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11
PreambleBefore introduing, in a more detailed manner, the subjet of study of the present thesis,we give, in informal terms, a onise overview of the motivations for this work and itsontributions.Stability. Roughly speaking, stability is the property of a dynamial system that any errorsignals an be made arbitrarily small provided that the initial errors are su�iently small.It is a ruial notion from a ontrol point of view as it ensures an aeptable behavior ofthe plant if its initial on�guration is not too far from the nominal one. If, in addition,the error signals eventually tend to zero, we say that this operating point is asymptotiallystable. The domain of attration onsists the set of all initial states from whih solutionsgo to zero. We talk about global asymptoti stability when the domain of attration is thewhole state-spae.Obstales. Through intuitive examples, we expose some of the reasons that may preventthe error signals from onverging to zero, as, for instane, the presene of an externalperturbation, measurement impreision, frition, et. In the same way, we show that thedomain of attration may be restrited to a ompat neighborhood of the origin, notablyin the ase of negleted high order nonlinearities. In these situations, most of existingtools fail at ensuring better than ultimate boundedness (onvergene of solutions to someneighborhood of the origin) or to loal stability (restrition of the domain of attration).Semiglobal and pratial stability. Suh a degradation of performane is not aept-able in many onrete appliations, as this may result in a too little operating bandwidth ora too large impreision. Nevertheless, for ontrolled systems, the domain of attration anoften be arbitrarily enlarged provided su�iently large gains. We refer to this propertyas semiglobal asymptoti stability. For a given system, semiglobal asymptoti stabilityensures muh more interesting properties than simply loal properties, sine it establishesthat no theoretial obstale prevents from inluding any given �nite set of initial onditionsto the domain of attration.In the same way, the steady-state errors an often be diminished at will under a similartuning of the gains: we all this property pratial asymptoti stability. Again, this oneptshould be seen as a far stronger property than the simple ultimate boundedness of solutions.Indeed, pratial asymptoti stability imposes that the preision, after the transients, anbe made as �ne as desired. In addition, as we will see in more details in the sequel, itsuggests a �reasonable� behavior of the transient dynamis whih is not the ase, in general,of ultimate boundedness.When it follows from a limitation of the performanes of the system, semiglobal prati-al asymptoti stability onstitutes an interesting measure of the robustness of a system to



12 Preambleexternal perturbations and model unertainty. But, as we will see, this stability propertydoes not arise exlusively from a degradation of global asymptoti properties, but may alsobe established by existing results in the literature, suh as averaging tehniques.A �rst goal of the present thesis is to provide a rigorous framework for the studyof semiglobal and/or pratial asymptoti stability properties. To this end, we providesu�ient onditions, expressed in terms of Lyapunov funtions, that guarantee this stabilityproperties. As we will see, these onditions allow that the Lyapunov funtion depends onthe tuning parameter. Indeed, suh a hoie allows to inlude in our analysis a muh widersope of appliations than if the Lyapunov funtion was assumed uniform in the tuningparameter. For instane, for mehanial systems, it is ommon to hoose the energy of thesystem as a Lyapunov funtion, in whih ase the ontrol gains, then playing the role ofthe tuning parameter, naturally appear in the Lyapunov funtion.Due to this non-uniformity, ompared to lassial results, an additional assumption isrequired that links the upper and lower bounds on the Lyapunov funtion. We infer theneessity of suh an additional ondition through an example.We stress that the stability onept that we will use along the doument makes use oftwo measures: the distane to the ball for whih we want attrativity and the Eulideannorm. Here also, this hoie is motivated by simpliity and generality reasons. Indeed, ifwe had hosen to use one single measure, the orresponding Lyapunov funtion would thenhave had to vanish on a whole neighborhood of the origin, whih would have preventedthe use of the Lyapunov funtion assoiated to the nominal system. On the opposite,with this hoie, most of the semiglobal or pratial stability properties that result froma degradation of an �ideal� system due to perturbations an be inferred by using theLyapunov funtion of the unperturbed system.Hene, we propose tools that allow to establish powerful stability properties, i.e.semiglobal and/or pratial stability, whih usually do not require muh more onservativeassumptions than those needed for the (weaker but ertainly more lassial) properties ofultimate boundedness and loal stability.We also present a so-alled �onverse� theorem for semiglobal pratial asymptotistability, i.e. a result that guarantees the existene of a Lyapunov funtion under theassumption of suh a stability property. The generality of the onept that we use requiresspei� preautions ompared to the properties that would be uniform in the tuning pa-rameter. We will see that, as this result generates an autonomous bound on the gradientof the generated Lyapunov funtion, it will be of great help in lightening the assumptionsin our results on asades.Casades. In order to simplify the study of a omplex system, it is ommon, in stabilityanalysis, to divide it into smaller interonneted subsystems. In this way, the di�ultyof the analysis is often redued. A partiular type of suh interonnetion is the asadestruture. In this situation, the subsystems are interonneted in a unilateral way, i.e.the output of a driving subsystem is the input of a driven subsystem. The modularityo�ered by this so-alled asade approah gave rise to powerful results, both in analysisand ontrol design.However, most of the existing results in this domain only treat loal or global stabilityof the origin. Hene, they do not apply to the onepts, although ommon and powerful,of semiglobal and/or pratial stability.As a seond objetive, we provide su�ient onditions under whih semiglobal and/orpratial asymptoti stability is preserved by the asade interonnetion. Roughly speak-



13ing, we show that this is the ase provided that we expliitly know a Lyapunov funtionfor the driven subsystem and that the solutions are uniformly bounded. In the ase ofglobal pratial asymptoti stability, we provide a strutural riterion to ensure this uni-form boundedness of solutions, therefore yielding an easy-to-hek ondition to guaranteeglobal pratial asymptoti stability of the asade. An illustration of these results on-sists in stabilizing, by a bounded output feedbak, the double integrator a�eted by apersistently exiting signal. As another appliation, we rigorously show that smoothing afeedbak ontrol law may result in pratial stability. Furthermore, we provide a onverseLyapunov result for semiglobal pratial asymptoti stability that permits us to relax therequirement of expliitly knowing a Lyapunov funtion for the driven subsystem. As illus-trated by an example, this latter feature is partiularly useful when stability is establishedbased on averaging tehniques.Set-stability. The generality o�ered by set-stability makes it, as we further develop upon,another interesting tool for the stability and robustness analysis of perturbed systems.Indeed, this notion inludes, as partiular ases, the stability of a single operating point,of a trajetory or even a more omplex domain aording to the set that is onsidered.Moreover, as the latter is not assumed to be ompat, it is also possible to inlude to thestudy the partial stability, whih refers to the situation when the behavior of only a partof the state is onstrained. We will see that the latter appears very useful when dealingwith adaptive ontrol.The third objetive of this work is to provide su�ient onditions for the preservationof the set-stability for asaded systems. The requirement is �rst given as a global bound-edness of the solutions of the overall asade. We establish that, in some situations, thisan be relaxed to just forward ompleteness provided a growth restrition on the interon-netion term. As an illustrative appliation, we propose a proof for a reently establishedresult in marine ontrol.ISS and iISS. So far, we have disussed Lyapunov stability for systems without inputs.A �eld of stability analysis, regrouped under the paradigm of input to state stability(ISS), is espeially onerned by the impat of external signals on the performane of thesystem. Without going into details, this property imposes that the norm of the urrentstate be bounded by a funtion of the amplitude of the perturbing signal plus a fading termdepending on initial onditions. A relaxed extension of this property is alled integral inputto state stability (iISS). Instead of the amplitude of the external signal, this property takesinto aount the �energy� that the latter feeds to the system. The iISS property is verygeneral in stability analysis and provides interesting information about the system. Forinstane, if the input energy is �nite, then the state onverges to zero. In this sense, iISS (aswell as ISS) therefore onstitutes another powerful measure of the robustness of a systemto external perturbations.A fourth part of this text is devoted to the behavior of iISS systems when plaed inasades. We provide elementary onditions under whih the asade omposed of an iISSsystem driven by a globally asymptotially stable one remains globally asymptotially sta-ble. These onditions are expressed in terms of the Lyapunov funtions assoiated to eahsubsystem, thus generalizing existing trajetory-based results. Under mildly onservativeadditional assumptions, we establish that the asade of two iISS subsystems is itself iISS.This latter result is �rstly expressed in terms of Lyapunov funtions, and then in terms ofestimates of the solutions of eah subsystem.



14 PreambleAppliations. Many of the results presented in this doument have been applied inpratie, and we expose some of these results in a �fth step.We study the robustness of PID-ontrolled robot manipulators to fritions, externaldisturbanes, model unertainty and taking into aount the dynamis of atuators. Weprove that, under these environmental onstraints, the system is semiglobally pratiallyasymptotially stable. This is on�rmed by experimental results.In an other domain, we show that the leader-follower strategy adopted for the on-trol of spaeraft formations yields global asymptoti stability when all measurements areavailable. However, in pratie, some information on the leader's position may not be avail-able. We show that, provided that these signals are bounded, global pratial asymptotistability an be onluded.Finally, in the ontext of underway ship replenishment, where the ontrol of the supplyvessel aims at preserving a onstant distane from the main ship during the operation, theonly measurements available for the main ship are position and heading. No informationon its model is at disposal. Under this onstraints, we show that a virtual vehile approahensures global pratial asymptoti stability of the system.We eventually stress that, although some of the results presented here impose rela-tively heavy notations for the sake of rigor, the doument also aims at giving intuitiveexplanations of the utilized onepts. In this diretion, we give several simple examplesto illustrate the purpose and, when possible, provide simpli�ed orollaries that are lessgeneral but easier to use in pratie.Also, even though the results presented along this doument onern more stabilityanalysis than stabilization, in the sense that no expliit design of ontrol law is presented,they still onstitute a presriptive framework on whih one ould base ontrol design strate-gies, as illustrated by the onrete appliations of Chapter 6.
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Contribution of this thesisWe brie�y summarize the main results of this thesis, hapter by hapter, and ite relatedpubliations. Labels orrespond to the list of publiations presented in p. 17.- Chapter 2: We present new tools for the study of semiglobal and pratial stabilityof nonlinear time-varying systems. Some su�ient onditions, in terms of Lyapunovfuntions, are proposed. Compared to lassial Lyapunov onditions, an additionalondition appears, that takes into aount the non-uniformity of the Lyapunov fun-tion in the tuning parameter. We underline the neessity of suh a requirementthrough an example. Conversely, we prove that suh a Lyapunov funtion an be de-rived provided su�ient regularity of the right-hand side of the ordinary di�erentialequation.This hapter formed the subjet of the following publiations with A. Loría:[(i), (ii), (iv), (viii), (x), (xiii), (xvii)℄.- Chapter 3: We extend the results of Chapter 2 to nonlinear time-varying systemspresenting a asade struture. We prove that, under a boundedness ondition onthe solutions of the overall system, both semiglobal and pratial stability propertiesare preserved by the asade interonnetion of two subsystems. We also give somesu�ient onditions to ensure the boundedness ondition on the solutions, whih arepartiularly easy to use in the ase of global pratial stability. Illustrative examplesare provided in eah ontext.These results were originally presented in the following publiations with A. Loría:[(i), (ii), (iv), (viii), (x), (xiii), (xv), (xvii)℄.- Chapter 4: We analyze the behavior of nonlinear systems that are globally asymptot-ially stable with respet to a (non neessarily ompat) set, when plaed in asade.We provide su�ient onditions under whih set-stability, de�ned with respet totwo measures, is preserved by the asade interonnetion.These works orrespond to the ollaboration [(xiv)℄ with E. Panteley. An extensionwas proposed with the same oauthor, J. Tsønn
as and T.A. Johansen in [(xix)℄.- Chapter 5: We study the preservation of the integral input to state stability propertyof nonlinear time-invariant systems in asade. We give some su�ient onditionsfor the asade omposed of an iISS subsystem driven by a globally asymptotiallystable (GAS) subsystem to be GAS. These onditions are expressed in terms of theLyapunov funtion assoiated to eah subsystem, thus generalizing existing similar



16 Contribution of this thesistrajetory-based results. We also provide onditions under whih two iISS systemsplaed in asade remain iISS. These su�ient onditions are �rst expressed basedon the Lyapunov funtion for eah of the two subsystems, and then on the estimateof their solutions.These results were prepared with D. Angeli in [(iii), (xii)℄.- Chapter 6: We present onrete appliations of our main theoretial �ndings in sta-bilization problems of mehanial systems. We show that, when taking into aountexternal perturbations (suh as frition, torque ripping, et.) and the dynamis ofthe atuator, PID-ontrolled robot manipulators are semiglobally pratially stable,baked up with experimental results.On the other hand, a ontrol for underway fuel replenishment of vessels is designed,using a virtual ship approah, whih requires neither a priori model knowledge norveloity measurement for the ship to be replenished. Global pratial asymptotistability is obtained.A third appliation onerns the ontrol of a spaeraft formation, when taking intoaount bounded external disturbanes. Aording to the assumed level of knowledgewe have on the orbital parameters of the leader, various stability properties arederived.These appliations were the objet of the following joint publiations with R. Kelly,E. Kyrkjebø, R. Kristiansen, A. Loría, E. Panteley, K. Pettersen and P. J. Niklasson:[(iv), (vi), (vii), (xvi), (xviii)℄.Although not presented in this doument, these three years of PhD gave rise to otherfruitful ollaborations:- The publiation [(ix)℄ is a joint work with J. de León Morales, A. Loría and G.Besançon where we proposed an adaptive observer for systems that an be put inthe so-alled output feedbak form, based on a onvenient persisteny of exitationproperty.- With A. Loría, G. Besançon and Y. Chitour, we have posed open problems forstabilization of persistently exited systems, and partially solve them in the ase ofthe double integrator, f. [(xi)℄.- In [(xx)℄, with M. Sigalotti, P. Mason, Y. Chitour and A. Loría, this latter problemwas further extended and solved with a linear time invariant feedbak, with gainsuniform in the persistently exiting signal.
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NotationAll properties suh as �positive�, �greater�, �inreasing�, et. are to be understood in thestrit sense.

N and R denote the sets of all nonnegative integers and all real numbers respetively.
N≤N ontains all the nonnegative integers less than or equal to N ∈ N. In the same way,
R≥0 is omposed of all nonnegative real numbers.

I denotes the identity matrix of appropriate dimension.A ontinuous funtion α : R≥0 → R≥0 is of lass K (α ∈ K), if it is inreasing and
α(0) = 0. It is said to belong to lass K∞ if, in addition, α(s) → ∞ as s → ∞. Aontinuous funtion σ : R≥0 → R≥0 is of lass L (σ ∈ L) if it is dereasing and tends tozero as its argument tends to in�nity. A funtion β : R≥0 × R≥0 → R≥0 is said to be alass KL funtion if β(·, t) ∈ K for any t ∈ R≥0, and β(s, ·) ∈ L for any s ∈ R≥0.We denote by φ(·, t0, x0) the solutions of the di�erential equation ẋ = f(t, x) withinitial ondition φ(t0, t0, x0) = x0.We use |·| for the Eulidean norm of vetors and the indued L2 norm of matries.We use ‖ · ‖ for the essential supremum norm, i.e., for a signal u : R≥0 → R

p, ‖u‖ :=ess supt≥0 |u(t)|.We denote by Bδ the losed ball in R
n of radius δ entered at the origin, i.e. Bδ :=

{x ∈ R
n : |x| ≤ δ}. We use the notation H(δ,∆) := {x ∈ R

n : δ ≤ |x| ≤ ∆}. By anabuse of notation, B0 = H(0, 0) = {0} and B∞ = H(0,∞) = R
n.

δ being a nonnegative onstant, we de�ne |x|δ := infz∈Bδ
|x− z|. More generally, for alosed set A, |·|A represents the distane to this set: |x|A := infz∈A |x− z|.For a given set E of R

n, ◦
E denotes its interior.Let a ∈ {0,+∞} and q1 and q2 be lass K funtions. We say that q2(s) = O(q1(s)) as

s tends to a if there exists a nonnegative onstant k suh that lim sups→a q2(s)/q1(s) ≤ k.We say that q2(s) = o(q1(s))) if k an be taken to be zero, and that q1(s) ∼ q2(s) if
lims→a q2(s)/q1(s) = 1.We say that f : R≥0 × R

n → R
n satis�es the Carathéodory onditions if f(·, x) ismeasurable for eah �xed x ∈ R

n, f(t, ·) is ontinuous for eah �xed t ∈ R≥0 and, for eahompat U of R≥0 × R
n, there exists a integrable funtion mU : R≥0 → R≥0 suh that

|f(t, x)| ≤ mU (t) for all all (t, x) ∈ U .A funtion f : R
n → R

n is said to be loally Lipshitz if, for any ompat U of R
n, thereexists a nonnegative onstant kU suh that |f(x) − f(y)| ≤ kU |x− y| for all (x, y) ∈ U2.When the ontext is su�iently expliit, we may omit the arguments of a funtion.
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21
Chapter 1De�nitionsLyapunov stability. The works presented in this doument appeal to many di�erenttypes of stability properties. Stability should be understood in the Lyapunov sense. Gen-erally speaking, it refers to the property of a point, a set or a trajetory that any solutionstarting su�iently near remains arbitrarily lose at all time. It onstitutes a ruial fea-ture in ontrol of dynamial systems, as it ensures an aeptable behavior of the plantprovided that its initial onditions are su�iently lose to the nominal ones.The notion of stability may easily be grasped in the ontext of mehanial systems.Considering a ball on a non �at surfae, an equilibrium position is stable if, after anysu�iently small perturbations on the position of the ball, it remains for ever arbitrarilynear to it. The equilibrium is said to be asymptotially stable if, in addition, the ballapproahes it asymptotially. This is illustrated by the drawings of Figure 1.1.

Instability Asymptotic

stability

Global

asymptotic

stabilityFigure 1.1: Illustration of di�erent types of stability.In some situations, it is interesting to know how far from the asymptotially stableequilibrium the ball an start and �nally return to it. The region of the state spaethat lead asymptoti onvergene is referred to as domain of attration. If the domain ofattration is the whole spae, then the equilibrium under onsideration is alled globallyasymptotially stable.While very intuitive in the ontext of mehanial systems, Lyapunov stability is farfrom being on�ned to this area. Generally speaking, the systems onsidered throughoutthe doument are represented as a �nite dimensional di�erential equation of the form
ẋ = f(t, x) , (1.1)



22 1. Definitionswhere t ∈ R≥0 represents the time, x ∈ R
n is the state and f : R≥0 ×R

n → R
n is assumedto satisfy Carathéodory onditions (f. p. 19) and to be loally Lipshitz in x. Morepreisely, for eah ompat U of R≥0 × R

n, we assume that there exists an integrablefuntion kU : R≥0 → R≥0 suh that, for all (t, x) ∈ U and all (t, y) ∈ U ,
|f(t, x) − f(t, y)| ≤ kU (t) |x− y| .By virtue of [Hal69, Theorem 5.3℄, these ombined onditions ensure both existene anduniqueness of the solutions of (1.1).It is worth pointing out the wide variety of systems that an be desribed by suh anequation. To ite a few, it overs a very large number of ontrol problems in mehanis,eletrial systems, biology, eletronis, eletro-magnetis, et., f. e.g. [OLNSR98, KSV91,Son05b℄.Why time-varying systems ? The fat that the right-hand side term of the onsidereddi�erential equation is time-dependent allows to inlude in the study many problems oftrajetory traking. This aims at designing a ontrol u in suh a way that the solution ofthe the dynamial system ẋ = f(x, u) follows asymptotially a presribed referene xd(t).As the adopted ontrol law depends on the time-varying referene trajetory xd(t), thesystem in losed-loop, although originally time-invariant, is of the form ˙̃x = g(t, x̃), where

x̃ := x− xd. The so stated traking ontrol problem applies to many physial systems, asfor instane in the area of ontrol of mehanial and eletromehanial systems (f. e.g.[OLNSR98℄ and referenes therein).Another typial situation in whih expliit time-dependene of the dynamial systemours is that of regulations problems (that is, stabilization of �xed operating point) thatdo not satisfy Brokett's ondition [Bro83℄ or the more onservative ondition presented byCoron in [Cor90℄. In this ase, the open-loop plant is not stabilizable by any ontinuouslydi�erentiable time-invariant feedbak. A time-varying ontroller is then oneivable. Forinstane, it was shown by Coron in [Cor92℄ that any ompletely ontrollable smooth systemwithout drift (inluding nonholonomi mehanial systems) an be stabilized by means ofa smooth periodi time-varying state feedbak. Also, it was shown in [KT03℄ that, if asystem an be stabilized by a ontinuous state-feedbak, then it is stabilizable (althoughpossibly in a non-uniform way) by a smooth time-varying feedbak, whih may onstitutean interesting feature for some appliations.However, this expliit dependene in time of (1.1) an also be of interest from ananalysis point of view. Some tehniques in the literature, see for instane [Kha96, Lor04℄,onsist in simplifying a omplex nonlinear system into a more simple time-varying one byonsidering part of the state as a simple funtion of time.Although the results presented along this doument onern more stability analysisthan stabilization, in the sense that no expliit design of ontrol law is presented, they stillonstitute a presriptive framework on whih one ould base ontrol design strategies.1.1 Stability of the originMany ontrol appliations an be formulated as a stabilization problem of the origin of adynamial system. Typially, one requires that the error between the desired behavior ofthe system and the atual one onverges to zero, leading to the notion of attrativity ofthe origin. In addition, it is usually required that, provided su�iently small initial errors,



23the di�erene between the desired behavior and the atual one remains arbitrarily smallat all time: in other words, stability of the origin is desired.We brie�y reall these notions in a nonlinear time-varying ontext. In this setion, Idenote a losed (but not neessarily bounded) subset of R
n that ontains the origin. Pleaserefer to the Notation part (p. 19) for a de�nition of the mathematial onepts used here.We start with the notion of uniform boundedness of solutions.De�nition 1.1 (UB/UGB) Let I be a losed subset of R

n. The solutions of (1.1) aresaid to be uniformly bounded on I if, for any nonnegative onstant r, there exists a non-negative c(r) suh that, for all t0 ∈ R≥0, they satisfy
x0 ∈ I ∩ Br ⇒ |φ(t, t0, x0)| ≤ c , ∀t ≥ t0 .If I = R

n, then the solutions are uniformly globally bounded.Based on this, we an introdue a preise de�nition of the stability onept that willbe used throughout the doument.De�nition 1.2 (US/UGS) Let I be a losed subset of R
n. The origin of (1.1) is saidto be uniformly stable on I if its solutions are uniformly bounded on I and, given anypositive onstant ε, there exists a positive δ(ε) suh that, for all t0 ∈ R≥0, the solution of(1.1) satis�es

|x0| ≤ δ ⇒ |φ(t, t0, x0)| ≤ ε , ∀t ≥ t0 . (1.2)If I = R
n, then the origin is uniformly globally stable.Stritly speaking, stability of the origin is a purely loal onept whih is summarizedby (1.2). In many appliations, it is also interesting to know a domain from whih solutionsremain bounded, whih explains why a boundedness requirement is imposed in the abovede�nition.Next, we reall the notion of attrativity of the origin.De�nition 1.3 (UA/UGA) Let I be a losed subset of R

n. The origin of (1.1) is saidto be uniformly attrative on I if, for all positive numbers r and ε, there exists a positivetime T (r, ε) suh that, for all x0 ∈ Br ∩ I and all t0 ∈ R≥0, the solution of (1.1) satis�es
|φ(t, t0, x0)| < ε , ∀t ≥ t0 + T .If I = R

n, then the origin is uniformly globally attrative.When the two latter properties are ombined, the resulting property is alled uniformasymptoti stability.De�nition 1.4 (UAS/UGAS) The origin of (1.1) is said to be uniformly globally asymp-totially stable on I if it is both uniformly stable and uniformly attrative on I. If I = R
n,then the origin is uniformly globally asymptotially stable.The �uniformity� requirement in the above de�nitions refers to the initial time. Itorresponds to the independene of δ and T in t0. In other words: no matter at what timethe system's trajetories start, onvergene-rate to zero and overshoot remain unhanged.



24 1. DefinitionsThe importane of uniformity. Uniformity is a ruial property of time-varying sys-tems, as it provides a ertain robustness with respet to external disturbanes. Morepreisely, as more detailed in [LLLP05, Setion 2.1℄, it an be shown that the uniformasymptoti stability of the origin of a zero-input system ẋ = f(t, x, 0) ensures �stabilitywith respet to onstantly ating disturbanes� of ẋ = f(t, x, u), where u denotes an ex-ternal signal1, provided that the f(t, x, u) is loally Lipshitz in x uniformly in t. Thisonept, also known as total stability, was introdued by Malkin, f. e.g. [Mal58℄. It statesthat the trajetories remain arbitrarily small at all time if the initial state and the inputsignal are su�iently small. More preisely, it is de�ned as follows.De�nition 1.5 (Total stability) The origin of ẋ = f(t, x, 0) is said to be totally stableif, for eah ε > 0, there exists δ(ε) > 0 suh that, for all t0 ∈ R≥0, the solution of
ẋ = f(t, x, u) satis�es

max{|x0| , ‖u‖} ≤ δ ⇒ |φ(t, t0, x0, u)| ≤ ε , ∀t ≥ t0 .In a nutshell, by establishing uniform asymptoti stability, we guarantee that the be-havior of the system is not too muh altered by the presene of su�iently small externaldisturbanes. This robustness property does not hold for non-uniform properties, as il-lustrated by [LLLP05, Example 2.1, p. 28℄ in whih a simple salar time-varying systemis exhibited with the following properties: ẋ = f(t, x, 0) is globally asymptotially stable(but not uniformly), nevertheless one an design an arbitrarily small perturbation u insuh a way that ẋ = f(t, x, u) generates unbounded solutions.Larger perturbations. While uniform asymptoti stability thus ensures a natural ro-bustness to small external disturbanes, it provides no information on the behavior of thesystem subjet to larger perturbations. In stability analysis, it is lassial to observe thatthe presene of a bounded non-vanishing disturbane impedes asymptoti stability, yield-ing instead the onvergene to a (possibly large) neighborhood of the operating point. Thisproperty is referred to as ultimate boundedness, f. e.g. [Kha01, Yos66℄.De�nition 1.6 (Ultimate boundedness) The solutions of ẋ = f(t, x) are said to beuniformly ultimately bounded if there exist positive onstants ∆0 and c suh that, forevery ∆ ∈ (0; ∆0), there exists a positive onstant T (∆) suh that, for all x0 ∈ B∆ and all
t0 ∈ R≥0, they satisfy

|φ(t, t0, x0)| ≤ c , ∀t ≥ t0 + T .If this holds for arbitrarily large ∆, then the solutions are globally uniformly ultimatelybounded.In many situations, this property is not enough to ensure orret performanes. Indeed,we see that uniform ultimate boundedness is only onerned with the behavior of the systemafter a su�iently long time and, hene, does not take into aount the transient dynamis.In addition, the domain to whih solutions onverge may be large, then preventing a goodpreision.The aim of the following setions is to introdue stability properties that may helpguaranteeing stronger features to perturbed systems.1u : R≥0 → R
m may onsist in any measurable loally essentially bounded funtion.



251.2 Stability of setsIn the above de�nition of ultimate boundedness, solutions are required to onverge tosome ball, of radius c, entered at the origin. It is natural to extend this property to moregeneral sets. In addition, it is interesting to onstrain the behavior of the system during thetransients, in order to avoid disproportioned overshoots. This motivated the introdutionof set-stability [Zub57, HP73℄.A general onept. The analysis of set-stability is very general and onsequently veryommon in ontrol pratie. This ensues from the fat that the set under onsiderationmay onsist in a single operating point (then orresponding to De�nitions 1.2, 1.3 and 1.4),a path, or a more omplex, possibly unbounded, region of the state-spae.As it will appear more learly in the following de�nitions, stability (and, similarly,attrativity) of a single operating point x∗ is obtained by onsidering the set {x∗}. In thisrespet, we always onsider that the referene point x∗ is the origin. This an be assumedwithout loss of generality, sine, if x∗ is an equilibrium for (1.1), then 0 is an equilibriumfor ż = g(t, z) := f(t, z + x∗) with the oordinate hange z := x− x∗.In the same way, stability of a path may be onsidered by hoosing the set ontainingall the points of this path.In the ase when the appliation does not require onvergene to the origin but just toa small neighborhood of it, it is appropriate to onsider the set as a ball of small radiusentered at zero. This allows to de�ne a rigorous formulation of the problems for whih asteady-state error is tolerated, and is also at the basis of pratial stability as we will seein the next setion.The set may also be deomposed as R
n′ × {0}, with n′ ∈ N<n, when only part of thestate is required to be stable. We refer to this property as partial stability, f. [Vor98℄.Many appliations indeed require the onvergene of a redued number of variables tooperate orretly. This onept has also proved useful in presene of super�uous states, orwhen the plant is inherently unstable with respet to part of the states. See Chapter 4 fordetails.The following stability de�nitions should therefore be seen as general statements, fromwhih all these �partiular� ases may be derived.When dealing with set stability, speial attention has to be paid to the existene ofsolutions for all positive time. A and I denoting two losed (but not neessarily bounded)sets of R

n that ontain the origin2, we therefore start by realling the notion of forwardompleteness. Please see [AS99℄ for a Lyapunov haraterization of this property.De�nition 1.7 (Forward ompleteness) The system (1.1) is said to be forward om-plete on I if, for all x0 ∈ I and all t0 ∈ R≥0, its solution φ(t, t0, x0) est dé�nie pour tout
t ≥ t0.Based on this, we an extend De�nition 1.1 to the ase when we are not interested in aboundedness of the distane of the solutions from the origin, but from a given losed (notneessarily ompat) set A.2This assumption, whih an be made without loss of generality, is imposed in order to ensure that
|·|A ≤ |·|.



26 1. DefinitionsDe�nition 1.8 (UB/UGB with respet to a set) The solutions of (1.1) are said tobe uniformly bounded on I with respet to A if (1.1) is forward omplete on I and, forany nonnegative onstant r, there exists a nonnegative c(r) suh that, for all t0 ∈ R≥0,they satisfy
x0 ∈ I ∩ Br ⇒ |φ(t, t0, x0)|A ≤ c , ∀t ≥ t0 .If I = R

n, then the solutions are uniformly globally bounded with respet to A. Fur-thermore, for the ase that A = {0} and I = R
n we simply say, with a slight abuse ofterminology, that the solutions of (1.1) are uniformly globally bounded.In the ase when A = {0}, we reover uniform boundedness as introdued in De�nition1.1. We see that an additional requirement, namely forward ompleteness, is imposed inthe above de�nition. As the set A may be unbounded, trajetories may explode in �nitetime while the quantity |φ(t, t0, x0)|A remains bounded at all time. Assuming forwardompleteness exludes this possibility. It should be stressed that, in the ase when A is aompat set, this additional requirement is not needed anymore. These remarks hold aswell for the next three de�nitions.De�nition 1.9 (US/UGS of a set) Assume that (1.1) is forward omplete on I. Theset A is said to be uniformly stable on I for (1.1) if the solutions of the latter are uniformlybounded on I with respet to A and, given any positive onstant ε, there exists a positive

δ(ε) suh that, for all t0 ∈ R≥0, the solution of (1.1) satis�es
|x0| ≤ δ ⇒ |φ(t, t0, x0)|A ≤ ε , ∀t ≥ t0 .If I = R

n, then the set A is uniformly globally stable.De�nition 1.10 (UA/UGA of a set) Assume that (1.1) is forward omplete on I. Theset A is said to be uniformly attrative on I for (1.1) if, for all positive numbers r and
ε, there exists a positive time T (r, ε) suh that, for all x0 ∈ Br ∩ I and all t0 ∈ R≥0, thesolution of (1.1) satis�es

|φ(t, t0, x0)|A < ε , ∀t ≥ t0 + T .If I = R
n, then the set A is uniformly globally attrative.De�nition 1.11 (UAS/UGAS of a set) Assume that (1.1) is forward omplete on I.The set A is said to be uniformly globally asymptotially stable on I for (1.1) if it is bothuniformly stable and uniformly attrative on I. If I = R

n, then the set A is UniformlyGlobally Asymptotially Stable.Two measures. It is worth pointing out that these de�nitions are speial ases of stabilitywith respet to two measures, f. [Mov60, LL93℄. This onept is very general and inludes,as we have seen, stability of a single point, of a ompat set, of a presribed trajetory aswell as partial stability [Vor98, Vor02℄. It was used in e.g. [LS76, TP00, Lee04℄. Here,the �rst measure is the distane to the set under onsideration |·|A, while the seond isthe Eulidean norm |·|. As we will see later (see Setion 2.1), for perturbed systems orwhen dealing with adaptive ontrol, this hoie allows, in many situations, to use the sameLyapunov funtion as the nominal system, whih makes this stability property muh easierto establish and to use.



27In this respet, we stress that the term uniform used in the above de�nitions onernsonly the dependene in the initial time. More preisely, the onstants c, δ and T inDe�nitions 1.8, 1.9 and 1.10 are all required to be independent of t0. Other existing resultsin the literature (e.g. [Yos66, LSW96, TPL02℄) use this terminology to underline that theset-stability is de�ned with the same measure, notably implying that the set A is positivelyinvariant, whih is not the ase here.As in the spirit of Hahn's formulations [Hah63℄ of stability in terms of K and KLestimates (see also [Son98a℄), the properties de�ned above an be written in the followingpreise way.Proposition 1.12 (K haraterization of UB/UGB) Assume that (1.1) is forward om-plete on I. The solutions of (1.1) are uniformly bounded on I (resp. uniformly globallybounded) with respet to A if and only if there exists a lass K funtion η and a nonnegativeonstant µ suh that, for any x0 ∈ I (resp. x0 ∈ R
n) and any t0 ∈ R≥0, the solution of(1.1) satis�es

|φ(t, t0, x0)|A ≤ η(|x0|) + µ , ∀t ≥ t0 .Proposition 1.13 (K haraterization of US/UGS) Assume that (1.1) is forward om-plete on I. A losed set A is uniformly stable on I (resp. uniformly globally stable) for(1.1) if and only if there exists a lass K funtion γ suh that, for any x0 ∈ I (resp.
x0 ∈ R

n) and any t0 ∈ R≥0, the solution of (1.1) satis�es
|φ(t, t0, x0)|A ≤ γ(|x0|) , ∀t ≥ t0 .Proposition 1.14 (KL haraterization of UAS/UGAS) Assume that (1.1) is for-ward omplete on I. A losed set A is uniformly asymptotially stable on I (resp. uni-formly globally asymptotially stable) if and only if there exists a lass KL funtion β suhthat, for all x0 ∈ I (resp. x0 ∈ R

n) and all t0 ∈ R≥0, the solution of (1.1) satis�es
|φ(t, t0, x0)|A ≤ β(|x0| , t− t0) , ∀t ≥ t0 .The proof of these haraterizations follows along the same lines as [Vid93, Theorems53 and 61℄, we therefore do not reall them here.When the onvergene rate to the set A is exponential and the dependene in the initialstate is linear, the stability is said to be exponential.De�nition 1.15 (UES/UGES of a set) If, in Proposition 1.14, the lass KL funtionan be piked as

β(s, t) = k1se
−k2t , ∀s, t ∈ R≥0for some positive onstants k1 and k2, then the set A is said to be uniformly exponentiallystable on I (resp. uniformly globally exponentially stable) with parameters (k1, k2).For the study of the alteration of a stability property under the in�uene disturbanes,a noteworthy partiular ase of the above de�nitions is when the sets under onsiderationare losed balls. It is indeed at the basis of all the de�nitions of semiglobal and pratialstability properties introdued next. The following proposition, that follows from Propo-sitions 1.12 and 1.14, establishes a strong link of this onept with the (σ → ρ)-stabilityoriginally introdued in [TPA99℄ and realled in De�nition A.1 (p. 172).



28 1. DefinitionsProposition 1.16 (UAS and σ → ρ stability) Let ∆ > δ > 0. Then the followingimpliations hold:- If Bδ is UAS on B∆, then (1.1) is (∆ → δ)-stable;- If (1.1) is (∆ → δ)-stable, then Bδ is UAS on B∆′, for all ∆′ ∈ (δ,∆).The proof of this proposition is detailed in Setion A.2. We an notie that no forwardompleteness assumption is needed anymore as the set under onsideration, namely Bδ,is ompat. In this ase, uniform asymptoti stability naturally ensures the existene ofsolutions for all forward time.1.3 Semiglobal and pratial asymptoti stabilityThe need of a �ner analysis. As already pointed out by Hahn in [Hah63℄ and by LaSalle and Lefshetz in [SL61℄, pratial onsiderations should be taken into aount whenstudying the asymptoti stability of the equilibrium of a given plant. To quote an exampleof the latter referene, the asymptoti stability of an eletrial system operating at 110 Vensures that small variations will be anelled out. However, if the amplitude of these tol-erated variations is tool small, say of some millivolts, the system may not operate orretly.On the opposite, the operating point of a given system may be mathematially unstable,thus generating small osillations around it, but still guarantee a su�ient preision for anaeptable behavior. Using the intuitive illustration, already used in Figure 1.1, of a ballon a non-�at surfae, these would orrespond to the following situations:

Asymptotic stability with a

small domain of attraction

Instability with a small

steady-state errorFigure 1.2: Pratial onsiderations about stability.A tighter analysis is then apital.Steady-state errors and restrited domain of attration. As already noted, non-vanishing perturbations ating on the plant or measurement impreisions may impede theonvergene to the origin by yielding a steady-state error. In the same way, it is often thease that some negleted high-order nonlinearity in the dynamis prevent global stability,generating instead an unbounded basin of attration. In eah of these situations, an weexpet more than loal stability and ultimate boundedness ?



29In the stability analysis of losed-loop systems, but also in some ontexts that aredeveloped later (suh as averaging tehniques or output feedbak ontrol; see Chapter2), the tuning of some free parameters (typially ontrol gains) often allow to arbitrarilyenlarge the domain of attration, or to diminish at will the magnitude of the steady-stateerrors. These properties are respetively referred to as semiglobal and pratial stability.In more formal terms, semiglobal and pratial stability properties pertain to parame-terized nonlinear time-varying systems of the form
ẋ = f(t, x, θ) , (1.3)where x ∈ R

n, t ∈ R≥0, θ ∈ R
m is a onstant parameter and f : R≥0 × R

n × R
m → R

nis loally Lipshitz in x and satis�es Carathéodory onditions for any parameter θ underonsideration.De�nition 1.17 (USAS) Let Θ ⊂ R
m be a set of parameters. The system (1.3) is saidto be uniformly semiglobally asymptotially stable on Θ if, given any ∆ > 0, there exists

θ⋆(∆) ∈ Θ suh that the origin is uniformly asymptotially stable on B∆ for the system
ẋ = f(t, x, θ⋆).De�nition 1.18 (UGPAS) Let Θ ⊂ R

m be a set of parameters. The system (1.3) is saidto be uniformly globally pratially asymptotially stable on Θ if, given any δ > 0, thereexists θ⋆(δ) ∈ Θ suh that the ball Bδ is uniformly globally asymptotially stable for thesystem ẋ = f(t, x, θ⋆).De�nition 1.19 (USPAS) Let Θ ⊂ R
m be a set of parameters. The system (1.3) is saidto be uniformly semiglobally pratially asymptotially stable on Θ if, given any ∆ > δ > 0,there exists θ⋆(δ,∆) ∈ Θ suh that the ball Bδ is uniformly asymptotially stable on B∆ forthe system ẋ = f(t, x, θ⋆).In the above de�nitions, θ represents the tuning parameter, e.g. ontrol gains or anyfree design parameter. Θ is the set of allowed tuning parameters, whih may be boundeddue to physial onstraints suh as limitation of the output of atuators. ∆ an be seenas the radius of the estimate of the domain of attration; in most appliations, a larger

∆ indues better performane sine the operating bandwidth is enlarged. In ontrast,
δ represents the radius of the ball to whih solutions ultimately onverge; therefore it istypially required to be small, in order to redue the steady-state error as muh as possible.Pratial stability and ultimate boundedness. As it is further disussed in thesequel (see Chapter 2), pratial stability shares similarities with the lassial ultimateboundedness property (f. De�nition 1.6), in the sense that solutions eventually reah aneighborhood of the operating point. It should however be lear to the reader that theabove De�nitions 1.18 and 1.19 are usually more interesting in pratie, as they requirethe size of this neighborhood to be reduible at will by an adequate tuning and as theyrequire the ball Bδ not only to be attrative but also stable (in the sense of De�nition ??).We also stress that De�nitions 1.18 and 1.19 do not require the origin to be an equi-librium for the system (1.3). This indeed fails for many pratially stable systems as, forinstane, Examples 2.2 and 2.8 given below.In view of Proposition 1.14, USPAS an be expressed in terms of KL estimates.



30 1. DefinitionsProposition 1.20 (KL haraterization of USPAS) The system ẋ = f(t, x, θ) intro-dued in (1.3) is uniformly semiglobally asymptotially pratially stable if and only if, forall positive onstants δ and ∆ suh that ∆ > δ, there exists a parameter θ⋆(δ,∆) ∈ Θand a lass KL funtion βδ,∆ suh that, for all x0 ∈ B∆ and all t0 ∈ R≥0, the solution of
ẋ = f(t, x, θ⋆) satis�es

|φ(t, t0, x0, θ
⋆)|δ ≤ βδ,∆(|x0| , t− t0) , ∀t ≥ t0 .A hanging KL estimate. We stress that the funtion β is not required to be independentof δ and ∆. Typially, this dependene in the the size of the domain of attration and thesize of the ball to whih solutions onverge steps through the dependene in the tuningparameter θ. In order to reah some given δ and ∆, it is indeed usually neessary tohoose a onvenient parameter θ. However, as the dynamis of the system depends on θ,it may happen that the onvergene rate as well as the dependene in the initial state (ina word, the KL estimate β) is a�eted aordingly. For instane, in mehanial systems, itis a lassial phenomenon that, for a given initial ondition (t0, x0), one observes a largerovershoot when enlarging the ontrol gains in order to diminish the steady-state error. SeeExample 2.2 for a simple illustration of this phenomenon.Many de�nitions of semiglobal and/or pratial stability existing in the literature doimpose that the KL estimate be uniform in δ and ∆. See for instane [TPA99, NL04,ST03℄3. As it will be more detailed in the sequel (see Chapter 2), this non-uniformityonstitutes a ruial di�erene with those referenes: while the above (less onservative)de�nitions allow to treat a muh wider lass of systems, they impose a more involvedLyapunov stability analysis. Of ourse, the natural ounterpart of this generality of thisnotion is that the latter is weaker than the above ited de�nitions. Yet, it guaranteesinteresting properties to the system in terms of overshoot, onvergene, robustness andpreision.Frequent properties. Semiglobal and/or pratial stability properties appear in varioussituations. An intuitive one is the degraded funtioning of a plant due to negleted dynam-is, external perturbations, inadequay with the model, et. A ontrolled system for whihthe operating point is uniformly globally asymptotially stable typially presents a prop-erty of uniform semiglobal asymptoti stability in presene of high order nonlinearities, ormay be uniformly globally pratially asymptotially stable if some external non-vanishingperturbations at on it. These ommon situations are illustrated by elementary examplesin Chapter 2.Although these do not onstitute the only oasions to observe semiglobal and/or pra-tial stability (we also ould have ited averaging tehniques, output feedbak ontrol ordisrete-time systems; see Chapter 2 for a more exhaustive desription), they show thatthe properties of UGPAS, USAS and USPAS an be seen as measures of the robustness ofa nonlinear time-varying system to model approximations, impreisions, external distur-banes, et.3Although [TPA99, De�nition 3℄ does not impose this uniformity, the main result in that referene doesensure suh a feature.



311.4 Input to State StabilityISS. For the spei� study of robustness with respet to disturbanes, a partiularly �ttingframework is input to state stability (ISS). In informal terms, the ISS property introduedby Sontag in [Son89a℄ (see also [Son95, Son05a℄ for surveys on this notion) imposes thatthe norm of the state at the urrent time be bounded by a funtion of the amplitude ofthe external input plus a fading term in the initial state. This paradigm allows to takeinto aount two phenomena: 1) the state will eventually onverge to any arbitrarily smallneighborhood of the origin provided that the amplitude of the input is su�iently small,2) if the input is null at all time, then the origin of the system is globally asymptotiallystable.iISS. Even though this property has been widely used both in analysis and design, f. e.g.[Son98a, KKK95, JM97, PW96℄, ISS happens to be too strong a requirement in severalases. This motivated the introdution of Integral Input to State Stability (iISS) [Son98b℄,whih turns out to be a muh weaker property. Instead of linking the state to the supremumof the input, it involves a measure of the energy that inputs feed into the system. Similarlyto ISS, it ensures global asymptoti stability for the zero-input system and guaranteessome robustness to the system with respet to external inputs. For instane, it is shown in[Son98b℄ that, when the energy of the perturbing input is �nite, the asymptoti behaviorof the solutions of an iISS system is not a�eted.Both the ISS and iISS properties were originally introdued in a time-invariant ontext,f. [Son89a℄ and [Son98b℄ respetively. Although some extensions were made to generalizeto time-varying systems (see e.g. [Lin96, ELW00, LWC05, MM05℄), most of the existingtools that help guaranteeing ISS, and espeially iISS, remain limited to autonomous sys-tems. For this reason, the following de�nitions related to iISS are given by onsideringsystems of the form:
ẋ = f(x, u) (1.4)where x ∈ R

n denotes the state and f : R
n×R

p → R
n denotes a loally Lipshitz funtion.Input signals u : R≥0 → R

p may onsist in any measurable loally essentially boundedfuntions.We give the preise de�nitions of ISS and iISS below.De�nition 1.21 (ISS) We say that (1.4) is input to state stable if there exist a lass KLfuntion β and a lass K∞ funtion γ suh that, for all x0 ∈ R
n and any admissible input

u, the solution of (1.4) satis�es
|φ(t, x0, u)| ≤ β(|x0| , t) + γ (‖u‖) , ∀t ∈ R≥0 . (1.5)The funtion γ is then referred to as an ISS gain for (1.4).De�nition 1.22 (iISS) We say that (1.4) is integral input to state stable if there exista lass KL funtion β and lass K∞ funtions γ and µ suh that for all x0 ∈ R

n and anyadmissible input u, the solution of (1.4) satis�es
|φ(t, x0, u)| ≤ β(|x0| , t) + γ

(∫ t

0
µ(|u(τ)|)dτ

)
, ∀t ∈ R≥0 .The funtion µ is then referred to as an iISS gain for (1.4).



32 1. DefinitionsBased on these two formulations, it is easy to see that any ISS or iISS system is globallyasymptotially stable when the input is zero at all time. This zero-input system an beviewed as the �nominal� system, and the above properties then give a lear measure of itsrobustness with respet to external disturbanes (their amplitude or their energy aordingto the ase).ISS and pratial stability. Compared to the pratial stability property introduedin the previous setion, it is worth underlining that both ISS and iISS ensure that a ball,whose radius is diretly related to the input, is globally asymptotially stable. However,for a given input signal, this ball is not required to be reduible at will by a onvenienttuning of some parameter. For the same reason, we stress that the notion of input to statepratial stability (ISpS) introdued in [JTP94℄ should not be understood in the sense ofthe term �pratial� of De�nitions 1.18 and 1.19. ISpS di�ers from ISS in that, instead ofthe origin itself, a ball entered at it is required to be globally asymptotially stable. Morepreisely, it orresponds to De�nition 1.21 where (1.5) is replaed by
|φ(t, x0, u)| ≤ β(|x0| , t) + γ (‖u‖) + δ , ∀t ∈ R≥0 ,

δ denoting a nonnegative onstant. In this ontext, δ is �xed an not reduible at will bytuning the system's parameters.In the same way, note that the onept of semiglobal integral input to state stabilityintrodued in [ASW00b℄, where the KL estimate and the iISS gain are not required to holdover R
n but only on arbitrarily large ompat sets, is di�erent from the �semiglobality� ofDe�nitions 1.17 and 1.19. See Chapters 2 and 5 for a more detailed omparison of thesenotions.
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Chapter 2Semiglobal and pratial asymptotistabilityNatural stability properties. As evoked in Chapter 1, the opportunities of enounteringsemiglobal and/or pratial stability are numerous in ontrol pratie. Before presentingneessary and su�ient onditions for it to hold, in terms of Lyapunov funtions, we wouldlike to go bak on the motivations for this study.To this end, we start by introduing the following elementary example, whih willillustrate the topi along the hapter and should give a more intuitive understanding ofthe semiglobal pratial stability property, in its full generality, and the ways to establishit. Although simple, this example illustrates many properties and di�ulties involved insuh a stability analysis.Example 2.1 Consider the seond-order salar dynamial system desribed by

q̈ = −θ1q − θ2q̇ + b(t, q, q̇) + c(t, q, q̇)q̇2 (2.1)where θ1 and θ2 are free ontrol gains, and b and c are loally Lipshitz funtions satisfying,for all q, q̇ ∈ R and all t ∈ R≥0,
|b(t, q, q̇)| ≤ b̄ , |c(t, q, q̇)| ≤ c̄with some nonnegative onstants b̄ and c̄. In the ase that b and c are identially zero,the system redues to a Hurwitz linear system and global exponential stability follows forany positive hoie of θ1 and θ2. However, in presene of the term b, we see that if thestate (q, q̇) is small, then the dynamis are predominantly ditated by b. This may yield toundesirable behavior as solutions approah the origin. Similarly, if c is non zero, then theterm c(t, q, q̇)q̇2 prevails when q̇ is large, potentially yielding a restrition of the domainof attration. Intuitively, we an expet that, by enlarging the gains θ1 and θ2, we limitthe domination of the b term to very small values of the state and the domination of c tovery large values. Aordingly, we would then obtain that the magnitude of the steady-stateerrors an be redued at will by hoosing su�iently large gains and, in the same way, thatwe an arbitrarily enlarge the domain of attration. This is respetively what is meant bypratial and semiglobal stability. �Through this intuitive example, we see that perturbations may degrade the performaneof a system, espeially by reduing the operating bandwidth and generating a steady-state



34 2. Semiglobal and pratial asymptoti stabilityerror. But it also suggests that, in some situations, the e�ets of these degradations anbe made aeptable when some freedom is available on a parameter.Perturbations of this type may have di�erent soures. Most ommonly, asymptotistability may yield pratial stability in presene of a non-vanishing external signal, suhas noise. For instane, this may be the result of imperfetions in the measurement or inthe atuation. This would orrespond to the time-dependene of the b term in the aboveexample. The onvergene to the origin may also be impeded by the use of saturatedontrol (f. p. 85), the presene of delay [LZ01℄, et. Negleted dynamis, high-ordernonlinearities, model unertainty, bad knowledge of some parameters, physial onstraints,et. may also prevent global asymptoti stability while still allowing semiglobal and/orpratial stability.However, degradation of nominal performane does not onstitute the only oasion ofenountering uniform semiglobal pratial asymptoti stability (USPAS). It may also beonluded from stability analysis tools existing in the literature. USPAS of a nonlineartime-varying system follows for instane from averaging tehniques. In [TPA99℄, it is shownthat, if the averaged system of ẋ = f(t, x) is globally asymptotially stable, then the system
ẋ = f(t/θ, x) is USPAS on the parameter set R>0, implying that, from any ompat setof initial ondition, it su�es to pik θ small enough for the solutions to onverge to anyarbitrarily small neighborhood of the origin.Existing variants. We stress that the term �pratial stability� has many variants inthe literature of ontrol theory. In many situations, the ball to whih solutions onvergeis not required to be arbitrarily reduible. This is the ase in [MP72, Kap73, ZM03℄,where it is only imposed that any solution starting in a ball never leaves another ball.The notion of input to state pratial stability originally introdued in [JTP94℄ imposes afading dependene in the initial state, but does not require the attrative neighborhood tobe reduible at will.On the other hand, this term may also denote more onservative properties than thatof De�nition 1.18, as they require that the KL estimate, or at least its dependene inthe initial state, be the same for all parameters1 θ ∈ Θ. While the latter property issatis�ed in many ontexts (see e.g. [MA00, TPA99, NL04, ST03, TNM05℄), it may failwhen dealing with perturbed systems: see the example below. In this respet, we stressthat, in De�nitions 1.17, 1.18 and 1.19, �uniform� refers only to the initial onditions, andnot to the tuning parameter.Similarly to pratial stability, the names given in the literature to what we all heresemiglobal stability properties vary a lot. It is, for instane, referred to as potentiallyglobal stabilizability in [Ba86℄. Some authors, as for instane [BI91, Hu96℄, also use thedenomination on ompata stabilizability.Stability and stabilizability. It should be underlined that many authors use the ter-minology �stabilizability� instead of �stability� when dealing with pratial or semiglobalproperties, see e.g. [Ba86, Sus90, TP95, JB96, MS03℄. In general terms, these referenesdeal with the problem of �nding a ontrol input that makes the solutions onverge, in astable way, to an arbitrarily small neighborhood of the operating point from an arbitrarilylarge given set of initial states. The system under onsideration is onsequently a on-trolled system, and not a parameterized system as (1.3). The di�erene between these two1In other words, the overshoot may depend on the hosen parameter θ, but not the onvergene rate.



35onepts is slight. They may even oinide on some oasions, as for instane in [Ba86℄,where the ontrol is a priori sought in the form u = Kx. It is therefore a stabilizabilityproblem, but the gain matrix K an also be seen as a tuning parameter for the losed-loopsystem, allowing to address the question in terms of pratial stability.The oasions of guaranteeing semiglobal stabilizability are numerous. It is shown in[TP94℄ that smooth global stabilizability and omplete uniform observability (meaning,roughly, that the state may be reonstruted based on the instantaneous knowledge of theinput, the output, and a �nite number of their derivatives) imply semiglobal stabilizabilityby output feedbak. In robust ontrol with respet to model unertainty, semiglobal stabi-lizability in ensured for a lass of systems by the approah of [Isi97℄. Semiglobal asymptotistability may also arise by the use saturated ontrols: see [ARKC03℄ for an example inrobotis.The following example provides a rigorous proof of the intuitive reasoning proposedin Example 2.1. In partiular, we give a KL estimate whih is not uniform in the tuningparameter θ.Example 2.2 Inspired by the peaking phenomenon example in [SK91℄, we onsider thesystem (2.1) of Example 2.1, with θ1 = θ2, θ2 = 2θ, b(t, q, q̇) = 1 and c(t, q, q̇) = 0 for all
t ∈ R≥0 and all q, q̇ ∈ R, θ denoting a positive free parameter. In other words:

(
q̇
q̈

)
=

(
0 1

−θ2 −2θ

)(
q
q̇

)
+

(
0
1

)
. (2.2)Let x := (q, q̇)⊤. Given any initial onditions x0 = (q0, q̇0)

⊤, the solution of this lineartime-invariant system is
φ(t, x0, θ) :=

(
q(t, x0, θ)
q̇(t, x0, θ)

)
=

( [
q0 − 1

θ2
+
(
θq0 + q̇0 − 1

θ

)
t
]
e−θt + 1

θ2[
q̇0 +

(
1 − θ2q0 − θq̇0

)
t
]
e−θt

)
. (2.3)Using that te−t ≤ e−t/2 for all t ∈ R≥0, it an be seen that

|φ(t, x0, θ)| ≤ 2
(
1 + θ + θ2

)
|x0| e−θt/2 +

2 + θ

θ2
.Let δ be any given positive onstant and θ⋆(δ) be any positive number satisfying (2 +

θ⋆)/θ⋆2 ≤ δ. Then, de�ning βδ(s, t) := 2(1 + θ⋆ + θ⋆2)se−θ
⋆t/2 for all s, t ∈ R≥0, we getthat

|φ(t, x0, θ)| ≤ βδ(|x0| , t) + δ , ∀t ∈ R≥0 .Notiing that βδ is a KL funtion for any positive δ, we onlude, in view of De�nition1.18, that (2.2) is (U)GPAS2 on the parameter set Θ = R>0.Note that the resulting KL estimate of the solutions depends on the hosen parameter
θ⋆ and so, indiretly, on the hosen tolerane δ. Furthermore, it is impossible to �nd afuntion β that is the same for all δ. This stems from the term θ2q0te

−t in the expressionof q̇(t, x0, θ) (f. Equation (2.3)) whih, for any positive t and q0 diverges as θ tends toin�nity. Hene, by hoosing a smaller δ, we an expet a larger overshoot. This is on�rmedby the following plots representing |φ(·, x0, θ)|, with x0 = (1, 0)⊤, for θ = 2 (dots), θ = 3(dashes) and θ = 5 (plain).
�2The initial �U�, standing for �uniform�, is groundless as the system under onsideration is time-invariant.
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Figure 2.1: Parameter dependene of the KL estimate.In the literature, many de�nitions of semiglobal and/or pratial stability impose thatthe tuning parameter be a (small) positive onstant, as for instane [MA00, NL04, TNM05,TPA99℄. Aording to the ase, it may for instane onsist in a time re-saling or in thesampling period. In these situations, it is additionally imposed that there exists a value ofthe parameter suh that every smaller hoie yields to the asymptoti stability of the sameball, with the same KL estimate. This requirement naturally indues a tuning proedure:in order to onverge to a smaller ball, it su�es to pik a smaller parameter. Sine ourde�nitions of UGPAS, USAS, and USPAS rely on a possibly non-salar parameter, no suhtuning proedure is o�ered in general. However, in pratie, many appliations do provideonditions on the parameter to reah a given attrative neighborhood of the origin, or toensure a given radius of attration, and therefore suggest a proedure to tune parameters;see Chapter 6 for onrete examples. For instane, in the above example, given a tolerane
δ > 0, any parameter θ1 greater than θ⋆(δ)2 and θ2 greater than 2θ⋆(δ) ensures that theball Bδ is globally asymptotially stable. So, we diretly know that, in order to reah asmaller δ, one should enlarge these two gains.In a nutshell, the good ompromise between generality and strength o�ered by De�ni-tions 1.18, 1.17 and 1.19 motivated their use. We are next presenting tools that guaranteethem in Lyapunov terms.2.1 Su�ient onditionsLyapunov's diret method, originally presented in [Lya92℄, is based on the study of a posi-tive de�nite ontinuously di�erentiable funtion. If its total derivative along the solutionsof the system is non-positive, then stability follows. If this total derivative is negative def-inite, we onlude asymptoti stability. If, in addition, the Lyapunov funtion is radiallyunbounded, then the equilibrium is globally asymptotially stable. This Lyapunov ondi-tion happens to be also neessary for global asymptoti stability. To put in perspetive



37the main results of this hapter, we reall the following lassial result from [BK54℄ �seealso [Hah, Chapter 2℄.Theorem 2.3 (Lyapunov haraterization of UGAS) Suppose that the funtion f of(1.1) is loally Lipshitz. Then the origin of ẋ = f(t, x) is uniformly globally asymptotiallystable if and only if there exists a ontinuously di�erentiable funtion V : R≥0×R
n → R≥0and lass K∞ funtions α, α and α suh that, for all x ∈ R

n and all t ∈ R≥0,
α(|x|) ≤ V (t, x) ≤ α(|x|) (2.4)

∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) ≤ −α(|x|) . (2.5)Let us illustrate its use through the previous example. Although the argument mayappear trivial to the reader, we detail the omputations for further developments.Example 2.4 Suppose that none of the perturbations b and c a�ets the system introduedin Example 2.1:

q̈ = −θ1q − θ2q̇ . (2.6)Letting x := (q, q̇)⊤ and θ := (θ1, θ2)
⊤, the state representation of (2.6) is

ẋ = A(θ)x , with A(θ) :=

(
0 1

−θ1 −θ2

)
. (2.7)Consider the smooth Lyapunov funtion andidate

V (x) :=
θ1
2
q2 +

1

2
q̇2 + εqq̇ ,where ε is a positive onstant. Using the fat that |ab| ≤ (a2 + b2)/2 for all real a and b,we see that

1

2
(θ1 − ε)q2 +

1

2
(1 − ε)q̇2 ≤ V (x) ≤ 1

2
(θ1 + ε)q2 +

1

2
(1 + ε)q̇2 . (2.8)Hene, by piking any ε < min{θ1; 1}, we see that (2.4) holds with

α(s) :=
1

2
min{θ1 − ε; 1 − ε}s2 , α(s) :=

1

2
max{θ1 + ε; 1 + ε}s2 , ∀s ∈ R≥0 . (2.9)In addition, for all x ∈ R

2, we have that
∂V

∂x
(x)A(θ)x ≤ −εθ1q2 − (θ2 − ε)q̇2 + εθ2qq̇

≤ −ε
(
θ1 −

θ2
2

)
q2 −

(
θ2 − ε− εθ2

2

)
q̇2 .So, by hoosing ε and θ1 in suh a way that ε < 2θ2/(2 + θ2) and θ1 > θ2/2, we see that(2.5) holds with

α(s) := min

{
ε

(
θ1 −

θ2
2

)
; θ2 − ε− εθ2

2

}
s2 , ∀s ∈ R≥0 ,whih is indeed a lass K∞ funtion. We onlude from Theorem 2.3 that the origin of(2.6) is globally asymptotially stable. �



38 2. Semiglobal and pratial asymptoti stabilityWhen a perturbation is added to a nominal UGAS system, we an expet the negativityof the Lyapunov funtion's derivative (2.5) to be altered. If the perturbation �ats� aroundthe origin, then one may loose this negativity for small values of the state. In the sameway, high order nonlinearities may ause problem for large values of the state. Hene theregion of the state-spae on whih the total derivative of V is negative may be limited bythese phenomena. If, nevertheless, a wise hoie of some parameter allows to extend thisregion at will, then we an intuitively expet UGPAS, USAS or USPAS aording to thease.We show in the next setions that this is indeed the ase, provided an additional as-sumption on the parameter-dependene of the funtions α and α that bound the Lyapunovfuntion.To the best of our knowledge, no suh su�ient Lyapunov onditions for the semiglobaland/or pratial stability properties introdued in Chapter 1, i.e. with a parameter-dependent KL estimate, has been reported in the literature. In most existing referenes,in order to establish the semiglobal asymptoti stability property of a given system, thereasoning onsists in expliitly estimating the domain of attration and showing that itan be arbitrarily enlarged by a onvenient parameter tuning, f. e.g. [OLK95, ARKC03℄.Similarly, pratial stability is ommonly established by estimating an asymptotially sta-ble ompat set, and to show that its size may be redued at will. The topi of nextsetions is to provide a preise Lyapunov framework for these notions.2.1.1 Global pratial stabilityThe following result gives a su�ient ondition, in terms of a Lyapunov funtion de�nedout of a ball entered at the origin, for the dynamial parameterized system (1.3) to beuniformly globally pratially asymptotially stable on a given set of parameters.Theorem 2.5 (Lyapunov su�ient ondition for UGPAS) Let Θ be a subset of R
mand suppose that, given any δ > 0, there exist a parameter θ⋆(δ) ∈ Θ, a ontinuouslydi�erentiable Lyapunov funtion Vδ : R≥0 ×R

n → R≥0 and lass K∞ funtions αδ, αδ, αδsuh that, for all x ∈ R
n \ Bδ and all t ∈ R≥0,

αδ(|x|) ≤ Vδ(t, x) ≤ αδ(|x|) (2.10)
∂Vδ
∂t

(t, x) +
∂Vδ
∂x

(t, x)f(t, x, θ⋆) ≤ −αδ(|x|) (2.11)
lim
δ→0

α−1
δ ◦ αδ(δ) = 0 . (2.12)Then the system ẋ = f(t, x, θ) introdued in (1.3) is UGPAS on the parameter set Θ.An additional requirement. Compared to lassial results for Lyapunov stability suhas the one realled in Theorem 2.3, onditions (2.10) and (2.11) are natural. For perturbedsystems, (2.10) is notably satis�ed by the Lyapunov funtion assoiated to the UGAS of theorigin of the orresponding nominal systems. (2.11) is similar to the Lyapunov su�ientondition for global ultimate boundedness (f. e.g. [Kha01℄). Intuitively, one may expetthat these two requirements, when valid for any arbitrarily small δ, su�e to onludeUGPAS. However, we see that an additional assumption (2.12) is required that links thebounds on the Lyapunov funtion. Indeed, as opposed to previously ited de�nitions of



39pratial stability, the Lyapunov funtion may depend on the tuning parameter θ, andonsequently on the radius δ. As learly shown by Sepulhre in [Sep℄, this parametrizationof the Lyapunov funtion may indue unexpeted behaviors. Suh a phenomenon is alreadydesribed in [KM86℄ by Kokotovi¢ and Marino. In that referene, the authors exhibit aontrol system in losed-loop with a feedbak that makes the domain of attration shrinkto zero when one aims at rejeting the e�et of high-order nonlinearities.To the best of our knowledge, the ondition (2.12) onstitutes the �rst one in the lit-erature of pratial stability that allows to ope with this parametrization of the boundson the Lyapunov funtion. It guarantees that the Lyapunov funtion is su�iently repre-sentative of the norm of the state. In Setion 2.1.3 (f. Example 2.19), we will see howruial this requirement is by realling the example, originally presented in [KM86℄, of asystem for whih all the onditions of Theorem 2.5 are ful�lled exept (2.12) and whosenon-trivial solutions grow unbounded (in partiular, it is not UGPAS)3.Before establishing the proof of Theorem 2.5, we introdue the following result, whihis a diret adaptation of [PW96, Proposition 13℄ and allows Vδ to be transformed into amore onvenient form.Lemma 2.6 Let δ be a positive onstant and X be a subset of R
n\

◦
Bδ. Suppose that thereexist a ontinuously di�erentiable funtion V : R≥0 ×X → R≥0 and lass K∞ funtions α,

α, α suh that, for all x ∈ X and all t ∈ R≥0,
α(|x|) ≤ V (t, x) ≤ α(|x|) (2.13)

∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) ≤ −α(|x|) . (2.14)Then, for any positive k, there exists a ontinuously di�erentiable funtion V : R≥0 ×X →

R≥0 and lass K∞ funtions α̃, α̃ suh that, for all x ∈ X and all t ∈ R≥0,
α̃(|x|) ≤ V(t, x) ≤ α̃(|x|) (2.15)

∂V
∂t

(t, x) +
∂V
∂x

(t, x)f(t, x) ≤ −kV(t, x) , (2.16)and, for any s ∈ R≥0, it holds that
α̃−1 ◦ α̃(s) = α−1 ◦ α(s) .If, in addition, there exists a ontinuous nondereasing funtion c : R≥0 → R≥0 suh that,for all x ∈ X and all t ∈ R≥0, ∣∣∣∣

∂V

∂x
(t, x)

∣∣∣∣ ≤ c(|x|) ,then there exists a ontinuous nondereasing funtion c̃ : R≥0 → R≥0 suh that, for all
x ∈ X and all t ∈ R≥0, ∣∣∣∣

∂V
∂x

(t, x)

∣∣∣∣ ≤ c̃(|x|) . (2.17)
�3This example is given in a USAS ontext, but a similar argument holds for UGPAS.



40 2. Semiglobal and pratial asymptoti stabilityProof of Lemma 2.6. Following the proof lines of [PW96, Proposition 13℄, we see that thefuntion V an be de�ned as ρ ◦ V where
{
ρ(s) = exp

(∫ s
1

2dq
a(q)

)
, ∀s > 0

ρ(0) = 0 ,and a is any lass K funtion satisfying
a(s) ≤ min

{
s,

2

k
α ◦ α−1(s)

}
, ∀s ∈ R≥0 and da

ds
(0) = 0 .The bound (2.16) an be established following the same reasoning as in the proof of [PW96,Proposition 13℄. More preisely, we have from (2.13) and (2.14) that

∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) ≤ −α ◦ α−1(V (t, x)) .Hene, from the de�nition of a,

∂V
∂t

(t, x) +
∂V
∂x

(t, x)f(t, x) =
2

a(V (t, x))
V(t, x)

(
∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x)

)

≤ −kV(t, x) .Furthermore, as ρ ∈ K∞, (2.15) an be satis�ed with α̃ := ρ ◦ α and α̃ := ρ ◦ α, and wetherefore have that
α̃−1 ◦ α̃(s) = (ρ ◦ α)−1 ◦ (ρ ◦ α) (s) =

(
α−1 ◦ ρ−1

)
◦ (ρ ◦ α) (s) = α−1 ◦ α(s) .Conerning the bound on the gradient, we have that, for all x ∈ X and all t ∈ R≥0,

∣∣∣∣
∂V
∂x

(t, x)

∣∣∣∣ ≤
2V(x)

a(V (x))

∣∣∣∣
∂V

∂x
(t, x)

∣∣∣∣ ≤
2α̃(|x|)
a(α(|x|))c(|x|) ≤ c̃(|x|) ,where4 c̃(s) := 2α̃(s)

a(α(δ))c(s), whih establishes the result. �We are now ready to present the proof of the main result of this setion.Proof of Theorem 2.5. Let k = 1, X = R
n \ Bδ and Vδ generate, via Lemma 2.6, aontinuously di�erentiable funtion Vδ suh that, for all x ∈ R

n \ Bδ and all t ∈ R≥0,
α̃δ(|x|) ≤ Vδ(t, x) ≤ α̃δ(|x|)

∂Vδ
∂t

(t, x) +
∂Vδ
∂x

(t, x)f(t, x, θ⋆) ≤ −Vδ(t, x) (2.18)hold with lass K∞ funtions α̃δ, α̃δ and α̃δ, satisfying
α̃−1
δ ◦ α̃δ(s) = α−1

δ ◦ αδ(s) , ∀s ∈ R≥0 .From the latter and (2.12), we have
lim
δ→0

α̃−1
δ ◦ α̃δ(δ) = 0 . (2.19)4This is where the requirement δ > 0 is needed.



41Furthermore, from (2.18), we get that
|φ(t, t0, x0, θ

⋆)| ≥ δ ⇒ V̇δ(t, φ(t, t0, x0, θ
⋆)) ≤ −Vδ(t, φ(t, t0, x0, θ

⋆)) . (2.20)Before going further, we introdue the following result whih is also of interest for thenext setions. It provides a KL estimate of solutions, based on a di�erential inequalitythat holds only out from a neighborhood of the origin. The proof is given in Setion A.1.Lemma 2.7 (Integration lemma) Let δ be a nonnegative onstant and X be a subset of
R
n\

◦
Bδ. Assume that there exist a ontinuously di�erentiable funtion V : R≥0×X → R≥0,lass K∞ funtions α and α, a non zero real onstant k and a funtion c : R≥0 → R≥0suh that, for all x ∈ X and all t ∈ R≥0,

α(|x|) ≤ V (t, x) ≤ α(|x|)and, for all x0 ∈ R
n and all t0 ∈ R≥0, the solution of ẋ = f(t, x) satis�es

φ(t, t0, x0) ∈ X ⇒ V̇ (t, φ(t, t0, x0)) ≤ −kV (t, φ(t, t0, x0)) + c(|x0|) .Then, for all x0 ∈ R
n and all t0 ∈ R≥0 suh that φ(t, t0, x0) ∈ X ∀t ≥ t0, we have that

|φ(t, t0, x0)| ≤ α−1

(
α(δ) +

c(|x0|)
|k|

)
+ α−1

(
α(|x0|)e−k(t−t0) +

c(|x0|)
|k|

)
, ∀t ≥ t0 .

�Bak to the proof of Theorem 2.5, we obtain via Lemma 2.7 (with X = R
n\

◦
Bδ, c(·) ≡ 0and k = 1), we dedue from (2.20) that, for all t ≥ t0,

|φ(t, t0, x0, θ
⋆)| ≤ α̃−1

δ ◦ α̃δ(δ) + α̃−1
δ

(
α̃δ(|x0|)e−(t−t0)

)
.De�ne δ̃ := α̃−1

δ ◦ α̃δ(δ) and, for all s, t ∈ R≥0,
βδ(s, t) := α̃−1

δ

(
α̃δ(s)e

−t) .Then we have, for all x0 ∈ R
n and all t0 ∈ R≥0,

|φ(t, t0, x0, θ
⋆)|δ̃ ≤ βδ(|x0| , t− t0) , ∀t ≥ t0 ,and it is easy to see that βδ is a KL funtion for all positive δ. Again, we stress thatthe dependene of β in δ is not in ontradition with De�nition 1.18. Furthermore, itfollows from (2.19) that δ̃ an be made arbitrarily small by piking a parameter θ⋆(δ) ∈ Θorresponding to a su�iently small δ. UGPAS of ẋ = f(t, x, θ) follows. �The bounds on V . It is worth mentioning that, for perturbed systems, onditions (2.10)and (2.11) may often be satis�ed with the Lyapunov funtion that serves in establishingUGAS of the nominal system. This would have not neessarily been the ase if globalpratial stability was de�ned based on set-stability with respet to the same measure |·|δ.Indeed, for this stronger property, it would then have been required that the orrespondingLyapunov be bounded in the following manner:

αδ(|x|δ) ≤ Vδ(t, x) ≤ αδ(|x|δ)



42 2. Semiglobal and pratial asymptoti stabilityinstead of (2.10). It would notably have been required that V vanish on the whole ball Bδ,whih annot be the ase of the original Lyapunov funtion for the unperturbed UGASsystem. Although it is possible, in some situations, to derive a Lyapunov funtion withsuh a property based on the original Lyapunov funtion, this proedure remains far lessdiret than the approah we propose here.Based on the same example as before, we show how to apply Theorem 2.5 and illustratethe above remark.Example 2.8 Reonsider the system from Example 2.4 and assume that a perturbation
b(t, q, q̇), bounded by a nonnegative onstant b̄, a�ets the system (2.6):

q̈ = −θ1q − θ2q̇ + b(t, q, q̇) . (2.21)De�ning x := (q, q̇)⊤ and θ := (θ1, θ2)
⊤, this an be written as

ẋ = A(θ)x+B(t, x) , where B(t, x) :=

(
0

b(t, q, q̇)

) (2.22)and A(θ) is de�ned in (2.7). From Example 2.4, we already know that the following funtion
Vθ(x) :=

θ1
2
q2 +

1

2
q̇2 + εqq̇ ,where ε is a positive onstant, is positive de�nite and radially unbounded provided that

ε < min{θ1; 1}. We also know that, for all x ∈ R
2,

∂Vθ
∂x

(x)A(θ)x ≤ −min

{
ε

(
θ1 −

θ2
2

)
; θ2 − ε− εθ2

2

}
|x|2 .In addition, using the assumed bound on b(t, q, q̇),

∂Vθ
∂x

(x)B(t, x) = (εq + q̇)b(t, q, q̇) ≤ (ε+ 1)b̄ |x|Thus, along the solutions of (2.21), the total time derivative of Vθ satis�es
V̇θ(t, x) ≤ −min

{
ε

(
θ1 −

θ2
2

)
− (ε+ 1)b̄

|x| ; θ2 − ε− εθ2
2

− (ε+ 1)b̄

|x|

}
|x|2 .Let δ be any given positive onstant, and hoose ε = 1/2. Then, provided that θ1 ≥ 1, wesatisfy the above requirement ε < min{1, θ1} and we get that, for all |x| ≥ δ,

V̇θ(t, x) ≤ −min

{
1

2

(
θ1 −

θ2
2

)
− 3b̄

2δ
;

3θ2
4

− 1

2
− 3b̄

2δ

}
|x|2 .So, by hoosing5

θ⋆1(δ) =
10

3
+

4b̄

δ
and θ⋆2(δ) =

8

3
+

2b̄

δ
, (2.23)we see that

|x| ≥ δ ⇒ V̇θ⋆(t, x) ≤ − |x|2 , (2.24)5As required, this hoie ensures notably that θ⋆
1(δ) ≥ 1.



43and (2.11) follows. Furthermore, with this hoie of parameter, we get from (2.8) and (2.9)that (2.10) holds with
αδ(s) :=

1

2
min

{
θ⋆1(δ) −

1

2
;
1

2

}
s2 , αδ(s) :=

1

2
max

{
θ⋆1(δ) +

1

2
;
3

2

}
s2 , ∀s ∈ R≥0 .This, in turn, illustrates learly the indiret δ-dependene of the bounds on V through theparameter θ. Finally,

lim
δ→0

α−1
δ ◦ αδ(δ) = lim

δ→0

√
max

{
θ⋆1(δ) + 1

2 ; 3
2

}
δ2

min
{
θ⋆1(δ) − 1

2 ; 1
2

} = lim
δ→0

√

2

(
10

3
+

4b̄

δ
+

1

2

)
δ2 = 0 .whih establishes (2.12). UGPAS then follows from Theorem 2.5. �In this example, the requirement (2.12) that links the lower and upper K∞ bounds onthe Lyapunov funtion is ful�lled in view of three properties: these bounds are a�ne in thetuning parameters, they are polynomial funtions of the same degree, and the parametersare a�ne in the inverse of the radius δ of the attrative ball. As these three onditionsarise quite often in ontrol pratie, notably in the ontrol of eletro-mehanial systems,we state now a result that espeially �ts to this situation. Although less general, it ismore easily appliable. See Chapter 6 for appliations of this orollary in ontrol of aspaeraft formation and for the automati positioning of ships for tasks suh as underwayreplenishment.Corollary 2.9 (Simpli�ed Lyapunov ondition for UGPAS) Let Θ be a subset of

R
n. Assume that there exist a positive number p, real onstants ai, ai, bi, bi, i ∈ {1, . . . , n}and, for any θ ∈ Θ, a ontinuously di�erentiable Lyapunov funtion Vθ satisfying, for all

x ∈ R
n and all t ∈ R≥0,

n∑

i=1

(ai + biθi) |xi|p ≤ Vθ(t, x) ≤
n∑

i=1

(ai + biθi) |xi|p (2.25)where, for all i ∈ {1, . . . , n} and all θ ∈ Θ, ai+ biθi > 0 and āi+ b̄iθi > 0. Suppose furtherthat, given any δ > 0, there exist a parameter θ⋆(δ) ∈ Θ and a lass K∞ funtion αδ suhthat, for all x suh that δ ≤ |x| and all t ∈ R≥0,
∂Vθ⋆

∂t
(t, x) +

∂Vθ⋆

∂x
(t, x)f(t, x, θ⋆) ≤ −αδ(|x|) . (2.26)If, furthermore, for all i ∈ {1, . . . , n}, we have

lim
δ→0

ai + biθ
⋆
i (δ) > 0 , (2.27)

bi 6= 0 ⇒ lim
δ→0

θ⋆i (δ)δ
p = 0 , (2.28)then the system ẋ = f(t, x, θ) is uniformly globally pratially asymptotially stable on theparameter set Θ.A typial appliation of this orollary onerns the ase of systems in losed loopa�eted by a non-vanishing perturbation. As this will be underlined through onreteexamples in Chapter 6, in these situation, the tuning parameter typially onsists in the



44 2. Semiglobal and pratial asymptoti stabilityontrol gains. As intuitively expeted, these need usually to be enlarged in order to ahievea better preision. For this reason, the requirement (2.27) should be trivially satis�ed inmost ases.Also, for simpliity of the statement, we have assumed that the tuning parameter andthe state have the same dimension n. In most pratial appliations, the dimension m ofthe former is not greater than that of the latter, in whih ase it su�es to omplete θ by
n−m additional (virtual) omponents. However, if needed, a similar result may easily bederived for the ase m ≥ n.Proof of Corollary 2.9. With the notation of Theorem 2.18, we have that, for all s ∈ R≥0,

αδ(s) = min
i∈{1,...,n}

{ai + biθ
⋆
i (δ)} sp , αδ(s) = max

i∈{1,...,n}

{
ai + biθ

⋆
i (δ)

}
sp .It follows that

lim
δ→0

α−1
δ ◦ αδ(δ) = lim

δ→0

(
maxi∈{1,...,n}

{
ai + biθ

⋆
i (δ)

}
δp

mini∈{1,...,n} {ai + biθ
⋆
i (δ)}

)1/p

.In addition, (2.27) ensures that
lim
δ→0

(
min

i∈{1,...,n}
{ai + biθ

⋆
i (δ)}

)
> 0 .In addition, from (2.28) we get that

lim
δ→0

(
max

i∈{1,...,n}
{ai + biθ

⋆
i (δ)} δp

)
= 0 .From these three observations, we onlude that

lim
δ→0

α−1
δ ◦ αδ(δ) = 0 .The assumptions of Theorem 2.18 are then all ful�lled and the onlusion follows. �Example 2.10 Bak to the system in Example 2.8, we see from (2.8) that the Lyapunovfuntion

Vθ(x) :=
θ1
2
q2 +

1

2
q̇2 + εqq̇ ,satis�es (2.25) with n = p = 2, a1 = −ε/2, b1 = b1 = 1/2, a2 = (1 − ε)/2, b2 = b2 = 0,

a1 = ε/2 and a2 = (1 + ε)/2. Choosing ε = 1/2 and assuming that θ1 ≥ 1, we have that
ai + biθi > 0 and ai + biθi > 0 for all i ∈ {1, 2}. In addition, we reall from (2.23) and(2.24) that, given any positive onstant δ, the parameters hoie

θ⋆1(δ) =
10

3
+

4b̄

δ
and θ⋆2(δ) =

8

3
+

2b̄

δ
,yields

|x| ≥ δ ⇒ V̇θ⋆(x) ≤ − |x|2 .Hene, the requirements (2.26), (2.27) and (2.28) hold, and UGPAS an be onludedusing Corollary 2.9, without needing to ompute expliitly limδ→0 α
−1
δ ◦ αδ(δ) as requiredby Theorem 2.5.

�



452.1.2 Semiglobal pratial stabilityWe reall that semiglobal pratial asymptoti stability pertains to the ase when one anprove that, by tuning ertain parameter of the ontrol system, the estimate of the domainof attration an be arbitrarily enlarged and the ball to whih solutions onverge, in astable way, an be redued at will.The following result gives a su�ient ondition, in terms of a Lyapunov funtion,for the dynamial parameterized system (1.3) to be uniformly semiglobally pratiallyasymptotially stable on a given set of parameters.Theorem 2.11 (Lyapunov su�ient ondition for USPAS) Suppose that, given any
∆ > δ > 0, there exist a parameter θ⋆(δ,∆) ∈ Θ, a ontinuously di�erentiable Lyapunovfuntion Vδ,∆ : R≥0 × R

n → R≥0, and lass K∞ funtions αδ,∆, αδ,∆, αδ,∆ suh that, forall x ∈ H(δ,∆) and all t ∈ R≥0,
αδ,∆(|x|) ≤ Vδ,∆(t, x) ≤ αδ,∆(|x|) (2.29)

∂Vδ,∆
∂t

(t, x) +
∂Vδ,∆
∂x

(t, x)f(t, x, θ⋆) ≤ −αδ,∆(|x|) (2.30)Assume further that, for any ∆⋆ > δ⋆ > 0, there exist ∆ > δ > 0 suh that
α−1
δ,∆ ◦ αδ,∆(δ) ≤ δ⋆ (2.31)

α−1
δ,∆ ◦ αδ,∆(∆) ≥ ∆⋆ . (2.32)Then, the system ẋ = f(t, x, θ) introdued in (1.3) is USPAS on the parameter set Θ.Two additional requirements. It is worth mentioning that the ondition (2.29) oftenholds in the analysis of ontrol systems. In partiular, it holds for systems with additivebounded disturbanes when USPAS may be inferred using a Lyapunov funtion for UGASof the orresponding unperturbed system. Condition (2.30) also appears naturally in theontext of stability of perturbed systems. See Chapter 6 for various examples in theontrol of eletro-mehanial systems. The last two onditions, (2.31) and (2.32), needto be imposed due to the fat that the K∞ bounds on the Lyapunov funtion V are notrequired to be the same for all δ and all ∆.The reader is invited to refer to Example 2.19 for an illustration of the neessity toimpose additional requirements as (2.31) and (2.32). This example is presented in a USASontext but may easily be adapted to the USPAS ase.A less onservative lower bound. It is also worth pointing out that the originalresult published in [CL06a℄ uses the following (less onservative) bounds on the Lyapunovfuntion:

αδ,∆(|x|δ) ≤ Vδ,∆(t, x) ≤ αδ,∆(|x|)instead of (2.29). Theorem 2.11 remains indeed valid under this less onservative re-quirement, and orresponds more learly to the Lyapunov haraterization of asymptotistability with respet to two measures, f. e.g. [Mov60, LL93, TP00℄. We have howeverdeided to present the results using Eulidean norms on both sides for the sake of onsis-teny with global results (some of the tools used for UGPAS require bounds as (2.29)),and as this onstraint is usually satis�ed in pratie: see for instane Chapter 6.



46 2. Semiglobal and pratial asymptoti stabilityRemark 2.12 By notiing that the uniform asymptoti stability (UAS) of Bδ on B∆ im-plies the UAS of Bδ′ on B∆′ for any δ′ and ∆′ satisfying δ ≤ δ′ < ∆′ ≤ ∆, the onlusionof Theorem 2.11 remains valid if (2.29) and (2.30) hold for all δ small enough and all ∆large enough. This relaxed assumption, whih an also be derived for Theorems 2.5 and2.18, may be useful in ontrol pratie.We now give the proof of Theorem 2.11.Proof of Theorem 2.11. Let ∆ be any positive onstant and hoose δ small enough that
α−1
δ,∆ ◦ αδ,∆(δ) < ∆ , (2.33)whih is always possible in view of (2.31). Note that this, in turn, ensures δ < ∆. Let Vδ,∆and θ⋆(δ,∆) then be generated by the assumptions. Applying Lemma 2.6 to Vδ,∆ with

X = H(δ,∆) and k = 1 ensures the existene of a ontinuously di�erentiable funtion Vδ,∆suh that, for all x ∈ H(δ,∆) and all t ∈ R≥0,
α̃δ,∆(|x|δ) ≤ Vδ,∆(t, x) ≤ α̃δ,∆(|x|)

∂Vδ,∆
∂t

(t, x) +
∂Vδ,∆
∂x

(t, x)f(t, x, θ⋆) ≤ −Vδ,∆(t, x) (2.34)hold with lass K∞ funtions α̃δ,∆ and α̃δ,∆ satisfying
α̃−1
δ,∆ ◦ α̃δ,∆(s) = α−1

δ,∆ ◦ αδ,∆(s) , ∀s ∈ R≥0 .Inverting the two sides of this inequality yields:
α̃
−1
δ,∆ ◦ α̃δ,∆(s) = α−1

δ,∆ ◦ αδ,∆(s) , ∀s ∈ R≥0 .It then follows from (2.33) that
α̃−1
δ,∆ ◦ α̃δ,∆(δ) < ∆ . (2.35)In addition, in view of (2.31) and (2.32), we have that, for all ∆ > 0,

lim
δ→0

α̃−1
δ,∆ ◦ α̃δ,∆(δ) = 0 (2.36)and, for all δ > 0,

lim
∆→∞

α̃
−1
δ,∆ ◦ α̃δ,∆(∆) = ∞ . (2.37)Before ontinuing, we present the following result whih establishes uniform bounded-ness of the solutions based on the non-positivity of the derivative of a Lyapunov funtionon a su�iently large domain.Proposition 2.13 (Su�ient ondition for UB) Let b be a positive onstant. Supposethat there exists a ontinuously di�erentiable funtion V and two lass K∞ funtions α and

α suh that, for all t ∈ R≥0 and all x ∈ R
n,

α(|x|) ≤ V (t, x) ≤ α(|x|) (2.38)
x ∈ H(a, b) ⇒ ∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) ≤ 0 , (2.39)where a denotes a positive number suh that α(a) < α(b). Then, for all t0 ∈ R≥0, thesolutions of (1.1) satisfy

|x0| ≤ α−1 ◦ α(b) ⇒ |φ(t, t0, x0)| ≤ b , ∀t ≥ t0 .



47Proof of Proposition 2.13. We laim that, whenever V (t, x) = α(b), its derivative alongthe trajetories of (1.1), whih we denote by V̇ , is non positive. To this end, notie that(2.38) implies that, if V (t, x) = α(b), then x ∈ H(α−1 ◦ α(b), b), whih is nonempty (sine
α(b) ≤ α(b)) and inluded in H(a, b) (sine it is assumed that α(a) < α(b)). Hene,the laim is proved in view of (2.39). For any t0 ∈ R≥0 and any x0 ∈ R

n, by de�ning
v(t) := V (t, φ(t, t0, x0)), we therefore get that, for all t ≥ t0,

V (t, φ(t, t0, x0)) = α(b) ⇒ V̇ (t, φ(t, t0, x0)) ≤ 0 ,whih ensures in its turn, by the ontinuity of V (·, φ(·, t0, x0)), that
V (t0, x0) ≤ α(b) ⇒ V (t, φ(t, t0, x0)) ≤ α(b) , ∀t ≥ t0 .The onlusion follows by notiing that, from (2.38),

|x0| ≤ α−1 ◦ α(b) ⇒ V (t0, x0) ≤ α(b)

V (t, φ(t, t0, x0)) ≤ α(b) ⇒ |φ(t, t0, x0)| ≤ b .

�We now ome bak to the proof of Theorem 2.11. In view of (2.34) and (2.35), therequirements of Proposition 2.13 are ful�lled with a = δ and b = ∆ and we get that
|x0| ≤ ∆̃ ⇒ |φ(t, t0, x0, θ

⋆)| ≤ ∆ , ∀t ≥ t0 ,where
∆̃ := α̃

−1
δ,∆ ◦ α̃δ,∆(∆) . (2.40)Now that we have exhibited a ball B∆̃ of initial states from whih solutions never esapes

B∆, we an apply Lemma 2.7 (with6 X = H(δ, ∆̃), c(·) ≡ 0 and k = 1 ) to (2.34) andonlude that, for any x0 ∈ B∆̃ and all t0 ∈ R≥0,
|φ(t, t0, x0, θ

⋆)| ≤ α̃−1
δ,∆ ◦ α̃δ,∆(δ) + α̃−1

δ,∆

(
α̃δ,∆(|x0|)e−(t−t0)

)
, ∀t ≥ t0 .De�ning

δ̃ := α̃−1
δ,∆ ◦ α̃δ,∆(δ) (2.41)and

βδ,∆(s, t) := α̃−1
δ,∆

(
α̃δ,∆(s)e−t

)
, ∀s, t ∈ R≥0 ,we thus obtain that, for all x0 ∈ B∆̃ and all t0 ∈ R≥0,

|φ(t, t0, x0, θ
⋆)|δ̃ ≤ βδ,∆(|x0| , t− t0) , ∀t ≥ t0 .The onlusion follows by observing that βδ,∆ is a KL funtion for all positive δ and ∆and that, in view of (2.36), (2.37), (2.40) and (2.41), ∆̃ and δ̃ an be, at the same time,arbitrarily enlarged and diminished respetively by originally onveniently hoosing ∆ and

δ. �6Note that H(δ, ∆̃) 6= ∅ in view of (2.35).



48 2. Semiglobal and pratial asymptoti stabilityRemark 2.14 We underline the slight di�erene between the requirements (2.31)�(2.32)and their homologous for UGPAS (2.12) and for USAS (2.57). This is due to the possibleon�it that may arise from the simultaneous enlargement of the domain of attration andredution of the size of the attrative ball7. To see this more learly, imagine a Lyapunovfuntion bounded in the following manner:
δ |x| ≤ Vδ,∆(t, x) ≤ ∆ |x| ,then, for all ∆ > 0 we have that

lim
δ→0

α−1
δ,∆ ◦ αδ,∆(δ) = lim

δ→0

√
δ∆ = 0and similarly, for all δ > 0,

lim
∆→∞

α−1
δ,∆ ◦ αδ,∆(∆) = lim

∆→∞

√
δ∆ = ∞ ,whih make (2.12) and (2.57) ful�lled. However, if we go bak to the above proof of Theorem2.11, we see from (2.40) and (2.41) that both ∆̃ and δ̃ equal to √

δ∆. Hene we annot, atthe same time, enlarge ∆̃ and diminish δ̃. The more restritive assumptions (2.31)-(2.32)dismiss this possibility.We show how to apply this result through the following elementary example. We reallthat non-aademi illustrations of the presented results are developed in Chapter 6.Example 2.15 We assume that a non-vanishing perturbation b(t, q, q̇) and a higher or-der nonlinearity c(t, q, q̇)q̇2, with |b(t, q, q̇)| ≤ b̄ and |c(t, q, q̇)| ≤ c̄, now a�et the systemoriginally presented in (2.1):
q̈ = −θ1q − θ2q̇ + b(t, q, q̇) + c(t, q, q̇)q̇2 . (2.42)De�ning x := (q, q̇)⊤ and θ := (θ1, θ2)

⊤, this system an be rewritten as
ẋ = A(θ)x+B(t, x) + C(t, x) , where C(t, x) :=

(
0

c(t, q, q̇)q̇2

) (2.43)and A(θ) and B(t, x) are respetively de�ned in (2.7) and (2.22). As proved in Examples2.4, the funtion
Vθ(x) :=

θ1
2
q2 +

1

2
q̇2 + εqq̇ ,where ε is a positive onstant, is positive de�nite and radially unbounded provided that

ε < min{θ1; 1}. In the sequel, we assume θ1 ≥ 1 and ε = 1/2. For all x ∈ R
2, we alsoknow, from Example 2.8, that

∂Vθ
∂x

(x) (A(θ)x+B(t, x)) ≤ −1

2
min

{
θ1 −

θ2
2

− 3b̄

|x| ;
3

2
θ2 − 1 − 3b̄

|x|

}
|x|2 .Furthermore, it holds that

∂Vθ
∂x

(x)C(t, x) =

(
1

2
q + q̇

)
c(t, q, q̇)q̇2 ≤ 3

2
c̄ |x|3 .7The author sinerely thanks Prof. A. R. Teel for his valuable omments in this diretion.



49Therefore, the total time derivative of Vθ along the solutions of (2.42) satis�es
V̇θ(t, x) ≤ −1

2
min

{
θ1 −

θ2
2

− 3b̄

|x| − 3c̄ |x| ;
3

2
θ2 − 1 − 3b̄

|x| − 3c̄ |x|
}
|x|2 .Let δ and ∆ be any given positive onstants suh that δ < ∆. Then, for all x ∈ H(δ,∆), itholds that

V̇θ(t, x) ≤ −1

2
min

{
θ1 −

θ2
2

− 3b̄

δ
− 3c̄∆ ;

3θ2
2

− 3b̄

δ
− 3c̄∆

}
|x|2 .Aordingly, by hoosing8

θ⋆1(δ,∆) =
10

3
+

4b̄

δ
+ 4c̄∆ and θ⋆2(δ,∆) =

8

3
+

2b̄

δ
+ 2c̄∆ , (2.44)we see that

x ∈ H(δ,∆) ⇒ V̇θ⋆(t, x) ≤ − |x|2 , (2.45)and (2.30) follows. Furthermore, sine θ⋆1 ≥ 1, we get from (2.8), (2.9) and (2.44) that(2.10) holds with the funtions de�ned, for all s ∈ R≥0, by
αδ,∆(s) :=

1

2
min

{
θ⋆1(δ,∆) − 1

2
;

1

2

}
s2 =

1

4
s2

αδ,∆(s) :=
1

2
max

{
θ⋆1(δ,∆) +

1

2
;

3

2

}
s2 =

(
23

12
+

2b̄

δ
+ 2c̄∆

)
s2 .Therefore, the requirement (2.31)-(2.32) imposes that, given any ∆⋆ > δ⋆ > 0, one an�nd ∆ > δ > 0 suh that

δ

√
23

3
+

8b̄

δ
+ 8c̄∆ ≤ δ⋆

∆√
23
3 + 8b̄

δ + 8c̄∆
≥ ∆⋆ .This is in partiular ful�lled if

δ2
(

23

3
+

8b̄

δ
+ 8c̄∆

)
= δ2⋆ (2.46)

∆2

23
3 + 8b̄

δ + 8c̄∆
= ∆2

⋆ .Multiplying these equations yields
δ∆ = δ⋆∆⋆ . (2.47)Injeting this into (2.46) and rearranging terms, we obtain the following seond-order equa-tion in ∆:

∆2 − 4

(
b̄

2δ⋆
+ c̄

)
∆2
⋆∆ − 23∆2

⋆

3
= 0 ,whih learly admits a positive solution. The orresponding δ an then be obtained by (2.47)and USPAS follows from Theorem 2.11. �8As required, this hoie ensures notably that θ⋆

1(δ, ∆) ≥ 1.



50 2. Semiglobal and pratial asymptoti stabilityAgain, we an see that the requirements (2.31) and (2.32) follow from three ombinedproperties: the bounds on the Lyapunov funtion are a�ne in the tuning parameters, theyare quadrati funtions, and the parameters are a�ne in 1/δ and in ∆. As illustrated bythe analysis of robustness of PID-ontrolled robot manipulators to external disturbanes,model imperfetion and atuators'dynamis (f. Setion 6.1), these three onditions arisequite often in pratie. This justi�es the following more restritive but easier-to-applystatement.Corollary 2.16 (Simpli�ed Lyapunov ondition for USPAS) Let Θ be a subset of
R
n. Assume that there exist real onstants ai, ai, bi, bi, i ∈ {1, . . . , n} and, for any θ ∈ Θ, aontinuously di�erentiable Lyapunov funtion Vθ satisfying, for all x ∈ R

n and all t ∈ R≥0,
n∑

i=1

(ai + biθi) |xi|2 ≤ Vθ(t, x) ≤
n∑

i=1

(ai + biθi) |xi|2 . (2.48)Suppose further that, given any positive δ and ∆ suh that δ < ∆, there exist a parameter
θ⋆(δ,∆) ∈ Θ, nonnegative onstants ci, di, ei, i ∈ {1, . . . , n} and a lass K∞ funtion αδ,∆suh that, for all x ∈ H(δ,∆) and all t ∈ R≥0,

∂Vθ⋆

∂t
(t, x) +

∂Vθ⋆

∂x
(t, x)f(t, x, θ⋆) ≤ −αδ,∆(|x|) , (2.49)

θ⋆i (δ,∆) = ci +
di
δ

+ ei∆ , ∀i ∈ {1, . . . , n} . (2.50)Then, under the ondition that
ai + bici > 0 , ∀i ∈ {1, . . . , n} , (2.51)the system ẋ = f(t, x, θ) introdued in (1.3) is uniformly semiglobally pratially asymp-totially stable on the parameter set Θ.As to what regards the dimension of θ, a similar remark as that made for Corollary 2.9holds. Please refer to Chapter 6 for onrete appliations in ontrol of mehanial systems.Proof of Corollary 2.16. Consider the two following onstants:

c := min
i∈{1,...,n}

{ai + bici} and c := max
i∈{1,...,n}

max
{
ai + bici; bidi; biei

}
.Using the notations of Theorem 2.11, we an pik, for all s ∈ R≥0,

αδ,∆(s) = cs2 , αδ,∆(s) = c

(
1 + ∆ +

1

δ

)
s2 .In view of (2.51), c is a positive onstant so both αδ,∆ and αδ,∆ are lass K∞ funtions. Inaddition, the requirement (2.31)-(2.32) beomes:

(
c(1 + ∆ + 1/δ)

c

)1/2

δ ≤ δ⋆

(
c

c(1 + ∆ + 1/δ)

)1/2

∆ ≥ ∆⋆ .



51For this, it is su�ient that
(1 + ∆ + 1/δ)δ2

ε
= δ2⋆ (2.52)

ε

(1 + ∆ + 1/δ)∆2
= ∆2

⋆ , (2.53)where ε := c/c. Multiplying (2.52) and (2.53), we get that
δ∆ = δ⋆∆⋆ . (2.54)From this and (2.52), we obtain the following seond order equation in ∆:

ε∆2 − ∆2
⋆

(
1 +

1

δ⋆∆⋆

)
∆ − ∆2

⋆ = 0 ,whih admits a positive solution for all δ⋆,∆⋆ > 0. The orresponding δ is then obtainedby injeting this solution in (2.54). �Example 2.17 Bak to the system in Example 2.15, we see that the Lyapunov funtion
Vθ(x) :=

θ1
2
q2 +

1

2
q̇2 + εqq̇ ,satis�es (2.48) with n = p = 2, a1 = −ε/2, b1 = b1 = 1/2, a2 = (1 − ε)/2, b2 = b2 = 0,

a1 = ε/2 and a2 = (1+ε)/2. Choosing ε = 1/2 and θ1 ≥ 1, we then have that ai+ biθi > 0and ai + biθi > 0 for all i ∈ {1, 2}. In addition, we reall from (2.44) and (2.45) that,given any positive onstants 0 < δ < ∆, the following impliation
x ∈ H(δ,∆) ⇒ V̇θ⋆(x) ≤ − |x|2an be obtained with the following hoie of parameters:

θ⋆1(δ,∆) =
10

3
+

4b̄

δ
+ 4c̄∆ and θ⋆2(δ,∆) =

8

3
+

2b̄

δ
+ 2c̄∆ .Hene, the requirements (2.49) holds, and USPAS an be diretly onluded using Corollary2.9.

�2.1.3 Semiglobal asymptoti stabilityIn the presene of high order nonlinearities or imperfetions in the model, solutions mayasymptotially onverge, in a stable way9, to the origin itself, but on �nite sets of initialonditions only. If the basin of attration an be arbitrarily enlarged by a onvenienthoie of some tuning parameters, then we refer to this property as uniform semiglobalasymptoti stability (USAS, see De�nition 1.17). USAS therefore onstitutes a strongerproperty than the USPAS disussed in the previous setion.Similarly to UGPAS and USPAS, USAS an be established by studying the sign of aLyapunov funtion and its derivative in a restrited region of the state-spae. We give thisresult below.9By this, we mean that the origin is asymptotially stable on the onsidered set of initial states.



52 2. Semiglobal and pratial asymptoti stabilityTheorem 2.18 (Lyapunov su�ient ondition for USAS) Suppose that, given any
∆ > 0, there exist a parameter θ⋆(∆) ∈ Θ, a ontinuously di�erentiable Lyapunov funtion
V∆ : R≥0 ×R

n → R≥0, and lass K∞ funtions α∆, α∆, α∆ suh that, for all x ∈ B∆ andall t ∈ R≥0,
α∆(|x|) ≤ V∆(t, x) ≤ α∆(|x|) (2.55)

∂V∆

∂t
(t, x) +

∂V∆

∂x
(t, x)f(t, x, θ⋆) ≤ −α∆(|x|) . (2.56)Assume further that

lim
∆→∞

α−1
∆ ◦ α∆(∆) = ∞ . (2.57)Then the system ẋ = f(t, x, θ) introdued in (1.3) is uniformly semiglobally asymptotiallystable on the parameter set Θ.This result shares many similarities with Theorems 2.5 and 2.11, so we invite the readerto refer to these statements for omments on the bounds (2.55), (2.56) and (2.57). We stressone again that the ondition (2.57) is needed due to the possible parametrization of the

K∞ bounds on the Lyapunov funtion by the radius ∆. With the help of the followingexample, we show that it annot be removed from the above statement.Example 2.19 (The importane of (2.57)) Consider the seond-order nonlinear sys-tem, originally presented by Kokotovi¢ and Marino in [KM86℄:
ẋ1 = x2

ẋ2 = −θ2x1 − θx2 +
1

3
x3

2 ,where θ denotes a positive gain. We laim that this system, together with the funtion
Vθ(x) = θ2x2

1 + x2
2 + x2tanhx1 ,satis�es all the requirements of Theorem 2.18, exept (2.57), but is not USAS. Indeed, itstotal derivative yields

V̇θ(x) = −2θx2
2 +

2

3
x4

2 + x2
2seh2x1 + tanhx1

(
−θ2x1 − θx2 +

1

3
x3

2

)
,from whih we easily get that

V̇θ(x) ≤ −θ
2

2
x1tanhx1 − θx2

2 −
θ

2
(θ − 1) tanh2x1 −

(
θ

2
− 1 +

|x2|
3

+
x2

2

3

)
x2

2 .Thus, given any positive ∆, it su�es to hoose
θ = θ⋆(∆) :=

2

3

(
3 + ∆ + ∆2

) (2.58)to obtain that, for all x ∈ B∆,
V̇θ⋆(x) ≤ −x1tanhx1 − x2

2 ≤ −x1tanhx1 − x2tanhx2 .Using the fat that (a + b)tanh(a + b) ≤ 2atanh(2a) + 2btanh(2b) for all a, b ∈ R≥0, weonlude that (2.56) holds with
α∆(s) :=

s

2
tanh(s

2

)
, ∀s ∈ R≥0 .



53In addition, with the parameter hoie (2.58), the ondition (2.55) is ful�lled on the wholestate-spae R
2 with the following K∞ funtions:
α∆(s) := min

{
θ⋆(∆)2 − 1

2
;
1

2

}
s

2
tanh(s

2

)
=
s

4
tanh(s

2

)

α∆(s) := max

{
θ⋆(∆)2 +

1

2
; 1

}
s2 =

(
θ⋆(∆)2 +

1

2

)
s2 .To sum up, the onsidered Lyapunov funtion is positive de�nite and radially unbounded,and its total derivative along the solutions of the system is negative de�nite on a domain thatan be made arbitrarily large by enlarging the ontrol gain. However, quite surprisingly, thedomain of attration of this system annot be arbitrarily enlarged. Atually, it was shown in[KM86℄ that it even vanishes as the gain θ tends to in�nity. More preisely, it is shown inthat referene that the set of initial onditions that generate unbounded trajetories ontainsthe set {

(x1, x2) ∈ R
2 : θx2

1 +
1

θ
x2

2 > 33

}
.Notie that the boundaries of this region ross the axes x1 = 0 and x2 = 0 at x2 = ±3

√
θand x1 = ±3/

√
θ respetively. Consequently, no matter the parameter hoie, the radiusof the largest ball ontained in the domain of attration annot exeed 3, whih ontraditsthe property of USAS. In aordane with Theorem 2.18, we see that, indeed, the additionalrequirement (2.57) is violated:

lim
∆→∞

α−1
∆ ◦ α∆(∆) = lim

∆→∞

√
∆tanh(∆/2)/4

θ⋆(∆)2 + 1/2
= 0 6= ∞ .

�Proof of Theorem 2.18. Let ∆ be any given positive onstant and let V∆ and θ⋆(∆) begenerated by the assumptions. The proof is based on similar arguments as the above itedresults, espeially Theorem 2.11. The main di�erene stands in the fat that Lemma 2.6does not apply as it imposes to work out of a neighborhood Bδ, with δ > 0, of the origin.This prevents V∆ to be transformed into a more easily integrable funtion. To overomethis apparent di�ulty, we invoke the following result. The result was presented in [Son89a,Lemma 6.1℄ in the ase that α is smooth. The loally Lipshitz ase is a diret onsequeneof [Kha96, Lemma 3.4℄ and of the omparison theorem (f. e.g. [Kha96, Lemma 2.5℄).Lemma 2.20 Let α be a loally Lipshitz funtion of lass K. Then there exists a lass
KL funtion β suh that any solution10 of the di�erential inequality

ẏ ≤ −α(y) (2.59)satis�es
|y(t, y0)| ≤ β(|y0|, t) , ∀t ∈ R≥0 .

�10By this we mean that y(·, y0) satis�es ẏ(t, y0) ≤ −α(y(t, y0)) for all t ∈ R≥0.



54 2. Semiglobal and pratial asymptoti stabilityFirst of all, we apply Proposition 2.13 with a = 0 and b = ∆ to get that
x0 ∈ B∆̃ ⇒ φ(t, t0, x0, θ

⋆) ∈ B∆ , ∀t ≥ t0 .where
∆̃ := α−1

∆ ◦ α∆(∆) . (2.60)It follows that, for any x0 ∈ B∆̃, V∆(·, φ(·, t0, x0, θ
⋆)) is a solution of the di�erential in-equality ẏ ≤ −α∆(y). From Lemma 2.20, we get that there exists a KL funtion β∆ suhthat, for all x0 ∈ B∆̃ and all t0 ∈ R≥0,

V∆(t, φ(t, t0, x0, θ
⋆)) ≤ β∆(V∆(t0, x0), t− t0) , ∀t ≥ t0 .Using the bounds provided by (2.55), we onlude that

|φ(t, t0, x0, θ
⋆)| ≤ β̃∆(|x0| , t− t0) , ∀t ≥ t0 ,where β̃∆(s, t) := α−1

∆ ◦ α∆ ◦ β∆(s, t) for all s, t ∈ R≥0. USAS then follows by observingthat β̃∆ is a KL funtion and that, in view of (2.57) and (2.60), ∆̃ an be made arbitrarilylarge by originally piking ∆ large enough. �Through the following example, we next illustrate the utilization of Theorem 2.18.Example 2.21 We now assume that the perturbation b(t, q, q̇) is identially zero, but thehigher order nonlinearity c(t, q, q̇)q̇2, with |c(t, q, q̇)| ≤ c̄, still a�ets the system originallypresented in (2.1):
q̈ = −θ1q − θ2q̇ + c(t, q, q̇)q̇2 . (2.61)Using x as (q, q̇)⊤, this an be written

ẋ = A(θ)x+ C(t, x) ,where A(θ) is de�ned in (2.7) and C(t, x) is introdued in (2.43). As proved in Examples2.4, the funtion
Vθ(x) :=

θ1
2
q2 +

1

2
q̇2 + εqq̇ ,where ε is a positive onstant, is positive de�nite and radially unbounded provided that

ε < min{θ1; 1}. In the sequel, we assume θ1 ≥ 1 and ε = 1/2. Following a similarreasoning as in Example 2.15 by piking b̄ = 0, it easily follows that, for any ∆ > 0, thetotal derivative of V satis�es
|x| ≤ ∆ ⇒ V̇θ⋆(t, x) ≤ − |x|2 , (2.62)if the tuning parameters are hosen as

θ⋆1(∆) =
10

3
+ 4c̄∆ and θ⋆2(∆) =

8

3
+ 2c̄∆ . (2.63)Similarly to Example 2.15, the additional requirement (2.57) an be established and USASthen follows from Theorem 2.18. �Again, a simpli�ed version of this result an be proposed in the ontext of polynomialbounds on the Lyapunov funtion.



55Corollary 2.22 (Simpli�ed Lyapunov ondition for USAS) Let Θ be a subset of R
n.Assume that there exist a positive number p, real onstants ai, ai, bi, bi, i ∈ {1, . . . , n}and, for any θ ∈ Θ, a ontinuously di�erentiable Lyapunov funtion Vθ satisfying, for all

x ∈ R
n and all t ∈ R≥0,

n∑

i=1

(ai + biθi) |xi|p ≤ Vθ(t, x) ≤
n∑

i=1

(ai + biθi) |xi|p (2.64)where, for all i ∈ {1, . . . , n} and all θ ∈ Θ, ai+ biθi > 0 and āi+ b̄iθi > 0. Suppose furtherthat, given any ∆ > 0, there exist a parameter θ⋆(∆) ∈ Θ, a lass K∞ funtion α∆ suhthat, for all x ∈ B∆ and all t ∈ R≥0,
∂Vθ⋆

∂t
(t, x) +

∂Vθ⋆

∂x
(t, x)f(t, x, θ⋆) ≤ −αδ(|x|) . (2.65)If furthermore, for all i ∈ {1, . . . , n}, it holds that

lim
∆→∞

ai + biθ
⋆
i (∆) > 0 , (2.66)

bi 6= 0 ⇒ lim
∆→∞

∆p

θ⋆i (∆)
= ∞ , (2.67)then the system ẋ = f(t, x, θ) introdued in (1.3) is uniformly semiglobally asymptotiallystable on the parameter set Θ.The proof of this result is voluntarily omitted as it onsists in the same arguments asfor Corollary 2.9.Example 2.23 Bak to the system in Example 2.21, the Lyapunov funtion

Vθ(x) :=
θ1
2
q2 +

1

2
q̇2 + εqq̇ ,satis�es (2.64) with n = 2, a1 = −ε/2, b1 = b1 = 1/2, a2 = (1 − ε)/2, b2 = b2 = 0,

a1 = ε/2 and a2 = (1 + ε)/2. Choosing ε = 1/2 and assuming that θ1 ≥ 1, we have that
ai+biθi > 0 and ai+biθi > 0 for all i ∈ {1, 2}. Moreover, we reall from (2.62) and (2.63)that, given any positive onstant ∆, the parameters hoie

θ⋆1(∆) =
10

3
+ 4c̄∆ and θ⋆2(∆) =

8

3
+ 2c̄∆ ,yields

x ∈ B∆ ⇒ V̇θ⋆(x) ≤ − |x|2 .Hene, the requirements (2.65)�(2.67) hold, and USAS follows from Corollary 2.22. �2.2 Converse resultsThe ruial role played by Lyapunov funtions in the study of the stability of dynamialsystems su�ers no objetion. In the previous setion, we have shown that this mathematialobjet notably onstitutes a powerful tool for the partiular framework of semiglobal andpratial stability. In informal terms, we have shown that, aording to the ase, it is



56 2. Semiglobal and pratial asymptoti stabilitysu�ient that the total derivative of suh a funtion be negative out of a small neighborhoodof the origin, or inside a large domain of the state-spae, to ensure pratial stability orsemiglobal stability respetively, provided an additional requirement on its lower and upperbounds (f. Theorems 2.5, 2.11 and 2.18).A long story. While this type of su�ient Lyapunov onditions for stability initiallymainly motivated the ontrol ommunity, the onverse question, i.e. whether stabilityimplies the existene of a Lyapunov funtion, was already posed in 1892 by Lyapunovhimself in his fundamental work [Lya92℄ and the �rst neessary and su�ient onditionsfor uniform stability were already proposed in [Per37℄.Among the most signi�ative ontributors to the �eld, one an ite Massera who pro-posed in [Mas49℄ a Lyapunov funtion for ontinuously di�erentiable time-invariant sys-tems with an asymptotially stable origin, based on a lemma that now bears his name (f.e.g. [Kha96, Lemma A.1℄). Malkin proposed in [Mal54℄ an extension to this result fortime-varying systems, provided that the stability property and the di�erentiability of theright-hand side term both are uniform in time. The �rst theorem of this type for uniformglobal asymptoti stability of the origin was proposed by Barbashin and Krasovsk��i, f.[BK54℄11. Kurzweil then managed to relax the regularity assumption made on the right-hand side term to simply ontinuity, and gave the �rst results in the ase when stabilityis not de�ned through the Eulidean norm but through a more general measure, openingthe door to set-stability and partial stability, f. [Wil69℄. These results have been adaptedto stability with respet to two measures by Lakshmikantham and Salvadori in [LS76℄,inluding, as a partiular ase, the set-stability introdued in De�nitions 1.9, 1.10 and1.11.Sine then, many extensions of these results have been made to di�erential inlusions(f. [TP00℄ and referenes therein) and to the formalism of input to state stability: [SW96,ASW00a, SW01, KSW01℄, but this esapes the sope of the present setion (please referto Chapter 5 for an appliation of the Lyapunov haraterization of integral input to statestability). See also [TP00℄ for a more extensive review on onverse theorems.A onverse result for USPAS ? In what follows, we derive a neessary Lyapunov on-dition based on the assumption that the system under onsideration is USPAS or USAS.This study is not only of mathematial interest. Indeed, as already said, the latter sta-bility properties an be established through various means, and not all of them providean assoiated Lyapunov funtion. This is notably the ase with averaging tehniques: in[TPA99℄, Teel et al. show that, if its averaged is globally asymptotially stable, then theoriginal system is USPAS. These notions will be more detailed in the sequel, and be at thebasis of an illustrative example (see Setion 3.1.2).We also present in the sequel (f. Chapter 3) tools that establish USPAS of systemsin asade, based notably on the USPAS of eah subsystem when disonneted and on theknowledge of a Lyapunov funtion for the driven subsystem. Providing the existene of aLyapunov funtion for a ertain lass of dynamial system, based on the single fat that thesystem is USPAS, an therefore be of great help. Suh a result should therefore providea positive funtion, with negative derivative, in a restrited region of the state-spae.The generated Lyapunov funtion and its K∞ should also �t the additional requirements(2.31)�(2.32) or (2.57) aording to the ase.11In this referene, the mistaken English translation �in the large� atually refers to �in the whole�, i.e.global. Please see [LLLP06℄ for lari�ations about these notions.



57As it is further explained in the next hapter, the gradient of the Lyapunov funtionassoiated to the stability property of the driven subsystem plays an important role in theontext of stability analysis of asades. Additionally to the lassial features, the onversetool we present below therefore needs to provide a time-invariant bound on the gradientof the Lyapunov-like funtion it generates.These two latter features onstitute the main di�erene with other similar results avail-able in the literature, spei�ally [TP00, LSW96℄. We emphasize that, even though theonstrution from [TP00℄ also allows to onstrut bounds on the gradient of the Lyapunovfuntion, this seemingly requires to impose the unneessary restritive assumption that thefuntion f in (1.3) be loally Lipshitz in time.2.2.1 Semiglobal pratial stabilityIn what follows, we present a onverse theorem for uniform semiglobal pratial asymptotistability whih is tailored for asaded systems. We start by onstruting a Lyapunovfuntion for systems for whih a given ball is uniformly asymptotially stable. Comparedto the su�ieny result proposed in the previous setions, it requires additional smoothnessof the right-hand side term. More preisely, we assume the following.Assumption 2.24 (Regularity) There exists a nonnegative onstant f0 and a ontinu-ous nondereasing funtion L suh that
|f(t, 0)| ≤ f0 , ∀t ∈ R≥0 , (2.68)

∣∣∣∣
∂f

∂x
(t, x)

∣∣∣∣ ≤ L(|x|) , ∀t ∈ R≥0 , ∀x ∈ R
n . (2.69)It is worth mentioning that the origin is not required to be an equilibrium for thesystem under onsideration. This indeed fails in many situations when studying pratialstability. See Example 2.8 for instane. In this respet, see [BCI05℄ for an analysis ofthe loal (more preisely, in the asymptotially stable ball Bδ) behavior of the trajetoriesgenerated by a partiular lass of pratially stable systems.Lemma 2.25 (Converse Lyapunov funtion for UAS of a ball) Let δ ≥ 0 and ∆ >

0 be some given onstants suh that ∆ > δ. If Bδ is uniformly asymptotially stable on B∆for the dynamial system ẋ = f(t, x) introdued in (1.1) then, under Assumption 2.24, forany δ′ ∈ (δ; ∆), there exist: a ontinuously di�erentiable funtion V : R≥0 × R
n → R≥0,lass K∞ funtions α, α, α, and a ontinuous nondereasing funtion c : R≥0 → R≥0 suhthat, for all x ∈ B∆ and all t ∈ R≥0, the following holds:

α(|x|δ) ≤ V (t, x) ≤ α(|x|) (2.70)
|x| ≥ δ′ ⇒ ∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) ≤ −α(V (t, x)) (2.71)

∣∣∣∣
∂V

∂x
(t, x)

∣∣∣∣ ≤ c(|x|) . (2.72)In addition, if δ = 0, then δ′ an be piked as 0 too. Furthermore, if (1.1) is time invariant(i.e. ẋ = f(x)), then V an be piked time-invariant as well. �



58 2. Semiglobal and pratial asymptoti stabilityRemark 2.26 It is worth pointing out that, for any �xed δ, the bounds (2.70) imply thebounds (2.29) required in Theorem 2.11. Indeed, we have that, for all x ∈ H(δ′,∆) and all
t ∈ R≥0,

α̂(|x|) ≤ V (t, x) ≤ α(|x|)where α̂ is de�ned as
α̂(s) :=

{
α(s− δ) if s ≥ δ′

α0(s) if s ∈ [0; δ′) ,

α0 designating any lass K funtion satisfying α0(δ
′) = α(δ′ − δ).Proof of Lemma 2.25. Let the assumption of UAS of Bδ on B∆ generate β ∈ KL suhthat, for any x ∈ B∆ and any t ∈ R≥0, the trajetories of (1.1) satisfy

|φ(τ, t, x)|δ ≤ β(|x| , τ − t) , ∀τ ≥ t . (2.73)Note that, without loss of generality, β an be onsidered as a �lass K∞L� funtion,meaning that it is of lass K∞ in its �rst argument12. By Massera's lemma (see [Mas49℄or e.g. [Kha01, Lemma C.1℄), there exists a lass K∞ funtion η, with η′ ∈ K, suh that
∫ ∞

0
η ◦ β(∆, τ)dτ <∞ (2.74)

∫ ∞

0
η′(β(∆, τ))eL(β(∆,0)+∆)τdτ <∞ . (2.75)Inspired by Massera-Malkin's onstrutions, we show that Lemma 2.25 an be establishedwith the funtion satisfying, for all x ∈ B∆ and all t ∈ R≥0,

V (t, x) :=

∫ ∞

t
η(|φ(τ, t, x)|δ)dτ . (2.76)In the ase of a time-invariant system ẋ = f(x), we have that φ(τ, t, x) = φ(τ, 0, x), whihalready shows that V an be piked as a time-invariant funtion.Proof of bound (2.70): In view of (2.73), V an be bounded in the following way:

V (t, x) ≤
∫ ∞

t
η ◦ β(|x| , τ − t)dτ =

∫ ∞

0
η ◦ β(|x| , τ)dτ =: α̃(|x|) . (2.77)From (2.74), we see that α̃(|x|) is �nite for all x ∈ B∆. In addition, it learly vanishesat zero. Furthermore, we laim that it is ontinuous at zero. To see this, onsider anysequene {xi}i∈N of B∆ that onverges to 0 as i tends to in�nity. Then, for all τ ∈

R≥0, limi→∞ η ◦ β(|xi| , τ) = 0 sine η ∈ K∞ and β ∈ KL. In addition, for all i ∈ N,
η◦β(|xi| , τ) ≤ η◦β(∆, τ) whih, in view of (2.74), is integrable. It follows from Lebesgue'sdominated onvergene theorem (f. e.g. [KF70, p. 303℄) that limi→∞ α̃(|xi|) = 0, whihestablishes the laim. In turn, sine α̃ is ontinuous at zero and �nite everywhere else, itan be upper bounded by a lass K∞ funtion α.Moreover, sine V is nonnegative, the bound V (t, x) ≥ α(|x|δ) is trivially satis�ed forall x ∈ Bδ and any lass K∞ funtion α. So, from now on, we onsider that |x| > δ.12If β is of lass K \ K∞ in its �rst argument, we replae it by, for instane, β̃(s, t) := β(s, t) for s ≤ ∆and β(s, t) := β(∆, t)s/∆ for s > ∆.



59In this situation, we have that |x|δ = |x| − δ. Using (2.73) and the ontinuity of thesolution φ(·, t, x), there exists a positive time t1 suh that |φ(t+ t1, t, x)|δ = |x|δ /2 and
|φ(τ, t, x)|δ ≥ |x|δ /2 for all τ ∈ [t; t+ t1]. We show that this time t1 annot be too small.To that end, notie that the mean value theorem ensures the existene of a time t2 ∈]0; t1[suh that
|φ(t+ t1, t, x)|δ − |φ(t, t, x)|δ

t1
=

[
∂

∂τ

(
|φ(τ, t, x)|δ

)]

τ=t+t2

≥ −
∣∣∣∣
∂

∂τ

(
|φ(τ, t, x)|δ

)∣∣∣∣
τ=t+t2

.It follows that
t1

(
sup

τ∈]t;t+t1[

∣∣∣∣
∂

∂τ

(
|φ(τ, t, x)|δ

)∣∣∣∣

)
≥ |φ(t, t, x)|δ − |φ(t+ t1, t, x)|δ =

|x|δ
2
. (2.78)Sine |φ(τ, t, x)| > δ for all τ ∈]t; t+ t1[, we have that

∂

∂τ

(
|φ(τ, t, x)|δ

)
=

∂

∂τ

(
|φ(τ, t, x)| − δ

)
=
f(τ, φ(τ, t, x))⊤φ(τ, t, x)

|φ(τ, t, x)| . (2.79)In addition, from Assumption 2.24 and using again the mean value theorem,
|f(t, x)| ≤ f0 + L(|x|) |x| , ∀x ∈ R

n, ∀t ∈ R≥0 .From this and (2.73) it follows that
|f(τ, φ(τ, t, x))| ≤ f0 + L(β(|x| , τ − t) + δ)

(
β(|x| , τ − t) + δ

)
.Thus, injeting this bound into (2.79), it holds that, for all x ∈ B∆\Bδ and all τ ∈]t; t+t1[,

∣∣∣∣
∂

∂τ

(
|φ(τ, t, x)|δ

)∣∣∣∣ ≤ f0 + L(β(∆, 0) + δ)
(
β(∆, 0) + δ

)

≤ f0 + L(β(∆, 0) + ∆)
(
β(∆, 0) + ∆

)
=: fM (∆) (2.80)sine ∆ is assumed greater than δ. In addition, this together with inequality (2.78) implies

t1 ≥ |x|δ
2fM (∆)

.From this, we an exhibit a lass K∞ lower bound on V as follows:
V (t, x) =

∫ ∞

t
η(|φ(τ, t, x)|δ)dτ ≥

∫ t+t1

t
η(|φ(τ, t, x)|δ)dτ .Sine, by onstrution, |φ(τ, t, x)|δ ≥ |x|δ /2 over the interval [t ; t+ t1], it follows that

V (t, x) ≥ η

( |x|δ
2

)
t1 ≥ η

( |x|δ
2

) |x|δ
2fM (∆)

=: α(|x|δ) . (2.81)Note that α is, as required, a lass K∞ funtion.Proof of bound (2.71): The total time derivative of V is given by
V̇ (t, x) =

∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) = −η(|φ(t, t, x)|δ) +

∫ ∞

t

∂

∂t
(η(|φ(τ, t, x)|δ))dτ

+

∫ ∞

t

∂

∂x
(η(|φ(τ, t, x)|δ))dτf(t, x) . (2.82)



60 2. Semiglobal and pratial asymptoti stabilityLet us introdue the following notations:
φt(τ, t, x) :=

∂

∂t
(φ(τ, t, x)) , φx(τ, t, x) :=

∂

∂x
(φ(τ, t, x)) .Proeeding as in the proof of bound (2.70) we obtain that, for all τ ≥ t ≥ 0 and x ∈ H(δ,∆),suh that |φ(τ, t, x)| ≥ δ,

∂

∂t
(η(|φ(τ, t, x)|δ)) = φ(τ, t, x)⊤φt(τ, t, x)η

′(|φ(τ, t, x)|δ) , (2.83)
∂

∂x
(η(|φ(τ, t, x)|δ)) = φ(τ, t, x)⊤φx(τ, t, x)η

′(|φ(τ, t, x)|δ) . (2.84)De�ne Γ(t, x) := {τ ≥ t : |φ(τ, t, x)| ≥ δ}. Sine f(t, x) is assumed to be loally Lipshitzin x uniformly in t, the solution φ(τ, t, x) is ontinuous with respet to eah of its threearguments (see e.g. [Kha01, Theorem 3.5℄). In partiular, given τ ≥ 0 and x ∈ R
n, ifwe have that |φ(τ, t⋆, x)| < δ for some t⋆ ≥ 0, then there exists an interval [t⋆; t⋆ + tε],with tε > 0, on whih |φ(τ, t⋆, x)| < δ. Hene, we have that η(|φ(τ, t, x)|δ) = 0 for all

t ∈ [t⋆; t⋆ + tε] and, onsequently,
∂

∂t
(η(|φ(τ, t, x)|δ)) = 0 , ∀τ ∈ R≥t \ Γ ,whih in its turn implies that

∫ ∞

t

∂

∂t
(η(|φ(τ, t, x)|δ))dτ =

∫

Γ

∂

∂t
(η(|φ(τ, t, x)|δ))dτ . (2.85)From (2.83) and (2.85), we get that

∫ ∞

t

∂

∂t
(η(|φ(τ, t, x)|δ))dτ =

∫

Γ
φ(τ, t, x)⊤φt(τ, t, x)η

′(|φ(τ, t, x)|δ)dτ ,and, similarly,
∫ ∞

t

∂

∂x
(η(|φ(τ, t, x)|δ))dτ =

∫

Γ
φ(τ, t, x)⊤φx(τ, t, x)η

′(|φ(τ, t, x)|δ)dτ . (2.86)Thus, in view of (2.82), we obtain that
V̇ = −η(|x|δ) +

∫

Γ
φ(τ, t, x)⊤

(
φt(τ, t, x) + φx(τ, t, x)f(t, x)

)
η′(|φ(τ, t, x)|δ)dτ .Proeeding as in [Kha01, Exerise 3.30, p.110℄, we see that φt(·, t, x)+φx(·, t, x)f(t, x) ≡ 0,so

∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) = −η(|x|δ) .Now, onsider any δ′ > δ. Then, for all |x| ≥ δ′, it holds that |x|δ = |x| − δ. Therefore

|x|δ =
δ′ − δ

δ′
|x| + δ

δ′
|x| − δ ≥ δ′ − δ

δ′
|x| ≥ ε |x| ,where ε := δ′/δ−1

δ′/δ is a onstant depending only on the ratio δ′/δ. Thus, using the previouslyestablished upper bound on V , we obtain that, for all x ∈ B∆\Bδ,
∂V

∂t
(t, x) +

∂V

∂t
(t, x)f(t, x) ≤ −α(V (t, x)) ,



61where α is the lass K∞ funtion de�ned as
α(s) := η(εα−1(s)) . (2.87)Proof of bound (2.72): Aording to (2.86), we have that

∫ ∞

t

∂

∂x
(η(|φ(τ, t, x)|δ))dτ =

∫

Γ
φ(τ, t, x)⊤φx(τ, t, x)η

′(|φ(τ, t, x)|δ)dτ . (2.88)Notie that φx is a solution of
∂φx
∂τ

(τ, t, x) =
∂f

∂x

(
τ, φ(τ, t, x)

)
φx(τ, t, x) , φx(t, t, x) = I .Integrating from t to τ ≥ t on both sides of the �rst equality above and using (2.73), weobtain that

φx(τ, t, x) − I ≤ L(β(|x| , 0) + δ)

∫ τ

t
φx(s, t, x)ds .Hene, applying Gronwall-Bellman's inequality,

|φx(τ, t, x)| ≤ eL(β(|x|,0)+δ)(τ−t) ≤ eL(β(|x|,0)+δ) .From this and (2.88), we see that
∣∣∣∣
∂V

∂x
(t, x)

∣∣∣∣ ≤
∫

Γ
|φ(τ, t, x)| eL(β(|x|,0)+δ)(τ−t)η′(|φ(τ, t, x)|δ)dτ

≤
∫

Γ
(β(|x| , τ − t) + δ) eL(β(|x|,0)+δ)(τ−t)η′ (β(|x| , τ − t)) dτ

≤
∫ ∞

t
(β(|x| , τ − t) + δ) eL(β(∆,0)+δ)(τ−t)η′ ◦ β(∆, τ − t)dτ

≤
∫ ∞

0
(β(|x| , τ) + ∆) eL(β(∆,0)+∆)τη′ ◦ β(∆, τ)dτ .In view of (2.75), this integral is �nite for any x ∈ B∆. Hene, it an be upper boundedby a ontinuous inreasing funtion c(|x|), whih ompletes the proof. �Based on Lemma 2.25 and Remark 2.26, we are now ready to introdue a neessaryondition for uniform semiglobal pratial asymptoti stability in terms of a Lyapunov-likefuntion.Theorem 2.27 (Converse Lyapunov funtion for USPAS) Assume that the system

ẋ = f(t, x, θ) introdued in (1.3) is USPAS on Θ ⊂ R
m and that, for any θ ∈ Θ, thereexist a nonnegative onstant fθ and a ontinuous nondereasing funtion Lθ suh that, forall x ∈ R

n, Inequalities (2.68) and (2.69) hold for fθ(t, x) := f(t, x, θ). Then, for any
∆ > δ > 0, there exists a parameter θ⋆(δ,∆) ∈ Θ, a ontinuously di�erentiable funtion
Vδ,∆ : R≥0 × R

n → R≥0, lass K∞ funtions αδ,∆, αδ,∆, αδ,∆ and a ontinuous positivenondereasing funtion cδ,∆ suh that, for all x ∈ H(δ,∆) and all t ∈ R≥0,
αδ,∆(|x|) ≤ Vδ,∆(t, x) ≤ αδ,∆(|x|) (2.89)

∂Vδ,∆
∂t

(t, x) +
∂Vδ,∆
∂x

(t, x)f(t, x, θ⋆) ≤ −αδ,∆(Vδ,∆(t, x)) (2.90)
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∣∣∣∣
∂Vδ,∆
∂x

(t, x)

∣∣∣∣ ≤ cδ,∆(|x|) . (2.91)In addition, if (1.3) is time-invariant (i.e. ẋ = f(x, θ)), then Vδ,∆ an be piked as atime-invariant funtion too.Proof of Theorem 2.27. By assumption, for any ∆ > δ > 0, there exists a parameter
θ⋆(δ,∆) ∈ Θ suh that Bδ is UAS on B∆ for the system ẋ = f⋆(t, x) := f(t, x, θ⋆). Theonlusion follows from Lemma 2.25 and Remark 2.26. �Note that, Theorem 2.27 annot be rigorously onsidered as a onverse of Theorem 2.11sine the requirements (2.31) and (2.32) are missing: the above result does not provideany information on the dependene of the upper and lower K∞ bounds on the generatedLyapunov funtion Vδ,∆ in the radii δ and ∆.A areful inspetion of the above onstrution of αδ,∆ and αδ,∆ onvines that, evenby assuming uniformity of the KL estimate in the radius ∆, we annot ensure (2.32) ingeneral.Nevertheless, we may expet these bounds on Vδ,∆ to be independent of the radius δprovided a similar assumption on the KL estimate of the solutions. We refer to the latterproperty as δ-USPAS. As we will see in Chapter 3, this lass of USPAS systems deservesa partiular interest when dealing with asaded systems.De�nition 2.28 (δ-USPAS) The system (1.3) is said to be δ-USPAS if, given any ∆ >
0, there exists a KL funtion β∆ suh that, for any 0 < δ < ∆, there exists a parameter
θ⋆(δ,∆) ∈ Θ suh that the solutions of (1.3) satisfy, for all t0 ∈ R≥0 and all x0 ∈ B∆,

|φ(t, t0, x0)|δ ≤ β∆(|x0| , t− t0) , ∀t ≥ t0 .A quik omparison between De�nitions 1.19 and 2.28 shows that δ-USPAS is a strongernotion than USPAS. We stress that many de�nitions of pratial stability existing in theliterature do impose that the KL estimate be uniform in δ. This is for instane the aseof [NL04, ST03℄ but, overall, of the semiglobal pratial stability property guaranteedby the main result in [TPA99℄, whih studies the USPAS of systems based on averagingtehniques. As this fat onstitutes the main motivation for the onverse result below,we state it as an independent proposition. Its proof follows from Proposition 1.16 and aareful reading of the argument of the main result in [TPA99℄.Proposition 2.29 (Averaging indues δ-USPAS) If the origin of the averaged system(in the sense of [TPA99, De�nition 2℄) of the system ẋ = f(t, x) introdued in (1.1) isglobally asymptotially stable, then ẋ = f(t/θ, x) is δ-USPAS on the parameter set R>0.Under the stronger assumption of δ-USPAS, we show that the bounds on the generatedLyapunov funtion, on its derivative and on its gradient may be hosen disregarding thesize of the ball to whih solutions are required to onverge. This fat will be used in thenext hapter for the study of asaded δ-USPAS systems.Corollary 2.30 (Converse Lyapunov funtion for δ-USPAS) Assume that the sys-tem ẋ = f(t, x, θ) introdued in (1.3) is δ-USPAS on Θ ⊂ R
m and that there exist anonnegative onstant f0 and a ontinuous nondereasing funtion L suh that (2.68) and(2.69) hold for all θ ∈ Θ, all x ∈ R

n and all t ∈ R≥0. Then, for any ∆ > 0, there exist



63lass K∞ funtions α∆, α∆, α∆ and a ontinuous positive nondereasing funtion c∆ and,for any δ ∈ (0; ∆), there exist a parameter θ⋆(δ,∆) ∈ Θ and a ontinuously di�erentiablefuntion Vδ,∆ : R≥0 × R
n → R≥0 suh that, for all x ∈ H(δ,∆) and all t ∈ R≥0,

α∆(|x|) ≤ Vδ,∆(t, x) ≤ α∆(|x|) (2.92)
∂Vδ,∆
∂t

(t, x) +
∂Vδ,∆
∂x

(t, x)f(t, x, θ⋆) ≤ −α∆(Vδ,∆(t, x)) . (2.93)
∣∣∣∣
∂Vδ,∆
∂x

(t, x)

∣∣∣∣ ≤ c∆(|x|) . (2.94)In addition, if (1.3) is time-invariant (i.e. ẋ = f(x, θ)), then Vδ,∆ an be piked as atime-invariant funtion too.With this onstrution, we see that the requirement (2.31) of Theorem 2.11, linking the
δ-dependene of the K∞ bounds on the Lyapunov funtion, is trivially satis�ed. Indeed,due to the independene of α∆ and α∆ in δ, and their belonging to lass K∞, it su�es, forany δ⋆ > 0, to pik δ small enough in order to ensure α−1

∆ ◦α∆(δ) ≤ δ⋆. See Theorem 3.12in the next hapter for an appliation of this result to the stability analysis of asadedsystems.Proof of Corollary 2.30. In the proof of Lemma 2.25, we see that, if the KL estimate β isindependent of δ, then so is η (see (2.74) and (2.75)). In the same way, the independeneof f0 and L in θ makes fM independent of δ (f. (2.80)). Hene, in view of (2.77) and(2.81), it is also the ase for the funtions α and α. Moreover, by piking δ′ = 2δ (and, inaordane, ∆ > 2δ), we get that ε = 1/2 (see �Proof of bound (2.71)�), whih shows with(2.87) that α an be hosen independently of δ as well. Notie �nally that this is also thease for the funtion c (f. �Proof of bound (2.72)�). �A onverse Lyapunov funtion for parameterized nonlinear time-varying systems hasalready been proposed in [Hop66℄, based on an assumption of asymptoti stability of theorigin uniformly in both the initial onditions and the parameters. We stress that theresults presented below do not �t into this framework. Theorems 2.27 and 2.31 indeeddeal with the original de�nitions of USPAS and USAS (f. De�nitions 1.17 and 1.19),whih, as already seen, do not require uniformity in the tuning parameter θ. ConerningCorollary 2.30, even though it requires more uniformity (the KL estimate of the solutionsneeds to be the same disregarding the ball to whih solutions onverge), this requirementremains less onservative. In addition, ontrarily to Theorem 2.27 and Corollary 2.30,the main result in [Hop66℄ only addresses stability of a single point. Finally, the latterreferene does not provide any bound on the gradient of the generated Lyapunov funtion.It should also be pointed out that a onverse result for �pratial� stability was proposedby Kaplan in [Kap73℄. However, this result fundamentally di�ers from the results presentedhere as this notion of �pratiality� was only onerned with a �xed ompat neighborhoodof the origin. No possibility of reduing this ball at will, through the tuning of someparameter, was assumed for this stability property.2.2.2 Semiglobal asymptoti stabilityFor the sake of ompleteness, and as it diretly follows from the results presented in theprevious setion, we state here a onverse result for uniform semiglobal asymptoti stability.



64 2. Semiglobal and pratial asymptoti stabilityTheorem 2.31 (Converse Lyapunov funtion for USAS) Assume that the system
ẋ = f(t, x, θ) introdued in (1.3) is USAS on Θ and that, for any θ ∈ Θ, there exista nonnegative onstant fθ and a ontinuous nondereasing funtion Lθ suh that, for all
x ∈ R

n, Inequalities (2.68) and (2.69) hold for f⋆(t, x) := f(t, x, θ⋆). Then, for any ∆ > 0,there exists a parameter θ⋆(∆) ∈ Θ, a ontinuously di�erentiable funtion V∆ : R≥0×R
n →

R≥0, lass K∞ funtions α∆, α∆, α∆ and a ontinuous positive nondereasing funtion c∆suh that, for all x ∈ B∆ and all t ∈ R≥0,
α∆(|x|) ≤ V∆(t, x) ≤ α∆(|x|)

∂V∆

∂t
(t, x) +

∂V∆

∂x
(t, x)f(t, x, θ⋆) ≤ −α∆(V∆(t, x))

∣∣∣∣
∂V∆

∂x
(t, x)

∣∣∣∣ ≤ c∆(|x|) .In addition, if (1.3) is time-invariant (i.e. ẋ = f(x, θ)), then V∆ is also a time-invariantfuntion.No suh onverse result is provided for uniform global pratial stability in this do-ument. There are two main reasons for this. The �rst one is a theoretial obstale: theabove proof tehniques extensively make use of the fat that the state is onstrained into aompat region of the state spae, whih is not the ase when onsidering global properties.The seond reason stands in the fat that, in most ases, the easiest way to guarantee UG-PAS is to apply Theorem 2.5, whih is based on Lyapunov arguments. This observationmakes the utility of suh an extension questionable.Conlusion. This hapter proposes tools related to semiglobal and/or pratial sta-bility properties. Due to the wide generality of the used onepts, and mostly the possiblenon-uniformity of the estimate of solutions in the tuning parameter, a spei� attentionneeds to be paid in the Lyapunov analysis. Compared to existing results, the su�ientonditions for USPAS, USAS and UGPAS presented here impose indeed an additionalassumption that links the bounds on the Lyapunov funtion. Furthermore, the neessityof imposing suh an additional ondition is shown through a ounter-example. Converseresults, for USPAS and USAS, are also presented. The use of most of these results isillustrated by means of aademi examples.



65
Chapter 3Stability of nonlinear time-varyingasaded systemsDivide to reign. The stability analysis by Lyapunov's seond method requires the on-strution of a strit Lyapunov funtion, as for instane Theorems 2.3, 2.5, 2.11 and 2.18.This diret approah may be partiularly hard for omplex or large-sale nonlinear time-varying systems. A natural way of simplifying this problem onsists in dividing the systeminto simpler interonneted subsystems, and to analyze eah subsystem separately.Many tools in the literature provide stability properties of interonneted subsystemsbased on some information of eah omponent taken individually. Probably the mostfundamental result for interonneted system is the small gain theorem for input-outputstability, originally introdued by Zames [Zam60, Zam66a, Zam66b℄ and Sandberg [San63℄,whih studies the general interonnetion of two input-to-output stable systems:

Σ1

Σ2

y1
y2

u1

u2Figure 3.1: General interonnetion of two dynamial systems.A more modern perspetive of input-output stability, notably involving the system'sstate (thus leaving behind Zames-Sandberg's �blak-box� approah) has been taken in[JTP94, CTP95, JMW96, Tee96, LWC05℄. While providing a strong tool for the stabilityanalysis of interonneted nonlinear systems, it is also at the basis of many ontrol designs,f. e.g. [PW96, JM97℄.A partiular interonnetion: the asade. In many appliations, the system maybe represented as a unidiretional interonnetion of dynamial subsystems, as represented



66 3. Stability of nonlinear time-varying asaded systemsby Figure 3.2.
Σ2

y2 y1

Σ1

u2 Figure 3.2: Casade interonnetion of two dynamial systems.The wide ourrene of suh a struture in ontrol pratie stems from many fats.It was shown in [Vid80℄, based on graph-theoreti deomposition tehniques, that anyinteronneted system an be rewritten as a asade, modulo some renumbering and, over-all, aggregation of the state variables. While this result may be surprising at �rst sight, itresults from elementary manipulations and illustrates the generality of the asade oneptin systems theory. Of ourse, suh deomposition is all the more e�ient as the originalsystem is less interonneted.In addition, the asade struture sometimes arises naturally, due to the physial stru-ture of the system. For instane, in Chapter 6, we study the PID ontrol of robot ma-nipulators. The approah onsists in studying the mehanial (i.e. the robot arm) andthe eletrial (i.e. atuators) parts separately. This approah is similar to that adoptedin [PO96℄. As one ould intuitively expet it, the overall system onsists in a asadeinteronnetion of these two parts. Please see [PLS99, Lef00, LFP00, dNC00℄ for otherexamples of onrete appliations.But this deomposition into asades an also be done arti�ially by designing a ontrollaw that puts the system in a asade struture, f. [KKK95, LLLP05, Lef00, SL03℄ forexample. Suh an approah is referred to as asades-based design.A wide literature. In any of these situations, in order to deompose a omplex probleminto simpler ones using theorems for asaded systems, it is ruial to answer the questionwhether the stability properties of both subsystems taken separately remain valid for theirasade interonnetion.From a theoretial point of view, this problem is not trivial. It has attrated the interestof the ontrol ommunity sine [MMT78℄, where graph theory was used to ensure loal andglobal stability properties of the asade, based on the assumption that the interonnetionterms are all �stability preserving mappings�. In [Vid80℄, Vidyasagar made use of onverseLyapunov results to show that uniform loal asymptoti stability is naturally preserved bythe asade struture.Nevertheless, the global ase presents harder di�ulties. Intuitively, we ould expetthat, in order to preserve the global asymptoti stability of the asade Σ1 − Σ2, it wouldsu�e that the onvergene rate of the driving subsystem Σ2 be su�iently high. Thisintuition is wrong in general, as proved in [SK91℄ through an elementary example involv-ing a linear driving subsystem whih yields a stronger peaking of the transients as theonvergene is made faster. This transient peaking is enough to destabilize the asade.Similarly, as shown in [SK03, TH04℄, neither integrability nor even exponential deay ofthe solutions of the driving subsystem is su�ient to preserve global asymptoti stability.Beyond these obstales, some su�ient onditions for the preservation of global asymp-toti stability under the asade interonnetion have been proposed in the literature. Ingeneral terms, a fundamental result for the analysis of global stability for nonlinear systems



67states that the asade of uniformly globally asymptotially stable systems (UGAS) remainUGAS if and only if its solutions are uniformly globally bounded. See [SS90a, Son89b℄ forthe proof of this statement in the ase of autonomous systems and [PL01℄ for the ase oftime-varying systems.Some work has also been done in order to advantageously replae the requirement of(uniform) global boundedness by more easily hekable onditions. In [SS90a℄, these takethe form of a robustness Lyapunov ondition on the driven subsystem that needs to holdfor large values of the states. In [PL98℄, uniform global boundedness of solutions is replaedby the requirements that the interonnetion be a�ne in the state of the driven subsystem,that the solutions of the driving subsystem be integrable and that a Lyapunov funtion,with a onvenient bound on its gradient be known for the driven subsystem. In [PL01℄,other su�ient onditions were provided, expressed as dominane relationships involvingthe bounds on the Lyapunov funtion and on its gradient together with the interonnetionterm. In [AAS02℄, an elegant reformulation of the integrability ondition posed in [PL01℄was established in terms of integral input to state stability. More preisely, it is imposedthat the driven subsystem be integral input to state stable and that a ondition linking thedissipation rate of the driving subsystem to the iISS gain of the driven one holds (pleasesee Chapter 5 for details).The obvious drawbak of these results is that they impose global properties on eahsubsystem whih, as seen in the previous hapters, are impossible to ahieve in manysituations. Also, the solutions may only asymptotially reah a neighborhood of the origininstead of the the origin itself. Below, we extend these results to uniform semiglobal and/orpratial asymptoti stability1.A word on stabilization. Although this does not onstitute the subjet of this disussion,it is worth stressing that a onsiderable work in the literature has been devoted to thestabilization of asaded systems. The problem is well doumented for loal properties(f. e.g. [Vid80, BI91, CP91℄). Nevertheless, in [Sus90℄, an example illustrates that globaland semiglobal stabilizability intrinsially generate additional obstales ompared to loalresults. It was further shown in [SKS90℄ that, given any stritly non-minimum phase lineardriving subsystem, there exists a globally asymptotially stable driven subsystem suh thattheir asade is not globally stabilizable.To fae this problem, several stabilization approahes were adopted. In [Ort91℄, Ortegafollows a passivity approah to ensure global asymptoti stabilizability of the asade. In[JSK96, MSJ97℄, a Lyapunov funtion is expliitly designed for a wide lass of asadedsystems, based on the knowledge of a Lyapunov funtion for eah subsystem and theassumption of a linear growth of the interonnetion. An extension of this, allowing apolynomial interonnetion, was later proposed in [MSJ99℄. See also [SJK97℄ an referenestherein.Global and semiglobal stabilization of asades via output feedbak also gave rise tohallenging problems, as stressed through examples in [MPD94℄. Please refer to [MT91,KKM92, TP94, SAT02℄ for various results in this area.1Set-stability will be disussed in a asade ontext in Chapter 4.



68 3. Stability of nonlinear time-varying asaded systems3.1 Semiglobal pratial asymptoti stability of asaded sys-temsIn this setion, we address the stability analysis problem for asades of time-varyingsystems that are uniformly semiglobally pratially asymptotially stable (USPAS). Weestablish that, under a uniform semiglobal boundedness ondition on its solutions, theasade of two USPAS systems remains USPAS. More preisely, we onsider asadedsystems of the form
ẋ1 = f1(t, x1, θ1) + g(t, x, θ) (3.1a)
ẋ2 = f2(t, x2, θ2) (3.1b)where x := (x⊤1 , x

⊤
2 )⊤ ∈ R

n1 × R
n2 , θ := (θ⊤1 , θ

⊤
2 )⊤ ∈ R

m1 × R
m2 , t ∈ R≥0, f1, f2 and gare loally Lipshitz in state and satisfy the Carathéodory onditions.The subsystems ẋ1 = f1(t, x1, θ1) and ẋ2 = f2(t, x2, θ2) are respetively referred to asdriven and driving subsystems, whereas g(t, x, θ) denotes the interonnetion term.In order to simplify the statement of our results, we �rst introdue the following nota-tion.De�nition 3.1 (D-set) For any ∆ > δ ≥ 0, the D-set of the dynamial system ẋ =

f(t, x, θ), introdued in (1.3), is de�ned as
Df (δ,∆) :=

{
θ ∈ R

m : Bδ is UAS on B∆ for (1.3)} .In other words, given two onstants δ ≥ 0 and ∆ > 0, the set Df (δ,∆) ontainsall the values of the tuning parameters that make Bδ uniformly asymptotially stable on
B∆ for the system (1.3). Notably, if Df (δ,∆) ∩ Θ 6= ∅ for all ∆ ≥ δ > 0, then (1.3)is USPAS on Θ. Note that we have the property that, if δ′ ≤ δ and ∆′ ≥ ∆, then
Df (δ

′,∆′) ⊂ Df (δ,∆). However, in De�nition 1.18, nothing is assumed onerning thestruture of Df (δ,∆). For instane, it may even onsist in a single parameter for eahpair (δ,∆). This is worth mentioning, sine, as stated in Chapter 2, other de�nitions ofsemiglobal pratial stability in the literature (see e.g. [TPA99, MA00, NL04, TNM05℄)do impose that all the parameters in a neighborhood of zero generate the same radii ∆ ofthe ball of attration and δ of the ball to whih solutions onverge, implying notably that
Df (δ,∆) ontains an open neighborhood of zero.All the results presented in this hapter assume the following struture for the inter-onnetion term g.Assumption 3.2 (Boundedness of the interonnetion term) The funtion g is uni-formly bounded both in time and in θ2 and vanishes with x2, i.e., for any θ1 ∈ Θ1, thereexists a nondereasing funtion Gθ1 and a lass K funtion Ψθ1 suh that, for all θ2 ∈ Θ2,all x ∈ R

n1 × R
n2 and all t ∈ R≥0,

|g(t, x, θ)| ≤ Gθ1(|x|)Ψθ1(|x2|) .3.1.1 With a Lyapunov funtion for the driven subsystemThe following result provides su�ient onditions for the preservation of USPAS under as-ade interonnetion, based on the knowledge of a Lyapunov funtion for the x1-subsystem.



69Theorem 3.3 (Lyapunov USPAS + USPAS + UB ⇒ USPAS) Under Assumptions3.2, 3.4, 3.5 and 3.6, the asaded system (3.1) is USPAS on Θ1 × Θ2.Assumption 3.4 (USPAS of the driving subsystem) The system (3.1b) is USPASon Θ2.Assumption 3.5 (Lyapunov USPAS of the driven subsystem) Given any ∆1 > δ1 >
0, there exist a parameter θ⋆1(δ1,∆1) ∈ Θ1, a ontinuously di�erentiable Lyapunov funtion
Vδ1,∆1

, lass K∞ funtions αδ1,∆1
, αδ1,∆1

, αδ1,∆1
and a ontinuous positive nondereasingfuntion cδ1,∆1

suh that, for all x1 ∈ H(δ1,∆1) and all t ∈ R≥0,
αδ1,∆1

(|x1|) ≤ Vδ1,∆1
(t, x1) ≤ αδ1,∆1

(|x1|) (3.2)
∂Vδ1,∆1

∂t
(t, x1) +

∂Vδ1,∆1

∂x1
(t, x1)f1(t, x1, θ

⋆
1) ≤ −αδ1,∆1

(|x1|) (3.3)
∣∣∣∣
∂V1

∂x1
(t, x1)

∣∣∣∣ ≤ cδ1,∆1
(|x1|) (3.4)Assumption 3.6 (Boundedness of solutions) There exists a positive onstant ∆0 suhthat, for any given positive numbers δ1, ∆1, δ2, ∆2, satisfying ∆1 > max{δ1; ∆0} and

∆2 > δ2, and for the parameter θ⋆1(δ1,∆1) as de�ned in Assumption 3.5, there exists a pa-rameter θ⋆2 ∈ Df2(δ2,∆2) ∩ Θ2 (f. De�nition 3.1) and a positive number γ(δ1, δ2,∆1,∆2)suh that the trajetories of (3.1) with θ = θ⋆ satisfy
|x0| ≤ γ(δ1, δ2,∆1,∆2) ⇒ |φ(t, t0, x0, θ

⋆)| ≤ ∆1 , ∀t ≥ t0 .In addition, given any ∆⋆ > δ⋆ > 0, there exist some positive δ1, ∆1 and ∆2, with ∆1 > δ1,suh that, for all δ2 ∈ (0; ∆2),
min {∆1; ∆2; γ(δ1, δ2,∆1,∆2)} ≥ ∆⋆ (3.5)
max

{
δ2;α

−1
δ1,∆1

◦ αδ1,∆1
(δ1)

}
≤ δ⋆ . (3.6)An appliation of this result is presented in Setion 6.1: we establish that the PIDontrol of robot manipulators is USPAS in presene of external disturbanes, model im-perfetions and when taking into aount the dynamis of the atuators.In view of Theorem 2.11, Assumption 3.5 orresponds to the Lyapunov su�ient on-dition for USPAS of the zero-input x1-subsystem, with the additional ondition of a boundon the gradient of Vδ1,∆1

. In turn, we stress that the requirement orresponding to (2.32)is no longer needed under Assumption 3.6. We state the above result under the more re-stritive assumption than simply �USPAS� sine our proof relies on the expliit knowledgeof the Lyapunov funtion Vδ1,∆1
. However, as we show in the next setion, Assumption3.5 an be relaxed based on the onverse result presented in Setion 2.2 provided that f1is su�iently smooth and that a stronger notion of USPAS (namely, δ-USPAS) is assumedon the driven subsystem.Roughly speaking, Assumption 3.6 imposes that the solutions be uniformly boundedby ∆1 for all initial onditions in a domain that an be arbitrarily enlarged by onvenientlypiking δ1, ∆1, δ2 and ∆2. Note that Proposition 2.13 provides an e�ient tool to hekAssumption 3.6 in spei� ontrol appliations.



70 3. Stability of nonlinear time-varying asaded systemsRemark 3.7 Assumption 3.6 may be relaxed to uniform boundedness on B∆1
× B∆2

pro-vided that it holds uniformly in ∆1 and ∆2, i.e., provided that the lass K funtion η andthe onstant µ in Proposition 1.12 are independent of ∆1 and ∆2.Remark 3.8 We stress that, similarly to Theorem 2.11, Theorem 3.3 still holds when (3.2)is replaed by the less onservative requirement:
αδ1,∆1

(|x1|δ1) ≤ Vδ1,∆1
(t, x1) ≤ αδ1,∆1

(|x1|) .Please refer to [CL06a, CL06b℄ for details. Furthermore, in view of Remark 2.12, it is infat su�ient that the requirements of Assumption 3.5 hold for all small δ1 and all large
∆1.Remark 3.9 For larity, we stated the result by assuming that the bounds on the inter-onnetion term are independent of the parameter θ2. We stress that, if needed in spei�appliations, Theorem 3.3 still holds when Assumption 3.2 is replaed by the following: forany θ ∈ Θ1 ×Θ2, there exists a nondereasing funtion Gθ and a lass K funtion Ψθ suhthat, for all all x ∈ R

n1 × R
n2 and all t ∈ R≥0,

|g(t, x, θ)| ≤ Gθ(|x|)Ψθ(|x2|) ,and, for all ∆1 > δ1 > 0, all ∆2 > 0, and for the parameter θ⋆1(δ1,∆1) introdued inAssumption 3.5, it holds that
lim
δ2→0

[
sup

{
Gθ(∆1)Ψθ(2δ2) : θ ∈ {θ⋆1(δ1,∆1)} × Df2(δ2,∆2)

}]
= 0 . (3.7)This appears more learly along the proof below.Proof of Theorem 3.3. The argument onsists in onstruting some balls Bδ and B∆ anda KL estimate for the solutions of the asaded system, based on the respetive balls forthe x1 and the x2 subsystems.For any given positive δ1, ∆1, δ2 and ∆2 satisfying ∆1 > max{δ1,∆0} and ∆2 > δ2,let γ(δ1, δ2,∆1,∆2) be generated by Assumption 3.6 and de�ne

∆ := min {∆1 ; ∆2 ; γ(δ1, δ2,∆1,∆2)} . (3.8)Next, hoose any θ⋆1(δ1,∆1) ∈ Θ1 satisfying Assumption 3.5 and any θ⋆2(δ2,∆2) in theintersetion of Df2(δ2,∆2) and Θ2 given by Assumption 3.6. We show that, provided that
δ1, δ2 are su�iently small and that ∆1, ∆2 are large enough, there exists δ ∈ (0; ∆)suh that Bδ is uniformly asymptotially stable on B∆ for the system (3.1) with θ⋆ =
(θ⋆1

⊤, θ⋆2
⊤)⊤. To that end, we �rst show that there exists a positive δ3 suh that the ball

Bδ3 is uniformly stable. More preisely, we onstrut ηδ1,δ2∆1,∆2
∈ K∞ and δ3 > 0 suh that,for all x0 ∈ B∆,

|φ1(t, t0, x0, θ
⋆)|δ3 ≤ ηδ1,δ2∆1,∆2

(|x0|) . (3.9)Then, we use this property to prove that a ball, larger than Bδ3 , is uniformly attrative on
B∆ and we onstrut a KL estimate for the solutions. Finally, we show that the estimatesof the domain of attration B∆ and of the ball Bδ to whih solutions onverge an bearbitrarily enlarged and diminished respetively.



71Proof of uniform stability: Consider the funtion Vδ1,∆1
generated by Assumption 3.5 andlet Lemma 2.6, with X = H(δ1,∆1) and k = 1, generate a funtion Vδ1,∆1

, lass K∞funtions α̃δ1,∆1
, α̃δ1,∆1

and a ontinuous nondereasing funtion c̃δ1,∆1
suh that, for all

x1 ∈ H(δ1,∆1) and all t ∈ R≥0,
α̃δ1,∆1

(|x1|) ≤ Vδ1,∆1
(t, x1) ≤ α̃δ1,∆1

(|x1|)
∂Vδ1,∆1

∂t
(t, x1) +

∂Vδ1,∆1

∂x1
(t, x1)f1(t, x1, θ

⋆
1) ≤ −Vδ1,∆1

(t, x1)

∣∣∣∣
∂Vδ1,∆1

∂x1
(t, x1)

∣∣∣∣ ≤ c̃δ1,∆1
(|x1|) ,and, for any s ∈ R≥0,

α̃−1
δ1,∆1

◦ α̃δ1,∆1
(s) = α−1

δ1,∆1
◦ αδ1,∆1

(s) . (3.10)The total time derivative of Vδ1,∆1
along the trajetories of (3.1) with θ = θ⋆ yields

V̇δ1,∆1
(t, x1) =

∂Vδ1,∆1

∂t
(t, x1) +

∂Vδ1,∆1

∂x1
(t, x1)

(
f1(t, x1, θ

⋆
1) + g(t, x, θ⋆)

)
.Therefore, from Assumption 3.2, it holds that, for all x1 ∈ H(δ1,∆1) and all t ∈ R≥0,

V̇δ1,∆1
(t, x1) ≤ −Vδ1,∆1

(t, x1) + c̃δ1,∆1
(|x1|)Gθ⋆

1
(|x|)Ψθ⋆

1
(|x2|) .Let Assumption 3.4 generate a KL funtion βδ2,∆2

suh that, for all x20 ∈ B∆2
and all

t0 ∈ R≥0,
|φ2(t, t0, x20, θ

⋆
2)|δ2 ≤ βδ2,∆2

(|x20| , t− t0) , ∀t ≥ t0 .Using the shorthand notation φ1(t) for φ1(t, t0, x0, θ
⋆) and v1(t) := Vδ1,∆1

(t, φ1(t)) weget, in view of (3.8) and Assumption 3.6, that, for all x0 ∈ B∆ and all t ≥ t0 suh that
φ1(t) ∈ H(δ1,∆1),

v̇1(t) ≤ −v1(t) + c̃δ1,∆1
(∆1)Gθ⋆

1
(∆1)Ψθ⋆

1

(
βδ2,∆2

(|x20| , t− t0) + δ2
)
. (3.11)Thus, we have

φ1(t) ∈ H(δ1,∆1) ⇒ v̇1(t) ≤ −v1(t) + cδ1,δ2∆1,∆2
(|x0|) , (3.12)with

cδ1,δ2∆1,∆2
(s) := c̃δ1,∆1

(∆1)Gθ⋆
1
(∆1)Ψθ⋆

1
(βδ2,∆2

(s, 0) + δ2) , ∀s ∈ R≥0 .The rest of the proof of uniform stability onsists in integrating (3.12) in order to onstruta bound like (3.9). To this end, we apply Lemma 2.7 to (3.12) with V = Vδ1,∆1
, k = 1,

c = cδ1,δ2∆1,∆2
and X = H(δ,∆), to get, in view of (3.8) and Assumption 3.6, that, for all

x0 ∈ B∆ and all t ≥ t0 ≥ 0,
|φ1(t)| ≤ α̃−1

δ1,∆1

(
α̃δ1,∆1

(δ1) + cδ1,δ2∆1,∆2
(|x0|)

)
+ α̃−1

δ1,∆1

(
α̃δ1,∆1

(|x0|) + cδ1,δ2∆1,∆2
(|x0|)

)
.De�ne the following:

δ3 := α̃−1
δ1,∆1

(
α̃δ1,∆1

(δ1) + cδ1,δ2∆1,∆2
(0)
)

+ α̃−1
δ1,∆1

(
cδ1,δ2∆1,∆2

(0)
)

= α̃−1
δ1,∆1

(
α̃δ1,∆1

(δ1) + c̃δ1,∆1
(∆1)Gθ⋆

1
(∆1)Ψθ⋆

1
(δ2)

)

+ α̃−1
δ1,∆1

(
c̃δ1,∆1

(∆1)Gθ⋆
1
(∆1)Ψθ⋆

1
(δ2)

) (3.13)



72 3. Stability of nonlinear time-varying asaded systemsand, for all s ∈ R≥0,
ηδ1,δ2∆1,∆2

(s) := α̃−1
δ1,∆1

(
αδ1,∆1

(δ1) + cδ1,δ2∆1,∆2
(s)
)

+ α̃−1
δ1,∆1

(
αδ1,∆1

(s) + cδ1,δ2∆1,∆2
(s)
)

− α̃−1
δ1,∆1

(
αδ1,∆1

(δ1) + cδ1,δ2∆1,∆2
(0)
)
− α̃−1

δ1,∆1

(
cδ1,δ2∆1,∆2

(0)
)
.Then we onlude that, for any x0 ∈ B∆ and all t0 ∈ R≥0, it holds that

|φ1(t)|δ3 ≤ ηδ1,δ2∆1,∆2
(|x0|) , ∀t ≥ t0 . (3.14)Uniform stability of Bδ3 on B∆ follows by notiing that ηδ1,δ2∆1,∆2

is a lass K funtion. Thisan be seen by realling that cδ1,δ2∆1,∆2
is a ontinuous inreasing funtion.Proof of uniform attrativity: Consider again (3.11). Sine βδ2,∆2

is a KL funtion, thereis a time t1 ≥ 0, independent of t0 and x0, suh that
βδ2,∆2

(∆, t− t0) ≤ δ2 , ∀ t ≥ t0 + t1 .Hene (3.11) implies that, for all x0 ∈ B∆,
φ1(t) ∈ H(δ1,∆1) ⇒ v̇1(t) ≤ −v1(t) + c̃δ1,∆1

(∆1)Gθ⋆
1
(∆1)Ψθ⋆

1
(2δ2) .Applying again Lemma 2.7 and realling that, from Assumption 3.6, |φ1(t0 + t1)| ≤ ∆1, itfollows that, for all x0 ∈ B∆, all t0 ∈ R≥0 and all t ≥ t0 + t1,

|φ(t)|δ1 ≤ α̃−1
δ1,∆1

(
α̃δ1,∆1

(δ1) + c̃δ1,∆1
(∆1)Gθ⋆

1
(∆1)Ψθ⋆

1
(2δ2)

)

+ α̃−1
δ1,∆1

(
α̃δ1,∆1

(∆1)e
−(t−t0−t1) + c̃δ1,∆1

(∆1)Gθ⋆
1
(∆1)Ψθ⋆

1
(2δ2)

)
.De�ning

t2 := t1 + ln( α̃δ1,∆1
(∆1)

α̃δ1,∆1
(δ1)

)
,we see that, for all t ≥ t0 + t2,

|φ1(t)| ≤ δ4 := 2α̃−1
δ1,∆1

(
α̃δ1,∆1

(δ1) + c̃δ1,∆1
(∆1)Gθ⋆

1
(∆1)Ψθ⋆

1
(2δ2)

)
. (3.15)In other words, we have, for all x0 ∈ B∆,

|φ1(t)|δ4 = 0 , ∀t ≥ t0 + t2 .Finally, let
δ := max {δ2 ; δ3 ; δ4} . (3.16)Then we see that (3.14) implies that |φ1(t)|δ ≤ η(|x0|) for all t ≥ t0. From this and whatpreedes it is not hard to see that, for all x0 ∈ B∆,

|φ1(t)|δ ≤ ηδ1,δ2∆1,∆2
(|x0|)e−(t−t0−t2) , ∀t ≥ t0 .Thus, realling that t2 depends neither on t0 nor on x0, and de�ning

βδ1,δ2∆1,∆2
(s, t) :=

√
ηδ1,δ2∆1,∆2

(s)2e−2(t−t2) + βδ2,∆2
(s, t)2 , ∀s, t ∈ R≥0 ,



73we onlude that, for all x0 ∈ B∆,
|φ(t, t0, x0, θ

⋆)|δ ≤ βδ1,δ2∆1,∆2
(|x0| , t− t0) , ∀t ≥ t0 .Uniform asymptoti stability of Bδ on B∆ follows by notiing that βδ1,δ2∆1,∆2

is a lass KLfuntion. We stress that the dependene of the KL estimate in δ and ∆ (through ∆1, ∆2,
δ1 and δ2) is not in ontradition with De�nition 1.19.Proof of �semiglobal pratial�: It is only left to show that δ and ∆ an be arbitrarilyredued and enlarged respetively. To this end, onsider any desired ∆⋆ > δ⋆ > 0 andhoose δ1,∆1,∆2 in suh a way that, for all δ2 ∈ (0; ∆2),
min {∆1; ∆2; γ(δ1, δ2,∆1,∆2)} ≥ ∆⋆ , α−1

δ1,∆1
◦ αδ1,∆1

(δ1) = α̃−1
δ1,∆1

◦ α̃δ1,∆1
(δ1) ≤

δ⋆
4
,as ensured by Assumption 3.6 (see also (3.10)). Then, we get diretly from (3.8) that ∆an be made greater than or equal to ∆⋆. Furthermore, it is possible to hoose δ2 smallenough that

α̃−1
δ1,∆1

(
α̃δ1,∆1

(δ1) + c̃δ1,∆1
(∆1)Gθ⋆

1
(∆1)Ψθ⋆

1
(2δ2)

)
≤ δ⋆

2sine α̃−1
δ1,∆1

and Ψθ⋆
1
both belong to lass K∞ and none of the above involved funtionsdepend on δ2. In other words, we an ensure that δ4 ≤ δ⋆ (f. (3.15)). Invoking againAssumption 3.6 and notiing that δ3 ≤ δ4, we onlude in view of (3.16) that we anahieve δ ≤ δ⋆.In the ase that the funtions G and Ψ depend on θ2, and provided that (3.7) holds,we see from (3.15) and (3.16) that δ an still be made arbitrarily small by piking δ2 smallenough. This justi�es Remark 3.9. �3.1.2 Without a Lyapunov funtion for the driven subsystemThe main result of the above setion provides a tool for the stability analysis of uniformlysemiglobally pratially asymptotially stable systems plaed in asade (f. (3.1)):

ẋ1 = f1(t, x1, θ1) + g(t, x, θ)

ẋ2 = f2(t, x2, θ2) .However, one may argue that it requires the expliit knowledge of a Lyapunov funtionfor the driven subsystem, whih may not be diret when the stability property underonsideration is established by other means as, for instane, averaging tehniques [TPA99℄.Based on Corollary 2.30, we may simplify the statement of Theorem 3.3 in this diretion,provided that funtion f1 involved in (3.1) is su�iently smooth and that the x1-dynamisenjoys the stronger property of δ-USPAS (f. De�nition 2.28). Roughly this means thatthe KL estimate of its solutions is the same disregarding the amplitude of the steady-stateerror we want to impose. More preisely, we assume the following.Assumption 3.10 (USPAS of eah subsystems) The subsystems ẋ1 = f1(t, x1, θ1)and ẋ2 = f2(t, x2, θ2) in (3.1) are USPAS on Θ1 and Θ2 respetively.



74 3. Stability of nonlinear time-varying asaded systemsAssumption 3.11 (Regularity of f1) There exist a nonnegative onstant f0 and a on-tinuous nondereasing funtion L suh that, for all θ1 ∈ Θ, all x1 ∈ R
n1 and all t ∈ R≥0,

|f1(t, 0, θ1)| ≤ f0 ,

∣∣∣∣
∂f1

∂x1
(t, x1, θ1)

∣∣∣∣ ≤ L(|x1|) .Theorem 3.12 (USPAS + USPAS + UB ⇒ USPAS) Under Assumptions 3.2, 3.6,3.10 and 3.11 the asaded system (3.1) is USPAS on the parameter set Θ1 × Θ2.Proof of Theorem 3.12. The proof follows diretly from Theorem 3.3 by observing thatAssumptions 3.10 and 3.11 imply, via Theorem 2.27, Assumption 3.5. �Assumption 3.6 may remain hard to hek in pratie. The following result states that,if the driven subsystem is δ-USPAS, then this assumption is no longer required in the asewhen solutions of the asade (3.1) are uniformly globally bounded uniformly in θ.Assumption 3.13 (δ-USPAS and USPAS) The subsystems ẋ1 = f1(t, x1, θ1) and ẋ2 =
f2(t, x2, θ2) in (3.1) are respetively δ-USPAS on Θ1 and USPAS on Θ2.Assumption 3.14 (UGB, uniformly in θ) There exist η ∈ K∞ and µ > 0 suh that,for all x0 ∈ R

n, all t0 ∈ R≥0 and all θ ∈ Θ, the trajetory of (3.1) satis�es
|φ(t, t0, x0, θ)| ≤ η(|x0|) + µ , ∀t ≥ t0 .Corollary 3.15 (δ-USPAS + USPAS + UGB ⇒ USPAS) Under Assumptions 3.2,3.11, 3.13 and 3.14, the asaded system (3.1) is USPAS on the parameter set Θ1 × Θ2.Proof of Corollary 3.15. In the statement of Theorem 3.3, pik ∆0 as µ and γ(δ1, δ2,∆1,∆2)as η−1(∆1 − µ). Then (3.5) an be ful�lled by simply piking ∆1 and ∆2 large enough.In the same way, due to the δ-USPAS assumption on the driven subsystem, the funtions

αδ1,∆1
and αδ1,∆1

generated by Corollary 2.30 are independent of δ1. Hene, it su�es topik δ1 small enough in order to ful�ll (3.6). �Corollary 3.15 is partiularly useful in appliations where USPAS of the driven sub-system is obtained without a Lyapunov funtion, e.g. via averaging: we illustrate thisthrough the following example.Bounded ontrol of the persistently exited double integratorConsider the output feedbak stabilization of the following double integrator:
ẋ1 = x2 (3.17a)
ẋ2 = −p(t/θ)2u (3.17b)where u is the ontrol input and θ is a free positive parameter, under the following ondi-tions and assumptions:- given umax, it is required that |u(·)| ≤ umax;- only x1 is measured;



75- p is pieewise ontinuous and |p(t)| ≤ pM , with pM > 0, for all t ∈ R≥0;- p(t)2 admits an �nite average, i.e. the following quantity exists and is �nite2:
p2
av := lim

T→+∞
1

T

∫ T

0
p(τ)2dτ ; (3.18)For the ase that p(·) ≡ 1, the ontrol literature provides bounded state feedbaks u∗(x)that globally asymptotially stabilize the origin of the system (3.17), f. e.g. [SS90b, SY91,Tee92℄. The output feedbak ontrol of this system is also onsidered in [Tee96, Theorem7℄. In this ontext, we pose the following problem: provided that we design an observer for(3.17) suh that the estimated state, x̂, tends to x exponentially, does u∗(x̂) stabilize theorigin of (3.17)? We give a positive answer to this question by showing, via Theorem 3.12,that u∗(x̂) stabilizes (3.17) in the semiglobal pratial sense. For larity of exposition weprove the result for a spei� u∗(x) but it holds for other bounded smooth ontrols.We stress that the double integrator (3.17) is a partiular ase of systems of the form

ẋ = f(t, x) + g(t)u where the �input gain� g(t) is not invertible (sine p(t) may vanish forsome values of t). This situation may appear in physial systems: see for instane [AL02℄.Another motivation is to ontrol by feedbak linearization: if g(t) were invertible, we mightuse u = g(t)−1[−x + f(t, x)]; sine it is not, but instead persistently exiting, an we use
u = g(t)[−x + f(t, x)]? For further motivations see [LCBC05℄. Please note also that theabove problem was solved in [SCM+06℄, with a linear ontrol, by assuming that the wholestate is measured. However, it involves a deeply di�erent approah than the one presentedhere.Proposition 3.16 Let p be a bounded pieewise ontinuous funtion satisfying

lim
T→∞

1

T

∫ T

0
p(s)2ds = p2

av ,where pav denotes a �nite onstant. Then the system (3.17) in losed loop with u∗(x̂) :=
−k1tanh(x̂1) − k2tanh(x̂2) with k1, k2 > 0 and the observer

˙̂x1 = x̂2 − ℓ1x̄1 (3.19a)
˙̂x2 = −p(t/θ)2u∗(x̂) − ℓ2x̄1 (3.19b)where ℓi > 0 and x̄i := x̂i − xi for all i ∈ {1, 2}, is USPAS on the parameter set R>0. �The above result provides a separation priniple for the bounded output feedbak on-trol of (3.17). If u∗ is a bounded state feedbak that stabilizes the nominal system (i.e.when onsidering p(·) = 1), then it su�es to evaluate it based on the state estimates toahieve the ontrol objetive in presene of a persistently exiting signal p(·). This is at theprie of a slight degradation of performane sine the global asymptoti stability enjoyedby the nominal state-feedbak ontrolled yields uniform semiglobal pratial stability forthe output-feedbak ontrolled perturbed system.We stress that an alternative to the proof presented below an be derived from [Tee96,Theorem 7℄ and [TPA99℄. Roughly speaking, the former referene ensures the stabilizabilityof (3.17) by output feedbak when p is replaed by its average. The latter referene an2Note that p2

av is stritly positive due to the persisteny of exitation assumption on p(t).



76 3. Stability of nonlinear time-varying asaded systemsthen be invoked to onlude USPAS of the original system. The arguments presentedbelow however illustrate better the results of this setion, whih mainly motivated theirexposition.Proof of Proposition 3.16. We start by exhibiting the asaded struture of the losed-loop system. To that end, let f(t, x, θ) denote the right hand side of (3.17) with u = u∗(x)and de�ne
g(t, x, x̄, θ) := p(t/θ)2

(
0

g1(x1, x̄1) + g2(x2, x̄2)

)
,where gi(xi, x̄i) := −ki(tanh(x̄i + xi) − tanh(xi)) for all i ∈ {1, 2}. Then, the losed loopsystem takes the form

ẋ = f(t, x, θ) + g(t, x, x̄, θ) (3.20a)
˙̄x = Ax̄ , A :=

(
−ℓ1 1
−ℓ2 0

)
. (3.20b)First notie that Assumption 3.2 is ful�lled with

G(s) := 2p2
M (k1 + k2) and Ψ(s) = s .This an be seen by observing that |tanh(a+ b) − tanh(b) | ≤ 2 |a| for all a, b ∈ R. Inaddition, A is learly Hurwitz for any positive values of ℓ1 and ℓ2, whih shows that (3.20b)is globally exponentially stable (and a fortiori USPAS). To show USPAS of ẋ = f(t, x, θ)we proeed as follows. De�ne the following funtion:
fav(x) =

[
x2

−p2
avu

∗(x)

]
.Then, for eah positive T , we have

∣∣∣∣fav(x) −
1

T

∫ T

0
f(t, x, 1)dt

∣∣∣∣ ≤
∣∣∣∣p

2
av −

1

T

∫ T

0
p(τ)2dτ

∣∣∣∣ (k1 + k2) |x| .From (3.18), it follows that there exists a lass L funtion σ suh that
∣∣∣∣fav(x) −

1

T

∫ T

0
f(t, x, 1)dt

∣∣∣∣ ≤ (k1 + k2) |x|σ(T ) . (3.21)Consequently, fav onstitutes an average of f in the sense of [TPA99℄. Under the assump-tions made on (3.17), ẋ = fav(x) is globally asymptotially stable. From [TPA99℄ andProposition 2.29, it follows that (3.17) with u = u∗(x) is δ-USPAS on the parameter set
R>0. This establishes Assumption 3.10.Uniform boundedness may be shown as follows. Diret omputations show that, pro-vided that ε > 0 is piked su�iently small, the following funtion is positive de�nite andradially unbounded

V (x) =
1

2
|x2|2 + k1p

2
avln(osh(x1) ) + εtanh(x1)tanh(x2) ,i.e. there exist lass K∞ funtions α and α suh that α(|x|) ≤ V (x) ≤ α(|x|). In addition,

V is independent of the tuning parameter θ. Furthermore, V has a negative de�nite



77derivative along the trajetories of ẋ = fav(x). More preisely, for su�iently small ε > 0there exist q1, q2 > 0 suh that
∂V

∂x
(x)fav(x) ≤ −q1seh2(x2)tanh2(x1) − q2x2tanh(x2) =: −W (x) .Note thatW is a ontinuous positive de�nite funtion independent of θ as well. In addition,notiing that |tanh(a+ b) − tanh(b) | ≤ 2 |a| for all a, b ∈ R, it holds that
∣∣∣∣
∂V

∂x
(x)g(t, x, x̄, θ)

∣∣∣∣ ≤
∣∣x2 + εtanh(x1)seh2(x2)

∣∣ 2p2
M (k1 + k2) .It follows that there exists a nonnegative onstant λ suh that, for all x̄ ∈ R

2, all t ∈ R≥0and all θ ∈ R>0,
|x| ≥ 1 ⇒

∣∣∣∣
∂V

∂x
g(t, x, x̄, θ)

∣∣∣∣ ≤ λW (x) .Observing that forward ompleteness of (3.20) follows from the boundedness of p(·), andrealling that both V and W are independent of θ, we onlude, proeeding as in the proofof [PL01, Theorem 4℄, that the solutions of the overall system are UGB uniformly in θ.The result follows from Corollary 3.15. �3.2 Semiglobal asymptoti stability of asaded systemsThis short setion exhibits the intrinsi similarities between USPAS and USAS. We showthat almost all the results presented above an be diretly adapted to uniform semiglobalasymptoti stability modulo little additional requirements due to a tehnial obstale inthe proof.3.2.1 With a Lyapunov funtion for the driven subsystemTheorem 3.17 (Lyapunov USAS + USAS + UB ⇒ USAS) Under Assumptions 3.2,3.18, 3.19 and 3.20, the asaded system (3.1) is uniformly semiglobally asymptotially sta-ble on the parameter set Θ1 × Θ2.Assumption 3.18 (USAS of the driving subsystem) The system (3.1b) is USAS on
Θ2.Assumption 3.19 (Lyapunov USAS of the driven subsystem) Given any ∆1 > 0,there exist a parameter θ⋆1(∆1) ∈ Θ1, a ontinuously di�erentiable Lyapunov funtion V∆1

:
R≥0×R

n1 → R≥0, lass K∞ funtions α∆1
, α∆1

, a positive onstant k∆1
and a ontinuouspositive nondereasing funtion c∆1

suh that, for all x1 ∈ B∆1
and all t ∈ R≥0,

α∆1
(|x1|) ≤ V∆1

(t, x1) ≤ α∆1
(|x1|)

∂V∆1

∂t
(t, x1) +

∂V∆1

∂x1
(t, x1)f1(t, x1, θ

⋆
1) ≤ −k∆1

V∆1
(t, x1) (3.22)

∣∣∣∣
∂V1

∂x1
(t, x1)

∣∣∣∣ ≤ c∆1
(|x1|) .



78 3. Stability of nonlinear time-varying asaded systemsAssumption 3.20 (Boundedness of solutions) There exists a positive onstant ∆0 suhthat, for any given positive numbers ∆1, ∆2, satisfying ∆1 > ∆0, and for the parameter
θ⋆1(∆1) as de�ned in Assumption 3.19, there exists a parameter θ⋆2 ∈ Df2(0,∆2) ∩ Θ2 (f.De�nition 3.1) and a nonnegative onstant γ(∆1,∆2) suh that

lim
∆1,∆2→+∞

γ(∆1,∆2) = +∞ ,and the trajetories of (3.1) with θ = θ⋆ satisfy
|x0| ≤ γ(∆1,∆2) ⇒ |φ(t, t0, x0, θ

⋆)| ≤ ∆1 , ∀t ≥ t0 .The proof of Theorem 3.17 is not detailed as it follows along the same lines as theproof of Theorem 3.3. Roughly speaking, it su�es to pik δ1 = δ2 = 0 in the latter toget the result. However, from a tehnial point of view, Lemma 2.6 does not apply to thissituation, whih prevents V∆1
to be transformed in a more onvenient form. This explainswhy the total derivative of V∆1
is assumed to satisfy the more onservative bound (3.22).Yet, by observing that the requirement δ > 0 in Lemma 2.6 serves only to establish atime-invariant bound on the gradient of the transformed Lyapunov funtion, and as thisfat follows as an immediate onsequene of the time invariane of the original funtion V∆1

,we an show that the following statement holds. It partiularly �ts (but is not restritedto) the situation when the driven subsystem is time-invariant.Assumption 3.21 (Lyapunov USAS of the x1-subsystem) Given any ∆1 > 0, thereexist a parameter θ⋆1(∆1) ∈ Θ1, a ontinuously di�erentiable Lyapunov funtion V∆1
:

R
n1 → R≥0 and lass K∞ funtions α∆1

, α∆1
, α∆1

suh that, for all x1 ∈ B∆1
and all

t ∈ R≥0,
α∆1

(|x1|) ≤ V∆1
(x1) ≤ α∆1

(|x1|)

∂V∆1

∂x1
(x1)f1(t, x1, θ

⋆
1) ≤ −α∆1

(|x1|) .Corollary 3.22 Under Assumptions 3.2, 3.18, 3.20 and 3.21, the asaded system (3.1)is uniformly semiglobally asymptotially stable on Θ1 × Θ2.We stress that, in this situation, the bound on the gradient of the Lyapunov funtionfollows trivially from the time-invariane and ontinuous di�erentiability of the latter.3.2.2 Without a Lyapunov funtion for the driven subsystemFor the sake of ompleteness, we present below a result that allows to establish USASof a asaded system, without requiring the knowledge of any expliit Lyapunov funtion.Similarly to USPAS, it requires additional smoothness of the driven subsystem's dynamis.However, due to the tehnial obstale underlined above, we further need to assumethat the driven subsystem is time-invariant. In other words, we onsider asaded systemsof the form
ẋ1 = f1(x1, θ1) + g(t, x, θ) (3.23a)
ẋ2 = f2(t, x2, θ2) . (3.23b)



79Assumption 3.23 (Regularity of f1) There exist a nonnegative onstant f0 and a on-tinuous nondereasing funtion L suh that, for all θ1 ∈ Θ and all x1 ∈ R
n1,

|f1(0, θ1)| ≤ f0 ,

∣∣∣∣
∂f1

∂x1
(x1, θ1)

∣∣∣∣ ≤ L(|x1|) .Assumption 3.24 (USAS of eah subsystem) The subsystems ẋ1 = f1(x1, θ1) and(3.23b) are USAS respetively on Θ1 and Θ2.Theorem 3.25 (USAS + USAS + UB ⇒ USAS) Under Assumptions 3.2, 3.20, 3.23and 3.24, the asaded system (3.23) is USAS on Θ1 × Θ2.The proof follows along the same lines as the one of Theorem 3.12 by piking δ1 =
δ2 = 0. The main di�erene stands in the fat the time-invariant bound on the gradientof the Lyapunov funtion generated by Lemma 2.6 annot be ensured. This di�ultyis overpassed by the fat that the driven subsystem is time-invariant, whih makes theLyapunov funtion provided by Theorem 2.31 time-invariant too. The autonomous boundon its gradient then follows diretly from its ontinuous di�erentiability.3.3 Global pratial asymptoti stability of asaded systemsWe now present theorems for UGPAS of systems in asade. While the proof of the stabilityanalysis of asaded systems for USPAS and USAS have a lot in ommon, the results belowshows that global properties have to be treated in a slightly di�erent way. Although theymake the problem of the existene of a onverse Lyapunov funtion harder (as pointed outin Setion 2.2.2), they allow to provide very e�ient tools to establish uniform boundednessof the overall asade.We reall that we onsider asaded systems of the form

ẋ1 = f1(t, x1, θ1) + g(t, x, θ)

ẋ2 = f2(t, x2, θ2) ,originally introdued in (3.1).Theorem 3.26 (UGPAS + UGPAS + growth restrition ⇒ UGPAS) Under As-sumptions 3.2, 3.28 and 3.27, the asaded system (3.1) is uniformly globally pratiallyasymptotially stable (UGPAS) on the parameter set Θ1 × Θ2.Assumption 3.27 (UGPAS of the driving subsystem) The system (3.1b) is UGPASon Θ2.Assumption 3.28 (Lyapunov UGPAS of the driven subsystem) Given any δ1 >
0, there exist a parameter θ⋆1(δ1) ∈ Θ1, a ontinuously di�erentiable Lyapunov funtion
Vδ1, lass K∞ funtions αδ1, αδ1, αδ1 and a ontinuous positive nondereasing funtion cδ1suh that, for all x1 ∈ R

n \ Bδ1 and all t ∈ R≥0,
αδ1(|x1|) ≤ Vδ1(t, x1) ≤ αδ1(|x1|) (3.24)

∂Vδ1
∂t

(t, x1) +
∂Vδ1
∂x1

(t, x1)f1(t, x1, θ
⋆
1) ≤ −αδ1(|x1|) (3.25)



80 3. Stability of nonlinear time-varying asaded systems
∣∣∣∣
∂Vδ1
∂x

(t, x1)

∣∣∣∣ ≤ cδ1(|x1|) (3.26)
lim
δ1→0

α−1
δ1

◦ αδ1(δ1) = 0 . (3.27)In addition, for the funtion Gθ1 of Assumption 3.2, it holds that, for all δ1 > 0 and as stends to +∞,
cδ1(s)Gθ⋆

1
(s) = O(αδ1 ◦ α−1

δ1
◦ αδ1(s)) (3.28a)

αδ1(s) = O(αδ1(s)) . (3.28b)In view of Theorem 2.5, it is lear that Assumption 3.28 implies that the zero-input
x1-subsystem is UGPAS on Θ1. We state the above result under the assumption thatwe know a Lyapunov funtion Vδ1 satisfying the above onditions as the latter impliitlyimpose uniform global boundedness of the solutions of the asaded system.In this respet, we stress that, ompared to Theorems 3.3 and 3.17, Theorem 3.26does not require the boundedness of solutions a priori. This onstitutes a very enjoyablefeature in appliations, as the orresponding requirement may easily be heked based onthe simple inspetion of the interonnetion term and the bounds on the assumed Lyapunovfuntion, its derivative and its gradient, for the driven subsystem.Regarding Assumption 3.2, it is worth emphasizing that, at the exeption of few arti-les, as [SAT02, JSK96℄, it is typially required that the dependene of the interonnetionterm in x1 be at most linear (i.e. Gθ1 a�ne); see e.g. [SJK97℄. In fat, suh a be-havior of g is impliitly imposed by (3.28), but only when |x1| tends to in�nity. In thisrespet, we underline the similarity existing between the requirements (3.28) and [PL01,Assumption 4℄ (whih borrows from [SC64℄): in the partiular ase that, for all δ1 > 0,
lims→∞ αδ1(s)/αδ1(s) <∞, they are even equivalent.Remark 3.29 For larity, Theorem 3.26 is stated under the assumption that the boundon the interonnetion term is independent of θ2. For the ase that this does not hold, asit appears more learly along the proof, it is su�ient to additionally impose that, for all
θ1 ∈ Θ1,

lim
δ2→0

(
sup {Ψθ1,θ2(δ2) : θ2 ∈ Df2(δ2,∞) ∩ Θ2}

)
= 0 .The proof of Theorem 3.26 relies on the following result that also has interest at itsown. Similarly to Lemma 2.6, it provides su�ient onditions to transform a �lassial�Lyapunov funtion into another one that presents useful properties of its gradient and itstotal derivative.Lemma 3.30 Let δ > 0 be some given onstant and let X be a subset of R

n\
◦
Bδ. Supposethat there exist a ontinuously di�erentiable funtion V : R≥0 ×X → R≥0 and lass K∞funtions α, α, α and ontinuous funtions c, µ : R≥0 → R≥0, with c nondereasing, suhthat, for all x ∈ X and all t ∈ R≥0,

α(|x|) ≤ V (t, x) ≤ α(|x|)

∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) ≤ −α(|x|) .

∣∣∣∣
∂V

∂x
(t, x)

∣∣∣∣ ≤ c(|x1|) (3.29)



81and, as s tends to +∞,
c(s)µ(s) = O(α ◦ α−1 ◦ α(s)) (3.30)

α(s) = O(α(s)) , (3.31)Then, for any positive k, there exists a ontinuously di�erentiable funtion V : R≥0 ×X →
R≥0, lass K∞ funtions α̃ and α̃ and a nonnegative onstant η suh that, for all x ∈ Xand all t ∈ R≥0,

α̃(|x|) ≤ V(t, x) ≤ α̃(|x|) (3.32)
∂V
∂t

(t, x) +
∂V
∂x

(t, x)f(t, x) ≤ −kV(t, x) (3.33)
∣∣∣∣
∂V
∂x

(t, x)

∣∣∣∣µ(|x|) ≤ ηV(t, x) . (3.34)and it holds that
α̃−1 ◦ α̃(s) = α−1 ◦ α(s) , ∀s ∈ R≥0 . (3.35)

�The above result is very similar to Lemma 2.6 that was mainly used to establishsemiglobal properties, at the di�erene that a stronger bound (3.34) on the gradient isprovided for the generated Lyapunov funtion. This additional feature allows us to getrid of the assumption of uniform boundedness of solutions. Please refer to the proof ofTheorem 3.26 below for further details. Before, we give the proof of the above lemma.Proof of Lemma 3.30. The proof is inspired by [PW96, Proposition 13℄, originally pre-sented in [LL69℄. Let a be a lass K funtion with the following properties:- a(s) = 1
kα ◦ α−1(s) for all s ≥ α(δ),- a(s) ≤ s for all s ≤ α(δ)/2,- a′(0) = 0,and de�ne ρ as the following funtion

ρ(s) = exp

(∫ s

1

dτ

a(τ)

)
, ∀s ∈ R≥0 .Firstly observe that, in view of (3.31), the integral in the exponential diverges. In the sameway, sine a(s) ≤ s in a neighborhood of zero, the integral tends to −∞ when s tends tozero. It an also be seen that ρ is ontinuous and inreasing, whih makes it a lass K∞funtion. Also, based on [PW96, Lemma 12℄, ρ is ontinuously di�erentiable too. Hene,by operating the transformation V := ρ ◦V , we see that V is ontinuously di�erentiable aswell, and that (3.32) an be established with the following lass K∞ funtions: α̃ := ρ ◦ αand α̃ := ρ ◦ α. In turn, we have that, for all s ∈ R≥0,

α̃−1 ◦ α̃(s) = (α−1 ◦ ρ−1) ◦ (ρ ◦ α)(s) = α−1 ◦ α(s) .



82 3. Stability of nonlinear time-varying asaded systemsIn addition, for all x ∈ X, V (t, x) ≥ α(δ), hene
∂V
∂t

(t, x) +
∂V
∂x

(t, x)f(t, x) ≤ −ρ′(V (t, x))α(|x|)

≤ − V(t, x)

a(V (t, x))
α ◦ α−1(V (t, x))

≤ −kV(t, x) .Furthermore, for all x ∈ X, we have that
∣∣∣∣
∂V
∂x

(t, x)

∣∣∣∣µ(|x|) ≤ ρ′(V (t, x))c(|x|)µ(|x|) ≤ V(t, x)

a(V (t, x))
c(|x|)µ(|x|) .The bound (3.34) follows by realling thatX ⊂ R

n\
◦
Bδ and by notiing that (3.30) togetherwith the ontinuity of µ ensures the existene of a nonnegative onstant η suh that

sup
|x|≥δ

c(|x|)µ(|x|)
a(V (t, x))

≤ sup
|x|≥δ

kc(|x|)µ(|x|)
α ◦ α−1 ◦ α(|x|) ≤ η .

�Remark 3.31 If, in the statement of Theorem 3.26, the Lyapunov funtion Vδ1 (diretly)satis�es (3.32), (3.33) and (3.34), then it does not require (3.28) anymore. This followsby notiing that the proof of Theorem 3.26 starts by transforming the original Lyapunovfuntion into another one satisfying (3.32), (3.33) and (3.34) thanks to the previous result.We are now ready to give the proof of Theorem 3.26, that guarantees UGPAS forasaded systems.Proof of Theorem 3.26. The argument onsists in onstruting a ball Bδ and a KLestimate for the solutions of the asaded system, based on the respetive balls for the x1(i.e. (3.1a) with x2 ≡ 0) and the x2 subsystems, and to show that δ an be arbitrarilyredued by a onvenient hoie of the parameters.For any positive number δ1, let Vδ1 and θ⋆1(δ1) ∈ Θ1 be generated by Assumption 3.28.Then, apply Lemma 3.30 to Vδ1 on the set X = R
n1 \ Bδ1 with µ = Gθ1 and k = 2. Itfollows that there exist a funtion Vδ1 , lass K∞ funtions α̃δ1 , α̃δ1 , and a nonnegativeonstant ηδ1 suh that, for all x1 ∈ R

n1 \ Bδ1 and all t ∈ R≥0,
α̃δ1(|x1|) ≤ Vδ1(t, x1) ≤ α̃δ1(|x1|)

∂Vδ1
∂t

(t, x1) +
∂Vδ1
∂x1

(t, x1)f1(t, x1, θ
⋆
1) ≤ −2Vδ1(t, x1)

∣∣∣∣
∂Vδ1
∂x1

(t, x1)

∣∣∣∣Gθ1(|x1|) ≤ ηδ1Vδ1(t, x1) , (3.36)with the property that :
lim
δ1→0

α̃−1
δ1

◦ α̃δ1(δ1) = lim
δ1→0

α−1
δ1

◦ αδ1(δ1) = 0 . (3.37)Next, let Ψθ⋆
1
be given by Assumption 3.2 and hoose δ2 small enough that

Ψθ⋆
1
(δ2) ≤

1

ηδ1
, (3.38)



83whih is always possible sine Ψθ⋆
1
is a lass K funtion and neither3 Ψθ⋆

1
nor ηδ1 dependon δ2. Finally, let θ⋆2 be any parameter in Df2(δ2,∞) ∩ Θ2.We proeed in four steps. We �rst show that, for this hoie of θ⋆ = (θ⋆1, θ

⋆
2), theasade (3.1) is forward omplete. We then use this property to prove that it is uniformlyglobally stable with respet to a ball Bδ, with δ de�ned based on δ1 and δ2, and then thatthis ball is also uniformly globally attrative. We �nally show that the size of this ball Bδan be arbitrarily diminished by a onvenient hoie of the parameter.Proof of forward ompleteness: The total time derivative of Vδ1 along (3.1) yields

V̇δ1(t, x1) =
∂Vδ1
∂t

(t, x1) +
∂Vδ1
∂x1

(t, x1)
(
f1(t, x1, θ

⋆
1) + g(t, x, θ⋆)

)
.Therefore, in view of Assumption 3.2 and (3.36), it holds that, for all x1 ∈ R
n1 \ Bδ1 andall t ∈ R≥0,

V̇δ1(t, x1) ≤ −2Vδ1(t, x1) +

∣∣∣∣
∂V1

∂x1
(t, x1)

∣∣∣∣ |g(t, x, θ⋆)|

≤ −2Vδ1(t, x1) +

∣∣∣∣
∂V1

∂x1
(t, x1)

∣∣∣∣Gθ1(|x1|)Ψθ⋆
1
(|x2|)

≤ −
(
2 − ηδ1Ψθ⋆

1
(|x2|)

)
Vδ1(t, x1) . (3.39)Let Assumption 3.27 generate a lass KL funtion βδ2 suh that, for any x20 ∈ R

n2 andany t ≥ t0,
|φ2(t, t0, x20, θ

⋆
2)| ≤ βδ2(|x20| , t− t0) + δ2 . (3.40)Let x0 = (x⊤10, x

⊤
20)

⊤ ∈ R
n1 × R

n2 be any given initial state and t0 ∈ R≥0 be any giveninitial time. In order to simplify the notations, we refer to φ(·, t0, x0, θ
⋆) as simply φ(·)and we de�ne v1(·) := Vδ1(·, φ1(·)). It follows from (3.39) that

|φ1(t)| > δ1 ⇒ v̇1(t) ≤ ηδ1Ψθ⋆
1
(βδ2(|x20| , 0))v1(t) .Hene, with Lemma 2.7, we onlude that, for all t ≥ t0,

|φ1(t)| ≤ α̃−1
δ1

◦ α̃δ1(δ1) + α̃−1
δ1

(
α̃δ1(|x0|) exp

(
ηδ1Ψθ⋆

1
(βδ2(|x20| , 0))(t− t0)

) )
.Thus, de�ning

δ3 := α̃−1
δ1

◦ α̃δ1(δ1) , (3.41)and, for all s, t ∈ R≥0,
ρδ1δ2(s, t) := α̃−1

δ1

(
α̃δ1(s) exp

(
ηδ1Ψθ⋆

1
(βδ2(s, 0))t

) )
,we obtain that, for all x0 ∈ R

n and all t0 ∈ R≥0,
|φ1(t)| ≤ δ3 + ρδ1δ2(|x0| , t− t0) , ∀t ≥ t0 . (3.42)3Note that, for the ase that G depends on θ2 (and therefore on δ2), (3.38) remains ahievable for δ2small enough under the additional ondition of Remark 3.29.



84 3. Stability of nonlinear time-varying asaded systemsNotie that ρδ1δ2(·, t) ∈ K∞ for all t ∈ R≥0 and that ρδ1δ2(s, ·) is a ontinuous nondereasingfuntion for all s ∈ R≥0. This ensures forward ompleteness of (3.1a), and onsequently ofthe asade (3.1). More preisely, de�ning
ρ̃δ1δ2(s, t) :=

√
ρδ1δ2(s, t)

2 + βδ2(s, 0)2 , ∀s, t ∈ R≥0 ,

ρ̃δ1δ2 inherits the same properties as ρδ1δ2 , and we obtain that, for all x0 ∈ R
n and all t0 ∈ R≥0,

|φ(t)| ≤ δ + ρ̃δ1δ2(|x0| , t− t0) , ∀t ≥ t0 , (3.43)with
δ := max{δ2 ; δ3} . (3.44)Proof of global stability: For all x0 ∈ R

n, onsider the time T δ1δ2 (|x20|) suh that4
ηδ1Ψθ⋆

1

(
βδ2
(
|x20| , T δ1δ2 (|x20|)

)
+ δ2

)
= 1 .Note that, in view of (3.38), T δ1δ2 (|x20|) is �nite and nonnegative for all x20 ∈ R

n2 . Also,
T δ1δ2 (·) an be piked as a nondereasing funtion. In view of (3.39) and (3.40), we havethat, for all t ≥ t0 + T δ1δ2 (|x20|),

|φ1(t)| > δ1 ⇒ v̇1(t) ≤ −v1(t) .Invoking again Lemma 2.7, we get that, for all t ≥ t0 + T δ1δ2 (|x20|),
|φ1(t)| ≤ α̃−1

δ1
◦ α̃δ1(δ1) + α̃−1

δ1

(
α̃δ1

(∣∣∣φ
(
t0 + T δ1δ2 (|x20|)

)∣∣∣
)
e
−(t−T δ1

δ2
(|x20|)−t0)

)
.In view of (3.41) and (3.43), and realling that T δ1δ2 (·) and ρ̃δ1δ2(s, ·) are nondereasing, itfollows that

|φ1(t)| ≤ δ3 + α̃−1
δ1

(
α̃δ1

(
δ + ρ̃δ1δ2

(
|x0| , T δ1δ2 (|x0|)

))
e
−(t−T δ1

δ2
(|x0|)−t0)

)
. (3.45)Next, let τδ1,δ2(|x0|) be any time instant large enough that

α̃−1
δ1,δ2

(
α̃δ1,δ2

(
ρ̃δ1δ2

(
|x0| , T δ1δ2 (|x0|)

)
+ δ
)
e
T

δ1
δ2

(|x0|)e−(τδ1,δ2
(|x0|)−t0)

)
≤ ρδ1δ2

(
|x0| , T δ1δ2 (|x0|)

)
.De�ne further

T̄ δ1δ2 (·) := max
{
T δ1δ2 (·) ; τδ1,δ2(·)

}
.Then, we obtain that

|φ1(t)| ≤ δ3 + ρδ1δ2(|x0| , T δ1δ2 (|x0|)) ≤ δ3 + ρδ1δ2(|x0| , T̄ δ1δ2 (|x0|)) , ∀t ≥ t0 + T̄ δ1δ2 (|x0|) .Notiing �nally that (3.42) implies that this relation also holds over the time interval
[t0; t0 + T̄ δ1δ2 (|x0|)], we onlude that

|φ1(t)|δ3 ≤ νδ1,δ2(|x0|) , ∀t ≥ t0 ,4T δ1
δ2

(|x20|) is taken as zero if ηδ1Ψθ⋆

1
(βδ2(|x20| , 0) + δ2) ≤ 1.



85where
νδ1,δ2(·) := ρδ1δ2

(
·, T δ1δ2 (·)

)
.Uniform global stability of Bδ then follows from Assumption 3.27 and the fat that νδ1,δ2is a lass K∞ funtion.Proof of global attrativity: Reonsider (3.45). For any positive r and ε, de�ne

T̃ δ2δ1 (ε, r) := T δ2δ1 (r) + ln α̃δ1 (δ + ρ̃δ1δ2

(
r, T δ1δ2 (r)

))

α̃δ1,δ2(ε)


 .Then it an be seen that, for all x0 ∈ Br and all t0 ∈ R≥0,

t ≥ t0 + T̃ δ2δ1 (ε, r) ⇒ |φ1(t)|δ3 ≤ ε .This shows the uniform attrativity of Bδ3 for (3.1a), f. De�nition 1.10. The attrativityof Bδ follows from Assumption 3.27.Proof of UGPAS: It is only left to show that δ an be arbitrarily redued. In view of (3.37)and (3.41), δ3 an be piked arbitrarily small by hoosing δ1 small enough. It follows from(3.44) that δ an be made arbitrarily small by taking both δ1 and δ2 small enough. Thus, itsu�es to pik the parameters θ⋆1 and θ⋆2 generated by these hosen δ1 and δ2, to onludethat, for any δ > 0, there exist some parameters θ⋆1 ∈ Θ1 and θ⋆2 ∈ Θ2 suh that Bδ isuniformly globally asymptotially stable for the asade (3.1) with θ = θ⋆. �Smooth rejetion of disturbanesWe illustrate the e�ieny of Theorem 3.26 through the following example. Consider aontrol system a�eted by a non-vanishing perturbation, i.e.,
ẋ1 = f1(t, x1) + h(t, x1)[u+ d(t, x1)] (3.46)where d is a bounded funtion satisfying Carathédory onditions whih is loally Lipshitzin x1. In general, we have d(t, 0) 6≡ 0, whih justi�es the denomination �non-vanishingperturbation� �f. [Kha01℄. Consider the ontrol problem of �nding a ontrol u(t, x1)suh that the losed-loop system is uniformly globally asymptotially stable within thefollowing setting.Let u⋆(t, x1) be suh that the losed-loop system that makes (3.46) uniformly globallyasymptotially stable (UGAS) provided that d ≡ 0. Let V1 be a strit Lyapunov funtionfor this nominal losed-loop system, that is, assume that there exist α1, α1, α1 ∈ K∞ suhthat, for all t ∈ R≥0 and x1 ∈ R

n1 ,
α1(|x1|) ≤ V1(t, x1) ≤ α1(|x1|) (3.47)

∂V1

∂t
(t, x1) +

∂V1

∂x1
(t, x1)(f1(t, x1) + h1(t, x1)u

⋆(t, x1)) ≤ −α1(|x1|) . (3.48)Then, it is well-aepted that the ontroller u⋆(t, x1) ompleted by onvenient disontinuousterms of the state (roughly of the same size as the perturbation) still ahieves UGAS and, in



86 3. Stability of nonlinear time-varying asaded systemsertain ases, �nite-time stabilization �f. [Utk99, EKNN92℄. More preisely, the system(3.46) may be rendered UGAS via the disontinuous feedbak
u(t, x1) = u⋆(t, x1) − dM sign(∂V1

∂x1
(t, x1)h1(t, x1)

)
. (3.49)Indeed, a straightforward alulation yields

∂V1

∂t
(t, x1) +

∂V1

∂x1
(t, x1)

(
f1(t, x1) + h1(t, x1)(u(t, x1) + d(t, x))

)
≤ −α1(|x1|) . (3.50)Under appropriate regularity properties on the ontrol, the disturbane and the Lyapunovfuntion, and embedding the di�erential equation (3.46) in a Fillippov di�erential inlusion,we an onlude from (3.47) and (3.50), that the losed-loop system is UGAS.We stress that, even though when plaed in the right theoretial setting, one may showthat the UGAS property of the nominal system is onserved in presene of non-vanishingdisturbanes, this is at the prie of an in�nite-gain ontroller that indues undesirablephenomena suh as hattering.A ommon remedy adopted in ontrol pratie is to replae sign(·) by a saturationfuntion sat(·) with �high slope� near zeo, e.g. the funtion sat(σx) := σx for all |x| ≤ 1/σ,sat(σx) := sign(x) for all |x| > 1/σ, with a su�iently large σ. In more general terms, wean de�ne a saturation funtion as follows.De�nition 3.32 (Saturation funtion) A funtion sat : R → [−1; 1] is said to be asaturation if it is loally Lipshitz, nondereasing and satis�es

lim
|s|→∞

|sat(s)| = 1 , and sat(s)s > 0 , ∀s 6= 0 .Typial examples of saturation funtions are tanh(s), arctan(s), s/(1+s2), sign(s)min{1; |s|}.For a number of spei� appliations, for instane mehanial systems with frition, itmay be observed in simulations that the use of sat(σ ·) in plae of sign(·) in (3.49) as anapproximation of the ideal disontinuous term impedes the asymptoti onvergene of thetrajetories to the origin. Instead, a steady-state error is ommonly observed.Consider further the ase when the system (3.46) is interonneted in asade with aseond subsystem:
ẋ1 = f1(t, x1) + h(t, x1)(u+ d(t, x)) + g(t, x) (3.51a)
ẋ2 = f2(t, x2) . (3.51b)where u ∈ R

m is the ontrol, d : R≥0×R
n → R

m is a non-measured perturbation satisfying
|d(t, x)| ≤ dM for all x ∈ R

n and all t ∈ R≥0, and f1, f2, h, d and g satisfy the Carathéodoryonditions and are all loally Lipshitz in x.Suh a situation may arise due to a asaded-based design (f. [SJK97, LP04℄), or fromthe physial struture of the plant. For instane, one ould think of an eletro-mehanialsystem: the x1 dynamis may be thought of as that of a mehanial system, the per-turbation d may represent external disturbanes, atuator de�ieny, et., the subsystem(3.51b) represents that of the losed-loop dynamis of the atuators whih may in turninlude disturbanes.As we remarked earlier, UGAS may be ahievable for eah subsystem of the asade(3.51), using disontinuous funtions of the state. However, the lassial theorems for



87asades of UGAS systems (e.g. [SS90a, AAS02, PL01℄) do not apply as they rely on theassumption that the right-hand side term is su�iently smooth. In addition, when usingsmoothening tehniques exposed above (i.e. sat instead of sign), UGAS is lost. Hene, werely on Theorem 3.26 to show that, with a smooth approximation of the nominal ontrollaw obtained by replaing the sign funtion by a su�iently sti� saturation, the asade isUGPAS. The stability analysis follows a asades-based reasoning: it onsists in showingthat eah subsystem in the asade is UGPAS (i.e. when g ≡ 0) and, then, that theasaded interonnetion does not destroy stability.Proposition 3.33 (Smooth approximation of sign(·) for asades) Let V1 be any smoothLyapunov funtion for the UGAS nominal system ẋ1 = f1(t, x1) + h1(t, x1)u
⋆(t, x1), i.e.,for all x1 ∈ R

n1 and all t ∈ R≥0, (3.47), (3.48) hold and
∣∣∣∣
∂V1

∂x1
(t, x1)

∣∣∣∣ ≤ c1(|x1|) ,where c1 : R≥0 → R≥0 is a ontinuous nondereasing funtion. Assume further that thereexists ψ ∈ K and a ontinuous funtion G : R≥0 → R≥0 suh that
|g(t, x)| ≤ G(|x1|)ψ(|x2|) , ∀(x1, x2) ∈ R

n1 × R
n2 ∀t ∈ R≥0 , (3.52)and that, as s tends to +∞,

G(s)c1(s) = O(α1 ◦ α−1
1 ◦ α1(s)) (3.53)

α1(s) = O(α1(s)) . (3.54)Assume �nally that (3.51b) is UGAS. Then, for any saturation funtion sat and any positiveonstant ε, the overall system (3.51) in losed loop with
u(t, x1) := u⋆(t, x1) − (1 + ε)dM sat(θ∂V1

∂x1
(t, x1)h1(t, x1)

)
, (3.55)is UGPAS on Θ := R>0, with θ as tuning parameter.In partiular, if sat is hosen as a smooth funtion, then the ontrol u inherits the sameregularity properties as u⋆ . Notie also that, for the ase of an autonomous system and if

u⋆ is a state feedbak, then u is independent of time as well. Furthermore, the magnitudeof the additional ontrol law is only required to be stritly greater than dM ; in partiular,if u⋆ an be designed as a bounded ontrol, then u is bounded too.Proof of Proposition 3.33. For all x1 ∈ R
n1 and all t ∈ R≥0, let

Lh1
V1(t, x1) :=

∂V1

∂x1
(t, x1)h1(t, x1) .When onsidering g(t, x) ≡ 0, the system (3.51a) in losed loop with (3.55) is

ẋ1 = f1(t, x1) + h1(t, x1)
[
u⋆(t, x1) − (1 + ε)dM sat (θLh1

V1(t, x1)) + d(t, x)
]
.Using (3.48), the assumed properties of sat and the boundedness of the perturbation, thederivative of V1 along the trajetories of (3.51a) when disonneted yields

V̇1(t, x1) ≤ −α1(|x1|) − (1 + ε)dMLh1
V1(t, x1)sat (θLh1

V1(t, x1)) + Lh1
V1(t, x1)d(t, x)

≤ −α1(|x1|) − dM |Lh1
V1(t, x1)|

[
(1 + ε) |sat (θLh1

V1(t, x1))| − 1
]
. (3.56)



88 3. Stability of nonlinear time-varying asaded systemsConsider any arbitrary δ1 > 0, and hoose θ⋆(δ1) large enough thatsat(θ⋆α1(δ1)

2dM

)
≥ 1

1 + ε
, (3.57)whih is always possible sine α1 is independent of θ and sine sat is ontinuous and tendsto 1 as its argument tends to +∞. We laim that, with this hoie of parameter,

|x1| ≥ δ1 ⇒ V̇1(t, x1) ≤ −1

2
α1(|x1|) . (3.58)To see this, assume that |x1| ≥ δ1 and distinguish the following two ases:- Case 1: |Lh1

V1(t, x1)| ≤ α1(δ1)/2dM : we then get from (3.56) that
V̇1(t, x1) ≤ −α1(|x1|) + εdM |Lh1

V1(t, x1)| ≤ −α1(|x1|) +
α1(δ1)

2
,and (3.58) follows.- Case 2: |Lh1

V1(t, x1)| > α1(δ1)/2dM : it then follows from (3.57) that
|sat (θ⋆Lh1

V1(t, x1))| ≥
1

1 + ε
,and (3.58) diretly follows from (3.56).In view of (3.47) and (3.58), and notiing that the funtions α1 and α1 are independent of

δ1 (whih makes (3.27) trivial), we onlude with (3.52), (3.53) and (3.54) that Assumption3.28 holds, and the onlusion follows applying Theorem 3.26. �3.4 Asymptoti stability in the large of asaded systemsThe above-presented results provide su�ient onditions to establish semiglobal and/orpratial stability properties of a asaded system based on the the assumption of simi-lar properties for eah subsystem taken separately. It is notably interesting to see that,provided a uniform boundedness of the solutions of the overall system, uniform semiglobalasymptoti stability is preserved, meaning that the size of the basin of attration an bearbitrarily enlarged.In pratie, ontrol appliations typially speify a minimum operating bandwidth. Inthis respet, the information of USPAS or USAS of the system ensure that any of thesespei�ations an be reahed by a onvenient hoie of some parameters. But a naturalquestion then arises: how to tune these parameters in order to obtain a given region ofattration for the asade ?To the best of our knowledge, the �rst works in the literature of stability analysis thattook into aount suh a spei�ed domain instead of an in�nitesimal neighborhood of theoperating point, referred to this property as asymptoti stability in the large5.Stability in the large is the best one an hope for systems with multiple equilibria whenno free tuning parameter is available. The use of bounded ontrol inputs may also lead to5We take this opportunity to stress that, as observed in [LLLP06℄, asymptoti stability in the large haswrongly been onfused with global asymptoti stability.



89a restrained domain of attration. Other appliations arise in output feedbak ontrol (seee.g. [LdLM03℄).Please note that, in the sequel, we refer to stability in the large as uniform asymptotistability on B∆, where B∆ then onstitutes an expliitly spei�ed estimate of the basin ofattration.The fat that two UAS systems in asade yields a UAS system is well established (seee.g. [Vid80℄), but this result does not estimate the domain of attration of the resultingasade. In [Son03℄, it is shown that the driven subsystem keeps its domain of attrationprovided that the perturbation indued by the driving subsystem does not make the drivenstate leave its domain of attration. Here, we use this idea to provide an expliit expressionof an estimate of the domain of attration of the asade, based on those orresponding tothe subsystems.The typial standing assumption in the stability analysis of asaded systems is the(uniform) boundedness of the solutions, see for instane [Son89b, SS90a℄. In what follows,we use a similar assumption to show that, providing little restritive properties of thestruture of the dynamial system, the asade omposed of two UAS systems is UAS.Moreover, and overall, an expliit estimate of the domain of attration of the asade isprovided based on those of the two subsystems, the onvergene rate of their solutions andthe uniform bound on the solutions of the asade. We shall onsider the stability of
{
ẋ1 = f1(t, x1) + g(t, x)
ẋ2 = f2(t, x2) ,as introdued in (3.1), under the following standing assumption.Assumption 3.34 (Bound on g) The interonnetion term g is uniformly bounded intime and there exists a nondereasing funtion G : R≥0 → R≥0 suh that, for all x =

(x⊤1 , x
⊤
2 )⊤ ∈ R

n1 × R
n2 and all t ∈ R≥0,

|g(t, x)| ≤ G(|x|) |x2| .In a �rst time, we assume that the driven subsystem is UAS on a given ball and thatan assoiated Lyapunov funtion is expliitly known.Assumption 3.35 (Lyapunov UAS of the driven subsystem) There exist a positivenumber ∆1, a ontinuously di�erentiable funtion V1 : R≥0 ×B∆1
→ R≥0, some K∞ fun-tions α1 and α1, a positive onstant k1 and a ontinuous nondereasing funtion c1 suhthat, for all x1 ∈ B∆1

and all t ∈ R≥0,
α1(|x1|) ≤ V1(t, x1) ≤ α1(|x1|)

∂V1

∂t
(t, x1) +

∂V1

∂x1
(t, x1)f1(t, x1) ≤ −k1V1(t, x1)

∣∣∣∣
∂V1

∂x1
(t, x1)

∣∣∣∣ ≤ c1(|x1|) .We also assume that the driving subsystem is UAS on a given ball B∆2
, with a KLestimate on its solutions.



90 3. Stability of nonlinear time-varying asaded systemsAssumption 3.36 (UAS of the driving system) The driving subsystem ẋ2 = f2(t, x2)is uniformly asymptotially stable on a ball B∆2
, ∆2 > 0, i.e. there exists a KL funtion

β2 suh that, for all x20 ∈ B∆2
and all t0 ∈ R≥0,

|x2(t, t0, x20)| ≤ β2(|x20| , t− t0) , ∀t ≥ t0 .Finally, we impose the following uniform boundedness on the solutions of the overallsystem.Assumption 3.37 (Boundedness of solutions) The solutions of (3.1) are uniformlybounded on a ball Bb, b > 0, i.e. there exist B > 0 suh that they satisfy, for all x0 ∈ Bband all t0 ∈ R≥0,
|x(t, t0, x0)| ≤ B , ∀t ≥ t0 .Based on these assumptions, we are now ready to present a �rst result that providesan estimate of the basin of attration for the overall asade (3.1).Theorem 3.38 (UAS + UAS + UB ⇒ UAS) Under Assumptions 3.34�3.37, the as-aded system (3.1) is UAS on B∆ where

∆ = min

{
α1

−1 (λα1(∆1)) ; β−1
20

(
(1 − λ)α1(∆1)

c1(B)G(B)

)
; b ; ∆2

}
, (3.59)

λ ∈ (0; 1) being a free design parameter and β20(·) := β2(·, 0) .The proof of this result is largely inspired from the one of [PL01, Lemma 2℄. We proposeit in Setion A.3.Note that systems with a Lyapunov funtion as in Assumption 3.35 are fairly ommonin pratie. More preisely, it was shown in [TP99℄ that, for a nonlinear time-varyingsystem de�ned by a loally Lipshitz right-hand side, uniform asymptoti stability of theorigin is equivalent to the existene of a smooth funtion satisfying the �rst two boundsof Assumption 3.35. The bound on the gradient is also little onservative; it is notablytrivially satis�ed for time-invariants systems.In the ase when suh a Lyapunov is nevertheless not provided, we an use the followingresult. The prie to pay is that the driven subsystem should then be uniformly exponen-tially stable. In addition, a more onservative regularity ondition on f1 is required.Assumption 3.39 (UES of the driven subsystem) The driven subsystem ẋ1 = f1(t, x1)is uniformly exponentially stable on B∆1
with parameters (k1, γ1) (f. De�nition 1.15), f1is ontinuously di�erentiable and there exist positive onstants j and L suh that, for all

x1 ∈ Bj and all t0 ∈ R≥0, ∣∣∣∣
∂f1

∂x1
(t, x1)

∣∣∣∣ ≤ L , ∀t ≥ t0 .Corollary 3.40 (UAS + UES + UB ⇒ UAS) Under Assumptions 3.34, 3.36, 3.37and 3.39, the asaded system (3.1) is UAS on B∆ where
∆ = min

{√
λk1∆̃1

k1

; β−1
20

(
(1 − λ)k1∆̃1

c1BG(B)

)
; ∆̃

}
, (3.60)



91with any λ ∈ (0; 1) and
k1 :=

1 − e−2LT

2L
(3.61a)

k1 :=
k2

1(1 − e−2LT )

2γ1
(3.61b)

c1 :=
2k1(1 − e−(γ1−L)T )

γ1 − L
(3.61)

T :=
ln(2k2

1)

2γ1
(3.61d)

β20(·) := β2(·, 0) (3.61e)
∆̃ := min

{
∆̃1 ; ∆2 ; b

}
, (3.61f)and ∆̃1 being any positive number suh that

∆̃1 ≤ ∆1 and ∆̃1 <
j

k1
. (3.62)Please refer to Setion A.4 for the proof.A noteworthy partiular ase of the two previous results is when both subsystems areUES. In this situation, we show that the asaded system (3.1) is UES as well. We statethis fat in the following result.Assumption 3.41 (UES of the driving subsystem) The subsystem ẋ2 = f2(t, x2) isuniformly exponentially stable on a ball B∆2

with parameters (k2, γ2).Theorem 3.42 (UES+UES+UB ⇒ UES) Under Assumptions 3.34, 3.37, 3.39 and3.41, the asaded system (3.1) is UES on B∆ where
∆ = min

{
k1∆̃1

√
λ

k1

;
(1 − λ)k1∆̃1

k2c1BG(B)
; ∆̃

}
,

k1, k1, k1, ∆̃1 and ∆̃ being given in (3.61)-(3.62) and λ ∈ (0; 1) being a free pararameter.The proof is given in Setion A.4. We underline that the parameters (k, γ) for theUES of (3.1) are expliitly onstruted based on the information we have about the twosubsystems. This onstitutes a noteworthy additional result. For more larity, they arehowever not given in the previous statement, but an easily be found along the lines of theproof.Again, if the bound on the gradient of f1 in Assumption 3.39 is not ful�lled, one anuse the following. This last result assumes instead the existene of a onvenient Lyapunovfuntion for the driven subsystem. In this situation, the expression of the estimate of thedomain of attration of the whole asade is onsiderably simpli�ed.Assumption 3.43 There exist a positive number ∆1, a ontinuously di�erentiable fun-tion V1 : R≥0 × B∆1
, and some positive numbers k1, k1, k1 and c1 suh that, for all

x10 ∈ B∆1
and all t ∈ R≥0,

k1 |x1|2 ≤ V1(t, x1) ≤ k1 |x1|2
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∂V1

∂t
(t, x1) +

∂V1

∂x1
(t, x1)f1(t, x1) ≤ −k1 |x1|2

∣∣∣∣
∂V1

∂x1
(t, x1)

∣∣∣∣ ≤ c1 |x1| .Corollary 3.44 Under Assumptions 3.34, 3.37, 3.41 and 3.43 the asaded system (3.1)is UES on B∆ where
∆ = min

{
k1∆1

2k1

; k1

∆1

2k2c1BG(B)
; ∆2

}
.Proof of Corollary 3.44. The proof is straightforward by notiing that, in Theorem 3.42,Assumption 3.39 is only used to ensure the existene of a Lyapunov funtion V1 as inAssumption 3.43, and so we have that ∆̃1 = ∆1. �The results presented in this setion extend the possibilities of the asades approahfor the analysis of nonlinear time-varying systems. Let us now apply them on the followingillustrative example.Example 3.45 We onsider the following two-dimensional system

ẋ1 = −x1 + x2
1 −

1

3

(
1 − (x2

1 + x2
2)
)
x3

1x
2
2 (3.63a)

ẋ2 = −x2 . (3.63b)It an be put in the asade form (3.1) by letting
f1(t, x1) = −x1(1 − x1) , g(t, x) = −1

3
(1 − x2

1 − x2
2)x

3
1x2 , f2(t, x2) = −x2 .Assumption 3.34 then follows diretly with

G(s) =
1

3
max{1; s2}s4 , ∀s ∈ R≥0 .Moreover, onsidering the funtion V1(x1) = x2

1/2, it holds that
dV1

dx1
(x1)f1(t, x1) ≤ −(1 − |x1|)x2

1 .Therefore, for any positive ∆1 < 1 and all x1 ∈ B∆1
,

dV1

dx1
f1(t, x1) ≤ −(1 − ∆1)x

2
1 = −2(1 − ∆1)V1 .Assumption 3.43 is then satis�ed with

k1 = k1 =
1

2
, k1 = 2(1 − ∆1) , and c1 = 1 .Furthermore, its derivative along the trajetories of (3.63) yields

V̇1 ≤ −
(
1 − |x| + 1

3
(1 − |x|2)x2

1x
2
2

)
x2

1 .



93Notie that, for eah B ≤ 1, |x| ≤ B implies V̇1 ≤ 0. The onditions of Proposition 2.13are thus ful�lled with a = 0. It follows that, for all |x0| ≤ B, |x(t, t0, x0)| ≤ B for all
t ≥ t0. In other words, Assumption 3.37 is satis�ed with any b = B ≤ 1. Finally, the x2subsystem is learly UGES with parameters (k2, γ2) = (1, 1), whih establishes Assumption3.41 for any ∆2 > 0. Applying Corollary 3.44 shows that the asade (3.63) is uniformlyasymptotially stable on B∆, with

∆ = min

{
∆1

√
λ ;

(1 − λ)∆2
1

BG(B)
; B ; ∆2

}
.For instane, for B = ∆1 = ∆2 = 0.9 and λ = 2/3, we obtain that ∆ = 0.68. The size ofthe basin of attration of the overall asade is therefore of the same order as those of thesubsystems taken separately. We stress that this estimate is moreover representative of theatual size of the domain of attration sine, for instane, the initial ondition (1, 0) (whihis an equilibrium) yields non-onverging solutions. The largest ball of initial onditions onwhih the origin is uniformly asymptotially stable is onsequently neessarily smaller thanthe unit ball. Figure 3.3 represents the vetor �eld of the system (3.63) in the state spaetogether with the balls of radius 0.68 and 1 respetively. Note that all solutions starting inthe region R>1 × R diverge.
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Figure 3.3: Vetor �eld in the state-spae.
�



94 3. Stability of nonlinear time-varying asaded systemsConlusion. This hapter presents tools that aim at simplifying the study of semiglobaland/or pratial stability properties for omplex systems. In general terms, they establishUSPAS, USAS or UGPAS of asaded systems based on the assumption of a similar prop-erty on eah of the interonneted subsystems. In a �rst step, these results are establishedunder an assumption of boundedness of the solutions of the overall asade and the ex-pliit knowledge of a Lyapunov funtion for the driven subsystem. It is worth pointing outthat, for the UGPAS ase, the solutions' boundedness requirement is replaed by a simplegrowth order omparison, whih makes its use muh simpler. Moreover, thanks to theonverse theorem established in Chapter 1, we an get rid of the assumption of expliitlyknowing a Lyapunov funtion, modulo a stronger regularity assumption on the right-handside term of the driven subsystem. Examples are proposed along the hapter to illustrateour purpose.



95
Chapter 4Set-stabilityIn the previous hapter, we have presented some tools that provide semiglobal and pratialstability properties for a asaded system, based on the stability property satis�ed by eahsubsystem taken separately. We have shown that the semiglobal and/or pratial stabilityonstitutes a good robustness measure for a globally asymptotially stable system subjetedto non-vanishing external disturbanes, model imperfetion, et.Although, as it is further underlined through onrete examples in Chapter 6, thesetypes of stability property arise very often in ontrol pratie, they might onstitute toostrong a requirement on some oasions. For instane, ontrol limitations may impede toarbitrarily redue the size of the attrative ball. The following basi example illustratesthis fat.Example 4.1 (From UGPAS to set-stability) Consider the simple salar system

ẋ = −θx+ 1 ,where θ is a free positive gain. In view of the results presented in Chapter 2, or simply byintegrating diretly this di�erential equation, uniform global pratial asymptoti stability(UGPAS) an easily be established. More preisely, given any positive δ, any hoie θ⋆(δ) >
1/δ ensures that the ball Bδ is globally asymptotially stable.However, we an imagine that physial onstraints prevent to hoose an arbitrarilylarge parameter. If, for instane, θ is restrained to the interval [0; 10], then the smallestahievable steady-state error is 1/10. Said di�erently, we lose UGPAS and only onludeglobal asymptoti stability of any ball of radius larger than 1/10. �A wide range of appliations. Uniform stability of balls entered at the origin indeedonstitutes a partiular ase of the set-stability analysis we wish to ondut in this hapter(f. Setion 1.2 for de�nitions), but the motivations for this study are muh wider, as theset under onsideration is not required to be ompat.For instane, set-stability inludes as a speial ase the analysis of partial stability,f. [Vor98℄. Deomposing the state x as (y⊤, z⊤)⊤, with y = (y1, . . . , yp)

⊤ and z =
(z1, . . . , zn−p)⊤, with p ∈ N≥1 and n ∈ N≥2, this onept requires that only the y-part ofthe state be (asymptotially) stable, while the behavior of the remaining variables z is notonstrained. More preisely, partial stability an be de�ned as the following adaptation of[Vor98, De�nition 0.3.1℄1.1The original de�nition is given in "ε − δ" terms, while we have here preferred a KL formulation.



96 4. Set-stabilityDe�nition 4.2 (Partial UAS/UGAS) The origin of the system ẋ = f(t, x) introduedin (1.1) is said to be partially uniformly asymptotially stable on a losed subset I of
R
n if (1.1) is forward omplete on I and, for all x0 ∈ I and all t0 ∈ R≥0, its solution

φ(·, t0, x0) =: (y(·, t0, x0)
⊤, z(·, t0, x0)

⊤)⊤ satis�es
|y(t, t0, x0)| ≤ β(|x0| , t− t0) , ∀t ≥ t0 .If I = R

n, the origin is said to be partially uniformly globally asymptotially stable, orsimply y-UGAS.It an be observed that this de�nition preisely orresponds to the de�nition of uniform(global) asymptoti stability of the set A = {0} × R
n−p (see De�nition 1.11).The onrete developments based on this onept are numerous and onern �elds asvarious as mehanial systems, partile ontrol in eletromagneti �elds, eologial systemset., f. [Vor98℄ and referenes therein.For instane, frition in mehanial systems is often modelled as an exogenous dynam-ial subsystem (f. e.g. [COaL95, SAGP00℄), thus generating an additional �super�uous�state on whih no presribed behavior is imposed.From a stability analysis point of view, another appliation of partial stability onernsadaptive ontrol. We may indeed onsider as an extended state x the atual state y plusthe adaptation error variables z. In many ases, one desires that the `real' state y presentsa onvenient asymptoti stability property, while the onvergene of the parameters esti-mation z is often not required.In view of this generality, it appears interesting and natural to derive su�ient on-ditions under whih stability of (non neessarily ompat) sets is preserved by asadeinteronnetions.One or two measures ? As it has already been underlined in Chapter 1, the set-stabilityde�nition we onsider in this doument is de�ned based on two measures, f. Proposition1.14. This onept, originally introdued by Movhan in [Mov60℄ is less onservative thanits natural one-measure ounterpart earlier proposed by Barbashin in [Bar51℄. With thesame notations as in Proposition 1.14, the latter would orrespond to

|φ(t, t0, x0)|A ≤ β(|x0|A , t− t0) , ∀t ≥ t0 .This type of set-stability has been extensively studied, in both ases of ompat and non-ompat sets, and has given rise to powerful stability results. See for instane [Wil69,LSW96, TPL02℄. See also [Lin96℄ for a onept of input-to-state stability with respet tonon neessarily ompat sets.However, the fat that the distane of the solution from the set A be only determinedby the the distane of initial states from this very set is a strong requirement, notablywhen A is unbounded. To take up again the example of adaptive ontrol, although onedoes not neessarily require that the estimation error onverges to zero, the in�uene ofthe initial values of the parameters on the behavior of state-solutions is not negligible inmost situations, preventing a set-stability approah with respet to one measure.In addition, the Lyapunov haraterization of the set-stability de�ned with one mea-sure, f. [LSW96℄, requires that the Lyapunov funtion vanishes on the whole set A, whih,as seen in Chapter 1 (p. 41), is an important onstraint in pratie, even when A is om-pat. For the stability analysis of perturbed system, this requirement indeed prevents touse the Lyapunov funtion assoiated to the nominal system.



97The previous observations mainly motivated the use the set-stability with respet totwo measures, as the one given by De�nition 1.9. Although not inluded in the presentdoument, please note that we have provided similar results for the one-measure ase in[TCPJ06℄.Set-stability for asades. In this hapter, we study this stability property for asadedsystems by assuming that, for eah subsystem taken separately, a given set is globallyasymptotially stable. More preisely, we show that, if all the solutions of the asade areglobally bounded (with respet to the origin), then the ross produt of the two original setsis globally asymptotially stable for the overall asade. We also show that the requirementof boundedness of solutions may be relaxed to just global boundedness with respet to aset for a ertain lass of asaded systems. Furthermore, we give a su�ient ondition,in terms of growth rate restritions, that allows to relax this assumption to just forwardompleteness and onsequently makes our tool easy to use in many appliations.We stress that, for the partiular ase when the onsidered sets are balls entered atthe origin, we retrieve a diret onsequene of [JTP94, Proposition 3.2℄, whih establishesthat the input to state pratial2 stability is preserved by the asade omposition.The results we provide in this hapter rely on similar arguments as the well-knownBarb lat's lemma [Bar59℄ whih holds only for time-invariant systems. For this reason, werestrit our attention to autonomous asades. More preisely, we onsider
ẋ1 = f1(x1) + g(x1, x2) (4.1a)
ẋ2 = f2(x2) , (4.1b)where x1 ∈ R

n1 , x2 ∈ R
n2 and all funtions are assumed loally Lipshitz.Please note that the exlusion of time-varying systems from the sope of this studyis only apparent as set-stability inludes, as a speial ase, the stability analysis of time-varying system. However, as a signi�ative drawbak, uniformity in the initial time t0 (andthe robustness this naturally indues (f. p. 23)) annot be guaranteed with a set-stabilityde�ned based on two measures as the one we have deided to onsider for the reasonsexposed above. Let us illustrate this with the following elementary example.Example 4.3 (Set-stability and time-varying systems) Consider the following salartime-varying dynamial system:

ẋ = −(1 + t)x . (4.2)De�ning ξ1 := t, ξ2 := x and ξ := (ξ1, ξ2)
⊤, it an be represented as the two-dimensionaltime-invariant systeṁ

ξ = f(ξ) , where f(ξ) :=

(
1

−(1 + ξ1)ξ2

)
. (4.3)Let A := R≥0×{0}. Due to the fat that |ξ|A = x, saying that the origin of (4.2) is globallyasymptotially stable is equivalent to saying that the set A is globally asymptotially stablefor (4.3), f. Proposition 1.14. More preisely, it an be seen that, for any ξ0 ∈ R

2, itssolution satis�es
ξ(t, ξ0) =

(
t+ ξ10

ξ20e
ξ10(1+ξ10/2)e−t(1+t/2)

)
, ∀t ∈ R≥0 , (4.4)2Here, �pratial� should not be understood in the sense of Chapter 1, as the attrative ball is �xed andnot required to be arbitrarily reduible by a onvenient tuning.



98 4. Set-stabilityand, onsequently,
|ξ(t, ξ0)|A = |ξ2(t, ξ0)| ≤ β(|ξ0| , t) := |ξ0| e|ξ0|(1+|ξ0|/2)e−t(1+t/2) , ∀t ∈ R≥0 .To see more learly why uniformity of the indued stability property annot be provided bythis approah, notie that (4.4) an be written in the �time-varying� ontext as

φ(t, t0, ξ0) = x0e
t0(1+t0/2)e−t(1+t/2) = x0e

−(t−t0)(1+t−t0)e2t0(t+t0) , ∀t ≥ t0 ≥ 0 ,and the orresponding KL estimate is therefore non-uniform in the initial time t0.4.1 Preliminary de�nitions and toolsWe �rst reall some de�nitions related to set-stability for nonlinear autonomous systemsof the form
ẋ = f(x) (4.5)where x ∈ R

n and f : R
n → R

n is a loally Lipshitz funtion. In the sequel, A refersto a losed (but not neessarily bounded) set of R
n that ontains the origin. Assumingthat 0 ∈ A allows indeed to guarantee that |·|A ≤ |·|. Nevertheless, this is absolutely notrestritive as a simple hange of variables always permits to reah this situation.The following property is an adaptation of [TPL02, De�nition 5℄ to the ase when thestability properties are de�ned through two di�erent measures3 (namely |·|A and |·|).De�nition 4.4 (GSTS) The losed set A is said to be globally sliding time stable for(4.5) if there exists lass K∞ funtions T and ρ suh that, for all x0 ∈ R

n, the solution of(4.5) satis�es
|φ(t, x0)|A ≤ ρ(|x0|) , ∀t ∈ [0;T (|x0|)] .For the ase when A = {0}, we say, with a slight abuse of terminology, that (4.5) is GSTS.Remark 4.5 This property is little restritive. For instane, it an be shown that (4.5) isGSTS in eah of these ases:- the funtion f in (4.5) is globally Lipshitz,- the solutions of (4.5) are globally bounded (see De�nition 1.8).Based on this de�nition, we present a simple integral riterion for the global asymptotistability of a given losed (but not neessarily bounded) set. It an be seen as an extensionof [TPL02, Theorem 1℄ and [POM02, Lemma 2.1℄ to the ase of stability with respet totwo measures.Lemma 4.6 (Integral lemma for GAS of a set) Assume that a given losed subset Aof R

n is GSTS for (4.5) and that there exists a lass K funtion σ and a lass K∞ funtion
δ suh that, for all x0 ∈ R

n, the solution of (4.5) satis�es
∫ ∞

0
σ(|φ(t, x0)|A)dt ≤ δ(|x0|) . (4.6)3In the original referene, the same measure |·|A was used.



99Then A is globally stable4. If, in addition, the solutions of (4.5) are globally bounded5, then
A is globally asymptotially stable for (4.5). �Proof of Lemma 4.6. The proof is omposed of two steps. We �rst show that A is globallystable if it is GSTS and (4.6) holds. Next, we establish its global attrativeness under theassumption of global boundedness of the solutions of (4.5).Proof of GS: The proof of the global stability of A is inspired by that of [TPL02, Theorem1℄. Let T and ρ be generated by the GSTS of A and let κ be any K∞ funtion satisfying

κ−1(s) ≤ min

{
s ; δ−1

(
1

2
T (s)σ(s)

)}
, ∀s ∈ R≥0 .The existene of suh a funtion is ensured by the fat that σ ∈ K and T, ρ ∈ K∞. Notiethat κ(s) ≥ s for all s ∈ R≥0 and that the following property holds:

δ(s) ≤ 1

2
T ◦ κ(s)σ ◦ κ(s) , ∀s ∈ R≥0 . (4.7)We laim that, for any x0 ∈ R

n,
|φ(t, x0)|A ≤ ρ ◦ κ(|x0|) , ∀t ∈ R≥0 . (4.8)First observe that this holds for x0 = 0 due to (4.6) and the ontinuity of φ(·, x0). For

|x0| > 0, we proeed by ontradition. Assume that the property (4.8) does not hold.Then, there exists a time t1 ∈ R≥0 suh that
|φ(t1, x0)|A > ρ ◦ κ(|x0|) . (4.9)Note that, without loss of generality, ρ an be assumed to satisfy ρ(s) ≥ s for all s ∈ R≥0.Therefore

|x0|A ≤ |x0| ≤ κ(|x0|) ≤ ρ ◦ κ(|x0|) .So, invoking again the ontinuity of φ(·, x0), there exists a time t2 ∈ [0, t1) suh that
|φ(t2, x0)|A = κ(|x0|) (4.10)
|φ(t, x0)|A ≥ κ(|x0|) , ∀t ∈ (t2; t1) . (4.11)Furthermore, the GSTS of A ombined with (4.9) and (4.10) implies that t1 > t2 +

T (κ(|x0|)). From (4.6) and (4.11) it follows that, on one hand,
∫ t1

t2

σ(|φ(t, x0)|A)dt ≥
∫ t2+T (κ(|x0|))

t2

σ ◦ κ(|x0|)dt = T (κ(|x0|))σ ◦ κ(|x0|) ,and, on the other hand,
∫ t1

t2

σ(|φ(t, x0)|A)dt ≤
∫ ∞

0
σ(|φ(t, x0)|A)dt ≤ δ(|x0|) ,Combining these two bounds, we obtain that

T (κ(|x0|))σ ◦ κ(|x0|) ≤ δ(|x0|) ,4Global stability and global asymptoti stability of A are to be understood in the sense of De�nitions1.2 and 1.4. �Uniformity� is pointless in this setion sine only time-invariant systems are onsidered.5whih implies that A is GSTS in view of Remark 4.5 sine 0 ∈ A.



100 4. Set-stabilitywhih ontradits (4.7).Proof of GA: This seond step follows along the same proof-lines of Barb lat's lemmaoriginally presented in [Bar59℄; see also [Tao97℄, [Tee99℄ and [POM02, Lemma 2.1℄ forsimilar approahes.We proeed by ontradition. Assume that limt→∞ |φ(t, x0)|A 6= 0 for some x0 ∈ R
n.Then there exist a positive ε and a sequene {ti}i∈N suh that limi→∞ ti = +∞ and

|φ(ti, x0)|A > ε , ∀i ∈ N . (4.12)Notie that the sequene {ti}i∈N an be piked in suh a way that
ti+1 ≥ ti + Tm , ∀i ∈ N , (4.13)

Tm designating a positive onstant. Due to the global boundedness of solutions and theontinuity of f , we an see that ∣∣∣φ̇1(·, x0)
∣∣∣ is bounded, whih implies that φ(·, x0) is uni-formly ontinuous. This means that, given any positive c, there exists a positive T suhthat, for all t ∈ R≥0 and all τ ∈ [0, T ], |φ(t+ τ, x0) − φ(t, x0)| < c. Hene, letting

σ̃(s) :=

{
σ(s) if s ∈ R≥0

−σ(−s) if s ∈ R<0 ,and piking6 c as σ̃−1(σ̃(ε/2)/2), there exists a positive T suh that, for all t ∈ R≥0 andall τ ∈ [0, T ],
|φ(t+ τ, x0) − φ(t, x0)| < σ̃−1

(
1

2
σ̃
(ε

2

))
. (4.14)Using the properties that |y + z| ≥ |y| − |z| for all y, z ∈ R

n, and σ̃(a− b) ≥ σ̃(a/2)− σ̃(b)for all a, b ∈ R, it follows in view of (4.12) and (4.14) that, for all t ∈ [ti, ti + T ]

σ̃(|φ(t, x0)|A) ≥ σ̃ (|φ(ti, x0)|A − |φ(t, x0) − φ(ti, x0)|A)

≥ σ̃

(
1

2
|φ(ti, x0)|A

)
− σ̃ (|φ(t, x0) − φ(ti, x0)|A)

≥ σ̃
(ε

2

)
− 1

2
σ̃
(ε

2

)
=

1

2
σ̃
(ε

2

)
.Based on what preedes and (4.13), we then have that

∫ ∞

0
σ(|φ(t, x0)|A)dt =

∫ ∞

0
σ̃(|φ(t, x0)|A)dt

≥
∑

i∈N

∫ ti+1

ti

σ̃(|φ(t, x0)|A)dt

≥
∑

i∈N

∫ ti+min{Tm;T}

ti

σ̃(|φ(t, x0)|A)dt

≥
∑

i∈N

1

2
σ̃
(ε

2

)
min{Tm;T} = +∞ ,whih establishes the ontradition.

�6Note that, even though σ may not be a lass K∞ funtion, σ̃(ε/2)/2 neessarily belongs to the domainof invertibility of σ̃ by onstrution.



1014.2 On set-stability of asaded systemsOur �rst main result in the ontext of set-stability for asaded systems states that theasade of two globally set-stable systems is itself globally set-stable provided that itssolutions are globally bounded.Theorem 4.7 (GAS + GAS + GB ⇒ GAS) Let A1 and A2 be losed sets of R
n1 and

R
n2 respetively. Under the Assumptions 4.8�4.11 below, the set A := A1 ×A2 is globallyasymptotially stable for the asade (4.1).Assumption 4.8 (GAS of A1) A1 is globally asymptotially stable for ẋ1 = f1(x1).Assumption 4.9 (GAS of A2) A2 is globally asymptotially stable for (4.1b).Assumption 4.10 (Bound on the interonnetion) There exist a ontinuous fun-tion g1 : R

n → R
n1 and a lass K∞ funtion g2 suh that, for all x = (x⊤1 , x

⊤
2 )⊤ ∈

R
n1 × R

n2,
|g(x1, x2)| ≤ |g1(x)| g2(|x2|A2

) .Assumption 4.11 (GB) The solutions of (4.1) are globally bounded.Proof of Theorem 4.7. We start by invoking [TP00, Corollary 1℄ to generate a Lyapunovfuntion for eah of the two subsystems, based on Assumptions 4.8 and 4.9. More preisely,for eah i ∈ {1, 2}, there exist a smooth funtion Vi : R
ni → R≥0 and lass K∞ funtions

αi and αi suh that, for all xi ∈ R
ni ,

αi(|xi|Ai
) ≤ Vi(xi) ≤ αi(|xi|) (4.15)

∂Vi
∂xi

(xi)fi(xi) ≤ −Vi(xi) ≤ −α(|xi|Ai
) . (4.16)In view of Assumption 4.10, the derivative of V1 along the trajetories of (4.1) yields, forall x ∈ R

n,
V̇1(x1) ≤ −α1(|x1|A1

) +

∣∣∣∣
∂V1

∂x1
(x1)

∣∣∣∣ |g1(x)| g2(|x2|A2
) .Let c1 : R≥0 → R≥0 be the funtion de�ned as

c1(s) := max
|x|≤s

∣∣∣∣
∂V1

∂x1
(x1)

∣∣∣∣ |g1(x)| , ∀s ∈ R≥0 .Due to the smoothness of V1 and the ontinuity of g1, it an be seen that c1 is a ontinuousnondereasing funtion, and we have that, for all t ∈ R≥0,
V̇1(φ1(t, x0)) ≤ −α1(|φ1(t, x0)|A1

) + c1(|φ(t, x0)|)g2(|φ2(t, x0)|A2
) .From Assumption 4.11 and Proposition 1.12, there exists a lass K∞ funtion η and anonnegative onstant µ suh that |φ(t, x0)| ≤ η(|x0|) + µ, so we obtain that

V̇1(φ1(t, x0)) ≤ −α1(|φ1(t, x0)|A1
) + c̃1(|x0|)g2(|φ2(t, x20)|A2

) , (4.17)where c̃1(·) := c1(η(·) + µ).



102 4. Set-stabilityLet a1 and a2 be positive numbers suh that α2(a1) < g2(a2) and let g̃2 : R≥0 → R≥0be any ontinuous inreasing funtion satisfying, for all s ∈ R≥0,
g̃2(s) =

{
α2(s) if s ∈ [0, a1]
g2(s) if s ≥ a2 .Note that g̃2 an always be ompleted on the interval (a1, a2) in order to be an inreasingfuntion sine α2(a1) < g2(a2) and both α2 and g2 are lass K∞ funtions. Then, it anbe seen that g̃2 is a lass K∞ funtion that satis�es

g̃2(s) = O(α2(s)) as s→ 0+ (4.18a)
g2(s) = O(g̃2(s)) as s→ +∞ . (4.18b)Next, we need the following �hanging supply rate� result, reminisent of [ST95℄.Proposition 4.12 Let A1 and A2 be two given losed sets of R

n and R
m respetively. Let

c be a nonnegative onstant and V : R
n → R≥0 be a ontinuously di�erentiable funtionsatisfying, for all x ∈ R

n and all u ∈ R
m,

α(|x|A1
) ≤ V (x) ≤ α(|x|)

∂V

∂x
(x)f(x, u) ≤ −α(|x|A1

) + cγ(|u|A2
) ,where α, α, α and γ are lass K∞ funtions. Let α̃ (resp. γ̃) be a lass K∞ funtionsatisfying

α̃(s) = O(α(s)) as s→ 0+

(resp. γ(s) = O(γ̃(s)) as s→ +∞
)
.If α, α, α, γ and V are independent of c, there exist a ontinuously di�erentiable Ṽ andlass K∞ funtions γ̃ (resp. α̃), α̃ and α̃, independent of c, suh that, for all x ∈ R

n andall u ∈ R
m,

α̃(|x|A1
) ≤ Ṽ (x) ≤ α̃(|x|)

∂Ṽ

∂x
(x)f(x, u) ≤ −α̃(|x|A1

) + cγ̃(|u|A2
) .The proof of this result follows from minor modi�ations that of [ST95, Theorem 2℄.The only di�erene stands in the fat that the measures involved are not neessarily Eu-lidean, and that the generated funtions are shown to be independent of c.In view of (4.18b) and notiing that |x1|A1

≤ |x|, we an apply Proposition 4.12 to
V1 with γ̃ = g̃2 and c = c̃1(|x0|) to obtain that there exists a ontinuously di�erentiablefuntion Ṽ1 suh that, for all x1 ∈ R

n1 ,
α̃1(|x1|A1

) ≤ Ṽ1(x1) ≤ α̃1(|x1|) (4.19)and, for all t ∈ R≥0,
˙̃V1(φ1(t, x0)) ≤ −α̃1(|φ1(t, x0)|A1

) + c̃1(|x0|)g̃2(|φ2(t, x20)|A2
) ,



103where α̃1, α̃1 ∈ K∞. In addition, the funtions α̃1, α̃1, α̃1 and Ṽ1 are all independent of
c̃1(|x0|) and onsequently of x0. Integrating the previous di�erential inequality, we obtainthat ∫ ∞

0
α̃1(|φ1(t, x0)|A1

)dt ≤ Ṽ1(x10) + c̃1(|x0|)
∫ ∞

0
g̃2(|φ2(t, x20)|A2

)dt .Hene, in view of (4.19), we have that
∫ ∞

0
α̃1(|φ1(t, x0)|A1

)dt ≤ α̃1(|x10|) + c̃1(|x0|)
∫ ∞

0
g̃2(|φ2(t, x20)|A2

)dt . (4.20)In order to upper bound the integral in the right-hand side term of the previous bound,we follow a similar proedure. Based on (4.15), (4.16) and (4.18a), we apply Proposition4.12 to V2 with α̃ = g̃2 and c = 0. We obtain that there exists a ontinuously di�erentiablefuntion Ṽ2 suh that, for all x2 ∈ R
n2 ,

α̃2(|x2|A2
) ≤ Ṽ2(x2) ≤ α̃2(|x2|)

∂Ṽ2

∂x2
(x2)f2(x2) ≤ −g̃2(|x2|A2

) ,where α̃2 and α̃2 are lass K∞ funtions. Integrating the last inequality, we obtain that
∫ ∞

0
g̃2(|φ2(t, x20)|A2

)dt ≤ α̃2(|x20|) . (4.21)Substituting this bound into (4.20), we obtain
∫ ∞

0
α̃1(|φ1(t, x0)|A1

)dt ≤ α̃1(|x10|) + c̃1(|x0|)α̃2(|x20|) . (4.22)Thus, de�ning the following lass K∞ funtion
σ(s) := min

{
α̃1

(√
s/2
)

; g̃2

(√
s/2
)}

,we get from (4.21) and (4.22) that
∫ ∞

0

[
σ
(
2 |φ1(t, x0)|2A1

)
+ σ

(
2 |φ2(t, x20)|2A2

)]
dt ≤ α̃1(|x10|) + c̃1(|x0|)α̃2(|x20|) .Sine σ is an inreasing funtion, we have that σ(a+ b) ≤ σ(2a) + σ(2b) for all a, b ∈ R≥0.Therefore, using the fat that |x|2A = |x1|2A1

+ |x2|2A2
, we get that

∫ ∞

0
σ
(
|φ(t, x0)|2A

)
dt ≤ α̃1(|x0|) + c̃1(|x0|)α̃2(|x0|) .The global asymptoti stability of A then follows from Lemma 4.6. �It is worth noting that no Lyapunov funtion needs to be expliitly known for this �rstresult. However, the assumption of boundedness of solutions (with respet to the origin)is strong. In the ase when the solutions are only bounded with respet to the set A, theresult still holds provided a stronger requirement on the interonnetion term and on thegradient of the (supposedly known) Lyapunov funtion of the driven subsystem.



104 4. Set-stabilityCorollary 4.13 Let A1 and A2 be two given losed subsets of R
n1 and R

n2 respetively.Under Assumptions 4.9, 4.14, 4.15 and 4.16, the set A = A1×A2 is globally asymptotiallystable for the asade (4.1).Assumption 4.14 (Lyapunov GAS of A1) There exist a ontinuously di�erentiable fun-tion V1 : R≥0 ×R
n1 → R≥0 and lass K∞ funtions α1, α1, α1 suh that, for all x1 ∈ R

n1,
α1(|x1|A1

) ≤ V1(x1) ≤ α1(|x1|) (4.23)
∂V1

∂x1
(x1)f1(x1) ≤ −α1(|x1|A1

) . (4.24)Assumption 4.15 (Bound on LgV1) There exists a ontinuous nondereasing funtion
g1 : R≥0 → R≥0 and a lass K∞ funtion g2 suh that, for all x = (x⊤1 , x

⊤
2 )⊤ ∈ R

n1 ×R
n2,

∣∣∣∣
∂V1

∂x1
(x1)g(x)

∣∣∣∣ ≤ g1(|x|A)g2(|x2|A2) .Assumption 4.16 (GB w.r.t. A) The solutions of (4.1) are globally bounded with re-spet to A.We stress that global asymptoti stability of A1 for the driven subsystem ẋ1 = f1(x1)guarantees the existene of a funtion V1 satisfying Assumption 4.14, f. e.g. [TP00℄.However, the expliit knowledge V1 is required sine we need its gradient to also satisfyAssumption 4.15.Proof of Corollary 4.13. This result follows diretly from Theorem 4.7 by notiing that,in the proof of the latter, c1(|x|) an then be replaed by g1(|x|A). Hene, based onAssumption 4.16, we see that (4.17) remains valid and the rest of the proof is exatly thesame. �In the two previous results, the most di�ult requirement to verify is often the globalboundedness of the solutions of (4.1) (with respet to the origin or to the set A aordingto the ase). Similarly to the approah adopted for uniform global pratial asymptotistability of asades (f. Setion 3.3), we now present a result whih relaxes this as-sumption to just forward ompleteness of (4.1), provided a growth rate restrition of the
x1-dependeny of the interonnetion term with respet to the dissipation funtion of thedriven subsystem.Corollary 4.17 (GAS + GAS + FC + growth restrition ⇒ GAS) Let A1 and A2be given losed subsets of R

n1 and R
n2 respetively. Under Assumptions 4.9, 4.14, 4.18and 4.19, the set A = A1 ×A2 is globally asymptotially stable for the asade (4.1).Assumption 4.18 (Bound on LgV1) There exists a ontinuous nondereasing funtion

g11 : R≥0 → R≥0 and a lass K∞ funtion g2 suh that, for all x = (x⊤1 , x
⊤
2 )⊤ ∈ R

n1 ×R
n2,

∣∣∣∣
∂V1

∂x1
(x1)g(x)

∣∣∣∣ ≤ g11(|x1|A1
)g2(|x2|A2) .Assumption 4.19 (FC + growth restrition) The system (4.1) is forward ompleteand it holds that

g11(s) = O(α1(s)) , as s→ +∞ .



105Proof of Corollary 4.17. In view of Theorem 4.13, and notiing that Assumption 4.18implies Assumption 4.15, it is enough to show that solutions are globally bounded withrespet to A. The proof is based on similar arguments as the one of [PL01, Theorem 3℄.First, from the forward ompleteness assumption, there exists a ontinuous nondereasingfuntion ϑ : R≥0 × R≥0 → R≥0 suh that, for all x0 ∈ R
n, the solution of (4.1) satis�es

|φ(t, x0)|A ≤ |φ(t, x0)| ≤ ϑ(|x0| , t) , ∀t ∈ R≥0 . (4.25)Next, in view of Assumptions 4.14 and 4.18, the derivative of V1 along the trajetories of(4.1) satis�es, for all x =∈ R
n,

V̇1 ≤ −α1(|x1|A1
) + g11(|x1|A1

)g2(|x2|A2
) . (4.26)In addition, we know from Assumption 4.19 that there exist positive onstants s0 and λsuh that

g11(s) ≤ λα1(s) , ∀s ≥ s0 . (4.27)Furthermore, Assumption 4.9 ensures that there exists a KL funtion β2 suh that, for all
x20 ∈ R

n2 ,
|φ2(t, x20)|A2

≤ β2(|x20| , t) , ∀t ∈ R≥0 . (4.28)Using the fat that g2 is a lass K∞ funtion, we get that, for any x20 ∈ R
n2 , there existsa nonnegative time T (|x20|) suh that

g2(|φ2(t, x20)|A2
) ≤ 1

λ
, ∀t ≥ T (|x20|) .Note that, without loss of generality, T (·) an be piked as a ontinuous nondereasingfuntion. From (4.26), (4.27) and the previous inequality, we obtain that, for all t ≥

T (|x20|),
|φ1(t, x0)|A1

≥ s0 ⇒ V̇1(φ1(t, x0)) ≤ 0 .Using a diret extension of [Yos66, Theorem 10.2℄, the previous impliation ensures theboundedness of |φ1(t, x0)|A1
(and onsequently, in view of (4.28), of |φ(t, x0)|A) for all

t ≥ T (|x20|). In other words, there exists η ∈ K∞ and µ > 0 suh that, for all x0 ∈ R
n,

|φ(t, x0)|A ≤ η(|x0|) + µ , ∀t ≥ T (|x20|) .Thus, in view of (4.25) and realling that T (·) is ontinuous and inreasing, we obtain that
|φ(t, x0)|A ≤ η̃(|x0|) + µ̃ , ∀t ∈ R≥0 ,where, for all s ∈ R≥0,
η̃(s) := η(s) + ϑ(s, T (s)) − ϑ(0, T (0))

µ̃ := µ+ ϑ(0, T (0)) .The onlusion follows from Corollary 4.13 by observing that η̃ is a lass K∞ funtion. �



106 4. Set-stability4.3 Example: ross-trak formation ontrol of underatuatedsurfae vesselsIn order to illustrate one of the possible uses of the results of this hapter, we presentan alternative stability proof for a reent result for the formation ontrol of multiple un-deratuated surfae vessels along a straight line, with a presribed veloity, f. [BPP06℄.The interested reader is invited to refer to this referene for a more detailed desription ofthe motivations and hallenges related to this objetive. For simpliity of exposition, weonsider here the ase of two boats, extension to a larger number of boats being straight-forward.We stress that the ontrol objetives onsidered in Setion 6.3 may appear similarto those presented here, sine the motion of both ships are required to be synhronized.However, the strategies are fundamentally di�erent. A master-slave approah is adoptedthere, while here the two boats at at the same hierarhial level. Moreover, it is hereassumed that the path to be followed is a straight line and that full information on bothships is available.The dynamis of the onsidered underatuated surfae vessels is desribed by
η̇ = R(ψ)ν (4.29)

ν̇ +M−1C(ν)ν +M−1Dν = Bτ , (4.30)where η := (ξ, ζ, ψ)⊤ is omposed of the Cartesian oordinates of the boat in a Earth-�xed frame and the yaw angle, ν := (u, v, r)⊤ ontains the surge and sway veloities,
τ = (τu, τv)

⊤ are the surge thrust and the yaw torque onsidered here as ontrol inputsand
R(ψ) =




cosψ − sinψ 0
sinψ cosψ 0

0 0 1


 .In the sequel, exept when expliitly stated, indexes 1 and 2 refer to vessels 1 and 2respetively. When no index is spei�ed, the orresponding relationship impliitly holdsfor both vessels. For simpliity, we assume that the vessels are idential and that

M =




m11 0 0
0 m22 m23

0 m23 m33


 , D =




d11 0 0
0 d22 d23

0 d32 d33


 ,

C(ν) =




0 0 −m22v −m23r
0 0 m11u

m22v +m23r −m11u 0


 , B :=




1 0
0 0
0 1


 .The task to ahieve is twofold. First, we want that eah ship i follows a straight path givenby a distane di ∈ R from an agreed origin. This �rst goal an be summarized by

lim
t→∞

ζi(t) = di , and lim
t→∞

ψ(t) = 0 . (4.31)Seond, we want the vessels to be synhronized, in order to move at the same onstantpresribed veloity ud along the ξ diretion. This an be formulated as
lim
t→∞

ξ1(t) − ξ2(t) = 0 , and lim
t→∞

u1(t) = lim
t→∞

u2(t) = ud . (4.32)
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ξ

ζ

1

2

d1

ud

udFigure 4.1: Cross-trak formation ontrol goals.The ideal on�guration we want to ahieve is summarized by Figure 4.1. For simpliity,we have onsidered the origin of the �xed frame on the path to be followed by the seondvessel (hene d2 = 0).In the sequel, we design a ontroller that makes the surge veloity u bounded by apositive onstant UM . Following the authors of [BPP06℄, we adopt the assumption that
|v| ≤ min{UM ; c |r|} , (4.33)where c denotes a positive onstant. We assume as well that the referene veloity ud ofthe formation satis�es

Um + a < |ud| < UM − a , (4.34)where a and Um are positive onstants. From (4.29), the kinemati equations for eah boatan be written as
ξ̇ = u cosψ − v sinψ (4.35)
ζ̇ = u sinψ + v cosψ (4.36)
ψ̇ = r . (4.37)In view of (4.31), we de�ne: ζ̃ := ζ − d. The ζ-error dynamis is then given by

˙̃
ζ = u sinψ + v cosψ . (4.38)Next, we let
ψd := − arctan

(
ζ̃/ℓ
)
, (4.39)where ℓ denotes a positive onstant satisfying ℓ > c, f (4.33). As this appears more learlyin the sequel, this yaw angle is hosen in suh a way that the ζ-error tends to zero. Thishoie of ψd omes from so-alled lign of sight guidane algorithm; see [BPP06℄ for details.We further de�ne ψ̃ := ψ − ψd. Using (4.37), the ψ-error dynamis is then given by

˙̃
ψ = r − ℓ

ℓ2 + ζ̃2
(u sinψ + v cosψ) .Next, de�ne

rd :=
ℓ

ζ̃2 + ℓ2
(u sinψ + v cosψ) − kψψ̃ =

ℓ

ζ̃2 + ℓ2
˙̃
ζ − kψψ̃ , (4.40)



108 4. Set-stabilitywhere kψ is a positive onstant. Then the ψ̃ dynamis beomes
˙̃
ψ = −kψψ̃ + r̃ , (4.41)where r̃ := r− rd. In view of (4.29), and letting7 Ω := m22m33 −m2

23, it an be seen from(4.30) that
˙̃r =

m23

Ω
(m11ur+ d22v+ d23r) +

m22

Ω
(τr − (m22v +m23r)u+m11uv − d32v − d33r)− ṙd .The following ontrol

τr = (m22v +m23r)u−m11uv + d32v + d33r

− m23

m22
(m11ur + d22v + d23r) +

Ω

m22
(ṙd − krr̃) , (4.42)where kr denotes a positive gain, then yields

˙̃r = −krr̃ . (4.43)In the same way, the ontrol law
τu = (m22v +m23r)r +m11 (u̇c − ku(u− uc)) , (4.44)where t 7→ uc(t) denotes any given speed referene and ku is a positive ontrol gain, yieldsthe following dynamis

˙̃u = −kuũ , (4.45)where ũ := u − uc is the surge veloity traking error. These observations, together withthe asade approah we follow, allows to onsider ψ, r and u as ontrol inputs in thesequel. The ζ-error dynamis (4.38) an trivially be written
˙̃
ζ = u sinψd + v cosψd + γ(ψ,ψd, u, v)ψ̃ , (4.46)where

γ(ψ,ψd, u, v) :=
u sinψ + v cosψ − u sinψd − v cosψd

ψ̃
.In view of (4.33) and provided that

Um ≤ |u| ≤ UM , (4.47)for the positive onstants Um and UM involved in (4.34), it holds that
|γ(ψ,ψd, u, v)| ≤ |u| + |v| ≤ 2UM .Thus, injeting the expression of ψd into (4.46), we an see that the (r, ψ, ζ, u)-error dy-namis possesses the asade struture omposed of (4.41), (4.43), (4.45) and

˙̃
ζ = −u ζ̃√

ζ̃2 + ℓ2
+ v

ℓ√
ζ̃2 + ℓ2

+ γ(ψ,ψd, u, v)ψ̃ . (4.48)7Ω is a positive onstant sine M is positive de�nite.



109Claim 4.20 If (4.47) holds, then the origin of the asaded system (4.41), (4.43), (4.45)and (4.48) is globally asymptotially stable.Proof of Claim 4.20. First notie that the origin of the driving subsystem of this asade,namely (4.41), (4.43) and (4.45), is globally asymptotially stable for any positive hoieof the gains kψ, kr and ku. This establishes Assumption 4.9. In order to study the drivensystem taken separately (i.e. (4.48) with ψ̃ = 0), onsider the funtion Vζ(ζ̃) := ζ̃2/2.Then, it an be seen that, along its trajetories,
V̇ζ(ζ̃) ≤ − uζ̃2

√
ζ̃2 + ℓ2

+
∣∣∣ζ̃
∣∣∣ |v| .But, using (4.40), (4.33) and the fat that |r| ≤ |rd|+ |r̃|, it an be seen that the followingbound holds

|v| ≤ c
(∣∣∣ ˙̃ζ
∣∣∣ /ℓ+ kψ

∣∣∣ψ̃
∣∣∣+ |r̃|

)
.Thus, sine we onsider the isolated ζ̃-subsystem (i.e. ψ̃ = r̃ = 0), we obtain

V̇ζ(ζ̃) ≤ −
u
∣∣∣ζ̃
∣∣∣
2

√
ζ̃2 + ℓ2

+
c

ℓ

∣∣∣ζ̃
∣∣∣
∣∣∣ ˙̃ζ
∣∣∣ ≤ −

u
∣∣∣ζ̃
∣∣∣
2

√
ζ̃2 + ℓ2

+
c

ℓ
V̇ζ(ζ̃) .We onlude in view of (4.47) that, along the trajetories of the driven subsystem,

(
1 − c

ℓ

)
V̇ζ(ζ̃) ≤ −

Um

∣∣∣ζ̃
∣∣∣
2

√
ζ̃2 + ℓ2

.Realling that c < ℓ, Assumption 4.14 is then ful�lled. Finally, we have that
∣∣∣∣
∂Vζ

∂ζ̃
(ζ̃)γ(ψ,ψd, u, v)

∣∣∣∣ ≤ 2UM

∣∣∣ζ̃
∣∣∣ ,whih establishes Assumption 4.18 with g11(·) = 2UM and Assumption 4.14 follows triviallydue to the boundedness of g11. The laim follows by applying Corollary 4.17 and reallingthat forward ompleteness is not needed sine the sets under onsideration (the origin) areompat. �In order to guarantee (4.47) while stabilizing the ξ-error dynamis, we hoose as speedreferenes

uc,1 = ud − a sat(ξ1 − ξ2) , and uc,2 = ud − a sat(ξ2 − ξ1) , (4.49)where sat denotes any odd saturation funtion (f. De�nition 3.32) and a is the positiveonstant involved in (4.34).Proposition 4.21 (Formation ontrol of vessels) Assume that (4.33) and (4.34) hold.Then, the ontrol law (4.42), (4.39), (4.40), (4.44), (4.49) ahives the ontrol objetives(4.31) and (4.32). More preisely, the set
A :=

{
(η1, η2, ν1, ν2) ∈ R

12 : ξ1 = ξ2 and ζi = di , ψi = 0 , ui = ud , vi = 0 , ∀i ∈ {1, 2}
}is globally asymptotially stable.



110 4. Set-stabilityProof of Proposition 4.33. In view of (4.39), (4.35) an be written
ξ̇ = u cosψd − (cosψd − cosψ)u− v sinψ

=
ℓ√

ℓ2 + ζ̃2

u− (cosψd − cosψ)u− v sinψ

= uc + ũ+


 ℓ√

ℓ2 + ζ̃2

− 1


u− (cosψd − cosψ)u− v sinψ .From this and (4.49), we obtain

ξ̇1 = ud − a sat(ξ1 − ξ2) +


 ℓ√

ℓ2 + ζ̃2
1

− 1


u1 − (cosψd,1 − cosψ1)u1 − v1 sinψ1

ξ̇2 = ud − a sat(ξ2 − ξ1) +


 ℓ√

ℓ2 + ζ̃2
2

− 1


u2 − (cosψd,2 − cosψ2)u2 − v2 sinψ2 .De�ning ξ̃ := ξ1 − ξ2 and onsidering the variables8

x1 := (ξ1, ξ̃)
⊤ and x2 := (r̃1, r̃2, ψ̃1, ψ̃2, ζ̃1, ζ̃2, ũ1, ũ2)

⊤ ,the formation objetive limt→∞ ξ1(t) − ξ2(t) = 0 an be summarize by the onvergeneof ξ̃(t) to zero and the overall system an be put in the asade form (4.1) where f2(x2)designates the right-hand side of (4.41), (4.43), (4.45), (4.48) and
f1(x1) =

(
ud − a sat(ξ̃)
−2a sat(ξ̃) )

,

g(x1, x2) =

(
g0(ψ̃1, ψd,1, ζ̃1, ũ1, uc1 , v1)

g0(ψ̃1, ψd,1, ζ̃1, ũ1, uc1 , v1) − g0(ψ̃2, ψd,2, ζ̃2, ũ2, uc2 , v1)

)
, (4.50)where

g0(ψ̃, ψd, ζ̃, ũ, uc, v) :=


 ℓ√

ℓ2 + ζ̃2

− 1


 (ũ+uc)−(cosψd−cosψ)(ũ+uc)−v sinψ . (4.51)Considering the funtion V1(x1) := ξ̃2/2, the requirements (4.23) and (4.24) are ful�lledwith α1(s) = α1(s) = s2/2, α1(s) := 2a ssat(s) for all s ∈ R≥0 and

A1 :=
{
x1 = (ξ1, ξ̃)

⊤ ∈ R
2 : ξ1 ∈ R and ξ̃ = 0

}
.This establishes Assumption 4.14. Note that, when x1 belongs to A1, the formation goal

ξ1 = ξ2 is ahieved. In addition, it an be seen that
v sinψ = v

sinψ

ψ
ψ = v

sinψ

ψ
(ψd + ψ̃) = v

sinψ

ψ

(
− arctan

(
ζ̃/ℓ
)

+ ψ̃
)
.8Indexes 1 and 2 of x do not refer to the vessels, but to the notation used in Corollary 4.17.



111This observation oupled with (4.50) and (4.51) and the boundedness of u and v ensuresthat g vanishes whenever x2 equals zero, whih is enough to onlude the existene ofa lass K∞ funtion g2 suh that |g(x1, x2)| ≤ g2(|x2|). Assumption 4.18 then followswith g11(·) = 1. In turn, we have that g11(s) = O(α1(s)) as s tends to in�nity, whihestablishes Assumption 4.19. Finally, (4.45) guarantees an exponential onvergene of ũto zero without overshoot. So the fat that uc lies in the interval (Um, UM ) ensures (4.47).Assumption 4.9 then follows from Claim 4.20 with the set A2 = {0}. Thus, we an applyCorollary 4.17 to onlude that the set A1 × A2, whih oinides with A, is GAS for theoverall system.
�Conlusion. This hapter presents three results for establishing the set-stability ofasaded systems. The �rst one does not require the knowledge of any Lyapunov fun-tion, but is based on a onservative assumption of boundedness of solutions of the overallsystem. The seond assumes the boundedness of solutions only with respet to the setunder onsideration but, as a ounterpart, requires the knowledge of an expliit Lyapunovfuntion for the driven subsystem. Finally, the third one is more easily appliable as it onlyrequires a growth omparison between the funtions involved. The range of appliations ofsuh a stability onept is wide as it notably inludes partial stability, stability of a giventrajetory, of a given ball et.
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Chapter 5Integral input to state stability forasaded systemsIn the previous hapters, we proposed some su�ient onditions to guarantee the preser-vation of stability properties for asaded systems. Suh tools an be partiularly usefulwhen studying the robustness of ontrolled nonlinear systems to model unertainty or toexternal signals. In this hapter, we onsider the asade interonnetion of systems withinputs.The ISS paradigm. A branh of the ontrol theory is espeially dediated to the evalu-ation of the impat of external signals on the stability of a dynamial system. It onernssystems of the form

ẋ = f(x, u)as introdued in (1.4), where u denotes the external input1. The key notion in this �eld isthe input to state stability (ISS), originally introdued by Sontag in [Son89a℄, and whihwe realled in De�nition 1.21. As evoked in Chapter 1, this property links the norm ofthe urrent state to the in�nity norm of the applied input, through a nonlinear inequalitywhih also takes into aount a fading term due to initial onditions.This way of formulating external and internal stability notions is partiularly welladapted to analyze stability of asades. A well known result, see e.g. [ST95℄, states thatthe ISS property is preserved under asade interonnetions. Sine ISS implies globalasymptoti stability (GAS) when the input is identially zero, it follows that the asadeomposed of an ISS subsystem driven by a GAS subsystem is GAS.Besides, ISS is easily hekable based on the study of a Lyapunov-like funtion. Morepreisely, we have the following haraterization.Theorem 5.1 (Lyapunov haraterization of ISS, [SW95℄) The dynamial system
ẋ = f(x, u) as de�ned in (1.4) is input to state stable if and only if there exists a smoothfuntion V : R

n → R≥0 and lass K∞ funtions α, α, α and γ suh that, for all x ∈ R
nand all admissible input u,

α(|x|) ≤ V (x) ≤ α(|x|) (5.1)
∂V

∂x
(x)f(x, u) ≤ −α(|x|) + γ(|u|) . (5.2)1u : R≥0 → R

p may onsist in any measurable loally essentially bounded signal.



114 5. Integral input to state stability for asaded systemsIn the sequel, the funtion α is referred to as dissipation rate while supply rate denotesthe funtion γ.The iISS property. Even though this haraterization has been widely used both inanalysis and design, ISS happens to be too strong a requirement in several ases. Thismotivated the introdution of integral input to state stability (iISS) [Son98b℄, whih isa more general property. Instead of linking the state to the supremum of the input, itinvolves a measure of the energy that inputs feed into the system, f. De�nition 1.22.Similarly to ISS, it ensures the global asymptoti stability of the zero-input system andguarantees some robustness to the system with respet to external signals. For instane, ifthe supplied energy is �nite, then solutions onverge to zero, i.e. the asymptoti behaviorof an iISS system is not altered by the presene of an input with �nite energy. iISS isfurthermore haraterized by similar Lyapunov-like onditions as for ISS. The result belowwas established by Angeli et al. in [ASW00a℄.Theorem 5.2 (Lyapunov haraterization of iISS, [ASW00a℄) The dynamial sys-tem ẋ = f(x, u) as de�ned in (1.4) is integral input to state stable if and only if thereexists a smooth funtion V : R
n → R≥0 and lass K∞ funtions α, α, γ and a ontinuouspositive de�nite2 funtion α : R≥0 → R≥0 suh that (5.1) and (5.2) hold for all x ∈ R

nand all admissible input u.As established in [ASW00a℄, iISS is more onservative than asking that the zero-input
ẋ = f(x, 0) be GAS and that ẋ = f(x, u) be forward omplete. Yet, it holds very oftenin spei� appliations for subsystems involved in asades. In this respet, please refer to[LSW02℄ where Liberzon and oauthors proposed a ontrol design that makes the systemiISS with respet to disturbanes. In the same referene, it is also shown that the asadeof an ISS subsystem driven by a iISS subsystem is itself iISS.iISS and asades. It is therefore of interest to know whether similar properties �asthose that hold in the ISS ase� are atually true for iISS systems. For instane: Is theasade of two iISS systems iISS ? Is the asade of an iISS system driven by a GAS systemGAS ?The following ounter-example, originally3 proposed in [PL01, AAS02℄, shows that theanswer to the seond question is negative in general.Example 5.3 (GAS + iISS ; GAS) Consider the asaded system

ẋ1 = −sat(x1) + x1x2 (5.3a)
ẋ2 = −x3

2 , (5.3b)where sat(s) := sign(s)min{1; |s|}. It was proved in [AAS02℄ that, although (5.3a) is iISSwith respet to x2 and (5.3b) is globally asymptotially stable, the overall asade (5.3)generates unbounded solutions for all initial states in R≥3 × {1}. Indeed, for x20 = 1,the solution of (5.3b) is 1/
√

1 + 2t. Hene, as long as φ1(t, x10) ≥ 1, the �rst di�erentialequation is
ẋ1 = −1 +

x1√
1 + 2t

,2Instead of lass K∞ in Theorem 5.1.3We have, from A. Loría, that this example was originally stated to the authors of [PL01℄ by L. Praly.



115therefore
φ1(t, x10) = e

√
1+2t−1

(
x10 −

∫ t

0
e1−

√
1+2τdτ

)
.But, onsidering the hange of variable s = −1 +

√
1 + 2τ , we get that

∫ t

0
e1−

√
1+2τdτ ≤

∫ ∞

0
e1−

√
1+2τdτ =

∫ ∞

0
e−s(s+ 1)ds = 2 .Thus, if x10 ≥ 3, then it holds that φ1(t, x10) ≥ e

√
1+2t−1 ≥ 1 at all time, and so

limt→∞ φ1(t, x10) = ∞. �In [AAS02℄, an additional su�ient ondition is proposed to restrit the iISS gain ofthe driven subsystem in relation to the onvergene rate of the state trajetories generatedby the driving subsystem. Roughly speaking, the deay rate of the driving subsystem'sstate has to be large enough with respet to the iISS gain of the driven one.A way to ensure a su�ient speed of onvergene of the input is requiring that it isintegrable. Suh a su�ient ondition was originally established in [PL98℄ for time-varyingsystems. In that paper, Panteley and Loría proved UGAS of the asade under growth-order restritions on the interonnetion term and, most importantly, the ondition thatthe state trajetories of the driving system be uniformly globally integrable. See below fora more preise omparison between these two results.Thus, while the seond question posed above has been studied and partially answered,the �rst question (i.e. whether the asade of iISS systems is itself iISS) is still open. Adiret extension of Example 5.3 gives a negative answer in general.Example 5.4 (iISS + iISS ; iISS) Consider the asaded system
ẋ1 = −sat(x1) + x1x2 (5.4a)
ẋ2 = −x3

2 + u . (5.4b)Applying Theorem 5.1 with the funtion V (x2) = x2
2, it follows immediately that (5.4b)is ISS, and a fortiori iISS. In addition, as shown in Example 5.3, the driven subsystem(5.4a) is also iISS. Nevertheless, if the asade (5.4) were iISS, then it would be globallyasymptotially stable when u is identially zero, whih, as seen in Example 5.3, is not thease. �In what follows, we provide relatively mild additional onditions whih are su�ient forthe iISS property to be onserved by the asade struture. These are �rstly given in thease when an expliit iISS Lyapunov-like funtion is known for eah of the two subsystems,f. Setion 5.2. Roughly, it su�es that the dissipation term of the driving subsystemdominates the supply funtion of the driven subsystem in a neighborhood of the origin.The seond step, exposed in Setion 5.3, onsists in stating this ondition in terms of theestimates of the trajetories of the two subsystems when disonneted. More preisely,in the ase of a ontinuously di�erentiable zero-input driving subsystem, we reover thesu�ient ondition derived from [AAS02℄ that the driven subsystem has a loally LipshitziISS gain and that the driving one be 0-LES (see De�nition 5.6 below).In addition, in Setion 5.1, we omplete the main result in [AAS02℄ by giving a su�ientondition for the asade omposed of an iISS subsystem together with a GAS one to remainGAS in the ase when expliit Lyapunov funtions are known. Roughly, it is again required



116 5. Integral input to state stability for asaded systemsthat the dissipation term of the GAS subsystem dominates the supply funtion of the iISSone around zero. This result may be useful in pratie sine the iISS and GAS propertiesare ommonly established through Lyapunov arguments.For a better understanding of these results and their proof, we reall the followingde�nitions.De�nition 5.5 (0-GAS) The origin of the system ẋ = f(x, u) as de�ned in (1.4) is saidto be 0-GAS4 if the origin of ẋ = f(x, 0) is globally asymptotially stable (f. De�nition1.10).De�nition 5.6 (0-LES) The origin of the system ẋ = f(x, u) as de�ned in (1.4) is saidto be 0-LES if there exists a positive onstant ∆ suh that the origin of ẋ = f(x, 0) isexponentially stable on B∆ (f. De�nition 1.15).De�nition 5.7 (BEFBS) The system ẋ = f(x, u) as de�ned in (1.4) is said to satisfythe bounded energy frequently bounded state property if there exists a lass K∞ funtion
σ suh that, for all x0 ∈ R

n, its solutions satisfy
∫ ∞

0
σ(|u(τ)|)dτ <∞ ⇒ lim inf

t→+∞
|φ(t, x0, u)| <∞ .5.1 Global asymptoti stability for asades, Lyapunov-basedThe approah based on trajetories. As explained, the main result in [AAS02℄ studiesthe asade onnetion of an iISS system driven by a globally asymptotially stable system:

ẋ1 = f1(x1, x2) (5.5a)
ẋ2 = f2(x2) , (5.5b)where x1 ∈ R

n1 , x2 ∈ R
n2 , f1 and f2 are loally Lipshitz and satisfy f1(0, 0) = 0 and

f2(0) = 0. In that work, Arak et al. proposed a su�ient ondition for (5.5) to be globallyasymptotially stable. More preisely, the authors established the following:Theorem 5.8 (GAS + iISS ⇒ GAS, trajetory based, [AAS02℄) Assume that (5.5a)is iISS with an iISS gain µ1 (f. De�nition 1.22) and that there exists η2, ν2 ∈ K∞ suhthat, for all x20 ∈ R
n2, the solutions of (5.5b) satisfy
|φ2(t, x20)| ≤ η2

(
ν2(|x20|)e−t

)
, ∀t ∈ R≥0 .Then, under the ondition that

∫ 1

0

µ1 ◦ η2(s)

s
ds <∞ , (5.6)the origin of the asade (5.5) is globally asymptotially stable.4We may also say, with a slight abuse of terminology, that the system ẋ = f(x, u) is 0-GAS.



117It is worth stressing that the su�ient onditions provided by Panteley and Loría in[PL98, PL01℄, who addressed the same question in a time-varying ontext, share strongsimilarities with (5.6) and the su�ient onditions they derive impose similar requirementson the subsystems' behavior.The Lyapunov alternative. The above result requires the knowledge of an expliitestimate of the trajetories of eah subsystem, as we need to know the iISS gain µ1 ofthe driven subsystem and the onvergene rate η2 of the driving one in order to hekondition (5.6). It is often the ase that suh estimates are obtained using the integrationof a onvenient Lyapunov funtion for eah subsystem. In addition, we have seen that theexistene of a Lyapunov-like funtion as in Theorem 5.2 is equivalent to the iISS property.It therefore appears natural to derive a similar su�ient ondition based diretly on theinformation provided by suh Lyapunov funtions. This is the objet of the followingresult, whih hene an be seen as a natural ounter-part of [AAS02, Theorem 1℄ for thease when the global asymptoti stability of the driving subsystem and the iISS of thedriven one are not established through an expliit estimate of their solutions, but insteadin terms of Lyapunov funtions.Theorem 5.9 (GAS + iISS ⇒ GAS, Lyapunov-based) Let V1 and V2 be two on-tinuous positive de�nite radially unbounded funtions, di�erentiable on R
n1 and R

n2 \ {0}respetively and satisfying, for all x1 ∈ R
n1 and all x2 ∈ R

n2 \ {0},
∂V1

∂x1
(x1)f1(x1, x2) ≤ −α1(|x1|) + γ1(|x2|) (5.7)
∂V2

∂x2
(x2)f2(x2) ≤ −α2(|x2|) , (5.8)where α1 and α2 are ontinuous positive de�nite funtions and γ1 is of lass K. Then,under the ondition that γ1(s) = O(α2(s)) when s tends to zero, the origin of the asade(5.5) is globally asymptotially stable.It is worth noting that, in view of Theorem 5.2, the existene of a funtion V1 satisfying(5.7) is equivalent to saying that the driven subsystem (5.5a) is iISS with respet to x2.Similarly, the ondition (5.8) is equivalent to the global asymptoti stability of (5.5b).Proof of Theorem 5.9. Let us �rst onsider the partiular ase when the initial onditionof the driving subsystem is x20 = 0. Sine 0 is an equilibrium of this subsystem, we thenhave that φ2(t, 0) = 0 for all t ∈ R≥0, and onsequently onvergene to zero of solutionsfollows diretly from (5.7) (see e.g. [Kha96, Corollary 3.3℄).In the sequel, we therefore onsider that x20 ∈ R

n2 \ {0}. We underline the fat that,due to the regularity ondition imposed on f2, it then holds that |φ2(t, x20)| 6= 0 for all
t ∈ R≥0. To see this more learly, notie that, sine f2 is assumed to be loally Lipshitzand f2(0) = 0, we have that |f2(x2)| ≤ L(|x2|) |x2| for some ontinuous nondereasingfuntion L. In addition, (5.8) ensures that the trajetories of the x2-subsystem (5.5b) arebounded, so m2(x20) := supt≥0 |φ2(t, x20)| is �nite and positive for all x20 6= 0. From theseobservations, it holds that

∂

∂t
(|φ2(t, x20)|2) = 2f2(φ2(t, x20))

⊤φ2(t, x20)

≥ −2L(|φ2(t, x20)|) |φ2(t, x20)|2 ≥ −a(x20) |φ2(t, x20)|2 ,



118 5. Integral input to state stability for asaded systemswhere a(x20) := 2L(m2(x20)) is a positive onstant sine x20 6= 0. In other words,
|φ2(·, x20)|2 satis�es the di�erential inequality ẏ ≥ −a(x20)y. From the omparison lemma,we onlude that |φ2(t, x20)|2 ≥ |x20|2 e−a(x20)t, whih is, as laimed, positive at all time.The proof is mainly based on the following �hanging dissipation rate� result.Proposition 5.10 Let f : R

n → R
n be a loally Lipshitz funtion suh that f(0) = 0 and

V : R
n → R≥0 be a ontinuous positive de�nite radially unbounded funtion, di�erentiableon R
n \ {0}, and satisfying, for all x ∈ R

n \ {0},
∂V

∂x
(x)f(x) ≤ −α(|x|) ,where α is a ontinuous positive de�nite funtion. If α̃ is a ontinuous positive de�nitefuntion satisfying α̃(s) = O(α(s)) as s tends to zero, then there exists a ontinuouspositive de�nite radially unbounded funtion Ṽ , di�erentiable on R

n \ {0} and suh that,for all x ∈ R
n \ {0},

∂Ṽ

∂x
(x)f(x) ≤ −α̃(|x|) .Proof of Proposition 5.10. The proof follows along the lines of the main result in [ST95℄proposed by Sontag and Teel. We de�ne the new Lyapunov-like funtion as
Ṽ :=

∫ V

0
q(s)ds ,where q : R≥0 → R≥0, to be de�ned later, denotes a nondereasing ontinuous funtionsatisfying q(s) > 0 for all s > 0. This transformation preserves the properties of V , that is:ontinuity, di�erentiability out of the origin, positive de�niteness and radial unbounded-ness. In addition, notie that the ontinuity, positive de�niteness and radial unboundednessof V ensures the existene of a lass K∞ funtion α suh that V (x) ≥ α(|x|) for all x ∈ R

n(see [Kha96, Lemma 3.5℄). Hene, the total derivative of Ṽ satis�es, for all x ∈ R
n \ {0},

∂Ṽ

∂x
(x)f(x) ≤ q(V (x))

∂V

∂x
(x)f(x) ≤ −q ◦ α(|x|)α(|x|) .Note that, by the assumption on the loal relative behavior of α and α̃, the funtion

r 7→ α ◦ α−1(r)/α̃ ◦ α−1(r) is upper bounded on any interval (0, r0], r0 > 0. Hene, thefuntion de�ned by
q̃(r) := sup

0<t≤r

α ◦ α−1(t)

α̃ ◦ α−1(t)
, ∀r > 0 ,is a well de�ned nondereasing funtion. Pik q as any nondereasing ontinuous funtionsatisfying q(r) > q̃(r) for all r > 0, and let r = α(|x|), for x ∈ R

n \ {0}. We �nally get, asdesired, that q ◦ α(|x|)α(|x|) ≥ α̃(|x|). �Notie that, by assumption, it holds that 2γ1(s) = O(α2(s)) in a neighborhood of
0. Apply Proposition 5.10 to the dissipation inequality (5.8) with the funtion α̃(·) =
2γ1(·). Then there exists a ontinuous positive de�nite radially unbounded funtion Ṽ2,di�erentiable out of zero, and satisfying, for all x2 6= 0,

∂Ṽ2

∂x2
(x2)f2(x2) ≤ −2γ1(|x2|) .



119By summing this inequality with (5.7), we get that, for all (x1, x2) ∈ R
n1 × (Rn2 \ {0}),

∂V
∂x1

(x)f1(x1, x2) +
∂V
∂x2

(x)f2(x2) ≤ −α1(|x1|) − γ1(|x2|) =: −ψ(x) ,where, x := (x⊤1 , x
⊤
2 )⊤ and V(x) := V1(x1)+ Ṽ2(x2). Notie that V1 inherits the propertiesof V1 and Ṽ2: it is ontinuous positive de�nite and radially unbounded. Therefore, (seee.g. [Kha96, Lemma 3.5℄) there exist two lass K∞ funtions α and α suh that

α(|x|) ≤ V(x) ≤ α(|x|) . (5.9)Moreover, let ϕ(s) := inf |x|≥s ψ(x) for all s ∈ R≥0. Then ϕ is a ontinuous positive de�nitefuntion and we have that, for all x ∈ R
n1 × (Rn2 \ {0}),

∂V
∂x1

(x)f1(x1, x2) +
∂V
∂x2

(x1, x2)f2(x2) ≤ −ϕ(|x|) ≤ −ϕ ◦ α−1(V(x)), .Sine, as previously shown, φ2(t, x20) 6= 0, we �nally get that, for all t ∈ R≥0,
V̇(φ(·, x0)) ≤ −ϕ ◦ α−1 (V(φ(t, x0))) .Notiing that ϕ ◦ α−1 is a ontinuous positive de�nite funtion, we an apply [ASW00a,Corollary IV.3℄ to establish the existene of a lass KL funtion β̃ suh that
V(φ(t, x0)) ≤ β̃(V(0), t) , ∀t ∈ R≥0 .In view of (5.9), we then get that, for all x20 6= 0,
|φ(t, x0)| ≤ β(|x0| , t) , ∀t ∈ R≥0 ,where

β(s, t) := α−1 ◦ β̃(α(s), t) , ∀s, t ∈ R≥0 ,and the onlusion follows by notiing that β(s, ·) is a KL funtion. �The above result an be seen as a orollary of Theorem 5.13 presented below. We havehowever deided to present it separately as its proof involves an approah (the hange ofsupply rates) whih annot be followed in the ontext of Theorem 5.13.Remark 5.11 It is worth mentioning that, if an upper bound on V2 of the form V2(x2) ≤
α2(|x2|) is expliitly known, where α2 denotes a K∞ funtion, the ondition in Theorem5.9 (namely γ1(s) = O(α2(s)) as s → 0) an be onsiderably relaxed. More preisely, itsu�es that there exists a onstant q ∈ [0, 1) suh that

γ1(s) = O
(
α2(s)

α2(s)q

)
, and α2(s) = o(α2(s)

q) , as s→ 0 . (5.10)Indeed, onsider the funtion V2(·) := V2(·)1−q. Then V2 is a positive de�nite funtion,di�erentiable out of the origin, and we get from (5.8) that
∂V2

∂x2
(x2)f2(x2) ≤ −(1 − q)α2(|x2|)V −q

2 ≤ −(1 − q)
α2(|x2|)
α(|x2|)q

=: −α̃2(|x2|) .In view of (5.10), α̃2 is a ontinuous positive de�nite funtion. Hene Theorem 5.9 applieswith the new Lyapunov funtion V2, and establishes that (5.5) is globally asymptotiallystable. In this respet, notie that allowing V2 to be non-di�erentiable at the origin isuseful, as further illustrated by the following example.



120 5. Integral input to state stability for asaded systemsExample 5.12 Consider the following two dimensional asaded system:
ẋ1 = −sat(x1) + x1x2

ẋ2 = − x2

1 + x2
2

,where sat(s) := sign(s)min{|s|, 1}. In order to study the global asymptoti stability of theorigin of ths asade, we will make use of the following funtions:
V1(x1) =

1

2
ln(1 + x2

1) and V2(x2) =
1

2
x2

2 .First, notie that
∂V1

∂x1
(x1)(−sat(x1) + x1x2) = −x1sat(x1)

1 + x2
1

+
x2

1x2

1 + x2
1

≤ −x1sat(x1)

1 + x2
1

+ |x2| .In the same way,
∂V2

∂x2
(x2)

(
− x2

1 + x2
2

)
= − x2

2

1 + x2
2

.Please note that GAS of the overall asade does not diretly follow from the study of theLyapunov funtion V1 + V2. Indeed, the unbounded term |x2| generated by V̇1 annot beompensated by the bounded term x2
2/(1 + x2

2) provided by V̇2. Nevertheless, this propertyan easily be inferred by Theorem 5.9 and Remark 5.11. To see this, �rst notie that V1and V2 satisfy (5.7) and (5.8) with
α1(s) =

s sats
1 + s2

, γ1(s) = s and α2(s) =
s2

1 + s2
, ∀s ∈ R≥0 .Sine the requirement γ1(s) = O(α2(s)) as s tends to zero does not hold, it is not possibleto apply Theorem 5.9 diretly. Nevertheless, it is possible to onlude using the previousremark with q = 1/2. Indeed, an upper bound on V2 is α2(|x2|) := |x2|2 /2. We an furthernotie that the funtion α2(s)

q = s/
√

2 stritly dominates α2(s) around zero, and that
α2(s)/α(s)q = s

√
2/(1 + s2) dominates γ1(s), whih are enough to onlude. �5.2 Integral input to state stability for asades, Lyapunov-basedOur seond result in the ontext of integral input to state stability (iISS) onerns theasade onnetion of two iISS systems, in the ase when an iISS-Lyapunov funtion isexpliitly known for eah of them. For the sake of generality, it is allowed that the drivensubsystem depends also on the input of the driving one. We therefore deal with dynamialsystems of the following form:

ẋ1 = f1(x1, x2, u) (5.11a)
ẋ2 = f2(x2, u) (5.11b)where x1 ∈ R

n1 , x2 ∈ R
n2 , u : R≥0 → R

p is a measurable loally essentially boundedfuntion, f1 and f2 are loally Lipshitz and satisfy f1(0, 0, 0) = 0 and f2(0, 0) = 0. Suhsystem an be represented by Figure 5.1.For this type of asaded interonnetions, we have the following.



121
Σ2

x2 x1

Σ1
u Figure 5.1: Casade with diret feeding of the driven subsystem.Theorem 5.13 (iISS + iISS ⇒ iISS, Lyapunov-based) Let V1 : R

n1 → R≥0 be adi�erentiable funtion and V2 : R
n2 → R≥0 be a ontinuous funtion, di�erentiable outof the origin. Suppose that there exist a lass K funtion ν1 and, for all i ∈ {1, 2}, aontinuous positive de�nite funtion αi, a lass K funtion γi, and two lass K∞ funtions

αi and αi suh that, for all xi ∈ R
ni and all u ∈ R

p,
αi(|xi|) ≤ Vi(xi) ≤ αi(|xi|) (5.12)

∂V1

∂x1
(x1)f1(x1, x2, u) ≤ −α1(|x1|) + γ1(|x2|) + ν1(|u|) (5.13)

x2 6= 0 ⇒ ∂V2

∂x2
(x2)f2(x2, u) ≤ −α2(|x2|) + γ2(|u|) . (5.14)If, in addition, γ1(s) = O(α2(s)) as s tends to zero, then the asade (5.11) is iISS.We stress that (5.13) is equivalent to saying that the driven subsystem (5.11a) is iISSwith respet to x2 and u. This an be rigorously established based on Theorem 5.2 bytaking γ(·) as γ1(·) + ν1(·). Furthermore, in view of the same result, ondition (5.14)onsists in an (apparent) slight relaxation of the Lyapunov haraterization of iISS for(5.11b), as V2 is not required to be di�erentiable at zero.The above result proposes an easy-to-hek su�ient ondition to guarantee the preser-vation of the iISS property under a asade interonnetion. It is expressed as a loaldomination of the driving system's dissipation rate on the supply rate of the driven one.This does not onstitute the �rst attempt to guarantee iISS for asaded iISS sub-systems. In [Ito04, Ito05℄, Ito provides su�ient onditions for the preservation of iISSunder asade. Similarly to Theorem 5.13, these onditions are expressed with respet tothe supply and dissipation rates of the Lyapunov funtion assoiated to eah subsystem.However, Ito impliitly assumes that one of the two subsystems is ISS and, ontrarily toTheorem 5.13, the requirement in that referene involves also the upper and lower boundson the Lyapunov funtions and the dominane is imposed on the whole5 R≥0 (and not justin a neighborhood of zero). These features make the above tool more general and, often,easier to apply. This is illustrated by the following example.Example 5.14 Consider the following two-dimensional asaded system:

ẋ1 = −x1(1 − x2
2 − u) (5.15a)

ẋ2 = −sat(x2) + x2u . (5.15b)We use the Lyapunov funtions
Vi(xi) := ln(1 + x2

i ) , i ∈ {1, 2} .5In that referene, a loal requirement is proposed only in the ase of ISS driving subsystem.



122 5. Integral input to state stability for asaded systemsDiret omputations then show that
V̇1(x1) ≤ − x2

1

1 + x2
1

+ |x2|2 + |u|

V̇2(x2) ≤ −x2sat(x2)

1 + x2
2

+ |u| .Using the notation of Theorem 5.13, we have that, for all s ∈ R≥0,
α1(s) =

s2

1 + s2
, γ1(s) = s2 , ν1(s) = γ2(s) = s , α2(s) =

sat(s)s
1 + s2

,so γ1(s) = O(α2(s) near 0 and we onlude that the asade (5.15) is iISS. However, theondition imposed by [Ito05, Corollary 2℄ to reah suh a onlusion is the existene ofpositive onstants c and q, with q ≥ 1, suh that
(
γ1 ◦ α−1

2 (s)
)q ≤ c α2 ◦ α−1

2 (s) , ∀s ∈ R≥0 ,where α2 and α2 are lass K∞ funtions satisfying
α2(|x2|) ≤ V (x2) ≤ α2(|x2|) .Even though these bounds an be hosen very tight, i.e.

α2(s) = α2(s) = ln(1 + s2) , ∀s ∈ R≥0 ,the above ondition does not hold. This follows from the observation that, for all q ≥ 1,
γq1 ∈ K∞ while α2 is a bounded funtion. This makes [Ito05, Corollary 2℄ inappliable tothis ase. �We next formally establish the above result.Proof of Theorem 5.13. To the best of our knowledge, no hanging supply rate result, asthe one in [ST95℄, exists for iISS systems. The approah adopted here is therefore di�erentfrom the proof of Theorem 5.9. The proof onsists in showing separately that (5.11) is0-GAS and satis�es the BEFBS property and then applying Theorem [AISW04, Theorem3℄ whih shows equivalene between iISS and the ombination of the above two properties.The �rst step is atually straightforward in view of Theorem 5.9, by piking in the latter
f1(·, ·) as f1(·, ·, 0) and f2(·) as f2(·, 0). To establish the seond one, we introdue thefollowing result.Lemma 5.15 Let ω : R≥0 → R be a ontinuous funtion. Suppose that y : R≥0 → R≥0 isa loally Lipshitz funtion satisfying, for almost all t ∈ R≥0,

y(t) > 0 ⇒ ẏ(t) ≤ ω(t) (5.16)and that
y(t) = 0 ⇒ ω(t) ≥ 0 . (5.17)Then ẏ(t) ≤ ω(t) atually holds for almost all t ∈ R≥0. �



123Proof of Lemma 5.15. Let χ : R≥0 → R≥0 be de�ned as follows:
χ(y) =

{
1 if y = 0
0 if y > 0 ,and, for all y ∈ R≥0, let G(y) denote the following set:

G(y) := {t ∈ R≥0 : y(t) = y and ẏ(t) exists} .Then, by the area formula for loally Lipshitz funtions , we have:
∫ +∞

0
χ(y(t))|ẏ(t)|dt =

∫ +∞

−∞
χ(y) ard (G(y)) dy = 0 .Let K denote the set {t ∈ R≥0 : y(t) = 0}. The above argument shows that the set

{t ∈ K : ẏ(t) 6= 0} has zero-measure. Hene, for almost all t in K, we have ẏ(t) = 0 andonsequently, by virtue of (5.17), for almost all t ∈ K it holds ẏ(t) ≤ 0 ≤ ω(t). Sine, bythe assumption (5.16) the inequality holds for almost all t /∈ K, the laim follows. �Let us go bak to the proof of Theorem 5.13. Consider any initial state (x10, x20) ∈
R
n1×R

n2 and any admissible input u. Notie that, in view of (5.12), α2(|φ2(·, x20, u)|) van-ishes whenever V (φ2(·, x20, u)) = 0. By onsidering ω(·) = −α2(|φ2(·, x20, u)|) + γ2(|u(·)|)in Lemma 5.15, it therefore holds that, for almost all t ∈ R≥0,
V̇2(φ2(t, x20, u)) ≤ −α2(|φ2(t, x20, u)|) + γ2(|u(t)|) . (5.18)We establish the BEFBS property under the following �Bounded Energy� assumption:

∫ ∞

0
γ(|u(τ)|)dτ ≤ c , (5.19)where γ(s) := max{γ2(s); ν1(s)} and c is a positive onstant. Integrating Inequality (5.18)indeed yields, for all t ∈ R≥0,

∫ t

0
α2(|φ2(τ, x20, u)|)dτ ≤ V2(x20) − V2(φ2(t, x20, u)) +

∫ t

0
γ2(|u(τ)|)dτ

≤ V2(x20) + c .Moreover, in view of (5.12) for i = 2, Inequality (5.18) implies that, for almost all t ∈ R≥0,
V̇2(φ2(t, x20, u)) ≤ −α2 ◦ α−1

2 (V2(φ2(t, x20, u))) + γ2(|u(t)|) .Sine α2 ◦ α−1
2 is a ontinuous positive de�nite funtion, [ASW00a, Corollary IV.3℄ estab-lishes the existene of a lass KL funtion β2 suh that

V2(φ2(t, x20, u)) ≤ β2(V2(x20), t) + 2

∫ t

0
γ2(|u(τ)|)dτ .Using again the bounds on V2 provided by (5.12)6, it follows that

|φ2(t, x20, u)| ≤ α−1
2

(
2β2

(
α2(|x20|), t

))
+ α−1

2

(
4

∫ t

0
γ2(|u(τ)|)dτ

)
. (5.20)6And the �weak triangular inequality�: α(a + b) ≤ α(2a) + α(2b) for any nonnegative a and b, if

α : R≥0 → R≥0 is nondereasing.



124 5. Integral input to state stability for asaded systemsBy the way, as we will need it later, notie that a similar reasoning based on (5.13) leadsto the following bound on the trajetories of (5.11a), where β1 denotes a KL funtion:
|φ1(t, x10, x2)| ≤ α−1

1

(
2β1

(
α1(|x10|), t

))
+α−1

1

(
4

∫ t

0

[
γ1(|φ2(τ, x20, u)|) + ν1(|u(τ)|)

]
dτ

)
.(5.21)In view of (5.19) and (5.20), [Son98b, Proposition 6℄ ensures that limt→∞ |φ2(t, x20, u)| = 0.Notably, there exists a �nite time T ≥ 0 suh that |φ2(t, x20, u)| ≤ 1 for all t ≥ T .Furthermore, sine γ1(s) = O(α2(s)) in a neighborhood of zero and both these funtionsare ontinuous, there exists a positive onstant k suh that

γ1(s) ≤ kα2(s) , ∀s ∈ [0; 1] . (5.22)Using (5.19), (5.20) and (5.22), we an ahieve the following omputation:
∫ ∞

0
γ1(|φ2(τ, x20, u)|)dτ ≤

∫ T

0
γ1(|φ2(τ, x20, u)|)dτ +

∫ ∞

T
γ1(|φ2(τ, x20, u)|)dτ

≤
∫ T

0
γ1(|φ2(τ, x20, u)|)dτ + k

∫ ∞

T
α2 (|φ2(τ, x20, u)|) dτ

≤
∫ T

0
γ1(|φ2(τ, x20, u)|)dτ + k(V2(x20) + c) .Sine T is �nite, this shows that, under the bounded energy ondition (5.19), the integral∫∞

0 γ1(|φ2(τ, x20, u)|)dτ is bounded as well. Finally, notie that, sine β1 is a KL funtion,(5.19) and (5.21) imply that
lim sup
t→∞

|φ1(t, x10, x2)| ≤ α−1
1

(
8

∫ ∞

0
γ1(|φ2(τ, x20, u)|)dτ

)
+ α−1

1

(
8

∫ ∞

0
ν1(|u(τ)|)dτ

)

≤ α−1
1

(
8

∫ ∞

0
γ1(|φ2(τ, x20, u)|)dτ

)
+ α−1

1 (8c) .In a nutshell, under the bounded energy assumption (5.19), the upper limit (and, a fortiori,its lower limit) of the norm of the trajetories of (5.11a), as t goes to in�nity, is �nite. Thisestablishes the BEFBS property for the whole asade (5.11). As evoked in the beginningof the proof, the onlusion follows from [AISW04, Theorem 3℄.
�A diret onsequene of Theorem 5.13, whih is of notable interest in stability analysis,onerns the ase when the driven subsystem does not depend on the input u. The systemthen takes the more lassial asade form

ẋ1 = f1(x1, x2) (5.23a)
ẋ2 = f2(x2, u) . (5.23b)Corollary 5.16 (iISS + iISS ⇒ iISS, Lyapunov-based) Let V1 be a di�erentiable fun-tion and V2 be a ontinuous funtion di�erentiable out of the origin. Suppose that, for all

i ∈ {1, 2}, there exist: a ontinuous positive de�nite funtion αi, a lass K funtion γi, andsome lass K∞ funtions αi and αi suh that, for all (x1, x2) ∈ R
n1 ×R

n2 and all u ∈ R
p,(5.12) and (5.14) hold and

∂V1

∂x1
(x1)f1(x1, x2, u) ≤ −α1(|x1|) + γ1(|x2|) .



125Then, under the ondition that γ1(s) = O(α2(s)) as s tends to 0, the asade (5.23) isiISS.Proof of Corollary 5.16. It su�es, with a slight abuse, to pik ν1 as the zero funtion inthe proof of Theorem 5.13. �Intuitively, one ould expet that the asade keeps the same iISS gain as its driving sub-system. This is however not the ase in general, as shown by the following ounter-example.This example also illustrates how the fat that V2 is not required to be di�erentiable atthe origin an be pro�table in some situations.Example 5.17 Consider the following two-dimensional asaded system:
ẋ1 = −sat(x1) + x1x2

ẋ2 = −x2 + u .First, we show that this asade is iISS. To this end, let V1(x) = ln(1 + x2
1)/2 and

V2(x2) = |x2|. Using the same notations as in Corollary 5.16, and referring to the ompu-tations detailed in Example 5.12, we see that their derivatives satisfy the following upperbounds:
dV1

dx1
(x1)f1(x1, x2) ≤ −x1satx1

1 + x2
1

+ |x2|

x2 6= 0 ⇒ dV2

dx2
(x2)f2(x2, u) ≤ −|x2| + |u| .The previous result easily applies and establishes that the asade is iISS. Next, we exhibitan iISS gain for the driving subsystem. Sine it is linear and time-invariant, it is diret tosee that its solutions satisfy

|φ2(t, x20, u)| ≤ |x20| e−t+
∫ t

0

∣∣∣e−(t−τ)u(τ)
∣∣∣ dτ = |x20| e−t+

∫ t

0

∣∣∣
(
e−(t−τ)/2

)(
e−(t−τ)/2u(τ)

)∣∣∣ dτ .The two funtions in brakets in the latter integral are in L4 (and atually in Lp for allpositive p). Hene, we an apply Holder's inequality to get that
|φ2(t, x20, u)| ≤ |x20| e−t +

(∫ t

0
e−2(t−τ)/3dτ

)3/4(∫ t

0
e−2(t−τ) |u(τ)|4 dτ

)1/4

≤ |x20| e−t +
3

2

(∫ t

0
u(τ)4dτ

)1/4

.This shows that an admissible iISS gain for the driving subsystem is the funtion µ(s) = s4.However, if it were an iISS gain for the whole asade as well, then [Son98b, Proposition 6℄would notably ensure that, if the integral ∫∞
0 u(τ)4dτ is �nite, then lim supt→∞ |φ(t, x0, u)| =

0. We show that this is not the ase. Consider indeed the feedbak input u = x2 − x3
2. Thelosed-loop asaded system then beomes

ẋ1 = −sat(x1) + x1x2

ẋ2 = −x3
2 .As seen in Example 5.3, for x20 = 1 the solution of the x2-subsystem is 1/

√
1 + 2t, whihensures that ∫∞

0 u(τ)4dτ < ∞ whereas, for any x10 ≥ 3, the orresponding trajetory ofthis system grows unbounded. �



126 5. Integral input to state stability for asaded systems5.3 Integral input to state stability for asades, trajetory-basedIn this setion, we address the same problem as above, i.e. deriving su�ient onditions forthe preservation of the iISS property under asade interonnetion, but without requiringthe knowledge of any Lyapunov funtion. Instead, greater stability properties are requiredfor eah subsystem. It is indeed imposed that the driving subsystem be 0-LES, and thatthe iISS gain of the driven subsystem be loally Lipshitz.Theorem 5.18 (iISS + iISS ⇒ iISS, trajetory-based) Assume that the system (5.11a)is iISS with respet to (x2, u) with an iISS gain µ1, and that the system (5.5b) is iISS and0-LES (f. De�nition 5.6). Assume also that f2(·, 0) is ontinuously di�erentiable. Then,under the ondition that µ1 is loally Lipshitz, the asade (5.11) is iISS.To the best of our knowledge, this onstitutes the �rst result that proposes trajetory-based su�ient onditions for the preservation of the iISS property under asade inter-onnetion.It is interesting to see that the obtained su�ient ondition is hardly more onservativethan the one in [AAS02, Corollary 2℄, while ensuring a more interesting property to theoverall asade (that is, iISS instead of GAS). More preisely, the latter referene imposesthat ∫ 1

0

µ1(s)

s
ds <∞ ,whih is ful�lled when µ1 is loally Lipshitz.Also, similarly to Theorem 5.13, note that this result applies to asaded systems like(5.23), i.e. when the driven subsystem does not depend on the input u.Proof of Theorem 5.18. The proof onsists in designing a Lyapunov-like funtion for thedriving subsystem, in order to follow a similar reasoning as in the proof of Theorem 5.13.Namely, we will show 0-GAS and BEFBS. We point out that any loally Lipshitz funtionof lass K an be upper bounded by a di�erentiable funtion of lass K. Based on thisobservation, we will onsider without loss of generality that µ1 is di�erentiable. We startby introduing the following lemma, similar to a result in [SJK97℄, whih establishes aloal Lipshitz property for the estimate of the trajetories of a GAS and LES system.Lemma 5.19 (KL estimate for GAS and LES systems) A system ẋ = f(x), with

f : R
n → R

n loally Lipshitz, is GAS and LES if and only if there exists a loally Lipshitzfuntion η of lass K and a positive onstant k suh that, for all initial onditions x0 ∈ R
n,the orresponding solution satis�es

|φ(t, x0)| ≤ η(|x0|)e−kt , ∀t ∈ R≥0 .

�Proof of Lemma 5.19. One diretion of the impliation is straightforward. Indeed, supposethat |φ(t, x0)| ≤ η(|x0|)e−kt for all x0 ∈ R
n and all t ∈ R≥0. Then the system is GAS.In addition, sine η is a loally Lipshitz funtion of lass K, there exists a nonnegativeonstant λ suh that η(s) ≤ λs for all s ∈ [0; 1]. Thus, for all |x0| ≤ 1, it follows that

|φ(t, x0)| ≤ λ |x0| e−kt, whih establishes LES.



127The onverse is proved using similar arguments as for [AAS02, Lemma 4℄. Sine thesystem is LES, there exist some positive onstants k1, k and ε suh that
|x0| ≤ ε ⇒ |φ(t, x0)| ≤ k1 |x0| e−kt , ∀t ∈ R≥0 . (5.24)Also, sine it is GAS, for any x0 ∈ R

n there exists a time T ≥ 0, depending on |x0|, suhthat |φ(T (|x0|), x0)| ≤ ε. Hene, it holds that
|φ(t, x0)| ≤ k1 |φ(T (|x0|), x0)| e−k(t−T (|x0|)) ≤ k1εe

kT (|x0|)e−kt , ∀t ≥ T (|x0|) . (5.25)Moreover, the GAS assumption also establishes the existene of a KL funtion suh that,for all x0, |φ(t, x0)| ≤ β(|x0| , t). It follows that, for all t ∈ [0;T (|x0|)],
|φ(t, x0)| ≤ β(|x0| , 0)ekte−kt ≤ β(|x0| , 0)ekT (|x0|)e−kt .This inequality together with (5.25) shows that, for all t ∈ R≥0,

|φ(t, x0)| ≤ e−kt max {k1ε ; β(|x0| , 0)} ekT (|x0|) .From the previous inequality and (5.24), it is possible to see that |φ(t, x0)| ≤ η̃(|x0|)e−kt,where
η̃(s) :=





k1s if 0 ≤ s ≤ ε/2
σ(s) if ε/2 < s ≤ ε

max {k1ε ; β(s, 0)} ekT (s) if s > ε ,where σ is any ontinuous inreasing funtion suh that
σ(ε/2) = k1ε/2 and σ(ε) = max {k1ε ; β(ε, 0)} ekT (ε) .Sine the funtion T (·) an be hosen ontinuous and nondereasing, η̃ is a lass K funtion.Note in addition that η̃ is di�erentiable over [0; ε/2], and is onsequently loally Lipshitzaround zero. This shows that it an be upper bounded on all R≥0 by a loally Lipshitzfuntion η of lass K, whih establishes the result. �We an now ontinue the proof of Theorem 5.18. Sine the driving subsystem is iISS,it is 0-GAS. Hene, from the previous lemma, we see that there exists a loally Lipshitzlass K funtion η2 and a positive onstant k2 suh that the trajetories of the zero inputdriving subsystem satisfy, for any x20 ∈ R

n2 ,
|φ2(t, x20, 0)| ≤ η2(|x20|)e−k2t , ∀t ∈ R≥0 ,whih means, using the terminology of [AAS02℄, that ẋ2 = f2(x2, 0) is GAS(α2) with

α2(s) := s. In addition, sine µ1 is loally Lipshitz and positive de�nite, there exist apositive onstant λ suh that µ1(s) ≤ λs for all s ∈ [0; 1]. Consequently, we have that
∫ 1

0

µ1 ◦ α2(s)

s
ds ≤

∫ 1

0

λ2s

s
ds ≤ λ2 .The 0-GAS of the asade (5.11) then follows from [AAS02, Theorem 1℄.The proof of the BEFBS property is based on the following two lemmas. The �rst oneensures the existene of a onverse Lyapunov-like funtion for GAS and LES systems, witha presribed dissipation rate.



128 5. Integral input to state stability for asaded systemsLemma 5.20 Let f : R
n → R

n be a ontinuously di�erentiable funtion suh that thesystem ẋ = f(x) is GAS and LES. Let µ be a given di�erentiable funtion of lass K∞.Then there exists a ontinuous funtion V : R
n → R≥0 di�erentiable over R

n\{0}, lass K∞funtions α and α, and a ontinuous funtion c : R
n → R≥0 suh that, for all x ∈ R

n \{0},
α(|x|) ≤ V (x) ≤ α(|x|)

∂V

∂x
(x)f(x) ≤ −µ(|x|) (5.26)
∣∣∣∣
∂V

∂x
(x)

∣∣∣∣ ≤ c(x) . (5.27)
�Proof of Lemma 5.20. The result is inspired by the onverse theorems based on Massera'slemma (see [Mas49℄ or, e.g., [Kha96, Theorem 3.14℄). The novelty onsists in allowing toassign a presribed dissipation term to the onstruted Lyapunov-like funtion. We de�ne

V (x) :=

∫ ∞

0
µ(|φ(τ, x)|)dτ .Upper bound on V : Sine the system is assumed to be GAS and LES, Lemma 5.19 ensuresthe existene of a positive onstant k and a loally Lipshitz K∞ funtion η suh that

|φ(τ, x)| ≤ η(|x|)e−kτ . Based on this observation, we get that
V (x) ≤

∫ ∞

0
µ
(
η(|x|)e−kτ

)
dτ =: α(|x|) . (5.28)We laim that α is of lass K. Indeed, it is lear that α(0) = 0. For any x ∈ R

n \ {0},onsider the hange of variable s = η(|x|)e−kτ . Then we an see that
α(|x|) =

∫ η(|x|)

0

µ(s)

ks
ds . (5.29)However, sine µ is di�erentiable, it is loally Lipshitz, so there exists a nonnegative Lxsuh that µ(s) = µ(s) − µ(0) ≤ Lxs for all s ∈ [0; η(|x|)]. This shows that the previousintegral is �nite, and therefore that α is �nite over R>0. Moreover, it an easily be seenfrom (5.29) that α is ontinuous and inreasing, whih �nishes to establish the laim.Lower bound on V : The lower bound on V is obtained as follows. Notie �rst that, sine

f is ontinuously di�erentiable, it is loally Lipshitz, so there exists a ontinuous nonde-reasing funtion L suh that, for all x ∈ R
n, |f(x)| ≤ L(|x|) |x|. Hene

∂

∂τ
(|φ(τ, x)|2) = 2f(φ(τ, x))⊤φ(τ, x) ≥ −2L(|φ(τ, x)|) |φ(τ, x)|2 ≥ −b(x) |φ(τ, x)|2 ,where b(x) := 2L(supτ≥0 |φ(τ, x)|+1) is a positive onstant whih is �nite sine the systemis assumed to be GAS. Thus, |φ(·, x)|2 satis�es the di�erential inequality ẏ ≥ −b(x)y. Fromthe omparison lemma, we onlude that |φ(τ, x)|2 ≥ |x|2 e−b(x)τ . Therefore
V (x) ≥

∫ ∞

0
µ
(
|x| e−b(x)τ/2

)
dτ ≥

∫ 1/b(x)

0
µ
(
|x| e−b(x)τ/2

)
dτ ≥ µ

(
|x|2 e−1

)
.



129Hene, the hoie α(s) := µ
(
s2e−1

) is an appropriate lass K∞ lower bound7 for V .Gradient of V : The next point onsists in showing that V is di�erentiable. To this end,notie that, for any x ∈ R
n, the solution of ẋ = f(x) satis�es

φ(t, x) = x+

∫ t

0
f(φ(τ, x))dτ .We introdue the notation

φx(t, x) :=
∂(φ(t, x))

∂x
,and di�erentiate the previous equality with respet to x to get that

φx(t, x) = 1 +

∫ t

0

∂f

∂x
(φ(τ, x))φx(τ, x)dτ .Di�erentiating next with respet to t, we obtain that φx(·, x) is solution of the di�erentialequation

∂

∂t
(φx(t, x)) = A(t, x)φx(t, x) , φx(0, x) = 1 , (5.30)where

A(t, x) :=
∂f

∂x
(φ(t, x)) .We de�ne

A∞ := lim
t→∞

A(t, x) .Sine the trajetory φ(t, x) tends to 0 and f is ontinuously di�erentiable, we an see that
A∞ =

∂f

∂x
(0) ,whih shows that A∞ is independent of x. Also, sine the system is assumed to be LES, itfollows from [Kha96, Theorem 3.13℄ that A∞ is a Hurwitz matrix. Hene, for any positivede�nite symmetri matrix Q, there exists a positive de�nite symmetri matrix P suh that

A⊤
∞P + PA∞ = −Q. Consider the Lyapunov funtion

V(φx) := φ⊤x Pφx . (5.31)Then its derivative along the solution of (5.30) yields
V̇(φx) = φ⊤x

(
A(t, x)⊤P + PA(t, x)

)
φx

= −φ⊤xQφx + φ⊤x
[
(A(t, x) −A∞)⊤P + P (A(t, x) −A∞)

]
φx

≤ −qm |φx|2 + |A(t, x)| |φx|2 , (5.32)where qm > 0 is the minimum eigenvalue of Q and A(t, x) := (A(t, x) − A∞)⊤P +
P (A(t, x) − A∞). We an see that limt→∞ |A(t, x)| = 0. Hene, for all x ∈ R

n, thereexists a �nite time T (x) suh that |A(t, x)| ≤ qm/2, and onsequently
V̇(φx(t, x)) ≤ −qm

2
|φx(t, x)|2 , ∀t ≥ T (x) .7Note that, in view of (5.28), this establishes in turn that α is a lass K∞ funtion as well.



130 5. Integral input to state stability for asaded systemsFrom this and (5.31), we onlude that there exist two positive onstants k1 and k2 suhthat
|φx(t, x)| ≤ k1 |φx(T (x), x)| e−k2(t−T (x)) , ∀t ≥ T (x) . (5.33)It is worth mentioning that the forward ompleteness is ensured by (5.32) and the fat that

|A(·, x)| is bounded (sine it is ontinuous and has a �nite limit), f. [AS99℄. Therefore,the funtion de�ned as
c1(x) := sup

t∈[0,T (x)]
|φx(t, x)| , ∀x ∈ R

nis well de�ned over R
n. Realling that

sup
t≥0

|φ(t, x)| ≤ η(|x|)and using also (5.33), it holds that, for all x ∈ R
n,

∫ ∞

0
|φx(τ, x)| dτ =

∫ T (x)

0
|φx(τ, x)| dτ+

∫ ∞

T (x)
|φx(τ, x)| dτ ≤ c1(x)T (x)+

k1

k2
|φx(T (x), x)| .Sine, as proved in the beginning of the proof, φ(t, x) 6= 0 for all x 6= 0 and all t ∈ R≥0, itfollows that

∣∣∣∣
∫ ∞

0
µ′(|φ(τ, x)|) φ(τ, x)

|φ(τ, x)|φx(τ, x)dτ
∣∣∣∣ ≤

∫ ∞

0

∣∣µ′(|φ(τ, x)|)
∣∣ |φx(τ, x)| dτ

≤ sup
s∈[0;η(|x|)]

|µ′(s)|
∫ ∞

0
|φx(τ, x)| dτ

≤ sup
s∈[0;η(|x|)]

|µ′(s)|
(
c1(x)T (x) +

k1

k2
|φx(T (x), x)|

)
.Thus, the left-hand side of the previous inequality exists and is �nite for all x ∈ R

n \ {0}.However, the norm of this very integral also satis�es
∣∣∣∣
∫ ∞

0
µ′(|φ(τ, x)|) φ(τ, x)

|φ(τ, x)|φx(τ, x)dτ
∣∣∣∣ =

∣∣∣∣
∫ ∞

0

∂

∂x

(
µ(|φ(τ, x)|)

)
dτ

∣∣∣∣ =
∣∣∣∣
∂V

∂x
(x)

∣∣∣∣ .This establishes that V is di�erentiable over R
n \ {0} and, in turn, provides the bound(5.27) with any ontinuous funtion c : R

n → R≥0 satisfying
c(x) ≥ sup

s∈[0;η(|x|)]
|µ′(s)|

(
c1(x)T (x) +

k1

k2
|φx(T (x), x)|

)
, ∀x ∈ R

n .Upper bound on V̇ : Finally, we exhibit the bound on the total derivative of V along thetrajetories. Let x be any vetor of R
n and t ∈ R≥0, we then have that

V (x) =

∫ ∞

0
µ(|φ(τ, x)|)dτ

=

∫ t

0
µ(|φ(τ, x)|)dτ +

∫ ∞

t
µ(|φ(τ, x)|)dτ

=

∫ t

0
µ(|φ(τ, x)|)dτ +

∫ ∞

t
µ
(
|φ(τ − t, φ(t, x))|

)
dτ

=

∫ t

0
µ(|φ(τ, x)|)dτ +

∫ ∞

0
µ(|φ(τ, φ(t, x))|)dτ .



131We thus get that, for all x ∈ R
n and all t ∈ R≥0,

V (φ(t, x)) − V (x) = −
∫ t

0
µ(|φ(τ, x)|)dτ .The bound (5.26) follows by di�erentiating this equality with respet to t. �The seond lemma we need is an extension of [ASW00a, Proposition II.5℄ and reatesa bridge between the notions of 0-GAS and iISS in terms of a (not neessarily radiallyunbounded) Lyapunov-like funtion. The novelty here onsists in expliitly speifying thebehavior of the dissipation term around the origin.Lemma 5.21 Let f : R

n × R
p → R

n be a loally Lipshitz funtion. Suppose that thereexists a ontinuous funtion V : R
n → R≥0 di�erentiable out of the origin suh that, forall x ∈ R

n \ {0},
α(|x|) ≤ V (x) ≤ α(|x|)
∂V

∂x
(x)f(x, 0) ≤ −µ(|x|)
∣∣∣∣
∂V

∂x
(x)

∣∣∣∣ ≤ c(x) ,where α, α denote K∞ funtions, µ ∈ K, and c : R
n → R≥0 is a ontinuous funtion.Then there exists a ontinuous positive de�nite funtion W : R

n → R≥0 di�erentiable on
R
n \ {0} suh that, for all x ∈ R

n \ {0} and all u ∈ R
p, it holds that

∂W

∂x
(x)f(x, u) ≤ −ρ(|x|) + δ(|u|) ,where δ is of lass K and ρ is a ontinuous positive de�nite funtion satisfying ρ(s) ∼ µ(s)in a neighborhood of zero. �Proof of Lemma 5.21. The proof we present here onsists in slight modi�ations of theone of [ASW00a, Proposition II.5℄. We �rst establish the following result, whih should beseen as an adaptation of [ASW00a, Lemma IV.10℄.Proposition 5.22 Under the assumptions of Lemma 5.21, the funtion V is suh that,for all x ∈ R

n \ {0} and all u ∈ R
p,

∂V

∂x
(x)f(x, u) ≤ −µ(|x|) + ν(|x|)δ(|u|) ,where δ is a lass K funtion and ν is a positive ontinuous inreasing funtion.Proof of Proposition 5.22. Consider x 6= 0 and ompute the total derivative of V alongthe trajetories of the system with input u:

∂V

∂x
(x)f(x, u) =

∂V

∂x
(x)f(x, 0) +

∂V

∂x
(x)
[
f(x, u) − f(x, 0) − f(0, u)

]
+
∂V

∂x
(x)f(0, u)

≤ −µ(|x|) +

∣∣∣∣
∂V

∂x
(x)

∣∣∣∣ |f(x, u) − f(x, 0) − f(0, u)| +
∣∣∣∣
∂V

∂x
(x)

∣∣∣∣ |f(0, u)| .



132 5. Integral input to state stability for asaded systemsDe�ne the following funtion
γ(r, s) := r + s+ max

|x|≤r,|u|≤s
|f(x, u) − f(x, 0) − f(0, u)| , ∀r, s ∈ R≥0 .Then, γ is of lass K in eah of its two arguments. So, by [ASW00a, Corollary IV.5℄, thereexists a lass K funtion σ suh that γ(r, s) ≤ σ(r)σ(s). It follows that

∂V

∂x
(x)f(x, u) ≤ −µ(|x|) +

∣∣∣∣
∂V

∂x
(x)

∣∣∣∣σ(|x|)σ(|u|) +

∣∣∣∣
∂V

∂x
(x)

∣∣∣∣ |f(0, u)| .De�ne next, for all r > 0,
κ(r) := r + sup

0<|x|≤r

∣∣∣∣
∂V

∂x
(x)

∣∣∣∣ .Note that κ is well de�ned for all positive r sine V is di�erentiable over R
n \ {0} and

lim sup
|x|→0

∣∣∣∣
∂V

∂x
(x)

∣∣∣∣ ≤ c(0) <∞ .If, in addition, we let κ(0) := 0, then κ is a positive de�nite nondereasing funtion,ontinuous on R>0. Hene, there exists a ontinuous inreasing funtion κ̃ suh that
κ̃(·) ≥ κ(·). Thus we get that, for all x 6= 0,

∂V

∂x
(x)f(x, u) ≤ −µ(|x|) + κ̃(|x|)σ(|x|)σ(|u|) + κ̃(|x|) |f(0, u)| .By the loal Lipshitz ontinuity of f , there exists a lass K funtion χ suh that |f(0, u)| ≤

χ(|u|). This �nal observation establishes the result with the funtions ν(·) = κ̃(·)(1+σ(·))and δ(·) := σ(·) + χ(·). �Let's now go bak to the proof of Lemma 5.21. De�ne the following funtion
π(r) :=

∫ r

0

ds

1 + ν ◦ α−1(s)
,where ν is the positive ontinuous inreasing funtion generated by the previous proposi-tion. Notie that, sine ν ◦ α−1 is a nonnegative funtion, π belongs to lass K. Letting

W := π ◦ V , it follows that W is positive de�nite and di�erentiable out of the origin and,for all x 6= 0, we have that
∂W

∂x
(x)f(x, u) =

∂V

∂x
(x)f(x, u)

1

1 + ν ◦ α−1(V (x))
≤ −µ(|x|)

1 + ν ◦ α−1 ◦ α(|x|) +
ν(|x|)δ(|u|)
1 + ν(|x|) .De�ne

ρ(s) :=
µ(s)

1 + ν ◦ α−1 ◦ α(s)
, ∀s ∈ R≥0 .Then ρ is a ontinuous positive de�nite funtion. In addition,

lim
s→0

µ(s)

ρ(s)
= lim

s→0
1 + ν ◦ α−1 ◦ α(s) = 1 ,whih establishes the result.

�



133Based on these two lemmas, we now omplete the proof of Theorem 5.18. As alreadyseen, the driving zero-input subsystem ẋ2 = f2(x2, 0) is GAS and LES. Apply Lemma5.20 to it with the funtion µ(s) := µ1(2s), where µ1 ∈ K∞ is the iISS gain of the drivensubsystem8. The onditions of Lemma 5.21 are then also ful�lled, and we onlude theexistene of a ontinuous funtion W , di�erentiable out of the origin, suh that, for all
x2 6= 0 and all u

∂W

∂x2
(x2)f2(x2, u) ≤ −ρ(|x2|) + σ(|u|) ,where σ ∈ K and ρ is a ontinuous positive de�nite funtion suh that ρ(s) ∼ µ1(2s)around zero. By letting ω(t) = −ρ(|φ2(t, x20, u)|) + σ(|u(t)|) in Lemma 5.15, it followsthat, for almost all t ∈ R≥0,

Ẇ (φ2(t, x20, u)) ≤ −ρ(|φ2(t, x20, u)|) + σ(|u(t)|) .Integrating this inequality yields
∫ ∞

0
ρ(|φ2(τ, x20, u)|)dτ ≤W (x20) +

∫ ∞

0
σ(|u(τ)|)dτ . (5.34)On the other hand, by the assumption of iISS on the driving subsystem, there exists

β2 ∈ KL, and γ2, µ2 ∈ K suh that, for all x20 ∈ R
n2 and all admissible u,

|φ2(t, x20, u)| ≤ β2(|x20| , t) + γ2

(∫ t

0
µ2(|u(τ)|)dτ

)
. (5.35)We show that the state is �frequently bounded� under the following bounded energy as-sumption: ∫ ∞

0
µM (|u(τ)|)dτ <∞ , (5.36)where

µM (s) := max{µ1(2s) ; µ2(s) ; σ(s)} , ∀s ∈ R≥0 .To this end, �rst notie that, in virtue of [Son98b, Proposition 6℄, this assumption togetherwith (5.35) ensures that
lim
t→∞

|φ2(t, x20, u)| = 0 . (5.37)Moreover, provided (5.36), the integral of the left-hand side of (5.34) is �nite. Hene, sineLemma 5.21 ensures that ρ(s) ∼ µ1(2s) as s tends to zero, we have that
∫ ∞

0
µ1(2 |φ2(τ, x20, u)|)dτ <∞ .Finally, sine µ1 is the iISS gain of the driven subsystem, there exists β1 ∈ KL and γ1 ∈ Ksuh that the trajetories of (5.11a) satisfy

|φ1(t, x10, x2)| ≤ β1(|x10| , t) + γ1

(∫ t

0
µ1

(∣∣(φ2(τ, x20, u), u(τ)
)∣∣) dτ

)

≤ β1(|x10| , t) + γ1

(∫ t

0
µ1 (|φ2(τ, x20, u)| + |u(τ)|) dτ

)

≤ β1(|x10| , t) + γ1

(∫ t

0
µ1 (2 |φ2(τ, x20, u)|) dτ +

∫ t

0
µ1 (2 |u(τ)|) dτ

)8If µ1 /∈ K∞, the whole reasoning an be done with any loally Lipshitz µ̃1 ∈ K∞ suh that µ̃1(s) =
µ1(s) for all s ∈ [0; 1] and µ̃1(s) ≥ µ1(s) for all s ≥ 1.



134 5. Integral input to state stability for asaded systemsThus, under the bounded energy ondition (5.36), we get that lim supt→∞ |φ1(t, x10, x2)| is�nite, and onsequently, with (5.37), that the asade (5.11) satis�es the BEFBS property.We may therefore onlude iISS by virtue of [AISW04, Theorem 3℄.
�Conlusion. In this hapter are exposed two results that guarantee the preservationof the iISS property under asade interonnetion. One is based on the Lyapunov fun-tions assoiated to eah subsystem while the other relies on their solutions' estimates. Asa orollary, a Lyapunov ondition that ensures that the asade omposed of an iISS sub-system driven by a GAS one is itself GAS. The simpliity of the obtained onditions isworth being underlined. Aademi examples are also proposed to illustrate the purpose.



135
Chapter 6Appliation to mehanial systemsThe aim of this hapter is to present onrete appliations of the results presented in thisdoument. These appliations onern the ontrol of mehanial systems. More preisely,we start by studying the robustness of PID ontrolled robot manipulators to externaldisturbanes, atuators'dynamis and model unertainty. We then provide some resultsfor the ontrol of a spaeraft formation by a leader-follower approah. The last setion isdevoted to the ontrol of a supply ship in the underway replenishment operation.6.1 PID ontrol of robot manipulatorsThe main goal of the setion is to study the robustness of PID-ontrolled robot manip-ulators to unertainty and disturbanes. In general terms, unertainty may stem fromimpreision on numerial values of ertain parameters, inadequay of the dynami model,negleted dynamis, approximation of unavailable measurements, et. Disturbanes maytake the form of noise in the measurements or external fores from physial interation withthe environment suh as frition and,in general, all fores that depend on time, positionand veloity and whih a�et the motion.Frition. In the literature of mehanial systems, speial fous is given to frition e�ets.These are phenomena that depend on multiple fators suh as nature of the materials inontat, lubriation, temperature, et. They are therefore highly omplex from a modellingviewpoint. For this reason, only approximate models of frition fores and torques areavailable �f. [Dah68, COaL95, SAGP00℄. We distinguish two families of frition models:the stati models, in whih the frition fore or torque depends on the instantaneous relativeveloity between bodies (suh as visous frition), and dynami models whih depend onthe past values of the relative veloity �f. [COaL95, SAGP00℄. The former are adequateto approximately model frition in relatively high-veloity motion tasks while the latter aremore appropriate to model frition e�ets at low veloities. Whether dynami or stati,frition e�ets may be modelled as an input fore that depends, in general, on time andstate.Negleted dynamis. Performanes of ontrolled robot manipulators may also be de-graded due to the in�uene of negleted dynamis. A partiularly important situation inwhih dynamis are negleted is non-model-based ontrol of manipulators. That is, whenthe robot is onsidered as a blak-box system that has input torques and measurable out-



136 6. Appliation to mehanial systemsputs (positions and, often, veloities). Not only Proportional Integral Derivative (PID)ontrol of robot manipulators is a lear example of ontrol with negleted dynamis, butit is the most ommon in industrial manipulators. Indeed, manipulators used in most pro-dution lines are PID-ontrolled, in whih ase ontrol design boils down to gain-tuning ofthe PID gains. This fat and the onsiderable amount of papers on PID ontrol of robotson�rm the relevane of this ontroller �f. [Kel95, PC96, Ro96, CC04℄ and referenes inthe latter to ite a few.In model-based ontrol, i.e. where the dynamis of the robot are onsidered in the on-trol law, negleted dynamis orrespond, for instane, to unmodelled phenomena, dynam-is of atuators and possibly of sensors. The most ommon atuators are Diret-Currentdrives, whih may be modelled by a linear di�erential equation �f. [SHV05, KSL05℄.However, one may also onsider robots driven by Alternate-Current motors �f. [PO97℄.In either ase, negleting their dynamis in the ontrol loop may onsiderably hamper per-formane. In the problem treated in [PO97℄, the motor dynamis is highly nonlinear andglobal asymptoti stability of the losed-loop system with the orresponding ideal ontrolinput is obtained. See also [ALLG97℄ for a result on ontrol of robots taking into aountthe DC motors'dynamis under ideal onditions (i.e. without disturbanes).Robust ontrol and robustness analysis. Robust ontrol of manipulators with respetto disturbanes has also been extensively studied, espeially in the ontext of robots withfrition. However, they involve highly nonlinear, and possibly disontinuous, ontrollers�f. e.g. [Tom00, POG98, LC00℄. In spite of the rih literature on PID ontrol of robots,we are not aware of a formal study of robustness of PID-ontrolled manipulators, withrespet to unmodelled dynamis and general additive disturbanes.In this setion, under reasonable assumptions, we establish that PID-ontrolled robotmanipulators are uniformly semiglobally pratially asymptotially stable. In other words,the robot may be operated from arbitrarily large initial onditions and brought to a anygiven admissible on�guration with a steady-state error that may be arbitrarily reduedby enlarging the ontrol gains. Performane is limited only by the physial onstraintsimposed on the size of the ontrol gains.It may be argued that modi�ations of PID ontrol to ahieve global asymptoti sta-bility, suh as introduing nonlinear terms (f. [Ari94℄) or making the integrator timevarying �f. [LNL00℄, may yield better performane. We preise that the subjet of thissetion is not to propose a new robust ontroller for robot manipulators, but to analyzethe robustness of the lassial linear time-invariant PID ontrol.Firstly, we onsider robots under PID ontrol and external disturbanes. In a se-ond step, we analyze the same senario taking into aount the atuator dynamis. Forsimpliity, we onentrate on DC atuators desribed by �rst order linear di�erential equa-tions, but the approah may be generalized to more omplex dynamis. We establishthat PID ontrol is robust to external disturbanes, model unertainty and negleted a-tuator dynamis (onsidered themselves under input disturbanes). Our stability proofsare onstrutive, i.e., in ontrast to others �f. [OLK95℄, we do not appeal to La Salle'sinvariane priniple [LaS60℄. As for instane in [Ro96, QD91℄, we prove stability witha Lyapunov funtion that is positive de�nite, radially unbounded and has negative def-inite total derivative. However, in ontrast to [Ro96℄ where the system is regarded aslinear with setor-bound non-linearities (whih may yield onservative bounds), we use anenergy-like Lyapunov funtion and, as a byprodut, we provide a tuning proedure that



137takes into aount the size of the desired set of initial onditions and the desired toleraneon the steady-state error.6.1.1 Robustness with respet to external disturbanesThe robot model. We onsider the problem of set-point ontrol of a rigid-joint robotmanipulator under PID ontrol and in presene of disturbanes. In this ontext, theLagrangian dynamis of a robot manipulator with n rigid-joints is given by
D(q)q̈ + C(q, q̇)q̇ + g(q) = u+ p1(t, q, q̇) , (6.1)where q ontains the position of the joints, D(q) ∈ R

n×n is symmetri positive de�nitefor all q ∈ R
n, N(q, q̇) := Ḋ(q) − 2C(q, q̇) is skew-symmetri for all (q, q̇) ∈ R

n × R
n and

u ∈ R
n orresponds to the torques. The disturbane p1 represents external fores atingon the robot. As most ommon in the literature of robot ontrol, we restrit our attentionto systems satisfying the following.Assumption 6.1 The funtions D(·), C(·, ·), g(·) are twie ontinuously di�erentiableand the partial derivatives of their elements are over-bounded by nondereasing funtionsof |q| and |q̇|. Furthermore, we assume that there exist positive onstants dm, dM , kc and

kg suh that1 for all q and q̇ of R
n,

dm ≤ |D(q)| ≤ dM , |C(q, q̇)| ≤ kc |q̇| ,
∣∣∣∣
∂g(q)

∂q

∣∣∣∣ ≤ kg .As a �st step, our ontrol problem is to design u so that the robot manipulator stabilizesaround a desired onstant set-point (q = q∗, q̇ = 0). It is further imposed that ontrol beof the PID type. That is, the input torques that ahieve the ontrol objetive are given by
u∗ = −Kpq̃ −Kdq̇ + ν (6.2a)
ν̇ = −Kiq̃ , ν(0) := ĝ(q∗) (6.2b)where ĝ(q∗) is an initial guess of the unknown onstant pre-omputed gravitational foresvetor, q̃ := q−q∗ and Kp, Kd and Ki are symmetri positive de�nite matries representingontrol gains.We stress that the above setting is fairly ommon in pratie of robot ontrol: notonly PID ontrol is probably the most popular ontrol tehnique but, often, industrialmanipulators ome with a blak-box ontroller of PID type, meaning that ontrol designfor the user of an industrial robot boils down to gain-tuning for the built-in PID.Disturbanes. We establish now our results for the perturbed system (6.1). We assumethat the perturbations may be modelled by a funtion p1 : R≥0×R

n×R
n that is ontinuousin all arguments. However, if needed in partiular situations, we an relax this hypothesisto assuming that p1 is suh that the right hand side of (6.1) satis�es the Carathéodoryonditions for existene of solutions. This assumption is not of pure theoretial interest.A typial example where the usual loal Lipshitz assumption (even ontinuity) does not1This is true for instane for open kinemati hains with only revolute or only prismati joints. See e.g.[SV89, SS96℄.



138 6. Appliation to mehanial systemshold is when dealing with systems with Coulomb frition, i.e. in the ase that p1 ontainsterms inluding sign(q̇) whih is disontinuous at q̇ = 0. For suh ases, we shall rely on[KH99℄ where it is proved that Carathéodory solutions exist for systems with Coulombfrition.In this setting, we establish the following result, that quanti�es the robustness of PIDontrolled manipulators when atuators'dynamis is negleted.Proposition 6.2 (Robustness of the mehanial part) Consider the system (6.1) inlosed-loop with (6.2) and under Assumption 6.1. Assume that there exists non-negativenumbers p10, p11 and p12 suh that, for all t ∈ R≥0 and all (q, q̇) ∈ R
2n,

|p1(t, q, q̇)| ≤ p10 + p11 |(q̃, q̇)| + p12 |(q̃, q̇)|2 (6.3)Then, the losed-loop system is uniformly semiglobally pratially asymptotially stable with
Kp, Ki and Kd as tuning parameters.Remark 6.3 For ommodity, we bound the disturbane p1 by a funtion of |(q̃, q̇)| insteadof |(q, q̇)| as may be more natural. However, if

|p1(t, q, q̇)| ≤ p′10 + p′11 |(q, q̇)| + p′12 |(q, q̇)|2 , (6.4)where p′10, p′11 and p′12 are positive onstants, then there exist p10, p11 and p12 > 0 suhthat (6.3) holds. As a matter of fat, a simple alulation using (6.4) yields p10 := p′10 +
p′11 |q∗| + p12 |q∗|2, p11 := p′11 and p12 := p′12.Proof of Proposition 6.2. The proof is onstrutive, i.e. we provide a strit Lyapunovfuntion whih, moreover, helps to establish a tuning proedure, f. Claim 6.5. For ana-lytial purposes, let ε1 > 0 be su�iently small and de�ne the variable

s :=
1

ε1
q̃ +K−1

i (g(q∗) − ν) .We deompose Kp in the following manner:
Kp = K ′

p +
1

ε1
Ki .Notie that K ′

p an be made symmetri positive de�nite by a onvenient hoie of Kp. Thelosed-loop system an then be written
D(q)q̈ + C(q, q̇)q̇ + g(q) − g(q∗) +K ′

pq̃ +Kdq̇ −Kis = p1(t, q, q̇) (6.5a)
ṡ = q̃ +

1

ε1
q̇ . (6.5b)To formally study the stability of the losed-loop system we rewrite it in the state-spaeform, i.e. de�ning x⊤1 := (q̇⊤, q̃⊤, s⊤)⊤ ∈ R

3n and θ1 := (Kd,K
′
p,Ki) ∈ R

n×n × R
n×n ×

R
n×n, the equations (6.5) beome ẋ1 = f1(t, x1, θ1) where

f1(t, x1, θ1) :=




q̇
−D(q)−1

[
C(q, q̇)q̇ + g(q) − g(q∗) +K ′

pq̃ +Kdq̇ −Kis− p1(t, q, q̇)
]

q̃ + 1
ε1
q̇


 .



139In the sequel, we onsider that the tuning parameters are2:
θ11 := λm(Kd) , θ12 := λm(K ′

p) , θ13 := λm(Ki) , (6.6)instead of the matries gains Kd, K ′
p, Ki as this makes learer the proof of Proposition 6.2.Notie that this is only a notation onvention sine, for eah hoie of θ1, one an designorresponding gain matries K ′

p, Kd and Ki.The rest of the proof onsists in verifying the onditions of Corollary 2.16. For this,let ∆1 and δ1 be any positive onstants satisfying δ1 < ∆1. Following the literature onontrol of robots with unertainties (see for instane [OLK95, Kel95, CG95℄), we let3
V1 := V11 + V12 + V13 (6.7)where

V11 :=
1

2
q̇⊤D(q)q̇ +

1

2
q̃⊤K ′

pq̃ + U(q) − U(q∗) − q̃⊤g(q∗) (6.8a)
V12 :=

ε1
2
s⊤Kis+ ε1q̃

⊤D(q)q̇ (6.8b)
V13 := ε2s

⊤D(q)q̇ , (6.8)and ε1 and ε2 are (small) positive onstants. Notie that the funtion V11 orresponds tothe energy funtion of [TA81℄, the seond term in the de�nition of V12 orresponds to theross-term introdued in [Kod88℄. Roughly speaking, we need to show that V1 is positivede�nite and its total derivative is negative de�nite for all t ∈ R≥0 and all x1 suh that
δ1 ≤ |x1| ≤ ∆1. To that end, without muh loss of generality, let the ontrol gains matries
K ′
p, Kd and Ki be suh that
λM (Kd) ≤ ℓλm(Kd) , λM (K ′

p) ≤ ℓλm(K ′
p) , and λM (Ki) ≤ ℓλm(Ki) , (6.9)where ℓ designates a positive onstant. Then, the following two laims hold true (seeAppendix A.6 and A.7 for their respetive proofs).Claim 6.4 (Bounds on V1) The Lyapunov funtion V1 satis�es

a1 |q̇|2+b2θ12 |q̃|2+b3θ13 |s|2 ≤ V1(x1) ≤ a1 |q̇|2+(a2+b2θ12) |q̃|2+(a3+b3θ13) |s|2 , (6.10)where a1, b2, b3, a1, a2, b2, a3 and b3 are positive numbers independent of the gain θ1.Claim 6.5 (Tuning proedure) Assume that ε1 + ε2 ≤ 1 and hoose the gains as
θ11 = θ⋆11(δ1,∆1) := ad +

bd
δ1

+ cd∆1 (6.11a)
θ12 = θ⋆12(δ1,∆1) := ap +

bp
δ1

+ cp∆1 (6.11b)
θ13 = θ⋆13(δ1,∆1) := ai +

bi
δ1

+ ci∆1 , (6.11)where ad, bd, cd, ap, bp, cp, ai, bi and ci the positive onstants, independent of δ1 and ∆1,given in Setion A.7. Then, the total derivative of V1 satis�es
∂V1

∂x1
f1(t, x1, θ1) ≤ −ε1θ12

2
|q̃|2 − θ11

2
|q̇|2 − ε2θ13

2
|s|2 , ∀x1 ∈ H(δ1,∆1) . (6.12)2We reall that λm(A) and λM (A) denote respetively the smallest and largest eigenvalues of A.3It should be understood that V depends on the tuning parameter θ1. We omit to expliitly write thisdependeny for larity.



140 6. Appliation to mehanial systemsIn view of Claim 6.4, the requirement (2.48) of Corollary 2.16 holds for V1. In addition,Claim 6.5 ensures that (2.49) holds. Furthermore, proeeding as in Example 2.17, a simpleinspetion of (6.11) shows that (2.51) are also satis�ed. In virtue of Corollary 2.16, thisends the proof of the proposition. �Several interesting orollaries stem from Proposition 6.2. The �rst one onerns the aseof a vanishing perturbation. Its proof follows along the same lines of that of Proposition6.2, by invoking Corollary 2.16.Corollary 6.6 (Vanishing perturbation) In the ase that the assumptions of Proposi-tion 6.2 hold with p10 = 0, the equilibrium point (q, q̇) = (q∗, 0), for the PID-ontrolledrobot, is semiglobally asymptotially stable.It worth pointing out that, under vanishing perturbations (that may inlude high ordernonlinearities), we are left with the same stability property as for the PI2D ontrollerproposed in [OLK95℄ and the saturated PID ontroller of [ARKC03℄, where no disturbaneis taken into aount.Another interesting ase that is inluded in Proposition 6.2 is that of motion ontrolunder PID ontrol.Corollary 6.7 (Trajetory traking) Let t 7→ q∗(t) denote a bounded referene traje-tory with q̇∗(·) and q̈∗(·) ontinuous and bounded. Then, under the assumptions of Propo-sition 6.2, the system (6.1) in losed loop with the PID ontrol law
u∗ = −Kpq̃ −Kd

˙̃q + ν (6.13a)
ν̇ = −Kiq̃ , ν(0) := ĝ(q∗(0)) , (6.13b)where q̃ := q − q∗, is uniformly semiglobally pratially asymptotially stable.Sketh of proof of Corollary 6.7. The losed-loop system is given by (6.5b) and

D(q)¨̃q+C(q, q̇) ˙̃q+g(q)−g(q∗)+K ′
pq̃+Kdq̇−Kis = p1(t, q, q̇)−C(q, q̇)q̇∗−D(q)q̈∗ . (6.14)Let σ∗ be a positive onstant satisfying

max{|q∗(t)| , |q̇∗(t)| , |q̈∗(t)|} ≤ σ∗ , ∀ t ∈ R≥0 .Notie that C(q, q̇)q̇∗ −D(q)q̈∗ then satis�es
|C(q, q̇)q̇∗ −D(q)q̈∗| ≤ kcσ∗ |q̇| + dMσ∗ .Therefore, rede�ning p1 as the right hand side of (6.14), we see that it still satis�es therequired ondition (6.3). Thus, the result may be obtained exatly as for Proposition 6.2,with the Lyapunov funtion V1 de�ned in (6.7) by replaing q̇ with ˙̃q. �It is worth remarking that the proof for the ase of motion ontrol follows as the proofof Proposition 6.2 sine we do not appeal to La Salle's invariane priniple but we provide astrit Lyapunov funtion, i.e. whose total derivative is negative de�nite along losed-looptrajetories in the absene of disturbanes.



141Disontinuous frition. In the ase when p1 ontains perturbations due to frition,disontinuous funtions of the state may be introdued. In general term, it may take thefollowing form:
p1(t, q, q̇) := F1q̇ + F2Sign(q̇) + F3z(t) + p′1(t, q, q̇) (6.15)where F1 is a non-negative matrix of appropriate dimensions, Sign(q̇) denotes the vetor

(sign(q̇1), . . . , sign(q̇n))
⊤, z(t) is the bounded solution of a dynami frition model �f.[COaL95, SAGP00℄, F2 and F3 are bounded matries of appropriate dimensions and p′1represents additional disturbanes4. In view of the regularity assumptions imposed on

p1 and the results established in [KH99℄ , we see that the theoretial result ontained inProposition 6.2 remains valid.6.1.2 PID ontrol onsidering atuators'dynamis with disturbanesWe onsider now the regulation problem when atuator dynamis are taken into aount.The input torques u ∈ R
n are delivered by Diret-Current (DC) motors, whose dynamisare given by

Li̇+Ri+Kbq̇ = v + p2(t, i) , (6.16)where i ∈ R
n is the vetor of rotor urrents, L and R are the n × n matries of therotors'indutanes and resistanes respetively, Kbq̇ represents the bak eletromotive forein the motors and v is the vetor of input voltages, i.e. the ontrol inputs.We assume that eah motor produes an ideal output torque, i.e. uj = ktjij with

ktj > 0 for eah j ∈ {1, . . . , n}. We de�ne Kt := diag{ktj : j = 1, . . . , n}. We stress thatthis assumption is not onservative sine, in the ase that phenomena suh as torque rippleand baklash are present, they may be modelled by ontinuous bounded funtions dj(t, i)and the atual torque takes the form uj = ktjij + dj(t, i). In this ase, the orrespondingdisturbanes dj(t, i) may be aounted for in the term p1 de�ned in Proposition 6.2.The term p2 represents additional external disturbanes ating on the rotor. We pursuethe same ontrol objetive as above, i.e. to stabilize the robot around the set-point q∗with zero veloity. Our ontrol objetive is ahieved via asaded-based ontrol; i.e. theapproah onsists in designing a referene i∗ := K−1
t u∗ (so that, when ĩ := i− i∗ = 0, wehave u = u∗) and building a ontrol law v that makes that, ideally, ĩ goes to zero; hene

u → u∗. However, in view of the disturbanes, a steady-state error is to be expeted.Relying on Corollary 2.16, we show that the PID-ontrolled manipulator, inluding themotors'dynamis, is uniformly semiglobally pratially asymptotially stable.Proposition 6.8 (Robustness of PID ontrolled manipulators) Consider the system(6.1), (6.16) in losed-loop with (6.2) and
v := R′ĩ+Ri∗ +Kbq̇ + Li̇∗ , i∗ = K−1

t u∗ .Let q̃ := q− q∗ and ĩ := i− i∗. Assume that the onditions of Proposition 6.2 hold and thedisturbanes p2 are bounded as
|p2(t, i)| ≤ p20 + ρ2(

∣∣̃i
∣∣)
∣∣̃i
∣∣ , ∀ t ∈ R≥0 , ∀i ∈ R

3n , (6.17)where p20 is a nonnegative onstant and ρ2 : R≥0 → R≥0 is a ontinuous funtion. Then thelosed-loop system is uniformly semiglobally pratially asymptotially stable. In addition,if p10 = p20 = 0 then the asade is uniformly semiglobally asymptotially stable.4e.g., in the motion ontrol problem, terms depending on a time-varying referene trajetory.



142 6. Appliation to mehanial systemsWe stress that the bound (6.17) holds for any funtion of i uniformly bounded in t.Proposition 6.8 establishes that, if one knows how to globally asymptotially stabilizea robot using PID ontrol when negleting the DC drive dynamis and in the absene ofexternal disturbanes, then semiglobal pratial asymptoti stability an be established inthe presene of a wide lass of non-dissipative fores and taking into aount the atua-tors'dynamis. In other words, given any tolerane on the steady-state error with respetto the operating point and any domain of initial errors, one an always �nd ontrol gainssuh that the losed loop system is uniformly asymptotially stable on this set of initialonditions modulo the tolerane given. Moreover, the tuning proedure given in Claim 6.5is still valid under the in�uene of the atuators'dynamis.It is also important to observe that the result ontained in Proposition 6.8 remainsvalid in the ontexts of motion ontrol. More preisely, Corollary 6.6 extends to the aseof systems with DC dynamis under the onditions from Proposition 6.8.Proof of Proposition 6.8. The losed-loop system, inluding the atuator dynamis,onsists in Equations (6.5) and
L˙̃i+ (R+R′)̃i = p2(t, i) . (6.18)Notie that it has a asaded struture:
ẋ1 = f1(t, x1, θ1) +Ktx2 (6.19a)
ẋ2 = f2(t, x2, θ2) , (6.19b)where x1 and f1 have been previously de�ned, x2 := ĩ, θ2 = R′ and

f2(t, x2, θ2) := −L−1(R+R′)̃i+ L−1p2(t, i)The proof of the proposition is onstruted with the aim at verifying the onditionsof Corollary 2.16. For this we use the result from Proposition 6.2 and prove further thatthe motor losed-loop system (6.18) ẋ2 = f2(t, x2, θ2) is uniformly semiglobally pratiallyasymptotially stable and that the PID-ontrolled robot system, taking into aount theinteronnetion termKtĩ, remains uniformly semiglobally pratially asymptotially stable.USPAS of the motor losed-loop dynamis: While this property may appear intuitivelylear in view of the linearity of the motor dynamis, we present the proof of uniformsemiglobal pratial asymptoti stability of the motor for further development. In parti-ular, this analysis helps to show that the tuning proedure that stems from the proof ofProposition 6.2 remains valid even in spite of the atuator dynamis.With the notation x2 = ĩ, we onsider the Lyapunov funtion
V2(x2) :=

1

2
x2

2 . (6.20)In view of (6.17), its derivative along the solutions of (6.18) satis�es the following upperbound:
∂V2

∂x2
(x2)f2(t, x2, θ2) ≤ −λm(R) + θ2

λM (L)
|x2|2 +

p20 + ρ2 (|x2|) |x2|
λm(L)

|x2| .



143Hene, given any ∆2 > δ2 > 0, it holds that, for all x2 ∈ H(δ2,∆2),
∂V2

∂x2
(x2)f2(t, x2, θ2) ≤ −

(
λm(R) + θ2
λM (L)

− p20

λm(L)δ2
− ρ2(∆2)

λm(L)

)
|x2|2 . (6.21)By hoosing any θ2 = λm(R′) ≥ θ⋆2(δ2,∆2) where

θ⋆2(δ2,∆2) :=
λM (L)

λm(L)

(
p20

δ2
+ ρ2(∆2)

)
, (6.22)we obtain

∂V2

∂x2
(x2)f2(t, x2, θ

⋆
2) ≤ −λm(R)

λM (L)
|x2|2 = −2λm(R)

λM (L)
V2(x2) , ∀x2 ∈ H(δ2,∆2) .It is easy to see that the requirements (2.29) and (2.30) of Theorem 2.11 hold. Also,the upper an lower-bounds on V2 an both be piked as s 7→ s2/2. This makes the thirdrequirement (2.31)-(2.32) trivially satis�ed. Thus, uniform semiglobal pratial asymptotistability follows from Theorem 2.11.In the ase when p20 = 0, uniform semiglobal asymptoti stability follows similarlyfrom Corollary 2.22.USPAS of the PID-ontrolled robot with atuator dynamis: We use now the Lyapunovfuntion

V (x1, x2) := V1(x1) + V2(x2) .From (6.10) and (6.20) we see that V satis�es the requirement (2.48) of Corollary 2.16.We now ompute the total derivative of V along the trajetories of the losed-loop system(6.19). To that end, we �rst observe that, in view of (6.7)�(6.9) and (6.20), there existsa positive onstant cδ1,∆1
suh that, with the parameter hoie proposed in (6.11) and forall x1 ∈ R

3n, ∣∣∣∣
∂V1

∂x1
(x1)

∣∣∣∣ ≤ cδ1,∆1
|x1| , (6.23)In view of (6.12), (6.21) and (6.23), we see that the derivative of V along the trajetoriesof the system (6.19) yields, for all x = (x⊤1 , x

⊤
2 )⊤ ∈ H(δ1,∆1) ×H(δ2,∆2),

V̇ ≤ −αδ1,∆1
|x1|2 + cδ1,∆1

λM (Kt) |x1| |x2| −
(
λm(R) + θ2
λM (L)

− p20

λm(L)δ2
− ρ2(∆2)

λm(L)

)
|x2|2where

αδ1,∆1
:=

1

2
min

{
ε1θ

⋆
12(δ1,∆1) ; θ⋆11(δ1,∆1) ; ε2θ

⋆
13(δ1,∆1)

}
. (6.24)Notiing that, for any positive ε3, it holds that

cδ1,∆1
λM (Kt) |x1| |x2| ≤

1

2

(
ε3
∣∣x2

1

∣∣+
c2δ1,∆1

λM (Kt)
2

ε3
|x2|2

)
,we get that, for all x ∈ H(δ1,∆1) ×H(δ2,∆2),

V̇ ≤ −αδ1,∆1
|x1|2+

ε3
2
|x1|2−

(
λm(R) + θ2
λM (L)

− p20

λm(L)δ2
− ρ2(∆2)

λm(L)
−
c2δ1,∆1

λM (Kt)
2

2ε3

)
|x2|2 .



144 6. Appliation to mehanial systemsHene, by piking
ε3 =

1

2
min

{
ε1

(
ap +

bp
δ1

+ cp∆1

)
; ad +

bd
δ1

+ cd∆1; ε2

(
ai +

bi
δ1

+ ci∆1

)}and R′ in suh a way that
θ2 = λM (L)

(
p20

λm(L)δ2
+
ρ(∆2)

λm(L)
+
c2δ1,∆1

λM (Kt)
2

2ε3

)
,we see with (6.24) that

V̇ ≤ −αδ1,∆1

2
|x1|2 −

λm(R′)
λM (L)

|x2|2for all x ∈ H(δ,∆), where5 δ := max{δ1, δ2} and ∆ := min{∆1,∆2}. Furthermore, therequirements (2.51) are ful�lled in view of (6.11). The result follows invoking Corollary2.16. Similarly, in the ase that p10 = p12 = 0, uniform semiglobal asymptoti stabilityfollows from Corollary 2.22. �6.1.3 Experimental resultsWe now present some experimental results obtained with the �Peliano� manipulator. Thisrobot is omposed of two rotational links q1 and q2. Its model parameters are given below.
D(q) =

(
0.3353 + 0.0244 cos(q2) 0.0127 + 0.0122 cos(q2)
0.0127 + 0.0122 cos(q2) 0.0127

)Nms2 rad−1

C(q, q̇) =

(
−0.0122 sin(q2)q̇2 −0.0122 sin(q2)(q̇1 + q̇2)
0.0122 sin(q2)q̇1 0

)Nms rad−1

g(q) =

(
11.5081 sin(q1) + 0.4596 sin(q1 + q2)

0.4596 sin(q1 + q2)

)Nm .The torque developed by the atuators is limited to 15 Nm for the �rst joint, and to 4 Nmfor the seond one. The following experimental results are obtained with the gains:
K ′
p =

(
4.54 0
0 4.54

)
, Kd =

(
0.7 0
0 0.7

)
, Ki =

(
3.51 0
0 3.51

)
,from initial onditions q10 = 3.14 rad and q20 = 1.1 rad, with zero initial veloity.These results are presented in Figure 6.1. The position, veloity and applied torque isplotted for eah joint. This data shows an aeptable behavior of the manipulator withinput torques that remain aeptable for the onsidered atuators. A zoom of these urvesshow the predited steady-state error that arises from frition and other perturbations, f.Figure 6.1.

5H(δ, ∆) 6= ∅ if δ1 and δ2 are originally hosen small enough (or ∆1 and ∆2 large enough).
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Figure 6.1: 1- q1 (plain), q2 (dashed); 2- q̇1 (plain), q̇2 (dashed); 3- u1 (plain), u2 (dashed).
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146 6. Appliation to mehanial systems6.2 Spaeraft formationFirst of all, we stress that all the results presented in this setion are fruits of a ollaborationwith R. Kristiansen, A. Loría and P. J. Niklasson, and will be part of the topi of theupoming PhD thesis of R. Kristiansen6. We strongly invite the interested reader to onsultthis referene for a more detailed treatment of the questions raised below.The objet of this setion is the ontrol of a spaeraft formation in a leader-followeron�guration. This interation between multiple spaerafts is indeed revolutionizing theway of performing spae-based operations, and brings out several advantages in spaemission aomplishment, as well as new opportunities and appliations for suh missions.Replaing large and omplex spaeraft by an array of simpler miro-satellites introdues amultitude of advantages regarding mission ost and performane. However, the advantagesof using spaeraft formations ome at a ost of inreased omplexity and tehnologialhallenges.Spei� onstraints. Formation �ying introdues requires a detailed knowledge and atight ontrol of relative distane and veloity for eah spaeraft. As in other appliationsof ooperative ontrol, the ontrol problem for the follower simpli�es as the knowledgeabout the leader and its orbit inreases. However, omplete knowledge of the leader ishard to ahieve in pratie.Another hallenge is that the spaeraft parameters hange during its lifetime, byfuel onsumption and body deformations. The orbital parameters must often be hangedto ahieve mission goals, both as planned hanges in orbit aquisition and unexpetedneessary hanges during the operation. Suh hanges lead to modi�ations in the systemparameters, whih an be hard to ommuniate to the follower. In addition, equipment fordetermining position and veloity is ostly, heavy and omputationally demanding, andtherefore the follower spaeraft must often rely on measurements of the position of theleader spaeraft only. Hene, the hallenge lies in synhronized ontrol of the formation,with as little exhange of information between the spaeraft as possible.Existing ontrol strategies. Position feedbak ontrol of leader-follower spaeraft for-mations has reeived some attention during the last years. The �rst solution to this ontrolproblem was presented in [dQYYK99℄, and the use of a nonlinear ontrol law results inglobal uniform ultimate boundedness of position and veloity traking errors. The solu-tion inludes a �ltering sheme to estimate the relative veloity. A similar result was alsopresented in [YYKdQ00℄, providing the same stability properties to the losed-loop sys-tem. Nonlinear adaptive traking ontrol was developed in [dQKY00℄ and ensures globalasymptoti position traking errors. This latter result was however based on a irularorbit assumption. Later, in [PK01℄, a nonlinear traking ontroller for both translationand rotation was presented, inluding an adaptation law to aount for unknown mass andinertia parameters of the spaeraft. The ontroller ensures global asymptoti stability ofposition and veloity errors. Based on the latter two referenes, semiglobal asymptotionvergene of relative translation errors was proved in [WKS02℄ for an adaptive out-put feedbak ontroller using relative position only, with a similar �ltering sheme as in[YYKdQ00℄. This result was extended to a similar result for both relative translation and6Narvi University College, Norway.



147rotation in [WPK05℄, traing the steps of [PK01℄.Little information. The purpose of this setion is to provide a solution to the spaeraftformation ontrol problem with as little knowledge about the leader spaeraft as possible.This relieves the neessity for ommuniation between the spaeraft, and the leader spae-raft an hange its orbital parameters without ommuniating suh hanges to every otherspaeraft in the formation. This is desirable espeially for largely populated formation, todiminish the overall ommuniation load. We present a solution to the problem of trakingrelative translation in a leader-follower spaeraft formation using feedbak from relativeposition only. The ontroller design is performed for two di�erent levels of knowledgeabout the leader spaeraft and its orbit. The �rst ontroller assumes perfet knowledgeof the leader and its orbital parameters and that the orbital perturbations working on thefollower are known. It renders the equilibrium point of the losed-loop system uniformlyglobally asymptotially stable, using measurements of relative position only. A �lter, sim-ilar to the one in [Kel93℄, is inluded, using the method of approximate di�erentiation toprovide su�ient knowledge about the relative veloity to solve the ontrol problem. Theseond ontroller uses the framework of the �rst to render the losed-loop system uniformlyglobally pratially asymptotially stable, with knowledge of bounds on orbital parameters,orbital perturbations and leader ontrol fore only.6.2.1 Problem formulationLet us here formulate the satellite formation problem that we study in this setion. Thegeneral orbit equation for two point masses m1 and m2 (f. [Bat99℄)
r̈ +

µ

|r|3
r = 0 , (6.25)where r is the relative position of masses and µ = G (m1 +m2), G being the universalonstant of gravity, is the equation desribing the unontrolled orbit dynamis for a spae-raft under ideal onditions. This equation an be generalized to inlude fore terms dueto ontrol input vetors from onboard atuators, aerodynami disturbanes, gravitationalfores from other bodies, solar radiation, magneti �elds and so on. Aordingly, (6.25)an be expressed for the leader and follower spaerafts as

r̈l = − µ

|rl|3
rl +

fdl
ml

+
ul
ml

r̈f = − µ

|rf |3
rf +

fdf
mf

+
uf
mfwhere fdl, fdf ∈ R

3 are the disturbane fore terms due to external perturbation e�etsand ul, uf ∈ R
3 are the atuator fores of the leader and follower respetively. Inaddition, spaerafts'masses are assumed to be small relative to the mass of the Earth Me,so µ = GMe. Taking the seond order derivative of the relative position vetor q = rf − rl,and using the true anomaly ν(t) of the leader, whih is the orbit plane angle measured inthe enter of the Earth between the orbit perigee point and the leader spaeraft enter ofmass, the relative position dynamis an be written as (f. [KGNG05℄)
mf q̈ + C(ν̇)q̇ +D(ν̇, ν̈, |rf |) + σ(|rl| , |rf |) = U + Fd , (6.26)
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C(ν̇) = 2mf




0 −ν̇ 0
ν̇ 0 0
0 0 0


 ,

D(ν̇, ν̈, |rf |) = mf




µ

|rf |3 − ν̇2 −ν̈ 0

ν̈ µ

|rf |3 − ν̇2 0

0 0 µ

|rf |3


 ,

σ(|rl| , |rf |) = mfµ

(
|rl|
|rf |3

− 1

|rl|2
, 0, 0

)⊤

.The omposite disturbane fore Fd is given by
Fd = fdf −

mf

ml
fdland the relative ontrol fore U is

U = uf −
mf

ml
ul .For ontrol design, we introdue the more onvenient notation

C(ν̇) = 2mf ν̇C̄ (6.27)
D(ν̇, ν̈, |rf |) = mf

µ

|rf |3
I +mf ν̇

2D̄ +mf ν̈C̄ (6.28)where
C̄ =




0 −1 0
1 0 0
0 0 0


 and D̄ =




−1 0 0
0 −1 0
0 0 0


 .The rate of the true anomaly of the leader spaeraft is given by

ν̇(t) =
nl (1 + el cos ν(t))2

(
1 − e2l

)3/2 , (6.29)where nl =
√
µ/a3

l is the mean motion of the leader, al being the semimajor axis of theleader orbit, and el its orbit eentriity. Di�erentiation of (6.29) results in the rate ofhange of the true anomaly:
ν̈(t) =

−2n2
l el (1 + el cos ν(t))3 sin ν(t)

(
1 − e2l

)3 .Based on these expressions, we see that, when the leader spaeraft is revolving theEarth in an elliptial orbit, the true anomaly rate ν̇(t) and true anomaly rate of hange
ν̈(t) are bounded by onstants. We therefore assume the following.



149Assumption 6.9 (Bound on true anomaly) There exist positive onstants ων̇ and ων̈suh that, for all t ∈ R≥0,
|ν̇(t)| ≤ ων̇ and |ν̈(t)| ≤ ων̈ .We establish two results that are presented in order of inreasing omplexity. First,we assume that the leader's true anomaly ν(t), true anomaly rate ν̇(t) and the orbitalperturbations Fd are known and, in a seond step, we relax these hypotheses by assumingthat only bounds on ν(t), ν̇(t) and Fd are known. We make it lear that the property ofasymptoti stability is lost (and replaed by pratial asymptoti stability) due to the lakof measurements.6.2.2 Measurements availableUnder the assumptions that the leader spaeraft is ontrolled to overome external dis-turbanes in an ellipti orbit, and the follower spaeraft has available measurements ofrelative position q, leader true anomaly rate ν̇(t), true anomaly rate of hange ν̈(t) andorbital perturbations fdf , we have the following.Proposition 6.10 (Measurements available: UGAS) Assuming that the desired rel-ative position q∗(t), desired relative veloity q̇∗(t) and desired relative aeleration q̈∗(t) areall bounded funtions and that Assumption 6.9 holds, the origin of the system (6.26), inlosed loop with the ontrol law

uf = −kpq̃ − kdϑ+ σ − fdf +D(ν̇, ν̈, |rf |) + C (ν̇) q̇∗ +mf q̈∗ (6.30)
q̇c = −aϑ (6.31)
ϑ = qc + bq̃ (6.32)where q̃ := q− q∗, is uniformly globally asymptotially stable for some onvenient hoie ofthe ontrol gains kp, kd, a and b.Proof of Proposition 6.10. Denoting the state vetor as

x :=
(
q̃⊤, ˙̃q

⊤
, ϑ⊤

)⊤
,the losed-loop dynamis of the system in (6.26) and the ontroller (6.30)-(6.32) are

mf
¨̃q = A (t, x) (6.33)where

A (t, x) := −C(ν̇) ˙̃q − kpq̃ − kdϑ . (6.34)Di�erentiating (6.32) and inserting (6.31) results in
ϑ̇ = q̇c + b ˙̃q = −aϑ+ b ˙̃q . (6.35)To prove UGAS of the origin (q̃, ˙̃q, ϑ

)
= (0, 0, 0) of the losed-loop system, the Lyapunovfuntion andidate

V (x) =
1

2
x⊤P1x (6.36)



150 6. Appliation to mehanial systemsis used, where
P1 :=




kp ε1mf 0
ε1mf mf −ε1mf

0 −ε1mf kd/b


with ε1 as a positive design variable. Evaluating the eigenvalues of the matrix P1 we obtainthat V (x) is positive de�nite if

ε21 ≤ min

{
kp

2mf
,

kd
2bmf

}
. (6.37)Under this ondition, V an then be bounded in the following way

pm |x|2 ≤ V (x) ≤ pM |x|2 , (6.38)for some positive onstants pm and pM 7. The derivative of V (x) along the trajetories of(6.33) and (6.35) is
V̇1(x) =

(
˙̃q + ε1q̃ − ε1ϑ

)⊤
mf

¨̃q + q̃⊤kp ˙̃q + ϑ⊤
kd
b
ϑ̇+ ε1mf

˙̃q
⊤ ( ˙̃q − ϑ̇

)and insertion of (6.33) and (6.35) results in
V̇1(x) = − 1

2
x⊤Q1 (ν̇(t))xwhere

Q1(ν̇) :=




2ε1kpI ε1C(ν̇) ε1 [kd − kp] I
−ε1C(ν̇) 2ε1mf (b− 1) I ε1C(ν̇) − ε1mfaI

−ε1 [kd − kp] I −ε1C(ν̇) − ε1mfaI 2
[
a
b − ε1

]
kdI


 .Using Assumption 6.9, the skew-symmetry property of C(ν̇) and Shur's omplement onthe submatries in Q1(ν̇), we obtain that the latter is positive de�nite when

kp (b− 1) ≥ 4mfω
2
ν̇ (6.39)

kd

(a
b
− ε1

)
(b− 1) ≥ ε1

(
4mfω

2
ν̇ +mfa

2
) (6.40)

a

b
kpkd ≥ ε1

[
(kd − kp)

2 + kpkd

]
. (6.41)These onditions an, in their turn, be ful�lled by piking kp and kd large enough that(6.39) and (6.40) hold and, then, by piking ε1 small enough in order that (6.41) holds. Weonlude with the lassial Theorem 2.3 that the losed-loop system is uniformly globallyasymptotially stable.

�7Even though pm and pM depend on the gains kp and kd, this dependeny is not a ruial issue here aswe aim to establish uniform global asymptoti stability.



1516.2.3 When only bounds are knownWe now relax the assumption that the instantaneous values of ν̇(t) and ν̈(t) are available tomeasurement, and rather assume that we know the values of ων̇ and ων̈ on the leader trueanomaly as given by Assumption 6.9. In addition, we relax the assumptions that orbitalperturbations fdf are known, and instead assume that the perturbation term is boundedas |fdf | ≤ ωf . Similarly, we relax the requirement on leader spaeraft ontrol, and assumethat the sum of fores working on the leader due to ontrol thrust and external pertur-bations are bounded, suh that |fdl + ul| ≤ ωl. Finally, we also assume that the followerspaeraft has available measurements of relative position q only. For these assumptions,we have the following.Proposition 6.11 (Known bounds: UGPAS) Under the above assumptions and as-suming further that Assumption 6.9 holds and that the desired relative position q∗, desiredrelative veloity q̇∗ and desired relative aeleration q̈∗ are all bounded funtions, the system(6.26), in losed loop with the ontrol law given by (6.31), (6.32) and
uf = −kpq̃ −kdϑ+σ+mf

(
µ

|rf |3
I + ω2

ν̇D̄ + ων̈C̄

)
q + 2mfων̇C̄q̇∗+mf q̈∗ (6.42)where q̃ = q − q∗, is uniformly globally pratially asymptotially stable on the parameterset R

3
>0 with kp, kd and b as tuning parameters.The omparison between Propositions 6.10 and 6.11 learly illustrates the impreisionthat may arise from a lak of measurements and the presene of non-measured external dis-turbanes. The steady-state error resulting from these phenomena an however be reduedat will by a onvenient tuning of the ontrol gains, whih indues a good performane ofthe above ontrol law as on�rmed by simulations (see below).Proof of Proposition 6.11. The losed-loop dynamis of the system in (6.26) and theontroller (6.31), (6.32) and (6.42) are

mf
¨̃q −mf

(
ω̃ν̇2D̄ + ω̃ν̈C̄

)
(q̃ + q∗) +C(ν̇) ˙̃q − 2mf ω̃ν̇C̄q̇∗ +

mf

ml
(fdl + ul) + kpq̃ + kdϑ = fdf(6.43)where the denotations ω̃ν̇ = ων̇ − ν̇, ω̃ν̈ = ων̈ − ν̈ and ω̃ν̇2 = ω2
ν̇ − ν̇2 have been used. Notethat this losed-loop system is the same as (6.33) with an additional perturbation term

G (t, q̃) := G1 (q̃) +G2 (t, fdl, fdf , ul) (6.44)onsisting of the vanishing and non-vanishing perturbations, G1 and G2, given by
G1 (q̃) := mf

(
ω̃ν̇2D̄ + ω̃ν̈C̄

)
q̃

G2 (t, fdl, fdf , ul) := mf

(
ω̃ν̇2D̄ + ω̃ν̈C̄

)
q∗(t) + 2mf ω̃ν̇C̄q̇∗(t) −

mf

ml
(fdl+ul)+ fdf .Aordingly, the losed-loop system an be written as

mf
¨̃q = A (t, x) +G (t, q̃) . (6.45)By assumption, the desired relative position q∗, relative veloity q̇∗, follower orbital pertur-bations fdf and leader fores fdl+ul are all bounded. More preisely, using that |q∗| ≤ ωq∗ ,
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|q̇∗| ≤ ωq̇∗ , |fdf | ≤ ωf , |fdl + ul| ≤ ωl, and Assumption 6.9, we �nd that |G| ≤ ωG1

|q̃|+ωG2
,where

ωG1
=mf (ων̇2 + 2ων̈) (6.46)

ωG2
=mf (ων̇2 + 2ων̈)ωq∗ + 2mfων̇ωq̇∗ +

mf

ml
ωl + ωf . (6.47)To analyze the stability of the losed-loop system (6.45) we use the same Lyapunov funtionas before (f. (6.36)). The total derivative of V (x) along the trajetories of (6.35) and(6.43) yields

V̇2(x) = −1

2
x⊤Q1 (ν̇)x+

∂V

∂x
G (t, q̃) ≤ −1

2
x⊤Q2(ν̇)x+Q0 (ν̇, q∗, q̇∗)x ,where Q2(ν̇) := [qij ]i,j∈{1,2,3} with submatries given by

q11= 2ε1
(
kpI−mf ω̃ν̇2D̄

)
q12= q⊤21 = ε1C(ν̇) −mf

(
ω̃ν̇2D̄ − ω̃ν̈C̄

) (6.48)
q22= 2ε1mf (b− 1) I q13= q⊤31 = ε1

[
(kd−kp) I+mf

(
ω̃ν̇2D̄−ω̃ν̈C̄

)] (6.49)
q33= 2

(a
b
− ε1

)
kdI q23= q⊤32 = −ε1C(ν̇) − ε1mfaI (6.50)and

Q0 (ν̇, q∗, q̇∗) =




ε1mf [(ω̃ν̇2 + ω̃ν̈) q∗ + 2ω̃ν̇ q̇∗]
mf [(ω̃ν̇2 + ω̃ν̈) q∗ + 2ω̃ν̇ q̇∗] − mf

ml
(fdl + ul) + fdf

−ε1mf [(ω̃ν̇2 + ω̃ν̈) q∗ + 2ω̃ν̇ q̇∗]




⊤

. (6.51)In view of (6.46), (6.47) and the assumptions on the external fores fdl, ul and fdf itfollows that there exists q0 > 0 independent of the ontrol gains and the states, suh that
|Q0(ν̇(t), q∗(t), q̇∗(t))| ≤ q0. On the other hand, the onditions for positive de�niteness of
Q2 are (6.40),

ε21 (b− 1) (kp +mf ω̃ν̇2) ≥ 4ε21mfω
2
ν̇ + 4ε1mfων̇ ω̃ν̈ +mf

(
ω̃2
ν̇2 + ω̃2

ν̈

)
, (6.52)and

(a
b
− ε1

)
kd (kp +mf ω̃ν̇2) ≥ ε1

[
m2
f ω̃

2
ν̈ + (kd − kp +mf ω̃ν̇2)2

]
. (6.53)Thus, V̇2(x) is negative de�nite if (6.37), (6.40), (6.52) and (6.53) hold and

|x| ≥ 2
q0
q2,m

(6.54)where q0 ≥ |Q0 (ν̇(t), q∗(t), q̇∗(t))| and q2,m ≤ |Q2 (ν̇(t))| for all t ∈ R≥0.Furthermore, to verify the onditions of Corollary 2.9, we exhibit a quadrati upper-bound on −x⊤Q2x. To that end, we use the formula 2|ab| ≤ a2 + b2 for any a, b ∈ R, toobtain
x⊤Q2x ≥(λm(q11) − λM (q12) − λM (q13)) |q̃|2 + (λm(q22) − λM (q12) − λM (q23))

∣∣ ˙̃q
∣∣2

+ (λm(q33) − λM (q13) − λM (q23)) |ϑ|2 ,



153where λm(A) and λM (A) denote, respetively, the minimum and maximum eigenvalue ofthe matrix A. Due to the struture of the sub-matries qij , it is always possible to hoosethe gains kp, kd and b large enough that
λm(q11) ≥ 2(λM (q12) + λM (q13))

λm(q22) ≥ 2(λM (q12) + λM (q23))

λm(q33) ≥ 2(λM (q13) + λM (q23)) ,whih results in
x⊤Q2x ≥ 1

2

(
λm(q11) |q̃|2 + λm(q22)

∣∣ ˙̃q
∣∣2 + λm(q33) |ϑ|2

)
.That is, we an hoose q2,m ≥ 1

2 min{λm(q11) , λm(q22) , λm(q22)}. Note that eah of theseterms an be arbitrarily enlarged by an appropriate hoie of kp, kd and b. Thus, q2,m anbe enlarged aordingly. Given any positive δ, it an notably be piked as q2,m = 2q0/δ.Moreover, it an be seen that the resulting q2,m onsists in a linear ombinations of thegains. This ensures that a onvenient hoie of the gain an be piked a�ne in 1/δ, whihensures onditions (2.27) and (2.28).Finally, in view of (6.38) the Lyapunov funtion V (x) also satis�es (2.25) and (2.26).We onlude with Corollary 2.9 that the system (6.26) in losed loop with the ontrol law(6.31), (6.32) and (6.42) is uniformly globally pratially asymptotially stable with kp, kdand b as tuning parameters.
�6.2.4 Simulation resultsTo onlude this work on leader-follower spaeraft formation ontrol and illustrate theperformane of the presented ontrol laws, we now present simulation results. The leaderspaeraft is assumed to be following an ellipti orbit with eentriity el = 0.6. Bothspaeraft have mass ml = mf = 100 kg. The follower spaeraft is assumed to haveavailable ontinuous thrust in all diretions, limited to 27 N. The follower has initial values

q0 = (20, 10,−20)⊤, and is further ommanded to trak sinusoidal trajetories around theleader, given as
q∗ (t) =

(
−10 cos

(
3π

To
t

)
, 10 sin

(
4π

To
t

)
, 5 cos

(
5π

To
t

))⊤
,where To is the orbital period of the leader spaeraft. A possible senario for this motion isin-orbit inspetion, where the follower moves in orbit around the leader. In all simulationsperformed, we used the ontroller gains kp = 3, kd = 5, a = 1 and b = 5. Orbitalperturbation fores due to gravitational perturbations and aerodynami drag are inludedin the simulations.The result from simulating the system (6.26) in losed loop with the ontroller (6.30)-(6.32) is shown in Figure 6.3.



154 6. Appliation to mehanial systems
0 50 100 150

−50

0

50

P
os

 e
rr

or
 [m

]

0 50 100 150
−4

−2

0

2

4

V
el

 e
rr

or
 [m

]

0 50 100 150
−400

−200

0

200

400

V
el

 fi
lte

r

Time [s]

er
eth
eh

er
eth
eh

th1
th2
th3

Figure 6.3: Known perturbations, leader true anomaly rate and rate of hange: position,veloity and veloity �lter output.This is the ase where the leader spaeraft true anomaly and rate of hange are knownto the follower spaeraft. The follower settles and traks the desired trajetory withouterrors in relative position and relative veloity.The results for the ase where only bounds on the perturbations, leader true anomalyrate and rate of hange are known are presented in Figure 6.4.The UGPAS property of the losed-loop system is seen in the �gure as persistent osil-lations around the origin (see the zoomed parts on the right-hand side). In onformity withour theoretial preditions, the magnitude of the osillations an be arbitrarily diminishedby inreasing the ontroller gains. It is worth noting that a good preision an be reahedwithout requiring a too large thrust amplitude.



155
0 20 40 60 80 100

−50

0

50
P

os
 e

rr
or

 [m
]

er
eth
eh

2000 3000 4000 5000
−0.05

0

0.05
er
eth
eh

0 20 40 60 80 100
−4

−2

0

2

4

V
el

 e
rr

or
 [m

]

er
eth
eh

2000 3000 4000 5000
−5

0

5
x 10

−5

er
eth
eh

0 20 40 60 80 100
−400

−200

0

200

400

V
el

 fi
lte

r

Time [s]

th1
th2
th3

2000 3000 4000 5000
−0.1

−0.05

0

0.05

0.1

Time [s]

th1
th2
th3

Figure 6.4: Position error, veloity error and veloity �lter output for the ase when onlythe bounds on the leader true anomaly rate and rate of hange are known6.3 Underway ship replenishmentThe results presented below stem from a ollaboration with E. Kyrkjebø, E. Panteley andK. Pettersen. They will onstitute part of the subjet of the upoming PhD thesis of R.Kyrkjebø8. The interested reader should therefore refer to this work for a more detailedpresentation of the topi.A hallenging problem. Underway ship replenishment onsists, for a supply vessel,to losely follow a vessel in order to transfer fuel. It requires a lose oordination of twovessels. Up to now, the underway ship replenishment manoeuvre has been onduted usingmanual ontrol together with ontrol �ags to exhange instrutions between the vessels.Reent advanes in ontrol theory and measurement systems, in partiular the intro-dution of the Global Positioning System (GPS) and the Automati Identi�ation System(AIS), now allow automati ontrol approahes for replenishment purposes. These autopi-lots are faed with the goal of suppressing e�ets of external disturbanes due to wind,waves and urrents, while ahieving the auray demands of the operation using a reduedset of measurements. The introdution of autopilots expand the range of operating on-ditions for safe replenishment in terms of inreased manoeuvrability in lose waters or in8NTNU, Trondheim, Norway.



156 6. Appliation to mehanial systemsthe proximity of other vessels, and in the robustness towards environmental disturbanes.Control approahes used in [FCY04℄ and [SIF03℄ are based on the assumption that aomplete mathematial model of both vessels is available, and thus autopilots for bothvessels an be designed to suppress the e�ets of external disturbanes. However, in apratial leader-follower replenishment operation, the follower may have limited aess toinformation of the ontrol input, model and states of the leader. Therefore, in order tolighten the information requirements on the leader vessel, we propose bellow a virtualvehile approah where the only information available from the main (leader) ship areposition and heading measurements, f. [KP03℄.Synhronization an be seen as a type of state ooperation among two or more systems.It was introdued in a ontrol ontext by [Ble71℄, and has sine reeived an inreasing atten-tion in the ontrol ommunity (f. e.g. [NRA03, FNP00℄). Synhronization has been uti-lized in maritime appliation by [KP03, SIF03, EP01℄. The two latter referenes expandedon traditional traking methods with prede�ned paths, and introdued a synhronizationfeedbak from the atual position of a vessel (subjet to disturbanes) to the other vesselsthrough a path parametrization variable. All vessels have prede�ned paths with individualtraking ontrollers requiring knowledge of model parameters and ontrol inputs for all ves-sels, and the synhronization is in terms of progression along the path. Based on the resultsof [NRA03℄ for synhronization of mehanial systems, [KP03℄ proposed a leader-followersynhronization observer-ontroller sheme for underway replenishment. Experimental re-sults on this sheme were presented in [KWPN04℄ addressing pratial tuning issues andperformane. No prede�ned path with known derivatives or model parameter informationfor the leader vessel is required anymore, and the oordination of the vessels is ahievedusing a ontroller that synhronizes the position and veloity of the follower to the leaderbased on position measurements only, through the design of state observers.In this setion, we propose a virtual vehile approah to the underway replenishmentproblem to impose a asaded struture of the systems, as opposed to the ontroller-observer approah proposed in [KP03℄ where the observers and ontroller are losely in-teronneted. The virtual vehile is designed to follow the behaviour of the leader basedon position feedbak, and provides a veloity output through the ontroller design. Thestates of the virtual vehile an thus be used in a synhronization ontroller to ontrol thefollower to the virtual vehile.We have made the additional assumption on the problem of [KP03℄ in that the veloityof the follower is assumed to be known to fous our treatment on the interplay betweenthe virtual vehile and the follower. This reasonable assumption enables to extend thestability results from semi-global uniform ultimate boundedness of the losed-loop errorsin [KP03℄ to uniform global pratial asymptoti stability.6.3.1 PreliminariesVehiles de�nitions and referene frames. In the development of the underway re-plenishment ontrol sheme, several referene frames, intermediate vehiles and dynamiand kinemati models are used. A brief introdution to these onepts is given here. See[Fos02℄ for a more elaborate disussion.The ontrol problem studied is as follows: Given the position (x1, x2) and headingangle ψ of a leader vessel, we want the follower vessel to follow the leader with its positionshifted by a distane d at an angle γm relative to the leader. For this purpose we will utilizethe onepts of a referene vehile and a virtual vehile, and we designate the following



157vehiles as illustrated by Figure 6.5.PSfrag replaements
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ym2Figure 6.5: Vehiles and oordinate frames- Σm: leader (main) vessel. The position xm = (x1, x2, ψ)⊤ is measured.- Σr: referene vehile shifted a distane h in the diretion given by the angle γm relativeto the position of the leader vehile.- Σv: virtual vehile ontrolled to trak the referene vehile Σr through a kinemati modelapproah.- Σs: follower (supply) vessel synhronizing to the leader vessel. The position x andveloity ẋ is available for ontrol design, and the parameters of its model are known.Note that the only physial vehiles in the ontrol sheme are the leader vessel Σm andthe follower vessel Σs synhronizing to the leader. Through the use of a virtual vehile asan intermediate ontrol vehile in the sheme, we an ontrol the physial follower vesselto the leader using the known veloity of the virtual referene. Note also that, although wederive the ontrol sheme for one follower vessel, it an be easily extended to any numberof followers providing the introdution of a ollision avoidane sheme.Vessel kinematis and dynamis an be expressed in di�erent referene frames, and wede�ne the two essential referene frames used in this text as (f. [Fos02℄ for details):- NED : �xed referene frame de�ned relative to the Earth's referene ellipsoid, where the
x1
n-axis points toward true North, the x2

n-axis toward East, and the x3
n-axis pointsdownwards normal to the Earth's surfae.- BODY p: body-�xed moving referene frame where the origin is hosen in the enter ofgravity of the vehile p, and the axes (xb1,p, x

b
2,p, x

b
3,p) oinide with the prinipal axesof inertia. Due to vessel symmetry, we an hoose the xb1,p-axis along the axis ofinertia in the forward diretion of the vessel, the xb2,p-axis direted to the right andthe xb3,p-axis to omplete the right-handed oordinate system pointing downwards.



158 6. Appliation to mehanial systemsIn the ase onsidered here, the vetor of vessel generalized oordinates xn = (x1, x2, ψ)⊤is de�ned in the NED frame, where (x1, x2) is the position with respet to the x1
n- and

x2
n-axis, and ψ is the heading angle of the vessel about the x3

n-axis. The veloities
νbp = (u, v, r)⊤ in the surge, sway and yaw diretions are de�ned in the BODY p frame ofthe vehile p. Supersripts n and b will be dropped from the notation when the refereneframe is evident from the ontext. Subsripts p ∈ {m, r, v, s} on these vetors will indiatetheir vehile of origin (main, referene, virtual, supply).The marine vessel equations of motions an be written in vetorial form in the BODYframe of the vessel as ([Fos02℄)

ẋ = J(x)ν (6.55)
Mν ν̇ + Cν (ν) ν +Dν (ν) ν + gν(x) = τν , (6.56)whereMν is a onstant positive de�nite inertia matrix inluding added mass e�ets, Cν (ν)is a skew-symmetri matrix of Coriolis and entripetal fores (satisfying Cν (ν)+C⊤

ν (ν) =
0), Dν (ν) is a non-symmetri damping matrix, and gravitational/buoyany fores in gν(x)an be ignored for surfae vessels. J(x) is a Jaobian-like transformation matrix from the
BODY frame to the NED frame, and in a 3-degrees of freedom surfae appliation wherepith and roll motion are negligible, the matrix J(x) redues to a simple rotation matrixaround the x3

n-axis as
J(x) =




cosψ − sinψ 0
sinψ cosψ 0

0 0 1


 . (6.57)Inserting the kinemati equation (6.55) and its derivative in the dynamis (6.56) yields thedynami model in the NED frame

M(x)ẍ+ C(x, ẋ)ẋ+D(x, ẋ)ẋ+ g(x) = τ , (6.58)where the inertia matrix M(x) is positive de�nite but no longer onstant9. The dynamialmodel (6.58) in the NED frame satis�es a number of properties similar to those of robotissystems (f. Setion 6.1). Notably, the inertia matrix M(x) is di�erentiable, there existspositive onstants Mm and MM suh that
Mm ≤M(x) ≤MM , ∀x ∈ R

3 ,and the matrix Ṁ(x) − 2C(x, ẋ) is skew-symmetri. Similarly to [PE95℄, we will alsoassume that the dissipation vetor d(x, ẋ) := D(x, ẋ)ẋ for a marine vessel is ontinuouslydi�erentiable and satis�es for some positive onstant Dm

∣∣∣∣
∂d(x, ẋ)

∂ẋ

∣∣∣∣ ≥ Dm , ∀ x, ẋ ∈ R
3and, for a ontinuous funtion DM : R≥0 → R≥0,

∣∣∣∣
∂d(x, ẋ)

∂ẋ

∣∣∣∣ ≤ DM (|ẋ|) .Referene vehile kinematis. As a �rst step in order to assure a safe replenishmentoperation, we design a referene position for the follower vessel at some distane h from9Please refer to [KPCP06℄ for a preise expression of M , D, C, g and τ .



159the leader in the form of a referene vehile with a kinemati model. Figure 6.6 onernsthe general situation of an arbitrary heading assignment, i.e. the heading angle of thereferene vehile ψr an be di�erent from the heading angle of the leader vessel ψm, f. .PSfrag replaements
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Figure 6.6: Referene vehile at the distane h and angle γm from the leader vesselThe STREAM (Standard Tension Alongside Replenishment Method) is urrently thepreferred underway replenishment on�guration at sea (f. [MC99℄). In the underwayreplenishment senario, it is desirable that the referene vehile is plaed at a onstantdistane h orthogonally o� one of the sides of the leader with γm = ±π
2 . This on�gurationorresponds to a replenishment operation where the supply ship moves in parallel with theleader at a �xed distane h and with the same heading angle. In this ase, the supply shipis always at a right angle to the replenished ship, and the tension on the replenishment rigis at a minimum. This greatly simpli�es the kinemati equations of the referene vehile.Indeed, the parallel motion suggests that J (xr) = J (xm), and the position of the referenevehile in the NED frame beomes

xr = J (xr)χ
r
r = xm + J (xm) dmr (6.59)Di�erentiating (6.59) we obtaiṅ

xr = ẋm + J (xm)S (rm) dmr (6.60)sine the vetor dmr is onstant in this partiular operation. Taking γm = −π
2 , we obtainthe omponent form for (6.60) aṡ

x1r = ẋ1m + drm cosψm

ẋ2r = ẋ2m + drm sinψm (6.61)
ψ̇r = rmPlease refer to [KPCP06℄ and the upoming PhD thesis of E. Kyrkjebø for details. De�ning

ur := um + drm , vr := vm , and rr := rm ,it an be seen that the kinemati model of the referene vehile an be written as
ẋr = J (xm) νr (6.62)



160 6. Appliation to mehanial systemswhere νr = (um + drm, vm, rm)⊤. In this partiular ase, only the referene forwardveloity is hanged (ur = um + drm) with respet to that of the leader vessel. Note thatthis is neessary for the follower vessel to maintain its position parallel to the leader vesselduring turns due to the di�erene in turn radius.6.3.2 Virtual vehile designThe only measurement available from the leader vessel is the position/heading measure-ment xm, and sine we have no information on the parameters of its mathematial modelor of the ontrol input to the leader vessel, we annot design a model-based observer forthe leader states. An alternative approah is to use the time �ltered derivatives from theposition measurements at the expense of robustness under noisy onditions. In order toredue noise sensitivity, we propose instead to design a virtual vehile as an intermediateontrolled vessel Σv stabilizing to the referene vehile Σr based on position measurementfeedbak only.As in [GMP+98℄, on the �rst step (kinemati level) we onsider the veloities νv of thevirtual vehile as ontrol inputs, and design them in suh a way that we ensure onvergeneof the virtual trajetories to the referene trajetories. In a way, we an onsider thetrajetories xv and veloities νv as estimates of xr and νr, that is, the virtual vehile is aform of kinemati estimator of the leader states through the position feedbak loop.The virtual vehile is de�ned by its kinemati model
ẋv = J (xv) νv . (6.63)Based on pratial onsiderations, we assume that the veloity and aeleration of theleader vessel are bounded, and thus the veloity and aeleration of the referene vehilesatisfy
sup
t∈R≥0

|νr(t)| ≤ VM , (6.64)where VM denotes a positive onstant. In view of (6.62), the virtual vehile traking errors
ev := xv − xr satisfy

ėv = J (xv) νv − J (xm) νr .We propose the following ontrol law for the virtual vehile
νv = −J(xv)

−1L1ev − J(xv)
−1L2z (6.65)where L1 and L2 are symmetri positive gain matries, and

ż := ev . (6.66)The losed-loop equations an be written in the following form
ėv = −L1ev − L2z − J (xm) νr . (6.67)Consider the following Lyapunov funtion andidate

Vv (z, ev) =
1

2

(
e⊤v ev + z⊤L2z + z⊤ev

)
. (6.68)Di�erentiating along the losed-loop trajetories we get

V̇v (z, ev) = −e⊤v
(
L1 −

1

2
I

)
ev −

1

2
z⊤L2z −

1

2
z⊤L1ev −

(
e⊤v +

1

2
z⊤
)
J (xm) νr . (6.69)



161Using (6.64) and the relation 2|ab| ≤ (λa2 + b2/λ) for any real a, b and any positive λ, itfollows that
V̇v ≤ −1

4

(
2L2,m − 1

λ
L1,M − 3VM

|(e, z)|

)
|z|2 − 1

4

(
4L1,m − 2 − λL1,M − 6VM

|(ev, z)|

)
|ev|2 ,(6.70)where λ designates any positive onstant and Li,m (resp. Li,M ) designates the minimum(resp. maximum) eigenvalue of Li, i ∈ {1, 2}. Similarly to the previous setions, we designthe gain matries L1 and L2 in suh a way that Li,M ≤ ℓ Li,m for some ℓ > 0. Then,letting λ = 2/ℓ and δv be any given positive onstant, we an see in view of (6.64) thatany gain matries satisfying

L1,m = 3 +
3VM
δv

(6.71)
L2,m = 2 +

3ℓ2

4
+

(
1 +

ℓ2

4

)
3VM
2δv

(6.72)generate the following bound of the derivative of Vv:
|(ev, z)| ≥ δv ⇒ V̇v(z, ev) ≤ − |ev|2 − |z|2 . (6.73)Note that Vv is positive de�nite and radially unbounded for this hoie of gains. Morepreisely, we have

1

4
|ev|2+

1

8

(
6 + 3ℓ2 + (4 + ℓ2)

3VM
2δv

)
|z|2 ≤ Vv ≤

3

4
|ev|2+

1

8

(
10 + 3ℓ2 + (4 + ℓ2)

3VM
2δv

)
|z|2 .Due to the linear dependeny of L1,m and L2,m in 1/δv, we onlude with Corollary 2.9that (6.66)-(6.67) is uniformly globally pratially asymptotially stable with L1,m and

L2,m as tuning parameters.6.3.3 Follower vehile designUsing the veloity information from the virtual vehile design, we an design a synhro-nization ontroller for the follower vessel Σs to follow the virtual vehile Σv. Note that thebody-�xed veloity νv is now known through (6.65), and, with the kinemati relationship of(6.63), we an obtain the veloity ẋv of the virtual vehile in the NED frame. Furthermore,due to our design of the virtual veloity ontroller, we an also obtain an expression forthe aeleration of the virtual vehile whih will be partly available for ontrol purposes.More preisely, we get from (6.65) and (6.67) that
ẋv = J (xv) νv = −L1ev − L2z

ẍv = −L1ėv − L2ev =
(
L2

1 − L2

)
ev + L1L2z + L1J (xm) νr . (6.74)In our synhronization approah, we will assume that the veloity of the follower vessel isknown. De�ne the synhronization errors as

e = x− xv, ė = ẋ− ẋv, ë = ẍ− ẍv .Using the sliding surfae from [SL87℄ as a passive �ltering of the virtual vehile states, wean design a virtual referene trajetory as
ẏv = ẋv − Λe

ÿv = ẍv − Λė ,



162 6. Appliation to mehanial systemswhere Λ > 0. Let us denote
ÿ′v =

(
L2

1 − L2

)
ev + L1L2z − Λėin whih ase, in view of (6.74),

ÿv = ÿ′v + L1J (xm) νr .Notie that, although ÿv is not aessible sine νr is not measured, ÿ′v is available for ontroldesign. De�ning
s := ẋ− ẏv = ė+ Λeas a measure of traking, we an rewrite (6.58) as

M(x)ṡ = −C(x, ẋ)s−D(x, ẋ)s+τ −M(x)ÿv − C(x, ẋ)ẏv −D(x, ẋ)ẏv− g(x) . (6.75)We propose the following ontrol law
τ = M(x)ÿ′v + C(x, ẋ)ẏv +D(x, ẋ)ẏv + g(x) −Kds−Kpe , (6.76)where Kp and Kd are symmetri positive gain matries. Consider the following Lyapunovfuntion andidate

Ve (e, s) =
1

2
s⊤M(x)s+

1

2
e⊤Kpe . (6.77)Di�erentiating along the losed-loop trajetories we get

V̇e (e, s) = −s⊤ [D(x, ẋ) +Kd] s− e⊤Λ⊤Kpe− s⊤M(x)L1J (xm) νr .Let δe be any given positive onstant. Then, from (6.64), it holds that, for all |(e, s)| ≥ δe,
V̇e (e, s) ≤ −

(
Dm +Kd,m − 1

δe
MML1,MVM

)
|s|2 −

(
ΛmKp,m − 1

δe
MML1,MVM

)
|e|2 .(6.78)Proeeding as for the virtual vehile, we an invoke Corollary 2.9 by observing that thehoie of Kd,m and Kp,m an be made as an a�ne funtion of 1/δe, and onlude uniformglobal pratial asymptoti stability.6.3.4 Stability analysis of the overall systemThe ontrol law of the follower synhronizes the follower vessel to the virtual vehile basedon a omputed virtual referene veloity from the virtual vehile ontroller, and the virtualvehile is in turn stabilized to the referene vehile parallel to the leader vessel.Theorem 6.12 Consider the vessel model (6.58) satisfying Properties 1-3, the virtual ve-hile ontrol law (6.65) and the synhronization ontroller (6.76). Under assumptions(6.64), the overall losed-loop system is uniformly globally pratially asymptotially stable.Proof of Theorem 6.12. Take as a positive de�nite Lyapunov funtion andidate thefollowing omposition of the Lyapunov funtions (6.68) and (6.77).

V (η̃) =
1

2
η̃⊤P η̃ ,



163where η̃ =
(
e⊤, s⊤, z⊤, e⊤v

)⊤ and
P =




Kp 0 0 0
0 M(x) 0 0
0 0 L2

1
2I

0 0 1
2I

1
2I


 .Di�erentiating along trajetories yields

V̇ (η̃) = −η̃⊤Q η̃ + σ (s, ev, z, νr) (6.79)where
Q =




Λ⊤Kp 0 0 0
0 D(x, ẋ) +Kd 0 0
0 0 1

2L2
1
4L1

0 0 1
4L1 L1 − 1

2I


and

σ (s, ev, z, νr) := −s⊤M(x)L1J (xm) νr −
1

2
z⊤J (xm) νr − e⊤v J (xm) νr .Let δ be any given positive onstant. Then we have the following property:

|η̃| ≥ δ ⇒ |σ (s, ev, z, νr)| ≤
VM
δ

(
MML1,M |s|2 +

|z|2
2

+ |ev|2
)
.Consequently, in view of (6.70) and (6.78), and repeating a similar reasoning while hoosingthe minimum eigenvalue of the gain matries Kp, Kd, L1 and L2 large enough, it holdsthat

|η̃| ≥ δ ⇒ V̇ (η̃) ≤ − |η̃|2 .Sine the dependeny on the bound on σ (and so on the gain matries) in 1/δ is againa�ne, uniform global pratial asymptoti stability follows from Corollary 2.9. �6.3.5 Simulation studyThe underway replenishment sheme presented above is tested in a simulation environmentin MATLAB using the surfae ship model of Cybership II from [SSF04℄. In the simulations,the distane between the ships is h = 2 m with γm = −π/2, and the model matries in thebody frame were
M =




25.8 0 0
0 33.8 1.0115
0 1.0115 2.76




C (ν) =




0 0 −33.8v − 1.0115r
0 0 25.8u

33.8v + 1.0115r −25.8u 0




D (ν) =




0.72+1.33|u|+5.87u2 0 0
0 0.8896+36.5|v|+0.805|r| 7.25+0.845|v|+3.45|r|
0 0.0313+3.96|v|−0.130|r| 1.90−0.080|v|+0.75|r|


 ,where ν = (u, v, r)⊤ are the body �xed veloities in surge, sway and yaw, respetively.Controller gains were hosen as Kp = diag(70, 140, 70), Kd = diag(100, 100, 50),
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L1 = diag(0.8, 1.6, 1.6), L2 = diag(0.55, 0.55, 0.55), and Λ = diag(0.3, 0.3, 0.3). Inthe simulations, the leader ship traks referene trajetory t 7→ sin (ωt) with frequeny
ω = 1/15rad.s−1 with heading angle ψm along the tangent line. Initial states were hosenas x (0) = (0, 0, 0⊤ for the follower, xv (0) = (1, 0.5, π

4 )⊤ for the virtual vehile and as
xm (0) = (2, 4, 0)⊤ for the leader ship to illustrate stability in all degrees of freedom asillustrated in the upper plot of Figure 6.7.
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Figure 6.7: Trajetories of the follower x, the virtual vehile xv and the referene vehile
xr in the upper plot, and the planar plot of the vehiles with speial marks at initial statesand at time t = 10s in the lower.From Figure 6.8 we see that the virtual vehile ontrol errors eν = xv − xr, the syn-hronization errors e = x−xv and the overall ontrol errors x−xr on�rm our theoretialexpetations. We observe small remaining osillations, espeially in the veloity errors,due to the unknown veloity of the leader ship. However, due to the pratial stabilityproperty of the losed-loop system, the magnitude of these osillations an be arbitrarilyredued (within ontrol saturation limits) by enlarging the gains.
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xv − xr in the middle row, and the synhronization errors x − xv in the lower row, withpositions on the left and veloities on the right.Conlusion. This hapter presents three onrete appliations of the results intro-dued along the doument. These appliations onern mehanial systems. The �rst onestudies the robustness of PID-ontrolled robot manipulators to a wide lass of perturba-tions and when taking into aount the dynamis of the atuators. USPAS is obtained,meaning that a onvenient hoie of the PID gains allows an arbitrarily large domain ofattration with an arbitrarily tight preision. The seond appliation aims at ontrollingthe formation of spaerafts in ase of unertainties in the orbital parameters. The lastone deals with surfae vessels. The goal is to synhronize two ships in a parallel motionusing as little information of the leader vehile as possible.
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Conlusion and further researhThis doument presents new tools for stability and robustness analysis of nonlinear dy-namial systems. Let us summarize our main results.Su�ient onditions for semiglobal and pratial stability. We �rst provide a rig-orous Lyapunov framework for uniform semiglobal and/or pratial asymptoti stability.�Semiglobal� refers to the situation when the domain of attration is not the whole state-spae but a set that may be arbitrarily enlarged by a onvenient tuning of some parameters.�Pratial� onerns the ase when an arbitrarily small ompat neighborhood of the ori-gin (instead of the origin itself) is asymptotially stable. On some oasions, semiglobalpratial stability is an inherent property of the system or results from the ontrol design:global asymptoti stability is impeded by external disturbanes, model unertainty, et.On other situations, it onstitutes the best one an prove when no strit Lyapunov fun-tion is available, or when using alternative tehniques suh as averaging. The generality ofsemiglobal and/or pratial stability is further reinfored by a spei� feature o�ered bythe stability properties under onsideration. Namely, as opposed to many related onepts,they allow the estimate of solutions to depend on the tuning parameter and so, potentially,on the radius of the desired domain of attration and the amplitude of the tolerated steady-state error. As a ounterpart, a more involved attention needs to be paid in the stabilityanalysis to guarantee that the Lyapunov funtion be su�iently �representative� of thestate-norm. More preisely, ompared to lassial results for global asymptoti stability,an additional requirement on the K∞ bounds on the Lyapunov funtion is imposed. Weillustrate the importane of this ondition by showing that, when the latter is violated,even boundedness of solutions is not guaranteed in general. All these results are illustratedby elementary examples.Neessary ondition for USPAS. Semiglobal and/or pratial stability an be seenas a measurement of robustness in the sense that it often stems from a degradation ofglobal and/or asymptoti stability due to external disturbanes, model imperfetion, et.while still guaranteeing interesting performanes to the system under onsideration. Butuniform semiglobal pratial asymptoti stability (USPAS) may be inferred by other meansthan the knowledge of a onvenient Lyapunov funtion as, for instane, via averagingtehniques. For this reason, we derive a onverse Lyapunov result for the lass of USPASsystems whose solutions' estimate is independent of the radius of the attrative ball. Thisneessary Lyapunov ondition is espeially designed to �t the ontext of asaded systemsas it also guarantees a time-invariant bound on the gradient of the Lyapunov funtion.Casades of systems are often enountered, and are at the basis of many ontrol strate-gies. For this reason, a large part of this report is devoted to the analysis of asaded



168 Conlusion and further researhsystems.USPAS, USAS, UGPAS for asades. With the proposed Lyapunov framework forsemiglobal and/or pratial asymptoti stability, some tools are presented that ensure thepreservation of a given stability property (USPAS, USAS or UGPAS) by asade inter-onnetion. In general terms, similarly to existing results for global asymptoti stability,it is required that the solutions of the overall asade be bounded and that a onvenientLyapunov funtion be expliitly known for the driven subsystem. In view of the onverseresult evoked above, we may relax this latter requirement in the semiglobal ase for a widelass of systems. This is partiularly useful when invoking averaging tehniques, as illus-trated by the output feedbak ontrol of the double integrator a�eted by a persistentlyexiting signal. Furthermore, in the ase of uniform global asymptoti stability, the bound-edness assumption on the solutions of the asade is replaed by growth restrition on theinteronnetion term. This makes this tool partiularly easy to apply in spei� ontrolproblems. We illustrate its use by quantifying the e�et of smoothing a sign funtion indisturbane rejetion.Set-stability for asades. In the ase when, due to atuators limitation or struturalonstraints, semiglobal and/or pratial asymptoti stability of perturbed or unertainsystems is not ahievable, one may be interested in studying the stability of �xed sets. Inaddition, the generality of the set-stability onept makes it an interesting tool. Amongthe partiular ases it enompasses, let us ite partial stability whih has proved usefulin many ontrol appliations. We show that, if some (non neessarily ompat) sets areglobally asymptotially stable (GAS) for two subsystems taken separately, then their rossprodut is GAS for the orresponding asade provided that its solutions are globallybounded. Again, we show that, on some oasions, this requirement an be replaed bya simple growth-order ondition on the interonnetion term (plus forward ompleteness).Applying this result, we provide a onise proof for a reently established result of formationontrol of surfae vessels along a straight path and with a presribed veloity.iISS for asades. We further provide a stability analysis for asaded systems withinputs. While the onept of input to state stability is known to be preserved by the asadeinteronnetion, this is not the ase for the more general notion of integral input to statestability (iISS). Additional requirements need to be imposed for the asade omposed oftwo iISS systems to be iISS. These onditions are �rstly expressed in terms of Lyapunovfuntions and then in terms of estimates of the solutions of eah subsystem taken separately.The appliation of these new results is illustrated through aademi examples.Appliations. Finally, we apply most of the presented results to spei� ontrol appli-ations. This onstitutes the purpose of the last hapter. We analyze the robustness ofPID-ontrolled manipulators to frition, model unertainty, atuators' dynamis and otherdisturbanes. Another appliation onerns the formation ontrol of spaerafts. We es-tablish global pratial asymptoti stability of the orresponding system in the ase thatonly bounds on the leader's anomaly are available. Finally, we show that a similar sta-bility property an be obtained for the synhronization of two surfae vessels with littleinformation on the leader vehile.Thus, we believe that our theoretial ontributions onstitute useful tools for robustness



169and stability analysis as well as for ontrol design in spei� onrete appliations.Future works and open problemsAs far as theory is onerned, the following problems onstitute diretions in whih furtherresearh may be arried out.Casades ontrol. It would be interesting to derive onstrutive ontrol strategies basedon the asades results presented in this doument. For instane, in the ase that thelassial bakstepping approah does not apply due to strutural onstraints or preseneof disturbanes, a semiglobally and/or pratially asymptotially stabilizing ontrol mayremain ahievable.Partial USPAS. Some spei� perturbed or impreise ontrol systems present the prop-erty that part of the state an be made semiglobally and/or pratially asymptotiallystable, while the behavior of the rest of the variables annot be properly onstrained. Forinstane, this behavior ould be expeted when taking into aount external disturbanes,suh as urrent, wind and waves, in the example of Setion 4.3. Suh a feature orrespondto some kind of �partial semiglobal pratial asymptoti stability�. To the best of ourknowledge, no general work has been done in this diretion. We believe that mixing theresults presented for semiglobal pratial stability (Chapters 2 and 3) and (non-ompat)set-stability (Chapter 4) an provide interesting results for this question.Conerning appliations of the presented results, the following problems will soon beaddressed.Surfae vessels formation. The main illustrative example of Chapter 4 onsists in aproof of a reently developed ontrol for the formation ontrol of underatuated surfaevessels along a straight path. So far, this does not take into aount disturbanes dueto wind, urrent and waves and requires a full knowledge of the model, position andveloity of eah ship. Interesting future extensions of this result will aim at relaxing theserequirements by allowing more omplex presribed paths and by taking into aount theseexternal noises and possible model unertainty. A ollision avoidane sheme may also beimplemented.PD ontrol of ships. Based on our results for semiglobal pratial asymptoti stability,we plan to relax some of the requirements in [LFP00℄ for the PD ontrol of ships, whentaking into aount external disturbanes suh as wind, wave and urrents.
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Appendix AProof of auxiliary resultsA.1 Proof of of Lemma 2.7Let x0 ∈ R

n and t0 ∈ R≥0 be any initial onditions suh that φ(t, t0, x0) ∈ X for all t ≥ t0.For simpliity, we write φ(·, t0, x0) as φ(·) and we de�ne v(·) := V (·, φ(·)). We distinguishtwo ases: whether the trajetories start from outside or inside Bδ.Case 1: |x0| > δ.In this ase, there exists1 T0 ∈ (0;∞] suh that |φ(t)| > δ for all [t0; t0 + T0) and
|φ(t0 + T0)| = δ. Hene, using the omparison lemma, we get that

v(t) ≤
(
v(t0) −

c(|x0|)
k

)
e−k(t−t0) +

c(|x0|)
|k| , ∀t ∈ [t0; t0 + T0) .Using the bounds on V , it follows that

|φ(t)| ≤ α−1

(
α(|x0|)e−k(t−t0) +

c(|x0|)
|k|

)
, ∀t ∈ [t0; t0 + T0) .In addition, for eah t ≥ t0 + T0, either |φ(t)| ≤ δ in whih ase2

|φ(t)| ≤ α−1

(
α(δ) +

c(|x0|)
|k|

)
,or |φ(t)| > δ. In this seond ase, we an again invoke the ontinuity of the solution to seethat there exists a nonempty time-interval [τ ; τ + T ], with T ∈ (0;∞], ontaining t andsuh that |φ(s)| > δ for all s ∈ (τ ; τ + T ], with |φ(τ)| = δ. Hene, integrating from τ to

t ∈ [τ ; τ + T ], we obtain in the same way as before that, whenever |φ(t)| > δ, it holds that
|φ(t)| ≤ α−1

(
α(δ)e−k(t−τ) +

c(|x0|)
|k|

)
≤ α−1

(
α(|x0|)e−k(t−t0) +

c(|x0|)
|k|

)
. (A.1)To sum up, for all t ≥ t0, we have the following:

|x0| > δ ⇒ |φ(t)| ≤ α−1

(
α(|x0|)e−k(t−t0) +

c(|x0|)
|k|

)
. (A.2)1If |φ(t)| > δ forever after, we onsider that T0 = ∞.2This is diret by notiing that α(s) ≤ α(s) for all s ∈ R≥0 and that c(|x0|)/k ≥ 0.



172 A. Proof of auxiliary resultsCase 2: |x0| ≤ δ.In this ase, as long as |φ(t)| ≤ δ, we trivially2 have that
|φ(t)| ≤ α−1

(
α(δ) +

c(|x0|)
|k|

)
.If |φ(t)| > δ at some instant t > t0, then, again, there exists a nonempty time-interval

[τ ; τ + T ], with T ∈ (0;∞] and τ > t0, ontaining t and suh that |φ(s)| > δ for all
s ∈ (τ ; τ + T ], with |φ(τ)| = δ. Thus, from (A.1), we obtain that

|φ(t)| ≤ α−1

(
α(δ)e−k(t−τ) +

c(|x0|)
|k|

)
≤ α−1

(
α(δ) +

c(|x0|)
|k|

)
.Hene, for all t ≥ t0,

|x0| ≤ δ ⇒ |φ(t)| ≤ α−1

(
α(δ) +

c(|x0|)
|k|

)
. (A.3)The onlusion follows from (A.2) and (A.3).A.2 Proof of Proposition 1.16We start by realling the following de�nition from [TPA99℄.De�nition A.1 ((∆ → δ)−stability) Given ∆ > δ ≥ 0, the origin of the system ẋ =

f(t, x) is said to be (∆ → δ)−stable if1. for eah ǫ > δ, there exists η(ǫ) > 0 suh that, for all t0 ∈ R≥0,
|x0| ≤ η(ε) ⇒ |φ(t, t0, x0)| ≤ ǫ , ∀t ≥ t0 . (A.4)2. for eah r ∈ (0; ∆), there exists ν(r) > 0 suh that
|x0| ≤ r ⇒ |φ(t, t0, x0)| ≤ ν(r) , ∀t ≥ t0 . (A.5)3. for eah r ∈ (0; ∆) and eah ǫ > δ, there exists a �nite T (r, ǫ) > 0 suh that, for all

t0 ∈ R≥0,
|x0| ≤ r ⇒ |φ(t, t0, x0)| ≤ ǫ , ∀t ≥ t0 + T (r, ǫ) . (A.6)Assume that the ball Bδ is UAS on B∆. Then, in view of Proposition 1.14, there exists

β ∈ KL suh that, for all |x0| ≤ ∆, and all t ≥ t0 ≥ 0,
|φ(t, t0, x0)|δ ≤ β(|x0| , 0) =: α(|x0|)
|φ(t, t0, x0)|δ ≤ β(∆, t− t0) =: σ(t− t0) .Note that the so-de�ned funtions α and σ are of lass K and L respetively. Given any

ǫ > δ, de�ne η(ǫ) := α−1(ǫ− δ). Then we have that
|x0| ≤ η ⇒ |φ(t, t0, x0)| ≤ ǫ , ∀t ≥ t0 ,whih establishes A.4. Given any positive r < ∆, we have that

|x0| ≤ r ⇒ |φ(t, t0, x0)| ≤ δ + α(r) =: ν , ∀t ≥ t0 ,



173whih establishes A.5. Let 0 < r < ∆ and ǫ > δ. Then
|x0| ≤ r ⇒ |φ(t, t0, x0)|δ ≤ σ(t− t0) , ∀t ≥ t0 .

σ is bijetive from [0;∞[ to ]0;σ(0)]. If ǫ − δ ≤ σ(0), let T := σ−1(ǫ − δ). Then we havethat
|x0| ≤ r ⇒ |φ(t, t0, x0)| ≤ ǫ , ∀t ≥ t0 + T .On the other hand if ǫ− δ > σ(0), then

|x0| ≤ r ⇒ |φ(t, t0, x0)|δ ≤ σ(t− t0) ≤ σ(0) ≤ ǫ− δ , ∀t ≥ t0 ,whih establishes A.6.Assume now that the system is (∆ → δ)−stable. We now follow the proo�ines of[Kha96, Lemma 3.3℄. First notie than (A.4) and (A.6) an be written
∀ε > 0, ∃η(ε) > 0 : |x0| ≤ η ⇒ |φ(t, t0, x0)|δ ≤ ε , ∀t ≥ t0 . (A.7)

∀0 < r < ∆, ∀ε > 0, ∃T (r, ε) > 0 : |x0| ≤ r ⇒ |φ(t, t0, x0)|δ ≤ ε , ∀t ≥ t0 + T . (A.8)Given ε > 0, let η(ε) be the supremum of all the η's suh that (A.7) holds. Then η(ε) ispositive nondereasing, but not neessarily ontinuous. Let ζ ∈ K be suh that
ζ(s) ≤ η(s) and lim

s→∞
ζ(s) = c := lim

s→∞
η(s) .Let ∆′ be any positive onstant smaller than ∆. First observe that ∆′ ≤ c. Indeed, letting

r = ∆′ in (A.5), one knows that there exists a positive ν suh that, for any |x0| ≤ ∆′, wehave that |φ(t, t0, x0)|δ ≤ |φ(t, t0, x0)| ≤ ν for all t ≥ t0. Hene, for any ε ≥ ν, it holdsthat |φ(t, t0, x0)|δ ≤ ε. In other words, for ε large enough (i.e. greater that ν), |x0| ≤ ∆′implies that |φ(t, t0, x0)|δ ≤ ε for all t ≥ t0. The hoie η = ∆′ is therefore onvenient for(A.7) if ε is large enough. Sine, by its de�nition, η̄(ε) ≥ η(ε), we neessarily have that,as laimed, limε→∞ η̄(ε) ≥ ∆′.Now, let α : R≥0 → R≥0 be de�ned as
α(s) :=

{
ζ−1(s) if s ≤ ∆′

ζ−1(∆′) s2

∆′2 if s > ∆′Note that, in view the previous observation, ζ−1 makes sense on the interval [0; ∆′]. Fur-thermore, we an see that α is a lass K∞ funtion. For all |x0| ≤ ∆′, let ε = α(|x0|).Then, we have that
|x0| = α−1(ε) = ζ(ε) ≤ η(ε) .Thus, by the de�nition of η, we have that, for all |x0| ≤ ∆′,

|φ(t, t0, x0)|δ ≤ ε = α(|x0|) , ∀t ≥ t0 .There is only uniform attrativity left to prove. To that end, given ε > 0, let T (∆′, ε) bethe in�mum of all the T 's suh that (A.8) holds with r = ∆′. We then have that
|x0| ≤ ∆′ ⇒ |φ(t, t0, x0)| ≤ ε+ δ , ∀t ≥ t0 + T , (A.9)and

sup
t0≤t<t0+T

|φ(t, t0, x0)| > ε+ δ .



174 A. Proof of auxiliary resultsThe funtion T (∆′, ·) is nonnegative nondereasing and satis�es T (∆′, ε) = 0 for all ε ≥
α(∆′). De�ne now

W (ε) :=
2

ε

∫ ε

ε/2
T (∆′, s)ds+

∆′

ε
.ThenW :]0;∞[→]0;∞[ is positive, ontinuous, dereasing and tends to zero as its argumenttends to in�nity. Let σ̃ denote its invert. Then σ̃ satis�es the same properties. Notiethat, for all ε > 0, it holds that T (∆′, ε) + ∆′/ε ≤ W (ε). From this, we have that for all

t ≥ t0,
T (∆′, σ̃(t− t0)) < W (σ̃(t− t0)) = t− t0 .Thus, by letting ε = σ̃(t− t0) in (A.9), we onlude that, for all t ≥ t0, and all |x0| ≤ ∆′,

|φ(t, t0, x0)|δ ≤ σ̃(t− t0) .However, σ̃ does not belong to lass L, as it tends to in�nity when its argument tends tozero. To overpass this problem, we onsider the instant t1 > 0 at whih σ̃(t1) = α(∆′) ande�ne
σ(t) :=

{
−(t− t1) + α(∆′) if 0 ≤ t ≤ t1
σ̃(t) if t > t1Then σ belongs to lass L and, using the fat that |φ(t, t0, x0)|δ ≤ α(∆′) over [t0; t0 + t1],we have, as desired, that |φ(t, t0, x0)|δ ≤ σ(t− t0) for all t ≥ t0.A.3 Proof of Theorem 3.38We �rst show that the system is uniformly stable. More preisely, we expliitly onstrut

∆ > 0 and α ∈ K∞ suh that, for all x0 ∈ B∆,
|x(t, t0, x0)| ≤ α(|x0|) . (A.10)We then use this property to prove uniform attrativity of the origin on the same ball B∆,and then dedue a KL estimate for the solutions of (3.1).Proof of uniform stability: From Assumptions 3.34 and 3.35, the time derivative of V1 alongthe trajetories of (3.1) yields, for any x1 ∈ B∆1

,
V̇1(t, x1) =

∂V1

∂t
(t, x1) +

∂V1

∂x1
(t, x1)

(
f1(t, x1) + g(t, x)

)

≤ −k1V1(t, x1) +

∣∣∣∣
∂V1

∂x1
(t, x1)

∣∣∣∣ |g(t, x)|

≤ −k1V1(t, x1) + c1(|x1|)G(|x|)g2(|x2|) .De�ning
Γ := {t ≥ t0 : x1(t, t0, x10) ∈ B∆1

} , (A.11)we get that, for any t ∈ Γ,
v̇1(t) ≤ −k1v1(t) + c1(|x1(t)|)G(|x(t)|) |x2(t)| , (A.12)where we used the shorthand notation x1(t) for x1(t, t0, x0) and v1(t) := V1(t, x1(t)). Thus,using Assumptions 3.36 and 3.37, we have in view of (3.59) that, for all x0 ∈ B∆ and all

t ∈ Γ,
v̇1(t) ≤ −k1v1(t) + β̃(|x0| , t− t0) , (A.13)



175where β̃ ∈ KL is de�ned, for all s, t ∈ R≥0, as
β̃(s, t) := c1(B)G(B)β2(s, t) .Notably, we have that, for all x0 ∈ B∆ and all t ∈ Γ,
v̇1(t) ≤ −k1v1(t) + β̃(|x0| , 0) . (A.14)We now show that, for any x0 ∈ B∆, x1(t) remains in B∆1

forever after (i.e., Γ = R≥t0).To that end, notie that, sine x0 ∈ B∆, we have that t0 ∈ Γ. Hene, in view of (A.11)and invoking the ontinuity of the solutions of (3.1), there exists T0 > 0 suh that
[t0; t0 + T0] ⊂ Γ .Integrating (A.14) from t0 to any t ∈ [t0; t0 + T0] we get that, for all x0 ∈ B∆ and all

t ∈ [t0; t0 + T0],
v1(t) ≤ (v1(t0) − β̃(|x0| , 0))e−k1(t−t0) + β̃(|x0| , 0) ,whih gives

|x1(t)| ≤ α1
−1
(
α1(|x0|) + β̃(|x0| , 0)

)
. (A.15)With the ∆ proposed in (3.59)3, is then possible to see that, as desired, any solution x1(t)staring in B∆ remains in B∆1

forever after. In addition, for any x0 ∈ B∆, we have that
Γ = R≥t0 or, said di�erently, T0 = ∞. Therefore, (A.15) holds for all t ≥ t0. Thus, wehave in turn shown that, for any x0 ∈ B∆,

|x1(t)| ≤ α1(|x0|) ,where α1 is the K∞ funtion de�ned as
α1(s) := α1

−1
(
α1(s) + β̃(s, 0)

)
, ∀s ≥ 0 . (A.16)Thus, introduing the following lass K funtion

α(·) :=
√
α1(·)2 + β2(·, 0)2 ,we have with Assumption 3.36 that, for all x0 ∈ B∆, the solutions of (3.1) satisfy

|x(t, t0, x0)| ≤ α(|x0|) , ∀t ≥ t0 . (A.17)Proof of uniform attrativity: Assume that x0 ∈ B∆. Then, we have that (A.13) holds forall t ≥ t0. For any ε1 > 0, let T1 ≥ 0 be the instant, independent of t0, where4
β̃(∆, T1) = ε1 .Then, from (A.13), we get that, for all t ≥ t0 + T1,

v̇1(t) ≤ −k1v1(t) + ε1 .3β20 an be assumed to be of lass K∞ without loss of generality sine β2 is only onstrained over
[0; ∆2]. This observation ensures the existene of β−1

20 .4If β̃(∆, 0) ≤ ε1, T1 is taken as 0.



176 A. Proof of auxiliary resultsTherefore, for all t ≥ t0 + T1,
v1(t) ≤ (v1(t0 + T1) − ε1)e

−k1(t−t0−T1) + ε1 .But, using the US bound (A.17), we have that
v1(t0 + T1) ≤ α1 (|x1(t0 + T1)|) ≤ α1 (α(|x0|)) .Hene, for all t ≥ t0 + T1,
|x1(t)| ≤ α1

−1
(
α1(α(∆))e−k1(t−t0−T1) + ε1

)
.Notably, we have that

|x1(t)| ≤ α1
−1(2ε1) =: ε , ∀t ≥ t0 + T2 ,where

T2 := T1 +
1

k1
ln(α1(α(∆))

ε1

)
.Observing that ε is arbitrary and that T2 is independent of t0, and realling that ẋ2 =

f2(t, x2) is ULA on B∆ as well, we onlude the uniform attrativity of the origin for (3.1),with B∆ as an estimate of its domain of attration.Constrution of the KL estimate:Invoking [Vid93, Lemma 57℄, we onlude from the uniform loal attrativity of (3.1)to the existene of η ∈ L suh that, for all x0 ∈ B∆,
|x(t, t0, x0)| ≤ η(t− t0) , ∀t ≥ t0 . (A.18)Multiplying (A.17) and (A.18) gives, for all x0 ∈ B∆,

|x(t, t0, x0)| ≤ β(|x0| , t− t0) , ∀t ≥ t0 ,where, for all s, t ∈ R≥0,
β(s, t) :=

√
α(s)η(t) .Sine α and η and β2 are respetively of lass K and L, β is learly a lass KL funtion,and the onlusion follows.A.4 Proof of Corollary 3.40From Assumption 3.39, the solutions of ẋ1 = f1(t, x1) satisfy, for all x10 ∈ B∆1

and all
t ≥ t0, ∣∣∣xf11 (t, t0, x10)

∣∣∣ ≤ k1 |x10| e−γ1(t−t0) , ∀t ≥ t0 .Let ∆̃1 be any positive number satisfying (3.62). Then all the requirements of [Kha96,Theorem 3.14℄ are ful�lled and we get that there exist a ontinuously di�erentiable funtion
V1 : R≥0 ×B∆1

and some positive k1, k1 and k1 and c1 suh that, for all x1 ∈ B∆̃1
and all

t ∈ R≥0,
k1 |x1|2 ≤ V1(t, x1) ≤ k1 |x1|2
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∂V1

∂t
+
∂V1

∂x1
f1(t, x1) ≤ −k1 |x1|2

∣∣∣∣
∂V1

∂x1
(t, x1)

∣∣∣∣ ≤ c1 |x1| .In addition, the proof of [Kha96, Theorem 3.14℄ is established with the oe�ients k1, k1,
c1 given in (3.61a)-(3.61) (and k1 = 1/2). Thus, the rest of the proof follows the one ofTheorem 3.38, where the funtions α1(s), α1(s) and c1(s) are now respetively k1s

2, k1s
2and c1s and ∆̃1 plays the role of ∆1.A.5 Proof of Theorem 3.42The proof is an adaptation of the one of Theorem 3.38, and we therefore use the samenotations. Notie that, in this ase, β2(s, t) = k2se

−γ2t. In view of (A.16), uniformstability of the origin is therefore obtained with α1(s) = d1s, where
d1 :=

1

k1

(k1 + c1BG(B)k2) .In addition (A.12) implies that, for any x0 ∈ B∆,
v̇1(t) ≤ −k1

k1

v1(t) + c1d1 |x0|G(B)k2 |x0| e−γ2(t−t0) .If γ2 6= k1
k1

, the integration of this equation yields, with the omparison lemma,
v1(t) ≤ v1(t0)e

− k1

k1
(t−t0)

+ a1 |x0|2
(
e−γ2(t−t0) − e

− k1

k1
(t−t0)

)where
a1 :=

c1d1G(B)k2

k1
k1

− γ2

.And, if γ2 = k1
k1

,
v1(t) =

(
v1(t0) + a2 |x0|2 (t− t0)

)
e−γ2(t−t0)with a2 := c1d1G(B)k2. Thus, de�ning

σ1 := min
{
γ2 ; k1/k1

}

σ2 := max {a1 ; a2} ,it is possible to see that, in any ase,
v1(t) ≤

(
v1(t0) + σ2 |x0|2

)
e−σ1(t−t0) .Therefore, we have that, for all x0 ∈ B∆,

|x1(t)| ≤
√
k1 + σ2

k1

|x0| e−
σ1
2

(t−t0) ,whih establishes UES of (3.1) on B∆ with parameters (√
k1+σ2

k1
, σ1

2

).



178 A. Proof of auxiliary resultsA.6 Proof of Claim 6.4Using the notation (6.6), it was shown in [Tom91℄ that V11 is positive de�nite and radiallyunbounded provided that
θ12 > kg . (A.19)In view of (6.11b), this ondition holds sine ap > kg. Then, it an be shown in view of(6.9) that there exist some positive onstants a, a and b suh that, for all K ′

p satisfying(A.19),
a |q̇|2 + bθ12 |q̃|2 ≤ V11 ≤ a |q̇|2 + θ12 |q̃|2 .Also, based on (6.9) and (A.19), it an easily be seen that

ε1
2

(
−dM |q̇|2 − dM |q̃|2 + θ13 |s|2

)
≤ V12 ≤ ε1

2

(
dM |q̇|2 + dM |q̃|2 + ℓθ13 |s|2

)

−ε2dM
2

(
|q̇|2 + |s|2

)
≤ V13 ≤ ε2dM

2

(
|q̇|2 + |s|2

)
.Hene, under the ondition that

ε1 + ε2 ≤ a

dM
(A.20a)

θ12 ≥ ε1dM
b

(A.20b)
θ13 ≥ 2ε2dM

ε1
, (A.20)the inequalities in (6.10) hold with5 a1 := a/2, b2 := b/2, b3 := ε1/4, a1 := a + dM (ε1 +

ε2)/2, a2 := ε1dM/2, b̄2 := 1, a3 := ε2dM/2 and b3 := ε1ℓ/2. This ompletes the proof ofthe laim.A.7 Proof of Claim 6.5Diret omputations show that:
dV11

dx1
f1(t, x1, θ1) = −q̇⊤Kdq̇ − q̇⊤Kis+ q̇⊤p1(t, q, q̇)

dV12

dx1
f1(t, x1, θ1) = ε1

[
− q̃⊤K ′

pq̃ + q̃⊤
(
C(q, q̇)⊤ −Kd

)
q̇ + q̇⊤D(q)q̇

−q̃⊤(g(q) − g(q∗)) +
1

ε1
s⊤Kiq̇ + q̃⊤p1(t, q, q̇)

]

dV13

dx1
f1(t, x1, θ1) = ε2

[
− s⊤Kis+ q̇⊤D(q)q̃ +

1

ε1
q̇⊤D(q)q̇ + s⊤C(q, q̇)⊤q̇

−s⊤(g(q) − g(q∗)) − s⊤K ′
pq̃ − s⊤Kdq̇ + s⊤p1(t, q, q̇)

]
.Therefore, the derivative of V1 along the x1-subsystem yields

dV1

dx1
f1(t, x1, θ1) = −q̇⊤Kdq̇ − ε1q̃

⊤K ′
pq̃ − ε2s

⊤Kis+ q̃⊤
(
ε2D(q) − ε1Kd + ε1C(q, q̇)⊤

)
q̇

+

(
ε1 +

ε2
ε1

)
q̇⊤D(q)q̇ − ε2s

⊤K ′
pq̇ + ε2s

⊤
(
C(q, q̇)⊤ −Kd

)
q̇

−
(
ε1q̃

⊤ + ε2s
⊤
)

(g(q) − g(q∗)) +
(
q̇⊤ + ε1q̃

⊤ + ε2s
⊤
)
p1(t, q, q̇) .5The onditions (A.20b) and (A.20b) hold in view of (6.11a) and (6.11b).



179It follows that
dV1

dx1
f1(t, x1, θ1) ≤ −θ11 |q̇|2 − ε1θ12 |q̃|2 − ε2θ13 |s|2

+
1

2

((
2ε1 +

2ε2
ε1

+ ε2

)
dM + (ε1 + ε2)λM (Kd)

)
|q̇|2

+
1

2

(
ε1λM (Kd) + (2ε1 + ε2)kg + ε2dM + ε2λM (K ′

p)
)
|q̃|2

+
ε2
2

(
λM (K ′

p) + λM (Kd) + kg
)
|s|2

+
kc
3

(
ε1 |q̃|3 + 2(ε1 + ε2) |q̇|3 + ε2 |s|3

)
+ max {ε1; ε2; 1} |x1| |p1(t, q, q̇)| .Notie, in view of (6.3), that for all x1 suh that δ1 ≤ |x1| ≤ ∆1

|x1| |p1(t, q̃, q̇)| ≤
(
p10

δ1
+ p11 + p12∆1

)
|x1|2 .Based on the previous observation and the assumption that ε1 + ε2 ≤ 1 it follows that inorder to get (6.12) it is su�ient to have

θ11 ≥
(

2ε1 +
2ε2
ε1

+ ε2

)
dM + (ε1 + ε2)λM (Kd) + 2p11 +

2p10

δ1
+ 2

(
2kc
3

(ε1 + ε2) + p12

)
∆1

ε1θ12 ≥ ε1λM (Kd) + (2ε1 + ε2)kg + ε2dM + ε2λM (K ′
p) + 2p11 +

2p10

δ1
+ 2

(
ε1kc
3

+ p12

)
∆1

θ13 ≥ λM (K ′
p) + λM (Kd) + kg + 2p11 +

2p10

δ1
+ 2

(
2kc
3

+ p12

)
∆1 .The latter is ful�lled provided that the gains are hosen large enough so that

θ11
2

≥
(

2ε1 +
2ε2
ε1

+ ε2

)
dM + 2p11 +

2p10

δ1
+ 2

(
2kc
3

(ε1 + ε2) + p12

)
∆1(A.21a)

ε1θ12
2

≥ (2ε1 + ε2)kg + ε2dM + 2p11 +
2p10

δ1
+ 2

(
ε1kc
3

+ p12

)
∆1 (A.21b)

θ13
2

≥ kg + 2p11 +
2p10

δ1
+ 2

(
kc
3

+ p12

)
∆1 , (A.21)and, based on (6.9), that the following holds

ε1θ12
2

≥ ε1ℓθ11 + ε2ℓθ12 (A.22a)
θ11
2

≥ (ε1 + ε2)ℓθ11 (A.22b)
θ13
2

≥ ℓ(θ12 + θ11) . (A.22)We an summarize the onditions (A.20a) and (A.22) in the following way: it is su�ientto �rst hoose ε1 and ε2 in suh a way that6
ε2 ≤ ε1

3ℓ

ε1 + ε2 ≤ min

{
1

2ℓ
;
a

dM

}
,6Sine ℓ ≥ 1 by de�nition, it is lear that ε1 + ε2 ≤ 1 as required.



180 A. Proof of auxiliary resultsand then, based on this hoie, to design the ontrol gains aording to (6.11) where ad,
bd, cd, ap, bp, cp, ai, bi and ci are the positive onstants, independent of δ1 and ∆1, givenby

ad := 2

(
2ε1 +

2ε2
ε1

+ ε2

)
dM + 2p11

bd := 4p10

cd := 4

(
2(ε1 + ε2)kc

3
+ p12

)

ap := 2 max

{(
2 +

ε2
ε1

)
kg +

ε2dM
ε1

+
2p11

3
;

ε1ℓad
ε1 − 2ℓε2

;
ε1dM

2

}

bp := 2 max

{
2p10

ε1
;

ε1ℓbd
ε1 − 2ℓε2

}

cp := 2 max

{
2kc
3

+
2p12

ε1
;

ε1ℓcd
ε1 − 2ℓε2

}

ai := 2 max

{
kg + 2p11 ; ℓ(ad + ap) ;

ε2dM
ε1

}

bi := 2 max {2p10 ; ℓ(bd + bp)}

ci := 2 max

{
2kc
3

+ 2p12 ; ℓ(cd + cp)

}
.The proof of the laim follows.
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Abstrat. We present new tools for stability and robustness analysis of nonlinear dynamialsystems. We provide a preise Lyapunov framework for uniform semiglobal and pratial asymp-toti stability. �Semiglobal� refers to the situation when the domain of attration is not the wholestate-spae but, instead, a ompat set that may be arbitrarily enlarged by a onvenient tuning ofparameters. �Pratial� onerns the ase when an arbitrarily small ompat neighborhood of theorigin (instead of the origin itself) is asymptotially stable. As opposed to many related onepts,they allow the estimate of solutions to depend on the tuning parameter and so, potentially, on theradius of the desired domain of attration and the amplitude of the tolerated steady-state error.Compared to lassial results for global asymptoti stability, this feature requires to impose anadditional requirement on the bounds on the Lyapunov funtion. We illustrate the importane ofthis ondition by showing that, when the latter is violated, no stability property is ensured. Wealso derive a onverse Lyapunov result for the lass of USPAS systems whose solutions' estimateis independent of the radius of the attrative ball. The generated Lyapunov funtion is espeiallydesigned to �t the ontext of asaded systems as its gradient is bounded by a time-invariantfuntion.With the proposed Lyapunov framework for semiglobal and pratial asymptoti stability, sometools are presented that ensure the preservation of these stability properties by asade interon-netion. In general terms, similarly to existing results for global asymptoti stability, it is requiredthat the solutions of the overall asade be bounded and that a onvenient Lyapunov funtion beexpliitly known for the driven subsystem. In view of the onverse result we establish, we relaxthis latter requirement in the semiglobal ase for a wide lass of systems. This is partiularlyuseful when invoking averaging tehniques, as illustrated by the output feedbak ontrol of thedouble integrator a�eted by a persistently exiting signal. Furthermore, in the ase of uniformglobal pratial asymptoti stability, the boundedness assumption on the solutions of the asade isreplaed by growth restrition on the interonnetion term. This makes it easy to apply in spei�problems. We illustrate its use by quantifying the e�et of smoothing sign funtions in disturbanerejetion.We show that, if some (non neessarily ompat) sets are globally asymptotially stable (GAS)for two subsystems taken separately, then their ross produt is GAS for the orresponding as-ade provided that its solutions are globally bounded. On some oasions, this requirement anbe replaed by a simple growth order ondition on the interonnetion term (plus forward om-pleteness). This work inludes, as a speial ase, partial stability for asades. As an illustration,we provide a onise proof for a reently established result of formation ontrol of surfae vesselsalong a straight path and with a presribed veloity.We analyze the stability of asaded systems with inputs by providing su�ient onditionsunder whih integral input to state stability is preserved by asade interonnetion. These ondi-tions are �rst expressed in Lyapunov terms and then in terms of estimates of the solutions of eahsubsystem taken separately.We illustrate the signi�ane of our theoretial �ndings by solving spei� open problems inthe �eld of mehanial systems. We proeed to the robustness analysis of PID-ontrolled manip-ulators to frition, model unertainty, atuators' dynamis, et. Another appliation onerns theformation ontrol of spaerafts. We establish global pratial asymptoti stability of the orre-sponding system when only bounds on the leader's anomaly are available. Finally, we show that asimilar stability property an be obtained for the synhronization of two surfae vessels with littleinformation on the leader vehile.
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