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There are many of domains, e.g. medicine, the military, biology, astronomy, and remote
sensing, where a huge variety of problems is treated by making use of image analysis tech-
niques such as image filtering, image fusion, image synthesis, image measurements, and
many others. In medicine, for example, images (or sequences) of the human body and or-
gans, are used for examination purposes or the detection of anomalies. In astronomy, there
is a special discipline, called astrography, where astronomical objects are observed and
studied using photographs. In remote sensing, image data is used for Earth observation and
related problems. The data is collected using different types of device, installed on aircraft
or satellites. Remote sensing allows us to collect data from inaccessible areas, as well as to
replace the high cost and slow data acquisition by humans on the ground, for monitoring,
for example, changes in glaciers or forested zones.

In this thesis, we focus on image analysis applied to remote sensing problems. We address
two main topics: ‘Tree species study and classification’, presented in Part I, and ‘Multi-
ple arbitrarily-shaped object extraction with marked point processes’, described in Part II.
These parts are further introduced below.

Remote sensing aerial images are now widely used by the forestry organisations in order
to facilitate their observations on the ground. The data that can be extracted from images
of forest provide important information for forest monitoring, e.g. the age of the trees and
thus the average age of the forest, the density of trees in plantations, or the diversity of
tree species in the forest. For the last purpose the classification of tree crowns visible in
the image into species is a crucial problem. To tackle this problem, numerous techniques
using radiometric as well as textural tree characteristics have been developed (several of
them will be listed in the introduction to the first part of this manuscript). We propose to
take into account information about the shapes of tree crowns in order to improve on these
classification schemes. The use of this information is now pertinent since:

• The resolution of optical satellite and aerial images is continually increasing. Nowa-
days, resolutions range from several tens of centimetres down to several centimetres.
At these resolutions, the geometry of objects at the human scale is clearly visible;

• The human visual cortex remains the best apparatus for image analysis. Often, to
recognize, and thus to detect or extract an object, it is sufficient for a person to look
at the silhouette of the object. Thus, due to the knowledge acquired during his life,
the person is able to recognize the object knowing only its shape.

Thus, inevitably, geometry has to be taken into account in image analysis.

In Part I, therefore, we study the classification of tree crowns into species using shape in-
formation, without, or in combination with, radiometric and textural features. The shapes
analysed consist of boundaries of tree crowns extracted from very high resolution aerial
infra-red images.
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4 Chapter 0. General introduction

In order to classify the trees, their crowns should first be detected and segmented from im-
ages. The second topic we address in this dissertation is the arbitrarily-shaped multiple
object extraction problem from very high resolution remote sensing images using a stochas-
tic approach based on object processes, the Marked Point Processes (MPP), which are well
known for their ability to include geometrical information about objects. In previous work,
MPP models have been used for the extraction of objects from images of lower resolu-
tion where the objects had simple geometrical shapes and were thus represented using only
simply-shaped objects, e.g. rectangles, discs, or ellipses. Our aim is to lift this restriction,
i.e. to define a marked process model in the space of arbitrarily-shaped objects. In Part II,
thus, we first present an MPP model that includes weak shape information about object
boundaries, and then, we propose a method for incorporating strong prior shape knowledge
into the model.



Dans beaucoup de domaines comme la médecine, la surveillance, la biologie, l’astronomie
et la télédétection, les techniques d’analyse d’image comme le filtrage d’image, la fusion
d’images et beaucoup d’autres, sont fréquement utilisées. En médecine par exemple, des
anomalies sont détectées en examinant des images du corps humain. En astronomie, une
discipline, appelée astrographie, consiste à observer et à étudier les objets en utilisant leurs
photographies. En télédétection, les données image sont utilisées dans un but d’observation
de la Terre. La télédétection via des installations embarqueées à bord d’avion ou de satel-
lites, permet à la fois de collecter des informations sur des endroits inaccessibles et d’éviter
les contraintes et les coûts élevés de l’acquisition d’information par des humains au sol (par
exemple pour observer les changements des glaciers ou les zones forestières).

Cette thèse traite de l’analyse d’image appliquée aux problématiques de télédétection et
se décompose en deux thèmes majeurs : ‘Etude et classification d’espèces d’arbres’ et ‘Ex-
traction de multiples objets de formes arbitraires à l’aide de processus ponctuels marqués’
décrits respectivement dans les parties I et II.

La télédétection sur les images aériennes est d’ores et déjà largement utilisée par les or-
ganisations forestières pour faciliter leurs tâches et les observations sur le terrain. Il est
possible d’extraire des informations importantes des images pour l’observation des forêts
comme par exemple : l’âge des arbres et donc l’âge moyen de la forêt, la densité des arbres
dans les plantations, ou encore la diversité des espèces composant la forêt. Pour ce faire, de
nombreuse techniques utilisant les caractéristiques radiométriques ou de texture des arbres
ont déjà été développées (certaines d’entre elles sont listées dans l’introduction de la partie
I du manuscrit). L’approche de cette thèse est de prendre en consideration l’information de
la forme des couronnes des arbres (i.e. les houppiers) pour améliorer les shémas de classifi-
cation. L’utilisation de cette information est justifiée par les raisons suivantes:

• La résolution des images issues des satellites d’observation et des images aeriennes
augmente continuellement ; aujourd’hui elle varie de quelques dizaines de centimètres
à quelques centimètres. A de telles résolutions, la géométrie des objets est clairement
visible;

• Le cortex visuel humain est encore le meilleur ‘outil’ d’analyse d’image. Pour re-
connaitre un objet, et donc le détecter et l’extraire, il est souvent suffisant pour une
personne de regarder la silhouette de l’objet. Grâce à la connaissance acquise au
cours de leur vie, les humains sont capables de reconnaitre les objets par leur seule
forme.

Par conséquent, la géométrie est un critère pertinent à prendre en compte pour l’analyse
d’image.

Dans la partie I, nous étudions donc la classification des arbres en function de leur couronne
en utilisant l’information sur leur forme; sans ou en combinant cette information avec des
critères radiométrique et de texture. Les formes analysées sont les contours des couronnes
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6 Chapter 0. Introduction générale

des arbres extraits d’images infra-rouge couleur (IRC) de très haute résolution.

Le second thème traité dans ce manuscrit est l’extraction d’objets multiples de formes arbi-
traires dans des images de très haute résolution par l’utilisation d’une approche stochastique,
fondée sur des processus objet : les Processus Ponctuels Marqués (PPM). Ces processus
sont connus pour la possibilité qu’ils offrent d’inclure des informations géométriques sur les
objets. Dans des travaux antérieurs, les PPMs ont été utilisés pour l’extraction d’objets dans
des images de moindre résolution, où les objets avaient des formes géométriques simples
et étaient donc représentés par des formes simples : rectangles, disques, ellipses. Le travail
développé dans cette seconde partie de thèse consiste à lever cette restriction de simplicité
de la forme, c’est-à-dire à définir un modèle de PPM utilisant un espace de forme arbitraire
d’objets. La partie II présente donc un premier modèle de PPM qui incorpore une informa-
tion a priori faible de forme sur les contours des objets, puis une méthode d’incorporation
d’une information a priori forte des formes recherchées dans le modèle.



Part I

Tree species classification
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Chapter 1

Introduction

Interest in applying remote sensing to forest studies goes back to the 1920s when aerial
photographs were first used to assess forest inventory. Remote sensing is now widely em-
ployed in forest management where the aerial information is combined with measurements
taken on the ground to study the biodiversity of the forest ecosystem. The methods devel-
oped in forest image processing aim to facilitate the task of forest inventory and assessment.

The most useful parameters obtained from aerial images and ground measurements are
density of planting, age of trees, stem volume, tree species composition, and information
about biotopes and habitats that have ecological value. Some of these parameters can be es-
timated by interpretation of aerial photographs. However, manual interpretation takes time
and requires costly human resources when compared to the use of automatic techniques.

In order to obtain information about, for example, the diversity of forest species or stem
volume, the classification of tree crowns into species is necessary. Prior to the classification
step, the segmentation of the image into individual tree crowns is necessary. Segmentation
techniques such as template matching, edge detection and others that have been employed
for this application are discussed in [Erikson, 2004b], [Perrin et al., 2006], and will be stud-
ied in the second part of this dissertation.

A few approaches have been proposed to classify segmented tree crowns into species. One
method is the Signature Generation Process where for every crown extracted, a class of sig-
natures is created from the multi-spectral data of the initial image, (cf [Leckie et al., 2003]).
A likelihood maximisation technique is used to label the crowns. Some crowns with signa-
tures too far from a successful match remain unclassified. In another study [Gougeon, 1995a],
tree crowns are manually delineated to avoid bias due to bad detection. 50 trees for each
class verified against the ground truth are selected. Seven parameters, such as the multi-
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10 Chapter 1. Introduction

spectral average of pixels in the crown (average on each of the bands) and the illuminated
part of the crown, as well as the multi-spectral value of the brightest pixel in the tree crown
are then computed. Spectral signatures of a crown or a region within a crown are devel-
oped by combining mean and covariance patterns. The distinct characteristics allow us to
regroup delineated crowns in forested populations [Gougeon, 1996]. There are some lim-
itations with this method due to the close spectral signature of species like the red cedar
and the fir, for instance [Gougeon et al., 1998]. In [Erikson, 2004a], a classification based
on reflectance is used to separate the conifers from the deciduous trees. The internal struc-
ture and shading within a crown offer other differentiating criteria. One such measure, the
proportion of red and white pixels to the total number of pixels, can identify birch trees.
Another helps to differentiate spruce trees using the concavities of the crown shape created
by the shadow of the tree top. A hierarchy of criteria is set forth to classify the crowns.
Classification accuracy using this strategy was 75%.

Radiometry and texture analysis have been used extensively in remote sensing applica-
tions. We propose to incorporate information obtained from studying tree crown shapes to
improve classification performance. The shapes are closed planar curves representing the
boundaries of tree crowns extracted from very high resolution Colour InfraRed (CIR) aerial
images. Figure 1.1 shows one such image.

Figure 1.1: An example of one of the images used in this work (3cm resolution), provided
by the Swedish University of Agricultural Science, c© CBA, Uppsala.
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The images from which the tree crowns are extracted, are provided by the Centre of Im-
age Analysis (CBA) of Uppsala (Sweden). They are Colour InfraRed (CIR) images of
3cm/pixel resolution, representing forested zones where trees are close to the nadir, i.e. the
tree crowns are seen from almost vertically above. The CIR film provides more information
about vegetation than natural colours. In fact, it allows deciduous trees to be distinguished
from conifers and healthy trees from diseased trees, because it is very dependent on chloro-
phyll activity. Once digitized, the CIR photographs are represented by artificial colours to
describe the three bands [NIR, Red, Green]: the red in the image represents NIR; the green
represents the red; and the blue represents the green.

The classification consists in assigning a species to each extracted tree, (cf Fig. 1.2).

Figure 1.2: Original image is the CIR image of 3cm resolution, c© CBA, Uppsala.

As in the Erikson [Erikson, 2004a] study, tree classification is performed on the four most
prevalent species in Sweden: Norway spruce, Scots pine, birch, and aspen. Two of these
species are coniferous while the other two are deciduous. We select 48 crowns (12 per
class, (cf Fig. 1.3)). Their contours, represented by a cyclically ordered set of points, are
then extracted in order to study their shapes, (cf Fig. 1.4).

The support vector machine (SVM) [Vapnik, 1995], a supervised learning method, was
chosen for the classification. An important property of this classifier is that during the train-
ing process, only a small subset of the training set vectors are selected as support vectors.
This reduces computational cost and provides better generalization, so that, for instance,
when new samples far from the decision boundary are introduced, the existing support vec-
tors remain unchanged. The main points of the approach are described in Appendix A.
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Figure 1.3: Examples of the four most prevalent species in Sweden: (a) Aspen, (b) Birch,
(c) Norway spruce, (d) Scots pine.

Figure 1.4: Examples of tree crown shapes: (a) Aspen, (b) Birch, (c) Norway spruce, (d)
Scots pine.

This work was partly performed in collaboration with M. Mani, who made a study of the
radiometry and texture attributes of tree crowns and created an ensemble of features based
on information obtained [Kulikova et al., 2007]; this will be detailed in chapter 3.
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The reminder of this part is organized as follows. In chapter 2, we present a study of
tree crown shape under different shape representations, comparing the two methodologies
on several applications. In chapter 3, we describe the features considered and we present
the classification results obtained: the idea is to study the shapes of the tree crowns in the
four classes and develop a set of features which will be combined with some conventional
radiometry and texture based features to see if this improves the results of classification
using only radiometry and texture information.





Chapter 2

Studies of tree crown shape using
‘shape spaces’

In this chapter, we present a study of tree crown shapes under different representations.
We consider both the angle-function representation and the elastic q-representation in the
corresponding shape spaces, and use geodesic distance in shape space to compare shapes
or compute features. Firstly, the computation of geodesics is presented in section 2.1, and
several examples of geodesics are illustrated. Then, in section 2.2, the two approaches will
be compared from point of view of tree crown classification.

2.1 Geodesic distance as a measure of the similarity of tree crown
shapes

For our study, we chose a methodology based on the shape analysis of closed contin-
uous curves on shape spaces using geodesic paths. We first perform studies using the
bending metric with the angle-function curve representation developed by Klassen et al.
[Klassen et al., 2004], and then using the elastic metric and the square root q-function rep-
resentation proposed by Joshi et al. [Joshi et al., 2007a, Joshi et al., 2007b]. This method-
ology was chosen for several reasons. The shapes of tree crowns extracted from images
of 3cm/pixel resolution have a complex structure. The hypothesis of continuity avoids the
choice of reference points (landmarks) on the curve. Most existing approaches in the do-
main of shape analysis suffer from restrictions due to the use of reference points describing
the shapes, e.g. how to choose these points or how to extract them. ‘Shape spaces’ with
appropriate metrics are then defined as non-linear manifolds using the shape invariance
properties. This framework allows the formulation of statistical inferences on such shape
manifolds. Finally, with every geodesic path in shape space is associated a distance. We
tested this distance to see if it can be used as a measure of the similarity of tree crown shapes
in the sense of belonging to one or another species.

15



16 Chapter 2. Studies of tree crown shape using ‘shape spaces’

2.1.1 Bending metric: angle-function shape representation

The first metric proposed for the study of tree crown shape is the bending metric [Klassen et al., 2004].
Here, we recall the main points of the framework.

In this framework, shape characterization is general in the following sense:

• Every curve, representing a shape, is a continuous curve;

• Shapes are elements of a space, called shape space.

The main idea of shape analysis in this framework is to use the differential geometry of
curves and of the space of curves. This analysis consists of two steps:

1. Differential geometric representation of shapes;

2. Development of algorithms for computing geodesic paths between arbitrary shapes
in the shape space.

Tree crown shape representation

We consider tree crown contours as continuous and closed curves in R2. The representation
of such curves in the shape space is invariant to rigid rotation and translation, and to scaling
in R2, called shape preserving curve transformations. Let us define these properties.

Curves α = (α1(s), α2(s)) are parametrized by arc-length s, where α : R→ R2 with period
2π satisfying the condition of constant speed along the curve: |α′(s)| = 1, ∀s. We can write
α′(s) = e jθ(s), where θ : R→ R and j =

√
−1 associating Cwith R2. θ is called the direction

function or angle function. For every s, θ(s) gives the angle between α′(s) and the positive
x axis, (cf Fig. 2.1).

Figure 2.2 shows the angle-functions for a circle and an ellipse. Graphs of more complex
angle functions representing tree crowns are presented in figure 2.3.
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Figure 2.1: Illustration of the definition of the angle function.

We denote by L2 the space of real, 2π periodic functions R → R, square integrable on
[0, 2π] with scalar product 〈 f1, f2〉 =

∫ 2π
0 f1(s) f2(s)ds and ‖ f ‖ =

√
〈 f , f 〉.

Let θ(s) be the angle function of a planar shape. For the unit circle this function is θ0(s) = s.
For any other closed curve the angle function can be written as θ = θ0+ f , where f ∈ L2. The
properties of curve invariance mentioned above are guaranteed by the following conditions
(cf [Klassen et al., 2004]):

• The problem of scaling can be simply resolved by fixing the length of the curve, for
instance to be 2π. Let c̄ be a closed contour, then we obtain:∫

c̄
ds =

∫ 2π

0
ds = 2π;

• To guarantee the invariance to translation, the curve must satisfy the condition:∫ 2π

0
α(s)ds = 0,

i.e. the curve’s centre of ‘mass’ is at origin;

• Adding a constant to the angle function θ is equivalent to a rotation of the curve in R2.
To guarantee the invariance of the curve to this action, we deal with the functions θ,
the mean values of which are equal to a constant on [0, 2π]. So, let 1

2π

∫ 2π
0 θ(s)ds = π,

where constant π is chosen to include the identity function θ0 in the restricted set,
since

1
2π

∫ 2π

0
θ0(s)ds =

1
2π

∫ 2π

0
sds = π;
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Figure 2.2: Examples of shapes and the corresponding angle functions.

Figure 2.3: Examples of crowns of four species, their contours, and the corresponding angle
functions θ, where (a) stands for aspen, (b) for birch, (c) for spruce, and (d) for pine.

• Finally, to be closed, the curves must satisfy following condition:∫ 2π

0
exp( jθ(s))ds = 0.

We define C ⊂ θ0 + L2 as the set of all the elements of θ0 + L2 satisfying the conditions
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described above. Or more formally, define the map φ = (φ1, φ2, φ3)) : (θ0 + L2)→ R3:

φ1(θ(s)) =
1

2π

∫ 2π

0
θ(s)ds

φ2(θ(s)) =

∫ 2π

0
cos(θ(s))ds

φ3(θ(s)) =

∫ 2π

0
sin(θ(s))ds.

From now on, we can define C as C = φ−1(π, 0, 0), which is called the pre-shape space, be-
cause the same curve with different initial points (s = 0) corresponds to different elements
of the space C.

As the geometry of C is too complex to allow an analytic expression for geodesics on this
space, [Klassen et al., 2004] suggested approximating geodesics on C by building up a se-
ries of infinitesimal lines in the space θ0 + L2 containing the pre-shape space C, and then
projecting them back to C. To do that, it is necessary to define a mechanism of projection
from the space θ0 + L2 to C.

Pre-shape space geometry

Tangent and normal subspaces of the pre-shape space

To facilitate the construction of the tangent space, first, the space of normals in C is con-
structed with the help of the map φ used for the definition of C. The derivative dφ at point
θ ∈ θ0 + L2 and in direction f ∈ L2 of the map φ : θ0 + L2 → R3 is given by the following
equations:

dφ1( f ) =
1

2π

∫ 2π

0
f (s)ds =

〈
f ,

1
2π

〉

dφ2( f ) = −

∫ 2π

0
sin(θ(s)) f (s)ds = − 〈 f , sin(θ)〉 (2.1)

dφ3( f ) =

∫ 2π

0
cos(θ(s)) f (s)ds = 〈 f , cos(θ)〉

This implies that the vector f ∈ L2 is tangent to the space C at θ if and only if f is
orthogonal to the sub-space spanned by {1, cos(θ), sin(θ)}. The normal space at θ is therefore
defined by these three functions. The tangent space is then a space of co-dimension three
defined in the following way:
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Tθ(C) =
{
f ∈ L2| f⊥span {1, cos(θ), sin(θ)}

}
Projection on the pre-shape space

To construct the geodesic on the space C, the projection of a point in L2 on the space C

is necessary. For this purpose, the notion of a level set of the map φ is used. The idea is
to move in the direction perpendicular to the level set such that the image by φ of the path
between a point and its projection to C is a segment in R3 (cf Fig. 2.4).

Figure 2.4: Illustration of the projection process of a point θ of L2 to the space C.

Consider the set φ−1(b) =
{
θ ∈ θ0 + L2|φ(θ) = b

}
for any point b ∈ R3. The level set for

b1 = (π, 0, 0) represents the pre-space C. Given a point θ ∈ φ−1(b), we define a shift dθ
along the direction orthogonal to the level set, bringing us thus to C. As φ is a map from L2

to R3, the Jacobian dφ is a map from the tangent space Tθ(L2) to the tangent space Tb(R3).

Define dθ to be the normal vector at θ such that φ(θ + dθ) = b. The Jacobian matrix J is
then given by

J =



〈
1

2π , 1
〉 〈

1
2π , sin(θ)

〉 〈
1

2π , cos(θ)
〉

〈− sin(θ), 1〉 〈− sin(θ), sin(θ)〉 〈− sin(θ), cos(θ)〉

〈cos(θ), 1〉 〈cos(θ), sin(θ)〉 〈cos(θ), cos(θ)〉


. (2.2)

Let r(θ) = b1 −φ(θ) be the residue. Now, the projection procedure from θ ∈ L2 to C is given
by algorithm 2.1. We denote this projection

∏
: L2 7→ C.
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Algorithm 2.1 Projection
∏

(θ) of θ ∈ L2 to C,

1. Initialize ε > 0;

2. Compute the residue r(θ) = b1 − φ(θ);

3. If ‖r(θ)‖ < ε, then stop; if not, then continue;

4. Calculate the Jacobian J(θ) defined by (2.2);

5. Compute dθ = β1 + β2 sin(θ) + β3 cos(θ), where β = J(θ)−1r(θ);

6. Update the curve: θ = θ + dθ and go to step 2;

Geodesics on pre-shape space

As mentioned above, to construct a geodesic on the pre-shape space C the idea is to ap-
proximate it by successive small increments along the tangent direction in θ0 + L2 and to
project them to C. In detail, the algorithm is as follows. We are given θ ∈ C and f ∈ Tθ(C)
the tangent vector at θ. The geodesic starting at θ in the direction f is generated by the
one-parameter flow denoted Ψ(θ, t, f ), where t is a time parameter. The flow is calculated
for the discrete time t = ∆, 2∆, 3∆, . . . 1 for a small value of ∆ > 0. Initialize Ψ(θ, 0, f ) = θ

for t = 0. Then, add a first small ∆ to θ in the direction f to reach the new point θ+ ∆ f ∈ L2

and project it to C using
∏

and set Ψ(θ,∆, f ) =
∏

(θ + ∆ f ) giving the next point of the
geodesic. This process is repeated until t = 1. It remains to ‘transport’ the tangent vector f
to the new obtained point on the geodesic in way that preserves its length and its angle w.r.t.
the geodesic according to the definition of geodesic, cf Def. 2.1. Let θ̃ be a new point of the
geodesic where a vector f̃ is tangent to C at θ̃ and parallel to f . f̃ is then given by

f̃ = ‖ f ‖
g
‖g‖

, g = f −
3∑

k=1

〈 f , hk〉 hk, (2.3)

where {hk} forms an orthonormal basis of the normal space: span
{
1, cos(θ̃), sin(θ̃)

}
.

Definition 2.1. A geodesic on a manifold embedded in a Euclidean space is a curve whose
tangent vector remains parallel if it is transported along it, which means that the acceler-
ation vector is perpendicular to the tangent plane to the surface at every point along the
geodesic curve.

Finally, the algorithm for computing geodesics is given by algorithm 2.2. This algorithm
provides a set of points approximating the geodesic path between the initial shape repre-
sented by θ and the point reached at t = 1.
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Algorithm 2.2 Construction of a geodesic starting at θ in the direction f

1. Initialize: θ ∈ C, direction f ∈ Tθ(C), l = 0, Ψ(θ, l∆, f ) = θ, and choose ∆ > 0 ;

2. Compute Ψ(θ, l∆, f ) + ∆ f as Ψ(θ, (l + 1)∆, f ) =
∏

(Ψ(θ, l∆, f ) + ∆ f );

3. Transport f obtained in the previous iteration to new point θ̃ using equation (2.3);.

4. Put l = l + 1 and f = f̃ ;

5. If l∆ = 1, then stop; if not, go to step 2.

Geodesics on shape space

So far, the process of geodesic path construction has been defined in the pre-shape space
C where different curves could represent identical shapes differing only in their starting
points s = 0. A shift of the starting point along the curve defines an action of the group
S1 = R/2πZ on C. The space of curves invariant to starting point shifts is given by the
pre-shape space modulo the unit circle S1: S = C/S1 and called shape space. The algorithm
for geodesic construction remains the same, except, that in (2.3), the {hk} now form the
orthonormal basis generated by span

{
1, cos(θ̃), sin(θ̃), ˙̃θ

}
, where ˙̃θ is a derivative of θ̃.

Numerical method for geodesic computation

Algorithm 2.2 describes how to compute a geodesic path along the given direction f start-
ing at some initial point θ. To compute now the shortest path that relates a starting point
θ1 ∈ S and θ2 ∈ S, it is necessary to find a direction f ∈ Tθ1(S) such that the flow along
this direction reaches θ2 at the moment t = 1: Ψ(θ1, 1, f ) = θ2. The solution is given by the
minimum over f of the functional H( f ) = ‖Ψ(θ1, 1, f ) − θ2‖

2
L2 .

To solve this problem, since f ∈ L2, a finite dimensional approximation of f by its Fourier
coefficients is used: f (s) ≈

∑m
n=0(an cos(ns) + bn sin(ns)) for m big enough. The functional

H( f ) takes then the following form:

H̃(a, b) =

∥∥∥∥∥∥∥Ψ(θ1, 1,
m∑

n=0

an cos(ns) + bn sin(ns)) − θ2

∥∥∥∥∥∥∥
2

L2

.

Gradient descent is then applied to find the optimal solution.

Figure 2.5 shows several examples of the transformation of one curve into another along a
geodesic path (every curve represents a tree crown boundary).

There is a distance associated with every path. The distance is obtained by the summa-
tion of the projections approximating the geodesic path. Figures 2.6, 2.7, 2.8 show the
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Figure 2.5: Examples of geodesic paths for trees of different species using the angle-
function representation.

Figure 2.6: Top: geodesic between two spruce trees. Bottom: geodesic between a pine and
a spruce.

geodesics and the corresponding distances d for a tree of one species and another tree of
the same species, and the same tree from the first species and a tree from different species.
The results show that the similarity of two trees in the sense of geodesic distance using the
bending metric does not mean that they belong to the same species, and, therefore, cannot
be used as is for classifying trees into species.
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Figure 2.7: Top: geodesic between two spruces. Bottom: geodesic between a spruce and a
birch.

Figure 2.8: Top: geodesic between two aspen trees. Bottom: geodesic between an aspen
and a birch.

2.1.2 Elastic metric: q-function shape representation

The second metric used for the study of tree crown shape, is based on the Riemannian
analysis of elastic continuous closed curves in the ‘q-function’ representation, proposed by
Joshi et al. and detailed in [Joshi et al., 2007a], [Joshi et al., 2007b], and [Joshi, 2007].

The main point of this approach is that it combines an elastic metric for shape analysis
and a path-straightening approach to finding geodesics. The elastic metric originally pro-
posed by Younes [Younes, 1998], allows a curve to stretch as well as to bend as it deforms
along a geodesic in the corresponding shape space. The path-straightening approach, in
contrast to the shooting method for geodesic construction described in the previous section,
uses the idea of initializing a geodesic by an arbitrary path, and then successively evolves
(straightens) it under the gradient of the geodesic energy.

Curve representation

We consider tree crown boundaries represented by closed planar curves γ : [0, 2π] → R2,
being an element of L2

1([0, 2π]), meaning that its first derivative exists and that both γ(t) and
γ′(t) lie in L2([0, 2π]).
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In the shape space, an elastic curve is represented by a function q(t) : [0, 2π] → R2 as
follows,

q(t) =
γ̇(t)√
‖γ̇(t)‖

, (2.4)

where ‖·‖ is the standard Euclidean R2 norm. q(t) is an infinite-dimensional vector-function
in L2(R2). Let Q be the set of such elements.

Physically, ‖γ̇(t)‖ can be viewed as the square-root of the instantaneous speed along the
curve, and γ̇(s)

‖γ̇(t)‖ represents the instantaneous direction along the curve. Within a translation

the curve is then given by γ(s) =
∫ s

0 dt q(t) ‖q(t)‖.

Curve invariance

In the same way as for the angle function representation, the algorithm for geodesic con-
struction is first defined on the pre-shape space.

The representation of curves in the shape space is invariant to rigid translations and uni-
form scaling.

• The problem of scaling is solved by fixing the length of the curve, which is given by:∫
[0,2π]

dt ‖q(t)‖2 = 1.

Then, the space of curves invariant to uniform scaling and rigid translation is defined
by:

B ≡ {q : [0, 2π]→ R2|

∫
[0,2π]

dt ‖q(t)‖2 = 1} . (2.5)

The tangent space of B is then given as:

Tq(B) = {w = (w1,w2)|w : [0, 2π]→ R2|

∫
[0,2π]

dt (w(t), q(t))R2 = 0} . (2.6)

The space B is an infinite dimensional unit sphere, on which the geodesics are great
circles and can be defined analytically. Therefore, the geodesic between two elements
q0, q1 ∈ B along a unit direction f ∈ Tq0(B) towards q1 for time t can be calculated
using the formula:

χt(q0, f ) = cos
(
t arccos

∫
[0,2π]

ds (q0, q1)R2

)
q0

+ sin
(
t arccos

∫
[0,2π]

ds (q0, q1)R2

)
f . (2.7)
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To parallel transport a tangent vector f from any point q0 on the sphere to q1, the map
π : Tq0(B)→ Tq1(B) is defined as follows:

π( f ; q0, q1) = f − 2
(q0 + q1)

∫
[0,2π] ds ( f , q1)R2∫

[0,2π] ds (q0 + q1, q0 + q1)R2

. (2.8)

• To be closed, the curves in B must satisfy the following condition:∫
[0,2π]

dt γ̇(t) =

∫
[0,2π]

dt q(t) ‖q(t)‖ = 0 . (2.9)

To define the space of the elements satisfying the closure condition, consider a map
G ≡ (G1,G2) as:

G1 =

∫
[0,2π]

dt q1(t) ‖q(t)‖ ,

G2 =

∫
[0,2π]

dt q2(t) ‖q(t)‖ .

The space of closed curves is given then by A = G−1(0, 0).

The space of curves satisfying both conditions is then as C = A ∩ B ⊂ Q and is called the
pre-shape space of elastic arbitrary-speed parametrized curves.

Pre-shape space geometry

Tangent and normal spaces to the pre-shape space

To define the tangent space to the pre-shape space C at point q, first, the normal space at
q is defined. Given tangent vectors u, v ∈ Tq(Q) at q, the scalar product on Tq(Q) is defined
by:

〈u, v〉 =

∫
[0,2π]

dt (u(t), v(t))R2 . (2.10)

The derivative dG at point q and in direction w ∈ Tq(Q) is:

dG1(w(t)) =

∫
[0,2π]

dt (w(t),
q1(t)
‖q(t)‖

q(t) + ‖q(t)‖ e1)R2 =

〈
w,

q1(t)
‖q(t)‖

q(t) + ‖q(t)‖)R2e1
〉

dG2(w(t)) =

∫
[0,2π]

dt (w(t),
q2(t)
‖q(t)‖

q(t) + ‖q(t)‖ e2)R2 =

〈
w,

q2(t)
‖q(t)‖

q(t) + ‖q(t)‖R2 e2
〉
,

where ei, i = 1, 2 are the identity matrix ith columns. The normal space to A is then defined
as follows:
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Nq(A) = span
{
∇G1(t) =

q1(t)
‖q(t)‖

q(t) + ‖q(t)‖ e1,∇G2(t) =
q2(t)
‖q(t)‖

q(t) + ‖q(t)‖ e2
}

. (2.11)

This implies that a vector w ∈ Tq(Q) is tangent to C at point q if it is in Tq(B) and orthogonal
to Nq(A), the tangent space to C taking the following form:

Tq(C) = {w : [0, 2π]→ R2 | w ∈ Tq(B),w⊥Nq(A)} . (2.12)

Projection to the pre-shape space

To construct geodesics on the pre-shape space, a projection of an element to it from the
embedding space Q is necessary. To perform this, the idea is to move in the direction
orthogonal to the level set of G to reach the nearest point in C. In detail, the algorithm is as
follows. Consider a residual vector l(q) = −G(q), l ∈ R2 and a shift dq along the direction
normal to the level set of G. The Jacobian Ji, j =

〈
∇Gi,∇G j

〉
, where i, j = 1, 2 mapping

Tq(Q) to T0(R2) is as follows:

Ji, j =

 3
∫

[0,2π] dt qi(t)q j(t), i , j,

3
∫

[0,2π] dt (qi(t)q j(t) + 1), i = j.
(2.13)

The process of projection is then performed by algorithm 2.3.

Algorithm 2.3 Projection of q ∈ Q on C

1. Initialize ε > 0;

2. Compute ‖l(q)‖; if ‖l(q)‖ < ε, then stop; if not, then continue;

3. Compute the Jacobian J given by expression (2.13);

4. Calculate βT = J−1(q)lT (q);

5. Compute a shift vector dq =
∑

i=1,2 β
i∇Gi(q);

6. Update the curve as q = q + δdq, for some small δ > 0;

7. Rescale the curve length by q =
q

√
<q,q>q

and go to step 2;

To project a tangent vector w ∈ Tq(Q) to Tq(C), the tangent space of C, the vector is first
projected to the tangent space of unit-length curves, which is given by

w̃ ≡ w− < w, q > q , (2.14)
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and then it is projected to the tangent space of C by:

wpro j ≡ w̃ −
〈
w̃, e1

G(q)

〉
e1
G(q) −

〈
w̃, e2

G(q)

〉
e2
G(q) , (2.15)

where
{
ei
G(q)

}
is an orthonormal basis of

{
∇Gi(q)

}
w.r.t. the scalar product given by equa-

tion (2.10).

Geodesics on pre-shape space

To construct a geodesic on the pre-shape space, a variational method is used, which consists
in the iterative straightening of an arbitrary path connecting two elements until it becomes a
geodesic. Let α : [0, 1]→ C be a path connecting any two elements q0, q1 ∈ C, and consider
the energy functional

E[α] =
1
2

∫
[0,2π]

dt 〈α̇(t), α̇(t)〉 . (2.16)

Given an initial path α, we can perform gradient descent in the space of paths between
q0 and q1 on C to arrive at a minimum of E corresponding to a geodesic in C. In order
to derive the gradient of the energy functional, define F as the set of all paths in C and
F0 ⊂ F as the set of paths connecting q0 and q1. The tangent space to F at α is given by
Tα(F) =

{
w |w(t) ∈ Tα(t)(C), ∀t ∈ [0, 1]

}
, where the inner product is defined by:

〈〈u1, u2〉〉 = 〈u1(0), u2(0)〉 +
∫ 1

0
dt

〈Du1

dt
(t),

Du2

dt
(t)

〉
. (2.17)

The tangent space to F0 is given by Tα(F0) =
{
w(t) ∈ Tα(t)(F) | w(0) = w(1) = 0

}
, where

w(t) is a tangent vector field at point α(t) on the path α.

Theorem 2.1. The gradient vector field of E in Tα(F) is given by a vector field v such that
Dv
dt = α̇ and v(0) = 0.

Dv
dt is the covariant derivative of the vector field v ∈ Tα(F), which is defined as the orthog-
onal projection of dv

dt on Tα(t)(C) for ∀t and for α ∈ C. The vector field v, which gives the
gradient of E, is called the covariant integral of a vector field w ∈ Tα(F) along α and is
given by the vector field u ∈ Tα(F) such that Du

dt = w.

To construct a geodesic, consider a number k of points approximating it. The computation
of a path derivative is then given by algorithm 2.4.

For computing a geodesic, parallel transport is used, which is defined in the following way.
Let w0 ∈ Tα(0)(C) be a vector field for α : [0, 1] → C. Then, there exists a unique parallel
vector field w(t) such that Dw(t)

dt = 0 and w(0) = w0. w(t) is the forward parallel transport of
w0 along the path α at time t (w̃(t) = w(1− t) for backward parallel transport). Algorithm 2.5



2.1. Geodesic distance as a measure of the similarity of tree crown shapes 29

Algorithm 2.4 Computation of dα
dt

1. Initialize dα
dt (0) = 0, k and τ = 1;

2. Compute θ = arccos
〈
α( τ−1

k ), α( τk )
〉
;

3. Calculate the direction f = −α( τ−1
k ) + α( τk ) cos(θ);

4. Compute the velocity vector at the points on the path, which is then given by dα
dτ ( τk ) =

k f θ
√
〈 f , f 〉

;

5. Project dα
dτ ( τk ) to Tα( τk )(C) using equations (2.14) and (2.15);

6. Rescale the curve length by q =
q

√
<q,q>q

;

7. Increment τ = τ + 1; if τ > k stop; if not, go to step 2;

gives the procedure for the parallel transport of a tangent vector field w ∈ Tατ(F) to the next
point ατ on the geodesic giving a parallel tangent vector field w|| ∈ Tατ+1(F) and denoted
w|| = P

(
w( τ−1

k );α( τ−1
k ), α( τk )

)
.

Algorithm 2.5 Parallel transport of tangent vector w

1. Initialize lw = 〈w,w〉;

2. Compute w|| as a transported w using the expression given by (2.8): w|| =

π
(
w( τ−1

k );α( τ−1
k ), α( τk )

)
;

3. Project w|| into Tα( τk )(C) using equations (2.14) and (2.15);

4. Rescale the length: w|| = lw w||

〈w||,w||〉
;

The covariant integral of α̇ at every point of α can be now computed using the approach
described by algorithm 2.6.

The geodesic in C is given by a path on which the covariant derivative D
dt

(
dα
dt

)
is zero for

every t ∈ [0, 1].

Lemma 2.1. The orthogonal complement of the tangent space F0 is given by T⊥α (F0) ≡{
w ∈ Tα(F) | D

dt (
Dw
dt ) = 0

}
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Algorithm 2.6 Covariant integration of α̇

1. Initialize w(0) to zero, τ = 1 and a number k of points ;

2. Compute w( τk ) = P
(
w( τ−1

k );α( τ−1
k ), α( τk )

)
+ 1

k
dα
dt ( τk );

3. Project w( τk ) to Tα( τk )(C) using equations (2.14) and (2.15);

4. Increment τ = τ + 1; if τ > k stop; if not, go to step 2;

From the lemma, it follows that the projection v ∈ Tα(F0) of a tangent field w ∈ Tα(F)
is given by substracting a covariant linear vector field tw̃(t), where w̃(t) is the backward
parallel transport of w(1) along the path α, i.e. for ∀t ∈ [0, 1]

u(t) = w(t) − tw̃(t) . (2.18)

The field thus obtained represents the vector gradient field of the energy functional E[α] (cf
Fig. 2.9).

The procedure for updating the path α under the energy field gradient is described in
algorithm 2.7.

Algorithm 2.7 α update under the energy field gradient u

1. Initialize τ = 0 and k the number of points approximating the path;

2. Compute a new point of the path α( τk ) = χ1
(
α( τk );−u( τk )

)
;

3. Project α( τk ) to C using algorithm 2.3;

4. Increment τ = τ + 1;

5. Stop if τ > k; if not, go to step 2.

The last mechanism necessary for geodesic construction is the initialization of a path con-
necting two elements q0 and q1 in C, which is detailed below in algorithm 2.8.

Finally, algorithm 2.9 outlines the computation of a geodesic between two elements q0, q1 ∈

C using the methods described above for path initialization and straightening.

The length of the geodesic α is then given by:

lα =

∫ 1

0
dt

√
〈α̇(t), α̇(t)〉 . (2.19)
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Algorithm 2.8 Geodesic initialization

1. Let α(0) = q0, k the discretisation step number along the path, and τ = 1;

2. Compute a unit direction vector field on S2 between q0 and q1: f = q1 − 〈q1, q0〉 q0,
f =

f
〈 f , f 〉 ;

3. Compute a new element of the path at time τ
k : α( τk ) = χ( τk ) (q0, f ) ;

4. Project α( τk ) to C using algorithm 2.3;

5. τ = τ + 1; stop if τ > k; if not, go to step 3.

Algorithm 2.9 Computation of geodesic between two elements q0, q1 ∈ C

1. Initialize a geodesic path α, where α(0) = q0 and α(1) = q1, and a small ε > 0, as
described in algorithm 2.8;

2. Compute the path velocity vector field αt = dα
dt using algorithm 2.4;

3. Compute the covariant integral w of αt as defined in algorithm 2.6;

4. Computer backward parallel transport w̃ of w(1) along the path using algorithm 2.5
(transport a tangent vector w backward, i.e. from α( τk ) to α( τ−1

k ));

5. Compute a vector field u giving the gradient field of E[α] and project it to the space
F0 using the expression given by (2.18);

6. Update α in the direction u using the procedure defined in algorithm 2.7;

7. Compute the energy of the current path E[α] = 1
2k

∑k
τ=0

〈
αt( τk ), αt( τk )

〉
;

8. The algorithm stops if ‖∇E[α]‖ < ε; if not, then go to step 2.
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Figure 2.9: Illustration of the path-straightening process.

Geodesic on the elastic shape space

Up to now, we have worked in the space C, called the pre-shape space, where the differ-
ent elements, in theory an infinite number of elements, represent the same shape. This is
due to the fact that the same curve with different starting points, rotated or re-parametrized,
is represented by different elements in C. From now on, we will study curves using their
representation in the space C modulo the above mentioned shape preserving curve transfor-
mations:

• A shift of the starting point of a curve results in a group action of the unit circle
S1 on q ∈ C: p · q(t) = q(t − p) mod 2π, p ∈ S1. This group acting on an element
q ∈ C creates an orbit in C. The shortest geodesic path between two elements q0, q1 ∈

C is thus given by the shortest path between their orbits, which means finding the
minimum of the distance d(q0, p · q1), which is given by the optimal starting point
p̂ = arg minp∈[0,2π] 〈q0, p · q1〉;

• A rigid rotation of curve is given by a rotation matrix O =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, θ ∈ S1 which

results in an action of the group S O(2) on an element q ∈ C defined as: O · q(t) =

Oq(t), ∀t ∈ [0, 2π). The action of S O(2) like that of S1, creates an orbit in C. Thus,
the best match of the elements q0, q1 ∈ C in the sense of shortest path is given by a
rotation matrix Ô = arg minO∈S O(2) ‖q0 − O · q1‖

2;

• An arbitrary change of speed along a curve is a curve re-parametrization by a non-
linear differentiable map ε : S1 → S1. Let E be the space of such elements that pre-
serve the placement of the starting point and the curve orientation, E =

(
ε : S1 → S1| ε̇ > 0

)
.

The re-parametrization results in a group action of Di f f +
0 (S1) on the element q ∈ C.

This action is defined as q · ε =
√
ε̇(q ◦ ε) and is derived as follows. Let γ1 and γ2
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be two curves, where γ1 = γ2(ε) and γ2 is represented by q ∈ C. We can then write
γ̇1 = ε̇γ̇2(ε) = ε̇q(ε) ‖q(ε)‖ =

∥∥∥√ε̇q(ε)
∥∥∥ √ε̇q(ε). Thus, re-parametrizations of q are

given by a right action of the group E on C. The best match between q0 and q1 is then
given by ε̂ = arg minε∈E d(q0, q1 · ε). The method for finding ε̂ will be detailed later.

The elastic shape space under the invariance conditions described above, is the quotient
space S = C/(S1 × S O(2) × E). The length of the shortest geodesic path between q0 and q1
on S is then given by the minimum distance:

dS(q0, q1) = min
p∈S1,O∈S O(2),ε∈E

d(q0, (p · O · q1) · ε) (2.20)

The optimal rotation and starting point giving the minimal geodesic in C/(S1 × S O(2)) are
given by the path orthogonal to the orbits of S1 and S O(2), i.e. the tangent vector α(1) is
orthogonal to the orbits. The same idea is used to find the shortest geodesic in S, i.e. the
path orthogonal to the orbits of S1, S O(2) and of E.

In detail, the method for finding the shortest path between q0 and q1 in S is as follows. Let
Eq1 be the orbit of the group E acting on q1. The best elastic alignment of two elements is
then given by an ε̂ obtained when the projection of α(1) on the tangent space Tq1(Eq1) is
equal to zero. To solve this optimization problem, Joshi et al. [Joshi et al., 2007b] propose
to apply a gradient descent technique in the tangent space Tq1(Eq1). More exactly, due to
the unknown nature of Tq1(Eq1), the gradient descent is performed in the tangent space to E

at the identity id = s, Tid(E) ⊂ L2(S1). Then, let ψt : Tid(E) → E be a flow at the identity
in E along a tangent vector g with ψ0(id, g) = s for any tangent vector g ∈ Tid(E). This
is used to perform gradient descent in a given tangent direction g in the tangent space at
the identity Tid(E) and to obtain, thus, a re-parametrization for q1(s). Now, to construct the
tangent space Tq1(Eq1), a group action φ : C×E→ C is defined, where φε(q) =

√
ε̇q(ε), and

the differential of which φ∗ : T (C×E)→ T (C) maps the tangent vector g to φ∗(g) ∈ Tq(Eq),
where

φ∗(g) = q′(s)g(s) +
1
2

q(s)g′(s), s ∈ [0, 2π) . (2.21)

Define V = {vi} , i = 1 . . .m, the Fourier basis of Tid(E) ⊂ L2(S1). The basis in the tangent
space Tq1(Eq1) can thus be constructed using φ∗(V). The projection of the tangent vector to
the path α(1) on the tangent space Tq(Eq) is given by:

π(α(1)) =

m∑
i=1

〈α(1), φ∗(vi)〉 φ∗(vi) . (2.22)

Then, g ∈ Tid(E) is constructed using φ−1
∗ , and the flow ψt is computed in this direction and

gives a re-parametrization ε. The process is iterated while 〈π(αt(1)), π(αt(1))〉 > 0.

Algorithm 2.10 summarizes the computation of a geodesic between q0, q1 ∈ S.
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Algorithm 2.10 Main algorithm: computation of a geodesic between q0, q1 ∈ S

1. Initialize δ > 0;

2. Compute the geodesic α(t) between q0, q1 ∈ C/(S1 × S O(2));

3. Construct the Fourier basis V = {vi} , i = 1 . . .m of Tid(E);

4. Project α(1) to Tq1(Eq1) using equation (2.22);

5. Compute 〈π(αt(1)), π(αt(1))〉; if it is smaller than δ, then stop; if not, then go to the
next step;

6. Construct the tangent vector g =
∑m

i=1 〈α(1), φ∗(vi)〉 vi;

7. Compute ε̃ = ψδ(id, g) = id − δg;

8. Compute the new q1 = q1 · ε̃ =
√
ε̃′q1 ◦ ε̃;

9. Go to step 2.

Experimental results

Figure 2.10 shows examples of paths with their associated distances for tree crown contours
of different species. These experiments were done for tree crowns that chosen to be very
characteristic of the species shapes. We can see that the geodesic distance for the same
species (the top geodesic between two spruce trees) is a little smaller than for trees of two
different species (the geodesics in the middle and the geodesic at the bottom of the figure).

But, as already mentioned, tree crown shapes vary a lot within a class, which can be due,
for example, to the age of the tree: a young pine tree has a spiky shape similar to that of
spruce, or an old spruce tree can have a crown with dense branches, which results in a quite
circular shape similar to pine crown shapes. Let us look now at figure 2.11, which shows
geodesics and their distances for trees of different species but with similar shapes. We can
see that their shape similarity is reflected in the geodesic distance.

We conclude that shape alone is not sufficiently discriminative for tree classification from
3cm resolution images, due to shape complexity and variety within a species. However, it
could be helpful in combination with radiometry and texture based information.
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Figure 2.10: Examples of geodesic paths for trees ((s) spruce, (b) birch, (p) pine) using the
elastic q-function representation.

2.2 Two metrics: comparison and interesting facts

Here, we present some experimental results comparing the two metrics presented in this
chapter. Let us look first at figure 2.12, which shows geodesics between tree crown shapes
using the θ angle-function representation versus the elastic q-function representation.

The analysis of the intermediate shapes along the geodesics using θ shows that the trans-
formation passes through a shape more regular and circular, being thus more similar to that
of birch. This explains why the birch tree is the species closest to the individuals (cf sec-
tion 2.1.1). This is due to the bending nature of the metric, meaning that it is less costly to
first unfold (to some degree) the curve and then to bend it again. 1

Looking now at the geodesics under the elastic representation for the same species, we can
see that the paths no longer pass through roughly circular curves, because the elastic metric
allows stretching as well as bending.

To finish, we present some more interesting experimental results. Figure 2.14 shows
geodesic examples comparing the two metrics applied to rectangularly shaped curves, which
could, for example, represent building contours in remote sensing images.

1This means that more regularly shaped species like birch or pine should be closer to a circle shape than
aspen or spruce tree crown shapes. Figure 2.13 shows the geodesic paths and the distances between a spiky
spruce tree shape and a circle and a more smoothly shaped birch and a circle.
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Figure 2.11: Examples of geodesic paths for trees of different species ((a) aspen, (s) spruce,
(b) birch, (p) pine) using the elastic q-function representation.

These experiments show that the elastic q-representation, in contrast to the angle-function
representation, preserves the straight lines and corners. If we look at the intermediate
shapes, we can see that they are more natural in the sense that like the initial and final
curves they remain rectangular. From this point of view, we made another set of tests to
verify if these properties are preserved for a number of curves within a class. The ex-
periments were done for the same class (of building shaped objects), i.e. the objects with
boundaries described by rectangular curves in the form of: “L”, “U” and “I” are consid-
ered to be one class. An intermediate shape for a number of sample shapes is represented
by their mean shape in the appropriate shape space. As we know, the geometry of the
space of elastic shapes is non-linear, but at every point the tangent space can be con-
structed, giving the possibility to define statistics in the tangent linear space at the given
point. To compute the mean shape Klassen et al. [Klassen et al., 2004] suggested the fol-
lowing approach. Consider a set of samples {γ1, γ2, . . . , γn} and their corresponding q-
representations {q1, q2, . . . , qn}. The mean element qµ, and thus the mean curve µ, is given
by qµ = arg minq

1
2n

∑n
i=1 d(q, qi)2, and can be found using gradient descent. We are given

an energy E = δ 1
2n

∑n
i=1 d(qµ, qi)2 = δ

2n
∑n

i=1

〈
gµ, gi

〉2
, and some initial qµ, where small
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Figure 2.12: Examples of geodesic paths between tree crown shapes using the θ angle-
function representation versus elastic the q-function representation.

Figure 2.13: Transformation of tree crown curves into a circle along a geodesic path using
the bending metric.

δ > 0 and gi ∈ Tqµ(A) are the tangent vectors to the shortest geodesics between qµ and
the elements qi. The gradient of the energy is then given by ∇qµE = δḡ = δ

n
∑n

i=1 gi. The
next element can be then computed using the flow ψ0.5δ(qµ, ḡ). The algorithm stops when
‖ḡ‖ is smaller then some small value giving, thus, a corresponding mean shape (cf Fig. 2.15).
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Figure 2.14: Examples of geodesic paths between rectangular shaped curves using the θ
angle-function representation versus the elastic q-function representation.

Figure 2.15: Tangent hyper-plane to the sphere at the point qµ representing the mean shape
µ of the samples γ1 . . . γn.

Figure 2.16 shows examples of mean shapes for building shaped objects, showing that for
a whole set of objects of “L”, “U” and “I” shapes defined as one class, the mean shape pre-
serves the straight line boundaries and sharp corners.
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Figure 2.16: 15 ‘building’ shape objects and examples of mean shapes (black background).
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These results show that the elastic metric is more suitable for shape analysis because the
curve deformation along geodesics under this representation between two similarly shaped
curves passes through shapes close to those at the geodesic extremities. In other words: for
curves from the same class, in the sense of shape similarity, the geodesic passes through
curves from this class.



Chapter 3

Tree species classification using
radiometry, texture and shape based
features

Descriptors carrying information on the species about the trees combined in training algo-
rithm would allow the classification of individuals.

As mentioned in Introduction, 48 tree crown contours were selected for our study. The
contours were carefully delineated manually to preserve important tree crown shape infor-
mation. SVM classification was performed using a Gaussian kernel. Since the database is
quite small, for each experimental run, 50% of the samples were picked at random to form
the training set.

First, classification was performed using only radiometric features. Then, texture features
were added and finally, shape descriptors were included. The performance was calculated
after each step. To evaluate the performance, the average performance, P, of a set of exper-
iments was computed. 5% of the values at the high and low end of the performance scale
were excluded from this calculation. P can be expressed as follows

P =

 Ne∑
i=1

Pi −

Nw∑
w=1

Pw −

Nb∑
b=1

Pb

 /(Ne − Nw − Nb).

Pi = Ni
c/N is the performance of experiment i, Ne the number of experiments, Ni

c the
number of correctly classified trees, N the number of trees in experiment i, Nw and Nb

the numbers and Pw and Pb the experiment performances of the worst and the best results
respectively. The maximum performance Pmax is also given (from which the best combi-
nation for training and test sets can be obtained). Then, we present the confusion matrix
for the best performance run. A confusion matrix is a visual representation of actual versus
predicted classifications.

41
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3.1 Radiometry based features

For vegetation and land use monitoring, colour infra-red film offers a richer set of informa-
tion than natural colour film. The false colours that describe the three channels are Red for
the NIR, Green for the Red, and Blue for the Green channels, [Perrin, 2006]. CIR photog-
raphy is commonly used to discriminate live healthy trees from dying vegetation.

In our study, CIR allows us to distinguish conifers from deciduous trees. As pointed out
in [Erikson, 2004a], the 4 classes of trees - aspen, birch, spruce and pine - can be easily
identified as deciduous or coniferous from first order statistics (the mean and standard devi-
ation, computed from the histogram of pixel intensities on the image). This is due to the fact
that deciduous trees reflect a substantially greater percentage of infra-red light, cf figure 3.1.

Figure 3.1: Infra-red profiles. Left: a deciduous tree (aspen). Right: a coniferous tree
(pine).

Classification based exclusively on these descriptors gives low performance with the aver-
age performance being P = 0.54 and the maximum, Pmax = 0.67. The confusion matrix for
one of the best values of P after repeated classification runs is shown below

0.5 0.5 0 0

0.167 0.666 0.167 0

0 0.334 0.666 0

0 0 0.167 0.833



a

b

c

d

where (a) refers to aspen, (b) to birch, (c) to spruce, and (d) to pine. This matrix shows that
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there are a substantial number of false positives. For example, 50% of aspens are classified
as birch, while 33% of the birch trees are classified as either aspen or spruce. This classifier
is especially weak in differentiating within coniferous and deciduous classes, i.e. between
aspen and birch or between spruce and pine.

3.2 Texture based features

To further distinguish within the deciduous and coniferous classes, texture analysis us-
ing grey level co-occurrence matrices (GLCM) is performed. A co-occurrence matrix is
a two-dimensional quantitative representation of spatial relationship [Haralick, 1978], well
adapted for characterising micro-textures.

Let {I(x, y), 0 ≤ x ≤ N − 1, 0 ≤ y ≤ N − 1} denote an N × N image with G grey levels as
described in [Chen et al., 1998]. The G × G grey level co-occurrence matrix Pd is defined
as

Pd(i, j) = |{(r, s), (r + dx, s + dy) : I(r, s) = i, I(r + dx, s + dy) = j}| .

The entry (i, j) of matrix Pd is the number of occurrences of the pair of grey levels i and
j which are a displacement d = (dx, dy) apart. | . | is the cardinality of a set. GLCMs are
a compact representation of pairs of pixel values in relation to each other. They are an ex-
ample of the second order statistics as defined by Julesz and several useful features can be
computed from them.

Nine such matrices were generated for each tree, each matrix representing a different di-
rection or distance. Two texture features, energy and contrast, were extracted from the
GLCMs:

• The energy term ∑
i

∑
j

P2
d(i, j)

is a measure of the homogeneity of the texture. If the grey level transitions are roughly
uniformly distributed, which is the case for birch trees, the energy will be small. Con-
versely, textures which have dominant grey level, e.g. pine, aspen or spruce, transition
modes have larger energy values;

• The contrast feature ∑
i

∑
j

(i − j)2Pd(i, j)

is a measure of the local variation present in an image. We selected this feature,
related to the auto correlation, to exploit the distinctive features present in the four
types of crown surface. Spruce trees, for example, display a radial pattern while aspen
have random light and dark regions.



44 Chapter 3. Tree species classification using radiometry, texture and shape

Since these two features are independent of the size and shape of the crown surface, they
represent pure texture characteristics.

The evaluation of classifier performance allows us to determine the optimal pair of param-
eters (d and direction). In practice we chose d = 1 and 135 degree direction. By incorpo-
rating these two texture features into the classifier, we were able to separate the trees into 4
classes with an average performance P = 0.71 and a maximum performance Pmax = 0.833.
The confusion matrix for one the best values of P after repeated classification runs is shown
below:



1 0 0 0

0 0.833 0 0.167

0.334 0 0.666 0

0 0 0.167 0.833



a

b

c

d

Texture information thus improves the classification results for deciduous trees. This is due
the fact that one deciduous species (birch (b)) has a roughly uniform texture in comparison
to the other (aspen (a)).

3.3 Shape based features

Some tree crown shape analysis was first done to determine the information that might allow
us to classify the species. Figure 3.2 shows that aspen crown contours, for example, have
an irregular structure; we can also see, the convexities/branches sticking out of the body of
the crowns. The branches of spruces are more regular and are oriented more radially. The
birch and pine crown contours are more circular, birches being the smoothest. 1

3.3.1 Tree crown shape representation

To further improve the previous classification results, we propose to study tree crown shapes
using the representation of planar shapes by their angle functions, cf [Klassen et al., 2004].

The function θ seems well adapted to exhibit the tree crown shape differences described
at the beginning of this section. This can be seen especially in the graphs in θ̃ = θ − θ0 (cf
figure 3.2): by substracting from the angle function the line θ0(s) = s, which represents a
unit circle, one obtains an element of the space L2 which reflects the shape of the curve.

1Nevertheless, despite the differences outlined earlier, a significant number of contours remain unclassifiable
by human beings just looking at the tree crown shapes, because of variability within a single class.
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We, thus propose to define the descriptors based on the functions θ and θ̃.

Figure 3.2: Examples of crowns of four species, their contours, the corresponding angle
functions θ, and θ̃ = θ − θ0 at the bottom. (a)Aspen, (b)Birch, (c)Spruce, (d)Pine.

We will now describe the tree features created using this representation of the crown con-
tours representing the information necessary for classifying the species.

3.3.2 Tree crown shape appearance

• Geodesic distance to a circle

Using our observations of tree crown shapes in the angle-function representation as
described in chapter 2, we note in particular the fact that the geodesics always passe
through shapes more circular than the initial and the final curves; and that, pine and
birch tree crown shapes are closer to circle, than those of aspen or spruce trees. The
first feature is a geodesic distance to a circle d(θ, θ0), which is computed using the
geodesic on shape space under the angle-function representation, cf chapter 2, sec-
tion 2.1.1. For the given shapes θi, i = 1, ...,M, we create a vector of "distances to a
circle":

vc(θ) = {d(θi, θ0), i = 1, 2, . . . ,M} ∈ R ,
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where M is the number of trees.

We also include geometrical descriptors based on θ̃ = θ − θ0, as follows.

• Elasticity of crowns

Firstly, we translate the property that the crowns of some species have a more regular
structure than others, by a measure of contour elasticity:

ve(θ̃i) =

∫ 2π

0

˙̃θi(s)
2
ds,

ve(θ̃) = {ve(θ̃i), i = 1, 2, . . . ,M} ∈ R .

• Number of convexities (branches, leaves) of crowns
Spruces generally have branches/convexities that are fewer in number and larger than
the convexities of birch crowns. This criterion is reflected in number N of local
maxima of the angle function.

vN(θ̃i) = Ni,

vN(θ̃) = {vN(θ̃i), i = 1, 2, . . . ,M} ∈ R .

• Size of crown contour irregularities
Pine crown shapes are quite close to those of birch, but certain irregularities are larger,
with some branches sticking out. We can quantify crown contour irregularities due to
the branches, leaves and shadows:

vµ(θ̃i) = µ̄i =
1

2π

∫ 2π

0

∣∣∣θ̃i(s)
∣∣∣ ds,

vµ(θ̃) = {µ̄i, i = 1, 2, . . . ,M} ∈ R ,

vVar(θ̃i) = Vari =
1

2π

∫ 2π

0
(µ̄i −

∣∣∣θ̃i(s)
∣∣∣)2 ds,

vVar(θ̃) = {Vari, i = 1, 2, . . . ,M} ∈ R .

• Comparisons of crown contour convexities
Finally, we calculate the histograms of θ̃, hθ̃(x) =

∫ 2π
0 δ(x, θ̃(s)) ds, x ∈ R, and then

Euclidean distances d(hi(x), h j(x)) =
∥∥∥hi(x) − h j(x)

∥∥∥. Then we create the following
features associated to each shape, one distance for every class l. The distance is
calculated as the distance to the nearest element of the class l:

dl
min(hi) = min{d(hi, h j)} j=1,...ml ∈ R,
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vd(θ̃) = {dl
min(hi), i = 1, 2, . . . ,M, l = 1, . . . ,Nl} ∈ R ,

where Nl is the number of classes and ml is the number of shapes of each class in the
training set.

Now we form vectors using all the features (based on the radiometry, texture and shape
information) and apply SVM on these feature vectors. The average performance was P =

0.747 and the maximum performance was Pmax = 0.87. An example of a confusion matrix
is: 

0.833 0.167 0 0

0.167 0.833 0 0

0 0.167 0.833 0

0 0 0 1



a

b

c

d

Thus, shape based features allow us to improve the classification of the species within the
conifer and deciduous tree groups.

3.4 Summary

In this chapter, we considered the problem of tree species classification from high resolution
aerial images based on radiometry, texture and the shape of tree crowns. The images rep-
resent forest zones, where the tree crowns were pictured from almost vertically above. The
classification was performed on the four most common forest species in Sweden. For our
experiments, 48 crowns were delineated manually in order to preserve their shape details.
A set of features were then created using the radiometric, texture and shape characteristics
of the tree crowns. Classification was performed using a Support Vector Machine with a
Gaussian kernel K(x, x′) = exp(− ‖x−x′‖2

2σ2 ).

We have shown that the performance of a classifier based on conventional spectral and
texture characteristics can be improved by including shape descriptors in the feature set. By
incorporating shape features, the mean classification performance improved by about 4%
for 6 samples per class while the maximum performance was 87.5% (Fig. 3.3). To create
the new descriptors, the shapes of crowns were analysed using the angle function represen-
tation. The representation preserves the characteristics that associate a tree crown with one
class or another (cf the discussion in 3.3). The limits imposed by the database size did not
give us much freedom to experiment with the training to test sample size ratio. We did,
however, observe that the performance mean tended to increase when samples were added
to the training set.
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Figure 3.3: Performance means and maxima.

Preliminary to the classification of tree crowns from images, their detection and then seg-
mentation as objects from these images is necessary. At the resolution of the images that
we used for study, their geometry is clearly visible (the deciduous trees were identifiable
almost to the leaf level), and should be taken into account for associating a tree with a
species. Additionally, forest zones represent scenes of high segmentation complexity due to
the fact that the trees are in general situated close to each other and may even overlap. This
is an important issue: overlapping objects should be segmented as a set of individual objects
and not as a one single object. This is an especially challenging task for trees of the same
species grouped together (even for manual extraction by an expert). We are thus interested
in developing a method that allows authomatic extraction of multiple objects from images
of very high resolution, the images representing complex scenes with overlapping objects.

Stochastic marked point processes are a technique for multiple object extraction known
for their ability to include geometrical information about the objects sought as well as
their interactions in the scene. Marked point process models have been successfully ap-
plied to the extraction of objects from images of lower resolution, the objects thus hav-
ing simple visible geometry [Lacoste et al., 2005, Perrin et al., 2005, Ortner et al., 2007,
Descamps et al., 2009]. The second topic of this dissertation, presented in the following
part, consists in the generalisation of the marked point point process approach to complex
arbitrarily-shaped multiple object extraction from very high resolution images.



Part II

Marked Point Processes using Active
Contours and Shape Priors
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Chapter 4

Introduction

Object extraction from optical satellite and aerial images is one of the most important tasks
in remote sensing image analysis. The problem arises in many applications, both mili-
tary, e.g. detection on the ground of strategically important objects; and civilian, like illegal
construction detection [Bayburt et al., 2008]; tree counting [Gougeon, 1995b, Perrin, 2006,
Horvath, 2007] and species classification [Leckie et al., 2003, Erikson, 2004a, Kulikova et al., 2007]
for biomass or biodiversity estimation; or bird counting for monitoring population changes
[Descamps et al., 2009].

The problem of object extraction in image analysis can be formulated as an inverse prob-
lem, which consists in obtaining some model parameter value r from the observed data
D. Inverse problems are typically solved as optimization problems, where the minimum of
an energy function H(r) in the space of model parameters is looked for. The energy in the
Bayesian framework is traditionally composed of two terms: a prior or a regularization term
Hp(r), which contains the knowledge about the structure or the behavior of r; and a data
term or a likelihood term HD(r), which relates the parameter and the data D. The parameter
is then usually estimated using a Maximum A Posteriori (MAP) estimate and is given by
r̂ = arg minr

(
Hp(r) + c0HD(r)

)
, with c0 a weighting parameter.

Nowadays, the resolution of aerial images is approaching a few centimetres (cf figure 4.1).
As a result, the geometry of objects in the scene needs to be taken into account for accu-
rate object extraction. Stochastic point processes, in particular marked point processes, are
known for their ability to model statistically geometrical objects. Additionally, the point
process framework can take into account information about the spatial repartition of objects
in the image scene by modeling inter-object interactions. A probability distribution is de-
fined on the configuration space of an arbitrary number of objects, which depends on the
relation between the objects and the image, and on the configuration of individual objects
and their joint relations. The extracted objects are then those in the optimal configuration.
To find the optimal multiple-object configuration, a MAP estimate is usually used.
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Figure 4.1: Left: fragment of a CIR image of several tens of cm resolution representing
the top parts of tree crowns, c© IFN. Right: fragment of a CIR image of 3 cm resolution
representing the top parts of tree crowns, c© CBA, Uppsala.

In previous work, the objects involved have been represented using simple geometri-
cal shapes, e.g. discs, ellipses, or rectangles. The resulting models have been applied
to the extraction of different types of object from remote sensing images, e.g. road net-
works [Stoica et al., 2000, Lacoste et al., 2005], trees [Perrin et al., 2005], buildings [Ortner et al., 2007],
and flamingos [Descamps et al., 2009], but the simplified nature of the individual objects
limits the geometrical precision that can be achieved.

The aim of this work is to lift this geometrical restriction. One could define the distribution
on the space of all closed curves, but as we see from the previous part, the spaces of such
objects are non-linear manifolds with complex topology. Defining a proper metric on these
spaces is not straightforward. Therefore, describing even a simple dynamics like diffusion,
for one object, becomes a challenging problem. Instead, we propose to reduce the object
space to a subset of objects that are locally adapted to the data. Each object is a local min-
imum of the single-object energy associated with an active contour. We then use the full
energy including interactions to find the optimal multiple-object configuration composed of
these locally adapted objects.

The single-object space considered is thus still of small dimension, but the possible indi-
vidual objects are determined not a priori, but by the image data and a single-object version
of the model. As a result, they can be arbitrary closed curves. Once the single-object
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space is defined, we define then a Gibbs energy, and hence a probability distribution, on the
configuration space of an arbitrary number of objects. We present this model in chapter 6.
The model is called "Model I" in appendix B, where the calculation details are given.

The second aim of this work is a further extension of the MPP framework, which consists
in defining a method for incorporating strong prior shape information into Model I. The
principles remain the same as those of Model I, but the single-object space is defined in
such a way as to take into account prior knowledge about the shape of the objects that we
wish to extract. This part is detailed in chapter 7. The model is called "Model II".

To find the MAP estimate using the full energy, we sample using a multiple birth-and-death
process embedded in an annealing scheme [Descombes et al., 2009].





Chapter 5

Point Processes: review

Point processes are widely used for modeling and analysing spatial data in domains such as
epidemiology, ecology and the environment, astronomy and geography, where the data ele-
ments (represented by points or objects) have a particular spatial structure, that can also be
influenced by object interactions. For example, in environmental applications, like forestry,
the trees are close to each other up to some tolerance distance that can be modeled by a
repulsion between the objects; or in biology, where this effect is provoked by, for example,
the competition for space or food. There is a great deal of work dedicated to this method-
ology and its applications. In this chapter we recall the main definitions and theorems
of point process theory. For more complete information and details, the reader can refer,
for example, to the books [Daley and Vere-Jones, 1988, van Lieshout, 2000, Stroock, 2005,
Jacobsen, 2006].

5.1 Main definitions

We assume a space χ equipped with a metric d such that (χ, d) is complete and separa-
ble. Any element x ∈ χ is called a point. A countable, unordered set of points in χ

x = {x1, . . . , xn} , n ∈ N is said to be a configuration (cf figure 5.1).

We consider the configurations x from a space denoted Nl f , such that every x places a finite
number Nx(A) of points in any bounded Borel set A ⊆ χ. These configurations are called
locally finite. For the applications of object extraction from images, we consider bounded
sets χ. Locally finite configurations are then finite and the associated space is denoted N f .
Let χ be equipped with a Borel measure ν, in general the Lebesgue measure Λ, so that, the
product measure νn is a measure on χn. Then the measurable subsets of N f containing n
unordered points are defined as follows:

N f
n =

{
x ∈ N f : Nx(χ) = n

}
.
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Figure 5.1: A configuration of points on χ = [0, 1]2 with Euclidean metric.

The measure of N f
n is ν(χ)n/n!, the factor n! being needed since χn is ordered. Thus, the

measure of N f is given by

ν(N f ) =

∞∑
n=0

ν(χ)n

n!
= eν(χ) (5.1)

A point process, the state of which at a given moment is a random configuration of points
is defined as follows.

Definition 5.2. A point process on χ is a mapping X from a probability space (Ω,A,P) into
Nl f such that for all bounded Borel sets A ⊆ χ, the number N(A) = NX(A) of points falling
in A is a finite random variable.

When configurations of objects are considered, some random variables describing the ob-
ject geometry are added to the points. For example, to define a configuration of discs, a
radius is added to each point (cf Fig. 5.2). We then have the following definition:

Definition 5.3. A marked point process on χ = P ×M is a point process with positions in
P and marks in M such that the process of unmarked points is a point process.

Since χ is bounded, the point process is said to be finite. To obtain a realisation of a point
process, we need a discrete probability distribution (pn), n ∈ N for the number of points in
the configuration and a family of symmetric probability densities jn(x1, . . . , xn), n ∈ N on
χn for the positions. The symmetry property is required, since a point process is indifferent
with respect to the order of points in the configuration.

The best known example of such a point process is the Poisson process defined as follows.
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Figure 5.2: A configuration of circles described by their positions on P = [0, 1]2 and radii
from [rmin, rmax] as marks on M = [rmin, rmax].

Definition 5.4. A point process X is a Poisson process on χ with intensity measure ν if

• N(A) is Poisson distributed with mean ν(A) for every bounded Borel set A ⊆ χ;

• For any n disjoint bounded Borel sets A1, . . . , An the corresponding random variables
N(A1), . . . ,N(An) are independent.

A Poisson process is called homogeneous if ν is proportional to the Lebesgue measure,
such that ν(A) = λΛ(A). In the case of a non-homogeneous Poisson process, a Borel mea-
surable intensity function λ(x) on χ is defined as the Radon-Nikodym derivative of ν w.r.t.
Lebesgue measure as follows:

ν(A) =

∫
A
λ(x)Λ(dx) < ∞.

The distribution πν of the Poisson process of intensity λ for all B ∈ N f is then written as

πν(B) = e−ν(χ)

1[∅∈B] +

∞∑
n=1

πνn(B)
n!

 , (5.2)

where νn ≡ ν
n, 1[∅∈B] is the indicator, which is equal to 1, if ∅ ∈ B, and equal to 0 otherwise,

and

πνn(B) =

∫
χ
. . .

∫
χ

1[{x1,...,xn}∈B]ν(dx1) . . . ν(dxn). (5.3)
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In order to construct a particular point process X, we consider its probability density
(Radon-Nikodym derivative) w.r.t. the Poisson process which is called the reference pro-
cess. Let πν be the distribution of the Poisson process with intensity measure ν, consider
p : N f → [0,∞) a measurable function on the collection of finite point configurations such
that ∫

N f
p(x)dπν(x) = 1. (5.4)

p is then a probability density function and it defines a point process X on χ.

Taking into account (5.1) and (5.2), the distribution of the total number of points of a
process X is defined by its density p given as follows

pn =
e−ν(χ)

n!

∫
χ
· · ·

∫
χ

p({x1, . . . , xn})dν(x1) · · · dν(xn)

A class of models that is specially designed to take into account point interactions in-
cluding the Poisson process are the Markov spatial point processes, known also under the
name of Gibbs point processes, since the similar concept of Gibbs point process is used in
statistical physics.

Definition 5.5. Let (χ, d) be a complete, separable metric space, ν a finite non-atomic Borel
measure, and πν the distribution of the Poisson process on χ with intensity measure ν. Let
X be a point process on χ defined by its density p w.r.t. πν. Then, X is a Markov point
process w.r.t. the symmetric, reflexive relation ∼ on χ if for every configuration x ∈ N f such
that p(x) > 0,

• p(y) > 0 for all y ⊆ x (heredity);

• for all u ∈ χ, p(x ∪ {u})/p(x) depends only on u and its neighbourhood ∂({u}) ∩ x =

{x ∈ x : u ∼ x}.

Definition 5.6. A configuration x ∈ N f is said to be a clique if all elements of x are neigh-
bours of each other w.r.t. the symmetric and reflexive relation ∼. An empty set is also a
clique.

A similar result to the Hammersley-Clifford theorem provides a definition of the density
of a Markov point process in terms of interactions between the configuration points.

Theorem 5.2. A point process density function p : N f → [0,∞) is Markov w.r.t. a neigh-
bourhood relation ∼ iff there is a measurable function φ : N f → [0,∞) such that:

p(x) = α
∏

cliques y⊆x
φ(y) (5.5)

for all x ∈ N f .
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One of the well known Markov point processes is the Strauss process. Its density function
w.r.t the reference Poisson point process with distribution πν is given as follows:

p(x) = αβn(x)γs(x), (5.6)

where β > 0, γ ≥ 0, n(x) = NX(χ), and s(x) is a number of cliques of order 2 (i.e. cliques
containing two objects) w.r.t the relation ∼ such that u ∼ v⇔ d(u, v) < R. β is the parameter
that changes the intensity of the process given as βλ w.r.t to the reference process; the
parameter γ changes the process’ behaviour, i.e.

• if γ = 1, the process is a Poisson process of intensity βλ;

• if γ = 0, two points satisfying ∼ are not allowed;

• if γ ∈ (0, 1), there is a repulsion between two points close in the sense of the ∼
relation;

• if γ > 1, the process is a clustered process, i.e. there is an effect of point clustering.
In this case, the number of objects of the process has to be bounded above, otherwise
the density is not integrable and the process is undefined

Another interest of a Gibbs process is that its density function can be written as the ex-
ponential of an energy (we give the details in the section that follows). In [Perrin, 2006]
several models for forest study are defined. These models are based on Gibbs point pro-
cesses with interactions between two neighbouring objects, which allow the incorporation
of properties such as repulsion or attraction between two objects (two tree crowns in the case
of the forest study), depending on, for example, the tree species or the distance between the
trees, or a particular structure in the plantation. The energy is defined as the sum of two
terms: a term Hd(x) related to the data and a prior term Hp(x), that models the constraints
on the objects as well as on their interactions. The interaction constraints are then defined
for the cliques of order 2 w.r.t to the given symmetric relations ∼. With each of the relations
is associated an energy H∼(.) (some relations being favoured and others being penalized).
The prior energy thus takes the form:

Hp(x) =
∑

i

∑
u∈x

Hi(u) +
∑

j

∑
u∼ jv; u,v∈x

H∼ j(u ∼ j v).

5.2 Point process simulation

In order to develop a model of object extraction based on a marked point process, a mech-
anism of sampling from a process is necessary. To introduce the mechanism, we use the
notation defined in the previous section. We wish to simulate a Gibbs point process with
a distribution π defined by its density function p w.r.t to a reference Poisson process with
a distribution πν, on the space of configurations of a finite number of elements N f . The
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objects considered are from χ = P ×M with positions in P and marks in M. Denote the
configurations of such objects as x = {u1, . . . , un(x)}, where ui = [pi,mi] is an object located
at pi and with mark mi. For all x ∈ N f and all B ∈ N f the process distribution is given by

π(B) =

∫
B

p(x)πν(dx).

The density function of the point process in Gibbs form is written as the exponential of an
energy and is given by the expression:

p(x) =
1
Z

exp {−H(x)} ,

where Z is the normalizing constant

Z =

∫
x∈N f

exp {−H(x)} dx.

The density function includes the normalizing factor Z which is not tractable. Due to this
fact, the direct sampling of configurations from the density is impossible. In such a case, an
alternative is to use a Markov Chain Monte Carlo (MCMC) type approach, which consists in
approximating the process by a Markov chain X0, . . . , Xn, . . . in the space of configurations
such that beginning at any configuration, the defined Markov chain converges to the point
process. The conditions of Markov chain convergence are listed in the following section;
details and additional information about the properties of Markov chains can be found in,
for example, [Stroock, 2005] or [Miller and Pankov, 2001] (in Russian).

The idea initially proposed by Metropolis et al. , is to run a Markov process converging
to a distribution which corresponds to the distribution of the process to be approximated.
Nowadays, there exist many different such techniques with diverse kinds of transition op-
erators, mixing degree, and implementation complexity. The most used algorithms are the
following ones: a reversible jump version of the Metropolis-Hastings algorithm proposed
in [Geyer and Moller, 1994], where birth and death proposed allow the number of objects
in the configuration to change; and a generalisation of this algorithm embedding a mix-
ture of several kernels proposed in [Green, 1995], i.e. birth and death kernel as well as the
kernels which do not change the number of objects in the configuration but accelerate con-
vergence, e.g. simple object perturbations (translation, rotation and dilatation); object fusion
and division; or birth and death in an object’s neighbourhood [Lacoste, 2004, Ortner, 2004,
Perrin, 2006]. In these algorithms, the transitions are defined by a new proposed state which
is then accepted or rejected w.r.t to its likelihood in comparison to the previous state. The
spatial birth-and-death algorithm described in [Preston, 1977, van Lieshout, 1993], avoids
the rejection step, but the process stays in a state with an exponentially distributed time,
which depends on the total birth and death rates.
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For our model, we chose a recently developed multiple birth-and-death process [Descombes et al., 2009]
for its rapid mixing and because only the death intensity depends on the energy of the cur-
rent configuration with the birth intensity being constant. We will describe the algorithm in
detail in the following chapter.

As we mentioned before, the density of the Gibbs marked point process takes the form of
the exponential of an energy H(x). From the application point of view, this energy consists
of two terms: a data term, that relates the objects to the data, and a prior term, that introduces
prior information through the interaction of objects in the configuration. The data term
is negative, when the configuration of objects fits the image well. We look for the best
configuration of objects in the sense of minimum of the energy −H(x), which is usually
estimated using the maximum a posteriori estimator. In order to do this, the process is
embedded in an annealing scheme. The principle is to simulate a non-homogeneous Markov
chain (Xn) that converges not to the distribution π, but to the distribution πβ given by πβ =

p(x)βπν(dx), where β is a parameter called the inverse temperature of the system, T = 1
β .

The temperature T is decreasing slowly during the simulation, and as T tends to 0 the
distribution πβ tends to a Dirac distribution on the configuration minimizing the energy.

5.3 Markov chains: reference theorems

In this section we recall the main definitions of Markov chain methodology and the proper-
ties of Markov chain convergence to an equilibrium distribution, denoted π, i.e. which does
not depend on the initial distribution, the necessary condition for independence of initial
conditions for MCMC type algorithms.

Definition 5.7. A Markov chain (MC) is a sequence of random variables S 1, S 2, . . . , S k, . . .,
with the possible values from a countable set S = {s1, s2, . . . , sk, . . .} called the state space
and satisfying the Markov property:

P(S n+1 = sn+1 | S n = sn, . . . , S 0 = s0) = P(S n+1 = sn+1 | S n = sn). (5.7)

Definition 5.8. A Markov chain is (time-)homogeneous if it does not depend on n, i.e. if for
all n > 1

P(S n+1 = x | S n = y) = P(S n = x | S n−1 = y). (5.8)

The probability of going from state si to state s j in one step (single-step probability tran-
sition) is defined as follows:

pi, j = P(S 1 = s j | S 0 = si), (5.9)
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and in n step:
p(n)

i, j = P(S n = s j | S 0 = si). (5.10)

For a homogeneous MC:
p(n)

i, j = P(S n+k = s j | S k = si).

A Markov chain is characterized by its initial distribution P(S 0 = s). The evolution of the
chain in time is then given as follows:

P(S n) =
∑

m

pm, jP(S n−1 = sm) =
∑

m

p(n)
m, jP(S 0 = sm). (5.11)

Consider a time-homogeneous Markov chain. The following properties of a Markov chain
guarantee its ergodicity, and the existence of an equilibrium distribution.

Definition 5.9. The states si and s j are communicating if there exist m, n > 1 such that
p(m)

k, j > 0 and p(n)
j,k > 0. A set of states is called a communicating class if every pair of states

is communicating.

Definition 5.10. An MC is irreducible if its state space is a single communication class, i.e.
any state is accessible from any state.

Let d j be a greatest common divisor of the values
{
n ≥ 1 : P(S n = s j | S 0 = s j) > 0

}
.

Definition 5.11. A state s j is called periodic with period d j, if d j > 1; otherwise, it is called
aperiodic.

Return to a periodic state is possible only in a number of steps that is a multiple of d j > 1.

Definition 5.12. An MC is said to be aperiodic, if all its states are aperiodic.

Let f j(n) = P(S n = s j, S n−1 , s j, . . . , S 1 , s j | S 0 = s j) denotes a probability of a first
return to the state s j in n steps.

Definition 5.13. A state sk is said to be positive recurrent if the time of return to the state,
i.e. the random variable Tk with distribution

P(Tk = n) = fk(n), n = 1, 2, . . . , (5.12)

has a finite expectation

Mk = E(Tk) =

∞∑
n=1

n fk(n) < ∞.
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Theorem 5.3. If for an MC the conditions of irreducibility and aperiodicity are satisfied,
and if the MC has a positive recurrent state, then for any i, j = 0, 1, . . . the following limits,
that do not depend on i, exist:

p(n)
i, j → p j > 0, as n→ ∞. (5.13)

The
{
p j

}
comprise the single solution of the following system of equations

p j =

∞∑
k=0

pk, j pk, j = 0, 1, . . . (5.14)

∞∑
j=0

p j = 1. (5.15)

Definition 5.14. A Markov chain is ergodic if it satisfies the conditions (5.13) - (5.15).
The distribution π = {p0, p1, . . .} is called the stationary distribution or invariant measure
and it is said to be an equilibrium distribution, because it does not depend on the initial
distribution.

A more powerful property of Markov chain convergence is its reversibility.

Definition 5.15. A Markov chain is called reversible if there exists a distribution π such
that

πi pi, j = π j p j,i

called the detailed balance condition.

For a reversible MC, π is a stationary distribution since
∑

i πi pi, j = π j.





Chapter 6

Marked Point Process for multiple
arbitrarily-shaped object extraction

In this chapter we present a marked point process model for multiple arbitrarily-shaped
object extraction. We first define a probability distribution for multiple-object configura-
tions, where each individual object is represented by its boundary, i.e. a closed curve in
the image domain. The distribution is the Gibbs distribution corresponding to an energy
defined on the configuration space of an arbitrary number of objects. This energy consists
of a sum of single-object energies, plus an interaction term that penalizes object overlap.
The single-object energy is the sum of a term that enforces boundary smoothness, and a
data term relating an object to the image. In the absence of an interaction term, the MAP
estimate would thus consist of the subset of these single objects with negative energy. This
would probably lead to degenerate solution configurations, however, and so an interaction
term is added that controls the relation between different objects, in particular discouraging
overlaps.

The individual objects are defined by evolving a number of initial curves under gradient
descent to local minima of the single-object energy. The initial curves are circles centred on
each image pixel, with radii in a certain range, the radius being the mark associated to each
point. The size of the single-object space is thus not greater than that of the set of initial
curves. This is similar to the object sets used in previous point process models preserving
thus computational efficiency.

To find the optimal multiple-object configuration, we compute a MAP estimate by sam-
pling from a multiple birth-and-death process embedded in an annealing scheme. The birth
step samples a number of initial circle centres from a uniform Poisson process, with uni-
formly sampled radii. The circles are added to the current configuration, and then evolved
to local minima of the single-object energy, producing a configuration of multiple locally
adapted objects. The death step then removes a number of objects with a probability that
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depends on the temperature-weighted energy difference between the configurations with
and without each object. Iteration is stopped if all the objects added in the birth step and
only these are removed in the following death step. The performance of the approach is
demonstrated via experimental results on synthetic and real data.

The use of a birth-and-death process allows the number of objects to be unknown a pri-
ori. Our approach can be thus thought of as an extension of the active contour methodol-
ogy [Kass et al., 1998] to an a priori unknown number of objects. A great deal of work has
been done within the active contour framework using the distance-function level set repre-
sentation [Caselles et al., 1997, Sethian, 1999, Leventon and Grimson, 2000, Osher and Fedkiw, 2003,
Cremers et al., 2006a]. This representation allows arbitrary topology, i.e. an arbitrary num-
ber of contours, at least in principle. However, it is a representation of a region with
arbitrary topology, not an arbitrary number of distinct objects: overlapping objects, for
example, cannot be represented. Second, the algorithms used are forms of deterministic
gradient descent, meaning that the result may be very dependent on the initial configu-
ration. Cremers et al. [Cremers et al., 2006b] treat the case in which there is a num-
ber of distinct classes of object in the image by segmenting the image into connected
components each of which corresponds to one class. The representation is by distance-
function level sets, however, so that overlapping objects are not allowed, while the way
in which prior information is included means that only one object can be found in each
connected component. There are many tracking methods that use stochastic algorithms,
e.g. [Isard and Blake, 1998, Kervann and Heitz, 1998, Rathi et al., 2007], but those that
deal with multiple objects mostly do so by using the distance-function level set representa-
tion. Storvik [Storvik, 1994] uses a Markov Chain Monte Carlo (MCMC) algorithm to min-
imize an active contour energy, but considers only simply-connected objects; the algorithm
makes only local changes to the contour at each iteration. Juan et al. [Juan et al., 2006]
use stochastic partial differential equation (SPDE) techniques for optimization, but again
the stochastic element is limited to small changes to the contour. In contrast, in this paper,
although the possible forms of a single-object are limited by adaptation to the data, multi-
ple objects can be created and destroyed at each iteration. Tu et al. [Tu et al., 2002] use
data-driven reversible jump Markov Chain Monte Carlo (RJMCMC) dynamics to solve a
problem of general purpose image segmentation, but our work differs, first, in addressing a
specific problem rather than general possibilities; and second, in using multiple birth-and-
death rather than RJMCMC dynamics. The advantage of multiple birth-and-death dynamics
is their faster convergence, due to the fact that at each iteration, several objects are simulta-
neously added to the current configuration without any rejection probability.

The remainder of the chapter is organized as follows. In section 6.1, we describe the
single-object space and the single-object terms in the energy. In section 6.2, we describe the
multiple-object space and the full energy, as well as the sampling algorithm. In section 6.3,
we describe experimental results validating the algorithm.
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6.1 Single-object space

As mentioned, the single-object space will not be determined a priori to consist of arbitrary
geometrical shapes, but rather will be constructed using the image data and a model describ-
ing configurations of individual objects. We model individual object boundaries as closed
planar curves γ : [0, 2π] → V ⊂ R2 lying in the image domain V , and we suppose that
we are given an energy functional E defined on a space Γ of these curves (with appropriate
restrictions to ensure everything is well-defined). This energy functional will depend on the
image data also. In this model, it will take the form of a classical active contour energy,
which will be detailed below.

Given an initial curve γ ∈ Γ, we can then perform gradient descent to arrive at a local
minimum of E, giving a second curve, γ̃ ∈ Γ. The map ·̃ : Γ → Γ takes every curve to the
local minimum in whose basin of attraction it lies. Now define the space C to be a set of
circles lying in the image domain, with radii r0 ∈ [rmin, rmax], parametrized by arc-length.
The single-object space we consider is Γo = C̃. The objects are thus locally adapted to
the data and C̃ consists of a subset of local minima of E obtained by gradient descent from
circles γ ∈ C. The dimension of the single-object space is still small however: if we fix the
centre x0 ∈ V of the circle in C, i.e. the ‘point’ in the marked point process, the ‘mark’ is
one-dimensional, being equivalent to the circle’s radius .

6.1.1 Single-object energy

To define the space Γo, we define the energy E as a sum of two terms:

E(γ) = Ecurve(γ) + Eimage(γ) , (6.1)

where Eimage(γ), is an image term (also called the data term), which relates γ to the im-
age, and Ecurve(γ), is a prior term, which favours boundary smoothness and a uniform
parametrization of the curve.

The image energy term is defined as a weighted sum as follows:

Eimage(γ) = λgEgrad(γ) + λGEgauss(γ) ,

with

Egrad(γ) =

∫
[0,2π]

dt n(t) · ∇I(γ(t)) (6.2)

and

Egauss(γ) =

∫
R(γ)

d2x (G(x) − Ḡ(x)) , (6.3)
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where n(t) is the (unnormalized) outward normal to the curve; I is the image; G(x) =
(I(x)−µ)2

2σ2

and Ḡ(x) =
(I(x)−µ̄)2

2σ̄2 ; and R(γ) is the interior region corresponding to the boundary γ. The
first term favours boundaries with high image gradients normal to the boundary. The second
term arises from a Gaussian image model with different means and variances for the interior
and exterior of the objects. Both terms are negative when γ is well-adapted to the data. The
parameters µ, σ, and µ̄, σ̄, are learned from examples of object and background.

Ecurve is defined in the following way:

Ecurve(γ) =

∫
[0,2π]

dt |γ̇(t)|2 , (6.4)

where γ̇ is the derivative of γ.

In order to perform gradient descent method to obtain a curve γ̃ ∈ Γ0, we have to compute
the functional derivative of E:

δE
δγ(t)

=

(
δE
δγx(t)

,
δE
δγy(t)

)
(6.5)

For our computation, we define the curves γ(t) to be traversed in the clockwise direction,
so that the outward normal to the curve can be written as follows:

nx(γ(t)) = −γ̇y(t)

ny(γ(t)) = γ̇x(t)

After that, we consider a vector field v(γ) defined as:

vx(γ(t)) = − ∂yI(γ(t)),

vy(γ(t)) = ∂xI(γ(t)),

i.e. v(γ) = ε∇I(γ), where ε =
(

0 −1
1 0

)
is a rotation matrix. Thus, we can write:

Egrad(γ) =

∫
[0,2π]

dt n(γ(t)) · ∇I(γ(t)) =

∫
[0,2π]

dt γ̇(t) · v(γ(t)) . (6.6)

The components of the Egrad derivative then take the form:

δEgrad

δγx(t)
= −γ̇y(t)[∂yvx(γ(t)) − ∂xvy(γ(t))] ,

δEgrad

δγy(t)
= −γ̇x(t)[∂xvy(γ(t)) − ∂yvx(γ(t))] ,
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which give

δEgrad

δγi(t)
= ni(t)(∇ × v)(γ(t)) . (6.7)

For the calculation details, please refer to the appendix, section B.1. Taking into account
that v(γ) = ε∇I(γ), the expression (6.7) can be finally written as follows:

δEgrad

δγi(t)
= ni(t) (∇ × ε ∇I) (γ(t))

= ni(t) (∇ · ∇I) (γ(t))

= ni(t) ∇2I(γ(t))

To calculate, now, the derivative of the Gaussian energy term Egauss, it is possible to rep-
resent it in the same way as Egrad. In order to compute the derivative, we consider the
functions U(x) and h(x) defined as h(x) = ∇·U(x) = (G−Ḡ)(x), so that (6.3), using Green’s
theorem can be written:

Egauss(γ(t)) =

∫
R(γ)

d2x (G(x) − Ḡ(x))

=

∫
R(γ)

d2x h(x)

=

∫
R(γ)

d2x ∇ · U(x)

=

∫
∂R(γ)

dt n(γ(t)) · U(γ(t)) (6.8)

Expression (6.8), in its turn, can be written using a curve derivative:∫
γ(t)

dt n(γ(t)) · U(γ(t)) =

∫
γ(t)

dt γ̇(t) · v(γ(t)) ,

where v is now defined as a rotated version of U:

vx(γ(t)) = − Uy(γ(t))

vy(γ(t)) = U x(γ(t)) .

The derivative of Egauss, thus, takes the form:

δEgauss

δγi(t)
= ni(t)(∇ × v)(γ(t))

= ni(t) (∇ × ε U) (γ(t))

= ni(t) (∇ · U) (γ(t))

= ni(t) (G − Ḡ)(γ(t)) .
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Finally, the computation of the derivative of Ecurve (6.4) is as follows. We vary, first, Ecurve

by δγ(t):

δγ(t)Ecurve = Ecurve(γ + δγ) − E(γ)

=

∫
[0,2π]

dt
(
γ̇2(t) + 2γ̇(t)δγ̇(t) + O(δ2γ̇(t))

)
−

∫
[0,2π]

dt |γ̇(t)|2 (6.9)

= 2
∫

[0,2π]
dt γ̇(t)δγ̇(t) (6.10)

= 2
(
γ̇(t)δγ(t)|2π0 −

∫
[0,2π]

dt γ̈(t)δγ(t)
)

= −2
∫

[0,2π]
dt γ̈(t)δγ(t) , (6.11)

Then the derivative takes the form:

δEcurve

δγi(t)
= −2γ̈i(t) . (6.12)

Figures 6.1 and 6.2 show gradient descent experiments using the energy E, where the
procedure of gradient descent is as follows. The curves considered are represented by a
sequence of points in R2 defined to correspond to descrete parameter values tn = 2πn/N
for n ∈ {0, . . . , (N − 1)}. We define the set of circles C lying in the image, with radii in
the range [rmin, rmax] and with centres at the image pixels. The circles in C are assumed to
be arc-length parametrized, therefore the points are equally spaced. A curve is initialized
by a circle lying in the image with some radius from [rmin, rmax]. It is then evolved under
the gradient field (6.5), where the derivative (6.12) of the curve smoothness energy term
also controls the curve parametrization: in the implementation, the discrete version of the
derivative is given by

δEcurve

δγ(tn)
= −2

γ(tn+1) − 2γ(tn) + γ(tn−1)
(∆t)2 ,

where ∆t = tn− tn−1 = 2π/N, which encourages the points to be equispaced along the curve.
In detail, the gradient descent procedure is as described in algorithm 6.1.
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Algorithm 6.1 Gradient descent under the gradient field of energy E

1. Initialize an initial curve as a circle γ ∈ C lying in the image domain; the parameters
of E; discrete step δE for gradient descent; ε for stop condition; and k = 0 the iteration
number;

2. Compute δEcurve
δγ(k)(tn) = −2γ

(k)(tn+1)−2γ(k)(tn)+γ(k)(tn−1)
(∆t)2 + λgn(k)(tn) · ∇2I(γ(k)(tn)) + λGn(k)(tn) ·

(G − Ḡ)(γ(k)(tn)), n = 0, . . . ,N − 1 ;

3. Update the current curve: γ(k+1)(tn) = γ(k)(tn) − δE δEcurve
δγ(k)(tn) , n = 0, . . . ,N − 1;

4. Compute ∆γ(k+1) =
∥∥∥γ(k+1) − γ(k)

∥∥∥;

5. Stop if
∥∥∥∆γ(k+1) − ∆γ(k)

∥∥∥ < ε, where ‖·‖ is a Euclidean norm (∆γ(0) is equal to some
large number, such that

∥∥∥∆γ(1) − ∆γ(0)
∥∥∥ > ε); if not, then go to step 2.

Figure 6.1: Synthetic image example: gradient descent driven by E. On the left is the
original image, binary with added noise. The other three images show the contour evolution.
The background has been blurred for display purposes.

Figure 6.2: Real image example: gradient descent driven by E. Only one band of the colour
image was used.
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6.2 Multiple objects: model and algorithm

The multiple-object space is the “exponential” of the single-object space, i.e. it consists of
all configurations of zero or more objects:

ΩΓo =

∞⋃
n=0

[
Γn

o/S n
]
, (6.13)

where S n indicates the symmetric group of n elements acting on the components of the
product. Set union and difference are defined for appropriate pairs of elements of ΩΓo . The
map ·̃ extends to a map from ΩC (the exponential of C) to ΩΓo . Elements of ΩC will be
denoted ω, which is an non-ordered set of components ωi ∈ C: ω = {ωi}. Every ωi can be
represented by its center xωi

0 and its radius rωi
0 so that, ωi = (xωi

0 , r
ωi
0 ).

6.2.1 Energy

Given a (real, bounded below) function H(ω) on ΩC, we define the Gibbs distribution µβ
in terms of the density p(ω) =

dµβ
dµ (ω) w.r.t. the reference measure µ on the space ΩC of

configurations of circles ω = (xω0 , r
ω
0 ), being respectively the centres xω0 of circles in the

configuration ω and their radii rω0 ∈ [rmin, rmax]|ω|, where |ω| is the number of elements in
ω, so that, defined as

dµ(ω) = dλ(xω0 ) dν(rω0 ) , (6.14)

where dλ(xω0 ) is a Lebesgue-Poisson measure on the space of configurations of centres, and
dν(rω0 ) =

∏
x0∈xω0

dν(r0) =
∏

x0∈xω0
dr0

l , l = |rmax − rmin|, is a conditional on the number of
objects (depending on the centres in the given configuration ω elements) measure defined
as a product of measures ν on the space of marks. The Gibbs density p(ω) with respect to µ
is then defined as

p(ω) =
z|ω|

Zβ
exp{−βH(ω)} , (6.15)

with parameters β > 0, z > 0, and where the normalization constant Zβ is given by :

Zβ =

∫
ΩC

dµ(ω) z|ω| exp{−βH(ω)} (6.16)

= 1 +

∞∑
n=1

zn

n!

∫
Cn

dµ(ω) exp{−βH(ω)} .

The energy H(ω) takes the form:

H(ω) = c0

∑
i

H1(ωi) +
∑
i, j

H2(ωi, ω j) ,

where ωi are the components of ω and c0 is a weighting parameter. The data term H1, is
defined as

H1(ωi) = E(ω̃i) .
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The term H2 is the interaction term, which controls the relation between objects, in partic-
ular discouraging overlaps. It is defined as

H2(ωi, ω j) =
A(R(ω̃i) ∩ R(ω̃ j))

min(A(R(ω̃i)), A(R(ω̃ j)))
+ δε(ωi, ω j) ,

where

δε(ωi, ω j) =

 ∞, |xi
0 − x j

0| ≤ ε;
0, otherwise,

(6.17)

A is the area function and δε is a hard-core repulsion that prevents two components of ω
from coinciding (to some tolerance ε). Indeed, if there were no interactions between ob-
jects except that they should not coincide, then the optimal configuration of objects would
consist of the negative energy elements in Γo. The interaction term was thus introduced to
prevent the “condensation” of an infinite number of the lowest energy single-objects.

Computing the intersection area of two objects with complex shape is quite a non-trivial
problem when compared to that of simply-shaped objects, e.g. circles, ellipses or rectangles.
We approximate it by the number of pixels that belong to the interiors of both objects. To
compute it, we need to obtain the interior pixels of the objects. We developed an algorithm
for computing the interior area of a discretized object contour represented by the chain of
points corresponding to its vertices with known coordinates in the image. The idea is as
follows. Firstly, we reconstruct the contour by connecting its vertices with segments. The
segments are obtained using Bresenham’s algorithm [Bresenham, 1965]. Then, we build up
the inside contour. Once the two contours are obtained, the interior of the object can be
obtained as a set of pixels which are inside the inside contour and are not separated by the
contour itself plus the pixels belonging to both contours. Figure 6.3 illustrates the contour
with its inside contour, where the vertices of the contour are the pixels surrounded by little
circles for display purposes.

The procedure is detailed in algorithm 6.2.

To avoid an infinite loop at step 1, the contour is defined as a badly-defined curve if I is
not found in 50 tries, and is rejected as an impossible object. This can happen when the
points approximating the curve are situated too close to each other, or when the curve is
very irregular and sharp. However, in practice, this happens extremely seldom, since in our
experiments the objects are modeled so that the uniform parametrization is favoured and the
objects detected are big enough to prevent curve collapsing.

6.2.2 Model simulation

In order to simulate the proposed model for finding the optimal configuration of objects
in the image, we consider a multiple birth-and-death dynamics, defined in V ⊂ R2 by its
generator [Descombes et al., 2009] in the space of bounded measurable functions in ΩC :
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Algorithm 6.2 Reconstruction of the interior of a contour

1. Find an inside point that does not belong to the contour and is situated just next to it;
we note it I (it is needed to build up the inside contour). This pixel could be found by
scanning a rectangle containing the contour. We use the following random method:

(a) Reconstruct the contour connecting the vertices with segments;

(b) Randomly determine a straight line which does not intersect with the contour;

(c) Determine the vertex closest to the line; we denote this vertex v1 in the figure;

(d) Determine a barycentre denoted B of vertices v1, v2, v3, where the vertices v2
and v3 are the previous and the following neighbours of v1;

(e) If the pixel next to v1 on the line connecting it with B, does not belong to the
contour, then it belongs to the inside contour and it is the pixel I that we look
for; if not, then go to the step 1.(a).

2. Reconstruct the inside contour beginning from the obtained pixel I, in such a way, that
every pixel composing it is connected to the previous one through the 4-connectivity
neighbourhood relation as shown in figure 6.3. In order to do it, we used a fast
algorithm presented in [Khudeev, 2005]. The idea is to begin the reconstruction of
the inside contour at some inside pixel I just next to the contour. Then, to move along
the contour until being back to the first pixel I of the inside contour.

3. Find the interior of the contour:

(a) Order the pixels of both the contour itself and the inside contour w.r.t. the x
coordinate and then w.r.t the y coordinate in the image;

(b) For each row of the rectangle containing the contour, defined by the maximum
and minimum coordinates x and y of the contour, mark every pixel between two
inside contour pixels that are not separated by a contour pixel as an inside pixel.
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Figure 6.3: An illustration to algorithm 6.2 for computing the internal area of a contour.

(Lβ f )(ω) =
∑
ωi∈ω

eβ∆iH(ω)( f (ω \ ωi) − f (ω)) + z
∫

C\γ
f (ω ∪ γ) − f (ω) dx0 dν(r0), (6.18)

where the energy difference for a configuration ω with and without an element ωi is given
by

∆iH(ω) = H(ω) − H(ω \ ωi). (6.19)

The intensity b(ω, γ) of adding element γ = (x0, r0) ∈ C to a configuration ω is called birth
intensity and is given by:

b(ω, γ) = z, (6.20)

and the intensity d(ω,ωi) of removing an element ωi from the configuration, which is called
death intensity is defined as:

d(ω,ωi) = eβ∆iH(ω). (6.21)

Under such a choice of intensities, the detailed balance condition, given here below, holds:

b(ω \ ωi)
d(ω,ωi)

=
p(ω)

p(ω \ ωi)
= z e−β∆iH(ω).

This implies that the corresponding birth-and-death process associated with the stochastic
semi-group Tβ(t) = etLβ is time reversible. Thus, its equilibrium distribution is the Gibbs
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stationary measure µβ defined by (6.15).

As we mentioned in the introduction, the aim of the work described in this section is
to lift the restriction of MPP models to the extraction of objects with only simple shapes,
keeping, nevertheless, the advantage of the small dimensionality of the space of individual
objects, since the inverse would greatly increase the computational complexity of sampling
and estimation. Therefore, we will define the process in ΩC. In the space of arbitrarily-
shaped elements locally adapted to the data ΩΓo , where Γo = C̃, the process is equivalent,
the only difference being that the birth intensity is non-uniform. This is due to the fact that
under gradient descent two different circles can give the same element γ̃, which means that
this element has higher probability to be born. However, it does not change the final result,
since this affects the reference measure and not the density. As our process is embedded
in the annealing scheme, the results will be influenced only in the first steps, when the
temperature is high and the influence of the reference measure is high; as the temperature
tends to zero, the influence of the density function begins to dominate. For the development
of our approach, we refer to the theorems listed in section 6.2.4 below.

6.2.3 Sampling and estimation

In order to estimate the configuration of the objects in the image, we use maximum a pos-
teriori estimation, performed by sampling from the probability distribution µβ and apply-
ing an annealing scheme. To perform the sampling process we consider a Markov chain
Tβ,δ(m),m = 0, 1, 2 . . . in ΩC consisting of a discrete-time multiple birth-and-death process
describing all possible transitions from the configuration ω to the configuration ω′ ∪ ω′′,
where ω′ ⊂ ω and ω′′ is any new configuration. Here, the new objects are given by ω′′, and
the removed objects are given by ω \ ω′.

Descombes et al. demonstrate in [Descombes et al., 2009], that this Markov chain can be
considered as an approximation of a continuous-time reversible process Tβ(t) and converg-
ing to it, which, within a logarithmic annealing scheme, guarantees weak convergence to
the measure concentrated on the global minima of the energy function H(ω), where ωi ∈ ω

is a circle with a fixed radius.

For realisation of this continuous-time process, we considered a discrete-time approxima-
tion Tβ,δ(m) of the continuous-time birth-and-death process defined by its generator (6.18).
This approximation scheme makes uses of a Markov chain in ΩC with multiple birth-and-
birth transitions, defined here below. The transitions of ‘birth’ of a new element γ centred
at x0 from ∆x0 ∈ V and with a radius r0 from ∆r0 ∈ [rmin, rmax] have the distribution

qγ =

 δz∆x0
∆r0

l , if ω→ ω ∪ γ,

1 − δz∆x0
∆r0

l , if ω→ ω.
(6.22)

The transition probability of ‘death’ of an element ωi is given by
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pd =


δdβ

1+δdβ
, if ω→ ω \ ωi,

1
1+δdβ

, if ω→ ω,
(6.23)

where dβ = δeβ∆iH(ω\ωi).

The transition operator Pβ,δ of this Markov chain Tβ,δ(m) = Pm
β,δ is defined as:

(Pβ,δ f )(ω) =
∑
ω′⊆ω

∏
ω′i∈ω

′

1
1 + δdβ

∏
ωi∈ω\ω′

δdβ
1 + δdβ

(6.24)

×
1

Ξδ(ω′)

∞∑
k=0

∫
Ωk

C
(ω′)

(zδ)k

k!

× f (ω′ ∪ γ′1 ∪ ... ∪ γ
′
k)dx1

0...dxk
0dν1(r0) . . . dνk(r0),

where Ξδ(ω′) = Ξδ(xω
′

0 , r
ω′

0 , z, δ) is a normalizing factor for the conditional measure under
the given configuration ω′.

6.2.4 Reference theorems

In this section we formulate the theoretical results from [Descombes et al., 2009] that form
the basis of our algorithm. These results were obtained in the case of circles with a fixed
radius r0. In our case, when a set of radius is finite the generalisation of these results is
straightforward.

Let Ω
r0
C

be the set of ω ∈ ΩC whose elements γ ∈ C have a fixed radius r0. Denote
H̄ = minω∈Ωr0

C
H(ω) and

Hmin =
{
ω ∈ Ω

r0
C

: H(ω) = H̄
}

(6.25)

the set of all elements in Ω
r0
C

giving the global minimum H̄ of H(ω). Then, Hmin can be
represented as a union

Hmin =

∞⋃
n=0

Hmin
n , (6.26)

where Hmin
n is a set of configurations from Hmin containing n elements. The following

theorem states that the Gibbs distribution µβ converges to the measure concentrated on the
global minima of H with the minimum number of objects n0.

Theorem 6.4. Let n0 ∈ [0, ...N] be the minimal index for which the set Hmin
n is not empty.

Then Gibbs distribution µβ converges weakly as β→ ∞ to the distribution µ∞ on Ω
r0
C

of the
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form
µ∞ =

∑
ω∈Hmin

n0
Cωδω, i f n0 > 0, and

µ∞ = δ{∅}, i f n0 = 0.

(6.27)

Here δω is a unit measure concentrated on the configuration ω, and the coefficients Cω

satisfy the equality ∑
ω∈Hmin

n0

Cω = 1 . (6.28)

The following theorem guarantees uniform convergence to the measure concentrated on
the global minima of the energy H.

Let B(µ) be a family of measures η on Ω
r0
C

with a bounded density w.r.t. the reference
measure µ, and hence w.r.t. the Gibbs measure µβ, therefore pη(ω) =

dη
dµβ

on Ω
r0
C

is a
bounded density of the measure η w.r.t. the Gibbs measure µβ.

Theorem 6.5. Let F be a bounded function in Ω
r0
C

and an initial measure η ∈ B(µ). Then,
under the condition that

δeβb < const, (6.29)

where b = supω∈Ωr0
C

supγ∈ω ∆iH(ω) we have

lim
β→∞, t→∞, δ→0

〈F〉S β,δ([ t
δ ])η

= 〈F〉µ∞ . (6.30)

Here
〈F〉S β,δ([ t

δ ])η
=

〈
S β,δ([ t

δ ])η, F
〉

=
〈
η,Tβ,δ([ t

δ ])F
〉

= (pη,Tβ,δ([ t
δ ])F)µβ , (6.31)

where S β,δ([ t
δ ]) indicating the semi-group adjoint to Tβ,δ([ t

δ ]) acting on measures.

For the details and the proof of the theorems, the reader can refer to [Descombes et al., 2009].

6.2.5 Algorithm description

We define C as the set of circles lying in the image domain V , with radii in the range
[rmin, rmax] ∩ N and with centres at the image pixels. The curves are represented by a
chain of points in R2 defined to correspond to discrete parameter values tn = 2πn/N for
n ∈ {0, . . . , (N − 1)}. The circles in C are assumed to have arc-length parametrization, and
thus will have equally spaced points.

The birth step of the process adds an unknown number of circles to the current con-
figuration with an intensity z that is independent of the current temperature T = 1/β.
The death step removes a number of components from the current configuration with a



6.3. Experimental results 79

probability that depends on the current (inverse) temperature β and the energy difference
∆iH(ω) = H(ω\ωi) − H(ω). In more detail, the algorithm is as follows:

1. Initialization

Discretisation step δ = δ0; inverse temperature β = β0; Poisson mean z0; radius range
[rmin, rmax]; parameters in E; empty initial configuration;

2. Birth

(a) Sample a configuration of circles with radii uniformly distributed on [rmin, rmax]∩
N, from the Lebesgue-Poisson distribution with intensity z = δz0, with the ad-
dition of a hard core repulsion δε with ε equal to one pixel, producing configu-
ration ω ∈ ΩC;

(b) Evolve every circle in ω using gradient descent, with gradient field given by
equation (6.5), until convergence, producing configuration ω̃ ∈ ΩΓo ; and add
the obtained elements to the current configuration;

3. Death

(a) For computational efficiency, sort the components of the current configuration
w.r.t. their energy H1(ωi) = E(ω̃i);

(b) Remove each component ωi from the current configuration with probability

pd(ωi, ω) =
δdβ(ωi, ω)

1 + δdβ(ωi, ω)
,

where
dβ(ωi, ω) = e−β∆iH(ω) ; (6.32)

4. Termination

If all the components added in the birth step and only these, are removed in the fol-
lowing death step, then stop; if not, then increase the inverse temperature β by a factor
∆β and decrease the time step δ by a factor ∆δ, and go to the birth step.

6.3 Experimental results

In this section we present several results obtained using the above model. Experimental
results are presented on a synthetic binary noisy image and then on a real image of flowers
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of quite a complex shape but without noise in the background, and finally, on a real noisy
CIR image of 3 cm resolution representing the tops of tree crowns with complex shapes.
We present the original image and the obtained extracted objects. On several images, value
of the terms in the energy are displayed. We give the computation time to give an idea of
resources needed. The algorithm was tested on a 2.16 GHz processor.

There is a set of parameters to be fixed before testing the algorithm. For our experiments
we use a geometric annealing schedule for the inverse temperature β and a time step δ. The
time-discretisation step update ∆δ = 0.99 and the inverse temperature update ∆β = 1

0.993
were fixed to the given values and were the same for all the experiments. The other pa-
rameters depend on the image and the objects to be found. The minimum and maximum
radius values rmin, rmax that determine the objects marks, i.e. the radii of initial circles, are
calibrated knowing the image resolution and the approximate size of the objects. The pa-
rameters of the data energy term, σ, µ, σ̄, µ̄ are learned using a fragment of image with
object and background examples. The weighting parameters are learned from experiments.

Figure 6.4 shows the result of an experiment on a synthetic binary image with additive
white Gaussian noise. Due to the simple shape of the objects, the computational time is
small (3 mn), since the gradient descent algorithm converges fast to a local minimum of the
data energy giving thus objects locally adapted to the data. This image contains distinct ob-
jects and two overlapping objects in the left corner. The objects have quite circular shapes
except four of them: the two overlapping objects, and the two next to them in the top of
the image. All the extracted objects are detected and well delineated, except the two in the
top middle part of the image. The loss in delineation precision is due to the fact that the
smoothness term that also controls the length of the curve, was multiplied by a large weight
in order to favour the detection of circular objects. This was done in order to detect the two
overlapping objects with two distinct elements. Otherwise, they could be considered as one
more complex object that would be accurately delineated, but two distinct objects would be
enveloped by one curve of elongated shape, cf figure 6.5.

The result of another experiment on one band of a real colour image is shown in figure 6.6.
We aimed at extracting the flowers without detecting their stems. The most discriminative
band between the flower and its stem is the red, which we chose for learning the parameters
for the Gaussian image model. Since the radiometry of the stems and flowers is close com-
pared to the difference with the background, two flowers were detected together connected
by a stem, as shown in figure 6.7. To avoid this effect, the smoothness term was increased
again, since the flower heads remain relatively regular, but as we can see some small details
of the flower petals were smoothed and lost as expected.

The last experiments that we present were done on a fragment (345x340 pixels) of a real
colour infra-red aerial image of a scene composed of tree crowns. The image viewpoint is
close to the nadir, i.e. the tree crowns are seen from above. We chose this part of the image
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Figure 6.4: Left: original synthetic binary image with added noise. Right: final object
configuration. The numbers in the interiors of the curves show the value of H2 (black
background), demonstrating that there is no degeneracy in the solution, and the value of H1.

Figure 6.5: Illustration of the effect of delineation of two objects by one curve, when the
prior curve term Ecurve is dominated by the image term Eimage.

for our experiments in order to test the approach on a scene of objects that have quite regular
as well as very spiky shapes, and with some overlapping objects. In figures 6.8 and 6.9 we
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Figure 6.6: Left: original real image. Right: final object configuration. The numbers in the
interiors of the curves show the value of H2 (black background), demonstrating that there is
no degeneracy in the solution, and the value of H1.

Figure 6.7: Illustration of two detected flowers connected by their stems, when Ecurve is
not weighted enough, allowing the curve shape to be far from a circle. The numbers in the
interiors of the curves show the value of H2 (black background), demonstrating that there is
no degeneracy in the solution, and the value of H1.

show the configurations resulting from two tests: the first test is done without favouring the
smoothness term; the second test is done with the smoothness term favoured. The interior
of the detected curves is transparent to show the object overlaps. For this image, the method
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for separating the objects by increasing the smoothness term deals with the problem only to
some degree as we can see from the result. Two overlapping crowns situated in the bottom
of the image are detected by two distinct objects that overlap, (as the weight in front of the
interaction term varies, the degree of overlap changes), whereas in the left and middle part
of the image we can observe the inverse effect. As in the previous experiments, the preci-
sion in the delineation of the objects decreases as we favour Ecurve, which also controls the
curve length, thus preventing the curve from being stretched much in different directions.
As result, the boundaries and thus the details of the curves are greatly smoothed, e.g. the
peaks of the spruce trees (the trees with spiky shapes). The computational time for this
image was approximately 15 mn for both tests.

A set of experiments of different levels of complexity was done to test the model. From
the obtained results, we can conclude that this approach is well suited to scenes composed
of objects that do not vary too much in shape and size within a class, and that have smooth
enough boundaries. In this case, accuracy in the number of extracted objects can be achieved
by favouring the smoothness term that controls, as well, the length of the curve. The model
can thus to some degree separate objects that overlap, but this leads to imprecision in delin-
eating objects.

The solution that we propose to deal with this problem is to incorporate more specific
prior information into the energy E in order to detect objects in scenes of high complexity
containing overlapping objects, in particular, in forests, cf figure 6.8, with a resolution ex-
tending almost to leaf level. We define a method for incorporating prior information about
the shape of objects into the single-object model. This method is presented in the following
chapter.
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Figure 6.8: Top, left: original CIR image of tree crowns, c© CBA. Bottom, right: final
configuration obtained. The intermediate images show the configuration evolution during
the birth-and-death process. The numbers on the crowns show the interaction term value H2
(black background) and the data term value H1.
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Figure 6.9: Final configuration, when Ecurve is favoured in order to avoid detecting the
overlapping crowns as one object.





Chapter 7

Marked Point Process with shape
prior for multiple arbitrarily-shaped
object extraction

7.1 Introduction

In the previous chapter, we presented a marked point process model of multiple arbitrarily-
shaped objects: the restriction imposed by the simplified nature of the shape of objects in-
volved was lifted without increasing the dimension of the single-object space [Kulikova et al., 2010].
Every single object was represented by its boundary, a closed curve, but the set of possible
single objects (i.e. boundaries) was defined not a priori, but by the image data and a single-
object version of the model. A probability distribution was then defined on the configuration
space of an unknown number of objects. The single-object model considered included only
weak shape information, thus allowing the delineation of the distinct objects of arbitrary
and smooth enough boundaries, whereas overlapping objects with similar radiometric char-
acteristics were detected as a single object. A possible way to increase to some degree the
accuracy in the number of segmented objects consisted in favouring the energy smoothness
term, but this also decreased the precision of object delineation.

In this chapter, we define a method for incorporating strong prior information about the
shape of the objects sought into the single-object model, in order to deal with overlapping
objects with complex shapes without losing their geometric details and without significantly
increasing the computational complexity of estimation.

The extended MPP model including a strong shape prior can also be viewed as the active
contour methodology for an unknown a priori number of objects, where prior knowledge
about object shape is incorporated as well. Much work has already been devoted to the
active contour approach. Some of this work, e.g. [Caselles et al., 1997], includes only

87
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weak shape information, essentially smoothness, but can in principle detect multiple (al-
though not overlapping) objects using the level set representation [Osher and Fedkiw, 2003,
Sethian, 1999]. Other work includes much stronger prior information about shape. Cre-
mers et al. , for example, incorporate statistical prior information about the shape of the
object to be extracted in a modified Mumford-Shah functional, the segmenting curve be-
ing represented by a closed parametrized spline curve [Cremers et al., 2006c]. A statistical
model is then built on a set of training shapes using a Gaussian distribution on the spline
control point vectors, such that no projection on the subspace of training sample deforma-
tions is needed, in contrast with the approach described in [Leventon and Grimson, 2000].
Leventon et al. propose to include a statistical shape prior into the distance-function level
set representation of active contours. A statistical shape model is constructed using the dis-
tribution over a set of training shapes. An initial curve is embedded as the zero level set of
a higher dimensional surface, which is evolved so that its zero level set fits in the limit the
boundary of the target object. In [Rousson and Paragios, 2002, Cremers et al., 2006b] some
other methods incorporating strong shape prior are defined using a level set framework for
image segmentation. [Joshi and Srivastava, 2009] describes a way for incorporating prior
shape knowledge into an active contour model, where the prior statistical shape model is
built on the tangent space of non-linear shape manifold. The limitations of these methods
are the complexity of their application as well as the difficulty of treating an unknown num-
ber of distinct or overlapping objects (and in practice only single objects are treated).

Below, we describe a process for the incorporation of a shape prior information into the
MPP model defined in the previous chapter. The main idea of the model remains the same,
but the single-object model is extended. We give the details of the incorporated modifi-
cations in section 7.2. We define, first, the single-object space, where a single object is
defined by the data and the shape prior information, with a strong shape prior included us-
ing a representation of a curve by its centre and a radial variation around a circle, the shapes
being therefore ‘star domains’. Then, in section 7.3, we present a set of experiments on real
3cm/pixel resolution aerial images of forest. Finally, we summarize in section 7.4, where we
also give a comparative example of the application to tree crown extraction of MPP models
with different shape priors included: from simply-shaped objects to arbitrarily-shaped ones
with strong shape prior information incorporated.

7.2 Single-object energy

We model individual object boundaries as closed planar curves γ : [0, 2π] → V ⊂ R2 lying
in the image domain V . The set of closed curves we consider here consists of ‘star domains’
parameterized by (x0, δr(t)), where x0 ∈ R

2 and δr : [0, 2π]→ R is a radial variation around
a circle γc(t) of radius r0 centred at x0. Then,

γ(t) = x0 + γc(t) + δγ(t) , (7.1)
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where γc(t) = (r0(t), θc(t)) = (r0, t), in Euclidean coordinates giving

γ(t) = x0 + ((r0 + δr(t)) cos θc(t), (r0 + δr(t)) sin θc(t))

=
(
xx

0, x
y
0

)
+ (r0 + δr(t)) (cos(t), sin(γ(t))) .

We suppose that we are given an energy functional E defined on the space Γ of these curves.
This energy functional depends on the image data as defined in the previous chapter and will
be detailed below for this representation.

We recall here the procedure for constructing the single-object space without increasing its
dimension. We consider an initial curve γ ∈ Γ; we then perform gradient descent to arrive
at a local minimum of E, giving a second curve, γ̃ ∈ Γ. The map ·̃ : Γ → Γ takes every
curve γ ∈ Γ to a local minimum of the energy E. We define the space C of circles lying in
the image domain, with radii in [rmin, rmax], parameterized by arc-length. We consider now
the single-object space Γo = C̃ as a set of objects locally adapted to the data. Then despite
allowing for potentially arbitrarily shaped star domains, the dimension of the single-object
space remains small: an object is defined by a ‘point’, the center of a circle in the domain
V and the radius of this circle, which is thus for one-dimensional object ‘mark’.

To define the space of possible single objects Γo, we have to define the energy E. As
mentioned in Introduction, we define it as the sum of a term related to the image and a term
including prior information about object shape:

E(γ) = Eimage(γ) + Ecurve(γ) . (7.2)

The image energy term is defined as a weighted sum:

Eimage(γ) = λgEgrad(γ) + λGEgauss(γ) .

where the terms are defined as follows:

Egrad(γ) =

∫
[0,2π]

dt n(γ(t)) · ∇I(γ(t)) , (7.3)

Egauss(γ) =

∫
R(γ)

d2x (G(x) − Ḡ(x)) , (7.4)

recall that n(γ(t)) is the (unnormalized) outward normal to the curve; I is the image; G(x) =
(I(x)−µ)2

2σ2 and Ḡ(x) =
(I(x)−µ̄)2

2σ̄2 ; and R(γ) is the region surrounded by the curve γ. The first
term favours objects with high image gradients normal to their boundaries. The second one
comes from a Gaussian model of the image, with parameters µ, σ, and µ̄, σ̄, estimated using
the object and background fragments of image.
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Thus Eimage is the same as in the previous model, whereas Ecurve is now defined as the sum
of two terms:

Ecurve(γ) = Esmth(γ) + Esh(γ) . (7.5)

We show below that it can be written in the following form:

Ecurve(γ) =
1

2π

"
[0,2π]

dtdt′ F(t − t′)δr(t)δr(t′) . (7.6)

The Esmth(γ) term favours boundary smoothness and a uniform parametrization of the
curve:

Esmth(γ) =

∫
[0,2π]

dt |γ̇(t)|2 , (7.7)

where γ̇ is the derivative of γ.

The second term Esh(γ) represents the prior energy associated with the curve shape. It is a
quadratic function of δr, which due to invariance to translations of the origin of the curve,
is diagonal in the Fourier basis on the circle, with the Fourier coefficients having zero mean
except at zero frequency, which corresponds to a change in radius, and is absorbed in r0.
The energy is thus defined by the variance of each Fourier component, g(k) = 1

4πσ(k)2 . The
function g(k) restricts or favours perturbations of the circle with different frequencies k,
thereby reflecting the specificities of the shapes of the objects to be detected in the image:

Esh(γ) = 2π
∑
k∈Z

g(k)|δ̂r(k)|2 ,

where
δ̂r(k) =

1
2π

∫
[0,2π]

dt exp(−ikt)δr(t) . (7.8)

Figures 7.1 and 7.2 show examples of shapes obtained as a circle of radius r0 with varia-
tions δ̂r(k) = σ(k) at different frequencies k.

Figure 7.1: Shape obtained as a perturbation of a circle at frequencies k = {5, 15}, with
δ̂r(5) = 5, and δ̂r(15) = 2, where r0 = 20.
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Figure 7.2: Shape obtained as a perturbation of a circle at frequencies k = {3, 15, 30, 50},
with δ̂r(3) = 1.5, δ̂r(15) = 0.5, δ̂r(30) = 0.3, δ̂r(50) = 0.2, where r0 = 20.

Notice that for our parameterized set of curves, the curve derivative in Euclidean coordi-
nates is given as follows:

γ̇(t) = (δṙ(t) cos(t) − (r0 + δr(t)) sin(t), δṙ(t) sin(t) + (r0 + δr(t)) cos(t)) .

The squared absolute value of γ(t) is then given by

|γ̇(t)|2 = δ̇r(t)2
+ (r0 + δr(t))2 , (7.9)

so that we can write:

Esmth(γ) =

∫
[0,2π]

dt (δ̇r(t)2
+ (r0 + δr(t))2)

= 2π

∑
k∈Z

(k2 + 1)|δ̂r(k)|2 + 2r0δ̂r(0) + r2
0

 .

Thus, the prior energy Ecurve takes the form:

Ecurve(γ) = 2π
∑
k∈Z

(k2 + 1 + g(k))|δ̂r(k)|2

+2π2r0δ̂r(0) + 2πr2
0 ,

taking into account that ẋx
0(t) = ẋy

0(t) = 0, defining a function f (k) = k2 + 1 + g(k), and
dropping both 2πr2

0, which is simply an additive constant, and the linear term 2π2r0δ̂r(0),
which serves only to change the mean of δ̂r(0), which we define to be zero, we can write:

Ecurve(γ(t)) = 2π
∑
k∈Z

f (k)|δ̂r(k)|2 . (7.10)
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Now using the inverse Fourier Transform of f (k) and taking into account equation (7.8),
equation (7.10) can be written as

Ecurve(γ) =
1

2π

∑
k∈Z

f (k)
"

[0,2π]
dtdt′eikte−ikt′δr(t)δr(t′)

=
1

2π

"
[0,2π]

dtdt′δr(t)δr(t′)
∑
k∈Z

eik(t−t′) f (k)

=
1

2π

"
[0,2π]

dtdt′δr(t)δr(t′)F(t − t′) .

Thus we obtain equation (7.6) where F(t − t′) =
∑

k∈Z exp ik(t − t′) f (k).

The algorithm makes uses of the functional derivative of E:

δE
δγ(t)

=

(
∂E

∂x0(γ)
,
δE
δδr(t)

)
, (7.11)

the components of which are found as described below.

We define a clockwise traveling direction along the curve, so that an outward normal to
the curve is given as follows:

nx(γ(t)) = −γ̇y(t), (7.12)

ny(γ(t)) = γ̇x(t) .

Then, we define a vector field v(γ) as a rotated image vector field ∇I(γ) as follows:

vx(γ(t)) = − ∂yI(γ(t)) (7.13)

vy(γ(t)) = ∂xI(γ(t))

so that we can write:

Egrad(γ) =

∫
[0,2π]

dt n(γ(t)) · ∇I(γ(t)) =

∫
[0,2π]

dt γ̇(t) · v(γ(t)) . (7.14)

The components of the derivative ∂Egrad
∂x0(γ) are then given by the following expressions:

∂Egrad

∂xx
0(γ)

=

∫
[0,2π]

dt(γ̇x∂xvx + γ̇y∂xvy)(t)

=

∫
[0,2π]

dt(−γ̇x∂x∂yI + γ̇y∂x∂xI)(t) , (7.15)
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and

∂Egrad

∂xy
0(γ)

=

∫
[0,2π]

dt(γ̇x∂yvx + γ̇y∂yvy)(t)

=

∫
[0,2π]

dt(−γ̇x∂y∂yI + γ̇y∂y∂xI)(t) . (7.16)

In the same way that we previously computed ∂Egrad
∂x0(γ) , we define now a function h(x) =

∇ · U(x) = (G − Ḡ)(x) in order to present (7.4) using Green’s theorem as follows:

Egauss(γ) =

∫
R(γ)

d2x (G(x) − Ḡ(x))

=

∫
R(γ)

d2x h(x) (7.17)

=

∫
R(γ)

d2x ∇ · U(x) (7.18)

=

∫
∂R(γ)

dt n(γ(t)) · U(γ(t)) , (7.19)

i.e. it takes thus the same form as the image gradient term (7.14). Using a curve derivative
we can re-write it as: ∫

γ(t)
dt n(γ(t)) · U(γ(t)) =

∫
γ(t)

dt γ̇(t) · v(γ(t)) ,

where

vx(γ(t)) = − Uy(γ(t)) (7.20)

vy(γ(t)) = U x(γ(t)) .

The components of ∂Egauss
∂x0(γ) thus take the form:

∂Egauss

∂xx
0(γ)

=

∫
[0,2π]

dt
(
γ̇x(t)∂xvx(γ(t)) + γ̇y(t)∂xvy(γ(t))

)
=

∫
[0,2π]

dt
(
− γ̇x(t)∂xUy(γ(t)) + γ̇y(t)∂xU x(γ(t))

)
, (7.21)

and

∂Egauss

∂xy
0(γ)

=

∫
[0,2π]

dt
(
γ̇x(t)∂yvx(γ(t)) + γ̇y(t)∂yvy(γ(t))

)
=

∫
[0,2π]

dt
(
− γ̇x(t)∂yUy(γ(t)) + γ̇y(t)∂yU x(γ(t))

)
. (7.22)
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We consider h(γ) = ∇ ·U(γ), and assume then ∂xU x(γ) = ph(γ) and ∂yUy = qh(γ), where
p + q = 1, so that we can write:

U x = p
∫ x

0
dx′ h(x′, y)

Uy = q
∫ y

0
dy′ h(x, y′) .

The mixed derivatives of U thus take the following form:

∂yU x = p
∂

∂y

∫ x

0
dx′ h(x′, y)

∂xUy = q
∂

∂x

∫ y

0
dy′ h(x, y′) .

The energy derivative w.r.t. to x0 can now be written as

∂Eimage

∂x0i(γ)
= λg

∫
[0,2π]

dt (−n(γ(t))) · ∂i∇I(γ(t))

+λG

∫
[0,2π]

dt (−n(γ(t))) · ∂iU(γ(t)) ,

with U a vector field satisfying ∇ · U = (G − Ḡ) and i = {x, y}.

The components of the energy functional derivative w.r.t δr(t) are given in following way.
For the prior curve term, we obtain:

δEcurve

δδr(t)
=

1
π

∫
[0,2π]

dt′ F(t − t′)δr(t′) . (7.23)

The image gradient term, taking into account the expression for γ̇(t), gives

Egrad(γ) =

∫
[0,2π]

dt n(γ(t)) · ∇I(γ(t)) =

∫
[0,2π]

dt γ̇(t) · v(t)

=

∫
[0,2π]

dt[(δ̇r(t) cos(t) − (r0 + δr(t)) sin(t))vx(t) (7.24)

+(δ̇r(t) sin(t) + (r0 + δr(t)) cos(t))vy(t)] ;

then its derivative can be written as:

δEgrad

δδr(t)
= (r0 + δr(t))(∂xvy(δr(t)) − ∂yvx(δr(t)))

= (r0 + δr(t))
[
∂2

xI + ∂2
y I

]
(γ(t)) . (7.25)
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For the Gaussian term, taking into account, that

Egauss(γ) = λG

∫
R(γ)

d2x (G(x) − Ḡ(x)) =

∫
γ(t)

dt γ̇(t) · v(γ(t)) ,

the derivative is computed analogously

δEgauss

δδr(t)
= (r0 + δr(t))(∂xvy(δr(t)) − ∂yvx(δr(t)))

= (r0 + δr(t))(∂xU x(δr(t)) + ∂yUy(δr(t))) (7.26)

= (r0 + δr(t))(G − Ḡ)(γ(t)) .

Taking now the sum of the components (7.15), (7.16), (7.21), and (7.22), the total energy
derivative w.r.t. to δr(t) takes form:

δE
δδr(t)

= λg(r0 + δr(t))∇2I(γ(t))

+λG(r0 + δr(t))(G − Ḡ)(γ(t)) (7.27)

+
1
π

∫
[0,2π]

dt′F(t − t′)δr(t′) .

For the computational details, the reader can refer to the appendix B.2.

Figures 7.3 and 7.4 show gradient descent experiments using the energy E. For the first
experiment, the function g(k) is defined so as to discourage all frequencies: g(k) = 2,
k = 0, 2 . . . ,N/2, while for k = 1, g(k) is fixed to the maximum machine value, since δ̂r(1)
acts as a translation. The model thus favours delineation by a curve close to a circle with
radius r0 = 75. For the second experiment, the frequency k = 4 was relaxed (g(4) = 0.0002).
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Figure 7.3: Synthetic image example: gradient descent driven by E, where g(k) is defined
so as to discourage variations around a circle of radius r0.

Figure 7.4: Synthetic image example: gradient descent driven by E, where g(k) is defined so
as to discourage the variations around a circle of radius r0, except that of frequency k = 4.



7.3. Experimental results 97

7.3 Experimental results

In this section we present several results obtained using the MPP model for arbitrarily-
shaped multiple object extraction with strong object shape prior incorporated. The exper-
iments were performed on one band of very high resolution colour infra-red aerial images
that represent scenes composed of visible top part of tree crowns. The images show natu-
ral forest zones, the trees thus being of different species, age and sizes; many of them are
grouped into twos, threes or more. We show, first, a result obtained on a fragment of an
image with distinct as well as overlapping crowns, and visible as well as partly cluttered
crowns, the trees being of different species and thus of diverse shape e.g. spiky spruces and
smoother birches and spruces again. It is a representative example of an image scene, where
the differences in the accuracy of delineation and the number of detected objects between
the two models can be simply viewed and compared. We then show experimental results on
another part of an image where the trees are of remarkably different sizes; configurations at
different iterations of the birth-and-death process are shown. Finally, we present the results
of experiments on complete images (900x900 pixels) with different scene complexities. For
Model II, the parameters of the annealing scheme were fixed for all the experiments: the
time-discretisation step update ∆δ = 0.99 and the inverse temperature update ∆β = 1

0.993 .
The parameters of the image model, i.e. σ, µ, σ̄, µ̄, are those learned using examples of ob-
ject and background for the tests of Model I. The radius range depends on the size of object
sought relative to the image resolution, and thus can be easily calibrated. The weighting
parameters are learned experimentally.

Visible tree crowns seen from vertically above have roughly circular shape with pertur-
bations corresponding to the branches or leaves. We define thus the function g(k) so as
to discourage low frequencies, and in particular k = 2, in order to avoid the extraction of
two overlapping trees as a single elongated object, as well as to favour roughly circular ob-
jects with small perturbations corresponding to branches or leaves (g(0) = 0.04, g(2) = 2,
g(3) = 0.96; g(k) = 1.2 for k = 4, . . . , 12; g(k) = 0.0015, when k = 13, . . . ,N/2 ).

We might think that it is easy to estimate the function g(k) because of the choice of a
Gaussian model and the available set of tree crown shapes studied in Part I of the thesis.
However, most of the shapes from that set are not “star-shapes”, which is because they
were extracted so as to preserve the maximum of details. A solution of this problem, which
can be seen as a future work, would consist either in simplifying the shapes so as to make
them star-domains; or in further studying them in order to develop another more appropriate
model for tree crown shape modeling.

As mentioned above, we demonstrate first the results of object extraction on a fragment of
an image (cf Fig. 7.5), that was also used to test the model without the strong shape prior.
The figure shows that the strong shape information allows us to extract nearby and even
overlapping objects without paying the price of greatly simplifying their geometry.
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Figure 7.5: Left: original CIR image of tree crowns, c© CBA. Right: final configuration
obtained. The numbers show the interaction term value H2 (black background) and the data
term value H1.

Figure 7.6 shows results obtained on an image fragment, where the crowns are of compa-
rable sizes except one (pine) overlapping with another crown in the middle top part of the
image. The pine crown is approximately twice as big as other contours in the image. Since
a shape prior keeps the curve as close as possible to a circle of an average radius, the curve
can not thus evolve so as to delineate the whole pine crown, which is finally detected as two
slightly overlapping objects adjusted to the crown boundary. We note also, that during the
iterations, the crowns of bigger size are detected first. They have lower energy, essentially
because of the Gaussian term. Then, as the temperature decreases, the smaller objects ‘sur-
vive’.

Finally, figures 7.7 and 7.8 demonstrate the results of the experiments on other images of
900x900 pixels using the same model parameters as for the previous experiments, except
that the radius range [rmin, rmax] is wider and is defined w.r.t. to these two images. The im-
ages represent complex scenes that contain mostly overlapping visible as well as occluded
tree crowns of various sizes. The results show the overlapped crowns of different species
and sizes detected as distinct objects quite accurately, whereas delineation becomes a very
challenging task when the crowns are of the same species, being probably of approximately
the same age and grouped together, e.g. a group of birch crowns in the middle right part
of the image in Fig. 7.7. Here the role of the strong shape prior becomes crucial, and even
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more so for the case of aspen trees, where the crowns are composed of random light and
dark disjoint regions, cf left upper part of the original image in Fig. 7.7, and especially
the bottom of the image in Fig. 7.8. In this case, it is impossible to delineate the crowns
even manually, at least for a non-expert. These groups of trees were recovered as distinct
overlapping objects, which were placed at the top parts of the crowns, where the vegetation
is more dense, reflecting thus more infrared light. As in the previous experiments, we can
see the tendency of to add smaller crowns to the current configuration as the temperature
decreases. The final configurations obtained shown in the figures miss some small parts
of crowns of trees. These could be young and thus have a very small visible part of the
crown, or could be shadowed by the neighbouring trees, or lower branches. These tree
fragments are not detected as whole distinct objects, they have a size and a shape far from
the object shape considered and controlled by the shape prior term included. The compu-
tation time of the C++ programme for these two images was 85mn on a 2.16GHz processor.

7.4 Summary

In the previous chapter, we presented the extension to arbitrarily shaped objects of the
marked point process framework used previously for the extraction of objects with simple
geometries from images. In this chapter, we extend this approach further by incorporating
strong prior knowledge about the shape of the objects sought, without increasing the dimen-
sionality of the single-object space (and thereby the computational complexity). The set of
possible single objects is defined using the local minima of an energy that incorporates in-
formation coming from the data and strong prior shape information about the objects to be
segmented. This allows us to deal with configurations of overlapping objects with complex
shapes. Using strong prior shape information has another advantage: even if the object to be
extracted is partly obscured or cluttered, by, for example, shadow, like the spiky crowns of
spruce trees, the object may nevertheless, to some degree of accuracy, be correctly extracted
as a single object.

7.4.1 Comparison of models using different shape priors

In order to demonstrate the evolution of marked point process models taking now into ac-
count the models developed in our work, we present the results of object extraction obtained
using three different models, cf Fig. 7.9. The top right image in the figure shows the config-
uration obtained using simply-shaped objects. For this experiment, the 2D model for tree
crown extraction with objects represented by ellipses was used as described in [Perrin, 2006].
The optimisation procedure was, however, performed by sampling from a multiple birth-and
death process. The data energy term in this model is defined as a function of the Bhat-
tacharya distance between the grey level distributions of the set of pixels belonging to the
object interior and those of the object border of some fixed size, whereas the interaction en-
ergy term controls the overlapping of objects. The bottom left image of the figure shows the
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configuration obtained using the representation and energy described in the previous chap-
ter, with no strong shape information included, i.e. with Esh ≡ 0, or equivalently, g ≡ 0. The
bottom right image shows the result obtained using the energy described in this chapter, i.e.
with strong prior shape information included.

An MPP model using simple objects allows the rapid extraction of the objects from an
image (4 mn for the first experiment and approximately 15 mn for the second and third
experiments), but the geometrical accuracy is very low for objects with complex shapes.
Therefore, this type of model is an appropriate tool for the detection of objects in lower res-
olution images. The second approach, an MPP model for the extraction of arbitrarily-shaped
objects with only weak shape information, is geometrically far more accurate, while not in-
creasing the computational complexity unduly. The limitations of this approach, however,
are that because it uses only weak shape information to define the possible single objects,
it cannot, first, detect different types of objects with similar radiometric characteristics; and
second, separate two or more overlapping objects. The MPP model for arbitrarily-shaped
objects including strong prior shape information deals with both these limitations. For
example, in the bottom left corner of the bottom left image in figure 7.9, there are two over-
lapping tree crowns that are extracted as one object using the second approach, but which
are extracted as two distinct overlapping objects using the model presented in this chapter.
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Figure 7.6: Top, left: original CIR image of tree crowns, c© CBA. Bottom, right: final
configuration obtained. The intermediate images show the configuration evolution during
the birth-and-death process at iterations numbered in the top right corner of the images. The
numbers on the crowns show the interaction term value H2 (black background) and the data
term value H1.
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Figure 7.7: Top, left: original CIR image of tree crowns, c© CBA. Bottom, right: final
configuration obtained. The intermediate images show the configuration evolution during
the birth-and-death process. The numbers on the crowns show the interaction term value H2
(black background) and the data term value H1.
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Figure 7.8: Top, left: original CIR image of tree crowns, c© CBA. Bottom, right: final
configuration obtained. The intermediate images show the configuration evolution during
the birth-and-death process. The numbers on the crowns show the interaction term value H2
(black background) and the data term value H1.
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Figure 7.9: Top, left: original CIR image of tree crowns, c©CBA. Top, right: final configura-
tion using ellipse-shaped objects. Bottom, left: final configuration using arbitrarily-shaped
objects obtained using an MPP without shape prior. Bottom, right: final configuration of
arbitrarily-shaped objects obtained using an MPP with shape prior. The numbers show the
interaction term value H2 (black background) and the data term value H1.
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In part I of this manuscript, we presented a study based on shape information (cf section 2.2)
completed by radiometric and textural characteristics of tree crowns for their classification
into species (cf section 3.4), the trees being of the four most prevalent species in Swedish
forest. The classification is based on crowns delineated from colour infra-red 3 cm resolu-
tion aerial images of forest zones.

In part II, we presented a first extension of the marked point process framework for the
automatic extraction from images of multiple objects with simple geometric shape to the
extraction of objects with arbitrary, complex shape. Then we proposed a method for incor-
porating strong prior information about the shape of the objects that we wish to extract (cf
section 7.4).

Referring to the topics addressed during this PhD thesis, the perspectives, conceivable as
longer term goals, offered by this work are described below.

As seen in part I, tree crowns vary greatly in shape between classes as well as within
each class due to the fact that natural forests are composed of trees of diverse species and
age. Photographs of such forest zones represent thus very non-homogeneous scenes. While
applying our model to such images, the model is limited by its general shape prior. Con-
cerning this particular application, for more accurate delineation of tree crowns necessary,
for instance, for tree crown classification, we propose to further extend the model to the ex-
traction of arbitrarily-shaped objects by considering several classes. In this case, the space
of single-objects consists of objects locally adapted to the data with different shape priors
included. An object has thus an additional mark, a label lωi corresponding to the class defin-
ing the shape prior. Therefore, every object now defined by ωi = (xωi

0 , r
ωi
0 , l

ωi) is obtained
via gradient descent with the energy H1 from a circle with centre xωi

0 and radius rωi
0 , where

H1 includes the shape prior information to which lωi corresponds. The energy H(ω) can be
then written:

H(ω) = c0

∑
i

∑
l

Hl
1(ωi) δ(lωi , l) +

∑
i, j

H2(ωi, ω j) ,

where ω is a configuration of objects ωi.

Here, we present a first result using such a model on a fragment of a one band CIR image
of two tree crowns. We have chosen for this experiment two examples of birch and spruce
tree crowns, cf figures 8.13 and 8.14, which show the evolution of a curve under gradient
descent with energy H1 with two different shape priors: a ‘birch’ prior, with g(k) cho-
sen to encourage curves with perturbations of small amplitude corresponding to the leaves,
and a ‘spruce’ prior with g(k) favouring only low frequency perturbations representing the
branches. The labels are then l =

{
‘birch’, ‘spruce’

}
.

Figure 8.15 shows extraction of two crowns with two shape priors included. In both cases,
using the right prior leads to a better delineation of the crown.
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Figure 8.10: Evolution of a curve under gradient descent of energy H1 with the ‘birch’
shape prior (top) and the ‘spruce’ shape prior (bottom). The image represents a spruce tree
crown.

Figure 8.11: Evolution of a curve under gradient descent with energy H1 with the ‘birch’
shape prior (top) and the ‘spruce’ shape prior (bottom). The image represents a birch tree
crown.
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Figure 8.12: Left: a fragment of an original CIR image of tree crowns, c© CBA. Right: tree
crowns extracted with ‘birch’ or‘spruce’ shape priors included. The numbers on the crowns
show the interaction term value H2 (black background) and the data term value H1.

The data energy term H1(ωi) = E(ω̃i) is written in the form of an active contour, which
allowed us to include more specific shape prior information into the single-object model.
We could thus think to add another type of information, for example, radiometric or tex-
tural, typical to one or another class, so that a single object can be presented as ωi =

(xωi
0 , r

ωi
0 , l

ωi
sh, l

ωi
txt), where lωi

sh is a label for a class of shapes, and lωi
txt - for a class depend-

ing on texture. This type of model could be seen as a joint tree extraction and classification
algorithm.

The models developed include numerous parameters which were calibrated (radius range
for circle initialization), estimated from object and background examples (parameters aris-
ing from the Gaussian image model), or learned from experiments (weighting parameters).
Another possible continuation of this work consists in estimating these parameters. Classi-
cal classification methods such as k-means allow the estimation of, for instance, the param-
eters related to the data. In [Chatelain et al., 2009], a method for estimating the temperature
T of the annealing scheme and the parameter weighting the data and interaction energy
terms is proposed in the case of a simple marked point process using discs. Developing a
fully automatic approach is nevertheless an open and challenging problem.
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Dans la première partie du manuscrit, nous présentons une étude fondée sur l’information
des formes (cf sous-chapitre 2.2), et complétée par les caractéristiques radiométrique et de
texture des couronnes des arbres pour classifier, selon leur espèce, des arbres appartenant
aux quatres espèces les plus représentées dans les forêts suédoises (cf sous-chapitre 3.4). La
classification est fondée sur les couronnes délinées d’images aériennes infra-rouge couleur
de zones forestières à 3 cm de résolution frounies pas l’Uiversité des sciences agricoles de
Suède.

Dans la seconde partie de la thèse, nous introduison tout d’abord une extension du modèle
de processus ponctuels marqués pour l’extraction automatique de multiples objets de formes
géométriques simples à des objets de formes arbitrairement complexes à partir d’une im-
age. Puis, nous proposons une méthode pour inclure l’information a priori sur la forme des
objets à extraire (cf sous-chapitre 7.4).

Se référant aux thèmes abordés au cours de cette thèse, différentes perspectives peuvent
être envisagées.

Comme nous l’avons vu dans la partie I, la forme des couronnes des arbres varie grande-
ment selon les classes; et même selon les arbres de chaque classe. Cela est dû au fait que
les forêts naturelles sont composées d’arbres d’espèces et d’âges différents. Les photogra-
phies de telles forêts représentent donc des scènes très hétérogènes. L’application à de telles
images du modèle présenté est donc limitée par la généralité du critère de forme a priori.
Pour cette raison, nous proposons ici d’étendre le modèle d’extraction de formes arbitraires
en considérant maitenant plusieurs classes. Ainsi, l’espace d’objets simples est constitué
d’objets adaptés localement aux données avec des informations a priori différentes. L’objet
a donc une marque supplémentaire, une étiquette lωi correspondant à la classe définissant l’a
priori sur la forme incorporée. Alors, chaque objet, maintenant défini par ωi = (xωi

0 , r
ωi
0 , l

ωi),
est obtenu via une descente de gradient de l’énergie H1 à partir d’un cercle de centre xωi

0 et
de rayon rωi

0 , où H1 contient l’information a priori sur la forme à laquelle correspond lωi .
Une configuration ω est composée d’un ensemble d’objets ωi. L’énergie H(ω) peut donc
s’écrire comme :

H(ω) = c0

∑
i

∑
l

Hl
1(ωi) δ(lωi , l) +

∑
i, j

H2(ωi, ω j) .

Voici ci-dessous un premier résultat utilisant un tel modèle sur deux couronnes d’arbres
dans un fragment d’image infra-rouge couleur mono canal. Les figures 8.13 et 8.14 mon-
trent l’évolution de la courbe selon le gradient d’énergie H1 contenant une information a
priori sur la forme g(k) du type ‘bouleau’ qui favorise des perturbations de petite amplitude
correspondant aux feuilles, et une information a priori du type ‘épicéa’ dans laquelle l’a
priori sur la forme favorise uniquement les perturbations de petites fréquences représentant
les branches. Les formes sont étiquetées : l =

{
‘bouleau’, ‘épicé’

}
.
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Figure 8.13: Evolution de la courbe par la descente de gradient de l’énergie H1 avec l’a
priori de forme du type ‘bouleau’ (en haut) et du type ‘épicéa’ (en bas). L’image représente
une couronne d’épicéa. c© CBA.

Figure 8.14: Evolution de la courbe par la descente de gradient de l’énergie H1 avec l’a
priori de forme du type ‘bouleau’ (en haut) et du type ‘épicéa’ (en bas). L’image représente
une couronne de bouleau. c© CBA.

La figure 8.15 montre l’extraction de deux couronnes d’arbres en utilisant deux informa-
tions a priori différentes. Dans les deux cas, l’utilisation de l’information a priori corre-
spondant à l’espèce d’arbres conduit à une meilleure extraction de la forme.
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Figure 8.15: Gauche: un fragment de l’image originale IRC représentant des couronnes
d’arbres, c© CBA. Droite: couronnes extraites avec les deux a priori différents de types
‘bouleau’ et ‘épicéa’. Les chiffres sur les couronnes montrent les valeurs des termes
d’interaction H2 (fond noir) et d’attache aux donnés H1.

Le terme d’énergie d’attache aux données H1(ωi) = E(ω̃i) est écrit sous la forme d’un
contour actif, ce qui permet d’inclure plus d’information a priori sur la forme dans le mod-
èle d’objet individuel. Nous pourrions appliquer cette même méthode aux autres types
d’attributs liés à l’image : la radiométrie, la texture caractéristique d’une classe ou l’autre,
de sorte qu’un seul objet peut être présenté par ωi = (xωi

0 , r
ωi
0 , l

ωi
sh, l

ωi
txt), où lωi

sh est une éti-
quette pour la classe de formes, et lωi

txt une étiquette pour la classe de textures. Ce type de
modèle peut-être considéré à la fois comme une technique d’extraction et de classification.

Les modèles développés utilisent de nombreux paramètres qui ont été calibrés (variation
de la taille du rayon à l’initialisation des cercles), estimés à partir des objets et du fond de
l’image (paramètres provenants du modèle supposé gaussien), ou empiriquement fixés au
fur et à mesure des expériences (paramètres de pondération). Une suite possible de ce tra-
vail serait donc l’automatisation de l’estimation des paramètres. Les méthodes classiques
de classification, comme la méthode des k-moyennes, permettent, par exemple, l’estimation
des paramètres liés aux données. Une méthode d’estimation de la température dans le
schéma du recuit simmulé, dans le cas de PPM simple utilisant des disques, est proposé
dans [Chatelain et al., 2009]. Néanmoins, le développement d’une approche complètement
automatique reste un problème ouvert et un enjeu déterminant pour permettre une utilisation
de ce modèle par un plus large public.
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Appendix A

Theory review

In this chapter we recall some theoretical issues that were not included in the main text.

A.1 Support Vector Machines

SVMs are a set of supervised learning methods for classification and regression. They
work by finding the maximum separation (margin) between classes using a set of observa-
tions called the training data. SVMs are also called maximum margin classifiers since they
minimize the empirical classification error and maximize the geometric margin simultane-
ously [Vapnik, 1998].

A.1.1 Linear SVM

Separable case

Given training data (xi, yi), i = 1, ...,N, where xi ∈ Rm and yi ∈ {−1, 1} denoting the class
to which xi belongs, SVM looks for the Optimal Separating Hyperplane that maximizes the
distance between the closest training samples of the two classes, also called the ‘margin’.

The separating hyperplane is defined as follows w · x + b = 0. The vector w is a vector
normal to the hyperplane and b is the offset parameter allowing us to increase the margin.
So the classifier is given by f : x ∈ Rm 7−→ sign(w · x + b) ∈ {−1, 1} , i.e. all the training
data satisfy the following constraints:{

w · xi + b ≥ 0 if yi = +1
w · xi + b ≤ 0 if yi = −1

These constraints can be described by a set of inequalities:

yi(w · xi + b) ≥ 1 , ∀i (A.1)
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To find the hyperplane that gives the maximum margin 2/‖w‖ (for details see [Burgers, 1998]),
we minimize ‖w‖2, subject to the constraints (A.1). This leads to the following quadratic
optimization problem:

min
(w,b)

‖w‖2

2

subject to : yi(w · xi + b) ≥ 1, ∀i.

By introducing the Lagrange multipliers λi, i = 1, ..,N, one for each inequality constraint
(A.1), we construct the dual problem [Burgers, 1998]:

max
λ

(
L(λ) =

N∑
i=1

λi −
1
2

N∑
i=1

N∑
j=1

λiλ jyiy jxi · x j

)
,

subject to
N∑

i=1

λiyi = 0 , 0 ≤ λi , ∀i,

which is a convex quadratic optimization problem subject to linear constraints. Thus, the
solution is given by w =

∑N
i=1 λiyixi and b = yi − w · xi, for i : λi , 0. The classification

function becomes:

f (x) =

N∑
i=1

λiyixi · x + b

Nonseparable case

For nonlinearly separable data, slack variables ξi and a regularization parameter C are in-
troduced to deal with misclassified samples, i.e. to relax the constraints (see Fig. A.1). By
introducing them into the optimization problem, we obtain:

min
(w,b)

‖w‖2

2
+ C

N∑
i=1

ξi,

subject to : yi(w · xi + b) ≥ 1 − ξi , ξi ≥ 0, ∀i.

Using the Lagrange multipliers, this quadratic problem becomes:

max
λ

(
L(λ) =

N∑
i=1

λi −
1
2

N∑
i=1

N∑
j=1

λiλ jyiy jxi · x j

)
,

subject to
N∑

i=1

λiyi = 0 , 0 ≤ λi ≤ C , ∀i.
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Figure A.1: SVM classifier.

A.1.2 Nonlinear SVM

For cases where the decision function is not a linear function of the data, a non-linear clas-
sifier can be created by applying the kernel trick (originally proposed by Aizerman) to
maximum-margin hyperplanes (cf [Boser et al., 1992]). The resulting algorithm is formally
similar, except that every dot product xi · x j is replaced by a non-linear kernel function
K(xi, x j) = Φ(xi) · Φ(x j), with Φ : Rm 7−→ H, H being a Euclidean space generally of a
higher dimension. This allows the algorithm to fit the maximum-margin linear hyperplane
in the space H.

The classification function then becomes:

f (x) =

N∑
i=1

λiyiK(xi, x) + b.

Note that there exists a mapping Φ if K(xi, x j) satisfies the Mercer’s condition [Vapnik, 1995].





Appendix B

Details of calculations

In this appendix, we detail the calculation of the variational derivatives of the energy terms
used to perform gradient descent to define the single-object space for the marked point
process models developed and presented in the second part of this thesis .

B.1 Model I

To compute the variational derivative of the image energy term Eimage(γ) defined by equa-
tion 6.2, we need to vary both of the terms it composing. It was shown, using Green’s
theorem, that the Gaussian term Egauss(γ) can be written in the same way as the image gra-
dient term Egrad(γ). Let us give the computation details for the image gradient term; the
variation of the Gaussian term is computed analogously.

Egrad(γ) =

∫
[0,2π]

dt n(γ(t)) · ∇I(γ(t)) =

∫
[0,2π]

dt γ̇(t) · v(γ(t)) , (B.1)

where

vx(γ(t)) = − ∂yI(γ(t)),

vy(γ(t)) = ∂xI(γ(t)).

Variation of (B.1) is given by

δγ(t)Egrad(γ) = Egrad(γ + δγ) − E(γ)

=

∫
[0,2π]

dt (γ̇(t) + δγ̇(t))v(γ(t)) +

∫
[0,2π]

dt γ̇(t)δγ(t)v(γ(t)) −
∫

[0,2π]
dt γ̇(t) · v(γ(t))

=

∫
[0,2π]

dt δγ̇(t)v(γ(t)) +

∫
[0,2π]

dt γ̇(t)δγ(t)v(γ(t)) . (B.2)
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Integration by parts of the x component of the first term of (B.2) gives:∫
[0,2π]

dt δγ̇x(t)vx(γ(t)) =
d
dt

vx(γ(t))δγx(t)|2π0 −

∫
[0,2π]

dt δγx(t)
d
dt

vx(γ(t))

= −

∫
[0,2π]

dt δγx(t)
(
∂xvx(γ(t))γ̇x(t) + ∂yvx(γ(t))γ̇y(t)

)
.

The x component of (B.2) then takes the form:

δγx Egrad(γ) = −

∫
[0,2π]

dt δγx(t)
(
∂xvx(γ(t))γ̇x(t) + ∂yvx(γ(t))γ̇y(t)

)
+

∫
[0,2π]

dt δγx(t)
(
∂xvx(γ(t))γ̇x(t) + ∂xvy(γ(t))γ̇y(t)

)
=

∫
[0,2π]

dt
[
−δγx(t)∂yvx(γ(t))γ̇y(t) + δγx(t)∂xvy(γ(t))γ̇y(t)

]
= −

∫
[0,2π]

dt δγx(t)γ̇y(t)
[
∂yvx(γ(t)) − ∂xvy(γ(t))

]
.

Analogously, the y component takes the form:

δγy Egrad =

∫
[0,2π]

dt
[
−δγy(t)∂xvy(γ(t))γ̇x(t) + δγy(t)∂yvx(γ(t))γ̇x(t)

]
= −

∫
[0,2π]

dt δγy(t)γ̇x(t)
[
∂xvy(γ(t)) − ∂yvx(γ(t))

]
.

The variational derivative of Egrad(γ) is thus

δEgrad(γ)
δγi(t)

= −γ̇ j(t)
[
∂ jvi(γ(t)) − ∂iv j(γ(t))

]
,

where i and j index the Euclidean coordinates on R2.

B.2 Model II

Here we detail the calculation of the variational derivative of the image gradient energy term
only. The expression for the Gaussian term is computed in the same way.

The image gradient term Egrad(γ) for the curves parametrized by (x0, δr(t)), where δr(t) is
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a radial variation around a circle of radius r0 and centred at x0, is given by

Egrad(γ) =

∫
[0,2π]

dt n(γ(t)) · ∇I(γ(t))

=

∫
[0,2π]

dt γ̇(t) · v(γ(t))

=

∫
[0,2π]

dt[(δ̇r(t) cos(t) − (r0 + δr(t)) sin(t))vx(γ(t))

(B.3)

+(δ̇r(t) sin(t) + (r0 + δr(t)) cos(t))vy(γ(t))] ,

taking into account that ẋx
0(t) = ẏx

0(t) = 0.

Let us develop expressions for the first and the second components of the functional deriva-
tive of E given by

δE
δγ(t)

=

(
∂E

∂x0(γ)
,
δE
δδr(t)

)
, (B.4)

Defining i and j indexing the Euclidean coordinates in R2, the derivatives of a curve are
given as follows

∂γi

∂x j
0(γ)

= δi
j ;

and the derivatives of v:

∂vx(γ(t))

∂x j
0(γ)

= ∂xvx ·
∂γx

∂x j
0

(t) + ∂yvx ·
∂γy

∂x j
0

(t) :

∂vx(γ(t))
∂xx

0(γ)
= ∂xvx(γ(t)) = −∂x∂yI(γ(t),

∂vx(γ(t))
∂xy

0(γ)
= ∂yvx(γ(t)) = ∂2

y I(γ(t)) ;

and

∂vy(γ(t))

∂x j
0(γ)

= ∂xvy ·
∂γx

∂x j
0

(t) + ∂yvy ·
∂γy

∂x j
0

(t) :

∂vy(γ(t))
∂xx

0(γ)
= ∂xvy(γ(t)) = ∂2

xI(γ(t)),

∂vy(γ(t))
∂xy

0(γ)
= ∂yvy(γ(t)) = ∂y∂xI(γ(t)) .
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The components of the derivative of Egrad can be written:

∂Egrad

∂xx
0(γ)

=

∫
[0,2π]

dt(γ̇x∂xvx + γ̇y∂xvy)(t)

=

∫
[0,2π]

dt(−γ̇x∂x∂yI + γ̇y∂x∂xI)(t), (B.5)

(B.6)
∂Egrad

∂xy
0(γ)

=

∫
[0,2π]

dt(γ̇x∂yvx + γ̇y∂yvy)(t)

=

∫
[0,2π]

dt(−γ̇x∂y∂yI + γ̇y∂y∂xI)(t) . (B.7)

Thus, we obtain:
∂Egrad

∂xi
0(γ)

=

∫
[0,2π]

dt (−n(γ(t))) · ∂i∇I(γ(t))) .

To compute, now, a variational derivative w.r.t. δr(t) of the image gradient energy term,
we write it as a sum of three terms using the notation p(t) = δr(t) to simplify the appearance
of the formulas:

Egrad(γ) =

∫
[0,2π]

dt
[

ṗ(t)
(

cos(t)vx(γ(t)) + sin(t)vy(γ(t))
)

(B.8)

−r0
(

sin(t)vx(γ(t)) + cos(t)vy(γ(t))
)

(B.9)

−p(t)
(

sin(t)vx(γ(t)) − cos(t)vy(γ(t))
)]

. (B.10)

In order to obtain an expression for the derivative of Egrad(γ) we vary separately every
term as detailed here below.

Firstly, we compute the derivative of the x component of v(γ).

δp(t)vx(γ(t)) = δp(t)vx(x0, p(t)) =

∫
[0,2π]

dt
δvx(γ(t))
δp(t)

δp(t)

=

∫
[0,2π]

dt
[
∂vx(γ(t))
∂γx(t)

·
∂γx(t)
∂p(t)

+
∂vx(γ(t))
∂γy(t)

·
∂γy(t)
∂p(t)

]
δp(t) ,(B.11)

δvx(γ(t))
δp(t)

=
∂vx(γ(t))
∂γx(t)

·
∂γx(t)
∂p(t)

+
∂vx(γ(t))
∂γy(t)

·
∂γy(t)
∂p(t)

(B.12)

= ∂xvx(γ(t)) cos(t) + ∂yvx(γ(t)) sin(t) .
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The derivative of the y component of v is calculated in the same way as for the x component
and takes the form:

δvy(γ(t))
δp(t)

= ∂xvy(γ(t)) cos(t) + ∂yvy(γ(t)) sin(t) .

Then, the variation of (B.8) is given by

δp(t)

(∫
[0,2π]

dt ṗ(t) cos(t)vx(p(t))
)

=

∫
[0,2π]

dt cos(t)δ ṗ(t)vx(p(t)) (B.13)

+

∫
[0,2π]

dt cos(t) ṗ(t)δvx(p(t)) .

Integrating by parts the first term we obtain:∫
[0,2π]

dt cos(t)δṗ(t)vx(p(t)) (B.14)

= cos(t)δvx(p(t))δp(t)|2π0 −

∫
[0,2π]

dt δp(t)
d
dt

[
cos(t)vx(p(t))

]
= −

∫
[0,2π]

dt δp(t)
[
− sin(t)vx(p(t)) + cos(t)

d
dt

vx(p(t))
]

=

∫
[0,2π]

dt δp(t) sin(t)vx(p(t)) −

−

∫
[0,2π]

dt δp(t) cos(t)
[
∂xvxγ̇x(t) + ∂yvxγ̇y(t)

]
.

Now, developing the above formula taking into account the expressions for the derivatives
of the field v, and the derivative of γ developed; and taking the sum with the second term of
the variation of (B.14) we find:

δp(t)

(∫
[0,2π]

dt ṗ(t) cos(t)vx(p(t))
)

(B.15)

=

∫
[0,2π]

dt δp(t) sin(t)vx(p(t))

−

∫
[0,2π]

dt δp(t) cos(t)[∂xvx( ṗ(t) cos(t) − (r0 + p(t)) sin(t))]

−

∫
[0,2π]

dt δp(t) cos(t)[∂xvx(p(t))(ṗ(t) sin(t) + (r0 + p(t)) cos(t))]

+

∫
[0,2π]

dt ṗ(t) cos(t)δp(t)
[
∂xvx(p(t)) cos(t) + ∂yvx(p(t)) sin(t)

]
=

∫
[0,2π]

dt δp(t) sin(t)vx(p(t)) −

−

∫
[0,2π]

dt δp(t) cos(t)(r0 + p(t))
[
−∂xvx(p(t)) sin(t) + ∂yvx(p(t)) cos(t)

]
.
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The derivative then takes the following form:

δ
(∫

[0,2π] dt ṗ(t) cos(t)vx(p(t))
)

δp(t)

= sin(t)vx(p(t)) − cos(t)(r0 + p(t))
[
−∂xvx(p(t)) sin(t) + ∂yvx(p(t)) cos(t)

]
. (B.16)

Analogously to (B.16),

δ
(∫

[0,2π] dt ṗ(t) sin(t)vy(p(t))
)

δp(t)

= − cos(t)vy(p(t)) − sin(t)(r0 + p(t))
[
−∂xvy(p) sin(t) + ∂yvy(p) cos(t)

]
. (B.17)

Then, the variation of (B.10) is given by

δp(t)

(∫
[0,2π]

dt p(t)(sin(t)vx(t))
)

=

∫
[0,2π]

dt δp(t) sin(t)vx(p(t)) (B.18)

+

∫
[0,2π]

dt p(t) sin(t)δvx(p(t)) .

Thus,

δ
(∫

[0,2π] dt p(t) sin(t)vx(t)
)

δp(t)

= sin(t)vx(p(t)) + p(t)sin(t)
[
−∂xvx(p(t)) cos(t) + ∂yvx(p(t)) sin(t)

]
; (B.19)

and analogously

δp(t)

(∫
[0,2π]

dt cos(t)vy(p(t))
)

=

∫
[0,2π]

dt δp(t) cos(t)vy(p(t)) (B.20)

+

∫
[0,2π]

dt p(t)cos(t)δvy(p(t)) ,

then,

δ
(∫

[0,2π] dt cos(t)vy(p(t))
)

δp(t)

= cos(t)vy(p(t)) + p(t) cos(t)
[
∂xvy(p(t)) cos(t) + ∂yvy(p(t)) sin(t)

]
. (B.21)

Now, taking the sum of the above four terms with the appropriate signs, we obtain:

( B.16) + ( B.17) + ( B.19) + ( B.21)

= − cos(t)
(
−r0∂xvx(p(t)) sin(t) + (r0 + p(t)∂yvx(p(t)) cos(t)

)
−sin(t)

(
r0∂yvy(p(t)) cos(t) − (r0 + p(t)∂xvy(p(t)) sin(t)

)
−p(t)

[
− cos(t)∂xvy(p(t)) cos(t) + sin(t)∂yvx(p(t)) sin(t)

]
.
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The variational derivative of (B.9) is given by

δ
(∫

[0,2π] dt r0(sin(t)vx(p(t)) + cos(t)vy(p(t)))
)

δp(t)

= r0 sin(t)
[
∂xvx(p(t)) cos(t) + ∂yvx(p(t)) sin(t)

]
+

+r0 cos(t)
[
∂xvy(p(t)) cos(t) + ∂yvy(p(t)) sin(t)

]
.

Finally, taking the sum of the two expressions above, the second component of the varia-
tional derivative of the image gradient term can be written as follows:

δEgrad

δp(t)
= (r0 + p(t))(∂xvy(p(t)) − ∂yvx(p(t))) (B.22)





Appendix C

Publications and scientific activities

International conferences

• M. S. Kulikova, M. Mani, A. Srivastava, X. Descombes, and J. Zerubia. ‘Tree Species
Classification Using Radiometry, Texture and Shape Based Features.’ In Proc. of
European Signal Processing Conference (EUSIPCO), Poznań, Poland, September,
2007.

• M. S. Kulikova, I. H. Jermyn, X. Descombes, E. Zhizhina, and J. Zerubia. ‘A Marked
Point Process Model with Strong Prior Shape Information for Extraction of Multi-
ple, Arbitrarily-Shaped Objects.’ In IEEE Signal-Image Technology & Internet-Based
Systems Conference (SITIS), Marakech, Morocco, December, 2009.

• M. S. Kulikova, I. H. Jermyn, X. Descombes, E. Zhizhina, and J. Zerubia. Extraction
of Arbitrarily Shaped Objects Using Stochastic Multiple Birth-and-Death Dynamics
and Active Contours. In Proc. of IS&T/SPIE Electronic Imaging Conference, San
Jose, USA, January 2010.

International workshops

• M. S. Kulikova, X. Descombes, and J. Zerubia. ‘Shape Recognition for Tree Species
Classification.’ EURANDOM workshop on image analysis and inverse problems,
Eindhoven, The Netherlands, 2006.

Seminars

• Seminar on ‘Marked point processes for multiple arbitrarily-shaped object extraction’
at Florida State University (FSU), USA, February 27, 2009.
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• Presentation of the work of thesis at the "Cross Seminar" Ariana/Asclepios/Odyssee
at INRIA Sophia-Antipolis, April 7, 2009.

Teaching

• Teaching assistant for ‘Games and Strategies’ for the first year students at Ecole Poly-
technique Nice-Sophia Antipolis, 64h, 2007.

• Teaching assistant for "Document Creation with (X)HTML/XML/LaTeX/MSOffice"
for the first year students at Ecole Polytechnique Nice-Sophia Antipolis, 64h, 2008.

• Teaching assistant for "Document Creation with (X)HTML/XML/XSLT/LaTeX/OOffice"
for the first year students at Ecole Polytechnique Nice-Sophia Antipolis, 64h, 2009.

Other scientific activities

• Presentation of the work of thesis (poster) at the "Shape Day" workshop, Statistics
Department, FSU, USA, April 6, 2007.

• Presentation of the work of thesis (poster) at the summer school ISSPR, Plymouth,
UK, July 22, 2007.

• Participation in the French-American INRIA/FSU Associated Team ‘SHAPES’, [http:
//www-sop.inria.fr/ariana/Projets/Shapes/].

• Participation in the French/Russian/Belorussian INRIA/IITP/UIIP Associated Team
‘ODESSA’ [http://www-sop.inria.fr/ariana/Projets/Odessa/] .

http://www-sop.inria.fr/ariana/Projets/Shapes/
http://www-sop.inria.fr/ariana/Projets/Shapes/
http://www-sop.inria.fr/ariana/Projets/Shapes/
http://www-sop.inria.fr/ariana/Projets/Shapes/
http://www-sop.inria.fr/ariana/Projets/Odessa/
http://www-sop.inria.fr/ariana/Projets/Odessa/
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Résumé

Les travaux réalisés lors cette thèse s’inscrivent dans le cadre de l’analyse d’images, ap-
pliquée aux problèmes de télédétection. Nous nous sommes interessés à deux sujets prin-
cipaux: ‘L’étude et la classification d’espèces d’arbres’, décrit dans la première partie du
manuscript, et ‘L’extraction d’objets multiples de forme arbitraire par Processus Ponctuels
Marqués’, présenté dans la seconde partie.

Les techniques de télédétection sont aujourd’hui largement développées et trouvent de
nombreuses applications en foresterie où l’information obtenue par photointerprétation des
photographies aériennes est combinée avec les mesures effectuées sur le terrain. Ces tech-
niques permettent d’étudier la biodiversité de l’écosystème forestier. Les méthodes d’analyse
d’images de forêts ont pour but de faciliter la tâche d’inventaire forestier. Les paramètres
d’importance relevés sur les images et le terrain sont la densité de peuplement, l’âge des
arbres, le volume des troncs, la composition d’espèces d’arbres, et des valeurs écologiques
comme le biotope et l’habitat. Afin d’obtenir des informations sur la diversité d’espèces de
forêts par exemple, la classification des couronnes d’arbres est nécessaire. Radiométrie et
texture sont deux critères largement utilisés dans les méthodes de classification existantes.
Nous proposons, dans cette thèse, d’utiliser des informations supplémentaires obtenues à
partir de l’étude de la forme des couronnes (i.e. houppiers) d’arbres afin de les classifier. Les
formes considerées sont des courbes planes fermées représentant les bords des couronnes
d’arbres extraites d’images aériennes infrarouge couleur (IRC) de résolution 3cm/pixel,
fournies par l’Université des Sciences Agricoles de Suéde. La résolution allant jusqu’au
niveau de détail des feuilles des arbres, l’information géométrique fournie rend donc in-
téressante l’utilisation de la forme des couronnes.

Les images à partir desquelles les couronnes des arbres sont extraites représentent les
zones forestières où les arbres sont proches du nadir, i.e. les couronnes d’arbres sont vues
de dessus presque verticalement. Les données IRC fournissent plus d’information sur la
végétation que les couleurs naturelles. Cela permet de distinguer par la teinte les feuillus
des résineux ainsi que les arbres sains des autres, car l’image IRC est très dépendante de
l’activité chlorophyllienne de la plante. Une fois numérisées, les photos IRC sont représen-
tées par des couleurs artificielles pour décrire les trois bandes [PIR (Proche InfraRouge),
Rouge, Vert]: le rouge de l’image représente le PIR; le vert représentant le rouge et le bleu
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le vert.

La classification est effectuée sur les quatre espèces d’arbres les plus répandues en Suède:
l’épicéa, le pin sylvestre, le bouleau et le tremble. Deux de ces espèces sont des conifères
et les deux autres sont des feuillus. Pour nos expérimentations, nous avons sélectionné 48
couronnes (12 par classe). Leur contours, représentés par un ensemble ordonné de points,
ont été délimités manuellement afin de préserver les détails de leur forme qui est étudiée par
la suite.

Pour nos études, nous avons choisi une méthodologie fondée sur l’analyse de formes
de courbes fermées continues dans un espace de formes en utilisant la notion de chemin
géodésique. Nous réalisons d’abord des études utilisant la métrique obtenue avec une
représentation de la courbe par la fonction d’angle développée par Klassen et al. [Klassen et al., 2004],
puis en utilisant la métrique élastique et la représentation par la racine-carrée appelée q-
fonction proposée par Joshi et al. [Joshi et al., 2007a, Joshi et al., 2007b]. Cette méthodolo-
gie a été choisie pour plusieurs raisons. La forme des couronnes d’arbres à partir d’images
de résolution 3cm/pixel a une structure complexe. L’hypothèse de continuité permet d’éviter
le choix de points de référence (‘landmarks’) sur la courbe. Les espaces de formes avec
des métriques appropriées sont alors définis comme des variétés non-linéaires utilisant les
propriétés d’invariance de la forme: e.g. translation, rotation rigide, dilatation uniforme,
changement de point de départ le long de la courbe, et enfin la re-paramétrisation dans le
cas de la métrique élastique. A chaque chemin géodésique dans l’espace de formes est as-
sociée une distance. Nous avons évalué cette distance en tant que mesure de similarité des
formes de couronnes d’arbres dans le sens d’appartenance à l’une ou l’autre espèce.

Les résultats obtenus en utilisant la métrique non-élastique montrent que la similarité de
deux arbres au sens de la distance géodésique ne reflète pas l’appartenance à une même
espèce. L’étude des formes intermédiaires sur le chemin géodésique montre que la trans-
formation passe souvent par une forme plus étendue (cette forme intermédiaire est proche
de celle d’un bouleau). Par conséquent, la distance géodésique utilisant la métrique non-
élstique ne peut être utilisée en tant que tel pour la classification des arbres selon les espèces.
Cela est dû à la nature de la métrique qui ne permet que de tordre la courbe en la transfor-
mant en une autre courbe le long du chemin géodésique, ce qui signifie qu’il est moins
coûteux de déplier la courbe, puis de la plier de nouveau. Ceci implique qu’une forme
régulière comme celle du bouleau ou du pin devrait être plus proche que celle du tremble
ou de l’épicéa.

La seconde métrique utilisée pour l’étude de la forme des couronnes d’arbres, est fondée
sur l’analyse de Riemann des courbes élastiques. La métrique élastique initialement pro-
posée par Younes [Younes, 1998], permet à une courbe de s’étirer ainsi que de se plier en
se déformant le long d’une géodésique dans l’espace de formes correspondant. Les expéri-
ences faites en utilisant la métrique élastique montrent que la distance géodésique entre deux
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arbres d’une même espèce est plus petite que celle de deux arbres d’espèces différentes, dans
le cas où les couronnes des arbres étudiées ont une forme très caractéristique de l’espèce.
Mais la forme de la couronne varie beaucoup au sein d’une même classe. Ceci peut être dû,
par exemple, à l’âge de l’arbre: un jeune pin a une forme acérée similaire à celle de l’épicéa,
ou un épicéa peut avoir une couronne de branches dense, ce qui entraîne une forme circu-
laire similaire à des formes de couronnes des pins. Une autre expérience a été faite pour les
couronnes d’arbres d’espèces différentes mais de formes similaires. Les résultats obtenus
montrent que la similarité de formes est aussi reflétée par la distance géodésique.

Des études effectuées, nous avons donc conclu que la forme seule n’est pas suffisamment
discriminante pour la classification des arbres, en raison de la complexité et de la variété
de la forme au sein d’une même espèce. Toutefois, elle peut être utile en complément de
l’information sur la radiométrie et la texture.

L’étape suivant de la thèse a donc été d’inclure l’information de la forme des couronnes
des arbres dans un processus de classification, afin de quantifier l’amelioration de la perfor-
mance d’un classifieur utilisant les descripteurs de radiométrie et de texture. La classifica-
tion a été effectuée avec une méthode de classification supervisée en utilisant un séparateur
à vaste marge, avec un noyau gaussien. Premièrement, la classification a été réalisée en
utilisant uniquement les caractéristiques radiométriques. Ensuite, les caractéristiques de
texture ont été ajoutés et enfin, des descripteurs de forme ont été inclus. La performance a
été calculée après chaque étape. Les performances de chacune des étapes ont été évaluées
via les taux moyen P et maximum Pmax des couronnes bien classées.

Dans notre étude, l’IRC permet de distinguer entre conifères et feuillus. Les quatre classes
d’arbres - le tremble, le bouleau, l’épicéa et le pin - peuvent donc être facilement identifiées
comme feuillus ou conifères à partir des statistiques du premier ordre (la moyenne et l’écart
type calculés à partir de l’histogramme des intensités des pixels de l’image), P = 0.54
et Pmax = 0.67. Pour distinguer encore davantage au sein des classes de feuillus et de
conifères, une analyse de texture a été réalisée en utilisant une matrice de co-occurrence
(GLCM) de niveau de gris. Une matrice de co-occurrence est une représentation quan-
titative en deux dimensions de la relation spatiale [Haralick, 1978], bien adaptée pour la
caractérisation des micro-textures. L’information de texture a permis d’améliorer les résul-
tats de la classification pour les feuillus, P = 0.71 et Pmax = 0.833. Cela est dû au fait que
l’une des espèces de feuillus (bouleau) a une texture à peu près uniforme contrairement aux
trembles.

Ensuite, une analyse de forme de la couronne des arbres a été effectuée afin de déterminer
les informations qui pourraient nous permettre de classer les espèces. Les couronnes d’un
tremble, par exemple, ont une structure irrégulière, où les convexités correspondants aux
branches sortant du corps des couronnes sont importantes. Les branches des épicéas sont
plus régulières et sont orientées radialement. Les contours de la couronne des bouleaux
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et des pins sont plus circulaires, celles des bouleaux étant les plus lisses. Néanmoins, il
faut noter, que malgré les différences décrites, un nombre important de contours restent in-
classables par analyse visuelle en raison de la variabilité au sein d’une même classe. La
représentation par la fonction d’angle semble bien adaptée pour exploiter les différences de
forme des couronnes. A partir de la fonction d’angle, un ensemble de descripteurs de forme
est inclu dans le vecteur des descripteurs. A l’aide de nos observations sur la représentation
par la fonction d’angle, nous notons, en particulier, que les géodésiques passent toujours par
des formes circulaires et que la forme des couronnes de pin et de bouleau est plus proche
du cercle, que celle du tremble ou du sapin. La première caractéristique choisie comme
descripteur est donc une distance géodésique à un cercle calculée dans l’espace de forme
avec la représentation de forme par la fonction d’angle. Puis, nous traduisons la propriété
que les couronnes de certaines espèces ont une structure plus régulière que les autres, par
une mesure de l’élasticité des courbes. Par ailleurs, les convexités (branches, feuilles) des
couronnes d’épicéas sont généralement moins nombreuses et plus grandes que les convex-
ités de couronnes de bouleau. Ce critère se reflète dans le nombre de maxima locaux de la
fonction d’angle. La forme de la couronne des pins est assez proche de celle du bouleau,
mais certaines irrégularités sont plus grandes, avec quelques branches qui dépassent. Nous
quantifions donc les irrégularités des contours de la couronne en fonction de la taille de
l’irrégularité (représetant des branches, des feuilles et des ombres). En intégrant des car-
actéristiques de forme, la performance de la classification se traduit par une amélioration
d’environ 4%, P = 0.747, alors que le rendement maximal atteint 87.5%. Ainsi, la forme
a permis d’améliorer la performance de la classification en espèces au sein des classes de
conifères et de feuillus.

Afin de classifier les couronnes des arbres à partir d’images, leur détection et leur seg-
mentation à partir de ces images est nécessaire. A la résolution des images que nous avons
utilisées pour nos études, leur géométrie est clairement visible (les arbres feuillus étant
identifiables presqu’au niveau de la feuille), et devrait donc être prise en compte pour as-
socier un arbre à une espèce. En outre, les zones forestières représentent des scènes très
complexes difficiles à segmenter. Ceci est dû au fait que les arbres sont en général situés
à approximité les uns des autres, certains arbres ayant des couronnes qui se chevauchent.
Le défi principal est donc le suivant : les objets qui se chevauchent doivent être segmentés
comme un ensemble d’objets individuels et non comme un objet seul. C’est une tâche par-
ticulièrement difficile pour les arbres regroupés qui appartiennent à la même espèce (même
pour l’extraction manuelle par un expert). Nous nous sommes donc intéressés à développer
une méthode qui permet d’extraire automatiquement de multiples objets à partir d’images
à très haute résolution, les images représentant des scènes complexes contenant des objets
qui se superposent dans l’image.

Les processus ponctuels marqués offrent une technique d’extraction d’objets multiples re-
connue pour sa capacité à inclure de l’information sur la géométrique des objets recherchés,
ainsi que sur leurs interactions. Plusieurs modèles de processus ponctuels marqués ont été
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appliqués avec succès au problème de l’extraction d’objets à partir d’images de haute résolu-
tion, les objets ayant une géométrie visible simple [Lacoste et al., 2005, Perrin et al., 2005,
Ortner et al., 2007, Descamps et al., 2009]. Le deuxième sujet de cette thèse, présenté dans
la seconde partie, consiste donc en une généralisation de l’approche par processus ponctuels
marqués pour l’extraction d’objets multiples à forme complexe arbitraire à partir d’images
à très haute résolution.

Pour ce faire, une solution aurait été de définir la distribution sur l’espace de toutes les
courbes fermées, mais les espaces de tels éléments sont des variétés non-linéaires à la
topologie complexe. La définition d’une métrique appropriée sur ces espaces n’est pas
simple. Par conséquent, même la description d’une dynamique simple comme la diffu-
sion pour un objet, devient un problème difficile. Pour pallier cette difficulté, nous avons
proposé de réduire l’espace d’objets à un sous-ensemble d’objets, adaptés localement aux
données. Chaque objet est donc un minimum local de l’énergie associée à un contour actif.
Nous utilisons, ensuite, l’énergie totale comprenant des interactions multiples pour trouver
la configuration optimale composée de ces objets, localement adaptés à l’image. L’espace
d’objet considéré reste donc de petite dimension, mais les objets possibles individuels sont
déterminés non pas a priori, mais par les données de l’image ainsi que par un modèle lié à
l’objet individuel. En conséquence, les objets sont des courbes fermées dans le domaine de
l’image. Une fois l’espace objet défini, nous considèrons une énergie de Gibbs, et donc une
distribution de probabilité sur l’espace des configurations composées d’un nombre arbitraire
d’objets. Cette énergie se décompose en la somme des énergies des objets individuels de la
configuration, plus un terme d’interaction qui contrôle la superposition des objets. L’énergie
d’un seul objet est la somme d’un terme de lissage de la courbe, et d’un terme d’attache aux
données reliant un objet à l’image. Pour trouver la configuration optimale d’objets mul-
tiples, on calcule une estimation du Maximum A Posteriori (MAP) par échantillonnage à
partir d’un processus de naissances et morts multiples incorporé dans un schéma de recuit
simulé.

En l’absence d’un terme d’interaction, l’estimation du MAP serait alors composée du sous-
ensemble des objets ayant une énergie négative. Cela conduirait sans doute à trouver une
configuration qui serait une solution dégénérée. Voila pourquoi un terme d’interaction est
ajouté. Il contrôle la relation entre les objets différents, en particulier il décourage le recou-
vrement.

De manière plus détaillée, le modèle proposé se décrit comme suit: les différents objets
sont définis par l’évolution d’un certain nombre de courbes initiales par une technique de de-
scente de gradient vers les minima locaux de l’énergie liée à l’objet individuel. Les courbes
initiales sont des cercles centrés en un pixel de l’image, avec des rayons compris dans un
certain intervalle, le rayon étant la marque associée à chaque point. La taille de l’espace
d’objet individuel n’est donc pas supérieure à celle de l’ensemble des courbes initiales.
Ceci est similaire aux ensembles d’objets utilisés dans les modèles de processus ponctuels
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précédents préservant ainsi l’efficacité des calculs. Pour trouver la configuration optimale
d’objets multiples, durant l’étape de naissance nous plaçons, via un processus uniforme de
Poisson, un certain nombre de centres de cercles initiaux avec des rayons uniformément
échantillonnés. Les cercles sont ajoutés à la configuration courante (vide au départ), et sont
ensuite, déformés pour atteindre un minimum local de l’énergie de chaque objet, produisant
ainsi une configuration d’objets multiples adaptés localement à l’image. L’étape de mort
supprime, ensuite, un certain nombre d’objets avec une probabilité qui dépend de la tem-
pérature et la différence des énergies (pondérées par la température) entre les configurations
avec et sans chacun des objets dans la configuration. Le processus itératif est stoppé si tous
les objets ajoutés à l’étape de naissance, et seulement ceux-ci, sont retirés à l’étape suivante
de mort. La performance de l’approche est démontrée par les résultats expérimentaux sur
des données synthétiques et réelles.

Une série d’expériences de différents niveaux de complexité a été faite pour tester le mod-
èle. A partir des résultats obtenus, nous avons conclu que ce modèle est bien adapté aux
scènes composées d’objets qui ne varient pas trop en forme et en taille dans une classe, et
qui ont des bords assez lisses. Dans ce cas, la précision du nombre d’objets extraits peut
être excellente si l’on favorise le terme de lissage des bords, contrôlant ainsi la longueur de
la courbe représentant les bords de l’objet. Le modèle peut donc, dans une certaine mesure,
séparer des objets distincts qui se chevauchent, mais cela conduit à une imprécision dans
la délimitation des objets. La solution que nous proposons pour résoudre ce problème est
d’incorporer une information de forme a priori plus spécifique dans l’énergie de l’objet in-
dividuel afin de détecter des objets dans des scènes d’images de haute complexité contenant
des objets se superposant.

Le second objectif de la seconde partie de cette thèse est donc une nouvelle extension
du cadre des processus poncuels marqués, qui consiste à définir une méthode pour inté-
grer une information a priori forte sur la forme des objets recherchés, sans augmenter la
dimensionnalité de l’espace objet (et donc la complexité du calcul) dans le modèle défini
précédemment. Les principes restent les mêmes, mais l’espace d’objet individuel est défini
de manière à tenir compte des connaissances a priori sur la forme des objets que l’on
souhaite extraire.

L’ensemble des objets possibles est donc défini à partir des minima locaux d’une énergie
qui intègre des informations provenant des données et l’information a priori de la forme des
objets à extraire. Cela permet de traiter des configurations composées d’objets aux formes
complexes et qui se superposent. L’utilisation de l’information de forme a priori présente
un autre avantage: même si l’objet à extraire est en partie obscurci ou occulté, par exemple,
par une ombre, comme les couronnes des épicéas, l’objet peut néanmoins être correctement
extrait comme un seul objet jusqu’à un certain degré de précision.

Pour résumer les travaux présentés dans la seconde partie de la thèse, nous avons effectué
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une comparaison des modèles utilisant ou non l’information a priori des différentes formes
sur une image à très haute résolution. Cette comparaison montre que le modèle de processus
ponctuels marqués d’objets simples permet l’extraction rapide des objets à partir d’une
image, mais la précision géométrique reste faible pour les objets aux formes complexes.
Par conséquent, ce type de modèle est un outil approprié pour la détection rapide d’objets
dans les images à plus basse résolution. La seconde approche, un modèle de processus
ponctuels marqués pour l’extraction d’objets à forme arbitraire avec seulement l’a priori
de forme faible (terme de lissage de la courbe), est géométriquement bien plus précise,
tout en n’augmentant pas la complexité du calcul indûment. Les limites de cette approche
sont cependant dues au fait qu’elle inclut seulement une information faible sur la forme
pour définir les objets individuels possibles, elle ne permet pas de détecter différents types
d’objets ayant les mêmes caractéristiques radiométriques, ni de séparer deux ou plusieurs
objets qui se superposent dans l’image. Le modèle de processus ponctuels marqués pour
l’extraction d’objets à forme arbitraire avec un a priori de forme fort permet de s’affranchir
de ces deux limitations, comme le montre les résultats obtenus sur les images de zones
forestières naturelles de très haute résolution.
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ABSTRACT

This thesis includes two main parts. In the first part we address the problem of tree crown classification into
species using shape features, without, or in combination with, those of radiometry and texture, to demonstrate
that shape information improves classification performance. For this purpose, we first study the shapes of tree
crowns extracted from very high resolution colour aerial infra-red images. For our study, we choose a method-
ology based on the shape analysis of closed continuous curves on shape spaces using geodesic paths under
the bending metric with the angle-function curve representation, and the elastic metric with the square root
q-function representation. A necessary preliminary step to classification is extraction of the tree crowns. In
the second part, we address thus the problem of extraction of multiple objects with complex, arbitrary shape
from remote sensing images of very high resolution. We develop a model based on marked point processes. Its
originality lies in its use of arbitrarily-shaped objects as opposed to parametric shape objects, e.g. ellipses or
rectangles. The shapes considered are obtained by local minimisation of an active contour energy with weak and
then strong shape prior knowledge included. The objects in the final (optimal) configuration are then selected
from amongst these candidates by a multiple birth-and-death dynamics embedded in an annealing scheme. The
approach is validated on very high resolution images of forest provided by the Swedish University of Agricul-
ture.

Keywords: colour infra-red aerial image, classification, tree crown, shape, multiple object extraction, marked
point process, birth-and-death dynamics, active contour, shape prior.

RÉSUMÉ

Cette thèse est composée de deux parties principales. La première partie est dédiée au problème de la clas-
sification d’espèces d’arbres en utilisant des descripteurs de forme, en combainison ou non, avec ceux de ra-
diométrie ou de texture. Nous montrons notamment que l’information sur la forme améliore la performance
d’un classifieur. Pour ce faire, dans un premier temps, une étude des formes de couronnes d’arbres extraites
à partir d’images aériennes, en infrarouge couleur, est effectuée en utilisant une méthodologie d’analyse de
formes des courbes continues fermées dans un espace de formes, en utilisant la notion de chemin géodésique
sous deux métriques dans des espaces appropriés : une métrique non-élastique en utilisant la reprèsentation par
la fonction d’angle de la courbe, ainsi qu’une métrique élastique induite par une représentation par la racine-
carée appelée q-fonction. Une étape préliminaire nécessaire à la classification est l’extraction des couronnes
d’arbre. Dans une seconde partie, nous abordons donc le problème de l’extraction d’objets de forme complexe
arbitraire, à partir d’images de télédétection à très haute résolution. Nous construisons un modèle fondé sur
les processus ponctuels marqués. Son originalité tient dans sa prise en compte d’objets de forme arbitraire par
rapport aux objets de forme paramétrique, e.g. ellipses ou rectangles. Les formes sélectionnées sont obtenues
par la minimisation locale d’une énergie de type contours actifs avec différents a priori sur la forme incorporé.
Les objets de la configuration finale (optimale) sont ensuite sélectionnés parmi les candidats par une dynamique
de naissances et morts multiples, couplée à un schéma de recuit simulé. L’approche est validée sur des images
de zones forestières à très haute résolution fournies par l’Université d’Agriculture de Suède.

Mots clefs: image aérienne infrarouge couleur, classification, couronne d’arbre, forme, extraction d’objets
multiples, processus ponctuel marqué, dynamique de naissances et morts, contour actif, a priori de la forme.
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