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PreambleBefore introdu
ing, in a more detailed manner, the subje
t of study of the present thesis,we give, in informal terms, a 
on
ise overview of the motivations for this work and its
ontributions.Stability. Roughly speaking, stability is the property of a dynami
al system that any errorsignals 
an be made arbitrarily small provided that the initial errors are su�
iently small.It is a 
ru
ial notion from a 
ontrol point of view as it ensures an a

eptable behavior ofthe plant if its initial 
on�guration is not too far from the nominal one. If, in addition,the error signals eventually tend to zero, we say that this operating point is asymptoti
allystable. The domain of attra
tion 
onsists the set of all initial states from whi
h solutionsgo to zero. We talk about global asymptoti
 stability when the domain of attra
tion is thewhole state-spa
e.Obsta
les. Through intuitive examples, we expose some of the reasons that may preventthe error signals from 
onverging to zero, as, for instan
e, the presen
e of an externalperturbation, measurement impre
ision, fri
tion, et
. In the same way, we show that thedomain of attra
tion may be restri
ted to a 
ompa
t neighborhood of the origin, notablyin the 
ase of negle
ted high order nonlinearities. In these situations, most of existingtools fail at ensuring better than ultimate boundedness (
onvergen
e of solutions to someneighborhood of the origin) or to lo
al stability (restri
tion of the domain of attra
tion).Semiglobal and pra
ti
al stability. Su
h a degradation of performan
e is not a

ept-able in many 
on
rete appli
ations, as this may result in a too little operating bandwidth ora too large impre
ision. Nevertheless, for 
ontrolled systems, the domain of attra
tion 
anoften be arbitrarily enlarged provided su�
iently large gains. We refer to this propertyas semiglobal asymptoti
 stability. For a given system, semiglobal asymptoti
 stabilityensures mu
h more interesting properties than simply lo
al properties, sin
e it establishesthat no theoreti
al obsta
le prevents from in
luding any given �nite set of initial 
onditionsto the domain of attra
tion.In the same way, the steady-state errors 
an often be diminished at will under a similartuning of the gains: we 
all this property pra
ti
al asymptoti
 stability. Again, this 
on
eptshould be seen as a far stronger property than the simple ultimate boundedness of solutions.Indeed, pra
ti
al asymptoti
 stability imposes that the pre
ision, after the transients, 
anbe made as �ne as desired. In addition, as we will see in more details in the sequel, itsuggests a �reasonable� behavior of the transient dynami
s whi
h is not the 
ase, in general,of ultimate boundedness.When it follows from a limitation of the performan
es of the system, semiglobal pra
ti-
al asymptoti
 stability 
onstitutes an interesting measure of the robustness of a system to



12 Preambleexternal perturbations and model un
ertainty. But, as we will see, this stability propertydoes not arise ex
lusively from a degradation of global asymptoti
 properties, but may alsobe established by existing results in the literature, su
h as averaging te
hniques.A �rst goal of the present thesis is to provide a rigorous framework for the studyof semiglobal and/or pra
ti
al asymptoti
 stability properties. To this end, we providesu�
ient 
onditions, expressed in terms of Lyapunov fun
tions, that guarantee this stabilityproperties. As we will see, these 
onditions allow that the Lyapunov fun
tion depends onthe tuning parameter. Indeed, su
h a 
hoi
e allows to in
lude in our analysis a mu
h widers
ope of appli
ations than if the Lyapunov fun
tion was assumed uniform in the tuningparameter. For instan
e, for me
hani
al systems, it is 
ommon to 
hoose the energy of thesystem as a Lyapunov fun
tion, in whi
h 
ase the 
ontrol gains, then playing the role ofthe tuning parameter, naturally appear in the Lyapunov fun
tion.Due to this non-uniformity, 
ompared to 
lassi
al results, an additional assumption isrequired that links the upper and lower bounds on the Lyapunov fun
tion. We infer thene
essity of su
h an additional 
ondition through an example.We stress that the stability 
on
ept that we will use along the do
ument makes use oftwo measures: the distan
e to the ball for whi
h we want attra
tivity and the Eu
lideannorm. Here also, this 
hoi
e is motivated by simpli
ity and generality reasons. Indeed, ifwe had 
hosen to use one single measure, the 
orresponding Lyapunov fun
tion would thenhave had to vanish on a whole neighborhood of the origin, whi
h would have preventedthe use of the Lyapunov fun
tion asso
iated to the nominal system. On the opposite,with this 
hoi
e, most of the semiglobal or pra
ti
al stability properties that result froma degradation of an �ideal� system due to perturbations 
an be inferred by using theLyapunov fun
tion of the unperturbed system.Hen
e, we propose tools that allow to establish powerful stability properties, i.e.semiglobal and/or pra
ti
al stability, whi
h usually do not require mu
h more 
onservativeassumptions than those needed for the (weaker but 
ertainly more 
lassi
al) properties ofultimate boundedness and lo
al stability.We also present a so-
alled �
onverse� theorem for semiglobal pra
ti
al asymptoti
stability, i.e. a result that guarantees the existen
e of a Lyapunov fun
tion under theassumption of su
h a stability property. The generality of the 
on
ept that we use requiresspe
i�
 pre
autions 
ompared to the properties that would be uniform in the tuning pa-rameter. We will see that, as this result generates an autonomous bound on the gradientof the generated Lyapunov fun
tion, it will be of great help in lightening the assumptionsin our results on 
as
ades.Cas
ades. In order to simplify the study of a 
omplex system, it is 
ommon, in stabilityanalysis, to divide it into smaller inter
onne
ted subsystems. In this way, the di�
ultyof the analysis is often redu
ed. A parti
ular type of su
h inter
onne
tion is the 
as
adestru
ture. In this situation, the subsystems are inter
onne
ted in a unilateral way, i.e.the output of a driving subsystem is the input of a driven subsystem. The modularityo�ered by this so-
alled 
as
ade approa
h gave rise to powerful results, both in analysisand 
ontrol design.However, most of the existing results in this domain only treat lo
al or global stabilityof the origin. Hen
e, they do not apply to the 
on
epts, although 
ommon and powerful,of semiglobal and/or pra
ti
al stability.As a se
ond obje
tive, we provide su�
ient 
onditions under whi
h semiglobal and/orpra
ti
al asymptoti
 stability is preserved by the 
as
ade inter
onne
tion. Roughly speak-



13ing, we show that this is the 
ase provided that we expli
itly know a Lyapunov fun
tionfor the driven subsystem and that the solutions are uniformly bounded. In the 
ase ofglobal pra
ti
al asymptoti
 stability, we provide a stru
tural 
riterion to ensure this uni-form boundedness of solutions, therefore yielding an easy-to-
he
k 
ondition to guaranteeglobal pra
ti
al asymptoti
 stability of the 
as
ade. An illustration of these results 
on-sists in stabilizing, by a bounded output feedba
k, the double integrator a�e
ted by apersistently ex
iting signal. As another appli
ation, we rigorously show that smoothing afeedba
k 
ontrol law may result in pra
ti
al stability. Furthermore, we provide a 
onverseLyapunov result for semiglobal pra
ti
al asymptoti
 stability that permits us to relax therequirement of expli
itly knowing a Lyapunov fun
tion for the driven subsystem. As illus-trated by an example, this latter feature is parti
ularly useful when stability is establishedbased on averaging te
hniques.Set-stability. The generality o�ered by set-stability makes it, as we further develop upon,another interesting tool for the stability and robustness analysis of perturbed systems.Indeed, this notion in
ludes, as parti
ular 
ases, the stability of a single operating point,of a traje
tory or even a more 
omplex domain a

ording to the set that is 
onsidered.Moreover, as the latter is not assumed to be 
ompa
t, it is also possible to in
lude to thestudy the partial stability, whi
h refers to the situation when the behavior of only a partof the state is 
onstrained. We will see that the latter appears very useful when dealingwith adaptive 
ontrol.The third obje
tive of this work is to provide su�
ient 
onditions for the preservationof the set-stability for 
as
aded systems. The requirement is �rst given as a global bound-edness of the solutions of the overall 
as
ade. We establish that, in some situations, this
an be relaxed to just forward 
ompleteness provided a growth restri
tion on the inter
on-ne
tion term. As an illustrative appli
ation, we propose a proof for a re
ently establishedresult in marine 
ontrol.ISS and iISS. So far, we have dis
ussed Lyapunov stability for systems without inputs.A �eld of stability analysis, regrouped under the paradigm of input to state stability(ISS), is espe
ially 
on
erned by the impa
t of external signals on the performan
e of thesystem. Without going into details, this property imposes that the norm of the 
urrentstate be bounded by a fun
tion of the amplitude of the perturbing signal plus a fading termdepending on initial 
onditions. A relaxed extension of this property is 
alled integral inputto state stability (iISS). Instead of the amplitude of the external signal, this property takesinto a

ount the �energy� that the latter feeds to the system. The iISS property is verygeneral in stability analysis and provides interesting information about the system. Forinstan
e, if the input energy is �nite, then the state 
onverges to zero. In this sense, iISS (aswell as ISS) therefore 
onstitutes another powerful measure of the robustness of a systemto external perturbations.A fourth part of this text is devoted to the behavior of iISS systems when pla
ed in
as
ades. We provide elementary 
onditions under whi
h the 
as
ade 
omposed of an iISSsystem driven by a globally asymptoti
ally stable one remains globally asymptoti
ally sta-ble. These 
onditions are expressed in terms of the Lyapunov fun
tions asso
iated to ea
hsubsystem, thus generalizing existing traje
tory-based results. Under mildly 
onservativeadditional assumptions, we establish that the 
as
ade of two iISS subsystems is itself iISS.This latter result is �rstly expressed in terms of Lyapunov fun
tions, and then in terms ofestimates of the solutions of ea
h subsystem.



14 PreambleAppli
ations. Many of the results presented in this do
ument have been applied inpra
ti
e, and we expose some of these results in a �fth step.We study the robustness of PID-
ontrolled robot manipulators to fri
tions, externaldisturban
es, model un
ertainty and taking into a

ount the dynami
s of a
tuators. Weprove that, under these environmental 
onstraints, the system is semiglobally pra
ti
allyasymptoti
ally stable. This is 
on�rmed by experimental results.In an other domain, we show that the leader-follower strategy adopted for the 
on-trol of spa
e
raft formations yields global asymptoti
 stability when all measurements areavailable. However, in pra
ti
e, some information on the leader's position may not be avail-able. We show that, provided that these signals are bounded, global pra
ti
al asymptoti
stability 
an be 
on
luded.Finally, in the 
ontext of underway ship replenishment, where the 
ontrol of the supplyvessel aims at preserving a 
onstant distan
e from the main ship during the operation, theonly measurements available for the main ship are position and heading. No informationon its model is at disposal. Under this 
onstraints, we show that a virtual vehi
le approa
hensures global pra
ti
al asymptoti
 stability of the system.We eventually stress that, although some of the results presented here impose rela-tively heavy notations for the sake of rigor, the do
ument also aims at giving intuitiveexplanations of the utilized 
on
epts. In this dire
tion, we give several simple examplesto illustrate the purpose and, when possible, provide simpli�ed 
orollaries that are lessgeneral but easier to use in pra
ti
e.Also, even though the results presented along this do
ument 
on
ern more stabilityanalysis than stabilization, in the sense that no expli
it design of 
ontrol law is presented,they still 
onstitute a pres
riptive framework on whi
h one 
ould base 
ontrol design strate-gies, as illustrated by the 
on
rete appli
ations of Chapter 6.
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Contribution of this thesisWe brie�y summarize the main results of this thesis, 
hapter by 
hapter, and 
ite relatedpubli
ations. Labels 
orrespond to the list of publi
ations presented in p. 17.- Chapter 2: We present new tools for the study of semiglobal and pra
ti
al stabilityof nonlinear time-varying systems. Some su�
ient 
onditions, in terms of Lyapunovfun
tions, are proposed. Compared to 
lassi
al Lyapunov 
onditions, an additional
ondition appears, that takes into a

ount the non-uniformity of the Lyapunov fun
-tion in the tuning parameter. We underline the ne
essity of su
h a requirementthrough an example. Conversely, we prove that su
h a Lyapunov fun
tion 
an be de-rived provided su�
ient regularity of the right-hand side of the ordinary di�erentialequation.This 
hapter formed the subje
t of the following publi
ations with A. Loría:[(i), (ii), (iv), (viii), (x), (xiii), (xvii)℄.- Chapter 3: We extend the results of Chapter 2 to nonlinear time-varying systemspresenting a 
as
ade stru
ture. We prove that, under a boundedness 
ondition onthe solutions of the overall system, both semiglobal and pra
ti
al stability propertiesare preserved by the 
as
ade inter
onne
tion of two subsystems. We also give somesu�
ient 
onditions to ensure the boundedness 
ondition on the solutions, whi
h areparti
ularly easy to use in the 
ase of global pra
ti
al stability. Illustrative examplesare provided in ea
h 
ontext.These results were originally presented in the following publi
ations with A. Loría:[(i), (ii), (iv), (viii), (x), (xiii), (xv), (xvii)℄.- Chapter 4: We analyze the behavior of nonlinear systems that are globally asymptot-i
ally stable with respe
t to a (non ne
essarily 
ompa
t) set, when pla
ed in 
as
ade.We provide su�
ient 
onditions under whi
h set-stability, de�ned with respe
t totwo measures, is preserved by the 
as
ade inter
onne
tion.These works 
orrespond to the 
ollaboration [(xiv)℄ with E. Panteley. An extensionwas proposed with the same 
oauthor, J. Tsønn
as and T.A. Johansen in [(xix)℄.- Chapter 5: We study the preservation of the integral input to state stability propertyof nonlinear time-invariant systems in 
as
ade. We give some su�
ient 
onditionsfor the 
as
ade 
omposed of an iISS subsystem driven by a globally asymptoti
allystable (GAS) subsystem to be GAS. These 
onditions are expressed in terms of theLyapunov fun
tion asso
iated to ea
h subsystem, thus generalizing existing similar



16 Contribution of this thesistraje
tory-based results. We also provide 
onditions under whi
h two iISS systemspla
ed in 
as
ade remain iISS. These su�
ient 
onditions are �rst expressed basedon the Lyapunov fun
tion for ea
h of the two subsystems, and then on the estimateof their solutions.These results were prepared with D. Angeli in [(iii), (xii)℄.- Chapter 6: We present 
on
rete appli
ations of our main theoreti
al �ndings in sta-bilization problems of me
hani
al systems. We show that, when taking into a

ountexternal perturbations (su
h as fri
tion, torque ripping, et
.) and the dynami
s ofthe a
tuator, PID-
ontrolled robot manipulators are semiglobally pra
ti
ally stable,ba
ked up with experimental results.On the other hand, a 
ontrol for underway fuel replenishment of vessels is designed,using a virtual ship approa
h, whi
h requires neither a priori model knowledge norvelo
ity measurement for the ship to be replenished. Global pra
ti
al asymptoti
stability is obtained.A third appli
ation 
on
erns the 
ontrol of a spa
e
raft formation, when taking intoa

ount bounded external disturban
es. A

ording to the assumed level of knowledgewe have on the orbital parameters of the leader, various stability properties arederived.These appli
ations were the obje
t of the following joint publi
ations with R. Kelly,E. Kyrkjebø, R. Kristiansen, A. Loría, E. Panteley, K. Pettersen and P. J. Ni
klasson:[(iv), (vi), (vii), (xvi), (xviii)℄.Although not presented in this do
ument, these three years of PhD gave rise to otherfruitful 
ollaborations:- The publi
ation [(ix)℄ is a joint work with J. de León Morales, A. Loría and G.Besançon where we proposed an adaptive observer for systems that 
an be put inthe so-
alled output feedba
k form, based on a 
onvenient persisten
y of ex
itationproperty.- With A. Loría, G. Besançon and Y. Chitour, we have posed open problems forstabilization of persistently ex
ited systems, and partially solve them in the 
ase ofthe double integrator, 
f. [(xi)℄.- In [(xx)℄, with M. Sigalotti, P. Mason, Y. Chitour and A. Loría, this latter problemwas further extended and solved with a linear time invariant feedba
k, with gainsuniform in the persistently ex
iting signal.
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NotationAll properties su
h as �positive�, �greater�, �in
reasing�, et
. are to be understood in thestri
t sense.

N and R denote the sets of all nonnegative integers and all real numbers respe
tively.
N≤N 
ontains all the nonnegative integers less than or equal to N ∈ N. In the same way,
R≥0 is 
omposed of all nonnegative real numbers.

I denotes the identity matrix of appropriate dimension.A 
ontinuous fun
tion α : R≥0 → R≥0 is of 
lass K (α ∈ K), if it is in
reasing and
α(0) = 0. It is said to belong to 
lass K∞ if, in addition, α(s) → ∞ as s → ∞. A
ontinuous fun
tion σ : R≥0 → R≥0 is of 
lass L (σ ∈ L) if it is de
reasing and tends tozero as its argument tends to in�nity. A fun
tion β : R≥0 × R≥0 → R≥0 is said to be a
lass KL fun
tion if β(·, t) ∈ K for any t ∈ R≥0, and β(s, ·) ∈ L for any s ∈ R≥0.We denote by φ(·, t0, x0) the solutions of the di�erential equation ẋ = f(t, x) withinitial 
ondition φ(t0, t0, x0) = x0.We use |·| for the Eu
lidean norm of ve
tors and the indu
ed L2 norm of matri
es.We use ‖ · ‖ for the essential supremum norm, i.e., for a signal u : R≥0 → R

p, ‖u‖ :=ess supt≥0 |u(t)|.We denote by Bδ the 
losed ball in R
n of radius δ 
entered at the origin, i.e. Bδ :=

{x ∈ R
n : |x| ≤ δ}. We use the notation H(δ,∆) := {x ∈ R

n : δ ≤ |x| ≤ ∆}. By anabuse of notation, B0 = H(0, 0) = {0} and B∞ = H(0,∞) = R
n.

δ being a nonnegative 
onstant, we de�ne |x|δ := infz∈Bδ
|x− z|. More generally, for a
losed set A, |·|A represents the distan
e to this set: |x|A := infz∈A |x− z|.For a given set E of R

n, ◦
E denotes its interior.Let a ∈ {0,+∞} and q1 and q2 be 
lass K fun
tions. We say that q2(s) = O(q1(s)) as

s tends to a if there exists a nonnegative 
onstant k su
h that lim sups→a q2(s)/q1(s) ≤ k.We say that q2(s) = o(q1(s))) if k 
an be taken to be zero, and that q1(s) ∼ q2(s) if
lims→a q2(s)/q1(s) = 1.We say that f : R≥0 × R

n → R
n satis�es the Carathéodory 
onditions if f(·, x) ismeasurable for ea
h �xed x ∈ R

n, f(t, ·) is 
ontinuous for ea
h �xed t ∈ R≥0 and, for ea
h
ompa
t U of R≥0 × R
n, there exists a integrable fun
tion mU : R≥0 → R≥0 su
h that

|f(t, x)| ≤ mU (t) for all all (t, x) ∈ U .A fun
tion f : R
n → R

n is said to be lo
ally Lips
hitz if, for any 
ompa
t U of R
n, thereexists a nonnegative 
onstant kU su
h that |f(x) − f(y)| ≤ kU |x− y| for all (x, y) ∈ U2.When the 
ontext is su�
iently expli
it, we may omit the arguments of a fun
tion.
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Chapter 1De�nitionsLyapunov stability. The works presented in this do
ument appeal to many di�erenttypes of stability properties. Stability should be understood in the Lyapunov sense. Gen-erally speaking, it refers to the property of a point, a set or a traje
tory that any solutionstarting su�
iently near remains arbitrarily 
lose at all time. It 
onstitutes a 
ru
ial fea-ture in 
ontrol of dynami
al systems, as it ensures an a

eptable behavior of the plantprovided that its initial 
onditions are su�
iently 
lose to the nominal ones.The notion of stability may easily be grasped in the 
ontext of me
hani
al systems.Considering a ball on a non �at surfa
e, an equilibrium position is stable if, after anysu�
iently small perturbations on the position of the ball, it remains for ever arbitrarilynear to it. The equilibrium is said to be asymptoti
ally stable if, in addition, the ballapproa
hes it asymptoti
ally. This is illustrated by the drawings of Figure 1.1.

Instability Asymptotic

stability

Global

asymptotic

stabilityFigure 1.1: Illustration of di�erent types of stability.In some situations, it is interesting to know how far from the asymptoti
ally stableequilibrium the ball 
an start and �nally return to it. The region of the state spa
ethat lead asymptoti
 
onvergen
e is referred to as domain of attra
tion. If the domain ofattra
tion is the whole spa
e, then the equilibrium under 
onsideration is 
alled globallyasymptoti
ally stable.While very intuitive in the 
ontext of me
hani
al systems, Lyapunov stability is farfrom being 
on�ned to this area. Generally speaking, the systems 
onsidered throughoutthe do
ument are represented as a �nite dimensional di�erential equation of the form
ẋ = f(t, x) , (1.1)



22 1. Definitionswhere t ∈ R≥0 represents the time, x ∈ R
n is the state and f : R≥0 ×R

n → R
n is assumedto satisfy Carathéodory 
onditions (
f. p. 19) and to be lo
ally Lips
hitz in x. Morepre
isely, for ea
h 
ompa
t U of R≥0 × R

n, we assume that there exists an integrablefun
tion kU : R≥0 → R≥0 su
h that, for all (t, x) ∈ U and all (t, y) ∈ U ,
|f(t, x) − f(t, y)| ≤ kU (t) |x− y| .By virtue of [Hal69, Theorem 5.3℄, these 
ombined 
onditions ensure both existen
e anduniqueness of the solutions of (1.1).It is worth pointing out the wide variety of systems that 
an be des
ribed by su
h anequation. To 
ite a few, it 
overs a very large number of 
ontrol problems in me
hani
s,ele
tri
al systems, biology, ele
troni
s, ele
tro-magneti
s, et
., 
f. e.g. [OLNSR98, KSV91,Son05b℄.Why time-varying systems ? The fa
t that the right-hand side term of the 
onsidereddi�erential equation is time-dependent allows to in
lude in the study many problems oftraje
tory tra
king. This aims at designing a 
ontrol u in su
h a way that the solution ofthe the dynami
al system ẋ = f(x, u) follows asymptoti
ally a pres
ribed referen
e xd(t).As the adopted 
ontrol law depends on the time-varying referen
e traje
tory xd(t), thesystem in 
losed-loop, although originally time-invariant, is of the form ˙̃x = g(t, x̃), where

x̃ := x− xd. The so stated tra
king 
ontrol problem applies to many physi
al systems, asfor instan
e in the area of 
ontrol of me
hani
al and ele
trome
hani
al systems (
f. e.g.[OLNSR98℄ and referen
es therein).Another typi
al situation in whi
h expli
it time-dependen
e of the dynami
al systemo

urs is that of regulations problems (that is, stabilization of �xed operating point) thatdo not satisfy Bro
kett's 
ondition [Bro83℄ or the more 
onservative 
ondition presented byCoron in [Cor90℄. In this 
ase, the open-loop plant is not stabilizable by any 
ontinuouslydi�erentiable time-invariant feedba
k. A time-varying 
ontroller is then 
on
eivable. Forinstan
e, it was shown by Coron in [Cor92℄ that any 
ompletely 
ontrollable smooth systemwithout drift (in
luding nonholonomi
 me
hani
al systems) 
an be stabilized by means ofa smooth periodi
 time-varying state feedba
k. Also, it was shown in [KT03℄ that, if asystem 
an be stabilized by a 
ontinuous state-feedba
k, then it is stabilizable (althoughpossibly in a non-uniform way) by a smooth time-varying feedba
k, whi
h may 
onstitutean interesting feature for some appli
ations.However, this expli
it dependen
e in time of (1.1) 
an also be of interest from ananalysis point of view. Some te
hniques in the literature, see for instan
e [Kha96, Lor04℄,
onsist in simplifying a 
omplex nonlinear system into a more simple time-varying one by
onsidering part of the state as a simple fun
tion of time.Although the results presented along this do
ument 
on
ern more stability analysisthan stabilization, in the sense that no expli
it design of 
ontrol law is presented, they still
onstitute a pres
riptive framework on whi
h one 
ould base 
ontrol design strategies.1.1 Stability of the originMany 
ontrol appli
ations 
an be formulated as a stabilization problem of the origin of adynami
al system. Typi
ally, one requires that the error between the desired behavior ofthe system and the a
tual one 
onverges to zero, leading to the notion of attra
tivity ofthe origin. In addition, it is usually required that, provided su�
iently small initial errors,



23the di�eren
e between the desired behavior and the a
tual one remains arbitrarily smallat all time: in other words, stability of the origin is desired.We brie�y re
all these notions in a nonlinear time-varying 
ontext. In this se
tion, Idenote a 
losed (but not ne
essarily bounded) subset of R
n that 
ontains the origin. Pleaserefer to the Notation part (p. 19) for a de�nition of the mathemati
al 
on
epts used here.We start with the notion of uniform boundedness of solutions.De�nition 1.1 (UB/UGB) Let I be a 
losed subset of R

n. The solutions of (1.1) aresaid to be uniformly bounded on I if, for any nonnegative 
onstant r, there exists a non-negative c(r) su
h that, for all t0 ∈ R≥0, they satisfy
x0 ∈ I ∩ Br ⇒ |φ(t, t0, x0)| ≤ c , ∀t ≥ t0 .If I = R

n, then the solutions are uniformly globally bounded.Based on this, we 
an introdu
e a pre
ise de�nition of the stability 
on
ept that willbe used throughout the do
ument.De�nition 1.2 (US/UGS) Let I be a 
losed subset of R
n. The origin of (1.1) is saidto be uniformly stable on I if its solutions are uniformly bounded on I and, given anypositive 
onstant ε, there exists a positive δ(ε) su
h that, for all t0 ∈ R≥0, the solution of(1.1) satis�es

|x0| ≤ δ ⇒ |φ(t, t0, x0)| ≤ ε , ∀t ≥ t0 . (1.2)If I = R
n, then the origin is uniformly globally stable.Stri
tly speaking, stability of the origin is a purely lo
al 
on
ept whi
h is summarizedby (1.2). In many appli
ations, it is also interesting to know a domain from whi
h solutionsremain bounded, whi
h explains why a boundedness requirement is imposed in the abovede�nition.Next, we re
all the notion of attra
tivity of the origin.De�nition 1.3 (UA/UGA) Let I be a 
losed subset of R

n. The origin of (1.1) is saidto be uniformly attra
tive on I if, for all positive numbers r and ε, there exists a positivetime T (r, ε) su
h that, for all x0 ∈ Br ∩ I and all t0 ∈ R≥0, the solution of (1.1) satis�es
|φ(t, t0, x0)| < ε , ∀t ≥ t0 + T .If I = R

n, then the origin is uniformly globally attra
tive.When the two latter properties are 
ombined, the resulting property is 
alled uniformasymptoti
 stability.De�nition 1.4 (UAS/UGAS) The origin of (1.1) is said to be uniformly globally asymp-toti
ally stable on I if it is both uniformly stable and uniformly attra
tive on I. If I = R
n,then the origin is uniformly globally asymptoti
ally stable.The �uniformity� requirement in the above de�nitions refers to the initial time. It
orresponds to the independen
e of δ and T in t0. In other words: no matter at what timethe system's traje
tories start, 
onvergen
e-rate to zero and overshoot remain un
hanged.



24 1. DefinitionsThe importan
e of uniformity. Uniformity is a 
ru
ial property of time-varying sys-tems, as it provides a 
ertain robustness with respe
t to external disturban
es. Morepre
isely, as more detailed in [LLLP05, Se
tion 2.1℄, it 
an be shown that the uniformasymptoti
 stability of the origin of a zero-input system ẋ = f(t, x, 0) ensures �stabilitywith respe
t to 
onstantly a
ting disturban
es� of ẋ = f(t, x, u), where u denotes an ex-ternal signal1, provided that the f(t, x, u) is lo
ally Lips
hitz in x uniformly in t. This
on
ept, also known as total stability, was introdu
ed by Malkin, 
f. e.g. [Mal58℄. It statesthat the traje
tories remain arbitrarily small at all time if the initial state and the inputsignal are su�
iently small. More pre
isely, it is de�ned as follows.De�nition 1.5 (Total stability) The origin of ẋ = f(t, x, 0) is said to be totally stableif, for ea
h ε > 0, there exists δ(ε) > 0 su
h that, for all t0 ∈ R≥0, the solution of
ẋ = f(t, x, u) satis�es

max{|x0| , ‖u‖} ≤ δ ⇒ |φ(t, t0, x0, u)| ≤ ε , ∀t ≥ t0 .In a nutshell, by establishing uniform asymptoti
 stability, we guarantee that the be-havior of the system is not too mu
h altered by the presen
e of su�
iently small externaldisturban
es. This robustness property does not hold for non-uniform properties, as il-lustrated by [LLLP05, Example 2.1, p. 28℄ in whi
h a simple s
alar time-varying systemis exhibited with the following properties: ẋ = f(t, x, 0) is globally asymptoti
ally stable(but not uniformly), nevertheless one 
an design an arbitrarily small perturbation u insu
h a way that ẋ = f(t, x, u) generates unbounded solutions.Larger perturbations. While uniform asymptoti
 stability thus ensures a natural ro-bustness to small external disturban
es, it provides no information on the behavior of thesystem subje
t to larger perturbations. In stability analysis, it is 
lassi
al to observe thatthe presen
e of a bounded non-vanishing disturban
e impedes asymptoti
 stability, yield-ing instead the 
onvergen
e to a (possibly large) neighborhood of the operating point. Thisproperty is referred to as ultimate boundedness, 
f. e.g. [Kha01, Yos66℄.De�nition 1.6 (Ultimate boundedness) The solutions of ẋ = f(t, x) are said to beuniformly ultimately bounded if there exist positive 
onstants ∆0 and c su
h that, forevery ∆ ∈ (0; ∆0), there exists a positive 
onstant T (∆) su
h that, for all x0 ∈ B∆ and all
t0 ∈ R≥0, they satisfy

|φ(t, t0, x0)| ≤ c , ∀t ≥ t0 + T .If this holds for arbitrarily large ∆, then the solutions are globally uniformly ultimatelybounded.In many situations, this property is not enough to ensure 
orre
t performan
es. Indeed,we see that uniform ultimate boundedness is only 
on
erned with the behavior of the systemafter a su�
iently long time and, hen
e, does not take into a

ount the transient dynami
s.In addition, the domain to whi
h solutions 
onverge may be large, then preventing a goodpre
ision.The aim of the following se
tions is to introdu
e stability properties that may helpguaranteeing stronger features to perturbed systems.1u : R≥0 → R
m may 
onsist in any measurable lo
ally essentially bounded fun
tion.



251.2 Stability of setsIn the above de�nition of ultimate boundedness, solutions are required to 
onverge tosome ball, of radius c, 
entered at the origin. It is natural to extend this property to moregeneral sets. In addition, it is interesting to 
onstrain the behavior of the system during thetransients, in order to avoid disproportioned overshoots. This motivated the introdu
tionof set-stability [Zub57, HP73℄.A general 
on
ept. The analysis of set-stability is very general and 
onsequently very
ommon in 
ontrol pra
ti
e. This ensues from the fa
t that the set under 
onsiderationmay 
onsist in a single operating point (then 
orresponding to De�nitions 1.2, 1.3 and 1.4),a path, or a more 
omplex, possibly unbounded, region of the state-spa
e.As it will appear more 
learly in the following de�nitions, stability (and, similarly,attra
tivity) of a single operating point x∗ is obtained by 
onsidering the set {x∗}. In thisrespe
t, we always 
onsider that the referen
e point x∗ is the origin. This 
an be assumedwithout loss of generality, sin
e, if x∗ is an equilibrium for (1.1), then 0 is an equilibriumfor ż = g(t, z) := f(t, z + x∗) with the 
oordinate 
hange z := x− x∗.In the same way, stability of a path may be 
onsidered by 
hoosing the set 
ontainingall the points of this path.In the 
ase when the appli
ation does not require 
onvergen
e to the origin but just toa small neighborhood of it, it is appropriate to 
onsider the set as a ball of small radius
entered at zero. This allows to de�ne a rigorous formulation of the problems for whi
h asteady-state error is tolerated, and is also at the basis of pra
ti
al stability as we will seein the next se
tion.The set may also be de
omposed as R
n′ × {0}, with n′ ∈ N<n, when only part of thestate is required to be stable. We refer to this property as partial stability, 
f. [Vor98℄.Many appli
ations indeed require the 
onvergen
e of a redu
ed number of variables tooperate 
orre
tly. This 
on
ept has also proved useful in presen
e of super�uous states, orwhen the plant is inherently unstable with respe
t to part of the states. See Chapter 4 fordetails.The following stability de�nitions should therefore be seen as general statements, fromwhi
h all these �parti
ular� 
ases may be derived.When dealing with set stability, spe
ial attention has to be paid to the existen
e ofsolutions for all positive time. A and I denoting two 
losed (but not ne
essarily bounded)sets of R

n that 
ontain the origin2, we therefore start by re
alling the notion of forward
ompleteness. Please see [AS99℄ for a Lyapunov 
hara
terization of this property.De�nition 1.7 (Forward 
ompleteness) The system (1.1) is said to be forward 
om-plete on I if, for all x0 ∈ I and all t0 ∈ R≥0, its solution φ(t, t0, x0) est dé�nie pour tout
t ≥ t0.Based on this, we 
an extend De�nition 1.1 to the 
ase when we are not interested in aboundedness of the distan
e of the solutions from the origin, but from a given 
losed (notne
essarily 
ompa
t) set A.2This assumption, whi
h 
an be made without loss of generality, is imposed in order to ensure that
|·|A ≤ |·|.



26 1. DefinitionsDe�nition 1.8 (UB/UGB with respe
t to a set) The solutions of (1.1) are said tobe uniformly bounded on I with respe
t to A if (1.1) is forward 
omplete on I and, forany nonnegative 
onstant r, there exists a nonnegative c(r) su
h that, for all t0 ∈ R≥0,they satisfy
x0 ∈ I ∩ Br ⇒ |φ(t, t0, x0)|A ≤ c , ∀t ≥ t0 .If I = R

n, then the solutions are uniformly globally bounded with respe
t to A. Fur-thermore, for the 
ase that A = {0} and I = R
n we simply say, with a slight abuse ofterminology, that the solutions of (1.1) are uniformly globally bounded.In the 
ase when A = {0}, we re
over uniform boundedness as introdu
ed in De�nition1.1. We see that an additional requirement, namely forward 
ompleteness, is imposed inthe above de�nition. As the set A may be unbounded, traje
tories may explode in �nitetime while the quantity |φ(t, t0, x0)|A remains bounded at all time. Assuming forward
ompleteness ex
ludes this possibility. It should be stressed that, in the 
ase when A is a
ompa
t set, this additional requirement is not needed anymore. These remarks hold aswell for the next three de�nitions.De�nition 1.9 (US/UGS of a set) Assume that (1.1) is forward 
omplete on I. Theset A is said to be uniformly stable on I for (1.1) if the solutions of the latter are uniformlybounded on I with respe
t to A and, given any positive 
onstant ε, there exists a positive

δ(ε) su
h that, for all t0 ∈ R≥0, the solution of (1.1) satis�es
|x0| ≤ δ ⇒ |φ(t, t0, x0)|A ≤ ε , ∀t ≥ t0 .If I = R

n, then the set A is uniformly globally stable.De�nition 1.10 (UA/UGA of a set) Assume that (1.1) is forward 
omplete on I. Theset A is said to be uniformly attra
tive on I for (1.1) if, for all positive numbers r and
ε, there exists a positive time T (r, ε) su
h that, for all x0 ∈ Br ∩ I and all t0 ∈ R≥0, thesolution of (1.1) satis�es

|φ(t, t0, x0)|A < ε , ∀t ≥ t0 + T .If I = R
n, then the set A is uniformly globally attra
tive.De�nition 1.11 (UAS/UGAS of a set) Assume that (1.1) is forward 
omplete on I.The set A is said to be uniformly globally asymptoti
ally stable on I for (1.1) if it is bothuniformly stable and uniformly attra
tive on I. If I = R

n, then the set A is UniformlyGlobally Asymptoti
ally Stable.Two measures. It is worth pointing out that these de�nitions 
are spe
ial 
ases of stabilitywith respe
t to two measures, 
f. [Mov60, LL93℄. This 
on
ept is very general and in
ludes,as we have seen, stability of a single point, of a 
ompa
t set, of a pres
ribed traje
tory aswell as partial stability [Vor98, Vor02℄. It was used in e.g. [LS76, TP00, Lee04℄. Here,the �rst measure is the distan
e to the set under 
onsideration |·|A, while the se
ond isthe Eu
lidean norm |·|. As we will see later (see Se
tion 2.1), for perturbed systems orwhen dealing with adaptive 
ontrol, this 
hoi
e allows, in many situations, to use the sameLyapunov fun
tion as the nominal system, whi
h makes this stability property mu
h easierto establish and to use.



27In this respe
t, we stress that the term uniform used in the above de�nitions 
on
ernsonly the dependen
e in the initial time. More pre
isely, the 
onstants c, δ and T inDe�nitions 1.8, 1.9 and 1.10 are all required to be independent of t0. Other existing resultsin the literature (e.g. [Yos66, LSW96, TPL02℄) use this terminology to underline that theset-stability is de�ned with the same measure, notably implying that the set A is positivelyinvariant, whi
h is not the 
ase here.As in the spirit of Hahn's formulations [Hah63℄ of stability in terms of K and KLestimates (see also [Son98a℄), the properties de�ned above 
an be written in the followingpre
ise way.Proposition 1.12 (K 
hara
terization of UB/UGB) Assume that (1.1) is forward 
om-plete on I. The solutions of (1.1) are uniformly bounded on I (resp. uniformly globallybounded) with respe
t to A if and only if there exists a 
lass K fun
tion η and a nonnegative
onstant µ su
h that, for any x0 ∈ I (resp. x0 ∈ R
n) and any t0 ∈ R≥0, the solution of(1.1) satis�es

|φ(t, t0, x0)|A ≤ η(|x0|) + µ , ∀t ≥ t0 .Proposition 1.13 (K 
hara
terization of US/UGS) Assume that (1.1) is forward 
om-plete on I. A 
losed set A is uniformly stable on I (resp. uniformly globally stable) for(1.1) if and only if there exists a 
lass K fun
tion γ su
h that, for any x0 ∈ I (resp.
x0 ∈ R

n) and any t0 ∈ R≥0, the solution of (1.1) satis�es
|φ(t, t0, x0)|A ≤ γ(|x0|) , ∀t ≥ t0 .Proposition 1.14 (KL 
hara
terization of UAS/UGAS) Assume that (1.1) is for-ward 
omplete on I. A 
losed set A is uniformly asymptoti
ally stable on I (resp. uni-formly globally asymptoti
ally stable) if and only if there exists a 
lass KL fun
tion β su
hthat, for all x0 ∈ I (resp. x0 ∈ R

n) and all t0 ∈ R≥0, the solution of (1.1) satis�es
|φ(t, t0, x0)|A ≤ β(|x0| , t− t0) , ∀t ≥ t0 .The proof of these 
hara
terizations follows along the same lines as [Vid93, Theorems53 and 61℄, we therefore do not re
all them here.When the 
onvergen
e rate to the set A is exponential and the dependen
e in the initialstate is linear, the stability is said to be exponential.De�nition 1.15 (UES/UGES of a set) If, in Proposition 1.14, the 
lass KL fun
tion
an be pi
ked as

β(s, t) = k1se
−k2t , ∀s, t ∈ R≥0for some positive 
onstants k1 and k2, then the set A is said to be uniformly exponentiallystable on I (resp. uniformly globally exponentially stable) with parameters (k1, k2).For the study of the alteration of a stability property under the in�uen
e disturban
es,a noteworthy parti
ular 
ase of the above de�nitions is when the sets under 
onsiderationare 
losed balls. It is indeed at the basis of all the de�nitions of semiglobal and pra
ti
alstability properties introdu
ed next. The following proposition, that follows from Propo-sitions 1.12 and 1.14, establishes a strong link of this 
on
ept with the (σ → ρ)-stabilityoriginally introdu
ed in [TPA99℄ and re
alled in De�nition A.1 (p. 172).



28 1. DefinitionsProposition 1.16 (UAS and σ → ρ stability) Let ∆ > δ > 0. Then the followingimpli
ations hold:- If Bδ is UAS on B∆, then (1.1) is (∆ → δ)-stable;- If (1.1) is (∆ → δ)-stable, then Bδ is UAS on B∆′, for all ∆′ ∈ (δ,∆).The proof of this proposition is detailed in Se
tion A.2. We 
an noti
e that no forward
ompleteness assumption is needed anymore as the set under 
onsideration, namely Bδ,is 
ompa
t. In this 
ase, uniform asymptoti
 stability naturally ensures the existen
e ofsolutions for all forward time.1.3 Semiglobal and pra
ti
al asymptoti
 stabilityThe need of a �ner analysis. As already pointed out by Hahn in [Hah63℄ and by LaSalle and Lefs
hetz in [SL61℄, pra
ti
al 
onsiderations should be taken into a

ount whenstudying the asymptoti
 stability of the equilibrium of a given plant. To quote an exampleof the latter referen
e, the asymptoti
 stability of an ele
tri
al system operating at 110 Vensures that small variations will be 
an
elled out. However, if the amplitude of these tol-erated variations is tool small, say of some millivolts, the system may not operate 
orre
tly.On the opposite, the operating point of a given system may be mathemati
ally unstable,thus generating small os
illations around it, but still guarantee a su�
ient pre
ision for ana

eptable behavior. Using the intuitive illustration, already used in Figure 1.1, of a ballon a non-�at surfa
e, these would 
orrespond to the following situations:

Asymptotic stability with a

small domain of attraction

Instability with a small

steady-state errorFigure 1.2: Pra
ti
al 
onsiderations about stability.A tighter analysis is then 
apital.Steady-state errors and restri
ted domain of attra
tion. As already noted, non-vanishing perturbations a
ting on the plant or measurement impre
isions may impede the
onvergen
e to the origin by yielding a steady-state error. In the same way, it is often the
ase that some negle
ted high-order nonlinearity in the dynami
s prevent global stability,generating instead an unbounded basin of attra
tion. In ea
h of these situations, 
an weexpe
t more than lo
al stability and ultimate boundedness ?



29In the stability analysis of 
losed-loop systems, but also in some 
ontexts that aredeveloped later (su
h as averaging te
hniques or output feedba
k 
ontrol; see Chapter2), the tuning of some free parameters (typi
ally 
ontrol gains) often allow to arbitrarilyenlarge the domain of attra
tion, or to diminish at will the magnitude of the steady-stateerrors. These properties are respe
tively referred to as semiglobal and pra
ti
al stability.In more formal terms, semiglobal and pra
ti
al stability properties pertain to parame-terized nonlinear time-varying systems of the form
ẋ = f(t, x, θ) , (1.3)where x ∈ R

n, t ∈ R≥0, θ ∈ R
m is a 
onstant parameter and f : R≥0 × R

n × R
m → R

nis lo
ally Lips
hitz in x and satis�es Carathéodory 
onditions for any parameter θ under
onsideration.De�nition 1.17 (USAS) Let Θ ⊂ R
m be a set of parameters. The system (1.3) is saidto be uniformly semiglobally asymptoti
ally stable on Θ if, given any ∆ > 0, there exists

θ⋆(∆) ∈ Θ su
h that the origin is uniformly asymptoti
ally stable on B∆ for the system
ẋ = f(t, x, θ⋆).De�nition 1.18 (UGPAS) Let Θ ⊂ R

m be a set of parameters. The system (1.3) is saidto be uniformly globally pra
ti
ally asymptoti
ally stable on Θ if, given any δ > 0, thereexists θ⋆(δ) ∈ Θ su
h that the ball Bδ is uniformly globally asymptoti
ally stable for thesystem ẋ = f(t, x, θ⋆).De�nition 1.19 (USPAS) Let Θ ⊂ R
m be a set of parameters. The system (1.3) is saidto be uniformly semiglobally pra
ti
ally asymptoti
ally stable on Θ if, given any ∆ > δ > 0,there exists θ⋆(δ,∆) ∈ Θ su
h that the ball Bδ is uniformly asymptoti
ally stable on B∆ forthe system ẋ = f(t, x, θ⋆).In the above de�nitions, θ represents the tuning parameter, e.g. 
ontrol gains or anyfree design parameter. Θ is the set of allowed tuning parameters, whi
h may be boundeddue to physi
al 
onstraints su
h as limitation of the output of a
tuators. ∆ 
an be seenas the radius of the estimate of the domain of attra
tion; in most appli
ations, a larger

∆ indu
es better performan
e sin
e the operating bandwidth is enlarged. In 
ontrast,
δ represents the radius of the ball to whi
h solutions ultimately 
onverge; therefore it istypi
ally required to be small, in order to redu
e the steady-state error as mu
h as possible.Pra
ti
al stability and ultimate boundedness. As it is further dis
ussed in thesequel (see Chapter 2), pra
ti
al stability shares similarities with the 
lassi
al ultimateboundedness property (
f. De�nition 1.6), in the sense that solutions eventually rea
h aneighborhood of the operating point. It should however be 
lear to the reader that theabove De�nitions 1.18 and 1.19 are usually more interesting in pra
ti
e, as they requirethe size of this neighborhood to be redu
ible at will by an adequate tuning and as theyrequire the ball Bδ not only to be attra
tive but also stable (in the sense of De�nition ??).We also stress that De�nitions 1.18 and 1.19 do not require the origin to be an equi-librium for the system (1.3). This indeed fails for many pra
ti
ally stable systems as, forinstan
e, Examples 2.2 and 2.8 given below.In view of Proposition 1.14, USPAS 
an be expressed in terms of KL estimates.



30 1. DefinitionsProposition 1.20 (KL 
hara
terization of USPAS) The system ẋ = f(t, x, θ) intro-du
ed in (1.3) is uniformly semiglobally asymptoti
ally pra
ti
ally stable if and only if, forall positive 
onstants δ and ∆ su
h that ∆ > δ, there exists a parameter θ⋆(δ,∆) ∈ Θand a 
lass KL fun
tion βδ,∆ su
h that, for all x0 ∈ B∆ and all t0 ∈ R≥0, the solution of
ẋ = f(t, x, θ⋆) satis�es

|φ(t, t0, x0, θ
⋆)|δ ≤ βδ,∆(|x0| , t− t0) , ∀t ≥ t0 .A 
hanging KL estimate. We stress that the fun
tion β is not required to be independentof δ and ∆. Typi
ally, this dependen
e in the the size of the domain of attra
tion and thesize of the ball to whi
h solutions 
onverge steps through the dependen
e in the tuningparameter θ. In order to rea
h some given δ and ∆, it is indeed usually ne
essary to
hoose a 
onvenient parameter θ. However, as the dynami
s of the system depends on θ,it may happen that the 
onvergen
e rate as well as the dependen
e in the initial state (ina word, the KL estimate β) is a�e
ted a

ordingly. For instan
e, in me
hani
al systems, itis a 
lassi
al phenomenon that, for a given initial 
ondition (t0, x0), one observes a largerovershoot when enlarging the 
ontrol gains in order to diminish the steady-state error. SeeExample 2.2 for a simple illustration of this phenomenon.Many de�nitions of semiglobal and/or pra
ti
al stability existing in the literature doimpose that the KL estimate be uniform in δ and ∆. See for instan
e [TPA99, NL04,ST03℄3. As it will be more detailed in the sequel (see Chapter 2), this non-uniformity
onstitutes a 
ru
ial di�eren
e with those referen
es: while the above (less 
onservative)de�nitions allow to treat a mu
h wider 
lass of systems, they impose a more involvedLyapunov stability analysis. Of 
ourse, the natural 
ounterpart of this generality of thisnotion is that the latter is weaker than the above 
ited de�nitions. Yet, it guaranteesinteresting properties to the system in terms of overshoot, 
onvergen
e, robustness andpre
ision.Frequent properties. Semiglobal and/or pra
ti
al stability properties appear in varioussituations. An intuitive one is the degraded fun
tioning of a plant due to negle
ted dynam-i
s, external perturbations, inadequa
y with the model, et
. A 
ontrolled system for whi
hthe operating point is uniformly globally asymptoti
ally stable typi
ally presents a prop-erty of uniform semiglobal asymptoti
 stability in presen
e of high order nonlinearities, ormay be uniformly globally pra
ti
ally asymptoti
ally stable if some external non-vanishingperturbations a
t on it. These 
ommon situations are illustrated by elementary examplesin Chapter 2.Although these do not 
onstitute the only o

asions to observe semiglobal and/or pra
-ti
al stability (we also 
ould have 
ited averaging te
hniques, output feedba
k 
ontrol ordis
rete-time systems; see Chapter 2 for a more exhaustive des
ription), they show thatthe properties of UGPAS, USAS and USPAS 
an be seen as measures of the robustness ofa nonlinear time-varying system to model approximations, impre
isions, external distur-ban
es, et
.3Although [TPA99, De�nition 3℄ does not impose this uniformity, the main result in that referen
e doesensure su
h a feature.



311.4 Input to State StabilityISS. For the spe
i�
 study of robustness with respe
t to disturban
es, a parti
ularly �ttingframework is input to state stability (ISS). In informal terms, the ISS property introdu
edby Sontag in [Son89a℄ (see also [Son95, Son05a℄ for surveys on this notion) imposes thatthe norm of the state at the 
urrent time be bounded by a fun
tion of the amplitude ofthe external input plus a fading term in the initial state. This paradigm allows to takeinto a

ount two phenomena: 1) the state will eventually 
onverge to any arbitrarily smallneighborhood of the origin provided that the amplitude of the input is su�
iently small,2) if the input is null at all time, then the origin of the system is globally asymptoti
allystable.iISS. Even though this property has been widely used both in analysis and design, 
f. e.g.[Son98a, KKK95, JM97, PW96℄, ISS happens to be too strong a requirement in several
ases. This motivated the introdu
tion of Integral Input to State Stability (iISS) [Son98b℄,whi
h turns out to be a mu
h weaker property. Instead of linking the state to the supremumof the input, it involves a measure of the energy that inputs feed into the system. Similarlyto ISS, it ensures global asymptoti
 stability for the zero-input system and guaranteessome robustness to the system with respe
t to external inputs. For instan
e, it is shown in[Son98b℄ that, when the energy of the perturbing input is �nite, the asymptoti
 behaviorof the solutions of an iISS system is not a�e
ted.Both the ISS and iISS properties were originally introdu
ed in a time-invariant 
ontext,
f. [Son89a℄ and [Son98b℄ respe
tively. Although some extensions were made to generalizeto time-varying systems (see e.g. [Lin96, ELW00, LWC05, MM05℄), most of the existingtools that help guaranteeing ISS, and espe
ially iISS, remain limited to autonomous sys-tems. For this reason, the following de�nitions related to iISS are given by 
onsideringsystems of the form:
ẋ = f(x, u) (1.4)where x ∈ R

n denotes the state and f : R
n×R

p → R
n denotes a lo
ally Lips
hitz fun
tion.Input signals u : R≥0 → R

p may 
onsist in any measurable lo
ally essentially boundedfun
tions.We give the pre
ise de�nitions of ISS and iISS below.De�nition 1.21 (ISS) We say that (1.4) is input to state stable if there exist a 
lass KLfun
tion β and a 
lass K∞ fun
tion γ su
h that, for all x0 ∈ R
n and any admissible input

u, the solution of (1.4) satis�es
|φ(t, x0, u)| ≤ β(|x0| , t) + γ (‖u‖) , ∀t ∈ R≥0 . (1.5)The fun
tion γ is then referred to as an ISS gain for (1.4).De�nition 1.22 (iISS) We say that (1.4) is integral input to state stable if there exista 
lass KL fun
tion β and 
lass K∞ fun
tions γ and µ su
h that for all x0 ∈ R

n and anyadmissible input u, the solution of (1.4) satis�es
|φ(t, x0, u)| ≤ β(|x0| , t) + γ

(∫ t

0
µ(|u(τ)|)dτ

)
, ∀t ∈ R≥0 .The fun
tion µ is then referred to as an iISS gain for (1.4).



32 1. DefinitionsBased on these two formulations, it is easy to see that any ISS or iISS system is globallyasymptoti
ally stable when the input is zero at all time. This zero-input system 
an beviewed as the �nominal� system, and the above properties then give a 
lear measure of itsrobustness with respe
t to external disturban
es (their amplitude or their energy a

ordingto the 
ase).ISS and pra
ti
al stability. Compared to the pra
ti
al stability property introdu
edin the previous se
tion, it is worth underlining that both ISS and iISS ensure that a ball,whose radius is dire
tly related to the input, is globally asymptoti
ally stable. However,for a given input signal, this ball is not required to be redu
ible at will by a 
onvenienttuning of some parameter. For the same reason, we stress that the notion of input to statepra
ti
al stability (ISpS) introdu
ed in [JTP94℄ should not be understood in the sense ofthe term �pra
ti
al� of De�nitions 1.18 and 1.19. ISpS di�ers from ISS in that, instead ofthe origin itself, a ball 
entered at it is required to be globally asymptoti
ally stable. Morepre
isely, it 
orresponds to De�nition 1.21 where (1.5) is repla
ed by
|φ(t, x0, u)| ≤ β(|x0| , t) + γ (‖u‖) + δ , ∀t ∈ R≥0 ,

δ denoting a nonnegative 
onstant. In this 
ontext, δ is �xed an not redu
ible at will bytuning the system's parameters.In the same way, note that the 
on
ept of semiglobal integral input to state stabilityintrodu
ed in [ASW00b℄, where the KL estimate and the iISS gain are not required to holdover R
n but only on arbitrarily large 
ompa
t sets, is di�erent from the �semiglobality� ofDe�nitions 1.17 and 1.19. See Chapters 2 and 5 for a more detailed 
omparison of thesenotions.
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Chapter 2Semiglobal and pra
ti
al asymptoti
stabilityNatural stability properties. As evoked in Chapter 1, the opportunities of en
ounteringsemiglobal and/or pra
ti
al stability are numerous in 
ontrol pra
ti
e. Before presentingne
essary and su�
ient 
onditions for it to hold, in terms of Lyapunov fun
tions, we wouldlike to go ba
k on the motivations for this study.To this end, we start by introdu
ing the following elementary example, whi
h willillustrate the topi
 along the 
hapter and should give a more intuitive understanding ofthe semiglobal pra
ti
al stability property, in its full generality, and the ways to establishit. Although simple, this example illustrates many properties and di�
ulties involved insu
h a stability analysis.Example 2.1 Consider the se
ond-order s
alar dynami
al system des
ribed by

q̈ = −θ1q − θ2q̇ + b(t, q, q̇) + c(t, q, q̇)q̇2 (2.1)where θ1 and θ2 are free 
ontrol gains, and b and c are lo
ally Lips
hitz fun
tions satisfying,for all q, q̇ ∈ R and all t ∈ R≥0,
|b(t, q, q̇)| ≤ b̄ , |c(t, q, q̇)| ≤ c̄with some nonnegative 
onstants b̄ and c̄. In the 
ase that b and c are identi
ally zero,the system redu
es to a Hurwitz linear system and global exponential stability follows forany positive 
hoi
e of θ1 and θ2. However, in presen
e of the term b, we see that if thestate (q, q̇) is small, then the dynami
s are predominantly di
tated by b. This may yield toundesirable behavior as solutions approa
h the origin. Similarly, if c is non zero, then theterm c(t, q, q̇)q̇2 prevails when q̇ is large, potentially yielding a restri
tion of the domainof attra
tion. Intuitively, we 
an expe
t that, by enlarging the gains θ1 and θ2, we limitthe domination of the b term to very small values of the state and the domination of c tovery large values. A

ordingly, we would then obtain that the magnitude of the steady-stateerrors 
an be redu
ed at will by 
hoosing su�
iently large gains and, in the same way, thatwe 
an arbitrarily enlarge the domain of attra
tion. This is respe
tively what is meant bypra
ti
al and semiglobal stability. �Through this intuitive example, we see that perturbations may degrade the performan
eof a system, espe
ially by redu
ing the operating bandwidth and generating a steady-state
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ti
al asymptoti
 stabilityerror. But it also suggests that, in some situations, the e�e
ts of these degradations 
anbe made a

eptable when some freedom is available on a parameter.Perturbations of this type may have di�erent sour
es. Most 
ommonly, asymptoti
stability may yield pra
ti
al stability in presen
e of a non-vanishing external signal, su
has noise. For instan
e, this may be the result of imperfe
tions in the measurement or inthe a
tuation. This would 
orrespond to the time-dependen
e of the b term in the aboveexample. The 
onvergen
e to the origin may also be impeded by the use of saturated
ontrol (
f. p. 85), the presen
e of delay [LZ01℄, et
. Negle
ted dynami
s, high-ordernonlinearities, model un
ertainty, bad knowledge of some parameters, physi
al 
onstraints,et
. may also prevent global asymptoti
 stability while still allowing semiglobal and/orpra
ti
al stability.However, degradation of nominal performan
e does not 
onstitute the only o

asion ofen
ountering uniform semiglobal pra
ti
al asymptoti
 stability (USPAS). It may also be
on
luded from stability analysis tools existing in the literature. USPAS of a nonlineartime-varying system follows for instan
e from averaging te
hniques. In [TPA99℄, it is shownthat, if the averaged system of ẋ = f(t, x) is globally asymptoti
ally stable, then the system
ẋ = f(t/θ, x) is USPAS on the parameter set R>0, implying that, from any 
ompa
t setof initial 
ondition, it su�
es to pi
k θ small enough for the solutions to 
onverge to anyarbitrarily small neighborhood of the origin.Existing variants. We stress that the term �pra
ti
al stability� has many variants inthe literature of 
ontrol theory. In many situations, the ball to whi
h solutions 
onvergeis not required to be arbitrarily redu
ible. This is the 
ase in [MP72, Kap73, ZM03℄,where it is only imposed that any solution starting in a ball never leaves another ball.The notion of input to state pra
ti
al stability originally introdu
ed in [JTP94℄ imposes afading dependen
e in the initial state, but does not require the attra
tive neighborhood tobe redu
ible at will.On the other hand, this term may also denote more 
onservative properties than thatof De�nition 1.18, as they require that the KL estimate, or at least its dependen
e inthe initial state, be the same for all parameters1 θ ∈ Θ. While the latter property issatis�ed in many 
ontexts (see e.g. [MA00, TPA99, NL04, ST03, TNM05℄), it may failwhen dealing with perturbed systems: see the example below. In this respe
t, we stressthat, in De�nitions 1.17, 1.18 and 1.19, �uniform� refers only to the initial 
onditions, andnot to the tuning parameter.Similarly to pra
ti
al stability, the names given in the literature to what we 
all heresemiglobal stability properties vary a lot. It is, for instan
e, referred to as potentiallyglobal stabilizability in [Ba
86℄. Some authors, as for instan
e [BI91, Hu96℄, also use thedenomination on 
ompa
ta stabilizability.Stability and stabilizability. It should be underlined that many authors use the ter-minology �stabilizability� instead of �stability� when dealing with pra
ti
al or semiglobalproperties, see e.g. [Ba
86, Sus90, TP95, JB96, MS03℄. In general terms, these referen
esdeal with the problem of �nding a 
ontrol input that makes the solutions 
onverge, in astable way, to an arbitrarily small neighborhood of the operating point from an arbitrarilylarge given set of initial states. The system under 
onsideration is 
onsequently a 
on-trolled system, and not a parameterized system as (1.3). The di�eren
e between these two1In other words, the overshoot may depend on the 
hosen parameter θ, but not the 
onvergen
e rate.
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on
epts is slight. They may even 
oin
ide on some o

asions, as for instan
e in [Ba
86℄,where the 
ontrol is a priori sought in the form u = Kx. It is therefore a stabilizabilityproblem, but the gain matrix K 
an also be seen as a tuning parameter for the 
losed-loopsystem, allowing to address the question in terms of pra
ti
al stability.The o

asions of guaranteeing semiglobal stabilizability are numerous. It is shown in[TP94℄ that smooth global stabilizability and 
omplete uniform observability (meaning,roughly, that the state may be re
onstru
ted based on the instantaneous knowledge of theinput, the output, and a �nite number of their derivatives) imply semiglobal stabilizabilityby output feedba
k. In robust 
ontrol with respe
t to model un
ertainty, semiglobal stabi-lizability in ensured for a 
lass of systems by the approa
h of [Isi97℄. Semiglobal asymptoti
stability may also arise by the use saturated 
ontrols: see [ARKC03℄ for an example inroboti
s.The following example provides a rigorous proof of the intuitive reasoning proposedin Example 2.1. In parti
ular, we give a KL estimate whi
h is not uniform in the tuningparameter θ.Example 2.2 Inspired by the peaking phenomenon example in [SK91℄, we 
onsider thesystem (2.1) of Example 2.1, with θ1 = θ2, θ2 = 2θ, b(t, q, q̇) = 1 and c(t, q, q̇) = 0 for all
t ∈ R≥0 and all q, q̇ ∈ R, θ denoting a positive free parameter. In other words:

(
q̇
q̈

)
=

(
0 1

−θ2 −2θ

)(
q
q̇

)
+

(
0
1

)
. (2.2)Let x := (q, q̇)⊤. Given any initial 
onditions x0 = (q0, q̇0)

⊤, the solution of this lineartime-invariant system is
φ(t, x0, θ) :=

(
q(t, x0, θ)
q̇(t, x0, θ)

)
=

( [
q0 − 1

θ2
+
(
θq0 + q̇0 − 1

θ

)
t
]
e−θt + 1

θ2[
q̇0 +

(
1 − θ2q0 − θq̇0

)
t
]
e−θt

)
. (2.3)Using that te−t ≤ e−t/2 for all t ∈ R≥0, it 
an be seen that

|φ(t, x0, θ)| ≤ 2
(
1 + θ + θ2

)
|x0| e−θt/2 +

2 + θ

θ2
.Let δ be any given positive 
onstant and θ⋆(δ) be any positive number satisfying (2 +

θ⋆)/θ⋆2 ≤ δ. Then, de�ning βδ(s, t) := 2(1 + θ⋆ + θ⋆2)se−θ
⋆t/2 for all s, t ∈ R≥0, we getthat

|φ(t, x0, θ)| ≤ βδ(|x0| , t) + δ , ∀t ∈ R≥0 .Noti
ing that βδ is a KL fun
tion for any positive δ, we 
on
lude, in view of De�nition1.18, that (2.2) is (U)GPAS2 on the parameter set Θ = R>0.Note that the resulting KL estimate of the solutions depends on the 
hosen parameter
θ⋆ and so, indire
tly, on the 
hosen toleran
e δ. Furthermore, it is impossible to �nd afun
tion β that is the same for all δ. This stems from the term θ2q0te

−t in the expressionof q̇(t, x0, θ) (
f. Equation (2.3)) whi
h, for any positive t and q0 diverges as θ tends toin�nity. Hen
e, by 
hoosing a smaller δ, we 
an expe
t a larger overshoot. This is 
on�rmedby the following plots representing |φ(·, x0, θ)|, with x0 = (1, 0)⊤, for θ = 2 (dots), θ = 3(dashes) and θ = 5 (plain).
�2The initial �U�, standing for �uniform�, is groundless as the system under 
onsideration is time-invariant.
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Figure 2.1: Parameter dependen
e of the KL estimate.In the literature, many de�nitions of semiglobal and/or pra
ti
al stability impose thatthe tuning parameter be a (small) positive 
onstant, as for instan
e [MA00, NL04, TNM05,TPA99℄. A

ording to the 
ase, it may for instan
e 
onsist in a time re-s
aling or in thesampling period. In these situations, it is additionally imposed that there exists a value ofthe parameter su
h that every smaller 
hoi
e yields to the asymptoti
 stability of the sameball, with the same KL estimate. This requirement naturally indu
es a tuning pro
edure:in order to 
onverge to a smaller ball, it su�
es to pi
k a smaller parameter. Sin
e ourde�nitions of UGPAS, USAS, and USPAS rely on a possibly non-s
alar parameter, no su
htuning pro
edure is o�ered in general. However, in pra
ti
e, many appli
ations do provide
onditions on the parameter to rea
h a given attra
tive neighborhood of the origin, or toensure a given radius of attra
tion, and therefore suggest a pro
edure to tune parameters;see Chapter 6 for 
on
rete examples. For instan
e, in the above example, given a toleran
e
δ > 0, any parameter θ1 greater than θ⋆(δ)2 and θ2 greater than 2θ⋆(δ) ensures that theball Bδ is globally asymptoti
ally stable. So, we dire
tly know that, in order to rea
h asmaller δ, one should enlarge these two gains.In a nutshell, the good 
ompromise between generality and strength o�ered by De�ni-tions 1.18, 1.17 and 1.19 motivated their use. We are next presenting tools that guaranteethem in Lyapunov terms.2.1 Su�
ient 
onditionsLyapunov's dire
t method, originally presented in [Lya92℄, is based on the study of a posi-tive de�nite 
ontinuously di�erentiable fun
tion. If its total derivative along the solutionsof the system is non-positive, then stability follows. If this total derivative is negative def-inite, we 
on
lude asymptoti
 stability. If, in addition, the Lyapunov fun
tion is radiallyunbounded, then the equilibrium is globally asymptoti
ally stable. This Lyapunov 
ondi-tion happens to be also ne
essary for global asymptoti
 stability. To put in perspe
tive



37the main results of this 
hapter, we re
all the following 
lassi
al result from [BK54℄ �seealso [Hah, Chapter 2℄.Theorem 2.3 (Lyapunov 
hara
terization of UGAS) Suppose that the fun
tion f of(1.1) is lo
ally Lips
hitz. Then the origin of ẋ = f(t, x) is uniformly globally asymptoti
allystable if and only if there exists a 
ontinuously di�erentiable fun
tion V : R≥0×R
n → R≥0and 
lass K∞ fun
tions α, α and α su
h that, for all x ∈ R

n and all t ∈ R≥0,
α(|x|) ≤ V (t, x) ≤ α(|x|) (2.4)

∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) ≤ −α(|x|) . (2.5)Let us illustrate its use through the previous example. Although the argument mayappear trivial to the reader, we detail the 
omputations for further developments.Example 2.4 Suppose that none of the perturbations b and c a�e
ts the system introdu
edin Example 2.1:

q̈ = −θ1q − θ2q̇ . (2.6)Letting x := (q, q̇)⊤ and θ := (θ1, θ2)
⊤, the state representation of (2.6) is

ẋ = A(θ)x , with A(θ) :=

(
0 1

−θ1 −θ2

)
. (2.7)Consider the smooth Lyapunov fun
tion 
andidate

V (x) :=
θ1
2
q2 +

1

2
q̇2 + εqq̇ ,where ε is a positive 
onstant. Using the fa
t that |ab| ≤ (a2 + b2)/2 for all real a and b,we see that

1

2
(θ1 − ε)q2 +

1

2
(1 − ε)q̇2 ≤ V (x) ≤ 1

2
(θ1 + ε)q2 +

1

2
(1 + ε)q̇2 . (2.8)Hen
e, by pi
king any ε < min{θ1; 1}, we see that (2.4) holds with

α(s) :=
1

2
min{θ1 − ε; 1 − ε}s2 , α(s) :=

1

2
max{θ1 + ε; 1 + ε}s2 , ∀s ∈ R≥0 . (2.9)In addition, for all x ∈ R

2, we have that
∂V

∂x
(x)A(θ)x ≤ −εθ1q2 − (θ2 − ε)q̇2 + εθ2qq̇

≤ −ε
(
θ1 −

θ2
2

)
q2 −

(
θ2 − ε− εθ2

2

)
q̇2 .So, by 
hoosing ε and θ1 in su
h a way that ε < 2θ2/(2 + θ2) and θ1 > θ2/2, we see that(2.5) holds with

α(s) := min

{
ε

(
θ1 −

θ2
2

)
; θ2 − ε− εθ2

2

}
s2 , ∀s ∈ R≥0 ,whi
h is indeed a 
lass K∞ fun
tion. We 
on
lude from Theorem 2.3 that the origin of(2.6) is globally asymptoti
ally stable. �



38 2. Semiglobal and pra
ti
al asymptoti
 stabilityWhen a perturbation is added to a nominal UGAS system, we 
an expe
t the negativityof the Lyapunov fun
tion's derivative (2.5) to be altered. If the perturbation �a
ts� aroundthe origin, then one may loose this negativity for small values of the state. In the sameway, high order nonlinearities may 
ause problem for large values of the state. Hen
e theregion of the state-spa
e on whi
h the total derivative of V is negative may be limited bythese phenomena. If, nevertheless, a wise 
hoi
e of some parameter allows to extend thisregion at will, then we 
an intuitively expe
t UGPAS, USAS or USPAS a

ording to the
ase.We show in the next se
tions that this is indeed the 
ase, provided an additional as-sumption on the parameter-dependen
e of the fun
tions α and α that bound the Lyapunovfun
tion.To the best of our knowledge, no su
h su�
ient Lyapunov 
onditions for the semiglobaland/or pra
ti
al stability properties introdu
ed in Chapter 1, i.e. with a parameter-dependent KL estimate, has been reported in the literature. In most existing referen
es,in order to establish the semiglobal asymptoti
 stability property of a given system, thereasoning 
onsists in expli
itly estimating the domain of attra
tion and showing that it
an be arbitrarily enlarged by a 
onvenient parameter tuning, 
f. e.g. [OLK95, ARKC03℄.Similarly, pra
ti
al stability is 
ommonly established by estimating an asymptoti
ally sta-ble 
ompa
t set, and to show that its size may be redu
ed at will. The topi
 of nextse
tions is to provide a pre
ise Lyapunov framework for these notions.2.1.1 Global pra
ti
al stabilityThe following result gives a su�
ient 
ondition, in terms of a Lyapunov fun
tion de�nedout of a ball 
entered at the origin, for the dynami
al parameterized system (1.3) to beuniformly globally pra
ti
ally asymptoti
ally stable on a given set of parameters.Theorem 2.5 (Lyapunov su�
ient 
ondition for UGPAS) Let Θ be a subset of R
mand suppose that, given any δ > 0, there exist a parameter θ⋆(δ) ∈ Θ, a 
ontinuouslydi�erentiable Lyapunov fun
tion Vδ : R≥0 ×R

n → R≥0 and 
lass K∞ fun
tions αδ, αδ, αδsu
h that, for all x ∈ R
n \ Bδ and all t ∈ R≥0,

αδ(|x|) ≤ Vδ(t, x) ≤ αδ(|x|) (2.10)
∂Vδ
∂t

(t, x) +
∂Vδ
∂x

(t, x)f(t, x, θ⋆) ≤ −αδ(|x|) (2.11)
lim
δ→0

α−1
δ ◦ αδ(δ) = 0 . (2.12)Then the system ẋ = f(t, x, θ) introdu
ed in (1.3) is UGPAS on the parameter set Θ.An additional requirement. Compared to 
lassi
al results for Lyapunov stability su
has the one re
alled in Theorem 2.3, 
onditions (2.10) and (2.11) are natural. For perturbedsystems, (2.10) is notably satis�ed by the Lyapunov fun
tion asso
iated to the UGAS of theorigin of the 
orresponding nominal systems. (2.11) is similar to the Lyapunov su�
ient
ondition for global ultimate boundedness (
f. e.g. [Kha01℄). Intuitively, one may expe
tthat these two requirements, when valid for any arbitrarily small δ, su�
e to 
on
ludeUGPAS. However, we see that an additional assumption (2.12) is required that links thebounds on the Lyapunov fun
tion. Indeed, as opposed to previously 
ited de�nitions of



39pra
ti
al stability, the Lyapunov fun
tion may depend on the tuning parameter θ, and
onsequently on the radius δ. As 
learly shown by Sepul
hre in [Sep℄, this parametrizationof the Lyapunov fun
tion may indu
e unexpe
ted behaviors. Su
h a phenomenon is alreadydes
ribed in [KM86℄ by Kokotovi¢ and Marino. In that referen
e, the authors exhibit a
ontrol system in 
losed-loop with a feedba
k that makes the domain of attra
tion shrinkto zero when one aims at reje
ting the e�e
t of high-order nonlinearities.To the best of our knowledge, the 
ondition (2.12) 
onstitutes the �rst one in the lit-erature of pra
ti
al stability that allows to 
ope with this parametrization of the boundson the Lyapunov fun
tion. It guarantees that the Lyapunov fun
tion is su�
iently repre-sentative of the norm of the state. In Se
tion 2.1.3 (
f. Example 2.19), we will see how
ru
ial this requirement is by re
alling the example, originally presented in [KM86℄, of asystem for whi
h all the 
onditions of Theorem 2.5 are ful�lled ex
ept (2.12) and whosenon-trivial solutions grow unbounded (in parti
ular, it is not UGPAS)3.Before establishing the proof of Theorem 2.5, we introdu
e the following result, whi
his a dire
t adaptation of [PW96, Proposition 13℄ and allows Vδ to be transformed into amore 
onvenient form.Lemma 2.6 Let δ be a positive 
onstant and X be a subset of R
n\

◦
Bδ. Suppose that thereexist a 
ontinuously di�erentiable fun
tion V : R≥0 ×X → R≥0 and 
lass K∞ fun
tions α,

α, α su
h that, for all x ∈ X and all t ∈ R≥0,
α(|x|) ≤ V (t, x) ≤ α(|x|) (2.13)

∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) ≤ −α(|x|) . (2.14)Then, for any positive k, there exists a 
ontinuously di�erentiable fun
tion V : R≥0 ×X →

R≥0 and 
lass K∞ fun
tions α̃, α̃ su
h that, for all x ∈ X and all t ∈ R≥0,
α̃(|x|) ≤ V(t, x) ≤ α̃(|x|) (2.15)

∂V
∂t

(t, x) +
∂V
∂x

(t, x)f(t, x) ≤ −kV(t, x) , (2.16)and, for any s ∈ R≥0, it holds that
α̃−1 ◦ α̃(s) = α−1 ◦ α(s) .If, in addition, there exists a 
ontinuous nonde
reasing fun
tion c : R≥0 → R≥0 su
h that,for all x ∈ X and all t ∈ R≥0, ∣∣∣∣

∂V

∂x
(t, x)

∣∣∣∣ ≤ c(|x|) ,then there exists a 
ontinuous nonde
reasing fun
tion c̃ : R≥0 → R≥0 su
h that, for all
x ∈ X and all t ∈ R≥0, ∣∣∣∣

∂V
∂x

(t, x)

∣∣∣∣ ≤ c̃(|x|) . (2.17)
�3This example is given in a USAS 
ontext, but a similar argument holds for UGPAS.



40 2. Semiglobal and pra
ti
al asymptoti
 stabilityProof of Lemma 2.6. Following the proof lines of [PW96, Proposition 13℄, we see that thefun
tion V 
an be de�ned as ρ ◦ V where
{
ρ(s) = exp

(∫ s
1

2dq
a(q)

)
, ∀s > 0

ρ(0) = 0 ,and a is any 
lass K fun
tion satisfying
a(s) ≤ min

{
s,

2

k
α ◦ α−1(s)

}
, ∀s ∈ R≥0 and da

ds
(0) = 0 .The bound (2.16) 
an be established following the same reasoning as in the proof of [PW96,Proposition 13℄. More pre
isely, we have from (2.13) and (2.14) that

∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) ≤ −α ◦ α−1(V (t, x)) .Hen
e, from the de�nition of a,

∂V
∂t

(t, x) +
∂V
∂x

(t, x)f(t, x) =
2

a(V (t, x))
V(t, x)

(
∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x)

)

≤ −kV(t, x) .Furthermore, as ρ ∈ K∞, (2.15) 
an be satis�ed with α̃ := ρ ◦ α and α̃ := ρ ◦ α, and wetherefore have that
α̃−1 ◦ α̃(s) = (ρ ◦ α)−1 ◦ (ρ ◦ α) (s) =

(
α−1 ◦ ρ−1

)
◦ (ρ ◦ α) (s) = α−1 ◦ α(s) .Con
erning the bound on the gradient, we have that, for all x ∈ X and all t ∈ R≥0,

∣∣∣∣
∂V
∂x

(t, x)

∣∣∣∣ ≤
2V(x)

a(V (x))

∣∣∣∣
∂V

∂x
(t, x)

∣∣∣∣ ≤
2α̃(|x|)
a(α(|x|))c(|x|) ≤ c̃(|x|) ,where4 c̃(s) := 2α̃(s)

a(α(δ))c(s), whi
h establishes the result. �We are now ready to present the proof of the main result of this se
tion.Proof of Theorem 2.5. Let k = 1, X = R
n \ Bδ and Vδ generate, via Lemma 2.6, a
ontinuously di�erentiable fun
tion Vδ su
h that, for all x ∈ R

n \ Bδ and all t ∈ R≥0,
α̃δ(|x|) ≤ Vδ(t, x) ≤ α̃δ(|x|)

∂Vδ
∂t

(t, x) +
∂Vδ
∂x

(t, x)f(t, x, θ⋆) ≤ −Vδ(t, x) (2.18)hold with 
lass K∞ fun
tions α̃δ, α̃δ and α̃δ, satisfying
α̃−1
δ ◦ α̃δ(s) = α−1

δ ◦ αδ(s) , ∀s ∈ R≥0 .From the latter and (2.12), we have
lim
δ→0

α̃−1
δ ◦ α̃δ(δ) = 0 . (2.19)4This is where the requirement δ > 0 is needed.



41Furthermore, from (2.18), we get that
|φ(t, t0, x0, θ

⋆)| ≥ δ ⇒ V̇δ(t, φ(t, t0, x0, θ
⋆)) ≤ −Vδ(t, φ(t, t0, x0, θ

⋆)) . (2.20)Before going further, we introdu
e the following result whi
h is also of interest for thenext se
tions. It provides a KL estimate of solutions, based on a di�erential inequalitythat holds only out from a neighborhood of the origin. The proof is given in Se
tion A.1.Lemma 2.7 (Integration lemma) Let δ be a nonnegative 
onstant and X be a subset of
R
n\

◦
Bδ. Assume that there exist a 
ontinuously di�erentiable fun
tion V : R≥0×X → R≥0,
lass K∞ fun
tions α and α, a non zero real 
onstant k and a fun
tion c : R≥0 → R≥0su
h that, for all x ∈ X and all t ∈ R≥0,

α(|x|) ≤ V (t, x) ≤ α(|x|)and, for all x0 ∈ R
n and all t0 ∈ R≥0, the solution of ẋ = f(t, x) satis�es

φ(t, t0, x0) ∈ X ⇒ V̇ (t, φ(t, t0, x0)) ≤ −kV (t, φ(t, t0, x0)) + c(|x0|) .Then, for all x0 ∈ R
n and all t0 ∈ R≥0 su
h that φ(t, t0, x0) ∈ X ∀t ≥ t0, we have that

|φ(t, t0, x0)| ≤ α−1

(
α(δ) +

c(|x0|)
|k|

)
+ α−1

(
α(|x0|)e−k(t−t0) +

c(|x0|)
|k|

)
, ∀t ≥ t0 .

�Ba
k to the proof of Theorem 2.5, we obtain via Lemma 2.7 (with X = R
n\

◦
Bδ, c(·) ≡ 0and k = 1), we dedu
e from (2.20) that, for all t ≥ t0,

|φ(t, t0, x0, θ
⋆)| ≤ α̃−1

δ ◦ α̃δ(δ) + α̃−1
δ

(
α̃δ(|x0|)e−(t−t0)

)
.De�ne δ̃ := α̃−1

δ ◦ α̃δ(δ) and, for all s, t ∈ R≥0,
βδ(s, t) := α̃−1

δ

(
α̃δ(s)e

−t) .Then we have, for all x0 ∈ R
n and all t0 ∈ R≥0,

|φ(t, t0, x0, θ
⋆)|δ̃ ≤ βδ(|x0| , t− t0) , ∀t ≥ t0 ,and it is easy to see that βδ is a KL fun
tion for all positive δ. Again, we stress thatthe dependen
e of β in δ is not in 
ontradi
tion with De�nition 1.18. Furthermore, itfollows from (2.19) that δ̃ 
an be made arbitrarily small by pi
king a parameter θ⋆(δ) ∈ Θ
orresponding to a su�
iently small δ. UGPAS of ẋ = f(t, x, θ) follows. �The bounds on V . It is worth mentioning that, for perturbed systems, 
onditions (2.10)and (2.11) may often be satis�ed with the Lyapunov fun
tion that serves in establishingUGAS of the nominal system. This would have not ne
essarily been the 
ase if globalpra
ti
al stability was de�ned based on set-stability with respe
t to the same measure |·|δ.Indeed, for this stronger property, it would then have been required that the 
orrespondingLyapunov be bounded in the following manner:

αδ(|x|δ) ≤ Vδ(t, x) ≤ αδ(|x|δ)



42 2. Semiglobal and pra
ti
al asymptoti
 stabilityinstead of (2.10). It would notably have been required that V vanish on the whole ball Bδ,whi
h 
annot be the 
ase of the original Lyapunov fun
tion for the unperturbed UGASsystem. Although it is possible, in some situations, to derive a Lyapunov fun
tion withsu
h a property based on the original Lyapunov fun
tion, this pro
edure remains far lessdire
t than the approa
h we propose here.Based on the same example as before, we show how to apply Theorem 2.5 and illustratethe above remark.Example 2.8 Re
onsider the system from Example 2.4 and assume that a perturbation
b(t, q, q̇), bounded by a nonnegative 
onstant b̄, a�e
ts the system (2.6):

q̈ = −θ1q − θ2q̇ + b(t, q, q̇) . (2.21)De�ning x := (q, q̇)⊤ and θ := (θ1, θ2)
⊤, this 
an be written as

ẋ = A(θ)x+B(t, x) , where B(t, x) :=

(
0

b(t, q, q̇)

) (2.22)and A(θ) is de�ned in (2.7). From Example 2.4, we already know that the following fun
tion
Vθ(x) :=

θ1
2
q2 +

1

2
q̇2 + εqq̇ ,where ε is a positive 
onstant, is positive de�nite and radially unbounded provided that

ε < min{θ1; 1}. We also know that, for all x ∈ R
2,

∂Vθ
∂x

(x)A(θ)x ≤ −min

{
ε

(
θ1 −

θ2
2

)
; θ2 − ε− εθ2

2

}
|x|2 .In addition, using the assumed bound on b(t, q, q̇),

∂Vθ
∂x

(x)B(t, x) = (εq + q̇)b(t, q, q̇) ≤ (ε+ 1)b̄ |x|Thus, along the solutions of (2.21), the total time derivative of Vθ satis�es
V̇θ(t, x) ≤ −min

{
ε

(
θ1 −

θ2
2

)
− (ε+ 1)b̄

|x| ; θ2 − ε− εθ2
2

− (ε+ 1)b̄

|x|

}
|x|2 .Let δ be any given positive 
onstant, and 
hoose ε = 1/2. Then, provided that θ1 ≥ 1, wesatisfy the above requirement ε < min{1, θ1} and we get that, for all |x| ≥ δ,

V̇θ(t, x) ≤ −min

{
1

2

(
θ1 −

θ2
2

)
− 3b̄

2δ
;

3θ2
4

− 1

2
− 3b̄

2δ

}
|x|2 .So, by 
hoosing5

θ⋆1(δ) =
10

3
+

4b̄

δ
and θ⋆2(δ) =

8

3
+

2b̄

δ
, (2.23)we see that

|x| ≥ δ ⇒ V̇θ⋆(t, x) ≤ − |x|2 , (2.24)5As required, this 
hoi
e ensures notably that θ⋆
1(δ) ≥ 1.



43and (2.11) follows. Furthermore, with this 
hoi
e of parameter, we get from (2.8) and (2.9)that (2.10) holds with
αδ(s) :=

1

2
min

{
θ⋆1(δ) −

1

2
;
1

2

}
s2 , αδ(s) :=

1

2
max

{
θ⋆1(δ) +

1

2
;
3

2

}
s2 , ∀s ∈ R≥0 .This, in turn, illustrates 
learly the indire
t δ-dependen
e of the bounds on V through theparameter θ. Finally,

lim
δ→0

α−1
δ ◦ αδ(δ) = lim

δ→0

√
max

{
θ⋆1(δ) + 1

2 ; 3
2

}
δ2

min
{
θ⋆1(δ) − 1

2 ; 1
2

} = lim
δ→0

√

2

(
10

3
+

4b̄

δ
+

1

2

)
δ2 = 0 .whi
h establishes (2.12). UGPAS then follows from Theorem 2.5. �In this example, the requirement (2.12) that links the lower and upper K∞ bounds onthe Lyapunov fun
tion is ful�lled in view of three properties: these bounds are a�ne in thetuning parameters, they are polynomial fun
tions of the same degree, and the parametersare a�ne in the inverse of the radius δ of the attra
tive ball. As these three 
onditionsarise quite often in 
ontrol pra
ti
e, notably in the 
ontrol of ele
tro-me
hani
al systems,we state now a result that espe
ially �ts to this situation. Although less general, it ismore easily appli
able. See Chapter 6 for appli
ations of this 
orollary in 
ontrol of aspa
e
raft formation and for the automati
 positioning of ships for tasks su
h as underwayreplenishment.Corollary 2.9 (Simpli�ed Lyapunov 
ondition for UGPAS) Let Θ be a subset of

R
n. Assume that there exist a positive number p, real 
onstants ai, ai, bi, bi, i ∈ {1, . . . , n}and, for any θ ∈ Θ, a 
ontinuously di�erentiable Lyapunov fun
tion Vθ satisfying, for all

x ∈ R
n and all t ∈ R≥0,

n∑

i=1

(ai + biθi) |xi|p ≤ Vθ(t, x) ≤
n∑

i=1

(ai + biθi) |xi|p (2.25)where, for all i ∈ {1, . . . , n} and all θ ∈ Θ, ai+ biθi > 0 and āi+ b̄iθi > 0. Suppose furtherthat, given any δ > 0, there exist a parameter θ⋆(δ) ∈ Θ and a 
lass K∞ fun
tion αδ su
hthat, for all x su
h that δ ≤ |x| and all t ∈ R≥0,
∂Vθ⋆

∂t
(t, x) +

∂Vθ⋆

∂x
(t, x)f(t, x, θ⋆) ≤ −αδ(|x|) . (2.26)If, furthermore, for all i ∈ {1, . . . , n}, we have

lim
δ→0

ai + biθ
⋆
i (δ) > 0 , (2.27)

bi 6= 0 ⇒ lim
δ→0

θ⋆i (δ)δ
p = 0 , (2.28)then the system ẋ = f(t, x, θ) is uniformly globally pra
ti
ally asymptoti
ally stable on theparameter set Θ.A typi
al appli
ation of this 
orollary 
on
erns the 
ase of systems in 
losed loopa�e
ted by a non-vanishing perturbation. As this will be underlined through 
on
reteexamples in Chapter 6, in these situation, the tuning parameter typi
ally 
onsists in the
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ti
al asymptoti
 stability
ontrol gains. As intuitively expe
ted, these need usually to be enlarged in order to a
hievea better pre
ision. For this reason, the requirement (2.27) should be trivially satis�ed inmost 
ases.Also, for simpli
ity of the statement, we have assumed that the tuning parameter andthe state have the same dimension n. In most pra
ti
al appli
ations, the dimension m ofthe former is not greater than that of the latter, in whi
h 
ase it su�
es to 
omplete θ by
n−m additional (virtual) 
omponents. However, if needed, a similar result may easily bederived for the 
ase m ≥ n.Proof of Corollary 2.9. With the notation of Theorem 2.18, we have that, for all s ∈ R≥0,

αδ(s) = min
i∈{1,...,n}

{ai + biθ
⋆
i (δ)} sp , αδ(s) = max

i∈{1,...,n}

{
ai + biθ

⋆
i (δ)

}
sp .It follows that

lim
δ→0

α−1
δ ◦ αδ(δ) = lim

δ→0

(
maxi∈{1,...,n}

{
ai + biθ

⋆
i (δ)

}
δp

mini∈{1,...,n} {ai + biθ
⋆
i (δ)}

)1/p

.In addition, (2.27) ensures that
lim
δ→0

(
min

i∈{1,...,n}
{ai + biθ

⋆
i (δ)}

)
> 0 .In addition, from (2.28) we get that

lim
δ→0

(
max

i∈{1,...,n}
{ai + biθ

⋆
i (δ)} δp

)
= 0 .From these three observations, we 
on
lude that

lim
δ→0

α−1
δ ◦ αδ(δ) = 0 .The assumptions of Theorem 2.18 are then all ful�lled and the 
on
lusion follows. �Example 2.10 Ba
k to the system in Example 2.8, we see from (2.8) that the Lyapunovfun
tion

Vθ(x) :=
θ1
2
q2 +

1

2
q̇2 + εqq̇ ,satis�es (2.25) with n = p = 2, a1 = −ε/2, b1 = b1 = 1/2, a2 = (1 − ε)/2, b2 = b2 = 0,

a1 = ε/2 and a2 = (1 + ε)/2. Choosing ε = 1/2 and assuming that θ1 ≥ 1, we have that
ai + biθi > 0 and ai + biθi > 0 for all i ∈ {1, 2}. In addition, we re
all from (2.23) and(2.24) that, given any positive 
onstant δ, the parameters 
hoi
e

θ⋆1(δ) =
10

3
+

4b̄

δ
and θ⋆2(δ) =

8

3
+

2b̄

δ
,yields

|x| ≥ δ ⇒ V̇θ⋆(x) ≤ − |x|2 .Hen
e, the requirements (2.26), (2.27) and (2.28) hold, and UGPAS 
an be 
on
ludedusing Corollary 2.9, without needing to 
ompute expli
itly limδ→0 α
−1
δ ◦ αδ(δ) as requiredby Theorem 2.5.

�



452.1.2 Semiglobal pra
ti
al stabilityWe re
all that semiglobal pra
ti
al asymptoti
 stability pertains to the 
ase when one 
anprove that, by tuning 
ertain parameter of the 
ontrol system, the estimate of the domainof attra
tion 
an be arbitrarily enlarged and the ball to whi
h solutions 
onverge, in astable way, 
an be redu
ed at will.The following result gives a su�
ient 
ondition, in terms of a Lyapunov fun
tion,for the dynami
al parameterized system (1.3) to be uniformly semiglobally pra
ti
allyasymptoti
ally stable on a given set of parameters.Theorem 2.11 (Lyapunov su�
ient 
ondition for USPAS) Suppose that, given any
∆ > δ > 0, there exist a parameter θ⋆(δ,∆) ∈ Θ, a 
ontinuously di�erentiable Lyapunovfun
tion Vδ,∆ : R≥0 × R

n → R≥0, and 
lass K∞ fun
tions αδ,∆, αδ,∆, αδ,∆ su
h that, forall x ∈ H(δ,∆) and all t ∈ R≥0,
αδ,∆(|x|) ≤ Vδ,∆(t, x) ≤ αδ,∆(|x|) (2.29)

∂Vδ,∆
∂t

(t, x) +
∂Vδ,∆
∂x

(t, x)f(t, x, θ⋆) ≤ −αδ,∆(|x|) (2.30)Assume further that, for any ∆⋆ > δ⋆ > 0, there exist ∆ > δ > 0 su
h that
α−1
δ,∆ ◦ αδ,∆(δ) ≤ δ⋆ (2.31)

α−1
δ,∆ ◦ αδ,∆(∆) ≥ ∆⋆ . (2.32)Then, the system ẋ = f(t, x, θ) introdu
ed in (1.3) is USPAS on the parameter set Θ.Two additional requirements. It is worth mentioning that the 
ondition (2.29) oftenholds in the analysis of 
ontrol systems. In parti
ular, it holds for systems with additivebounded disturban
es when USPAS may be inferred using a Lyapunov fun
tion for UGASof the 
orresponding unperturbed system. Condition (2.30) also appears naturally in the
ontext of stability of perturbed systems. See Chapter 6 for various examples in the
ontrol of ele
tro-me
hani
al systems. The last two 
onditions, (2.31) and (2.32), needto be imposed due to the fa
t that the K∞ bounds on the Lyapunov fun
tion V are notrequired to be the same for all δ and all ∆.The reader is invited to refer to Example 2.19 for an illustration of the ne
essity toimpose additional requirements as (2.31) and (2.32). This example is presented in a USAS
ontext but may easily be adapted to the USPAS 
ase.A less 
onservative lower bound. It is also worth pointing out that the originalresult published in [CL06a℄ uses the following (less 
onservative) bounds on the Lyapunovfun
tion:

αδ,∆(|x|δ) ≤ Vδ,∆(t, x) ≤ αδ,∆(|x|)instead of (2.29). Theorem 2.11 remains indeed valid under this less 
onservative re-quirement, and 
orresponds more 
learly to the Lyapunov 
hara
terization of asymptoti
stability with respe
t to two measures, 
f. e.g. [Mov60, LL93, TP00℄. We have howeverde
ided to present the results using Eu
lidean norms on both sides for the sake of 
onsis-ten
y with global results (some of the tools used for UGPAS require bounds as (2.29)),and as this 
onstraint is usually satis�ed in pra
ti
e: see for instan
e Chapter 6.



46 2. Semiglobal and pra
ti
al asymptoti
 stabilityRemark 2.12 By noti
ing that the uniform asymptoti
 stability (UAS) of Bδ on B∆ im-plies the UAS of Bδ′ on B∆′ for any δ′ and ∆′ satisfying δ ≤ δ′ < ∆′ ≤ ∆, the 
on
lusionof Theorem 2.11 remains valid if (2.29) and (2.30) hold for all δ small enough and all ∆large enough. This relaxed assumption, whi
h 
an also be derived for Theorems 2.5 and2.18, may be useful in 
ontrol pra
ti
e.We now give the proof of Theorem 2.11.Proof of Theorem 2.11. Let ∆ be any positive 
onstant and 
hoose δ small enough that
α−1
δ,∆ ◦ αδ,∆(δ) < ∆ , (2.33)whi
h is always possible in view of (2.31). Note that this, in turn, ensures δ < ∆. Let Vδ,∆and θ⋆(δ,∆) then be generated by the assumptions. Applying Lemma 2.6 to Vδ,∆ with

X = H(δ,∆) and k = 1 ensures the existen
e of a 
ontinuously di�erentiable fun
tion Vδ,∆su
h that, for all x ∈ H(δ,∆) and all t ∈ R≥0,
α̃δ,∆(|x|δ) ≤ Vδ,∆(t, x) ≤ α̃δ,∆(|x|)

∂Vδ,∆
∂t

(t, x) +
∂Vδ,∆
∂x

(t, x)f(t, x, θ⋆) ≤ −Vδ,∆(t, x) (2.34)hold with 
lass K∞ fun
tions α̃δ,∆ and α̃δ,∆ satisfying
α̃−1
δ,∆ ◦ α̃δ,∆(s) = α−1

δ,∆ ◦ αδ,∆(s) , ∀s ∈ R≥0 .Inverting the two sides of this inequality yields:
α̃
−1
δ,∆ ◦ α̃δ,∆(s) = α−1

δ,∆ ◦ αδ,∆(s) , ∀s ∈ R≥0 .It then follows from (2.33) that
α̃−1
δ,∆ ◦ α̃δ,∆(δ) < ∆ . (2.35)In addition, in view of (2.31) and (2.32), we have that, for all ∆ > 0,

lim
δ→0

α̃−1
δ,∆ ◦ α̃δ,∆(δ) = 0 (2.36)and, for all δ > 0,

lim
∆→∞

α̃
−1
δ,∆ ◦ α̃δ,∆(∆) = ∞ . (2.37)Before 
ontinuing, we present the following result whi
h establishes uniform bounded-ness of the solutions based on the non-positivity of the derivative of a Lyapunov fun
tionon a su�
iently large domain.Proposition 2.13 (Su�
ient 
ondition for UB) Let b be a positive 
onstant. Supposethat there exists a 
ontinuously di�erentiable fun
tion V and two 
lass K∞ fun
tions α and

α su
h that, for all t ∈ R≥0 and all x ∈ R
n,

α(|x|) ≤ V (t, x) ≤ α(|x|) (2.38)
x ∈ H(a, b) ⇒ ∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) ≤ 0 , (2.39)where a denotes a positive number su
h that α(a) < α(b). Then, for all t0 ∈ R≥0, thesolutions of (1.1) satisfy

|x0| ≤ α−1 ◦ α(b) ⇒ |φ(t, t0, x0)| ≤ b , ∀t ≥ t0 .



47Proof of Proposition 2.13. We 
laim that, whenever V (t, x) = α(b), its derivative alongthe traje
tories of (1.1), whi
h we denote by V̇ , is non positive. To this end, noti
e that(2.38) implies that, if V (t, x) = α(b), then x ∈ H(α−1 ◦ α(b), b), whi
h is nonempty (sin
e
α(b) ≤ α(b)) and in
luded in H(a, b) (sin
e it is assumed that α(a) < α(b)). Hen
e,the 
laim is proved in view of (2.39). For any t0 ∈ R≥0 and any x0 ∈ R

n, by de�ning
v(t) := V (t, φ(t, t0, x0)), we therefore get that, for all t ≥ t0,

V (t, φ(t, t0, x0)) = α(b) ⇒ V̇ (t, φ(t, t0, x0)) ≤ 0 ,whi
h ensures in its turn, by the 
ontinuity of V (·, φ(·, t0, x0)), that
V (t0, x0) ≤ α(b) ⇒ V (t, φ(t, t0, x0)) ≤ α(b) , ∀t ≥ t0 .The 
on
lusion follows by noti
ing that, from (2.38),

|x0| ≤ α−1 ◦ α(b) ⇒ V (t0, x0) ≤ α(b)

V (t, φ(t, t0, x0)) ≤ α(b) ⇒ |φ(t, t0, x0)| ≤ b .

�We now 
ome ba
k to the proof of Theorem 2.11. In view of (2.34) and (2.35), therequirements of Proposition 2.13 are ful�lled with a = δ and b = ∆ and we get that
|x0| ≤ ∆̃ ⇒ |φ(t, t0, x0, θ

⋆)| ≤ ∆ , ∀t ≥ t0 ,where
∆̃ := α̃

−1
δ,∆ ◦ α̃δ,∆(∆) . (2.40)Now that we have exhibited a ball B∆̃ of initial states from whi
h solutions never es
apes

B∆, we 
an apply Lemma 2.7 (with6 X = H(δ, ∆̃), c(·) ≡ 0 and k = 1 ) to (2.34) and
on
lude that, for any x0 ∈ B∆̃ and all t0 ∈ R≥0,
|φ(t, t0, x0, θ

⋆)| ≤ α̃−1
δ,∆ ◦ α̃δ,∆(δ) + α̃−1

δ,∆

(
α̃δ,∆(|x0|)e−(t−t0)

)
, ∀t ≥ t0 .De�ning

δ̃ := α̃−1
δ,∆ ◦ α̃δ,∆(δ) (2.41)and

βδ,∆(s, t) := α̃−1
δ,∆

(
α̃δ,∆(s)e−t

)
, ∀s, t ∈ R≥0 ,we thus obtain that, for all x0 ∈ B∆̃ and all t0 ∈ R≥0,

|φ(t, t0, x0, θ
⋆)|δ̃ ≤ βδ,∆(|x0| , t− t0) , ∀t ≥ t0 .The 
on
lusion follows by observing that βδ,∆ is a KL fun
tion for all positive δ and ∆and that, in view of (2.36), (2.37), (2.40) and (2.41), ∆̃ and δ̃ 
an be, at the same time,arbitrarily enlarged and diminished respe
tively by originally 
onveniently 
hoosing ∆ and

δ. �6Note that H(δ, ∆̃) 6= ∅ in view of (2.35).



48 2. Semiglobal and pra
ti
al asymptoti
 stabilityRemark 2.14 We underline the slight di�eren
e between the requirements (2.31)�(2.32)and their homologous for UGPAS (2.12) and for USAS (2.57). This is due to the possible
on�i
t that may arise from the simultaneous enlargement of the domain of attra
tion andredu
tion of the size of the attra
tive ball7. To see this more 
learly, imagine a Lyapunovfun
tion bounded in the following manner:
δ |x| ≤ Vδ,∆(t, x) ≤ ∆ |x| ,then, for all ∆ > 0 we have that

lim
δ→0

α−1
δ,∆ ◦ αδ,∆(δ) = lim

δ→0

√
δ∆ = 0and similarly, for all δ > 0,

lim
∆→∞

α−1
δ,∆ ◦ αδ,∆(∆) = lim

∆→∞

√
δ∆ = ∞ ,whi
h make (2.12) and (2.57) ful�lled. However, if we go ba
k to the above proof of Theorem2.11, we see from (2.40) and (2.41) that both ∆̃ and δ̃ equal to √

δ∆. Hen
e we 
annot, atthe same time, enlarge ∆̃ and diminish δ̃. The more restri
tive assumptions (2.31)-(2.32)dismiss this possibility.We show how to apply this result through the following elementary example. We re
allthat non-a
ademi
 illustrations of the presented results are developed in Chapter 6.Example 2.15 We assume that a non-vanishing perturbation b(t, q, q̇) and a higher or-der nonlinearity c(t, q, q̇)q̇2, with |b(t, q, q̇)| ≤ b̄ and |c(t, q, q̇)| ≤ c̄, now a�e
t the systemoriginally presented in (2.1):
q̈ = −θ1q − θ2q̇ + b(t, q, q̇) + c(t, q, q̇)q̇2 . (2.42)De�ning x := (q, q̇)⊤ and θ := (θ1, θ2)

⊤, this system 
an be rewritten as
ẋ = A(θ)x+B(t, x) + C(t, x) , where C(t, x) :=

(
0

c(t, q, q̇)q̇2

) (2.43)and A(θ) and B(t, x) are respe
tively de�ned in (2.7) and (2.22). As proved in Examples2.4, the fun
tion
Vθ(x) :=

θ1
2
q2 +

1

2
q̇2 + εqq̇ ,where ε is a positive 
onstant, is positive de�nite and radially unbounded provided that

ε < min{θ1; 1}. In the sequel, we assume θ1 ≥ 1 and ε = 1/2. For all x ∈ R
2, we alsoknow, from Example 2.8, that

∂Vθ
∂x

(x) (A(θ)x+B(t, x)) ≤ −1

2
min

{
θ1 −

θ2
2

− 3b̄

|x| ;
3

2
θ2 − 1 − 3b̄

|x|

}
|x|2 .Furthermore, it holds that

∂Vθ
∂x

(x)C(t, x) =

(
1

2
q + q̇

)
c(t, q, q̇)q̇2 ≤ 3

2
c̄ |x|3 .7The author sin
erely thanks Prof. A. R. Teel for his valuable 
omments in this dire
tion.



49Therefore, the total time derivative of Vθ along the solutions of (2.42) satis�es
V̇θ(t, x) ≤ −1

2
min

{
θ1 −

θ2
2

− 3b̄

|x| − 3c̄ |x| ;
3

2
θ2 − 1 − 3b̄

|x| − 3c̄ |x|
}
|x|2 .Let δ and ∆ be any given positive 
onstants su
h that δ < ∆. Then, for all x ∈ H(δ,∆), itholds that

V̇θ(t, x) ≤ −1

2
min

{
θ1 −

θ2
2

− 3b̄

δ
− 3c̄∆ ;

3θ2
2

− 3b̄

δ
− 3c̄∆

}
|x|2 .A

ordingly, by 
hoosing8

θ⋆1(δ,∆) =
10

3
+

4b̄

δ
+ 4c̄∆ and θ⋆2(δ,∆) =

8

3
+

2b̄

δ
+ 2c̄∆ , (2.44)we see that

x ∈ H(δ,∆) ⇒ V̇θ⋆(t, x) ≤ − |x|2 , (2.45)and (2.30) follows. Furthermore, sin
e θ⋆1 ≥ 1, we get from (2.8), (2.9) and (2.44) that(2.10) holds with the fun
tions de�ned, for all s ∈ R≥0, by
αδ,∆(s) :=

1

2
min

{
θ⋆1(δ,∆) − 1

2
;

1

2

}
s2 =

1

4
s2

αδ,∆(s) :=
1

2
max

{
θ⋆1(δ,∆) +

1

2
;

3

2

}
s2 =

(
23

12
+

2b̄

δ
+ 2c̄∆

)
s2 .Therefore, the requirement (2.31)-(2.32) imposes that, given any ∆⋆ > δ⋆ > 0, one 
an�nd ∆ > δ > 0 su
h that

δ

√
23

3
+

8b̄

δ
+ 8c̄∆ ≤ δ⋆

∆√
23
3 + 8b̄

δ + 8c̄∆
≥ ∆⋆ .This is in parti
ular ful�lled if

δ2
(

23

3
+

8b̄

δ
+ 8c̄∆

)
= δ2⋆ (2.46)

∆2

23
3 + 8b̄

δ + 8c̄∆
= ∆2

⋆ .Multiplying these equations yields
δ∆ = δ⋆∆⋆ . (2.47)Inje
ting this into (2.46) and rearranging terms, we obtain the following se
ond-order equa-tion in ∆:

∆2 − 4

(
b̄

2δ⋆
+ c̄

)
∆2
⋆∆ − 23∆2

⋆

3
= 0 ,whi
h 
learly admits a positive solution. The 
orresponding δ 
an then be obtained by (2.47)and USPAS follows from Theorem 2.11. �8As required, this 
hoi
e ensures notably that θ⋆

1(δ, ∆) ≥ 1.



50 2. Semiglobal and pra
ti
al asymptoti
 stabilityAgain, we 
an see that the requirements (2.31) and (2.32) follow from three 
ombinedproperties: the bounds on the Lyapunov fun
tion are a�ne in the tuning parameters, theyare quadrati
 fun
tions, and the parameters are a�ne in 1/δ and in ∆. As illustrated bythe analysis of robustness of PID-
ontrolled robot manipulators to external disturban
es,model imperfe
tion and a
tuators'dynami
s (
f. Se
tion 6.1), these three 
onditions arisequite often in pra
ti
e. This justi�es the following more restri
tive but easier-to-applystatement.Corollary 2.16 (Simpli�ed Lyapunov 
ondition for USPAS) Let Θ be a subset of
R
n. Assume that there exist real 
onstants ai, ai, bi, bi, i ∈ {1, . . . , n} and, for any θ ∈ Θ, a
ontinuously di�erentiable Lyapunov fun
tion Vθ satisfying, for all x ∈ R

n and all t ∈ R≥0,
n∑

i=1

(ai + biθi) |xi|2 ≤ Vθ(t, x) ≤
n∑

i=1

(ai + biθi) |xi|2 . (2.48)Suppose further that, given any positive δ and ∆ su
h that δ < ∆, there exist a parameter
θ⋆(δ,∆) ∈ Θ, nonnegative 
onstants ci, di, ei, i ∈ {1, . . . , n} and a 
lass K∞ fun
tion αδ,∆su
h that, for all x ∈ H(δ,∆) and all t ∈ R≥0,

∂Vθ⋆

∂t
(t, x) +

∂Vθ⋆

∂x
(t, x)f(t, x, θ⋆) ≤ −αδ,∆(|x|) , (2.49)

θ⋆i (δ,∆) = ci +
di
δ

+ ei∆ , ∀i ∈ {1, . . . , n} . (2.50)Then, under the 
ondition that
ai + bici > 0 , ∀i ∈ {1, . . . , n} , (2.51)the system ẋ = f(t, x, θ) introdu
ed in (1.3) is uniformly semiglobally pra
ti
ally asymp-toti
ally stable on the parameter set Θ.As to what regards the dimension of θ, a similar remark as that made for Corollary 2.9holds. Please refer to Chapter 6 for 
on
rete appli
ations in 
ontrol of me
hani
al systems.Proof of Corollary 2.16. Consider the two following 
onstants:

c := min
i∈{1,...,n}

{ai + bici} and c := max
i∈{1,...,n}

max
{
ai + bici; bidi; biei

}
.Using the notations of Theorem 2.11, we 
an pi
k, for all s ∈ R≥0,

αδ,∆(s) = cs2 , αδ,∆(s) = c

(
1 + ∆ +

1

δ

)
s2 .In view of (2.51), c is a positive 
onstant so both αδ,∆ and αδ,∆ are 
lass K∞ fun
tions. Inaddition, the requirement (2.31)-(2.32) be
omes:

(
c(1 + ∆ + 1/δ)

c

)1/2

δ ≤ δ⋆

(
c

c(1 + ∆ + 1/δ)

)1/2

∆ ≥ ∆⋆ .



51For this, it is su�
ient that
(1 + ∆ + 1/δ)δ2

ε
= δ2⋆ (2.52)

ε

(1 + ∆ + 1/δ)∆2
= ∆2

⋆ , (2.53)where ε := c/c. Multiplying (2.52) and (2.53), we get that
δ∆ = δ⋆∆⋆ . (2.54)From this and (2.52), we obtain the following se
ond order equation in ∆:

ε∆2 − ∆2
⋆

(
1 +

1

δ⋆∆⋆

)
∆ − ∆2

⋆ = 0 ,whi
h admits a positive solution for all δ⋆,∆⋆ > 0. The 
orresponding δ is then obtainedby inje
ting this solution in (2.54). �Example 2.17 Ba
k to the system in Example 2.15, we see that the Lyapunov fun
tion
Vθ(x) :=

θ1
2
q2 +

1

2
q̇2 + εqq̇ ,satis�es (2.48) with n = p = 2, a1 = −ε/2, b1 = b1 = 1/2, a2 = (1 − ε)/2, b2 = b2 = 0,

a1 = ε/2 and a2 = (1+ε)/2. Choosing ε = 1/2 and θ1 ≥ 1, we then have that ai+ biθi > 0and ai + biθi > 0 for all i ∈ {1, 2}. In addition, we re
all from (2.44) and (2.45) that,given any positive 
onstants 0 < δ < ∆, the following impli
ation
x ∈ H(δ,∆) ⇒ V̇θ⋆(x) ≤ − |x|2
an be obtained with the following 
hoi
e of parameters:

θ⋆1(δ,∆) =
10

3
+

4b̄

δ
+ 4c̄∆ and θ⋆2(δ,∆) =

8

3
+

2b̄

δ
+ 2c̄∆ .Hen
e, the requirements (2.49) holds, and USPAS 
an be dire
tly 
on
luded using Corollary2.9.

�2.1.3 Semiglobal asymptoti
 stabilityIn the presen
e of high order nonlinearities or imperfe
tions in the model, solutions mayasymptoti
ally 
onverge, in a stable way9, to the origin itself, but on �nite sets of initial
onditions only. If the basin of attra
tion 
an be arbitrarily enlarged by a 
onvenient
hoi
e of some tuning parameters, then we refer to this property as uniform semiglobalasymptoti
 stability (USAS, see De�nition 1.17). USAS therefore 
onstitutes a strongerproperty than the USPAS dis
ussed in the previous se
tion.Similarly to UGPAS and USPAS, USAS 
an be established by studying the sign of aLyapunov fun
tion and its derivative in a restri
ted region of the state-spa
e. We give thisresult below.9By this, we mean that the origin is asymptoti
ally stable on the 
onsidered set of initial states.



52 2. Semiglobal and pra
ti
al asymptoti
 stabilityTheorem 2.18 (Lyapunov su�
ient 
ondition for USAS) Suppose that, given any
∆ > 0, there exist a parameter θ⋆(∆) ∈ Θ, a 
ontinuously di�erentiable Lyapunov fun
tion
V∆ : R≥0 ×R

n → R≥0, and 
lass K∞ fun
tions α∆, α∆, α∆ su
h that, for all x ∈ B∆ andall t ∈ R≥0,
α∆(|x|) ≤ V∆(t, x) ≤ α∆(|x|) (2.55)

∂V∆

∂t
(t, x) +

∂V∆

∂x
(t, x)f(t, x, θ⋆) ≤ −α∆(|x|) . (2.56)Assume further that

lim
∆→∞

α−1
∆ ◦ α∆(∆) = ∞ . (2.57)Then the system ẋ = f(t, x, θ) introdu
ed in (1.3) is uniformly semiglobally asymptoti
allystable on the parameter set Θ.This result shares many similarities with Theorems 2.5 and 2.11, so we invite the readerto refer to these statements for 
omments on the bounds (2.55), (2.56) and (2.57). We stresson
e again that the 
ondition (2.57) is needed due to the possible parametrization of the

K∞ bounds on the Lyapunov fun
tion by the radius ∆. With the help of the followingexample, we show that it 
annot be removed from the above statement.Example 2.19 (The importan
e of (2.57)) Consider the se
ond-order nonlinear sys-tem, originally presented by Kokotovi¢ and Marino in [KM86℄:
ẋ1 = x2

ẋ2 = −θ2x1 − θx2 +
1

3
x3

2 ,where θ denotes a positive gain. We 
laim that this system, together with the fun
tion
Vθ(x) = θ2x2

1 + x2
2 + x2tanhx1 ,satis�es all the requirements of Theorem 2.18, ex
ept (2.57), but is not USAS. Indeed, itstotal derivative yields

V̇θ(x) = −2θx2
2 +

2

3
x4

2 + x2
2se
h2x1 + tanhx1

(
−θ2x1 − θx2 +

1

3
x3

2

)
,from whi
h we easily get that

V̇θ(x) ≤ −θ
2

2
x1tanhx1 − θx2

2 −
θ

2
(θ − 1) tanh2x1 −

(
θ

2
− 1 +

|x2|
3

+
x2

2

3

)
x2

2 .Thus, given any positive ∆, it su�
es to 
hoose
θ = θ⋆(∆) :=

2

3

(
3 + ∆ + ∆2

) (2.58)to obtain that, for all x ∈ B∆,
V̇θ⋆(x) ≤ −x1tanhx1 − x2

2 ≤ −x1tanhx1 − x2tanhx2 .Using the fa
t that (a + b)tanh(a + b) ≤ 2atanh(2a) + 2btanh(2b) for all a, b ∈ R≥0, we
on
lude that (2.56) holds with
α∆(s) :=

s

2
tanh(s

2

)
, ∀s ∈ R≥0 .



53In addition, with the parameter 
hoi
e (2.58), the 
ondition (2.55) is ful�lled on the wholestate-spa
e R
2 with the following K∞ fun
tions:
α∆(s) := min

{
θ⋆(∆)2 − 1

2
;
1

2

}
s

2
tanh(s

2

)
=
s

4
tanh(s

2

)

α∆(s) := max

{
θ⋆(∆)2 +

1

2
; 1

}
s2 =

(
θ⋆(∆)2 +

1

2

)
s2 .To sum up, the 
onsidered Lyapunov fun
tion is positive de�nite and radially unbounded,and its total derivative along the solutions of the system is negative de�nite on a domain that
an be made arbitrarily large by enlarging the 
ontrol gain. However, quite surprisingly, thedomain of attra
tion of this system 
annot be arbitrarily enlarged. A
tually, it was shown in[KM86℄ that it even vanishes as the gain θ tends to in�nity. More pre
isely, it is shown inthat referen
e that the set of initial 
onditions that generate unbounded traje
tories 
ontainsthe set {

(x1, x2) ∈ R
2 : θx2

1 +
1

θ
x2

2 > 33

}
.Noti
e that the boundaries of this region 
ross the axes x1 = 0 and x2 = 0 at x2 = ±3

√
θand x1 = ±3/

√
θ respe
tively. Consequently, no matter the parameter 
hoi
e, the radiusof the largest ball 
ontained in the domain of attra
tion 
annot ex
eed 3, whi
h 
ontradi
tsthe property of USAS. In a

ordan
e with Theorem 2.18, we see that, indeed, the additionalrequirement (2.57) is violated:

lim
∆→∞

α−1
∆ ◦ α∆(∆) = lim

∆→∞

√
∆tanh(∆/2)/4

θ⋆(∆)2 + 1/2
= 0 6= ∞ .

�Proof of Theorem 2.18. Let ∆ be any given positive 
onstant and let V∆ and θ⋆(∆) begenerated by the assumptions. The proof is based on similar arguments as the above 
itedresults, espe
ially Theorem 2.11. The main di�eren
e stands in the fa
t that Lemma 2.6does not apply as it imposes to work out of a neighborhood Bδ, with δ > 0, of the origin.This prevents V∆ to be transformed into a more easily integrable fun
tion. To over
omethis apparent di�
ulty, we invoke the following result. The result was presented in [Son89a,Lemma 6.1℄ in the 
ase that α is smooth. The lo
ally Lips
hitz 
ase is a dire
t 
onsequen
eof [Kha96, Lemma 3.4℄ and of the 
omparison theorem (
f. e.g. [Kha96, Lemma 2.5℄).Lemma 2.20 Let α be a lo
ally Lips
hitz fun
tion of 
lass K. Then there exists a 
lass
KL fun
tion β su
h that any solution10 of the di�erential inequality

ẏ ≤ −α(y) (2.59)satis�es
|y(t, y0)| ≤ β(|y0|, t) , ∀t ∈ R≥0 .

�10By this we mean that y(·, y0) satis�es ẏ(t, y0) ≤ −α(y(t, y0)) for all t ∈ R≥0.



54 2. Semiglobal and pra
ti
al asymptoti
 stabilityFirst of all, we apply Proposition 2.13 with a = 0 and b = ∆ to get that
x0 ∈ B∆̃ ⇒ φ(t, t0, x0, θ

⋆) ∈ B∆ , ∀t ≥ t0 .where
∆̃ := α−1

∆ ◦ α∆(∆) . (2.60)It follows that, for any x0 ∈ B∆̃, V∆(·, φ(·, t0, x0, θ
⋆)) is a solution of the di�erential in-equality ẏ ≤ −α∆(y). From Lemma 2.20, we get that there exists a KL fun
tion β∆ su
hthat, for all x0 ∈ B∆̃ and all t0 ∈ R≥0,

V∆(t, φ(t, t0, x0, θ
⋆)) ≤ β∆(V∆(t0, x0), t− t0) , ∀t ≥ t0 .Using the bounds provided by (2.55), we 
on
lude that

|φ(t, t0, x0, θ
⋆)| ≤ β̃∆(|x0| , t− t0) , ∀t ≥ t0 ,where β̃∆(s, t) := α−1

∆ ◦ α∆ ◦ β∆(s, t) for all s, t ∈ R≥0. USAS then follows by observingthat β̃∆ is a KL fun
tion and that, in view of (2.57) and (2.60), ∆̃ 
an be made arbitrarilylarge by originally pi
king ∆ large enough. �Through the following example, we next illustrate the utilization of Theorem 2.18.Example 2.21 We now assume that the perturbation b(t, q, q̇) is identi
ally zero, but thehigher order nonlinearity c(t, q, q̇)q̇2, with |c(t, q, q̇)| ≤ c̄, still a�e
ts the system originallypresented in (2.1):
q̈ = −θ1q − θ2q̇ + c(t, q, q̇)q̇2 . (2.61)Using x as (q, q̇)⊤, this 
an be written

ẋ = A(θ)x+ C(t, x) ,where A(θ) is de�ned in (2.7) and C(t, x) is introdu
ed in (2.43). As proved in Examples2.4, the fun
tion
Vθ(x) :=

θ1
2
q2 +

1

2
q̇2 + εqq̇ ,where ε is a positive 
onstant, is positive de�nite and radially unbounded provided that

ε < min{θ1; 1}. In the sequel, we assume θ1 ≥ 1 and ε = 1/2. Following a similarreasoning as in Example 2.15 by pi
king b̄ = 0, it easily follows that, for any ∆ > 0, thetotal derivative of V satis�es
|x| ≤ ∆ ⇒ V̇θ⋆(t, x) ≤ − |x|2 , (2.62)if the tuning parameters are 
hosen as

θ⋆1(∆) =
10

3
+ 4c̄∆ and θ⋆2(∆) =

8

3
+ 2c̄∆ . (2.63)Similarly to Example 2.15, the additional requirement (2.57) 
an be established and USASthen follows from Theorem 2.18. �Again, a simpli�ed version of this result 
an be proposed in the 
ontext of polynomialbounds on the Lyapunov fun
tion.



55Corollary 2.22 (Simpli�ed Lyapunov 
ondition for USAS) Let Θ be a subset of R
n.Assume that there exist a positive number p, real 
onstants ai, ai, bi, bi, i ∈ {1, . . . , n}and, for any θ ∈ Θ, a 
ontinuously di�erentiable Lyapunov fun
tion Vθ satisfying, for all

x ∈ R
n and all t ∈ R≥0,

n∑

i=1

(ai + biθi) |xi|p ≤ Vθ(t, x) ≤
n∑

i=1

(ai + biθi) |xi|p (2.64)where, for all i ∈ {1, . . . , n} and all θ ∈ Θ, ai+ biθi > 0 and āi+ b̄iθi > 0. Suppose furtherthat, given any ∆ > 0, there exist a parameter θ⋆(∆) ∈ Θ, a 
lass K∞ fun
tion α∆ su
hthat, for all x ∈ B∆ and all t ∈ R≥0,
∂Vθ⋆

∂t
(t, x) +

∂Vθ⋆

∂x
(t, x)f(t, x, θ⋆) ≤ −αδ(|x|) . (2.65)If furthermore, for all i ∈ {1, . . . , n}, it holds that

lim
∆→∞

ai + biθ
⋆
i (∆) > 0 , (2.66)

bi 6= 0 ⇒ lim
∆→∞

∆p

θ⋆i (∆)
= ∞ , (2.67)then the system ẋ = f(t, x, θ) introdu
ed in (1.3) is uniformly semiglobally asymptoti
allystable on the parameter set Θ.The proof of this result is voluntarily omitted as it 
onsists in the same arguments asfor Corollary 2.9.Example 2.23 Ba
k to the system in Example 2.21, the Lyapunov fun
tion

Vθ(x) :=
θ1
2
q2 +

1

2
q̇2 + εqq̇ ,satis�es (2.64) with n = 2, a1 = −ε/2, b1 = b1 = 1/2, a2 = (1 − ε)/2, b2 = b2 = 0,

a1 = ε/2 and a2 = (1 + ε)/2. Choosing ε = 1/2 and assuming that θ1 ≥ 1, we have that
ai+biθi > 0 and ai+biθi > 0 for all i ∈ {1, 2}. Moreover, we re
all from (2.62) and (2.63)that, given any positive 
onstant ∆, the parameters 
hoi
e

θ⋆1(∆) =
10

3
+ 4c̄∆ and θ⋆2(∆) =

8

3
+ 2c̄∆ ,yields

x ∈ B∆ ⇒ V̇θ⋆(x) ≤ − |x|2 .Hen
e, the requirements (2.65)�(2.67) hold, and USAS follows from Corollary 2.22. �2.2 Converse resultsThe 
ru
ial role played by Lyapunov fun
tions in the study of the stability of dynami
alsystems su�ers no obje
tion. In the previous se
tion, we have shown that this mathemati
alobje
t notably 
onstitutes a powerful tool for the parti
ular framework of semiglobal andpra
ti
al stability. In informal terms, we have shown that, a

ording to the 
ase, it is



56 2. Semiglobal and pra
ti
al asymptoti
 stabilitysu�
ient that the total derivative of su
h a fun
tion be negative out of a small neighborhoodof the origin, or inside a large domain of the state-spa
e, to ensure pra
ti
al stability orsemiglobal stability respe
tively, provided an additional requirement on its lower and upperbounds (
f. Theorems 2.5, 2.11 and 2.18).A long story. While this type of su�
ient Lyapunov 
onditions for stability initiallymainly motivated the 
ontrol 
ommunity, the 
onverse question, i.e. whether stabilityimplies the existen
e of a Lyapunov fun
tion, was already posed in 1892 by Lyapunovhimself in his fundamental work [Lya92℄ and the �rst ne
essary and su�
ient 
onditionsfor uniform stability were already proposed in [Per37℄.Among the most signi�
ative 
ontributors to the �eld, one 
an 
ite Massera who pro-posed in [Mas49℄ a Lyapunov fun
tion for 
ontinuously di�erentiable time-invariant sys-tems with an asymptoti
ally stable origin, based on a lemma that now bears his name (
f.e.g. [Kha96, Lemma A.1℄). Malkin proposed in [Mal54℄ an extension to this result fortime-varying systems, provided that the stability property and the di�erentiability of theright-hand side term both are uniform in time. The �rst theorem of this type for uniformglobal asymptoti
 stability of the origin was proposed by Barbashin and Krasovsk��i, 
f.[BK54℄11. Kurzweil then managed to relax the regularity assumption made on the right-hand side term to simply 
ontinuity, and gave the �rst results in the 
ase when stabilityis not de�ned through the Eu
lidean norm but through a more general measure, openingthe door to set-stability and partial stability, 
f. [Wil69℄. These results have been adaptedto stability with respe
t to two measures by Lakshmikantham and Salvadori in [LS76℄,in
luding, as a parti
ular 
ase, the set-stability introdu
ed in De�nitions 1.9, 1.10 and1.11.Sin
e then, many extensions of these results have been made to di�erential in
lusions(
f. [TP00℄ and referen
es therein) and to the formalism of input to state stability: [SW96,ASW00a, SW01, KSW01℄, but this es
apes the s
ope of the present se
tion (please referto Chapter 5 for an appli
ation of the Lyapunov 
hara
terization of integral input to statestability). See also [TP00℄ for a more extensive review on 
onverse theorems.A 
onverse result for USPAS ? In what follows, we derive a ne
essary Lyapunov 
on-dition based on the assumption that the system under 
onsideration is USPAS or USAS.This study is not only of mathemati
al interest. Indeed, as already said, the latter sta-bility properties 
an be established through various means, and not all of them providean asso
iated Lyapunov fun
tion. This is notably the 
ase with averaging te
hniques: in[TPA99℄, Teel et al. show that, if its averaged is globally asymptoti
ally stable, then theoriginal system is USPAS. These notions will be more detailed in the sequel, and be at thebasis of an illustrative example (see Se
tion 3.1.2).We also present in the sequel (
f. Chapter 3) tools that establish USPAS of systemsin 
as
ade, based notably on the USPAS of ea
h subsystem when dis
onne
ted and on theknowledge of a Lyapunov fun
tion for the driven subsystem. Providing the existen
e of aLyapunov fun
tion for a 
ertain 
lass of dynami
al system, based on the single fa
t that thesystem is USPAS, 
an therefore be of great help. Su
h a result should therefore providea positive fun
tion, with negative derivative, in a restri
ted region of the state-spa
e.The generated Lyapunov fun
tion and its K∞ should also �t the additional requirements(2.31)�(2.32) or (2.57) a

ording to the 
ase.11In this referen
e, the mistaken English translation �in the large� a
tually refers to �in the whole�, i.e.global. Please see [LLLP06℄ for 
lari�
ations about these notions.



57As it is further explained in the next 
hapter, the gradient of the Lyapunov fun
tionasso
iated to the stability property of the driven subsystem plays an important role in the
ontext of stability analysis of 
as
ades. Additionally to the 
lassi
al features, the 
onversetool we present below therefore needs to provide a time-invariant bound on the gradientof the Lyapunov-like fun
tion it generates.These two latter features 
onstitute the main di�eren
e with other similar results avail-able in the literature, spe
i�
ally [TP00, LSW96℄. We emphasize that, even though the
onstru
tion from [TP00℄ also allows to 
onstru
t bounds on the gradient of the Lyapunovfun
tion, this seemingly requires to impose the unne
essary restri
tive assumption that thefun
tion f in (1.3) be lo
ally Lips
hitz in time.2.2.1 Semiglobal pra
ti
al stabilityIn what follows, we present a 
onverse theorem for uniform semiglobal pra
ti
al asymptoti
stability whi
h is tailored for 
as
aded systems. We start by 
onstru
ting a Lyapunovfun
tion for systems for whi
h a given ball is uniformly asymptoti
ally stable. Comparedto the su�
ien
y result proposed in the previous se
tions, it requires additional smoothnessof the right-hand side term. More pre
isely, we assume the following.Assumption 2.24 (Regularity) There exists a nonnegative 
onstant f0 and a 
ontinu-ous nonde
reasing fun
tion L su
h that
|f(t, 0)| ≤ f0 , ∀t ∈ R≥0 , (2.68)

∣∣∣∣
∂f

∂x
(t, x)

∣∣∣∣ ≤ L(|x|) , ∀t ∈ R≥0 , ∀x ∈ R
n . (2.69)It is worth mentioning that the origin is not required to be an equilibrium for thesystem under 
onsideration. This indeed fails in many situations when studying pra
ti
alstability. See Example 2.8 for instan
e. In this respe
t, see [BCI05℄ for an analysis ofthe lo
al (more pre
isely, in the asymptoti
ally stable ball Bδ) behavior of the traje
toriesgenerated by a parti
ular 
lass of pra
ti
ally stable systems.Lemma 2.25 (Converse Lyapunov fun
tion for UAS of a ball) Let δ ≥ 0 and ∆ >

0 be some given 
onstants su
h that ∆ > δ. If Bδ is uniformly asymptoti
ally stable on B∆for the dynami
al system ẋ = f(t, x) introdu
ed in (1.1) then, under Assumption 2.24, forany δ′ ∈ (δ; ∆), there exist: a 
ontinuously di�erentiable fun
tion V : R≥0 × R
n → R≥0,
lass K∞ fun
tions α, α, α, and a 
ontinuous nonde
reasing fun
tion c : R≥0 → R≥0 su
hthat, for all x ∈ B∆ and all t ∈ R≥0, the following holds:

α(|x|δ) ≤ V (t, x) ≤ α(|x|) (2.70)
|x| ≥ δ′ ⇒ ∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) ≤ −α(V (t, x)) (2.71)

∣∣∣∣
∂V

∂x
(t, x)

∣∣∣∣ ≤ c(|x|) . (2.72)In addition, if δ = 0, then δ′ 
an be pi
ked as 0 too. Furthermore, if (1.1) is time invariant(i.e. ẋ = f(x)), then V 
an be pi
ked time-invariant as well. �



58 2. Semiglobal and pra
ti
al asymptoti
 stabilityRemark 2.26 It is worth pointing out that, for any �xed δ, the bounds (2.70) imply thebounds (2.29) required in Theorem 2.11. Indeed, we have that, for all x ∈ H(δ′,∆) and all
t ∈ R≥0,

α̂(|x|) ≤ V (t, x) ≤ α(|x|)where α̂ is de�ned as
α̂(s) :=

{
α(s− δ) if s ≥ δ′

α0(s) if s ∈ [0; δ′) ,

α0 designating any 
lass K fun
tion satisfying α0(δ
′) = α(δ′ − δ).Proof of Lemma 2.25. Let the assumption of UAS of Bδ on B∆ generate β ∈ KL su
hthat, for any x ∈ B∆ and any t ∈ R≥0, the traje
tories of (1.1) satisfy

|φ(τ, t, x)|δ ≤ β(|x| , τ − t) , ∀τ ≥ t . (2.73)Note that, without loss of generality, β 
an be 
onsidered as a �
lass K∞L� fun
tion,meaning that it is of 
lass K∞ in its �rst argument12. By Massera's lemma (see [Mas49℄or e.g. [Kha01, Lemma C.1℄), there exists a 
lass K∞ fun
tion η, with η′ ∈ K, su
h that
∫ ∞

0
η ◦ β(∆, τ)dτ <∞ (2.74)

∫ ∞

0
η′(β(∆, τ))eL(β(∆,0)+∆)τdτ <∞ . (2.75)Inspired by Massera-Malkin's 
onstru
tions, we show that Lemma 2.25 
an be establishedwith the fun
tion satisfying, for all x ∈ B∆ and all t ∈ R≥0,

V (t, x) :=

∫ ∞

t
η(|φ(τ, t, x)|δ)dτ . (2.76)In the 
ase of a time-invariant system ẋ = f(x), we have that φ(τ, t, x) = φ(τ, 0, x), whi
halready shows that V 
an be pi
ked as a time-invariant fun
tion.Proof of bound (2.70): In view of (2.73), V 
an be bounded in the following way:

V (t, x) ≤
∫ ∞

t
η ◦ β(|x| , τ − t)dτ =

∫ ∞

0
η ◦ β(|x| , τ)dτ =: α̃(|x|) . (2.77)From (2.74), we see that α̃(|x|) is �nite for all x ∈ B∆. In addition, it 
learly vanishesat zero. Furthermore, we 
laim that it is 
ontinuous at zero. To see this, 
onsider anysequen
e {xi}i∈N of B∆ that 
onverges to 0 as i tends to in�nity. Then, for all τ ∈

R≥0, limi→∞ η ◦ β(|xi| , τ) = 0 sin
e η ∈ K∞ and β ∈ KL. In addition, for all i ∈ N,
η◦β(|xi| , τ) ≤ η◦β(∆, τ) whi
h, in view of (2.74), is integrable. It follows from Lebesgue'sdominated 
onvergen
e theorem (
f. e.g. [KF70, p. 303℄) that limi→∞ α̃(|xi|) = 0, whi
hestablishes the 
laim. In turn, sin
e α̃ is 
ontinuous at zero and �nite everywhere else, it
an be upper bounded by a 
lass K∞ fun
tion α.Moreover, sin
e V is nonnegative, the bound V (t, x) ≥ α(|x|δ) is trivially satis�ed forall x ∈ Bδ and any 
lass K∞ fun
tion α. So, from now on, we 
onsider that |x| > δ.12If β is of 
lass K \ K∞ in its �rst argument, we repla
e it by, for instan
e, β̃(s, t) := β(s, t) for s ≤ ∆and β(s, t) := β(∆, t)s/∆ for s > ∆.



59In this situation, we have that |x|δ = |x| − δ. Using (2.73) and the 
ontinuity of thesolution φ(·, t, x), there exists a positive time t1 su
h that |φ(t+ t1, t, x)|δ = |x|δ /2 and
|φ(τ, t, x)|δ ≥ |x|δ /2 for all τ ∈ [t; t+ t1]. We show that this time t1 
annot be too small.To that end, noti
e that the mean value theorem ensures the existen
e of a time t2 ∈]0; t1[su
h that
|φ(t+ t1, t, x)|δ − |φ(t, t, x)|δ

t1
=

[
∂

∂τ

(
|φ(τ, t, x)|δ

)]

τ=t+t2

≥ −
∣∣∣∣
∂

∂τ

(
|φ(τ, t, x)|δ

)∣∣∣∣
τ=t+t2

.It follows that
t1

(
sup

τ∈]t;t+t1[

∣∣∣∣
∂

∂τ

(
|φ(τ, t, x)|δ

)∣∣∣∣

)
≥ |φ(t, t, x)|δ − |φ(t+ t1, t, x)|δ =

|x|δ
2
. (2.78)Sin
e |φ(τ, t, x)| > δ for all τ ∈]t; t+ t1[, we have that

∂

∂τ

(
|φ(τ, t, x)|δ

)
=

∂

∂τ

(
|φ(τ, t, x)| − δ

)
=
f(τ, φ(τ, t, x))⊤φ(τ, t, x)

|φ(τ, t, x)| . (2.79)In addition, from Assumption 2.24 and using again the mean value theorem,
|f(t, x)| ≤ f0 + L(|x|) |x| , ∀x ∈ R

n, ∀t ∈ R≥0 .From this and (2.73) it follows that
|f(τ, φ(τ, t, x))| ≤ f0 + L(β(|x| , τ − t) + δ)

(
β(|x| , τ − t) + δ

)
.Thus, inje
ting this bound into (2.79), it holds that, for all x ∈ B∆\Bδ and all τ ∈]t; t+t1[,

∣∣∣∣
∂

∂τ

(
|φ(τ, t, x)|δ

)∣∣∣∣ ≤ f0 + L(β(∆, 0) + δ)
(
β(∆, 0) + δ

)

≤ f0 + L(β(∆, 0) + ∆)
(
β(∆, 0) + ∆

)
=: fM (∆) (2.80)sin
e ∆ is assumed greater than δ. In addition, this together with inequality (2.78) implies

t1 ≥ |x|δ
2fM (∆)

.From this, we 
an exhibit a 
lass K∞ lower bound on V as follows:
V (t, x) =

∫ ∞

t
η(|φ(τ, t, x)|δ)dτ ≥

∫ t+t1

t
η(|φ(τ, t, x)|δ)dτ .Sin
e, by 
onstru
tion, |φ(τ, t, x)|δ ≥ |x|δ /2 over the interval [t ; t+ t1], it follows that

V (t, x) ≥ η

( |x|δ
2

)
t1 ≥ η

( |x|δ
2

) |x|δ
2fM (∆)

=: α(|x|δ) . (2.81)Note that α is, as required, a 
lass K∞ fun
tion.Proof of bound (2.71): The total time derivative of V is given by
V̇ (t, x) =

∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) = −η(|φ(t, t, x)|δ) +

∫ ∞

t

∂

∂t
(η(|φ(τ, t, x)|δ))dτ

+

∫ ∞

t

∂

∂x
(η(|φ(τ, t, x)|δ))dτf(t, x) . (2.82)



60 2. Semiglobal and pra
ti
al asymptoti
 stabilityLet us introdu
e the following notations:
φt(τ, t, x) :=

∂

∂t
(φ(τ, t, x)) , φx(τ, t, x) :=

∂

∂x
(φ(τ, t, x)) .Pro
eeding as in the proof of bound (2.70) we obtain that, for all τ ≥ t ≥ 0 and x ∈ H(δ,∆),su
h that |φ(τ, t, x)| ≥ δ,

∂

∂t
(η(|φ(τ, t, x)|δ)) = φ(τ, t, x)⊤φt(τ, t, x)η

′(|φ(τ, t, x)|δ) , (2.83)
∂

∂x
(η(|φ(τ, t, x)|δ)) = φ(τ, t, x)⊤φx(τ, t, x)η

′(|φ(τ, t, x)|δ) . (2.84)De�ne Γ(t, x) := {τ ≥ t : |φ(τ, t, x)| ≥ δ}. Sin
e f(t, x) is assumed to be lo
ally Lips
hitzin x uniformly in t, the solution φ(τ, t, x) is 
ontinuous with respe
t to ea
h of its threearguments (see e.g. [Kha01, Theorem 3.5℄). In parti
ular, given τ ≥ 0 and x ∈ R
n, ifwe have that |φ(τ, t⋆, x)| < δ for some t⋆ ≥ 0, then there exists an interval [t⋆; t⋆ + tε],with tε > 0, on whi
h |φ(τ, t⋆, x)| < δ. Hen
e, we have that η(|φ(τ, t, x)|δ) = 0 for all

t ∈ [t⋆; t⋆ + tε] and, 
onsequently,
∂

∂t
(η(|φ(τ, t, x)|δ)) = 0 , ∀τ ∈ R≥t \ Γ ,whi
h in its turn implies that

∫ ∞

t

∂

∂t
(η(|φ(τ, t, x)|δ))dτ =

∫

Γ

∂

∂t
(η(|φ(τ, t, x)|δ))dτ . (2.85)From (2.83) and (2.85), we get that

∫ ∞

t

∂

∂t
(η(|φ(τ, t, x)|δ))dτ =

∫

Γ
φ(τ, t, x)⊤φt(τ, t, x)η

′(|φ(τ, t, x)|δ)dτ ,and, similarly,
∫ ∞

t

∂

∂x
(η(|φ(τ, t, x)|δ))dτ =

∫

Γ
φ(τ, t, x)⊤φx(τ, t, x)η

′(|φ(τ, t, x)|δ)dτ . (2.86)Thus, in view of (2.82), we obtain that
V̇ = −η(|x|δ) +

∫

Γ
φ(τ, t, x)⊤

(
φt(τ, t, x) + φx(τ, t, x)f(t, x)

)
η′(|φ(τ, t, x)|δ)dτ .Pro
eeding as in [Kha01, Exer
ise 3.30, p.110℄, we see that φt(·, t, x)+φx(·, t, x)f(t, x) ≡ 0,so

∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) = −η(|x|δ) .Now, 
onsider any δ′ > δ. Then, for all |x| ≥ δ′, it holds that |x|δ = |x| − δ. Therefore

|x|δ =
δ′ − δ

δ′
|x| + δ

δ′
|x| − δ ≥ δ′ − δ

δ′
|x| ≥ ε |x| ,where ε := δ′/δ−1

δ′/δ is a 
onstant depending only on the ratio δ′/δ. Thus, using the previouslyestablished upper bound on V , we obtain that, for all x ∈ B∆\Bδ,
∂V

∂t
(t, x) +

∂V

∂t
(t, x)f(t, x) ≤ −α(V (t, x)) ,



61where α is the 
lass K∞ fun
tion de�ned as
α(s) := η(εα−1(s)) . (2.87)Proof of bound (2.72): A

ording to (2.86), we have that

∫ ∞

t

∂

∂x
(η(|φ(τ, t, x)|δ))dτ =

∫

Γ
φ(τ, t, x)⊤φx(τ, t, x)η

′(|φ(τ, t, x)|δ)dτ . (2.88)Noti
e that φx is a solution of
∂φx
∂τ

(τ, t, x) =
∂f

∂x

(
τ, φ(τ, t, x)

)
φx(τ, t, x) , φx(t, t, x) = I .Integrating from t to τ ≥ t on both sides of the �rst equality above and using (2.73), weobtain that

φx(τ, t, x) − I ≤ L(β(|x| , 0) + δ)

∫ τ

t
φx(s, t, x)ds .Hen
e, applying Gronwall-Bellman's inequality,

|φx(τ, t, x)| ≤ eL(β(|x|,0)+δ)(τ−t) ≤ eL(β(|x|,0)+δ) .From this and (2.88), we see that
∣∣∣∣
∂V

∂x
(t, x)

∣∣∣∣ ≤
∫

Γ
|φ(τ, t, x)| eL(β(|x|,0)+δ)(τ−t)η′(|φ(τ, t, x)|δ)dτ

≤
∫

Γ
(β(|x| , τ − t) + δ) eL(β(|x|,0)+δ)(τ−t)η′ (β(|x| , τ − t)) dτ

≤
∫ ∞

t
(β(|x| , τ − t) + δ) eL(β(∆,0)+δ)(τ−t)η′ ◦ β(∆, τ − t)dτ

≤
∫ ∞

0
(β(|x| , τ) + ∆) eL(β(∆,0)+∆)τη′ ◦ β(∆, τ)dτ .In view of (2.75), this integral is �nite for any x ∈ B∆. Hen
e, it 
an be upper boundedby a 
ontinuous in
reasing fun
tion c(|x|), whi
h 
ompletes the proof. �Based on Lemma 2.25 and Remark 2.26, we are now ready to introdu
e a ne
essary
ondition for uniform semiglobal pra
ti
al asymptoti
 stability in terms of a Lyapunov-likefun
tion.Theorem 2.27 (Converse Lyapunov fun
tion for USPAS) Assume that the system

ẋ = f(t, x, θ) introdu
ed in (1.3) is USPAS on Θ ⊂ R
m and that, for any θ ∈ Θ, thereexist a nonnegative 
onstant fθ and a 
ontinuous nonde
reasing fun
tion Lθ su
h that, forall x ∈ R

n, Inequalities (2.68) and (2.69) hold for fθ(t, x) := f(t, x, θ). Then, for any
∆ > δ > 0, there exists a parameter θ⋆(δ,∆) ∈ Θ, a 
ontinuously di�erentiable fun
tion
Vδ,∆ : R≥0 × R

n → R≥0, 
lass K∞ fun
tions αδ,∆, αδ,∆, αδ,∆ and a 
ontinuous positivenonde
reasing fun
tion cδ,∆ su
h that, for all x ∈ H(δ,∆) and all t ∈ R≥0,
αδ,∆(|x|) ≤ Vδ,∆(t, x) ≤ αδ,∆(|x|) (2.89)

∂Vδ,∆
∂t

(t, x) +
∂Vδ,∆
∂x

(t, x)f(t, x, θ⋆) ≤ −αδ,∆(Vδ,∆(t, x)) (2.90)
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ti
al asymptoti
 stability
∣∣∣∣
∂Vδ,∆
∂x

(t, x)

∣∣∣∣ ≤ cδ,∆(|x|) . (2.91)In addition, if (1.3) is time-invariant (i.e. ẋ = f(x, θ)), then Vδ,∆ 
an be pi
ked as atime-invariant fun
tion too.Proof of Theorem 2.27. By assumption, for any ∆ > δ > 0, there exists a parameter
θ⋆(δ,∆) ∈ Θ su
h that Bδ is UAS on B∆ for the system ẋ = f⋆(t, x) := f(t, x, θ⋆). The
on
lusion follows from Lemma 2.25 and Remark 2.26. �Note that, Theorem 2.27 
annot be rigorously 
onsidered as a 
onverse of Theorem 2.11sin
e the requirements (2.31) and (2.32) are missing: the above result does not provideany information on the dependen
e of the upper and lower K∞ bounds on the generatedLyapunov fun
tion Vδ,∆ in the radii δ and ∆.A 
areful inspe
tion of the above 
onstru
tion of αδ,∆ and αδ,∆ 
onvin
es that, evenby assuming uniformity of the KL estimate in the radius ∆, we 
annot ensure (2.32) ingeneral.Nevertheless, we may expe
t these bounds on Vδ,∆ to be independent of the radius δprovided a similar assumption on the KL estimate of the solutions. We refer to the latterproperty as δ-USPAS. As we will see in Chapter 3, this 
lass of USPAS systems deservesa parti
ular interest when dealing with 
as
aded systems.De�nition 2.28 (δ-USPAS) The system (1.3) is said to be δ-USPAS if, given any ∆ >
0, there exists a KL fun
tion β∆ su
h that, for any 0 < δ < ∆, there exists a parameter
θ⋆(δ,∆) ∈ Θ su
h that the solutions of (1.3) satisfy, for all t0 ∈ R≥0 and all x0 ∈ B∆,

|φ(t, t0, x0)|δ ≤ β∆(|x0| , t− t0) , ∀t ≥ t0 .A qui
k 
omparison between De�nitions 1.19 and 2.28 shows that δ-USPAS is a strongernotion than USPAS. We stress that many de�nitions of pra
ti
al stability existing in theliterature do impose that the KL estimate be uniform in δ. This is for instan
e the 
aseof [NL04, ST03℄ but, overall, of the semiglobal pra
ti
al stability property guaranteedby the main result in [TPA99℄, whi
h studies the USPAS of systems based on averagingte
hniques. As this fa
t 
onstitutes the main motivation for the 
onverse result below,we state it as an independent proposition. Its proof follows from Proposition 1.16 and a
areful reading of the argument of the main result in [TPA99℄.Proposition 2.29 (Averaging indu
es δ-USPAS) If the origin of the averaged system(in the sense of [TPA99, De�nition 2℄) of the system ẋ = f(t, x) introdu
ed in (1.1) isglobally asymptoti
ally stable, then ẋ = f(t/θ, x) is δ-USPAS on the parameter set R>0.Under the stronger assumption of δ-USPAS, we show that the bounds on the generatedLyapunov fun
tion, on its derivative and on its gradient may be 
hosen disregarding thesize of the ball to whi
h solutions are required to 
onverge. This fa
t will be used in thenext 
hapter for the study of 
as
aded δ-USPAS systems.Corollary 2.30 (Converse Lyapunov fun
tion for δ-USPAS) Assume that the sys-tem ẋ = f(t, x, θ) introdu
ed in (1.3) is δ-USPAS on Θ ⊂ R
m and that there exist anonnegative 
onstant f0 and a 
ontinuous nonde
reasing fun
tion L su
h that (2.68) and(2.69) hold for all θ ∈ Θ, all x ∈ R

n and all t ∈ R≥0. Then, for any ∆ > 0, there exist
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lass K∞ fun
tions α∆, α∆, α∆ and a 
ontinuous positive nonde
reasing fun
tion c∆ and,for any δ ∈ (0; ∆), there exist a parameter θ⋆(δ,∆) ∈ Θ and a 
ontinuously di�erentiablefun
tion Vδ,∆ : R≥0 × R
n → R≥0 su
h that, for all x ∈ H(δ,∆) and all t ∈ R≥0,

α∆(|x|) ≤ Vδ,∆(t, x) ≤ α∆(|x|) (2.92)
∂Vδ,∆
∂t

(t, x) +
∂Vδ,∆
∂x

(t, x)f(t, x, θ⋆) ≤ −α∆(Vδ,∆(t, x)) . (2.93)
∣∣∣∣
∂Vδ,∆
∂x

(t, x)

∣∣∣∣ ≤ c∆(|x|) . (2.94)In addition, if (1.3) is time-invariant (i.e. ẋ = f(x, θ)), then Vδ,∆ 
an be pi
ked as atime-invariant fun
tion too.With this 
onstru
tion, we see that the requirement (2.31) of Theorem 2.11, linking the
δ-dependen
e of the K∞ bounds on the Lyapunov fun
tion, is trivially satis�ed. Indeed,due to the independen
e of α∆ and α∆ in δ, and their belonging to 
lass K∞, it su�
es, forany δ⋆ > 0, to pi
k δ small enough in order to ensure α−1

∆ ◦α∆(δ) ≤ δ⋆. See Theorem 3.12in the next 
hapter for an appli
ation of this result to the stability analysis of 
as
adedsystems.Proof of Corollary 2.30. In the proof of Lemma 2.25, we see that, if the KL estimate β isindependent of δ, then so is η (see (2.74) and (2.75)). In the same way, the independen
eof f0 and L in θ makes fM independent of δ (
f. (2.80)). Hen
e, in view of (2.77) and(2.81), it is also the 
ase for the fun
tions α and α. Moreover, by pi
king δ′ = 2δ (and, ina

ordan
e, ∆ > 2δ), we get that ε = 1/2 (see �Proof of bound (2.71)�), whi
h shows with(2.87) that α 
an be 
hosen independently of δ as well. Noti
e �nally that this is also the
ase for the fun
tion c (
f. �Proof of bound (2.72)�). �A 
onverse Lyapunov fun
tion for parameterized nonlinear time-varying systems hasalready been proposed in [Hop66℄, based on an assumption of asymptoti
 stability of theorigin uniformly in both the initial 
onditions and the parameters. We stress that theresults presented below do not �t into this framework. Theorems 2.27 and 2.31 indeeddeal with the original de�nitions of USPAS and USAS (
f. De�nitions 1.17 and 1.19),whi
h, as already seen, do not require uniformity in the tuning parameter θ. Con
erningCorollary 2.30, even though it requires more uniformity (the KL estimate of the solutionsneeds to be the same disregarding the ball to whi
h solutions 
onverge), this requirementremains less 
onservative. In addition, 
ontrarily to Theorem 2.27 and Corollary 2.30,the main result in [Hop66℄ only addresses stability of a single point. Finally, the latterreferen
e does not provide any bound on the gradient of the generated Lyapunov fun
tion.It should also be pointed out that a 
onverse result for �pra
ti
al� stability was proposedby Kaplan in [Kap73℄. However, this result fundamentally di�ers from the results presentedhere as this notion of �pra
ti
ality� was only 
on
erned with a �xed 
ompa
t neighborhoodof the origin. No possibility of redu
ing this ball at will, through the tuning of someparameter, was assumed for this stability property.2.2.2 Semiglobal asymptoti
 stabilityFor the sake of 
ompleteness, and as it dire
tly follows from the results presented in theprevious se
tion, we state here a 
onverse result for uniform semiglobal asymptoti
 stability.



64 2. Semiglobal and pra
ti
al asymptoti
 stabilityTheorem 2.31 (Converse Lyapunov fun
tion for USAS) Assume that the system
ẋ = f(t, x, θ) introdu
ed in (1.3) is USAS on Θ and that, for any θ ∈ Θ, there exista nonnegative 
onstant fθ and a 
ontinuous nonde
reasing fun
tion Lθ su
h that, for all
x ∈ R

n, Inequalities (2.68) and (2.69) hold for f⋆(t, x) := f(t, x, θ⋆). Then, for any ∆ > 0,there exists a parameter θ⋆(∆) ∈ Θ, a 
ontinuously di�erentiable fun
tion V∆ : R≥0×R
n →

R≥0, 
lass K∞ fun
tions α∆, α∆, α∆ and a 
ontinuous positive nonde
reasing fun
tion c∆su
h that, for all x ∈ B∆ and all t ∈ R≥0,
α∆(|x|) ≤ V∆(t, x) ≤ α∆(|x|)

∂V∆

∂t
(t, x) +

∂V∆

∂x
(t, x)f(t, x, θ⋆) ≤ −α∆(V∆(t, x))

∣∣∣∣
∂V∆

∂x
(t, x)

∣∣∣∣ ≤ c∆(|x|) .In addition, if (1.3) is time-invariant (i.e. ẋ = f(x, θ)), then V∆ is also a time-invariantfun
tion.No su
h 
onverse result is provided for uniform global pra
ti
al stability in this do
-ument. There are two main reasons for this. The �rst one is a theoreti
al obsta
le: theabove proof te
hniques extensively make use of the fa
t that the state is 
onstrained into a
ompa
t region of the state spa
e, whi
h is not the 
ase when 
onsidering global properties.The se
ond reason stands in the fa
t that, in most 
ases, the easiest way to guarantee UG-PAS is to apply Theorem 2.5, whi
h is based on Lyapunov arguments. This observationmakes the utility of su
h an extension questionable.Con
lusion. This 
hapter proposes tools related to semiglobal and/or pra
ti
al sta-bility properties. Due to the wide generality of the used 
on
epts, and mostly the possiblenon-uniformity of the estimate of solutions in the tuning parameter, a spe
i�
 attentionneeds to be paid in the Lyapunov analysis. Compared to existing results, the su�
ient
onditions for USPAS, USAS and UGPAS presented here impose indeed an additionalassumption that links the bounds on the Lyapunov fun
tion. Furthermore, the ne
essityof imposing su
h an additional 
ondition is shown through a 
ounter-example. Converseresults, for USPAS and USAS, are also presented. The use of most of these results isillustrated by means of a
ademi
 examples.
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Chapter 3Stability of nonlinear time-varying
as
aded systemsDivide to reign. The stability analysis by Lyapunov's se
ond method requires the 
on-stru
tion of a stri
t Lyapunov fun
tion, as for instan
e Theorems 2.3, 2.5, 2.11 and 2.18.This dire
t approa
h may be parti
ularly hard for 
omplex or large-s
ale nonlinear time-varying systems. A natural way of simplifying this problem 
onsists in dividing the systeminto simpler inter
onne
ted subsystems, and to analyze ea
h subsystem separately.Many tools in the literature provide stability properties of inter
onne
ted subsystemsbased on some information of ea
h 
omponent taken individually. Probably the mostfundamental result for inter
onne
ted system is the small gain theorem for input-outputstability, originally introdu
ed by Zames [Zam60, Zam66a, Zam66b℄ and Sandberg [San63℄,whi
h studies the general inter
onne
tion of two input-to-output stable systems:

Σ1

Σ2

y1
y2

u1

u2Figure 3.1: General inter
onne
tion of two dynami
al systems.A more modern perspe
tive of input-output stability, notably involving the system'sstate (thus leaving behind Zames-Sandberg's �bla
k-box� approa
h) has been taken in[JTP94, CTP95, JMW96, Tee96, LWC05℄. While providing a strong tool for the stabilityanalysis of inter
onne
ted nonlinear systems, it is also at the basis of many 
ontrol designs,
f. e.g. [PW96, JM97℄.A parti
ular inter
onne
tion: the 
as
ade. In many appli
ations, the system maybe represented as a unidire
tional inter
onne
tion of dynami
al subsystems, as represented
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as
aded systemsby Figure 3.2.
Σ2

y2 y1

Σ1

u2 Figure 3.2: Cas
ade inter
onne
tion of two dynami
al systems.The wide o

urren
e of su
h a stru
ture in 
ontrol pra
ti
e stems from many fa
ts.It was shown in [Vid80℄, based on graph-theoreti
 de
omposition te
hniques, that anyinter
onne
ted system 
an be rewritten as a 
as
ade, modulo some renumbering and, over-all, aggregation of the state variables. While this result may be surprising at �rst sight, itresults from elementary manipulations and illustrates the generality of the 
as
ade 
on
eptin systems theory. Of 
ourse, su
h de
omposition is all the more e�
ient as the originalsystem is less inter
onne
ted.In addition, the 
as
ade stru
ture sometimes arises naturally, due to the physi
al stru
-ture of the system. For instan
e, in Chapter 6, we study the PID 
ontrol of robot ma-nipulators. The approa
h 
onsists in studying the me
hani
al (i.e. the robot arm) andthe ele
tri
al (i.e. a
tuators) parts separately. This approa
h is similar to that adoptedin [PO96℄. As one 
ould intuitively expe
t it, the overall system 
onsists in a 
as
adeinter
onne
tion of these two parts. Please see [PLS99, Lef00, LFP00, dNC00℄ for otherexamples of 
on
rete appli
ations.But this de
omposition into 
as
ades 
an also be done arti�
ially by designing a 
ontrollaw that puts the system in a 
as
ade stru
ture, 
f. [KKK95, LLLP05, Lef00, SL03℄ forexample. Su
h an approa
h is referred to as 
as
ades-based design.A wide literature. In any of these situations, in order to de
ompose a 
omplex probleminto simpler ones using theorems for 
as
aded systems, it is 
ru
ial to answer the questionwhether the stability properties of both subsystems taken separately remain valid for their
as
ade inter
onne
tion.From a theoreti
al point of view, this problem is not trivial. It has attra
ted the interestof the 
ontrol 
ommunity sin
e [MMT78℄, where graph theory was used to ensure lo
al andglobal stability properties of the 
as
ade, based on the assumption that the inter
onne
tionterms are all �stability preserving mappings�. In [Vid80℄, Vidyasagar made use of 
onverseLyapunov results to show that uniform lo
al asymptoti
 stability is naturally preserved bythe 
as
ade stru
ture.Nevertheless, the global 
ase presents harder di�
ulties. Intuitively, we 
ould expe
tthat, in order to preserve the global asymptoti
 stability of the 
as
ade Σ1 − Σ2, it wouldsu�
e that the 
onvergen
e rate of the driving subsystem Σ2 be su�
iently high. Thisintuition is wrong in general, as proved in [SK91℄ through an elementary example involv-ing a linear driving subsystem whi
h yields a stronger peaking of the transients as the
onvergen
e is made faster. This transient peaking is enough to destabilize the 
as
ade.Similarly, as shown in [SK03, TH04℄, neither integrability nor even exponential de
ay ofthe solutions of the driving subsystem is su�
ient to preserve global asymptoti
 stability.Beyond these obsta
les, some su�
ient 
onditions for the preservation of global asymp-toti
 stability under the 
as
ade inter
onne
tion have been proposed in the literature. Ingeneral terms, a fundamental result for the analysis of global stability for nonlinear systems



67states that the 
as
ade of uniformly globally asymptoti
ally stable systems (UGAS) remainUGAS if and only if its solutions are uniformly globally bounded. See [SS90a, Son89b℄ forthe proof of this statement in the 
ase of autonomous systems and [PL01℄ for the 
ase oftime-varying systems.Some work has also been done in order to advantageously repla
e the requirement of(uniform) global boundedness by more easily 
he
kable 
onditions. In [SS90a℄, these takethe form of a robustness Lyapunov 
ondition on the driven subsystem that needs to holdfor large values of the states. In [PL98℄, uniform global boundedness of solutions is repla
edby the requirements that the inter
onne
tion be a�ne in the state of the driven subsystem,that the solutions of the driving subsystem be integrable and that a Lyapunov fun
tion,with a 
onvenient bound on its gradient be known for the driven subsystem. In [PL01℄,other su�
ient 
onditions were provided, expressed as dominan
e relationships involvingthe bounds on the Lyapunov fun
tion and on its gradient together with the inter
onne
tionterm. In [AAS02℄, an elegant reformulation of the integrability 
ondition posed in [PL01℄was established in terms of integral input to state stability. More pre
isely, it is imposedthat the driven subsystem be integral input to state stable and that a 
ondition linking thedissipation rate of the driving subsystem to the iISS gain of the driven one holds (pleasesee Chapter 5 for details).The obvious drawba
k of these results is that they impose global properties on ea
hsubsystem whi
h, as seen in the previous 
hapters, are impossible to a
hieve in manysituations. Also, the solutions may only asymptoti
ally rea
h a neighborhood of the origininstead of the the origin itself. Below, we extend these results to uniform semiglobal and/orpra
ti
al asymptoti
 stability1.A word on stabilization. Although this does not 
onstitute the subje
t of this dis
ussion,it is worth stressing that a 
onsiderable work in the literature has been devoted to thestabilization of 
as
aded systems. The problem is well do
umented for lo
al properties(
f. e.g. [Vid80, BI91, CP91℄). Nevertheless, in [Sus90℄, an example illustrates that globaland semiglobal stabilizability intrinsi
ally generate additional obsta
les 
ompared to lo
alresults. It was further shown in [SKS90℄ that, given any stri
tly non-minimum phase lineardriving subsystem, there exists a globally asymptoti
ally stable driven subsystem su
h thattheir 
as
ade is not globally stabilizable.To fa
e this problem, several stabilization approa
hes were adopted. In [Ort91℄, Ortegafollows a passivity approa
h to ensure global asymptoti
 stabilizability of the 
as
ade. In[JSK96, MSJ97℄, a Lyapunov fun
tion is expli
itly designed for a wide 
lass of 
as
adedsystems, based on the knowledge of a Lyapunov fun
tion for ea
h subsystem and theassumption of a linear growth of the inter
onne
tion. An extension of this, allowing apolynomial inter
onne
tion, was later proposed in [MSJ99℄. See also [SJK97℄ an referen
estherein.Global and semiglobal stabilization of 
as
ades via output feedba
k also gave rise to
hallenging problems, as stressed through examples in [MPD94℄. Please refer to [MT91,KKM92, TP94, SAT02℄ for various results in this area.1Set-stability will be dis
ussed in a 
as
ade 
ontext in Chapter 4.



68 3. Stability of nonlinear time-varying 
as
aded systems3.1 Semiglobal pra
ti
al asymptoti
 stability of 
as
aded sys-temsIn this se
tion, we address the stability analysis problem for 
as
ades of time-varyingsystems that are uniformly semiglobally pra
ti
ally asymptoti
ally stable (USPAS). Weestablish that, under a uniform semiglobal boundedness 
ondition on its solutions, the
as
ade of two USPAS systems remains USPAS. More pre
isely, we 
onsider 
as
adedsystems of the form
ẋ1 = f1(t, x1, θ1) + g(t, x, θ) (3.1a)
ẋ2 = f2(t, x2, θ2) (3.1b)where x := (x⊤1 , x

⊤
2 )⊤ ∈ R

n1 × R
n2 , θ := (θ⊤1 , θ

⊤
2 )⊤ ∈ R

m1 × R
m2 , t ∈ R≥0, f1, f2 and gare lo
ally Lips
hitz in state and satisfy the Carathéodory 
onditions.The subsystems ẋ1 = f1(t, x1, θ1) and ẋ2 = f2(t, x2, θ2) are respe
tively referred to asdriven and driving subsystems, whereas g(t, x, θ) denotes the inter
onne
tion term.In order to simplify the statement of our results, we �rst introdu
e the following nota-tion.De�nition 3.1 (D-set) For any ∆ > δ ≥ 0, the D-set of the dynami
al system ẋ =

f(t, x, θ), introdu
ed in (1.3), is de�ned as
Df (δ,∆) :=

{
θ ∈ R

m : Bδ is UAS on B∆ for (1.3)} .In other words, given two 
onstants δ ≥ 0 and ∆ > 0, the set Df (δ,∆) 
ontainsall the values of the tuning parameters that make Bδ uniformly asymptoti
ally stable on
B∆ for the system (1.3). Notably, if Df (δ,∆) ∩ Θ 6= ∅ for all ∆ ≥ δ > 0, then (1.3)is USPAS on Θ. Note that we have the property that, if δ′ ≤ δ and ∆′ ≥ ∆, then
Df (δ

′,∆′) ⊂ Df (δ,∆). However, in De�nition 1.18, nothing is assumed 
on
erning thestru
ture of Df (δ,∆). For instan
e, it may even 
onsist in a single parameter for ea
hpair (δ,∆). This is worth mentioning, sin
e, as stated in Chapter 2, other de�nitions ofsemiglobal pra
ti
al stability in the literature (see e.g. [TPA99, MA00, NL04, TNM05℄)do impose that all the parameters in a neighborhood of zero generate the same radii ∆ ofthe ball of attra
tion and δ of the ball to whi
h solutions 
onverge, implying notably that
Df (δ,∆) 
ontains an open neighborhood of zero.All the results presented in this 
hapter assume the following stru
ture for the inter-
onne
tion term g.Assumption 3.2 (Boundedness of the inter
onne
tion term) The fun
tion g is uni-formly bounded both in time and in θ2 and vanishes with x2, i.e., for any θ1 ∈ Θ1, thereexists a nonde
reasing fun
tion Gθ1 and a 
lass K fun
tion Ψθ1 su
h that, for all θ2 ∈ Θ2,all x ∈ R

n1 × R
n2 and all t ∈ R≥0,

|g(t, x, θ)| ≤ Gθ1(|x|)Ψθ1(|x2|) .3.1.1 With a Lyapunov fun
tion for the driven subsystemThe following result provides su�
ient 
onditions for the preservation of USPAS under 
as-
ade inter
onne
tion, based on the knowledge of a Lyapunov fun
tion for the x1-subsystem.



69Theorem 3.3 (Lyapunov USPAS + USPAS + UB ⇒ USPAS) Under Assumptions3.2, 3.4, 3.5 and 3.6, the 
as
aded system (3.1) is USPAS on Θ1 × Θ2.Assumption 3.4 (USPAS of the driving subsystem) The system (3.1b) is USPASon Θ2.Assumption 3.5 (Lyapunov USPAS of the driven subsystem) Given any ∆1 > δ1 >
0, there exist a parameter θ⋆1(δ1,∆1) ∈ Θ1, a 
ontinuously di�erentiable Lyapunov fun
tion
Vδ1,∆1

, 
lass K∞ fun
tions αδ1,∆1
, αδ1,∆1

, αδ1,∆1
and a 
ontinuous positive nonde
reasingfun
tion cδ1,∆1

su
h that, for all x1 ∈ H(δ1,∆1) and all t ∈ R≥0,
αδ1,∆1

(|x1|) ≤ Vδ1,∆1
(t, x1) ≤ αδ1,∆1

(|x1|) (3.2)
∂Vδ1,∆1

∂t
(t, x1) +

∂Vδ1,∆1

∂x1
(t, x1)f1(t, x1, θ

⋆
1) ≤ −αδ1,∆1

(|x1|) (3.3)
∣∣∣∣
∂V1

∂x1
(t, x1)

∣∣∣∣ ≤ cδ1,∆1
(|x1|) (3.4)Assumption 3.6 (Boundedness of solutions) There exists a positive 
onstant ∆0 su
hthat, for any given positive numbers δ1, ∆1, δ2, ∆2, satisfying ∆1 > max{δ1; ∆0} and

∆2 > δ2, and for the parameter θ⋆1(δ1,∆1) as de�ned in Assumption 3.5, there exists a pa-rameter θ⋆2 ∈ Df2(δ2,∆2) ∩ Θ2 (
f. De�nition 3.1) and a positive number γ(δ1, δ2,∆1,∆2)su
h that the traje
tories of (3.1) with θ = θ⋆ satisfy
|x0| ≤ γ(δ1, δ2,∆1,∆2) ⇒ |φ(t, t0, x0, θ

⋆)| ≤ ∆1 , ∀t ≥ t0 .In addition, given any ∆⋆ > δ⋆ > 0, there exist some positive δ1, ∆1 and ∆2, with ∆1 > δ1,su
h that, for all δ2 ∈ (0; ∆2),
min {∆1; ∆2; γ(δ1, δ2,∆1,∆2)} ≥ ∆⋆ (3.5)
max

{
δ2;α

−1
δ1,∆1

◦ αδ1,∆1
(δ1)

}
≤ δ⋆ . (3.6)An appli
ation of this result is presented in Se
tion 6.1: we establish that the PID
ontrol of robot manipulators is USPAS in presen
e of external disturban
es, model im-perfe
tions and when taking into a

ount the dynami
s of the a
tuators.In view of Theorem 2.11, Assumption 3.5 
orresponds to the Lyapunov su�
ient 
on-dition for USPAS of the zero-input x1-subsystem, with the additional 
ondition of a boundon the gradient of Vδ1,∆1

. In turn, we stress that the requirement 
orresponding to (2.32)is no longer needed under Assumption 3.6. We state the above result under the more re-stri
tive assumption than simply �USPAS� sin
e our proof relies on the expli
it knowledgeof the Lyapunov fun
tion Vδ1,∆1
. However, as we show in the next se
tion, Assumption3.5 
an be relaxed based on the 
onverse result presented in Se
tion 2.2 provided that f1is su�
iently smooth and that a stronger notion of USPAS (namely, δ-USPAS) is assumedon the driven subsystem.Roughly speaking, Assumption 3.6 imposes that the solutions be uniformly boundedby ∆1 for all initial 
onditions in a domain that 
an be arbitrarily enlarged by 
onvenientlypi
king δ1, ∆1, δ2 and ∆2. Note that Proposition 2.13 provides an e�
ient tool to 
he
kAssumption 3.6 in spe
i�
 
ontrol appli
ations.
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as
aded systemsRemark 3.7 Assumption 3.6 may be relaxed to uniform boundedness on B∆1
× B∆2

pro-vided that it holds uniformly in ∆1 and ∆2, i.e., provided that the 
lass K fun
tion η andthe 
onstant µ in Proposition 1.12 are independent of ∆1 and ∆2.Remark 3.8 We stress that, similarly to Theorem 2.11, Theorem 3.3 still holds when (3.2)is repla
ed by the less 
onservative requirement:
αδ1,∆1

(|x1|δ1) ≤ Vδ1,∆1
(t, x1) ≤ αδ1,∆1

(|x1|) .Please refer to [CL06a, CL06b℄ for details. Furthermore, in view of Remark 2.12, it is infa
t su�
ient that the requirements of Assumption 3.5 hold for all small δ1 and all large
∆1.Remark 3.9 For 
larity, we stated the result by assuming that the bounds on the inter-
onne
tion term are independent of the parameter θ2. We stress that, if needed in spe
i�
appli
ations, Theorem 3.3 still holds when Assumption 3.2 is repla
ed by the following: forany θ ∈ Θ1 ×Θ2, there exists a nonde
reasing fun
tion Gθ and a 
lass K fun
tion Ψθ su
hthat, for all all x ∈ R

n1 × R
n2 and all t ∈ R≥0,

|g(t, x, θ)| ≤ Gθ(|x|)Ψθ(|x2|) ,and, for all ∆1 > δ1 > 0, all ∆2 > 0, and for the parameter θ⋆1(δ1,∆1) introdu
ed inAssumption 3.5, it holds that
lim
δ2→0

[
sup

{
Gθ(∆1)Ψθ(2δ2) : θ ∈ {θ⋆1(δ1,∆1)} × Df2(δ2,∆2)

}]
= 0 . (3.7)This appears more 
learly along the proof below.Proof of Theorem 3.3. The argument 
onsists in 
onstru
ting some balls Bδ and B∆ anda KL estimate for the solutions of the 
as
aded system, based on the respe
tive balls forthe x1 and the x2 subsystems.For any given positive δ1, ∆1, δ2 and ∆2 satisfying ∆1 > max{δ1,∆0} and ∆2 > δ2,let γ(δ1, δ2,∆1,∆2) be generated by Assumption 3.6 and de�ne

∆ := min {∆1 ; ∆2 ; γ(δ1, δ2,∆1,∆2)} . (3.8)Next, 
hoose any θ⋆1(δ1,∆1) ∈ Θ1 satisfying Assumption 3.5 and any θ⋆2(δ2,∆2) in theinterse
tion of Df2(δ2,∆2) and Θ2 given by Assumption 3.6. We show that, provided that
δ1, δ2 are su�
iently small and that ∆1, ∆2 are large enough, there exists δ ∈ (0; ∆)su
h that Bδ is uniformly asymptoti
ally stable on B∆ for the system (3.1) with θ⋆ =
(θ⋆1

⊤, θ⋆2
⊤)⊤. To that end, we �rst show that there exists a positive δ3 su
h that the ball

Bδ3 is uniformly stable. More pre
isely, we 
onstru
t ηδ1,δ2∆1,∆2
∈ K∞ and δ3 > 0 su
h that,for all x0 ∈ B∆,

|φ1(t, t0, x0, θ
⋆)|δ3 ≤ ηδ1,δ2∆1,∆2

(|x0|) . (3.9)Then, we use this property to prove that a ball, larger than Bδ3 , is uniformly attra
tive on
B∆ and we 
onstru
t a KL estimate for the solutions. Finally, we show that the estimatesof the domain of attra
tion B∆ and of the ball Bδ to whi
h solutions 
onverge 
an bearbitrarily enlarged and diminished respe
tively.



71Proof of uniform stability: Consider the fun
tion Vδ1,∆1
generated by Assumption 3.5 andlet Lemma 2.6, with X = H(δ1,∆1) and k = 1, generate a fun
tion Vδ1,∆1

, 
lass K∞fun
tions α̃δ1,∆1
, α̃δ1,∆1

and a 
ontinuous nonde
reasing fun
tion c̃δ1,∆1
su
h that, for all

x1 ∈ H(δ1,∆1) and all t ∈ R≥0,
α̃δ1,∆1

(|x1|) ≤ Vδ1,∆1
(t, x1) ≤ α̃δ1,∆1

(|x1|)
∂Vδ1,∆1

∂t
(t, x1) +

∂Vδ1,∆1

∂x1
(t, x1)f1(t, x1, θ

⋆
1) ≤ −Vδ1,∆1

(t, x1)

∣∣∣∣
∂Vδ1,∆1

∂x1
(t, x1)

∣∣∣∣ ≤ c̃δ1,∆1
(|x1|) ,and, for any s ∈ R≥0,

α̃−1
δ1,∆1

◦ α̃δ1,∆1
(s) = α−1

δ1,∆1
◦ αδ1,∆1

(s) . (3.10)The total time derivative of Vδ1,∆1
along the traje
tories of (3.1) with θ = θ⋆ yields

V̇δ1,∆1
(t, x1) =

∂Vδ1,∆1

∂t
(t, x1) +

∂Vδ1,∆1

∂x1
(t, x1)

(
f1(t, x1, θ

⋆
1) + g(t, x, θ⋆)

)
.Therefore, from Assumption 3.2, it holds that, for all x1 ∈ H(δ1,∆1) and all t ∈ R≥0,

V̇δ1,∆1
(t, x1) ≤ −Vδ1,∆1

(t, x1) + c̃δ1,∆1
(|x1|)Gθ⋆

1
(|x|)Ψθ⋆

1
(|x2|) .Let Assumption 3.4 generate a KL fun
tion βδ2,∆2

su
h that, for all x20 ∈ B∆2
and all

t0 ∈ R≥0,
|φ2(t, t0, x20, θ

⋆
2)|δ2 ≤ βδ2,∆2

(|x20| , t− t0) , ∀t ≥ t0 .Using the shorthand notation φ1(t) for φ1(t, t0, x0, θ
⋆) and v1(t) := Vδ1,∆1

(t, φ1(t)) weget, in view of (3.8) and Assumption 3.6, that, for all x0 ∈ B∆ and all t ≥ t0 su
h that
φ1(t) ∈ H(δ1,∆1),

v̇1(t) ≤ −v1(t) + c̃δ1,∆1
(∆1)Gθ⋆

1
(∆1)Ψθ⋆

1

(
βδ2,∆2

(|x20| , t− t0) + δ2
)
. (3.11)Thus, we have

φ1(t) ∈ H(δ1,∆1) ⇒ v̇1(t) ≤ −v1(t) + cδ1,δ2∆1,∆2
(|x0|) , (3.12)with

cδ1,δ2∆1,∆2
(s) := c̃δ1,∆1

(∆1)Gθ⋆
1
(∆1)Ψθ⋆

1
(βδ2,∆2

(s, 0) + δ2) , ∀s ∈ R≥0 .The rest of the proof of uniform stability 
onsists in integrating (3.12) in order to 
onstru
ta bound like (3.9). To this end, we apply Lemma 2.7 to (3.12) with V = Vδ1,∆1
, k = 1,

c = cδ1,δ2∆1,∆2
and X = H(δ,∆), to get, in view of (3.8) and Assumption 3.6, that, for all

x0 ∈ B∆ and all t ≥ t0 ≥ 0,
|φ1(t)| ≤ α̃−1

δ1,∆1

(
α̃δ1,∆1

(δ1) + cδ1,δ2∆1,∆2
(|x0|)

)
+ α̃−1

δ1,∆1

(
α̃δ1,∆1

(|x0|) + cδ1,δ2∆1,∆2
(|x0|)

)
.De�ne the following:

δ3 := α̃−1
δ1,∆1

(
α̃δ1,∆1

(δ1) + cδ1,δ2∆1,∆2
(0)
)

+ α̃−1
δ1,∆1

(
cδ1,δ2∆1,∆2

(0)
)

= α̃−1
δ1,∆1

(
α̃δ1,∆1

(δ1) + c̃δ1,∆1
(∆1)Gθ⋆

1
(∆1)Ψθ⋆

1
(δ2)

)

+ α̃−1
δ1,∆1

(
c̃δ1,∆1

(∆1)Gθ⋆
1
(∆1)Ψθ⋆

1
(δ2)

) (3.13)
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as
aded systemsand, for all s ∈ R≥0,
ηδ1,δ2∆1,∆2

(s) := α̃−1
δ1,∆1

(
αδ1,∆1

(δ1) + cδ1,δ2∆1,∆2
(s)
)

+ α̃−1
δ1,∆1

(
αδ1,∆1

(s) + cδ1,δ2∆1,∆2
(s)
)

− α̃−1
δ1,∆1

(
αδ1,∆1

(δ1) + cδ1,δ2∆1,∆2
(0)
)
− α̃−1

δ1,∆1

(
cδ1,δ2∆1,∆2

(0)
)
.Then we 
on
lude that, for any x0 ∈ B∆ and all t0 ∈ R≥0, it holds that

|φ1(t)|δ3 ≤ ηδ1,δ2∆1,∆2
(|x0|) , ∀t ≥ t0 . (3.14)Uniform stability of Bδ3 on B∆ follows by noti
ing that ηδ1,δ2∆1,∆2

is a 
lass K fun
tion. This
an be seen by re
alling that cδ1,δ2∆1,∆2
is a 
ontinuous in
reasing fun
tion.Proof of uniform attra
tivity: Consider again (3.11). Sin
e βδ2,∆2

is a KL fun
tion, thereis a time t1 ≥ 0, independent of t0 and x0, su
h that
βδ2,∆2

(∆, t− t0) ≤ δ2 , ∀ t ≥ t0 + t1 .Hen
e (3.11) implies that, for all x0 ∈ B∆,
φ1(t) ∈ H(δ1,∆1) ⇒ v̇1(t) ≤ −v1(t) + c̃δ1,∆1

(∆1)Gθ⋆
1
(∆1)Ψθ⋆

1
(2δ2) .Applying again Lemma 2.7 and re
alling that, from Assumption 3.6, |φ1(t0 + t1)| ≤ ∆1, itfollows that, for all x0 ∈ B∆, all t0 ∈ R≥0 and all t ≥ t0 + t1,

|φ(t)|δ1 ≤ α̃−1
δ1,∆1

(
α̃δ1,∆1

(δ1) + c̃δ1,∆1
(∆1)Gθ⋆

1
(∆1)Ψθ⋆

1
(2δ2)

)

+ α̃−1
δ1,∆1

(
α̃δ1,∆1

(∆1)e
−(t−t0−t1) + c̃δ1,∆1

(∆1)Gθ⋆
1
(∆1)Ψθ⋆

1
(2δ2)

)
.De�ning

t2 := t1 + ln( α̃δ1,∆1
(∆1)

α̃δ1,∆1
(δ1)

)
,we see that, for all t ≥ t0 + t2,

|φ1(t)| ≤ δ4 := 2α̃−1
δ1,∆1

(
α̃δ1,∆1

(δ1) + c̃δ1,∆1
(∆1)Gθ⋆

1
(∆1)Ψθ⋆

1
(2δ2)

)
. (3.15)In other words, we have, for all x0 ∈ B∆,

|φ1(t)|δ4 = 0 , ∀t ≥ t0 + t2 .Finally, let
δ := max {δ2 ; δ3 ; δ4} . (3.16)Then we see that (3.14) implies that |φ1(t)|δ ≤ η(|x0|) for all t ≥ t0. From this and whatpre
edes it is not hard to see that, for all x0 ∈ B∆,

|φ1(t)|δ ≤ ηδ1,δ2∆1,∆2
(|x0|)e−(t−t0−t2) , ∀t ≥ t0 .Thus, re
alling that t2 depends neither on t0 nor on x0, and de�ning

βδ1,δ2∆1,∆2
(s, t) :=

√
ηδ1,δ2∆1,∆2

(s)2e−2(t−t2) + βδ2,∆2
(s, t)2 , ∀s, t ∈ R≥0 ,



73we 
on
lude that, for all x0 ∈ B∆,
|φ(t, t0, x0, θ

⋆)|δ ≤ βδ1,δ2∆1,∆2
(|x0| , t− t0) , ∀t ≥ t0 .Uniform asymptoti
 stability of Bδ on B∆ follows by noti
ing that βδ1,δ2∆1,∆2

is a 
lass KLfun
tion. We stress that the dependen
e of the KL estimate in δ and ∆ (through ∆1, ∆2,
δ1 and δ2) is not in 
ontradi
tion with De�nition 1.19.Proof of �semiglobal pra
ti
al�: It is only left to show that δ and ∆ 
an be arbitrarilyredu
ed and enlarged respe
tively. To this end, 
onsider any desired ∆⋆ > δ⋆ > 0 and
hoose δ1,∆1,∆2 in su
h a way that, for all δ2 ∈ (0; ∆2),
min {∆1; ∆2; γ(δ1, δ2,∆1,∆2)} ≥ ∆⋆ , α−1

δ1,∆1
◦ αδ1,∆1

(δ1) = α̃−1
δ1,∆1

◦ α̃δ1,∆1
(δ1) ≤

δ⋆
4
,as ensured by Assumption 3.6 (see also (3.10)). Then, we get dire
tly from (3.8) that ∆
an be made greater than or equal to ∆⋆. Furthermore, it is possible to 
hoose δ2 smallenough that

α̃−1
δ1,∆1

(
α̃δ1,∆1

(δ1) + c̃δ1,∆1
(∆1)Gθ⋆

1
(∆1)Ψθ⋆

1
(2δ2)

)
≤ δ⋆

2sin
e α̃−1
δ1,∆1

and Ψθ⋆
1
both belong to 
lass K∞ and none of the above involved fun
tionsdepend on δ2. In other words, we 
an ensure that δ4 ≤ δ⋆ (
f. (3.15)). Invoking againAssumption 3.6 and noti
ing that δ3 ≤ δ4, we 
on
lude in view of (3.16) that we 
ana
hieve δ ≤ δ⋆.In the 
ase that the fun
tions G and Ψ depend on θ2, and provided that (3.7) holds,we see from (3.15) and (3.16) that δ 
an still be made arbitrarily small by pi
king δ2 smallenough. This justi�es Remark 3.9. �3.1.2 Without a Lyapunov fun
tion for the driven subsystemThe main result of the above se
tion provides a tool for the stability analysis of uniformlysemiglobally pra
ti
ally asymptoti
ally stable systems pla
ed in 
as
ade (
f. (3.1)):

ẋ1 = f1(t, x1, θ1) + g(t, x, θ)

ẋ2 = f2(t, x2, θ2) .However, one may argue that it requires the expli
it knowledge of a Lyapunov fun
tionfor the driven subsystem, whi
h may not be dire
t when the stability property under
onsideration is established by other means as, for instan
e, averaging te
hniques [TPA99℄.Based on Corollary 2.30, we may simplify the statement of Theorem 3.3 in this dire
tion,provided that fun
tion f1 involved in (3.1) is su�
iently smooth and that the x1-dynami
senjoys the stronger property of δ-USPAS (
f. De�nition 2.28). Roughly this means thatthe KL estimate of its solutions is the same disregarding the amplitude of the steady-stateerror we want to impose. More pre
isely, we assume the following.Assumption 3.10 (USPAS of ea
h subsystems) The subsystems ẋ1 = f1(t, x1, θ1)and ẋ2 = f2(t, x2, θ2) in (3.1) are USPAS on Θ1 and Θ2 respe
tively.
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as
aded systemsAssumption 3.11 (Regularity of f1) There exist a nonnegative 
onstant f0 and a 
on-tinuous nonde
reasing fun
tion L su
h that, for all θ1 ∈ Θ, all x1 ∈ R
n1 and all t ∈ R≥0,

|f1(t, 0, θ1)| ≤ f0 ,

∣∣∣∣
∂f1

∂x1
(t, x1, θ1)

∣∣∣∣ ≤ L(|x1|) .Theorem 3.12 (USPAS + USPAS + UB ⇒ USPAS) Under Assumptions 3.2, 3.6,3.10 and 3.11 the 
as
aded system (3.1) is USPAS on the parameter set Θ1 × Θ2.Proof of Theorem 3.12. The proof follows dire
tly from Theorem 3.3 by observing thatAssumptions 3.10 and 3.11 imply, via Theorem 2.27, Assumption 3.5. �Assumption 3.6 may remain hard to 
he
k in pra
ti
e. The following result states that,if the driven subsystem is δ-USPAS, then this assumption is no longer required in the 
asewhen solutions of the 
as
ade (3.1) are uniformly globally bounded uniformly in θ.Assumption 3.13 (δ-USPAS and USPAS) The subsystems ẋ1 = f1(t, x1, θ1) and ẋ2 =
f2(t, x2, θ2) in (3.1) are respe
tively δ-USPAS on Θ1 and USPAS on Θ2.Assumption 3.14 (UGB, uniformly in θ) There exist η ∈ K∞ and µ > 0 su
h that,for all x0 ∈ R

n, all t0 ∈ R≥0 and all θ ∈ Θ, the traje
tory of (3.1) satis�es
|φ(t, t0, x0, θ)| ≤ η(|x0|) + µ , ∀t ≥ t0 .Corollary 3.15 (δ-USPAS + USPAS + UGB ⇒ USPAS) Under Assumptions 3.2,3.11, 3.13 and 3.14, the 
as
aded system (3.1) is USPAS on the parameter set Θ1 × Θ2.Proof of Corollary 3.15. In the statement of Theorem 3.3, pi
k ∆0 as µ and γ(δ1, δ2,∆1,∆2)as η−1(∆1 − µ). Then (3.5) 
an be ful�lled by simply pi
king ∆1 and ∆2 large enough.In the same way, due to the δ-USPAS assumption on the driven subsystem, the fun
tions

αδ1,∆1
and αδ1,∆1

generated by Corollary 2.30 are independent of δ1. Hen
e, it su�
es topi
k δ1 small enough in order to ful�ll (3.6). �Corollary 3.15 is parti
ularly useful in appli
ations where USPAS of the driven sub-system is obtained without a Lyapunov fun
tion, e.g. via averaging: we illustrate thisthrough the following example.Bounded 
ontrol of the persistently ex
ited double integratorConsider the output feedba
k stabilization of the following double integrator:
ẋ1 = x2 (3.17a)
ẋ2 = −p(t/θ)2u (3.17b)where u is the 
ontrol input and θ is a free positive parameter, under the following 
ondi-tions and assumptions:- given umax, it is required that |u(·)| ≤ umax;- only x1 is measured;



75- p is pie
ewise 
ontinuous and |p(t)| ≤ pM , with pM > 0, for all t ∈ R≥0;- p(t)2 admits an �nite average, i.e. the following quantity exists and is �nite2:
p2
av := lim

T→+∞
1

T

∫ T

0
p(τ)2dτ ; (3.18)For the 
ase that p(·) ≡ 1, the 
ontrol literature provides bounded state feedba
ks u∗(x)that globally asymptoti
ally stabilize the origin of the system (3.17), 
f. e.g. [SS90b, SY91,Tee92℄. The output feedba
k 
ontrol of this system is also 
onsidered in [Tee96, Theorem7℄. In this 
ontext, we pose the following problem: provided that we design an observer for(3.17) su
h that the estimated state, x̂, tends to x exponentially, does u∗(x̂) stabilize theorigin of (3.17)? We give a positive answer to this question by showing, via Theorem 3.12,that u∗(x̂) stabilizes (3.17) in the semiglobal pra
ti
al sense. For 
larity of exposition weprove the result for a spe
i�
 u∗(x) but it holds for other bounded smooth 
ontrols.We stress that the double integrator (3.17) is a parti
ular 
ase of systems of the form

ẋ = f(t, x) + g(t)u where the �input gain� g(t) is not invertible (sin
e p(t) may vanish forsome values of t). This situation may appear in physi
al systems: see for instan
e [AL02℄.Another motivation is to 
ontrol by feedba
k linearization: if g(t) were invertible, we mightuse u = g(t)−1[−x + f(t, x)]; sin
e it is not, but instead persistently ex
iting, 
an we use
u = g(t)[−x + f(t, x)]? For further motivations see [LCBC05℄. Please note also that theabove problem was solved in [SCM+06℄, with a linear 
ontrol, by assuming that the wholestate is measured. However, it involves a deeply di�erent approa
h than the one presentedhere.Proposition 3.16 Let p be a bounded pie
ewise 
ontinuous fun
tion satisfying

lim
T→∞

1

T

∫ T

0
p(s)2ds = p2

av ,where pav denotes a �nite 
onstant. Then the system (3.17) in 
losed loop with u∗(x̂) :=
−k1tanh(x̂1) − k2tanh(x̂2) with k1, k2 > 0 and the observer

˙̂x1 = x̂2 − ℓ1x̄1 (3.19a)
˙̂x2 = −p(t/θ)2u∗(x̂) − ℓ2x̄1 (3.19b)where ℓi > 0 and x̄i := x̂i − xi for all i ∈ {1, 2}, is USPAS on the parameter set R>0. �The above result provides a separation prin
iple for the bounded output feedba
k 
on-trol of (3.17). If u∗ is a bounded state feedba
k that stabilizes the nominal system (i.e.when 
onsidering p(·) = 1), then it su�
es to evaluate it based on the state estimates toa
hieve the 
ontrol obje
tive in presen
e of a persistently ex
iting signal p(·). This is at thepri
e of a slight degradation of performan
e sin
e the global asymptoti
 stability enjoyedby the nominal state-feedba
k 
ontrolled yields uniform semiglobal pra
ti
al stability forthe output-feedba
k 
ontrolled perturbed system.We stress that an alternative to the proof presented below 
an be derived from [Tee96,Theorem 7℄ and [TPA99℄. Roughly speaking, the former referen
e ensures the stabilizabilityof (3.17) by output feedba
k when p is repla
ed by its average. The latter referen
e 
an2Note that p2

av is stri
tly positive due to the persisten
y of ex
itation assumption on p(t).



76 3. Stability of nonlinear time-varying 
as
aded systemsthen be invoked to 
on
lude USPAS of the original system. The arguments presentedbelow however illustrate better the results of this se
tion, whi
h mainly motivated theirexposition.Proof of Proposition 3.16. We start by exhibiting the 
as
aded stru
ture of the 
losed-loop system. To that end, let f(t, x, θ) denote the right hand side of (3.17) with u = u∗(x)and de�ne
g(t, x, x̄, θ) := p(t/θ)2

(
0

g1(x1, x̄1) + g2(x2, x̄2)

)
,where gi(xi, x̄i) := −ki(tanh(x̄i + xi) − tanh(xi)) for all i ∈ {1, 2}. Then, the 
losed loopsystem takes the form

ẋ = f(t, x, θ) + g(t, x, x̄, θ) (3.20a)
˙̄x = Ax̄ , A :=

(
−ℓ1 1
−ℓ2 0

)
. (3.20b)First noti
e that Assumption 3.2 is ful�lled with

G(s) := 2p2
M (k1 + k2) and Ψ(s) = s .This 
an be seen by observing that |tanh(a+ b) − tanh(b) | ≤ 2 |a| for all a, b ∈ R. Inaddition, A is 
learly Hurwitz for any positive values of ℓ1 and ℓ2, whi
h shows that (3.20b)is globally exponentially stable (and a fortiori USPAS). To show USPAS of ẋ = f(t, x, θ)we pro
eed as follows. De�ne the following fun
tion:
fav(x) =

[
x2

−p2
avu

∗(x)

]
.Then, for ea
h positive T , we have

∣∣∣∣fav(x) −
1

T

∫ T

0
f(t, x, 1)dt

∣∣∣∣ ≤
∣∣∣∣p

2
av −

1

T

∫ T

0
p(τ)2dτ

∣∣∣∣ (k1 + k2) |x| .From (3.18), it follows that there exists a 
lass L fun
tion σ su
h that
∣∣∣∣fav(x) −

1

T

∫ T

0
f(t, x, 1)dt

∣∣∣∣ ≤ (k1 + k2) |x|σ(T ) . (3.21)Consequently, fav 
onstitutes an average of f in the sense of [TPA99℄. Under the assump-tions made on (3.17), ẋ = fav(x) is globally asymptoti
ally stable. From [TPA99℄ andProposition 2.29, it follows that (3.17) with u = u∗(x) is δ-USPAS on the parameter set
R>0. This establishes Assumption 3.10.Uniform boundedness may be shown as follows. Dire
t 
omputations show that, pro-vided that ε > 0 is pi
ked su�
iently small, the following fun
tion is positive de�nite andradially unbounded

V (x) =
1

2
|x2|2 + k1p

2
avln(
osh(x1) ) + εtanh(x1)tanh(x2) ,i.e. there exist 
lass K∞ fun
tions α and α su
h that α(|x|) ≤ V (x) ≤ α(|x|). In addition,

V is independent of the tuning parameter θ. Furthermore, V has a negative de�nite



77derivative along the traje
tories of ẋ = fav(x). More pre
isely, for su�
iently small ε > 0there exist q1, q2 > 0 su
h that
∂V

∂x
(x)fav(x) ≤ −q1se
h2(x2)tanh2(x1) − q2x2tanh(x2) =: −W (x) .Note thatW is a 
ontinuous positive de�nite fun
tion independent of θ as well. In addition,noti
ing that |tanh(a+ b) − tanh(b) | ≤ 2 |a| for all a, b ∈ R, it holds that
∣∣∣∣
∂V

∂x
(x)g(t, x, x̄, θ)

∣∣∣∣ ≤
∣∣x2 + εtanh(x1)se
h2(x2)

∣∣ 2p2
M (k1 + k2) .It follows that there exists a nonnegative 
onstant λ su
h that, for all x̄ ∈ R

2, all t ∈ R≥0and all θ ∈ R>0,
|x| ≥ 1 ⇒

∣∣∣∣
∂V

∂x
g(t, x, x̄, θ)

∣∣∣∣ ≤ λW (x) .Observing that forward 
ompleteness of (3.20) follows from the boundedness of p(·), andre
alling that both V and W are independent of θ, we 
on
lude, pro
eeding as in the proofof [PL01, Theorem 4℄, that the solutions of the overall system are UGB uniformly in θ.The result follows from Corollary 3.15. �3.2 Semiglobal asymptoti
 stability of 
as
aded systemsThis short se
tion exhibits the intrinsi
 similarities between USPAS and USAS. We showthat almost all the results presented above 
an be dire
tly adapted to uniform semiglobalasymptoti
 stability modulo little additional requirements due to a te
hni
al obsta
le inthe proof.3.2.1 With a Lyapunov fun
tion for the driven subsystemTheorem 3.17 (Lyapunov USAS + USAS + UB ⇒ USAS) Under Assumptions 3.2,3.18, 3.19 and 3.20, the 
as
aded system (3.1) is uniformly semiglobally asymptoti
ally sta-ble on the parameter set Θ1 × Θ2.Assumption 3.18 (USAS of the driving subsystem) The system (3.1b) is USAS on
Θ2.Assumption 3.19 (Lyapunov USAS of the driven subsystem) Given any ∆1 > 0,there exist a parameter θ⋆1(∆1) ∈ Θ1, a 
ontinuously di�erentiable Lyapunov fun
tion V∆1

:
R≥0×R

n1 → R≥0, 
lass K∞ fun
tions α∆1
, α∆1

, a positive 
onstant k∆1
and a 
ontinuouspositive nonde
reasing fun
tion c∆1

su
h that, for all x1 ∈ B∆1
and all t ∈ R≥0,

α∆1
(|x1|) ≤ V∆1

(t, x1) ≤ α∆1
(|x1|)

∂V∆1

∂t
(t, x1) +

∂V∆1

∂x1
(t, x1)f1(t, x1, θ

⋆
1) ≤ −k∆1

V∆1
(t, x1) (3.22)

∣∣∣∣
∂V1

∂x1
(t, x1)

∣∣∣∣ ≤ c∆1
(|x1|) .



78 3. Stability of nonlinear time-varying 
as
aded systemsAssumption 3.20 (Boundedness of solutions) There exists a positive 
onstant ∆0 su
hthat, for any given positive numbers ∆1, ∆2, satisfying ∆1 > ∆0, and for the parameter
θ⋆1(∆1) as de�ned in Assumption 3.19, there exists a parameter θ⋆2 ∈ Df2(0,∆2) ∩ Θ2 (
f.De�nition 3.1) and a nonnegative 
onstant γ(∆1,∆2) su
h that

lim
∆1,∆2→+∞

γ(∆1,∆2) = +∞ ,and the traje
tories of (3.1) with θ = θ⋆ satisfy
|x0| ≤ γ(∆1,∆2) ⇒ |φ(t, t0, x0, θ

⋆)| ≤ ∆1 , ∀t ≥ t0 .The proof of Theorem 3.17 is not detailed as it follows along the same lines as theproof of Theorem 3.3. Roughly speaking, it su�
es to pi
k δ1 = δ2 = 0 in the latter toget the result. However, from a te
hni
al point of view, Lemma 2.6 does not apply to thissituation, whi
h prevents V∆1
to be transformed in a more 
onvenient form. This explainswhy the total derivative of V∆1
is assumed to satisfy the more 
onservative bound (3.22).Yet, by observing that the requirement δ > 0 in Lemma 2.6 serves only to establish atime-invariant bound on the gradient of the transformed Lyapunov fun
tion, and as thisfa
t follows as an immediate 
onsequen
e of the time invarian
e of the original fun
tion V∆1

,we 
an show that the following statement holds. It parti
ularly �ts (but is not restri
tedto) the situation when the driven subsystem is time-invariant.Assumption 3.21 (Lyapunov USAS of the x1-subsystem) Given any ∆1 > 0, thereexist a parameter θ⋆1(∆1) ∈ Θ1, a 
ontinuously di�erentiable Lyapunov fun
tion V∆1
:

R
n1 → R≥0 and 
lass K∞ fun
tions α∆1

, α∆1
, α∆1

su
h that, for all x1 ∈ B∆1
and all

t ∈ R≥0,
α∆1

(|x1|) ≤ V∆1
(x1) ≤ α∆1

(|x1|)

∂V∆1

∂x1
(x1)f1(t, x1, θ

⋆
1) ≤ −α∆1

(|x1|) .Corollary 3.22 Under Assumptions 3.2, 3.18, 3.20 and 3.21, the 
as
aded system (3.1)is uniformly semiglobally asymptoti
ally stable on Θ1 × Θ2.We stress that, in this situation, the bound on the gradient of the Lyapunov fun
tionfollows trivially from the time-invarian
e and 
ontinuous di�erentiability of the latter.3.2.2 Without a Lyapunov fun
tion for the driven subsystemFor the sake of 
ompleteness, we present below a result that allows to establish USASof a 
as
aded system, without requiring the knowledge of any expli
it Lyapunov fun
tion.Similarly to USPAS, it requires additional smoothness of the driven subsystem's dynami
s.However, due to the te
hni
al obsta
le underlined above, we further need to assumethat the driven subsystem is time-invariant. In other words, we 
onsider 
as
aded systemsof the form
ẋ1 = f1(x1, θ1) + g(t, x, θ) (3.23a)
ẋ2 = f2(t, x2, θ2) . (3.23b)



79Assumption 3.23 (Regularity of f1) There exist a nonnegative 
onstant f0 and a 
on-tinuous nonde
reasing fun
tion L su
h that, for all θ1 ∈ Θ and all x1 ∈ R
n1,

|f1(0, θ1)| ≤ f0 ,

∣∣∣∣
∂f1

∂x1
(x1, θ1)

∣∣∣∣ ≤ L(|x1|) .Assumption 3.24 (USAS of ea
h subsystem) The subsystems ẋ1 = f1(x1, θ1) and(3.23b) are USAS respe
tively on Θ1 and Θ2.Theorem 3.25 (USAS + USAS + UB ⇒ USAS) Under Assumptions 3.2, 3.20, 3.23and 3.24, the 
as
aded system (3.23) is USAS on Θ1 × Θ2.The proof follows along the same lines as the one of Theorem 3.12 by pi
king δ1 =
δ2 = 0. The main di�eren
e stands in the fa
t the time-invariant bound on the gradientof the Lyapunov fun
tion generated by Lemma 2.6 
annot be ensured. This di�
ultyis overpassed by the fa
t that the driven subsystem is time-invariant, whi
h makes theLyapunov fun
tion provided by Theorem 2.31 time-invariant too. The autonomous boundon its gradient then follows dire
tly from its 
ontinuous di�erentiability.3.3 Global pra
ti
al asymptoti
 stability of 
as
aded systemsWe now present theorems for UGPAS of systems in 
as
ade. While the proof of the stabilityanalysis of 
as
aded systems for USPAS and USAS have a lot in 
ommon, the results belowshows that global properties have to be treated in a slightly di�erent way. Although theymake the problem of the existen
e of a 
onverse Lyapunov fun
tion harder (as pointed outin Se
tion 2.2.2), they allow to provide very e�
ient tools to establish uniform boundednessof the overall 
as
ade.We re
all that we 
onsider 
as
aded systems of the form

ẋ1 = f1(t, x1, θ1) + g(t, x, θ)

ẋ2 = f2(t, x2, θ2) ,originally introdu
ed in (3.1).Theorem 3.26 (UGPAS + UGPAS + growth restri
tion ⇒ UGPAS) Under As-sumptions 3.2, 3.28 and 3.27, the 
as
aded system (3.1) is uniformly globally pra
ti
allyasymptoti
ally stable (UGPAS) on the parameter set Θ1 × Θ2.Assumption 3.27 (UGPAS of the driving subsystem) The system (3.1b) is UGPASon Θ2.Assumption 3.28 (Lyapunov UGPAS of the driven subsystem) Given any δ1 >
0, there exist a parameter θ⋆1(δ1) ∈ Θ1, a 
ontinuously di�erentiable Lyapunov fun
tion
Vδ1, 
lass K∞ fun
tions αδ1, αδ1, αδ1 and a 
ontinuous positive nonde
reasing fun
tion cδ1su
h that, for all x1 ∈ R

n \ Bδ1 and all t ∈ R≥0,
αδ1(|x1|) ≤ Vδ1(t, x1) ≤ αδ1(|x1|) (3.24)

∂Vδ1
∂t

(t, x1) +
∂Vδ1
∂x1

(t, x1)f1(t, x1, θ
⋆
1) ≤ −αδ1(|x1|) (3.25)
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as
aded systems
∣∣∣∣
∂Vδ1
∂x

(t, x1)

∣∣∣∣ ≤ cδ1(|x1|) (3.26)
lim
δ1→0

α−1
δ1

◦ αδ1(δ1) = 0 . (3.27)In addition, for the fun
tion Gθ1 of Assumption 3.2, it holds that, for all δ1 > 0 and as stends to +∞,
cδ1(s)Gθ⋆

1
(s) = O(αδ1 ◦ α−1

δ1
◦ αδ1(s)) (3.28a)

αδ1(s) = O(αδ1(s)) . (3.28b)In view of Theorem 2.5, it is 
lear that Assumption 3.28 implies that the zero-input
x1-subsystem is UGPAS on Θ1. We state the above result under the assumption thatwe know a Lyapunov fun
tion Vδ1 satisfying the above 
onditions as the latter impli
itlyimpose uniform global boundedness of the solutions of the 
as
aded system.In this respe
t, we stress that, 
ompared to Theorems 3.3 and 3.17, Theorem 3.26does not require the boundedness of solutions a priori. This 
onstitutes a very enjoyablefeature in appli
ations, as the 
orresponding requirement may easily be 
he
ked based onthe simple inspe
tion of the inter
onne
tion term and the bounds on the assumed Lyapunovfun
tion, its derivative and its gradient, for the driven subsystem.Regarding Assumption 3.2, it is worth emphasizing that, at the ex
eption of few arti-
les, as [SAT02, JSK96℄, it is typi
ally required that the dependen
e of the inter
onne
tionterm in x1 be at most linear (i.e. Gθ1 a�ne); see e.g. [SJK97℄. In fa
t, su
h a be-havior of g is impli
itly imposed by (3.28), but only when |x1| tends to in�nity. In thisrespe
t, we underline the similarity existing between the requirements (3.28) and [PL01,Assumption 4℄ (whi
h borrows from [SC64℄): in the parti
ular 
ase that, for all δ1 > 0,
lims→∞ αδ1(s)/αδ1(s) <∞, they are even equivalent.Remark 3.29 For 
larity, Theorem 3.26 is stated under the assumption that the boundon the inter
onne
tion term is independent of θ2. For the 
ase that this does not hold, asit appears more 
learly along the proof, it is su�
ient to additionally impose that, for all
θ1 ∈ Θ1,

lim
δ2→0

(
sup {Ψθ1,θ2(δ2) : θ2 ∈ Df2(δ2,∞) ∩ Θ2}

)
= 0 .The proof of Theorem 3.26 relies on the following result that also has interest at itsown. Similarly to Lemma 2.6, it provides su�
ient 
onditions to transform a �
lassi
al�Lyapunov fun
tion into another one that presents useful properties of its gradient and itstotal derivative.Lemma 3.30 Let δ > 0 be some given 
onstant and let X be a subset of R

n\
◦
Bδ. Supposethat there exist a 
ontinuously di�erentiable fun
tion V : R≥0 ×X → R≥0 and 
lass K∞fun
tions α, α, α and 
ontinuous fun
tions c, µ : R≥0 → R≥0, with c nonde
reasing, su
hthat, for all x ∈ X and all t ∈ R≥0,

α(|x|) ≤ V (t, x) ≤ α(|x|)

∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x) ≤ −α(|x|) .

∣∣∣∣
∂V

∂x
(t, x)

∣∣∣∣ ≤ c(|x1|) (3.29)



81and, as s tends to +∞,
c(s)µ(s) = O(α ◦ α−1 ◦ α(s)) (3.30)

α(s) = O(α(s)) , (3.31)Then, for any positive k, there exists a 
ontinuously di�erentiable fun
tion V : R≥0 ×X →
R≥0, 
lass K∞ fun
tions α̃ and α̃ and a nonnegative 
onstant η su
h that, for all x ∈ Xand all t ∈ R≥0,

α̃(|x|) ≤ V(t, x) ≤ α̃(|x|) (3.32)
∂V
∂t

(t, x) +
∂V
∂x

(t, x)f(t, x) ≤ −kV(t, x) (3.33)
∣∣∣∣
∂V
∂x

(t, x)

∣∣∣∣µ(|x|) ≤ ηV(t, x) . (3.34)and it holds that
α̃−1 ◦ α̃(s) = α−1 ◦ α(s) , ∀s ∈ R≥0 . (3.35)

�The above result is very similar to Lemma 2.6 that was mainly used to establishsemiglobal properties, at the di�eren
e that a stronger bound (3.34) on the gradient isprovided for the generated Lyapunov fun
tion. This additional feature allows us to getrid of the assumption of uniform boundedness of solutions. Please refer to the proof ofTheorem 3.26 below for further details. Before, we give the proof of the above lemma.Proof of Lemma 3.30. The proof is inspired by [PW96, Proposition 13℄, originally pre-sented in [LL69℄. Let a be a 
lass K fun
tion with the following properties:- a(s) = 1
kα ◦ α−1(s) for all s ≥ α(δ),- a(s) ≤ s for all s ≤ α(δ)/2,- a′(0) = 0,and de�ne ρ as the following fun
tion

ρ(s) = exp

(∫ s

1

dτ

a(τ)

)
, ∀s ∈ R≥0 .Firstly observe that, in view of (3.31), the integral in the exponential diverges. In the sameway, sin
e a(s) ≤ s in a neighborhood of zero, the integral tends to −∞ when s tends tozero. It 
an also be seen that ρ is 
ontinuous and in
reasing, whi
h makes it a 
lass K∞fun
tion. Also, based on [PW96, Lemma 12℄, ρ is 
ontinuously di�erentiable too. Hen
e,by operating the transformation V := ρ ◦V , we see that V is 
ontinuously di�erentiable aswell, and that (3.32) 
an be established with the following 
lass K∞ fun
tions: α̃ := ρ ◦ αand α̃ := ρ ◦ α. In turn, we have that, for all s ∈ R≥0,

α̃−1 ◦ α̃(s) = (α−1 ◦ ρ−1) ◦ (ρ ◦ α)(s) = α−1 ◦ α(s) .
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as
aded systemsIn addition, for all x ∈ X, V (t, x) ≥ α(δ), hen
e
∂V
∂t

(t, x) +
∂V
∂x

(t, x)f(t, x) ≤ −ρ′(V (t, x))α(|x|)

≤ − V(t, x)

a(V (t, x))
α ◦ α−1(V (t, x))

≤ −kV(t, x) .Furthermore, for all x ∈ X, we have that
∣∣∣∣
∂V
∂x

(t, x)

∣∣∣∣µ(|x|) ≤ ρ′(V (t, x))c(|x|)µ(|x|) ≤ V(t, x)

a(V (t, x))
c(|x|)µ(|x|) .The bound (3.34) follows by re
alling thatX ⊂ R

n\
◦
Bδ and by noti
ing that (3.30) togetherwith the 
ontinuity of µ ensures the existen
e of a nonnegative 
onstant η su
h that

sup
|x|≥δ

c(|x|)µ(|x|)
a(V (t, x))

≤ sup
|x|≥δ

kc(|x|)µ(|x|)
α ◦ α−1 ◦ α(|x|) ≤ η .

�Remark 3.31 If, in the statement of Theorem 3.26, the Lyapunov fun
tion Vδ1 (dire
tly)satis�es (3.32), (3.33) and (3.34), then it does not require (3.28) anymore. This followsby noti
ing that the proof of Theorem 3.26 starts by transforming the original Lyapunovfun
tion into another one satisfying (3.32), (3.33) and (3.34) thanks to the previous result.We are now ready to give the proof of Theorem 3.26, that guarantees UGPAS for
as
aded systems.Proof of Theorem 3.26. The argument 
onsists in 
onstru
ting a ball Bδ and a KLestimate for the solutions of the 
as
aded system, based on the respe
tive balls for the x1(i.e. (3.1a) with x2 ≡ 0) and the x2 subsystems, and to show that δ 
an be arbitrarilyredu
ed by a 
onvenient 
hoi
e of the parameters.For any positive number δ1, let Vδ1 and θ⋆1(δ1) ∈ Θ1 be generated by Assumption 3.28.Then, apply Lemma 3.30 to Vδ1 on the set X = R
n1 \ Bδ1 with µ = Gθ1 and k = 2. Itfollows that there exist a fun
tion Vδ1 , 
lass K∞ fun
tions α̃δ1 , α̃δ1 , and a nonnegative
onstant ηδ1 su
h that, for all x1 ∈ R

n1 \ Bδ1 and all t ∈ R≥0,
α̃δ1(|x1|) ≤ Vδ1(t, x1) ≤ α̃δ1(|x1|)

∂Vδ1
∂t

(t, x1) +
∂Vδ1
∂x1

(t, x1)f1(t, x1, θ
⋆
1) ≤ −2Vδ1(t, x1)

∣∣∣∣
∂Vδ1
∂x1

(t, x1)

∣∣∣∣Gθ1(|x1|) ≤ ηδ1Vδ1(t, x1) , (3.36)with the property that :
lim
δ1→0

α̃−1
δ1

◦ α̃δ1(δ1) = lim
δ1→0

α−1
δ1

◦ αδ1(δ1) = 0 . (3.37)Next, let Ψθ⋆
1
be given by Assumption 3.2 and 
hoose δ2 small enough that

Ψθ⋆
1
(δ2) ≤

1

ηδ1
, (3.38)
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h is always possible sin
e Ψθ⋆
1
is a 
lass K fun
tion and neither3 Ψθ⋆

1
nor ηδ1 dependon δ2. Finally, let θ⋆2 be any parameter in Df2(δ2,∞) ∩ Θ2.We pro
eed in four steps. We �rst show that, for this 
hoi
e of θ⋆ = (θ⋆1, θ

⋆
2), the
as
ade (3.1) is forward 
omplete. We then use this property to prove that it is uniformlyglobally stable with respe
t to a ball Bδ, with δ de�ned based on δ1 and δ2, and then thatthis ball is also uniformly globally attra
tive. We �nally show that the size of this ball Bδ
an be arbitrarily diminished by a 
onvenient 
hoi
e of the parameter.Proof of forward 
ompleteness: The total time derivative of Vδ1 along (3.1) yields

V̇δ1(t, x1) =
∂Vδ1
∂t

(t, x1) +
∂Vδ1
∂x1

(t, x1)
(
f1(t, x1, θ

⋆
1) + g(t, x, θ⋆)

)
.Therefore, in view of Assumption 3.2 and (3.36), it holds that, for all x1 ∈ R
n1 \ Bδ1 andall t ∈ R≥0,

V̇δ1(t, x1) ≤ −2Vδ1(t, x1) +

∣∣∣∣
∂V1

∂x1
(t, x1)

∣∣∣∣ |g(t, x, θ⋆)|

≤ −2Vδ1(t, x1) +

∣∣∣∣
∂V1

∂x1
(t, x1)

∣∣∣∣Gθ1(|x1|)Ψθ⋆
1
(|x2|)

≤ −
(
2 − ηδ1Ψθ⋆

1
(|x2|)

)
Vδ1(t, x1) . (3.39)Let Assumption 3.27 generate a 
lass KL fun
tion βδ2 su
h that, for any x20 ∈ R

n2 andany t ≥ t0,
|φ2(t, t0, x20, θ

⋆
2)| ≤ βδ2(|x20| , t− t0) + δ2 . (3.40)Let x0 = (x⊤10, x

⊤
20)

⊤ ∈ R
n1 × R

n2 be any given initial state and t0 ∈ R≥0 be any giveninitial time. In order to simplify the notations, we refer to φ(·, t0, x0, θ
⋆) as simply φ(·)and we de�ne v1(·) := Vδ1(·, φ1(·)). It follows from (3.39) that

|φ1(t)| > δ1 ⇒ v̇1(t) ≤ ηδ1Ψθ⋆
1
(βδ2(|x20| , 0))v1(t) .Hen
e, with Lemma 2.7, we 
on
lude that, for all t ≥ t0,

|φ1(t)| ≤ α̃−1
δ1

◦ α̃δ1(δ1) + α̃−1
δ1

(
α̃δ1(|x0|) exp

(
ηδ1Ψθ⋆

1
(βδ2(|x20| , 0))(t− t0)

) )
.Thus, de�ning

δ3 := α̃−1
δ1

◦ α̃δ1(δ1) , (3.41)and, for all s, t ∈ R≥0,
ρδ1δ2(s, t) := α̃−1

δ1

(
α̃δ1(s) exp

(
ηδ1Ψθ⋆

1
(βδ2(s, 0))t

) )
,we obtain that, for all x0 ∈ R

n and all t0 ∈ R≥0,
|φ1(t)| ≤ δ3 + ρδ1δ2(|x0| , t− t0) , ∀t ≥ t0 . (3.42)3Note that, for the 
ase that G depends on θ2 (and therefore on δ2), (3.38) remains a
hievable for δ2small enough under the additional 
ondition of Remark 3.29.
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as
aded systemsNoti
e that ρδ1δ2(·, t) ∈ K∞ for all t ∈ R≥0 and that ρδ1δ2(s, ·) is a 
ontinuous nonde
reasingfun
tion for all s ∈ R≥0. This ensures forward 
ompleteness of (3.1a), and 
onsequently ofthe 
as
ade (3.1). More pre
isely, de�ning
ρ̃δ1δ2(s, t) :=

√
ρδ1δ2(s, t)

2 + βδ2(s, 0)2 , ∀s, t ∈ R≥0 ,

ρ̃δ1δ2 inherits the same properties as ρδ1δ2 , and we obtain that, for all x0 ∈ R
n and all t0 ∈ R≥0,

|φ(t)| ≤ δ + ρ̃δ1δ2(|x0| , t− t0) , ∀t ≥ t0 , (3.43)with
δ := max{δ2 ; δ3} . (3.44)Proof of global stability: For all x0 ∈ R

n, 
onsider the time T δ1δ2 (|x20|) su
h that4
ηδ1Ψθ⋆

1

(
βδ2
(
|x20| , T δ1δ2 (|x20|)

)
+ δ2

)
= 1 .Note that, in view of (3.38), T δ1δ2 (|x20|) is �nite and nonnegative for all x20 ∈ R

n2 . Also,
T δ1δ2 (·) 
an be pi
ked as a nonde
reasing fun
tion. In view of (3.39) and (3.40), we havethat, for all t ≥ t0 + T δ1δ2 (|x20|),

|φ1(t)| > δ1 ⇒ v̇1(t) ≤ −v1(t) .Invoking again Lemma 2.7, we get that, for all t ≥ t0 + T δ1δ2 (|x20|),
|φ1(t)| ≤ α̃−1

δ1
◦ α̃δ1(δ1) + α̃−1

δ1

(
α̃δ1

(∣∣∣φ
(
t0 + T δ1δ2 (|x20|)

)∣∣∣
)
e
−(t−T δ1

δ2
(|x20|)−t0)

)
.In view of (3.41) and (3.43), and re
alling that T δ1δ2 (·) and ρ̃δ1δ2(s, ·) are nonde
reasing, itfollows that

|φ1(t)| ≤ δ3 + α̃−1
δ1

(
α̃δ1

(
δ + ρ̃δ1δ2

(
|x0| , T δ1δ2 (|x0|)

))
e
−(t−T δ1

δ2
(|x0|)−t0)

)
. (3.45)Next, let τδ1,δ2(|x0|) be any time instant large enough that

α̃−1
δ1,δ2

(
α̃δ1,δ2

(
ρ̃δ1δ2

(
|x0| , T δ1δ2 (|x0|)

)
+ δ
)
e
T

δ1
δ2

(|x0|)e−(τδ1,δ2
(|x0|)−t0)

)
≤ ρδ1δ2

(
|x0| , T δ1δ2 (|x0|)

)
.De�ne further

T̄ δ1δ2 (·) := max
{
T δ1δ2 (·) ; τδ1,δ2(·)

}
.Then, we obtain that

|φ1(t)| ≤ δ3 + ρδ1δ2(|x0| , T δ1δ2 (|x0|)) ≤ δ3 + ρδ1δ2(|x0| , T̄ δ1δ2 (|x0|)) , ∀t ≥ t0 + T̄ δ1δ2 (|x0|) .Noti
ing �nally that (3.42) implies that this relation also holds over the time interval
[t0; t0 + T̄ δ1δ2 (|x0|)], we 
on
lude that

|φ1(t)|δ3 ≤ νδ1,δ2(|x0|) , ∀t ≥ t0 ,4T δ1
δ2

(|x20|) is taken as zero if ηδ1Ψθ⋆

1
(βδ2(|x20| , 0) + δ2) ≤ 1.



85where
νδ1,δ2(·) := ρδ1δ2

(
·, T δ1δ2 (·)

)
.Uniform global stability of Bδ then follows from Assumption 3.27 and the fa
t that νδ1,δ2is a 
lass K∞ fun
tion.Proof of global attra
tivity: Re
onsider (3.45). For any positive r and ε, de�ne

T̃ δ2δ1 (ε, r) := T δ2δ1 (r) + ln α̃δ1 (δ + ρ̃δ1δ2

(
r, T δ1δ2 (r)

))

α̃δ1,δ2(ε)


 .Then it 
an be seen that, for all x0 ∈ Br and all t0 ∈ R≥0,

t ≥ t0 + T̃ δ2δ1 (ε, r) ⇒ |φ1(t)|δ3 ≤ ε .This shows the uniform attra
tivity of Bδ3 for (3.1a), 
f. De�nition 1.10. The attra
tivityof Bδ follows from Assumption 3.27.Proof of UGPAS: It is only left to show that δ 
an be arbitrarily redu
ed. In view of (3.37)and (3.41), δ3 
an be pi
ked arbitrarily small by 
hoosing δ1 small enough. It follows from(3.44) that δ 
an be made arbitrarily small by taking both δ1 and δ2 small enough. Thus, itsu�
es to pi
k the parameters θ⋆1 and θ⋆2 generated by these 
hosen δ1 and δ2, to 
on
ludethat, for any δ > 0, there exist some parameters θ⋆1 ∈ Θ1 and θ⋆2 ∈ Θ2 su
h that Bδ isuniformly globally asymptoti
ally stable for the 
as
ade (3.1) with θ = θ⋆. �Smooth reje
tion of disturban
esWe illustrate the e�
ien
y of Theorem 3.26 through the following example. Consider a
ontrol system a�e
ted by a non-vanishing perturbation, i.e.,
ẋ1 = f1(t, x1) + h(t, x1)[u+ d(t, x1)] (3.46)where d is a bounded fun
tion satisfying Carathédory 
onditions whi
h is lo
ally Lips
hitzin x1. In general, we have d(t, 0) 6≡ 0, whi
h justi�es the denomination �non-vanishingperturbation� �
f. [Kha01℄. Consider the 
ontrol problem of �nding a 
ontrol u(t, x1)su
h that the 
losed-loop system is uniformly globally asymptoti
ally stable within thefollowing setting.Let u⋆(t, x1) be su
h that the 
losed-loop system that makes (3.46) uniformly globallyasymptoti
ally stable (UGAS) provided that d ≡ 0. Let V1 be a stri
t Lyapunov fun
tionfor this nominal 
losed-loop system, that is, assume that there exist α1, α1, α1 ∈ K∞ su
hthat, for all t ∈ R≥0 and x1 ∈ R

n1 ,
α1(|x1|) ≤ V1(t, x1) ≤ α1(|x1|) (3.47)

∂V1

∂t
(t, x1) +

∂V1

∂x1
(t, x1)(f1(t, x1) + h1(t, x1)u

⋆(t, x1)) ≤ −α1(|x1|) . (3.48)Then, it is well-a

epted that the 
ontroller u⋆(t, x1) 
ompleted by 
onvenient dis
ontinuousterms of the state (roughly of the same size as the perturbation) still a
hieves UGAS and, in
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as
aded systems
ertain 
ases, �nite-time stabilization �
f. [Utk99, EKNN92℄. More pre
isely, the system(3.46) may be rendered UGAS via the dis
ontinuous feedba
k
u(t, x1) = u⋆(t, x1) − dM sign(∂V1

∂x1
(t, x1)h1(t, x1)

)
. (3.49)Indeed, a straightforward 
al
ulation yields

∂V1

∂t
(t, x1) +

∂V1

∂x1
(t, x1)

(
f1(t, x1) + h1(t, x1)(u(t, x1) + d(t, x))

)
≤ −α1(|x1|) . (3.50)Under appropriate regularity properties on the 
ontrol, the disturban
e and the Lyapunovfun
tion, and embedding the di�erential equation (3.46) in a Fillippov di�erential in
lusion,we 
an 
on
lude from (3.47) and (3.50), that the 
losed-loop system is UGAS.We stress that, even though when pla
ed in the right theoreti
al setting, one may showthat the UGAS property of the nominal system is 
onserved in presen
e of non-vanishingdisturban
es, this is at the pri
e of an in�nite-gain 
ontroller that indu
es undesirablephenomena su
h as 
hattering.A 
ommon remedy adopted in 
ontrol pra
ti
e is to repla
e sign(·) by a saturationfun
tion sat(·) with �high slope� near zeo, e.g. the fun
tion sat(σx) := σx for all |x| ≤ 1/σ,sat(σx) := sign(x) for all |x| > 1/σ, with a su�
iently large σ. In more general terms, we
an de�ne a saturation fun
tion as follows.De�nition 3.32 (Saturation fun
tion) A fun
tion sat : R → [−1; 1] is said to be asaturation if it is lo
ally Lips
hitz, nonde
reasing and satis�es

lim
|s|→∞

|sat(s)| = 1 , and sat(s)s > 0 , ∀s 6= 0 .Typi
al examples of saturation fun
tions are tanh(s), arctan(s), s/(1+s2), sign(s)min{1; |s|}.For a number of spe
i�
 appli
ations, for instan
e me
hani
al systems with fri
tion, itmay be observed in simulations that the use of sat(σ ·) in pla
e of sign(·) in (3.49) as anapproximation of the ideal dis
ontinuous term impedes the asymptoti
 
onvergen
e of thetraje
tories to the origin. Instead, a steady-state error is 
ommonly observed.Consider further the 
ase when the system (3.46) is inter
onne
ted in 
as
ade with ase
ond subsystem:
ẋ1 = f1(t, x1) + h(t, x1)(u+ d(t, x)) + g(t, x) (3.51a)
ẋ2 = f2(t, x2) . (3.51b)where u ∈ R

m is the 
ontrol, d : R≥0×R
n → R

m is a non-measured perturbation satisfying
|d(t, x)| ≤ dM for all x ∈ R

n and all t ∈ R≥0, and f1, f2, h, d and g satisfy the Carathéodory
onditions and are all lo
ally Lips
hitz in x.Su
h a situation may arise due to a 
as
aded-based design (
f. [SJK97, LP04℄), or fromthe physi
al stru
ture of the plant. For instan
e, one 
ould think of an ele
tro-me
hani
alsystem: the x1 dynami
s may be thought of as that of a me
hani
al system, the per-turbation d may represent external disturban
es, a
tuator de�
ien
y, et
., the subsystem(3.51b) represents that of the 
losed-loop dynami
s of the a
tuators whi
h may in turnin
lude disturban
es.As we remarked earlier, UGAS may be a
hievable for ea
h subsystem of the 
as
ade(3.51), using dis
ontinuous fun
tions of the state. However, the 
lassi
al theorems for
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as
ades of UGAS systems (e.g. [SS90a, AAS02, PL01℄) do not apply as they rely on theassumption that the right-hand side term is su�
iently smooth. In addition, when usingsmoothening te
hniques exposed above (i.e. sat instead of sign), UGAS is lost. Hen
e, werely on Theorem 3.26 to show that, with a smooth approximation of the nominal 
ontrollaw obtained by repla
ing the sign fun
tion by a su�
iently sti� saturation, the 
as
ade isUGPAS. The stability analysis follows a 
as
ades-based reasoning: it 
onsists in showingthat ea
h subsystem in the 
as
ade is UGPAS (i.e. when g ≡ 0) and, then, that the
as
aded inter
onne
tion does not destroy stability.Proposition 3.33 (Smooth approximation of sign(·) for 
as
ades) Let V1 be any smoothLyapunov fun
tion for the UGAS nominal system ẋ1 = f1(t, x1) + h1(t, x1)u
⋆(t, x1), i.e.,for all x1 ∈ R

n1 and all t ∈ R≥0, (3.47), (3.48) hold and
∣∣∣∣
∂V1

∂x1
(t, x1)

∣∣∣∣ ≤ c1(|x1|) ,where c1 : R≥0 → R≥0 is a 
ontinuous nonde
reasing fun
tion. Assume further that thereexists ψ ∈ K and a 
ontinuous fun
tion G : R≥0 → R≥0 su
h that
|g(t, x)| ≤ G(|x1|)ψ(|x2|) , ∀(x1, x2) ∈ R

n1 × R
n2 ∀t ∈ R≥0 , (3.52)and that, as s tends to +∞,

G(s)c1(s) = O(α1 ◦ α−1
1 ◦ α1(s)) (3.53)

α1(s) = O(α1(s)) . (3.54)Assume �nally that (3.51b) is UGAS. Then, for any saturation fun
tion sat and any positive
onstant ε, the overall system (3.51) in 
losed loop with
u(t, x1) := u⋆(t, x1) − (1 + ε)dM sat(θ∂V1

∂x1
(t, x1)h1(t, x1)

)
, (3.55)is UGPAS on Θ := R>0, with θ as tuning parameter.In parti
ular, if sat is 
hosen as a smooth fun
tion, then the 
ontrol u inherits the sameregularity properties as u⋆ . Noti
e also that, for the 
ase of an autonomous system and if

u⋆ is a state feedba
k, then u is independent of time as well. Furthermore, the magnitudeof the additional 
ontrol law is only required to be stri
tly greater than dM ; in parti
ular,if u⋆ 
an be designed as a bounded 
ontrol, then u is bounded too.Proof of Proposition 3.33. For all x1 ∈ R
n1 and all t ∈ R≥0, let

Lh1
V1(t, x1) :=

∂V1

∂x1
(t, x1)h1(t, x1) .When 
onsidering g(t, x) ≡ 0, the system (3.51a) in 
losed loop with (3.55) is

ẋ1 = f1(t, x1) + h1(t, x1)
[
u⋆(t, x1) − (1 + ε)dM sat (θLh1

V1(t, x1)) + d(t, x)
]
.Using (3.48), the assumed properties of sat and the boundedness of the perturbation, thederivative of V1 along the traje
tories of (3.51a) when dis
onne
ted yields

V̇1(t, x1) ≤ −α1(|x1|) − (1 + ε)dMLh1
V1(t, x1)sat (θLh1

V1(t, x1)) + Lh1
V1(t, x1)d(t, x)

≤ −α1(|x1|) − dM |Lh1
V1(t, x1)|

[
(1 + ε) |sat (θLh1

V1(t, x1))| − 1
]
. (3.56)
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as
aded systemsConsider any arbitrary δ1 > 0, and 
hoose θ⋆(δ1) large enough thatsat(θ⋆α1(δ1)

2dM

)
≥ 1

1 + ε
, (3.57)whi
h is always possible sin
e α1 is independent of θ and sin
e sat is 
ontinuous and tendsto 1 as its argument tends to +∞. We 
laim that, with this 
hoi
e of parameter,

|x1| ≥ δ1 ⇒ V̇1(t, x1) ≤ −1

2
α1(|x1|) . (3.58)To see this, assume that |x1| ≥ δ1 and distinguish the following two 
ases:- Case 1: |Lh1

V1(t, x1)| ≤ α1(δ1)/2dM : we then get from (3.56) that
V̇1(t, x1) ≤ −α1(|x1|) + εdM |Lh1

V1(t, x1)| ≤ −α1(|x1|) +
α1(δ1)

2
,and (3.58) follows.- Case 2: |Lh1

V1(t, x1)| > α1(δ1)/2dM : it then follows from (3.57) that
|sat (θ⋆Lh1

V1(t, x1))| ≥
1

1 + ε
,and (3.58) dire
tly follows from (3.56).In view of (3.47) and (3.58), and noti
ing that the fun
tions α1 and α1 are independent of

δ1 (whi
h makes (3.27) trivial), we 
on
lude with (3.52), (3.53) and (3.54) that Assumption3.28 holds, and the 
on
lusion follows applying Theorem 3.26. �3.4 Asymptoti
 stability in the large of 
as
aded systemsThe above-presented results provide su�
ient 
onditions to establish semiglobal and/orpra
ti
al stability properties of a 
as
aded system based on the the assumption of simi-lar properties for ea
h subsystem taken separately. It is notably interesting to see that,provided a uniform boundedness of the solutions of the overall system, uniform semiglobalasymptoti
 stability is preserved, meaning that the size of the basin of attra
tion 
an bearbitrarily enlarged.In pra
ti
e, 
ontrol appli
ations typi
ally spe
ify a minimum operating bandwidth. Inthis respe
t, the information of USPAS or USAS of the system ensure that any of thesespe
i�
ations 
an be rea
hed by a 
onvenient 
hoi
e of some parameters. But a naturalquestion then arises: how to tune these parameters in order to obtain a given region ofattra
tion for the 
as
ade ?To the best of our knowledge, the �rst works in the literature of stability analysis thattook into a

ount su
h a spe
i�ed domain instead of an in�nitesimal neighborhood of theoperating point, referred to this property as asymptoti
 stability in the large5.Stability in the large is the best one 
an hope for systems with multiple equilibria whenno free tuning parameter is available. The use of bounded 
ontrol inputs may also lead to5We take this opportunity to stress that, as observed in [LLLP06℄, asymptoti
 stability in the large haswrongly been 
onfused with global asymptoti
 stability.
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tion. Other appli
ations arise in output feedba
k 
ontrol (seee.g. [LdLM03℄).Please note that, in the sequel, we refer to stability in the large as uniform asymptoti
stability on B∆, where B∆ then 
onstitutes an expli
itly spe
i�ed estimate of the basin ofattra
tion.The fa
t that two UAS systems in 
as
ade yields a UAS system is well established (seee.g. [Vid80℄), but this result does not estimate the domain of attra
tion of the resulting
as
ade. In [Son03℄, it is shown that the driven subsystem keeps its domain of attra
tionprovided that the perturbation indu
ed by the driving subsystem does not make the drivenstate leave its domain of attra
tion. Here, we use this idea to provide an expli
it expressionof an estimate of the domain of attra
tion of the 
as
ade, based on those 
orresponding tothe subsystems.The typi
al standing assumption in the stability analysis of 
as
aded systems is the(uniform) boundedness of the solutions, see for instan
e [Son89b, SS90a℄. In what follows,we use a similar assumption to show that, providing little restri
tive properties of thestru
ture of the dynami
al system, the 
as
ade 
omposed of two UAS systems is UAS.Moreover, and overall, an expli
it estimate of the domain of attra
tion of the 
as
ade isprovided based on those of the two subsystems, the 
onvergen
e rate of their solutions andthe uniform bound on the solutions of the 
as
ade. We shall 
onsider the stability of
{
ẋ1 = f1(t, x1) + g(t, x)
ẋ2 = f2(t, x2) ,as introdu
ed in (3.1), under the following standing assumption.Assumption 3.34 (Bound on g) The inter
onne
tion term g is uniformly bounded intime and there exists a nonde
reasing fun
tion G : R≥0 → R≥0 su
h that, for all x =

(x⊤1 , x
⊤
2 )⊤ ∈ R

n1 × R
n2 and all t ∈ R≥0,

|g(t, x)| ≤ G(|x|) |x2| .In a �rst time, we assume that the driven subsystem is UAS on a given ball and thatan asso
iated Lyapunov fun
tion is expli
itly known.Assumption 3.35 (Lyapunov UAS of the driven subsystem) There exist a positivenumber ∆1, a 
ontinuously di�erentiable fun
tion V1 : R≥0 ×B∆1
→ R≥0, some K∞ fun
-tions α1 and α1, a positive 
onstant k1 and a 
ontinuous nonde
reasing fun
tion c1 su
hthat, for all x1 ∈ B∆1

and all t ∈ R≥0,
α1(|x1|) ≤ V1(t, x1) ≤ α1(|x1|)

∂V1

∂t
(t, x1) +

∂V1

∂x1
(t, x1)f1(t, x1) ≤ −k1V1(t, x1)

∣∣∣∣
∂V1

∂x1
(t, x1)

∣∣∣∣ ≤ c1(|x1|) .We also assume that the driving subsystem is UAS on a given ball B∆2
, with a KLestimate on its solutions.
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as
aded systemsAssumption 3.36 (UAS of the driving system) The driving subsystem ẋ2 = f2(t, x2)is uniformly asymptoti
ally stable on a ball B∆2
, ∆2 > 0, i.e. there exists a KL fun
tion

β2 su
h that, for all x20 ∈ B∆2
and all t0 ∈ R≥0,

|x2(t, t0, x20)| ≤ β2(|x20| , t− t0) , ∀t ≥ t0 .Finally, we impose the following uniform boundedness on the solutions of the overallsystem.Assumption 3.37 (Boundedness of solutions) The solutions of (3.1) are uniformlybounded on a ball Bb, b > 0, i.e. there exist B > 0 su
h that they satisfy, for all x0 ∈ Bband all t0 ∈ R≥0,
|x(t, t0, x0)| ≤ B , ∀t ≥ t0 .Based on these assumptions, we are now ready to present a �rst result that providesan estimate of the basin of attra
tion for the overall 
as
ade (3.1).Theorem 3.38 (UAS + UAS + UB ⇒ UAS) Under Assumptions 3.34�3.37, the 
as-
aded system (3.1) is UAS on B∆ where

∆ = min

{
α1

−1 (λα1(∆1)) ; β−1
20

(
(1 − λ)α1(∆1)

c1(B)G(B)

)
; b ; ∆2

}
, (3.59)

λ ∈ (0; 1) being a free design parameter and β20(·) := β2(·, 0) .The proof of this result is largely inspired from the one of [PL01, Lemma 2℄. We proposeit in Se
tion A.3.Note that systems with a Lyapunov fun
tion as in Assumption 3.35 are fairly 
ommonin pra
ti
e. More pre
isely, it was shown in [TP99℄ that, for a nonlinear time-varyingsystem de�ned by a lo
ally Lips
hitz right-hand side, uniform asymptoti
 stability of theorigin is equivalent to the existen
e of a smooth fun
tion satisfying the �rst two boundsof Assumption 3.35. The bound on the gradient is also little 
onservative; it is notablytrivially satis�ed for time-invariants systems.In the 
ase when su
h a Lyapunov is nevertheless not provided, we 
an use the followingresult. The pri
e to pay is that the driven subsystem should then be uniformly exponen-tially stable. In addition, a more 
onservative regularity 
ondition on f1 is required.Assumption 3.39 (UES of the driven subsystem) The driven subsystem ẋ1 = f1(t, x1)is uniformly exponentially stable on B∆1
with parameters (k1, γ1) (
f. De�nition 1.15), f1is 
ontinuously di�erentiable and there exist positive 
onstants j and L su
h that, for all

x1 ∈ Bj and all t0 ∈ R≥0, ∣∣∣∣
∂f1

∂x1
(t, x1)

∣∣∣∣ ≤ L , ∀t ≥ t0 .Corollary 3.40 (UAS + UES + UB ⇒ UAS) Under Assumptions 3.34, 3.36, 3.37and 3.39, the 
as
aded system (3.1) is UAS on B∆ where
∆ = min

{√
λk1∆̃1

k1

; β−1
20

(
(1 − λ)k1∆̃1

c1BG(B)

)
; ∆̃

}
, (3.60)



91with any λ ∈ (0; 1) and
k1 :=

1 − e−2LT

2L
(3.61a)

k1 :=
k2

1(1 − e−2LT )

2γ1
(3.61b)

c1 :=
2k1(1 − e−(γ1−L)T )

γ1 − L
(3.61
)

T :=
ln(2k2

1)

2γ1
(3.61d)

β20(·) := β2(·, 0) (3.61e)
∆̃ := min

{
∆̃1 ; ∆2 ; b

}
, (3.61f)and ∆̃1 being any positive number su
h that

∆̃1 ≤ ∆1 and ∆̃1 <
j

k1
. (3.62)Please refer to Se
tion A.4 for the proof.A noteworthy parti
ular 
ase of the two previous results is when both subsystems areUES. In this situation, we show that the 
as
aded system (3.1) is UES as well. We statethis fa
t in the following result.Assumption 3.41 (UES of the driving subsystem) The subsystem ẋ2 = f2(t, x2) isuniformly exponentially stable on a ball B∆2

with parameters (k2, γ2).Theorem 3.42 (UES+UES+UB ⇒ UES) Under Assumptions 3.34, 3.37, 3.39 and3.41, the 
as
aded system (3.1) is UES on B∆ where
∆ = min

{
k1∆̃1

√
λ

k1

;
(1 − λ)k1∆̃1

k2c1BG(B)
; ∆̃

}
,

k1, k1, k1, ∆̃1 and ∆̃ being given in (3.61)-(3.62) and λ ∈ (0; 1) being a free pararameter.The proof is given in Se
tion A.4. We underline that the parameters (k, γ) for theUES of (3.1) are expli
itly 
onstru
ted based on the information we have about the twosubsystems. This 
onstitutes a noteworthy additional result. For more 
larity, they arehowever not given in the previous statement, but 
an easily be found along the lines of theproof.Again, if the bound on the gradient of f1 in Assumption 3.39 is not ful�lled, one 
anuse the following. This last result assumes instead the existen
e of a 
onvenient Lyapunovfun
tion for the driven subsystem. In this situation, the expression of the estimate of thedomain of attra
tion of the whole 
as
ade is 
onsiderably simpli�ed.Assumption 3.43 There exist a positive number ∆1, a 
ontinuously di�erentiable fun
-tion V1 : R≥0 × B∆1
, and some positive numbers k1, k1, k1 and c1 su
h that, for all

x10 ∈ B∆1
and all t ∈ R≥0,

k1 |x1|2 ≤ V1(t, x1) ≤ k1 |x1|2
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aded systems
∂V1

∂t
(t, x1) +

∂V1

∂x1
(t, x1)f1(t, x1) ≤ −k1 |x1|2

∣∣∣∣
∂V1

∂x1
(t, x1)

∣∣∣∣ ≤ c1 |x1| .Corollary 3.44 Under Assumptions 3.34, 3.37, 3.41 and 3.43 the 
as
aded system (3.1)is UES on B∆ where
∆ = min

{
k1∆1

2k1

; k1

∆1

2k2c1BG(B)
; ∆2

}
.Proof of Corollary 3.44. The proof is straightforward by noti
ing that, in Theorem 3.42,Assumption 3.39 is only used to ensure the existen
e of a Lyapunov fun
tion V1 as inAssumption 3.43, and so we have that ∆̃1 = ∆1. �The results presented in this se
tion extend the possibilities of the 
as
ades approa
hfor the analysis of nonlinear time-varying systems. Let us now apply them on the followingillustrative example.Example 3.45 We 
onsider the following two-dimensional system

ẋ1 = −x1 + x2
1 −

1

3

(
1 − (x2

1 + x2
2)
)
x3

1x
2
2 (3.63a)

ẋ2 = −x2 . (3.63b)It 
an be put in the 
as
ade form (3.1) by letting
f1(t, x1) = −x1(1 − x1) , g(t, x) = −1

3
(1 − x2

1 − x2
2)x

3
1x2 , f2(t, x2) = −x2 .Assumption 3.34 then follows dire
tly with

G(s) =
1

3
max{1; s2}s4 , ∀s ∈ R≥0 .Moreover, 
onsidering the fun
tion V1(x1) = x2

1/2, it holds that
dV1

dx1
(x1)f1(t, x1) ≤ −(1 − |x1|)x2

1 .Therefore, for any positive ∆1 < 1 and all x1 ∈ B∆1
,

dV1

dx1
f1(t, x1) ≤ −(1 − ∆1)x

2
1 = −2(1 − ∆1)V1 .Assumption 3.43 is then satis�ed with

k1 = k1 =
1

2
, k1 = 2(1 − ∆1) , and c1 = 1 .Furthermore, its derivative along the traje
tories of (3.63) yields

V̇1 ≤ −
(
1 − |x| + 1

3
(1 − |x|2)x2

1x
2
2

)
x2

1 .



93Noti
e that, for ea
h B ≤ 1, |x| ≤ B implies V̇1 ≤ 0. The 
onditions of Proposition 2.13are thus ful�lled with a = 0. It follows that, for all |x0| ≤ B, |x(t, t0, x0)| ≤ B for all
t ≥ t0. In other words, Assumption 3.37 is satis�ed with any b = B ≤ 1. Finally, the x2subsystem is 
learly UGES with parameters (k2, γ2) = (1, 1), whi
h establishes Assumption3.41 for any ∆2 > 0. Applying Corollary 3.44 shows that the 
as
ade (3.63) is uniformlyasymptoti
ally stable on B∆, with

∆ = min

{
∆1

√
λ ;

(1 − λ)∆2
1

BG(B)
; B ; ∆2

}
.For instan
e, for B = ∆1 = ∆2 = 0.9 and λ = 2/3, we obtain that ∆ = 0.68. The size ofthe basin of attra
tion of the overall 
as
ade is therefore of the same order as those of thesubsystems taken separately. We stress that this estimate is moreover representative of thea
tual size of the domain of attra
tion sin
e, for instan
e, the initial 
ondition (1, 0) (whi
his an equilibrium) yields non-
onverging solutions. The largest ball of initial 
onditions onwhi
h the origin is uniformly asymptoti
ally stable is 
onsequently ne
essarily smaller thanthe unit ball. Figure 3.3 represents the ve
tor �eld of the system (3.63) in the state spa
etogether with the balls of radius 0.68 and 1 respe
tively. Note that all solutions starting inthe region R>1 × R diverge.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 3.3: Ve
tor �eld in the state-spa
e.
�



94 3. Stability of nonlinear time-varying 
as
aded systemsCon
lusion. This 
hapter presents tools that aim at simplifying the study of semiglobaland/or pra
ti
al stability properties for 
omplex systems. In general terms, they establishUSPAS, USAS or UGPAS of 
as
aded systems based on the assumption of a similar prop-erty on ea
h of the inter
onne
ted subsystems. In a �rst step, these results are establishedunder an assumption of boundedness of the solutions of the overall 
as
ade and the ex-pli
it knowledge of a Lyapunov fun
tion for the driven subsystem. It is worth pointing outthat, for the UGPAS 
ase, the solutions' boundedness requirement is repla
ed by a simplegrowth order 
omparison, whi
h makes its use mu
h simpler. Moreover, thanks to the
onverse theorem established in Chapter 1, we 
an get rid of the assumption of expli
itlyknowing a Lyapunov fun
tion, modulo a stronger regularity assumption on the right-handside term of the driven subsystem. Examples are proposed along the 
hapter to illustrateour purpose.



95
Chapter 4Set-stabilityIn the previous 
hapter, we have presented some tools that provide semiglobal and pra
ti
alstability properties for a 
as
aded system, based on the stability property satis�ed by ea
hsubsystem taken separately. We have shown that the semiglobal and/or pra
ti
al stability
onstitutes a good robustness measure for a globally asymptoti
ally stable system subje
tedto non-vanishing external disturban
es, model imperfe
tion, et
.Although, as it is further underlined through 
on
rete examples in Chapter 6, thesetypes of stability property arise very often in 
ontrol pra
ti
e, they might 
onstitute toostrong a requirement on some o

asions. For instan
e, 
ontrol limitations may impede toarbitrarily redu
e the size of the attra
tive ball. The following basi
 example illustratesthis fa
t.Example 4.1 (From UGPAS to set-stability) Consider the simple s
alar system

ẋ = −θx+ 1 ,where θ is a free positive gain. In view of the results presented in Chapter 2, or simply byintegrating dire
tly this di�erential equation, uniform global pra
ti
al asymptoti
 stability(UGPAS) 
an easily be established. More pre
isely, given any positive δ, any 
hoi
e θ⋆(δ) >
1/δ ensures that the ball Bδ is globally asymptoti
ally stable.However, we 
an imagine that physi
al 
onstraints prevent to 
hoose an arbitrarilylarge parameter. If, for instan
e, θ is restrained to the interval [0; 10], then the smallesta
hievable steady-state error is 1/10. Said di�erently, we lose UGPAS and only 
on
ludeglobal asymptoti
 stability of any ball of radius larger than 1/10. �A wide range of appli
ations. Uniform stability of balls 
entered at the origin indeed
onstitutes a parti
ular 
ase of the set-stability analysis we wish to 
ondu
t in this 
hapter(
f. Se
tion 1.2 for de�nitions), but the motivations for this study are mu
h wider, as theset under 
onsideration is not required to be 
ompa
t.For instan
e, set-stability in
ludes as a spe
ial 
ase the analysis of partial stability,
f. [Vor98℄. De
omposing the state x as (y⊤, z⊤)⊤, with y = (y1, . . . , yp)

⊤ and z =
(z1, . . . , zn−p)⊤, with p ∈ N≥1 and n ∈ N≥2, this 
on
ept requires that only the y-part ofthe state be (asymptoti
ally) stable, while the behavior of the remaining variables z is not
onstrained. More pre
isely, partial stability 
an be de�ned as the following adaptation of[Vor98, De�nition 0.3.1℄1.1The original de�nition is given in "ε − δ" terms, while we have here preferred a KL formulation.



96 4. Set-stabilityDe�nition 4.2 (Partial UAS/UGAS) The origin of the system ẋ = f(t, x) introdu
edin (1.1) is said to be partially uniformly asymptoti
ally stable on a 
losed subset I of
R
n if (1.1) is forward 
omplete on I and, for all x0 ∈ I and all t0 ∈ R≥0, its solution

φ(·, t0, x0) =: (y(·, t0, x0)
⊤, z(·, t0, x0)

⊤)⊤ satis�es
|y(t, t0, x0)| ≤ β(|x0| , t− t0) , ∀t ≥ t0 .If I = R

n, the origin is said to be partially uniformly globally asymptoti
ally stable, orsimply y-UGAS.It 
an be observed that this de�nition pre
isely 
orresponds to the de�nition of uniform(global) asymptoti
 stability of the set A = {0} × R
n−p (see De�nition 1.11).The 
on
rete developments based on this 
on
ept are numerous and 
on
ern �elds asvarious as me
hani
al systems, parti
le 
ontrol in ele
tromagneti
 �elds, e
ologi
al systemset
., 
f. [Vor98℄ and referen
es therein.For instan
e, fri
tion in me
hani
al systems is often modelled as an exogenous dynam-i
al subsystem (
f. e.g. [COaL95, SAGP00℄), thus generating an additional �super�uous�state on whi
h no pres
ribed behavior is imposed.From a stability analysis point of view, another appli
ation of partial stability 
on
ernsadaptive 
ontrol. We may indeed 
onsider as an extended state x the a
tual state y plusthe adaptation error variables z. In many 
ases, one desires that the `real' state y presentsa 
onvenient asymptoti
 stability property, while the 
onvergen
e of the parameters esti-mation z is often not required.In view of this generality, it appears interesting and natural to derive su�
ient 
on-ditions under whi
h stability of (non ne
essarily 
ompa
t) sets is preserved by 
as
adeinter
onne
tions.One or two measures ? As it has already been underlined in Chapter 1, the set-stabilityde�nition we 
onsider in this do
ument is de�ned based on two measures, 
f. Proposition1.14. This 
on
ept, originally introdu
ed by Mov
han in [Mov60℄ is less 
onservative thanits natural one-measure 
ounterpart earlier proposed by Barbashin in [Bar51℄. With thesame notations as in Proposition 1.14, the latter would 
orrespond to

|φ(t, t0, x0)|A ≤ β(|x0|A , t− t0) , ∀t ≥ t0 .This type of set-stability has been extensively studied, in both 
ases of 
ompa
t and non-
ompa
t sets, and has given rise to powerful stability results. See for instan
e [Wil69,LSW96, TPL02℄. See also [Lin96℄ for a 
on
ept of input-to-state stability with respe
t tonon ne
essarily 
ompa
t sets.However, the fa
t that the distan
e of the solution from the set A be only determinedby the the distan
e of initial states from this very set is a strong requirement, notablywhen A is unbounded. To take up again the example of adaptive 
ontrol, although onedoes not ne
essarily require that the estimation error 
onverges to zero, the in�uen
e ofthe initial values of the parameters on the behavior of state-solutions is not negligible inmost situations, preventing a set-stability approa
h with respe
t to one measure.In addition, the Lyapunov 
hara
terization of the set-stability de�ned with one mea-sure, 
f. [LSW96℄, requires that the Lyapunov fun
tion vanishes on the whole set A, whi
h,as seen in Chapter 1 (p. 41), is an important 
onstraint in pra
ti
e, even when A is 
om-pa
t. For the stability analysis of perturbed system, this requirement indeed prevents touse the Lyapunov fun
tion asso
iated to the nominal system.



97The previous observations mainly motivated the use the set-stability with respe
t totwo measures, as the one given by De�nition 1.9. Although not in
luded in the presentdo
ument, please note that we have provided similar results for the one-measure 
ase in[TCPJ06℄.Set-stability for 
as
ades. In this 
hapter, we study this stability property for 
as
adedsystems by assuming that, for ea
h subsystem taken separately, a given set is globallyasymptoti
ally stable. More pre
isely, we show that, if all the solutions of the 
as
ade areglobally bounded (with respe
t to the origin), then the 
ross produ
t of the two original setsis globally asymptoti
ally stable for the overall 
as
ade. We also show that the requirementof boundedness of solutions may be relaxed to just global boundedness with respe
t to aset for a 
ertain 
lass of 
as
aded systems. Furthermore, we give a su�
ient 
ondition,in terms of growth rate restri
tions, that allows to relax this assumption to just forward
ompleteness and 
onsequently makes our tool easy to use in many appli
ations.We stress that, for the parti
ular 
ase when the 
onsidered sets are balls 
entered atthe origin, we retrieve a dire
t 
onsequen
e of [JTP94, Proposition 3.2℄, whi
h establishesthat the input to state pra
ti
al2 stability is preserved by the 
as
ade 
omposition.The results we provide in this 
hapter rely on similar arguments as the well-knownBarb lat's lemma [Bar59℄ whi
h holds only for time-invariant systems. For this reason, werestri
t our attention to autonomous 
as
ades. More pre
isely, we 
onsider
ẋ1 = f1(x1) + g(x1, x2) (4.1a)
ẋ2 = f2(x2) , (4.1b)where x1 ∈ R

n1 , x2 ∈ R
n2 and all fun
tions are assumed lo
ally Lips
hitz.Please note that the ex
lusion of time-varying systems from the s
ope of this studyis only apparent as set-stability in
ludes, as a spe
ial 
ase, the stability analysis of time-varying system. However, as a signi�
ative drawba
k, uniformity in the initial time t0 (andthe robustness this naturally indu
es (
f. p. 23)) 
annot be guaranteed with a set-stabilityde�ned based on two measures as the one we have de
ided to 
onsider for the reasonsexposed above. Let us illustrate this with the following elementary example.Example 4.3 (Set-stability and time-varying systems) Consider the following s
alartime-varying dynami
al system:

ẋ = −(1 + t)x . (4.2)De�ning ξ1 := t, ξ2 := x and ξ := (ξ1, ξ2)
⊤, it 
an be represented as the two-dimensionaltime-invariant systeṁ

ξ = f(ξ) , where f(ξ) :=

(
1

−(1 + ξ1)ξ2

)
. (4.3)Let A := R≥0×{0}. Due to the fa
t that |ξ|A = x, saying that the origin of (4.2) is globallyasymptoti
ally stable is equivalent to saying that the set A is globally asymptoti
ally stablefor (4.3), 
f. Proposition 1.14. More pre
isely, it 
an be seen that, for any ξ0 ∈ R

2, itssolution satis�es
ξ(t, ξ0) =

(
t+ ξ10

ξ20e
ξ10(1+ξ10/2)e−t(1+t/2)

)
, ∀t ∈ R≥0 , (4.4)2Here, �pra
ti
al� should not be understood in the sense of Chapter 1, as the attra
tive ball is �xed andnot required to be arbitrarily redu
ible by a 
onvenient tuning.
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onsequently,
|ξ(t, ξ0)|A = |ξ2(t, ξ0)| ≤ β(|ξ0| , t) := |ξ0| e|ξ0|(1+|ξ0|/2)e−t(1+t/2) , ∀t ∈ R≥0 .To see more 
learly why uniformity of the indu
ed stability property 
annot be provided bythis approa
h, noti
e that (4.4) 
an be written in the �time-varying� 
ontext as

φ(t, t0, ξ0) = x0e
t0(1+t0/2)e−t(1+t/2) = x0e

−(t−t0)(1+t−t0)e2t0(t+t0) , ∀t ≥ t0 ≥ 0 ,and the 
orresponding KL estimate is therefore non-uniform in the initial time t0.4.1 Preliminary de�nitions and toolsWe �rst re
all some de�nitions related to set-stability for nonlinear autonomous systemsof the form
ẋ = f(x) (4.5)where x ∈ R

n and f : R
n → R

n is a lo
ally Lips
hitz fun
tion. In the sequel, A refersto a 
losed (but not ne
essarily bounded) set of R
n that 
ontains the origin. Assumingthat 0 ∈ A allows indeed to guarantee that |·|A ≤ |·|. Nevertheless, this is absolutely notrestri
tive as a simple 
hange of variables always permits to rea
h this situation.The following property is an adaptation of [TPL02, De�nition 5℄ to the 
ase when thestability properties are de�ned through two di�erent measures3 (namely |·|A and |·|).De�nition 4.4 (GSTS) The 
losed set A is said to be globally sliding time stable for(4.5) if there exists 
lass K∞ fun
tions T and ρ su
h that, for all x0 ∈ R

n, the solution of(4.5) satis�es
|φ(t, x0)|A ≤ ρ(|x0|) , ∀t ∈ [0;T (|x0|)] .For the 
ase when A = {0}, we say, with a slight abuse of terminology, that (4.5) is GSTS.Remark 4.5 This property is little restri
tive. For instan
e, it 
an be shown that (4.5) isGSTS in ea
h of these 
ases:- the fun
tion f in (4.5) is globally Lips
hitz,- the solutions of (4.5) are globally bounded (see De�nition 1.8).Based on this de�nition, we present a simple integral 
riterion for the global asymptoti
stability of a given 
losed (but not ne
essarily bounded) set. It 
an be seen as an extensionof [TPL02, Theorem 1℄ and [POM02, Lemma 2.1℄ to the 
ase of stability with respe
t totwo measures.Lemma 4.6 (Integral lemma for GAS of a set) Assume that a given 
losed subset Aof R

n is GSTS for (4.5) and that there exists a 
lass K fun
tion σ and a 
lass K∞ fun
tion
δ su
h that, for all x0 ∈ R

n, the solution of (4.5) satis�es
∫ ∞

0
σ(|φ(t, x0)|A)dt ≤ δ(|x0|) . (4.6)3In the original referen
e, the same measure |·|A was used.



99Then A is globally stable4. If, in addition, the solutions of (4.5) are globally bounded5, then
A is globally asymptoti
ally stable for (4.5). �Proof of Lemma 4.6. The proof is 
omposed of two steps. We �rst show that A is globallystable if it is GSTS and (4.6) holds. Next, we establish its global attra
tiveness under theassumption of global boundedness of the solutions of (4.5).Proof of GS: The proof of the global stability of A is inspired by that of [TPL02, Theorem1℄. Let T and ρ be generated by the GSTS of A and let κ be any K∞ fun
tion satisfying

κ−1(s) ≤ min

{
s ; δ−1

(
1

2
T (s)σ(s)

)}
, ∀s ∈ R≥0 .The existen
e of su
h a fun
tion is ensured by the fa
t that σ ∈ K and T, ρ ∈ K∞. Noti
ethat κ(s) ≥ s for all s ∈ R≥0 and that the following property holds:

δ(s) ≤ 1

2
T ◦ κ(s)σ ◦ κ(s) , ∀s ∈ R≥0 . (4.7)We 
laim that, for any x0 ∈ R

n,
|φ(t, x0)|A ≤ ρ ◦ κ(|x0|) , ∀t ∈ R≥0 . (4.8)First observe that this holds for x0 = 0 due to (4.6) and the 
ontinuity of φ(·, x0). For

|x0| > 0, we pro
eed by 
ontradi
tion. Assume that the property (4.8) does not hold.Then, there exists a time t1 ∈ R≥0 su
h that
|φ(t1, x0)|A > ρ ◦ κ(|x0|) . (4.9)Note that, without loss of generality, ρ 
an be assumed to satisfy ρ(s) ≥ s for all s ∈ R≥0.Therefore

|x0|A ≤ |x0| ≤ κ(|x0|) ≤ ρ ◦ κ(|x0|) .So, invoking again the 
ontinuity of φ(·, x0), there exists a time t2 ∈ [0, t1) su
h that
|φ(t2, x0)|A = κ(|x0|) (4.10)
|φ(t, x0)|A ≥ κ(|x0|) , ∀t ∈ (t2; t1) . (4.11)Furthermore, the GSTS of A 
ombined with (4.9) and (4.10) implies that t1 > t2 +

T (κ(|x0|)). From (4.6) and (4.11) it follows that, on one hand,
∫ t1

t2

σ(|φ(t, x0)|A)dt ≥
∫ t2+T (κ(|x0|))

t2

σ ◦ κ(|x0|)dt = T (κ(|x0|))σ ◦ κ(|x0|) ,and, on the other hand,
∫ t1

t2

σ(|φ(t, x0)|A)dt ≤
∫ ∞

0
σ(|φ(t, x0)|A)dt ≤ δ(|x0|) ,Combining these two bounds, we obtain that

T (κ(|x0|))σ ◦ κ(|x0|) ≤ δ(|x0|) ,4Global stability and global asymptoti
 stability of A are to be understood in the sense of De�nitions1.2 and 1.4. �Uniformity� is pointless in this se
tion sin
e only time-invariant systems are 
onsidered.5whi
h implies that A is GSTS in view of Remark 4.5 sin
e 0 ∈ A.



100 4. Set-stabilitywhi
h 
ontradi
ts (4.7).Proof of GA: This se
ond step follows along the same proof-lines of Barb lat's lemmaoriginally presented in [Bar59℄; see also [Tao97℄, [Tee99℄ and [POM02, Lemma 2.1℄ forsimilar approa
hes.We pro
eed by 
ontradi
tion. Assume that limt→∞ |φ(t, x0)|A 6= 0 for some x0 ∈ R
n.Then there exist a positive ε and a sequen
e {ti}i∈N su
h that limi→∞ ti = +∞ and

|φ(ti, x0)|A > ε , ∀i ∈ N . (4.12)Noti
e that the sequen
e {ti}i∈N 
an be pi
ked in su
h a way that
ti+1 ≥ ti + Tm , ∀i ∈ N , (4.13)

Tm designating a positive 
onstant. Due to the global boundedness of solutions and the
ontinuity of f , we 
an see that ∣∣∣φ̇1(·, x0)
∣∣∣ is bounded, whi
h implies that φ(·, x0) is uni-formly 
ontinuous. This means that, given any positive c, there exists a positive T su
hthat, for all t ∈ R≥0 and all τ ∈ [0, T ], |φ(t+ τ, x0) − φ(t, x0)| < c. Hen
e, letting

σ̃(s) :=

{
σ(s) if s ∈ R≥0

−σ(−s) if s ∈ R<0 ,and pi
king6 c as σ̃−1(σ̃(ε/2)/2), there exists a positive T su
h that, for all t ∈ R≥0 andall τ ∈ [0, T ],
|φ(t+ τ, x0) − φ(t, x0)| < σ̃−1

(
1

2
σ̃
(ε

2

))
. (4.14)Using the properties that |y + z| ≥ |y| − |z| for all y, z ∈ R

n, and σ̃(a− b) ≥ σ̃(a/2)− σ̃(b)for all a, b ∈ R, it follows in view of (4.12) and (4.14) that, for all t ∈ [ti, ti + T ]

σ̃(|φ(t, x0)|A) ≥ σ̃ (|φ(ti, x0)|A − |φ(t, x0) − φ(ti, x0)|A)

≥ σ̃

(
1

2
|φ(ti, x0)|A

)
− σ̃ (|φ(t, x0) − φ(ti, x0)|A)

≥ σ̃
(ε

2

)
− 1

2
σ̃
(ε

2

)
=

1

2
σ̃
(ε

2

)
.Based on what pre
edes and (4.13), we then have that

∫ ∞

0
σ(|φ(t, x0)|A)dt =

∫ ∞

0
σ̃(|φ(t, x0)|A)dt

≥
∑

i∈N

∫ ti+1

ti

σ̃(|φ(t, x0)|A)dt

≥
∑

i∈N

∫ ti+min{Tm;T}

ti

σ̃(|φ(t, x0)|A)dt

≥
∑

i∈N

1

2
σ̃
(ε

2

)
min{Tm;T} = +∞ ,whi
h establishes the 
ontradi
tion.

�6Note that, even though σ may not be a 
lass K∞ fun
tion, σ̃(ε/2)/2 ne
essarily belongs to the domainof invertibility of σ̃ by 
onstru
tion.



1014.2 On set-stability of 
as
aded systemsOur �rst main result in the 
ontext of set-stability for 
as
aded systems states that the
as
ade of two globally set-stable systems is itself globally set-stable provided that itssolutions are globally bounded.Theorem 4.7 (GAS + GAS + GB ⇒ GAS) Let A1 and A2 be 
losed sets of R
n1 and

R
n2 respe
tively. Under the Assumptions 4.8�4.11 below, the set A := A1 ×A2 is globallyasymptoti
ally stable for the 
as
ade (4.1).Assumption 4.8 (GAS of A1) A1 is globally asymptoti
ally stable for ẋ1 = f1(x1).Assumption 4.9 (GAS of A2) A2 is globally asymptoti
ally stable for (4.1b).Assumption 4.10 (Bound on the inter
onne
tion) There exist a 
ontinuous fun
-tion g1 : R

n → R
n1 and a 
lass K∞ fun
tion g2 su
h that, for all x = (x⊤1 , x

⊤
2 )⊤ ∈

R
n1 × R

n2,
|g(x1, x2)| ≤ |g1(x)| g2(|x2|A2

) .Assumption 4.11 (GB) The solutions of (4.1) are globally bounded.Proof of Theorem 4.7. We start by invoking [TP00, Corollary 1℄ to generate a Lyapunovfun
tion for ea
h of the two subsystems, based on Assumptions 4.8 and 4.9. More pre
isely,for ea
h i ∈ {1, 2}, there exist a smooth fun
tion Vi : R
ni → R≥0 and 
lass K∞ fun
tions

αi and αi su
h that, for all xi ∈ R
ni ,

αi(|xi|Ai
) ≤ Vi(xi) ≤ αi(|xi|) (4.15)

∂Vi
∂xi

(xi)fi(xi) ≤ −Vi(xi) ≤ −α(|xi|Ai
) . (4.16)In view of Assumption 4.10, the derivative of V1 along the traje
tories of (4.1) yields, forall x ∈ R

n,
V̇1(x1) ≤ −α1(|x1|A1

) +

∣∣∣∣
∂V1

∂x1
(x1)

∣∣∣∣ |g1(x)| g2(|x2|A2
) .Let c1 : R≥0 → R≥0 be the fun
tion de�ned as

c1(s) := max
|x|≤s

∣∣∣∣
∂V1

∂x1
(x1)

∣∣∣∣ |g1(x)| , ∀s ∈ R≥0 .Due to the smoothness of V1 and the 
ontinuity of g1, it 
an be seen that c1 is a 
ontinuousnonde
reasing fun
tion, and we have that, for all t ∈ R≥0,
V̇1(φ1(t, x0)) ≤ −α1(|φ1(t, x0)|A1

) + c1(|φ(t, x0)|)g2(|φ2(t, x0)|A2
) .From Assumption 4.11 and Proposition 1.12, there exists a 
lass K∞ fun
tion η and anonnegative 
onstant µ su
h that |φ(t, x0)| ≤ η(|x0|) + µ, so we obtain that

V̇1(φ1(t, x0)) ≤ −α1(|φ1(t, x0)|A1
) + c̃1(|x0|)g2(|φ2(t, x20)|A2

) , (4.17)where c̃1(·) := c1(η(·) + µ).



102 4. Set-stabilityLet a1 and a2 be positive numbers su
h that α2(a1) < g2(a2) and let g̃2 : R≥0 → R≥0be any 
ontinuous in
reasing fun
tion satisfying, for all s ∈ R≥0,
g̃2(s) =

{
α2(s) if s ∈ [0, a1]
g2(s) if s ≥ a2 .Note that g̃2 
an always be 
ompleted on the interval (a1, a2) in order to be an in
reasingfun
tion sin
e α2(a1) < g2(a2) and both α2 and g2 are 
lass K∞ fun
tions. Then, it 
anbe seen that g̃2 is a 
lass K∞ fun
tion that satis�es

g̃2(s) = O(α2(s)) as s→ 0+ (4.18a)
g2(s) = O(g̃2(s)) as s→ +∞ . (4.18b)Next, we need the following �
hanging supply rate� result, reminis
ent of [ST95℄.Proposition 4.12 Let A1 and A2 be two given 
losed sets of R

n and R
m respe
tively. Let

c be a nonnegative 
onstant and V : R
n → R≥0 be a 
ontinuously di�erentiable fun
tionsatisfying, for all x ∈ R

n and all u ∈ R
m,

α(|x|A1
) ≤ V (x) ≤ α(|x|)

∂V

∂x
(x)f(x, u) ≤ −α(|x|A1

) + cγ(|u|A2
) ,where α, α, α and γ are 
lass K∞ fun
tions. Let α̃ (resp. γ̃) be a 
lass K∞ fun
tionsatisfying

α̃(s) = O(α(s)) as s→ 0+

(resp. γ(s) = O(γ̃(s)) as s→ +∞
)
.If α, α, α, γ and V are independent of c, there exist a 
ontinuously di�erentiable Ṽ and
lass K∞ fun
tions γ̃ (resp. α̃), α̃ and α̃, independent of c, su
h that, for all x ∈ R

n andall u ∈ R
m,

α̃(|x|A1
) ≤ Ṽ (x) ≤ α̃(|x|)

∂Ṽ

∂x
(x)f(x, u) ≤ −α̃(|x|A1

) + cγ̃(|u|A2
) .The proof of this result follows from minor modi�
ations that of [ST95, Theorem 2℄.The only di�eren
e stands in the fa
t that the measures involved are not ne
essarily Eu-
lidean, and that the generated fun
tions are shown to be independent of c.In view of (4.18b) and noti
ing that |x1|A1

≤ |x|, we 
an apply Proposition 4.12 to
V1 with γ̃ = g̃2 and c = c̃1(|x0|) to obtain that there exists a 
ontinuously di�erentiablefun
tion Ṽ1 su
h that, for all x1 ∈ R

n1 ,
α̃1(|x1|A1

) ≤ Ṽ1(x1) ≤ α̃1(|x1|) (4.19)and, for all t ∈ R≥0,
˙̃V1(φ1(t, x0)) ≤ −α̃1(|φ1(t, x0)|A1

) + c̃1(|x0|)g̃2(|φ2(t, x20)|A2
) ,



103where α̃1, α̃1 ∈ K∞. In addition, the fun
tions α̃1, α̃1, α̃1 and Ṽ1 are all independent of
c̃1(|x0|) and 
onsequently of x0. Integrating the previous di�erential inequality, we obtainthat ∫ ∞

0
α̃1(|φ1(t, x0)|A1

)dt ≤ Ṽ1(x10) + c̃1(|x0|)
∫ ∞

0
g̃2(|φ2(t, x20)|A2

)dt .Hen
e, in view of (4.19), we have that
∫ ∞

0
α̃1(|φ1(t, x0)|A1

)dt ≤ α̃1(|x10|) + c̃1(|x0|)
∫ ∞

0
g̃2(|φ2(t, x20)|A2

)dt . (4.20)In order to upper bound the integral in the right-hand side term of the previous bound,we follow a similar pro
edure. Based on (4.15), (4.16) and (4.18a), we apply Proposition4.12 to V2 with α̃ = g̃2 and c = 0. We obtain that there exists a 
ontinuously di�erentiablefun
tion Ṽ2 su
h that, for all x2 ∈ R
n2 ,

α̃2(|x2|A2
) ≤ Ṽ2(x2) ≤ α̃2(|x2|)

∂Ṽ2

∂x2
(x2)f2(x2) ≤ −g̃2(|x2|A2

) ,where α̃2 and α̃2 are 
lass K∞ fun
tions. Integrating the last inequality, we obtain that
∫ ∞

0
g̃2(|φ2(t, x20)|A2

)dt ≤ α̃2(|x20|) . (4.21)Substituting this bound into (4.20), we obtain
∫ ∞

0
α̃1(|φ1(t, x0)|A1

)dt ≤ α̃1(|x10|) + c̃1(|x0|)α̃2(|x20|) . (4.22)Thus, de�ning the following 
lass K∞ fun
tion
σ(s) := min

{
α̃1

(√
s/2
)

; g̃2

(√
s/2
)}

,we get from (4.21) and (4.22) that
∫ ∞

0

[
σ
(
2 |φ1(t, x0)|2A1

)
+ σ

(
2 |φ2(t, x20)|2A2

)]
dt ≤ α̃1(|x10|) + c̃1(|x0|)α̃2(|x20|) .Sin
e σ is an in
reasing fun
tion, we have that σ(a+ b) ≤ σ(2a) + σ(2b) for all a, b ∈ R≥0.Therefore, using the fa
t that |x|2A = |x1|2A1

+ |x2|2A2
, we get that

∫ ∞

0
σ
(
|φ(t, x0)|2A

)
dt ≤ α̃1(|x0|) + c̃1(|x0|)α̃2(|x0|) .The global asymptoti
 stability of A then follows from Lemma 4.6. �It is worth noting that no Lyapunov fun
tion needs to be expli
itly known for this �rstresult. However, the assumption of boundedness of solutions (with respe
t to the origin)is strong. In the 
ase when the solutions are only bounded with respe
t to the set A, theresult still holds provided a stronger requirement on the inter
onne
tion term and on thegradient of the (supposedly known) Lyapunov fun
tion of the driven subsystem.



104 4. Set-stabilityCorollary 4.13 Let A1 and A2 be two given 
losed subsets of R
n1 and R

n2 respe
tively.Under Assumptions 4.9, 4.14, 4.15 and 4.16, the set A = A1×A2 is globally asymptoti
allystable for the 
as
ade (4.1).Assumption 4.14 (Lyapunov GAS of A1) There exist a 
ontinuously di�erentiable fun
-tion V1 : R≥0 ×R
n1 → R≥0 and 
lass K∞ fun
tions α1, α1, α1 su
h that, for all x1 ∈ R

n1,
α1(|x1|A1

) ≤ V1(x1) ≤ α1(|x1|) (4.23)
∂V1

∂x1
(x1)f1(x1) ≤ −α1(|x1|A1

) . (4.24)Assumption 4.15 (Bound on LgV1) There exists a 
ontinuous nonde
reasing fun
tion
g1 : R≥0 → R≥0 and a 
lass K∞ fun
tion g2 su
h that, for all x = (x⊤1 , x

⊤
2 )⊤ ∈ R

n1 ×R
n2,

∣∣∣∣
∂V1

∂x1
(x1)g(x)

∣∣∣∣ ≤ g1(|x|A)g2(|x2|A2) .Assumption 4.16 (GB w.r.t. A) The solutions of (4.1) are globally bounded with re-spe
t to A.We stress that global asymptoti
 stability of A1 for the driven subsystem ẋ1 = f1(x1)guarantees the existen
e of a fun
tion V1 satisfying Assumption 4.14, 
f. e.g. [TP00℄.However, the expli
it knowledge V1 is required sin
e we need its gradient to also satisfyAssumption 4.15.Proof of Corollary 4.13. This result follows dire
tly from Theorem 4.7 by noti
ing that,in the proof of the latter, c1(|x|) 
an then be repla
ed by g1(|x|A). Hen
e, based onAssumption 4.16, we see that (4.17) remains valid and the rest of the proof is exa
tly thesame. �In the two previous results, the most di�
ult requirement to verify is often the globalboundedness of the solutions of (4.1) (with respe
t to the origin or to the set A a

ordingto the 
ase). Similarly to the approa
h adopted for uniform global pra
ti
al asymptoti
stability of 
as
ades (
f. Se
tion 3.3), we now present a result whi
h relaxes this as-sumption to just forward 
ompleteness of (4.1), provided a growth rate restri
tion of the
x1-dependen
y of the inter
onne
tion term with respe
t to the dissipation fun
tion of thedriven subsystem.Corollary 4.17 (GAS + GAS + FC + growth restri
tion ⇒ GAS) Let A1 and A2be given 
losed subsets of R

n1 and R
n2 respe
tively. Under Assumptions 4.9, 4.14, 4.18and 4.19, the set A = A1 ×A2 is globally asymptoti
ally stable for the 
as
ade (4.1).Assumption 4.18 (Bound on LgV1) There exists a 
ontinuous nonde
reasing fun
tion

g11 : R≥0 → R≥0 and a 
lass K∞ fun
tion g2 su
h that, for all x = (x⊤1 , x
⊤
2 )⊤ ∈ R

n1 ×R
n2,

∣∣∣∣
∂V1

∂x1
(x1)g(x)

∣∣∣∣ ≤ g11(|x1|A1
)g2(|x2|A2) .Assumption 4.19 (FC + growth restri
tion) The system (4.1) is forward 
ompleteand it holds that

g11(s) = O(α1(s)) , as s→ +∞ .



105Proof of Corollary 4.17. In view of Theorem 4.13, and noti
ing that Assumption 4.18implies Assumption 4.15, it is enough to show that solutions are globally bounded withrespe
t to A. The proof is based on similar arguments as the one of [PL01, Theorem 3℄.First, from the forward 
ompleteness assumption, there exists a 
ontinuous nonde
reasingfun
tion ϑ : R≥0 × R≥0 → R≥0 su
h that, for all x0 ∈ R
n, the solution of (4.1) satis�es

|φ(t, x0)|A ≤ |φ(t, x0)| ≤ ϑ(|x0| , t) , ∀t ∈ R≥0 . (4.25)Next, in view of Assumptions 4.14 and 4.18, the derivative of V1 along the traje
tories of(4.1) satis�es, for all x =∈ R
n,

V̇1 ≤ −α1(|x1|A1
) + g11(|x1|A1

)g2(|x2|A2
) . (4.26)In addition, we know from Assumption 4.19 that there exist positive 
onstants s0 and λsu
h that

g11(s) ≤ λα1(s) , ∀s ≥ s0 . (4.27)Furthermore, Assumption 4.9 ensures that there exists a KL fun
tion β2 su
h that, for all
x20 ∈ R

n2 ,
|φ2(t, x20)|A2

≤ β2(|x20| , t) , ∀t ∈ R≥0 . (4.28)Using the fa
t that g2 is a 
lass K∞ fun
tion, we get that, for any x20 ∈ R
n2 , there existsa nonnegative time T (|x20|) su
h that

g2(|φ2(t, x20)|A2
) ≤ 1

λ
, ∀t ≥ T (|x20|) .Note that, without loss of generality, T (·) 
an be pi
ked as a 
ontinuous nonde
reasingfun
tion. From (4.26), (4.27) and the previous inequality, we obtain that, for all t ≥

T (|x20|),
|φ1(t, x0)|A1

≥ s0 ⇒ V̇1(φ1(t, x0)) ≤ 0 .Using a dire
t extension of [Yos66, Theorem 10.2℄, the previous impli
ation ensures theboundedness of |φ1(t, x0)|A1
(and 
onsequently, in view of (4.28), of |φ(t, x0)|A) for all

t ≥ T (|x20|). In other words, there exists η ∈ K∞ and µ > 0 su
h that, for all x0 ∈ R
n,

|φ(t, x0)|A ≤ η(|x0|) + µ , ∀t ≥ T (|x20|) .Thus, in view of (4.25) and re
alling that T (·) is 
ontinuous and in
reasing, we obtain that
|φ(t, x0)|A ≤ η̃(|x0|) + µ̃ , ∀t ∈ R≥0 ,where, for all s ∈ R≥0,
η̃(s) := η(s) + ϑ(s, T (s)) − ϑ(0, T (0))

µ̃ := µ+ ϑ(0, T (0)) .The 
on
lusion follows from Corollary 4.13 by observing that η̃ is a 
lass K∞ fun
tion. �



106 4. Set-stability4.3 Example: 
ross-tra
k formation 
ontrol of undera
tuatedsurfa
e vesselsIn order to illustrate one of the possible uses of the results of this 
hapter, we presentan alternative stability proof for a re
ent result for the formation 
ontrol of multiple un-dera
tuated surfa
e vessels along a straight line, with a pres
ribed velo
ity, 
f. [BPP06℄.The interested reader is invited to refer to this referen
e for a more detailed des
ription ofthe motivations and 
hallenges related to this obje
tive. For simpli
ity of exposition, we
onsider here the 
ase of two boats, extension to a larger number of boats being straight-forward.We stress that the 
ontrol obje
tives 
onsidered in Se
tion 6.3 may appear similarto those presented here, sin
e the motion of both ships are required to be syn
hronized.However, the strategies are fundamentally di�erent. A master-slave approa
h is adoptedthere, while here the two boats a
t at the same hierar
hi
al level. Moreover, it is hereassumed that the path to be followed is a straight line and that full information on bothships is available.The dynami
s of the 
onsidered undera
tuated surfa
e vessels is des
ribed by
η̇ = R(ψ)ν (4.29)

ν̇ +M−1C(ν)ν +M−1Dν = Bτ , (4.30)where η := (ξ, ζ, ψ)⊤ is 
omposed of the Cartesian 
oordinates of the boat in a Earth-�xed frame and the yaw angle, ν := (u, v, r)⊤ 
ontains the surge and sway velo
ities,
τ = (τu, τv)

⊤ are the surge thrust and the yaw torque 
onsidered here as 
ontrol inputsand
R(ψ) =




cosψ − sinψ 0
sinψ cosψ 0

0 0 1


 .In the sequel, ex
ept when expli
itly stated, indexes 1 and 2 refer to vessels 1 and 2respe
tively. When no index is spe
i�ed, the 
orresponding relationship impli
itly holdsfor both vessels. For simpli
ity, we assume that the vessels are identi
al and that

M =




m11 0 0
0 m22 m23

0 m23 m33


 , D =




d11 0 0
0 d22 d23

0 d32 d33


 ,

C(ν) =




0 0 −m22v −m23r
0 0 m11u

m22v +m23r −m11u 0


 , B :=




1 0
0 0
0 1


 .The task to a
hieve is twofold. First, we want that ea
h ship i follows a straight path givenby a distan
e di ∈ R from an agreed origin. This �rst goal 
an be summarized by

lim
t→∞

ζi(t) = di , and lim
t→∞

ψ(t) = 0 . (4.31)Se
ond, we want the vessels to be syn
hronized, in order to move at the same 
onstantpres
ribed velo
ity ud along the ξ dire
tion. This 
an be formulated as
lim
t→∞

ξ1(t) − ξ2(t) = 0 , and lim
t→∞

u1(t) = lim
t→∞

u2(t) = ud . (4.32)
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ξ

ζ

1

2

d1

ud

udFigure 4.1: Cross-tra
k formation 
ontrol goals.The ideal 
on�guration we want to a
hieve is summarized by Figure 4.1. For simpli
ity,we have 
onsidered the origin of the �xed frame on the path to be followed by the se
ondvessel (hen
e d2 = 0).In the sequel, we design a 
ontroller that makes the surge velo
ity u bounded by apositive 
onstant UM . Following the authors of [BPP06℄, we adopt the assumption that
|v| ≤ min{UM ; c |r|} , (4.33)where c denotes a positive 
onstant. We assume as well that the referen
e velo
ity ud ofthe formation satis�es

Um + a < |ud| < UM − a , (4.34)where a and Um are positive 
onstants. From (4.29), the kinemati
 equations for ea
h boat
an be written as
ξ̇ = u cosψ − v sinψ (4.35)
ζ̇ = u sinψ + v cosψ (4.36)
ψ̇ = r . (4.37)In view of (4.31), we de�ne: ζ̃ := ζ − d. The ζ-error dynami
s is then given by

˙̃
ζ = u sinψ + v cosψ . (4.38)Next, we let
ψd := − arctan

(
ζ̃/ℓ
)
, (4.39)where ℓ denotes a positive 
onstant satisfying ℓ > c, 
f (4.33). As this appears more 
learlyin the sequel, this yaw angle is 
hosen in su
h a way that the ζ-error tends to zero. This
hoi
e of ψd 
omes from so-
alled lign of sight guidan
e algorithm; see [BPP06℄ for details.We further de�ne ψ̃ := ψ − ψd. Using (4.37), the ψ-error dynami
s is then given by

˙̃
ψ = r − ℓ

ℓ2 + ζ̃2
(u sinψ + v cosψ) .Next, de�ne

rd :=
ℓ

ζ̃2 + ℓ2
(u sinψ + v cosψ) − kψψ̃ =

ℓ

ζ̃2 + ℓ2
˙̃
ζ − kψψ̃ , (4.40)



108 4. Set-stabilitywhere kψ is a positive 
onstant. Then the ψ̃ dynami
s be
omes
˙̃
ψ = −kψψ̃ + r̃ , (4.41)where r̃ := r− rd. In view of (4.29), and letting7 Ω := m22m33 −m2

23, it 
an be seen from(4.30) that
˙̃r =

m23

Ω
(m11ur+ d22v+ d23r) +

m22

Ω
(τr − (m22v +m23r)u+m11uv − d32v − d33r)− ṙd .The following 
ontrol

τr = (m22v +m23r)u−m11uv + d32v + d33r

− m23

m22
(m11ur + d22v + d23r) +

Ω

m22
(ṙd − krr̃) , (4.42)where kr denotes a positive gain, then yields

˙̃r = −krr̃ . (4.43)In the same way, the 
ontrol law
τu = (m22v +m23r)r +m11 (u̇c − ku(u− uc)) , (4.44)where t 7→ uc(t) denotes any given speed referen
e and ku is a positive 
ontrol gain, yieldsthe following dynami
s

˙̃u = −kuũ , (4.45)where ũ := u − uc is the surge velo
ity tra
king error. These observations, together withthe 
as
ade approa
h we follow, allows to 
onsider ψ, r and u as 
ontrol inputs in thesequel. The ζ-error dynami
s (4.38) 
an trivially be written
˙̃
ζ = u sinψd + v cosψd + γ(ψ,ψd, u, v)ψ̃ , (4.46)where

γ(ψ,ψd, u, v) :=
u sinψ + v cosψ − u sinψd − v cosψd

ψ̃
.In view of (4.33) and provided that

Um ≤ |u| ≤ UM , (4.47)for the positive 
onstants Um and UM involved in (4.34), it holds that
|γ(ψ,ψd, u, v)| ≤ |u| + |v| ≤ 2UM .Thus, inje
ting the expression of ψd into (4.46), we 
an see that the (r, ψ, ζ, u)-error dy-nami
s possesses the 
as
ade stru
ture 
omposed of (4.41), (4.43), (4.45) and

˙̃
ζ = −u ζ̃√

ζ̃2 + ℓ2
+ v

ℓ√
ζ̃2 + ℓ2

+ γ(ψ,ψd, u, v)ψ̃ . (4.48)7Ω is a positive 
onstant sin
e M is positive de�nite.



109Claim 4.20 If (4.47) holds, then the origin of the 
as
aded system (4.41), (4.43), (4.45)and (4.48) is globally asymptoti
ally stable.Proof of Claim 4.20. First noti
e that the origin of the driving subsystem of this 
as
ade,namely (4.41), (4.43) and (4.45), is globally asymptoti
ally stable for any positive 
hoi
eof the gains kψ, kr and ku. This establishes Assumption 4.9. In order to study the drivensystem taken separately (i.e. (4.48) with ψ̃ = 0), 
onsider the fun
tion Vζ(ζ̃) := ζ̃2/2.Then, it 
an be seen that, along its traje
tories,
V̇ζ(ζ̃) ≤ − uζ̃2

√
ζ̃2 + ℓ2

+
∣∣∣ζ̃
∣∣∣ |v| .But, using (4.40), (4.33) and the fa
t that |r| ≤ |rd|+ |r̃|, it 
an be seen that the followingbound holds

|v| ≤ c
(∣∣∣ ˙̃ζ
∣∣∣ /ℓ+ kψ

∣∣∣ψ̃
∣∣∣+ |r̃|

)
.Thus, sin
e we 
onsider the isolated ζ̃-subsystem (i.e. ψ̃ = r̃ = 0), we obtain

V̇ζ(ζ̃) ≤ −
u
∣∣∣ζ̃
∣∣∣
2

√
ζ̃2 + ℓ2

+
c

ℓ

∣∣∣ζ̃
∣∣∣
∣∣∣ ˙̃ζ
∣∣∣ ≤ −

u
∣∣∣ζ̃
∣∣∣
2

√
ζ̃2 + ℓ2

+
c

ℓ
V̇ζ(ζ̃) .We 
on
lude in view of (4.47) that, along the traje
tories of the driven subsystem,

(
1 − c

ℓ

)
V̇ζ(ζ̃) ≤ −

Um

∣∣∣ζ̃
∣∣∣
2

√
ζ̃2 + ℓ2

.Re
alling that c < ℓ, Assumption 4.14 is then ful�lled. Finally, we have that
∣∣∣∣
∂Vζ

∂ζ̃
(ζ̃)γ(ψ,ψd, u, v)

∣∣∣∣ ≤ 2UM

∣∣∣ζ̃
∣∣∣ ,whi
h establishes Assumption 4.18 with g11(·) = 2UM and Assumption 4.14 follows triviallydue to the boundedness of g11. The 
laim follows by applying Corollary 4.17 and re
allingthat forward 
ompleteness is not needed sin
e the sets under 
onsideration (the origin) are
ompa
t. �In order to guarantee (4.47) while stabilizing the ξ-error dynami
s, we 
hoose as speedreferen
es

uc,1 = ud − a sat(ξ1 − ξ2) , and uc,2 = ud − a sat(ξ2 − ξ1) , (4.49)where sat denotes any odd saturation fun
tion (
f. De�nition 3.32) and a is the positive
onstant involved in (4.34).Proposition 4.21 (Formation 
ontrol of vessels) Assume that (4.33) and (4.34) hold.Then, the 
ontrol law (4.42), (4.39), (4.40), (4.44), (4.49) a
hives the 
ontrol obje
tives(4.31) and (4.32). More pre
isely, the set
A :=

{
(η1, η2, ν1, ν2) ∈ R

12 : ξ1 = ξ2 and ζi = di , ψi = 0 , ui = ud , vi = 0 , ∀i ∈ {1, 2}
}is globally asymptoti
ally stable.



110 4. Set-stabilityProof of Proposition 4.33. In view of (4.39), (4.35) 
an be written
ξ̇ = u cosψd − (cosψd − cosψ)u− v sinψ

=
ℓ√

ℓ2 + ζ̃2

u− (cosψd − cosψ)u− v sinψ

= uc + ũ+


 ℓ√

ℓ2 + ζ̃2

− 1


u− (cosψd − cosψ)u− v sinψ .From this and (4.49), we obtain

ξ̇1 = ud − a sat(ξ1 − ξ2) +


 ℓ√

ℓ2 + ζ̃2
1

− 1


u1 − (cosψd,1 − cosψ1)u1 − v1 sinψ1

ξ̇2 = ud − a sat(ξ2 − ξ1) +


 ℓ√

ℓ2 + ζ̃2
2

− 1


u2 − (cosψd,2 − cosψ2)u2 − v2 sinψ2 .De�ning ξ̃ := ξ1 − ξ2 and 
onsidering the variables8

x1 := (ξ1, ξ̃)
⊤ and x2 := (r̃1, r̃2, ψ̃1, ψ̃2, ζ̃1, ζ̃2, ũ1, ũ2)

⊤ ,the formation obje
tive limt→∞ ξ1(t) − ξ2(t) = 0 
an be summarize by the 
onvergen
eof ξ̃(t) to zero and the overall system 
an be put in the 
as
ade form (4.1) where f2(x2)designates the right-hand side of (4.41), (4.43), (4.45), (4.48) and
f1(x1) =

(
ud − a sat(ξ̃)
−2a sat(ξ̃) )

,

g(x1, x2) =

(
g0(ψ̃1, ψd,1, ζ̃1, ũ1, uc1 , v1)

g0(ψ̃1, ψd,1, ζ̃1, ũ1, uc1 , v1) − g0(ψ̃2, ψd,2, ζ̃2, ũ2, uc2 , v1)

)
, (4.50)where

g0(ψ̃, ψd, ζ̃, ũ, uc, v) :=


 ℓ√

ℓ2 + ζ̃2

− 1


 (ũ+uc)−(cosψd−cosψ)(ũ+uc)−v sinψ . (4.51)Considering the fun
tion V1(x1) := ξ̃2/2, the requirements (4.23) and (4.24) are ful�lledwith α1(s) = α1(s) = s2/2, α1(s) := 2a ssat(s) for all s ∈ R≥0 and

A1 :=
{
x1 = (ξ1, ξ̃)

⊤ ∈ R
2 : ξ1 ∈ R and ξ̃ = 0

}
.This establishes Assumption 4.14. Note that, when x1 belongs to A1, the formation goal

ξ1 = ξ2 is a
hieved. In addition, it 
an be seen that
v sinψ = v

sinψ

ψ
ψ = v

sinψ

ψ
(ψd + ψ̃) = v

sinψ

ψ

(
− arctan

(
ζ̃/ℓ
)

+ ψ̃
)
.8Indexes 1 and 2 of x do not refer to the vessels, but to the notation used in Corollary 4.17.



111This observation 
oupled with (4.50) and (4.51) and the boundedness of u and v ensuresthat g vanishes whenever x2 equals zero, whi
h is enough to 
on
lude the existen
e ofa 
lass K∞ fun
tion g2 su
h that |g(x1, x2)| ≤ g2(|x2|). Assumption 4.18 then followswith g11(·) = 1. In turn, we have that g11(s) = O(α1(s)) as s tends to in�nity, whi
hestablishes Assumption 4.19. Finally, (4.45) guarantees an exponential 
onvergen
e of ũto zero without overshoot. So the fa
t that uc lies in the interval (Um, UM ) ensures (4.47).Assumption 4.9 then follows from Claim 4.20 with the set A2 = {0}. Thus, we 
an applyCorollary 4.17 to 
on
lude that the set A1 × A2, whi
h 
oin
ides with A, is GAS for theoverall system.
�Con
lusion. This 
hapter presents three results for establishing the set-stability of
as
aded systems. The �rst one does not require the knowledge of any Lyapunov fun
-tion, but is based on a 
onservative assumption of boundedness of solutions of the overallsystem. The se
ond assumes the boundedness of solutions only with respe
t to the setunder 
onsideration but, as a 
ounterpart, requires the knowledge of an expli
it Lyapunovfun
tion for the driven subsystem. Finally, the third one is more easily appli
able as it onlyrequires a growth 
omparison between the fun
tions involved. The range of appli
ations ofsu
h a stability 
on
ept is wide as it notably in
ludes partial stability, stability of a giventraje
tory, of a given ball et
.



112 4. Set-stability



113
Chapter 5Integral input to state stability for
as
aded systemsIn the previous 
hapters, we proposed some su�
ient 
onditions to guarantee the preser-vation of stability properties for 
as
aded systems. Su
h tools 
an be parti
ularly usefulwhen studying the robustness of 
ontrolled nonlinear systems to model un
ertainty or toexternal signals. In this 
hapter, we 
onsider the 
as
ade inter
onne
tion of systems withinputs.The ISS paradigm. A bran
h of the 
ontrol theory is espe
ially dedi
ated to the evalu-ation of the impa
t of external signals on the stability of a dynami
al system. It 
on
ernssystems of the form

ẋ = f(x, u)as introdu
ed in (1.4), where u denotes the external input1. The key notion in this �eld isthe input to state stability (ISS), originally introdu
ed by Sontag in [Son89a℄, and whi
hwe re
alled in De�nition 1.21. As evoked in Chapter 1, this property links the norm ofthe 
urrent state to the in�nity norm of the applied input, through a nonlinear inequalitywhi
h also takes into a

ount a fading term due to initial 
onditions.This way of formulating external and internal stability notions is parti
ularly welladapted to analyze stability of 
as
ades. A well known result, see e.g. [ST95℄, states thatthe ISS property is preserved under 
as
ade inter
onne
tions. Sin
e ISS implies globalasymptoti
 stability (GAS) when the input is identi
ally zero, it follows that the 
as
ade
omposed of an ISS subsystem driven by a GAS subsystem is GAS.Besides, ISS is easily 
he
kable based on the study of a Lyapunov-like fun
tion. Morepre
isely, we have the following 
hara
terization.Theorem 5.1 (Lyapunov 
hara
terization of ISS, [SW95℄) The dynami
al system
ẋ = f(x, u) as de�ned in (1.4) is input to state stable if and only if there exists a smoothfun
tion V : R

n → R≥0 and 
lass K∞ fun
tions α, α, α and γ su
h that, for all x ∈ R
nand all admissible input u,

α(|x|) ≤ V (x) ≤ α(|x|) (5.1)
∂V

∂x
(x)f(x, u) ≤ −α(|x|) + γ(|u|) . (5.2)1u : R≥0 → R

p may 
onsist in any measurable lo
ally essentially bounded signal.



114 5. Integral input to state stability for 
as
aded systemsIn the sequel, the fun
tion α is referred to as dissipation rate while supply rate denotesthe fun
tion γ.The iISS property. Even though this 
hara
terization has been widely used both inanalysis and design, ISS happens to be too strong a requirement in several 
ases. Thismotivated the introdu
tion of integral input to state stability (iISS) [Son98b℄, whi
h isa more general property. Instead of linking the state to the supremum of the input, itinvolves a measure of the energy that inputs feed into the system, 
f. De�nition 1.22.Similarly to ISS, it ensures the global asymptoti
 stability of the zero-input system andguarantees some robustness to the system with respe
t to external signals. For instan
e, ifthe supplied energy is �nite, then solutions 
onverge to zero, i.e. the asymptoti
 behaviorof an iISS system is not altered by the presen
e of an input with �nite energy. iISS isfurthermore 
hara
terized by similar Lyapunov-like 
onditions as for ISS. The result belowwas established by Angeli et al. in [ASW00a℄.Theorem 5.2 (Lyapunov 
hara
terization of iISS, [ASW00a℄) The dynami
al sys-tem ẋ = f(x, u) as de�ned in (1.4) is integral input to state stable if and only if thereexists a smooth fun
tion V : R
n → R≥0 and 
lass K∞ fun
tions α, α, γ and a 
ontinuouspositive de�nite2 fun
tion α : R≥0 → R≥0 su
h that (5.1) and (5.2) hold for all x ∈ R

nand all admissible input u.As established in [ASW00a℄, iISS is more 
onservative than asking that the zero-input
ẋ = f(x, 0) be GAS and that ẋ = f(x, u) be forward 
omplete. Yet, it holds very oftenin spe
i�
 appli
ations for subsystems involved in 
as
ades. In this respe
t, please refer to[LSW02℄ where Liberzon and 
oauthors proposed a 
ontrol design that makes the systemiISS with respe
t to disturban
es. In the same referen
e, it is also shown that the 
as
adeof an ISS subsystem driven by a iISS subsystem is itself iISS.iISS and 
as
ades. It is therefore of interest to know whether similar properties �asthose that hold in the ISS 
ase� are a
tually true for iISS systems. For instan
e: Is the
as
ade of two iISS systems iISS ? Is the 
as
ade of an iISS system driven by a GAS systemGAS ?The following 
ounter-example, originally3 proposed in [PL01, AAS02℄, shows that theanswer to the se
ond question is negative in general.Example 5.3 (GAS + iISS ; GAS) Consider the 
as
aded system

ẋ1 = −sat(x1) + x1x2 (5.3a)
ẋ2 = −x3

2 , (5.3b)where sat(s) := sign(s)min{1; |s|}. It was proved in [AAS02℄ that, although (5.3a) is iISSwith respe
t to x2 and (5.3b) is globally asymptoti
ally stable, the overall 
as
ade (5.3)generates unbounded solutions for all initial states in R≥3 × {1}. Indeed, for x20 = 1,the solution of (5.3b) is 1/
√

1 + 2t. Hen
e, as long as φ1(t, x10) ≥ 1, the �rst di�erentialequation is
ẋ1 = −1 +

x1√
1 + 2t

,2Instead of 
lass K∞ in Theorem 5.1.3We have, from A. Loría, that this example was originally stated to the authors of [PL01℄ by L. Praly.



115therefore
φ1(t, x10) = e

√
1+2t−1

(
x10 −

∫ t

0
e1−

√
1+2τdτ

)
.But, 
onsidering the 
hange of variable s = −1 +

√
1 + 2τ , we get that

∫ t

0
e1−

√
1+2τdτ ≤

∫ ∞

0
e1−

√
1+2τdτ =

∫ ∞

0
e−s(s+ 1)ds = 2 .Thus, if x10 ≥ 3, then it holds that φ1(t, x10) ≥ e

√
1+2t−1 ≥ 1 at all time, and so

limt→∞ φ1(t, x10) = ∞. �In [AAS02℄, an additional su�
ient 
ondition is proposed to restri
t the iISS gain ofthe driven subsystem in relation to the 
onvergen
e rate of the state traje
tories generatedby the driving subsystem. Roughly speaking, the de
ay rate of the driving subsystem'sstate has to be large enough with respe
t to the iISS gain of the driven one.A way to ensure a su�
ient speed of 
onvergen
e of the input is requiring that it isintegrable. Su
h a su�
ient 
ondition was originally established in [PL98℄ for time-varyingsystems. In that paper, Panteley and Loría proved UGAS of the 
as
ade under growth-order restri
tions on the inter
onne
tion term and, most importantly, the 
ondition thatthe state traje
tories of the driving system be uniformly globally integrable. See below fora more pre
ise 
omparison between these two results.Thus, while the se
ond question posed above has been studied and partially answered,the �rst question (i.e. whether the 
as
ade of iISS systems is itself iISS) is still open. Adire
t extension of Example 5.3 gives a negative answer in general.Example 5.4 (iISS + iISS ; iISS) Consider the 
as
aded system
ẋ1 = −sat(x1) + x1x2 (5.4a)
ẋ2 = −x3

2 + u . (5.4b)Applying Theorem 5.1 with the fun
tion V (x2) = x2
2, it follows immediately that (5.4b)is ISS, and a fortiori iISS. In addition, as shown in Example 5.3, the driven subsystem(5.4a) is also iISS. Nevertheless, if the 
as
ade (5.4) were iISS, then it would be globallyasymptoti
ally stable when u is identi
ally zero, whi
h, as seen in Example 5.3, is not the
ase. �In what follows, we provide relatively mild additional 
onditions whi
h are su�
ient forthe iISS property to be 
onserved by the 
as
ade stru
ture. These are �rstly given in the
ase when an expli
it iISS Lyapunov-like fun
tion is known for ea
h of the two subsystems,
f. Se
tion 5.2. Roughly, it su�
es that the dissipation term of the driving subsystemdominates the supply fun
tion of the driven subsystem in a neighborhood of the origin.The se
ond step, exposed in Se
tion 5.3, 
onsists in stating this 
ondition in terms of theestimates of the traje
tories of the two subsystems when dis
onne
ted. More pre
isely,in the 
ase of a 
ontinuously di�erentiable zero-input driving subsystem, we re
over thesu�
ient 
ondition derived from [AAS02℄ that the driven subsystem has a lo
ally Lips
hitziISS gain and that the driving one be 0-LES (see De�nition 5.6 below).In addition, in Se
tion 5.1, we 
omplete the main result in [AAS02℄ by giving a su�
ient
ondition for the 
as
ade 
omposed of an iISS subsystem together with a GAS one to remainGAS in the 
ase when expli
it Lyapunov fun
tions are known. Roughly, it is again required
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as
aded systemsthat the dissipation term of the GAS subsystem dominates the supply fun
tion of the iISSone around zero. This result may be useful in pra
ti
e sin
e the iISS and GAS propertiesare 
ommonly established through Lyapunov arguments.For a better understanding of these results and their proof, we re
all the followingde�nitions.De�nition 5.5 (0-GAS) The origin of the system ẋ = f(x, u) as de�ned in (1.4) is saidto be 0-GAS4 if the origin of ẋ = f(x, 0) is globally asymptoti
ally stable (
f. De�nition1.10).De�nition 5.6 (0-LES) The origin of the system ẋ = f(x, u) as de�ned in (1.4) is saidto be 0-LES if there exists a positive 
onstant ∆ su
h that the origin of ẋ = f(x, 0) isexponentially stable on B∆ (
f. De�nition 1.15).De�nition 5.7 (BEFBS) The system ẋ = f(x, u) as de�ned in (1.4) is said to satisfythe bounded energy frequently bounded state property if there exists a 
lass K∞ fun
tion
σ su
h that, for all x0 ∈ R

n, its solutions satisfy
∫ ∞

0
σ(|u(τ)|)dτ <∞ ⇒ lim inf

t→+∞
|φ(t, x0, u)| <∞ .5.1 Global asymptoti
 stability for 
as
ades, Lyapunov-basedThe approa
h based on traje
tories. As explained, the main result in [AAS02℄ studiesthe 
as
ade 
onne
tion of an iISS system driven by a globally asymptoti
ally stable system:

ẋ1 = f1(x1, x2) (5.5a)
ẋ2 = f2(x2) , (5.5b)where x1 ∈ R

n1 , x2 ∈ R
n2 , f1 and f2 are lo
ally Lips
hitz and satisfy f1(0, 0) = 0 and

f2(0) = 0. In that work, Ar
ak et al. proposed a su�
ient 
ondition for (5.5) to be globallyasymptoti
ally stable. More pre
isely, the authors established the following:Theorem 5.8 (GAS + iISS ⇒ GAS, traje
tory based, [AAS02℄) Assume that (5.5a)is iISS with an iISS gain µ1 (
f. De�nition 1.22) and that there exists η2, ν2 ∈ K∞ su
hthat, for all x20 ∈ R
n2, the solutions of (5.5b) satisfy
|φ2(t, x20)| ≤ η2

(
ν2(|x20|)e−t

)
, ∀t ∈ R≥0 .Then, under the 
ondition that

∫ 1

0

µ1 ◦ η2(s)

s
ds <∞ , (5.6)the origin of the 
as
ade (5.5) is globally asymptoti
ally stable.4We may also say, with a slight abuse of terminology, that the system ẋ = f(x, u) is 0-GAS.



117It is worth stressing that the su�
ient 
onditions provided by Panteley and Loría in[PL98, PL01℄, who addressed the same question in a time-varying 
ontext, share strongsimilarities with (5.6) and the su�
ient 
onditions they derive impose similar requirementson the subsystems' behavior.The Lyapunov alternative. The above result requires the knowledge of an expli
itestimate of the traje
tories of ea
h subsystem, as we need to know the iISS gain µ1 ofthe driven subsystem and the 
onvergen
e rate η2 of the driving one in order to 
he
k
ondition (5.6). It is often the 
ase that su
h estimates are obtained using the integrationof a 
onvenient Lyapunov fun
tion for ea
h subsystem. In addition, we have seen that theexisten
e of a Lyapunov-like fun
tion as in Theorem 5.2 is equivalent to the iISS property.It therefore appears natural to derive a similar su�
ient 
ondition based dire
tly on theinformation provided by su
h Lyapunov fun
tions. This is the obje
t of the followingresult, whi
h hen
e 
an be seen as a natural 
ounter-part of [AAS02, Theorem 1℄ for the
ase when the global asymptoti
 stability of the driving subsystem and the iISS of thedriven one are not established through an expli
it estimate of their solutions, but insteadin terms of Lyapunov fun
tions.Theorem 5.9 (GAS + iISS ⇒ GAS, Lyapunov-based) Let V1 and V2 be two 
on-tinuous positive de�nite radially unbounded fun
tions, di�erentiable on R
n1 and R

n2 \ {0}respe
tively and satisfying, for all x1 ∈ R
n1 and all x2 ∈ R

n2 \ {0},
∂V1

∂x1
(x1)f1(x1, x2) ≤ −α1(|x1|) + γ1(|x2|) (5.7)
∂V2

∂x2
(x2)f2(x2) ≤ −α2(|x2|) , (5.8)where α1 and α2 are 
ontinuous positive de�nite fun
tions and γ1 is of 
lass K. Then,under the 
ondition that γ1(s) = O(α2(s)) when s tends to zero, the origin of the 
as
ade(5.5) is globally asymptoti
ally stable.It is worth noting that, in view of Theorem 5.2, the existen
e of a fun
tion V1 satisfying(5.7) is equivalent to saying that the driven subsystem (5.5a) is iISS with respe
t to x2.Similarly, the 
ondition (5.8) is equivalent to the global asymptoti
 stability of (5.5b).Proof of Theorem 5.9. Let us �rst 
onsider the parti
ular 
ase when the initial 
onditionof the driving subsystem is x20 = 0. Sin
e 0 is an equilibrium of this subsystem, we thenhave that φ2(t, 0) = 0 for all t ∈ R≥0, and 
onsequently 
onvergen
e to zero of solutionsfollows dire
tly from (5.7) (see e.g. [Kha96, Corollary 3.3℄).In the sequel, we therefore 
onsider that x20 ∈ R

n2 \ {0}. We underline the fa
t that,due to the regularity 
ondition imposed on f2, it then holds that |φ2(t, x20)| 6= 0 for all
t ∈ R≥0. To see this more 
learly, noti
e that, sin
e f2 is assumed to be lo
ally Lips
hitzand f2(0) = 0, we have that |f2(x2)| ≤ L(|x2|) |x2| for some 
ontinuous nonde
reasingfun
tion L. In addition, (5.8) ensures that the traje
tories of the x2-subsystem (5.5b) arebounded, so m2(x20) := supt≥0 |φ2(t, x20)| is �nite and positive for all x20 6= 0. From theseobservations, it holds that

∂

∂t
(|φ2(t, x20)|2) = 2f2(φ2(t, x20))

⊤φ2(t, x20)

≥ −2L(|φ2(t, x20)|) |φ2(t, x20)|2 ≥ −a(x20) |φ2(t, x20)|2 ,



118 5. Integral input to state stability for 
as
aded systemswhere a(x20) := 2L(m2(x20)) is a positive 
onstant sin
e x20 6= 0. In other words,
|φ2(·, x20)|2 satis�es the di�erential inequality ẏ ≥ −a(x20)y. From the 
omparison lemma,we 
on
lude that |φ2(t, x20)|2 ≥ |x20|2 e−a(x20)t, whi
h is, as 
laimed, positive at all time.The proof is mainly based on the following �
hanging dissipation rate� result.Proposition 5.10 Let f : R

n → R
n be a lo
ally Lips
hitz fun
tion su
h that f(0) = 0 and

V : R
n → R≥0 be a 
ontinuous positive de�nite radially unbounded fun
tion, di�erentiableon R
n \ {0}, and satisfying, for all x ∈ R

n \ {0},
∂V

∂x
(x)f(x) ≤ −α(|x|) ,where α is a 
ontinuous positive de�nite fun
tion. If α̃ is a 
ontinuous positive de�nitefun
tion satisfying α̃(s) = O(α(s)) as s tends to zero, then there exists a 
ontinuouspositive de�nite radially unbounded fun
tion Ṽ , di�erentiable on R

n \ {0} and su
h that,for all x ∈ R
n \ {0},

∂Ṽ

∂x
(x)f(x) ≤ −α̃(|x|) .Proof of Proposition 5.10. The proof follows along the lines of the main result in [ST95℄proposed by Sontag and Teel. We de�ne the new Lyapunov-like fun
tion as
Ṽ :=

∫ V

0
q(s)ds ,where q : R≥0 → R≥0, to be de�ned later, denotes a nonde
reasing 
ontinuous fun
tionsatisfying q(s) > 0 for all s > 0. This transformation preserves the properties of V , that is:
ontinuity, di�erentiability out of the origin, positive de�niteness and radial unbounded-ness. In addition, noti
e that the 
ontinuity, positive de�niteness and radial unboundednessof V ensures the existen
e of a 
lass K∞ fun
tion α su
h that V (x) ≥ α(|x|) for all x ∈ R

n(see [Kha96, Lemma 3.5℄). Hen
e, the total derivative of Ṽ satis�es, for all x ∈ R
n \ {0},

∂Ṽ

∂x
(x)f(x) ≤ q(V (x))

∂V

∂x
(x)f(x) ≤ −q ◦ α(|x|)α(|x|) .Note that, by the assumption on the lo
al relative behavior of α and α̃, the fun
tion

r 7→ α ◦ α−1(r)/α̃ ◦ α−1(r) is upper bounded on any interval (0, r0], r0 > 0. Hen
e, thefun
tion de�ned by
q̃(r) := sup

0<t≤r

α ◦ α−1(t)

α̃ ◦ α−1(t)
, ∀r > 0 ,is a well de�ned nonde
reasing fun
tion. Pi
k q as any nonde
reasing 
ontinuous fun
tionsatisfying q(r) > q̃(r) for all r > 0, and let r = α(|x|), for x ∈ R

n \ {0}. We �nally get, asdesired, that q ◦ α(|x|)α(|x|) ≥ α̃(|x|). �Noti
e that, by assumption, it holds that 2γ1(s) = O(α2(s)) in a neighborhood of
0. Apply Proposition 5.10 to the dissipation inequality (5.8) with the fun
tion α̃(·) =
2γ1(·). Then there exists a 
ontinuous positive de�nite radially unbounded fun
tion Ṽ2,di�erentiable out of zero, and satisfying, for all x2 6= 0,

∂Ṽ2

∂x2
(x2)f2(x2) ≤ −2γ1(|x2|) .



119By summing this inequality with (5.7), we get that, for all (x1, x2) ∈ R
n1 × (Rn2 \ {0}),

∂V
∂x1

(x)f1(x1, x2) +
∂V
∂x2

(x)f2(x2) ≤ −α1(|x1|) − γ1(|x2|) =: −ψ(x) ,where, x := (x⊤1 , x
⊤
2 )⊤ and V(x) := V1(x1)+ Ṽ2(x2). Noti
e that V1 inherits the propertiesof V1 and Ṽ2: it is 
ontinuous positive de�nite and radially unbounded. Therefore, (seee.g. [Kha96, Lemma 3.5℄) there exist two 
lass K∞ fun
tions α and α su
h that

α(|x|) ≤ V(x) ≤ α(|x|) . (5.9)Moreover, let ϕ(s) := inf |x|≥s ψ(x) for all s ∈ R≥0. Then ϕ is a 
ontinuous positive de�nitefun
tion and we have that, for all x ∈ R
n1 × (Rn2 \ {0}),

∂V
∂x1

(x)f1(x1, x2) +
∂V
∂x2

(x1, x2)f2(x2) ≤ −ϕ(|x|) ≤ −ϕ ◦ α−1(V(x)), .Sin
e, as previously shown, φ2(t, x20) 6= 0, we �nally get that, for all t ∈ R≥0,
V̇(φ(·, x0)) ≤ −ϕ ◦ α−1 (V(φ(t, x0))) .Noti
ing that ϕ ◦ α−1 is a 
ontinuous positive de�nite fun
tion, we 
an apply [ASW00a,Corollary IV.3℄ to establish the existen
e of a 
lass KL fun
tion β̃ su
h that
V(φ(t, x0)) ≤ β̃(V(0), t) , ∀t ∈ R≥0 .In view of (5.9), we then get that, for all x20 6= 0,
|φ(t, x0)| ≤ β(|x0| , t) , ∀t ∈ R≥0 ,where

β(s, t) := α−1 ◦ β̃(α(s), t) , ∀s, t ∈ R≥0 ,and the 
on
lusion follows by noti
ing that β(s, ·) is a KL fun
tion. �The above result 
an be seen as a 
orollary of Theorem 5.13 presented below. We havehowever de
ided to present it separately as its proof involves an approa
h (the 
hange ofsupply rates) whi
h 
annot be followed in the 
ontext of Theorem 5.13.Remark 5.11 It is worth mentioning that, if an upper bound on V2 of the form V2(x2) ≤
α2(|x2|) is expli
itly known, where α2 denotes a K∞ fun
tion, the 
ondition in Theorem5.9 (namely γ1(s) = O(α2(s)) as s → 0) 
an be 
onsiderably relaxed. More pre
isely, itsu�
es that there exists a 
onstant q ∈ [0, 1) su
h that

γ1(s) = O
(
α2(s)

α2(s)q

)
, and α2(s) = o(α2(s)

q) , as s→ 0 . (5.10)Indeed, 
onsider the fun
tion V2(·) := V2(·)1−q. Then V2 is a positive de�nite fun
tion,di�erentiable out of the origin, and we get from (5.8) that
∂V2

∂x2
(x2)f2(x2) ≤ −(1 − q)α2(|x2|)V −q

2 ≤ −(1 − q)
α2(|x2|)
α(|x2|)q

=: −α̃2(|x2|) .In view of (5.10), α̃2 is a 
ontinuous positive de�nite fun
tion. Hen
e Theorem 5.9 applieswith the new Lyapunov fun
tion V2, and establishes that (5.5) is globally asymptoti
allystable. In this respe
t, noti
e that allowing V2 to be non-di�erentiable at the origin isuseful, as further illustrated by the following example.



120 5. Integral input to state stability for 
as
aded systemsExample 5.12 Consider the following two dimensional 
as
aded system:
ẋ1 = −sat(x1) + x1x2

ẋ2 = − x2

1 + x2
2

,where sat(s) := sign(s)min{|s|, 1}. In order to study the global asymptoti
 stability of theorigin of ths 
as
ade, we will make use of the following fun
tions:
V1(x1) =

1

2
ln(1 + x2

1) and V2(x2) =
1

2
x2

2 .First, noti
e that
∂V1

∂x1
(x1)(−sat(x1) + x1x2) = −x1sat(x1)

1 + x2
1

+
x2

1x2

1 + x2
1

≤ −x1sat(x1)

1 + x2
1

+ |x2| .In the same way,
∂V2

∂x2
(x2)

(
− x2

1 + x2
2

)
= − x2

2

1 + x2
2

.Please note that GAS of the overall 
as
ade does not dire
tly follow from the study of theLyapunov fun
tion V1 + V2. Indeed, the unbounded term |x2| generated by V̇1 
annot be
ompensated by the bounded term x2
2/(1 + x2

2) provided by V̇2. Nevertheless, this property
an easily be inferred by Theorem 5.9 and Remark 5.11. To see this, �rst noti
e that V1and V2 satisfy (5.7) and (5.8) with
α1(s) =

s sats
1 + s2

, γ1(s) = s and α2(s) =
s2

1 + s2
, ∀s ∈ R≥0 .Sin
e the requirement γ1(s) = O(α2(s)) as s tends to zero does not hold, it is not possibleto apply Theorem 5.9 dire
tly. Nevertheless, it is possible to 
on
lude using the previousremark with q = 1/2. Indeed, an upper bound on V2 is α2(|x2|) := |x2|2 /2. We 
an furthernoti
e that the fun
tion α2(s)

q = s/
√

2 stri
tly dominates α2(s) around zero, and that
α2(s)/α(s)q = s

√
2/(1 + s2) dominates γ1(s), whi
h are enough to 
on
lude. �5.2 Integral input to state stability for 
as
ades, Lyapunov-basedOur se
ond result in the 
ontext of integral input to state stability (iISS) 
on
erns the
as
ade 
onne
tion of two iISS systems, in the 
ase when an iISS-Lyapunov fun
tion isexpli
itly known for ea
h of them. For the sake of generality, it is allowed that the drivensubsystem depends also on the input of the driving one. We therefore deal with dynami
alsystems of the following form:

ẋ1 = f1(x1, x2, u) (5.11a)
ẋ2 = f2(x2, u) (5.11b)where x1 ∈ R

n1 , x2 ∈ R
n2 , u : R≥0 → R

p is a measurable lo
ally essentially boundedfun
tion, f1 and f2 are lo
ally Lips
hitz and satisfy f1(0, 0, 0) = 0 and f2(0, 0) = 0. Su
hsystem 
an be represented by Figure 5.1.For this type of 
as
aded inter
onne
tions, we have the following.
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Σ2

x2 x1

Σ1
u Figure 5.1: Cas
ade with dire
t feeding of the driven subsystem.Theorem 5.13 (iISS + iISS ⇒ iISS, Lyapunov-based) Let V1 : R

n1 → R≥0 be adi�erentiable fun
tion and V2 : R
n2 → R≥0 be a 
ontinuous fun
tion, di�erentiable outof the origin. Suppose that there exist a 
lass K fun
tion ν1 and, for all i ∈ {1, 2}, a
ontinuous positive de�nite fun
tion αi, a 
lass K fun
tion γi, and two 
lass K∞ fun
tions

αi and αi su
h that, for all xi ∈ R
ni and all u ∈ R

p,
αi(|xi|) ≤ Vi(xi) ≤ αi(|xi|) (5.12)

∂V1

∂x1
(x1)f1(x1, x2, u) ≤ −α1(|x1|) + γ1(|x2|) + ν1(|u|) (5.13)

x2 6= 0 ⇒ ∂V2

∂x2
(x2)f2(x2, u) ≤ −α2(|x2|) + γ2(|u|) . (5.14)If, in addition, γ1(s) = O(α2(s)) as s tends to zero, then the 
as
ade (5.11) is iISS.We stress that (5.13) is equivalent to saying that the driven subsystem (5.11a) is iISSwith respe
t to x2 and u. This 
an be rigorously established based on Theorem 5.2 bytaking γ(·) as γ1(·) + ν1(·). Furthermore, in view of the same result, 
ondition (5.14)
onsists in an (apparent) slight relaxation of the Lyapunov 
hara
terization of iISS for(5.11b), as V2 is not required to be di�erentiable at zero.The above result proposes an easy-to-
he
k su�
ient 
ondition to guarantee the preser-vation of the iISS property under a 
as
ade inter
onne
tion. It is expressed as a lo
aldomination of the driving system's dissipation rate on the supply rate of the driven one.This does not 
onstitute the �rst attempt to guarantee iISS for 
as
aded iISS sub-systems. In [Ito04, Ito05℄, Ito provides su�
ient 
onditions for the preservation of iISSunder 
as
ade. Similarly to Theorem 5.13, these 
onditions are expressed with respe
t tothe supply and dissipation rates of the Lyapunov fun
tion asso
iated to ea
h subsystem.However, Ito impli
itly assumes that one of the two subsystems is ISS and, 
ontrarily toTheorem 5.13, the requirement in that referen
e involves also the upper and lower boundson the Lyapunov fun
tions and the dominan
e is imposed on the whole5 R≥0 (and not justin a neighborhood of zero). These features make the above tool more general and, often,easier to apply. This is illustrated by the following example.Example 5.14 Consider the following two-dimensional 
as
aded system:

ẋ1 = −x1(1 − x2
2 − u) (5.15a)

ẋ2 = −sat(x2) + x2u . (5.15b)We use the Lyapunov fun
tions
Vi(xi) := ln(1 + x2

i ) , i ∈ {1, 2} .5In that referen
e, a lo
al requirement is proposed only in the 
ase of ISS driving subsystem.
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as
aded systemsDire
t 
omputations then show that
V̇1(x1) ≤ − x2

1

1 + x2
1

+ |x2|2 + |u|

V̇2(x2) ≤ −x2sat(x2)

1 + x2
2

+ |u| .Using the notation of Theorem 5.13, we have that, for all s ∈ R≥0,
α1(s) =

s2

1 + s2
, γ1(s) = s2 , ν1(s) = γ2(s) = s , α2(s) =

sat(s)s
1 + s2

,so γ1(s) = O(α2(s) near 0 and we 
on
lude that the 
as
ade (5.15) is iISS. However, the
ondition imposed by [Ito05, Corollary 2℄ to rea
h su
h a 
on
lusion is the existen
e ofpositive 
onstants c and q, with q ≥ 1, su
h that
(
γ1 ◦ α−1

2 (s)
)q ≤ c α2 ◦ α−1

2 (s) , ∀s ∈ R≥0 ,where α2 and α2 are 
lass K∞ fun
tions satisfying
α2(|x2|) ≤ V (x2) ≤ α2(|x2|) .Even though these bounds 
an be 
hosen very tight, i.e.

α2(s) = α2(s) = ln(1 + s2) , ∀s ∈ R≥0 ,the above 
ondition does not hold. This follows from the observation that, for all q ≥ 1,
γq1 ∈ K∞ while α2 is a bounded fun
tion. This makes [Ito05, Corollary 2℄ inappli
able tothis 
ase. �We next formally establish the above result.Proof of Theorem 5.13. To the best of our knowledge, no 
hanging supply rate result, asthe one in [ST95℄, exists for iISS systems. The approa
h adopted here is therefore di�erentfrom the proof of Theorem 5.9. The proof 
onsists in showing separately that (5.11) is0-GAS and satis�es the BEFBS property and then applying Theorem [AISW04, Theorem3℄ whi
h shows equivalen
e between iISS and the 
ombination of the above two properties.The �rst step is a
tually straightforward in view of Theorem 5.9, by pi
king in the latter
f1(·, ·) as f1(·, ·, 0) and f2(·) as f2(·, 0). To establish the se
ond one, we introdu
e thefollowing result.Lemma 5.15 Let ω : R≥0 → R be a 
ontinuous fun
tion. Suppose that y : R≥0 → R≥0 isa lo
ally Lips
hitz fun
tion satisfying, for almost all t ∈ R≥0,

y(t) > 0 ⇒ ẏ(t) ≤ ω(t) (5.16)and that
y(t) = 0 ⇒ ω(t) ≥ 0 . (5.17)Then ẏ(t) ≤ ω(t) a
tually holds for almost all t ∈ R≥0. �



123Proof of Lemma 5.15. Let χ : R≥0 → R≥0 be de�ned as follows:
χ(y) =

{
1 if y = 0
0 if y > 0 ,and, for all y ∈ R≥0, let G(y) denote the following set:

G(y) := {t ∈ R≥0 : y(t) = y and ẏ(t) exists} .Then, by the area formula for lo
ally Lips
hitz fun
tions , we have:
∫ +∞

0
χ(y(t))|ẏ(t)|dt =

∫ +∞

−∞
χ(y) 
ard (G(y)) dy = 0 .Let K denote the set {t ∈ R≥0 : y(t) = 0}. The above argument shows that the set

{t ∈ K : ẏ(t) 6= 0} has zero-measure. Hen
e, for almost all t in K, we have ẏ(t) = 0 and
onsequently, by virtue of (5.17), for almost all t ∈ K it holds ẏ(t) ≤ 0 ≤ ω(t). Sin
e, bythe assumption (5.16) the inequality holds for almost all t /∈ K, the 
laim follows. �Let us go ba
k to the proof of Theorem 5.13. Consider any initial state (x10, x20) ∈
R
n1×R

n2 and any admissible input u. Noti
e that, in view of (5.12), α2(|φ2(·, x20, u)|) van-ishes whenever V (φ2(·, x20, u)) = 0. By 
onsidering ω(·) = −α2(|φ2(·, x20, u)|) + γ2(|u(·)|)in Lemma 5.15, it therefore holds that, for almost all t ∈ R≥0,
V̇2(φ2(t, x20, u)) ≤ −α2(|φ2(t, x20, u)|) + γ2(|u(t)|) . (5.18)We establish the BEFBS property under the following �Bounded Energy� assumption:

∫ ∞

0
γ(|u(τ)|)dτ ≤ c , (5.19)where γ(s) := max{γ2(s); ν1(s)} and c is a positive 
onstant. Integrating Inequality (5.18)indeed yields, for all t ∈ R≥0,

∫ t

0
α2(|φ2(τ, x20, u)|)dτ ≤ V2(x20) − V2(φ2(t, x20, u)) +

∫ t

0
γ2(|u(τ)|)dτ

≤ V2(x20) + c .Moreover, in view of (5.12) for i = 2, Inequality (5.18) implies that, for almost all t ∈ R≥0,
V̇2(φ2(t, x20, u)) ≤ −α2 ◦ α−1

2 (V2(φ2(t, x20, u))) + γ2(|u(t)|) .Sin
e α2 ◦ α−1
2 is a 
ontinuous positive de�nite fun
tion, [ASW00a, Corollary IV.3℄ estab-lishes the existen
e of a 
lass KL fun
tion β2 su
h that

V2(φ2(t, x20, u)) ≤ β2(V2(x20), t) + 2

∫ t

0
γ2(|u(τ)|)dτ .Using again the bounds on V2 provided by (5.12)6, it follows that

|φ2(t, x20, u)| ≤ α−1
2

(
2β2

(
α2(|x20|), t

))
+ α−1

2

(
4

∫ t

0
γ2(|u(τ)|)dτ

)
. (5.20)6And the �weak triangular inequality�: α(a + b) ≤ α(2a) + α(2b) for any nonnegative a and b, if

α : R≥0 → R≥0 is nonde
reasing.



124 5. Integral input to state stability for 
as
aded systemsBy the way, as we will need it later, noti
e that a similar reasoning based on (5.13) leadsto the following bound on the traje
tories of (5.11a), where β1 denotes a KL fun
tion:
|φ1(t, x10, x2)| ≤ α−1

1

(
2β1

(
α1(|x10|), t

))
+α−1

1

(
4

∫ t

0

[
γ1(|φ2(τ, x20, u)|) + ν1(|u(τ)|)

]
dτ

)
.(5.21)In view of (5.19) and (5.20), [Son98b, Proposition 6℄ ensures that limt→∞ |φ2(t, x20, u)| = 0.Notably, there exists a �nite time T ≥ 0 su
h that |φ2(t, x20, u)| ≤ 1 for all t ≥ T .Furthermore, sin
e γ1(s) = O(α2(s)) in a neighborhood of zero and both these fun
tionsare 
ontinuous, there exists a positive 
onstant k su
h that

γ1(s) ≤ kα2(s) , ∀s ∈ [0; 1] . (5.22)Using (5.19), (5.20) and (5.22), we 
an a
hieve the following 
omputation:
∫ ∞

0
γ1(|φ2(τ, x20, u)|)dτ ≤

∫ T

0
γ1(|φ2(τ, x20, u)|)dτ +

∫ ∞

T
γ1(|φ2(τ, x20, u)|)dτ

≤
∫ T

0
γ1(|φ2(τ, x20, u)|)dτ + k

∫ ∞

T
α2 (|φ2(τ, x20, u)|) dτ

≤
∫ T

0
γ1(|φ2(τ, x20, u)|)dτ + k(V2(x20) + c) .Sin
e T is �nite, this shows that, under the bounded energy 
ondition (5.19), the integral∫∞

0 γ1(|φ2(τ, x20, u)|)dτ is bounded as well. Finally, noti
e that, sin
e β1 is a KL fun
tion,(5.19) and (5.21) imply that
lim sup
t→∞

|φ1(t, x10, x2)| ≤ α−1
1

(
8

∫ ∞

0
γ1(|φ2(τ, x20, u)|)dτ

)
+ α−1

1

(
8

∫ ∞

0
ν1(|u(τ)|)dτ

)

≤ α−1
1

(
8

∫ ∞

0
γ1(|φ2(τ, x20, u)|)dτ

)
+ α−1

1 (8c) .In a nutshell, under the bounded energy assumption (5.19), the upper limit (and, a fortiori,its lower limit) of the norm of the traje
tories of (5.11a), as t goes to in�nity, is �nite. Thisestablishes the BEFBS property for the whole 
as
ade (5.11). As evoked in the beginningof the proof, the 
on
lusion follows from [AISW04, Theorem 3℄.
�A dire
t 
onsequen
e of Theorem 5.13, whi
h is of notable interest in stability analysis,
on
erns the 
ase when the driven subsystem does not depend on the input u. The systemthen takes the more 
lassi
al 
as
ade form

ẋ1 = f1(x1, x2) (5.23a)
ẋ2 = f2(x2, u) . (5.23b)Corollary 5.16 (iISS + iISS ⇒ iISS, Lyapunov-based) Let V1 be a di�erentiable fun
-tion and V2 be a 
ontinuous fun
tion di�erentiable out of the origin. Suppose that, for all

i ∈ {1, 2}, there exist: a 
ontinuous positive de�nite fun
tion αi, a 
lass K fun
tion γi, andsome 
lass K∞ fun
tions αi and αi su
h that, for all (x1, x2) ∈ R
n1 ×R

n2 and all u ∈ R
p,(5.12) and (5.14) hold and

∂V1

∂x1
(x1)f1(x1, x2, u) ≤ −α1(|x1|) + γ1(|x2|) .



125Then, under the 
ondition that γ1(s) = O(α2(s)) as s tends to 0, the 
as
ade (5.23) isiISS.Proof of Corollary 5.16. It su�
es, with a slight abuse, to pi
k ν1 as the zero fun
tion inthe proof of Theorem 5.13. �Intuitively, one 
ould expe
t that the 
as
ade keeps the same iISS gain as its driving sub-system. This is however not the 
ase in general, as shown by the following 
ounter-example.This example also illustrates how the fa
t that V2 is not required to be di�erentiable atthe origin 
an be pro�table in some situations.Example 5.17 Consider the following two-dimensional 
as
aded system:
ẋ1 = −sat(x1) + x1x2

ẋ2 = −x2 + u .First, we show that this 
as
ade is iISS. To this end, let V1(x) = ln(1 + x2
1)/2 and

V2(x2) = |x2|. Using the same notations as in Corollary 5.16, and referring to the 
ompu-tations detailed in Example 5.12, we see that their derivatives satisfy the following upperbounds:
dV1

dx1
(x1)f1(x1, x2) ≤ −x1satx1

1 + x2
1

+ |x2|

x2 6= 0 ⇒ dV2

dx2
(x2)f2(x2, u) ≤ −|x2| + |u| .The previous result easily applies and establishes that the 
as
ade is iISS. Next, we exhibitan iISS gain for the driving subsystem. Sin
e it is linear and time-invariant, it is dire
t tosee that its solutions satisfy

|φ2(t, x20, u)| ≤ |x20| e−t+
∫ t

0

∣∣∣e−(t−τ)u(τ)
∣∣∣ dτ = |x20| e−t+

∫ t

0

∣∣∣
(
e−(t−τ)/2

)(
e−(t−τ)/2u(τ)

)∣∣∣ dτ .The two fun
tions in bra
kets in the latter integral are in L4 (and a
tually in Lp for allpositive p). Hen
e, we 
an apply Holder's inequality to get that
|φ2(t, x20, u)| ≤ |x20| e−t +

(∫ t

0
e−2(t−τ)/3dτ

)3/4(∫ t

0
e−2(t−τ) |u(τ)|4 dτ

)1/4

≤ |x20| e−t +
3

2

(∫ t

0
u(τ)4dτ

)1/4

.This shows that an admissible iISS gain for the driving subsystem is the fun
tion µ(s) = s4.However, if it were an iISS gain for the whole 
as
ade as well, then [Son98b, Proposition 6℄would notably ensure that, if the integral ∫∞
0 u(τ)4dτ is �nite, then lim supt→∞ |φ(t, x0, u)| =

0. We show that this is not the 
ase. Consider indeed the feedba
k input u = x2 − x3
2. The
losed-loop 
as
aded system then be
omes

ẋ1 = −sat(x1) + x1x2

ẋ2 = −x3
2 .As seen in Example 5.3, for x20 = 1 the solution of the x2-subsystem is 1/

√
1 + 2t, whi
hensures that ∫∞

0 u(τ)4dτ < ∞ whereas, for any x10 ≥ 3, the 
orresponding traje
tory ofthis system grows unbounded. �
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as
aded systems5.3 Integral input to state stability for 
as
ades, traje
tory-basedIn this se
tion, we address the same problem as above, i.e. deriving su�
ient 
onditions forthe preservation of the iISS property under 
as
ade inter
onne
tion, but without requiringthe knowledge of any Lyapunov fun
tion. Instead, greater stability properties are requiredfor ea
h subsystem. It is indeed imposed that the driving subsystem be 0-LES, and thatthe iISS gain of the driven subsystem be lo
ally Lips
hitz.Theorem 5.18 (iISS + iISS ⇒ iISS, traje
tory-based) Assume that the system (5.11a)is iISS with respe
t to (x2, u) with an iISS gain µ1, and that the system (5.5b) is iISS and0-LES (
f. De�nition 5.6). Assume also that f2(·, 0) is 
ontinuously di�erentiable. Then,under the 
ondition that µ1 is lo
ally Lips
hitz, the 
as
ade (5.11) is iISS.To the best of our knowledge, this 
onstitutes the �rst result that proposes traje
tory-based su�
ient 
onditions for the preservation of the iISS property under 
as
ade inter-
onne
tion.It is interesting to see that the obtained su�
ient 
ondition is hardly more 
onservativethan the one in [AAS02, Corollary 2℄, while ensuring a more interesting property to theoverall 
as
ade (that is, iISS instead of GAS). More pre
isely, the latter referen
e imposesthat ∫ 1

0

µ1(s)

s
ds <∞ ,whi
h is ful�lled when µ1 is lo
ally Lips
hitz.Also, similarly to Theorem 5.13, note that this result applies to 
as
aded systems like(5.23), i.e. when the driven subsystem does not depend on the input u.Proof of Theorem 5.18. The proof 
onsists in designing a Lyapunov-like fun
tion for thedriving subsystem, in order to follow a similar reasoning as in the proof of Theorem 5.13.Namely, we will show 0-GAS and BEFBS. We point out that any lo
ally Lips
hitz fun
tionof 
lass K 
an be upper bounded by a di�erentiable fun
tion of 
lass K. Based on thisobservation, we will 
onsider without loss of generality that µ1 is di�erentiable. We startby introdu
ing the following lemma, similar to a result in [SJK97℄, whi
h establishes alo
al Lips
hitz property for the estimate of the traje
tories of a GAS and LES system.Lemma 5.19 (KL estimate for GAS and LES systems) A system ẋ = f(x), with

f : R
n → R

n lo
ally Lips
hitz, is GAS and LES if and only if there exists a lo
ally Lips
hitzfun
tion η of 
lass K and a positive 
onstant k su
h that, for all initial 
onditions x0 ∈ R
n,the 
orresponding solution satis�es

|φ(t, x0)| ≤ η(|x0|)e−kt , ∀t ∈ R≥0 .

�Proof of Lemma 5.19. One dire
tion of the impli
ation is straightforward. Indeed, supposethat |φ(t, x0)| ≤ η(|x0|)e−kt for all x0 ∈ R
n and all t ∈ R≥0. Then the system is GAS.In addition, sin
e η is a lo
ally Lips
hitz fun
tion of 
lass K, there exists a nonnegative
onstant λ su
h that η(s) ≤ λs for all s ∈ [0; 1]. Thus, for all |x0| ≤ 1, it follows that

|φ(t, x0)| ≤ λ |x0| e−kt, whi
h establishes LES.



127The 
onverse is proved using similar arguments as for [AAS02, Lemma 4℄. Sin
e thesystem is LES, there exist some positive 
onstants k1, k and ε su
h that
|x0| ≤ ε ⇒ |φ(t, x0)| ≤ k1 |x0| e−kt , ∀t ∈ R≥0 . (5.24)Also, sin
e it is GAS, for any x0 ∈ R

n there exists a time T ≥ 0, depending on |x0|, su
hthat |φ(T (|x0|), x0)| ≤ ε. Hen
e, it holds that
|φ(t, x0)| ≤ k1 |φ(T (|x0|), x0)| e−k(t−T (|x0|)) ≤ k1εe

kT (|x0|)e−kt , ∀t ≥ T (|x0|) . (5.25)Moreover, the GAS assumption also establishes the existen
e of a KL fun
tion su
h that,for all x0, |φ(t, x0)| ≤ β(|x0| , t). It follows that, for all t ∈ [0;T (|x0|)],
|φ(t, x0)| ≤ β(|x0| , 0)ekte−kt ≤ β(|x0| , 0)ekT (|x0|)e−kt .This inequality together with (5.25) shows that, for all t ∈ R≥0,

|φ(t, x0)| ≤ e−kt max {k1ε ; β(|x0| , 0)} ekT (|x0|) .From the previous inequality and (5.24), it is possible to see that |φ(t, x0)| ≤ η̃(|x0|)e−kt,where
η̃(s) :=





k1s if 0 ≤ s ≤ ε/2
σ(s) if ε/2 < s ≤ ε

max {k1ε ; β(s, 0)} ekT (s) if s > ε ,where σ is any 
ontinuous in
reasing fun
tion su
h that
σ(ε/2) = k1ε/2 and σ(ε) = max {k1ε ; β(ε, 0)} ekT (ε) .Sin
e the fun
tion T (·) 
an be 
hosen 
ontinuous and nonde
reasing, η̃ is a 
lass K fun
tion.Note in addition that η̃ is di�erentiable over [0; ε/2], and is 
onsequently lo
ally Lips
hitzaround zero. This shows that it 
an be upper bounded on all R≥0 by a lo
ally Lips
hitzfun
tion η of 
lass K, whi
h establishes the result. �We 
an now 
ontinue the proof of Theorem 5.18. Sin
e the driving subsystem is iISS,it is 0-GAS. Hen
e, from the previous lemma, we see that there exists a lo
ally Lips
hitz
lass K fun
tion η2 and a positive 
onstant k2 su
h that the traje
tories of the zero inputdriving subsystem satisfy, for any x20 ∈ R

n2 ,
|φ2(t, x20, 0)| ≤ η2(|x20|)e−k2t , ∀t ∈ R≥0 ,whi
h means, using the terminology of [AAS02℄, that ẋ2 = f2(x2, 0) is GAS(α2) with

α2(s) := s. In addition, sin
e µ1 is lo
ally Lips
hitz and positive de�nite, there exist apositive 
onstant λ su
h that µ1(s) ≤ λs for all s ∈ [0; 1]. Consequently, we have that
∫ 1

0

µ1 ◦ α2(s)

s
ds ≤

∫ 1

0

λ2s

s
ds ≤ λ2 .The 0-GAS of the 
as
ade (5.11) then follows from [AAS02, Theorem 1℄.The proof of the BEFBS property is based on the following two lemmas. The �rst oneensures the existen
e of a 
onverse Lyapunov-like fun
tion for GAS and LES systems, witha pres
ribed dissipation rate.
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as
aded systemsLemma 5.20 Let f : R
n → R

n be a 
ontinuously di�erentiable fun
tion su
h that thesystem ẋ = f(x) is GAS and LES. Let µ be a given di�erentiable fun
tion of 
lass K∞.Then there exists a 
ontinuous fun
tion V : R
n → R≥0 di�erentiable over R

n\{0}, 
lass K∞fun
tions α and α, and a 
ontinuous fun
tion c : R
n → R≥0 su
h that, for all x ∈ R

n \{0},
α(|x|) ≤ V (x) ≤ α(|x|)

∂V

∂x
(x)f(x) ≤ −µ(|x|) (5.26)
∣∣∣∣
∂V

∂x
(x)

∣∣∣∣ ≤ c(x) . (5.27)
�Proof of Lemma 5.20. The result is inspired by the 
onverse theorems based on Massera'slemma (see [Mas49℄ or, e.g., [Kha96, Theorem 3.14℄). The novelty 
onsists in allowing toassign a pres
ribed dissipation term to the 
onstru
ted Lyapunov-like fun
tion. We de�ne

V (x) :=

∫ ∞

0
µ(|φ(τ, x)|)dτ .Upper bound on V : Sin
e the system is assumed to be GAS and LES, Lemma 5.19 ensuresthe existen
e of a positive 
onstant k and a lo
ally Lips
hitz K∞ fun
tion η su
h that

|φ(τ, x)| ≤ η(|x|)e−kτ . Based on this observation, we get that
V (x) ≤

∫ ∞

0
µ
(
η(|x|)e−kτ

)
dτ =: α(|x|) . (5.28)We 
laim that α is of 
lass K. Indeed, it is 
lear that α(0) = 0. For any x ∈ R

n \ {0},
onsider the 
hange of variable s = η(|x|)e−kτ . Then we 
an see that
α(|x|) =

∫ η(|x|)

0

µ(s)

ks
ds . (5.29)However, sin
e µ is di�erentiable, it is lo
ally Lips
hitz, so there exists a nonnegative Lxsu
h that µ(s) = µ(s) − µ(0) ≤ Lxs for all s ∈ [0; η(|x|)]. This shows that the previousintegral is �nite, and therefore that α is �nite over R>0. Moreover, it 
an easily be seenfrom (5.29) that α is 
ontinuous and in
reasing, whi
h �nishes to establish the 
laim.Lower bound on V : The lower bound on V is obtained as follows. Noti
e �rst that, sin
e

f is 
ontinuously di�erentiable, it is lo
ally Lips
hitz, so there exists a 
ontinuous nonde-
reasing fun
tion L su
h that, for all x ∈ R
n, |f(x)| ≤ L(|x|) |x|. Hen
e

∂

∂τ
(|φ(τ, x)|2) = 2f(φ(τ, x))⊤φ(τ, x) ≥ −2L(|φ(τ, x)|) |φ(τ, x)|2 ≥ −b(x) |φ(τ, x)|2 ,where b(x) := 2L(supτ≥0 |φ(τ, x)|+1) is a positive 
onstant whi
h is �nite sin
e the systemis assumed to be GAS. Thus, |φ(·, x)|2 satis�es the di�erential inequality ẏ ≥ −b(x)y. Fromthe 
omparison lemma, we 
on
lude that |φ(τ, x)|2 ≥ |x|2 e−b(x)τ . Therefore
V (x) ≥

∫ ∞

0
µ
(
|x| e−b(x)τ/2

)
dτ ≥

∫ 1/b(x)

0
µ
(
|x| e−b(x)τ/2

)
dτ ≥ µ

(
|x|2 e−1

)
.



129Hen
e, the 
hoi
e α(s) := µ
(
s2e−1

) is an appropriate 
lass K∞ lower bound7 for V .Gradient of V : The next point 
onsists in showing that V is di�erentiable. To this end,noti
e that, for any x ∈ R
n, the solution of ẋ = f(x) satis�es

φ(t, x) = x+

∫ t

0
f(φ(τ, x))dτ .We introdu
e the notation

φx(t, x) :=
∂(φ(t, x))

∂x
,and di�erentiate the previous equality with respe
t to x to get that

φx(t, x) = 1 +

∫ t

0

∂f

∂x
(φ(τ, x))φx(τ, x)dτ .Di�erentiating next with respe
t to t, we obtain that φx(·, x) is solution of the di�erentialequation

∂

∂t
(φx(t, x)) = A(t, x)φx(t, x) , φx(0, x) = 1 , (5.30)where

A(t, x) :=
∂f

∂x
(φ(t, x)) .We de�ne

A∞ := lim
t→∞

A(t, x) .Sin
e the traje
tory φ(t, x) tends to 0 and f is 
ontinuously di�erentiable, we 
an see that
A∞ =

∂f

∂x
(0) ,whi
h shows that A∞ is independent of x. Also, sin
e the system is assumed to be LES, itfollows from [Kha96, Theorem 3.13℄ that A∞ is a Hurwitz matrix. Hen
e, for any positivede�nite symmetri
 matrix Q, there exists a positive de�nite symmetri
 matrix P su
h that

A⊤
∞P + PA∞ = −Q. Consider the Lyapunov fun
tion

V(φx) := φ⊤x Pφx . (5.31)Then its derivative along the solution of (5.30) yields
V̇(φx) = φ⊤x

(
A(t, x)⊤P + PA(t, x)

)
φx

= −φ⊤xQφx + φ⊤x
[
(A(t, x) −A∞)⊤P + P (A(t, x) −A∞)

]
φx

≤ −qm |φx|2 + |A(t, x)| |φx|2 , (5.32)where qm > 0 is the minimum eigenvalue of Q and A(t, x) := (A(t, x) − A∞)⊤P +
P (A(t, x) − A∞). We 
an see that limt→∞ |A(t, x)| = 0. Hen
e, for all x ∈ R

n, thereexists a �nite time T (x) su
h that |A(t, x)| ≤ qm/2, and 
onsequently
V̇(φx(t, x)) ≤ −qm

2
|φx(t, x)|2 , ∀t ≥ T (x) .7Note that, in view of (5.28), this establishes in turn that α is a 
lass K∞ fun
tion as well.
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as
aded systemsFrom this and (5.31), we 
on
lude that there exist two positive 
onstants k1 and k2 su
hthat
|φx(t, x)| ≤ k1 |φx(T (x), x)| e−k2(t−T (x)) , ∀t ≥ T (x) . (5.33)It is worth mentioning that the forward 
ompleteness is ensured by (5.32) and the fa
t that

|A(·, x)| is bounded (sin
e it is 
ontinuous and has a �nite limit), 
f. [AS99℄. Therefore,the fun
tion de�ned as
c1(x) := sup

t∈[0,T (x)]
|φx(t, x)| , ∀x ∈ R

nis well de�ned over R
n. Re
alling that

sup
t≥0

|φ(t, x)| ≤ η(|x|)and using also (5.33), it holds that, for all x ∈ R
n,

∫ ∞

0
|φx(τ, x)| dτ =

∫ T (x)

0
|φx(τ, x)| dτ+

∫ ∞

T (x)
|φx(τ, x)| dτ ≤ c1(x)T (x)+

k1

k2
|φx(T (x), x)| .Sin
e, as proved in the beginning of the proof, φ(t, x) 6= 0 for all x 6= 0 and all t ∈ R≥0, itfollows that

∣∣∣∣
∫ ∞

0
µ′(|φ(τ, x)|) φ(τ, x)

|φ(τ, x)|φx(τ, x)dτ
∣∣∣∣ ≤

∫ ∞

0

∣∣µ′(|φ(τ, x)|)
∣∣ |φx(τ, x)| dτ

≤ sup
s∈[0;η(|x|)]

|µ′(s)|
∫ ∞

0
|φx(τ, x)| dτ

≤ sup
s∈[0;η(|x|)]

|µ′(s)|
(
c1(x)T (x) +

k1

k2
|φx(T (x), x)|

)
.Thus, the left-hand side of the previous inequality exists and is �nite for all x ∈ R

n \ {0}.However, the norm of this very integral also satis�es
∣∣∣∣
∫ ∞

0
µ′(|φ(τ, x)|) φ(τ, x)

|φ(τ, x)|φx(τ, x)dτ
∣∣∣∣ =

∣∣∣∣
∫ ∞

0

∂

∂x

(
µ(|φ(τ, x)|)

)
dτ

∣∣∣∣ =
∣∣∣∣
∂V

∂x
(x)

∣∣∣∣ .This establishes that V is di�erentiable over R
n \ {0} and, in turn, provides the bound(5.27) with any 
ontinuous fun
tion c : R

n → R≥0 satisfying
c(x) ≥ sup

s∈[0;η(|x|)]
|µ′(s)|

(
c1(x)T (x) +

k1

k2
|φx(T (x), x)|

)
, ∀x ∈ R

n .Upper bound on V̇ : Finally, we exhibit the bound on the total derivative of V along thetraje
tories. Let x be any ve
tor of R
n and t ∈ R≥0, we then have that

V (x) =

∫ ∞

0
µ(|φ(τ, x)|)dτ

=

∫ t

0
µ(|φ(τ, x)|)dτ +

∫ ∞

t
µ(|φ(τ, x)|)dτ

=

∫ t

0
µ(|φ(τ, x)|)dτ +

∫ ∞

t
µ
(
|φ(τ − t, φ(t, x))|

)
dτ

=

∫ t

0
µ(|φ(τ, x)|)dτ +

∫ ∞

0
µ(|φ(τ, φ(t, x))|)dτ .



131We thus get that, for all x ∈ R
n and all t ∈ R≥0,

V (φ(t, x)) − V (x) = −
∫ t

0
µ(|φ(τ, x)|)dτ .The bound (5.26) follows by di�erentiating this equality with respe
t to t. �The se
ond lemma we need is an extension of [ASW00a, Proposition II.5℄ and 
reatesa bridge between the notions of 0-GAS and iISS in terms of a (not ne
essarily radiallyunbounded) Lyapunov-like fun
tion. The novelty here 
onsists in expli
itly spe
ifying thebehavior of the dissipation term around the origin.Lemma 5.21 Let f : R

n × R
p → R

n be a lo
ally Lips
hitz fun
tion. Suppose that thereexists a 
ontinuous fun
tion V : R
n → R≥0 di�erentiable out of the origin su
h that, forall x ∈ R

n \ {0},
α(|x|) ≤ V (x) ≤ α(|x|)
∂V

∂x
(x)f(x, 0) ≤ −µ(|x|)
∣∣∣∣
∂V

∂x
(x)

∣∣∣∣ ≤ c(x) ,where α, α denote K∞ fun
tions, µ ∈ K, and c : R
n → R≥0 is a 
ontinuous fun
tion.Then there exists a 
ontinuous positive de�nite fun
tion W : R

n → R≥0 di�erentiable on
R
n \ {0} su
h that, for all x ∈ R

n \ {0} and all u ∈ R
p, it holds that

∂W

∂x
(x)f(x, u) ≤ −ρ(|x|) + δ(|u|) ,where δ is of 
lass K and ρ is a 
ontinuous positive de�nite fun
tion satisfying ρ(s) ∼ µ(s)in a neighborhood of zero. �Proof of Lemma 5.21. The proof we present here 
onsists in slight modi�
ations of theone of [ASW00a, Proposition II.5℄. We �rst establish the following result, whi
h should beseen as an adaptation of [ASW00a, Lemma IV.10℄.Proposition 5.22 Under the assumptions of Lemma 5.21, the fun
tion V is su
h that,for all x ∈ R

n \ {0} and all u ∈ R
p,

∂V

∂x
(x)f(x, u) ≤ −µ(|x|) + ν(|x|)δ(|u|) ,where δ is a 
lass K fun
tion and ν is a positive 
ontinuous in
reasing fun
tion.Proof of Proposition 5.22. Consider x 6= 0 and 
ompute the total derivative of V alongthe traje
tories of the system with input u:

∂V

∂x
(x)f(x, u) =

∂V

∂x
(x)f(x, 0) +

∂V

∂x
(x)
[
f(x, u) − f(x, 0) − f(0, u)

]
+
∂V

∂x
(x)f(0, u)

≤ −µ(|x|) +

∣∣∣∣
∂V

∂x
(x)

∣∣∣∣ |f(x, u) − f(x, 0) − f(0, u)| +
∣∣∣∣
∂V

∂x
(x)

∣∣∣∣ |f(0, u)| .
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as
aded systemsDe�ne the following fun
tion
γ(r, s) := r + s+ max

|x|≤r,|u|≤s
|f(x, u) − f(x, 0) − f(0, u)| , ∀r, s ∈ R≥0 .Then, γ is of 
lass K in ea
h of its two arguments. So, by [ASW00a, Corollary IV.5℄, thereexists a 
lass K fun
tion σ su
h that γ(r, s) ≤ σ(r)σ(s). It follows that

∂V

∂x
(x)f(x, u) ≤ −µ(|x|) +

∣∣∣∣
∂V

∂x
(x)

∣∣∣∣σ(|x|)σ(|u|) +

∣∣∣∣
∂V

∂x
(x)

∣∣∣∣ |f(0, u)| .De�ne next, for all r > 0,
κ(r) := r + sup

0<|x|≤r

∣∣∣∣
∂V

∂x
(x)

∣∣∣∣ .Note that κ is well de�ned for all positive r sin
e V is di�erentiable over R
n \ {0} and

lim sup
|x|→0

∣∣∣∣
∂V

∂x
(x)

∣∣∣∣ ≤ c(0) <∞ .If, in addition, we let κ(0) := 0, then κ is a positive de�nite nonde
reasing fun
tion,
ontinuous on R>0. Hen
e, there exists a 
ontinuous in
reasing fun
tion κ̃ su
h that
κ̃(·) ≥ κ(·). Thus we get that, for all x 6= 0,

∂V

∂x
(x)f(x, u) ≤ −µ(|x|) + κ̃(|x|)σ(|x|)σ(|u|) + κ̃(|x|) |f(0, u)| .By the lo
al Lips
hitz 
ontinuity of f , there exists a 
lass K fun
tion χ su
h that |f(0, u)| ≤

χ(|u|). This �nal observation establishes the result with the fun
tions ν(·) = κ̃(·)(1+σ(·))and δ(·) := σ(·) + χ(·). �Let's now go ba
k to the proof of Lemma 5.21. De�ne the following fun
tion
π(r) :=

∫ r

0

ds

1 + ν ◦ α−1(s)
,where ν is the positive 
ontinuous in
reasing fun
tion generated by the previous proposi-tion. Noti
e that, sin
e ν ◦ α−1 is a nonnegative fun
tion, π belongs to 
lass K. Letting

W := π ◦ V , it follows that W is positive de�nite and di�erentiable out of the origin and,for all x 6= 0, we have that
∂W

∂x
(x)f(x, u) =

∂V

∂x
(x)f(x, u)

1

1 + ν ◦ α−1(V (x))
≤ −µ(|x|)

1 + ν ◦ α−1 ◦ α(|x|) +
ν(|x|)δ(|u|)
1 + ν(|x|) .De�ne

ρ(s) :=
µ(s)

1 + ν ◦ α−1 ◦ α(s)
, ∀s ∈ R≥0 .Then ρ is a 
ontinuous positive de�nite fun
tion. In addition,

lim
s→0

µ(s)

ρ(s)
= lim

s→0
1 + ν ◦ α−1 ◦ α(s) = 1 ,whi
h establishes the result.

�



133Based on these two lemmas, we now 
omplete the proof of Theorem 5.18. As alreadyseen, the driving zero-input subsystem ẋ2 = f2(x2, 0) is GAS and LES. Apply Lemma5.20 to it with the fun
tion µ(s) := µ1(2s), where µ1 ∈ K∞ is the iISS gain of the drivensubsystem8. The 
onditions of Lemma 5.21 are then also ful�lled, and we 
on
lude theexisten
e of a 
ontinuous fun
tion W , di�erentiable out of the origin, su
h that, for all
x2 6= 0 and all u

∂W

∂x2
(x2)f2(x2, u) ≤ −ρ(|x2|) + σ(|u|) ,where σ ∈ K and ρ is a 
ontinuous positive de�nite fun
tion su
h that ρ(s) ∼ µ1(2s)around zero. By letting ω(t) = −ρ(|φ2(t, x20, u)|) + σ(|u(t)|) in Lemma 5.15, it followsthat, for almost all t ∈ R≥0,

Ẇ (φ2(t, x20, u)) ≤ −ρ(|φ2(t, x20, u)|) + σ(|u(t)|) .Integrating this inequality yields
∫ ∞

0
ρ(|φ2(τ, x20, u)|)dτ ≤W (x20) +

∫ ∞

0
σ(|u(τ)|)dτ . (5.34)On the other hand, by the assumption of iISS on the driving subsystem, there exists

β2 ∈ KL, and γ2, µ2 ∈ K su
h that, for all x20 ∈ R
n2 and all admissible u,

|φ2(t, x20, u)| ≤ β2(|x20| , t) + γ2

(∫ t

0
µ2(|u(τ)|)dτ

)
. (5.35)We show that the state is �frequently bounded� under the following bounded energy as-sumption: ∫ ∞

0
µM (|u(τ)|)dτ <∞ , (5.36)where

µM (s) := max{µ1(2s) ; µ2(s) ; σ(s)} , ∀s ∈ R≥0 .To this end, �rst noti
e that, in virtue of [Son98b, Proposition 6℄, this assumption togetherwith (5.35) ensures that
lim
t→∞

|φ2(t, x20, u)| = 0 . (5.37)Moreover, provided (5.36), the integral of the left-hand side of (5.34) is �nite. Hen
e, sin
eLemma 5.21 ensures that ρ(s) ∼ µ1(2s) as s tends to zero, we have that
∫ ∞

0
µ1(2 |φ2(τ, x20, u)|)dτ <∞ .Finally, sin
e µ1 is the iISS gain of the driven subsystem, there exists β1 ∈ KL and γ1 ∈ Ksu
h that the traje
tories of (5.11a) satisfy

|φ1(t, x10, x2)| ≤ β1(|x10| , t) + γ1

(∫ t

0
µ1

(∣∣(φ2(τ, x20, u), u(τ)
)∣∣) dτ

)

≤ β1(|x10| , t) + γ1

(∫ t

0
µ1 (|φ2(τ, x20, u)| + |u(τ)|) dτ

)

≤ β1(|x10| , t) + γ1

(∫ t

0
µ1 (2 |φ2(τ, x20, u)|) dτ +

∫ t

0
µ1 (2 |u(τ)|) dτ

)8If µ1 /∈ K∞, the whole reasoning 
an be done with any lo
ally Lips
hitz µ̃1 ∈ K∞ su
h that µ̃1(s) =
µ1(s) for all s ∈ [0; 1] and µ̃1(s) ≥ µ1(s) for all s ≥ 1.



134 5. Integral input to state stability for 
as
aded systemsThus, under the bounded energy 
ondition (5.36), we get that lim supt→∞ |φ1(t, x10, x2)| is�nite, and 
onsequently, with (5.37), that the 
as
ade (5.11) satis�es the BEFBS property.We may therefore 
on
lude iISS by virtue of [AISW04, Theorem 3℄.
�Con
lusion. In this 
hapter are exposed two results that guarantee the preservationof the iISS property under 
as
ade inter
onne
tion. One is based on the Lyapunov fun
-tions asso
iated to ea
h subsystem while the other relies on their solutions' estimates. Asa 
orollary, a Lyapunov 
ondition that ensures that the 
as
ade 
omposed of an iISS sub-system driven by a GAS one is itself GAS. The simpli
ity of the obtained 
onditions isworth being underlined. A
ademi
 examples are also proposed to illustrate the purpose.
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Chapter 6Appli
ation to me
hani
al systemsThe aim of this 
hapter is to present 
on
rete appli
ations of the results presented in thisdo
ument. These appli
ations 
on
ern the 
ontrol of me
hani
al systems. More pre
isely,we start by studying the robustness of PID 
ontrolled robot manipulators to externaldisturban
es, a
tuators'dynami
s and model un
ertainty. We then provide some resultsfor the 
ontrol of a spa
e
raft formation by a leader-follower approa
h. The last se
tion isdevoted to the 
ontrol of a supply ship in the underway replenishment operation.6.1 PID 
ontrol of robot manipulatorsThe main goal of the se
tion is to study the robustness of PID-
ontrolled robot manip-ulators to un
ertainty and disturban
es. In general terms, un
ertainty may stem fromimpre
ision on numeri
al values of 
ertain parameters, inadequa
y of the dynami
 model,negle
ted dynami
s, approximation of unavailable measurements, et
. Disturban
es maytake the form of noise in the measurements or external for
es from physi
al intera
tion withthe environment su
h as fri
tion and,in general, all for
es that depend on time, positionand velo
ity and whi
h a�e
t the motion.Fri
tion. In the literature of me
hani
al systems, spe
ial fo
us is given to fri
tion e�e
ts.These are phenomena that depend on multiple fa
tors su
h as nature of the materials in
onta
t, lubri
ation, temperature, et
. They are therefore highly 
omplex from a modellingviewpoint. For this reason, only approximate models of fri
tion for
es and torques areavailable �
f. [Dah68, COaL95, SAGP00℄. We distinguish two families of fri
tion models:the stati
 models, in whi
h the fri
tion for
e or torque depends on the instantaneous relativevelo
ity between bodies (su
h as vis
ous fri
tion), and dynami
 models whi
h depend onthe past values of the relative velo
ity �
f. [COaL95, SAGP00℄. The former are adequateto approximately model fri
tion in relatively high-velo
ity motion tasks while the latter aremore appropriate to model fri
tion e�e
ts at low velo
ities. Whether dynami
 or stati
,fri
tion e�e
ts may be modelled as an input for
e that depends, in general, on time andstate.Negle
ted dynami
s. Performan
es of 
ontrolled robot manipulators may also be de-graded due to the in�uen
e of negle
ted dynami
s. A parti
ularly important situation inwhi
h dynami
s are negle
ted is non-model-based 
ontrol of manipulators. That is, whenthe robot is 
onsidered as a bla
k-box system that has input torques and measurable out-



136 6. Appli
ation to me
hani
al systemsputs (positions and, often, velo
ities). Not only Proportional Integral Derivative (PID)
ontrol of robot manipulators is a 
lear example of 
ontrol with negle
ted dynami
s, butit is the most 
ommon in industrial manipulators. Indeed, manipulators used in most pro-du
tion lines are PID-
ontrolled, in whi
h 
ase 
ontrol design boils down to gain-tuning ofthe PID gains. This fa
t and the 
onsiderable amount of papers on PID 
ontrol of robots
on�rm the relevan
e of this 
ontroller �
f. [Kel95, PC96, Ro
96, CC04℄ and referen
es inthe latter to 
ite a few.In model-based 
ontrol, i.e. where the dynami
s of the robot are 
onsidered in the 
on-trol law, negle
ted dynami
s 
orrespond, for instan
e, to unmodelled phenomena, dynam-i
s of a
tuators and possibly of sensors. The most 
ommon a
tuators are Dire
t-Currentdrives, whi
h may be modelled by a linear di�erential equation �
f. [SHV05, KSL05℄.However, one may also 
onsider robots driven by Alternate-Current motors �
f. [PO97℄.In either 
ase, negle
ting their dynami
s in the 
ontrol loop may 
onsiderably hamper per-forman
e. In the problem treated in [PO97℄, the motor dynami
s is highly nonlinear andglobal asymptoti
 stability of the 
losed-loop system with the 
orresponding ideal 
ontrolinput is obtained. See also [ALLG97℄ for a result on 
ontrol of robots taking into a

ountthe DC motors'dynami
s under ideal 
onditions (i.e. without disturban
es).Robust 
ontrol and robustness analysis. Robust 
ontrol of manipulators with respe
tto disturban
es has also been extensively studied, espe
ially in the 
ontext of robots withfri
tion. However, they involve highly nonlinear, and possibly dis
ontinuous, 
ontrollers�
f. e.g. [Tom00, POG98, LC00℄. In spite of the ri
h literature on PID 
ontrol of robots,we are not aware of a formal study of robustness of PID-
ontrolled manipulators, withrespe
t to unmodelled dynami
s and general additive disturban
es.In this se
tion, under reasonable assumptions, we establish that PID-
ontrolled robotmanipulators are uniformly semiglobally pra
ti
ally asymptoti
ally stable. In other words,the robot may be operated from arbitrarily large initial 
onditions and brought to a anygiven admissible 
on�guration with a steady-state error that may be arbitrarily redu
edby enlarging the 
ontrol gains. Performan
e is limited only by the physi
al 
onstraintsimposed on the size of the 
ontrol gains.It may be argued that modi�
ations of PID 
ontrol to a
hieve global asymptoti
 sta-bility, su
h as introdu
ing nonlinear terms (
f. [Ari94℄) or making the integrator timevarying �
f. [LNL00℄, may yield better performan
e. We pre
ise that the subje
t of thisse
tion is not to propose a new robust 
ontroller for robot manipulators, but to analyzethe robustness of the 
lassi
al linear time-invariant PID 
ontrol.Firstly, we 
onsider robots under PID 
ontrol and external disturban
es. In a se
-ond step, we analyze the same s
enario taking into a

ount the a
tuator dynami
s. Forsimpli
ity, we 
on
entrate on DC a
tuators des
ribed by �rst order linear di�erential equa-tions, but the approa
h may be generalized to more 
omplex dynami
s. We establishthat PID 
ontrol is robust to external disturban
es, model un
ertainty and negle
ted a
-tuator dynami
s (
onsidered themselves under input disturban
es). Our stability proofsare 
onstru
tive, i.e., in 
ontrast to others �
f. [OLK95℄, we do not appeal to La Salle'sinvarian
e prin
iple [LaS60℄. As for instan
e in [Ro
96, QD91℄, we prove stability witha Lyapunov fun
tion that is positive de�nite, radially unbounded and has negative def-inite total derivative. However, in 
ontrast to [Ro
96℄ where the system is regarded aslinear with se
tor-bound non-linearities (whi
h may yield 
onservative bounds), we use anenergy-like Lyapunov fun
tion and, as a byprodu
t, we provide a tuning pro
edure that



137takes into a

ount the size of the desired set of initial 
onditions and the desired toleran
eon the steady-state error.6.1.1 Robustness with respe
t to external disturban
esThe robot model. We 
onsider the problem of set-point 
ontrol of a rigid-joint robotmanipulator under PID 
ontrol and in presen
e of disturban
es. In this 
ontext, theLagrangian dynami
s of a robot manipulator with n rigid-joints is given by
D(q)q̈ + C(q, q̇)q̇ + g(q) = u+ p1(t, q, q̇) , (6.1)where q 
ontains the position of the joints, D(q) ∈ R

n×n is symmetri
 positive de�nitefor all q ∈ R
n, N(q, q̇) := Ḋ(q) − 2C(q, q̇) is skew-symmetri
 for all (q, q̇) ∈ R

n × R
n and

u ∈ R
n 
orresponds to the torques. The disturban
e p1 represents external for
es a
tingon the robot. As most 
ommon in the literature of robot 
ontrol, we restri
t our attentionto systems satisfying the following.Assumption 6.1 The fun
tions D(·), C(·, ·), g(·) are twi
e 
ontinuously di�erentiableand the partial derivatives of their elements are over-bounded by nonde
reasing fun
tionsof |q| and |q̇|. Furthermore, we assume that there exist positive 
onstants dm, dM , kc and

kg su
h that1 for all q and q̇ of R
n,

dm ≤ |D(q)| ≤ dM , |C(q, q̇)| ≤ kc |q̇| ,
∣∣∣∣
∂g(q)

∂q

∣∣∣∣ ≤ kg .As a �st step, our 
ontrol problem is to design u so that the robot manipulator stabilizesaround a desired 
onstant set-point (q = q∗, q̇ = 0). It is further imposed that 
ontrol beof the PID type. That is, the input torques that a
hieve the 
ontrol obje
tive are given by
u∗ = −Kpq̃ −Kdq̇ + ν (6.2a)
ν̇ = −Kiq̃ , ν(0) := ĝ(q∗) (6.2b)where ĝ(q∗) is an initial guess of the unknown 
onstant pre-
omputed gravitational for
esve
tor, q̃ := q−q∗ and Kp, Kd and Ki are symmetri
 positive de�nite matri
es representing
ontrol gains.We stress that the above setting is fairly 
ommon in pra
ti
e of robot 
ontrol: notonly PID 
ontrol is probably the most popular 
ontrol te
hnique but, often, industrialmanipulators 
ome with a bla
k-box 
ontroller of PID type, meaning that 
ontrol designfor the user of an industrial robot boils down to gain-tuning for the built-in PID.Disturban
es. We establish now our results for the perturbed system (6.1). We assumethat the perturbations may be modelled by a fun
tion p1 : R≥0×R

n×R
n that is 
ontinuousin all arguments. However, if needed in parti
ular situations, we 
an relax this hypothesisto assuming that p1 is su
h that the right hand side of (6.1) satis�es the Carathéodory
onditions for existen
e of solutions. This assumption is not of pure theoreti
al interest.A typi
al example where the usual lo
al Lips
hitz assumption (even 
ontinuity) does not1This is true for instan
e for open kinemati
 
hains with only revolute or only prismati
 joints. See e.g.[SV89, SS96℄.



138 6. Appli
ation to me
hani
al systemshold is when dealing with systems with Coulomb fri
tion, i.e. in the 
ase that p1 
ontainsterms in
luding sign(q̇) whi
h is dis
ontinuous at q̇ = 0. For su
h 
ases, we shall rely on[KH99℄ where it is proved that Carathéodory solutions exist for systems with Coulombfri
tion.In this setting, we establish the following result, that quanti�es the robustness of PID
ontrolled manipulators when a
tuators'dynami
s is negle
ted.Proposition 6.2 (Robustness of the me
hani
al part) Consider the system (6.1) in
losed-loop with (6.2) and under Assumption 6.1. Assume that there exists non-negativenumbers p10, p11 and p12 su
h that, for all t ∈ R≥0 and all (q, q̇) ∈ R
2n,

|p1(t, q, q̇)| ≤ p10 + p11 |(q̃, q̇)| + p12 |(q̃, q̇)|2 (6.3)Then, the 
losed-loop system is uniformly semiglobally pra
ti
ally asymptoti
ally stable with
Kp, Ki and Kd as tuning parameters.Remark 6.3 For 
ommodity, we bound the disturban
e p1 by a fun
tion of |(q̃, q̇)| insteadof |(q, q̇)| as may be more natural. However, if

|p1(t, q, q̇)| ≤ p′10 + p′11 |(q, q̇)| + p′12 |(q, q̇)|2 , (6.4)where p′10, p′11 and p′12 are positive 
onstants, then there exist p10, p11 and p12 > 0 su
hthat (6.3) holds. As a matter of fa
t, a simple 
al
ulation using (6.4) yields p10 := p′10 +
p′11 |q∗| + p12 |q∗|2, p11 := p′11 and p12 := p′12.Proof of Proposition 6.2. The proof is 
onstru
tive, i.e. we provide a stri
t Lyapunovfun
tion whi
h, moreover, helps to establish a tuning pro
edure, 
f. Claim 6.5. For ana-lyti
al purposes, let ε1 > 0 be su�
iently small and de�ne the variable

s :=
1

ε1
q̃ +K−1

i (g(q∗) − ν) .We de
ompose Kp in the following manner:
Kp = K ′

p +
1

ε1
Ki .Noti
e that K ′

p 
an be made symmetri
 positive de�nite by a 
onvenient 
hoi
e of Kp. The
losed-loop system 
an then be written
D(q)q̈ + C(q, q̇)q̇ + g(q) − g(q∗) +K ′

pq̃ +Kdq̇ −Kis = p1(t, q, q̇) (6.5a)
ṡ = q̃ +

1

ε1
q̇ . (6.5b)To formally study the stability of the 
losed-loop system we rewrite it in the state-spa
eform, i.e. de�ning x⊤1 := (q̇⊤, q̃⊤, s⊤)⊤ ∈ R

3n and θ1 := (Kd,K
′
p,Ki) ∈ R

n×n × R
n×n ×

R
n×n, the equations (6.5) be
ome ẋ1 = f1(t, x1, θ1) where

f1(t, x1, θ1) :=




q̇
−D(q)−1

[
C(q, q̇)q̇ + g(q) − g(q∗) +K ′

pq̃ +Kdq̇ −Kis− p1(t, q, q̇)
]

q̃ + 1
ε1
q̇


 .



139In the sequel, we 
onsider that the tuning parameters are2:
θ11 := λm(Kd) , θ12 := λm(K ′

p) , θ13 := λm(Ki) , (6.6)instead of the matri
es gains Kd, K ′
p, Ki as this makes 
learer the proof of Proposition 6.2.Noti
e that this is only a notation 
onvention sin
e, for ea
h 
hoi
e of θ1, one 
an design
orresponding gain matri
es K ′

p, Kd and Ki.The rest of the proof 
onsists in verifying the 
onditions of Corollary 2.16. For this,let ∆1 and δ1 be any positive 
onstants satisfying δ1 < ∆1. Following the literature on
ontrol of robots with un
ertainties (see for instan
e [OLK95, Kel95, CG95℄), we let3
V1 := V11 + V12 + V13 (6.7)where

V11 :=
1

2
q̇⊤D(q)q̇ +

1

2
q̃⊤K ′

pq̃ + U(q) − U(q∗) − q̃⊤g(q∗) (6.8a)
V12 :=

ε1
2
s⊤Kis+ ε1q̃

⊤D(q)q̇ (6.8b)
V13 := ε2s

⊤D(q)q̇ , (6.8
)and ε1 and ε2 are (small) positive 
onstants. Noti
e that the fun
tion V11 
orresponds tothe energy fun
tion of [TA81℄, the se
ond term in the de�nition of V12 
orresponds to the
ross-term introdu
ed in [Kod88℄. Roughly speaking, we need to show that V1 is positivede�nite and its total derivative is negative de�nite for all t ∈ R≥0 and all x1 su
h that
δ1 ≤ |x1| ≤ ∆1. To that end, without mu
h loss of generality, let the 
ontrol gains matri
es
K ′
p, Kd and Ki be su
h that
λM (Kd) ≤ ℓλm(Kd) , λM (K ′

p) ≤ ℓλm(K ′
p) , and λM (Ki) ≤ ℓλm(Ki) , (6.9)where ℓ designates a positive 
onstant. Then, the following two 
laims hold true (seeAppendix A.6 and A.7 for their respe
tive proofs).Claim 6.4 (Bounds on V1) The Lyapunov fun
tion V1 satis�es

a1 |q̇|2+b2θ12 |q̃|2+b3θ13 |s|2 ≤ V1(x1) ≤ a1 |q̇|2+(a2+b2θ12) |q̃|2+(a3+b3θ13) |s|2 , (6.10)where a1, b2, b3, a1, a2, b2, a3 and b3 are positive numbers independent of the gain θ1.Claim 6.5 (Tuning pro
edure) Assume that ε1 + ε2 ≤ 1 and 
hoose the gains as
θ11 = θ⋆11(δ1,∆1) := ad +

bd
δ1

+ cd∆1 (6.11a)
θ12 = θ⋆12(δ1,∆1) := ap +

bp
δ1

+ cp∆1 (6.11b)
θ13 = θ⋆13(δ1,∆1) := ai +

bi
δ1

+ ci∆1 , (6.11
)where ad, bd, cd, ap, bp, cp, ai, bi and ci the positive 
onstants, independent of δ1 and ∆1,given in Se
tion A.7. Then, the total derivative of V1 satis�es
∂V1

∂x1
f1(t, x1, θ1) ≤ −ε1θ12

2
|q̃|2 − θ11

2
|q̇|2 − ε2θ13

2
|s|2 , ∀x1 ∈ H(δ1,∆1) . (6.12)2We re
all that λm(A) and λM (A) denote respe
tively the smallest and largest eigenvalues of A.3It should be understood that V depends on the tuning parameter θ1. We omit to expli
itly write thisdependen
y for 
larity.



140 6. Appli
ation to me
hani
al systemsIn view of Claim 6.4, the requirement (2.48) of Corollary 2.16 holds for V1. In addition,Claim 6.5 ensures that (2.49) holds. Furthermore, pro
eeding as in Example 2.17, a simpleinspe
tion of (6.11) shows that (2.51) are also satis�ed. In virtue of Corollary 2.16, thisends the proof of the proposition. �Several interesting 
orollaries stem from Proposition 6.2. The �rst one 
on
erns the 
aseof a vanishing perturbation. Its proof follows along the same lines of that of Proposition6.2, by invoking Corollary 2.16.Corollary 6.6 (Vanishing perturbation) In the 
ase that the assumptions of Proposi-tion 6.2 hold with p10 = 0, the equilibrium point (q, q̇) = (q∗, 0), for the PID-
ontrolledrobot, is semiglobally asymptoti
ally stable.It worth pointing out that, under vanishing perturbations (that may in
lude high ordernonlinearities), we are left with the same stability property as for the PI2D 
ontrollerproposed in [OLK95℄ and the saturated PID 
ontroller of [ARKC03℄, where no disturban
eis taken into a

ount.Another interesting 
ase that is in
luded in Proposition 6.2 is that of motion 
ontrolunder PID 
ontrol.Corollary 6.7 (Traje
tory tra
king) Let t 7→ q∗(t) denote a bounded referen
e traje
-tory with q̇∗(·) and q̈∗(·) 
ontinuous and bounded. Then, under the assumptions of Propo-sition 6.2, the system (6.1) in 
losed loop with the PID 
ontrol law
u∗ = −Kpq̃ −Kd

˙̃q + ν (6.13a)
ν̇ = −Kiq̃ , ν(0) := ĝ(q∗(0)) , (6.13b)where q̃ := q − q∗, is uniformly semiglobally pra
ti
ally asymptoti
ally stable.Sket
h of proof of Corollary 6.7. The 
losed-loop system is given by (6.5b) and

D(q)¨̃q+C(q, q̇) ˙̃q+g(q)−g(q∗)+K ′
pq̃+Kdq̇−Kis = p1(t, q, q̇)−C(q, q̇)q̇∗−D(q)q̈∗ . (6.14)Let σ∗ be a positive 
onstant satisfying

max{|q∗(t)| , |q̇∗(t)| , |q̈∗(t)|} ≤ σ∗ , ∀ t ∈ R≥0 .Noti
e that C(q, q̇)q̇∗ −D(q)q̈∗ then satis�es
|C(q, q̇)q̇∗ −D(q)q̈∗| ≤ kcσ∗ |q̇| + dMσ∗ .Therefore, rede�ning p1 as the right hand side of (6.14), we see that it still satis�es therequired 
ondition (6.3). Thus, the result may be obtained exa
tly as for Proposition 6.2,with the Lyapunov fun
tion V1 de�ned in (6.7) by repla
ing q̇ with ˙̃q. �It is worth remarking that the proof for the 
ase of motion 
ontrol follows as the proofof Proposition 6.2 sin
e we do not appeal to La Salle's invarian
e prin
iple but we provide astri
t Lyapunov fun
tion, i.e. whose total derivative is negative de�nite along 
losed-looptraje
tories in the absen
e of disturban
es.



141Dis
ontinuous fri
tion. In the 
ase when p1 
ontains perturbations due to fri
tion,dis
ontinuous fun
tions of the state may be introdu
ed. In general term, it may take thefollowing form:
p1(t, q, q̇) := F1q̇ + F2Sign(q̇) + F3z(t) + p′1(t, q, q̇) (6.15)where F1 is a non-negative matrix of appropriate dimensions, Sign(q̇) denotes the ve
tor

(sign(q̇1), . . . , sign(q̇n))
⊤, z(t) is the bounded solution of a dynami
 fri
tion model �
f.[COaL95, SAGP00℄, F2 and F3 are bounded matri
es of appropriate dimensions and p′1represents additional disturban
es4. In view of the regularity assumptions imposed on

p1 and the results established in [KH99℄ , we see that the theoreti
al result 
ontained inProposition 6.2 remains valid.6.1.2 PID 
ontrol 
onsidering a
tuators'dynami
s with disturban
esWe 
onsider now the regulation problem when a
tuator dynami
s are taken into a

ount.The input torques u ∈ R
n are delivered by Dire
t-Current (DC) motors, whose dynami
sare given by

Li̇+Ri+Kbq̇ = v + p2(t, i) , (6.16)where i ∈ R
n is the ve
tor of rotor 
urrents, L and R are the n × n matri
es of therotors'indu
tan
es and resistan
es respe
tively, Kbq̇ represents the ba
k ele
tromotive for
ein the motors and v is the ve
tor of input voltages, i.e. the 
ontrol inputs.We assume that ea
h motor produ
es an ideal output torque, i.e. uj = ktjij with

ktj > 0 for ea
h j ∈ {1, . . . , n}. We de�ne Kt := diag{ktj : j = 1, . . . , n}. We stress thatthis assumption is not 
onservative sin
e, in the 
ase that phenomena su
h as torque rippleand ba
klash are present, they may be modelled by 
ontinuous bounded fun
tions dj(t, i)and the a
tual torque takes the form uj = ktjij + dj(t, i). In this 
ase, the 
orrespondingdisturban
es dj(t, i) may be a

ounted for in the term p1 de�ned in Proposition 6.2.The term p2 represents additional external disturban
es a
ting on the rotor. We pursuethe same 
ontrol obje
tive as above, i.e. to stabilize the robot around the set-point q∗with zero velo
ity. Our 
ontrol obje
tive is a
hieved via 
as
aded-based 
ontrol; i.e. theapproa
h 
onsists in designing a referen
e i∗ := K−1
t u∗ (so that, when ĩ := i− i∗ = 0, wehave u = u∗) and building a 
ontrol law v that makes that, ideally, ĩ goes to zero; hen
e

u → u∗. However, in view of the disturban
es, a steady-state error is to be expe
ted.Relying on Corollary 2.16, we show that the PID-
ontrolled manipulator, in
luding themotors'dynami
s, is uniformly semiglobally pra
ti
ally asymptoti
ally stable.Proposition 6.8 (Robustness of PID 
ontrolled manipulators) Consider the system(6.1), (6.16) in 
losed-loop with (6.2) and
v := R′ĩ+Ri∗ +Kbq̇ + Li̇∗ , i∗ = K−1

t u∗ .Let q̃ := q− q∗ and ĩ := i− i∗. Assume that the 
onditions of Proposition 6.2 hold and thedisturban
es p2 are bounded as
|p2(t, i)| ≤ p20 + ρ2(

∣∣̃i
∣∣)
∣∣̃i
∣∣ , ∀ t ∈ R≥0 , ∀i ∈ R

3n , (6.17)where p20 is a nonnegative 
onstant and ρ2 : R≥0 → R≥0 is a 
ontinuous fun
tion. Then the
losed-loop system is uniformly semiglobally pra
ti
ally asymptoti
ally stable. In addition,if p10 = p20 = 0 then the 
as
ade is uniformly semiglobally asymptoti
ally stable.4e.g., in the motion 
ontrol problem, terms depending on a time-varying referen
e traje
tory.
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ation to me
hani
al systemsWe stress that the bound (6.17) holds for any fun
tion of i uniformly bounded in t.Proposition 6.8 establishes that, if one knows how to globally asymptoti
ally stabilizea robot using PID 
ontrol when negle
ting the DC drive dynami
s and in the absen
e ofexternal disturban
es, then semiglobal pra
ti
al asymptoti
 stability 
an be established inthe presen
e of a wide 
lass of non-dissipative for
es and taking into a

ount the a
tua-tors'dynami
s. In other words, given any toleran
e on the steady-state error with respe
tto the operating point and any domain of initial errors, one 
an always �nd 
ontrol gainssu
h that the 
losed loop system is uniformly asymptoti
ally stable on this set of initial
onditions modulo the toleran
e given. Moreover, the tuning pro
edure given in Claim 6.5is still valid under the in�uen
e of the a
tuators'dynami
s.It is also important to observe that the result 
ontained in Proposition 6.8 remainsvalid in the 
ontexts of motion 
ontrol. More pre
isely, Corollary 6.6 extends to the 
aseof systems with DC dynami
s under the 
onditions from Proposition 6.8.Proof of Proposition 6.8. The 
losed-loop system, in
luding the a
tuator dynami
s,
onsists in Equations (6.5) and
L˙̃i+ (R+R′)̃i = p2(t, i) . (6.18)Noti
e that it has a 
as
aded stru
ture:
ẋ1 = f1(t, x1, θ1) +Ktx2 (6.19a)
ẋ2 = f2(t, x2, θ2) , (6.19b)where x1 and f1 have been previously de�ned, x2 := ĩ, θ2 = R′ and

f2(t, x2, θ2) := −L−1(R+R′)̃i+ L−1p2(t, i)The proof of the proposition is 
onstru
ted with the aim at verifying the 
onditionsof Corollary 2.16. For this we use the result from Proposition 6.2 and prove further thatthe motor 
losed-loop system (6.18) ẋ2 = f2(t, x2, θ2) is uniformly semiglobally pra
ti
allyasymptoti
ally stable and that the PID-
ontrolled robot system, taking into a

ount theinter
onne
tion termKtĩ, remains uniformly semiglobally pra
ti
ally asymptoti
ally stable.USPAS of the motor 
losed-loop dynami
s: While this property may appear intuitively
lear in view of the linearity of the motor dynami
s, we present the proof of uniformsemiglobal pra
ti
al asymptoti
 stability of the motor for further development. In parti
-ular, this analysis helps to show that the tuning pro
edure that stems from the proof ofProposition 6.2 remains valid even in spite of the a
tuator dynami
s.With the notation x2 = ĩ, we 
onsider the Lyapunov fun
tion
V2(x2) :=

1

2
x2

2 . (6.20)In view of (6.17), its derivative along the solutions of (6.18) satis�es the following upperbound:
∂V2

∂x2
(x2)f2(t, x2, θ2) ≤ −λm(R) + θ2

λM (L)
|x2|2 +

p20 + ρ2 (|x2|) |x2|
λm(L)

|x2| .



143Hen
e, given any ∆2 > δ2 > 0, it holds that, for all x2 ∈ H(δ2,∆2),
∂V2

∂x2
(x2)f2(t, x2, θ2) ≤ −

(
λm(R) + θ2
λM (L)

− p20

λm(L)δ2
− ρ2(∆2)

λm(L)

)
|x2|2 . (6.21)By 
hoosing any θ2 = λm(R′) ≥ θ⋆2(δ2,∆2) where

θ⋆2(δ2,∆2) :=
λM (L)

λm(L)

(
p20

δ2
+ ρ2(∆2)

)
, (6.22)we obtain

∂V2

∂x2
(x2)f2(t, x2, θ

⋆
2) ≤ −λm(R)

λM (L)
|x2|2 = −2λm(R)

λM (L)
V2(x2) , ∀x2 ∈ H(δ2,∆2) .It is easy to see that the requirements (2.29) and (2.30) of Theorem 2.11 hold. Also,the upper an lower-bounds on V2 
an both be pi
ked as s 7→ s2/2. This makes the thirdrequirement (2.31)-(2.32) trivially satis�ed. Thus, uniform semiglobal pra
ti
al asymptoti
stability follows from Theorem 2.11.In the 
ase when p20 = 0, uniform semiglobal asymptoti
 stability follows similarlyfrom Corollary 2.22.USPAS of the PID-
ontrolled robot with a
tuator dynami
s: We use now the Lyapunovfun
tion

V (x1, x2) := V1(x1) + V2(x2) .From (6.10) and (6.20) we see that V satis�es the requirement (2.48) of Corollary 2.16.We now 
ompute the total derivative of V along the traje
tories of the 
losed-loop system(6.19). To that end, we �rst observe that, in view of (6.7)�(6.9) and (6.20), there existsa positive 
onstant cδ1,∆1
su
h that, with the parameter 
hoi
e proposed in (6.11) and forall x1 ∈ R

3n, ∣∣∣∣
∂V1

∂x1
(x1)

∣∣∣∣ ≤ cδ1,∆1
|x1| , (6.23)In view of (6.12), (6.21) and (6.23), we see that the derivative of V along the traje
toriesof the system (6.19) yields, for all x = (x⊤1 , x

⊤
2 )⊤ ∈ H(δ1,∆1) ×H(δ2,∆2),

V̇ ≤ −αδ1,∆1
|x1|2 + cδ1,∆1

λM (Kt) |x1| |x2| −
(
λm(R) + θ2
λM (L)

− p20

λm(L)δ2
− ρ2(∆2)

λm(L)

)
|x2|2where

αδ1,∆1
:=

1

2
min

{
ε1θ

⋆
12(δ1,∆1) ; θ⋆11(δ1,∆1) ; ε2θ

⋆
13(δ1,∆1)

}
. (6.24)Noti
ing that, for any positive ε3, it holds that

cδ1,∆1
λM (Kt) |x1| |x2| ≤

1

2

(
ε3
∣∣x2

1

∣∣+
c2δ1,∆1

λM (Kt)
2

ε3
|x2|2

)
,we get that, for all x ∈ H(δ1,∆1) ×H(δ2,∆2),

V̇ ≤ −αδ1,∆1
|x1|2+

ε3
2
|x1|2−

(
λm(R) + θ2
λM (L)

− p20

λm(L)δ2
− ρ2(∆2)

λm(L)
−
c2δ1,∆1

λM (Kt)
2

2ε3

)
|x2|2 .
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hani
al systemsHen
e, by pi
king
ε3 =

1

2
min

{
ε1

(
ap +

bp
δ1

+ cp∆1

)
; ad +

bd
δ1

+ cd∆1; ε2

(
ai +

bi
δ1

+ ci∆1

)}and R′ in su
h a way that
θ2 = λM (L)

(
p20

λm(L)δ2
+
ρ(∆2)

λm(L)
+
c2δ1,∆1

λM (Kt)
2

2ε3

)
,we see with (6.24) that

V̇ ≤ −αδ1,∆1

2
|x1|2 −

λm(R′)
λM (L)

|x2|2for all x ∈ H(δ,∆), where5 δ := max{δ1, δ2} and ∆ := min{∆1,∆2}. Furthermore, therequirements (2.51) are ful�lled in view of (6.11). The result follows invoking Corollary2.16. Similarly, in the 
ase that p10 = p12 = 0, uniform semiglobal asymptoti
 stabilityfollows from Corollary 2.22. �6.1.3 Experimental resultsWe now present some experimental results obtained with the �Peli
ano� manipulator. Thisrobot is 
omposed of two rotational links q1 and q2. Its model parameters are given below.
D(q) =

(
0.3353 + 0.0244 cos(q2) 0.0127 + 0.0122 cos(q2)
0.0127 + 0.0122 cos(q2) 0.0127

)Nms2 rad−1

C(q, q̇) =

(
−0.0122 sin(q2)q̇2 −0.0122 sin(q2)(q̇1 + q̇2)
0.0122 sin(q2)q̇1 0

)Nms rad−1

g(q) =

(
11.5081 sin(q1) + 0.4596 sin(q1 + q2)

0.4596 sin(q1 + q2)

)Nm .The torque developed by the a
tuators is limited to 15 Nm for the �rst joint, and to 4 Nmfor the se
ond one. The following experimental results are obtained with the gains:
K ′
p =

(
4.54 0
0 4.54

)
, Kd =

(
0.7 0
0 0.7

)
, Ki =

(
3.51 0
0 3.51

)
,from initial 
onditions q10 = 3.14 rad and q20 = 1.1 rad, with zero initial velo
ity.These results are presented in Figure 6.1. The position, velo
ity and applied torque isplotted for ea
h joint. This data shows an a

eptable behavior of the manipulator withinput torques that remain a

eptable for the 
onsidered a
tuators. A zoom of these 
urvesshow the predi
ted steady-state error that arises from fri
tion and other perturbations, 
f.Figure 6.1.

5H(δ, ∆) 6= ∅ if δ1 and δ2 are originally 
hosen small enough (or ∆1 and ∆2 large enough).



145
0 1 2 3 4 5 6 7 8 9 10

−2

0

2

4

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

10

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

10

Figure 6.1: 1- q1 (plain), q2 (dashed); 2- q̇1 (plain), q̇2 (dashed); 3- u1 (plain), u2 (dashed).
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146 6. Appli
ation to me
hani
al systems6.2 Spa
e
raft formationFirst of all, we stress that all the results presented in this se
tion are fruits of a 
ollaborationwith R. Kristiansen, A. Loría and P. J. Ni
klasson, and will be part of the topi
 of theup
oming PhD thesis of R. Kristiansen6. We strongly invite the interested reader to 
onsultthis referen
e for a more detailed treatment of the questions raised below.The obje
t of this se
tion is the 
ontrol of a spa
e
raft formation in a leader-follower
on�guration. This intera
tion between multiple spa
e
rafts is indeed revolutionizing theway of performing spa
e-based operations, and brings out several advantages in spa
emission a

omplishment, as well as new opportunities and appli
ations for su
h missions.Repla
ing large and 
omplex spa
e
raft by an array of simpler mi
ro-satellites introdu
es amultitude of advantages regarding mission 
ost and performan
e. However, the advantagesof using spa
e
raft formations 
ome at a 
ost of in
reased 
omplexity and te
hnologi
al
hallenges.Spe
i�
 
onstraints. Formation �ying introdu
es requires a detailed knowledge and atight 
ontrol of relative distan
e and velo
ity for ea
h spa
e
raft. As in other appli
ationsof 
ooperative 
ontrol, the 
ontrol problem for the follower simpli�es as the knowledgeabout the leader and its orbit in
reases. However, 
omplete knowledge of the leader ishard to a
hieve in pra
ti
e.Another 
hallenge is that the spa
e
raft parameters 
hange during its lifetime, byfuel 
onsumption and body deformations. The orbital parameters must often be 
hangedto a
hieve mission goals, both as planned 
hanges in orbit a
quisition and unexpe
tedne
essary 
hanges during the operation. Su
h 
hanges lead to modi�
ations in the systemparameters, whi
h 
an be hard to 
ommuni
ate to the follower. In addition, equipment fordetermining position and velo
ity is 
ostly, heavy and 
omputationally demanding, andtherefore the follower spa
e
raft must often rely on measurements of the position of theleader spa
e
raft only. Hen
e, the 
hallenge lies in syn
hronized 
ontrol of the formation,with as little ex
hange of information between the spa
e
raft as possible.Existing 
ontrol strategies. Position feedba
k 
ontrol of leader-follower spa
e
raft for-mations has re
eived some attention during the last years. The �rst solution to this 
ontrolproblem was presented in [dQYYK99℄, and the use of a nonlinear 
ontrol law results inglobal uniform ultimate boundedness of position and velo
ity tra
king errors. The solu-tion in
ludes a �ltering s
heme to estimate the relative velo
ity. A similar result was alsopresented in [YYKdQ00℄, providing the same stability properties to the 
losed-loop sys-tem. Nonlinear adaptive tra
king 
ontrol was developed in [dQKY00℄ and ensures globalasymptoti
 position tra
king errors. This latter result was however based on a 
ir
ularorbit assumption. Later, in [PK01℄, a nonlinear tra
king 
ontroller for both translationand rotation was presented, in
luding an adaptation law to a

ount for unknown mass andinertia parameters of the spa
e
raft. The 
ontroller ensures global asymptoti
 stability ofposition and velo
ity errors. Based on the latter two referen
es, semiglobal asymptoti

onvergen
e of relative translation errors was proved in [WKS02℄ for an adaptive out-put feedba
k 
ontroller using relative position only, with a similar �ltering s
heme as in[YYKdQ00℄. This result was extended to a similar result for both relative translation and6Narvi
 University College, Norway.



147rotation in [WPK05℄, tra
ing the steps of [PK01℄.Little information. The purpose of this se
tion is to provide a solution to the spa
e
raftformation 
ontrol problem with as little knowledge about the leader spa
e
raft as possible.This relieves the ne
essity for 
ommuni
ation between the spa
e
raft, and the leader spa
e-
raft 
an 
hange its orbital parameters without 
ommuni
ating su
h 
hanges to every otherspa
e
raft in the formation. This is desirable espe
ially for largely populated formation, todiminish the overall 
ommuni
ation load. We present a solution to the problem of tra
kingrelative translation in a leader-follower spa
e
raft formation using feedba
k from relativeposition only. The 
ontroller design is performed for two di�erent levels of knowledgeabout the leader spa
e
raft and its orbit. The �rst 
ontroller assumes perfe
t knowledgeof the leader and its orbital parameters and that the orbital perturbations working on thefollower are known. It renders the equilibrium point of the 
losed-loop system uniformlyglobally asymptoti
ally stable, using measurements of relative position only. A �lter, sim-ilar to the one in [Kel93℄, is in
luded, using the method of approximate di�erentiation toprovide su�
ient knowledge about the relative velo
ity to solve the 
ontrol problem. These
ond 
ontroller uses the framework of the �rst to render the 
losed-loop system uniformlyglobally pra
ti
ally asymptoti
ally stable, with knowledge of bounds on orbital parameters,orbital perturbations and leader 
ontrol for
e only.6.2.1 Problem formulationLet us here formulate the satellite formation problem that we study in this se
tion. Thegeneral orbit equation for two point masses m1 and m2 (
f. [Bat99℄)
r̈ +

µ

|r|3
r = 0 , (6.25)where r is the relative position of masses and µ = G (m1 +m2), G being the universal
onstant of gravity, is the equation des
ribing the un
ontrolled orbit dynami
s for a spa
e-
raft under ideal 
onditions. This equation 
an be generalized to in
lude for
e terms dueto 
ontrol input ve
tors from onboard a
tuators, aerodynami
 disturban
es, gravitationalfor
es from other bodies, solar radiation, magneti
 �elds and so on. A

ordingly, (6.25)
an be expressed for the leader and follower spa
e
rafts as

r̈l = − µ

|rl|3
rl +

fdl
ml

+
ul
ml

r̈f = − µ

|rf |3
rf +

fdf
mf

+
uf
mfwhere fdl, fdf ∈ R

3 are the disturban
e for
e terms due to external perturbation e�e
tsand ul, uf ∈ R
3 are the a
tuator for
es of the leader and follower respe
tively. Inaddition, spa
e
rafts'masses are assumed to be small relative to the mass of the Earth Me,so µ = GMe. Taking the se
ond order derivative of the relative position ve
tor q = rf − rl,and using the true anomaly ν(t) of the leader, whi
h is the orbit plane angle measured inthe 
enter of the Earth between the orbit perigee point and the leader spa
e
raft 
enter ofmass, the relative position dynami
s 
an be written as (
f. [KGNG05℄)
mf q̈ + C(ν̇)q̇ +D(ν̇, ν̈, |rf |) + σ(|rl| , |rf |) = U + Fd , (6.26)
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ation to me
hani
al systemswhere
C(ν̇) = 2mf




0 −ν̇ 0
ν̇ 0 0
0 0 0


 ,

D(ν̇, ν̈, |rf |) = mf




µ

|rf |3 − ν̇2 −ν̈ 0

ν̈ µ

|rf |3 − ν̇2 0

0 0 µ

|rf |3


 ,

σ(|rl| , |rf |) = mfµ

(
|rl|
|rf |3

− 1

|rl|2
, 0, 0

)⊤

.The 
omposite disturban
e for
e Fd is given by
Fd = fdf −

mf

ml
fdland the relative 
ontrol for
e U is

U = uf −
mf

ml
ul .For 
ontrol design, we introdu
e the more 
onvenient notation

C(ν̇) = 2mf ν̇C̄ (6.27)
D(ν̇, ν̈, |rf |) = mf

µ

|rf |3
I +mf ν̇

2D̄ +mf ν̈C̄ (6.28)where
C̄ =




0 −1 0
1 0 0
0 0 0


 and D̄ =




−1 0 0
0 −1 0
0 0 0


 .The rate of the true anomaly of the leader spa
e
raft is given by

ν̇(t) =
nl (1 + el cos ν(t))2

(
1 − e2l

)3/2 , (6.29)where nl =
√
µ/a3

l is the mean motion of the leader, al being the semimajor axis of theleader orbit, and el its orbit e

entri
ity. Di�erentiation of (6.29) results in the rate of
hange of the true anomaly:
ν̈(t) =

−2n2
l el (1 + el cos ν(t))3 sin ν(t)

(
1 − e2l

)3 .Based on these expressions, we see that, when the leader spa
e
raft is revolving theEarth in an ellipti
al orbit, the true anomaly rate ν̇(t) and true anomaly rate of 
hange
ν̈(t) are bounded by 
onstants. We therefore assume the following.



149Assumption 6.9 (Bound on true anomaly) There exist positive 
onstants ων̇ and ων̈su
h that, for all t ∈ R≥0,
|ν̇(t)| ≤ ων̇ and |ν̈(t)| ≤ ων̈ .We establish two results that are presented in order of in
reasing 
omplexity. First,we assume that the leader's true anomaly ν(t), true anomaly rate ν̇(t) and the orbitalperturbations Fd are known and, in a se
ond step, we relax these hypotheses by assumingthat only bounds on ν(t), ν̇(t) and Fd are known. We make it 
lear that the property ofasymptoti
 stability is lost (and repla
ed by pra
ti
al asymptoti
 stability) due to the la
kof measurements.6.2.2 Measurements availableUnder the assumptions that the leader spa
e
raft is 
ontrolled to over
ome external dis-turban
es in an ellipti
 orbit, and the follower spa
e
raft has available measurements ofrelative position q, leader true anomaly rate ν̇(t), true anomaly rate of 
hange ν̈(t) andorbital perturbations fdf , we have the following.Proposition 6.10 (Measurements available: UGAS) Assuming that the desired rel-ative position q∗(t), desired relative velo
ity q̇∗(t) and desired relative a

eleration q̈∗(t) areall bounded fun
tions and that Assumption 6.9 holds, the origin of the system (6.26), in
losed loop with the 
ontrol law

uf = −kpq̃ − kdϑ+ σ − fdf +D(ν̇, ν̈, |rf |) + C (ν̇) q̇∗ +mf q̈∗ (6.30)
q̇c = −aϑ (6.31)
ϑ = qc + bq̃ (6.32)where q̃ := q− q∗, is uniformly globally asymptoti
ally stable for some 
onvenient 
hoi
e ofthe 
ontrol gains kp, kd, a and b.Proof of Proposition 6.10. Denoting the state ve
tor as

x :=
(
q̃⊤, ˙̃q

⊤
, ϑ⊤

)⊤
,the 
losed-loop dynami
s of the system in (6.26) and the 
ontroller (6.30)-(6.32) are

mf
¨̃q = A (t, x) (6.33)where

A (t, x) := −C(ν̇) ˙̃q − kpq̃ − kdϑ . (6.34)Di�erentiating (6.32) and inserting (6.31) results in
ϑ̇ = q̇c + b ˙̃q = −aϑ+ b ˙̃q . (6.35)To prove UGAS of the origin (q̃, ˙̃q, ϑ

)
= (0, 0, 0) of the 
losed-loop system, the Lyapunovfun
tion 
andidate

V (x) =
1

2
x⊤P1x (6.36)
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ation to me
hani
al systemsis used, where
P1 :=




kp ε1mf 0
ε1mf mf −ε1mf

0 −ε1mf kd/b


with ε1 as a positive design variable. Evaluating the eigenvalues of the matrix P1 we obtainthat V (x) is positive de�nite if

ε21 ≤ min

{
kp

2mf
,

kd
2bmf

}
. (6.37)Under this 
ondition, V 
an then be bounded in the following way

pm |x|2 ≤ V (x) ≤ pM |x|2 , (6.38)for some positive 
onstants pm and pM 7. The derivative of V (x) along the traje
tories of(6.33) and (6.35) is
V̇1(x) =

(
˙̃q + ε1q̃ − ε1ϑ

)⊤
mf

¨̃q + q̃⊤kp ˙̃q + ϑ⊤
kd
b
ϑ̇+ ε1mf

˙̃q
⊤ ( ˙̃q − ϑ̇

)and insertion of (6.33) and (6.35) results in
V̇1(x) = − 1

2
x⊤Q1 (ν̇(t))xwhere

Q1(ν̇) :=




2ε1kpI ε1C(ν̇) ε1 [kd − kp] I
−ε1C(ν̇) 2ε1mf (b− 1) I ε1C(ν̇) − ε1mfaI

−ε1 [kd − kp] I −ε1C(ν̇) − ε1mfaI 2
[
a
b − ε1

]
kdI


 .Using Assumption 6.9, the skew-symmetry property of C(ν̇) and S
hur's 
omplement onthe submatri
es in Q1(ν̇), we obtain that the latter is positive de�nite when

kp (b− 1) ≥ 4mfω
2
ν̇ (6.39)

kd

(a
b
− ε1

)
(b− 1) ≥ ε1

(
4mfω

2
ν̇ +mfa

2
) (6.40)

a

b
kpkd ≥ ε1

[
(kd − kp)

2 + kpkd

]
. (6.41)These 
onditions 
an, in their turn, be ful�lled by pi
king kp and kd large enough that(6.39) and (6.40) hold and, then, by pi
king ε1 small enough in order that (6.41) holds. We
on
lude with the 
lassi
al Theorem 2.3 that the 
losed-loop system is uniformly globallyasymptoti
ally stable.

�7Even though pm and pM depend on the gains kp and kd, this dependen
y is not a 
ru
ial issue here aswe aim to establish uniform global asymptoti
 stability.



1516.2.3 When only bounds are knownWe now relax the assumption that the instantaneous values of ν̇(t) and ν̈(t) are available tomeasurement, and rather assume that we know the values of ων̇ and ων̈ on the leader trueanomaly as given by Assumption 6.9. In addition, we relax the assumptions that orbitalperturbations fdf are known, and instead assume that the perturbation term is boundedas |fdf | ≤ ωf . Similarly, we relax the requirement on leader spa
e
raft 
ontrol, and assumethat the sum of for
es working on the leader due to 
ontrol thrust and external pertur-bations are bounded, su
h that |fdl + ul| ≤ ωl. Finally, we also assume that the followerspa
e
raft has available measurements of relative position q only. For these assumptions,we have the following.Proposition 6.11 (Known bounds: UGPAS) Under the above assumptions and as-suming further that Assumption 6.9 holds and that the desired relative position q∗, desiredrelative velo
ity q̇∗ and desired relative a

eleration q̈∗ are all bounded fun
tions, the system(6.26), in 
losed loop with the 
ontrol law given by (6.31), (6.32) and
uf = −kpq̃ −kdϑ+σ+mf

(
µ

|rf |3
I + ω2

ν̇D̄ + ων̈C̄

)
q + 2mfων̇C̄q̇∗+mf q̈∗ (6.42)where q̃ = q − q∗, is uniformly globally pra
ti
ally asymptoti
ally stable on the parameterset R

3
>0 with kp, kd and b as tuning parameters.The 
omparison between Propositions 6.10 and 6.11 
learly illustrates the impre
isionthat may arise from a la
k of measurements and the presen
e of non-measured external dis-turban
es. The steady-state error resulting from these phenomena 
an however be redu
edat will by a 
onvenient tuning of the 
ontrol gains, whi
h indu
es a good performan
e ofthe above 
ontrol law as 
on�rmed by simulations (see below).Proof of Proposition 6.11. The 
losed-loop dynami
s of the system in (6.26) and the
ontroller (6.31), (6.32) and (6.42) are

mf
¨̃q −mf

(
ω̃ν̇2D̄ + ω̃ν̈C̄

)
(q̃ + q∗) +C(ν̇) ˙̃q − 2mf ω̃ν̇C̄q̇∗ +

mf

ml
(fdl + ul) + kpq̃ + kdϑ = fdf(6.43)where the denotations ω̃ν̇ = ων̇ − ν̇, ω̃ν̈ = ων̈ − ν̈ and ω̃ν̇2 = ω2
ν̇ − ν̇2 have been used. Notethat this 
losed-loop system is the same as (6.33) with an additional perturbation term

G (t, q̃) := G1 (q̃) +G2 (t, fdl, fdf , ul) (6.44)
onsisting of the vanishing and non-vanishing perturbations, G1 and G2, given by
G1 (q̃) := mf

(
ω̃ν̇2D̄ + ω̃ν̈C̄

)
q̃

G2 (t, fdl, fdf , ul) := mf

(
ω̃ν̇2D̄ + ω̃ν̈C̄

)
q∗(t) + 2mf ω̃ν̇C̄q̇∗(t) −

mf

ml
(fdl+ul)+ fdf .A

ordingly, the 
losed-loop system 
an be written as

mf
¨̃q = A (t, x) +G (t, q̃) . (6.45)By assumption, the desired relative position q∗, relative velo
ity q̇∗, follower orbital pertur-bations fdf and leader for
es fdl+ul are all bounded. More pre
isely, using that |q∗| ≤ ωq∗ ,
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|q̇∗| ≤ ωq̇∗ , |fdf | ≤ ωf , |fdl + ul| ≤ ωl, and Assumption 6.9, we �nd that |G| ≤ ωG1

|q̃|+ωG2
,where

ωG1
=mf (ων̇2 + 2ων̈) (6.46)

ωG2
=mf (ων̇2 + 2ων̈)ωq∗ + 2mfων̇ωq̇∗ +

mf

ml
ωl + ωf . (6.47)To analyze the stability of the 
losed-loop system (6.45) we use the same Lyapunov fun
tionas before (
f. (6.36)). The total derivative of V (x) along the traje
tories of (6.35) and(6.43) yields

V̇2(x) = −1

2
x⊤Q1 (ν̇)x+

∂V

∂x
G (t, q̃) ≤ −1

2
x⊤Q2(ν̇)x+Q0 (ν̇, q∗, q̇∗)x ,where Q2(ν̇) := [qij ]i,j∈{1,2,3} with submatri
es given by

q11= 2ε1
(
kpI−mf ω̃ν̇2D̄

)
q12= q⊤21 = ε1C(ν̇) −mf

(
ω̃ν̇2D̄ − ω̃ν̈C̄

) (6.48)
q22= 2ε1mf (b− 1) I q13= q⊤31 = ε1

[
(kd−kp) I+mf

(
ω̃ν̇2D̄−ω̃ν̈C̄

)] (6.49)
q33= 2

(a
b
− ε1

)
kdI q23= q⊤32 = −ε1C(ν̇) − ε1mfaI (6.50)and

Q0 (ν̇, q∗, q̇∗) =




ε1mf [(ω̃ν̇2 + ω̃ν̈) q∗ + 2ω̃ν̇ q̇∗]
mf [(ω̃ν̇2 + ω̃ν̈) q∗ + 2ω̃ν̇ q̇∗] − mf

ml
(fdl + ul) + fdf

−ε1mf [(ω̃ν̇2 + ω̃ν̈) q∗ + 2ω̃ν̇ q̇∗]




⊤

. (6.51)In view of (6.46), (6.47) and the assumptions on the external for
es fdl, ul and fdf itfollows that there exists q0 > 0 independent of the 
ontrol gains and the states, su
h that
|Q0(ν̇(t), q∗(t), q̇∗(t))| ≤ q0. On the other hand, the 
onditions for positive de�niteness of
Q2 are (6.40),

ε21 (b− 1) (kp +mf ω̃ν̇2) ≥ 4ε21mfω
2
ν̇ + 4ε1mfων̇ ω̃ν̈ +mf

(
ω̃2
ν̇2 + ω̃2

ν̈

)
, (6.52)and

(a
b
− ε1

)
kd (kp +mf ω̃ν̇2) ≥ ε1

[
m2
f ω̃

2
ν̈ + (kd − kp +mf ω̃ν̇2)2

]
. (6.53)Thus, V̇2(x) is negative de�nite if (6.37), (6.40), (6.52) and (6.53) hold and

|x| ≥ 2
q0
q2,m

(6.54)where q0 ≥ |Q0 (ν̇(t), q∗(t), q̇∗(t))| and q2,m ≤ |Q2 (ν̇(t))| for all t ∈ R≥0.Furthermore, to verify the 
onditions of Corollary 2.9, we exhibit a quadrati
 upper-bound on −x⊤Q2x. To that end, we use the formula 2|ab| ≤ a2 + b2 for any a, b ∈ R, toobtain
x⊤Q2x ≥(λm(q11) − λM (q12) − λM (q13)) |q̃|2 + (λm(q22) − λM (q12) − λM (q23))

∣∣ ˙̃q
∣∣2

+ (λm(q33) − λM (q13) − λM (q23)) |ϑ|2 ,



153where λm(A) and λM (A) denote, respe
tively, the minimum and maximum eigenvalue ofthe matrix A. Due to the stru
ture of the sub-matri
es qij , it is always possible to 
hoosethe gains kp, kd and b large enough that
λm(q11) ≥ 2(λM (q12) + λM (q13))

λm(q22) ≥ 2(λM (q12) + λM (q23))

λm(q33) ≥ 2(λM (q13) + λM (q23)) ,whi
h results in
x⊤Q2x ≥ 1

2

(
λm(q11) |q̃|2 + λm(q22)

∣∣ ˙̃q
∣∣2 + λm(q33) |ϑ|2

)
.That is, we 
an 
hoose q2,m ≥ 1

2 min{λm(q11) , λm(q22) , λm(q22)}. Note that ea
h of theseterms 
an be arbitrarily enlarged by an appropriate 
hoi
e of kp, kd and b. Thus, q2,m 
anbe enlarged a

ordingly. Given any positive δ, it 
an notably be pi
ked as q2,m = 2q0/δ.Moreover, it 
an be seen that the resulting q2,m 
onsists in a linear 
ombinations of thegains. This ensures that a 
onvenient 
hoi
e of the gain 
an be pi
ked a�ne in 1/δ, whi
hensures 
onditions (2.27) and (2.28).Finally, in view of (6.38) the Lyapunov fun
tion V (x) also satis�es (2.25) and (2.26).We 
on
lude with Corollary 2.9 that the system (6.26) in 
losed loop with the 
ontrol law(6.31), (6.32) and (6.42) is uniformly globally pra
ti
ally asymptoti
ally stable with kp, kdand b as tuning parameters.
�6.2.4 Simulation resultsTo 
on
lude this work on leader-follower spa
e
raft formation 
ontrol and illustrate theperforman
e of the presented 
ontrol laws, we now present simulation results. The leaderspa
e
raft is assumed to be following an ellipti
 orbit with e

entri
ity el = 0.6. Bothspa
e
raft have mass ml = mf = 100 kg. The follower spa
e
raft is assumed to haveavailable 
ontinuous thrust in all dire
tions, limited to 27 N. The follower has initial values

q0 = (20, 10,−20)⊤, and is further 
ommanded to tra
k sinusoidal traje
tories around theleader, given as
q∗ (t) =

(
−10 cos

(
3π

To
t

)
, 10 sin

(
4π

To
t

)
, 5 cos

(
5π

To
t

))⊤
,where To is the orbital period of the leader spa
e
raft. A possible s
enario for this motion isin-orbit inspe
tion, where the follower moves in orbit around the leader. In all simulationsperformed, we used the 
ontroller gains kp = 3, kd = 5, a = 1 and b = 5. Orbitalperturbation for
es due to gravitational perturbations and aerodynami
 drag are in
ludedin the simulations.The result from simulating the system (6.26) in 
losed loop with the 
ontroller (6.30)-(6.32) is shown in Figure 6.3.
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Figure 6.3: Known perturbations, leader true anomaly rate and rate of 
hange: position,velo
ity and velo
ity �lter output.This is the 
ase where the leader spa
e
raft true anomaly and rate of 
hange are knownto the follower spa
e
raft. The follower settles and tra
ks the desired traje
tory withouterrors in relative position and relative velo
ity.The results for the 
ase where only bounds on the perturbations, leader true anomalyrate and rate of 
hange are known are presented in Figure 6.4.The UGPAS property of the 
losed-loop system is seen in the �gure as persistent os
il-lations around the origin (see the zoomed parts on the right-hand side). In 
onformity withour theoreti
al predi
tions, the magnitude of the os
illations 
an be arbitrarily diminishedby in
reasing the 
ontroller gains. It is worth noting that a good pre
ision 
an be rea
hedwithout requiring a too large thrust amplitude.
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Figure 6.4: Position error, velo
ity error and velo
ity �lter output for the 
ase when onlythe bounds on the leader true anomaly rate and rate of 
hange are known6.3 Underway ship replenishmentThe results presented below stem from a 
ollaboration with E. Kyrkjebø, E. Panteley andK. Pettersen. They will 
onstitute part of the subje
t of the up
oming PhD thesis of R.Kyrkjebø8. The interested reader should therefore refer to this work for a more detailedpresentation of the topi
.A 
hallenging problem. Underway ship replenishment 
onsists, for a supply vessel,to 
losely follow a vessel in order to transfer fuel. It requires a 
lose 
oordination of twovessels. Up to now, the underway ship replenishment manoeuvre has been 
ondu
ted usingmanual 
ontrol together with 
ontrol �ags to ex
hange instru
tions between the vessels.Re
ent advan
es in 
ontrol theory and measurement systems, in parti
ular the intro-du
tion of the Global Positioning System (GPS) and the Automati
 Identi�
ation System(AIS), now allow automati
 
ontrol approa
hes for replenishment purposes. These autopi-lots are fa
ed with the goal of suppressing e�e
ts of external disturban
es due to wind,waves and 
urrents, while a
hieving the a

ura
y demands of the operation using a redu
edset of measurements. The introdu
tion of autopilots expand the range of operating 
on-ditions for safe replenishment in terms of in
reased manoeuvrability in 
lose waters or in8NTNU, Trondheim, Norway.
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ation to me
hani
al systemsthe proximity of other vessels, and in the robustness towards environmental disturban
es.Control approa
hes used in [FCY04℄ and [SIF03℄ are based on the assumption that a
omplete mathemati
al model of both vessels is available, and thus autopilots for bothvessels 
an be designed to suppress the e�e
ts of external disturban
es. However, in apra
ti
al leader-follower replenishment operation, the follower may have limited a

ess toinformation of the 
ontrol input, model and states of the leader. Therefore, in order tolighten the information requirements on the leader vessel, we propose bellow a virtualvehi
le approa
h where the only information available from the main (leader) ship areposition and heading measurements, 
f. [KP03℄.Syn
hronization 
an be seen as a type of state 
ooperation among two or more systems.It was introdu
ed in a 
ontrol 
ontext by [Ble71℄, and has sin
e re
eived an in
reasing atten-tion in the 
ontrol 
ommunity (
f. e.g. [NRA03, FNP00℄). Syn
hronization has been uti-lized in maritime appli
ation by [KP03, SIF03, EP01℄. The two latter referen
es expandedon traditional tra
king methods with prede�ned paths, and introdu
ed a syn
hronizationfeedba
k from the a
tual position of a vessel (subje
t to disturban
es) to the other vesselsthrough a path parametrization variable. All vessels have prede�ned paths with individualtra
king 
ontrollers requiring knowledge of model parameters and 
ontrol inputs for all ves-sels, and the syn
hronization is in terms of progression along the path. Based on the resultsof [NRA03℄ for syn
hronization of me
hani
al systems, [KP03℄ proposed a leader-followersyn
hronization observer-
ontroller s
heme for underway replenishment. Experimental re-sults on this s
heme were presented in [KWPN04℄ addressing pra
ti
al tuning issues andperforman
e. No prede�ned path with known derivatives or model parameter informationfor the leader vessel is required anymore, and the 
oordination of the vessels is a
hievedusing a 
ontroller that syn
hronizes the position and velo
ity of the follower to the leaderbased on position measurements only, through the design of state observers.In this se
tion, we propose a virtual vehi
le approa
h to the underway replenishmentproblem to impose a 
as
aded stru
ture of the systems, as opposed to the 
ontroller-observer approa
h proposed in [KP03℄ where the observers and 
ontroller are 
losely in-ter
onne
ted. The virtual vehi
le is designed to follow the behaviour of the leader basedon position feedba
k, and provides a velo
ity output through the 
ontroller design. Thestates of the virtual vehi
le 
an thus be used in a syn
hronization 
ontroller to 
ontrol thefollower to the virtual vehi
le.We have made the additional assumption on the problem of [KP03℄ in that the velo
ityof the follower is assumed to be known to fo
us our treatment on the interplay betweenthe virtual vehi
le and the follower. This reasonable assumption enables to extend thestability results from semi-global uniform ultimate boundedness of the 
losed-loop errorsin [KP03℄ to uniform global pra
ti
al asymptoti
 stability.6.3.1 PreliminariesVehi
les de�nitions and referen
e frames. In the development of the underway re-plenishment 
ontrol s
heme, several referen
e frames, intermediate vehi
les and dynami
and kinemati
 models are used. A brief introdu
tion to these 
on
epts is given here. See[Fos02℄ for a more elaborate dis
ussion.The 
ontrol problem studied is as follows: Given the position (x1, x2) and headingangle ψ of a leader vessel, we want the follower vessel to follow the leader with its positionshifted by a distan
e d at an angle γm relative to the leader. For this purpose we will utilizethe 
on
epts of a referen
e vehi
le and a virtual vehi
le, and we designate the following



157vehi
les as illustrated by Figure 6.5.PSfrag repla
ements
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xn1
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xm1

ym2Figure 6.5: Vehi
les and 
oordinate frames- Σm: leader (main) vessel. The position xm = (x1, x2, ψ)⊤ is measured.- Σr: referen
e vehi
le shifted a distan
e h in the dire
tion given by the angle γm relativeto the position of the leader vehi
le.- Σv: virtual vehi
le 
ontrolled to tra
k the referen
e vehi
le Σr through a kinemati
 modelapproa
h.- Σs: follower (supply) vessel syn
hronizing to the leader vessel. The position x andvelo
ity ẋ is available for 
ontrol design, and the parameters of its model are known.Note that the only physi
al vehi
les in the 
ontrol s
heme are the leader vessel Σm andthe follower vessel Σs syn
hronizing to the leader. Through the use of a virtual vehi
le asan intermediate 
ontrol vehi
le in the s
heme, we 
an 
ontrol the physi
al follower vesselto the leader using the known velo
ity of the virtual referen
e. Note also that, although wederive the 
ontrol s
heme for one follower vessel, it 
an be easily extended to any numberof followers providing the introdu
tion of a 
ollision avoidan
e s
heme.Vessel kinemati
s and dynami
s 
an be expressed in di�erent referen
e frames, and wede�ne the two essential referen
e frames used in this text as (
f. [Fos02℄ for details):- NED : �xed referen
e frame de�ned relative to the Earth's referen
e ellipsoid, where the
x1
n-axis points toward true North, the x2

n-axis toward East, and the x3
n-axis pointsdownwards normal to the Earth's surfa
e.- BODY p: body-�xed moving referen
e frame where the origin is 
hosen in the 
enter ofgravity of the vehi
le p, and the axes (xb1,p, x

b
2,p, x

b
3,p) 
oin
ide with the prin
ipal axesof inertia. Due to vessel symmetry, we 
an 
hoose the xb1,p-axis along the axis ofinertia in the forward dire
tion of the vessel, the xb2,p-axis dire
ted to the right andthe xb3,p-axis to 
omplete the right-handed 
oordinate system pointing downwards.
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ation to me
hani
al systemsIn the 
ase 
onsidered here, the ve
tor of vessel generalized 
oordinates xn = (x1, x2, ψ)⊤is de�ned in the NED frame, where (x1, x2) is the position with respe
t to the x1
n- and

x2
n-axis, and ψ is the heading angle of the vessel about the x3

n-axis. The velo
ities
νbp = (u, v, r)⊤ in the surge, sway and yaw dire
tions are de�ned in the BODY p frame ofthe vehi
le p. Supers
ripts n and b will be dropped from the notation when the referen
eframe is evident from the 
ontext. Subs
ripts p ∈ {m, r, v, s} on these ve
tors will indi
atetheir vehi
le of origin (main, referen
e, virtual, supply).The marine vessel equations of motions 
an be written in ve
torial form in the BODYframe of the vessel as ([Fos02℄)

ẋ = J(x)ν (6.55)
Mν ν̇ + Cν (ν) ν +Dν (ν) ν + gν(x) = τν , (6.56)whereMν is a 
onstant positive de�nite inertia matrix in
luding added mass e�e
ts, Cν (ν)is a skew-symmetri
 matrix of Coriolis and 
entripetal for
es (satisfying Cν (ν)+C⊤

ν (ν) =
0), Dν (ν) is a non-symmetri
 damping matrix, and gravitational/buoyan
y for
es in gν(x)
an be ignored for surfa
e vessels. J(x) is a Ja
obian-like transformation matrix from the
BODY frame to the NED frame, and in a 3-degrees of freedom surfa
e appli
ation wherepit
h and roll motion are negligible, the matrix J(x) redu
es to a simple rotation matrixaround the x3

n-axis as
J(x) =




cosψ − sinψ 0
sinψ cosψ 0

0 0 1


 . (6.57)Inserting the kinemati
 equation (6.55) and its derivative in the dynami
s (6.56) yields thedynami
 model in the NED frame

M(x)ẍ+ C(x, ẋ)ẋ+D(x, ẋ)ẋ+ g(x) = τ , (6.58)where the inertia matrix M(x) is positive de�nite but no longer 
onstant9. The dynami
almodel (6.58) in the NED frame satis�es a number of properties similar to those of roboti
ssystems (
f. Se
tion 6.1). Notably, the inertia matrix M(x) is di�erentiable, there existspositive 
onstants Mm and MM su
h that
Mm ≤M(x) ≤MM , ∀x ∈ R

3 ,and the matrix Ṁ(x) − 2C(x, ẋ) is skew-symmetri
. Similarly to [PE95℄, we will alsoassume that the dissipation ve
tor d(x, ẋ) := D(x, ẋ)ẋ for a marine vessel is 
ontinuouslydi�erentiable and satis�es for some positive 
onstant Dm

∣∣∣∣
∂d(x, ẋ)

∂ẋ

∣∣∣∣ ≥ Dm , ∀ x, ẋ ∈ R
3and, for a 
ontinuous fun
tion DM : R≥0 → R≥0,

∣∣∣∣
∂d(x, ẋ)

∂ẋ

∣∣∣∣ ≤ DM (|ẋ|) .Referen
e vehi
le kinemati
s. As a �rst step in order to assure a safe replenishmentoperation, we design a referen
e position for the follower vessel at some distan
e h from9Please refer to [KPCP06℄ for a pre
ise expression of M , D, C, g and τ .



159the leader in the form of a referen
e vehi
le with a kinemati
 model. Figure 6.6 
on
ernsthe general situation of an arbitrary heading assignment, i.e. the heading angle of thereferen
e vehi
le ψr 
an be di�erent from the heading angle of the leader vessel ψm, 
f. .PSfrag repla
ements
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Figure 6.6: Referen
e vehi
le at the distan
e h and angle γm from the leader vesselThe STREAM (Standard Tension Alongside Replenishment Method) is 
urrently thepreferred underway replenishment 
on�guration at sea (
f. [MC99℄). In the underwayreplenishment s
enario, it is desirable that the referen
e vehi
le is pla
ed at a 
onstantdistan
e h orthogonally o� one of the sides of the leader with γm = ±π
2 . This 
on�guration
orresponds to a replenishment operation where the supply ship moves in parallel with theleader at a �xed distan
e h and with the same heading angle. In this 
ase, the supply shipis always at a right angle to the replenished ship, and the tension on the replenishment rigis at a minimum. This greatly simpli�es the kinemati
 equations of the referen
e vehi
le.Indeed, the parallel motion suggests that J (xr) = J (xm), and the position of the referen
evehi
le in the NED frame be
omes

xr = J (xr)χ
r
r = xm + J (xm) dmr (6.59)Di�erentiating (6.59) we obtaiṅ

xr = ẋm + J (xm)S (rm) dmr (6.60)sin
e the ve
tor dmr is 
onstant in this parti
ular operation. Taking γm = −π
2 , we obtainthe 
omponent form for (6.60) aṡ

x1r = ẋ1m + drm cosψm

ẋ2r = ẋ2m + drm sinψm (6.61)
ψ̇r = rmPlease refer to [KPCP06℄ and the up
oming PhD thesis of E. Kyrkjebø for details. De�ning

ur := um + drm , vr := vm , and rr := rm ,it 
an be seen that the kinemati
 model of the referen
e vehi
le 
an be written as
ẋr = J (xm) νr (6.62)
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ation to me
hani
al systemswhere νr = (um + drm, vm, rm)⊤. In this parti
ular 
ase, only the referen
e forwardvelo
ity is 
hanged (ur = um + drm) with respe
t to that of the leader vessel. Note thatthis is ne
essary for the follower vessel to maintain its position parallel to the leader vesselduring turns due to the di�eren
e in turn radius.6.3.2 Virtual vehi
le designThe only measurement available from the leader vessel is the position/heading measure-ment xm, and sin
e we have no information on the parameters of its mathemati
al modelor of the 
ontrol input to the leader vessel, we 
annot design a model-based observer forthe leader states. An alternative approa
h is to use the time �ltered derivatives from theposition measurements at the expense of robustness under noisy 
onditions. In order toredu
e noise sensitivity, we propose instead to design a virtual vehi
le as an intermediate
ontrolled vessel Σv stabilizing to the referen
e vehi
le Σr based on position measurementfeedba
k only.As in [GMP+98℄, on the �rst step (kinemati
 level) we 
onsider the velo
ities νv of thevirtual vehi
le as 
ontrol inputs, and design them in su
h a way that we ensure 
onvergen
eof the virtual traje
tories to the referen
e traje
tories. In a way, we 
an 
onsider thetraje
tories xv and velo
ities νv as estimates of xr and νr, that is, the virtual vehi
le is aform of kinemati
 estimator of the leader states through the position feedba
k loop.The virtual vehi
le is de�ned by its kinemati
 model
ẋv = J (xv) νv . (6.63)Based on pra
ti
al 
onsiderations, we assume that the velo
ity and a

eleration of theleader vessel are bounded, and thus the velo
ity and a

eleration of the referen
e vehi
lesatisfy
sup
t∈R≥0

|νr(t)| ≤ VM , (6.64)where VM denotes a positive 
onstant. In view of (6.62), the virtual vehi
le tra
king errors
ev := xv − xr satisfy

ėv = J (xv) νv − J (xm) νr .We propose the following 
ontrol law for the virtual vehi
le
νv = −J(xv)

−1L1ev − J(xv)
−1L2z (6.65)where L1 and L2 are symmetri
 positive gain matri
es, and

ż := ev . (6.66)The 
losed-loop equations 
an be written in the following form
ėv = −L1ev − L2z − J (xm) νr . (6.67)Consider the following Lyapunov fun
tion 
andidate

Vv (z, ev) =
1

2

(
e⊤v ev + z⊤L2z + z⊤ev

)
. (6.68)Di�erentiating along the 
losed-loop traje
tories we get

V̇v (z, ev) = −e⊤v
(
L1 −

1

2
I

)
ev −

1

2
z⊤L2z −

1

2
z⊤L1ev −

(
e⊤v +

1

2
z⊤
)
J (xm) νr . (6.69)



161Using (6.64) and the relation 2|ab| ≤ (λa2 + b2/λ) for any real a, b and any positive λ, itfollows that
V̇v ≤ −1

4

(
2L2,m − 1

λ
L1,M − 3VM

|(e, z)|

)
|z|2 − 1

4

(
4L1,m − 2 − λL1,M − 6VM

|(ev, z)|

)
|ev|2 ,(6.70)where λ designates any positive 
onstant and Li,m (resp. Li,M ) designates the minimum(resp. maximum) eigenvalue of Li, i ∈ {1, 2}. Similarly to the previous se
tions, we designthe gain matri
es L1 and L2 in su
h a way that Li,M ≤ ℓ Li,m for some ℓ > 0. Then,letting λ = 2/ℓ and δv be any given positive 
onstant, we 
an see in view of (6.64) thatany gain matri
es satisfying

L1,m = 3 +
3VM
δv

(6.71)
L2,m = 2 +

3ℓ2

4
+

(
1 +

ℓ2

4

)
3VM
2δv

(6.72)generate the following bound of the derivative of Vv:
|(ev, z)| ≥ δv ⇒ V̇v(z, ev) ≤ − |ev|2 − |z|2 . (6.73)Note that Vv is positive de�nite and radially unbounded for this 
hoi
e of gains. Morepre
isely, we have

1

4
|ev|2+

1

8

(
6 + 3ℓ2 + (4 + ℓ2)

3VM
2δv

)
|z|2 ≤ Vv ≤

3

4
|ev|2+

1

8

(
10 + 3ℓ2 + (4 + ℓ2)

3VM
2δv

)
|z|2 .Due to the linear dependen
y of L1,m and L2,m in 1/δv, we 
on
lude with Corollary 2.9that (6.66)-(6.67) is uniformly globally pra
ti
ally asymptoti
ally stable with L1,m and

L2,m as tuning parameters.6.3.3 Follower vehi
le designUsing the velo
ity information from the virtual vehi
le design, we 
an design a syn
hro-nization 
ontroller for the follower vessel Σs to follow the virtual vehi
le Σv. Note that thebody-�xed velo
ity νv is now known through (6.65), and, with the kinemati
 relationship of(6.63), we 
an obtain the velo
ity ẋv of the virtual vehi
le in the NED frame. Furthermore,due to our design of the virtual velo
ity 
ontroller, we 
an also obtain an expression forthe a

eleration of the virtual vehi
le whi
h will be partly available for 
ontrol purposes.More pre
isely, we get from (6.65) and (6.67) that
ẋv = J (xv) νv = −L1ev − L2z

ẍv = −L1ėv − L2ev =
(
L2

1 − L2

)
ev + L1L2z + L1J (xm) νr . (6.74)In our syn
hronization approa
h, we will assume that the velo
ity of the follower vessel isknown. De�ne the syn
hronization errors as

e = x− xv, ė = ẋ− ẋv, ë = ẍ− ẍv .Using the sliding surfa
e from [SL87℄ as a passive �ltering of the virtual vehi
le states, we
an design a virtual referen
e traje
tory as
ẏv = ẋv − Λe

ÿv = ẍv − Λė ,
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ation to me
hani
al systemswhere Λ > 0. Let us denote
ÿ′v =

(
L2

1 − L2

)
ev + L1L2z − Λėin whi
h 
ase, in view of (6.74),

ÿv = ÿ′v + L1J (xm) νr .Noti
e that, although ÿv is not a

essible sin
e νr is not measured, ÿ′v is available for 
ontroldesign. De�ning
s := ẋ− ẏv = ė+ Λeas a measure of tra
king, we 
an rewrite (6.58) as

M(x)ṡ = −C(x, ẋ)s−D(x, ẋ)s+τ −M(x)ÿv − C(x, ẋ)ẏv −D(x, ẋ)ẏv− g(x) . (6.75)We propose the following 
ontrol law
τ = M(x)ÿ′v + C(x, ẋ)ẏv +D(x, ẋ)ẏv + g(x) −Kds−Kpe , (6.76)where Kp and Kd are symmetri
 positive gain matri
es. Consider the following Lyapunovfun
tion 
andidate

Ve (e, s) =
1

2
s⊤M(x)s+

1

2
e⊤Kpe . (6.77)Di�erentiating along the 
losed-loop traje
tories we get

V̇e (e, s) = −s⊤ [D(x, ẋ) +Kd] s− e⊤Λ⊤Kpe− s⊤M(x)L1J (xm) νr .Let δe be any given positive 
onstant. Then, from (6.64), it holds that, for all |(e, s)| ≥ δe,
V̇e (e, s) ≤ −

(
Dm +Kd,m − 1

δe
MML1,MVM

)
|s|2 −

(
ΛmKp,m − 1

δe
MML1,MVM

)
|e|2 .(6.78)Pro
eeding as for the virtual vehi
le, we 
an invoke Corollary 2.9 by observing that the
hoi
e of Kd,m and Kp,m 
an be made as an a�ne fun
tion of 1/δe, and 
on
lude uniformglobal pra
ti
al asymptoti
 stability.6.3.4 Stability analysis of the overall systemThe 
ontrol law of the follower syn
hronizes the follower vessel to the virtual vehi
le basedon a 
omputed virtual referen
e velo
ity from the virtual vehi
le 
ontroller, and the virtualvehi
le is in turn stabilized to the referen
e vehi
le parallel to the leader vessel.Theorem 6.12 Consider the vessel model (6.58) satisfying Properties 1-3, the virtual ve-hi
le 
ontrol law (6.65) and the syn
hronization 
ontroller (6.76). Under assumptions(6.64), the overall 
losed-loop system is uniformly globally pra
ti
ally asymptoti
ally stable.Proof of Theorem 6.12. Take as a positive de�nite Lyapunov fun
tion 
andidate thefollowing 
omposition of the Lyapunov fun
tions (6.68) and (6.77).

V (η̃) =
1

2
η̃⊤P η̃ ,



163where η̃ =
(
e⊤, s⊤, z⊤, e⊤v

)⊤ and
P =




Kp 0 0 0
0 M(x) 0 0
0 0 L2

1
2I

0 0 1
2I

1
2I


 .Di�erentiating along traje
tories yields

V̇ (η̃) = −η̃⊤Q η̃ + σ (s, ev, z, νr) (6.79)where
Q =




Λ⊤Kp 0 0 0
0 D(x, ẋ) +Kd 0 0
0 0 1

2L2
1
4L1

0 0 1
4L1 L1 − 1

2I


and

σ (s, ev, z, νr) := −s⊤M(x)L1J (xm) νr −
1

2
z⊤J (xm) νr − e⊤v J (xm) νr .Let δ be any given positive 
onstant. Then we have the following property:

|η̃| ≥ δ ⇒ |σ (s, ev, z, νr)| ≤
VM
δ

(
MML1,M |s|2 +

|z|2
2

+ |ev|2
)
.Consequently, in view of (6.70) and (6.78), and repeating a similar reasoning while 
hoosingthe minimum eigenvalue of the gain matri
es Kp, Kd, L1 and L2 large enough, it holdsthat

|η̃| ≥ δ ⇒ V̇ (η̃) ≤ − |η̃|2 .Sin
e the dependen
y on the bound on σ (and so on the gain matri
es) in 1/δ is againa�ne, uniform global pra
ti
al asymptoti
 stability follows from Corollary 2.9. �6.3.5 Simulation studyThe underway replenishment s
heme presented above is tested in a simulation environmentin MATLAB using the surfa
e ship model of Cybership II from [SSF04℄. In the simulations,the distan
e between the ships is h = 2 m with γm = −π/2, and the model matri
es in thebody frame were
M =




25.8 0 0
0 33.8 1.0115
0 1.0115 2.76




C (ν) =




0 0 −33.8v − 1.0115r
0 0 25.8u

33.8v + 1.0115r −25.8u 0




D (ν) =




0.72+1.33|u|+5.87u2 0 0
0 0.8896+36.5|v|+0.805|r| 7.25+0.845|v|+3.45|r|
0 0.0313+3.96|v|−0.130|r| 1.90−0.080|v|+0.75|r|


 ,where ν = (u, v, r)⊤ are the body �xed velo
ities in surge, sway and yaw, respe
tively.Controller gains were 
hosen as Kp = diag(70, 140, 70), Kd = diag(100, 100, 50),
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L1 = diag(0.8, 1.6, 1.6), L2 = diag(0.55, 0.55, 0.55), and Λ = diag(0.3, 0.3, 0.3). Inthe simulations, the leader ship tra
ks referen
e traje
tory t 7→ sin (ωt) with frequen
y
ω = 1/15rad.s−1 with heading angle ψm along the tangent line. Initial states were 
hosenas x (0) = (0, 0, 0⊤ for the follower, xv (0) = (1, 0.5, π

4 )⊤ for the virtual vehi
le and as
xm (0) = (2, 4, 0)⊤ for the leader ship to illustrate stability in all degrees of freedom asillustrated in the upper plot of Figure 6.7.
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Figure 6.7: Traje
tories of the follower x, the virtual vehi
le xv and the referen
e vehi
le
xr in the upper plot, and the planar plot of the vehi
les with spe
ial marks at initial statesand at time t = 10s in the lower.From Figure 6.8 we see that the virtual vehi
le 
ontrol errors eν = xv − xr, the syn-
hronization errors e = x−xv and the overall 
ontrol errors x−xr 
on�rm our theoreti
alexpe
tations. We observe small remaining os
illations, espe
ially in the velo
ity errors,due to the unknown velo
ity of the leader ship. However, due to the pra
ti
al stabilityproperty of the 
losed-loop system, the magnitude of these os
illations 
an be arbitrarilyredu
ed (within 
ontrol saturation limits) by enlarging the gains.
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Figure 6.8: The total errors x − xr in the upper row, the virtual vehi
le 
ontrol errors
xv − xr in the middle row, and the syn
hronization errors x − xv in the lower row, withpositions on the left and velo
ities on the right.Con
lusion. This 
hapter presents three 
on
rete appli
ations of the results intro-du
ed along the do
ument. These appli
ations 
on
ern me
hani
al systems. The �rst onestudies the robustness of PID-
ontrolled robot manipulators to a wide 
lass of perturba-tions and when taking into a

ount the dynami
s of the a
tuators. USPAS is obtained,meaning that a 
onvenient 
hoi
e of the PID gains allows an arbitrarily large domain ofattra
tion with an arbitrarily tight pre
ision. The se
ond appli
ation aims at 
ontrollingthe formation of spa
e
rafts in 
ase of un
ertainties in the orbital parameters. The lastone deals with surfa
e vessels. The goal is to syn
hronize two ships in a parallel motionusing as little information of the leader vehi
le as possible.
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Con
lusion and further resear
hThis do
ument presents new tools for stability and robustness analysis of nonlinear dy-nami
al systems. Let us summarize our main results.Su�
ient 
onditions for semiglobal and pra
ti
al stability. We �rst provide a rig-orous Lyapunov framework for uniform semiglobal and/or pra
ti
al asymptoti
 stability.�Semiglobal� refers to the situation when the domain of attra
tion is not the whole state-spa
e but a set that may be arbitrarily enlarged by a 
onvenient tuning of some parameters.�Pra
ti
al� 
on
erns the 
ase when an arbitrarily small 
ompa
t neighborhood of the ori-gin (instead of the origin itself) is asymptoti
ally stable. On some o

asions, semiglobalpra
ti
al stability is an inherent property of the system or results from the 
ontrol design:global asymptoti
 stability is impeded by external disturban
es, model un
ertainty, et
.On other situations, it 
onstitutes the best one 
an prove when no stri
t Lyapunov fun
-tion is available, or when using alternative te
hniques su
h as averaging. The generality ofsemiglobal and/or pra
ti
al stability is further reinfor
ed by a spe
i�
 feature o�ered bythe stability properties under 
onsideration. Namely, as opposed to many related 
on
epts,they allow the estimate of solutions to depend on the tuning parameter and so, potentially,on the radius of the desired domain of attra
tion and the amplitude of the tolerated steady-state error. As a 
ounterpart, a more involved attention needs to be paid in the stabilityanalysis to guarantee that the Lyapunov fun
tion be su�
iently �representative� of thestate-norm. More pre
isely, 
ompared to 
lassi
al results for global asymptoti
 stability,an additional requirement on the K∞ bounds on the Lyapunov fun
tion is imposed. Weillustrate the importan
e of this 
ondition by showing that, when the latter is violated,even boundedness of solutions is not guaranteed in general. All these results are illustratedby elementary examples.Ne
essary 
ondition for USPAS. Semiglobal and/or pra
ti
al stability 
an be seenas a measurement of robustness in the sense that it often stems from a degradation ofglobal and/or asymptoti
 stability due to external disturban
es, model imperfe
tion, et
.while still guaranteeing interesting performan
es to the system under 
onsideration. Butuniform semiglobal pra
ti
al asymptoti
 stability (USPAS) may be inferred by other meansthan the knowledge of a 
onvenient Lyapunov fun
tion as, for instan
e, via averagingte
hniques. For this reason, we derive a 
onverse Lyapunov result for the 
lass of USPASsystems whose solutions' estimate is independent of the radius of the attra
tive ball. Thisne
essary Lyapunov 
ondition is espe
ially designed to �t the 
ontext of 
as
aded systemsas it also guarantees a time-invariant bound on the gradient of the Lyapunov fun
tion.Cas
ades of systems are often en
ountered, and are at the basis of many 
ontrol strate-gies. For this reason, a large part of this report is devoted to the analysis of 
as
aded
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lusion and further resear
hsystems.USPAS, USAS, UGPAS for 
as
ades. With the proposed Lyapunov framework forsemiglobal and/or pra
ti
al asymptoti
 stability, some tools are presented that ensure thepreservation of a given stability property (USPAS, USAS or UGPAS) by 
as
ade inter-
onne
tion. In general terms, similarly to existing results for global asymptoti
 stability,it is required that the solutions of the overall 
as
ade be bounded and that a 
onvenientLyapunov fun
tion be expli
itly known for the driven subsystem. In view of the 
onverseresult evoked above, we may relax this latter requirement in the semiglobal 
ase for a wide
lass of systems. This is parti
ularly useful when invoking averaging te
hniques, as illus-trated by the output feedba
k 
ontrol of the double integrator a�e
ted by a persistentlyex
iting signal. Furthermore, in the 
ase of uniform global asymptoti
 stability, the bound-edness assumption on the solutions of the 
as
ade is repla
ed by growth restri
tion on theinter
onne
tion term. This makes this tool parti
ularly easy to apply in spe
i�
 
ontrolproblems. We illustrate its use by quantifying the e�e
t of smoothing a sign fun
tion indisturban
e reje
tion.Set-stability for 
as
ades. In the 
ase when, due to a
tuators limitation or stru
tural
onstraints, semiglobal and/or pra
ti
al asymptoti
 stability of perturbed or un
ertainsystems is not a
hievable, one may be interested in studying the stability of �xed sets. Inaddition, the generality of the set-stability 
on
ept makes it an interesting tool. Amongthe parti
ular 
ases it en
ompasses, let us 
ite partial stability whi
h has proved usefulin many 
ontrol appli
ations. We show that, if some (non ne
essarily 
ompa
t) sets areglobally asymptoti
ally stable (GAS) for two subsystems taken separately, then their 
rossprodu
t is GAS for the 
orresponding 
as
ade provided that its solutions are globallybounded. Again, we show that, on some o

asions, this requirement 
an be repla
ed bya simple growth-order 
ondition on the inter
onne
tion term (plus forward 
ompleteness).Applying this result, we provide a 
on
ise proof for a re
ently established result of formation
ontrol of surfa
e vessels along a straight path and with a pres
ribed velo
ity.iISS for 
as
ades. We further provide a stability analysis for 
as
aded systems withinputs. While the 
on
ept of input to state stability is known to be preserved by the 
as
adeinter
onne
tion, this is not the 
ase for the more general notion of integral input to statestability (iISS). Additional requirements need to be imposed for the 
as
ade 
omposed oftwo iISS systems to be iISS. These 
onditions are �rstly expressed in terms of Lyapunovfun
tions and then in terms of estimates of the solutions of ea
h subsystem taken separately.The appli
ation of these new results is illustrated through a
ademi
 examples.Appli
ations. Finally, we apply most of the presented results to spe
i�
 
ontrol appli-
ations. This 
onstitutes the purpose of the last 
hapter. We analyze the robustness ofPID-
ontrolled manipulators to fri
tion, model un
ertainty, a
tuators' dynami
s and otherdisturban
es. Another appli
ation 
on
erns the formation 
ontrol of spa
e
rafts. We es-tablish global pra
ti
al asymptoti
 stability of the 
orresponding system in the 
ase thatonly bounds on the leader's anomaly are available. Finally, we show that a similar sta-bility property 
an be obtained for the syn
hronization of two surfa
e vessels with littleinformation on the leader vehi
le.Thus, we believe that our theoreti
al 
ontributions 
onstitute useful tools for robustness



169and stability analysis as well as for 
ontrol design in spe
i�
 
on
rete appli
ations.Future works and open problemsAs far as theory is 
on
erned, the following problems 
onstitute dire
tions in whi
h furtherresear
h may be 
arried out.Cas
ades 
ontrol. It would be interesting to derive 
onstru
tive 
ontrol strategies basedon the 
as
ades results presented in this do
ument. For instan
e, in the 
ase that the
lassi
al ba
kstepping approa
h does not apply due to stru
tural 
onstraints or presen
eof disturban
es, a semiglobally and/or pra
ti
ally asymptoti
ally stabilizing 
ontrol mayremain a
hievable.Partial USPAS. Some spe
i�
 perturbed or impre
ise 
ontrol systems present the prop-erty that part of the state 
an be made semiglobally and/or pra
ti
ally asymptoti
allystable, while the behavior of the rest of the variables 
annot be properly 
onstrained. Forinstan
e, this behavior 
ould be expe
ted when taking into a

ount external disturban
es,su
h as 
urrent, wind and waves, in the example of Se
tion 4.3. Su
h a feature 
orrespondto some kind of �partial semiglobal pra
ti
al asymptoti
 stability�. To the best of ourknowledge, no general work has been done in this dire
tion. We believe that mixing theresults presented for semiglobal pra
ti
al stability (Chapters 2 and 3) and (non-
ompa
t)set-stability (Chapter 4) 
an provide interesting results for this question.Con
erning appli
ations of the presented results, the following problems will soon beaddressed.Surfa
e vessels formation. The main illustrative example of Chapter 4 
onsists in aproof of a re
ently developed 
ontrol for the formation 
ontrol of undera
tuated surfa
evessels along a straight path. So far, this does not take into a

ount disturban
es dueto wind, 
urrent and waves and requires a full knowledge of the model, position andvelo
ity of ea
h ship. Interesting future extensions of this result will aim at relaxing theserequirements by allowing more 
omplex pres
ribed paths and by taking into a

ount theseexternal noises and possible model un
ertainty. A 
ollision avoidan
e s
heme may also beimplemented.PD 
ontrol of ships. Based on our results for semiglobal pra
ti
al asymptoti
 stability,we plan to relax some of the requirements in [LFP00℄ for the PD 
ontrol of ships, whentaking into a

ount external disturban
es su
h as wind, wave and 
urrents.
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Appendix AProof of auxiliary resultsA.1 Proof of of Lemma 2.7Let x0 ∈ R

n and t0 ∈ R≥0 be any initial 
onditions su
h that φ(t, t0, x0) ∈ X for all t ≥ t0.For simpli
ity, we write φ(·, t0, x0) as φ(·) and we de�ne v(·) := V (·, φ(·)). We distinguishtwo 
ases: whether the traje
tories start from outside or inside Bδ.Case 1: |x0| > δ.In this 
ase, there exists1 T0 ∈ (0;∞] su
h that |φ(t)| > δ for all [t0; t0 + T0) and
|φ(t0 + T0)| = δ. Hen
e, using the 
omparison lemma, we get that

v(t) ≤
(
v(t0) −

c(|x0|)
k

)
e−k(t−t0) +

c(|x0|)
|k| , ∀t ∈ [t0; t0 + T0) .Using the bounds on V , it follows that

|φ(t)| ≤ α−1

(
α(|x0|)e−k(t−t0) +

c(|x0|)
|k|

)
, ∀t ∈ [t0; t0 + T0) .In addition, for ea
h t ≥ t0 + T0, either |φ(t)| ≤ δ in whi
h 
ase2

|φ(t)| ≤ α−1

(
α(δ) +

c(|x0|)
|k|

)
,or |φ(t)| > δ. In this se
ond 
ase, we 
an again invoke the 
ontinuity of the solution to seethat there exists a nonempty time-interval [τ ; τ + T ], with T ∈ (0;∞], 
ontaining t andsu
h that |φ(s)| > δ for all s ∈ (τ ; τ + T ], with |φ(τ)| = δ. Hen
e, integrating from τ to

t ∈ [τ ; τ + T ], we obtain in the same way as before that, whenever |φ(t)| > δ, it holds that
|φ(t)| ≤ α−1

(
α(δ)e−k(t−τ) +

c(|x0|)
|k|

)
≤ α−1

(
α(|x0|)e−k(t−t0) +

c(|x0|)
|k|

)
. (A.1)To sum up, for all t ≥ t0, we have the following:

|x0| > δ ⇒ |φ(t)| ≤ α−1

(
α(|x0|)e−k(t−t0) +

c(|x0|)
|k|

)
. (A.2)1If |φ(t)| > δ forever after, we 
onsider that T0 = ∞.2This is dire
t by noti
ing that α(s) ≤ α(s) for all s ∈ R≥0 and that c(|x0|)/k ≥ 0.



172 A. Proof of auxiliary resultsCase 2: |x0| ≤ δ.In this 
ase, as long as |φ(t)| ≤ δ, we trivially2 have that
|φ(t)| ≤ α−1

(
α(δ) +

c(|x0|)
|k|

)
.If |φ(t)| > δ at some instant t > t0, then, again, there exists a nonempty time-interval

[τ ; τ + T ], with T ∈ (0;∞] and τ > t0, 
ontaining t and su
h that |φ(s)| > δ for all
s ∈ (τ ; τ + T ], with |φ(τ)| = δ. Thus, from (A.1), we obtain that

|φ(t)| ≤ α−1

(
α(δ)e−k(t−τ) +

c(|x0|)
|k|

)
≤ α−1

(
α(δ) +

c(|x0|)
|k|

)
.Hen
e, for all t ≥ t0,

|x0| ≤ δ ⇒ |φ(t)| ≤ α−1

(
α(δ) +

c(|x0|)
|k|

)
. (A.3)The 
on
lusion follows from (A.2) and (A.3).A.2 Proof of Proposition 1.16We start by re
alling the following de�nition from [TPA99℄.De�nition A.1 ((∆ → δ)−stability) Given ∆ > δ ≥ 0, the origin of the system ẋ =

f(t, x) is said to be (∆ → δ)−stable if1. for ea
h ǫ > δ, there exists η(ǫ) > 0 su
h that, for all t0 ∈ R≥0,
|x0| ≤ η(ε) ⇒ |φ(t, t0, x0)| ≤ ǫ , ∀t ≥ t0 . (A.4)2. for ea
h r ∈ (0; ∆), there exists ν(r) > 0 su
h that
|x0| ≤ r ⇒ |φ(t, t0, x0)| ≤ ν(r) , ∀t ≥ t0 . (A.5)3. for ea
h r ∈ (0; ∆) and ea
h ǫ > δ, there exists a �nite T (r, ǫ) > 0 su
h that, for all

t0 ∈ R≥0,
|x0| ≤ r ⇒ |φ(t, t0, x0)| ≤ ǫ , ∀t ≥ t0 + T (r, ǫ) . (A.6)Assume that the ball Bδ is UAS on B∆. Then, in view of Proposition 1.14, there exists

β ∈ KL su
h that, for all |x0| ≤ ∆, and all t ≥ t0 ≥ 0,
|φ(t, t0, x0)|δ ≤ β(|x0| , 0) =: α(|x0|)
|φ(t, t0, x0)|δ ≤ β(∆, t− t0) =: σ(t− t0) .Note that the so-de�ned fun
tions α and σ are of 
lass K and L respe
tively. Given any

ǫ > δ, de�ne η(ǫ) := α−1(ǫ− δ). Then we have that
|x0| ≤ η ⇒ |φ(t, t0, x0)| ≤ ǫ , ∀t ≥ t0 ,whi
h establishes A.4. Given any positive r < ∆, we have that

|x0| ≤ r ⇒ |φ(t, t0, x0)| ≤ δ + α(r) =: ν , ∀t ≥ t0 ,



173whi
h establishes A.5. Let 0 < r < ∆ and ǫ > δ. Then
|x0| ≤ r ⇒ |φ(t, t0, x0)|δ ≤ σ(t− t0) , ∀t ≥ t0 .

σ is bije
tive from [0;∞[ to ]0;σ(0)]. If ǫ − δ ≤ σ(0), let T := σ−1(ǫ − δ). Then we havethat
|x0| ≤ r ⇒ |φ(t, t0, x0)| ≤ ǫ , ∀t ≥ t0 + T .On the other hand if ǫ− δ > σ(0), then

|x0| ≤ r ⇒ |φ(t, t0, x0)|δ ≤ σ(t− t0) ≤ σ(0) ≤ ǫ− δ , ∀t ≥ t0 ,whi
h establishes A.6.Assume now that the system is (∆ → δ)−stable. We now follow the proo�ines of[Kha96, Lemma 3.3℄. First noti
e than (A.4) and (A.6) 
an be written
∀ε > 0, ∃η(ε) > 0 : |x0| ≤ η ⇒ |φ(t, t0, x0)|δ ≤ ε , ∀t ≥ t0 . (A.7)

∀0 < r < ∆, ∀ε > 0, ∃T (r, ε) > 0 : |x0| ≤ r ⇒ |φ(t, t0, x0)|δ ≤ ε , ∀t ≥ t0 + T . (A.8)Given ε > 0, let η(ε) be the supremum of all the η's su
h that (A.7) holds. Then η(ε) ispositive nonde
reasing, but not ne
essarily 
ontinuous. Let ζ ∈ K be su
h that
ζ(s) ≤ η(s) and lim

s→∞
ζ(s) = c := lim

s→∞
η(s) .Let ∆′ be any positive 
onstant smaller than ∆. First observe that ∆′ ≤ c. Indeed, letting

r = ∆′ in (A.5), one knows that there exists a positive ν su
h that, for any |x0| ≤ ∆′, wehave that |φ(t, t0, x0)|δ ≤ |φ(t, t0, x0)| ≤ ν for all t ≥ t0. Hen
e, for any ε ≥ ν, it holdsthat |φ(t, t0, x0)|δ ≤ ε. In other words, for ε large enough (i.e. greater that ν), |x0| ≤ ∆′implies that |φ(t, t0, x0)|δ ≤ ε for all t ≥ t0. The 
hoi
e η = ∆′ is therefore 
onvenient for(A.7) if ε is large enough. Sin
e, by its de�nition, η̄(ε) ≥ η(ε), we ne
essarily have that,as 
laimed, limε→∞ η̄(ε) ≥ ∆′.Now, let α : R≥0 → R≥0 be de�ned as
α(s) :=

{
ζ−1(s) if s ≤ ∆′

ζ−1(∆′) s2

∆′2 if s > ∆′Note that, in view the previous observation, ζ−1 makes sense on the interval [0; ∆′]. Fur-thermore, we 
an see that α is a 
lass K∞ fun
tion. For all |x0| ≤ ∆′, let ε = α(|x0|).Then, we have that
|x0| = α−1(ε) = ζ(ε) ≤ η(ε) .Thus, by the de�nition of η, we have that, for all |x0| ≤ ∆′,

|φ(t, t0, x0)|δ ≤ ε = α(|x0|) , ∀t ≥ t0 .There is only uniform attra
tivity left to prove. To that end, given ε > 0, let T (∆′, ε) bethe in�mum of all the T 's su
h that (A.8) holds with r = ∆′. We then have that
|x0| ≤ ∆′ ⇒ |φ(t, t0, x0)| ≤ ε+ δ , ∀t ≥ t0 + T , (A.9)and

sup
t0≤t<t0+T

|φ(t, t0, x0)| > ε+ δ .



174 A. Proof of auxiliary resultsThe fun
tion T (∆′, ·) is nonnegative nonde
reasing and satis�es T (∆′, ε) = 0 for all ε ≥
α(∆′). De�ne now

W (ε) :=
2

ε

∫ ε

ε/2
T (∆′, s)ds+

∆′

ε
.ThenW :]0;∞[→]0;∞[ is positive, 
ontinuous, de
reasing and tends to zero as its argumenttends to in�nity. Let σ̃ denote its invert. Then σ̃ satis�es the same properties. Noti
ethat, for all ε > 0, it holds that T (∆′, ε) + ∆′/ε ≤ W (ε). From this, we have that for all

t ≥ t0,
T (∆′, σ̃(t− t0)) < W (σ̃(t− t0)) = t− t0 .Thus, by letting ε = σ̃(t− t0) in (A.9), we 
on
lude that, for all t ≥ t0, and all |x0| ≤ ∆′,

|φ(t, t0, x0)|δ ≤ σ̃(t− t0) .However, σ̃ does not belong to 
lass L, as it tends to in�nity when its argument tends tozero. To overpass this problem, we 
onsider the instant t1 > 0 at whi
h σ̃(t1) = α(∆′) ande�ne
σ(t) :=

{
−(t− t1) + α(∆′) if 0 ≤ t ≤ t1
σ̃(t) if t > t1Then σ belongs to 
lass L and, using the fa
t that |φ(t, t0, x0)|δ ≤ α(∆′) over [t0; t0 + t1],we have, as desired, that |φ(t, t0, x0)|δ ≤ σ(t− t0) for all t ≥ t0.A.3 Proof of Theorem 3.38We �rst show that the system is uniformly stable. More pre
isely, we expli
itly 
onstru
t

∆ > 0 and α ∈ K∞ su
h that, for all x0 ∈ B∆,
|x(t, t0, x0)| ≤ α(|x0|) . (A.10)We then use this property to prove uniform attra
tivity of the origin on the same ball B∆,and then dedu
e a KL estimate for the solutions of (3.1).Proof of uniform stability: From Assumptions 3.34 and 3.35, the time derivative of V1 alongthe traje
tories of (3.1) yields, for any x1 ∈ B∆1

,
V̇1(t, x1) =

∂V1

∂t
(t, x1) +

∂V1

∂x1
(t, x1)

(
f1(t, x1) + g(t, x)

)

≤ −k1V1(t, x1) +

∣∣∣∣
∂V1

∂x1
(t, x1)

∣∣∣∣ |g(t, x)|

≤ −k1V1(t, x1) + c1(|x1|)G(|x|)g2(|x2|) .De�ning
Γ := {t ≥ t0 : x1(t, t0, x10) ∈ B∆1

} , (A.11)we get that, for any t ∈ Γ,
v̇1(t) ≤ −k1v1(t) + c1(|x1(t)|)G(|x(t)|) |x2(t)| , (A.12)where we used the shorthand notation x1(t) for x1(t, t0, x0) and v1(t) := V1(t, x1(t)). Thus,using Assumptions 3.36 and 3.37, we have in view of (3.59) that, for all x0 ∈ B∆ and all

t ∈ Γ,
v̇1(t) ≤ −k1v1(t) + β̃(|x0| , t− t0) , (A.13)



175where β̃ ∈ KL is de�ned, for all s, t ∈ R≥0, as
β̃(s, t) := c1(B)G(B)β2(s, t) .Notably, we have that, for all x0 ∈ B∆ and all t ∈ Γ,
v̇1(t) ≤ −k1v1(t) + β̃(|x0| , 0) . (A.14)We now show that, for any x0 ∈ B∆, x1(t) remains in B∆1

forever after (i.e., Γ = R≥t0).To that end, noti
e that, sin
e x0 ∈ B∆, we have that t0 ∈ Γ. Hen
e, in view of (A.11)and invoking the 
ontinuity of the solutions of (3.1), there exists T0 > 0 su
h that
[t0; t0 + T0] ⊂ Γ .Integrating (A.14) from t0 to any t ∈ [t0; t0 + T0] we get that, for all x0 ∈ B∆ and all

t ∈ [t0; t0 + T0],
v1(t) ≤ (v1(t0) − β̃(|x0| , 0))e−k1(t−t0) + β̃(|x0| , 0) ,whi
h gives

|x1(t)| ≤ α1
−1
(
α1(|x0|) + β̃(|x0| , 0)

)
. (A.15)With the ∆ proposed in (3.59)3, is then possible to see that, as desired, any solution x1(t)staring in B∆ remains in B∆1

forever after. In addition, for any x0 ∈ B∆, we have that
Γ = R≥t0 or, said di�erently, T0 = ∞. Therefore, (A.15) holds for all t ≥ t0. Thus, wehave in turn shown that, for any x0 ∈ B∆,

|x1(t)| ≤ α1(|x0|) ,where α1 is the K∞ fun
tion de�ned as
α1(s) := α1

−1
(
α1(s) + β̃(s, 0)

)
, ∀s ≥ 0 . (A.16)Thus, introdu
ing the following 
lass K fun
tion

α(·) :=
√
α1(·)2 + β2(·, 0)2 ,we have with Assumption 3.36 that, for all x0 ∈ B∆, the solutions of (3.1) satisfy

|x(t, t0, x0)| ≤ α(|x0|) , ∀t ≥ t0 . (A.17)Proof of uniform attra
tivity: Assume that x0 ∈ B∆. Then, we have that (A.13) holds forall t ≥ t0. For any ε1 > 0, let T1 ≥ 0 be the instant, independent of t0, where4
β̃(∆, T1) = ε1 .Then, from (A.13), we get that, for all t ≥ t0 + T1,

v̇1(t) ≤ −k1v1(t) + ε1 .3β20 
an be assumed to be of 
lass K∞ without loss of generality sin
e β2 is only 
onstrained over
[0; ∆2]. This observation ensures the existen
e of β−1

20 .4If β̃(∆, 0) ≤ ε1, T1 is taken as 0.



176 A. Proof of auxiliary resultsTherefore, for all t ≥ t0 + T1,
v1(t) ≤ (v1(t0 + T1) − ε1)e

−k1(t−t0−T1) + ε1 .But, using the US bound (A.17), we have that
v1(t0 + T1) ≤ α1 (|x1(t0 + T1)|) ≤ α1 (α(|x0|)) .Hen
e, for all t ≥ t0 + T1,
|x1(t)| ≤ α1

−1
(
α1(α(∆))e−k1(t−t0−T1) + ε1

)
.Notably, we have that

|x1(t)| ≤ α1
−1(2ε1) =: ε , ∀t ≥ t0 + T2 ,where

T2 := T1 +
1

k1
ln(α1(α(∆))

ε1

)
.Observing that ε is arbitrary and that T2 is independent of t0, and re
alling that ẋ2 =

f2(t, x2) is ULA on B∆ as well, we 
on
lude the uniform attra
tivity of the origin for (3.1),with B∆ as an estimate of its domain of attra
tion.Constru
tion of the KL estimate:Invoking [Vid93, Lemma 57℄, we 
on
lude from the uniform lo
al attra
tivity of (3.1)to the existen
e of η ∈ L su
h that, for all x0 ∈ B∆,
|x(t, t0, x0)| ≤ η(t− t0) , ∀t ≥ t0 . (A.18)Multiplying (A.17) and (A.18) gives, for all x0 ∈ B∆,

|x(t, t0, x0)| ≤ β(|x0| , t− t0) , ∀t ≥ t0 ,where, for all s, t ∈ R≥0,
β(s, t) :=

√
α(s)η(t) .Sin
e α and η and β2 are respe
tively of 
lass K and L, β is 
learly a 
lass KL fun
tion,and the 
on
lusion follows.A.4 Proof of Corollary 3.40From Assumption 3.39, the solutions of ẋ1 = f1(t, x1) satisfy, for all x10 ∈ B∆1

and all
t ≥ t0, ∣∣∣xf11 (t, t0, x10)

∣∣∣ ≤ k1 |x10| e−γ1(t−t0) , ∀t ≥ t0 .Let ∆̃1 be any positive number satisfying (3.62). Then all the requirements of [Kha96,Theorem 3.14℄ are ful�lled and we get that there exist a 
ontinuously di�erentiable fun
tion
V1 : R≥0 ×B∆1

and some positive k1, k1 and k1 and c1 su
h that, for all x1 ∈ B∆̃1
and all

t ∈ R≥0,
k1 |x1|2 ≤ V1(t, x1) ≤ k1 |x1|2
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∂V1

∂t
+
∂V1

∂x1
f1(t, x1) ≤ −k1 |x1|2

∣∣∣∣
∂V1

∂x1
(t, x1)

∣∣∣∣ ≤ c1 |x1| .In addition, the proof of [Kha96, Theorem 3.14℄ is established with the 
oe�
ients k1, k1,
c1 given in (3.61a)-(3.61
) (and k1 = 1/2). Thus, the rest of the proof follows the one ofTheorem 3.38, where the fun
tions α1(s), α1(s) and c1(s) are now respe
tively k1s

2, k1s
2and c1s and ∆̃1 plays the role of ∆1.A.5 Proof of Theorem 3.42The proof is an adaptation of the one of Theorem 3.38, and we therefore use the samenotations. Noti
e that, in this 
ase, β2(s, t) = k2se

−γ2t. In view of (A.16), uniformstability of the origin is therefore obtained with α1(s) = d1s, where
d1 :=

1

k1

(k1 + c1BG(B)k2) .In addition (A.12) implies that, for any x0 ∈ B∆,
v̇1(t) ≤ −k1

k1

v1(t) + c1d1 |x0|G(B)k2 |x0| e−γ2(t−t0) .If γ2 6= k1
k1

, the integration of this equation yields, with the 
omparison lemma,
v1(t) ≤ v1(t0)e

− k1

k1
(t−t0)

+ a1 |x0|2
(
e−γ2(t−t0) − e

− k1

k1
(t−t0)

)where
a1 :=

c1d1G(B)k2

k1
k1

− γ2

.And, if γ2 = k1
k1

,
v1(t) =

(
v1(t0) + a2 |x0|2 (t− t0)

)
e−γ2(t−t0)with a2 := c1d1G(B)k2. Thus, de�ning

σ1 := min
{
γ2 ; k1/k1

}

σ2 := max {a1 ; a2} ,it is possible to see that, in any 
ase,
v1(t) ≤

(
v1(t0) + σ2 |x0|2

)
e−σ1(t−t0) .Therefore, we have that, for all x0 ∈ B∆,

|x1(t)| ≤
√
k1 + σ2

k1

|x0| e−
σ1
2

(t−t0) ,whi
h establishes UES of (3.1) on B∆ with parameters (√
k1+σ2

k1
, σ1

2

).



178 A. Proof of auxiliary resultsA.6 Proof of Claim 6.4Using the notation (6.6), it was shown in [Tom91℄ that V11 is positive de�nite and radiallyunbounded provided that
θ12 > kg . (A.19)In view of (6.11b), this 
ondition holds sin
e ap > kg. Then, it 
an be shown in view of(6.9) that there exist some positive 
onstants a, a and b su
h that, for all K ′

p satisfying(A.19),
a |q̇|2 + bθ12 |q̃|2 ≤ V11 ≤ a |q̇|2 + θ12 |q̃|2 .Also, based on (6.9) and (A.19), it 
an easily be seen that

ε1
2

(
−dM |q̇|2 − dM |q̃|2 + θ13 |s|2

)
≤ V12 ≤ ε1

2

(
dM |q̇|2 + dM |q̃|2 + ℓθ13 |s|2

)

−ε2dM
2

(
|q̇|2 + |s|2

)
≤ V13 ≤ ε2dM

2

(
|q̇|2 + |s|2

)
.Hen
e, under the 
ondition that

ε1 + ε2 ≤ a

dM
(A.20a)

θ12 ≥ ε1dM
b

(A.20b)
θ13 ≥ 2ε2dM

ε1
, (A.20
)the inequalities in (6.10) hold with5 a1 := a/2, b2 := b/2, b3 := ε1/4, a1 := a + dM (ε1 +

ε2)/2, a2 := ε1dM/2, b̄2 := 1, a3 := ε2dM/2 and b3 := ε1ℓ/2. This 
ompletes the proof ofthe 
laim.A.7 Proof of Claim 6.5Dire
t 
omputations show that:
dV11

dx1
f1(t, x1, θ1) = −q̇⊤Kdq̇ − q̇⊤Kis+ q̇⊤p1(t, q, q̇)

dV12

dx1
f1(t, x1, θ1) = ε1

[
− q̃⊤K ′

pq̃ + q̃⊤
(
C(q, q̇)⊤ −Kd

)
q̇ + q̇⊤D(q)q̇

−q̃⊤(g(q) − g(q∗)) +
1

ε1
s⊤Kiq̇ + q̃⊤p1(t, q, q̇)

]

dV13

dx1
f1(t, x1, θ1) = ε2

[
− s⊤Kis+ q̇⊤D(q)q̃ +

1

ε1
q̇⊤D(q)q̇ + s⊤C(q, q̇)⊤q̇

−s⊤(g(q) − g(q∗)) − s⊤K ′
pq̃ − s⊤Kdq̇ + s⊤p1(t, q, q̇)

]
.Therefore, the derivative of V1 along the x1-subsystem yields

dV1

dx1
f1(t, x1, θ1) = −q̇⊤Kdq̇ − ε1q̃

⊤K ′
pq̃ − ε2s

⊤Kis+ q̃⊤
(
ε2D(q) − ε1Kd + ε1C(q, q̇)⊤

)
q̇

+

(
ε1 +

ε2
ε1

)
q̇⊤D(q)q̇ − ε2s

⊤K ′
pq̇ + ε2s

⊤
(
C(q, q̇)⊤ −Kd

)
q̇

−
(
ε1q̃

⊤ + ε2s
⊤
)

(g(q) − g(q∗)) +
(
q̇⊤ + ε1q̃

⊤ + ε2s
⊤
)
p1(t, q, q̇) .5The 
onditions (A.20b) and (A.20b) hold in view of (6.11a) and (6.11b).



179It follows that
dV1

dx1
f1(t, x1, θ1) ≤ −θ11 |q̇|2 − ε1θ12 |q̃|2 − ε2θ13 |s|2

+
1

2

((
2ε1 +

2ε2
ε1

+ ε2

)
dM + (ε1 + ε2)λM (Kd)

)
|q̇|2

+
1

2

(
ε1λM (Kd) + (2ε1 + ε2)kg + ε2dM + ε2λM (K ′

p)
)
|q̃|2

+
ε2
2

(
λM (K ′

p) + λM (Kd) + kg
)
|s|2

+
kc
3

(
ε1 |q̃|3 + 2(ε1 + ε2) |q̇|3 + ε2 |s|3

)
+ max {ε1; ε2; 1} |x1| |p1(t, q, q̇)| .Noti
e, in view of (6.3), that for all x1 su
h that δ1 ≤ |x1| ≤ ∆1

|x1| |p1(t, q̃, q̇)| ≤
(
p10

δ1
+ p11 + p12∆1

)
|x1|2 .Based on the previous observation and the assumption that ε1 + ε2 ≤ 1 it follows that inorder to get (6.12) it is su�
ient to have

θ11 ≥
(

2ε1 +
2ε2
ε1

+ ε2

)
dM + (ε1 + ε2)λM (Kd) + 2p11 +

2p10

δ1
+ 2

(
2kc
3

(ε1 + ε2) + p12

)
∆1

ε1θ12 ≥ ε1λM (Kd) + (2ε1 + ε2)kg + ε2dM + ε2λM (K ′
p) + 2p11 +

2p10

δ1
+ 2

(
ε1kc
3

+ p12

)
∆1

θ13 ≥ λM (K ′
p) + λM (Kd) + kg + 2p11 +

2p10

δ1
+ 2

(
2kc
3

+ p12

)
∆1 .The latter is ful�lled provided that the gains are 
hosen large enough so that

θ11
2

≥
(

2ε1 +
2ε2
ε1

+ ε2

)
dM + 2p11 +

2p10

δ1
+ 2

(
2kc
3

(ε1 + ε2) + p12

)
∆1(A.21a)

ε1θ12
2

≥ (2ε1 + ε2)kg + ε2dM + 2p11 +
2p10

δ1
+ 2

(
ε1kc
3

+ p12

)
∆1 (A.21b)

θ13
2

≥ kg + 2p11 +
2p10

δ1
+ 2

(
kc
3

+ p12

)
∆1 , (A.21
)and, based on (6.9), that the following holds

ε1θ12
2

≥ ε1ℓθ11 + ε2ℓθ12 (A.22a)
θ11
2

≥ (ε1 + ε2)ℓθ11 (A.22b)
θ13
2

≥ ℓ(θ12 + θ11) . (A.22
)We 
an summarize the 
onditions (A.20a) and (A.22) in the following way: it is su�
ientto �rst 
hoose ε1 and ε2 in su
h a way that6
ε2 ≤ ε1

3ℓ

ε1 + ε2 ≤ min

{
1

2ℓ
;
a

dM

}
,6Sin
e ℓ ≥ 1 by de�nition, it is 
lear that ε1 + ε2 ≤ 1 as required.



180 A. Proof of auxiliary resultsand then, based on this 
hoi
e, to design the 
ontrol gains a

ording to (6.11) where ad,
bd, cd, ap, bp, cp, ai, bi and ci are the positive 
onstants, independent of δ1 and ∆1, givenby

ad := 2

(
2ε1 +

2ε2
ε1

+ ε2

)
dM + 2p11

bd := 4p10

cd := 4

(
2(ε1 + ε2)kc

3
+ p12

)

ap := 2 max

{(
2 +

ε2
ε1

)
kg +

ε2dM
ε1

+
2p11

3
;

ε1ℓad
ε1 − 2ℓε2

;
ε1dM

2

}

bp := 2 max

{
2p10

ε1
;

ε1ℓbd
ε1 − 2ℓε2

}

cp := 2 max

{
2kc
3

+
2p12

ε1
;

ε1ℓcd
ε1 − 2ℓε2

}

ai := 2 max

{
kg + 2p11 ; ℓ(ad + ap) ;

ε2dM
ε1

}

bi := 2 max {2p10 ; ℓ(bd + bp)}

ci := 2 max

{
2kc
3

+ 2p12 ; ℓ(cd + cp)

}
.The proof of the 
laim follows.
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Abstra
t. We present new tools for stability and robustness analysis of nonlinear dynami
alsystems. We provide a pre
ise Lyapunov framework for uniform semiglobal and pra
ti
al asymp-toti
 stability. �Semiglobal� refers to the situation when the domain of attra
tion is not the wholestate-spa
e but, instead, a 
ompa
t set that may be arbitrarily enlarged by a 
onvenient tuning ofparameters. �Pra
ti
al� 
on
erns the 
ase when an arbitrarily small 
ompa
t neighborhood of theorigin (instead of the origin itself) is asymptoti
ally stable. As opposed to many related 
on
epts,they allow the estimate of solutions to depend on the tuning parameter and so, potentially, on theradius of the desired domain of attra
tion and the amplitude of the tolerated steady-state error.Compared to 
lassi
al results for global asymptoti
 stability, this feature requires to impose anadditional requirement on the bounds on the Lyapunov fun
tion. We illustrate the importan
e ofthis 
ondition by showing that, when the latter is violated, no stability property is ensured. Wealso derive a 
onverse Lyapunov result for the 
lass of USPAS systems whose solutions' estimateis independent of the radius of the attra
tive ball. The generated Lyapunov fun
tion is espe
iallydesigned to �t the 
ontext of 
as
aded systems as its gradient is bounded by a time-invariantfun
tion.With the proposed Lyapunov framework for semiglobal and pra
ti
al asymptoti
 stability, sometools are presented that ensure the preservation of these stability properties by 
as
ade inter
on-ne
tion. In general terms, similarly to existing results for global asymptoti
 stability, it is requiredthat the solutions of the overall 
as
ade be bounded and that a 
onvenient Lyapunov fun
tion beexpli
itly known for the driven subsystem. In view of the 
onverse result we establish, we relaxthis latter requirement in the semiglobal 
ase for a wide 
lass of systems. This is parti
ularlyuseful when invoking averaging te
hniques, as illustrated by the output feedba
k 
ontrol of thedouble integrator a�e
ted by a persistently ex
iting signal. Furthermore, in the 
ase of uniformglobal pra
ti
al asymptoti
 stability, the boundedness assumption on the solutions of the 
as
ade isrepla
ed by growth restri
tion on the inter
onne
tion term. This makes it easy to apply in spe
i�
problems. We illustrate its use by quantifying the e�e
t of smoothing sign fun
tions in disturban
ereje
tion.We show that, if some (non ne
essarily 
ompa
t) sets are globally asymptoti
ally stable (GAS)for two subsystems taken separately, then their 
ross produ
t is GAS for the 
orresponding 
as-
ade provided that its solutions are globally bounded. On some o

asions, this requirement 
anbe repla
ed by a simple growth order 
ondition on the inter
onne
tion term (plus forward 
om-pleteness). This work in
ludes, as a spe
ial 
ase, partial stability for 
as
ades. As an illustration,we provide a 
on
ise proof for a re
ently established result of formation 
ontrol of surfa
e vesselsalong a straight path and with a pres
ribed velo
ity.We analyze the stability of 
as
aded systems with inputs by providing su�
ient 
onditionsunder whi
h integral input to state stability is preserved by 
as
ade inter
onne
tion. These 
ondi-tions are �rst expressed in Lyapunov terms and then in terms of estimates of the solutions of ea
hsubsystem taken separately.We illustrate the signi�
an
e of our theoreti
al �ndings by solving spe
i�
 open problems inthe �eld of me
hani
al systems. We pro
eed to the robustness analysis of PID-
ontrolled manip-ulators to fri
tion, model un
ertainty, a
tuators' dynami
s, et
. Another appli
ation 
on
erns theformation 
ontrol of spa
e
rafts. We establish global pra
ti
al asymptoti
 stability of the 
orre-sponding system when only bounds on the leader's anomaly are available. Finally, we show that asimilar stability property 
an be obtained for the syn
hronization of two surfa
e vessels with littleinformation on the leader vehi
le.
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