrectangles) from clusters of
cells ;

3. filter from L the set of candidate summary partitions P that are partitions satisfying the
disjunction property (coverage is trivial) ;

4. the optimal partitioning of Z is the partition Pbest ∈ P with the highest U value26.

Note that at the fourth stage, we can also compute the summary utility of the worst partitio-
ning Pworst of Z . We will use such a partition for the evaluation of our algorithms (Section 3.3).

From the optimal summary partitioning Pbest, a hierarchical organization of summaries is
built by agglomerating and dividing summaries to provide higher and lower nested partitions
such that the U function may emphasize local or global patterns in the data. Thus, we obtain two
different hierarchies according to the performed optimization (local or global). None of them
is preferred to the other and the third-party application or user’s requirements are key factors
to selecting the right optimization mode. Indeed, the former based on local optimization seems

26Recall that U denotes the objective function of SAINTETIQ.

90 CHAPTER 3 — Merging Distributed Database Summaries

more appropriate for applications including querying, analyzing and browsing operations. It
supports fruitful strategies to explore large information space. The latter is a more relevant
choice for applications that address the problem of resource limitation to substitute an entire
summary partition to the original data set.

The two optimization approaches above (i.e., local or global) are described in detail in the
following subsections where, for convenience, we denote by op either ∪ or !", and we denote
by F1 op F2 either the union of two horizontal fragments F1 and F2 or the join of two vertical
fragments F1 and F2.

Global Optimization-based GMA

The main idea of this approach is rather simple. It starts from a given summary partition and
recursively searches in two directions for the highest U-valuated partitions that are nested or
including. It stops when it reaches respectively the cells (the leaves) and a single hyperrectangle
(the root z!).

Recall that we are trying to build HF = HF1 op F2
, the summary hierarchy of relation F =

F1 op F2, fromHF1
andHF2

. The global optimization-based GMA (GO-GMA) is performed on
the optimal partition Pbest of the set of leaves LF = LF1

ôp LF2
as follows :

1. l = 0 ; Pl ← Pbest ;

2. While Pl 4= {z!} do
• generate the list Gl of summary partitions that generalize Pl ;
• compute scores U(P) of every P ∈ Gl ; rank P in Gl w.r.t. U(P) ;
• Pl+1 ← top(Gl) ; l++ ;

3. return the nested partitions Pk, k ∈ [0..l] as upper levels of the summary hierarchy HF .

Function top(Gl) returns the first item in the list, that is the summary partition with the
highest U value. The algorithm above builds the upper part of the summary hierarchyHF , from
the root Pl = {z!} to the best partitioning P0 = Pbest. The lower part is similarly computed,
with the stop condition Pl = LF and Gl is Sl, the list of summary partitions that specialize Pl.

Figure 3.7 illustrates the merged hierarchy obtained from summary hierarchies shown in
Figure 3.3 according to the GO-GMA approach. Note that it is the same as the one provided by
GO-GMA when performed on the summary hierarchiesHR′

1
andHR′

2
shown in Figure 3.4 since

R1 ∪R2 = R′
1 !" R′

2 ; and therefore LR1
∪̂LR2

= LR′

1
!̂"LR′

2
.

CHAPTER 3 — Merging Distributed Database Summaries 91

Figure 3.7 – GO-GMA on HR1
and HR2

Local Optimization-based GMA

This approach takes the set of leaves LF = LF1
ôp LF2

and computes the highest U-valuated
partition Pbest of LF as the first level of the global hierarchy HF . Then, it recursively applies to
every node of Pbest. The method uses a local optimization since each summary is subject to an
individual clustering, from the root to the leaves.

Thus, the local optimization-based GMA (LO-GMA) computes the hierarchy HF from HF1

and HF2
as follows :

1. search for Pbest on LF ; Pbest is then the top-level partition in the treeHF and is connected
to the root z! ;

2. for each z ∈ Pbest do
• nothing if z is a leaf, else
• repeat from step 1 with LF ← Lz ; HF ← HRz ; z! ← z ;

Recall that Lz denotes the set of cells covered by the hyperrectangle z and Rz denotes the
extent of z.

Figure 3.8 gives the result hierarchy of the summary hierarchies HR1
and HR2

shown in
Figure 3.3 according to the LO-GMA approach.

Discussion

BothGO-GMA and LO-GMA are expensive since they rely on finding the best partition Pbest

of various data sets with nesting constraints. In fact, this principle requires to explore all the
possible partitions each time. More specifically, the time complexity TGMA of both GO-GMA

92 CHAPTER 3 — Merging Distributed Database Summaries

and LO-GMA approaches verifies :

TGMA(L) = kOMA · BL ∈ O(2L)

where L is the number of cells populated by records of the global data set, kOMA a constant
factor and B the Lth Bell number27.

Figure 3.8 – LO-GMA on HR1
and HR2

Nevertheless, in the computation of the optimal partitioning, it is more efficient to perform
the checking of disjunction property within the calculation of the partition lattice. Indeed, if
{z1, z2} and {z3} overlap, every partition verifying the pattern {{z1, z2}, {z3}, X}, with X a
partition of the complement to {z1, z2, z3} are trivially not disjoint. This observation allows to
prune large parts of the Hasse diagram of the set of candidate summary partitions P and could
drastically reduce time cost.

Besides, note that the uniqueness of such optimal partitioning is not guaranteed. To address
this problem, we can select in both GO-GMA and LO-GMA the overall hierarchy that has the
largest area under the U curve (see Figure 2.5, Chapter 2). It is given by the sum of U values in
every level of the tree.

Management of massive data sets requires efficient algorithms to merge summary hierar-
chies. The GMA approaches provide, by construction, optimal hierarchies but they suffer from
an exponential complexity and are thereafter inappropriate for scaling.

3.1.3.3 SEQ-based Merging Algorithm (SEQ-MA)

One direction to overcome the GMA limitation (i.e., exponential computational complexity)
is to process the most specialized summary partitioning of distributed data using the SAINTE-

27BL =
∑L−1

i=0 (CL−1
i

· Bi) gives the number of partitions of a set Z with L elements according to the usual
definition.

CHAPTER 3 — Merging Distributed Database Summaries 93

TIQ summarization service (Section 2.1.1.2, Chapter 2). We will refer to this approach as the
SEQ-based Merging Algorithm (SEQ-MA) for the remainder of this chapter.

According to the example described in section 3.1.2, the result hierarchy of the summary
hierarchies HR1

and HR2
according to the SEQ-MA approach is the same as the one provided

by SAINTETIQ (i.e., mapping and summarization services) when performed on the global data
set R (Figure 3.2). Note that this is not always the case since different sorts of cells may yield
different hierarchies [SPRM05].

SEQ-MA relies on the SAINTETIQ summarization service and hence its time complexity
TSEQ−MA is O(L · log L), where L is the number of cells populated by records of the global
data set.

Note that SEQ-MA considers the global data set in an attempt to build the global summary
hierarchy. Indeed, it does not exploit existing hierarchical partitioning schemas that are pre-
computed locally ; it takes a set of cells as input and builds the global summary hierarchy from
scratch. Thus, SEQ-MA is expected to break down rapidly as the data size and dimensionality
increase (see experimental results in Section 3.4).

In contrast, the following alternatives try to achieve high quality clustering schemas of the
entire distributed data set as well as to enhance merging process performance, exploiting the
capacity of distributed resources.

3.2 Alternative approaches

3.2.1 Horizontally Distributed Data

In this section, we present two alternative algorithms, which deal with horizontally distri-
buted data, in order to overcome the limitations of GMA and SEQ-MA approaches. The first
proposal, the Union by Incorporation Algorithm (UIA), modifies one of the two input trees,
called the base model, according to the other one to build a single tree. The second approach,
so-called Union by Alignment Algorithm (UAA), consists in rearranging summaries by levels in
a top-down manner.

3.2.1.1 Union by Incorporation Algorithm (UIA)

Howto

This method is based on the incremental conceptual clustering algorithm (summarization
service) used by SAINTETIQ : leaves (or cells) of a summary tree are introduced into the other

94 CHAPTER 3 — Merging Distributed Database Summaries

hierarchy one at a time with a top-down approach and they are incorporated into best fitting
nodes descending the tree. Indeed, at each node z, the algorithm considers incorporating the
current cell c into each child node of z, updating the description of the targeted summary.
Furthermore, the process evaluates the preference for merging two children nodes of z, splitting
one child node and creating a new child node accommodating c. Then it uses the U score to
rank candidate partitions for z ∪̃ c and it changes the state of the hierarchy according to the best
operator to apply each time a new cell descending the tree encounters a summary. Once the new
cell c reaches the leaves, if a duplicate exists, then it is updated regarding information of the new
cell, else, we develop the tree with a new level such that leaves remain single cells only. The
previous leaf becomes an intermediate node with two cells, the new leaves, as children nodes.

According to the example described in Section 3.1.2, Figure 3.9 represents the hierarchy
produced when HR2

is incorporated into HR1
.

Figure 3.9 – UIA2in1 (i.e., HR2
in HR1

)

Discussion

Since the UIA approach is based on the SAINTETIQ summarization service, its time com-
plexity TUIA is also O(L · log L), where L is the number of cells populated by records of
the global data set. Note that TUIA is in the same order of magnitude than TSEQ−MA (Sec-
tion 3.1.3.3). However, performance enhancement is truly remarkable (see experimental results
in Section 3.4) since only leaves of one input hierarchy are processed.

Besides, UIA is natively asymmetrical. Indeed, it assumes one of the two input trees as the
base model and the other one is deconstructed to incorporate every single leaf into the first tree.
Thus, an important issue for performance and quality requirements of the result hierarchy is

CHAPTER 3 — Merging Distributed Database Summaries 95

to define the base tree for the operation. The basic assumption we made is that we prefer the
largest tree to be the base model since it is expected to be stable or at least not so far from the
stable state. Hence, in the best case, UIA performs a classification task only.

In the following section, we propose a second approach, called Union by Alignment Algo-
rithm (UAA), for summarizing horizontally distributed data.UAA is drastically different than the
UIA approach. Indeed, UAA is inspired of tree alignment techniques whereas UIA is based on
the SAINTETIQ engine. Furthermore, UAA fully reuses the existing hierarchies, whereas UIA
reuses only the base model. Thus, UAA is appropriate for situations where both hierarchies are
very large.

3.2.1.2 Union by Alignment Algorithm (UAA)

Howto

The Union by Alignment Algorithm (UAA) is based on a recursive algorithm which operates
unions of summaries guided by nodes of the input hierarchiesHR1

andHR2
in order to produce

the global hierarchy HR = HR1∪R2
.

The result hierarchy HR (rooted by z!) is built from trees HR1
(rooted by z1) and HR2

(rooted by z2) as follows :

1. z! ← z1∪̃z2 ;

2. compute Pbest of P = Pz1
∪̂Pz2

;

3. connect Pbest to z! as the top-level of HR ;

4. for each z ∈ Pbest do

• place in HR the sub-tree rooted by z if z is a single summary in HR1
or HR2

; then
stop ; else (i.e., there exists a set of summaries F that are single summaries in HR1

or
HR2

such that z = ∪̃z′∈F z′)
• apply recursively UAA from step two with P ← ∪̂z′∈F Pz′ ; z! ← z ; HR ← HRz ;

Recall that Pz denotes the set of children nodes of z, and it is a summary partitioning of Rz,
the extent of z.

Figure 3.10 represents the UAA hierarchy of the input hierarchies shown in Figure 3.3.

96 CHAPTER 3 — Merging Distributed Database Summaries

Figure 3.10 – UAA of HR1
and HR2

Discussion

The time complexity TUAA ofUAA is linear w.r.t. the number of cells L populated by records
of the global data set. It is given by :

TUAA(L) = kUAA · Bd ·
L− 1

d− 1
∈ O(L)

where kUAA is a constant factor and d is the average degree of the output tree. In the above
formula, L−1

d−1 corresponds to the number of the output tree nodes, whereas Bd (the dth Bell
number) gives an estimation of the time required to compute Pbest of P = Pz1

∪̂Pz2
.

Note that in the second step of the algorithm, the best partitioning Pbest of the set P =

Pz1
∪̂Pz2

of summaries that specializes z! can be a singleton (i.e., Pbest = {z!}). For instance,
it occurs when all summaries of Pz1

∪ Pz2
are pairwise overlapping. In that case, we look

for the best partitioning in a specialization of P instead of P itself, that is we replace part of
the summaries of P by their children and we continue recursively until we find a non trivial
(cardinality greater than or equal to 2) partitioning. In the worst case, the specialization stops
when P contains all leaves of hierarchies HR1

and HR2
. The best partitioning of P is then the

set of leaves with duplicate elimination since at this stage it is the unique partition of z! that
satisfies disjunction property.

Currently, when this happens we simply try to specialize one summary that is not a leaf.
However, we can use any other heuristic function to support specialization. For example, we
could evaluate U on a given subset of specialized partitions and retain the highest U-valuated
candidate only.

CHAPTER 3 — Merging Distributed Database Summaries 97

3.2.2 Vertically Distributed Data

Both UIA and UAA are not suitable for vertically fragmented data. Indeed, they rely on the
summary union operator ∪̃ that aggregates two input summaries representing two different sets
of database records with the same set of attributes. Since summaries are represented in different
feature spaces, ∪̃ is no more applicable for joining them.Moreover, similarity measures between
summaries could not even be defined over two different feature spaces. Furthermore, the join
of two summaries can be empty, whereas the union of two summaries cannot. In this section,
we present three new algorithms to manage vertically distributed data. The Subspace-Oriented
Join Algorithm (SOJA) and the SOJA with Rearrangements Algorithm (SOJA-RA) modify one
of the two input trees, called the base model, according to the other one to build a single tree.
The last approach, called Tree Alignement-based Join Algorithm (TAJA), relies on a recursive
processing that performs a join of summary partitions guided by levels of the input hierarchies.

3.2.2.1 Subspace-Oriented Join Algorithm (SOJA)

Howto

The main idea of this approach is rather simple. It starts from an existing summary hierarchy
within a subspace of the whole data set. Then, once items become indistinguishable from one-
another according to this subspace, it proceeds with a sequence of refinements on the existing
clusters according to the complementary subspace. More precisely, SOJA assumes one of the
two input trees as the base model (e.g.,HR′

1
) and the other one (e.g.,HR′

2
) is processed to refine

cells (or leaves) of the first one.
Thus, SOJA1→2 (i.e., HR′

1
is the base model) computes the hierarchy HR = HR′

1
!"R′

2
from

HR′

1
and HR′

2
as follows :

1. HR ← HR′

1
;

2. for each cell c1 of HR, compute LR′

2
"̂ {c1} and do

a. if LR′

2
"̂ {c1} = ∅ : remove c1 fromHR since it is populated by records that are not in

R′
1 !" R′

2 and then, if the parent of c1 has one single child, replace it by the child itself,
else

b. if LR′

2
"̂ {c1} = {c2} : c1 ← c1!̃"c2, else

c. process the set of cells LR′

2
"̂ {c1} using the SAINTETIQ summarization service and

replace each node z of the resulting hierarchy by c1!̃" z then, replace c1 with the new
resulting hierarchy ;

98 CHAPTER 3 — Merging Distributed Database Summaries

3. for each node z of HR, build z’s intent on the overall features set based on z’s cells, i.e.,
z =

∑
c∈Lz

c.

The operator
∑

stands for the union of the descriptions of cells to build the including
hyperrectangle as a resulting summary.

The computation of LR′

2
"̂ {c1} is based on a depth-first search and relies on a strong

property of the hierarchy : the generalization step in the SAINTETIQ model guarantees that a
tuple is absent from a summary’s extent if and only if it is absent from any partition of this
summary. This property of the hierarchy permits branch cutting as soon as it is known that no
result will be found. Regarding the processed cell (of the base tree), only a part of the hierarchy
is explored.

Figure 3.11 illustrates the joined hierarchy obtained from summary trees shown in Figure 3.4
according to SOJA1→2.

Figure 3.11 – SOJA1→2 on HR′

1
and HR′

2

Discussion

Assume that l = |LR′

1
| and |LR′

1
| ; |LR′

2
|, where |.| denotes the cardinality of a set. The

time complexity TSOJA of this approach is defined as follows :

TSOJA(l) = l · [kSOJA · l − 1

d− 1
+ TSEQ(l)] + k′

SOJA · l2 − 1

d− 1

where kSOJA and k′
SOJA are constant factors and d is the average width ofHR′

1
andHR′

2
. In the

above formula, [kSOJA · l−1
d−1 +TSEQ(l)] is the time cost required to process each cell of the base

tree (i.e., search for cells from the second tree that would join with the current cell and cluster

CHAPTER 3 — Merging Distributed Database Summaries 99

them using SAINTETIQ summarization service), l2 gives an upper bound of the number of cells
populated by records of R′

1 !" R′
2 and [k′

SOJA · l2−1
d−1] gives an estimation of the time required

to update the description of the global hierarchy.

As one can see, the computational complexity of SOJA is in the same order of magnitude
than that of SEQ-MA (Section 3.1.3.3), i.e., O(L · log L) where L is the number of cells po-
pulated by records of R′

1 !" R′
2. However, the performance gain is very noticeable (see ex-

perimental results in Section 3.4) since all required clustering schemas are computed within a
low-dimensional feature space (i.e., E2 in the case of SOJA1→2).

In the next section, we propose a modified version of SOJA, called SOJA with Rearrange-
ments (SOJA-RA), that aims to fully exploit pre-computed hierarchies. In fact, SOJA-RA uses
the same algorithm described in Section 2.4 of Chapter 2 to provide the hierarchical clustering
schema of LR′

2
"̂ {c1}.

3.2.2.2 SOJA with Rearrangements (SOJA-RA)

Howto

At step 2.c. of the SOJA algorithm, we can also use the existing hierarchy HR′

2
to provide a

hierarchical clustering schema ofLR′

2
"̂ {c1}. Indeed, starting from the set of cellsLR′

2
"̂ {c1},

we can produce a sequence of nested partitions with a decreasing number of clusters. Each par-
tition results from the previous one by merging the ‘closest’ clusters into a single one. Similar
clusters are identified thanks to the hierarchical structure of the pre-computed summary hierar-
chy HR′

2
. The general assumption is that summaries which are closely related have a common

ancestor lower in the hierarchy, whereas the common ancestor of unrelated summaries is near
the root. This process stops when it reaches a single cluster (the root z!). It is worth noticing
that z! is built at the same time we search for cells from HR′

2
that would join with c1. It means

that no clustering at all would have to be performed : we prune the tree HR′

2
by retaining only

leaves that belong to LR′

2
"̂ {c1} and inner nodes that have two or more cells from LR′

2
"̂ {c1}

as descendant nodes.

According to the example described in Section 3.1.2, the result hierarchy of the summary
hierarchies HR′

1
and HR′

2
according to SOJA-RA1→2 is the same as the one provided by

SOJA1→2 (Figure 3.11). We note though that this is not always the case.

100 CHAPTER 3 — Merging Distributed Database Summaries

Discussion

Assume that l = |LR′

1
| and |LR′

1
| ; |LR′

2
|. The computational complexity TSOJA−RA of

SOJA when using the above process (Rearranging Summaries Algorithm) is given by :

TSOJA−RA(l) = kSOJA−RA · l · l − 1

d− 1
+ k′

SOJA · l2 − 1

d− 1

where kSOJA−RA and k′
SOJA are constant factors and d is the average width of HR′

1
and HR′

2
.

Notice that this formula is identical to that of TSOJA, except that the first term is replaced by
[kSOJA−RA · l · l−1

d−1], the time cost required to build the clustering schemas corresponding to the
cells of the base tree using the above rearranging process.

SOJA-RA is more efficient than SOJA. Indeed, its computational cost is O(L), whereas for
SOJA the cost is O(L · log L), where L is the number of cells populated by records of R′

1 !" R′
2.

This is due to the fact that SOJA-RA fully reuses the existing hierarchies, whereas SOJA reuses
only the base model.

Note that SOJA and SOJA-RA are asymmetrical. Indeed, they assume one of the two in-
put trees as the base model and the other one is processed to refine cells of the first one.
This implies that clusters are discovered first based on the feature set of the base model (the
upper part of the tree) and then based on the complementary feature set (the lower part).
Thus, we obtain two different hierarchies according to the base model (HR′

1
or HR′

2
). None

of them is preferred to the other and the third-party application or user’s requirements are key
factors for selecting the appropriate base model. Consider a bank’s database with two rela-
tions : a relation Customers (R′

1) with attributes Id_Customer, Age and Income and, a re-
lation Banking_Products (R′

2) with attribute Id_Customer, Number_of_Accounts and
Number_of_Credit_Cards. For instance, SOJA2→1 or SOJA-RA2→1 (i.e., HR′

2
is the

base model) are more relevant choices given the following banker’s request “how customers
with many credit cards and only one account are clustered according to their age and income ?”.

However, defining clusters in terms of simultaneous closeness on all features may some-
times be desirable. In such cases, the Tree Alignement-based Join Algorithm (TAJA), described
in the following, is more relevant. Indeed, TAJA consists in rearranging summaries by levels in
a top-down manner and consequently, features have an equal influence in the clustering process.

CHAPTER 3 — Merging Distributed Database Summaries 101

3.2.2.3 Tree Alignement-based Join Algorithm (TAJA)

Howto

The Tree Alignement-based Join Algorithm (TAJA) consists in a recursive processing that
performs joins of summary partitions guided by levels of the input hierarchies HR′

1
and HR′

2
in

order to produce the global hierarchy HR = HR′

1
!"R′

2
.

The result hierarchy HR (rooted by z!) is built from trees HR′

1
(rooted by z1) and HR′

2

(rooted by z2) as follows :

1. z! ← z1!̃"z2 ;

2. compute P = Pz1
!̂"Pz2

; P is then the top-level partition in the tree HR and is connected
to the root z! ;

3. for each z ∈ P (i.e., ∃ z′1 ∈ Pz1
and ∃ z′2 ∈ Pz2

such that z = z′1!̃"z′2) do :
• nothing if z is a leaf, else
• apply recursively TAJA from step one with z1 ← z′1 ; z2 ← z′2 ; HR ← HRz ;

4. for each node z of HR, build z’s intent on the overall features set based on z’s cells, i.e.,
z =

∑
c∈Lz

c.

Figure 3.12 represents the TAJA hierarchy of the input hierarchies shown on Figure 3.4.

Figure 3.12 – TAJA on HR′

1
and HR′

2

Discussion

The time complexity TTAJA of TAJA is linear w.r.t. the number of cells L populated by re-
cords of the global data set.

102 CHAPTER 3 — Merging Distributed Database Summaries

TTAJA is given by :

TTAJA(L) = kTAJA · L− 1

d− 1
· d2 + k′

TAJA · L− 1

d− 1
∈ O(L)

where kTAJA and k′
TAJA are constant factors and d is the average degree of the output tree.

In the above formula, d2 gives an estimation of the time required to compute P = Pz1
!̂"Pz2

,
[kTAJA · L−1

d−1 · d
2] is the time cost required to build hierarchical structure of the global summary

and [k′
TAJA · L−1

d−1] is the time required to update its description.

3.2.3 Highlights of the Proposed Algorithms

To sum up so far, we have proposed five algorithms (UIA, UAA, SOJA, SOJA-RA and TAJA)
for merging summary hierarchies. They can be categorized as follows :

• Horizontal vs. Vertical partitioning of data : UIA and UAA deal with horizontally distri-
buted data, whereas SOJA, SOJA-RA and TAJA manage vertically distributed data ;

• SAINTETIQ-based vs. Tree-based merging approaches : UIA and SOJA rely on the
SAINTETIQ engine, whereas UAA, SOJA-RA and TAJA rely on tree merging techniques ;

• Complete vs. Partial reuse of local models : UAA, SOJA-RA and TAJA fully reuse the
input hierarchies, whereas UIA and SOJA reuse one of the input hierarchies (i.e., the base
model) ;

• Asymmetric vs. Symmetric approaches :UIA, SOJA and SOJA-RA assume one of the two
input hierarchies as the base model, whereas UAA and TAJAmake no distinction between
the input hierarchies ;

• Linear vs. Quasi-Linear complexity : UAA, SOJA-RA and TAJA have linear complexity
O(L), whereas UIA and SOJA have quasi-linear complexity O(L · log L), where L is the
number of cells populated by records of the global data set.

Recall that all these algorithms take as input two distinct summary hierarchies (local models)
and generate a single summary hierarchy of the entire distributed data. Thus, if we have more
than two input hierarchies defined over the same feature set (resp., different sets of features), the
global hierarchy can be computed by simple repetition of the binary union (resp., join) process,
i.e., we compute repeatedly the union (resp., join) of any two of them to get an intermediate
hierarchy, and so on.

Finally, given that our merged hierarchies and local hierarchies share the same structure
(i.e., a grid-based clustering schema), any grid-based clustering method that enables the mana-
gement of local updates, can be used to reflect these updates on the global schema. For instance,

CHAPTER 3 — Merging Distributed Database Summaries 103

SEQ-MA, which relies on the SAINTETIQ model, applies a conceptual clustering algorithm for
partitioning the global cells (the most specialized summaries) in an incremental and dynamic
way. Thus, changes in local models could be reflected through such an incremental maintenance
of the global hierarchy [SPRM05].

In the following, we discuss an important issue for merging processes regarding the quality
assessment of the results.

3.3 Joining validity assessment

In this work, we aim at merging two hierarchical clustering schemas. The question we wish
to answer in this section is — how good are our merged hierarchies ?

3.3.1 Background

In [HBV01], a number of clustering techniques and algorithms have been reviewed. These
algorithms behave in different ways depending on the features of the data set (geometry and
density distribution of clusters) and/or the input parameter values (e.g., number of clusters,
diameter or radius of each cluster). Thus, the quality of clustering results depends on the setting
of these parameters.

The soundness of clustering schemas is checked using validity measures (indices) available
in the literature [HBV01]. Indices are classified into three categories : external, internal, and
relative. The first two rely on statistical measurements and aim at evaluating the extent to which
a clustering schema maps a pre-specified structure known about the data set. The third category
of indices aims at finding the best clustering schema that an algorithm can provide under some
given assumptions and parameters. As one can observe, these indices give information about
the validity of the clustering parameters for a given data set and thus may be viewed as data
dependent measures.

Recall that we try to evaluate the validity of the merging algorithms (UIA, UAA, SOJA,
SOJA-RA and TAJA). Therefore usual validity measures do not apply since the main purpose
of the evaluation is not to evaluate the clustering algorithm of the SAINTETIQ system, but
rather to compare the distributed summary construction process with the centralized approach,
everything else being equal (objective function, parameters, grid and data set).

Within this framework, we consider hierarchiesHGO-GMA andHLO-GMA provided by theGMA
approach as the reference hierarchies. Then, we compare the hierarchies provided byUIA,UAA,

104 CHAPTER 3 — Merging Distributed Database Summaries

SOJA, SOJA-RA, TAJA and the basic centralized approach of SAINTETIQ with those reference
hierarchies. Thus, there is a need for a quality measure of summary tree.

A valid and useful hierarchy quality measure must be :
• data independent, that is, not built according to pre-specified data structure, assumptions
and parameters ;

• maximum for the reference hierarchies provided by the Greedy Merging Algorithm.
In the following, we define two different measures according to the reference hierarchy

considered (HGO-GMA or HLO-GMA). The first one relies on a level-based analysis and is relevant
when the reference hierarchy is produced with the global optimization. The second measure is
well-suited for locally optimized hierarchies.

3.3.2 Level-based Analysis

The basic idea is to study the summary utility (U) level by level as the GO-GMA does. For
a given hierarchy H , we then define as many partitions as there are levels, from the root (P0)
to the leaves (Ph), where h is the height of the tree. Pi+1 is the direct specialization of every
summary in Pi, except for the leaves. And every Pi, i ∈ [0, h] satisfies both the disjunction and
coverage properties. Thus, we associate to each level i of the tree the utility value U(Pi) of the
related partition Pi and consequently an utility vector 〈U(P0), . . . , U(Ph)〉.

Then, the overall score ξ ofH is defined as the sum of all those utilities (the “area under the
curve” of summary utility) :

ξ(H) =
h∑

i=0

U(Pi)

Table 3.1 – Utility vectors and ξ-values

H\l 0 1 2 3 4 ξ(H)

GO-GMA 0.83 0.87 0.63 0.41 0.27 3.01

UIA2in1 0.83 0.87 0.47 0.39 0.27 2.83

SEQ 0.83 0.85 0.51 0.27 0.27 2.73

UAA 0.83 0.80 0.49 0.33 0.27 2.72

SOJA1→2 0.83 0.85 0.50 0.27 0.27 2.72

LO-GMA 0.83 0.87 0.27 0.27 0.27 2.51

TAJA 0.83 0.50 0.27 0.27 0.27 2.14

CHAPTER 3 — Merging Distributed Database Summaries 105

Table 3.1 gives utility vectors and ξ-values according to each approach when applied to
summary trees introduced in Section 3.1.2. Levels range from zero to four, and SEQ stands for
the SAINTETIQ process.

UIA, UAA, SOJA, SOJA-RA and TAJA algorithms give values comparable to the one provi-
ded by SAINTETIQ. Thus, even if theses algorithms have not been designed to be globally opti-
mal, they offer a similar quality regarding the ξ measurement. It means that merging processes
are, from the GO point of view, as effective as the centralized version of summary construction.

Furthermore, it is worth noticing that, as expected, this measure is not adapted to local ana-
lysis. Indeed, it does not give a maximum for the hierarchy HLO-GMA. To address this problem,
we then present in the following section a new dissimilarity measure between summary trees.

3.3.3 Summary Tree Dissimilarity

The basic idea is to valuate local differences between two hierarchical clustering schemas.
Assume a reference summary tree Href ; each node z covers a part Rz of relation R, and pro-
vides a partitioning Pz of Rz thanks to the top-level of the sub-tree rooted by z in Href . Given
a targeted tree Htarget, we then propose to valuate the partitioning of Rz, for each z in Href ,
according to Htarget. In other words, we try to locate Rz inside Htarget and compose the parti-
tioning P ′

z of Rz w.r.t. summaries from Htarget. Hence, we compute the utility value for P ′
z to

compare with the utility value of Pz. Among all the candidate partitioning of Rz in Htarget, we
retain the most generalized one thanks to a bottom-up traversal algorithm.

The above process provides two utility vectors : v = 〈q1, . . . , qn〉 with values related to
Href and v′ = 〈q′1, . . . , q′n〉 forHtarget. Notice that the dimension of these vectors is equal to the
number n of intermediate nodes in the reference hierarchy Href .

Thus, a dissimilarity measure between Href and Htarget is defined as the distance between
the above utility vectors v and v′. As an example, the Euclidian distance is used here :

δ(Htarget, Href) =

√√√√
n∑

i=1

(q′i − qi)2

Even if it relies on a distance, the dissimilarity measure δ is asymmetric since the utility
vector v′ of Htarget is relative to data subsets provided by Href .

In the following, we use the hierarchy HLO-GMA, provided by the GMA process based on
local optimization, as the reference hierarchy (Href = HLO-GMA). Denote by δLO(H) =

δ(H,HLO-GMA) the dissimilarity measure between a hierarchyH and the locally optimized one

106 CHAPTER 3 — Merging Distributed Database Summaries

HLO-GMA. Note that by construction, for each summary z of HLO-GMA and for any hierarchy
Htarget we have Pz = Pbest and consequently U(Pworst) ≤ U(P ′

z) ≤ U(Pz).
Hence, as shown in Table 3.2, the dissimilarity measure is semantically consistent. Hworst

stands for the hierarchy provided by LO-GMA with a choice of the worst (instead of the best)
partition at each step of the process. According to the example described in Section 3.1.2,Hworst

has only two levels : one root level and one cells level.

Table 3.2 – δLO-values

H H
G

M
A

L
O

H
S

E
Q

H
U

I
A

2
in

1

H
G

M
A

G
O

H
S

O
J

A
1
→

2

H
T

A
J

A

H
U

A
A

H
r
a
n
d
o
m

H
w

o
r
st

H
∅

δLO(H) 0 0.45 0.45 0.46 0.48 0.77 1.02 1.35 1.41 1.56

Moreover, if we execute GMA with local optimization 100 times with random choice of
partition at each step of the process, the average of all δLO outputs is 1.35 that is very greater
than 1.02, the worst δLO of all merged hierarchies. It allows us to conclude that UIA, UAA,
SOJA, SOJA-RA and TAJA provide well-founded summary trees.

3.3.4 Discussion

The SAINTETIQ system is designed for converging to the locally optimized hierarchy since
the tree is updated at each node every time a new cell is incorporated [SPRM05]. Thus, the
summary tree dissimilarity measure δLO is more adapted than the ξ measure to evaluate the
validity of our merging algorithms.

However, δLO relies on the hierarchy provided by the LO-GMA approach that is very diffi-
cult (even impossible) to compute for a large dataset. Furthermore, notice that it would not be
appropriate to use another hierarchy (e.g., the SAINTETIQ hierarchy) as a reference one since
the dissimilarity measure δ is asymmetric, and therefore δ’s results cannot be explained and
interpreted. In fact, the merged hierarchies may be inferior, equal, or better in quality than the
hierarchy provided by SAINTETIQ when performed on the global dataset.

To address this problem, we propose to study the summary utility per node (i.e., locally) as
the LO-GMA does. For a given hierarchy HR, we then define as many partitions as there are
non-leaf nodes ; each node z covers a part Rz of relation R, and provides a partitioning Pz of

CHAPTER 3 — Merging Distributed Database Summaries 107

Rz. Thus, we associate to each node z the utility value U(Pz). Consequently, we obtain as many
utility values as there are non-leaf nodes in HR.

Then, we define the summary tree quality σk of a tree HR as follows :

σk(HR) =

∑
z∈k-nodes U(Pz)

|k-nodes|

where k-nodes is the set of nodes in HR with depth less or equal than k. Note that σ0(HR) is
the utility value of the top-level partition in HR since 0-nodes = {root}.

The above measure allows us to evaluate how well the local optimization objective is ful-
filled. Table 3.3 gives σk values according to each approach, with k ∈ {1, 2}.

Table 3.3 – σ-values

k\H HGMALO
HSEQ HUIA2in1

HGMAGO
HSOJA1→2

HTAJA HUAA Hworst

1 0.76 0.58 0.50 0.46 0.47 0.39 0.41 0.27

2 0.76 0.49 0.40 0.37 0.36 ND 0.35 0.27

As one can observe, the summary tree quality σk also reaches its maximum and minimum
values on HGMALO

and Hworst respectively. We will therefore use it in the following section to
evaluate the validity of our merging algorithms when applied to a more extensive data set.

3.4 Experimental Results

This section presents experimental results achieved with the UIA, UAA, SOJA, SOJA-RA
and TAJA algorithms. We first introduce the data set, then we provide an analysis based on
observations of various parameters.

3.4.1 Data Set

We used a data set generator (DatGen28) to generate synthetic29 data sets with different
numbers of records. Each record is defined over N = 20 attributes (i.e., E = {A1, . . . , A20})

28www.datasetgenerator.com
29The use of synthetic data, where we can set several parameters (e.g., the number of attributes, the number of

cells, the fragmentation rate), instead of real data sets allows us to more exhaustively evaluate how our merging
algorithms would behave under different conditions.

108 CHAPTER 3 — Merging Distributed Database Summaries

with values from a set of 10 nominal values that simply serve as linguistic labels, and it has a
primary key ID.

To perform our merging processes, we previously computed (using SAINTETIQ without
any mapping) four sets of couples of hierarchies :

• the first set contains couples (I1, I2) such that RI1 maps 50 cells and RI2 maps 100, 200,
400, . . . and 2000 cells. RI1 and RI2 are defined over the same set of features E =

{A1, . . . , A20} ;
• the second set contains couples (J1, J2) such thatD = RJ1

!"ID RJ2
mapsL ∈ {200, 400,-

. . . , 4000} cells and J1 summarizes D over the first 2 attributes (i.e., E1 = {A1, A2}),
whereas J2 summarizes it over the remaining features (i.e., E2 = {A3, . . . , A20}). Thus,
the number of cells of J2 that would join with each cell of J1 is high ;

• the third set contains couples (H1, H2) such that D′ = RH1
!"ID RH2

maps L = 10000

cells and H1 summarizes D′ over the first N1 attributes (i.e., E1 = {A1, . . . , AN1
}),

whereasH2 summarizesD′ over the lastN−N1 attributes (i.e.,E2 = {AN1+1, . . . , A20}),
where N1 ranges from 1 to 19 ;

• The fourth set contains couples (K1, K2) such D′′ = RK1
!"ID RK2

maps L = 10000

cells andK1 summarizes D′′ over E1 = {X,Y }, whereas H2 summarizes D′′ over E2 =

{Y, Z}, where {X,Y, Z} is a partition of E = {A1, . . . , A20} such that |X| = |Z| and
|Y | ∈ {4, 8, 12}.

All experiments were done on a 1.7GHz P4-based computer with 768MB memory.

3.4.2 Results

In this section, we validate our merging processes w.r.t. performance (computation times),
structural properties (number of nodes and leaves, average depth and average width) and the
summary tree quality measure σk.

3.4.2.1 Quantitative Analysis

From the analysis of theoretical complexities, we claim that UAA (O(L)), UIA1in2 (O(L ·
log L)) and UIA2in1 (O(L · log L)) are much faster than the the SAINTETIQ (SEQ) process
(O(L · log L)) performed on RI1 ∪ RI2 . That is the main result of Figure 3.13 that shows the
performance evolution according to L, the number of cells populated by records of RI1 ∪ RI2 .
Observe that UIA1in2 (i.e., I2 is the base model) and UAA are much faster than UIA2in1 (i.e., I1

is the base model). The last one (UIA2in1) is a bit more efficient than SEQ. This is due to the

CHAPTER 3 — Merging Distributed Database Summaries 109

fact that the base model I1 is very small compared to I2. Moreover, notice that the time cost of
UIA1in2 is far less than others thanks to the stability of I2 (the base model).

Figure 3.13 – Time cost comparison - (I1, I2)

Figure 3.14 – Time cost comparison - (J1, J2)

Furthermore, Figure 3.14 shows the performance evolution of SOJA1→2, SOJA-RA1→2 and
TAJA, when applied to (J1, J2), according to the number of cells populated by RJ1

!" RJ2
.

110 CHAPTER 3 — Merging Distributed Database Summaries

As one can observe, these approaches are much faster than the SEQ process performed on
RJ1

!" RJ2
. Besides, TAJA and SOJA-RA1→2 are much more efficient than SOJA1→2 since (1)

SOJA1→2 is based on the SAINTETIQ summarization service and (2) there are much correla-
tions between RJ1

and RJ2
records, i.e., the number of cells that have to be clustered is very

high. As one can observe, Figure 3.14 verifies experimentally that SOJA-RA1→2 and TAJA are
linear (O(L)) w.r.t. the number of cells L of the global hierarchy whereas SOJA1→2 and SEQ
are quasi-linear (O(L · log L)).

In the next experiment (see Figure 3.15), we use the third set of couples (i.e., (H1, H2)) to
show how the CPU time of each joining process varies with changing the fragmentation rate
(N1

N
= |E1|

|E|). Observe that TAJA is a bit more efficient than SOJA-RA1→2. Further, as expected,
the time cost of SOJA1→2 is quite similar to that of SOJA-RA1→2, except for N1

N
≤ 0.20. This

is due to the fact that the number of cells of H2 (E2 = {A16, . . . , A20}) that join with each cell
of the base model H1 (E1 = {A1, . . . , A4}) is high.

Figure 3.15 – Time cost comparison - (H1, H2)

Thus, the merging processes are able to drastically reduce the time cost of summarizing data
sets of large size and dimensionality. This is achieved by horizontal and vertical fragmentation
into several relations that would be summarized separately and then merged. Note however, that
this is true only if we do not take into account the time cost of building local models.

CHAPTER 3 — Merging Distributed Database Summaries 111

3.4.2.2 Qualitative Analysis

In the following, the average depth and the average width of merged hierarchies are reported.
For (I1, I2), we observe that :
• the average depth of the hierarchy provided by UAA and UIA1in2 (I1 in I2) is pretty much
equal to the average depth of I2 thanks to the stability of I2. Moreover, UIA2in1 (I2 in I1)
and the SEQ process provide hierarchies that are deeper than I2. Average depth evolu-
tion of every hierarchy has been reported, according to the number of cells populated by
records of the global data set RI1 ∪RI2 , in Figure 3.16 ;

• the hierarchies provided by UAA are wider than that generated with UIA1in2. The last one
is quite similar to I2 and wider than the hierarchies provided by UIA2in1 and SEQ as well.
Average width evolution of every hierarchy has been reported, according to the number
of cells populated by records of RI1 ∪RI2 , in Figure 3.17 ;

• the number of nodes and leaves is quite similar through the merged and centralized hie-
rarchies and is almost equal to the sum of I1 and I2 nodes and leaves.

Figure 3.16 – Average depth comparison -
(I1, I2)

Figure 3.17 – Average width comparison -
(I1, I2)

For (H1, H2), we observe that :
• the average depth of the hierarchy provided by SOJA1→2 and SOJA-RA1→2 (H1 is the
base model) is greater than that of the hierarchy provided by SEQ. The latter is also
deeper than the one provided by TAJA. Average depth evolution of every hierarchy has
been reported, according to the fragmentation rate (N1

N
), in Figure 3.18 ;

• the hierarchies provided by TAJA are wider than those generated with SEQ. However, the
hierarchies provided by SEQ are wider than those provided by SOJA1→2 and SOJA-RA1→2.
Average width evolution of every hierarchy has been reported, according to N1

N
, in Fi-

gure 3.19 ;

112 CHAPTER 3 — Merging Distributed Database Summaries

• the number of nodes is quite similar for SOJA1→2, SOJA-RA1→2 and SEQ hierarchies and
is greater than that of the hierarchy provided by TAJA.

Figure 3.18 – Average depth comparison -
(H1, H2)

Figure 3.19 – Average width comparison -
(H1, H2)

Note that for N1

N
≥ 0.30, H1 and hierarchies provided by SOJA1→2 and SOJA-RA1→2 are

the same from structural point of view (i.e., they have the same average depth, average width
and number of nodes) since each cell of the base model H1 is joined with exactly 1 cell of H2.

In our experiments below, we use the summary tree quality σk (Section 3.3.4) to evaluate
how good are our merged hierarchies.

Table 3.4 shows that σk values of the hierarchies provided by UIA1in2, UIA2in1 and UAA,
when applied to (I1, I2), are in the same order of magnitude than that of the hierarchy provided
by the centralized approach (SEQ).

Table 3.4 – σk-values - (I1, I2)

k SEQ UIA1in2 UIA2in1 UAA
2 0.61 0.56 0.54 0.55

4 0.59 0.57 0.56 0.54

6 0.56 0.55 0.57 0.53

Furthermore, observe that σk values (Table 3.5) of the hierarchies provided by SOJA1→2

and SOJA-RA1→2, when applied to (H1, H2), are comparable to that of hierarchies provided
by SEQ. Moreover, notice that σk values of hierarchies provided by TAJA are greater than that
of the hierarchies produced by SEQ. This is due to the fact that SEQ, as well as many existing
incremental clustering algorithms, suffers from ordering effects. The first objects in an ordering

CHAPTER 3 — Merging Distributed Database Summaries 113

establish initial clusters that ‘attract’ the remaining objects and consequently, the quality of the
generated clustering depends heavily on the initial choice of those clusters. This problem be-
comes more acute in the case of high dimensional data sets since it is common for all of the
objects to be nearly equidistant from each other (curse of dimensionality [SEK03]), comple-
tely masking the well-defined initial clusters. However, TAJA joins well-defined clusters (from
diverse areas of the object-description space) since the dimensionality of the data is reduced.
Thus, each cluster of a joined partition is populated by objects that are close to each other and
consequently, more similar on the full set of their attributes. On the other hand, objects belon-
ging to different clusters of a joined partition are well separated regarding the full space since
they are highly separated regarding the two subspaces.

Table 3.5 – σk-values - (H1, H2)

N1

N k SEQ SOJA1→2 SOJA-RA1→2 TAJA
0.20 3 0.61 0.59 0.57 0.68

0.20 7 0.59 0.57 0.56 0.64

0.50 3 0.61 0.60 0.59 0.65

0.50 7 0.59 0.55 0.53 0.63

0.80 3 0.61 0.58 0.54 0.67

0.80 7 0.59 0.58 0.52 0.66

Moreover, Table 3.6 shows that σk values of the hierarchies provided by SOJA1→2 and
SOJA-RA1→2, when applied to (K1, K2), are also in the same order of magnitude than that
of the hierarchy provided by the centralized approach. However, σk values of the hierarchies
provided by TAJA decrease with the increase in the number of overlapping attributes |Y |.

Table 3.6 – σk-values - (K1, K2)

|Y | k SEQ SOJA1→2 SOJA-RA1→2 TAJA
4 7 0.59 0.56 0.54 0.57

8 7 0.59 0.57 0.56 0.51

12 7 0.59 0.55 0.57 0.47

Thus, even if UIA, UAA , SOJA, SOJA-RA and TAJA provide clustering schemas with dif-
ferent structural properties (Figure 3.16, Figure 3.17, Figure 3.18 and Figure 3.19) than the one

114 CHAPTER 3 — Merging Distributed Database Summaries

provided by the centralized version of summary construction (SEQ), they are almost as effective
as SEQ.

Finally, note that summary hierarchies are downsized versions of the original relation. Thus
using them instead of the original data is expected to drastically reduce the data transmission
cost between sites. More precisely, let HR be a summary hierarchy of a database relation R

havingN attributes and containing n records. In the average-case assumption, the ‘Compression
Rate’ (CR) is given by :

CR =
SHR

SR

=
Sz · (L + L−1

d−1)

St · n

where SHR
(resp., SR) is the average size in kilo-bytes ofHR (resp.,R) and Sz (resp., St) the

average size in kilo-bytes of summaries (resp., tuples) of HR (resp., R). In the above formula,
L is the number of cells of HR and d its average width.

Recall that the number of leaves L is bounded by pN (i.e., the size of the grid-based multi-
dimensional space) where p represents the average number of descriptors defined for each attri-
butes. However, the exact number greatly depends on the data set, and more specifically, on the
existing correlations between attribute values. A reasonable assumption is L = 0.1% · pN . Fur-
thermore, each summary node contains the intentional description, the IDs (i.e., the extension)
and some statistical information about incorporated tuples. Hence, Sz is only a small constant
factor γ larger than St (i.e., Sz = γ · St). Based on some real tests, γ = 3 is an acceptable
approximation of the ratio Sz

St
[SPRM05]. For p = 5, N = 8 and d = 3, we find CR ; 1756

n
.

Thus, in the case of large data set (e.g., n >> 1756), size reduction is clearly achieved by the
SAINTETIQ process.

Those experimental results validate the theoretical assumptions that our merging algorithms
are very efficient (Figure 3.13, Figure 3.14 and Figure 3.15) and result in high quality (Table 3.4,
Table 3.5 and Table 3.6) clustering schemas.

3.5 Related work

The work presented in this chapter is closely related to both distributed clustering and tree
alignment techniques. We briefly review both of them in this section.

CHAPTER 3 — Merging Distributed Database Summaries 115

Distributed Clustering

Clustering large data sets has recently emerged as an important area of research. The ever-
increasing size of data sets and poor scalability of clustering algorithms has drawn attention to
parallel and distributed clustering for partitioning large data sets. In [XJK99] a parallel version
of DBSCAN and in [DM00] a parallel version of k-means were introduced. Both algorithms
start with the complete data set residing on one central server and then distribute the data among
different clients. But in the case of parallel k-means, the process requires synchronized commu-
nication during each iteration, which might become difficult and costly in a wide area network.
Moreover, there might be constraints such as data could not be shared between different distri-
buted locations due to privacy or security concerns about the data. There are some works where
data in distributed environment has been clustered independently i.e. without any message pas-
sing among sources and multiple partitions combined using limited knowledge sharing ([SG02],
[JN03], [GSM02], [GM03], [JKP03], and [KLM03]). Knowledge reuse framework [BG98] has
also been explored, where label vectors of different partitions are combined without using any
feature values ([SG02] and [JN03]). In [GSM02] and [GM03], distributed clustering has been
discussed under two different settings that impose severe constraints on the nature of the data or
knowledge shared by local data sites. In [JKP03], local sites are first clustered using the DBS-
CAN algorithm and then representatives from each local site are sent to a central site, where
DBSCAN is applied again to find a global model. Another density estimation-based distributed
clustering has been discussed in [KLM03]. In contrast to our proposal, these approaches do not
offer a solution to the distributed hierarchical clustering problem ; they are based on partitioning
techniques and generate flat clustering of the data.

In [SOGM02], Samatova et al. proposed RACHET, a clustering algorithm to handle hori-
zontally distributed data. RACHET builds a global dendrogram by combining locally generated
dendrograms using a hierarchical algorithm similar to our UAA algorithm. This algorithm uses
statistical bounds to represent clusters efficiently across sites whereas we propose a grid-based
approach with the use of linguistic variables and fuzzy partitions. In [JK99], Johnson et al. pro-
posed a tree clustering approach to build a global dendrogram from individual dendrograms
that are computed at local data sites over different sets of features. The algorithm first computes
the element-wise intersection of all the most specialized clusters of sites to provide the most
specialized partition of the whole data set, and then applies a single link clustering algorithm to
compute the global dendrogram. This approach is similar to our SEQ-MA algorithm, but is less
efficient since it is based on an agglomerative hierarchical clustering method. Indeed, its compu-
tational cost isO(n2), whereas for SEQ-MA it isO(n·log n)where n is the size of the entire data

116 CHAPTER 3 — Merging Distributed Database Summaries

set. In [CSH03] (respectively [CSK04]), authors addressed decision tree (respectively bayesian
network) learning from vertically distributed data. Both approaches are based on basic directed
acyclic graph properties (the inner node specifies some test on a single attribute, the leaf node
indicates the class, and the arc encodes conditional independencies between attributes). Since
SAINTETIQ summaries are multidimensional and unordered trees, such algorithms cannot be
used to merge them.

As far as we know, there are no multidimensional grid-based clustering algorithms for ana-
lyzing distributed data.

Tree Alignment

Graphs and trees are the most useful mathematical objects for representing any information
with relational or hierarchical structure. Thus, they are common and well-studied combinatorial
structures in computer science. One of the popular problems they pose is how to merge graphs
together. It has been extensively studied and applied to several areas such as version control,
schema/ontology integration, index merging, etc.

Keeping data synchronized across a variety of devices and environments raises the need for
reconciliation of concurrently modified data. In [Lin04] and [Men02] documents are modelled
as ordered trees and methods for merging them based on tree edit operations [Sel77] are out-
lined. Although there is a restricted approach [Zha96] that leads to merging unordered trees,
one of the results from Zhang [ZJ94] is that finding the optimal matching function for such
trees is an NP-complete problem. Since SAINTETIQ summaries are unordered trees and the
constraints given in the definition of mappings in [Zha96] do not meet summary requirement
(subtrees should be mapped to disjoint subtrees), such algorithms cannot be used to merge them.

Vast amount of data populate the internet and consequently the retrieval of relevant do-
cuments is often a non trivial task. Thus, schemas/ontologies matching ([KS03], [SE05]) is a
critical operation in many application domains. It takes as input two schemas/ontologies, each
consisting of a directed acyclic graph, and determines as output the relationships (equivalence,
subsumption) holding between them. Most algorithms in this case, are based on various tech-
niques (terminological, structural and semantic) and lead to identifying a mapping as a cor-
respondence between close concepts using external resources like WordNet. In contrast to our
proposal, these approaches focus on local mappings that need user evaluation and so cannot
perform a total schemas/ontologies mapping.

Many scenarios in application and system maintenance require merging of two indexes :
data migration in parallel database system, batch insertion in a centralized database system,

CHAPTER 3 — Merging Distributed Database Summaries 117

etc. A B-tree merging algorithm [SWSZ05] integrates two indexes covering the same key range
into a single one. This algorithm is based on basic B-tree properties (balanced, high fanout,
some minimal fill factor) and thus it cannot be used for the summaries merging issue where
assumptions are less restrictive.

3.6 Conclusions

The SAINTETIQ summarization technique provides multi-resolution summaries (i.e., sum-
mary hierarchy) of structured data stored into a centralized database. However, in many real-
world scenarios, data are often collected and stored in different databases located on distant sites
and consequently the current centralized version of SAINTETIQ is either not feasible (resource
limitations) or not desirable (privacy preserving).

In this Chapter, we proposed five algorithms for summarizing distributed data without a
prior “unification” of the data sources : Union by Incorporation Algorithm (UIA) and Union by
Alignment Algorithm (UAA) to deal with horizontally distributed data ; Subspace-Oriented Join
Algorithm (SOJA), SOJA with Rearrangements (SOJA-RA) and Tree Alignement-based Join Al-
gorithm (TAJA) to manage vertically distributed data. The main idea of these algorithms consists
in applying innovative merges on two distinct summary hierarchies (local models) to provide
a single summary hierarchy (global model). We showed that these algorithms provide a good-
quality merged hierarchy while being very efficient in terms of computational time.

Conclusion and
Perspectives

In this thesis, we have investigated a simple but useful strategy to alleviate the information
overload often encountered by users when they access large and distributed Databases. In the
following, we summarize our main contributions and outline some future directions of research.

Our main contributions are as follows :
• First, we proposed an efficient and effective algorithm coined Explore-Select-Rearrange
Algorithm (ESRA) that uses database SAINTETIQ summaries to quickly provide users
with concise, useful and structured representations of their query results. Given a user
query, ESRA (i) explores the summary hierarchy (computed offline using SAINTETIQ)
of the whole data stored in the database ; (ii) selects the most relevant summaries to that
query ; (iii) rearranges them in a hierarchical structure based on the structure of the pre-
computed summary hierarchy and (iv) returns the resulting hierarchy to the user. Each
node (or summary) of the resulting hierarchy describes a subset of the result set in a
user-friendly form using linguistic labels. The user then navigates through this hierarchy
structure in a top-down manner, exploring the summaries of interest while ignoring the
rest. The experimental results showed that the ESRA algorithm is efficient and provides
well-formed (tight and clearly separated) and well-organized clusters of query results.
Thus, it is very helpful to users who have vague and poorly defined retrieval goals or are
interested in browsing through a set of items to explore what choices are available.

• The ESRA algorithm assumes that the summary hierarchy of the queried data is already
built using SAINTETIQ and available as input. However, the SAINTETIQ model requires
full access to the data which is going to be summarized, i.e., all data has to be located at
the site where it is summarized. This requirement severely limits the applicability of the
ESRA algorithm in a distributed environment, where data are distributed across many sites
and their centralization cannot scale in terms of storage, computation and communication.

The second contribution of this thesis is a solution for summarizing distributed data wi-
thout a prior “unification” of the data sources. We assumed that the sources maintain their
own summary hierarchies (local models), and we proposed new algorithms, namely UIA,

119

120 Conclusion and Perspectives

UAA, SOJA, SOJA-RA and TAJA, for merging them into a single final one (global model).
UIA (Union by Incorporation Algorithm) and UAA (Union by Alignment Algorithm) deal
with horizontally distributed data. They rely on a union operator that aggregates two in-
put summaries (or clusters) representing two different sets of database records with the
same set of attributes. SOJA (Subspace-Oriented Join Algorithm), SOJA-RA (SOJA with
Rearrangements) and TAJA (Tree Alignement-based Join Algorithm) deal with vertically
distributed data. They rely on a join operator that appends two input summaries (or clus-
ters) representing the same set of database records with two different feature sets. We
also proposed a consistent quality measure to quantify how good our merged hierarchies
are. The experimental results showed that our merging algorithms result in high quality
clustering schemas of the entire distributed data and are very efficient in terms of compu-
tational time.

Our future works are as follows :
• The ESRA algorithm does not exploit the statistical information (e.g., mean, maximum,
minimum, standard deviation, tuple count) which is part of a summary’s intent. The first
future direction is to investigate the benefits that this statistical information could offer in
the context of exploratory search and how these benefits can be achieved.

• The ESRA algorithm returns results using linguistic labels of summaries even if users
express their queries using a free vocabulary. The second future direction is to study how
to perform results rewriting when queries involve user-specific linguistic labels.

• The third future direction is to study criteria (other than time complexity) that allow us to
choose the appropriate merging algorithm to use for a given data set.

• The fourth future direction is to study setting of the n-ary merge operator and provide
(near-)optimal execution plans that order binary merges.

• Finally, we plan to extend our merging algorithms to deal with semantically heteroge-
neous summary hierarchies, i.e., summary hierarchies that are built using different Know-
ledge Bases.

Bibliography

[ACD02] Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das.
Dbxplorer : enabling keyword search over relational databases.
In SIGMOD ’02 : Proceedings of the 2002 ACM SIGMOD international conference on

Management of data, pages 627–627, New York, NY, USA, 2002. ACM.
[All92] Dennis Allen.

Managing infoglut.
BYTE magazine, 17(6) :16, 1992.

[AMN+98] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y. Wu.
An optimal algorithm for approximate nearest neighbor searching fixed dimensions.
J. ACM, 45(6) :891–923, 1998.

[AMS+96] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, and A. Inkeri
Verkamo.

Fast discovery of association rules.
In advances in knowledge discovery and data mining, pages 307–328, 1996.

[Ash94] M. Ashcraft.
Human Memory and Cognition.
Addison-Wesley Pub Co, 1994.

[AW00] Rakesh Agrawal and Edward L. Wimmers.
A framework for expressing and combining preferences.
SIGMOD Rec., 29(2) :297–306, 2000.

[Bay63] Rev. Thomas Bayes.
An essay toward solving a problem in the doctrine of chances.
Phil. Trans. Roy. Soc., 53 :370–418, 1763.

[BBK01] Christian Böhm, Stefan Berchtold, and Daniel A. Keim.
Searching in high-dimensional spaces : Index structures for improving the performance of

multimedia databases.
ACM Comput. Surv., 33(3) :322–373, 2001.

[BBKK97] Stefan Berchtold, Christian Böhm, Daniel A. Keim, and Hans-Peter Kriegel.
A cost model for nearest neighbor search in high-dimensional data space.
In PODS ’97 : Proceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART symposium

on Principles of database systems, pages 78–86, New York, NY, USA, 1997. ACM.
[Ber01] Michael K. Bergman.

The deep web : Surfacing hidden value.
Journal of Electronic Publishing, 7(1), August 2001.

[Ber06] P. Berkhin.
A survey of clustering data mining techniques.
In Grouping Multidimensional Data : Recent Advances in Clustering, Ed. J. Kogan and C.

Nicholas and M. Teboulle, pages 25–71, 2006.
[BG98] Kurt D. Bollacker and Joydeep Ghosh.

121

122 BIBLIOGRAPHY

A supra-classifier architecture for scalable knowledge reuse.
In Proc. 15th International Conf. on Machine Learning, pages 64–72, 1998.

[BGL06] Indrajit Bhattacharya, Lise Getoor, and Louis Licamele.
Query-time entity resolution.
In KDD ’06, pages 529–534, New York, NY, USA, 2006.

[BGRS99] Kevin S. Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft.
When is ”nearest neighbor” meaningful ?
In ICDT ’99 : Proceedings of the 7th International Conference on Database Theory, pages

217–235, London, UK, 1999. Springer-Verlag.
[BH98] Krishna Bharat and Monika R. Henzinger.

Improved algorithms for topic distillation in a hyperlinked environment.
In SIGIR ’98 : Proceedings of the 21st annual international ACM SIGIR conference on

Research and development in information retrieval, pages 104–111, New York, NY,
USA, 1998. ACM.

[BHN+02] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and S. Sudarshan.
Keyword searching and browsing in databases using banks.
In ICDE, pages 431–440, 2002.

[BK99] Yuri Breitbart and Henry F. Korth.
Replication and consistency in a distributed environment.
J. Comput. Syst. Sci., 59(1) :29–69, 1999.

[BKK96] Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel.
The x-tree : An index structure for high-dimensional data.
In VLDB ’96 : Proceedings of the 22th International Conference on Very Large Data Bases,

pages 28–39, San Francisco, CA, USA, 1996. Morgan Kaufmann Publishers Inc.
[BKSS90] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.

The r*-tree : an efficient and robust access method for points and rectangles.
SIGMOD Rec., 19(2) :322–331, 1990.

[BMRB96] Bernadette Bouchon-Meunier, Maria Rifqi, and Sylvie Bothorel.
Towards general measures of comparison of objects.
Fuzzy Sets Syst., 84(2) :143–153, 1996.

[BP92] P. Bosc and O. Pivert.
Fuzzy querying in conventional databases.
In Fuzzy logic for the management of uncertainty, pages 645–671, New York, NY, USA,

1992. John Wiley & Sons, Inc.
[BP95] P. Bosc and O. Pivert.

Sqlf : a relational database language for fuzzy querying.
In IEEE Transactions on Fuzzy Systems, volume 3, pages 1–17, 1995.

[BP97] Patrick Bosc and Olivier Pivert.
Fuzzy queries against regular and fuzzy databases.
In Flexible query answering systems, pages 187–208, Norwell, MA, USA, 1997. Kluwer

Academic Publishers.
[BP98] Sergey Brin and Lawrence Page.

The anatomy of a large-scale hypertextual web search engine.
Comput. Netw. ISDN Syst., 30(1-7) :107–117, 1998.

BIBLIOGRAPHY 123

[BPR05] Patrick Bosc, Olivier Pivert, and Daniel Rocacher.
On the approximate division of fuzzy relations.
In ISMIS, pages 314–322, 2005.

[BPR07] P. Bosc, O. Pivert, and D. Rocacher.
About quotient and division of crisp and fuzzy relations.
J. Intell. Inf. Syst., 29(2) :185–210, 2007.

[BRM05] Bhuvan Bamba, Prasan Roy, and Mukesh Mohania.
Osqr : overlapping clustering of query results.
In CIKM ’05 : Proceedings of the 14th ACM international conference on Information and

knowledge management, pages 239–240, New York, NY, USA, 2005. ACM.
[BRM07] Mounir Bechchi, Guillaume Raschia, and Noureddine Mouaddib.

Merging Distributed Database Summaries.
In Conference on Information and Knowledge Management (CIKM), pages 419–428, Lis-

bon Portugal, 11 2007.
[BRM08] Mounir Bechchi, Guillaume Raschia, and Noureddine Mouaddib.

Joining Distributed Database Summaries.
Research Report RR-6768, INRIA, 2008.

[BRRT01] Allan Borodin, Gareth O. Roberts, Jeffrey S. Rosenthal, and Panayiotis Tsaparas.
Finding authorities and hubs from link structures on the world wide web.
InWWW ’01 : Proceedings of the 10th international conference on World Wide Web, pages

415–429, New York, NY, USA, 2001. ACM.
[BVRM08] Mounir Bechchi, Amenel Voglozin, Guillaume Raschia, and Noureddine Mouaddib.

Multi-Dimensional Grid-Based Clustering of Fuzzy Query Results.
Research Report RR-6770, INRIA, 2008.

[BYRN99] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto.
Modern Information Retrieval.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[CCH92] James P. Callan, W. Bruce Croft, and Stephen M. Harding.
The inquery retrieval system.
In Proceedings of the Third International Conference on Database and Expert Systems

Applications, pages 78–83. Springer-Verlag, 1992.
[CCH94] Wesley W. Chu, Qiming Chen, and Andy Hwang.

Query answering via cooperative data inference.
J. Intell. Inf. Syst., 3(1) :57–87, 1994.

[CCH04] Kaushik Chakrabarti, Surajit Chaudhuri, and Seung-won Hwang.
Automatic categorization of query results.
In SIGMOD ’04 : Proceedings of the 2004 ACM SIGMOD international conference on

Management of data, pages 755–766, New York, NY, USA, 2004. ACM.
[CCHY96] W. W. Chu, K. Chiang, C. Hsu, and H. Yau.

An error-based conceptual clustering method for providing approximate query answers.
Commun. ACM, 39 :216–230, 1996.

[CD03] Surajit Chaudhuri and Gautam Das.
Automated ranking of database query results.
In CIDR, pages 888–899, 2003.

124 BIBLIOGRAPHY

[CDHW04] Surajit Chaudhuri, Gautam Das, Vagelis Hristidis, and Gerhard Weikum.
Probabilistic ranking of database query results.
In Proceedings of the Thirtieth international conference on Very large data bases, pages

888–899. VLDB Endowment, 2004.
[CHL+04] Kevin Chen-Chuan Chang, Bin He, Chengkai Li, Mitesh Patel, and Zhen Zhang.

Structured databases on the web : observations and implications.
SIGMOD Rec., 33(3) :61–70, 2004.

[Cho02] Jan Chomicki.
Querying with intrinsic preferences.
In EDBT ’02 : Proceedings of the 8th International Conference on Extending Database

Technology, pages 34–51, London, UK, 2002. Springer-Verlag.
[Cho03] Jan Chomicki.

Preference formulas in relational queries.
ACM Trans. Database Syst., 28(4) :427–466, 2003.

[CHZ05] Kevin Chen-Chuan Chang, Bin He, and Zhen Zhang.
Toward large scale integration : Building a metaquerier over databases on the web.
In CIDR, pages 44–55, 2005.

[Cia00] Pac nearest neighbor queries : Approximate and controlled search in high-dimensional and
metric spaces.

In ICDE ’00 : Proceedings of the 16th International Conference on Data Engineering,
pages 244–255, Washington, DC, USA, 2000. IEEE Computer Society.

[CKVW06] David Cheng, Ravi Kannan, Santosh Vempala, and Grant Wang.
A divide-and-merge methodology for clustering.
ACM Trans. Database Syst., 31(4) :1499–1525, 2006.

[CQ69] A. Collins and M. Quillian.
Retrieval time from semantic memory.
Journal of Verbal Learning and Verbal Behavior, 8(2) :240–247, April 1969.

[Cro80] W. Bruce Croft.
A model of cluster searching based on classification.
Information Systems, 5 :189–195, 1980.

[CSH03] D. Caragea, A. Silvescu, and V. Honavar.
Decision tree induction from distributed heterogeneous autonomous data sources.
In Proceedings of the International Conference on Intelligent Systems Design and Appli-

cations, pages 341–350, 2003.
[CSK04] R. Chen, K. Sivakumar, and H. Kargupta.

Collective mining of bayesian networks from distributed heterogeneous data.
Knowl. Inf. Syst., 6(2) :164–187, 2004.

[CYC+96] Wesley W. Chu, Hua Yang, Kuorong Chiang, Michael Minock, Gladys Chow, and Chris
Larson.

Cobase : a scalable and extensible cooperative information system.
J. Intell. Inf. Syst., 6(2-3) :223–259, 1996.

[DHS00] Richard O. Duda, Peter E. Hart, and David G. Stork.
Pattern Classification (2nd Edition).
Wiley-Interscience, November 2000.

BIBLIOGRAPHY 125

[DKW02] Tran Khanh Dang, Josef Küng, and Roland Wagner.
Isa - an incremental hyper-sphere approach for efficiently solving complex vague queries.
In DEXA ’02 : Proceedings of the 13th International Conference on Database and Expert

Systems Applications, pages 810–819, London, UK, 2002. Springer-Verlag.
[DM00] Inderjit S. Dhillon and Dharmendra S. Modha.

A data-clustering algorithm on distributed memory multiprocessors.
In Large-Scale Parallel Data Mining, Lecture Notes in Artificial Intelligence, pages 245–

260, 2000.
[DPU02] Didier Dubois, Henri Prade, and Laurent Ughetto.

A new perspective on reasoning with fuzzy rules.
In AFSS ’02 : Proceedings of the 2002 AFSS International Conference on Fuzzy Systems.

Calcutta, pages 1–11, London, UK, 2002. Springer-Verlag.
[DXW+07] Bolin Ding, Xu, Shan Wang, Lu Qin, Xiao Zhang, and Xuemin Lin.

Finding top-k min-cost connected trees in databases.
In ICDE, pages 836–845, 2007.

[FG05] Paolo Ferragina and Antonio Gulli.
A personalized search engine based on web-snippet hierarchical clustering.
In WWW ’05 : Special interest tracks and posters of the 14th international conference on

World Wide Web, pages 801–810, New York, NY, USA, 2005. ACM.
[FGL98] Nir Friedman, Moisés Goldszmidt, and Thomas J. Lee.

Bayesian network classification with continuous attributes : Getting the best of both dis-
cretization and parametric fitting.

In ICML ’98 : Proceedings of the Fifteenth International Conference on Machine Learning,
pages 179–187, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[Fis87] Douglas H. Fisher.
Knowledge acquisition via incremental conceptual clustering.
Mach. Learn., 2(2) :139–172, 1987.

[FLN01] Ronald Fagin, Amnon Lotem, and Moni Naor.
Optimal aggregation algorithms for middleware.
In PODS ’01 : Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium

on Principles of database systems, pages 102–113, New York, NY, USA, 2001. ACM.
[FSAA01] Hakan Ferhatosmanoglu, Ioana Stanoi, Divyakant Agrawal, and Amr El Abbadi.

Constrained nearest neighbor queries.
In SSTD ’01 : Proceedings of the 7th International Symposium on Advances in Spatial and

Temporal Databases, pages 257–278, London, UK, 2001. Springer-Verlag.
[FTAA01] Hakan Ferhatosmanoglu, Ertem Tuncel, Divyakant Agrawal, and Amr El Abbadi.

Approximate nearest neighbor searching in multimedia databases.
In ICDE, pages 503–511, 2001.

[Gal08] Jose Galindo.
Handbook of Research on Fuzzy Information Processing in Databases.
Information Science Reference, Hershey, PA, 2008.

[GBK00] Ulrich Güntzer, Wolf-Tilo Balke, and Werner Kießling.
Optimizing multi-feature queries for image databases.
In VLDB ’00 : Proceedings of the 26th International Conference on Very Large Data Bases,

pages 419–428, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

126 BIBLIOGRAPHY

[GF04] David A. Grossman and Ophir Frieder.
Information Retrieval : Algorithms and Heuristics (The Kluwer International Series on

Information Retrieval).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2004.

[GG98] Volker Gaede and Oliver Günther.
Multidimensional access methods.
ACM Comput. Surv., 30(2) :170–231, 1998.

[GGM94] Terry Gaasterland, Parke Godfrey, and Jack Minker.
An overview of cooperative answering.
In Nonstandard queries and nonstandard answers : studies in logic and computation, pages

1–40, Oxford, UK, 1994. Oxford University Press.
[GM03] Joydeep Ghosh and Srujana Merugu.

Distributed clustering with limited knowledge sharing.
In Proceedings of the 5th International Conference on Advances in Pattern Recognition

(ICAPR), pages 48–53, 2003.
[God97] Parke Godfrey.

Minimization in cooperative response to failing database queries.
IJCIS, 6(2) :95–149, 1997.

[GSM02] Joydeep Ghosh, Alexander Strehl, and Srujana Merugu.
A consensus framework for integrating distributed clusterings under limited knowledge

sharing.
In Proc. NSF Workshop on Next Generation Data Mining, pages 99–108, November 2002.

[Gut88] Antonin Guttman.
R-trees : a dynamic index structure for spatial searching.
In Readings in database systems, pages 599–609, San Francisco, CA, USA, 1988. Morgan

Kaufmann Publishers Inc.
[HBMB05] G. S. Halford, R. Baker, J. E. McCredden, and J. D. Bain.

How many variables can humans process ?
Psychological Science, 15 :70–76, 2005.

[HBV01] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis.
On clustering validation techniques.
Journal of Intelligent Information Systems, 17(2-3) :107–145, 2001.

[HGKI02] Taher H. Haveliwala, Aristides Gionis, Dan Klein, and Piotr Indyk.
Evaluating strategies for similarity search on the web.
InWWW ’02 : Proceedings of the 11th international conference on World Wide Web, pages

432–442, New York, NY, USA, 2002. ACM.
[HGP03] Vagelis Hristidis, Luis Gravano, and Yannis Papakonstantinou.

Efficient ir-style keyword search over relational databases.
In VLDB ’2003 : Proceedings of the 29th international conference on Very large data bases,

pages 850–861. VLDB Endowment, 2003.
[HMYW04] Hai He, Weiyi Meng, Clement Yu, and Zonghuan Wu.

Automatic integration of web search interfaces with wise-integrator.
The VLDB Journal, 13(3) :256–273, 2004.

[HP96] Marti A. Hearst and Jan O. Pedersen.

BIBLIOGRAPHY 127

Reexamining the cluster hypothesis : scatter/gather on retrieval results.
In SIGIR ’96 : Proceedings of the 19th annual international ACM SIGIR conference on

Research and development in information retrieval, pages 76–84, New York, NY, USA,
1996. ACM.

[HP02] Vagelis Hristidis and Yannis Papakonstantinou.
Discover : keyword search in relational databases.
In VLDB ’02 : Proceedings of the 28th international conference on Very Large Data Bases,

pages 670–681. VLDB Endowment, 2002.
[HTF01] T. Hastie, R. Tibshirani, and J. H. Friedman.

The Elements of Statistical Learning.
Springer, 2nd edition, August 2001.

[HW79] J. A. Hartigan and M. A. Wong.
A K-means clustering algorithm.
Applied Statistics, 28 :100–108, 1979.

[HWYY07] Hao He, Haixun Wang, Jun Yang, and Philip S. Yu.
Blinks : ranked keyword searches on graphs.
In SIGMOD ’07 : Proceedings of the 2007 ACM SIGMOD international conference on

Management of data, pages 305–316, New York, NY, USA, 2007. ACM.
[IBS08] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman.

A survey of top-k query processing techniques in relational database systems.
ACM Comput. Surv., 40(4) :1–58, 2008.

[IH86] Tadao Ichikawa and Masahito Hirakawa.
Ares : a relational database with the capability of performing flexible interpretation of

queries.
IEEE Trans. Softw. Eng., 12(5) :624–634, 1986.

[IM98] Piotr Indyk and Rajeev Motwani.
Approximate nearest neighbors : towards removing the curse of dimensionality.
In STOC ’98 : Proceedings of the thirtieth annual ACM symposium on Theory of compu-

ting, pages 604–613, New York, NY, USA, 1998. ACM.
[JK99] Erik L. Johnson and Hillol Kargupta.

Collective, hierarchical clustering from distributed, heterogeneous data.
In Large-Scale Parallel Data Mining, pages 221–244, 1999.

[JKP03] Eshref Januzaj, Hans-Peter Kriegel, and Martin Pfeifle.
Towards effective and efficient distributed clustering.
In Proc. Int. Workshop on Clustering Large Data Sets, 3rd IEEE International Conference

on Data Mining (ICDM), pages 49–58, 2003.
[JMF99] A. K. Jain, M. N. Murty, and P. J. Flynn.

Data clustering : a review.
ACM Comput. Surv., 31(3) :264–323, September 1999.

[JN03] Pierre E. Jouve and Nicolas Nicoloyannis.
A new method for combining partitions, applications for distributed clustering.
In International Workshop on Paralell and Distributed Machine Learning and Data Mining

(ECML/PKDD03), pages 35–46, September 2003.
[JR71] N. Jardine and C. J. Van Rijsbergen.

128 BIBLIOGRAPHY

The use of hierarchical clustering in information retrieval.
Information Storage and Retrieval, 7 :217–240, 1971.

[Kap83] S. J. Kaplan.
Cooperative responses from a portable natural language database query system.
In M. Brady and R. C. Berwick, editors, Computational Models of Discourse, pages 167–

208. MIT Press, Cambridge, MA, 1983.
[KBL07] Dimitre Kostadinov, Mokrane Bouzeghoub, and Stéphane Lopes.

Query rewriting based on user’s profile knowledge.
In BDA, 2007.

[KDH+07] Nishant Kapoor, Gautam Das, Vagelis Hristidis, S. Sudarshan, and Gerhard Weikum.
Star : A system for tuple and attribute ranking of query answers.
In ICDE, pages 1483–1484, 2007.

[KI05] Georgia Koutrika and Yannis Ioannidis.
A unified user profile framework for query disambiguation and personalization.
In Proceedings of Workshop on New Technologies for Personalized Information Access,

pages 44–53, July 2005.
[Kie02] Werner Kießling.

Foundations of preferences in database systems.
In VLDB ’02 : Proceedings of the 28th international conference on Very Large Data Bases,

pages 311–322. VLDB Endowment, 2002.
[Kle99] Jon M. Kleinberg.

Authoritative sources in a hyperlinked environment.
J. ACM, 46(5) :604–632, 1999.

[KLM03] M. Klusch, S. Lodi, and G. Moro.
Distributed clustering based on sampling local density estimates.
In IJCAI, pages 485–490, 2003.

[KM92] Jyrki Kivinen and Heikki Mannila.
Approximate dependency inference from relations.
In ICDT ’92 : Proceedings of the 4th International Conference on Database Theory, pages

86–98, London, UK, 1992. Springer-Verlag.
[KMP00] E. P. Klement, R. Mesiar, and E. Pap.

Triangular norms.
Kluwer Academic Publishers, 2000.

[KPC+05] Varun Kacholia, Shashank Pandit, Soumen Chakrabarti, S. Sudarshan, Rushi Desai, and
Hrishikesh Karambelkar.

Bidirectional expansion for keyword search on graph databases.
In VLDB ’05 : Proceedings of the 31st international conference on Very large data bases,

pages 505–516. VLDB Endowment, 2005.
[KS03] Yannis Kalfoglou and Marco Schorlemmer.

Ontology mapping : the state of the art.
Knowl. Eng. Rev., 18(1) :1–31, 2003.

[KS06] Benny Kimelfeld and Yehoshua Sagiv.
Finding and approximating top-k answers in keyword proximity search.
In PODS ’06 : Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium

on Principles of database systems, pages 173–182, New York, NY, USA, 2006. ACM.

BIBLIOGRAPHY 129

[Lew96] David Lewis.
Dying for information : An investigation into the effects of information overload in the usa

and worldwide.
Reuters Limited, 1996.

[Lin04] Tancred Lindholm.
A three-way merge for xml documents.
In DocEng ’04 : Proceedings of the 2004 ACM symposium on Document engineering,

pages 1–10, New York, NY, USA, 2004. ACM.
[LL87] M. Lacroix and Pierre Lavency.

Preferences ; putting more knowledge into queries.
In VLDB ’87 : Proceedings of the 13th International Conference on Very Large Data Bases,

pages 217–225, San Francisco, CA, USA, 1987. Morgan Kaufmann Publishers Inc.
[LWL+07] Chengkai Li, Min Wang, Lipyeow Lim, Haixun Wang, and Kevin Chen-Chuan Chang.

Supporting ranking and clustering as generalized order-by and group-by.
In SIGMOD ’07 : Proceedings of the 2007 ACM SIGMOD international conference on

Management of data, pages 127–138, New York, NY, USA, 2007. ACM.
[LYMC06] Fang Liu, Clement Yu, Weiyi Meng, and Abdur Chowdhury.

Effective keyword search in relational databases.
In SIGMOD ’06 : Proceedings of the 2006 ACM SIGMOD international conference on

Management of data, pages 563–574, New York, NY, USA, 2006. ACM.
[Man67] G. Mandler.

Organization in memory.
In K. W. Spense and J. T. Spense, editors, The psychology of learning and motivation,

pages 327–372. Academic Press, 1967.
[MBKB02] Sean D. MacArthur, Carla E. Brodley, Avinash C. Ka, and Lynn S. Broderick.

Interactive content-based image retrieval using relevance feedback.
Comput. Vis. Image Underst., 88(2) :55–75, 2002.

[MC93] Matthew Merzbacher and Wesley W. Chu.
Pattern-based clustering for database attribute values.
In Proceedings of AAAI Workshop on Knowledge Discovery, pages 1–8, 1993.

[Men02] T. Mens.
A state-of-the-art survey on software merging.
IEEE Trans. Softw. Eng., 28(5) :449–462, 2002.

[Mil56] George A. Miller.
The magical number seven, plus or minus two : Some limits on our capacity for processing

information.
The Psychological Review, 63 :81–97, 1956.

[Mil62] G. A. Miller.
Information input overload.
In M. C. Yovits, G. T. Jacobi, and G. D. Goldstein, editors, Conference on Self-Organizing

Systems. Spartan Books, 1962.
[ML05] I. Muslea and T. Lee.

Online query relaxation via bayesian causal structures discovery.
In Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI),

pages 831–836, 2005.

130 BIBLIOGRAPHY

[Mot86a] Amihai Motro.
Query generalization : a method for interpreting null answers.
In Proceedings from the first international workshop on Expert database systems, pages

597–616, Redwood City, CA, USA, 1986. Benjamin-Cummings Publishing Co., Inc.
[Mot86b] Amihai Motro.

Seave : a mechanism for verifying user presuppositions in query systems.
ACM Trans. Inf. Syst., 4(4) :312–330, 1986.

[Mot88] Amihai Motro.
Vague : a user interface to relational databases that permits vague queries.
ACM Trans. Inf. Syst., 6(3) :187–214, 1988.

[MR05] Oded Maimon and Lior Rokach, editors.
The Data Mining and Knowledge Discovery Handbook.
Springer, 2005.

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze.
Introduction to Information Retrieval.
Cambridge University Press, New York, NY, USA, 2008.

[Mus04] Ion Muslea.
Machine learning for online query relaxation.
In KDD ’04 : Proceedings of the tenth ACM SIGKDD international conference on Know-

ledge discovery and data mining, pages 246–255, New York, NY, USA, 2004. ACM.
[Nam05] Ullas Nambiar.

Answering imprecise queries over autonomous databases.
PhD thesis, Tempe, AZ, USA, 2005.
Adviser-Kambhampati, Subrarao.

[Nie03] Jakob Nielsen.
Curmudgeon : Im, not ip (information pollution).
ACM Queue, 1(8) :76–75, 2003.

[NK03] Ullas Nambiar and Subbarao Kambhampati.
Answering imprecise database queries : a novel approach.
In WIDM ’03 : Proceedings of the 5th ACM international workshop on Web information

and data management, pages 126–133, New York, NY, USA, 2003. ACM.
[NK04] Ullas Nambiar and Subbarao Kambhampati.

Mining approximate functional dependencies and concept similarities to answer imprecise
queries.

InWebDB ’04 : Proceedings of the 7th International Workshop on the Web and Databases,
pages 73–78, New York, NY, USA, 2004. ACM.

[NR99] Surya Nepal and M. V. Ramakrishna.
Query processing issues in image (multimedia) databases.
In Proceedings of the 15th International Conference on Data Engineering, 23-26 March

1999, Sydney, Austrialia, pages 22–29. IEEE Computer Society, 1999.
[NZJ01] Andrew Y. Ng, Alice X. Zheng, and Michael I. Jordan.

Stable algorithms for link analysis.
In SIGIR ’01 : Proceedings of the 24th annual international ACM SIGIR conference on

Research and development in information retrieval, pages 258–266, New York, NY,
USA, 2001. ACM.

BIBLIOGRAPHY 131

[OV99] M. Tamer Özsu and Patrick Valduriez.
Principles of distributed database systems (2nd ed.).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1999.

[Qui68] M. R. Quillian.
Semantic memory.
In Minsky M., editor, Semantic Information Processing, pages 227–270. The MIT Press,

1968.
[Qui93] J. Ross Quinlan.

C4.5 : programs for machine learning.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.

[RKV95] Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent.
Nearest neighbor queries.
In SIGMOD ’95 : Proceedings of the 1995 ACM SIGMOD international conference on

Management of data, pages 71–79, New York, NY, USA, 1995. ACM.
[RM75] E. Rosch and C.B. Mervis.

Family ressemblances : studies in the internal structure of categories.
Cognitive Psychology, 7 :573–605, 1975.

[RM02] G. Raschia and N. Mouaddib.
SAINTETIQ : a fuzzy set-based approach to database summarization.
Fuzzy Sets Syst., 129(2) :137–162, 2002.

[Rob97] S. E. Robertson.
The probability ranking principle in ir.
In Readings in information retrieval, pages 281–286, San Francisco, CA, USA, 1997. Mor-

gan Kaufmann Publishers Inc.
[Rus69] E. Ruspini.

A new approach to clustering.
Information and Control, 15 :22–32, 1969.

[Sal89] Gerard Salton.
Automatic text processing : the transformation, analysis, and retrieval of information by

computer.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989.

[SCZ00] Gholamhosein Sheikholeslami, Surojit Chatterjee, and Aidong Zhang.
Wavecluster : a wavelet-based clustering approach for spatial data in very large databases.
The VLDB Journal, 8(3-4) :289–304, 2000.

[SD06] Parag Singla and Pedro Domingos.
Entity resolution with markov logic.
In ICDM ’06, pages 572–582, Washington, DC, USA, 2006.

[SE98] Erich Schikuta and Martin Erhart.
Bang-clustering : A novel grid-clustering algorithm for huge data sets.
In SSPR ’98/SPR ’98 : Proceedings of the Joint IAPR International Workshops on Advances

in Pattern Recognition, pages 867–874, London, UK, 1998. Springer-Verlag.
[SE05] Pavel Shvaiko and Jérôme Euzenat.

A survey of schema-based matching approaches.
In J. Data Semantics IV, pages 146–171, 2005.

132 BIBLIOGRAPHY

[SEK03] Michael Steinbach, Levent Ertöz, and Vipin Kumar.
The challenges of clustering high-dimensional data.
In New Vistas in Statistical Physics : Applications in Econophysics, Bioinformatics, and

Pattern Recognition, pages 273–307. Springer-Verlag, 2003.
[Sel77] S. M. Selkow.

The tree-to-tree editing problem.
Information processing letters, pages 184–186, 1977.

[SG02] Alexander Strehl and Joydeep Ghosh.
Cluster ensembles – a knowledge reuse framework for combining multiple partitions.
Journal on Machine Learning Research (JMLR), 3 :583–617, December 2002.

[She97] David Shenk.
Data Smog : Surviving the Information Glut.
HarperCollins Publishers, New York, NY, USA, 1997.

[Sim74] Herbert A. Simon.
How big is a chunk ?
Science, 183 :482–488, 1974.

[SK05] Marc Shapiro and Nishith Krishna.
The three dimensions of data consistency.
In Journées Francophones sur la Cohérence des Données en Univers Réparti (CDUR,

pages 54–58, 2005.
[SM86] Gerard Salton and Michael J. McGill.

Introduction to Modern Information Retrieval.
McGraw-Hill, Inc., New York, NY, USA, 1986.

[SOGM02] Nagiza F. Samatova, George Ostrouchov, Al Geist, and Anatoli V. Melechko.
Rachet : An efficient cover-based merging of clustering hierarchies from distributed data-

sets.
Distrib. Parallel Databases, 11(2) :157–180, 2002.

[SPRM05] Regis Saint-Paul, Guillaume Raschia, and Noureddine Mouaddib.
General purpose database summarization.
In VLDB ’05, pages 733–744, 2005.

[SV98] Ulrike Schultz and Betty Vandenbosch.
Information overload in a groupware environment : Now you see it, now you don’t.
Journal of Organizational Computing and Electronic Commerce, 8(2) :127–148, 1998.

[SWHL06] Weifeng Su, Jiying Wang, Qiong Huang, and Fred Lochovsky.
Query result ranking over e-commerce web databases.
In CIKM ’06 : Proceedings of the 15th ACM international conference on Information and

knowledge management, pages 575–584, New York, NY, USA, 2006. ACM.
[SWSZ05] Xiaowei Sun, Rui Wang, Betty Salzberg, and Chendong Zou.

Online b-tree merging.
In SIGMOD ’05 : Proceedings of the 2005 ACM SIGMOD international conference on

Management of data, pages 335–346, New York, NY, USA, 2005.
[Tah77] V. Tahani.

A conceptual framework for fuzzy query processing : A step toward very intelligent data-
base systems.

Information Processing and Management, 13 :289–303, 1977.

BIBLIOGRAPHY 133

[Tve77] A. Tversky.
Features of similarity.
Psycol. Rev., 84(4) :327–352, 1977.

[Voo85] Ellen M. Voorhees.
The cluster hypothesis revisited.
In SIGIR ’85 : Proceedings of the 8th annual international ACM SIGIR conference on

Research and development in information retrieval, pages 188–196, New York, NY,
USA, 1985. ACM.

[vRC75] C. J. van Rijsbergen and W. Bruce Croft.
Document clustering : An evaluation of some experiments with the cranfield 1400 collec-

tion.
Inf. Process. Manage., 11(5-7) :171–182, 1975.

[VRUM04] W.A. Voglozin, G. Raschia, L. Ughetto, and N. Mouaddib.
Querying the SaintEtiQ summaries - a first attempt.
In 6th International Conference on Flexible Query Answering Systems, pages 404–417,

Lyon, France, June 24-26 2004.
[WB00] Roger Weber and Klemens Böhm.

Trading quality for time with nearest neighbor search.
In EDBT ’00 : Proceedings of the 7th International Conference on Extending Database

Technology, pages 21–35, London, UK, 2000. Springer-Verlag.
[WFSP00] Leejay Wu, Christos Faloutsos, Katia P. Sycara, and Terry R. Payne.

Falcon : Feedback adaptive loop for content-based retrieval.
In VLDB ’00 : Proceedings of the 26th International Conference on Very Large Data Bases,

pages 297–306, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.
[Win98] William Van Winkle.

Information overload : Fighting data asphyxiation is difficult but possible.
Computer Bits magazine, 8(2), 1998.

[WJ96] David A. White and Ramesh Jain.
Similarity indexing with the ss-tree.
In ICDE ’96 : Proceedings of the Twelfth International Conference on Data Engineering,

pages 516–523, Washington, DC, USA, 1996. IEEE Computer Society.
[WR97] Michelle M. Weil and Larry D. Rosen.

TechnoStress : Coping With Technology Work Home Play.
John Wiley and Sons, New York, NY, USA, 1997.

[WYM97] Wei Wang, Jiong Yang, and Richard R. Muntz.
STING : A statistical information grid approach to spatial data mining.
In Twenty-Third International Conference on Very Large Data Bases, pages 186–195,

Athens, Greece, 1997. Morgan Kaufmann.
[XJK99] Xiaowei Xu, Jochen Jager, and Hans-Peter Kriegel.

A fast parallel clustering algorithm for large spatial databases.
Data Min. Knowl. Discov., 3(3) :263–290, 1999.

[YM98] Clement T. Yu and Weiyi Meng.
Principles of database query processing for advanced applications.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1998.

134 BIBLIOGRAPHY

[Zad56] L. A. Zadeh.
Fuzzy sets.
Information and Control, 8 :338–353, 1956.

[Zad75] L. A. Zadeh.
Concept of a linguistic variable and its application to approximate reasoning.
Information and Syst., 1 :119–249, 1975.

[Zad99] L. A. Zadeh.
Fuzzy sets as a basis for a theory of possibility.
Fuzzy Sets Syst., 100 :9–34, 1999.

[ZE99] Oren Zamir and Oren Etzioni.
Grouper : a dynamic clustering interface to web search results.
In WWW ’99 : Proceedings of the eighth international conference on World Wide Web,

pages 1361–1374, New York, NY, USA, 1999. Elsevier North-Holland, Inc.
[Zha96] Kaizhong Zhang.

A constrained edit distance between unordered labeled trees.
Algorithmica, 15(3) :205–222, 1996.

[ZHC+04] Hua-Jun Zeng, Qi-Cai He, Zheng Chen, Wei-Ying Ma, and Jinwen Ma.
Learning to cluster web search results.
In SIGIR ’04 : Proceedings of the 27th annual international ACM SIGIR conference on

Research and development in information retrieval, pages 210–217, New York, NY,
USA, 2004. ACM.

[ZJ94] Kaizhong Zhang and Tao Jiang.
Some max snp-hard results concerning unordered labeled trees.
Inf. Process. Lett., 49(5) :249–254, 1994.

[ZK96] Slawomir Zadrozny and Janusz Kacprzyk.
Fquery for access : towards human consistent querying user interface.
In SAC ’96 : Proceedings of the 1996 ACM symposium on Applied Computing, pages 532–

536, New York, NY, USA, 1996. ACM.
[Zlo75] Moshé M. Zloof.

Query-by-example : the invocation and definition of tables and forms.
In VLDB ’75 : Proceedings of the 1st International Conference on Very Large Data Bases,

pages 1–24, New York, NY, USA, 1975. ACM.

Clustering-based Approximate Answering of Query Result in Large and Distributed Databases
Mounir BECHCHI

Abstract

Database systems are increasingly used for interactive and exploratory data retrieval. In such re-
trievals, users queries often result in too many answers, so users waste significant time and efforts
sifting and sorting through these answers to find the relevant ones. In this thesis, we first propose an
efficient and effective algorithm coined Explore-Select-Rearrange Algorithm (ESRA), based on the
SAINTETIQ model, to quickly provide users with hierarchical clustering schemas of their query re-
sults. SAINTETIQ is a domain knowledge-based approach that provides multi-resolution summaries
of structured data stored into a database. Each node (or summary) of the hierarchy provided by ESRA
describes a subset of the result set in a user-friendly form based on domain knowledge. The user then
navigates through this hierarchy structure in a top-down fashion, exploring the summaries of interest
while ignoring the rest. Experimental results show that the ESRA algorithm is efficient and provides
well-formed (tight and clearly separated) and well-organized clusters of query results. The ESRA al-
gorithm assumes that the summary hierarchy of the queried data is already built using SAINTETIQ
and available as input. However, SAINTETIQ requires full access to the data which is going to be
summarized. This requirement severely limits the applicability of the ESRA algorithm in a distributed
environment, where data is distributed across many sites and transmitting the data to a central site is
not feasible or even desirable. The second contribution of this thesis is therefore a solution for sum-
marizing distributed data without a prior “unification” of the data sources. We assume that the sources
maintain their own summary hierarchies (local models), and we propose new algorithms for merging
them into a single final one (global model). An experimental study shows that our merging algorithms
result in high quality clustering schemas of the entire distributed data and are very efficient in terms
of computational time.
Keywords : Relational databases, Database summaries (the SAINTETIQ model), Clustering of query
results, Distributed clustering.

Réponses Approchées de Résultats de Requêtes par Classification dans des Bases de Données
Volumineuses et Distribuées

Résumé

Les utilisateurs des bases de données doivent faire face au problème de surcharge d’information lors
de l’interrogation de leurs données, qui se traduit par un nombre de réponses trop élevé à des requêtes
exploratoires. Pour remédier à ce problème, nous proposons un algorithme efficace et rapide, ap-
pelé ESRA (Explore-Select-Rearrange Algorithm), qui utilise les résumés SAINTETIQ pré-calculés
sur l’ensemble des données pour regrouper les réponses à une requête utilisateur en un ensemble de
classes (ou résumés) organisées hiérarchiquement. Chaque classe décrit un sous-ensemble de résul-
tats dont les propriétés sont voisines. L’utilisateur pourra ainsi explorer la hiérarchie pour localiser
les données qui l’intéressent et en écarter les autres. Les résultats expérimentaux montrent que l’al-
gorithme ESRA est efficace et fournit des classes bien formées (i.e., leur nombre reste faible et elles
sont bien séparées). Cependant, le modèle SAINTETIQ, utilisé par l’algorithme ESRA, exige que
les données soient disponibles sur le serveur des résumés. Cette hypothèse rend inapplicable l’algo-
rithme ESRA dans des environnements distribués où il est souvent impossible ou peu souhaitable de
rassembler toutes les données sur un même site. Pour remédier à ce problème, nous proposons une
collection d’algorithmes qui combinent deux résumés générés localement et de manière autonome
sur deux sites distincts pour en produire un seul résumant l’ensemble des données distribuées, sans
accéder aux données d’origine. Les résultats expérimentaux montrent que ces algorithmes sont aussi
performants que l’approche centralisée (i.e., SAINTETIQ appliqué aux données après regroupement
sur un même site) et produisent des hiérarchies très semblables en structure et en qualité à celles
produites par l’approche centralisée.
Mots-clés: Base de données relationnelles, Résumés de données (Le modèle SAINTETIQ), Classification
des résultats de requêtes, Classification distribuée.

Discipline : Informatique
Spécialité : Bases de Données

Laboratoire : LABORATOIRE D’INFORMATIQUE DE NANTES ATLANTIQUE.
UMR CNRS . , rue de la Houssinière, BP – Nantes, CEDEX .

	Page de garde
	Pages liminaires
	Résumé en anglais
	Résumé
	Remerciements
	Table of Contents
	List of Tables
	List of Figures

	Corps du document
	Introduction
	1 Advanced Query Processing in Databases
	1.1 Handling the Empty-Answer Problem
	1.1.1 Query Relaxation
	1.1.2 Similarity Search

	1.2 Handling the Many-Answers Problem
	1.2.1 Automated Ranking of Query Results
	1.2.2 Clustering of Query Results

	1.3 Flexible/User-Friendly Database Querying
	1.3.1 Preference Queries
	1.3.2 Fuzzy Queries
	1.3.3 Keyword Search

	1.4 Discussion

	2 Knowledge-based Clustering of Result Set
	2.1 Overview of the SaintEtiQ System
	2.1.1 A Two-Step Process
	2.1.2 Features of the Summaries
	2.1.3 Scalability Issues
	2.1.4 Discussion about SaintEtiQ

	2.2 Querying the SaintEtiQ Summaries
	2.2.1 Running Example
	2.2.2 Expression of Queries
	2.2.3 Evaluation of Queries
	2.2.4 Search Algorithm

	2.3 Multi-Scale Summarized Answers
	2.4 Rearranging the Result Set
	2.5 Extension to any Fuzzy Predicate
	2.5.1 Query Rewriting
	2.5.2 Results Sorting

	2.6 Experimental Results
	2.6.1 Data Set
	2.6.2 Results

	2.7 Conclusion

	3 Merging Distributed Database Summaries
	3.1 Problem Analysis
	3.1.1 Problem Statement
	3.1.2 Running Example
	3.1.3 Basic Approaches

	3.2 Alternative approaches
	3.2.1 Horizontally Distributed Data
	3.2.2 Vertically Distributed Data
	3.2.3 Highlights of the Proposed Algorithms

	3.3 Joining validity assessment
	3.3.1 Background
	3.3.2 Level-based Analysis
	3.3.3 Summary Tree Dissimilarity
	3.3.4 Discussion

	3.4 Experimental Results
	3.4.1 Data Set
	3.4.2 Results

	3.5 Related work
	3.6 Conclusions

	Conclusion and Perspectives
	Bibliography

	Dernière de couverture

