
HAL Id: tel-00480669
https://theses.hal.science/tel-00480669

Submitted on 4 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complétions d’intervalles minimales
Karol Suchan

To cite this version:
Karol Suchan. Complétions d’intervalles minimales. Computer Science [cs]. Université d’Orléans,
2006. English. �NNT : �. �tel-00480669�

https://theses.hal.science/tel-00480669
https://hal.archives-ouvertes.fr

UNIVERSITE D'ORLEANS

THESE PRESENTEE A L’UNIVERSITE D’ORLEANS

POUR OBTENIR LE GRADE DE

DOCTEUR DE L’UNIVERSITE D’ORLEANS

Discipline : Informatique

PAR

M. Karol SUCHAN

Sujet : Complétions d'intervalles minimales
Soutenue le : 12 décembre 2006

MEMBRES DU JURY :

- Mme Anne BERRY (LIMOS, Clermont Ferrand) Examinateur

- M. Krzysztof DIKS (Université de Varsovie) Rapporteur

- M. Pierre FRAIGNIAUD (LRI, Université Paris XI) Rapporteur

- M. Michel HABIB (LIAFA, Université Paris 7) Examinateur

- M. Henri THUILLIER (LIFO, Université d’Orléans) Directeur de thèse

- M. Ioan TODINCA (LIFO, Université d’Orléans) Encadrant

Contents

1 Introduction 1

2 Basis 9

2.1 Basic notions . 9

2.1.1 Minimal separators . 10

2.1.2 Ordered partitions . 10

2.2 Intersection graphs . 11

2.2.1 Intersection model . 11

2.2.2 Connected decomposition . 13

2.2.3 Layouts . 14

2.2.4 Other characterizations and properties . 15

2.3 Completion . 16

3 MPIC Through Decomposition 19

3.1 ProperInterval layout . 20

3.2 Moplex and LexBFS . 21

3.3 Nice layouts and nice prefixes . 22

3.3.1 Choosing a first vertex . 22

3.3.2 A family of nice layouts . 23

3.3.3 Nice layouts : a sufficient condition . 26

3.4 The algorithm . 27

3.5 Conclusions . 30

4 MIC Through Exploration 33

4.1 Interval layout . 33

4.2 Nice layouts and nice prefixes . 34

4.2.1 LexBFS-terminal vertex . 35

4.2.2 Choosing a first vertex . 35

4.2.3 A family of nice layouts . 36

4.2.4 Nice layouts : a sufficient condition . 38

4.3 The algorithm . 40

4.4 Conclusions . 41

iii

5 Pre-order - clique path encoding 43

5.1 Control over clique paths . 44
5.2 Structure of the pre-order . 49

5.2.1 The co-comparability graph . 49
5.3 Learning the pre-order . 52

5.3.1 Topological order . 52
5.3.2 Bipartition . 54
5.3.3 Components of (O(S), ‖) . 55
5.3.4 Complexity . 55

6 MIC Through Decomposition 57

6.1 Incremental approach . 58
6.2 Principles of the algorithm . 59

6.2.1 NG′(x) is a clique . 60
6.2.2 NG′(x) is not a clique . 61

6.3 Minimal completion . 63
6.3.1 Minimal separators in Sx . 63

6.4 Algorithm NicePair . 67
6.5 Putting everything together . 70

6.5.1 Algorithm MinimalIntervalCompletion . 72
6.6 Conclusions . 73

7 Pathwidth of Circular-Arc Graphs 75

7.1 Folding . 75
7.2 Circular-arc graphs . 77
7.3 Folding circular-arc graphs . 78
7.4 The algorithm . 83
7.5 Conclusions . 86

8 MIC Extraction 87

8.1 Folding interval graphs . 87
8.2 Unfolding . 91
8.3 Extracting minimal interval completions: the algorithm 96
8.4 Proof of Lemma 8.3.2 . 98
8.5 Conclusions . 101

iv

List of Figures

2.1 A proper interval graph and an interval model. 12
2.2 A slight modification of intervals to avoid strict inclusion. 12

3.1 PIG(G,σ) - the fill edges in dashed line-style. 20
3.2 The LexBFS algorithm. 22
3.3 BFS color code and the strong neighborhood of ρ. 23
3.4 The strong neighborhood of ρ should come first. 24
3.5 The weak neighborhood comes before the non-neighborhood. 25
3.6 A vertex in NS(ρ) having few white neighbors should come first. 26
3.7 Algorithm Minimal Proper Interval Completion and data structure. 28
3.8 Algorithm Interval Model. 29

4.1 IG(G,σ) - dashed fill edges. 34
4.2 Putting Nxt right after ρ. 37
4.3 Algorithm MIC Ordering. 41

5.1 Blocks associated to a minimal separator. 44

6.1 Pruning x from a clique path of G. 59
6.2 Two clique paths of G - different intervals [KL : KR]. 60
6.3 Two ordered partitions of G - different intervals [OL : OR]. 64
6.4 Main case: the algorithm constructing a nice pair (L,R). 69

7.1 The FillFolding algorithm. 76
7.2 Circular-arc graph. 77
7.3 Restriction of the clique cycle. 78
7.4 FillFolding. 79
7.5 Reduction of A (top) to A′ : one way (middle) or the other (bottom). 80
7.6 From 4-monotone to 2-monotone foldings. 81
7.7 Planar triangulation corresponding to a 2-folding. 84

8.1 Unfolding. 92
8.2 Opening one pivot. 96
8.3 Opening two pivots. 97
8.4 Extracting a minimal interval completion. 98
8.5 2-folding. 99

v

vi

Chapter 1

Introduction

Research on NP-hard problems is in the core of contemporary algorithmics. Since it is impractical to
search for general exact solutions to the problems in this class, many special approaches have been
developed. Most efforts can be regrouped about the following main axis: heuristics, guaranteed
quality approximations, exact solutions for restrained graph classes, and the most recently, general
exact exponential time algorithms. Heuristics are often fast and prove very useful in applications
but admit no theoretical proofs of quality. They are evaluated in empirical manner with benchmarks
running on real-life data coming from applications or on random data-sets generated from adequate
probability distributions. Approximation algorithms are polynomial time algorithms that give
solutions that fit within bounds proved to be close to optimum. How tight these bounds can be
depends on the problem. The most common are the approximations within a constant multiplicative
factor, meaning that their accuracy is independent from the instance. But sometimes multiplicative
constant factor polynomial time approximations are proved not to exist (again, unless P=NP).
Graph coloring is an important example of such a problem. The third approach to NP-hard
problems consists in finding polynomial time exact algorithms for restrained graph classes. Here
the question is how strong constraints on the structure of the graph in question we need to have
in order to be able to solve the problem in polynomial time. It is the usual path to start with
strong conditions sufficient to prove polynomial time complexity, that are progressively relaxed as
the understanding of the problem improves. Thus the class of graphs for which the problem can
be efficiently solved becomes larger and larger. Eventually, the study may accomplish by finding
conditions that are also necessary, hence a full characterization of instances solvable in polynomial
time is given. Finally, a new branch of exponential time algorithms has been recently developed.
Their interest is twofold. First, they aim at finding exponential time algorithms with small basis of
the exponent, which can make them of practical use for instances of moderate size if the basis is close
enough to 1. Then, the complexity analysis may serve to evaluate on how adequate are the tools used
to describe the combinatorial structure of the problem, which stimulates further research. It is worth
mentioning here that these approaches to NP-hard problems are in no way exclusive. They rather
tend to complement and reinforce each other: observations on exact solutions for particular cases are
incorporated into heuristics, heuristics are refined into approximation algorithms, approximations
prove to be exact for particular instances, etc.

One of the methods used for tackling NP-hard problems on restrained graph classes is through
graph decompositions. The basic idea is to decompose the vertex set or the edge set of a graph
into clusters which satisfy certain conditions. The properties of this decomposition are such that

1

if one can solve the problem on the clusters, then these partial solutions can be joined to yield
a global solution. Typically, the clusters are decomposed recursively, which gives the structure
of a decomposition tree. If the structure of each cluster is simple enough, with respect to the
sub-clusters it is composed of, then the problem can be efficiently solved.

The first kind of decomposition that attracted much attention was the modular decomposition,
devised by Gallai in the sixties of the last century [55]. The cluster in modular decomposition is
called a module. It is a set of vertices that are indistinguishable from outside the cluster, that is,
all vertices of a module have exactly the same adjacent vertices outside the module. The modular
decomposition of a graph is unique. Moreover, one can compute the modular decomposition in
linear time (see, e.g. [35]). Given the modular decomposition of a graph, the difficulty of solving
a problem resides in solving it for the (prime) subgraphs which cannot be further decomposed,
that is, the only modules they strictly contain consist of single vertices. There are many results on
solving NP-hard problems for graphs having good modular decompositions. Here, ”good” means
that the prime subgraphs are simple enough that the problem can be efficiently solved on them.

Tree decompositions were introduced in the early eighties of the last century by Robertson
and Seymour [105, 104]. They defined tree decompositions and the associated quality measure of
therewith in their work on graph minors. A closely related notion of a partial k-tree (G is a partial
k-tree iff the treewidth of G equals k) was introduced ten years earlier by Dirac and Rose [106].
A good intuition on tree decompositions comes from chordal (also known as triangulated) graphs,
ie. the graphs without chordless cycles of length greater than 3. The maximal cliques of a chordal
graph can G be arranged as the nodes of a tree T , in a particular way. That is, for each vertex v
of G, the nodes of T that contain v induce a subtree of T . T is called a clique tree of G. In a tree
decomposition, the condition on nodes of T to be cliques of G is removed. The conjunction of the
following three conditions gives the standard definition of a tree decomposition:

1. For every vertex of G, there is a node of T that contains it.

2. For every edge of G, there is a node of T that contains both its endpoints.

3. For every vertex of G, the set of nodes of T that contain it induces a subtree of T .

An edge of T , labeled with the intersection of the incident nodes, corresponds to a minimal separator
of G. The width of a decomposition is the maximum cardinality of a node in the decomposition
tree. Getting back to chordal graphs, an arbitrary chordal graph has a decomposition tree in
which every bag is a clique; in particular, a tree has a decomposition tree in which every bag is an
edge. In this way, any chordal graph G can be seen as a thickened tree, with nodes replaced by
cliques; the clique number of G minus one gives the treewidth of G. In general, an arbitrary graph
is of treewidth at most k if and only if it is a subgraph of a chordal graph of clique number at
most k + 1. This is why the treewidth is sometimes regarded as a measure of similarity to a tree.
Tree decompositions proved to be very useful not only from purely combinatorial but also from
algorithmic point of view. Most classical problems that are NP-hard in general case can be solved
in polynomial time for graphs of constant bounded treewidth. Among these are graph coloring,
traveling salesman, minimum dominating set, etc.

Modular decompositions and tree decompositions are complementary tools for handling algo-
rithmic problems, since there are graph classes that have very good decompositions of one type but
not of the other, in both ways. For example, the class of trees trivially admits tree decompositions of
width 1, which is the best possible; whereas, any path of length n−1 for n > 3 is a prime subgraph,

2

so admits a very bad modular decomposition. Conversely, the class of complete graphs admits very
good modular decompositions, without prime nodes at all; meanwhile, tree decompositions are very
bad here, with the trivial decomposition of just one bag containing the whole vertex set meeting the
optimum. Here come the clique decompositions [32, 34] (or, almost equivalently, NLC decomposi-
tions [114]) which, in a way, gather the good points of both methods mentioned above. That is to
say that graphs that admit a good tree decomposition or a good modular decomposition also have
a good clique decomposition. Even though the clique decompositions are a very recent invention,
there have been a growing interest in the topic, with results generalizing the complexity results on
graphs of bounded treewidth to the larger class of graphs of bounded cliquewidth. But there are
two reasons that make tree decompositions algorithmically more interesting at the moment. The
first is that there are no efficient algorithms computing clique decompositions. The other is that,
even given a good clique decomposition, the algorithms using it are much slower than the similar
ones using good tree decompositions.

Most classical NP-hard problems are solvable in polynomial time for graphs of bounded treewidth.
In particular, there are results identifying the problems which are NP-hard in general but can be
solved in linear time for graphs of bounded treewidth. The work of Courcelle [31], Arnborg et al.[4],
Courcelle et al. [33] showed that all problems expressible in the extended monadic second order
logic have this property. Although very interesting from the theoretical point of view, results based
on formulations in terms of logic are of little use in applications, since the constants appearing in
time complexity analysis of these algorithms are prohibitive. Therefore, from the practical point
of view, solutions to real-life problems are rather based on ad-hoc dynamic programming [14, 68].
The dynamic programming on graphs of bounded treewidth proves useful also on many problems
that do not fit in the logic framework mentioned above. The time complexities involved are usually
of kind O(2kn), where n is the number of vertices of the instance graph G and k is the width of
the tree decomposition of G we have. This gives an idea of the upper bound on the decomposition
width up to which this approach is reasonable.

Tree decompositions from the very beginning were a powerful tool for showing that certain
problems are polynomial time solvable for particular instances. They also proved their value in
the context of fixed parameter tractability and polynomial approximation schemes. For a couple of
years, we have experienced a real flourishing of applications of tree decompositions in many areas
of practical use. These are probabilistic networks, which often have small treewidth, constraint
programming [62, 77, 78], many optimization problems [1, 75], etc. The weak point of tree de-
compositions comes from the fact that computing one of minimum width is NP-hard [3], even for
restrained graph classes like the graphs of bounded degree [21], bipartite graphs, and co-bipartite
graph [66]. Due to Bodlaender [15], there is an algorithm that, given a graph G and a constant k,
decides in O(n) time if the treewidth of G is at most k. But the constant is super-exponential in k,
which makes it useless in real-life applications even for very small values of k. What works well are
algorithms computing the treewidth and a corresponding tree decomposition for restricted graph
classes, like permutation graphs [19], circular-arc graphs [86, 112], bipartite chordal graphs [84],
distance-hereditary graphs [27], HHD-free graphs [26], circle graphs [83, 86], weakly triangulated
graphs [25]. For all these classes, the algorithms are based on the notions of chordal completion
and minimal separator. Given an arbitrary graph G, a chordal completion (also known as a trian-
gulation) H of G is a chordal super-graph of G on the same vertex set. H is a minimal chordal
completion of G if no strict subgraph of H is a chordal completion of G. The treewidth of G can
be defined as the minimum clique number minus one over all chordal completions of G. Clearly, a

3

chordal completion which realizes this optimum can always be found among the minimal chordal
completions of G. The studies on the structure of minimal chordal completion have given tools
used not only in the polynomial time exact computations of treewidth on particular graph classes
mentioned above, but also in general approximation and heuristics.

As we mentioned above, tree decompositions have many advantages over clique decompositions,
even though the latter are more general. Similar reasons make path decompositions, a particular
case of tree decompositions, interesting. They are characterized by the condition on the decom-
position tree to be a path. This simplification in structure allows more simple, elegant, time and
space efficient algorithms than the ones based on general tree decompositions. Apart from this
general algorithmic interest, there are other graph parameters directly related to the pathwidth
that have been investigated and give motivation to further studies on the pathwidth. Among these
are the vertex separation number, the interval thickness, the node search number, etc. See [16] for
a survey. In particular, the node search number is one of the parameters analyzed in the context of
graph searching games. Here the motivation comes from various network management tasks that
can be modeled as a pursuit of a hostile mobile agent.

Like between the treewidth and the class of triangulated graphs, there is a similar relation
between the pathwidth and the class of interval graphs. We mentioned above that an arbitrary
chordal graph has a decomposition tree in which every bag is a clique. In fact, this characterizes the
class of chordal graphs. In a similar way, a graph G is interval if and only if it has a decomposition
path in which every bag is a clique. To continue with the analogies, given an arbitrary graph G, an
interval completion H of G is an interval super-graph of G on the same vertex set. H is a minimal
interval completion of G if no strict subgraph of H is an interval completion of G. Finally, the
pathwidth of an arbitrary graph G can be computed as the minimum clique number minus one
over all interval completions of G. Clearly, an interval completion which realizes this optimum can
always be found among the minimal interval completions of G.

Interval graphs, on their own, have a long list of applications in areas like biology, chemistry,
and archeology, and many NP-complete graph problems are solvable in polynomial time on interval
graphs [61]. Specifically, the problem of adding edges to a given input graph to obtain an interval
graph, called an interval completion of the input graph, arises in Physical Mapping of DNA [60, 96],
Orthogonal Packing [42], and Sparse Matrix Computations [58]. For several applications, it is
desirable to embed a given graph into an interval graph by adding as few edges as possible. Such
an embedding is called a minimum interval completion, and the number of edges it contains is
called the profile of the input graph. Both profile and pathwidth are well known and well studied
graph parameters, and both are NP-hard to compute [56, 63]. There has been extensive work on
computing these parameters for restricted graph classes [36], but our insight on how to handle
arbitrary graphs is limited.

As a comparison, minimal chordal completions were studied and a polynomial time algorithm
for computing them was given already in 1976 [107], even before it was proved that minimum
fill (minimum chordal completion) is NP-hard to compute [116]. Since then many results have
been added about minimal chordal completions [69, 74, 87], which are central in understanding
and trying to solve minimum fill and treewidth problems. Minimal chordal completions have
several quite different characterizations, and some of these have proved useful in trying to compute
minimum fill and treewidth [25, 80], either by approximation algorithms [95] or by exact (fast)
exponential time algorithms [49]. Following the history of chordal completions, our hope is that
understanding and characterizing minimal interval completions will eventually lead to improved

4

exact or approximation algorithms for computing profile and pathwidth.

In this report we present the results of two years’ work on minimal interval and proper interval
completions in the context of pathwidth and bandwidth parameters. As to our knowledge, this
reflects the current state of the art of the topic. There are three polynomial time algorithms com-
puting minimal interval completions, based on substantially different aspects of the combinatorial
structure of the problem [73, 110, 72]. There is one polynomial time algorithm computing minimal
proper interval completions [101]. Finally, there is a polynomial time algorithm computing the
pathwidth of circular-arc graphs [111].

Let us present the structure of this report.

Chapter 2 : Basis provides an introduction to the topic of minimal interval completion. It
makes a review of basic notions of graph theory that we use. Then, it introduces the intersection
graphs. In particular, it surveys properties of chordal, interval, proper interval and circular-arc
graphs that prove useful in the study on minimal completions. The presentation starts with a
unified characterization of these classes. Chordal, interval and circular-arc graphs are described as
intersection graphs of connected subgraphs of a tree, a path or a cycle, respectively. It is followed
with a description of two approaches to characterizing the above mentioned graph classes that are
later used to define minimal completions. The first approach proceeds by the means of connected
decompositions, a generalization of tree decompositions. The second uses layouts, permutations of
the vertex set having particular properties. Finally, some other characterizations and useful lemmas
are given. The chapter is closed with a short discussion on how to use connected decompositions
or layouts to obtain the corresponding completions.

Chapter 3 : Minimal Proper Interval Completion Through Exploration presents
the results of [101]. They consist in showing that a minimal proper interval completion can be
obtained by choosing a particular permutation of the vertex set, called a nice layout (for proper
interval completion) σ, and adding edges in order to make σ a bicompatible ordering of the resulting
graph. First, the procedure of computing a proper interval completion based on a layout is given,
together with the definition of a nice layout. Then, the notions of a moplex and of a moplexian
vertex are introduced. They proved useful as definitions of ”extremities” of a graph. Finally,
a characterization of a family of nice layouts is given together with a O(n + m) time algorithm
computing a minimal proper interval completion. The algorithm is a BFS exploration with a
particular tie-break rule, that can be computed locally.

Even though [101] was not chronologically the first of our papers on interval completions, we
decided to start the report with its description. The reason is that it provides a gentle introduction
to some of the techniques that we use. The following chapters will develop these, and gradually
add some more. As far as it was possible, we tried to keep a steady rhythm of introducing new
notions.

Chapter 4 : Minimal Interval Completion Through Exploration presents the results
of [110]. They consist in showing that a minimal interval completion can be obtained by choosing
a particular permutation of the vertex set, called a nice layout (for interval completion) σ, and
adding edges in order to make σ an interval ordering of the resulting graph. First, the procedure
of computing an interval completion based on a layout is given, together with the definition of a
nice layout. Then, a characterization of a family of nice layouts is given. For this purpose, some
further properties of moplexes and moplexian vertices are given. In particular, the last vertex
explored in a LexBFS exploration of the graph is described as a particular type of a moplexian
vertex, with stronger ”extremity” properties. Finally, the characterization is exploited in a O(nm)

5

time algorithm computing a minimal interval completion. The algorithm is a BFS exploration with
an additional tie-break rule, based on an additional LexBFS launched at each step.

Chapter 5 : Pre-order - clique path encoding describes the main tool conceived to tackle
the problem of minimal interval completion in [73]. There, it is used as a compact encoding of
all possible clique paths of an interval graph G. The pre-order permits to compute finer and finer
path decompositions down to fixing a clique path of G. The elementary step consists in choosing
a minimal separator S of G and computing the set of connected components C(S) of G− S. Each
component Ci ∈ C(S) together with its neighborhood NG(Ci) yields a block Oi = Ci∪NG(Ci). The
blocks arranged on a path form a path decomposition of G. The pre-order relation tells if one block
can be put between another and a block containing S in a path decomposition of G. It is a partial
pre-order of width 2 (maximum cardinality of an anti-chain). A decomposition of the pre-order
into two chains gives a path decomposition of G. These correspondences are explored first. Then,
a more detailed analysis of the structure of the pre-order is given. This study is necessary for a
good control over the pre-order, and is used in the main proof of [73]. The final part of the chapter
is devoted to efficient learning of the pre-order. It can be achieved in linear time.

Chapter 6 : Minimal Interval Completion Through Decomposition presents the results
of [73]. The chapter starts by showing that a minimal interval completion can be computed online.
With vertices of G coming in an arbitrary order (v1, . . . , vn), at each step a minimal interval
completion Hi of the graph Gi = G[{v1, . . . , vi}] is computed. The completion Hi−1 computed at
the previous step is not modified, only edges incident to vi are added. This reduces the problem
to computing a minimal interval completion of a graph G′, for which the graph G obtained by
removing a fixed vertex x is interval. First, a general description of the reduced problem is given.
If the neighborhood of x is a clique in G′, then there is a minimal separator S of G, such that
making every vertex in S adjacent to x yields a minimal interval completion. The rest of the
chapter covers the more difficult case where the neighborhood of x is not a clique. Then, the
analysis of clique paths of G comes into play. It is shown that a minimal interval completion can be
obtained by making x adjacent to every vertex that appears in a well defined interval of cliques in
a particular clique path of G. A clique path which can be used for this purpose is called nice. Then
the pre-order of Chapter 5 is used to refine path decompositions of G in order to find a nice clique
path. Finally, a O(n3 logn) time algorithm computing a minimal interval completion is given.

Chapter 7 : Pathwidth of Circular-Arc Graphs presents the results of [111]. The chapter
starts with an introduction to folding, a tool conceived to describe interval completions in terms
of cliques of the original graph G. An algorithm is given, that computes an interval completion H
of G based on a sequence Q of cliques of G which cover every edge of G (edge clique cover). The
algorithm also produces a clique path of H based on Q. This is called folding G by Q. Then, some
characteristics of circular-arc graphs are recalled. In particular, circular-arc graphs are described
in terms of clique cycle intersection models, like interval graphs were described with clique paths
before. The set of cliques in a clique cycle is an edge clique cover of G. This property is used to
define folding a circular-arc graph as folding a clique cycle model. The main result of this chapter
states that an interval completion of a circular-arc graph of minimum pathwidth can be obtained
by a folding of a very simple structure. This combinatorial result is exploited in a O(n2) time
algorithm computing the pathwidth of circular-arc graphs.

Chapter 8 : Extraction of Minimal Interval Completion presents the results of [72].
Here, the tool of folding introduced in Chapter 7 is studied in detail in the case of folding interval
graphs. The cliques in any clique path of an interval graphH0 form an edge clique cover. So folding

6

an interval graph may be defined as folding a clique path. Then, the notion of a quasi-minimal
interval completion H2 of G is introduced. It is an interval completion which is not minimal,
but there is no interval completion of G obtained by adding just one edge less than in H2. Such
completions are especially difficult to track down. To overcome this difficulty, the notion of folding
is applied. A quasi-minimal interval completion H2 of G is proved to be a folding of a minimal
interval completion H0 of G. The reverse problem of finding an unfolding of a quasi-minimal
interval completion, that is to say, computing an interval completion H1 of G strictly contained in
H2, is then studied. Finally, based on a more strict structure of a reduced folding, a polynomial
time algorithm computing an unfolding is given.

The report is closed with Conclusions and Perspectives.

7

8

Chapter 2

Basis

Contents

2.1 Basic notions . 9

2.1.1 Minimal separators . 10

2.1.2 Ordered partitions . 10

2.2 Intersection graphs . 11

2.2.1 Intersection model . 11

2.2.2 Connected decomposition . 13

2.2.3 Layouts . 14

2.2.4 Other characterizations and properties . 15

2.3 Completion . 16

2.1 Basic notions

A simple graph G is a couple (V,E), where V is an arbitrary set, called the vertex set , and E is an
arbitrary set of two-element subsets of V , called the edge set . An edge e = {x, y} ∈ E, where x, y
are vertices in V , for the sake of simplicity, will be sometimes denoted without the accolades by xy.
A non-edge is a two-element subsets of V which is not in E. The graph G′ = (V,E′), where E′ is
the set of non-edges of G, is the complement of G. For an edge xy, we say that x and y are adjacent ,
and that xy is incident to both x and y. xy is an edge between x and y, and between any sets X,Y
such that x ∈ X, y ∈ Y . We also say that x and y are neighbors. The neighborhood of a vertex
x ∈ V in G, denoted by NG(x) is the set of its neighbors {y | xy ∈ E}. The closed neighborhood
NG[x] = NG(x) ∪ {x}. The neighborhood of a set of vertices A ⊆ V , denoted by NG(A), is the set
of vertices in V \ A that have a neighbor in A, i.e. NG(A) =

⋃

{NG(x) | x ∈ A} \ A. The closed
neighborhood NG[A] = NG(A)∪A. Vertices which are not adjacent are independent . A vertex v, for
which NG[x] = V (G) is universal . We use the notation V (G), E(G) to refer to the vertex set and
the edge set, respectively, of a given graph G, and n = |V (G)|, m = |E(G)| for their cardinalities.
If there is no ambiguity as to which graph we refer, its name may be omitted in the notation. If
every two vertices in G are neighbors then G is a complete graph. The complement of a complete
graph is an empty graph. If the vertex set of G can be partitioned into two subsets A,B in a way
that no edge of G if a subset of either A or B, then G is bipartite. If the neighborhood of every

9

vertex in A equals B, and vice-versa, then G is complete bipartitegraph!complete bipartite on the
sets A,B. The sets A,B are in this case called the color classes of G = (A,B,E). A complete
bipartite graph on the sets A,B, with |A| = a and |B| = b, is denoted by Ka,b. A complete graph
on n vertices is denoted by Kn.

Given another graph G′ = (V ′, E′), where V ′ ⊆ V and E′ ⊆ E, G′ is a subgraph of G. If E′ is
the set of edges incident only to vertices in V ′ then G′ is the subgraph of G induced by V ′; this fact
is denoted by G′ = G[V ′]. If V ′ = V and E′ ⊆ E, then G′ is a spanning subgraph of G, denoted
by G′ ⊆ G. A sequence of vertices W = (x1, . . . , xk), in which every two consecutive vertices are
neighbors in G is a walk . Equivalently, W can be treated as a graph (a subgraph of G) with the
vertices in W as the vertex set and an edge for every par of vertices that appear consecutively in
W . If all vertices of a walk are different then it is a path. If the only equality is between the first
and the last vertex of a walk then it is a cycle. An edge between two vertices which do not appear
consecutively in W is a chord . A walk without a chord is chordless. We say that W joins x1 with
xk. The length of a walk (x1, . . . , xk) is k − 1. We say that a graph G = (V,E) is connected if for
all x, y ∈ V there exists a path joining them. A set of vertices which induces a connected subgraph
of G, and is inclusion maximal for this property is a (connected) component of G. A set of vertices
which induces a complete graph is a clique. A set inclusion maximal for this property is a maximal
clique. A set of vertices which induces an empty graph is a stable set . Three independent vertices
form an asteroidal triple (abbreviated to AT) if any two of them are joined by a path that does not
intersect the closed neighborhood of the third.

Given a set of vertices S ⊆ V , the graph G− S is the subgraph of G induced by V \ S, i.e. the
graph G′ = (V ′, E′) where V ′ = V \ S and E′ is the set of edges not incident to any vertex in S.

2.1.1 Minimal separators

If there are two vertices x, y ∈ V \ S that are joined by a path in G and not joined by any path in
G′ then S is a separator . In this case we say that S separates x from y. Moreover, if S is inclusion
minimal for this property then it is a minimal x, y-separator . In general, S is a minimal separator
if there are some x, y such that S is a minimal x, y-separator. The components associated to S are
the connected components of G − S. This set is denoted by C(S). C ∈ C(S) is a full component
associated to S if N(C) = S.

It is a well known fact that, for any minimal separator, there exist two associated full compo-
nents. A block O ⊆ V is the union of a minimal separator S with a full component C associated
to S. S is called the separator bordering O. Notice that, given a block O, the bordering separator
S = NG(V \O).

Given a minimal separator S, a component M ∈ C(S) which is a clique and the neighborhood
of every vertex in M contains S is a moplex . An element of a moplex is a moplexian vertex .

2.1.2 Ordered partitions

Given two tuples O′ = (O1, . . . , Ok), O′′ = (Ok+1, . . . , Ok+l) we write O′ • O′′ to denote their

concatenation O = (O1, . . . , Ok, Ok+1, . . . , Ok+l).
←−
O denotes the tuple obtained fromO by reversing

the order of elements. A tuple of disjoint subsets of V , O = (O1, . . . , Ok) whose union is exactly V is
called an ordered partition of V . A refinement of O is an ordered partition O′ obtained by replacing
each set Oi by an ordered partition (O1

i , . . . , O
l
i) of Oi, that is to say, replacing (O1, . . . , Oi, . . . , Ok)

with (O1, . . . , O1
i , . . . , O

l
i, . . . , Ok). We write O′ ! O. Given an ordered partition O = (O1, . . . , Ok),

10

any tuple O′ = (O1, . . . , Oj), with 0 ≤ j ≤ k, is called a prefix of O. In the particular case where
O = (O1), we simply write O1. Moreover if O1 is formed by a single vertex x, we write x instead
of {x}. A permutation of V is a particular case of an ordered partition.

For any structure X on a subset of the vertex set, we use V(X) to denote the set of vertices in the
structure. In particular for an ordered partitionO = (O1, . . . , Ok), V(O) denotes

⋃

{Oi | 1 ≤ i ≤ k}.
Given a tuple σ = (t1, . . . , tk), we consider it as a linear order and sometimes write ti ≤ tj or say
that ti is smaller than tj (with respect to σ), for any i ≤ j. Notice that it also applies to a path,
taken as a sequence of vertices. Moreover, given ta, tb we speak of the interval [ta : tb] as of the set
{ti | a ≤ i ≤ b}. Throughout this report we consider finite, simple graphs. Moreover, we assume
they are connected, since in the non-connected case each component can be treated separately.

2.2 Intersection graphs

In this section we introduce four classes of intersection graphs that are of particular interest of us,
namely, chordal, interval, proper interval and circular-arc graphs. These classes share a number of
interesting properties that let us see them in a unified way. Two of their aspects we describe here
in detail, because they proved very useful in analyzing minimal completions. The first aspect is
that all these classes can be characterized through connected decompositions, which is a straight-
forward consequence of the definitions given in the next subsection. The other is that they can be
characterized by vertex layouts. In the last subsection, we give some other characterizations that
prove useful throughout the work on these classes.

2.2.1 Intersection model

The intersection graph of a family V of n sets is the graph G = (V,E), where the vertices are the
sets and the edges are the pairs of sets that intersect. Every graph is the intersection graph of some
family of sets. In fact, general topology is not needed, since a stronger result holds:

Theorem 2.2.1 ([92]). Every graph G = (V,E) is the intersection graph of a family W = {Wv |
v ∈ V } of subsets of the vertex set of a graph H = (W,F) which induce connected subgraphs of H.
The graph H is called the host graph and (H,W) is called the intersection model of G. For any
v ∈ V , the set Wv is called the representation of v in H.

In this work, we focus on this graph theoretic framework. We study the following graph classes.

Definition 2.2.2 (chordal graph). G is an chordal graph if it has an intersection model (H,W),
where H is a tree.

Since for each vertex v ∈ V (G) the corresponding Wv ∈W induces a connected subgraph of H,
which is a tree, G is represented by intersecting subtrees of H.

Definition 2.2.3 (interval graph). G is an interval graph if it has an intersection model (H,W),
where H is a path.

Clearly, the elements of W induce subpaths of H, and are called the intervals of the model. The
first and the last element of an interval Wi are called the endpoints of Wi.

Definition 2.2.4 (proper interval graph). G is a proper interval graph if it has an intersection
model (H,W), where H is a path and no interval is properly contained in another. That is to say,
if one interval is contained in another, then they share an endpoint.

11

v5 v10

w1 w3w2

v8

v10

v5
v1

v1 v8

Figure 2.1: A proper interval graph and an interval model.

v1

v5 v10

v8

Figure 2.2: A slight modification of intervals to avoid strict inclusion.

Definition 2.2.5 (circular-arc graph). G is a circular-arc graph if it has an intersection model
(H,W), where H is a cycle.

So a circular-arc graph is represented by a family of arcs on a cycle, that is a family of paths
and, possibly, the whole cycle.

The original definitions of these classes were quite different. Chordal graphs, also called trian-
gulated graphs, were first defined as the class of graphs containing no chordless cycles of length
greater than three (see [61]). It was some time later that Gavril [57] proved they can be charac-
terized as intersection graphs of subtrees of a tree. Interval and proper interval graphs were first
defined as intersection graphs of intervals on a line, without proper inclusion in case of proper
interval graphs. Also the circular-arc graphs were first defined with geometrical objects: arcs on a
cycle. In this document we use the definitions given above in purpose of unifying the approaches
and giving a common ground for our analysis. We emphasize that our definition of proper interval
graphs is equivalent to the classical one. The definition using the proper containment of intervals
as the set inclusion with disjoint sets of endpoints is equivalent, since a slight modification of the
intervals yields a model that satisfies the traditional definition. Indeed, if one interval is strictly
included in another, but they share an endpoint, w.l.o.g. assume it is the starting point, then it is
enough to slightly enlarge the shorter interval to the left (by some ε small enough not to add new
intersections) to make the intervals incomparable by inclusion. This gives the following lemma.

Lemma 2.2.6. Proper interval graphs are exactly the intersection graphs of intervals on a line
which have an intersection model in which no interval is strictly contained in another.

Notice that all these families are hereditary, that is to say, they are closed under taking induced
subgraphs. Indeed, let (H,W) be an intersection model of a graph G in one of the above mentioned

12

classes. Given a subset V ′ ⊆ V , one may restrict W to W ′ = {Wv ∈W | v ∈ V ′}. This yields the
pair (H,W ′), which is an intersection model of G[V ′]. G[V ′] is in the same class as G.

There are some inclusions among these classes. Proper interval graphs are interval graphs.
Interval graphs are both chordal and circular-arc graphs.

2.2.2 Connected decomposition

Let G = (V,E) be a graph and let (H,W) be an intersection model of G, where H = (W,F). For
any vertex w ∈ W of H, any two vertices v1, v2 of G whose representation in H contains w are
adjacent in G. The corresponding set Vw = {v ∈ V | w ∈ Wv} is a clique in G. Moreover, every
edge of G is a subset of such a clique. So the family V = {Vw | w ∈ W} is an edge clique cover of
G.

Definition 2.2.7 (edge clique cover). Let X = {X1, ...,Xk} be a set of subsets of V such that
Xi, 1 ≤ i ≤ k, is a clique in G = (V,E). If, for every {vi, vj} ∈ E, there is some Xp such that
{vi, vj} ⊆ Xp, then X is called an edge clique cover of G.

It is often convenient to identify the vertices of a host graph H with the corresponding members
of the family V. In this way, for any G which is chordal, interval, proper interval or circular-arc
graph, the corresponding host graph H is a clique connected decomposition of G.

Definition 2.2.8. A connected decomposition of an arbitrary graph G = (V,E) is a graph D =
(X , A), where X is a family of subsets of V called bags and A is any set of edges on X , such that
the following three conditions are satisfied.

1. Each vertex v ∈ V appears in some bag.

2. For every edge {vi, vj} ∈ E there is a bag containing both vi and vj .

3. For every vertex v ∈ V , the bags containing v induce a connected subgraph of D.

D = (X , A), a connected decomposition of G, is a clique connected decomposition of G if X is an
edge clique cover of G.

In case of a chordal graph G, the number of maximal cliques is at most equal the number of
vertices, so it is plausible to analyze the edge clique cover given by the set of maximal cliques. In
general, it is not the case for a circular-arc graph, since it may have exponentially many maximal
cliques. Many authors restrict the name of clique tree or clique path to maximal clique connected
decompositions. Nevertheless, the maximality condition on bags is not necessary to have most of
interesting properties. So we use the relaxed versions given below.

Definition 2.2.9. A connected decomposition with D being a tree, path or a cycle is a tree, path
or cycle decomposition, respectively. A clique connected decomposition with D being a tree, path or
a cycle is a clique tree, path or cycle, respectively.

Lemma 2.2.10 ([61]). G is a chordal, interval, circular-arc graph iff it has a clique tree, path or
cycle, respectively. G is a proper interval graph iff it has a clique path in which there is no proper
containment of intervals induced by vertices of G (see Definition 2.2.4).

13

2.2.3 Layouts

A layout of G is a permutation σ = (v1, . . . , vn) of its vertex set (see Subsection 2.1.2). A vertex
x whose neighborhood is a clique is a simplicial vertex . A layout σ = (v1, . . . , vn) in which vi is
simplicial in G[Vi], for every 1 ≤ i ≤ n, Vi = {vi, . . . , vn}, is called a perfect elimination ordering.
A perfect elimination ordering σ for which also←−σ is a perfect elimination ordering is a bicompatible
ordering . These notions are related to characterizations of the above mentioned graph classes that
proved very useful in the work on minimal completions.

It is well known that a graph is chordal if and only if it has a perfect elimination ordering.

Theorem 2.2.11 (perfect elimination ordering, [54]). G = (V,E) is a chordal graph iff it has a
layout σ = (v1, . . . , vn) such that:

∀i < j < k : vivj ∈ E ∧ vivk ∈ E ⇒ vjvk ∈ E.

Such a layout is a perfect elimination ordering.

A graph is interval if and only if it has an interval ordering.

Theorem 2.2.12 (interval ordering, [97]). G = (V,E) is an interval graph iff it has a layout
σ = (v1, . . . , vn) such that:

∀i < j < k : vivk ∈ E ⇒ vivj ∈ E.

Such a layout is an interval ordering.

Notice that for an interval ordering σ, the reverse ordering←−σ is a perfect elimination ordering.

Remark 2.2.13. Let σ = (v1, v2 . . . , vn) be an interval ordering of an interval graph G = (V,E).
An interval model of G on the path (1, . . . , n) can be obtained by associating to each vertex vi the
interval [i : j], where j ≥ i is the largest index such that {vi, vj} ∈ E, or the interval [i : i] if no
such j exists.

Conversely, given an interval model of the graph G, we obtain an interval ordering by ordering
the vertices according to the left end-point of their intervals, from left to right. Ties can be broken
arbitrarily. For technical reasons, in this work, we decide to use the order of the right-ends as a
tie-break, from left to right, too.

Given an interval model, a clique path can be obtained by traversing the model from left to right
and, at each point p where an interval finishes, adding the clique of intervals intersecting p if it
is not included in the (maximal) clique added right before. If σ is an interval ordering of G, let
P (G,σ) denote the clique path obtained in that way.

A graph is proper interval if and only if it has a bicompatible ordering.

Theorem 2.2.14 (bicompatible ordering, [98]). G = (V,E) is an interval graph iff it has a layout
σ = (v1, . . . , vn) such that:

∀i < j < k : vivk ∈ E ⇒ vivj ∈ E ∧ vjvk ∈ E.

Such a layout is a bicompatible ordering.

Notice that for a bicompatible ordering σ, both σ and revere ordering←−σ are interval orderings.
Finally, a graph is circular-arc if and only if it has a circular ordering.

14

Theorem 2.2.15 (circular ordering). G = (V,E) is a circular-arc graph iff it has a layout σ =
(v1, . . . , vn) such that:

∀i < k : vivk ∈ E ⇒ (∀j : i < j < k ⇒ vivj ∈ E) ∨ (∀j : k < j ∨ j < i⇒ vjvk ∈ E).

Such a layout is a circular-arc ordering.

2.2.4 Other characterizations and properties

Theorem 2.2.16 ([61]). G is a chordal graph iff it has a maximal clique tree, that is a clique tree
on the set of maximal cliques of G.

Theorem 2.2.17 ([61]). G is an interval graph iff it has a maximal clique path, that is a clique
path on the set of maximal cliques of G.

Remark 2.2.18. Let G = (V,E) be an interval graph on n vertices, and let PG be any maximal
clique path of G. For the ease of description, we arbitrarily fix an orientation: in what follows,
we assume that one of the endpoints of a clique path is chosen as the first (or the leftmost) bag,
and denoted by K1. So the maximal cliques of G can be enumerated (K1, . . . ,Kk) according to
their order of appearance in PG. Kk is called the last (or the rightmost) bag of PG. Based on an
orientation of PG, G can be encoded in linear space by storing, for each vertex v ∈ V , the index of
the first, denoted by l(v), and the last, denoted by r(v), maximal clique containing v. Indeed, it is
linear, since the number of maximal cliques of G is bounded by n (see [61]). Such an encoding is
called an integer interval encoding of G.

Based on the characterization by maximal clique path, there are some very useful lemmas. The
first of them is sometimes called the ”intersection property of clique trees”. It is very often used in
discussions of clique trees.

Lemma 2.2.19 ([11]). Given a clique tree T of a chordal graph G, for every pair K,K ′ of nodes
in T , the intersection K ∩K ′ is contained in every node on the path joining K to K ′ in T .

The next lemma states that, given any clique tree T of a chordal graph G, every separator S of
G is the intersection of two maximal cliques K,K ′ adjacent in T . In this way, the edge of T joining
K and K ′ ”represents” S.

Lemma 2.2.20 ([11]). Let G be a chordal graph with a maximal clique tree T . Let S .= ∅ be a
set of vertices of G. S is a minimal separator of G iff S = K ∩ K ′ for some KK ′ ∈ E(T). In
particular, every minimal separator is a clique.

The following two lemmas state that both a maximal clique K and a minimal separator S
separate vertices of G −K (resp. G − S) that appear in different subtrees obtained by removing
the node corresponding to K (resp. an edge representing S) from a clique tree T of G.

Lemma 2.2.21 ([11]). Let G be a chordal graph with a maximal clique tree T . Let Ω,Ω′ be two
maximal cliques of G adjacent in T . Consider the two subtrees of T obtained by removing the edge
between the nodes Ω and Ω′. Let TΩ be the subtree containing Ω and TΩ′ the subtree containing
Ω′. We denote by VΩ and VΩ′ the union of maximal cliques in TΩ or TΩ′ , respectively. Then the
minimal separator S = Ω ∩ Ω′ separates any vertex of VΩ \ S from any vertex of VΩ′ \ S.

15

Lemma 2.2.22 ([11]). Let G be a chordal graph with a maximal clique tree T . Let Ω be a maximal
clique of G which is not a leaf in T . Consider T1, . . . , Tk, the subtrees of T obtained by removing
the nodes Ω. We denote by Vi, 1 ≤ i ≤ k, the union of maximal cliques in Ti. Then the maximal
clique Ω separates any vertex of Vi \ Ω from any vertex of Vj \Ω, 1 ≤ i < j ≤ k.

The next lemma states that a minimal separator S of a chordal graph G partitions the set of
maximal cliques of G into subsets corresponding to blocks associated to S.

Lemma 2.2.23. Let K be a maximal clique of a chordal graph G. For any minimal separator S
of G there is a component C associated to S such that K ⊆ S ∪C.

Notice, that a maximal clique path is also a maximal clique tree. So, among others, the Lemmas
2.2.20 and 2.2.21 and 2.2.22 hold for an interval graph G with a clique path P .

Definition 2.2.24. Three independent vertices form an asteroidal triple if any two of them are
joined by a path that does not intersect the closed neighborhood of the third.

We claimed that proper interval graphs are interval, and that interval graphs are chordal. The
following theorems give the precise characterizations.

Theorem 2.2.25 ([22]). G is an interval graph iff G is chordal and asteroidal-triple free.

Theorem 2.2.26 ([61]). G is a proper interval graph iff G is an interval graph without K1,3 as an
induced subgraph.

2.3 Completion

Definition 2.3.1. Given a graph G = (V,E), a chordal, interval, proper interval or circular-arc
super-graph G′ = (V,E′) is called a chordal, interval, proper-interval or circular-arc completion
of G, respectively. If no proper subgraph of G′ has this property then G′ is a minimal completion.
The edges in E′ \ E are called fill edges.

Definition 2.3.2. The treewidth, pathwidth, bandwidth or cyclewidth of a graph is the minimum
clique number minus one over all its chordal, interval, proper interval or circular-arc completions,
respectively.

Notice that, for each of the parameters mentioned above, optimal completions can be found
among minimal completions.

Given a graph G and a tree decomposition T of G, the graph obtained from G by adding the
edges necessary to make every bag a clique is a chordal graph. This operation of turning a set
of vertices into a clique by adding the necessary edges is called filling . In a similar way, a path
decomposition can be used to obtain an interval super-graph of G, and a cycle decomposition can
be used to obtain a circular-arc super-graph of G. In general, given a graph G and a connected
decomposition H, we denote the corresponding completion by Fill(G,H).

A completion can also be obtained based on a layout. Given a graph G and a layout σ of G, the
graph G′ obtained by enforcing the characterization of perfect elimination ordering to hold for σ on
G′ is a chordal graph. This enforcing can be done by processing the vertices of G in the order given
by σ and, at the moment of processing vi, adding fill-edges necessary for the set of neighbors of vi
with bigger indices to be a clique. In a similar way, enforcing an interval ordering or a bicompatible

16

ordering defines a unique completion into an interval or proper interval graph, respectively. In this
work we focus on completion into interval and proper interval graphs.

Much research has been devoted to the study of minimal chordal completions, also known
as triangulations, especially with association to the treewidth parameter. For many years there
were no results on the analogous problems of minimal interval and proper interval completion. One
reason behind this may be that the minimality in case of interval and proper-interval graphs is more
elusive. Namely, a triangulation H of G is minimal if and only if there is no edge e ∈ E(H) \E(G)
such thatH−e is a chordal graph. This simple characterization was used in most results on minimal
triangulations, whereas for interval and proper-interval graphs the analogues simply do not hold.
It happens that H is an interval completion of G, such that, for any edge e ∈ E(H) \E(G), H − e
is not an interval graph, and still H is not a minimal interval completion. The same for proper
interval completions.

This work presents the current knowledge on interval and proper-interval completions, based
on connected decompositions and layouts, in the context of related graph parameters.

17

18

Chapter 3

Minimal Proper Interval Completion

Through Exploration

Contents

3.1 ProperInterval layout . 20

3.2 Moplex and LexBFS . 21

3.3 Nice layouts and nice prefixes . 22

3.3.1 Choosing a first vertex . 22

3.3.2 A family of nice layouts . 23

3.3.3 Nice layouts : a sufficient condition . 26

3.4 The algorithm . 27

3.5 Conclusions . 30

In the previous chapter, section 2.3, we mentioned two approaches to computing an interval
completion of an arbitrary graph G. The first takes a path decomposition P of G and turns all
the bags into cliques, thus creates a clique path decomposition of an interval completion H of G.
For a proper interval completion an additional condition on P is needed that there is no proper
inclusion of intervals corresponding to vertices of G in P (see Definition 2.2.4 and Lemma 2.2.10).
Unfortunately, we do not know how to exploit this approach in order to compute a minimal proper
interval completion. Nevertheless, we mention it here because path decompositions were used in
our first, successful, attack on the problem of minimal interval completion, presented in Chapter 6.
After that, we tried to compute minimal proper interval completions with similar tools, but failed.
And this failure made us search for other tools, and eventually helped discover the other approach
to minimal completions, namely through layouts. In this chapter we present how to compute a
layout of an arbitrary graph, such that adding fill edges in order to make it a bicompatible ordering
yields a minimal proper interval completion. It is done with a linear time algorithm computing
a minimal proper interval completion of an arbitrary graph. In Chapter 4 we will show how to
extend this algorithm to yield minimal interval completions.

19

Figure 3.1: PIG(G,σ) - the fill edges in dashed line-style.

3.1 ProperInterval layout

Let us put the discussion on using a layout to compute a minimal proper interval completion into
formal definitions (see Subsection 2.2.3). First we define an operator that takes an arbitrary graph
G and a permutation of the vertex set σ and yields a graphH by adding to G all the edges necessary
for σ to be a bicompatible ordering of H.

Definition 3.1.1. Let G = (V,E) be an arbitrary graph and σ = (v1, . . . , vn) be a layout of G.
The graph PIG(G,σ) = (V,E′) is defined by

E′ = {vjvk | ∃i, l : i ≤ j < k ≤ l ∧ vivl ∈ E}.

We say that the graph PIG(G,σ) is defined by σ.

Informally speaking, this operation corresponds to taking each edge e of G and turning into a
clique the set of vertices ”covered” by e, that is to say, the vertices which appear in σ between the
endpoints of e (inclusive).

The following lemma, which simply states that the graph yielded by this operation is a proper
interval graph, is a direct consequence of Theorem 2.2.14.

Lemma 3.1.2. PIG(G,σ) is a proper interval graph.

What makes this operator particularly interesting is that any minimal proper interval comple-
tion of an arbitrary graph G can be obtained by applying PIG on some layout σ of G.

Theorem 3.1.3. Let G = (V,E) be an arbitrary graph and G′ = (V,E′) be a minimal proper
interval completion of G. Then there is a layout σ of G such that G′ = PIG(G,σ).

Proof. By Theorem 2.2.14, there is a ordering σ of V bicompatible for G′. As a straight consequence
of Definition 3.1.1 E(PIG(G,σ)) ⊆ E(G′). By Lemma 3.1.2, PIG(G,σ) is also a proper interval
graph. Thus, by minimality of G′, we deduce that E(PIG(G,σ)) = E(G′).

Therefore we can regard the computation of a minimal proper interval completion of G as a
process mining the set of layouts of G in search for a nice one.

Definition 3.1.4. An layout σ = (v1, . . . , vn) is called nice if PIG(G,σ) is a minimal proper interval
completion of G. Any prefix (v1, . . . , vk), k ≤ n of a nice layout is called a nice prefix.

As it is usually the case with layouts, we compute them in an incremental way, starting with
some well chosen vertex and then, at every step, computing the next vertex that should be appended
to the prefix computed so far. This is why we give a name not only to a complete layout that yields
a minimal proper interval completion through PIG, but also to every prefix that can be extended
to such a layout. Maintaining nice prefixes we are sure that our algorithm never enters a dead-end
- it is always possible to proceed without backtracking.

20

3.2 Moplex and LexBFS

Given an arbitrary graph G, we need to choose the first vertex for a layout σ such that H =
PIG(G,σ) will be a minimal proper interval completion of G. As mentioned before, see Remark
2.2.13, any interval ordering, in particular a bicompatible ordering, can be transformed into an
interval model. In particular, the first vertex of the layout corresponds to the leftmost interval
of a model obtained in this way. Therefore, we deal with some kind of extremity of the graphs
in question. Berry and Bordat, in their research on graph extremities, defined the notion of a
moplex which has proved to be very useful for our approach. As we will show in the next section,
a moplexian vertex is a good choice for the first vertex of a nice layout. A prefix consisting of a
single moplexian vertex is nice, i.e. it can be extended to a layout of G which yields, through the
operator PIG, a minimal proper interval completion of G. Another crucial feature of a moplexian
vertex is that it can be found in linear time.

Let us shortly introduce a few notions concerning moplexian vertices. The original work of
Berry and Bordat used terminology that is out of the scope of this report. For this reason, we give
a slightly different, but equivalent, definition.

Definition 3.2.1 ([7]). Let S be a minimal separator (see Subsection 2.1.1) and let M ∈ C(S) be
a component associated to S which is a clique. If the neighborhood of every vertex in M contains
S, then M is a moplex. An element of a moplex is a moplexian vertex.

They proved that a moplexian vertex always exists and can be found efficiently.

Theorem 3.2.2 ([7]). Every graph has a moplexian vertex. Such a vertex can be found in O(n+m)
time. More precisely, the algorithm LexBFS (see Figure 3.2) ends on a moplexian vertex.

In general, an exploration (search) algorithm visits all vertices of the graph and will visit a new
vertex only if it is adjacent to some previously visited vertex. This does not indicate the rules on
how to choose the next vertex among the neighborhood of the vertices explored so far. The two
fundamental strategies are the Breadth-First Search (BFS) and the Depth-First Search (DFS). The
BFS strategy picks the next vertex among the neighbors of the first visited vertex that still has
some neighbors to explore. The DFS strategy picks the next vertex among the neighbors of the last
visited vertex that still has some neighbors to explore. But even with these rules, there may be some
ties to be broken. The exploration algorithm that has earned the most attention over the last years
is probably the Lexicographic BFS (LexBFS) algorithm. Here the strategy to pick the next vertex
among the neighbors of the first visited vertex that still has some neighbors to explore is refined
by adding additional filters coming from the second, third, and so on until the last vertex visited
so far. This may be seen as a procedure numbering the vertices from n to 1 as they are visited and
appending the number i, when the vertex v is numbered with i, to the label of each non-visited
neighbor of v. Then the next vertex is the one having the lexicographically largest label among
non-visited vertices (see Figure 3.2). Thus the name of the strategy. The order in which LexBFS
visits the vertices is called a LexBFS ordering. The LexBFS algorithm was introduced by Rose,
Leuker and Tarjan [107]. Their application was to recognize a chordal graph by finding a perfect
elimination ordering, since the reverse of a LexBFS ordering is a perfect elimination ordering, given
a chordal graph G. See [30] for a survey on LexBFS.

21

Algorithm LexBFS

Input: G = (V,E) connected
Output: a numbering of the vertices from n to 1

// init
for each vertex x do

x is marked “unnumbered”
lab(x) := ∅

// main loop
for i := n downto 1 do

pick an unnumbered x with maximum label according to the lexicographic order
give the number i to x
for each unnumbered neighbor y of x do

add the number i at the end of lab(y)

Figure 3.2: The LexBFS algorithm.

3.3 Nice layouts and nice prefixes

We already mentioned that any moplexian vertex constitutes a nice prefix. In this section we justify
this claim and give a complete description of a family of nice layouts. The condition we give is
sufficient but not necessary. There exist nice layouts which do not fit within our characterization.

We want to compute a layout σ of an arbitrary graph G such that the graph H = PIG(G,σ) is
a minimal proper interval completion. Our characterization tells, for any nice prefix ρ that starts
with a moplexian vertex, in what set we should choose the next vertex to be added to the prefix in
order to be sure that the new prefix is also nice. The main line of defending this solution is that any
choice which does not follow the characterization implies the presence of a fill edge in the resulting
completion which is not added by our algorithm. Then we prove that all choices that satisfy the
characterization define minimal proper interval completions.

For a brief description of a layout σ satisfying our characterization we may say that it is a BFS
ordering starting from a moplexian vertex, with a special tie-break rule. It is useful to recall here
the standard color code for BFS algorithms, with the already explored vertices marked as black, the
unexplored neighbors of explored vertices marked as gray, and the other vertices marked as white.
Since we deal with a BFS ordering, given the current prefix ρ, the exploration continues with the
neighbors of the first vertex in ρ, denoted First(ρ), that still has some unexplored neighbors. The
tie-break rule says that we should first choose a vertex that has an inclusion minimal set of white
neighbors.

3.3.1 Choosing a first vertex

Let G = (V,E) be an arbitrary graph. The following proposition shows that any moplexian vertex
v1 ∈ V constitutes a nice prefix. In fact, for any proper interval completion H ′ of G that does not
have a bicompatible ordering starting with v1, the neighborhood of v1 in H ′ is strictly bigger than
in G. Whereas, there is a layout σ starting with v1 such that PIG(G,σ) preserves the neighborhood

22

NS(ρ)
WhiteGrayBlack

Figure 3.3: BFS color code and the strong neighborhood of ρ.

of v1. Thus, putting v1 first we preserve a non-edge which otherwise becomes a fill edge. In other
words, any completion which does not have a bicompatible ordering starting with v1 modifies the
neighborhood of v1.

Proposition 3.3.1. Let M be a moplex of G and v ∈ M . There exists an nice layout σ starting
with v such that the neighborhood of v in PIG(G,σ) is exactly the neighborhood of v in G. Moreover,
for any minimal interval completion H of G such that NG(v) = NH(v), there exists a layout σ′,
starting with v and such that H = PIG(G,σ′).

Proof. Let M be a moplex such that v ∈ M (actually this moplex is unique [7]) and let H be the
graph obtained from G by filling V \ M . We first show that H is a proper interval graph. Let
S = N(M). By definition of a moplex and by construction of H, the graph H is formed by two
cliques, namely M ∪S and V \M . Their intersection is exactly S. Clearly, H is an interval graph.
Moreover it has no independent set of size greater than 2, in particular it has no induced K1,3.
Hence H is interval and claw-free, so H is a proper interval graph by Theorem2.2.26. In particular
there is a minimal proper interval completion of G contained in H.

Consider any minimal proper interval completion H ′ of G such that NG(v) = NH′(v) (H ′ exists
by the previous remark). By Theorem 2.2.14, there exists a layout σ′ such that H ′ = PIG(G,σ′). If
all vertices appearing before v in σ′ are elements of M , we can permute v and the first element of
σ′ without changing the graph PIG(G,σ′). Similarly, if all vertices appearing after v are in M , we
reverse σ′ and then permute v and the first vertex. In both cases v becomes the first vertex of σ′.

It remains to consider the case when there are two vertices a, b .∈M , such that a < v < b in σ′.
Then there is a path from a to b in G, such that all vertices of the path are in V \M . Consequently
there are two consecutive vertices of the path, say a′ and b′, such that a′ < v < b′ in σ′. Thus
{v, a′} and {v, b′} are edges of H ′. Since a′, b′ .∈M , by construction of H ′ we must have a′, b′ ∈ S.
Recall that S is a minimal separator, thus there are two connected components C and D of G− S
such that N(C) = N(D) = S. At least one of them, say C, is different from M . Let µ be a path
from a′ to b′ in G[C ∪ {a′, b′}], not using the edge {a′, b′}. Like above, there are two consecutive
vertices a′′ and b′′ of µ with a′′ < v < b′′ in σ. Hence v is adjacent in H ′ to both a′′ and b′′. At least
one of a′′, b′′ is in C, contradicting the fact that H ′ has no edges between v and V \ (M ∪ S).

3.3.2 A family of nice layouts

Now we proceed to the description of an incremental step. It is built upon a partition of the vertex
set induced by the prefix ρ computed so far. The parts are defined as follows.

23

ρ NS(ρ) NW(ρ)

g1f g2 g3 r

r g3g2f g1

Figure 3.4: The strong neighborhood of ρ should come first.

Definition 3.3.2. Let ρ be a non empty prefix. We denote by First(ρ) the first vertex in ρ having
a neighbor in V \ V(ρ). We define the strong neighborhood (denoted NS(ρ)), weak neighborhood
(NW(ρ)) and non-neighborhood N(ρ) as follows:

• NS(ρ) = N(First(ρ)) \V(ρ),

• NW(ρ) = N(V(ρ)) \N(First(ρ)),

• N(ρ) = V \N [V(ρ)].

In other words, the strong neighborhood of ρ are the grey neighbors of First(ρ). The weak
neighborhood of ρ are the grey vertices which are not neighbors of First(ρ). The non-neighborhood
of ρ are the white vertices.

It is a straightforward observation that in any BFS ordering σ, for any prefix ρ, the vertices
of strong, weak and non-neighborhood of ρ are consecutive in σ and they appear exactly in this
order. We formalize this condition with the following definition. Let us remind that the operator
• denotes concatenation.

Definition 3.3.3. We say that a layout σ respects a prefix ρ if σ is a refinement of ρ • NS(ρ) •
NW(ρ) •N(ρ).

Our goal is to show that if ρ is a nice prefix starting with a moplexian vertex, then there is a
nice layout respecting it. This is a first step towards the extension of a nice prefix by adding a new
vertex.

The next lemma shows that, given a prefix ρ, a layout σ with the strong neighborhood of ρ
put right after ρ has an advantage over any layout σ′ starting with ρ but without this property.
The completion PIG(G,σ′) adds a fill edge which is preserved as a non-edge in PIG(G,σ). In other
words, there is a nice layout which is an extension of ρ with the strong neighborhood of ρ put right
after ρ.

In Figure 3.4 there is an example showing in the top part how ρ is followed by NS(ρ). In the
bottom part there is a sample layout which does not follow this rule. Notice the fill edge e joining
the vertex First(ρ), labeled f , and the vertex r which is not a neighbor of First(ρ). Such a fill edge
does not appear if NS(ρ) is put right after ρ in σ.

24

ρ NS(ρ) NW(ρ) N(ρ)

f g r

f r g

Figure 3.5: The weak neighborhood comes before the non-neighborhood.

Lemma 3.3.4. Let σ and σ′ be two layouts with a common prefix ρ and such that PIG(G,σ′) ⊆
PIG(G,σ). Suppose that σ is a refinement of ρ•NS(ρ)•(NW(ρ)∪N(ρ)). Then σ′ is also a refinement
of ρ • NS(ρ) • (NW(ρ) ∪ N(ρ)).

Proof. Assume that both sets NS(ρ) and NW(ρ) ∪ N(ρ) are not empty, otherwise the conclusion is
true for any σ′ starting with ρ. Let vf denote First(ρ).

By contradiction suppose that there are two vertices a ∈ NS(ρ) and b ∈ NW(ρ)∪N(ρ) such that
vf < b < a in the layout σ′. Therefore {vf , b} is an edge of PIG(G,σ′). If PIG(G,σ) contained the
edge {vf , b}, then there are two adjacent vertices v′ and a′ of G such that v′ ≤ vf < b ≤ a′ in the
layout σ. By definition of vf = First(ρ) we must have v′ = vf . Therefore a′ ∈ NS(ρ), contradicting
the fact that NS(ρ) appears before b in σ.

We conclude that the edge {vf , b} appears in PIG(G,σ′) but not in PIG(G,σ).

Suppose that σ is a layout respecting a prefix ρ and that σ′ is another layout starting with ρ.
By the previous lemma, we already know that if the completion PIG(G,σ′) is included in PIG(G,σ),
then the strong neighborhood of ρ must be right after ρ in σ′. The following lemma states that
also the weak neighborhood of ρ must appear before the non-neighborhood of ρ. Putting things
together, σ′ has to respect ρ as well.

Lemma 3.3.5. Let σ and σ′ be two layouts with a common prefix ρ and such that PIG(G,σ′) ⊆
PIG(G,σ). Assume that σ respects ρ and let u ∈ NW(ρ), w ∈ N(ρ). Then u appears before w in σ′.

Proof. By contradiction, suppose that w appears before u in σ′. Let u′ ∈ V(ρ) be a neighbor of
u. The edge {w, u′} is present in PIG(G,σ′), since w is between u′ and u in σ′. On the other
hand, σ respects ρ, so w appears after ρ • NS(ρ) • NW(ρ)). No element of ρ is adjacent in G to a
vertex appearing after w in σ. By construction of PIG(G,σ), this graph does not contain the edge
{w, u′}.

In Figure 3.5 there is an example showing in the top part that the weak neighborhood is put
before the non-neighborhood of ρ. In the bottom part there is a sample layout which does not
follow this rule. Notice the fill edges joining the vertex r of the non-neighborhood of ρ with all
white or gray neighbors of the vertex g. Such fill edges do not appear if g is put before r.

So Lemmas 3.3.4 and 3.3.5 directly imply the following:

25

ρ NS(ρ) N(ρ)

g rf

grf

Figure 3.6: A vertex in NS(ρ) having few white neighbors should come first.

Proposition 3.3.6. Let σ and σ′ be two layouts with a common prefix ρ and such that PIG(G,σ′) ⊆
PIG(G,σ). If σ respects ρ, then σ′ also respects ρ.

Having the BFS sufficient condition completed, now we have to focus on the tie-break rule of the
algorithm. Given a prefix ρ, we have to choose between layouts that respect ρ. It is important to
notice, that for such a layout σ the vertices after First(ρ) in ρ together with the strong neighborhood
of ρ form a clique in PIG(G,σ). Moreover, NS(ρ) together with NW(ρ) form a clique in PIG(G,σ)
as well. The reason is always that there is some edge of G that ”covers” the corresponding vertices
in the layout. Taking another permutation of vertices of NS(ρ) makes no difference here. The only
thing that may change are the fill edges incident to vertices in the non-neighborhood of ρ. This is
the basis of the tie-break rule.

The following lemma states that, given a prefix ρ, it is safe to chose a vertex u ∈ NS(ρ) with an
inclusion minimal set of white neighbors to be the next in the layout.

Lemma 3.3.7. Let ρ be a non-empty prefix. Let u,w ∈ NS(ρ). Let σ be a layout that respects
ρ • u. Let σ′ be a layout, with ρ as a prefix, in which w appears before u. If there is w′ ∈
(N(w)∩N(ρ))\(N(u)∩N(ρ)), then the graph PIG(G,σ′) contains an edge not appearing in PIG(G,σ).

Proof. If w′ is between First(ρ) and u in σ′, then by Definition 3.1.1 {u,w′} is present in PIG(G,σ′).
Else, u is between w and w′ in σ′ and the same holds. On the other hand, σ respects ρ • u, so
w′ appears after ρ • u • NS(ρ • u) • NW(ρ • u)). No element of ρ • u is adjacent in G to a vertex
appearing after w′ in σ. By Definition 3.1.1, {u,w′} is not an edge of PIG(G,σ).

In Figure 3.6 there is an example showing in the top part how ρ is followed by a vertex in
NS(ρ) having inclusion minimal set of white neighbors. In the bottom part there is a sample layout
which does not follow this rule. Notice the fill edges joining the vertex labeled ”g” with the white
neighbors of the vertex labeled ”r”. Such fill edges do not appear in any completion which follows
our rules.

This ends the series of lemmas justifying the rules of our algorithm. We can proceed to the
main result of this chapter.

3.3.3 Nice layouts : a sufficient condition

Putting our rules together we can state the main theorem of this chapter which defines a family of
nice layouts.

26

Theorem 3.3.8. Let G = (V,E) be a graph. Let σ = (v1, . . . , vn) be a layout of G such that v1 is
a moplexian vertex and for each 1 < i < n:

1. σ respects ρ, where ρ = (v1, . . . , vi−1),

2. vi is such that N(vi) ∩N(ρ) is inclusion-minimal over all vertices in NS(ρ).

Then σ is a nice layout.

Proof. Suppose that σ is not a nice layout and let σ′ be a layout such that PIG(G,σ′) is a strict
subgraph of PIG(G,σ). Take σ′ in order to maximize the common prefix of σ and σ′. Let ρ =
(v1, . . . , vp) be this maximum common prefix. By construction of σ, all the edges of PIG(G,σ)
incident to v1 are also edges of G. By Proposition 3.3.1, σ′ starts with v. Consequently ρ has at
least one vertex.

Let u = vp+1 be the vertex of index p+ 1 in σ and w be the vertex of index p+ 1 in σ′.
By Proposition 3.3.6, σ′ respects ρ.
Let σ′′ be the layout obtained from σ′ by exchanging u and w. We claim that PIG(G,σ′) =

PIG(G,σ′′). By definition of PIG(G,σ′) and PIG(G,σ′′), every edge in the symmetric difference
E(PIG(G,σ′))∪E(PIG(G,σ′′)) is incident to a vertex between u and w in σ′. Let I denote this
interval. Since σ and σ′ respect ρ, we have that u,w ∈ NS(ρ), hence I ⊆ NS(ρ). As a consequence
of Lemma 3.3.7 and by the condition 2 of the theorem, N(x)∩N(ρ) = N(u)∩N(ρ) for every x ∈ I.
Let z be the last vertex of σ′ contained in N(u) ∩ N(ρ), if such a vertex exists. In particular z is
also the last vertex of σ′′ in N(u) ∩N(ρ).

Consider any y ∈ V(I). Both in PIG(G,σ′) and PIG(G,σ′′), y is adjacent to all vertices of
V(ρ) appearing after First(ρ) and has no neighbor appearing strictly before First(ρ). Since y ∈
NS(ρ), the vertices of N(ρ) adjacent to y in PIG(G,σ′) are precisely the ones appearing before z
– or this neighborhood is empty if z does not exist. The same holds for PIG(G,σ′′). Eventually,
NS(ρ) ∪ NW(ρ) induces a clique both in PIG(G,σ′) and PIG(G,σ′′). Indeed the last vertex b of
NS(ρ) ∪ NW(ρ) in σ′ (resp. σ′′) is adjacent in G to some vertex a of ρ. Since σ′ and σ′′ respect ρ,
all the vertices of NS(ρ) ∪ NW(ρ) are in between a and b, so they form a clique. That proves that
PIG(G,σ′) = PIG(G,σ′′).

We have proved that σ′′ and σ have ρ • u as common prefix, and PIG(G,σ′′) ⊆ PIG(G,σ). This
contradicts the choice of σ′.

3.4 The algorithm

In this section we give an algorithm based on Theorem 3.3.8 which takes as input a simple graph
G and computes in linear time a proper interval model.

The algorithm is based on BFS, see Figure 3.7. It creates a layout σ like in Theorem 3.3.8 and
then returns a proper interval model of the minimal proper interval completion PIG(G,σ).

Theorem 3.4.1. There is a linear time algorithm that, given an arbitrary graph G, computes a
proper interval model of a minimal proper interval completion of G.

Proof. The layout produced by the algorithm respects the conditions of Theorem 3.3.8. Indeed,
it is sufficient to notice that the function ChooseNextVertex chooses a vertex in NS(ρ) for the
current prefix ρ, and moreover this vertex v is of minimum dN(v). dN(v) is the cardinality of

27

b3

b4

b0

b2

a4

a3

a1b1

a2

a0

Buckets
4, b4, b41, a1, b1

b1a1 b0 b4 a3

NS(ρ) NW(ρ)

a0 a4

ρ

a2 b2 b3

N(ρ)

Black Gray White

Algorithm MinimalProperIntervalCompletion

Input: a simple graph G = (V,E);
Output: the proper interval model of a minimal proper interval completion of G;
Data structures:

mark : each vertex is marked white, grey or black (BFS color code).
Q is the queue of processed vertices.
ρ is the current prefix (an ordering on the black vertices).
dN(v) is the number of white neighbors of the vertex v.

Function ChooseNextVertex : chooses a vertex v in the queue Q
such that v ∈ NS(ρ) and dN(v) is minimum for this property.

Function IntervalModel : computes the interval model.
begin

compute a moplexian vertex v1 and put ρ := (v1)
mark all vertices as white
init Q with the neighbors of v1 in G and mark these vertices as grey
mark v1 as black
compute dN(x) for all vertices x
for i := 2 to n do

vi := ChooseNextVertex()
mark vi as black, ρ := ρ • vi
compute the set Ni of white neighbors of vi
mark the elements of Ni as grey and add them to Q
for each y ∈ Ni for each neighbor z of y dN(z) := dN(z)− 1

IntervalModel(σ)
end

Figure 3.7: Algorithm Minimal Proper Interval Completion and data structure.

28

Function IntervalModel

Input: σ = (v1, . . . , vn) - a BFS ordering of a simple connected graph G;
Output: an interval model of the graph PIG(G,σ);
Data structures:

r is the biggest index of a neighbor of a vertex considered so far.
c is a counter for numbering the maximal cliques of PIG(G,σ).
[vlc : vrc], 1 ≤ c ≤ j are maximal cliques of PIG(G,σ). (see Remark 2.2.13)
vlc , vrc , 1 ≤ c ≤ j are marks on the leftmost and rightmost vertices of c.
Q is a queue containing the cliques that the current vertex belongs to.

begin

r := 1
c := 1
for i := 1 to n do

if max{q | vq ∈ NG(vi)} > r then

r := max{q | vq ∈ NG(vi)}
mark vi as vlc
mark vr as vrc
increment c

for i := 1 to n do

if vi is marked as vlc then

add c at the end of the queue Q
assign to vi the interval [First(Q) : Last(Q)]
if vi is marked as vrc then

remove c from the beginning of the queue Q
im := the interval model
end

Figure 3.8: Algorithm Interval Model.

N(v) ∩ N(ρ), so it implies that the latter is inclusion-minimal over all white neighborhoods of the
elements of NS(ρ).

Let us discuss a linear time implementation of the algorithm. The choice of the first ver-
tex can be done in linear time by Proposition 3.3.1. The main difficulty is that the function
ChooseNextVertex must work in constant time. For this purpose, the queue Q will actually be
a queue of sets (Nj1 , Nj2 , . . . , Njk), where Njp is the set of neighbors of vjp added to the queue
when processing vjp (empty sets are not enqueued). Hence NS(ρ) is the first set in the queue, and
vertices are dequeued from it.

Notice that it is not necessary to directly compare the sets of white neighbors to get an inclusion
minimal one. It is enough to analyze their cardinalities. For this purpose, we introduce the notation
dN(v) to denote the cardinality of |N(v) ∩N(ρ)|. In order to choose the vertex v ∈ NS(ρ) = Nj1 of
minimum dN(v) in constant time, we need to sort NS(ρ) by increasing dN(). Notice that the value
of some dN(z) might change during the algorithm, and we wish to update the value in constant
time. We use a bucket sort with a special data structure (see [67, 65] for a detailed description of
the data structure, the authors use it for partition refinement algorithms). The buckets are kept

29

as a doubly chained list (instead of the usual array). Each bucket has its value (the dN(u) for the
elements of the bucket), and points towards the previous and next non-empty buckets, according
to their values. The vertices of a bucket are kept in a doubly chained list, and each vertex points
towards the bucket to which it belongs. An example is given in Figure 3.7, where the bucket of
value 1 contains a1, b0, b1 and the bucket 4 contains b4.

When a set Ni becomes the first set of Q, we apply a classical bucket sort on the vertices of
Ni. This sort costs O(|Ni| + max{dN(u) | u ∈ Ni}). Then we construct our data structure for
the buckets, within the same running time. During the whole algorithm, this initialization of the
buckets costs O(n +m), due to the fact that the sets Ni are pairwise disjoint.

During the algorithm, we decrement the value dN(z) for some vertices z (see the two last for

loops). If z is in the set NS(ρ), we must update the buckets in constant time. Let B be the bucket
containing z and B′ be the previous bucket in the list of buckets. If the bucket B′ corresponds to
the value dN(z)− 1 (before decrementing it), we simply move z from B to B′, and possibly remove
B if it becomes empty. Otherwise, B′ corresponds to a value strictly smaller than dN(z) − 1, we
create a new bucket B′′, of value dN(z) − 1, and add it to the list of buckets between B′ and B.
Thanks to our data structure, this operation can be done in linear time. Note that the total number
of iterations of the two last for loops is at most n+m. Indeed, each vertex y becomes grey exactly
once, thus each edge {y, z} is visited at most twice.

The function IntervalModel (see Figure 3.8) constructs a clique path of PIG(G,σ) like in
Remark 2.2.13 and computes an interval model based on this clique path in linear time. We only
need to prove that a maximal clique path of a proper interval graph gives indeed a proper interval
model as in Definition 2.2.4.

Suppose on the contrary that there are two vertices u, v such that the interval Pv of P of
maximal cliques containing v is properly contained in the interval Pu of maximal cliques containing
u. Therefore, both endpoints of Pu do not intersect Pv. Let a be a vertex contained in the left
endpoint KL of Pu and in no other clique of Pu. It exists, since KL is a maximal clique of G.
Analogously, let z be a vertex contained in KR and in no other clique of Pu. It is easy to verify
that {a, u, v, b} induces a K1,3. This contradicts the characterization of proper interval graphs by
Theorem 2.2.26.

3.5 Conclusions

We presented a linear time algorithm computing a minimal proper interval completion of an arbi-
trary graph. It is a standard BFS exploration algorithm with only a simple additional tie-break
rule based on a parameter that can be computed for each vertex locally.

There are two very natural questions related to minimal proper interval completions that we
leave open. The first would be to characterize all minimal proper interval completions, for example
by describing all the layouts σ such that PIG(G,σ) is a minimal proper interval completion of G.
We point out that our algorithm cannot obtain all such layouts of the input graph. Indeed, if we
consider the graph K1,4, our algorithm chooses a simplicial vertex and completes the rest into a
clique. A different minimal proper interval completion of the K1,4 can be obtained by adding a
matching to the independent set.

The second question consists in extracting a minimal proper interval completion from some
non-minimal proper interval completion H of G. The naive technique would consist in checking,

30

for each edge e ∈ E(H) \ E(G), if H − e is a proper interval graph. Although this idea works for
minimal triangulations and minimal split completions, in our case we have examples showing that
it does not always yield a minimal proper interval completion.

Finally, layouts in the context of proper interval graphs make a natural framework for tackling
bandwidth. First, because bandwidth is defined as the minimum of maxj,k∈1..n |j − k|, vjvk ∈ E,
over all layouts of G [29]. Then again, because an equivalent definition of bandwidth states that
it is the minimum clique number over proper interval embeddings of G. Finally, given a prefix ρ,
our algorithm puts the neighborhood of First(ρ) right after rho. This may be regarded as a naive
attempt to compute the bandwidth, by minimizing the ”span” of the edges incident to First(ρ). A
more sophisticated technique of verifying if the bandwidth of G is at most k would consist in using
our algorithm with a modified definition of the strong neighborhood of ρ. For this purpose we need
to define Bound(ρ), the first vertex in ρ, such that the grey neighbors of vertices between First(ρ)
and Bound(ρ) in ρ have to be placed right after ρ in order for the maximum span of the incident
edges not to be greater than k. We have verified that taking this set as the new definition of NS(ρ)
yields an algorithm that emulates the result of [82] computing bandwidth of interval graphs. So it
is an interesting question if the modified algorithm has some interesting properties for other graph
classes.

31

32

Chapter 4

Minimal Interval Completion

Through Exploration

Contents

4.1 Interval layout . 33

4.2 Nice layouts and nice prefixes . 34

4.2.1 LexBFS-terminal vertex . 35

4.2.2 Choosing a first vertex . 35

4.2.3 A family of nice layouts . 36

4.2.4 Nice layouts : a sufficient condition . 38

4.3 The algorithm . 40

4.4 Conclusions . 41

Encouraged by the successful attempt to compute a minimal proper interval completion with
a simple exploration algorithm, we asked the natural question if it was possible to obtain similar
results for minimal interval completion. The characterization of proper interval graphs by bicom-
patible orderings, given in Theorem 2.2.14, is a very strong tool. During construction of a layout σ
of G to be used to compute the completion H it defines, any fixed prefix already tells a lot about
the structure of H. Any edge of G defines a clique of H on the set of vertices it ”covers” in σ
(see Definition 3.1.1). An interval ordering, given in Theorem 2.2.12, gives much more freedom
for minimal interval completions. With more possibilities to choose among, it is more difficult to
ensure that the computed interval completion is minimal. Even though the tools we initially had
were not strong enough, we managed to build them up to match the needs, without a big increase in
complexity. We give a O(nm) time complexity algorithm computing a minimal interval completion
of an arbitrary graph.

4.1 Interval layout

First we need to define the new completion operator that works with the interval ordering charac-
terization of interval graphs given in Theorem 2.2.12 (see Subsection 2.2.3).

33

Figure 4.1: IG(G,σ) - dashed fill edges.

Definition 4.1.1. Let G = (V,E) be an arbitrary graph and σ = (v1, . . . , vn) be an ordering of V .
The graph IG(G,σ) = (V,E′) is defined by

E′ = {{vi, vk} | ∃j : i < k ≤ j, vivj ∈ E}.

This operation corresponds to taking, for each edge e of G, the first vertex le in σ incident to
e and making it adjacent to every vertex between le and re in σ, where re is the last vertex in σ
incident to e.

Analogously to the PIG operator and a proper interval completion, by Theorem 2.2.12, IG(G,σ)
yields an interval completion of G.

Lemma 4.1.2. IG(G,σ) is an interval graph.

And also here we can prove that any minimal interval completion can be obtained by the
operator IG on some layout of G.

Theorem 4.1.3. Let G = (V,E) be an arbitrary graph and G′ = (V,E′) be a minimal interval
completion of G. Then there is a layout σ such that G′ = IG(G,σ).

Proof. By Theorem 2.2.12, there is a layout σ of G such that G′ = IG(G,σ). As a straight
consequence of Definition 4.1.1, E(IG(G,σ)) ⊆ E(G′). By Lemma 4.1.2, IG(G,σ) is also an interval
graph. Thus, by minimality of G′, we deduce that E(IG(G,σ)) = E(G′).

To simplify the description, let us slightly abuse the notation and reuse the notion of ”nice” in
the context of minimal interval completions.

Definition 4.1.4. An layout σ = (v1, . . . , vn) is called nice if IG(G,σ) is a minimal interval
completion of G. Any prefix (v1, . . . , vk), k ≤ n of an nice ordering is called an nice prefix.

4.2 Nice layouts and nice prefixes

The minimal interval completion algorithm presented in this chapter is in many ways similar to
the one for minimal proper interval completions presented in Chapter 3. It starts with a LexBFS-
terminal vertex as a nice prefix and incrementally extends it, adding well chosen vertices one by one.
The prefix under construction is at each step nice and eventually a nice layout is obtained. Although
the presented algorithm is a BFS exploration with a particular tie-break rule, the characterization
of nice layouts we give is more general.

In contrast with minimal proper interval completions, a moplexian vertex does not always
constitute a nice prefix in the sense of minimal interval completions. We need more to ensure this
property. Fortunately, we have found that the LexBFS again comes handy, since a LexBFS-terminal
vertex carries enough structure.

34

4.2.1 LexBFS-terminal vertex

Recall that a vertex v numbered 1 by some execution of LexBFS is called a LexBFS-terminal
vertex . A moplex M such that some execution of LexBFS terminates on a vertex of M is called
a LexBFS-terminal moplex .

Berry and Bordat discovered that not only a LexBFS terminates on a moplexian vertex v1
of G, but the order in which it explores G is very particular with respect to the moplex M to
which v1 belongs. Let S = NG(M), recall that S is a minimal separator of G. The connected
components C(S) = {C1, . . . , Ck}, are explored in ascending order with respect to inclusion of their
neighborhoods. Moreover, each vertex in the neighborhood of a component is universal in the
closed neighborhoods of the components explored later. The important fact which we use later is
that, thanks to this property, the sequence of blocks (O1, . . . , Ok), where Oi = Ci ∪ NG(Ci), is a
path decomposition of G (see Definition 2.2.9).

Lemma 4.2.1 ([7, 8]). Let M be a LexBFS-terminal moplex and S = NG(M). Denote by
C1, C2, . . . , Ck, with Ck = M , the connected components of G−S in the order in which the LexBFS
execution encounters them. Then the following equation are satisfied:

N(C1) ⊆ N(C2) ⊆ · · · ⊆ N(Ck). (4.1)

∀i, j, x, y : 1 ≤ i < j ≤ k, x ∈ N(Ci), y ∈ N [Cj] \N(Ci)
⇒ {x, y} ∈ E(G).

(4.2)

4.2.2 Choosing a first vertex

We want to prove that a LexBFS-terminal vertex v1 constitutes a nice prefix. Thus, we will show
that there is a nice layout σ that starts with v1, and that for any minimal interval completion that
does not have an interval ordering starting with v1 there is a fill edge e incident to v1 which is not
present in IG(G,σ). This follows the line of argumentation by which obeying our rules preserves a
non-edge in the completion defined by the constructed layout which otherwise becomes a fill edge.

Lemma 4.2.2 does not speak of a LexBFS-terminal vertex directly, because the conditions
expressed in Equations 4.1 and 4.2 are more general, and let us apply the lemma in more possible
situations. Recall that the notions of a clique path and an interval ordering are interrelated by
Remark 2.2.13.

Lemma 4.2.2. Consider a non-complete graph G = (V,E). Let v be a vertex of a moplex M
and S = NG(M). Let C1, C2, . . . , Ck, with Ck = M , the connected components of G − S, satisfy
Equations 4.1 and 4.2 of Lemma 4.2.1. Then there exists a minimal interval completion H of G
such that NG(v) = NH(v).

For any such H, there exists a clique path P of H such that M ∪ S is one of its end cliques.

Proof. Let H ′ be the graph obtained from G by transforming NG[Ci] into a clique, from each
1 ≤ i ≤ q. By Equation 4.1 (see Lemma 4.2.1), (NG[C1], . . . , NG[Ck]) is a clique path of H ′, in
particular H ′ is an interval graph. Consequently H ′ contains some minimal interval completion H
of G as required.

Now let H be any minimal interval completion of G such that NH(v) = NG(v). We first show
that S induces a clique in H. Let D be a component of G − S, different from M , such that
NG(D) = S. Note that S is a v, u-minimal separator of G, for some u ∈ D. Let T be a minimal

35

v, u separator of H such that T ⊆ NH(v). Clearly T exists because u and v are non-adjacent in
H. We claim that S ⊆ T . For each vertex s ∈ S, there is a u, v path of G contained in D ∪ {v, s}.
This path intersects NG(v) only in s, so also in the graph H the only possible intersection between
T and the path is s. It follows that s ∈ T , so S ⊆ T . The minimal separator T induces a clique
in H by Lemma 2.2.20. Hence S also induces a clique in H. Note that, by definition of a moplex,
M ∪ S also induces a clique in H.

For each i, 1 ≤ i ≤ k let Hi = H[NG[Ci]]. Let H ′′ be the graph with vertex set V and edge set
E(H1) ∪ E(H2) ∪ · · · ∪ E(Hk). Therefore G ⊆ H ′′ ⊆ H. We will construct a clique path P of H ′′,
showing that H ′′ is an interval graph. By minimality of H, this implies that H ′′ = H. Moreover,
the clique path P will have M ∪ S = NG[M] as one of its end cliques.

Let Si = NG(Ci). By Equation 4.2, the vertices of Si−1 are adjacent to all vertices of Ci−Si−1

in the graph G, so also in Hi. Combined with the fact that Si−1 ⊆ S induces a clique in H we
have that Si−1 is contained in each maximal clique of Hi. We claim that for each i, 1 ≤ i < k,
there exists a clique path of Hi such that Si is contained in the rightmost clique of Pi. Indeed, the
graph H+

i = H[Ci ∪S ∪M] is an interval graph and M ∪S is one of its maximal cliques. Take any
clique path P+

i of H+
i , we prove that M ∪ S is an end clique. By contradiction, let x (resp y) be

a vertex appearing in the clique left (resp. right) to S ∪M , but not appearing in S ∪M . By the
properties of a clique path, S ∪M must separate x and y in H+

i . This contradicts the fact that
x, y ∈ Ci and there exists an x, y-path in G[Ci]. So the only possibility is that S ∪M is at an end
of P+

i . Since Si ⊆ S and every vertex of S has a neighbor in M , Si is contained in the clique next
to S ∪M in P+

i . The clique path Pi of Hi obtained by removing S ∪M from P+
i has the required

property. Eventually, by concatenating the clique paths P1, P2, . . . , Pk, it is easy to check that we
obtain a clique path P of H ′′. Indeed if a vertex x appears in the subpaths Pi and Pj with i < j,
then x ∈ NG[Ci] ∩NG[Cj] = Si (see Equation 4.1). By Equation 4.2, x appears in every clique of
Pk, for each k, i < k ≤ j. Since Hk is the complete graph with vertex set NG[M] = S ∪M , the
clique path P has S ∪M as rightmost clique.

Thus we may prove that a LexBFS-terminal moplexian vertex is a good starting point for the
construction of a nice layout.

Theorem 4.2.3. Let G be a non-complete graph and v be a LexBFS-terminal moplexian vertex of
G. For any minimal interval completion H of G such that NG(v) = NH(v), there is an interval
ordering of H starting with v.

Proof. By Lemma 4.2.2, there exists a clique path of H such that the left-most clique is M ∪ S,
where S = N(M). We can reverse this path so that S∪M becomes the leftmost clique of the clique
path P . By construction, H has no fill edges incident to v, in particular the v only appears in the
left-most clique of P . By Remark 2.2.13, there is an interval ordering of H starting with v.

4.2.3 A family of nice layouts

Now we proceed to rules telling, given a prefix ρ, which vertex should be taken next. Here we are
interested in only two subsets of V \V(ρ). The set Nxt is an inclusion minimal set of vertices over
the grey neighborhoods of vertices in ρ. The set Rst are the other vertices, that are neither in ρ
nor in Nxt. At some point there may be several sets that fulfill the definition of Nxt, in such a
situation any of them can be chosen arbitrarily. However, the algorithm we give is less general and
chooses the set which is the grey neighborhood of the leftmost vertex in ρ, over the vertices that
have non-empty grey neighborhood.

36

Rstρ Nxt

vi g1 g2 r

g1 g2vi r

Figure 4.2: Putting Nxt right after ρ.

Definition 4.2.4. We denote by ρ = (v1, . . . , vk) a prefix, and R = V \ V(ρ). Let Nxt be a non-
empty subset of R, such that Nxt = NG(vi) ∩ R for some vi ∈ V(ρ) and Nxt is inclusion-minimal
for this property. We denote R \Nxt by Rst.

The next lemma shows that, given a prefix ρ, we can fix a set Nxt according to Definition 4.2.4
and put it right after ρ in the constructed layout σ. It preserves some non-edges in the completion
defined by σ that would otherwise become fill edges.

Lemma 4.2.5. Let σ be a refinement of ρ • Nxt •Rst and σ′ be a refinement of ρ • R such that
IG(G,σ′) ⊆ IG(G,σ). Then σ′ also is a refinement of ρ •Nxt •Rst.

Proof. Let vi ∈ V(ρ) such that Nxt = R∩NG(vi). Suppose that σ′ is not a refinement of ρ•Nxt •Rst,
so there is some vertex u ∈ Rst and a vertex w ∈ Nxt such that u appears before w in σ′. Since u
appears in σ after all vertices of Nxt, vi and u are not adjacent in IG(G,σ). Now in σ′, u appears
after vi and before w. Since Nxt ⊆ NG(vi), vi and w are adjacent in G and therefore vi and u are
adjacent in IG(G,σ′) – a contradiction.

In Figure 3.4 there is an example showing in the top part a layout σ in which ρ is followed by
the neighborhood of vi equal {g1, g2}. Notice that the grey neighborhood of vi is inclusion minimal
over all non-empty neighborhoods of vertices in ρ. In the bottom part, r appears before the last
vertex of Nxt. For this reason, the fill edge vir is present, which is preserved as a non-edge in the
completion defined by the first layout.

In Lemma 4.2.5, there is no recursive assumption on shorter prefixes. So, in the example, we
might as well have chosen the singleton neighborhood {r} of the last vertex in ρ to be the set Nxt,
since it also is inclusion minimal. In that case, the vertex r would have been put before g1, g2.
This freedom is no longer present in the complete characterization of nice layouts. There, a layout
σ should be a refinement of ρ • Nxt •Rst, for every ρ which is a prefix of σ. With this condition,
g1, g2 have to appear before r.

The following lemma shows that, given a layout σ which is a refinement of ρ • Nxt •Rst and
the corresponding completion H = IG(G,σ), permuting vertices of Nxt can affect only edges with
both incident vertices in Nxt. In this way, the permutation we choose for Nxt (and the interval
completion of G[Nxt] which it defines) has no influence on the rest of the graph.

37

Lemma 4.2.6. Consider two layouts σ and σ′ of G that are refinements of ρ • Nxt •σRst, where
σRst is an ordering of Rst. That is to say, σ and σ′ differ only by a permutation of Nxt. Let u, v
be two vertices adjacent in IG(G,σ′) but non-adjacent in IG(G,σ). Then both u, v ∈ Nxt.

Proof. By construction of IG(G,σ) and IG(G,σ′), at least one of the vertices u, v are in Nxt. By
contradiction, suppose that the other is not in Nxt.

First we consider the case when u ∈ V(ρ) and v ∈ Nxt. Suppose that u has a neighbor u′ ∈ Rst.
In both IG(G,σ) and IG(G,σ′) all vertices of Nxt are adjacent to u as they appear after u and before
u′ in the corresponding layout – a contradiction. So NG(u) ∩R ⊆ Nxt. By definition (minimality)
of Nxt, either Nxt ⊆ NG(u) or Nxt∩NG(u) = ∅. Clearly, in the first case Nxt is contained in the
neighborhood of u in both IG(G,σ) and IG(G,σ′). In the second, for both IG(G,σ) and IG(G,σ′)
the vertex u has no neighbors in Nxt – a contradiction.

It remains to consider the situation when u ∈ Nxt and v ∈ Rst. Since u and v are adjacent in
IG(G,σ′), there is a neighbor v′ of u in G, appearing after v in σ′. But u, v, u′ appear in the same
order in σ, so u and v are adjacent in IG(G,σ) – a contradiction.

4.2.4 Nice layouts : a sufficient condition

Nevertheless, the rest of the graph, and the set Rst in particular, has a big impact on which
permutation of Nxt can be part of a nice layout. In fact, the task of choosing the next vertex from
Nxt can be made independently of ρ, only taking care of the fact that Rst appears after Nxt in
σ. For this reason, we can treat the task of ordering Nxt as the problem of finding a layout of
Nxt that defines an inclusion minimal interval completion of G[Nxt], over completions that can be
”glued” with an interval completion of G[Rst]. This problem is, roughly speaking, equivalent to
the original problem on an auxiliary graph which we define below. That is why, LexBFS comes
handy as a tie-break rule for Nxt.

Definition 4.2.7. Let σ be a layout of G, let ρ be a prefix of σ, and let Nxt be like in Definition
4.2.4. We denote by T the set of vertices of Nxt having neighbors in Rst. GNxt denotes the graph
obtained from G[Nxt] by adding a dummy vertex d1, adjacent to each vertex of T , and a dummy
vertex d2 adjacent only to d1. The graph G+

Nxt is obtained from GNxt by completing T into a clique.

With this notations we may present the main result of this chapter. The techniques of the proof
are an extension of the ones used in Theorem 3.3.8.

Theorem 4.2.8. Let σ be a layout of G with the following properties:

1. σ starts with a LexBFS-terminal vertex v1.

2. For any non-empty prefix ρ = (v1, . . . , vi)

• σ respects ρ, i.e. σ is a refinement of ρ • Nxt •Rst,

• the next vertex in σ is a LexBFS-terminal vertex of G+
Nxt obtained by running LexBFS

starting from d2.

Then σ is a nice layout.

Proof. Suppose that σ = (v1, . . . , vn) is not nice and let σ′ be a layout such that H ′ = IG(G,σ′)
is a minimal interval completion of G strictly contained in H = IG(G,σ). Take σ′ such that the
maximal common prefix ρ of σ and σ′ is the longest possible.

38

Claim 1. ρ is not empty.

The first vertex v1 of σ is LexBFS-terminal. NG(v1) = NIG(G,σ)(v1), since σ respects the
prefix (v1) and thus the neighbors of v1 in G appear right after v1 in σ. So the Claim follows by
Theorem 4.2.3.

Let v (resp. u) be the vertex right after ρ in σ (resp. in σ′). By Lemma 4.2.5, we have:

Claim 2. σ′ is a refinement of ρ • Nxt •Rst, in particular u ∈ Nxt.

Claim 3. Let σ′′ be any refinement of ρ • Nxt •Rst and H ′′ = IG(G,σ′′). Let P
′′

= P (G,σ′′) (see
Remark 2.2.13). Then H ′′[Nxt] is an interval completion of G[Nxt], where the clique path P ′′[Nxt]
has the set T = NG(Rst) ∩Nxt contained in one of the end-cliques. In particular, T is a clique in
H ′′.

Clearly, P
′′

[Nxt] is a clique path of H
′′

[Nxt]. The last clique contains T , since the corresponding
intervals in the model intersect the interval of a vertex in Rst.

Claim 4. H ′[Nxt] is an interval completion of G[Nxt], minimal with respect to the property ex-
pressed in the previous claim.

Since σ′ defines a minimal interval completion H ′ of G, σ′ has to yield H ′[Nxt] minimal with
this property. Suppose it is not minimal, and let H

′′′

[Nxt] be the corresponding completion strictly
included in H

′

[Nxt]. Then we can take the corresponding clique path P
′′′

[Nxt] to create an interval
order σ

′′′

Nxt of H
′′′

[Nxt] (see Remark 2.2.13). By Lemma 4.2.6, σ
′′′

= ρ • σ
′′′

Nxt • σ
′

Rst yields H
′′′

=
G(σ

′′′

) strictly contained in H
′

. A contradiction with minimality of H
′

.
Following Definition 4.2.7, let H ′

Nxt be obtained from H ′[Nxt] by adding a dummy vertex d1
adjacent to the vertices of T and a vertex d2 adjacent to d1.

Claim 5. H ′
Nxt is a minimal interval completion of G+

Nxt.

Given a clique path P of H, let P [Nxt] denote the clique path of H[Nxt] obtained by restricting
all the bags of P to their intersections with Nxt and then removing the redundant ones (leaving
only unique maximal cliques of H[Nxt]).

Let P ′
Nxt denote the clique path ofH ′

Nxt, obtained from P ′[Nxt] by adding two bags q1 = T∪{d1}
and q2 = {d1, d2} after the clique containing T (see Claim 2). It is a clique path indeed, so H ′

Nxt
is an interval completion of G+

Nxt. Suppose it is not minimal. So there is a minimal one H
′′

Nxt
strictly included in H ′

Nxt. Notice that this graph has a clique path P
′′

Nxt, that also has −− q1−−q2
at an end. Indeed, the moplex M = d2 satisfies the conditions of Lemma 4.2.2 in H

′′

Nxt, so there
is a clique path of H

′′

Nxt with {d1, d2} as one of the end-cliques. Therefore P
′′

[Nxt], obtained by
removing − − q1 − −q2 from P

′′

Nxt, is a clique path of H
′′

[Nxt] with T contained in one of the
end-cliques. Which contradicts Claim 3, since H

′′

[Nxt] is a strict subgraph of H ′[Nxt].

Claim 6. There is an interval ordering of H ′
Nxt starting with v.

Let us prove that NH′

Nxt
(v) = NG+

Nxt
(v). Indeed if v ∈ T , since v is the last vertex encountered

by LexBFS launched on G+
Nxt from d2, we have T = Nxt. In this case the neighborhood of v in

both graphs is T \ {v} ∪ {d1}, and the equality follows.
Now if v .∈ T then NG(v) ∩ R ⊂ Nxt. By second condition of the theorem, σ respects ρ • v,

so NG(v) ∩ Nxt is put before R \NG(v) in σ and NH[Nxt](v) = NG[Nxt](v). Therefore NH′

Nxt
(v) =

NG+
Nxt

(v), since

NG+
Nxt

(v) ⊆ NH′

Nxt
(v) ⊆ NHNxt

(v) = NGNxt
(v) ⊆ NG+

Nxt
(v).

39

The claim follows from Theorem 4.2.3 and Claim 4.

Claim 7. There is a layout σ
′′

, with G(σ
′′

) = IG(G,σ′), sharing a longer prefix with σ – a contra-
diction.

We restrict the ordering from the previous claim to Nxt and obtain σ
′′

Nxt. Let σ
′′

= ρ•σ
′′

Nxt•σ
′

Rst.
By Lemma 4.2.6, G(σ

′′

) = IG(G,σ′). So σ
′′

defines the same completion and shares a longer prefix.
Which contradicts the choice of σ

′

.
This completes the proof of the theorem.

4.3 The algorithm

In this section we give an algorithm that, given an arbitrary graph G, computes an interval model
of a minimal interval completion H of G.

Theorem 4.3.1. There is an O(nm)-time algorithm computing a minimal interval completion of
an arbitrary graph.

Proof. We prove that the algorithm MIC Ordering of Figure 4.3 computes in O(nm) time a layout
satisfying the conditions of Theorem 4.2.8.

Clearly the first vertex v1 is a LexBFS-terminal vertex, implying the first condition of Theo-
rem 4.2.8. The initialization of the ordered partition ensures that all neighbors of v1 in G appear
contiguously and right after v1 in σ. Therefore σ is a refinement of v1 •NG(v1) • V \NG[v1].

The algorithm maintains an ordered partition of the vertex set of G. At each step i the set
Nxt corresponds like in Definition 4.2.4 to the prefix ρ = (v1, . . . , vi) as required. By contradiction
suppose there exists j < i such that N(vj) is strictly contained in Nxt. Then at step j, the class C
of the ordered partition containing Nxt has been split in C∩NG(vj) and C \NG(vj) – contradicting
the fact that Nxt is a class of the ordered partition at the step i.

Unlike the Theorem 4.2.8, our algorithm computes the vertex vi by launching LexBFS from
d2 on the graph GNxt and not G+

Nxt. The reason is related to the running time. Indeed GNxt has
O(n + m) edges, while if we compute G+

Nxt, the number of edges of G+
Nxt might be up to Ω(n2).

Nevertheless we prove that vi is also a LexBFS-terminal vertex obtained by using G+
Nxt instead of

GNxt. Let n′ be the number of vertices of GNxt. When the vertex d1 is numbered (with number
n′ − 1) by LexBFS on GNxt, all vertices of T are labeled (n − 1). Then all vertices of T are
numbered before the vertices of Nxt \T . The same would have happened by running LexBFS on
G+

Nxt. Moreover, in G+
Nxt any numbering of T is valid in this case. So the LexBFS numbering on

GNxt is also a LexBFS numbering on G+
Nxt.

Together with the way that algorithm maintains an ordered partition, it implies the second
condition of Theorem 4.2.8.

Each iteration of the for loop must be performed in O(m) time. The update of the order
partition (the last three lines of the loop) can be easily done in O(n) time. (We point out that,
using more involved techniques for partition refinement [67, 65], this step could even be done in
O(|NG(vi)| time.) The choice of the vertex vi is made by running LexBFS on the graph GNxt. Since
this graph is of size O(n+m). The O(nm)-time for computing σ follows.

The function IntervalModel constructs an interval model of IG(G,σ) based on the layout σ
like in Remark 2.2.13. A single pass along σ = (v1, . . . , vn) is enough to assign to every vertex
vi the interval [i : j], where j is the biggest index such that vivj ∈ E(G). This can be done in

40

O(degG(v))-time per vertex v, where degG(v) is the degree of v in G. In total, it gives O(n+m)-time
for computing the interval model.

Algorithm MIC Ordering

Input: G = (V,E) connected
Output: a nice layout σ and the corresponding interval model
let v1 be the last vertex encountered by LexBFS(G)
ρ := (v1)
Nxt = NG(v1); Rst := V \NG[v1]
OP := v1 • Nxt •Rst
for i := 2 to n do

let Nxt be the class appearing after ρ in OP
let vi be the last vertex encountered by LexBFS

launched on GNxt starting from d2 (see Theorem 4.2.8)
ρ = ρ • vi
if |Nxt | ≥ 2 then

replace Nxt in OP by vi • (Nxt \{vi})
let C be the last class of OP such that NG(vi) ∩ C .= ∅
if C \NG(vi) .= ∅ then

replace C in OP by (C ∩NG(vi)) • (C \NG(vi))
σ := OP
IntervalModel(σ)

Figure 4.3: Algorithm MIC Ordering.

4.4 Conclusions

We give in this chapter an O(nm) time algorithm computing a minimal interval completion of an
arbitrary input graph. The algorithm is based on the notion of nice layouts, which characterize
a minimal interval completion, and on Theorem 4.2.8 which gives a sufficient condition for a nice
layout. We point out that there are nice layouts satisfying the conditions of Theorem 4.2.8, which
cannot be produced by the algorithm. Such examples can be easily obtained when the input graph
is a cycle. In particular a layout produced by our algorithm is always a breadth-first search ordering,
which is not required by the theorem.

There are two very natural directions for further research. One is to obtain a faster algorithm
for the minimal interval completion problem. In our algorithm, each time when we choose a new
vertex, we run LexBFS as the tie-break rule. A faster choice would improve the running time of
the algorithm: just maintaining the ordered partition can be done in linear time [67, 65]. A naive
technique would consist of doing only one sweep of LexBFS and then choosing, at each step, the
vertex of Nxt with minimum LexBFS number. Unfortunately this approach does not produce a
minimal interval completion.

41

The second important question is to characterize all nice layouts. For the minimal triangulation
problem, the perfect elimination orderings (which play the same role as the nice layouts here) have
been completely characterized. In our case, we have examples of nice layouts that do not satisfy
the conditions of Theorem 4.2.8.

Finally, layouts in the context of interval graphs make a natural framework for tackling path-
width. First, because pathwidth is the minimum clique number over interval embeddings of G.
Then again, because an equivalent definition of pathwidth states that it is equal
maxi∈1..n |NG(vi+1, . . . , vn)|, over all layouts of G. Finally, given a prefix ρ, our algorithm finds
a vertex vi that has an inclusion minimal grey neighborhood Nxt and puts it right after ρ. This
may be regarded as a naive attempt to compute the pathwidth, by trying to eliminate a vertex
from NG(vi+1, . . . , vn) as quickly as possible. It is an interesting open question if this algorithm, or
maybe a slightly modified version with more sophisticated rules, would yield interval completions
of small pathwidth.

42

Chapter 5

Pre-order - clique path encoding

Contents

5.1 Control over clique paths . 44

5.2 Structure of the pre-order . 49

5.2.1 The co-comparability graph . 49

5.3 Learning the pre-order . 52

5.3.1 Topological order . 52

5.3.2 Bipartition . 54

5.3.3 Components of (O(S), ‖) . 55

5.3.4 Complexity . 55

We saw in Chapter 4 that clique paths, and maximal clique paths in particular, can be very
useful in analysis of interval graphs. In fact, the approach to interval completion through clique
paths and path decompositions was the first one, before the layouts, that gave positive results
(see Section 2.3). This first polynomial time algorithm computing minimal interval completions
was published in [73]. One of its main features consists in finding a clique path of an interval
graph with special properties. The difficulty is that an interval graph may have a huge number of
clique paths (exponential in the size of the graph). Therefore we need a compact representation
of all possible clique paths. The tool we use for this purpose we call the pre-order. Apart from
minimal interval completions, it seems interesting on its own and will be presented thoroughly in
this chapter. The rest of the minimal interval completion algorithm is presented in Chapter 6.

There exists a classical way of representing clique paths, using PQ-trees (see [61]). This rep-
resentation could be used in the algorithm of Chapter 6, as we checked after a suggestion by
Christophe Paul. Nevertheless, we describe here a different approach for the clique path encoding.
It is based on the notion of blocks associated to a fixed minimal separator S of G. Recall that, by
Lemma 2.2.20, each separator of G appears as an edge in every clique path of G. Given a clique
path PG of G, remove all the edges that correspond to minimal separators contained in S. This
partitions the clique path into subpaths. We prove that each of these subpaths corresponds to a
block associated to S (see Definition 5.1.1). Let L be the list of blocks as they appear in the parti-
tion of PG from the left endpoint up to the edge corresponding to S that we removed. Let R be an
analogous list, this time taken from the right endpoint up to S. (L,R) constructed in this way is a
partition of the set of blocks associated to S into two sequences, which are chains of the pre-order

43

S T3 T1 T1

O1 O2 O3 O4 O5 O6 O7

L R

T1 T2

Figure 5.1: Blocks associated to a minimal separator.

that we define later (see Definition 5.1.10). Conversely, each way the blocks are partitioned into
two chains, with respect to the pre-order, there is some clique path of G that respects this order.
What is left to investigate, are the permutations of cliques inside each block. But this can be done
recursively with the same tools. Therefore, we have control over all clique paths of G.

In Figure 5.1, we have an example of such a partition. The separators {T1, T2, T3, S} are all
contained in S. The removal of the corresponding edges of the clique path PG yields the ordered
partition (O1, . . . , O7) of the graph G into blocks associated to S. This partition can also be seen
as the pair (L,R), where L = (O1, O2, O3) and R = (O7, O6, O5, O4). Notice that it is possible to
put O6 just to the left of O2, keeping all the intervals contiguous; but it is not possible to put O2

just to the right of O4, since there is a maximal clique in O4 which does not contain the intersection
of O2 with S. This is what our pre-order will take into account.

The reason for which we decided to keep the pre-order is twofold. First, PQ-trees are simple
only if used as a black box - their construction algorithm is quite complex, whereas the pre-order
processing seems quite straightforward. The other point is that the pre-order is interesting in its own
right. Generalized, it gives a procedure that chooses a minimal separator S of an arbitrary graph
G and computes the decomposition of G into blocks associated to S. The blocks are arranged in
a path to give a path decomposition of G. Then, recursively, the blocks may again be partitioned.
A similar approach using minimal separators to partition the graph was used to compute tree
decompositions.

There is a greedy algorithm that tries to compute a tree decomposition of small width. It is
based on efficient algorithms for finding separators of small cardinality and proceeds as follows. At
each step, find a separator set S of small cardinality and compute the set of connected components
C(S) = {C1, . . . , Cp}. Add the fill edges necessary for S to be a clique. Run the procedure
recursively on each subgraph G[Oi] induced by a block Oi = Ci ∪ N(Ci) associated to S. The
recursion stops when the considered graph is complete. Thanks to the fact that the separator S
used at a given step is turned into a clique for the next step, we ensure that, for each 1 ≤ i ≤ p,
the decomposition of G[Oi] obtained has a bag that contains Oi ∩S. This makes it possible to glue
the decomposition trees of these subgraphs into a decomposition tree of the whole G. This simple
principle serves as a basis for many interesting results on treewidth ([25, 24]). Despite the strong
analogies between tree decompositions and path decompositions, there are no similar algorithms
for computing pathwidth. We believe that our pre-order might provide a first step in this direction.

5.1 Control over clique paths

Throughout this chapter we simply use clique path to refer to a maximal clique path.

44

In this chapter we study the structure of an interval graphG = (V,E) in relation with a maximal
clique path P of G (see 2.2.17). For simplicity, we simple write ”clique path” to denote a maximal
clique path. A very important notion that we use is that of a block. The reader may refer to the
work of Bouchitté and Todinca [25] for more discussion on blocks.

Definition 5.1.1. Given an interval graph G, a block O ⊆ V is the union of a minimal separator
S with a full component C associated to S. S is called the separator bordering O, denoted S(O).

A very important feature of blocks of interval graphs is that, in every clique path PG of G, a
block O of G appears as an interval PO

G of maximal cliques of G. PO
G is such that O = V(PO

G).
Recall that V(PO

G) denotes the set of vertices contained in bags of PO
G .

Theorem 5.1.2. Given a block O of an interval graph G, O is equal the union of the set KO of
maximal cliques contained in O. Moreover, these cliques appear consecutively in any clique path P
of G.

This theorem is a direct consequence of the following three technical lemmas.

Lemma 5.1.3. Given a maximal clique K of an interval graph G = (V,E), there is no full com-
ponent associated to K.

Proof. Suppose there is a full component C associated to K. Consider the graph G′ = G[K ∪ C].
Let P be some clique path of G′. K is also a maximal clique of G′, so it is a node in P and there is
K ′, another maximal clique of G′, adjacent to K in P . By Lemma 2.2.20, S = K ∩K ′ is a minimal
separator of G′. So S separates some vertex x ∈ K \ S from a vertex y ∈ C, which contradicts the
fact that C is a full component associated to K.

Lemma 5.1.4. Given O, a block of an interval graph G, for any vertex x ∈ O there is a maximal
clique K of G such that x ∈ K ⊆ O.

Proof. Suppose x is not contained in any maximal clique contained in O. If x is not contained in
the separator bordering O, then any maximal clique containing x is contained in O, since x has no
neighbor in V \B. So x is contained in the separator S bordering O. Let C be the full component
associated to S such that O = S ∪C. Consider the chordal graph G′ = G[O]. Let Ω be a maximal
clique of G′ that contains S. By Lemma 5.1.3, a maximal clique cannot have an associated full
component, so Ω .= S. Ω contains a vertex c ∈ C, so it also is a maximal clique of G.

Lemma 5.1.5. Given a block O of an interval graph G, the maximal cliques contained in O induce
a subpath in any clique path of G.

Proof. Let O = S ∪C, where S is the separator bordering O and C the corresponding full compo-
nent. Suppose, on the contrary, that there is a clique path P in which two cliques K1,K2 contained
in O are separated in P by a clique Ω not contained in O. By Lemma 2.2.22, it means that there
are vertices v1, v2, with v1 ∈ K1 \Ω and v2 ∈ K2 \Ω, such that Ω separates them in G. Consider the
connected component D of G − S which intersects Ω. By Lemma 2.2.23, there is Ω ⊆ D ∪N(D).
So Ω ∩ O ⊆ S, and Ω cannot intersect every path joining v1 to v2 in G, since S fails to intersect
every v1, v2-path in G[O]. A contradiction.

45

Given a minimal separator S of an interval graph, not every component in C(S) is full. But for
every C ∈ C with S′ = NG(C) ⊂ S, S′ also is a minimal separator of G. Indeed, S′ has two full
components : C and D, where D is a component associated to S′ which contains a full component
associated to S. So S′ ∪ C also is a block.

Definition 5.1.6. Given a minimal separator S of an interval graph G, any block O with the
bordering separator S′ contained in S is a block associated to S. If O \ S is a full component
associated to S then O is a full block associated to S. The set of blocks associated to S is denoted
by O(S).

In this way, any minimal separator S defines a partition of the set K of maximal cliques of G
into subsets corresponding to the blocks associated to S. Indeed, by Lemma 2.2.23, each K ∈ K
is contained in exactly one element of O(S). Moreover, by Theorem 5.1.2, for any clique path PG

of G, the cliques contained in a block O ∈ O induce a subpath of PG. These are the subpaths
mentioned in the description opening this chapter. When we remove from PG all the edges that
correspond to separators contained in S, the set of subpaths obtained corresponds exactly to the
set of blocks O(S).

A block Oi associated to S may be seen in two ways. First is directly the set of vertices Oi it
contains. The second is the set of maximal cliques Ki which it contains. Notice that the union of
cliques in Ki gives exactly Oi. So, given a clique path PG of G, it is very easy to compute the set
of blocks associated to any minimal separator S of G. Just traverse PG from left to right. The first
block starts with the first clique. It ends when we encounter an edge eT of PG which corresponds
to a minimal separator T included in S. With the data structure presented in [9], it can be done
in time linear in n.

The blocks associated to S, ordered with some clique path PG of G give a valid ordered partition
of the set K of all maximal cliques of G.

Definition 5.1.7. Consider an ordered partition OP = [K1, . . . ,Kp] of K into blocks associated
to S, such that there exists a clique path PG of G such that the subpaths P 1

G, . . . , P
p
G formed by

the maximal cliques in K1, . . .Kp appear in this order (see also Lemma 5.1.5). Such an ordered
partition is called valid.

Observe that, when each part of a valid ordered partition OP is a singleton, OP is exactly a
clique path of G. Our purpose here is to describe the way in which an ordered partition of the set
of maximal cliques can be refined in order to obtain a clique path of G. Clearly for any clique path
P of G, the subpath PO of cliques contained in O defines a clique path of G[O], for any block O.
But the converse is not true, there are clique paths of G[O] which can not be extended into clique
paths of G. The next lemma characterizes the clique paths of O extendable into clique paths of
the whole graph.

Lemma 5.1.8. Let O be a block of an interval graph G.
1. A clique path PO of G[O] can be extended into a clique path of G if and only if the separator

bordering O is contained in a maximal clique at an endpoint of PO.
2. In a clique path PG of G, subpath PO

G can be replaced by any clique path of G[O] satisfying
the above property.

Proof. Let PO
G correspond to a subpath of PG. Let S be the separator bordering O and C the

corresponding full component. Let D be another full component associated to S and OD = S ∪D.

46

Then PO
G and POD

G are disjoint subpaths of PG. If POD

G is to the right (resp. left) of PO
G , by the

properties of a clique path the leftmost (resp. rightmost) clique of PO
G must contain O ∩ OD = S

and the conclusion follows.
Conversely, let PO be any clique path of G[O] such that S is contained at one endpoint. For any

clique path P
′

G of G, we can replace the subpath P
′O
G formed by the cliques of O with PO without

violating the properties of a clique path. Indeed, the vertices of G that belong to some cliques at
both sides of P

′O
G in P

′

G are contained in every maximal clique of O. So putting the endpoint of
PO that contains S next to a clique (not contained in O) that also contains S ensures that the
properties of clique path are satisfied.

This lemma gives us conditions according to which we can refine a valid ordered partition. Let
us now focus on obtaining the first refinement of K as some order on O(S).

From now on we fix a separator S. Consider a valid ordered partition OP = [K1, . . . ,Kp] based
on O(S), that is to say that K is partitioned into sets of maximal cliques that correspond to the
blocks associated to S. Moreover, assume that the order on Ki reflects the order in which the
corresponding blocks appear in a clique path P of G. In such a situation we say that the order of
blocks in OP is defined by P .

Instead of working with the ordered partition OP , we work with the pair (L,R) where L is the
list of blocks of O(S) situated to the left of S in OP , ordered from left to right; R is the list of
blocks to the right of S, from right to left. Speaking of ”to the left of S” or ”to the right of S”
refers to the fact that the cut is made between two blocks the intersection of which equals S (see
Figure 5.1). Notice that, whereas OP is a valid ordered partition of the set of maximal cliques of
G into sets of cliques contained in different blocks associated to S, the corresponding pair (L,R)
is directly an ordering of blocks associated to S. Actually, for a valid ordered partition OP , the

corresponding pair (L,R) defines a path decomposition of G. Indeed, it is easy to verify that L•
←−
R ,

the concatenation of L with the reverse ordering of R, is a path decomposition of G. The edge

between L and
←−
R represents S. The two approaches are equivalent due to Theorem 5.1.2. More

formally,

Definition 5.1.9. Let OP = (K1, . . . ,Kp) be a valid ordered partition based on O(S). Let Ki,Ki+1

be two parts consecutive in OP such that Ki ∩ Ki+1 = S. Take L = [O1, O2, . . . , Oi] and R =
[Op, Op−1, . . . , Oi+1], where Oj is the block associated to S corresponding to the part Kj . (L,R) is
a valid pair based on S.

Notice that it is possible to “break” OP at any i such that Ki ∩ Ki+1 = S. So a valid pair
(L,R) is not unique for a given OP based on S. For the ease of description, let us use the same
notation for a blocks Oi and the corresponding set of maximal cliques of G contained in Oi. Thus,
hereafter Oi replaces Ki.

Clearly the pair (L,R) identifies the ordered partition OP . Now given two lists L and R such
that each element of O(S) is in exactly one list, we want to know if the pair (L,R) defines a valid
ordered partition. Consider two blocks Oi and Oj in O(S). We want to know whether there exists
a clique path PG of G in which the subpath POj is between POi and some edge eS corresponding to
S (the intersection of cliques incident to eS equals S). The answer is yes only if Oi 2 Oj according
to the pre-order defined as follows:

Definition 5.1.10. Two blocks Oi, Oj ∈ O(S) satisfy Oi 2 Oj if every vertex of S∩Oi is universal
in Oj (compare Lemma 2.2.19).

47

Now we can state the main theorem of this chapter. It claims that with the pre-order we can
capture all possible clique paths of G.

Theorem 5.1.11. Let L,R be two lists such that each block of O(S) appears in exactly one of
them. Then (L,R) is a valid pair based on S if and only if L and R form a partition of the partially
pre-ordered set (O(S),2) into two chains.

Proof. For the “only if” part, note that for two blocks Oi and Oj there exists a clique path in
which POj is between POi and some edge eS corresponding to S only if Oi∩S is contained in every
maximal clique of G[Oi]. Hence L and R must be chains of (O(S),2).

Conversely, if we partition (O(S),2) into two chains (L,R) we can construct a clique path of G
in which the subpaths corresponding to blocks in L (resp. R) are situated to the left (resp. right)
of eS , joined by this edge, respecting the order of the chains L, R. In this setting, we only need to
get a clique path for each block O ∈ O(S) that lets us glue them all together into a clique path of
G.

By using Lemma 5.1.8, we can construct a clique path of every O ∈ O(S) with S(O) at one
end. The conclusion follows.

The first level of refinement is completed. We have an ordered partition of the set K of all
maximal cliques of G, obtained as a partition of (O(S),2) into two chains. Now we need to
recursively refine each of the blocks O ∈ O(S) until we reach a partition into single maximal
cliques, thus a clique path of G. We need to verify that each clique path PG[O] of G[O], for

O ∈ O(S) that we obtain can be used as a subsequence in the clique path of G under construction.
For this purpose we can use a bijection between the set of clique paths of G[O] satisfying this
condition and the set of all clique paths of the auxiliary graph G+[O] defined as follows:

Definition 5.1.12. Given a minimal separator S of an interval graph G and a full block O associ-
ated to S, the graph G+[O] is the graph G[O] augmented with a dummy vertex d adjacent to every
vertex in S.

With this definition, the following lemma gives the above mentioned bijection. Thanks to this
correspondence, we can analyze the clique paths of G[O] extendable to a clique path of G with the
same tools that we use for unconstrained clique paths.

Lemma 5.1.13. Let O be a block associated to S, a minimal separator of an interval graph G. P
is a clique path of G[O] with the leftmost bag containing S′ = O ∩ S iff ({d} ∪ S′)−−P is a clique
path of G+[O]. Moreover, every clique path of G+[O] is of the form ({d} ∪ S′)−−P , where P is a
clique path of G, modulo taking the reverse.

Proof. The first part of the claim is straightforward from the properties of clique path. Then, since
O is a full block associated to S, S is not a separator in G[O]. So, by construction, the maximal
clique K = S ∪ {d} is not a separator in G+[O]. Thus, by Lemma 2.2.22, K has to be an endpoint
in every clique path of G+[O].

Now, using Theorem 5.1.11 and Lemmas 5.1.8 and 5.1.13 it is not difficult to verify the theorem
that summarizes the argumentation given in this section:

Theorem 5.1.14. Any clique path of G can be obtained by the following algorithm. First, a
minimal separator S of G is chosen and an ordered partition OP of K is computed, according

48

to Theorem 5.1.11, by fixing a partition of (O(S),2) into two chains. Then, the same procedure
is recursively applied to the graph G+[O], for each block Oi corresponding to a part Oi in OP ,
according to Lemmas 5.1.8 and 5.1.13, to obtain a refinement of Oi into a clique path of G[O].

5.2 Structure of the pre-order

5.2.1 The co-comparability graph

In this subsection, we present a series of observations on the pre-order that we will use in Chapter
6 to prove correctness of the algorithm computing minimal interval completions. In order to
manipulate the pre-order, it is useful to analyze deeper the structure of this relation. Let us
define the incomparability relation ‖ such that O1‖O2 if and only if O1 .2 O2 and O2 .2 O1. Let
(O(S), ‖) be the graph on the vertex set O(S) in which two vertices are adjacent if and only if they
are incomparable. This graph is the co-comparability graph of (O(S),2). Note that O1‖O2 means
that O1, O2 must be at different sides of S in valid pair (L,R). In particular, there cannot be three
pairwise incomparable blocks.

The pre-order is a partial pre-order of width 2 (maximum cardinality of an anti-chain in 2
equals 2) and, as such, can be decomposed into a sequence of disjoint components that are totally
pre-ordered in a natural way, based on 2. This structure permits to efficiently analyze all possible
partitions of (O(S),2) into two chains.

The above mentioned components are the connected components of the co-comparability graph
of (O(S),2).

The following lemma shows that 2 is a pre-order of width 2. Thus, by Dilworth’s theorem [37],
2 can always be partitioned into two chains. Moreover, it describes the way the graph (O(S), ‖)
reflects the possible positions of blocks, in one of the chains in (L,R).

Lemma 5.2.1. Let S be a minimal separator of an interval graph G. The graph (O(S), ‖) is
bipartite. If two blocks O1, O2 ∈ O(S) are forced to be in the same color class (equivalently, they
are joined in (O(S), ‖) by a path of even length) then they appear in the same chain in any partition
of O(S) into (L,R). If O1, O2 are forced to be in different color classes (equivalently, they are joined
in (O(S), ‖) by a path of odd length) then they appear in different chains in any partition of O(S)
into (L,R).

Proof. According to Lemma 5.3.2, if two blocks O and O′ are incomparable with respect to the 2
relation, they cannot appear on the same side of any edge eS corresponding to S in any clique path
PG of G. Thus, if we fix an edge eS representing S, by assigning color “L” to all blocks to the left
of eS in PG, and color “R” to all those to its right, we obtain a two-coloring of (O(S), ‖).

The next observations come directly from the fact that if O and O′ must be in the same color
class (resp. in different color classes), then there is a path of even (resp. odd) length from O to
O′ in (O(S), ‖). We then use the fact that two incomparable blocks must be on different sides of
es.

Notice that it is inside a connected component of (O(S), ‖) that some forcing between two
blocks Oi, Oj , regarding they relative positions in (L,R) may appear. So if Oi, Oj belong to
different components of (O(S), ‖), then there are both partitions where Oi, Oj belong to different
chains and such where they appear in the same chain. The following lemma adds to this autonomy
the fact that the components of (O(S), ‖) cannot be interlaced in 2.

49

Lemma 5.2.2. Let C and D be two distinct connected components of (O(S), ‖). There is no triple
of one-blocks Oc, O′

c, Od such that Oc, O′
c ∈ C, Od ∈ D and Oc 2 Od 2 O′

c.

Proof. Suppose that such a triple exists and consider a path P joining Oc and O′
c in (O(S), ‖):

P = [Oc = O1, O2, . . . , Op = O′
c]. Then there are two consecutive one-blocks Oi and Oi+1 on this

path such that Oi 2 Od 2 Oi+1. By the transitivity of the 2 relation, Oi 2 Oi+1, contradicting
the fact that the two one-blocks are adjacent in (O(S), ‖).

So the pre-order can be extended in a natural way to the set of components of (O(S), ‖).

Definition 5.2.3. Define the order (C(S),≤) with C being the set of connected components of
(O(S), ‖) and C 2 D, C,D ∈ C if Oc 2 Od for all (Oc, Od) ∈ (C,D).

Indeed, by Lemma 5.2.2 we deduce directly :

Lemma 5.2.4. For two distinct connected components C and D of the graph (O(S), ‖), we have
C 2 D or D 2 C. Moreover, if there are two blocks Oc ∈ C and Od ∈ D that are equivalent with
respect to 2, then each of the components is composed of a single block.

The following lemma states that blocks which are equivalent with respect to 2 behave the same
with respect to connected components of (O(S), ‖).

Lemma 5.2.5. Let Oeq be a set of blocks equivalent for 2. Then they are either in separate
singleton connected components of (O(S), ‖) or they are forced to be in the same color class of one
connected component of (O(S), ‖).

Proof. Let Oeq ∈ Oeq. If there is O‖Oeq in O(S) then O is incomparable with the rest of one-blocks
in Oeq. Thus all Oeq are in the same connected component of (O(S), ‖), in the opposite color class
than O. Else, there is no O‖Oeq. Hence Oeq form singleton connected components of (O(S), ‖).

In this document we extend the notion of a topological sorting to graphs of partial pre-orders.

Definition 5.2.6. Given a graph G of a partial pre-order 2, σ is a topological sorting of G if for
every pair of elements which are not equivalent with respect to 2, Oi 2 Oj implies that Oi appears
before Oj in σ.

Notice that for blocks that are equivalent with respect to 2, they relative position in a topo-
logical sorting of (O(S),2) is not specified.

It is a direct consequence of Lemma 5.2.4 that the elements of a connected component of
(O(S), ‖) are consecutive in any topological sorting of (O(S),2).

Lemma 5.2.7. The set of blocks in a connected component of (O(S), ‖) appears consecutively in
any topological sorting of (O(S),2). Moreover, a topological sorting of 2 induces a linear order
C1, . . . , Cp on the connected components of (O(S), ‖).

This completes the structural description of the pre-order.

50

procedure bipartition

Input: O one-blocks sorted in "

Output: L,R - two lists of one-blocks, partition of O into two color classes
Variables:

fixL, fixR - lists of one-blocks fixed to be in the corresponding color classes; the top elements of
fixL, fixR form the topmost couple of incomparable elements
temp - lists of one-blocks after both elements of MA in ", temporarily put in L
sL = (oL, cL), sR = (oR, cR) - for every one-block, we store pointers to the one-blocks just below
it in (L,R) together with the information if they are smaller or incomparable. For example,
sL(Oi) = (Oj , true) means that the maximum one-block in L, smaller than O in ", is Oj and
Oj 2 Oi

fixL← ∅; fixR← ∅
temp← ∅
procedure updadeLR(temp)
first = head(temp)
(sL, sR)(first) = (sR, sL)(first)
forall O ∈ O do

(sL, sR)(O) = (sL(first), sL(O))
end

forall O ∈ O do

compute sL(O)
compute sR(O)
if (cL(O)) then //case 1

temp = concat(temp,O)
if (not cR(O)) then

fixL = concat(fixL, temp)
temp = ∅

endif

else if (oR(O)) then //case 2
fixR = concat(fixR,O)
fixL = concat(fixL, temp)
temp = ∅

else //case 3
updateLR(temp)
fixR = concat(fixR, temp) fixL = concat(fixL,O)
temp = ∅

endif

endforall

L = concat(fixL, temp)
R = fixR

Table 5.1: Bipartition algorithm.

51

5.3 Learning the pre-order

It is costly to learn the pre-order (O(S),2) in a naive way. There can be Ω(n) blocks. Their
intersections with S can also be of cardinality Ω(n). Ω(n2) comparisons of linear cost give Ω(n3)
time complexity. In this section, we first show a way to obtain a topological sorting of (O(S),2)
in linear time. Then we describe how to use it to learn the pre-order using linear number of
comparisons. Finally, we give a sketch of the proof that the pre-order can be computed in linear
time.

The reader may skip this section and continue in Chapter 6 with the results using the pre-order
to compute a minimal interval completion. We give here some technical analysis and present a
linear time algorithm that computes the pre-order (O(S),2) for a minimal separator S of a chordal
graph G.

The algorithm we present produces a list of connected components of (O(S), ‖), in a topological
sorting (see Lemma 5.2.7). Each component C is represented by two lists of blocks, also arranged
in a topological order, that correspond to a bipartition of C in (O(S), ‖). The first step is to obtain
a topological sorting of (O(S), ‖). Then we use it to compute the equivalence classes, according to
2. Blocks grouped in equivalence classes form, in a natural way, a partial order.

For the sake of simplicity, let us use the same notation for the relation on equivalence classes as
for the relation on single blocks. Notice that in case of singleton equivalence classes they correspond
to the same thing. Regarding the equivalence classes as single elements transforms the pre-order
from a partial pre-order to a partial order, which makes the use of standard poset terminology more
relevant. Therefore we allow this little abuse of terminology, and signalize that it does not affect
the correctness of presented claims.

The second step is to bipartition the list of blocks, thus to produce two lists corresponding to
two color classes of (O(S), ‖). The third step is to compute the connected components. To achieve
this, we traverse the two lists (color classes) and find where the connected components start and
finish. At the end, each equivalence class may be replaced with any permutation of its elements.

5.3.1 Topological order

Let us define two notions that are useful for the computation of the pre-order.

Definition 5.3.1. For every O ∈ O(S) let

big(O) = max{K ∩ S|K ∈ K,K ⊆ O}, small(O) = min{K ∩ S|K ∈ K,K ⊆ O} (5.1)

The maximum and minimum are taken with respect to set inclusion. Notice that they are well
defined, since for the set of cliques contained in a block O associated to S, the intersections of
cliques with S are totally ordered by inclusion. Consider a clique path P of G with a fixed edge
eS corresponding to S (the intersection of incident bags equals S). Pick any block O associated
to S. Recall that, by Theorem 5.1.2, the maximal cliques contained in O are consecutive on P . S
is not a u, v-separator for any u, v ∈ O, since O is a block associated to S. So, by Lemma 2.2.21,
all bags corresponding to cliques in O have to appear as a subpath PO

G at one side of eS in PG.
W.l.o.g. assume it is the left hand side. In this setting, big(O) corresponds to the edge eb of P
incident to the rightmost clique of PO

G , to the right. If there are other bags to the left of PO
G in PG,

then small(O) corresponds to the edge es of PG incident to the leftmost clique of PO
G , to the left.

Hence, by Lemma 2.2.20, small(O) also is a minimal separator of G. Only if O is one of the two
blocks that contain the endpoints of PG, small(O) may not be a minimal separator of G.

52

It is worth mentioning here, that clique path is a very useful and efficient tool for computations
on interval graphs (like clique tree for chordal graphs). Especially, with the O(n) space represen-
tation given by Berry et al. in [9]. It is not difficult to verify that, with this tool, the set of blocks
O(S) associated to a minimal separator S, and the corresponding values of big(O) and small(O),
for O ∈ O(S) can be computed in time O(n). This is a good starting point for working on the
pre-order, since the following characterization holds.

Lemma 5.3.2. Let Oi and Oj be two blocks in O(S). Then Oi 2 Oj iff big(Oi) ⊆ small(Oj).

Proof. Assume that Oi 2 Oj . By Definition 5.1.10, S(Oi) is contained in every maximal clique
contained in Oj , thus big(Oi) ⊆ small(Oj).

Conversely, assume that big(Oi) ⊆ small(Oj). So S(O) = big(O) is contained in the minimum
over the intersections of maximal cliques of G contained in Oj with S, hence S(O) is contained in
each clique in Oj .

Let us define a relation on the set of blocks that we use to obtain a topological sorting of
(O(S),2).

Definition 5.3.3. Two blocks satisfy Oi " Oj if 3(Oi) ≤ 3(Oj), where 3(Oi) = |big(Oi)| +
|small(Oi)|.

It is an easy observation, that the " relation is a linear pre-order on the set of blocks. Moreover:

Lemma 5.3.4. The relation " with each equivalence class permuted in an arbitrary way gives a
topological sorting of 2.

Proof. Let O1, O2 ∈ O(S). O1 2 O2 means that big(O1) ⊆ small(O2). Therefore

|small(O1)| ≤ |big(O1)| ≤ |small(O2)| ≤ |big(O2)|

|small(O1)|+ |big(O1)| ≤ |small(O2)|+ |big(O2)|

so O1 "O2.

Notice that 3(O) is bounded by 2n. Therefore, the elements of O(S) can be sorted, according
to ", by an algorithm like bucket-sort, in time linear in n. Computing the values of 3(·) can be
done in time linear in m.

Let us finish the discussion on the topological sorting with the following lemma. It clarifies
the structure of equivalence classes with respect to " in comparison with equivalence classes with
respect to 2.

Lemma 5.3.5. An equivalence class O"
eq, with respect to ", consists of at most two whole equiv-

alence classes of the pre-order 2. Moreover, if there are two of them, then they are incomparable
with respect to 2.

Proof. Suppose O is such an equivalence class. O1, O2 ∈ O means that

|big(O1)|+ |small(O1)| = |big(O2)|+ |small(O2)| (5.2)

If two elements are equivalent for 2 then, clearly, they also are equivalent for ". So the equivalence
classes of " form a partition of equivalence classes for 2. On the other hand, O can contain two
equivalence classes of 2 only if the elements are incomparable between them. Indeed, the strict
inclusion big(O1) ! small(O2) is in contradiction with Equation 5.2. Finally, since 2 is a partial
pre-order of with 2, there may be at most two mutually incomparable elements.

53

The representant of O that comes first in the topological sorting can be used in 2-comparisons
to filter the elements of O into the same or the second equivalence class. This can be done in O(n)
number of 2 comparisons.

5.3.2 Bipartition

To construct the two lists of blocks that correspond to a bipartition of O(S) we take the list of blocks
yielded by the previous step. The construction of the left and right chain is done incrementally.
Control over the structure is exercised with the topmost maximum anti-chain among the elements
considered so far. Since 2 is of width two, throughout the algorithm we keep track of the position
of topmost couple of incomparable blocks TA.

Each time a new element O is considered, we check its relation with the top elements of the
lists constructed so far. If O is 2-bigger than the top left or top right element, we just put it over
it. If O is not comparable with the top element on the other side, then we update the topmost
anti-chain TA. If O is incomparable with both top elements, then we use TA to rearrange the
partition. The sub-chains constructed up to the intersection with TA (inclusive) are denoted fixL
and fixR. The chain of elements "-bigger than both elements of TA considered so far is denoted
temp and is considered to be above fixL.

The following lemma states that the elements "-bigger than TA, in a partition of elements "
smaller than O into two chains, can always be rearranged in a way which lets append O at the top
of one of the chains.

Lemma 5.3.6. Let O be an element of the considered partial order (O(S),2) of width 2. Let fixL
denote the sub-chain of the left chain up to TA (including the intersection with TA) and fixR the
analogous chain on the right side. Then the bipartition can be extended by appending O to one of
fixL, fixR and the chain temp of the other elements considered so far to the other.

Proof. Let temp denote the list of the elements strictly above TA considered so far, 2-ordered. They
form a chain, since TA is the topmost anti-chain of width 2. Its bottom element bottom(temp) is
comparable with both elements of TA. O is comparable with at least one element of TA (width 2),
so it can be placed above it. We append temp above the other and the construction is finished.

Now we can prove the following theorem.

Theorem 5.3.7. The algorithm bipartition produces a proper 2-coloring of O.

Proof. Clearly, the set of conditions present in the algorithm is complete, i.e. it covers all the
possible situations when a new block O is considered. In first two cases, O is comparable with a
maximal element already placed on the left or right side. So O can be put just above it and we
maintain a partition of O already considered into two chains. In the third case, O is incomparable
with both oL(O) and oR(R). On the other hand, throughout the execution of the algorithm,
top(fixL) and top(fixR) form the topmost anti-chain among the elements processed so far (if both
are not null). Indeed, it is an easy observation that each time fixR or fixR is modified, an anti-
chain is put at the top and TA is updated. And it happens each time a new anti-chain appears.
The algorithm rearranges the partition as described in Lemma 5.3.6.

After processing all blocks the algorithm yields a partition as needed.

54

5.3.3 Components of (O(S), ‖)

Having a decomposition of O(S) into two chains, we can compute the list of connected components
of the incomparability graph. We process the two lists of blocks, given as input. For each list we
maintain a pointer. With the pair of pointers, we scan O(S) in a balanced way. That is to say
that at each step we take a new element Oi in the "-sorted O(S) and take OL (OR) to be the top
one-block in L (R) before Oi in the sorting. That is OL = oL(Oi), OR = oR(Oi). The following
lemma gives a condition that characterizes where two different connected components of (O(S), ‖)
meet.

Lemma 5.3.8. Let (L,R) be a decomposition of a partial order (O(S),2) into 2 chains. Let
(downL, upL), (downR, upR) denote a bisection of the chains by some scan-line. Then there is no
connected component of (O(S), ‖) crossing this scan-line iff the bottom elements above the scan-line
are all comparable with top elements below the scan-line.

Proof. Suppose there is a component C crossing the scan-line SL. Then there are some elements
O1, O2 ∈ C such that the scan-line separates them. O1, O2 are joined by a chain of incomparabilities
that crosses SL at some point. Let O′

1 be the element of this chain just below SL and O′
2 be the

one just above, joined by incomparability. On the other hand, the elements just below the scan-line
are comparable to the ones just above. Therefore, every element below the scan-line is comparable
with all elements above it. A contradiction with the incomparability crossing the scan-line.

Conversely, if there is an element O1 just above the scan-line incomparable with O2 just below
it, then they both belong to the same connected component of (O(S), ‖). A contradiction with the
fact that there is no component crossing the scan-line.

Therefore, if OL and OR are comparable with (smaller than) both blocks O+
L , O

+
R just above,

with respect to 2, then the current connected component is closed (composed of the one-blocks
between the previous component and the current scan-line).

It is only for O+
R that we need to compute the comparison with OL, since the other three were

computed during the creation of L,R. In total, for every element we do at most three comparisons
with the elements smaller in the topological sorting.

5.3.4 Complexity

We have shown that it is possible to learn the pre-order with O(n) time preprocessing and linear
number of comparisons of type big(Oi) ⊆ small(Oj). Moreover, we have said that big(Oi) and
small(Oi) are minimal separators of G, with the only exception for small(Oj), where Oj is one of
two blocks associated to O(S) containing the endpoints of P , for any fixed clique path P of G. By
a result of Ibarra [76], such inclusion can be tested in constant time.

Lemma 5.3.9. [76] Let G be an interval graph. There is a linear time preprocessing that permits
to test in constant time if S ⊆ T for any minimal separators S, T of G.

By Algorithm 5.1 every block is compared a constant number of times with the other blocks.
So without further analysis, we can afford O(n) inclusion tests for comparing the external blocks
in the given clique path P of G and state that the pre-order can be computed in linear time.

Theorem 5.3.10. Given an interval graph G and a minimal separator S of G, the pre-order
(O(S),2) can be computed in O(n+m) time.

55

Proof. A linear size data structure to represent a clique path of G can be created in linear time
(see [9]). Then the blocks associated to S can be computed in O(n) time. After linear time
preprocessing, the pre-order can be computed with O(n) number of constant time comparisons and
constant number of O(n) time comparisons. The conclusion follows.

56

Chapter 6

Minimal Interval Completion

Through Decomposition

Contents

6.1 Incremental approach . 58

6.2 Principles of the algorithm . 59

6.2.1 NG′(x) is a clique . 60

6.2.2 NG′(x) is not a clique . 61

6.3 Minimal completion . 63

6.3.1 Minimal separators in Sx . 63

6.4 Algorithm NicePair . 67

6.5 Putting everything together . 70

6.5.1 Algorithm MinimalIntervalCompletion . 72

6.6 Conclusions . 73

In this Chapter we present the first, to our knowledge, published algorithm computing a minimal
interval completion of an arbitrary graph [73]. Despite the strong resemblance between interval
completions and chordal completions (triangulations), the work on minimal triangulations, which
started in the seventies of the last century with the results of Rose, Tarjan and Leuker [107], was
not extended to interval completions until the year 2005. One reason for this might be that minimal
triangulations have a characterization, which is often used in analysis of chordal completion, and
the analogue for interval completion does not hold. It says that a chordal super-graph H of G is a
minimal triangulation of G if and only if there is no edge e ∈ E(H)\E(G) such that H−e is also a
chordal graph. This makes it very simple to verify if a given triangulation is minimal. On the other
hand, it happens that an interval super-graph H of G is such that, for any edge e ∈ E(H) \E(G),
H − e is not an interval graph, but still H is not a minimal interval completion of G. We also
tried other approaches inspired by the similarity of interval and chordal graphs. For example, we
wanted to use the characterization of interval graphs saying that these are exactly chordal, AT-free
graphs (see Theorem 2.2.25). But the attempts to first triangulate, then remove asteroidal triples
by adding some edges or vice-versa failed. Even more sophisticated algorithms, trying to do both
at the same time, were of no use. Eventually, we tried the approach presented in this chapter.

57

Our algorithm proceeds in an incremental manner. It first fixes an arbitrary ordering (v1, . . . , vn)
and, at each step i, it computes a minimal interval completion Hi of the graph G[{v1, . . . , vi}]
induced in G by the set of vertices considered so far. When the vertex vi+1 is considered, the
computation is not made from scratch, but the completion Hi is used. Therefore, a single step
consists in finding a minimal interval completion of an interval graph Hi augmented with the
vertex vi+1 adjacent to its neighborhood in G restricted to {v1, . . . , vi} (so this set is equal to
NG(vi+1) ∩ {v1, . . . , vi}). The solution to this problem is based on the clique paths of Hi browsed
with the help of the pre-order, described in the previous chapter.

6.1 Incremental approach

Notation 1. Let us fix an ordering (v1, . . . , vn) of V (G). We use Gi denote the subgraph of G
induced by {v1, . . . , vi}. Moreover, we use Hi to denote the interval completion of Gi computed by
the algorithm.

Let us first justify that the incremental approach is possible. The next lemma states that a
minimal interval completion Hi+1 of Gi+1 can be computed from the minimal interval completion
Hi of Gi computed at the previous step, by only adding fill edges incident to vi+1.

Lemma 6.1.1. Let H be a minimal interval completion of an arbitrary graph G. Let G′ be a graph
obtained from G by adding a new vertex x, with neighborhood NG′(x). There is a minimal interval
completion H ′ of G′ such that H ′ − x = H.

Proof. Let H ′′ be the graph obtained by adding x and the edges between x and every element in
NG′(x) to H. Observe that an interval completion of H ′′ can be obtained by only adding edges
incident to x. For example, we can make x adjacent to every vertex of H ′′. Clearly the result,
denoted by H ∗ x, is an interval graph, since, given an interval model of H, it is easy to obtain an
interval model of H ∗ x. For example, we can add a new interval corresponding to x that starts
before and ends after any interval of the model ofH. If the resulting graph is not a minimal interval
completion of H ′′, then it properly contains one. Let H ′ denote this minimal interval completion,
with H ′ ⊆ H ∗ x. By construction, all the edges in E(H ′) \ E(H) are incident to x.

Let H ′ be a minimal interval completion of H ′′ obtained by only adding edges incident to x.
We claim that H ′ is a minimal interval completion of G′. Suppose it is not. So there is H ′′′, a
minimal interval completion of G′, with H ′′′ ⊂ H ′. If all edges in E(H ′) \ E(H ′′′) are incident to
x, then H ′′′ is also an interval completion of H ′′ - a contradiction with the minimality of H ′. So
there is an edge e ∈ E(H ′)\E(H ′′′) which is not incident to x, hence e is already present in H. Let
H = H ′′′−x. It is an interval graph, as an induced subgraph of an interval graph. By construction,
there is G ⊆ H. Moreover, H ⊂ H, since e ∈ H \H. This contradicts the minimality of H.

Hence, for computing a minimal interval completion of G, we introduce the vertices of G one
by one in the order (x1, x2, . . . , xn). Given a minimal interval completion Hi of Gi, we compute an
interval completion Hi+1 of Gi+1 by adding vertex xi+1 and the edges between xi+1 and NGi+1

to
Hi together with a well chosen set of additional edges incident to xi+1.

From now on we consider as input an interval graph G = (V,E). A new vertex x is added to G,
together with a set of edges incident to x. For the rest of this chapter, let G′ denote this graph. We
want to compute a minimal interval completion H of G′, obtained by only adding edges incident
to x. We say that such a minimal interval completion respects G.

58

x

Figure 6.1: Pruning x from a clique path of G.

6.2 Principles of the algorithm

Before getting into details, let us give the general idea of the algorithm. Let G′ be a graph such
that G = G′ − x is an interval graph, for a fixed x ∈ V . Let H be a minimal interval completion
of G′.

Take any clique path PH of H. By property of clique paths, the cliques containing x form a
subpath P x

H of PH . Now, let us get back to G. Delete x from every bag in PH , and possibly remove
the bags that do not correspond to maximal cliques of G. This yields PG - a clique path of G,
which gives a linear ordering of maximal cliques of G. We say in this case that PG was obtained
by pruning the vertex x from PH .

In Figure 6.1, there is a clique path of H. The corresponding clique path of G is obtained by
removing x from all bags (just remove the interval corresponding to x from the interval model).

Definition 6.2.1. An interval completion H of G′ respects a clique path PG of G if PG can be
obtained by pruning x from some clique path of H.

Clearly the maximal cliques that come from P x
H still form a subpath of PG. Our aim is to do

the converse: to find a clique path PG of G and a subpath P x
G of PG in which, by adding vertex x to

every bag and possibly creating new bags at the ends of P x
G, we obtain a clique path of a minimal

interval completion of G′ respecting PG. Intuitively, PG has to be such that P x
G is inclusion minimal

over all clique paths of G.
In this section we focus on the description of the two clique paths PH , PG. Given a clique path

PG of G, such that an interval completion H of G respects PG, we describe how to reconstruct a
clique path PH . In particular, provided that we have a “nice” clique path PG of G, this construction
shows how to compute an interval model of a minimal interval completion of G.

Let us formalize the notions used in our discussions. In particular, we introduce the maximal
cliques KL,KR of G that delimit the interval of bags which will have the vertex x added in the
process of reconstruction of H.

Definition 6.2.2. A clique path PG is a nice clique path of G if there exists a minimal interval
completion H respecting PG. Let KL (resp. KR) of PG be the leftmost (resp. rightmost) bag K in
PG such that x has a neighbor in K which does not belong to any bag to the right (resp. left) of K.

In Figure 6.2, there are two clique paths of the same graph G. The neighbors of x are marked
with thick lines. Notice that the set of maximal cliques inside the [KL : KR] interval of the top
clique path is strictly included in the [KL : KR] interval of the bottom clique path.

A natural question that comes here is if KL,KR are well defined. Clearly, they always exist.
The only difficulty comes from the case where KL is to the right of KR in PG, thus the interval
[KL : KR] is empty. But this happens only if the neighborhood NG′(x) of x in G′ is a clique in G.
In this situation, there maximal cliques of G that intersect NG′(x) form an interval P I

G in PG, in

59

KR

KRKL

KL

Figure 6.2: Two clique paths of G - different intervals [KL : KR].

which every bag contains NG′(x). Therefore, KL is the rightmost bag of P I
G and KR is the leftmost

one. The case where NG′(x) is a clique will be treated separately. To put it in more formal words:

Lemma 6.2.3. Given a non-interval graph G′ such that G = G′ − x, for a fixed x ∈ V , is an
interval graph, and a clique path PG of G, either the neighborhood of x in G′ is a clique or KL and
KR are distinct and define a non-empty interval [KL : KR].

Proof. Suppose the neighborhood of x in G′ is not a clique. Then there are distinct maximal cliques
of G that contain some neighbors of x. We claim that KL is strictly to the left of KR in PG. Indeed,
suppose it is not the case, so KL is equal KR or placed to the right of KR in PG. Thus, by definition
of KL, every neighbor of x that appears to the left of KL in PG is also present in KL. Analogously,
every neighbor of x that appears to the right of KR in PG is also present in KR. Since KL is to
the right of KR, every neighbor of x belongs to KR.

6.2.1 NG′(x) is a clique

If NG′(x) is a clique, it is quite straight forward to compute an minimal interval completion of
G′. Therefore, we give the full description of this case here. The next theorem shows that such
a completion H can be obtained by filling S, a well chosen minimal separator of G. We need to
choose S such that there is a clique path PG of G with an edge eS representing S incident to a
maximal clique K of G which contains NG′(x). In this way, an interval model of the completion
can be obtained by adding in PG, between the bags incident to eS , a bag containing S ∪NG′(x), as
in the proof of Theorem 6.2.4. Thus, it is enough to fix a clique path PG and compare, with respect
to their intersection with the set of non-neighbors of x in G′, the minimal separators incident in
PG to cliques containing NG′(x). The separator S for which this set is inclusion minimal yields
an inclusion minimal set of fill edges when S is filled with x. Therefore, a simple comparison of
cardinalities gives a linear time algorithm.

Theorem 6.2.4. Given a non-interval graph G′ such that G = G′ − x, for a fixed x ∈ V , is an
interval graph and NG′(x) is a clique. Let H be a minimal interval completion of H with every fill
edge incident to x. Then there is a minimal separator S of G such that every fill edge is incident to
a vertex in S. Moreover, there is a clique path PG of G such that there is an edge eS in PG which
corresponds to S and is incident to a maximal clique of G which contains NG′(x).

Proof. Let us first prove that there is a unique maximal clique of H that contains x. Let PH be
a clique path of H and let PG be a clique path of G obtained by pruning x from PH . Let Ω be

60

a maximal clique of H that contains x. In fact, Ω is unique. Suppose there are several maximal
cliques of H that contain x. W.l.o.g. we may assume that we pick for Ω a bag that contains NG[x].
Let Ω′ be another clique that contains x. Remove x from every bag of PH except for Ω. This yields
an intersection model of an interval graph H which also is an interval completion of G′ with all fill
edges incident to x. Moreover, the new graph does not contain the edge xv, for any v ∈ Ω′ \ Ω,
which contradicts the minimality of H.

Let us now show that there is a minimal separator S of G that is filled with x in H. Notice
that every maximal clique of H, except for Ω, is also a maximal clique of G. Ω is not an endpoint
of PH , since G′ is not an interval graph. Indeed, suppose it is the left endpoint of PH . Then
replacing Ω with NG′ [x] − −(Ω \ {x}) in PH yields an interval model for G′. Which contradicts
the fact that G′ is not an interval graph. Let K ′,K ′′ be the maximal cliques next to Ω in PH . If
Ω contains a maximal clique K of G then K ′,K are adjacent in PG, since PG comes from pruning
x from PH . By Lemma 2.2.20, S = K ′ ∩ K is a minimal separator of G incident in PG (as the
corresponding edge) to K, so Ω ⊆ K, which is a maximal clique containing NG(x). If Ω does not
contain a maximal clique of G, then Ω \ {x} is contained in K ′ or in K ′′. W.l.o.g. we may assume
that Ω \ {x} ⊂ K ′. Moreover, K ′,K ′′ are adjacent in PG, so again, by Lemma 2.2.20, S = K ′ ∩K ′′

is a minimal separator of G incident to K ′, a maximal clique containing NG(x).
Finally, let us prove that every fill edge is incident to a vertex in the separator S defined above.

Suppose there is a fill edge xz not incident to any vertex in S. So Ω contains the vertex z which
is only contained in maximal cliques at one side of Ω in PG. W.l.o.g., let us say that z does not
belong to K ′′. Therefore, we may replace Ω with Ωz −−Ωx in PH , where Ωz = Ω \ {x},Ωx \ {z},
to obtain an interval model of an interval completion of G′ which is strictly contained in H. A
contradiction with minimality of H.

We can close the analysis of the case where NG′(x) is a clique with the following corollary. For
the complexity, we again use the data structure presented in [9], which permits to analyze all the
separators of G in time linear in n.

Corollary 6.2.5. Let G′ be a non-interval graph such that G = G′ − x, for a fixed x ∈ V , is
an interval graph, and the neighborhood of x is a clique. There is an algorithm linear in n which
computes a minimal interval completion of G′.

The rest of the chapter is dedicated to the case where NG′(x) is not a clique.

6.2.2 NG′(x) is not a clique

We are in the case where NG′(x) is not a clique. Let H be a minimal interval completion of G,
and let PG be a clique path of G, such that H respects PG. By Lemma 6.2.3, the cliques KL and
KR of PG define a non-empty interval [KL : KR] in PG. The following theorem describes how
to reconstruct H, knowing G′ and PG. Notice that PG is a nice clique path, an object that the
minimal interval completion algorithm will be looking for. Once a nice clique path is found, the
following theorem gives the corresponding completion. On its own, this procedure can be used to
compute the best interval completion that respects the given clique path.

Lemma 6.2.6. Let G′ be a non-interval graph such that G = G′ − x, for a fixed x ∈ V , is an
interval graph, and the neighborhood of x is not a clique. Let H be a minimal interval completion
of G respecting PG. Then xu ∈ E(H) \E(G′) implies that u ∈ K, for some K strictly between KL

and KR in PG. Moreover, every clique K strictly between KL and KR in PG is filled with x in H.

61

Proof. Let PH be a clique path of H such that PG comes from pruning x from PH . Let ΩL be
the maximal clique of H that contains KL. Notice that ΩL is unique and equals either KL or
KL ∪ {x}. Let Ω+

L denote the maximal clique of H which is just to the right of ΩL in PH . The
same observations hold for ΩR, the maximal clique of H that contains KR. Let Ω

−
R be the maximal

clique of H which is just to the left of ΩR in PH .
Notice that the bags outside the [ΩL : ΩR] interval are the same in PH and PG. Indeed, suppose

it is not the case, so there is x present in some bag outside the [ΩL : ΩR] interval. W.l.o.g., assume
x belongs to some clique to the left of ΩL in PH . Let Ω be the leftmost such clique. Let z ∈ Ω be
a vertex that does not belong to any bag to the right of Ω. It exists, since Ω is a maximal clique.
Notice that z is only contained in bags strictly to the left of KL in PG. Otherwise, by construction,
z would also be present in some bag to the right of ΩL in PG. So z .∈ NG′(x), since KL is the
leftmost bag of PG which contains an element of NG′(x) which is not present in any bag to the
right of it. Now we may replace Ω with Ωz −−Ωx in PH , where Ωz = Ω \ {x},Ωx \ {z}, to obtain
an interval model of an interval completion of G′ which is strictly contained in H. A contradiction
with minimality of H.

By this minimality argument, ΩL = KL∪{x} implies that ΩL\Ω
+
L ⊆ NG′(x), and ΩR = KR∪{x}

implies that ΩR \Ω−
R ⊆ NG′(x). If ΩL = KL then Ω+

L = {x}∪ (KL ∩NG′(x))∪ (KL ∩K+
L). Similar

argument holds for ΩR and Ω+
R. So, by definition of a clique path, x is present in every bag strictly

between ΩL and ΩR in PH . Thus, every bag K strictly between KL and KR in PG is filled with
x. Moreover, every vertex y ∈ NH(x) belongs to a bag strictly between KL and KR in PG or is a
neighbor of x already in G′.

Finally, we give a characterization of nice clique paths. It confirms the intuition, that a clique
path P should be nice if the interval [KL : KR] in P is inclusion minimal over all clique paths of G.

Theorem 6.2.7. Let G′ be a non-interval graph such that G = G′ − x, for a fixed x ∈ V , is an
interval graph, and the neighborhood of x is not a clique.

A clique path PG of G is nice iff the set of maximal cliques of G strictly between KL and KR

in PG is inclusion minimal among all clique paths of G.

Proof. Assume P 1
G is a nice clique path. Let H be a minimal interval completion of G′ such that

H is respecting P 1
G. Let K

1
L,K

1
R denote the cliques KL,KR of PG. By Lemma 6.2.6, every fill edge

is incident to a vertex in a clique strictly between KL and KR in PG. Suppose there is another
clique path P 2

G of G such that the set of cliques between K2
L and K2

R, where K
2
L,K

2
R denote KL,KR

of P 2
G, is strictly included in the set of cliques between K1

L and K1
R in P 1

G. Then the graph H ′

corresponding to the interval model obtained by adding x to every bag strictly between K2
L and

K2
R and creating new bags: K2

L∩NG′(x)∪S2
L just to the right of K2

L and K2
R ∩NG′(x)∪S2

R just to
the left of K2

R, where S2
L (resp. S2

R) is the separator just to the right (resp. left) of S2
L (resp. S2

R)
in P 2

G, is an interval completion of G′ strictly included in H. Clearly, H ′ is an interval completion
of g′. Every fill edge in H ′ is adjacent to a vertex in a bag strictly between K2

L and K2
R in P 2

G.
By definition, it is a strict subset of the bags of P 1

G that are filled with x in H. Moreover, there
is a bag K which is between K1

L and K1
R in P 1

G, but outside the K2
L-K

2
R interval in P 2

G. Since K
is a maximal clique, there is a vertex v ∈ K which is not present in any clique between K2

L and
K2

R (inclusive). v is not a neighbor of x in G′, since K2
L,K

2
R are the external cliques in P 2

G that
contain a vertex in NG′(x) not contained in any bag strictly to the right, resp. left, of them. So
xv ∈ E(H) \E(H ′), which contradicts the fact that H is a minimal interval completion of G′.

62

Conversely, assume that H is an interval completion respecting a clique path P 1
G as stated in the

theorem, with the cliques strictly between KL and KR filled with x. It is an interval completion,
indeed, by argument described above. Suppose it is not minimal. So, there is H ′, a minimal interval
completion of G′ strictly included in H. Let P 2

G be a clique path of G respected by H ′, as in Lemma
6.2.6. There is a clique K in the set of cliques strictly between KL and KR of P 2

G which is not
in the set of cliques strictly between KL and KR of P 1

G, since the latter set is inclusion minimal
among all clique paths of G, and the non-equality of these sets is forced by H ′ .= H. Like above,
it means that there is a fill edge in H ′ not present in H. A contradiction.

6.3 Minimal completion

We need an algorithm that computes a minimal interval completion in case where the neighborhood
of the new vertex is not a clique. For this purpose we use the characterization of Theorem 6.2.7,
thus we are looking for a nice clique path. Since the number of clique paths of an interval graph
G can be exponential in the number of vertices of G, we need a smart way to browse through this
set. For this purpose, we employ the pre-order described in Chapter 5.

In this section we extend the theory of nice clique paths to ordered partitions of G. Recall
from Chapter 5 that a minimal separator S of an interval graph defines a partition of the set K
of maximal cliques of G into blocks that appear consecutively in every clique path of G. First, we
pick a separator S, which is a minimal u, v-separator for some u, v ∈ NG′(x). We prove that such
a separator appears inside the [KL : KR] interval of any clique path of G. Then we find an ordered
partition which minimizes the set of blocks inside the interval [OL : OR], the analogue of [KL : KR],
over all valid ordered partitions of G. The general goal is to choose a valid ordered partition OP
which minimizes the set of maximal cliques of G that appear between KL and KR in any clique
path PG which is a refinement of OP . That gives the first approximation of the set of maximal
cliques that will be filled with x in the computed minimal interval completion. Then the parts of
OP are recursively refined, like in Theorem 5.1.14, until the set of maximal cliques that will be
filled with x is fixed - which completes the computation.

Let Sx denote the set of minimal separators of G, that are minimal a, b-separators for some
a, b ∈ NG′(x). As announced before, the following theorem states that, for any S ∈ Sx, S is filled
with x in any minimal interval completion of G′. By Lemma 6.2.6, it is equivalent to saying that
S appears inside the [KL : KR] interval of any clique path of G.

Theorem 6.3.1 ([9]). Let H be any chordal super-graph of G′ such that H − x = G. Consider a
minimal a, b-separator S of G, where a and b are neighbors of x in G′. Then S is in the neighborhood
of x in H.

6.3.1 Minimal separators in Sx

Let us first generalize the notion of a nice clique path (see Definition 6.2.2) to valid ordered partitions
based on O(S), for a minimal separator S ∈ Sx. Let us use the same notation for a block Oi ∈ O(S)
and the corresponding set of maximal cliques contained in Oi.

Let OL (resp OR) be the leftmost (resp. rightmost) part of OP such that x has a neighbor
appearing in OL (resp. OR) but not in any part to the right (resp. left) of it. Notice that this
formulation, taken from the definition of KL,KR, in case of ordered partitions is equivalent to
saying that OL, OR are the outermost parts in OP which contain “private” neighbors of x, i.e.

63

neighbors that are only contained in one block of O(S). Notice that OL and OR of OP are distinct,
since O(S) contains at least two blocks with private neighbors of x (e.g. the one containing a, the
other containing b, such that a, b ∈ NG′(x) and S is a minimal a, b-separator).

O1

O1 O2 O4 O5 O6 O7

L R

O3

L R

O6O7 O2 O3 O4 O5

Figure 6.3: Two ordered partitions of G - different intervals [OL : OR].

In Figure 6.3, there are two ordered partitions of the same graph G. In both cases, OL is
marked slash pattern, OR is marked with backslash pattern. Notice that the set of blocks inside
the [OL : OR] interval of the top example is strictly included in the [OL : OR] interval of the bottom
example. Here again, we aim to make the interval [OL : OR] inclusion minimal over all valid ordered
partitions.

The notions generalize to ordered partitions as follows.

Definition 6.3.2. An interval completion H of G′ respects an ordered partition OP if it respects
a clique path P which is a refinement of OP .

Definition 6.3.3. An ordered partition OP is a nice ordered partition of the set K of maximal
cliques of G if there is a nice clique path of G which is a refinement of OP . A valid pair (L,R)
which corresponds to a nice ordered partition is a nice pair.

It is not difficult to verify that, by Lemma 6.2.6 and Definitions 6.3.2, 6.3.3, the following
theorem holds. It describes the relation between a minimal interval completion H of G and any
ordered partition OP respected by H.

Theorem 6.3.4. Let G′ be a non-interval graph such that G = G′ − x, for a fixed x ∈ V , is an
interval graph, and the neighborhood of x is not a clique. Let H be a minimal interval completion
of G respecting a valid ordered partition OP . Then xu ∈ E(H) \ E(G′) implies that u ∈ Oi, for
some part Oi between OL and OR (inclusive) in PG. Moreover, every part Oi strictly between OL

and OR in OP is filled with x in H.

In other words, given a nice ordered partition OP and a minimal interval completion H of
G which respects OP , every block that is inside the [OL : OR] interval of OP is filled with x
in H, every blocks which is outside this interval stays unchanged, and the blocks OL, OR need
some extra attention. We will see later, that for them the corresponding graphs H[OL ∪ {x}],
respectively H[OR ∪ {x}], are interval completions which are minimal over all interval completions
of G′[OL ∪ {x}], respectively G′[OR ∪ {x}], that can be extended to a completion of G′ respecting

64

OP . By techniques based on Lemma 5.1.13, we know that such a completion can be computed
as a minimal interval completion of the corresponding auxiliary graph G+[OL] (resp. G+[OR])
augmented with the vertex x adjacent to its neighbors in G′ and to the dummy vertex. Let us
express these ideas in terms of clique paths and ordered partitions.

Like described in Theorem 5.1.14, we compute a nice clique path in a recursive way.
First, we compute a valid ordered partition OP such that the corresponding interval [OL : OR]

is inclusion minimal. Then, we recursively find ordered partitions of OL and OR. For this purpose,
we work on the graphs G+[OL] and G+[OR] (see 5.1.12), where the dummy vertex d is considered
to be also adjacent to x. This technique permits to use the same tools for computing a nice ordered
partition, as at the first level of the recursion. By Theorem 5.1.14, all clique paths of G are taken
into account.

We want to maximize the set of maximal cliques of G which are not filled with x in the
completion based on a refinement of OP . In order to correctly evaluate different permutations
of O(S), we need to know for each block Oi if it contains maximal cliques that can be “spared”.
Roughly speaking, that means that if we manage to put Oi outside the interval [OL : OR] in OP ,
then there is a completion respecting OP in which not the whole Oi is filled with x. We formalize
this idea with the following definitions.

Definition 6.3.5. [see Definition 5.1.12] The graph G∗[O] is obtained from G′[O] by adding the
dummy vertex d; d is made adjacent to every element of S(O) and to the vertex x.

Definition 6.3.6. Let G′ be a non-interval graph such that G = G′ − x, for a fixed x ∈ V , is an
interval graph, and the neighborhood of x is not a clique.

We say that a block O associated to a minimal separator S ∈ Sx is:

• clean if O ∩NG′(x) ⊂ S(O),

• hit if it is not clean,

• sparable if there is an interval completion of G∗[O], with all the fill edges incident to x, in
which x is not universal.

Notice that, following this definition, a clean block is sparable. Moreover, by Lemma 5.1.13, a
block is sparable if and only if there is an interval completion H[O] of G′[O] that can be extended
to an interval completion of G′ with all the fill edges incident to x, such that x is not universal in
H[O] (see Lemmas 5.1.8, 5.1.13).

Notice that the sparability can easily be checked in polynomial time by verifying, for every
y ∈ O, if the graph obtained from G∗[O] by making x adjacent to every vertex except for y is
interval.

With this definition we can describe the set of blocks that, by Theorem 6.3.4, will be filled with
x in any completion respecting OP .

Definition 6.3.7. Given an ordered partition OP based on the partition O(S) for a minimal
separator S ∈ Sx, let Filled(OP) denote the set of blocks that are strictly between OL and OR of
OP or in {OL, OR} and not sparable.

The following theorem characterizes the structure of a nice clique path in terms of ordered
partitions. This is the main result of this chapter. It gives a general description of our approach
to computing a nice clique path.

65

Theorem 6.3.8. Let G′ be a non-interval graph such that G = G′ − x, for a fixed x ∈ V , is an
interval graph, and the neighborhood of x is not a clique.

A clique path PG of G is nice iff, for any minimal separator S ∈ Sx, PG is a refinement of a
valid ordered partition OP based on the partition O(S) such that:

1. the set Filled(OP) is inclusion minimal among all ordered partitions based on O(S),

2. the set of maximal cliques strictly after KL of PL
G , where PL

G is the refinement of OL in PG,
is inclusion minimal among all clique paths of G[OL] that can be extended into a refinement
of OP (see Lemma 5.1.8),

3. the set of maximal cliques strictly before KR of PR
G , where PR

G is the refinement of OR in PG,
is inclusion minimal among all clique paths of G[OR] that can be extended into a refinement
of OP .

Notice that the second and third condition correspond to the fact that H[OL ∪ {x}] (resp.
H[OL ∪ {x}]) is an inclusion minimal completion, over interval completions of G′[OL ∪ {x}] (resp.
G′[OL ∪ {x}]) that can be extended to a completion of G respecting OP .

Proof. Assume that P is nice. Let S be any minimal separator in Sx and let OP be the partition
O(S) ordered as the corresponding cliques appear in P . Recall that, by Theorem 6.2.7, the set of
maximal cliques strictly between KL and KR of PG is inclusion minimal among all clique paths
of G. In particular, the set of blocks associated to S that appear entirely between KL and KR

(inclusive) in PG is inclusion minimal among all clique paths of G. Hence the set Filled(OP) is
also inclusion minimal among all ordered partitions based on OS, for any OP such that PG is a
refinement of OP . The set of maximal cliques strictly after KL of PL

G is inclusion minimal among
all clique paths of G[OL] with S(OL) contained in the last maximal clique. Indeed, suppose there
is P

′L
G , a clique path of G[OL] with S(OL) contained in the last clique, with a strictly smaller set

of maximal cliques strictly after K ′
L of P

′L
G . So, by Lemma 5.1.8, we can replace PL

G with P
′L
G in

PG and obtain a clique path with strictly smaller set of maximal cliques between KL and KR - a
contradiction. An analogous argument holds for PR

G and the conclusion follows.
Conversely, assume that, for any minimal separator S ∈ Sx, PG is a refinement of a valid ordered

partition OP based on O(S), that satisfies the conditions enumerated in the theorem. Suppose
that PG is not nice, so the set of maximal cliques of G strictly between KL and KR of G is not
inclusion minimal among the clique paths of G. Let P

′

G be a clique path of G for which this set
is inclusion minimal and is strictly contained in the corresponding set for PG. The set of blocks
associated to S that appear entirely between KL and KR (inclusive) in PG is inclusion minimal
among all clique paths of G, so it is the same in P

′

G. The difference lies in OL or OR of OP .
Assume, w.l.o.g., that there is a clique K ∈ OL, where OL is the block that contains the cliques of
OL, such that K is strictly between KL and KR of PG but outside K ′

L and K ′
R of P

′

G. The cliques
of OL are consecutive also in P

′

G, so the set of cliques after K ′
L in P

′L
G , where P

′L
G is the clique path

of G[OL] in P
′

G, is strictly smaller than in PL
G . Moreover, S(OL) appears in the last clique of P

′L
G

as well. A contradiction.

From the above theorem we can extract a characterization of nice ordered partitions.

Corollary 6.3.9. Let G′ be a non-interval graph such that G = G′ − x, for a fixed x ∈ V , is an
interval graph, and the neighborhood of x is not a clique. Let S ∈ Sx. A valid ordered partition OP

66

based on O(S) is nice iff the set Filled(OP) is inclusion minimal among all valid ordered partitions
based on O(S).

Based on this characterization, in next section, we give an algorithm computing a nice ordered
partition.

6.4 Algorithm NicePair

Let us show with an example that the pre-order is not enough to control nice ordered partitions.
Let G′ be a non-interval graph such that G = G′ − x, for a fixed x ∈ V , is an interval graph,
and the neighborhood of x is not a clique. Let S ∈ Sx. Let O1, O2, O3 be blocks associated
to S that are equivalent with respect to 2. Let O1 be clean, O2 hit but sparable, and O3 not
sparable (see Definition 6.3.6). Assume that they all have to appear in L. If Ois appear in (L,R)
as O1 − −O2 − −O3, then OL = O2. Moreover, by Theorem 6.3.4, in any interval completion H
of G that respects PG, O1 stays clean and O2 is not filled with x. Any other configuration of Ois
leads to extra fill edges present in the corresponding interval completion.

Let (O(S),≤) denote the pre-order (O(S),2) refined to incorporate this differentiation.

Definition 6.4.1. For any Oi, Oj ∈ O(B),
Oi ≤ Oj if Oi 2 Oj and (not Oj 2 Oi or priority(Oi) ≤ priority(Oj)), where

priority(O) =

1, if O is clean;
2, if O is hit but sparable;
3, if O is not sparable.

The algorithm NicePair of Figure 6.4 produces a nice pair (L,R). The algorithm relies on the
pre-order ≤. We transform it into a linear order ≤top by sorting the blocks in topological order (the
permutation of elements in the same equivalence class does not affect the minimality of interval
completions obtained). The graph (O,2) together with a topological ordering ≤top of the refined
pre-order is taken as input.

The algorithm processes the blocks of O(S) one-by-one, given in a topological order, to yield a
nice pair (L,R). Initially, all blocks are marked “L or R”, what means that they can be put in L
or in R. When the algorithm decides to put a block O in one of the lists, this may force some other
blocks to be placed in the same or the opposite side, because of the incomparabilities with respect
to the pre-order. Recall that if two blocks are incomparable, with respect to 2, then they have to
be put on the opposite sides of the separator S. The procedure shake ensures this forcing, by
marking with “L” or “R”, respectively, each block that is forced to be in the corresponding list by
the choice the algorithm made for the current block O.

The algorithm has three phases. During the first one, all considered blocks are clean. They
are placed in L or R according to the forcing. Anyway, they appear before OL or OR in the corre-
sponding lists, so they will not have any fill edges added. When the first hit block is encountered,
the algorithm enters the second phase. The list to which the first hit block is put is marked as
MinHitSide. Suppose, w.l.o.g., that this list is L. During this phase, we try to put each sparable
block to R. That is to say, if the current block O is marked “L or R” then we put it to R, since
otherwise the choice is forced. In this way, we prevent some fill edges from being added, since
putting O above OL results in making all its vertices adjacent to x in the corresponding comple-
tion. On the other hand, if O is not sparable, then we put it in L. This way we keep the possibility

67

of sparing some other blocks. The third phase starts when both lists contain hit blocks. A this
point, whatever choice we make, all further blocks will be filled.

Notice that choosing the topological order and coloring the graph (O(S), ‖) explores all the
freedom we have for creating a nice ordered partition. We will first prove that the topological order
chosen is without impact for the nice property of an ordered partition and then that our algorithm
gives a nice ordered partition.

Theorem 6.4.2. For any topological order ≤top there is a nice ordered partition (L≤top , R≤top)
respecting it, in the sense that the two lists are suborders of ≤top.

Proof. Let (L,R) be a nice pair corresponding to a topological order. Permute two elements O1

and O2 in this topological order. Let us construct a nice ordered partition (L′, R′) respecting the
new topological order.

If O1 and O2 are incomparable w.r.t. ≤, then (L′, R′) = (L,R).
Let Oeq be a maximal set of blocks equivalent for ≤, containing O1, O2. Then L′ and R′ are

obtained from (L,R) by exchanging O1 and O2 (they may be in the same list or in different lists).
Suppose that (L′, R′) is not nice. That means there is a block O that can be put outside the interval
OL′-OR′ and spared.
Suppose O .∈ Oeq. Then O can be put outside the corresponding interval in (L,R) too. Indeed,
the constraints coming from ≤ are the same, no matter what is the permutation of blocks Oeq.
Moreover, by Lemma 5.2.5 the placement of blocks O .∈ Oeq relative to OL and OR is the same in
(L,R) and in (L′, R′).
Suppose O belongs to Oeq. If all Oeq belong to the same connected component of (O(S), ‖) then
they form an interval of blocks at the same side of B in every ordered partition. Say that there are
in L. If OL is bigger or smaller than Oeq then a transposition does not change the set Spared(L,R).
So OL ∈ Oeq and all elements of Oeq are hit but sparable. Since only one block of Oeq can be spared
in such setting, we have that O = OL′ - a contradiction.
So the blocks of Oeq form singleton connected components of (O(S), ‖). The number of blocks
among Oeq that can be spared depends on the number of sides with hit blocks smaller than Oeq

in (L,R). This maximum is achieved in (L,R), thus in (L′, R′) too. If Oeq is clean (then all or
no block in Oeq is in Spared(L,R)) or Oeq is hit but sparable then O is already spared in interval
completions good (L′, R′). If Oeq is not sparable then O cannot be spared. Anyway, we reach a
contradiction.

In the proof we will show that at any step of the algorithm we obtain a “partial” nice pair
(L,R). It is characterized by Corollary 6.3.9, only that the set of blocks considered is restricted to
the ones already partitioned into (L,R).

Theorem 6.4.3. Given graph (O(S),≤) for G and B, the algorithm creates a nice pair (L,R).

Proof. Let us see the algorithm in terms of connected components C1, . . . , Ck of (O(S), ‖). They
are processed in topological order coming from the topological order of blocks in O(S). Each
time the algorithm finds a block with a label ”L or R”, it is the minimal block of a new component
encountered. The choice of putting it in one side decides, through forcing, about the partitioning of
the whole component. Thus (L,R) can be seen as a function assigning to each connected component
of (O(S), ‖) a binary value 1 if the first color class is put into L and 0 - otherwise. Let us call it a
binary representation. Let O1(Ci),O2(Ci) denote the two color classes of Ci and suppose w.l.o.g.
that the minimum element of Ci, with respect to ≤top, is in O1(Ci).

68

procedure NicePair

Input: (O(S),2,≤top) the pre-order on the set of all blocks together with a topological order of
the refined pre-order
Output: (L,R) - lists of blocks to be constructed s.t. (L,R) is a nice pair
Variables: M - an array used to store forcing information on the blocks.

M [O] =

“L” - O is forced to be in L;
“R” - O is forced to be in R;
“L or R” - O can be either in L or in R.

MinHitFound - information if the minimal hit block has been found
MinHitSide - information on the side where the minimal hit block has been put, initialized to be
L but R would be fine as well

procedure shake(O)
forall X ∈ O s.t (O ≤top X) and (X is incomparable with O for 2) and (M [X] = “L or R”)

M [X] := opposite(M [O]) do
shake(X)

end

MinHitFound := false
MinHitSide := L
L← ∅;R← ∅
forall O ∈ O do

M [O] := “L or R”
forall O ∈ O in the topological order do

if (M [O] = “L or R”) then
if O is sparable then

move O on the top of opposite(MinHitSide) and M [O] := opposite(MinHitSide)
shake(O)

else

move O on the top of MinHitSide and M [O] := MinHitSide
shake(O)

endif

else

move O on the top of M [O]
endif

if (not MinHitFound and O is hit) then
MinHitFound := true
MinHitSide := M [O]

endif

endforall

return (L,R)

Figure 6.4: Main case: the algorithm constructing a nice pair (L,R).

69

We prove that at every step the algorithm creates (Li, Ri) from (Li−1, Ri−1) by choosing to add
one color class of Ci to Li−1 and the second to Ri−1 in such a way that the set Spared(Li, Ri) \
Spared(Li−1, Ri−1) is inclusion maximal among the two possible choices. Creating (L,R) can be
divided into three phases. During the first phase, none of the lists contains hit blocks. For the
second phase only one list has blocks, and in the third phase both lists have hit blocks.

1. As long as the components C1, . . . , Ci−1 do not contain any hit block, we add O1(Ci) to L
and O2(Ci) to R. Clearly, this decision spares the same set of blocks as the other, thus we
have maximality. This stage stops when we encounter Ci with a hit block. Then we fix the
MinHitSide to point the side containing the first encountered hit block, w.l.o.g. assume that
“L” is the side and OL is the block. If “R” does not contain a hit block then we pass to the
step 2, which lasts as long as only “L”contains hit blocks. If “R” contains a hit block mark
OR and pass to the step 3, when both lists contain hit blocks.

2. Recall that at this stage only the left list contains hit blocks. For each Ci we add O1(Ci) to
R if and only if its minimum element Oi is sparable. If Oi is sparable, our choice ensures that
Oi ∈ Spared(Li, Ri), while the other choice would imply Oi .∈ Spared(Li, Ri). If Oi is not
sparable, by our choice we spare the minimum element O′

i in the opposite color class of Ci

(if the latter is sparable). If O′
i is not sparable, either choices would imply Spared(Li, Ri) =

Spared(Li−1, Ri−1). We have maximality again. This stage stops when we put a hit block in
“R” and pass to the step 3.

3. We just add O1(Ci) to L and O2(Ci) to R. Whatever the decision is, no more blocks can be
spared in this step.

So at each step the algorithm chooses an inclusion maximal augmentation of the set of spared
blocks. Now let (L,R) be the nice pair obtained by the algorithm. Suppose there is (L′, R′)
with Spared(L,R) ⊂ Spared(L′, R′). (L′, R′) can not be obtained from (L,R) by permutation of
elements without changing the sides. As in the proof of Theorem 6.4.2, permutations of elements
equivalent w.r.t. the refined pre-order does not increase the set Spared. For the sake of simplicity
of reasoning but w.l.o.g., we can assume that there are no components equivalent for ≤, thus the
topological ordering of components is unique.

Take (L′, R′) to be one sharing with (L,R) the longest prefix of the binary representation among
the ordered partitions having the properties described above. Let C be the first, in topological order,
component partitioned in (L′, R′) in another way than in (L,R). We can assume that C is also
the fist component that contains more spared blocks in (L′, R′) than in (L,R) - otherwise we could
partition this and all bigger components the other way obtaining (L′′, R′′) with Spared(L′′, R′′) =
Spared(L′, R′) and sharing longer prefix with (L,R). That means that for C the algorithm did
not choose the twist adding an inclusion maximal set of blocks to the set of spared ones. A
contradiction.

6.5 Putting everything together

Knowing a nice ordered partition OP , we need to process recursively the external blocks OL, OR

of OP that have private neighbors of x. By Theorem 6.3.8, we need to find clique paths of the
corresponding graphs G[OL], G[OR] that minimize the set of cliques between KL and KR over the

70

refinements of OP . We prove that this problem is equivalent to finding nice ordered partitions for
the corresponding auxiliary graphs.

Recall that, analyzing G+[O], we consider the dummy vertex d to be adjacent to x.So we analyze
the graph G∗[O] obtained from G′[O] by adding the dummy vertex d; d is made adjacent to every
element of S(O) and to the vertex x. Moreover, by Lemma 5.1.13, every clique path of G+[O] is of
the form P −−({d} ∪ S′).

The following lemma describes the way we use the auxiliary graph G+[O] to find a clique path
PG[O] of G[O] that satisfies the corresponding condition of Theorem 6.3.8.

Lemma 6.5.1. Let G′ be a non-interval graph such that G = G′ − x, for a fixed x ∈ V , is an
interval graph, and the neighborhood of x is not a clique. Let S ∈ Sx.

Let O be a block associated to S, S′ = S ∩ O. The set of maximal cliques strictly after KL of
PG[O] is inclusion minimal among all clique paths of G[O] such that the rightmost clique in PG[O]

contains S′ iff P
G+[O], where P

G+[O] = PG[O] − −({d} ∪ S′), is a nice clique path of G+[O], with

respect to G∗[O].

Proof. This is a straightforward consequence of Lemma 5.1.13 and Theorem 6.2.7.

At some level of recursion, it may happen that S = S(O) is the only separator in Sx of the
auxiliary graph G+[O]. In this situation, we cannot again choose S to be used in the partitioning
algorithm. But the following lemma shows that this situation can be handled in a similar way.

Lemma 6.5.2. Let G′ be a non-interval graph such that G = G′ − x, for a fixed x ∈ V , is an
interval graph, and the neighborhood of x is not a clique. Let S ∈ Sx and let O be a block associated
to S such that S is the only separator in Sx present in G∗[O] (the neighborhood of x in O is a
clique).

Let B be the union of maximal cliques of G[O] that contain NG′(x) ∩O. Consider the minimal
separators of G contained in O that contain S and have an associated full component contained in
V \O. Pick T to be inclusion maximal among them. Let OB be the element of O(T), the partition
of maximal cliques of G+[O] into blocks associated to T , which contains B. Let Od be the element
of O(T) that contains d. Any ordered partition based on O(T) with inclusion minimal set of blocks
strictly between OB and Od is nice. Moreover, any refinement of such an ordered partition is a nice
clique path of G+[O].

Proof. S is the only minimal u, v-separator for some u, v in the neighborhood of x in G∗[O], so
S is contained in every maximal clique in B. Moreover, no other clique of G contains the whole
NG′(x), so the cliques contained in B are consecutive in every clique path of G (and the same holds
for G+[O]). Take any clique path PG+[O] of G

+[O], where w.l.o.g. Kd = {d} ∪ S is the rightmost

clique (see Lemma 5.1.13). The rightmost edge of PG+[O] incident to a clique in B corresponds to

a minimal separator of G+[O] contained in B, which contains NG′(x) - so T is well defined.
Consider the blocks O(T) associated to T in G+[O]. The maximal clique Kd constitutes a

block, let us call it Od, since S ⊆ T . The block associated to T that contains maximal cliques in B
is unique, let us denote it OB . Indeed, the cliques in B all contain NG′(x) which is not contained
in any maximal clique out of B and thus, by Lemma 2.2.20, NG′(x) .⊆ T . Like in the argument
on the clique paths of G+[O] above, we may assume w.l.o.g. that Od is the rightmost block in
any ordered partition OP of G+[O] based on T . So Od is the rightmost block (OR) of OP which

71

contains private neighbors of x. Moreover, OB is the leftmost such block, since there are no other
blocks containing private neighbors of x.

Let us take OP to be any such ordered partition which minimizes the set of blocks strictly
between OL and OR. Let PG+[O] be a refinement of OP . Clearly, the subpath PR

G+[O] of PG+[O]
induced by cliques in OR yields an inclusion minimal set of bags beforeKR among all clique paths of
G[OR] extendable to a refinement of OP , since OR consists of a single clique. Let us show that the
same holds for PL

G+[O], which together with the minimality of the set of blocks in O(T) contained

entirely between KL and KR in PG+[O] yields that PG+[O] is nice (see the proof of Theorem 6.3.8).
Notice that Theorem 6.3.8 cannot be used here directly, since T .∈ Sx.

If the blocks on both sides of OB contain T , then OB = B. Otherwise, there would be a maximal
clique K ′ of G+[O] containing T , contained in OB but not in B, adjacent in PG+[O] to a clique in

B. This would imply the existence of the minimal separator K ′ ∩ B strictly containing T , which
contradicts the choice of T . And OB = B implies that all bags of OL contain the same neighbors
of G and thus, KL is the rightmost clique in the subpath of PG+[O] induced by cliques in OL. So
the set of cliques strictly after KL is inclusion minimal.

Now consider the case where only at one side of OB there is a block that contains T , let it
be OT . By argument used above, there is no maximal clique contained in OB but not in B that
contains T . So the endpoint clique of the subpath PL

G+[O] of PG+[O] induced by cliques in OB is
in B. KL is the rightmost bag contained in B. Since the cliques of B are consecutive in every
clique path of G+[O], the positions relative to KL in PL

G+[O] are determined by the placement of
OT : either all bags contained in OB but not in B are after or all are before KL. Since all feasible
permutations of bags in OB yield the same set of bags strictly after KL, it is always minimal. The
conclusion follows.

All the discussion on nice ordered partitions can be summarized with the following theorem,
which is a direct consequence of presented claims.

Theorem 6.5.3. Let G′ be a non-interval graph such that G = G′ − x, for a fixed x ∈ V , is an
interval graph, and the neighborhood of x is not a clique. Let S ∈ Sx.

Any clique path of G which is a refinement of an ordered partition OP ′ obtained from a nice
ordered partition OP based on O(S), by recursively computing nice ordered partitions of G+[OL]
and G+[OR] based on a minimal separator in Sx \ {NG(OL)} (resp. Sx \ {NG(OR)}), where OL

(resp. OR) is the block corresponding to OL (resp. OR) of OP , until the neighborhood of x in OL

(resp. OR) is a clique and we use Lemma 6.5.2 to solve this base step of the recursion, is a nice
clique path of G.

6.5.1 Algorithm MinimalIntervalCompletion

Given an interval graph G = (V,E) and a vertex x outside of G, we run the following procedure
with (G,x,NG′(x)) as input. A minimal interval completion of G′ is obtained as H ′ = (V ′, E′) with
V ′ = V ∪ {x} and E′ = E ∪ {{x, y} | y ∈ IntervalCompletion(G,x,NG′(x))}.

We choose a separator S ∈ Sx and then call the algorithm NicePair to obtain the nice pair
(L,R). In order to compute a minimal interval completion of G′, according to Theorem 6.5.3
it remains to compute, by recursive calls, minimal interval completions of G′

d[O ∪ {x}] for each
O ∈ {OL, OR}.

procedure MinIntervalCompletion

72

input: G, x, N - the neighborhood of x in G′, d - dummy vertex
output: modified N - the neighborhood of x in an interval completion of G′

if G′ is an interval graph then

return ∅

Compute Sx.
if N(d) is not the only minimal separator in Sx then

S := a minimal separator in Sx

N := N ∪ S
else

S := a minimal separator chosen like in Lemma 6.5.2
endif

Compute the blocks O(S)
foreach O ∈ O(S) do// compute minimal interval completions of auxiliary graphs

let Gd[O] := G[O] plus a dummy vertex d adjacent to O ∩ S
N := N ∪MinIntervalCompletion(Gd[O], x,N ∩O ∪ {d},d) \ {d}

forall O in O(S) compute priority(O) // based on the completion computed above

Compute the graph (O(S),≤) and a topological order ≤top

(L,R)← NicePair((O(S),≤,≤top))
forall O in L above OL do N := N ∪O
forall O in R above OR do N := N ∪O
return N

Theorem 6.5.4. Algorithm MinIntervalCompletion computes a minimal interval completion
of G′ in O(n2 log n) time.

Proof. We show that one call of the procedure costs O(n′ + m′) time, where n′,m′ denote the
number of vertices and the number of edges of the processed subgraph. As the number of edges in
a completion may grow up to n2, one level of recursion takes in total O(n2) time. The information
on sparability is taken from lower levels of recursion, based on the information if x is a universal
vertex in the interval graph computed at the bottom level. In every call, the separators used for
subsequent calls are chosen in Sx such that they partition Sx in two subsets of roughly half the
size. In this way we ensure at most log n recursion levels.

Theorem 6.5.5. There is an algorithm computing a minimal interval completion of an arbitrary
graph in O(n3 log n) time.

Proof. Let {x1, . . . , xn} be an arbitrary ordering of the vertices of G. We compute incrementally
a minimal interval completion Hi of Gi = G[{x1, . . . , xi}], respecting Hi−1. For this purpose we
use Corollary 6.2.5 if the neighborhood of xi in Gi−1 induces a clique in Hi−1 and Theorem 6.5.4
otherwise.

6.6 Conclusions

We gave in this chapter a O(n3 log n) time algorithm computing a minimal interval completion of
an arbitrary input graph. It is an incremental algorithm, that can work on any ordering (v1, . . . , vn)

73

of V (G). At step i, it computes a minimal interval completion Hi of Gi = G[{v1, . . . , vi}], from
a minimal interval completion Hi−1 of Gi−1, by only adding fill edges incident to the new vertex
vi. This feature makes the algorithm particularly interesting in dynamic applications, where the
considered graph is constructed incrementally, adding vertices one-by-one, and the graph computed
so far should not be modified. Within this framework, a little modification of algorithm permits
to obtain minimum interval completions or interval completions of minimum clique number. That
is to say, given a graph G′ (an interval graph G augmented with a vertex x adjacent to a subset
of V (G)), the algorithm can compute solutions to the following two problems. First: compute a
minimum cardinality set F of fill edges incident to x, such that adding F to G′ yields an interval
graph. The other: compute a set of fill edges F incident to x, such that adding F to G′ yields
an interval graph of minimum clique number, over such interval completions of G′. Thus, our
algorithm can solve a kind of on-line versions of profile and pathwidth problems.

We have found that the ordering of vertices used in the algorithm has great impact on the
quality of the completion (off-line version). However, we do not know how to control this feature.
In other words, we do not have any characterizations of orderings which yield completions of small
pathwidth or small profile. This is one of the directions to explore.

Another direction of prospective research is the pre-order and its relation with path decom-
positions. As we mentioned earlier, there is a greedy algorithm that uses minimal separators to
partition a graph in order to compute a tree decomposition of small width. It seems that the
pre-order captures what is needed for an analogous algorithm computing path decompositions of
small width. It would be interesting to try creating approximation algorithms for pathwidth on
particular graph classes based on the pre-order decomposition.

74

Chapter 7

Pathwidth of Circular-Arc Graphs

Contents

7.1 Folding . 75

7.2 Circular-arc graphs . 77

7.3 Folding circular-arc graphs . 78

7.4 The algorithm . 83

7.5 Conclusions . 86

The pathwidth of a graph G is the minimum clique number of H minus one, over all interval
super-graphs H of G. Although pathwidth is a well-known and well-studied graph parameter, there
are only very few graph classes for which this parameter is polynomial time tractable. Polynomial
algorithms computing pathwidth exist for the class of trees [41], and more generally, for the class
of graphs of bounded treewidth [18]. There are also results for graph classes, for which pathwidth
is equal to treewidth, e.g. permutation graphs [19]. Actually, all the computational results on
pathwidth were based on treewidth. We give in this chapter the first polynomial time algorithm
computing pathwidth of circular-arc graphs. Pathwidth of these graphs can be easily approximated
within a factor of 2. Nevertheless, for circular-arc graphs, pathwidth is not equal to treewidth, and
clearly this class is not of bounded treewidth. Therefore we could not use any of the techniques for
computing pathwidth known before. Our algorithm is based on a study of interval completions of
circular-arc graphs. We characterize a subclass of these interval completions, containing optimal
solutions to the pathwidth problem. Based on this combinatorial result, we give an O(n2) algorithm
computing the pathwidth of circular-arc graphs.

7.1 Folding

The folding is a new tool that proved very useful for general, polynomial time checkable char-
acterization of minimal interval completion (presented in Chapter 8) and for understanding the
pathwidth problem on circular-arc graphs. We present the application to pathwidth of circular-arc
graphs first, in order to gently introduce the reader to the folding, which is intensively used later,
in Chapter 8.

Given a path decomposition P of G, let Fill(G,P) be the graph obtained by adding edges to G
so that each bag of P becomes a clique. It is straight forward to verify that Fill(G,P) is an interval

75

super-graph of G, for every path decomposition P . Moreover P is a clique path decomposition of
Fill(G,P).

Recall that an edge clique cover X of a graph G is a set of (not necessarily maximal) cliques of
G, such that each edge of G is contained in at least one of the cliques in X .

Definition 7.1.1 (see also [72]). Let X be an edge clique cover of an arbitrary graph G and
let Q = (Q1, ..., Qk) be a permutation of X . We say that (G,Q) is a folding of G by Q. To
every folding (G,Q) we associate, by Algorithm FillFolding of Figure 7.1, the completion H =
FillFolding(G,Q) defined by the folding (G,Q).

The algorithm FillFolding takes as input an arbitrary graphG and a sequenceQ = (Q1, ..., Qk)
of subsets of V (G). The algorithm modifies Q, adding vertices to some bags in Q in order for the
set of bags containing x to be contiguous. For each vertex x of G the leftmost bag Ql and the
rightmost bag Qr in Q containing x are computed, and x is added to every bag in the interval
[Ql : Qr]. Finally, with the operator Fill, these new bags are turned into cliques by adding the
necessary fill edges. The resulting completion is denoted H = FillFolding(G,Q).

Algorithm FillFolding

Input: Graph G = (V,E) and Q = (Q1, ..., Qk), a sequence of subsets of V ;
Output: A super-graph H of G;

P = Q;
for each vertex v of G do

s = min{i | x ∈ Qi};
t = max{i | x ∈ Qi};
for j = s+ 1 to t− 1 do

Pj = Pj ∪ {v};
end-for

H = Fill(G,P);

Figure 7.1: The FillFolding algorithm.

Lemma 7.1.2. Given a folding (G,Q) of G, the graph H = FillFolding(G,Q) is an interval
completion of G.

Proof. Observe that after the for loops, P is a path decomposition of H, since every edge is
contained in some bag, and for every vertex the bags containing it induce a subpath of P . Hence,
since H = Fill(G,P), it is an interval completion of G.

The graph defined by a folding is not necessarily a minimal interval completion of G. Never-
theless, we prove in Theorem 7.1.3 that every minimal interval completion of G is defined by some
folding.

Theorem 7.1.3. Let H be a minimal interval completion of a graph G with an edge clique
cover X . Then there exists a folding (G,Q), where Q is a permutation of X , such that H =
FillFolding(G,Q).

Proof. Let X = {Xi | 1 ≤ i ≤ p} and K = {Ωi | 1 ≤ i ≤ k} denote an enumeration of X and the
set of maximal cliques of H, respectively. Let P = (Ω1, . . . ,Ωk) be a clique-path of H. It defines a
linear order on the set K. Let us use it to construct a linear order on X .

76

In a natural way, P defines a linear pre-order on X by

Xa ≤ Xb if ∃i, j such that Xa ⊆ Ωi,Xb ⊆ Ωj, where 1 ≤ i ≤ j ≤ k, 1 ≤ a, b ≤ p,

where for a clique Xi that is contained in several maximal cliques of H, consider just the first
occurrence. Transform it into a linear order (sequence) Q by fixing any permutation inside the
equivalence classes.

Let us define H ′ = FillFolding(G,Q), and prove that H ′ = H. By Lemma 7.1.2, H ′ is an
interval completion of G. Moreover, E(H ′) ⊆ E(H), since xy ∈ E(H ′) only if the interval between
the first and the last element in Q that contains x intersects the one corresponding to y. In this
case, the corresponding intervals in P intersect as well, so there is xy ∈ E(H). By minimality of
H, there is H = H ′.

It is well-known (see also Definition 2.3.2) that the pathwidth of G is the minimum, over all
interval completions H of G, of the clique number of H minus one. Clearly, we can restrict to
minimal interval completions. Theorem 7.1.3 tells us that the optimal interval completion for the
pathwidth problem is defined by some folding of the graph.

7.2 Circular-arc graphs

Recall that G is a circular-arc graph if it is the intersection graph of a family of arcs on a cycle.
Also, by Lemma 2.2.10, a circular-arc graph G has a clique cycle representation (X , C).

S3

S2S1

Figure 7.2: Circular-arc graph.

Definition 7.2.1. Given a clique cycle (X , C) of a circular-arc graph, each edge of (X , C) repre-
sents the intersection of the incident cliques, and is called a semi-separator of G.

In Figure 7.2, there is a clique cycle of a sample circular-arc graph G. Arcs representing the
vertices join the corresponding bags on the cycle. Two semi-separators S, T are indicated. Notice
that the union S3∪S2 forms a minimal separator of G. But it is not always the case. For example,
S2 ∪ S3 is not a minimal separator.

As we will see later, semi-separators are very useful in the analysis of folding. Another notion
that we need to introduce for this purpose is the restriction of a clique cycle to a subset of cliques.

77

Definition 7.2.2. Let G be a circular-arc graph with a clique cycle (X , C) and let A be a set of
bags on the cycle, a subset of X . The restriction of the clique cycle (X , C) to the set of cliques in
X ′ = X \ A is obtained by removing each X ∈ A from the model, and making former neighbors of
X adjacent. The vertices that no longer belong to any clique disappear from the model.

Clearly, (X ′, C ′) - the restriction of (X , C) to X ′ is again a clique cycle of some circular-arc
subgraph of G. In Figure 7.3 we give an example of this operation. The set of cliques X has been
restricted to a subset X ′.

Figure 7.3: Restriction of the clique cycle.

7.3 Folding circular-arc graphs

Let (X , C) be the clique cycle of the circular-arc graph G = (V,E). Consider a permutation Q
of the set of bags X . In the case of the circular-arc graphs, we study the permutation Q with
respect to the circular ordering of the cliques on the cycle of the decomposition. Therefore it is
more convenient to think of a folding as a triple (X , C,Q).

Remark 7.3.1. Let (X , C,Q) be a folding of the circular-arc graph G. Consider the clique path
decomposition P produced by the algorithm FillFolding(G,Q). Observe that each bag of P is the
union of the clique Q ∈ Q which corresponds to the bag at the initialization step, and some semi-
separators of type Q′ ∩Q′′, where Q′, Q′′ are two cliques consecutive on the cycle, but separated by
Q in Q. We say that the clique Q and the semi-separators have been merged by the folding.

In the upper part of Figure 7.4, there is a sample circular-arc graph G represented by a clique
cycle. The lower part presents the clique path of H = FillFolding(G,Q), produced by the
algorithm FillFolding on the sequence Q = (Q1, . . . , Q5). Each clique Q′

i of H is the union of Qi

and the corresponding semi-separator Si - except for the first and the last clique in Q, which stay
unchanged.

A folding (X , C,Q) naturally defines an upper part and a lower part of the cycle (X , C).
Let QL, QR be the leftmost and rightmost element of the permutation Q. Let X down (X down)
denote the cliques counterclockwise (clockwise) between QL and QR on the cycle. Let Qdown =
(QL = Ql1 , Ql2 , . . . , Qlr = QR) denote the restriction of Q to X down. Similarly let Qup = (QL =
Qu1

, Qu2
, . . . , Qut = QR) denote the restriction of Q to X up.

Definition 7.3.2. Given a clique cycle decomposition (X , C) of G and a permutation Q of X , we
say that a clique X ∈ X is a pivot of the folding (X , C,Q) if its neighbors on the cycle appear on

78

Q1

Q2

Q3

Q4

Q5

Q′

1 Q′

2 Q′

3 Q′

4 Q′

5

S2 S4

S3

Figure 7.4: FillFolding.

the same side of X in Q. We extend this definition to any subset X ′ of X : X ∈ X ′ is a pivot w.r.t.
X ′ if XL,XR ∈ X ′, its closest neighbors on the cycle among the elements of X ′, are on the same
side of X in Q.

Clearly, any folding (X , C,Q) has at least two pivots, namely the first and the last element of
the permutation Q.

Definition 7.3.3. Let (X , C) be a clique cycle decomposition of G = (V,E). A permutation Q
of a subset X ′ ⊆ X , is k-monotone if it contains exactly k pivots. The monotonicity of Q is the
minimum k such that Q is k-monotone. The monotonicity of a folding (X , C,Q) is the monotonicity
of Q.

The main combinatorial result of the chapter consists in proving that there exists a 2-monotone
folding (X , C,Q) such that H = FillFolding(G,Q) is an interval completion of G satisfying
pwd(H) = pwd(G). Therefore, the optimum interval completion for the pathwidth problem can be
found among the completions defined by 2-monotone foldings. In a two-monotone folding, the only
pivots are the first and last element of Q. Moreover, Qup (Qdown) is clockwise (counterclockwise)
consecutive on the cycle (X , C).

The following lemma is straightforward (see also Remark 7.3.1).

Lemma 7.3.4. Let (X , C,Q) be a 2-monotone folding and let P be the clique path decomposition
produced by FillFolding(G,Q). Every bag of P is the union of a clique Q ∈ Q and of a unique
semi-separator corresponding to the edge {Q′, Q′′} of the cycle, such that Q separates Q′ and Q′′ in
the permutation Q.

We aim towards proving that there always exists a 2-monotone folding of G that defines an
interval completion of pathwidth equal the pathwidth of G. But first, we need to show that every 4-
monotone folding can be transformed into a 2-monotone folding without augmenting the pathwidth
of the corresponding completion. For this purpose, we define the anomaly of a 4-monotone folding,
corresponding to the part that has to be rearranged in order to obtain a 2-monotone folding.

Definition 7.3.5. Let (X , C) be a clique cycle decomposition of G = (V,E) and let (X , C,Q) be
a 4-monotone folding. Let QL, QR be the end cliques (pivots) of Q. Let B1, P be the other pivots,

79

S1 S2

S2S1

S1 S2

Y

Y

AII

A

AI

B1

Y

B1

B1

B2

B2

B2

Figure 7.5: Reduction of A (top) to A′ : one way (middle) or the other (bottom).

ordered as in Q. Assume w.l.o.g. that B1, P belong to Qup. The consecutive part of the cycle that
appears counterclockwise, starting right after B1, passing through P , continuing as long as it stays
after B1 in Q is called the anomaly (see the top part of Figure 7.5).

Notice that for a 4-monotone folding Q, the restriction of Q to X \ A is 2-monotone.
One of our main tools (Theorem 7.3.7) shows that if (X , C,Q) is a 4-monotone folding which

defines H = FillFolding(G,Q), then there exists a 2-monotone folding (X , C,Q′) defining an
interval graph H ′ = FillFolding(G,Q′) of pathwidth smaller or equal the pathwidth of H. Here
is an informal sketch of the main idea. Consider an anomaly A of the 4-monotone folding (X , C,Q).
Suppose that the anomaly is in the upper part of the cycle, as on Figure 7.5.

Recall that when we restrict (X , C) to the cliques that are not in the anomaly (just remove
every X ∈ A, making the former neighbors of X adjacent), then we obtain a clique cycle of
G = G[

⋃

(X \A)], an induced subgraph of G. Moreover, we obtain (X , C,Q), a folding of G, where
Q is the restriction of sequence Q to the cliques not in the anomaly X = X \ A. It defines an
interval completion H = FillFolding(G,Q).

Definition 7.3.6. Let (X , C) be a clique cycle decomposition of G = (V,E) and let (X , C,Q) be
a 4-monotone folding with the anomaly A. The A-width of (X , C,Q) is the pathwidth of H =
FillFolding(G,Q), where G is the circular-arc graph defined by the clique cycle (X , C) restricted
to X = X \ A and Q is the sequence Q restricted to X .

One step of the procedure is to slightly modify the folding (X , C,Q) to obtain (X , C,Q′) with
a strictly smaller anomaly A′, ensuring that the A′-width of (X , C,Q′) is not bigger than the
pathwidth of H. Continue until the anomaly is empty. Eventually, this yields a folding (X , C,Q′′)
which is 2-monotone. Its anomaly A′′ being empty, the A′′-width of this folding is equal to the
pathwidth of H ′′ = FillFolding(G,Q′′), and it is not bigger than the pathwidth of H.

80

Let us give in more detail the construction of (X , C,Q′) based on (X , C,Q). Consider the pivots
of (X , C,Q) that are not end-cliques of Q. Let P be the one that belongs to the anomaly A, and
let B1 be the other one. Let Bk+1 be the neighbor of B1 on the cycle that belongs to the anomaly.
Let B2, . . . , Bk be the cliques, which do not belong to the anomaly, that follow B1 clockwise on the
cycle and appear before Bk+1 in Q. Let S1, . . . , Sk+1 be the semi-separators on the lower part of
the cycle, such that Si is merged with the corresponding Bi in FillFolding(G,Q). In this setting,
we choose a semi-separator Sl and permute Q in order to put all Bk+1, B1, . . . , Bl−1 (in this order)
between Q and Q′, where Q,Q′ are the consecutive cliques in the lower part of the cycle such that
Sl = Q ∩Q′. We choose Sl such that the new folding (X , C,Q′) has the desired property. We say
that in such a situation we put Bk+1, B1, . . . , Bl−1 on the semi-separator Sl. This construction is
illustrated in Figure 7.5. Informally, the bags Bk+1, B1, . . . , Bl−1 slide (without jumping) along the
cycle, in the clockwise sense, and they stop above the edge of the cycle corresponding to Sl.

S4

S4 S5

S2 S5

S2S1

T2

T2

T1

T1

S1

S3

S3

Figure 7.6: From 4-monotone to 2-monotone foldings.

Theorem 7.3.7. Let (X , C) be a clique cycle decomposition of G = (V,E). Let (X , C,Q) be a 4-
monotone folding and H = FillFolding(G,Q). Then there is a 2-monotone folding (X , C,Q′) such
that the pathwidth of H ′ = FillFolding(G,Q′) is not bigger than the pathwidth of H. Moreover,
we can assume that (X , C,Q′) is such that X ′up = X up and X ′down = X down.

Proof. Let (X , C,Q′) be a ≤ 4-monotone folding with the anomaly A′, such that X ′up = X up and
X ′down = X down, which satisfies the following Properties:

1. A′ ⊆ A;

2. for any clique Q of A′, the semi-separator S of the lower part of the cycle that is merged to
Q in H ′ is the same as in H;

3. the A′-width of (X , CQ′) is not bigger than the pathwidth of H,

4. the anomaly A′ is inclusion minimal among all such foldings.

Let us show that A′ is in fact empty, thus the pathwidth of H ′ is not bigger than the pathwidth of
H. Suppose A′ is not empty.

81

We use the notations introduced in the informal description above. Let us use Y and SY as
shorthands for Bk+1 and Sk+1. By Property 2 and Remark 7.3.1, we have:

|Y ∪ SY | ≤ pwd(H) + 1. (7.1)

The semi-separators Si, 1 ≤ i ≤ k + 1, can be partitioned as follows:

Si = N j
i ∪Bj

i ∪ Y j
i ∪ Iji , for any 1 ≤ j ≤ k , where

N j
i = Si \ (Bj ∪ Y), Bj

i = Si ∩Bj \ Y, Y
j
i = Si ∩ Y \Bj , I

j
i = Si ∩Bj ∩ Y.

(7.2)

Claim 8. For any 1 ≤ i ≤ k, 1 ≤ p ≤ q ≤ k + 1, one of the following holds:

|Bi ∪ Sp| ≥ |Bi ∪ Sq| or |Y ∪ Sq| ≥ |Y ∪ Sp| (7.3)

Proof. Suppose it is not true. By Equation 7.2, we have:

|Bi ∪N i
p ∪ Y i

p | < |Bi ∪N i
q ∪ Y i

q | and |Y ∪N i
q ∪Bi

q| < |Y ∪N i
p ∪Bi

p|,

which yields a contradiction: |N i
p| < |N i

q| and |N i
q| < |N i

p|, since for any j, p, q, 1 ≤ j ≤ k,

1 ≤ p ≤ q ≤ k + 1 there is Y j
q ⊆ Y j

p and Bj
p ⊆ Bj

q , by properties of the clique cycle.

Claim 9. Let l be the biggest integer such that |Y ∪ SY | < |Y ∪ Si|, for 1 ≤ i ≤ l − 1. Then

|Y ∪ SY | ≥ |Y ∪ Sl|, (7.4)

|Bi ∪ Si| ≥ |Bi ∪ Sl|, for any 1 ≤ i ≤ l, (7.5)

Proof. The first equation is clear from the construction. Since |Y ∪ Sl| ≤ |Y ∪ SY | and |Y ∪ SY | <
|Y ∪Si|, for any 1 ≤ i ≤ l− 1, there is |Y ∪Sl| < |Y ∪ Si|, for any 1 ≤ i ≤ l− 1. Now, by Equation
7.3, for any 1 ≤ i ≤ l − 1, we get |Bi ∪ Si| ≥ |Bi ∪ Sl|, for any 1 ≤ i ≤ l − 1.

Therefore, by putting Y and all Bi, for 1 ≤ i ≤ l− 1, on Sl, we create a new folding (X , C,Q′′)
with a strictly smaller anomaly A′′. Indeed, there is Y ∈ A′ \A′′. Notice there may be other cliques
in A′ \ A′′ as well.

Let us check that the A′′-width of the folding (X , C,Q′′) is at most pwd(H). For each clique
X of Q′′ \ A′′, let SX be the (unique) semi-separator of the lower part of the cycle to which X is
merged in FillFolding(G,Q′′). The A′′-width of (X , C,Q′′) is the maximum, over all cliques X,
of |X ∪SX |−1. We check that |X ∪SX |−1 is at most the pwd(H), for every clique X. If X is also
in Q′ \A′, this quantity is upper bounded by the A′-width of (X , C,Q′) and the conclusion follows
by Property 3. If X = Y , then SX = Sl and the conclusion follows from Equations 7.4 and 7.1. If
X is one of the Bi’s, 1 ≤ i ≤ l−1, again SX = Sl and the conclusion follows from Equation 7.5 and
Property 3. Finally, if X is one of the cliques of A′ \ A′′, different from Y , the conclusion follows
from Property 2.

The new folding (X , C,Q′′) also respects Property 2, since in the permutation Q′′ the cliques
of A′′ have the same position w.r.t. the lower part of the cycle as before.

The construction of Q′′ contradicts Property 4 of Q′. So A′ must be empty.

82

Now that we have transformed a 4-monotone folding into a 2-monotone one, we use an inductive
argument to prove that any folding can be transformed into a 2-monotone one without increasing
the pathwidth of the corresponding completion.

Theorem 7.3.8. Let (X , C) be a clique cycle decomposition of G = (V,E). There is a folding
(X , C,Q), with Q being a permutation of X , such that Q is 2-monotone
and H = FillFolding(G,Q) is an interval completion of G of pathwidth equal the pathwidth of G.

Proof. Let (X , C,Q) be a folding of minimum monotonicity such that the pathwidth of H =
FillFolding(G,Q) is not bigger that the pathwidth of G. We will prove that it is 2-monotone.

Suppose it is not. Assume w.l.o.g. that X up contains some pivots other than QL, QR. Let B1

be the leftmost pivot in Qup. Let P be the rightmost in Qup among the pivots which are between
QL and B1 clockwise on the cycle (X , C). Let Qup

L denote the subsequence of Qup induced by
cliques clockwise between QL and P (included) on the cycle. Let Qup

C denote the subsequence of
Qup induced by cliques between P and B1 (included), and Qup

R denote the subsequence of Qup

induced by cliques between B1 and QR (included). Let Gup
L be the graph defined by the folding

Qup
L , restricted to the corresponding set of bags: Gup

L = FillFolding(G[
⋃

Qup
L],Qup

L). We denote
by P up

L the clique path decomposition produced by the folding algorithm. Similarly, we define Gup
C ,

Gup
R and Gdown, with the corresponding clique path decompositions. Let G̃ be the union of these

four graphs. Note that G̃ is a circular-arc graph. A clique cycle decomposition (X̃ , C̃) of G̃ is
obtained by gluing into a cycle the paths P up

L , the reverse of P up
C , P up

R , and to the reverse of P down.
The gluing is performed by identifying the bags P , then B1, QR and finally QL.

Moreover, this procedure yields a folding (X̃ , C̃, Q̃) of G̃. The bags of X̃ are in one-to-one
correspondence to the bags of X , so the permutation Q of X is translated into a permutation Q̃
of X̃ . Notice that (X̃ , C̃, Q̃) is a 4-monotone folding, since QL, B1, P,QR are the only pivots left.
Also FillFolding(G̃, Q̃) = H = FillFolding(G,Q).

By Theorem 7.3.7 on (X̃ , C̃, Q̃) there is a 2-folding (X̃ , C̃, Q̃′) such that the pathwidth of H ′ =
FillFolding(G̃, Q̃′) is not bigger than the pathwidth of H, thus not bigger than the pathwidth of
G.

Since Q̃′ is 2-monotone and X̃ ′up = X̃ up, the only pivots of Q̃′ are QL and QR. Notice that
there is : Q̃′up equals P up

L glued to the reverse of P up
C glued to P up

R , and Q̃′down equals P down.
Because of the one-to-one correspondence between the elements of X and X̃ , we construct the

folding (X , C,Q′) directly from (X̃ , C̃, Q̃′), by just replacing the elements of X̃ with the correspond-
ing elements of X . Clearly, B1 and P are not pivots of Q′, whereas all the other pivots of Q′ are
also pivots of Q. Moreover, it is easy to verify that FillFolding(G,Q′) = FillFolding(G̃, Q̃′).
Therefore, (X , C,Q′) is a folding of strictly smaller monotonicity than (X , C,Q′), which also defines
a completion of pathwidth not bigger that the pathwidth of G. A contradiction.

7.4 The algorithm

Based on Theorem 7.3.8, the algorithm for computing the pathwidth of circular-arc graphs is very
similar to the algorithm computing the minimum fill-in for the same class of graphs [86].

Consider a clique cycle CCG,M = (X , C) of the input graph G. Subdivide each edge of the
cycle by adding a new bag containing the semi-separator corresponding to the edge. We obtain
a clique-semi-separator cycle alternating original clique bags and semi-separator bags. We should

83

Figure 7.7: Planar triangulation corresponding to a 2-folding.

also see this cycle as a (regular) polygon of scanpoints PG, following the terminology of [86]; the
scanpoints are the clique and semi-separator bags of the cycle. Therefore we associate to each
scanpoint s the set of vertices V (s), corresponding to the clique or semi-separator represented by
the scanpoint. For each triangle T formed by three scanpoints s1, s2, s3 , define the width w(T) of
the triangle as the cardinality of the union V (s1) ∪ V (s2) ∪ V (s3).

Definition 7.4.1. A linear (planar) triangulation LP of the polygon of scanpoints PG is a planar
triangulation such that every triangle contains at most two diagonals. The width w(LT) of the
linear triangulation is the maximum width of its faces (triangles).

In Figure 7.7, there is an example of a 2-folding. The cliques on the clique-semi-separator cycle
are marked with circles and the semi-separators are the rectangles. The linear planar triangulation
corresponding to this folding is drown with dashed lines.

First, we show that the pathwidth of G equals the minimum width of a linear planar triangu-
lation, minus one. Eventually we give an algorithm computing a linear triangulation of minimum
width.

Lemma 7.4.2. Let LT be a linear planar triangulation of the polygon of scanpoints PG. There is
a path decomposition of G, of width w(LT)− 1.

Proof. Consider a graph whose vertex set is the set of triangles of LT , and such that two vertices
are adjacent if and only if the corresponding triangles share a diagonal. This graph is called the
inner dual of LT . Since LT is a linear triangulation, the maximum degree of the inner dual is 2.
Clearly this graph is connected and contains no cycle, so it is a path P . The path decomposition of
G is constructed using the path P . For each node T of P , let s1, s2, s3 be the three corresponding
scanpoints. The bag associated to T is V (s1) ∪ V (s2) ∪ V (s3). It remains to show that P and
its bags form indeed a path decomposition of G. By contradiction, suppose that a vertex x of G
appears in the bags corresponding to some nodes T , T ′ of P but not in the bag of T ′′, on the
T, T ′-subpath of P . Let D be an edge of T ′′, corresponding to a diagonal of PG. Since x is in the
bags T and T ′, the circular arc corresponding to x intersects both sides of the cycle, with respect
to the diagonal D. Hence at least one end-point of the diagonal D is on the circular-arc x – a
contradiction. Clearly, the width of this path decomposition is w(LT)− 1.

Lemma 7.4.3. Let (G,Q) be a 2-monotone folding of G. There exists a linear planar triangulation
LT (Q) of PG such that the width of LT (Q) is equal to the pathwidth of FillFolding(G,Q), plus
one.

Proof. The folding being 2-monotone, both Qup and Qdown are increasing subsequences of Q. For
every couple (Q′, Q′′) of consecutive cliques of Qdown, let (Qui

, Qui+1
, . . . , Quj

) be the subsequence
of Qup appearing strictly between Q′ and Q′′ in Q. Add, in PG, a diagonal between

84

• The scanpoint s corresponding to the semi-separator of the edge {Q′, Q′′} and every scan-point
corresponding to a clique of (Qui

, Qui+1
, . . . , Quj

).

• The scan-point s and every scanpoint on some edge of the cycle incident to a clique of
(Qui

, Qui+1
, . . . , Quj

), including the edge preceding Qui
and the edge after Quj

.

The symmetric operation is performed by permuting the role of Qup and Qdown.
It is not hard to check that by adding this set of diagonals we obtain indeed a linear triangulation

LT (Q) of the polygon of scanpoints. Each triangle T of LT (Q) has exactly two semi-separator
scanpoints and a clique-scanpoint. More precisely, for each triangle T the clique scan-point QT is
incident to one of the semi-separator scanpoints. The other scanpoint is either incident to QT (if
QT is the first or last clique of Q) or it corresponds to an edge {Qa, Qb} of the clique cycle, such
that QT is between Qa and Qb in Q. Note that QT ∪ (Qa ∩Qb) is also a clique of the graph H =
FillFolding(G,Q), by the construction of the graph H. It follows that w(LT (Q)) ≤ pwd(H) + 1.
Conversely, consider any three cliques Qa, Qb, QT such that QT is between Qa and Qb in Q and
{Qa, Qb} is an edge of the clique cycle. Then LT (Q) contains a diagonal D such that one of its
end-points corresponds to QT and the other is the semi-separator scanpoint corresponding to the
edge {Qa, Qb}. It follows that QT ∪ (Qa ∩ Qb) ≤ w(LT (Q)). By Lemma 7.3.4, every bag of the
path decomposition of H, obtained by the folding algorithm, is of type QT ∪ (Qa ∩Qb) – and the
conclusion follows.

Theorem 7.4.4. For any circular-arc graph G, its pathwidth is the minimum, over all linear planar
triangulations LT of PG, of w(LT)− 1.

Proof. By Lemma 7.4.2, we have that pwd(G) ≤ minw(LT) − 1. By Theorem 7.3.8, there is a
2-monotone folding (G,Q) of G such that pwd(FillFolding(G,Q)) = pwd(G). The conclusion
follows by Lemma 7.4.3.

The algorithm for computing a linear triangulation of PG of minimum width is very similar to
the one of [86].

Theorem 7.4.5. The pathwidth of circular-arc graphs can be computed in O(n2) time.

Proof. It remains to give an algorithm computing a linear planar triangulation LT of PG, of mini-
mum width. The algorithm is practically the same as in [86], except that in their case the planar
triangulation is not necessarily linear and that the width function is slightly different. Therefore
we only give a short description of the algorithm.

Observe that, for computing linear planar triangulations, we only need O(n2) triangles. Indeed,
for each triangle corresponding to a face, two endpoints are consecutive on the polygon. Assume first
that we are given the widths of all the triangles of this type. Let s0, s1, · · · , sp−1 be the scanpoints
of PG, ordered by the counter-clockwise orientation of the polygon. Let w(i, j) the optimum width,
over all linear triangulations LT (i, j) of the polygon formed by the points si, si+1 . . . , sj (indices are
considered modulo p). We point out that, if (si, sj) is a diagonal of PG, then it is also considered
as a diagonal of the restricted polygon, meaning that LT (i, j) is not allowed to have a face with
(si, sj) and two other diagonals as edges.

If j = i + 2, then w(i, j) is the width of the triangle (si, si+1, sj). If j > i + 2, for using the
diagonal (si, sj) we must also use one of the diagonals (si+1, sj) or (si, sj−1). Therefore:

w(i, j) = min (max(w(si, si+1, sj), w(i + 1, j)),max(w(si, sj−1, sj), w(i, j − 1)))

85

The optimum width of a linear triangulation is

w(PG) = min
0≤i,j<p,j≥i+2

max(w(i, j), w(j, i))

All these equations are easily transformed into an O(n2) dynamic programming algorithm for
computing the linear planar triangulation of optimum width. Within the same time bounds, we
can equally obtain, like in Lemma 7.4.2, an optimum path decomposition of the input graph.

The widths of the triangles can be computed inO(n3), so the pathwidth ofG can be computed in
O(n3). Following the principles of [86], we can improve this running time by computing the widths
of the needed triangles in O(n2). Each triangle T of a linear planar triangulation is of the type
(si, si+1, sj), with two consecutive scanpoints. One of the two, say si, is a clique scanpoint. Hence
the width of T is |V (sj) ∪ V (si)|. Thus we only need to compute, for every couple 0 ≤ j < i < p
the cardinality of V (sj) ∪ V (si). During a preprocessing step we explore the clique-semi-separator
cycle (in counter-clockwise order). For each scanpoint si, we distinguish two situations, depending
whether si corresponds to a semi-separator or a clique. In the first case, si is a clique bag. We
compute the arcs of V (si) \ V (si−1). Moreover, for each j, 1 ≤ j < p let Add(i, j) be the number of
circular-arcs x of V (si)\V (si−1) such that the right-end point r(x) is between i and j−1 according
to the cyclic order. Using a bucket sort, these quantities can be computed in O(n) for each i. In a
similar way, if i is a semi-separator scanpoint we take into account the vertices of V (si−1) \ V (si).
Let Sub(i, j) the number of arcs x ∈ V (si−1)\V (si) such that the left-end point l(x) is between j+1
and i in the cyclic order. Fix a value j, 0 ≤ j < p. Consider each i, from j+1 to j−1 in cyclic order.
The value |V (sj) ∪ V (sj+1)| is computed directly. Now observe that if si is a clique scanpoint, we
have |V (sj)∪V (si)| = |V (sj)∪V (si−1)|+Add(i, j). Indeed, the only arcs of V (sj)∪(V (si)\V (si−1))
ar the arcs of V (si) \ V (si−1) whose right endpoint is strictly smaller that j in the cyclic order.
Similarly, if si is a semi-separator scanpoint then |V (sj) ∪ V (si)| = |V (sj) ∪ V (si−1)| − Sub(i, j).
Thus we need a constant time to compute |V (sj) ∪ V (si)|, and O(n2) to compute the weights of
the useful triangles.

7.5 Conclusions

We give in this chapter an O(n2) time algorithm computing the pathwidth and the corresponding
path decomposition of a circular-arc graphs. This is the first polynomial time algorithm computing
the pathwidth of graphs, for a class of graphs of unbounded treewidth. This indicates that the tool
of folding that we use can be very helpful for understanding pathwidth.

One natural direction of pursuing this research consists in analyzing intersection models of
other graph classes. The goal is to find a class for which we could restrict the set of foldings which
contains solutions optimal to pathwidth or profile. For circular-arc graphs, we have found that it
is enough to browse through the set of 2-monotone foldings of a given clique cycle model. Can
we find similar characterizations for circle graphs, trapezoid graphs or some other class? Another
interesting question is if it is possible to give an analogous characterization of a set of foldings of
circular-arc graphs that contains solutions optimal for profile or some other problems of embedding
into interval graphs?

86

Chapter 8

Extraction of Minimal Interval

Completion

Contents

8.1 Folding interval graphs . 87

8.2 Unfolding . 91

8.3 Extracting minimal interval completions: the algorithm 96

8.4 Proof of Lemma 8.3.2 . 98

8.5 Conclusions . 101

In Chapters 6 and 4 we presented two algorithms that, given an arbitrary graph G = (V,E),
compute a minimal interval completion H = (V,E ∪F) of G. Both algorithms are able to compute
some completions - different outputs depend on the degrees of freedom that each algorithm has.
But in neither case the freedom is wide enough to enable all possible completions in the output.
Moreover, there are completions that can be obtained by one algorithm and not the other, in both
ways. Then again, there is another question that neither of the algorithms can help answering:
given an interval completion H ′ = (V,E ∪F ′) of H, is it minimal? What we give in this chapter is
a polynomial algorithm answering this question. What is more, this algorithm has all the freedom
needed to yield any minimal interval completion of G. These two aspects are very important for
heuristics computing interval completions close to the original graph. The former permits to take
the output of any heuristic and remove redundant edges, that is the ones that are not necessary
for the completion to be an interval graph. The latter makes it possible to start with a complete
graph on V and guide the process of minimalization, based on the edges we prefer not to have in
the interval completion of G.

8.1 Folding interval graphs

As mentioned before, minimal triangulations have this property that H = (V,E ∪ F) is a minimal
triangulation of G = (V,E) if and only if it is impossible to remove an edge e ∈ F from H in a way
that H ′ = H − e is a triangulation of G. Minimal interval completions may not have this property.
The ones that violate it are particularly hard to track down and we distinguish them with a special
name.

87

Definition 8.1.1. We say that H is a quasi-minimal interval completion of G if no single fill edge
can be removed from H without destroying interval graph property. Simple examples exist to show
that quasi-minimal interval completions are not necessarily minimal.

Assume that we are given an interval completion H of an arbitrary graph G. We want to find
out whether H is a minimal interval completion. First we can start by trying to remove every single
fill edge and test, in linear time, whether the remaining graph is an interval graph. After a number
of steps (which is at most quadratic in the number of edges of H) we reach a quasi-minimal interval
completion. Thus from now on, we assume that we are given a quasi-minimal interval completion
H of G, and we want to decide whether it is minimal. If it is not minimal, we know that there is
one that is minimal which is a strict subgraph of H, and before we finally find a minimal one, we
might explore several strict interval subgraphs of H that are not minimal.

Let us give different names to these different interval completions of G. Let H2 be the given
quasi-minimal interval completion ofG. If it is not minimal, letH0 be a minimal interval completion
of G that is a subgraph of H2. Since we are only given G and H2, and we do not know H0, we
will probably discover several intermediate graphs H1, where H1 is an interval completion of G
that is a strict subgraph of H2. Hence we have the following relations between these graphs:
E(G) ⊂ E(H0) ⊆ E(H1) ⊂ E(H2). The first subset relation is proper because we can always check
before start whether or not G is already an interval graph, in linear time. Even though we do not
know H0, we know that H2 is a non-minimal and quasi-minimal interval completion of it. In this
section, we analyze the relations between H0 and H2. For this purpose we use the tool of folding
introduced in Subsection 7.1. We investigate the particular case of folding interval graphs. It has
some interesting properties with respect to quasi-minimal interval completions.

Let us restate the definition and the algorithm of folding in terms of interval graphs.

Definition 8.1.2. Let H be any interval graph, let Q be any permutation of the set of maximal
cliques of H. We say that (H,Q) is a folding of H by Q.

The graph defined by a folding is not necessarily a quasi-minimal interval completion of H0.
Nevertheless, we prove in Theorem 8.1.8 that every quasi-minimal interval completion of H0 is
defined by some folding. Recall that we already know, by Theorem 7.1.3, that this property holds
for minimal interval completions.

The maximal cliques of H0 play a crucial role in the analysis of the relationship between H0

and H2; in particular the ones that are contained in a unique maximal clique of H2. The following
definition is general, however we will apply it later on interval input graphs and their non-minimal
interval completions.

Definition 8.1.3. Let H be an interval completion of an arbitrary graph G. A maximal clique of
G which is a subset of exactly one maximal clique of H is called a core clique of G with respect to
H.

It is a straight forward consequence of Lemma 2.2.20, that a maximal clique of G which is not
a core clique must be contained in some minimal separator of H.

Observation 8.1.4. Let H be an interval completion of an arbitrary graph G. Let K be a maximal
clique of G which is not a core clique with respect to H. Then there is a minimal separator S of H
with K ⊆ S.

88

Before we prove that any quasi-minimal interval completion H2 of H0 can be obtained via
Algorithm FillFolding, we need to introduce a few lemmas that describe the structure of quasi-
minimal interval completions.

The first lemma is very useful for proving that an interval completion which does not satisfy
our characterization is, in fact, not quasi-minimal.

Lemma 8.1.5. Let H2 be a (non-minimal) interval completion of an interval graph H0. Let xy
be a fill-edge such that only one maximal clique of H2 contains both x and y. Then H2 is not a
quasi-minimal interval completion of H0.

Proof. Let P2 = (Ω1,Ω2, ...,Ωk) be a clique-path of H2 and suppose that Ωi is the only clique
containing both x and y. Observe that H1 = H2 − xy is also an interval graph. Indeed, replacing
Ωi in P2 with Ωx,Ωy, where Ωx = Ωi \ {y} and Ωy = Ωi \ {x} yields a path-decomposition of H1,
from which we can obtain a clique-path of H1 by simply removing redundant cliques.

Second lemma shows that every maximal clique of a quasi-minimal interval completion contains
a core clique. It will be of much help to control foldings.

Lemma 8.1.6. Let H2 be a quasi-minimal interval completion of an interval graph H0. Let Ω be
a maximal clique of H2. Then there is a core clique K of H0 contained in Ω.

Proof. Let P2 = (Ω1,Ω2, ...,Ωk) be a clique-path of H2, and let Ω = Ωi for some i ∈ {1, ..., k}.
Since Ω is a maximal clique, it contains a vertex x such that x /∈ Ωi−1 and a vertex y such that
y /∈ Ωi+1. If x = y then Ω is the unique maximal clique of H2 containing x. In this case, it is
sufficient to take a maximal clique K of H0 containing x, and K is a core clique with respect to
H2. Consider the case x .= y. If xy /∈ E(H0), then by Lemma 8.1.5, H2 is not quasi-minimal, and
we have a contradiction to the premise of the lemma. Thus xy is an edge of H0 contained only in
Ω. Any maximal clique K of H0 with x, y ∈ K is contained only in Ω, and is thus a core clique.

The last lemma tells that it is enough to analyze the positions of core cliques in some clique
path of a quasi-minimal interval completion to know all its structure.

Lemma 8.1.7. Let H2 be a quasi-minimal interval completion of an interval graph H0, and let P2

be a clique-path of H2. Let x be a vertex, and let Px be the subpath of P2 induced by the maximal
cliques containing x. Then, each maximal clique of H2 that is a leaf in Px, contains a core clique
that contains x.

Proof. If x is simplicial in H2 then Px consists of a single maximal clique Ω. Thus any maximal
clique K of H0 with x ∈ K is a core clique contained in Ω. Assume that Px is not a singleton, and
let Ω be a leaf clique of Px. Let y be a vertex in Ω that is not contained in the clique next to Ω in
Px. Observe that xy ∈ E(H0), otherwise Lemma 8.1.5 would yield a contradiction. So we have an
edge of H0 contained only in Ω. Thus, there is a maximal clique of H0 contained only in Ω.

We are now ready to give the main result of this section. For the proof of the theorem, we need
the following notation. Given any path-decomposition P and a vertex x of an arbitrary graph G,
we denote by L(x, P) and R(x, P), respectively, the leftmost and rightmost bags of P containing
x.

Theorem 8.1.8. Let H2 be a quasi-minimal interval completion of an interval graph H0. Then
there exists a folding (H0,Q) of H0 such that H2 = FillFolding(H0,Q).

89

Proof. Let K0 = {1 ≤ i ≤ p | Ki} and K2 = {1 ≤ i ≤ k | Ωi} denote the sets of maximal cliques of
H0 and H2, respectively. Let P2 = (Ω1, . . . ,Ωk) be a clique-path of H2. It defines a linear order on
the set K2. In a natural way, P2 defines a linear pre-order on K0 by

Ka ≤ Kb if Ka ⊆ Ωi and Kb ⊆ Ωj, where i ≤ j ≤ k and a, b ≤ p.

Transform it into a linear order (sequence) Q as follows. First, let Q be a linear ordering of the
core cliques according to the relative ordering in P2 of the unique cliques that contain them (i.e.,
by using any linear extension of the pre-order above). Notice that for any maximal clique K of
H0 which is not a core clique, by Lemma 8.1.7, there is a core-clique K ′ in Q, such that for every
vertex x ∈ K, there are two core-cliques Kl(x),Kr(x) containing x, such that Kl(x) ≤ K ′ and
Kr(x) > K ′ in Q. Indeed, by Observation 8.1.4 and Lemma 2.2.20, there are two maximal cliques
Ω′, Ω′′ consecutive on P2, such that K ⊆ S = Ω′ ∩ Ω′′. Then for every vertex x ∈ K, by Lemma
8.1.7, there is some core clique Kl(x) (Kr(x)) contained in a bag to the left (right, respectively)
of S in P2. Insert K as the immediate successor of K ′ in Q. This operation does not change the
values of L(x,Q) and R(x,Q).

Let us define H ′
2 = FillFolding(H0,Q), and prove that H ′

2 = H2. Notice that xy ∈ E(H2)
if and only if the intervals defined by endpoints L(x, P2), R(x, P2) and L(y, P2), R(y, P2) intersect
in P2. Clearly, the same holds for H ′

2 and any clique-path P ′
2 of H ′

2. By construction, E(H0) ⊆
E(H ′

2) ⊆ E(H2). Let us prove that all fill-edges of H2 are also present in H ′
2. Suppose it is not the

case. Then there is a fill-edge xy ∈ E(H2)\E(H ′
2). Thus the intervals corresponding to x,y in P ′

2 are
disjoint, say R(x, P ′

2) < L(y, P ′
2), whereas in P2 they intersect. It implies that R(x, P2) = L(y, P2)

and, by Lemma 8.1.5, H2 in not quasi-minimal, which is a contradiction.

Given only the arbitrary graph G and a quasi-minimal interval completion H2, we know by
Theorem 8.1.8 that H2 is defined by a folding of H0, a minimal interval completion of G. In general
is difficult to find directly the graph H0. Instead, we can analyze a sequence of interval completions
that are between H0 and H2, where passing from one step to another needs a folding of a much
more constrained nature than the general one – that we call a reduced folding.

Definition 8.1.9. Let (H0,Q0) be a folding. A clique K ∈ Q is called a pivot in (H0,Q0) if there
is a clique-path P0 of H0 where both cliques just next to K (one to the left, the other to the right)
in P0 are on the same side of K in Q0.

Definition 8.1.10. A folding (H,Q) is said to be reduced if every pivot contains a simplicial
vertex of H.

Given a quasi-minimal interval completion H2 of H0, there always is an interval graph H1

between them (possibly equal H0), such that H2 comes from a reduced folding of H1.

Theorem 8.1.11. Let H2 be a quasi-minimal interval completion of H0 defined by a folding
(H0,Q0). Then there is an interval graph H1 such that H0 ⊆ H1 ⊂ H2,
and H2 = FillFolding(H1,Q1) for some reduced folding (H1,Q1) of H1.

Proof. Recall that H2 is a quasi-minimal interval completion of H0 defined by a folding (H0,Q0).
Let H1 be an interval graph such thatH0 ⊆ H1 ⊂ H2 and H1 is inclusion-maximal for this property.
Observe that H2 is a quasi-minimal interval completion of H1, otherwise H2 would not be a quasi-
minimal interval completion of H0. By Theorem 8.1.8, there is a folding (H1,Q1) of H1 such that
H2 = FillFolding(H1,Q1). We claim that (H1,Q1) is reduced.

90

By contradiction, suppose there is a pivot K of (H1,Q1) containing no simplicial vertex of H1.
Let P1 be a clique-path of H1 such that the two cliques next to K in P1 are on the same side of K
in Q1. Let K ′ (resp. K ′′) denote the neighbor of K in P1 which is closest (resp. furthest) to it in
Q1. Choose u ∈ K \K ′ and v ∈ K ′ \K. The vertices u and v are not adjacent in H1. Since u is not
simplicial in H1 we must have u ∈ K ′′. Consequently uv is an edge of H2: indeed K ′ is between
K and K ′′ in Q1, u ∈ K ∩ K ′′, thus in the graph H2 = FillFolding(H1,Q1), the set K ′ ∪ {u}
induces a clique. Denote by H the graph obtained from H1 by adding the edge uv. Add on the
clique path P1, a bag between K and K ′ containing the vertex subset K ∩K ′ ∪ {u, v}; we obtain a
clique-path of H. In particular H is an interval graph. If H = H2 then H2 is not a quasi-minimal
completion of H1 – a contradiction. It remains that H is strictly contained in H2, but also H1 ⊂ H,
contradicting our choice of H1.

An important property related to reduced foldings is that each pivot is a core clique.

Lemma 8.1.12. Let H2 = FillFolding(H1,Q1) for a reduced folding (H1,Q1). Then every pivot
of (H1,Q1) contains a simplicial vertex in H2, thus the pivot is contained in exactly one maximal
clique of H2.

Proof. Let x be a simplicial vertex of H1 contained in the pivot K, so K is the unique maximal
clique ofH1 containing x. In the path decomposition ofH2 produced by the algorithm FillFolding

on (H1,Q1), the unique bag containing x is the bag corresponding to K. Therefore K is contained
in a unique maximal clique of H2.

8.2 Unfolding

Let H2 be a quasi-minimal interval completion with a clique-path P2, obtained by the Algorithm
FillFolding on (H0,Q). For the analysis presented in this section, we need to fix a clique-path
P0 of H0. The reason for this is that with the general definition of a pivot, a pivot K may have
different neighbors in distinct clique-paths of H0. So it may happen that the neighbors of K in P0

appear at the same side of K in the permutation Q, whereas the neighbors of K in P ′
0, another

clique-path of H0, appear at different sides of K in Q. For the ease of argument, from now on we
should think of a folding as a triple.

Definition 8.2.1. Let H be an interval graph, P be a clique-path of H and Q be a permutation of
its maximal cliques. The triple (H,Q, P) is a folding.

The definition of a pivot becomes more constrained.

Definition 8.2.2. Let (H0,Q, P0) be a folding. A clique K ∈ Q is called a pivot in (H0,Q, P0) if
both cliques just next to K in P0 are on the same side of K in Q0.

Definition 8.2.3. Let H0 be an interval graph with a clique-path P0. Let (H0,Q, P0) be a reduced
folding. If Q contains just one pivot then it is called a 1-folding. If Q contains exactly 2 pivots,
none of which is at an end of Q, then it is called a 2-folding.

We show in this section that if the quasi-minimal completion H2 of G is not minimal, there
is an interval graph H1 containing G and strictly contained in H2 such that H2 is obtained by a
reduced 1-folding or a reduced 2-folding of H1. In the next section we give a polynomial algorithm
constructing H1.

91

K K

K l Kr K l Kr

Figure 8.1: Unfolding.

Let us sketch the main idea before getting into the technical proofs. The graph H2 is equal
to FillFolding(H0,Q, P0) for some smaller interval completion H0 of G and some folding of H0.
Informally, we will slightly unfold (H0,Q, P0):

Definition 8.2.4. A folding (H0,Q′, P0) is an unfolding of (H0,Q, P0) if the set of pivots of
(H0,Q′, P0) is strictly contained into the set of pivots of (H0,Q, P0) and, moreover, the graph
FillFolding(HO,Q′) is a (not necessarily strict) subgraph of FillFolding(H0,Q).

We will construct an unfolding (H0,Q′, P0), having one or two pivots less than (H0,Q, P0).
Then H2 is obtained by a 1 or 2-folding of H1 = FillFolding(H0,Q′).

In Figure 8.1 we give examples of unfoldings. Each circle represents a maximal clique in the
input interval graph H0, and each line provides the information that the two maximal cliques are
consecutive in the clique path P0 of H0. The foldings are defined by the order of the maximal
cliques from left to right. Arrows indicate in which direction a sub path is rotated around the
pivot when we open a fold. The upper part demonstrates how to unfold when one of the extremal
maximal cliques is a pivot, like K in this case. The lower part shows how to unfold when Kr is the
rightmost pivot in Q and K l is the leftmost pivot in Q that appears after Kr in P0.

The following theorem states that it is always possible to unfold a quasi-minimal interval com-
pletion.

Theorem 8.2.5. Let H2 be a quasi-minimal, but not minimal interval completion of an arbitrary
graph G. Then there exits a reduced folding (H1,Q1, P1), with one (1-folding) or two (2-folding)
pivots, with E(G) ⊆ E(H1) ⊂ E(H2) and such that H2 = FillFolding(H1,Q1).

Proof. We know from Theorem 8.1.11 that there exists a reduced folding (H0,Q, P0) satisfying
H2 = FillFolding(H0,Q) and E(G) ⊆ E(H0) ⊂ E(H2). We may assume that for any unfolding
(H0,Q′, P0), the graph H ′

2 = FillFolding(H0,Q′) is strictly contained in H2.
We distinguish two different cases, as depicted in Figure 8.1. The maximal cliques of H0 are

numbered according to their order in the path P0. The permutation Q corresponds to the ordering
of the maximal cliques from left to right. The permutation Q is transformed in the permutation
Q′, as depicted below.

First case: a maximal clique at one end of Q is a pivot. Choose this as the left end and call
the maximal clique K. (see the upper part of Figure 8.1.) Clearly, K is not one of the end maximal
cliques in P0. Let P l be the subpath of P0, from the left end to the clique K (included) and P r

be the subpath from K (included) to the right end of P0. Let Ql be the order defined by Q on

92

the maximal cliques of P l, and let Qr be the order on the maximal cliques of P r. Glue the reverse
order of Ql with Qr in K (i.e, concatenate the reverse of Ql with Qr and merge the two consecutive
copies of K) to obtain the new permutation Q′ and the folding (H0,Q′, P0).

Let us now argue that (H0,Q′, P0) is an unfolding of (H0,Q, P0). The pivot K is not a pivot
of the new folding, and clearly every pivot of (H0,Q′, P0) is a pivot of (H0,Q, P0). We show that
H1 = FillFolding(H0,Q′) is a strict subgraph of H2. Let V l and V r be the union of maximal
cliques in Ql and Qr, let H l = FillFolding(H[V l],Ql) and Hr = FillFolding(H[V r],Qr).
Clearly, H l and Hr are subgraphs of H2. The maximal clique K of H0 separates, in the graph
H0, the vertex subsets V l and V r. Hence it also separates V l and V r in H1; in particular K is a
maximal clique ofH1. Each edge of H1 is an edge of H l or of Hr, thus the graph H1 is a subgraph of
H2. By our assumption, the graph H1, obtained by an unfolding of (H0,Q, P0), is a strict subgraph
of H2.

It remains to prove that there exists a reduced 1-folding (H1,Q1, P1) of H1 such that H2 =
FillFolding(H1,Q1). Consider the path decomposition PD1 of H1 produced by the algorithm
FillFolding on (H0,Q′). The bags of PD1 are in one-to-one correspondence with the maximal
cliques of H0, as they appear in the permutation Q′. In particular, the original permutation Q
induces a permutation QB1 on the bags of PD1. Let Q1 be obtained from QB1 as the sublist of bags
corresponding to maximal cliques of H1. The clique-path P1 is constructed by removing the bags of
PD1 which are not maximal cliques of H1. By construction, (H1,Q1, P1) is a folding of H1 having
K as unique fold, in particular it is a reduced folding. We show that H2 = FillFolding(H1,Q1).
Suppose that we apply the algorithm FillFolding on (H1,QB1) (although QB1 is not a permu-
tation of the set of maximal cliques of H1). We obtain the same graph as FillFolding(H0,Q0).
Indeed, assign to each vertex u the interval [sQB1

(u), tQB1
(u)], where sQB1

(u) (resp. tQB1
(u)) is

the minimum (resp. maximum) index of a bag of QB1 containing u. This interval is the same
as [sQ(u), tQ(u)], obtained by the same construction applied to the permutation Q. Now, by our
construction of Q1, it can be easily checked that the graph FillFolding(H1,Q1) is the same as
FillFolding(H1,QB1). Hence H2 = FillFolding(H1,Q1).

Second case: neither of the maximal cliques at the ends of Q are pivots. Let K l be the
leftmost pivot, according to the ordering Q (see the lower part of Figure 8.1). Since no pivot of
Q is the left or right most maximal clique, then there exists exactly one end of P0 that contains
maximal cliques to the right of K l in Q, let this be the right end of P0. Let Kr be the rightmost
pivot in Q, such that K l is to the right of Kr in P0. Let P l be the subpath of P0, from the left
end to the clique Kr included (we remind that Kr appears left to K l in P0). Similarly P r is the
subpath of P0 from Kl (included) to the right end, and P c is the subpath of P0 starting in Kr and
ending in K l. Let Ql (resp. Qr, Qc) be the order defined by Q on the maximal cliques of P l (resp.
P r, P c). Glue the reverse order of Qr with Qc in Kl and glue this with the reverse order of Ql in
Kr, and obtain the new order Q′′ and folding (H0,Q′′, P0). Ir remains to show that the unfolding
(H0,Q′′, P0) satisfies the required properties.

Like in the first case, (H0,Q′′, P0) is an unfolding of (H0,Q, P0). Each pivot of (H0,Q′′, P0),
except for K l andKr, is a pivot in (H0,Q, P0). Indeed such a pivot is contained inQl,Qc, or Qr and
the maximal cliques in Ql,Qc and Qr induce connected sub paths of P0. Let V l, V c, V r be the union
of maximal cliques inQl,Qc, andQr, and letH l,Hc andHr be the graphs FillFolding(H[V l],Ql),
FillFolding(H[V c],Qc) and FillFolding(H[V r],Qr) respectively. H1 = FillFolding(H0,Q′′)
is a subgraph of H2, since every edge and vertex of H1 is contained in either H l,Hc, or Hr,
and H l = H2[V l],Hc = H2[V c], and Hr = H2[V r]. We have assumed that for any unfolding of

93

(H0,Q, P0), the filled graph is a strict subgraph of H2. Consequently H1 is a strict subgraph of H2.
We prove that there exists a reduced 2-folding (H1,Q1, P1) defining the graph H2 (i.e., H2 =

FillFolding(H1,Q1)). The construction is very similar to the first case. Let PD1 be the path
decomposition of H1 produced by the algorithm FillFolding on (H0,Q′′). Its bags are in one-
to-one correspondence with the maximal cliques of H0, as they appear in the permutation Q′′.
Let QB1 be the permutation of these bags corresponding to the original permutation Q, and Q1

be the sublist of QB1 formed by the bags corresponding to maximal cliques of H1. The clique-
path P1 is obtained from PD1 by removing the bags which are not maximal cliques of H1. The
folding (H1,Q1, P1) has only two folds, namely K l and Kr. As in the first case, one can check
that H2 = FillFolding(H1,QB1), and eventually FillFolding(H1,Q1) yields the same graph as
FillFolding(H1,QB1). Consequently (H1,Q1, P1) is a reduced 2-folding of H1 such that H2 =
FillFolding(H1,Q1).

The first observation gives some information on the structure of 1-folding that will be used in
the unfolding algorithm.

Observation 8.2.6. Let (H1,Q1, P1) be a reduced 1-folding and let H2 = FillFolding(H1,Q1).
Then its pivot is a maximal clique in H2. Moreover, there is a clique path of H2 such that this
pivot corresponds to a leaf.

Proof. Since (H1,Q1, P1) is a 1-folding, there is only one pivot K in Q1 and clearly K is at one
end of Q0. By Algorithm FillFolding, no vertex is added to K and K is at the end of the path
decomposition P2 produced by the algorithm. Because the folding is reduced, there is a simplicial
vertex x of H1 such that the only bag of P1 (and therefore of P2) containing x is K. Consequently
K is a maximal clique of H2, corresponding to a leaf of P2.

And the other observation covers the case of 2-folding. Like the previous one, it says that the
clique path of H2 obtained by folding keeps much of the structure of the original clique path of H1.

Observation 8.2.7. Let (H1,Q, P1) be a 2-folding that defines H2 = FillFolding(H1,Q), and
let P2 be the clique path of H2 obtained by the folding algorithm. Let Kr (K l) be the leftmost
(rightmost) pivot according to the ordering P1 (hence K l appears before Kr in Q). Let P l be the
subpath of P1 formed by the cliques appearing strictly before K l in Q and P r be the subpath of P1

formed by the cliques appearing strictly after Kr in Q. Then P l and P r are end paths of both P1

and P2.

Proof. It follows directly from Algorithm FillFolding applied to (H1,Q) that P l and P r are the
end clique paths of P2 as well.

The next results state that, if H2 is a quasi-minimal interval completion of G and comes from a
1-folding or 2-folding of someH1 ⊂ H, there is an edge uv in E(H2)\E(H1) with special properties.
In the next section, we shall ensure that the unfolding algorithm removes this edge.

Theorem 8.2.8. Let H1 = (V,E1), H2 = (V,E2) be interval graphs and let (H1,Q, P1) be a 1 or
2-folding such that H2 = FillFolding(H1,Q). If H2 is a quasi-minimal but not minimal interval
completion of H1, then there is a fill edge uv, such that one of the pivots K is a u, v-separator in
H1. Moreover, in the clique path P1, the vertices u and v appear on different sides of K.

94

Proof. By Observation 8.2.7, if P2 is the path decomposition ofH2 = FillFolding(H1,Q) obtained
by the folding algorithm on a 2-folding (H1,Q, P1), we can write

P1 = P l −−P l
1 −−K

r −−P c
1 −−K

l −−P r
1 −−P

r (8.1)

P2 = P l −−Ωl −−P c
2 −−Ω

r −−P r (8.2)

Notice that a 1-folding can be treated as a 2-folding with one side of P1, say P r
1 − −P

r, empty.
In such a situation, K l is not a pivot according to the previous definition, but if we extend it and
define K l to be a pivot, then the following argument holds for the case of 1-folding as well.

Suppose, on the contrary, that no pivot is a x, y-separator in H1 for any fill edge xy. Let us
first construct a clique path P ′

2 of H2 based on P1. We will use it later to prove that H2 is not
quasi-minimal.

Let P2 be the clique path obtained by Algorithm FillFolding on (H1,Q) (see Figure 7.1), so
P1 and P2 are described by Equations 8.1, 8.2. Let PL = P l−−P l

1−−K
r, PC = Kr−−P c

1 −−K
l

and PR = K l − −P r
1 − −P

r. Let xy be any fill edge with x ∈ V(PL) \ Kr, then y ∈ Kr, since
Kr is not a x, y-separator. So NH2

(V(PL) \Kr) ⊆ V(PL). By Algorithm FillFolding, the bags
of PL that have y added in the folding (H1,Q) form an interval. We add y to the bags of this
interval, for every such fill edge xy. In this way we simulate the folding (H1,Q) on H1[V(PL)] and
obtain a clique path PL′ of H2[V(PL)]. In an analogous way, we simulate the folding on PR and
PC to obtain PR′ and PC ′, clique paths of H2[V(PR)] and H2[V(PC)], respectively. Altogether,
by gluing the reverse of PL′ with PC ′ and the reverse of PR′ on K l and Kr, (and possibly
removing redundant bags) we obtain a clique path P ′

2 of H2. Indeed, NH2
(V(PL) \Kr) ⊆ V(PL),

NH2
(V(PC) \ (Kr ∪ K l)) ⊆ V(PC) and NH2

(V(PR) \ K l) ⊆ V(PR), so every edge of H2 is
contained in some bag of P ′

2. Moreover, it is easy to verify that, for every vertex x ∈ V , the subset
of bags containing x induces a subpath of P ′

2.

Suppose H2[V(PL′)] contains a fill edge x′y′ with y′ ∈ Kr. Let Ω be the maximal clique
containing y′ leftmost in P ′

2. There is a vertex x′′ which does not appear in a bag right of Ω, since
Ω is a maximal clique. Moreover, x′′y′ .∈ E(H1), since x′′y′ ∈ E(H1) implies x′y′ ∈ E(H1). Notice
that Ω .= Kr, since in H2[V(PL′)] Kr is a maximal clique in which does not contain any fill edges.
Indeed, by definition of reduced folding, Kr contains a vertex simplicial in H2. Since Ω is the
leftmost bag containing y′, there is a clique Ωx′y′ containing both x′ and y′ between Ω and Kr in
P ′
2. By construction of P ′

2, if x
′′y′ ∈ E(H1) then x′ and y′ appear together in a corresponding bag

Kx′y′ of P1 as well. So x′′y′ is a fill edge. Let P ′′
2 be the clique path obtained from P ′

2 by removing
Ω and putting (Ω\{y′})−−(Ω\{x′′}) instead. Clearly, it is a clique path of H2−x′′y′, hence H2 is
not a quasi-minimal interval completion of H1 - a contradiction. So H2[V(PL′)] does not contain
any fill edges. An analogous argument shows that there is no fill edge in H2[V(PR′)].

Finally, suppose only H2[V(PC ′)] contains a fill edge x′y′. So one of the vertices, say y′ is
contained in one of the pivots, say Kr, in H1. Notice that y′ is not contained in K l, otherwise,
by properties of clique path P1, x′y′ would be an edge already in H1. So, again, we pick Ω to be
the rightmost in PC ′ maximal clique containing y′ and a vertex x′′ which does not appear in a
bag left of Ω. Notice that NH2

(y′) ∩ V(PR′) = ∅, since y′ is not contained in K l and there are no
fill edges in H2[V(PR′)]. Let P ′′

2 be the clique path obtained from P ′
2 by removing Ω and putting

(Ω \ {x′′}) − −(Ω \ {y′}) instead. Clearly, it is a clique path of H2 − x′y′′, which contradicts the
quasi-minimality of H2. A contradiction.

95

8.3 Extracting minimal interval completions: the algorithm

Let H2 be a quasi-minimal interval completion of G and let H0 be a minimal interval completion of
G contained in H2. Theorem 8.1.8 shows that there exists a one folding (H0,Q0, P0) that defines
H2, and by Theorem 8.2.5 there exists a reduced folding (H1,Q1, P1) with one or two pivots that
defines H2. By Lemma 8.1.12 each pivot of (H1,Q1, P1) is contained in exactly one maximal clique
of H2.

Let us now assume that (H1,Q1, P1) is such that any unfolding defines a graph with fewer edges
than H2. We will focus of finding an unfolding such that some fill edge uv is removed. The edge uv
is chosen such that one of the pivots of (H1,Q1, P1) is a u, v-separator in H1 (see Theorem 8.2.8).

We will consider the cases of 1-folding and 2-folding separately. Let us first discuss the 1-
folding case. Remember from Observation 8.2.6 that a maximal clique K of H2 is a pivot in P1 if
(H1,Q1, P1) is an 1-folding defining H2.

Algorithm OneUnfolding

Input: A graph G = (V,E), and an interval completion H2 of G
Output: An interval completion H ′

1 of G such that
E(H ′

1) ⊂ E(H2) if H2 is defined by a 1-folding of some H1

H ′
1 = H2 if no H1 exists.

for each pair (Ω, u) where Ω ∈ K(H2) and u ∈ V \ Ω
Let Cu be connected comp of G[V \ Ω] containing u
H ′

1 = (V,E(H2[NG[Cu]]) ∪ E(H2[V \ Cu]))
if H ′

1 is an interval graph and E(H ′
1) ⊂ E(H2) then

return H ′
1

return H2

Figure 8.2: Opening one pivot.

Lemma 8.3.1. Let G = (V,E) be an arbitrary graph, and letH1 and H2 be two interval completions
of G, such that E(H1) ⊂ E(H2), H2 is a quasi-minimal interval completion of H1, and (H1,Q1, P1)
is a 1-folding that defines H2. Then H ′

1 = OneUnfolding(G,H2) is an interval completion of G
satisfying E(H ′

1) ⊂ E(H2).

Proof. Algorithm OneUnfolding always outputs an interval graph H ′
1 such that E(G) ⊆ E(H ′

1) ⊆
E(H2). We have to prove that, under the conditions of the lemma, the graph H ′

1 is a strict subgraph
of H2.

From Observation 8.2.6 it follows that the pivot in (H1,Q1, P1) is a maximal clique in H2; let
this maximal clique be Ω. Moreover, Ω is at one end, say the left one, of a clique path P2 of H2. Let
uv be one of the edges in E(H2)\E(H1), such that Ω is a u, v-separator in H1 (see Theorem 8.2.8).
In particular, both u, v .∈ Ω.

Like in Algorithm OneUnfolding, let Cu be the connected component of G[V \Ω] containing the
vertex u and consider the graph H ′

1 = (V,E(H2[NG[Cu]])∪E(H2[V \Cu])). We have to argue that
E(H ′

1) ⊂ E(H2) and that H ′
1 is an interval graph. First E(H ′

1) ⊆ E(H2) since only edges in H2

are used to create H ′
1. Since Ω is a u, v-separator in H1, we have v .∈ NG[Cu]. Clearly u .∈ V \ Cu,

so uv is not an edge of H ′
1.

96

Let us construct a path decomposition of H ′
1 such that each bag induces a clique. This shows

that H ′
1 it is indeed an interval graph. Take P2 and glue it in Ω with P ′

2, an reversed copy of P2.
Remove vertices from bags in order to have only the vertices of V \ Cu in the P2 part and the
vertices of NG[Cu] in the P ′

2 part. Let P ′
1 denote the result. Clearly, it is a path decomposition of

H ′
1. By removing redundant bags we obtain a clique-path of H ′

1.

Algorithm TwoUnfolding

Input: A graph G = (V,E), and an interval completion H2 of G
Output: An interval completion H ′

1 of G such that
E(H ′

1) ⊂ E(H2) if H2 is defined by a 2-folding of some H1 ⊂ H2

H ′
1 = H2 if no H1 exists.

for each tuple (Ωl,Ωr, Sl, Sr, C l, Cr, u, v)
Ωl,Ωr are maximal cliques of H2

Sl, Sr are minimal separators of H2, contained in Ωl and resp. Ωr.
C l (Cr) is a component of H2 − Sl (resp. H2 − Sr)
u, v are vertices, u .∈ Ωr

construct W l using Equation 8.4
construct W r using Equation 8.5
H ′

1 = (V,E(H2[NG[W l] ∪ Sl]) ∪ E(H2 − (W l ∪W r)) ∪ E(H2[NG[W r] ∪ Sr]))
if H ′

1 is an interval graph and E(H ′
1) ⊂ E(H2) then

return H ′
1

return H2

Figure 8.3: Opening two pivots.

A sketch of the algorithm is given in Figure 8.3, and its correctness is stated below.

Lemma 8.3.2. Let G = (V,E) be an arbitrary graph, and letH1 and H2 be two interval completions
of G, such that E(H1) ⊂ E(H2), H2 is a quasi-minimal interval completion of H1, and (H1,Q1, P1)
is a 2-folding that defines H2. Then H ′

1 = TwoUnfolding(G,H2) is an interval completion of G
satisfying E(H ′

1) ⊂ E(H2).

The proof of this lemma is quite technical. Let us postpone it to a separate section. Now we
can state the main result of this chapter.

Lemmas 8.3.1 and 8.3.2 imply the main result of this paper. Algorithm ExtractMinimal-

IntervalCompletion is given in Figure 8.4.

Theorem 8.3.3. There exists a polynomial time algorithm that, given an arbitrary graph G and an
interval completion H2 of G, computes a minimal interval completion H1 of G, such that E(H1) ⊆
E(H2).

Proof. We show that Algorithm ExtractMinimalIntervalCompletion of Figure 8.4 computes the
required completion. At each step of our algorithm the graph H1 is an interval graph, by construc-
tion of Algorithms OneUnfolding and TwoUnfolding. Also E(G) ⊆ E(H1) ⊆ E(H2). It remains
to show that, at the end of our algorithm, H1 is a minimal interval completion of G. Otherwise,

97

Algorithm ExtractMinimalIntervalCompletion

Input: A graph G = (V,E), and an interval completion H2 of G.
Output: A minimal interval completion H1 of G, with E(H1) ⊆ E(H2).

H1 = H2

H0 = G
while (H0 .= H1)

H0 = H1

for each edge uv in E(H1) \ E(G)
if H1 − uv is an interval graph then

H1 = H1 − uv
H1 = OneUnfolding(G,H1)
H1 = TwoUnfolding(G,H1)

return H1

Figure 8.4: Extracting a minimal interval completion.

H1 is not quasi-minimal or, by Theorem 8.2.5, there exists a strict subgraph H ′
1 such that H ′

1 is
an interval completion of G and H1 corresponds to a reduced 1-folding or 2-folding of H ′

1. By
Lemmas 8.3.1 and Lemma 8.3.2, Algorithms OneUnfolding or TwoUnfolding would construct an
interval completion of G, strictly included in H1. This contradicts the fact that we finished the
while loop.

Since an interval graph has at most n maximal cliques and minimal separators, Algorithms
OneUnfolding and TwoUnfolding are clearly polynomial. At each iteration of the while loop, our
algorithm removes at least one edge. We conclude that Algorithm
ExtractMinimalIntervalCompletion terminates in polynomial time.

Let us point out that, by using as initial completion the complete graph, the algorithm
ExtractingMinimalIntervalCompletion can obtain any of the minimal interval completions of
G.

8.4 Proof of Lemma 8.3.2

Proof. For better reading, we re-discuss this case completely.
Let H2 = (V,E2) be an quasi-minimal interval completion of a non-interval graph G = (V,E).

Suppose that H2 is not minimal and choose the graph H1 = (V,E1) such that
H2 = FillFolding(H1,Q), where (H1,Q, P1) is a reduced 2-folding and E ⊂ E1 ⊂ E2. Let P2 be
the clique path of H2 obtained by the algorithm FillFolding(H1, P1).

So by Observation 8.2.7 we can denote these clique paths as:

P1 = P l −−P l
1 −−K

r −−P c
1 −−K

l −−P r
1 −−P

r

P2 = P l −−Ωl −−P c
2 −−Ω

r −−P r

where K l, Kr are the pivots and Ωr, Ωl are the maximal cliques of H2 containing them. We have
K l ⊆ Ωl,Kr ⊆ Ωr.

98

P l
1

P c
1

P r
1

BlPwllP lll

P rP c
2Ωl Ωr

W l
sup W l

ini

Kr

K l

Figure 8.5: 2-folding.

Let Sl (Sr) be the separator between P l and Ωl (Ωr and P r) in P2. Notice that P l, Sl, Sr, P r

appear also in P1. Let Bl (Br) be the interval of cliques that corresponds to the block of H2 − Sl

(H2 − Sr) that is contained in P l (P r), the closest to Ωl (Ωr) in P2. So we have:

P2 = P ll −−Bl −−Ωl −−P c
2 −−Ω

r −−Br −−P rr (8.3)

Notice that C l = V(Bl)\Ωl (Cr = V(Br)\Ωr) is a connected component of H2−Ωl (H2−Ωr).
So, given H2, Ωl and Ωl, we can effectively compute the candidates for C l and Cr. From now on
we assume that Ωl,Ωr, C l, Cr, Sl, Sr are as described above. We want to find an unfolding of H2,
an interval graph H ′

1 = (V,E(H2[NG[W l]∪Sl])∪E(H2[NG[W r]∪Sr])∪E(H2− (W l ∪W r))), with
some well chosen W l, W r.

Let uv be an edge of E(H2)\E(H1). Like in Theorem 8.2.8, u and v are chosen such that one of
the pivots of H1, say Kr, separates u and v in H1 and also in the clique path P1. Suppose w.l.o.g.
that u is in V(P l − −P l

1) \K
r. In particular u .∈ Ωr, and let Cu be the connected component of

G− Ωr containing the vertex u. Let Cv be the union of the connected components of G− Ωr that
contain or see the vertex v (we may have v ∈ Ωr, in which case there are several such components).
We have proved:

Claim 10. Cu is contained in V(P l −−P l
1) \K

r. Cv is contained in V(P c
1 −−K

l −−P r
1 −−P

r).
Moreover, u and v do not appear in Kr.

Definition 8.4.1.

W l
ini =

⋃

{C | C ∈ C(G− Ωr), C ∩Bl .= ∅} ∪ Cu

W r
ini =

⋃

{C | C ∈ C(G− Ωl), C ∩Br .= ∅}

When unfolding, we want the blocks corresponding to components of H2 − Sl that are in
P ll−−Bl to stay blocks in H ′

1−Sl. Let us investigate the connected components of H2−Sl. They
induce a partition of P ll − −Bl into blocks of H2 − Sl. Some of these blocks intersect connected
components of G − Ωr that are contained in W l

ini. For example, all connected components of
G − Ωr that intersect Bl are also in W l

ini. But there may be a block Blm of H2 − Sl containing
some components of G − Ωr that are and some that are not in W l

ini. In this case, Blm is not a
block of H ′

1−Sl, where H ′
1 = (V,E(H2[NG[W l

ini]])∪E(H2[NG[W r
ini]])∪E(H2[V \ (W l

ini ∪W r
ini)])).

In order to prevent this, we augment W l
ini with W l

sup, and W l
ini with W l

sup as defined below:

Definition 8.4.2.

W l
sup =

⋃

{C | C ∈ C(G− Ωr), C ∩ Ωl = ∅, NH2
[C] ∩W l

ini .= ∅, NH2
[C] ∩ (W r

ini ∪ Cv) = ∅}

99

W l = W l
ini ∪W l

sup (8.4)

W r
sup =

⋃

{C | C ∈ C(G− Ωl), C ∩ Ωr = ∅, NH2
[C] ∩W r

ini .= ∅, NH2
[C] ∩W l = ∅}

W r = W r
ini ∪W r

sup (8.5)

We are now able to construct the unfolding.

Definition 8.4.3.

H ′
1 = (V,E(H2[NG[W

l] ∪ Sl]) ∪ E(H2[NG[W
r] ∪ Sr]) ∪ E(H2 − (W l ∪W r))).

Clearly, Bl ⊆ NG[W l
ini] ∪ Sl, Br ⊆ NG[W r

ini] ∪ Sr. Moreover, W l
ini ⊆ V(P l − −P l

1) \ Kr and
W r

ini ⊆ V(P r
1 −−P

r)\K l, so W l
ini∩W

r
ini = ∅. Notice that by similar argument N(W l

ini)∩W
r
ini = ∅

and N(W r
ini) ∩W l

ini = ∅. Moreover, by construction of W l ∩W r, this propagates to W l and W r:

Claim 11. W l ∩W r = ∅.

Let us now put some auxiliary notations.

Definition 8.4.4. Let W c = (Ωl∪V(P c
2)∪Ω

r)\ (W l∪W r). Let W ll = V(P ll) and W rr = V(P rr).

Let us construct a path decomposition of the graph H ′
1 in which all bags are cliques, let us call

such a decomposition a good path decomposition, by first constructing good path decompositions
of H2[NG[W ll ∪W l]], H2[NG[W c]], H2[N [W r ∪W rr]], and then gluing them together.

Let us further refine the description of P ll and denote by P lll the subsequence of P ll induced
by blocks of H2 \Sl that have empty intersection with W l, an by Pwll the subsequence induced by
blocks of H2 \ Sl contained in NG[W l] ∪ Sl. The cliques contained in NG[W l] ∪ Sl are consecutive
indeed. Take a clique Ω2, Ω2 ∩W l

ini = ∅, with another clique Ω1, Ω1 ∩W l
ini .= ∅, to the left of it in

P2. Take x ∈ Ω1 ∩W l
ini and Cx, with Cx ∈ C(G−Ωr), Cx ∩C l .= ∅, x ∈ Cx. Since Ω2 separates Ω1

from Bl, it intersects Cx. Therefore Ω2 ∩W l
ini .= ∅ and Ω2 ⊆ NG[W l] ∪ Sl.

Claim 12. Pwl = P lll − −Pwll − −Bl − −P lc
2 , where P lc

2 comes from P c
2 by removing from every

bag the vertices not in NG[W l], is a good path decomposition of H2[NG[W ll ∪W l]].

It follows the construction that V(Pwll −−Bl −−P lc
2) is contained in NG[W l] ∪ Sl. Moreover,

V(P lll) is contained in V \ (W l ∪ W r). Indeed, by construction, there is: V(P lll) ∩ W l = ∅,
V(P lll)∩W r

ini = ∅, W
r
sup ⊆ V(P c

2−−Ω
r−−P r)\Ωr , and V(P lll)∩Sl ⊆ Ωr. So V(P lll)∩(W l∪W r) = ∅

and the corresponding cliques ofH2 remain cliques ofH ′
1. By construction, NG[W ll∪W l] = V(Pwl).

Moreover, for every x ∈ V(Pwl), the cliques containing it induce an interval in Pwl, since they did
in P ll − −Bl − −P c

2 . In a similar manner, Pwr = P rc
2 − −Br − −Pwrr − −P rrr is a good path

decomposition of H2[NG[W r ∪W rr]].

Claim 13. Pwr = P rc
2 −−B

r−−Pwrr−−P rrr, where P rc
2 comes from P c

2 by removing from every
bag the vertices not in NG[W r], is a good path decomposition of H2[NG[W rr ∪W r]].

Finally, let P cc
2 , Ωcl, Ωcr come from P c

2 , Ω
l, Ωr by removing the vertices in W l ∪W r. Then, by

reasoning similar to that above, we have:

Claim 14. Ωcl −−P cc
2 −−Ωcr is a good path decomposition H2[W c].

Finally, we can glue these three good path decompositions together to obtain:

100

Claim 15. H ′
1 is an interval graph with a good path decomposition

P ′
1 =

←−−
Pwr −−Ωcl −−P cc

2 −−Ωcr −−
←−−
Pwl,

where the arrow indicates that the corresponding path has been reversed.

By construction and discussion above, the vertices of W r appear only in bags of Pwr and the
vertices of W l appear only in bags of Pwl. Moreover NG(W l) ∩W r = ∅ and NG(W r) ∩W l = ∅.
So removing W l ∪W r from bags of Ωl − −P c

2 −−Ω
r to obtain Ωcl −−P cc

2 −−Ωcr does not cause
any discontinuity of the subgraph induced in P ′

1 by bags containing x, for any x ∈ V . Hence, P ′
1

is a good path decomposition. Removing redundant bags yields a clique path, so H ′
1 is an interval

graph.

Claim 16. uv is not an edge of H ′
1.

The graph H ′
1 is constructed from three edge subsets of H2, we have to show that the edge uv

is not in any of them.
First, we prove that uv .∈ E(H2[NG[W l] ∪ Sl]). We have v .∈ NG[W l]. Indeed v .∈ NG[W l

ini]
because all the components of G−Ωr formingW l

ini are contained in V(P l−−P l
1), and v .∈ NG[W l

sup]

by construction of W l
sup. Also v .∈ Sl because v is contained in the subpath P c

1 −−K
l−−P r

1 −−P
r

of P1, and v .∈ Kr.
Second, uv is not in E(H2[NG[W r]∪ Sr]). Indeed u .∈ NG[W r] by construction of W r

sup and by
the fact that W r

ini is a subset of V(P r
1 −−P

r). Clearly u .∈ Sr by Claim 10.
Third, since u ∈W l the edge uv does not appear in E(H2 − (W l ∪W r)).

We proved in Claim 16 that the edge uv does not exist in H ′
1. Algorithm TwoUnfolding tries

all possibilities for Ωl,Ωr, Sl, Sr, C l, Cr and u and v. At some iteration it will make the good
choice and construct the graph H ′

1, an interval completion of G strictly contained in H1.

8.5 Conclusions

We give in this chapter a polynomial time algorithm verifying if a given interval completion is
minimal. Given a non-minimal interval completion H of G, the algorithm computes a minimal one
contained in H. Moreover, the process of removing edges which are not needed for the completion
to be interval can be guided in order to obtain any minimal interval completion of G.

The natural continuation of this research aims in further characterizations of minimal interval
completions. In would be very interesting to have a result defining a minimal interval completion
H of an arbitrary graph G in terms of minimal separators of G. Such a characterization of minimal
triangulations given in [99] proved useful in very interesting results on treewidth [25, 49].

Another direction of research to follow, is to work on technical details of the algorithm. With
improved time complexity, it would be a very useful routine to use with heuristics for pathwidth.
An efficient implementation could significantly increase the power of a heuristic for pathwidth or
profile, by quickly removing unnecessary edges in the postprocessing.

101

102

Conclusions and Perspectives

The main motivation for this work comes from an important graph parameter of pathwidth. En-
couraged by the successful attempts to exploit minimal chordal completions (triangulations) for
computing treewidth, we decided to try the analogous approach for computing pathwidth; thus, to
study minimal interval completions in the context of pathwidth. Despite the strong resemblances
between these two families of problems based on embeddings into chordal (for the former) and
interval (for the latter) graphs, very little was known on minimal interval completions. Moreover,
virtually all results for pathwidth were based on treewidth.

As to our knowledge, we were the first to give a polynomial time algorithm computing minimal
interval completions in [73], here presented in Chapter 6. It is an incremental algorithm, that can
be used in the on-line fashion, computing a minimal interval completion each time a new vertex
arrives, without modifying the completion computed in previous steps. The time complexity is of
order O(n3 log n) (O(n2 logn) per vertex). The combinatorics of this algorithm is based on the
characterization of interval graphs, as the ones that have clique paths [54]. The principal tool used
here was the encoding of all possible clique paths of an interval graph by the pre-order relation,
which we believe to be a promising tool for controlling path decompositions.

Then we discovered that the characterization of proper interval graphs as the ones that have
bicompatible orderings [98] can be used for minimal proper interval completions. In [101], we gave
a linear time algorithm computing a minimal proper interval completion, described in Chapter 3.
Again, it was the first polynomial time algorithm for solving this problem ever published. It is a
BFS algorithm with a simple tie-break rule that can be computed locally.

Working on [101] gave us better understanding of graph layouts and some tools very useful for
controlling them. The intuitions proved to be true also for minimal interval completions, as we
managed to extend our observations to the class of interval graphs. With this support, we gave
an algorithm computing minimal interval completion [110], presented in Chapter 4, based on the
characterization of interval graphs by interval orderings [97]. Like for proper interval completions,
it is a BFS algorithm. Only that this time the tie-break rule is more involved, which increases
the time complexity to O(nm). It is an open question, if the tie-break rule can be simplified. In
particular, it is an interesting question if such a rule can be computed locally.

We also gave a polynomial time checkable characterization of minimal interval completions. In
[72], we gave a polynomial time algorithm that verifies if a given interval completion H of G is
minimal, described in Chapter 8. If it is not, the algorithm computes a minimal interval completion
H ′ of G contained in H. The combinatorics here is based on foldings, a structural description of
interval completions with respect to minimal interval completions that they contain. The feature
of removing unnecessary fill edges from an arbitrary interval completion makes this algorithm
especially interesting in conjunction with heuristics for pathwidth or profile, which usually do not
yield a minimal interval completion. But there is some more work needed in order to reduce the

103

time complexity.

Finally, our studies on minimal interval completions have started to give fruits in the field of
pathwidth. In [111], we give the first polynomial time algorithm computing pathwidth for a class of
graphs of unbounded treewidth. Thanks to a generalization of tools used in [72], we characterized
a particular set of interval completions of circular-arc graphs that contains solutions optimal for
pathwidth. Based on this characterization, we give a O(n2) time algorithm that computes the
pathwidth of a circular-arc graph.

Having such a palette of tools controlling interval completions at hand it is only natural to ask
for a domain where they could be of much help. Let us present a direction that we find promising.

As mentioned in the introduction, pathwidth is related to graph searching games. In particular,
the pathwidth of G is equal the minimum number of searchers (minus one) needed to search G in
the invisible fugitive search game. This game, first introduced by Kirousis et al.[81], is a one player
game on an undirected graph G, using pebbles called searchers or guards. A searching strategy
S is a sequence of moves where the player either places a guard on a vertex or removes a guard
from a vertex. After each move, the status of vertices is evaluated. Initially all vertices are unsafe,
that is to say, they may carry the fugitive. A vertex becomes safe, we know it does not carry the
fugitive, when a searcher is put on it. A vertex becomes unsafe if it is connected by an unguarded
path to an unsafe vertex, so it is possible that the fugitive takes this way. The purpose is to catch
the fugitive, thus to make the whole graph safe. The goal of the game is to find a strategy that
minimizes the number of searchers used. In the visible fugitive search version, the searchers can see
the fugitive thus they can orient their search towards the area where the fugitive tries to escape.
The necessary number of searchers might be much smaller than in the invisible version. E.g., two
searchers can search any tree in the visible version, while the minimum number of searchers for the
invisible fugitive version can be logarithmic in the size of the tree. It is interesting to mention here
that the minimum number of searchers needed to clear the graph in the visible fugitive search on
G equals the treewidth of G (plus one).

The search problems have been intensively investigated in the last few years. Several versions of
the fugitive search game appeared, motivated by applications in network management. In particu-
lar, Fomin et al. [46, 47, 43, 45, 44] studied different measures for the quality of a search strategy
and their relations to other graph parameters. Fraigniaud et al. [12, 52, 46, 5, 6] studied fugitive
search with an additional condition, that the safe area should be connected. This is of particular
importance if the search is to be performed in a distributed manner, by a team of agents with
limited resources. Then, the agents need to have safe channels through the network to communi-
cate. Another restriction which has been introduced is the logarithmic bound (in the size of the
network) on the resources that the agents can use. Despite the attention that it has gained, the
invisible fugitive game (in all its versions) has resisted attempts to create polynomial time exact
algorithms or approximations. Most results just state the NP-hardness of new versions, not saying
much on the positive side. We believe that deep insight into interval completions will help to create
polynomial time algorithms computing approximations or exact solutions restricted classes, like it
was the case with minimal triangulations and the visible fugitive game (treewidth). The motivation
is even stronger in view of the growing interest of the network management community in solutions
based on mobile agents [102, 89, 10]. In particular, it would be interesting to work on algorithms
presented in Chapter 3 and 4, which look very promising from the distributed computation point of
view. Even if the problems are NP-hard in general case, the properties of real-life large interaction
networks might make them solvable in practice. In particular, the results on the small world phe-

104

nomenon (small diameter, greedy poly-logarithmic routing, etc.), might help in creating polynomial
time algorithms for distributed searching in real-life situations (see [39, 51, 2]).

105

106

Bibliography

[1] K. Aardal, C. van Hoesel, A. Koster, C. Mannino, A. Sassano, Models and solution techniques
for the frequency assignement problem. 4OR, 1(4): 261–317, 2003.

[2] I. Abraham, C. Gavoille, D. Malkhi, Compact Routing for Graphs Excluding a Fixed Minor.
Proceedings of DISC 2005, 3724: 442–456, 2005.

[3] S. Arnborg, D. G. Corneil, A. Proskurowski, Complexity of finding embeddings in a k-tree.
SIAM J. on Algebraic and Discrete Methods, 8: 277–284, 1987.

[4] S. Arnborg, A. Proskurowski, Linear time algorithms for NP-hard problems restricted to partial
k-trees. Discrete Applied Mathematics, 23: 11–24, 1989.

[5] L. Barrire, P. Fraigniaud, N. Santoro, D. M. Thilikos, Searching is not jumping. Proceedings
of WG 2003, LNCS 2880:34–45, 2003.

[6] L. Barrire, P. Flocchini, P. Fraigniaud, N. Santoro, Connected Treewidth and Connected Graph
Searching. Proceedings of SPAA 2002, 200–209, ACM Press, 2002.

[7] A. Berry, J. P. Bordat, Separability Generalizes Dirac’s Theorem. Discrete Applied Mathe-
matics, 84(1-3): 43–53, 1998.

[8] A. Berry, J. P. Bordat, Local LexBFS Properties in an Arbitrary Graph. Proceedings of Journes
Informatiques Messines, 2000.

[9] A. Berry, P. Heggernes, and Y. Villanger, A vertex incremental approach for dynamically
maintaining chordal graphs. Proceedings of ISAAC 2003, LNCS, 2906:47–57, 2003.

[10] A. Bieszczad, B. Pagurek, T. White, Mobile Agents for Network Management. IEEE Com-
munications Surveys and Tutorials, 1998.

[11] J. R. S. Blair and B. Peyton, An introduction to chordal graphs and clique trees. Graph Theory
and Sparse Matrix Computations, 1–29, Springer, 1993.

[12] L. Blin, P. Fraigniaud, N. Nisse, D. M. Vial, Distributed Chasing of Network Intruders.
Proceedings of SIROCCO 2006, LNCS 4056:70–84, 2006.

[13] H. L. Bodlaender, Discovering Treewidth. Proceedings of SOFSEM 2005, LNCS 3381:1–16,
2005.

[14] H. L. Bodlaender, A tourist guide through treewidth. Acta Cybernetica, 11: 1–23, 1993.

107

[15] H. L. Bodlaender, A Linear-Time Algorithm for Finding Tree-Decompositions of Small
Treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.

[16] H. Bodlaender, A Partial k-Arboretum of Graphs with Bounded Treewidth. Theoretical Com-
puter Science, 209(1-2): 1–45, 1998.

[17] H. Bodlaender, F. Fomin, Approximating the pathwidth of outerplanar graphs. Journal of
Algorithms, 43(2): 190–200, 2002.

[18] H. Bodlaender, T. Kloks, Efficient and constructive algorithms for the pathwidth and treewidth
of graphs. Journal of Algorithms, 21(2): 358–402, 1996.

[19] H. L. Bodlaender, T. Kloks, D. Kratsch, Treewidth and Pathwidth of Permutation Graphs.
SIAM J. Discrete Math., 8(4): 606–616, 1995.

[20] H. L. Bodlaender and A. Koster, Safe separators for treewidth. Technical Report UU-CS-
2003-027, Institute of information and computing sciences, Utrecht University, Netherlands,
2003.

[21] H. L. Bodlaender, D. Thilikos, Treewidth for graphs with small chordality. Discrete Applied
Mathematics, 79(1-3): 45–61, 1997.

[22] J.C. Boland, C.G. Lekkerkerker, Representation of a finite graph by a set of intervals on the
real line. Fundamenta Mathematicae, 51:45–64, 1962.

[23] K. Booth and G. Leuker, Testing for the consecutive ones property, interval graphs, and graph
planarity using PQ-tree algorithms. J. Comput. Syst. Sci., 13:335–379, 1976

[24] V. Bouchitt and I. Todinca, Approximating the treewidth of AT-free graphs. Discrete Applied
Mathematics, 131(1): 11–37, 2003.

[25] V. Bouchitté and I. Todinca, Treewidth and minimum fill-in: Grouping the minimal separators.
SIAM J. Comput., 31:212–232, 2001.

[26] H. Broersma, E. Dahlhaus, T. Kloks, Algorithms for treewidth and minimum fill-in of HHD-
free graphs. Proceedings of WG 1997, LNCS 1335: 109–117, 1997.

[27] H. Broersma, E. Dahlhaus, T. Kloks, A linear time algorithm for minimum fill-in and treewidth
for distance hereditary graphs. Discrete Applied Mathematics, 99(1-3): 367–400, 2000.

[28] L. Cai, Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties.
Information Processing Letters, 58(4):171–176, 1996.

[29] P. Z. Chinn, J. Chvátalová, A. K. Dewdney, N. E. Gibbs, The bandwidth problem for graphs
and matrices - a survey. Journal of Graph Theory, 6: 223–254, 1982.

[30] D. G. Corneil, Lexicographic Breadth First Search - A Survey. Proceedings of the 30th In-
ternational Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes in
Computer Science, 3353: 1–19, 2004.

[31] B. Courcelle, THe monadic second-order logic on graphs III: Treewidth, forbidden minors and
complexity issues. Informatique Théorique, 26: 257–286, 1992.

108

[32] B. Courcelle, J. Engelfriet, G. Rozenberg, Contex-free handle-rewriting hypergraph grammars.
Graph-Grammars and Their Application to Computer Science, LNCS 532: 253–268, 1991.

[33] B. Courcelle, M. Mosbah, Monadic second-order evaluations on tree-decomposable graphs.
Theoretical Computer Science, 109: 49-82, 1993.

[34] B. Courcelle, S. Olariu, Upper bounds to the clique-width of graphs. Discrete Applied Mathe-
matics, 101: 77–114, 2000.

[35] A. Cournier and M. Habib, A New Linear Algorithm for Modular Decomposition. Proceedings
of Trees in Algebra and Programming - CAAP’94, LNCS 787: 64–84, 1994

[36] J. Dı́az, J. Petit, and M. J. Serna, A survey of graph layout problems. ACM Computing
Surveys, 34:313–356, 2002.

[37] R. P. Dilworth, A decomposition theorem for partially ordered sets. Annals of Mathematics,
51:161–166, 1950.

[38] G. A. Dirac, On Rigid Circuit Graphs. Abh. Math. Sem. Univ. Hamburg, 21:71–76, 1961.

[39] P. Duchon, N. Hanusse, E. Lebhar, N. Schabanel, Could any graph be turned into a small-
world? Theor. Comput. Sci., 355(1): 96–103, 2006.

[40] J. A. Ellis, M. Markov, Computing the vertex separation of unicyclic graphs. Information and
Computation, 192(2): 123–161, 2004.

[41] J. A. Ellis, I. H. Sudborough, J. S. Turner, The Vertex Separation and Search Number of a
Graph. Information and Computation, 113(1): 50–79, 1994.

[42] S. P. Fekete and J. Schepers, A combinatorial characterization of higher-dimensional orthog-
onal packing. Mathematics of Operations Research, 29:353–368, 2004.

[43] F. V. Fomin, Searching expenditure and interval graphs. Discrete Applied Mathematics, 135(1-
3): 97–104, 2004.

[44] F. V. Fomin, Helicopter Search Problems, Bandwidth and Pathwidth. Discrete Applied Math-
ematics, 85(1): 59–70, 1998.

[45] F. V. Fomin, P. A. Golovach, Graph Searching and Interval Completion. SIAM J. Discrete
Math., 13(4): 454–464, 2000.

[46] F. V. Fomin, P. Fraigniaud, N. Nisse, Nondeterministic Graph Searching: From Pathwidth to
Treewidth. Proceedings of MFCS 2005, LNCS 3618: 364–375, 2005.

[47] F. V. Fomin, P. Heggernes, J. A. Telle, Graph Searching, Elimination Trees, and a General-
ization of Bandwidth. Algorithmica, 41(2): 73–87, 2004.

[48] F. V. Fomin, D. Kratsch, H. Mller, On the Domination Search Number. Discrete Applied
Mathematics, 127(3): 565–580, 2003.

[49] F. V. Fomin, D. Kratsch, and I. Todinca, Exact (exponential) algorithms for treewidth and
minimum fill-in. Proceedings of ICALP 2004, LNCS, 3142: 568–580, 2004.

109

[50] F. Fomin, D. Thilikos, A 3-approximation for the pathwidth of Halin graphs. To appear in
Journal of Discrete Algorithms.

[51] P. Fraigniaud, Greedy Routing in Tree-Decomposed Graphs. Proceedings of ESA 2005, LNCS
3669: 791–802, 2005.

[52] P. Fraigniaud, N. Nisse, Connected Treewidth and Connected Graph Searching. Proceedings
of LATIN 2006, LNCS 3887: 479–490, 2006.

[53] M. K. Franklin, Z. Galil, M. Yung, Eavesdropping games: a graph-theoretic approach to privacy
in distributed systems. Journal of ACM, 47(2): 225–243, 2000.

[54] D. R. Fulkerson, O. A. Gross Incidence matrices and interval graphs. Pacific journal of
mathematics, 15(3): 835–855, 1965.

[55] T. Gallai, Transitiv orienterbare graphe. Acta Math. Acad. Sci. Hungar, 18: 25–66, 1967.

[56] M. R. Garey and D. S. Johnson, Computer and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[57] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs. Journal
of Combinatorial Theory B, 16: 47–56, 1974.

[58] J. A. George and J. W. H. Liu, Computer Solution of Large Sparse Positive Definite Systems.
Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.

[59] P. C. Gilmore and A. J. Hoffman, A characterization of comparability graphs and of interval
graphs. Canadian Journal of Mathematics, 16: 539–548, 1964.

[60] P. W. Goldberg, M. C. Golumbic, H. Kaplan, and R. Shamir, Four strikes against physical
mapping of DNA. Journal of Computational Biology, 2(1): 139–152, 1995.

[61] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs. Academic Press, San Diego,
1984.

[62] G. Gottlob, M. Grohe, N. Musliu, M. Samer, F. Scarcello, Hypertree decompositions: Structure,
algorithms, and applications. Proceedings of WG 2005, LNCS 3787: 1-15, 2005.

[63] J. Gustedt, On the pathwidth of chordal graphs. Discrete Applied Mathematics, 45(3): 233–248,
2003.

[64] G. Gutin, S. Szeider, and A. Yeo, Fixed-Parameter Complexity of Minimum Profile Problems.
Proceedings of IWPEC 2006, LNCS, 4169, 2006. To appear.

[65] M. Habib, R. M. McConnell, C. Paul, L. Viennot, Lex-BFS and partition refinement, with
applications to transitive orientation, interval graph recognition and consecutive ones testing.
Theoretical Computer Science, 234(1-2): 59–84, 2000.

[66] M. Habib, R. Moehring, Treewidth of cocomparability graphs and a new order-theoretic param-
eter. ORDER, 1: 47–60, 1994.

110

[67] M. Habib, C. Paul, L. Viennot, Partition Refinement Techniques: An Interesting Algorithmic
Tool Kit. International Journal of Foundations of Computer Science, 10(2): 147–170, 1999.

[68] T. Hagerup, Dynamic algorithms for graphs of bounded treewidth. Proceedings of ICALP 1997,
LNCS, 292–302, 1997.

[69] P. Heggernes, Minimal triangulations of graphs: A survey. Discrete Mathematics, 306(3):
297–317, 2006.

[70] P. Heggernes, F. Mancini, Minimal Split Completions of Graphs. Proceedings of LATIN 2006,
Lecture Notes in Computer Science, 3887: 592–604, 2006.

[71] P. Heggernes, F. Mancini, C. Papadopoulos, Minimal Comparability Completions. Tech.
Report, University of Bergen, 2006, http://www.ii.uib.no/publikasjoner/texrap/pdf/2006-
317.pdf

[72] P. Heggernes, K. Suchan, I. Todinca, and Y. Villanger, Characterizing minimal interval com-
pletions: Towards better understanding of profile and pathwidth. Research Report RR-2006-09,
LIFO - University of Orléans,2006.

[73] P. Heggernes, K. Suchan, I. Todinca,Y. Villanger, Minimal Interval Completions. Proceedings
of ESA 2005, LNCS 3669: 403–414, 2005.

[74] P. Heggernes, J. A. Telle, Y. Villanger, Computing minimal triangulations in time O(nαlogn)
= o(n2.376). Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms
- SODA 2005, SIAM, 907–916, 2005.

[75] C. van Hoesel, A. Koster, A. Kolen, Optimal solutions for a frequency assignement problem
via tree-decomposition. Proceedings of WG 1999 LNCS 1665: 338–349, 1999.

[76] L. Ibarra, The clique-separator graph for chordal graphs and subclasses of chordal graphs.
Presented at Symposium on Discrete Mathematics, Nashville, TN, 2004.

[77] P. Jégou, S. Ndiaye, C. Terrioux, Computing and exploiting tree-decompositions for solving
constraint networks. Proceedings of CP 1995, 777–781, 2005.

[78] P. Jégou, C. Terrioux, Hybrid backtracking bounded by tree-decomposition of constraint net-
works. Artificial Intelligence, 146(1): 43–75, 2003.

[79] H. Kaplan, R. Shamir, Pathwidth, Bandwidth, and Completion Problems to Proper Interval
Graphs with Small Cliques. SIAM Journal on Computing, 25(3): 540–561, 1996.

[80] H. Kaplan, R. Shamir, R. E. Tarjan, Tractability of Parameterized Completion Problems on
Chordal, Strongly Chordal, and Proper Interval Graphs. SIAM Journal on Computing, 28(5):
1906–1922, 1999.

[81] M. Kiriousis, C. Papadimitriou, Searching and pebbling. Theor. Comput. Sci., 42(2): 205–218,
1986.

[82] D. J. Kleitman, R. Vohra, Computing the Bandwidth of Interval Graphs. SIAM J. Discrete
Math., 3(3): 373–375, 1990.

111

[83] T. Kloks, Treewidth of circle graphs. Intern. J. Foun. Comput. Sci., 7: 111–120, 1996.

[84] T. Kloks, D. Kratsch, Treewidth of chordal bipartite graphs. Journal of Algorithms, 19(2):
266–281, 1995.

[85] T. Kloks, D. Kratsch, and J. Spinrad, On treewidth and minimum fill-in of asteroidal triple-free
graphs. Theoretical Computer Science, 175: 309–335, 1997.

[86] T. Kloks, D. Kratsch, C. K. Wong, Minimum Fill-in on Circle and Circular-Arc Graphs. J.
Algorithms 28(2): 272–289, 1998.

[87] D. Kratsch and J. P. Spinrad, Between O(nm) and O(nα). Proceedings of SODA 2003,
709–716, 2003.

[88] D. Kratsch, J. Spinrad, Minimal fill in O(n2.69) time. Discrete Mathematics, 306(3): 366–371,
2006.

[89] A. Liotta, G. Pavlou, and G. Knight, Exploiting Agent Mobility for Large Scale Network
Monitoring. IEEE Network, 16(3): 7–15, 2002.

[90] R.M. McConnell, Linear-Time Recognition of Circular-Arc Graphs. Algorithmica, 37(2):
93–147, 2003.

[91] N. Meggido, S. L. Hakimi, M.R. Garey, D.S. Johson, C.H. Papadimitriou, The complexity of
searching a graph. Journal of the ACM, 35: 18–44, 1988.

[92] T. A. McKee, F. R. McMorris, Intersection graph theory. SIAM, 1999.

[93] R. H. Mohring, D. Wagner, F. Wagner, VLSI network design, a survey. Handbooks in
Operations Research/Management Science, Volume on Networks, 625–712, 1995.

[94] B. Monien, The bandwidth minimization problem for caterpillars with hair length 3 in NP-
complete. SIAM Journal on Algebraic and Discrete Methods, 7: 505–512, 1986.

[95] A. Natanzon, R. Shamir, and R. Sharan, A polynomial approximation algorithm for the min-
imum fill-in problem. SIAM Journal on Computing, 30(4): 1067–1079, 2000.

[96] A. Natanzon, R. Shamir, and R. Sharan, Complexity classification of some edge modification
problems. Discrete Applied Mathematics, 113: 109–128, 2001.

[97] S. Olariu, An optimal greedy heuristic to color interval graphs. Information Processing Letters,
37(1): 21–25, 1991.

[98] B. S. Panda, S. K. Das, A linear time recognition algorithm for proper interval graphs. Infor-
mation Processing Letters, 87(3): 153–161, 2003.

[99] A. Parra and P. Scheffler, Characterizations and algorithmic applications of chordal graph
embeddings. Discrete Applied Mathematics, 79: 171–188, 1997.

[100] B. W. Peyton, Minimal orderings revisited. SIAM J. Matrix Anal. Appl., 23(1): 271–294,
2001.

112

[101] I. Rappaport, K. Suchan, I. Todinca, Minimal proper interval completions. Proceedings of
WG 2006, LNCS, 2006. To appear.

[102] S. Rayan, R. Pradeep, N. Paramesh, Network management platform based on mobile agents.
International Journal of Network Management, 14: 59–73, 2004.

[103] N. Robertson, P. D. Seymour, Graph minors I. Excluding a forest. Journal of Combinatorial
Theory. Series B, 35: 39–61, 1983.

[104] N. Robertson, P. D. Seymour, Graphs minors II. Algorithmic aspects of tree-width. Journal
of Algorithms, 7: 309–322, 1986.

[105] N. Robertson, P. D. Seymour, Graph minors III. Planar tree-width. Journal of Combinatorial
Theory. Series B, 36: 49–64, 1984.

[106] D. J. Rose, On simple characterization of k-trees. Discrete Mathematics, 7: 317–322, 1974.

[107] D. Rose, R.E. Tarjan, and G. Lueker, Algorithmic aspects of vertex elimination on graphs.
SIAM Journal on Computing, 5: 146–160, 1976.

[108] P. Seymour, R. Thomas, Graph searching, and a min-max theorem for tree-width. J. of
Combinatorial Theory, 58(1): 22–33, 1993.

[109] K. Skodinis, Construction of linear tree-layouts which are optimal with respect to vertex
separation in linear time. J. Algorithms, 47(1): 40–59, 2003.

[110] K. Suchan, I. Todinca, Minimal interval completion through graph exploration. Proceedings
of ISAAC 2006, LNCS, 2006. To appear.

[111] K. Suchan, I. Todinca, Pathwidth of circular-arc graphs. Research Report RR-2006-10, LIFO
- University of Orléans, 2006.

[112] R. Sundaram, K. Sher Singh, C. Pandu Rangan, Treewidth of circular-arc graphs. SIAM
Journal on Discrete Mathematics, 7: 647–655, 1994.

[113] E. Szpilrajn-Marczewski, Sur deux propriétés des classes d’ensembles. Fundamenta Mathe-
maticae, 33: 303-307, 1945.

[114] E. Wanke, k-NLC graphs and polynomial algorithms. Discrete Applied Mathematics, 54(2-3):
251–266, 1994.

[115] M. Yannakakis, Edge-deletion problems. SIAM Journal on Computing, 10(2): 310–327, 1981.

[116] M. Yannakakis, Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth.,
2: 77–79, 1981.

113

Complétions d'intervalles minimales

Résumé: La largeur linéaire et la largeur arborescente ont été introduites par Robertson et Seymour dans leurs
travaux sur les mineurs de graphes. De manière informelle, la largeur linéaire (resp. la largeur arborescente) d’un
graphe mesure l’écart entre ce graphe et la classe des chaînes (des arbres). Les deux paramètres se sont révélés très
puissants de point de vue algorithmique, car de nombreux problèmes NP-difficiles deviennent polynomiaux lorsque l’on
se restreint à des classes de graphes de largeur linéaire ou de largeur arborescente bornée. Pour les graphes de petite
largeur linéaire, les algorithmes de programmation dynamique utilisés pour la résolution des problèmes difficiles ont
une complexité en espace bien meilleure que pour les graphes de petite largeur arborescente.

Etant donné un graphe G=(V,E) quelconque, un graphe d’intervalles H=(V,F) tel que G soit un sous-graphe de H est
appelé complétion d’intervalles de G. La largeur linéaire de G est le minimum de (H)-1, parmi toutes les complétions
d’intervalles H de G ; (H) désigne la taille de la clique de cardinal maximum de H. Calculer une complétion
d’intervalles qui réalise ce minimum est NP-difficile. C’est pourquoi nous calculerons des complétions d’intervalles
minimales, où l’on demande seulement que l’ensemble d’arêtes rajoutées F\E soit minimal par inclusion parmi toutes
les complétions possibles. Parmi ces complétions d’intervalles minimales on trouve les complétions optimales pour la
largeur linéaire. Une approche similaire, à travers les triangulations minimales, est fortement utilisée pour comprendre
et calculer la largeur arborescente.

Ce mémoire présente nos résultats sur les complétions d’intervalles minimales. Nous donnons trois algorithmes
calculant une complétion d’intervalles minimale, basés sur des approches différentes. Nous présentons également un
algorithme calculant une complétion d’intervalles propres minimale. Enfin, nous montrons que la largeur linéaire des
graphes d’intervalles circulaires peut être calculée en temps polynomial.

Mots-clés : graphe, algorithme, décomposition linéaire, graphe d’intervalle, completion d’intervalles minimale

Minimal Interval Completions

Abstract: Pathwidth and treewidth were introduced by Robertson and Seymour in their work on graph minors.
Informally, the pathwidth (resp. treewidth) of a graph measures the distance between this graph and the class of paths
(trees). Both parameters proved algorithmically very useful, as many classical NP-hard problems are polynomial time
tractable on graphs of bounded pathwidth or treewidth. For graphs of small pathwidth the dynamic programming
algorithms used for solving hard problems have a better space complexity than in case of small treewidth.

An interval supergraph H=(V,F) of G=(V,E) is an interval completion of G. The pathwidth of G is defined as the
minimum cliquesize of H, over all interval completions H of G, minus one. Finding an interval completion of minimum
cliquesize (pathwidth) is NP-hard. In minimal interval completions, one only asks the set F\E of added edges to be
inclusion minimal. Among them, one finds pathwidth optimal completions. A similar approach, through minimal
chordal completions, proved useful for tackling treewidth. Thus minimal interval completions should help understand
pathwidth. The report gives our results on interval completions. There are three polynomial time algorithms computing
minimal interval completions, based on different aspects of the problem. We also present a linear time algorithm
computing minimal proper interval completions. Finally, there is a polynomial time algorithm computing the pathwidth
of circular-arc graphs.
Key words: graph, algorithm, path decomposition, interval graph, minimal interval completion

DISCIPLINE - SPECIALITE DOCTORALE : Informatique

LABORATOIRE : LIFO, Université d'Orléans, B.P. 6759, F-45067 ORLEANS Cedex 2

