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Preamble

Before introducing, in a more detailed manner, the subject of study of the present thesis,
we give, in informal terms, a concise overview of the motivations for this work and its
contributions.

Stability. Roughly speaking, stability is the property of a dynamical system that any error
signals can be made arbitrarily small provided that the initial errors are sufficiently small.
It is a crucial notion from a control point of view as it ensures an acceptable behavior of
the plant if its initial configuration is not too far from the nominal one. If, in addition,
the error signals eventually tend to zero, we say that this operating point is asymptotically
stable. The domain of attraction consists the set of all initial states from which solutions
go to zero. We talk about global asymptotic stability when the domain of attraction is the
whole state-space.

Obstacles. Through intuitive examples, we expose some of the reasons that may prevent
the error signals from converging to zero, as, for instance, the presence of an external
perturbation, measurement imprecision, friction, etc. In the same way, we show that the
domain of attraction may be restricted to a compact neighborhood of the origin, notably
in the case of neglected high order nonlinearities. In these situations, most of existing
tools fail at ensuring better than ultimate boundedness (convergence of solutions to some
neighborhood of the origin) or to local stability (restriction of the domain of attraction).

Semiglobal and practical stability. Such a degradation of performance is not accept-
able in many concrete applications, as this may result in a too little operating bandwidth or
a too large imprecision. Nevertheless, for controlled systems, the domain of attraction can
often be arbitrarily enlarged provided sufficiently large gains. We refer to this property
as semiglobal asymptotic stability. For a given system, semiglobal asymptotic stability
ensures much more interesting properties than simply local properties, since it establishes
that no theoretical obstacle prevents from including any given finite set of initial conditions
to the domain of attraction.

In the same way, the steady-state errors can often be diminished at will under a similar
tuning of the gains: we call this property practical asymptotic stability. Again, this concept
should be seen as a far stronger property than the simple ultimate boundedness of solutions.
Indeed, practical asymptotic stability imposes that the precision, after the transients, can
be made as fine as desired. In addition, as we will see in more details in the sequel, it
suggests a “reasonable” behavior of the transient dynamics which is not the case, in general,
of ultimate boundedness.

When it follows from a limitation of the performances of the system, semiglobal practi-
cal asymptotic stability constitutes an interesting measure of the robustness of a system to
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external perturbations and model uncertainty. But, as we will see, this stability property
does not arise exclusively from a degradation of global asymptotic properties, but may also
be established by existing results in the literature, such as averaging techniques.

A first goal of the present thesis is to provide a rigorous framework for the study
of semiglobal and/or practical asymptotic stability properties. To this end, we provide
sufficient conditions, expressed in terms of Lyapunov functions, that guarantee this stability
properties. As we will see, these conditions allow that the Lyapunov function depends on
the tuning parameter. Indeed, such a choice allows to include in our analysis a much wider
scope of applications than if the Lyapunov function was assumed uniform in the tuning
parameter. For instance, for mechanical systems, it is common to choose the energy of the
system as a Lyapunov function, in which case the control gains, then playing the role of
the tuning parameter, naturally appear in the Lyapunov function.

Due to this non-uniformity, compared to classical results, an additional assumption is
required that links the upper and lower bounds on the Lyapunov function. We infer the
necessity of such an additional condition through an example.

We stress that the stability concept that we will use along the document makes use of
two measures: the distance to the ball for which we want attractivity and the Euclidean
norm. Here also, this choice is motivated by simplicity and generality reasons. Indeed, if
we had chosen to use one single measure, the corresponding Lyapunov function would then
have had to vanish on a whole neighborhood of the origin, which would have prevented
the use of the Lyapunov function associated to the nominal system. On the opposite,
with this choice, most of the semiglobal or practical stability properties that result from
a degradation of an “ideal” system due to perturbations can be inferred by using the
Lyapunov function of the unperturbed system.

Hence, we propose tools that allow to establish powerful stability properties, i.e.
semiglobal and/or practical stability, which usually do not require much more conservative
assumptions than those needed for the (weaker but certainly more classical) properties of
ultimate boundedness and local stability.

We also present a so-called “converse” theorem for semiglobal practical asymptotic
stability, i.e. a result that guarantees the existence of a Lyapunov function under the
assumption of such a stability property. The generality of the concept that we use requires
specific precautions compared to the properties that would be uniform in the tuning pa-
rameter. We will see that, as this result generates an autonomous bound on the gradient
of the generated Lyapunov function, it will be of great help in lightening the assumptions
in our results on cascades.

Cascades. In order to simplify the study of a complex system, it is common, in stability
analysis, to divide it into smaller interconnected subsystems. In this way, the difficulty
of the analysis is often reduced. A particular type of such interconnection is the cascade
structure. In this situation, the subsystems are interconnected in a unilateral way, i.e.
the output of a driving subsystem is the input of a driven subsystem. The modularity
offered by this so-called cascade approach gave rise to powerful results, both in analysis
and control design.

However, most of the existing results in this domain only treat local or global stability
of the origin. Hence, they do not apply to the concepts, although common and powerful,
of semiglobal and/or practical stability.

As a second objective, we provide sufficient conditions under which semiglobal and/or
practical asymptotic stability is preserved by the cascade interconnection. Roughly speak-
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ing, we show that this is the case provided that we explicitly know a Lyapunov function
for the driven subsystem and that the solutions are uniformly bounded. In the case of
global practical asymptotic stability, we provide a structural criterion to ensure this uni-
form boundedness of solutions, therefore yielding an easy-to-check condition to guarantee
global practical asymptotic stability of the cascade. An illustration of these results con-
sists in stabilizing, by a bounded output feedback, the double integrator affected by a
persistently exciting signal. As another application, we rigorously show that smoothing a
feedback control law may result in practical stability. Furthermore, we provide a converse
Lyapunov result for semiglobal practical asymptotic stability that permits us to relax the
requirement of explicitly knowing a Lyapunov function for the driven subsystem. As illus-
trated by an example, this latter feature is particularly useful when stability is established
based on averaging techniques.

Set-stability. The generality offered by set-stability makes it, as we further develop upon,
another interesting tool for the stability and robustness analysis of perturbed systems.
Indeed, this notion includes, as particular cases, the stability of a single operating point,
of a trajectory or even a more complex domain according to the set that is considered.
Moreover, as the latter is not assumed to be compact, it is also possible to include to the
study the partial stability, which refers to the situation when the behavior of only a part
of the state is constrained. We will see that the latter appears very useful when dealing
with adaptive control.

The third objective of this work is to provide sufficient conditions for the preservation
of the set-stability for cascaded systems. The requirement is first given as a global bound-
edness of the solutions of the overall cascade. We establish that, in some situations, this
can be relaxed to just forward completeness provided a growth restriction on the intercon-
nection term. As an illustrative application, we propose a proof for a recently established
result in marine control.

ISS and iISS. So far, we have discussed Lyapunov stability for systems without inputs.
A field of stability analysis, regrouped under the paradigm of input to state stability
(ISS), is especially concerned by the impact of external signals on the performance of the
system. Without going into details, this property imposes that the norm of the current
state be bounded by a function of the amplitude of the perturbing signal plus a fading term
depending on initial conditions. A relaxed extension of this property is called integral input
to state stability (iISS). Instead of the amplitude of the external signal, this property takes
into account the “energy” that the latter feeds to the system. The iISS property is very
general in stability analysis and provides interesting information about the system. For
instance, if the input energy is finite, then the state converges to zero. In this sense, iISS (as
well as ISS) therefore constitutes another powerful measure of the robustness of a system
to external perturbations.

A fourth part of this text is devoted to the behavior of iISS systems when placed in
cascades. We provide elementary conditions under which the cascade composed of an iISS
system driven by a globally asymptotically stable one remains globally asymptotically sta-
ble. These conditions are expressed in terms of the Lyapunov functions associated to each
subsystem, thus generalizing existing trajectory-based results. Under mildly conservative
additional assumptions, we establish that the cascade of two ilSS subsystems is itself ilSS.
This latter result is firstly expressed in terms of Lyapunov functions, and then in terms of
estimates of the solutions of each subsystem.
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Applications. Many of the results presented in this document have been applied in
practice, and we expose some of these results in a fifth step.

We study the robustness of PID-controlled robot manipulators to frictions, external
disturbances, model uncertainty and taking into account the dynamics of actuators. We
prove that, under these environmental constraints, the system is semiglobally practically
asymptotically stable. This is confirmed by experimental results.

In an other domain, we show that the leader-follower strategy adopted for the con-
trol of spacecraft formations yields global asymptotic stability when all measurements are
available. However, in practice, some information on the leader’s position may not be avail-
able. We show that, provided that these signals are bounded, global practical asymptotic
stability can be concluded.

Finally, in the context of underway ship replenishment, where the control of the supply
vessel aims at preserving a constant distance from the main ship during the operation, the
only measurements available for the main ship are position and heading. No information
on its model is at disposal. Under this constraints, we show that a virtual vehicle approach
ensures global practical asymptotic stability of the system.

We eventually stress that, although some of the results presented here impose rela-
tively heavy notations for the sake of rigor, the document also aims at giving intuitive
explanations of the utilized concepts. In this direction, we give several simple examples
to illustrate the purpose and, when possible, provide simplified corollaries that are less
general but easier to use in practice.

Also, even though the results presented along this document concern more stability
analysis than stabilization, in the sense that no explicit design of control law is presented,
they still constitute a prescriptive framework on which one could base control design strate-
gies, as illustrated by the concrete applications of Chapter 6.
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Contribution of this thesis

We briefly summarize the main results of this thesis, chapter by chapter, and cite related
publications. Labels correspond to the list of publications presented in p. [17.

- Chapter 2 We present new tools for the study of semiglobal and practical stability
of nonlinear time-varying systems. Some sufficient conditions, in terms of Lyapunov
functions, are proposed. Compared to classical Lyapunov conditions, an additional
condition appears, that takes into account the non-uniformity of the Lyapunov func-
tion in the tuning parameter. We underline the necessity of such a requirement
through an example. Conversely, we prove that such a Lyapunov function can be de-
rived provided sufficient regularity of the right-hand side of the ordinary differential
equation.

This chapter formed the subject of the following publications with A. Loria:

[(1), (1)} [(iv), |(vii), (x),|(xiii), (xvii)].

- Chapter 3: We extend the results of Chapter [2 to nonlinear time-varying systems
presenting a cascade structure. We prove that, under a boundedness condition on
the solutions of the overall system, both semiglobal and practical stability properties
are preserved by the cascade interconnection of two subsystems. We also give some
sufficient conditions to ensure the boundedness condition on the solutions, which are
particularly easy to use in the case of global practical stability. Illustrative examples
are provided in each context.

These results were originally presented in the following publications with A. Loria:

[(T)7 m ‘(iV)7 ‘(Viii)a (%), ‘(Xiii)a (XV)L ‘(XVii)]-

- Chapter/4: We analyze the behavior of nonlinear systems that are globally asymptot-
ically stable with respect to a (non necessarily compact) set, when placed in cascade.
We provide sufficient conditions under which set-stability, defined with respect to
two measures, is preserved by the cascade interconnection.

These works correspond to the collaboration [(xiv)] with E. Panteley. An extension
was proposed with the same coauthor, J. Tsgnnas and T.A. Johansen in |(xix)].

- Chapter/5: We study the preservation of the integral input to state stability property
of nonlinear time-invariant systems in cascade. We give some sufficient conditions
for the cascade composed of an iISS subsystem driven by a globally asymptotically
stable (GAS) subsystem to be GAS. These conditions are expressed in terms of the
Lyapunov function associated to each subsystem, thus generalizing existing similar
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trajectory-based results. We also provide conditions under which two iISS systems
placed in cascade remain ilSS. These sufficient conditions are first expressed based
on the Lyapunov function for each of the two subsystems, and then on the estimate
of their solutions.

These results were prepared with D. Angeli in |(iii)} (xii)].

- Chapter [6: We present concrete applications of our main theoretical findings in sta-
bilization problems of mechanical systems. We show that, when taking into account
external perturbations (such as friction, torque ripping, etc.) and the dynamics of
the actuator, PID-controlled robot manipulators are semiglobally practically stable,
backed up with experimental results.

On the other hand, a control for underway fuel replenishment of vessels is designed,
using a virtual ship approach, which requires neither a priori model knowledge nor
velocity measurement for the ship to be replenished. Global practical asymptotic
stability is obtained.

A third application concerns the control of a spacecraft formation, when taking into
account bounded external disturbances. According to the assumed level of knowledge
we have on the orbital parameters of the leader, various stability properties are
derived.

These applications were the object of the following joint publications with R. Kelly,
E. Kyrkjebg, R. Kristiansen, A. Loria, E. Panteley, K. Pettersen and P. J. Nicklasson:

[(69); (vi), (i) (), (v ]

Although not presented in this document, these three years of PhD gave rise to other
fruitful collaborations:

- The publication [(ix)] is a joint work with J. de Leén Morales, A. Loria and G.
Besancon where we proposed an adaptive observer for systems that can be put in
the so-called output feedback form, based on a convenient persistency of excitation

property.

- With A. Lorfa, G. Besancon and Y. Chitour, we have posed open problems for
stabilization of persistently excited systems, and partially solve them in the case of
the double integrator, cf. |(xi)].

- In [(xx)], with M. Sigalotti, P. Mason, Y. Chitour and A. Loria, this latter problem

was further extended and solved with a linear time invariant feedback, with gains
uniform in the persistently exciting signal.
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Notation

7 YRR 134

All properties such as “positive”, “greater”, “increasing”, etc. are to be understood in the
strict sense.

N and R denote the sets of all nonnegative integers and all real numbers respectively.
N« contains all the nonnegative integers less than or equal to N € N. In the same way,
R>¢ is composed of all nonnegative real numbers.

I denotes the identity matrix of appropriate dimension.

A continuous function « : R>g — Rxq is of class K (o € K), if it is increasing and
a(0) = 0. It is said to belong to class K if, in addition, a(s) — oo as s — oo. A
continuous function o : R>9 — R is of class £ (o € L) if it is decreasing and tends to
zero as its argument tends to infinity. A function 8 : R>g X R>o — R>¢ is said to be a
class KL function if B(-,t) € K for any ¢t € R>q, and (s, ) € L for any s € R>.

We denote by ¢(-,tg,xg) the solutions of the differential equation & = f(¢t,z) with
initial condition ¢(to,to, o) = xo.

We use |-| for the Euclidean norm of vectors and the induced Ls norm of matrices.
We use || - || for the essential supremum norm, i.e., for a signal u : R>g — RP, |Ju]| :=
ess sup;>q |[u(t)].

We denote by Bs the closed ball in R™ of radius § centered at the origin, i.e. By :=
{z € R" : |z| < ¢}. We use the notation H(J,A) :== {z € R" : § <|z|]| < A}. By an
abuse of notation, By = H(0,0) = {0} and By = H(0,00) = R"™.

0 being a nonnegative constant, we define |z|5 := inf,cp; | — 2z|. More generally, for a
closed set A, |-| 4 represents the distance to this set: [x] 4 := inf,c |z — 2|.

For a given set E of R, E denotes its interior.

Let a € {0,400} and ¢; and g2 be class K functions. We say that ¢2(s) = O(qi(s)) as
s tends to a if there exists a nonnegative constant k such that limsup,_,, ¢2(s)/q1(s) < k.
We say that ga(s) = o(qi1(s))) if k can be taken to be zero, and that qi(s) ~ ¢a(s) if
limg_.q g2(s)/qi(s) = 1.

We say that f : R>g x R" — R" satisfies the Carathéodory conditions if f(-,z) is
measurable for each fixed xz € R", f(t,) is continuous for each fixed ¢ € R>( and, for each
compact U of R>o x R", there exists a integrable function my : R>g — R>¢ such that
|f(t,z)] < my(t) for all all (t,x) € U.

A function f : R™ — R"™ is said to be locally Lipschitz if, for any compact U of R™, there
exists a nonnegative constant ky such that |f(z) — f(y)| < ky |z — y| for all (z,y) € U2

When the context is sufficiently explicit, we may omit the arguments of a function.
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Chapter 1

Definitions

Lyapunov stability. The works presented in this document appeal to many different
types of stability properties. Stability should be understood in the Lyapunov sense. Gen-
erally speaking, it refers to the property of a point, a set or a trajectory that any solution
starting sufficiently near remains arbitrarily close at all time. It constitutes a crucial fea-
ture in control of dynamical systems, as it ensures an acceptable behavior of the plant
provided that its initial conditions are sufficiently close to the nominal ones.

The notion of stability may easily be grasped in the context of mechanical systems.
Considering a ball on a non flat surface, an equilibrium position is stable if, after any
sufficiently small perturbations on the position of the ball, it remains for ever arbitrarily
near to it. The equilibrium is said to be asymptotically stable if, in addition, the ball
approaches it asymptotically. This is illustrated by the drawings of Figure 1.1!

. Global
Instability Asymptotic asymptotic
stability stability

Figure 1.1: Tllustration of different types of stability.

In some situations, it is interesting to know how far from the asymptotically stable
equilibrium the ball can start and finally return to it. The region of the state space
that lead asymptotic convergence is referred to as domain of attraction. If the domain of
attraction is the whole space, then the equilibrium under consideration is called globally
asymptotically stable.

While very intuitive in the context of mechanical systems, Lyapunov stability is far
from being confined to this area. Generally speaking, the systems considered throughout
the document are represented as a finite dimensional differential equation of the form

i = f(t,z), (1.1)
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where t € R> represents the time, x € R" is the state and f : R>g x R" — R" is assumed
to satisfy Carathéodory conditions (c¢f. p. [19) and to be locally Lipschitz in z. More
precisely, for each compact U of R>¢ x R", we assume that there exists an integrable
function ky : R>9 — R>¢ such that, for all (¢,x) € U and all (¢t,y) € U,

[f(t,2) = f(ty)] < ku(t) o =yl -

By virtue of Theorem 5.3|, these combined conditions ensure both existence and
uniqueness of the solutions of (1.1).

It is worth pointing out the wide variety of systems that can be described by such an
equation. To cite a few, it covers a very large number of control problems in mechanics,
electrical systems, biology, electronics, electro-magnetics, etc., ¢f. e.g. [OLNSR98, KSV91,
Son05b)].

Why time-varying systems ? The fact that the right-hand side term of the considered
differential equation is time-dependent allows to include in the study many problems of
trajectory tracking. This aims at designing a control u in such a way that the solution of
the the dynamical system & = f(x,u) follows asymptotically a prescribed reference x4(t).
As the adopted control law depends on the time-varying reference trajectory z4(t), the
system in closed-loop, although originally time-invariant, is of the form & = g(t, ), where
T :=x — xg4. The so stated tracking control problem applies to many physical systems, as
for instance in the area of control of mechanical and electromechanical systems (cf. e.g.
OLNSRO98| and references therein).

Another typical situation in which explicit time-dependence of the dynamical system
occurs is that of regulations problems (that is, stabilization of fixed operating point) that
do not satisfy Brockett’s condition [Bro83] or the more conservative condition presented by
Coron in [Cor90]. In this case, the open-loop plant is not stabilizable by any continuously
differentiable time-invariant feedback. A time-varying controller is then conceivable. For
instance, it was shown by Coron in [Cor92| that any completely controllable smooth system
without drift (including nonholonomic mechanical systems) can be stabilized by means of
a smooth periodic time-varying state feedback. Also, it was shown in that, if a
system can be stabilized by a continuous state-feedback, then it is stabilizable (although
possibly in a non-uniform way) by a smooth time-varying feedback, which may constitute
an interesting feature for some applications.

However, this explicit dependence in time of (1.1) can also be of interest from an
analysis point of view. Some techniques in the literature, see for instance [Kha96, Lor04],
consist in simplifying a complex nonlinear system into a more simple time-varying one by
considering part of the state as a simple function of time.

Although the results presented along this document concern more stability analysis
than stabilization, in the sense that no explicit design of control law is presented, they still
constitute a prescriptive framework on which one could base control design strategies.

1.1 Stability of the origin

Many control applications can be formulated as a stabilization problem of the origin of a
dynamical system. Typically, one requires that the error between the desired behavior of
the system and the actual one converges to zero, leading to the notion of attractivity of
the origin. In addition, it is usually required that, provided sufficiently small initial errors,
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the difference between the desired behavior and the actual one remains arbitrarily small
at all time: in other words, stability of the origin is desired.

We briefly recall these notions in a nonlinear time-varying context. In this section, 7
denote a closed (but not necessarily bounded) subset of R™ that contains the origin. Please
refer to the Notation part (p.[19) for a definition of the mathematical concepts used here.

We start with the notion of uniform boundedness of solutions.

Definition 1.1 (UB/UGB) Let Z be a closed subset of R™. The solutions of (1.1) are
said to be uniformly bounded on Z if, for any nonnegative constant r, there exists a non-
negative c(r) such that, for all to € R>q, they satisfy

ro€EINB, = \¢(t,to,xo)|§c, Vit > tp.

If T = R", then the solutions are uniformly globally bounded.

Based on this, we can introduce a precise definition of the stability concept that will
be used throughout the document.

Definition 1.2 (US/UGS) Let T be a closed subset of R™. The origin of (1.1) is said
to be uniformly stable on Z if its solutions are uniformly bounded on T and, given any
positive constant €, there exists a positive 6(¢) such that, for all ty € R>g, the solution of
(1.1) satisfies

|l‘0| < = |¢(t, to,l’o)‘ <eg, Vit > tp. (1.2)

If T =R", then the origin is uniformly globally stable.

Strictly speaking, stability of the origin is a purely local concept which is summarized
by (1.2). In many applications, it is also interesting to know a domain from which solutions
remain bounded, which explains why a boundedness requirement is imposed in the above
definition.

Next, we recall the notion of attractivity of the origin.

Definition 1.3 (UA/UGA) Let Z be a closed subset of R™. The origin of (1.1) is said
to be uniformly attractive on Z if, for all positive numbers r and €, there exists a positive
time T(r,e) such that, for all zo € B, NZ and all ty € R>, the solution of (1.1) satisfies

’(ﬁ(t,to,xo)‘ <eg, VtZto +T.
If T =R", then the origin is uniformly globally attractive.

When the two latter properties are combined, the resulting property is called uniform
asymptotic stability.

Definition 1.4 (UAS/UGAS) The origin of (1.1) is said to be uniformly globally asymp-
totically stable on Z if it is both uniformly stable and uniformly attractive on . If 7 = R"™,
then the origin is uniformly globally asymptotically stable.

The “uniformity” requirement in the above definitions refers to the initial time. It
corresponds to the independence of § and T in ty. In other words: no matter at what time
the system’s trajectories start, convergence-rate to zero and overshoot remain unchanged.
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The importance of uniformity. Uniformity is a crucial property of time-varying sys-
tems, as it provides a certain robustness with respect to external disturbances. More
precisely, as more detailed in [LLLP05, Section 2.1], it can be shown that the uniform
asymptotic stability of the origin of a zero-input system & = f(¢,x,0) ensures “stability
with respect to constantly acting disturbances” of & = f(¢,z,u), where u denotes an ex-
ternal signal', provided that the f(¢,z,u) is locally Lipschitz in 2 uniformly in ¢. This
concept, also known as total stability, was introduced by Malkin, cf. e.g. [Mal58]. It states
that the trajectories remain arbitrarily small at all time if the initial state and the input
signal are sufficiently small. More precisely, it is defined as follows.

Definition 1.5 (Total stability) The origin of & = f(t,x,0) is said to be totally stable
if, for each € > 0, there exists 6(¢) > 0 such that, for all to € R>q, the solution of
& = f(t,z,u) satisfies

max{lzol, [[ull} <0 = [o(t,t0, w0, u)| <&, Vi=to.

In a nutshell, by establishing uniform asymptotic stability, we guarantee that the be-
havior of the system is not too much altered by the presence of sufficiently small external
disturbances. This robustness property does not hold for non-uniform properties, as il-
lustrated by [LLLP05, Example 2.1, p. 28] in which a simple scalar time-varying system
is exhibited with the following properties: & = f(¢,x,0) is globally asymptotically stable
(but not uniformly), nevertheless one can design an arbitrarily small perturbation u in
such a way that & = f(¢,z,u) generates unbounded solutions.

Larger perturbations. While uniform asymptotic stability thus ensures a natural ro-
bustness to small external disturbances, it provides no information on the behavior of the
system subject to larger perturbations. In stability analysis, it is classical to observe that
the presence of a bounded non-vanishing disturbance impedes asymptotic stability, yield-
ing instead the convergence to a (possibly large) neighborhood of the operating point. This
property is referred to as ultimate boundedness, cf. e.g. [KhaOl, Yos66].

Definition 1.6 (Ultimate boundedness) The solutions of & = f(t,z) are said to be
uniformly ultimately bounded if there exist positive constants Ag and ¢ such that, for
every A € (0; Ay), there exists a positive constant T(A) such that, for all xg € Ba and all
to € R>o, they satisfy

lo(t, to, xo)| < c, Vt>tg+T.

If this holds for arbitrarily large A, then the solutions are globally uniformly ultimately
bounded.

In many situations, this property is not enough to ensure correct performances. Indeed,
we see that uniform ultimate boundedness is only concerned with the behavior of the system
after a sufficiently long time and, hence, does not take into account the transient dynamics.
In addition, the domain to which solutions converge may be large, then preventing a good
precision.

The aim of the following sections is to introduce stability properties that may help
guaranteeing stronger features to perturbed systems.

L4 : Rso — R™ may consist in any measurable locally essentially bounded function.
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1.2 Stability of sets

In the above definition of ultimate boundedness, solutions are required to converge to
some ball, of radius ¢, centered at the origin. It is natural to extend this property to more
general sets. In addition, it is interesting to constrain the behavior of the system during the
transients, in order to avoid disproportioned overshoots. This motivated the introduction
of set-stability [Zub57, HP73|.

A general concept. The analysis of set-stability is very general and consequently very
common in control practice. This ensues from the fact that the set under consideration
may consist in a single operating point (then corresponding to Definitions|[1.2,[1.3 and[1.4),
a path, or a more complex, possibly unbounded, region of the state-space.

As it will appear more clearly in the following definitions, stability (and, similarly,
attractivity) of a single operating point z* is obtained by considering the set {z*}. In this
respect, we always consider that the reference point x* is the origin. This can be assumed
without loss of generality, since, if z* is an equilibrium for (1.1), then 0 is an equilibrium
for 2 =g(t,z) := f(t,z + =*) with the coordinate change z := x — z*.

In the same way, stability of a path may be considered by choosing the set containing
all the points of this path.

In the case when the application does not require convergence to the origin but just to
a small neighborhood of it, it is appropriate to consider the set as a ball of small radius
centered at zero. This allows to define a rigorous formulation of the problems for which a
steady-state error is tolerated, and is also at the basis of practical stability as we will see
in the next section.

The set may also be decomposed as R" x {0}, with n’ € N.,,, when only part of the
state is required to be stable. We refer to this property as partial stability, cf. [Vor98|.
Many applications indeed require the convergence of a reduced number of variables to
operate correctly. This concept has also proved useful in presence of superfluous states, or
when the plant is inherently unstable with respect to part of the states. See Chapter 4 for
details.

The following stability definitions should therefore be seen as general statements, from
which all these “particular” cases may be derived.

When dealing with set stability, special attention has to be paid to the existence of
solutions for all positive time. A and Z denoting two closed (but not necessarily bounded)
sets of R™ that contain the origin?, we therefore start by recalling the notion of forward
completeness. Please see [AS99] for a Lyapunov characterization of this property.

Definition 1.7 (Forward completeness) The system (1.1) is said to be forward com-
plete on Z if, for all xo € T and all ty € R>g, its solution ¢(t,tg,x0) est définie pour tout
t > to.

Based on this, we can extend Definition|1.1 to the case when we are not interested in a
boundedness of the distance of the solutions from the origin, but from a given closed (not
necessarily compact) set A.

2This assumption, which can be made without loss of generality, is imposed in order to ensure that

[a < -
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Definition 1.8 (UB/UGB with respect to a set) The solutions of (1.1) are said to
be uniformly bounded on Z with respect to A if (1.1) is forward complete on T and, for
any nonnegative constant r, there exists a nonnegative c(r) such that, for all ty € Rxg,
they satisfy

ro€EINB, = ‘gb(t,to,xo)’ASC, Vit > tp.

If T = R", then the solutions are uniformly globally bounded with respect to A. Fur-
thermore, for the case that A = {0} and T = R"™ we simply say, with a slight abuse of
terminology, that the solutions of (1.1) are uniformly globally bounded.

In the case when A = {0}, we recover uniform boundedness as introduced in Definition
1.1, We see that an additional requirement, namely forward completeness, is imposed in
the above definition. As the set .4 may be unbounded, trajectories may explode in finite
time while the quantity |¢(t,%0,20)|4 remains bounded at all time. Assuming forward
completeness excludes this possibility. It should be stressed that, in the case when A is a
compact set, this additional requirement is not needed anymore. These remarks hold as
well for the next three definitions.

Definition 1.9 (US/UGS of a set) Assume that (1.1) is forward complete on Z. The
set A is said to be uniformly stable on Z for (1.1) if the solutions of the latter are uniformly
bounded on T with respect to A and, given any positive constant €, there exists a positive
d(e) such that, for all ty € R>g, the solution of (1.1) satisfies

7ol <6 = ¢t t0,20)| 4 <€, VE=to.
If T = R"™, then the set A is uniformly globally stable.

Definition 1.10 (UA/UGA of a set) Assume that (1.1) is forward complete onZ. The
set A is said to be uniformly attractive on Z for (1.1) if, for all positive numbers r and
e, there exists a positive time T(r,€) such that, for all xo € B, NZ and all ty € R>, the
solution of (1.1) satisfies

lp(t,to, z0)| 4 <€,  Vt>to+T.
If T =R"™, then the set A is uniformly globally attractive.

Definition 1.11 (UAS/UGAS of a set) Assume that (1.1) is forward complete on T.
The set A is said to be uniformly globally asymptotically stable on Z for (1.1) if it is both
uniformly stable and uniformly attractive on T. If T = R"™, then the set A is Uniformly
Globally Asymptotically Stable.

Two measures. It is worth pointing out that these definitions care special cases of stability
with respect to two measures, cf. [Mov60, LL93]. This concept is very general and includes,
as we have seen, stability of a single point, of a compact set, of a prescribed trajectory as
well as partial stability [Vor98, Vor02|. It was used in e.g. [LS76, TP0O, Lee04]|. Here,
the first measure is the distance to the set under consideration |-| ,, while the second is
the Euclidean norm |-|. As we will see later (see Section 2.1), for perturbed systems or
when dealing with adaptive control, this choice allows, in many situations, to use the same
Lyapunov function as the nominal system, which makes this stability property much easier
to establish and to use.
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In this respect, we stress that the term wuniform used in the above definitions concerns
only the dependence in the initial time. More precisely, the constants ¢, § and T in
Definitions|1.8,/1.9 and|1.10lare all required to be independent of #y. Other existing results
in the literature (e.g. [Yos66, LSW96, TPL02|) use this terminology to underline that the
set-stability is defined with the same measure, notably implying that the set A is positively
invariant, which is not the case here.

As in the spirit of Hahn’s formulations [Hah63| of stability in terms of I and KL
estimates (see also [Son98a|), the properties defined above can be written in the following
precise way.

Proposition 1.12 (K characterization of UB/UGB) Assume that (1.1) is forward com-
plete on Z. The solutions of (1.1) are uniformly bounded on I (resp. uniformly globally
bounded) with respect to A if and only if there exists a class KC function n and a nonnegative
constant p such that, for any zo € I (resp. xo € R™) and any ty € R>o, the solution of
(1.1) satisfies

’(b(tvtO?xO)‘_A SU(’%D‘FM’ Vit >t .

Proposition 1.13 (K characterization of US/UGS) Assume that (1.1) is forward com-
plete on I. A closed set A is uniformly stable on T (resp. uniformly globally stable) for
(1.1) if and only if there exists a class K function ~v such that, for any xo € Z (resp.
xo € R") and any to € R>q, the solution of (1.1) satisfies

|(t, to, z0)| 4 < Y(|20l) Yt >t .

Proposition 1.14 (KL characterization of UAS/UGAS) Assume that (1.1) is for-
ward complete on . A closed set A is uniformly asymptotically stable on T (resp. uni-
formly globally asymptotically stable) if and only if there exists a class KL function (3 such
that, for all xo € T (resp. xo € R™) and all to € R>q, the solution of (1.1) satisfies

|6(t, to, x0)| 4 < B(|wol .t — to), vVt >tp.

The proof of these characterizations follows along the same lines as [Vid93, Theorems
53 and 61], we therefore do not recall them here.

When the convergence rate to the set A is exponential and the dependence in the initial
state is linear, the stability is said to be exponential.

Definition 1.15 (UES/UGES of a set) If, in Proposition 1.1/, the class KL function
can be picked as

B(s,t) = kyse *2t Vs, t € R

for some positive constants ki and ko, then the set A is said to be uniformly exponentially
stable on Z (resp. uniformly globally exponentially stable) with parameters (k1,k2).

For the study of the alteration of a stability property under the influence disturbances,
a noteworthy particular case of the above definitions is when the sets under consideration
are closed balls. It is indeed at the basis of all the definitions of semiglobal and practical
stability properties introduced next. The following proposition, that follows from Propo-
sitions 1.12 and 1.14, establishes a strong link of this concept with the (¢ — p)-stability
originally introduced in [TPA99] and recalled in Definition A.1 (p. [172).
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Proposition 1.16 (UAS and o — p stability) Let A > § > 0. Then the following
implications hold:

- If Bs is UAS on Ba, then (1.1) is (A — §)-stable;
- If (1.1) is (A — 0)-stable, then Bs is UAS on Bas, for all A’ € (6, A).

The proof of this proposition is detailed in Section|A.2l We can notice that no forward
completeness assumption is needed anymore as the set under consideration, namely B,
is compact. In this case, uniform asymptotic stability naturally ensures the existence of
solutions for all forward time.

1.3 Semiglobal and practical asymptotic stability

The need of a finer analysis. As already pointed out by Hahn in [Hah63] and by La
Salle and Lefschetz in [SL61|, practical considerations should be taken into account when
studying the asymptotic stability of the equilibrium of a given plant. To quote an example
of the latter reference, the asymptotic stability of an electrical system operating at 110 V'
ensures that small variations will be cancelled out. However, if the amplitude of these tol-
erated variations is tool small, say of some millivolts, the system may not operate correctly.
On the opposite, the operating point of a given system may be mathematically unstable,
thus generating small oscillations around it, but still guarantee a sufficient precision for an
acceptable behavior. Using the intuitive illustration, already used in Figure[l.1, of a ball
on a non-flat surface, these would correspond to the following situations:

Asymptotic stability with a Instability with a small
small domain of attraction steady-state error

Figure 1.2: Practical considerations about stability.

A tighter analysis is then capital.

Steady-state errors and restricted domain of attraction. As already noted, non-
vanishing perturbations acting on the plant or measurement imprecisions may impede the
convergence to the origin by yielding a steady-state error. In the same way, it is often the
case that some neglected high-order nonlinearity in the dynamics prevent global stability,
generating instead an unbounded basin of attraction. In each of these situations, can we
expect more than local stability and ultimate boundedness 7
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In the stability analysis of closed-loop systems, but also in some contexts that are
developed later (such as averaging techniques or output feedback control; see Chapter
2), the tuning of some free parameters (typically control gains) often allow to arbitrarily
enlarge the domain of attraction, or to diminish at will the magnitude of the steady-state
errors. These properties are respectively referred to as semiglobal and practical stability.

In more formal terms, semiglobal and practical stability properties pertain to parame-
terized nonlinear time-varying systems of the form

&= f(t,z,0), (1.3)

where x € R", t € R>g, § € R™ is a constant parameter and f : R>o x R® x R™ — R"
is locally Lipschitz in x and satisfies Carathéodory conditions for any parameter 6 under
consideration.

Definition 1.17 (USAS) Let © C R™ be a set of parameters. The system (1.3) is said
to be uniformly semiglobally asymptotically stable on O if, given any A > 0, there exists

0*(A) € © such that the origin is uniformly asymptotically stable on Ba for the system
= f(t,z,0%).

Definition 1.18 (UGPAS) Let © C R™ be a set of parameters. The system (1.3) is said
to be uniformly globally practically asymptotically stable on © if, given any 6 > 0, there
exists 0*(5) € © such that the ball Bs is uniformly globally asymptotically stable for the
system & = f(t,x,0%).

Definition 1.19 (USPAS) Let © C R™ be a set of parameters. The system (1.3) is said
to be uniformly semiglobally practically asymptotically stable on © if, given any A > § > 0,
there exists 0*(5, A) € O such that the ball Bs is uniformly asymptotically stable on Ba for
the system © = f(t,x,0%).

In the above definitions, 6 represents the tuning parameter, e.g. control gains or any
free design parameter. © is the set of allowed tuning parameters, which may be bounded
due to physical constraints such as limitation of the output of actuators. A can be seen
as the radius of the estimate of the domain of attraction; in most applications, a larger
A induces better performance since the operating bandwidth is enlarged. In contrast,
0 represents the radius of the ball to which solutions ultimately converge; therefore it is
typically required to be small, in order to reduce the steady-state error as much as possible.

Practical stability and ultimate boundedness. As it is further discussed in the
sequel (see Chapter 2), practical stability shares similarities with the classical ultimate
boundedness property (cf. Definition [1.6), in the sense that solutions eventually reach a
neighborhood of the operating point. It should however be clear to the reader that the
above Definitions [1.18/ and 1.19 are usually more interesting in practice, as they require
the size of this neighborhood to be reducible at will by an adequate tuning and as they
require the ball Bs not only to be attractive but also stable (in the sense of Definition 77?).

We also stress that Definitions [1.18 and 1.19 do not require the origin to be an equi-
librium for the system (1.3). This indeed fails for many practically stable systems as, for
instance, Examples 2.2 and [2.8 given below.

In view of Proposition 1.14, USPAS can be expressed in terms of KL estimates.
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Proposition 1.20 (KL characterization of USPAS) The system & = f(t,x,0) intro-
duced in (1.8) is uniformly semiglobally asymptotically practically stable if and only if, for
all positive constants 6 and A such that A > §, there exists a parameter 6*(5,A) € O
and a class KL function Bs A such that, for all o € Ba and all tg € R>, the solution of
& = f(t,z,0%) satisfies

’qb(ta tO)x079*)|§ S ﬂ5,A(’x0| 7t - tO) 5 \V/t Z 750 .

A changing KL estimate. We stress that the function 3 is not required to be independent
of § and A. Typically, this dependence in the the size of the domain of attraction and the
size of the ball to which solutions converge steps through the dependence in the tuning
parameter 6. In order to reach some given § and A, it is indeed usually necessary to
choose a convenient parameter . However, as the dynamics of the system depends on 6,
it may happen that the convergence rate as well as the dependence in the initial state (in
a word, the KL estimate (3) is affected accordingly. For instance, in mechanical systems, it
is a classical phenomenon that, for a given initial condition (g, z¢), one observes a larger
overshoot when enlarging the control gains in order to diminish the steady-state error. See
Example 2.2 for a simple illustration of this phenomenon.

Many definitions of semiglobal and/or practical stability existing in the literature do
impose that the KL estimate be uniform in ¢ and A. See for instance [TPA99, NLO04,
STO03]3. As it will be more detailed in the sequel (see Chapter 2), this non-uniformity
constitutes a crucial difference with those references: while the above (less conservative)
definitions allow to treat a much wider class of systems, they impose a more involved
Lyapunov stability analysis. Of course, the natural counterpart of this generality of this
notion is that the latter is weaker than the above cited definitions. Yet, it guarantees
interesting properties to the system in terms of overshoot, convergence, robustness and
precision.

Frequent properties. Semiglobal and/or practical stability properties appear in various
situations. An intuitive one is the degraded functioning of a plant due to neglected dynam-
ics, external perturbations, inadequacy with the model, etc. A controlled system for which
the operating point is uniformly globally asymptotically stable typically presents a prop-
erty of uniform semiglobal asymptotic stability in presence of high order nonlinearities, or
may be uniformly globally practically asymptotically stable if some external non-vanishing
perturbations act on it. These common situations are illustrated by elementary examples
in Chapter 2.

Although these do not constitute the only occasions to observe semiglobal and/or prac-
tical stability (we also could have cited averaging techniques, output feedback control or
discrete-time systems; see Chapter [2 for a more exhaustive description), they show that
the properties of UGPAS, USAS and USPAS can be seen as measures of the robustness of
a nonlinear time-varying system to model approximations, imprecisions, external distur-
bances, etc.

3 Although [TPA99, Definition 3] does not impose this uniformity, the main result in that reference does
ensure such a feature.
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1.4 Input to State Stability

ISS. For the specific study of robustness with respect to disturbances, a particularly fitting
framework is input to state stability (ISS). In informal terms, the ISS property introduced
by Sontag in [Son89a| (see also [Son95, Son05a] for surveys on this notion) imposes that
the norm of the state at the current time be bounded by a function of the amplitude of
the external input plus a fading term in the initial state. This paradigm allows to take
into account two phenomena: 1) the state will eventually converge to any arbitrarily small
neighborhood of the origin provided that the amplitude of the input is sufficiently small,
2) if the input is null at all time, then the origin of the system is globally asymptotically
stable.

iISS. Even though this property has been widely used both in analysis and design, cf. e.g.
[Son98a, KKK95, JM97, PW96], ISS happens to be too strong a requirement in several
cases. This motivated the introduction of Integral Input to State Stability (iISS) [Son98b],
which turns out to be a much weaker property. Instead of linking the state to the supremum
of the input, it involves a measure of the energy that inputs feed into the system. Similarly
to ISS, it ensures global asymptotic stability for the zero-input system and guarantees
some robustness to the system with respect to external inputs. For instance, it is shown in
[Son98b| that, when the energy of the perturbing input is finite, the asymptotic behavior
of the solutions of an iISS system is not affected.

Both the ISS and iISS properties were originally introduced in a time-invariant context,
cf. [Son89a| and [Son98b| respectively. Although some extensions were made to generalize
to time-varying systems (see e.g. [Lin96, ELW00, LWC05, MMO05]), most of the existing
tools that help guaranteeing ISS, and especially iISS, remain limited to autonomous sys-
tems. For this reason, the following definitions related to iISS are given by considering
systems of the form:

T = f(x,u) (1.4)

where x € R™ denotes the state and f : R” x RP — R"™ denotes a locally Lipschitz function.
Input signals u : R>g — RP may consist in any measurable locally essentially bounded
functions.

We give the precise definitions of ISS and iISS below.

Definition 1.21 (ISS) We say that (1.4) is input to state stable if there exist a class KL
function B and a class Ko, function v such that, for all xo € R™ and any admissible input
u, the solution of (1.4) satisfies

|¢(t, o, u)] < B(|lwol,t) + v (full) , vVt € Rxo. (1.5)
The function «y is then referred to as an ISS gain for (1.4).
Definition 1.22 (iISS) We say that (1.4) is integral input to state stable if there exist

a class ICL function 8 and class Koo functions v and p such that for all xo € R™ and any
admissible input u, the solution of (1.4) satisfies

6t 70,0)] < Bzl ) + 7 ( / u(IU(T)DdT> . VieRso.

The function v is then referred to as an iISS gain for (1.4).
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Based on these two formulations, it is easy to see that any ISS or ilSS system is globally
asymptotically stable when the input is zero at all time. This zero-input system can be
viewed as the “nominal” system, and the above properties then give a clear measure of its
robustness with respect to external disturbances (their amplitude or their energy according
to the case).

ISS and practical stability. Compared to the practical stability property introduced
in the previous section, it is worth underlining that both ISS and iISS ensure that a ball,
whose radius is directly related to the input, is globally asymptotically stable. However,
for a given input signal, this ball is not required to be reducible at will by a convenient
tuning of some parameter. For the same reason, we stress that the notion of input to state
practical stability (ISpS) introduced in [JTP94| should not be understood in the sense of
the term “practical” of Definitions[1.18 and [1.19l ISpS differs from ISS in that, instead of
the origin itself, a ball centered at it is required to be globally asymptotically stable. More
precisely, it corresponds to Definition [1.21| where (1.5) is replaced by

|¢(t7x07u)‘ Sﬂ(‘x0|7t)+7(”uH)+5ﬂ vt € R>o,

0 denoting a nonnegative constant. In this context, J is fixed an not reducible at will by
tuning the system’s parameters.

In the same way, note that the concept of semiglobal integral input to state stability
introduced in [ASWO00Db], where the KL estimate and the iISS gain are not required to hold
over R™ but only on arbitrarily large compact sets, is different from the “semiglobality” of
Definitions [1.17 and [1.19. See Chapters|2 and |5 for a more detailed comparison of these

notions.
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Chapter 2

Semiglobal and practical asymptotic
stability

Natural stability properties. As evoked in Chapter|1, the opportunities of encountering
semiglobal and/or practical stability are numerous in control practice. Before presenting
necessary and sufficient conditions for it to hold, in terms of Lyapunov functions, we would
like to go back on the motivations for this study.

To this end, we start by introducing the following elementary example, which will
illustrate the topic along the chapter and should give a more intuitive understanding of
the semiglobal practical stability property, in its full generality, and the ways to establish
it. Although simple, this example illustrates many properties and difficulties involved in
such a stability analysis.

Example 2.1 Consider the second-order scalar dynamical system described by

G = —01q — 02+ b(t,q,9) + c(t. q,4)d> (2.1)

where 01 and Oy are free control gains, and b and c are locally Lipschitz functions satisfying,
forall q,q € R and all t € R>,

bt ) <b,  le(t,q. @)l <@

with some nonnegative constants b and ¢. In the case that b and c are identically zero,
the system reduces to a Hurwitz linear system and global exponential stability follows for
any positive choice of 01 and 02. However, in presence of the term b, we see that if the
state (q,q) is small, then the dynamics are predominantly dictated by b. This may yield to
undesirable behavior as solutions approach the origin. Similarly, if ¢ is non zero, then the
term c(t,q,q)¢* prevails when ¢ is large, potentially yielding a restriction of the domain
of attraction. Intuitively, we can expect that, by enlarging the gains 01 and 65, we limit
the domination of the b term to very small values of the state and the domination of ¢ to
very large values. Accordingly, we would then obtain that the magnitude of the steady-state
errors can be reduced at will by choosing sufficiently large gains and, in the same way, that
we can arbitrarily enlarge the domain of attraction. This is respectively what is meant by
practical and semiglobal stability. U

Through this intuitive example, we see that perturbations may degrade the performance
of a system, especially by reducing the operating bandwidth and generating a steady-state
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error. But it also suggests that, in some situations, the effects of these degradations can
be made acceptable when some freedom is available on a parameter.

Perturbations of this type may have different sources. Most commonly, asymptotic
stability may yield practical stability in presence of a non-vanishing external signal, such
as noise. For instance, this may be the result of imperfections in the measurement or in
the actuation. This would correspond to the time-dependence of the b term in the above
example. The convergence to the origin may also be impeded by the use of saturated
control (¢f. p. [85), the presence of delay [LZ01|, etc. Neglected dynamics, high-order
nonlinearities, model uncertainty, bad knowledge of some parameters, physical constraints,
etc. may also prevent global asymptotic stability while still allowing semiglobal and/or
practical stability.

However, degradation of nominal performance does not constitute the only occasion of
encountering uniform semiglobal practical asymptotic stability (USPAS). It may also be
concluded from stability analysis tools existing in the literature. USPAS of a nonlinear
time-varying system follows for instance from averaging techniques. In [TPA99], it is shown
that, if the averaged system of & = f(t, z) is globally asymptotically stable, then the system
& = f(t/0,x) is USPAS on the parameter set R, implying that, from any compact set
of initial condition, it suffices to pick # small enough for the solutions to converge to any
arbitrarily small neighborhood of the origin.

Existing variants. We stress that the term “practical stability” has many variants in
the literature of control theory. In many situations, the ball to which solutions converge
is not required to be arbitrarily reducible. This is the case in [MP72, Kap73, ZMO03],
where it is only imposed that any solution starting in a ball never leaves another ball.
The notion of input to state practical stability originally introduced in [JTP94| imposes a
fading dependence in the initial state, but does not require the attractive neighborhood to
be reducible at will.

On the other hand, this term may also denote more conservative properties than that
of Definition [1.18] as they require that the KL estimate, or at least its dependence in
the initial state, be the same for all parameters' § € ©. While the latter property is
satisfied in many contexts (see e.g. [MA00, TPA99, NL04, ST03, TNMO05]), it may fail
when dealing with perturbed systems: see the example below. In this respect, we stress
that, in Definitions [1.17] 1.18 and 1.19, “uniform” refers only to the initial conditions, and
not to the tuning parameter.

Similarly to practical stability, the names given in the literature to what we call here
semiglobal stability properties vary a lot. It is, for instance, referred to as potentially
global stabilizability in [Bac86]. Some authors, as for instance [BI91, Hu96|, also use the
denomination on compacta stabilizability.

Stability and stabilizability. It should be underlined that many authors use the ter-
minology “stabilizability” instead of “stability” when dealing with practical or semiglobal
properties, see e.g. [Bac86, Sus90, TP95, JBI6, MS03|. In general terms, these references
deal with the problem of finding a control input that makes the solutions converge, in a
stable way, to an arbitrarily small neighborhood of the operating point from an arbitrarily
large given set of initial states. The system under consideration is consequently a con-
trolled system, and not a parameterized system as (1.3). The difference between these two

In other words, the overshoot may depend on the chosen parameter 6, but not the convergence rate.
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concepts is slight. They may even coincide on some occasions, as for instance in [Bac86],
where the control is a priori sought in the form v = Kx. It is therefore a stabilizability
problem, but the gain matrix K can also be seen as a tuning parameter for the closed-loop
system, allowing to address the question in terms of practical stability.

The occasions of guaranteeing semiglobal stabilizability are numerous. It is shown in
[TP94] that smooth global stabilizability and complete uniform observability (meaning,
roughly, that the state may be reconstructed based on the instantaneous knowledge of the
input, the output, and a finite number of their derivatives) imply semiglobal stabilizability
by output feedback. In robust control with respect to model uncertainty, semiglobal stabi-
lizability in ensured for a class of systems by the approach of [Isi97]|. Semiglobal asymptotic
stability may also arise by the use saturated controls: see [ARKCO03| for an example in
robotics.

The following example provides a rigorous proof of the intuitive reasoning proposed
in Example [2.1. In particular, we give a KL estimate which is not uniform in the tuning
parameter 6.

Example 2.2 Inspired by the peaking phenomenon example in [SK91], we consider the
system (2.1) of Evample 2.1, with 6, = 02, 03 = 20, b(t,q,4) = 1 and c(t,q,q) = 0 for all
t € R>o and all ¢, ¢ € R, 0 denoting a positive free parameter. In other words:

(3)=( ) (5)+ (V) o

Let = := (q,4)". Given any initial conditions o = (qo,qo) ', the solution of this linear
time-invariant system s

" _( atx0,0) \ _ [ [ao— 5= + (090 + Go — §) t] _9t+ yiva
#lb 70, 6) = ( it,0,0) ) _< Tdo + (1 — 00 — 6d0) ] = > - @3

Using that te™t < e %2 for all t € R>q, it can be seen that

2+0

|6(t, 20, 0)] < 2 (1+ 0+ 62) || e /2 + .

Let § be any given positive constant and 0*(5) be any positive number satisfying (2 +
0*)/0*2 < §. Then, defining Bs(s,t) := 2(1 4 0* + 6*2)se="t/2 for all s,t € R, we get
that

\¢(t7x0,0)] §55(|x0\,t)+5, vVt € R>p.

Noticing that Bs is a KL function for any positive §, we conclude, in view of Definition
1.18, that (2.2) is (U)GPAS? on the parameter set © = Rxy.
Note that the resulting KL estimate of the solutions depends on the chosen parameter
0* and so, indirectly, on the chosen tolerance §. Furthermore, it is impossible to find a
function 3 that is the same for all 5. This stems from the term 6%qote™" in the expression
of 4(t,x0,0) (cf. Equation (2.3)) which, for any positive t and qo diverges as 0 tends to
infinity. Hence, by choosing a smaller §, we can expect a larger overshoot. This is confirmed
by the following plots representing |é(-, zo,0)|, with o = (1,0)7, for § = 2 (dots), 6 = 3
(dashes) and 0 =5 (plain).
O

2The initial “U”, standing for “uniform”, is groundless as the system under consideration is time-invariant.
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Figure 2.1: Parameter dependence of the KL estimate.

In the literature, many definitions of semiglobal and/or practical stability impose that
the tuning parameter be a (small) positive constant, as for instance [MA00, NL04, TNMO05,
TPA99]. According to the case, it may for instance consist in a time re-scaling or in the
sampling period. In these situations, it is additionally imposed that there exists a value of
the parameter such that every smaller choice yields to the asymptotic stability of the same
ball, with the same KCL estimate. This requirement naturally induces a tuning procedure:
in order to converge to a smaller ball, it suffices to pick a smaller parameter. Since our
definitions of UGPAS, USAS, and USPAS rely on a possibly non-scalar parameter, no such
tuning procedure is offered in general. However, in practice, many applications do provide
conditions on the parameter to reach a given attractive neighborhood of the origin, or to
ensure a given radius of attraction, and therefore suggest a procedure to tune parameters;
see Chapter 6 for concrete examples. For instance, in the above example, given a tolerance
§ > 0, any parameter 0 greater than 6*(5)? and 0 greater than 20*() ensures that the
ball B;s is globally asymptotically stable. So, we directly know that, in order to reach a
smaller d, one should enlarge these two gains.

In a nutshell, the good compromise between generality and strength offered by Defini-
tions1.18, 1.17 and [1.19 motivated their use. We are next presenting tools that guarantee
them in Lyapunov terms.

2.1 Sufficient conditions

Lyapunov’s direct method, originally presented in [Lya92], is based on the study of a posi-
tive definite continuously differentiable function. If its total derivative along the solutions
of the system is non-positive, then stability follows. If this total derivative is negative def-
inite, we conclude asymptotic stability. If, in addition, the Lyapunov function is radially
unbounded, then the equilibrium is globally asymptotically stable. This Lyapunov condi-
tion happens to be also necessary for global asymptotic stability. To put in perspective
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the main results of this chapter, we recall the following classical result from [BK54| —see
also [Hah, Chapter 2].

Theorem 2.3 (Lyapunov characterization of UGAS) Suppose that the function f of
(1.1) is locally Lipschitz. Then the origin of & = f(t,x) is uniformly globally asymptotically
stable if and only if there exists a continuously differentiable function V : R>o x R™ — R>q
and class K functions o, @ and o such that, for all z € R" and all t € R,

a(jal) < V(t,2) < alla]) 24)
ov ov
S (ta) + o (ta)f(t2) < ~alja)). (25)

Let us illustrate its use through the previous example. Although the argument may
appear trivial to the reader, we detail the computations for further developments.

Example 2.4 Suppose that none of the perturbations b and c affects the system introduced
in Example 2.1:

G =—b1q—02q. (2.6)
Letting x := (¢,4) " and 6 := (01,62) 7, the state representation of (2.6) is
. . 0 1
= A0z, with  A(0) := . (2.7)
—01 —0

Consider the smooth Lyapunov function candidate

01 1. :
V(z) = 2 ¢* + 54 +eqd,
2 2
where € is a positive constant. Using the fact that |ab| < (a® + b%)/2 for all real a and b,
we see that

1 1 1 1
5 (01— £)g® + 51— e)? < V(x) < 50+ £)q® + S+ ). (2.8)

Hence, by picking any ¢ < min{6y;1}, we see that (2.4) holds with

1 1
afs) == B min{f; —e;1 —e}s?, als) = 5 max{f; +¢&;1+¢}s?, Vs € R>o. (2.9)

In addition, for all x € R?, we have that

ov

%(x)A(e)x < —e01¢® — (62 — €)¢* + e62qq

o gz .
—5(01—22>q2—(92—5—22>q2.

So, by choosing € and 61 in such a way that € < 203/(2 + 02) and 01 > 03/2, we see that
(2.5) holds with

a(s)::min{5<91—92>;92—6—802}52, Vs € R>g,

IN

2 2

which is indeed a class Koo function. We conclude from Theorem 2.3 that the origin of
(2.6) is globally asymptotically stable. O
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When a perturbation is added to a nominal UGAS system, we can expect the negativity
of the Lyapunov function’s derivative (2.5) to be altered. If the perturbation “acts” around
the origin, then one may loose this negativity for small values of the state. In the same
way, high order nonlinearities may cause problem for large values of the state. Hence the
region of the state-space on which the total derivative of V is negative may be limited by
these phenomena. If, nevertheless, a wise choice of some parameter allows to extend this
region at will, then we can intuitively expect UGPAS, USAS or USPAS according to the
case.

We show in the next sections that this is indeed the case, provided an additional as-
sumption on the parameter-dependence of the functions a and @ that bound the Lyapunov
function.

To the best of our knowledge, no such sufficient Lyapunov conditions for the semiglobal
and/or practical stability properties introduced in Chapter 1, i.e. with a parameter-
dependent KL estimate, has been reported in the literature. In most existing references,
in order to establish the semiglobal asymptotic stability property of a given system, the
reasoning consists in explicitly estimating the domain of attraction and showing that it
can be arbitrarily enlarged by a convenient parameter tuning, cf. e.g. [OLK95, ARKCO03].
Similarly, practical stability is commonly established by estimating an asymptotically sta-
ble compact set, and to show that its size may be reduced at will. The topic of next
sections is to provide a precise Lyapunov framework for these notions.

2.1.1 Global practical stability

The following result gives a sufficient condition, in terms of a Lyapunov function defined
out of a ball centered at the origin, for the dynamical parameterized system (1.3) to be
uniformly globally practically asymptotically stable on a given set of parameters.

Theorem 2.5 (Lyapunov sufficient condition for UGPAS) Let O be a subset of R™
and suppose that, given any 0 > 0, there exist a parameter 0*(5) € ©, a continuously
differentiable Lyapunov function Vs : R>o x R™ — R>¢ and class K functions oy, o, o
such that, for all x € R™\ Bs and all t € R>,

a5((e]) < Vit ) < (e 2.10)
D) + D00 (1,07 < sl .11
g%g(;l oas(6) =0. (2.12)

Then the system & = f(t,x,0) introduced in (1.3) is UGPAS on the parameter set ©.

An additional requirement. Compared to classical results for Lyapunov stability such
as the one recalled in Theorem 2.3, conditions (2.10) and (2.11) are natural. For perturbed
systems, (2.10) is notably satisfied by the Lyapunov function associated to the UGAS of the
origin of the corresponding nominal systems. (2.11) is similar to the Lyapunov sufficient
condition for global ultimate boundedness (c¢f. e.g. [KhaOl]). Intuitively, one may expect
that these two requirements, when valid for any arbitrarily small §, suffice to conclude
UGPAS. However, we see that an additional assumption (2.12) is required that links the
bounds on the Lyapunov function. Indeed, as opposed to previously cited definitions of
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practical stability, the Lyapunov function may depend on the tuning parameter €, and
consequently on the radius 6. As clearly shown by Sepulchre in [Sep], this parametrization
of the Lyapunov function may induce unexpected behaviors. Such a phenomenon is already
described in [KM86| by Kokotovi¢ and Marino. In that reference, the authors exhibit a
control system in closed-loop with a feedback that makes the domain of attraction shrink
to zero when one aims at rejecting the effect of high-order nonlinearities.

To the best of our knowledge, the condition (2.12) constitutes the first one in the lit-
erature of practical stability that allows to cope with this parametrization of the bounds
on the Lyapunov function. It guarantees that the Lyapunov function is sufficiently repre-
sentative of the norm of the state. In Section 2.1.3! (¢f. Example 2.19), we will see how
crucial this requirement is by recalling the example, originally presented in [KMS86], of a
system for which all the conditions of Theorem 2.5 are fulfilled except (2.12) and whose
non-trivial solutions grow unbounded (in particular, it is not UGPAS)3.

Before establishing the proof of Theorem 2.5 we introduce the following result, which
is a direct adaptation of [PW96, Proposition 13| and allows Vj to be transformed into a
more convenient form.

Lemma 2.6 Let 6 be a positive constant and X be a subset of R™\ %5. Suppose that there
exist a continuously differentiable function V : R>o x X — R>q and class K functions a,
@, o such that, for all z € X and all t € R>,

aflz]) < V(t, 2) < a(lz|) (2.13)
v v
oy () + o () f(tx) < —affal). (2.14)

Then, for any positive k, there exists a continuously differentiable functionV : R>ox X —
R>o and class Koo functions &, o such that, for all x € X and all t € R>,

a(lz)) < V(t,x) <a(|=]) (2.15)
(?Z(t,m) + ?;(t,:c)f(t, x) < —kV(t,z), (2.16)

and, for any s € R>q, it holds that

“loda(s)=atoals).

IS

If, in addition, there exists a continuous nondecreasing function c : R>g — R>q such that,
forallz € X and all t € R>,

then there exists a continuous nondecreasing function ¢ : R>g — R>q such that, for all
z € X and all t € R>,

oV
&

< &) (2.17)

g

3This example is given in a USAS context, but a similar argument holds for UGPAS.
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Proof of Lemma/2.6. Following the proof lines of [PW96, Proposition 13|, we see that the
function V can be defined as p o V where

{p(s) :exp(f%), Vs >0
p(0) =0,

and a is any class K function satisfying

da
250

2
a(s) < min {S, %a o a_l(s)} , Vse RZO and

The bound (2.16) can be established following the same reasoning as in the proof of [PW96,
Proposition 13|. More precisely, we have from (2.13) and (2.14) that

oV Y% B
E(tm) + %(tv l’)f(t, QZ’) < —aoqa (V(t,.%')) :
Hence, from the definition of a,
)Y ov 2 v ov
e L I e ] A B AR )
< —kV(t,x).

Furthermore, as p € Ko, can be satisfied with & := poa and @ := po@, and we
therefore have that

-1 1 oa(s).

a'od(s)=(poa) o(poa)(s)=(aop)o(pom)(s) =a"

Concerning the bound on the gradient, we have that, for all x € X and all ¢t € R>y,

% 2V(x) |0V 2a(|x|) .
— < —_— < —= <
where? &(s) := %c(s), which establishes the result. [ |

We are now ready to present the proof of the main result of this section.

Proof of Theorem 2.5,  Let k = 1, X = R"™\ By and Vj generate, via Lemma 2.6, a
continuously differentiable function Vs such that, for all z € R™ \ Bs and all ¢ € R>,

as(|=)) < Vst ) < as(|z))

oV oV
7 (62) + (@) f (1, 67) < Vil o) (2.18)

hold with class K functions &g, a5 and as, satisfying
Q(s_l oas(s) = ggl oags(s), Vs € R>q.
From the latter and (2.12), we have

%ir%ggl oas(8) =0. (2.19)

4This is where the requirement § > 0 is needed.
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Furthermore, from (2.18), we get that
‘QS(t,to,.’I](),e*)’ >0 = V5(t, ¢(t7t07x0a0*)) < —Vg(t,¢(t,t0,$0,9*)) . (220)

Before going further, we introduce the following result which is also of interest for the
next sections. It provides a ICL estimate of solutions, based on a differential inequality
that holds only out from a neighborhood of the origin. The proof is given in Section |A.1.

Lemma 2.7 (Integration lemma) Let § be a nonnegative constant and X be a subset of

o
R™\ Bs. Assume that there exist a continuously differentiable function V : R>ox X — Rxq,
class Koo functions o and &, a non zero real constant k and a function c : R>g — Ry
such that, for all x € X and all t € R,

a(lz]) < V(¢ z) <a(lz])
and, for all xo € R™ and all to € R>q, the solution of & = f(t,x) satisfies
¢(t,t0,$()) €X = V(t,¢(t,t0,$0)) < —kV(t, ¢(t,t0,$0)) —|—C(’IEO|) :

Then, for all xy € R™ and all ty € R>g such that ¢(t,to, z0) € X Vt > to, we have that

ottt )] < (a(0) + (2 ) ot (@aoe e+ ST vz,
O
Back to the proof of Theorem 2.5 we obtain via Lemma 2.7/ (with X = R™\ 1035, c(-)=0

and k = 1), we deduce from (2.20) that, for all ¢ > ¢,
6t to,20,6%)| < G5 0@s(6) + 5" (@a(lmoe™ ) .
Define 6 := @5 ' 0 @s(0) and, for all s,¢ € Rxg,
Bs(s,t) == a; " (qs(s)e™) .
Then we have, for all zgp € R™ and all ¢y € Rx>,

|p(t, to, z0,0%)|5 < Bs(|zol , t —to), vVt > to,

and it is easy to see that (5 is a KL function for all positive 6. Again, we stress that
the dependence of (8 in ¢ is not in contradiction with Definition [1.18. Furthermore, it
follows from (2.19) that 6 can be made arbitrarily small by picking a parameter 6*(8) € ©
corresponding to a sufficiently small §. UGPAS of & = f(¢,, 6) follows. |

The bounds on V. It is worth mentioning that, for perturbed systems, conditions (2.10)
and may often be satisfied with the Lyapunov function that serves in establishing
UGAS of the nominal system. This would have not necessarily been the case if global
practical stability was defined based on set-stability with respect to the same measure |-|;.
Indeed, for this stronger property, it would then have been required that the corresponding
Lyapunov be bounded in the following manner:

as(|z|s) < Vs(t, ) < as(|zls)
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instead of (2.10). It would notably have been required that V' vanish on the whole ball Bs,
which cannot be the case of the original Lyapunov function for the unperturbed UGAS
system. Although it is possible, in some situations, to derive a Lyapunov function with
such a property based on the original Lyapunov function, this procedure remains far less
direct than the approach we propose here.

Based on the same example as before, we show how to apply Theorem 2.5 and illustrate
the above remark.

Example 2.8 Reconsider the system from Ezample 2.4 and assume that a perturbation
b(t,q,q), bounded by a nonnegative constant b, affects the system (2.6):

= —b01q—62g+b(t,q,q). (2.21)

Defining x := (q,q4) " and 0 := (61,02)7, this can be written as

& =A0)x + B(t,z), where B(t,x) := ( b(t,?], 0 > (2.22)

and A(8) is defined in (2.7). From Ezample 2.4, we already know that the following function

01 1
Vo(z) := 5q2+ —¢* +eqq,

where € s a positive constant, is positive definite and radially unbounded provided that
e <min{f;1}. We also know that, for all x € R?,

%‘f( )A(Q)xg_min{ (91 92> 0y — _eeg}H

In addition, using the assumed bound on b(t,q,q),

83‘;%)3(“) = (eq + @)b(t, . 4) < (= + 1)b]a]

Thus, along the solutions of (2.21), the total time derivative of Vi satisfies

. . 02 (E + 1)6 €y (E + 1)
< — _2) - SOy — e — 2 _
Vo(t,x) < mln{ (91 5 ) o Oy — e 5 7 | ]

Let § be any given positive constant, and choose € = 1/2. Then, provided that 61 > 1, we
satisfy the above requirement ¢ < min{1, 01} and we get that, for all |z| >4,

- .1 02 3b 30, 1 3b), .
< — - e =
Vo(t,z) < mln{ <91 2> 55 1 5 26} ||

So, by choosing’

10 4b 8 2b
* = — —_ * = — —_
we see that
2] >6 = Vpl(t,z) < —|z]*, (2.24)

% As required, this choice ensures notably that 87 (5) > 1.
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and (2.11) follows. Furthermore, with this choice of parameter, we get from (2.8) and (2.9)
that (2.10) holds with

1 11 1 13
a;s(s) = imin {9{(5) — 5 2} s2, as(s) = 2maux{ T(0) + 5 2} 5%, Vs € R>g.

This, in turn, illustrates clearly the indirect §-dependence of the bounds on V' through the
parameter 0. Finally,

071(8) + ;31 62 b
lim a5 ! oag((s)—lim\/ma}_({ i0) + 5 21} zlim\/2 <1O+4b+1> 502 =0.

0—0 6—0 3 1) 2

which establishes (2.12). UGPAS then follows from Theorem 2.5 O

In this example, the requirement (2.12) that links the lower and upper Ko, bounds on
the Lyapunov function is fulfilled in view of three properties: these bounds are affine in the
tuning parameters, they are polynomial functions of the same degree, and the parameters
are affine in the inverse of the radius ¢ of the attractive ball. As these three conditions
arise quite often in control practice, notably in the control of electro-mechanical systems,
we state now a result that especially fits to this situation. Although less general, it is
more easily applicable. See Chapter 6/ for applications of this corollary in control of a
spacecraft formation and for the automatic positioning of ships for tasks such as underway
replenishment.

Corollary 2.9 (Simplified Lyapunov condition for UGPAS) Let © be a subset of
R™. Assume that there exist a positive number p, real constants a;, a;, b;, b, i € {1,...,n}
and, for any 0 € ©, a continuously differentiable Lyapunov function Vy satisfying, for all
x € R" and all t € R>,

n

> (a; +bits) lil” < Vg(t,x) < Zaﬁ—b@ |2 P (2.25)
=1 =1

where, for alli € {1,...,n} and all 6 € ©, a; + b;0; > 0 and a; + b;0; > 0. Suppose further
that, given any § > 0, there exist a parameter 6*(0) € © and a class Koo function as such
that, for all x such that 6 < |z| and all t € R>p,

aVY@* 8‘/6*
ot (t,) + ox

If, furthermore, for alli € {1,...,n}, we have

(t,x)f(t,x,0") < —as(|z]). (2.26)

}m%a +0,07(0) >0, (2.27)

b #0 = %iné 0x(5)6? =0, (2.28)

then the system @ = f(t,x,0) is uniformly globally practically asymptotically stable on the
parameter set ©.

A typical application of this corollary concerns the case of systems in closed loop
affected by a non-vanishing perturbation. As this will be underlined through concrete
examples in Chapter |6, in these situation, the tuning parameter typically consists in the
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control gains. As intuitively expected, these need usually to be enlarged in order to achieve
a better precision. For this reason, the requirement (2.27) should be trivially satisfied in
most cases.

Also, for simplicity of the statement, we have assumed that the tuning parameter and
the state have the same dimension n. In most practical applications, the dimension m of
the former is not greater than that of the latter, in which case it suffices to complete 8 by
n —m additional (virtual) components. However, if needed, a similar result may easily be
derived for the case m > n.

Proof of Corollary|2.9. With the notation of Theorem [2.18, we have that, for all s € R,

as(s) = _min {a; +0,0/(0)}s",  @s(s) = max {@ +b:07(9)} s

It follows that

6—0 §—0

max;e{1,.. n} {ai + Bﬂf@)} oP v
Minefy,..ny 18; + 5;07(6)}

lim o' o @s(0) = lim (
In addition, (2.27) ensures that

lim( min {4, +b,0 (5)}>>0.

0—0 \ie{1,..

In addition, from (2.28) we get that

0—0 \ie{l,....,n

hm( max {a + 0,07 (6 )}(5p> =
From these three observations, we conclude that

lim a; ! 5N =0.
lim o oas(6)

The assumptions of Theorem 2.18 are then all fulfilled and the conclusion follows. |

Example 2.10 Back to the system in Ezample 2.8, we see from (2.8) that the Lyapunov
function

01 1
Vo(z) := 5q2+ ~¢* +eqq,

satisfies (2.25) withn =p =2, a; = —¢/2, by = by = 1/2, a5 = (1 —¢€)/2, by = by = 0,
a1 =¢/2 and ag = (1 +¢€)/2. Choosing € = 1/2 and assuming that 61 > 1, we have that
a; + b,0; > 0 and @; + b;0; > 0 for all i € {1,2}. In addition, we recall from (2.23) and
(2.24) that, given any positive constant d, the parameters choice

e 10 4b e 82D
yields .
2| =6 = Vpe(z) < —af

Hence, the requirements (2.26), (2.27) and (2.28) hold, and UGPAS can be concluded
using Corollary (2.9, without needing to compute explicitly lims_q ggl o @s(0) as required
by Theorem 2.5.

O
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2.1.2 Semiglobal practical stability

We recall that semiglobal practical asymptotic stability pertains to the case when one can
prove that, by tuning certain parameter of the control system, the estimate of the domain
of attraction can be arbitrarily enlarged and the ball to which solutions converge, in a
stable way, can be reduced at will.

The following result gives a sufficient condition, in terms of a Lyapunov function,
for the dynamical parameterized system (1.3) to be uniformly semiglobally practically
asymptotically stable on a given set of parameters.

Theorem 2.11 (Lyapunov sufficient condition for USPAS) Suppose that, given any
A > 0 > 0, there exist a parameter 6*(0,A) € O, a continuously differentiable Lyapunov
function Vs A : R>g X R™ — R, and class Ko functions as A, AN, A5 A such that, for
all x € H(6,A) and all t € R>,

asa(lz]) < Vsalt,x) <asa(lz]) (2.29)
OVs,a OVs,a .
S8 () + S () £ (1, 0%) < —asallal) (2.30)

Assume further that, for any A, > 0, > 0, there exist A > 6 > 0 such that

IN

5, (2.31)
A, . (2.32)

a; A 0 a5, (0)

——1
Qs A © Qa,A(A)

v

Then, the system & = f(t,x,0) introduced in (1.3) is USPAS on the parameter set ©.

Two additional requirements. It is worth mentioning that the condition (2.29) often
holds in the analysis of control systems. In particular, it holds for systems with additive
bounded disturbances when USPAS may be inferred using a Lyapunov function for UGAS
of the corresponding unperturbed system. Condition (2.30) also appears naturally in the
context of stability of perturbed systems. See Chapter 6 for various examples in the
control of electro-mechanical systems. The last two conditions, (2.31) and (2.32), need
to be imposed due to the fact that the K, bounds on the Lyapunov function V are not
required to be the same for all § and all A.

The reader is invited to refer to Example 2.19| for an illustration of the necessity to
impose additional requirements as (2.31) and (2.32). This example is presented in a USAS
context but may easily be adapted to the USPAS case.

A less conservative lower bound. It is also worth pointing out that the original
result published in [CLO06a| uses the following (less conservative) bounds on the Lyapunov
function:

a5 a(l2ls) < Vsalt, ) < asa(lz])

instead of (2.29). Theorem 2.11 remains indeed valid under this less conservative re-
quirement, and corresponds more clearly to the Lyapunov characterization of asymptotic
stability with respect to two measures, cf. e.g. [Mov60, LL93, TP00]|. We have however
decided to present the results using Euclidean norms on both sides for the sake of consis-
tency with global results (some of the tools used for UGPAS require bounds as (2.29)),
and as this constraint is usually satisfied in practice: see for instance Chapter 6.
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Remark 2.12 By noticing that the uniform asymptotic stability (UAS) of Bs on Ba im-
plies the UAS of Bs: on Bar for any &' and A’ satisfying 6 < ' < A’ < A, the conclusion
of Theorem [2.11 remains valid if (2.29) and (2.30) hold for all 6 small enough and all A
large enough. This relazed assumption, which can also be derived for Theorems 2.5 and
2.18, may be useful in control practice.

We now give the proof of Theorem [2.11.

Proof of Theorem|2.11. Let A be any positive constant and choose ¢ small enough that
ajaoaa(d) <A, (2.33)

which is always possible in view of (2.31). Note that this, in turn, ensures § < A. Let Vs
and 0*(0,A) then be generated by the assumptions. Applying Lemma 2.6 to V5 with
X =H(6,A) and k = 1 ensures the existence of a continuously differentiable function Vs a
such that, for all x € H(0, A) and all ¢ € R>o,

asa(lzls) < Vsalt,z) <asa(lz))

OVs,A (t,2) Vs A
ot 7 ox
hold with class Ko functions a; A and Qs satisfying

(tv :L')f(t, z, 0*) S —V(S,A(t, IL‘) (2.34)

Q(;,IA °© aé,A(S) - QEIA © aé,A(S) ) Vs € RZO .

Inverting the two sides of this inequality yields:

~—1 ~ _
QsA 005 A(8) = %,i oasa(s), Vs € Rxo.

It then follows from (2.33) that

dyp0tsa(8) <A. (2.35)
In addition, in view of (2.31) and (2.32), we have that, for all A > 0,
g% azp 0 @sa(8) =0 (2.36)
and, for all § > 0,
Aninooa;g 0 dg A(A) = 00. (2.37)

Before continuing, we present the following result which establishes uniform bounded-
ness of the solutions based on the non-positivity of the derivative of a Lyapunov function
on a sufficiently large domain.

Proposition 2.13 (Sufficient condition for UB) Let b be a positive constant. Suppose
that there exists a continuously differentiable function V and two class Koo functions a and
@ such that, for all t € R>q and all z € R",

alz]) < V(t, ) < al|z]) (2.38)
xr € H(a,b) = (?t/(t’ x)+ g‘;(t,m)f(t,x) <0, (2.39)

where a denotes a positive number such that a(a) < «(b). Then, for all ty € R>g, the
solutions of (1.1) satisfy

|$O| < a_l Og(b) = ’¢(t,t0,l‘0)| < b7 vt > 1.
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Proof of Proposition[2.13.  We claim that, whenever V(¢,2) = a(b), its derivative along
the trajectories of (1.1), which we denote by V, is non positive. To this end, notice that
(2.38) implies that, if V(t,z) = @(b), then x € H(a ! o a(b),b), which is nonempty (since
a(b) < @(b)) and included in H(a,b) (since it is assumed that @(a) < a(b)). Hence,
the claim is proved in view of (2.39). For any tp € R>¢ and any zp € R”, by defining
v(t) ==V (t, p(t, to, xo)), we therefore get that, for all ¢ > ¢,

V(L (L. to,20)) = a(b) = V(L (tto,0)) <0,
which ensures in its turn, by the continuity of V (-, ¢(-, to, o)), that
V(to,xo) < a(b) = V(t é(t, to,x0)) < a(b), Vit > to.
The conclusion follows by noticing that, from (2.38),

’l‘o| < a ! Og(b) = V(to,xo) < g(b)
V(t, (f)(t,to,ﬂj())) < Q(b) = ‘(f)(t,to,$0)| <b.

We now come back to the proof of Theorem 2.11. In view of (2.34) and (2.35), the
requirements of Proposition 2.13 are fulfilled with ¢ = ¢ and b = A and we get that

|$(]| SA = |¢(t,t0,3}‘0,0*)’ SAa VtZtO)

where

A=\ 0d54(A). (2.40)

Now that we have exhibited a ball Bz of initial states from which solutions never escapes
Ba, we can apply Lemma 2.7] (with® X = H(§,A), ¢() = 0 and k = 1) to (2.34) and
conclude that, for any xo € Bz and all £y € R>o,

|p(t, to, zo, 0%)| < Q(;_,Z 0657A<(5) + Q(;_’i <55’A(’m0’)6_(t_t0)> , Vit >t
Defining
§ = d § 0 @5 (0) (2.41)
and
Bsals,t) ==y A (@sals)e™), Vst e€Rx,

we thus obtain that, for all z9 € Bz and all tg € R,

’Qs(tvt()?an 9*)|S < ﬁé,A(‘$0| U= tO) ) Vit > to.

The conclusion follows by observing that (5 is a KL function for all positive § and A
and that, in view of (2.36), (2.37), (2.40) and (2.41), A and ¢ can be, at the same time,
arbitrarily enlarged and diminished respectively by originally conveniently choosing A and
J. |

®Note that H(5, A) # () in view of (2.35).
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Remark 2.14 We underline the slight difference between the requirements (2.31)-(2.32)
and their homologous for UGPAS (2.12) and for USAS (2.57). This is due to the possible
conflict that may arise from the simultaneous enlargement of the domain of attraction and
reduction of the size of the attractive ball’. To see this more clearly, imagine a Lyapunov
function bounded in the following manner:

5lal < Vialt,z) < Alel
then, for all A > 0 we have that

gin[l)ggi oasa(d) = %in% VA =0

and similarly, for all 6 > 0,

Jim 374 o asa(A) = Jim VG = oo,
which make (2.12) and (2.57) fulfilled. However, if we go back to the above proof of Theorem
2.11, we see from (2.40) and (2.41) that both A and & equal to v/OA. Hence we cannot, at
the same time, enlarge A and diminish §. The more restrictive assumptions (2.31)-(2.52)
dismiss this possibility.

We show how to apply this result through the following elementary example. We recall
that non-academic illustrations of the presented results are developed in Chapter [6.

Example 2.15 We assume that a non-vanishing perturbation b(t,q,q) and a higher or-
der nonlinearity c(t,q,q)q?, with |b(t,q,q)| < b and |c(t,q,q)| < ¢, now affect the system
originally presented in (2.1):

i = —01q — 024 + b(t, 4, 4) + c(t,4,4)¢° - (242)

Defining x := (q,4) " and 0 := (61,02) 7, this system can be rewritten as

0
& =Al)x+ B(t,z) + C(t,x), where C(t,x) := Ny 2.43
(6)s + Blt,2) + (1, 2) 0= ppap ) )
and A(0) and B(t,x) are respectively defined in (2.7) and (2.22). As proved in Examples
2./, the function
0 1. .
Vo) == 5 0* + 5 + ead,
where € is a positive constant, is positive definite and radially unbounded provided that
e < min{f1;1}. In the sequel, we assume 01 > 1 and ¢ = 1/2. For all x € R?, we also
know, from Example|2.8, that

OVy I 02 3b 3 3], 2
— A6 B(t < —= G — = — — - 20, —1—
S (AO)e + B(t, ) < ~gmin {6 = F = 203 Sp -1 - o
Furthermore, it holds that
oVy 1 . R T
5, (Ot 2) <2Q+Q> c(t,q,4)q" < 5elz|

"The author sincerely thanks Prof. A. R. Teel for his valuable comments in this direction.
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Therefore, the total time derivative of Vy along the solutions of (2.42) satisfies

: 1 6, 3b 3 3b
Vo(t, z) < —Qmin{ﬁl - —2—?—35|x\ gt — 1 m—36|x|} |z .

Let 0 and A be any given positive constants such that 5 < A. Then, for all x € H(0,A), it
holds that

. 1 . 02 3b _ 365 3b _ 2
< —— - = - — = = .
Vo(t,x) < 5 min {91 5 "5 3cA; 5 5 BCA} ||

Accordingly, by choosing®

05(6,A) = 13—0 + %b +4eA  and 03(6,A) = g + %b + 2EA (2.44)
we see that _
reHO,A) = Vplt,z)<—|z, (2.45)

and (2.30) follows. Furthermore, since 67 > 1, we get from (2.8), (2.9) and (2.44) that
(2.10) holds with the functions defined, for all s € R>q, by

1 11 1
asa(s) = 2min{9’f(5,A)—2; 2}32:452
1 1.3 23 2
EJ,A(S) = 2max{0’f(5)A)+2; 2}32— <12+5+20A> 32

Therefore, the requirement (2.31)-(2.32) imposes that, given any A, > 0, > 0, one can
find A > 6 >0 such that

23 8
A

/23 8b =
§+j+8CA

A
e

\Y,
P>
*

This is in particular fulfilled if

3 )
A2
23 | 8b ~
3 + S + 8CA

5 (23 + 8 + 80A> = 4?2 (2.46)

Multiplying these equations yields
0A = 6, A, . (2.47)

Injecting this into (2.46) and rearranging terms, we obtain the following second-order equa-
tion in A:

23A7
==

which clearly admits a positive solution. The corresponding § can then be obtained by (2.47)
and USPAS follows from Theorem|2.11. O

b
A2—4<25+5>A3A— 0,

*

8 As required, this choice ensures notably that 67 (5, A) > 1.
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Again, we can see that the requirements (2.31) and (2.32) follow from three combined
properties: the bounds on the Lyapunov function are affine in the tuning parameters, they
are quadratic functions, and the parameters are affine in 1/6 and in A. As illustrated by
the analysis of robustness of PID-controlled robot manipulators to external disturbances,
model imperfection and actuators’dynamics (c¢f. Section|6.1), these three conditions arise
quite often in practice. This justifies the following more restrictive but easier-to-apply
statement.

Corollary 2.16 (Simplified Lyapunov condition for USPAS) Let © be a subset of
R™. Assume that there exist real constants a;, @;, b;, bi, i € {1,...,n} and, forany 0 € ©, a
continuously differentiable Lyapunov function Vy satisfying, for all x € R™ and allt € R>,

n

> gy +b,05) lil* < Volt, ) < (@ + bith) |l (2.48)

i=1 i=1

Suppose further that, given any positive 5 and A such that § < A, there exist a parameter
6*(5,A) € ©, nonnegative constants c;, d;, e;, i € {1,...,n} and a class Koo function asa
such that, for all x € H(0,A) and all t € R>,

8‘/0* a‘/e* *
9 9 < _ .
ot (t,.’lf)+ o (t,$)f(t,{1?,9 ) = aé,A(|xD7 (2 49)
" di :
Gi(é,A):ci—i—g—keiA, Vie{l,...,n}. (2.50)
Then, under the condition that
a; +b;c; >0, Vie{l,...,n}, (2.51)

the system & = f(t,x,0) introduced in (1.3) is uniformly semiglobally practically asymp-
totically stable on the parameter set ©.

As to what regards the dimension of 0, a similar remark as that made for Corollary(2.9]
holds. Please refer to Chapter 6/for concrete applications in control of mechanical systems.

Proof of Corollary|2.16. Consider the two following constants:

ci= ZE{nlrunn} {a; + bjc;} and €:= ie?llf.ifn} max {m + Bici;gidi;giei} .

Using the notations of Theorem [2.11, we can pick, for all s € R>y,

1
asals) =cs®,  @sals)=¢ <1 + A+ 5) s2.

In view of (2.51), c is a positive constant so both a; A and @s A are class Koo functions. In
addition, the requirement -(2.32) becomes:

<C(1+A+1/5)>1/25

c

v
>
N

(rvasm) o




o1

For this, it is sufficient that

(1+A+1/6)6?

9
9

(1+ A+ 1/5)A2

= 2 (2.52)

= A?, (2.53)

where € := ¢/¢. Multiplying (2.52) and (2.53), we get that

IA = 6, A,. (2.54)
From this and (2.52), we obtain the following second order equation in A:

1
VAW

5A2—A3<1+ )A—Ai:o,
which admits a positive solution for all §,, A, > 0. The corresponding 4 is then obtained
by injecting this solution in (2.54). |

Example 2.17 Back to the system in Example|2.15, we see that the Lyapunov function

0 1
Vo) == 5" + 5 + ead,
satzsﬁes (2.48) withn =p=2,a; = —¢/2, by = b1 = 1/2, ay = (1 —¢€)/2, by = by = 0,
=¢/2 andaz = (1+¢)/2. Choosinge =1/2 and 61 > 1, we then have that a; + b;0; > 0
and @; + bi0; > 0 for all i € {1,2}. In addition, we recall from ( and (2.45) that,

given any positive constants 0 < § < A, the following implication
reHO,A) = Ve(z) < —|z)
can be obtained with the following choice of parameters:

10 4b 5%
01(6,A) = e + —+4¢A and 65(6,A) = 8 + =2 4+ 2eA.
3 1) 35
Hence, the requirements (2.49) holds, and USPAS can be directly concluded using Corollary
2.9.

O

2.1.3 Semiglobal asymptotic stability

In the presence of high order nonlinearities or imperfections in the model, solutions may
asymptotically converge, in a stable way?, to the origin itself, but on finite sets of initial
conditions only. If the basin of attraction can be arbitrarily enlarged by a convenient
choice of some tuning parameters, then we refer to this property as uniform semiglobal
asymptotic stability (USAS, see Definition 1.17). USAS therefore constitutes a stronger
property than the USPAS discussed in the previous section.

Similarly to UGPAS and USPAS, USAS can be established by studying the sign of a
Lyapunov function and its derivative in a restricted region of the state-space. We give this
result below.

9By this, we mean that the origin is asymptotically stable on the considered set of initial states.
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Theorem 2.18 (Lyapunov sufficient condition for USAS) Suppose that, given any
A > 0, there exist a parameter 0*(A) € ©, a continuously differentiable Lyapunov function
VA : R>0 X R — R0, and class Ko functions an, @a, aa such that, for all x € Ba and
all t € R>o,

an(lz]) < Valt,z) <aa(|z]) (2.55)
oVa oVa N
—_ = —_= < — . .
ot (t,{L‘) + Oz (t,x)f(t,x,& ) = O‘A(’x‘) (2 56)
Assume further that
Jim axloan(A) =, (2.57)

Then the system & = f(t,x,0) introduced in (1.3) is uniformly semiglobally asymptotically
stable on the parameter set ©.

This result shares many similarities with Theorems[2.5 and[2.11, so we invite the reader
to refer to these statements for comments on the bounds (2.55), (2.56) and (2.57). We stress
once again that the condition (2.57) is needed due to the possible parametrization of the
Ko bounds on the Lyapunov function by the radius A. With the help of the following
example, we show that it cannot be removed from the above statement.

Example 2.19 (The importance of (2.57)) Consider the second-order nonlinear sys-
tem, originally presented by Kokotovi¢ and Marino in [KM86]:
i‘l = X9

1
iy = —0%m — Oy + g,

where 0 denotes a positive gain. We claim that this system, together with the function
Vo(z) = %23 + 23 + xzotanhz

satisfies all the requirements of Theorem|2.18, except (2.57), but is not USAS. Indeed, its
total derivative yields

. 2 1
Vo(z) = —2023 + ga:% + a3sech?xy + tanhxy <—02x1 — Ozg + 3a:§> ,

from which we easily get that

. 62 0 0 lzo| 3
Vo(x) < —Exltanhazl — 03 — 5 (6 — 1) tanh®z, — (2 -1+ 3 + 32> z3.
Thus, given any positive A, it suffices to choose
2
0=0"(8):=3(B+A+ A?) (2.58)

to obtain that, for all x € Ba,
V@*(x) < —xitanhxy — m% < —zytanhx1 — zotanhxs .

Using the fact that (a + b)tanh(a + b) < 2atanh(2a) + 2btanh(2b) for all a,b € R>q, we
conclude that (2.56) holds with

an(s) = %tanh (g) ) Vs € Rxg.




23

In addition, with the parameter choice (2.58), the condition (2.55) is fulfilled on the whole
state-space R? with the following Koo functions:

an(s) = min {9*(A)2 - %; ;} gtanh (;) = Ztanh (g)
aa(s) = max {WA)Q +35 1} 52 = <9*(A)2 4 ;) 2

To sum up, the considered Lyapunov function is positive definite and radially unbounded,
and its total derivative along the solutions of the system is negative definite on a domain that
can be made arbitrarily large by enlarging the control gain. However, quite surprisingly, the
domain of attraction of this system cannot be arbitrarily enlarged. Actually, it was shown in
[KMS86] that it even vanishes as the gain 0 tends to infinity. More precisely, it is shown in
that reference that the set of initial conditions that generate unbounded trajectories contains
the set
{($1,:E2) € R? : 9.1‘% + %SH% > 33} .

Notice that the boundaries of this region cross the azes x1 = 0 and xo = 0 at xo = +3v/0
and x1 = :EB/\/E respectively. Consequently, no matter the parameter choice, the radius
of the largest ball contained in the domain of attraction cannot exceed 3, which contradicts
the property of USAS. In accordance with Theorem[2.18, we see that, indeed, the additional
requirement (2.57) is violated:

A . Atanh(A/2)/4
1 pr— —_—
Aim @a e an(d) _Alﬂnoo\/ Far iz 07

Proof of Theorem [2.18. Let A be any given positive constant and let Va and 6*(A) be
generated by the assumptions. The proof is based on similar arguments as the above cited
results, especially Theorem [2.11l The main difference stands in the fact that Lemma 2.6
does not apply as it imposes to work out of a neighborhood Bg, with § > 0, of the origin.
This prevents Va to be transformed into a more easily integrable function. To overcome
this apparent difficulty, we invoke the following result. The result was presented in [Son89a,
Lemma 6.1] in the case that « is smooth. The locally Lipschitz case is a direct consequence
of [Kha96, Lemma 3.4] and of the comparison theorem (cf. e.g. [Kha96, Lemma 2.5]).

Lemma 2.20 Let « be a locally Lipschitz function of class KC. Then there exists a class
KL function 3 such that any solution'® of the differential inequality

y < —aly) (2.59)

satisfies
’y(tayO)‘ Sﬂ(‘y(ﬂ?t)? VteRZO

9By this we mean that y(-,vo) satisfies §(t,yo0) < —a(y(t,yo0)) for all t € Rxo.
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First of all, we apply Proposition 2.13 with a = 0 and b = A to get that
T € BA = ¢(t, to, X0, 9*) € Ba, YVt > tg.

where

A:=a ' oan(A). (2.60)

It follows that, for any zo € Bz, Va(:, &(-, %0, %0, 6*)) is a solution of the differential in-
equality ¥ < —aa(y). From Lemma 2.20, we get that there exists a XL function Sa such
that, for all z9 € Bz and all tg € R>,

VA(t7 ¢(t7 to, o, 9*)) < ﬁA(VA(t()a xO)a t— tO) ) vt > to .
Using the bounds provided by (2.55), we conclude that
|¢(t7t0a$0ae*)’ gBA(|$0|7t_t0)7 \v/tztOv

where BA(s,t) = g&l o@a o Oa(s,t) for all s,t € R>g. USAS then follows by observing
that Ba is a KL function and that, in view of (2.57) and (2.60), A can be made arbitrarily
large by originally picking A large enough. |

Through the following example, we next illustrate the utilization of Theorem 2.18.

Example 2.21 We now assume that the perturbation b(t,q,q) is identically zero, but the
higher order nonlinearity c(t,q,q)q?, with |c(t,q,q)| < ¢, still affects the system originally
presented in (2.1):

G = —01q — 024 +c(t,q.4)d" (2.61)

Using = as (q,q) ", this can be written
t=A0)z+C(t,x),

where A(0) is defined in (2.7) and C(t,z) is introduced in (2.43). As proved in Examples

2./, the function

01 1. )
Vo(z) := 5(12 - 5(12 +eqq,

where € s a positive constant, is positive definite and radially unbounded provided that
e < min{f1;1}. In the sequel, we assume 61 > 1 and ¢ = 1/2. Following a similar
reasoning as in Erample [2.15 by picking b = 0, it easily follows that, for any A > 0, the
total derivative of V satisfies

Z| <A = Ve(t,z) < |z, (2.62)

if the tuning parameters are chosen as

10 8
07 (A) = 3 T 4eA  and 05(A) = 3t 2¢A . (2.63)

Similarly to Example|2.15, the additional requirement (2.57) can be established and USAS
then follows from Theorem 2.18. U

Again, a simplified version of this result can be proposed in the context of polynomial
bounds on the Lyapunov function.
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Corollary 2.22 (Simplified Lyapunov condition for USAS) Let © be a subset of R™.
Assume that there exist a positive number p, real constants a;, @;, b;, b;, i € {1,...,n}
and, for any 6 € ©, a continuously differentiable Lyapunov function Vy satisfying, for all
x € R" and all t € R>y,

n n

> (s + bif) |wil” < Volt, ) < (@ + bibh) |l (2.64)
=1 =1

where, for alli € {1,...,n} and all 0 € ©, a; + b;0; > 0 and a; + b;0; > 0. Suppose further
that, given any A > 0, there exist a parameter 6*(A) € ©, a class K function aa such
that, for all x € Ba and all t € R>,
OV« OV«
ot ox

If furthermore, for all i € {1,...,n}, it holds that

(t,z) + (t,x)f(t,x,0") < —as(|z]). (2.65)

; lim o

then the system & = f(t,x,0) introduced in (1.3) is uniformly semiglobally asymptotically
stable on the parameter set ©.

The proof of this result is voluntarily omitted as it consists in the same arguments as
for Corollary [2.9.

Example 2.23 Back to the system in Example|2.21, the Lyapunov function

Vo(a) i= o + 5+ <ad,
2 2
satisfies (2.64) with n = 2, a; = —€/2, by = by = 1/2, a5y = (1 —¢€)/2, by = by = 0,
a; =¢/2 and ay = (1 +¢)/2. Choosing € = 1/2 and assuming that 01 > 1, we have that
a; +b;0; > 0 and @; +b;0; > 0 for all i € {1,2}. Moreover, we recall from (2.62) and (2.63)
that, given any positive constant A, the parameters choice

10 8
07 (A) = 3 +4¢A  and 65(A) = 3t 2¢A |

yields .
x € Ba = Vor () < —|2|? .

Hence, the requirements (2.65)—(2.67) hold, and USAS follows from Corollary!|2.22. O

2.2 Converse results

The crucial role played by Lyapunov functions in the study of the stability of dynamical
systems suffers no objection. In the previous section, we have shown that this mathematical
object notably constitutes a powerful tool for the particular framework of semiglobal and
practical stability. In informal terms, we have shown that, according to the case, it is
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sufficient that the total derivative of such a function be negative out of a small neighborhood
of the origin, or inside a large domain of the state-space, to ensure practical stability or
semiglobal stability respectively, provided an additional requirement on its lower and upper
bounds (¢f. Theorems 2.5 2.11and [2.18).

A long story. While this type of sufficient Lyapunov conditions for stability initially
mainly motivated the control community, the converse question, i.e. whether stability
implies the existence of a Lyapunov function, was already posed in 1892 by Lyapunov
himself in his fundamental work [Lya92] and the first necessary and sufficient conditions
for uniform stability were already proposed in [Per37].

Among the most significative contributors to the field, one can cite Massera who pro-
posed in [Mas49] a Lyapunov function for continuously differentiable time-invariant sys-
tems with an asymptotically stable origin, based on a lemma that now bears his name (cf.
e.g. |Kha96, Lemma A.1]). Malkin proposed in [Mal54] an extension to this result for
time-varying systems, provided that the stability property and the differentiability of the
right-hand side term both are uniform in time. The first theorem of this type for uniform
global asymptotic stability of the origin was proposed by Barbashin and Krasovskii, cf.
[BK54|''. Kurzweil then managed to relax the regularity assumption made on the right-
hand side term to simply continuity, and gave the first results in the case when stability
is not defined through the Euclidean norm but through a more general measure, opening
the door to set-stability and partial stability, ¢f. [Wil69]. These results have been adapted
to stability with respect to two measures by Lakshmikantham and Salvadori in [LS76],
including, as a particular case, the set-stability introduced in Definitions 1.9) 1.10 and
1.11.

Since then, many extensions of these results have been made to differential inclusions
(¢f. |[TPO0] and references therein) and to the formalism of input to state stability: [SW96,
ASWO00a, SW01, KSWO01]|, but this escapes the scope of the present section (please refer
to Chapter |5 for an application of the Lyapunov characterization of integral input to state
stability). See also [TP00] for a more extensive review on converse theorems.

A converse result for USPAS ? In what follows, we derive a necessary Lyapunov con-
dition based on the assumption that the system under consideration is USPAS or USAS.
This study is not only of mathematical interest. Indeed, as already said, the latter sta-
bility properties can be established through various means, and not all of them provide
an associated Lyapunov function. This is notably the case with averaging techniques: in
[TPA99|, Teel et al. show that, if its averaged is globally asymptotically stable, then the
original system is USPAS. These notions will be more detailed in the sequel, and be at the
basis of an illustrative example (see Section 3.1.2).

We also present in the sequel (¢f. Chapter [3) tools that establish USPAS of systems
in cascade, based notably on the USPAS of each subsystem when disconnected and on the
knowledge of a Lyapunov function for the driven subsystem. Providing the existence of a
Lyapunov function for a certain class of dynamical system, based on the single fact that the
system is USPAS, can therefore be of great help. Such a result should therefore provide
a positive function, with negative derivative, in a restricted region of the state-space.
The generated Lyapunov function and its Iy should also fit the additional requirements
(2.31)—(2.32) or (2.57) according to the case.

1Tn this reference, the mistaken English translation “in the large” actually refers to “in the whole”, i.e.
global. Please see [LLLP06] for clarifications about these notions.
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As it is further explained in the next chapter, the gradient of the Lyapunov function
associated to the stability property of the driven subsystem plays an important role in the
context of stability analysis of cascades. Additionally to the classical features, the converse
tool we present below therefore needs to provide a time-invariant bound on the gradient
of the Lyapunov-like function it generates.

These two latter features constitute the main difference with other similar results avail-
able in the literature, specifically [TP00, LSW96|. We emphasize that, even though the
construction from [TP00] also allows to construct bounds on the gradient of the Lyapunov
function, this seemingly requires to impose the unnecessary restrictive assumption that the
function f in (1.3) be locally Lipschitz in time.

2.2.1 Semiglobal practical stability

In what follows, we present a converse theorem for uniform semiglobal practical asymptotic
stability which is tailored for cascaded systems. We start by constructing a Lyapunov
function for systems for which a given ball is uniformly asymptotically stable. Compared
to the sufficiency result proposed in the previous sections, it requires additional smoothness
of the right-hand side term. More precisely, we assume the following.

Assumption 2.24 (Regularity) There exists a nonnegative constant fo and a continu-
ous nondecreasing function L such that

lf.0) < fo,  VteR>o, (2.68)

of
i

< L(|z]), vVt € Ryo, VzeR". (2.69)

It is worth mentioning that the origin is not required to be an equilibrium for the
system under consideration. This indeed fails in many situations when studying practical
stability. See Example [2.8 for instance. In this respect, see [BCI05] for an analysis of
the local (more precisely, in the asymptotically stable ball Bs) behavior of the trajectories
generated by a particular class of practically stable systems.

Lemma 2.25 (Converse Lyapunov function for UAS of a ball) Letd > 0 and A >
0 be some given constants such that A > §. If Bs is uniformly asymptotically stable on Ba
for the dynamical system & = f(t,x) introduced in (1.1) then, under Assumption 2.2/, for
any &' € (0;A), there exist: a continuously differentiable function V : R>g x R™ — Rx,
class K functions o, @, o, and a continuous nondecreasing function c : R>o — R>q such
that, for all x € Ba and all t € R>, the following holds:

a(lzls) < V(E,2) <alz)) (2.70)

lz| > 8 = aa‘t/(t, z)+ g‘;(t,x)f(t,x) < —a(V(t,x)) (2.71)
oV

’%(t,x) < c(]z|). (2.72)

In addition, if 6 = 0, then &' can be picked as 0 too. Furthermore, if (1.1) is time invariant
(i.e. & = f(x)), then V can be picked time-invariant as well. O
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Remark 2.26 It is worth pointing out that, for any fized §, the bounds (2.70) imply the
bounds (2.29) required in Theorem[2.11. Indeed, we have that, for all x € H(d', A) and all
t e RZ()i

a(lz]) < V(t,z) <a(|z|)

where & 1s defined as

v | oa(s—9) if >0
afs) = { ap(s) if s€l0;¢),

ap designating any class K function satisfying ap(d') = (6" — 9).

Proof of Lemma[2.25. Let the assumption of UAS of Bs on Ba generate 8 € KL such
that, for any x € Ba and any t € R>¢, the trajectories of (1.1) satisfy

ot 2)|s < (|2, 7 —1), VT =t (2.73)

Note that, without loss of generality, # can be considered as a “class Ko L” function,
meaning that it is of class Ko in its first argument!'?. By Massera’s lemma (see [Mas49]
or e.g. [Kha0l, Lemma C.1]), there exists a class Koo function n, with 7" € K, such that

/OOO 0o BA, T)dr < o (2.74)

/ 7 (B(A, 7))l BAO+TAT 4 (2.75)
0

Inspired by Massera-Malkin’s constructions, we show that Lemma[2.25 can be established
with the function satisfying, for all z € Ba and all t € R>,

Vit,z) = /too n(|o(r,t,x)|5)dr . (2.76)

In the case of a time-invariant system @ = f(x), we have that ¢(7,t,x) = ¢(7,0, x), which
already shows that V' can be picked as a time-invariant function.

Proof of bound (2.70): In view of (2.73), V' can be bounded in the following way:

oo

(o9}
Vit,z) < / noB(a|,r - t)dr :/ noBal,1dr = a(al).  (277)
t 0
From (2.74), we see that a(|x|) is finite for all z € Ba. In addition, it clearly vanishes
at zero. Furthermore, we claim that it is continuous at zero. To see this, consider any
sequence {x;};eny of Ba that converges to 0 as i tends to infinity. Then, for all 7 €
R>0, lim; oo n o B(|xi|,7) = 0 since n € Ko and § € KL. In addition, for all i € N,
nofB(|x;i|, ) < noB(A, ) which, in view of (2.74), is integrable. It follows from Lebesgue’s
dominated convergence theorem (cf. e.g. [KF70, p. 303]) that lim; .., a(|x;|) = 0, which
establishes the claim. In turn, since @ is continuous at zero and finite everywhere else, it
can be upper bounded by a class oo function a@.
Moreover, since V' is nonnegative, the bound V' (t,z) > a(|z|s) is trivially satisfied for
all x € Bs and any class K function a. So, from now on, we consider that |x| > 4.

121f 3 is of class K \ Koo in its first argument, we replace it by, for instance, B(s,t) = (s, t) for s < A
and B(s,t) := B(A,t)s/A for s > A.
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In this situation, we have that |z|; = |z| — J. Using (2.73) and the continuity of the
solution ¢(-,t,x), there exists a positive time ¢; such that |¢(t +t1,t,2)|s = |z|5/2 and
|p(7,t,2)|5 > |z|5 /2 for all T € [t;t + t1]. We show that this time ¢; cannot be too small.
To that end, notice that the mean value theorem ensures the existence of a time to €]0; ;[
such that

|¢(t + tla ta ‘/E)|6 — |¢(t) ta IE)|5
tq

- [ptioea)] = -| (ot aly)

T=t+1t2 T=t+1o

It follows that

t1 sup
TEtt+t1 [

Since |¢(7,t,x)| > § for all T €]t;t + 1], we have that

f(r,0(7,t, x))T(Z)(Tv t,x)
[o(7, 8, 2)] '

In addition, from Assumption and using again the mean value theorem,

0
E(‘qs(ﬂux)’é) 2

> > [o(t t,x)|5 — ot + tr, 1, 2) |5 = ks, (2.78)

2 (16(r.,2)ls) = o (16(r,1,2)| — 8) = (2.79)

lft,2)| < fo+ L(|z|) |=| , Ve € R", Vt € R>g.
From this and (2.73) it follows that
[f(ro(r,t,2))| < fo+ L(B(Jz], 7 — t) +0)(B(|z] , 7 — t) + ).
Thus, injecting this bound into (2.79), it holds that, for all z € Ba \ Bs and all 7 €]t; t+4],

O (166 t.2)15)| < fo-+ LIBA.0) + ) (B(A,0) +9)

< fo+ L(B(A,0) + A)(B(A,0) + A) =: fur(A)  (2.80)
since A is assumed greater than 0. In addition, this together with inequality (2.78) implies

\l’|a

2fu(A)

From this, we can exhibit a class Ko, lower bound on V' as follows:

t1 >

o) t+t1
Vit z) = / n(\6(rt,2)])dr > / n(\6(rt,7)];)dr

t

Since, by construction, |¢(7,t,x)|s > |z|s /2 over the interval [t; t + t1], it follows that

Vi) 20 (5 )0z (152) g = allely). (281)

Note that « is, as required, a class Ky function.

Proof of bound (2.71): The total time derivative of V' is given by

. ov ov

Vi) = G (to) + Grita)ftn) = —no(ttally) + [ (ot ta)lg)dr

+ [ gtietntallirsa). (252
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Let us introduce the following notations:
T tw) = DBt 2),  bulrta) = e(B(r,t, 7))
t\T, 1, _at ) Uy 9 x\T, 1, _8.23 s Uy .

Proceeding as in the proof of bound (2.70) we obtain that, for all 7 > ¢t > 0 and € H(J, A),
such that |¢(7,t,z)| > 4,

%(ﬁ(@(ﬂt@\g)) = ¢(7—7t7x)T¢t(7—vt7x)n/(|¢(7—vtax)|5)a (283)
%(n(|¢(7—vtax)|5)) = gb(T,t,l‘)Tgbm(T,t,l’)n,(|¢(7,t,$)‘5). (2'84)

Define I'(t,x) := {7 >t : |¢(,t,x)| > d}. Since f(¢,z) is assumed to be locally Lipschitz
in z uniformly in ¢, the solution ¢(7,t, ) is continuous with respect to each of its three
arguments (see e.g. |KhaOl, Theorem 3.5|). In particular, given 7 > 0 and =z € R", if
we have that |¢(7,t*,x)| < § for some t* > 0, then there exists an interval [t*;¢* + t.],
with ¢. > 0, on which |¢(7,t*,z)| < 0. Hence, we have that n(|¢(7,t,z)|5) = 0 for all
t € [t*;t* + t.] and, consequently,

d
5 MUe(T,1,2)]5) =0, VT €Rx\ T,

which in its turn implies that
9 0
| sttt = [ o). (2.85)
From (2.83) and (2.85), we get that
9
| atoeaalr = [ o) oo (ot )l)ir.
t r
and, similarly,
>0 T /
| gptlertalpir = [ orta) ot taml(ortalpar. (250
t T r
Thus, in view of (2.82), we obtain that
V = —Tl(|$|(s) + /F¢(Tvta$)T(¢t(T’ta .T) + gbx(T,t,:L')f(t,x))nl(|¢(7,t,$)|5)d7 :

Proceeding as in [Kha01l, Exercise 3.30, p.110|, we see that ¢y(-, ¢, )+ ¢z (-, t,x) f(t,z) = 0,
S)

oV oV
E(tam) + %@x)f(tﬂ) = —n(|zls) -
Now, consider any ¢’ > §. Then, for all |z| > ¢, it holds that |z|; = || — d. Therefore
) 0 )
oy = S ol + 5 ol =6 2 T2 el 2 e lal
where € := 6/5/,%1 is a constant depending only on the ratio ¢’/§. Thus, using the previously
established upper bound on V', we obtain that, for all z € Ba\Bs,
ov ov
7(t,fl}) + 7(t7$)f(ta$) < —Oé(V(t,iL‘)) )

ot ot
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where « is the class Ky, function defined as
afs) :=nlca1(s)). (2.87)

Proof of bound (2.72): According to (2.86), we have that

/ ) %("7(|¢(T,t,:v)!5))d7 = / O(r,t, ) o7, t, )0 (|(7, 8, 2)|5)dT . (2.88)
t r

Notice that ¢, is a solution of

09z
or

() = 2L (1,01, t,2)) 0 1,3) bl ) = 1.

Integrating from ¢ to 7 > ¢ on both sides of the first equality above and using (2.73), we
obtain that

-
¢z (T,t, ) — I < L(B(|x],0) + 5)/ Ox(s,t,2)ds .
t
Hence, applying Gronwall-Bellman’s inequality,

(7, 8, )| < L BUl0+0)(r=t) < L(B(2].00+0)

From this and (2.88), we see that
’8‘/

Ox (t,2)

< [ 1ot b KA (o1, 2)

< /F(ﬁ(lx\ 7 —t) 4 8) L PEORIT0y (B(|a) 7 — 1)) dr
< [T Blal 70+ 5)HIBODD o o~ yar
< /0 N (B(|z|,7) + A) LBADFDTY 6 A 1) dr .

In view of (2.75), this integral is finite for any « € Ba. Hence, it can be upper bounded
by a continuous increasing function ¢(|x|), which completes the proof. [ |

Based on Lemma 2.25 and Remark |2.26, we are now ready to introduce a necessary
condition for uniform semiglobal practical asymptotic stability in terms of a Lyapunov-like
function.

Theorem 2.27 (Converse Lyapunov function for USPAS) Assume that the system
& = f(t,z,0) introduced in (1.3) is USPAS on © C R™ and that, for any 6 € O, there
exist a nonnegative constant fo and a continuous nondecreasing function Lg such that, for
all v € R", Inequalities (2.68) and (2.69) hold for fo(t,x) := f(t,x,6). Then, for any
A > 0 > 0, there exists a parameter 0*(5,A) € O, a continuously differentiable function
Vsa 1 Rsg x R" — Ry, class Ko functions A5 A A5A; A5A and a continuous positive
nondecreasing function cs A such that, for all x € H(5,A) and all t € R>q,

asalz]) < Voalt,z) <asa(lz]) (2.89)
V; Ve
5 (ta) + e (L) f(1,0.67) < —apa(Via(t ) (2.90)
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AV
‘ 54 < csalz)). (2.91)

Ox ()

In addition, if (1.8) is time-invariant (i.e. © = f(x,0)), then Vsa can be picked as a
time-invariant function too.

Proof of Theorem [2.27. By assumption, for any A > ¢ > 0, there exists a parameter
0*(0,A) € © such that Bs is UAS on Ba for the system & = fi(t,x) := f(t,z,0*). The
conclusion follows from Lemma [2.25 and Remark [2.26. |

Note that, Theorem 2.27 cannot be rigorously considered as a converse of Theorem 2.11]
since the requirements (2.31) and (2.32) are missing: the above result does not provide
any information on the dependence of the upper and lower Ko, bounds on the generated
Lyapunov function Vj A in the radii 6 and A.

A careful inspection of the above construction of a; and @sa convinces that, even
by assuming uniformity of the ICL estimate in the radius A, we cannot ensure (2.32) in
general.

Nevertheless, we may expect these bounds on V5 A to be independent of the radius &
provided a similar assumption on the KL estimate of the solutions. We refer to the latter
property as 0-USPAS. As we will see in Chapter 3, this class of USPAS systems deserves
a particular interest when dealing with cascaded systems.

Definition 2.28 (5-USPAS) The system (1.3) is said to be 5-USPAS if, given any A >
0, there exists a KL function Ba such that, for any 0 < § < A, there exists a parameter
0*(9, A) € © such that the solutions of (1.3) satisfy, for all tg € R>o and all xy € Ba,

|¢(t7t0a$0)|5 SﬁA(|$0|at_t0)a vVt > 1o

A quick comparison between Definitions[1.19 and[2.28|shows that 5-USPAS is a stronger
notion than USPAS. We stress that many definitions of practical stability existing in the
literature do impose that the KL estimate be uniform in §. This is for instance the case
of [NL04, ST03] but, overall, of the semiglobal practical stability property guaranteed
by the main result in [TPA99|, which studies the USPAS of systems based on averaging
techniques. As this fact constitutes the main motivation for the converse result below,
we state it as an independent proposition. Its proof follows from Proposition 1.16 and a
careful reading of the argument of the main result in [TPA99].

Proposition 2.29 (Averaging induces 5-USPAS) If the origin of the averaged system
(in the sense of [TPA99, Definition 2[) of the system & = f(t,z) introduced in (1.1) is
globally asymptotically stable, then © = f(t/0,x) is 0-USPAS on the parameter set Rg.

Under the stronger assumption of §-USPAS, we show that the bounds on the generated
Lyapunov function, on its derivative and on its gradient may be chosen disregarding the
size of the ball to which solutions are required to converge. This fact will be used in the
next chapter for the study of cascaded §-USPAS systems.

Corollary 2.30 (Converse Lyapunov function for -USPAS) Assume that the sys-
tem © = f(t,x,0) introduced in (1.3) is §-USPAS on © C R™ and that there exist a
nonnegative constant fo and a continuous nondecreasing function L such that (2.68) and

(2.69) hold for all 0 € ©, all x € R™ and all t € R>g. Then, for any A > 0, there exist
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class Koo functions an, a@a, aa and a continuous positive nondecreasing function ca and,
for any § € (0;A), there exist a parameter 6*(0,A) € © and a continuously differentiable
function Vs A : R>g x R" — Rxq such that, for all x € H(J,A) and all t € R>,

an(|z]) < Vsalt,z) <aa(lz]) (2.92)
82? (t,2) + 8?;% (t,2) f(2,6%) < —aa(Voa(t ). (2.93)
‘ag‘f (t,2)] < caljz]). (2.94)

In addition, if (1.3) is time-invariant (i.e. & = f(x,0)), then Vsa can be picked as a
time-invariant function too.

With this construction, we see that the requirement (2.31) of Theorem 2.11] linking the
d-dependence of the Ko, bounds on the Lyapunov function, is trivially satisfied. Indeed,
due to the independence of a s and @a in 9, and their belonging to class K, it suffices, for
any 0, > 0, to pick § small enough in order to ensure ggl oaa(d) < d.. See Theorem
in the next chapter for an application of this result to the stability analysis of cascaded
systems.

Proof of Corollary|2.30. In the proof of Lemma [2.25, we see that, if the L estimate [ is
independent of §, then so is 1 (see (2.74) and (2.75)). In the same way, the independence
of fo and L in 0 makes fy; independent of ¢ (¢f. (2.80)). Hence, in view of (2.77) and
(2.81), it is also the case for the functions « and @. Moreover, by picking 6’ = 20 (and, in
accordance, A > 2§), we get that € = 1/2 (see “Proof of bound (2.71)”), which shows with
(2.87) that a can be chosen independently of ¢ as well. Notice finally that this is also the
case for the function ¢ (¢f. “Proof of bound (2.72)”). [

A converse Lyapunov function for parameterized nonlinear time-varying systems has
already been proposed in [Hop66], based on an assumption of asymptotic stability of the
origin uniformly in both the initial conditions and the parameters. We stress that the
results presented below do not fit into this framework. Theorems [2.27 and 2.31 indeed
deal with the original definitions of USPAS and USAS (¢f. Definitions 1.17 and [1.19),
which, as already seen, do not require uniformity in the tuning parameter §. Concerning
Corollary even though it requires more uniformity (the ICL estimate of the solutions
needs to be the same disregarding the ball to which solutions converge), this requirement
remains less conservative. In addition, contrarily to Theorem [2.27] and Corollary [2.30,
the main result in [Hop66] only addresses stability of a single point. Finally, the latter
reference does not provide any bound on the gradient of the generated Lyapunov function.

It should also be pointed out that a converse result for “practical” stability was proposed
by Kaplan in [Kap73]. However, this result fundamentally differs from the results presented
here as this notion of “practicality” was only concerned with a fized compact neighborhood
of the origin. No possibility of reducing this ball at will, through the tuning of some
parameter, was assumed for this stability property.

2.2.2 Semiglobal asymptotic stability

For the sake of completeness, and as it directly follows from the results presented in the
previous section, we state here a converse result for uniform semiglobal asymptotic stability.
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Theorem 2.31 (Converse Lyapunov function for USAS) Assume that the system
z = f(t,z,0) introduced in (1.3) is USAS on © and that, for any 6 € O, there exist
a nonnegative constant fg and a continuous nondecreasing function Lg such that, for all
x € R", Inequalities (2.68) and (2.69) hold for f,(t,x) := f(t,x,0%). Then, for any A > 0,
there exists a parameter 6*(A) € O, a continuously differentiable function Va : R>oxR™ —
R>o, class K« functions ap, o, aa and a continuous positive nondecreasing function ca
such that, for all x € Ba and all t € R>g,

an(lz]) < Va(t,z) <aa(lz])

P8 () + 52 (20 f(1,,0%) < s (Va(1,2)
v,
(Tgf(t,x) <ca(lzl).

In addition, if (1.3) is time-invariant (i.e. & = f(x,0)), then Va is also a time-invariant
function.

No such converse result is provided for uniform global practical stability in this doc-
ument. There are two main reasons for this. The first one is a theoretical obstacle: the
above proof techniques extensively make use of the fact that the state is constrained into a
compact region of the state space, which is not the case when considering global properties.
The second reason stands in the fact that, in most cases, the easiest way to guarantee UG-
PAS is to apply Theorem 2.5, which is based on Lyapunov arguments. This observation
makes the utility of such an extension questionable.

Conclusion. This chapter proposes tools related to semiglobal and/or practical sta-
bility properties. Due to the wide generality of the used concepts, and mostly the possible
non-uniformity of the estimate of solutions in the tuning parameter, a specific attention
needs to be paid in the Lyapunov analysis. Compared to existing results, the sufficient
conditions for USPAS, USAS and UGPAS presented here impose indeed an additional
assumption that links the bounds on the Lyapunov function. Furthermore, the necessity
of imposing such an additional condition is shown through a counter-example. Converse
results, for USPAS and USAS, are also presented. The use of most of these results is
illustrated by means of academic examples.




65

Chapter 3

Stability of nonlinear time-varying
cascaded systems

Divide to reign. The stability analysis by Lyapunov’s second method requires the con-
struction of a strict Lyapunov function, as for instance Theorems 2.3, 2.5, 2.11 and [2.18.
This direct approach may be particularly hard for complex or large-scale nonlinear time-
varying systems. A natural way of simplifying this problem consists in dividing the system
into simpler interconnected subsystems, and to analyze each subsystem separately.

Many tools in the literature provide stability properties of interconnected subsystems
based on some information of each component taken individually. Probably the most
fundamental result for interconnected system is the small gain theorem for input-output
stability, originally introduced by Zames [Zam60, Zam66a, Zam66b| and Sandberg [San63],
which studies the general interconnection of two input-to-output stable systems:

"

2

Y2 n

229

Jus

Figure 3.1: General interconnection of two dynamical systems.

A more modern perspective of input-output stability, notably involving the system’s
state (thus leaving behind Zames-Sandberg’s “black-box” approach) has been taken in
[JTP94, CTP95, JMWO96, Tee96, LWCO05]. While providing a strong tool for the stability
analysis of interconnected nonlinear systems, it is also at the basis of many control designs,
cf. e.g. |PW96, JMIT|.

A particular interconnection: the cascade. In many applications, the system may
be represented as a unidirectional interconnection of dynamical subsystems, as represented
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by Figure[3.2.

Uz 22 Yo N Z 1 Y1

Figure 3.2: Cascade interconnection of two dynamical systems.

The wide occurrence of such a structure in control practice stems from many facts.

It was shown in [Vid80], based on graph-theoretic decomposition techniques, that any
interconnected system can be rewritten as a cascade, modulo some renumbering and, over-
all, aggregation of the state variables. While this result may be surprising at first sight, it
results from elementary manipulations and illustrates the generality of the cascade concept
in systems theory. Of course, such decomposition is all the more efficient as the original
system is less interconnected.

In addition, the cascade structure sometimes arises naturally, due to the physical struc-
ture of the system. For instance, in Chapter |6, we study the PID control of robot ma-
nipulators. The approach consists in studying the mechanical (i.e. the robot arm) and
the electrical (i.e. actuators) parts separately. This approach is similar to that adopted
in [PO96]. As one could intuitively expect it, the overall system consists in a cascade
interconnection of these two parts. Please see [PLS99, Lef00, LFP00, dNCO00] for other
examples of concrete applications.

But this decomposition into cascades can also be done artificially by designing a control
law that puts the system in a cascade structure, ¢f. [KKK95, LLLP05, Lef00, SLO3| for
example. Such an approach is referred to as cascades-based design.

A wide literature. In any of these situations, in order to decompose a complex problem
into simpler ones using theorems for cascaded systems, it is crucial to answer the question
whether the stability properties of both subsystems taken separately remain valid for their
cascade interconnection.

From a theoretical point of view, this problem is not trivial. It has attracted the interest
of the control community since [MMT78], where graph theory was used to ensure local and
global stability properties of the cascade, based on the assumption that the interconnection
terms are all “stability preserving mappings”. In [Vid80], Vidyasagar made use of converse
Lyapunov results to show that uniform local asymptotic stability is naturally preserved by
the cascade structure.

Nevertheless, the global case presents harder difficulties. Intuitively, we could expect
that, in order to preserve the global asymptotic stability of the cascade ¥; — X9, it would
suffice that the convergence rate of the driving subsystem Yo be sufficiently high. This
intuition is wrong in general, as proved in [SK91| through an elementary example involv-
ing a linear driving subsystem which yields a stronger peaking of the transients as the
convergence is made faster. This transient peaking is enough to destabilize the cascade.
Similarly, as shown in [SK03, TH04], neither integrability nor even exponential decay of
the solutions of the driving subsystem is sufficient to preserve global asymptotic stability.

Beyond these obstacles, some sufficient conditions for the preservation of global asymp-
totic stability under the cascade interconnection have been proposed in the literature. In
general terms, a fundamental result for the analysis of global stability for nonlinear systems
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states that the cascade of uniformly globally asymptotically stable systems (UGAS) remain
UGAS if and only if its solutions are uniformly globally bounded. See [SS90a, Son89b| for
the proof of this statement in the case of autonomous systems and [PLO01] for the case of
time-varying systems.

Some work has also been done in order to advantageously replace the requirement of
(uniform) global boundedness by more easily checkable conditions. In [SS90a], these take
the form of a robustness Lyapunov condition on the driven subsystem that needs to hold
for large values of the states. In [PL98], uniform global boundedness of solutions is replaced
by the requirements that the interconnection be affine in the state of the driven subsystem,
that the solutions of the driving subsystem be integrable and that a Lyapunov function,
with a convenient bound on its gradient be known for the driven subsystem. In [PLO1],
other sufficient conditions were provided, expressed as dominance relationships involving
the bounds on the Lyapunov function and on its gradient together with the interconnection
term. In [AAS02|, an elegant reformulation of the integrability condition posed in [PLO01]
was established in terms of integral input to state stability. More precisely, it is imposed
that the driven subsystem be integral input to state stable and that a condition linking the
dissipation rate of the driving subsystem to the iISS gain of the driven one holds (please
see Chapter |5 for details).

The obvious drawback of these results is that they impose global properties on each
subsystem which, as seen in the previous chapters, are impossible to achieve in many
situations. Also, the solutions may only asymptotically reach a neighborhood of the origin
instead of the the origin itself. Below, we extend these results to uniform semiglobal and/or
practical asymptotic stability?.

A word on stabilization. Although this does not constitute the subject of this discussion,
it is worth stressing that a considerable work in the literature has been devoted to the
stabilization of cascaded systems. The problem is well documented for local properties
(cf. e.g. [Vid80, BI91, CP91]). Nevertheless, in [Sus90], an example illustrates that global
and semiglobal stabilizability intrinsically generate additional obstacles compared to local
results. It was further shown in [SKS90] that, given any strictly non-minimum phase linear
driving subsystem, there exists a globally asymptotically stable driven subsystem such that
their cascade is not globally stabilizable.

To face this problem, several stabilization approaches were adopted. In [Ort91], Ortega
follows a passivity approach to ensure global asymptotic stabilizability of the cascade. In
[JSK96, MSJ97|, a Lyapunov function is explicitly designed for a wide class of cascaded
systems, based on the knowledge of a Lyapunov function for each subsystem and the
assumption of a linear growth of the interconnection. An extension of this, allowing a
polynomial interconnection, was later proposed in [MSJ99]. See also [STK97] an references
therein.

Global and semiglobal stabilization of cascades via output feedback also gave rise to
challenging problems, as stressed through examples in [MPD94|. Please refer to [MT91,
KKM92, TP94, SAT02] for various results in this area.

!Set-stability will be discussed in a cascade context in Chapter 4.
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3.1 Semiglobal practical asymptotic stability of cascaded sys-
tems

In this section, we address the stability analysis problem for cascades of time-varying
systems that are uniformly semiglobally practically asymptotically stable (USPAS). We
establish that, under a uniform semiglobal boundedness condition on its solutions, the
cascade of two USPAS systems remains USPAS. More precisely, we consider cascaded
systems of the form

jjl = fl(t7$1791)+g(t,x79) (313)
ty = fa(t,x2,02) (3.1b)

where z 1= (v{,25)" € R™ x R"2 0 := (0],05)" € R™ x R™2 t € R, f1, f2 and g
are locally Lipschitz in state and satisfy the Carathéodory conditions.

The subsystems &1 = fi(t,z1,61) and @2 = fa(t, x2,02) are respectively referred to as
driven and driving subsystems, whereas g(t,x, ) denotes the interconnection term.

In order to simplify the statement of our results, we first introduce the following nota-
tion.

Definition 3.1 (D-set) For any A > § > 0, the D-set of the dynamical system & =
f(t,x,0), introduced in (1.3), is defined as

Ds(6,A) := {6 € R™ : Bs is UAS on Ba for (1.3)} .

In other words, given two constants 6 > 0 and A > 0, the set Dy(d,A) contains
all the values of the tuning parameters that make Bs uniformly asymptotically stable on
Ba for the system (1.3). Notably, if Df(0,A) N O # 0 for all A > § > 0, then (1.3)
is USPAS on ©. Note that we have the property that, if 6’ < § and A’ > A, then
Ds(8',A") C Ds(,A). However, in Definition [1.18, nothing is assumed concerning the
structure of Dy(6,A). For instance, it may even comsist in a single parameter for each
pair (4, A). This is worth mentioning, since, as stated in Chapter 2 other definitions of
semiglobal practical stability in the literature (see e.g. |TPA99, MA00, NL04, TNMO05|)
do impose that all the parameters in a neighborhood of zero generate the same radii A of
the ball of attraction and § of the ball to which solutions converge, implying notably that
Dy(0, A) contains an open neighborhood of zero.

All the results presented in this chapter assume the following structure for the inter-
connection term g.

Assumption 3.2 (Boundedness of the interconnection term) The function g is uni-
formly bounded both in time and in 02 and vanishes with xo, i.e., for any 01 € ©1, there

exists a nondecreasing function Gg, and a class K function Wy, such that, for all 65 € O,

all x € R™ x R"2 and all t € Rxo,

\g(t,x, 9)| < G91(‘$|)qj91(‘x2’) :

3.1.1 With a Lyapunov function for the driven subsystem

The following result provides sufficient conditions for the preservation of USPAS under cas-
cade interconnection, based on the knowledge of a Lyapunov function for the x1-subsystem.
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Theorem 3.3 (Lyapunov USPAS + USPAS + UB = USPAS) Under Assumptions
3.2, 3.5l and 3.6, the cascaded system (3.1) is USPAS on ©; x Os.

Assumption 3.4 (USPAS of the driving subsystem) The system (3.1b) is USPAS
on O,.

Assumption 3.5 (Lyapunov USPAS of the driven subsystem) Given any Ay > 61 >
0, there exist a parameter 07 (51, A1) € O1, a continuously differentiable Lyapunov function
Vs,.ay, class Koo functions as A, @s.ay, 06y, and a conlinuous positive nondecreasing
function c5, A, such that, for all x1 € H(61,A1) and all t € R>,

as, A, ([11]) < Vo, (8 21) < @5y, (1)) (3.2)
OV oV
WAL (f,21) + B (4 10) fi(t, 21, 07) < —as, a, (|21]) (3.3)
ot a$1
oV;
St < e (3.4)

Assumption 3.6 (Boundedness of solutions) There exists a positive constant Ag such
that, for any given positive numbers 01, Ay, 02, Ag, satisfying A1 > max{d1; Ao} and
Ay > 02, and for the parameter 07 (01, A1) as defined in Assumption|3.5, there ezxists a pa-
rameter 03 € Dy, (62, A2) N Oa (cf. Definition 3.1) and a positive number (81, 62, Ay, As)
such that the trajectories of (3.1) with 6 = 0* satisfy

|zo| < (81,02, A1, As) = |6(t, to, 0, 0%)| < Ay, Vit > 1.

In addition, given any A, > d, > 0, there exist some positive 61, A1 and Aq, with Ay > 61,
such that, for all 52 € (0; Ag),

min {Aq; Ag;v(d1, 02, A1, Ag)}

Y

A, (3.5)
O - (3.6)

IN

1 —
masc {82: a5\, © sy, (01) }

An application of this result is presented in Section 6.1: we establish that the PID
control of robot manipulators is USPAS in presence of external disturbances, model im-
perfections and when taking into account the dynamics of the actuators.

In view of Theorem 2.11, Assumption 3.5] corresponds to the Lyapunov sufficient con-
dition for USPAS of the zero-input x1-subsystem, with the additional condition of a bound
on the gradient of Vi, a,. In turn, we stress that the requirement corresponding to (2.32)
is no longer needed under Assumption [3.6. We state the above result under the more re-
strictive assumption than simply “USPAS” since our proof relies on the explicit knowledge
of the Lyapunov function Vs A,. However, as we show in the next section, Assumption
3.5/ can be relaxed based on the converse result presented in Section 2.2 provided that f;
is sufficiently smooth and that a stronger notion of USPAS (namely, §-USPAS) is assumed
on the driven subsystem.

Roughly speaking, Assumption [3.6 imposes that the solutions be uniformly bounded
by A; for all initial conditions in a domain that can be arbitrarily enlarged by conveniently
picking &1, Ay, 62 and As. Note that Proposition 2.13 provides an efficient tool to check
Asgsumption 3.6 in specific control applications.
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Remark 3.7 Assumption|3.6 may be relaxed to uniform boundedness on Ba, X Ba, pro-
vided that it holds uniformly in A1 and As, i.e., provided that the class K function n and
the constant p in Proposition|1.12 are independent of Ay and As.

Remark 3.8 We stress that, similarly to Theorem[2.11, Theorem|3.3 still holds when (3.2)

1s replaced by the less conservative requirement:

ag a, ([21]5,) < Vaya (8 21) < @ a, (J21]) -

Please refer to [CL06a, CL0O6b] for details. Furthermore, in view of Remark 2.12, it is in
fact sufficient that the requirements of Assumption[3.5 hold for all small §; and all large
Ay,

Remark 3.9 For clarity, we stated the result by assuming that the bounds on the inter-
connection term are independent of the parameter 05. We stress that, if needed in specific
applications, Theorem[3.3 still holds when Assumption[3.2 is replaced by the following: for
any 0 € ©1 x Oq, there exists a nondecreasing function Gy and a class K function Wy such
that, for all all z € R™ x R™ and all t € R>y,

’g(t7$’ 9)| < G0(|~T|)‘1’9(|x2|) )

and, for all Ay > 61 > 0, all Ay > 0, and for the parameter 07(61, A1) introduced in
Assumption|3.5, it holds that

[sup [Go(D1)Tp(20y) : 0 € {07(01, A1)} % pf2(52,A2)}] ~0. (3.7)

lim
52—0

This appears more clearly along the proof below.

Proof of Theorem |3.3. The argument consists in constructing some balls Bs and Ba and
a KL estimate for the solutions of the cascaded system, based on the respective balls for
the z; and the xo subsystems.

For any given positive d1, A1, d2 and Ag satisfying A; > max{dy,Ag} and Ay > 0o,
let v(d1, 02, A1, Ag) be generated by Assumption 3.6/and define

A :=min {Aq; Ao (61,02, A1, Ag)} . (3.8)

Next, choose any 07(01,A1) € ©; satisfying Assumption 3.5/ and any 65(d2, Az) in the
intersection of Dy, (d2, Ag) and O, given by Assumption We show that, provided that
01, 0o are sufficiently small and that Ay, Ay are large enough, there exists 6 € (0;A)
such that Bs is uniformly asymptotically stable on Ba for the system (3.1) with 6* =
(0x7,057)T. To that end, we first show that there exists a positive d3 such that the ball
Bs, is uniformly stable. More precisely, we construct 17211"?22 € K and d3 > 0 such that,
for all xg € Ba,

51,6
|1, to, x0,0%)[5, < Ma) A, ([70l) - (3.9)

Then, we use this property to prove that a ball, larger than Bs,, is uniformly attractive on
Ba and we construct a KL estimate for the solutions. Finally, we show that the estimates
of the domain of attraction Ba and of the ball Bs to which solutions converge can be
arbitrarily enlarged and diminished respectively.
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Proof of uniform stability: Consider the function Vs, A, generated by Assumption 3.5 and
let Lemma 2.6, with X = H(d1,A1) and k = 1, generate a function Vs, a,, class Ky
functions s, A, » @s,.n, and a continuous nondecreasing function &, o, such that, for all
X € H(51,A1) and all t € RZO,

Q(Sl,Al(‘xl’) < V51,A1 (t,fL‘l) < &51,A1(’x1|)

oV, aV,
%(t,xl) 4+ SO ) fi(t 2, 0F) < —Vsy.a, (8, 21)
Vs, A ~
‘a;ll(t,an) < &y, (|21])
and, for any s € Rxo,
Q5_11,A1 o &51’A1 (3) = Q&{Al 0 Qg Ay (S) . (310)

The total time derivative of Vs, A, along the trajectories of (3.1) with 6 = 0™ yields

Vs, . A,
ot

Therefore, from Assumption (3.2, it holds that, for all ;1 € H(d1, A1) and all ¢t € R,

8V517A1 (

V51,A1 (ta 331) — (t,l‘l) + taxl)(fl(ta xlaef) +g(t7x79*))

Vsian(tw) < =Vsa, (G a1) + 5, a, (J21])Gor (|2]) Wos (|22 -
Let Assumption 3.4 generate a KL function (5, A, such that, for all zo9 € Ba, and all
to € R>o,
|pa(t, to, 20, 03)]s, < Bsy,n, (|20l st —t0),  VE>to.
Using the shorthand notation ¢1(t) for ¢i(¢,t0,x0,0%) and vi(t) := Vs, A, (L, 01(t)) we
get, in view of (3.8) and Assumption 3.6, that, for all zg € Ba and all ¢t > ¢y such that
¢1(t) S H((Sl,Al),

01(t) < —vi(t) + Cs1,Aq (Al)Ggf (Al)\Ifgf (ﬁ527A2(|ZE20| ,t—to) + 52) . (3.11)

Thus, we have
O1() €HOLAY = 4i(t) < —ui(t) + A, (o) (3.12)
with
AR (5) 1= 65,00 (A1) Gy (A1) Wy (B00(5,0) +02) . Vs € Rp.

The rest of the proof of uniform stability consists in integrating (3.12) in order to construct
a bound like (3.9). To this end, we apply Lemma 2.7/ to (3.12) with V' = V5, A,, k =1,
c= c‘kf& and X = H(J,A), to get, in view of (3.8) and Assumption [3.6, that, for all
xg € Ba and all £ >ty > 0,

~— ~ 51,6 ~_ = 41,0
6101 < 70, (00 (81) + %8, (D)) + G5, (.00 (1mol) + o5, (Jol))

Define the following:

o - 51,8 -~ 41,0
d3 = Q(Sll,Al (a51,A1 (51) + CA11,2A2 (0)> + g5117A1 (CAI%QA? (0))

= 5t (G (01) + Gy, (A1) Gy (81) Wy (32))

+ a5, (561,A1 (A1)Gor (A1) Wor (52)) (3.13)
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and, for all s € R>o,

51,6 a1 (= 51,6 ~ 1 (= 51,6
) = gt (@aa (00) + QA (9)) + a5, (T80 () + XA, (9))
~—1 — 41,0 -1 41,0
= a5l a, (. 00) + 375, 0)) - a5, (R0, 00)
Then we conclude that, for any x¢g € Ba and all {5 € R, it holds that

51,6
[91(B)l5, < M, A (mol),  VE=to. (3.14)

02

Uniform stability of Bs, on Ba follows by noticing that 77211’ A, 1s a class K function. This

can be seen by recalling that 051’522 is a continuous increasing function.

Proof of uniform attractivity: Consider again (3.11). Since S35, A, is a KL function, there
is a time ¢; > 0, independent of ¢y and zq, such that

Boyno (At —t0) <,  Vt>to+t.
Hence (3.11) implies that, for all z¢ € Ba,
¢1(t) € H(d1,A1) = 01(t) < —vi(t) + &5y,0, (A1) Gor (A1) Wpx (202) -

Applying again Lemma 2.7 and recalling that, from Assumption 3.6} |¢1(to + t1)| < Ay, it
follows that, for all zg € Ba, all typ € R>g and all ¢ > tg + ¢4,

615, < agla, (@5.0,(01) + &5, (A1)Go; (A1) W (262))
iy, (Fonan (A)e (71070 4 5 ) (A1) Gy (A1) Wg; (282) )

Defining

A
ty =t +In (%Al( 1)>,

SN (61)
we see that, for all ¢ > ¢y + to,

|61(8)] < 64 := 2d5" A (@5, (61) + 5,0, (A1) Gor (A1) Wp; (262)) - (3.15)
In other words, we have, for all zg € Ba,
61(t)l5, =0,  Vt=to+12.

Finally, let
d :=max {da; d3; da} . (3.16)

Then we see that (3.14) implies that |¢1(t)[s < n(|zo|) for all t > to. From this and what
precedes it is not hard to see that, for all xy € Ba,

41,0
|61(8)]5 < a2, (o )e™ 072 - e > ¢

Thus, recalling that to depends neither on ty nor on xg, and defining

91,0 61,0 —9(f—
ﬁAli 22( t) = nAI{,QAz (5)26 At—t2) 4 B3, (Svt)Q ) Vs, t € R>o,
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we conclude that, for all xg € Ba,
41,0
|9t to, 20, 07)[5 < Ba, A, ([Tol st — o), Vt >t .

Uniform asymptotic stability of Bs on Ba follows by noticing that ﬂgll’ézz is a class KL
function. We stress that the dependence of the KL estimate in § and A (through A, Ag,
01 and d2) is not in contradiction with Definition [1.19.

Proof of “semiglobal practical”: It is only left to show that § and A can be arbitrarily
reduced and enlarged respectively. To this end, consider any desired A, > §, > 0 and
choose d1, A1, Ag in such a way that, for all 6 € (0; Ag),

: _ _ . = 0
min {Ala A27 7(517 527 Alv AQ)} 2 A* 9 gdl];Al o a51,A1 (51) - Q(SI:I;AI o a61,A1 (51) S Z* bl
as ensured by Assumption (3.6 (see also (3.10)). Then, we get directly from (3.8) that A
can be made greater than or equal to A,. Furthermore, it is possible to choose do small
enough that
1 = . 0
&5, a, (@51,00 (1) + @y 2, (A1) Go; (A1) Wg; (202)) <
since Qd_ll Ay and \119{ both belong to class Ko and none of the above involved functions
depend on d2. In other words, we can ensure that d; < dx (¢f. (3.15)). Invoking again
Assumption [3.6] and noticing that d3 < &4, we conclude in view of (3.16) that we can
achieve 6§ < 4.

In the case that the functions G and ¥ depend on 63, and provided that (3.7) holds,
we see from (3.15) and (3.16) that § can still be made arbitrarily small by picking do small
enough. This justifies Remark [3.9. [

3.1.2 Without a Lyapunov function for the driven subsystem

The main result of the above section provides a tool for the stability analysis of uniformly
semiglobally practically asymptotically stable systems placed in cascade (cf. (3.1)):

&1 = fi(t,z1,61) +g(t,z,0)
jf2 = f2(t>$2792)'

However, one may argue that it requires the explicit knowledge of a Lyapunov function
for the driven subsystem, which may not be direct when the stability property under
consideration is established by other means as, for instance, averaging techniques [TPA99].

Based on Corollary 2.30, we may simplify the statement of Theorem 3.3 in this direction,
provided that function f; involved in (3.1) is sufficiently smooth and that the z1-dynamics
enjoys the stronger property of 0-USPAS (¢f. Definition [2.28). Roughly this means that
the KL estimate of its solutions is the same disregarding the amplitude of the steady-state
error we want to impose. More precisely, we assume the following.

Assumption 3.10 (USPAS of each subsystems) The subsystems &1 = fi(t,z1,61)
and io = fo(t, x2,02) in (3.1) are USPAS on ©1 and O2 respectively.
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Assumption 3.11 (Regularity of fi;) There exist a nonnegative constant fy and a con-
tinuous nondecreasing function L such that, for all 61 € ©, all x1 € R™ and all t € R>y,

‘fl(t70791)| Sfoy ‘%(t,xlyel)

< .
o < L)

Theorem 3.12 (USPAS + USPAS + UB = USPAS) Under Assumptions 3.2,[3.6,
3.10 and|3.11] the cascaded system (3.1) is USPAS on the parameter set ©1 X Os.

Proof of Theorem[3.12. The proof follows directly from Theorem (3.3 by observing that
Assumptions [3.10 and [3.11/ imply, via Theorem [2.27| Assumption [3.5. |

Assumption[3.6 may remain hard to check in practice. The following result states that,
if the driven subsystem is 6-USPAS, then this assumption is no longer required in the case
when solutions of the cascade (3.1) are uniformly globally bounded wuniformly in 6.

Assumption 3.13 (6-USPAS and USPAS) The subsystems i1 = f1(t,21,01) and &9 =
fa(t,xo,02) in (3.1) are respectively 6-USPAS on ©1 and USPAS on Oa.

Assumption 3.14 (UGB, uniformly in ) There exist n € Ko and p > 0 such that,
for all xg € R™, all tg € R>q and all 6 € O, the trajectory of (3.1) satisfies

|¢(t7t07x070)| S?’](|$0|)+ILL, VtZtO

Corollary 3.15 (6-USPAS + USPAS + UGB = USPAS) Under Assumptions|3.2,
3.11, 3.13 and|3.14}, the cascaded system (3.1) is USPAS on the parameter set ©1 x Oa.

Proof of Corollary[3.15. In the statement of Theorem|3.3, pick Ag as p and y(d1, d2, A1, Ag)
as 7 1(A1 — p). Then (3.5) can be fulfilled by simply picking A; and Ay large enough.
In the same way, due to the §-USPAS assumption on the driven subsystem, the functions
as, A, and ag,; A, generated by Corollary 2.30/ are independent of d;. Hence, it suffices to
pick d; small enough in order to fulfill (3.6). [ |

Corollary [3.15 is particularly useful in applications where USPAS of the driven sub-
system is obtained without a Lyapunov function, e.g. via averaging: we illustrate this
through the following example.

Bounded control of the persistently excited double integrator

Consider the output feedback stabilization of the following double integrator:

iil = X9 (3.17&)
iy = —p(t/0)*u (3.17b)

where u is the control input and 6 is a free positive parameter, under the following condi-
tions and assumptions:

- gIVen Upmag, it is required that |u(-)| < Umaz;

- only x; is measured;




5

- p is piecewise continuous and |p(t)| < pas, with par > 0, for all ¢ € R>o;
- p(t)? admits an finite average, i.e. the following quantity exists and is finite?:

1

T
2 . 2
= 1 — ; 1
Pay = Jim /O p(7)%dr; (3.18)

For the case that p(-) = 1, the control literature provides bounded state feedbacks u*(x)
that globally asymptotically stabilize the origin of the system (3.17), ¢f. e.g. [SS90b, SY91,
Tee92|. The output feedback control of this system is also considered in [Tee96, Theorem
7]. In this context, we pose the following problem: provided that we design an observer for
(3.17) such that the estimated state, Z, tends to x exponentially, does u*(z) stabilize the
origin of (3.17)? We give a positive answer to this question by showing, via Theorem [3.12,
that u*(2) stabilizes (3.17) in the semiglobal practical sense. For clarity of exposition we
prove the result for a specific «*(x) but it holds for other bounded smooth controls.

We stress that the double integrator (3.17) is a particular case of systems of the form
& = f(t,z) + g(t)u where the “input gain” ¢(¢) is not invertible (since p(¢) may vanish for
some values of ¢). This situation may appear in physical systems: see for instance [AL02].
Another motivation is to control by feedback linearization: if g(¢) were invertible, we might
use u = g(t)~'[~x + f(t,2)]; since it is not, but instead persistently exciting, can we use
u = g(t)[—x + f(t,z)]? For further motivations see [LCBCO05|. Please note also that the
above problem was solved in [SCM ™ 06|, with a linear control, by assuming that the whole
state is measured. However, it involves a deeply different approach than the one presented
here.

Proposition 3.16 Let p be a bounded piecewise continuous function satisfying

im - [ (s)%ds = p,
im — 5)°ds =
T—oo T 0 b Pav>

where pqgy denotes a finite constant. Then the system (3.17) in closed loop with u*(&) :=
—kitanh(z1) — katanh(Zo) with ki, ko > 0 and the observer

T1 = Z9— 1T (3.19&)
To = —p(t/0)*u* (%) — oy (3.19b)

where 0; > 0 and T; := &; — x; for all i € {1,2}, is USPAS on the parameter set R~o. O

The above result provides a separation principle for the bounded output feedback con-
trol of (3.17). If w* is a bounded state feedback that stabilizes the nominal system (i.e.
when considering p(-) = 1), then it suffices to evaluate it based on the state estimates to
achieve the control objective in presence of a persistently exciting signal p(-). This is at the
price of a slight degradation of performance since the global asymptotic stability enjoyed
by the nominal state-feedback controlled yields uniform semiglobal practical stability for
the output-feedback controlled perturbed system.

We stress that an alternative to the proof presented below can be derived from [Tee96,
Theorem 7| and [TPA99]. Roughly speaking, the former reference ensures the stabilizability
of (3.17) by output feedback when p is replaced by its average. The latter reference can

*Note that pZ, is strictly positive due to the persistency of excitation assumption on p(t).
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then be invoked to conclude USPAS of the original system. The arguments presented
below however illustrate better the results of this section, which mainly motivated their
exposition.

Proof of Proposition|3.16. We start by exhibiting the cascaded structure of the closed-
loop system. To that end, let f(t,z,6) denote the right hand side of (3.17) with u = u*(x)
and define

olt..2.0) = o1/ . ).

91(z1,Z1) + g2(w2, T2)

where g;(x;, z;) := —k;(tanh(Z; + x;) — tanh(x;)) for all ¢ € {1,2}. Then, the closed loop
system takes the form

&= f(t,z,0)+g(tz,T,0) (3.20a)
- _ _ L _61 ].
xr = Az, A= < 0 0 ) . (3.20b)

First notice that Assumption 3.2 is fulfilled with
G(s) := 2p3; (k1 + ko) and  U(s) =s.

This can be seen by observing that [tanh(a + b) — tanh(b) | < 2|a| for all a,b € R. In
addition, A is clearly Hurwitz for any positive values of £; and £5, which shows that (3.20b)
is globally exponentially stable (and a fortiori USPAS). To show USPAS of & = f(t,z,0)
we proceed as follows. Define the following function:

fav(x)=[ o }

—Payu” ()

Then, for each positive T, we have

T T
o) = [ )it <[i2, = 3 [ ot G+ )

From (3.18), it follows that there exists a class £ function o such that

1 T
foole) = [ 2. 2)dt] < ()l (7). .21

Consequently, fq4, constitutes an average of f in the sense of [TPA99|. Under the assump-
tions made on (3.17), @ = fu,(x) is globally asymptotically stable. From [TPA99| and
Proposition [2.29, it follows that (3.17) with v = u*(z) is 6-USPAS on the parameter set
R<o. This establishes Assumption

Uniform boundedness may be shown as follows. Direct computations show that, pro-
vided that € > 0 is picked sufficiently small, the following function is positive definite and
radially unbounded

1
V(z) = 3 |za|* + k1p? In(cosh(z1) ) + etanh(z;)tanh(zs)

i.e. there exist class K functions o and @ such that a(|z]) < V(z) < a(|z|). In addition,
V' is independent of the tuning parameter . Furthermore, V has a negative definite
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derivative along the trajectories of & = f,,(x). More precisely, for sufficiently small £ > 0
there exist g1, g2 > 0 such that

ov
87(35)]0@1;(%) < —qisech?(z9)tanh?(x1) — gaaatanh (o) = —W ().

x
Note that W is a continuous positive definite function independent of 6 as well. In addition,
noticing that |tanh(a + b) — tanh(d) | < 2|a| for all a,b € R, it holds that

ZZ(W“’ %2, 9>’ < |wa + etanh (w1 )sech® (x2) | 23, (k1 + k2) -

It follows that there exists a nonnegative constant A such that, for all z € R?, all t € R>q

and all § € Ry,
ov
ox

Observing that forward completeness of (3.20) follows from the boundedness of p(-), and
recalling that both V and W are independent of 8, we conclude, proceeding as in the proof
of [PLO1, Theorem 4], that the solutions of the overall system are UGB uniformly in 6.
The result follows from Corollary 3.15! |

x| >1 = g(t,:v,:f,@)‘ <A\ (z).

3.2 Semiglobal asymptotic stability of cascaded systems

This short section exhibits the intrinsic similarities between USPAS and USAS. We show
that almost all the results presented above can be directly adapted to uniform semiglobal
asymptotic stability modulo little additional requirements due to a technical obstacle in
the proof.

3.2.1 With a Lyapunov function for the driven subsystem
Theorem 3.17 (Lyapunov USAS + USAS + UB = USAS) Under Assumptions|3.2,

3.18,13.19 and|3.20, the cascaded system (3.1) is uniformly semiglobally asymptotically sta-
ble on the parameter set ©1 X Os.

Assumption 3.18 (USAS of the driving subsystem) The system (3.1b) is USAS on
Os.

Assumption 3.19 (Lyapunov USAS of the driven subsystem) Given any A; > 0,
there exist a parameter 07(A1) € ©1, a continuously differentiable Lyapunov function Va, :
R>o xR"™ — Rxq, class Koo functions aa,, @a,, a positive constant ka, and a continuous
positive nondecreasing function ca, such that, for all 1 € Ba, and all t € R,

QAl(“TlD < VAl(taxl) < aA1(|xl‘)

OVa, OVa, .
ALt ) + =2t 2 fi(t, 21, 07) < —ka, Va, (£, 21) (3.22)
8t 81)1
oV,
Tt < ey ().
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Assumption 3.20 (Boundedness of solutions) There ezists a positive constant g such
that, for any given positive numbers A1, As, satisfying A1 > Ag, and for the parameter
07(A1) as defined in Assumption[3.19, there exists a parameter 65 € Dy,(0,Az) N Oy (cf.
Definition|3.1) and a nonnegative constant v(A1, Ag) such that

li Ay Ay) =
ALA{gmv( 1,Q2) = +o0,

and the trajectories of (3.1) with 6 = 6* satisfy
’1‘0’ SV(ALAQ) = ‘¢(t7t07x070*)‘ SA17 VtZtO

The proof of Theorem [3.17 is not detailed as it follows along the same lines as the
proof of Theorem [3.3. Roughly speaking, it suffices to pick 1 = d2 = 0 in the latter to
get the result. However, from a technical point of view, Lemma 2.6/ does not apply to this
situation, which prevents Va, to be transformed in a more convenient form. This explains
why the total derivative of Va, is assumed to satisfy the more conservative bound (3.22).

Yet, by observing that the requirement § > 0 in Lemma 2.6|serves only to establish a
time-invariant bound on the gradient of the transformed Lyapunov function, and as this
fact follows as an immediate consequence of the time invariance of the original function Va,,
we can show that the following statement holds. It particularly fits (but is not restricted
to) the situation when the driven subsystem is time-invariant.

Assumption 3.21 (Lyapunov USAS of the x;-subsystem) Given any A; > 0, there
exist a parameter 07(A1) € ©1, a continuously differentiable Lyapunov function Va, :
R™ — R>g and class Koo functions an,, @a,, aa, such that, for all x1 € Ba, and all
te Rzo,

an, ([z1]) < Va, (z1) < @a, (1))

OVa,
81’ 1

(z1) f1(t, 21,07) < —aa, (Jz1]) -

Corollary 3.22 Under Assumptions|3.2,13.18,13.20 and|3.21, the cascaded system (3.1)
s uniformly semiglobally asymptotically stable on ©1 X Oa.

We stress that, in this situation, the bound on the gradient of the Lyapunov function
follows trivially from the time-invariance and continuous differentiability of the latter.

3.2.2 Without a Lyapunov function for the driven subsystem

For the sake of completeness, we present below a result that allows to establish USAS
of a cascaded system, without requiring the knowledge of any explicit Lyapunov function.
Similarly to USPAS, it requires additional smoothness of the driven subsystem’s dynamics.

However, due to the technical obstacle underlined above, we further need to assume
that the driven subsystem is time-invariant. In other words, we consider cascaded systems
of the form

T = f1(l’1,91)+g(t,l‘,9) (3.23&)
l"g = f2(t,fl)2,92). (3.23b)
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Assumption 3.23 (Regularity of fi;) There exist a nonnegative constant fy and a con-
tinuous nondecreasing function L such that, for all 61 € © and all x1 € R™,

|f1(0,61)] < fo, ‘(5'31,91) < L([z1]) -

61’1

Assumption 3.24 (USAS of each subsystem) The subsystems &1 = fi(x1,01) and
(3.23b) are USAS respectively on ©1 and ©,.

Theorem 3.25 (USAS + USAS + UB = USAS) Under Assumptions|3.2,3.20,13.23
and|8.24, the cascaded system (3.23) is USAS on ©1 X Oa.

The proof follows along the same lines as the one of Theorem [3.12 by picking §; =
d2 = 0. The main difference stands in the fact the time-invariant bound on the gradient
of the Lyapunov function generated by Lemma [2.6 cannot be ensured. This difficulty
is overpassed by the fact that the driven subsystem is time-invariant, which makes the
Lyapunov function provided by Theorem [2.31| time-invariant too. The autonomous bound
on its gradient then follows directly from its continuous differentiability.

3.3 Global practical asymptotic stability of cascaded systems

We now present theorems for UGPAS of systems in cascade. While the proof of the stability
analysis of cascaded systems for USPAS and USAS have a lot in common, the results below
shows that global properties have to be treated in a slightly different way. Although they
make the problem of the existence of a converse Lyapunov function harder (as pointed out
in Section[2.2.2), they allow to provide very efficient tools to establish uniform boundedness
of the overall cascade.

We recall that we consider cascaded systems of the form

1 = filt,z1,601) +g(t,x,0)
o = fa(t,z2,02),

originally introduced in (3.1).

Theorem 3.26 (UGPAS + UGPAS + growth restriction = UGPAS) Under As-
sumptions 3.2, 13.28 and|3.27, the cascaded system (3.1) is uniformly globally practically
asymptotically stable (UGPAS) on the parameter set ©1 X Oa.

Assumption 3.27 (UGPAS of the driving subsystem) The system (3.1b) is UGPAS
on Oy,

Assumption 3.28 (Lyapunov UGPAS of the driven subsystem) Given any 6; >
0, there exist a parameter 07(51) € O1, a continuously differentiable Lyapunov function
Vs, class Koo functions a5, @s,, as, and a continuous positive nondecreasing function cs,
such that, for all x1 € R™ \ Bs, and all t € R,

g, ([21]) < Vo, (t,01) < @, (1)) (3.24)
oV oVs
o (bm) + G2 (6w it 01, 07) < —a (fo ) (3.25)
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oV,
)| < enon (3.20
511190%;11 oas, (01) =0. (3.27)

In addition, for the function Gy, of Assumption|3.2, it holds that, for all 51 > 0 and as s
tends to 400,

051(3)G9T(s) = (’)(a(gloagllog(gl(s)) (3.284a)
as,(s) = O@s(s). (3.28b)

In view of Theorem [2.5] it is clear that Assumption |3.28 implies that the zero-input
x1-subsystem is UGPAS on ©;. We state the above result under the assumption that
we know a Lyapunov function Vj, satisfying the above conditions as the latter implicitly
impose uniform global boundedness of the solutions of the cascaded system.

In this respect, we stress that, compared to Theorems (3.3 and [3.17, Theorem |3.26/
does mot require the boundedness of solutions a priori. This constitutes a very enjoyable
feature in applications, as the corresponding requirement may easily be checked based on
the simple inspection of the interconnection term and the bounds on the assumed Lyapunov
function, its derivative and its gradient, for the driven subsystem.

Regarding Assumption (3.2, it is worth emphasizing that, at the exception of few arti-
cles, as [SAT02, JSK96], it is typically required that the dependence of the interconnection
term in z7 be at most linear (i.e. Gy, affine); see e.g. [SJK97|. In fact, such a be-
havior of ¢ is implicitly imposed by (3.28), but only when |z1| tends to infinity. In this
respect, we underline the similarity existing between the requirements (3.28) and [PLO01,
Assumption 4| (which borrows from [SC64|): in the particular case that, for all 6; > 0,
im0 @5, (5) /s, (8) < 00, they are even equivalent.

Remark 3.29 For clarity, Theorem |3.26 is stated under the assumption that the bound
on the interconnection term is independent of 2. For the case that this does not hold, as
it appears more clearly along the proof, it is sufficient to additionally impose that, for all

01 S 617
lim <sup {90,,6,(d2) : 02 € Dy, (82, 00) N @2}) =0.

d2—0

The proof of Theorem [3.26 relies on the following result that also has interest at its
own. Similarly to Lemma [2.6, it provides sufficient conditions to transform a “classical”
Lyapunov function into another one that presents useful properties of its gradient and its
total derivative.

Lemma 3.30 Let 6 > 0 be some given constant and let X be a subset of R™\ 105’5. Suppose
that there exist a continuously differentiable function V : R>g x X — R>q and class K
functions o, @, o and continuous functions c, u : R>o — Rx>q, with ¢ nondecreasing, such
that, for all x € X and all t € R>,

alz]) < V(¢ x) < a(|z])

oV ov
o (b2) + 5 (a) f(tz) < —a(la]).
‘8V

S (6] < cllan) (329)
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and, as s tends to 400,

c(s)u(s) = O(aoa loa(s)) (3.30)
als) = O(a(s)), (3.31)

Then, for any positive k, there exists a continuously differentiable function V : R>ox X —
R>q, class Koo functions & and @ and a nonnegative constant 1 such that, for all x € X
and all t € R,

a(lzl) < V(t, @) < a(|xl) (3.32)
(?Z(t,x) + ?;(t, x)f(t,z) < —kV(t, x) (3.33)
)| ulah < (). 330
and it holds that
aloa(s)=atoa(s), Vs € R>g. (3.35)

g

The above result is very similar to Lemma [2.6 that was mainly used to establish
semiglobal properties, at the difference that a stronger bound (3.34) on the gradient is
provided for the generated Lyapunov function. This additional feature allows us to get
rid of the assumption of uniform boundedness of solutions. Please refer to the proof of
Theorem [3.26 below for further details. Before, we give the proof of the above lemma.

Proof of Lemma 3.30. The proof is inspired by [PW96, Proposition 13|, originally pre-
sented in [LL69]. Let a be a class K function with the following properties:

- a(s) = %a oa 1(s) for all s > a(d),
- a(s) < s forall s < «(d)/2,
- GI(O) - 07

and define p as the following function

p(s)zexp(/lsac(l:_)>, Vs € R>g.

Firstly observe that, in view of (3.31), the integral in the exponential diverges. In the same
way, since a(s) < s in a neighborhood of zero, the integral tends to —oo when s tends to
zero. It can also be seen that p is continuous and increasing, which makes it a class Ko
function. Also, based on [PW96, Lemma 12|, p is continuously differentiable too. Hence,
by operating the transformation V := po V| we see that V is continuously differentiable as
well, and that (3.32) can be established with the following class K, functions: & :=po«
and @ := poa. In turn, we have that, for all s € R>o,

“od(s) = (a0 p ) o (pod)(s) = a

(=}
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In addition, for all z € X, V(¢,x) > a(d), hence

)+ o) (6a) <~V (Ea)alle)
—7]}@’ 7) aoa ! z
S TaViLo) Vt.=)
< —kV(t,x).
Furthermore, for all z € X, we have that
)| e < V(e )elelnlel) < o0 Dsclelutiah.

The bound follows by recalling that X C R™\ 1%5 and by noticing that (3.30) together
with the continuity of p ensures the existence of a nonnegative constant n such that

clz)ullz) _ ke(z)p(lz)
wizs a(V(,2)) ~ pzsacatoa(lz]) T

Remark 3.31 If, in the statement of Theorem|3.26, the Lyapunov function Vs, (directly)
satisfies (3.32), (3.33) and (3.84), then it does not require (3.28) anymore. This follows
by noticing that the proof of Theorem |3.26 starts by transforming the original Lyapunov
function into another one satisfying (3.32), (3.33) and (3.34) thanks to the previous result.

We are now ready to give the proof of Theorem [3.26, that guarantees UGPAS for
cascaded systems.

Proof of Theorem 3.26.  The argument consists in constructing a ball Bs and a KL
estimate for the solutions of the cascaded system, based on the respective balls for the z
(i.e. (3.1a) with 9 = 0) and the x9 subsystems, and to show that ¢ can be arbitrarily
reduced by a convenient choice of the parameters.

For any positive number 41, let Vs, and 07(d1) € ©1 be generated by Assumption 3.28.
Then, apply Lemma [3.30/ to V5, on the set X = R™ \ B, with u = Gy, and k = 2. It
follows that there exist a function Vs, class K functions ag,, 551, and a nonnegative
constant 75, such that, for all z; € R™ \ Bs, and all t € R>,

as, (Jz1]) < Vo, (8, 21) < @, (J21])

oV oV
afl (t,z1) + W?(t,ﬂfl)fl(t, r1,07) < =2V, (t, 1)
)
D) Goylha) < Vi 10, (330
with the property that :
5111310 ay oy, (6) = 6111310@511 oas, (01) =0. (3.37)

Next, let Wyr be given by Assumption and choose 05 small enough that

1
ye(83) < — | 3.38
01 (02) - (3.38)
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which is always possible since Wor is a class K function and neither? Wo: nor 7, depend
on 0. Finally, let 65 be any parameter in Dy, (d2, 00) N Oa.

We proceed in four steps. We first show that, for this choice of 8* = (67,65), the
cascade (3.1) is forward complete. We then use this property to prove that it is uniformly
globally stable with respect to a ball Bs, with § defined based on d; and 2, and then that
this ball is also uniformly globally attractive. We finally show that the size of this ball Bs
can be arbitrarily diminished by a convenient choice of the parameter.

Proof of forward completeness: The total time derivative of Vs, along (3.1) yields

Vs,
ot

OV,

(t, 1‘1) + Tm(t,xl)(fl(t,Il, (9{) + g(t,x, 9*))

V51 (t) 'Tl) -

Therefore, in view of Assumption (3.2 and (3.36), it holds that, for all x; € R™ \ Bs, and
all t RZO,

: 1%
o (tan) S 2V () +| S lote 0
2%
< =2 (00 + |52 1) | Goy (g (2
S —(2—7751\119{(‘.%'2’))V(;l(t,xl). (3.39)

Let Assumption 3.27 generate a class KL function (s, such that, for any x99 € R™? and
any t > to,

|p2(, to, 220, 03)| < Bs, (|20l t —to) + 2. (3.40)
Let 79 = (2]y,79y)" € R™ x R™ be any given initial state and ¢y € R>( be any given
initial time. In order to simplify the notations, we refer to ¢(-,to, o, 6*) as simply ¢(-)
and we define vy (-) := Vs, (-, #1(+)). It follows from (3.39) that
lp1()] > 01 = 01(t) < s, Wo; (Bs, (|20, 0))va(t) -
Hence, with Lemma [2.7, we conclude that, for all ¢ > tg,

B1(0)] < 5 0 s, (51) + 35, (o, (0]) exp (15, Wog (B3 1220, 0)) ¢ — 1)) )

Thus, defining
03 := lel o &51 (51) R (3.41)

and, for all s, € R>o,
Pgé (S, t) = Q(S_ll (aal (3) exp (7751 \I/t‘)f (/852 (Sv 0))t) > )
we obtain that, for all zgp € R" and all tp € R>,

|61(8)] < 05 + p3L (ol .t —t0), ¥t >to. (3.42)

3Note that, for the case that G depends on 62 (and therefore on d2), (3.38) remains achievable for d2
small enough under the additional condition of Remark|[3.29.




84 3. STABILITY OF NONLINEAR TIME-VARYING CASCADED SYSTEMS

Notice that pgi(‘,t) € Ko for all t € R>g and that pgé (s,-) is a continuous nondecreasing
function for all s € R>g. This ensures forward completeness of (3.1a), and consequently of
the cascade (3.1). More precisely, defining

FL(5,0) im A (5,802 + (5,02, Vst € o,
ﬁg; inherits the same properties as pg;, and we obtain that, for all g € R™ and all ¢y € R>y,
(6] <6+ Ay (|zol t —t0), Wt 2to, (3.43)
with

6= max{(52 5 53} . (344)

Proof of global stability: For all zy € R", consider the time Tgll(\:ngo\) such that*

ns, Vor (552 (|z20] ,ng(!xzol)) + 52) =1.

Note that, in view of (3.38), Tg;(‘.’lfg()‘) is finite and nonnegative for all x9y € R"™2. Also,

ngl(-) can be picked as a nondecreasing function. In view of (3.39) and (3.40), we have
that, for all ¢t > tg + T§J(|x20|),

[p1(D)] > 01 = 01(t) < —vit).

Invoking again Lemma 2.7, we get that, for all ¢ > ¢ + ngl(]:@o]),
~ ~ —(—11 _
[01(0)] < a5, 0 @, (51) + &5, <% (|6 (to+ T3 (laol) ) ) ¢ o 0D t‘”) -

In view of (3.41) and (3.43), and recalling that T, (?21(‘) and ﬁg; (s,-) are nondecreasing, it
follows that

~ (=T (120 N —
61(8)] < 03 + G5 (% (6473 (2ol 7! (laol) ) ) e Toa (oD t“) L (34

Next, let 75, 5,(|zo|) be any time instant large enough that

~— ~ ~ T(Sl _ _
a5, <a51,52 (52 (Il T3 (lzol) ) + ) o2 70D =10 to)) < iy (ol T3 (o)) -
Define further
70 S
Tyt () o= max { T ()5 73,5() | -
Then, we obtain that
61(8)] < 5 + pfL (Jol , T2 (120])) < 0+ i (1ol , T2 (o)), V> to+ T2 (o)

Noticing finally that (3.42) implies that this relation also holds over the time interval
[to; to + Tgll(\mo])], we conclude that

|¢1(t)|§3 < V51,52(|I0D7 vt > 1o,

4T3 (Jwaol) is taken as zero if s, Wor (Bs, (|720],0) + 52) < 1.
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where
0 &
Vo () =y (L T8 )

Uniform global stability of Bs then follows from Assumption 3.27 and the fact that vs, s,
is a class K function.

Proof of global attractivity: Reconsider (3.45). For any positive r and e, define

as (0453 (r1m))

as, 5,(€)

T (e,r) == Tg*(r) + In

Then it can be seen that, for all 29 € B, and all ¢y € R>,
t>to+ T2 (er) = |hi(t)];, <c.

This shows the uniform attractivity of Bs, for (3.1a), ¢f. Definition 1.10. The attractivity
of Bs follows from Assumption [3.27.

Proof of UGPAS: Tt is only left to show that ¢ can be arbitrarily reduced. In view of (3.37)
and (3.41), d3 can be picked arbitrarily small by choosing d; small enough. It follows from
(3.44) that d can be made arbitrarily small by taking both §; and d5 small enough. Thus, it
suffices to pick the parameters 07 and 63 generated by these chosen d; and d2, to conclude
that, for any 6 > 0, there exist some parameters 07 € ©; and 05 € ©2 such that B; is
uniformly globally asymptotically stable for the cascade (3.1) with 6 = 6*. [ |

Smooth rejection of disturbances

We illustrate the efficiency of Theorem 3.26 through the following example. Consider a
control system affected by a non-vanishing perturbation, 4.e.,

T = fl(t,iﬁl) —|—h(t,x1)[u+d(t,:v1)] (3.46)

where d is a bounded function satisfying Carathédory conditions which is locally Lipschitz
in x1. In general, we have d(t,0) # 0, which justifies the denomination “non-vanishing
perturbation” —cf. [KhaOl]. Consider the control problem of finding a control w(t,z1)
such that the closed-loop system is uniformly globally asymptotically stable within the
following setting.

Let u*(t,z1) be such that the closed-loop system that makes (3.46) uniformly globally
asymptotically stable (UGAS) provided that d = 0. Let V; be a strict Lyapunov function
for this nominal closed-loop system, that is, assume that there exist a;, a1, a1 € Ko such
that, for all ¢ € R>¢ and z; € R™,

oy (Je1]) < Vit z1) < @r(fo]) (3.47)

oV, oV
71(15, .1:1) + 71(?5, xl)(fl (t, 5171) + hl(t, a:l)u*(t, .CCl)) S —041(|1I1D . (348)

8t 85[,‘1
Then, it is well-accepted that the controller u*(¢, 1) completed by convenient discontinuous
terms of the state (roughly of the same size as the perturbation) still achieves UGAS and, in
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certain cases, finite-time stabilization —cf. [Utk99, EKNN92|. More precisely, the system
(3.46) may be rendered UGAS via the discontinuous feedback

u(t,r1) = w*(t, z1) — dpssign <ga‘?(t,x1)h1(t,x1)> : (3.49)
1

Indeed, a straightforward calculation yields

a(;?(t,xl)—i—aVl(t,ﬂcl)(ﬁ(t,m)-i-hl(t,xl)(u(t,:z:l)+d(t,x))) < —ai(|z1]). (3.50)

81‘1

Under appropriate regularity properties on the control, the disturbance and the Lyapunov
function, and embedding the differential equation (3.46) in a Fillippov differential inclusion,
we can conclude from (3.47) and (3.50), that the closed-loop system is UGAS.

We stress that, even though when placed in the right theoretical setting, one may show
that the UGAS property of the nominal system is conserved in presence of non-vanishing
disturbances, this is at the price of an infinite-gain controller that induces undesirable
phenomena such as chattering.

A common remedy adopted in control practice is to replace sign(-) by a saturation
function sat(-) with “high slope” near zeo, e.g. the function sat(cz) := oz for all |z| < 1/0,
sat(ox) := sign(z) for all |z| > 1/0, with a sufficiently large o. In more general terms, we
can define a saturation function as follows.

Definition 3.32 (Saturation function) A function sat : R — [—1;1] is said to be a
saturation if it is locally Lipschitz, nondecreasing and satisfies

lim |sat(s)] =1, and sat(s)s >0, Vs#0.

|s|—o0

Typical examples of saturation functions are tanh(s), arctan(s), s/(1+s?), sign(s) min{1; |s|}.
For a number of specific applications, for instance mechanical systems with friction, it
may be observed in simulations that the use of sat(o -) in place of sign(-) in (3.49) as an
approzimation of the ideal discontinuous term impedes the asymptotic convergence of the
trajectories to the origin. Instead, a steady-state error is commonly observed.
Consider further the case when the system (3.46) is interconnected in cascade with a
second subsystem:

1 = filt,z) +h(t,x1)(u+d(t, z)) + g(t, z) (3.51a)
:i’g = fg(t,xg) . (351b)

where v € R™ is the control, d : R>¢ x R" — R is a non-measured perturbation satisfying
|d(t,z)| < dp forallz € R"and all t € R>q, and f1, f2, h, d and g satisfy the Carathéodory
conditions and are all locally Lipschitz in x.

Such a situation may arise due to a cascaded-based design (c¢f. [SJK97, LP04]), or from
the physical structure of the plant. For instance, one could think of an electro-mechanical
system: the x; dynamics may be thought of as that of a mechanical system, the per-
turbation d may represent external disturbances, actuator deficiency, etc., the subsystem

3.51b) represents that of the closed-loop dynamics of the actuators which may in turn
include disturbances.

As we remarked earlier, UGAS may be achievable for each subsystem of the cascade
(3.51), using discontinuous functions of the state. However, the classical theorems for
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cascades of UGAS systems (e.g. [SS90a, AAS02, PL01|) do not apply as they rely on the
assumption that the right-hand side term is sufficiently smooth. In addition, when using
smoothening techniques exposed above (i.e. sat instead of sign), UGAS is lost. Hence, we
rely on Theorem [3.26 to show that, with a smooth approximation of the nominal control
law obtained by replacing the sign function by a sufficiently stiff saturation, the cascade is
UGPAS. The stability analysis follows a cascades-based reasoning: it consists in showing
that each subsystem in the cascade is UGPAS (i.e. when g = 0) and, then, that the
cascaded interconnection does not destroy stability.

Proposition 3.33 (Smooth approximation of sign(-) for cascades) LetV; be any smooth
Lyapunov function for the UGAS nominal system @1 = f1(t,z1) + ha(t, z1)u*(t,21), i.e.,

for all x1 € R™ and all t € R>q, (3.47), (3-48) hold and

oV
—(t
’8x1 (t21)
where c1 : R>g — R>q is a continuous nondecreasing function. Assume further that there
exists Y € K and a continuous function G : R>g — R>¢ such that

< eci(|z),

lg(t, @) < G(lz))v(|z2]),  V(z1,22) € R™ x R™ Vi€ R, (3.52)

and that, as s tends to +o00,
G(s)er(s) = Ofaroar” oay(s)) (3.53)
ai(s) = O(a@i(s)). (3.54)

Assume finally that (3.51b) is UGAS. Then, for any saturation function sat and any positive
constant €, the overall system (3.51) in closed loop with

u(t,z1) == u*(t,x1) — (1 4 e)dprsat (Ggg(t, xl)hl(t,x1)> , (3.55)

is UGPAS on © := Ry, with 6 as tuning parameter.

In particular, if sat is chosen as a smooth function, then the control u inherits the same
regularity properties as u* . Notice also that, for the case of an autonomous system and if
u* is a state feedback, then wu is independent of time as well. Furthermore, the magnitude
of the additional control law is only required to be strictly greater than dps; in particular,
if w* can be designed as a bounded control, then u is bounded too.

Proof of Proposition[3.35. For all x; € R™ and all ¢t € R>q, let
oV
Lp, Vi(t, @) := 871(75,351)}%1(@ 1) .
T
When considering g(t,z) = 0, the system (3.51a) in closed loop with (3.55) is

i1 = fi(t, 1) + ha(t,21) |[u*(t, 21) — (1 + €)darsat (0L, Vi (t, 1)) + d(t, :c)] .

Using (3.48), the assumed properties of sat and the boundedness of the perturbation, the
derivative of V7 along the trajectories of (3.51a) when disconnected yields

Vl(t,:cl) < —011(|$1|) - (1 + €)dMLh1V1(t,SC1)Sat (Gth‘/l(t, :El)) + thvl(t,xl)d(t,$)
< —ar(|z1) — das | Ln, Vi (t, 21)] [(1 + ) [sat (BLy, Vi (t,21))| — 1] . (3.56)
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Consider any arbitrary d; > 0, and choose 6*(d1) large enough that

(9*051 ((51) 1
> .
sat( Sdys e (3.57)

which is always possible since «; is independent of 8 and since sat is continuous and tends
to 1 as its argument tends to +o0o0. We claim that, with this choice of parameter,

. 1
|.1‘1| >0 = Vl(t,arl) < —§a1(|1‘1|) . (3.58)
To see this, assume that |z1| > d; and distinguish the following two cases:

- Case 1: |Lp, Vi(t,z1)| < a1(61)/2dpr: we then get from (3.56) that

/ a1 (6
Vi(t,z1) < —aq(|m1]) + edps | L, Vit z1)| < —aq(|z1]) + 1(2 1) ’

and (3.58) follows.
- Case 2: |Lp, Vi(t,z1)| > a1(61)/2dps: it then follows from (3.57) that

1
14¢

Y

|sat (6" Lp, Vi (t, 21))| >

and (3.58) directly follows from (3.56).

In view of (3.47) and (3.58), and noticing that the functions a; and @; are independent of
91 (which makes (3.27) trivial), we conclude with (3.52), (3.53) and (3.54) that Assumption
3.28 holds, and the conclusion follows applying Theorem [3.26. |

3.4 Asymptotic stability in the large of cascaded systems

The above-presented results provide sufficient conditions to establish semiglobal and/or
practical stability properties of a cascaded system based on the the assumption of simi-
lar properties for each subsystem taken separately. It is notably interesting to see that,
provided a uniform boundedness of the solutions of the overall system, uniform semiglobal
asymptotic stability is preserved, meaning that the size of the basin of attraction can be
arbitrarily enlarged.

In practice, control applications typically specify a minimum operating bandwidth. In
this respect, the information of USPAS or USAS of the system ensure that any of these
specifications can be reached by a convenient choice of some parameters. But a natural
question then arises: how to tune these parameters in order to obtain a given region of
attraction for the cascade ?

To the best of our knowledge, the first works in the literature of stability analysis that
took into account such a specified domain instead of an infinitesimal neighborhood of the
operating point, referred to this property as asymptotic stability in the large>.

Stability in the large is the best one can hope for systems with multiple equilibria when
no free tuning parameter is available. The use of bounded control inputs may also lead to

®We take this opportunity to stress that, as observed in [LLLPO06], asymptotic stability in the large has
wrongly been confused with global asymptotic stability.
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a restrained domain of attraction. Other applications arise in output feedback control (see
e.g. |LALMO3]).

Please note that, in the sequel, we refer to stability in the large as uniform asymptotic
stability on Ba, where Ba then constitutes an explicitly specified estimate of the basin of
attraction.

The fact that two UAS systems in cascade yields a UAS system is well established (see
e.g. [Vid80]), but this result does not estimate the domain of attraction of the resulting
cascade. In [Son03], it is shown that the driven subsystem keeps its domain of attraction
provided that the perturbation induced by the driving subsystem does not make the driven
state leave its domain of attraction. Here, we use this idea to provide an explicit expression
of an estimate of the domain of attraction of the cascade, based on those corresponding to
the subsystems.

The typical standing assumption in the stability analysis of cascaded systems is the
(uniform) boundedness of the solutions, see for instance [Son89b, SS90a|. In what follows,
we use a similar assumption to show that, providing little restrictive properties of the
structure of the dynamical system, the cascade composed of two UAS systems is UAS.
Moreover, and overall, an explicit estimate of the domain of attraction of the cascade is
provided based on those of the two subsystems, the convergence rate of their solutions and
the uniform bound on the solutions of the cascade. We shall consider the stability of

{ i1 = fi(t,z1) +g(t, )
j72 :fZ(t7x2)’

as introduced in (3.1), under the following standing assumption.

Assumption 3.34 (Bound on g) The interconnection term g is uniformly bounded in
time and there exists a nondecreasing function G : R>g — Rxq such that, for all x =
(z],29)" € R™ x R" and all t € Ry,

lg(t, )| < G(|z]) |22 -

In a first time, we assume that the driven subsystem is UAS on a given ball and that
an associated Lyapunov function is explicitly known.

Assumption 3.35 (Lyapunov UAS of the driven subsystem) There exist a positive
number A1, a continuously differentiable function Vi : R>o X Ba, — R>0, some Ko func-
tions oy and @1, a positive constant ki and a continuous nondecreasing function c1 such
that, for all x1 € Ba, and all t € R>,

o (Jz1]) < Vit 21) <@ (faa)

oV; oV;

87;(@961) + 8731(@961)]01(757331) < —kiVi(t,x1)
oV;
’(%1(@%1) <eci(|z1l]) -

We also assume that the driving subsystem is UAS on a given ball Ba,, with a KL
estimate on its solutions.
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Assumption 3.36 (UAS of the driving system) The driving subsystem &9 = fo(t, z2)
is uniformly asymptotically stable on a ball Ba,, Ay > 0, i.e. there exists a KL function
B2 such that, for all x99 € Ba, and all tg € R,

[z2(t, to, 220)| < B2(|w20],t — to), Vt >t .

Finally, we impose the following uniform boundedness on the solutions of the overall
system.

Assumption 3.37 (Boundedness of solutions) The solutions of (3.1) are uniformly
bounded on a ball By, b > 0, i.e. there exist B > 0 such that they satisfy, for all xg € By
and all ty € RZO,

’w(t,to,x())‘ < B, Vi >to.

Based on these assumptions, we are now ready to present a first result that provides
an estimate of the basin of attraction for the overall cascade (3.1).

Theorem 3.38 (UAS + UAS + UB = UAS) Under Assumptions|3.34H3.37, the cas-
caded system (3.1) is UAS on Ba where

A = min {0511 (Aa; (A1) 5 Bog (W) ;b Az} ; (3.59)

A € (0;1) being a free design parameter and Pao(-) := [a(+,0) .

The proof of this result is largely inspired from the one of [PL01, Lemma 2|. We propose
it in Section |A.3.

Note that systems with a Lyapunov function as in Assumption 3.35/are fairly common
in practice. More precisely, it was shown in |[TP99| that, for a nonlinear time-varying
system defined by a locally Lipschitz right-hand side, uniform asymptotic stability of the
origin is equivalent to the existence of a smooth function satisfying the first two bounds
of Assumption [3.35 The bound on the gradient is also little conservative; it is notably
trivially satisfied for time-invariants systems.

In the case when such a Lyapunov is nevertheless not provided, we can use the following
result. The price to pay is that the driven subsystem should then be uniformly exponen-
tially stable. In addition, a more conservative regularity condition on f; is required.

Assumption 3.39 (UES of the driven subsystem) The driven subsystem i1 = f1(t,x1)
is uniformly exponentially stable on Ba, with parameters (ki,v1) (cf. Definition|1.15), fi
s continuously differentiable and there exist positive constants j and L such that, for all
T € Bj and all ty € R>o,

‘afl(t, x1)

<L Yt > tg.
ox - =0

Corollary 3.40 (UAS + UES + UB = UAS) Under Assumptions |3.34, 3.36, [3.37
and|8.39, the cascaded system (3.1) is UAS on Ba where

— : \/XklAl i -1 (1_)‘)E1A1 X
A—mln{kl, Ba (ClBG(B) VAN (3.60)
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with any A € (0;1) and

1 — —2LT
k, = —51 (3.61a)
B k2(1 . 6—2LT)
ki = A — 7 3.61b
! 2m ( )
2k1(1 — e*(vlfL)T)
c = 3.61c
' m-—L ( )
In(2k?)
T = ——=% 3.61d
oo ( )
520(') = 52(-, 0) (3616)
A = min{A1 Ay b} , (3.61f)

and A1 being any positive number such that
Al <Ay and Al < N . (362)

Please refer to Section [A.4 for the proof.

A noteworthy particular case of the two previous results is when both subsystems are
UES. In this situation, we show that the cascaded system (3.1) is UES as well. We state
this fact in the following result.

Assumption 3.41 (UES of the driving subsystem) The subsystem &9 = fo(t,z2) is
uniformly exponentially stable on a ball Ba, with parameters (ka,72).

Theorem 3.42 (UESH+UES+UB = UES) Under Assumptions 3.3/, 3.37,13.39 and
3.41, the cascaded system (3.1) is UES on Ba where

| EAVY =N A
A= - 1" A
mm{ ki kst BG(B) ' ’

ki, k1, k1, Ay and A being given in (3.61)-(3.62) and \ € (0;1) being a free pararameter.

The proof is given in Section A.4. We underline that the parameters (k,v) for the
UES of (3.1) are explicitly constructed based on the information we have about the two
subsystems. This constitutes a noteworthy additional result. For more clarity, they are
however not given in the previous statement, but can easily be found along the lines of the
proof.

Again, if the bound on the gradient of f; in Assumption 3.39 is not fulfilled, one can
use the following. This last result assumes instead the existence of a convenient Lyapunov
function for the driven subsystem. In this situation, the expression of the estimate of the
domain of attraction of the whole cascade is considerably simplified.

Assumption 3.43 There exist a positive number Ay, a continuously differentiable func-
tion V1 : R>g X Ba,, and some positive numbers ky, ki, k1 and c; such that, for all
10 € BAl and all t € RZ()?

kq !331\2 <Vi(t,x1) < ky \961\2
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oV oV

o b+ g Ga) filt o) < ko
oV
i < .
T ()| <l

Corollary 3.44 Under Assumptions|3.34,13.37,(3.41 and|3.43 the cascaded system (3.1)
18 UES on Ba where

. E A1 Al
A= 1=k : Ag b
mm{ 9%, 12k BG(B) 2}

Proof of Corollary 3.44. The proof is straightforward by noticing that, in Theorem [3.42,
Assumption [3.39 is only used to ensure the existence of a Lyapunov function Vi as in
Assumption [3.43] and so we have that A; = Aj. |

The results presented in this section extend the possibilities of the cascades approach
for the analysis of nonlinear time-varying systems. Let us now apply them on the following
illustrative example.

Example 3.45 We consider the following two-dimensional system

1
iy = —ap+a— g(l — (2] + 23)) 73 (3.63a)

ig = —X2. (363b)

It can be put in the cascade form (3.1) by letting

1
At z) = el —21),  g(t,z)=—5(1~ vl —ad)atzy,  fa(t,we) = —x2.
Assumption|3.34) then follows directly with

1
G(s) = gmax{l;s2}s4, Vs € R>g.

Moreover, considering the function Vi(z1) = x3/2, it holds that

L @nita) <~ [oahat,

Therefore, for any positive Ay < 1 and all 1 € Ba,,

i

da:l fl(t,ﬂfl) < —(1 - Al).I% = —2(1 - Al)Vi .
Assumption is then satisfied with

— 1
Elzklziv /{1:2(1—A1), and 61:1.

Furthermore, its derivative along the trajectories of (3.63) yields

. 1
V< —(1 — |z| + g(l — |$|2)$%x2)x%
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Notice that, for each B < 1, |z| < B implies Vi < 0. The conditions of Proposition|2.13
are thus fulfilled with a = 0. It follows that, for all |xo| < B, |x(t,to,x0)| < B for all
t > to. In other words, Assumption|3.37 is satisfied with any b = B < 1. Finally, the o
subsystem is clearly UGES with parameters (ko,v2) = (1, 1), which establishes Assumption
3.41 for any As > 0. Applying Corollary 3.44 shows that the cascade (3.63) is uniformly
asymptotically stable on Ba, with

, 1—\)A?2
A:mln{Al\[\; (BG(Z)3)1;B;A2}'

For instance, for B = A1 = Ags = 0.9 and X\ = 2/3, we obtain that A = 0.68. The size of
the basin of attraction of the overall cascade is therefore of the same order as those of the
subsystems taken separately. We stress that this estimate is moreover representative of the
actual size of the domain of attraction since, for instance, the initial condition (1,0) (which
is an equilibrium) yields non-converging solutions. The largest ball of initial conditions on
which the origin is uniformly asymptotically stable is consequently necessarily smaller than
the unit ball. Figure!3.3 represents the vector field of the system (3.63) in the state space
together with the balls of radius 0.68 and 1 respectively. Note that all solutions starting in
the region R~1 X R diverge.
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Figure 3.3: Vector field in the state-space.
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Conclusion. This chapter presents tools that aim at simplifying the study of semiglobal
and/or practical stability properties for complex systems. In general terms, they establish
USPAS, USAS or UGPAS of cascaded systems based on the assumption of a similar prop-
erty on each of the interconnected subsystems. In a first step, these results are established
under an assumption of boundedness of the solutions of the overall cascade and the ex-
plicit knowledge of a Lyapunov function for the driven subsystem. It is worth pointing out
that, for the UGPAS case, the solutions’ boundedness requirement is replaced by a simple
growth order comparison, which makes its use much simpler. Moreover, thanks to the
converse theorem established in Chapter [1, we can get rid of the assumption of explicitly
knowing a Lyapunov function, modulo a stronger regularity assumption on the right-hand
side term of the driven subsystem. Examples are proposed along the chapter to illustrate
our purpose.
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Chapter 4

Set-stability

In the previous chapter, we have presented some tools that provide semiglobal and practical
stability properties for a cascaded system, based on the stability property satisfied by each
subsystem taken separately. We have shown that the semiglobal and/or practical stability
constitutes a good robustness measure for a globally asymptotically stable system subjected
to non-vanishing external disturbances, model imperfection, etc.

Although, as it is further underlined through concrete examples in Chapter 6, these
types of stability property arise very often in control practice, they might constitute too
strong a requirement on some occasions. For instance, control limitations may impede to
arbitrarily reduce the size of the attractive ball. The following basic example illustrates
this fact.

Example 4.1 (From UGPAS to set-stability) Consider the simple scalar system
T=—-0r+1,

where 6 is a free positive gain. In view of the results presented in Chapter|2, or simply by
integrating directly this differential equation, uniform global practical asymptotic stability
(UGPAS) can easily be established. More precisely, given any positive §, any choice 6*(§) >
1/8 ensures that the ball Bs is globally asymptotically stable.

However, we can imagine that physical constraints prevent to choose an arbitrarily
large parameter. If, for instance, 0 is restrained to the interval [0;10], then the smallest
achievable steady-state error is 1/10. Said differently, we lose UGPAS and only conclude
global asymptotic stability of any ball of radius larger than 1/10. g

A wide range of applications. Uniform stability of balls centered at the origin indeed
constitutes a particular case of the set-stability analysis we wish to conduct in this chapter
(cf. Section [1.2 for definitions), but the motivations for this study are much wider, as the
set under consideration is not required to be compact.

For instance, set-stability includes as a special case the analysis of partial stability,
c¢f. [Vor98]. Decomposing the state = as (y',2")T, with y = (y1,...,9,)" and z =
(z1,- .-, zn,p)T, with p € N>; and n € N>o, this concept requires that only the y-part of
the state be (asymptotically) stable, while the behavior of the remaining variables z is not
constrained. More precisely, partial stability can be defined as the following adaptation of
[Vor98, Definition 0.3.1]*.

!The original definition is given in "e — §" terms, while we have here preferred a KL formulation.




96 4. SET-STABILITY

Definition 4.2 (Partial UAS/UGAS) The origin of the system & = f(t,x) introduced
in (1.1) is said to be partially uniformly asymptotically stable on a closed subset Z of
R™ if (1.1) is forward complete on I and, for all zy € T and all ty € R>g, its solution

o, to,z0) =: (y(-,to, o) ", 2(-,to,20) ) satisfies
ly(t, to, z0)| < B(Jzol,t —to), Vt > to.

If T = R", the origin is said to be partially uniformly globally asymptotically stable, or
simply y-UGAS.

It can be observed that this definition precisely corresponds to the definition of uniform
(global) asymptotic stability of the set A = {0} x R"P (see Definition 1.11).

The concrete developments based on this concept are numerous and concern fields as
various as mechanical systems, particle control in electromagnetic fields, ecological systems
etc., cf. [Vor98] and references therein.

For instance, friction in mechanical systems is often modelled as an exogenous dynam-
ical subsystem (¢f. e.g. [COaL95, SAGP00]), thus generating an additional “superfluous”
state on which no prescribed behavior is imposed.

From a stability analysis point of view, another application of partial stability concerns
adaptive control. We may indeed consider as an extended state x the actual state y plus
the adaptation error variables z. In many cases, one desires that the ‘real’ state y presents
a convenient asymptotic stability property, while the convergence of the parameters esti-
mation z is often not required.

In view of this generality, it appears interesting and natural to derive sufficient con-
ditions under which stability of (non necessarily compact) sets is preserved by cascade
interconnections.

One or two measures 7 As it has already been underlined in Chapter|1, the set-stability
definition we consider in this document is defined based on two measures, ¢f. Proposition
1.14. This concept, originally introduced by Movchan in [Mov60] is less conservative than
its natural one-measure counterpart earlier proposed by Barbashin in [Bar51]. With the
same notations as in Proposition the latter would correspond to

|¢(t, to, w0)| 4 < B(lwol 4t —t0),  VE>to.

This type of set-stability has been extensively studied, in both cases of compact and non-
compact sets, and has given rise to powerful stability results. See for instance [Wil69,
LSW96, TPL02|. See also [Lin96| for a concept of input-to-state stability with respect to
non necessarily compact sets.

However, the fact that the distance of the solution from the set A be only determined
by the the distance of initial states from this very set is a strong requirement, notably
when A is unbounded. To take up again the example of adaptive control, although one
does not necessarily require that the estimation error converges to zero, the influence of
the initial values of the parameters on the behavior of state-solutions is not negligible in
most situations, preventing a set-stability approach with respect to one measure.

In addition, the Lyapunov characterization of the set-stability defined with one mea-
sure, cf. [LSW96], requires that the Lyapunov function vanishes on the whole set A, which,
as seen in Chapter |1 (p. 41), is an important constraint in practice, even when A is com-
pact. For the stability analysis of perturbed system, this requirement indeed prevents to
use the Lyapunov function associated to the nominal system.
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The previous observations mainly motivated the use the set-stability with respect to
two measures, as the one given by Definition [1.9. Although not included in the present
document, please note that we have provided similar results for the one-measure case in
[TCPJO6].

Set-stability for cascades. In this chapter, we study this stability property for cascaded
systems by assuming that, for each subsystem taken separately, a given set is globally
asymptotically stable. More precisely, we show that, if all the solutions of the cascade are
globally bounded (with respect to the origin), then the cross product of the two original sets
is globally asymptotically stable for the overall cascade. We also show that the requirement
of boundedness of solutions may be relaxed to just global boundedness with respect to a
set for a certain class of cascaded systems. Furthermore, we give a sufficient condition,
in terms of growth rate restrictions, that allows to relax this assumption to just forward
completeness and consequently makes our tool easy to use in many applications.

We stress that, for the particular case when the considered sets are balls centered at
the origin, we retrieve a direct consequence of [JTP94, Proposition 3.2], which establishes
that the input to state practical?® stability is preserved by the cascade composition.

The results we provide in this chapter rely on similar arguments as the well-known
Barbalat’s lemma [Bar59] which holds only for time-invariant systems. For this reason, we
restrict our attention to autonomous cascades. More precisely, we consider

@1 = fi(z1) +g(x1,22) (4.1a)
Ty = fo(w2), (4.1b)

where r1 € R™, 29 € R™ and all functions are assumed locally Lipschitz.

Please note that the exclusion of time-varying systems from the scope of this study
is only apparent as set-stability includes, as a special case, the stability analysis of time-
varying system. However, as a significative drawback, uniformity in the initial time ¢y (and
the robustness this naturally induces (¢f. p. 23)) cannot be guaranteed with a set-stability
defined based on two measures as the one we have decided to consider for the reasons
exposed above. Let us illustrate this with the following elementary example.

Example 4.3 (Set-stability and time-varying systems) Consider the following scalar
time-varying dynamical system:

t=—1+t)x. (4.2)
Defining &1 :=t, & := x and & := (£1,&) 7, it can be represented as the two-dimensional
time-invariant system

—(1+&1)ée

Let A :=R>q x {0}. Due to the fact that |§| 4 = x, saying that the origin of (4.2) is globally
asymptotically stable is equivalent to saying that the set A is globally asymptotically stable
for (4.3), cf. Proposition[1.14. More precisely, it can be seen that, for any & € R?, its
solution satisfies

i=r@ e 1O=( Lo ) (43)

t+ &0
E(ta ‘SO) = < 6206510(“{10/2)eit(1+t/2) > , Vit € RZO , (44)

2Here, “practical” should not be understood in the sense of Chapter[1} as the attractive ball is fixed and
not required to be arbitrarily reducible by a convenient tuning.
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and, consequently,

€(t, €0)la = €22, €0)| < B|&o] ,1) = |G| /Pl FEN2 I -yt € Ry

To see more clearly why uniformity of the induced stability property cannot be provided by
this approach, notice that (4.4) can be written in the “time-varying” context as

qb(t, tO; 50) — $06t0(1+t0/2)6_t(1+t/2) — xoe—(t—to)(l—l—t—to)tho(t+t0) , V¢ > tO > 0,

and the corresponding KL estimate is therefore non-uniform in the initial time tg.

4.1 Preliminary definitions and tools

We first recall some definitions related to set-stability for nonlinear autonomous systems
of the form

i = f(x) (4.5)

where £ € R™ and f : R" — R” is a locally Lipschitz function. In the sequel, A refers
to a closed (but not necessarily bounded) set of R™ that contains the origin. Assuming
that 0 € A allows indeed to guarantee that |-| 4 < |-|. Nevertheless, this is absolutely not
restrictive as a simple change of variables always permits to reach this situation.

The following property is an adaptation of [TPL02, Definition 5] to the case when the
stability properties are defined through two different measures® (namely |-| , and |-|).

Definition 4.4 (GSTS) The closed set A is said to be globally sliding time stable for
(4.5) if there ezists class Koo functions T and p such that, for all xo € R", the solution of

(4.5) satisfies
|9t w0)| 4 < p(lwol), V€ [0;T(|o])]-

For the case when A = {0}, we say, with a slight abuse of terminology, that (4.5) is GSTS.

Remark 4.5 This property is little restrictive. For instance, it can be shown that (4.5) is
GSTS in each of these cases:

- the function f in (4.5) is globally Lipschitz,
- the solutions of (4.5) are globally bounded (see Definition 1.8).

Based on this definition, we present a simple integral criterion for the global asymptotic
stability of a given closed (but not necessarily bounded) set. It can be seen as an extension
of [TPL02, Theorem 1| and [POMO02, Lemma 2.1] to the case of stability with respect to
two measures.

Lemma 4.6 (Integral lemma for GAS of a set) Assume that a given closed subset A

of R is GSTS for (4.5) and that there ezists a class IC function o and a class Ko function
d such that, for all xo € R™, the solution of (4.5) satisfies

/0 " (16t x0)| )t < 8(Jzo]). (4.6)

®In the original reference, the same measure |-| , was used.
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Then A is globally stable*. If, in addition, the solutions of (4.5) are globally bounded®, then
A is globally asymptotically stable for (4.5). O

Proof of Lemma 4.6. The proof is composed of two steps. We first show that A is globally
stable if it is GSTS and (4.6) holds. Next, we establish its global attractiveness under the
assumption of global boundedness of the solutions of (4.5).

Proof of GS: The proof of the global stability of A is inspired by that of [TPL02, Theorem
1]. Let T" and p be generated by the GSTS of A and let k be any Ko function satisfying

k~(s) < min {3 Lot (;T(s)a(s)> } . VseRsg.

The existence of such a function is ensured by the fact that o € K and T, p € K. Notice
that x(s) > s for all s € R>¢ and that the following property holds:

1
0(s) < iT o k(s)o o Kk(s), Vs € R>g. (4.7
We claim that, for any zg € R",

|p(t, w0)| 4 < por(lzol),  VteR>0. (4.8)

First observe that this holds for g = 0 due to (4.6) and the continuity of ¢(-,zg). For
|xg] > 0, we proceed by contradiction. Assume that the property (4.8) does not hold.
Then, there exists a time ¢; € R> such that

|6(t1, 20)| 4 > po K(|zol) - (4.9)

Note that, without loss of generality, p can be assumed to satisfy p(s) > s for all s € R>o.
Therefore
w0l 4 < |zol < K(lzo|) < por(laol) .

So, invoking again the continuity of ¢(-,z¢), there exists a time t2 € [0,¢1) such that

[6(t2, w0)| 4 = w(lzo]) (4.10)
6(t,z0)l 4 > K(lzol), VEE (tait). (4.11)

Furthermore, the GSTS of A combined with (4.9) and (4.10) implies that ¢ > to +
T(k(|xo|)). From (4.6) and it follows that, on one hand,

t1 to+T(k(|zo0l))
/ dwmm»uﬁz/' o o w(|zol)dt = T(x(|zo]))o o (|0

to to
and, on the other hand,
t1 [e%s)
/‘MMmmwﬁsA o (9t z0)| )t < 6(]al)
to

Combining these two bounds, we obtain that

T(s(lzol))o o K(lzol) < 6(|zol) ,

4Global stability and global asymptotic stability of A are to be understood in the sense of Definitions
1.2 and[1.4. “Uniformity” is pointless in this section since only time-invariant systems are considered.
Swhich implies that A is GSTS in view of Remark[4.5 since 0 € A.
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which contradicts (4.7).

Proof of GA: This second step follows along the same proof-lines of Barbilat’s lemma,
originally presented in [Barb9|; see also [Ta0o97|, [Tee99] and [POMO02, Lemma 2.1| for
similar approaches.

We proceed by contradiction. Assume that lim; . [¢(t, 20)| 4 # O for some zo € R".
Then there exist a positive ¢ and a sequence {t; };en such that lim; . t; = +00 and

|p(ti,x0)| 4 > €, VieN. (4.12)
Notice that the sequence {¢;};cn can be picked in such a way that
tix1 >t + T, Vi € N, (4.13)

T,, designating a positive constant. Due to the global boundedness of solutions and the
continuity of f, we can see that ’(]51(-, xg)‘ is bounded, which implies that ¢(-, zp) is uni-
formly continuous. This means that, given any positive ¢, there exists a positive T' such
that, for all ¢t € R>g and all 7 € [0, T, |¢(t + 7, z0) — ¢(t, x0)| < c. Hence, letting

- o J(S) if se RZO
o(s) = { —o(—s) if seR,

and picking® ¢ as 571(6(¢/2)/2), there exists a positive T such that, for all ¢+ € R>q and
all 7 € [0, 7).

2 \2

Using the properties that |y + z| > |y| — |z| for all y, z € R™, and 6(a — b) > &(a/2) — (D)
for all a,b € R, it follows in view of (4.12)) and (4.14) that, for all ¢ € [t;, t; + T

S0t o)) = 7 (6000)L4 — 60,20) ~ 9(t20)L0)
> (G100l ) = 3 (olt.0) - 6t 0L
o(3)-2(5) =7 (3)-

Based on what precedes and (4.13), we then have that

ott-+ ra0) ~ ottaw)] <571 (55 (5) ) (1.14)

v

/ " oot z0))dt = / 516 (t, 20|yt
0 0 ‘
> 3 [ aottan) Lo

1EN
ti+min{T;T}
= 5(10(t,20)| )t
ieN VYt
> Z 15 (E) min{7,,; T} = +o0
B 1EN 2 2 " N ’

which establishes the contradiction.
[ |

5Note that, even though o may not be a class Ko function, &(g/2)/2 necessarily belongs to the domain
of invertibility of & by construction.




101

4.2 On set-stability of cascaded systems

Our first main result in the context of set-stability for cascaded systems states that the
cascade of two globally set-stable systems is itself globally set-stable provided that its
solutions are globally bounded.

Theorem 4.7 (GAS + GAS + GB = GAS) Let Ay and Ay be closed sets of R™ and
R™ respectively. Under the Assumptions /.8 below, the set A = Ay x Aj is globally
asymptotically stable for the cascade (4.1).

Assumption 4.8 (GAS of A;) Ay is globally asymptotically stable for 1 = f1(x1).
Assumption 4.9 (GAS of As) Aj is globally asymptotically stable for (4.10).

Assumption 4.10 (Bound on the interconnection) There exist a continuous func-
tion g1 : R® — R™ and a class Ko function go such that, for all x = ($1|"$;)T €
R™ x R"2,

l9(z1, 22)| < lg1(2)] ga(l22] 4,) -
Assumption 4.11 (GB) The solutions of (4.1) are globally bounded.

Proof of Theorem|4.7. We start by invoking [TP00, Corollary 1] to generate a Lyapunov
function for each of the two subsystems, based on Assumptions 4.8/and 4.9. More precisely,
for each i € {1,2}, there exist a smooth function V; : R™ — R>( and class Ko functions
«; and @; such that, for all z; € R™,

a;(|zil 4,) < Vi(wi) < @i([i]) (4.15)

In view of Assumption 4.10, the derivative of V7 along the trajectories of (4.1) yields, for

all x € R”,

: oV
Vi) < —an(forla,) + | 5o (@)

Let ¢1 : R>9 — R>¢ be the function defined as

|91(2)] g2(|22] 4,) -

oV
z;‘l(xl)

c1(s) := max o

’gl(x)| ) Vs € RZO .
|z]<s

Due to the smoothness of V; and the continuity of g;, it can be seen that ¢ is a continuous
nondecreasing function, and we have that, for all £ € R>o,

Vi(61(t,20)) < —ay (|61(t, 20)| 4,) + c1([8(t, z0))g2(|D2(t, 20) | 4,)

From Assumption [4.11 and Proposition [1.12, there exists a class Ko function n and a
nonnegative constant p such that |¢(t, xo)| < n(|zo|) + 1, so we obtain that

Vi(¢1(t,20)) < —ay (|¢1(t 20)l 4,) + &1 (Jzo])g2(|d2(t, m20)| 4,) » (4.17)

where ¢;() :==c1(n() + p).
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Let a; and ag be positive numbers such that ay(a1) < g2(a2) and let g2 : R>g — R>g
be any continuous increasing function satisfying, for all s € R>y,

- as(s if s€l0,a
g2(s) :{ gj(s)) if SZ[CLQ.I]

Note that go can always be completed on the interval (a1, a2) in order to be an increasing
function since ay(a1) < g2(az) and both a, and go are class Ko functions. Then, it can
be seen that gs is a class K function that satisfies

Go(s) = O(ay(s)) as s— 07 (4.184a)
g2(s) = O(ga(s)) as s— 4oo. (4.18Db)

Next, we need the following “changing supply rate” result, reminiscent of [ST95].

Proposition 4.12 Let Ay and As be two given closed sets of R™ and R™ respectively. Let
¢ be a nonnegative constant and V : R" — Rx>q be a continuously differentiable function
satisfying, for all x € R™ and all w € R™,

al|z] 4,) < V(z) < a(lz)
ov
oz

where o, @, « and v are class K functions. Let & (resp. 7) be a class Koo function
satisfying

(@) f(2,u) < —al|z]4,) + ev(ul 4,)

a(s) = O(afs)) as s— 0"
(resp. v(s) = O(F(s)) as s— +o0).

If a, @, a, v and V are independent of c, there exist a continuously differentiable V and
class Koo functions 4 (resp. &), & and @, independent of ¢, such that, for all x € R™ and
all u € R™,
alz]4,) < V() <al]z])
ov N -
B O (@u) < —aljzlg,) +ei(luly,) -

The proof of this result follows from minor modifications that of [ST95, Theorem 2.
The only difference stands in the fact that the measures involved are not necessarily Eu-
clidean, and that the generated functions are shown to be independent of c.

In view of (4.18b) and noticing that |v1|,, < |z[, we can apply Proposition [4.12 to

Vi with 4 = go and ¢ = ¢;(|zo[) to obtain that there exists a continuously differentiable
function V; such that, for all 1 € R™,

ay(jz1] ) < Vilzr) < @ (|za]) (4.19)

and, for all t € R>,

Vi(@1(t,20)) < —an (1 (1, 20)| 4,) + €1 (|zol)G2(|p2(t, 720)| 4,) »
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where gl,&l € K. In addition, the functions &;, &1, a1 and ‘71 are all independent of
¢1(]zo|) and consequently of xg. Integrating the previous differential inequality, we obtain
that

o0

a1 (|1 (t, w0)| 4, )dt < Vi(x10) + E1(|zo) /OOO G2(|@2(t, z20)| 4, )t -

Hence, in view of (4.19), we have that

[e.e]

/Ooo ar(|g1(t, zo)| 4, )dt < @1 (|z10]) + 51(|~’60|)/0 G2(|d2(t, 20)] 4, )dt - (4.20)

In order to upper bound the integral in the right-hand side term of the previous bound,
we follow a similar procedure. Based on (4.15), (4.16) and (4.18a), we apply Proposition
4.12 to V5 with @ = g2 and ¢ = 0. We obtain that there exists a continuously differentiable
function V5 such that, for all 2o € R™2,

ay(|a] 4,) < Va(w2) < @a(|22])

~—(12) f2(w2) < —g2(|z2] 4,) 5
where &, and @ are class Ko, functions. Integrating the last inequality, we obtain that
w ~
| lloat va0)l 1, )t < Gl (4.21)
0
Substituting this bound into (4.20), we obtain
m ~ ~
/ a1(|p1(t, xo)| 4, )dt < air(|m10]) + E1(|zol)aa(|z20]) - (4.22)
0
Thus, defining the following class Ko, function
o(s) := min {dl ( 5/2> 5 02 ( s/2>} ,

we get from (4.21) and (4.22) that

| [ oattanlt,) +o (2100, )] de < @(laioh + (o))

Since o is an increasing function, we have that o(a+b) < o(2a) + o(2b) for all a,b € Rx>.
Therefore, using the fact that |:E|?4 = |w1|?41 + |$2|?42, we get that

/OOO o (W(t, wo)li) dt < a1 (|zol) + é1 (o )z (|aol) -

The global asymptotic stability of A then follows from Lemma [4.6. |

It is worth noting that no Lyapunov function needs to be explicitly known for this first
result. However, the assumption of boundedness of solutions (with respect to the origin)
is strong. In the case when the solutions are only bounded with respect to the set A, the
result still holds provided a stronger requirement on the interconnection term and on the
gradient of the (supposedly known) Lyapunov function of the driven subsystem.
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Corollary 4.13 Let Ay and Az be two given closed subsets of R™ and R™2 respectively.
Under Assumptions 4.9,4.14, 4.15 and|4.16, the set A = Aj x Az is globally asymptotically
stable for the cascade (4.1).

Assumption 4.14 (Lyapunov GAS of A;) There exist a continuously differentiable func-
tion V1 : R>g x R™ — R>g and class Koo functions oy, @1, o such that, for all x; € R™,

o (|71] 4,) < Viz1) <@ (faa]) (4.23)
OV o) a(an) < —on(lly,). (4.24)
T

Assumption 4.15 (Bound on L,V;) There ezists a continuous nondecreasing function
g1 : Rso — R and a class Koo function go such that, for all v = (z{ x5 )" € R™ x R"2,

ALE
8x1

(z1)g(x)

< g1(l2 ) g2(|72] o) -

Assumption 4.16 (GB w.r.t. A) The solutions of (4.1) are globally bounded with re-
spect to A.

We stress that global asymptotic stability of A; for the driven subsystem &1 = f1(x1)
guarantees the existence of a function V; satisfying Assumption 4.14, c¢f. e.g. |TP00].
However, the explicit knowledge Vi is required since we need its gradient to also satisfy
Agsumption [4.15!

Proof of Corollary 4.13. This result follows directly from Theorem 4.7| by noticing that,
in the proof of the latter, ci(|z[) can then be replaced by gi(|z|4). Hence, based on
Assumption [4.16] we see that (4.17) remains valid and the rest of the proof is exactly the
same. -

In the two previous results, the most difficult requirement to verify is often the global
boundedness of the solutions of (4.1) (with respect to the origin or to the set A according
to the case). Similarly to the approach adopted for uniform global practical asymptotic
stability of cascades (c¢f. Section [3.3), we now present a result which relaxes this as-
sumption to just forward completeness of (4.1), provided a growth rate restriction of the
x1-dependency of the interconnection term with respect to the dissipation function of the
driven subsystem.

Corollary 4.17 (GAS + GAS + FC + growth restriction = GAS) Let A; and Ay
be given closed subsets of R™ and R™ respectively. Under Assumptions 4.9, [4.14,
and 4.19, the set A= Ay x Ay is globally asymptotically stable for the cascade (4.1).

Assumption 4.18 (Bound on LyVi) There exists a continuous nondecreasing function
g11 : R>g — Rxg and a class Koo function go such that, for all x = (x{ x5 )" € R™ xR"2,

oV

873:1(1:1)9(37) < g (|1l 4,)92(lz2] 42) -

Assumption 4.19 (FC + growth restriction) The system (4.1) is forward complete
and it holds that
g11(s) = O(a1(s)), as §— +o00.
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Proof of Corollary|4.17. In view of Theorem 4.13, and noticing that Assumption |4.18|
implies Assumption [4.15, it is enough to show that solutions are globally bounded with
respect to A. The proof is based on similar arguments as the one of [PL0O1, Theorem 3].
First, from the forward completeness assumption, there exists a continuous nondecreasing
function ¥ : R>g X R>¢p — R>¢ such that, for all xp € R", the solution of (4.1) satisfies

6t o)l 4 < |0t 20)| < I(|wol, 1),  VEeRx. (4.25)

Next, in view of Assumptions|4.14 and[4.18, the derivative of V7 along the trajectories of
(4.1) satisfies, for all x =€ R",

Vi < —an(lz1l4,) + gui(lzal 4, g2(22] 4,) - (4.26)

In addition, we know from Assumption [4.19 that there exist positive constants sg and A
such that

g11(s) < A (s), Vs > sp. (4.27)

Furthermore, Assumption [4.9 ensures that there exists a L function [ such that, for all
oo € an,

’¢2(t,$20)|A2 < ﬁ2(|l’20| ,t) , vVt € R>o. (4:28)

Using the fact that go is a class Ko, function, we get that, for any x99 € R"2, there exists
a nonnegative time T'(|zgo|) such that

92(l92(t, w20) [ 4,) < 5 V&= T(|2aol) -

> =

Note that, without loss of generality, T'(-) can be picked as a continuous nondecreasing
function. From (4.26), (4.27) and the previous inequality, we obtain that, for all ¢ >
T(|z20l),

61t 20)| 4, =50 = Vi(¢i(t,m)) <O0.

Using a direct extension of [Yos66, Theorem 10.2], the previous implication ensures the
boundedness of |¢1(t,70)| 4, (and consequently, in view of (4.28), of |p(t,z0)|4) for all
t > T(|z20|). In other words, there exists n € K and p > 0 such that, for all zp € R™,

ot w0)| 4 < mlwol) + o, VE 2 T(|zol)-
Thus, in view of (4.25) and recalling that 7'(-) is continuous and increasing, we obtain that
[o(t, z0)| 4 < lwol) + 12, Vi€ R,
where, for all s € R>o,

i(s) = n(s)+9(s,T(s)) —9(0,7(0))
fi = p+9(0,T(0)).

The conclusion follows from Corollary [4.13/ by observing that 7 is a class K, function. H
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4.3 Example: cross-track formation control of underactuated
surface vessels

In order to illustrate one of the possible uses of the results of this chapter, we present
an alternative stability proof for a recent result for the formation control of multiple un-
deractuated surface vessels along a straight line, with a prescribed velocity, c¢f. |BPPO06|.
The interested reader is invited to refer to this reference for a more detailed description of
the motivations and challenges related to this objective. For simplicity of exposition, we
consider here the case of two boats, extension to a larger number of boats being straight-
forward.

We stress that the control objectives considered in Section 6.3| may appear similar
to those presented here, since the motion of both ships are required to be synchronized.
However, the strategies are fundamentally different. A master-slave approach is adopted
there, while here the two boats act at the same hierarchical level. Moreover, it is here
assumed that the path to be followed is a straight line and that full information on both
ships is available.

The dynamics of the considered underactuated surface vessels is described by

o= R (4.29)
v+ M 'Clv)v+ M 'Dv = Br, (4.30)

where 1 := (£,¢,4)" is composed of the Cartesian coordinates of the boat in a Earth-
fixed frame and the yaw angle, v := (u,v,7)' contains the surge and sway velocities,
T = (T4, Tv) | are the surge thrust and the yaw torque considered here as control inputs

and
cosy —siny 0

R(Y)=| siny cosyp 0
0 0 1

In the sequel, except when explicitly stated, indexes 1 and 2 refer to vessels 1 and 2
respectively. When no index is specified, the corresponding relationship implicitly holds
for both vessels. For simplicity, we assume that the vessels are identical and that

mi1 0 0 d11 0 0
M = 0 ma2 mo3g |, D = 0 dy dog |,
0  mo3 m33 0 d32 ds3
0 0 —MmM9o2vV — Ma3T 1 0
Clv) = 0 0 miiu , B:=|(00
MooV + Mao3r —M11U 0 0 1

The task to achieve is twofold. First, we want that each ship ¢ follows a straight path given
by a distance d; € R from an agreed origin. This first goal can be summarized by

tliglo G(t) =d;, and lim ¢(t) =0. (4.31)

t—o0

Second, we want the vessels to be synchronized, in order to move at the same constant
prescribed velocity ug along the ¢ direction. This can be formulated as

tlim &1(t) — &(t) =0, and tlim ui(t) = tlim ua(t) = uq. (4.32)
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dy

Figure 4.1: Cross-track formation control goals.

The ideal configuration we want to achieve is summarized by Figure [4.1. For simplicity,
we have considered the origin of the fixed frame on the path to be followed by the second
vessel (hence dy = 0).

In the sequel, we design a controller that makes the surge velocity u bounded by a
positive constant Ups. Following the authors of [BPP06], we adopt the assumption that

|v| < min{Us; c|r|}, (4.33)

where ¢ denotes a positive constant. We assume as well that the reference velocity ug of
the formation satisfies
Un+a<|ugl <Upy—a, (4.34)

where a and Uy, are positive constants. From (4.29), the kinematic equations for each boat
can be written as

£ = wcosy —vsiny (4.35)
¢ = wusiny+vcosy (4.36)
b o= r. (4.37)

In view of (4.31), we define: 5 := ( — d. The (-error dynamics is then given by

¢ =wusiny +wvcosp. (4.38)

Next, we let

g := — arctan (f/f) , (4.39)

where ¢ denotes a positive constant satisfying ¢ > ¢, ¢f (4.33). As this appears more clearly
in the sequel, this yaw angle is chosen in such a way that the (-error tends to zero. This
choice of 14 comes from so-called lign of sight guidance algorithm; see [BPP06] for details.
We further define v := ) — 1)4. Using (4.37), the -error dynamics is then given by

/ .
Y=r— 7£2+C~2(usm1/)+vcos¢).

Next, define

0 . 7 Ui
ry = e (usine +vcosy)) — kytp = @ +€2C — kyt, (4.40)
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where ky, is a positive constant. Then the 1& dynamics becomes

b= —kyp+ 7, (4.41)

where 7 := r — rg. In view of (4.29), and letting” © := mooms3 — m%3, it can be seen from

4.30) that

.om
r= %(mnur + doov + dasr) +

ma2

o (1 — (Magv + maosr)u + mijuv — dsav — dssr) — T4 -

The following control

Ty = (mggv + ngr)u — M11Uuv + d32U + d33r
m Q . -
— ﬁ(mllur + dogv + dosr) + — (17q — k,T) (4.42)
mag ma22

where k, denotes a positive gain, then yields
F=—k . (4.43)
In the same way, the control law
Tu = (Moo + masr)r + myy (e — ky(u — ue)) (4.44)

where t — u.(t) denotes any given speed reference and k,, is a positive control gain, yields
the following dynamics
U= —kyu, (4.45)

where % := u — u, is the surge velocity tracking error. These observations, together with
the cascade approach we follow, allows to consider %, » and u as control inputs in the
sequel. The (-error dynamics (4.38) can trivially be written

5 = ’U“Sinwd +UCOS¢d+7(¢»¢d7U,U)&a (446)
where - y - y
u sin v Cos Y — usin gy — v cos Py
fY(w?wd?”? v) = g .
(G
In view of (4.33) and provided that
Un < |u| < Uy, (4.47)

for the positive constants U,, and Uys involved in (4.34), it holds that

Y (¥, a, u,v)| < Jul + [v] < 20U .

Thus, injecting the expression of 14 into (4.46), we can see that the (r, 1, (,u)-error dy-
namics possesses the cascade structure composed of (4.41), (4.43), (4.45) and

(2 S +v !
\/52+52 \/§2+52

"Q is a positive constant since M is positive definite.

+ (1, Vg, u, v) . (4.48)

o
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Claim 4.20 If (4.47) holds, then the origin of the cascaded system (4.41), (4.43), (4-49)
and (4.48) is globally asymptotically stable.

Proof of Claim|4.20. First notice that the origin of the driving subsystem of this cascade,
namely (4.41), (4.43) and (4.45), is globally asymptotically stable for any positive choice
of the gains ky, k, and k,. This establishes Assumption 4.9. In order to study the driven
system taken separately (i.e. (4.48) with ¢ = 0), consider the function V;(¢) := ¢?/2.
Then, it can be seen that, along its trajectories,

_u

,/52+52

But, using , (4.33) and the fact that |r| < |rg| + |7, it can be seen that the following
bound holds

AGES + ||l -

ol < e (|¢| 7+ ko [9] + 171) -
Thus, since we consider the isolated ¢-subsystem (i.e. Y =7F= 0), we obtain

2 2

¢ ¢ ¢
_i_f

2+ Je+re !

We conclude in view of (4.47) that, along the trajectories of the driven subsystem,

u u

V(0 < - +21¢][¢] = - V(0).

~12
(- iy < -l

/§2+g2'

Recalling that ¢ < ¢, Assumption [4.14 is then fulfilled. Finally, we have that

’ aa? (5)7(¢7 1/}d7 u, U)

which establishes Assumption4.18 with ¢11(+) = 2Ups and Assumption 4.14 follows trivially
due to the boundedness of g11. The claim follows by applying Corollary [4.17 and recalling
that forward completeness is not needed since the sets under consideration (the origin) are
compact. |

< 20y [¢

)

In order to guarantee (4.47) while stabilizing the &-error dynamics, we choose as speed
references

U1 = uqg — asat(§y — &2), and Ue o = ug — asat(& — &1), (4.49)

where sat denotes any odd saturation function (cf. Definition [3.32) and a is the positive
constant involved in (4.34).

Proposition 4.21 (Formation control of vessels) Assume that (4.33) and (4.34) hold.
Then, the control law (4.42), (4.39), (4.40), (4.44), (4.49) achives the control objectives

(4.31) and (4.32). More precisely, the set
A= {(n,m2.v,1n) ERZ 1 & =& and G =di, ¥ =0, u; =uq, v; =0, Vi € {1,2}}

18 globally asymptotically stable.
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Proof of Proposition|4.33. In view of (4.39), (4.35) can be written

£ = wcosiy — (costpg — cosy)u — vsiny
l

————=u — (costpg — cosYp)u — vsiny
\ 2+ ¢
_ l
= Utit | ———
1/£2<|><2

From this and (4.49), we obtain

— 1| u—(costpg —costh)u —vsiny .

4
————=—1] u1 — (costpg,1 — cost1)us — v1sin
Ve G

{
————— 1] ug — (cos g2 — cosya)uz — v2sins.
VE+G

Defining € := £; — & and considering the variables®

£ = ug—asat(E; — &)+

& = ug—asat(& — &)+

xy = (&,6)" and o := (F1, 72, 1,9, C1, Co, @1, U2) |,

the formation objective lim;— §1(t) — &2(t) = 0 can be summarize by the convergence
of £(t) to zero and the overall system can be put in the cascade form (4.1) where fa(z2)
designates the right-hand side of (4.41), (4.43), (4.45), (4.48) and

file) = ( ug — asat(§) ) ’

—2asat(€)
_ 3 ) 90(1;17%,1751,@1,}%1,01) ) >
g(xl’x2) B < gO(wlawd,hgl)al)uClaUl) _gO(¢27¢d,27<25a27u627/U1) ’ (450)
where
90(127 ¢da (f,ﬂ,uc,l}) = L -1 (ﬂ—F’UJC)—(COS Q,ZJd—COS 1,[))(11—1—%)—1} Sinz/; . (451)

2+ 2

Considering the function Vi(x) := £2/2, the requirements (4.23) and (4.24) are fulfilled
with a;(s) = @1(s) = s%/2, a1(s) := 2a ssat(s) for all s € R>( and

A = {xlz(fl,g)T€R2 : §1€Rand5:0}.

This establishes Assumption [4.14. Note that, when z; belongs to A;, the formation goal
&1 = &9 is achieved. In addition, it can be seen that

sin v Sinw(derz/;):vSi;)w

vsiny = v

e Y=y

8Indexes 1 and 2 of = do not refer to the vessels, but to the notation used in Corollary [4.17.

<f arctan <§/€> + 7];) .




111

This observation coupled with (4.50) and (4.51) and the boundedness of u and v ensures
that ¢ vanishes whenever xo equals zero, which is enough to conclude the existence of
a class Ko function gy such that |g(z1,2z2)| < go(|z2|). Assumption 4.18 then follows
with g11(-) = 1. In turn, we have that g11(s) = O(au(s)) as s tends to infinity, which
establishes Assumption 4.19. Finally, (4.45) guarantees an exponential convergence of @
to zero without overshoot. So the fact that u. lies in the interval (U, Ups) ensures (4.47).
Assumption [4.9 then follows from Claim 4.20 with the set A2 = {0}. Thus, we can apply
Corollary [4.17 to conclude that the set A; x As, which coincides with A, is GAS for the

overall system.
[

Conclusion. This chapter presents three results for establishing the set-stability of
cascaded systems. The first one does not require the knowledge of any Lyapunov func-
tion, but is based on a conservative assumption of boundedness of solutions of the overall
system. The second assumes the boundedness of solutions only with respect to the set
under consideration but, as a counterpart, requires the knowledge of an explicit Lyapunov
function for the driven subsystem. Finally, the third one is more easily applicable as it only
requires a growth comparison between the functions involved. The range of applications of
such a stability concept is wide as it notably includes partial stability, stability of a given
trajectory, of a given ball etc.
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Chapter 5

Integral imnput to state stability for
cascaded systems

In the previous chapters, we proposed some sufficient conditions to guarantee the preser-
vation of stability properties for cascaded systems. Such tools can be particularly useful
when studying the robustness of controlled nonlinear systems to model uncertainty or to
external signals. In this chapter, we consider the cascade interconnection of systems with
inputs.

The ISS paradigm. A branch of the control theory is especially dedicated to the evalu-
ation of the impact of external signals on the stability of a dynamical system. It concerns
systems of the form

= f(x,u)

as introduced in (1.4), where u denotes the external input'. The key notion in this field is
the input to state stability (ISS), originally introduced by Sontag in [Son89a|, and which
we recalled in Definition [1.21. As evoked in Chapter |1, this property links the norm of
the current state to the infinity norm of the applied input, through a nonlinear inequality
which also takes into account a fading term due to initial conditions.

This way of formulating external and internal stability notions is particularly well
adapted to analyze stability of cascades. A well known result, see e.g. [ST95]|, states that
the ISS property is preserved under cascade interconnections. Since ISS implies global
asymptotic stability (GAS) when the input is identically zero, it follows that the cascade
composed of an ISS subsystem driven by a GAS subsystem is GAS.

Besides, ISS is easily checkable based on the study of a Lyapunov-like function. More
precisely, we have the following characterization.

Theorem 5.1 (Lyapunov characterization of ISS, [SW95]) The dynamical system
& = f(x,u) as defined in (1.4) is input to state stable if and only if there exists a smooth
function V : R" — R>q and class K functions o, &, o and vy such that, for all x € R"
and all admissible input u,

a(lz]) < V(z) < a(lz]) (5.1)

ov

5o (@) (1) < —afle]) +(ul). (5.2)

L4 : R>o — RP may consist in any measurable locally essentially bounded signal.
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In the sequel, the function « is referred to as dissipation rate while supply rate denotes
the function ~.

The iISS property. Even though this characterization has been widely used both in
analysis and design, ISS happens to be too strong a requirement in several cases. This
motivated the introduction of integral input to state stability (iISS) [Son98b], which is
a more general property. Instead of linking the state to the supremum of the input, it
involves a measure of the energy that inputs feed into the system, ¢f. Definition 1.22|

Similarly to ISS, it ensures the global asymptotic stability of the zero-input system and
guarantees some robustness to the system with respect to external signals. For instance, if
the supplied energy is finite, then solutions converge to zero, i.e. the asymptotic behavior
of an iISS system is not altered by the presence of an input with finite energy. iISS is
furthermore characterized by similar Lyapunov-like conditions as for ISS. The result below
was established by Angeli et al. in [ASWO00a].

Theorem 5.2 (Lyapunov characterization of iISS, [ASWO00a]) The dynamical sys-
tem & = f(z,u) as defined in (1.4) is integral input to state stable if and only if there
exists a smooth function V : R" — R>q and class K functions o, @&, v and a continuous
positive definite? function o : R>g — Rsq such that (5.1) and (5.2) hold for all z € R™
and all admissible input u.

As established in [ASW00a], iISS is more conservative than asking that the zero-input
z = f(x,0) be GAS and that # = f(z,u) be forward complete. Yet, it holds very often
in specific applications for subsystems involved in cascades. In this respect, please refer to
[LSWO02] where Liberzon and coauthors proposed a control design that makes the system
iISS with respect to disturbances. In the same reference, it is also shown that the cascade
of an ISS subsystem driven by a iISS subsystem is itself iISS.

iISS and cascades. It is therefore of interest to know whether similar properties —as
those that hold in the ISS case— are actually true for iISS systems. For instance: Is the
cascade of two iISS systems iISS 7 Is the cascade of an iISS system driven by a GAS system
GAS ?

The following counter-example, originally® proposed in [PL01, AAS02|, shows that the
answer to the second question is negative in general.

Example 5.3 (GAS + iISS % GAS) Consider the cascaded system

&1 = —sal(xy) + r122 (5.3a)
By = —a3, (5.3b)

where sat(s) := sign(s) min{1;|s|}. It was proved in [AAS02] that, although (5.3a) is iISS
with respect to xo and (5.3b) is globally asymptotically stable, the overall cascade (5.3)
generates unbounded solutions for all initial states in R>3 x {1}. Indeed, for zo9 = 1,
the solution of (5.3b) is 1/y/1+ 2t. Hence, as long as ¢1(t,x19) > 1, the first differential
equation 1s -

1

Vit+2t’

1 =—1+

Tnstead of class Koo in Theorem 5.1.
3We have, from A. Lorfa, that this example was originally stated to the authors of [PL01] by L. Praly.
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therefore

t
¢1(t,$10) —_ e\/1+2t—1 <$10 _/ 61—\/1+2’rd7_> .
0

But, considering the change of variable s = —1 + /1 + 27, we get that

t 00 00
/ e VIt g < / e VI = / e (s+1)ds=2.
0 0 0

Thus, if w19 > 3, then it holds that ¢1(t,x10) > eVi*T2=L > 1 at all time, and so
lim¢ o0 ¢1(t, 210) = 00. 0

In [AAS02|, an additional sufficient condition is proposed to restrict the iISS gain of
the driven subsystem in relation to the convergence rate of the state trajectories generated
by the driving subsystem. Roughly speaking, the decay rate of the driving subsystem’s
state has to be large enough with respect to the iISS gain of the driven one.

A way to ensure a sufficient speed of convergence of the input is requiring that it is
integrable. Such a sufficient condition was originally established in [PL98] for time-varying
systems. In that paper, Panteley and Loria proved UGAS of the cascade under growth-
order restrictions on the interconnection term and, most importantly, the condition that
the state trajectories of the driving system be uniformly globally integrable. See below for
a more precise comparison between these two results.

Thus, while the second question posed above has been studied and partially answered,
the first question (i.e. whether the cascade of iISS systems is itself iISS) is still open. A
direct extension of Example (5.3 gives a negative answer in general.

Example 5.4 (iISS + iISS = iISS) Consider the cascaded system

t1 = —sal(xy) + r122 (5.4a)
iy = —a3+u. (5.4b)

Applying Theorem [5.1 with the function V(z2) = 3, it follows immediately that (5.4b)
is ISS, and a fortiori iISS. In addition, as shown in Ezample 5.3, the driven subsystem
(5.4a) is also iISS. Nevertheless, if the cascade (5.4) were iISS, then it would be globally
asymptotically stable when wu is identically zero, which, as seen in Example (5.3, is not the
case. U

In what follows, we provide relatively mild additional conditions which are sufficient for
the iISS property to be conserved by the cascade structure. These are firstly given in the
case when an explicit iISS Lyapunov-like function is known for each of the two subsystems,
cf. Section Roughly, it suffices that the dissipation term of the driving subsystem
dominates the supply function of the driven subsystem in a neighborhood of the origin.
The second step, exposed in Section 5.3| consists in stating this condition in terms of the
estimates of the trajectories of the two subsystems when disconnected. More precisely,
in the case of a continuously differentiable zero-input driving subsystem, we recover the
sufficient condition derived from [AAS02| that the driven subsystem has a locally Lipschitz
iISS gain and that the driving one be 0-LES (see Definition [5.6 below).

In addition, in Section 5.1, we complete the main result in [AAS02]| by giving a sufficient
condition for the cascade composed of an iISS subsystem together with a GAS one to remain
GAS in the case when explicit Lyapunov functions are known. Roughly, it is again required
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that the dissipation term of the GAS subsystem dominates the supply function of the iISS
one around zero. This result may be useful in practice since the iISS and GAS properties
are commonly established through Lyapunov arguments.

For a better understanding of these results and their proof, we recall the following
definitions.

Definition 5.5 (0-GAS) The origin of the system & = f(x,u) as defined in (1.4) is said
to be 0-GAS?* if the origin of @ = f(x,0) is globally asymptotically stable (cf. Definition
1.10).

Definition 5.6 (0-LES) The origin of the system & = f(x,u) as defined in (1.4)) is said
to be 0-LES if there exists a positive constant A such that the origin of © = f(x,0) is
exponentially stable on Ba (cf. Definition 1.15).

Definition 5.7 (BEFBS) The system © = f(z,u) as defined in (1.4) is said to satisfy
the bounded energy frequently bounded state property if there exists a class Koo function
o such that, for all o € R™, its solutions satisfy

/oo o(ju(T))dr < o0 = ltirn+inf |p(t, 0, u)| < 00.
0 — 100
5.1 Global asymptotic stability for cascades, Lyapunov-based

The approach based on trajectories. As explained, the main result in [AAS02] studies
the cascade connection of an iISS system driven by a globally asymptotically stable system:

1 = fi(z1,72) (5.5a)
T2 = fa(z2), (5.5b)

where z; € R™, 29 € R", f; and fy are locally Lipschitz and satisfy f1(0,0) = 0 and
f2(0) = 0. In that work, Arcak et al. proposed a sufficient condition for (5.5) to be globally
asymptotically stable. More precisely, the authors established the following:

Theorem 5.8 (GAS + iISS = GAS, trajectory based, [AAS02]) Assume that (5.5a)
is 1ISS with an 1ISS gain py1 (cf. Definition|1.22) and that there exists ny,vo € Koo such
that, for all x99 € R™2, the solutions of (5.5b) satisfy

|p2(t, w20)| < M2 (v2(|w20))e™) | Yt € Rxg.

Then, under the condition that

1
/ mom(s) ;oo (5.6)
0

S

the origin of the cascade (5.5) is globally asymptotically stable.

4We may also say, with a slight abuse of terminology, that the system & = f(z,u) is 0-GAS.
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It is worth stressing that the sufficient conditions provided by Panteley and Loria in
[PLI8, PLO1|, who addressed the same question in a time-varying context, share strong
similarities with (5.6) and the sufficient conditions they derive impose similar requirements
on the subsystems’ behavior.

The Lyapunov alternative. The above result requires the knowledge of an explicit
estimate of the trajectories of each subsystem, as we need to know the iISS gain p; of
the driven subsystem and the convergence rate 7y of the driving one in order to check
condition (5.6). It is often the case that such estimates are obtained using the integration
of a convenient Lyapunov function for each subsystem. In addition, we have seen that the
existence of a Lyapunov-like function as in Theorem 5.2 is equivalent to the iISS property.
It therefore appears natural to derive a similar sufficient condition based directly on the
information provided by such Lyapunov functions. This is the object of the following
result, which hence can be seen as a natural counter-part of [AAS02, Theorem 1| for the
case when the global asymptotic stability of the driving subsystem and the iISS of the
driven one are not established through an explicit estimate of their solutions, but instead
in terms of Lyapunov functions.

Theorem 5.9 (GAS + iISS = GAS, Lyapunov-based) Let Vi and Vy be two con-
tinuous positive definite radially unbounded functions, differentiable on R™ and R™2 \ {0}
respectively and satisfying, for all x1 € R™ and all z9 € R™ \ {0},

g:ﬁ(ﬂfl)fl(ﬂfh@) < —aq(Jz1]) + 71(|z2|) (5.7)
gVZ(@)fQ(xz) < —ag(|zal), (5.8)
x2

where a1 and ao are continuous positive definite functions and vy 1s of class IC. Then,
under the condition that v1(s) = O(aa(s)) when s tends to zero, the origin of the cascade
(5.5) is globally asymptotically stable.

It is worth noting that, in view of Theorem 5.2, the existence of a function V; satisfying
5.7) is equivalent to saying that the driven subsystem (5.5a) is iISS with respect to xs.
Similarly, the condition (5.8) is equivalent to the global asymptotic stability of (5.5b).

Proof of Theorem15.9. Let us first consider the particular case when the initial condition
of the driving subsystem is x99 = 0. Since 0 is an equilibrium of this subsystem, we then
have that ¢2(¢,0) = 0 for all ¢ € R>g, and consequently convergence to zero of solutions
follows directly from (5.7) (see e.g. [Kha96, Corollary 3.3]).

In the sequel, we therefore consider that za9 € R \ {0}. We underline the fact that,
due to the regularity condition imposed on fs, it then holds that |pa(t,z20)| # 0 for all
t € R>o. To see this more clearly, notice that, since f is assumed to be locally Lipschitz
and f2(0) = 0, we have that |fo(z2)| < L(|x2|)|z2| for some continuous nondecreasing
function L. In addition, (5.8) ensures that the trajectories of the z2-subsystem (5.5b) are
bounded, so ma(z20) := sup;>g |p2(t, z20)] is finite and positive for all z9g # 0. From these
observations, it holds that

O (josttan)?) = 2faloalt220)) ot 2)
> —2L(|ga(t, x20)|) [p2(t, 720)|* > —a(w20) [P2(t, 220)|”




118 5. INTEGRAL INPUT TO STATE STABILITY FOR CASCADED SYSTEMS

where a(xg9) := 2L(ma(zg)) is a positive constant since x99 # 0. In other words,

|pa(-, za0)|? satisfies the differential inequality § > —a(zg0)y. From the comparison lemma,

we conclude that g (t, m20)|? > |220|? e 4#20) which is, as claimed, positive at all time.
The proof is mainly based on the following “changing dissipation rate” result.

Proposition 5.10 Let f: R™ — R"™ be a locally Lipschitz function such that f(0) = 0 and
V :R" — R>g be a continuous positive definite radially unbounded function, differentiable
on R™\ {0}, and satisfying, for all x € R™\ {0},

ov
%(x)f(x) < —aflz]),
where « is a continuous positive definite function. If & is a continuous positive definite
function satisfying a(s) = O(a(s)) as s tends to zero, then there exists a continuous
positive definite radially unbounded function V, differentiable on R™ \ {0} and such that,
for all x € R™\ {0},

ov

aj(x)f(x) < —a(|z]).
Proof of Proposition!5.10. The proof follows along the lines of the main result in [ST95|
proposed by Sontag and Teel. We define the new Lyapunov-like function as

where ¢ : R>g — R>g, to be defined later, denotes a nondecreasing continuous function
satisfying g(s) > 0 for all s > 0. This transformation preserves the properties of V', that is:
continuity, differentiability out of the origin, positive definiteness and radial unbounded-
ness. In addition, notice that the continuity, positive definiteness and radial unboundedness
of V ensures the existence of a class K function a such that V(z) > a(|z|) for all x € R"
(see [Kha96, Lemma 3.5]). Hence, the total derivative of V satisfies, for all 2 € R™\ {0},

oV oV
B @ (@) < a(V(2)) () f(2) < —go alfz])a(|z]).
Note that, by the assumption on the local relative behavior of o and &, the function
r i aoa ' (r)/a@oa t(r) is upper bounded on any interval (0,7], 7o > 0. Hence, the
function defined by
aoa (1)

G(r) := sup ———+, Vr >0,

i) 02tor &0 0 L(1)
is a well defined nondecreasing function. Pick ¢ as any nondecreasing continuous function
satisfying ¢(r) > ¢(r) for all » > 0, and let r = a(|z|), for z € R™\ {0}. We finally get, as
desired, that ¢ o a(|z|)a(|z]) > a(|z|). |

Notice that, by assumption, it holds that 2vi(s) = O(aza(s)) in a neighborhood of
0. Apply Proposition [5.10 to the dissipation inequality (5.8) with the function &(-) =
271(-). Then there exists a continuous positive definite radially unbounded function Va,
differentiable out of zero, and satisfying, for all z9 # 0,
OV (w2 falan) < —2m(Jeal).
Z2
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By summing this inequality with (5.7)), we get that, for all (z1,z2) € R™ x (R"2\ {0}),
oV oV
(@) i@y, 22) + 5 —(@) fa(22) < —an(|za]) —n(laa]) = —(2),
o0xq 0z

where, z := (z] 29 )" and V(z) := Vi(z1) + Va(z2). Notice that V; inherits the properties

of V1 and V5: it is continuous positive definite and radially unbounded. Therefore, (see
e.g. [Kha96, Lemma 3.5|) there exist two class Ko functions a and @ such that

a(lz]) < V() <a(lz]) . (5.9)

Moreover, let (s) := inf|; >, 9 (z) for all s € R>g. Then ¢ is a continuous positive definite
function and we have that, for all z € R™ x (R"2\ {0}),

v
8%1

Since, as previously shown, ¢a(t, z29) # 0, we finally get that, for all ¢ € R,
V(¢(7 ‘TO)) < —po at (V((ﬁ(tv wo))) :

Noticing that ¢ o @™ is a continuous positive definite function, we can apply [ASWO00a,
Corollary IV.3] to establish the existence of a class KL function [ such that

V(¢(t7 :UO)) < B(V(O)a t) ) vVt € RZO .
In view of (5.9), we then get that, for all x99 # 0,
[9(t, z0)| < B(|wol 1),  VEER>,

(@ i(1,2) + 5o w10 (o) < —p(le) < —poa™ (V@)

1

where

B(s,t):=a topB@(s),t), Vs,teRsg,
and the conclusion follows by noticing that 3(s,-) is a KL function. |

The above result can be seen as a corollary of Theorem 5.13 presented below. We have
however decided to present it separately as its proof involves an approach (the change of
supply rates) which cannot be followed in the context of Theorem 5.13.

Remark 5.11 It is worth mentioning that, if an upper bound on Vy of the form Va(xe) <
as(|z2|) is explicitly known, where @s denotes a Koo function, the condition in Theorem
5.9 (namely y1(s) = O(aa(s)) as s — 0) can be considerably relaxed. More precisely, it
suffices that there exists a constant q € [0,1) such that

(s) =0 (5‘22((5'9))(1) . and  as(s) =o(ax(s)?), as s—0. (5.10)
Indeed, consider the function Vao(-) := Va(-)'=9. Then Vs is a positive definite function,
differentiable out of the origin, and we get from (5.8) that

0V

o, @2l fa(@2) < =(1 = q) az(lz2)V,* < —(1 - q)
)

ag(|z2])
a(|z2])?

In view of (5.10), &s is a continuous positive definite function. Hence Theorem 5.9 applies
with the new Lyapunov function Va, and establishes that (5.5) is globally asymptotically
stable. In this respect, notice that allowing Vo to be non-differentiable at the origin is
useful, as further illustrated by the following example.

=: —ao(|z2]) .
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Example 5.12 Consider the following two dimensional cascaded system:

.I"l = —Sat($1> + X129
. Z2
Tro = ——F

1+ a:% ’

where sat(s) := sign(s) min{|s|,1}. In order to study the global asymptotic stability of the
origin of ths cascade, we will make use of the following functions:

1 1
Vi(x) = §ln(1 + %) and Vo(xe) = 53}%

First, notice that

My
81‘1

x1sat(ry) 379 - _:Ulsat(xl)

1—1—3@% 1+2x7 — 1+:L‘% + [w2l

(z1)(—sat(x1) + z122) = —

In the same way,

oVa o B 3

B <_1+x§> T 1442
Please note that GAS of the overall cascade does not directly follow from the study of the
Lyapunov function Vi + V. Indeed, the unbounded term |xa| generated by Vi cannot be
compensated by the bounded term l’%/(l + m%) provided by Vs. Nevertheless, this property
can easily be inferred by Theorem 5.9 and Remark 5.11. To see this, first notice that Vi
and Va satisfy (5.7) and (5.8) with

2
ai(s) = %aii, 7(s)=s and as(s) = ﬁ, Vs € R>g.
Since the requirement v1(s) = O(aa(s)) as s tends to zero does not hold, it is not possible
to apply Theorem 5.9 directly. Newvertheless, it is possible to conclude using the previous
remark with ¢ = 1/2. Indeed, an upper bound on Va is aiz(|xa|) := |22|* /2. We can further
notice that the function a(s)? = s/\/2 strictly dominates as(s) around zero, and that
as(s)/a(s)? = sv/2/(1 + s%) dominates 1 (s), which are enough to conclude. O

5.2 Integral input to state stability for cascades, Lyapunov-
based

Our second result in the context of integral input to state stability (iISS) concerns the
cascade connection of two iISS systems, in the case when an iISS-Lyapunov function is
explicitly known for each of them. For the sake of generality, it is allowed that the driven
subsystem depends also on the input of the driving one. We therefore deal with dynamical
systems of the following form:

.%"1 = fl(:):l,:rg,u) (5.11&)
.%"2 = fQ(J:‘Q,u) (5.11b)

where 1 € R™, 29 € R", u : R5g — RP is a measurable locally essentially bounded
function, f1 and fy are locally Lipschitz and satisfy f1(0,0,0) = 0 and f2(0,0) = 0. Such
system can be represented by Figure|5.1.

For this type of cascaded interconnections, we have the following.
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!

U 22 T3 21 x1

Figure 5.1: Cascade with direct feeding of the driven subsystem.

Theorem 5.13 (iISS + iISS = iISS, Lyapunov-based) Let V; : R™ — Rxq be a
differentiable function and Vo : R — R>q be a continuous function, differentiable out
of the origin. Suppose that there exist a class K function vy and, for all i € {1,2}, a
continuous positive definite function «;, a class K function v;, and two class Ko functions
a; and @; such that, for all x; € R™ and all u € RP,

oi(|zi]) < Vi(wi) < @illail) (5.12)

oy
8—3:1(1:1)]“1(1:1,3:2#) < —aq(|z1]) + yi(lza]) + va(ful) (5.13)
270 = ZZ(HCZ)JCZ(%U) < —az(|w2]) + y2(|ul) - (5.14)

If, in addition, v1(s) = O(aa(s)) as s tends to zero, then the cascade (5.11) is iISS.

We stress that (5.13) is equivalent to saying that the driven subsystem (5.11a) is iISS
with respect to xo2 and w. This can be rigorously established based on Theorem [5.2 by
taking v(-) as y1(-) + v1(-). Furthermore, in view of the same result, condition (5.14)
consists in an (apparent) slight relaxation of the Lyapunov characterization of iISS for
(5.11b), as V4 is not required to be differentiable at zero.

The above result proposes an easy-to-check sufficient condition to guarantee the preser-
vation of the iISS property under a cascade interconnection. It is expressed as a local
domination of the driving system’s dissipation rate on the supply rate of the driven one.

This does not constitute the first attempt to guarantee iISS for cascaded iISS sub-
systems. In [Ito04, Ito05], Ito provides sufficient conditions for the preservation of iISS
under cascade. Similarly to Theorem [5.13] these conditions are expressed with respect to
the supply and dissipation rates of the Lyapunov function associated to each subsystem.
However, Ito implicitly assumes that one of the two subsystems is ISS and, contrarily to
Theorem 5.13, the requirement in that reference involves also the upper and lower bounds
on the Lyapunov functions and the dominance is imposed on the whole® R>( (and not just
in a neighborhood of zero). These features make the above tool more general and, often,
easier to apply. This is illustrated by the following example.

Example 5.14 Consider the following two-dimensional cascaded system:

i = —x1(1— 23 —u) (5.15a)
to = —sal(xe) + xou. (5.15b)

We use the Lyapunov functions

Vi(x;) := In(1 + x3), ie{1,2}.

°In that reference, a local requirement is proposed only in the case of ISS driving subsystem.
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Direct computations then show that

2
. T
v < .1 2
(@) < g el s
. xgsat(m’g)
Vs < - =2 .
o(r2) < 1+ 02 + |ul

Using the notation of Theorem 5.13, we have that, for all s € R>p,

82

T 142

sat(s)s

n(s)=s",  vi(s) =7(s) =s, QQ(S)ZW,

a1 (s)

50 y1(s) = O(wa(s) near 0 and we conclude that the cascade (5.15) is iISS. However, the
condition imposed by [[to05, Corollary 2] to reach such a conclusion is the ezistence of
positive constants ¢ and q, with ¢ > 1, such that

(m ogz_l(s))qgcag oa,(s), Vs € R>o,
where ay and &y are class K functions satisfying
ay(|z2]) < V(x) < a(|aa]) -
Even though these bounds can be chosen very tight, i.e.
ay(s) = aa(s) = In(1 + 5%), Vs € R,

the above condition does not hold. This follows from the observation that, for all ¢ > 1,
v{ € Koo while ag is a bounded function. This makes [Ito05, Corollary 2| inapplicable to
this case. O

We next formally establish the above result.

Proof of Theorem[5.13. To the best of our knowledge, no changing supply rate result, as
the one in [ST95], exists for iISS systems. The approach adopted here is therefore different
from the proof of Theorem [5.9. The proof consists in showing separately that is
0-GAS and satisfies the BEFBS property and then applying Theorem [AISW04, Theorem
3] which shows equivalence between iISS and the combination of the above two properties.
The first step is actually straightforward in view of Theorem [5.9, by picking in the latter
fi(-,5) as fi(+,-,0) and fa(-) as fa(-,0). To establish the second one, we introduce the
following result.

Lemma 5.15 Let w: R>¢g — R be a continuous function. Suppose that y : R>g — R>¢ is
a locally Lipschitz function satisfying, for almost all t € R>o,

yt) >0 = g(t) <w(t) (5.16)

and that
y(t)=0 = w(t)>0. (5.17)

Then §(t) < w(t) actually holds for almost all t € R>g. O
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Proof of Lemmal5.15. Let x : R>g — R>o be defined as follows:

] 1 if y=0
X(y)_{ 0 if y>0,
and, for all y € R>q, let G(y) denote the following set:
Gy) ={teRso : y(t) =y and g(t) exists} .
Then, by the area formula for locally Lipschitz functions , we have:
+oo +oo
| ol = [ e @)y =o.

Let K denote the set {t € R>¢ : y(t) = 0}. The above argument shows that the set
{t € K : §(t) # 0} has zero-measure. Hence, for almost all ¢ in K, we have y(t) = 0 and
consequently, by virtue of (5.17), for almost all ¢ € K it holds y(¢) < 0 < w(t). Since, by
the assumption (5.16) the inequality holds for almost all ¢ ¢ K, the claim follows. |

Let us go back to the proof of Theorem [5.13. Consider any initial state (x19,x20) €
R™ xR"2 and any admissible input u. Notice that, in view of (5.12), ca(|p2(+, 220, u)|) van-
ishes whenever V (¢2(+, x20,u)) = 0. By considering w(-) = —aa(|p2(-, z20, u)|) + v2(Ju(-)|)
in Lemma 5.15, it therefore holds that, for almost all ¢ € R>o,

Va(oa(t, w20, 1)) < —aa(|da(t, x20,u)|) + y2(Ju(t)]). (5.18)

We establish the BEFBS property under the following “Bounded Energy” assumption:

/000 y(|u(r)|)dr < e, (5.19)

where y(s) := max{v2(s); ¥1(s)} and c is a positive constant. Integrating Inequality (5.18)
indeed yields, for all ¢ € R>,

/062(!@(7,96207”)!)617 < V2($20)—V2(¢2(t,xzo7U))+/72(!”(7)!)617
0 0
Va(z20) + .

AN

Moreover, in view of (5.12) for ¢ = 2, Inequality (5.18) implies that, for almost all £ € R>y,

Va(oa(t, a0, 1)) < —avg 0 @y ' (Va(a(t, w20, 1)) + v2(|u(t)]) -

Since o o oty !is a continuous positive definite function, [ASW00a, Corollary IV.3] estab-
lishes the existence of a class L function (9 such that

Va(da(t, w20, u)) < Ba(Va(x20),t) + 2/0 Yo (|u(r)])dr .

Using again the bounds on V5 provided by (5.12)%, it follows that

a(t )] < 05" (2a(aa(onl) ) 45" (4 [ alu(ar) . G20

SAnd the “weak triangular inequality”: a(a + b) < a(2a) + «(2b) for any nonnegative a and b, if
o : R>¢p — R>g is nondecreasing.
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By the way, as we will need it later, notice that a similar reasoning based on (5.13) leads
to the following bound on the trajectories of (5.11a), where 31 denotes a KL function:

¢

91(t,210,72)| < a7 (261 (@1 (Jaa0]). 1) ) +or (4 | [uteatream. ) +m(|u<¢>|>}d7> .

(5.21)

In view of (5.19) and (5.20), [Son98b, Proposition 6] ensures that lim; o |¢2(t, 20, w)| = 0.

Notably, there exists a finite time 7' > 0 such that |¢p2(t, 220, u)] < 1 for all t > T.

Furthermore, since ;(s) = O(aa(s)) in a neighborhood of zero and both these functions
are continuous, there exists a positive constant k such that

7(s) < kas(s), Vsel0;1]. (5.22)
Using (5.19), (5.20) and (5.22), we can achieve the following computation:

[e.9]

') T
/ i (6a(r, w20, w) )T < / (1o (T 20, w)|)dr + / (a7, w20, ) )
0 0 T

IN

T o)
/O (o, 220, w0) ) + & / ey (| (r, 220, 0)]) d

. T
< / (| 20, ) ) + k(Va(za) + ).
0

Since T is finite, this shows that, under the bounded energy condition (5.19), the integral
fooo Y1(|p2(7, 220, w)|)d7 is bounded as well. Finally, notice that, since 1 is a KL function,

5.19) and (5.21) imply that
limsup |61 (t, 210, 72)| < ar! (s / 71(’¢2(T,$20,U)|)d7>+041_1 (8 / u1<|u<f>|>d7)
0 0

t—o0
< oy <8/0 71 (l2(T, $20,U)|)d7> +a;t(8¢c) .

In a nutshell, under the bounded energy assumption (5.19), the upper limit (and, a fortiori,
its lower limit) of the norm of the trajectories of (5.11a)), as ¢ goes to infinity, is finite. This
establishes the BEFBS property for the whole cascade (5.11). As evoked in the beginning
of the proof, the conclusion follows from [AISW04, Theorem 3].

|

A direct consequence of Theorem [5.13, which is of notable interest in stability analysis,
concerns the case when the driven subsystem does not depend on the input u. The system
then takes the more classical cascade form

1 = fi(z1,22) (5.23a)
o = fa(we,u). (5.23b)

Corollary 5.16 (iISS + iISS = iISS, Lyapunov-based) Let Vi be a differentiable func-
tion and Vo be a continuous function differentiable out of the origin. Suppose that, for all
i € {1,2}, there exist: a continuous positive definite function o, a class KC function ~;, and
some class Koo functions o and @; such that, for all (x1,x2) € R™ X R™ and all u € RP,

(5.12) and (5.14) hold and

OV ) frlan, 22,) < —on(foal) + m(feal)
Z1
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Then, under the condition that v1(s) = O(aa(s)) as s tends to 0, the cascade (5.23) is
WISS.

Proof of Corollary!5.16. 1t suffices, with a slight abuse, to pick v; as the zero function in
the proof of Theorem |5.13. [ |

Intuitively, one could expect that the cascade keeps the same iISS gain as its driving sub-
system. This is however not the case in general, as shown by the following counter-example.
This example also illustrates how the fact that V5 is not required to be differentiable at
the origin can be profitable in some situations.

Example 5.17 Consider the following two-dimensional cascaded system:

jjl = —sat(:zl)—i—ml:cQ

To = —x9+4u.

First, we show that this cascade is iISS. To this end, let Vi(x) = In(1 + 2%)/2 and
Va(xg) = |x2|. Using the same notations as in Corollaryl5.16, and referring to the compu-
tations detailed in Example |5.12, we see that their derivatives satisfy the following upper
bounds:

dVi r18atT]
i < _
= (z1) fi(w1,22) < 1+ a2 + |22
%
zo #0 = d—xz(m)fz(@,u) < @] + [ul.

The previous result easily applies and establishes that the cascade is 11SS. Next, we exhibit
an 1SS gain for the driving subsystem. Since it is linear and time-invariant, it is direct to
see that its solutions satisfy

|p2(t, 220, u)| < |z20] e_t+/0t ‘e_(t_T)u(T)’ dr = |z90| e_t—l—/ot ’(e—(t—T)/2) (e—(t—T)/Qu(T)> ‘ dr .

The two functions in brackets in the latter integral are in Ly (and actually in Ly, for all
positive p). Hence, we can apply Holder’s inequality to get that

t 3/4 t
(6ot ma0,0)| < |a:20|e—t+( / e—2<t-f>/3df) ( e |u<r>|4dr)
0 0

3 t 1/4
|z20] et = </ u(7)4d7>
2 \Jo
4

This shows that an admissible iISS gain for the driving subsystem is the function u(s) = s*.
However, if it were an 1ISS gain for the whole cascade as well, then [Son98b, Proposition 6]
would notably ensure that, if the integral fooo u(T)4dr is finite, then limsup,_, . |¢(t, zo,u)| =
0. We show that this is not the case. Consider indeed the feedback input u = xo — 3. The
closed-loop cascaded system then becomes

1/4

IN

1 = —sat(x1) + x122
i‘g = *.T%.

As seen in Example (5.3, for x99 = 1 the solution of the xo-subsystem is 1/+/1 + 2t, which
ensures that fooo u(T)*dr < oo whereas, for any x19 > 3, the corresponding trajectory of
this system grows unbounded. O
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5.3 Integral input to state stability for cascades, trajectory-
based

In this section, we address the same problem as above, i.e. deriving sufficient conditions for
the preservation of the iISS property under cascade interconnection, but without requiring
the knowledge of any Lyapunov function. Instead, greater stability properties are required
for each subsystem. It is indeed imposed that the driving subsystem be 0-LES, and that
the iISS gain of the driven subsystem be locally Lipschitz.

Theorem 5.18 (iISS + iISS = iISS, trajectory-based) Assume that the system (5.11a)
is 1ISS with respect to (xe,u) with an iISS gain p1, and that the system (5.5b) is 1ISS and
0-LES (cf. Definition|5.6). Assume also that fa(-,0) is continuously differentiable. Then,
under the condition that uy is locally Lipschitz, the cascade (5.11) is 1ISS.

To the best of our knowledge, this constitutes the first result that proposes trajectory-
based sufficient conditions for the preservation of the iISS property under cascade inter-
connection.

It is interesting to see that the obtained sufficient condition is hardly more conservative
than the one in [AAS02, Corollary 2|, while ensuring a more interesting property to the
overall cascade (that is, iISS instead of GAS). More precisely, the latter reference imposes

that .
/ 'ul(s)ds < 00,
0

S

which is fulfilled when g is locally Lipschitz.
Also, similarly to Theorem [5.13, note that this result applies to cascaded systems like
(5.23), 7.e. when the driven subsystem does not depend on the input .

Proof of Theorem[5.18. The proof consists in designing a Lyapunov-like function for the
driving subsystem, in order to follow a similar reasoning as in the proof of Theorem |5.13.
Namely, we will show 0-GAS and BEFBS. We point out that any locally Lipschitz function
of class I can be upper bounded by a differentiable function of class K. Based on this
observation, we will consider without loss of generality that p; is differentiable. We start
by introducing the following lemma, similar to a result in [SJK97], which establishes a
local Lipschitz property for the estimate of the trajectories of a GAS and LES system.

Lemma 5.19 (L estimate for GAS and LES systems) A system © = f(x), with
f:R™ = R"™ locally Lipschitz, is GAS and LES if and only if there exists a locally Lipschitz
function n of class IC and a positive constant k such that, for all initial conditions xg € R",
the corresponding solution satisfies

lp(t, )| < n(|x0\)e_kt, Vt € R>g.
[l

Proof of Lemmal5.19. One direction of the implication is straightforward. Indeed, suppose
that [¢(t, 20)| < n(|Jwo|)e ™ for all zp € R™ and all + € R>g. Then the system is GAS.
In addition, since 7 is a locally Lipschitz function of class K, there exists a nonnegative
constant A such that n(s) < As for all s € [0;1]. Thus, for all |z¢| < 1, it follows that
|p(t, 20)| < X|zo| e~*, which establishes LES.
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The converse is proved using similar arguments as for [AAS02, Lemma 4|. Since the
system is LES, there exist some positive constants k1, & and € such that

’$0| <eg = ’¢(t, x0)| <k ‘.’L‘o’ ekt , vVt € R>g. (5.24)

Also, since it is GAS, for any xg € R" there exists a time 7" > 0, depending on |zg|, such
that |¢(T(|zol), z0)| < €. Hence, it holds that

|6, 20)| < ku [@(T(|zo]), wo)| e H=T U0 < oy eehTrole =kt it > (| ]) . (5.25)

Moreover, the GAS assumption also establishes the existence of a KL function such that,
for all xq, |o(t, z0)| < B(|xol,t). It follows that, for all ¢ € [0; T'(|zol)],

t,20)| < B(|xol, 0)er e < B(|xg|, 0)eFT (woh =kt
|¢(t, z0)| < B(|zo , 0) < B(lzol
This inequality together with (5.25) shows that, for all ¢ € Rx,

|6(t, x0)| < e max {kie ; B(|zo|,0)} Tzl

From the previous inequality and (5.24), it is possible to see that |p(t,zo)| < 7(|zo|)e ™,

where
kis if 0<s<¢g/2

n(s) =< o(s) if ¢/2<s<e¢
max {kie; B(s,0)} TG if s> ¢,

where ¢ is any continuous increasing function such that
o(e/2) =kie/2 and  o(e) = max {kie ; B(e,0)} ).

Since the function T'(+) can be chosen continuous and nondecreasing, 7 is a class K function.
Note in addition that 7 is differentiable over [0;e/2], and is consequently locally Lipschitz
around zero. This shows that it can be upper bounded on all R>g by a locally Lipschitz
function 7 of class /C, which establishes the result. ]

We can now continue the proof of Theorem [5.18. Since the driving subsystem is iISS,
it is 0-GAS. Hence, from the previous lemma, we see that there exists a locally Lipschitz
class K function 72 and a positive constant ko such that the trajectories of the zero input
driving subsystem satisfy, for any x99 € R"2,

|pa(t, 20, 0)| < na(|za0])e 2!, vVt € R,

which means, using the terminology of [AAS02|, that #2 = fa(x2,0) is GAS(ag) with
as(s) := s. In addition, since p; is locally Lipschitz and positive definite, there exist a
positive constant A such that p1(s) < As for all s € [0;1]. Consequently, we have that

1 112
/stg/ A5 1< a2,
0 o S

S

The 0-GAS of the cascade (5.11) then follows from [AAS02, Theorem 1].

The proof of the BEFBS property is based on the following two lemmas. The first one
ensures the existence of a converse Lyapunov-like function for GAS and LES systems, with
a prescribed dissipation rate.
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Lemma 5.20 Let f : R™ — R” be a continuously differentiable function such that the
system © = f(x) is GAS and LES. Let p be a given differentiable function of class K.
Then there exists a continuous function V : R™ — R differentiable over R™\{0}, class Koo
functions a and &, and a continuous function ¢ : R™ — Rxq such that, for all x € R™\ {0},

aof|z[) < V(z) < a(lz])

W (@) (@) < ~ulal) (5.26)
(Z—Z(:L‘) < c(z). (5.27)
U

Proof of Lemma 5.20. The result is inspired by the converse theorems based on Massera’s
lemma (see |[Mas49| or, e.g., [Kha96, Theorem 3.14]). The novelty consists in allowing to
assign a prescribed dissipation term to the constructed Lyapunov-like function. We define

V) = /0 " wl(r )

Upper bound on V: Since the system is assumed to be GAS and LES, Lemma 5.19 ensures
the existence of a positive constant k£ and a locally Lipschitz Ko function 7 such that
|p(7, )| < n(|z|)e 7. Based on this observation, we get that

V(z) < /0 " (e dr = (). (5.28)

We claim that @ is of class K. Indeed, it is clear that @(0) = 0. For any = € R™\ {0},
consider the change of variable s = n(|z|)e™*7. Then we can see that

() s
a(]x\):/on ’“‘]igds. (5.29)

However, since p is differentiable, it is locally Lipschitz, so there exists a nonnegative L,
such that p(s) = p(s) — u(0) < Lys for all s € [0;7(]x|)]. This shows that the previous
integral is finite, and therefore that @ is finite over Rsg. Moreover, it can easily be seen
from (5.29)) that @ is continuous and increasing, which finishes to establish the claim.

Lower bound on V: The lower bound on V is obtained as follows. Notice first that, since
f is continuously differentiable, it is locally Lipschitz, so there exists a continuous nonde-
creasing function L such that, for all z € R", |f(x)| < L(|z|) |z|. Hence

aaT(qb(T, 2)|) = 2f($(7,2)) " d(r,2) = —2L(|é(r,2)|) [$(r, 2)|* = ~b(=) |o(r, )|,

where b(z) := 2L(sup, > |¢(7, )|+ 1) is a positive constant which is finite since the system

is assumed to be GAS. Thus, |¢(-, z)|* satisfies the differential inequality § > —b(z)y. From
the comparison lemma, we conclude that |¢(r, )[> > |z|> e )7, Therefore

Vix) > /OOO 7 <|:L'| e—b(:c)T/2) dr > /Ol/b(x) I (|3:| e—b(a:)T/Q) dr > p <|1:]2 6_1) .
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Hence, the choice a(s) := u (826_1) is an appropriate class Ko, lower bound? for V.

Gradient of V: The next point consists in showing that V' is differentiable. To this end,
notice that, for any z € R”, the solution of # = f(x) satisfies

o(t,x) = :c+/0 F(o(r,2))dr.

We introduce the notation

b, 2002,

and differentiate the previous equality with respect to = to get that

Ox(t,z) =1 —i—/o g‘;@(ﬂx))cbx(ﬂ z)dr.

Differentiating next with respect to ¢, we obtain that ¢, (-, x) is solution of the differential
equation

0 (0ult,)) = At 0)oult,2), af0,0) =1, (5.30
where of
A(t,x) == %(qﬁ(t,x))
We define

Ao = tlim Alt,z) .

Since the trajectory ¢(t,z) tends to 0 and f is continuously differentiable, we can see that

which shows that A is independent of z. Also, since the system is assumed to be LES, it
follows from [Kha96, Theorem 3.13] that Ay is a Hurwitz matrix. Hence, for any positive
definite symmetric matrix @, there exists a positive definite symmetric matrix P such that
Al P+ PAy = —@Q. Consider the Lyapunov function

V(¢) = ¢y Ps. (5.31)
Then its derivative along the solution of (5.30) yields
V6) = o1 (Alt.2)T P+ PA(t,2)) 6
= 07 Q0s + 6] (A7) — A) P+ (A7) — Ax)|
< —gm el + At 2)] 62l (5.32)

where ¢, > 0 is the minimum eigenvalue of Q and A(t,z) := (A(t,x) — Ax)"P +
P(A(t,x) — Ax). We can see that lim; .o |A(f,x)] = 0. Hence, for all z € R", there
exists a finite time 7'(x) such that |A(t, )| < ¢, /2, and consequently

V(bolt ) < =St balt, )P, V2 T(2).

"Note that, in view of (5.28), this establishes in turn that @ is a class Koo function as well.
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From this and (5.31), we conclude that there exist two positive constants ki and ks such
that
bz (t, )| < ki |po(T(x), )| e F2ET@) v > T(x). (5.33)

It is worth mentioning that the forward completeness is ensured by (5.32) and the fact that
|A(-, )| is bounded (since it is continuous and has a finite limit), ¢f. [AS99]. Therefore,
the function defined as

ci(x) == sup |¢.(t, )|, Vo e R"
te[0,T(z)]

is well defined over R™. Recalling that
sup [¢(t, z)| < n(|x])
>0

and using also (5.33), it holds that, for all x € R",

S B T(x) k1
/0 (balr, )] dr = /0 (o, )] dr -+ / [ Il b < )T+ 6T, )

Since, as proved in the beginning of the proof, ¢(¢,z) # 0 for all z # 0 and all ¢ € R>¢, it
follows that

‘/ "(J¢(T, ’ E’ i‘d)x(T, x)dr

/O 1 (6(r, 2))| 1607, 2)| dr

< s |/ (62 (7, )] dr

€[0sn(Jz])]
< swp w'<s>|(c1<x>T<x>+kl|¢x<T<x>,x>|).
s€[0sm(Jz])] 2

Thus, the left-hand side of the previous inequality exists and is finite for all x € R™\ {0}.
However, the norm of this very integral also satisfies

h ! (b( ) 002 T, T| = 8l
| wteman S | etutiotronar| = 5@

This establishes that V' is differentiable over R™ \ {0} and, in turn, provides the bound
(5.27) with any continuous function ¢ : R” — R satisfying

)z s W) (@@ + o)), e

s€[0;n(|z])]

(r,x)dr| =

Upper bound on V: Finally, we exhibit the bound on the total derivative of V along the
trajectories. Let x be any vector of R" and ¢ € R>¢, we then have that

Viz) = /°° (16(r.2))dr
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We thus get that, for all z € R" and all ¢ € R>,

t

V(o(ta) = V() = = [ llotr.o)ar.
The bound (5.26) follows by differentiating this equality with respect to t. |

The second lemma we need is an extension of [ASW00a, Proposition II.5] and creates
a bridge between the notions of 0-GAS and iISS in terms of a (not necessarily radially
unbounded) Lyapunov-like function. The novelty here consists in explicitly specifying the
behavior of the dissipation term around the origin.

Lemma 5.21 Let f : R” x RP — R" be a locally Lipschitz function. Suppose that there
ewists a continuous function V : R" — Rx>q differentiable out of the origin such that, for
all z € R™\ {0},

affz]) < V(z) < alz])

o (@)7(,0) < ~p(])
)| < elw),

where o, @ denote Koo functions, p € K, and ¢ : R" — R>q is a continuous function.
Then there exists a continuous positive definite function W : R" — Rsq differentiable on

R™\ {0} such that, for all z € R™\ {0} and all u € RP, it holds that

ow

55 @ f (@ u) < —p(jz]) + 8(|ul),

where § is of class K and p is a continuous positive definite function satisfying p(s) ~ pu(s)
in a neighborhood of zero. O

Proof of Lemma!5.21.  The proof we present here consists in slight modifications of the
one of [ASWO00a, Proposition II.5]. We first establish the following result, which should be
seen as an adaptation of [ASW00a, Lemma IV.10].

Proposition 5.22 Under the assumptions of Lemma|5.21, the function V is such that,
for all x € R™\ {0} and all u € RP,

ov

B O (@, u) < —p(lz]) +v(|2])d(lu]),

where 6 is a class K function and v is a positive continuous increasing function.

Proof of Proposition!5.22. Consider x # 0 and compute the total derivative of V along
the trajectories of the system with input u:

ov ov ov ov
@) = SL @ ,0) + 5 (@) [F @) — f(@,0) — F0,0)] + S (@) 0,u)

IA

o0 = £2,0) = F0.0)]+ | G @)

ov
@) £0,u)l

—p(|x]) +
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Define the following function

v(rys) :=r+s+ max |f(xz,u)— f(z,0)— f(0,u)|, Vr,s € R>q.

|z|<r,|ul<s

Then, ~ is of class K in each of its two arguments. So, by [ASW00a, Corollary IV.5], there
exists a class K function o such that y(r,s) < o(r)o(s). It follows that

ov

v & @)oo (lul) + | 2 @)

@) ) < —plla)) + | 5 (@) £(0,u)] -

Define next, for all > 0,

k(r) :==r+ sup
0<|z|<r

%(x)

Note that « is well defined for all positive r since V' is differentiable over R” \ {0} and

limsup |—(2)| < ¢(0) < c©.
|z|—0 €z
If, in addition, we let x(0) := 0, then x is a positive definite nondecreasing function,

continuous on Rsg. Hence, there exists a continuous increasing function £ such that
R(-) > k(). Thus we get that, for all x # 0,

g‘;(ﬂf)f(x, u) < —pllz]) + K(|[z)o (=)o (lul) + F(|z]) | f(0, u)] -

By the local Lipschitz continuity of f, there exists a class K function x such that | f(0,u)| <
X(|u|). This final observation establishes the result with the functions v(-) = &(-)(14+0(+))
and 6(-) :=o(-) + x(-). |

Let’s now go back to the proof of Lemma 5.21. Define the following function

" ds
0= || e

where v is the positive continuous increasing function generated by the previous proposi-
tion. Notice that, since v o a~! is a nonnegative function, 7 belongs to class K. Letting
W :=moV, it follows that W is positive definite and differentiable out of the origin and,
for all = # 0, we have that

oW _ oV " 1 —p(lz]) v(|z|)d(Jul)
5y @ (@,u) = o (2) f(z, )1+1/og_1(V(x)) < T voatoale) " 14ua)

Define

p(s) == )

= Vs € R>g.
l+voa~toa(s)’ &R0

Then p is a continuous positive definite function. In addition,
i 8)
s=0 p(s)

which establishes the result.

:lin%l—l—uogflo&(s):l,
S—>
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Based on these two lemmas, we now complete the proof of Theorem 5.18. As already
seen, the driving zero-input subsystem @9 = fo(x2,0) is GAS and LES. Apply Lemma
5.20 to it with the function u(s) := p1(2s), where p1 € K is the iISS gain of the driven
subsystem®. The conditions of Lemma [5.21] are then also fulfilled, and we conclude the
existence of a continuous function W, differentiable out of the origin, such that, for all

x2 # 0 and all u

ow

67(5132)f2(332, u) < —p(|z2]) + o(ful),
X2

where o0 € K and p is a continuous positive definite function such that p(s) ~ pi(2s)
around zero. By letting w(t) = —p(|p2(t, z20,u)|) + o(Ju(t)|) in Lemma 5.15, it follows
that, for almost all ¢ € R>,

W (2(t, 220, u)) < —p(|62(t, z20, w)]) + o (Ju(t)]).

Integrating this inequality yields

/OO (|27, 220, w)|)dT < W (220) + /OO o(lu(r)))dr . (5.34)
0 0

On the other hand, by the assumption of iISS on the driving subsystem, there exists
B2 € KL, and v, uo € K such that, for all x99 € R™2 and all admissible u,

|¢2@,$mnu)|Slﬁ(haoht)*‘72<J€ uauuovodf> | (5.35)

We show that the state is “frequently bounded” under the following bounded energy as-
sumption:

/000 war(Ju(r)])dr < oo, (5.36)

where
war(s) := max{pui(2s); pa(s); o(s)}, Vs € R>g.

To this end, first notice that, in virtue of [Son98b, Proposition 6], this assumption together
with (5.35) ensures that
Jim o, 20, u)| = 0. (5.37)
—00

Moreover, provided (5.36), the integral of the left-hand side of (5.34) is finite. Hence, since
Lemma ensures that p(s) ~ 11(2s) as s tends to zero, we have that

/000 p1(2|p2(T, w20, u)|)dT < 00.

Finally, since p; is the iISS gain of the driven subsystem, there exists §; € KL and v; € K
such that the trajectories of (5.11a) satisfy

1t ai0na2)| < Bullziol )+ (/0 ,u1(’(¢2(T,$207U),U(7))|)d7'>

IN

mmmwww(ﬂumm@mwm+wﬂmﬁ

t

IN

mwmw+w(ém@wmewmhﬁém@wﬂmﬁ

8If 41 ¢ Koo, the whole reasoning can be done with any locally Lipschitz iy € Koo such that fii(s) =
p1(s) for all s € [0;1] and fi1(s) > pi(s) for all s > 1.
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Thus, under the bounded energy condition (5.36), we get that lim sup,_, . |¢1(t, 210, x2)| is
finite, and consequently, with (5.37), that the cascade (5.11) satisfies the BEFBS property.
We may therefore conclude iISS by virtue of [AISW04, Theorem 3].

[ |

Conclusion. In this chapter are exposed two results that guarantee the preservation
of the iISS property under cascade interconnection. One is based on the Lyapunov func-
tions associated to each subsystem while the other relies on their solutions’ estimates. As
a corollary, a Lyapunov condition that ensures that the cascade composed of an iISS sub-
system driven by a GAS one is itself GAS. The simplicity of the obtained conditions is
worth being underlined. Academic examples are also proposed to illustrate the purpose.
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Chapter 6

Application to mechanical systems

The aim of this chapter is to present concrete applications of the results presented in this
document. These applications concern the control of mechanical systems. More precisely,
we start by studying the robustness of PID controlled robot manipulators to external
disturbances, actuators’dynamics and model uncertainty. We then provide some results
for the control of a spacecraft formation by a leader-follower approach. The last section is
devoted to the control of a supply ship in the underway replenishment operation.

6.1 PID control of robot manipulators

The main goal of the section is to study the robustness of PID-controlled robot manip-
ulators to uncertainty and disturbances. In general terms, uncertainty may stem from
imprecision on numerical values of certain parameters, inadequacy of the dynamic model,
neglected dynamics, approximation of unavailable measurements, etc. Disturbances may
take the form of noise in the measurements or external forces from physical interaction with
the environment such as friction and,in general, all forces that depend on time, position
and velocity and which affect the motion.

Friction. In the literature of mechanical systems, special focus is given to friction effects.
These are phenomena that depend on multiple factors such as nature of the materials in
contact, lubrication, temperature, etc. They are therefore highly complex from a modelling
viewpoint. For this reason, only approximate models of friction forces and torques are
available —¢f. [Dah68, COaL95, SAGP00]. We distinguish two families of friction models:
the static models, in which the friction force or torque depends on the instantaneous relative
velocity between bodies (such as viscous friction), and dynamic models which depend on
the past values of the relative velocity —cf. [COal95, SAGP00]|. The former are adequate
to approximately model friction in relatively high-velocity motion tasks while the latter are
more appropriate to model friction effects at low velocities. Whether dynamic or static,
friction effects may be modelled as an input force that depends, in general, on time and
state.

Neglected dynamics. Performances of controlled robot manipulators may also be de-
graded due to the influence of neglected dynamics. A particularly important situation in
which dynamics are neglected is non-model-based control of manipulators. That is, when
the robot is considered as a black-box system that has input torques and measurable out-
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puts (positions and, often, velocities). Not only Proportional Integral Derivative (PID)
control of robot manipulators is a clear example of control with neglected dynamics, but
it is the most common in industrial manipulators. Indeed, manipulators used in most pro-
duction lines are PID-controlled, in which case control design boils down to gain-tuning of
the PID gains. This fact and the considerable amount of papers on PID control of robots
confirm the relevance of this controller —cf. [Kel95, PC96, Roc96, CC04] and references in
the latter to cite a few.

In model-based control, i.e. where the dynamics of the robot are considered in the con-
trol law, neglected dynamics correspond, for instance, to unmodelled phenomena, dynam-
ics of actuators and possibly of sensors. The most common actuators are Direct-Current
drives, which may be modelled by a linear differential equation —¢f. [SHV05, KSLO05].
However, one may also consider robots driven by Alternate-Current motors —cf. [PO97].
In either case, neglecting their dynamics in the control loop may considerably hamper per-
formance. In the problem treated in [PO97|, the motor dynamics is highly nonlinear and
global asymptotic stability of the closed-loop system with the corresponding ideal control
input is obtained. See also for a result on control of robots taking into account
the DC motors’dynamics under ideal conditions (i.e. without disturbances).

Robust control and robustness analysis. Robust control of manipulators with respect
to disturbances has also been extensively studied, especially in the context of robots with
friction. However, they involve highly nonlinear, and possibly discontinuous, controllers—
c¢f. e.g. |Tom00, POGI8, LCO0|. In spite of the rich literature on PID control of robots,
we are not aware of a formal study of robustness of PID-controlled manipulators, with
respect to unmodelled dynamics and general additive disturbances.

In this section, under reasonable assumptions, we establish that PID-controlled robot
manipulators are uniformly semiglobally practically asymptotically stable. In other words,
the robot may be operated from arbitrarily large initial conditions and brought to a any
given admissible configuration with a steady-state error that may be arbitrarily reduced
by enlarging the control gains. Performance is limited only by the physical constraints
imposed on the size of the control gains.

It may be argued that modifications of PID control to achieve global asymptotic sta-
bility, such as introducing nonlinear terms (¢f. [Ari94]) or making the integrator time
varying —cf. |[LNLO00|, may yield better performance. We precise that the subject of this
section is not to propose a new robust controller for robot manipulators, but to analyze
the robustness of the classical linear time-invariant PID control.

Firstly, we consider robots under PID control and external disturbances. In a sec-
ond step, we analyze the same scenario taking into account the actuator dynamics. For
simplicity, we concentrate on DC actuators described by first order linear differential equa-
tions, but the approach may be generalized to more complex dynamics. We establish
that PID control is robust to external disturbances, model uncertainty and neglected ac-
tuator dynamics (considered themselves under input disturbances). Our stability proofs
are constructive, i.e., in contrast to others —cf. [OLK95|, we do not appeal to La Salle’s
invariance principle [LaS60]. As for instance in [Roc96, QD91|, we prove stability with
a Lyapunov function that is positive definite, radially unbounded and has negative def-
inite total derivative. However, in contrast to [Roc96| where the system is regarded as
linear with sector-bound non-linearities (which may yield conservative bounds), we use an
energy-like Lyapunov function and, as a byproduct, we provide a tuning procedure that




137

takes into account the size of the desired set of initial conditions and the desired tolerance
on the steady-state error.

6.1.1 Robustness with respect to external disturbances

The robot model. We consider the problem of set-point control of a rigid-joint robot
manipulator under PID control and in presence of disturbances. In this context, the
Lagrangian dynamics of a robot manipulator with n rigid-joints is given by

D(q)§+ C(q,4)q + g(q) = v+ pi(t,q,4), (6.1)

where ¢ contains the position of the joints, D(q) € R™*" is symmetric positive definite
for all ¢ € R", N(q,q) := D(q) — 2C(q, q) is skew-symmetric for all (¢, ¢) € R" x R" and
u € R™ corresponds to the torques. The disturbance p; represents external forces acting
on the robot. As most common in the literature of robot control, we restrict our attention

to systems satisfying the following.

Assumption 6.1 The functions D(-), C(-,-), g(-) are twice continuously differentiable
and the partial derivatives of their elements are over-bounded by nondecreasing functions
of |q| and |q|. Furthermore, we assume that there exist positive constants d,,, dyr, ke and
kg such that* for all ¢ and ¢ of R™,

. : 99(q)
<D <. Cadl <kl %50 <k,
As a fist step, our control problem is to design u so that the robot manipulator stabilizes
around a desired constant set-point (¢ = g«, ¢ = 0). It is further imposed that control be

of the PID type. That is, the input torques that achieve the control objective are given by

= —K,§—Kq¢+v (6.2a)
vo= —Kiqg,  v(0):=3(q) (6.2b)

where §(g) is an initial guess of the unknown constant pre-computed gravitational forces
vector, ¢ := q—qx and K, K; and K; are symmetric positive definite matrices representing
control gains.

We stress that the above setting is fairly common in practice of robot control: not
only PID control is probably the most popular control technique but, often, industrial
manipulators come with a black-box controller of PID type, meaning that control design
for the user of an industrial robot boils down to gain-tuning for the built-in PID.

Disturbances. We establish now our results for the perturbed system (6.1). We assume
that the perturbations may be modelled by a function p; : R>g xR™ xR" that is continuous
in all arguments. However, if needed in particular situations, we can relax this hypothesis
to assuming that p; is such that the right hand side of (6.1) satisfies the Carathéodory
conditions for existence of solutions. This assumption is not of pure theoretical interest.
A typical example where the usual local Lipschitz assumption (even continuity) does not

!This is true for instance for open kinematic chains with only revolute or only prismatic joints. See e.g.
[SV89, SS96].
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hold is when dealing with systems with Coulomb friction, i.e. in the case that p; contains
terms including sign(q) which is discontinuous at ¢ = 0. For such cases, we shall rely on
[KH99] where it is proved that Carathéodory solutions exist for systems with Coulomb
friction.

In this setting, we establish the following result, that quantifies the robustness of PID
controlled manipulators when actuators’dynamics is neglected.

Proposition 6.2 (Robustness of the mechanical part) Consider the system (6.1) in
closed-loop with (6.2) and under Assumption|6.1. Assume that there exists non-negative
numbers p1o, p11 and pi2 such that, for all t € R>o and all (¢,q) € R?",

’pl(ta q, q)| S Pp1o + P11 ’(q~7 Q)’ + p12 ’((jv q)’2 (63)

Then, the closed-loop system is uniformly semiglobally practically asymptotically stable with
K,, K; and Kq as tuning parameters.

Remark 6.3 For commodity, we bound the disturbance p1 by a function of |(q,q)| instead
of |(q,q)| as may be more natural. However, if

[p1(t.4,4)] < Pho + P 1(a: D)+ (@, 9)° (6.4)

where pl,, pi; and ply are positive constants, then there exist pig, p11 and p12 > 0 such
that (6.3) holds. As a matter of fact, a simple calculation using (6.4) yields pio = pio +

p/11 |Q*! + p12 !q*\z, p11 = ]9/11 and p12 == p/12-

Proof of Proposition[6.2. The proof is constructive, i.e. we provide a strict Lyapunov
function which, moreover, helps to establish a tuning procedure, ¢f. Claim[6.5] For ana-
lytical purposes, let €1 > 0 be sufficiently small and define the variable

1. _
§ = EQ"‘Ki 1(9(‘]*) —v).

We decompose K, in the following manner:
K,=K, + 1k,
p= Sp TR

Notice that K]'D can be made symmetric positive definite by a convenient choice of Kj,. The
closed-loop system can then be written

D(q)§ +C(q:9)q + 9(q) — 9(g) + Ky + Kag — Kis = pi(t, q,4) (6.5a)
1

§ = G+—q. (6.5b)
€1

To formally study the stability of the closed-loop system we rewrite it in the state-space
form, i.e. defining z{ := (¢",¢",s")" € R® and 6, := (Ka, K, K;) € R x R™ x
R™ ™ the equations (6.5) become &1 = fi(t,z1,60;) where

q
filt,z1,601) = —D(q)"' [C(q,9)d + g(qa) — g(ax) ‘1F KG+ Kaj — Kis — p1(t, 4, q)]
g+ =4
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In the sequel, we consider that the tuning parameters are’:
011 := A (Ky) , 012 = )\m(K;) ) 013 := A (K5) (6.6)

instead of the matrices gains Ky, KI’,, K; as this makes clearer the proof of Proposition[6.2.
Notice that this is only a notation convention since, for each choice of 61, one can design
corresponding gain matrices K, K4 and Kj.

The rest of the proof consists in verifying the conditions of Corollary 2.16. For this,
let Ay and §; be any positive constants satisfying §; < Aj. Following the literature on
control of robots with uncertainties (see for instance [OLK95, Kel95, CG95]), we let?

Vi=Vii+Vig+ Vis (6.7)
where
Vi = i D@+ i Kyi+U() - Ulg) ~ 0 o(a.) (6.52)
Vi = %STKiS +e1G" D(g)g (6.8b)
Vi = agsTD(q)q', (6.8¢)

and €1 and €2 are (small) positive constants. Notice that the function Vj; corresponds to
the energy function of [TA81], the second term in the definition of Vi3 corresponds to the
cross-term introduced in |[Kod88]. Roughly speaking, we need to show that Vj is positive
definite and its total derivative is negative definite for all ¢ € R>¢ and all z; such that
01 < |z1] < Ay. To that end, without much loss of generality, let the control gains matrices
K, K4 and K; be such that

Mi(Ka) € Om(Ka),  Au(KD) < On(KL),  and  Au(Ks) < n(Ki), (6.9)

where ¢ designates a positive constant. Then, the following two claims hold true (see
Appendix |A.6 and A.7 for their respective proofs).

Claim 6.4 (Bounds on Vy) The Lyapunov function Vi satisfies
aq ‘Q|2+b2912 ’6‘24-@3913 |S|2 <Vi(z1) <@ |q']2+(62+52012) ‘§|2+(63+63913) ’8’2 , (6.10)
where ay, by, bs, @1, @2, by, @3 and bz are positive numbers independent of the gain 6.

Claim 6.5 (Tuning procedure) Assume that 1 +c2 < 1 and choose the gains as

b
011 = 05,(61,11) = aq+ f + g\ (6.11a)
1
b
012 = 9){2<51, Al) =ap+ 5*? + CpAl (6.11b)
013 = 9{3((51, Al) =a; + (571 + A1, (6.11C)
1

where aq, bq, cq, ap, by, cp, a;, by and c; the positive constants, independent of 61 and Ay,
given in Section A.7. Then, the total derivative of Vy satisfies
oy
oxy
*We recall that A\ (A) and Aar(A) denote respectively the smallest and largest eigenvalues of A.

3Tt should be understood that V depends on the tuning parameter ;. We omit to explicitly write this
dependency for clarity.

1612 al° — 01 147 — 26h3 15[?

fl(ta 731’01) < - 9 9 q 5 S|, Vl‘l € H((Sl,Al) . (6.12)
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In view of Claim|6.4, the requirement (2.48)) of Corollary|2.16 holds for V;. In addition,
Claim|[6.5/ensures that (2.49) holds. Furthermore, proceeding as in Example 2.17, a simple
inspection of (6.11) shows that (2.51) are also satisfied. In virtue of Corollary 2.16, this
ends the proof of the proposition. |

Several interesting corollaries stem from Proposition 6.2. The first one concerns the case
of a vanishing perturbation. Its proof follows along the same lines of that of Proposition
6.2, by invoking Corollary [2.16.

Corollary 6.6 (Vanishing perturbation) In the case that the assumptions of Proposi-
tion 6.2 hold with p1g = 0, the equilibrium point (¢,q) = (g«,0), for the PID-controlled
robot, is semiglobally asymptotically stable.

It worth pointing out that, under vanishing perturbations (that may include high order
nonlinearities), we are left with the same stability property as for the PI*D controller
proposed in [OLK95| and the saturated PID controller of [ARKCO03|, where no disturbance
is taken into account.

Another interesting case that is included in Proposition [6.2 is that of motion control
under PID control.

Corollary 6.7 (Trajectory tracking) Let t — q.(t) denote a bounded reference trajec-
tory with ¢«(-) and §.(-) continuous and bounded. Then, under the assumptions of Propo-
sition|6.2, the system (6.1) in closed loop with the PID control law

ut = —Kyj— KqG+v (6.13a)
vo= —Kig,  v(0):=j(g.(0)), (6.13b)

where § := q — q«, s uniformly semiglobally practically asymptotically stable.
Sketch of proof of Corollary|6.7. The closed-loop system is given by (6.5b) and
D(q)q+C(q,9)q+9(q) — 9(qs) + K,q+ Kad— Kis = p1(t, ¢,d) — C(q, d)d= — D(q)d . (6.14)
Let o, be a positive constant satisfying
max{|g.(t)], [g«(t)], G«(B)[} < ow,  VEERx.
Notice that C(q,§)d« — D(q)Gx then satisfies
1C(q,4)G« — D(q)Gs| < keow |G| + drros .

Therefore, redefining p; as the right hand side of (6.14), we see that it still satisfies the
required condition (6.3). Thus, the result may be obtained exactly as for Proposition |6.2,
with the Lyapunov function V; defined in (6.7) by replacing ¢ with g. |

It is worth remarking that the proof for the case of motion control follows as the proof
of Proposition|6.2 since we do not appeal to La Salle’s invariance principle but we provide a
strict Lyapunov function, i.e. whose total derivative is negative definite along closed-loop
trajectories in the absence of disturbances.
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Discontinuous friction. In the case when p; contains perturbations due to friction,
discontinuous functions of the state may be introduced. In general term, it may take the
following form:

pi(t, ¢, q) = F1q + F>Sign(q) + Fs2(t) + pi(t, 9. 4) (6.15)

where Fj is a non-negative matrix of appropriate dimensions, Sign(q) denotes the vector
(sign(qr), - . .,sign(gn)) ", z(t) is the bounded solution of a dynamic friction model —cf.
[COaL95, SAGP00], F» and F3 are bounded matrices of appropriate dimensions and pj
represents additional disturbances*. In view of the regularity assumptions imposed on
p1 and the results established in [KH99| , we see that the theoretical result contained in

Proposition [6.2 remains valid.

6.1.2 PID control considering actuators’dynamics with disturbances

We consider now the regulation problem when actuator dynamics are taken into account.
The input torques u € R™ are delivered by Direct-Current (DC) motors, whose dynamics
are given by

Li+ Ri+ Kyg = v+ pa(t, i), (6.16)

where ¢ € R" is the vector of rotor currents, L and R are the m X n matrices of the
rotors’inductances and resistances respectively, K¢ represents the back electromotive force
in the motors and v is the vector of input voltages, i.e. the control inputs.

We assume that each motor produces an ideal output torque, i.e. wu; = kyi; with
kij > 0 for each j € {1,...,n}. We define K; := diag{ks; : j =1,...,n}. We stress that
this assumption is not conservative since, in the case that phenomena such as torque ripple
and backlash are present, they may be modelled by continuous bounded functions d;(t, )
and the actual torque takes the form w; = k¢ji; + d;(¢,4). In this case, the corresponding
disturbances d;(¢,7) may be accounted for in the term p; defined in Proposition 6.2.

The term po represents additional external disturbances acting on the rotor. We pursue
the same control objective as above, i.e. to stabilize the robot around the set-point g,
with zero velocity. Our control objective is achieved via cascaded-based control; i.e. the
approach consists in designing a reference ¢* := Kt_lu* (so that, when i=1i—1i" =0, we
have v = u*) and building a control law v that makes that, ideally, 7 goes to zero; hence
u — u*. However, in view of the disturbances, a steady-state error is to be expected.
Relying on Corollary 2.16, we show that the PID-controlled manipulator, including the
motors’dynamics, is uniformly semiglobally practically asymptotically stable.

Proposition 6.8 (Robustness of PID controlled manipulators) Consider the system

(6.1), (6.16) in closed-loop with (6.2) and
v:=R'i+ Ri* + Kyg+ Li*, i* = K;'u*.

Let §:=q—q. and i := i —i*. Assume that the conditions of Proposition|6.2 hold and the
disturbances po are bounded as

p2(t,4)] < poo+pa(|i]) [i| . VEteERsy, VieR™, (6.17)

where pag s a nonnegative constant and pa : R>o — R>q is a continuous function. Then the
closed-loop system is uniformly semiglobally practically asymptotically stable. In addition,
if p1o = p2o = 0 then the cascade is uniformly semiglobally asymptotically stable.

e.g., in the motion control problem, terms depending on a time-varying reference trajectory.
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We stress that the bound (6.17) holds for any function of ¢ uniformly bounded in t.

Proposition 6.8 establishes that, if one knows how to globally asymptotically stabilize
a robot using PID control when neglecting the DC drive dynamics and in the absence of
external disturbances, then semiglobal practical asymptotic stability can be established in
the presence of a wide class of non-dissipative forces and taking into account the actua-
tors’dynamics. In other words, given any tolerance on the steady-state error with respect
to the operating point and any domain of initial errors, one can always find control gains
such that the closed loop system is uniformly asymptotically stable on this set of initial
conditions modulo the tolerance given. Moreover, the tuning procedure given in Claim
is still valid under the influence of the actuators’dynamics.

It is also important to observe that the result contained in Proposition 6.8 remains
valid in the contexts of motion control. More precisely, Corollary 6.6 extends to the case
of systems with DC dynamics under the conditions from Proposition [6.8.

Proof of Proposition [6.8. The closed-loop system, including the actuator dynamics,
consists in Equations (6.5) and

Li+(R+R)i = pa(t,i). (6.18)
Notice that it has a cascaded structure:

T, = fl(t,xl,ﬁl)—i—Ktxg (6.19&)
Ty = fo(t,m2,02), (6.19b)

where z; and f; have been previously defined, 5 := 14, f3 = R’ and
f2<t? L2, 02) = _L_l(R + R,); + L_1p2(t7 ’L)

The proof of the proposition is constructed with the aim at verifying the conditions
of Corollary 2.16. For this we use the result from Proposition 6.2] and prove further that
the motor closed-loop system (6.18) @9 = fa(t, z2, 62) is uniformly semiglobally practically
asymptotically stable and that the PID-controlled robot system, taking into account the
interconnection term K7, remains uniformly semiglobally practically asymptotically stable.

USPAS of the motor closed-loop dynamics: While this property may appear intuitively
clear in view of the linearity of the motor dynamics, we present the proof of uniform
semiglobal practical asymptotic stability of the motor for further development. In partic-
ular, this analysis helps to show that the tuning procedure that stems from the proof of
Proposition [6.2 remains valid even in spite of the actuator dynamics.

With the notation xo = i, we consider the Lyapunov function

1
Va(z9) := 595; : (6.20)

In view of (6.17), its derivative along the solutions of (6.18) satisfies the following upper
bound:

oV;

8762(332)f2(t,$2,92) < —

Am(R) + 6 + To|) |x
(R0 o ot

D)
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Hence, given any Ag > do > 0, it holds that, for all zo € H(d2, A2),

oV,

Am(R) + 02 P20 p2(A2) 9
s —(z2) fa(t, 2, 02) < — ( @) (L)s )\m(L)> lza|* . (6.21)
By choosing any 0 = A\, (R') > 05(d2, A2) where
03060, 80) = 311 (P20 4 () ) (6.22)
we obtain
oV: Am (R 22 (R
o z(m2)f2(t z2,03) < AM((L; |zo]® = — AM((L))VQ(:@), Vg € H(d2, A).

It is easy to see that the requirements (2.29) and (2.30) of Theorem 2.11 hold. Also,
the upper an lower-bounds on V» can both be picked as s — s2/2. This makes the third
requirement (2.31)-(2.32) trivially satisfied. Thus, uniform semiglobal practical asymptotic
stability follows from Theorem 2.11.

In the case when pgg = 0, uniform semiglobal asymptotic stability follows similarly
from Corollary

USPAS of the PID-controlled robot with actuator dynamics: We use now the Lyapunov
function

V(xhx?) = Vl(xl) + VQ(.%Q) .

From (6.10) and (6.20) we see that V satisfies the requirement (2.48) of Corollary 2.16.
We now compute the total derivative of V' along the trajectories of the closed-loop system
(6.19). To that end, we first observe that, in view of (6.7)-(6.9) and (6.20), there exists
a positive constant cs5, A, such that, with the parameter choice proposed in (6.11) and for

all ; € R3",
2)%!

8761(951)
In view of (6.12), (6.21) and (6.23), we see that the derivative of V along the trajectories
of the system (6.19) yields, for all x = (z{, 24 )" € H(51, A1) x H(d2, Az),

m(R)+62  po PQ(A2)> e
(L) Am(D)o2 — Am(L) )72

< Cé1,1 ‘x1’ ) (623)

) A
V < —as, A, ]a:1\2 + c5y,00 A () 71| |22] — (

where

1 : * * *
0461,A1 = §m1n {81912((51,A1) ) 911<51,A1) N 62913((51,A1)} . (6.24)

Noticing that, for any positive €3, it holds that

A (K)
3, a A (K
Cor,0, AM (Kt) [21] [w2] < 5 (63 7] + ; \w2|2> ;

we get that, for all x € H(d1, A1) X H(d2, Ag),

2 2
' €3, 2 [ Am(R)+ 02 P20 p2(D2) €5 a A (Kt 9
V< — 2,3 _ _ _ IR ITAN]
< —ag A, |T1|TF 5 |21 ( ar(L) (D)5 (D) 20, |22
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Hence, by picking

1 b b b;
€3 = —min\< &1 ap+—p+cpA1 ;ad—{——d—i—chl;sQ a; + — +c;A\q
2 01 31 01

and R’ in such a way that

A C2 )\M(Kt)2
P p(Az) L G ’
Am(L)d2  Ap(L) 2¢e3

we see with (6.24) that

y Q51,41 2 Am(R) 2

< —— —

V< 5 1] Sor (D) |22
for all x € H(J,A), where® § := max{d,d2} and A := min{A;, As}. Furthermore, the
requirements (2.51) are fulfilled in view of (6.11). The result follows invoking Corollary

2.16. Similarly, in the case that p;g = p12 = 0, uniform semiglobal asymptotic stability
follows from Corollary [2.22. |

6.1.3 Experimental results

We now present some experimental results obtained with the “Pelicano” manipulator. This
robot is composed of two rotational links g; and go. Its model parameters are given below.

0.3353 + 0.0244 cos(g2) 0.0127 + 0.0122 cos(q2) 9 11
D(q) < 0.0127 + 0.0122 cos(gs) 0.0127 Nmsrad
N —0.0122sin(g2)g2  —0.0122sin(q2)(41 + ¢2) _1
Cla:9) = ( 0.0122sin(g2)d1 0 Nmsrad
B 11.5081 sin(gq1) + 0.4596 sin(q1 + g2)
9(a) = ( 0.4596 sin(q1 + ¢2) e

The torque developed by the actuators is limited to 15 Nm for the first joint, and to 4 Nm
for the second one. The following experimental results are obtained with the gains:

, (454 0 (07 0 (351 0
KP‘( o 454 )0 Be={ o o7 ) K= 0 35 )

from initial conditions ¢qio = 3.14 rad and g9 = 1.1 rad, with zero initial velocity.

These results are presented in Figure 6.1, The position, velocity and applied torque is
plotted for each joint. This data shows an acceptable behavior of the manipulator with
input torques that remain acceptable for the considered actuators. A zoom of these curves
show the predicted steady-state error that arises from friction and other perturbations, cf.
Figure 6.1.

SH (8, A) # 0 if 51 and &2 are originally chosen small enough (or A; and A, large enough).
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Figure 6.1: 1- ¢; (plain), ¢ (dashed); 2- ¢; (plain), g2 (dashed); 3- u; (plain), ug (dashed).
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6.2 Spacecraft formation

First of all, we stress that all the results presented in this section are fruits of a collaboration
with R. Kristiansen, A. Loria and P. J. Nicklasson, and will be part of the topic of the
upcoming PhD thesis of R. Kristiansen®. We strongly invite the interested reader to consult
this reference for a more detailed treatment of the questions raised below.

The object of this section is the control of a spacecraft formation in a leader-follower
configuration. This interaction between multiple spacecrafts is indeed revolutionizing the
way of performing space-based operations, and brings out several advantages in space
mission accomplishment, as well as new opportunities and applications for such missions.
Replacing large and complex spacecraft by an array of simpler micro-satellites introduces a
multitude of advantages regarding mission cost and performance. However, the advantages
of using spacecraft formations come at a cost of increased complexity and technological
challenges.

Specific constraints. Formation flying introduces requires a detailed knowledge and a
tight control of relative distance and velocity for each spacecraft. As in other applications
of cooperative control, the control problem for the follower simplifies as the knowledge
about the leader and its orbit increases. However, complete knowledge of the leader is
hard to achieve in practice.

Another challenge is that the spacecraft parameters change during its lifetime, by
fuel consumption and body deformations. The orbital parameters must often be changed
to achieve mission goals, both as planned changes in orbit acquisition and unexpected
necessary changes during the operation. Such changes lead to modifications in the system
parameters, which can be hard to communicate to the follower. In addition, equipment for
determining position and velocity is costly, heavy and computationally demanding, and
therefore the follower spacecraft must often rely on measurements of the position of the
leader spacecraft only. Hence, the challenge lies in synchronized control of the formation,
with as little exchange of information between the spacecraft as possible.

Existing control strategies. Position feedback control of leader-follower spacecraft for-
mations has received some attention during the last years. The first solution to this control
problem was presented in [dQYYK99|, and the use of a nonlinear control law results in
global uniform ultimate boundedness of position and velocity tracking errors. The solu-
tion includes a filtering scheme to estimate the relative velocity. A similar result was also
presented in [YYKdQOO|, providing the same stability properties to the closed-loop sys-
tem. Nonlinear adaptive tracking control was developed in [dQKY00] and ensures global
asymptotic position tracking errors. This latter result was however based on a circular
orbit assumption. Later, in [PKO1], a nonlinear tracking controller for both translation
and rotation was presented, including an adaptation law to account for unknown mass and
inertia parameters of the spacecraft. The controller ensures global asymptotic stability of
position and velocity errors. Based on the latter two references, semiglobal asymptotic
convergence of relative translation errors was proved in [WKS02| for an adaptive out-
put feedback controller using relative position only, with a similar filtering scheme as in
[YYKdQO0]. This result was extended to a similar result for both relative translation and

SNarvic University College, Norway.
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rotation in [WPKO05], tracing the steps of [PKO01].

Little information. The purpose of this section is to provide a solution to the spacecraft
formation control problem with as little knowledge about the leader spacecraft as possible.
This relieves the necessity for communication between the spacecraft, and the leader space-
craft can change its orbital parameters without communicating such changes to every other
spacecraft in the formation. This is desirable especially for largely populated formation, to
diminish the overall communication load. We present a solution to the problem of tracking
relative translation in a leader-follower spacecraft formation using feedback from relative
position only. The controller design is performed for two different levels of knowledge
about the leader spacecraft and its orbit. The first controller assumes perfect knowledge
of the leader and its orbital parameters and that the orbital perturbations working on the
follower are known. It renders the equilibrium point of the closed-loop system uniformly
globally asymptotically stable, using measurements of relative position only. A filter, sim-
ilar to the one in [Kel93], is included, using the method of approximate differentiation to
provide sufficient knowledge about the relative velocity to solve the control problem. The
second controller uses the framework of the first to render the closed-loop system uniformly
globally practically asymptotically stable, with knowledge of bounds on orbital parameters,
orbital perturbations and leader control force only.

6.2.1 Problem formulation

Let us here formulate the satellite formation problem that we study in this section. The
general orbit equation for two point masses m; and mg (cf. [Bat99])

I

it
[rl?

r=20, (6.25)
where r is the relative position of masses and p = G (my + mg), G being the universal
constant of gravity, is the equation describing the uncontrolled orbit dynamics for a space-
craft under ideal conditions. This equation can be generalized to include force terms due
to control input vectors from onboard actuators, aerodynamic disturbances, gravitational
forces from other bodies, solar radiation, magnetic fields and so on. Accordingly, (6.25)
can be expressed for the leader and follower spacecrafts as

. u,
PR S ]
7] mp o my
. u
ry= - M3Tf+&+7f
Tyl my o my

where fq, for € R3 are the disturbance force terms due to external perturbation effects
and w;, uy € R? are the actuator forces of the leader and follower respectively. In
addition, spacecrafts’masses are assumed to be small relative to the mass of the Earth M.,
so u = G M. Taking the second order derivative of the relative position vector ¢ = ry —ry,
and using the true anomaly v(¢) of the leader, which is the orbit plane angle measured in
the center of the Earth between the orbit perigee point and the leader spacecraft center of
mass, the relative position dynamics can be written as (cf. [KGNGO05])

mffj-f-C(f/)(j—}—D(f/,l?,‘TfD—i—O’(‘T’l‘,’Tf’):U+Fd, (6'26)
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where

ﬁ — 2 ] 0
. Lo 2
D(0, 0, |rs]) = my AL
0 .
||
T
|71] 1
U(’Tl|,|Tf|):me 3 7 20 07 0
lrel” |ml

The composite disturbance force Fy is given by
m
Fy= fa — Lty
my
and the relative control force U is
m
U=uy— —ful .
my

For control design, we introduce the more convenient notation

Cw) = 2mpC (6.27)
D, v, |rsl) = mf|“|31+mfp2D+mfﬁé (6.28)
rf
where
0 -1 0 -1 0 0
C=|1 0 0 and D= 0 -1 0
0 0 0 0 0 0

The rate of the true anomaly of the leader spacecraft is given by

ny (14 ¢ cosv(t))?
(1-cp)*”?

D(t) = : (6.29)

where n; = \/u/a? is the mean motion of the leader, a; being the semimajor axis of the

leader orbit, and e; its orbit eccentricity. Differentiation of (6.29) results in the rate of
change of the true anomaly:

—2n?e; (1 + e cos v(t))? sinv(t)

V(t) - 3
(1—ef)

Based on these expressions, we see that, when the leader spacecraft is revolving the
Earth in an elliptical orbit, the true anomaly rate ©(¢) and true anomaly rate of change
U(t) are bounded by constants. We therefore assume the following.
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Assumption 6.9 (Bound on true anomaly) There exist positive constants w; and Wy
such that, for all t € R>,

|D(t)’ < wy and ’V(t)‘ < wyp.

We establish two results that are presented in order of increasing complexity. First,
we assume that the leader’s true anomaly v(t), true anomaly rate ©(f) and the orbital
perturbations Fj; are known and, in a second step, we relax these hypotheses by assuming
that only bounds on v(t), v(t) and F, are known. We make it clear that the property of
asymptotic stability is lost (and replaced by practical asymptotic stability) due to the lack
of measurements.

6.2.2 Measurements available

Under the assumptions that the leader spacecraft is controlled to overcome external dis-
turbances in an elliptic orbit, and the follower spacecraft has available measurements of
relative position ¢, leader true anomaly rate (t), true anomaly rate of change /(t) and
orbital perturbations fqr, we have the following.

Proposition 6.10 (Measurements available: UGAS) Assuming that the desired rel-
ative position q.(t), desired relative velocity ¢« (t) and desired relative acceleration §.(t) are
all bounded functions and that Assumption|6.9 holds, the origin of the system (6.26), in
closed loop with the control law

up = - p(j—kd’l?-i-a—fdf-i-D(D,D,VfD-l-C(I))q*-i-mf(j* (6.30)
e = —av (6.31)

where ¢ := q — q, 1s uniformly globally asymptotically stable for some convenient choice of
the control gains ky, kq, a and b.

Proof of Proposition|6.10. Denoting the state vector as
v (a7d 7).
the closed-loop dynamics of the system in (6.26) and the controller (6.30)-(6.32) are
msq = A(t,z) (6.33)
where
A(t,x) = —C(0)q — kpd — kg0 . (6.34)
Differentiating (6.32)) and inserting (6.31) results in
=G, +bj=—ad+bq. (6.35)

To prove UGAS of the origin (cj, g, 79) = (0,0,0) of the closed-loop system, the Lyapunov
function candidate

1
Vx) = ixTPlzv (6.36)
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is used, where

kp E1my 0
P1 = e1my myg —&1my
0 —&1my k‘d/b

with €1 as a positive design variable. Evaluating the eigenvalues of the matrix P; we obtain
that V(z) is positive definite if

k k
2<mind 2, —~4 1 :
e{ < min { 2m;" 2bm; (6.37)

Under this condition, V' can then be bounded in the following way
pm |2* < V(2) <par |2, (6.38)

for some positive constants p,, and py;7. The derivative of V(z) along the trajectories of

6.33) and (6.35) is
: 3 ~ T [ORNe 3 kq ; T (2 ;
Vi(z) = (q +e1q — 6119) myeq + qupq + 19T?dq9 +e1myq (q — 19)
and insertion of (6.33) and (6.35) results in

Vil@) = - 527 Qi (1) @

where
281]{[)[ 610(1/) €1 [kid - k‘p] I
Q1(v) := —e1C(v) 2egmyp (b—1)1 e1C(v) —eymyal
—€&1 [kd - k‘p] 1 —810(0) — 81mfaI 2 [% - 51] kdl

Using Assumption 6.9 the skew-symmetry property of C'(©) and Schur’s complement on
the submatrices in @Q1(7), we obtain that the latter is positive definite when

kp (b—1) > dm w3 (6.39)
kq <% - 61) (b—1) > &1 (4myw3 + mypa®) (6.40)
a

Chyka > &1 [Gka = kp)? + k] - (6.41)

These conditions can, in their turn, be fulfilled by picking k, and k4 large enough that
(6.39) and (6.40) hold and, then, by picking £1 small enough in order that (6.41) holds. We
conclude with the classical Theorem (2.3 that the closed-loop system is uniformly globally
asymptotically stable.

|

"Even though p,, and pas depend on the gains kp and kg4, this dependency is not a crucial issue here as
we aim to establish uniform global asymptotic stability.
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6.2.3 When only bounds are known

We now relax the assumption that the instantaneous values of ©(t) and (t) are available to
measurement, and rather assume that we know the values of W, and w; on the leader true
anomaly as given by Assumption 6.9. In addition, we relax the assumptions that orbital
perturbations f4 are known, and instead assume that the perturbation term is bounded
as |fqr| < @y. Similarly, we relax the requirement on leader spacecraft control, and assume
that the sum of forces working on the leader due to control thrust and external pertur-
bations are bounded, such that |fg + u;| < @;. Finally, we also assume that the follower
spacecraft has available measurements of relative position ¢ only. For these assumptions,
we have the following.

Proposition 6.11 (Known bounds: UGPAS) Under the above assumptions and as-
suming further that Assumption[6.9 holds and that the desired relative position q., desired
relative velocity ¢, and desired relative acceleration s are all bounded functions, the system
(6.26), in closed loop with the control law given by (6.31), (6.32) and

W
3
T

up = —kpG —kgd +o+mg ( I+ @D + wﬁ(?*)q + 2m w0, Cgs+m s (6.42)
where ¢ = q — qx, s uniformly globally practically asymptotically stable on the parameter
set R3 ) with ky, kg and b as tuning parameters.

The comparison between Propositions[6.10 and [6.11 clearly illustrates the imprecision
that may arise from a lack of measurements and the presence of non-measured external dis-
turbances. The steady-state error resulting from these phenomena can however be reduced
at will by a convenient tuning of the control gains, which induces a good performance of
the above control law as confirmed by simulations (see below).

Proof of Proposition|6.11L  The closed-loop dynamics of the system in (6.26) and the
controller (6.31), (6.32) and (6.42) are

= ~ = - AN\ g/~ N -~ A m -
myq—my (02D + 0p0) (4 ¢+) + C(¥)q — 2m 0, C + WJ; (far +w) + kpG + k¥ = far

(6.43)
where the denotations w;, = wy, — v, 0y =Wy — U and w2 = w?j — 2 have been used. Note
that this closed-loop system is the same as (6.33) with an additional perturbation term

G (t,q) == G1(q) + G2 (¢, fa, farswi) (6.44)
consisting of the vanishing and non-vanishing perturbations, G and G, given by
G1(q) = my (@D +@C)q
Ga (t, fai, farw) = my (Dp2D + @3C) qu(t) + 2m @, C(t) — %f (far+w)+ far -
Accordingly, the closed-loop system can be written as
msq = A(t,z) + G (t,q) . (6.45)

By assumption, the desired relative position g, relative velocity ¢, follower orbital pertur-
bations fy and leader forces fq 4 w; are all bounded. More precisely, using that |g.| < @, ,
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ld«| <@g, [farl <@y, | far +w| < @y, and Assumption|6.9, we find that |G| <@g, |G|+@a,,
where

Wa, =my (W2 + 2w0p) (6.46)

m
@6, =my (@2 + 2W5) B, + 2@y, + 2@ + 0y . (6.47)
l

To analyze the stability of the closed-loop system (6.45) we use the same Lyapunov function
as before (¢f. (6.36)). The total derivative of V(x) along the trajectories of (6.35) and

(6.43) yields

Vala) =~ Qu ) o+ DG (4,0) < — 21T Qo()e + Qo ()

ox
where Qa(¥) := [qij]z'je{l 5,3y With submatrices given by
q11= 2¢1 (ka—mf(:J,-sz) qio= q;l = le(D) —myg ((:)02[) — (:Ji;c_') (648)
22— 2€1mf (b — 1) I q13=— q;—l =£&1 [(k‘d—k‘p) I+mf ((D,;zD—(I),)C’)] (6.49)
a .
G33= 2 (5 - 51) kal Gos= qay = —10 () — eymyal (6.50)
and

ermy [(Wp2 + @p) G + 205Gs]
. . ~ ~ ™y . gy m
Qo (7,¢x,G4) = | my[(@p2 +@5) g + 2000] — TE (fa +w) + fgp | . (6.51)

In view of (6.46), (6.47) and the assumptions on the external forces fg, u; and fgr it
follows that there exists gg > 0 independent of the control gains and the states, such that
|Qo(2(t), q«(t), 4« (t))| < go. On the other hand, the conditions for positive definiteness of

Q2 are (6.40),

6% (b — 1) (kp + mch,,z) > 46%mfwl2-, + 451mpr&)y +my ((;)?,2 + Jjg) , (652)
and
<% — 51) ka(kp +mypoi2) > €1 [m?@g + (kg — kp + mf@,)z)z} . (6.53)

Thus, Va(z) is negative definite if (6.37), (6.40), (6.52) and (6.53) hold and

|z > 220 (6.54)
q2,m

where go > [Qo (©(t), g«(%), ¢«(t))] and o2 < |Q2 (©(t))| for all t € R>g.

Furthermore, to verify the conditions of Corollary 2.9] we exhibit a quadratic upper-
bound on —z ' Q2. To that end, we use the formula 2|ab] < a? 4 b* for any a,b € R, to
obtain

2" Qo >N (q11) — A (@12) — Aar(@13)) 1% + (A (g22) — A (@r2) — Anr(go3) ‘(1‘2
+ (Am(g33) — Ar(q13) — Aar(ae3)) |97,
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where A\, (A4) and A\js(A) denote, respectively, the minimum and maximum eigenvalue of
the matrix A. Due to the structure of the sub-matrices g;;, it is always possible to choose
the gains k,, kg and b large enough that

Am(qi1) = 2(Am(q2) + Ar(qu3))
Am(q22) > 2(Aar(qi2) + Aar(g23))
Am(q33) > 2(Am(q13) + Anr(ge3)),
which results in
T 1 ~12 212 2
2" Qox = 5 (A1) 0P + Alaz2) 6] + Am(aza) 9]

That is, we can choose ¢2 , > %min{km(qn) , Am(q22) , Am(g22)}. Note that each of these
terms can be arbitrarily enlarged by an appropriate choice of kj, kg and b. Thus, g2 ,,, can
be enlarged accordingly. Given any positive ¢, it can notably be picked as g2m = 2¢0/0.
Moreover, it can be seen that the resulting ga2,, consists in a linear combinations of the
gains. This ensures that a convenient choice of the gain can be picked affine in 1/§, which
ensures conditions (2.27) and (2.28).

Finally, in view of (6.38) the Lyapunov function V'(x) also satisfies (2.25) and (2.26).
We conclude with Corollary 2.9/that the system (6.26) in closed loop with the control law
(6.31), (6.32) and (6.42) is uniformly globally practically asymptotically stable with k,, kq
and b as tuning parameters.

6.2.4 Simulation results

To conclude this work on leader-follower spacecraft formation control and illustrate the
performance of the presented control laws, we now present simulation results. The leader
spacecraft is assumed to be following an elliptic orbit with eccentricity e¢; = 0.6. Both
spacecraft have mass m; = m; = 100 kg. The follower spacecraft is assumed to have
available continuous thrust in all directions, limited to 27 N. The follower has initial values
go = (20,10, —20)", and is further commanded to track sinusoidal trajectories around the

leader, given as
3 4 57\
g« (t) = (10cos <£t), 10sin <£t>, 5 cos <£t>) ,

where T, is the orbital period of the leader spacecraft. A possible scenario for this motion is
in-orbit inspection, where the follower moves in orbit around the leader. In all simulations
performed, we used the controller gains k, = 3, kg = 5, a = 1 and b = 5. Orbital
perturbation forces due to gravitational perturbations and aerodynamic drag are included
in the simulations.

The result from simulating the system (6.26) in closed loop with the controller (6.30)-
(6.32) is shown in Figure|6.3.
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Figure 6.3: Known perturbations, leader true anomaly rate and rate of change: position,
velocity and velocity filter output.

This is the case where the leader spacecraft true anomaly and rate of change are known
to the follower spacecraft. The follower settles and tracks the desired trajectory without
errors in relative position and relative velocity.

The results for the case where only bounds on the perturbations, leader true anomaly
rate and rate of change are known are presented in Figure 6.4,

The UGPAS property of the closed-loop system is seen in the figure as persistent oscil-
lations around the origin (see the zoomed parts on the right-hand side). In conformity with
our theoretical predictions, the magnitude of the oscillations can be arbitrarily diminished
by increasing the controller gains. It is worth noting that a good precision can be reached
without requiring a too large thrust amplitude.
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Figure 6.4: Position error, velocity error and velocity filter output for the case when only
the bounds on the leader true anomaly rate and rate of change are known

6.3 Underway ship replenishment

The results presented below stem from a collaboration with E. Kyrkjebg, E. Panteley and
K. Pettersen. They will constitute part of the subject of the upcoming PhD thesis of R.
Kyrkjebg®. The interested reader should therefore refer to this work for a more detailed
presentation of the topic.

A challenging problem. Underway ship replenishment consists, for a supply vessel,
to closely follow a vessel in order to transfer fuel. It requires a close coordination of two
vessels. Up to now, the underway ship replenishment manoeuvre has been conducted using
manual control together with control flags to exchange instructions between the vessels.
Recent advances in control theory and measurement systems, in particular the intro-
duction of the Global Positioning System (GPS) and the Automatic Identification System
(AIS), now allow automatic control approaches for replenishment purposes. These autopi-
lots are faced with the goal of suppressing effects of external disturbances due to wind,
waves and currents, while achieving the accuracy demands of the operation using a reduced
set of measurements. The introduction of autopilots expand the range of operating con-
ditions for safe replenishment in terms of increased manoeuvrability in close waters or in

SNTNU, Trondheim, Norway.
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the proximity of other vessels, and in the robustness towards environmental disturbances.

Control approaches used in [FCY04| and [SIF03] are based on the assumption that a
complete mathematical model of both vessels is available, and thus autopilots for both
vessels can be designed to suppress the effects of external disturbances. However, in a
practical leader-follower replenishment operation, the follower may have limited access to
information of the control input, model and states of the leader. Therefore, in order to
lighten the information requirements on the leader vessel, we propose bellow a virtual
vehicle approach where the only information available from the main (leader) ship are
position and heading measurements, cf. [KP03].

Synchronization can be seen as a type of state cooperation among two or more systems.
It was introduced in a control context by [Ble71], and has since received an increasing atten-
tion in the control community (cf. e.g. [NRA03, FNP00|). Synchronization has been uti-
lized in maritime application by [KP03, SIF03, EP01|. The two latter references expanded
on traditional tracking methods with predefined paths, and introduced a synchronization
feedback from the actual position of a vessel (subject to disturbances) to the other vessels
through a path parametrization variable. All vessels have predefined paths with individual
tracking controllers requiring knowledge of model parameters and control inputs for all ves-
sels, and the synchronization is in terms of progression along the path. Based on the results
of [NRAO3] for synchronization of mechanical systems, [KP03| proposed a leader-follower
synchronization observer-controller scheme for underway replenishment. Experimental re-
sults on this scheme were presented in [KWPNO04] addressing practical tuning issues and
performance. No predefined path with known derivatives or model parameter information
for the leader vessel is required anymore, and the coordination of the vessels is achieved
using a controller that synchronizes the position and velocity of the follower to the leader
based on position measurements only, through the design of state observers.

In this section, we propose a virtual vehicle approach to the underway replenishment
problem to impose a cascaded structure of the systems, as opposed to the controller-
observer approach proposed in [KP03| where the observers and controller are closely in-
terconnected. The virtual vehicle is designed to follow the behaviour of the leader based
on position feedback, and provides a velocity output through the controller design. The
states of the virtual vehicle can thus be used in a synchronization controller to control the
follower to the virtual vehicle.

We have made the additional assumption on the problem of [KP03] in that the velocity
of the follower is assumed to be known to focus our treatment on the interplay between
the virtual vehicle and the follower. This reasonable assumption enables to extend the
stability results from semi-global uniform ultimate boundedness of the closed-loop errors
in [KP03] to uniform global practical asymptotic stability.

6.3.1 Preliminaries

Vehicles definitions and reference frames. In the development of the underway re-
plenishment control scheme, several reference frames, intermediate vehicles and dynamic
and kinematic models are used. A brief introduction to these concepts is given here. See
[Fos02] for a more elaborate discussion.

The control problem studied is as follows: Given the position (z1,z2) and heading
angle ¢ of a leader vessel, we want the follower vessel to follow the leader with its position
shifted by a distance d at an angle v, relative to the leader. For this purpose we will utilize
the concepts of a reference vehicle and a virtual vehicle, and we designate the following
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vehicles as illustrated by Figure 6.5

n ,
x mmmmesf ——
2 /// //‘ /. /‘

Figure 6.5: Vehicles and coordinate frames

- Ym: leader (main) vessel. The position z, = (x1,22,1) ' is measured.

- >, reference vehicle shifted a distance h in the direction given by the angle ~,, relative
to the position of the leader vehicle.

>,: virtual vehicle controlled to track the reference vehicle ¥, through a kinematic model
approach.

- Y follower (supply) vessel synchronizing to the leader vessel. The position x and
velocity « is available for control design, and the parameters of its model are known.

Note that the only physical vehicles in the control scheme are the leader vessel ¥, and
the follower vessel X5 synchronizing to the leader. Through the use of a virtual vehicle as
an intermediate control vehicle in the scheme, we can control the physical follower vessel
to the leader using the known velocity of the virtual reference. Note also that, although we
derive the control scheme for one follower vessel, it can be easily extended to any number
of followers providing the introduction of a collision avoidance scheme.

Vessel kinematics and dynamics can be expressed in different reference frames, and we
define the two essential reference frames used in this text as (¢f. [Fos02] for details):

- NED: fixed reference frame defined relative to the Earth’s reference ellipsoid, where the
x1"-axis points toward true North, the xo"-axis toward East, and the x3"-axis points
downwards normal to the Earth’s surface.

- BODY j: body-fixed moving reference frame where the origin is chosen in the center of
gravity of the vehicle p, and the axes (mlip, x%p, mgp) coincide with the principal axes
of inertia. Due to vessel symmetry, we can choose the xl{,p—axis along the axis of
inertia in the forward direction of the vessel, the xg’p—axis directed to the right and
the x%p—axis to complete the right-handed coordinate system pointing downwards.




158 6. APPLICATION TO MECHANICAL SYSTEMS

In the case considered here, the vector of vessel generalized coordinates ™ = (1, x9,%) "
is defined in the NED frame, where (x1,x2) is the position with respect to the x;™- and
xo™-axis, and 1 is the heading angle of the vessel about the x3™-axis. The velocities
1/5 = (u,v,r)" in the surge, sway and yaw directions are defined in the BODY , frame of
the vehicle p. Superscripts n and b will be dropped from the notation when the reference
frame is evident from the context. Subscripts p € {m,r,v, s} on these vectors will indicate

their vehicle of origin (main, reference, virtual, supply).

The marine vessel equations of motions can be written in vectorial form in the BODY
frame of the vessel as ([Fos02])

T =J(z)v (6.55)
M+ C,(v)v+D, v)v+g,(z) =1, (6.56)
)

where M, is a constant positive definite inertia matrix including added mass effects, C,, (v
is a skew-symmetric matrix of Coriolis and centripetal forces (satisfying C,, (v)+C, (v) =
0), D, (v) is a non-symmetric damping matrix, and gravitational /buoyancy forces in g, (x)
can be ignored for surface vessels. J(x) is a Jacobian-like transformation matrix from the
BODY frame to the NED frame, and in a 3-degrees of freedom surface application where
pitch and roll motion are negligible, the matrix J(x) reduces to a simple rotation matrix
around the x3™-axis as
cos®p —siny 0
J(x)=| siny cosyp 0 | . (6.57)
0 0 1

Inserting the kinematic equation (6.55) and its derivative in the dynamics (6.56) yields the
dynamic model in the NED frame

M(z)i + C(z, %)t + D(z,2)t + g(x) =7, (6.58)

where the inertia matrix M (z) is positive definite but no longer constant”?. The dynamical
model (6.58) in the NED frame satisfies a number of properties similar to those of robotics
systems (c¢f. Section[6.1). Notably, the inertia matrix M (z) is differentiable, there exists
positive constants M, and M}, such that

My < M(z) < My,  VoeR?,

and the matrix M(z) — 2C(x, ) is skew-symmetric. Similarly to [PE95], we will also
assume that the dissipation vector d(x, ) := D(x, &) for a marine vessel is continuously
differentiable and satisfies for some positive constant D,,

Al i
'a )| > Dy, Vi eR?
oz
and, for a continuous function Dy : R>g — R>o,
od(z, &) .
——=| <D .
2| < Durie)

Reference vehicle kinematics. As a first step in order to assure a safe replenishment
operation, we design a reference position for the follower vessel at some distance h from

“Please refer to [KPCPO06] for a precise expression of M, D, C, g and 7.
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the leader in the form of a reference vehicle with a kinematic model. Figurel6.6 concerns
the general situation of an arbitrary heading assignment, i.e. the heading angle of the
reference vehicle v, can be different from the heading angle of the leader vessel ¥, cf. .

Figure 6.6: Reference vehicle at the distance h and angle 7, from the leader vessel

The STREAM (Standard Tension Alongside Replenishment Method) is currently the
preferred underway replenishment configuration at sea (cf. [MC99]). In the underway
replenishment scenario, it is desirable that the reference vehicle is placed at a constant
distance h orthogonally off one of the sides of the leader with ~,;, = 5. This configuration
corresponds to a replenishment operation where the supply ship moves in parallel with the
leader at a fixed distance h and with the same heading angle. In this case, the supply ship
is always at a right angle to the replenished ship, and the tension on the replenishment rig
is at a minimum. This greatly simplifies the kinematic equations of the reference vehicle.
Indeed, the parallel motion suggests that J (z,) = J (z,,), and the position of the reference
vehicle in the NED frame becomes

zr = J(z) Xy =2m+J (2m)d" (6.59)
Differentiating (6.59) we obtain
Ty = Im+J(xm)S (rm)d” (6.60)

since the vector d" is constant in this particular operation. Taking v, = —F, we obtain
the component form for (6.60) as

T1r = T1m + drm COS YU,
Tor = Tom + drysiny, (6.61)
7/‘)7’ = Tm

Please refer to [KPCP06| and the upcoming PhD thesis of E. Kyrkjebg for details. Defining
Up = U + dT Vp 1= Upy , and Tr = Tm,
it can be seen that the kinematic model of the reference vehicle can be written as

T = J (Tm) vy (6.62)
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where v, = (up, + drp, Um, rm)T. In this particular case, only the reference forward
velocity is changed (u, = uy, + dry,) with respect to that of the leader vessel. Note that
this is necessary for the follower vessel to maintain its position parallel to the leader vessel
during turns due to the difference in turn radius.

6.3.2 Virtual vehicle design

The only measurement available from the leader vessel is the position/heading measure-
ment x,,, and since we have no information on the parameters of its mathematical model
or of the control input to the leader vessel, we cannot design a model-based observer for
the leader states. An alternative approach is to use the time filtered derivatives from the
position measurements at the expense of robustness under noisy conditions. In order to
reduce noise sensitivity, we propose instead to design a virtual vehicle as an intermediate
controlled vessel X, stabilizing to the reference vehicle 3, based on position measurement
feedback only.

As in [GMP*98]|, on the first step (kinematic level) we consider the velocities v, of the
virtual vehicle as control inputs, and design them in such a way that we ensure convergence
of the virtual trajectories to the reference trajectories. In a way, we can consider the
trajectories x, and velocities v, as estimates of x, and v,, that is, the virtual vehicle is a
form of kinematic estimator of the leader states through the position feedback loop.

The virtual vehicle is defined by its kinematic model

Ty =J () vy . (6.63)

Based on practical considerations, we assume that the velocity and acceleration of the
leader vessel are bounded, and thus the velocity and acceleration of the reference vehicle
satisfy

sup v (t)] < Vs, (6.64)
t€R >

where Vi denotes a positive constant. In view of (6.62), the virtual vehicle tracking errors
ey = Ty — T, satisfy
ey =J(Tp) vy — J () vy .

We propose the following control law for the virtual vehicle
vy = —J(xy) 'Lhie, — J(zy) Loz (6.65)
where L; and Lo are symmetric positive gain matrices, and
o= ey (6.66)
The closed-loop equations can be written in the following form
éy = —Liey — Loz — J () Uy . (6.67)

Consider the following Lyapunov function candidate
1
Vi (2, €y) = 3 (egev + 2" Loz + zTev> . (6.68)

Differentiating along the closed-loop trajectories we get

. 1 1 1 1
Vi (z,6y) = —e;r <L1 — 2I> €y — §zTL22 — izTLlev — <e;r + 22T> J(xm)vr . (6.69)
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Using (6.64) and the relation 2|ab| < (Aa? + b%/)) for any real a, b and any positive A, it
follows that

. 1 1 3V 6V 2
Vo < —— <2L2,m—L1,M— ) |22 —<4L1m—2—>\L1,M—> ey
4 A (e, 2)] |(ev, )|
(6.70)

where A designates any positive constant and L;,, (resp. L;ps) designates the minimum
(resp. maximum) eigenvalue of L;, i € {1,2}. Similarly to the previous sections, we design
the gain matrices L1 and Lo in such a way that L;»y < ¢ L;,, for some £ > 0. Then,
letting A = 2/¢ and J, be any given positive constant, we can see in view of (6.64) that
any gain matrices satisfying

Lim = 3+ SXM (6.71)
Lom = L <1+€2) 3V (6.72)
’ 4 4 ) 26,
generate the following bound of the derivative of V,,:
(0, 2) >0y = Vi(z,e0) < —len]* — |27 (6.73)

Note that V,, is positive definite and radially unbounded for this choice of gains. More
precisely, we have

3V
]ev|+ <6+3€2 (4+€2)

v

>| <V, <= |ev|+ (1o+3£2 (4+£2) >| %,

Due to the linear dependency of Lj,, and Lg,, in 1/§,, we conclude with Corollary 2.9]
that (6.66)-(6.67) is uniformly globally practically asymptotically stable with L ,, and
Lg,m as tuning parameters.

6.3.3 Follower vehicle design

Using the velocity information from the virtual vehicle design, we can design a synchro-
nization controller for the follower vessel X, to follow the virtual vehicle X,. Note that the
body-fixed velocity v, is now known through (6.65), and, with the kinematic relationship of
(6.63), we can obtain the velocity &, of the virtual vehicle in the NED frame. Furthermore,
due to our design of the virtual velocity controller, we can also obtain an expression for
the acceleration of the virtual vehicle which will be partly available for control purposes.
More precisely, we get from (6.65) and (6.67) that

Ty = J(xy) vy =—L1ey, — Loz
iy = —Liéy — Loey, = (L3 — La) ey + L1 Loz + L1J () vy - (6.74)

In our synchronization approach, we will assume that the velocity of the follower vessel is
known. Define the synchronization errors as

€ =T — Ty, €= — Ty, E=T — Ty.

Using the sliding surface from [SL87| as a passive filtering of the virtual vehicle states, we
can design a virtual reference trajectory as

Yo = dp—Ae
:i/.’u = 1'1)—/\6,
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where A > 0. Let us denote
i1, = (LT — La) ey + L1 Loz — Aé
in which case, in view of (6.74),
Yo = 3/; + L1 () vy -

Notice that, although 4, is not accessible since v, is not measured, 7/, is available for control
design. Defining
S:=I — 1, =€+ Ae

as a measure of tracking, we can rewrite (6.58) as
M(z)$ = —C(x,%)s — D(z,)s +7 — M ()i, — C(x, %)y — D(x, 2)jy— g(x) . (6.75)
We propose the following control law
T = M(2)i, + C(z, %)y, + D(x, @)y, + g(z) — Kas — Kpe, (6.76)

where K, and K, are symmetric positive gain matrices. Consider the following Lyapunov
function candidate

Ve (e, s) = %STM($)S + %eTer. (6.77)
Differentiating along the closed-loop trajectories we get
Ve(e, s) = —s' [D(x,&) + Kg]s —e AT Kye — s M(x)L1J (2m) vr .
Let . be any given positive constant. Then, from (6.64), it holds that, for all |(e, s)| > J,

1
Oe

1

‘7(5(67 S)S_(Dm+Kd,m_ 5

MMLLMVM) |s]* — (Apr,m — MMLLMVM) le? .

(6.78)
Proceeding as for the virtual vehicle, we can invoke Corollary [2.9 by observing that the
choice of K4, and K, ,, can be made as an affine function of 1/, and conclude uniform
global practical asymptotic stability.

6.3.4 Stability analysis of the overall system

The control law of the follower synchronizes the follower vessel to the virtual vehicle based
on a computed virtual reference velocity from the virtual vehicle controller, and the virtual
vehicle is in turn stabilized to the reference vehicle parallel to the leader vessel.

Theorem 6.12 Consider the vessel model (6.58) satisfying Properties 1-3, the virtual ve-
hicle control law (6.65) and the synchronization controller (6.76). Under assumptions
(6.64), the overall closed-loop system is uniformly globally practically asymptotically stable.

Proof of Theorem 6.12.  Take as a positive definite Lyapunov function candidate the
following composition of the Lyapunov functions (6.68) and (6.77).

1

V(m = §~TP "77
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where 7 = (eT,sT,zT,eI)T and
K, 0 0 0
B 0 M(z) 0 0
P=1 Ly i1

Differentiating along trajectories yields

V() = —1'Qu+o (s, e, 2 vr) (6.79)
where
ATK, 0 0 0
Q= 0 D(z,z)+ Kq 0 0
- 0 0 1L, 1Ly
0 0 iL1 Li—3I
and .
0 (5, €y, 2, Vy) = —5 M(x)L1J (z) vy — §ZTJ (Zm) vy — €9 J (@) vy .

Let § be any given positive constant. Then we have the following property:

. \% s 2|?
> = |o(s, ey, 2z, )| < 5 (MMLLM|S|2 + |2| + |ev|2> )

Consequently, in view of (6.70) and (6.78), and repeating a similar reasoning while choosing
the minimum eigenvalue of the gain matrices K,, K4, L1 and Lo large enough, it holds
that .

=6 = V)< -l
Since the dependency on the bound on o (and so on the gain matrices) in 1/J is again
affine, uniform global practical asymptotic stability follows from Corollary |

6.3.5 Simulation study

The underway replenishment scheme presented above is tested in a simulation environment
in MATLAB using the surface ship model of Cybership II from [SSF04]. In the simulations,
the distance between the ships is h = 2 m with 7, = —7/2, and the model matrices in the
body frame were

258 0 0
M = 0 338 10115
0 1.0115 2.76
0 0 —33.8v — 1.0115r

C) = 0 0 25.8u

33.8v 4+ 1.0115r —25.8u 0

0.72+1.33|u|+5.87u? 0 0
D(v) = 0 0.8896+36.5|v|4+-0.805|r|  7.254-0.845[v|+3.45|r| | ,

0 0.03134-3.96[v| —0.130|r|  1.90—0.080|v|+0.75r|

where v = (u,v,7)" are the body fixed velocities in surge, sway and yaw, respectively.

Controller gains were chosen as K, = diag(70, 140, 70), Ky = diag(100, 100, 50),
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L, = diag(0.8, 1.6, 1.6), Ly = diag(0.55, 0.55, 0.55), and A = diag(0.3, 0.3, 0.3). In
the simulations, the leader ship tracks reference trajectory t +— sin (wt) with frequency
w = 1/15rad.s~! with heading angle 1,,, along the tangent line. Initial states were chosen
as 2 (0) = (0, 0, 07 for the follower, z, (0) = (1, 0.5, Z)T for the virtual vehicle and as
T (0) = (2, 4, 0)7 for the leader ship to illustrate stability in all degrees of freedom as
illustrated in the upper plot of Figure 6.7
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Figure 6.7: Trajectories of the follower x, the virtual vehicle x, and the reference vehicle
z, in the upper plot, and the planar plot of the vehicles with special marks at initial states
and at time ¢ = 10s in the lower.

From Figure 6.8 we see that the virtual vehicle control errors e, = z, — x,, the syn-
chronization errors e = x — x,, and the overall control errors x — x, confirm our theoretical
expectations. We observe small remaining oscillations, especially in the velocity errors,
due to the unknown velocity of the leader ship. However, due to the practical stability
property of the closed-loop system, the magnitude of these oscillations can be arbitrarily
reduced (within control saturation limits) by enlarging the gains.




165

Position Velocity
1 T 2 T
— 05
e
[
= Of T = @
E / B
5 -05f/ =
5 | 7
= -1f X E
P -15 S o
v,
) . . . 2 . . .
0 5 10 15 20 0 5 10 15 20
time [s] time [s]
Position Velocity
_ 1 . 2 . .
8
E 1} 1
z TN
B L ol e 1
K} @
5 E
= -1r
E]
£
2 . . . 2 . . .
0 5 10 15 20 0 5 10 15 20
time [s] time [s]

Position Velocity

Synchronization error [m],[rad]
I
(4,1 o
T
\
I
[m/s],[rad/s]
o
/7

_1 S
e A -1
-15
vy
- . . . ) . . .
0 5 10 15 20 0 5 10 15 20
time [s] time [s]

Figure 6.8: The total errors x — x, in the upper row, the virtual vehicle control errors
T, — 2, in the middle row, and the synchronization errors x — x, in the lower row, with
positions on the left and velocities on the right.

Conclusion. This chapter presents three concrete applications of the results intro-
duced along the document. These applications concern mechanical systems. The first one
studies the robustness of PID-controlled robot manipulators to a wide class of perturba-
tions and when taking into account the dynamics of the actuators. USPAS is obtained,
meaning that a convenient choice of the PID gains allows an arbitrarily large domain of
attraction with an arbitrarily tight precision. The second application aims at controlling
the formation of spacecrafts in case of uncertainties in the orbital parameters. The last
one deals with surface vessels. The goal is to synchronize two ships in a parallel motion
using as little information of the leader vehicle as possible.




166 6. APPLICATION TO MECHANICAL SYSTEMS




167

Conclusion and further research

This document presents new tools for stability and robustness analysis of nonlinear dy-
namical systems. Let us summarize our main results.

Sufficient conditions for semiglobal and practical stability. We first provide a rig-
orous Lyapunov framework for uniform semiglobal and/or practical asymptotic stability.
“Semiglobal” refers to the situation when the domain of attraction is not the whole state-
space but a set that may be arbitrarily enlarged by a convenient tuning of some parameters.
“Practical” concerns the case when an arbitrarily small compact neighborhood of the ori-
gin (instead of the origin itself) is asymptotically stable. On some occasions, semiglobal
practical stability is an inherent property of the system or results from the control design:
global asymptotic stability is impeded by external disturbances, model uncertainty, etc.
On other situations, it constitutes the best one can prove when no strict Lyapunov func-
tion is available, or when using alternative techniques such as averaging. The generality of
semiglobal and/or practical stability is further reinforced by a specific feature offered by
the stability properties under consideration. Namely, as opposed to many related concepts,
they allow the estimate of solutions to depend on the tuning parameter and so, potentially,
on the radius of the desired domain of attraction and the amplitude of the tolerated steady-
state error. As a counterpart, a more involved attention needs to be paid in the stability
analysis to guarantee that the Lyapunov function be sufficiently “representative” of the
state-norm. More precisely, compared to classical results for global asymptotic stability,
an additional requirement on the Ko, bounds on the Lyapunov function is imposed. We
illustrate the importance of this condition by showing that, when the latter is violated,
even boundedness of solutions is not guaranteed in general. All these results are illustrated
by elementary examples.

Necessary condition for USPAS. Semiglobal and/or practical stability can be seen
as a measurement of robustness in the sense that it often stems from a degradation of
global and/or asymptotic stability due to external disturbances, model imperfection, etc.
while still guaranteeing interesting performances to the system under consideration. But
uniform semiglobal practical asymptotic stability (USPAS) may be inferred by other means
than the knowledge of a convenient Lyapunov function as, for instance, via averaging
techniques. For this reason, we derive a converse Lyapunov result for the class of USPAS
systems whose solutions’ estimate is independent of the radius of the attractive ball. This
necessary Lyapunov condition is especially designed to fit the context of cascaded systems
as it also guarantees a time-invariant bound on the gradient of the Lyapunov function.

Cascades of systems are often encountered, and are at the basis of many control strate-
gies. For this reason, a large part of this report is devoted to the analysis of cascaded
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systems.

USPAS, USAS, UGPAS for cascades. With the proposed Lyapunov framework for
semiglobal and/or practical asymptotic stability, some tools are presented that ensure the
preservation of a given stability property (USPAS, USAS or UGPAS) by cascade inter-
connection. In general terms, similarly to existing results for global asymptotic stability,
it is required that the solutions of the overall cascade be bounded and that a convenient
Lyapunov function be explicitly known for the driven subsystem. In view of the converse
result evoked above, we may relax this latter requirement in the semiglobal case for a wide
class of systems. This is particularly useful when invoking averaging techniques, as illus-
trated by the output feedback control of the double integrator affected by a persistently
exciting signal. Furthermore, in the case of uniform global asymptotic stability, the bound-
edness assumption on the solutions of the cascade is replaced by growth restriction on the
interconnection term. This makes this tool particularly easy to apply in specific control
problems. We illustrate its use by quantifying the effect of smoothing a sign function in
disturbance rejection.

Set-stability for cascades. In the case when, due to actuators limitation or structural
constraints, semiglobal and/or practical asymptotic stability of perturbed or uncertain
systems is not achievable, one may be interested in studying the stability of fixed sets. In
addition, the generality of the set-stability concept makes it an interesting tool. Among
the particular cases it encompasses, let us cite partial stability which has proved useful
in many control applications. We show that, if some (non necessarily compact) sets are
globally asymptotically stable (GAS) for two subsystems taken separately, then their cross
product is GAS for the corresponding cascade provided that its solutions are globally
bounded. Again, we show that, on some occasions, this requirement can be replaced by
a simple growth-order condition on the interconnection term (plus forward completeness).
Applying this result, we provide a concise proof for a recently established result of formation
control of surface vessels along a straight path and with a prescribed velocity.

iISS for cascades. We further provide a stability analysis for cascaded systems with
inputs. While the concept of input to state stability is known to be preserved by the cascade
interconnection, this is not the case for the more general notion of integral input to state
stability (iISS). Additional requirements need to be imposed for the cascade composed of
two iISS systems to be iISS. These conditions are firstly expressed in terms of Lyapunov
functions and then in terms of estimates of the solutions of each subsystem taken separately.
The application of these new results is illustrated through academic examples.

Applications. Finally, we apply most of the presented results to specific control appli-
cations. This constitutes the purpose of the last chapter. We analyze the robustness of
PID-controlled manipulators to friction, model uncertainty, actuators’ dynamics and other
disturbances. Another application concerns the formation control of spacecrafts. We es-
tablish global practical asymptotic stability of the corresponding system in the case that
only bounds on the leader’s anomaly are available. Finally, we show that a similar sta-
bility property can be obtained for the synchronization of two surface vessels with little
information on the leader vehicle.

Thus, we believe that our theoretical contributions constitute useful tools for robustness
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and stability analysis as well as for control design in specific concrete applications.

Future works and open problems

As far as theory is concerned, the following problems constitute directions in which further
research may be carried out.

Cascades control. It would be interesting to derive constructive control strategies based
on the cascades results presented in this document. For instance, in the case that the
classical backstepping approach does not apply due to structural constraints or presence
of disturbances, a semiglobally and/or practically asymptotically stabilizing control may
remain achievable.

Partial USPAS. Some specific perturbed or imprecise control systems present the prop-
erty that part of the state can be made semiglobally and/or practically asymptotically
stable, while the behavior of the rest of the variables cannot be properly constrained. For
instance, this behavior could be expected when taking into account external disturbances,
such as current, wind and waves, in the example of Section [4.3. Such a feature correspond
to some kind of “partial semiglobal practical asymptotic stability”. To the best of our
knowledge, no general work has been done in this direction. We believe that mixing the
results presented for semiglobal practical stability (Chapters 2 and [3) and (non-compact)
set-stability (Chapter 4) can provide interesting results for this question.

Concerning applications of the presented results, the following problems will soon be
addressed.

Surface vessels formation. The main illustrative example of Chapter 4 consists in a
proof of a recently developed control for the formation control of underactuated surface
vessels along a straight path. So far, this does not take into account disturbances due
to wind, current and waves and requires a full knowledge of the model, position and
velocity of each ship. Interesting future extensions of this result will aim at relaxing these
requirements by allowing more complex prescribed paths and by taking into account these
external noises and possible model uncertainty. A collision avoidance scheme may also be
implemented.

PD control of ships. Based on our results for semiglobal practical asymptotic stability,
we plan to relax some of the requirements in [LFP00] for the PD control of ships, when
taking into account external disturbances such as wind, wave and currents.
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Appendix A

Proof of auxiliary results

A.1 Proof of of Lemma 2.7

Let 29 € R™ and ¢y € R>¢ be any initial conditions such that ¢(t,to, z¢) € X for all t > to.
For simplicity, we write ¢(-,to, zo) as ¢(-) and we define v(-) := V (-, ¢(-)). We distinguish
two cases: whether the trajectories start from outside or inside Bs.

Case 1: |zo| > 4.

In this case, there exists! Ty € (0;00] such that |¢(t)] > & for all [tg;tg + Tp) and
|p(to + To)| = . Hence, using the comparison lemma, we get that

o(t) < <v(to) - c(\;m!)) e kt—to) 4 c(:i(’)” . Vtetoto+Top).

Using the bounds on V, it follows that

o0) < o™t (alanhe )+ SE00) v it + 7o),

In addition, for each t >ty + Ty, either |¢(¢)| < § in which case?

o0 < a7t () + L)

or |¢(t)| > 6. In this second case, we can again invoke the continuity of the solution to see
that there exists a nonempty time-interval [7;7 + T, with T € (0; 00|, containing ¢ and
such that |¢(s)| > 0 for all s € (737 + T, with |¢(7)| = 6. Hence, integrating from 7 to
t € [1;7 4 T, we obtain in the same way as before that, whenever |¢(t)| > ¢, it holds that

o) <2 (a(d)e‘k(t_T) + C“,if”) Sof1< (Jwol)e (=) 4 (}ZO’)> . (Al

To sum up, for all ¢t > ¢y, we have the following:

wl>5 = Jo() <at <a<|xor>e’f<“°>+c<'|§f')). (4.2)

YIf |¢(t)| > 6 forever after, we consider that Ty = oo.
2This is direct by noticing that a(s) < @(s) for all s € R and that c(|zo|)/k > 0.
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Case 2: |zo| < 4.
In this case, as long as |¢(t)| < d, we triviall}‘z2 have that

o) < (ate) + L)

If |¢p(t)] > 0 at some instant ¢ > tg, then, again, there exists a nonempty time-interval
[T;7 + T, with T € (0;00] and 7 > tp, containing ¢ and such that |¢(s)| > o for all
s € (1;7 4 T, with |¢(7)| = . Thus, from , we obtain that

oo < a7t (@40 4 L) <0 (@) + T2l

Hence, for all t > t,

ol <6 = loo] <o (a)+ L) (A3)

The conclusion follows from (A.2) and (A.3).

A.2 Proof of Proposition 1.16
We start by recalling the following definition from [TPA99].

Definition A.1 ((A — §)—stability) Given A > § > 0, the origin of the system & =
f(t,x) is said to be (A — §)—stable if

1. for each € > 6, there exists n(e) > 0 such that, for all to € R>q,

‘.%'0‘ < 77(8) = ‘(ZS(t,to, $0)| < €, Vt > to. (A4)

2. for each r € (0; A), there exists v(r) > 0 such that

lzo| < = o(t, to, x0)| < v(r), Vit > tg. (A.5)

3. for each r € (0; A) and each € > 0, there exists a finite T'(r,€) > 0 such that, for all
to € Rzo,
ol <7 = (L to, o) <€, Vt > to+T(r,€). (A.6)

Assume that the ball Bs is UAS on Ba. Then, in view of Proposition 1.14, there exists
B € KL such that, for all |xg| < A, and all t >ty > 0,

[9(t, to,z0)[s < B(lzol,0) =: a(|zol)
|6(t,to, z0)ls < B(At—tg) =:0(t —to).

Note that the so-defined functions o« and o are of class IC and L respectively. Given any
€ > 8, define n(¢) := a~!(e — 6). Then we have that

‘.’IJ()’ ST/ = ‘¢(t,t0,{lﬁ0)’ SE; VtZto,
which establishes Given any positive r < A, we have that

ol <r = ot to,z0)| < I+ a(r)=1v, Vt>t,
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which establishes[A.5l Let 0 < < A and € > §. Then
]x0| <r = |¢)(t,t0,x0)|6§0'(t—to), YVt > tg.

o is bijective from [0; 0o to ]0;0(0)]. If € — § < (0), let T := 0~ '(e — §). Then we have
that
lzol <r = ot to,x0)] <€, VE>to+T.

On the other hand if € — § > ¢(0), then
[wo| <7 = |o(t to,x0)|s S ot —to) S o(0) <e—4d, Vi>to,

which establishes A.6|
Assume now that the system is (A — ¢)—stable. We now follow the prooflines of
[Kha96, Lemma 3.3]. First notice than (A.4) and (A.6) can be written

Ve>0,3n(e) >0: el <n = [dttoao);Se, VEzto.  (A)

VO<r <A, Ve>0,3T(r,e) >0: || <7 = |o(t,to,x0)|s <e, VE>tg+T. (A8)

Given € > 0, let 7(¢) be the supremum of all the n’s such that (A.7) holds. Then 7(e) is
positive nondecreasing, but not necessarily continuous. Let ¢ € K be such that
C(s) <m(s) and lim ((s) =c:= lim 7(s).
S§—00 S§— 00
Let A’ be any positive constant smaller than A. First observe that A’ < ¢. Indeed, letting
r = A’ in (A.5), one knows that there exists a positive v such that, for any |xg| < A’, we
have that |¢(t,t0, z0)|s < |6(t,t0,20)] < v for all t > t5. Hence, for any € > v, it holds
that |p(t, to, z0)|; < €. In other words, for € large enough (i.e. greater that v), |zg| < A’
implies that |¢(t, to, z0)|s < € for all ¢ > to. The choice n = A’ is therefore convenient for
(A.7) if € is large enough. Since, by its definition, 7j(¢) > n(e), we necessarily have that,
as claimed, lim._, 77(g) > A’.
Now, let a: R>g — R>( be defined as

T Ns) if s <A
als) = { CHA) S i s> A

Note that, in view the previous observation, (~! makes sense on the interval [0; A’]. Fur-
thermore, we can see that « is a class Koo function. For all |zo] < A, let £ = a(]zo)).
Then, we have that

|zo| = a7 (e) = ((e) <T(e).
Thus, by the definition of 77, we have that, for all |z < A/,
[6(t, to, o)|s < € = alzol), VE=to.

There is only uniform attractivity left to prove. To that end, given € > 0, let T(A’,¢) be
the infimum of all the 7"s such that (A.8) holds with » = A’. We then have that

lzol <A = lp(t, to, w0)| < e+6, Vt>tg+T, (A.9)
and

sup  |@(t,t0,z0)| > €+ 0.
to<t<to+T
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The function T'(A’,-) is nonnegative nondecreasing and satisfies T'(A’,¢) = 0 for all € >
a(A"). Define now

2 [ , Ay

tw@:/ T(A, s)ds + =

9 e/2 9
Then W :]0; co[—]0; ool is positive, continuous, decreasing and tends to zero as its argument
tends to infinity. Let & denote its invert. Then & satisfies the same properties. Notice
that, for all € > 0, it holds that T(A’,e) + A’/e < W (e). From this, we have that for all
t > to,

T(A"6(t—to) <W(a(t —tg)) =t —to.

Thus, by letting e = &(t — to) in (A.9), we conclude that, for all ¢t > ¢y, and all |xo| < A’,

9(t, to, z0)|5 < G(t — to) .

However, & does not belong to class £, as it tends to infinity when its argument tends to
zero. To overpass this problem, we consider the instant ¢; > 0 at which &(¢1) = a(A’) and

efine
(t) == —(t—t1) +a(ld) if 0<t<t
R () it

Then o belongs to class £ and, using the fact that |¢(¢, to, zo)|s < a(A’) over [to;to + 1],
we have, as desired, that |p(¢, 2, zo)|s < o(t — to) for all t > ¢.

A.3 Proof of Theorem 3.38

We first show that the system is uniformly stable. More precisely, we explicitly construct
A >0 and a € K4 such that, for all zg € Ba,

|(t, to, m0)| < a(lzol) - (A.10)
We then use this property to prove uniform attractivity of the origin on the same ball Ba,

and then deduce a KL estimate for the solutions of (3.1).

Proof of uniform stability: From Assumptions|3.34/and 3.35, the time derivative of V; along
the trajectories of (3.1) yields, for any x; € Ba,,

- Wi, L

t P
Vi(t,z) ot o1

oV;
“kaVa(tan) + |5 Lty 1) |g(t, )]
1

< kit ) + e(lea)G(l2]) g2 (lazl) -

(t,z1) + (t,:rl)(fl(t,ml) —l—g(t,:n))

IN

Defining
Di={t >t : z1(t,t0,210) € Ba, }, (A.11)

we get that, for any ¢t € T,
01(t) < —kroi(t) + er(Jer (D)) G|z (8)]) |22 (2)] (A.12)

where we used the shorthand notation x1(t) for z1 (¢, tg, xo) and vy (t) := Vi (¢, z1(¢)). Thus,
using Assumptions 3.36/ and [3.37, we have in view of (3.59) that, for all zp € Ba and all
ter, )

01(t) < —krv1(t) + B(|zol , ¢ — o) , (A.13)
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where 3 € KL is defined, for all s,t € R>o, as

B(s,t) :== c1(B)G(B)Ba2(s,1) .
Notably, we have that, for all xg € BA and all ¢t € T,
01 (t) < =K1 (t) + B(|zol , 0) . (A.14)

We now show that, for any xog € Ba, x1(t) remains in Ba, forever after (i.e., I' = Rx>¢,).
To that end, notice that, since xg € Ba, we have that tg € I'. Hence, in view of (A.11)
and invoking the continuity of the solutions of (3.1), there exists Ty > 0 such that

[to;to —i—To] cr.

Integrating (A.14) from ¢ to any t € [to;to + To] we get that, for all g € Ba and all
t e [to;to + Tg],

v (t) < (vi(to) — B(|zo| ,0))eF1710) + B(|zo , 0)

which gives
21(6)] < 0y (@i (o) + B0l ,0)) (A.15)

With the A proposed in (3.59)3, is then possible to see that, as desired, any solution z1(#)
staring in Ba remains in Ba, forever after. In addition, for any xg € Ba, we have that
I' = Ry, or, said differently, 7y = oo. Therefore, (A.15) holds for all ¢ > ¢y. Thus, we
have in turn shown that, for any zg € Ba,

lz1(t)] < ar(|zol),

where oy is the K4 function defined as
ay(s) i==aqt (61(5) + B(S,O)) , Vs>0. (A.16)
Thus, introducing the following class K function
a(-) = Vai1()? + Ba(-, 0)2,

we have with Assumption 3.36 that, for all ¢ € Ba, the solutions of (3.1) satisfy

‘w(t,to,xoﬂ S Oz(‘ZC()’) s Vit Z t() . (A17)

Proof of uniform attractivity: Assume that g € Ba. Then, we have that (A.13) holds for
all t > ty. For any &1 > 0, let 7} > 0 be the instant, independent of tq, where*

/8(A7 Tl) =£1.
Then, from (A.13), we get that, for all t > ¢y + 17,

’L'Jl(t) S —klvl(t) + €1.

3820 can be assumed to be of class Ko without loss of generality since B2 is only constrained over
[0; Az]. This observation ensures the existence of 35"
Tf B(A,0) < &1, T is taken as 0.
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Therefore, for all t > to + 11,
v1(t) < (v1to 4+ Th) — e1)e Flt=to=T0) 4 o)
But, using the US bound (A.17), we have that
vi(to +Th) < o (lz(to +T1)|) < @1 (a(|zol)) -
Hence, for all t > tg + 17,
[21(8)] < 0y ™" (@ (a(Q)e 0T gy )
Notably, we have that
l21(t)| < o, ' (2e1) =, VE>to+ T,

where

€1

Observing that ¢ is arbitrary and that 75 is independent of ¢y, and recalling that o =
fa(t, z2) is ULA on Ba as well, we conclude the uniform attractivity of the origin for (3.1),
with Ba as an estimate of its domain of attraction.

Construction of the KL estimate:
Invoking |Vid93, Lemma 57|, we conclude from the uniform local attractivity of (3.1)
to the existence of n € £ such that, for all xg € Ba,

|$(t, to, 330)‘ S T/(t - to) s Vit 2 to . (AlS)

Multiplying (A.17) and (A.18) gives, for all zo € Ba,

|z (t, to, zo)| < B(lxol ,t —t0),  Vt=to,

where, for all s,t € R>,
B(s,t) :=a(s)n(t).

Since o and 7 and [y are respectively of class IC and £, § is clearly a class KL function,
and the conclusion follows.

A.4 Proof of Corollary 3.40

From Assumption [3.39, the solutions of @1 = fi(¢,z1) satisfy, for all 190 € Ba, and all
t > to,
96{1 (t,to, z10)| < ki |z10) ™0 | W > ¢

Let A; be any positive number satisfying (3.62). Then all the requirements of [Kha96,
Theorem 3.14] are fulfilled and we get that there exist a continuously differentiable function
Vi : R>0 X Ba, and some positive kq, k1 and ki and ¢; such that, for all z; € BAl and all
t e RZ()’

Eylz? < Vit @) < ko)
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8V1 8V1 2

R R < —

T + 8m1f1(t’x1) < —ky |21
‘g:ﬁ (t,x1)| < c1 x| -

In addition, the proof of [Kha96, Theorem 3.14| is established with the coefficients k;, k1,
c1 given in (3.61a)-(3.61c) (and k1 = 1/2). Thus, the rest of the proof follows the one of
Theorem 3.38, where the functions a; (s), @1(s) and c(s) are now respectively k;s?, ks>
and c1s and Al plays the role of Aj.

A.5 Proof of Theorem

The proof is an adaptation of the one of Theorem [3.38, and we therefore use the same
notations. Notice that, in this case, (a(s,t) = kase 2!, In view of (A.16), uniform
stability of the origin is therefore obtained with aq(s) = dys, where

1 _—
dy := ?(kl + ClBG(B)kg) .
L]
In addition (A.12) implies that, for any g € Ba,
k
bi(t) < —?lvl(t) + crdy |wo| G(B)ky |zo| e 720 t0)
1

If o £ %, the integration of this equation yields, with the comparison lemma,

k

~f (- b
Ul(t) < U1(t0)€ k1 (=) +aq |x0‘2 (e_w(t_to) —e kl(t to))

where
. Clle(B)kg
- Tk
ﬁ -2
And, if o = &1

k1
’Ul(t) = (’Ul(to) + a2 ‘l‘0|2 (t — to))e—’m(t—to)

with ag := ¢1d1G(B)ky. Thus, defining
o1 = min{y2; ki/k1}
oy = max{ay ; as},
it is possible to see that, in any case,
v1(t) < (vi(to) + a2 |ao|* )e~r(Et0)

Therefore, we have that, for all g € Ba,

21 (8)] < Vki+or

< k,

ol =2 (100,

which establishes UES of (3.1) on Ba with parameters ( Y ilj'gz, 021>
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A.6 Proof of Claim 6.4

Using the notation (6.6), it was shown in [Tom91| that Vi1 is positive definite and radially
unbounded provided that
010 > kig . (Alg)

In view of (6.11b), this condition holds since a, > k4. Then, it can be shown in view of
(6.9) that there exist some positive constants a, @ and b such that, for all Kz/; satisfying

(A.19),

algl® + b2 |g]° < Vi < @ldf’ + 012 1q -
Also, based on (6.9) and (A.19), it can easily be seen that

€ . ~ € . ~
5 (—durldP = da 1 + 013 1sP) < Viz < 5 (darldl® + dar |l + 613 |5
ead . ead ,
S22 (0P 1) < Vi < M (1 1sf?)
Hence, under the condition that
el ey < — (A.20a)
dm
d
bha > gle (A.20b)
.
bhs > Esz, (A.20c)
1

the inequalities in GG.{O) hold with® a; = a/2, by = b/2, by :=e1/4, a1 :=a+dy(e1 +
€9)/2, a9 := e1dpr/2, by := 1, a3 := eadps/2 and bz := £1£/2. This completes the proof of
the claim.

A.7 Proof of Claim 6.5

Direct computations show that:

U0 =~ Kai = Ks+Tpi(ta.d)

T a0 = e[ —d K+ (Clad) — Ka)d+d Dla)d
~0(9(0) - 9(a) + —-5 Kid + " pi(t,0.)]

TR Rt0) = e - sTKs+d D@+ —d Dla)d+5TCla.d)Td

—s'(g9(q) — glax)) — s K — s Kag+ s pi(t,q, c))] -
Therefore, the derivative of V; along the x1-subsystem yields

v

= Altz1,01) = —¢"Kag—e1§ Kpg—eas Kis+q' (€2D(Q) —e1Ky+e1C(q, Q)T) q

& . . . . .
+ (51 + ej) q'D(q)g — 25 Kpq+eas’ (C(q,q)T — Kd) g

— (81(JT - 628T> (9(a) — 9(a:)) + (QT +e1g + 825T> pi(t,q.4d).

®The conditions (A.20b) and (A.20b) hold in view of (6.11a) and (6.11b).
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It follows that

dV; ) -
dixifl(tvxlael) < =011 |g]* — 161217 — e2013 ||

1 2e )
+ 5 <<281 + 6—12 +82> dyr + (e1+ 62))\M(Kd)> l4?

1 ~
+ 3 (e1dar(Ka) + (261 + €2)kg + c2das + e2A 1 (K})) ik
e
5 (ar(BG) + A (Ka) + ky) |sf?
ke - . .
+ 2 (211dP + 260+ ) 10 + o2 |sf”) + max {erien 1} ol Ipu(t g, 9)] -

Notice, in view of (6.3), that for all 21 such that §; < |z1] < A

~ . 0
21| Ip1(t, G, 4)] < P1o + p11 + pr2di \1'1!2 .
1

Based on the previous observation and the assumption that €; 4+ e2 < 1 it follows that in
order to get (6.12) it is sufficient to have

2e 2 2k,
b1 > (261 + ?2 + 62) dy + (€1 + e2) A (Ka) + 2p11 + % +2 < 3 (61 +¢e2) +p12> Ay
1 1
/ 2p10 e1ke
€101 > 61)\M(Kd) + (281 + Eg)kg + eodps + EQ)\M(KP) + 2p11 + Tl + 2 3 +p12 | Ay
2 2k,
013 > )\M(K;g)+)\M(Kd)+kg+2pll+%+2 ( 3 +p12> Ap.
The latter is fulfilled provided that the gains are chosen large enough so that
0 2 2 2k,
Zu > 2614—24-52 dM+2p11+ﬂ+2 (€1 +e2) + p12 | AfA.21a)
2 €1 (51 3
1012 2p10 e1ke
5 > (261 + Ez)kg + e9dps + 2p11 + T +2 3 + P12 Aq (A.Zlb)
1
0 2 ke
et > kg + 2p11 + ﬂ +2| = + P12 Al ) (A21C)
2 01 3
and, based on (6.9), that the following holds
0
61212 > g10011 + 90019 (A.22a)
0
# > (51 + 62)5911 (A'22b)
0
; > (012 + 011) - (A.22¢)

We can summarize the conditions (A.20a) and (A.22) in the following way: it is sufficient
to first choose €1 and &5 in such a way that®

go < o1
- 3
. 1 a
€1t+ex < mln{%;dM},

5Since ¢ > 1 by definition, it is clear that &1 + 2 < 1 as required.
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A. PROOF OF AUXILIARY RESULTS

and then, based on this choice, to design the control gains according to (6.11) where agq,
bd, cd, ap, by, cp, ai, by and ¢; are the positive constants, independent of §; and Ay, given

by

aq
by

Cd

Ci

2¢e
p (251 + 224 52> dar + 2p11

&1

4p1o
2 k

4( (51 +52) c+p12>

3

€9 eady  2p11 erlaq e1dym

2 24+ =1k ; :
max{< +51) a €1 + 3 e =29’ 2

9 2p1o ~ e1lby
max ;
€1 g1 — 2£62

2k, 2p1o e1fcy
2 .
max { 3 + €1 ’ g1 — 2&62

d
Zmax{kg +2p11 5 l(ag+ap) ; 826 M}

1
2max {2p1o ; (bg+bp)}

U,
2max{3 + 2p12 ;5 l(cqg + cp)} .

The proof of the claim follows.
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Abstract. We present new tools for stability and robustness analysis of nonlinear dynamical
systems. We provide a precise Lyapunov framework for uniform semiglobal and practical asymp-
totic stability. “Semiglobal” refers to the situation when the domain of attraction is not the whole
state-space but, instead, a compact set that may be arbitrarily enlarged by a convenient tuning of
parameters. “Practical” concerns the case when an arbitrarily small compact neighborhood of the
origin (instead of the origin itself) is asymptotically stable. As opposed to many related concepts,
they allow the estimate of solutions to depend on the tuning parameter and so, potentially, on the
radius of the desired domain of attraction and the amplitude of the tolerated steady-state error.
Compared to classical results for global asymptotic stability, this feature requires to impose an
additional requirement on the bounds on the Lyapunov function. We illustrate the importance of
this condition by showing that, when the latter is violated, no stability property is ensured. We
also derive a converse Lyapunov result for the class of USPAS systems whose solutions’ estimate
is independent of the radius of the attractive ball. The generated Lyapunov function is especially
designed to fit the context of cascaded systems as its gradient is bounded by a time-invariant
function.

With the proposed Lyapunov framework for semiglobal and practical asymptotic stability, some
tools are presented that ensure the preservation of these stability properties by cascade intercon-
nection. In general terms, similarly to existing results for global asymptotic stability, it is required
that the solutions of the overall cascade be bounded and that a convenient Lyapunov function be
explicitly known for the driven subsystem. In view of the converse result we establish, we relax
this latter requirement in the semiglobal case for a wide class of systems. This is particularly
useful when invoking averaging techniques, as illustrated by the output feedback control of the
double integrator affected by a persistently exciting signal. Furthermore, in the case of uniform
global practical asymptotic stability, the boundedness assumption on the solutions of the cascade is
replaced by growth restriction on the interconnection term. This makes it easy to apply in specific
problems. We illustrate its use by quantifying the effect of smoothing sign functions in disturbance
rejection.

We show that, if some (non necessarily compact) sets are globally asymptotically stable (GAS)
for two subsystems taken separately, then their cross product is GAS for the corresponding cas-
cade provided that its solutions are globally bounded. On some occasions, this requirement can
be replaced by a simple growth order condition on the interconnection term (plus forward com-
pleteness). This work includes, as a special case, partial stability for cascades. As an illustration,
we provide a concise proof for a recently established result of formation control of surface vessels
along a straight path and with a prescribed velocity.

We analyze the stability of cascaded systems with inputs by providing sufficient conditions
under which integral input to state stability is preserved by cascade interconnection. These condi-
tions are first expressed in Lyapunov terms and then in terms of estimates of the solutions of each
subsystem taken separately.

We illustrate the significance of our theoretical findings by solving specific open problems in
the field of mechanical systems. We proceed to the robustness analysis of PID-controlled manip-
ulators to friction, model uncertainty, actuators’ dynamics, etc. Another application concerns the
formation control of spacecrafts. We establish global practical asymptotic stability of the corre-
sponding system when only bounds on the leader’s anomaly are available. Finally, we show that a
similar stability property can be obtained for the synchronization of two surface vessels with little
information on the leader vehicle.
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