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Je tiens bien sûr à remercier Bruno Bouchard, dont les articles sont à la base
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grande force. Ti amo tantissimo !



ii



iii

Résumé

Ces 20 dernières années, la mondialisation de l’économie a nécessité la
recherche active de solutions mathématiques aux enjeux financiers. Nos
travaux de thèse se sont portés sur plusieurs problèmes non résolus dans les
marchés avec coûts de transaction.

Coûts de transactions proportionnels : la plupart des modèles célèbres
en économie choisissent d’ignorer les coûts de transaction malgré la réalité
économique où ceux-ci sont fréquents. La raison de l’omission de ces coûts de
transaction est simple : cela permet de travailler sur R, en dimension 1. Dès
lors que l’on modélise des coûts de transactions, on est contraint de travailler
dans Rd, avec des outils issus de la géométrie et de l’analyse convexe. Tous
nos travaux se sont effectués dans ce contexte.

Non arbitrage : en finance, le mot ”arbitrage” désigne la création
d’argent à coup sûr à partir de rien. La traduction en terme de probabilité est
évidente : si le processus Vt modélise un portefeuille autofinancé avec V0 = 0,
on dira qu’il y a une opportunité d’arbitrage si P(Vt ≥ 0) = 1 et P(Vt > 0) > 0.
Considérant que les arbitrages doivent être évités, on étudie les conditions sur
les modèles afin que Vt ≥ 0 p.s. implique Vt = 0. Le premier chapitre de cette
thèse fournit un résultat dans la situation où l’agent ne dispose pas de toutes
les informations du marché.

Recouvrement d’options américaines : Pour modéliser une option de
type option américaine, c’est-à-dire un contrat qui peut être exécuté à tout
instant, on se donne un processus (Ut)t∈R+ . Notre but est de déterminer les
investissements initiaux x ∈ Rd tels qu’il existe un portefeuille autofinancé par-
tant de x qui permet de couvrir le processus Ut. Autrement dit, on s’intéresse
à l’ensemble ΓU = {x ∈ Rd : ∃V ∈ Vxb , V �G U} où Vxb désigne l’ensemble
des portefeuilles autofinancés admissibles. Le deuxième chapitre de cette thèse
propose une représentation duale de cet ensemble, en introduisant un système
de prix dit ”cohérent”.

Consommation et investissement : appelé également ”problème de
Merton”, le problème de consommation-investissement consiste à maximiser
l’utilité d’une consommation. Notre travail s’est concentré sur la situation où
le processus des prix est contrôlé par un processus de Lévy. Nos avons montré
que ce maximum est en fait (l’unique) solution au sens des viscosités d’une
équation intégro différentielle, dite équation d’Hamilton-Jacobi-Belman. Notre
approche se distingue des travaux précédents par le fait que nous autorisons
les positions négatives tant que nous restons dans le cône de solvabilité.
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Extended abstract

During the last 20 years, the globalization of the economy needed a very active
research in financial mathematic and engineering. Our work focused on some
unsolved problems in markets with transaction costs.

Proportional transaction costs : most of the economical models choose
to ignore transactions costs, although in ”real life” costs have to be paid. The
reason why they are ignored is simple : it allows to work on R, in dimension
1. As soon as you choose to work with transaction costs, you need to stay in
Rd, which leads to some geometrical and convex analysis problems. Our work
is always in that context.

No arbitrage : in finance, basically, an ”arbitrage” is the opportunity
to make money out of nothing without any risks. In mathematical terms, if
Vt models a self-financing portfolio with V0 = 0, we will say that an arbitrage
opportunity exists if P(Vt ≥ 0) = 1 and P(Vt > 0) > 0. Considering that
arbitrages should be avoided, we studied the conditions such that Vt ≥ 0
implies Vt = 0 a.s. The first chapter of our thesis gives a condition of no
arbitrage in the specific case of incomplete information.

Hedging of American options : To model an American option-like
asset, that is to say a contract that can be executed at any time by the buyer,
we give a process (Ut)t∈R+ in continuous time. Our goal is to characterize
the initial investments x ∈ Rd such that there is a self financing portfolio
starting from x which allows to cover the process Ut. Thus, we study the set
ΓU = {x ∈ Rd : ∃V ∈ Vxb , V �G U} where Vxb denotes the self financing and
admissible portfolios. Using an advanced model, we obtained in the chapter
2 a dual characterization of this set thanks to what we called ”coherent price
system”.

Consumption-investment : also known as ”Merton’s problem”, the
goal is to maximize the utility of a consumption, starting from x. We focus on
the case where the prices are driven by an exponential Lévy process. Using a
dynamic programming principle, we prove that the goal functional, the ”Bell-
man’s function”, is (the unique) solution in the viscosity sense to a second
order integro-differential equation, the Hamilton-Jacobi-Bellman’s equation.
Our approach differs from previous ones because we allow short positions as
soon as we stay in the solvency cones.
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Introduction ix

Initiées au début du XXe siècle avec Louis Bachelier et sa thèse sur
la théorie de la spéculation, les mathématiques financières prennent leur
essor dans les années 70 avec la mondialisation et la multiplication des
échanges financiers. Les progrès en théorie des probabilités, en particulier
la compréhension du mouvement brownien et des divers outils de la théorie
des processus ont permis le développement de modèles complexes et relative-
ment réalistes. On ne pourrait parler de mathématiques financières sans citer
la célèbre formule dite de Black et Scholes, mais les travaux actuels dépassent
largement le cadre du modèle assez simple employé par Merton, Black et Scho-
les dans leurs travaux.

Marchés avec coûts de transaction : Nos travaux se sont orientés sur un
domaine peu exploré des mathématiques financières : les marchés avec coûts de
transaction. Il s’agit de développer des modèles rendant compte d’une réalité
sur les marchés : les frais supplémentaires associés aux opérations effectuées.
Il existe différents types de coûts de transaction, mais les plus étudiés sont les
coûts de type convexes. Notons que ceux-ci sont parfois utilisés pour rendre
compte des problèmes de liquidité : la notion de convexité entraine en effet
des coûts d’autant plus grands que la somme transférée est importante, ce qui
peut traduire le problème de liquidités limitées sur les marchés.

Notre étude concerne un cas particulier de coûts de transaction convexes :
les coûts de transaction proportionnels. Ainsi, les frais occasionnés par un
transfert seront supposés proportionnels à la somme transférée. A l’échelle
de la banque pour particulier, c’est typiquement ce genre de frais qui sont
appliqués lors d’un échange de devises. L’étude des marchés avec coûts de
transaction a connu des progrès importants avec, entres autres, les travaux
précurseurs de Elyes Jouini et Hédi Kallal ([29]). La difficulté du travail avec
coûts de transaction est liée à l’impossibilité de se ramener facilement à R :
il est par exemple inutile de faire la somme des valeurs des différents actifs
afin d’en déduire la solvabilité de l’agent. En effet, les coûts de transactions
impliqueront éventuellement un état de banqueroute alors que la simple somme
était positive.

Exemple 1. Supposons que la valeur initiale du portefeuille soit donnée par
V0 = (−1000, 503, 504), chaque coordonnée correspondant à la valeur investie
dans un actif, et que les coûts de transaction proportionnels sont donnés par la
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matrice

 0 0.01 0.01
0.01 0 0.02
0.01 0.03 0

 où λi,j est le coût de transaction proportionnel

de transfert de i vers j. On pourrait par exemple renflouer la position de
l’actif 1 en prenant 500 de l’actif 2 et 500 de l’actif 3. En payant les coûts de
transaction, notre portefeuille devient V1 = (0,−2,−1), ce qui est clairement
une position débitrice.

En fait, ce portefeuille V0 n’est pas un portefeuille solvable, bien que la
somme brute des composantes donne une valeur totale positive. Quels que
soient les ordres donnés, le fait de payer les coûts de transactions mènera
toujours à une position négative pour au moins l’un des actifs...

En conséquence de cette difficulté, de nouveaux modèles sont apparus.
Celui que nous avons utilisé pendant ces 4 années de recherche dans une
version discrète, puis dans sa version continue sera présenté en détail dans
les 3 chapitres constitutifs de cette thèse. Il est introduit en 1999 par Ka-
banov dans [30]. Le concept fondamental est l’espace de solvabilité : dans
le cas proportionnel, c’est un cône positif de Rd où d est le nombre d’actifs
constituant le portefeuille. Être dans ce cône signifie que l’ont peut liquider
notre portefeuille avec un gain positif ou nul, en incluant les coûts de trans-
action. C’est ce concept qui est la clé de tous les travaux sur lesquels nous
nous sommes appuyés car il propose une grande généralité et s’avère très ma-
niable. L’originalité de l’approche initiée dans [30] est que le portefeuille n’est
plus nécessairement décrit en terme de valeur investie dans chacun des actifs,
mais en terme de quantité d’actifs. Cela rend alors les modèles de portefeuille
beaucoup plus simples à décrire, puisque les variations en quantités investies
ne sont le résultat que des actions de l’agent. Dans le cas où on parle en terme
de valeur, il fallait prendre en considération également la variation des prix.

Évidemment, cette modification n’est pas sans conséquences sur les cônes
de solvabilités. Dans le cas où les portefeuilles sont décrits en terme de valeur,
le cône de solvabilité à l’instant t, noté Kt, ne dépend que des coûts de transac-
tions à l’instant t. En revanche, si on travaille en terme de quantité, le cône de
solvabilité, habituellement noté K̂t, dépend à la fois des coûts de transactions
et des prix. Néanmoins, cet effet négatif est largement contrebalancé par les
découvertes fondamentales que cette approche a permis.

Problème d’arbitrage : Un concept fondamentale en économie et en
mathématique financière est le concept de non arbitrage. Une opportunité



Introduction xi

d’arbitrage est une stratégie Π permettant, à partir d’un portefeuille V0 = 0
d’obtenir à l’instant terminal T un portefeuille VT tel que VT ≥ 0 presque
sûrement, et P(Vt > 0) > 0. Autrement dit, un arbitrage permet à partir de
0 de créer “sans risque” une richesse. Nous noterons l’absence d’opportunité
d’arbitrage sous le sigle NA. Le résultat fondamental, obtenu dans [20], est
que, dans un marché sans coûts de transaction, NA est vraie si et seulement
si il existe une probabilité Q équivalente à la probabilité P initiale telle que le
processus des prix est une martingale.

Ce résultat dans le cas discret sans coûts de transaction porte le nom de
théorème de Dalang–Morton–Wellinger, et de nombreuses preuves différentes
existent. Dans [34], Youri Kabanov et Christophe Stricker proposent une
preuve globale, là où la plupart des preuves procédaient pas par pas en re-
marquant que l’absence d’arbitrage à l’instant final T équivaut à une absence
d’arbitrage entre l’instant t et l’instant t + 1. La preuve présentée dans [34]
n’utilise pas de telle technique, et cela permet une généralisation extrêmement
aisée au cas de l’information partielle (voir [35]) : il s’agit de la situation où
les prix, les coûts de transaction ou les deux ne sont pas complètement connus
de l’agent effectuant les opérations. C’est le cas par exemple s’il y a un délais
entre l’ordre et son exécution.

Néanmoins, le passage à la situation avec coûts de transaction est dif-
ficile : quel sens donner à la loi de martingale présente dans le théorème
de Dalang–Morton–Wellinger ? S’il est clair que l’existence d’une telle loi
entrâıne effectivement NA, l’équivalence n’est pas vérifiée (voir [29] ou en-
core [38]). L’effervescence autour de ce sujet a donné lieu à de nombreux
travaux et à l’introduction de deux variantes du non arbitrage : le non ar-
bitrage strict (NAs), introduit dans [38], et le non arbitrage robuste (NAr),
introduit dans [46] par W. Schachermayer. Finalement, un résultat fonda-
mental est apparu dans [46] : l’absence d’opportunité d’arbitrage robuste est
équivalente à l’existence d’un processus de prix qui est une martingale évoluant
dans l’intérieur du dual des cônes de solvabilité. Un tel processus est appelé
”Système de prix strictement consistant” (SCPS).

Nos premiers travaux ont consisté en une étude approfondie du problème de
non arbitrage dans la situation d’information partielle avec coûts de transaction
proportionnels. Combiner information partielle et coûts de transaction n’est
pas aussi facile que dans le cas sans coûts de transaction, et cette difficulté a
été relevée par Bruno Bouchard dans [12] : la modélisation des portefeuilles
employée dans [30] ne peut rendre compte d’ordres pourtant élémentaires.
En généralisant l’idée présente dans [12], nous proposons donc d’utiliser un
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autre modèle, plus complexe, et de travailler cette fois dans un espace de taille
d × d voire 2d × d, puis d’appliquer un opérateur linéaire rendant compte
de l’impact de l’ordre donné. La difficulté est que cet opérateur n’est pas
nécessairement mesurable par rapport à la filtration de l’investisseur. C’est
l’objet du premier chapitre de notre thèse où, en nous appuyant sur les travaux
de B. Bouchard, nous avons déterminé la condition nécessaire et suffisante à
l’absence d’arbitrage robuste pour ce modèle, en utilisant une variante des
systèmes de prix consistant.

Recouvrement d’option américaine, surréplication : A l’issue de
cette recherche sur le non arbitrage, la suite logique est de s’intéresser au
problème de recouvrement d’option. Il s’agit de déterminer les portefeuilles
initiaux permettant de couvrir le paiement d’une option de type européenne
ou américaine. Le cas de l’option européenne est traité dans de nombreux
ouvrages, et la version pour le cas à information partielle est présente dans
ce mémoire à la fin du chapitre 1. Le cas de l’option américaine est plus
complexe et n’était pas résolu complètement dans le cas coûts de transaction
proportionnels dans un modèle à temps continu.

Le modèle à temps continu repose sur une généralisation du modèle à temps
discret, et on peut le voir introduit dans [37]. Néanmoins, son utilisation était
limitée au cas où les prix suivaient une évolution continue. Un contre exemple,
fourni par Miklos Rasonyi, montre qu’un tel modèle ne peut pas être utilisé à
des fins de théorème de surréplication dans le cas où les processus de prix ont
des sauts (voir [44]). Néanmoins, en introduisant une condition supplémentaire
et nécessaire, mais dont la signification financière fait encore débat, Campi et
Schachermayer dans [16] proposent une version d’un théorème de surréplication
pour le cas de l’option de type européen.

Pour le cas de l’option américaine, la première difficulté est apparue dès le
cas discret. Comme l’ont remarqué Chalasani et Jha dans [17], les systèmes de
prix consistant ne permettent pas de caractériser les positions initiales perme-
ttant de couvrir une option de type américain. Dans leur article, ces auteurs
proposent de passer par des temps d’arrêt randomisés, mais nous avons choisi
de nous inspirer du cas à temps discret proposé par Bouchard et Temam dans
[14]. En utilisant le modèle de portefeuille élaboré dans [16], nous avons intro-
duit une nouvelle famille de processus, intitulés ”système de prix cohérent”,
qui généralise le concept de ”système de prix consistent” et qui permet de
tester si un investissement initial permet d’honorer un contrat de type option
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américaine. Le théorème obtenu est l’objet du chapitre 2 de ce mémoire.

Il est intéressant ici de noter que le modèle utilisé dans [16] diffère du
modèle présent dans [37] sur deux points : les portefeuilles y sont supposés
prévisibles (alors qu’ils sont seulement adaptés dans [37]) et ne sont pas càdlàg
(continue à droite et limité à gauche), mais seulement làdlàg (limité à droite et
à gauche). C’est la combinaison de ces deux propriétés qui permet d’avancer
dans la résolution du problème : la prévisibilité garantie le fait que les sauts du
portefeuille issus des actions de l’agent et ceux du processus des prix ne peu-
vent avoir lieu simultanément. Autrement dit, si V est le processus modélisant
le portefeuille et S celui modélisant les prix, le processus ∆V∆S est indis-
tinguable du processus nul. Enfin, le “double saut” permis par le fait que le
portefeuille est làdlàg nous assurera la possibilité de couvrir l’option à tout in-
stant, ce qui est essentiel pour une option de type américaine. Intuitivement,
ce double saut correspond à une réactivité de l’agent qui peut agir à l’instant
t−, puis à l’instant t.

Problème de Merton : optimisation d’utilité de consommation
Afin d’obtenir un résultat très général, le chapitre 2 propose un modèle
où les prix ne sont pas nécessairement des processus continus. Nous nous
sommes alors intéressés aux modèles utilisés classiquement dans la littérature,
en particulier aux systèmes de prix dirigés par un processus de Levy. Des
travaux préliminaires nous ont alors amené à nous intéresser aux problèmes
d’optimisation de consommation, parfois appelé problème de Merton, toujours
sous la contrainte de coûts de transaction proportionnels. Le problème con-
siste à maximiser l’utilité d’une consommation effectuée à partir d’une posi-
tion initiale donnée. L’idée était que le modèle de portefeuille introduit dans
le chapitre 2 de ce mémoire permettrait de résoudre le problème de consom-
mation avec coûts de transaction proportionnels et processus de prix de type
Levy. Ce problème, bien que traité dans plusieurs articles, dont [11] et [10]
qui nous ont servi de base de recherche, n’a jamais véritablement été traité
en toute généralité, c’est à dire avec un modèle rendant compte des cônes
de solvabilité tels qu’introduits généralement. En effet, les articles de Benth
et al. considèrent des portefeuilles sans aucune position négative. Dans leur
modèle, la ruine de l’agent ne peut avoir lieu que du fait de ses actions. En
autorisant les positions négatives (”short positions”) tout en restant dans le
cône de solvabilité, la ruine peut intervenir à cause de la variation des prix.

Etant donné que la ruine peut intervenir à la fois à cause des sauts et



xiv Introduction

des variations de prix, il est naturel de penser qu’un modèle comme celui de
[16] nous permette de mieux résoudre le problème de Merton dans ce cas. Le
canevas de résolution ne varie pas beaucoup par rapport à la littérature : nous
travaillons avec une équation intégro différentielle elliptique dont la “fonction
but” (appelée aussi fonction de Bellman) est solution au sens des viscosités.
En effet, la fonction de Bellman n’est pas nécessairement de classe C2 : elle
n’est donc pas nécessairement solution de l’équation au sens classique. Les
outils utilisés sont donc les outils classiques de la théorie des solutions de
viscosités et nous démontrerons le principe de programmation dynamique dans
le cas particulier que nous considérons. Malheureusement, nous n’avons pris
connaissance que tardivement de l’article de Bruno Bouchard et Nizar Touzi
sur le sujet (voir [15]), ce qui ne nous a pas permis d’utiliser les résultats
démontrés dans leur travail.

Une première difficulté dans le cas que nous considérons est que l’opérateur
intégro-différentiel est définit globalement, et non plus localement. Appliquer
mécaniquement la formule d’Itô n’est plus possible, même en supposant que
la fonction de Bellman est lisse. Pourtant, d’autres difficultés du travail avec
coûts de transactions et processus de prix avec sauts se cachent dans des étapes
a priori simples. Par exemple, nous verrons dans le chapitre 3 que la fonction
de Bellman n’est pas aussi trivialement convexe que dans le cas avec processus
de prix continu. Cette convexité était pourtant fort pratique pour montrer
au moins la continuité de cette fonction ! Par chance, on peut montrer que
cette fonction reste continue si on ajoute des hypothèses d’homogénéité de la
fonction d’utilité.

Le chapitre 3 offre ainsi des résultats dans un contexte plus général que celui
traité par Benth et al., avec des différences significatives quant au traitement
du problème à cause des exigences de notre modèle. Nous donnons ainsi un
théorème de vérification, en utilisant le principe de programmation dynamique,
suivi du résultat d’unicité de la solution sous certaines hypothèses associées à
la mesure des sauts du processus de Lévy.
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1.1 Introduction

In the classical arbitrage theory it is usually assumed that the investor makes
his decisions using all market information and the majority of no-arbitrage
criteria are developed in this framework. However, even though there is a
vast amount of information available, an investor may base his decision only
on a part of this information. On the other hand, mathematically, such an
important feature as partial information used in the investor’s decisions can
be easily modeled, namely, by a subfiltration G = (Gt) of the main filtration
F = (Ft) describing the information flow. What are consequences of such
modeling for the arbitrage theory?

Until recently, the only result in this more general framework was an exten-
sion of the Dalang–Morton–Willinger theorem for the model of the frictionless
financial market in discrete-time given in the paper [35]. It happens that the
no arbitrage property (shortly, NA-property) for the price process S holds if
and only if there is a bounded strictly positive F-martingale ρ such that the
optional projection (ρS)o is a G-martingale, i.e. Ẽ(St+1 − St|Gt) = 0 where
P̃ := ρTP . On the other hand, the “global” (multi-step) NA-property is no
longer equivalent to the NA-properties for all one-step sub-models. This ex-
plains why such a natural generalization was not obtained earlier: all proofs
(of the“only if” part) except that given in [34] use a reduction to the one-step
case.

The study of no-arbitrage properties for markets with friction was initiated
by Jouini and Kallal [29] for a model with bid-ask spread and developed further
in a number of papers: [38], [46], [32], [25] and others. There are several
concepts of the no-arbitrage property. Equivalent conditions for them can
be formulated in terms of the existence of martingales evolving in the duals
to solvency cones (in the space used to represent the investor’s positions in
physical units) or in the interiors of these duals.

It is natural to consider as an arbitrage opportunity a self-financing port-
folio strategy (with zero initial capital) yielding a positive outcome on a set of
positive probability with no losses elsewhere. The absence of such “strict” arbi-
trage opportunities, i.e. the relation R̂T ∩L0(Rd

+) = {0} where R̂T is the set of
the terminal values of portfolios, is called weak no-arbitrage property (shortly,
NAw-property). For the case of finite Ω the criterion for the NAw-property
was obtained in [38]: the latter holds if and only if there is a martingale evolv-
ing in the duals to solvency cones. For general Ω this equivalence holds only
for the two-asset model, see [25]. An evaluation of the portfolio results without
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taking into account the transaction costs (as could be done by auditors) leads
to a larger set of weak arbitrage opportunities. Their absence is referred to
as strict no-arbitrage property, NAs. In the case of arbitrary Ω and “efficient
friction”, i.e. non-emptiness of the interiors of dual cones, NAs is equivalent
to the existence of a martingale evolving in these interiors, see [32]. Without
further assumptions, as was shown first in [46], the existence of a martingale
evolving in relative interiors of duals to the solvency cones is equivalent to the
so-called robust no-arbitrage property, NAr. The latter means that there are
no-arbitrage opportunities in strict sense even for smaller transaction costs.

The setting of market models with friction where the investor’s information
may be different from that given by the main filtration was investigated by
Bruno Bouchard [12] who discovered some new phenomena. He showed that
models with transaction costs and partial information not only necessitate
important changes in the description of value processes but also appropriate
modifications of the basic concepts. In particular, one cannot work on the
level of portfolio positions, represented by a point in Rd, but has to remain on
the primary level, of the investor’s decisions (orders), i.e. in a space of much
higher dimension. In the model with partial information there is a difference
between the investor’s orders “exchange 1000 dollars for euros” and “exchange
dollars to increase the holding in euros by 1000 euros”: they are of a different
nature. For the first type of orders the investor controls the decrease of the
dollar holdings (hence, his debts), while for the second type, due to limited
information, he may have no idea what is the resulting value of the eventually
short position in dollars.

The model of [12] can be classified as that of a barter market but it covers
also the case of the model with a numéraire by introducing auxiliary “fictive”
assets. Bouchard suggested the coding of orders by real-valued d× d-matrices
(with zero diagonal) where the sign of each entry serves as in indicator of the
order type (“to send” or “to get” an increment). His main result is the criterion
for the NAr-property of the market for a partially informed investor. It is
necessary to recall that in models with full information there is no difference
between “barter markets” and “financial markets”. In the theory of markets
with transaction costs it happens that it is much easier to analyze models
where holdings are expressed in terms of physical units rather than in units of a
numéraire. In the development of this idea in some recent papers, e.g., [46] and
[25] the initial set-up is that of a “barter market”, i.e. “conversion” matrices
(πijt ) are specified. This is by no means a restriction: in the models with full
information one can always construct prices St and matrices λijt of transaction
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costs coefficients (of course, not uniquely). However, the setting based on
prices and transaction costs coefficients may lead to an information structure
which seems not to be covered by models based on conversion matrices.

The aim of the present work is to simplify and extend the approach of
[12] to include explicitly models with a numéraire. To this end we use an
alternative coding of the investor’s order and enjoy from the very beginning the
linear structure of the problem which leads to a more transparent presentation.
Our results include a criterion for the NAw-property for the case of finite Ω
(extending the criterion of [38]) and the criteria for the NAr-property which
is a generalization of those of [46] and [32]. We conclude with a version of the
hedging theorem for the situation with partial information.

One should take into account that we are dealing here with a highly styl-
ized mathematical model where orders should be executed, independently of
the realized price movements. This means that we are working within the
framework of linear control system. The practical situations might be much
more complicated and depend on a market microstructure. Certain financial
markets are organized as auctions where investors indicate reservation prices,
when selling, and limit prices, when buying. A trading system equilibrates the
supply and demand, generating asset prices. For example, during the follow-
ing trading cycle, an order to buy may not be executed or executed partially
if the price goes up above the limit price. Of course, an analysis of models
incorporating such features as liquidity constraints, constrained orders etc. is
of great interest and could be a subject of further studies.

Comment on notations: as usual L0(R+,Ft) is the set of positive Ft-
measurable random variables (note that we prefer to say “positive” rather than
“nonnegative”) and, consistently, M(int Rd

+,F) stands for the set of martin-
gales with strictly positive components; 1 :=

∑
ei = (1, ..., 1).

1.2 Examples and mathematical framework

Example 1. Let us consider the barter market which is described by an F-
measurable conversion (“bid-ask”) process Π = (πijt ) taking values in the set
of strictly positive d × d matrices such that πijt π

ji
t ≥ 1. The entry πijt stands

for a number of units of the ith asset needed to exchange, at time t, for one
unit of the jth asset. The above inequality means that exchanging one unit of
the ith asset for 1/πijt units of the jth asset with simultaneous exchange back
of the latter quantity results in decreasing of the ith position.
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In the case of fully informed investor, the portfolio process is generated
by an F-adapted process (ηijt ) with values in the set Md

+ of positive d × d

matrices; the entry ηijt ≥ 0 is the investor’s order to increase the position j on
ηijt units by converting a certain number of units of the ith asset. The investor
has a precise idea about this “certain number”: it is πijt η

ij
t . The situation is

radically different when the information available is given by a smaller filtration
G, i.e. ηijt is only Gt-measurable. The decrease of the i-th asset implied by
such an order, being Ft-measurable, is unknown to the investor. However,
one can easily imagine a situation where the latter is willing to control the
lower level of investments in some assets in his portfolio. This can be done
by using the G-adapted order process (η̃ijt ) with the element η̃ijt representing
the number of units of the ith asset to be exchanged for the jth asset – the
result of this transaction yields an increase of the jth position in η̃ijt /π

ij
t units

and, in general, now this quantity is unknown to the investor at time t. Of
course, orders of both types, “to get”, “to send”, can be used simultaneously.
In other words, the investor’s orders form a G-adapted process [(ηijt ), (η̃ijt )]
taking values in the set of positive rectangular matrices Md×2d

+ = Md
+ ×Md

+.
The dynamics of the portfolio processes is given by the formula

∆V̂t = ∆̂B
1

t + ∆̂B
2

t , (1.1)

where the coordinates of ∆̂B
1

t and ∆̂B
2

t are

∆̂B
1,i

t :=
d∑
j=1

[ηjit − π
ij
t η

ij
t ],

∆̂B
2,i

t :=
d∑
j=1

[η̃jit /π
ji
t − η̃

ij
t ].

Let (eij) ∈Md
+ be a matrix with all zero entries except the entry (i, j) which

is equal to unity. The union of the elementary orders [(eij), 0] and [0, (eji)]
forms a basis in Md×2d. The execution of the order [(eij), (eji)] (buying a unit
of the jth asset in exchange for the ith asset and then exchanging it back)
leads to a certain loss in the ith position while others remain unchanged, i.e.
∆V̂ i

t ≤ 0, ∆V̂ j
t = 0, j 6= i. This observation will be used further, in the

analysis of the NAr property.

Example 2. Let us turn back to our basic model which is defined by a
price process S = (St) (describing the evolution of prices of units of assets in
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terms of some numéraire, e.g., the euro) and an Md
+-valued process Λ = (λijt )

of transaction costs coefficients. This model admits a formulation in terms of
portfolio positions in physical units: one can introduce the matrix Π by setting

πijt = (1 + λijt )Sjt /S
i
t , 1 ≤ i, j ≤ d.

In the full information case the difference between two models is only in
parametrizations: one can introduce in the barter market “money” by taking
as the price process S an arbitrary one evolving in the duals to the solvency
cones and non-vanishing and defining λijt from the above relations. On the
other hand, from the perspective of partial information, the setting based on
price quotes is more flexible and provides a wider range of possible generaliza-
tions.

Again, assume that the investor’s information is described by a smaller
filtration G while S and Λ are F-adapted (note that these processes may be
adapted with respect to different filtrations).

In contrast to the barter market, the investor now may communicate orders
of four types: in addition to the orders (ηijt ) and (η̃ijt ) one can imagine also
similar orders, “to get”, “to send”, but expressed in units of the numéraire
and given by G-adapted matrix-valued processes (αijt ) and (α̃ijt ) with positive
components. The entry αijt is the increment of value in the position j due
to diminishing the position i, while the entry α̃ijt is a value of the ith asset
ordered to be exchanged for the jth asset.

The dynamics of value processes in such a model, in physical units, is given
by the formula

∆V̂t = ∆̂B
1

t + ∆̂B
2

t + ∆̂B
3

t + ∆̂B
4

t , (1.2)

where ∆̂B
3,i

t := ∆B3,i
t /S

i
t , ∆̂B

4,i

t := ∆B4,i
t /S

i
t with

∆B3,i
t :=

d∑
j=1

αjit −
d∑
j=1

(1 + λijt )αijt ,

∆B4,i
t :=

d∑
j=1

α̃jit

1 + λjit
−

d∑
j=1

α̃ijt .

Of course, in this case the dynamics can be expressed also in values, that is in
units of the numéraire (using the relation X i = X̂ iSi).
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Thus, in both cases the set of “results” (for portfolios with zero initial
endowments) consists of the d-dimensional random variables

ξ =
T∑
t=0

Ltζt, ζt ∈ Ot := L0(Md×m
+ ,Gt), (1.3)

where m is either 2d or 4d and Lω,t : Md×m → Rd are linear operators such
that the mappings ω 7→ Lω,t are measurable with respect to the σ-algebra Ft.
We shall denote this set R̂T or, when needed, R̂T (L) to show the dependence
on the defining operator-valued random process. As usual, we define the set
of hedgeable claims ÂT (L) := R̂T (L)− L0(Rd

+).
Let us associate with the random linear operator Lt (acting on elements

of Md×m) the linear operator Lt acting on Md×m-valued random variables,
Lt : L0(Md×m,Gt) → L0(Rd,Ft), by setting (Ltζ)(ω) = Lω,tζ(ω). With this
notation,

R̂T =
T∑
t=0

Lt(Ot).

Sometimes, it is convenient to view Md×m as the set of linear operators
defined by the corresponding matrices.

Unlike the case of a frictionless market the set R̂T , in general, is not closed
even for models with full information: see Example 1.3 in [25] (due to M.

Ràsonyi) where the set R̂1 = Â1 is not closed though the NAw-condition is
satisfied. However, as in the case of models with full information, we have the
following result. We comment on its proof in the subsequent remark.

Proposition 1.2.1. The sets Lt(Ot) are closed in probability.

Proof. The arguments being standard, we only sketch them. In a slightly
more general setting, consider a sequence of random vectors ζn =

∑N
i=1 c

n
i gi in

a finite-dimensional Euclidean space where gi are G-measurable random vectors
and cni ∈ L0

+(G). Let L be an F -measurable random linear operator. Knowing
that the sequence ξn = Lζn converges to ξ, we want to show that ξ = Lζ for
some ζ =

∑N
i=1 cigi. Supposing that the result holds for N − 1 (for N = 1 it

is obvious), we extend it to N . Indeed, it is easy to see, recalling the lemma
on random subsequences1, that we may assume without loss of generality that

1For any sequence of Rd-valued random variables {ηn} with lim infn |ηn| < ∞ one can
find a sequence of random variables {η′n} such that {η′n(ω)} is a convergent subsequence of
{ηn(ω)} for almost all ω, see [34].
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all sequences cni converge to infinity and, moreover, the normalized sequences
c̃ni := cni /|cn|, where |cn| is the sum of cni , converge to some G-measurable
random variables c̃i. For the random vector ζ̃ :=

∑N
i=1 c̃igi we have that

Lζ̃ = 0. Put αn := mini{cni /c̃i : c̃i > 0}. Note that c̄ni := cni − αnc̃i ≥ 0 and,
for each ω, at least one of c̄ni (ω) vanishes. For ζ̄n =

∑N
i=1 c̄

n
i gi we have that

Lζ̄n also tends to ξ. Considering the partition of Ω by disjoint G-measurable
subsets Γi constructed from the covering of Ω by sets {lim infn c̄

n
i = 0} and

replacing on Γi the coefficients c̄ni by zero (without affecting the limit ξ), we
obtain a reduction to the case with N − 1 generators. �

Remark 1.2.2. We give the above assertion by methodological reasons, as a
case study explaining the basic ideas and techniques. Though, formally, this
result of independent interest will not be used in the sequel we recommend to
the reader to make efforts to understand its proof. Its first idea is that we can
consider a G-measurable partition of Ω and prove the result separately for each
elements of the partition. That is why we start with a two-element partition
Ω0, Ωc

0 such that on Ω0 the result is obvious because, by virtue of the lemma
on subsequences we can replace the initial sequence cn by a convergent one
defining the required representation for the limit. On Ωc

0 we can normalize
the sequence and, using again the lemma on subsequences, obtain an identity
which allows us to reduce the dimensionality of the problem (the number of
generators in the considered case). The dimension reduction, resembling the
Gauss algorithm of solving linear systems, can be done separately on elements
of a subpartition. This type of reasoning, explained in details in [34], was used
repeatedly in many proofs, and became standard. For multiperiod results the
Gauss-type algorithm is imbedded in an induction in the number of periods and
looks more involved but the principle remains the same. That is why we opt to
present it in the case of a one-step assertion.

1.3 No Arbitrage Criteria: Finite Ω

The definition of the NAw-property remains the same as in the model with
full information: R̂T ∩ L0(Rd

+,FT ) = {0} or ÂT ∩ L0(Rd
+,FT ) = {0}.

As always, criteria in the case of finite Ω are easy to establish using the
finite-dimensional separation theorem.
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Proposition 1.3.1. Let Ω be finite. The following conditions are equivalent:

(a) NAw;

(b) there exists Z ∈ M(int Rd
+,F) such that E(ZtLtζ|Gt) ≤ 0 for any

ζ ∈ Ot.

Proof. (a) ⇒ (b) Note that ÂT is a finite-dimensional polyhedral (thus,
closed) cone containing −L0(Rd

+). The NAw-property implies that non-zero

elements of L0(Rd
+) can be separated from ÂT in a strict sense. Using a clas-

sical argument, we construct an F-martingale Z = (Zt) with strictly positive

components such that EZT ξ ≤ 0 for every ξ ∈ ÂT . Namely, we can take ZT
equal to the sum of functionals negative on ÂT and strictly positive on eiIΓ

with the summation index Γ running through the family of atoms of FT and
i = 1, 2, ..., d. It follows that E(ZtLtζt) ≤ 0 for any ζt ∈ Ot, implying the
assertion.

(b) ⇒ (a) This implication is obvious because for ζ admitting the repre-
sentation (1.3) we have that

EZT ξ =
T∑
t=0

E[E(ZtLtζt|Gt)] ≤ 0

and, therefore, ξ cannot be an element of L0(Rd
+,FT ) other than zero.

As we know, even in the case of full information, a straightforward gener-
alization of the above criterion to an arbitrary Ω fails to be true, see [46], [25].
To get “satisfactory” theorems one needs either to impose extra assumptions,
or to modify the concept of absence of arbitrage. We investigate here an analog
of the NAr-condition starting from the simple case when Ω is finite.

First, we establish a simple lemma which holds in a “very abstract” setting
where the word “premodel” instead of “model” means that we do not suggest
any particular properties of (Lt).

Fix a subset It of Ot. The elements of It will be interpreted later, in a
more specific “financial” framework, as the reversible orders.

We say that the premodel has the NAr-property if the NAw-property holds
for the premodel based on an F-adapted process L′ = (L′t) such that

(i) L′tζ ≥ Ltζ componentwise for every ζ ∈ Ot;

(ii) 1L′tζ 6= 1Ltζ if ζ ∈ Ot \ It (i.e. the above inequality is not identity).
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Lemma 1.3.2. Let Ω be finite. If a premodel has the NAr-property, then there
is a process Z ∈ M(int Rd

+,F) such that E(ZtLtζ|Gt) ≤ 0 for every ζ ∈ Ot

and, if ζ ∈ Ot \ It,
ζI{E(ZtLtζ|Gt)=0} ∈ It. (1.4)

Proof. According to Proposition 1.3.1 applied to the premodel based on
the process L′ from the definition of NAr there exists Z ∈M(int Rd

+,F) such
that E(ZtL′tζ|Gt) ≤ 0 for any ζ ∈ Ot. Hence, E(ZtLtζ|Gt) ≤ 0 by virtue of (i).
Again by (i) we have, for ζ ∈ Ot \ It, that

ZtL′tζI{E(ZtLtζ|Gt)=0} ≥ ZtLtζI{E(ZtLtζ|Gt)=0}.

If the order ζI{E(ZtLtζ|Gt)=0} is not in It, this inequality is strict on a non-null
set. Thus, taking the expectation, we obtain

EZtL′tζI{E(ZtLtζ|Gt)=0} > 0

which is contradiction. �

Now we give a precise meaning to the word “model” by imposing an as-
sumption on the generating process (fulfilled in both our examples) and spec-
ifying the sets It.

Namely, we suppose that in Md×m there is a basis formed by the union of
two families of vectors {fi} and {f̃i}, 1 ≤ i ≤ md/2, belonging to Md×m

+ and
such that componentwise

Ltfi + Ltf̃i ≤ 0, (1.5)

while It is the cone of (matrix-valued) random variables having the form∑
i(ηifi + η̃if̃i) with ηi, η̃i ∈ L0

+(Gt) and such that Lt
∑

i(ηi + η̃i)(fi + f̃i) = 0.
Note that the latter equality implies that Lt(It) ⊆ Lt(Ot) ∩ (−Lt(Ot)). It

is clear that the set It is stable under multiplication by elements of L0(R+,Gt).
This implies that the equality (1.4) for ζ ∈ It always holds (cf. the formulations
of Lemma 1.3.2 and the theorems below).

The inequality (1.5) means that the elementary transfers in opposite di-
rections cannot lead to gains. The orders from It, even symmetrized, do not
incur losses.

For the models, in the definition of the NAr the words “premodel” are
replaced by “models”, i.e. we require that the property (1.5) should hold also
for the dominating process L′.
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Theorem 1.3.3. Let Ω be finite. Then the following properties of the model
are equivalent:

(a) NAr;
(b) there is Z ∈ M(int Rd

+,F) such that E(ZtLtζ|Gt) ≤ 0 for every ζ ∈ Ot

and, if ζ ∈ Ot,
ζI{E(ZtLtζ|Gt)=0} ∈ It.

Proof. To check the remaining implication (b)⇒ (a) we put L′tζ := Ltζ −
L̄tζ defining the action of L̄t on the element ζ =

∑
i(ηifi+ η̃if̃i) by the formula

L̄tζ :=
∑

i(ηi + η̃i)θi where θi = θi(t) has the components

θki := max

{
1

2
[Lt(fi + f̃i)]

k,
1

d

E(ZtLtfi|Gt)
E(Zk

t |Gt)
,

1

d

E(ZtLtf̃i|Gt)
E(Zk

t |Gt)

}
.

The values θki (t) being negative, the condition (i) holds. The inequality (1.5)
for L′t is obviously fulfilled due to the first term in the definition of θki (t). Now
let ζ be an element of Ot \ It. This means that for some k and i the set

Γ := {(ηi + η̃i)[Lt(fi + f̃i)]
k < 0} = {(ηi + η̃i)Z

k
t [Lt(fi + f̃i)]

k < 0}

is non-null. From elementary properties of conditional expectations it follows
that (ηi + η̃i)E(Zk

t [Lt(fi + f̃i)]
k|Gt) < 0 on Γ. The property (ii) holds because

on Γ both E(ZtLtfi|Gt) and E(ZtLtf̃i|Gt) are strictly negative as follows from
the coincidence of sets

{E(ZtLtfi|Gt) < 0} = {E(ZtLtf̃i)|Gt) < 0} = {E(ZtLt(fi + f̃i)|Gt) < 0}

which can be established easily. Indeed, fiI{E(ZtLtfi|Gt)=0} ∈ It and, by defini-
tion of It,

I{E(ZtLtfi|Gt)=0}Ltf̃i = −I{E(ZtLtfi|Gt)=0}Ltfi.

Multiplying this identity by Zt and taking the conditional expectation with
respect to Gt we get that

I{E(ZtLtfi|Gt)=0}E(ZtLtf̃i|Gt) = 0.

Similarly,
I{E(ZtLtf̃i|Gt)=0}E(ZtLtfi|Gt) = 0.

These two equalities imply the coincidence of sets where the conditional ex-
pectations (always negative) are zero, i.e. the required assertion.
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Finally, we check the NAw-property of (L′t) using Proposition 1.3.1. For
any ζ =

∑
i(ηifi + η̃if̃i) from Ot we have:

E(ZtL′tζ|Gt) = E(ZtLtζ|Gt)− E
(∑

i

(ηi + η̃i)
d∑

k=1

Zk
t θ

k
i

∣∣∣Gt)
≤ E(ZtLtζ|Gt)−

∑
i

ηiE(ZtLtfi|Gt)−
∑
i

η̃iE(ZtLtf̃i|Gt) = 0.

It follows that EZT ξ ≤ 0 for every ξ ∈ R̂T (L′) ∩ L0(Rd
+), excluding arbitrage

opportunities for the model based on L′.
The theorem is proven. �

Remark 1.3.4. One might find it convenient to view Md×m as the set of
linear operators defined by corresponding matrices and consider the adjoint
operators L∗ω,t : Rd → (Md×m)∗. This gives a certain flexibility of notations,
e.g., the property “E(ZtLtζ|Gt) ≤ 0 for every ζ ∈ Ot” can be formulated as
“the operator E(L∗tZt|Gt) is negative” (in the sense of partial ordering induced
by Md×m

+ ), the inclusion fi ∈ KerE(L∗tZt|Gt) can be written instead of the
equality E(ZtLtfi|Gt) = 0 and so on. However, the current notation has the
advantage of being easier adjustable for more general situation where Lt is a
concave positive homogeneous mapping from Md×m

+ into L0(Rd,Ft).

Remark 1.3.5. The hypothesis on the structure of invertible claims may not
be fulfilled for Examples 1 and 2. For the investor having access to full in-
formation, the set of all assets can be split into classes of equivalence within
which one can do frictionless transfers though not necessary in one step. Our
assumption means that all transfers within each class are frictionless, a hypoth-
esis which, as was noted in [46], does not lead to a loss of generality as a fully
informed “intelligent” investor will not lose money making charged transfers
within an equivalence class. However, in the context of restricted information
it seems that such an assumption means that the information on equivalence
classes is available to the investor.
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1.4 No Arbitrage Criteria: Arbitrary Ω

In the general case the assertion of Proposition 1.3.1 fails to be true though
with a suitable modification its condition (b) remains sufficient for the NAw-
property. Namely, we have:

Proposition 1.4.1. The NAw-property holds if there exists Z ∈M(int Rd
+,F)

such that all conditional expectations E(|Zt||Ltfi||Gt) and E(|Zt||Ltf̃i||Gt) are
finite and E(ZtLtζ|Gt) ≤ 0 for any ζ ∈ Ot.

This result is an obvious corollary of the following technical lemma dealing
with integration issues.

Lemma 1.4.2. Let ΣT = ZT
∑T

t=0 ξt with Z ∈M(Rd
+,F) and ξt ∈ L0(Rd,Ft)

such that E(|Zt||ξt||Gt) < ∞ and E(Ztξt|Gt) ≤ 0. Put Σ̄T := E(ΣT |GT ). If
Σ̄−T ∈ L1, then Σ̄T ∈ L1 and EΣ̄T ≤ 0.

Proof. We proceed by induction. The claim is obvious for T = 0. Suppose
that it holds for T − 1. Clearly,

ZT

T−1∑
t=0

ξt = ΣT − ZT ξT .

By the martingale property E(Zi
T |ξt||Gt) = E(Zi

t |ξt||Gt) < ∞ implying that
E(|ZT ||ξt||Gt) <∞ for any t ≤ T . Thus, Σ̄T is well-defined and finite. Taking
the conditional expectation with respect to GT in the above identity we get,
using the martingale property, that

E(ΣT−1|GT ) = E

(
ZT

T−1∑
t=0

ξt

∣∣∣GT) = Σ̄T − E(ZT ξT |GT ) ≥ Σ̄T .

Therefore, the negative part of E(ΣT−1|GT ) is dominated by the negative part
of Σ̄T which is integrable. Using Jensen’s inequality we have:

Σ̄−T−1 = [E(E(ΣT−1|GT )|GT−1)]−

≤ E([E(ΣT−1|GT )]−|GT−1)

≤ E(Σ̄−T |GT−1).
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Thus, Σ̄−T−1 ∈ L1 and, by virtue of the induction hypothesis, Σ̄T−1 ∈ L1 and
EΣ̄T−1 ≤ 0. In the representation Σ̄T = E(Σ̄T−1|GT ) + E(Σ̄−T |GT−1) the first
term is integrable and has negative expectation while the second is negative.
Thus, EΣ̄T ≤ 0 and, automatically, EΣ̄+

T <∞. �

The NAr-criterion, suitably modified, remains true without any restriction
on the probability space. Of course, in its formulation one needs to take care
about the existence of the involved conditional expectations. This can be done
as in the next result.

Theorem 1.4.3. The following conditions are equivalent:
(a) NAr;
(b) there is Z ∈M(int Rd

+,F) such that all random variables E(ZtLtfi|Gt),

E(ZtLtf̃i|Gt) are finite, E(ZtLtζ|Gt) ≤ 0 for every ζ ∈ Ot and, if ζ ∈ Ot,

ζI{E(ZtLtζ|Gt)=0} ∈ It. (1.6)

We have no trouble with the implication (b) ⇒ (a): an inspection of the
arguments given in the case of finite Ω shows that they work well until the
concluding step which now can be done just by reference to Lemma 1.4.2.

The proof of the “difficult” implication (a) ⇒ (b) follows the same line of
ideas as in the case of full information.

Lemma 1.4.4. Suppose that the equality

T∑
t=0

Ltζ̃t − r̃ = 0 (1.7)

with ζ̃t ∈ Ot and r̃t ∈ L0(Rd
+) holds only if ζ̃t ∈ It and r̃ = 0. Then ÂT is

closed in probability.

Proof. For T = 0 the arguments are exactly the same as were used for
Proposition 1.2.1 with obvious changes caused by the extra term describing the
funds withdrawals. Namely, the difference is that for the limiting normalized
order ζ̃ :=

∑N
i=1 c̃igi we get the equality Lζ̃ − r̃ = 0 where r̃ ∈ L0(Rd

+,FT ) is
the limit of normalized funds withdrawals. By hypothesis, r̃ = 0 and we can
complete the proof using the same Gauss-type reduction procedure.

Arguing by induction, we suppose that ÂT−1 is closed and consider the
sequence of order processes (ζnt )t≤T such that

∑T
t=0 Ltζnt − rn → η. There is

an obvious reduction to the case where at least one of ”elementary” orders at
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time zero tends to infinity. Normalizing and using the induction hypothesis we
obtain that there exists an order process (ζ̃t)t≤T with nontrivial ζ̃0 such that∑T

t=0 Ltζ̃t − r̃ = 0 and we can use the assumption of the lemma. It ensures

that r̃ = 0 and there are ζ ′t ∈ Ot such that Ltζ ′t = −Ltζ̃t. This allows us
to reduce a number of non-zero coefficients (i.e. ”elementary” orders) at the
initial order by putting, ζ̄n0 = ζn0 − αnζ̃0, as in the proof of Proposition 1.2.1,
and ζ̄nt = ζnt + αnζ ′t for t ≥ 1. �

Lemma 1.4.5. The NAr-condition implies the hypothesis of the above lemma.

Proof. Of course, r̃ = 0 (otherwise, (ζ̃t) is an arbitrage opportunity, i.e.
even NAw is violated). For the process (L′t), from definition of NAr we have
that componentwise

T∑
t=0

L′tζ̃t ≥
T∑
t=0

Ltζ̃t = 0

and 1
∑T

t=0 L′tζ̃t > 0 with strictly positive probability if at least one of ζ̃t does

not belong to It. This means that (ζ̃t) is an arbitrage opportunity for the
model based on (L′t). �

Lemma 1.4.6. Assume that the hypothesis of Lemma 1.4.4 holds. Then for
any “elementary” order f and every t ≤ T one can find a bounded process
Z = Z(t,f) ∈M(int Rd

+,F) such that:

1) E(|Zs||Lsg|) <∞ and E(ZsLsg|Gs) ≤ 0 for all s ≤ T and all “elemen-
tary” orders g,

2) fI{E(ZtLtf |Gt)=0} ∈ It.

Proof. We may assume without loss of generality that all portfolio incre-
ments Lsg corresponding to the elementary orders g are integrable (otherwise
we can pass to an equivalent measure P ′ with the bounded density ρ, find the
process Z ′ with the needed properties under P ′ and take Z = ρZ̃ ′).

Let Z be the set of all bounded processes Z ∈M(Rd
+,F) such that EZT ξ ≤

0 whenever is ξ ∈ Â1
T := ÂT ∩ L1. Let

ct := sup
Z∈Z

P (E(ZtLtf |Gt) < 0). (1.8)

Let Z be an element for which the supremum is attained (one can take as Z a
countable convex combination of any uniformly bounded sequence along which
the supremum is attained).
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If 2) fails, then the random vector Lt(f + f̃)I{E(ZtLtf |Gt)=0} (all compo-
nents of which are negative) is not zero. This implies that the element

−Ltf̃ I{E(ZtLtf |Gt)=0} does not belong to Â1
T . Indeed, in the opposite case we

would have the identity

T∑
s=0

Lsζs = −Ltf̃ I{E(ZtLtf |Gt)=0}.

The assumption of Lemma 1.4.4 ensures that the order f̃ I{E(ZtLtf |Gt)=0}+ ζt is
in It. Thus, for the symmetrized order we have that

Lt(f + f̃)I{E(ZtLtf |Gt)=0} + Lt(ζ + ζ̃) = 0.

Since the second term is also negative componentwise, both should be equal
to zero and we get a contradiction.

By the Hahn–Banach theorem one can separate ϕ := −Ltf̃ I{E(ZtLtf |Gt)=0}

and Â1
T : that is we may find η ∈ L∞(Rd) such that

sup
ξ∈Â1

T

Eηξ < Eηϕ.

Since Â1
T is a cone containing −L1(Rd

+) the supremum above is equal to zero,
η ∈ L1(Rd

+) and Eηϕ > 0. The latter inequality implies that for Zη
t = E(η|Gt)

we have EE(Zη
t Ltf |Gt)I{E(ZtLtf |Gt)=0} < 0. Therefore, for the martingale Z ′ :=

Z + Zη we have that

P
(
E(Z ′tLtf |Gt) < 0

)
> P

(
E(ZtLtf |Gt) < 0

)
= ct.

This contradiction shows that 2) holds.
The process Z constructed in this way may be not inM(int Rd

+,F). How-
ever, it can be easily “improved” to meet the latter property. To this end,
fix i ≤ d and consider, in the subset of Z on which the supremum ct in (1.8)
is attained, a process Z with maximal probability P (Zi

T > 0) (such process
does exist). Then P (Z̄i

T > 0) = 1. Indeed, in the opposite case, the element

eiI{ZiT=0} ∈ L1(Rd
+) is not zero and, therefore, does not belong to Â1

T . So it
can be separated from the latter set. The separating functional generates a
martingale Z ′ ∈ Z. Since P (Z̄T + Z ′T > 0) > P (Z̄T > 0), we arrive to a
contradiction with the definition of Z̄. The set of Z ∈ Z satisfying 1) and 2) is
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convex and, hence, a convex combination of d processes obtained in this way
for each coordinate has the required properties. �

The implication (a) ⇒ (b) of the theorem follows from the lemmas above.
Indeed, by virtue of Lemmas 1.4.5 – 1.4.6, NAr ensures the existence of pro-
cesses Z(t,f) satisfying 1) and 2) of Lemma 1.4.6. One can take as a required
martingale Z the process Z :=

∑
t,f Z

(t,f) where t = 0, 1, ..., T and f runs
through the set of “elementary” orders. An arbitrary order ζ ∈ Ot is a lin-
ear combination of elementary orders with positive Gt measurable coefficients.
The condition E(ZtLtζ|Gt) ≤ 0 follows from the property 1) of Lemma 1.4.6.
To prove the inclusion (1.6) we note that I{Σξi=0} =

∏
I{ξi=0} when ξi ≤ 0.

With this observation the required inclusion is an easy corollary of the prop-
erty 2) of Lemma 1.4.6 and the stability of It under multiplication by positive
Gt-measurable random variables.

Remark 1.4.7. In the above proof we get from NAr a condition which looks
stronger than (b), with bounded Z and integrable random variables |Zt||Ltf |,
but, in fact, it is equivalent to (b).

1.5 Hedging Theorem

Thanks to the previous development, hedging theorems in the model with
partial information do not require new ideas. For the case of finite Ω the
result can be formulated in our “very abstract” setting without additional
assumptions on the structure of the sets It.

We fix a d-dimensional random variable Ĉ, the contingent claim expressed
in physical units. Define the set

Γ = {v ∈ Rd : Ĉ ∈ v + ÂT}.

Let Z be the set of martingales Z ∈ MT (Rd
+,F) such that E(ZtLtζt|Gt) ≤ 0

for every ζt ∈ Ot. Put

D :=

{
v ∈ Rd : sup

Z∈Z
E(ZT Ĉ − Z0v) ≤ 0

}
.

Proposition 1.5.1. Let Ω be finite and Z 6= ∅. Then Γ = D.

In this theorem the inclusion Γ ⊆ D is obvious while the reverse inclusion
is an easy exercise on the finite-dimensional separation theorem. We leave it
to the reader.
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In the case of general Ω we should take care about integrability and closed-
ness of the set ÂT . To this end we shall work with the model in the “narrow”
sense of the preceding sections assuming the NAr-property. Now Z is the set
of bounded martingales Z ∈MT (Rd

+,F) such that E(ZtLtfi|Gt), E(ZtLtf̃i|Gt)
are finite, E(ZtLtζ|Gt) ≤ 0 and E(ZT Ĉ)− < ∞. The definitions of the sets Γ
and D remain the same.

Theorem 1.5.2. Suppose that NAr holds. Then Γ = D.

Proof. The inclusion Γ ⊆ D follows from the inequality

ZT (Ĉ − v) ≤ ZT

T∑
t=0

Ltζt, ζt ∈ Ot,

and Lemma 1.4.2.
To check the inclusion D ⊆ Γ we take a point v /∈ Γ and show that v /∈ D.

It is sufficient to find Z ∈ Z such that Z0v < EZT Ĉ. Consider a measure
P̃ ∼ P with bounded density ρ such that Ĉ, and all |Lt||fi| and |Lt||fi| belong
to L1(P̃ ). Under NAr the convex set Ã1 := AT0 ∩L1(P̃ ) is closed and does not

contain the point Ĉ − v. Thus, we can separate the latter by a functional η
from L∞. This means that

sup
ξ∈Ã1

Eρηξ < Eηρ(Ĉ − v).

It is clear, that the bounded martingale Zt := E(ρη|Ft) satisfies the required
properties. �
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2.1 Introduction

A classical result of the theory of frictionless market asserts that the set
of initial capitals needed to hedge a European option ξ with the matu-
rity(=exercise) date T is a semi-infinite closed interval [x∗,∞[ whose left ex-
tremity x∗ = supρEρT ξ where ρ = (ρt) runs through the set of martingale
densities for the price process S. Recall that “to hedge” means to dominate the
random variable ξ by the terminal value of a self-financing portfolio. Basically,
the assertion remains the same for the case of American-type option having
as the pay-off function an adapted càdlàg stochastic process f = (ft)t≤T . In
this case, x∗ = supρ,τ Eρτfτ where τ (an exercise date) runs through the set of
stopping times dominated by T . “To hedge” means here to dominate, on the
whole time interval, the pay-off process by a portfolio process. In both cases,
as was shown by Dmitri Kramkov [40], the results can be deduced from the
optional decomposition theorem applied to a corresponding Snell envelope.

We deliberately formulated the statements above (omitting assumptions)
in terms of density processes rather than in terms of martingale measures to
facilitate the comparison with the corresponding theorems for models with
market friction.

In the theory of markets with transaction costs hedging theorems for Euro-
pean options are already available for discrete-time as well as for continuous-
time models. Mathematically, in discrete-time, the model is given by an
adapted cone-valued process G = (Gt)t=0,1,...,T in Rd. The portfolio (value)
process X is adapted and its increments ∆Xt = Xt−Xt−1 are selectors of the
random cones −Gt. The contingent claim C is a random vector. The hedging
problem is to describe the set Γ of initial values x for which one can find a value
process X such that x + XT dominates C in the sense of the partial ordering
induced by the cone GT . It happens that, under appropriate assumptions,

Γ = {x ∈ Rd : Z0x ≥ EZTC ∀Z ∈MT
0 (G∗)}

whereMT
0 (G∗) is the set of martingales evolving in the (positive) duals G∗t of

the cones Gt. In the financial context, Gt are solvency cones K̂t, “hat” means
that the assets are measured in physical units (the notation Kt is used for the
solvency cones when values of assets are expressed in units of a numéraire),

and the elements of MT
0 (K̂∗) are called consistent price systems. The corre-

spondence with the frictionless case is simple: ξ = CST and Z = ρS. For
the continuous-time model the description remains the same but the theorem
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becomes rather delicate. The reason for this is that the model formulation is
more involved and even the basic definition of value processes has several ver-
sions. Moreover, one needs assumptions on the regularity of the cone-valued
process, see the development and extended discussion of financial aspects in
[19], [30], [37], [39], [16].

The hedging problem for the vector-valued American option U = (Ut) in the
discrete-time framework with transaction costs was investigated in the paper
[14] by Bruno Bouchard and Emmanuel Temam (see also the earlier article
[17] where the two-asset case for finite Ω was studied). It happens that one
needs a richer set of “dual variables” to describe the set Γ formed by the initial
values of self-financing portfolios dominating, in the sense of partial ordering,
the vector-valued adapted pay-off process U . Bouchard and Temam proved
the identity

Γ =

{
x ∈ Rd : Z̄0x ≥ E

N∑
t=0

ZtUt ∀Z ∈ Zd(G∗, P )

}

where Zd(G∗, P ) is the set of discrete-time adapted process Z = (Zt) such
that the random variables Zt, Z̄t ∈ L1(G∗t ) for all t ≤ T with the notation
Z̄t :=

∑T
s=tE(Zs|Ft). Note that the inclusionMT

0 (G∗) ⊆ Zd(G∗, P ) is obvious.
In the theory of financial markets with transaction costs modelling of port-

folio processes is rather involved. It is quite convenient to consider right-
continuous portfolio processes and work in the standard framework of sto-
chastic calculus. This approach leads to satisfactory hedging theorems, e.g.,
for a model with constant transaction costs and a continuous price process,
see [30], [37], [39]. However, as was shown by Miklós Rásonyi in [44], such a
definition is not appropriate when the price process is discontinuous: in gen-
eral, the natural formulation of the hedging theorem (for European options)
fails to be true. Luciano Campi and Walter Schachermayer in [16] suggested
a more complicated definition of the portfolio processes for which the natural
formulation of hedging theorem can be preserved.

In this chapter, we investigate the hedging problem using the approach of
Campi and Schachermayer in a slightly more general mathematical framework,
which is described in the next section. In Section 3 we recall the definition of
portfolio processes together with some known results adjusted to our purposes
and accompanied by explicative comments. Section 4 contains the formulation
of the main theorem preceding by a discussion of objects involved. Financial
interpretation is given in the concluding Section 5.
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2.2 Basic Concepts

Standing hypotheses. We shall work from the very beginning in a slightly
more general and more transparent “abstract” setting where we are given two
cone-valued processes G = (Gt)t∈[0,T ] and G∗ = (G∗t )t∈[0,T ] in duality, i.e. G∗t (ω)
is the positive dual of the cone Gt(ω) for each ω and t. We suppose that
Gt = cone {ξkt : k ∈ N} where the generating processes are càdlàg, adapted,
and for each ω only a finite number of vectors ξkt (ω), ξkt−(ω) are different from
zero, i.e. the cones Gt(ω) and Gt−(ω) := cone {ξkt−(ω) : k ∈ N} are polyhedral,
hence, closed.

Throughout the paper we assume that all cones Gt contain Rd
+ and are

proper, i.e. Gt ∩ (−Gt) = {0} or, equivalently, intG∗t 6= ∅; moreover, we
assume that the cones Gt− are also proper.

In a more specific financial setting (see [39], [16]) the cones Gt are the

solvency cones K̂t provided that the portfolio positions are expressed in phys-
ical units1. The hypothesis that the cones Gt are proper means that there is
efficient friction.

It is important to note that, in general, the continuity of generators does
not imply the continuity of the cone-valued processes. The following simple
example in R2 gives an idea: the process Gt = cone {ξ1

t , ξ
2
t } where ξ1

t = e1,
ξ1
t = (t− 1)+e2 is not right-continuous though the generators are continuous.

To formulate the needed regularity properties of G we introduce some no-
tation. Let Gs,t(ω) denote the closure of cone {Gr(ω) : s ≤ r < t} and let

Gs,t+ := ∩ε>0Gs,t+ε, Gs−,t := ∩ε>0Gs−ε,t, Gs−,t+ := ∩ε>0Gs−ε,t+ε

with an obvious change when s = 0.

We assume that Gt,t+ = Gt, Gt−,t = Gt−, and Gt−,t+ = cone{Gt−, Gt} for
all t.

It is easy to see that these regularity conditions are fulfilled for the case
where the cones Gt and Gt− are proper and generated by a finite number of
generators of unit length. Indeed, let Gt = cone {ξkt : k ≤ n} with |ξkt | = 1 for
all t. Since the dependence on ω here is not important we may argue for the
deterministic case. Let x /∈ Gt. The proper closed convex cones R+x and Gt

intersect each other only at the origin, so the intersections of the interiors of

1The notation Kt is reserved for the solvency cones when the portfolio positions are
expressed in terms of a numéraire.
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(−R+x)∗ and G∗t is non-empty (this is a corollary of the Stiemke lemma as it
is given in the appendix in [36]). It follows that there is y ∈ Rd such that x
belongs to the open half-space {z : yz < 0} while the balls {z : |z − ξkt | < δ}
for sufficiently small δ > 0 lay in the complementary half-space. Since ξk are
right-continuous, the cones Gs,t+ε for all sufficiently small ε > 0 also lay in the
latter. Thus, x /∈ Gt,t+ and Gt,t+ ⊆ Gt. The opposite inclusion is obvious. In
the same way we get other two identities.

Example. Let us consider a financial market with constant proportional
transaction costs given by a matrix Λ = (λij) defining the proper solvency cone
K (in terms of a numéraire). Suppose that the components of the positive
càdlàg price process S are such that inft S

i
t > 0, i = 1, ..., d. Let us consider

the mapping

φt : (x1, ..., xd) 7→ (x1/S1
t , ..., x

d/Sdt ).

The generators of the cone Gt = K̂ = φtK are vectors φtxi, where xi, i ≤ N ,
are generators of the polyhedral cone K (they can be written explicitly in

terms of Λ). The generators of the cone G∗t = K̂∗ = φ−1
t K∗ are vectors φ−1

t zi,
where zi, i ≤M , are generators of the polyhedral cone K∗.

All above hypotheses are fulfilled for this model. Moreover, if S admits an
equivalent martingale measure with the density process ρ and if w ∈ intK∗,
then the process Z with the components Zi

t = wiSitρt is a martingale such
that Zt ∈ intG∗ and Zt− ∈ int (Gt−)∗ = intG∗t− for all t. Existence of such a
martingale is the major assumption of the hedging theorem.

Remark. The argument above shows that the regularity assumptions hold
for the model specified as in [16], i.e. for the case where Gt = K̂(Πt) and

Gt− = K̂(Πt−) are proper cones generated by the bid-ask process Π = (Πt).

Comment on notation. As usual, L0(Gt,Ft) is the set of Ft-measurable
selectors of Gt, MT

0 (G∗) stands for the set of martingales M = (Mt)t≤T with
trajectories evolving in G∗; 1 :=

∑
ei = (1, ..., 1); ||Y ||t is the total variation

of the function Y on the interval [0, t].

Let B be a càdlàg adapted process of bounded variation. We shall denote
by Ḃ the optional version of the Radon–Nikodym derivative dB/d||B|| with
respect to the total variation process ||B||. In particular, this notation will be
used for B = Y+ where Y+ = (Yt+).

We denote by D = D(G) the subset of MT
0 (intG∗) formed by martingales

Z such that not only Zt ∈ L0(intG∗t ,Ft) but also Zt− ∈ L0(int (Gt−)∗,Ft) for
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all t ∈ [0, T ]. In the financial context the elements of D are called consistent
price systems.

Coherent price systems. Let ν be a finite measure on the interval [0, T ]
and let N denote the set of all such measures. For an Rd

+-valued process Z
we denote by Z̄ν the optional projection of the process

∫
[t,T ]

Zsν(ds), i.e. an

optional process such that for every stopping time τ ≤ T we have

Z̄ν
τ = E

(∫
[τ,T ]

Zsν(ds)
∣∣∣Fτ) .

The process Z̄ν can be represented as a difference of a martingale and a left-
continuous process whose components are increasing:

Z̄ν
t = E

(∫
[0,T ]

Zsν(ds)
∣∣∣Ft)− ∫

[0,t[

Zsν(ds).

We associate with ν the product-measure P ν(dω, dt) = P (dω)ν(dt) on the
space (Ω×[0, T ],F×B[0,T ]); the average with respect to this measure is denoted
by Eν .

Let Z(G∗, P, ν) denote the set of adapted càdlàg processes Z ∈ L1(P ν)
such that Zt, Z̄

ν
t ∈ L0(G∗t ,Ft) for all t ≤ T . We call the elements of this set

coherent price systems. In the case where Z is a martingale, Z̄ν
τ = ν([τ, T ])Zτ

and, hence, MT
0 (G∗) ⊆ Z(G∗, P, ν).

2.3 The Model and Prerequisites

We define the portfolio processes following the paper [16]. For the reader
convenience, we give also full proofs of the basic properties.

Let Y be a d-dimensional predictable process of bounded variation starting
from zero and having trajectories with left and right limits (French abbrevi-
ation: làdlàg). Put ∆Y := Y − Y−, as usual, and ∆+Y := Y+ − Y where
Y+ = (Yt+). Define the right-continuous processes

Y d
t =

∑
s≤t

∆Ys, Y d,+
t =

∑
s≤t

∆+Ys

(the first is predictable while the second is only adapted) and, at last, the
continuous one:

Y c := Y − Y d − Y d,+
− .
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Recall that Ẏ c denotes the optional version of the Radon–Nikodym derivative
dY c/d||Y c||.

Let Y be the set of such processes Y satisfying the following conditions:

1) Ẏ c ∈ −G dP d||Y c||-a.e.;
2) ∆+Yτ ∈ −Gτ a.s. for all stopping times τ ≤ T ;
3) ∆Yσ ∈ −Gσ− a.s. for all predictable2 stopping times σ ≤ T .

Let Yx := x + Y , x ∈ Rd. We denote by Yxb the subset of Yx formed by
the processes Y bounded from below in the sense of partial ordering, i.e. such
that Yt + κY 1 ∈ L0(Gt,Ft), t ≤ T , for some κY ∈ R. In the financial context

(where G = K̂) the elements of Yxb are the admissible portfolio processes.
To use classical stochastic calculus we shall operate with the following right-

continuous adapted process of bounded variation

Y+ := Y c + Y d + Y d,+,

and use the relation Y+ = Y +∆+Y . Since the generators are right-continuous,
the process Y+ inherits the boundedness from below of Y (by the same constant
process κY 1). Note that ||Y+||t = ||Y ||t− + |∆Yt + ∆+Yt|.

In the sequel we shall use a larger set portfolio processes depending on
Z ∈MT

0 (G∗), namely,

Yxb (Z) := {Y ∈ Yx : there is a scalar martingale M such that ZY ≥M}.

Lemma 2.3.1. If Z ∈MT
0 (G∗) and Y ∈ Yxb (Z), then both processes ZY+ and

ZY are supermartingales and

E

(
− ZẎ c · ||Y c||T −

∑
s≤T

Zs−∆Ys −
∑
s<T

Zs∆
+Ys

)
≤ Z0x− EZTYT . (2.1)

Proof. With the right-continuous process Y+ (having the same left limits as
Y ) the standard product formula is readily applied:

ZtYt+ = Z0x+ Y− · Zt + ZẎ c · ||Y c||t +
∑
s≤t

Zs∆Ys +
∑
s≤t

Zs∆
+Ys.

2Since Y is a predictable process, the set {∆Y 6= 0} can be represented as a disjoint
union of graphs of predictable stopping times. Hence, 3) implies that ∆Yτ ∈ −Gτ− a.s. for
all stopping times τ ≤ T .
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Taking into account that Y = Y− + ∆Y , we rewrite this identity as

ZtYt+ = Z0x+ Y · Zt + ZẎ c · ||Y c||t +
∑
s≤t

Zs−∆Ys +
∑
s≤t

Zs∆
+Ys.

Since Y+ = Y + ∆+Y , we obtain from here the product formula for ZY
(which is “non-standard” since Y may not be càdlàg):

ZtYt = Z0x+ Y · Zt + ZẎ c · ||Y c||t +
∑
s≤t

Zs−∆Ys +
∑
s<t

Zs∆
+Ys.

By virtue of requirements on Y the stochastic integral Y · Z is a local mar-
tingale while the last three terms define decreasing processes (by our standing
assumption Zs− ∈ (Gs−)∗). Recalling that the process ZY is bounded from
below by a martingale, we deduce from here that the local martingale Y ·Z is
bounded from below by a martingale and, hence, is a supermartingale, hence
integrable. It follows that the terminal values of the mentioned decreasing
processes are integrable. Therefore, ZY is a supermartingale. By the Fatou
lemma its right-continuous limit, i.e. the process ZY+ is a supermartingale. Fi-
nally, taking the expectation of the last identity above and using the inequality
Y · ZT ≤ 0, we get the required bound (2.1). �

Lemma 2.3.2. Suppose that Y n ∈ Y and for all ω (except of a null set)
limn Y

n
t (ω) = Yt(ω) for all t ∈ [0, T ], where Y is a process of bounded variation.

Then the process Y belongs to Y.

This assertion follows immediately from the alternative description of Y
given in the lemma below.

Lemma 2.3.3. Let Y be a predictable process of bounded variation. Then

Y ∈ Y ⇔ Yσ − Yτ ∈ L0(Gσ,τ ) for all stopping times σ, τ, σ ≤ τ ≤ T.

Proof. (⇒) Follows obviously from the representation

Yτ − Yσ =

∫ τ

σ

Ẏ c
r d||Y c||r +

∑
σ<r≤τ

∆Yr +
∑
σ≤r<τ

∆+Yr.

(⇐) First, we provide an “explicit” formula for Ẏ c using the classical ap-
proach due to Doob, see [24], V.5.58. For the reader’s convenience we recall
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the idea. Put tk = tnk = k2−nT , fix ω (omitted in the notation) and consider
the sequence of functions

Xn(t) =
∑
k

Ytnk+1+ − Ytnk+

||Y+||tnk+1
− ||Y+||tnk

I]tnk ,t
n
k+1](t), [0, T ].

This sequence is a bounded martingale with respect to the dyadic filtration on
[0, T ] and the finite measure d||Y+||. So, it converges (almost everywhere with
respect to this measure) to a limit X∞ which is the Radon–Nikodym deriva-
tive dY+/d||Y+|| and which may serve also as the Radon–Nikodym derivative
dY c/d||Y c||.

Thus,

Ẏ c = lim sup
n

∑
k

Ytnk+1+ − Ytnk+

||Y+||tnk+1
− ||Y+||tnk

I]tnk ,t
n
k+1] dP d||Y c||-a.e.

It follows that −Ẏ c
t ∈ Gt−,t+ (a.e.). By assumption, Gt−,t+ = cone{Gt−, Gt}.

But for each ω the set {t : Gt(ω) 6= Gt−(ω)} is at most countable and the
property 1) in the definition of Y is fulfilled.

For a stopping time τ we put τn := τ + 1/n. Then τn ↓ τ

∆+Yτ = lim
n

(Yτn − Yτ ) ∈ −Gτ,τ+ = −Gτ .

For a predictable stopping time σ one can find an announcing sequence of
stopping times σn ↑ σ with σn < σ on the set {σ > 0}. Thus, on this set

∆Yσ = lim
n

(Yσ − Yσn) ∈ −Gσ−,σ = −Gσ−.

The lemma is proven. �

Lemma 2.3.4. Let Z ∈ D. Let A be a subset of Y0
b (Z) for which there is a

constant κ such that YT + κ1 ∈ L0(GT ,FT ) for all Y ∈ A. Then there exists
a probability measure Q ∼ P such that supY ∈AEQ||Y ||T <∞.

Proof. Fix Z ∈ D and consider the random variable

α := inf
t≤T

inf
x∈Gt, |x|=1

Ztx = inf
t≤T

Ztxt,

where xt = xt(ω) is the point on the unit sphere at which the interior infimum
is attained. If tn ↓ t0 and the sequence xtn tends to some x0, then the point
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x0 ∈ ∩ε>0Gt0,t0+ε = Gt0,t0+. By our assumption, Gt0,t0+ = Gt0 . If tn ↑ t0
and the sequence xtn tends to some x0, then x0 ∈ Gt0− by virtue of a similar
argument. On various ω the infimum in t can be obtained either on a decreasing
sequence of tn (in this case, α = Zt0xt0) or on a increasing one (in this case,
α = Zt0−xt0). The assumption on Z guaranties that in both cases the values
of α are strictly positive.

It is easily seen that the left-hand side of (2.1) dominates

Eα

(
|Ẏ c| · ||Y c||T +

∑
s≤T

|∆Ys|+
∑
s<T

|∆+Ys|

)
= Eα||Y ||T

and, therefore,

Eαe−α||Y ||T ≤ Eα||Y ||T ≤ Z0x− EZTYT ≤ Z0x+ κEZT1.

It follows that the measure Q with the density dQ/dP = αe−α/(Eαe−α) is the
required one. �

Recall that a sequence an is Césaro convergent if ān := n−1
∑n

k=1 a
k con-

verges. The Komlós theorem asserts that if ξn are random variables with
supnE|ξn| < ∞ then there exist ξ ∈ L1 and a subsequence ξn

′
such that all

its subsequences are Césaro convergent to ξ a.s.

Lemma 2.3.5. Let An be a sequence of predictable increasing processes start-
ing from zero and with supnEA

n
T <∞. Then there is an increasing process A

with AT ∈ L1 and a subsequence An
′

which is Césaro convergent to A pointwise
at every point of [0, T ] for all ω except a P -null set.

Proof. Let T := {k2−nT : k = 0, ..., 2n, n ∈ N}. Using the Komlós
theorem and the diagonal procedure we find a subsequence such that An

′
r is

Cesaro convergent a.s. to Aor ∈ L1 (with all further subsequences) for all
r ∈ T. We can always choose a common null set Ω0 and assume that Aor(ω) is
increasing in r for each ω 6∈ Ω0. Let us consider its left-continuous envelope,
defined on the whole interval, i.e. the process At := lim infr↑tA

o
t (r ∈ T

and r < t). By the same argument as in the theory of weak convergence of
probability distribution functions, we conclude that if the sequence of functions
An
′
(ω) converges at all points of T in Césaro sense to Ao(ω), then it converges,

in the same sense, to the function A(ω) at all points of continuity of the latter.
The crucial observation is that one can sacrifice the left-continuity of A but
“improve” the convergence property. To this aim let us consider a sequence
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of stopping times τk exhausting the jumps of the process A (i.e. such that
{∆+A > 0} ⊆ ∪k[τk] where [τk] is the graph of τk). Refining the subsequence of
An
′

we may assume that each sequence of random variables An
′
τk

also converges
in Césaro sense. Replacing Aτk by these limiting values we obtain the required
process which is a pointwise Césaro limit of a certain subsequence of An (thus,
predictable). �

Remark. The above lemma from [16] is the key element of our proof and it
merits to be well-understood. It is worthy to make a look at its deterministic
counterpart which is just a version of the Helly theorem. The latter is usu-
ally formulated for left-continuous (or, more frequently, for right-continuous)
monotone functions. The proof is easy: combining the Bolzano–Weierstrass
theorem and the diagonal procedure one defines a monotone function Ao on T
and a subsequence An

′
convergent to Ao on T. Let A be the left envelope of

Ao. Due to monotonicity, the same subsequence will converge to all points of
[0, T ] where A is continuous and this gives the standard version of the Helly
theorem. Of course, the convergence may fail at the denumerable set where A
is discontinuous. Repeating the arguments, one can find a further subsequence
having limits also at each point of discontinuity of A. Replacing the values of
A by these limits, we get an increasing function approximated by the refined
subsequence at all points of the interval. The proof in the stochastic setting
follows the same lines with the classical compactness argument replaced by a
reference to the Komlós theorem.

2.4 Hedging of American options

Let U = (Ut)t∈[0,T ] be an Rd-valued càdlàg process for which there is a constant
κ such that Ut+κ1 ∈ L0(Gt,Ft) for all t. In the context of financial modelling
such a process is interpreted as (the pay-off of) an American option. Let AT0 (.)
be the set of American options which can be dominated by a portfolio with
zero initial capital, i.e. by an element of Y0

b .
Define the convex set

Γ := {x ∈ Rd : ∃Y ∈ Yxb such that Y �G U} = {x ∈ Rd : U − x ∈ AT0 (.)},

and the closed convex set

D := D(P ) := {x ∈ Rd : Z̄ν
0x ≥ EνZU ∀Z ∈ Z(G∗, P, ν), ∀ν ∈ N}.
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It is easy to check that D(P ) = D(P̃ ) if P̃ ∼ P . Indeed, let x ∈ D(P ), ν ∈ N ,
and Z̃ ∈ Z(G∗, P̃ , ν). Define ρt = E(dP̃ /dP |Ft) and consider the process
Zt = ρtZ̃t. It is in Z(G∗, P, ν) and

EρT

∫
[0,T ]

Z̃tUtν(dt) = E

∫
[0,T ]

ρtZ̃tUtν(dt) = E

∫
[0,T ]

ZtUtν(dt) ≤ xEνZ

Since EνZ = ẼνZ̃, it follows that x ∈ D(P̃ ).

Proposition 2.4.1. Γ ⊆ D.

Proof. Let x ∈ Γ. Then there exists Y in Y0
b such that the process x + Y

dominates U , i.e. x + Yt − Ut ∈ L0(Gt,Ft) for all t ∈ [0, T ]. It follows that
x+ Yt+ − Ut ∈ L0(Gt,Ft). By duality, for any Z ∈ Z(G∗, P, ν) and ν ∈ N we
have that

E

∫
[0,T ]

Ztxν(dt) + E

∫
[0,T ]

ZtYt+ν(dt) ≥ E

∫
[0,T ]

ZtUtν(dt).

It remains to verify that EνZY+ ≤ 0. Using the Fubini theorem and the
property of the optional projection given by Th.VI.2.57 in [24] we have:

E

∫
[0,T ]

ZtYt+ν(dt) = E

∫
[0,T ]

Zt

(∫
[0,t]

Ẏ+sd||Y+||s
)
ν(dt)

= E

∫
[0,T ]

Ẏ+s

(∫
[s,T ]

Ztν(dt)

)
d||Y+||s

= E

∫
[0,T ]

Ẏ+sZ̄
ν
s d||Y+||s.

It is easy to see that∫
[0,T ]

Ẏ+sZ̄
ν
s d||Y+||s =

∫
[0,T ]

Ẏ c
s Z̄

ν
s d||Y c||s +

∑
s≤T

Z̄ν
s∆Ys +

∑
s≤T

Z̄ν
s∆+Ys.

Since Ẏ c
s and ∆+Ys take values in the cone −Gs and Z̄ν

s takes values in G∗s,
the first and the third terms of the above identity are negative. The increment
∆Ys takes values in −Gs−. If Gs− = Gs for all s, the second term is also
negative and we conclude. As we do not assume the continuity of the process
G, the proof requires a bit more work.
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Let us suppose for a moment that the random variable ||Y d||T is bounded.
To get the needed inequality EνZY+ ≤ 0 it is sufficient to check that the
expectation of the second term is negative. We proceed as follows. Recall that
Z̄ν = Mν −R where Mν is a martingale and the process

Rt =

∫
[0,t[

Zuν(du)

is left-continuous. The last property implies that ∆Z̄ν = ∆Mν . It follows that∑
s≤T

Z̄ν
s∆Ys =

∑
s≤T

Z̄ν
s−∆Ys +

∑
s≤T

∆Mν
s ∆Ys.

The first sum in the right-hand side is obviously negative while the expectation
of the second one is zero. This follows from the classical property (see, e.g. [26],
Lemma I.3.12): if M is a positive martingale and B is a predictable increasing
process starting from zero, then

EMTBT = E

∫
[0,T ]

MsdBs = E

∫
[0,T ]

Ms−dBs.

We can easily remove the condition of the boundedness of ||Y d||. Indeed, a
finite predictable increasing process is locally bounded, see [24], Ch. VIII.11.
Hence, there is a sequence of stopping times τn increasing stationary to T (i.e.
with P (τn = T )→ 1) such that ||Y d||τn ≤ Cn. Let Un be a process coinciding
with U on [0, τn[ and taking the value x + Yτn on [τn, T ]. It follows from the
above arguments that Z̄νx ≥ EνZUn and the result follows from the Fatou
lemma. �

Theorem 2.4.2. Suppose that D 6= ∅. Then Γ = D.

Proof. We fix Z̃ ∈ D and define the set of hedging endowments corre-
sponding to portfolios with the “relaxed” admissibility property, namely, we
put

Γ(Z̃) := {x ∈ Rd : ∃Y ∈ Yxb (Z̃) such that Y �G U}.

Since Yxb (Z̃) ⊇ Yxb , this set is larger than Γ. On the other hand, if a portfolio
Y dominate U , it is bounded from below. Hence, Γ(Z̃) = Γ.

Let Tm := {tk = tmk : tk = k2−mT, k = 0, ..., 2m}; then T = ∪m≥1T
m.

Define the convex set ATm(.) of American options W which can be hedged at
the dates from Tm by a portfolio belonging to the class Y0

b (Z̃), i.e. such that
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Yt − Wt ∈ Gt, t ∈ Tm, for some Y ∈ Y0
b (Z̃). Let us consider ATm(.) as a

subset of the space L0(P ⊗ νm) := L0(Ω× [0, T ],F ×B[0,T ], P ⊗ νm) where the
probability measure νm is the uniform distribution on Tm, i.e. it charges only
the points of Tm with weights 1/(2m+1). From the point of view of this space,
W is just the random vector (W0,W1/2m , ...,WT ) (the components of the latter
are d-dimensional). For such random vectors (with fixed m ≥ 1) we extend
the concept of the Fatou-convergence in the same spirit as was developed in
the problem of hedging of European options. Note that ATm(.), in general,
depends on Z̃.

We say that a sequence W n is Fatou-convergent in L0(P ⊗ νm) to W if
there is a constant κ such that W n

r + κ1 ∈ L0(Gr,Fr) (i.e., W n
r �Gr −κ1)

for all r ∈ Tm, n ≥ 1, and W n
r → Wr a.s., n → ∞, for all r ∈ Tm. The

subsequent definitions Fatou-closed and Fatou-dense are obvious.

Lemma 2.4.3. The set ATm(.) is Fatou-closed in L0(P ⊗ νm).

Proof. Let W n ∈ ATm(.) be a sequence Fatou-converging to W and let
Y n be a corresponding sequence of dominating elements from Y0

b (Z̃). Our
aim is to show that W also can be dominated by some element Y0

b (Z̃) at the
points of Tm. Using the preceding results (see Lemmas 2.3.4 and 2.3.5) we can
replace W n and Y n by appropriate sequences of arithmetic means and suppose
without loss of generality that Y n converges to some predictable process Y of
bounded variation almost surely at each point t ∈ [0, T ]. Using Lemma 2.3.2
we conclude that Y ∈ Y0. It remains to check that Z̃Y dominates a martingale.
By virtue of Lemma 2.3.1 the prelimit processes Z̃Y n are supermartingales.
Since Y n

T dominates WT �GT −κ1, we have that Z̃TY
n
T ≥ −κZ̃T . It follows

that the supermartingale Z̃Y n dominates the martingale −κZ̃ and so does the
supermartingale Z̃Y . �

Lemma 2.4.4. The set ATm(.) ∩ L∞(P νm) is Fatou-dense in ATm(.).

Proof. Let W ∈ ATm(.) be dominated at the points of Tm by a portfolio
Y ∈ Y0

b (Z̃). Let κ be a constant such that Wt + κ1 ∈ Gt for t ∈ Tm. Put

W n := WI{|W |≤n} − κI{|W |>n}.

Then W n ∈ L∞(P ⊗ νm) and tends to W as n → ∞. Since for all t ∈ Tm,
Yt−W n

t = (Yt−Wt)I{|Wt|≤n}+ (Yt +κ1)I{|Wt|>n} ∈ Gt, we have W n ∈ ATm(.).
�
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Let L0
b(P ⊗ νm) be the cone in L0(P ⊗ νm) formed by the elements W

(interpreted as random vectors) which are adapted and bounded from below
in the sense of partial ordering, i.e. such that Wr + c1 ∈ L0(Gr,Fr) for all
r ∈ Tm. The notation L1(G∗, P ⊗ νm) has an obvious meaning.

The following lemma is Theorem 4.3 from [39] formulated in the notation
adjusted to the considered situation (where one take W0 = 0).

Lemma 2.4.5. Let A be a convex subset in L0
b(P ⊗ νm) which is Fatou-closed

and such that the set A∞ := A∩L∞(Rd, P ⊗νm) is Fatou-dense in A. Suppose
that there is W0 ∈ A∞ such that W0 − L∞(G,P ⊗ νm) ⊆ A∞. Then

A =
{
W ∈ L0

b(P ⊗ νm) : EνmZW ≤ f(Z) ∀Z ∈ L1(G∗, P ⊗ νm)
}

(2.2)

where f(Z) = supY ∈AE
νmZY .

With the above preliminaries we can complete the proof of Theorem 2.4.2
by establishing the remaining inclusion D ⊆ Γ = Γ(Z̃). Indeed, take a point
x ∈ D. Suppose that U − x /∈ ATm(.) for some m. By virtue of Lemma
2.4.5 there exists Z ∈ L1(G∗, P ⊗ νm) such that EνmZ(U − x) > f(Z). But
f(Z) = 0 as ATm(.) is a cone. We can identify Z with a right-continuous
adapted process taking value Ztk at the points tk. Since EνmZY ≤ 0 for all
Y ∈ ATm(.), the process Z ∈ Z(G∗, P, νm). Thus, x /∈ D, a contradiction.
This means that U −x ∈ ATm(.) for all m, i.e. there exist admissible portfolio
processes Y n dominating U−x at the points of Tn. In particular, the sequence
Y n
T is bounded from below by a constant vector and, by virtue of Lemma 2.3.4,

the total variations ||Y n||T are bounded in a certain L1(Q) with Q ∼ P . Using
Lemma 2.3.5, we may assume without loss of generality that the sequence Y n

converges to some predictable process Y of bounded variation almost surely
at each point t ∈ [0, T ]. Recall that Ut + κ1 ∈ Gt. The limiting process
Y dominates U − x at all points from T. Using the right continuity of the
processes, we obtain that Y+ dominates U − x on the whole interval and so
does the “larger” process Y . So, x ∈ Γ. �

Remark. Theorem 2.4.2 implies as a corollary a hedging theorem for càdlàg
portfolio processes under assumption that the cone-valued process G is contin-
uous. Indeed, let X 0 be the set of all càdlàg processes X of bounded variation
with X0 = 0 and such that dX/d||X|| ∈ −G dP d||X||-a.e. The notations X x

and X x
b are obvious. Let

ΓX := {x ∈ Rd : ∃X ∈ X x
b such that X �G U}.



Financial Interpretation: Coherent Price Systems 37

Similar (but simpler) arguments than those used in the proof of Proposition
2.4.1 show that ΓX ⊆ D.

Suppose that all generators ξk of G are continuous processes. It is easy to
check that if the process Y ∈ Y0 then Y+ ∈ X 0. Thus, Γ ⊆ ΓX and Theorem
2.4.2 implies that if D(G) 6= ∅, then ΓX = D.

2.5 Financial Interpretation: Coherent Price

Systems

In the final section of this note we want to attract the reader’s attention to
the financial interpretation of the obtained result. In the hedging theorems
for European options the important concept is a consistent price system which
replaces the notion of the martingale density of the classical theory sometimes
referred to as “stochastic deflator” or “state-price density”. The words “price
system” mean that it is a process evolving in the duals K̂∗t to the solvency

cones K̂t while “consistent” alludes that this process is a martingale. Hedging
theorems are results claiming that a contingent claim ξ (in physical units) can
be super-replicated starting from an initial endowment x by a self-financing
portfolio if and only if the “value” Z0x of this initial endowment is not less
than the expected “value” of the contingent claim EZT ξ for any consistent
price system Z (we write the word “value” in quotation marks to emphasize
its particular meaning in the present context). In other words, consistent price
systems allow the option seller to relate benefits from possessing x at time
t = 0 and the liabilities ξ at time t = T and provide information whether there
is a portfolio ending up on the safe side.

The situation with the American option is different. As it was observed
by Chalasani and Jha, already in the simplest discrete-time models consistent
price systems form a class which is too narrow to evaluate American claims
correctly. The phenomenon appears because one cannot prohibit the option
buyer to toss a coin and take a decision, to exercise or not, in dependence of
the outcome. A financial intuition suggests that the expected “value” of an
American claim is an expectation of the weighted average of “values” of assets
obtained by the option holder for a variety of exercise dates. This expected
“value” should be compared with the “value” of the initial endowment. The
main question is: what is the class of price systems which should be involved
to compute the “values” to be compared? Our result shows, that in a rather
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general continuous-time model, the comparison can be done with the systems
for which the expected weighted average of future prices knowing the past is
again a price system. The structure of such a price system is coherent with
the option buyer actions and we propose to call it coherent price system and
use the abbreviation CoPS.

It is well-known that without transaction costs the rational exercise strat-
egy of the buyer is the optimal solution of a stopping problem which exists
in the class of pure stopping times. This explains why in the models of fric-
tionless markets there is no need to go beyond the class of consistent price
systems. For markets with transaction costs the rational exercise strategies of
the option buyer is an open problem.

A reader acquainted with set-valued analysis may ask a question why we
limit ourselves by considering a rather particular cone-valued process defined
via a countable family of generators. Indeed, it seems that the natural mathe-
matical framework is a model given by a general cone-valued process G satis-
fying certain continuity conditions. A possible generalizations of this kind and
a development of the theory of set-valued processes are of interest and can be
subjects of further studies.

Remark. To the present, the pay-off of American options was usually mod-
elled by a right-continuous (or left-continuous) process. Though we believe
that this class is sufficient for financial applications, the problem of the dual
description of the set of hedging endowments for the processes only admitting
right and left limits is mathematically interesting. It is solved in the preprint
[13] by Bouchard and Chassagneux which appeared when our paper was under
refereeing. Their dual variables are different from those introduced here and
the relations between the two descriptions are left by the authors of [13] as a
subject of further studies.



Chapter 3

Consumption-Investment
Problem with Transaction Costs
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3.1 Introduction

In this chapter we study the classical consumption-investment model with
infinite horizon in the presence of transaction costs. Our aim is to extend
the results of [31] to the case where the price processes are geometric Lévy
process. Namely, we show that the Bellman function is a viscosity solution
of the corresponding Hamilton–Jacobi–Bellman equation. We also prove a
uniqueness theorem for the latter.

Mathematically, the consumption-investment problem with transaction
costs is a regular-singular control problem for a linear stochastic equation in a
cone. Its specificity is that the Bellman function is not smooth and, therefore,
one cannot use the verification theorem (at least, in its traditional form) be-
cause the Itô formula cannot be applied. Nevertheless, one can show that the
Bellman function is a solution of the HJB equation in viscosity sense. Though
the general line of arguments is common, one needs to re-examine each step
of the proof. In particular, for the considered jump-diffusion model, the HJB
equation contains an integro-differential operator and the test functions in-
volved in the definition of the viscosity solution must be “globally” defined.
It seems that already in 1986 H.M. Soner noticed that the control problems
with jump parts can be considered in the framework of the theory of viscosity
solutions, [49], [50].

There is a growing literature on extension of the concept of viscosity solu-
tions to equations with integro-differential operators, see, e.g., [45], [2], [43],
[8], [7], [3], [4]. There are several variants of the definition of viscosity solution.
Our choice is intended to serve the model with a positive utility function.

A rather detailed study of consumption-investment problems under trans-
action costs when the the prices follows exponential Lévy processes and the
investor is constrained to keep long positions in all assets was undertaken in
papers by Benth et al. [11] and [10]. Our geometric approach seems to be
more general than that of the mentioned papers where the authors consider
a ”parametric” version of the stock market with transactions always involve
money (i.e. either “buy stock” or “sell stock”). A more important difference
is that in our setting the investor may take short positions as was always as-
sumed in the classical papers [42], [21], [48]. If short positions are admitted,
the ruin may happen due to a jump of the price process. That is why the
classical setting we consider here leads to a different HJB equation of a more
complicated structure. Following the ideas from the paper [31] we derive the
Dynamic Programming Principle splitted into two separate assertions. Though



42 Consumption-Investment Problem

it is the principal tool which allows to check that the Bellman function is a
viscosity solution of the HJB equation, it is rarely discussed in the literature
(and even taken as granted, see, e.g., in [1], [48], [11]).

The main result of the paper is a uniqueness theorem for the Dirichlet
problem arising in the model. We formulate it in terms of the Lyapunov
function.

The structure of the problem is the following. In Sections 2 and 3 we intro-
duce the model dynamics and describe the goal functional providing comments
on the concavity of the Bellman function W . In Section 4 we show that if the
utility function is homogeneous of order γ < 1 and the Bellman function is
finite then the latter is continuous in the interior of the solvency. In Section
5 we give a formal description of the HJB equation. Sections 6 and 7 con-
tain a short account of basic facts on viscosity solutions for integro-differential
operators. In Section 8 we explain the role of classical supersolutions to the
HJB equations. Section 9 is devoted to the Dynamic Programming Principle.
In Section 10 we use it to show that the Bellman function is the solution of
our HJB equation. Section 11 contains a uniqueness theorem formulated in
terms of a Lyapunov function. In Section 12 we provide examples of Lyapunov
functions and classical supersolutions.

3.2 The Model

Our setting is more general than that of the standard model of financial market
under constant proportional transaction costs. In particular, the cone K is
not supposed to be polyhedral. We assume that the asset prices are geometric
Lévy processes. Our framework appeals to a theory of viscosity solutions for
non-local integro-differential operators.

Let Y = (Yt) be an Rd-valued semimartingale on a stochastic basis
(Ω,F ,F, P ) with the trivial initial σ-algebra. Let K and C be proper cones
in Rd such that C ⊆ intK 6= ∅. Define the set A of controls π = (B,C) as the
set of predictable càdlàg processes of bounded variation such that, up to an
evanescent set,

Ḃ ∈ −K, Ċ ∈ C. (3.1)

Let Aa be the set of controls with absolutely continuous C and ∆C0 = 0.
For the elements of Aa we have c := dC/dt ∈ C.
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The controlled process V = V x,π is the solution of the linear system

dV i
t = V i

t−dY
i
t + dBi

t − dCi
t , V i

0− = xi, i = 1, ..., d. (3.2)

The solution of (3.2) can be expressed explicitly using the Doléans-Dade ex-
ponentials

Et(Y i) = eY
i
t −(1/2)〈Y ic〉t

∏
s≤t

(1 + ∆Y i
s )e−∆Y is . (3.3)

Namely,

V i
t = Et(Y i)xi + Et(Y i)

∫
[0,t]

E−1
s− (Y i)(dBi

s − dCi
s), i = 1, ..., d. (3.4)

We introduce the stopping time

θ = θx,π := inf{t : V x,π
t /∈ intK}.

For x ∈ intK we consider the subsets Ax and Axa of “admissible” controls for
which π = I[0,θx,π ]π and {V− + ∆B ∈ intK} = {V− ∈ intK}. This means
that for an admissible control the process V x,π stops at the moment when it
leaves the interior of the solvency cone and there is no more consumption.
Moreover, the process V does not leave the interior of K due to a jump of B:
the investor is reasonable enough not to ruin himself by making too expensive
portfolio revision.

The important hypothesis that the cone K is proper, i.e. K ∩ (−K) =
{0}, or equivalently, intK∗ 6= ∅, corresponds to the model of financial market
with efficient friction. In a financial context K (usually containing Rd

+) is
interpreted as the solvency region and C = (Ct) as the consumption process;
the process B = (Bt) describes accumulated fund transfers. In the ”standard”
model with proportional transaction costs (sometimes referred to as the model
of currency market)

K = cone {(1 + λij)ei − ej, ei, 1 ≤ i, j ≤ d}

where λij ≥ 0 are transaction costs coefficients.

The process Y represents the relative price movements. If Si is the price
process of the ith asset, then dY i

t = dSit/S
i
t− and Sit = Si0Et(Y i). Without loss

of generality we assume that Si0 = 1 for all i. Therefore, the formula (3.4) can
be re-written as follows:

V i
t = Sitx

i + Sit

∫
[0,t]

1

Sis−
(dBi

s − dCi
s), i = 1, ..., d. (3.5)
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We shall work assuming that

dYt = µdt+ Ξdwt +

∫
z(p(dz, dt)− q(dz, dt)) (3.6)

where µ ∈ Rd, w is a m-dimensional standard Wiener process and p(dz, dt)
is a Poisson random measure with the compensator q(dz, dt) = Π(dz)dt such
that Π(dz) is a measure concentrated on ]−1,∞[d. For the m×d-dimensional
matrix Ξ we put A = ΞΞ∗. We assume that∫

(|z|2 ∧ |z|)Π(dz) <∞. (3.7)

It is important to note that the jumps of Y and B cannot occur si-
multaneously. More precisely, the process |∆B||∆Y | is indistinguishable of
zero. Indeed, for any ε > 0 we have, using the predictability of the process
∆B = B −B−, that

E
∑
s≥0

|∆Bs||∆Ys|I{|∆Ys|>ε} = E

∫ ∞
0

∫
|∆Bs|I{|z|>ε}|z|p(dz, ds)

= E

∫ ∞
0

∫
|∆Bs||z|I{|z|>ε}Π(dz)ds = 0

because for each ω the set {s : ∆Bs(ω) 6= 0} is at most countable and its
Lebesgue measure is equal to zero. Thus, the process |∆B||∆Y |I{|∆Y |>ε} is
indistinguishable of zero and so is the process |∆B||∆Y |.

It follows that ∆Bθ = 0. Since the predictable process I{V−∈∂K}I[0,θ] has
at most countable number of jumps, the same reasoning as above leads to the
conclusion that I{V−∈∂K}|∆Y |I[0,θ] is indistinguishable of zero. This means that
θ is the first moment when either V or V− leaves intK. This property will be
used in the proof that W is lower semicontinuous on intK.

In our proof of the dynamic programming principle (needed to derive the
HJB equation) we shall assume that the stochastic basis is a canonical one,
that is the space of càdlàg functions under which the coordinate process is the
Lévy process.

We denote by Cρ(K) the subspace of the space of continuous functions f
on K such that supx∈K |f(x)|(1 + |x|ρ) <∞.

Let f ∈ C1(K) ∩ C2(intK). Using the abbreviation

I(z, x) := I{z: x+diag xz∈intK} = IintK(x+ diag xz)
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we introduce the function

I(f, x) :=

∫
(f(x+ diag xz)− f(x)− diag xzf ′(x))I(z, x)Π(dz), x ∈ intK.

It is well-defined and continuous in x. Indeed, let ε > 0 be such that the ball
Oε(x) ⊂ K and δ := ε/(2|x|). Then, using the Taylor formula, we have the
bound

|f(x+ diag xz)− f(x)− diag xzf ′(x))| ≤ κ1|z|2IOε/2(x)(z) + κ2|z|IK\Oε/2(x)(z)

which right-hand side is integrable with respect to Π.

3.3 Goal Functionals and Concavity of the

Bellman Function

Let U : C → R+ be a concave function such that U(0) = 0 and U(x)/|x| → 0
as |x| → ∞. With every π = (B,C) ∈ Axa we associate the “utility process”

Jπt :=

∫ t

0

e−βsU(cs) ds , t ≥ 0 ,

where β > 0. We consider the infinite horizon maximization problem with the
goal functional EJπ∞ and define its Bellman function W by

W (x) := sup
π∈Axa

EJπ∞ , x ∈ intK . (3.8)

Since Ax1
a ⊆ Ax2

a when x2 − x1 ∈ K, the function W is increasing with
respect to the partial ordering ≥K generated by the cone K.

If πi, i = 1, 2, are admissible strategies for the initial points xi, then the
strategy λπ1 + (1 − λ)π2 is an admissible strategy for the initial point λx1 +
(1 − λ)x2, λ ∈ [0, 1], laying on the interval connecting x1 and x2. In the case
where the relative price process Y is continuous, the corresponding ruin time
for the process

V λx1+(1−λ)x2,λπ1+(1−λ)π2 = λV x1,π1 + (1− λ)V x2,π2 (3.9)

dominates the maximum of the ruin times for processes V xi,πi . The concavity
of u implies that

J
λπ1+(1−λ)π2

t ≥ λJπ1
t + (1− λ)Jπ2

t . (3.10)
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and, hence, the function W is concave on intK.
Unfortunately, in our main case of interest, where Y has jumps, the ruin

times cannot be related in such a simple way. One can easily imagine a sit-
uation where θx1,π1 = θλx1+(1−λ)x2,λπ1+(1−λ)π2 < ∞ while θx2,π2 = ∞ and the
relations (3.9) and (3.10) do not hold. Therefore, we cannot guarantee,
by the above argument, that the Bellman function is concave. Of course,
these considerations show only that the concavity of W cannot be obtained
in a straightforward way as claimed in some publications. It is not excluded.
Moreover, the concavity is rather plausible because one may guess that for the
optimal strategies there are no short positions in the risky assets and the ruin
by jumps is impossible.

The concavity of the Bellman function W is not a property just interesting
per se. The classical definition of viscosity solution, as was given by the famous
“User’s guide” [18], requires the continuity. On the other hand, a concave
function is continuous in the interior of its domain (and even locally Lipschitz),
see, e.g., [5]. Of course, the model must contains a provision which ensures that
W is finite. But the latter property in the case of continuous price processes
implies that W is continuous on intK. In the case of processes with jumps
one needs to analyze the continuity of W using other arguments.

In the next section we show that the finiteness of W still guarantees its
continuity in the interior of K. We do this using the following assertion.

Lemma 3.3.1. Suppose that W is a finite function. Let x ∈ intK. Then the
function λ 7→ W (λx) is right-continuous on R+.

Proof. Let λ > 0. Then λπ ∈ Aλxa if and only if π ∈ Axa. For a concave
function U with U(0) = 0 we have, for any ε > 0 the inequality U(c) ≥
(1 + ε)−1U((1 + ε)c). Hence, for an arbitrary strategy π ∈ Axa we have that

J (1+ε)π
∞ − Jπ∞ = E

∫ ∞
0

e−βt
(
U((1 + ε)ct)− U(ct)

)
dt

≤ εE

∫ ∞
0

e−βtU(ct))dt ≤ εW (x).

It follows that W ((1+ε)x) ≤ (1+ε)W (x). Since W (x) ≤ W ((1+ε)x), we infer
from here that λ 7→ W (λx) is right-continuous at the point λ = 1. Replacing
x by λx we obtain the claim. �

Note that if U is a homogeneous function of order γ with γ ∈]0, 1[, i.e.
U(λx) = λγU(x) for all λ > 0, x ∈ K, then W (λx) = λγW (x). Thus, the
function λ 7→ W (λx) is concave and, therefore, continuous if finite.
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Remark 1. In financial models usually C = R+e1 and σ0 = 0, i.e. the only
first (non-risky) asset is consumed. Our presentation in this section is oriented
to the scalar power utility function u(c) = cγ/γ, γ ∈]0, 1[.

Remark 2. We consider here a model with mixed “regular-singular” controls.
In fact, the assumption that the consumption process has an intensity c = (ct)
and the agent’s utility depends on this intensity is not very satisfactory from
the economical point of view. One can consider models with an intertemporal
substitution and the consumption by “gulps”, i.e. dealing with “singular”
controls of the class Ax and the goal functionals like

Jπt :=

∫ t

0

e−βsU(C̄s)ds ,

where

C̄s =

∫ s

0

K(s, r)dCr

with a suitable kernel K(s, r) (the exponential kernel e−γ(s−r) is the common
choice).

3.4 Continuity of the Bellman Function

Proposition 3.4.1. Suppose that W (x) < ∞ for all x ∈ intK. Then W is
continuous on intK.

Proof. First, we show that the function W is upper semicontinuous on
intK. Suppose that this is not the case and there is a sequence xn converging
to some x0 ∈ intK such that lim supnW (xn) > W (x0). Without loss of
generality we way assume that the sequence W (xn) converges. The points
x̃k = (1 + 1/k)x0, k ≥ 1, belong to the ray R+x0 and converges to x0. We find
a subsequence xnk such that x̃k ≥K xnk for all k ≥ 1. Indeed, since

(1 + 1/k)x0 ∈ x0 + intK,

there exists εk > 0 such that

(1 + 1/k)x0 +Oεk(0) ∈ x0 + intK.

It follows that

(1 + 1/k)x0 + (xn − x0) +Oεk(0) ∈ xn + intK
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and, therefore, (1 + 1/k)x0 ∈ xn + intK for all n such that |xn − x0| < εk.
Any strictly increasing sequence of indices nk for which |xnk − x0| < εk gives
us in a subsequence of points xnk with the needed property. The function W
is increasing with respect to the partial ordering ≥K . Thus,

lim
k
W (x̃k) ≥ lim

k
W (xnk) > W (x0).

On the other hand, the function λ 7→ W (λx0) is right-continuous at λ = 1
and, hence, limkW (x̃k) = W (x0). This contradiction shows that W is upper
semicontinuous on intK.

Let us show now that lim infnW (xn) ≥ W (x0) as xn → x0, i.e. W is lower
semicontinuous on intK.

Fix ε > 0. Due to the finiteness of the Bellman function there are a strategy
π and T ∈ R+ such that for θ = θx0,π we have the bound

E

∫ T∧θ

0

e−βsU(cs)ds ≥ W (x0)− ε.

It remains to show that

lim inf
n

(θn ∧ T ) ≥ θ ∧ T a.s., (3.11)

where we use the abbreviation θn := θxn,π. Indeed, with this bound we get,
using the Fatou lemma, that

lim inf
n

W (xn) ≥ lim inf
n

E

∫ θn∧T

0

e−βsU(cs)ds ≥ E lim inf
n

∫ θ∧T

0

e−βsU(cs)ds

≥ E

∫ θ∧T

0

e−βsU(cs)ds ≥ W (x0)− ε

and the claim follows since ε is arbitrarily small.
To prove (3.11), we observe that on [0, θn∧θ∧T ] we have the representation

V xn,π
t − V x0,π

t = diag (xn − x0)St

implying that
sup

t≤θn∧θ∧T
|V xn,π
t − V x0,π

t | ≤ S∗T |xn − x0|,

where S∗T := supt≤T |St|. Fix arbitrary, “small”, δ > 0. For almost all ω
the distance ρ(ω) of a trajectory V x0,π

t (ω) on the interval [0, (θ ∧ T ) − δ] is
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strictly positive. The above bound shows that for sufficiently large n the
V xn,π
t (ω) does not deviate from V x0,π

t (ω) more than on ρ(ω)/2 on the interval
[0, θn(ω) ∧ θ(ω) ∧ T ]. It follows that θn(ω) ≥ θ(ω) ∧ T − δ. Thus,

lim inf
n

(θn ∧ T ) ≥ (θ ∧ T )− δ a.s.

and (3.11) holds. �

3.5 The Hamilton–Jacobi–Bellman Equation

Let G := (−K) ∩ ∂O1(0) where Or(y) := {x ∈ Rd : |x − y| < r}. The set
G is a compact and −K = coneG. We denote by ΣG the support function of
G, given by the relation ΣG(p) = supx∈G px. The convex function U∗(.) is the
Fenchel dual of the convex function −U(−.) which domain is −C, i.e.

U∗(p) = sup
x∈C

(U(x)− px).

We introduce a function of five variables by putting

F (X, p, I(f, x),W, x) := max{F0(X, p, I(f, x),W, x) + U∗(p),ΣG(p)},

where X belongs to Sd, the set of d×d symmetric matrices, p, x ∈ Rd, W ∈ R,
f ∈ C1(K) ∩ C2(x) and the function F0 is given by

F0(X, p, I(f, x),W, x) :=
1

2
trA(x)X + µ(x)p+ I(f, x)− βW

where A(x) is the matrix with Aij(x) := aijxixj, µi(x) := µixi, 1 ≤ i, j ≤ d.
In a more detailed form we have that

F0(X, p, I(f, x),W, x) =
1

2

d∑
i,j=1

aijxixjX ij +
d∑
i=1

µixipi + I(f, x)− βW.

Note that F0 is increasing in the argument f in the same sense as I.
If φ is a smooth function, we put

Lφ(x) := F (φ′′(x), φ′(x), I(φ, x), φ(x), x).

In a similar way, L0 corresponds to the function F0.
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We show, under mild hypotheses, that W is the unique viscosity solution
of the Dirichlet problem for the HJB equation

F (W ′′(x),W ′(x), I(W,x),W (x), x) = 0, x ∈ intK, (3.12)

W (x) = 0, x ∈ ∂K, (3.13)

with the boundary condition understood in the usual classical sense.

3.6 Viscosity Solutions for Integro-Differential

Operators

Since, in general, W may have no derivatives at some points x ∈ intK (and
this is, indeed, the case for the model considered here), the notation (3.12)
needs to be interpreted. The idea of viscosity solutions is to substitute W in
F by suitable test functions. Formal definitions (adapted to the case we are
interested in) are as follows.

A function v ∈ C(K) is called viscosity supersolution of (3.12) if for every
x ∈ intK and every f ∈ C1(K) ∩ C2(x) such that v(x) = f(x) and v ≥ f the
inequality Lf(x) ≤ 0 holds.

A function v ∈ C(K) is called viscosity subsolution of (3.12) if for every
x ∈ intK and every f ∈ C1(K) ∩ C2(x) such that v(x) = f(x) and v ≤ f the
inequality Lf(x) ≥ 0 holds.

A function v ∈ C(K) is a viscosity solution of (3.12) if v is simultaneously
a viscosity super- and subsolution.

At last, a function v ∈ C1(K) ∩ C2(intK) is called classical supersolution
of (3.12) if Lv ≤ 0 on intK. We add the adjective strict when Lv < 0 on the
set intK.

For the sake of simplicity and having in mind the specific case we shall work
on, we incorporated in the definitions the requirement that the viscosity super-
and subsolutions are continuous on K including the boundary. For other cases
this might be too restrictive and more general and flexible formulations can be
used.

Lemma 3.6.1. Suppose that the function v is a viscosity solution of (3.12).
If v is twice differentiable at x0 ∈ intK, then it satisfies (3.12) at this point in
the classical sense.
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Proof. One needs to be more precise with definitions since it is not assumed
that v′ is defined at every point of a neighborhood of x0. “Twice differentiable”
means here that the Taylor formula at x0 holds:

v(x) = P2(x− x0) + (x− x0)2h(|x− x0|)

where

P2(x− x0) := v(x0) + 〈v′(x0), x− x0〉+
1

2
〈v′′(x0)(x− x0), x− x0〉

and h(r)→ 0 as r ↓ 0.
We introduce the notation Γr := {z ∈ Rd : |diag x0z| ≤ r}, r ≥ 0.
Let ε > 0. We choose δ0 ∈]0, 1[ such that |h(s)| ≤ ε for s ≤ δ0 and

define δ := δ0/(1 + |x0|). Take ∆ ∈]δ, 1[ sufficiently close to δ to insure that
x0 +O∆(0) ⊂ K, Π(O∆(0) \ Oδ(0)) ≤ ε, and Π(Γ∆ \ Γδ) ≤ ε.

We define the function fε ∈ C1(K) ∩ C2(x0) by the formula

fε(x) =


P2(x− x0) + ε(x− x0)2, x ∈ x0 +Oδ(0),
g(x) ∨ v(x), x ∈ x0 +O∆(0) \ Oδ(0),
v(x), x ∈ x0 +Oc∆(0),

where

g(x) := P2

(
δ
x− x0

|x− x0|

)
+ εδ +

δ − |x− x0|
∆− |x− x0|

.

Clearly, fε(x0) = v(x0) and fε ≥ v. Since v is a viscosity subsolution,
Lfε(x0) ≥ 0. Note that,

|Lfε(x0)− Lv(x0)| ≤ ε
n∑
i=1

aii(xi0)2 + |I(fε − v, x0)|.

It is not difficult to show that |I(fε − v, x0)| is also proportional to ε. Indeed,

|I((fε − v)IOδ(0), x0)| ≤ ε|x0|2
∫
O1(0)

z2Π(dz).

Due to the choice of ∆ we have the bound

|I((fε − v)IO∆(0)\Oδ(0), x0)| ≤ 2MΠ(O∆(0) \ Oδ(0)) ≤ 2Mε,

where M is the supremum of v on the ball x0 +O|x0|(0).
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Since

|fε(x0 + diag x0z)− v(x0 + diag x0z)| ≤ ε|x0|2|z|2, z ∈ Γδ \ Γ0,

we get that

|I((fε − v)IOc∆(0)∩Γδ\Γ0 , x0)| ≤ ε|x0|2
∫
O1(0)

|z|2Π(dz).

Also we have

|I((fε − v)IOc∆(0)∩Γ∆\Γδ , x0)| ≤ (2m+ ε)Π(Γ∆ \ Γδ) ≤ (2m+ ε)ε,

where m is the supremum of v on the ball x0 +O1(0). Letting ε tend to zero,
we obtain that Lv(x0) ≥ 0. Arguing in the same way with ε < 0, we get the
opposite inequality. �

3.7 Jets

Let f and g be functions defined in a neighborhood of zero. We shall write
f(.) / g(.) if f(h) ≤ g(h) + o(|h|2) as |h| → 0. The notations f(.) ' g(.) and
f(.) ≈ g(.) have the obvious meaning.

For p ∈ Rd and X ∈ Sd we consider the quadratic function

Qp,X(z) := pz + (1/2)〈Xz, z〉 , z ∈ Rd ,

and define the super- and subjets of a function v at the point x:

J+v(x) := {(p,X) : v(x+ .) / v(x) +Qp,X(.)},
J−v(x) := {(p,X) : v(x+ .) ' v(x) +Qp,X(.)}.

In other words, J+v(x) (resp. J−v(x)) is the family of coefficients of
quadratic functions v(x) + Qp,X(y − .) dominating the function v(.) (resp.,
dominated by this function) in a neighborhood of the point x with precision
up to the second order included and coinciding with v(.) at this point.

In the classical theory developed for differential equations the notion of
viscosity solutions admits an equivalent formulation in terms of super- and
subjets. Since the latter are “local” concepts, such a characterization is not
possible for integro-differential operators. Nevertheless, one can prove the
following useful result.



Supersolutions and Properties of the Bellman Function 53

Lemma 3.7.1. Let v be a viscosity supersolution of the HJB equation and let
x ∈ intK. Let (p,X) ∈ J−v(x). Then there is a function f ∈ C1(K) ∩ C2(x)
such that f ′(x) = p, f ′′(x) = X, f(x) = v(x), f ≥ v on K and, hence,

F (X, p, I(f, x),W (x), x) ≤ 0.

Moreover, this function f can be chosen equal to v outside an arbitrary small
neighborhood of x.

Proof. Take r > 0 such that the ball O2r(x) = {y : |y − x| ≤ 2r} lays in
the interior of K. By definition,

v(x+ h)− v(x)−Qp,X(h) ≥ |h|2ϕ(|h|),

where ϕ(u)→ 0 as u ↓ 0. We consider on ]0, r[ the function

δ(u) := sup
{h: |h|≤u}

1

|h|2
(v(x+ h)− v(x)−Qp,X(h))− ≤ sup

{y: 0≤y≤u}
ϕ−(y).

Obviously, δ is continuous, increasing and δ(u)→ 0 as u ↓ 0. The function

∆(u) :=
2

3

∫ 2u

u

∫ 2η

η

δ(ξ)dξdη

vanishes at zero with its two right derivatives; u2δ(u) ≤ ∆(u) ≤ u2δ(4u). It
follows that the function x 7→ ∆(|x|) belongs to C2(Or(0)), its Hessian vanishes
at zero, and

v(x+ h)− v(x)−Qp,X(h) ≥ −|h|2δ(|h|) ≥ −∆(|h|).

Thus, f(y) := v(x) +Qp,X(y−x)−∆(|y−x|) is dominated by v(y) in the ball
Or(x) = {y : |y−x| ≤ r}. We put f(y) = v(y) outside of the ball O2r(x). We
can extend f continuously to the remaining set O2r(x) \ Or(x) preserving the
inequality f ≤ v. �

For subsolutions we have a similar result with the inverse inequalities.

3.8 Supersolutions and Properties of the Bell-

man Function

3.8.1 When is the Bellman Function W Finite on K?

First, we present sufficient conditions ensuring that the Bellman function W
of the considered maximization problem is finite.
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Functions we are interested in are defined in the solvency cone K while the
process V which may jump out of the latter. In order to be able to apply the
Itô formula we stop V = V x,π at the moment immediately preceding the ruin
and define the process

Ṽ = V θ− = V I[0,θ[ + Vσ−I[θ,∞[,

where θ is the exit time of V from the interior of the solvency cone K. This
process coincides with V on [0, θ[ but, in contrast to the latter, either always
remains in K (due to the stopping at θ if Vθ− ∈ intK) or exits to the boundary
in a continuous way and stops on it.

It follows from the definitions (3.2) and (3.6) that

Ṽt = v +

∫ t

0

I[0,θ](s)diag Ṽs(µsds+ Ξdws)

+

∫ t

0

∫
diag Ṽs−zI(Ṽs−, z)(p(dz, ds)− q(dz, ds)) +Bt − Ct.

Let Φ be the set of continuous functions f : K → R+ increasing with
respect to the partial ordering ≥K and such that for every x ∈ intK and
π ∈ Axa the positive process Xf = Xf,x,π given by the formula

Xf
t := e−βtf(Ṽt) + Jπt , (3.14)

where V = V x,π, is a supermartingale.
The set Φ of f with this property is convex and stable under the operation

∧ (recall that the minimum of two supermartingales is a supermartingale).
Any continuous function which is a monotone limit (increasing or decreasing)
of functions from Φ also belongs to Φ.

Lemma 3.8.1. (a) If f ∈ Φ, then W ≤ f ;
(b) if a point y ∈ ∂K is such that there exists f ∈ Φ such that f(y) = 0,

then W is continuous at y.

Proof. (a) Using the positivity of f , the supermartingale property of Xf ,
and, finally, the monotonicity of f we get the following chain of inequalities
leading to the required property:

EJπt ≤ EXf
t ≤ f(Ṽ0) = f(V0) ≤ f(V0−) = f(x).
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(b) The continuity of W at the point y ∈ ∂K follows from the inequalities
0 ≤ W ≤ f . �

Remark. Recall that a concave function is locally Lipschitz continuous on the
interior of its domain, i.e. on the interior of the set where it is finite. Thus,
if W is concave function and Φ is not empty, then W is continuous (and even
locally Lipschitz continuous) on intK. The concavity of W holds in the case
where the price process has no jumps.

Lemma 3.8.2. Let f : K → R+ be a function in C1(K) ∩ C2(intK). If f is
a classical supersolution of (3.12), then f ∈ Φ, i.e. Xf is a supermartingale.

Proof. First, notice that a classical supersolution is increasing with respect
to the partial ordering ≥K . Indeed, by the finite increments formula we have
that for any x, h ∈ intK

f(x+ h)− f(x) = f ′(x+ ϑh)h

for some ϑ ∈ [0, 1]. The right-hand side is greater or equal to zero because
for the supersolution f we have the inequality ΣG(f ′(y)) ≤ 0 whatever is
y ∈ intK, or, equivalently, f ′(y)h ≥ 0 for every h ∈ K, just by the definition
of the support function ΣG and the choice of G as a generator of the cone −K.
By continuity, f(x+ h)− f(x) ≥ 0 for every x, h ∈ K.

Applying the “standard” Itô formula to e−βtf(Ṽt) we obtain that

e−βtf(Ṽt) = f(x) +

∫ t

0
e−βsf ′(Ṽs−)dṼs − β

∫ t

0
e−βsf(Ṽs−)ds

+
1

2

∫ t

0
e−βstrA(Ṽs−)f ′′(Ṽs−)ds

+
∑
s≤t

e−βs[f(Ṽs− + ∆Ṽs)− f(Ṽs−)− f ′(Ṽs−)∆Ṽs].

Note also that∑
s≤t

e−βs[f(Ṽs− + ∆Ṽs)− f(Ṽs−)− f ′(Ṽs−)∆Ṽs]I{∆Bs=0}

=

∫ t

0

∫
e−βs[...]I(Ṽs−, z)I{∆Bs=0}I[0,θ](s)p(dz, ds)

=

∫ t

0

∫
e−βs[...]I(Ṽs−, z)I[0,θ](s)Π(dz)ds

+

∫ t

0

∫
e−βs[...]I(Ṽs−, z)I{∆Bs=0}I[0,θ](s)(p(dz, ds)− Π(dz)ds),
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where we replace in the integrals by dots the lengthy expression

f(Ṽs− + diag Ṽs−z)− f(Ṽs−)− f ′(Ṽs−)diag Ṽs−z.

Using the above formulae we obtain after regrouping terms the following rep-
resentation for Xf = e−βtf(Ṽt):

Xf
t = f(x) +

∫ t∧θ

0

e−βs[L0f(Ṽs)− csf ′(Ṽs) + U(cs)]ds+Rt +mt, (3.15)

where

Rt :=

∫ t∧θ

0

e−βsf ′(Vs−)dBc
s +

∑
s≤t

e−βs[f(Ṽs− + ∆Bs)− f(Ṽs−)] (3.16)

and m is the local martingale

mt =

∫ t∧θ

0
e−βsf ′(Ṽs−)diag ṼsΞdws

+

∫ t∧θ

0

∫
e−βs[f(Ṽs− + diag Ṽs−z)− f(Ṽs−)]I(Ṽs−, z)(p(dz, ds)−Π(dz)ds).

By definition of a supersolution, for any x ∈ intK,

L0f(x) ≤ −U∗(f ′(x)) ≤ cf ′(x)− U(c) ∀ c ∈ C.

Thus, the integral in (3.15) is a decreasing process. The process R is also
decreasing because the terms of the sum in (3.16) are less or equal to zero by
monotonicity of f while the integral is negative since

f ′(Vs−)dBc
s = I{∆Bs=0}f

′(Vs−)Ḃsd||B||s

where f ′(Vs−)Ḃs ≤ 0 since Ḃ takes values in K. Let σn be a localizing sequence
for m. Taking into account that Xf ≥ 0, we obtain from (3.15) that for
each n the negative decreasing process Rt∧σn dominates an integrable process
and so it is integrable. The same conclusion holds for the stopped integral.
Being a sum of an integrable decreasing process and a martingale, the process
Xf
t∧σn is a positive supermartingale and, hence, by the Fatou lemma, Xf is a

supermartingale as well. �

Lemma 3.8.2 implies that the existence of a smooth positive supersolution
f of (3.12) ensures the finiteness of W on K. Sometimes, e.g., in the case of
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power utility function, it is possible to find such a function in a rather explicit
form.

Remark. Let Ō be the closure of an open subset O of K and let f : Ō → R+

be a classical supersolution in Ō. Let x ∈ O and let τ be the exit time of the
process V x,π from Ō. The above arguments imply that the process Xf

t∧τ is a
supermartingale and, therefore,

E[e−β(t∧τ)f(Ṽt∧τ ) + Jπt∧τ ] ≤ f(x). (3.17)

3.8.2 Strict Local Supersolutions

For the strict supersolution we can get a more precise result which will play
the crucial role in deducing from the Dynamic Programming Principle the
property of W to be a subsolution of the HJB equation.

We fix a ball Ōr(x) ⊆ intK such that the larger ball Ō2r(x) ⊆ intK and
define τπ = τπr as the exit time of V π,x from Or(x), i.e.

τπ := inf{t ≥ 0 : |V π,x
t − x| ≥ r}.

Lemma 3.8.3. Let f ∈ C1(K) ∩ C2(O2r(x)) be such that Lf ≤ −ε < 0 on
Ōr(x). Then there exist a constant η > 0 and an interval ]0, t0] such that

sup
π∈Axa

EXf,x,π
t∧τπ ≤ f(x)− ηt ∀ t ∈]0, t0].

Proof. We fix a strategy π and omit its symbol in the notations below. In
what follows, only the behavior of the processes on [0, τ ] does matter. Note
that |Vτ − x| ≥ r on the set {τ < ∞}. As in the proof of Lemma 3.8.2, we
apply the Itô formula and obtain the representation

Xf
t∧τ = f(x) +

∫ t∧θ∧τ

0

e−βsLf(Ṽs)ds

−
∫ t∧θ∧τ

0

e−βs[U∗(Vs) + csf
′(Ṽs)− U(cs)]ds+Rt∧τ +mt∧τ .

Due to the monotonicity of f we may assume without loss of generality that
on the interval [0, τ ] the increment ∆Bt does not exceed the distance of Vs to
the boundary of Or(x). In other words, if the exit from the ball is due to an
action (and not because of a jump of the price process), we can replace this
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action by a less expensive one, with the jump to the same direction but ending
on the boundary.

By assumption, for y ∈ Or(x) we have the bounds Lf(y) ≤ −ε (helpful to
estimate the first integral in the right-hand side) and ΣG(f ′(y)) ≤ −ε. The
latter the latter inequality means that kf ′(y) ≤ −ε|k| for k ∈ −K (hence,
f ′(Ōr(x)) ⊂ intK∗). In particular, for s ∈ [0, τ ]

f ′(Vs−)Ḃs ≤ −ε|Ḃs|, [f(Ṽs− + ∆Bs)− f(Ṽs−)] ≤ −ε|∆Bs|.

Since |Ṽs−−x| ≤ r for s ∈ [0, τ ], we obtain, using the finite increment formula
and the linear growth of f the bound

[f(Ṽs− + diag Ṽs−z)− f(Ṽs−)]I(Ṽs−, z) ≤ κ1|z|2I{|z|≤1/2} + κ2|z|I{|z|>1/2}.

It follows that the local martingale (mt∧τ ) is a martingale with mt∧τ = 0.
The above observations imply the inequality

EXf,x
t∧τ ≤ f(x)− e−βtENt,

where

Nt := ε(t ∧ τ) +

∫ t∧τ

0

H(cs, f
′(Vs))ds+ ε

∫ t∧τ

0

|Ḃs|d||B||s

with H(c, p) := U∗(p) + pc − U(c) ≥ 0. It remains to verify that ENt domi-
nates, on a certain interval ]0, t0], a strictly increasing linear function which is
independent of π.

The process Nt looks a bit complicated but we can replace it by another one
of a simpler structure. To this end, note that there is a constant κ (“large”,
for convenience, κ ≥ 1) such that

inf
p∈f ′(Ōr(x))

H(c, p) ≥ κ−1|c|, ∀ c ∈ C, |c| ≥ κ.

Indeed, being the image of a closed ball under continuous mapping, the set
f ′(Ōr(x)) is a compact in intK∗. The lower bound of the continuous function
U∗ on f ′(Ōr(x)) is finite. For any p from f ′(Ōr(x)) and c ∈ C ⊆ K we have
the inequality (c/|c|)p ≥ ε. At last, U(c)/|c| → 0 as c → ∞. Combining
these facts we infer the claimed inequality. Thus, for the first integral in the
definition of Nt we have the bound∫ t∧τ

0

H(cs, f
′(Vs))ds ≥ κ−1

∫ t∧τ

0

I{|cs|≥κ}|cs|ds.
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The second integral in the definition dominates κ̃||B||t∧τ for some κ̃ > 0. To
see this, let us consider the absolute norm |.|1 in Rd. The total variation of B
with respect to this norm is

∑
i VarBi and

|Ḃ|1 =
∑
i

|Ḃi| =
∑
i

∣∣∣∣ dBi

d||B||

∣∣∣∣ =
∑
i

∣∣∣∣ dBi

dVarBi

∣∣∣∣ dVarBi

d||B||
=
d
∑

i VarBi

d||B||
.

But all the norms in Rd are equivalent, i.e. κ̃−1|.| ≤ |.|1 ≤ κ̃|.| for some strictly
positive constant κ̃ and the same inequalities relate the corresponding total
variation processes.

Summarizing, we conclude that it is sufficient to check the domination
property for EÑt with the simpler processes

Ñt := t ∧ τ +

∫ t∧τ

0

I{|cs|≥κ}|cs|ds+ ||B||t∧τ . (3.18)

The idea of the concluding reasoning is very simple: on a certain set of
strictly positive probability, where one may neglect the random fluctuations,
either τ is “large”, or the total variation of the control is “large”.

The formal arguments are as follows. Using the stochastic Cauchy formula
(3.4) and the fact that E0+(Y i) = E0(Y i) = 1, we get immediately that there
exist a number t0 > 0 and a measurable set Γ with P (Γ) > 0 on which

|V x,π − x| ≤ r/2 + δ(||B||+ ||C||) on [0, t0]

whatever is the control π = (B,C). Of course, diminishing t0, we may assume
without loss of generality that κt0 ≤ r/(4δ). For any t ≤ t0 we have on the set
Γ ∩ {τ ≤ t} the inequality ||B||τ + ||C||τ ≥ r/(2δ) and, hence,

Ñt ≥ ||B||τ + ||C||τ −
∫ τ

0

I{|cs|<κ}|cs|ds ≥
r

2δ
− κt0 ≥ κt0 ≥ t0 ≥ t.

On the set Γ ∩ {τ > t} the inequality Ñt ≥ t is obvious. Thus, EÑt ≥ tP (Γ)
on [0, t0] and the result is proven. �

3.9 Dynamic Programming Principle

The aim of this section is to establish the following two assertions needed to
derive the HJB equation for the Bellman function.
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Lemma 3.9.1. Let Tf be the sets of finite stopping times. Then

W (x) ≤ sup
π∈Axa

inf
τ∈Tf

E
(
Jπτ + e−βτW (V x,π

τ− )I{τ<θ}
)
. (3.19)

Lemma 3.9.2. Suppose that W is continuous on intK. Then for any τ ∈ Tf
W (x) ≥ sup

π∈Axa
E
(
Jπτ + e−βτW (V x,π

τ− )I{τ≤θ}
)
. (3.20)

We work on the canonical filtered space of càdlàg functions equipped with
the measure P which is the distribution of the driving Lévy process. The
generic point ω = ω. of this space is a d-dimensional càdlàg function on R+,
zero at the origin. Let F◦t := σ{ωs, s ≤ t} and Ft := ∩ε>0Ft+ε. We add the
superscript P to denote σ-algebras augmented by all P -null sets from Ω. Recall
that F◦,Pt coincides with FPt (this assertion follows easily from the predictable
representation theorem). The Skorohod metric makes Ω a Polish space and its
Borel σ-algebra coincides with F∞, for details see [26].

Since elements of Ω are paths, we can define such operators as the stop-
ping ω. 7→ ωs. , s ≥ 0, where ωs. = ωs∧. and the translation ω. 7→ ωs+. − ωs.
Taking Doob’s theorem into account, one can describe F◦s -measurable random
variables as those of the form g(w.) = g(ws. ) where g is a measurable function
on Ω.

We define also the “concatenation” operator as the measurable mapping

g : R+ × Ω× Ω→ Ω

with gt(s, ω., ω̃.) = ωtI[0,s[(t) + (ω̃t−s + ωs)I[s,∞[(t).
Notice that

gt(s, ω
s
. , ω.+s − ωs) = ωt.

Thus, π(ω) = π(g(s, ωs. , ω.+s − ωs)).
Let π be a fixed strategy from Axa and let θ = θx,π be the exit time from

intK for the process V x,π.

Recall the following general fact on regular conditional distributions.
Let ξ and η be two random variables taking values in Polish spaces X and

Y equipped with their Borel σ-algebras X and Y . Then ξ admits a regular
conditional distribution given η = y which we shall denote by pξ|η(Γ, y). This
means that pξ|η(., y) is a probability measure on X , pξ|η(Γ, .) is a Y-measurable
function, and

E(f(ξ, η)|η) =

∫
f(x, y)pξ|η(dx, y)

∣∣∣∣
y=η

(a.s.)
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for any X × Y-measurable function f(x, y) ≥ 0.
We shall apply the above relation to the random variables ξ = (ω.+τ − ωτ )

and η = (τ, ωτ ). It is well-known that the Lévy process starts afresh at stopping
times, i.e. one can take as the conditional distribution pξ|η(Γ, y) the measure
P .

At last, for fixed s and ws, the shifted control π.+s(g(s, ωs. , ω̃.)) is admissible
for the initial condition V x,π

s− (ω). Here we denote by ω̃. a generic point of the
canonical space.
Proof of Lemma 3.9.1. For arbitrary π ∈ Axa and Tf we have that

EJπ∞ = EJπτ + Ee−βτI{τ<θ}

∫ ∞
0

e−βru(cr+τ )dr

= EJπτ + Ee−βτI{τ<θ}E
(∫ ∞

0

e−βru(cr+τ )dr
∣∣∣(τ, ωτ )).

According to the above discussion we can rewrite the second term of the right-
hand side as

Ee−βτI{τ<θ}

∫ (∫ ∞
0

e−βru(cr+τ (g(τ, ωτ , ω̃)))dr

)
P (dω̃)

and dominate it by Ee−βτI{τ<θ}W (V x,π
τ− ). Thus,

EJπ∞ ≤ EJπτ + Ee−βτI{τ<θ}W (V x,π
τ− ).

This bound leads directly to the first announced inequality. �

Proof of Lemma 3.9.2. Fix ε > 0. By hypothesis, the function W is continuous
on intK. For each x ∈ intK we can find an open ball Or(x) = x+Or(0) with
r = r(ε, x) < ε contained in the open set {y ∈ intK : |W (y) −W (x)| < ε}.
Moreover, we can find a smaller ball Or̃(x) contained in the set y(x) +K with
y(x) ∈ Or(x). Indeed, take a ball x0 +Oδ(0) ⊆ K. Since K is a cone,

x+Oλδ(0) ⊆ x− λx0 +K

for every λ > 0. Clearly, the requirement is met for y(x) = x−λx0 and r̃ = λδ
when λ|x0| < ε and λδ < r. The family of sets Or̃(x)(x), x ∈ intK, is an open
covering of intK. But any open covering of a separable metric space contains
a countable subcovering (this is the Lindelöf property; in our case, where intK
is a countable union of compacts, it is obvious). Take a countable subcovering
indexed by points xn. For simplicity, we shall denote its elements by On and
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y(xn) by yn. Put A1 := O1, and An = On \ ∩k<nOk. The sets An are disjoint
and their union is intK.

Let πn = (Bn, Cn) ∈ Ayna be an ε-optimal strategy for the initial point yn,
i.e. such that

EJπn ≥ W (yn)− ε.

Let π ∈ Axa be an arbitrary strategy. We consider the strategy π̃ ∈ Axa defined
by the relation

π̃ = πI[0,τ [ +
∞∑
n=1

[(yn − V x,π
τ− , 0) + π̄n]I[τ,∞[IAn(V x,π

τ− )I{τ≤θ}

where π̄n is the translation of the strategy πn: namely, for a point ω. with
τ(ω) = s <∞ we have

π̄nt (ω.) := πnt−s(ω.+s − ωs).

In other words, the strategy dπ̃ coincides with π on [0, τ [ and with the shift
of πn on ]τ,∞[ when V x,π

τ− is a subset of An; the correction term guarantees
that in the latter case the trajectory of the control system corresponding to
the control π̃ passes at time τ through the point yn.

Now, using the same considerations as in the previous lemma, we have:

W (x) ≥ EJ π̃∞ = EJπτ +
∞∑
n=1

EIAn(V x,π
τ− )I{τ≤θ}

∫ ∞
τ

e−βsu(c̄ns )ds

≥ EJπτ +
∞∑
n=1

EIAn(V x,π
τ− )I{τ≤θ}e

−βτ (W (yn)− ε)

≥ EJπτ + Ee−βτW (V x,π
τ− )I{τ≤θ} − 2ε.

Since π and ε are arbitrary, the result follows. �

Remark. The previous lemmas implies the identity

W (x) = sup
π∈Axa

inf
τ∈Tf

E
(
Jπτ + e−βτW (V x,π

τ− )I{τ≤θ}
)
.

It can be considered as another form of the dynamic programming principle
but, seemingly, not sufficient for our derivation of the HJB equation.
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3.10 The Bellman Function and the HJB

Equation

Theorem 3.10.1. Assume that the Bellman function W is in C(K). Then
W is a viscosity solution of (3.12).

Proof. The claim follows from the two lemmas below. �

Lemma 3.10.2. If (3.20) holds then W is a viscosity supersolution of (3.12).

Proof. Let x ∈ intK. Choose a test function φ ∈ C1(K)∩C2(x) such that
φ(x) = W (x) and W ≥ φ. Take r ∈]0, 1] small enough to ensure that the ball
Ō2r(x) ⊂ K and φ is smooth on O2r(x).

At first, we fix m ∈ K. Let ε > 0 be such that ensure that x−εm ∈ Or(x).
The function W is increasing with respect to the partial ordering generated by
K. Thus,

φ(x) = W (x) ≥ W (x− εm) ≥ φ(x− εm).

Taking a limit as ε → 0, we easily obtain that −mφ′(x) ≤ 0 and, therefore,
ΣG(φ′(x)) ≤ 0.

Take now π with Bt = 0 and ct = c ∈ C. Let τr = τπr ≤ θ be the exit time
of the process V = V x,π from the ball Or(x); obviously, τr ≤ θ. The properties
of the test function and the inequality (3.20) imply that

φ(x) = W (x) ≥ E
(
Jπt∧τr + e−β(t∧τr)W (Vt∧τr−)

)
≥ E

(
Jπt∧τr + e−β(t∧τr)φ(Vt∧τr−)

)
.

We get from here using the Itô formula (3.15), that

0 ≥ E

(∫ t∧τr

0

e−βsU(cs)ds+ e−β(t∧τr)φ(Vt∧τr−)

)
− φ(x)

≥ E

∫ t∧τr

0

e−βs[L0φ(Vs)− cφ′(Vs) + U(c)]ds

≥ min
y∈Ōr(x)

[L0φ(y)− cφ′(y) + U(c)]E

[
1

β

(
1− e−β(t∧τr)

)]
.

Dividing the resulting inequality by t and taking successively the limits as t
and r converge to zero we infer that L0φ(x)− cφ′(x) + U(c) ≤ 0. Maximizing
over c ∈ C yields the bound L0φ(x) + U∗(φ′(x)) ≤ 0 and, therefore, W is a
supersolution of the HJB equation. �
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Lemma 3.10.3. If (3.19) holds then W is a viscosity subsolution of (3.12).

Proof. Let x ∈ intK and let φ ∈ C1(K) ∩ C2(x) be a function such that
φ(x) = W (x) and W ≤ φ on O. Assume that the subsolution inequality
for φ fails at x. Thus, there exists ε > 0 such that Lφ ≤ −ε on some ball
Ōr(x) ⊂ intK. By virtue of Lemma 3.8.3 (applied to the function φ) there
are t0 > 0 and η > 0 such that on the interval ]0, t0] for any strategy π ∈ Axa

E
(
Jπt∧τπ + e−βτ

π

φ(V x,π
t∧τπ)

)
≤ φ(x)− ηt,

where τπ is the exit time of the process V x,π from the ball Or(x). Fix arbitrary
t ∈]0, t0]. By the second claim of Lemma 3.9.1) there exists π ∈ Axa such that

W (x) ≤ E
(
Jπt∧τ + e−βτW (V x,π

t∧τ )
)

+
1

2
ηt,

for every stopping time τ , in particular for τπ.
Using the inequality W ≤ φ and applying Lemma 3.8.3 we obtain from the

above relations that W (x) ≤ φ(x) − (1/2)ηt. This is a contradiction because
at the point x the values of W and φ are the same. �

3.11 Uniqueness Theorem

Before formulating the uniqueness theorem we recall the Ishii lemma.

Lemma 3.11.1. Let v and ṽ be two continuous functions on an open subset
O ⊆ Rd. Consider the function ∆(x, y) := v(x)− ṽ(y)− 1

2
n|x−y|2 with n > 0.

Suppose that ∆ attains a local maximum at (x̂, ŷ). Then there are symmetric
matrices X and Y such that

(n(x̂− ŷ), X) ∈ J̄+v(x̂), (n(x̂− ŷ), Y ) ∈ J̄−ṽ(ŷ),

and (
X 0
0 −Y

)
≤ 3n

(
I −I
−I I

)
. (3.21)

In this statement I is the identity matrix and J̄+v(x) and J̄−v(x) are values
of the set-valued mappings whose graphs are closures of graphs of the set-value
mappings J+v and J−v, respectively.
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Of course, if v is smooth, the claim follows directly from the necessary
conditions of a local maximum (with X = v′′(x̂), Y = ṽ′′(ŷ) and the constant
1 instead of 3 in inequality (3.21)).

The inequality (3.21) implies the bound

tr (A(x)X − A(y)Y ) ≤ 3n|A|1/2|x− y|2 (3.22)

which will be used in the sequel (for the proof see, e.g. Section 4.2 in [33]).
The following concept plays a crucial role in the proof of the purely analytic

result on the uniqueness of the viscosity solution which we establish by a
classical method of doubling variables using the Ishii lemma.

Definition. We say that a positive function ` ∈ C1(K) ∩ C2(intK) is the
Lyapunov function if the following properties are satisfied:

1) `′(x) ∈ intK∗ and L0`(x) ≤ 0 for all x ∈ intK,
2) `(x)→∞ as |x| → ∞.

Theorem 3.11.2. Assume that the jump measure Π does not charge (d− 1)-
dimensional surfaces. Suppose that there exists a Lyapunov function `. Then
the Dirichlet problem (3.12), (3.13) has at most one viscosity solution in the
class of continuous functions satisfying the growth condition

W (x)/`(x)→ 0, |x| → ∞. (3.23)

Proof. Let W and W̃ be two viscosity solutions of (3.12) coinciding on the
boundary ∂K. Suppose that W (z) > W̃ (z) for some z ∈ K. Take ε > 0 such
that

W (z)− W̃ (z)− 2ε`(z) > 0.

We introduce a family of continuous functions ∆n : K ×K → R by putting

∆n(x, y) := W (x)− W̃ (y)− 1

2
n|x− y|2 − ε[`(x) + `(y)], n ≥ 0.

Note that ∆n(x, x) = ∆0(x, x) for all x ∈ K and ∆0(x, x) ≤ 0 when x ∈ ∂K.
From the assumption that the function l has a higher growth rate than W we
deduce that ∆n(x, y) → −∞ as |x| + |y| → ∞. It follows that the level sets
{∆n ≥ a} are compacts and the function ∆n attains its maximum. That is,
there exists (xn, yn) ∈ K ×K such that

∆n(xn, yn) = ∆̄n := sup
(x,y)∈K×K

∆n(x, y) ≥ ∆̄ := sup
x∈K

∆0(x, x) > 0.
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All (xn, yn) belong to the compact set {(x, y) : ∆0(x, y) ≥ 0}. It follows
that the sequence n|xn − yn|2 is bounded. We continue to argue (without
introducing new notations) with a subsequence along which (xn, yn) converge
to some limit (x̂, x̂). Necessarily, n|xn − yn|2 → 0 (otherwise we would have
∆0(x̂, x̂) > ∆̄). It is easily seen that ∆̄n → ∆0(x̂, x̂) = ∆̄. Thus, x̂ is an
interior point of K and so are xn and yn for sufficiently large n.

By virtue of the Ishii lemma applied to the functions v := W − ε` and
ṽ := W̃ + ε` at the point (xn, yn) there exist matrices Xn and Y n satisfying
(3.21) such that

(n(xn − yn), Xn) ∈ J̄+v(xn), (n(xn − yn), Y n) ∈ J̄−ṽ(yn).

Using the notations pn := n(xn − yn) + ε`′(xn), qn := n(xn − yn) − ε`′(yn),
Xn := Xn + ε`′′(xn), Yn := Y n − ε`′′(yn), we may rewrite the last relations in
the following equivalent form:

(pn, Xn) ∈ J̄+W (xn), (qn, Yn) ∈ J̄−W̃ (yn). (3.24)

Since W and W̃ are viscosity sub- and supersolutions, one can find, according
to Lemma 3.7.1 the functions fn ∈ C1(K) ∩ C2(xn) and f̃n ∈ C1(K) ∩ C2(yn)
such that f ′n(xn) = pn, f ′′n(xn) = Xn, fn(xn) = W (xn), fn ≤ W on K, and
f̃ ′n(yn) = qn, f̃ ′′n(yn) = Yn, f̃n(yn) = W̃ (yn), f̃n ≥ W̃ on K,

F (Xn, pn, I(fn, xn),W (xn), xn) ≥ 0 ≥ F (Yn, qn, I(f̃n, yn), W̃ (yn), yn).

The second inequality implies that mqn ≤ 0 for each m ∈ G = (−K)∩∂O1(0).
But for the Lyapunov function `′(x) ∈ intK∗ when x ∈ intK and, therefore,

mpn = mqn + εm(`′(xn) + `′(yn)) < 0.

Since G is a compact, ΣG(pn) < 0. It follows that

F0(Xn, pn, I(fn, xn),W (xn), xn) + U∗(pn) ≥ 0,

F0(Yn, qn, I(f̃n, yn), W̃ (yn), yn) + U∗(qn) ≤ 0.

Recall that U∗ is decreasing with respect to the partial ordering generated by
C∗ hence also by K∗. Thus, U∗(pn) ≤ U∗(qn) and we obtain the inequality

bn := F0(Xn, pn, I(fn, xn),W (xn), xn)− F0(Yn, qn, I(f̃n, yn), W̃ (yn), yn) ≥ 0.
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Clearly,

bn =
1

2

d∑
i,j=1

(aijxinx
j
nX

n
ij − aijyinyjnY n

ij ) + n

d∑
i=1

µi(xin − yin)2

−1

2
βn|xn − yn|2 − β∆n(xn, yn) + I(fn − ε`, xn)− I(f̃n + ε`, yn)

+ε(L0`(xn) + L0`(yn)).

By virtue of (3.22) the first term in the right-hand is dominated by a constant
multiplied by n|xn − yn|2; a similar bound for the second sum is obvious; the
last term is negative according to the definition of the Lyapunov function. To
complete the proof, it remains to show that

lim sup
n

(I(fn − ε`, xn)− I(f̃n + ε`, yn)) ≤ 0. (3.25)

Indeed, with this we have that lim sup bn ≤ −β∆̄ < 0, i.e. a contradiction
arising from the assumption W (z) > W̃ (z).

Let

Fn(z) :=
[
(fn − ε`)(xn + diag xnz)− (fn − ε`)(xn)

−diag xnz(f ′n − ε`′)(xn)
]
I(z, xn),

F̃n(z) :=
[
(f̃n + ε`)(yn + diag ynz)− (f̃n + ε`)(yn)

−diag ynz(f̃ ′n + ε`′)(yn)
]
I(z, yn).

and Hn(z) := Fn(z)− F̃n(z) With this notation

I(fn − ε`, xn)− I(f̃n + ε`, yn) =

∫
Hn(z)Π(dz)

and the inequality (3.25) will follow from the Fatou lemma if we show that
there is a constant C such that for all sufficiently large n

Hn(z) ≤ C(|z| ∧ |z|2) for all z ∈ K (3.26)

and
lim sup

n
Hn(z) ≤ 0 Π-a.s. (3.27)

Using the properties of fn we get the bound:

Fn(z) ≤
[
(W − ε`)(xn + diag xnz)− (W − ε`)(xn)

−diag xnzn(xn − yn)
]
I(z, xn)
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Since the continuous function W and l are of sublinear growth and the se-
quences xn and n(xn − yn) are converging (hence bounded), absolute value of
the function in the right-hand side of this inequality is dominated by a function
c(1 + |z|). The arguments for −F̃n(z) are similar. So, the function Hn is of
sublinear growth.

We have the following identity:

Hn(z) = (∆n(xn + diag xnz, yn + diag ynz)−∆n(xn, yn)

+(1/2)n|diag (xn − yn)z|2)I(z, xn)I(z, yn)

+(fn(xn + diag xnz)−W (xn + diag xnz))I(z, xn)I(z, yn)

−(f̃n(yn + diag ynz)− W̃ (yn + diag ynz))I(z, xn)I(z, yn)

+Fn(z)(1− I(z, yn))− F̃n(z)(1− I(z, xn)).

The function ∆(x, y) attains its maximum at (xn, yn) and fn ≤ W , f̃n ≥ W̃ .
It follows that

Hn(z) ≤ (1/2)n|xn − yn|2|z|2 + Fn(z)(1− I(z, yn))− F̃n(z)(1− I(z, xn)).

Let δ > 0 be the distance of the point x̂ from the boundary ∂K. Then
xn, yn ∈ Oδ/2(x̂) for all sufficiently large n and, hence, the second and the
third terms in the right-hand side above are functions vanishing on O1(0). It
follows that for such n the function Hn is dominated from above on O1(0)
by cn|z|2 where cn := (1/2)n|xn − yn|2 → 0 as n → ∞. Therefore, (3.26)
holds. The relation (3.26) also holds because the second and the first terms
tends to zero (stationarily) for all z except the set {z : x̂ + diag x̂z ∈ ∂K}.
The coordinates of points of ∂K \ {0} are non-zero. So this set is empty if
x̂ has a zero coordinate. If all components x̂ are nonzero, the operator x̂ is
non-degenerated and the set in question is of zero measure Π in virtue of our
assumption. �

Remark 1. In the case where the cone K is polyhedral, the hypothesis of the
theorem can be slightly relaxed. Namely, one can complete the proof using the
assumption that the measure Π does not charge hyperplanes.

Remark 2. Note that the definition of the Lyapunov function does not depend
on U and hence the uniqueness holds for any utility function U for which U∗

is decreasing with respect to the partial ordering induced by K∗. However, to
apply the uniqueness theorem one needs to determine the growth rate of W
and provide a Lyapunov with a faster growth.
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3.12 Existence of Lyapunov Functions and

Classical Supersolutions

In this section we extend results of [31] on the existence of the Lyapunov
function to the considered case.

Let u ∈ C(R+) ∩ C2(R+ \ {0}) be an increasing strictly concave function
with u(0) = 0 and u(∞) = ∞. Introduce the function R := −u′2/(u′′u).
Assume that R̄ := supz>0R(z) <∞.

For p ∈ K∗ \ {0} we define the function f(x) = fp(x) := u(px) on K. If
y ∈ K and x 6= 0, then yf ′(x) = (py)u′(px) ≤ 0. The inequality is strict when
p ∈ intK∗.

Recall that A(x) is the matrix with Aij(x) = Aijxixj and the vector µ(x)
has the components µixi. Suppose that 〈A(x)p, p〉 6= 0. Isolating the full
square we obtain the identity

L0f(x) =
1

2

[
〈A(x)p, p〉u′′(px) + 2〈µ(x), p〉u′(px) +

〈µ(x), p〉2

〈A(x)p, p〉
u′2(px)

u′′(px)

]
+

1

2

〈µ(x), p〉2

〈A(x)p, p〉
R(px)u(px) + I(f, x)− βu(px). (3.28)

Note that for x, diag xz ∈ intK we have by the Taylor formula that

(f(x+ diag xz)− f(x)− diag xzf ′(x)) =
1

2
u′′(x+ ϑdiag xz)(pdiag xzx)2,

where ϑ ∈ [0, 1]. Since u′′ ≤ 0, the expression in the square brackets is negative
and so is the whole right-hand side of the above formula if β ≥ η(p)R̄ where

η(p) :=
1

2
sup
x∈K

〈µ(x), p〉2

〈A(x)p, p〉
.

Of course, if 〈A(x)p, p〉 = 0 we cannot argue in this way, but if in such a case
also 〈µ(x), p〉 = 0, then L0f(x) = −βu(px) ≤ 0 for any β ≥ 0.

This simple observations lead us to the following existence result for Lya-
punov functions:

Proposition 3.12.1. Let p ∈ intK∗. Suppose that 〈µ(x), p〉 vanishes on the
set {x ∈ intK : 〈A(x)p, p〉 = 0}. If β ≥ η(p)R̄, then fp is a Lyapunov
function.
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Let η̄ := supp∈K∗ η(p). Note that η(p) = η(p/|p|). Continuity considera-
tions show that η̄ is finite if 〈A(x)p, p〉 6= 0 for all x ∈ K \{0} and p ∈ K∗\{0}.
Obviously, if β ≥ η̄R̄, then fp is a Lyapunov function for p ∈ intK∗.

The representation (3.28) is useful also in the search of classical superso-
lutions for the operator L. Since Lf = L0f + U∗(f ′), it is natural to choose
u related to U . For a particular case, where C = Rd

+ and U(c) = u(e1c), with
u satisfying the postulated properties (except, maybe, unboundedness) and
assuming, moreover, that the inequality

u∗(au′(z)) ≤ g(a)u(z) (3.29)

holds, we get, using the homogeneity of L0, the following result.

Proposition 3.12.2. Assume 〈A(x)p, p〉 6= 0 for all x ∈ intK and p ∈ K∗ \
{0}. Suppose that (3.29) holds for every a, z > 0 with g(a) = o(a) as a→∞.
If β > η̄R̄, then there exists a0 such that for every a ≥ a0 the function afp is a
classical supersolution of (3.12), whatever is p ∈ K∗ with p1 6= 0. Moreover, if
p ∈ intK∗, then afp is a strict supersolution on any compact subset of intK.

For the power utility function u(z) = zγ/γ, γ ∈]0, 1[, we have

R(z) = γ/(1− γ) = R̄,

and u∗(au′(z)) = (1 − γ)aγ/(γ−1)u(z). Therefore, the inequality (3.29) holds
with g(a) = o(a), a→ 0.

If Y satisfies H2 with σ1 = 0, µ1 = 0 (i.e. the first asset is the numéraire)
and σi 6= 0 for i 6= 1, then, by the Cauchy–Schwarz inequality applied to
〈µ(x), p〉,

η(p) ≤ 1

2

d∑
i=2

(
µi

σi

)2

.

The inequality

β >
1

2

γ

1− γ

d∑
i=2

(
µi

σi

)2

(3.30)

(implying the relation β > η̄R̄) is a standing assumption in many studies on
the consumption-investment problem under transaction costs, see Akian et
al. [1] and Davis and Norman [21].
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In particular, for the model with only one risky asset and the power utility
function, by virtue of the above computations, we have, for the function f(x) =
au(px) given by p ∈ K∗ with p1 = 1, that

L0f(x) + U∗(f ′(x)) = [...] +

(
1

2

γ

1− γ
µ2

σ2
− β + (1− γ)a1/(γ−1)

)
f(x)

where [...] ≤ 0. This implies the following conclusion.

Proposition 3.12.3. Suppose that in the two-asset model with the power util-
ity function the Merton parameter

κM :=
1

1− γ

(
β − 1

2

γ

1− γ
µ2

σ2

)
> 0.

Then the function

f(x) =
1

γ
κγ−1
M (px)γ = m(px)γ (3.31)

is a classical supersolution of the HJB equation whatever is p ∈ K∗ with p1 = 1.
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linéaire, 13(3):293–317, 1996.

[3] M. Arisawa. A new definition of viscosity solutions for a class of
second-order degenerate elliptic integro-differential equations. Annales
de l’Institut Henri Poincare/Analyse non lineaire, 23(5):695–711, 2006.

[4] M. Arisawa. A remark on the definitions of viscosity solutions for
the integro-differential equations with Levy operators. Journal de
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Problèmes de non arbitrage, de recouvre-
ment et d’optimisation de consommation dans
un marché financier avec coûts de transactions.

Résumé

Cette thèse propose une étude de trois grands problèmes de mathématiques fi-
nancières dans les marchés financiers avec coûts de transactions proportionnels.
La première partie est consacrée à l’étude des conditions de non arbitrage dans
un marché avec information incomplete. La seconde partie résoud le problème
de recouvrement d’option américaine dans le cas continue et introduit le con-
cept de système de prix cohérent. Enfin, la troisième partie traite du problème
de consommation - investissement de Merton dans un marché où le processus
des prix est dirigé par un processus de Lévy.

Mots-clés probabilité, mathématiques financières, coûts de transaction pro-
portionnels, recouvrement, arbitrage, optimisation, problème de Merton, op-
tion américaine.

Abstract

This thesis deals with three problems of financial mathematics in the markets
with proportional transaction costs. The first part is devoted to the conditions
of no-arbitrage in a market with partial information. The second solves the
hedging problem for the american options in a continuous time setting and
introduces the concept of coherent price system. Finally, the third part deals
with Merton’s consumption-investment problem in a market where the price
process is driven by a Levy process.

Keywords probability, financial mathematics, proportional transaction
costs, hedging, arbitrage, optimization, Merton’s problem, American option.
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