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Résumé

Ce travail présente une étude des raies de plasma observées à l’aide du radar à
diffusion incohérente EISCAT. Le travail est centré sur deux points. Tout d’abord,
la conception d’une expérience raies de plasma pour le radar EISCAT, avec une
résolution spatiale améliorée. Puis, la comparaison de données raies de plasma
acquises avec le radar EISCAT avec une théorie améliorée sur l’intensité et le dé-
calage Doppler en fréquence des raies de plasma. Pour améliorer la résolution
spatiale, nous avons conçu la première expérience raies de plasma mettant en œu-
vre la technique du code alternatif. Cette expérience a été tournée avec succès avec
une résolution spatiale de 3 km au lieu de 40 – 50 km obtenu avec les techniques
conventionnelles. Parce qu’il est très difficile de construire un modèle cohérent
de la fonction de distribution des vitesses des électrons satisfaisant tous les inter-
valles d’énergies pertinents, nous avons construit une représentation adéquate de
la distribution des vitesses des électrons en séparant la distribution en deux popu-
lations : la thermique et la suprathermique. La population thermique est représen-
tée par la fonction de Spitzer qui tient compte de l’effet d’un champ électrique
et/ou d’un gradient de température. La population suprathermique est déduite du
flux angulaire d’énergie calculé grâce à un modèle numérique du transport des
électrons. Un code numérique a été développé pour calculer la fonction diélec-
trique et la fonction réduite de distribution des vitesses pour toutes distributions
des vitesses à deux dimensions dont nous avons besoin pour modéliser l’intensité
et le décalage Doppler en fréquence des raies de plasma. Nous avons pu repro-
duire les caractéristiques de l’intensité et du décalage Doppler en fréquence des
raies de plasma avec des données mesurées avec le radar VHF EISCAT. En parti-
culier, nous avons identifié deux pics étroits dans la distribution des vitesses des
suprathermiques comme la signature de la photo-ionisation de N2 et O. Ces pics
ont été observés sur les données. L’effet d’un gradient de température — qui pro-
duit une correction importante au décalage Doppler des raies de plasma — a été
pris en compte plus précisement que précédemment en calculant numériquement
les intégrales singulières, au lieu d’utiliser les premiers termes d’une expansion
en séries comme auparavant. C’est important car cela a permis pour la première
fois à un modèle de reproduire précisément l’intensité et le décalage Doppler des
raies de plasma mesurés par une expérience EISCAT.

Mots-clés : EISCAT · distributions des vitesses électronique · dispersion de rela-
tion · ondes Langmuir





Abstract

This work presents a study of the electron plasma lines observed by the incoherent
scatter radar EISCAT. The work is focusing on two parts. On one hand, the design
of a plasma line experiment for the EISCAT system with an improved spatial res-
olution. On the other hand, the comparison of the plasma line data collected with
the EISCAT radar with an improved model for the intensity and the Doppler fre-
quency shift of the plasma lines. In order to improve the spatial resolution of the
plasma line experiment we have designed the first experiment that implements the
recent technique of alternating code. The experiment has been run successfully
with an altitude resolution of 3 km as opposed to 40 – 50 km obtained with the
conventional techniques. Because it is very difficult to construct a self-consistent
model of the velocity distribution function encompassing all of the relevant en-
ergy range, we have made an ad hoc model by separating the distribution into two
parts: the thermal and the supra-thermal population. The thermal population is
represented by the Spitzer function that takes into account the effect of an electric
field and/or a temperature gradient. The supra-thermal population is derived from
the angular energy flux of the supra-thermal electrons calculated by a numerical
electron transport model. A numerical code has been developed to calculate the
dielectric function and the reduced one-dimensional velocity distribution for any
arbitrary two-dimensional velocity distribution which are needed to model the in-
tensity and the Doppler frequency shift of the plasma lines. We have been able
to reproduce peculiar features of the intensity as well as the Doppler shift of the
plasma lines with data collected with the EISCAT VHF radar. Especially, two
sharp peaks in the supra-thermal distribution were identified as the signature of
photo-ionisation of N2 and O and were observed in the measured data. The effect
of the temperature gradient — which produces a decisive correction to the Doppler
shift of the plasma lines — was taken into account more accurately than previously
by numerical evaluation of the singular integrals rather than by the use of the first
terms of a series expansion as done in other studies. This is important because it
has allowed a model for the first time to reproduce accurately the intensity and the
Doppler shift of the plasma line as measured by actual experiment.

Keywords: EISCAT · electron velocity distribution function · dispersion relation ·
Langmuir waves
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Introduction

"Hver og en har sin måte å lære på", sa han

til seg selv. "Hans måte er ikke min, og

min måte er ikke hans. Men også han er på

leting etter sin egen historie."

Paulo COELHO, Alkymisten, 1988.

Among the planets of our solar system, the Earth presents the particularity to
have both an atmosphere and an intrinsic magnetic field. Under the action of the
photons created by the Sun, essentially EUV and UV, the constituents of the upper
part of the neutral atmosphere, the thermosphere (approximately between 90 km
and 2000 km), are subject to ionisation processes. The ionised component of the
thermosphere is called the ionosphere. In the lower part of the ionosphere and for
normal conditions, the collision frequency between ions and neutral particles is
important and the effect of the magnetic forces is weak so that the neutral atmo-
sphere drives the behaviour of the ionosphere. In the upper part of the ionosphere,
the gyro-frequency of the ionised particles is getting larger than the ion-neutral
collision frequency and the charged particles are being trapped along the lines of
the magnetic field. The region where the Earth’s magnetic field exerts dominant
control over the motions of charged particles is called the magnetosphere.

In the ionosphere, the gas contains enough ionised particles to cause mea-
surable effects on the travel of radio waves. The incoherent scattering technique
is a radar technique to sound the ionospheric plasma from about 60 km to over
1500 km. Routinely, several such radar instruments around the world, measure
the part of the spectrum called the ion line, a narrow double humped spectrum
centred on the transmitted frequency. The ion line is the result of the scattering
of the transmitted wave by ion acoustic waves travelling away and towards the
transmitter, if backscatter, and for bi-static measurements, along the bisector be-
tween transmitted and received directions. Once the data are collected, mostly
autocorrelation functions, a sophisticated analysis method based on inversion the-
ory allows one to extract the plasma parameters such as the electron density, the
electron and ion temperatures, the ion drift velocity and, in favourable conditions,
the collision frequency and the ion composition.

The other main component of the incoherent scattering spectrum is called the
electron plasma line. Electron plasma lines are the results of the scattering of the
transmitted radio wave by natural Langmuir waves of the ionospheric plasma. Un-
like the ion line, which is a narrow spectrum centred on the transmitted frequency,
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the plasma lines consist of a pair of sharp spectral lines, Doppler shifted up and
down with respect to the transmitted frequency corresponding to Langmuir waves
travelling towards and away from the transmitter respectively, if backscatter, and
for bi-static measurements, along the bisector between transmitted and received
directions. The Doppler shift is roughly of the order of the plasma frequency,
which is proportional to the square root of the electron density. Typically the
plasma frequency varies between 2MHz and 8MHz, depending on the altitude,
the geographic location, the time and the solar activity.

The measurement of the plasma line using incoherent scattering radar tech-
nique is not as simple as the measurement of the ion line. In part due to the
very low amount of scattered power in the lines — without any enhancement pro-
cess, the intensity of the plasma line is expected to be less than one tenth of the
intensity of the ion line — but also because of the time and space variations of
the frequency of the plasma line itself due to variations of the electron density.
But the measurement of these two narrow spectra provides supplementary and
complementary informations to the one contained in the ion line. Particularly, at
long term, the electron drift velocity would be an essential parameter to measure
through the observation of plasma lines. Combined with the parameters provided
by the ion line measurement, that would provide a ground-based technique to es-
timate the field-aligned electric currents independently of magnetic observations
(Bauer et al., 1976), which is by far the principal means of in situ field-aligned cur-
rents measurement, through satellite observations (Zmuda and Armstrong, 1974;
Iijima and Potemra, 1976), or sounding rocket observations (Ledley and Farthing,
1974). But both the measurement technique and the theoretical understanding of
the plasma lines are not yet properly developed for a correct estimation of the
field-aligned currents.

The work presented in this thesis is focusing on the study of the plasma line
and can be divided into two complementary parts: the design and implementation
of a plasma line experiment as well as the reduction of the data, and the compar-
ison and interpretation of the reduced data to a theoretical model of plasma line,
especially an ad hoc representation of the electron distribution function.

The aim of the first part has been to design an experiment for the EISCAT (Eu-
ropean Incoherent SCATter) radar systems, located in Northern Scandinavia, to
collect both plasma line and ion line data, and to develop a suitable analysis tool
to reduce the plasma lines data to parameters workable for the theoretical investi-
gations, i.e. the frequency, the intensity and the width of the lines. The long pulse

technique (Showen, 1979) and a similar technique, the chirp technique (Hagfors,
1982; Birkmayer and Hagfors, 1986) have been successfully used earlier to ob-
serve plasma lines at particular points of the ionosphere. The long pulse technique
allows the measurement of the critical frequency at the peak or valley of the E-
or F-region, while the chirp technique measures the plasma line at the altitude
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where the electron density gradient matches the chirp rate of the transmitted pulse.
These techniques do not provide many measurement points due to the mismatch
between the scale height of the electron density and the receiver bandwidth/size
of the probed volume by the pulse. Our objective when designing the experiment
was to provide both high-frequency resolution measurements of the plasma lines
and to improve the spatial resolution in order to increase the number of measure-
ment points. The quality of the acquired data is essential for the further analysis
of the spectra and the extraction of accurate parameters such as the difference in
Doppler shift between the up- and down-shifted plasma lines and the intensity of
the plasma lines. We have designed the first plasma line experiment at EISCAT

that implements a recent incoherent scatter technique previously used for low al-
titude high resolution measurement of the ion line, the alternating code (Lehtinen
and Häggström, 1987) which is a phase coding technique available at EISCAT. We
performed successfully the first plasma line experiment using a 32 bauds strong
condition alternating code on the EISCAT VHF radar system near Tromsø, Nor-
way. To extract the frequency and intensity of both the up- and down-shifted
plasma lines, a fitting routine built on a least-square minimisation method has
been developed and implemented using the kernel of GUISDAP (Grand Unified
Incoherent Scatter Data Analysis Program) of Lehtinen and Huuskonen (1996).
This analysis program enables one to reduce data, either collected with the long
pulse technique, or with the alternating code technique. It benefits from the com-
modity of GUISDAP, especially when it comes to the flexibility of handling new
experiments.

In a second part, the data are compared with a theoretical model. The model
consists in calculating both the plasma dielectric response function and the re-
duced one-dimensional distribution function. We have developed a numerical
code to calculate these functions that lets us estimate theoretically the Doppler
shift and the intensity of the plasma lines for any arbitrary two-dimensional ve-
locity distribution function in spherical coordinates. Kofman et al. (1993) have
shown, with UHF plasma lines data, that the thermal heat flow induced by a tem-
perature gradient modifies the dispersion relation of the Langmuir waves and in-
troduces a correction term in the estimate of the resonance frequency of the plasma
lines. We have further investigated theoretically for the different EISCAT radars,
the effect of a deviation of the distribution function from the Maxwellian on the
frequency and intensity of the plasma lines. The effect of the fine structures in
the energy range 20 – 30 eV of the supra-thermal population has been observed on
data collected with the VHF radar and compared with our model. The model is
based on the assumption that the the electron velocity distribution function can
be represented to a good approximation by two parts: the thermal population and
the supra-thermal population. The assumption is sensible for waves with phase
energy far enough from the energy corresponding to the transition between ther-
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mal and supra-thermal distribution (0.15 – 0.3 eV). For the VHF radar, the phase
energy is in the range 12 – 25 eV and for the UHF radar it is in the range 3 – 6 eV.
The supra-thermal two-dimensional velocity distribution function is derived from
the angular energy flux spectrum of the supra-thermal electrons calculated by a
numerical model that solves a stationary electron transport equation along the
magnetic field line, taking into account the collisions between a hot population of
electrons (photoelectrons and/or precipitation) and the neutral atmosphere (Lum-
merzheim and Lilensten, 1994). This model has been widely tested against exper-
iments and other models and has proved to have a very good behaviour to the data.
The thermal part of the distribution function has been modelled by the classical
two-dimensional velocity distribution of Spitzer and Härm (1953) which models
the departure from the Maxwellian state as a consequence of either an electric
field or a temperature gradient.

This thesis is built in the following way.
In Chapter 1, we introduce the theory of incoherent scatter and focus on the

electron plasma line. We give a description of the numerical code we have devel-
oped to model the plasma line.

In Chapter 2, we describe the incoherent scatter measurement technique and
focus on the experiments we designed.

In Chapter 3, we present the data reduction part.
In Chapters 4 and 5, we give a description of the theory which lies behind the

model of the electron distribution that we used.
Following this introductory part, four articles are included, two of which are

published and the other two are submitted for publication. References to these
articles are found throughout the different introductory parts.
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"A chacun sa manière d’apprendre, se répétait-il in
petto. Sa manière à lui n’est pas la mienne, et ma

manière n’est pas la sienne. Mais nous sommes l’un

et l’autre à la recherche de notre Légende Personnelle,

et c’est pourquoi je le respecte."

Paulo COELHO, L’alchimiste, 1988.

Parmi les planètes de notre système solaire, la Terre présente la particular-
ité de posséder à la fois une atmosphère et un champ magnétique. Sous l’action
des photons crées par le Soleil, essentiellement EUV et UV, les constituants de
la haute couche de l’atmosphère neutre, la thermosphère, située entre environ
90 km et 2000 km, sont ionisés. La composante ionisée de la thermosphère est
appelée l’ionosphère. Dans la partie inférieure de l’ionosphère, la fréquence
de collisions entre les ions et les particules neutres est importante et l’effet des
forces magnétiques est faible tel que l’atmosphère neutre force le comportement
de l’ionosphère. Dans la partie supérieure de l’ionosphère, la fréquence de gira-
tion des particules ionisées devient plus grande que la fréquence de collisions entre
ions et neutres et les particules chargées sont forcées de se déplacer le long des
lignes du champ magnétique. La région où le champ magnétique terrestre exerce
le contrôle du mouvement des particules chargées s’appelle la magnétosphère.

Dans l’ionosphère, le gaz contient suffisamment de particules ionisées pour
modifier de façon mesurable le trajet des ondes radio. La technique de diffusion
incohérente est une technique radar pour sonder le plasma ionosphérique à par-
tir d’environ 60 km jusqu’à plus de 1500 km. Ainsi, plusieurs radars à travers le
monde, mesurent la partie du spectre à diffusion incohérente appelé la raie ion-
ique, un spectre étroit et doublement épaulé centré sur la fréquence transmise. La
raie ionique résulte de la diffusion de l’onde transmise par deux ondes accous-
tiques se déplaçant parallèlement et anti-parallèlement à la direction de transmis-
sion dans le cas d’un système simultané d’émission-réception et sinon le long
de la bissectrice entre les directions de transmission et de réception. Une fois
les données acquises, essentiellement des fonctions d’autocorrelation, une méth-
ode sophistiquée d’analyse basée sur la théorie de l’inversion permet d’extraire
les paramètres du plasma tels que la densité électronique, les températures élec-
tronique et ionique et dans certaines conditions la fréquence de collision et la
composition ionique.

La deuxième composante essentielle du spectre à diffusion incohérente est ap-
pelée la raie de plasma ou raie électronique. La raie de plasma est le résultat de
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la diffusion de l’onde transmise par une onde Langmuir du plasma ionosphérique.
Contrairement à la raie ionique centrée sur la fréquence de transmission, les raies
de plasma consistent en une paire de raies, dite basse et haute, très étroites, et
décalées de part et d’autre de la fréquence transmise d’une valeur correspondant
à deux ondes Langmuir se déplaçant parallèlement et anti-parallèlement à la di-
rection de transmission dans le cas d’un système simultané d’émission-réception
et sinon le long de la bissectrice entre les directions de transmission et de récep-
tion. Le décalage Doppler est de l’ordre de la fréquence plasma. Cette fréquence
varie typiquement entre 2MHz et 8MHz, en fonction de l’altitude, de la situation
géographique, de l’heure et de l’activité solaire.

La mesure de la raie de plasma à l’aide de la technique de diffusion incohérente
n’est pas une tâche aussi aisée que la mesure de la raie ionique. D’une part, du
fait de la très faible quantité de puissance rétro-diffusée dans les raies plasma —
sans mécanisme d’accroissement, l’intensité de la raie de plasma ne représente
pas plus que le dixième de l’intensité de la raie ionique — d’autre part, à cause
des variations temporelles et spatiales de la fréquence plasma elle-même due aux
variations de la densité électronique. En contrepartie, la mesure de ces deux raies
étroites apportent des informations complémentaires et supplémentaires aux in-
formations contenues dans la raie ionique. En particulier, à long terme, la vitesse
de dérive des électrons serait un paramètre essentiel à déterminer à l’aide de la dif-
fusion incohérente. Combiné avec les paramètres déduits par la raie ionique, cela
permettrait de mesurer les courants alignés à l’aide d’un instrument sol, indépen-
damment de mesures magnétiques (Bauer et al., 1976), qui représente de loin le
principal moyen de mesure in situ des courants alignés, soit par satellites (Zmuda
and Armstrong, 1974; Iijima and Potemra, 1976) ou bien par sondes embarquées
dans des fusées (Ledley and Farthing, 1974). Mais ni la technique d’observation,
ni la compréhension théorique des raies de plasma ne sont correctement dévelop-
pées pour une estimation précise des courants alignés.

Le travail présenté dans cette thèse est centré sur l’étude des raies de plasma
et se divise en deux parties complémentaires. La conception et la mise en œu-
vre d’une expérience raies de plasma ainsi que la réduction des données et la
comparaison et l’interprétation des données avec un modèle, ce qui implique une
représentation adéquate de la fonction de distribution des vitesse des électrons.

Le but de la première partie a été de concevoir une expérience pour le radar
EISCAT (European Incoherent SCATter), situé au Nord de la Scandinavie, pour
collecter des données raies de plasma et ionique, et développer un outil d’analyse
adéquate pour réduire les données raies de plasma à des paramètres exploitables.
Ces paramètres étant la fréquence, l’intensité et la largeur des raies. La tech-
nique de l’impulsion longue ou "long pulse" (Showen, 1979) et de la rampe de
fréquence ou "chirp" (Hagfors, 1982; Birkmayer and Hagfors, 1986) ont déjà été
utilisées avec succès pour observer la raie de plasma à des points particuliers de
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l’ionosphère. La technique de l’impulsion longue permet de mesurer la fréquence
critique aux pics et aux vallées des régions E et F de l’ionosphère et la technique
de la rampe de fréquence permet la mesure à une altitude où le gradient de la
densité électronique correspond au taux de rampe de fréquence transmise. Ces
techniques ne fournissent pas énormément de points de mesures à cause du désac-
cord entre la hauteur d’échelle de la densité électronique d’une part, et la largeur
de bande par rapport au volume sondé par l’impulsion d’autre part. Notre ob-
jectif a été de concevoir une expérience qui fournit à la fois une haute résolution
fréquentielle de la raie de plasma et améliore la résolution spatiale afin d’accroître
le nombre de points de mesure. La qualité des données acquises est essentielle
pour l’analyse des spectres et l’extraction précise de paramètres tels que la dif-
férence Doppler entre la raie haute et basse ainsi que l’intensité des raies. Nous
avons mis au point une expérience utilisant une technique récente de modulation
déjà utilisée pour la mesure de la raie ionique, le code alternatif (Lehtinen and
Häggström, 1987) qui est une technique de codage de phase disponible à EISCAT.
Nous avons ainsi tourné la première expérience raie de plasma avec un code alter-
natif à condition forte de 32 bauds sur le radar VHF de EISCAT près de Tromsø
en Norvège. Pour extraire la fréquence et l’intensité des raies de plasma, un pro-
gramme d’ajustement de paramètres basé sur la minimisation par moindres carrés
a été développé en utilisant le noyau de GUISDAP (Grand Unified Incoherent Scat-
ter Data Analysis Program) de Lehtinen and Huuskonen (1996). Ce programme
permet de réduire les données acquises avec la technique de l’impulsion longue
ou bien la technique du code alternatif. Il bénéficie de la commodité de GUISDAP,
en particulier dans sa flexibilité à traiter de nouvelles expériences.

Dans la seconde partie, les données réduites sont comparées à un modèle
théorique. Le modèle est basé sur la connaissance de la réponse diélectrique du
plasma ainsi que sur la fonction de distribution des vitesses réduite à une dimen-
sion. Nous avons développé un code numérique pour calculer ces fonctions. Ce
qui nous permet d’estimer de manière théorique le décalage Doppler et l’intensité
des raies de plasma pour n’importe quelle fonction de distribution de vitesses à
deux dimensions décrites en coordonnées sphériques. Kofman et al. (1993) ont
montré avec des données du radar UHF de EISCAT, que le chauffage thermique
induit par le gradient de température des électrons modifiait la relation de dis-
persion des ondes Langmuir et introduisait une correction dans l’estimation de la
fréquence de résonance des raies de plasma. Nous avons étudié pour les différents
radars EISCAT, l’effet de la déviation de la distribution des vitesses par rapport à la
Maxwellienne sur la fréquence et l’intensité des raies de plasma. L’effet des struc-
tures détaillées dans l’intervalle d’énergie 20 – 30 eV de la population suprather-
mique a été observé à l’aide du radar VHF et comparé avec notre modèle. Celui-ci
est basé sur l’hypothèse que la fonction de distribution de vitesses des électrons
peut être représentée avec une bonne approximation en deux populations : la ther-
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mique et la suprathermique. Cette approximation est raisonnable pour des ondes
ayant une énergie de phase suffisamment éloignée de l’énergie correspondant à
la transition distribution thermique/suprathermique (0.15 – 0.3 eV). Pour le radar
VHF, l’énergie de phase des ondes est de 12 – 25 eV et pour le radar UHF, elle est
de 3 – 6 eV. La fonction de distribution des vitesses des électrons est déduite du
flux angulaire d’énergie des suprathermiques. Ce flux est calculé avec un code
numérique qui résout l’équation de transport des électrons en régime stationnaire
et le long du champ magnétique, en tenant compte des collisions entre la popu-
lation chaude des électrons (photo-électrons et/ou précipitations électroniques) et
l’atmosphère neutre (Lummerzheim and Lilensten, 1994). Ce modèle, largement
testé et comparé avec des données et d’autres modèles du genre, a montré de bon
résultats. La partie thermique de la distribution a été modélisée par la distribution
classique de Spitzer and Härm (1953) qui décrit le départ d’une Maxwellienne du
fait d’un champ électrique ou bien d’un gradient de température.

Cette thèse est construite de la manière suivante.
Dans le Chapitre 1, nous introduisons la théorie de la diffusion incohérente,

en particulier sur la raie de plasma. Nous donnons une description du code
numérique que nous avons développé pour modéliser la raie de plasma.

Dans le Chapitre 2, nous décrivons le principe de la mesure du spectre à diffu-
sion incohérente à l’aide d’un radar, en particulier les expériences que nous avons
écrites.

Dans le Chapitre 3, nous présentons la réduction des données.
Dans les Chapitres 4 et 5, nous donnons une description de la théorie qui sert

au modèle de la fonction de distribution des vitesses que nous avons utilisé.
À la suite de cette partie, quatre articles sont inclus. Deux d’entre eux sont

publiés et les deux autres sont soumis pour publication. Des références aux arti-
cles sont fournis tout au long de la première partie.



Chapter 1

Incoherent scatter theory

"She looked at the steps; they were empty; she looked at

her canvas; it was blurred. With a sudden intensity, as if

she saw it clear for a second, she drew a line there, in the

centre. It was done; it was finished. Yes, she thought,

laying down her brush in extreme fatigue, I have had my

vision."

Virginia WOOLF, To the Lighthouse, 1927.

1.1 Introduction

As mentioned in the introduction, several parameters of the ionospheric plasma
such as the electron density ne, the electron and ion temperatures Te and Ti, the
ion drift velocity ui and in some favourable cases the ion composition and the
ion-neutral collision frequency νin, can be derived from the scattering of radiation
involving randomly distributed charges. Since the scattered power is inversely
proportional to the square of the mass of the charge, the scattering from electrons
dominates. Purely incoherent scattering occurs for radar wavelength λ0 much
smaller than the Debye length λD of the medium. In this limit, the incident wave
does not interact with the Debye-shielded charges and the scattering depends on
the individual behaviour of charges. The scattering is then proportional to the
electron velocity distribution function. When λ0 is larger than λD, the shielding
effects become important; as the electrons surround the ions in clouds such that
the plasma remains neutral, the ion movement also controls the clouds of electrons
and influences the property of the scattering. This is the condition of scattering
we are interested in. A parameter commonly used in the literature (Bauer, 1975)
to describe the type of scattering, which relates the scale of the observation to the
characteristic scale of the plasma 1/λD, is the dimensionless parameter α defined
as

α =
1

kλD

, (1.1)

where k is the magnitude of the scattering wave vector determined by the geom-
etry of the experiment and the magnitude of the radar wave vector k0 which is
defined in Eq. (1.4).
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Assuming the plasma to be uniform and stationary, the differential scattering
cross section of the plasma is defined by (Hagfors, 1977)

d2σ(ω+ω0)

dΩdω
= r2e |n×(n×p)|2〈|∆Ne(k, ω)|2〉, (1.2)

where r2e = e2/(4πǫ0mec
2) is the classical electron radius, n is the unit vector

pointing from the scattering volume towards the receiver, p is the unit polarisation
vector of the incident radiation, ω is the frequency shift between the transmitted
radio wave ω0 and the received frequency ωr, k is the wave vector shift defined as
the difference between the returned wave vector and the transmitted wave vector
k0. ω and k are defined by

ω = ωr − ω0, (1.3)

k =
ωr

c
n− k0. (1.4)

The quantity ∆Ne(r, t) represents the fluctuations of the microscopic electron
density Ne(r, t) relatively to its average ne = 〈Ne(r, t)〉. The differential scatter-
ing cross section then corresponds to a particular spatial Fourier component of the
fluctuation ∆Ne(r, t). This fluctuation is a purely real random process. Its time
Fourier transform might not be defined, it is therefore necessary to calculate its
autocorrelation function which has Fourier transform (Trulsen and Bjørnå, 1977)

〈|∆Ne(k, ω)|2〉=
∫∫

〈∆Ne(r, t)∆Ne(r+r′, t+τ)〉ei(ωτ−k·r′
)d3r′

dτ

2π
. (1.5)

This expression is a version of the Wiener-Khinchin theorem in the theory of ran-
dom noise. The problem is to estimate the power spectrum of the electron density
fluctuations in the frequency and wave vector space 〈|∆Ne(k, ω)|2〉.

1.2 Incoherent scattering differential cross section

Several approaches have been used to calculate the thermal fluctuation of Eq. (1.5).
The first approach, the dressed test particle principle (Rosenbluth and Rostoker,
1962; Rostoker, 1964), does not make any other assumptions about the state
of the plasma than uniformity and stationarity. The second approach uses the
fluctuation-dissipation theorem or Nyquist theorem and can be found in numer-
ous articles in the literature (Dougherty and Farley, 1960; Farley et al., 1961;
Dougherty and Farley, 1963; Farley, 1966) and the third approach uses a pertur-
bation method of a linearised Vlasov equation (Salpeter, 1960; Hagfors, 1961).
In addition to the uniformity and stationarity assumptions, they require that each
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species of the plasma should be in the Maxwellian state. The theory of thermal
fluctuation for a non-uniform and non-stationary plasma has been developed (We-
instock, 1965, 1967) and is based on a separation of the scattering into coherent
and incoherent parts. This theory might be of interest for disturbed conditions but
is out of the scope in this study.

Finally, the differential scattering cross section d2σ/dΩdω per angular fre-
quency ω and per solid angle Ω for a multi-component, uniform, stationary, non-
magnetised and non-relativistic plasma with the collision effects included through
a BGK model (Bhatnagar et al., 1954) is then given by (Hagfors, 1961; Sheffield,
1975; Bjørnå and Trulsen, 1986)

d2σ

dΩdω
= ner

2
e |n×(n×p)|2S(k, ω), (1.6)

where the spectral density function or dynamic structure factor S (Ichimaru, 1992)
is calculated using plasma theory.

S(k, ω) =

∣

∣

∣

∣

∣

1 +
Ce(k, ω)

D(k, ω)

∣

∣

∣

∣

∣

2
ImPe(k, ω)− νe |Pe(k, ω)|2

π|Xe(k, ω)|2
+

∑

j

nj

ne

z2j

∣

∣

∣

∣

∣

Ce(k, ω)

D(k, ω)

∣

∣

∣

∣

∣

2
ImPj(k, ω)− νj |Pj(k, ω)|2

π|Xj(k, ω)|2
(1.7)

with

D(k, ω) = 1−
∑

α

Cα(k, ω), (1.8)

Cα(k, ω) = Zα(k, ω)/Xα(k, ω), (1.9)

Xα(k, ω) = 1 + iναPα(k, ω), (1.10)

Zα(k, ω) =
∑

k

Zα,k(k, ω), (1.11)

Pα(k, ω) =
1

nα

∑

k

nα,kPα,k(k, ω), (1.12)

Zα,k(k, ω) =
ω2
α,k

k2

∫

L

k ·∇vfα,k(v)

k · v − ω − iνα
d3v, (1.13)

Pα,k(k, ω) =
∫

L

fα,k(v)

k · v − ω − iνα
d3v. (1.14)

fα,k denotes the velocity probability distribution function for the kth component
of the particle species α (e for the electrons and j for the ions). D and Zα are
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r r
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si i

Figure 1.1: Landau contour of integration used to evaluate the integrals Z and P
of Eq. (1.13) and (1.14). In the left panel, να > 0 while in the right panel να < 0

respectively the dispersion function and the susceptibility function for the parti-
cle species α and να is the collision frequency of species α. ωα,k is the plasma
frequency of the kth component of the species α defined as

ωα,k =

√

4πnα,ke2

mα

, [rad s−1] (1.15)

where nα,k is the density of the kth component of the species α in cm−3. Note
that whenever not specified, the Gaussian CGS unit system is used.

The contour L of the integrals P and Z is the Landau contour of integration.
These integrals are defined only on the half-plane where να > 0 (left panel in
Figure 1.1). The analytical continuation of these functions from the upper to the
lower half-plane is given by the Landau prescription. When να < 0, the contour
is deformed to leave the pole at v such that k · v − ω − iνα = 0 over the contour
of integration (right panel in Figure 1.1).

Figures 1.2 and 1.3 show the theoretical incoherent scattering spectra for a
Maxwellian plasma for positive frequencies calculated for the EISCAT VHF and
UHF radars respectively. Both abscissae and ordinate have logarithmic scale to
accommodate the large range of intensity and frequency. The main spectral shape
from 0 to a few kHz is the ion line while the sharp line above 1MHz is the plasma
line. Note the value of the parameter α = 1/(kλD) for the two different radars —
for the VHF radar α = 10.9 and for the UHF radar α = 2.6— . As expected the
collective effect is more important with the VHF radar than with the UHF radar.
The plasma line observed with the VHF radar is sharper because the associated
Langmuir wave has a phase velocity situated far on the tail of the electron velocity
distribution which causes little Landau damping.
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Figure 1.2: Theoretical incoherent scatter spectrum for the VHF EISCAT radar
(224MHz) for a Maxwellian plasma with ne = 105 cm−3, Te = 2000K, Ti =
1500K, νi = 10−2 s−1 and νe = 102 s−1 and using the differential cross section
model of Eqs. (1.7) – (1.14)

1.3 The electron plasma line

When studying plasma lines, the expression of the scattering cross section can, to
a good approximation, be simplified. The second term of Eq. (1.7) is small com-
pared to the first term in the frequency range of the plasma line and can therefore
be neglected. Assuming moreover that collisions can be neglected, the expression
of the spectral density function can be approximated to

S(k, ω) =
f 1
e

(

ω

k

)

k|1− Ze(k, ω)|2
, (1.16)

where f 1
e is the one-dimensional reduced probability distribution function parallel

to the wave vector k and it is defined by

f 1
e

(

ω

k

)

= k
∫

fe(v)δ(k · v − ω)d3v, (1.17)
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Figure 1.3: Theoretical incoherent scatter spectrum for the UHF EISCAT radar
(931MHz) for a Maxwellian plasma with the same ionospheric parameters as in
Figure 1.2 and using the differential cross section model of Eqs. (1.7) – (1.14)

where δ represents the one-dimensional Dirac delta function.
In Eq. (1.16), the denominator represents the dielectric response function of

the medium. Langmuir waves are high-frequency solutions of the dispersion re-

lation. The dispersion relation is just the dielectric response function set equal to
zero. The frequency of the wave with wave vector k is given by the real part of the
complex frequency ω while the imaginary part gives the damping rate of the wave.
For a given radar, two Langmuir waves will interact with the particles, one trav-
elling away from and the other one travelling toward the radar in the backscatter
geometry and otherwise along the bisector between the directions of transmission
and reception. At such high phase velocity vφ = ω/k, the electron distribution
function is flattening out and there are nearly as many particles moving faster than
the wave as there are particles moving slower, the wave is very little damped. The
so-called Landau damping, which is proportional to the derivative of the reduced
distribution at the phase velocity for an isotropic plasma, is small and the up- and
down-shifted plasma lines at frequency ω+ = ωr+ − ω0 and ω− = ωr− − ω0 are
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respectively the signature of the Langmuir waves travelling along k+ and k− with
magnitude, in a backscatter geometry

k± =
1

c
(ω0 + ω0 + ω±). (1.18)

1.3.1 Intensity

The derivation of the intensity of the plasma line does not require the measure-
ment of the spectrum. It is given by the value of the autocorrelation function at
time delay τ = 0 (Parseval’s theorem), which can be estimated by power profile
measurement with an incoherent scatter radar. It has been observed at different
incoherent scatter radar facilities and is discussed in many papers, for instance
Perkins and Salpeter (1965); Kofman et al. (1982); Fredriksen et al. (1989, 1992);
Kirkwood et al. (1995).

In a collisionless plasma without a magnetic field and with the assumption that
the electron velocity distribution function is isotropic but not necessarily Max-
wellian, the incoherent scattering spectrum can be approximated in the neighbour-
hood of the up- and down-shifted plasma lines frequencies ω± by the following
expression (Perkins and Salpeter, 1965)

S±(k, ω)≃
ω2
±f

1
e (vφ±)

4k



(ω−ω±)
2+

ω2
±

4

(

π
ω2
e

k2

df 1
e

dv
(vφ±)

)2




, (1.19)

where k is the magnitude of the wave vector shift defined in Eq. (1.4) for ωr = ω0

and vφ± = ω±/k is the phase velocity of the corresponding Langmuir wave. Since

the isotropic Landau damping term −ω±

2
π ω2

e

k2
df1

dv
(vφ±) of the wave is small, all the

power lies in a small frequency interval (smaller than the frequency bandwidth of
our observations) and the integrated power in one plasma line Ip can be calculated
analytically

Ip =
1

2α2

f 1
e (vφ)

−v2e
vφ

df 1
e

dv
(vφ)

, (1.20)

where ve =
√

kbTe/me is the electron thermal velocity.
The term in the numerator of Eq. (1.20) represents the excitation of the Lang-

muir wave by the fast electrons, while the denominator represents the Landau
damping from the particles at the phase velocity of the wave. Thus, the presence
of a high-energy tail in the velocity distribution function can lead to a substantial
enhancement in the integrated power, as well as a broadening, of the plasma line.
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Without any enhancement mechanism of the plasma line, the integrated power of
the plasma line is smaller the larger is the parameter α. This is seen in Figures 1.2
and 1.3.

Including the effect of collisions through a Fokker-Planck operator (Perkins
et al., 1965; Yngvesson and Perkins, 1968) leads to a similar expression

Ip =
1

2α2

f 1
e (vφ) + χei

−v2e
vφ

df 1
e

dv
(vφ)+ χei

, (1.21)

where χei is the electron-ion collision term that describes the excitation and damp-
ing of plasma waves due to electron-ion collisions with collision frequency νei

χei =
2

π

v2e
v4φ

νei
k
. (1.22)

It can be shown (Newman and Oran, 1981; Oran et al., 1981; Kirkwood et al.,
1995) that the electron-neutral collision frequency νen can be included and νei re-
placed by νe = νen+νei, the sum of the electron-neutral and electron-ion collision
frequencies which are defined as

νen = 5.4×10−10nnT
1

2
e , [s−1] (1.23)

νei =

(

34.0 + 4.18 log
T 3
e

ne

)

neT
− 3

2
e , [s−1] (1.24)

where nn is the neutral density.
The term in the numerator of Eq. (1.21) represents the excitation of the Lang-

muir wave, while the denominator represents the Landau damping and the colli-
sion damping. Note that when the collisional damping χe is large compared to
the Landau damping and the excitation term, the plasma line intensity also tends
towards the thermal intensity 1/2α2, but the spectrum is broadened due to the col-
lisions. Enhancement of the plasma line is expected to take place because of the
increase of the number of electrons in the velocity distribution at the phase veloc-
ity of the Langmuir wave due to the supra-thermal population. The supra-thermal
population which excite the Langmuir wave consists either of photoelectrons or
secondary electrons in the case of precipitation. At the same time, The Landau
damping of the supra-thermal electrons dominates and keeps the plasma line in
a steady-state with the supra-thermal population and broadens the plasma line
(Bauer, 1975).

The integrated power of the plasma line Ip, without any enhancement, can be
compared to the integrated power of the ion line Ii given by (Bauer, 1975)

Ii =
α4

(1 + α2)(1 + α2 + α2Te/Ti)
, (1.25)
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which reduces to 1
1+Te/Ti

for large values of α. For the spectra shown in Fig-

ures 1.2 and 1.3, the ratio Ip/Ii are equal to 10−2 and 2 · 10−1 respectively. For a
Maxwellian plasma the plasma lines are more powerful with the UHF radar than
with the VHF radar.

Using the formalism that we develop in the next section (Guio et al., 1998)
about the numerical estimation of the P and Z functions with the P ∗and Z∗ func-
tions of Eqs. (1.39) and (1.41), and together with the differential cross section of
Eq. (1.7), we have derived an expression of the integrated power of the plasma
line for any arbitrary anisotropic electron velocity distribution function. We used
the same method of expansion around the plasma resonance frequency as Perkins
and Salpeter (1965) and the integrated power in one plasma line is written

Ip =
1

2α2

vφ ImP ∗
ve

(

vφ
ve

)

− vφ
ve

νe
k

∣

∣

∣

∣

P ∗
ve

(

vφ
ve

)∣

∣

∣

∣

2

ve ImZ∗
ve

(

vφ
ve

)

+
1

α2

νe
k
ReP ∗

ve

(

vφ
ve

) . (1.26)

Introducing the plasma line temperature kbTp defined as

kbTp

kbTe

= 2α2Ip, (1.27)

the integrated power Ip of the plasma line is expressed as a temperature. In a Max-
wellian plasma, the plasma line temperature reduces to the electron temperature.
The ratio kbTp/kbTe then describes the enhancement of the plasma line over the
thermal level. The plasma line temperature for the expression of the intensity of
Eq. (1.26) is written (Guio and Lilensten, 1998)

kbTp = kbTe

vφ ImP ∗
ve

(

vφ
ve

)

− vφ
ve

νe
k

∣

∣

∣

∣

P ∗
ve

(

vφ
ve

)∣

∣

∣

∣

2

ve ImZ∗
ve

(

vφ
ve

)

+

(

ve
vφ

)2
νe
k
ReP ∗

ve

(

vφ
ve

)

. (1.28)

Therefore if one is able to calculate the functions P ∗ and Z∗ for any arbitrary
anisotropic electron velocity distribution it is then possible to estimate the inten-
sity of the plasma lines. The intensity of the plasma lines with an anisotropic
supra-thermal electron velocity distribution has been investigated earlier (Lejeune
and Kofman, 1977; Lejeune, 1979), but their formulation of the intensity did not
take into account the pitch-angle dependence in the imaginary part of the dielec-
tric function evaluated at the phase velocity of the wave; they neglected the second
term on the right hand side of Eq. (1.43) and made the following approximation

∫

L
n ·∇vf(v)δ(k · v − ω)d3v ≃ d

dv

∫

L
f(v)δ(k · v − ω)d3v. (1.29)
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We have used the formalism of the P and Z functions together with a model
of the supra-thermal distribution and have calculated the intensity of the plasma
lines given by Eq. (1.28). Our model has been compared with a good agreement
to plasma lines data that we observed at a high time resolution with the EISCAT

VHF radar (Guio and Lilensten, 1998).

1.3.2 Doppler frequency shift

The Doppler frequency shift ω± of the up- and the down-shifted plasma lines are
the real part of the roots of the dispersion relation

1− Ze(k±, ω± + iγ±) = 0, (1.30)

where γ± is the decay rate which we assume is much smaller than the real part ω±

of the complex frequency.
Then, we can expand in power series of (k · v)/ω the denominator which

occurs in the integral of the plasma dielectric response Ze of Eq. (1.13) assuming
that |(k · v)/ω| < 1. Therefore the distribution function fe must tend toward zero
for v such that |(k · v)/ω| ≥ 1 in order to do the expansion (Tsytovich, 1995)

− 1

ω

(

1 +
(k · v)

ω
+

(k · v)2
ω2

+
(k · v)3

ω3
+ · · ·+ (k · v)n

ωn

)

. (1.31)

After one integration by parts, the real part of Ze is rewritten as a series ex-
pansion

ReZe(k, ω) =
ω2
e

(ω − kue‖)2

(

1 + 3
k2〈(v‖ − ue‖)

2〉
(ω − kue‖)2

+ 4
k3〈(v‖ − ue‖)

3〉
(ω − kue‖)3

+

· · ·+ (n+ 1)
kn〈(v‖ − ue‖)

n〉
(ω − kue‖)n

)

, (1.32)

where the angle brackets denote the average of the distribution function

〈A〉 =
∫

Afe(v)d
3v, (1.33)

These bracketed terms correspond to moments of the distribution function. The
potential mean drift velocity ue‖ = k · 〈v〉/k parallel to k has been included into
the power expansion by replacing (k ·v)/ω with (k ·v)/(ω−k ·ue) in Eq. (1.31)
in order to eliminate the term relative to the mean drift velocity (k · v)/ω.

Assuming |ω−kue‖|≫kve and that the distribution does not deviate dramati-
cally from a Maxwellian, the even-order moments are lumped into the W function
of Ichimaru (1992), our Eq. (1.54), and the odd-order moments are truncated at the
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third-order, which gives the heat flow approximation first introduced by Kofman
et al. (1993)

ReZe(k, ω) = − ω2
e

(kv
‖
e)2

W

(

ω − kue‖

kv
‖
e

)

+ 4
k3q‖e/(mene)

(ω − kue‖)5
, (1.34)

where v‖e = (kbT
‖
e /me)

1/2. T ‖
e is the parallel temperature and qe‖ is the heat flow

for parallel energy. They are defined (Barakat and Schunk, 1982)

1

2
kbT

‖
e =

1

2
me〈(v‖ − ue‖)

2〉, (1.35)

q‖e = mene〈(v‖ − ue‖)
2(v‖ − ue‖)〉. (1.36)

The heat flow for parallel energy q‖e is equal to 6/5 the heat flow qe in the Spitzer
theory (see Eq. (4.20) in Chapter 4). Comparing our term q‖e = 6/5qe with the
corresponding term 2qe in the approximation of Kofman et al. (1993), we see that
they have overestimated the heat flow contribution by a factor of 5/3.

In Guio (1998), we have investigated the validity of the heat flow approxima-
tion of Eq. (1.34). We have built a simple analytic model, the 2-T Maxwellian,
of a velocity distribution that mimics the situation in a plasma with a temperature
gradient. This model consists of two half-Maxwellians with different tempera-
tures that are joined continuously at v‖ = 0. We have shown that it is possible
to adjust the two temperatures of the distribution so that the temperature and the
heat flow are equal to the ones given by the Spitzer theory (see section 4.4). We
have used this model to investigate analytically the effect of a departure from
the Maxwellian due to a heat flow on the Doppler frequency of the plasma lines.
This simple model has been compared with the heat flow approximation. A good
qualitative agreement was seen. However, for accurate calculations such as the
calculation of the plasma line Doppler frequency, it was seen that the exact calcu-
lation of the dielectric function is important, together with a good representation
of the distribution function. This is especially true for high-frequency radars and
for low plasma frequency, i.e. when the ratio |ω|/kve is smaller than 5 – 6.

We have not investigated the effect of the anisotropy of the 2-T Maxwellian
on the intensity of the plasma lines since this distribution is not meant to represent
correctly the effect of a supra-thermal population, but rather the departure from
the Maxwellian in the ambient electron population.

We have thus written a numerical code to calculate the P and Z functions of
Eqs. (1.14) and (1.13). The distribution functions that we use to represent the
electron population are known from numerical calculations. The thermal part is
the Spitzer function described in Chapter 4. The supra-thermal part is derived
from the angular energy flux of electrons calculated by a transport code described
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in Chapter 5. Therefore the code should handle the calculation of the functions
P and Z for such distribution functions that are defined numerically on a discrete
grid.

1.4 Numerical code of the P and Z functions

Our assumption when writing the code was that the velocity distribution function
should be represented in spherical coordinates with an axial symmetry. The dis-
tribution function is given at some discrete points both in velocity space v and in
the cosine of the pitch-angle space µ, hereafter referred as the (v, µ)-grid.

When collisions tend to zero, the pole occurring in the P and Z integrals is
situated in the neighbourhood of the real axis and the integrals P and Z can be
separated into their real and imaginary parts using the general Plemelj formula
(Balescu, 1963) which reads for a function g(x)

lim
η→0+

∫

L

g(x)

x− ξ − iη
dx = PV

∫ ∞

−∞

g(x)

x− ξ
dx+ iπg(ξ), (1.37)

where PV denotes a Cauchy principal value integral.
When the collisions are not negligible, the integral is also separated into its

real and imaginary parts and the integral takes the following form

∫

L

g(x)

x− ξ − iη
dx =

∫ ∞

−∞

g(x)(x− ξ)

(x− ξ)2 + η2
dx+ iη

∫ ∞

−∞

g(x)

(x− ξ)2 + η2
dx. (1.38)

We have expressed P as a function of the normalised function P ∗
ve

P(k, ω) =
1

kve
P ∗
ve

(

ω

kve

)

. (1.39)

where ve is a normalisation velocity. We justify this choice to follow the formula-
tion of P for a Maxwellian with the Z function of Fried and Conte (1961) defined
in Eq. (1.53).

In the non-collisional case, P ∗
ve is then written using Eq. (1.37)

P ∗
ve(ξ) = 2π





n
∑

j=−n

j 6=0

wj

∫ xmax

xmin

x2

µj

v3ef(xve, µj)

x− ξ/µj

dx+

iπ
n
∑

j=1

wj
|ξ|
ξ

ξ2

µ3
j

v3ef

(

ξve
µj

, µj

)



, (1.40)
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where the (wj, µj) are respectively the weights and points of the pitch-angle
quadrature. We have used the double-Gauss quadrature (Stamnes et al., 1988)
which gives the best results.

The integrals of the real part of P ∗
ve are of two types depending on the sign

of ξ/µj . If ξ/µj is strictly positive then the integral has a singularity at x =
ξ/µj and the integral is a Cauchy principal value integral. We have used the
quadrature D01AQF of NAG (1993) which calculates an approximation to the
Hilbert transform of its argument. As the velocity distribution function is defined
on a discrete grid of normalised velocity, we need an interpolation strategy in order
to calculate the integral. In our code, we have the possibility to interpolate the
distribution function using the different methods: spline, linear or step function
interpolation. In the case where ξ/µj is strictly negative then the integral has no
singularity and we use the routine D01GAF of NAG (1993) which integrates a
function specified numerically at four or more points, using a third-order finite
difference formula.

We have proceeded in the same way for the Z function. Z has been expressed
as a function of the normalised function Z∗

ve

Z(k, ω) = −
(

ωe

kve

)2

Z∗
ve

(

ω

kve

)

, (1.41)

where ve is a normalisation velocity. We justify this choice to follow the formu-
lation of Z for a Maxwellian with the W function of Ichimaru (1992) defined in
Eq. (1.54).

In the non-collisional case, Z∗
ve is written using Eq. (1.37)

Z∗
ve(ξ) = −2π





n
∑

j=−n

j 6=0

wj

∫ xmax

xmin

x2

µj

v3e
n ·∇f(xve, µi)

x− ξ/µj

dx+

iπ
n
∑

j=1

wj
|ξ|
ξ

ξ2

µ3
j

v3en ·∇f

(

ξve
µj

, µj

)



, (1.42)

where

n ·∇f(xve, µ) = µ
∂f

∂x
(xve, µ) +

1− µ2

x

∂f

∂µ
(xve, µ). (1.43)

In the collisional case, similar expressions are found for the functions P ∗
ve and

Z∗
ve using Eq. (1.38)

P ∗
ve(ξ+iη) = 2π

n
∑

j=−n

j 6=0

wj

∫ xmax

xmin

x2

µj

v3e
f(xve, µi)(x−ξ/µi + iη)

(x−ξ/µj)2 + η2
dx (1.44)
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0 a ra+h

2/h

f(r)

Figure 1.4: The synthetic triangle function with parameters a = 2 and h = 3

and

Z∗
ve(ξ+iη) = −2π

n
∑

j=−n

j 6=0

wj

∫ xmax

xmin

x2

µj

v3e
n·∇f(xve, µj)(x−ξ/µj+iη)

(x−ξ/µj)2 + η2
dx (1.45)

We have used again the routine D01GAF from NAG (1993) for numerically
specified functions in order to calculate the integrals over the normalised velocity
variable x.

We have first tested our numerical code against smooth functions like the Max-
wellian and the Spitzer function using a cubic spline interpolation of these func-
tion for the integration over the velocity grid. The results are described in Guio
et al. (1998). A 32-points double-Gauss quadrature gives a relative error better
than 10−4 for small values of ξ, while at large values of ξ, the accuracy is not
influenced and remains better than 10−7.

1.4.1 Test on a synthetic triangle function

As we shall see, the supra-thermal distribution is not as smooth as the Maxwell-
ian or the Spitzer function. The supra-thermal distribution calculated on a dis-
crete energy grid derived from the angular energy flux of electrons calculated by
an electron transport code can be seen as a superposition of shifted triangles of
different amplitude. We have run a simulation on a synthetic isotropic triangle
function and have compared the functions P ∗ and Z∗ calculated by our code with
their analytical expressions.

We define the isotropic triangle function centred at r = a+ h/2, with width h
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and normalised such that its integral is equal to one by

f(r, µ) =







































4

h2
(r−a), a≤r≤a+

h

2

− 4

h2
(r−a−h), a+

h

2
≤r≤a+h

0, otherwise

(1.46)

Figure 1.4 shows the isotropic triangle function for the parameters a = 2 and
h = 3.

We have calculated analytically the real and the imaginary parts of the P ∗and
the Z∗ functions, for a real argument ρ, of the isotropic triangle function. Since
the triangle function f is isotropic, the real part of P ∗ is an even function while the
imaginary part is an odd function and the real part of Z∗ is an odd function while
the imaginary part is an even function. They are written

ReP ∗(ρ) =































































































































































































































± π
3h2 [16a

3 log(2a)−8h2a+ 32a3 log 2−
(16a3−h3−6ah2) log 4a+h

h
−

16a3 log((4a+h)h)−
4(a+h)(a2+2ah−3a2+h2) log 2a+h

h
+

8a3 log((2a+h)h)]

, ρ = ±a

± π
3h2

[

(12(a+ h
2
)2a−4a3) log 4a+h

h
+

8(a+ h
2
)3 log((2a+ h

2
)h
2
)−8h2(a+ h

2
)+

32(a+ h
2
)3 log 2−4(2a+h)3 log(4(a+ h

2
))−

4(a+h)(a2+2ah− 3(a+ h
2
)2+h2)

log 4a+3h
h

+8(a+ h
2
)3 log((2a+ 3h

2
)h
2
)
]

, ρ = ±(a+ h
2
)

± π
3h2

[

(12(a+h)2a−4a3) log 2a+h
h

+

8(a+h)3 log((2a+h)h)−8h2(a+h)+
32(a+ h)3 log 2−(h+2a)(11h2+20ah+8a2)
log 4a+3h

h
−16(a+h)3 log((4a+3h)h)+

16(a+h)3 log(2(a+h))]

, ρ = ±(a+h)

π
3h2

[

(12ρ2a−4a3) log |ρ+a|
|ρ−a|

+8ρ3 log |ρ2−a2|−
8h2ρ+ 32ρ3 log 2+
(8a3+h3−24ρ2a+6ah2−12h(ρ2−a2))

log |2ρ+2a+h|
|2ρ−2a−h|

−16ρ3 log |4ρ2−(2a+h)2|−
4(a+h)(a2 + 2ah− 3ρ2+h2) log

∣

∣

∣

ρ+a+h
ρ−a−h

∣

∣

∣+

8ρ3 log |ρ2−(a+ h)2|]

, otherwise

(1.47)
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ImP ∗(ρ) =











































π2(2a+ h), |ρ| ≤ a

π2

3h2 (−4a3+6ah2+3h3−8|ρ|3+12aρ2), a≤|ρ|≤a+ h
2

4π2

3h3 (a+h+2|ρ|)(a+h−|ρ|)2, a+ h
2
≤|ρ|≤a+h

0, otherwise

(1.48)

ReZ∗(ρ) =







































































































































































−4π
h2 [−h2+8a2 log 2+4a2 log(2a)−

2(2a+h)a log 4a+h
h

−4a2 log((4a+h)h)+

2(a+h)a log 2a+h
h

+2a2 log((2a+h)h)
]

, |ρ|=a

−4π
h2

[

−h2+8(a+ h
2
)2 log 2+

2a(a+ h
2
) log 4a+h

h
+2(a+ h

2
)2 log((2a+ h

2
)h
2
)−

8(a+ h
2
)2 log(4a+2h)+2(a+h)(a+ h

2
) log 4a+3h

h
+

2(a+ h
2
)2 log((2a+ 3h

2
)h
2
)
]

, |ρ|=a+ h
2

−4π
h2 [−h2+8(a+h)2 log 2+

2a(a+h) log 2a+h
h

+2(a+h)2 log((2a+h)h)−
2(2a+h)(a+h) log 4a+3h

h
−4(a+h)2

log((4a+3h)h)+4(a+h)2 log(2(a+h))]

, |ρ|=a+h

−4π
h2 [−h2+8ρ2 log 2+

2aρ log |ρ+a|
|ρ−a|

+2ρ2 log |ρ2−a2|−
2(2a+h)ρ log |2ρ+2a+h|

|2ρ−2a−h|
−4ρ2 log |4ρ2−(2a+h)2|+

2(a+h)ρ log |ρ+a+h|
|ρ−a−h|

+2ρ2 log |ρ2−(a+h)2|
]

, otherwise

(1.49)

ImZ∗(ρ) =



























8π2

h2 ρ(|ρ|−a), a≤|ρ|≤a+ h
2

−8π2

h2 ρ(|ρ|−a−h), a+ h
2
≤|ρ|≤a+h

0, otherwise

(1.50)

We have compared the behaviour of our numerical code as a function of the
number of points in the double-Gauss quadrature. When it comes to the velocity
integration, we had to use a linear interpolation for such a non-smooth function
as the triangle. The spline interpolation was introducing a systematic bias in the
estimation of the P ∗and Z∗functions for the triangle function defined by just three
points.
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Figure 1.5: Test of the P ∗ function, for ρ ≥ 0, with the triangle function of param-
eters a = 2 and h = 3. From top to bottom the number of points in the quadrature
are 16, 32, 64, 128, 256, 512 and 1024. The dashed lines are for the analytic
expressions of Eqs. (1.47) and (1.48). The solid lines are for the numerical calcu-
lations with our code
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Figure 1.6: Test of the Z∗ function, for ρ ≥ 0, with the triangle function of pa-
rameters a = 2 and h = 3. From top to bottom the number of points in the
double-Gauss quadrature are 16, 32, 64, 128, 256, 512 and 1024. The dashed

lines are for the analytic expressions of Eqs. (1.49) and (1.50). The solid lines are
for the numerical calculations of our code
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Figures 1.5 and 1.6 show the results of the calculations for different values of
the double-Gauss quadratures. Since the triangle function is not a smooth function
as the Maxwellian, a 512 or even better a 1024-points double-Gauss quadrature
was needed in order to get rid of the oscillations.

The signature of the triangle function is clearly identified in the shape of the
P ∗ and Z∗ functions. The imaginary part of the Z∗ function presents a maximum
damping for ρ = a + h/2 which corresponds to the value of r at the maximum
of the triangle function. Similarly the real part of the Z∗ function presents an
abrupt variation for ρ = a + h/2 which corresponds again to the value of r at
the maximum of the triangle function again. It can also be verified analytically
that the imaginary part of P ∗ will tend toward a rectangular window of width 2a
when h tends toward zero as expected if the distribution function f were a Dirac
function.

1.4.2 Test on a real supra-thermal distribution function

We have run a test on a real supra-thermal distribution function. The angular dis-
tribution function has been calculated by the transport code described in Chapter 5
with an eight-stream run. A detailed view of the angular distribution function in
the energy range we have calculated the P ∗ and Z∗ functions is shown in Fig-
ure 1.7. Note the anisotropy of the distribution function for energies lower than
the energy corresponding to the two peaks (24.25 eV and 26.25 eV) while the dis-
tribution is rather isotropic otherwise.

Note also the similarity of the supra-thermal distribution, in this energy range,
to a superposition of shifted triangle functions centred at 24.25 eV and 26.25 eV.
The two main peaks at 24.25 eV and 26.25 eV are the signature of the increase in
the number of electrons produced by photoionisation of N2 and O respectively.
The photons causing the ionisation are from the intense flux of monochromatic
HeII radiation of wavelength 30.378 nm (40.812 eV) created in the chromospheric
network and coronal holes These two peaks have been observed on data collected
with the EISCAT VHF radar and the effect on the plasma line intensity and Doppler
frequency is discussed in Guio and Lilensten (1998).

Figures 1.8 and 1.9 show the results of the calculations of the P ∗and Z∗ func-
tions for different values of the double-Gauss quadratures and for both downward
and upward energies. Note again the oscillations at energy lower than 26.25 eV
when the number of points in the double-Gauss quadrature is small. The results
are converging when the number of points in the double-Gauss quadrature is in-
creasing and a number of points in the quadrature of 1024, or even better 2048, is
needed to get satisfying results.

It is worth noting also the effect of the anisotropy of the supra-thermal angular
distribution on the P ∗and Z∗ functions. The real part of P ∗and the imaginary part
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Figure 1.7: The angular supra-thermal distribution, plotted in the energy range
20 – 32 eV, used to perform the tests shown in Figures 1.8 and 1.9. The dis-
tribution was calculated with an eight-stream run over Tromsø in July 1996 at
12 : 00UT with a F10.7 index of 80 and an Ap index of 15. The eight curves
correspond to the eight angles of the double-Gauss quadrature

of Z∗ are not odd function any longer. The imaginary part of P ∗ and the real part
of Z∗are not even function any longer.

1.5 The electron velocity distribution model

The usual description of electron behaviour in the Earth’s ionosphere is based on
the assumption that the electron gas consists of two components, the ambient elec-
trons and the supra-thermal electrons (Takayanagi and Itikawa, 1970), although
the ambient electrons and the arising supra-thermal electrons are physically indis-
tinguishable.

We will assume that we can represent the electron plasma by those two compo-
nents with velocity probability distribution function fa and density na for the am-
bient electrons, and fs and ns for the supra-thermal electrons. The total electron
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Figure 1.8: Test of the P ∗ function with the supra-thermal velocity distribution
calculated on a 8-streams run at 259 km (see Figure 1.7). From top to bottom the
number of points in the quadrature are 32, 64, 128, 256, 512, 1024 and 2048. The
thick line is for downward energy while the thin line is for upward energy
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Figure 1.9: Test of the Z∗ function with the supra-thermal velocity distribution
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thick line is for downward energy while the thin line is for upward energy
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density is then ne = na + ns and we define the dimensionless number α = ns/ne

which represents the percentage of supra-thermal electrons. The ion population
will always be considered Maxwellian.

The ambient component is represented either by a Maxwellian distribution
function with thermal velocity ve =

√

kbTe/me, or by the Spitzer function that we
describe in Chapter 4.

The supra-thermal distribution is derived from the angular electron flux calcu-
lated by the transport code described in Chapter 5.

We now have a representation for both the ambient and the supra-thermal
electrons, the next operation consists in the treatment of the transition region be-
tween the supra-thermal and the ambient electrons. Sophisticated methods such
as the numerical resolution of the nonlinear Boltzmann equation (Ashihara and
Takayanagi, 1974; Jasperse, 1976), as well as full analytical treatment such as
the one proposed by Krinberg (1973), have been studied to solve this problem.
However, it was shown later that a good approximation for the complete distri-
bution function can be obtained by joining the two distribution functions at the
energy for which the two distributions have equal intensities (Krinberg and Aka-
tova, 1978; Stamnes and Rees, 1983) and truncate the supra-thermal distribution
at this energy. We have chosen for simplicity this method.

The truncation procedure is essential for the evaluation of the velocity mo-
ments as seen at the end of Chapter 5. The value of the moments of the supra-
thermal distributions are substantially modified by the truncation procedure.

Figure 1.10 shows the ambient distribution function and the supra-thermal dis-
tribution truncated at the intersecting energy. Note again the two sharp peaks at
24.25 eV and 26.25 eV due to the photoionisation of N2 and O by the powerful
emission of HeII radiation of wavelength 30.378 nm.

For a Maxwellian distribution fa(v) = 1/(2π)3/2/v3e exp(−|v − ue|2/2v2e)
with thermal velocity ve and mean drift velocity ue, the functions Pa and Za can
be expressed with the well-known functions Z, defined in Fried and Conte (1961),
and W, defined in Ichimaru (1992), both for complex argument z.

Pa(k, ω) =
1

kve
Z

(

ω − k · ue

kve

)

, (1.51)

Za(k, ω) = −
(

ωe

kve

)2

W

(

ω − k · ue

kve

)

(1.52)

with

Z(z) =
1

2π

∫ ∞

−∞

exp(−x2/2)

x− z
dx, (1.53)

W(z) =
1

2π

∫ ∞

−∞

x exp(−x2/2)

x− z
dx. (1.54)
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Figure 1.10: The upper plate shows both a Maxwellian and the supra-thermal
distribution as a function of the dimensionless parameter x = v/ve. The supra-
thermal is truncated at the intersection with the Maxwellian. The lower plate
presents the situation where the ambient distribution is the Spitzer function de-
scribed in Chapter 4. The distributions are plotted as a function of the energy
v = 1/2mev

2. The two plates are for the same altitude and same ionospheric
parameters
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Z and W are related by Z(z) = 1 + zW(z).
In the case of the Spitzer function (Chapter 4), the functions Pa and Za have to

be estimated with our numerical code and so it is for the functions Ps and Zs for
the supra-thermal distribution (Chapter 5). The functions Pe and Ze for the total
electron distribution function are then written (Guio et al., 1998)

Pe(k, ω) = (1− α)Pa(k, ω) + αPs(k, ω), (1.55)

Ze(k, ω) = (1− α)Za(k, ω) + αZs(k, ω), (1.56)

and are used to calculate the intensity and the Doppler frequency shift of the
plasma lines.

1.6 Summary

Our contribution in this part is a numerical code to calculate the plasma dispersion
function — the Z function — and the reduced one-dimensional distribution — the
imaginary part of the P function — for any arbitrary two-dimensional distribution
function described on a discrete (v, µ)-grid.

The numerical calculation of the P and Z functions together with a model of
the electron velocity distribution allows the theoretical calculation of the intensity
and the Doppler frequency shift of the plasma lines. It is therefore possible by
comparing the measured intensity and the Doppler shift of the plasma line in an
incoherent scatter experiment to check the validity of the model for the electron
distribution function.

In Guio (1998), the effect of an electron temperature gradient and the presence
of an electron supra-thermal population on the Doppler frequency of the plasma
lines have been studied for different radar wavelength (EISCAT VHF, ESR and
UHF radars). In Guio and Lilensten (1998), plasma lines data collected with the
EISCAT VHF radar have been analysed, and the intensity and the Doppler shift of
the plasma lines have been compared successfully with our model for the electron
distribution function.
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Chapter 2

Incoherent scattering measurement:
EISCAT

"EXPERIENCE is the name everyone gives to

their mistakes."

Oscar Wilde.

2.1 Introduction

The idea that the backscattering of powerful radio waves from ionospheric ther-
mal electrons should be detectable by large antennae was due to Gordon (1958).
First, Bowles (1958) demonstrated the existence of ionospheric incoherent scatter
using a 1MW transmitter tuned to a wavelength of 7.5m and a large antenna of
cross-section about 20000m2. Three years later in 1961, Bowles observed echoes
with a bandwidth a factor 10 less than the predicted width: the ion line. The dis-
crepancy was due to the Coulomb coupling between the electrons and the ions
when observing with a radar of wavelength much larger than the Debye length!

Incoherent-scatter radars (ISR) are expensive to build and operate, due to the
required high-power transmitters, large antennae and highly sensitive receivers.
At the present time, there are seven major ISR in operation around the world.
They cover a wide latitude range from the magnetic equator to the polar cap. The
EISCAT radars sit in the auroral zone.

ISR may be either monostatic or multistatic. Monostatic radars use the same
antenna to transmit and to receive signals. The transmitted signal is pulsed in or-
der to resolve the scattering volume, allowing the measurement of the ionosphere
over a wide range simultaneously. The height resolution of these measurements is
determined by the pulse length. Multistatic radars use separate antennae to trans-
mit and to receive signals. The transmitted signal does not need to be pulsed,
and the echoing region is selected by pointing the receiving antenna in a direction
which intersects the transmitted beam. It allows measurements with height reso-
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Figure 2.1: Sketch of the transmission-reception scheme for a transmitted pulse of
length τ and a receiving interval τ delayed by a time t after the pulse is transmitted

lution determined by the intersection of the two antenna beams. Tri-static systems
give the possibility to derive both the intensity and the direction of vectorial pa-
rameters such as the ion drift velocity and also possibly anisotropic parameters
such as the ion temperature.

2.2 Measurement principle

An incoherent scatter radar experiment consists basically in sending an electro-
magnetic wave of wavelength λ0 on a time interval τ . The pulsed wave is travel-
ling in the ionosphere and a small fraction of the transmitted signal is scattered.
The receiver is opened after a time t and the signal is sampled over a time inter-
val τ . The time t separating the transmission and the reception determines the
altitude of the volume which scattered the incident wave. When sampling at time
t after the start of the transmission, the pulse has travelled at height ct/2 and is
illuminating a volume in the range ct/2 to c(t+ τ)/2)— assuming a zeroth-order
sampler — as seen in Figure 2.1. In fact the finite impulse response of the receiver
will also have to be taken into account in the calculation of the range. It is then
possible to build the autocorrelation function (ACF) of the signal by calculating
cross products of the received samples and adding them properly (Farley, 1969).
The ACF is the Fourier transform of the power density spectrum, or periodogram,
of the signal. In order to subtract the background noise (sky and receiver noises),
signal is collected independently in the absence of any transmitted signal. The
noise subtracted ACF is then calibrated using the measurement of a noise source
of calibrated temperature injected in the receiver system. This procedure has to
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be repeated many times in a time interval of a few seconds in order to get a good
statistical accuracy of the ACF.

Depending on the scale height of the ionospheric parameters and the correla-
tion time of the medium — mainly depending on the electron and ion temperatures
as well as the radar wave vector —, the length of the pulse has to be optimised.
Long pulses allow to measure long correlation time but since the probed volume is
large, they require the scale height of the ionospheric parameters to be large. Short
pulses are well suited for regions with small scale height but they do not allow the
measurement of long correlation time. In the lower ionosphere where the scale
height is small and the correlation time of the medium is long, the multiple pulse
technique (Farley, 1972; Kofman and Lathuillere, 1985) allows one to estimate
ACF’s with a long correlation time without the disadvantage of smearing them
because of the large volume probed. The technique consists of the transmission
of short pulses separated by suitable time intervals in order to calculate the ACF
at the wanted time delays. This technique has the disadvantage that it does not fill
completely the available transmission time. The phase coding technique (Sulzer,
1989) is a recent technique that alleviates this problem without using frequency
commutated multiple pulse technique.

2.3 The EISCAT radar systems

Tromsø Kiruna Sodankylä Longyearbyen
Geograph. coord. 69′35◦ N 67′52◦ N 67′22◦ N 78′09◦ N

19′14◦ E 20′26◦ N 26′38◦ N 16′03◦ N
Geomagn. inclination 77′30◦ E 76′48◦ E 76′43◦ E 82′06◦ E
Invariant latitude 66′12◦ N 64′27◦ E 63′34◦ E 75′18◦ E
Band VHF UHF UHF UHF UHF
Frequency (MHz) 224 931 931 931 500
Wavelength (m) 1.3 0.3 0.3 0.3 0.6
Wave vector (m−1) 4.7 19.5 13.8 1 13.8 1 10.5
Rx Channels 8 8 8 8 6
Peak power (MW) 2×1.5 1.5 — — 1.0
Max. duty cycle (%) 12.5 12.5 — — 25
Pulse duration (µs) 10 – 2000 10 – 2000 — — <10 – 2000
Min. inter-pulse (ms) 1.0 1.0 — — 0.1
Sys. temperature (K) 250 – 350 90 – 110 30 – 35 30 – 35 80 – 85

Table 2.1: The EISCAT radar systems characteristics
1Geometry dependent, k = 2k0 sin θ/2, where θ is the angle of the bisector between transmit-

ted and received directions. The value given is when the two antennae beams intersect at α = 30
◦
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Figure 2.2: Principle of the long pulse measurement of the plasma lines. The
critical frequencies fv, foE and foF2 can be estimated by locating the abrupt signal
drop in the power spectrum

The EISCAT mainland system consists of a UHF tri-static radar and a VHF
monostatic radar. Both UHF and VHF transmitters are located near Tromsø, Nor-
way while the two remote UHF receiving antennae are located in Sodankylä, Fin-
land and in Kiruna, Sweden. The EISCAT radar system is widely described in
the literature, and detailed descriptions can be found in e.g. Brekke (1977) and
Folkestad et al. (1983). Recently, EISCAT has extended its observation capabil-
ities with the inauguration in August 1996 of a new radar, the EISCAT Svalbard
Radar (ESR) at Longyearbyen on the archipelago of Svalbard (Wannberg et al.,
1997) which has now been operating regularly since April 1997.

Table 2.1 presents the important technical characteristics of the mainland EIS-
CAT systems and the new ESR system.
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2.4 Long pulse technique

At the peak or valley of a layer, more electrons are resonant within a specific
frequency resolution cell. When fine-frequency measurements are made of the
echo from a long radar pulse, the abrupt signal intensity variations as a function
of the frequency (see Figure 2.2) permit accurate determination of the critical
frequencies (Showen, 1979). The long pulse technique consists of transmitting
a pulse of 300 – 500µs, and allows one to measure the plasma line at the critical
frequency of a region like at the peak of the F-region. This technique has been
used at different ISR at the peak of the E-region (Kofman and Wickwar, 1980)
as well as at the peak of the F-region (Showen, 1979; Kofman and Wickwar,
1980; Kofman et al., 1981; Heinselman and Vickrey, 1992b; Kofman et al., 1993;
Showen, 1995).

2.4.1 The experiment ECHO-D-V

We have designed a long pulse plasma line experiment for the EISCAT VHF radar
(ECHO-D-V) based on the experiment described in Kofman et al. (1993). The
principle is to send one long pulse at the frequency f0 and to receive signal simul-
taneously on three different channels tuned at three different frequencies, f0 for
the ion line, f0+f+ for the up-shifted plasma line and f0+f− (where f− < 0) for
the down-shifted plasma line. The ACF’s from these channels are calculated in the
same way, therefore the measurement of the three spectral lines is performed in
the same volume. In ECHO-D-V the transmitted pulse is 450µs and the received
signal is sampled at 10µs over a time interval that enables to build 5 ACF’s with
33 lags. It means that the correlation function is evaluated at 33 lag delays from 0
to 320µs by step of 10µs.

Figure 2.3 shows the timing diagram of the transmitted pulses and the receiv-
ing intervals of signal, calibration and background of our long pulse experiment.
Two channels (channels 4 and 5) are dedicated to the plasma lines, channel 3 is
used to measure the ion line in the same volume as the plasma lines. Channel 6
is used for the transmission of a very long pulse. This very long pulse is used to
estimate, by ion line measurement, the standard ionospheric parameters at higher
altitude. The complete cycle is run in 17.5ms which provides good statistical
accuracy in a short integration time. We have collected valuable data at a time
resolution of 2 s with ECHO-D-V. The collected data have been used to analyse
both the intensity and the Doppler frequency shift of the up- and down-shifted
plasma lines and the results have been compared with our model for the intensity
and the Doppler frequency shift (Guio and Lilensten, 1998).

When running the experiment, a plasma line tracking program interacts with
the radar. This program monitors the spectra of the measured plasma lines and
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Figure 2.3: Time diagram of the pulsing of the EISCAT long pulse experiment
ECHO-D-V. black is for the transmitted pulses, dark gray is for the receiving
periods and light gray is when the calibrated noise source is injected. The back-
ground measurement is performed at the end of the cycle. The whole cycle is run
in 17.5ms and provides good statistical accuracy in a short time

changes the frequency of the plasma line receiver channels every time it is nec-
essary in order to get the plasma lines in the centre of the 100 kHz observation
window.

Figure 2.4 shows the reduced spatial ambiguity function of each lag of the first
ACF gate, and the range of each gates. The x-axis represents the time t it takes
to a radio signal to travel a range r and back again. This is the range r where the
scattering takes place (r = ct/2 where c is the light speed). The reduced spatial
ambiguity function of a lag is the range function which measures the power gain
inside the scattering volume to estimate this lag product. It is also referred as the
effective pulse form when considered as a function of time (Lehtinen, 1986). The
reduced spatial ambiguity is defined as the product of the convolution between
the receiver impulse response p and the envelope of the transmitted pulse env
evaluated at the range r corresponding to the first sample and at the range r+cτ/2
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corresponding to the second sample delayed by τ

Wτ (r) = (p∗env)(r)(p∗env)(r + cτ/2) (2.1)

The left panel in Figure 2.4 is for the long pulse of channel 3 which is used
to measure the plasma lines. The right panel is for the very long pulse of Chan-
nel 6 that measures the ion line. Each trapezium represents the range ambiguity
functions for the labelled lag. The tick marks are the range of the centre of every
gates.

The ambiguity function is about the same for every lag of one ACF. It is about
45 km (300µs) for the long pulse of channels 3, 4 and 5 and 100 km (666µs)
for the very long pulse of channel 6. The range separation between two gates is
37.5 km (250µs) for the long pulse and 90 km (600µs) for the very long pulse.
5 gates are calculated from 178 km to 328 km (1190µs to 2190µs) for the long
pulse and 11 gates from 317 km to 1217 km (2110µs to 8115µs) for the very long
pulse.

The algorithm used to calculate the ACF’s is from the GEN-LIB system (Tu-
runen, 1985, 1986). The GEN-LIB system consists in a collection of ACF algo-
rithms for the EISCAT correlator based on the lag profile matrix (Turunen, 1983;
Turunen and Silen, 1984). The summation strategy of the ACF algorithm for a
long pulse in the GEN-LIB system is such that every lag of the ACF has a range
ambiguity function with the same absolute volume boundaries and the nominal
middle point of the volume is located at the same range. At the same time, the
shape of the ambiguity function inside this volume differs from lag to lag as seen
in Figure 2.4, but the effective pulse length remains about the same for every lag.

The description of the experiment displayed in Figure 2.4 is calculated by
GUISDAP (see Chapter 3). In GUISDAP, a set of MATLAB variables contains the
necessary information for the complete description of the experiment which is
needed to analyse measured data.
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Figure 2.4: Reduced range ambiguity function of the 33 lags of the long pulse of
channel 3 and the 41 lags of the very long pulse of channel 6 of the experiment
ECHO-D-V. The reduced range ambiguity functions for the lags of the ACF’s of
channels 4 and 5 are identical to the ones of channel 3
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2.5 Alternating code technique

Transmitting pulses at different frequencies within a sequence presents the dis-
advantage that information provided by the cross-product of samples is lost, as
is the case in frequency switched multiple pulse modulations. If the entire duty
cycle can be used to transmit a coded pulse at a single frequency, every cross-
product between samples in the received signal up to the pulse length provides
useful information. Good spatial and temporal resolution can be obtained pro-
vided the self-clutter cancels out on average. This can be achieved by the so-
called phase-coding techniques (Sulzer, 1986, 1989). The alternating code is one
of these techniques (Lehtinen and Häggström, 1987; Sulzer, 1993; Nygren et al.,
1996). Random code (Djuth et al., 1994, 1997) is another one, but this technique
cannot be implemented without extra hardware on the present EISCAT system.

The alternating code technique consists in transmitting a sequence of long
pulse phase modulated in a predefined manner which improves dramatically the
spatial resolution of the autocorrelation functions.

Finding a suitable sequence that fulfils the condition of cancellation was not
an easy task. At first, Lehtinen and Häggström (1987) restricted the number of
possible combinations using the theory of Walsh sequences and expressed their
solution as a Walsh sequence. The Walsh sequences are binary orthogonal se-
quences that have been used as a multiplication-free alternative to the fast Fourier
transform methods. For a strong condition alternating code, as the one we have
used for our experience, 2n sequences SC indexed from 0 to 2n−1 of phase mod-
ulated long pulse are transmitted. The phases of each long pulse are defined by
a sign sequence (si) (equal to +1 or -1) of length n called the number of bauds
(or bits) and indexed from 0 to n−1. The total length of the pulse is n times the
duration of one baud. The sign sequence (si) for the sequence SC is defined by

si(SC) = Walsh(ai, SC) = (−1)

∞
∑

n=0

(ai)n ∧ (SC)n
(2.2)

where (ai)n and (SC)n are the binary representations of the integer numbers ai
and SC and ∧ is the logical and operator. The number sequence (ai) to calcu-
late the code sequences si(SC) were found by a computer search (Lehtinen and
Häggström, 1987).

Figure 2.5 shows the 64 sequences SC of phase modulated long pulse based
on the signs sequences (si) of length 32 needed to run the 32 bits strong condition
alternating code available at EISCAT (Guio et al., 1996).

Few EISCAT experiments have been designed with an alternating code, mainly
EISCAT CP’s (Common Program) and it does not exist any program to design an
alternating code experiment. In order to design our experiment with the 32 bits
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strong condition alternating code for the EISCAT VHF radar, we wrote a MAT-
LAB programme that generates automatically the necessary files to describe the
experience. This programme is completely parametrised and handles a variable
number of ACF gates, a variable number of lags to be computed and a variable
range profile of ACF’s to be measured.

Following is a summary of the different properties of the alternating code tech-
nique:

☞ The range resolution of each lag of the ACF is defined by the time length
of one baud, i.e. the duration of one sign si. An exception is the zero lag
which has a range resolution corresponding to the total pulse length.

☞ Normally, the ACF is computed at time delays multiple of the baud length.

☞ The ACF can be computed at a maximum delay equal to the total pulse
length, i.e. the number of bauds times the duration of one baud.

☞ A necessary condition for the alternating code to work correctly is that the
ionospheric plasma remains stationary over the time it takes to the 2n pulse
sequences to be transmitted so that the self-clutters cancel correctly.

2.5.1 The experiment ALT-32-2-V

Our aim when designing a plasma line experiment using the alternating code tech-
nique was to drastically improve the height resolution compared to the long pulse
technique in order to be able to measure a profile of plasma lines. The situation is
sketched in Figure 2.6. For favourable measurement conditions, the measurement
of the plasma line can be done at more than ten gates.

The problem when writing an alternating code experiment is to find a compro-
mise between the sample rate (the duration of one baud) which defines the range
resolution and the spectral bandwidth, the lag extent (limited to the baud length
times the number of bauds) which defines the spectral resolution and the range to
be covered by the experiment (the number of ACF to be calculated). In addition
is the constraint due to the limitations of the time it takes to compute the ACF’s
and the limited size of the correlator memory. These conflicting parameters have
to be handled carefully when designing an alternating code experiment.

We have designed the first 32 bits strong condition alternating code plasma
line experiment. The duration of one baud was chosen to be 20µs which provides
a gate resolution and a gate separation of 3 km and a 50 kHz bandwidth observa-
tion window. In addition to the alternating code, a long pulse of 500µs was added
in a newer version than the one presented in Guio et al. (1996) to estimate the
ionospheric parameters given by the ion line at a higher range.
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Figure 2.6: Parabolic height distribution of the plasma line frequency with a scale
height of 65 km showing two different tuning of a 50 kHz receiving window and
the corresponding cells of 3 km contributing to the scattering

We present here the characteristics of the new experiment ALT-32-2-V. The
principle of this experiment is the same as the long pulse experiment. The alter-
nating code is transmitted once and received on three different channels simulta-
neously tuned at three different frequencies. One channel is for ion line measure-
ment (channel 5), the two other channels (channel 3 and 4) are for measurement
of the up- and down-shifted plasma lines. Channel 6 is for the ion line long pulse.

Figure 2.7 shows the timing diagram of the transmitted pulse as well as the
receiving intervals of signal, background and calibration for one sequence. Two
channels (channels 4 and 5) are dedicated to the plasma lines, channel 3 measures
the ion line in the same volume as channels 4 and 5. Channel 6 is used for the
transmission of a long pulse in order to measure ionospheric parameters from
the ion line at high range. The 64 cycles are run in 764ms which means that
the ionospheric plasma has to remain stationary in that time for the ACF’s to be
correctly estimated.

Figure 2.8 shows the reduced ambiguity of the 28 lags computed using the
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Figure 2.7: Time diagram of the pulsing of the 22nd cycle of the 32 bits strong
condition alternating code of ALT-32-2-V . black is for the transmitted pulses,
dark gray is for the receiving periods and light gray is when the calibrated noise
source is injected. The background and calibration measurements are performed
at the end of each cycle. The whole 64 cycles are run in 764ms and have been
optimised for a 10 s pre-integration time

alternating code (left panel, channel 3) and the 29 lags computed for the long
pulse (right panel, channel 6). The ACF of the alternating code is computed by the
algorithm of the G2-LIB system (Wannberg, 1993). The G2-LIB is an extension to
GEN-LIB to compute ACF for the alternating code. The range ambiguity function
of each lag of the ACF is 3 km (20µs) for the alternating code and 50 km (330µs)
for the long pulse. The range separation between two gates is 3 km (20µs) for the
alternating code and 37.5 km (250µs) for the long pulse. 32 gates are calculated
from 202.8 km to 295.8 km (1352µs to 1972µs) for the alternating code and 12
gates from 251.3 km to 663.8 km (1675µs to 4425µs) for the long pulse.

The data presented in Guio et al. (1996) were collected using the first version
of this experiment ALT-32-1-V which did not include the long pulse and contained
40 gates instead of the 32 gates of the present experiment. Data collected with
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Figure 2.8: Reduced range ambiguity function of the 28 lags of the alternating
code of channel 3 and the 31 lags of the long pulse of channel 6 of ALT-32-2-V.
Note that, as the long pulse experiment ECHO-D-V, the lags of the ACF’s of chan-
nels 4 and 5 have the same reduced range ambiguity functions as the ones of
channel 3
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ALT-32-2-V have been analysed and are shown in Chapter 3.

2.6 Summary

We have designed two different plasma line experiments for the EISCAT VHF
radar. The first experiment makes use of the classic long pulse technique and the
second one the alternating code technique.

For the first time at EISCAT, the alternating code technique has been success-
fully used in the frame of a plasma line experiment. Our experiment implements
a 32 bits alternating code strong condition on the VHF EISCAT radar. It was seen
that the alternating technique greatly improves the height resolution and therefore
allows one to measure the plasma line at several ranges instead of the one range
as done with the classic techniques (Guio et al., 1996).

The long pulse experiment has been run successfully and has provided valu-
able high time resolution plasma line data. Such a data set, collected at high time
resolution, has been used to compare the measured intensity and Doppler fre-
quency shift of the plasma lines with our model (Guio and Lilensten, 1998). This
data set has allowed us to identify the effect on the plasma line intensity and to
some extent on the Doppler frequency of the fine structures in the supra-thermal
distribution function in the energy range 20 – 30 eV.
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Chapter 3

Data analysis

"Talking about music is like dancing about

architecture."

Laurie ANDERSON.

3.1 Introduction

Once the autocorrelation functions (or the power density spectra) have been com-
puted using an incoherent scatter experiment, the large amount of collected data
needs to be reduced to estimated ionospheric parameters and their associated un-

certainties. This is done on a computer by an analysis program that attempts to
fit the data to a theoretical model. Ideally, the data should not be modified by any
calculations, so the model has to include

☞ An "ideal" theoretical model. For our purpose, it consists in a model for
the intensity and the Doppler frequency shift of the up- and down-shifted
plasma lines (Chapter 1).

☞ The effect of measuring with an "imperfect" instrument. In an incoherent
scatter experiment, this is:

• The finite pulse length of the transmitted power

• The finite impulse response of the receiver system

and the effect on the measurement is the spatial ambiguity function (Chap-
ter 2).

GUISDAP is a package designed to analyse incoherent scattering ion line data.
It is written partly in C and interfaced to MATLAB. The current stable ver-
sion (v1.6) allows one to analyse each ACF independently as gates or to analyse
grouped lags from different modulations with spatial ambiguity function within
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the same volume. A new version (v2.0) to come will be able to analyse simulta-
neously one range profile of ACF data in one fit (Holt et al., 1992; Lehtinen and
Huuskonen, 1996).

3.2 GUISDAP

The theoretical foundations used in GUISDAP concerning the radar theory and the
ambiguity functions are found in Lehtinen (1986), while the theory of statistics of
multi-parameter fits is found in Vallinkoski (1989).

This program is able to translate the files describing the experiment into a set of
variables describing the experiment and to calculate the effect of the radar which
has to be taken into account when analysing data. It has anyway some limitations.
It can not handle automatically ion species other than O+ and a mixture of the
molecular ions O2

+ and NO+. This is a serious problem when it comes to analyse
VHF data at high altitude (presence of H+). The analysis of the ion composition
in general is not handled.

3.3 Plasma line analysis

We have developed a plasma line analysis programme which widely uses the
GUISDAP package. The specifications of the experiment are calculated by GUIS-
DAP and we have changed the fitting procedure for the ion line to our own fit-
ting procedure which handles plasma line data. This procedure is based on the
Levenberg-Marquardt method. This method performs a minimisation of the sum
of the squares of the residuals — the differences between the measured and the
values given by the model for a given set of parameters — (Bard, 1974). The
method is optimised to switch continuously from a method which quickly ap-
proaches the minimum (the steepest descent method), when far from the mini-
mum, to a more precise but slower method (the Newton method), when approach-
ing the minimum. The variances of the ACF are estimated by GUISDAP using the
ambiguity function (Lehtinen, 1986) in order to estimate the uncertainties of the
fitted parameters.

Our analysis tool handles both plasma line data collected with the long pulse
technique and the alternating code technique. It would not be an important work
to integrate other models of the ACF of the plasma line.

Long pulse

The model for this spectral signature is described in (Kofman et al., 1981; Hein-
selman and Vickrey, 1992a) and has also been used in Kofman et al. (1993).



3.3 Plasma line analysis 45

In a long pulse experiment, the ACF signature of the plasma line is depending
on the variation of the plasma frequency ωp(r) as a function of range around the
peak of the observed region and the range ambiguity function.

The variation of the plasma frequency around the peak of the F-region can be
described by a parabola ωp(z) = ωpmax(1 − z2/8), where z = (r − rmax)/H .
ωpmax is the maximum frequency at the peak located at the range rmax and with
scale height H .

The power density S(ω, r) of the plasma line at the range r is assumed constant
over the frequency bandwidth δf centred at ωp and with an integrated power equal
to ap which is constant with range. The autocorrelation function at the range r of
the power density S(ω, r) is called ρS(τ, r).

The effect of the radar is taken into account with the range ambiguity functions
Wτ (r), presented in Figure 2.4. Wτ (r) is calculated by GUISDAP. The measured
ACF ρ at the delay τ is then the range-integrated (over the range R of the gate),
of the product of ρS(τ, r) with the range ambiguity function Wτ (r)

ρ(τ ;ωpmax, rmax, H, δf, ap) =
∫

R
Wτ (r)ρS(τ, r)dr. (3.1)

Figure 3.1 shows an example of a fit done for a dump collected by our exper-
iment ECHO-D-V described in Chapter 2 at 2 s resolution. The fit is done on the
ACF shown in the two upper panels. The two lower panels are just Fourier trans-
forms of the ACF to give a clearer image of the spectral signature of the plasma
line when using the long pulse technique. Note that we are able to measure the
critical frequency with uncertainties of a few hundred Hertz.

Figure 3.2 presents the results of a data set collected with a time resolution
of 2 s (Guio and Lilensten, 1998). One can clearly see the role of the monitor-
ing program which for every new dump collected attempts to follow the critical
frequency of the spectrum in the 100 kHz observation window. The parameters
shown are from top to bottom the Doppler frequency shift of the up- and down-
shifted plasma lines (ω+/2π) + 0.2MHz and −ω−/2π, the Doppler frequency
between the plasma lines (ω+ + ω−)/2π, the temperature, or intensity, of the
plasma lines Tp+ and Tp− and the frequency width of the plasma lines δfp+ and
δfp−.
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Figure 3.1: Long pulse fit of data collected with ECHO-D-V. The two upper pan-
els show the measured complex autocorrelation functions expressed in units of an-
tenna temperature (dashed line and the theoretical model (solid line) of Eq. (3.1).
The curves with the intensity equal to zero at zero lag delay are the imaginary
parts. The two lower panels present the corresponding power density spectrum
where the critical frequency is more easily identified
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Alternating code

The spectral signature of the spectra collected with the alternating code technique
is quite different from the one of the spectra collected with the long pulse tech-
nique.

In an alternating code experiment, the spectral signature of the plasma line can
be approximated by a truncated parabola. Since the sensitivity is maximum at the
centre of the range and falls linearly to zero one baud length away on each side,
due to the correlation of the signal with the code and assuming a perfect receiver,
the power will just be the square of this triangular function. This is the shape of
the ambiguity function of every lags of the alternating code (it is seen in the left
panel in Figure 2.8 of Chapter 2 for all the computed lags). The plasma frequency
is changing approximately linearly with height inside the range of one gate (3 km),
and therefore this square triangle function becomes the spectral shape. Of course,
it has to be convolved with the inherent line width, but this would appear to have
little effect in this case. This means that the spectrum falls to zero at a certain
frequency.

The ACF measured with the alternating code can therefore be modelled by the
following expression which is the Fourier transform of a parabola with a maxi-
mum at frequency ωp, the Doppler shift of the line, a frequency width at half the
power δf and a power ap assuming the intensity of the plasma line is constant with
height. The ACF ρ at lag delay τ is (Guio et al., 1996)

ρ(τ ;ωp, δf, ap) = 3ap
sin(4πδfτ)− 4πδfτ cos(4πδfτ)

(4πδfτ)3
exp(iωpτ). (3.2)

Figure 3.3 shows an example of a fit done on a dump collected by the last
version of our experiment ALT32-2-V at 10 s. For this analysed dump, our fitting
procedure analysed successfully 13 gates. Note that as for the long pulse tech-
nique, the uncertainties on the Doppler frequency of the plasma lines are of a few
hundred Hertz. The peak of the F-region can clearly be identified in the shape of
the Doppler frequency as a function of altitude.

Figure 3.4 shows the results of the parameters fitted for a data set collected
at a time resolution of 10 s with the last version of our experiment ALT32-2-V.
The parameters shown are from top to bottom the Doppler frequency shift of the
up- and down-shifted plasma lines ω+/2π and −ω−/2π, the Doppler frequency
between the plasma lines (ω+ + ω−)/2π, the temperature, or intensity, of the
plasma lines Tp+ and Tp− and the frequency width of the plasma lines δfp+ and
δfp−.

Note the difference in term of fitted data between the alternating code data of
Figure 3.4 and the long pulse data of Figure 3.2. The long pulse experiment pro-
vides one data point for each dump while the alternating code technique provides
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Figure 3.3: Alternating code fit of plasma line data collected with ALT32-2-V.
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several points for each dump.

3.4 Comparison data — model

Plasma line temperature

The temperature plotted in Figures 3.1 and 3.3 are expressed in term of the an-
tenna temperature while in Figures 3.2 and 3.4 the temperatures are plasma line
temperature. They have been converted in order to be compared with the modelled
intensity also expressed in temperature. The radar equation is used to convert the
temperature.

The radar equation for the plasma line observed at the Doppler frequency ωp

with an antenna temperature T p
A is written

kbT
p
ABw =

PT

r2
σp

cτ

2
A(ω0 + ωp), (3.3)

where σp = r2e
ne

2α2

Tp

Te
is the plasma line cross section derived from Eq. (1.27) in

Chapter 1. Bw is the bandwidth of the receiver, PT the transmitted power, r the
distance to the volume probed, c the light speed, τ the length of the transmitted
pulse and A(ω0 + ωp) is the frequency-dependent effective antenna area at the
received frequency ω0 + ωp. Note that σp expressed as a function of the plasma
line temperature Tp does not depend on the electron density ne.

In the same way, the radar equation for the ion line is written

kbT
i
aBw =

PT

r2
σi
cτ

2
A(ω0), (3.4)

where σi = r2e
ne

(1+α2)
α4

(1+α2+α2Te/Ti)
is the ion line cross section derived from

Eq. (1.25) in Chapter 1. A(ω0) is the frequency-dependent effective antenna area
at the received frequency (which is the same as the transmitted frequency for the
ion line).

We define the radar system constant as Cs = r2eA(ω0)c/2. We correct this con-
stant so that the electron density given by the plasma line frequency corresponds
to the electron density given by the ion line. We call this calibrated constant C ′

s.
This is commonly done when one has a way to calibrate absolutely the electron
density, as for instance the plasma line frequency given by a plasma line experi-
ment or foF2 derived from ionosonde data.

In GUISDAP the quantity K(r) = PT

r2
C′

s

kbBw
τ is calculated for each gate. The

plasma line temperature is then given by (in SI units)

kbTp =
T p
a

KG(ωr)

2e2

ǫ0k2
, (3.5)
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where G(ωr) = A(ω0 + ωr)/A(ω0) is the relative antenna gain as a function of
the frequency which is known by measurement of radio source.

The plasma line temperature of Eq. (3.5) can then be compared with the mod-
elled plasma line temperature using the model of Chapter 1.

Electron Doppler velocity and plasma frequency

The Doppler frequency ω+ and ω− of the up- and down-shifted plasma lines have
been estimated by the plasma line analysis. They are the real part of the solutions
of the dispersion relation described by Eq. (1.30). Eliminating ωe and ve between
these two equations and replacing Z by the model of the Section 1.5, the Doppler
velocity ue of the ambient electron population is the solution of the following
equation (Guio and Lilensten, 1998)

k2
+

[

(1− α) ReZ∗
ve
a
(vφ− − ue

ve

)

+ αReZ∗
ve
s
(vφ−

ve

)]

= (3.6)

k2
−

[

(1− α) ReZ∗
ve
a
(vφ+ − ue

ve

)

+ αReZ∗
ve
s
(vφ+

ve

)]

, (3.7)

where the drift velocity ue appears only in the terms relative to the ambient compo-
nent Z∗

ve
a. The dimensionless number α denotes the percentage of supra-thermal

electrons.
Once the Doppler velocity ue is found, the plasma frequency ωe is given by

ωe =
k±ve

√

−(1−α) ReZ∗
ve
a
(

vφ± − ue

ve

)

− αReZ∗
ve
s
(

vφ±
ve

)

, (3.8)

either for the down-going wave (vφ+,k+) or the up-going wave (vφ−, k−).
This is the method described in Guio and Lilensten (1998) which has been

used on EISCAT VHF data collected with the ECHO-D-V experiment of Chapter 2.



Chapter 4

Spitzer theory

"Jeg har nu vandret ganske godt omkring i mine dager og

jeg har blit dum og avblomstret. Men jeg har ikke den per-

verse gammelmandstro at jeg har blit visere end jeg var.

Og jeg håper at jeg heller aldrig blir vis. Det er tegnet på

avfældighet. Når jeg takker Gud for livet så sker det ikke i

kraft av en større modenhet som har kommet med alderen,

men fordi jeg altid har hat glede av å leve. Alder skjænker

ingen modenhet, alder den skjænker intet andet end alder-

dom."

Knut Hamsun, En vandrer spiller med sordin, 1909.

4.1 Introduction

In a non-homogeneous plasma, such as the ionospheric plasma, the distribution
function of particles deviates from the Maxwellian. At low energy and for a fully

ionised plasma consisting of electrons and one ion species, in a highly collisional
regime, i.e. in a regime where the velocity distribution does not deviate dramati-
cally from a Maxwellian (Gombosi and Rasmussen, 1991), and in the absence of
a magnetic field, the electron distribution function can be approximated by the so-
called Spitzer distribution function described in Cohen et al. (1950); Spitzer and
Härm (1953); Spitzer (1962). Cohen et al. (1950) calculated the time-independent
electron distribution function which results from the presence of a weak electric
field whereas Spitzer and Härm (1953) combined the effects of both a weak elec-
tric field and a moderate temperature gradient. Their solution is based on a per-
turbation analysis of a Fokker-Planck equation linearised around a Maxwellian.
Contrary to most existing works, the kinetic equation is not treated by any expan-
sion method, but is solved numerically to yield the electron distribution function.
This feature is very important since we are interested in calculating the P ∗and Z∗

integrals of the distribution function described in Chapter 1.

4.2 The Spitzer function

The velocity distribution function is expanded about a local Maxwellian as a
power series in the Knudsen number ǫ = λ/L which represents the ratio of the mi-
croscopic length scale λ to the macroscopic length scale L associated to a source
of inhomogeneity in the plasma. In the Spitzer theory, only the first-order term in ǫ
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is kept which is known as the principle of local action (Woods, 1993). This restric-
tion to distributions deviating weakly from the Maxwellian implies that the elec-
tron mean free path λe (the microscopic length scale λ) should be much smaller
than the different macroscopic scale lengths L considered 1/∇ log Te, 1/∇ log pe
and kbTe/eE (Ljepojevic and McNeice, 1989). Since ǫ is an increasing func-
tion of the electron velocity (the collision frequency of an electron is decreasing
with increasing velocity ν ∼ v−3), the Spitzer theory will always break down at
high electron velocity. Nevertheless for weak electric fields and moderate tem-
perature gradients this breakdown does not significantly compromise the ability
of the Spitzer solution to describe the transport properties of the plasma as in the
typical F-region plasma (Guio et al., 1998). However, this is no longer the case
when ǫ reaches values larger than 2 · 10−2 (Gray and Kilkenny, 1980; Ljepojevic
and McNeice, 1989). An accurate model of the high energy particles part is then
needed to describe how electrons with sufficient energy move freely between re-
gions with different temperatures and lead to strong distortion of the distribution
function in the supra-thermal part (Gurevitch and Istomin, 1979; Luciani et al.,
1983; Ljepojevic and McNeice, 1989; Ljepojevic and Burgess, 1990; Ljepojevic,
1990; Mishin and Hagfors, 1994). This effect is often called the thermal runaway.

We shall briefly outline the derivation and assumptions behind the Spitzer so-
lution. The approach used is based on the successive approximation method of
Chapman-Enskog (Chapman and Cowling, 1970). This procedure is valid under
the assumptions that the distribution function exhibits slow temporal variations
compared to the collision time scale of the electrons and weak spatial gradients
compared to the electron mean free path, and is subject to weak electromagnetic
fields. The distribution function is expanded in powers of ǫ and is written

f(v) = f0(v) + ǫf1(v) + ǫ2f2(v) + · · · , (4.1)

where successive terms represent increasingly smaller corrections. The zeroth-
order term f0 is taken to be an isotropic Maxwellian of temperature Te and thermal
velocity ve = (kbTe/me)

1/2. The scheme adopted by Spitzer to calculate the first-
order term f1 assumes a cylindrically symmetry along the direction of the non-
homogeneity and is written as a perturbation X from the zeroth-order Maxwellian

f1(v, µ) = f0(v)X(v)µ. (4.2)

The perturbation X is a function of the electron velocity determined by substi-
tuting for the f in the Boltzmann equation. In the Boltzmann equation only the
long range electron-electron and electron-ion interactions have been taken into
account by two linearised Fokker-Planck collision operators. Two second-order
linear differential equations, one for the perturbation function XE due to an elec-
tric field, and the other one for the perturbation function XT due to the temperature
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gradient are obtained. These equations are Eq. (40) of Spitzer and Härm (1953)
and Eqs. (6) – (13) of Cohen et al. (1950) with the initial conditions XE(0) = 0,
XT (0) = 0 and the two boundary conditions Eqs. (14) – (15) of Spitzer and Härm
(1953) to ensure the conservation of momentum.

The Spitzer distribution function which takes into account both the effect of
an electric field and a temperature gradient is then written

f(v, µ) = f0(v)

[

1 + Zµ

(

ǫEXE

(

v

ve
√
2

)

+ ǫTXT

(

v

ve
√
2

))]

, (4.3)

where f0 is the Maxwellian f0(v) = ne/(2π)
3/2/v3e exp(−(v/ve)

2/2) and ǫE and
ǫT are the Knudsen numbers associated to the electric field E and the temperature
gradient respectively

ǫE = λe

(

eE

kbTe

− ∇pe
pe

)

, (4.4)

ǫT = 2λe
∇Te

Te

. (4.5)

pe = neTe is the electron pressure and Z is the charge number of the ion species.
We have recalculated the perturbations functions XE and XT (Guio, 1998)

using the shooting method. The shooting method is a numerical method which
consists in successive attempts to integrate the equation from the first boundary
point v = 0 with the condition X(E/T )(0) = 0 up to the other boundary xmax =
vmax/ve using a fifth-order Runge-Kutta step ordinary differential equation (ODE)
solver, until the boundary condition (the Eq. (14) for XE and the Eq. (15) for XT

of Spitzer and Härm (1953)) is fulfilled at a satisfactory precision (Press et al.,
1992). The upper boundary with value vmax should not be too large compared to
the thermal velocity ve since we are looking for a solution for low energy where
the representation is valid.

We have calculated the perturbation functions XE and XT for different values
of the upper boundary of integration xmax. Figure 4.1 shows the functions XE and
XT for these different values of the upper boundary condition. Note the diverging
behaviour of the perturbation function for large values of the upper boundary con-
dition which confirms that these perturbation functions are inappropriate to model
the high energy electrons.

In the original theory, the factor λe is the mean free path of a thermal electron
due to electron-electron collisions and electron-ion collisions. In order to correct
for the partially ionised ionospheric plasma, we correct the electron mean free
path to include also an electron-neutral collision term (Banks, 1966). The electron
mean free path is then replaced by

1

λe

=
1

λee

+
1

λei

+
1

λen

, (4.6)
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Figure 4.1: The XE and XT functions for different values of the upper boundary
of integration xmax = v/ve

√
2e = 2.8, 3.2, 3.6 and 4.0, and for an ion charge

number Z=1. The XE’s are shifted by −20 with each other, the XT ’s are shifted
by +10 with each other, the reference curves (i.e. not shifted) are for xmax = 2.8

where λen is the mean free path of a thermal electron due to electron-neutral col-
lisions. The effect of the electron-neutral collisions is to reduce the electron mean
free path, and in the limit of low neutral particle densities we recover the electron
mean free path value of a fully ionised plasma (Banks, 1966). It is important to
note that the differential equations for the perturbation functions XE and XT have
not been modified, thus the departure of the velocity distribution function from
the Maxwellian is still caused by Coulomb interactions through the two Fokker-
Planck collision operators for distant interactions.

4.3 The transport coefficients

The classical theory of transport is characterised by a set of closure relations ex-
pressing the dissipative fluxes, e.g. the current density J e and the heat flux qe
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as linear combinations of the thermodynamic forces, e.g. the electric field E,
the gradient of pressure ∇pe and the temperature gradient ∇Te, with constant

transport coefficients. These relations are called the transport equations (Balescu,
1988). Taking the first- and third-order moments of the electron velocity distri-
bution, one obtains the electron current density J e = −eneue, where the mean
velocity ue is defined as in Eq. (5.27) and the electron heat flow qe is also defined
as in Eq. (5.33)

J e = σe

(

E +
kb
ene

∇pe

)

+ τe∇Te, (4.7)

qe = −µe

(

E +
kb
ene

∇pe

)

− κe∇Te, (4.8)

where σe is the electrical conductivity, τe is the current flow conductivity due to
a temperature gradient at constant electron density, µe is the heat flow conductiv-
ity due to an electric field at constant electron temperature and κe is the thermal
conductivity.

These transport coefficients are defined in terms of the first- and third-order
velocity moments of the perturbation functions XE and XT . γE , δE , γT and
δT are the normalised transport coefficients relative to a Lorentzian gas (Spitzer
and Härm, 1953; Shkarofsky, 1961). A Lorentzian gas is a gas where electron-
electron interactions are neglected, the protons are assumed to be at rest and the
interactions electron-protons are described by a linearised Fokker-Planck colli-
sion operator. Eqs. (4.9) – (4.12) show the relations between these normalised
coefficients, the velocity moments of the perturbation functions I3(XE), I5(XE),
I3(XT ), I5(XT ) and the transport coefficients σe, τe, µe and κe.

γE =
1

3
I3(XE) =

√
πmeve

4
√
2Ze2neλe

σe, (4.9)

δE =
1

12
I5(XE) =

√
πmeve

6
√
2Zenekbλe

µe, (4.10)

γT = −4

9
I3(XT ) =

3
√
πve

16
√
2Zeneλe

τe, (4.11)

δT = − 1

15
I5(XT ) =

√
πve

40
√
2Znekbλe

κe, (4.12)

where

In(XE/T ) =
∫ xmax

0
yn−2XE/T (y) exp(−y2)y2dy (4.13)

is the (n−2)th-order moment of the distribution function XE/T (y) exp(−y2).
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We have recalculated these transport coefficients using the perturbation func-
tions of Figure 4.1. Table 4.1 gives the transport coefficients for different values of
xmax and a comparison with the results given by Spitzer and Härm (1953). With
the exception of the values for xmax = 2.8 which deviate by about 10%, the other
values of the transport coefficients are in good agreement (about 1%) with the val-
ues calculated by Spitzer (xmax = 3.2). The deviation for xmax = 2.8 might be
the result of the low boundary of integration leading to an inaccurate description
of the perturbation functions.

xmax 2.8 3.2 Spitzer 3.6 4.0
γE 0.5740 0.5811 0.5816 0.5826 0.5832
γT 0.2507 0.2677 0.2727 0.2715 0.2718
δE 0.4436 0.4622 0.4652 0.4672 0.4698
δT 0.1877 0.2149 0.2252 0.2228 0.2237

Table 4.1: The normalised transport coefficients as defined in Eqs. (4.9) – (4.12)
calculated for different values of xmax and compared with the ones given by
Spitzer (xmax=3.2)

In the ionosphere, a so-called polarisation electric field Es builds up such
that the thermal ions and electrons are constrained to drift as a single gas, which
maintains bulk charge neutrality. Es is determined by the current J e and it exists
whenever there is a gradient in the electron density or in the temperature (Ljepo-
jevic and McNeice, 1989; Min et al., 1993). It is given by

Es =
J e

σe

+
∇pe
ene

− τe
σe

∇Te. (4.14)

If the field-aligned current is attributed to the flow of the supra-thermal electrons
only, then the J e/σe is equal to zero and we get the following relation between
the electric field Es and the gradient terms

Es =
∇pe
ene

− τe
σe

∇Te. (4.15)

Using Eq. (4.4) – (4.12), it leads to the following relationship between the two
Knudsen numbers ǫE and ǫT

4ǫEγE + 3ǫTγT = 0. (4.16)

In this case, the conductivity κe is reduced by a factor 1− 3δEγT/(5δTγE)

qe = −κe(1−
3δEγT
5δTγE

)∇Te, (4.17)
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and the mean drift velocity uE due to the electric field is exactly the opposite of
the thermal drift velocity uT due to the gradient of temperature

uE = −uT =
8√
2π

veγEǫE. (4.18)

In the case of a fully ionised gas and taking the Coulomb logarithm ln Λ to be
equal to 15, the heat flow of Eq. (4.17) reduces to (Banks, 1966)

qe = −7.7× 105T
5

2
e ∇Te. [eV cm−2 s−1] (4.19)

In addition to the classic transport coefficients, we have calculated the heat
flow for parallel and perpendicular energy (Guio, 1998)

q‖
e =

6

5
qe, q⊥

e =
2

5
qe, (4.20)

that we needed to estimate for the heat flow approximation of Eq. (1.34) in Chap-
ter 1.

4.4 Comparison with the 2-T Maxwellian

In Guio (1998), we have introduced a simple model for the particle velocity dis-
tribution in presence of a temperature gradient, the 2-T Maxwellian.

For the electrons, the 2-T Maxwellian, denoted fTe±
, is defined as two half-

Maxwellians with temperature Te+ and Te− over the two half-spaces where re-
spectively v‖ < 0 and v‖ ≥ 0 and a Maxwellian with temperature Te⊥ over the
perpendicular velocity space v⊥. The two half-Maxwellians along v‖ are joined
continuously at v‖ = 0 and are normalised such that the integral over the velocity
space is equal to the electron density ne. Thus the 2-T Maxwellian can be seen
as a modified bi-Maxwellian with a temperature inhomogeneity along the parallel
velocity v‖. The 2-T Maxwellian is written

fTe±
(v‖, v⊥) =























ne

(2π)
3

2

1

ve‖v
2
e⊥

exp−
( v2‖
2v2e−

+
v2⊥
2v2e⊥

)

, v‖ ≥ 0

ne

(2π)
3

2

1

ve‖v
2
e⊥

exp−
( v2‖
2v2e+

+
v2⊥
2v2e⊥

)

, v‖ < 0

(4.21)

where v2e⊥ = Te⊥/me is the square of the thermal velocity of the electrons along
the perpendicular direction, v2e± = Te±/me are the squares of the mean velocities
in the parallel direction and ve‖ = (ve+ + ve−)/2 is the normalisation constant
such that the two half-Maxwellians are continuous at v‖ = 0.
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This velocity distribution function is both inhomogeneous and anisotropic and
sketches the electron velocity distribution at the particular point of space r = 0
between two regions with different temperature. This model mimics the presence
of a temperature gradient where the hot plasma of temperature Te+ is diffusing
toward the region of cold plasma of temperature Te− and vice-versa (Guio, 1998).

As explained in Guio (1998), it is possible to find Te+ and Te− so that the lead-
ing term of the heat flow equals the heat flow of the Spitzer theory. In particular,
we want to find Te+ and Te− so that the heat flow of the 2-T Maxwellian equals
the heat flow of Eq. (4.17), i.e. with the condition Je = 0, or ue = 0. In order to
get ue = 0 for the 2-T Maxwellian, we modify fTe±

(v‖, v⊥) in fTe±
(v‖ − uE, v⊥)

where uE is a mean drift velocity introduced in the 2-T Maxwellian so that ue = 0,
i.e. (Guio, 1998)

uE = −〈v〉‖ =
2√
2π

v2e+ − v2e−
ve+ + ve−

. (4.22)

uE can be seen as the mean drift velocity due to an hypothetical electric field that
guarantees the condition ue = 0.

Figure 4.2 presents a comparison of the velocity moments given by the Spitzer
theory and the simple model of the 2-T Maxwellian for an altitude profile with
typical ionospheric parameters.

The upper right panel shows the mean drift velocity uE to subtract in the 2-T
Maxwellian, so that the mean drift velocity ue = 0. This mean drift velocity is of
the same order as the mean drift velocity uE due to the polarisation electric field
in the Spitzer theory. At the same time, the values of the two temperatures Te+

and Te− are such that the temperature and the heat flow of the 2-T Maxwellian are
the same as the temperature of the Spitzer function and the heat flow of Eq. (4.17).
In addition the two lowest panels presents the parameters that describes the non-
homogeneity. In the left panel, the Knudsen numbers ǫT and ǫE of the Spitzer
theory are presented. In the right panel, we have calculated the dimensionless
inhomogeneity parameter (Te+ − Te−)/Te of the 2-T Maxwellian. Note that the
behaviour of this parameter is quite similar and of the same order as ǫT .

This justify that the 2-T Maxwellian is able to reproduce to a good approxi-
mation the behaviour of the Spitzer function.

It can also be noted how the approximated formula for the heat flow in a fully
ionised plasma given by Eq. (4.19) (dashed line in the right and middle panel in
Figure 4.2) overestimates the value for the heat flow (solid line).
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Figure 4.2: The moments for the Spitzer theory and the 2-T Maxwellian from
110 km to 400 km. In the upper right panel, the dashed line is uE of Eq. (4.18).
The solid line is the velocity uE necessary in the 2-T Maxwellian so that the mean
velocity ue = 0. In the middle right panel, the dashed line is qe of Eq. (4.19), the
solid line is for Eq. (4.17) and is the same as the one of the 2-T Maxwellian. In
the lower right panel, the dashed line is for ǫE while solid line is for ǫT
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Chapter 5

Electron transport theory

"Um soli lyser på himlen blanke,

no ser ho deg! Det er all min tanke;

um dagen dovnar og skuming fell:

skal tru han tenkjer på meg i kveld?"

Arne Garborg, Elsk, Haugtussa.

5.1 Introduction

In the ionosphere, primary photoelectrons or precipitating electrons move along
the magnetic field, produce heat and provoke processes such as excitation and
ionisation. In a photoionisation process, the emitted electron is called the primary

electron, and often has enough energy to produce several ionisations. The newly
emitted electrons have lower energy than the primary and are called secondary

electrons. In a collisional ionisation process, the incident electron is mostly scat-
tered forward and is called the primary electron, while the extracted electron may
be scattered in any direction and is called the secondary electron.

The approaches to model this relationship are based on electron transport the-
ory which yields the electron flux as a function of altitude, energy and pitch-angle.
Transport calculations can be carried out using Monte-Carlo simulations (Berger
et al., 1974) or by solving a transport equation numerically. A review of these
different methods is found in Cicerone (1974).

Several numerical methods have been developed to solve numerically the trans-
port equation (Banks and Nagy, 1970; Banks et al., 1974; Strickland et al., 1976).
The transport code calculates the energy flux of the electrons by solving the verti-
cal or field-aligned kinetic transport equation. This conservation equation simply
expresses the fact that the variation of the steady-state electron flux with the scat-
tering depth for a given altitude, energy and pitch-angle, is the difference between
whatever leaves that energy, altitude or angle slab and whatever enters it. The
variations in energy or angle due to collisions are described through differential
cross sections. An additional energy loss arises from the heating of the ambient
thermal electron gas due to hot-electrons to thermal-electrons interactions. This
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loss process is assumed to be a continuous energy loss of the hot electrons to the
thermal electrons, without any deflection during the process.

Recognising the formal equivalence of the electron transport equation to the
radiative transfer equation (Chandrasekhar, 1960; Stamnes, 1977, 1980) adapted
the discrete ordinate method developed for solving the radiative transfer equation
to solve the electron transport equation. The transport code that we have been
using implements this numerical method and is described in numerous papers in
the literature (Stamnes and Rees, 1983; Stamnes, 1985; Lummerzheim, 1987).

5.2 Continuity equation — Transport equation

5.2.1 Continuity equation

The temporal and spatial evolution of a dilute system of particles interacting
through binary collisions may be described by the Boltzmann equation, if we
assume that the velocities of two particles prior to collision are uncorrelated.
The electron continuity equation for the electron velocity distribution function
f(r,v, t) (in units cm−6 s3) takes the following form (Stamnes and Rees, 1983)

∂f

∂t
+∇r · (vf) +∇v ·

(

F

me

f

)

=

(

δf

δt

)

coll

+

(

δf

δt

)

prod

+

(

δf

δt

)

loss

, (5.1)

where v is the velocity, r the position, t the time, F the external forces as well
as a frictional force between the supra-thermal and the ambient electrons, and me

the electron mass. For conservative systems (i.e. such that ∇v ·F = 0), Eq. (5.1)
reduces to the Boltzmann equation.

The external forces F are electro-magnetic forces. In the absence of macro-
scopic electric fields and in homogeneous magnetic fields, this term reduces to
the forces due to microscopic electro-magnetic fields that result from an inho-
mogeneous charged environment. It is then common to assume that the energy
loss of supra-thermal electrons to ambient electrons is a frictional or continuous
dissipative force acting on the streaming fast electrons.

The terms on the right hand side (in units cm−6 s2) describe the change of the
distribution function due to binary collisions through different kinds of processes
such as Coulomb collisions, production by excitation (sometimes referred to as
source) and loss by recombination (sometimes referred to as sink).
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5.2.2 Velocity distribution function — Angular flux

In order to derive the transport equation one has to transform the velocity variable
v to kinetic energy E = 1

2
mev

2 and unity direction vector Ω = v/v

f(r,v, t)d3v =
v

me

f(r, E,Ω, t)dEd2Ω, [ cm−3] (5.2)

Then the intensity (or flux) I per unit area, unit time, unit energy and unit
direction is defined by multiplying the velocity distribution f by v

I(r, E,Ω, t)dEd2Ω = vf(r, v,Ω, t)v2dvd2Ω, [ cm−2 s−1] (5.3)

or if we express both the electron flux I and the electron velocity distribution
function f with the same set of coordinates r, E and Ω

I(r, E,Ω, t) =
v2

me

f(r, E,Ω, t), [ cm−2 s−1 eV−1 sr−1]. (5.4)

Figures 5.1 and 5.2 show the electron flux I and the electron velocity distribu-
tion function f calculated by the numerical code described hereafter at the altitude
of 249 km over Tromsø in the summer at noon.
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Figure 5.1: Example of the angular flux calculation for an 8-streams run over
Tromsø in June 1996 at 12 : 00UT with a F10.7 index of 80 and an Ap index of
15. The thin line is for the downward direction and the thick line is for the upward
direction
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the upward direction
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5.2.3 Transport equation

In order to obtain a linear electron transport equation a number of approximations
can be made to the non-linear continuity equation of Eq. (5.1). The time used
by the supra-thermal electrons to penetrate the ionosphere is short compared to
changes in the host medium. Thus steady state can be assumed allowing to neglect
the explicit time dependence of the velocity distribution function, i.e. ∂f/∂t = 0.

The gyro-frequency at ionospheric heights is much larger than the collision
frequency, we can thus assume the motion of the particles to be their guiding cen-
tre. As a consequence the average motion is symmetric with respect to the azimuth
and one-dimensional along the direction of the magnetic field (Lummerzheim,
1987). With this approximation, I and f are functions of the path s along the mag-
netic field, the cosine µ of the pitch-angle θ to the magnetic field and the energy
E. In that case, the second term ∇r · (vf) can be rewritten (∂f/∂s)(ds/dt) +
(∂f/∂µ)(dµ/dt) where ds/dt = µv and dµ/dt = (∂µ/∂s)(ds/dt). The term
∂µ/∂s is calculated using the conservation of the first adiabatic invariant (1 −
µ2)/B = constant (i.e. the magnetic moment).

The third term ∇v · (F f/me) is transformed using the continuous slowing
down approximation that assumes that the ambient electrons exert a "frictional"
force on the fast electrons (Galand, 1996).

me
dv

dt
= −neL(E)

v

v
(5.5)

where ne is the ambient electron density and L(E) is the stopping cross section in
the approximation of a continuous energy loss process.

Replacing the function distribution f by the intensity I in the electron conti-
nuity equation yields the transport equation

µ
∂I

∂s
− 1− µ2

2B

∂B

∂s

∂I

∂µ
−ne

∂L(E)I

∂E
=

1

v

(

δI

δt

)

coll

+
1

v

(

δI

δt

)

prod

+
1

v

(

δI

δt

)

loss

(5.6)

The terms on the right hand side of the transport equation Eq. (5.6) represent
the change of momentum in the electron intensity.

The charged particle collision processes term includes electron-electron col-
lisions, electron-ion collisions as well as momentum transfer in electron-neutral
collision.

The electron production processes term includes photo-electron production,
production of slow, scattered and ejected electrons in ionising collisions of fast
electrons, rotational excitation and vibrational excitation.

The electron loss processes term includes the fine-structure transitions in atomic
oxygen, rotational de-excitation, vibrational de-excitation, electronic de-excitation
and recombination.
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The Coulomb collision term is dropped on the right hand side and is included
through the third term on the left hand side which means that Coulomb collisions
with the ambient electrons lead to energy loss but no deflections.

5.2.4 Cross sections

To describe the collision processes, the concept of cross section has to be intro-
duced. When an electron passes through the thermosphere with velocity v, the
probability of a particular type of collision process α (i.e. ionisation, excitation of
a particular state, etc.) to take place within the unit path length is given by

nlσl(α;v) (5.7)

where nl is the number density of the target particles of the type l and σl(α;v) is
the differential cross section of the process. The frequency at which an electron
with velocity v induces the process α is thus given by

vnlσl(α;v) (5.8)

When a collision occurs, it generally consists in the loss of the particle from
the point (r,v) and the production of the particle at another point (r,v′) of the
phase space. The loss J of particles from the phase space volume d3rd3v is then
nlσl(α;v)f(r,v). Assuming, in addition, that the collision is independent of the
direction of the incident particle — σl(α; v) is the effective cross section — the
loss as a function of the intensity I is

J(r, E, µ) = −nl(r)σl(α;E)I(r, E, µ) (5.9)

For the production, one uses the phase function p(v → v′) which describes the
probability of creating secondary particles with velocity v′ from an incident par-
ticle of velocity v. The number of secondary particles created is described by
c(r,v), where

∫

c(r,v)d3v = 1 for an excitation or an elastic collision and 2 for
ionisation. The production Q, as a function of the intensity I , is written

Q(r, E, µ) =
∫∫

nl(r)σl(α;E
′, µ′)p(E ′, µ′→E, µ)c(r, E, µ)×

I(r, E ′, µ′)dE ′dµ′ (5.10)

and the collision kernel nl(r)σl(α;E
′, µ′)p(E ′, µ′→E, µ)c(r, E, µ) is simplified

depending on the type of process involved.
Thus, the right hand side of the transport equation (5.6) can be calculated and

takes the form

µ
∂I

∂s
− 1− µ2

2B

∂B

∂s

∂I

∂µ
−ne

∂L(E)I

∂E
=

−
∑

j

njσ
tot
j I +

∑

j,α

Qj,α +Qphoto (5.11)
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where σtot
j is the total cross section for particle j, Qj,α are the sources of collision

process and Qphoto is the source of photoionisation.
To solve this equation, the cross sections, phase functions, loss functions, in-

tensity flux of the solar radiation and neutral atmosphere need to be specified.
The path s of a particle is a straight line through the ionosphere and the angle

between the horizontal plane and this path is α (the altitude z is given by z =
s sinα). We introduce the scattering depth τ defined by

dτ = −
∑

j

(

nj(z)σ
tot
j (E) + ne(z)

L(E)

∆E

)

dz (5.12)

and the transport equation can be written

µ

sinα

∂I(τ, E, µ)

∂τ
= I(τ, E, µ)

− ω(τ, E)

2

∫

p(µ′→µ)I(τ, E, µ′)dµ′+Q(τ, E, µ; I). (5.13)

The elastic scattering albedo ω is defined by

ω(z, E) =

∑

j nj(z)σ
el
j (E)

nj(z)σtot
j (E) + ne(z)L(E)/∆E

. (5.14)

The source term Qn = Q(τ, En, µ; I) at energy En is given by

Qn = Qphoto(τ, En)
dz

dτ
+

N
∑

i=n+1

RinI(τ, Ei)∆Ei + ne(τ)
L(En)

∆En

I(τ, En+1)
dz

dτ
. (5.15)

where Rin is called the energy redistribution function.

5.2.5 Discrete ordinate method

The definitions of the scattering depth τ and the single scattering albedo ω make
these quantities formally equivalent to their radiative counterparts. In the discrete
ordinate approximation, the transport equation which is an integro-differential
equation, is replaced by a system of 2n coupled differential equations. In these
equations I is sampled at 2n Gaussian quadrature points in µ and the phase func-
tion p is expanded into Legendre polynomials. The source integral of the transport
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Figure 5.3: The weights wi as a function of the points µi of the 8, 16, 32 and
64-points double-Gauss quadratures

equation is replaced by a summation using the double-Gauss quadrature formula.
The discrete ordinate approximation is written

µi

sinα

∂Ii(τ, E, µi)

∂τ
= Ii(τ, E, µi)−

ω(τ, E)

2

n
∑

j=−n

j 6=0

wjp(µj, µi)Ij +Q(τ, E, µi; Ii), i = ±1, . . . ,±n (5.16)

where µi and wi are respectively the quadrature points and weights. The points
and weights satisfy in the case of the Gauss quadrature µ−i = −µi and w−j = wj .

We use a double-Gauss quadrature rule where the Gaussian formula is applied
separately to the half-ranges −1 < µ < 0 and 0 < µ < 1. The main advantage
of this double-Gauss scheme is that the quadrature points (in even orders) are
distributed symmetrically around |µ| = .5 and clustered both toward |µ| = 1 and
µ = 0, whereas in the Gaussian scheme for the complete range, −1 < µ < 1 they
are clustered toward µ±1 (Stamnes et al., 1988). The clustering toward µ = 0 will
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give superior results near the boundaries where the intensity varies rapidly around
µ = 0. A half-range scheme is also preferred since the intensity is discontinuous
at the boundaries. Another advantage is that upward and downward quantities
are obtained immediately without further approximations. Figure 5.3 shows the
double-Gauss quadrature weights wi as a function of the points µi for a 32-points
quadrature.

Assuming the vertical axis positive upward, then the pitch-angle in the range
[π/2, π] is downward and the pitch-angle in the range [0, π/2] is upward, the
downward and upward hemispherical net intensities or net fluxes are defined by

Φ−
net(z, E) = 2π

∫ −1

0
µI(z, E, µ)dµ, (5.17)

Φ+
net(z, E) = 2π

∫ 1

0
µI(z, E, µ)dµ. (5.18)

In the discrete ordinate method, the two fluxes are estimated by means of the
described double-Gauss quadrature

Φ−(z, E) ≃ −2π
−1
∑

i=−n

wiµiIi(z, E, µi), (5.19)

Φ+(z, E) ≃ 2π
n
∑

i=1

wiµiIi(z, E, µi). (5.20)

5.3 Electron velocity distribution moments

Angular moments

The hemispherical net flux can be seen as the first-order angular moment of the
intensity I (Strickland et al., 1976). Let us define the nth-order angular moment
Φn of the intensity I by

Φn(z, E) = 2π
∫ 1

−1
µnI(z, E, µ)dµ, (5.21)

which can be approximated with the double-Gauss quadrature by

Φn(z, E) ≃ 2π
n
∑

j=−n

j 6=0

wiµ
n
j I(z, E, µj). (5.22)

In the next subsections, the altitude variable of the functions is not written explic-
itly but is implied. We have calculated the moments of the supra-thermal distribu-
tion using the definition of the moments given by Balescu (1988) and expressed
the moments in terms of the angular moments defined in Eq. (5.22).



5.3 Electron velocity distribution moments 73

Supra-thermal electron density

The electron density ns is the zeroth-order moment of the electron velocity distri-
bution function.

ns =
∫

fs(v)d
3v, [cm−3] (5.23)

Let us replace the electron velocity distribution fs with the intensity I and identify
the zeroth-order angular moment Φ0. ns is then expressed

ns =

√

me

2

∫ Φ0(E)√
E

dE, (5.24)

or by integrating over v

ns = me

∫

Φ0(v)dv, (5.25)

or if we define the dimensionless variable x = v/ve, where ve is the thermal
velocity of the electrons

ns = meve

∫

Φ0(x)dx. (5.26)

Supra-thermal electron average velocity

The electron average velocity us is related to the first-order moment of the elec-
tron velocity distribution function through

nsus =
∫

vfs(v)d
3v, [cm−2 s−1] (5.27)

The mean velocity us is related to the flux Γs (in units cm−2 s−1) through the
relation Γs = nsus.

Let us replace the electron velocity distribution fs with the intensity I . Due
to the azimuthal symmetry us is a vector along the magnetic field with magnitude
us. The magnitude us can be expressed as a function of the first-order angular
moment Φ1

us =
∫

Φ1(E)dE = me

∫

vΦ1(v)dv = mev
2
e

∫

xΦ1(x)dx. (5.28)

Supra-thermal electron temperature

The electron temperature Ts (in units K) is related to the second-order centred
moment of the electron velocity distribution function through

3

2
nskbTs =

1

2
me

∫

|v − us|2fs(v)d3v, [eV cm−3] (5.29)
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Let us replace the electron velocity distribution fs with the intensity I . The tem-
perature Ts is expressed as a function of the zeroth-order angular moment Φ0

3

2
nskbTs =

√
2me

2

∫ √
EΦ0(E)dE − 1

2
nsmeu

2
s (5.30)

=
m2

e

2

∫

v2Φ0(v)dv −
1

2
nsmeu

2
s (5.31)

=
m2

e

2
v3e

∫

x2Φ0(x)dx− 1

2
nsmeu

2
s. (5.32)

Supra-thermal electron heat flux

The electron heat flux qs is related to the third-order centred moment of the elec-
tron velocity distribution function through

qs =
1

2
me

∫

|v − us|2(v − us)fs(v)d
3v, [eV cm−2 s−1] (5.33)

Let us replace the electron velocity distribution fs with the intensity I . Due to the
azimuthal symmetry qs is a vector along the magnetic field with magnitude qs. qs
can be expressed as a function of the first- and second-order angular moments Φ1

and Φ2

qs =
∫

EΦ1(E)dE −
√
2meus

∫ √
EΦ2(E)dE

−
√

me

2
us

∫ √
EΦ0(E)dE + nsmeu

3
s (5.34)

=
1

2
m2

e

∫

v3Φ1(v)dv −m2
eus

∫

v2Φ2(v)dv

− m2
e

2
us

∫

v2Φ0(v)dv + nsmeu
3
s (5.35)

=
1

2
m2

ev
4
e

∫

x3Φ1(x)dx−m2
eusv

3
e

∫

x2Φ2(x)dx

− m2
e

2
usv

3
e

∫

x2Φ0(x)dx+ nsmeu
3
s (5.36)

=
1

2
m2

ev
4
e

∫

x3Φ1(x)dx−m2
eusv

3
e

∫

x2Φ2(x)dx

− nsus

2

(

3kbTs −meu
2
s

)

. (5.37)

Figure 5.4 presents the moments from the electron supra-thermal distribution
function before truncation and after the truncation with the strategy described in
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Section 1.5 and using the expressions for the moments that we have calculated
below.

The difference between the moments calculated before truncation and after
truncation is rather important, especially we note that heat flow changes of sign
after 350 km. Therefore, special care has to be taken when truncating the supra-
thermal distribution function. The truncation has to be done at the correct energy
in order to approximate correctly the P ∗and Z∗ functions.
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Figure 5.4: Calculation of the supra-thermal moments for the distribution function
of the electrons calculated by the numerical transport code and the truncated one
with the strategy described in Section 1.5 from 110 km to 400 km and for the
8-streams run of Figure 5.2



Conclusion

While the study of the intensity of the electron plasma line has given valuable re-
sults on the enhancement mechanisms of the line for sometime, work on the exact
localisation of the plasma line in the incoherent scatter spectrum has progressed
rather slowly, in part because of coarse time or frequency resolution problems as
well as coarse spatial resolution.

This work has been motivated by the first measurement at EISCAT of the
plasma line in a continued manner. We have concentrated on two part:

☞ The design of a new plasma line experiment for the EISCAT radar making
use of the alternating code technique to improve the spatial resolution.

☞ The development of an improved model for the intensity and the Doppler
frequency shift of the plasma lines in the direction parallel to the magnetic
field.

The benefit of the alternating code technique is to improve drastically the spa-
tial resolution of the measurement. Our experiment has been run successfully with
an altitude resolution of 3 km as opposed to 40 – 50 km obtained with the conven-
tional technique of the long pulse. It has allowed, for the first time at EISCAT,
the simultaneous measurement of the plasma line at several altitudes, providing
the plasma line parameters, i.e. the intensity and Doppler frequency shift, for an
altitude profile with a temporal resolution of 10 s.

In order to refine the model of the intensity and Doppler frequency shift of
the plasma line, we have developed a numerical code that calculates the dielectric
function of the medium and the reduced one-dimensional velocity distribution
along the magnetic field for any two-dimensional velocity distribution function.
Because it is very difficult to construct a self-consistent model of the velocity
distribution function encompassing all of the relevant energy range, we have made
an ad hoc model by separating the distribution into two parts: the thermal and the
supra-thermal population. The thermal population is represented by the Spitzer
function that takes into account the effect of an electric field and/or a temperature
gradient. The supra-thermal population is derived from the angular energy flux of
the supra-thermal electrons calculated by a numerical electron transport model.
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This project has contributed to a better understanding of plasma line interpre-
tation in two ways:

☞ It is seen that the Doppler frequency of the plasma line is strongly depen-
dent on the frequency of operation of the radar. When using low frequency
radars, i.e. VHF radars, the position of the line is clearly influenced by the
supra-thermal population while for high frequency radars, i.e. UHF radars,
the deviation of the Doppler frequency from the theoretical frequency asso-
ciated to a Maxwellian gas is due to a departure of the distribution function
in the thermal part, particularly the anisotropy that develops in the presence
of a gradient of the electron temperature modifies substantially the disper-
sion relation.

☞ The effect of photo-ionisation of N2 and O by the solar emission of HeII
has been identified when we analysed a plasma line data set that we have
collected on the EISCAT VHF radar. The effect observed is a damping of the
intensity and a modification of the Doppler frequency of the plasma lines
around the phase energies of 24.25 eV and 26.25 eV.

However, it is important to point out the limits of our present model:

☞ Our calculations of the intensity and the Doppler frequency shift are limited
to radar observations along the magnetic field.

☞ The Spitzer theory of a fully ionised plasma in the presence of a temperature
gradient has been adapted to a partially ionised plasma in a non-consistent
way. The effect of the collisions between the electrons and the neutral par-
ticles has been taken into account in the electron mean free path while the
collision operator has not been modified.

☞ The model of collisions used in the differential cross section to estimate
the incoherent scatter spectra is not the same as the one that describes the
electron velocity distribution function.

Therefore, further works could be done. It would be interesting, for example,
to generalise the calculations of the P ∗and Z∗functions in directions different than
parallel to the magnetic field. The evoked lack of consistency between the models
could be investigated. The problem of the connection of the thermal and the supra-
thermal component of the velocity distribution function is also of interest. Finally,
more plasma line data with radars of different frequencies should be analysed to
verify further the fine structures of the supra-thermal distribution as well as verify
the effect on the Doppler frequency and therefore improve the kinetic model of
the thermal and supra-thermal electrons.
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Alors que l’étude de l’intensité de la raie de plasma a apporté des résultats intéres-
sants sur les mécanismes de l’augmentation de la raie depuis un certain temps, le
travail sur sa fréquence dans le spectre à diffusion incohérente a progressé plutôt
lentement, à cause de la pauvre résolution en fréquence et d’autres problèmes
expérimentaux.

Ce travail a été motivé par la première mesure à EISCAT de la raie de plasma
de manière continue. Nous nous sommes concentrés sur deux points :

☞ La conception d’une nouvelle expérience de raie de plasma pour le radar
EISCAT utilisant la technique du code alternatif dans le but d’améliorer la
résolution spatiale.

☞ Le développement d’une théorie améliorée de l’intensité et du Doppler en
fréquence de la raie de plasma pour une visée le long du champ magnétique.

Le bénéfice de la technique du code alternatif est d’améliorer de manière sub-
stantielle la résolution spatiale des mesures. Notre expérience a été tournée avec
succès avec une résolution en altitude de 3 km, à comparer à la résolution de
40 – 50 km obtenue avec la technique classique de l’impulsion longue. Cela a per-
mis, pour la première fois à EISCAT, de mesurer simultanément la raie de plasma
à plusieurs altitudes, procurant ainsi les paramètres de la raie de plasma, c’est à
dire l’intensité et le Doppler en fréquence, pour un profile en altitude avec une
résolution temporelle de 10 s.

Pour raffiner le modèle de l’intensité et du Doppler en fréquence de la raie de
plasma, nous avons développé un code numérique qui calcule la fonction diélec-
trique du plasma ainsi que la distribution réduite le long du champ magnétique
pour n’importe quelle distribution des vitesses à deux dimensions. Parce qu’il très
difficile de construire un modèle unique de la distribution des vitesses satisfaisant
toute les gammes d’énergie, nous avons construit un modèle ad hoc en scindant
la distribution des vitesses en deux parties: la population thermique et la supra-
thermique. La population thermique est représentée par la fonction de Spitzer
qui tient compte de l’effet d’un champ électrique et/ou d’un gradient de tempéra-
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ture. La population supra-thermique est déduite du flux angulaire d’énergie cal-
culé grâce à un modèle numérique du transport des électrons.

Ce projet a contribué à une meilleure compréhension de l’interprétation de la
raie de plasma de deux façons :

☞ Il est montré que le Doppler en fréquence de la raie de plasma est fortement
dépendante de la fréquence de fonctionnement du radar. Avec un radar
basse fréquence de type VHF, la position de la raie de plasma est clairement
influencée par la population supra-thermique des électrons alors que pour un
radar haute fréquence de type UHF, la déviation du Doppler associé à une
classique Maxwellienne est due à la partie thermique de la distribution des
vitesses des électrons, en particulier l’anisotropie due à la présence d’un
gradient de température électronique modifie la relation de dispersion de
l’onde Langmuir.

☞ L’effet de la photo-ionisation de N2 et O par l’émission solaire provenant de
HeII a été identifié quand nous avons analysé des données raie de plasma
que nous avons mesuré avec le radar VHF d’EISCAT. L’effet observé est
un amortissement de l’intensité ainsi qu’une modification du Doppler en
fréquence au voisinage de 24.25 eV et 26.25 eV correspondant à l’énergie
de phase de l’onde Langmuir.

Cependant, il est important de noter les limites de notre modèle actuel :

☞ Nos calculs de l’intensité et du Doppler en fréquence sont limités à la direc-
tion parallèle au champ magnétique.

☞ La théorie de Spitzer d’un plasma complètement ionisé en présence d’un
gradient de température a été adaptée pour un plasma partiellement ionisé
de manière non consistante. En effet, les collisions des electrons avec les
particules neutres a été pris en compte dans le libre parcours moyen des
électrons alors que l’opérateur de collision n’a pas été modifié.

☞ Le modèle des collisions utilisé dans la section efficace différentielle pour
estimer le spectre à diffusion incohérente n’est pas le même que celui utilisé
pour décrire la distribution des vitesses des électrons.

Par conséquent, de plus amples travaux sont envisageables. Il serait intéres-
sant, par exemple, de généraliser le calcul des fonctions P ∗ et Z∗ dans les direc-
tions autres que parallèle au champ magnétique. Le manque de consistance évo-
qué entre les modèles de collisions utilisés pourrait aussi être approfondi. Le prob-
lème du raccord entre les composantes thermique et supra-thermique de la distri-
bution des vitesses des électrons est aussi d’un intérêt certain. Enfin, l’acquisition
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de plus amples données pour différentes fréquences de fonctionnement devrait
être analysée pour vérifier les structures détaillées de la fonction de distribution
des vitesses des supra-thermiques et ainsi améliorer le modèle cinétique des supra-
thermiques, de même que vérifier l’effet prédit de la correction sur le Doppler en
fréquence de la raie de plasma.
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Abstract. We present results of the first plasma-line
measurement of the incoherent spectrum using the alter-
nating-code technique with the EISCAT VHF radar. This
technique, which has earlier mostly been used to measure
high-resolution E-region ion-line spectra, turned out to be
a very good alternative to other techniques for plasma-
line measurements. The experiment provides simulta-
neous measurement of the ion line and downshifted and
upshifted plasma-line spectra with an altitude resolution
of 3 km and a temporal resolution of 10 s. The measure-
ments are taken around the peak of the F region, but not
necessarily at the peak itself, as is the case with the long-
pulse technique. The condition for success is that the scale
height should be large enough such that the backscattered
signal from the range extent of one gate falls inside the
receiver filter. The data are analyzed and the results are
combined with the results of the ion-line data analysis to
estimate electron mean drift velocity and thereafter elec-
tric currents along the line of sight of the radar using both
the standard dispersion relation assuming a Maxwellian
electron velocity distribution and the more recent model
including a heat-flow correction term.

1 Introduction

The incoherent scattering spectrum consists of two main
components. The ion line, which contains most of the
scattered power, is extensively being measured at the
different facilities around the world, and standard para-
meters such as electron density, electron and ion temper-
ature, ion mean drift velocity, and others are diagnosed.
On the other hand, plasma lines are weak and broadband.
The intrinsic spectral width of the plasma line is deter-
mined by the damping of the Langmuir wave causing the
scattering (Landau damping or collisional damping). The
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damping depends on the density, temperature and collision
frequency of the ambient electrons and on the presence of
a suprathermal population (photoelectrons or secondary
electrons produced in particle precipitation events)
around the phase velocity of the wave (Perkins and
Salpeter, 1965). It also depends on the angle between the
scattering direction and the geomagnetic field. For small
angles, as in this experiment, the effect is negligible. In the
F region at daytime, where damping is mostly dominated
by electron-ion collisions, and for field-aligned conditions,
the width is a few kHz. Temporal fluctuations during the
integration time artificially broaden the width. Under
relatively stable conditions of the ionosphere, this
broadening is a few kHz per 10 s, which is a typical inte-
gration time. The spatial variation depends on the elec-
tron-density scale height which is of the order of
1 kHzkm~1 at regions with large scale height and around
the peaks in the E and F regions up to 10 kHzkm~1. The
scattered power is usually less than 10% of the ion-
line power, even in the presence of suprathermal particles.
This leads to some conditions on the measurement of
the autocorrelation function. The correlation time is
inversely proportional to the bandwidth of the plasma line
and is not larger than 500 ls. The lag increment q
determines the bandwidth of the measured spectra and
should be around 10—20 ls for a spectral window of
50—100 kHz.

To perform the measurement of the autocorrelation
function several techniques are available and can be clas-
sified into three categories. The long-pulse technique
(Showen, 1979; Kofman and Wickwar, 1980) provides
data at the cut frequency of the E or F region. It has the
advantage of a good signal-to-noise ratio, which increases
with increasing density scale height. On the other hand,
this technique provides only one measurement point. The
chirp technique (Hagfors, 1982; Birkmayer and Hagfors,
1986) is very similar to the long-pulse technique. The
signal is chirped in order to tune it to the local density
gradient, creating artificially the measurement conditions
of a peak density in a region. In these techniques, no
attempt is made to obtain good range resolution.

.



The multipulse technique (Farley, 1972), by using ad
hoc spatial patterns of short pulses, provides good range
resolution and good lag resolution. Unfortunately, the
multiple-frequency technique commonly used to improve
the accuracy of the measurement of the ion line is not
adequate for plasma-line measurements due to the k de-
pendence of the position of the plasma line which would
broaden the spectra. In low signal-to-noise ratio measure-
ments, like plasma-line measurements, one definitely
needs to concentrate all of the energy on the same fre-
quency. Also the accuracy of position estimation will be
reduced unless special analysis techniques are used to
account for it (using a 4-frequency multipulse would yield
a broadening of \150 Hz with the EISCAT VHF radar
and \1 kHz with the UHF radar).

The solution is to use phase patterns of short pulses
instead of spatial patterns. One of these techniques is the
alternating code (Lehtinen and Häggström, 1987). It pro-
vides good range and lag resolution and has been proven
to give near optimum accuracy in the case of poor signal-
to-noise ratio. The principle is to transmit a set of phase-
coded pulses and decode them in such a way that only
part of the pulse (one baud) is contributing to the scatter-
ing. An important assumption for the code to work
properly is that the plasma correlation function must
remain stationary in the time needed for the whole set of
scans to be transmitted. A similar technique, the coded
long pulse (Sulzer, 1989), has been used recently at the
Arecibo Observatory facility (Djuth et al., 1994). The
results are promising, but the implementation of the tech-
nique for such very long codes (512 bits) requires dedi-
cated hardware processing.

2 Experimental setup

We used the VHF EISCAT radar near Tromsø, Norway
at daytime in June 1994. The radar cannot be steered
south to be in a field-aligned position, thus the antenna
was pointed vertically, which gives an angle of about 12°
to the magnetic field line at 250 km. The experiment used
a 32-bit strong condition alternating code of baud length
20 ls (actually the first alternating code run on the VHF
system). Three receiving channels, one for upshifted, one
for downshifted plasma lines, and one for the ion line,
were used simultaneously with the same spatial character-
istics, thus providing the two components of the incoher-
ent scatter spectrum. Forty gates were formed from an
altitude (or range) of 180 km up to 300 km with an alti-
tude resolution of 3 km. The gate separation was also
3 km. The autocorrelation function was measured from
a delay of 20—620 ls in steps of 20 ls. This means a spec-
trum of 50-kHz bandwidth and about 780-Hz resolution.
To get the zero-lag of the autocorrelation function, a 1-
baud-length pulse was also used with the same geometric
characteristics. Each interpulse period was \13 ms and
for a 32-bit alternating code one has to send 64 dif-
ferent coded long pulses, consequently the whole cycle was
\0.8 s. This is the time we have to assume that the
ionosphere remains stationary. The data were dumped
every 10 ls. This setup is a good compromise for a high-

enough height resolution, a large enough bandwidth of
the receiver, and the physical limitation of the size of the
memory of the acquisition system. For example, if we
assume a Chapman layer in the neighborhood of the peak
of the F region, with a characteristic scale height of 65 km,
and if the receiver system is tuned at the peak or shifted
inside the peak, we can expect to get at least six gates with
signal falling within the bandwidth of the filter (Fig. 1).

3 Data analysis

3.1 Ion-line data

The ion-line data were analyzed in 10-s intervals, provid-
ing the four standard ionospheric parameters, i.e., electron
density, electron and ion temperature, as well as ion mean
drift velocity along the line of sight. Figure 2 shows the
results of the analysis. One can see that the ionosphere
had a very quiet and steady behavior, as well as a rather
steep electron temperature gradient.

3.2 Power-profile data

The plasma-line power profiles were analyzed solving
Eq. 1 below (Yngvesson and Perkins, 1968), a similar

Fig. 1. Parabolic height distribution of the plasma-line frequency
with scale height of 65 km showing two different tunings of the
50-kHz receiving filter and the corresponding height cells contribu-
ting to the scattering
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Fig. 2. Ionospheric parameters as function of range and time from
the analysis of the ion line. The data have been smoothed with
a 9 km]30 s window

radar equation as the one used for the ion line, yielding
parameters Q

u
and Q

d
for the upshifted and downshifted

lines (Fig. 3).

Q"
P
R

P
T

R2

dR ACs

A ( f )

A(0) B~1. (1)

Here, P
T

and P
R

denote transmitted and received power,
R is the distance to the probed volume, dR is the volume
extent (which is the minimum of the length of the trans-
mitted pulse and the range with signal falling inside the
receiver filter) and C

s
is the system constant. A( f ) is the

frequency-dependent effective antenna area at frequency
f offset from the transmitted frequency. A( f )/A (0) is the
gain relative to the measurement of the ion line. It has
been estimated for the VHF EISCAT system by measure-
ment of the radio star Cassiopeia A.

The analysis shows a very similar enhancement of the
upshifted and downshifted line, indicating the presence of
isotropic photoelectrons. Situations where the receiving
filter was tuned to a frequency not matching the frequency
of the peak can be seen at different times on both lines, for
example around 1245 and 1315 UT. Note also that the
asymmetry after 1515 UT is artificial, and is produced by
an increase in the receiver-filter bandwidth, thus increas-
ing the noise level with aliased noise contributions.

Fig. 3. The two parameters Q
u
and Q

d
of Eq. 1 as function of range

and time from the analysis of the upshifted and downshifted plasma-
line power profiles

3.3 Autocorrelation-function data

The autocorrelation functions were analyzed using a least-
square fit method. We have tried two different spectral
models, a squared-triangle shape and a Gaussian, both
yielding three parameters: the received frequency f

r
, the

bandwidth of the line d
f
, and the power of the line a

p
. The

model of the autocorrelation function o for a set of para-
meters and at time delay q is given by Eq. 2 for the
squared- triangle model and Eq. 3 for the Gaussian model.
The squared triangle is based on physical arguments: the
amplitude sensitivity is maximum at the center of a range
gate and falls linearly to zero one baud length away on
each side (neglecting the effect of the receiver filter). As the
plasma frequency is changing approximately linearly in
a range gate, the returned power spectrum will take the
shape of a squared triangle falling to zero at a certain
frequency. It should be convolved with the natural-line-
width spectrum as well as multiplied by the receiver-filter
response spectrum. The Gaussian shape is not rigorously
true because it does not fall exactly to zero at a certain
frequency, but it falls quickly enough toward zero to be
justified. This spectral shape can be used to approximate
a squared-triangle spectrum smoothed by the convolution
effect of the natural line width. Figure 4 shows the results
of both fit models for a 10-s dump. The curves are so
similar that they are hardly separable from each other. In
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Fig. 4. Downshifted and upshifted spectra (circle
points and thin solid line) from a 10-s dump fitted to
the squared-triangle model (thick solid line) and the
Gaussian model (dashed line). The scale is the same
for each height

Fig. 5 the parameters of the fit models are plotted. All of
the parameters exhibit a rather good agreement.
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Figures 4 and 5 show the analysis of one data dump where
six gates were fitted. Note that in Fig. 5 the received
frequency f

r
for the downshifted line is plotted positive.

One can also see that the parameters exhibit very smooth
behavior and very small error bars, \0.01% for the re-
ceived frequency.

Figures 6—8 show the result of the analysis of the
autocorrelation functions of the plasma lines for the whole
set of data in a similar way as for ion-line data, i.e., in
time-range coordinates. One can see in Fig. 7 the general
trend that the bandwidth of the line d

f
tends to increase as

the position is moving away from a region of large scale
height. This can also be seen in Fig. 6.

4 Further analysis

The solution of the real part of the dispersion relation for
Langmuir waves gives the position of the frequency peak
of the plasma-line spectrum. For a Maxwellian, homo-
geneous and unmagnetized electron plasma, this can be
written as Eqs. 4 and 5 for the upshifted line (i.e., the
downgoing Langmuir waves) and Eqs. 6 and 7 for the
downshifted line (upgoing Langmuir wave).
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Here, u
r`

, k
`

and u
r~

, k
~

denote the frequency at the
peak and the corresponding wave number of the upshifted
and downshifted spectra, respectively. »

e
and v

e
are the
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Fig. 5. The fitted parameters f
r
, Df

r
, d

f
and a

p
as well as the error

bars from the data of Fig. 4 as a function of range. The dashdot line is
for the parameters from the upshifted line, and the dashed one is for
the downshifted lines. The four upper panels show the parameters
for the squared-triangle model, the four lower panels for the Gaus-
sian model

electron drift velocity and the electron thermal velocity,
j
D

is the Debye length, and W
3

is the real part of the
dispersion function W as defined by [Ichimaru (1973)].

By eliminating the Debye length k
D
, one can derive Eq. 8,
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This equation can be solved for »
e
when u

r`
, k

`
and u

r~
,

k
~

are taken from the results of the plasma-line analysis
and v

e
is calculated from the electron temperature given

by the ion-line analysis.
When one wants to take into account the electron heat

flow contribution introduced by Kofman et al. (1993),
Eqs. 4 and 6 are modified to Eqs. 9 and 10, where E

B
is the

electron heat-flow correction.
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Fig. 6. The fitted upshifted and downshifted received frequencies
displayed as a function of range and time for the Gaussian model

Fig. 7. The fitted upshifted and downshifted line bandwidth dis-
played as a function of range and time for the Gaussian model

P. Guio et al.: Alternating-code experiment for plasma-line studies 1477



Fig. 8. The fitted upshifted and downshifted line power displayed as
a function of range and time for the Gaussian model

This heat-flow correction is proportional to the third-order
moment of the one-dimensional electron-velocity distribu-
tion function along the line of sight of the radar. It can be
introduced in the dispersion relation by noting that when
W

3
is expanded for waves with phase velocity much larger

than the electron thermal velocity, as for Langmuir wave, it
takes the form of a series of the successive moments of the
electron-velocity distribution function. In the correction
termE

B
, q

e
is the heat flow along the magnetic field, a is the

angle between the line of sight of the radar and the mag-
netic field, m

e
and e are the mass and charge of the electron;

q
e
is in the limit of a fully ionized gas a function of the local

electron-temperature gradient. At ionospheric heights and
along the magnetic field, it is given by (Banks, 1966)

q
e
"!1.23 10~11¹ 5@2

e
+ ¹

e
Jm~2 s~1. (11)

In the same way as for Eqs. 4 and 6, j
D

can be elimi-
nated from Eqs. 9 and 10, leading to Eq. 12
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This equation can also be solved for »
e

when u
r`

,
k
`

and u
r~

, k
~

are taken from the results of the plasma-
line analysis and v

e
is calculated from the electron temper-

ature given by the ion-line analysis. Also, the electron-
temperature gradient has to be estimated to calculate E

B
.

To get the gradient we have calculated an average
electron-temperature profile during the time of the experi-
ment, fitted it to a polynomial and then calculated the
derivative from this model profile. This is justified by the
fact that the electron temperature appears to have a very
smooth behavior during the whole experiment. Figure 9
shows the model used for the gradient. Another justifi-
cation to use an average profile is that the use of an
estimated gradient for each dump would lead to unneces-
sarily noisy gradient estimates, whereas our estimate for
the gradient shows a rather smooth behavior. At the
considered heights between 200 and 260 km, the gradient
was of the order of 5 Kkm~1.

We now have an estimate of »
e
. By use of one of Eqs. 4

and 6 (or similarly Eqs. 9 and 10 for the heat-flow model),
we can calculate the electron density n

e
to a much better

accuracy than the one we can get from the ion line. We
now have all the necessary quantities to calculate the
currents with Eq. 13,

J"n
e
e(»

e
!»

i
) Am~2, (13)

where »
i
is taken from the results of the ion-line analysis.

Figure 10 shows the histograms of the estimated cur-
rents for both models, with and without the heat-flow
term. These histograms exhibit a very good normal distri-
bution of the values of the currents. For the expectation of

Fig. 9. Average electron-temperature profile for the considered peri-
od in dashed line and the polynomial approximation, and the de-
duced profile for temperature gradient
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a normal distribution, a 95% confidence interval for the
current J is given in Table 1. It shows a good indepen-
dence of the result from the fitting model.

One can see that the heat-flow correction is very effec-
tive in the estimation of the mean drift current in the case
of large gradient temperature, and thus is in better agree-
ment with no net parallel current during the quiet daytime
conditions. Note also that the uncertainty on the esti-
mated current remains of the same order; this is certainly
to be accounted to the way we have estimated the electron-
temperature gradient.

Fig. 10a–f. Histogram of the calculated currents without (left
panels) and with heat-flow correction (right panels). The total popu-
lation of each histogram is &700. The dashed lines represent the best
fit to a normal distribution. a and b are for the Gaussian model,
c and d are for the squared-triangle model, and e and f are for a data
analysis taking the parameters of the fit giving the smallest residuals
of the squared-triangle and Gausian fits. Note that positive currents
are upward currents

Table 1. 95% confidence interval for the currents J without heat-
flow correction and J

)&
with heat-flow correction from the histo-

grams of Fig. 10

J (lA m~2) J
)&

(lAm~2)

Gaussian model (a) (b) !1.0$0.2 !0.3$0.2
Squared-triangle model (c) (d) !1.2$0.2 !0.5$0.2
Best of both models (e) (f ) !1.3$0.2 !0.4$0.2

5 Conclusion

We have shown that the alternating code for studying
plasma lines with an incoherent scatter radar is a valuable
technique. It yields a greatly improved spatial resolution
and a much larger amount of measured points (between
five and six times more than for a long-pulse experiment).

We have been using our data to test the heat-flow
dispersion-relation model under quiet and steady iono-
spheric conditions. We confirm that the use of the heat-
flow model gives important corrections and improves the
measurements of current.

The plans are to extend and improve the use of the
alternating code in future experiments. On one hand, the
experiment could be refined and improved to give better
accuracy and larger quantities of data. On the other,
analysis techniques such as constrained full profile analy-
sis of both plasma-line and ion-line data should be investi-
gated and tried.
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Abstract. The plasma dispersion function and the
reduced velocity distribution function are calculated
numerically for any arbitrary velocity distribution
function with cylindrical symmetry along the magnetic
®eld. The electron velocity distribution is separated into
two distributions representing the distribution of the
ambient electrons and the suprathermal electrons. The
velocity distribution function of the ambient electrons is
modelled by a near-Maxwellian distribution function in
presence of a temperature gradient and a potential
electric ®eld. The velocity distribution function of the
suprathermal electrons is derived from a numerical
model of the angular energy ¯ux spectrum obtained by
solving the transport equation of electrons. The numer-
ical method used to calculate the plasma dispersion
function and the reduced velocity distribution is de-
scribed. The numerical code is used with simulated data
to evaluate the Doppler frequency asymmetry between
the up- and downshifted plasma lines of the incoherent-
scatter plasma lines at di�erent wave vectors. It is shown
that the observed Doppler asymmetry is more depen-
dent on deviation from the Maxwellian through the
thermal part for high-frequency radars, while for low-
frequency radars the Doppler asymmetry depends more
on the presence of a suprathermal population. It is also
seen that the full evaluation of the plasma dispersion
function gives larger Doppler asymmetry than the heat
¯ow approximation for Langmuir waves with phase
velocity about three to six times the mean thermal
velocity. For such waves the moment expansion of the
dispersion function is not fully valid and the full
calculation of the dispersion function is needed.

Key words. Non-Maxwellian electron velocity
distribution � Incoherent scatter plasma lines � EISCAT �
Dielectric response function

1 Introduction

We want to estimate the ®eld-aligned electron mean drift
velocity Ve from incoherent scatter Doppler measure-
ment of the plasma lines (Vidal-Madjar et al., 1975;
Bauer et al., 1976; Showen, 1979). In order to do this we
need to solve accurately the plasma dispersion relation
for electrostatic waves at high frequencies and thus to
have an accurate model of the electron velocity distri-
bution function.

A common way of representing the whole electron
velocity distribution function is to separate it into two
populations: the ambient or bulk population fa�v� and
the suprathermal or tail population fs�v�, and special
care needs to be taken for the treatment of the transition
region between the suprathermal and ambient electrons.
At ionospheric heights about the F 2 region, the bulk
population of the electrons is collision-dominated and
thus the velocity-space distribution is expected to be
very close to a Maxwellian. In this case, the parameters
describing the state of the thermal population are: the
electron density ne, the electron temperature Te and the
potential source of inhomogeneity such as the spatial
gradients of electron temperature $Te and pressure $pe,
as well as possibly an electric ®eld E. These parameters
are provided by the analysis of the measurement of the
ion line incoherent scattering. On the other hand, the
suprathermal component fs�v� is taken from a complete
kinetic electron transport code which takes into account
the ionization and heating resulting from both solar
insolation and particle precipitations.

In the ®rst part, we describe and review the original
theory developed to calculate the velocity distribution
function of the ambient electrons in the presence of a
temperature gradient and/or an electric ®eld (Spitzer
and H�arm, 1953). Thereafter we present and discuss
the calculations we use to represent the suprathermal
part of the distribution function. We then describe a
numerical method to calculate the full two-dimensionalCorrespondence to: P. Guio
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dispersion relation. We test our numerical code and
discuss the results on simulated Doppler asymmetry
data for radars with di�erent wave vector and compare
the results given by the heat ¯ow approximation of
Kofman et al. (1993).

2 The ambient velocity distribution

For low energy and for a fully ionized plasma consisting
of electrons and one ion species, the distribution
function of the electrons in a highly collisional regime,
i.e. in a regime where the velocity-space distribution of
the electrons is close to a Maxwellian (Gombosi and
Rasmussen, 1991), can be approximated by the Spitzer-
HaÈ rm distribution function of Cohen et al. (1950) and
Spitzer and H�arm (1953).

This time-independent distribution function is the
result of the presence of a weak electric ®eld and a
temperature gradient. The distribution function is
expanded as a power series in the Knudsen number �
which represents the ratio of the microscopic length
scale to the macroscopic length scale. In this theory only
the ®rst order in � is kept, which is known as the
principle of local action (Woods, 1993). This restriction
to small values of � implies that the electron mean free
path ke is much smaller than the di�erent scale lengths
considered r log Te, r log pe and eE=KbTe (Ljepojevic
and MacNeice, 1989). The two Knudsen numbers
associated are respectively �E and �T de®ned as

�E � ke
eE

KbTe
ÿrpe

pe

� �

�1�

and

�T � 2ke
rTe

Te
; �2�

where E is the electric ®eld, Te the electron temperature,
pe the electron pressure and r represents the derivative
along the line of sight. For small Knudsen numbers, i.e.
�E�1 and �T �1, perturbation methods apply and the
ambient electron velocity distribution function fa is
expanded about a local Maxwellian f0�v��ne=
�2p�3=2=v3e exp�ÿ�v=ve�2=2� with thermal velocity ve�
�KbTe=me�1=2 and takes the following form

fa�xve; l� � f0�xve�
�

1� Zl
ÿ

�EXE

ÿ

x=
���

2
p

�

� �TXT

ÿ

x=
���

2
p

���

; �3�
where l is the cosine of the pitch angle measured from
an axis parallel to the direction of the temperature
gradient and electric ®eld, Z is the charge number of the
ion species and x is the ratio v=ve. The functions XE and
XT are the solutions of two second-order di�erential
equations [Eq. (40) of Spitzer and H�arm (1953) and Eqs.
(6)±(13) of Cohen et al. (1950)] derived from the
Boltzmann's equation where only the long-range elec-
tron-electron and the electron-ion interactions have
been taken into account through two Fokker-Planck
collision operators. This approximation is valid for low
energy only, so that the upper boundary of integration

of these functions should not be too large compared to
the mean thermal velocity ve. We have recalculated the
solutions to these equations for di�erent values of the
upper boundary. Figure 1 shows the two functions XE

and XT for those di�erent values of the upper boundary
of integration xmax.

By taking the ®rst- and third-order velocity moments
of the perturbation functions XE and XT one de®nes four
transport coe�cients cE, dE, cT and dT . These are the
normalized transport coe�cients relative to a Lorentz-
ian gas (Spitzer and H�arm, 1953; Shkarofsky, 1961).
Equations 4±7 show the relations between these coe�-
cients, the velocity moments of the distribution function
and the transport coe�cients re, se, le and je.

cE � 1

3
I3�XE� �

���

p
p

meve

4
���

2
p

Ze2neke
re; �4�

dE � 1

12
I5�XE� �

���

p
p

meve

6
���

2
p

ZeneKbke
se; �5�

Fig. 1. The perturbation functions XE and XT integrated to di�erent
upper boundary xmax � v=

���

2
p

ve � 2:8; 3:2; 3:6 and 4:0, and for an
ion charge number Z�1. Note that XE�0��XT �0��0 and that the
XE's are shifted by ÿ10 with each other, the XT 's are shifted by �5
with each other, the reference curves (i.e. not shifted) are for
xmax � 2:8
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with

In�f � �
Z xmax

0

ynf �y� exp�ÿy2�dy; �8�

where re is the electrical conductivity, se is the current
¯ow conductivity due to a temperature gradient at
constant electron density, le is the heat ¯ow conductiv-
ity due to an electric ®eld at constant electron temper-
ature and je is the thermal conductivity.

Table 1 presents the values of the normalized
transport coe�cients we have recalculated and the
original values of Spitzer and HaÈ rm (1953). With the
exception of the values for xmax�2:8, the values of the
transport coe�cients are in good agreement (under 1%)
with the values calculated by Spitzer and HaÈ rm
(xmax�3:2).

In the work of Spitzer and HaÈ rm, the electron mean
free path ke is taken to be the mean free path due to
electron-electron collisions and electron-ion collisions.
We shall correct the electron mean free path to take into
account the electron-neutral collision term (Banks,
1966). We de®ne the electron mean free path as

1

ke
� 1

kee
� 1

kei
� 1

ken
; �9�

or as a function of the electron-charged particle free
path kec:

ke � kec

1� kec=ken
: �10�

The electron-neutral collisions tend to reduce the
electron mean free path, and in the limit of low neutral
particle densities we recover the electron mean free path
value of a fully ionized plasma (Banks, 1966). It is
important to note that the di�erential equations for the
perturbation functions XE and XT have not been
modi®ed, thus the departure of the velocity distribution
function from the Maxwellian state is still caused by
Coulomb interactions through the two Fokker-Planck
collision operators for distant interactions.

In the ionosphere, a so-called polarization electric
®eld E builds up such that the ions and electrons are
constrained to drift as a single gas, which maintains bulk
charge neutrality. E is determined by the current J and it

exists whenever there is a gradient in the electron density
or in the temperature (Min et al., 1993). It is given by

E � J

re
� $pe

ene
ÿ se

re
$Te: �11�

If the ®eld-aligned current is attributed to the ¯ow of the
suprathermal electrons only then the J=re term is small
compared with the gradient terms and we get the
following relation between the electric ®eld E and the
gradient of temperature $Te

E � $pe

ene
ÿ 3cTKb

2cEe
$Te: �12�

Using Eqs. (1) to (7), this leads to the following
relationship between the twoKnudsen numbers �E and �T

4�EcE � 3�T cT � 0: �13�
In the rest of this paper we always consider the presence
of such a polarization electric ®eld. The two Knudsen
numbers for the Spitzer-HaÈ rm distribution then always
satisfy Eq. (13).

3 The suprathermal velocity distribution

The suprathermal velocity distribution fs we use is
derived from the angular energy ¯ux / calculated by the
electron transport model code along the Earth magnetic
®eld described in Lilensten et al. (1989) and Lummerz-
heim and Lilensten (1994).

In the ionosphere, primary photoelectrons or precip-
itating electrons move along the magnetic ®eld, produce
heat and provoke processes such as excitation and
ionization. In an ionization process, the incident elec-
tron mostly scattered forward is called the primary
electron, while the extracted electron may be scattered in
any direction and is called the secondary electron. This
code calculates the energy ¯ux of the electrons by
solving the vertical kinetic transport equation. This
equation simply expresses the fact that the variation of
the steady-state electron ¯ux with the scattering depth
for a given altitude, energy and pitch angle, is the
di�erence between whatever leaves that energy, altitude
or angle slab and whatever enters it. The variations in
energy or angle due to collisions are described through
di�erential cross-sections. An additional energy loss
arises from the heating of the ambient thermal electron
gas due to hot electrons to thermal electrons interac-
tions. This loss process is assumed to be a continuous
energy loss of the hot electrons to the thermal electrons,
without any de¯ection during the process.

We are using the angular energy ¯ux calculated by
this code as our input to calculate the velocity distribu-
tion. The electron velocity distribution is simply related
to the angular energy ¯ux by

/�r;E;X; t� � v2

me

fs�r;E;X; t� eVÿ1 cmÿ2 sÿ1 �14�

where E� 1
2
mev

2 and X is the solid angle. With the
assumption that the angular energy ¯ux is symmetric

Table 1. The normalized transport coe�cients as de®ned in Eqs.
(4) to (7) calculated for di�erent values of xmax and compared with
the ones given by Spitzer and HaÈ rm (xmax = 3.2)

xmax 2.8 3.2 Spitzer-HaÈ rm 3.6 4.0

cE 0.5740 0.5811 0.5816 0.5826 0.5832
cT 0.2507 0.2677 0.2727 0.2715 0.2718
dE 0.4436 0.4622 0.4652 0.4672 0.4698
dT 0.1877 0.2149 0.2252 0.2228 0.2237
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around the magnetic ®eld, fs is a two-dimensional
function of the energy E or the velocity v and of the
pitch angle h or the cosine of the pitch angle l � cos h to
the magnetic ®eld at a given altitude.

The angular energy ¯ux / is calculated over an energy
grid of 215 points ranging from Emin�0:3 eV to
Emax�350 eV and over a l-grid corresponding to the
points of the double-Gauss quadrature integration rule
(Stamnes et al., 1988). The number of points in the l-grid
is often referred to as the number of streams. The double-
Gauss quadrature refers to two Gauss quadratures
applied separately on the upper and lower hemispheres.
The main advantage of this double-Gauss scheme is that
the quadrature points (in even orders) are distributed
symmetrically around jlj�0:5 and clustered both to-
wards jlj � 1 and l�0, whereas in the single Gauss
scheme they are clustered towards jlj�1. This clustering
towards l�0 will give superior results near the bound-
aries where the functions to integrate vary rapidly or can
even be discontinuous, i.e. around l�0.

The angular ¯ux calculations we are using were
obtained by running the code for 25 June 1994 at
14:00 UT over Tromsù assuming an Ap index of 3 and
a F10.7 index of 75. The ionospheric parameters used as
input to the code have been computed by the IRI 90
model (Bilitza, 1990).

Figures 2 and 3 show two examples of calculation of
the distribution function for an eight-point angular
quadrature. Figure 2 shows only the ¯ux for one angle,
the ¯ux at this height is nearly isotropic and one could
not separate the ¯ux. From a height of about 200km and
above, the velocity distribution starts to develop an
anisotropy mostly in the direction of the magnetic ®eld,
i.e. for jlj'1. This feature is clearly seen in Fig. 3: the
two angular distributions in the lowest plate are for
nearly parallel and anti-parallel directions to the mag-
netic ®eld and they clearly present di�erences in inten-
sity, while in the highest plate (angular distributions for
the directions nearly perpendicular to the magnetic
®eld), the two curves cannot be separated.

An interesting function which illustrates the regions
in phase space where the heat ¯ux is predominantly
carried is the ratio of the integrated heat ¯ux up to
velocity v � xve and normalized to the total net heat ¯ux
qs (Gray and Kilkenny, 1980). We de®ne in this way the
function a�v=ve�

a�x� � me

2qs

Z v

0

Z 1

ÿ1

juÿusj2�ulÿus�fs�u; l�2pu2dl du; �15�

where us is the mean drift velocity of the suprathermal
velocity distribution. Note that with the symmetry
around the magnetic ®eld both the mean drift velocity
us and qs are vectors parallel to the magnetic ®eld of
component us and qs, respectively.

Figure 4 shows the values of the parameter a at
di�erent altitudes for a standard set of suprathermal
distribution function calculated by the transport code
for an eight-stream run. At high altitudes (see Fig. 4 at
246 km for example), the local skewness is more than the
net skewness for velocity v � 30ve, which means that

locally the distribution can have skewness of opposite
sign compared to the total skewness of the distribution.

We now have a representation for the ambient and the
suprathermal distributions, the next operation consists in
the treatment of the transition region between the
suprathermal and the ambient electrons. Sophisticated
methods such as the numerical resolution of the non-
linear Boltzmann equation (Ashihara and Takayanagi,
1974; Jasperse, 1976), as well as full analytical treatment
such as the one proposed by Krinberg (1973) have been
studied to solve this problem.However, it has been shown
later that a good approximation for the complete
distribution function can be obtained by joining the two
distribution functions at the energy for which the two
distributions have equal intensities (Krinberg and Aka-
tova, 1978; Stamnes and Rees, 1983). For simplicity we
choose this method and in the rest of this paper the
terminology truncated distribution refers to a distribu-
tion cut at the velocity where the ambient population
equals the suprathermal population.

4 Numerical two-dimensional plasma dispersion

In linear theory the di�erential scattering cross-section
d2r=dX dx per angular frequency and per solid angle for
a multi-component, uniform, stationary, along the
magnetic ®eld and non-relativistic plasma with the
collisions e�ects included through a BGK model is
given by (She�eld, 1975; BjùrnaÊ and Trulsen, 1986;
Ichimaru, 1992)

d2r

dXdx
� 1

���

p
p ner

2
0jn� �n� p�j2S�k;x�; �16�

Fig. 2. The suprathermal angular velocity distribution function
calculated by the transport code for an eight-stream calculation at
151 km and for a pitch angle of 86� (i.e. l�0:0694). The distribution
is nearly isotropic, and the data at the other pitch angles would not be
distinguishable on the same plate
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where the spectral density function S is de®ned as

S�k;x� � 1� Ce�k;x�
D�k;x�

�

�

�

�

�

�

�

�

2
Im Pe�k;x� ÿ mejPe�k;x�j2

���

p
p jXe�k;x�j2

�
X

j

nj

ne
z2j

Ce�k;x�
D�k;x�

�

�

�

�

�

�

�

�

2

Im Pj�k;x� ÿ mjjPj�k;x�j2
���

p
p jXj�k;x�j2

; �17�

with

D�k;x� � 1ÿ
X

a

Ca�k;x�; �18�

Ca�k;x� � Za�k;x�=Xa�k;x�; �19�
Xa�k;x� � 1� imaPa�k;x�; �20�

Za�k;x� �
X

k

Za;k�k;x�; �21�

Za;k�k;x� �
x2

a;k

k2

Z

L

k � $vfa;k�v�
k � vÿ xÿ ima

d3v

Pa�k;x� � 1

na

X

k

na;k

Z

L

fa;k�v�
k � vÿ xÿ ima

d3v: �23�

fa;k � fa;k=na;k denotes the velocity probability distribu-
tion function for the kth component of the particle species
a (e for the electrons and j for the ions). ma is the collision
frequency of the particle species a; r20 � e2=�4p�0mec

2� is
the electron radius, n is the unit vector pointing from the
scattering volume towards the receiver and p is the unit
polarization vector of the incident radiation; x is the
frequency shift between the transmitted radio wave x0

and the received frequency xr, k is the wave vector shift
de®ned as the di�erence between the returned wave
vector and the transmitted radio-wave vector k0.

x � xr ÿ x0; �24�

k � xr

c
nÿ k0: �25�

D and Za are respectively the dielectric function and the
opposite of the susceptibility function for the particle
species a.

In order to calculate the dispersion relation, we need
to calculate integrals of the P and Z types de®ned by

Z�k;x� � x2
e

k2

Z

L

k � $vf �v�
k � vÿ xÿ im

d3v �26�

and

P �k;x� �
Z

L

f �v�
k � vÿ xÿ im

d3v; �27�

for velocity probability distribution f de®ned in a
cylindrical coordinate system along the magnetic ®eld
(which is the same direction as the temperature gradi-
ent), and when the scattered wave vector k is aligned to
the local magnetic ®eld line.

When m � 0, one can note by applying the Plemelj
formula that the imaginary part of P is proportional to

Fig. 3. The suprathermal angular velocity distribution function for the
same eight-stream calculation at 249 km. Each plate contains two
curves corresponding to two angles symmetric around the direction
perpendicular to the magnetic ®eld, i.e the upward angular ¯ux (thin
solid line) and the downward one (thick solid line). The upper
horizontal scale on each plate is energy expressed in eV

Fig. 4. The coe�cient of location of the heat ¯ux a of Eq. (15) for ®ve
di�erent altitudes for the eight-stream calculation of the transport
code of the 25 June 1994
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the reduced velocity distribution function Fk along the
direction of k.

Fk
x

k

� �

� k

p
Im P �k;x� �

Z

f �v�d�k � vÿ x� d
3
v

p
: �28�

When the collision frequencies are very small, we found
that P can be expressed in the form

P �k;x� ' 1

kve
Pn

x

kve

� �

; �29�

with

Pn�y� � 2p

"

X

n=2

i�ÿn=2

i6�0

wi

Z x2

x1

x2

li

v3ef �xve; li�
xÿ y=li

dx

� ip
X

n=2

i�1

wi

jyj
y

y2

l3i
v3ef

yve

li
; li

� �

#

; �30�

where wi and li are respectively the weights and points
of a n-points double-Gauss quadrature. In the same
way, Z can be formulated

Z�k;x� ' ÿ ks

k

� �2

Zn
x

kve

� �

; �31�

with

Zn�y� � ÿ2p

"

X

n=2

i�ÿn=2

i 6�0

wi

Z x2

x1

x2

li
v3e

n � $vf �xve; li�
xÿ y=li

dx

Fig. 5. On the left, the real and imaginary parts
of the Pn function given by Eq. (35) for complex
argument such that the imaginary part g � 0:1.
On the right, their relative error with the real
and imaginary parts of Z�z=

���

2
p

�=
���

2
p

, where Z is
the plasma dispersion function (Fried and
Conte, 1961). The normalized Doppler shift of
the Maxwellian distribution is xd � 0:5
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� ip
X
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i�1
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jyj
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v3en � $vf

� yve

li
; li

�

#

; �32�

where n=k/k and

n � $vf �v; l� � l
@f �v; l�

@v
� 1ÿ l2

v

@f �v; l�
@l

: �33�

When collisions are not negligible, the Pn and Zn
functions are modi®ed to the following expressions

Pn�y � ig� � 2p
X

n=2

i�ÿn=2

wi

�
Z x2

x1

x2

li
v3e

f �xve; li��xÿ y=li � ig�
�xÿ y=li�2 � g2

dx; �34�

and

Zn�y � ig� � 2p
X

n=2

i�ÿn=2

wi

�
Z x2

x1

x2

li
v3e

n � $vf �xve; li��xÿ y=li � ig�
�xÿ y=li�2 � g2

dx;

�35�
The integral over the normalized velocity is either of

Cauchy principal values type or integral of rational
functions. Two di�erent quadratures are used to calcu-
late these integrals.

4.1 Test of Pn and Zn on a Maxwellian

We performed tests on the numerical evaluation of the
Pn and Zn functions for a Doppler-shifted two-dimen-
sional Maxwellian distribution. The result for the Zn

Fig. 6. On the left, the real and imaginary parts
of the Zn function for same complex argument as
in Fig. 5. On the right, their relative error with
the real and imaginary parts of the W function
(Ichimaru, 1992). The normalized Doppler shift
of the Maxwellian distribution is xd � 0:5
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function is compared with the W function of a reduced
Doppler-shifted Maxwellian (Ichimaru, 1992). The re-
sult for the Pn function is compared with Z�x=

���

2
p

�=
���

2
p

where Z is the plasma dispersion function de®ned by
Fried and Conte (1961).

The input for the code consists of a two-dimensional
array ®lled with sampled data in both pitch angle and
velocity. The velocity points are normalized to the
mean drift velocity ve. The parameters used for our test
(Figs. 5 and 6) are, for the velocity space: 250 points
ranging from 0 to 20ve. It is muchmore than required and
it is seen that the accuracy is not improved by increasing
the sampling rate, nor by taking more points in the tail of
the distribution function. On the other hand, the test
shows that the precision is highly dependent on the
number of points in the pitch angle quadrature for the
calculation in the near thermal region, i.e. for jvj � 4ve,
but not too much for velocities jvj > 4ve.

In the thermal region, the accuracy is drastically
improved by going from an eight-point double-Gauss
quadrature (the relative error is about 10ÿ1), to a 32-
point quadrature where the relative error is better than
10ÿ4. For larger velocities the accuracy is quite stable
and is better than 10ÿ7.

4.2 Test of Pn and Zn on the Spitzer-H�arm distribution

We also performed tests on the Spitzer-H�arm distribu-
tion function. We looked at the in¯uence of the upper
boundary of integration xmax of the XE and XT functions
when evaluating Pn and Zn. The values of xmax we used
are the ones listed in Table 1.

For our test we used �T � 5 � 10ÿ2, although the
linear theory of heat conduction breaks down for such
large values of �T , that is these values give negative

Fig. 7. On the left, the real and imaginary parts
of Pn for real argument (g � 0) and for Knudsen
number �T � 5 � 10ÿ2 and �E � ÿ3�T cT =4cE. On
the right the di�erence between Pn and
Z�x=

���

2
p

�=
���

2
p

for the four di�erent values of
xmax of Table 1
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values of the velocity distribution function (Forslund,
1970). We used the same velocity grid as for the
Maxwellian distribution while we increased the number
of points in the pitch angle grid to 256 points. The results
are shown in Figs. 7 and 8. One can see in the real part of
the di�erence between Zn and W in Fig.8, the artifact of
the discontinuity of the distribution function at xmax.
This e�ect is larger for the lowest value xmax � 2:8 of the
boundary i.e. x=kve � �2:8

���

2
p

. For larger values of
xmax the discontinuity of the thermal distribution is
pushed down at higher velocities and is attenuated due
to the Maxwellian behaviour at large velocities.

4.3 Test of Pn and Zn on the suprathermal distribution

We used a 32-stream suprathermal calculation at an
altitude of 202 km as input. The transport code

calculation of the distribution function was then inter-
polated over a 1024 double-Gauss points. The Pn and Zn
functions were then computed using the distribution
function evaluated on this denser l-grid. The supra-
thermal velocity distribution used are very much
identical to the one presented in Fig. 3. When comparing
with the Pn and Zn functions of a Maxwellian or a
Spitzer-H�arm distribution, it is interesting to see how
the characteristics of the distribution function are
mapped on the Pn and Zn shape. In order to integrate
correctly the irregularities or `spikes' corresponding to
the discrete solar emission lines, we have to increase the
order of the pitch angle quadrature up to 512 or even
1024 points. Increasing further the number of points in
the l-grid space does not improve the results for large
values of x=kve, i.e. above jx=kvej > 5. On the other
hand, for jx=kvej < 5 the code is probably not so robust

Fig. 8. On the left, the real and imaginary parts
of Zn for real argument and for �T � 5 � 10ÿ2 and
�E � ÿ3�T cT =4cE. On the right the di�erence
between Zn and W for the four di�erent values of
xmax of Table 1
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to the spikes, as can be seen in the upper left plate in
Fig. 9, and further developments need to be made.

There are several remarks to be made about the Pn
and Zn functions. First about the imaginary part of the
Pn function (lower left plate in Fig. 9) which is
proportional to the reduced distribution function as is
seen in Eq. (28). If the distribution were isotropic the ¯at
part around zero should be equal on both sides of zero
up to the value corresponding to the minimum energy of
the suprathermal distribution. The e�ect of the aniso-
tropy on the reduced velocity distribution function is to
create a discontinuity at zero velocity and thus introduce
a zero-order skewness. Secondly, on both the real and
imaginary parts of the Zn functions (right plates in Fig.
9.), one can observe the signature of the distribution
function itself. In particular, the typical N2 dip above 2
eV which corresponds to excitation of the vibrational

levels in N2 (see Fig. 2) can clearly be identi®ed around
jx=kvej � 6:5.

5 Results

We have used the two-dimensional code of the Pn and Zn
functions to calculate the frequency of the up- and
downshifted Langmuir waves which are the high-
frequency solutions of the plasma dispersion equation
with the function D�k;x� given in Eq. (18). We have
performed these calculations for two di�erent distribu-
tions, one that takes into account the deviation from the
Maxwellian on the ambient part with the Spitzer-Harm
distribution and the other one on the suprathermal part
with the distribution calculated from the electron
transport code.

Fig. 9. On the left, the real and imaginary parts
of Zn for real argument and on the right, the
real and imaginary parts of Pn for real argument
of a suprathermal distribution at the altitude of
202 km. These calculations were performed
using a 32-stream calculation of the transport
code and the distribution function was then
recalculated over 1024 double-Gauss points in
order to perform the calculations of Pn and Zn
over this l-grid
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We used the simulated data for 25 June 1994 at 14:00
UT over Tromsù assuming again an Ap index of 3 and an
F10.7 index of 75. The ionospheric parameters of the
thermalpartare showninFig.10andthevelocitymoments
of the suprathermaldistribution, aswell as themomentsof
the Spitzer-HaÈ rm distribution, are shown in Fig. 11.

The lowest right plate in Fig. 10 shows the Knudsen
number �T and �E. The largest value is about 4:5 10ÿ3.
Such values are reasonable and allow the use of the
linear theory of Spitzer-H�arm. The corresponding po-
larization electric ®eld E of �E is also of the order of the
expected value i.e. under 10ÿ2 lV mÿ1 .

Figure 11 shows the calculated suprathermal centred
velocity moments up to the third order, i.e the heat ¯ow,
for both the raw distribution as calculated by the
transport code and the truncated distribution we use in

our calculations and which have been processed accord-
ing to the strategy described at the end of Sect. 3. The
lower right plate in Fig. 11 also shows the heat ¯ow qa of
the ambient Spitzer-H�arm distribution function calcu-
lated numerically and the heat ¯ow used by Kofman et
al. (1993) which was originally given by Banks (1966)

qB � ÿ7:7105T
5
2
erTe eV cmÿ2 sÿ1; �36�

assuming a Coulomb logarithm logK � 15 and dT
calculated by Spitzer and H�arm (see Table 1). We note
that the heat ¯ow given by Eq. (36) has larger values by a
factor up to 1.5 than the heat ¯ow qa we calculated. The
reason for this is that the approximation given by Eq. (36)
is valid for a fully ionized gas only. We have taken into
account the electron-neutron collisions in the mean free

Fig. 10. The parameters for the ambient part
of the distribution function, i.e. the electron
density ne, the electron and ion temperatures
Te and Ti (solid line and dashed line,
respectively), the gradient of temperature
rTe and the two Knudsen numbers �T (solid
line) and �E (dashed line)
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path (Eq. 10) and the e�ect is to decrease the twoKnudsen
numbers and thus the net heat ¯ow (Banks, 1966).

Figures 12 and 13 show the frequencies of the
upshifted Langmuir waves of the plasma lines and the
frequency di�erence for the three EISCAT radars: VHF
(224MHz), ESR (500 MHz) and UHF (931 MHz).
Figure 12 shows the calculation for a deviation on the
ambient part, i.e. the Spitzer-H�arm distribution. The
frequency asymmetry calculated is compared with the
heat ¯ow approximation of Eq. (9) of Kofman et al.
(1993), Figure 13 shows the calculation in the presence
of a suprathermal part and assuming that the ambient
part is Maxwellian. The frequency asymmetry calculated
is also compared with the results given by the heat ¯ow
approximation, assuming that the total distribution does
not deviate dramatically from Maxwellian.

The best agreement between the full dispersion
estimation and the heat ¯ow approximation for the
Spitzer-HaÈ rm distribution is for low-frequency radars
like VHF radars. For these radars the phase veloci-
ty v/ is between 12ve and 25ve as shown in Fig. 14. At
such high velocities the moment approximation can
be safely used, i.e. the classic expansion �1ÿx�ÿ1�
1�x�x2�� � ��xn is to be valid at the third order. For
the UHF radar the phase velocity v/ is between 3ve and
6ve (see Fig. 14) and the approximation breaks and we
note a large deviation between the two calculations.
This deviation can be observed on the real part of
the di�erence between Zn and W (upper right plate
in Fig. 8) and has to be compared with the asymptot-
ic behaviour in �x=kve�ÿ5

that we would get by subtr-
acting W to the heat ¯ow approximation of Eq. (9) in

Fig. 11. The parameters of the suprathermal
part of the distribution function and the two
odd moments of the ambient (Spitzer-HaÈ rm)
distribution. In all four plates, the moments
of the raw suprathermal distribution function
are represented by circles while the moments
of the distribution we use for further calcu-
lations are represented by solid lines. In the
upper right plate (mean drift velocity), the
calculated mean Doppler velocity of the
ambient distribution va is represented by the
dash-dot line and as expected is equal to zero
(see Eqs. 11±13). On the lower right plate
(heat ¯ow), the calculated heat ¯ow of the
ambient distribution qa is represented by the
dash-dot line and the dashed line corresponds
to the heat ¯ow qB given by Eq. (36)
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Kofman et al. (1993), especially for values of x=kve
smaller than 5.

Another remark is about the very large asymmetry
observed around 250 km, which is over 10 kHz for the
full dispersion calculation. We can see that due to the
behaviour of the dispersion function at 4 < x=kve < 5,
we do not need large heat ¯ow values to observe large
asymmetry between the up- and downshifted plasma line
frequencies. This is very satisfying in that we do not
need to invoke larger heat ¯ow values through processes
such as the electron thermal runaway (Mishin and
Hagfors, 1994; Nilsson et al., 1996) to explain the large
deviation which were reported by Kofman et al. (1993),
especially during 12 May 1992. On the contrary, our
smaller heat ¯ow values corrected for partially ionized
plasma are in good agreement with the theory of Schunk
and Walker (1970) and Banks (1966) and are able to
create frequency asymmetry of the order of that
observed by Kofman et al. (1993).

In the presence of a suprathermal distribution we can
make the following remarks. For UHF radars, i.e. at
phase velocity v/ between 3ve and 6ve, we note that the
full dispersion calculation gives similar results as the
Maxwellian approximation while the heat ¯ow approx-
imation gives larger deviation. In order to understand the
small e�ect of the suprathermal distribution for high-
frequency radars, we note that the real part of Zn of the
thermal distribution (Fig. 6) has much larger amplitude

than the one of the suprathermal distribution (Fig. 9) at
the considered phase velocity. At large phase velocities
v/, i.e. for VHF radars, the thermal Zn is very small,
whereas the one of the suprathermal is still not negligible.
This is seen clearlywhen comparing themeanwidth of the
real part of Zn in Fig. 6 and the real part of Zn in Fig. 9.
Thus the e�ect of the suprathermal is important and
should be taken into account. Another remark to bemade
is that if all the ®ne structures observed on the supra-
thermal Zn in Fig. 9 in the region jx=kj<6ve are real and
not artifacts of our calculations, they should map on the
frequency asymmetry as it appears in Fig. 13.

6 Conclusion

We developed and tested a computer code to calculate
the plasma dispersion function and the reduced distri-
bution function for any arbitrary distribution function
given in two dimensions: velocity and pitch angle. This
code has been applied for two types of electron velocity
distribution deviating from the Maxwellian distribution,
one in the ambient part through a temperature gradient
and the other one assuming the presence of a supra-
thermal electron population.

We used the code to estimate the frequency asym-
metry between the up- and downshifted plasma lines
which can be observed by incoherent-scatter radar
technique. For high-frequency radars such as UHF
radars we showed that the frequency asymmetry be-
tween the plasma lines is mostly due to a deviation from
the Maxwellian in the ambient part of the electron

Fig. 12. The upper plate presents the calculated upshifted plasma
frequency for the Spitzer-HaÈ rm distribution for the three di�erent
EISCAT radars. In the lower plate we present the frequency di�erence
between up- and downshifted lines for the three radars. The
Maxwellian approximation is shown with circles, the full two-
dimensional dispersion estimation is the solid line and the heat ¯ow
approximation (Kofman et al., 1993) is shown with the dashed line

Fig. 13. Same plates as in Fig. 12. The compared distribution
functions are a Maxwellian and a Maxwellian superposed with a
suprathermal. The line codes are identical to the codes used in Fig. 12
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distribution. On the other hand, for low-frequency
radars such as VHF radars the Doppler frequency of
the plasma lines is more in¯uenced by the presence of a
suprathermal electron population.

We also pointed out a discrepancy between the full
estimation of the plasma dispersion function and the heat
¯ow approximation for waves with phase velocity such
that the moment expansion is not valid. The discrepancy
is in the right direction and allows to explain large
Doppler asymmetry of the plasma lines without need to
increase the value of the heat ¯ow. An analytic model of a
distribution deviating from the Maxwellian distribution
would be a very useful tool to study the di�erence
between the exact calculation and the moment approx-
imation of the plasma dispersion function.
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Abstract. In a plasma with a temperature gradient, the par-
ticle velocity distribution function deviates from the Max-
wellian. A new simple analytic model for such a plasma,
the two-temperature Maxwellian is introduced, hereafter re-
ferred to as the 2-T Maxwellian, and not to be mistaken for
the purely anisotropic bi-Maxwellian with parallel and per-
pendicular temperatures for a magnetised plasma. The veloc-
ity moments of the 2-T Maxwellian are presented and com-
pared with the moments from the classical transport theory
of Spitzer. Furthermore a closed form of the dielectric re-
sponse function for the 2-T Maxwellian is derived. The di-
electric response function is used to calculate the Doppler
frequency of the plasma lines in an incoherent scatter exper-
iment. The result is compared with the Doppler frequency
given by the heat flow approximation of the dispersion re-
lation. While a good qualitative agreement is seen between
the heat flow approximation and the exact estimation of the
dielectric response, it is shown that for accurate calculation
of the Doppler frequency of the plasma lines an exact esti-
mation of the dielectric response is important, especially for
plasma lines observation corresponding to Langmuir waves
with large wave vector and small resonance frequency.

Key words. Non-Maxwellian electron velocity distribution �
Temperature gradient

1 Introduction

It is interesting in several contexts to take into account the
local gradient of temperature in the velocity distribution func-
tion of particles in a plasma. Forslund (1970) and Singer (1977)
used the theory developed by Spitzer and Härm (1953) while
Lundin et al. (1996) used a linear combination of three Max-
wellians to simulate a velocity distribution function that re-
produces the downward flow of a thermal component in order
to study instabilities due to heat conduction in a moderately
inhomogeneous plasma. Kofman et al. (1993) and Guio et al.
(1998) studied the dispersion relation for Langmuir waves
in a plasma in the presence of a temperature gradient in the
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e-mail: patrick@phys.uit.no

frame of plasma lines observation using the incoherent scat-
ter technique. Implicitly associated with the heat conduction
is a skewing of the particle velocity distribution function. This
skewing has been directly observed by satellite measurements
(Hundhausen, 1968) or inferred through heat flow estima-
tion using incoherent scatter measurements (Blelly and Al-
caydé, 1994). Theoretically Cohen et al. (1950) and Spitzer
and Härm (1953) solved directly a kinetic equation. The solu-
tion of this kinetic equation, the Spitzer function, is restricted
only to velocities not larger than a few times the thermal ve-
locity of the electron population, introducing a discontinuity
in the distribution function (Guio et al., 1998). Moreover the
kinetic equation presents the inconvenience to be numerically
unstable.

In this paper, it is first described the two-dimensional in-
homogeneous and anisotropic 2-T Maxwellian. Expressions
for the velocity moments of the 2-T Maxwellian are given
and compared with the moments given by the Spitzer theory.
In the second part, a closed form for the dielectric response
function associated to this distribution function is described.
In the third part, the dielectric response function is used in
the frame of incoherent scatter plasma line. The plasma lines
are a pair of spectral lines produced by scattering of a radio
wave by Langmuir waves of the ionospheric plasma. They are
Doppler shifted up and down with respect to the transmitted
frequency by an amount that corresponds to two waves travel-
ling towards and away from the transmitter. By measuring the
Doppler frequency of these spectral lines, one would be able
to infer the mean Doppler velocity of the electrons by solv-
ing the dispersion relation with the dielectric response func-
tion associated to the electron velocity distribution (Bauer
et al., 1976; Showen, 1979) and in theory to estimate the
ionospheric field-aligned current when combined with pa-
rameters obtained from the incoherent scatter ion line. A de-
viation of the velocity distribution function from the Max-
wellian modifies the dispersion relation and thus the esti-
mated mean Doppler velocity of the electron population. We
apply the 2-T Maxwellian to the estimation of the Doppler
frequency of plasma lines in a plasma with temperature gra-
dient and compare the result with the heat flow approximation
of Kofman et al. (1993) which takes into account a tempera-
ture gradient through a corrective heat flow term. Finally, we
discuss the results of our simulation.
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2 The 2-T Maxwellian

The 2-T Maxwellian, denoted fT� , is defined as two half-
Maxwellians with temperature T+ and T� over the two half-
spaces where, respectively vk < 0 and vk � 0 and a Max-
wellian with temperature T? over the perpendicular velocity
space v?. The two half-Maxwellians along vk are joined con-
tinuously at vk = 0 and are normalised such that the integral
over the velocity space is equal to the particle density n. Thus
the 2-T Maxwellian can be seen as a modified bi-Maxwellian
with a temperature inhomogeneity along the parallel velocityvk. The 2-T Maxwellian is writtenfT�(vk; v?) =8><>: n(2�) 32 1�k�2? exp�� v2k2�2� + v2?2�2?�; vk � 0n(2�) 32 1�k�2? exp�� v2k2�2+ + v2?2�2?�; vk < 0 (1)

where �2? = T?=m is the square of the thermal velocity along
the perpendicular direction, �2� = T�=m are the square of
the mean velocities in the parallel direction, �k = (�+ +��)=2 is the normalisation constant such that the two half-
Maxwellians are continuous at vk = 0 and m represents the
particle mass.

This velocity distribution function is both inhomogeneous
and anisotropic and sketches the velocity distribution of parti-
cle at the particular point of space r = 0 between two regions
of different temperature. Figure 1 shows the 2-T Maxwell-
ian between these two regions, and the two bi-Maxwellians
with hot temperature T+ (at r > 0) and cold temperature T�
(at r < 0). This model mimics the situation where the hot
plasma of temperature T+ is diffusing toward the region of
cold plasma of temperature T� and vice-versa.

The velocity moments of a species distribution functionf are expressed in the following way (Barakat and Schunk,
1982) nu = hvi; (2)32nT = 12mhjv � uj2i; (3)12nTk = 12mh(vk � uk)2i; (4)22nT? = 12mh(v? � u?)2i; (5)q = 12mhjv � uj2(v � u)i; (6)qk = mh(vk � uk)2(v � u)i; (7)q? = 12mh(v? � u?)2(v � u)i: (8)

where the angle brackets denote the averagehAi = Z Af(v)dv (9)

Because of the symmetry around vk of the 2-T Maxwell-
ian, the Doppler velocity u, the heat flow q, the heat flow for
parallel energy qk and the heat flow for perpendicular energyq? are parallel to the vk-axis and have components uk, qk, qkk
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Fig. 1. The 2-T Maxwellian with T� = 1800K and T+ = 2200K
(lower plate) and the two bi-Maxwellians of the cold region (up-
per left plate) and the hot region (upper right plate) plotted as a
function of vk and for v? = 0. The perpendicular temperature of
the 2-T Maxwellian and the two bi-Maxwellian was taken to beT? = 2000K
and q?k respectively and are given byuk = � 1p2� �2+� �2��k = � 1p2� 1m�k ÆT�; (10)3T2 = 12m��3++ �3�2�k + 2�2?�� 12mu2k (11)Tk = m�3++ �3�2�k �mu2k; (12)T? = m�2?; (13)qk = � np2� �2++ �2��k ÆT� � 32nTkuk � 12mnu3k; (14)qkk = � 2np2� �2++ �2��k ÆT� � 3nTkuk �mnu3k; (15)q?k = 0; (16)

where ÆT� represents the difference between the tempera-
tures of the hot and the cold region ÆT� = T+� T�.

Assuming the plasma to be an electron gas, the veloc-
ity moments of the 2-T Maxwellian can be compared with
the velocity moments of the Spitzer distribution with elec-
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tron temperature Te, thermal velocity denoted �e and Knud-
sen number �T = 2�erTe=Te where �e is the electron mean
free path. The Knudsen number represents the ratio of the
microscopic length scale �e to the macroscopic length scaleTe=rTe (Guio et al., 1998). The velocity moments of the
Spitzer distribution are writtenuk = � 6p2� �eT �T ; (17)3T2 = 12me(�2e + 2�2e )� 12meu2k; (18)Tk = me�2e �meu2k; (19)T? = me�2e ; (20)qk = � 40np2� �3e ÆT �T � 52nTuk + 16menu3k; (21)qkk = � 48np2� �3e ÆT �T � 3nTuk +menu3k; (22)q?k = � 16np2� �3e ÆT �T � nTuk � 13menu3k; (23)

where T and ÆT are the normalised transport coefficients
defined in Spitzer and Härm (1953).

There is a formal analogy between Eqs. (10)–(15) and
Eqs. (17)–(22). It can be pointed out how the temperature
difference ÆT� mimics rTe which appears in the Knudsen
number �T . The temperature difference ÆT� can be thought
as a temperature gradient between the two regions of differ-
ent temperatures, and thus the Doppler velocity can be inter-
preted as a thermal diffusion process while the heat flow can
be seen as a thermal conductivity process (Banks, 1966).

It is possible, for any value of the electron density ne and
the electron temperature Te, to determine values of T+ andT� in order to get identical heat flow qk for the 2-T Maxwell-
ian and the Spitzer distribution function and at the same time
keeping the respective temperatures T equal. The first term
in the heat flow qk of Eqs. (14) and (21) represents the ther-
mal heat flow without Doppler velocity, we therefore require
that these two terms should be equal. Moreover, if we take �?
equal to �e, we just have to require that the first term of the
parallel temperature Tk of Eqs. (12) and (19) should be equal.
The temperatures T� and T+ are then uniquely determined
by solving the following system of equations:� (x� y)(x2 + y2) = 20ÆT �T(x3 + y3) �(x+ y) = 0 (24)

where T+ = x2Te andT� = y2Te. (x; y) are the real solutions
of Eqs. (24) such that x > 1 and y < 1. The first equation
represents the condition on the first term of the heat flow and
the second equation is the condition on the temperature. If we

want the heat flows for parallel energy qkk to be equal instead

(as we will require in the last section) we simply replace the
right hand side term of the first equation 20ÆT �T by 12ÆT �T .

Figure 2 shows the parameters uk, T and qk for the 2-T
Maxwellian and the Spitzer distribution. The heat flow qk of
the two distribution functions will be equal by shifting the
parallel velocity vk of the distribution functions by a Doppler
velocity of the same values as the one of the upper left plate
of Figure 2 but of opposite sign. Note however that while
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Fig. 2. The mean Doppler velocity uk (upper left plate), temper-
atures T (lower left plate) and heat flow qk (upper right plate) of
Eqs. (10)–(14) (thick line) and Eqs. (17)–(21) (thin line) as a func-
tion of the electron temperature Te and for an electron density ne =106 m�3 and an electron temperature gradient rTe = 5Kkm�1.
The lower right plate shows the corresponding Knudsen number �T
(thin line) and the ratio ÆT�=T (thick line)

the heat flows qk will be equal, the heat flow of parallel en-

ergy qkk will remain different since the anisotropy factor �e =qkk=q?k for the 2-T Maxwellian is different from the one of

the Spitzer function. In the Spitzer theory, �e = 3 while for
the 2-T Maxwellian �e = 1, which clearly means that for
the 2-T Maxwellian, the energy is only transported along the
direction of the temperature gradient.

3 Dielectric response function

To calculate the dielectric response function of an unmagne-
tised and non-collisional plasma, the following integral of the
normalised velocity probability distribution needs to be cal-
culatedIf (k; !) = � Z k �rvf(v)k�v� ! d3v: (25)

In the geometry of a wave vector k parallel to the vk-axis
oriented toward the cold region and in the convention that a
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positive velocity vk gives a positive Doppler frequency, the
temperatures are swapped. Then the integration over v? is
carried out independently and we define the one-dimensional
reduced 2-T Maxwellian FT� byFT�(vk) =8<: 1p2� 1�k exp�� v2k2�2+�; vk � 01p2� 1�k exp�� v2k2�2��; vk < 0 (26)

The integral IfT� (k; !) is then written as a one-dimensional

integral function of the derivative of the reduced 2-T Max-

wellian F 0T�IfT� (k; !) = � Z 1�1 kF 0T�(vk)kvk� ! dvk (27)

This integral has the following analytic formIfT� (k; !) =8<: 1�k��W� � !k���+ 1�k�+W� � !k�+� ; Re! > 01�k��W� � !k���+ 1�k�+W� � !k�+� ; Re! < 0 (28)W� and W� are defined for complex argument � = x+ iy
such that y � 0 and are writtenW�(�) = 1p2� Z 10 t exp(�t2=2)t+ �y dt; (29)W�(�) = W (�)�W�(�); (30)

whereW (�) = 1p2� Z 1�1 t exp(�t2=2)t� � dt (31)

is the classical dispersion function for a Maxwellian that can
be found for example in Ichimaru (1992) and �y = jxj +iy sgnx. W� is related to the functionZ�(�) = 1p2� Z 10 exp(�t2=2)t+ � dt; (32)

through the relationW�(�) = 12 � �yZ�(�y): (33)

Finally, Z� is written as a function of Dawson’s integral daw
and the exponential integral Ei; Dawson’s integral can be ex-
pressed as a function of the modified complex error functionerf (Abramowitz and Stegun, 1972):Z�(�) = 1p2 daw� �p2�� 12p2� exp�� �22 �Ei��22 �(34)daw(�) = �ip�2 e��2�erf(�i�)�1�: (35)

4 Plasma lines Doppler frequency

In an incoherent scatter plasma lines experiment, one mea-
sures two sharp and narrow spectral lines, the down- and up-
shifted plasma lines corresponding to two Langmuir waves(k�; !�) and (k+; !+) travelling away from and toward the
radar. The frequency of the two plasma lines are solutions of
the following dispersion relationk2� + !2eIf (k�; !�) = 0; (36)

where !e is the electron plasma frequency.
We investigate the two solutions (k�; !�) and (k+; !+) of

Eq. (36) for the 2-T Maxwellian and we define the Doppler
frequency �F� as�F� = !+ + !�2� (37)

The Doppler frequency�F� is then compared with the Doppler
frequency given by solving the heat flow approximation of
the dispersion relation of Kofman et al. (1993). To derive the
heat flow approximation, the denominator of the integrand of
Eq. (25) is expanded in power series of k�v=(!� k�u), then
integrated by parts, each term containing an average – de-
fined in Eq. (9) – of a power of the velocity of the probability
distribution.

For k along the vk-axis, If (k; !) takes the following formIf (k; !) = � k2(!�kuk)2 1+3k2h(vk�uk)2i(!�kuk)2+4k3h(vk�uk)3i(!�kuk)3 +� � �+(n+1)knh(vk�uk)ni(!�kuk)n !
(38)

Assuming in addition that j! � kukj � kvTk where v2Tk =Tk=me and that the distribution does not deviate dramatically
from a Maxwellian, the even order moments are lumped into
the W function of Eq. (31) and the odd order moments are
truncated at the third order, which gives the heat flow approx-
imation~If (k; !) = 1v2TkW  ! � kukkvTk !� 4k5qkk=(men)(! � kuk)5 : (39)

Results of the computation of�F� using the analytic form of
Eq. (28) and the heat flow approximation of Eq. (39) for the
2-T Maxwellian as well as using a numerical code of the di-
electric function with the Spitzer function (Guio et al. (1998))
are shown in Figure 3 for the EISCAT VHF radar (224MHz)
and in Figure 4 for the EISCAT UHF radar (931MHz). The
effect of the Doppler velocity uk has been eliminated by sub-
tracting from the parallel velocity vk of the 2-T Maxwell-
ian and the Spitzer function the mean Doppler velocity uk of
Eqs (10) and (17) respectively. The difference from the Max-
wellian when it comes to evaluate �F� is therefore only the
effect of the skewness of the velocity distribution function.

For the VHF radar, there is a good qualitative agreement
of the Doppler frequency �F� as a function of the electron
density ne using: the exact expression of the dielectric re-
sponse function for the 2-T Maxwellian (Eq. 28), the heat
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Fig. 4. EISCAT UHF radar. The calculated Doppler frequency �F�
using Eq. (28) (solid line) and Eq. (39) (dashed dot line), using the
same numerical code to calculate Eq. (25) for the Spitzer distribu-
tion (dashed line) and for a Maxwellian (dotted line). The Doppler
frequency is plotted as a function of the ratio !e=kvTk for the same

temperature Te and Knudsen number �T as in Figure 3. The cor-
responding frequency fe varies also from about 3MHz to nearly9MHz which corresponds to an electron density ne varying from105 to 106 m�3
flow approximation (Eq. 39) and the numerical calculation
of the dielectric response function for the Spitzer distribution
(Guio et al. (1998))). For such large values of the phase veloc-
ity v� = !�=k�, i.e. when j!�j � k�vTk , the three calcula-
tions predict a moderate increase of the observed Doppler fre-
quency compared to the Maxwellian case (less than 100Hz)

since the terms in the expansion of Eq. (38) are small. As
a consequence, the effect of the skewness of the distribution
function on the Doppler frequency is, as the heat flow approx-
imation shows, to shift the Doppler frequency in the same di-
rection as the heat flow and the heat flow behaves like a mean
Doppler velocity.

For the UHF radar there is also a good qualitative agree-
ment of the behaviour of the Doppler frequency �F� as a
function of the electron density at large plasma frequency!e between the three calculations. The three calculations of
the dielectric response function predict an increase of the
measured Doppler frequency compared to the Maxwellian
which can be rather important. At low plasma frequency, the
Doppler frequency calculated using the exact calculation of
the dielectric response function differs from the one given
by the heat flow approximation. While the heat flow approx-
imation gives a relatively constant shift in the Doppler fre-
quency compared to the Maxwellian, independent of the elec-
tron density, the exact calculations of the dielectric function
for the 2-T Maxwellian and the Spitzer function tend to give
smaller Doppler frequency. The discrepancy is getting larger
the smaller the plasma frequency is, i.e. when the conditionj!j � kvTk is not well fulfilled.

This shows that the truncation done for the heat flow ap-
proximation has to be done very carefully and that the ap-
proximation breaks for ratio j!j=kvTk smaller than 5–6. More-
over it is seen that even though the two distribution func-
tions considered have the same temperature and the same heat
flow for parallel energy, the dielectric response behaves qual-
itatively in an identical way but quantitative differences are
noteworthy. These differences have to be accounted to the dif-
ferences in higher order moments of the distribution function.

5 Conclusion

We have presented a new tool, the 2-T Maxwellian, to model
the particle velocity distribution in a plasma with a tempera-
ture gradient and have compared the properties of the veloc-
ity moments to the results of the classical Spitzer distribution
function. We have seen that it is possible to parametrise the
2-T Maxwellian to get an equal heat flow to the Spitzer re-
sult. An analytic form of the dielectric response function has
been presented for this new distribution, and has been used
to calculate the Doppler frequency of plasma lines in an in-
coherent scatter experiment. The result has been compared
to the Doppler frequency given by the heat flow approxi-
mation. It has been shown that good qualitative agreement
is obtained between the heat flow approximation of the di-
electric function and the exact calculation for low-frequency
radars also for high-frequency radars if the plasma frequency
is high. However for accurate calculations such as the calcu-
lation of the plasma line Doppler frequency, it is seen that
the exact calculation of the dielectric function is important
together with a good representation of the distribution func-
tion, especially for high-frequency radars and at low plasma
frequency, i.e when the ratio j!j=k�e is smaller than 5–6.

The 2-T Maxwellian is not expected to represent a true
physical model of the distribution function in the presence of
a gradient of temperature but nevertheless is a realistic tool
for investigating this type of plasma. We expect that the 2-T
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Maxwellian should be useful in the qualitative study of in-
stabilities due to heat conduction in a plasma, especially in
ionospheric studies where temperature gradients are present.
The 2-T Maxwellian could also be a good investigation tool
to study the effect of an angle with the magnetic field on the
Doppler frequency in incoherent scatter plasma lines obser-
vations.
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Abstract. In an incoherent scattering radar experiment,
the spectral measurement of the so-called up- and
downshifted electron plasma lines provides information
about their intensity and their Doppler frequency. These
two spectral lines correspond, in the backscatter geom-
etry, to two Langmuir waves travelling towards and
away from the radar. In the daytime ionosphere, the
presence of a small percentage of photoelectrons
produced by the solar EUV of the total electron
population can excite or damp these Langmuir waves
above the thermal equilibrium, resulting in an enhance-
ment of the intensity of the lines above the thermal level.
The presence of photo-electrons also modi®es the
dielectric response function of the plasma from the
Maxwellian and thus in¯uences the Doppler frequency
of the plasma lines. In this paper, we present a high
time-resolution plasma-line data set collected on the
EISCAT VHF radar. The analysed data are compared
with a model that includes the e�ect of a suprathermal
electron population calculated by a transport code. By
comparing the intensity of the analysed plasma lines
data to our model, we show that two sharp peaks in the
electron suprathermal distribution in the energy range
20±30 eV causes an increased Landau damping around
24.25 eV and 26.25 eV. We have identi®ed these two
sharp peaks as the e�ect of the photoionisation of N2

and O by the intense ¯ux of monochromatic HeII
radiation of wavelength 30.378 nm (40.812 eV) created
in the chromospheric network and coronal holes.
Furthermore, we see that what would have been
interpreted as a mean Doppler drift velocity for a
Maxwellian plasma is actually a shift of the Doppler
frequency of the plasma lines due to suprathermal
electrons.

Key words. Ionosphere (electric ®elds and currents;
solar radiation and cosmic ray e�ects).

1 Introduction

The enhancement process of the plasma line is well
understood theoretically (Perkins and Salpeter, 1965;
Yngvesson and Perkins, 1968; BjùrnaÊ et al., 1982;
BjùrnaÊ and Trulsen, 1986) and has been con®rmed by
measurements both during daytime (Perkins et al., 1965;
Yngvesson and Perkins, 1968; Lejeune and Kofman,
1977; Kofman and Lejeune, 1980) and in auroral
conditions (Oran et al., 1981; Kirkwood et al., 1995).
The problem of estimating the ®eld-aligned electron net
current from an incoherent scatter Doppler measure-
ment of the electron plasma lines has also been studied
for some time (Vidal-Madjar et al., 1975; Bauer et al.,
1976; Showen, 1979), yet the work on the subject has
progressed rather slowly, partly due to experimental
problems (the spectra needs to be estimated) and partly
due to the lack of theoretical understanding. It is
expected that by simultaneous measurements of the
frequency of the up- and downshifted plasma lines one
could deduce the mean Doppler velocity ue of the
electron velocity distribution function along the scatter-
ing direction.

At ®rst, an additional asymmetry between the
Doppler frequency of the plasma lines was identi®ed
for an isotropic Maxwellian plasma. This asymmetry is
due to the di�erence in magnitude of the wave numbers
of the up- and down-going Langmuir waves (Showen,
1979). This term is proportional to a temperature-
dependent correction term (Debye correction) in the
dispersion relation for Langmuir waves and was pointed
out as a possible method for the independent determi-
nation of the electron temperature (Hagfors and Leh-
tinen, 1981). Later, Kofman et al. (1993) showed that by
introducing in the dispersion relation a heat ¯ow
correction term that takes into account the e�ect of
the temperature gradient of the electron temperature,
that their data collected with the EISCAT UHF radar
during daytime were in better agreement with the
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prediction of no ®eld-aligned. This heat ¯ow correction
term behaves as an additional mean Doppler velocity
that arti®cially increases the di�erence of the Doppler
shifts of the plasma lines. Guio et al. (1998) showed that
the heat ¯ow e�ect was underestimated for UHF radars
by comparing the heat ¯ow approximation of the
dispersion relation with a full numerical estimation of
the dielectric response function using the Spitzer velocity
distribution for a plasma with a temperature gradient
(Cohen et al., 1950; Spitzer and HaÈ rm, 1953). It was also
shown that for VHF radars, suprathermal electrons
would contribute to modify the dielectric response
function and thus the Doppler frequency of the plasma
lines. It is noteworthy that while the suprathermal e�ect
on the Doppler frequency has been investigated with a
Maxwellian to represent the photoelectrons distribution
(Bauer et al., 1976), it has to our knowledge, never been
observed in data.

In this paper we present a high temporal resolution
data set collected on the EISCAT VHF radar. The plasma
line analysis consists of two parts. First, the result of the
analysis of the intensity of the plasma lines is compared
with a model that calculates the theoretical enhancement
caused by suprathermal electrons described by the
angular velocity distribution derived form the electron
angular intensity ¯ux calculated by a transport code
(Lummerzheim, 1987; Lummerzheim and Lilensten,
1994). Once we ®nd an electron velocity distribution
that gives correct intensity compared to the measured
intensity, we use the full numerical calculation of the
plasma dielectric response (Guio et al., 1998) to estimate
the mean Doppler velocity ue of the ambient electrons,
and the plasma frequency xe. The results are compared
with the Maxwellian case.

2 The data

The plasma line data were collected with the EISCAT

VHF radar (223.8 MHz) near Tromsù, Norway on 22
June 1994 from 15:00 UT to 16:00 UT. The antenna was
pointed vertically which gives an angle of about 12� to
the magnetic ®eld line at 250 km. The ionospheric
conditions were quiet, a F10.7 index of 75 and an Ap

index of 6 were measured.
The data were collected with the long pulse technique

®rst described by Showen (1979) and the measurement
of the plasma lines was done at the peak of the F-layer.
A special tracking program that interacts with the radar,
attempts to tune the radar receiver every dump so that
the critical frequency of the peak of the F-layer is
centred in the 100 kHz observation window ®ltered with
a 80 kHz ®lter. Three receiving channels, one for the
upshifted, one for the downshifted plasma line and one
for the ion line, were used simultaneously, with the same
spatial resolution. A single long pulse with length 450 ls
was transmitted and signal was collected at a sampling
rate of 10 ls. A 33-point autocorrelation function with
correlation time between 0 and 320 ls by step of 10 ls
was computed for ®ve gates as a function of altitude, on
each channel. The ®rst gate was situated at 178 km, the

gate separation was 37.5 km, thus the last gate is
situated at 328 km, and the volume probed for one gate
was about 45 km. In addition to the 450 ls long pulse, a
very long pulse of 900 ls was transmitted to measure the
ion line. Eleven gates were computed from 317 km up to
1217 km and the volume probed for one gate was about
100 km. The initial integration period was 2 s, and the
up- and downshifted plasma lines autocorrelation func-
tions were analysed at the same time resolution while the
ion line data were post-integrated to a 30-s period before
analysis.

Figure 1 presents the ionospheric parameters extract-
ed from the ion line analysis as a function of altitude.
Each panel presents the parameter obtained from both
the 450 ls and 900 ls pulses. The two dashed lines on
each panel represent the 1-r deviation of the parameter
averaged over the 1-h period while the solid line is the
averaged parameter. The ®tting procedure did not
converge for the 900 ls very long pulse above the
altitude of 850 km due to low backscattered signal, as it
is seen on the electron density ne, the electron and ion
temperature Te and Ti and the ion mean velocity ui. The
ionospheric parameters remained very stable over the
time period of the experience.
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Fig. 1. The electron density ne, the electron and ion line temperatures
Te and Ti and ion mean drift velocity ui as a function of altitude
averaged over the 1-h period of the experiment run. The dashed lines
represents the 1-r deviation from the averaged parameter (solid line)

904 P. Guio, J. Lilensten: E�ect of suprathermal electrons on the intensity and Doppler frequency of electron plasma lines



The plasma line data were analysed using a least-
square ®t method that uses a model of the autocorre-
lation function adapted to the observation of plasma
lines with the long pulse technique (Kofman et al., 1981;
Heinselman and Vickrey, 1992; Kofman et al., 1993).
The least-square ®t method allows accurate extraction
of the critical frequency at the electron density peak of
the F-layer, the intensity and the frequency width of the
plasma lines as well as the electron density scale height
around the peak and the height of the F-region peak.
Figure 2 shows an example of a ®t of an autocorrelation
function collected at a 2-s integration time. The intensity
of the plasma line is ®tted in terms of the antenna
temperature and is then converted into electron plasma
temperature (Yngvesson and Perkins, 1968) by taking

into account the radar constant and the frequency-
dependent e�ective antenna area (Guio et al., 1996).

Figures 3 and 4 show the parameters extracted from
the plasma line analysis, Fig. 3 is for the downshifted
plasma line and Fig. 4 for the upshifted. The top panels
present the critical frequencies fr� and the third panels
the intensities of the lines Tp�. The second panels show
the corresponding phase energies E/� of the Langmuir
waves at the frequencies fr� de®ned by

E/� �
1

2
me v

2
/� �1�

where v/� � 2p fr�=k� is the phase velocity of the wave,
k� � 2p�f0 � f0 � fr��=c is the scattered wave vector of
the Langmuir wave in the backscatter geometry with a
radar of frequency f0, and me is the electron mass. The
lowest panel in each ®gure shows the bandwidth df� of
the plasma lines over the 1-h period of observation.
Note that for low-frequency radars such as the EISCAT

VHF radar, the di�erence Dfr� � fr� � frÿ of Doppler
frequency between up- and downshifted plasma lines is
of the order of 1 kHz and it corresponds in term of

Fig. 2. Example of the result of a ®t of the up- and downshifted
plasma lines. The two upper panels show the measured complex
autocorrelation functions expressed in units of antenna temperature
(dashed line) and the theoretical model (solid line). The curves with the
intensity equal to zero at the zero lag delay are the imaginary parts.
The two lower panels present the corresponding power density
spectrum where the critical frequency is more easily identi®ed in the
spectral shape

Fig. 3. The parameters extracted from the downshifted plasma line
analysis for the 1-h period of observation. From top to bottom: the
absolute value of the critical frequency jfrÿj, the corresponding phase
energy E/ÿ, the intensity of the line (or plasma line temperature) Tpÿ
and the line width dfÿ
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phase energy into a di�erence DE/� � E/� ÿ E/ÿ of the
order of ÿ1 eV.

The intensity of the plasma lines presents interesting
variations in the 1±h observation period. At a ®rst look,
the intensity of the up- and downshifted line seems to
have a very di�erent behaviour as a function of time. In
Fig. 4, the intensity of the upshifted plasma line around
15:12 UT, for phase energies E/� about 24.25 eV shows
a signi®cant drop. A similar drop can be observed
around 15:43 UT, for phase energies around 26.25 eV.
In Fig. 3 the intensity of the downshifted plasma line
around 15:24 UT, for phase energies E/ÿ around
26.25 eV exhibits also a similar drop. At the same time,
the frequency width of the plasma lines is increasing (see
the lowest panel of Figs. 3 and 4). For the VHF radar,
the natural frequency width of the plasma lines is
controlled by the collisional damping and the Landau
damping of the suprathermal electrons. The collisional
damping is a function of the electron-neutral and
electron-ion collision frequencies (Newman and Oran,
1981) and of the phase velocity of the wave (Perkins and
Salpeter, 1965). As seen in the third panel from the top

in Fig. 6, the electron collision frequency derived from
the ion line analysis, does not vary much over the
observation period. The phase energy of the plasma
lines, as seen in the second panel from top in Figs. 3 and
4, and thus the phase velocity is increasing smoothly. It
is therefore very unlikely that the collisional damping
could provoke such variations in the intensity, instead it
is likely that the variations in the intensity of the plasma
lines are caused by an increase in the Landau damping
of the suprathermal electron population at these phase
energies (Perkins and Salpeter, 1965). This explanation
is reinforced by the fact that both the up- and
downshifted plasma lines exhibit a drop in intensity
for the same phase energy of 26.25 eV, i.e. for the same
velocity in the electron velocity distribution. Note that
the drop of intensity observed on the downshifted line at
15:24 UT is spread over a longer period because of the
slow variation of the phase energy at this time. As seen
in Fig. 5, the behaviour of the up- and downshifted
plasma lines intensity as a function of the phase energy is
very similar.

In order to analyse the intensity and Doppler
frequency of the plasma lines, one needs an estimate
of the parameters describing the ambient part of the
electron distribution function (Guio et al., 1998). These
parameters are estimated directly from the ion line
analysis or derived from the ion line analysis. Figure 6
presents the parameters of the ambient part of the
electron distribution function interpolated at the alti-
tude corresponding to the peak of the F-region where
the plasma lines are measured. The electron density ne
and electron temperature Te are directly estimated. The
electron collision frequency me includes the electron-
neutral and electron-ion collision frequencies de®ned by
(Newman and Oran, 1981)

men � 5:4� 10ÿ10nnT
1=2
e �2�

mei � 34:0� 4:18 log
T 3
e

ne

� �

neT
ÿ3=2
e �3�

Fig. 4. The parameters extracted from the upshifted plasma line
analysis for the 1-h period of observation. From top to bottom: the
critical frequency fr�, the corresponding phase energy E/�, the
intensity of the line (or plasma line temperature) Tp� and the line
width df�

Fig. 5. The temperature Tp� and Tpÿ of the up- and downshifted
plasma lines from the 1-h observation of Figs. 4 and 3 plotted as a
function of their phase energy, respectively E/� and E/ÿ
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where the density are in cmÿ3 and nn is the neutral
density calculated by the MSIS-90 model (Hedin, 1991).
The temperature gradient rTe is estimated numerically
from the ion line data. The Knudsen number
�T � 2ker log Te (Guio et al., 1998) where ke is the
electron mean free path, is a parameter used in the
Spitzer function (Cohen et al., 1950; Spitzer and HaÈ rm,
1953) to represent the electron ambient distribution
function in presence of a temperature gradient.

3 Analysis

The analysis is split into two parts. First the electron
suprathermal distribution function is adjusted so that
the calculated intensity matches the measured intensity.
When a satisfactory suprathermal distribution function
is determined, it is then used to calculate the electron
Doppler velocity ue as well as the plasma frequency xe.

3.1 Intensity analysis

In order to estimate the plasma line temperature
theoretically, we need a model for the suprathermal

electrons. We use the suprathermal velocity distribution
fs which we derive from the angular energy ¯ux /
calculated by the electron transport model code along
the Earth magnetic ®eld, described in Lilensten et al.
(1989) and Lummerzheim and Lilensten (1994). The
ionospheric parameters ne; Te and Ti we used as input to
the transport code are the averaged parameters of Fig. 1.
The code calculates the angular energy ¯ux for 100
altitudes between 90 km and 400 km and we get seven
angular ¯uxes in the altitude range 236±263 km.

Using a BGK model for the collisions, an expression
for the intensity of the plasma line can be derived from
the theoretical plasma line power spectrum for any
arbitrary electron velocity distribution (She�eld, 1975;
BjùrnaÊ and Trulsen, 1986) in the same way as done by
Perkins and Salpeter (1965) for isotropic but not
necessarily Maxwellian distribution. This new expres-
sion for the plasma line intensity expressed in terms of
the two complex functions P and Z is valid for any
arbitrary anisotropic velocity distribution that produces
a stable plasma. The complex functions P and Z
involved in the calculation can be replaced by their
numerical approximations Pn and Zn de®ned in Guio
et al. (1998) and the intensity expressed as a temperature
Tp� of the plasma lines is written

kbTp� � kbTe�

v/� Im Pn
v/�
ve

� �

ÿ
v/�
ve

me
k�

Pn
v/�
ve

� ��

�

�

�

�

�

2

ve Im Zn
ÿ v/�

ve

�

�
ÿ

ve
v/�

�2 me
k�
Re Pn

v/�
ve

� �

�4�

where me is the sum of the electron-neutral and electron-
ion collision frequencies of Eqs. (2) and (3),
ve �

����������������

kbTe=me

p

is the electron thermal velocity and

Pn
v/

ve

� �

� �1ÿ a�P a
n

v/

ve

� �

� aP s
n

v/

ve

� �

�5�

Zn
v/

ve

� �

� �1ÿ a�Za
n

v/

ve

� �

� aZs
n

v/

ve

� �

�6�

where P a
n; Za

n are the contributions from the ambient
population while P s

n; Zs
n are due to the suprathermal

electrons. The dimensionless number a denotes the
percentage of suprathermal electrons.

Our investigation to determine the ad hoc velocity
distribution function for the suprathermal electrons
shows that the detailed structure of the distribution in
the concerned energy range (23±29 eV) is depending on
the solar intensity ¯ux responsible for the creation of
photo-electrons. Figure 7 shows the model for the solar
intensity ¯ux spectrum (Torr and Torr, 1985) we
basically used. The solar intensity for any F10.7 is
deduced by interpolation between the two reference
¯uxes of Fig. 7. Since that time, a lot of work has been
done in order to get a better estimate of this ¯ux. Most
recent results include Warren et al. (1998a, b); Tobiska
and Eparvier (1998) and Woods et al. (1998). We tested
several more recent models, but in the energy range
relevant in this paper, we did not ®nd signi®cant

Fig. 6. The parameters for the ambient part of the electron
distribution function interpolated at the altitude where the critical
frequencies of the plasma lines are estimated (bottom panel)
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di�erences. The cross section set is from Fennelly and
Torr (1992). The two sharp peaks in the suprathermal
angular velocity distribution function, seen in the top
panel of Fig. 8, at energies 24.25 eV and 26.25 eV are
the e�ect of the photoionisation of N2 and O by the
discrete line of photons of wavelength 30.378 nm
(40.812 eV), corresponding to the solar emission of
HeII in the chromospheric network and coronal holes.
Indeed, ionisation thresholds are 15.58 eV for N2 and
13.61 eV for O. During an ionisation, the electron leaves
the ion with the energy of the input photon minus the
threshold energy, which should give two peaks at
energies 25.232 eV for N2 photoionisation and
27.202 eV for O photoionisation. The discrepancy
found can be interpreted as a mean energy left by the
incident photon to the target atom or molecule during
an ionization : in average, the nitrogen ion keeps about
one electronvolt. This result was theoretically expected
by chemists : the study of the dissociative ionisation of
N2 by photons between 23 and 30 eV has shown that the
kinetic energy of the ion evolves with the initial energy
of the photon (R. Thissen, personal communication).
When the electron is left with no energy, the mean
energy of the ion may be up to 1 eV, and even more
(1.6 eV has been observed with initial photons of
30 eV). To our knowledge, if this interpretation and
our comparison are correct it is the ®rst time that it is
conspicuous and that this energy can be numerically
evaluated. It has a certain importance as far as electron
density computations are concerned. Indeed, in the
ionospheric models, the coe�cients for the chemical
recombinations involving N�

2 are considered for a
ground state ion. The coe�cients involving excited ions
can be multiplied by a factor of 10 (Chiu et al., 1995).
The e�ect of excited neutral nitrogen (and especially
vibrational excitation) on calculation of electron densi-
ties has long been a subject of study [see for example
Pavlov and Buonsanto (1996) and references herein], but
the same e�ect for ions is still a new subject of
investigation.

Figure 8 shows the velocity angular distribution in
the energy range 23.5±28.5 eV (top panel) calculated by
the transport code at 241 km and the real and imaginary
parts of both the P s

n and Zs
n functions estimated with this

distribution. It is seen that the two sharp peaks at
24.25 eV and 26.25 eV in the angular distribution (top
panel) transform into the imaginary part of Zs

n function
(proportional to the Landau damping) as increases at
the same energy and into the imaginary part of P s

n

function (proportional to the one-dimensional reduced
distribution along the scattering direction) as a sharp
decrease in the suprathermal population.

The magnitude of the suprathermal distribution at
the energies corresponding to the two sharp peaks at
24.25 eV and 26.25 eV is proportional to the ¯ux of the
solar discrete emission line of HeII and so is the
imaginary part of Zs

n. At the same time it does not
in¯uence signi®cantly the magnitude of the distribution
at other energies. So that, we had to actually reduce by
®ve the intensity of the ¯ux of the HeII discrete line (see
Fig. 7) for the solar minimum i.e. F10.7 = 68, while
keeping the same value for the continuum in order to get
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Fig. 7. The model for the solar intensity ¯ux (Torr and Torr, 1985).
The thin line is for solar maximum (F10.7 = 243) and the thick line
for solar minimum (F10.7 = 68). The solar ¯ux for any arbitrary
F10.7 is deduced by interpolation between theses two references ¯uxes

Fig. 8. The suprathermal electron angular velocity distribution
function (top panel) at 241 km calculated by a 32-streams run of the
transport code to gives the distribution at 32 angles and the complex
functions P s

n and Zs
n calculated numerically with this distribution

function, in the energy range 23.5±28.5 eV. The thin line is for
downward phase energy and the thick line is for upward phase energy
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a magnitude of the damping that reproduced correctly
the temporal variations of the plasma line temperatures.
Such variations of the intensity of the ¯ux over time
period of a few hour have been observed (J. Aboudar-
ham, personal communication).

In addition to the adjustment of the intensity of the
¯ux of the HeII discrete line and in order to resolve
correctly the two peaks at these energies we modi®ed the
energy grid of the transport model in the range 20±32 eV
to a higher resolution linear grid of energy step á1 eV.

Figure 9 shows the results of the theoretical calcula-
tions of the intensities together with the data. After the
adjustments of the parameters in the transport code, the
calculated intensities are seen to be in good agreement
with the measured ones. It is important to note that
while these modi®cations in the parameter of the
transport code in¯uence substantially the distribution
function at the energies corresponding to the two peaks,
they do not change otherwise the global properties of
the suprathermal electron distribution function.

3.2 Doppler frequency analysis

We now present a method to derive both the electron
Doppler velocity ue of the ambient electron population
and the electron plasma frequency xe from the mea-
sured up- and down shifted plasma line frequencies.

The down- and upshifted plasma lines correspond to
two Langmuir waves (kÿ;xÿ) and (k�;x�) travelling
away from and toward the radar, respectively, in the
backscatter geometry. They are high-frequency solu-
tions of the dispersion relation (Guio et al., 1998)

1�
xe

k�ve

� �2

Re Zn
2pfr�

k�ve

� �

� 0 �7�

Eliminating xe and ve between these two equations and
replacing Zn by its ambient and suprathermal compo-

nents and replacing the frequencies fr� by the phase
velocity v/�, the electron Doppler velocity ue of the
ambient electron population is the solution of the
following equation

k2� �1ÿ a�Re Za
n

v/ÿ ÿ ue

ve

� �

� aRe Zs
n

v/ÿ

ve

� �� �

�

k2ÿ �1ÿ a�Re Za
n
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ve

� �
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v/�

ve
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where the drift velocity ue appears only in the terms
relative to the ambient component Za

n and we will
consider here two models of velocity distribution to
describe the ambient population: a Maxwellian and a
Spitzer function that takes into account the gradient of
the electron temperature (Guio et al., 1998).

Once the Doppler velocity ue is found, the plasma
frequency xe is given by

xe � �k�ve��

�1ÿ a�Re Za
n

v/� ÿ ue

ve

� �

� aRe Zs
n

v/�

ve

� ��

�

�

�

�

�

�

�

ÿ1
2

�9�

either evaluated for the down-going Langmuir wave
with phase velocity v/� or the up-going one with phase
velocity v/ÿ.

Figures 10±12 show the result of this analysis. Figure
10 presents the Maxwellian case whereas Fig. 11 is for
the Maxwellian superimposed with the suprathermal
distribution and Fig. 12 is for the Spitzer function
superimposed with the suprathermal distribution.

The data set can be separated into three intervals
where the Doppler velocity ue is constant: before the ®rst

Fig. 9. Comparison between the measured plasma line intensities and
the modelled intensities as a function of time. The modelled intensities
are calculated using the P s

n and Zs
n functions of Fig. 8

Fig. 10. The upper panel shows the estimated ion drift velocity ui
(thick line) from the ion line analysis and the electron drift velocity ue
(thin line) from the analysis method based on Eq. (8) without
suprathermal population (a � 0) and assuming aMaxwellian ambient
population with the parameters of Fig. 6. The lower panel shows the
estimated plasma frequency xe=2p given by Eq. (9)
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feature of change of sign at 15:12 UT, between the
second feature at 15:23 UT and the third one at
15:43 UT and after this last one. Table 1 gives the
mean value of the Doppler velocity ue for the di�erent
models considered as well as the mean value of the ion
Doppler velocity ui for these three time intervals. The
e�ect of the suprathermal electrons is clearly seen, our
suprathermal velocity distribution reduces the relative
di�erences of ue between the three intervals. The e�ect
of the Spitzer function is thereafter to shift down the
whole mean drift velocity, which we expected as the heat

¯ow e�ect behaves like a mean Doppler velocity. The
superposition of the suprathermal distribution to the
Spitzer function (with parameters of Fig. 6) gives
estimates of ue in best agreement with ui.

On the other hand, we were not able to reduce
considerably the features at 15:12 UT, 15:24 UT and
15:43 UT even though they are probably the e�ect of the
suprathermal electrons as it can be thought by examining
carefully the real part of the Zs

n function of Fig. 8.
Qualitatively, the real part of Zs

n around 24.25 eV and
26.25 eV has a correct shape to compensate these changes
in the electron Doppler velocity ue. These three events are
characterised by an abrupt change of sign of the Doppler
velocity. During the ®rst feature at 15:12 UT theDoppler
velocity ®rst decreases, then increases. At this time, the
phase energy of the upshifted plasma line moves across
24.25 eV where the real part of Zs

n ®rst increases, then
decreases while the phase energy of the downshifted
plasma line is around 25.25 eV where the real part of Zs

n

increases slowly (see Fig. 8). Thus the term k2ÿReZs
n�E/��

of Eq. (8) is varying qualitatively correctly so that Eq. (8)
should be satis®ed without such variations being re¯ected
on the electron Doppler velocity ue. During the two other
features the same e�ect is observed. At 15:24 UT the
phase energy of the downshifted plasma linemoves across
26.25 eV which gives an opposite e�ect, it is now the term
k2�ReZs

n�E/ÿ� of Eq. (8) that compensates. At 15:43 UT,
the phase energy of the upshifted plasma line moves
across 26.25 eVwhich gives an e�ect in the same direction
as the ®rst one. Moreover the ®rst feature at 15:12 UT is
not so emphasised as the two other ones. It corresponds to
the N2 photoionisation peak while the two other features
correspond to the O photoionisation which e�ect on the
real part of Zs

n is more emphasised than for the N2 peak.
It can be pointed out that the frequency correction

caused by our model of photoelectrons is of the same
order as the one predicted with a Maxwellian photo-
electron population (Bauer et al., 1976). We note also
that while the di�erence of the electron mean velocity ue
is substantial, the di�erence in the estimated plasma
frequency xe remains under 1 KHz.

Fig. 11. The upper panel shows the estimated ion drift velocity ui
(thick line) from the ion line analysis and the electron drift velocity ue
(thin line) from the analysis method based on Eq. (8) with a
suprathermal population described by the distribution function of
Fig. 8with aMaxwellianbackgroundof parameters ofFig. 6.The lower
panel shows the estimated plasma frequency xe=2p given by Eq. (9)

Fig. 12. The upper panel shows the estimated ion drift velocity ui
(thick line) from the ion line analysis and the electron drift velocity ue
(thin line) from the analysis method based on Eq. (8) with a
suprathermal population described by the distribution function of
Fig. 8 and a Spitzer function for the ambient electrons with
parameters of Fig. 6. The lower panel shows the estimated plasma
frequency xe=2p given by Eq. (9)

Table 1. Mean value of the electron Doppler velocity ue for the
four di�erent models considered: a Maxwellian, a Spitzer function,
a Maxwellian superimposed with a suprathermal distribution and a
Spitzer superimposed with a suprathermal distribution as well as
the ion Doppler velocity ui estimated from the ion line analysis.
The suprathermal distribution is the one shown in Fig. 8 and the
parameters of the Spitzer function are the one of Figure 6. The
mean Doppler are calculated for the three time intervals
considered. The ®rst number in each column is the velocity in
ms)1 while the number in parenthesis is the equivalent frequency
Doppler shift in Hz

14:57±15:09 15:26±15:39 15:46±16:00

Maxwellian )25 ()74) )72 ()214) +37 (+112)
Spitzer )57 ()169) )95 ()282) +17 (+50)
Maxwellian + Supra +22 (+66) )10 ()29) +48 (+143)
Spitzer + Supra )10 ()30) )32 ()97) +27 (+82)
Ion line Doppler ui )15 ()45) )27 ()81) )29 ()86)

910 P. Guio, J. Lilensten: E�ect of suprathermal electrons on the intensity and Doppler frequency of electron plasma lines



4 Conclusion

We have discussed a high time resolution plasma line
data set measured by the EISCAT VHF radar in the
summer daytime ionosphere. We have presented a
method to analyse both the intensity and the Doppler
frequency shift of the plasma lines using a model taking
into account the suprathermal electron population and
the e�ect of the electron temperature gradient on the
ambient population. The data set has been analysed
with this method. Parameters of the electron transport
code, such as the solar intensity ¯ux and the ionisation
threshold of N2 and O had to be adjusted to take into
account correctly the detailed structures of the supra-
thermal distribution in the energy range 23.5±28.5 eV.
Our model reproduces well the temporal variations of
the intensity of the plasma lines and we have identi®ed
the e�ect of N2 and O photoionisation at 24.25 eV and
26.25 eV caused by the solar discrete emission line HeII.
We then derived the electron mean Doppler velocity and
the plasma frequency and identi®ed also the e�ect of N2

and O photoionisation. It is shown that our model for
photoelectrons superimposed with a Spitzer function for
the ambient electrons is able to reproduce the variations
in the intensity of the plasma lines as well as explain
substantially the variations of the Doppler frequency of
the plasma lines for the data set measured with the
EISCAT VHF radar.
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