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Chapter 1

IntroductionRobots are mahines but dediated to perform not a unique stati task. They are designedand endowed with a relative monitored freedom in suh a way they an deal with dynamirequirements. Their designed body struture allows them performing di�erent kind of au-tonomous ations and therefore interating with their environment with prede�ned goals.These interations an also lead to exhanged fores between the robot and the environment.Roboti ations are generated by atuators embedded in the robot struture. The robotan perform an ation only if the latter is ordered and well formulated aording to robots'sown language, provided of ourse that the required ation �ts and lies within the robot'sapabilities. This language is that the robot's atuators understand and thus aordinglygenerate an ation, that will be transmitted to the robot's struture. The ations separatelygenerated by eah of the atuators will result in an ation at the struture's end-element.The robot is servoed to perform a task in its environment, and therefore needs informationabout this latter in order to be able to interat with it. Suh information are generallya�orded thanks to sensors attahed to the struture of the robot. They an be either pro-prioeptive or exteroeptive allowing respetively sensing the state of the robot or sensingthat of the environment. The task to be performed by the robot is oneived in a languagedi�erent from that understandable by the robot's atuators. Suh task orders an be for-mulated, as for examples, by: move to position A then to position B; perform motion witha ertain veloity and then smoothly stop right arriving to a ertain position; grab the doorand then orretly �x it in the ar body; push the surfae with a ertain fore and performbak-and-forth motions for polishing; perform welding by following a ertain path; et. Thetask orders an not be diretly ommuniated to the robot sine the latter's atuators donot understand the language with whih the ordered task is formulated. The atuators anperform aording to orders formulated only in atuator's language. A bu�er between thetwo languages is onsequently ruial to translate the orders to be thus understood and thenaomplished by the robot. The tehnial �eld related to suh bu�ers is well known by theterm Automatic Control in general, when dealing with mahines, and more partiularly by
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Figure 1.1: Sketch about robotics control

Robot Control when dealing with robots. The sensors provide with robot's or environment'sstate information that are fed bak to the bu�er, that then omputes the ommands whih�nally are sent to the robot. A sketh is given in Fig. 1.1.Depending on kind of the task to be performed by the robot, di�erent types of sensors areonsidered. In the ase only the proprioeptive sensors, as the robot's enoders for example,are used to onvey the information relative to the pose of the robot, the servoing tehniqueis known as Position-based Servoing. Suh tehniques require prior knowledge about theonsidered environment, as a CAD model representing its geometry for instane. They areprone to errors in the task aomplishment if a hange has ourred in a onsidered part ofthe environment. An alternative onsists in using exteroeptive sensors, as vision ones thatan enable the robot pereiving the environment with whih it is interating. This approahis well known as Visual Servoing (VS) tehnique, that we draw a global sheme on Fig. 1.2,grossly representing the di�erent involved steps with the orresponding data �ow.Visual sensors provide an image of the environment, thus re�eting its state. The informa-tion ontained in the image is extrated and then fed bak for robot servoing. In the asethe information is diretly used to ompute the ommand to the robot, the visual servoingtehnique is referred by Image-based visual servoing (IBVS) tehnique. If however the infor-mation is proessed to be transformed in 3D poses information, that is used to ompute theommand, then the visual servoing tehnique is referred by Position-based visual servoing(PBVS) one. Otherwise, part of the information is transformed in poses inputs whih arethen ompounded with other image information to ompute the ommand. In this ase werefer to Hybrid Visual Servoing tehnique. Reviews are presented in [41℄ and [17, 18℄ . In
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Figure 1.2: A typical visual servoing scheme.visual servoing, the feedbak information used for omputing the ommand is referred to as
visual feature.Robotis has ome into being with a main objetive to enhane the apabilities of humansand to a�ord what the latter ould not. It was in fat a follow-up of the development ofmehanial mahines, whih at that time already a�orded the human with valuable servies.Suh mahines were however restrained for performing a unique task and were limited inautonomy. This fueled the desire to make them versatile with a broad range of servies andwith as higher as possible autonomy. More, investigations have already been undertaken tomake these mahines smart, even with higher skills than human. Muh of the e�orts there-fore has been, and still are being in an inreasing rate, devoted for enhaning the robotsautonomy and apabilities, as we have taken part through this thesis.Robotis �nds appliations in numerous areas ranging from, but not limited to, the �eld ofautomotive industry, aerospae, under-water, nulear, military, and reently in the medialintervention �eld. The latter represents the �eld this thesis is mainly targeting. We intro-due this area in Chapter 2. Visual sensors a�ord roboti systems with pereption of theirenvironment and onsequently with more abilities for autonomous ations with enhanedsafety. Suh sensors thus are of great interest, perhaps indispensable, for many appliations
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of the medial robotis �eld, where the environment with whih the robot is interating istypially di�ult to model. Possible ontinual environment's state hanges, that may o-ur, make suh di�ulties stronger. Many of the medial roboti systems use, indeed, visualsensors, and therefore are endowed with apabilities of interating with their environment.Those sensors are generally based on modalities suh as optial, magneti resonane (MR),X-ray �uorosopy or CT-san, ultrasound, et. We provide in the next hapter a reviewabout roboti systems guided with these imaging modalities, that we present in more detailsfor the ase of ultrasound, sine our work onerns this latter �eld.A gap, however, still remains to be addressed before medial robotis beome ommon plaefor large appliations range, due mainly to the fat that the information provided by mostof suh sensors is not yet well exploited in servoing. E�orts are therefore needed to dealwith suh issue and investigate how those sensors ould be used, their information exploitedand translated in a language understood by the robot (i. e., new modeling along with visualservoing tehniques needs to be developed), so the latter behaves aordingly and ahievesthe required medial task. This thesis onerns suh objetives, and more partiularly it in-vestigates how 2D ultrasound sensors, through their valuable information, an be exploitedin medial roboti systems in order to a�ord the latter with enhaned autonomy and apa-bilities.
ContributionsOur work onerns the exploitation of 2D ultrasound images in the losed loop of visualservoing sheme for automati guidane of a robot arm, that arries at its end-e�etor a 2Dultrasound probe; we onsider in this work 6 degrees of freedom (DOFs) anthropomorphimedial robot arms. We develop a new visual servoing method that allows for automatipositioning of a robotized 2D ultrasound probe with respet to an observed soft tissue [54℄[57℄ [55℄, and [56℄. It allows to ontrol both the in-plane and out-of-plane motions of the2D ultrasound probe. This method makes diret use of the observed 2D ultrasound images,ontinuously provided by the probe transduer, in the servoing loop (see Fig. 1.3). It ex-ploits the shape of the ross-setion lying in the 2D image, by translating it in feedbaksignals to the ontrol loop. This is ahieved by making use of image moments, that afterbeing extrated are ompounded to build up the feedbak visual features (an introdutionabout image moments is given in Chapter 3). The hoie of the omponents of the visualfeatures vetor is also determinant. These features are transformed in a ommand signalto the probe-arrier robot. To do so, we �rst develop the interation matrix that relatesthe image moments time variation to the probe veloity. This interation matrix is subse-quently used to derive that related to the hosen visual features. The latter matrix is ruial
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Figure 1.3: An overall scheme of the ultrasound (US) visual servoing method using
image moments, with the corresponding data flow.in the design of the visual servo sheme, sine it is involved in the ontrol law. We proposesix relevant visual features to ontrol the 6 DOFs of the robot. The method we developallows for automati reahing a target image starting from one totally di�erent, and doesnot require a prior alibration step with regard to parameters representing the environmentwith whih the probe transduer is interating. It is furthermore based on visual featuresthat an be readily omputed after having segmented the ross-setion of interest in theimage. These features do not warp but truly re�et the information onveyed by the image.They are unlikely to misrepresenting the atual information of an image from whih theyare extrated. These features are moreover relatively robust to image noise, whih is ofgreat interest when dealing with the ultrasound modality whose images are, inherently, verynoisy. An image moments-based servoing system, namely the one presented in the presentdissertation, will then be, at its turn, robust to image noise. We will see this in Chapter 5.
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The method we propose has numerous potential medial appliations. First, it an be usedfor diagnosis by providing an appropriate view of the organ of interest. As instane, in[1℄ only the probe in-plane motions are automatially ompensated to keep tubes enteredin the image. However, if the tubes are for example urved, they may vanish from theimage while the robotized probe is manipulated by the operator. Indeed, ompensatingonly in-plane motions is not enough to follow suh tubes. With the method we propose,however, it would be possible that the probe automatially follows the tubes's urvaturesthanks to the ompensation of the out-of-plane motions. Another potential appliations isneedle insertion. Sine the method we propose allows to keep the atuated probe on anorgan desired ross-setion, it therefore would a�ord to stabilize an atuated needle withrespet to the targeted organ. This would prevent the needle from eventual bending orbreaking when the organ moves. The assumption and onstraint assumed for example in[38℄, where the needle is mehanially onstrained to lie in the probe observation plane, thuswould be overome sine the system would automatially stabilize the needle in the desiredplane (organ's slie). Another appliation is image 3-D registration, where urrently in theLagadi group we have a olleague who works to exploit this method for that topi.This thesis brings and states new modeling of the ultrasound visual information with re-spet to the environment with whih the robot is interating. It is important to notie thedi�erene from the modeling of optial systems visual information, for example, whih anbe found in di�erent literature works. In ase of optial systems, like a amera for example,the transmitted image onveys information of 3D world senes that are projeted on theimage plane. In ontrast, a 2D ultrasound transduer transmits a 2D image of the setionresulting from the intersetion of the probe observation beam with the onsidered objet. Inpratie, the ultrasound beam is approximated with a perfet plane. A 2D ultrasound probethus provides information only in its observation plane but none outside of it. Consequently,the modeling in ase of optial systems quite di�ers from that of 2D ultrasound systems(this ontrast is skethed in Fig. 1.4). Most of the visual interation modeling, and thusvisual servoing methods, are however devoted for optial systems. Therefore, they an notbe applied in ase of 2D ultrasound due to the highlighted di�erene. New modeling needtherefore to be developed in order to design visual servoing systems using 2D ultrasound.We �rst derive the image veloity of points of the ross-setion ultrasound image. Thisveloity is analytially modeled, and is related as funtion of the probe veloity. It is thenused for deriving the analytial form of the image moments time variation as funtion of theprobe veloity. This latter formulae we obtain is nothing but the ruial interation matrixrequired in the ontrol law of the visual servoing sheme. The modeling is developed andpresented in Chapter 3.Another hallenging issue is that the interation matrix strongly depends on the 3D shape
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(a) (b)

Figure 1.4: Difference between an optical system and a 2D ultrasound one in the man-
ner they interact with their respective environments: (a) a 2D ultrasound probe ob-
serves an object, through the cross-section resulting from the intersection of its planar
beam with that object - (b) a perspective camera observes two 3D objects, which reflect
rays that are projected on the camera’s lens. (The camera picture, at the top, is from
http://www.irisa.fr/lagadic/).of the soft tissue with whih the roboti system is interating, when probe out-of-plane mo-tions are involved. A �rst resolution that ould be proposed is the use of a pre-operative 3Dmodel, of the onsidered soft tissue, that would be used to derive the interation. However,doing so would arise di�ulties along with more hallenges. Firstly, the pre-operative modelshould be available. This suggest an o�-line proedure in order to obtain it. Furthermore,it would also require to register the pre-operative model with the urrent observed image.The above issue is addressed in the present dissertation. Indeed, we develop an e�ientmodel-free visual servoing method that allows the system for automati positioning withoutany prior knowledge of the shape of the observed objet, its 3D parameters, nor its loationin the 3D spae. This model-free method e�iently estimates the 3D parameters involvedin the ontrol law. The estimation is performed on-line during the servoing is applied. Thisis presented in Chapter 4.The developed methods have been validated from simulations and experiments, wherepromising results have been obtained. This is presented in Chapter 5. The simulations
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onsist in senarios where a 2D virtual probe is interating with either a 3D mathematialmodel, a realisti objet reonstruted from a set of real B-san ultrasound images previouslyaptured, or a binary objet reonstruted from a set of binary images. The experimentshave been onduted using a 6 DOFs medial robot arm arrying a 2D ultrasound probetransduer. The robot arm was interating with an ultrasound phantom whih, inside, on-tained a soft tissue objet, and also with soft tissue objets immersed in a water-�lled tank.We �nally onlude this doument by providing some orientations for prospetive investi-gations.



Chapter 2

Prior ArtThe fous of this thesis is robot automati guidane from 2D ultrasound images. Morepreisely, the objetive of our investigations is to develop new modeling for image-basedvisual servoing. It is therefore neessary to position our work between the former ones thatdealt with robot guidane from 2D ultrasound, and thus the ontributions that this thesisbrings an also be ontrasted from those of the literature works. This is the sope of thepresent hapter. In this dissertation, in fat, we develop new methods aimed at more ef-fetive and broad exploitation of an imaging modality, namely the ultrasound imaging, formedial robotis ontrol. Consequently, it seems fundamental to �rst provide an overviewabout medial robotis, from the point of view of robotis ontrol, and to introdue medialrobot guidane performed with main imaging modalities. After doing so, we �nally anstart dealing in more details with works that investigate the use of the ultrasound imagesfor robot ontrol.The remainder of the hapter is organized as follows. We present in the next setion ashort introdution to medial robotis, along to human-mahine interfaes. These latter areommonly used for the interommuniation between the liniian and the medial robotisystem for proedure monitoring. We also provide a lassi�ation that eah of whih re�etsa spei� manner that, aording to, the liniian interats and orders the roboti system fortask ahievements. Subsequently, we introdue the most used imaging modalities as optial,X-ray and/or CT, MRI, and ultrasound. The ultrasound modality represents the imagingwhose employing, in guiding automati roboti proedures, is investigated in the presentthesis. Therefore, those remaining imaging modalities are brie�y presented. The examplesof literature investigations related to those modalities are provided only to illustrate theirorresponding �eld. We thus generally ite only one work for eah of those �elds, sine theyare beyond the fous of this thesis. As for works dealing with ultrasound-based automatiguidane, we �nally present and organize them aording to a ertain lassi�ation, as anbe seen later. We afterwards brie�y reall the ontributions that this thesis brings to the
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Figure 2.1: Da Vinci robot (Photo: www.intuitivesurgical.com)�eld of 2D ultrasound-based roboti automati guidane.
2.1 Medical roboticsSome parts of this setion are inspired from [78℄.Medial robotis has ome into being to enhane and extend the liniian apabilities inorder to perform medial appliations with better preision, dexterity, and speed leadingto medial proedures of shortened operative time, redued error rate, and of redued mor-bidity (see [78℄); its goal is not to replae the liniian. As examples to illustrate suhobjetives, roboti systems ould ompensate for the surgeon's hand tremors to removethem during an intervention, or ould be used to arry heavy tools with are. These sys-tems ould assist and provide the liniian with valuable information whih are organizedand displayed on sreens for visualization. The liniian ould interat with the system toobtain desired information, on whih orret deisions an be made. The onveyed infor-mation have therefore to be pertinent with at the same time not overwhelming the liniian.Medial robots an be lassi�ed aording to di�erent ways [78℄: by manipulator design (e. g.,kinematis, atuation); level of autonomy (e. g., programmed, teleoperated, onstrained o-operative ontrol); targeted anatomy or tehnique (e. g., ardia, intravasular perutaneous,laparosopi, mirosurgial); intended operating environment (e. g., in-sanner, onventionaloperating room); or by the devies used for sensing the information (e. g., amera, ultra-
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sound, MR, CT, et). An example of a well known medial robot is shown on Fig. 2.1. Suhrobot is used for minimally invasive surgial proedures.In ontrast to industrial robots that generally deal with manufatured objets, medialrobots instead interat with human patients. Therefore, muh onstraints and di�ultiesarise when dealing with medial robotis. The seurity is one of the requirements thatmedial robotis typially must ful�ll. Consequently, suh robots are rigorously expeted topossess auray, and dexterity. The versatility is also of great interest allowing to performa range of robotized medial proedures with minimal hanges to the medial room setup.The robot should not be umbersome in order to allow the linial sta� unimpeded aessto the patient, espeially for the surgeon during the proedure. It an be ground-, eiling-,or patient-mounted. Suh hoie is subjet to the tradeo� between the robot size, heavi-ness, and aess to the patient. Sterilization also must be addressed, espeially for surgialproedures. The patient an be in ontat with parts of the robot, and onsequently allpreautions must be taken in order to prevent any possible ontamination of the surgial�eld. The ommon pratie for sterilization is the use of bags to over the robot, and eithergas, soak, or autolave steam to sterilize the end-e�etor holding the surgial instrument.As introdued above, medial roboti systems use mainly visual sensors, whose modalityis hosen depending on the kind of the appliation to perform. Eah modality presents spe-i� advantages but also su�ers from drawbaks. Soft tissues, for example, are well imagedand their strutures well disriminated with the Magneti Resonane Imaging (MRI). Thismodality is extensively used to detet and then loalize tumors for their treatment, and issubjet to di�erent investigations to exploit it for robotized tumor treatment, where therobot ould assist needle insertion for better tumor targeting (e. g., [30℄). Suh imagingis a�orded by sanners of high intensity magneti �eld. Therefore, ferromagneti materialsexposed to suh �eld undergo intense fores and ould beame dangerous projetiles. Conse-quently, ommon roboti omponents do not apply sine they are generally made from suhmaterials, and are therefore preluded for this imaging modality. Moreover, the streamingrate at whih the image are provided by the urrent MRI systems is relatively low to envisagereal-time roboti appliations. As for bones, they are well imaged with X-ray modality (orCT). Suh imaging has been therefore the subjet to investigations and has found its use,for example, in robotially-assisted orthopedi surgery as spine surgery, joint replaement,et. This modality an, however, be harmful to the patient body due to its radiation. Op-tial imaging sensors have also been onsidered. One of the most medial appliation usingsuh sensors onerns endosopi surgery, where generally a small amera is arried andpassed inside the patient's body through a small inision port, while two or more surgialinstruments are passed through separate other small inisions (see Fig. 2.2). The amerais positioned in suh a way it gives an appropriate view of the surgial instruments. The
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Figure 2.2: Example of endoscopic surgery robot (Da Vinci robot) in action. (Photo:
http://biomed.brown.edu/.../Roboticsurgery.html)surgeon thus an handle those surgial instruments and an observe their interation withsoft tissues thanks to the onveyed images by the amera. Suh proedures have alreadybeen robotized, where eah instrument is separately arried by a robot arm. Both instru-ments are remotely operated by the surgeon through hapti devies. This kind of robotisystems is already ommerialized, as the one shown in Fig. 2.2, and these robotized pro-edures have beome ommonplae in some medial enters. Researh works are howeverstill being onduted in order to automatially assist the surgeon, by visually servoing theinstrument-holder arms (e. g., [47℄, [60℄).Another appliation of optial systems whih new works have started to investigate is themirosurgery robotis (e. g., [31℄). It is introdued in Setion 2.2. Other appliations ouldbe onsidered but are however extremely invasive (e. g., [36℄, [7℄). Therefore, the range ofpotential appliations based on optial imaging sensors seems to be restrained to few appli-ations as endosopi surgery, wherein at least two inisions are required, leading to possiblehemorrhage and trauma for the patient. Bleeding an also hinder and, perhaps, preludevisualization if blood enounters the amera lens, thus ompromising the proedure. Optialsensors require free spae up to the region to visualize, whih represents a strong onstraintthat generally ould not be satis�ed when dealing with medial proedures; where the am-era is inside the body and enounters soft tissue walls from either sides. The amera alsoneeds to be passed inside the body up to the region to operate on, whih is however notalways possible for some regions. We an note indeed that, as instane, most of endosopiproedures are laparosopially performed (i.e., through the abdomen), and thus the ameraalong with the instruments is passed through a patient body's region that is relatively less
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(a) (b)

Figure 2.3: An example of a typical robotic system teleoperated through a human-
machine interface: three medical slave robot arms (left) are teleoperated by a user
thanks to a master handle device, and the procedure is monitored by the user through
display screens (right). (Photo: http://www.dlr.de/).ompliated in term of aess sine, for example, the fewer presene of bones. In ontrast,MR, X-ray, and ultrasound imaging modalities provide internal body images without anyinision, and thus irumvent the onstraints imposed when using optial systems and theire�ets. But as introdued above, MRI and X-ray present drawbaks. The former modal-ity urrently does not provide images in real-time, and preludes ferromagneti materials.The latter is harmful. Ultrasound modality, however, provides internal body images non-invasively and is onsidered healthy for patient. More partiularly, 2D ultrasound providesimages with high streaming rate. This latter trait is of great interest when dealing withrobot servoing for real-time appliations. This thesis onerns this modality, where it aimsat addressing the issue of exploiting 2D ultrasound images for automatially performingrobotized medial appliations.During a medial proedure, it is ruial that the liniian is present to supervise andmonitor the appliation. Therefore the liniian should be able to order and interat with therobot. This is performed through an interfae well known by the term of Human-machine

interface.
2.1.1 Human-machine interfacesHuman-mahine interfaes (HMI) play an important role in medial robotis, more partiu-larly they allow the liniian for supervising the proedure. An HMI is grossly omposed of adisplay sreen on whih di�erent information are displayed, and a handle devie with whihthe liniian an send orders to the roboti system. Suh devie ould be a joystik, or sim-
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ply a mouse with whih hand liks are performed on the display sreen. The liniian thusan interatively send the orders to the robot through the HMI, and inversely, an reeiveinformation about the linial �eld's state (see Fig. 2.3). However, the liniian should re-eive important and preise information, while at the same time not be overwhelmed by suhdata in order to take deisions based only on pertinent information. An issue is the abilityof the system to estimate the impreision of the onveyed information, suh as registrationerrors, in order to prevent the liniian making deisions based on wrong information [78℄.An example of a human-mahine interfae developed for robotially assisted laparosopisurgery is presented in [61℄.
2.1.2 Operator-robot interaction paradigmsDepending on the on�guration re�eting the manner the operator ommands the robotisystem, di�erent paradigms ould be onsidered, as those presented in the following.
Self-guided robotic system paradigmIn suh a on�guration, the robot autonomously performs a series of ations after a liniianhad previously indiated required objetives. That operator is in fat out-of-loop with re-gard to the interation of the robot with its environment, exept for restrained ations suhas monitoring the development of the proedure and de�ning new objetives for the robot,or stopping the proedure. Endowed with suh a paradigm, a roboti system ould a�ordwith valuable servies that otherwise ould not be performed. Suh a system requires there-fore intelligent losed-loop servoing tehniques to enable the robot undertaking autonomousations, espeially when interating with omplex environments. The servoing tehniquesdeveloped through this thesis are ranged mainly within this paradigm lass.In ontrast to this on�guration, the below presented paradigms onsist is the ase wherethe operator is involved within the interation loop. Suh on�gurations an therefore beonsidered, with regard to the task to perform, belonging to the open-loop servoing lasses.
Haptic interfaces: master-slave paradigmHapti interfae systems have brought pertinent assistane for medial interventions. Typi-al systems onsist of robot arms that an arry di�erent variety of medial instruments (seeFig. 2.3 top). By handling master devies, the liniian manipulates the instrument arriedby the robot end-e�etor (see Fig. 2.3 bottom). The liniian an remotely manipulate therobot, and an feel what is being done thanks to re�eted fores from the instrument (e. g.,[49℄). Fore sensors attahed between the arried instrument and its holder estimate the
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Figure 2.4: Cooperative manipulation: a microsurgical instrument held by
both an operator and a robot. Device, developed by JHU robotics group,
aimed at injecting vision-saving drugs into tiny blood vessels in the eye (Photo:
http://www.sciencedaily.com).fores applied on the manipulated patient's tissue. The fores enountered by the instru-ment are sensed, saled, and then sent to the master handle. This latter moves aording tothese sent fores, and thus it re�ets the sensed fores to the liniian who is operating onit. The liniian therefore an feel the sensed fores and onsequently an be aware aboutthe e�ets of the interation between the instrument and the patient's tissue. Inversely,the fores applied by the liniian on the master handle are saled, transmitted, and thentransformed in motions of the slave instrument. Interommuniating fores as suh allows toe�etively slowing down abrupt motions that ould be the result from baklash movementsof the operator, and to attenuate hand tremor whih an be of great interest for surgialproedures. It however does not allow the operator diret aess to the instrument, whihthus an not be freely manipulated (see [78℄).One known appliation of the master-slave paradigm onerns endosopi surgery. Suhproedures (they have been introdued above), whether robotially or freehand performed,su�er from low dexterity beause of the e�et of the entry port plaement, through whihthe surgial instrument or the amera holder is passed. Another appliation onerns mi-rosurgery robotis (it is introdued in Setion 2.2). It su�ers however from the fat thaturrent master-slave systems are not reative to small fores.
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Figure 2.5: Hand-held instrument for microsurgery. (Photo:
http://www3.ntu.edu.sg/).

Cooperative manipulationIn this ase, both the liniian and the robot hold the same instrument, e. g. [31℄, (seeFig. 2.4). This paradigm keeps some advantages of the master-slave one, sine it allowse�etively slowing down abrupt surgeon's hand motions, and attenuating surgeon's handtremor. In ontrast to master-slave, this paradigm allows the surgeon to diretly manip-ulate the instrument, and be more loser to the patient, whih is really appreiated bysurgeons [78℄.
Hand-held configurationAnother on�guration onsists in hand-held instruments (see Fig. 2.5), that �nd suess inhand tremor anellation (e. g. [85℄). Embedded inside the instrument are inertial sensorsthat detet tremor motions and speed whih both, by low amplitude atuators, are theninertially aneled. The advantage of suh a on�guration is that beyond of leaving thesurgeon ompletely unimpeded, it lets the operating room unumbersome, with less setuphanges. However, heavier tools are not supported and the instrument an not be left sta-tionary in position [78℄.After we have presented an introdution to the medial roboti �eld, we now surveyexploitation of main imaging modalities in guiding suh systems. We �rst introdue med-ial roboti systems guided with optial images. Then, we present roboti guidane withX-ray (or CT-san) and MRI imaging modality, respetively. They are disussed brie�y,suh that we present only few examples for illustration, sine they are beyond the sopeof this thesis. Finally, we onsider guidane using the ultrasound modality. We disuss itwith more details, sine it represents the fous of this thesis. In partiular, we provide a
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Figure 2.6: Microsurgery robotics: micro-surgical assistant workstation with retinal-
surgery model. (Photo: http://www.cs.jhu.edu/CIRL/).detailed survey on works that are investigating the exploitation of 2D ultrasound imagingfor automati guidane of medial roboti systems, as the work presented in this dissertation.
2.2 Optical imaging-based guidance: microsurgery

roboticsSine endosopi robotis, introdued above in Setion 2.1, have beome ommonplae inthe medial �eld, only mirosurgery robotis is onsidered in this setion. Mirosurgialrobotis is nothing but surgial robotis related to tasks performed at a small sale, e. g.[31℄, (see Fig. 2.6). The typial sensor used to provide visual information about the softtissue environment is the mirosope. In ontrast to free hand performed mirosurgery,robots enhane the surgeon apabilities for performing tasks with �ne ontrol and preisepositioning. In many ases, mirosurgial robots are based on fore-re�eting master-slaveparadigm. The liniian remotely moves the slave by manipulating the master and applyingfores on it. Inversely, the fores enountered by the slave are saled, ampli�ed, and sentbak to the master manipulator that moves aordingly. The operator thus an feel theenountered fores, and therefore is aware about the fores applied on the manipulated softtissue. Furthermore, this on�guration allows to produe redued motions on the slave.Aordingly, this paradigm onsiderably prevents the manipulated soft tissue from possi-ble damages that an be the result of abrupt operator's hand motion with/or high appliedfores. This on�guration however su�ers from two main disadvantages. One disadvantageonsists in the omplexity and the ost of suh systems, sine they are omposed of two mainmehanial systems: the master and the slave. Also, suh a on�guration does not allow theliniian diretly manipulate the instrument [78℄. Miorsurgery robotis �nds appliation,
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Figure 2.7: ACROBAT robot in orthopaedic surgery aimed at hip reparation. (Photo:
http://medgadget.com).as instane, in the domain of ophthalmi surgery (e. g., [31℄).
2.3 X-ray-based guidanceA well-known appliation of X-ray imaging is orthopaedi surgery. In orthopaedi surgeryrobotis (see Fig. 2.7), the surgeon is assisted by the robot in order to enhane the proedureperformane. As in knee or hip replaement, rather than the bone is manually ut, it isautomatially performed by the robot, under the supervision of the surgeon. This allowsto e�etively ut the bone in suh a way to appropriately mahine the desired hole for theimplant. Preoperative x-ray images provide key 3D points used for planning a path thatthe robot will then follow during the utting proedure.Sine bones are easily well imaged with omputed X-ray tomography (CT) or X-ray �u-orosopy modalities, the employed visual sensors are based on these modalities. Duringthe surgial proedure, the patient's bones are attahed rigidly to the robot's base withspeially designed �xation tools. The image frame pose is estimated either by touhingdi�erent points on the surfae of the patient's bones or by touhing preimplanted �duialmarkers. The surgeon manually brings and position the robot surgial instrument at thebone surfae to operate on. Then, the robot automatially moves the instrument to utthe desired shape, while in the same the robot omputer ontrols the trajetory and thefores applied on the bones. Sine seurity must be rigorously addressed in surgial robotis,di�erent hekpoints are prede�ned in order to allow the surgial proedure to be restarted
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if it was prematurely stopped or paused for whether reasons.For better seurity of bone mahining, the presented roboti system on�guration an beenhaned with the onstrained hand guiding on�guration. The robot is onstrained by theomputer so that the utter remains within a volume to be mahined [42℄.One of the �rst prototype of orthopaedi surgery robotis was developed in the late 1980's,named ROBODOC system [77℄, and its �rst linial use was in 1992 [78℄. A similar robotis shown in Fig. 2.7. Nowadays, hundreds of orthopaedi robots are present in di�erenthospital enters, and over thousands of surgial operations have been performed with suhsystems. However, before a medial robot system is linially used, battery of tests haveto be performed to validate the system and thus, ensure total seurity of the patient andthe liniian sta� during the surgial operation. Of ourse, the system must demonstrateenhanements in the surgial proedure performane as preision, dexterity, et, to justifyits use rather than the surgial operation is manually performed.X-ray images have also been onsidered for image-based visual servoing. A roboti sys-tem for traking stereotati rode �duials within CT images is presented in [24℄. Theimage onsists in a ross-setion plane wherein the rods appear as spots. Those rods areradiopaque in order to ease their visualization in the X-ray (CT) images. The objetive isto automatially position the robot in suh a way the spots are kept at desired positions inthe image. To do so, an image-based visual servoing was used, where the spots image oor-dinates onstitute the feedbak visual features. From eah new aquired image the spots areextrated to update the atual visual features, whih then are ompared to that of the de-sired on�guration. The aording inferred error is used to ompute the ontrol law whih,at its turn, is ordered to the robot in form of ontrol veloity. Sine the jaobian matrixrelating the hanges of the visual features to the probe veloity is required, that related tothe spots image oordinates is presented in [24℄. To do so, the rodes are represented with3D straight lines whose intersetion with the image plane is analytially formulated. Thesystem has been tested for small displaements from on�guration where the desired imagerelated to desired spot's oordinates is aptured. The issue investigated in [24℄, the modelingaspet more preisely, in fat an be ranged within the sope of this thesis. Indeed, in [24℄,the image used in the servoing loop provides a ross-setion sight of the environment withwhih the robot is interating. Similarly, this thesis deals with ross-setion images in theservoing loop, exept that these images are provided by a 2D ultrasound transduer. A bigdi�erene is that only simple geometrial primitives, namely straight lines, are onsideredin [24℄, while this thesis deals with whatever-shaped volume objets. We present in thisdoument a general modeling method, that, indeed, an be applied to the simple ase ofstraight lines, as desribed in Setion 3.7.3.
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(a) (b)

Figure 2.8: MRI-based needle insertion robot (a) High field MRI scanner (Photo:
http://www.bvhealthsystem.org) - (b) MRI needle placement robot [30] (Photo:
www2.me.wpi.edu/AIM-lab/index.php/Research).

2.4 MRI-guided roboticsMR imaging systems, as X-ray ones, provide in-depth images of observed elements. How-ever, MRI systems provide images non-invasively and thus are onsidered not harmful forpatient body. Moreover, they provide well ontrasted images of soft tissues. This advan-tages stimulated di�erent investigations in order to exploit this modality for automatiallyguiding robotized proedures. In [30℄, for example, a pneumatially-atuated roboti systemguided by MRI for needle insertion in prostate interventions is presented. A 2 DOFs robotarm is used to automatially position a passive stage, on whih a manually-inserted needleis held [see Fig. 2.8(b)℄. Inside the room of a MRI sanner [e. g., see Fig. 2.8(a)℄, the patientis lying in a semi-lithotomy position on a bed. Both the robot arm holder, a needle insertionstage, and the robot ontroller are also inside the sanner room, while the surgeon is in aseparated room to monitor the proedure through a human mahine interfae. The mainissue while dealing with a MRI sanner onsists in the di�ulty for the hoie of ompatibledevies. Due to the high magneti �eld in the MRI sanners, ferromagneti or ondutivematerials are preluded. Suh materials an for instane either be dangerously projeted,ause artifats and distortion in the MRI image, or reate heating near the patient's body.Most of the standard available devies are however made from either materials, and there-fore are not ompatible with the MR modality.It is proposed in [30℄ the use of pneumati atuators, that have been tailored sine the non
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total MRI-ompatibility at their original state. The manipulator is loated near the bed inthe sanner room, for the interation with the patients body, where its end-e�etor pose isdeteted thanks to attahed �duial markers extrated from the observed MRI image. In or-der to avoid eletrial signals passing through the sanner room and thus keeping the imagequality, the robot ontroller is plaed in a shielded enlosure near the robot manipulator,and the ommuniation between the ontrol room and the ontroller is through a �ber optiEthernet onnetion. A PID ontrol law is used for the pneumati atuators servoing.During the proedure, the surgeon indiates both a target and a skin entry point. A-ordingly, the robot automatially brings the needle tip up to the entry point with a or-responding orientation. Subsequently, through the sliers of the human-mahine softwareinterfae, the surgeon monitors the manual insertion of the needle, whih then slides alongits holder axis to reah the target. The use of the MR images is limited to detet the targetand needle tip loations. The automati positioning of the robot up to the entry point isa�orded with a position-based visual servoing. Suh an approah however is well-known forits relatively low positioning auray, if ompared for example to the image-based visualservoing. The main ontribution presented in [30℄ seems in fat onsisting in the design ofa MRI-ompatible roboti system.The propulsion e�et that a magneti �eld an apply on ferromagneti materials hasbeen exploited to perform automati positioning and traking of untethered ferromagnetiobjet, using its MRI images in a visual servoing loop [28℄. The MR �eld is used both tomeasure the position of the objet and to propel the latter to the desired loation. Priorthat the proedure takes plae, a path through whih the objet has to move is plannedo�-line. It is represented by suessive waypoints to be followed by the objet. During theproedure that is performed under a MR �eld, the atual position is measured and omparedto the desired one of the planned path, and the di�erene is sent to a ontroller that usesit to ompute the magneti propulsion �eld to be applied on the objet. That propulsion isexpeted to move the objet from the atual position to that desired. Experimental resultsare reported, suh that the system was tested using both a phantom and a live swine undergeneral anesthesia. The feedbak was updated at a rate of 24 Hz for the phantom ase.The in-vivo objetive was to ontinuously trak and position the objet in suh a way ittravels within and along the swine's arotid artery by following the pre-planned path. Theobjet onsisted in a 1.5 mm diameter sphere made of hrome and steel. The proposedvisual servoing method onsists however in a position-based one. As mentioned just above,it is well-known for its relatively low positioning auray.The limitation that MRI systems urrently su�er from onsists (to our knowledge) in
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the low streaming rate at whih the images are provided. This onsiderably hinders theexploitation of suh images for real-time roboti guidane appliations. Image-based visualservoing, for example, requires that the update along with the proessing of the image has tobe performed within the rate at whih the robot operates. The 2D ultrasound modality, nev-ertheless, beyond of being non-invasive, provides the images at a relatively high streamingrate. This makes suh a modality a relevant andidate for real-time roboti automati-guidane appliations where in-depth images are required.
2.5 Ultrasound-based guidanceUltrasound imaging represents an important modality of medial pratie, and is being thesubjet of di�erent investigations for enhaned use. Ten years ago, one out of four imaging-based medial proedures was performed with this modality and the proportion is inreasingfor di�erent appliations in the foreseeable future [84℄.We report in this setion investigations that deal with automati guidane from the ul-trasound imaging modality. In partiular, we survey in more details works dealing withthe use of 2D ultrasound images for automatially guiding roboti appliations, as it is thesope of our work presented in this doument. The remainder of this setion is organized asfollows. First, in Setion 2.5.1, we present an example of an investigation about the use ofthe ultrasound modality to simulate and then to plan the insertion of needle in soft tissue.Then, we present in Setion 2.5.2 works that exploit 3D ultrasound images to guide surgialinstruments, where the objetive was either positioning or traking. Afterwards, the worksthat deal with guidane using 2D ultrasound are surveyed. We lassify them into two mainategories depending on whether the 2D ultrasound image is only used to extrat and thusto estimate 3D poses of features used in position-based visual servoing, or the 2D ultra-sound image is diretly used in the ontrol law. The former, namely 2D ultrasound-guidedposition-based visual servoing, is presented in setion 2.5.3, while the latter, namely 2Dultrasound-guided image-based visual servoing, is presented in Setion 2.5.4.
2.5.1 Ultrasound-based simulationsIn [23℄, a simulator of sti� needle insertion for 2D ultrasound-guided prostate brahytherapyis presented. The objetive is to simulate the interation e�et between the needle and thetissue omposed of the prostate and its surrounding region. For that, the fores, applied
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by the sti� needle on the tissue, and the tissue are modelled by making use of the infor-mation provided by the ultrasound image. A non-homogeneous phantom, omposed fromtwo layers and a hollow ylindrial objet, has been made up to mimi a real on�guration.The external and internal layers are designed to mimi respetively the prostate and itssurrounding soft tissue, while the ylinder is designed to simulate the retum. To mimiprostate rotation around the pubi bone, the internal layer is omposed of a ylinder, witha hemisphere at eah end, onneted to the base of another ylinder. The elastiity of eahof the two layers is represented with Young's moduli and Poisson ratios. While the Poissonratios are pre-assigned, the objetive is to estimate the Young's moduli of eah layer. Thefores are �tted with a piee-wise linear model of three parameters, that are identi�ed usingNelder-Mead searh algorithm [3℄. When the needle interats with the tissue, the displae-ments of this latter are measured from the images provided by the ultrasound probe, using
time delay estimator with prior estimates (TDPE) [87, 88℄, without any prior markers insidethe tissue. These measurements together with the probe positions and the measured foresare used to estimate the Young's moduli and the fore model parameters. The soft tissuedisplaements are then simulated by making up a mesh of 4453 linear tetrahedral elementsand 991 nodes, using the linear �nite element method [89℄ with linear strain.
2.5.2 3D ultrasound-guided roboticsIn the ultrasound modality, in fat, we distinguish two main modalities, that are 3D ultra-sound and 2D ultrasound modalities. Works related to the former modality are presented inthis setion, while those related to the latter are subsequently onsidered. In the following,we present works where 3D ultrasound images have been exploited for automati positioningof surgial instruments or for traking moving target.
3D ultrasound-based positioning of surgical instrumentSubsequently in [75℄ and [62℄, a 3D ultrasound-guided robot arm-atuated system for au-tomati positioning of surgial instrument is presented (see Fig. 2.9). The seond workfollows-up and improves the system streaming speed of the �rst work, where 25 Hz rate isobtained instead of 1 Hz streaming rate at whih the �rst prototype operated. The pre-sented system onsists of a surgial instrument sleeve atuated by a robot arm, a motionless3D ultrasound transduer, and a host omputer for 3D ultrasound monitoring with the or-responding image proessing and for robot ontrolling. The objetive was to automatiallyposition the instrument tip at a target 3D position indiated in the 3D ultrasound imagevolume, from whih the urrent instrument tip 3D position is estimated. A marker is at-
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(a) (b)

Figure 2.9: 3D ultrasound-guided robot. (a) Experimental setup for robot tests - (b)
Marker attached to the instrument tip. (Photos: (a) taken from [62], and (b) from
http://biorobotics.bu.edu/CurrentProjects.html).tahed to the tip of the instrument in order to detet its 3D pose with respet to a artesianframe attahed to the 3D ultrasound image volume. This marker onsists of three ridgesof same size surrounding a sheath that �ts over the instrument sleeve [see Fig. 2.9(b)℄. Anehogeni material is used to oat the marker in order to improve the visibility of this latter,and thus to failitate its detetion. The ridges are oiled on the sleeve in suh a way theyform suessive sinusoids lagged by 2π/3 rad. From the 3D ultrasound volume, a lengthwiseross-setion 2D image of the instrument shaft along with the marker is sought to thenbe extrated. In suh 2D image, the ridges appear as suessive rests whose respetivedistanes from a referene point lying on the shaft are used to determine the instrumentsleeve 3D pose. For image detetion of the rest, the extrated image is rotated in suh away the instrument appears horizontal, and then a sub-image entered on the instrumentis extrated to be super-sampled by a fator of 2 using linear interpolation. The error be-tween the estimated instrument position and the target one is fed bak, through the hostomputer, to a position-based servo sheme based on a proportional-derivative (PD) law,with whih the robot arm is servoed to position the instrument tip to the spei�ed target.Experiments have been arried out using a stik immersed in a water-�lled tank. The stikpasses through a spherial bearing to mimi the physial onstraints of minimally invasivesurgial proedures, where the instrument passes through an inision port and onsequentlyits movements are onstrained aordingly [see Fig. 2.9(a)℄. With a motion range of about20 mm of the instrument, it is reported that the system performed with less than 2 mm ofpositioning error.
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Figure 2.10: An estimator model [86] for synchronization with beating hear mo-
tions using 3D ultrasound is tested with the above photographed experimental setup.
(Photo: taken from [86]).

Synchronization with beating heart motionsIn [86℄, an estimator model for synhronization to beating heart motions using 3D ultrasoundimaging is presented. The objetive is to predit mitral valve motions, and then use thatestimation to feed-forward the ontroller of a robot atuating an instrument, whose motionsare to be synhronized with the heart beatings. This ould allow the surgeon to operateon the beating heart as on a motionless organ. Moreover, suh a system ould overome,for example, the requirements of using a ardiopulmonary bypass, and thus would sparepatients its adverse e�ets. It was assumed that the mitral valve periodially translatesalong one axis, while its rotational motions have been negleted. The translational motionsare then represented with a time varying Fourier series model that allows for rate and signalmorphology evolving over time [63℄. For the identi�ation of the model parameters, three es-timators have been tested: an Extended Kalman �lter (EKF), an autoregressive model withleast squares (AR), and an auto regressive model with fading memory estimator. Theirperformanes are assessed with regards to predition auray of time-hanging motions.From onduted simulations, it was noted that the EKF outperformed the two other esti-mators, by more mitigating the estimation error espeially for motions with rate hanging.Experiments have been onduted on an arti�ial target immersed in a water-�lled tank(see Fig. 2.10). The target was ontinuously atuated in suh a way to mimi the heart mi-tral valve beating motions, at 60 beating per minute average rate for onstant motions. Aposition-based proportional-derivative (PD) ontroller is employed for robot servoing. Thesystem was submitted to both onstant and hanging rate motions. As onluded from thesimulations, it was noted from the experiments that the EKF provided well preditions of
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the beating heart motions ompared to the others estimation approahes, with an obtainedpredition error of less than 2 mm. This error is of about 30% less than that obtained withthe two other estimators. In other but separate works, [36℄ and [7℄, low traking errorshave been obtained but, however, that was ahieved using extremly invasive systems. In theformer work, �duial markers attahed to the heart are traked by employing a high speedeye-to-hand amera of 500 Hz streaming rate; the hest is being opened in suh a way the�duial points an be viewed by that external amera. The information onveyed by thislatter are used to visually servo a robot arm that aordingly has to ompensate for heartmotions. As for the latter work, sonomirometry sensors operating at 257 Hz streamingrate have been sutured to a porine heart. Currently, 3D ultrasound modality su�ers fromlow imaging quality along with time delayed streaming of the order of 60 ms, whih ouldaount for the relatively lower obtained performanes ompared to those two works (i. e.,[36℄ and [7℄).
2.5.3 2D ultrasound-guided position-based visual servoingAs has been already highlighted in this doument, the 2D ultrasound imaging systemsprovide images at a su�ient rate to envisage real-time automati roboti guidane. In thefollowing, we present a survey of works that investigated the use this imaging modality inguiding automati medial proedures. In partiular, this setion is dediated to works wherethe image is used only in position-based visual servoing shemes. We lassify these worksaording to the targeted medial proedure. We distinguish: kidney stones treatment;brahytherapy treatment; and tumor biopsy and ablation proedure.
Kidney stones treatmentAn ultrasound-based image-guided system for kidney stone lithotripsy therapy is presentedin [48℄. The lithotripsy therapy aims to erode the kidney stones, while preventing ollat-eral damages of organs and soft tissue of the viinity. The stones are fragmented thanksto high intensity foused ultrasound (HIFU). The HIFU transduer extraorporeally emitshigh intensive ultrasound waves that strike the stones. The rushed stones are then natu-rally evauated by the patient through urination.For the suess and e�etiveness of the proedure, that an lead to shortened time of patienttreatment and to spare the organs of the viinity from being harmed, it is important to keepthe stone under the pulse of the HIFU throughout the proedure. However, the kidney issubjet to displaements aused by patient respiration, heartbeat, et, and onsequently thekidney stone may get out of the beam fous.
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The objetive of the proposed system is to keep trak of the kidney stone under the HIFUtransduer, throughout the lithotripsy proedure, by visual servoing using ultrasound im-ages. The system is mainly omposed of two 2D ultrasound transduers, a HIFU transduer,a stage artesian robot whose end e�etor holds the HIFU transduer rigidly linked to thetwo ultrasound transduers, and a host omputer. This latter monitors the visual servoingand the data �ow through the di�erent orresponding steps. The end-e�etor an applytranslational motions along its three orthogonal axes in the 3D spae. The two ultrasoundprobes, whose respetive beam planes are orthogonal to eah other, provide two ultrasoundB-san images of the stone in the kidney. By image proessing on both the two images,the stone is identi�ed and its position in the 3D spae is determined. The inferred loationrepresents the target 3D position on whih the HIFU foal has to be. The error, betweenthe desired position and the urrent position of the HIFU transduer, is fed bak to thehost omputer that derives the ontrol law. The ommand is sent to the artesian robotthat moves aordingly along its three axes in order to keep the kidney stone under its fous(i. e., thus the fous of the HIFU).
Ultrasound-guided brachytherapy treatmentA robot manipulator guided by 2D ultrasound for perutaneous needle insertion is pre-sented in [6℄. The objetive is to automatially position the needle tip at a prostate desiredloation in order to injet the radioative therapy seeds. The target is manually seletedfrom a preoperative image volume. It is hosen in suh a way (whih is the goal of thebrahytherapy) the seeds have as important as possible e�et on the lesion while at thesame time not harming the surrounding tissues. The roboti system is mainly omposed oftwo roboti parts orresponding respetively to a maro and a miro roboti system, and ofa 2D ultrasound probe for the imaging. The maro robot allows to bring and position theneedle tip at the skin entry point, while subsequently the miro robot performs �ne motionsto insert and then position the needle tip at the desired loation. By visualizing the volumeimage of the prostate, displayed on a human-mahine interfae, the surgeon indiates to therobot the target loation where the seeds have to be dropped (see Fig. 2.11). Before that,the volume is �rst made up from suessive ross-setion images of the prostate. While therobot's end e�etor is rotating the 2D ultrasound probe, the latter sans the region ontain-ing the prostate by aquiring suessive 2D ultrasound images at 0.7 degree intervals. Theneedle target position is expressed with respet to the robot frame, thanks to a previousregistration of the volume image. A position-based proportional-integral-derivative (PID)ontroller is then fed bak with the error between the needle tip urrent position, measuredfrom the robot enoders, and the desired one. The ommand is sent to the robot, that
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Figure 2.11: Ultrasound volume visualization through a graphical interface. Three
sights (bottom) of an ultrasound volume are respectively provided by three slicer
planes (top). (Photo: taken from [6]).moves aordingly to position the needle tip at the target loation. The proposed tehniquehowever is position-based, where the image is only used to determine the target loation.Compared therefore to image-based servoing tehniques, this method an be onsidered asan open-loop servoing method. As suh, it has the drawbak of not ompensating displae-ments of the target that an our during the servoing. Suh displaements an be aused,as instane, by patient's body motion resulting from breathing, or by the prostate tissueshifting due to the fores it undergoes from the needle during the insertion. This lak ofobserved images in the servoing sheme ould aount for the errors obtained in the on-duted experiments. The needle de�etion is also not addressed. The de�etion is mainlydue to the fores endured by the needle during the insertion.
Ultrasound-guided procedures for tumor biopsy and ablationA 2D ultrasound-guided omputer-assisted roboti system for needle positioning in biopsyproedure is presented in [58℄. The objetive is to assist the surgeon in orienting the needlefor the insertion. The system is mainly omposed of a robot arm, a needle holder mountedon the robot's end-e�etor, a 2D ultrasound probe, and a host omputer. The needle anlinearly slide on its holder. Firstly, the eye-to-hand 2D ultrasound probe is manually po-sitioned and oriented in order to have an appropriate view of the region to be targeted.It is then kept motionless at that on�guration throughout the proedure. The observed
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images are ontinuously displayed through a human mahine interfae on whih the surgeonindiates the target position to be reahed by the needle tip. Subsequently, the surgeonalso indiates the patient's skin entry point, through whih the needle will enter to reahthe target. A 3D straight line trajetory is planned to then be performed by the needle tip,starting from the skin entry point to reah the target point. That trajetory is determinedfrom the 3D oordinates of those seleted two points (the entry and target point) after beingexpressed in an appropriate frame. The robot automatially brings the needle tip to thepatient's skin entry point, in suh a manner the diretion of the needle intersets the targetpoint (i.e., the needle is ollinear with that straight line). The ative roboti assistaneends at this stage, where the surgeon then manually inserts the needle by sliding it downto reah the target, while in the same time observing the orresponding image displayed inthe interfae sreen. Experiments have been onduted in ideal onditions, where the targetonsists of a wooden stik immersed in water-�lled tank. The ultrasound image is only usedto determine the two target points, but is not involved in the servoing sheme. Errors ofa millimeter order had been reported. Sine the experiments are onduted in water, theneedle does not undergo fores, whih is however not the ase in linial onditions, due asinstane to the interation with soft tissue. Suh fores an ause de�etion of the needle,whih had also been highlighted in that work.Combining 2D ultrasound images to other imaging modalities ould enhane the qual-ity of the obtained images. In [29℄, an X-ray-assisted ultrasound-based imaging system forbreast biopsy is presented. The priniple onsists in ombining stereotati X-ray mam-mography (SM) with ultrasound imaging in order to detet as well as possible the lesionsloation, and then be able of harvesting relevant samples for the biopsy. The X-ray modal-ity provides images with high sensitivity for most lesions, but is not as safe and fast as 2Dultrasound. The presented proedure begins by �rst keeping motionless the patient tissuefor diagnosis, by using a speial apparatus. A 2D ultrasound probe sans that region ofinterest with onstant veloity by aquiring suessive 2D ultrasound images at similar dis-tane intervals. A orresponding 3D volume is made up from those aquired images, andinteratively displayed through a human-mahine interfae. A liniian an then inspetthe volume, by ontinuously visualizing its ross-setion 2D ultrasound images. This is per-formed by sliding a ross-setional plane. Any deteted lesion an be indiated to the hostomputer by mouse hand liking (a prior registration of the 3D volume and the tissue isassumed to be already performed). Then, both the 2D ultrasound probe and the needleguide are positioned in suh a way they are aligned on the indiated lesion to biopsy. Subse-quently, the needle is automatially inserted trough the tissue to target the lesion, while atthe same time being monitored by the liniian that observes the orresponding 2D ultra-sound image. Another image volume of the region of interest is taken in order to verify if the
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needle has well and truly targeted the lesion, by means of a similar aquisition-onstrution-visualization proess detailed above. Combining the SM modality to the ultrasound one,the system preision is laimed to be inreased.An ultrasound-guided robotially-assisted system for ablative treatment is presented in[11℄. The objetive is to assist the surgeon for suh a medial proedure, by �rstly a�ordinga relevant view of the lesion within the soft tissue to failitate its detetion with enhanedpreision. Then, it would onsist in robotizing the needle insertion for aurate targeting,rather than doing it manually. The setup is omposed of a freehand-atuated onventional2D ultrasound probe, a needle for the insertion atuated by a 5 DOFs robot arm, and a hostomputer for the monitoring of the appliation. The 2D ultrasound probe is handled by aliniian and swept to take a 3D san of the region of interest, by ontinually aquiring su-essive 2D ultrasound images. Thanks to a marker attahed to the probe, the path followedby this latter along with the reorded images is intra-operatively registered to reonstruta orresponding 3D ultrasound volume. This volume is then interatively explored and vi-sualized by the liniian for inspetion of the region of interest, and thus detetion of anypossible tumors. The image point position of a deteted lesion aompanied with a patient'sskin entry point is manually indiated by the liniian, and then transmitted to the hostomputer. An algorithm was developed for aligning the diretion of the needle, in suh away it has to perform a 3D straight line to reah the target tumor loation from the skinentry point. The robot then automatially brings the tip of the needle up to the entry point,while in the same time performing the alignment, and �nally the needle is inserted to reahthe target loation. Experiments have been arried out both on a alf liver embedded withan olive for tumor mimiking and on a set of 8 mm of diameter pins immersed in water-�lledtank. Aording to the pin experiments, it is reported that the system performed with anauray of about 2.45 mm with 100% of suess rate.Similarly, but with improvements with respet to the manner the suessive 2D ultrasoundimages are aquired then registered, another work is presented in [10℄. It is proposed to holdthe 2D ultrasound probe by a seond robot arm, rather than doing it by free-hand. A sanperformed robotially is expeted to result in a more better 3D volume image quality, inalignment of the suessive slies and in onsisteny of distanes between suessive slies,than if it would has been done free-hand. To ompare the san performane whether it isrobotially or free-hand performed, experiments have been onduted using a mehanialphantom omposed of four pins. An eletromagneti traker has been attahed to eah ofthe ultrasound probe and the needle guide robot tip, for extration of their respetive 3Dposes with respet to a base frame. This latter is attahed to a traker loated on the op-erating table. It is laimed that the use of suh sensors rather than, for instane, the robot
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enoders is more advantageous is the sense that it permits quik on�guration of the exper-imental setup when using more or less robots, and that it simpli�es modular replaementof the end-e�etor. Three roboti sans and three free-hand sans have been onduted onthe phantom. It has been onluded that the roboti san approah outperformed that offree-hand, where besides of obtaining a 3D image of better quality with the former, a rateof 7 suess out of 7 trials has been obtained with the roboti san for a rate of 3 suessout of 4 trials with the free-hand san.Using 2D ultrasound imaging modality to position instrument tip at desired target loa-tion has been onsidered in [74℄, where a 2D ultrasound-guided robotially-atuated systemis presented. The system onsists of two personal omputers, a 2D ultrasound probe, aneletromagneti traking devie, and a robot arm. One omputer monitors ultrasound im-age aquisition and proessing, whereas the latter omputer insures robot ontrol. Thisontrol omputer onveys the di�erent data, onsisting of the target and urrent ontrolfeatures with orresponding variables of the ontrol servoing sheme, through a serial linkrunning at 155.200 bps. Image aquisition is performed at a rate of 30 frames per seond.The eletromagneti traking devie onsists of a �xed base transmitter and two remotetraking reeivers. Eah reeiver provides its orresponding 3D spae pose with respet tothe transmitter base, by transmitting its six degrees of freedom to the omputer througha serial line onnetion. One reeiver is mounted on the ultrasound san head, while theseond was initially used for alibration and then is attahed to the robot for registrationand traking. The target to be reahed by the robot tip onsists in the enter of an objetof interest. It is deteted using the 2D ultrasound probe. Firstly, a san of the region on-taining the target objet is performed by aquiring suessive 2D ultrasound images. Then,eah aquired image is segmented to extrat the orresponding objet ross-setion. Fromthe set of all those segmented ross-setions, the enter of the target objet is estimated.The enter 3D oordinates represent the target 3D loation at whih the robot tip has to bepositioned. For image segmentation, eah 2D ultrasound image is �rst segmented aordingto an empirially hosen threshold, then subsampled by 1/4 fator to redue the omputa-tional time of the next step, wherein the image is onvolved by a 2D Gaussian kernel of 10radius and of 5 pixels deviation, and �nally an automati identi�ation of the image setionof interest is applied by searhing pixels of high intensity. The target is assumed roughlyspherial. The robot is servoed in position by a proportional derivative (PD) ontrol law,with an error limit-based rule is added in order to prevent possible veloity exess relativeto important displaements orders.Experiments have been arried out using a tank ontaining a salt water layer at its bottomand an oil layer at its top. A grape, of approximately 20 mm diameter, served as a roughly
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Figure 2.12: A biopsy robot. (Photo: taken from [64]).spherial target. It was put between these two layers of respetively oil and water. Thanksto gravity and buoyany fores and the immisibility between the two liquids, the grape�oated within the plane delineating the water surfae from the oil one, and an freely slidealong this plane. To detet the target loation, a san entered on the grape is performed bytaking suessive ross-setion ultrasound images as desribed above. In onditions wherethe grape is maintained �xed, the robot tip touhed the target with a rate of 53 out of 60trials.For needle plaement in prostate biopsy proedure, a 2D ultrasound-guided robotisystem is presented in [64℄ (see Fig. 2.12). The objetive is to perform needle positioning ofenhaned auray. The system onsists of a biopsy needle gun, a robot holder platform, ahost omputer, and a 2D ultrasound probe. The funtions of the omputer onsist mainly inthe monitoring of the proedure. This ranges from ultrasound image aquisition, proessingalong with registration, sreen-displaying for visualization, needle motion planning, androbot motion ontrol. The robot an be moved and thus positioned appropriately near thepatient's perineal wall, prior to an intervention, thanks to 4 wheels on whih it an translate.It an subsequently be maintained motionless with enhaned stability, after the operatorhad depressed a foot pedal, whih auses the robot to be slightly raised and be supported by4 rubber-padded legs in plae of the wheels. The robot an be further adjusted, by tuningthe height and tilt of its operating table. This will allow to position the ultrasound probehorizontally with respet to patient's retum, in order to obtain as good as possible qualityof the ultrasound images, and also to prevent the probe transduer ramming into the retal



2.5. ULTRASOUND-BASED GUIDANCE 37

wall during the proedure whih ould lead to possible damages. The robot table's base iskept in the adjusted pose throughout the proedure, by means of loks. Subsequently, theneedle is manually positioned at the skin entry point by adjusting 2 pairs of linear slidesand a pair of lead srews. Following, suessive transverse ultrasound images of the prostateare aquired at 1 mm distane interval of robot motion, and reorded. They are used tomake up a 3D model of the prostate. This is performed semi-automatially, where �rstly theurologist have to delineate the prostate's boundary in eah of several seleted images, amongthose aquired, by indiating boundary points with hand-liks. A NURBS (non-uniformrational B-splines) modeling algorithm then proesses separately eah slie with its assignedset of indiated points, in order to extrat the orresponding boundary. The algorithm,�nally, �ts the suessive reated edges with a surfae simulating that of the prostate. Adesigned graphial interfae allows for the display of the 2D ultrasound images along with theonstruted 3D surfae of the prostate. The urologist an thus interatively indiate on theinterfae the biopsy target and needle entry points, by visualizing observed images. Thesetwo points are thereby expressed in 3D spae with respet to robot frame. The omputerthen alulates the 3D straight line path, that the needle has to perform to reah thebiopsy point from the entry point. This path with the indiated points and the 3D surfaeare interatively simulated and displayed on the interfae. This latter provides, also, afuntionality that allows to position the ultrasound probe where an indiated image has beenpreviously aquired and reorded, and thus to verify if the observed image do orresponds tothat reorded. This aims to hek whether or not the prostate has deformed or shifted. Afterthe roboti system being tested in phantom and adaveri trials, linial experiments havebeen onduted. The patient, under general anesthesia, is lying in lithotomy position on theoperating bed. Inside the patient's prostate, opper seeds are dropped. They serve as �duialtargets in order to be able of prospetively assessing the performane of the proedure. Upona 3D path is planned, the needle is slid down manually along its holder to reah the seedtarget loation. The urologist will then only have to trigger the biopsy �re gun, ausingsequential atuation of needle's inner ore and outer sheath, and thus a tissue sample is uto� and housed in a slot at the needle's distal end. To verify needle positioning auray, theprostate is at the end of the positioning imaged with C-arm �uorosopy. Over 8 di�erentpatients, 17 needle plaement proedures have been onduted, where some adjustmentswere given to the latter trials at the aim of obtaining better results than that of the �rsttrials. To explain the outome of the �rst trials, it was hypothesized that the needle bentand strayed from its desired path, due to fores it undergoes while traversing the prostatetissue. An absolute positioning error ranging from 2.3 to 6.5 mm has been obtained. For theseond set of the experiments, a thiker needle is employed and is supported by a ustom-designed devie. This aims at minimizing possible bending of the needle. It was notiedthat the positioning auray enhaned, where the absolute positioning error dropped to2.5 mm.
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Most of the works, presented so far, that investigated the use of ultrasound imaging, andthe 2D ultrasound imaging more partiularly, in automatially guiding roboti tasks havehowever not diretly used the observed image in the servoing loop. They instead employedposition-based visual servoing, where the image is only used to obtain 3D positions of on-erned features. It is well-known that the position-based visual servoing methods su�er fromthe relatively low auray in term of positioning errors. This is due to the fat that theontrol is performed on estimated loations (usually in the robot working frame). As suh,the auray of the positioning onsequently relies heavily on that of the estimation andthat of the robot. In ontrast, a ontrol that is performed diretly on the observed image,namely image-based visual servoing, would result in more auray. The reason is that animage provides homogeneous sensing of the atual features, whose measures the servoingis applied on; the auray in this ase is of ourse a�eted by the image resolution. Inthe following setion, we present works that used the 2D ultrasound images (or part of theinformation onveyed by the image) diretly in the visual servoing sheme.
2.5.4 2D ultrasound-guided image-based visual servoingThe main hallenge when dealing with 2D ultrasound images in robot servoing onsists inthe ability to ontrol the out-of-plane motions. Indeed, as pointed out in Chapter 1, a 2Dultrasound image provides information only in its observation plane and none outside ofthis latter. This hallenge orresponds mainly to a physial and mathematial modelingproblem. More partiularly, the di�ulty onsists in the ability to relate the di�erentialhanges of the visual features to displaements of the roboti system. Suh relation, thatis well-known by the term Interaction Matrix, is in fat ruial to be able to build animage-based visual servoing sheme [41℄. A ouple of works onsidered the interation withgeometrially known surgial instruments. These latter are geometrially represented andtheir 3D model related. From suh models, the interation matrix is then derived. A moreomplex modeling problem onsists in the ase where onsidering not only manufaturedobjets (as surgial instruments for example) but also soft tissue objets. The �rst works inthis latter ontext onsidered however only the ontrol of probe in-plane motions. Reently,a ouple of works dealt with out-of-plane motions ontrol. This latter is mainly the subjetof this thesis. In ontrast to the existing literature works, we model the exat form of theinteration matrix, and then address the problem of ontrolling both in-plane and out-of-plane motions.
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(a) (b)

Figure 2.13: 2D ultrasound-based instrument guidance. (a) Sketch of the forceps
(depicted in green) intersecting the probe observation plane (delineated with blue
lines) in two points M1 and M2, whose coordinates are used in the servoing scheme
- (b) Robot actuating the forceps instrument. (Photos: (a) taken from [79], and (b)
from [81]).

Control of the interaction with geometrically-known surgical instrumentsA 2D ultrasound-based servoing tehnique for automati positioning of a surgial instrumentfor a beating heart interardia surgery proedure is presented in [81, 80, 79℄. The instru-ment onsists of surgial laparosopi foreps atuated by a robot arm [see Fig. 2.13(b)℄. Aneye-to-hand 2D ultrasound probe is employed for the observation, and thus for providingboth the surgeon and the roboti system with real-time images, in order to insure proeduremonitoring. It observes both the foreps's pair of piners and the heart. The objetive isto automatially position the foreps instrument in suh a way it intersets the ultrasoundimage plane at desired image positions, that were anteriorly indiated on the image by anoperator. The 2D ultrasound ross-setion image provides two image points that result fromthe intersetion of the ultrasound planar beam with the foreps [see Fig. 2.13(a)℄. Thesepoints are fed bak to a visual servo sheme, that omputes the ommands to move therobot aordingly, in order that the observed points onverge to the target ones. Previousto that, the points with the orresponding target ones are extrated to be transmitted infour independent features inputs to the servo sheme. Two on�gurations of the feedbakvisual features vetor are proposed, depending on the hoie of the elements forming thisvetor. In the �rst on�guration, the feedbak visual features vetor orresponds to the fourimage oordinates of the two points. In the seond on�guration, the segment in the imageformed by the two image points relates the feedbak vetor. Two elements of the vetororrespond to the two image oordinates of a point lying in that segment, while the remain-ing two other elements orrespond respetively to the segment's length and orientation with
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respet to one of the image axes. In-vivo experiments have been onduted on a pig heart,where the system performed a task in a reported duration of about 1 min. The proposedtehnique deals with images of instruments of known geometry, where the foreps's pair ofpiners have been respetively modeled with two 3-D straight lines.In the ontext desribed above, where a motionless eye-to-hand 2D ultrasound probe isemployed to guide automati positioning of instrument arried by a robot arm, a NonlinearModel Preditive Control sheme is proposed in [69℄. The objetive is to perform automatipositioning of the instrument tip while at the same time to respet some onstraints, namelyto keep the instrument in the probe observation plane and to take into aount the robotmehanial joints limits. The �rst onstraint if not satis�ed would yield the instrument get-ting out of the observation plane, thus leading the feature points vanishing from the image.Sine suh features are required in the visual ontrol sheme, the robot guidane would fail.As for the seond onstraint, if not satis�ed the robot would get out of its workspae orwould reah singularities. The robot thus would be mehanially trapped, and onsequentlywould not be able to move aording to the ordered servoing ommands; i. e., leading totask failure.So far, in the present hapter, positioning with respet to observed soft tissues has not yetbeen introdued. Dealing however with soft tissue ultrasound images in the servoing shemeallows diret interation and positioning with the observed soft tissue, as an be seen in thefollowing.
Control of the interaction with soft tissues: In-plane motions controlA robotially-assisted system for medial diagnosti ultrasound is presented in [1℄. Thesystem onsists of a master hand ontroller, a slave robot manipulator that arries a 2Dultrasound transduer, and a monitoring host omputer (see Fig. 2.14). The objetive isto automatially assist the ultrasound liniian when performing the diagnosti. While theultrasound transduer is remotely moved by the liniian through the master hand, theroboti system an automatially ompensate for the unwanted motions in suh a way thetransduer keeps a ertain view on�guration with respet to the patient body. This isa�orded by a servo sheme paradigm wherein the operator's motion ommands and a visualservoing ontroller share the ontrol of the robot holder motion. The primary envisageduse for the system is arotid artery examination. The task then onsists in automatiallykeeping the enter of one, or more, artery in the middle of the ultrasound image, while atthe same time the transduer is being teleoperated over the patient's nek by the remoteliniian.
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Figure 2.14: Robotic system for medical diagnostic ultrasound [1]. (Photo: S. E. Sal-
cudean’s research group web page http://www.ece.ubc.ca).The artery is thus kept in the middle of the image thanks to the visual servoing sheme,whih automatially ontrols 3 DOFs of the robot holder in the probe observation plane.It ontrols the two translations along the image's two axes and the rotation around theaxis orthogonal to the image plane, respetively. The remaining DOFs are being operatedby the liniian through the master hand. The visual servoing is fed bak with the enteroordinates of eah of the artery in the ultrasound image. Before this, image proessing isapplied on eah of the aquired 2D ultrasound image to detet and trak the boundary ofeah artery. The image oordinates of points lying on a boundary are used to ompute theorresponding enter oordinates in the image. Five detetion and traking tehniques havebeen tested and ompared. These tehniques onsists in the Cross Correlation algorithm[67℄, the Sequential Similarity Detetion (SSD) algorithm [13℄, the Star algorithm [33℄, theStar-Kalman algorithm inspired from [5℄, and the Disrete Snake Model algorithm modi�edfrom [20℄. They have been tested on suessive 2D ultrasound images, aptured at a rateof 30 frames/se from an ultrasound phantom. In this latter, three plasti tubes are posi-tioned along three di�erent axes. During the aquisition, in-plane motions are performed bymoving bak-and-forth the ultrasound transduer along one axis of the image plane, withonstant absolute veloity. Aording to the obtained results, the Star-Kalman and theSSD algorithms outperformed the other tehniques, where the former algorithm showed tobe more advantageous with less omputational time. That onlusion is, however, inferredfrom trials where the image variations are due to motions of the transduer only along itsimage axis. Therefore, only plane motions have been performed, and onsequently motionsin the transduer's out-of-plane have not been onsidered. Indeed, out-of-plane motions(e. g., motions along the axis orthogonal to the image plane) lead to deformations in the ul-
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trasound image itself (e. g., boundary shrinking/strething) rather than it is simply shifted,as in the presented ase. Thus, the tehniques that better performed for motions withinthe image plane might, perhaps, present drawbaks or ompletely not apply in out-of-planemotions ase, and vie versa.The system was tested experimentally, where two features that represent the visual feedbakorrespond to the enter oordinates of two pipes of the phantom. The system operated ata rate up to 30 Hz. Two main appliations of the system have been onsidered. The �rstonerns a 3-D ultrasound imaging system, that an be used to make up a 3D image of asanned region of interest (the artery in this ase) from suessive 2D entered ultrasoundimages aquired during the san's sweep. That sweep is monitored by the visual servoingontroller in suh a way the artery remains entered in the image. Inputting those apturedimages whether to a Stradx tool [35℄ or to a Star-Kalman based reonstrution, a 3D imageis outputted. The latter reonstrution algorithm showed to be more advantageous withshortened omputational time, sine only the oordinates of the ontour points extratedfrom eah aquired image are stored, rather than the full image when using the Stradx tool.As for the seond appliation of the roboti system, it onerns tele-ultrasound exam. Aliniian is loated at a remote plae, and an from there supervise the proedure whihtakes plae in a di�erent loation. The liniian an visualize the proedure developmentthanks to the display, on di�erent sreens, of images about the operation room. Theseimages are respetively provided by two observing ameras and the ultrasound transduer,both loated in the operating room where the patient is under diagnosti assisted by therobot. By handling the master devie, the tehniian's ommands are sent to the arryingrobot. Data transmission between the two sites is performed through an Internet onne-tion.A 2D ultrasound-guided robot for perutaneous needle plaement for holeystostomytreatment is presented in [38℄. The robot possesses 2 ative DOFs used for automati nee-dle insertion (see Fig. 2.15). The intraoperative 2D ultrasound images, of the gallbladderalong with the needle, are diretly used in a visual servo sheme that omputes the ontrolommands. The robot will thus position the needle aordingly, while in the same timeompensating for possible target shifting. The latter an our due, as instane, to patient'sheart beating, breathing, or pain that ould rise due to loal anesthesia. Prior to insertion,the needle is mehanially onstrained to lay in the same plane of that of the ultrasoundbeam. That on�guration is kept throughout the proedure. This is ahieved using 5 passiveDOFs that the robot also possesses. Those DOFs furthermore allow to position the needleat the skin entry point right prior the insertion. The gallbladder is deteted in the imageusing a motion optimized ative ontour model, while the needle diretion is extrated using
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Figure 2.15: 2 DOFs robot for 2D ultrasound-based needle insertion. (Photo: taken
from [38]).the Hough transform [39℄. The system performane was assessed through phantom exper-iments, video simulations, and animal experiments. The roboti system operated at a rateof about 3 Hz, at whih the needle path planning is updated. It performed with gallbladderreognition error of less than 1.5 mm under ordinary breathing onditions, and with needlepositioning error of about 2 mm in animal trials.
Control of the interaction with soft tissues: Both in-plane and out-of-plane
motions controlAn ultrasound visual servoing tehnique using the 2D ultrasound modality for soft tissuemotion robotized traking and stabilization is presented in [46℄. It makes use of spekle in-formation, ontained in the B-san images, in separately ontrolling the probe in-plane andout-of-plane motions in order to maintain the probe observation plane on a target B-sanultrasound image. Although ultrasound spekle was onsidered in di�erent works as noiseto redue, it is in fat not a random noise but oherent re�etions of small ells ontainedin soft tissue. The B-san observation plane is in reality of millimeter order thik and, asonsequene, suessive aquired B-san images overlap in spae thus resulting in orrela-tion of spekle between eah of them (see Fig. 2.16). Spekle information have been usedto estimate multi-dimensional �ow of 2D ultrasound images [12℄, and its orrelation usedfor sensorless estimation of the 3D pose of freehand 2D ultrasound probes, as in [34℄. Inthe latter work, the spekle orrelation is approximated by an exponential funtion basedon image intensity, in order to estimate the displaement between two plane of suessiveaquired B-san images [see Fig. 2.16(b)℄.
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(a) (b)

Figure 2.16: Speckle correlation between two successive B-scan image planes acquired
by a 2D ultrasound probe (displayed in blue) [46]. (a) Two successive B-scan images,
whose respective planes are spaced by a distance d, and where two corresponding
patches I1 and I2 are shown on their respective grids (displayed in green) - (b) Cor-
relation curves between the two B-scan planes considered for 25 patches. The curves
are function of the distance d between the two planes. (These two figures have been
kindly provided by Alexandre Krupa).That priniple is exploited in [46℄ to estimate the B-san probe out-of-plane motions, thatwould bring the probe to its target plane from its urrent one. The objetive is in fat toestimate the target image plane with respet to the observed one. The out-of-plane motionsare related to translations along the axis orthogonal to the probe observation plane (image)and rotations around the two image's axes. To estimate those movements, di�erent pathesare attahed to the ultrasound image, whih are disriminated aording to their respetivealloated pixel oordinates. For eah path of the observed (urrent) image, its distanefrom its orresponding path belonging in the target image is omputed aording to thedeorrelation tehnique introdued above using their respetive intensity information. Notethat the target image has been previously saved as a pixel intensity array. Prior that theexponential funtion is applied, the intensity of the B-san image is deompressed to be ex-pressed on a linear sale [72℄. This is performed sine the outputted B-san image's intensityis ompressed aording to a logarithmi sale whereas the original raw radio-frequeny sig-nal (RF) provided by the transduer is expressed on a linear sale. The estimated distanesare used to geometrially represent the target image pose with respet to the observed one,by de�ning for eah distane a 3D position with respet to a frame attahed to the observedimage. The pathes of the target image are then �tted with a plane, de�ned by its normal
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vetor and its distane from the observed image's one. This plane is nothing but an esti-mation of the target image's one.The four elements of the target plane, that are the three omponents of its normal ve-tor and its distane from the urrent image's plane, are fed bak to a 3D visual servoingsheme that then omputes the veloity ommand [51℄ for the out-of-plane motions of theultrasound probe. The in-plane motions are however separately ontrolled by a di�erent 2Dvisual servoing sheme. The latter is fed bak with a visual feature vetor of three ompo-nents. This vetor relates the rigid in-plane motion from the plane of the observed imageto that of the target. Two of its elements orrespond to two translations respetively alongeah of the image's two axes, while the latter element orresponds to a rotation around theimage's orthogonal axis (elevation axis). These three elements represent the di�erenes ofrespetively the displaement and the rotation from the observed image to the target one.They are extrated using the image traking tehnique [37℄. It onsists in minimizing anintensity funtion whih is based on a motion model.The approah has been tested in both simulations and experiments. The simulations on-sist in a senario where a virtual 2D ultrasound probe interats with a realisti ultrasoundvolume, made up from a set of parallel real 2D ultrasound images. The latter have been,at a previous time, suessively aptured at an equivalent distane interval during motionsof a 2D ultrasound probe along its orthogonal axis. The motions have been performedwith onstant veloity. The experiments have been onduted using two di�erent setups.In the �rst one, a 2D ultrasound probe was arried by a 2 DOFs robot, that provides twotranslations respetively along the horizontal probe axis and along the axis orthogonal tothe probe. The seond setup onsists of a 6 DOFs medial robot arrying a 2D ultrasoundprobe. In both the simulations and the experiments, the roboti task was foused in trakinga target ultrasound B-san image, sine the proposed approah is devoted for traking byallowing only slight displaements from the target image. This limitation however has beenalleviated, where it is proposed to register up to a ertain width the ontinually aquiredimages. This would allow to reover the path followed by the probe, by staking the di�erentdisplaements between eah suessive images. The approah is devoted solely for B-sanimages, and requires a alibration step through whih parameters involved in the orrelationexponential funtion are estimated. In fat, those parameters vary depending on the imagedsoft tissue. Note that the approah heavily relies on the estimated target plane, on whihthe probe's plane has to be automatially positioned. Consequently, any estimation errorswill be, undoubtedly, re�eted in positioning errors of the ultrasound probe leading to driftsfrom the atual target.
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In the Lagadi group, IRISA/INRIA Rennes, wherein this PhD work has been on-duted, a former preliminary work [4℄ dealt with the ontrol of both in-plane and out-of-plane motions of a 2D ultrasound probe interating with egg-shaped objets. The objetivewas to automatially position the probe with respet to suh an objet. It was attemptedfor use in a ontext where a robot arm atuates the probe, whih ontinually provides 2Dross-setion images of the observed objet. These images are fed bak to a visual servoingsheme, that subsequently omputes the ommand veloity. The robot will then have toposition the probe transduer, by moving aording to the ordered veloity, in suh a waythat at the onvergene the observed ross-setion image orresponds to desired one. Theprobe observation plane intersets the objet of interest, whih results in a ross-setion ul-trasound image. Assuming the soft tissue being egg-shaped, the ontour of the ross-setionis �tted with a third order polynomial, whose oe�ients are used as the feed-bak visualfeatures. The method has been tested is simulation, where the senario onsists of a mathe-matially modeled virtual 2D ultrasound probe and an egg-shaped objet. Their respetiveposes (position and orientation) are assumed known with respet to a base frame. Thosemathematial models of the objet and the probe are used to simulate their interation,and thus providing the ontour of the ross-setion image. The ontour is haraterizedwith a set of its points oordinates. The proposed approah, however, is dediated to softtissue with known geometry, namely egg shaped objets. It relies, moreover, on visual fea-tures that have no physial signi�ation and are not robust to image noise. Extratingthese features from the image an, sometimes, beome hallenging, and is prone to failures.This onsequently an threaten the system stability. In robotis, in general, and in medialrobotis, more partiularly, the robustness is an important trait that has to be addressed,espeially when dealing with the ultrasound modality, that inherently provides very noisyimages. The work we present in this dissertation exploits instead visual information thatare robust to image noise. Suh information an moreover be readily extrated after theimage would have been segmented. These features we selet to feedbak the visual servoingsheme onsists in ombination of image moments; the latter are presented in Chapter 3.Moreover, we develop the exat form of the interation matrix related to these features. Theformulae we develop is general in the sense that it an be applied to di�erent shapes, sayto whatever onsidered losed volumes. We in fat developed new theoretial foundationsthat yield us able to derive suh a matrix. The orresponding modeling is presented alsoin Chapter 3. Another main ontribution brought though this thesis is that we propose ane�ient estimation method that endow the roboti system with the apability of interatingwith objets without any prior knowledge of their shape, 3D parameters, nor loation in the3D spae. This is presented in Chapter 4. Only the image, along with robot odometry, isused to ompute the ontrol law, as presented in Chapter 5.
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2.6 ConclusionWe have provided through this hapter an overview about image-based medial roboti sys-tems, and more partiularly about ultrasound-guided ones. We started by giving a shortintrodution to robotis ontrol and medial robotis. Di�erent paradigms re�eting themanner a medial robot is ommanded have been presented. We reall that this thesis isonerned with the self-guided paradigm, where the robot ompletely autonomously inter-ats with its environment thanks to losed-loop servoing tehniques developed and presentedin this doument. The intervention of the operator only onsists in indiating to the sys-tem the objetives of a required task, right prior that the robot is launhed to perform theproedure.It was highlighted that usually medial roboti systems use mainly visual sensing for mon-itoring the interation with their respetive environment. Examples of most investigatedimaging modalities for guiding medial roboti systems have been introdued with some ex-amples for illustration. These modalities range from, but are not limited to, optial, MRI,X-ray or CT, and ultrasound. They provide with valuable sensing allowing for interationmonitoring. Eah of them provides, indeed, with partiular information about its envi-ronment, that ould be greatly relevant for ertain range of medial appliations. Optialimaging systems, as instane, provide images of open-spae �elds, and therefore �nd theiruse in minimally invasive surgery. They are however restrained to some appliations likeendosopi surgery robotis, and reently in mirosurgery robotis. This is due to the fatthat they an not provide internal anatomial views, unless they are inserted inside thepatient's body. This latter resolution is however not appropriate for many kinds of appli-ations, beause of the possible trauma and hemorrhage that ould result, and sine somebody's regions are not readily aessible and viewed. Yet, internal images are in most of theases required in medial robotis sine medial robots are usually interating with body'sparts that are not naked-eye viewed. In ontrast to optial imaging, MRI, CT, and ultra-sound provide internal anatomial images without any dissetion. X-ray, or CT, showedhowever to be invasive and harmful for the patient body. As for the MRI modality, evenif it is onsidered noninvasive, the images are not provided at a su�ient rate to envisagereal-time roboti appliations. Conerning the ultrasound modality, it is onsidered thanksto its noninvasiveness as not harmful to the patient body, and more partiularly 2D ultra-sound modality an provide images with a relatively high streaming rate.We introdued in this hapter works related to automati guidane using ultrasound im-ages, and lassi�ed them aording to di�erent lasses. It is perhaps useful to summarizethem. We distinguished: ultrasound-based simulation; 3D ultrasound-guided robotis; 2Dultrasound-based position-based visual servoing; and 2D ultrasound-based image-based vi-
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sual servoing. Also, within the last lass we distinguished the following ategories: posi-tioning of surgial instruments; positioning with respet to observed soft tissue where onlyprobe in-plane motions are ontrolled; and positioning with respet to observed soft tissuewhere both probe in-plane and out-of-plane motions are ontrolled. This thesis falls withinthe latter ategory.



Chapter 3

ModelingBuilding a visual servoing sheme requires the modeling of the interation matrix thatrelates the time variation of the feedbak visual features to the motions of the robot. Suhinteration matrix is in fat ruial for omputing the ontrol law. In ase of optial systems,like a perspetive amera arried by a robot arm for example, the interation matrix isgenerally already available thanks to the amount of works that have onsidered suh asensor (e. g., see [41℄ and [17, 18℄). It is however not the ase for roboti systems using 2Dultrasound imaging modality as soure of visual information. This thesis onerns automatiguidane of a general robot arm from observed 2D ultrasound images. These images areprovided by a 2D ultrasound probe arried at the robot end-e�etor. We need thereforeto model the interation matrix for the ase of 2D ultrasound in order to allow the robotautomati interation with its environment. One of the hallenging issue, however, onernsthe fat that a 2D ultrasound probe interats with its environment by suh a manner thatwas, so far, di�ult to model. This is addressed in the present hapter. Firstly, we used theonept of image moments to onstrut the feedbak visual features. This onept seemsompletely relevant when dealing with the ultrasound modality, as disussed in Setion 3.1.Then, we propose new theoretial foundations that allow us to model the analytial formof the image point veloity as funtion of the robot veloity. This fundamental modelingis subsequently used to obtain the exat analytial form of the interation matrix thatrelates the image moments time variations as funtion of the probe veloity. The modelingmethod we propose an be applied for general-shaped objets. We theoretially test andthus validate this general result on some simple shapes like spheres, ylinders, and 3-Dstraight line-shaped wires.
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3.1 Image moments: a brief state-of-the-artImage moments are mathematial entities whose inferred values an desribe the on�gura-tion of setions in the image; by �on�guration� we mean also the setion's shape, thoughimpliitly . Suh on�gurations are mainly orrelated to the setion's geometry. They ouldbe as instane the loation, orientation, ontrast, or size of a setion in the image. Aftertheir original version being introdued in the �eld of mathematis, moments, or image mo-ments as urrently referred when dealing with images, were �nally onsidered for patternreognition �eld. Based on the theory of algebrai invariants, funtions of moments thatare insensitive to partiular setion's hanges, suh as translation and rotation in the image,and size are presented in [40℄. Suh funtions are indeed of great interest for pattern reog-nition appliations. The fat that image moments an desribe setion's on�guration, theyan therefore be used to disriminate between the di�erent setions. Eah setion ouldbe assigned with a partiular value, more partiularly numerial value. However, if a on-sidered setion is subjet to on�guration hanges suh those mentioned above (translationand rotation of the setion in the image), its assigned value likely would vary. In the asesuh hanges our, the onsidered setion an no longer be assigned with a ertain value,and onsequently an not be disriminated and thus reognized. But image moments thatare invariants to suh hanges would keep their initial value, and onsequently they an beused as pointer for a onsidered image setion, still under the mentioned hanges. This isillustrated in Fig. 3.1. Suh image moments are alled moment invariants [40℄. We willsee in hapter 5 that suh invariane properties are of great interest for the seletion of thefeedbak visual features, sine these latter we propose are based on image moments.Consider a setion lying in a plane Π, that is de�ned by an orthogonal frame (u, v) (seeFig. 3.2). The two-dimensional moments of a density distribution funtion ρ(x, y) and of
(i+ j)th order related to this setion are de�ned in terms of the surfae integral by [40℄:

mij =

∫ +∞

−∞

∫ +∞

−∞
xi yj ρ(x, y) dx dy (3.1)where (x, y) represent the 2-D oordinates of a point P lying in the setion. We an thereforenote that moments are strongly orrelated to the shape of the setion, as an be deduedfrom the term produt xi yj . In the ase Π represents a plane of a 2D image, then we will re-fer to 2D image moments. The ouple (x, y) will then represent the pixel oordinates of point

P. The funtion ρ(x, y) ould be related to the pixel intensity of the image, its olor, or else.
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(a) (b)

Figure 3.1: Illustration of moment invariants with two different images of a same pair
of pliers. (a) Initial image whose boarders are delineated with a rectangle - (b) Final
image of the pliers after configuration changes in the position, rotation, and scale.
Ordinary image moments values of respectively the images (a) and (b) are different,
whereas those of the invariant moments to position, rotation, and scale are the same.
The latter values can thus be assigned to the pliers for prospective identification.Suessive researh works have then followed by applying image moment invariants forpattern reognition appliations. We an ite as example, the use of moment invariantsfor automati reognition of airraft shapes and types from images, as in [25℄ [8℄. Theyhave also been used for pose estimation of planar objets [59℄. Along with the widespreadof moments invariants for wide range of appliations, theoretial studies with objetives ofmaking these funtions more powerful have also been reported. Moment invariants to imageontrast hanges that at the same time keep their initial insensitivity to image translation,rotation, and sale are presented in [50℄. Objets whih present symmetries might be dif-�ult to identify with moments, sine the latter ould tend to vanish (i. e., to be null) asmore as the symmetry appears in the image while the objet on�guration hanges. Todeal with suh limitations, moment invariants to image translation, rotation, and sale, butdediated for deteting objets that present N -fold rotation symmetry are presented in [32℄.Another formulation of image moments quite inspired from the existing version is presentedin [19℄. It onsists in de�ning a new version of image moments as funtion of only imageoordinates of the points lying on the boundary of the onsidered setion, instead of those ofthe whole points lying within the setion image (suh version's moments do not orrespondto those of the old version when expressed on the ontour using the Green's theorem). Suhformulation is aimed at dereasing the omputational time of image moments by onsid-ering fewer number of points involved in the omputation than if the whole points of the
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Figure 3.2: Section lying on a plane Π.setion are onsidered. This version's moments have also been made invariant to imagetranslation, rotation, and sale hanges. Adjusting the original formulation of moment in-variants, introdued in [40℄, and generalizing them to the ase of n-dimensional momentinvariants through a generalized fundamental theorem is presented in [52℄. There are alsoother interesting works about image moments devoted for the �elds of pattern reognitionand omputer vision, but we settle for those ited above and in Setion. 3.2. A surveyabout image moments is available in [66℄. The objetive of the present setion onernsthe introdution of image moments and the illustration of their usefulness, sine the visualtehniques we propose through this thesis exploit these information. Dealing with imagemoments for pattern reognition or omputer vision is not the objetive of the present thesisand is beyond its sope.One of the trait of image moments is that they an generially represent an image se-tion, without prior knowledge about this latter. Image moments an be readily omputedfrom a segmented image. These features are relatively robust to image noise, ompared forexample to features omposed of oordinates of points. Another but typial trait to imagemoments is that they do not require mathing of points in the image but only a globalsegmentation. We will see that this trait is of tremendous interest for visual servoing basedon 2D ultrasound. Indeed, this trait mathes one of the key solutions that ould enableaddressing the modeling issue of 2D ultrasound. This will be realled at an appropriatestep of the modeling tehnique, in Setion 3.5.2 more preisely. Moment invariants, morepartiularly, provide with information about the on�guration of the setion, with respetto the image, in a deoupled way. This latter property makes image moments relativelyamenable in order to build independent visual features and thus to develop partially, orperhaps totally, deoupled visual servoing shemes in a natural way. These features areintuitive with geometrial meaning, where their low order ompletely and diretly relay in-
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formation about the size, the enter of gravity, and the orientation of setion in the image.Therefore, a set of features based on image moments an be diretly related to a pose of a3-D sene in the spae (the ase of planar sene being pointed out and reported in [50℄).All these traits make image moments a potential entity for deriving relevant visual fea-tures, that an be used as feedbak in visual servoing shemes. Suh features an endowthe roboti system with the apability of automatially reahing on�gurations from whihthe robot an provide desired images of the sene, and thus positioning with respet to thelatter. Suh systems do not deal with oordinates, or the like, but diretly with shapes ofobjets. However, the key solution related to the development of visual servoing shemesis the jaobian matrix that relates the di�erential variations of the seleted set of visualfeatures to the di�erential hanges of the on�guration of the roboti system [27℄ [41℄. Suhjaobian is well known by the term interaction matrix when the veloity spae onsideredis SE3. It is, indeed, in most of the ases, hallenging to model and obtain suh matrix,espeially when this onerns its analytial form.We provide in what follows a brief state of the art about works that investigated the mod-eling of suh matrix, in ase of optial systems, in systems using amera as soure of visualinformation more partiularly. We emphasize that the modeling in ase of optial systemsquite di�ers from that of 2D ultrasound, as has been shown in the previous hapter. In thisthesis we model and thus provide the exat analytial form of the interation matrix thatrelates the di�erential hanges of the image moments to the di�erential hanges in the on�g-uration of a general 6 DOFs robot arm that arries a 2D ultrasound probe at its end-e�etor.
3.2 Discussion with regards to image momentsSimilarly to di�erent other pattern reognition and omputer vision features, image mo-ments present also some inherent drawbaks. Moment invariants might su�er, in someon�gurations, from information suppression, loss, and redundany [2℄, and from olusion.The suppression e�et is related to the ase where the information of the setion's entralarea are rejeted. The information loss is related to the ase where the information relayedby the image higher order harmonis are �ltered. As for redundany, it ours when aseleted set of moments-based features represents di�erent setions.The suppression e�et an be notied from the relationship (3.1). Sine in this thesis wedeal with moment invariants, we an diretly onsider for larity that the setion is enteredin the image. We an �rst remark that the image moments funtion is strongly orrelatedto the setion shape, and this is ensured through the image pixel oordinates x and y. More
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the value of x is high more is that of xi. The same applies for y. We an subsequentlyremark that more the point is far from the enter more higher is the value x or y. Thefarthest points orrespond, in a general sense, to those lying on the setion's boundary. Therelationship (3.1) mainly ontains produts of the power of x with that of y. Therefore, thepoints lying more farther from the setion enter have higher values and thus have moree�et than those loser to the enter. Consequently, the farther points have more weight onimage moments's inferred value than those loser. This e�et is more felt when momentsof higher order are employed. Indeed, higher is the order larger is the di�erene betweenthe values xi yj of respetively the farther points and those loser. The suppression e�etan be embodied in a onrete sense. If, for example, the image intensity funtion is in-trodued in the de�nition of image moments relationship, and if, as instane, the entralarea have large intensity information, this latter would partly, or almost totally, suppresseddue to the e�et of the farthest area, as we just desribed; this information would be swal-lowed up by that onveyed by the farthest regions. If, however, the setion has no valuableintensity information in its enter-loser area, there would be no information suppressionthat ould be aused by the above disussed e�et of moment invariants. Nevertheless,this drawbak presented above is preluded in our ase (in the servoing system we propose,more preisely). Indeed, only the shape of the setion in the image is exploited in the on-trol law, i. e., the image is �rst segmented and binarized. Thanks to the formulation weuse in this thesis in the de�nition of image moments, these latter are no longer a�etedby information suppression. More preisely, we exploit solely the geometri shape of thesetion in the image. We do not onsider, for example, image ontrast information in thede�nition of moments. The geometry of the setion is mainly represented by the boundaryforms of the latter. There is therefore no information in the entral part of the setionthat ould relay valuable information with regards to the setion shape. Owing to whathas been disussed above, the setion geometry information are onsequently not subjetto suppression e�et sine the valuable information are present in the farther points not inthe loser to the setion enter. We exploit, to summarize, only the boundary of the setion.High-order moments are also well-known to be vulnerable to image noise, as an be learlynotied from the fat that a moment's order orresponds to the power at whih the oordi-nates are elevated. However, the visual information we present in this dissertation employonly up to the third order moments.As for information loss, it is related to setion's parts whose boundary presents urvatureswith high frequeny. This is illustrated by Fig. 3.3, on whih we an distinguish the part thatpossesses high harmonis. Suh part is vulnerable to the information loss e�et. That is,the information relayed by suh part would be �ltered by moment invariants funtions andthus lost. However, usual onsidered objets ould unlikely possess parts with a ertain level
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Section in the image

High−harmonic region

Figure 3.3: Image section subject to the effect of information loss inherent to image
moments (typical example, grossly sketched). The section’s part, roughly enclosed
by a dashed rectangle, presents high-harmonic curvatures.of high-harmonis suseptible to yield them vulnerable to suh e�et. Moreover, we employonly up to the third order moments, and thus we learly do not deal with high harmonisand therefore we do not onsider them in the ontrol law. Note that the information lossis somewhat related, say similar, although inversely, to the harateristi of vulnerability toimage noise.Finally, the olusion e�et represents the ase when a part, or whole, of the onernedsetion disappears from the image. The image moments represent mainly the shape of theobserved setion in the image. When an olusion ours, it is lear that the setion wouldbe warped in the image, sine at least part of it would vanish from the image. In that ase,the image moments values would onsequently hange sine they represent another shapedi�erent from the original one. Therefore, the image moments initial values, representing thesetion in its whole form, ould no longer represent that setion. Nevertheless, we assumethat the whole setion an be imaged and no part of it would disappear. This assumptionshows to be onsistent sine a 2D ultrasound probe an provide in-depth information, andthus the onerned setion ould be imaged even though there are other soft tissues lyingbetween it and the probe transduer. Conerning the redundany e�et, we prefer to disussit in Chapter 5, onsidering that doing so is more appropriate.The above ited drawbaks ould, in some ases, beome favorable [2℄; although these draw-baks are preluded in our ase, as has been desribed. If the entral part of the imagesetion possesses highly-noisy information, the suppression e�et would rejet the arriednoise. Similarly, the e�et of information loss will �lter and thus rejet the noise arried byhigh-harmonis parts.
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3.3 Image moments-based visual servoing with op-

tical systems: state of the artOne important and ruial step in the modeling of the interation matrix is already aquiredwhen dealing with optial imaging roboti systems, whatever the kind of the visual featuresused as feedbak information in the servoing sheme. Indeed, the jaobian matrix that re-lates the di�erential hanges of the image points oordinates with respet to the variationof the on�guration of the roboti system is, in most of the ases, say in all, available. Afterobtaining a seond jaobian that this time relates the di�erential hanges of the visual fea-tures to the di�erential hanges of those image points oordinates, it would be easy to derivethe global interation matrix that relates the visual features to the robot on�guration. If,as an example, the onsidered visual features are oordinates of the points in the image, theseond jaobian matrix is nothing but the identity matrix.This an be formulated and thus illustrated by the following relationships. Let vetors sand x be respetively the set of the visual features and the set of points's image oordinates,and let vetor q be the on�guration of a roboti system, whatever the imaging modalityused as soure of visual information. The jaobian matrix Lx relates the di�erential hanges
ẋ of x to the di�erential hanges q̇ of q by: ẋ = Lx q̇. Suh matrix is indeed available forthe ase of optial systems. The di�erential hanges ṡ of s an be written as:

ṡ = ∂s
∂x

ẋ

= ∂s
∂x

Lx q̇ = Ls q̇

(3.2)The entity Ls = ∂s
∂x

Lx is the global jaobian matrix that relates s to q, where ∂s
∂x

repre-sents the seond jaobian matrix that relates s to x. This latter matrix is the one equal toidentity if the visual features are the oordinates of the points in the image (i. e., s = x).Therefore, in ase using optial systems, modeling the interation matrix generally omesto only obtain the matrix ∂s
∂x
, sine the jaobian matrix Lx is in most of the ases alreadyavailable.A �rst work toward modeling the interation matrix relating the image moments time vari-ation in the ase of perspetive amera was attempted in [9℄. Coarse approximations havehowever been assumed for that. A visual features vetor omposed of the area (size), thegravity enter, and the orientation of the setion in the image was onsidered to automati-ally ontrol only 4 DOFs of a robot arm. Another work [83℄ used neural network to estimate
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the interation matrix. Finally, an exat form of suh matrix was obtained, provided thatthe observed objet 3-D model with respet the amera is well-known [15, 16℄. Six visualfeatures orresponding respetively to the area, the oordinates of the enter of gravity, theorientation, and two other third order moments of the setion in the image were seleted toontrol the 6 DOFs of the robot. The orresponding visual servoing sheme has been vali-dated from both simulations and experiments using planar objets. A ombination of imagemoments yielding the visual servoing partially deoupled is presented in [76℄. Six visualfeatures have been proposed to ontrol the 6 DOFs of a robot arm holding the amera. Themethod was �rst developed for the ase a planar objet is parallel to the image plane of aperspetive amera and, then, generalized to the ase where the planar objet is not paral-lel. The ommands generated and then sent by suh deoupled visual servoing sheme allowthe robot performing appropriate 3-D trajetories. The proposed visual servoing shemeis devoted to images wherein the setion is represented either by ontinuous ontours orby disrete points. It has been validated from both simulations and experiments where,one again, the observed objets are planar. Another advantage of obtaining a partiallydeoupled (or totally deoupled at the best) servoing shemes is that the omputationaltime required to ompute the pseudo inverse (or the inverse) of the interation matrix anbe shortened; even though this advantage ould be onsidered at a relatively fewer interest.This an be ensured thanks to the properties related to sparse matries, as the developedone in [76℄. Note that dealing with the interation matrix in terms of deoupling is equiva-lent as dealing with the deoupling of the ontrol sheme, sine this latter uses mainly theinteration matrix to ompute the ommands to the robot.As has been disussed in Chapter 1 (in Setion Contributions, more preisely), the mod-eling in ase of optial systems quite di�ers from that of 2D ultrasound; the latter onsiststhe �eld this thesis is addressing. The interation matrix developed for optial systems,whih has been introdued hereinbefore, does not apply in the present ase. Even worse,the elemental jaobian matrix that relates the image points variation to the sensor veloityis not available in this ase; we reall that we refer to the matrix Lx introdued by (3.2) (inase of optial systems, the jaobian is however generally available). Yet, suh jaobian isruial and required in order to develop the interation matrix and thus to derive the visualservoing sheme. Through the works presented in this dissertation, we have �nally been ableto model suh jaobian and then to obtain the interation matrix that relates the imagemoments variations to the on�guration of a general robot arm (and thus to the robotizedsensor veloity) holding the 2D ultrasound probe, and thereby to derive a orrespondingvisual servoing sheme. The interation matrix form we provide is analytial. This hapterprovide theoretial foundations, whih, based on it visual servoing methods an be derived.This is thoroughly presented in what follows.
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Figure 3.4: Representation of an ultrasound image. The image’s boundary is rep-
resented by the outer rectangle, where (X, Y ) represent the 2D orthogonal frame
attached to the image.

3.4 Modeling objectivesThe senario onsists of a 2D ultrasound probe transduer atuated by a general 6 DOFsrobot arm. This robot and thus the transduer are interating with a soft tissue objet.In a ontinuous streaming, 2D ultrasound images of the observed objet are provided bythe 2D ultrasound transduer. The roboti task onsists in automatially positioning thetransduer with respet to the objet, using the observed ultrasound images. These latter infat have to automatially guide the robot and thus monitor its motions in suh a way thetransduer, arried by the robot, automatially reah and stabilize at a desired on�gurationwith respet to the objet. Automatially ahieving suh task neessitates the developmentof a visual servoing tehnique whih, at its turn, requires appropriate visual features to feedbak the robot system and thus orret its motions. We reall that we propose to exploitimage moments information, along with its derivative form that are the famous momentinvariants. This has already been desribed in Setion 3.1.The ontrol system paradigm with whih we are onerned onsists in servoing the robotwith veloity ommands. It ould be onsidered as a relatively high-level ontrol ompared,for example, to torque ontrol. The system we propose an, nevertheless, be onneted tothe robot low-level in order to envisage torque ontrol. The robot is assumed, of ourse,that it already possesses its own low-level ontrol system enabling it to move aording tothe ordered ommand veloity. The visual servoing sheme, thus, omputes veloity om-mands whih aordingly the robot will move. The modeling objetive beomes, therefore,
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to �rstly provide the jaobian matrix Lx, involved in (3.2), that relates the image pointstime variation to the sensor veloity and thus to the robot veloity. Then, we use Lx tomodel the interation matrix Ls that relates the image moments time variation to the sensorveloity.More preisely, let the (i + j)th order image moment mij , previously introdued by (3.1),now relate solely the shape of a setion S in the image. This entity is thus de�ned by thisdouble integration:
mij =

∫ ∫

S
f(x, y) dx dy (3.3)with

f(x, y) = xi yj (3.4)where (x, y) are the image oordinates of point P = (x, y) belonging to setion S (seeFig. 3.4). Note that sine we onsider only the shape of the setion in the image in thede�nition of image moments, the funtion ρ(x, y) involved in (3.1) is now ρ(x, y) = 1. Notethat we assume that the ultrasound beam is a perfet plane, and that the whole atualross-setion lies in the imaged.Consider a 6 DOFs robot arm that arries at its end-e�etor a 2D ultrasound probe trans-duer (see Fig. 3.5). A 3-D artesian frame {Rs} is attahed the probe sensor. This bodyframe is de�ned by the three orthogonal axes X, Y , and Z. (X, Y ) are de�ned in suha way they lie in the image plane, while Z axis is normal to the latter (see Fig. 3.5, 3.6,and 3.7). Let 6 dimension vetor v represent the veloity of the transduer (probe) in the3-D spae. More preisely, it represents the body frame veloity of {Rs} expressed in {Rs}.It is denoted by v = (v,ω), where v = (vx, vy, vz) and ω = (ωx, ωy, ωz) representrespetively the translational and the rotational veloity of the probe. The salar ompo-nents (vx, vy, vz) are respetively along axes X, Y , and Z of the probe, while the salaromponents (ωx, ωy, ωz) are respetively around X, Y , and Z. This is represented onboth Fig. 3.5 and 3.7. Note that dealing with either the probe veloity or the robot one isequivalent, provided that the kinemati transformation (i. e., the homogeneous transforma-tion matrix) from the robot end-e�etor to probe attahed frame is known. Obtaining suhmatrix is referred to as hand-eye calibration. If suh matrix is not enough aurate, thenthe orresponding errors would be onsidered as perturbations to the visual servoing sheme.
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Figure 3.5: A 2D ultrasound probe carried by a robot arm. The probe is interacting
with an object, where a cross-section resulting from the intersection of the probe
observation plane with the object is shown. The frame (X, Y, Z) attached to the
probe is also depicted. The vectors X and Y lies in the probe observation plane,
whereas Z is orthogonal to it.The modeling objetive is �nally to write the time variation ṁij of image moment mij ,de�ned by (3.3) and (3.4), as funtion of the probe veloity in a linear form. This objetivean be formulated as follows:

ṁij = Lmij
v (3.5)where Lmij

is the interation matrix related to mij denoted by:
Lmij

=
[

mvx mvy mvz mωx mωy mωz

]

(3.6)suh that the six omponents of Lmij
represent the salars whose analytial form is whatwe want to obtain.
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Figure 3.6: Interaction between a 2D ultrasound probe and an object. 3D cartesian
frames {Rs} and {Ro} are attached respectively to the probe and to the object (left).
A cross-section S results from this intersection, where a point P that belongs to it
is shown. The ultrasound planar beam that observes this cross-section reflects it on
a 2D ultrasound image (right). Both S and P are shown on that image, where the
image coordinates (x, y) of P in the 2D image frame (X, Y ) are also depicted. Note
that the two axes X and Y constituting the image frame (left) clearly correspond to
those forming the probe frame {Rs} (right).The time variation ṁij of image moment mij an be expressed as funtion of the imagepoint veloity (ẋ, ẏ), in form of a double integral over setion S as follows [16℄:

ṁij =

∫ ∫

S

[

∂f

∂x
ẋ+

∂f

∂y
ẏ + f(x, y)

(

∂ẋ

∂x
+
∂ẏ

∂y

)]

dx dy (3.7)that we prefer to write in the following form that an be readily used afterwards:
ṁij =

∫ ∫

S

[

∂

∂x
(ẋ f(x, y)) +

∂

∂y
(ẏ f(x, y))

]

dx dy (3.8)The above relationship requires the analytial form of the image point veloity (ẋ, ẏ) asfuntion of probe veloity v, in order it an be expressed as funtion of this latter, and thus
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to obtain the interation matrix Lmij
. Therefore, we �rstly need to model the analytialform of the jaobian matrix Lx, de�ned by (3.2). It relates the image point veloity (ẋ, ẏ),of point P = (x, y), to the probe veloity v. We present below new theoretial foundationsto obtain Lx.

3.5 Image point velocity modelingWhen a 2D ultrasound probe sweeps a region of a soft tissue, the variation of the setionin the image strongly depends on the shape of that objet. Therefore, the image veloity ofpoints lying in the image setion also heavily relies on the objet shape. In ontrast, this isnot the ase when dealing with optial imaging systems. When, for example, an eye-in-handamera is observing an objet while performing motions, the image points displaementsand thus the image points veloity grossly are not a�eted by the objet shape. The alreadyexisting interation matrix that relates the image points veloity to the amera one doesnot hold in our ase and, thus, an not be used.To make the illustration of this di�erene more fair and rigorous, onsider two di�erentroboti systems onsisting respetively of a 2D ultrasound probe arried by a robot arm, asin our ase, and of a perspetive amera also arried by another robot arm. Eah system isobserving and thus interating with its orresponding objet. For the 2D ultrasound probe,the intersetion of the transduer observation planar beam with the objet results in a ross-setion whih then is re�eted in the ultrasound image (see Fig. 3.5). In ase of the amera,however, the objet surfae enountering the image rays is projeted and thus re�eted inthe amera image (see Fig. 1.4 of Chapter 1). Let P be a point lying in the ross-setion ofthe objet observed by the 2D ultrasound probe, and let U be another point lying on theseond objet surfae observed under the �eld of view of the amera. It is lear that whenthe amera moves, point U remains at the same position. This fat is orret provided ofourse that the objet is motionless, and that U is kept within the amera �eld of view.We an onsequently onsider U as physically the same point. It is quite not the ase forpoint P. Indeed, when the 2D ultrasound probe is moved and thus positioned at anotherross-setion, the points in the image are those who belong to this new ross-setion whih,physially and thus its 3D loation, does not orrespond to the initial one (see Fig. 3.8).Consequently, the 3-D loation of the new point P is di�erent from that previously apturedat the initial probe position, even if these two points represent a same image point. That is,the two points P(t0 + ∆t), obtained at time t0 + ∆t after the probe was moved, and P(t0),obtained at the initial time t0, are not physically the same (referring to this di�erene, be-tween the two points, by the term �not the same physical entities� ould also be employed).
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Figure 3.7: Representation of the probe velocity velocity vector on the ultrasound
imageNew tehnique to how to model the image point veloity as funtion of the probe one needonsequently to be developed. Note that the statement we provide above is valid when theprobe out-of-plane motions our. If only the in-plane motions our, it is lear that point
P an be physically the same. However, we made a statement for a general ase, where allthe probe motions are involved, and not for the spei� ase of in-plane motions. Note alsothat the modeling we present in this hapter is valid whether only probe in-plane motions,only out-of-plane motions, or both motions are onsidered.This manner, disussed above, that aording to, a 2D ultrasound probe interats with itsenvironment yielded onsequently the modeling of this interation quite hallenging. Thiswas made worse, beause of the strong dependene of the image points variations on theshape of the observed objet.Consider objet (organ) O with whih the probe is interating. Let {Ro} be a 3-D artesianframe attahed to this objet (see Fig. 3.6). Let sRo be the rotation matrix representingthe orientation of {Ro} with respet to probe frame {Rs}, and sto = (tx, ty, tz) be thetranslation vetor de�ning the origin of {Ro} with respet to {Rs}. Consider now point Pwhih, we reall, lies on ross-setion S (see Fig. 3.5 and Fig. 3.6). This point lies in the3D-spae, where its oordinates with respet to objet frame {Ro} are denoted by vetorposition oP = (ox, oy, oz). The oordinates of P in probe frame {Rs} are denoted by vetorposition sP, whih represents nothing but the image oordinates of P. It is thus given by
sP = (x, y, 0), (see Fig. 3.6 right). Its �rst two elements x and y represent respetivelythe absissa and the ordinate of this point in the ultrasound image. Note that its third
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element is equal to zero sine this point lies within the probe observation plane and thushas no elevation in Z diretion. The image oordinates of point P an thus be expressed asfuntion to its 3-D oordinates in the objet frame as follows (see Appendix A.4):
sP = sRo

oP + sto (3.9)We reall that our modeling �rst objetive is to write the image point veloity (ẋ, ẏ) asfuntion of probe veloity v. This image veloity is enlosed in the vetor sṖ, that is equalto sṖ = (ẋ, ẏ, 0). That is the reason why we derive with respet to time t vetor sP givenby the relationship (3.9). This yields:
sṖ = sṘo

oP + sRo
oṖ + sṫo (3.10)where sṘo, sṫo, and oṖ represent the time variation of respetively rotation matrix sRo,translation vetor sto, and vetor position oP. The above relationship requires however atleast a brief interpretation before we should ontinue. The entity sṖ represents the veloityof point P in the image, while oṖ represents its veloity in the 3-D spae. Point P, as wasintrodued, is a moving �particle� that slides through the observed objet aording to thedisplaements of the probe planar beam (see Fig. 3.8). It is in fat not a onrete point,but a virtual one. If the 2D ultrasound probe is stabilized on a ross-setion of the objet,point P an therefore be attahed to a orresponding physial point. Otherwise, it ouldbe related to objet's physial points only instantaneously. Virtual point P thus moveswith oṖ veloity with respet to the observed objet. As illustration, if a amera systemis onsidered then the term oṖ would be null referring, as we have disussed above, to thefat that point P would be motionless in the 3-D spae, provided of ourse that the objetis motionless. It is quite di�erent in the ase of 2D ultrasound. In our ase, indeed, P ismoving in the 3D-spae and onsequently oṖ 6= 0. Note that, for notational onveniene,the term �0� orresponds to the 3 × 1 null matrix 03×1. It will be frequently enounteredin the rest of this dissertation.Till now, the probe veloity v has not yet appeared in the relationship (3.10). Sine the ob-jetive is to write sṖ as funtion of v, we will now make this latter appear. Let us thereforeonsider the following fundamental kinemati relationship:
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Figure 3.8: Three points P1, P and P2 lying in the ultrasound cross-section. They
represent therefore the image points. They have been captured at a first time t0
and at another time t0 + ∆t after the probe had been moved from its initial location
(pose). We can note that each point is not physically the same as its corresponding
point lying in the other cross-section section (image), although they represent a same
image point.

{

sṘo = − [ω]×
sRo

sṫo = −v + [sto]× ω

(3.11)where [a]× denotes the skew symmetri matrix assoiated to vetor a (see Appendix A.2).This above relationship relates time variation sṘo of rotation matrix sRo and time variation
sṫo of translation vetor sto as funtion of probe veloity v = (v,ω). Thus replaing thisrelationship in (3.10), we have:

sṖ = − [ω]×
sRo

oP − v + [sto]× ω + sRo
oṖ (3.12)Realling the vetor ross-produt properties (see Appendix A.2), we then have:



3.5. IMAGE POINT VELOCITY MODELING 66

sṖ = −v − [ω]×
sRo

oP − [ω]×
sto + sRo

oṖ (3.13)that an be written:
sṖ = −v − [ω]× (sRo

oP + sto) + sRo
oṖ (3.14)Realling the expression of sP given by (3.9), we �nally obtain:

sṖ = −v − [ω]×
sP + sRo

oṖ (3.15)that we prefer to write in the following appropriate form:
sṖ = −v + [sP]× ω + sRo

oṖ (3.16)whih represents the expression of image veloity sṖ = (ẋ, ẏ, 0) of point P as funtion ofprobe veloity v = (v,ω), its image oordinates sP = (x, y, 0), rotation matrix sRo, and itsveloity oṖ in the 3-D spae.We want in fat to obtain the image point veloity as funtion of the veloity of only theprobe. It is however not the ase for the relationship (3.16), where the veloity oṖ is alsoinvolved. Entity oṖ therefore needs to be replaed. Point P results from the intersetionof the probe observation plane with the objet. Its veloity oṖ represents the veloity ofits displaements in the 3D spae aording to the displaements of the ultrasound planarbeam. Point P always remains in the probe planar beam emitted by the probe even whenthis latter moves. Therefore oṖ is obviously related to the probe motions, and thus is in-evitably onstrained by probe veloity v. Indeed, this is shown in what follows where weestablish two onstraints that point P an ful�ll. Those two onstraints then are used toreplae oṖ as funtion of v in the relationship (3.16). A �rst key solution to obtain themonsists in dealing with the surfae of the observed objet.
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Figure 3.9: Contour points - (a) A point P that lies on the cross-section’s contour C
is depicted along with the observed object in the 3-D space. Both its two locations
when the 2D ultrasound probe had been positioned at two different poses are shown.
The normal vector ∇F to the object surface at P is also shown - (b) A 2D ultrasound
image provided by the probe transducer.Let OS be the set of points that lie on the objet surfae. Let also C be the ontourof ross-setion S (see Fig. 3.9). It is therefore nothing but the ontour in the image of S.Term P now denotes a point that lies only on ontour C (P ∈ C), and not in the interior of
S as it was so far onsidered. Therefore, P lies on the objet surfae.
3.5.1 First constraintThe objet surfae an be de�ned by a salar relationship of the form:

F (oP) = F (ox, oy, oz) = 0 (3.17)where F is a salar funtion that represents the shape of objet O. The above relationshipstates that any point that lies on the objet surfae, as the ase for P, satis�es F = 0. Wereall that oP = (ox, oy, oz) represent the 3-D oordinates of P in objet frame {Ro}.When the 2D ultrasound probe moves and thus sweeps the observed objet, point P alsomoves aordingly in the 3-D spae in suh a way it always remains within the probe planar
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Figure 3.10: Point P sliding on the object surface when the probe plane is moving.
Its 3-D position oPt1 when the probe is at an initial position at time t1, and its 3-D
position oPt2 when the probe is at another position at time t2 are depicted. We can
see that oPt1 6=o Pt2 . The path that P had followed is also depicted. Such path lies
on the object surface.beam. This is due to the fat that P results from the intersetion of that planar beam withthe objet. Virtual point P, as now de�ned, always lies on ontour C of the image, andtherefore it remains on objet surfae OS, even with the displaements of the 2D ultrasoundprobe (i. e., ∀ probe positions, P ∈ OS), provided of ourse that the probe plane does notget out of the objet. Consequently, P always satis�es the relation (3.17) throughout itsmotions. That is, when P has moved from an initial loation oPt1 , aptured at time t1, toanother di�erent loation oPt2 , aptured at time t2, (oPt1 6= oPt2), funtion F is still equalto zero, i. e., F (oPt1) = F (oPt2) = 0, due to the fat that P is still on the objet surfae(see Fig. 3.10). Consequently, sine F (oP) remains onstant, its time derivative is equal tozero. This an be formulated by:

Ḟ (ox, oy, oz) = 0 , ∀P ∈ OS (3.18)Assuming objet O is rigid, we an write:
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Ḟ ( ox, oy, oz) = ∂F
∂ox

oẋ+ ∂F
∂oy

oẏ + ∂F
∂oz

oż

= o∇F⊤ oṖ
(3.19)where o∇F = ( ∂F

∂ox ,
∂F
∂oy ,

∂F
∂oz ) is the gradient vetor of F . It is expressed in objet frame

{Ro}. It represents the normal vetor to the objet surfae at point P (see Fig. 3.9). Sine
Ḟ (oP) = 0, we �nally obtain:

o∇F⊤ oṖ = 0 (3.20)whih represents the �rst onstraint on veloity of point P in the 3-D spae. This onstraintstates that veloity vetor oṖ in the 3-D spae of point P is orthogonal to normal vetor ∇F.Consider plane π to whih ∇F is orthogonal. The relationship (3.20) states, in fat, thatvetor oṖ lies on π (see Fig. 3.11(a)). There is however an in�nity of possible orientationswith whih a vetor an lie on a de�ned plane. This is, therefore, also the ase for vetor oṖ(see Fig. 3.11(b)). Yet, point P represents a �particle� whose veloity, namely oṖ, shouldlearly have an orientation in the 3-D spae and thus on π (sine oṖ lies on π). This isdesribed in the following, where we show that oṖ an satisfy a seond onstraint relatedto its orientation on π.
3.5.2 Second constraintEntity oṖ is a veloity that represents the di�erential displaements of point P, over a dtdi�erential time span, from a 3-D spae position oP(t), at time t, to position oP(t+ dt), attime t+dt (see Fig. 3.12). Note that in ontrast to P that is a virtual point, both oP(t+dt)and oP(t) are physical points. Indeed, oP represents the 3D oordinates of a point attahedto the surfae of the objet, while P represents a partile that is not attahed to the objetsurfae but instead slides on it; at time t point P oinides with oP(t), while at time t+dt itinstead oinides with point oP(t+dt). � Note also that we made above a statement for thease of general probe motions where both in-plane and out-of-plane motions are involved.In the ase only the in-plane motions are involved, point P an be attahed to the objetsurfae and, thus, an be onsidered as a physical point. � However, when the out-of-planemotions are involved, there is an in�nity of points on the ontour (objet surfae) withwhih P an oinide at time t + dt, sine P is a virtual one (i. e., there is an in�nity of
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Figure 3.11: Orthogonality between vectors o∇F and oṖ deduced from the first con-
straint, given by the relationship (3.20) - (a) Vector oṖ lies within plane π, represented
by its normal o∇F - (b) Vector oṖ can lie on π with an infinity of possible directions
- (c) Evolution of image point P due to an out-of-plane motion.possibilities for point a oP(t + dt)). This is represented with Fig. 3.11(). We illustratethis in the following. Consider a soft tissue objet whose surfae is exatly �tted with agrid that enloses it. � Suh grid is made, for example, from a material that yields it wellvisualized in the 2D ultrasound image. � The grid onsists of lines that homogeneouslytravel along the objet surfae. The ross-setion 2D ultrasound image thus shows mainlydisrete points in the image, points that result from the intersetion of the grid with theultrasound beam. In fat, doing so, the problem is translated into a disrete one, in termsof the set of onsidered image points. When the probe moves, along its orthogonal axis,for example, the intersetion points aordingly slide on the grid's lines. Let us thereforeonsider one point to make the illustration more fair. The veloity of the point in the imageis sṖ, while in the 3D spae it is oṖ. It is lear that the grid an �t the objet with anin�nity of on�gurations (as two examples of extreme on�gurations: the grid's lines mighttravel along a sagittal plane of the objet or along its oronal plane). Therefore, there is anin�nity of diretions with whih P might slide on the objet surfae, sine the point slides ona grid's line, whih an have an in�nity of on�gurations and thus of diretions; of ourse,the point must remain on the objet surfae (this is already satis�ed thanks to the �rstonstraint formulated by the relationship (3.20)). Yet, both the in�nity of grids desribethe same soft tissue objet. Consequently, we an freely de�ne a diretion for the motions of
P in the 3D spae, and thus the diretion of oṖ (on the tangent plane, of ourse). De�ning adiretion omes to set and perform a mathing between the two points oP(t) and oP(t+dt).Sine however, as desribed above, the seond point oP(t+ dt) an have an in�nity of loa-tions on the ontour, a orrespondene between these two points ould be performed onlythrough a virtual mathing. In other words, a orrespondene rule (protool) between the
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Z
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P(t + dt)
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oṖ

S

Figure 3.12: Velocity oṖ (in red), in the 3-D space, of a contour point P.points need to be set, with whih the virtual matching has to omply. This is done in thefollowing, where between the in�nity of diretions that oṖ might have, we hoose one thatseems quite tangible. To summarize, this omes to hoose a point P(t+ dt) to loate P(t)on the ontour C(t+ dt). Note that this way to proeed is valid sine the point veloity wemodel will be used to determine the variation of image moment, that thanks to its integrale�et requires only that the point have to be loated on C(t+dt). In other words, hoosinganother loation for P(t + dt) would modify the result of image point veloity, but wouldnot hange the result of image moment time variation.Veloity oṖ is in fat generated by the probe out-of-plane motions. When the probe planesweeps a surfae of a onsidered objet, point P moves aordingly in suh a way it remainswithin the probe plane. Suh sweep motions are mainly represented by the probe out-of-plane motions. If for example only the probe in-plane motions are performed, then veloity
oṖ would be null. The out-of-plane motions lead the probe plane gets out of the initialplane. Suh motions are generated by the veloities vz, ωx, and ωy of the probe. Considerthe Z axis of the probe frame {Rs} (e. g., see Fig. 3.9 and Fig. 3.7 ). It represents in fatthe orthogonal vetor to the in-plane motions (vx, vy, ωz). Sine, as we highlighted above,vetor oṖ would be null if only the in-plane motions are involved, its tangible diretionseems therefore aording to the probe Z axis, whih is orthogonal to suh motions. Letus make suh statement more illustrated. Consider a ylindrial objet whih is orthogonalto the probe plane. When the probe moves along its orthogonal axis Z, it is lear thatthe most tangible diretion that point P moves along is the Z diretion (i. e., the diretionof oṖ is Z). Consequently, we selet the Z axis as the diretion that, aording to, the



3.5. IMAGE POINT VELOCITY MODELING 72

π

Z

o∇F

oṖ
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Figure 3.13: Direction of oṖ within the plane π. Note that both oṖ and oṄ lie within
the plane π, which is not necessarily the case for the vector Z and the contour C.
This latter lies within the ultrasound image plane.point oP would move. � Note that by �aording to the diretion� we do not mean �alongthe diretion�, as it is more preisely desribed afterwards. � Suh statement represents infat a protool for the virtual mathing. Eah virtual point would move in the 3-D spaeaording to the diretion of Z, i. e., the point P moves from the position oP(t) aordingto the diretion Z to reah the position oP(t + dt). The mathing objetive is that all thepoints lying in ontour C(t), at time t, math their respetive orresponding points on theprobe plane at time t + dt, in suh a way that the whole of mathed points an onstituteontour C(t + dt). In other words, the objetive is to model the on�guration hanges ofontour C in the image as funtion of the probe veloity. We an reall (Setion 3.1) thatthe visual features we use, namely the image moments, do not require mathing of the pointsin the image but only mathing of the ontour. This is therefore (although already roughlyhighlighted) of great interest in our ase, where only the ontour an be mathed but notthe points that are instead virtually mathed. Indeed, image moments do not require tospeify whih point orresponds to another one on the preedent image, but instead theyonly require that the new points (as oP(t + dt)) lie on the ontour C(t + dt). That is thereason why, as introdued in this hapter, image moments represent relevant visual featureswhen dealing with the 2D ultrasound imaging modality.Hene, vetor oṖ lies aording to the diretion of Z. However, the latter does not lie inplane π as it is the ase for oṖ. Therefore, the projetion of Z on π represents the vetor
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whose diretion is that of oṖ [see Fig. 3.13(a)℄. � That is the reason why above we distin-guished between the term �aording to� and �in diretion of� when referring to the relationbetween the vetors Z and oṖ.Let therefore vetor N be normal to the plane formed by ∇F and Z [see Fig. 3.13(b)℄. Thisvetor an be obtained from the following vetor ross-produt:
oN = oZs × o∇F (3.21)where oN is the expression of N in objet frame {Ro}. Sine oN is orthogonal to the planeformed by Z and ∇F wherein vetor oṖ is lying, the two vetors oN and oṖ are onsequentlylearly orthogonal. This an be formulated by:

oN⊤ oṖ = 0 (3.22)whih represents the seond onstraint on the diretion of vetor veloity oṖ.
3.5.3 Virtual point velocityAfter having established two onstraints given by the relationships (3.20) and (3.22), imagepoint veloity (ẋ, ẏ) an �nally be related as funtion of probe veloity v. The previouslyobtained relationship of the image point veloity (3.16) is a system of three salar equa-tions with �ve salar unknowns sṖ = (ẋ, ẏ, 0) and oṖ = (oẋ, oẏ, oż). Thanks to the twoonstraints (3.20) and (3.22), whih represent two salar relationships, the whole numberof equations is raised to �ve salar relationships, thus equalizing the number of unknowns,and therefore yielding to a unique solution of this relationships system.Firstly, going bak to the relationship (3.16), it an be written:

sR⊤
o

sṖ = −sR⊤
o v + sR⊤

o [sP]× ω + oṖ (3.23)



3.5. IMAGE POINT VELOCITY MODELING 74

Multiplying it one by o∇F⊤ and then by oN⊤, we obtain after realling the onstraints(3.20) and (3.22):
{

o∇F⊤ sR⊤
o

sṖ = −o∇F⊤ sR⊤
o v + o∇F⊤ sR⊤

o [sP]× ω

oN⊤ sR⊤
o

sṖ = −oN⊤ sR⊤
o v + oN⊤ sR⊤

o [sP]× ω

(3.24)Expressions s∇F and sN of respetively vetors ∇F and N in probe frame {Rs} an beobtained by:
{

s∇F = sRo
o∇F

sN = sRo
oN = sZs × s∇F

(3.25)Replaing the above relationships in (3.24), we have:
{

s∇F⊤ sṖ = − s∇F⊤
v + s∇F⊤ [sP]× ω

sN⊤ sṖ = − sN⊤
v + sN⊤ [sP]× ω

(3.26)that represents a system of two salar equations with two salar unknowns ẋ and ẏ, whihyields to the unique following solution:
{

ẋ = −vx −Kx vz − y Kx ωx + xKx ωy + y ωz

ẏ = −vy −Ky vz − y Ky ωx + xKy ωy − xωz
(3.27)with:

{

Kx = fx fz /
(

f2
x + f2

y

)

Ky = fy fz /
(

f2
x + f2

y

) (3.28)suh that s∇F = ( fx, fy, fz ).
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The �nal obtained relationship (3.27) relates the image veloity of points lying on the imageontour as funtion of the probe veloity.The jaobian matrix Lx is �nally derived from (3.27) as follows:
Lx =

[

−1 0 −Kx −y Kx xKx y

0 −1 −Ky −y Ky xKy −x

]

(3.29)We an note that the terms relating probe-in-plane motions (vx, vy, ωz) require only theimage oordinates (x, y) of the onsidered point lying on the image ontour, while the termsrelating out-of-plane motions (vz, ωx, ωy) require also the knowledge of normal vetor s∇Fexpressed in probe frame {Rs}. Note also that this jaobian is not a�eted by the ampli-tude of s∇F, but only its diretion. This an be dedued sine its the ase for the twoonstraints (3.20) and (3.22) used to derive Lx. Indeed, those two relationships employ onlythe diretion of s∇F to onstrain oṖ. An easy way to verify this, is that if the amplitudeof s∇F is varied, oe�ients Kx and Ky remain unhanged.This �rst result we obtained above is now exploited to develop the relationship of imagemoment time variation ṁij as funtion of probe veloity v, as was introdued and desribedby (3.2). This is presented in the following setion.
3.6 Image moments time variation modelingThe modeling objetive is now to relate time variation ṁij of image moment mij as funtionof probe veloity v aording to the linear relationship (3.5). To do that, we go bak torelationship (3.8). However, that relationship is funtion of image veloity of the wholepoints lying in image setion S. It requires therefore the relationship of that image veloity.In the previous setion, the image veloity we modeled is nevertheless that of points lyingonly on the image ontour C, and not that of the whole setion points. Consequently, therelationship (3.8) an not be used as is. It requires instead to be formulated as funtionof the image veloity (ẋ, ẏ) of only the points lying on setion's ontour C. This an beperformed thanks to the Green's theorem [73℄.The Green's theorem states indeed a relationship between a line integral around a simple
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losed urve and a double integral over a planar region bounded by that urve. This istherefore equivalent to our ase, where the planar region orresponds to image setion Sand its bounding urve to ontour C. Considering two salar funtions Fx and Fy, theGreen's theorem is given by:
∮

C
Fx dx+

∮

C
Fy dy =

∫ ∫

S

(

∂Fy

∂x
− ∂Fx

∂y

)

dx dy (3.30)This formula an thus be used to express (3.8), whih is formulated as a double integralover setion S, in a form of a line integral around ontour C. Identifying the seond term of(3.8) to the seond term of (3.30), we diretly dedue Fx = −ẏ f(x, y) and Fy = ẋ f(x, y).Replaing this result in the �rst term of the formula (3.30), the image moment time varia-tion is then expressed as a line integral around C as follows:
ṁij = −

∮

C
[ f(x, y) ẏ ] dx+

∮

C
[ f(x, y) ẋ ] dy (3.31)whih is funtion of image veloity (ẋ, ẏ) of points lying only on ontour C. We an thereforediretly use the previous result of the image veloity of ontour points (3.27) in the aboverelationship. Before doing that, let us express image moment mij also as a line integralaround C.The Green's theorem given by the formula (3.30) in one again employed, but this time on(3.3). Identifying the seond term of the former relationship to the latter one, we an �ndthat (Fx = − 1

j+1 x
i yj+1, Fy = 0) is one solution. Replaing this result in the �rst term of(3.30), we an thus formulate:

mij =
−1

j + 1

∮

C
xi yj+1 dx (3.32)Similarly, we an also �nd that (Fx = 0, Fy = 1
i+1 x

i+1 yj) is another solution. Replaingalso this result in the �rst term of (3.30), we an furthermore formulate mij by:
mij =

1

i+ 1

∮

C
xi+1 yj dy (3.33)
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Finally, replaing the image veloity of ontour points (3.27) in (3.31), then identifyingimage moments aording to (3.32) and (3.33), we obtain the six elements of interationmatrix Lmij
, presented by (3.6), that relates image moment time variation ṁij as funtionof probe veloity v. We obtain:



































mvx = −imi−1,j

mvy = −j mi,j−1

mvz = xmij − ymij

mωx = xmi,j+1 − ymi,j+1

mωy = −xmi+1,j + ymi+1,j

mωz = imi−1,j+1 − j mi+1,j−1

(3.34)

where:
{

xmij =
∮

C x
i yj Ky dx

ymij =
∮

C x
i yj Kx dy

(3.35)We thus have reahed the modeling objetive, onsisting in relating image moment timevariation ṁij as funtion of probe veloity v in a linear form (3.5) as presented in Se-tion 3.4.Similarly to the image point veloity (3.27), we note that elements (mvx, mvy, mωz) of theinteration matrix related to the probe-in-plane motions (vx, vy, ωz) require only informa-tion from the observed image, namely image moments. As for elements (mvz, mωx, mωz)related to the out-of-plane motions (vz, ωx, ωy), however they furthermore neessitate theknowledge of normal vetor s∇F to the objet surfae at eah of the ontour points. Thenormal vetor is in fat enlosed in oe�ients Kx and Ky, of (3.28), involved in the aboverelationship. Note also that the interation matrix is insensitive to s∇F's amplitude, sineit is as suh for jaobian matrix Lx used to derive it, as shown earlier.
3.7 Interpretation for simple shapesIn this setion, the above developed theoretial foundations are applied in order to bevalidated on some simple shapes, like spheres and ylinders.
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Figure 3.14: A 2D ultrasound probe interacting with a spherical object. When it
performs a differential displacements vz along its z axis, the initial value of the image
section radius r(t) changes to the value r(t + dt), (depicted in red).

3.7.1 Spherical objectsConsider the ase where a 2D ultrasound probe interats with a spherial objet. Let R bethe radius of this sphere. Objet frame {Ro} is attahed to the sphere enter. Vetor position
sto thus de�nes in this ase the oordinates of the sphere enter in the probe frame, androtation matrix sRo desribes the orientation of {Ro} with respet to probe frame {Rs} (seeFig. 3.14). We �rst want to derive the orresponding analytial form of interation matrix
Lmij

by applying the general relationship (3.34) we obtained above. Before, we need toderive also the analytial form of oe�ients Kx and Ky involved in the relationship (3.27)of the image point veloity as funtion of probe veloity v, sine these two oe�ients arerequired in the interation matrix formula (3.34). So, we use the general relationship of Kxand Ky given by (3.28), by applying it to this ase.
Image point velocityIn this ase, the relationship (3.17) is satis�ed by any point P lying on the sphere surfae.It is therefore given by:

F (ox,o y,o z) = (ox/R)2 + (oy/R)2 + (oz/R)2 − 1 = 0 (3.36)where we reall that oP = (ox, oy, oz) is a vetor position de�ning the 3-D oordinates of
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point P in objet (sphere) frame {Ro}. It an be expressed as funtion of image oordinates
sP = (x, y, 0) of P as given by (3.9):

oP = sR⊤
o (sP − sto) (3.37)Normal vetor o∇F to the sphere surfae at P is the gradient vetor of salar funtion F ,and thus is given by o∇F = (∂F

∂x ,
∂F
∂y ,

∂F
∂z ). We obviously obtain o∇F = 2

R2

o
P. Replaing

oP with the above relationship, yields:
o∇F =

2

R2
sR⊤

o (sP − sto) (3.38)that we express in {Rs} by multiplying with rotation matrix sRo:
s∇F =

2

R2
sRo

sR⊤
o (sP − sto) (3.39)Sine sRo

sR⊤
o = I, we obtain after realling that sP = (x, y, 0) and that sto = (tx, ty, tz)(Setion 3.5, pp. 63):

s∇F = 2
R2 (sP − sto)

= 2
R2 (x− tx, y − ty, − tz)

⊤ (3.40)Replaing this result in the relationship (3.28) of the oe�ients Kx and Ky, yields:
{

Kx = −tz (x− tx)/
(

(x− tx)2 + (y − ty)
2
)

Ky = −tz (y − ty)/
(

(x− tx)2 + (y − ty)
2
) (3.41)The above relationship an in fat be expressed in a more simple and appropriate form.We �rst formulate (3.36) as follows:

F (ox, oy, oz) = oP⊤ oP −R2 = 0 (3.42)



3.7. INTERPRETATION FOR SIMPLE SHAPES 80

Substituting oP aording to (3.37) and realling that sRo
sR⊤

o = I, the equation (3.42)beomes:
(sP − sto)

⊤ (sP − sto) −R2 = 0 (3.43)then replaing sP and sto with their respetive expressions yields:
(x− tx)2 + (y − ty)

2 + t2z −R2 = 0 (3.44)The above relationship states that the intersetion of a planar beam with a sphere is a disk(or a irle if the spherial objet is hollow) of radius r =
√

R2 − t2z and of enter oordi-nates (tx, ty) in the image.Let a be the area of setion S in the image. In this ase it represents the area of the diskregion (or of the region surrounded by the irle if the objet is hollow). It is therefore givenby a = π r2 = π (R2 − t2z). Substituting (x − tx)2 + (y − ty)
2 aording to (3.44) in (3.41)and taking into aount the expression of the area a, we �nally obtain the expressions of

Kx and Ky in the ase of a spherial objet as follows:
{

Kx = −π tz (x− tx)/a

Ky = −π tz (y − ty)/a
(3.45)We an note that the image point veloity, from its parameters Kx and Ky obtained above,does not require rotation matrix sRo between the objet and the probe frames. This anbe explained by the fat that a sphere does not possess any orientation in the 3-D spae.

Interaction MatrixThe three elements (mvz
, mωx

, mωy
), of the interation matrix Lmij , that relate imagemoment time variation ṁij as funtion of the probe out-of-plane motions (vz, ωx, ωy) areformulated by (3.34) for a general ase. We want to obtain their spei� and simple formin the ase of a spherial objet. We use the simple form of the oe�ients Kx and Kygiven by (3.45), derived for the sphere ase. These two oe�ients are involved in thosethree elements of the interation matrix. The three other elements (mvx

, mvy
, mωz

), of the
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interation matrix, that relate the in-plane motions are already given by (3.34) in a simpleand appropriate form, sine they are funtion of only the image moments. Replaing (3.45)in (3.35), we have:
{

xmij = πtz [(j + 1)mij − j ty mi,j−1] /a
ymij = πtz [−(i+ 1)mij + i txmi−1,j ] /a

(3.46)and then obtain the term involved in the three elements (mvz
, mωx

, mωy
) of Lmij

, as follows:
xmij − ymij =

π tz
a

[(i+ j + 2)mij − itxmi−1,j − jty mi,j−1] (3.47)As introdued, image moments an desribe the on�guration of a setion in the image.Sine this ase onerns an interation with a spherial objet, the observed setion in theimage is a disk or irle. Consequently, the on�guration in the image of suh setionan be desribed just with three parameters that obviously are: the area a and the imageoordinates (xg, yg) of the gravity enter of the setion. These three parameters an beexpressed in terms of image moments as follows (e. g., [40℄):










a = m00

xg = m10/m00

yg = m01/m00

(3.48)The interation matries that relate the time variation of a, xg and yg an be obtained byapplying the relationship of image moment time variation ṁij given by (3.34), and thenusing the result (3.47) we obtained for the ase of a spherial objet. We denote, even in ageneral ase, these three matries by La, Lxg
, and Lyg

referring respetively to a, xg, and
yg. They are obtained as follows:

La = [ 0 0 avz aωx aωy 0 ]

Lxg
= [ −1 0 xgvz

xgωx
xgωy

yg ]

Lyg
= [ 0 −1 ygvz

ygωx
ygωy

−xg ]

(3.49)with:
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avz = 2π tz
aωx = π tz ( 3 yg − ty)

aωy = −π tz ( 3xg − tx)

xgvz
= π tz/a (xg − tx)

xgωx
= π tz/a [ 4n11 − yg (tx + 3xg) ]

xgωy
= π tz/a [ −4n20 + xg (tx + 3xg) ]

ygvz
= π tz/a ( yg − ty)

ygωx
= π tz/a [ 4n02 − yg (ty + 3 yg) ]

ygωy
= π tz/a [ −4n11 + xg (ty + 3 yg) ]

(3.50)

where:
nij = mij/a (3.51)The elements of these interation matries that are related to the out-of-plane motions anbe expressed in more simple form. We an indeed �rst notie that sine (tx, ty) representthe enter of the disk (or irle), as onluded from the relationship (3.44), they are thereforenothing but the gravity enter (xg, yg) of the setion in the image, i. e., (tx = xg, ty = yg).We show in Appendix B.2 that the entities n20, n11, and n02, involved in (3.50), also anbe expressed in a more simple form.Finally, we obtain a more simple form of La, Lxg

and Lyg
in ase of a spherial objet, by re-plaing (B.30), (B.25), and (B.20) in (3.50), and realling that (tx = xg, ty = yg), as follows:

La = 2π tz [ 0 0 1 yg −xg 0 ]

Lxg
= [ −1 0 0 0 −tz yg ]

Lyg
= [ 0 −1 0 tz 0 −xg ]

(3.52)These matries depend only of the gravity enter image oordinates (xg, yg), and elevation
tz of the sphere enter with respet to the probe frame.
VerificationIn ase the probe performs a motion along its axis Z, we an alulate time variation ȧof area a with another method di�erent from the general one of this thesis. This allows
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us to hek the identialness of the two methods respetive results, and thus to verify theorretness and the validity of the developed theoretial foundations of this thesis whenapplied to this ase. The probe veloity is, in this ase, v = (0, 0 , vz, 0, 0, 0), sine onlya translational motion along Z is performed. The element of the interation matrix (3.52)involved in suh motions is avz
, obtained equal to 2π tz. Assuming suh probe motions, thisoe�ient is alulated below with another method. Note however that the result that weobtain would be still valid for the ase where all the probe motions are applied.Let h be the elevation of the probe frame from the sphere origin (see Fig. 3.14). It istherefore nothing but h = −tz, where we reall that sto = (tx, ty, tz) is the vetor positionde�ning the oordinates of the origin of frame {Ro} in probe frame {Rs}. Sine vetor Z of

{Rs} is orthogonal to the probe observation plane, sphere radius R thus an be expressedas funtion of elevation h and radius r of the setion in the image (see again Fig. 3.14) asfollows:
R2 = r2 + h2 (3.53)that we derivate with respet to time t, as follows:
RṘ = r ṙ + h ḣ (3.54)The sphere radius is onstant and thus its time derivative Ṙ is null, i. e., Ṙ = 0. Sine hrepresents the elevation it is lear that ḣ = vz. We thus have from (3.54) after realling that

h = −tz:
rṙ = −h vz = tz vz (3.55)Sine the image ross-setion is a disk (or a irle), area a of the region it overs is given by

a = π r2. Time derivating a yields:
ȧ = 2π r ṙ (3.56)Finally replaing r ṙ with its expression (3.55), we obtain
ȧ = 2π tz vz (3.57)and thus:
avz

= 2π tz (3.58)This result is idential to that previously obtained (3.52) with the general modeling ap-proah. This onsequently theoretially validates the general modeling tehnique of this
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thesis, when applied to the ase of spherial objet, onerning the element involved in theprobe motion along its Z axis.
3.7.2 Cylindrical objectsConsider now the ase where a 2D ultrasound probe interats with a ylindrial objet(see Fig. 3.15). When the probe performs translational motions along its Z axis, that is
v = (0, 0 , vz, 0, 0, 0), image setion area a learly does not vary. This means that,even in a general ase, the oe�ient avz

that relates time variation ȧ of a to probe veloity(ȧ = avz
vz) is null (avz

= 0). We want to verify that, by using the general result (3.34) weobtained, and applying it on this ase, we an indeed retrieve that expeted result, that is
avz

= 0. This is shown in what follows.The oe�ient avz
orresponds to the element mvz

of the formula (3.34), for i = j = 0 sine
a = m00. It is thus expressed as follows:

avz
= mvz

= xm00 − ym00 (3.59)using (3.35) yields:
avz

=

∮

C
Ky dx−

∮

C
Kx dy (3.60)then substituting Kx and Ky with their respetive expressions given by (3.28), we have:

avz
=

∮

C

fy fz

f2
x + f2

y

dx−
∮

C

fx fz

f2
x + f2

y

dy (3.61)where we reall that s∇F = (fx, fy, fz) represents the normal to the objet surfae (theylindrial surfae in this ase) at point P.The previous relationship (3.17) represents a onstraint satis�ed by any point lying onthe surfae of a general objet. When the objet is ylinder-shaped, as in this ase, it isformulated as follows:
F (ox,o y, oz) = (ox/a1)

2 + (oy/a2)
2 − 1 = 0 (3.62)
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Figure 3.15: A 2D US probe interacting with a cylinder-shaped object. The probe
performed an out-of-plane motion with velocity vz during ∆t time span.where a1 and a2 represent the half length values of the ylindrial objet main axes (seeFig. 3.15). We reall that vetor position oP = (ox, oy, oz) represents the 3-D oordinatesof point P in the objet frame, and sP = (x, y, 0) its image oordinates. From the aboverelationship, we an set the following hange of oordinates:

{

ox = a1Cθ
oy = a2 Sθ

; 0 6 θ < 2π (3.63)with Cθ = cos(θ) and Sθ = sin(θ), suh that θ represents the angle in the image.Normal vetor o∇F expressed in {Ro} an be derived from funtion F , given by (3.62), as
o∇F = ( ∂F

∂ox ,
∂F
∂oy ,

∂F
∂oz , ). We thus have:

o∇F =







2 ox/a2
1

2 oy/a2
2

0






(3.64)substituting ox and oy with their respetive expressions (3.63) as funtion of angle θ, yields:

o∇F = 2







Cθ/a1

Sθ/a2

0






(3.65)that an be expressed in probe frame {Rs} by multiplying with rotation matrix sRo:
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s∇F = 2 sRo







Cθ/a1

Sθ/a2

0






(3.66)Coe�ient avz

, whih is formulated in (3.61) as a line integral around image ontour C, anbe expressed as an integral over angle θ as follows:
avz

=

∫ 2π

0

fz

f2
x + f2

y

(fy
dx

dθ
− fx

dy

dθ
) dθ (3.67)From (3.63) and using the relationship (3.9), image oordinates sP = (x, y, 0) an be ex-pressed as funtion of angle θ. After denoting rkl the elements of the rotation matrix suhthat rkl = sRo(k, l), the derivative of x and y with respet to θ are:



















dx/dθ = − a1(r11 − r13/r33 r31)Sθ

+ a2(r12 − r13/r33 r32)Cθ

dy/dθ = − a1(r21 − r23/r33 r31)Sθ

+ a2(r22 − r23/r33 r32)Cθ

(3.68)replaing this in (3.67), we have:
avz

=

∫ 2π

0

(ǫ1Cθ
2 + ǫ2Cθ Sθ + ǫ3 Sθ

2)(ǫ4Cθ + ǫ5 Sθ)

ǫ6Cθ2 + ǫ7Cθ Sθ + ǫ8 Sθ2
dθ (3.69)where ǫk|k=1..8

are 3D parameters suh that ǫk = ǫk(
sRo, a1, a2). We then obtain:

avz
=

[

σ0
∑

ri
ψi(ri) ln(tan(θ/2) − ri) +

∑

σk
σk tan(θ/2)/[tan(θ/2)2 + 1]

]2 π

0

(3.70)where σk are also 3-D parameters, suh that σk = σk(
sRo, a1, a2). The entity ψi is a salarfuntion of the salar ri, where ri|i represent the roots of the polynomial ǫ6 r4 − 2 ǫ7 r

3 +

2 (−ǫ6 + 2ǫ8)r
2 + 2 ǫ7 r + ǫ6. Consequently, ri is funtion of only a1, a2 and sRo, i. e.,

ri = ri(
sRo, a1, a2). Therefore, in ontrast to the entities ψi, ri, and σk, only tan(θ) isfuntion of the angle θ.Finally, sine tan(0) = tan(π) = 0, we easily obtain from (3.70) that avz

= 0. This resultwe obtained by applying the general relationship (3.34) on the ase of a ylindrial objetexatly orresponds to that expeted above.
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Figure 3.16: A 2D ultrasound probe interacting with a 3D straight line-shaped wire
(left). The observed point P in the image is sketched on the right. It velocity oṖ in
the 3-D space is shown in red. Note that its orientation is arbitrarily set. It could
either as depicted or in the inverse direction, depending on the probe motions.

3.7.3 Interaction with a 3D straight lineThe modeling tehnique we proposed in this thesis an also be applied to the ase where a2D ultrasound probe interats with 3D straight line-shaped wire (see Fig. 3.16), althoughsuh a geometrial primitive does not orrespond to a losed volume. The intersetion of theprobe plane with the wire results in a point P in the image, instead of a setion in the image.Sine we deal with only one image point the onept of image moments seems not relevant tothis ase. We onsider therefore only the modeling of the image veloity sṖ = (ẋ, ẏ, 0) of P.Let 3-D vetor u represent the orientation of that 3-D straight line, denoted D. We takebak the relationship (3.16) in order to model the image point veloity. Its is lear thatpoint P slides on D. Consequently, vetor 3-D veloity oṖ of P and vetor u of D areollinear. It is well known that the vetor ross-produt of two ollinear vetors is null, andthus we have:
ou × oṖ = 0 (3.71)where ou is the expression of u in the objet frame. The above onstraint an be expressedin probe frame {Rs} instead of {Ro} by multiplying with sRo. We thus have:
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( sRo
ou ) × ( sRo

oṖ ) = 0

⇔ su × ( sRo
oṖ ) = 0

⇔ [su]×
sRo

oṖ = 0

(3.72)Going bak to the relationship (3.16) and multiplying it by [su]×, we have:
[su]×

sṖ = − [su]× v + [su]× [sP]× ω + [su]×
sRo

oṖ (3.73)taking then into aount the onstraint (3.72), yields:
[su]×

sṖ = − [su]× v + [su]× [sP]× ω (3.74)sine [su]× is a skew symmetri matrix, its rank is equal to two (rank([su]×) = 2), whihrepresents the number of independent equations at the left of the above system. Thereforethe number of independent equations is equal to the number of unknowns sṖ = (ẋ, ẏ, 0),whih �nally leads to the unique following solution (ẋ, ẏ):
(

ẋ

ẏ

)

=

[

−1 0 ux

uz

0 −1 uy

uz

]

v +

[

ux

uz
y − ux

uz
x y

uy

uz
y − uy

uz
x − x

]

ω (3.75)This result we obtain is idential to that given in [44℄.
3.8 ConclusionIn this hapter we have modeled the exat analytial form (3.34) of the interation matrixthat relates the image moments time variation to the veloity of a 2D ultrasound probearried by a general 6 DOFs robot arm. To do that, we have developed new theoretialfoundations that analytially states the image points veloity as funtion of the probe ve-loity, as given by (3.27). We reall that the image veloity was modeled for the pointslying only on the image ontour, that we denoted C, and not for all the points lying onthe whole image setion, that we denoted S. Thanks to the Green's theorem, the image
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moments time variation was formulated as funtion of only the image ontour points, whosedeveloped image veloity relationship was used to analytial derive that of image momentstime variation. The obtained relationships represent the interation matrix Lmij
. We notedthat three elements of the interation matrix that relate the probe-in-plane motions requireinformation only from the observed image, that are image moments. In ontrast, the remain-ing three elements that relate the probe-out-of-plane motions also require the knowledge ofnormal vetor ∇F to the objet surfae at eah of the ontour points. Finally, the modelingmethod we proposed is valid for general shaped objets.We tested this general result in the ase where a 2D ultrasound probe is interating with aspherial objet, a ylindrial objet, or a 3-D straight line-shaped wire. We have obtained asimpli�ed form (3.52) of the interation matrix for the ase of the spherial objet. Moreover,we have theoretially validated the orretness of an element that relate the area timevariation to probe veloity. This was ahieved by alulating that element with anothermodeling approah, suitable for that ase. Applying the general method on ylindrialobjets, we have found that an element, of the interation matrix, that relates the imagearea time variation to the probe veloity, is null. This theoretial result also validates themodeling approah of this thesis.





Chapter 4

Normal vector on-line estimationIn the previous hapter we have modeled the analytial form of the interation matrix (3.34)that relates the image moments time variation to the probe veloity. It was noted that thenormal vetor to the surfae of the observed objet, at eah point lying on the ontour ofthe image setion, appears in this matrix. This normal vetor ould be derived if a pre-operative 3-D model of the objet is available. That would also neessitate a di�ult step toloalize the objet frame with respet to the sensor frame (the probe frame in this ase). Inthis hapter, we propose e�ient methods to estimate on-line the normal vetor, and thusbypass and overome those limitations imposed by any pre-operative model. These meth-ods an valuably endow the roboti system with the apability of automatially interatingwith objets without any prior knowledge of their shape, 3-D parameters, nor their 3-Dloation (pose). They are disriminated aording to the geometrial primitives onsideredto estimate the normal vetor. We propose to separately use straight line, urved line, andquadri surfae primitives.Let point P lie in the 2D ultrasound image. More partiularly, let this point belong toontour C of image setion S. Consequently, this point lies on the surfae of observed objet
O. The objetive is in fat to obtain the vetor normal to the objet surfae at point P (seeFig. 4.1). We already denoted this vetor by ∇F in the previous hapter.
4.1 On-line estimation methods based on linesLet vetor di be tangent to the objet surfae at onsidered point P, suh that it belongsto the probe beam (image), as an be seen on Fig. 4.1. Let vetor dt be also tangent to theobjet surfae at P but, in ontrast to di, it does not lie in the probe observation plane.Therefore, performing the vetor ross-produt on these two vetors learly gives vetor ∇F
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Figure 4.1: Normal vector to the object surface, along with two tangent vectors di

and dt, at point P.(see Fig. 4.1). This is formulated as follows:
s∇F = sdi × sdt (4.1)where s∇F, sdi, and sdt are the expressions in probe frame {Rs} of vetors ∇F, di, and dt,respetively. Note that we are interested only in the diretion of s∇F, not its amplitude.Indeed, the interation matrix is not a�eted by the amplitude of s∇F but only its diretion,as already shown in Chapter 3. This said, we an set s∇F to a unitary vetor.Sine vetor sdi lies in the probe observation plane and is, moreover, expressed in the probeframe, it an be extrated from the observed 2D ultrasound image. It is however not the asefor vetor sdt. Indeed, this vetor does not lie in the probe observation plane, and thereforean not be extrated from solely the observed image. We need therefore to estimate sdt inorder to obtain s∇F. Suh an estimation seems e�ient sine we do not have to estimatein whole the normal vetor but only a part of it, whih is vetor sdt, sine its seond part,vetor sdi, is already available. In this setion, we present two methods to estimate sdt.The priniple onsists in making use of the suessive aquired 2D ultrasound images toestimate 3-D lines that are tangent to the surfae of the observed objet. The estimationis performed for eah point of the image ontour. It is subsequently used to extrat anestimate of vetor sdt, tangent at eah of those points. As presented in what follows, the�rst method is based on the estimation of 3-D straight lines, while the seond method, even
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Figure 4.2: Straight line tangent to the object surface at point P.if it has the same onept as the �rst one, is based on estimating 3-D urved lines. Notethat the methods are desribed for estimating sdt at one point P, but the same priniple isapplied for all the other image ontour points; sine the interation matrix requires s∇F ateah of the ontour points.
4.1.1 Straight line-based estimation methodLet 3-D straight line D be tangent to the objet surfae at point P (see Fig. 4.2). It isassumed not lying within the probe observation plane. Sine both D and dt are tangent tothe objet surfae and do not lie within the image plane, we an set that the diretion of
D in nothing but vetor dt we want to estimate, as shown in Fig. 4.2. We thus propose inthis setion to estimate D, from whih we then infer sdt.Consider that the probe is performing out-of-plane motions while at same time aquiringsuessive 2D ultrasound images of the onsidered objet. From eah of the aquired images,ontour C is extrated. Suh ontour is subsampled in a set of L points (P1, · · · ,PL) lyingon it. We denote suh set by Cp. � In pratie, we use around L =400 image points toharaterize the ontour. � Within the image, these points are arranged suh that the �rstpoint P1 intersets the X axis of image frame entered on setion S. The remaining pointsare suessively loated by traveling around C in ounterlokwise diretion, as depited inFig. 4.3. We an onsider Cp as a vetor whose elements are those ontour points. Point
P orresponds to element Pi of Cp. Let point P(t) lie on image ontour C(t) at time t,
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Figure 4.3: Arrangement of image contour points in a set Cp = [P1,P2, · · · ,PL].
The first point P1 intersects the X axis of the frame centered on image section S.
The image 2D cartesian frame is indicated with its (X, Y ) axes (bottom left).and P(t+ dt) lie on subsequent ontour C(t+ dt), extrated after the probe had performeda di�erential out-of-plane motion during a duration dt (see Fig. 4.4). Elements P(t) and
P(t + dt) have the same index in their respetive sets Cp(t) and CP(t + dt) (i. e., P(t)orresponds to a point Pi of set Cp(t), and P(t + dt) to a point Pi of Cp(t + dt), wheresubsript i is their ommon index). Note that we assume that number L of points extratedfrom eah of the suessive images is onstant all along the estimation. A straight line thatpasses through these two points P(t) and P(t + dt) is therefore tangent to the surfae ofthe observed objet. Suh straight line thus orresponds to D that we want to estimate(see Fig. 4.4). Theoretially, two points are enough to estimate D. This however is notthe ase in pratie due to di�erent fators. Indeed, due to measurement perturbations,as instane, the reorded points ould be either too lose to eah other or, inversely, mis-aligned. Either on�guration would lead to a wrong estimation of D. That is the reasonwhy we use in the estimation more points; respetively extrated from the suessive images.Considering suessively extrated points from the sueeding aquired images, where thesepoints have a same index in their respetive set CP, the estimation priniple then onsistsin �tting them with straight line D. The latest extrated point orresponds to P, at whih
D should be tangent to the objet surfae. To do so, the estimation is also performed byassigning di�erent weights to the extrated points, suh that the urrent (new) point P is
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Figure 4.4: Image contour 3D evolution with a corresponding tangent straight line
D. In the 3-D space, the contour lies on the surface of the observed object. Contour
C(t) is extracted from the ultrasound image at time t, while C(t + dt) is extracted
at time t + dt after the probe had performed an out-of-plane motion. Contour’s first
point P1 at time t and that at time t + dt are indicated. They correspond to the
intersection of X axis of the centered image frame with the contour, respectively at
time t and at time t + dt. The X axis of time t is denoted X[t], while that of time
t + dt is denoted X[t+dt].assigned with the highest weight; the values of the di�erent assigned weights are arrangedin a dereasing fashion. In fat, eah new extrated point, along with its assigned highestweight, updates the estimation of D in suh a way this latter adjusts its orientation tobeome tangent to the objet surfae at P (see Fig. 4.5). In other words, onsider the twosuessive points P[k−1] and P[k] respetively aquired at the preedent sample time k − 1and the urrent one k (note that k refers to time t in the disrete domain). At time k−1, Dis onsidered already estimated to be tangent to the surfae at P[k−1]. The objetive is tore-estimate D in suh a way it beomes tangent at P[k]. The latter, along with its assignedhighest weight, leads D adjusting its orientation to beome tangent to the surfae at P[k].Let {Ri} be a 3-D artesian frame in whih D is estimated (see Fig. 4.2). It orrespondsto initial probe frame {Rs(t0)}. Let point h lie on D (see Fig. 4.2). Its expression in {Ri}is ih. A point P that lies on D satis�es the following relationship:

(

ih − iP
)

× idt = 0 (4.2)
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where iP = (ix, iy, iz) and idt = (dx, dy, dz) are the expressions of respetively P and dtin frame {Ri}. 3-D oordinates vetor iP is obtained from image oordinates sP = (x, y, 0)using the robot odometry, aording to the lassial relationship (A.9) by iP = sR⊤
i ( sP −

sti). Rotation matrix sRi and translation vetor sti are obtained from the robot odometry.They de�ne respetively the orientation and the origin of {Ri} with respet to {Rs}. Theabove relationship an be formulated in its minimal form as follows:
{

ix = η1
iz + η0

iy = τ1
iz + τ0

(4.3)where η1 = dx/dz and τ1 = dy/dz are 3-D parameters representing the orientation of D.The elements η0 and τ0 are also 3D parameters, but are moreover related to the loation of
D sine they are funtion of both idt and iP0. Vetor idt an be expressed as:

idt = dz







dx/dz

dy/dz

1






= dz







η1

τ1
1






(4.4)The diretion of a vetor ross-produt, as that of the relationship (4.1), is a�eted solelyby the diretion of the vetors and not their amplitude. Therefore, we only need to estimatethe diretion of dt. This omes to estimate parameters η1 and τ1 sine they represent itsorientation, as an be seen from the above relationship. The model used for the estima-tion is the relationship (4.3), where oordinates (ix, iy, iz) are the input information while

Θ = (η1, τ1, η0, τ0) is the vetor to estimate.The system (4.3) an be formulated as follows:
Y = Φ⊤Θ (4.5)where

Y = (ix, iy) and Φ⊤ =

(

iz 0 1 0

0 iz 0 1

)

(4.6)We propose to use a stabilized reursive least-squares algorithm [43℄. The priniple onsistsin �nding an estimate Θ̂ of vetor Θ that minimizes the following quadri sum J(Θ̂[k]) ofthe residual errors:
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Figure 4.5: Evolution of estimated 3-D straight line for the case a 2D ultrasound
probe is interacting with a spherical object. (a) Upper sight showing point P lying
on the sphere surface, both being observed by the probe planar beam - (b) Transverse
sight: the probe is performing an out-of-plane motion by moving along its Z axis,
while at the same time straight line D continually adjusts its orientation to remain
tangent to the sphere surface at P.
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J(Θ̂[k]) =
k
∑

i=t0

β(i−t0) (Y[i] − Φ⊤
[i] Θ̂[i])

⊤ (Y[i] − Φ⊤
[i] Θ̂[i]) (4.7)where Θ̂[i] is the estimate and (Y[i], Φ[i]) are the measures at sample time i. The salar

β ∈]0, 1] is a forgetting fator assigned to the estimation errors Y[i] − Φ⊤
[i] Θ̂[i]. It isemployed to give highest weights to the newly reorded measures. Vetor Θ̂[k] minimizing

J is expressed in a reursive form as funtion of the urrent measures (Y[k], Φ[k]) and thepreedent estimate Θ̂[k−1], as follows [43℄:
Θ̂[k] = Θ̂[k−1] + F[k] Φ[k]

(

Y[k] − Φ⊤
[k] Θ̂[k−1]

)

(4.8)where F[k] represents the ovariane matrix at time k. It is given by the following relation-ship, also reursive:
F−1

[k] = β F−1
[k−1] + Φ[k] Φ

⊤
[k] + (1 − β) β0 I4 (4.9)where I4 is the 4 × 4 identity matrix. Its dimension refers to the four parameters of Θto estimate. The term (1 − β) β0 I4 orresponds to a stabilization element. It is added inorder to prevent the matrix F−1

[t] beoming ill-onditioned. The latter might our whenthere is not enough exitation in the input information (Y, Φ). This is mainly aused bylak of probe out-of-plane motions. The algorithm is initialized by setting F[t0] = f0 I4, with
f0 ∈]0, 1/β0], and Θ[t0] = Θ0, where Θ0 might be arbitrarily seleted. However, in orderto obtain initial estimate Θ0 that is expeted loser to the atual parameters Θ and thusyielding the estimation more faster, we use another di�erent algorithm to estimate Θ0 aspresented in Setion 4.3.Then, estimate id̂t of tangent vetor idt an be derived after obtaining estimate Θ̂ =

(η̂1, τ̂1, η̂0, τ̂0) and replaing the �rst two parameters (η̂1, τ̂1) in (4.4). We an obtain itas an unitary vetor as follows:
id̂t = (η̂1, τ̂1, 1)/‖(η̂1, τ̂1, 1)‖ (4.10)
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Its expression sd̂t in the probe frame an be obtained using the rotation matrix sRi. Asalready said, this matrix is obtained using the robot odometry. Thus, the estimate sd̂t of
sdt is obtained as follows:

sd̂t = sRi
id̂t (4.11)Finally, replaing this result in the relationship (4.1), normal vetor s∇F is estimated.Reall that the estimation method we presented in this setion is desribed to estimatethe normal vetor for only one point P lying on image ontour C. It is in fat applied forall the points extrated from the ontour.

4.1.2 Curved line-based estimation methodAlthough the above presented method of using 3-D straight lines to estimate the tangentvetor presents some advantages as the shortened proessing time, sine only four param-eters are estimated, it however heavily relies on the assigned weights as means to adjustthe orientation of the straight line, in suh a way this latter beomes tangent to the objetsurfae. To improve this, we present in this setion an estimation method based on 3-Durved lines instead of straight ones (see Fig. 4.6). This has the advantage to deal moree�etively with the urvature of the observed objet, if urvature there is. Tangent vetor
dt to the objet surfae an then be simply obtained as the tangent to the estimated urve.Let K denote the tangent urve to estimate. Its analytial model, stating the onstraintthat any point P lying on it must satisfy, an be formulated as follows:

{

ix = η2
iz2 + η1

iz + η0
iy = τ2

iz2 + τ1
iz + τ0

(4.12)where iP = (ix, iy, iz) is the expression of point P in frame {Ri}. Elements ηp|p=0,2
and

τq|q=0,2
are 3-D parameters representing the shape of K.Sine K is onsidered tangent to the objet surfae at P, its tangent vetor at that point isnothing but vetor dt we want to estimate. We an formulate suh vetor by:
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Figure 4.6: Curved line K tangent to the object surface at point P.

idt =







∂ ix/∂ iz

∂ iy/∂ iz

∂ iz/∂ iz






=







∂ ix/∂ iz

∂ iy/∂ iz

1






(4.13)Applying this on the relationship (4.12), the tangent vetor is expressed as follows:

idt =







2 η2
iz + η1

2 τ2
iz + τ1
1






(4.14)Coordinate iz of P is onsidered available, after the point would have been extrated fromthe image and then expressed in frame {Ri} thanks to the robot odometry. We there-fore need to obtain an estimate of the parameters (η2, τ2, η1, τ1) whih then would yieldthat of dt. The model on whih the estimation is based is that given by (4.12), whihexpresses the onstraint satis�ed by any point lying on K. The input information feed-ing the estimation are oordinates (ix, iy, iz), while the parameters vetor to estimate is

Θ = (η2, τ2, η1, τ1, η0, τ0). The urve model (4.12) an then be re-formulated in anexpression as that of (4.5), but with:
Y =

[

ix
iy

] and Φ⊤ =

[

iz2 0 iz 0 1 0

0 iz2 0 iz 0 1

]

(4.15)
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dt

C(t)

P(t)
P(t + dt)

P1 at t

C(t + dt)

X[t+dt]

X[t]

P1 at t + dt K

di

Figure 4.7: Contour 3-D evolution with its tangent curve.

We propose to use again the stabilized least-squares reursive algorithm [43℄ to perform theestimation. It has already been introdued in Setion 4.1.1, where estimate Θ̂[k] of Θ aturrent sample time k is given by the reursive expression (4.8), but ovariane matrix F[k]at time k is now given by the following reursive expression:
F−1

[k] = β F−1
[k−1] + Φ[k] Φ

⊤
[k] + (1 − β) β0 I6 (4.16)where the 6× 6 identity matrix I6 is employed, instead of I4 used in (4.9), sine in this asethe size of parameters vetor Θ beomes equal to six.The estimation priniple is similar to that of the straight line ase. Eah new extratedpoint updates the algorithm with its oordinates involved in the input variables Y and Φ.In this ase, in fat, urve K has to �t points extrated from the suessive aquired images(see Fig. 4.7). These points have a same index in their orresponding set CP, similarlyas for the straight line estimation. A forgetting fator β is used to infer di�erent weightsassigned to these extrated points in suh a way to take more into aount the reentlyextrated points. This has the advantage to perform a loal estimation, and thus yieldingthe estimation more aurate and robust, sine K is restrained to �t only a loal surfae (seeFig. 4.8). Indeed, more β is smaller, for example, less previous points are taken into aountin the estimation. The e�et is like that of an estimation performed over a window of datainformation, thus allowing the urve more adapting to the objet surfae and sparing it the
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P

K at time t2

K at time t1 < t2

P

Figure 4.8: Transverse sight showing the evolution of the estimated 3-D curved line K
at point P, for the case a 2D ultrasound probe is interacting with a spherical object.
The objective is to estimate K in such a way this latter would be tangent to the
object surface at P. The upper sight is similar to that depicted on Fig. 4.5(a).e�et of far points, that ould ompromise the estimation. Indeed, only one urve mightnot be su�ient to �t both those far points and reent ones.Estimate Θ̂ = (η̂2, τ̂2, η̂1, τ̂1, η̂0, τ̂0) of Θ being obtained, that of idt an then be derivedby replaing the result in (4.14), that we set as a unitary vetor by:

id̂t =







2 η̂2
iz + η̂1

2 τ̂2
iz + τ̂1
1






/

∥

∥

∥

∥

∥

∥

∥

2 η̂2
iz + η̂1

2 τ̂2
iz + τ̂1
1

∥

∥

∥

∥

∥

∥

∥

(4.17)whose expression in {Rs} is derived by sd̂t = sRi
id̂t. Finally, the estimate of normal vetor

∇F is obtained by substituting sdt with its estimate sd̂t in (4.1).
4.2 Quadric surface-based estimation methodIn this setion, we propose to estimate the loal surfae of the onsidered objet and thenuse it to derive an estimate of ∇F.The estimation onsists in �tting a quadri surfae to a loud of points of the objet on-sidered loal surfae, i. e., �tting a quadri to loal surfae of the objet (see Fig. 4.9). Thepoints are obtained from the suessive ontours C extrated from sueeding aquired 2D
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Figure 4.9: Quadric surface Q that, ideally, should exactly fit the local surface sur-
rounding point P. The current observed segment is also shown, where its starting
point P{1} and ending one P{N} are indicated on it. The segment is centered on P.ultrasound images.Let Q be a quadri surfae (see Fig. 4.9). Any point iP = (ix, iy,i z) lying on Q satis�esthe following onstraint:

̥(ix, iy, iz) = γ20
ix2 + γ02

iy2 + γ11
ix iy

+ γ10
ix+ γ01

iy + γ00
iz − 1 = 0

(4.18)where γpq|
p,q=0,2

are 3-D parameters representing the shape of quadri surfae Q.The objetive is to estimate parameters γpq using the loud of points lying on the loalsurfae surrounding point P (see Fig. 4.9). Let P{j}|j=1,N
be points lying on ontour C,suh that P{j} is adjaent to P{j+1} and that P = P{(N+1)/2} (see Fig. 4.9). The set ofpoints P{j}|j=1,N

in fat de�nes a segment that is entered on P. Note that these points,and thus the orresponding segment, are nothing but part of set Cp, previously de�nedin Setion 4.1.1 (see Fig. 4.3). Similarly to the priniple used in the ases of the straightand the urved line, eah two suessive points P{j}[k] and P{j}[k−1], extrated respetivelyfrom the image aquired at time k and that aquired at preedent sample time k − 1, havethe same index in their orresponding vetor Cp. Within their respetive segment, theirposition is indiated with subsript j. The estimation we propose uses the suessively
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aquired segments to estimate quadri Q that best �ts the loud of points extrated fromthose segments. The parameters vetor to estimate is Θ = (γ20, γ02, γ11, γ10, γ01, γ00).Point P{j}[k] is assumed lying on Q, then satis�es the onstraint (4.18), whih an be re-formulated as follows:
Yj = Φ⊤

j Θ (4.19)with :
Yj = 1 and Φ⊤

j =
[

ix2
j ,

iy2
j ,

ixj×iyj ,
ixj ,

iyj ,
izj
]⊤

(4.20)where P{j} = (ixj ,
iyj ,

izj) is the expression of point P{j} in frame {Ri}. Applying theformulation (4.20) on all points P{j}|j=1,N
of the ontour segment, then staking the obtainedonstraint relationships, yields:













Y1

Y2...
YN













=













Φ⊤
1

Φ⊤
2...

Φ⊤
N













Θ (4.21)

that an be formulated Y = Φ⊤ Θ as (4.5), but with:
Y =













1

1...
1













and Φ⊤ =













Φ⊤
1

Φ⊤
2...

Φ⊤
N













(4.22)

where Y and Φ⊤ are of dimension N and N×6, respetively. We reall that N orrespondsto the width of a ontour segment (i. e., number of points lying on the ontour segment).The relationship (4.5) aording to (4.22) states the onstraint satis�ed by the ontour seg-ment entered on P. When the 2D ultrasound probe performs out-of-plane motions while atthe same time aquiring suessive 2D ultrasound images, suessive segments are extrated.Those segments represent the loud of points lying on the objet loal surfae surrounding
P. We propose to use again the stabilized least-squares reursive algorithm, that gives theestimate Θ̂ of Θ by the reursive relationship (4.8), and its involved ovariane matrix by
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(4.16). Eah urrent (observed) segment updates the estimation algorithm. The assignedforgetting fator β enables to take more into aount the reently aquired segments andthus prevent the“old” segments ompromising the estimation. To illustrate this, if for exam-ple the 2D ultrasound probe performed a omplete san of the observed objet by sweepingit and at the same time aquiring its images suessively, then a 3D volume of the objetis made up, it is unlikely that one quadri might be su�ient to �t the whole surfae ofthat onstruted volume. That is the reason why an estimated loal surfae is expeted torelatively �t well the objet surfae in the neighborhood of a onsidered point, at whihvetor ∇F is expeted to be normal.
∇F an be analytially expressed from the quadri surfae relationship, using the followinglassial formula:

i∇F =







∂̥/∂ix

∂̥/∂iy

∂̥/∂iz






(4.23)where i∇F is the expression of ∇F in {Ri}. Thus applying (4.23) on (4.18) yields:

i∇F =







2 γ20
ix+ γ11

iy + γ10

2 γ02
iy + γ11

ix+ γ01

γ00






(4.24)Replaing estimated parameters Θ̂ in the above relationship, estimate i∇F̂ of i∇F is ob-tained. Then, using rotation matrix sRi that de�nes the orientation of {Ri} with respet toframe {Rs}, the desired estimate s∇F̂ of normal vetor s∇F is �nally obtained as follows:

s∇F̂ = sRi
i∇F̂ (4.25)

4.3 Sliding least squares estimation algorithmWe presented above three methods to estimate the normal vetor. Both of these methodsemploy a reursive algorithm to perform the estimation online. Suh algorithm requires aninitial vetor parameters Θ0 to start the reursive estimation. If these initial parameters are
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far from the atual ones, the reursive algorithm would take relatively large duration beforeestimate Θ̂ beomes loser to atual one Θ. This would undoubtedly be re�eted on thevisual servoing performanes, where the ommands are sent at a real-time streaming rateto the robot. Indeed, the ontrol ommand depends on the normal vetor, as we will see inChapter 5. If this vetor is not well estimated, for a large time duration, thus the ommandwould be yielded erroneous. That is the reason why it is neessary to obtain a relativelygood estimate in the �rst few iterations of the servoing, or before the servoing is launhed.To do so, we propose to �rst perform an estimation diretly on a window (set) of reordedmeasurements. We propose for that to use a Sliding Least Squares (SLS) algorithm [22℄.We apply it only at the beginning for �rst iterations. Right after, the reursive algorithmwill then take plae during all the estimation. The SLS algorithm, in fat, behaves similarlyto the Non-Reursive least squares one. Its partiularity is that it tends to take into a-ount in the estimation only the part of the measurement that onveys wealthy information.Consider di�erent measurements Y[i] and Φ⊤
[i] reorded and saved on a window of NLS size(i = k − NLS + 1 up to i = k). Their weighted orrelations are alulated as follows (see[22℄):

Γ =
k
∑

i=k−NLS+1

(

β(k−i)

m2
[i]

Φ[i] Φ
⊤
[i]

)

(4.26)

w =

k
∑

i=k−NLS+1

(

β(k−i)

m2
[i]

Φ[i]Y[i]

)

(4.27)where we reall that β is a forgetting fator assigned to the di�erent measurements, insuh a way to take more into aount the fresh ones. We set the salar m[i] as the maxnorm of the matrix Φ[i] Φ
⊤
[i], that is m[i] = ‖Φ[i] Φ

⊤
[i] ‖max. It is employed for normalizationbetween the di�erent measurements. The estimation objetive is to obtain an estimate Θ̂that best �ts the model relationship (4.5), for whole of those registered measurements. If thealgorithm would have onsisted in a weighted non-reursive method, the estimate would beobtained as Θ̂ = Γ−1 w. However, when the measurements do not onvey enough wealthyinformation, matrix Γ tends to be ill-onditioned. The SLS algorithm instead deals withsuh eventuality. Its priniple onsists in proessing the valuable parts of the informationdi�erently from the other part, that is suspeted at the origin of the ill-onditioning. Thislatter part is deteted using the eigenvalues. The disrimination is performed aording to athreshold ǫ0; an eigenvalue, or its normalized value, smaller than the threshold is onsideredas related to the singularity. More preisely, onsider the eigenvalue deomposition of matrix

Γ, sine the latter is symmetri aording to (4.26), as follows:
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Sliding algorithm Recursive algorithm

sample time k

Θ0

t0

Θ[t0]

t0 + NLS

Figure 4.10: Estimation contrivance consisting in applying firstly the sliding algorithm
for only the first NLS iterations, and then the recursive algorithm solely throughout
the estimation.

Γ = QΛQ⊤ (4.28)where diagonal matrix Λ ontains eigenvalues λi|i=1,n
. These latter are positive (λi|i

> 0),and are arranged in non-inreasing fashion, that is, λi > λi+1. They should be normalizedby λ1. The n× n matrix Q is orthogonal (Q−1 = Q⊤), and is given as:
Q = [q1 q2 · · ·qn] (4.29)where qi|i is an n × 1 eigenvetor assoiated to value λi. Aording to the SLS algorithm,estimate Θ̂[k] at sample time k is thus given by:

Θ̂[k] =











Γ−1 w if λn > ǫ0
(

∑l
i=1

1
λi

qi q
⊤
i

)

w +
(

∑NLS

i=l+1 qi q⊤
i

)

Θ̂[k−1] if λl > ǫ0 and λl+1 6 ǫ0

Θ̂[k−1] if λ1 6 ǫ0
(4.30)Note that when λn > ǫ0 all the other eigenvalues are also larger than ǫ0, and when λ1 6 ǫ0all the remaining eigenvalues are also not larger than ǫ0.We reall that our goal is to obtain an initial estimate Θ̂ that is loser to the atual one Θ.For that, we apply the SLS algorithm for only the �rst NLS iterations to obtain an estimate

Θ̂[t0+NLS−1], that is expeted loser to Θ. This estimate is then employed as the initialparameters vetor Θ0 for launhing the reursive algorithm; this latter then is applied solelythroughout the estimation. This is depited on Fig. 4.10.
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4.4 Simulation resultsThe methods we developed above are tested in simulations and their performanes assessed.These simulations are lassi�ed in two distint sets. In the �rst simulation trials, eahmethod is applied to estimate its orresponding geometri primitives. These �rst trials al-low to test that the stated primitives an be estimated using the developed methods, andthus to verify the validity of these latter. As for the seond set's trials, they are ondutedon a simulated ellipsoidal objet. This latter is provided from a 3-D mathematial modelwe designed. Therefore, the surfae normal vetor an be mathematially derived and itsnumerial value inferred. Suh value serves in fat as ground truth datum. Comparingthat obtained value with the estimated ones (separately obtained with eah of the threeestimation methods), the validity of these methods in estimating the normal vetor to thesurfae of the objet, namely the ellipsoid, is veri�ed.The three estimation methods have been implemented in the C++ programming language.Some of the orresponding arithmeti and matrix operations, as addition and multipliationfor example, are oded using the ViSP C++ library [53℄. The simulations are performedusing a PC omputer running LINUX operating system.
4.4.1 Interaction with straight linesWe apply the straight line-based method in estimating simulated 3-D straight lines. Todo so, the interation of a virtual 2D ultrasound probe with three 3-D straight lines issimulated. This interation is mathematially modeled, from whih the intersetion of thevirtual probe image plane with those lines is derived. This intersetion thus results in threeimage points, whose oordinates are obtained from the mathematial model. We assumethe knowledge of the full mathematial model (diretion and a belonging 3-D point) of eahof those straight lines. We �nally ompare the atual 3-D parameters of the straight lineswith those estimated.The simulation is onduted by moving with onstant veloity the virtual 2D ultrasoundprobe. This latter ontinuously aquires 2D ross-setion images of those lines, while atthe same time the estimation method is applied separately using eah of the three imagepoints. The image point 2D oordinates update the estimation algorithm, as desribed inSetion 4.1.1, after they would have been expressed in the fame {Ri} using the pose (posi-tion and orientation) of this latter with respet to probe frame {Rs} (suh pose is a�ordedby the mathematial model). The sampling time is set to 40 ms, and the probe onstantveloity to v = (−0.07, − 0.04, − 0.03, 0, 0, 0) (m/s and rad/s). The estimation pa-rameters involved in the reursive relationship (4.8) and (4.9) are set to β = 0.8, f0 = 1e5,
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Figure 4.11: Estimation of three 3-D straight lines - (a) Interaction of a virtual 2D
ultrasound probe with three 3-D straight lines. The probe has applied a motion with
constant velocity and the resulting trajectory (cm, cm, cm) is plotted in magenta.
The segments swept by the 2D ultrasound probe plane during that motion are also
shown, where line #1 is depicted in red, line #2 in green, and line #3 in blue. Probe
frame’s X, Y, and Z axes at the initial pose are shown in red, green, and blue color
respectively. Whereas, at the final pose the Z axis is depicted in black color - (b),
(c), and (d) show the obtained 3-D parameters estimation errors of respectively line
#1, line #2, and line #3 versus iteration number.
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and β0 = 1
20·f0

. These parameters have been empirially tuned. The initial value Θ0 of Θis arbitrarily set to Θ0 = [ 3, 5, − 0.4, 1]⊤. In this simulation we do not employ the SLSalgorithm to obtain Θ0, but we use solely the reursive algorithm in order to �rst analyze itsbehavior espeially with regards to onvergene time. The orresponding simulation resultsare shown on Fig. 4.11. We an verify that both the three straight lines have been wellestimated, as an be seen respetively on Fig. 4.11(b), 4.11(), and 4.11(d). The errorsbetween the 3-D parameters atual values Θ and those estimated Θ̂ onverge to zero, foreah line. We an notie that the onvergene time related to line #3 is relatively higherthan that obtained for the two other lines. This an be explained due to the orientationof this line that tends to be parallel to the probe observation plane, as an be seen onFig. 4.11(a) (blue line). Indeed, aording to the formulation (4.4), the third element dzof the orientation vetor is assumed not null, sine otherwise parameters η1 and τ1 wouldequal to in�nity (∞). This ours when the straight line is parallel to the probe observationplane. Finally, as onlusion the obtained results validate the straight-line based method inestimating diretion dt of 3-D straight lines.
4.4.2 Interaction with curved linesWe apply the urved line-based method, presented in Setion 4.1.2, on simulated 3-D urvedline. Similarly to the previous setion, the interation of a virtual 2D ultrasound probe with a3-D urve is simulated with a mathematial model we designed, where the urve relationshipis of the form given by (4.12). The model provides the image points 2D oordinates resultingfrom the intersetion of the probe image plane with the urve. The estimation is performedwhile the probe is moved with onstant veloity v = (−0.07, − 0.04, − 0.03, 0, 0, 0)(m/sand rad/s). The estimation algorithm is fed and thus updated with the image 2D oordi-nates of intersetion point ontinually extrated from the ross-setion image, as desribedby (4.15). Before these oordinates are used, they are expressed in frame {Ri} using the pose(position and orientation) of the probe's attahed frame {Rs}. The parameters of the reur-sive algorithm are empirially set to β = 0.8, f0 = 1e5, and β0 = 1

20·f0

, as before. We reallthat the algorithm is given by the relationships (4.8) and (4.16). The initial estimate is set to
Θ0 = (1, 1, 1, 1, 1, 1), while atual urve is of parameters Θ = (2, 1.5, 0.3, 0.5, 0.4, 0.2).The orresponding simulation results are shown on Fig. 4.12. The estimated urve onvergesto the atual one, as an be seen on Fig. 4.12(a) where both urves are plotted. Indeed, theurves superimpose on eah other. � At eah iteration the estimated parameters vetor Θ̂ isused to ompute the 3-D oordinates of a point of the estimated urve. The whole of pointsobtained as suh, all along the probe motion and the estimation, onstitute the estimatedurve that is plotted on Fig. 4.12(a). � Note, however, that even though the estimated urve
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�physically� orresponds to the atual one, the estimated parameters Θ̂ do not orrespondto atual one Θ. This may explained by the fat that the mathematial relation (4.12)between the points 3-D oordinates (ix, iy, iz) of a urve and its orresponding parameters
(η2, τ2, η1, τ1, η0, τ0) is not a one to one mapping. Nevertheless, this does not hinder ourobjetive sine the algorithm is able to well estimate the parameters that represent the a-tual urve, whih is our goal. Indeed, from those estimated parameters the derived vetor dtwould learly be tangent to atual urve K, as shown on Fig. 4.12(b) where we an see thatthe errors vetor between atual tangent vetor dt and estimated one d̂t onverges to zero.Aordingly, the obtained result shows the validity of the urve-based method in estimat-ing tangent vetor dt to 3-D urves, of shape represented by relationships of the form (4.12).
4.4.3 Interaction with quadric surfacesThe quadri surfae-based estimation method, presented in Setion 4.2, is now tested insimulation. The senario onsists in a 2D virtual probe interating with a simulated 3-Dsurfae. The interation is again represented with a mathematial model we designed. Tosimulate the surfae, we employed a relationship of the form given by (4.18). The interationmodel provides the image oordinates of the points lying on ontour C of image ross-setion
S. These oordinates, after being expressed in initial probe frame {Ri}, are then used toompute the input variable Φ aording to (4.22); the input Y being already provided o�-line before the estimation is launhed. The two inputs ontinually feed and thus updatethe estimation algorithm, whih estimate Θ aording to the relationships (4.8) and (4.16).However, before this reursive algorithm is launhed, a SLS algorithm of pre-de�ned windowlength is applied in order to �rstly obtain estimates Θ̂, that are expeted to be relativelyloser to the atual parameters Θ. The reursive algorithm will then take plae, instead ofthe sliding one. Note that this ontrivane, whih has already been introdued at the end ofSetion 4.3, will be most often applied for performing the estimation with either the straightline-, urved line-, or quadri surfae-based estimation methods, as an be enountered inthe remaining of the dissertation. Note also that in ontrast to the two previous simulationswhere the reursive algorithm was used solely, the SLS is employed in this ase sine wenotied that it was quite di�ult to estimate the surfae using only the reursive algorithm.The estimation is performed while the virtual probe moves with onstant veloity alongits orthogonal axis Z; the probe plane being horizontal to the plane (X0, Y0) of the baseframe {R0}. The algorithm parameters are empirially set to β = 1.0, f0 =1e2, β0 = 1

20×f0

,
ǫ0 = 1e-20, N = 21, and NLS = 21. We reall that N represents the number of points de�n-ing a segment. The initial estimated parameters are arbitrarily set to Θ0 = (0, 0, 0, 0, 0, 0).The quadri surfae atual parameters are Θ = (0.09, 0.07, 0.04, 0.02, 0.01, 0.05). We
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Figure 4.12: Estimating 3-D curves with which a 2D virtual probe is interacting. (a)
The estimation is performed while the probe performs motion with constant velocity,
where its resulting path is plotted in magenta (cm, cm, cm). The X, Y, Z axes of
the probe attached frame {Rs} at the initial time are respectively depicted in red,
green, and blue. At the final time they are whereas plotted respectively with red,
green, and black (we recall that the X, Y axes are those representing the probe image
plane). The actual curve is plotted with red, while the estimated one with green.
Those curves superimpose on each other. (b) Tangent vector estimation errors vector
e = (ex, ey, ez) = dt − d̂t versus iteration number.
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(a) (b)

Figure 4.13: Interaction with a quadric surface plotted on (a) - (b) The obtained
errors on estimating that surface using the quadric surface-based estimation method.�rst test solely the SLS algorithm, presented in Setion 4.3. The orresponding simulationresults are shown on Fig. 4.13. We an see that the atual surfae, shown on Fig. 4.13(a), hasbeen well estimated as an be onluded from the estimation errors shown on Fig. 4.13(b).The latter �gure indeed shows the error between elevation z of the atual surfae and thatof the estimated one, for eah swept oordinates (x, y). Those errors are obtained of orderranging from 1e-5 to 1e-8 m, and those related to the estimated parameters Θ̂ are of orderranging from 1e-8 to 1e-12 (expressed in their orresponding units).We notied that the reursive algorithm, if applied alone, had not performed well. In thatase the obtained estimation errors between the atual surfae elevations and those of theestimated one are of an order ranging from 1e-1 to 1e0 m. The estimation errors related to
Θ are not satisfying too. But by applying the SLS algorithm for only one window at thebeginning of the estimation then launhing the reursive algorithm, the obtained errors onthe surfae estimation are onsiderably dropped. Indeed, their order is obtained rangingfrom 1e-7 to 1e-9 m. As for the estimation errors on the parameters Θ, their order rangesfrom 1e-8 to 1e-13.We presented above results obtained from the �rst set of trials. Those simulations havebeen performed to estimate 3-D primitives ranging from straight lines, urved lines, andquadri surfae. The obtained results are satisfatory, as pointed out above. Those simu-lations aimed at verifying that tangent vetor dt an atually be estimated with the pre-sented methods, when simple primitives are onsidered. In what follows, we onsider moreomplex geometri primitives. The three estimation method are applied to estimate normal
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vetor ∇F to the surfae of a simulated objet, namely an ellipsoid, and their orrespondingperformanes are also assessed. These trials represent the seond set of simulations we high-lighted earlier. They are onduted in two main di�erent onditions. The �rst one onsistsin the ase of perfet ontext, where no noise is onsidered. The seond ondition, whereas,onsists in the ase where measurement noise is present. They are presented in what follows.
4.4.4 Ellipsoid objects: perfect and noisy casesThe interation of a virtual 2D ultrasound probe with an ellipsoidal objet is simulated bymeans of a 3-D mathematial model we designed. This model allows to extrat ontour C ofross-setion S lying in the probe observation plane, as shown for example on Fig. 4.14(a),4.14(b), and 4.14(). In fat, the extration onsists in obtaining the 2D image oordinatesof points lying on the ontour. The simulations presented in the remaining of this hapterare onduted using 400 extrated points to haraterize the image ontour, at eah iteration.The probe is moved with onstant veloity as shown on Fig. 4.14, while the image ontourpoints oordinates are extrated at eah iteration. During the motion, normal vetor s∇Fto the ellipsoid is estimated, separately using the three estimation methods. The estimate
s∇F̂ is ompared to the atual one s∇F, and the orresponding error is inferred. Thisallows us to verify if the normal vetor has been well estimated. The atual normal vetoris omputed using again the mathematial model. Indeed, this latter enloses the ellipsoid3-D model that is expressed as follows:

F = (ox/a1)
2 + (oy/a2)

2 + (oz/a3)
2 − 1 = 0 (4.31)where a1, a2 and a3 are 3-D parameters that represent the ellipsoid shape (i. e., the ellipsoidhalf length values), whereas (ox,o y,o z) are the 3-D oordinates of point oP, that lies onthe ellipsoid surfae. These oordinates are expressed in frame {Ro} attahed to the enterof the ellipsoidal objet. Using the above relationship, the atual normal vetor an bealulated by applying (4.23) as follows:

o∇F =







2 ox/a2
1

2 oy/a2
2

2 oz/a2
3






(4.32)whih an be expressed in {Rs} by s∇F = sRo

o∇F. The point 3-D oordinates are alu-lated from its image oordinates (x, y), using the relationship (3.37) presented in Chapter 3.
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Figure 4.14: Simulation of a 2D ultrasound probe that interacts with an ellipsoidal
object. It is afforded by the mathematical model. The probe performs a motion with
constant velocity - (a) The frame {Rs} of its initial and final poses is indicated. At
the initial time the frame’s (X, Y, Z) axes are depicted respectively with the (red,
green, blue) lines. Whereas at the final pose, the probe Z axis is depicted with a black
line. The probe path is plotted in magenta. The intersection of the probe observation
plane with the ellipsoid results in a cross-section, whose contour at the initial and
final probe poses is respectively depicted with green and red - (b) Another image of
the interaction taken from a different sight angle - (c) The contour image at the initial
and final poses is respectively indicated with green and red color - (d) Evolution of
the probe 3-D coordinates (cm, cm, cm) during the motion versus iterations, while
the θu orientations (deg, deg, deg) are shown in (e).
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(a) (b)

Figure 4.15: Normal vector estimation errors ef obtained using the straight line-
based method. The probe is interacting with an ellipsoidal object - (a) Using the
contrivance that consists in applying the recursive algorithm, right after the SLS
one would have been applied for the first NLS iterations. The estimator parameters
are set to β = 0.95 and f0 =1e8 - (b) Applying the SLS algorithm throughout the
estimation. The estimator parameters are set to β = 0.5 and f0 =1e8.The involved rotation matrix sRo and the translation vetor st0 are provided by the inter-ation mathematial model. This latter also provides the image oordinates (x, y). Theestimation error ef onsists in the square root of the vetorial error ef = s∇F− s∇F̂. Foreah point, it is thus given by:

ef = ‖ef‖2 =
√

ef
⊤ ef =

√

e2fx + e2fy + e2fz (4.33)where ef = (efx, efy, efz). Below, we �rst present results obtained in the ideal ase, whereno perturbation is introdued. We then onsider the ase of measurement noises.
Straight lines-based estimationWe apply the straight line-based method to estimate the normal to the surfae of the ellip-soidal objet.We present results of two di�erently performed estimations. In the �rst simulation we em-
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Figure 4.16: Normal vector estimation errors ef obtained using the straight line-based
method, in the presence of additive measurement noise of 0.3 mm amplitude. Simu-
lation where a virtual 2D ultrasound probe is interacting with an ellipsoidal object
- (a) Using the contrivance that consists in first employing the SLS algorithm, for
only one window, and then applying the recursive method during all the estimation.
The estimator parameters have been tuned to β = 0.95 and f0 =1e8 - (b) Applying
the SLS algorithm, alone, throughout the estimation. The estimator parameters have
been tuned to β = 0.5 and f0 =1e8.ploy the ontrivane that onsists in applying �rstly the SLS algorithm for only the �rst
NLS iterations and then in using the reursive one. As pointed out, this ontrivane allowsto obtain after the SLS algorithm being ahieved (after the �rst NLS iterations) an estimate
Θ̂ that is expeted to be loser to the atual one Θ. The estimation onvergene time wouldbe, as a result, onsiderably shortened. Note that this is of great interest in the ontextwhere the image is varying, and thus when the normal vetor is also hanging, as it is thease in the simulations we present and in general pratial ases. As for the seond simula-tion, the SLS algorithm is applied all along the virtual probe motion. Obtained results areshown on Fig. 4.15. We an see that the estimation errors are quite dropped to zero with thetwo algorithms (respetively performed in the �rst and the seond simulation). However,we an notie two folds obtained with the reursive algorithm. They are grossly enteredon two points of the image ontour. The tangent vetor at those two points likely tendsto be parallel to the image plane, whih ould aount for the lesser dropped estimationerrors at those points and their lose neighborhood. These results therefore suggest thatthe seond algorithm outperforms the �rst one, as an be learly seen on Fig. 4.15(b) wherethe obtained estimation errors are nearly null. That onlusion however showed to be notvalid in other ontexts. Indeed, in the presene of measurements noise that omparison's
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Figure 4.17: Image coordinates (x, y) in cm of one point lying on the contour, per-
turbed with an additive measurement noise of 0.3 mm amplitude. The two coordi-
nates x and y are plotted with respect to the iteration number.onlusion is dramatially reversed. In suh noise ontext we notied that the reursivealgorithm has been able to estimate the normal vetor, whereas it is not the ase whenusing the SLS algorithm. This an be seen on Fig. 4.16, that shows results obtained fromsimulations onduted in the presene of measurement noise in the image. This onsideredperturbation onsists in a 0.3 mm amplitude random white Gaussian noise. Its e�ets onthe evolution of the image oordinates of one ontour point, during the probe motion, isshown on Fig. 4.17. This noise is added to the original extrated image points oordinates
(x, y) and their derivatives with respet to the angle in the image. We notie peaks at twopoints of the image ontour, with both algorithms. Those peaks indiate that the estimationhas not been well performed at those two ontour points. They seem in fat as suessors,although worse, of the two folds obtained in the ideal ase. Nevertheless, it is unlikely thatsuh two peaks might ompromise the system performane. Indeed, the objetive of esti-mating the normal vetor is to use it in order to ompute the ontrol law. We do not useonly a ouple but at least hundreds of image points, and thus of estimated normal vetorsto ompute the ontrol law; we reall that we use 400 points in the simulations we presentin the present hapter. Consequently, the obtained two peaks onstitute an error with aweight of only 2/400, whih is negligible. They are therefore onsidered as modeling errors,and thus an be redued by the servoing sheme thanks to its losed loop.



4.4. SIMULATION RESULTS 119

Curved lines-based estimationSimilarly as desribed above, we now apply the urved line-based method to estimate thenormal vetor to the ellipsoidal objet surfae. The virtual probe is moving with onstantveloity, where the resulting interation with the ellipsoid is shown on Fig. 4.14. During thatmotion, the estimation is performed at eah of the 400 image ontour points. The estimatesare then ompared to the atual values of the normal vetor, and the estimation error efgiven by (4.33) is inferred. The atual values are omputed from the interation mathemati-al model, aording to the relationship (4.32). Again, the estimation is performed aordingto two di�erent approahes. The former approah employs the ontrivane onsisting in ap-plying �rstly the SLS algorithm for only the �rst NLS iterations and then applying thereursive method for the remaining of the estimation. The seond approah is performed byapplying solely the SLS algorithm throughout the estimation. Their orresponding resultsare then ompared.We �rst onsider the ideal ase where the system is not subjet to perturbations. Cor-responding simulation results are shown on Fig. 4.18. We an note that the sliding leastsquares estimation approah slightly outperformed the reursive one, as an be seen respe-tively on Fig. 4.18(b) and Fig. 4.18(a).We now onsider the ase where a noise perturbs the image. This measurement noise isagain set as random white Gaussian noise of 0.3 mm amplitude. Obtained simulation re-sults are shown on Fig. 4.19. We an notie that, again, the estimation using the slidingalgorithm slightly outperformed that using the reursive paradigm.The performanes of the straight line- and the urved line-based estimation methods willbe ompared to that of the quadri surfae-based estimation, as it is presented in Setion 4.5.
Quadric surface-based estimationIn the same senario, we also applied the quadri surfae-based method to estimate the nor-mal vetor to the ellipsoid surfae. Similarly, the estimation is performed aording to twoapproahes. We �rst onsider the ideal ase, and then the ase where an additive measure-ment noise is onsidered. To �t the quadri surfae, we tune N to N = 21 points (segmentwidth) and the window size to NLS = 21 iterations. The estimator parameters β0 and ǫ0 aretuned to β0 = 1

20×f0

and ǫ0 =1e-20. Corresponding obtained results are shown on Fig. 4.20.We an onlude from these results that the estimation employing the reursive method hasoutperformed that employing the SLS algorithm. The reursive algorithm has grossly wellestimated the normal vetor, but only in the ideal ase. In the noisy ase they are however
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(a) (b)

Figure 4.18: Normal vector estimation errors ef obtained using the curved line-based
method, in the ideal case. The scenario consists in an interaction of a virtual 2D
ultrasound probe with an ellipsoidal object - (a) Using the contrivance that consists
in applying the recursive method, right after the SLS algorithm would have been
applied for only the first NLS iterations. The estimator parameters have been tuned
to β = 0.9 and f0 = 5×1e3 - (b) Using the SLS algorithm throughout the estimation.
The estimator parameters have been tuned to β = 0.9 and f0 = 5×1e3.both not satisfatory. A more detailed disussion is given in the following setion.
4.5 DiscussionThe obtained results suggest that the urved line-based method has outperformed the twoother methods. Indeed, the urved line-based method has been able to provide a good es-timate of the normal vetor s∇F both in ideal ases, where no perturbation is ourring,and in ases where measurements noises are present in the image. The straight line-basedmethod has not performed as the urved-based one in the presene of measurement noise.As for the quadri-based one, the performanes are even less better than that of both thetwo �rst methods, espeially in the presene of measurement noise, where the results arenot satisfatory. This method is furthermore omputationally more expensive, sine it usesa segment to update its estimate at eah iteration, instead of using only one point as it isthe ase for the two �rst methods.We presented results that as atual as possible re�et the performanes of eah of the three
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(a) (b)

Figure 4.19: Normal vector estimation errors ef obtained using the curved line-based
method, in the presence of an additive measurement noise of 0.3 mm amplitude -
(a) Using the contrivance that consists is applying the recursive method, right after
the SLS algorithm would have been applied for only one window. The estimator
parameters are set β = 0.95 and f0 =1e2 - (b) Using the SLS algorithm throughout
the estimation. The estimator parameters are set to β = 0.95 and f0 =1e2.estimation methods. Indeed, the performane depends on the tuned estimation parameters
β, f0, β0, NLS , and ǫ0 (and also N for the quadri surfae-based method). The parameters,as highlighted, have been empirially tuned in order to obtain as best as possible estima-tion results, separately for eah of the three methods. The tuning has been performed ateah time the simulation ondition hanged (perfet or noisy) and at eah time a di�erentestimation method is employed. To do so, we have performed many di�erent trials wherethe estimator parameters are tuned aording to the famous dihotomy manner. We thushave presented results that we onsider have been tuned in order they have allowed eahmethod to perform as best as possible. During those trials, we notied that the performaneof both the straight line- and the urved line-based method is only slightly a�eted by thevariations of those parameters. Note that large variations of the parameters have beenonsidered. As for the quadri-based method, we obtained another onlusion. Indeed, theperformanes of this method heavily rely on the values of the estimation parameters, andis quite a�eted by their variations. It is nevertheless important to note that the slidingestimation algorithm, we presented in Setion 4.3, orresponds to a vetorial algorithm,that is, the input measure Y is a vetor and not a salar. Yet, the original formulationof this algorithm is stated for salar inputs measures [22℄. We have in fat tried to adapt
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(a) (b)

(c) (d)

Figure 4.20: Normal vector estimation errors ef obtained using the quadric surface-
based estimation. The results obtained in the ideal case are shown on (a) and (b),
while those obtained in the presence of perturbation are shown on (c) and (d) -
(a) The estimation is performed by employing the recursive method, right after the
SLS algorithm has been employed for only one window. The remaining estimator
parameters are tuned to β = 0.5 and f0 =1e8 - (b) Employing the SLS algorithm
throughout the estimation. The remaining estimator parameters are tuned to β = 1.0
and f0 =1e2 - (c) Employing the recursive algorithm after the SLS one. The estimator
parameters are tuned to β = 1.0 and f0 =1e2 - (d) Employing the SLS algorithm
alone. The estimator parameters are tuned to β = 1.0 and f0 =1e2.
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the original algorithm to a vetorial ase. It ould be therefore possible that some modi�-ations have not been rigorously taken into aount. We performed other trials but usingthe original salar sliding algorithm. To do so, the estimation model (4.3), �rstly, has beendeomposed in two salar equations. Eah equation has been onsidered as an estimationmodel (with η1 and η0 as parameters for the former salar system to estimate, and τ1 and
τ0 as parameters for the latter salar system). Then, eah of the obtained estimates areombined and the estimate of the normal vetor is derived. The same approah is under-taken for the urve system (4.12). We obtained similar results, with both straight line- andurved line-based method (using the salar formulation), to those previously obtained withthe vetorial algorithm respetively, exept that in the noisy ase we obtained better resultwith salar straight line-based estimation than previously. Nonetheless, the performanes ofthis latter method are still lower than that of the urved line-based estimation. As for thequadri-based estimation method, the salar algorithm, as is, seems not relevant, sine thisestimation method inherently uses a segment of points (and thus a vetor of measures) toupdate the estimate. That is the reason why we presented in Setion 4.3 a vetorial versionof the sliding algorithm. The low outome of the quadri-based estimation method ould beexplained by the fat that this method estimates in whole the normal vetor and thus theestimation errors are expeted to be larger than those obtained with the two �rst methods.Indeed, these latter methods estimate instead only a part sdt of the normal vetor, whilethe seond part is diretly extrated from the observed image. Moreover, �tting a surfaeto a loud of points seems more onstrained than �tting a line to a set of points.
4.6 ConclusionWe proposed in this hapter three methods to estimate on-line the normal vetor to the sur-fae of an objet with whih a 2D ultrasound probe is interating. We reall that suh normalvetor appears in the interation matrix that relates the image moments time variation tothe probe veloity, as developed and presented in the previous hapter. The estimation isperformed without any prior knowledge of the shape, 3-D parameters, nor loation in the3-D spae of the observed objet. Doing so, we overome the limitation and onstraintsimposed if the resolution of developing a pre-operative model of the observed objet wouldbe envisaged.The three methods we proposed are based on respetively straight line, urved line, andquadri surfae primitives. Their performanes have been ompared. They have been testedin di�erent simulation trials, where satisfatory results have been obtained with the urved-line based estimation method. The straight line-based method showed to be relatively moresensitive to measurements noise. As for the quadri surfae-based method, besides of beingeven more sensitive to the noise, it requires rigorous tuning of its estimation parameters.





Chapter 5

Visual ServoingIn the present hapter, we �nally design novel ultrasound-based image moments-based vi-sual servoing shemes. These latter will allow to automatially position a 2D ultrasoundprobe in order to reah and maintain a desired ross-setion image. After having modeledinteration matrix Lmij
that relates image moment time variation ṁij to probe veloity v,in Chapter 3, and having developed tehniques to estimate on-line normal vetor s∇F tothe objet surfae, in Chapter 4, visual servoing shemes an now be designed whether wehave a pre-operative 3-D model of the observed objet or not. The setion in the image anbe desribed by a ombinations set of image moments mij enlosed in a vetor we denote s,that we use as feedbak visual features in the ontrol sheme. The servoing objetive, statedabove, thus an be formulated as to automatially move the probe in order that the vetor

s beomes idential with the features vetor s∗ that desribes the desired image setion.Vetor s∗ is nothing but vetor s omputed on the desired image. As already introduedand disussed in Setion 3.1, a set of ombinations of image moments an be used to repre-sent the image setion. Thus, vetor s∗ represents the desired image setion. Consequently,when s beomes equal to s∗, it means that the observed image well and truly orrespondsto the desired one. So, the servoing objetive an be mathematially formulated as to movethe robot in order that visual error e = s − s∗ onverges to zero. To build the servoingsheme, we need to relate vetor s as funtion of probe veloity v. To do so, we use themodeling results we obtained, i. e., the relationships (3.34) and (3.35), sine s = s(mij). Wethus write time variation ṡ of s as funtion of v in the following linear form:
ṡ = Ls v (5.1)where Ls is the interation matrix related to s. Suh matrix, along with the visual features

s it relates, in any visual servoing shemes, is ruial to design the ontrol law and has
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predominant e�et on the robot behavior [82, 27, 71, 14℄. We use a lassial ontrol law[26℄, as follows, suh that the visual error e is expeted to onverge to zero exponentially(to smoothly stop at the desired image). When dim(s) = 6, that ontrol law is:
vc = −λ L̂−1

s (s − s∗) (5.2)where vc is the probe veloity ommand sent to the low-level robot ontroller, λ is a pos-itive ontrol gain, and L̂−1
s is the inverse of the estimated interation matrix Ls. Suhobtained ontrol sheme is known to be loally asymptotially stable when a orret esti-mation L̂s of Ls is used (that is, as soon as Ls L̂−1

s > 0) [26℄. The global onvergene annot be ensured in our ase with this ontrol law. This is due to the fat that the objetsurfae might have loal minima (i. e., onave regions) in whih the probe ould be trapped.When less than six visual features are enlosed in s (i. e., matrix Ls beomes not square),the pseudo inverse L̂+
s of the estimated interation matrix Ls is employed in (5.2), insteadof the inverse L̂−1

s . This pseudo inverse is given by:
L̂+

s = L̂⊤
s

(

L̂s L̂⊤
s

)−1
(5.3)Matrix (L̂s L̂⊤

s ) should be of full rank.In ase a pre-operative 3-D model of the observed objet is used to obtain an approxi-mate s∇F̃ of the normal vetor in the ontrol law, the servoing method is referred to as
model-based visual servoing method. A orresponding visual servoing sheme is presentedon Fig. 5.1. If otherwise, neither prior knowledge of the shape of the objet, its 3-D param-eters, nor its loation is used, but instead the normal vetor is on-line estimated with oneof the methods developed and presented in Chapter 4, the servoing method is referred to as
model-free visual servoing method. A orresponding visual servoing sheme is presented onFig. 5.2. Note that the estimate of the normal vetor is denoted s∇F̂, while its approximatefrom a pre-operative 3-D model is denoted s∇F̃.As for the seletion of the visual features, if the observed objet presents asymmetriparts we an de�ne six independent visual features. The �rst three visual features an bede�ned to ontrol the probe-in-plane motions, while the last three elements an be de�nedto ontrol the probe out-of-plane motions. The whole of these six visual features thus ande�ne the omplete probe motion.
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Figure 5.1: Model-based visual servoing scheme. Note that s∇F̃ is an approximate
of s∇F.

5.1 Visual features selectionWhen the 2D ultrasound probe performs in-plane motions, setion S only shifts and rotatesin the image. Suh on�gurations hanges of the image setion an be observed respetivelyby the oordinates of its gravity enter and the orientation of its main angle in the image.2D image oordinates (xg, yg) of an objet gravity enter have already been introduedin Chapter 3 and are expressed in terms of image moments up to the �rst order by therelationship (3.48). We selet them as the �rst two elements of s. The third elementonsists in the main angle of the setion with respet to image X axis (see Fig. 5.3). It isde�ned by:
α =

1

2
arctan

(

2µ11

µ20 + µ02

)

(5.4)where µij is the (i+ j)th order entral image moment. It is de�ned by the following doubleintegral over image setion S:
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Figure 5.2: Model-free visual servoing scheme.

µij =

∫ ∫

S
(x− xg)

i (y − yg)
j dx dy (5.5)An (i+ j)th order entral image moment an thus be de�ned as funtion of image momentsof up to the (i + j)th order. We provide the expressions of up to the third order entralimage moments, as follows:











µ20 = m20 −m10 xg

µ11 = m11 − yg m10 = m11 − xg m01

µ02 = m02 −m01 yg

(5.6)and


















µ30 = m30 − 3m20 xg + 2m10 x
2
g

µ03 = m03 − 3m02 yg + 2m01 y
2
g

µ21 = m21 − 2m11 xg −m20 yg + 2m01 x
2
g

µ12 = m12 − 2m11 yg −m02 xg + 2m10 y
2
g

(5.7)
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Figure 5.3: Sketch representing image coordinates (xg, yg) of gravity center of ob-
served section S, and main orientation α of the latter.Consider now the probe out-of-plane motions. In the following, we desribe how to obtainthree independent visual features that an relate suh motions. These features thus wouldrepresent the last three elements of s. In ontrast to in-plane motions, when out-of-planemotions our the setion in the image generally deforms. Its size varies and its shapehanges. Therefore, the objetive onsists to derive three visual features that are respetivelysensitive to suh modi�ations of the setion in the image, while at the same time they areinsensitive to modi�ations due to probe in-plane motions, in order they are independentfrom the �rst three features of s. Firstly, sine the size variation an learly be relatedto the area a of the setion in the image, we an selet the fourth element of the visualfeatures vetor as √

a. Note that we applied the square root to a sine the three element
(xg, yg,

√
a), thus brought together, have a same unit, that is meter is this ase. Seondly,as for the shape variations, they an be related by image moments from the seond andhigher orders. However, as highlighted above, the last three features should be insensitiveto in-plane motions; area a obviously satis�es suh ondition. As for the prospetive lasttwo visual features, they an be obtained from moment invariants, introdued in Setion 3.1.Indeed, image moments an be made invariant to image translation, rotation, and imagesale hanges. These traits are onsequently of great interest in the present ase. Let us �rstsearh for the �fth element of s; the same manner to proeed is afterwards applied for thesixth element. A visual feature orresponding to a ombination of moments of the seondand higher orders that are invariant to sale hange is expeted independent from the imagearea, and thus also from √

a. This an be explained by the fat that sale hanges aremainly related to those of the image setion area. As a result, a visual feature invariant tosale would grossly be insensitive to area a, and thus independent from it. Moreover, whenthis visual feature is also invariant to translation and rotation, it would be independentrespetively from gravity enter oordinates (xg, yg) and orientation α. In other words,
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suh feature would be independent also from the in-plane motions. To summarize, thisfeature would be therefore independent from the �rst four elements (xg, yg, α,
√
a). Weselet this �fth feature from moment invariants of the seond order. Finally, the sixth visualfeature is similarly seleted as an invariant image moment to translation, rotation, and sale,but is obtained from ombination of third order image moments. Indeed, sine this sixthfeature would be obtained from third order image moments, wile the �fth feature is fromthe seond order ones, the former feature is expeted independent from the latter one. Wethus an hoose these last two features from suh moment invariants, already provided inthe literature. We employ features provided in [76℄. We denote them respetively by φ1 and

φ2. They are expressed in terms of image moments as follows:
{

φ1 = I1/I2
φ2 = I3/I4

(5.8)where I1 = µ2
11 −µ20 µ02, I2 = 4µ2

11 +(µ20 −µ02)
2, I3 = (µ30 − 3µ12)

2 +(3µ21 −µ03)
2, and

I4 = (µ30 + µ12)
2 + (µ21 + µ03)

2.The visual features vetor s we propose is thus:
s = (xg, yg, α,

√
a, φ1, φ2) (5.9)Time variation ṡ of s an now be analytially related to probe veloity v, using interationmatrix Lmij given by (3.34). We obtain, after arranging the elements related to the probein-plane motions (vx, vy, ωz) and those to the out-of-plane motions (vz, ωx, ωy), as follows:

ṡ =





















−1 0 yg xgvz
xgωx

xgωy

0 −1 −xg ygvz
ygωx

ygωy

0 0 −1 αvz αωx αωy

0 0 0 avz

2
√

a
aωx

2
√

a
aωy

2
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0 0 0 φ1vz φ1ωx φ1ωy
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(5.10)

The detailed form of some elements is not provided beause of their tedious form. We annote that the seletion of s given by (5.9) yields the visual servoing sheme partially de-oupled. Indeed, we an �rst remark from (5.10) that the last three elements (
√
a, φ1, φ2)
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of s are invariant to the in-plane motions. Moreover, the �rst elements (xg, yg, α) presenta good deoupling property for the in-plane motions, owing to the triangular part they form.Although the seletion (5.9) yields good deoupling properties, as also shown from resultsof simulations we onduted, we however notied from further simulations that element φ1is relatively less robust to image noise than, for example, the length of the image setionmain axis. We denote the latter feature by l1. It is expressed in terms of image momentsas follows [16℄:
l1

2 =
2

a

(

µ02 + µ20 +

√

(µ20 − µ02)
2 + 4µ2

11

)

(5.11)Therefore, the �fth element φ1 ould be, in some ases, substituted by l1. Suh seletion isof ourse subjet to a trade-o� between probe deoupling motions, obtained with the formerfeature, and more robustness to image noise with the latter.The remainder of the hapter presents visual servoing results. It is organized as follows.In Setion 5.2, we test both the model-based and model-free visual servoing methods in sim-ulations where the probe interats with an ellipsoidal objet. We onsider, for that, bothideal ases where no perturbation is present and the ases where additive measurementsnoise perturbs the image. In Setion 5.3 and Setion 5.4, we present results obtained fromsimulations respetively on realisti 3-D ultrasound objet and on an asymmetri binaryobjet. Finally, ex-vivo experimental results obtained with both a spherial objet, an ul-trasound phantom, a lamb kidney, and a gelatin-made soft tissue objet relatively omplexare reported in Setion 5.5.
5.2 Simulation results with an ellipsoidal objectThe senario onsists of a virtual 2D ultrasound probe that interats with an ellipsoidalobjet. The virtual roboti task onsists to automatially position the probe in suh a wayto reah a target image, starting from one totally di�erent. To do so, the probe is servoedby the ontrol sheme we developed in this thesis. The ommand veloity are generatedwith the ontrol law (5.2). Note however that sine the objet is ellipsoidal, the observedross-setion is an ellipse in the image. Consequently, we an de�ne only �ve independentvisual features from the image. Thus, instead of using L̂−1

s , the pseudo inverse L̂+
s given by(5.3) is employed in (5.2).The interation of the probe with the objet is simulated using the mathematial model wedeveloped and whih has been introdued in Setion 4.4.4. This model allows to position
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and move the probe. It provides the observed image in form of ontour points set, fromwhih the visual features s are omputed. In the following simulations, we use 400 imageontour points to ompute the visual features along with the interation matrix. The inter-ation mathematial model also provides the pose (position and orientation) of the probe(i. e., of its attahed frame, already denoted {Rs}) with respet to a base frame. With thismodel, we an test both the model-based and model-free visual servoing methods. Indeed,it an also provide a 3-D mathematial (pre-operative) model of the ellipsoid in form of 3-Dparameters and pose with respet to probe frame {Rs}; the 3-D parameters onsist in theellipsoid half-length values (a1, a2, and a3), as formulated by (4.31) in Setion 4.4.4. Withthose data, normal vetor s∇F an be obtained aording to (4.32), and then an be usedto ompute interation matrix Ls involved in the ontrol law.In the following, we �rstly present results from simulation performed using the model-basedvisual servoing method, where the objet pre-operative model is used to ompute the on-trol law. Suh results are essential to test the validity of the theoretial foundations of theinteration matrix modeling, developed and presented in Chapter 3. Indeed, a pre-operativemodel provides us with a ground truth. s∇F an be exatly known, and onsequently nomodeling error an be introdued in the interation matrix formula (3.34) and (3.35). If theinteration matrix is truly exat, the visual features errors should onverge to zero exponen-tially and at the same time. If however they do no onverge as so, this would mean that themodeling is not exat. Afterwards, we present results obtained using the model-free visualservoing method, based on the urved lines estimation tehnique presented in Setion 4.1.2,sine this tehnique has shown to be better than the straight lines and quadri surfaeestimation tehniques aording to the results reported in the previous hapter. Never-theless, visual servoing results with these two tehniques an be found in Appendix C.1.We reall that the mode-free visual servoing we propose uses only the image ontour pointsand the robot odometry to estimate the normal vetor, and thus to ompute the ontrol law.The following simulations are onduted with an ellipsoidal objet whose half length valuesare (a1, a2, a3) = (1, 2.5, 4) m. The ontrol gain λ is set to 0.7, and the sampling timeto 40 ms.
5.2.1 Model-based visual servoingThe ellipsoidal objet, with whih the probe is interating, is exatly known. Both itshalf length values (a1, a2, a3) and its pose with respet to {Rs} are used to ompute theexat value of s∇F, as related by (4.32). We �rst selet the feedbak visual features as
s = (xg, yg, α,

√
a, l1). The orresponding simulation results are shown on Fig. 5.4. The
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feedbak visual features errors e exponentially onverge to zero [see Fig. 5.4(f)℄, and thereahed setion image orresponds to the desired one (see Fig. 5.4(e)), despite the largedi�erene between this target image and the initial one. Moreover, the probe motions areorret and smooth as an be seen on Fig. 5.4(g) and Fig. 5.4(a). Both the translationaland rotational motions are large, as an be seen respetively on Fig. 5.4() and Fig. 5.4(d).These results, onsequently, validate the proposed model-based visual servoing method.More partiularly, they validate the theoretial foundations along with the interation ma-trix modeling we developed and presented in Chapter 3.With the above seleted visual features s, we an notie that the rotational motions areslightly oupled as an be seen on Fig. 5.4(d). We an remark indeed that the rotationalmotions θuy and θuz interset1. The origin of that an be explained by the fat that the twolast elements √
a and l1 of s are not totally independent. Indeed, both these two featuresare related to the size of the setion in the image. Let us therefore selet another visualfeature instead of l1 that would yield the probe motions more deoupled. Sine √

a relatessolely the size of the setion in the image, a prospetive visual feature would be nothingbut ombination of moments invariants to image sale, as has already been highlighted andexplained above in Setion 5.1. We have already proposed φ1 as �fth visual feature. Nev-ertheless, this feature shows to be relatively more sensitive to image noise than l1, as willbe seen later from results we present in this setion. In fat, sine the feature l1 showedto be relatively robust to image noise, as will be also seen afterwards, we want to deriveanother feature lose to l1. Thus, the obtained feature might well satisfy both deouplingand robustness properties. Using the invariants presented in [50℄, we an dedue, that forexample, the feature l1/√a is invariant to both in-plane motions and image sale. In thefollowing, we present suessively results obtained with l1/
√
a and then with φ1, as �fthvisual feature instead of l1, to subsequently ompare the orresponding performane.In the same senario in whih the preedent simulation has been onduted, we selet now

l1/
√
a as the �fth visual feature, that is, s = (xg, yg, α,

√
a, l1/

√
a). The orrespondingsimulation results are shown on Fig. 5.5. We an see that the task has been well performed,as in the preedent simulation, where the feedbak visual features errors onverge to zeroexponentially and the reahed image orresponds to the desired one. Nevertheless, we annote that indeed, as expeted, the rotational motions are relatively deoupled, even thoughslightly, omparing to those obtained with l1 as �fth feature, as an be seen respetively onon Fig. 5.5() and Fig. 5.4(d). We an note indeed that the rotational motions θuy and θuzdo not interset; although their plots are lose to eah other during the �rst iterations.

1θu representation is defined by a unitary vector u, representing the rotation axis, and rotation
angle θ around this axis.
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Figure 5.4: Model-based visual servoing on simulated ellipsoidal object. The visual
features are s = (xg, yg, α,

√
a, l1). (a) and (b): The initial cross-section is plotted in

green, while the reached one is plotted in red. The probe initial frame is depicted with
the cartesian frame’s (X, Y, Z) axes respectively plotted with (red, green, blue) lines,
while the final frame is plotted with (red, green, black) lines. The path performed by
the probe is plotted in magenta. The visual features and their corresponding errors
are in (cm, cm, rad, cm, cm). The abscissa of (c), (d), (f), (g), (h) corresponds to the
number of iterations. It will be maintained as such for all the coming figures; this of
course concerns the vectors that have been plotted on those indicated figures.
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We �nally test φ1, that is, s = (xg, yg, α,
√
a, φ1). The orresponding simulation resultsare shown on Fig. 5.6. We an note that the deoupling performane on the rotationalmotions is better than those obtained either with l1 or l1/√a, as an be seen on Fig. 5.6(d).Indeed, we an note that the rotational motions θuy and θuz neither interset nor are loseto eah other. The performane an also be learly notied from the plots of probe veloityshown on Fig. 5.6(g). Indeed, veloity omponent vz onverge with a onsiderably slightbak-and-forth behavior during the �rst iterations, ompared to the former obtained resultswith l1 and l1/√a.The above three simulations have been onduted to ompare the performane of thevisual servoing shemes in terms of probe motions deoupling, more partiularly this on-erned the rotational motions. It is however important to ompare their performanes interms of robustness to image noise, espeially sine the ultrasound images are inherently verynoisy. To do so, we perform simulations with the three di�erent visual servoing shemes,that is, the visual features vetor's �fth element is respetively seleted as l1, l1√

a
, and φ1 inthe senario where a measurement noise of 0.3 mm amplitude is present in the image. Thisnoise is set as a random white Gaussian noise. The impat that suh noise an have onthe image oordinates of one point lying on ontour C is shown on Fig. C.3(b). The orre-sponding simulations results are shown on Fig. 5.7. The obtained respetive performanesin terms of robustness to image noise are the inverse of those previously obtained in terms ofmotion deoupling. Indeed, we an see that feature l1 is more robust to noise omparing to

l1√
a
and φ1. The robustness is re�eted on the performane of the visual servoing sheme interms of probe behavior, as an be seen on the obtained veloity ommands. This di�ereneof robustness an be related to the denominators of these features. Feature φ1 is less robustsine its denominator is a seond order moment; more the moment is of higher order less itis robust, as disussed in Chapter 3.Finally, we an onlude that both of the simulation results we obtained and presentedin this setion validate the proposed model-based visual servoing method and its robustnessto image noise. In the following, we test the model-free visual servoing method. In fat,from the interation mathematial model used in the above simulations, we exploit this timeonly the image ontour oordinates and the probe pose. We reall that the latter, in pra-tie, an be obtained from the robot odometry. Thus, we do not use any prior knowledgeof the shape, 3-D parameters, nor loation (pose) of the objet to ompute the ontrol law.The servoing method is tested both in a perfet ase, where no noise is present, and in asewhere additive measurements noises are introdued.Note however that sine only �ve visual features are employed, although the reahed image
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Figure 5.5: Model-based visual servoing on simulated ellipsoidal object. The visual
features are s = (xg, yg, α,

√
a, l1√

a
). They are plotted in (cm, cm, rad, cm, unit/10),

similarly as their corresponding errors.
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Figure 5.6: Model-based visual servoing on simulated ellipsoidal object. The visual
features are s = (xg, yg, α,

√
a, φ1). They are plotted in (cm, cm, rad, cm, unit/10),

similarly as their corresponding errors.
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Figure 5.7: Model-based visual servoing on simulated ellipsoidal object, in the
presence of additive measurement perturbations of 0.3 mm amplitude. The results
obtained with l1 as fifth feature are shown on (a) and (b) - Those obtained with l1√

a

are shown on (c) and (d) - Those obtained with φ1 are shown on (e) and (f).
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orresponds to the desired one, the pose reahed by the probe would unlikely orrespond tothat where the desired image had been aptured. This an be explained by the fat thatbeause of the objet symmetry the probe an have an in�nity of loations from whih it anonvey a same image. To ontrol the 6 DOFs of the roboti system, and thus to automati-ally position the probe with respet to the observed objet, at least six independent visualfeatures are required. Of ourse, afterwards we present results obtained with an asymmetriobjet by ontrolling six visual features.
5.2.2 Model-free visual servoing using the curved line-based

normal vector estimationIn the present setion, we test the model-free servoing that uses the urved line-based nor-mal vetor on-line estimation method, desribed in Setion 4.1.2.The virtual probe is �rstly moved in open-loop with onstant veloity while at the sametime the SLS algorithm, desribed in Setion 4.3, is applied in order to obtain an initialestimate Θ0. Note that this open-loop motion is applied for only the �rst NLS iterations; inthis ase we set NLS =20 iterations. Right after, the servoing is launhed, where the reur-sive algorithm related by the relationships (4.8) and (4.16) takes plae, instead of the SLSone, throughout the servoing. The estimator parameters are empirially tuned to β = 0.9,
f0 = 5×1e3, β0 = 1

20×f0

, and ǫ0 =1e-10. The orresponding simulation results are shownon Fig. 5.8, while the estimated parameters are plotted in Fig. 5.9. We an see that thevisual features errors exponentially onverge to zero, and the reahed image orrespondsto the desired one. Also, orret and smooth probe behavior and motions have been ob-tained. These results thus validate the model-free visual servoing method that employs theurved line-based estimation. The plots of Fig. 5.9 in fat highlights the onsisteny of theestimated parameters between the whole points of the ontour. Indeed, sine the objetsurfae is smooth (i. e., the partial derivatives of the surfae are ontinuous), the variationof the normal vetor when traveling along the objet surfae, and thus around ontour Calso, should be smooth, too; it is the ase for the results we obtained. If it was not as suh,this would mean that the normal vetor is not well estimated. Doing so, that is, analyzingthe onsisteny of the estimated parameters, ould be therefore adopted as a �rst indiatorabout the estimation performane.An additive measurement noise of 0.4 mm amplitude is now introdued in the image. Theestimator parameters β and f0 are now tuned to β = 0.95 and f0 =1e2. Note that theseparameters are adjusted to values slightly di�erent from the previous ones, used above, only
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Figure 5.8: Model-free visual servoing using the curved line-based estimation
method, in a perfect condition where no measurement noise is present. The visual
features and their corresponding errors are in (cm, cm, rad, cm, cm).
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Figure 5.9: Estimated parameters Θ̂ corresponding to the results shown on Fig. 5.8.
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at the aim to adapt the system to noises and, thus, it ould behave better than if the previ-ous parameters are used. The orresponding simulation results are shown on Fig. 5.10, andthe estimated parameters on Fig. 5.11. We an see that the results are satisfatory, whihvalidates the robustness of this model-free method with respet to measurement perturba-tions. Note that the system still well onverged in perfet onditions with these values of theestimator parameters, but however the performane had slightly dereased. The simulationsdesribed below relate this. Note, nevertheless, that tangent vetor sdi, involved in the nor-mal vetor omputation [relationship (4.1)℄, is in this simulation diretly omputed as pixeldi�erene between the adjaent ontour points; we reall that sdi orresponds to the vetortangent to ontour C in the image. Performing diretly a pixel di�erene is well-known toderease the system stability. In pratie and in more realisti simulations that we presentafterwards, we do not ompute sdi as suh. We instead employ �rstly an image proessingalgorithm to extrat a ontour of the setion in the image. The extration in fat onsists to�t a parametri ontour to the atual edge of the setion in the image. Thus, the extratedontour would be �ltered from eventual noises. We then ompute sdi from that ontour,thus mitigating the noise e�et on the estimation. The system robustness therefore an onlybe expeted better.The results we showed are those we onsider obtained using su�iently well tuned estima-tor parameters. The tuning has been performed empirially, while making a ompromisebetween estimation speed, auray, robustness to image noise; we modi�ed the parametersaording to a dihotomy manner. Nevertheless, we notied that the system still onvergesand well behaves for di�erent values of the parameters, and generally it was relatively easyto tune these latter. In fat the system performane is not dramatially ompromised withparameters wise hanges. To show this, we onduted di�erent set of simulations, wherein eah set only one parameter is modi�ed. In the �rst set we suessively varied β. Wepresent on Fig. 5.12 results separately obtained for β = 1.0, 0.5, and 0.04, while the remain-ing parameters are �xed throughout the tests to f0 = 5×1e3, β0 = 1
20×f0

, and ǫ0 =1e-10.We an notie that when β = 0.5 the system performane is better. In the seond set, thesystem is tested when starting with di�erent values of initial estimate Θ0. For that, weassigned di�erent values to parameter ǫ0, sine the latter is involved in the SLS algorithm,that is employed to obtain Θ0. The remaining parameters are �xed to β = 0.9, f0 = 5×1e3,and β0 = 1
20×f0

. Results obtained for ǫ0 =1e-40, 1e-5, and 1.0 are shown on Fig. 5.13. Wean onlude that the visual servoing system using the urved line-based estimation is quitetolerant to the values that the two parameters β and ǫ0 might have. We also tested thesystem for di�erent values of f0 and NLS . It was notied that it grossly dislosed similarperformanes for di�erent values of f0, expet for very small ones, as 0.01 for example, wherethe onvergene beomes relatively quite slow. The system also onverged for di�erent val-ues of NLS .
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Figure 5.10: Model-free visual servoing using the curved line-based estimation
method, in the presence of an additive measurement noise of 0.4 mm amplitude. The
visual features and their corresponding errors are in (cm, cm, rad, cm, cm).
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Figure 5.11: Estimated parameters Θ̂ corresponding to the results shown on Fig. 5.10.
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We reall that results obtained with the straight line- and the quadri surfae-based es-timation methods are respetively presented in Setion C.1.1 and C.1.2. We onlude thatthe quadri-based model-free servoing method onsiderably underperformed the two othermethods. In addition, it was quite di�ult to tune its estimation parameters. In fat, we arenot surprised about this outome, beause of the low performanes this estimation methodhad already shown in Setion 4.4.4. The other drawbak of this method, as highlighted inthe previous hapter, onsists in the fat that it is relatively omputationally expensive.Indeed, this method uses at eah iteration a segment of N points to estimate and thus toupdate normal vetor s∇F, in ontrast to the two other methods (respetively based onstraight and urved line estimation) where only one point is used to update the estimation.
5.3 Simulation results with realistic ultrasound im-

agesIn the present setion, the urved line-based model-free visual servoing method is testedon a realisti simulated objet. The latter onsists in an ultrasound image volume, madefrom a previously performed san of an ultrasound phantom ontaining an egg-shaped ob-jet. The san has been performed by aquiring 100 real B-san images with a onventional2D ultrasound probe, that swept the phantom by moving with onstant veloity along itsorthogonal Z axis. The images were suessively aptured at eah 0.1 mm interval of theprobe motion. Using a software presented in [45℄, the interation of a virtual 2D ultrasoundprobe with the objet volume is simulated. This software simulator is built from the Visu-alization Toolkit (VTK) software [70℄ system and ViSP [53℄. It allows to move and positionthe probe, and an provide the orresponding realisti ultrasound image along with a 3Dview of the interation, as an be seen respetively on Fig. 5.14(a) and Fig. 5.14(b). In thefollowing, we test the servoing method, by using this simulator. This allows us to verifyits validity on realisti ultrasound images. The method uses only the observed image andthe probe pose (robot odometry), also provided by the simulator, to ompute the ontrollaw. The latter is then applied on the virtual probe that moves aordingly. However, weneed to extrat from the observed image the setion ontour, sine it is used to ompute thefeedbak visual features and the interation matrix, both involved in the ontrol law. 2Dultrasound images are, yet, very noisy and di�ult to segment. Moreover, suh extrationshould be not time onsuming, but it should instead be performed as fast as possible in aduration within the real-time servoing streaming rate. This latter onstraint is more di�-ult to satisfy when this onerns roboti appliations, beause of the high streaming rate
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Figure 5.12: Results obtained by employing the model-free visual servoing using
the curved line-based estimation for different values of the parameter β. The visual
features errors are in (cm, cm , rad, cm, cm), and the probe velocity is in (cm/s and
rad/s).
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Figure 5.13: Results obtained by employing the model-free visual servoing using
the curved line-based estimation for different values of the parameter ǫ0. The visual
features errors are in (cm, cm , rad, cm, cm), and the probe velocity is in (cm/s and
rad/s).
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(a) (b)

Figure 5.14: Simulating the interaction of a virtual 2D ultrasound probe with a real
ultrasound 3D volume - (a) A 3D view of the probe observation plane intersecting
(observing) the egg-shaped object - (b) Observed 2D ultrasound image.at whih the systems perform. If this onstraint is not satis�ed, the system performanewould be totally ompromised and, even more, its stability would be deeply threatened. Weuse the image proessing algorithm presented in [21℄ to segment and trak the setion in theultrasound image. This algorithm is based on a snake approah, and a polar parametriza-tion to model the ontour. It has shown to be relatively fast. Sine image proessing isbeyond the sope of this thesis, it is not detailed in this doument. Note that this algorithmis employed in all the simulations and experiments presented in the remainder of this hapter.The segmentation provides oordinates of points lying on image setion ontour C, as an beseen as instane on Fig. 5.15. These points, more preisely their image 2D oordinates, arethen used to ompute feedbak visual features vetor s, on-line estimate normal vetor s∇F,and �nally ompute the ontrol law (5.2). Note however that, in this ase, the observedsetion in the image is nearly an ellipse [see Fig. 5.14(b) for example℄. Consequently, we ande�ne only �ve independent visual features from the image. We selet them, similarly as inSetion 5.2.2 (and also Setion C.1.1 and C.1.2), s = (xg, yg, α,

√
a, l1). Aordingly, pseudoinverse L+

s is employed in (5.2) instead on inverse L−1
s , sine matrix Ls is not square in thisase.The task that has to be performed by the virtual probe onsists to automatially reah a�rst desired image starting from one di�erent, and then to reah a seond target. This al-lows us to verify that the reursive algorithm an re-estimate s∇F, after the observed imagehas not onveyed wealthy information during a while. Indeed, when the �rst target image
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Figure 5.15: A Screenshot of the graphical human-machine interface (top left), along
with a 3D view of the interaction between the virtual probe plane with a realistic
object (top middle), and also along with the observed image whose section is con-
toured with green and where the contour of the target image section is displayed in
red (right). Right the user would have pushed the button “servo” (round button at
top left), the servoing would be launched.would have been reahed, the probe would stand roughly motionless until the seond targetwould be sent to the ontroller. During that time span, the observed image is roughly thesame and, as onsequent, there would not be information to stimulate the reursive esti-mator. This might yield the ovariane matrix F[k] ill-onditioned, thus ompromising theestimation. Moreover, the algorithm might be trapped and might not be pulsed even thoughnew images would then onvey wealthy information. However, thanks to stabilization term
(1 − β) β0 I introdued both in the reursive relationships (4.9) and (4.16), it is expetedthat ovariane matrix F[k] is prevented from beoming ill-onditioned when there are notenough probe motions.The simulation senario onsists to �rst position the probe on an image [see the setion im-age ontoured in green, shown on Fig. 5.16(a)℄ totally di�erent from both the two targets.
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Then, it is moved in open-loop with onstant veloity v = ( − 0.4, 0, − 0.3, 0, 0, 0)(m/s and rad/s) during the �rst NLS iterations, where the SLS algorithm is being appliedin order to obtain an initial estimate Θ0. Right after, the servoing is launhed where thereursive algorithm takes plae instead of the SLS one. The reursive algorithm is solelyapplied throughout the servoing. The ontrol gain is set to λ = 0.7. The �rst initial esti-mate, before that the SLS algorithm is applied, is arbitrarily set to Θ[t0] = 0 (04 when usingthe straight line-based estimation, and 06 when either using the urved line- or the quadrisurfae-based estimation). The estimator parameters are tuned to β = 0.9, f0 = 5×1e3,
β0 = 1

20×f0

, ǫ0 =1e-10, and NLS = 20 iterations. The orresponding results are shown onFig. 5.16 and Fig. 5.17. We an see that the suessive reahed images orrespond to the de-sired ones, and the visual errors onverge to zero. These results thus show the validity of theurved line-base model-free visual servoing method on realisti ultrasound images. More-over, they show its robustness as an be learly seen how muh the images are of low quality.Due to the fat that the snake shook when traking the atual setion ontour, beause ofthe very noisy images and sine the setion is low ontrasted from the image bakground,the probe veloity has onsequently not been smooth, as an be seen on Fig. 5.16(f). Usinga more powerful ontour detetion would undoubtedly, and perhaps onsiderably, improvethe system behavior.Results obtained using the straight line- and the quadri surfae-based estimation methodsare respetively reported in Setion C.2.1 and C.2.2. As expeted (see for example Se-tion C.1.2), the latter method again underperformed the two other methods.The trials presented so far were able to use only �ve independent visual features in thevisual servoing sheme. This was due to the fat that the setion in the image was roughlyellipsoid, that is, symmetri. In suh ases, however, although the desired setion in theimage is reahed, the pose reahed by the probe would unlikely orrespond to the desiredpose (i. e., pose where the target image had been aptured). The reason is that when theimage is symmetri (i. e., the objet is symmetri) a desired image an orrespond to anin�nity of probe poses. In fat, to be able to reah a desired pose using the image, at leastsix independent visual features are required to ontrol the 6 DOFs of the roboti system. Inthe next setion, we perform simulations on a virtual objet whih is grossly non-symmetri,suh that the six hosen visual features are all independent.
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Figure 5.16: Model-free visual servoing using the curved line-based estimation
method performed on a realistic ultrasound 3D volume. The visual features and their
corresponding errors are in (cm, cm, rad, cm, cm).
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Figure 5.17: Estimated Parameters Θ̂ corresponding to the results shown on Fig. 5.16.
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5.4 Simulation results with a binary objectThe urved line-based model-free visual servoing method is now tested on a virtual binaryobjet, whih is grossly asymmetri. The seleted features are s = (xg, yg, α,
√
a, l1, φ2).Note that in this ase Ls is a 6 × 6 matrix and, thus, a square matrix. Therefore, we andiretly employ the ontrol law (5.2) as is. The task now onsists, besides of reahing thedesired image, to also reah the pose where that image had been aptured. We use for thesimulations the same software desribed in Setion 5.3, but, whih is now loaded with slieimages of the binary objet. We similarly load 100 slies.The senario is similar to that desribed in Setion 5.3. Two target images are suessivelysent to the visual servoing system, where the latter target is ordered after the former wouldhave been automatially reahed. At initial time t0, the probe is positioned by the userat a pose di�erent from those where the two target images had been aptured. Then, itis moved in open-loop with onstant veloity v = (0, − 0.1, 0.12, 0, 0, 0) (m/s andrad/s) for the �rst 100 iterations. During that time, the SLS algorithm is applied in orderto obtain initial estimate Θ0. Before the open-loop motion is performed, initial estimate

Θ̂[t0] is arbitrarily set Θ̂[t0] = 0. Note, however, that this open-loop motion yields the probe(and thus the atual image) more farther from both the �rst and seond targets. At theend of this motion, the orresponding pose represents that from whih the model-free visualservoing is launhed. As for the detetion and traking of the ontour, whih onsists toextrat the 2D image oordinates of points lying on it, and whih is required to ompute theontrol law, we similarly use the snake detetion algorithm also introdued in Setion 5.3.The ontrol gain is set to λ = 0.2. The estimator parameters are tuned to β = 0.8, f0 =1e6,
β0 = 1

20×f0

, ǫ0 =1e-10, and NLS = 20 iterations. The orresponding simulation results areshown on Fig. 5.18 and 5.19. They are quite satisfatory, sine the visual features errorsonverge to zero, exponentially. The two poses reahed by the probe orrespond also tothose where the �rst and seond target images had been aptured, respetively. The ob-tained positioning errors are (1.28×1e-3, -8.4×1e-4, -1.9×1e-4, 0.086, 0.378, 0.03)(mand deg) for the former and (4.5×1e-4, 4.1×1e-6, -1.13×1e-5, -0.12, -0.22, 0.008)(m anddeg) for the latter automati positioning. These results show the validity of the method inautomatially positioning the probe with respet to an observed objet. They also show therelevane of the seleted six visual features to ontrol the 6 DOFs of the system.
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Figure 5.18: Model-free visual servoing that uses the curved line-based estimation,
tested on a simulated binary object.
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Figure 5.19: Estimated parameters Θ̂ corresponding to the results shown on Fig. 5.18.
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Figure 5.20: Experimental setup - A 6 DOFs medical robot arm (right) actuating a 2D
ultrasound probe (left), which is interacting with an object immersed in a water-filled
tank. The observed image is displayed on the imaging system screen (middle).

5.5 Experimental resultsIn the following, we �nally present experimental results obtained with the model-free visualservoing that uses the line-based estimation. We employ 6 DOFs anthropomorphi robotarms. All the experiments have been onduted with a medial robot arm similar to theHipporate roboti system [65℄, exept the last one where a new aquired robot has beenemployed as presented in Setion 5.5.5. The robot arries at its end-e�etor a 5-2 MHz 2Dbroadband US transduer (see Fig. 5.20 for example). The latter aquires the images at astreaming rate of 25 frames/s. A blok diagram shown on Fig. 5.21 illustrates the di�erentsteps involved in the servoing along with the orresponding data �ow. The servoing methodhas been implemented in the C++ programming language under LINUX operating system,and the ontrol law is omputed using an ordinary personal omputer. We onsider �rsta simple ase of a spherial objet with whih the probe is interating, the ase of a rela-tively symmetri objet enlosed in an ultrasound phantom, and then a more omplex aseof non-symmetrial soft tissue objet. Both the spherial and soft tissue objets are sepa-rately immersed in a water-�lled tank. The latter experiment allows us to experimentallytest the automati positioning with respet to an observed objet and, thus, the validityof the model-free visual servoing method in ontrolling the 6 DOFs of the roboti system.We onlude these tests by arrying out an experiment where we take bak the ultrasound
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Figure 5.21: Architecture of the model-free servoing method, where the different
involved steps along with the corresponding data flow, up to hardware setups, are
presented.phantom. In the latter, in fat, two relatively-symmetri objets an be observed in a sameaquired image. The roboti task of this experiment onsists in traking both the two se-tions, instead of only one. We will show that by doing so the probe an be positionedand thus stabilized with respet to the two objets, although the symmetry of eah one.Therefore, we provide a solution to address the problem of symmetry, pointed out in thisdoument.
5.5.1 Experimental results with a spherical objectThe roboti system is interating with a ping-pong ball of 4 m diameter. Note that wedo not use any prior knowledge about the ball in the servoing. No information about itsdiameter nor loation is exploited. Sine the observed image is a sphere, we an de�ne onlythree independent visual features, as has been desribed in Setion 3.7.1. Therefore, thefeedbak visual features vetor we selet is s = (xg, yg,

√
a), where its elements have already
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Figure 5.22: Experiment using the model-free visual servoing that uses the curved
line-based estimation, where the probe interacts with a spherical object -(a) Initial
image captured right before launching the servoing, where the actual section is con-
toured with green. The contour of the desired image section is displayed with red
and superimposed on the initial image - (b) Target image automatically reached after
visual servoing - (c) Visual features errors in (cm ,cm, cm) (d) Probe velocity applied
on the probe.been de�ned in terms of image moments by the relationship (3.48). The roboti task on-sists in �rst learning a desired image setion, then moving away the probe transduer fromthat target by applying open-loop motion with onstant veloity. During that motion, theSLS algorithm presented in Setion 4.3 is employed for only the �rst NLS = 60 iterations, inorder to obtain initial estimate Θ0. Right after, when the probe reahes a distant loation,the servoing is launhed where the reursive least squares estimation algorithm presentedin Setion 4.1.2 is employed throughout the trial. The ontrol gain is set to λ = 0.1. As forthe estimator parameters, they are tuned to β = 0.8, f0 =1e6, β0 = 1

(20×f0)
, and ǫ0 = 1e-10.Note that in this experiment, we have employed the straight line-based estimation method.Corresponding experimental results are shown on Fig. 5.22. The visual features errors on-verge to zero, roughly exponentially, as an be seen on Fig. 5.22(), and the reahed imagesetion orresponds to the desired one as an be seen on Fig. 5.22(b). The robot behavior
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Figure 5.23: The probe transducer interacting with an ultrasound phantom.is orret, where smooth motions have been applied as an be seen on Fig. 5.22(d). Theseresults thus give a �rst experimental validation of the model-free visual servoing methodbased on line estimation.
5.5.2 Exprimental results with an ultrasound phantomThe model-free visual servoing method based on straight line estimation is tested on anultrasound phantom (see Fig. 5.23). In this ase the ultrasound transduer is in ontatwith the phantom and applies a 2 N fore on it. For that, the veloity vz of the probeis onstrained by fore ontrol. We notied however that feature l1 was oupled with thearea, likely due to the relatively-symmetri shape in the image of the phantom objet. Wethus removed that feature from the visual features vetor, whih is now s = (xg, yg, α,

√
a).The estimator parameters are tuned to β = 0.95, f0 =1e8, and β0 = 1

20×f0

. The robotitask onsists to automatially reah two suessive target images; the seond target is sentto the ontroller after the �rst one would have been reahed. Corresponding results areshown on Fig. 5.24. The visual features errors onverge to zero roughly exponentially [seeFig. 5.24(e)℄. Both the two target images have been reahed as an be seen respetively onFig. 5.24(b) and 5.24(d). The motions of the probe are also orret as an be notied fromthe applied probe veloity, shown on Fig. 5.24(f).



5.5. EXPERIMENTAL RESULTS 160

(a) (b)

(c) (d)

0 50 100 150
−2

−1

0

1

2

3

time (s)

Visual features errors

 

 

e
1

e
2

e
3

e
4

(e)

0 50 100 150
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

time (s)

Probe Velocity response (cm/s and rad/s)

 

 

v
x

v
z

ω
x

ω
y

ω
z

(f)

Figure 5.24: Experimental results with an ultrasound phantom using the model-free
visual servoing method based on straight line estimation (the current contour is in
green and the desired one in red): (a) Initial and first target image - (b) First target
reached after visual servoing - (c) A second target image is sent to the robot - (d) The
second target image is reached after visual servoing - (e) Visual error time response
(cm, cm, rad, cm)- (f) Control velocity applied to the probe.
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5.5.3 Ex-vivo experimental results with a lamb kidneyWe test the model-free visual servoing method based on straight line estimation on a mo-tionless lamb kidney immersed in the water-�lled tank. Similarly, the roboti task onsiststo automatially reah two suessive target images. The feedbak visual features vetoris s = (xg, yg, α,
√
a, l1). We have not used six visual features beause of the symmetry ofthe setion in the image. The estimator parameters are tuned to β = 0.8, f0 =1e5, and

f0 = 1
20×f0

. Corresponding results are shown on Fig. 5.25. The visual features errors on-verge to zero [see Fig 5.25(e)℄. Both to the two reahed images orrespond to the desiredones, as an be seen respetively on Fig. 5.25(b) and 5.25(d). The robot behavior is orretas an be notied from the relatively smooth applied probe veloity shown on Fig. 5.25(f).These results therefore experimentally validate the model-free servoing method on real softtissue.Note that in the experiments presented above, less than six visual features have beenused. As suh, the pose reahed by the probe would unlikely orrespond to that where thedesired image had been aptured, as already highlighted in Setion 5.2.1. In the following,we present experimental results obtained with six visual features at least.
5.5.4 Experimental results with a motionless soft tissueWe test the servoing method on a grossly asymmetri gelatin-made soft tissue objet. Suhasymmetry yields the six visual features independent, whih allows to ontrol the 6 DOFsof the roboti system and, thus, to automatially position the probe with respet to theobjet. In other words, the probe should automatially reover the pose with respet tothe objet where the desired image had been aptured. The feedbak visual features are
s = (xg, yg, α,

√
a, φ1, φ2). Note that we used the urved line-based estimation method.As before, the roboti task onsists in �rst aquiring a desired image, then moving away theprobe from the orresponding loation where this image had been aptured. The motionis performed during 70 iterations in open-loop with onstant veloity. During this movingaway, the SLS algorithm is applied for the �rst NLS = 60 iterations. This allows to obtaininitial estimate Θ0. Right after the reursive algorithm takes plae, instead of the SLS one,and then is solely applied throughout the trial. The ontrol gain is set to λ = 0.05, andthe estimator parameters are tuned to β = 0.8, f0 =1e6, β0 = 1

20×f0

and ǫ0 =1e-10. Theorresponding experimental results are shown on Fig. 5.26. The six visual errors onvergeto zero, roughly exponentially, as an be seen on Fig. 5.26(), and the reahed image se-tion orresponds to the desired one as an bee seen on Fig. 5.26(b). Moreover, the probeautomatially ame bak quite near the pose where the desired image had been aptured
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Figure 5.25: Experimental results with a lamb kidney using the model-free visual
servoing method based on straight line estimation (the current contour is in green
and the desired one in red): (a) Initial and first target image - (b) First target reached
after visual servoing - (c) A second target image is sent to the robot - (d) The second
target image is reached after visual servoing - (e) Visual error time response (cm, cm,
rad, cm, cm)- (f) Control velocity applied to the probe.
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Figure 5.26: Experimental results obtained with the model-free visual servoing
method based on curved line estimation, where the probe is interacting with a soft
tissue object that possesses asymmetric regions - (a) Initial image captured right
before launching the servoing, where the actual section is contoured with green. The
contour of the desired image section is displayed with red and superimposed on the
initial image (b) Desired image reached after visual servoing - (c) Visual features
errors in (cm, cm, rad, cm, unit, 10×unit) - (d) Probe Velocity - (e) Trajectory
performed by the probe, where that obtained during the open-loop motion is plotted
in magenta and that obtained during the servoing is plotted with green. The position
where the desired image had been captured in indicated with the read stared point.



5.5. EXPERIMENTAL RESULTS 164

[see Fig. 5.26(e)℄. The orresponding obtained positioning errors are (0.4, 0.6, -0.2) mm and(0.05, -0.7, -0.8) degree respetively for the position and the θu rotation2. The robot behav-ior is orret, where smooth motions have been performed as an be seen on Fig. 5.26(d),despite the noisy images. Thus, these results experimentally validate the servoing methodfor both reahing a desired ultrasound image and reovering the loation where that imagehad been aptured.
5.5.5 Tracking two targetsIn ase the observed objet is not asymmetri, it is still possible to stabilize the probe withrespet to it. We propose two solutions for that. They are desribed in Chapter 6. Letus onsider here the seond solution, that onsists to rather onsider a ouple of targetsinstead of only one, as was so far onsidered in this work. As observed objet, we take bakthe ultrasound phantom used in the experiment reported in Setion 5.5.2. We have seenthat when onsidering only one target setion image, it is unlikely that the probe retrievesthe pose where that target image is aptured and thus it would not be possible to stabilizethe probe with respet to the phantom (objet). However, in this experiment we onsidertwo target setions, as an be seen on Fig. 5.27(i). From eah observed setion, �ve visualfeatures are omputed. As a result, the system is fed bak with 10 visual information. Notehowever that veloity omponent vz is servoed by fore ontrol in order that the probe exertsa ouple of newton fore along its Y axis (see Fig. 3.5 and 3.7 for the probe axes on�g-uration). The phantom is put on a manually-driven tray. The task onsists to trak thetwo target setion images when the phantom is arbitrarily and manually moved. Note thatin ontrast to the above presented results, we employed in this experiment a new aquired6 DOFs anthropomorphi robot arm. Corresponding experimental results3 are shown onFig. 5.27. We an see that the robotized probe automatially traks the moving ultrasoundphantom, and stabilizes with respet to it. The observed image setions superimpose onthe target ones [see Fig. 5.27(i)℄. Note that sine we used a basi ontrol law, the systemresponse is relatively slow and presents delays. Employing a traking-dediated ontrol law,the system reativity would inrease. We have not estimated and thus not predited thephantom motions to then eventually forward the information in the robot motions ontrol.In this work, only the observed image along with the robot odometry is used to ompute theommands to ontrol the robot. However, estimating the phantom movements, as using forexample a Kalman �lter, the results are expeted to be better. Note also that we have been

2θu representation is defined by a unitary vector u, representing the rotation axis, and rotation
angle θ around this axis.

3The corresponding video can be found at http://www.irisa.fr/lagadic/team/old/Rafik.Mebarki-
eng.html.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.27: Tracking two target sections: sequences taken during the tracking - (i)
Observed 2D ultrasound image. The two observed cross-sections are contoured with
green, while the contours of their respective targets are in red. The contour of each
observed cross-section superimposes on its corresponding target.
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onstrained by the omputational time, sine the image proessing takes a large amount ofresoures. To ope with that, we have used only 50 image points to haraterize the on-tour of eah observed setion. As so, the ontour is not enough sub-sampled, whih ouldompromise the auray of both the normal vetor estimation and the omputed ommandveloity. We notied shakiness of the snake during the phantom displaements.
5.6 ConclusionWe presented new visual servoing methods to automatially position a robotized 2D ul-trasound probe in order to reah and maintain desired ross-setion images. Firstly, wepresented simulation results that have shown the validity of the model-based visual servoingmethod, where the objet 3-D model is required. The latter onstraint, as emphasized,onsiderably limits visual servoing based on ultrasound images. Thanks, however, to thenormal vetor estimation methods, we developed model-free visual servoing methods thatoverome that onstraint. Indeed, these methods do not require any prior knowledge of theshape of the observed objet, its 3D parameters, nor its loation in the 3D spae. They in-stead on-line estimate normal vetor s∇F to then employ it in the ontrol law. We presentedthree di�erent model-free servoing methods, aording to the geometrial primitive they usefor the estimation. We distinguished servoing methods that use respetively straight line-,urved line-, and quadri surfae-based estimation method. In this hapter, we reported sim-ulation results obtained with method based on urve estimation, while those obtained withthe straight line- and the quadri surfae-based methods are presented in Appendix C. Theresults showed the validity of the two methods based on straight and urved line primitives.They suggested that these two methods outperform the quadri surfae-based method. Thelatter one, indeed, showed to be onsiderably less robust to image noise, and has failed forimportant probe displaements. For small displaements, the probe veloity was neverthe-less too shaky. Suh performanes were in fat expeted from the simulations presented inChapter 4. In those simulations, we notied that the urved line-based estimation showedto be more e�etive. Then, we reported experimental results where we have tested themodel-free visual servoing based on line estimation. They have been obtained with botha spherial objet, an ultrasound phantom, a lamb kidney, and a relatively omplex softtissue objet. The probe automatially reahed the desired ross-setion images. Moreover,it automatially omes bak quite near to the pose where the desired image is aptured onthe gelatin-made soft tissue objet. Finally, onsidering two target setions simultaneously,on the the ultrasound phantom, the latter has been automatially traked by the robotizedprobe. All those results thus experimentally validated the model-free visual servoing wepropose in this dissertation. Consequently, and more preisely, they validate both the the-
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oretial foundations developed in Setion 3, the normal vetor on-line estimation methodpresented in Chapter 4, and the seletion of feedbak visual features s in the present hapter.





Chapter 6

ConclusionsThe researh work presented in this dissertation lies mainly within the �eld of image-basedvisual servoing. It investigated the exploitation of 2D ultrasound images for automatiguidane and thus positioning of robotized 2D ultrasound probes with respet to observedsoft tissues. The senario onsists of a 2D ultrasound probe arried and thus atuated bythe end-e�etor of a general medial robot arm. The latter is servoed in veloity thanksto the visual servoing shemes we developed and presented in this doument. The on-trol law of the visual servoing sheme indeed omputes the veloity that the robot has toahieve in order to reah the desired ultrasound image. As highlighted, the ontrol law ofan image-based visual servoing sheme requires the interation matrix related to the feed-bak visual features. The interation matrix, in fat, relates the di�erential hanges of thevisual features to di�erential displaements (on�guration hanges) of the robot. However,the analytial form of suh matrix was not available for 2D ultrasound imaging systems,due to the fat that the latter interat with their environment with a manner that was, sofar (before our works), hallenging to model. These systems ompletely di�er from optialsystems, for instane, whose use in roboti automati guidane is the subjet of extensiveinvestigations in the �eld of visual servoing. In partiular, for optial imaging systems, asperspetive ameras for example, the interation matrix related to di�erential hanges ofthe image points oordinates is already available. From that matrix, that related to di�er-ent visual features an be derived. It was not the ase for 2D ultrasound imaging systems.Another main hallenge when dealing with these systems onsists in the fat that the imagefeature variations strongly depend on the 3-D shape of the objet with whih the probeis interating. The hallenge orresponds mainly to a mathematial modeling problem. Aouple of investigation works, that have been presented in Chapter 2, provided the intera-tion matrix for only a simple 3-D geometrial primitive, namely 3-D straight line. The workpresented in this dissertation addressed all those ited hallenges. We developed, indeed,general methods that endow the the roboti system with the apability of dealing withobjets of whatever shapes, in order to automatially position the probe with respet to
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them. Doing so required mainly to develop new theoretial foundations in term of modelingtehniques. Our ontributions an be summarized as follows:(a) We have proposed to use visual features based on image moments as feedbak forvisual servoing shemes, to automatially ontrol the robot from the observed 2Dultrasound images. This diretion seems judiious sine the image moments show tobe relevant in ase of 2D ultrasound images. Indeed, omputing the image momentsneeds only a global segmentation of the setion in the image, and thus does notrequire mathing of points in the image exept for the setion in the image. This isof great interest when dealing with 2D ultrasound sine, as desribed in the presentdoument, the points of the image do not math to those of the preedent image. Thisis explained by the fat that the observed points are not the same, in ontrast to optialsystems for example. A preliminary exploration work [54℄ validated the relevane ofour hoie for image moments. However the interation matrix related to imagemoments was approximated. Moreover, the onsidered observed objet is assumedgrossly ellipsoidal, and its 3-D parameters are assumed roughly known. This hasbeen addressed and presented in this dissertation, where the exat form of interationmatrix Lmij
, related to image moment mij , has been modeled;(b) To obtain the interation matrix, its exat form, more preisely, we �rst highlightedthat a key solution would be to onsider only the image veloity of the points lying onthe ontour of the setion in the image (the ontour and the setion in the image havebeen respetively denoted by C and S). The image moments time variation, thanksto the Green's theorem, an be formulated as funtion of the veloity of those ontourpoints. The objetive then onsisted to obtain suh image veloity;() The image ontour points indeed orrespond to points sliding on the surfae of theobserved objet. We have shown that suh points an satisfy two onstraints, thatonsist in the relationships (3.20) and (3.22). Eah onstraint orresponds to a salarmathematial relationship. Using these two onstraints, we then have been able tomodel an exat form of the image veloity of the ontour points. The formulae isgiven by the relationship (3.27) aording to (3.28). Suh image veloity, denoted

(ẋ, ẏ), is expressed as funtion of veloity v of the robot end-e�etor (or of frame
{Rs} attahed to the robotized probe);(d) Using the image veloity relationship, we �nally derived the exat form of interationmatrix Lmij

, as given by the relationship (3.34) aording to (3.35). It was notiedthat the interation matrix requires the knowledge of the image oordinates of thepoints lying on the image ontour, and also vetor s∇F normal to the surfae ofthe observed objet at eah of the onsidered ontour points. The obtained results
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have been veri�ed on simple 3-D geometrial primitives, like spheres and ylinders,for ertain on�gurations. We then have designed a visual servoing sheme where thefeedbak visual features are ombinations of image moments. Six relevant indepen-dent visual features have been proposed to ontrol the 6 DOFs of the roboti system.A lassial ontrol law has been employed in the servoing sheme. The ontrol lawrequires the interation matrix, or its estimate, at eah iteration. If the matrix isexat, the visual features errors are expeted to onverge to zero exponentially. Thislatter harateristi has been exploited to verify again the exatitude of the inter-ation matrix. To do so, we performed simulations where the senario onsisted ofa virtual 2D ultrasound probe that interats with an ellipsoidal objet. This objetwas assumed exatly known. Its half length values an its pose are used to omputethe atual values of the image oordinates and the normal vetor, that are used toompute the ontrol law. We have notied that, indeed, as expeted, the feedbakvisual features errors onverge to zero exponentially [e. g. Fig. 5.4(f)℄. This validates,one again, the orretness of the developed interation matrix;(e) Another problemati, as pointed out above, onsisted in the fat that the variationsof the image information depend strongly on the 3-D shape of the observed objet.This an be notied from the involvement of s∇F in elements Kx and Ky, given by(3.28), that are required in the expression of the image point veloity and, hene, ofinteration matrix Lmij
. Computing this normal vetor would have suggested the useof a 3-D pre-operative model of the observed objet. Suh resolution however wouldhave greatly hindered the visual servoing, where the 3-D model has to be registeredto the objet at eah iteration; besides that the auray of the extrated normalvetor would be diretly and heavily based on that of the registered 3-D model.Our work overame suh limitations, where we proposed model-free visual servoingmethods that do not require any prior information about the shape, 3-D parameters,nor 3-D loation (position and orientation) of the observed objet. To do so, we havedeveloped estimation methods to on-line estimate the normal vetor. We proposedthree estimation tehniques:

· straight line-based estimation;
· urved line-based estimation;
· and quadri surfae-based estimation.Even though that opting for quadri surfae primitives for the estimation seems themore natural diretion that one ould take, we have notied from di�erent performedsimulations that the quadri surfae-based estimation onsiderably underperformedthe �rst two methods, that rather well performed in di�erent onditions. In fat, weexpeted suh di�erene of outomes. This an be explained by the fat that the
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two �rst methods do not estimate in whole the normal vetor but only a part of it.Indeed, these two tehniques deompose a normal vetor into two tangent vetors.The former tangent vetor an be extrated from the image, while only the latterneeds to be estimated. Doing so, we spare the obtained normal vetor value the e�etof a part that would add errors if the normal vetor would have to be estimated inwhole; thus only the errors on the estimation of the seond tangent vetor have animpat on the normal vetor. Moreover, �tting a line to a set of suessive pointsseems less onstrained than �tting a surfae to a loud of points. Experiments havebeen onduted, where we tested the model-free visual servoing methods that use theline-based estimation. The orresponding results have experimentally validated themethods.Thus, the previous ited hallenges that were faed and that hindered robotis automatiguidane from 2D ultrasound images are now addressed thanks to the theoretial founda-tions and the methods we have presented in this doument. We have provided through thisthesis basis on whih new investigation and thus developments an now be undertaken.Nevertheless, some of the proposed methods ould be improved. It was proposed in thisdissertation to employ a stabilized reursive least squares algorithm to perform the estima-tion of s∇F. It would be interesting instead to test a Kalman �lter (KF), or an ExtendedKalman �lter (EKF), in order to verify whih algorithm gives the best outome in terms ofestimation auray, speed, and robustness. Let us point out that in [86℄ it was onludedthat an EKF estimator outperformed a least squares one in terms of auray and speedin prediting periodi motions; mimiking mitral valve motions for heart surgery. The 3-Dultrasound imaging was employed in that work. Another point is that we have performedsimulations and experiments mainly on motionless observed objets. Dealing with mov-ing objets ould be onsidered with the developed methods as is. This in fat ould betehnially addressed by making the roboti system performing at high sampling streamingrates. Indeed, aquiring the images and then ordering the ommand veloity at a su�ientlyhigh streaming rate, suh that the motions of the objet between two samples ould be ne-gleted, the estimation algorithm would be insensitive to the objet motions. The modeledinteration matrix is also onerned if moving objets are onsidered, but this again ouldbe similarly addressed. However, if the motions of the observed objet beome faster withregards to the streaming rate, suh that its displaements between two aquired images annot be negleted, the proposed methods might fail. That is the reason why this should befurther investigated. Nevertheless, we think that the onepts we have proposed and usedin the modeling of the interation matrix and in the estimation of the normal vetor an betaken bak and adapted for the ase of moving objets.
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We have proposed six visual features to ontrol the 6 DOFs of the roboti system and thusto automatially position the probe at a desired ross-setion of the observed objet. The2D ultrasound probe an automatially ome bak to the pose (position and orientation)where a desired image is aptured. This an be ahieved provided that objet is asymmet-ri. If it is not the ase, a desired image an orresponds to an in�nity of ross-setions(slies), and onsequently the probe might fail to automatially retrieve the orrespondingpose. Nevertheless, suh issue might be addressed by employing not only one 2D ultrasoundprobe but, instead, a ouple of probes; as example to illustrate, two orthogonal probes anbe employed. Both probes should of ourse be atuated by the same roboti system. Eahaquired image from eah of the probes would provide di�erent setion and also would targeta di�erent ross-setion. The task would then onsist to reah both desired ross-setions.In fat, the whole information provided by all the probes should be enough to extrat atleast six independent visual information. This an be a�orded by means of, for example,a selection matrix using the task function approach [68℄. When all the probes would reahtheir respetive target ross-setions, the onsidered probe would thus learly be positionedat the desired ross-setion that we are interested in; the other probes with the imagedross-setions are only onsidered to add visual information, no more. A seond solution,whih is a dual solution of the above-mentioned one, would be to rather onsider di�erenttarget setions in the same image, instead of only one setion. Indeed, we have shown inSetion 5.5.5 that by onsidering two target setions the robotized probe has been able tostabilize with respet to a moving ultrasound volume, the 3-D phantom in this ase.Another issue is that if the shape (losed surfae) of the objet possesses loal minima, thevisual servoing method might be trapped by these latter, in ase the probe trajetory wouldenounter them. A resolution that ould be proposed onsists in using path of images thatwould suessively guide the probe up to the desired image of the target ross-setion thatwe are interested in. Suh resolution ould be also used to guide the probe from relativelyfar loations. As for the seletion of the six visual features, we suggested to use φ1 [given bythe relationship (5.8)℄ as �fth feature, if the image noise is not onsiderably high to a ertainextent that would ompromise the system stability. If it is not the ase (i. e., the noise ishigh) we reommended to instead use l1 [relationship (5.11)℄ as �fth feature. This latterindeed showed to me more robust to image noise. The advantage of φ1 is that it has rathershowed to yield the probe motions more deoupled. The hoie between φ1 and l1 is thussubjet to a ompromise between motion deoupling and robustness. However, it wouldbe nie to �nd, or to investigate for, a feature that ould well satisfy both the two traits:deoupling and robustness. The same applies for the sixth feature, where we proposed φ2.In a pratial senario, the probe is in ontat with the patient skin. Therefore, the inter-ation fores need to be ontrolled. In some of the experiments we have onduted, where
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the probe was in ontat with the soft surfae of the ultrasound phantom, we have on-strained probe veloity omponent vy with a proportional fore ontroller, in suh a way theprobe ould exert a ouple of newtons fore along its Y axis. However, suh an approahis rudimentary, sine one DOF of the system is no longer used and thus lost by the visualservo ontroller to ompensate for all in-plane and out-of-plane motions. As suh, somemotions ould no longer be ompensated to keep the target in the image. Moreover, inase the probe is oriented with respet to the ontat surfae, the fore along Y axis wouldnot orrespond to the amount of exerted fores on that surfae. Therefore, ontrolling vzwould no longer allow to ontrol all the ontat fores. That is the reason why we proposeto investigate for a more sophistiated approah. However, we provide a diretion for this.A system where visual servoing and fore ontrol share the ommand of the robot motionsshould be onsidered. The task function approach again ould be useful, where the ontrollaw an be omputed based on the priority given to the funtions to ahieve: vision or fore.To do so, we propose to onsider at least two modes. The �rst mode would orrespond tothe ase where the exerted fores are below a pre-�xed threshold and thus are onsideredno dangerous for the patient body, while the seond mode would onsist in the ase wherethese fores are above the threshold. In the �rst mode, the priority should be given to thevisual servoing rather than to the fore ontrol. As for the seond mode, the priority shouldbe inverted, that is, giving more importane to ontrol the fores than keeping the target inthe image. The system of ourse should swith to either modes depending on the amountof exerted fores with respet to the threshold.Dealing with deformable objets (mimiking soft tissue deformations) should also be inves-tigated in the future works. Doing so seems to be a strong hallenge. A preliminary keysolution would be to order the roboti system with variable desired image, and not withstati one as it is the ase for most of visual servoing shemes. In ase the objet deformsperiodially, the setion in the image would also periodially vary. Consequently, the vari-ation of the ross-setion and thus of the setion in the image ould be predited. Theobjetive would be then to send to the visual servoing shemes the predited images of thedesired ross-setion. If the images are well predited and synhronized with respet to theobjet deformations, we expet that the 2D US probe ould be automatially positioned atthe desired ross-setion of the observed objet. It would be likely assumed that the objetdeforms homogeneously, suh that shear deformations would not be onsidered.Finally, the methods developed through this thesis have brought basis on whih, weexpet, new tehniques ould now be developed. These theoretial foundations ould alsobe ombined with other di�erent tehniques dediated for robotis ontrol. Although themethods we developed foused on roboti guidane using 2D ultrasound images, they mightbe extended to MRI and X-ray. These two latter modalities provide indeed, like ultrasound,
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full information in their observation plane, and thus both of these three modalities interatwith their environments by the same manner. Therefore the modeling methods developedin this thesis an apply to the two latter modalities. Ultimately, the imaging modalitiesdisussed in this thesis might be omplementary and thus exploited in a synergisti manner.





Appendix A

Some fundamentals in coordinate
transformations

A.1 Scalar productLet vetors a and b be of same dimension n de�ned respetively by a = (a1, a2, ..., an) and
b = (b1, b2, ..., bn). The salar produt a · b of a and b is de�ned by:

a · b = b · a = a⊤b = b⊤a =
k=n
∑

k=1

ak bk (A.1)If a and b are orthogonal, we have:
a · b = 0 (A.2)

A.2 Skew-symmetric matrixThe skew-symmetri matrix [a]× assoiated to vetor a = (ax, ay, az) is given by:
[a]× =







0 −az ay

az 0 −ax

−ay ax 0






(A.3)The following property an be dedued:

[a]⊤× = −[a]× (A.4)
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Figure A.1: Points projection

A.3 Vector cross-productLet a and b be vetors. Their ross-produt an be written as:
a× b = [a]× b (A.5)with the following property:
a× b = − b× a (A.6)The resulted vetor is orthogonal to the plane formed by a and b. This an be written bythe following salar produt:

(a× b) · a = (a× b) · b = 0 (A.7)If a and b are parallel, we therefore have:
a× b = 0 (A.8)
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A.4 Points ProjectionLet P a point of the 3-D spae, where {Ra} and {Rb} are 3-D artesian frames (see Fig A.1).The oordinates of P in the frame {Ra} are given by the vetor position aP = (ax, ay, az).Let also, aRb be the rotation matrix de�ning the orientation of the frame {Rb} with respetto the frame {Ra}, and atb be the vetor position de�ning the origin of {Rb} in the frame
{Ra}. Therefore the 3-D oordinates bP = (bx, by, bz) of P in the frame {Rb} an beobtained as follows:

bP = aR⊤
b ( aP − atb) (A.9)

A.5 Rotation matrix propertiesA rotation matrix is an orthogonal matrix. Considering a rotation matrix R, the orthogo-nality is expressed as follows:
R⊤ = R−1 (A.10)that an be also written by:

R⊤ R = RR⊤ = I3 (A.11)A rotation matrix possesses the following property:
aRb = bR−1

a = bR⊤
a (A.12)



Appendix B

Calculus

B.1 Integral of trigonometric functionsWe provide in this setion alulus results of some trigonometri funtions integration thathas been used in Setion 3.7.1.Consider a real salar θ. We obviously have:
∫ 2π

0
sin θ dθ = 0 (B.1)

∫ 2π

0
cos θ dθ = 0 (B.2)Consider now the omplex entity eiθ, of the salar θ, and its onjugate e−iθ, where i is theimaginary unit suh that i2 = −1. Theses two omplex entities an be written:

{

eiθ = cos θ + i sin θ

e−iθ = cos θ − i sin θ
(B.3)From whih it an be dedued:

{

cos θ = 1
2 (eiθ + e−iθ)

sin θ = 1
2 i (eiθ − e−iθ)

(B.4)
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The above relationship is used to alulate �rst the integral of the funtion sin2 θ. Thesame approah an then be followed to alulate the integral of the remaining funtions,presented in the following, that we need in Setion B.2. We have from (B.4):
sin2 θ = −1

4

(

e2iθ + e−2iθ − 2
)

(B.5)Integrating the above relationship gives:
∫ 2π

0
sin2 θ dθ = −1

4

[

1

2i

(

e2iθ − e−2iθ
)

− 2θ

]2π

0

(B.6)whih yields:
∫ 2π

0
sin2 θ dθ = π (B.7)Similarly following the above approah, we have:

∫ 2π

0
cos2 θ sin θ dθ = 0 (B.8)

∫ 2π

0
cos θ sin2 θ dθ = 0 (B.9)

∫ 2π

0
cos2 θ sin2 θ dθ =

π

4
(B.10)

∫ 2π

0
sin3 θ dθ = 0 (B.11)

∫ 2π

0
cos θ sin3 θ dθ = 0 (B.12)

∫ 2π

0
sin4 θ dθ =

3π

4
(B.13)
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B.2 Calculus of nij, spherical caseIn this setion, we express in a simple and appropriate form the elements n20, n11, and n02given by (3.51). From the obtained equation (3.44) that states the relationship of pointslying on the image ontour in ase of sphere shaped objet, we an set the following hangeof oordinates:
{

x = tx + r Cθ

y = ty + r Sθ
0 6 θ < 2π (B.14)with Cθ = cos(θ) and Sθ = sin(θ), where θ represents the angle in the image.Sine tx = xg and ty = yg, the above relationship system beomes:

{

x = xg + r Cθ

y = yg + r Sθ
(B.15)The image moment mij an be formulated as a line integral around the image ontour C,as given by (3.32). We use this relationship to alulate the seond order image moments

m20, m11 and m02.Applying (3.32), the moment m20 is thus expressed as:
m20 = −

∮

C
x2 y dx (B.16)

= −
∫ 2 π

0
x2 y

dx

dθ
dθ (B.17)substituting x and y with their orresponding expressions given by (B.15), we have:

m20 = r3 yg

∫ 2π

0
Cθ2 Sθ + r2 x2

g

∫ 2π

0
Sθ2 + 2r3 xg

∫ 2π

0
CθSθ2 + r4Cθ2Sθ2 (B.18)then using the result of some trigonometri integrations provided in Appendix B.1, thenrealling that the area a of the image setion is a = πr2, we obtain

m20 = a(x2
g + r2/4) (B.19)replaing, �nally, this in (3.51), n20 = m20/a, yields:
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n20 = (x2
g + r2/4) (B.20)Similarly for the moment m11, it an be expressed as follows:

m11 = −1

2

∮

C
x y2 dx (B.21)

=

∫ 2π

0
x y2 dx

dθ
(B.22)substituting x and y with their respetive expressions given by (B.15) yields:

m11 = 1
2 r

4
∫ 2π
0 CθSθ3dθ + 1

2 r
3 xg

∫ 2π
0 Sθ3dθ +

r3 yg

∫ 2π
0 CθS2θ dθ + r2 xg yg

∫ 2π
0 Sθ2dθ +

1
2 r

2 y2
g

∫ 2π
0 Cθ Sθ dθ + 1

2 r xg y
2
g

∫ 2π
0 Sθ dθ

(B.23)

after using alulus results of Appendix B.1, we obtain m11 as follows:
m11 = a xg yg (B.24)whih yields sine n11 = m11/a:
n11 = xg yg (B.25)We follow the same steps for m02. It an be expressed by:

m02 = −1

3

∮

C
y3 dx (B.26)

= −1

3

∫ 2π

0
y3 dx

dθ
dθ (B.27)substituting y with its expression given by (B.15), we have:

m02 =
1

3
r4
∫ 2π

0
Sθ4dθ + r3 yg

∫ 2π

0
Sθ3dθ + r2 y2

g

∫ 2π

0
Sθ2dθ (B.28)
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we �nd:
m02 = a(y2

g + r2/4) (B.29)and thus:
n02 = (y2

g + r2/4) (B.30)



Appendix C

Supplementary simulation results
of model-free visual servoing

C.1 Model-free servoing on the ellipsoid

C.1.1 Using the straight line-based methodWe use the straight line-based tehnique, desribed in Setion 4.1.1 to on-line estimate thenormal vetor to the objet surfae, namely the surfae of the ellipsoidal objet in thisase. The estimation is performed at eah of the 400 ontour points. When the servoing isapplied, the new aquired image with its extrated ontour points update the estimation.The new omputed value of the normal vetor then is used to ompute the ontrol law.An open-loop motion with onstant veloity is applied to the probe before the servoing islaunhed. During that motion, the SLS algorithm desribed in Setion 4.3 is �rstly applied.This allows us to obtain an initial estimate Θ0, whih is expeted more loser to the atualone Θ. This aims to spare the robotized probe possible baklash, that might result fromwrong estimation of the normal vetor in the ontrol law. Right after the SLS algorithmhas been performed for the �rst iterations, the reursive algorithm formulated by the rela-tionships (4.8) and (4.9) is applied throughout the servoing.The estimator parameters have been empirially tuned to β = 0.95, f0 =1e8, β0 = 1
20×f0

,
NLS = 10, and ǫ0 =1e-10. The orresponding simulation results are shown on Fig. C.1. Thevisual features errors exponentially onverge to zero as an be seen on Fig. C.1(e), and thereahed image orresponds to the desired one despite the large di�erene with the initialone as an be seen on Fig. C.1(d). The system behavior is quite orret [see Fig. C.1(f)℄,and the probe motions are smooth [see Fig. C.1(a), C.1(b), and C.1()℄. These results aresimilar to those obtained with the model-based servoing. Consequently, they validate themodel-free visual servoing method that is based on straight line estimation. The estimated
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parameters Θ̂ are shown on Fig. C.2.We now onsider the ase where an additive measurement noise perturbs the image. Sim-ilarly to the simulations onduted for the model-based servoing, the noise onsists in arandom white Gaussian signal of 0.4 mm amplitude. The orresponding simulation resultsare shown on Fig. C.3. The results are satisfatory, where the visual features errors expo-nentially onverge to zero and the reahed image orresponds to the desired one. The probebehavior is orret as an be seen on Fig. C.3(g), despite the e�et of the noise on the imageas an be seen on Fig. C.3(b). The estimated parameters are plotted on Fig. C.4. Othersimulations have been onduted to test up to what noise amplitude the servoing systeman still perform. We have notied that the system did not onverge when the measurementnoise is over 0.5 m amplitude. However, note again that a pixel di�erene is performed toompute di, as it is the ase for the simulations presented in Setion 5.2.2.We test the system for di�erent values of the estimator parameters. We onsider twosets of simulations. In the �rst one, parameter β is varied while the remaining parametersare �xed to f0 =1e8, β0 = 1
20×f0

, ǫ0 =1e-10, NLS = 10. We show on Fig. C.5 resultsobtained for β set to 1.0, 0.5, and 0.04. We notied that the system well behaved for β'svalues ranging from 0.5 to 1.0. It diverged only for values below 0.04.In the seond set we onsider the ase where ǫ0 is varied and the remaining parametersare �xed throughout the tests to β = 0.95, f0 =1e8, β0 = 1
20×f0

, NLS = 10. We show onFig. C.6 results obtained for ǫ0 equal to 1e-40 and 1e-7. The results for ǫ0 =1e-10 havealready been reported earlier in this appendix. We an notie that the servoing system isquite tolerable to the values that ǫ0, and thus Θ0, might have.The system has also been tested for di�erent values of NLS and of f0. It was notied that itsimilarly behaves for NLS values ranging for example, from 5 to 30, and for f0 values above1. For very small values of this latter, for example below 0.001, the onvergene is relativelyslow. We thus an onlude that the model-fee servoing using the straight line-based methodis quite tolerant also to the values that f0 and NLS might have.



C.1. MODEL-FREE SERVOING ON THE ELLIPSOID 187

(a)

0 100 200 300 400
−5

−4

−3

−2

−1

0

1
Probe 3D coordinates

 

 

X
Y
Z

(b)

0 100 200 300 400
−40

−20

0

20

40

60
Probe θu orientation

 

 

θu
x

θu
y

θu
z

(c)

0 2 4 6 8 10
−2

0

2

4

6

X (cm)

Y
 (

cm
)

Ultrasound images

 

 

Initial image
Desired−Reached image

(d)

0 100 200 300 400
−2

−1

0

1

2

3

4
Visual features errors

 

 

e
1

e
2

e
3

e
4

e
5

(e)

0 100 200 300 400
−1

0

1

2

3
Probe Velocity response (cm/s and rad/s)

 

 

v
x

v
y

v
z

ω
x

ω
y

ω
z

(f)

0 100 200 300 400
1

2

3

4

5

6
Visual features

 

 

x
g

y
g α a1/2 l

1

(g)

Figure C.1: Model-free visual servoing using the straight line-based estimation
method, in a perfect case where no perturbation is present. The visual features and
their corresponding errors are in (cm, cm, rad, cm, cm).
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Figure C.2: Estimated parameters Θ̂ corresponding to the experiment whose results
are shown on Fig. C.1.



C.1. MODEL-FREE SERVOING ON THE ELLIPSOID 189

(a)

0 100 200 300 400
2

3

4

5

6
Evolution of one image contour point

 

 

x
y

(b)

0 100 200 300 400
−5

−4

−3

−2

−1

0

1
Probe 3D coordinates

 

 

X
Y
Z

(c)

0 100 200 300 400
−40

−20

0

20

40

60
Probe θu orientation

 

 

θu
x

θu
y

θu
z

(d)

0 2 4 6 8 10
−2

0

2

4

6

X (cm)

Y
 (

cm
)

Ultrasound images

 

 

Initial image
Desired−Reached image

(e)

0 100 200 300 400
−2

−1

0

1

2

3

4
Visual features errors

 

 

e
1

e
2

e
3

e
4

e
5

(f)

0 100 200 300 400
−1

0

1

2

3

4
Probe Velocity response (cm/s and rad/s)

 

 

v
x

v
y

v
z

ω
x

ω
y

ω
z

(g)

0 100 200 300 400
1

2

3

4

5

6
Visual features

 

 

x
g

y
g α a1/2 l

1

(h)

Figure C.3: Model-free visual servoing using the straight line-based estimation tech-
nique, in the presence of an additive measurement noise of 0.4 cm amplitude. The
visual features and their corresponding errors are in (cm, cm, rad, cm, cm).
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Figure C.4: Estimated parameters Θ̂ corresponding to the results shown on Fig. C.3.
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Figure C.5: Results obtained by employing the model-free visual servoing using the
straight line-based estimation for different values of the parameter β. The visual
features errors are in (cm, cm , rad, cm, cm), and the probe velocity is in (cm/s and
rad/s).
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Figure C.6: Results obtained by employing the model-free visual servoing using the
straight line-based estimation for different values of the parameter ǫ0. The visual
features errors are in (cm, cm , rad, cm, cm), and the probe velocity is in (cm/s and
rad/s).
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C.1.2 Using the quadric surface-based methodThe model-free visual servoing method that uses the quadri surfae-based estimation, pre-sented in Setion 4.2, is �nally tested. The simulation senario is the same as before. TheSLS algorithm is applied for only the �rst NLS iterations in order to obtain an initial esti-mate Θ0. Then, the servoing is launhed where the reursive algorithm, formulated by therelationships (4.8) and (4.16), is employed, instead of the SLS one, throughout the servoing.We �rstly test the method in a perfet ondition where no measurement noise is present.The estimator parameters are tuned to β = 1.0, f0 =1e2, NLS = 21, and ǫ0 =1e-20. As forlength N of the ontour segments, that update the algorithm at eah iteration, as desribedin Setion 4.2, it is tuned to N = 21. The orresponding simulation results are shown onFig. C.7, while the estimated parameters are plotted in Fig. C.8. The results are also sat-isfatory, whih validates the model-free visual servoing method based on quadri surfaeestimation, for a perfet ondition.The method is now tested when measurement perturbations are present in the image. Thenoise also onsists in a random white Gaussian signal of 0.4 m amplitude. The orrespond-ing simulation results are shown on Fig. C.9 and Fig. C.10. We an see that they are learlynot satisfatory. The probe veloity is shaky, as an be seen on Fig. C.9(g), whih resultsalso in a shaky probe path as an be seen on Fig. C.9(a). Thus, we an onlude that themodel-free method based on quadri surfae estimation is not robust. Moreover, it was noteasy to tune the estimator parameters, ompared to the two previously tested model-freeservoing methods.
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Figure C.7: Model-free visual servoing using the quadric surface-based estimation
method, in a perfect case where no measurement noise is present. The visual features
and their corresponding errors are in (cm, cm, rad, cm, cm).
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Figure C.8: Estimated parameters Θ̂ corresponding to the results shown on Fig. C.7.



C.1. MODEL-FREE SERVOING ON THE ELLIPSOID 196

(a)

0 100 200 300 400
1

2

3

4

5

6
Evolution of an image contour point

 

 

x
y

(b)

0 100 200 300 400
−5

−4

−3

−2

−1

0

1
Probe 3D coordinates

 

 

X
Y
Z

(c)

0 100 200 300 400
−100

−50

0

50

100
Probe θu orientation

 

 

θu
x

θu
y

θu
z

(d)

0 2 4 6 8 10
−2

0

2

4

6

X (cm)

Y
 (

cm
)

Ultrasound images

 

 

Initial image
Desired
Reached image

(e)

0 100 200 300 400
−2

−1

0

1

2

3

4
Visual features errors

 

 

e
1

e
2

e
3

e
4

e
5

(f)

0 100 200 300 400
−30

−20

−10

0

10

20

30
Probe Velocity response (cm/s and rad/s)

 

 

v
x

v
y

v
z

ω
x

ω
y

ω
z

(g)

0 100 200 300 400
0

1

2

3

4

5

6
Visual features

 

 

x
g

y
g α a1/2 φ

1

(h)

Figure C.9: Model-free visual servoing using the quadric surface-based estimation
method, when measurement noises of 0.4 mm amplitude are introduced in the image.
The visual features and their corresponding errors are in (cm, cm, rad, cm, cm).



C.1. MODEL-FREE SERVOING ON THE ELLIPSOID 197

(a) (b)

(c) (d)

(e) (f)

Figure C.10: Estimated parameters Θ̂ corresponding to results shown on Fig. C.9.
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C.2 Simulations with realistic ultrasound imagesIn this setion we test the straight line- and the quadri surfae-based model-free visualservoing methods using realisti ultrasound images. The images are a�orded with the simu-lator desribed in Setion 5.3. The task to be ahieved by the virtual probe is also presentedin that setion.
C.2.1 Straight line-based estimationThe estimator parameters are tuned to β = 0.8, f0 =1e4, β0 = 1

20×f0

, ǫ0 =1e-10, and
NLS = 10 iterations. The orresponding results are shown on Fig. C.11 and Fig. C.12.The visual features errors onverge to zero as an be seen on Fig. C.11(e), and both twotarget image setions have been reahed as an be seen respetively on Fig. C.11(b) andFig. C.11(d). These results show the validity of the model-free method that uses the straightline-based estimation.
C.2.2 Quadric surface-based estimationFinally, we test the servoing method that uses the quadri surfae-based estimation. Theestimator parameters are tuned to β = 1.0, f0 =1e5, β0 = 1

20×f0

, ǫ0 =1e-20, NLS = 17 iter-ations, and N = 17 points. Corresponding results are shown on Fig. C.13 and Fig. C.14. Inontrast to those previously obtained with the two other servoing methods, these results arehowever not satisfatory, where both the visual features do not onverge smoothly, as anbe seen on Fig, C.13(e), and the probe veloity is very shaky, as an be seen on Fig. C.13(f).Moreover, it was relatively tedious to tune the estimator parameters, where we notied thatwith this method the system is highly sensitive to their variation. The obtained outomewas in fat expeted, beause of the low performanes this servoing method had previouslyshown in the simulation presented in Setion C.1.2. Those performanes indeed seem toagree with the present ones.
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Figure C.11: Model-free visual servoing using the straight line-based estimation
method performed on a realistic ultrasound 3D volume - (a) Initial image, whose
section is contoured with green, captured right before the servoing is launched. The
contour, of the first target image section, is displayed in red and is superimposed on
the image - (b) The first target is automatically reached, where the observed (green)
and the desired contour (red) now become superimposed - (d) The second target (red)
is ordered - (d) The second target is automatically reached. The visual features and
their corresponding errors are in (cm, cm, rad, cm, cm).
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Figure C.12: Estimated Parameters Θ̂ corresponding to the results shown on
Fig. C.11.



C.2. SIMULATIONS WITH REALISTIC ULTRASOUND IMAGES201

(a) (b)

(c) (d)

0 500 1000 1500 2000
−1

−0.5

0

0.5

1
Visual features errors

 

 

e
1

e
2

e
3

e
4

e
5

(e)

0 500 1000 1500 2000
−1.5

−1

−0.5

0

0.5
Probe Velocity response (cm/s and rad/s)

 

 

v
x

v
y

v
z

ω
x

ω
y

ω
z

(f)

0 500 1000 1500 2000
−2

−1

0

1

2

3
Visual features

 

 

x
g

y
g α a1/2 l

1

(g)

Figure C.13: Model-free visual servoing using the quadric surface-based estimation
method performed on a realistic ultrasound 3D volume. The visual features and their
corresponding errors are in (cm, cm, rad, cm, cm).



C.2. SIMULATIONS WITH REALISTIC ULTRASOUND IMAGES202

(a) (b)

(c) (d)

(e) (f)

Figure C.14: Estimated Parameters Θ̂ corresponding to the results shown on
Fig. C.13.
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C.3 Simulations with the binary volumeFollowing the results shown in Setion 5.4, the straight line- and the quadri-based model-free servoing methods are tested on a binary objet.
C.3.1 Straight line-based estimationThe estimator parameters are tuned to β = 0.8, f0 =1e6, β0 = 1

20×f0

, ǫ0 =1e-10, and
NLS = 10 iterations. The orresponding simulation results are shown on Fig. C.15 andFig. C.16. The visual features errors onverge to zero, roughly exponentially, as an beseen on Fig. C.15(e), and the reahed images orrespond to the desired ones as an be seenrespetively on Fig. C.15(b) and C.15(d), despite the large initial di�erenes. The systembehavior is quite orret as an bee seen on Fig. C.15(f), and the path performed by theprobe is thus also quite smooth as an be seen on Fig. C.15(g). More, the objetive hasbeen ahieved, sine the two reahed poses orrespond respetively to the poses were the �rstand seond target images had been aptured. We obtained positioning errors of ( 4.4×1e-4,9.1×1e-4, 2.7×1e-4, 0.0469, 0.0745, -0.0573)(m and deg) for the former and (0, 4.2x1e-4,-2.09x1e-3, -0.2865, -0.3323, -0.0017 )(m and deg) for the latter positioning.
C.3.2 Quadric surface-based estimationAs for the model-free method based on quadri surfae estimation, it has onsiderablyunderperformed the straight and the urved lines-based estimation methods. In the samesimulation onditions this method has ompletely diverged. For small displaements fromthe target image, it nevertheless onverged the system to the desired target as an be seenon Fig. C.17. The estimator parameters were tuned to β = 0.7, f0 =1e2, β0 = 1

20×f0

,
ǫ0 =1e-20, NLS = 41 iterations, and N = 41 points. However, the probe veloity is tooshaky, as an be learly seen on Fig. C.17(e), although the images are not noisy but perfetlyontrasted (image setion in blak and the bakground in white). This shakiness is thus dueto the quadri-based method itself and not to image noise. Indeed, in this same simulationondition the two other methods performed quite well, as an be seen on Fig. C.19.
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Figure C.15: Model-free visual servoing that uses the straight line-based esti-
mation, tested on a simulated binary object (a) Initial image acquired right before
launching the servoing, where the actual section is contoured with green. The con-
tour of the target image section is displayed in red and superimposed on the image
- (b) The first target is reached - (c) The second target is ordered - (d) The second
target image is reached - (g) The probe initial pose frame is indicated by its cartesian
frame whose (X, Y, Z) axes are respectively represented by the red, green and blue
segments. The probe path is plotted in green. At the poses of the first and second
target, the Z axis is represented with a black segment - (h) and (e) The visual features
and their corresponding errors are in (cm ,cm, rad, cm, cm, 10×unit).
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Figure C.16: Estimated parameters Θ̂ corresponding to the results shown on
Fig. C.15.
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Figure C.17: Model-free visual servoing that uses the quadric surface-based esti-
mation, tested on a simulated binary object for relatively small displacements.
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Figure C.18: Estimated parameters Θ̂ corresponding to the results shown on
Fig. C.17.
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Figure C.19: Comparison of the performances obtained with the model-free servoing
method that uses the quadric surface-based estimation (Fig. C.17, that are also
reported here on the two figures at the bottom) to those obtained with the two
methods that use respectively the straight line- (top) and the curved line-based
estimation (middle).
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RésuméCette thèse présente de nouvelles méthodes permettant de guider automatiquement unesonde éhographique ationnée par un robot médial. Nous proposons d'utiliser des in-formations visuelles basées sur des moments 2D extraits de l'image éhographique. Celanéessite l'obtention de la matrie d'interation qui lie es informations à la vitesse de lasonde (ou bien du robot porteur de ette dernière). Nous présentons de nouvelles basesthéoriques qui ont permis de développer l'expression analytique exate de ette matrie.Nous avons également élaboré six informations visuelles indépendantes permettant de on-tr�ler les 6 degrés de liberté de la sonde et ainsi pouvoir positionner automatiquement lasonde par rapport à l'objet observé. Le système robotique est aussi apable d'interagir avedes objets dont auune onnaissane préalable sur leur forme, paramètres 3D, ni positiondans l'espae 3D est disponible. Pour ela, nous avons développé une méthode e�ae quiestime en-ligne les paramètres 3D intervenant dans la matrie d'interation.En�n, nous présentons des résultats de simulations et d'expérimentations obtenus re-spetivement à partir d'objet 3D simulés, et d'une plate-forme expérimentale onstitué unrobot médial à 6 degrés de liberté portant une sonde qui interagit ave des objets immergésdans une bassine d'eau. Ces résultats ont validé les méthodes développées dans ette thèseet ont montré leur robustesse au bruit des images éhographiques.Mots lés : Robotique médiale, asservissement visuel, imagerie éhographique, mod-élisation, ommande sans modèle.



AbstratThis dissertation presents a new 2D ultrasound-based visual servoing method. The maingoal is to automatially guide a robotized 2D ultrasound probe held by a medial robot inorder to reah a desired ross-setion ultrasound image of an objet of interest. This methodallows to ontrol both the in-plane and out-of-plane motions of a 2D ultrasound probe. Itmakes diret use of the 2D ultrasound image in the visual servo sheme, where the feed-bak visual features are ombinations of image moments. To build the servo sheme, wedevelop the analytial form of the interation matrix that relates the image moments timevariation to the probe veloity. That modeling is theoretially veri�ed on simple shapeslike spherial and ylindrial objets. In order to be able to automatially position the 2Dultrasound probe with respet to an observed objet, we propose six relevant independentvisual features to ontrol the 6 degrees of freedom of the roboti system. Then, the systemis endowed with the apability of automatially interating with objets without any priorinformation about their shape, 3D parameters, nor 3D loation. To do so, we develop on-lineestimation methods that identify the parameters involved in the built visual servo sheme.We onduted both simulation and experimental trials respetively on simulated volu-metri objets, and on both objets and soft tissues immersed in a water-�lled tank. Su-essful results have been obtained, whih show the validity of the developed methods andtheir robustness to di�erent errors and perturbations espeially those inherent to the ultra-sound modality.Keywords: Medial robotis, visual servoing, 2D ultrasound imaging, kinematis mod-eling, model-free servoing.


