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Motivations and definitions
Introductory example

Consider the scalar controlled system

ẋ = u .

Control law: u = −θx , θ > 0 ⇒ global exponential stability.

Additive perturbation:
ẋ = −θx + 1

⇒ No more convergence to zero (ultimate boundedness):

x(t) =

(

x0 −
1
θ

)

e−θt +
1
θ

.

Instead, the ball of radius 1/θ is globally asymptotically stable.

 Practical stability.
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Motivations and definitions
Introductory example

High-order non-linearity:

ẋ = −θx + x3

⇒ Domain of attraction is restricted to B√
θ
.

 Semiglobal stability.
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Motivations and definitions
Causes for semiglobal and/or practical stability

Semiglobal and practical stability may arise from the inherent structure
of the plant, or result from a degradation of global asymptotic stability:

Non-vanishing perturbations

Model imprecision

Lack of measurement

Use of saturated control.

It may also be derived by stability analysis tools:

Averaging techniques [Teel, Peuteman, Aeyels, 99]

Controllability results.
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Motivations and definitions
Precise definitions

We consider parameterized systems of the form:

ẋ = f (t , x , θ) . (1)

Definition (USAS)
The system is said to be uniformly semiglobally asymptotically stable
on Θ if, for all ∆ > 0, there exist θ⋆(∆) ∈ Θ and a KL function β∆ such
that, for all x0 ∈ B∆ and all t0 ≥ 0,

|φ(t , t0, x0, θ
⋆)| ≤ β∆(|x0| , t − t0) , ∀t ≥ t0 .

x0

φ(t, t0, x0, θ
⋆)B∆

0
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Motivations and definitions
Precise definitions

Definition (UGPAS)
The system is said to be uniformly globally practically asymptotically
stable on Θ if, for all δ > 0, there exist θ⋆(δ) ∈ Θ and a KL function βδ

such that, for all x0 ∈ R
n and all t0 ≥ 0,

|φ(t , t0, x0, θ
⋆)| ≤ δ + βδ(|x0| , t − t0) , ∀t ≥ t0 .

x0

φ(t, t0, x0, θ
⋆)

Bδ

0
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Motivations and definitions
Precise definitions

Definition (USPAS)
The system is said to be uniformly semiglobally practically
asymptotically stable on Θ if, for all ∆ > δ > 0, there exist θ⋆(δ, ∆) ∈ Θ
and a KL function βδ,∆ such that, for all x0 ∈ B∆ and all t0 ≥ 0,

|φ(t , t0, x0, θ
⋆)| ≤ δ + βδ,∆(|x0| , t − t0) , ∀t ≥ t0 .

x0

φ(t, t0, x0, θ
⋆)

B∆

0

Bδ
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Motivations and definitions
Comparison with related concepts

These definitions of USPAS, UGPAS and USAS differ from others
existing in the literature in that:

They allow the KL estimate to depend on δ and/or ∆, as opposed
to e.g. [Nesić, Loría, 04], [Tan, Nesić, Mareels, 05]. Example:

q̈ = −θ2q − 2θq̇ + 1 .
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Motivations and definitions
Comparison with related concepts

These definitions of USPAS, UGPAS and USAS differ from others
existing in the literature in that:

They allow the KL estimate to depend on δ and/or ∆.
They are defined with respect to two measures, as opposed to
e.g. [Lin, Sontag, Wang, 96], [Teel, Panteley, Loría, 02]:

|φ(t , t0, x0)|δ ≤ βδ(|x0|, t − t0) .

Bδ is not necessarily invariant.
Weaker (more general) concept, while still guaranteeing interesting
properties.
Lyapunov condition easier to check.
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They allow the KL estimate to depend on δ and/or ∆.
They are defined with respect to two measures:

|φ(t , t0, x0)|δ ≤ βδ(|x0|, t − t0) .

Bδ is not necessarily invariant.
Weaker (more general) concept, while still guaranteeing interesting
properties.
Lyapunov condition easier to check.

No prescribed tuning procedure, as opposed to e.g. [Teel,
Peuteman, Aeyels, 99], [Tan, Nesić, Mareels, 05]:

The tuning parameter may not be scalar.
However: tuning procedure often evident from the analysis.
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Lyapunov sufficient conditions
USAS

For semiglobal asymptotic stability:

Theorem (Lyapunov sufficient condition for USAS)

Suppose that, given any ∆ > 0, there exist θ⋆(∆) ∈ Θ, a C1 function
V∆ and class K∞ functions α∆, α∆, α∆ such that, for all |x | ≤ ∆ and
all t ∈ R≥0,

α∆(|x |) ≤ V∆(t , x) ≤ α∆(|x |)
∂V∆

∂t
(t , x) +

∂V∆

∂x
(t , x)f (t , x , θ⋆) ≤ −α∆(|x |)

lim
∆→∞

α−1
∆

◦ α∆(∆) = ∞ . (2)

Then ẋ = f (t , x , θ) is USAS on the parameter set Θ.

A. Chaillet ( Université Paris Sud – L2S ) Stability and robustness of nonlinear systems PhD dissertation – 07/07/2006 13 / 46



Lyapunov sufficient conditions
USAS

For semiglobal asymptotic stability:

Theorem (Lyapunov sufficient condition for USAS)

Suppose that, given any ∆ > 0, there exist θ⋆(∆) ∈ Θ, a C1 function
V∆ and class K∞ functions α∆, α∆, α∆ such that, for all |x | ≤ ∆ and
all t ∈ R≥0,

α∆(|x |) ≤ V∆(t , x) ≤ α∆(|x |)
∂V∆

∂t
(t , x) +

∂V∆

∂x
(t , x)f (t , x , θ⋆) ≤ −α∆(|x |)

lim
∆→∞

α−1
∆

◦ α∆(∆) = ∞ . (2)
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Lyapunov sufficient conditions
Importance of the additional condition

Condition (2) cannot be removed from the above statement. For
instance, consider the system from [Kokotović, Marino, 86]:

ẋ1 = x2

ẋ2 = −θ2x1 − θx2 +
1
3

x3
2 ,

with the function

Vθ(x) = θ2x2
1 + x2

2 + x2tanh x1 .

Given any ∆ > 0, the choice θ⋆(∆) := 2
3

(

3 + ∆ + ∆2
)

ensures

V̇θ⋆(x) ≤ −|x |
2

tanh
( |x |

2

)

, ∀ |x | ≤ ∆ .
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Lyapunov sufficient conditions
Importance of the additional condition

In addition, for all x ∈ R
2,

|x |
4

tanh
( |x |

2

)

≤ Vθ⋆(x) ≤
(

θ⋆(∆)2 +
1
2

)

|x |2 .

However, the additional condition is violated:

lim
∆→∞

α−1
∆

◦ α∆(∆) = 0 6= ∞ .

And, indeed, any solution starting with |x10| ≥ 3/
√

θ, |x20| ≥ 3
√

θ
grows unbounded.
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Lyapunov sufficient conditions
UGPAS

Similarly, for global practical stability, we have that:

Theorem (Lyapunov sufficient condition for UGPAS)

Suppose that, given any δ > 0, there exist θ⋆(δ) ∈ Θ, a C1 function Vδ

and class K∞ functions αδ, αδ, αδ such that, for all |x | ≥ δ and all
t ∈ R≥0,

αδ(|x |) ≤ Vδ(t , x) ≤ αδ(|x |)
∂Vδ

∂t
(t , x) +

∂Vδ

∂x
(t , x)f (t , x , θ⋆) ≤ −αδ(|x |)

lim
δ→0

α−1
δ ◦ αδ(δ) = 0 .

Then ẋ = f (t , x , θ) is UGPAS on the parameter set Θ.
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Lyapunov sufficient conditions
USPAS

Finally, for semiglobal practical stability:
Theorem (Lyapunov sufficient condition for USPAS)

Suppose that, given any ∆ > δ > 0, there exist θ⋆(δ, ∆) ∈ Θ, a C1

function Vδ,∆ and class K∞ functions αδ,∆, αδ,∆, αδ,∆ such that, for all
δ ≤ |x | ≤ ∆ and all t ∈ R≥0,

αδ,∆(|x |) ≤ Vδ,∆(t , x) ≤ αδ,∆(|x |)

∂Vδ,∆

∂t
(t , x) +

∂Vδ,∆

∂x
(t , x)f (t , x , θ⋆) ≤ −αδ,∆(|x |)

Assume further that, ∀∆⋆ > δ⋆ > 0, ∃∆ > δ > 0 such that

α−1
δ,∆ ◦ αδ,∆(δ) ≤ δ⋆

α−1
δ,∆ ◦ αδ,∆(∆) ≥ ∆⋆ .

Then ẋ = f (t , x , θ) is USPAS on the parameter set Θ.
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Lyapunov necessary conditions
Converse Lyapunov function for USPAS/USAS

USPAS may be derived by other means (e.g. averaging): we propose
a converse result tailored for cascades applications.

Definition (δ-USPAS)

The system ẋ = f (t , x , θ) is said to be δ-USPAS if, given any ∆ > 0,
there exists a KL function β∆ such that, for any 0 < δ < ∆, there exists
a parameter θ⋆(δ, ∆) ∈ Θ such that, for all t0 ∈ R≥0 and all x0 ∈ B∆,

|φ(t , t0, x0)|δ ≤ β∆(|x0| , t − t0) , ∀t ≥ t0 .

Proposition (Averaging [Teel, Peuteman, Aeyels, 99] induces
δ-USPAS)

If the origin of the average of the system ẋ = f (t , x) is globally
asymptotically stable, then ẋ = f (t/θ, x) is δ-USPAS on the parameter
set R>0.
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Lyapunov necessary conditions
Converse Lyapunov function for USPAS/USAS

Theorem (Converse Lyapunov function for δ-USPAS)

Assume that the system ẋ = f (t , x , θ) is δ-USPAS on Θ ⊂ R
m and that

there exist f0 ≥ 0 and a continuous nondecreasing function L such that

|f (t , 0, θ)| ≤ f0 ,

∣

∣

∣

∣

∂f
∂x

(t , x , θ)

∣

∣

∣

∣

≤ L(|x |) , ∀t ∈ R≥0 ,∀x ∈ R
n ,∀θ ∈ Θ .

Then, for any ∆ > δ > 0, there exist a C1 function
Vδ,∆ : R≥0 × R

n → R≥0 such that, for all δ ≤ |x | ≤ ∆ and all t ∈ R≥0,

α∆(|x |) ≤ Vδ,∆(t , x) ≤ α∆(|x |)
∂Vδ,∆

∂t
(t , x) +

∂Vδ,∆

∂x
(t , x)f (t , x , θ⋆) ≤ −α∆(Vδ,∆(t , x))

∣

∣

∣

∣

∂Vδ,∆

∂x
(t , x)

∣

∣

∣

∣

≤ c∆(|x |) .
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Lyapunov necessary conditions
Converse Lyapunov function for USPAS/USAS

Theorem (Converse Lyapunov function for δ-USPAS)

Assume that the system ẋ = f (t , x , θ) is δ-USPAS on Θ ⊂ R
m and that

there exist f0 ≥ 0 and a continuous nondecreasing function L such that

|f (t , 0, θ)| ≤ f0 ,

∣

∣

∣

∣

∂f
∂x

(t , x , θ)

∣

∣

∣

∣
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Semiglobal and practical stability of cascades
Why studying cascades ?

Σ2

y2 y1

Σ1

u2

Cascades may appear in various contexts:
Natural structure of the plant
Control law designed in order to put the system in a cascade form
Decompose a complex problem into simpler ones.

Widely studied structure: Coron, Kokotović, Ortega, Praly,
Sepulchre, Sontag, Sussmann, Teel, Vidyasagar, . . .

Various approaches: stability analysis, state/output-feedback
stabilizability, ISS, Lyapunov construction,. . .

Many analysis and design tools based on [Seibert, Suarez, 90],
[Sontag, 89], [Panteley, Loría, 98]:

UGAS + UGAS + UGB ⇒ UGAS.
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Sepulchre, Sontag, Sussmann, Teel, Vidyasagar, . . .

Various approaches: stability analysis, state/output-feedback
stabilizability, ISS, Lyapunov construction,. . .

Many analysis and design tools based on [Seibert, Suarez, 90],
[Sontag, 89], [Panteley, Loría, 98]:

UGAS + UGAS + UGB ⇒ UGAS.

A. Chaillet ( Université Paris Sud – L2S ) Stability and robustness of nonlinear systems PhD dissertation – 07/07/2006 21 / 46



Semiglobal and practical stability of cascades
Why studying cascades ?

Σ2

y2 y1

Σ1

u2

Cascades may appear in various contexts:
Natural structure of the plant
Control law designed in order to put the system in a cascade form
Decompose a complex problem into simpler ones.

Widely studied structure: Coron, Kokotović, Ortega, Praly,
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Semiglobal and practical stability of cascades
USPAS cascaded systems

Considered cascades:

ẋ1 = f1(t , x1, θ1) + g(t , x , θ) (3a)

ẋ2 = f2(t , x2, θ2) (3b)
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Semiglobal and practical stability of cascades
USPAS cascaded systems

Theorem (USPAS + USPAS + UB ⇒ USPAS)
A1 - Given any ∆1 > δ1 > 0, there exist a parameter
θ⋆

1(δ1, ∆1) ∈ Θ1, a function Vδ1,∆1 ∈ C1, class K∞ functions αδ1,∆1
,

αδ1,∆1 , αδ1,∆1 and a continuous positive nondecreasing function
cδ1,∆1 such that, for all δ1 ≤ |x1| ≤ ∆1 and all t ∈ R≥0,

αδ1,∆1
(|x1|) ≤ Vδ1,∆1(t , x1) ≤ αδ1,∆1(|x1|)

∂Vδ1,∆1

∂t
(t , x1) +

∂Vδ1,∆1

∂x1
(t , x1)f1(t , x1, θ

⋆
1) ≤ −αδ1,∆1(|x1|)

∣

∣

∣

∣

∂V1

∂x1
(t , x1)

∣

∣

∣

∣

≤ cδ1,∆1(|x1|) .

A2 - For any θ1 ∈ Θ1, there exists a nondecreasing function Gθ1

and a class K function Ψθ1 such that, for all θ2 ∈ Θ2, all
x ∈ R

n1 × R
n2 and all t ∈ R≥0, |g(t , x , θ)| ≤ Gθ1(|x |)Ψθ1(|x2|).
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Semiglobal and practical stability of cascades
USPAS cascaded systems

Theorem (USPAS + USPAS + UB ⇒ USPAS), cont’d

A3 - The system ẋ2 = f2(t , x2, θ2) is USPAS on Θ2.

A4 - There exists ∆0 > 0 such that, for any given δ1, ∆1, δ2,
∆2 > 0, satisfying ∆1 > max{δ1; ∆0} and ∆2 > δ2, and for the
parameter θ⋆

1(δ1, ∆1), there exists θ⋆
2 ∈ Df2(δ2, ∆2) ∩ Θ2 and

γ(δ1, δ2, ∆1, ∆2) > 0 such that

|x0| ≤ γ(δ1, δ2, ∆1, ∆2) ⇒ |φ(t , t0, x0, θ
⋆)| ≤ ∆1 , ∀t ≥ t0 .

In addition, given any ∆⋆ > δ⋆ > 0, there exist δ1, ∆1, ∆2 > 0, with
∆1 > δ1, such that, for all δ2 ∈ (0; ∆2),

min {∆1; ∆2; γ(δ1, δ2, ∆1, ∆2)} ≥ ∆⋆

max
{

δ2; α
−1
δ1,∆1

◦ αδ1,∆1(δ1)
}

≤ δ⋆ .

Under A1-A4, the cascade is USPAS on Θ1 × Θ2.
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Semiglobal and practical stability of cascades
Application

Robustness analysis of PID-controlled robots:
The ideas of this result were used to show that PID-controlled robot
manipulators are robust to external disturbances (e.g. friction, noise),
high order non-linearities, and actuators’ dynamics:

The resulting system is USPAS

Driven subsystem: mechanical part (robot arm)

Driving subsystem: electrical part (actuator).
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Semiglobal and practical stability of cascades
USPAS/USAS cascaded systems, without a Lyapunov function

Theorem (USPAS + USPAS + UGB ⇒ USPAS)

A1 - ẋ1 = f1(t , x1, θ1) is δ-USPAS on Θ1

A2 - ẋ2 = f2(t , x2, θ2) is USPAS on Θ2.

A3 - For any θ1 ∈ Θ1, there exists a nondecreasing function Gθ1

and a class K function Ψθ1 such that, for all θ2 ∈ Θ2, all
x ∈ R

n1 × R
n2 and all t ∈ R≥0, |g(t , x , θ)| ≤ Gθ1(|x |)Ψθ1(|x2|).

A4 - There exist η ∈ K∞ and µ > 0 such that, for all x0 ∈ R
n, all

t0 ≥ 0 and all θ ∈ Θ,

|φ(t , t0, x0, θ)| ≤ η(|x0|) + µ , ∀t ≥ t0 .

Under A1-A4, the cascade is USPAS on Θ1 × Θ2.
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A1 - ẋ1 = f1(t , x1, θ1) is δ-USPAS on Θ1
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Semiglobal and practical stability of cascades
UGPAS cascaded systems

ẋ1 = f1(t , x1, θ1) + g(t , x , θ)

ẋ2 = f2(t , x2, θ2)

Theorem (UGPAS + UGPAS + growth restriction ⇒ UGPAS)
A1 - For any θ1 ∈ Θ1, there exists a nondecreasing function Gθ1

and a class K function Ψθ1 such that, for all θ2 ∈ Θ2, all
x ∈ R

n1 × R
n2 and all t ∈ R≥0,

|g(t , x , θ)| ≤ Gθ1(|x |)Ψθ1(|x2|) .

A2 - The driving subsystem is UGPAS on Θ2.

A3 - The driven subsystem is UGPAS with a Lyapunov function
satisfying

∣

∣

∣

∣

∂Vδ1

∂x1
(t , x1)

∣

∣

∣

∣

≤ cδ1(|x1|)
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Semiglobal and practical stability of cascades
UGPAS cascaded systems

Theorem (UGPAS + UGPAS + growth restriction ⇒
UGPAS),cont’d
A4 - For the functions of A5 and A6, for all δ1 > 0 and as s → +∞,

cδ1(s)Gθ⋆

1
(s) = O(αδ1 ◦ α−1

δ1
◦ αδ1

(s))

αδ1(s) = O(αδ1(s)) .

Under A1-A4, the cascade is UGPAS on Θ1 × Θ2.
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Semiglobal and practical stability of cascades
Application

Synchronization for replenishment procedure:
This result was used to synchronize surface vessels with a virtual ship
approach:

Leader-follower strategy

No information needed on the main ship except position.

Leader

Follower

d
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Set-stability
Definition

We deal with autonomous systems:

ẋ = f (x) .

Definition (GAS of a set)

Assume that ẋ = f (x) is forward complete on R
n. The closed set A is

said to be globally asymptotically stable if there exists a KL function β
such that, for all x0 ∈ R

n,

|φ(t , t0, x0)|A ≤ β(|x0| , t) , ∀t ≥ 0 .

Stability with respect to two measures

A is not necessarily compact.
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Set-stability
Motivations

General concept, it includes as special cases:

Stability of the origin: A = {0}

Stability of a path: A = {xd (t) : t ≥ 0}

Ultimate boundedness, stability of a fixed ball: A = Br

Partial stability: A = {0} × R
n′

, n′ < n (e.g. adaptive control).
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Set-stability for cascades
Under a UGB assumption

We consider autonomous cascades:

ẋ1 = f1(x1) + g(x1, x2) (4a)

ẋ2 = f2(x2) , (4b)

Theorem (GAS + GAS + GB ⇒ GAS)

A1 - A1 is GAS for ẋ1 = f1(x1).

A2 - A2 is GAS for ẋ2 = f2(x2).

A3 - There exist a continuous function g1 and a class K∞ function
g2 such that, for all x = (x⊤

1 , x⊤
2 )⊤ ∈ R

n1 × R
n2 ,

|g(x1, x2)| ≤ |g1(x)|g2(|x2|A2
) .

A4 - The solutions of (4) are globally bounded.

Under A1-A4, the set A := A1 ×A2 is GAS for the cascade (4).
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Set-stability for cascades
Using growth order restrictions

Theorem (GAS + GAS + growth restriction ⇒ GAS)

A1-bis - There exist a C1 function V1, class K∞ functions α1, α1,
α1, g2 and a continuous function g11 such that, for all x1 ∈ R

n1 ,

α1(|x1|A1
) ≤ V1(x1) ≤ α1(|x1|)

∂V1

∂x1
(x1)f1(x1) ≤ −α1(|x1|A1

) .

∣

∣

∣

∣

∂V1

∂x1
(x1)g(x)

∣

∣

∣

∣

≤ g11(|x1|A1
)g2(|x2|A2

) .

A4-bis - The cascade (4) is forward complete and
g11(s) = O(α1(s)) as s → +∞.

Under A1-bis, A2, A3 and A4-bis, the set A1 ×A2 is GAS for (4).
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Set-stability for cascades
Application

Control of ships in formation:
Formation control of surface vessels along a straight path, with a
prescribed velocity (an alternative proof for [Børhaug, Pavlov,
Pettersen, 06]):

Same hierarchical level for all ships
The set to be stabilized contains {(x1, x2) : ξ1 = ξ2} (unbounded)
Cascaded structure arises from the analysis: we use velocities as
“virtual controls”.

ξ

ζ

1

2

d1

ud

ud
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Integral input to state stability
Definitions

ẋ = f (x , u) . (5)

Definition (ISS, [Sontag, 89])
We say that (5) is input to state stable if there exist a class KL function
β and a class K∞ function γ such that, for all x0 and all u,

|φ(t , x0, u)| ≤ β(|x0| , t) + γ (‖u‖) , ∀t ≥ 0 .

Definition (iISS, [Sontag, 98])
We say that (5) is integral input to state stable if there exist a class KL
function β and γ, µ ∈ K∞ such that, for all x0 and all u,

|φ(t , x0, u)| ≤ β(|x0| , t) + γ

(
∫ t

0
µ(|u(τ)|)dτ

)

, ∀t ≥ 0 .

The function µ is then referred to as an iISS gain for (5).
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Integral input to state stability
Motivations

iISS is much more general than ISS
iISS guarantees robustness to the system:

Stability of a ball of radius proportional to the energy of the input
Finite supplied energy ⇒ convergence to zero

In [Panteley, Loría, 98]: preservation of the UGAS property under,
among other, integrability of the x2-solutions and growth
restrictions.

In [Arcak, Angeli, Sontag, 02], it was shown that:

GAS + iISS + trajectory-based condition ⇒ GAS

What about Lyapunov-based conditions ?

What about iISS + iISS ?
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Integral input to state stability
Lyapunov characterization

Theorem (Lyapunov characterization of iISS, [Angeli, Sontag,
Wang, 00])

The system ẋ = f (x , u) is iISS if and only if there exist a C∞ function
V , class K∞ functions α, α, γ and a continuous positive definite
function α such that, for all x and all u,

α(|x |) ≤ V (x) ≤ α(|x |)

∂V
∂x

(x)f (x , u) ≤ −α(|x |) + γ(|u|) .
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Integral input to state stability
iISS for cascades

Cascades under consideration:

ẋ1 = f1(x1, x2, u) (6a)

ẋ2 = f2(x2, u) (6b)

Σ2

x2 x1

Σ1
u
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Integral input to state stability
iISS for cascades, Lyapunov-based

Theorem (iISS + iISS ⇒ iISS, Lyapunov-based)
Let V1 : R

n1 → R≥0 be a differentiable function and V2 : R
n2 → R≥0 be

a continuous function, differentiable out of the origin. Suppose that
there exist a class K function ν1 and, for all i ∈ {1, 2}, a continuous
positive definite function αi , a class K function γi , and two class K∞
functions αi and αi such that, for all xi ∈ R

ni and all u ∈ R
p,

αi(|xi |) ≤ Vi(xi) ≤ αi(|xi |)

∂V1

∂x1
(x1)f1(x1, x2, u) ≤ −α1(|x1|) + γ1(|x2|)+ν1(|u|)

x2 6= 0 ⇒ ∂V2

∂x2
(x2)f2(x2, u) ≤ −α2(|x2|) + γ2(|u|) .

If, in addition, γ1(s) = O(α2(s)) as s → 0, then the cascade is iISS.
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Integral input to state stability
iISS for cascades, Lyapunov-based

V2 does not need to be differentiable at zero

Condition easy to check

Direct corollary:

GAS + iISS + "γ1(s) = O(α2(s))" ⇒ GAS

based on Lyapunov functions.
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Integral input to state stability
iISS for cascades, trajectory-based

Theorem (iISS + iISS ⇒ iISS, trajectory-based)
Assume that

ẋ1 = f1(x1, x2, u) is iISS with a locally Lipschitz iISS gain

The system ẋ2 = f2(x2, u) is iISS and 0-LES

f2(·, 0) is C1

Then the cascade is iISS.
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Conclusion and future work

Main results:
Rigorous Lyapunov framework for semiglobal and practical stability
Stability and robustness analysis of cascaded systems:

Semiglobal and practical stability
Set-stability
Integral input to state stability

Applications to control of mechanical systems:
Robustness analysis of PID-controlled robots
Surface vessels synchronization
Spacecrafts formation control

Future research:
Constructive control design based on these results, e.g.
backstepping
Semiglobal and/or practical partial stability
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