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Gestion de métadonnées utilisant tissage et transformation de modéles

Résumé

L'interaction et I’interopérabilité entre différentes sources de données sont une préoccupation majeure dans
plusieurs organisations. Ce probléme devient plus important encore avec la multitude de formats de données,
APIs et architectures existants. L’ingénierie dirigée par modéles (IDM) est un paradigme relativement nouveau
qui permet de diminuer ces problémes d'interopérabilité. L'IDM considére toutes les entités d'un systéme
comme un modéle. Les plateformes IDM sont composées par des types de modéles différents. Les modéles de
transformation sont des acteurs majeurs de cette approche. |ls sont utilisés pour définir des opérations entre
modéles. Par contre, il y existe d’ autres types d’interactions qui sont définies sur la base des liens. Une solution
d'IDM compléte doit supporter des différents types de liens. Les recherches en IDM se sont centrées dans
I" étude des transformations de modéles. Par conséquence, il y a beaucoup de travail concernant différents types
desliens, ainsi que leursimplications dans une plateforme IDM.

Cette thése étudie des formes différentes de liens entre les éléments de modéles différents. Je montre, & partir
d’une étude des nombreux travaux existants, que le point le plus critique de ces solutions est le manque de
généricité, extensibilité et adaptabilité. Ensuite, je présente une solution d’'IDM générique pour la gestion des
liens entre les éléments de modéles. La solution s appelle le tissage de modéles. L e tissage de modéeles propose
I utilisation de modéles de tissage pour capturer des types différents de liens. Un modéle de tissage est conforme
a un métamodéle noyau de tissage. Jintroduis un ensemble des définitions pour les modeles de tissage et
concepts liés. Ensuite, je montre comment les modéeles de tissage et modéles de transformations sont une
solution générique pour différents problémes d' interopérabilité des données. Les modéles de tissage sont utilisés
pour générer des modéles de transformations. Ensuite, je présente un outil adaptive et générique pour la création
de modéles de tissage. L' approche sera validée en implémentant un outil de tissage appelé AMW (ATLAS
Model Weaver). Cet outil sera utilisé comme solution de base pour différents cas d’ applications.

Mots-clés: tissage de modéles, transformation de modéles, interopérabilité des données, ingénierie des
modéles

M etadata management using model weaving and model transformation

Abstract

The interaction and interoperability between different data sources is a major concern in many organizations.
The different formats of data, APls, and architectures increases the incompatibilities, in a way that
interoperability and interaction between components becomes a very difficult task. Model driven engineering
(MDE) is a paradigm that enables diminishing interoperability problems by considering every entity as a model.
MDE platforms are composed of different kinds of models. Some of the most important kinds of models are
transformation models, which are used to define fixed operations between different models. In addition to fixed
transformation operations, there are other kinds of interactions and relationships between models. A complete
MDE solution must be capable of handling different kinds of relationships. Until now, most research has
concentrated on studying transformation languages. This means additional efforts must be undertaken to study
these relationships and their implications on a MDE platform.

This thesis studies different forms of relationships between models elements. We show through extensive
related work that the major limitation of current solutions is the lack of genericity, extensibility and adaptability.
We present a generic MDE solution for relationship management called model weaving. Model weaving
proposes to capture different kinds of relationships between model elements in a weaving model. A weaving
model conforms to extensions of a core weaving metamodel that supports basic relationship management. After
proposing the unification of the conceptual foundations related to model weaving, we show how weaving models
and transformation models are used as a generic approach for data interoperability. The weaving models are used
to produce model transformations. Moreover, we present an adaptive framework for creating weaving modelsin
a semi-automatic way. We validate our approach by developing a generic and adaptive tool called ATLAS
Model Weaver (AMW), and by implementing several use cases from different application scenarios.

K eywords. model weaving, model transformations, data interoperability, model driven engineering
Discipline: Informatique
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1 Résumé éendu:

1.1 Introduction

L’idée de base dans I’ Ingénierie Dirigée par Modéles (IDM) est de considérer les modéles comme
entités de base. Un modéle est un artefact conforme a un métamodéle et qui représente un aspect
donné d'un systéme. Les approches courantes de I'IDM ont trois niveaux de représentation pour des
modéles : modéles terminaux, métamodéles et métamétamodéles [74]. Le métamodéle décrit les
éléments dun modéle terminal, la maniére dont ils sont arrangés, liés et contraints. Le
métamétamodéle est la représentation de base de tous les métamodeles et modéles terminaux d'un
espace technique [86]. Les plateformes IDM sont composées de différents types de modéles. Un des
types de modéles les plus important sont les modéles de transformation [75]. Les modéles de
transformation sont utilisés pour définir des opérations entre modeles. Cependant, les transformations
de modéles sont essentiellement congues afin de définir des opérations fixes.

En plus des opérations de transformation, il existe d'autres types d'interactions possibles entre
modéles. L'établissement de liens entre ééments appartenant a différents modéles est un probléme
central dans de nombreuses applications, concernant différents domaines tels que l'intégration de
données et schémas [15] [89] [103] [102], I'interopérabilité d'outils [41], la composition des interfaces

utilisateur [129], latracabilité entre modéles [72], et d'autres.

! Le chapitre suivant est un résumé étendu de cette thése. Les idées introduites dans ce chapitre seront détaillés
dans la suite de ce document.
1
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La diversité des cas d'application motive la création d'une plateforme générigque pour la gestion de
liens. Dans ce but, trois aspects principaux doivent étre considérés. D'abord, il est nécessaire de choisir
un format de représentation approprié et de définir la sémantiqgue des liens. Le format de
représentation est un compromis entre simplicité et expressivité. Aujourd'hui, nous trouvons différents
formats, allant des correspondances simples [103] aux graphes [120] [40]. L'éventail des solutions est
habituellement ad hoc, c.-a&d., les liens entre les modéles sont définis avec I'objectif de fournir une
solution simple et rapide. I1s ne peuvent pas étre réutilisés ou étendues.

Le deuxiéme aspect concerne la création (calcul) de ces liens. Cela est étroitement |ié aux
approches de matching de schéma et d'ontologies. Il est important de trouver des mécanismes pour
aider la création des liens entre les é éments de modéles. Cependant, il ne s agit pas seulement de créer
des techniques de matching de schéma ou d'ontologies. Plusieurs techniques existantes donnent déja
de bons résultats. Par contre, ils ne peuvent pas étre réutilisés ou modifiés de maniere facile. Aing,
une solution générique doit fournir une plateforme facile a utiliser et extensible ou de nouvelles
méthodes peuvent étre facilement intégrées.

Finalement, le troisiéme aspect est |'utilisation des liens. C'est un domaine trés étendu, en raison du
grand nombre des cas d'application. La représentation et la création de liens doivent étre adaptées aux
différentes utilisations. Nous ne connaissons aucune approche IDM qui puisse étre utilisée dans

différents cas d'application. Ainsi, I’ objectif de cette thése est |e suivant:

Définition d'une solution générique pour la gestion de liens. Une solution générique doit
supporter les aspects majeurs de la gestion de liens, i.e., la représentation, le calcul et I’ utilisation
de liens. Afin d'étre applicable a différents cas d'application (e.g., tracabilité, interopérabilité,

fusion), la solution proposée sera extensible pour supporter plusieurs types deliens.
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Nous proposons | e tissage de modéles comme une solution générique pour la gestion des liens entre
éléments appartenant a des model es différents. L e tissage de modéles propose I’ utilisation des modéles
de tissage, qui sont un type particulier de modéles capturant différents types de liens entre des
ééments de moddes. Un modéle de tissage est conforme a un méamodéle de tissage. Nous
définissons un métamodéle de tissage basé sur un ensemble de besoins génériques de la gestion des
liens. Le métamodéle de tissage est extensible. Il est aussi possible de créer des métamodéles de
tissage spécifiques a différents domaines d’ application. Ceci a une importance significative, parce que
la définition d'un métamodéele complet qui pourrait étre utilisé dans tous les scénarios d'application
n'est pas une solution pratique.

Les modéles de tissage sont créés en utilisant des méthodes diverses. Nous utilisons une approche
semi-automatique. D'abord nous exécutons des transformations de matching. Les transformations de
matching sont une approche pratique pour développer des techniques permettant la création des
modéles de tissage. Les transformations de matching peuvent étre adaptées pour prendre en compte
différentes extensions de métamodéles. Une fois que les modéles de tissage sont créés, nous utilisons
une interface graphique pour les raffiner manuellement.

Nous proposons une méthode générique pour produire des transformations de modéles a partir des
modeél es de tissage. Nous prenons en compte un ensemble d’ observations sur la structure des modéeles
de transformations et de modél es de tissages pour définir une opération de gestion de modéles pour la
génération de transformations.

Pour résumer, les contributions majeures de cette thése sont les suivantes. Nous proposons une
solution générique pour la gestion des liens entre ééments de modéles. L'adaptabilité et I'extensibilité
sont les avantages principaux de notre approche. Nous expliquons les avantages d'une approche
adaptative et extensible en ce qui concerne les trois aspects présentés. D'abord, nous présentons un
métamodéle de tissage noyau qui est extensible. Ensuite, nous présentons une nouvelle opération de

gestion de modeles utilisée pour produire des modeles de transformations basées sur les modéles de
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tissage. Finalement, nous proposons un framework adaptatif pour créer et exécuter des transformations
de matching. Nous validons notre approche en développant un outil appelé AMW (ATLAS Model
Weaver) [39]. L’ outil sera utilisé dans plusieurs scénarios d’ applications pour valider notre approche.
Ce chapitre est organisé comme suit. La section 1.2 présente le tissage de modeles. La section 1.3
explique comment les modéles de tissage sont utilisés pour produire des transformations de modéles
exécutables. La section 1.4 décrit différentes méthodes pour créer les modeles de tissage. La section

1.5 conclue.

1.2 Tissage de modéles

L e tissage de modéles est une approche générique couvrant tous les aspects de la gestion de liens:
lareprésentation, le calcul et I' utilisation de liens. Les liens entre éléments de modeéles sont enregistrés
dans un modele de tissage. D’ abord, nous définissons les modéles, métamodéle de tissage et modele
de tissage. Ensuite, nous présentons un métamodél e de tissage noyau. En conclusion, nous présentons

notre outil de tissage de modél e générique.

1.2.1 Définitions

Nous présentons les définitions de graphes, de modéle, et du métamodél e de tissage (suivant [41]).

Definition 1.1 (Multi-graphe orienté). Un multi-graphe orienté G = (Ng, Eg, I'c) est composé d'un
ensemble fini de noauds Ng et d'un ensemble fini d’ arrétes Eg, une fonction I'g : Eg — Ng X Ng reliant

les arcs aleurs source et cible.
Definition 1.2 (Modéele). Un modéle M = (G, m, \) est un triplet dont:

e G =(Ng, Eg, I'c) est un multi-graphe orienté,
° ® est un modéle associe a un multi-graphe

G(D = (N(Ol E(Ol l—‘(D)v
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e U:NguU Es— N, est une fonction associant les éléments (nceuds et arrétes) de G aux noauds de

G, Lafonction p associe tous les ncauds et arréts de G (Ng L Eg) avec un élément de o (No).

Definition 1.3 (Modéle de référence). Etant donnée un modéle My = (G1, oy, [), €t un modéle M, =

(Gz, , U2), S 1 = M5, M, est appelé le modél e de référence de M.

Quelques modéles sont leur propre modéle de référence (o = M). Ceci permet d arréter la
récursivité introduite dans cette définition. La relation entre un modéle et son modele de référence est
appel ée conformance. Elle se note par conformsTo (or c2). Cette définition permet un nombre indéfini
de niveaux. Cependant, nous avons observeé dans différents domaines (XML, RDBMS, ontologies) que
seulement trois niveaux sont nécessaires (cf. chapitre 2). Nous appelons ces niveaux métamétamodele

(M3), métamodele (M2) et modéle terminal (M1).

Definition 1.4 (Métamétamodele). Un métamétamodéle est un modéle qui est son propre modéle de

référence.

Definition 1.5 (Métamodéle). Un métamodéle est un modéle tel que son modéle de référence est un

métamétamodel e.

Definition 1.6 (Modéle terminal). Un modéle terminal est un modéle tel que son modéele de

référence est un métamodéle.

Un modéle peut étre conforme a un seul modéle de référence. Un modéle de référence peut avair
plusieurs modéles qui sont conforme a lui. Le métamétamodéle est |a représentation de base de tous
les métamodeles et modéeles terminaux dun domaine donné. En conséquence, le choix du
métamétamodél e est déterminant pour développer une solution générique d’' IDM.

Nous capturons les liens entre les éléments de modéles dans un modéle de tissage. Un modéle de
tissage est conforme a un métamodéle de tissage. Le métamodél e de tissage définit les types de liens
qui peuvent étre créés. Nous commengons par définir les concepts de métamodéle et de modéle de

tissage. Ensuite nous présentons un métamodél e de tissage noyau.
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Definition 1.7 (Métamodele de tissage). Un métamodele de tissage est un modele MMy, = (Gy, o,

L), qui définit destypesdelien, tel que:

* Gy =(Nm, Ev, T'wm),

e Ny =N_ U N_U No, N_ indique les types de liens; N_e indique les types d' extrémités de liens et
Noindique des noauds auxiliaires,

e Ty : Evw —» (NL X Nig) U (No x Ny), i.e, un type de lien fait référence a une ou plusieurs

extrémités de liens et les noauds auxiliaires font référence an’importe quel type de noaud.

Definition 1.8 (Modéle de tissage). Un modéle de tissage est un modele My, = (Gw, ow, Uw), le
graphe Gw = (Nw, Ew, T'w), tel que son modée de référence est un métamodéle de tissage (ww =

MMuw).

Cela signifie qu'un modele de tissage contient des liens qui permettent de lier des éléments de
différents modéles. Les éléments du modéle de tissage sappellent les éléments de tissage. Un modéle
de tissage est un modele terminal. Les éléments de tissage qui sont conformes aux extrémités de liens
(uw (Nw) = Nig) sont des références aux éléments des modéles liés. Pour obtenir la valeur réelle des
élémentsliés, les extrémités de lien sont associées a une fonction de déréférencement.

Nousillustrons le métamodele et e modél e de tissage en utilisant I'expressiont = s, + S, + 3+ 54/ 4.
Le langage permettant de créer cette expression contient les opérateurs d'addition et de division, plus
les tokens (les ééments du modéle). Le langage n'indique pas explicitement qu'il est possible de créer
des expressions complexes. La sémantique est seulement connue si nous analysons |'expression elle-
méme. Dans notre solution, nous créons un type de lien qui capture la sémantique de la combinaison
des opérations "+" et "/". Ce processus est la promotion de la sémantique dans le métamodéle de
tissage. Le type de lien réfere & une extrémité de lien avec la cardinaité N (les éléments source), et a
une extrémité de lien avec la cardinalité 1 (I'éément cible). L'expression (le lien entre les éléments) est

créée dans un modél e de tissage conforme au métamodél e de tissage.
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Nous appelons un ensemble de modéles liés, plus le modéle de tissage entre eux un tissage de

modéeles.

Definition 1.9 (Tissage de modéles). Un tissage de modéles est une tuple <My, Sym>, OU:

Mw = (Gw, Ow, L) est un modele de tissage,

Swm ={M; = (Gj, o, W), i =[1..n]} est un ensemble de modélesliées par My,

1.2.2 Métamodele de tissage noyau

Nous définissons un métamodéle de tissage noyau pour supporter les aspects de base de la

représentation de liens. Ce métamodéle est présenté dans [39]. Le métamodéle de tissage a un

ensemble d' ééments, qui sont décrits ci-dessous:

WElement est un éément abstrait dont tous les autres @éments héritent. 1| a un nom et une
description.

WModel représente I'é ément racine qui contient tous les ééments d’un modéle.

WLink exprime un lien entre les ééments de modéles (sémantique de lien simple). Pour pouvoir
exprimer des types et des semantiques de liens différents, cet élément peut étre étendu par
différents métamodéles (j'expliquerai comment ajouter des liens différents dans la section
suivante).

WLinkEnd définit les types d’ extrémité de liens. Chague extrémité de lien représente un élément de
modelelié. Cela permet de créer des liens de cardinalité multiple.

WElementRef’' s sont associés a une fonction déréférencement qui prend comme paramétre la valeur
de l'attribut ref et renvoie I'élément lié. 11 y a également la fonction inverse qui prend I'éément lié

comme paramétre et qui renvoie un identifiant.
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Il est possible d'associer les fonctions directement aux extrémités de lien. Cependant, nous créons
WElementRefs séparés pour qu’ un méme éément puisse étre référencé par plusieurs extrémités de

liens.

1.2.3 Opération d’extension

Le métamodele de tissage n'est pas un métamodéle fixe. || peut supporter différentes types de lien.
Nous obtenons des types de liens différents en étendant le métamodél e de tissage en gjoutant des liens

spécifiques aun domaine donné. Cela est réalisé grace al'opération d' extension de métamodeéle.

Definition 1.10 (Opération d'extension de métamodéle). L'extenson de métamodéle est une
opération MMg = Extend (MM, MMg, Mwp), qui prend les métamodeles MMy, MME et le modéle de
tissage Myp en entrée, et qui produit un nouveau métamodéle MMg. Le métamodéle MMy, est étendu

par MME, suivant les spécifications du model e de tissage Mwp.

Comme expliqué précédemment, le métamodéle de tissage noyau n'est pas congu pour supporter
tous les types de lien existants. Pour supporter différents types de liens, et donc étre applicables a des
scénarios variés, nous introduisons différents sous-ensembles de métamodéles de tissage qui sont
spécifiques a certains domaines, qui sont des extensions au métamodéle de tissage noyau. La
définition de types de lien différents n'est pas une téche aisée et exige souvent une connaissance
détaillée du domaine d’ application. Nous envisageons des différents types de liens:

e Composition: liens comme Override, Merge, Delete.
e Interoperabilité: liens comme Equality, SourceToTarget.
¢ Intégration de données: Concatenation, Equality, IntToStr.
e Tracabilité: Origin, Source, Evolution, Modified, Added.
¢ Alignement d’ ontologies: Equivalent, Equality, Resemblance, Proximity.
A partir de cette liste (qui n'est pas exhaustive) nous pouvons voir gque certains types de liens sont

présents dans plusieurs domaines différents, par exemple les liens d'égalité sont disponibles dans
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presque tous les scénarios, ce qui motive la création de différents ensembles d’'extensions au

métamodél e de tissage noyau. Les extensions sont réutilisées dans des applications différentes.

1.2.4 Outil ATLASModel Weaver

Dans cette section nous présentons I'outil ATLAS Model Weaver (AMW). AMW est un outil
générique et adaptatif pour manipuler les modéles de tissage conforme a des extensions de
métamodeéles différentes. L'extensibilité du métamodéle de tissage noyau a plusieurs implications sur
la conception dAMW. Le défi majeur est de développer un outil qui peut étre facilement adapté et

étendu. De cette fagon, I'outil peut supporter les différents aspects de la gestion de liens.

1.2.4.1 Description générale

Les trois notions sur lesquelles nous avons basés la conception d AMW sont: extension de
métamodéle, extension d'outil et manipulation de modele générique. L'outil emprunte les principes de
la plateforme Eclipse [51]: construire un framework de base qui est extensible et utilisable en plusieurs
domaines. L'architecture d'Eclipse est basée sur des contributions: nous contribuons a la plateforme
avec un nouveau plugin (composant) et nous définissons également des points d’ extension (un point
d'entrée pour brancher des nouvelles contributions). Ce type d'architecture sest avéré efficace et a été
largement approuvé par la communauté de développement de logiciel. Nous appliquons les mémes
principes pour créer un framework extensible pour AMW.

L'idée principale de I'implémentation est d'avoir une interface utilisateur simple de |'outil de tissage
et qui pourrait étre partiellement re-générée sans devoir construire un outil spécifique pour chague
application de tissage. L’outil fournit un ensemble de fonctionnalités standard pour la gestion des
modeles et des métamodeles de tissage. |l est construit comme une contribution a Eclipse EMF
(Eclipse Modeling Framework) [55]. EMF fournit une APl pour la manipulation de modeles. L'API

accede aux modeles qui sont conformes au métamétamodél e Ecore [55].
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Le framework est implémenté en éant basé sur le métamodéle de tissage noyau. Puisque les
extensions de métamodel es de tissage sont des extensions des é éments tels que WLinkEnd, WLink ou
WElementRef, le framework fournit une interface standard qui manipule ces éléments et ces
extensions. Le framework définit différents points d extension, dont différents composants sont
branchés, ce qui permet d’enrichir I'int. 11 y a deux catégories principales d’ extensions. extensions
IDM et extensions GUI (Graphical User Interface). Les extensions IDM permettent d'exécuter des
taches de gestion de modéles différentes, par exemple, traduire un modéle source en un modéle cible.
Les extensions GUI fournissent les facilités graphiques pour appeler les extensions IDM. Le
framework commande les interactions entre ces deux catégories d’ extensions.

L’ outil est disponible comme un composant de GMT (Generative Modeling Technologies) sur le
site officiel d' Eclipse. L'outil a plus de 15.000 lignes de code. Le site fourni une documentation

extensive, avec un Wiki, FAQ, le code source, un ensemble de cas d’ éude, etc.

1.3 Interopérabilité de données dirigée par des modeles

Aujourd'hui, il existe différentes sources de données disponibles, avec des formats et sémantiques
différents. En raison de la collaboration accrue entre les organisations et les environnements évoluant
rapidement, il est souvent nécessaire d' utiliser des données venant de différentes sources dans une
méme entreprise. Cependant, les données produites par des organisations différentes sont souvent
hétérogenes, avec des formats de données tres différents, et rendent de ce fait I'interopérabilité de
données difficile.

Dans cette section, nous présentons |’ utilisation des modél es de tissage et de transformation comme
une solution pratique pour réaliser l'interopérabilité de données. Notre solution est utilisée pour
capturer les différents types d’ hétérogénéités entre modéles d’ une fagon abstraite et déclarative.

Nous définissons différentes extensions de métamodéles qui sont capturent des expressions

courantes dans des scénarios d'interopérabilité de données. Les modéles de tissage qui sont conformes
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a ces extensions sont utilisés pour produire des transformations de modéles. Nous généralisons la
production de transformations dans un pattern d’ opération de gestion de modéles, ce qui permettra
d appliquer notre approche dans des scénarios similaires. Ceci est une opération fréguemment
exécutée dans des plateformes de modélisation. Nous encapsulons ce pattern dans une opération
appel ée TransfGen.

Dans cette section, nous présentons d'abord un ensemble d extensions de métamodéle pour
I'interopérabilité de données. Ensuite, nous décrivons comment la production de transformations est

encapsul ée dans un pattern de modéle de transformation.

1.3.1 Extensionsde métamodéle pour I'inter opérabilité de données

Dans cette section nous présentons une vue d'ensemble des extensions de métamodéle qui capturent
des expressions courantes d'interopérabilité de données. Nous considérons la nécessité de lier un
métamodéle source avec un métamodéle cible. Les hétérogénéités sont capturées par un métamodéle

de tissage. Nous présentons ces extensions en détail dans le chapitre 5.

1.3.1.1 Expressionsdesimilarité

Les expressions de similarité représentent des liens de ressemblance entre les éléments de
métamodéles. Ces expressions sont trés courantes lors du dével oppement des transformations. |1 existe
différents types d'expressions de similarité.

Egalité les ééments de modéles qui représentent exactement |la méme information sont reliés par
desliens d'égalité.

Equivalence: les déments liés représentent de I'information similaire, mais pas exactement la
méme. Cependant, la sémantique de traduction peut étre identique a celle des liens d'égalité, c.-a-d., un

élément cible recoit la valeur d'un élément source.
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Equivalences typées: les définitions d'égalité et d'équivalence ne font pas de distinction entre les
types d'ééments. L'addition de contraintes de type évite, par exemple, créer un lien entre une classe et
un attribut (types différents), ou quand il n’est pas possible de faire de conversions de types.

Digonction: deux éléments représentent de I’ information incompatible.

Généralité: les élémentsliés ont une relation d’ héritage.

Non équivalence: il n'est pas toujours possible de trouver des équivalences entre tous les éléments
de deux métamodéles qui nous voulons lier. Un élément sans équivalents peut étre simplement ignoré.

Cependant, il est important que le dével oppeur d'application se rende compte de ce qui n'est pas liée.

1.3.1.2 Expressions complexes

Les expressions complexes lient un ensemble d'éléments source et un ensemble d'éléments cible.
Le métamodéle de tissage encapsule ces expressions dans ses ééments. Les extensions de
métamodéles sont créées séparément et rendues disponibles dans un dépét partagé. Le formalisme de
base qui définit ces expressions est caché dans le méamodéle de tissage. Les expressions de
navigation et les calculs d'expressions sont définis dans une étape suivante.

Cependant, il n'est pas possible de définir des extensions de métamodéle pour chague type
d'expression existante, puisgue ces expressions varient selon le domaine d’ application. En outre, ces
expressions sont souvent créées manuellement parce que les liens entre les éléments de modéles sont
en général compliqués. La plus part du temps elles ne sont pas créées par des techniques automatiques,
car celaimpliquerait un certain raisonnement sémantique.

Plusieurs-a-un: ces expressions lient un ensemble d'ééments du métamodéle source avec un
élément du métamodéle cible.

Un-a-plusieurs. ces expressions sont I'opposé des expressions plusieurs-a-un, c.-a-d., elles lient

plusieurs é éments cibles a un seul éément source.
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Multiple: Les expressions multiples relient un ensemble d'éléments des métamodél es source avec
un ensemble d'éléments des métamodéles cibles. Ces expressions peuvent étre créées en utilisant une
combinaison des expressions précédentes. Cependant, cela réduit I'expressivité du lien.

Nouvelles valeurs sur la cible: ces expressions spécifient la nécessité de générer des valeurs dans
le modéle cible qui n'ont pas une correspondance dans le modéle source. Ces valeurs peuvent étre

automatiquement produites ou peuvent prendre une valeur prédéfinie d'entrée par un utilisateur.

1.3.1.3 Expressionsde valeursde données

Les expressions de valeur de données different des expressions complexes parce qu'elles sont
utilisés pour lier également les ééments des modéles terminaux et pas seulement les éléments des
métamodéles. Les expressions de valeur de données spécifient une comparaison entre les é éments du

modél e source et cible, pour les rendre compatibles.

1.3.2 Production detransfor mations

L’ étape suivante aprés la définition des extensions de métamodéle est la création d'un modéle de
tissage. Ensuite, les modéles de tissage sont utilisés pour produire des transformations de modéles qui
peuvent étre exécutées dans un moteur de transformation. Les transformations produites sont utilisées,
par exemple, pour traduire un ensemble de modéles terminaux d'entrée en un ensemble de modeles
terminaux de sortie.

Les modéles de tissage sont créés en utilisant l'interface graphique et adaptative dAMW.
L'interface interpréte les extensions de métamodele et propose un ensemble de menus pour créer les
liens de tissage. Les modéles de tissage peuvent également étre créés en utilisant des méthodes semi-
automatiques. Nous proposons un pattern générique basé sur les extensions de tissage de métamodél es
et utilisé pour produire des transformations de modéles. Ce pattern est utilisé pour implémenter une

opération générique qui produit des modéles de transformations a partir des modéles de tissage. Les
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transformations de modéles permettent d'exécuter des opérations de gestion de modéles. Nous

définissons ci-dessous la transformation de modél es.

Definition 1.11 (Transformation de modéele). Une transformation de modele est une opération qui
prend un ensemble de modéles en entrée, visite les éléments de ces modéles et produit un ensemble de

modeles en sortie.

Une transformation de modél e a la signature suivante:

<OUT:: MMouty, «.. , OUTm i MMoutm>=T (<IN7: MMy, ..., INg: MMjnn>)

T est le nom de |'opération; <IN; - IN,> est I'ensemble des modéles d'entrée (n > 1); les modéles
dentrée sont conformes aux méamodeles d'entrée; les métamodéles d'entrée peuvent étre égaux ;
OUT; - OUT,, est I'ensemble des modéles de sortie (m > 1); les modéles de sortie sont conformes aux
métamodeél es de sortie; les métamodél es de sortie peuvent étre égaux.

Notre approche considére que les transformations sont des modeles. Ainsi, I'opération T est
specifiée dans un modéle de transformation T = (Gy, MMy, ). Un modele de transformation est
toujours un modéle terminal. T est conforme a un métamodéle de transformation MM+. Cela signifie
gue toutes les opérations appliquées sur des modeles peuvent aussi étre appliquées aux
transformations, y compris des transformations de transformations (les avantages de considérer des

transformations comme des modél es sont expliqués plus tard dans cette section).

1.3.2.1 Pattern générique detransformation

Nous encapsulons la tache de production de transformations a partir d’un modéle de tissage dans
un pattern générique de transformation. La définition de ce pattern générique de transformation est
fondée sur trois faits. Premiérement, le métamodéle de tissage noyau définit le concept de liens,
d’ extrémités de liens et d extensions de ces éléments. Deuxiémement, les langages courants de

transformations ont des structures semblables. Troisiémement, nous utilisons des modéles déclaratifs
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de transformation qui indiquent seulement quoi transformer, et pas comment transformer. Le pattern
de transformation exprime la sémantique d'exécution du modéle de tissage: il transforme les différents
types de liens en expressions dans un langage de transformation spécifique.

Nous utilisons des transformations d’ordre supérieur (HOT en anglais) pour définir le pattern
générigque. Les HOT's prennent en entrée un modéle de tissage conforme a une extension du

métamodél e de tissage et |e transforme en un modéle de transformation.

Definition 1.12 (Transformation d’ordre supérieur). Une transformation d’ordre supérieur est une
transformation Toyt : MMt = Thor (Tin : MM5), tel que les modeles d’ entré et/ou de sortie sont des
modeles de transformation. Les transformations d ordre supérieur prennent un modéle de

transformation en entrée et produisent un modéle de transformation en sortie.

Ce pattern défini avec des HOTs est |a base pour créer une opération de gestion de modéles appel ée

TransfGen. Nous définissons cette opération ci-dessous.

Definition 1.13 (Opération TransfGen). TransfGen est une transformation d’ ordre supérieur qui prend
un modéle de tissage My en entrée et qui produit un modéle de transformation M+ en sortie. Le

modél e de tissage est conforme a une extension de métamodéle MMy,

L’ opération TransfGen permet d encapsuler la téche de production de transformations. De cette
facon, il est possible de bien séparer cette tache et de proposer cette solution générique. Le pattern

pour implémenter peut étre utilisé comme base pour d’ autres implémentations.

1.4 Transformations de matching

Nous avons vu dans les sections précédentes que les transformations de modéles sont utilisées pour
exprimer différentes opérations entre modéles. Par conséguent, il y a un nombre croissant de
transformations de modéles qui sont développées pour différents scénarios dapplications. Par
exemple, il y a des transformations pour supporter |'interopérabilité de données, pour traduire des

représentations textuelles en représentations graphiques, ou pour fusionner plusieurs modeles.
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Nous avons vu dans la section 1.3 comment les modéles de tissage sont utilisés pour produire des
modeles de transformations en capturant différents types de liens. Les liens sont utilisés comme
spécification pour des patterns de transformation fréquemment utilisés. Cependant, le processus de
création des modeles de tissage peut étre partiellement automatisé. Une méthode semi-automatique
basée sur des patterns bien définis apporte beaucoup d'avantages : elle diminue le temps de création
des transformations; elle diminue les erreurs qui peuvent se produire avec un codage manuel; elle
augmente la qualité du code produit. Le processus de création de liens entre ééments Sappelle
matching. Il y a plusieurs solutions qui proposent de créer des liens entre différents modéles.
Cependant, ces solutions ne peuvent pas étre adaptées ou étendues facilement, pour supporter
différentes extensions de métamodéles, ce qui rend plus difficile le développement de nouvelles
techniques.

Dans cette section, nous présentons une solution adaptative pour développer différentes techniques
de matching pour semi-automatiser le développement des modéles de tissage. Nous proposons
I'exécution des transformations de matching. Les transformations de matching sont des
transformations qui produisent des liens entre un ensemble d’ éléments appartenant a des modeles
différents. Ces liens sont capturés par un modéle de tissage. Le modéle de tissage est conforme aux

extensions du métamodél e de tissage noyau.

141 Transformationsde matching

Dans cette section nous allons présenter comment implémenter des techniques de matching. Nous
définissons une opération pour chague technique de matching. Le but est de créer les liens entre un

ensemble de modél es d'entrée et de créer un modél e de tissage.

Definition 1.14 (Matching). Matching est le processus d’ appariement d’ éléments appartenant a des

model es différents.
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Le processus de matching utilise différents techniques pour créer des liens entre ééments de
modeles. Nous définissons une opération de gestion de modele pour chaque technique différente. Le
but est de trouver les liens entre les éléments d' un ensemble de modeles d’ entrée et puis de créer un
modele de tissage. Le processus entier est encapsulé dans une opération appelée Match. L'opération
prend deux modéles M, et M, en entrée et produit un modéle de tissage M,, en sortie. M, et M, sont
conformes arespectivement MM, et MM, ; My, est conforme a MM,,.

My : MMy, = Match (M, : MM,, My @ MMy).

Nous implémentons ces opérations en utilisant des transformations de modéles. Ceci signifie que
les opérations de matching sont implémentées avec des transformations de modéles spécifiques. Ces

transformations sappellent transformations de matching.

Definition 1.15 (Transformation de matching). Une transformation de matching est une
transformation spécifique de domaine T qui prend deux ou plusieurs modeles en entrée, et qui les

transforme en un modél e de tissage M.

< OUT;: MMouty, ..., OUT,: MMoyth> = T(< INy: MMy, -.., INm: MMjym>)

Les transformations de matching implémentent différentes tecniques produisant les modéles de
tissage. Nous pouvons donc considérer que les transformations de matching transforment un ensemble
de modeles en un modele de tissage. Ces transformations peuvent étre adaptées pour supporter
différents types deliens.

Le processus complet de création des modéles de tissage est semi-automatique, c.-a&d., c'est un
processus interactif qui alterne entre |'exécution automatique des transformations de matching et le
raffinement manuel des modeéles de tissage dans I’ outil AMW. Nous expliquons les différents types de

transformations de matching implémentées dans les sections suivantes.
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1.4.1.1 Création de modéles de tissage

Les transformations qui créent les modéles de tissage sont le premier type de transformations de
matching exécutées. La transformation qui crée les modeles de tissage Sappelle CreateWeaving. La
transformation prend deux modéles M, et My, en entrée et les transforme en un modéle de tissage M,,.
Mz est conforme a MM,, M, est conforme a MM, et M,, est conforme a MM,,.

My, : MM, = CreateWeaving (Ms: MM,, My: MMy,).

Cette transformation lie un ensemble d'ééments d'un type donné de M, avec un ensemble
d'ééments d'un type donné de My, Elle crée un produit cartésien restreint M, x My, L'opération crée un
lien entre chague paire d'ééments. Cependant, |'exécution d'un produit cartésien peut créer trop
d’ éléments si les modéeles d'entrée sont importants. Considérez par exemple deux modéles avec 100
éléments chacun. Le produit cartésien crée un modéle de tissage avec au moins 100 x 100 = 10.000
ééments. Ces éléments sont capturés par les extensions de WLinkEnd. D'ailleurs, il y a un éément
additionnel contenant la sémantique du lien (une extension de WLinK). Pour cette raison, nous utilisons
des versions restreintes du produit cartésien qui prennent en compte le type des éléments.

L’ opération peut aussi étre adaptée pour modifier des modéles de tissage (pour créer ou supprimer
d'autres liens). Dans ce cas €lle a un modél e de tissage comme paramétre d’ entrée.

1.4.1.2 Calcul delasimilaritédes ééments

Le deuxieme type de transformation de matching calcule une valeur de similarité entre les paires
d’ éléments. Cette valeur de similarité est utilisée pour évaluer la proximité sémantique entre les
éléments liés. Un lien avec une valeur élevée de similarité indique qu'il y a une bonne probabilité pour
que I'éément source soit traduit en un éément cible.

Nous définissons une transformation de modele appelée AssignSmilarity. La transformation prend

un modéle de tissage M,,’ et un poids (weight) en entrée, et elle produit un modéle de tissage M,, en
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sortie. Les modéles d’ entrée et de sortie sont conformes au méme métamodéle de tissage MM,,. Le

model e de tissage de sortie a les nouvelles valeurs de similarité.

My : MM, = AssignSmilarity (M, : MM,,, weight: double).

Le parametre weight est utilisé pour limiter les valeurs de similarité entre [0-weight]. Ce paramétre
permet d'gjuster I'impact d'une méthode donnée de similarité. Par exemple, une méthode similarité qui
compare les noms des éléments peut avoir le poids 0.8, et une méthode de similarité qui compare les
types des éléments peut avoir le poids 0.2. Ceci signifie qu'un ensemble d'ééments est considéré plus
semblable sils ont le méme nom que le méme type. Différentes transformations de matching peuvent
étre exécutées pour obtenir une valeur plus précise de similarité. Nous appliquons des méthodes
d'éément-a-é ément et les méthodes structurelles, qui sont présentées ci-dessous.

e Similarités éément-a-élément
Des similarités d’ élément-a-élément sont calculées en prenant les paires d’ éléments liées et en

comparant les propriétés des éléments de différentes maniéres. Les transformations de matching

d’ élément-a-élément sont les techniques de matchings les plus utilisées. Nous dével oppons différentes

transformations des matchings, chacune appliquant une méthode différente.

e Smilarité de chaine de caracteres: les noms des & éments de modéles sont considérés des chaines
de caractéres (strings). Les noms sont comparés en utilisant des méthodes de comparaison de
chaines de caractéres telles que la distance de Levenshtein, et n-grammes [33].

e Dictionnaire des synonymes. les noms sont comparés en utilisant un dictionnaire des synonymes
(nous utilisons WordNet [57]). Ce dictionnaire fournit un arbre des synonymes. La similarité entre
deux termes (noms d'élément) est calculée sdlon la distance entre ces termes dans l'arbre de
synonyme. De cette facon il est possible, par exemple, d’augmenter la valeur de similarité entre les
éléments qui ne donne pas de bons résultats en utilisant des méthodes de comparaison de chaine de

caractéres.
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Plusieurs techniques d'élément-a-élément sont déja implémentées et sont disponibles dans des APIs
publiques. Nous étendrons ainsi le moteur de transformation d'ATL pour pouvoir appeler des
méthodes d'APIs externes. Le moteur de transformation fournit les méthodes d'emballage qui peuvent
étre appliquées a chague élément d’'un modéle. De cette fagon nous sommes capables d' utiliser des
APls tel que SimMetrics [128], qui contient des méthodes de similarité des chaines de caractéres, et
JWNL API [76], qui accédent ala base de données de WordNet.

e Similaritéstructurelle

Les similarités structurelles sont calculées en utilisant les propriétés internes des éléments de
modéles, par exemple, types, cardinalité, et les liens entre les éléments des modeles, par exemple,
I"arbre de composition ou d’ héritage. Ces données sont codées dans les métamodeles.

e Propriétésinternes

Les éléments de modéles ont un ensemble de propriétés, telles que le type, la cardinalité, I'ordre, la
longueur, etc. Considérez deux ééments de modélesa € M, et b € My; M, et My, sont des modéles
terminaux différents, mais sont conforme au méme métamodéle. Une transformation de matching
compare les propriétés de a avec les propriétés de b. Si une propriété donnée a la méme valeur, elle
additionne 1(un) & une valeur provisoire de similarité. Cette valeur provisoire est multipliée par le
paramétre de poids et gjoutée alavaleur initiale de similarité. Cependant, cette comparai son générique
est valide seulement s M, et M,, sont conforme au méme métamodéle. Quand les métamodéles sont
différents, I'opération doit étre adaptée pour chaque propriété différente.

Considérez deux metamodels différents, KM3 et SQL-DDL (les métamodéles complets peuvent
étre trouvés dans le zoo AM3 [3]). Nous considérons deux éléments de ces métamodéles, Attribute de
KM3 et Column de SQL-DDL. Un Attribute a des propriétés telles que le type, lower, upper,
isOrdered, ou isUnique. Un Column a les propriétés suivantes : default, type, keys, ou canBeNull. Ces
propriétés ne peuvent pas étre directement comparées en utilisant une technique générique, parce que

leurs valeurs ne sont pas compatibles et il n'y a aucune équivalence de noms. Par exemple, la
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transformation doit tenir compte que le canBeNull est un booléen. La méme information est capturée
en analysant lavaleur de la propriété lower.
e Relations entre les é éments

Iy adifférents types de relations entre les é éments d’ un méme métamodéle, par exemple, I’ arbre
de composition ou d héritage. La plupart des méthodes structurelles existantes qui exploitent les
relations entre les éléments se basent sur la supposition suivante: si deux ééments de modéles sont
semblables, les voisins de ces éléments sont susceptibles d'étre semblables. Par exemple, si un lien
entre deux attributs de deux modéles différents a une valeur élevée de similarité, les classes contenants
ces attributs ont une bonne probabilité d’ étre similaires.

Nous créons une transformation inspirés de |'algorithme Similarity Flooding (SF) [101]. L'idée
principale de SF est de propager la valeur de similarité entre une paire d'éléments vers une paire
d’ éléments qui sont reliés par des arrétes avec une méme étiquette.

Nous proposons de créer de différents types de modéles de propagation basés sur différentes
relations structurelles ou semantiques entre les éléments des métamodéles. Ceci permet d' avoir
différentes maniéres de propager la similarité entre les liens, non seulement basés sur la valeur de
I'étiquette des arrétes, parce que cette supposition est trop restrictive, elle ne peut pas capturer
différentes relations sémantiques entre les modeles. En revanche, elle est également trop générique,
parce que nous ne pouvons pas créer des modéel es spécifiques de propagation.

Notre approche permet de construire différents modéles de propagation selon le scénario
dapplication. La question principale est la création des éléments et des valeurs appropriés de
propagation entre un ensemble de liens. Nous développons trois types différents de propagation basés
sur cette régle générique. Nous les présentons ci-dessous.

Arbre de composition: cette méthode de propagation d'arbre permet de propager lasimilarité entre

les éléments qui ont les relations de compositions, par exemple les classes et ces attributs ou ces
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références (il faut noter que ce n'est pas la composition entre les classes, mais entre les classes et ses
membres).

Arbre de relations: cette méthode de propagation tient compte du type des références de deux
classes liées. Par exemple, considérez les liens entre les classes (a,b) et (c,d); a a une référence vers ¢
et b a une référence vers d. Le modéle de propagation est utilisé pour propager la similarité entre ces
deux liens.

Arbre d’héritage: cette méthode permet de propager la valeur de similarité du lien entre deux
classes vers les liens entre les classes qui héritent de ces deux classes. Cette méthode peut étre
considérée comme une extension a la méthode de propagation d'arbre de relations. Cependant, elle

tient compte seulement des références qui représentent des relations d’ héritage.

1.4.1.3 Séection desmeilleursliens

Le troisiéme type de transformations de matching choisit seulement les liens qui satisfont un
ensemble de conditions. Les liens choisis sont inclus dans le modéle de tissage final ou ré-écrits en
différents types de liens. Ces transformations de matching sont généralisées par |'opération
Select<method>.

My, : MM, = Select<condition> (M, : MM,)).

L'opération prend un modéle de tissage M,,’ en entrée et produit un autre modéle de tissage M,, en
sortie. Les deux modéles de tissage sont conformes au méme métamodél e de tissage MM,,, L'éiquette
condition dénote les critéres de sélection. Des liens sont choisis en utilisant deux méthodes : filtrage de

liens et réécriture de liens. Ces méthodes sont expliquées ci-dessous.

14.1.4 Filtragedeliens

Il'y adifférents types de méthodes de filtrage de lien. La méthode la plus ssimple (et également la

plus utilisée) est de choisir un seuil minimum et de choisir seulement les liens qui ont une valeur de
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similarité plus haute que ce seuil. Le plus grand inconvénient de cette méthode est le choix d'une
valeur correcte. Créer un nouveau modéle de tissage basé sur de seuils trop petits peut rapporter trop
de faux positifs, c.-&d., qui ne devraient pas étre créés. En revanche, les seuils trop élevés peuvent
exclure des faux négatifs.

Dans des scénarios typiques dinteropérabilité de données, une méthode courante est le choix des
liens avec les valeurs de similitude les plus élevées pour chague éément source. Cette méthode rend
normalement de bons résultats parce que les transformations d'interopérabilité de données doivent
traduire tous les ééments du modele source (ou la plupart des éléments) en un modéle cible. Aingi, il
est nécessaire d'obtenir un lien entre chaque éément d'un métamodéle source avec les ééments d'un

métamodeéle cible. Cesliens seront utilisés pour générer des transformations des modél es.

1.4.15 Réécrituredeliens

Les méthodes de réécriture de liens analysent les relations entre les liens d'un modéle de tissage
dégja filtré. Ces relations sont utilisées pour transformer des liens simples (par exemple, Equivalent,
Equality) en types de liens qui capturent différents patterns de transformation. Les patterns communs
sont, par exemple, des conversions de données, concaténation, etc. Par exemple, si plus d'un éément
source est i€ avec le méme élément cible, ce lien peut étre réécrit comme un lien de concaténation. La
forme la plus commune de réécriture de lien est I'imbrication entre les é éments avec des relations de
composition, par exemple classes et attributs, ou tables et colonnes.

Plus de la création des liens complexes, les transformations de réécriture de liens peuvent créer les
liens qui enregistrent différents types d'informations sur le processus de matching global. Aprés
I'exécution d'un ensemble de transformations de matching, il est nhorma que quelques éléments du
métamodeél e source ne soient liés avec aucun éément du métamodeéle cible, et vice-versa. Nous créons
une méthode de réécriture de liens qui permet d'enregistrer les é éments source et/ou cible qui ne sont

références par aucun lien. Ce type de lien peut étre utilisé a différents buts: pour vérifier si le modéle
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de tissage résultant est correct, pour enregistrer quels ééments ne peuvent pas étre traduits d'un
modele al'autre, ou pour les utiliser comme entrée pour créer des algorithmes de différence.

En résumé, les transformations de matching permettent d'implémenter différentes techniques de
matching pour créer de modéles de tissage. Les transformations de matching peuvent étre facilement
modifiées pour supporter différentes extensions au métamodéele noyau. L’intégration de ces

transformations dans |’ outil AMW permet de paramétrer |’ exécution de ces transformations.

1.5 Conclusions

Dans ce chapitre, nous avons présenté une vue générale des solutions proposées dans cette thése.
Nous avons présenté notre solution générique d'IDM pour la gestion de liens, appelée tissage de
modéles. Nous avons séparé le probléme de gestion des liens entre les éléments de différents modeles
en trois aspects majeurs: représentation, calcul et utilisation. La diversité des scénarios d'application a
motivé le développement d'une solution générique et extensible, capable de capturer différents types
deliens.

Nous avons propose |’ utilisation des modéles de tissage pour capturer les liens entre les éléments
de modeles différents. Les modéles de tissage sont conformes aux extensions d’un métamodéle de
tissage noyau. Le métamodéle de tissage décrit les types de liens qui peuvent étre créés. Les
extensions de métamodéles permettent la création des métamodéles de tissage avec un vocabulaire
plus pres des domaines d'application. Un métamodéle extensible a beaucoup dimplications dans le
processus global, parce gque toutes les implémentations devront prendre en compte I’ extensibilité. Un
tel métamodél e affecte comment les modéles de tissage sont créés et utilisés.

Nous avons fait un inventaire de I'utilisation des modéles de tissage dans plusieurs scénarios
d'application, et en particulier dans I'interopérabilité de données (cf. |’ état de I'art). Les modéles de
tissage sont utilisés comme spécifications pour produire des modéles de transformations. Nous avons

classifié différents types d’ hétérogénéités, qui sont capturées par différentes extensions au métamodéle
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de tissage noyau. Les métamodél es de tissage englobent plusieurs patterns de transformations utilisés
couramment. Nous avons défini un pattern générique pour traduire les modéles de tissage en modéles
de transformation. Ce pattern encapsule le processus de production de transformations en une
opération de gestion de modeles. Cette opération s appelle TransfGen. Cette opération peut servir de
base pour d’ autres implémentations.

Nous montre la possibilité d'utiliser des transformations de modéles pour implémenter des
différentes techniques de matching. Ces transformations sont appelées transformations de matching.
Ces transformations peuvent étre adaptées pour supporter différentes extensions de métamodeéles. Les
modéles de tissage sont créés en utilisant une interface utilisateur adaptative, et en utilisant les
transformations de matching. Le développement et I'intégration des transformations de matching dans
un outil générique permettent de développer différentes techniques de matchings existantes, et d’ une
facon tres rapide. Ceci est tresimportant pour définir une solution générique.

La diversité des cas d'utilisations (divers cas d'utilisation sont présentés dans le chapitre 7)
démontre gu'il n'est pas possible de manipuler efficacement chaque besoin des différents scénarios
d'application en utilisant des mécanismes trop généralistes, tels que des langages de transformation, ou
des modéles de correspondances fixes. Nous présentons différents cas d'utilisation dans le chapitre 7.
La plupart de ces cas dutilisation sont basées sur des scénarios de taille réelle, avec des modeles de
niveau raisonnable en taille et en complexité. Ceci démontrera que notre solution a atteint un niveau
raisonnable de maturité, permettant de |’ utiliser dans des scénarios industriels.

Il'y a quelques défis a résoudre, par exemple comment améliorer des transformations de matching
existantes pour devenir de plus en plus performantes, de ce fait diminuant I'intervention humaine sur la
création des modéles de tissage. Une autre question importante est la création de différents sous-
ensembles d' extensions de métamodéles de tissage qui englobent les patterns les plus fréquemment

utilisés pour différents scénarios d'application, menant a la standardisation des domaines.
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2.1 Context

Complex information systems manipulate large amounts of data. The large number of such systems
leads to a significant number of data sources with different formats and semantics. These systems are
often composed of a set of smaller components that interoperate, which, in turn, manipulate specific
data. The way these components interact and exchange data form the system as a whole. The
interaction and interoperability between different data sources is a maor concern in many
organizations. The different data formats, APIs, and architectures increases the incompatibilities, in a
way that interaction between heterogeneous components becomes a very difficult task.

In order to cope with interoperability issues, model driven engineering (MDE) has emerged.
MDE’s basic assumption is to consider models as first-class entities. A model represents a given
aspect of a system, which can be the data sources, the relationships between them, or even the
platform code. Current MDE approaches usually have three representation levels for models:
metametamodel, metamodel and terminal models [74]. The terminal model represents a given aspect
of a system. The metamodel describes the various kinds of the elements of a terminal model and the
way they are arranged, related and constrained. The metametamodel is the base representation format
of all metamodels and models of one technical space [86].

MDE platforms are composed of different kinds of models. One of the most important kinds of
models are transformation models [73]. Transformation models are used to define operations between
model elements. A transformation model defines how a set of input modelsis transformed into a set of
output models. Transformation models are usually general-purpose models based on a fixed language.

In addition to fixed transformation operations, there are other kinds of interactions and
relationships between models. Once a set of models is created separately, they must be composed or
put in relation to be able to interact and form the system as a whole. The most common scenario is to
obtain a new model from an existing one. This situation is common in data translation scenarios [102]
[40]. The relationships are used as specifications to produce data transformations.

Another scenario is the creation of a new model from two or more models, e.g., composition of
models. In schema integration [89], it is often called merging. A new schema is created to provide a
unified vision of different data sources. The merge definition from [120] and [29] requires transferring
all the data from the original schemas into the merged schema (information preservation constraint).
However, there are situations where only parts of the model are composed. For instance, in data
warehouse systems only a subset of data may be necessary.

In other contexts, a transformed model may keep track of the model from which it has been
generated. This is called traceability in recent model transformation solutions [30]. If traceability data
is saved, it is possible to restore the origina models. Models may aso be put in relation using a
secondary model, which must be maintained during the entire devel opment process.

33
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Until now, most research efforts in MDE concentrated on studying transformation languages. We
are not aware of a MDE solution that has studied the establishment of relationships in detail. This
means additional efforts must be undertaken to study these relationships and their implications on
MDE platforms. Consequently, the objective of thisthesisis the following:

Define a generic relationship management solution. It must provide generic mechanisms that
support the main issues in relationship management, i.e., the representation, the computation and
the utilization of relationships. The conceptual foundations of different approaches must be unified
on a set of common definitions. The solution must provide easy adaptation mechanisms to be used
in different application scenarios (e.g., traceability, interoperability, annotation, merge).

We propose a generic MDE solution for relationship management called model weaving. The
purpose of model weaving covers the representation, computation and utilization of various
relationships between elements pertaining to different models. The scope of this thesis is the study of
the conceptual, practical and applicative aspects related to model weaving. This includes the
inventory of actual and potential applications of the approach.

The conceptual investigation on model weaving encompasses the central work on unification. This
implies the inventory of various solutions to different related problems and demonstrations that may
be considered as variants of model weaving techniques. The conceptual investigation on model
weaving has the ambition to propose a graph-based foundation covering the different aspects of the
approach.

The practical validation of model weaving has been conducted in relation to the iterative definition
of the conceptual foundations. The application in different scenarios has enabled a constant evolution
on the conceptual definitions. The experiments conducted in this thesis intend to demonstrate that
different domains can take profit of a unified solution by using a set of common techniques. Model
weaving is a new research field, which is motivated by the lack of foundations in existing MDE
platforms with respect to the establishment of relationships between elements of different models.

In this chapter, we present a domain analysis that encompasses all aspects of model weaving. This
analysis has the purpose of investigating each one of these aspects, i.e., representation, computation
and utilization, to be able to delimitate the issues studied during this thesis. First, we introduce a set of
MDE principles and concepts. These concepts are not meant to be formal. They are introduced here to
present the domain analysis. Then, we present the domain analysis. Finally, we present an overview of
the proposed approach.

2.2 Model Driven Engineering

The basic assumption in MDE is to consider models as first-class entities. The main implication of
this assumption is that models are software artifacts that can be modified, updated, or processed for
different purposes. Different operations can be applied on models. This differs from the traditional
view of software development where models are used essentially for general documentation.

A model represents a system. The relation between a model and a system is of major importancein
model driven engineering. The system belongs to the real world. It is formed by several entities,
properties and constraints that interact together. A model is typically an entity that represents a given
aspect of a system, focusing on a precise goal. We define systems and models below:

Definition 2.1  (System). A system is a group of interacting, interrelated, or interdependent elements
forming a complex whole (from Wikipedia.org).

Definition 2.2 (Model). A model is an artifact that represents a system. A model is formed by a set
of model elements.
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We illustrate in Figure 2.1 the relation between a model and the system it represents. Consider a
complex library system, where students and professors can lend books, reserve, print hard copy, and
other request. A model represents this library system.

Modeling world Real world

|
|
|
|
|
represents |
Model | »  System
|
|
|
|

Figure2.1 A model representing a system

The different entities of a system are captured by the model elements. The model elements have a
set of properties, and may have relations between themselves. The nature of the model elements, i.e.,
their type, set of properties, and possible relations, are defined in a metamodel.

Definition 2.3 (Metamodel). A metamodel is a model that defines the type of the elements and
relationships of a model.

A model always conforms to a metamodel. This relation is called conformance (often abbreviated
as c2, for conforms to). The conformance relation has a different nature than the representation
relation between a model and a system. A metamodel model may be considered as the type of a given
model, because it defines a set of constraints for creating the model. A metamodel conforms to a
metametamodel.

Definition 2.4 (Metametamodel). A metametamodel is a model that specifies the base representation
for all models and metamodels for a given context. A metametamodel conforms to itself.

Figure 2.2 shows this three-level architecture. M3 is the metametamodel. M2 is the metamodel. M1
is the model, which represents the system. The system corresponds to the MO level. The MO is not part
of the modeling world.

conformsTo
M3 Metametamodel
conformsTo
M2 Metamodel I
I
4 |
conformsTo :
represents !
M1 Model : >@ MO
|
I
I

Figure2.2 Three-level modeling architecture
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This three-level architecture is general enough to be applied in different contexts. We illustrate
these levels in different domains as follows?

e Reational databases. the relational data corresponds to the M1 level, the schemas to the M2 level
and the definition of schemas (a schema as a set of tables; tables have columns; columns have
types, etc.) corresponds to the M3 level.

e XML: the XML documents correspond to the M1 level, the XML schema definitions (XSD)
correspond to the M2 level, and the definition of XML as a nested structure (composed by
elements; elements have sub elements and attributes) is equivalent to the M3 level.

e Structured files: the file corresponds to the M 1 level; the grammar definition corresponds to the M2
level; the EBNF definition isthe M3 level.

All the models and metamodels of a MDE platform are designed following this three level
architecture. These models are isolated entities. The operations between these different models are
defined using model transformations.

Definition 25 (Model transformation). Model transformation is an operation that takes a set of
models as input, visits the eements of these models and produces a set of models as output.

Model transformations are defined using transformation models. Transformation models are used
to define general-purpose and fixed operations between different models. There are several research
efforts that study model transformations; for instance, ATL [73], GReAT [79], C-SAW [67] or
VIATRA [133].

We illustrate in Figure 2.3 the base schema of a model transformation operation. Consider to
transforming the input model M4 into the output model Mg. In this illustration, we do not consider
multiple input or output models, however, this schema can be extended to support multiple input
and/or output models. M4 conforms to metamodel MM, (as indicated by the ¢2 arrows). Mg conforms
to metamodel MMg The transformation model Mt conforms to the transformation metamodel MM.
MM+ defines the set of possible operations that may be defined. The transformation model contains the
operations that are executed to transform M, into Mg. All the metamodels conform to the same

metametamodel.
Ok

Metametamodel
c2 c2
c2
MMp MM+ MMg
c2 TCZ c2
M+
\—‘> MB
Transforms

Figure 2.3 Modéd transformation base schema

2 The MDE terminology used here is not always equivalent with different domains. However, the three-level
architecture can be frequently identified.



2.3 - Feature-based domain analysis 37

There are several approaches that follow this schema (or a similar one), for instance ATL [73] and
QVT [114]. Other transformation platforms do not have the notion of model, such as XSLT
transformations. However, it is possible to establish equivalences between these platforms and the
MDE concepts introduced here.

With this reduced set of concepts it is possible to define different kinds of model and to execute
transformations between them. However, these concepts do not address the issue of establishing
differer;t kinds of relationships between these model elements (other than directed transformation
models®).

2.3 Feature-based domain analysis

A domain analysis has the purpose of collecting relevant information about a domain and to
integrate it in some kind of model. The domain analysis of model weaving is conducted using feature
models [34]. We follow the approach of [36], which uses feature models to classify different model
transformation approaches. Feature models define a set of requirements and concepts of adomain. The
feature models are organized into connected hierarchies of common and variable features
characterizing a given concept. Each different hierarchy is represented by a feature diagram.

Consider two models Ma and Mb, and two model elements, a € Ma and b € Mb. A relationship R
(a, b) indicates that a is somehow related to b. There are three aspects that must be considered when
creating R: the representation, computation and utilization, as illustrated in the feature diagram in
Figure 2.4. Each aspect is depicted by a different feature. The cardinality means that the features are
mandatory [1..1], optional [0..1] or repetitive [1..N] (this notation follows the new notation for feature
diagrams presented at [34]).We describe these features below.

| Moilel weaving |

U/m [1.1]

| Representation | | Computation | | Litilization |

Figure 2.4 Model weaving feature diagram

Representation. The representation format the kinds of relationships that can be created, their
syntax and semantics, and if (and how) they are stored.

Computation. The computation of relationships is typically a complex task that involves human
intervention. Finding relationships between different model elements usually requires knowledge
about the application domain that cannot be automatically interpreted by computers. The process of
computing relationshipsis called matching.

Utilization. Relationships are used in different application scenarios, such as schema and data
integration [15] [89] [102], aspects composition [63], tool interoperability [41], composition of user
interfaces [129], traceability of transformations[72], model annotation, or model difference [31] [91].

2.3.1 Representation

We create a new feature diagram for each one of these features. The feature diagram in Figure 2.5
details the different issues covering the representation of relationships. A generic model weaving
approach should support these issues. The features connected by an angle are said to be grouped

¥ Model transformations may be considered as a directed relationship between a source and a target model.
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features, because they share the cardinality (e.g., <1-2>, which means a concept may have one feature

present, or both at the same time).

[1.1]

7S

7

1 1]

-- =]-1= 1-2= =1-1=
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=
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Figure 2.5 Representation feature diagram

Semantics. The semantics of the relationship define how the relationships should be interpreted.
The semantics has four base features.

The kind of the relationships depicts its meaning. There are several different kinds of relationships,
for instance equality, equivalence, generalization, extension, or union.

The cardinality indicates how many elements are connected by one relationship, i.e. 1:1, 1:N, N:N
or N:1.

Most part of existing solutions supports relationships with cardinality 1:1 and representing an
equivalence relation between two elements. However, complex relationships may have multiple
cardinalities and semantics; for instance, to concatenate a set of aphanumeric elements, or to calculate
the average between a set of elements.

The extensible and fixed features are grouped with cardinality <1-1>. This means that relationships
are created using extensible or fixed semantics, but not both. Relationships with extensible semantics
can be used in different application scenarios.

Format. The format depicts the standard that is used to represent the relationships; for instance,
ontologies, database schemas, XML documents, or text files. The format of the relationshipsis closely
related with the semantics. This means some formats are more adapted to represent specific kinds of
relationships. For example, XML documents are more adapted to represent nested relationships than
text files.

Storage. After the semantics are defined in a precise way, it may be necessary to store the
relationships. The relationships can be saved in permanent storage, or can be kept in memory uniquely
at the moment they are processed by some application.

Referencing. This feature specifies how the model elements are referenced by the relationships.
The direct approach adds additional information about the relationships directly in the linked elements
(e.g., the relationship kind). The indirect approach saves the relationships in separated entities (thisis
closely related with the storage format), which prevents modifying the model elements with additional
information.

The extra information about links is not relevant to the model structure, since this information
should not be explicitly defined in the metamodel. However, the utilization of independent entities to
capture the relationships raises an extra issue: it is necessary to keep a reference that enables the
recuperation of the models elements, which means they must be uniquely identified within a model.

Based on this diagram, we define a set of basic requirements for a generic model weaving solution
with respect to the representation of relationships.
¢ Different kinds of relationships must be supported. In other words, the relationships must have a

type. The type indicates the meaning of a given relationship.

e |t must be possible to define relationships with different arities (unary, binary, ternary, etc.), i.e, a
relationship has many endpoints.
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e The relationship specification must be extensible to be able to reuse it in different scenarios, and to
add new semantics according to new requirements. This is a very important issue that allows the
creation of generic and reusable solutions.

e The relationships should be stored in specialized entities. This allows using them later in different
ways: for reutilization, querying, modification, verification, or visualization.

e It is necessary to define an identification mechanism to uniquely identify the linked model
elements. This is because the relationships themselves should not contain the concrete model
elements, but a proxy that enables access to the elements of the original models.

2.3.2 Computation

The feature diagram in Figure 2.6 details the different features of the computation of relationships.

Computation
R

Tools Maintenance

Mﬂ [0.1] w{ [0.1]

| 6uI | | customizable | | Extensible | | Composition | | Evolution |

01 [0..1] [0.1]
| Element | [ Structural | [ other |

Figure 2.6 Computation feature diagram

The automatic and manual features have a grouped cardinality <1-2>. This means relationships are
computed using automatic, manual, or hybrid methods.

Automatic. The automatic computation of relationships is typically processed using heuristic
techniques. The methods are used to interpret the properties of the models (often based on the
metamodels) to discover relationships between the model elements. Figure 2.7 illustrates three
relationships that have been created using simple technique. These techniques calculate a numeric
similarity estimation between the elements of different models, and create equivalence relationships
between elements that have high similarity values. The most common kind of techniques are element-
to-element or structural.

Element-to-element. Element-to-element techniques calculate similarities between pairs of
elements pertaining to different models. For instance, the Sring similarity method applies string
distance methods (such as Levehnstein distance [33]) to infer that Descr element is similar to
Description element (the sameis valid for OpSys and OperatingSystem elements). It is also possible to
use dictionaries of synonyms (e.g., WordNet [57]) to discover relationships using synonyms, for
example the relationships between Car and Automobile, Professor and Teacher.

Structural. Structural techniques use structural information to compute relationships. For instance,
consider the elements Bug and Issue in the figure below. Both contain a severity attribute. A typical
string comparison technique is used to create a relationship between these two attributes. The
structural method consists of propagating the similarity of leaf elements into its parents. This
information is used to create a new relationship between Bug and Issue.

Other. This feature subsumes the techniques that cannot be classified as element-to-element or
structural. For example, relationships can be automatically created to store the execution trace of a
model transformation.
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String similarity
OpSys <— > OperatingSystem
Descr < Description

Dictionaries of Synonyms
Car <— Automobile

Professor <——&> Teacher
Structural features
Bug Issue

LSeverity 4—> L Severity

Figure 2.7 Relationships created using simple techniques

Manual. The manual methods are typicaly used to create complex kinds of relationships that
cannot be discovered by matching techniques. We illustrate some complex kinds of relationships in
Figure 2.8. Consider that the elements in the left part of the equality expression belong to one model,
and that the elements in the right part belong to another model. It is necessary to create relationships
with multiple cardinality (1:N), and that have different semantics (e.g., format compatibility,
concatenation or data conversions).

Format compatibility

Date = Day / Month / Year
Concatenation

Name = FirstName + LastName
Data conversions

Dollar = Euro x ConversionRate

Figure 2.8 Complex relationships

Tool. A tool that supports computation of relationships has three features: GUI, Customizable and
Extensible.

GUI. A Graphical User Interface (GUI) is very important to provide easy ways for computing
relationships, either by manual creation, or by the combination of automatic methods.

Customizable. Due to the large number of existing techniques for creating relationships, a
customizable tool enables creating relationships using just a subset of techniques. The automatic
methods can be parameterized to be executed in a different order, or with different tuning parameters.

Extensible. An extensible tool enables integrating new automatic and manual methods for
computing relationships. This feature is particularly important if the relationships have extensible
semantics.

Maintenance. The maintenance of relationships concerns the evolution and the reutilization of
relationships. A relationship evolves to adapt to any modifications on the related models. A
relationship and its specification are reusable if they can be used in different scenarios.

Based on these considerations, we present a set of key issues that need to be considered on the
computation of relationships.

e How to easily integrate different techniques into a common environment?

e How to implement matching techniques between models that conform to different metamodel s?

e Which are the implications of extensible specifications of relationships when developing
heuristics? For instance, how to take advantage of the kinds of relationships to ease the task of
finding relationships between model elements?
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e How to develop a generic tool that supports variable specification of relationships? The main
challenge is to create a generic interface, which can be adapted following different semantics and
formats of relationships.

2.3.3 Utilization

The feature diagram illustrated in Figure 2.9 presents the different utilizations of relationships. The
different kinds of utilizations are determinant on the way the relationships are represented and
computed. The key aspect about the utilization of relationships is to define relevant domain-specific
relationships. We use this feature diagram to describe the different scenarios in general terms.
Different scenarios are presented in Chapter 7.

Interoperability

| Merge | | Difference | | Traceability | | Annotation | | Metamodel extension

Distributed | | Centralized | Mapping hased

N [1..1]
| Matching | | Query discovery |

Figure 2.9 Utilization feature diagram

Interoperability. Interoperability is the problem of accessing information that is available in
different data sources (database, files, tools, etc.) in a uniform way. The relationships are used to
express the semantic heterogeneities between different sources. There are two major topologies of
interoperability: centralized and distributed.

Centralized. The relationships are created between a centralized source and a set of distributed
sources. The centralized source acts as a common access point.

Distributed. The relationships are created between every pair of sources that need to interoperate.
Thistopology is used when it is not possible to come into a consensus about a common format.

Mapping-based. Mapping-based interoperability generalizes centralized and distributed
topologies. It considers that the relationships are always created between a set of source and a set of
target data, without considering if they arein adistributed or centralized topology. The mapping-based
interoperability is divided in two features, matching and query discovery.

M atching. The matching feature subsumes the process of computing relationships.

Query discovery. The query discovery feature uses the relationships created by the matching
feature to produce complex expressions in specific transformation metamodels.

The utilization of model weaving in interoperability scenarios encompasses typical data integration
and data trandation approaches. The application of model weaving as an improvement of existing
interoperability techniquesis one of the major contributions of thisthesis.

Merge. Merge application scenarios take a set of relationships between two models as input, and
produce a third, merged model, as output.

Difference. The sets of differences between two versions of a model are specified using different
kinds of relationships. The relationship kind indicates if the model elements are added, deleted or
removed from one version to another.

Traceability. Relationships are used to store traceability information between different models.
There are different kinds of traceability scenarios. For instance, in data provenance, relationships are
used to discover the origin of data after it was transformed from a source model into atarget model. In
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requirements traceability, the relationships keep track of all the steps of a development process:
analysis, design, programming and testing.

Annotation. Relationships are used to annotate or decorate models. Annotation data usually is not
conceptually relevant to be part of amodel.

Metamodel extension. In metamodel extension scenarios [14], we typically have a base
metamodel and fragment metamodel. A set of relationships indicates which elements of the base
metamodel are extended by the fragment metamodel.

234 Major issuesidentified

The feature diagrams detailed in the previous section presents a general view about model weaving.
Moreover, we were able to identify the major issues that must be studied to define a generic and
adaptive solution. We summarize these issues below.

e A unified set of definitions and terminology for model weaving must be established.

e A generic model weaving approach must support different aspects of relationship representation,
and especialy the extensibility of relationships. An extensible representation allows establishing
relationships adapted to different application scenarios.

e We should develop aframework that enables the creation and adaptation of the different techniques
for creating relationships. This enables reuse of existing solutions, and supports the extensibility of
the relationships.

e |t isnecessary to define several kinds of relationships that will be applied in different application
scenarios. In thisthesis, we focus on relationships targeted to general interoperability scenarios.

e An adaptive tool must support all these issues. The interface must support different kinds of
relationships. New techniques for producing transformations should be easily developed and
integrated.

2.4 Presented approach

In this thesis, we conduct a conceptual investigation on model weaving that encompasses a central
work on unification. This implies the inventory of various solutions to different related problems and
demonstrations that may be considered as variants of model weaving techniques. We address the issue
of defining a suitable representation format by capturing the different kinds of relationships (i.e., links)
in a weaving model. A weaving model conforms to a weaving metamodel. Weaving models have
specia characteristics. They are not self contained, i.e., a weaving model is useful only if the related
models exist as well. The links have different semantics, depending on the application scenario. For
instance, a data trandation link has a different semantic than a traceability link. Thus, we present an
extensible weaving metamodel to capture different kinds of links.

Despite having a large number of possible semantics, there is a set of common features in amost
al application scenarios of model weaving. We specify a core weaving metamodel that factors out
these features. This metamodel provides basic relationship management. The different kinds of links
are created in separate domain-specific weaving metamodels, which are extensions to this core
weaving metamodel.

Concerning the computation of weaving models, we present an adaptive approach. Weaving
models can be created manually by an adaptive graphical user interface. In addition, different
techniques can be used to create weaving models semi-automatically. We use matching
transformations, which are transformations that implement different techniques that create weaving
models. Thus, we reduce the matching problem to the execution of domain-specific model
transformations.
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The matching transformations can be modified to support different metamodel extensions.
Moreover, we present an adaptation of awell-known generic structural technique: we exploit different
kinds of relationships within a model to calculate similarity estimations between different model
eements. This transformation is executed together with link rewriting transformations. These
transformations analyze the weaving metamodel extensions to produce frequently used transformation
patterns.

We investigate in detail the utilization of model weaving and model transformations in data
interoperability scenarios. We classify different kinds of semantic heterogeneities according to their
complexity, and we express the link semantics in a weaving metamodel. We use the weaving models
as gpecification for producing transformations. We factor out this task into a generic model
management pattern. This pattern interprets the different kinds of relationships defined in the weaving
models. It takes advantage of common structures found in several existing declarative transformation
languages. This pattern may be incrementally modified to handle different semantic heterogeneities.
Thisis afreguently executed operation in model driven engineering. We encapsulate this pattern into a
TransfGen operation. The use of weaving models and model transformations together enables a
generic relationship management solution for data interoperability.

We validate our approach by implementing a generic and adaptive tool called the ATLAS Model
Weaver (AMW). The AMW tool is used to implement several data interoperability use cases. We aso
develop uses cases in other kinds of applications that show the genericity of our approach.

2.5 Thesisoutline
Thisthesisis organized as follows:

e Chapter 3 contains the state of the art. It describes previous work that is considered as an
application of model weaving.

e Chapter 4 introduces the base concepts of our MDE approach. It presents the definition of model,
metamodel, weaving model, weaving metamodel and extension operation. This chapter also
describes our tool that uses these concepts, called the ATLAS Model Weaver.

e Chapter 5 shows how weaving models and model transformations are used as a generic solution
for data interoperability. First, we present a set of metamodel extensions for data interoperability.
Then, we describe how to derive the weaving models into executable transformations. This task is
encapsulated in a new model management operation.

e Chapter 6 presents how we use model transformations to develop and to adapt different matching
techniques. The overall matching process is the execution of different kinds of matching
transformations and the refinement of the weaving modelsin the AMW tool.

e Chapter 7 describes severa use cases developed using the AMW tool. The use cases use red
world models to validate our approach in different application scenarios.

e Chapter 8 presents the general conclusion of thisthesis.
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3.1 Introduction

We have seen in the previous chapter that model weaving encompasses al the aspects of
establishing relationships between elements of different models. This differs from aspect model
weaving, where the relationships are used to weave cross-cutting concepts in a principal model. The
study of the relationships between model elements is closely related to metadata management
research. This is a recurrent and prolific research topic that has been studied since the creation of
database schemas [137]. Metadata is data that describes data, for example, different kinds of schemas,
and the relationships between them. The main goal of metadata management is to provide efficient
mechanisms to handle different forms of metadata. The two fundamental entities in metadata are the
models and the relationships between them. There are different kinds of models; for instance a
relational schema, a XML schema, or an ontology. The relationships between different models are
often called mappings, e.g., SQL views, XSLT transformations, or ontology bridges.

There is extensive related work about the management of models and mappings. Mappings play a
key role in data interoperability, because they define the relationships between different data sources.
The objective of data interoperability is to be able to access heterogeneous data from different data
sources. Moreover, the problem of data interoperability has become even more complex with the
popularity of XML, or web-based technologies, because this increases the number of models and
mappings. This has significantly increased the heterogeneity and complexity of information systems.

In this chapter, we present the state of the art about mappings, and we focus on mappings used to
support data interoperability. This chapter is organized as follows. Section 3.2 introduces different
kinds of representations of models. Section 3.3 describes most common mapping representations.
Section 3.4 introduces a data interoperability scenario. We present three main approaches of data
interoperability: centralized, distributed and mapping-based. We focus on mapping-based data
interoperability. We present and compare the existing solutions. Then, we describe the model
management approach, which factors out common data interoperability (and others) tasks in a set of
generic operations. Finally, since this thesis has evolved in the context of MDE, we present a set of
model transformation approaches. Model transformations are the central MDE solution to support
interoperability. Section 3.5 presents other related work about mapping utilization not intrinsically
related to data interoperability. Section 3.6 concludes.

3.2 Modes

There are a multitude of different representations for models. Several propositions try to provide a
standard representation. Research on a common representation starts with semantic databases (Hull et
a [70]). Hull observes that semantic databases are usually defined using a small set of constructs, such
as entities, entity attributes, and relationships such as is-A, hasA, inheritsFrom, or contains. The

45
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representation depends on the application domain, varying from graphs, nested structures, schemas,
ontologies, and many others. However, models typically have a set of constructs similar to the ones
presented by Hull et a. Consider a simple example of a model that represents the metadata of a
library. The model contains two entities Book and Author. Entity book has properties title, publication
year, nbPages. A Book also contains entity Author; which has property name. This simple model
would be created using similar conceptual structures, even if expressed in different languages. We can
consider the models converging to a stable representation. However, there are till divergences
concerning the terminology.

We describe a set of different representations below (this list focuses on representation that are
widely used or that have major contributions, however, it is not exhaustive).

e SQL-DDL: SQL Data Definition Language alows defining schemas for relational databases.
Typical relational schemas contain a set of flat tables. Tables have a set of columns. The different
kinds of relationships between different tables are defined using foreign key columns.

e XSD: XML Schema Definition [139] is used to describe the structure of XML documents. DTD
(Document Type Definition) is another language used to define the structure of XML documents.
One of the major differences between XSD and DTD isthat XSD has a type system. XSD schemas
are based on XML. A schema has a set of nodes; nodes have attributes; and may also contain other
nodes. The nesting of nodes enables to represent richer structures than relational schemas (the
nested relational model is not considered in this comparison).

e OWL: Web Ontology Language [117] is a language to define ontologies over the web. Ontologies
are used to define concepts and relationships with rich semantic representation. Ontologies are used
to reason about the abjects they represent. OWL is based on RDF (Resource Description
Framework) [124] and XML. OWL adds extra vocabulary to RDF, to be able to describe more
complex classes and properties, such as transitivity between properties, cardinality of properties, or
restrictions over properties and classes. There are other languages to represent ontologies, such as
DAML+OIL [37].

e MOF: Meta Object Facility [113] is a metametamodel developed by the Object Management Group
(OMG) [115]. One of MOF's objectives is to become a standard to define metamodels. An
example of metamodel described by MOF is UML (see below). MOF isformed by classes. Classes
have attributes and classes may have associations between them. The expressiveness of MOF is
intermediate between XSD schemas and ontology languages.

e UML: Unified Modeling Language [131] is a standard developed by OMG for the field of software
engineering. UML is considered a genera-purpose modeling language. It is written using MOF.
UML is relatively complex if compared to other modeling languages, because it is formed by
several sublanguages that are not relevant to define the structure of models, such as sequence
diagrams or use cases.

e Ecore: Ecore [55] is a standard of the Eclipse Modeling Framework (EMF) to define metamodels.
Ecore is similar to MOF. An Ecore metamodel has classes; classes have attributes; classes aso
have references (containment or aggregation references) to other classes. One of the main
advantages of Ecoreisits simplicity and the large number of tools available. Ecore is becoming the
de facto standard in current Model Driven Engineering platforms.

e KM3: Kernel Metametamodel [74] is a simple language for representing metamodels. KM3 has a
formal definition based on MDE concepts. The main advantage is the well-defined typing system
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and the model driven architecture separated in three levels. models, metamodels and
metametamodels. The KM 3 definition corresponds to the metametamodel.

The proposals use graphs or tree structures according to the degree of expressiveness desired and
the target application. Thus, the choice of the appropriate format is dependent on the application
domain. It is not possible to say that one format/specification is better than another. Each solution tries
to be the most efficient in their domain of study. For instance, OWL is more appropriate to represent
ontologies than relational schemas; XSD schemas suit well to represent tree structures.

In this thesis, we do not intend to propose a hew representation format. We choose KM3, for the
following reasons: 1) the context of this thesis is within a MDE platform; 2) KM3 has a set of well
defined concepts; 3) KM3 it is formally defined, 4) KM3 has a simple textual syntax that enable the
rapid development of metamodels. KM 3 is explained in details in Chapter 4.

3.3 Mappings

There are severa existing representations for mappings, almost as much as for models. Mappings
represent different kinds of relationships between models. In this section (and chapter) we use the
more specific term mapping instead of relationship. It is a more specific term, but it is the most
common terminology used in data interoperability solutions. However, this section shows that the
format and terminology for mappings are till far from converging. We describe a set of key solutions
below, using their specific terms. This list presents mappings with different degree of complexity, and
different formats, from simple 1-to-1 relationships to complex logical axioms.

e Morphisms: morphisms are used in model management solutions [18] [99] to identify mappings
between two model elements. A morphism is a pair <I,r>, where | and r store unique identifiers to
the model elements. Morphisms are bidirectional relationships, defining simple equivalence
semantics.

e Value correspondences: value correspondences are used in several data translation solutions [104]
[135] [119] [104] [81]. A value correspondence is a pair that consists of a (1) function that defines
how a source value is tranglated into atarget value; and a (2) filter that indicates which values from
the source are used in the exchange. Value correspondences are directed relationships that cannot
be aways inverted. Simple 1-to-1 value correspondences (called element correspondences in
[135]), i.e., that relate one element of a source model and one element of a target model, are the
most common format used for mappings, notably in schema and ontology matching approaches.

e Auxiliary model: the solution from [120] presents mappings as first-class entities, i.e., mapping are
considered as models. The mappings are formed by an auxiliary model plus a pair of morphisms.
The models are used as input for a generic merge algorithm. The models enable expressing not
only equivalence semantics, but also similarity between elements. The model elements are
identified by unique object 1Ds. Considering mappings as first-class entities enables to use the
same set of primitives to manipulate mappings and models.

o First-order logic: [95] is a recent work that explicitly concentrates on the study of mappings.
However, this work focuses on properties that are used to validate mappings, such as mapping
composition and inference, and not on the element level representation. Based on this set of
properties, it represents mappings using avariation of first-order logic.
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e QVT reations. QVT relations [114] are bidirectional mappings between model elements. A QVT
relation may also have a guard to restrict the elements that are mapped. QVT relations are part of
QVT as a high-level definition of operational mappings. Operational mappings are executable
transformations. One main drawback of this approach is the lack of available solutions and
experiments.

e Ontology bridges: ontology-based approaches also consider mappings as first-class entities, i.e.,
mappings are ontologies. These ontologies are called ontology bridges. The ontology bridges have
more complex semantics, allowing the creation of different kinds of relationships. For example,
there are mappings such as AttributeBridge and ConceptBridges in [93], and InstanceOf and
SubclassOf in [106]. The ontology elements are identified using RDF ids. The set of valid
mappingsis larger than the previous approaches.

e  MOF mappings. the work from [26] proposes a mapping metamodel using MOF and UML profiles
to represent ontologies. This work specifies how to map between two OWL ontologies. These
mappings are used to interoperate between ontology and MDE domains.

It is not possible to say which mapping representation is the best. Each one is designed for specific
application scenarios, and with precise goals in mind. However, the difference from one representation
to another is much higher than between different model representations. For instance, morphisms are
much less expressive than ontology bridges. An ontology bridge can be used to describe mappings
equivalent to morphisms, but the opposite is not feasible. The development of a generic mapping
solution that can be used in different application scenarios should support the common features of
model weaving presented in Chapter 2.

These differences lead to confusion on the utilization of mappings and in the comparison between
existing approaches. In typical data interoperability solutions, mappings are considered as high-level
representations of relationships between model elements. The mappings are used as input to generic
transformation or query engines [102] [81] [56]. The engines use the mappings for producing
transformations, or for executing different operations. This enables the separation of mapping
representation and transformation execution. However, some approaches consider mappings as
complete transformation (or query) languages. This is often the case of ontology-based approaches
[93] [111]. These solutions implement engines that natively execute complex ontological axioms.

In the following sections we detail existing solutions used in data interoperability scenarios. This
enables a clear view of the advantages or drawbacks of each approach.

3.4 Datainteroperability

Data interoperability is the technique of accessing information that is available in different sources
(database, files, toals, etc.) in auniform way. Most data interoperability solutions have been developed
to integrate heterogeneous relational databases. However, the existing approaches may be applied to
different types of data sources aswell, for example text files, XML documents, models and tools.

Datainteroperability solutions are organized in two main topologies. centralized and distributed. In
the centralized solutions there is a unique access point to all sources of data. In the distributed
solutions, the data is translated from one source to another. Both approaches need to define mappings
between the different data sources. For that reason, the study of the mappings for data interoperability
can be separated in athird, more generic approach, called mapping-based data interoperability.

There are several metadata tasks that are frequently executed in data interoperability solutions, for
instance the creation of mappings, the management of model versions, the merge of models, and
others. Model management [18] is a relatively new approach with the main goa of factoring out
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frequently executed metadata tasks into a set of operations. Many model management operations are
applied to data interoperability tasks.

The MDE paradigm can be considered as a branch of model management that considers every
entity as a model, e.g., mappings and models. The interoperability between different models is
achieved through the execution of model transformations, as well as the definition of model
management operations.

This section is organized as follows. Section 3.4.1 introduces centralized data interoperability.
Section 3.4.2 describes distributed data interoperability. Section 3.4.3 presents mapping-based data
interoperability. We review the most relevant solutions and we provide a comparison between them.
Section 3.4.4 presents the model management approach, focusing on data interoperability operations.
Finally, section 3.4.5 presents a set of MDE model transformations that handle interoperability
between different models.

3.4.1 Centralized data interoperability

Centralized data interoperability approaches have a common access point to a set of sources of
data. Thisisthe typical solution of data integration problems. We illustrate this scenario in Figure 3.1.
Consider the three sources of data S1, S2 and S3 (called local sources). The information of each
source is accessed through a common access point G (called global source). Every request is done
over the global source. A regquest can be any kind of operation, e.g., a query, an insert, an update.
There are mappings between the global source and each local source, depicted by M1, M2 and M3
(the directionality of the mappings is irrelevant here). The mappings specify how to obtain the
information from the local sources based on the request done over the global source.

Request R

U

-
M1
M2
- 3 3

Figure 3.1 Single access point

M3

There are different solutions following this general architecture.

e In federated databases [126], each different source is an autonomous relational database. The
common access point is usualy done by means of a middleware platform, caled a federated
database management system (FDBMS). The requests are done over the FDBMS. The federated
management system may have a global representation of all local sources. In this case, the requests
are tranglated into the format of the local sources. If there is no global representation, the requests
are only redirected to the sources.

e In mediator-based systems [61], mediators are equivalent to the common access point to the local
sources. The mappings between mediator and local sources are executed by trandlators or
wrappers. In mediator based systems or FDBMS, the common access point is usualy virtual, i.e.,
the information is physically stored in the local sources.
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e Inrelational databases, it is also frequent to design virtual global sources as common access points
[89]. The mappings between global and local sources are created using expressions in first-order
logic. However, it may be necessary to physically store the information in the global source, for
example in the case of datawarehouses. In this case, the global view is materialized into permanent
storage.

e |n ontology integration solutions [106] [110], usually there is an aignment ontology that is the
global source used to integrate a set of local ontologies.

3.4.2 Distributed data inter operability

In distributed data interoperability, it is not possible to have a common access point to all the local
sources. The distributed scenario isillustrated in Figure 3.2. The set of local sources (S1, S2 and S3)
are autonomous and may be distributed through different sites. There is no common access point G.
The requests (R1, R2 and R3) are done over each local source. For example, a request over source S1
may read the information produced by S2 or S3. The data is obtained by using direct mappings
between the sources (M12, M23 or M13). In this case, there is a distinction between source and target
representations. For instance, the mapping M12 may be used to translate data from S1 to S2 (Sl isthe
source and S2 isthe target), or in the opposite sense, to translate data from S2 to S1.

Figure 3.2 Multiple access point

The techniques of distributed data interoperability are related to data trandlation [8] [104] [59] and
ontology mapping [56] [93] [106] [110]. These solutions have mappings between source and target
representations. However, there is not a mapping between every different source. The mappings are
created only if atrandation is necessary. This approach is more adapted to environments with constant
changes (for example, peer-to-peer systems or tool interoperability problems), when it is possible to
obtain a common and integrated representation.

3.4.3 Mapping-based data interoper ability

Although the two previous approaches differ in the general organization of mappings, both need to
define mappings that relate two or more data sources. We illustrate this issue using the smple scenario
from Figure 3.3. We do not make any initial assumption about the nature of the mapping M 12 between
S2 and S1.

Consider first the centralized approach. S2 is the globa source, and Sl is the local source.
Mappings from S1 to S2 are used to translate the data from the local source into the global source.
Thus, the mappings are directed source-to-target relations. Now consider the distributed approach. We
consider S1 the source data and S2 the target data. A mapping between S1 and S2 defines how to
trandate the data of S1 into S2. In this case there is no distinction between local or global sources.



3.4 - Datainteroperability 51

-2
3 M12-% O

Figure 3.3 Mappings in datainteroperability

Consequently, a key issue in data interoperability solutions is the creation of these source-to-target
mappings. Considering mappings as a generic solution for centralized and distributed data
interoperability is a relatively recent approach, called mapping-based data interoperability, or
mapping-based data integration.

Current solutions define mappings as relationships at a high abstraction level, typically independent
of any transformation or query language. The creation of these mappings is encapsulated in a Match
operation (we review a set of matching approaches in the following sections). This enables to clearly
separate the mappings specification and the transformation execution.

After the mappings are created, they are used to produce transformations (also called operational
mappings), asillustrated in Figure 3.4.

> M12 >
Compilation
S D

Figure 3.4 Mappings are used to produce executable programs

The mapping M12 between sources S1 and S2 is used to produce the transformation T12. This
compilation process is often caled query discovery in data exchange solutions [102]. The
transformation T12 is executed in some transformation engine to trandate the data from S1 to S2.
These transformations are written in specific transformation languages, such as XSLT [81], ATL [41],
or SQL-like queries [119]. These transformations are used to translate the source data into the target
data. They are constructed in different ways, by means of model transformations, SQL queries, XSLT,
SWRL or program code.

3.4.3.1 Matching

Matching is a central task in mapping-based data interoperability. Matching is the process of
creating mappings (relationships) between different models. Current solutions usually encapsulate the
matching task on an operation called Match. There have been several research efforts about the Match
operation, in different domains. The survey from [121] considers several prototypes and approaches of
schema matching. The work from [77] considers only ontology-based approaches. More recently, the
work from [127] considers schema and also ontology matching approaches. The online categorizer
proposed by [122] gives an idea of the large amount of solutions: it contains 138 approaches of
matching and mapping (data from April 2007).

In this section, we review a set of matching approaches. We focus on solutions that describe
generic frameworks that help the task of developing and combining different matching heuristics and
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techniques. This list is hot exhaustive: it presents solutions with significant changes and contributions
to the general matching process.

We do not make an explicit distinction between schema or ontology matching solutions, asin [127]
or [45]. We consider that the existing prototypes have many similarities and that they should be
compared in auniform way.

e CUPID

CUPID [96] presents a semi-automatic schema matching algorithm. It uses graphs to create a
generic schema model. Database and XML schemas are translated into this schema mode!.

The schema model is a rooted graph whose nodes are elements. The elements are connected by
different types of relationships, containment (i.e., every element, except the root, is contained by
exactly one element), aggregation (similar to containment, but defining only references between
elements) and IsDerivedFrom (represents generalization and typing relationships). The internal graph-
based format alows matching different kinds of schemas. For instance, referential constraints are
added in the graph model to match relational schemas. This increases the similarities based on
structural information, since anew nodeis created for every referential constraint.

The agorithm uses at the same time structural and linguistic heuristics. CUPID proposes the
combination of different heuristics (called matchers). The structural matcher determines the similarity
between elements that have the same type. The name matcher uses synonyms and string comparison
between apair of elements.

The resulting mapping contains element level correspondences with 1:1 cardinality. The mapping
as a whole has n:m cardinality. The solution concentrates on the proposition and evaluation of
matching algorithms, not entering into detail about specific utilizations.

e GLUE

GLUE [47] [49] is a prototype for matching ontologies. It is an extension of an existing schema
matching system called LSD [47]. LSD produces mappings using machine learning techniques that
evaluate instance information from the input ontologies. The input ontologies are trandated into a
unified ontology format.

An ontology is formed by concepts, attributes and relations. The concepts provide the entities of
interest of a given domain. A concept is associated with a set of attributes, and may have a set of
relations with other concepts.

GLUE presents an algorithm that matches ontologies by combining different techniques. It
introduces a new heuristic matcher that uses taxonomies as externa input to help the matching
process. The matcher returns a probability distribution of instances associated with a pair of concepts
from this taxonomy. For instance, the probability P (A, B) is the probability that a given instance | is
associated with both concepts A and B.

These distributions are used as input to machine-learning techniques, called learners. Two learners
have been implemented: content learner (the text content of an instance) and name learner (the
concatenation of all conceptsin the parent taxonomy). Based on this distribution, the algorithm applies
user-defined functions to obtain a similarity value for a pair of concepts. After finding the similarities,
the concepts in the second ontology are labeled using the node structural features and attributes.
Despite matching complex ontologies, the matching algorithm produces as a result 1 to 1 mappings.
Similar to CUPID, this solution focuses on developing matching algorithms.
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e PROMPT

PROMPT [110] is an ontology merging and alignment algorithm. Merging is the process of
creating a new ontology that contains all the elements from a set of source ontologies. Alignment is
the process of maintaining the consistency between ontol ogies without merging them.

This work presents a general knowledge model that represents different classes of ontologies. The
knowledge model isformed by 4 different structures:

e Classes: collections of objects with similar properties.

e Slots: binary relations between classes and objects.

o Facets: ternary relations between a class, aslot and either a class or an object.
e Instances. the members of the classes.

The agorithm is the same regardless if the ultimate goal is to create a new ontology or to make
them consistent through an alignment. The algorithm creates a list of matches (1:1 relationships) based
on the class names. A set of operations is listed based on these matches. These operations are
searched over a catalog of pre-defined operations, such as merge of classes and slots, deep copy of a
model or shallow copy. Thereis not a concrete mapping as output. The output is the merged ontology

PROMPT presents an iterative algorithm: the user chooses one of the suggested operations. Based
on the results, the algorithm determines conflicts and makes new suggestions. The iterations are
repeated until the user decides that the matching is accurate enough.

e COMA/COMA++

COMA/COMA++ [46] [45] is a generic matching prototype. The input models are relational or
XML schemas translated into an internal format. The schemas are represented by rooted and directed
acyclic graphs. The schema elements are graph nodes connected by directed links of different types,
e.g., containment or aggregation. The mappings are simple equivalence correspondences with 1:1
cardinality.

COMA++ supports different heuristics and reuses previous matching results by composition.
Different matchings are composed if there is transitivity between the 1-to-1 correspondences and the
associated schemas. However, the matching result is not guaranteed to be correct.

The general procedure is divided in three phases. the algorithm execution, user refinement and the
combination of matching results. The matching algorithms calculate a similarity measure (from 0 to 1)
between schema elements. The users choose different algorithms that are independently executed.
Thereis alibrary of matching algorithms, such as Affix (matching of common suffixes and prefixes),
Name match (considering names similarities), or a structural match based on the nodes’ neighborhood.
The similarity results are computed as an average of the similarity values of each algorithm.

This solution provides a graphical user interface to help with phase two. The user can configure
and combine different heuristics. The similarity results are combined based on the element IDs. The
algorithms are part of a predefined library. (in the remaining of this thesis we will use interchangeably
COMA or COMA++ to refer to the latest version of the prototype: COMA++).

e ONION

ONION [106] provides a formalism to support an ontology integration framework. It focuses on
defining a formal platform, not a prototype. The input models are ontologies. The ontologies are
represented as a directed labeled graph G = (N;E) where N is a set of labeled nodes and E is a set of
labeled edges. The mappings produced are articulation ontologies that contain the rules representing
the relation between the source ontol ogies.
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The articulation ontologies are first-class entities. The triple of two source ontologies plus one
articulation ontology forms a unified ontology. Since there is not a merged ontology, a query engine
executes requests over the unified ontology to obtain all the source ontologies.

ONION defines operators for ontology interoperation: Union generates a new graph of a unified
ontology; Intersection generates the articulation rules relating the common concepts from both
ontologies; Diff returns the elements not expressed in an articulation rule.

e MAFRA

MAFRA [93] is a framework that produces mappings to relate ontologies in a distributed
environment. In this work, the ontology mapping process is the set of activities required to transform
instances of a source ontology into instances of atarget ontology.

The ontologies are represented in RDF schemas. Different ontology formats are translated into this
common representation. The mappings are ontologies called semantic bridges ontologies (SBO).
Semantic bridges consider three basic types to relate: Concepts, Relations and Attribute. There is one
different bridge concept for each different type of concept, for instance ConceptBridge or
RelationBridge. MAFRA uses a multi-strategy process to calculate similarities between ontologies.
The strategies are combination of lexical and structural methods.

This work provides an ontology mapping framework with a separation between every activity to
create the ontology bridges. The framework is separated in two dimensions: the horizontal dimension
contain components handling the creation and execution of semantic bridges. The vertical dimension
handles the evolution and creation of the bridging ontologies in a distributed environment.

e S-Match

S-Match [64] [65] is an ontology matching system. It implements a complete matching tool with
the same goal as CUPID and COMA/COMA++, i.e., to provide a generic matching framework. It has
as input two or more ontologies that are translated into an internal logical representation. The models
are trandated into propositional formulas. This approach has two main distinctions from other
solutions. First, the mappings have more complex logical relationships, such as equivalence, more
general, less general, digjointment, equivalence.

Second, the matching process is not heuristic. The matching process is trandated into a
propositional unsatisfiability problem. It analyses the propositional formulas of the input models and it
produces unique logical mappings as output.

e An API for ontology alignment

The work from [56] defines an API for ontology alignment with an implementation in Java. It
differs from previous approaches because the main goal is not to provide a generic prototype, or
matching algorithms, but to factor out common aspects of existing approaches into a generic API. It is
necessary to implement a set of pre-defined interfaces. This solution also specifies interfaces for
comparison of existing approaches. For that reason, the input models have a fixed format.

The input models are RDF graphs. The mappings are represented at different abstraction levels. In
level zero the mappings are distant from any implementation platform, having only simple equivalence
relationships between the model elements. They are specialized into level one, where calculations
expressions are added, but still language-independent. In the last level the associations are refined in
expressions on a particular language, such as XSLT or C-OWL and RDF. This last trandation is
typically classified as a query discovery task.
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e iIMAP

iIMAP [38] is a matching and query discovery tool. IMAP creates mappings between relational
schemas. The schemas are translated into an internal graph representation. The tool combines different
matching techniques to find simple mappings between two database schemas. In addition, the tool aso
provides machine learning techniques to find complex kinds of mapping expressions; for instance
name = concatenation (firstname, lastname). It reuses the machine learning techniques from LSD [47]
to exploit a corpus of existing schemas and the instances of these schemas.

iIMAP also presents new techniques to create a set of specific complex mappings, for instance the
concatenation of string elements. The creation of these complex expressions is often considered as part
of the matching phase. However, due to the complex nature of the expressions generated, iMAP could
be classified as a query discovery solution.

e Xuetal.

The work from Xu et a. [54] [131] presents a composite matching approach that supports simple
instance level matchers, plus the discovery of more complex expressions. It uses an internal format of
conceptual graphs to represent XML schemas. The mappings are created based on similarity
estimations. The similarities are calculated using a set of different algorithms, called matchers, such as
Merge/SplitValues, Superset and ObjectSet. This approach has evolved in [131] to use the knowledge
of domain-specific ontologies to compare instances of the source and the target elements and to find
more complex expressions, such as address = concatenation (street, city, state). The input schemas are
compared with the domain ontologies, and if the structure is similar, amapping is created.

3.4.3.2 Comparison of adaptive matching solutions

In this section, we compare the matching solutions considering the genericity and the adaptability
of the approaches, because adaptability and genericity are the major issues studied in this thesis. For
that reason, we do not present here every existing matching technique or approach, for instance [32]
[104] [90] [47] [118] [16] [17] [20] [24] [82] [96] [136] [105] [110] [69].

Table 3.1 summarizes the approaches that have been presented. This table is built based on the
classification of [127] and [45]. We explain each item below.

e Input: concerns the type of input models used by the solution. The type of the input models is
usually closely related to the application domain. For instance, database schemas, ontologies, XSD
schemas, labelled graphs, or others. The tools typicaly support different input formats, which are
trandated into an internal format.

e Matching technigques: concerns the techniques euristics used to create the mappings. For instance,
the comparison of every pair of elements (element-to-element) or the use of structural information.
So far, most solutions focus on developing different heuristics or on combining a set of heuristics.

e Mapping nature: concerns the kind of the mappings produced. For instance, 1:1 value
correspondences or ontology bridges.

e Application scenario: depicts the target application scenario of the solution and where the result
mapping is used; for instance, for data interoperability, merging or ontology integration.
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Input  (internal  and | Matching M apping nature Application
external representation) techniques scenario

CUPID DB and XML schemas | Structura and | 1:1 correspondences Generic  matching
(rooted graphs) linguistic tool
GLUE Unified ontology (rooted | Data instances, | 1:1 mappings Generic  matching
graph) probability tool
distribution
PROMPT Ontologies (general | Set  of iterative | None:  merges  the | Ontology merging
knowledge model) operations ontologies and alignment
COMA /| SQL, XML and OWL | Library of | Equivalence 1:1 | Generic matching
COMA++ schemas (rooted directed | heuristics correspondences tool
graphs)
ONION Ontologies (directed | Interoperation Articulation ontologies | Ontology
graphs) operators integration
MAFRA RDF schemas Multi strategies | Semantic bridging | Alignment of
(lexical and | ontology (SBO) distributed
structural) ontologies
S-Match Ontologies (propositional | Propositional Logica relations Generic framework
formulas) unsatisfiability
problem
API for ontology | RDF graphs Provides an API Simple 1:1 | Generic ontology
alignment correspondences matching
trandated into
XSLT, C-OWL,RDF
iIMAP Database schemas (graphs) | Different machine | 1:1  mappings and | Dataintegration
learn searchers. Use | complex functions
of domain
knowledge
Xu et al. Database schemas Different matchers | Complex mapping | Dataintegration
and domain | expressions
ontologies
Table 3.1 Summary of the matching tools

Most of the solutions need to translate different kinds of models into an internal format. The most
common internal format is some variation of directed labeled and rooted graphs, such as in CUPID,
GLUE, iMAP, or PROMPT. This enables the creation of generic solutions that can be used in different
application scenarios. An essential requirement is to create different application-oriented import
methods. However, such generic solutions may have difficulties to in taking advantage of specific
relationshi ps between models to produce performing matching procedures; for instance foreign keys or
nested relationships. Ontology-based approaches such as MAFRA, the API from Euzenat and Xu et al.
have some kind of ontology as an internal or external format. This proximity between internal and
external representations eases the construction of the import procedures. On the other side, it is more
difficult to use these solutions for different application scenarios.

Concerning the matching techniques, CUPID, GLUE, COMA++, MAFRA, iMAP, Xu et a.
propose the combination of a set of element to element and structural techniques. This is the most
common approach used in current matching solutions. iIMAP, COMA, Xu et al. also use taxonomies,
or corpus of schemas as extra input parameters. This enables the creation of more accurate matching
techniques. However, the size of the extra input may affect the overall performance. Two different
approaches are S-Match and the API of Euzenat. S-Match does not use similarity estimations as all the
other solutions. S-Match reduces the matching problem into a propositional unsatisfiability problem.
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The number of correct mappings found is usualy smaller, but they are considered to be correct.
Euzenat proposes a standard API to implement matching techniques. This API could be used as an
implementation base for the existing platforms, increasing the reusability of existing solutions.

Most part of approaches produces essentially mappings with 1:1 cardinality, such as CUPID,
COMA, or GLUE. This means a mapping relates one source element with one target element. The set
of al mappings have n:m cardinality. In COMA, a new mapping is generated for every input element
that relates with more than one output element. MAFRA and ONION produce ontology bridges. These
bridges can express more complex mappings. However, the matching heuristics find 1-to-1 mappings.
The exceptions are the work from S-Match, because the mappings are propositional formulas, and
iMAP and Xu et al. The two later solutions propose the creation of complex mapping expressions,
based on extrainput data.

These solutions are generic matching solutions, i.e., that present generic mechanisms to match
different models. The solutions that concentrate on specific application domains, such as PROMPT
(merging), IMAP and Xu et a. (data integration) provide more performing procedures for their
specific cases.

The adaptability and extensibility are very important features when the solutions are intended to be
used in different application scenarios. The remainder of this section presents a comparison of existing
prototypes with respect to their adaptability and extensibility. Thus, we only compare the tools that
provide adaptability facilities. The comparison criteria are explained below (see Table 3.2).

e Graphica user interface (GUI): indicates if the solution provides a graphical interface to create
mappings.

e Extensibility: indicatesif different mapping techniques can be easily plugged.

e Customization: concerns how the techniques are reused or modified, and if the tools can handle
different kinds of mappings.

Graphical interface | Extensibility Customization

CUPID No - Combination of pre-defined heuristics. Import of
different kinds of schemas. Fixed mapping
representation

GLUE No Plugging of new learners. | Combination of heuristics. Import of different
kinds of schemas. Fixed mapping representation

COMA /| Yes Implementation of new | Reuse by composition. Import of different

COMA++ matchersin Java schemas. Fixed mapping representation

MAFRA Yes - Combination of existing methods. Fixed mapping
representation

API for | No Plugging of new classes | New methods should be compatible with the API.

ontology extending the API Fixed mapping representation

alignment

iMAP No Plugging of searchers | Implementation of different searchers. Fixed

and learners mapping representation

Table 3.2 Adaptability of tools

Among the adaptive solutions, only COMA++ and MAFRA provide ssimple graphical user
interfaces. S-Match and PROMPT also provide a user interface for matching, but they cannot be
extended or adapted with different matching techniques. The graphical interface is a central
component in matching tools. The GUI handles the user interactions needed to create mappings.
MAFRA, despite implementing a user interface, does not provide extension mechanisms to plug
different techniques, only to combine the ones that are delivered with the tool. GLUE, COMA++ and
iMAP enable to plug different matching techniques implemented in Java. The solution of Euzenat is
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also extensible, because new techniques can be encapsulated in classes that implement a set of
interfaces, or can extend existing classes of the APl provided. However, new methods are usually
implemented in Java, or in some other programming language. The distance between the conceptual
definition (graph models) and the implementation (Java objects) is too big. The developers must
implement from scratch most of the navigating structures, being difficult to reuse or to adapt previous
implementations.

The lack of explicit extension mechanisms usually limits users to combine or to customize existing
methods. All the tools of Table 3.2 enable the combination of techniques, either using the GUI
(COMA++ or MAFRA), or by caling specific methods (CUPID, iMAP and the API from Euzenat).
However, the combinations usually follow a strict set of parameters. The creation of new parameters
and the customization of existing techniques are not natively supported.

Finally, al the tools are implemented following a fixed mapping representation, which enables
developing highly tuned and performing heuristics. However, a fixed mapping representation narrows
the application scenarios of the matching prototypes, for instance, for ontology alignment scenarios
(MAFRA) or for schema matching scenarios (COMA++). This constraint may be very limiting in
mind the multitude of application scenarios of mappings (annotations, data interoperability, model
difference, merge, etc.).

3.4.3.3 Query discovery

In this section, we present different query discovery approaches. Query discovery is the data
interoperability task of finding complex expressions in specific transformation languages. The
expressions are created based on mappings produced by a Match operation. However, the query
discovery task is not aways completely dissociated from the match operation. Most part of the query
discovery solutions also presents matching facilities, which makes it difficult to classify them. For
example, the complex expressions created in [38] may be language oriented, in a way this solution
could be aso classified as query discovery approach. We describe a set of most relevant solutions
below.

e Clio

Clio [102] [103] is a generic matching and query discovery tool. Clio provides a graphical user
interface where different matching techniques can be plugged. However, the main contribution of this
solution is the production of complex transformations based on value correspondences.

Clio presents a semi-automatic query discovery algorithm that produces SQL views: the algorithm
first groups al the value correspondences into sets. The sets are formed based on the possibility of
creating joins between the schema elements. From these different sets, it selects the ones that will
generate the smaller queries. The queries are generated by a union between all joined elements.

The work from [119] is an improvement of previous versions of Clio. The models are represented
in an internal nested model. It translates DTDs and XML schemas into this nested model. This
solution uses a simplified form of value correspondences, called element correspondences. Element
correspondences are attribute to attribute mappings, without the possibility of adding any source-to-
target functions.

This simple correspondence format facilitates the generation of queries, since it generates only
equality expressions. The algorithm has an intermediate level of representation between the element
correspondences and the generated queries. This new representation is called logica mappings.
L ogical mappings are a platform-independent representation used to “understand” the mappings.

The logical mappings are the basis for generating the set of queries. The developer chooses some
queries from this subset to create afinal query, called an operational mapping.
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Clio has a recent evolution described in [60]. This work uses the same nested representation for
models. However, it provides nested mapping representations as well. The authors claim that nested
mappings enable the representation of more complex relationshipsin asimpler way.

e Kedad et al.

Kedad et al. [81] presents a query discovery approach. Similar to Clio, this solution produces
operational mappings based on a set of element correspondences. The input models are XML
Schemas. The element correspondences are used to generate XQuery’s. This work focuses on finding
mappings between XML schemas, and not relational schemas as in Clio, or in the work presented in
[80].

The agorithm decomposes a XML schema into smaller parts. First, it interprets the relationships
between indivisible parts. Indivisible parts do not have any child element. These elements are used to
create equality expressions. Second, the algorithm searches for navigation expressions using the
composite parts. The goal of this solution is to provide a performing process to generate X Query, and
not to implement a complete matching and query discovery solution as Clio.

e Anetal.

An et al. [5] [6] [7] describe a solution that discovers semantic mapping expressions between
different schemas. It differs from Clio and Kedad et a because it does not rely on referential integrity
constraints or nested relationships.

This solution proposes deriving declarative mappings from a set of simple correspondences. The
correspondences are relationships between columns of different tables. A conceptual model (CM) is
created and associated with each input schema. This conceptual model contains additional semantic
information about the intra schema relationships. The CM is represented by a CM graph. The key
phase in this work is the creation of the conceptual models. The CM contains enough information to
create relational mappings between two input schemas.

e SMART

SMART [107] is a prototype that produces data transformations between different data sources.
This solution uses XML schemas as input, and produces XSLT as output. SMART proposes the
incorporation of reverse engineering approaches to find data transformations. The main contribution is
the production of conceptual schemas based on the input XML schemas. The conceptual schemas are
richer than XML, for instance by adding hierarchy information between classes. The conceptual
schemas can be extracted by some automatic procedure, or manually created by the application
developers. According to the authors, the conceptual schemas enable finding more accurate mappings.
The mappings are 1:1 value correspondences with inclusion labels (e.g., subset of). These mappings
are derived into XML transformations between the original XML schemas. If the system cannot
produce an output transformation, it asks for the user for additional mappings, as part of an interactive
process.

3.4.3.4 Comparison of query discovery prototypes

The number of query discovery approaches is much smaller than matching approaches. However,
these solutions have gained more interest recently (for instance, through the work of An et al.). We
compare four solutions of query discovery below (see Table 3.3). We focus on three main aspects for
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comparison: the input models; the nature of the input mappings and the kind of transformations that
are generated.

nput M apping nature [Transfor mations
Clio A pair of relational and XML {L:1/n:m value correspondences Produces logica  operational
hested schemas (interna mappings that are trandated in
nested format) SQL or XSLT
Kedad et al. Two or more XML schemas  [L:1 value correspondences X Query
An et al. Relational schemas plus a [L:1 value correspondences and the Relational mappings
conceptual model mappings between a schema and its
conceptual model
SMART XML schemas and conceptual [1:1 value correspondences with XML transformations
schemas nclusion labels

Table 3.3 Query discovery approaches

Clio is one of the solutions most used in comparisons. Clio trandates XML and database schemas
into an internal nested format. Kedad et al. focuses on using XML schemas as input. An et a. and
SMART have additiona models (conceptual model and conceptual schemas) that enable the
decoration of the input schemas (relational or XML) with richer semantic information. The algorithms
are implemented based on the decoration models, which may ease the task of query discovery. All
solutions first create value correspondences between the input schemas. An et al. also needs to map the
input schemas with the conceptual model. This is not necessary in SMART because the conceptual
model is considered as an extension of the input schemas. Clio is the only solution that provides
details about its graphical interface. The interface enables to plug-in different matching algorithms.

Clio proposes a list with SQL and XSLT transformations. The list is quite extensive. Kedad et al.
and An et a. already produce the final mappings. This may cause problems if the transformations are
not correctly created. The user must correct them by hand, while in Clio it is more probable to find a
correct transformation from alist. SMART differs from Clio because it does not creates a list, but asks
the user for additional input information if it finds more than one possible transformation, or if the
transformation is not found. This is an advantage if the set of transformations is too extensive. From
the best of our knowledge, none of the existing approaches proposes any generalization of the query
discovery process. The algorithms are specific to the kind of input schemas.

3.4.4 Mode management

Model management is a relatively recent research field in metadata management, introduced in
[19]. The two key concepts in model management are models and mappings. Model management aims
to factor out common metadata tasks into a set of generic operations over the models and mappings.
Model management operations can be applied to a variety of metadata applications. Frequently used
data interoperability operations can be defined as a subset of operations in a model management
platform.

The work in [18] describes a set of model management operations, with different levels of
complexity. We cite some operations below.

e Match: creates mappings between two models.

o Diff: returns the difference between two models.

e Copy: creates anew model copying all the elements of an input model.
e Merge: merges two models given an input mapping.
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e Compose: composes two mappings.
e Invert: inverts a mapping.

Several metadata management approaches can be considered as applications of model
management. The existing solutions are separated into two categories. First, generic solutions that
propose complete model management platforms. Second, solutions that focuses on specific application
scenarios and model management operations.

In this section, we present solutions that are generic and that focus on the Model Gen operation.
ModelGen is very important in data interoperability solutions, because ModelGen enables the
tranglation of a model represented in one language into a model represented in another language, for
example RDBMS to XML, or RDBMS to OWL. This is a preliminary step before being capable of
trandlating data between different sources. Consequently, this is a very important issue in data
interoperability scenarios. Other model management approaches focusing on other operations are
briefly introduced in Section 3.5.

e Rondo

Rondo [99] is the first generic prototype of model management. It implements the model
management operations introduced in [18]. Rondo has a script language used to execute a sequence of
model management operations. The scripts can be applied in change propagation scenarios.

Rondo trandlates different model formats into its internal format. The models of Rondo are directed
labeled graphs. The nodes of the graphs are model elements. The model elements are uniquely
identified. A directed labeled graph is a set of edges <s, p, 0> where sis the source node, p is the edge
label, and o isthe target node.

The mappings are simple binary relationships, called morphisms. A morphism establishes 1:1
correspondences between the elements of two models. Morphisms are syntactic structures, i.e.,
without semantics. Morphisms are used by model management operations to produce other models or
morphisms. Some operations over morphisms are very simple, such as Id, or Apply. Merge and
Compose are more complex; thus studied separately. The execution of these operations as scripts
enabl es the management and maintenance of mappings and models.

One of the operations studied in more detail in Rondo is the Match operation. This solution
presents a generic matching algorithm named Similarity Flooding [101]. Similarity flooding is a
structural matching algorithm that propagates the similarity between neighbor nodes. For instance, if
two database tables have a high similarity value and thus match, it is probable that the containing
columns also match. The algorithm takes advantage of these relationships based on the name of the
graph labels, and it propagates the similarity through the model elements.

e Moda

Moda [100] is an evolution of Rondo that provides semantics to the mappings. Moda produces
transformations that translate instances of one model into instances of another model. Models are
defined as sets of instances. A model can be described by an expression in a concrete language, such
as SQL DDL, or XML Schema.

Morphisms are extended to path-morphisms. A path-morphism is a relation on instances. Let map
be a morphism connecting tree schemas ml and m2. If map connects each tree of one schema to at
most one tree of the other schema and map connects the root keys of every pair of connected trees,
then map is a path-morphism.

However, later in this work the authors state that path-morphisms cannot handle rich mapping
semantics. Moda is modified to support more expressive mappings. The mappings are logical
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dependencies between relational schemas. These logical dependencies are formulas that can be
tranglated into executable transformations, differently from morphisms or path-morphisms.

The models are not a generic graph representation as in Rondo, but concrete relational schemas.
This enables the creation of more complex mappings as well. The mappings are used as input to other
model management operations, and also to produce model transformations into a particular language
(XSLT). However, this solution does not provide the implementation of all the model management
operations of Rondo. This is essentialy because the mappings are more complex. Consequently, the
operations are more complex, and need to be studied more deeply.

e MIDST

MIDST [11] [12] isatool that implements Model Gen operations. MIDST is based on the notion of
aunigue multi-level dictionary [10]. This dictionary is used to represent both metamodels and models.
This dictionary is based on the Hull et a observation that all models have similar kind of constructs
(cf. section 4.2). MIDST takes advantage of the generic dictionary to create at the same time schema
and data translation procedures. The trandation between different schema languages is defined using
Datal og rules. Then, a Down procedure is used to generate the data translation rules. The Down
procedure is generic only if both the schemas and the data are translated. It cannot be used to directly
execute data trangl ations.

e GeRoMe

GeRoMe [83] proposes a generic metamodel (GM M) to define models with more complex kinds of
relationships between them. The GMM is extended by the addition of decorations. These decorations
are specific roles over the model elements. A same model can be decorated with different roles, such
as Aggregation or Association. The model management operations check if a certain model is
decorated with a set of roles. The operations are executed only if the model is decorated with the
correct roles.

Every model element must have at least one role associated to it. This work defines roles for
different metamodels, such as OWL, relational model, or entity relationship model, and explains how
the standard elements of these metamodels are decorated. The specification of the role metamodel is a
very important phase, since it must contain every possible role that could be decorated.

This work explains how to execute ModelGen operations to translate between two models
decorated with the generic roles. It presents a set of smaller operations to trandate between different
roles, for example, the transformation of IsA relationships. The authors also claim that the same
approach may be used to implement other model management operations. However, there is no
experimental evidence of such an implementation.

e MOMENT

MOMENT [25] proposes a model management platform that implements model merging and
Model Gen operations for MOF metamodels. The Model Gen operations are specified between a UML
model and aRDBMS model using QV T relations. The operation transates one model into another and
generates a traceability model with the execution trace of the trandlation operation. The merge
operation is defined using QVT relations (the correspondences between the model elements) and QVT
mappings (to apply the merge operation). The merge can be defined between models conforming to
the same metamodel, or to models conforming to different metamodels.
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3.4.41 Comparison of model management prototypes

Rondo is the unique solution that provides an implementation of a large set of the model
management operations described in [18]. Moda, GeRoMe and MOMENT are also generic platforms.
This means several operations could also be implemented, event if the solutions focus on specific
operations, i.e., ModelGen. The simple morphisms used in Rondo enable the development of several
operations in a relatively simple manner. For instance, an invert over a morphism (a, b) is
implemented only by changing the domain and the range of this morphism, i.e., (b, a). Consequently,
Rondo is limited when it is necessary to implement complex data interoperability operations, such as
the translation between two different schemas.

The limited expressiveness of mappings is one of the maor drawbacks of model management
solutions. Moda identifies this issue and thus proposes more complex mappings. The mappings are
logical dependencies between relational schemas. The mappings are used to produce transformations
in particular transformation languages. Due to the rise in the complexity level, the authors focus on
developing only data tranglation operations. This is also the case of MIDST and GeRoMe. MIDST is
one of the first solutions that studied Model Gen operations. The unified representation for models and
metamodels enables the creation, in a single step, of both schema and data trandation operations.
However, this is only possible if the schemas are not yet available, restricting the approach only to
more specific scenarios.

GeRoMe can be used to implement different model management operations as well, but the authors
also focus on ModelGen. Differently from MIDST, the ModelGen operation only handles schema
trandation. The generic metamodel annotates the input schemas with roles. The decorations alow
working with the original schemas. However, the generic metamodel is very difficult to develop, and
should be accepted and used by the user community. This restricts the possibility of having highly
heterogeneous environments and of executing translations between them.

MOMENT provides a framework for model management, but similar to GeRoMe and MIDST, it
focuses on the ModelGen, plus the Merge operation. MOMENT uses OMG standards (MOF and
QVT) to implement the operations. The main difference from other approaches is the possibility of
defining operations between models conforming to different metamodels. This is a new requirement
that has emerged with the development of MDE solutions and the production of different kinds of
models.

345 MDE toolsfor interoperability

After having presented different mapping-based data interoperability solutions, in this section we
introduce the key solutions for interoperability in MDE platforms. MDE platforms have many
different kinds of models, conforming to different metamodels. It is very important to provide ways to
interoperate between these different models. In genera MDE platforms support interoperability
through model transformations, i.e., by transforming a set of input models into a set of output models.
This is one main reason why model transformations are one of the most important kinds of modelsin
MDE.

There are several model transformation approaches. In this section, we briefly introduce a set of the
most representative model transformation solutions. We do not intend to compare in detail every
solution, for instance comparing their syntax, cardinality, or execution semantics. Comparisons of
such solutions are found at [35] and [73]. We give an overview of what they do and their target
application domain.
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o QVT

Query/Views/Transformation [114] is a specification of OMG for alanguage capable of expressing
queries, views and transformations over models. Several proposals have been submitted since 2001,
since the final recommendation has been adopted in 2005.

QVT is divided in three sublanguages. These three languages together make the QVT
recommendation a hybrid transformation language, i.e., it contains imperative and declarative
constructs.

e QVT relation: defines transformations as a set of high-level relationships between models. QVT
relation is a completely declarative language. QVT relations support traceability between the
related models.

e QVT core: it isalso declarative. It enables the definition of rules with more complex structures than
QVT relations. The traceability between models is not automatically handled. Every transformation
action should be explicitly defined when using QV'T core. QVT core provides a basis to specify the
semantics of QVT relations. Transformations written in QVT relations are transformed into QVT
core.

e QVT operationa mappings: it is not always possible to define a transformation using only
declarative rules. Operational mappings extend QVT core and QVT relations with imperative
constructs.

QVT aso enables the invocation of primitives defined in different languages or platforms (e.g., a
Java method) by providing a black box mechanism.

e ATL

ATL (Atlas Transformation Language) [73] is a solution for model transformation.
Transformations are specified in transformation models. ATL has a hybrid language. These models
can be specified using declarative and/or imperative rules. However, the recommended style by the
authorsis declarative. ATL is a simple language that enables to easily develop model transformations.
ATL isaQVT-like language, i.e., it handles most of the QVT recommendations. However, ATL does
not intend to be 100% compliant to QVT. Its main goal is to provide a ssimple and easy to use
transformation language that can be used in the mgjority of cases.

ATL provides a set of formal MDE definitions that can be used as a base for other model
transformation languages. It has an integrated development environment as a plug-in for the Eclipse
platform [51] (debugger, execution engine, and graphical interface).

e Graph transformations

Graph transformations operate over graphs by applying graph rewriting rules. Graph
transformations are executed in several steps. Each step executes a rule over an input graph. A rule
defines an input and an output pattern. The rule searches for an occurrence of the input pattern in the
input graph. This pattern is replaced by the output pattern defined in the rule. The rules can be
executed according to different criteria, for instance priorities or some specia control flow variable.
Graph transformation approaches can be used to transform models as well, because models are usually
represented as graphs. These languages often have a graphical representation. Among the existing
solution, we cite VIATRA2[133] [130], GReAT [79], AToM3 [132]or AGG [130].
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3451 Analysis

The analysis of model transformation solutions for data interoperability follows a set of practical
criteria. The transformations must have a simple (though powerful) language, capable of expressing
complex expressions in relatively simple ways. The transformation solution must follow well defined
standards. It must be supported by a set of tools, such as debuggers, textual and/or graphical editors,
exception handling facilities, and the possibility to reuse code.

Current transformation solutions have several similarities that satisfy many of these criteria. Most
approaches have declarative rules. This enables the creation of simple transformations by specifying
only what to do, and not how to do it. This is particularly important when developing complex data
interoperability transformations. However, declarative rules are not aways enough, or at least not
practical, to define some complex kinds of transformations. Consequently, imperative rules are usually
part of the transformation language, even if they are not the recommended development style. Thisis
the case of ATL and QVT. Other approaches not introduced in this section, such as UMLX [139],
Tefkat [88], C-SAW [67] or MOLA [78], follow similar paradigms.

The officia industry standard for model transformations is QVT. However, QVT is relatively
complex, which makes very difficult (and sometimes impractical) to develop tools that are fully QVT-
compliant. This goes in the opposite direction of simplicity of design, which is often a very important
factor to the establishment of standards. The preferred approach should be to develop atransformation
platform based on simpler concepts. In this case, experiments can be rapidly developed, and the
language and its environment can be evaluated rapidly. Thisis the case of ATL, which is becoming an
important model transformation solution. ATL has been promoted from research prototype in the
Eclipse GMT [66] subproject, into a standard component in the Eclipse M2M project [92].

A very important feature when choosing a transformation solution is the tool support. A
transformation language should have an editor, debugger, compilation facilities, and the possibility to
interoperate with other platforms. Most solutions are being developed as Eclipse plug-ins. This allows
a solid base workbench, where new features can be included in arelatively easy way. Tool support and
interoperability with other solutions are the main drawbacks of graph-based solutions.

3.5 Other application scenarios of mappings

Data interoperability is one of the most common application scenarios for mappings, however,
there are several other possible application scenarios. Although we focus on data interoperability
solutions, in this section we give an overview of other utilizations for mappings. We do not compare
them one by one, because they focus on heterogeneous application scenarios.

351 Merge

Merging of different modelsis a typical application of schema integration. Considering the merge
problem as a generic model management operation, we informally define merge as an operation that
takes two models as input, a mapping between them, and that produces a new output model that
contains al the elements of the input models, but no additional information. We detail a set of merge
approaches in the following.

e Buneman et al

The work from [29] defines a set of theoretical aspects of schema merging and proposes a generic
merging algorithm. The merge problem is defined as follows: “given schemas A and B, and a mapping
Mab, produce a schema C” . The created schema has information preservation constraints. This means
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C presents al the information of the schemas being merged, but no additional information. Schemas
are represented in a specia type of graph, containing attributes and inheritance edges.

This work shows that a merge operation does not always produce a valid schema conforming to its
specification. To solve this problem, the merge algorithm first produces a “weak” schema, which
contains extra implicit classes that cannot always be represented in the target schema. These extra
classes are further trandated into aformat compatible with the target schema.

e Generic Merge operation

The work from [120] provides a formal specification of a Merge operation for a model
management platform. The operation takes as input two models and a mapping between them. The
operation produces a model as output that contains a duplicate-free union of the two input models,
with respect to the input mapping.

The Merge operation assumes that a mapping between the input models is previously created by a
Match operation. The mappings are a triple containing a pair of morphisms and an auxiliary model.
This auxiliary model contains more complex structures, such as equivalence relationships. This
solution defines a representation format for models in three meta levels: models, metamodels, and
metametamodels. Informally, a model can be a database schema definition; a metamodel consists of
the type definitions of the objects of the models, for instance the tables and columns, a
metametamodel, which is the representation language in which models and metamodel s are expressed.

e EML

Epsilon Merge Language (EML) [85] is a rule-based language to merge different models. EML is
built on top of Epsilon [84], which is a framework for developing specific model management tasks,
such as model merging or model transformation. Epsilon provides uniform access to different kinds of
models. It has a set of components that are reused to implement new task-specific languages.

EML is divided in four phases. matching, conformance, merge and restructuring. The match and
conformance phases produce mappings between the two models that are going to be merged. This
architecture follows the one presented in [15]. The merge phase uses these mappings as input to merge
two or more models. The restructuring phase defines how to reorganize the merged models based on a
set of constraints. This is because the result of a merge is not aways the desired model, as shown in
[29].

One on the main features of EML is the possibility to create built-in features that abstract some
common merging tasks, for example simple matching strategies (MofldMatchingStrategy and
EmfldMatchingStrategy). The objective of these strategies is to relieve developers of defining trivial
rules that are frequently executed. The strategies can be extended with extra functionalities.

e Merging of statecharts

The work from [109] presents an approach for matching and merging state charts. A state chartisa
design and implementation language that is widely used for specifying dynamic behaviors of software
systems [68]. A state chart is formed basically by a set of states and transitions between these states.
This solution is part of a broader approach to generic model management [27], which presents a
formal description of a set of model management operations, such as match, merge, dlice, or diff.

The main contribution of this work is the matching and merging heuristics that take into account
the behavior of the state charts. The behavior is specified in the transitions. A transition may have a
firing event, and may execute some actions. The matching heuristic analyzes the properties of every



3.5 - Other application scenarios of mappings 67

pair of transitions and calculates a behavioral similarity value, to obtain more accurate mappings
between the states of two input state charts. These mappings are used as input to the merge algorithm.

3.5.2 Traceability

Traceability information is used for severa reasons. for data provenance [134], requirements
traceability [123], and traceability of model transformations [72]. In this section, we present three
different application scenarios that use mappings to handle traceability between different models.

e Data provenance

In [134], data provenance is the problem of discovering the origin of data after it was transformed
from a source schema into a target schema. This work proposes inserting traceability information in
the transformed data to obtain the source schema.

The schemas and mappings are represented in the same nested representation of [135]. The target
data is annotated with information about the schema elements and also the mappings that produced a
given instance. The relation elementOf indicates that an instance conforms to a schema element.

The query language is an extension of SQL to fetch the annotations. They define an operator @map
that returns the set of mappings that generated a given instance. The language also provides an
operator @elemto verify if an instance data conforms to a schema element.

e Requirementstraceability

Requirements traceability [123] keeps track of all the steps of a development process. analysis,
design, programming, testing. Some possible kinds of links are developed by, allocated to,
performed, based on, modify. The key processes are the identification of the possible kinds of links
and the development of new traceability reference models.

This solution defines severa reference models of traceability. Each reference model is used to
record traceability information in different abstraction levels. For instance, a decision maker uses more
general provenance and traceability information, while a developer uses traceability information in a
smaller and more specific context.

e Traceability of model transformations

Similar to data provenance scenarios, it is often necessary to store the execution trace of model
transformations. The execution trace of a transformation indicates, for a set of generated elements,
which transformation rules are executed, and which input elements are used. This traceability
information is recorded in specific traceability mappings. The work from [72] proposes to save the
execution trace of ATL transformation in domain-specific traceability models. These models depict
traceability relationships between a set of input model elements, a set of output model elements, and a
set of transformation rules. The stored traceability information allows having

3.5.3 Mapping composition

Mapping composition is the problem of creating a new mapping given two mappings as input. Two
application scenarios are optimization in peer-to-peer systems and mapping reusability. Reusability of
mappings avoids repeating the matching phase, which is considered a very difficult problem (Al-
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complete). Thisis not a typical data interoperability operation, but it is very important to support the
reuse and evolution of mappings. We present three approaches below.

e Model management composition

The work from [18] presents a set of model management operators, and composition is one of
them. It is a generic definition used to implement composition operators in a generic model
management platform. The composition operation creates a mapping by combining two other
mappings.

Models are a set of objects with properties, has-as relationships, and associations. The models are
identified by aroot object. The mappings are defined using morphisms, asin [99].

e Composing semantic mappings

The work from [97] defines mapping composition based on the answer obtained by a query that is
executed over the mapped models. The models are represented in the relational data model. The
queries are conjunctive queries (select, join, where), but only equality joins are allowed.

e Composing mappings given embedded dependencies

The composition definition from [108] takes into account the relationships between the models and
mappings. Mappings are GLAV formulas used to associate the models. It defines mappings as a
schema mapping describes the relationship between the data instances of two schemas. Mapping
composition refers to combining two mappings into a single one.

3.6 Conclusions

In this chapter, we have presented the state of the art about mappings used in different application
scenarios, and especially in data interoperability problems. We have seen that the mapping-based
approach may be considered a generic solution that can be applied to the two basic topologies of data
interoperability, i.e., centralized and distributed.

Due to the large number of formats of models and mappings, we have concluded that it is very hard
to develop a generic platform that can be used in severa distinct application scenarios. Typicaly, the
format of the input models is determined by the choice of the mapping format, as well as in the
implementation of tools and algorithms for mapping management. The development of such platforms
is a trade-off between simplicity and expressiveness. Simpler mapping formats (e.g., element
correspondences or equivalence relations), allow implementing simple platforms based on a set of
well-defined concepts. However, this simplicity restricts the possible application scenarios. On the
other side, general-purpose approaches based on rich mappings formats can be used in a larger number
of use cases. However, it increases the complexity of development of all phases of mapping
management. A more generic solution would be the definition of a simple platform based on strong
extensible mechanisms. This allows the customization of each solution based on different
regquirements and degrees of complexity.

We have seen that the creation of mappings and the production of data interoperability operations
are usually divided in two phases, matching and query discovery. The majority of existing solutions
focus on the development of matching techniques, using different algorithms or heuristics. More
recent solutions combine different matching techniques, enabling a better customization. Thisis avery
important feature, because the user should be able to choose between a set of techniques adapted to
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different situations. We have provided a comparison based on generic aspects and on the adaptability
of each platform. Based on that comparison, we believe it is still difficult to modify and to integrate
methods developed by one solution into another solution. Concerning the query discovery solutions,
they are al targeted to generate some specific kind of mappings. None of the proposals provide a
generalization of this process.

Model management is a more recent approach based on the principle of reutilization, because their
objective is to define generic operations for frequently executed metadata tasks. This approach can be
applied in different domains. Regarding data interoperability, there is almost a consensus about the
isolation of the matching process in a Match operation. This is becoming true also to ModelGen
operations; however, the number of solutionsis till small. In contrast, to the best of our knowledge,
there is no proposition for amodel management operation for producing transformations.

We have also presented a set of MDE model transformation solutions. These approaches have
concepts similar with the model management solutions. However, they do not focus on developing
specific operations, but on defining general purpose transformation languages that enables to achieve
data interoperability. These MDE approaches provide practical answers to many issues, such as
language implementation and tool support. The development of such platforms enables creating model
management operations as well.

Mappings can be used in applications other than data interoperability. For that reason, we have
given a brief overview of some other applications for mappings. Mappings can be used, for instance,
to support data provenance and traceability, to merge models, and others. Each one of these
applications could be studied in more detail. However, thisis out of the scope of thisthesis.

Finally, based on the solutions presented in this chapter, we conclude that one of the magjor
challenges not yet achieved is to provide a generic solution that can be easily adapted and extended,
for instance, by plugging different heuristics or query discovery methods. This solution could be used
in different application scenarios. In the remainder of this thesis, we present a solution that makes
progress in that direction.






4 M odel weaving:

4.1 Introduction

In this chapter we present the base concepts and solutions of this thesis. We build our solution on
top of the AMMA (Atlas Model Management Architecture) platform [22]. The AMMA platform is a
Model Driven Engineering (MDE) platform based on precise definitions of models and on the
operations between these models. AMMA alows the specification of domain-specific languages
(DSLs) to manipulate different kinds of models. So far, the AMMA platform has focused on the
construction of such DSLs and in the study of model transformations.

We contribute to AMMA by providing the basis for generic relationship (i.e., mapping)
management. Our approach is called model weaving, which uses weaving models to capture the
relationships between different model elements. Model weaving covers the different aspects of
relationship management: representation, computation and utilization?. A weaving model conforms to
aweaving metamodel. We follow the main idea of AMMA, which is the creation of smaller and well
targeted metamodels. Thus, we create a core weaving metamodel that is extensible. The basic
requirements for relationship management are supported by this core metamodel. The requirements
are identified based on the feature diagrams that have been presented. The core weaving metamodel is
extended with domain-specific kinds of links (a set of metamodel extensions and use cases of model
weaving is presented in Chapter 7). The extensibility of weaving metamodels enables achieving a
better trade-off between simplicity and expressive power of relationships.

In this chapter, we formally define weaving models and metamodels. We aso describe an
extension mechanism that enables the creation of different weaving metamodel extensions. In
addition, we present an adaptive and extensible tool called AMW (Atlas Model Weaver) for
manipulating weaving models and metamodels.

This chapter is organized as follows. Section 4.2 presents the base modeling concepts of our
approach. Section 4.3 presents model weaving, with forma definitions for weaving models,
metamodels and extensibility. Section 4.4 describes our adaptive prototype. Section 4.5 concludes.

4.2 Modeds

The basic assumption in MDE is to consider models as first-class entities. We abstract the
implementation details and representation issues of different solutions by using a unifying modeling

! This chapter is an adapted version of [21] [23], [41] and [42].

Note that model weaving presented here differs from the term used by aspect modeling community, when
model weaving istypically the process of weaving an aspect model with abusiness model.
71
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platform. This enables handling the generic relationship management problem in a uniform way. We
present the definitions below (following [41] and [74]).

Definition 4.1 (Directed Multigraph). A directed labeled multi-graph G = (Ng, Eg, I'c) consists of a
finite set of nodes Ng and afinite set of edges Eg, a mapping function I' : Ec — Ng X Ng.

Definition 4.2 (Model). A model M = (G, o, 1) isatriple where:

e G=(Ng, Eg, I') isadirected multigraph,

LI is itself a model associated to a multigraph
G(D = (N(Ol E(Ol F(D)v

e u:NguUEs— Ngisafunction associating elements (nodes and edges) of G to nodes of G,,. The
function p associates every node and edge of G (Ng U Eg) with one element in @ (N,).

Definition 4.3 (Reference model).Given amodel M; = (G;, my, 11), and amodel M, = (Gy, wy, W), if
o1 = M5, M, iscalled the reference model of M.

Some models are their own reference model (o = M). This allows stopping the recursion
introduced in this definition. The relation between a model and its reference model is called
conformance.

Definition 4.4 (Conformance relation). The relation between a model and its reference model is
called conformance relation.

The conformance relation is denoted by conformsTo (or ¢2). A reference model may be considered
as the type of a given model, because it defines a set of constraints for creating the model. These
definitions alow an indefinite number of levels. However, we observed from different domains
(XML, RDBMS, ontologies) that typically only three levels are needed (cf. Chapter 2). We call these
three levels metametamodel (M 3), metamodel (M2) and terminal model (M1).

Definition 4.5 (Metametamodel). A metametamodel isamodel that isits own reference model.

Definition 4.6 (Metamodel). A metamodel is a model such that its reference mode is a
metametamode!.

Definition 4.7 (Terminal model). A terminal model is a model such that its reference model is a
metamodel.

The illustration in Figure 4.1 presents the relations between the different kinds of models and the
modeling levels. The conformsTo arrow shows the conformance relation. A model conforms to only
one reference model. A reference model may have several models conforming to it. The isA relation
indicates that a terminal model is a model, and that metametamodels and metamodels are reference
models (note that isA is hot an inheritance relation in the object oriented sense).

The metametamodel is the base representation of all metamodels and terminal models of a given
domain. The metametamodel expresses the set of basic concepts, such as model elements and the
relationships between these elements. Consequently, the choice of the metametamodel is a very
important issue when developing a generic MDE solution.
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4.2.1 Kerne MetaMetaModd (KM 3)

The metametamodel (M3 level) chosen to develop our solution is KM3. A complete formal version

of KM3isavailablein [74].

package KM3
class Package extends ModelElement

}

abstract class ModelElement {
attribute name : String;

class Classifier extends ModelElement ({

class Class extends Classifier {
attribute isAbstract : Boolean;
reference supertypes[*] : Class;

reference contents[*] ordered container : ModelElement;

reference structuralFeatures[*] ordered container

StructuralFeature oppositeOf owner;

class StructuralFeature extends TypedElement {

reference owner : Class oppositeOf structuralFeatures;

class TypedElement extends ModelElement {
attribute lower : Integer;
attribute upper : Integer;
attribute isOrdered : Boolean;
attribute isUnique : Boolean;
reference type : Classifier;

class Attribute extends StructuralFeature {
class Reference extends StructuralFeature {

attribute isContainer : Boolean;
reference oppositel[0-1] : Reference;

Figure4.2 Self-definition of KM3
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We choose KM 3 for practical reasons. KM 3 is self defined, thus the same set of primitives are used
to manipulate KM3 metametamodels, metamodels and models. The KM3 metametamodel has
constructs such as inheritance, composition, references and typed elements. All of them are not
natively supported by relational schemas or XML documents; for instance, the inheritance between
elements (the other practical aternatives). KM3 has a simple textual syntax that enables rapidly
creating metamodels. This is particularly important in environments with frequent changes. We show
a simplified version of KM3 in Figure 4.2. We used the KM3 syntax to define the KM3
metametamodel. This showsthat it is self-defined.

A KM3 model has one or more Package. A Package is a container for Model Element (with a name
attribute), from which all other classes inherit. A Class is the base first class element, capturing the
concepts of a model. A KM3 model is basically formed by a set of classes and the relations between
them. A Class may inherit from other classes (supertypes reference). A Class contains structural
features, which are Attributes or References. Attributes or References inherit from TypedElement, so
they have cardinality (lower and upper) and atype. An Attribute contains values expressed in primitive
datatypes or in other classes. A Reference creates relationships with other classes in the model. It may
be a containment reference or association (isContainer). Boolean, Stiring and Integer are primitive
datatypes.

4.3 Model weaving

In this section, we present the base concepts of our approach for model weaving. Model weaving
encompasses the different facets of relationship management. First, we define weaving metamodel and
models. Weaving models are our solution to cope with the basic features of relationship management
introduced in Chapter 2. Then, we define an extension mechanism to specify domain-specific weaving
metamodels.

4.3.1 Definitions

We capture the relationships (i.e., links) between model elements in a weaving model. A weaving
model conforms to a weaving metamodel. The weaving metamodel defines the kinds of links that may
be created. In this section, we start defining weaving metamodel and model. Then we present a core
weaving metamodel.

Definition 4.8 (Weaving metamodel). A weaving metamodel is a model MMy = (Gu, ®wu, W), that
defines link types, such that:

e Gy= (NM, Ewm, FM),

e Ny =N_ U N_U No, N_ denotes the link types; N g denotes the link endpoint types and No denote
other auxiliary nodes,

e T'yv:Ew— (NLXNr) U (Nox Ny),i.e, alink type refers to multiple link endpoint types and the
auxiliary nodes refer to any kind of node.

Definition 4.9 (Weaving model). A weaving model is a model My = (Gw, ®w, Uw), a graph Gy =
(Nw, Ew, T'w), such that its reference model is a weaving metamodel (ww= MMy).

A weaving model is a terminal model. In the remaining of this thesis, we will use only weaving
models. A weaving model contains typed links that enable linking elements of different models. The
elements of the weaving model are called weaving elements. The weaving elements that conform to
the link endpoint types (uw (Nw) = N_g) are pointers to the elements of the linked models. To obtain
the real value of the linked elements, the link endpoints are associated with a dereferencing function p.
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Definition 4.10 (Dereferencing function). Given a weaving model My = (Gw, MMy, uw), a graph Gy
= (Nw, Ew, T'w) and a linked model M = (G, o, u), G = (Ng, Eg, I'c), a dereferencing function p
returns the elements of the linked mode!:

p: NWL - NG’ NWL C Nw, such that Uw (NWL) = NLE-

We illustrate weaving metamodel and models using the mapping expressiont = s, + S, + 3+ 54/ 4.
The mapping language contains the addition and subtraction operators, plus the tokens (the model
elements). The language does not explicitly specify that it is possible to create expressions that
calculate the average between a number of elements. The semantics is only known if we analyze the
expression itself. In our solution, we create a link type average that abstracts the semantics provided
by the combination of operations “+" and “/”. This process is the promotion of the mapping semantics
into the weaving metamodel. The link type refers to a link endpoint with cardinality N (the source
elements), and to a link endpoint with cardinality 1 (the target element). The mapping expression (the
link between the elements) is created in aweaving model conforming to the weaving metamodel .

A set of linked models, and the weaving model between them is called a weaving.

Definition 4.11 (Weaving). A weaving is atuple <My, Sym>, where:

o My = (Gw, ow, L) iSaweaving model,
o Sym ={M; = (G, w;, W), i =[1..n]} isaset of modelslinked by My,

4.3.1.1 Coreweaving metamodel

We present a core weaving metamodel based on the previous definitions. The metamodel is
illustrated in Figure 4.3. The core metamodel has elements with information about link types, link
endpoints and element identifications. Element identification is a practical solution for saving unique
identifiers for the linked elements. These values are used by dereferencing function to access the
elements of the linked model elements.

WElement

name : String
description : String

ownedElement (1-*)

o
©
o
E %
WModel WRef WLink ~
ref : String =
o
=
o
% parent
end (1-%)
WModelRef WElementRef
WLinkEnd

element

ownedElementRef(0-*)

Figure 4.3 The core weaving metamodel
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e WElement is the base element from which all other elements inherit. It has a name and a
description.

e WMode represents the root element that contains all model elements. It is composed by the
weaving elements and the references to woven models.

e WLink expresses a link between model elements, i.e., it has a simple linking semantics. To be able
to express different link types and semantics, this element is extended by different metamodel
elements (we explain how to add different link types in the following section).

e WLIinkEnd defines the link endpoint types. Every link endpoint represents a linked model element.
It allows creating N-ary links.

o WElementRef elements are associated with a dereferencing function. This function takes as
parameter the value of the ref attribute and it returns the linked element. For practical reasons, we
define a string attribute. There is also the inverse identification function that takes the linked
element as parameter and that returns a unique identifier.

It is possible to associate the dereferencing/identification functions directly with the link endpoints.
However, we create separated WEIlementRef because it enables referencing the same model element by
several link endpoints.

This metamodel has only abstract types. We illustrate a simple weaving model in Figure 4.4, to
show the minimal set of elements needed to link two model elements, i.e., one link, two link endpoints
and two identification elements. This weaving model links the elements of LeftMM and RightMM
metamodels. The weaving model contains one link (WLink); the link contains two endpoints
(WLInkENd), i.e., one refers to an element in LeftMM and the other to an element in RightMM. Each
WLinkEnd refers to one WElementRef.

LeftMM RightMM

Root

end end id = '1D000022"
Parent | WLinkend | | WLinkend |
I element Element
element id = '1D000011"

WElementRef WElementRef

ref = 'Root/Parent/Element’ ref = '1D000011"

Figure4.4 A simple weaving model

The left WElementRef element has the identification (ID) of Element from LeftMM. The ID is
calculated taking the element name (Element) and the name of the parents (Root/Parent). The right
WElementRef refers to Element from RightMM. The ID is a string that is automatically generated. In
this example, the number of endpoints and linked elements are the same. Different link types and link
endpoint types are added using metamodel extensions. The link element must be extended to create
different link types, for example equality, equivalence, dependency, and so on.

4.3.2 Extension operation

A weaving metamodel must support different kinds of links. We define different kinds of links by
extending the core weaving metamodel to form domain-specific weaving metamodels. This is done
using the metamodel extension operation.

Definition 4.12 (Metamodel extension operation). The metamodel extension is an operation MMg =
Extend (MM, MMg, Myp), that takes metamodels MMy, MM and the extension definition weaving
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model My as input, and produces a new metamodel MMg. Metamodel MMg is MMy, extended by
MMeEg, following the specification of the extension definition Myp.

The weaving model Myp conforms to a metamodel that is an extension of the core weaving
metamodel. This extension is bootstrapped to be able to extend the core weaving metamodel for the
first time. It defines inheritance links, as shown below. The reference child refers to the elements of
the extension MMe. The reference parents refers to the elements of the core weaving metamodel
MMy. Any other extension semantics can be added in subsegquent extension operations.

class InheritanceLink extends WLink {
reference parents[l-*] container : WLinkEnd;
reference child container : WLinkEnd;

We illustrate the algorithm that implements the extension operation in Figure 4.5. The operation’s
main requirement is to create at least one new element in the resulting metamodel. This element must
link an element of MMy and an element of MMg. The function addLink() interprets the extension
definition weaving model to add the new elements.

MMy = Extend (MMy, MMg, Myp)

Input:

MMy : the metamodel to be extended

MM; : the metamodel extension

Myp : a weaving model between the elements of MMw and MMe
Output:

MM; : an extended MMw
/* add all elements and edges from MMy into MMy, if they do not already exist*/
for each mme € MM; and not mme € MMy

MMy ¢ MMy U mme
/* addLink gets the elements represented by My, and create a link between them*/
MM, < MM, addLink (Myp)
return MMw

Figure4.5 The extension operation

Weillustrate the result of an extension operation by extending the core weaving metamodel with an
equivalence link. MMy is the core weaving metamodel. MMk is illustrated below. The Equivalence
class contains two references, source and target, that refer to LinkEnd. The code between angle
bracketsisthe result after the execution of the extension operation (MMg).

The extension operation adds the Equivalent and the LinkEnd classes into the core weaving
metamodel, plus the edges and elements defined in Mywp. The extension definition weaving model
Mwp has two inheritance links. The first link indicates that an inheritance element is added between
Equivalent and WLink. The second link indicates that an inheritance element is added between
LinkEnd and WLinkEnd. The definition of inheritance links using weaving models allows having an
approach that is independent of the input metamodels. These links are translated into the extends
keyword when the operation is executed.

class Equivalent extends WLink ({
reference source container : LinkEnd;
reference target container : LinkEnd;

class LinkEnd extends WLinkEnd ({
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As dready stated, the core weaving metamodel is not designed to support all existing kinds of links
for every existing application scenario. A complete weaving metamodel covering every case is not a
practical solution. The set of possible links is very extensive, adding much complexity and many kinds
of links. The extension operation is used to define different subsets of domain-specific weaving
metamodels (DSWMs).

The definition of different kinds of links is not a trivial task. It is an application-oriented task that
often requires in-depth knowledge of the underlying domain. We envisage different DSWMs with
different kinds of links (a general view is shown in Figure 4.6):

o Interoperability: links such as Equality, SourceToTarget.

Data integration: Concatenation, Equality, IntToStr.

Traceability: Origin, Source, Evolution, Modified, Added.
Composition: links such as Override, Merge, Delete.

Ontology alignment: Equivalent, Equality, Resemblance, Proximity.

|Weaving metamodel |

T

Equality

/\

Dataintegration| |Onto|ogy alignment| |Interoperabi|ity| |Composition| | Traceability |

Figure4.6 A set of DSWMs extensions

From this list (which is not exhaustive), we can see that some kinds of links overlap between
different domains. For example, equality links are available in almost every scenario. This motivates
the creation of different sets of modular extensions to the core weaving metamodel. The extensions are
reused in different applications to finally create the desired DSWMs.

The existence of different extensions adds complexity to the design and the creation of tool
support. This is because a generic tool should be capable of adapting to different metamodel
extensions. We explain how we implemented a generic and adaptive prototype in the following
sections.

4.4 ATLAS Mode Weaver tool

In this section we present the ATLAS Model Weaver (AMW) tool. AMW provides a generic and
adaptive workbench to manipulate weaving models that conform to different metamodel extensions.
The tool implements the concepts presented in the previous sections. The extensibility of the core
weaving metamodel has several implications on the design of AMW. The main challenge isto develop
a workbench that can be easily adapted and extended. Moreover, the implementation may vary
according to the metamodel extensions and on the models that are woven.

First, we give a general description of the tool. Then, we present the different points where the tool
can be extended.

4.4.1 General description

The three notions on which we based the design of AMW are: metamodel extensions, tool
extensions and generic model manipulation. The tool borrows engineering concepts from the Eclipse
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Platform [51]: to build a solid base workbench that is extensible to a wide range of applications. The
Eclipse architecture is based on contributions: we contribute to the platform with a new plugin
(component) and we also define extension points (an entry point for plugging new contributions). This
type of architecture has proven to be effective and widely approved by the software development
community. We apply the same principlesto create an extensible AMW waorkbench.

The main idea of the implementation is to have a simple user interface of the tool that might be
partially generated, without having to build a specific tool for each weaving task or use case. The tool
architectureisillustrated in Figure 4.7.

Weaving Woven Menus Operation Dereferencing Metamodel
panel panel for MDE execution mechanism extension
GUI extensions | | MDE extensions

Model weaver workbench

EMF (model manipulation primitives)

Figure 4.7 Model weaver workbench

The model weaver workbench provides a set of standard facilities for management of weaving
models and metamodels. It is built as a contribution to the Eclipse EMF (Eclipse Modeling
Framework) [55] plug-in. EMF provides an APl for model manipulation, i.e., persistency, inclusion,
deletion or update of elements. The API accesses models that are based on the Ecore metametamodel.

EMF relies on the notion of adapters. Every model element is associated with one or more
adapters. An adapter provides a set of interfaces that must be implemented to support different
functionalities. There are different types of adapters, for example label adapters, content adapter, etc.
The implementation of an adapter is called item provider. Consider for instance the standard three-
based EMF interface: one label adapter is responsible to show the correct label for a given node (e.g.,
the element name); the content adapter contains the model element itself.

The common process of EMF is to automatically generate Java code (with a set of adapters) based
on the Ecore metamodel. The generated code accesses model elements conforming to Ecore. This way
each adapter may be modified as needed to change the application behavior. However, we do not
generate Java code to handle with this metamodel. We use the reflective APl of EMF. This means the
implementation acts over the Ecore metametamodel elements (using an introspection mechanism), so
it supports all weaving metamodel extensions.

The workbench is implemented based on the core weaving metamodel. Since the weaving
metamodel extensions always extend elements such as WLinkEnd, WLink or WElementRef, the
workbench provides a standard interface that handles different metamodel extensions. The interface
auto-generates a set of menus for each different metamodel element. This core provides the standard
behavior of the tool.

The AMW workbench defines itself by different extension points, where different components are
plugged. There are two main categories of extensions, MDE extensions and GUI extensions. The
workbench controls the interactions between these two categories of extensions. We present these two
kinds of extensionsin the following sections.
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4411 MDE extensions

The MDE extensions provide additional functionalities with model management facilities, i.e., that
operate over the weaving models and metamodels. The workbench can be extended with three kinds of
MDE extensions.

e Metamodel extension

The AMW tool provides a practical implementation of the metamodel extension operation. The
input format of the core weaving metamodel and of the metamodel extensionsis KM3. The tool takes
the core metamodel and a set of metamodel extensions as input and it generates an extended weaving
metamodel that is used by the tool. The KM3 metamodel is trandated into Ecore, since it is the
implementation format used by AMW. To extend different metamodels (not only KM3), the tool
supports creating weaving models with different kinds of extension links.

The XML excerpt shown below illustrates how to define a metamodel extension. First, we indicate
that the plug-in is contributing to the extension point “org.eclipse.weaver.metamodel ExtensionlD”,
which is a unique identifier for the different kinds of extensions supported by the workbench. The
filename and relativePath properties indicate where the KM3 file is located (relative to the plug-in
path). The workbench uses the Eclipse resource mechanism to search for the metamodel extension and
toload it in the tool.

<extension
point="org.eclipse.weaver.metamodelExtensionID"
id="DefaultMetamodelExtension">
<extensionFile
name="Base extension for the model weaver"
fileName ="mw_base extension.km3"
relativePath="metamodels/"/>
</extension>

e Dereferencing mechanism

The metamodel elements that extend WElementRef and WModel Ref are associated with different
dereferencing components. These components read the value of the ref property and return the
corresponding element. This way the tool supports creating relationships between different kinds of
metamodels, e.g.,, SQL-DDL or XML. Consider for example an extension to WElementRef called
SOLRef. This element contains an identifier that enables the identification of the tables and columnsin
arelational database. Another extension called XMLRef can be used to weave XML documents. The
elements are identified by the concatenation of the element name and the name of all the parent
elements; for instance, an attribute name of a class Table can be identified by the value “ Table/name” .

<extension
point="org.eclipse.weaver.itemProviderID"
id="ItemProviderExtension">
<itemProviderAdapter
name="Base Item provider extension"
class="org.eclipse.weaver.extension.providers.ElementRefItemProvider"
adaptedClassName="ElementRef"
icon="icons/link end.gif"
isChildrenProvider="false"/>
</extension>
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The dereferencing mechanism is implemented in a specific adapter, which is associated with a
given metamodel element. We define an extension point that contributes with new adapters to each
metamodel element. The adapters use the extension point called "org.eclipse.weaver.itemProvider| D",
as shown below.

The attribute class has the name of the Java class with the provided implementation. It must extend
IWeaver ItemProvider interface. The attribute adapter ClassName contains the name of the type of the
model element that is adapted. This means that every time any operation over an element with type
ElementRef is executed, the tool calls the wrapped methods from the ElementRefltemProvider class.
The element can be associated with aicon. The class may be an adapter of al the children classes of
the given class. Thisis specified in the isChildrenProvider property.

The implementation must also implement the IldentifierAdapter interface (see below). The
setld(Object obj) method sets a unique identifier to a given model element. The getld() method returns
the identifier of the element, if it is already set. In the model weaver workbench, the default extension
implements a standard adapter that sets an XMI-ID for every created object.

public interface IIdentifierAdapter extends Adapter (
public void setID(Object obj);
public Object getID() ;

}
e Operation execution

These extensions enable the execution of additional model management operations in the AMW
workbench. There are different kinds of model management operations, for instance, merging two
models, transforming one model into ancther, or even automatically creating the weaving models. The
model management operations can be executed using different mechanisms. The AMW tool uses
transformations to execute model management operations and more specifically, the ATL
transformation engine [9].

The extension specification below was created to execute a transformation that creates weaving
models (the different model management operations executed by the tool are explained in Chapters 5
and 6). The transformation attribute has the name of the operation that is executed (CreatelLinks.asm).
The description and category attributes are shown in the menus created by the user interface. The
binding element defines which woven model is assigned to a specific parameter of the operation; for
instance, the woven model referred by the leftM reference is assigned to the parameter left of this
operation (in this case, the signature of the operation is CreateLinks (Ieft : model, right : model)).

<matching transformation="transformations/CreateLinks.asm"
description="Create weaving model"
category="Metamodel match">
<binding weavingReference="leftM" header="left"/>
<binding weavingReference="rightM" header="right" />
</matching>

4412 GUI extensions

The GUI extensions improve the standard graphical interface of the tool. In general, the GUI
extensions call the primitives provided by the MDE extensions. The messages that are exchanged
between the GUI extensions and the MDE extensions are controlled by the AMW workbench. We
describe the GUI extensions in the following:
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¢ Woven panel

The woven panel extension enables creating different user interfaces for manipulating the woven
models, for instance tree-like panels or graphical interfaces (e.g., with boxes to represent elements and
lines to represent references). The only constraint is that the components might implement a
previously defined interface to return all model elements. This way they can be accessed by the
weaving panel extensions. These panels correspond to the left and right panelsin Figure 4.8.

The workbench provides a standard implementation for manipulating the woven models. The
implementation is itself plugged into the workbench by contributing to the
"org.eclipse.weaver.wovenPanel ID" extension point, in a class named
org.eclipse.weaver.extension.panel .DefaultWovenModelPanel”.  This means that the base
implementation that is provided is itself a plug-in that extends the core. This shows the feasibility of
such approach.

<extension
id="DefaultWovenPanelExtension"
point="org.eclipse.weaver.wovenPanelID">
<modelPanel
name="Base woven panel extension"
class="org.eclipse.weaver.extension.panel.DefaultWovenModelPanel” />
</extension>

e Weaving panel

The weaving panel extensions enable plugging different panels for manipulating the weaving
models. The weaving panels invoke MDE primitives over the weaving model, such as the
dereferencing components and the creation of weaving elements. The weaving panels provide standard
functionalities for creating and modifying weaving elements, such as a property editor, creation of
compositions and references. Thus, the weaving panels are tightly coupled with the metamodel
extension plugins, since this panel should adapt its interface to handle different weaving metamodels.
This panel corresponds to the middle panel in Figure 4.8 (*Weaving model”).

The definition of the extension is similar as the one of the woven panels. It uses the
“org.eclipse.weaver.weavingPanel ID” extension point, and the panel is implemented by the class
“org.eclipse.weaver.extension.panel .DefaultWeavingPanel " .

<extension
point="org.eclipse.weaver.weavingPanelID"
id="DefaultWeavingPanelExtension">
<weavingPanel
name="Base weaving panel extension"

class="org.eclipse.weaver.extension.panel .DefaultWeavingPanel" />
</extension>

e Menusfor MDE

These menus are wrappers that invoke the operation extensions, the MDE primitives to manipulate
the weaving models and all the graphical methods wrapped by the different adapters. There are two
kinds of menus. menus that execute complex model management operations (the transformations), and
menus that provide basic model manipulation primitives. The associations between a given menu and
a model management operation are specified directly in the implementation. In this case, there is no
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XML definition required. The menus that manipulate the weaving models (create, update or delete
elements) are available to any kind of metamodel, using the methods provided by the adapter classes.

These menus are automatically generated according to the metamodel extension that isloaded. This
is possible because the tool is implemented using the EMF reflective API. This adds flexibility
because the tool adapts to different metamodel extensions without modifying a single line of code.
These menus are available in the “Weaver menu” from Figure 4.8.

In Figure 4.8, we illustrate a weaving model loaded in AMW. This weaving model is used in atool
interoperability scenario (this application scenario is explained in details in Chapter 7). The panels
from left and right (mantisModel and bugzillaModel) contributes to the woven panel extensions. These
panels are implemented using a standard tree interface provided by EMF. The panel in the middle
(WeavingModel) contributes to the weaving panel extension. The weaving model conforms to a
weaving metamodel. The extension is a KM3 file that is itself a contribution to the metamodel
extension. We show an excerpt of the metamodel extension in the following:

class Equivalent extends WLink ({
reference source container: Element;
reference target container: Element;

class Equal extends Equivalent ({

class AttributeEqual extends Equal {

class Element extends WLinkEnd (
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Figure4.8 The AMW tool
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The model element “ Attribute Equal platform” from the weaving panel links platform in the left
panel with rep_platformin the right panel. This element conforms to the AttributeEqual element. The
weaving model is created using a set of menus provided by the user interface. Only the Bug Model
element is automatically created by calling a model management operation that initializes the weaving
model.

To summarize, the AMW tool is a generic workbench that supports the basic aspects of generic
relationship management. The extension mechanisms enable the adaptation of the interface for
different application scenarios. These adaptability facilities are validated through the development of
several use cases (presented in Chapter 7). In particular, we stress the possibility of executing different
model management operations. This is an important feature that enables using AMW in different data
interoperability scenarios.

The tool is available for download as an open source sub-component of the Eclipse GMT
(Generative Modeling Technologies) project [4]. The standard workbench and the tool extensions
have more than 15.000 lines of Java code, and more than 4.800 lines of transformation code (the
integration of AMW with transformations are explained in the following chapters). The site provides
extensive documentation, with Wiki, FAQ, code, a set of metamodel extensions, a set use cases. These
links are detailed in Appendix A.

45 Conclusions

In this chapter we have presented the central concepts used in this thesis: weaving models, weaving
metamodels and the metamodel extension operation. These concepts are part of a generic model
driven solution for relationship management, called model weaving. The relationships between the
elements are captured by weaving models. The weaving models conform to a weaving metamodel.
Our approach improves the AMMA platform with the support of generic relationship management.

We have presented a core weaving metamodel that is used as a basis for defining a generic model
weaving tool. We defined a metamodel extension operation that uses weaving models to extend
different metamodels. The weaving metamodels and models are independent of any implementation.
We have presented specifying different dereferencing mechanisms to create relationships between
different kinds of models.

We have designed a generic tool called ATLAS Model Weaver, which implements the concepts
presented in this chapter. AMW uses standard components of a well-known modeling platform. This
allowed having an implementation with a minimal gap between the conceptual definitions.

One major characteristic of the tool is the strong extension mechanisms. The tool handles different
metamodel extensions in a straightforward way. The user interface is auto-generated to support
different metamodel extensions. The tool also provides extension points to execute model
management operations over weaving models. This is an important feature to be able to use the tool in
data interoperability scenarios.

Although the implementation has been done under Eclipse, the ideas presented in this chapter could
be implemented in different modeling platforms, such as the Microsoft DSL tools. The Microsoft DSL
However, the AMMA platform should also ported to DSL tools. Tools provide a set of facilities to
develop domain-specific languages. However, at the time AMW has started to be developed, Eclipse
was the only solution that provided the basic model management facilities.

In the remainder of this thesis we present the utilization of weaving models in different application
scenarios. First, we concentrate on the use of weaving models to improve existing data interoperability
approaches. Then, we present different use cases that validate the genericity of our solution.



5 M odel-driven data
Inter operability:

5.1 Introduction

In this chapter, we present the use of weaving models and transformation models as a practical
solution for data interoperability. There are many different data sources available, with different
formats and semantics. As a result of increased collaboration between organizations and rapidly
changing environments, it is often necessary to use the data coming from different sources. However,
the data produced by distinct organizations are often heterogeneous with very different data formats,
thus making data interoperability difficult.

The interoperability of heterogeneous data sources has been studied for a long time in data
integration and data translation applications (cf. Chapter 3). In order to integrate the data of different
sources, it is necessary to identify the semantic heterogeneities. The format and the semantics of data
are typicaly specified as metadata. Semantic heterogeneities can be expressed as mappings that
specify the relationships between elements of metadata.

Many solutions have proposed different kinds of mappings, ranging from 1-to-1 correspondences
to ontology bridges. However, we have seen in Chapter 3 that existing mappings typically provide a
limited set of semantic relationships, e.g., equality and equivalence. They do not provide support to
explicitly define complex kinds of mappings such as mapping expressions. Mapping expressions are
manipulations over elements that involve 1:m, n:1 or n:m relationships, e.g., splitting an element
Address into Street and Number. Most solutions implement complex mappings directly in executable
transformations using generic arithmetic expressions, e.g., project_duration = end_date — start_date,
name = first hame + last_name. In this case, the semantics of the entire mapping (e.g., “ name
concatenation”) is not defined in the mapping specification, but in the mapping expression itself.
Therefore, it is difficult to create and reuse these expressions. The lack of explicit representation also
hardens the task of deriving these mappings into executable transformations.

Our approach alows specifying and capturing different kinds of heterogeneities, and to
automatically produce executable transformations. In our approach, the data manipulated is a terminal
model. A terminal model conforms to a metamodel. We classify different kinds of heterogeneities
according to their complexity, and we present a solution to express different kinds of mappings in a
weaving metamodel, i.e., at the specification level. The metamodel elements are created with a
vocabulary close to their semantic meanings, e.g., override, concatenate, split. A weaving model
conforming to this metamodel contains the mappings between a set of input metamodels.

! This chapter is an adapted version of the works published at [40] and [41].
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The weaving models are used to generate executable transformations. Since we consider
transformations as models, the heterogeneities (e.g., mapping expressions) are translated into
constructs of specific transformation models. We generalize the process of producing transformations
into a pattern that is automatically executed. This pattern may be incrementally modified to handle
different semantic heterogeneities. This is a frequently executed operation in model driven
engineering. We encapsulate this pattern in a TransfGen operation.

The main contributions of this chapter are the following. First, we develop weaving metamodel
extensions that capture different kinds of semantic heterogeneities. We emphasize the creation of
complex mapping expressions. Second, we provide a generic pattern to automatically generate
transformations based on weaving models. Third, considering all entities as models allows applying
the same principles to manipulate every involved model.

This chapter is organized as follows. Section 5.2 describes a motivating example that we use as a
guide for presenting our approach. Section 5.3 presents weaving metamodel extensions for data
interoperability. These extensions enable creating relationships between different models. Section 5.4
explains how these relationships are used to produce model transformations. Section 5.5 concludes.

5.2 Motivating example

We illustrate the data interoperability issue using two bug tracking tools. We use a bug tracking
scenario to show the existence of different kinds of semantic heterogeneities. Bug tracking tools
manage the bugs (reporting, fixing) of a given application. Many bug tracking tools are available, e.g.,
GNATS, Mantis, Bugzilla, and many others [58]. Consider two autonomous software devel opment
companies, C, and Cg, and a set of N bug tracking tools. Company C, uses tool T; and company Cg
uses tool T;. They need to collaborate without aligning their software development practices. This is
due to pragmatic reasons, e.g., the companies already participate in other cooperative projects.

Weillustrate this situation using two bug tracking tools, Bugzilla [28] and Mantis [98]. Bugzillais
a general purpose, open source bug tracking tool. It provides features such as error tracking and
quality assurance management. The Bugzilla metamodel isillustrated in Figure 5.1.

Bug
bug_id: String depends_on DependsOn
bug_status : StatusType . —{bug_id: String
resolution : ResolutionType 0.
who : String 0.* priority : PriorityType
bug when : Date ———@rep_platform : String
the text : String | long_desc assigned_to : String
target_milestone : String blocks Blocks
creation_ts: String @ — - bug_id: String
op_sys: OSType 0.

LongDesc

Figure5.1 Bugzilla metamodel

Mantis is another bug tracking tool. It differs from Bugzilla as a light weight tool which allows
adding new modules. The metamodel of Mantisisillustrated in Figure 5.2.

We observe that it is possible to establish different kind of mappings between the elements of the
tools metamodels. The most common kind of mappings is equality, where two concepts are said to be
equal. For example, a software bug is represented by Bug in Bugzilla and Issue in Mantis. As another
example, the date a bug is created is represented by creation ts and date submitted, respectively.
There are also elements representing equivalent data, but not the same, e.g., target_milestone is the
version where a bug will be fixed, and fixed_in_version is the version where a bug was fixed.
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There are also more complex kinds of mappings. For example, Bugzilla has two kinds of
rel ationships between bugs. depends_on and blocks. In Mantis, bugs are related to each other using the
element relationships, which points to Relationship. The relationship type is stored in the element
type. As another example, assigned _to contains the responsible to solve a given bug in Bugzilla. In
Mantis the relationship assigned points to element Person (that contains elements login, value and id).

I dentifier
id : Integer <}
4} 2
= =
Bl |&
Issue [
- - > 1 1 =
version : String
pIatform:String reproducibility Valuewithld
0s: Stn‘ng . value: String
0s_version: String 0.1
date_submitted : Date
Note 0. fixed in_version : String 0.1 |
text : String W resolution
relationships T 0.* 0.1 | assigned
Relationship Person
type : RelationshipType login : String

Figure 5.2 Mantis metamodel

In addition, there are semantic heterogeneities at the data level. For instance, the element
bug_status in Bugzilla and relationship status in Mantis (that points to Valuewithid) defines the bug
state (e.g., abug was included in the database, a bug was solved, etc.), and the element priority defines
the priority to solve a given bug (e.g., immediate, urgent). Each tool has its own set of status and
priorities. For example, it is necessary to take into account that the priority with value “P_1" in
Bugzlla is translated into the value “urgent” in Mantis. The same analogy applies to the element
status. Different kinds of heterogeneities and the other elements not explained here are discussed |ater
in section 5.3.

Traditional data interoperability applications usually create mappings to capture similarity
heterogeneities (e.g., equality, equivalence). These mappings can be used to produce transformations
that execute the translations from Bugzilla to Mantis. However, complex mapping expressions and
data-level heterogeneities are coded either in some element in the mappings, or in the produced
transformations. For example, the developer must code how to trandate between the enumeration
values in one specific language. The lack of explicit structures for complex expressions hardens the
creation of mappings because there is no domain information about the possible mappings. The
possible mappings are virtually unlimited when using generic arithmetic expressions. This way is not
possible to understand al the mappings without analyzing the entire expression in the produced
transformations. This also reduces the reusability of these expressions. In addition, there is not enough
information to automatically produce the transformations, which is a frequently executed operation in
model management. The mappings and produced transformations must be kept synchronized.

In order to efficiently achieve data (and tool) interoperability, al these kinds of mappings must be
explicitly specified. These mappings must be derived into executable transformations. This process
must be efficient, such that new transformations between other tools can be rapidly devel oped.
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We capture the semantic heterogeneities between the set of tools in a weaving model. Many
different transformation patterns are applied in these transformations, such as equality, equivalence
and concatenation. These transformation patterns depict tranglation links between the source and target
metamodels. Instead of directly creating a transformation between the models, the typed links of the
weaving model capture these semantic heterogeneities in a more abstract representation. These links
arefinally translated into an executable transformation language.

5.3 Datainteroperability metamodel extensions

In this section we present a set of weaving metamodel extensions used for data interoperability. We
illustrate our extensions using the motivating example (tool interoperability) from section 5.2. The tool
data and metadata are represented as terminal models and metamodels. Thus, the tool heterogeneities
are expressed as mappings between tool metamodels. The terminal models and metamodels can be
generalized for other data interoperability problems. The mappings types are specified in a weaving
metamodel. We define tool and mappings below.

Definition 5.1 (Tool). A tool T isatuple <M,, S>, where:

e M;=(G, MMy, I'}) isthe tool terminal model. M is the data that is manipulated by T,
e MM; isthereference model (metamodel) that represents the tool metadata,
o S ={s;i=[1.n]} isthe set of services (querying, updating, inserting, etc.) provided by T. Every

service se S must respect the constraints specified in MM;.

Consider a bug tracking tool T, = <My, Sz>. The metamodel MMy, specifies how the bugs are
organized, the properties of a bug and the possible states of a bug during its life cycle. The moddl M,
has the value of the bugs, e.g., that a given bug “B” has a status of “in correction” to a developer
caled “Joseph”. The set S, contains miscellaneous services. the inclusion of a new bug in the
database, the update of a bug status and the query of a set of bugs.

Consider another bug tracking tool, T, = <My, Sp> with a different model, reference model and set
of services. The semantic heterogeneities between metamodels MM, and MMy, are expressed as
mappings. The mappings between tool metamodels have different types, structures and semantics.
However, intuitively, mappings depict the notion of typed-links between (meta) model elements.

Definition 5.2 (Mapping). Given two models My, and My, a mapping M is a tuple <S,, S,, T>,
where:

e S isaset of elementsfrom the model My,
o S isaset of elementsfrom the model My,
o T isthetype of mapping between the sets S, and S,

There are many different kinds of mappings, for instance equality, equivalence or, generalization.
These are simple kinds of mappings that express element similarity, usualy denoting 1-to-1 links.
Complex mappings have multiple cardinalities and semantic meaning. These kinds of mappings
abstract commonly used mapping expressions, e.g., the average between a set of elements or the
concatenation of strings. We specify the different mapping types as weaving metamodel extensions.
The mapping types are expressed as extensions of the WLink element from the core weaving
metamodel .

However, it is not possible to create a weaving metamodel extension containing all kinds of links
for data interoperability. We present the creation of different metamodel extensions to capture
different types of links. We classify them in three major groups according to the complexity of the
links semantics. We assume that the mappings are directed, i.e., that there is one source metamodel
and one target metamodel. The link kinds are defined in KM 3.
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53.1 Similarity expressions

Similarity expressions represent resemblance links between metamodel elements. These
expressions are the link types encountered in most semantic-based mapping solutions. There are
different kinds of similarity expressions. We describe them below.

Equality: elements that represent exactly the same information are connected by equality links.
The link type Equal is a binary relation. It indicates that a source element is equal to atarget element.
The link type does not specify the exact data type (Sring, Class). The data type is specified when
deploying the solution (as extensions of WLinkEnd).

class Equal extends WLink {
reference source container : WLinkEnd;
reference target container : WLinkEnd;
}
[llustration: There is an element priority in both Mantis and Bugzilla metamodels. It contains the
priority to solve a given bug, i.e., a bug with a higher priority is corrected before a bug with lower
priority.

Equivalence: the linked elements represent similar information, but not exactly the same.
However, the trandation semantics may be the same as in equality links, i.e., one target element
receives the value of a source element. We add a description attribute to provide additional
information about the equivalence, and a similarity measure.

class Equivalent extends WLink ({
reference source container: WLinkEnd;
reference target container: WLinkEnd;
attribute description : String;
attribute similarity : Double;
}
[llustration: the equivalence links could be created between the same elements used to create
equality links, though, with the additional similarity estimation. This is often the case when the links
are created with the help of some semi-automatic method.

Typed correspondences. the equality and equivalence definitions do not differ between element
types. The addition of type constraints avoids generating invalid equalities, for example alink between
a Class and an Attribute is not aways possible, or requires specific conversions. We define a
<Typel><Type2>Equal class. The type information is used for converting elements. The two
<Type> templates are replaced by the data types, for example String, Integer, Reference, Class,
Attribute.

class <Typel><Type2>Equal extends Equal {
reference source container : WLinkEnd<Typels;
reference target container : WLinkEnd<Type2>;

}
[llustration: The element dateSubmitted in Mantis has the date the bug was created and it has Date

type. In Bugzilla the date the bug was created is represented by the creation_ts element, which has
string type.
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Disjointness®.: two elements represent incompatible data. The link type also contains a description

class Disjoint extends WLink ({
reference source: WLinkEnd;
reference target : WLinkEnd;
attribute description : String

Generality®: the elements have arelation of inheritance.

class Inherit extends WLink
reference parent : WLinkEnd;
reference child : WLinkEnd;

Non equivalence: it is not always possible to represent all the information produced by one tool in
another tool. Some elements from the tool metamodels do not have any semantic relationship, or are
not relevant for a given translation and do not need to be generated. The element may be simply
ignored.

We define an extension to keep track of the elements that do not have any equivalences. The class
NotEquivalent has source and target references, which are mutually exclusive. The attribute note has a
description about the elements.

class NotEquivalent extends WLink {
reference source container : WLinkEnd;
reference target container : WLinkEnd;
attribute note : String;

}

[lustration: reproducibility in Mantis contains the frequency of reproduction of a given issue. This
information is not mandatory, and it is not available in Bugzilla. The element urlbase from Bugzilla
contains the base URL of a given bug (since Bugzilla is web based). This element does not have
equivalentsin Mantis.

5.3.2 Mapping expressions

Mapping expressions are mappings that involve a set of source elements and a set of target
elements. The weaving metamodel encapsulates mapping expressions in metamodel elements. The
underlying formalism of how the mapping expressions are executed is hidden from the weaving
metamodel. The navigational and calculations expressions over source and target models are defined
in a subsequent step.

However, it is not possible to define metamodel extensions for every type of mapping expression.
Mapping expressions vary from application to application. In addition, mapping expressions are often
created manually, because the relationships between model elements are typicaly complicated and
cannot be created by automatic algorithms because they involve semantic reasoning. We define an
abstract class Expression. This classis not directly created in aweaving model; it is an initia point for
any other expressions. We describe the type of other mapping expressions below.

abstract class Expression extends Equal {

}

2 Thiskind of link is not present in the tool interoperability example
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Many-to-one: Many-to-one expressions link a set of elements of the source metamodel and a
single element in the target metamodel. For instance the addition of numbers and concatenation of
strings attributes. The abstract class ManyToOne must be extended with a metamodel element that
indicates the required operation. It refersto a set of source elements and to one target element.

abstract class ManyToOne extends Expression (
reference source[*] ordered container : WLinkEnd;
reference target container : WLinkEnd;

}

[llustration: the attributes os and osVersion from Mantis contains the operating system and the
operating system version. In Bugzilla, this information is available in one single attribute op_sys. This
means elements from Mantis must be concatenated. We create a class Concatenation that extends the
ManyToOne class.

The weaving metamodel has two source references, one pointing to os and the other to osVersion,
and the target reference points to op_sys. The ordered keyword means that the elements are
concatenated in the order the source references are created. The separator attribute contains a
separator between elements (e.g., “;"), if necessary.

class Concatenation extends ManyToOne {
attribute separator : String;

Split or one-to-many: Split (or one-to-many) expressions are the opposite of many-to-one
expressions, i.e., they link more than one target element with a single source element.

abstract class Split extends Expression (
reference source ordered container : WLinkEnd;
reference target[*] container : WLinkEnd;

}

[llustration: this is the opposite scenario of many-to-one expressions, for example to split
osVersion into os and op_sys. The elements are parsed according to a given criteria, for example the
separator character. This case is a typical string parsing. Thus, we define a class SplitStr with the
separator character.

class SplitStr extends OnetoMany {
attribute separator : String;

Many-to-many: Many-to-many expressions relate a set of elements of source metamodels with a
set of elements of target metamodels. One may argue that a many-to-many expression can be created
in terms of many-to-one and one-to-many expressions. However, it would have reduced
expressiveness. The class ManyToMany contains two references to a set of source and target elements.

abstract class ManyToMany extends Expression
reference sourcel[*] ordered container : WLinkEnd;
reference target[*] ordered container : WLinkEnd;

}

[llustration: In Mantis, a bug may have dependencies with other bugs. The reference relationships
points to a Relationship class. The type of the relationship is saved in a type attribute. The domain of
valid relationships is defined in an enumeration. The values are: related_to, parent_of, duplicate_of,
has_duplicate. These dependencies must be taken into account when fixing a bug.

There is a similar concept of bug dependencies in Bugzilla. However, for each different type of
dependency there is a reference to a different element. There are only two types of bug dependency:
dependson and blocks. Blocks means that the related bug can be fixed only after the current bug is



92 5 — Model-driven data interoperability

fixed. Dependson is used for al the other types of dependencies. Thus, it is necessary to reorganize
one reference (relationships) and one literal (type) in Mantis into different types of references and
elementsin Bugzilla

New values on the target: New value expressions are used to generate values in the target model
that do not have a correspondence in the source model. These values may be automatically generated
or may take a predefined value from user input. An example of automatic generation is the production
of element identification.

The class AutoSetValue is extended into AutomaticGenint and Manuallnput. The class
AutomaticGenlint reads the element that is referred by the target reference and generates a random
number for it. The class Manuallnput sets the the target reference attribute with the value of
sourceValue.

abstract class AutoSetValue extends Expression {

}

class AutomaticGenInt extends AutoSetValue

}

abstract class ManuallInput extends AutoSetValue {

attribute sourceValue : WLinkEnd;
}

[llustration: The developer responsible for fixing a bug is represented by the assignedTo reference.
The data is stored in the element Person with attributes login (the user login) and id (and unique user
identifier). Both are mandatory. In Bugzilla assigned_to has the same meaning, but it contains only the
login in a text field, without any id. This information must be generated in the target model when a
transformation is executed.

5.3.3 Datavalue expressions

Data value expressions differ from mapping expressions because they also evaluate the terminal
model elements, not only the metamodel elements. Data value expressions compare the source
terminal model elements (not only the metamodel elements) and modify them to make compatible
with the target model.

The class DataExpression refers to a set of equivalences. The source element is evaluated, and if it
is equa to one sourceValue from the set of equivalencies, it sets the target element with the
corresponding targetValue. The equivaencies may be of any data type.

abstract class DataExpression extends Expression {
reference equivalences[*] container : Equivalence;

abstract class Equivalence extends WLinkEnd
attribute sourceValue : WLinkEnd;
attribute targetValue : WLinkEnd;

}

[llustration: In Mantis the resolution reference contains the correction status of a bug (for example
if it was fixed or not). It may have the following values. OPEN, FIXED, REOPENED,
UNABLE TO DUPLICATE, NOT _FIXABLE, DUPLICATE, NOT A BUG, SUSPENDED,
WONT_FIX. We must set the equivalencies with the resolution element (with the same meaning) in
Bugzilla The possible values are: null, FIXED, INVALID, WONTFIX, LATER, REMIND,
DUPLICATE, WORKSFORME, MOVED.

We illustrate these extensions in Figure 5.3. We show only the inheritance relations between the
elements.
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WLink WLinkEnd
Core metamodel _ _ _ __ _ _ _ _ _ __ _ __ __ _ el __
Extensions
Equal Disjoint Equivalent Inherit NotEquivalent <DataType>End Equivalence
<Type>Equal Expression
ManyToOne Split ManyToMany AutoSetValue DataExpression
Concatenation Splitstr AutomaticGenlint Manuallnput

Figure 5.3 Metamodel extensions for data interoperability

The upper side of the Figure shows two classes of the core weaving metamodel, WLink and
WLIinkEnd. We can see that the class WLink is the parent class of all classes that define different link
semantics. The WLInkEnd class has fewer extensions, since it typically defines the elements that are
linked. All these extensions describe the basic kinds of links of most data interoperability solutions.
They are abstract elements that should be extended in turn with concrete links such as Concatenation

or Flit.

5.4 Interpreting data heterogeneity

In the previous section, we have described a set of metamodel extensions to capture different
semantic heterogeneities. The next step is to create a weaving model conforming to these extensions
and to derive this model into executable transformations. The produced transformations translate the
set of input modelsinto the set of output models.

The weaving models are created using the adaptive graphical interface of AMW (cf. Chapter 4).
The weaving models can also be created using semi-automatic methods. We do not specify in which
way the weaving model is created in this chapter. These methods are explained in detail in Chapter 6.

Based on the weaving metamodel extensions, we present a generic pattern used to automatically
produce model transformations, which are responsible to transate a set of source models into a set of
target models.

First, we introduce model transformations, which is the central mechanism to perform operations
over models. We present an overview of the common structures of declarative transformation
languages. Then, we describe a generic pattern used to automatically produce model transformations.
This pattern allows encapsulating the transformation production task in a generic model management
operation.
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541 Moded transformations

Model transformations enable executing model management operations over models. We define
model transformation below.

Definition 5.3 (Model transformation). A model transformation is an operation that given as input a
set of models, evaluates their elements and produces as output a set of models.

A model transformation has the following signature:
<OUT;: MMqouty, ..., OUTy: MMOUTm>:T(< INy: MMng, ..., INR MM|Nn>)

T isthe operation name; <IN; - IN,> isthe set of input models (n > 1); the input models conform to
the input metamodels <MMn; - MM > the input metamodels may be equal; OUT,; - OUT,, is the set
of output models (m > 1); the output models conform to the output metamodels <MMoyt1 — MMoum™;
the output metamodels may be equal.

Our approach considers transformations as models. Thus, the operation T is specified in a
transformation model T = (Gy, MMy, Wr). Transformation models are terminal models. T conformsto a
transformation metamodel MM+. This means that all operations on models may be applied to
transformations, including transformations of transformations (the advantages of considering
transformations as models are explained later in this section).

However, when producing transformations for data interoperability, there are many engines and
languages that could be used (e.g., ATL, XSLT, SQL-like languages). Thus, we produce different
transformation models as output based on the same weaving model. This means the same weaving
may be used to produce a transformation T that conforms to a transformation metamodel MM+; (e.g.,
ATL), or to produce a transformation T, that conforms to a transformation metamodel MM+, (e.g.,
XSLT). This is possible because, despite their different syntax and expressive power, several
transformation languages are typically declarative and have similar structures. We describe these
common structures below:

e input and output models and their metamodels: are the source and target models, e.g., an XML
document, an ontology, arelational table;

e rules: are self-contained commands containing all the necessary constructs to translate source
elements into target elements, e.g., an SQL view, an XSLT template or an ATL rule;

¢ input elements. define which elements from the input model are transformed. Input patterns usually
relate elements formed by sub-elements or attributes, e.g., ATL input patterns, XSLT matched
templates or SQL select from clauses;

e output elements: define the target elements, strictly related with the input elements, e.g., ATL
output patterns, XSLT elements or SQL create view statements,

o selection expressions. define filters in the input patterns to produce subsets of elements, e.g., ATL
filters, XPath expressions or SQL where clauses;

e equivalence expressions. define the relationships between the attributes of a given input element
and the attributes of the output elements, e.g., ATL bindings, XSLT value-of. The weaving
elements indicating relationships and their semantics should be translated as equivalence
expressions;

e computing expressions. return a new value after executing computations over input elements that
are used in equivalence expressions, e.g., OCL expressions, X Path or SQL functions.

We define a transformation metamodel subsuming these common structures of transformation
languages. The metamodel is illustrated in Figure 5.4 (in KM3). It is a metamodel for a declarative
transformation language. When implementing an application of the transformation pattern, the
metamodel must be replaced by a complete transformation metamodel.
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The transformation Module is the main element that contains one or more transformation Rule. A
Rule defines how to translate one input element into a set of output elements. The declarative nature of
the language abstracts the need to trandate a set of input elements. The input and output elements are
represented by a ReferredElement. A ReferredElement points to the elements of the input models.
These elements may be classes, attributes or aroot element.

A Rule contains one InputElement. The reference element points to the element of the input
metamodel. This element is said to be matched in the transformation rule (a rule matches an element
when its type is the one of the input element). The reference condition contains an expression to filter
a subset of the model elements. A Rule has many output elements (reference output). An
OutputElement is the model element that is created in the output model. The output element type is
captured in the element reference.

An output element has a set of bindings. A Binding specifies the values of the attributes for the
related output element. A Binding contains a target element. The target element is either an Attribute,
or a Reference to a class. The source attribute is a model element from the input models or a mapping
expression (MappingExpression) over input elements. Expressions depend on the output
transformation model. We do not specify a complete expression language here. For instance, it is
possible to define expressions in XQuery or XPath. This transformation model is used to define a
generic transformation pattern.

package Transformation {

class Module ({
reference inputModels [1-*] container : ReferredElement;
reference outputModels [1-*] container : ReferredElement;
reference rules [1l-*] container : Rule;

class Rule {
attribute name : DataType:;
reference input container : InputElement;
reference output [*] container : OutputElement;

class InputElement {
reference element container : ReferredElement;
reference condition [0-1] container : Expression;

class OutputElement {
reference element container: ReferredElement;
reference bindings [*] container : Binding;

class Binding ({
reference target container : ReferredElement;
reference source container : Expression;

}

abstract class Expression ({

}

class ReferredElement extends Expression {

}

class MappingExpression extends Expression {

}
}

Figure 5.4 Generic transformation metamodel
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5.4.2 Generic pattern of transformation

We encapsulate the query discovery phase in a generic pattern of transformation. The definition of
the generic pattern of transformation relies on three facts. First, the core weaving metamodel is formed
by links, link endpoints and extensions of these elements. Second, declarative transformation
languages have similar structure. Third, we use declarative patterns of transformation that specify only
what to transform, and not how to transform. The pattern of transformation expresses the execution
semantics of the weaving model, because it transforms the different kinds of links into executable
mapping expressions in some transformation language.

The generic pattern is specified using higher-order transformations (HOT). A HOT takes as input a
weaving model conforming to an extension of the weaving metamodel and transforms it into a
transformation model.

Definition 5.4 (Higher-order transformation). A higher-order transformation is a transformation
Tout : MMt = Thor (Tin : MM7), such that the input and/or the output models are transformation
models. Higher-order transformations either take a transformation model as input, either produce a
transformation model as output, or both.

We create a simple syntax for a transformation metamodel to define the generic patterns. This
pattern is the basis to define a model management operation called TransfGen. We define this
operation below.

Definition 5.5 (TransfGen operation). TransfGen is a higher-order transformation that takes a
weaving model My as input and that produces a transformation model Mt as output. The weaving
model conformsto a data interoperability metamodel extension MMy,

Mr: MMt = TransfGen (My : MMy).

Figure 5.5 illustrates the conformance relations (denoted by c2) of the models involved in the
TransfGen operation: Mw is the input weaving model; TransfGen is the higher-order transformation. It
produces a transformation model M;. Mt and TransfGen conform to the same transformation
metamodel MM+. However, it is also possible that the output transformation conforms to a different
transformation metamodel. This enables producing different transformation models as output.

MMy MM;
c2
c2 c2
TransfGen
[
Transforms

Figure5.5 Modelsin the TransfGen operation

Figure 5.6 describes the semantics of the TransfGen transformation using transformation rules.
These transformation rules conform to the generic transformation metamodel. Note that the syntax is
based on the ATL syntax, but it isnot ATL. The keywords are in bold font. The transformation has a
set of declarative rules. The input element matches the input weaving metamodels. The output element
creates a new element in the output model. The output element has bindings to assign the source
values to the target elements. The weaving metamodel has one extension of WLink (as shown below)
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to denote source and target elements. The pattern can aso be used with different metamodel
extensions.

The transformation has a set of declarative rules. The input element matches the input weaving
metamodels. The output element creates a new element in the output model. The output element has
bindings to assign the source values to the target elements. To denote source and target elements, the
weaving metamodel has one extension of WLink as follows:

class WLinkST extends WLink
reference source container : WLinkEnd;
reference target container : WLinkEnd;

1Module TransfGen (C: )

2

3inputModel: C/* acorrespondence model conforming to a correspondence metamodel oq*/
4 outputModel: T /* atransformation model conforming to o */

5

6 rule newModule

7 input WModel

8 output Module

9 rules € ownedElement (ownedElement isA WLinkST)

10

11 rule newRule

12 input WLIinkST (parent isA WModel) [*classifiers (classes, references, attributes)*/
13 output Rule

14 input € source
15 output < target
16

17 rule newlnput

18 input WLinkEnd (link.source = self)

19 output InputElement

20 element < p (element.ref)

21 condition < /*depends on the WLinkST and WLinkEnd types*/

22

23 rule newOutput

24 input WLinkEnd (link.target = self)

25 output OutputElement

26 element < p (element.ref)

27 bindings < link.child /* get the sibling WLinkEnd*/

28

29 rule newExpression

30 input WLIinkST (parent isA WLinkST)

31 output Binding

32 source < MapEXxp (p (source.element.ref) ) /* mapping expressions here,*/
33 target < p (target.element.ref) *according to the WLinkST type*/

Figure 5.6 Higher-order transformation pattern

The pattern can also be used with different metamodel extensions. The rule newModule (line 6)
creates a new transformation module (line 8) matching the root element WMaodel (line 7). The rule
creates a new rule for al the elements of type WLINkST owned by WModel (line 9) (the references are
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relative to the current input element, in this case WModel .ownedElement). The values of the rules are
set in newRule.

The rule newRule (line 11) matches the WLInkST’s children of WModel (line 12) and creates a
transformation rule (Rule element) for each of them (line 13). These WLInkST refer to classes,
attributes and references. The created rule has one input element that matches the element referred by
the source reference (line 14). The output element corresponds to the target reference of the current
WLINnkST (line 15).

The rule newlnput (line 17) matches WLinkEnds used as source of a WLInkST (line 18), i.e, it
returns the source element of line 14. The newlnput rule creates an InputElement (line 19). The input
element has a filter condition (line 21) that varies according to the WLInkEnd type. The reference
element (line 20) is bound with an identification function (p). A unique identification function is
associated with each different extension of WElementRef. The function returns a ReferredElement. A
ReferredElement contains the value used to identify the elements of the input metamodels. Each
different extension of WLinkEnd has a new rule according to this pattern.

The rule newQutput (line 23) matches WLInkEnds used as target of a WLINkST (line 24), i.e,, it
contains the value that is returned to the output reference in line 15. This rule creates an
OutputElement (line 25). The output element is fetched from the output tool metamodel using a
specific identification function as in the previous rule. This rule creates bindings (line 27) for the
children elements of the current target element (such as attributes or references). The children bindings
alow having different containment levels between model elements. The bindings contain the different
implementations of mapping expressions.

The newExpression rule (line 29) matches all the WLInkST that are not a child of WModel. The rule
creates a binding (line 31) setting the value of the target element (line 33) with the mapping expression
over the source (or set of source) elements (line 32). The created Binding is the return value for the
bindings reference from line 27. Each different mapping expression (denoted by MapExp) must
implement a different calculation expression.

The TransfGen operation encapsulates the task of producing transformations. This way it is
possible to separate the overall data interoperability process into distinct operations. The weaving
model is created by a Match operation (cf. Chapter 6). The weaving model is trandlated into a
transformation model using TransfGen. The tranglations between the source and target models are
encapsulated in the generated transformations, which are specific data transformation operations. We
validate our approach by applying these techniques to an extended version of the motivating example.
We present these experiments separately in Chapter 7.

5.5 Conclusions

In this chapter, we have presented an approach that uses data integration techniques applied to data
interoperability problems. We based our solution on MDE principles to capture the semantic
heterogeneities and to produce transformations between models.

After having provided a classification of heterogeneities, we have shown how this classification
may be translated in various kinds of links defined in a weaving metamodel. Furthermore, the weaving
metamodel may be seen as an extension of the core weaving metamodel that provides basic support
for link management. The main original aspect of our approach is to offer maximum extensibility to
capture the semantics of different kinds of mappings and data value expressions.

We have shown that metamodel extensions allow expressing the different kinds of heterogeneities
with a dedicated vocabulary and in a declarative way. Every domain-specific metamodel prevents
from developing a generic language (and not well-adapted) without the capability to explicitly express
the heterogeneities.

The weaving model can be interpreted following a generic and declarative pattern. The semantics
of this pattern is the basis for a novel model management operation called TransfGen. Based on this
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pattern, we have developed higher-order transformations that automatically produce output
transformation models. This operation encapsulates the transformation production task of typical data
interoperability solutions. The transformations are generated automatically because we leave all the
human intervention to the process of creating weaving models. Different use cases using these
techniques are presented later in Chapter 7. We assumed in this chapter that the weaving models are
created using the AMW tool. We present in Chapter 6 how to use semi-automatic techniques to ease
the task of creating these weaving models.

Finally, considering al entities as models enables manipulating all of them using the same set of
principles. The main principle is to define different types of domain models and to apply
transformations between them. This is particularly useful when specifying the semantic
heterogeneities and when trand ating a weaving model into executabl e transformation models.

There are two major issues that are subject for future work. First, different metamodel extensions
should be designed and applied to different application scenarios. The extensive utilisation and the
refinement of metamodel extensions by domain experts is the best way to come into an agreement and
to disseminate these extensions. Second, the TransfGen operation should be implemented and
validated in different platforms, for instance, relational databases.






6 Matching
transformations

6.1 Introduction

We have seen in the previous chapters that transformations models are a very important kind of
models in data interoperability. As a consequence, there are an increasing number of transformations
models that are being developed for different application scenarios. For instance, there are
transformations to provide data interoperability, to trandate from textual to graphical representations,
or to merge models.

However, the development of transformations involves many repetitive tasks. Consider for
example a generic data interoperability scenario that transforms one source model into one target
model. The transformation development consists of creating rules that transform a set of elements of
the source model into a set of elements of the target model. The properties of these elements are
transformed using a set of transformation expressions.

We have seen in Chapter 5 how weaving models are used as specifications to produce
transformation models by capturing different kinds of links. The links are used as specification to
frequently used transformation patterns. The process of establishing links between different model
elements is called matching. However, the matching process can be partially automated. A semi-
automatic process based on well-defined patterns brings many advantages. it accelerates the
development time of transformations; it diminishes the errors that may occur in manual coding; it
increases the quality of transformational code. To the best of our knowledge, there is not a MDE
approach that provides enough generic mechanisms to semi-automate the development of
transformations.

The discovery of transformation patterns to integrate models is related to schema and ontology
matching approaches (see the approaches presented in Chapter 3). These approaches aim at
discovering relationships between elements of different models. These relationships are used for
different purposes, such as ontology alignment or data translation. However, these approaches have
some drawbacks. Most solutions cannot be applied to models conforming to different metamodels.
The distance between the conceptual basis (models) and the implementation is too important. This
makes it difficult to decompose and to customize different algorithms. Thereis no support for different
kinds of relationships between models. Hence, native constructs of transformations are not supported,
such as rule inheritance or nested relationships.

In this chapter, we present a novel solution to semi-automate the creation of weaving models,
called matching transformations. Matching transformations are transformations used to implement

! This chapter is an extended version of the work published at [43] and [71].
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different matching techniques. This means that, based on the elements of a set of input models, they
produce a weaving model with links between these elements. The weaving model conforms to
extensions to the core weaving metamodel.

Matching transformations enable the implementation of new or the adaptation of existing
techniques to create weaving models. This is an important feature to be able to deploy an adaptive
tool. In addition, we present different ways to express a well-known generic algorithm. We exploit
different kinds of relationships between the model elementsto calculate similarity estimations between
different model elements. The matching transformations are executed together with link rewriting
methods that analyze the weaving metamodel extensions to produce frequently used transformation
patterns. Finally, we create extensions to the AMW tool to handle the execution and combination of
different matching transformations.

This chapter is organized as follows. Section 6.2 presents a motivating example that we use as a
guide for presenting our approach. Section 6.3 presents the general overview of our approach. Section
6.4 presents the matching transformations in more detail. Section 6.5 presents how we extended the
AMW tool to support the execution of matching transformations. Section 6.6 presents a general
discussion. Section 6.7 concludes.

6.2 Motivating example

We motivate the necessity of using semi-automatic methods to create model transformations using
two simple metamodels MM1 and MM2. Both metamodels are illustrated in Figure 6.1. They describe
the teachers and the students of different educational institutions. These metamodels have similar
attributes and references, but they are organized differently.

Metamodel MM1 Metamodel MM2
Person
v 0.1 Professor
name : String
SSN : String >name : String
street : String SSN : String

advisor

city : String Address
zip_code : String 0.1 address
4 street : String

I ] 1 city : String
Student Teacher code : String

Student
affiliation : String .
—name : String 1
Z’} SSN : String 0.1  Aaddress

Undergraduate Master

-

advisor

Figure6.1 Two simple metamodels

Metamodel MM1 contains an abstract class Person, with attributes name, SSN (Social Security
Number), street, city and zZip_code. The class Teacher inherits from Person, and it has the affiliation of
the teacher. MM1 has two types of students: undergraduate students (Undergraduate) and master
students (Master). Only master students have an advisor. Metamodel MM2 does not support
inheritance. MM2 contains a class Professor and only one class Sudent. The presence of an advisor
indicates if the student is undergraduate or master. The address of the professors and the students is
factored out on the class Address.
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In Figure 6.2 we show an ATL transformation used to transform models conforming to MM1 (i.e.,
source model) into models conforming to MM2 (i.e., target model)2. This transformation has 3 rules;
each rule matches one element of the source model and creates elements in the target model. The
transformation developer must know that Teacher is transformed into Professor and that Master and
Undergraduate are transformed into Student. After that, all the attributes and references of each class
must be translated as well (name, SSN, address, advisor, street, code, etc.).

rule CreateProfessor ({ rule CreateStudentl ({
from source : MM1l!Teacher from source : MM1l!Undergraduate
to target : MM2!Professor ( to target : MM2!Student (
name <- source.name, -- copy bindings from CreateProfessor
SSN <- source.SSN, )
address <- address ), }
address : MM2!Address ( rule CreateStudent2 ({
street <- source.street, from source : MMl!Master
city <- source.city, to target : MM2!Student (
code <- source.zip_code ) advisor <- source.advisor
1 -- copy bindings from CreateProfessor

)
}

Figure 6.2 ATL transformation

This transformation has basically two kinds of expressions:. transformations between self-contained
elements (i.e., classes), and the setup of their properties (i.e., attributes and references). Thus, in the
three rules, the transformation has a source class and a target class. The rule CreateProfessor assigns
the attributes of Teacher to Professor. These attributes are inherited from Person. The attributes from
both classes have similar properties, such as name and type. These attributes are transformed in the
containing class, or in a newly created class (Address). The same set of expressions must be rewritten
in CreateStudentl and in CreateStudent? rules, because Undergraduate and Master inherit from
Student, that inherits from Person. The transformation developer has two choices: to copy and paste
the code, or to apply rule inheritance predicates.

These expressions are common patterns in transformations that involve similar metamodels, for
example in data interoperability or in model evolution scenarios. These transformations can be very
large depending on the source and target metamodels. The automatic discovery of these transformation
patterns can increase the development speed of model transformations. The intervention of qualified
transformation developers is left essentially to more complex expressions that do not occur frequently
and that cannot be created automatically.

In order to automate the development of transformations, it is necessary to create the different
kinds of relationships (links) between metamodel (or model) elements. These links must be saved in a
weaving model. A weaving model can be validated or modified by the transformation devel oper.

Techniques similar to ontology and schema matching can be used to discover these links; for
instance, to assign a similarity value to a link between elements with the same name. However, model
transformations can be executed over severa different source and target metamodels, with different
attributes, relations and properties. The patterns applied vary from case to case. Consequently, it is
very important to have efficient ways to implement new algorithms or heuristics and to adapt existing
ones. As afina step, these links must be transated into the correct transformation expressions, for
instance links between attributes of abstract classes must be trandated into bindings (a binding is
denoted by the “<” symbol) in the inherited classes. This should be done by implementing a
TransfGen transformation.

2 The target and source models are terminal models
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6.3 Genera overview

This section presents an overview of the components of the general matching process). The main
goal is to semi-automate the matching process, and consequently, the production of transformations.
The components are illustrated in Figure 6.3.

Weaving | | Similarity Link ATL
creation | |calculation|| rewriting | |production
Others
(dereferencing,
GUl Matching transformations HOT metamodels)

extensions

Operation extensions

MDE extensions

Model weaver workbench

Figure 6.3 Genera overview of the matching components

These components are built on top of the model weaver workbench (AMW) presented in Chapter 4.
The workbench provides the base weaving platform. There are two kinds of extensions, GUI and
MDE extensions. Initially, we concentrate on the MDE extensions, and, more specifically, on the
operation extensions. We implement different model management operations using model
transformations. Thus, the operation extensions wrap a model transformation engine to be able to
execute model transformations. Each model transformation corresponds to a different model
management operation. There are two main kinds of transformations: matching transformations and
higher-order transformations.

The matching transformation extension implements different methods that interpret the structure of
the input model elements to create weaving models. There are three kinds of matching
transformations. The first kind creates a weaving model with links between the elements of the input
models. However, it is not possible to create a weaving model with only correct links between the
model elements in a single transformation. For instance, we create links between name-name attributes
or even name-SSN. These links are refined by other matching transformations. The second kind of
matching transformations calculates a similarity value between every linked element. These
transformations implement different matching techniques (we explain them in the subsequent
sections). In this case, the name-name link may have a higher similarity value than name-SSN link.
The third kind of matching transformation selects the links with higher similarity values to produce a
weaving model with only a subset of links. For instance, we select only the name-name links. After the
execution of these transformations, the weaving model can be manually modified in the weaving tool.

The ATL production extension enables the execution of higher-order transformations that produce
the data interoperability transformations. These HOT's are encapsulated in the TransfGen model
management operation. In other words, the weaving models are transformed into transformation
models. The transformation model can be extracted into a textual language, for instance ATL or
XSLT.

This pluggable architecture allows adding different matching or HOT transformations. These
transformations can use different techniques, and can support different extensions to the core weaving
metamodel.
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6.4 Matching transformations

In this section we present in detail our solution for establishing links between model elements.

Definition 6.1 (Matching). Matching is the process of establishing relationships between elements
belonging to different models.

The matching process uses different techniques to create links between a set of model elements.
We define one generic model management operation for each different heuristic or algorithm. The
goal isto discover the relationships between a set of input models and to create a weaving model. The
whole processis encapsulated in an operation called Match. The Match operation takes two models M,
and My, as input and produces a weaving model M,, as output. M, and M, conform to MM, and MMy,
M,, conforms to MM,,.

My : MMy, = Match (M, : MM,, My @ MMy).

We implement the match operation using model transformations. This means that the matching
techniques are implemented as domain-specific model transformations. These domain-specific
transformations are called matching transformations.

Definition 6.2 (Matching transformation). A matching transformation is a domain-specific
transformation T that takes two or more models as input, and that transform them into a new weaving
model Myy.

< OUT]_: MMouty, .., OUTn: MMout> = T(< IN7 : MMing, -.., INg - MMinm > )

A matching transformation implements different methods that produce weaving models. We may
consider that the set of input models are transformed in a weaving model.

The whole process of creating weaving models is semi-automatic, i.e., it is an interactive process
that aternates between the automatic execution of matching transformations and the manual
refinement of weaving models in the weaving engine. We explain the different kinds of matching
transformations in the following sections. First, we describe a simple metamodel extension that is used
by these transformations. Then, we describe the matching transformations using the ATL language.

6.4.1 Metamode extensions

The weaving metamodel specifies the different kinds of links that are generated by the matching
transformations. Each kind of link corresponds to one transformation pattern. The weaving
metamodels are created as extensions of the core weaving metamodel. It is necessary to define specific
matching extensions to be able to execute the matching transformations. For instance, one of the most
common patterns of declarative transformation rules is to select an element of a given type in a source
model and to create a new element in atarget model. These metamodel extensions are shown in Figure
6.4.

The class Element is a concrete extension of WLInkEnd. It can refer to any kind of (meta)model
element. The class Equivalent contains two references to save the source and target elements. The
class Equivalent has a similarity value that is calculated in the matching transformations. Thisvalueis
a numeric value that measures the semantic proximity of the linked elements. The other classes
capture five different transformation patterns:

e Generic equality: the class Equal indicates that the linked elements represent the same
information. The <Type> tag must be replaced by the element type, for example AttributeEqual or
ReferenceEqual.
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e Attribute to references: the class AttributeToRef captures links between attributes in the source
model and references in the target model. The targetAttribute contains an attribute of the element
referred by the target reference.

e Element inheritance: the class Elementinheritance relates elements that inherit from others. The
reference super points to the parent element of a given element.

class Element extends WLinkEnd

}

class Equivalent extends WLink {
attribute similarity : Double;
reference source container : Element;
reference target container : Element;

}

class <Type>Equal extends Equivalent {

}

class AttributeToRef extends Equivalent {
reference targetAttribute container : Element

class ElementInheritance extends Equivalent {
reference super container : WLink;

Figure 6.4 Matching extensions

6.4.2 Creating weaving models

Transformations that create weaving models are the first kind of matching transformations that are
executed. The transformation that creates weaving models is called CreateWeaving. The
transformation takes two models M, and My, as input and transforms them into a weaving model M,,.
M, conforms to MM,, My, conforms to MM, and M,, conforms to MM,,..

My, : MM, = CreateWeaving (Ms: MM,, My: MMy,).

This transformation matches a set of elements of a given type of M, with a set of elements of a
given type of My, It creates arestricted Cartesian product M, x My, i.e., it creates alink between every
pair of elements. However, the execution of a Cartesian product can create too many elements if the
input models are large. Consider for example two input models with 100 elements each. The Cartesian
product would create a weaving model with at least 100 x 100 = 10.000 elements. These elements are
captured in extensions of WLIinkEnd. Moreover, there is one additional element containing the linking
semantics (an extension of WLink). For that reason we use restricted versions of the Cartesian product
that take into account the type of the elements.

Figure 6.5 illustrates how the transformation can be implemented using a generic transformation
rule. MM, and MM, denote the input metamodels. MM,, denctes the output weaving metamodel. This
rule matches all elements of type <TypeA> with all elements of type <TypeB> and it produces an
equivalence link (Equivalent) between the source and target elements.
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rule CreatelLink {
from
aSource : MMa!<TypeA>, aTarget : MMb!<TypeB>
to
alink : MMw!Equivalent (
source <- aSource ,
target <- aTarget

Figure 6.5 Creation of equivaence links

Consider the case of a matching transformation between the metamodels from the
Professor/Student example from section 6.2. The transformation depicted in Figure 6.6 contains only
the guard, the input and the output patterns. Rule CPClass is matched only for every pair of EClass. It
creates ClassEqual links. The rule CPAttr matches for every pair of EAttribute, and creates
AttributeEqual links. The guard of CPAttr can also be more restrictive to match only the pair of
attributes that have links between the containing classes. These different restrictions allow creating
more performing methods, according to the application requirements and resources.

rule CPClass {
from
left : Ecore!EClass, right : Ecore!EClass
to
AMW!ClassEqual

}

rule CPAttr {
from
left : Ecore!EAttribute, right : Ecore!EAttribute

to
AMW!AttributeEqual

Figure 6.6 Rulethat creates links between classes and/or attributes

The operation can also be modified to update weaving models (to create or to remove other links).
In this case it has aweaving model as an extrainput parameter.

M, : MM, = CreateéWeaving (M,: MM,, My: MM, My, : MM,,).

The use of matching transformations enables the customization of the implementation. It is possible
to change the types of the left or of the right elements. This allows establishing correspondences
between elements of terminal models conforming to different metamodels (i.e., not only between
elements of metamodels). This is a typica reguirement when it is necessary to produce weaving
models as input for merge or diff operations. For instance, consider a matching transformation using
KM3 and SQL-DDL metamodels. The ATL guard shown in Figure 6.7 enables the creation of
equivalence (or other) links between aKM3 Class and a SQL-DDL Table.

rule CPClassTable
from
left : KM3!Class, right : SQLDDL!Table

}

Figure 6.7 Rulethat create links between models conforming to different metamodels
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6.4.3 Calculating element similarity

The second kind of matching transformation calculates a similarity value between the elements
referred by the source and target references of the equivalence links. This similarity value is used to
evaluate the semantic proximity between the linked elements. A link with a high similarity value
indicates that there is a good probability that the source element must be trandlated into the target
element.

We define a transformation called AssignSmilarity. The transformation takes a weaving model M,
and aweight asinput, and it produces a weaving model M,, as output. The input and the output models
conform to the same weaving metamodel MM,,, The output weaving model has the new similarity
values. However, there are many different methods to calculate similarity values. The tag <method>
indicates the method that isimplemented.

My, : MM, = AssignSmilarity<method> (M,,/: MM,,, weight: double).

The weight parameter is used to restrict the similarity values between [0-weight]. This parameter
enables to adjust the impact of a given similarity method. For instance, a similarity method that
compares element’s names may have weight 0.8, and a similarity method that compares element’s
types may have weight 0.2. This means that a set of elements is considered more similar if they have
the same name than the same type. Different matching transformations can be executed to obtain a
more accurate similarity value. We implement element-to-element and structural methods. We explain
them below.

6.4.3.1 Element-to-element similarities

Element-to-element similarities are calculated taking the source and target elements of an
Equivalent link and comparing the element properties in different ways. We develop different
matching transformations, each one implementing a different method.

e Sring similarity: the names of the model elements are considered strings. The names are compared
using string comparison methods such as Levenshtein distance, n-grams and edit distance [33].

e Dictionary of synonyms: the names are compared using a dictionary of synonyms (we use Wor dNet
[57]). This dictionary provides a tree of synonyms. The similarity between two terms (element
names) is cal culated according to the distance between these terms in the synonym tree. Thisway it
is possible, for example, to increase the similarity value between elements such as Teacher and
Professor, which does not yield good results if using string comparison methods.

Severa element-to-element techniques are aready implemented and available in public APIs.
Thus, we extend the ATL transformation engine to be able to call methods from external APIs. The
transformation engine provides wrapper methods that can be applied to every model element. This
way we use APIs such as the SimMetrics API [128], which contains string similarity methods, and the
JWNL API [76], which accesses the WordNet database.

The ATL rule shown in Figure 6.8 calculates the name similarity between two attributes. This rule
considers that the input model is a weaving model that contains AttributeEqual links. It updates the
similarity value by executing the similarityName helper. This helper calls the Levenstein string
comparison method of the JWNL API. The final result is multiplied by the weight parameter. To
compare the code complexity, we implemented this same rule using only Java. The Java class has
approximately 250 lines. This is essentially due to all the navigation code used to find the correct
model elements.
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rule AttributeSimilarity {
from
mmw : AMW!AttributeEqual
to
alink : AMW!AttributeEqual (
similarity <- (mmw.similarity +
mmw.left.similarityName (mmw.right)) * weight
)

Figure 6.8 Simple element-to-element similarity rule

6.4.3.2 Structural smilarity

Structural similarities are calculated using the internal properties of the model elements (e.g., types
and cardinality) and the relationships between model elements (e.g., containment or inheritance trees).

We implement a structural method called metamodel-based similarity. The metamodel-based
similarity method is executed after an element-to-element method to improve the accuracy of these
methods. The metamodel-based method calculates the similarity using the internal properties and the
relationshi ps between model elements.

e Internal properties

Model elements have a set of properties, such as type, cardinality, order and length, etc. Consider
two model elementsa € M, and b € My; M, and My, are different models, but conform to the same
metamodel. A matching transformation compares the properties of a with the properties of b. If a
given property has the same value, it adds 1(one) to a temporary similarity value. This temporary
value is multiplied by the weight parameter and added to the initial similarity value. However, this
generic comparison isvalid only if M, and M, conform to the same metamodel. When the metamodels
are different, the operation is adapted for every different property.

Consider two different metamodels, KM3 and SQL-DDL (the complete metamodels can be found
in the AM3 Zoo [3]). We consider two elements from these metamodels, Attribute from KM3 and
Column from SQL-DDL. An Attribute has properties such as type, lower, upper, isOrdered, or
isUnique. A Column has the following properties. default, type, keys, canBeNull. These properties
cannot be directly compared if using a generic implementation, because their values are not
compatible and there is no name equivalence. For example, the transformation must take into account
that canBeNull is a Boolean. The same information is captured analyzing the value of lower property.
Weillustrate the transformation rule for this case in Figure 6.9.

This rule calculates the similarity between KM3 and SQL-DDL elements. It selects an Equal link
that satisfies the following condition: the source reference points to an Attribute of KM3, and the
target reference points to a Column of SQL-DDL. The helper requiredSm compares the required
property with the CanBeNull property, and returns one (1) if they satisfy the equality criteria.
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rule UpdateStructuralSim {
from
mmw : MMw!Equal mmw.source.isTypeOf (KM3!Attribute)
and mmw.target.isTypeOf (SQLDDL!Column) )

to
alink : MMw!Equal (
similarity <- ( mmw.similarity +
mmw . source.requiredSim( mmw.target )) * weight

}

helper context KM3!Attribute def: requiredSim

(column : SQLDDL!Column) : Real =
if (self.lower = 0 and column.canBeNull) then
1
else
0
endif;

Figure6.9 Structura similarity rule

e Element relationships

There are different kinds of relationships between elements of the same model, for instance,
containment or inheritance relationships. Most existing structural methods that exploit the element
relationships rely on the following assumption: if two model elements are similar, the neighbors of
these elements are likely to be similar as well. For example, if a link between two attributes of two
different models has a high similarity value, the containing classes of these attributes have a good
probability to be similar.

We create a transformation inspired by the Similarity Flooding (SF) algorithm [101]. We first
explain the key idea of SF, and then how we change it. Consider two input metamodels M, and My,
and the model elementsa, 8 € Maand b, b’ € My, Elementsa and &' are connected by alabeled edge
(a, “containment”, a'). Elements b and b’ are connected by a labeled edge (b, “ containment”, b’).
Initially, the algorithm executes a Cartesian product M, x My, and assigns a similarity value for every
pair of elements. Consider the pairs (a, b) and (a’, b’), with similarities x and y, respectively. The key
idea of SF is to propagate the similarity value between the pair of elements that are connected by
edges with the same label. In other words, it propagates x to (b, b’) and it updates the similarity value
y. The propagation is done by the formula: y = y + (p * X). The value p is calculated based on the
number of edges connecting a given pair of elements (i.e., the number of neighbor elements). For
instance, if (a, @) has 10 neighbors, then p = 1/10. This propagation information is encoded in a
propagation graph. The propagation can be done in both directions.

We explain how we implemented and adapted this solution using matching transformations. The
main advantage is the possibility of having different forms of propagation based on different structural
or semantic relationships between the elements of the input metamodels, and not based uniquely on
the value of the label of the edges. This assumption is too restrictive, because it cannot capture
different relationships between the elements. In contrast, it is also too generic, because we cannot
create application-specific propagation models.

The propagation graph is encoded in a weaving model, called the weaving propagation model. The
weaving model conforms to the metamodel extension shown in Figure 6.10. The class WAssociation is
an abstract class that depicts relationships between extensions to WLinks within the same weaving
model. The class PropagationElement has two references: outgoingLink refers to the link with the
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source similarity value, and incomingLink refers to the link with the target similarity value. The
propagation attributes contains a value that is multiplied with the similarity value of the outgoingLink.

package mw_core
class WAssociation extends WElement {

package mmw_propagation {
class PropagationElement extends WAssociation {
reference incomingLink : Equivalent;

reference outgoingLink : Equivalent;
attribute propagation : Double;

Figure 6.10 Weaving propagation metamodel extension

Our approach alows constructing different propagation models according to the application
scenario, and also to propagate similarities between elements conforming to different metamodels. An
important issue is the creation of relevant propagation elements and values between a set of links. We
show a generic transformation rule in Figure 6.11. This rule assumes that the input model of the
transformation is aweaving model that contains a set of links and similarity values.

rule CreatePropagationElement {
from
source_link : AMW!Equivalent,
target link : AMW!Equivalent (
<semantic guards>
)
to
out : AMW!PropagationElement (
propagation <- 1 / <propagation values,
outgoingLink <- source_ link,
incomingLink <- target link

)

Figure6.11 Creation of propagation edges

The rule input pattern matches two links. These links are extensions of Equivalent links. The
source link contains the similarity value that is propagated. The target link contains the similarity that
is updated. This means the similarity is propagated from the source link to the target link. The
<semantic guard> determines the condition that must be filled to create a propagation element (we
show different semantic guards later). The rule creates a propagation element, and it assigns the source
and target links to the corresponding references. The propagation value is calculated in thisrule.

We develop three different kinds of propagation based on this generic rule. We illustrate our
approach assuming that the input metamodels conform to KM3. However, the rules can be adapted to
match different metamodels or models.

Containment-tree propagation: the containment-tree propagation method enables propagating the
similarity between elements that have containment relationships, for instance classes and attributes or
classes and references (note that this is not the containment between classes, but between classes and
its members). Consider for example a KM3 Class. The reference structural Features points to classes
Reference and/or Attribute. We create propagation elements from the links between classes
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(ClassEqual) to the links between its attributes. The guard of the rule is shown below. The
getReferredLeft/Right is a hel per that returns the element of the input metamodel.

source link : AMW!ClassEqual,
target link : AMW!AttributeEqual (
target link.getReferredLeft.owner = source link.getReferredLeft
and
target link.getReferredRight.owner = source link.getReferredRight
)

The link between classes is assigned to the outgoingLink, and the link between the attributes is
assigned to the incomingLink. In the same way as the SF algorithm, we consider that a given method
can contribute to a maximum similarity value of 1. Consequently, the propagation is one (1) divided
by the multiplication of the total number of attributes of the two input classes. It is aso possible to
propagate the similarity from the attribute’s links to the class' links. To do that, we create a
propagation element with inverted incoming/outgoing links and a new propagation value. The
getAttributeCount() method returns the number of attributes of a given class.

outgoingLink <- source link,
incomingLink <- target link
propagation <-
1 / ( source_ link.getReferredLeft.getAttributeCount ()->size() *
source_link.getReferredRight.getAttributeCount () ->size ()

Relationship-graph propagation: this propagation method takes into account the type of the
references of two given classes. For instance, consider the links between classes (a,b) and (c,d); a has
areference to ¢ and b has a reference to d. The relationship-graph is used to propagate the similarity
between these two links. The ATL guard for this method is shown below. The getReferences() method
returns a set with all the references of the class.

source_ link : AMW!ClassEqual,
target link : AMW!ClassEqual (
target link.getReferredRight.getReferences()->

exists( e | e.type = source link.getReferredRight) and
target link.getReferredLeft.getReferences()->
exists( e | e.type = source link.getReferredLeft)

The maximum propagation value (1) is divided by the multiplication of the number of references of
these two classes, in asimilar way as for the containment tree propagation.

Inheritance-tree propagation: this method enables propagating the similarity value from the link
between two source classes to links between the parent classes of the source classes, if any. It can be
considered as an extension to the relationship tree propagation method. However, it takes into account
only the references that represent inheritance relationships. In KM3, this reference is called
supertypes.
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source_ link : AMW!ClassEqual,
target link : AMW!ClassEqual (
target link.getReferredRight.supertypes->

exists( e | e = source link.getReferredRight) and
target link.getReferredLeft.supertypes->
exists( e | e = source link.getReferredLeft)

)

The source link is assigned to the reference outgoingLink, and the target link is assigned to the
reference incomingLink. The propagation value is calculated based on the multiplication of the number
of super-types of the source classes.

propagation <- 1 /
(source link.getReferredLeft.supertypes->size() *
source_link.getReferredRight.supertypes->size())

These propagation elements are created in the same weaving model. However, it is also possible to
have separate weaving models that are used with specific input models. For example, the inheritance
tree propagation is not relevant when creating a weaving model between SQL-DDL models that do not
have native inheritance relationships. Thus, this propagation method is not used in this particular
matching scenario.

These structures can be used to propagate the similarity between elements of different metamodels
as well. Consider again the SQL-DDL and KM3 metamodels. The containment trees from both
metamodels are different. However, the containment relationship between a Table and a Column is
equivalent to the relationship between a Class and an Attribute. The matching transformations enable
to build a containment tree of these two metamodels.

Once the propagation model is created, the similarities are propagated. The SF-based propagation
isimplemented with an ATL rule, as shown in Figure 6.12.

rule PropagationClass ({

from

mmw : AMW!Equivalent
to

alink : AMW!Equivalent ()
do {

thisModule.aTuple <- AMW!PropagationElement.allInstances()->

select ( e | e.incomingLink = mmw)->
iterate (el; acc : TupleType(value : Real, count : Integer) =
Tuple {value = 0, count = 0} |
Tuple {

value = acc.value +
(el.outgoingLink.similarity * el.propagation),
count = acc.count + 1

!
)i

alink.similarity <- mmw.similarity +
thisModule.aTuple.value / thisModule.aTuple.count;

Figure 6.12 Propagationin ATL

The goal is to update the similarity value of every link in the weaving model. Thus, this rule
matches every link in the model. Then, in the do block, it selects al PropagationElement (through the
allinstances() method) that have the incomingLink equals to the current link. For every
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PropagationElement, it multiplies the similarity value of the outgoingLink by the propagation value,
and adds it into an accumulator (the Tuple). The accumulator also counts the number of propagation
elements that refer to the current link. The accumulated similarity value is divided by the number of
outgoing links and then added with the current similarity value of the link. The division enables more
coherent global similarity estimation. For instance, without this division, elements that are connected
by severa propagation edges may have asimilarity value that is too high.

6.4.4 Selecting best links

The third kind of matching transformations selects only the links that satisfy a set of conditions; for
instance, a given similarity threshold. The selected links are included in the final weaving model or
rewritten into different kinds of links. These matching transformations are generalized by the
operation Select<method>.

M, : MM,, = Select<condition> (M, : MM,)).

The operation takes a weaving model M,,’ as input and produces another weaving model M,, as
output. Both weaving models conform to the same weaving metamodel MM,, The condition tag
denotes the selection criteria. Links are selected using two methods: link filtering and link rewriting.
These methods are explained below.

6.4.4.1 Link filtering

There are different kinds of link filtering methods. The most simple method (and also most used) is
to set up a minimum threshold value and to select only the links that have a similarity value higher
than this threshold. The biggest drawback of this method is the choice of a correct threshold method.
Creating a new weaving model based on low threshold values may yield too many falselinks, i.e., that
should not be created. In contrast, too high threshold values may filter relevant links.

In typical data interoperability scenarios, a common method is the selection of links with the
highest similarity values for every source element. This method usually yields good results because
datainteroperability transformations need to translate all the elements of a source model (or as most as
possible) into a target model. Thus, it is necessary to obtain alink between every element of a source
metamodel with the elements of atarget metamodel.

We illustrate a matching transformation rule in Figure 6.13.

rule getMaxLink (aSource : MMa!ModelElement)

using
newLink : MMw!Equivalent = null;
maxSim : Real = 0;
do {
for (e in MMw!Equivalent.allInstaces()->select (e.source=aSource)) {

if (e.similarity > maxSim) {
maxSim <- e.similarity;
newLink <- e;

}
}

return newlLink;

Figure 6.13 Link filtering method
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This rule is executed for al the source elements. It loops over al the equivalence links (and
inherited links) of agiven source element and it selects the link that has the highest similarity value.

The using part declares variables to store an auxiliary similarity value and the selected link. The
allInstances() method returns all the instances of links conforming to the Equivalent link. The for
block selects the links that have the source reference equal to the aSource parameter. The similarity
values are compared with a current similarity value. The maximum value and the corresponding link
are stored in the auxiliary variables.

The output weaving model contains one link for each element of the source model. Thisrule selects
al the elements from the source metamodel, but the same target element may be selected several
times. The last adjustments are done by link rewriting methods.

6.4.4.2 Link rewriting

Link rewriting methods are executed after the execution of selection or filtering methods. These
relationships are used to transform simple links (e.g., Equivalent, Equal) into complex kinds of links
that capture different transformation patterns. Common patterns are nesting, inheritance, data
conversions, concatenation and splitting. For instance, if more than one source element is linked with
the same target element through Equal links, this link can be rewritten as a Concatenation link. The
most common form of link rewriting is the nesting between elements with containment rel ationships,
for exampl e classes and attributes, or tables and columns.

Consider aweaving model that links two KM3 metamodels, MM, and MM, After the execution of
a link filtering transformation, it contains a set of links between classes (ClassEqual) and attributes
(AttributeEqual). However, they are children of the root element. Now consider classes A € MM, and
B € MM,, attributes a € A, b € B, links ClassEqual (A, B) and AttributeEqual (a, b). Since a is an
attribute of A and b is an attribute of B, the AttributeEqual link is rewritten as a link child of
ClassEqual. Note that the rewriting is not based on the similarity values.

We illustrate the rewriting of nested links in Figure 6.14. This rule matches AttributeEqual and
ClassEqual links at the same time and it checks if the owner of the attribute is the current element. If
the result is true, it executes the rule and assigns the class link element to the attr_link.parent
reference. The output weaving model preserves the containment relationships between classes and
attributes.

rule NestedRewriting {
from
attr link : MMw!AttributeEqual,
class link : MMw!ClassEqual (
attr link.source.owner = class_ link.source and
attr link.target.owner = class_ link.target

)
to

link : MMw!AttributeEqual (
parent <- class link

Figure 6.14 Rewriting of attribute-equal links

These transformations are executed always after the calculation of some similarity estimation. The
different guards in the transformation rules match the existing links. The to part recreate the same
links (to copy them) or create new kinds of complex links. Link rewriting transformations are closely
related to the application scenario. This means these methods are less generic than similarity
calculation methods.
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In addition to the creation of complex links, link rewriting transformations can create links that
record different kind of information about the overall matching process. After the execution of a set of
matching transformations, it is normal that some elements of the source metamodel are not linked with
any element of the target metamodel, and vice-versa. We create a link rewriting transformation that
enables to record the source and/or target elements that are not referenced by any link. This kind of
link can be used for different purposes: to verify if the resulting weaving model is correct, to record
which elements cannot be trandated from one model to another, or to use them as input to model
difference algorithms.

Figure 6.15 depicts an extension to the core weaving metamodel that record elements that are not
linked. The class NotFound (extension to WLink) has two references, left and right. These references
pointsto a class that contains alist of elements from the source (left) or target (right) models.

class NotFound extends WLink ({
reference left container : ListNotFound;
reference right container : ListNotFound;

class ListNotFound extends WLink {
-- @subsets end
reference element [*] container : ReferredElement;

Figure 6.15 Metamodel extension for e ements not linked

The NotFound links are created by the matching transformation rule shown in Figure 6.16. The
guard of this rule checks if the matched left element mmw is referenced by some link endpoint
LeftElement from the left woven model 1eftM. If it is not referenced, a new link endpoint LeftElement
is created and it is added into aglobal list of the elements not linked.

rule NotLinked ({

from
mmw : AMW!ElementRef (
if mmw.modelRef = mmw.modelRef.refImmediateComposite().leftM then
not AMW!LeftElement.allInstancesFrom('IN') ->
exists(e | e.element.ref = mmw.ref)
else
false
endif
)
to

left : AMW!LeftElement (
element <- mmw
)
do
{
thisModule.notFound.left->
first () .element <- thisModule.notFound.left->
first () .element->union(Sequence{left});

Figure 6.16 Link rewriting method
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6.5 Extending the AMW tool to support matching transformations

In this section, we present the extensions to the AMW tool that enable the integration and the
customization of different matching transformations. The MDE extensions enable executing different
kinds of transformations, matching or higher-order transformations. The matching transformations
have a pre-defined signature. These transformations take a weaving model, a source termina model
(or metamodel), and a target terminal model (or metamodel) as input, and they produce a new weaving
model as output. The matching transformations can be executed using two different settings.

o First, the transformations are executed one by one using a context menu in the weaving panel. This
menu is automatically generated based on the declaration of an operation extension. The extension
is specified in XML files. The XML file specifies the transformation path, the headers (input and
output parameters), and the text that appears on the menu.

e Second, we implement a GUI extension that enables customizing the available matching
transformations and executing them in a single step. This alows combining different
transformations and setting up different execution parameters.

The parameterization of the matching transformations is defined in a configuration model. This
configuration model contains parameters such as weight or threshold. This model conforms to a match
parameter metamodel. This metamodel specifies the transformations that are executed, the execution
order, and a set of tuning parameters. The match parameter metamodel isillustrated in Figure 6.17.

package match parameter (
abstract class NamedElement {
attribute name : String;

class ParameterSet extends NamedElement {
reference transformations[*] ordered container: Transformation;
reference metamodels [*] container : Metamodel;

}

abstract class Transformation extends NamedElement {
reference metamodels [*] : Metamodel;
attribute description : String;
attribute selected : Boolean;
reference depends [*] : Transformation;

class LinkGeneration extends Transformation (

class ElementToElement extends Transformation {
attribute weight : Double;

class Structural extends Transformation {

class Filter extends Transformation {
attribute threshold : Double;

class Metamodel extends NamedElement
attribute description : String;

Figure 6.17 Match parameter metamodel

The class ParameterSet contains a set of transformations (ordered) and the set of metamodel
extensions. The class Transformation defines the standard attributes for every transformation. A
transformation is executed if the selected attribute is set to true. The reference metamodels contains
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the metamodel extensions that need to be loaded to be able to execute a transformation. The reference
depends indicates that one transformation can be executed only if a depending transformation is
previously executed. For instance, the similarity flooding transformation cannot be executed if the
propagation model is not previously created. There are four types of transformations. They correspond
to the different kinds of matching transformations presented in this chapter: LinkGeneration,
ElementToElement, Sructural, and Filter.

The GUI extension interprets the models conforming to this metamodel and it produces a generic
configuration window, asillustrated in Figure 6.18.

& Matching transformation set up @

Link generation

Mame | Restricted carkesian product Execute

Elerent ko element

Mame | MName equality Weight | 0.8 Execute
Mame | Cardinality YWeight | 0.2 | Execute [
Mame | Type and conformance | Weight | 0.0 | Execute [
Skruckural

Mame | Propagation graph Execute |:|

Mame | Similarity Flooding Execute [ ]

Filkering
Mame | Select from a threshold Threshold | 0.6 Execute

Mame | Link revriting Threshald | 0.0 | Execute [
Mame | Mok equivalence Threshold | 0.0 | Execute [
Marne | Mormalization Threshold Execute

Save inkermediate models

[ oK H Cancel ]

Figure 6.18 Matching transformation configuration

The configuration window has one group for each different kind of transformation. Each group
shows the set of available parameters. The “? (question mark)” button shows the dependencies
between the transformations and the metamodels. The “Save intermediate models’ button saves a new
weaving model after the execution of each matching transformation. This enables the comparison of
the intermediate results. The configuration model loaded in this window is only illustrative. It executes
the following transformations. a restricted Cartesian product based on the type of elements; a
comparison over the elements names, with a weight of 0.8, a comparison over the elements
cardinality, with weight 0.2; a selection of the links with similarity value higher than 0.6; and the
normalization of the results.

The configuration metamodel and model brings some advantages when combining the execution of
different matching transformations. The correct tuning of matching transformations requires a lot of
experience on matching. This configuration model enables recording these parameters, and can be
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reused later by other developers. The tuning of matching transformations is a subject of study by itself.
Each application scenario can have different parameters with the objective to obtain the best matching
results. The variation of a single parameter can modify the final generated weaving model.
Consequently, the exchange of these configuration models among the developers may help to better
tune their heuristics and environments.

6.6 Genera discussions

We use two variations of the Professor/Student example to execute a set of matching
transformations. In this section, we concentrate on this illustrative example to show the effectiveness
of our proposition®. In the first example, MM1 and MM2 conform to KM3. In the second example,
MM1 conforms to KM3 and MM2 conforms to SQL-DDL. The weaving models are trandated into
model transformations. The goal is to verify if the transformations are generated correctly, and to
verify if the matching transformations can be easily adapted in both examples.

The Professor/Student example has different transformation patterns, such as class inheritance,
nesting of elements, or classes with different names. MM1 contains 17 elements and MM2 contains 18.
The creation of links between every model element without any type restriction yields a weaving
model with 950 elements: 306 links, plus one right and one left element for each link, i.e., 3 x 306,
plus additional control elements. It is important to reduce the number of initial links as early as
possible in the process, to be able to scale up the approach to match larger models.

The weaving model with the type-restricted Cartesian product contains 273 elements, with 78 links.
The name similarity transformation enables the creation of links between elements such as SSN-SSN,
name-name, or zip_code-code. The dictionary of synonyms increases the similarity of elements such
as Professor and Teacher, Master and Sudent. The containment tree and inheritance relationships
enable the propagation of the similarity of the attributes of Master and Student.

We execute the propagation of similarities two times. The propagation of the similarities more than
two times increases the similarity between the classes (e.g., Teacher and Professor), but the values are
not significantly different in our example. Severa propagation steps may be more useful in the case of
model comparison, where more accurate values are necessary.

The creation of links and the computation of similarities can be applied for more generic examples,
not only to generate integration transformations. On the other side, the link filtering and rewriting
methods are more specific to the type of the output.

Consequently, link selection methods are very important to obtain the final integration
transformations. For example, the similarity between the abstract class Person and class Professor is
high. This would produce a rule that transforms Person into Professor. The filtering method does not
select links with abstract classes. Then, the link rewriting method copies the bindings of the attributes
of the class Person to the rules that transform the inherited classes, i.e, Master, Teacher,
Undergraduate.

The only link that is not generated correctly is the one between Undergraduate-Sudent. This is
because none of the initial similarity methods can find high similarity values. The values are not
propagated, because the inheritance relationships exist only in the source model. We thus use the
weaving engine to modify the weaving model. After applying al the transformations and using the
weaving engine, the weaving model is reduced to 78 elements, with 12 links.

Finally, the weaving model is used as input to higher-order transformations, following the pattern
presented in Chapter 5. We created a HOT with 250 lines. It is relatively complex compared to the
generated transformation, with only four ATL rules. However, this HOT and the matching
transformations are implemented to be used many times in different applications.

% The execution of matching transformations using bigger metamodels is presented in the use cases of Chapter 7.
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In the second example, we evaluate if the matching transformations can create weavings between
termina models conforming to different metamodels. The base algorithms of the matching
transformations are the same, leading to similar results. However, we adjust the implementation of the
containment tree, as well as the metamodel-based technique. For example, we compare data types
such as Sring (in KM3) and char (in SQL-DDL). Thus, the generic matching transformation can be
rapidly modified to match terminal models conforming to different metamodels. The weaving models
generated in both examples are equivalent.

To summarize, the use of matching transformations and weaving models enables the semi-
automation of the production of model transformations. Matching transformations enables the
implementation of different heuristics or agorithms that produce a weaving model. These
transformations can be adapted to different metamodels. The weaving model captures different
transformation patterns specified in a weaving metamodel. The weaving model is trandated into a
model transformation language.

6.7 Conclusions

In this chapter, we have presented a solution to semi-automate the production of model
transformations. We have presented to use matching transformations to create weaving models. These
transformations use different matching heuristics. The weaving models capture common
transformation patterns between model elements. The weaving model is trandated into executable
model transformations.

We have shown that matching transformations are a practical solution to implement new or to
adapt matching heuristics or algorithms. We consider the matching process as a model transformation
that takes two models as input, and that creates a weaving model as output. The use of declarative
transformation languages abstracted several implementation details of these techniques. The
separation of the whole matching process into different kinds of matching transformations enabled the
combination of different methods in a straightforward way. The extensions to the GUI of the AMW
tool enabled customizing the execution of a set of matching transformations. We stored a set of
execution parameters in a configuration model. This model can be reused later by different developers.
Thisisimportant to be able to reuse specific tuning parameters.

The matching transformations created weaving models between terminal models conforming to
different metamodels, and also the creation of links between a restricted set of e ements. We presented
an improvement of a generic structural technique: our solution specifies different propagation models
and it stores the propagation information in a weaving model. This opens the opportunity of
developing new propagation methods in arelatively simple way. Moreover, we have presented a new
link rewriting operation that analyzes the relationships between the links of a weaving model. These
links are transformed into other complex kind of links. This operation is particularly important to
capture different transformation patterns.

As general a conclusion, we have seen that matching transformations are a practical way to create
and to adapt different matching heuristics or algorithms. This is essentialy because the use of
matching transformations diminishes the gap between the conceptual definition and the
implementation. We develop the transformations reasoning about models, and not over low level
structures of some general-purpose programming language. This motivates the creation of specialized
matching DSLs. However, thisis the subject for future work.

The execution of several matching transformations sequentially can cause performance problems
when generating weaving models between large models. Thus, the optimization of these operations is
becoming important and is also subject for future work. For instance, after choosing a set of operations
to create a weaving model, these operations could be merged by a transformation engine to be
executed inasinglerule.
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In this chapter, a set of use cases of model weaving is presented. These use cases show that
weaving models are convenient to be used in several application scenarios, with variable complexity
and scope. The diversity of the scenarios validates the choices selected when developing our generic
approach, which is adapted according to different application requirements.

7.1 Tool interoperability

There are a large number of different tools that can be used to solve similar problems. It is often
necessary to use the data produced by one tool in another tool. However, the tools have different data
format and semantics. To support interoperability between different tools, it is necessary to represent
the semantic heterogeneities between the tools elements. This use case shows how weaving models are
used to capture the semantic heterogeneities between two metamodels. The weaving model acts as
high-level specifications for producing model transformations.

This use case describes our experiments using the tool interoperability motivating example of
Chapter 4 of two different bug tracking tools. First, we show the creation of a weaving model based on
the weaving metamodel extensions for tool interoperability. Then, we demonstrate how we use the
generic transformation pattern to interpret the weaving model and to automatically produce model
transformations. We end with a discussion about our results.

7.1.1 Capturing the semantic heter ogeneities

Consider the metamodels of two bug-tracking tools, Mantis and Bugzilla. The Bugzilla metamodel
has 146 elements. The Mantis metamodel has 62 elements. We need to discover the semantic
heterogeneities between them. The metamodels of both tools may be stored in different data sources.
The tool metamodels are originally in SQL-DDL. They are translated into Ecore. The semantics of
Ecoreisvery closeto KM3. This allows us to write metamodels using KM 3 textual syntax.

We implement an extension of the core weaving metamodel for tool interoperability. This
extension supports typical mapping expressions, varying from simple mappings (e.g., 1-to-1
equivalence links), to complex kinds of mappings (e.g., concatenation, data conversions). These
mappings are extended as well to obtain expressions specific for tool interoperability. We show below
an excerpt of the weaving metamodel. It specifies a data value expression used to trandate
enumeration values. It compares the value of given source element with the set of sourceValue, and
sets the target element with the corresponding targetValue.

121
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class EnumerationEquiv extends DataExpression {
reference equiv [*] : EnumEqual;

class EnumEqual extends Equivalence {
reference sourceValue: String;
reference targetValue: String;

}

We create the weaving model by executing a sequence of matching transformations, which refine
the initia input (the cross-product of elements) and generate a weaving model. Our AMW plugin is
used to generate the interoperability weaving metamodel based on a set of extensions and to refine the
weaving model during the manual phase.

An excerpt of the weaving model is shown in Figure 7.1. In this use case we use a human readable
syntax to represent information models, similar to HUTN [112].

EnumerationEquiv = {
sourceref = Left.priority.id;
target.ref = Right.priority.id;
equivalence = { source ="NONE"; target ="pt_null"};
equivalence = { source = "low"; target ="pt_P1"};
h
Left={
name ="Mantis';
ref = "c:\Tool_interoperability\Mantis.ecore”;
priority { id="EAttribute priority"; }
h
Right ={
name ="Bugzilla";
ref = "c:\Tool_interoperability\Bugzilla.ecore";
priority { id="EAttribute priority"; }
}

Figure7.1 A weaving model in HUTN

The model contains the equivalencies between the priority values. Note that both tool models have
a priority property and both have the same ID “EAttribute_priority”. This does not cause problems
because it is relative to the containing model.

The complete weaving model has 312 elements. This difference in the number of elementsis due to
the structure of the weaving metamodel, because for every couple of referred elements there is at least
one element indicating the link type, plus the source and target elements. In addition, the source and
target elements refer to an element that contains their identifiers (in the Left and Right elements).

7.1.2 Interpreting the weaving model

The execution semantics of the weaving model is specified through in a transformation that takes
the weaving model as input and produces a transformation model as output. The transformation (485
lines) is implemented based on the generic transformation pattern. The ATL transformation rules are
divided in three parts: the from block filters the appropriated model elements by their type; the to
block contains the declarative code; the do block contains imperative code. We show in Figure 7.2 the
rules that interpret the metamodel extension to trandate the enumeration values. The “AMW”
identifier denotes the weaving metamodel. The “ATL” identifier denotes the transformation
metamodel.
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rule EnumDataTranslation {
from amw : AMW!EnumerationEquiv
to atl : ATL!Binding (
propertyName <- MOF!EClassifier.getInstanceById(amw.target.element.ref) .name
)
do { atl.value <- thisModule.CreateEnum (amw, amw.enumEqual);}
}
rule CreateEnum(amw: AMW!EnumerationEquiv, attrEnum: Sequence (AMW!EnumEqual)) {
to ifExp : ATL!IfExp (
thenExpression <- targetEnum,
condition <- operation
)
operation : ATL!OperatorCallExp (
operationName <- '=',
arguments <- sourceEnum
)
endExp : ATL!StringExp (),
sourceEnum: ATL!StringExp (
stringSymbol <- attrEnum->first().sourceValue.toString()
)
targetEnum : ATL!StringExp (
stringSymbol <- attrEnum->first().targetValue.toString()
)

do { operation.source <- amw, amw.source->collect (e \ e.element.ref) , true);

if ( attrEnum->size() = 1 ) {
1fExp.elseExpression <- endExp;
} else {

ifExp.elseExpression <- thisModule.CreateIfEnum (amw,
attrEnum->subSequence (2, attrEnum->size())) ;

Figure 7.2 Higher-order transformation

The rule EnumDataTranslation matches the element EnumerationEquiv from the correspondence
model. It produces a Binding element conforming to the ATL metamodel. A binding has a
propertyName that corresponds to the target element. The target element is obtained by
getinstanceByld function. The property value calls the rule CreatelfEnum. It receives the set of
enumerations as parameters and produces a model with a set of nested IfExp (conditional expressions).

The IfExp contains a condition expression, which is formed by an equality operator
(OperatorCallExp). This operation compares the source value of the enumerations and sets the correct
target value specified at thenExpression. The StringExp elements return the sourceValue and
targetValue (an empty Sring if there is no equivalence). The complete transformation produces a
transformation model with a set of rules. This modd is extracted into a text representation that is
executed in the ATL engine.

7.1.3 Discussion

The metamodel extensions enable producing a domain-specific (tool interoperability) weaving
metamodel. Among the different metamodel extensions that are created, the most used are the
concatenation of elements (e.g., 0s concatenated with os_version), data type conversions (e.g., Integer
to Sring, references to attributes, etc.) and conversion of enumeration values.

One interesting observation is that the values of the enumerations from Mantis are not described in
the metamodel, only in a Php file. Since the tool metamodels cannot be modified (otherwise the
services provided might not work properly), the enumerations are added in one metamodel extension.
Thisis avery specific extension, which is probably not useful outside the bug-tracking example, but it
is still necessary to be able to create the output transformation.
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The weaving model has composite elements that conform to a combination of metamodel
extensions. For instance, we combine the conversion of “references to attributes’ extension with the
“concatenation” extension. This way, it is possible to create more complex output transformation
models with the same set of extensions.

The metamodel extensions ease the task of repeatedly creating complex mapping and data value
expressions between tool metamodels. The adaptive user interface is used together with semi-
automatic matching algorithms. The extensibility of the weaving metamodel enables human
intervention essentially at the matching process, because all the necessary information to produce
transformations is available in the weaving model. This is different from traditional approaches that
have an extra step of mapping discovery. However, it is still possible that a weaving metamodel covers
most semantic interoperability cases, but not all. Complex expressions that are not often used can be
coded manually in the final generated transformation.

The declarative structure of the weaving metamodel allows a clear separation of the input model
(the weaving model) from the output model (a transformation model). Thus, it is relatively
straightforward to modify only the output expressions and produce different transformation models.
This also enables generating different expressions in the output transformation. For instance, the
tranglation of enumeration values may be implemented as nested ifs (our final choice), or using case-
like statements. This opens the possibility of optimizations of the output transformations (however,
this is not the focus in this work). On the negative side, transformation languages may have
complicated metamodels, in particular for querying and navigation expressions (e.g., OCL, XPath).

To summarize, this use case demonstrates that the use of weaving models and transformation
models enables to improve two data integration phases (matching and transformation production) to
solve tool interoperability problemsin a practical and efficient manner. We are able to define different
extensions of the core weaving metamodel to cope with distinct kinds of semantic heterogeneity. We
create a weaving model using some matching algorithms and a user interface. Finaly, we implement
the transformation pattern that automatically generates a transformation to transform the tool models.

This use case has been published a [41]. It is available for download at
(http://www.eclipse.org/gmt/amw/usecases/interoperability/). This page contains a fully implemented
example, with the metamodels, models, the generated transformation, a HowTo and the sources.

7.2 Bridge between SQL-DDL and KM3

A modeling platform is not an isolated world. There are several other “worlds’ that are based on
different metametamodels, set of principles, representation format, etc. These different “worlds’ are
called technical spaces. Examples of technical space are: XML, relational databases, ontologies, MDE,
grammarware. It is of maor importance to provide mechanisms to interoperate between these
technical spaces.

This use case shows how weaving models and model transformations are used to bridge between
two different concrete syntaxes. SQL-DDL (Data Definition Language) and KM3. We define two
bridges. one from KM3 to SQL-DDL, and from SQL-DDL to KM3. We use our model driven
platform as a pivot between these two representations. In model management platforms, this use case
is considered an application of Model Gen operations [11]. Thisis a complex process divided in several
steps: first, we create a SQL-DDL metamodel conforming to Ecore. The SQL-DDL metamodel has 48
elements. We briefly describe this metamodel here: it contains a root element Database, which
contains a set of Table; a Table contains a set of Column and ForeignKey (the complete metamodel
can be found at the Atlantic Zoo [2] [3]).

The next step is to inject an SQL-DDL file into the modeling technical space. In other words, we
trandate this file into a model conforming to the SQL-DDL metamodel, as shown in Figure 7.3. The
SQL-DDL file conformsto a SQL grammar, which conformsto EBNF.
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Figure 7.3 Injection of a SQL-DDL fileinto an SQL-DDL model

The injection is implemented using the TCS (Textual Concrete Syntax) tool. TCS provides a
practical way to inject (and extract) textual syntax into a modeling platform. It defines how to translate
each element of the textua file into specific model elements. Figure 7.4 illustrates an excerpt of the
input SQL-DDL file. It represents a table of the Bugzillatool. The injection of the SQL-DDL file into
amodel enables a homogeneous platform to create weavings models and transformations models.

CREATE TABLE mantis bug relationship table (
id int (7) unsigned NOT NULL,
source _bug id int (7) unsigned NOT NULL default '0',
destination bug id int (7) unsigned NOT NULL default '0',
relationship type int (2) NOT NULL default '0',
FOREIGN KEY (source bug id) REFERENCES mantis bug file table (id),
FOREIGN KEY (destination bug id) REFERENCES mantis bug file table (id)

Figure 7.4 SQL-DDL textual syntax

A weaving model (Mw) is created between the SQL-DDL and KM3 metamodels, as illustrated in
Figure 7.5. This weaving model contains 132 elements. Mw conforms to MMw, which is an extension
to the core weaving metamodel. This extension contains different kinds of links that define the
equivalences between the elements of SQL-DDL and the elements of KM 3. This extension reuses part
of the metamodel extensions for tool interoperability.

However, these two metamodels have different expressiveness. This means it is not always
possibleto link al the elements of SQL and KM 3. For instance, a KM3 Class does not have a "default
value" property; a SQL-DDL Table does not have references.
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Figure 7.5 Weaving between SQL-DDL and KM3

The weaving model is used as a specification to produce a modd transformation in ATL. We
implement a higher-order transformation (HOT) based on the generic transformation pattern. This
HOT takes the weaving model as input and produces a transformation model as output. The output
transformation has 83 lines. This transformation translates the SQL-DDL terminal model into a KM3
terminal model. In this case, extensions to generate default values are constantly used, because KM 3
models have attributes such as lower, upper (for cardinality), isAbstract, that are not present in the
SQL-DDL metamodel.

The final step of the bridging process is the extraction of the KM3 model (with the KM 3 concepts
such as Class, Attribute, Reference) into the textual concrete syntax of KM3 (see the final result in
Figure 7.6). We use the same TCS definition used to inject the SQL-DDL file, because it is
bidirectiona (i.e., it supports injectors and extractors).

class mantis bug relationship table {
attribute id : int;
attribute source bug id : int;
attribute destination bug id : int;
attribute relationship type : int;
reference source bug id : mantis bug file table;
reference destination bug id : mantis bug file table;

}

datatype int;
Figure 7.6 Resulting KM3

The same process is also executed in the opposite direction: a KM3 file is injected into a KM3
model; a weaving model is created between the KM3 and SQL-DDL models; this weaving model is
used to produce an ATL transformation; this transformation translates the KM3 model into the SQL-
DDL model; this model is extracted into its textua syntax.

To summarize, this use case demonstrates the use of weaving models and transformations as a
practical approach to ease the task of developing bridges between different concrete syntaxes. The
overall processisdivided in smaller steps that are implemented based on generic concepts. This allows
reusing severa components, thus avoiding the implementation of complete ad-hoc programs every
time such a bridge is needed. An important result is that we are capable to reuse part of the weaving
metamodel extensions defined for the tool interoperability use case. This shows that generic weaving
metamodel extensions can be reused in different application scenarios. This use case is available for
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download at (http://www.eclipse.org/gmt/amw/usecases/modelgen/). This page has fully implemented
bridges, with general documentation, a HowTo and the sources.

7.3 Data mapping between relational database and XML documents

The data mapping between relational databases and XML documents is a common problem in
many organizations. This is a typical data exchange problem. However, existing techniques are not
generic enough to support different kinds of models and mappings.

In this use case, we develop aweaving model that captures the relationships between a metamodel
with flat structures and foreign keys relationships (representing a relational database) and a metamodel
that contains nested structures (representing an XML base).

We illustrate this data mapping problem using two simple library metamodels. The objective isto
execute the data mapping between models conforming to these two metamodels. Libraries typicaly
exchange data to have a standard catalogue format, both for standardization and interoperability
purposes. Let us consider the two data sources in Figure 7.7. One library hasits own relational schema
as defined by Relational schema R1. But it also agrees to use an XML format as defined by XML
schema X1. Schema R1 has two tables: Books (ISBN [International Standard Book Number], Title,
Author, SD) and SQubjects (SID, Description), with the foreign key SD on Books referencing the
subjects of a book. Schema X1 has the same basic structure except for the foreign key in books since
this correspondence is represented by the nested structure between Books and Subjects.

Relational schema R1 XML schema X1
P Y fmrmimmemimmim s -
' Books : _ i Books !
! ! Mapping i !
1| ISBN J R1 X1 i ISBN !
| Title R - LTt 4— Title ;
i | Author IS Equals ©7.-7]4— Author i
1| SID LISl Equals <777 !
! NGRS S Subjects !
; i >~ Equals S | o ;
i . i S>FK Lo .-r" _.-—SubjectlD ;
i Subjects ’!/,— Nested ¢%~ /E”' . Descr i
P T e
| SID R Equals -*~ 7" .. E
i | Name Rt BT Equals --~
1 1

Figure 7.7 Relationa to XML mapping

The trandation from R1 to X1 is represented by the mapping R1_X1. It has three mapping
structures: Equals, an inter-schema correspondence that indicates equalities such as R1.Books.ISBN =
X1.Books.ISBN, R1.Books.Title = X1.Books.Title, and so on; FK, an intra-schema correspondence that
indicates the foreign key constraint between R1.Books. 9D and R1.Subjects.SD; and Nested, another
intra-schema correspondence that represents the nesting relationship between X1.Books and
X1.Books.Qubjects. These intra-schema correspondences guarantee the generation of a valid output
model. Analyzing this scenario, we observe that al inter- and intraa model relationships need a
structure to represent links between elements, independently of the mapping semantics. This also
shows the importance to have an expressive representation allowing to reason about links between
complex models, like the Nested relationship.

We define a metamodel extension that enables the creation of declarative links between these
metamodels. We first define an extension of the core weaving metamodel, and we create a weaving
model to represent mappings R1 X1 and X1_0O1, first without specific semantics. We incrementally
extend the existing weaving metamodel (represented by MMw in Figure 7.8) until obtaining a weaving
metamodel with al necessary structures. Thus, we have dedicated mapping specifications with
variable expressive power: we represent from simple element links such as Equals; then Nested and
FK constraints.
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Figure 7.8 Extended weaving metamodels

We use simplified versions of the terminal models and metamodels, capable of representing only
the desired structures. The weaving model (Mw) is used as specification to produce transformation
models. The weaving model is completely independent of the output transformation metamodel. This
enables to produce transformations in different target languages, such as ATL, XSLT, or SQL-like
languages. We implement two higher-order transformations based on the generic transformation
pattern. These transformations produce an ATL and a XSLT model.

The transformation models are extracted to the corresponding concrete syntax. The resulting ATL
and XSLT are actually used to transform the source models into the target models. We show in Figure
7.9 an excerpt of the generated transformations, with the rules to handle nested and foreign key
semantics.

XSLT rule ATL rule
<xsl:template match="bookRcds"> rule Books {
<xsl:element name="books"> from
<xsl:attribute name="ISBN"> db : RDBMS!BookRcd
<xsl:value-of select="@ISBN"/> to
</xsl:attribute> xml : XML!Book (
<xsl:variable name="sid" select="@SID"/> ISBN <- db.ISBN,
<xsl:apply-templates select="/descendant-or- subjects <- RDBMS!SubjectRcd.
self::subjectRcd[@SID=%sid]"> allinstances()->select (e | e.SID = db.SID)
</xsl:apply-templates> )

</xsl:element>
rule Subjects {

</xsl:template> from
<xsl:template match="subjectRcd"> db : RDBMS!SubjectRcd (RDBMS!BookRCD.
<xsl:element name="subjects"> allinstances()->exists(e | e.SID = db.SID))
<xsl:attribute name="SubjectID"> to
<xsl:value-of select="@SID"/> xml : XML!Subject (
</xsl:attribute> SubjectID <- db.SID
</xsl:element> )
</xsl:template> }

Figure 7.9 Generated XSLT and ATL

We illustrate in Figure 7.10 a screenshot of the AMW plug-in. On the left side is the source
relational database schema, on the right side is the target XML schema, and in the middle the weaving
model created conforms to the Metamodel extension 3.
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Figure 7.10 Weaving in the AMW prototype

This use case demonstrates how weaving models and transformations models are used to create
model management operations for data mapping. The links of the weaving model abstract widely used
structures for this kind of scenarios, such as nested relationships and foreign keys. The weaving
models can be easily created, due to the declarative nature of the metamodel extensions. An advantage
of developing declarative operations is the abstraction of expressions that are typicaly hard to
develop, such as navigation expressions. Finally, the weaving models are language independent. Thus,
we implement a generic transformation pattern that enables the production of transformations in
different languages, such asATL and XSLT.

This use case has been published a [40]. It is available for download at
(http://www.eclipse.org/gmt/amw/usecases RDBM SXML/). This page has fully implemented bridges,
with general documentation, a HowTo and the sources.

7.4 Metamodel comparison and model migration

Metamodels need to be compared for several reasons. One important reason is to discover the
equivalent elements between two versions of a metamodel. The result of a comparison is used to
migrate between the terminal models conforming to these metamodels. This use case presents how
weaving models created with the help of the AMW tool are used to compare two different
metamodels. The weaving model is used to produce model transformations between the terminal
models conforming to these metamodels.

Consider two versions of a Scade metamodel, Scade (v1) and Scade (v2). Scade is a standard for
development of embedded software for the Avionics Industry [44]. The v2 of the metamodel is derived
from vi™. An organization using Scade decides to migrate from a model conforming to Scade (v1)
into a model conforming to Scade (v2). To correctly migrate from one version into another, it is
necessary to know the equivalences between the metamodel elements. Based on this information, we
produce amodel transformation from v1 to v2.

™ We do not describe the metamodel elements in details because each metamodel has an average of 400
elements (these metamodels are published at [2]).
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We produce a comparison weaving model that contains links with equivalence semantics between
the metamodels' elements. The comparison weaving model conforms to a weaving metamodel that is
an extension of the core weaving metamodel (see Figure 7.11). This metamodel extension contains an
Equivalent link. This link contains a similarity attribute that contains similarity estimation between a
left (v1) and aright (v2) element. Links with high similarity values are considered to be equivalent.
This link is extended by different kinds of links, depending on the type of elements that are being
compared, for example AttributeEqual (for attributes) and ElementEqual (for classes). The references
(child) between ElementEqual and AttributeEqual links are created according to the containment
relations between classes and attributes. NotEquivalent links are used to store the elements that do not
have any equivalence in the two versions. The ReferredElement classis similar to the ElementRef class
from the traceability use case: it acts like a proxy to the real linked elements.

abstract class Equivalent extends WLink {
attribute similarity : Double;
reference left container : ReferredElement;
reference right container : ReferredElement;

}

abstract class Equal extends Equivalent {

}

class ElementEqual extends Equal {

}

class AttributeEqual extends Equal {

}

class ReferenceEqual extends Equal ({

class NotEquivalent extends WLink {
reference left container : ReferredElement;
reference right container : ReferredElement;

}

class ReferredElement extends WLinkEnd ({

}

Figure7.11 Metamodel extension for comparison

The equivalence links are created semi-automatically by executing a seguence of matching
transformations. In the case of metamodel comparison, rather simple matching techniques yield good
results, because the elements have severa similarities. We execute five matching transformations.
First, a restricted Cartesian product operation creates links between the pairs of elements with the
same type. Second, a similarity value is assigned to each link. This value is based on the name, type
and cardinality of elements. Third, the links with best values are selected to create a refined weaving
model. Fourth, the links are rewritten to represent the nested relationships between classes and
attributes/references, and the inheritance between classes. Finally, NotEquivalent links are created for
all the elements that do no have equivalence links.

The resulting weaving model should be analyzed by a domain expert, and can be refined using the
graphical facilities of AMW. An easy-to-use user interface is very important to analyze the results of
the matching transformations, especially when the input models are large. The creation of different
kinds of links enables an efficient type-based search through the weaving model.

The weaving models are interpreted by a higher-order transformation that transforms the
declarative links of the weaving model into an executable ATL transformation, as show in Figure 7.12.
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Figure 7.12 Transformation of a comparison weaving model into ATL

Each ElementEquivalent link is transformed into an ATL rule. The left and right references
(ReferredElement) are transformed into the input and output elements. The AttributeEqual and
ReferenceEqual links are transformed into bindings. Figure 7.13 shows an excerpt of the
transformation that is generated. This transformation contains essentially binding expressions between
the equivalent elements. The identifiers after the rule names are automatically generated. The
transformation developer can add new expressions based on the information of the NotEquivalent
links. This model transformation is responsible to transate the model conforming to Scade (v1) into
the model conforming to Scade (v2).

abstract rule Object 2 Object26 {
from
v_left : Scadevl!Object
to
v_right : Scadev2!Object (
name <- v_left.name,
runlLine <- v_left.runLine
)
}

rule Label 2 Label2l extends Object 2 Object26 {
from
v_left : Scadevl!Label
to
v_right : Scadev2!Label (
expression <- Set {v left.expression}

)

Figure7.13 A part of the transformation generated automatically

This use case demonstrates how weaving models are used to compare different metamodels and to
migrate between the terminal models conforming to these metamodels. The different kinds of links
enable the identification of the relationships between the elements in a clear way. The user interface
helps on the creation of weaving models by not experts. A non-expert, or less experienced developer
needs an easy to use graphical tool, together with automatic facilities. The easy configuration of the
matching transformations alows the use of methods adapted to the comparison use case,
demonstrating the advantage of defining generic data interoperability methods. In this use caseit is not
necessary to use complicated methods that would not bring much improvement on the final result.
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The weaving extensions are quite simple, and can be generalized for different scenarios, which is
shown in other use cases in this chapter. Finally, the weaving model is used to successfully generate
an executable ATL transformation to perform the model migration. This use case is available for
download at (http://www.eclipse.org/gmt/amw/usecases/compare/). This page contains a fully
implemented exampl e, with general documentation, a HowTo and the sources.

7.5 Traceability of model transformations

This use case presents how weaving models are used to store the execution trace of model
transformations, i.e., to support traceability of model transformations. A model transformation takes a
set of models as input and produces a set of models as output. The elements of the input models are
visited and then transformed into elements of the output models. After the execution of a
transformation, we need to discover which set of elements of the source models are visited and
transformed into a set of target model elements. This is, for instance, a typical application of data
provenance.

We present in Figure 7.14 a concise example of a transformation between two models. Although
simple, this example clearly presents the challenge of traceability of model transformations.

rule Book2Publication

b from
MM MMp s : MMb!Book
MMt to
t : MMp!Publication (
title <- s.title + s.subtitle,
c2 c2 c2
pubYear <- s.year,
authors <- author
Mt )I
author : MMp!Author (

Book :7j> Publication ’
name <- s.author

Transforms )
}

Figure 7.14 Book to publication transformation

The input model contains information about books (Book). It conforms to the metamodel MMb.
MMb has one class Book, which has attributes title, author, year (the content of the columns is self-
explanatory). The output model contains information about generic publications (Publication). It
conforms to a publication metamodel MMp. MMp has two classes. Publication, which has attributes
title, authors, pubYear and reference authors [ multiple cardinality]; Author, with attribute name. The
transformation Mt is an ATL transformation, thus it conforms to the ATL metamodel (denoted by
MMt). A part of the code of the ATL transformation is shown in the right side of the figure. For every
Book of the source model, the transformation creates a new Publication in the target model, and it
assigns the values of the source attributes to the target attributes.

We illustrate the traceability between model elements in Figure 7.15. It shows one element from
the source model (001 : Book), and two elements from the target model (002 : Publication and 003 :
Author). The traceability information is represented by the lines between the elements. Without this
information, it is not possible to directly discover which elements of the source model are used to
generate a given author. The model transformation is created using the metamodel elements, and it is
executed over the model elements. Thus, the relationships between the input and the output model
elements (as well as the transformation rules), are accessible only in the moment of its execution.
Thus, without any traceability information, it would be necessary to apply an inverse procedure to
transform the Author class into the author attribute, and to compare the result with the source model
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elements. This may be an expensive operation if the input and the output models are large. These
relationships must be saved to be able to exploit the execution trace information afterwards.

001 : Book 002 : Publication
titte = Traceability with AMW titte = Traceability with AMW
author = Atlas Group i t
............... 003 : Author

name = Atlas Group

Figure 7.15 Traceability between two model elements

A weaving model is used to capture this traceability information. This weaving model conforms to
an extension to the core weaving metamodel. The traceability metamodel extension is depicted in
Figure 7.16.

class TracelLink extends WLink({
attribute ruleName : String;
reference sourceElements[*] ordered container : WLinkEnd;
reference targetElements[*] ordered container : WLinkEnd;

}

class TracelLinkEnd extends WLinkEnd {

}

class ElementRef extends WElementRef (

}
Figure 7.16 Traceability metamodel extensionin KM3

The central element of this extension is the Tracelink element. Every time atransformation visits a
source element (e.g., the 001 : Book in our case), it creates a new TraceLink in the weaving model.
The reference sourceElements refers to the source elements (the title and author values, not the
metaelements). The reference targetElements refers to the generated target elements (the multiple
cardinality enables having more than one target element). The attribute ruleName has the name of the
rule that is executed (e.g., Book2Publication). This attribute enables storing the name of the
transformation rule that is executed, not only to the source elements.

The class TracelinkEnd represents each source and target elements. The reference element (from
the core weaving metamodel) refers to class ElementRef. This element is a proxy to the real linked
elements. The format of the identifier is specified by an annotation --@wmodel RefType (e.g., XMl IDs
and XPointers). This allows having weaving models that do not modify the source and target models,
for instance by adding some traceability meta-information.

However, the original model transformation Book2Publication does not specify how to create the
traceability weaving model, only how to transform a Book into a Publication. Hence, the original
transformation is modified into Mt'. Mt' has additional rules to create the elements of the traceability
weaving model. The new setup is shown in Figure 7.17: the modified transformation Mt takes the
Book model as input and produces a Publication model and a traceability weaving model Mw as
output (the metamodels are omitted for better visualization). The weaving model has the traceability
links between Book and Publication.
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Figure 7.17 Mt generates a Publication model and a weaving model

We focus on traceability of model transformations. However, there are different use cases of
traceability, for instance requirements traceability. Requirements traceability keeps track of all the
steps of a development process, analysis, design, programming, testing, etc. The kinds of links are
developed_by, allocated_to, performed, based _on or modify. The key processes are the identification
of the possible kinds of links and the devel opment of new weaving metamodel extensions.

To summarize, this use case shows that weaving models are an appropriate solution to provide
traceability of model transformations. The traceability metamodel extension enables creating
traceability links (domain specific links). The weaving model is automatically created when the ATL
transformation is executed. The traceability weaving model can be visualized and modified on the
AMW tool, without any modification on the code of the tool. This shows the advantage of developing
the tool using a generic and reflective API. This use case has been published at [13]. It is available for
download at (http://www.eclipse.org/gmt/amw/usecased/traceability/). This page contains a fully
implemented example, with general documentation, aHowTo and the sources.

7.6 Mergein aGeographical Information System (GIS)

Geographical Information Systems (GIS) [62] are used to relate geographica information with
descriptive data. This use case presents a weaving model used to define a merge of a metamodel with
geographical information and a metamodel with statistical data, into a graphical representation.

Let us consider the two XML schemas Gs and Es shown in Figure 7.18. Schema Gs describes only
geographical information about election precincts within a district. A District is formed by a set of
precincts. Each Precinct contains elements Number (precinct identification), Address, City and
Geometry, Geometry contains a set of Coordinate, which are points in the form (x, y) defining the
precinct limits. Schema Es contains data about the election results. The Election element is formed by
a set of Precinct and a set of CandidateDescr (candidate’s description). Each election precinct
contains elements PID, Voters (the number of electors that voted), Absentees and a set of Candidate;
Candidate contain Votes (the number of votes received) and CID, which is aforeign key for obtaining
candidates’ Name and Party from CandidateDescr.

Assume that we want to publish the results in a graphical form as shown in visualization schema
Vs. The illustration shows the graphical interface, but there is an underlying schema to represent the
data. The map is divided into precincts.
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Figure 7.18 Data mapping of election results

When the user clicks over a precinct, the application shows its location and the voting percentage
of each candidate and absentee’ s percentage, e.g., the statistical data. The graphical representation is
not saved in persistent storage. It is used to visualize data over the web. There is a mapping Mw
between three schemas: two input schemas and one output schema. It specifies different semantics: the
equality between Number and PID in the element Equals; the concatenation of Address and City in
Concat; the vote percentage of each Candidate and Absentees in Percentage; the foreign key between
Precinct.Candidate.CID and CandidateDescr.CID in the element FK; and the union of all geometry
coordinates in Union. We have one Merge element between every mapping element from Gs and Es
into the output elements in Vs, specifying that we want to merge Gs and Es elementsinto Vs. They are
subsumed in the vertical dashed lines coming from mapping Mw to schemaVs.

This use case has a particularity: the two input models and the output model conform to different
metamodels. This constraint does not enable the utilization of generic algorithms that assume that all
models conform to the same metamodel. Thus, we specify the merge operations through declarative
weaving models. We develop a weaving metamodel that extends the core weaving metamodel. The
geographical schema Gs is represented using a GML subset. GML [116] is the standard format for
representing geographical information. The schema Es with the election results conforms to an XML
schema. The visualization output format is SVG [125].

The base weaving metamodel is incrementally adapted in order to obtain dedicated mapping
specifications. It represents elements of variable complexity: element links and associations such as
Equals; foreign key semantics in FK; Concat to indicate concatenation. The metamodel aso contains
elements that represent complex semantics, such as Percentage, obtained by a computation over
Total Votes and Voters; Union of coordinates and Merge.

In Figure 7.19, we illustrate the weaving model created with the AMW prototype. There are four
panels which show, respectively: (1) the GML schema Gs; (2) the weaving model Mw; (3) the election
schema Es; (4) the extended SV G schema Vs. The third panel is added without any modification on
the plug-in code. Thisis possible because the Ul adapts to support several woven models, according to
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the weaving metamodel extensions. We highlight in the figure the equality links: it refers to elements
Left and Right. They represent the correspondences to GMLPrecinct.number and Precinct.PID,
respectively. These elements are merged into the element Target (SVG.Precinct.Number).
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Figure 7.19 Weaving GML and Election metamodelsinto SVG

This weaving model is used as specification for producing transformations in two different
languages. ATL and XSLT (see an excerpt in Figure 7.20). We implement another HOT according to
generic transformation pattern. This HOT supports the different kinds of links from this weaving
metamodel. Thus, it produces different types of ATL and XSLT expressions as output. The output
transformation models are serialized in their text format. The resulting ATL and XSLT are actually
used to merge the GML and XML data into a SVG document. However the standard SVG schema
definition is designed focusing on graphical representations without transparent mechanisms to
associate data with it. The transformation thus embeds the statistical data into the SVG document. It
conforms to an extended SV G schema.
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rule GMLprecincts {
from
gml : GML!GML Precinct
to
svg: SVGIG (
metaData <- metadata,
groupContent <- gml.gmlData.geometry ),
metadata : SVG!MetaData (
svgData<- svgdata ),
svgdata: SVG!Precinct (
Number <- gml.gmiData.|D,
candidates <- ElectionMM!Precinct->
allnstances()->select( e| e.PID =
gml.gmiData.|D)->first().candidates )

<xsl:template match="GML precincts">
<xsl:element name="g">
<xd:element name="metaData">
<xsl:element name="precinct">
<xdl:attribute name="Number">
<xsl:value-of select="gmlData/@ID"/>
</xdl:attribute>
<xsl:variable
name="local_pid" select="gmlData/ @ID"/>
<xd:apply-templates sel ect="document
(‘ElectionData.xml')/Region/precincts
[ @PID=$local_pid]/candidates'/>
</xd:element></xd:element>
<xdl:apply-templates sel ect="gml Data/geometry"/>

</xdl:element>
</xd:template>
from <xsl:template match="candidates">
election : ElectionMM!Candidate <xgl:element name="candidates"'>
to <xdl:variable name="local_cid" select="@CID"/>
svg : SVG!Candidate ( <xdl:attribute name="Name">
Name <- ElectionMM!CandidateDescr. <xdl:value-of select="document(

alllnstances()->select (e | e.CID = 'ElectionData.xml')/Region/candidateDescr

election.CID)->first().name, [@CID=%loca_cid]/@name"/>
V otePercentage <- election.votes/ </xdl:attribute>
election.precinct.voters* 100 ) <xdl:attribute name="V otePercentage">
} <xsl:value-of
select="@votes div (../@voters) * 100 "/>
</xd:attribute></xsl:element>
</xdl:template>

Figure7.20 Generated ATL and XSLT

This scenario shows that the creation of different metamodel extensions enables the utilization of
weaving models to quite distinct applications scenarios. This scenario has a particularity that usually is
not supported by generic merge approaches. the two input models and the output model conform to
three different metamodels. This constraint does not directly apply to generic merge algorithms,
because these algorithms typically assume that all models conform to the same metamodel. Thus, the
specification of merge operations through declarative weaving models is an interesting achievement.
The extensions are easy to understand, because they are created using a domain-specific vocabulary.
The AMW interface proves to be efficient when weaving three models. The prototype interprets the
references to woven models (extensions of WModel) and it adds an extra panel. Finaly, the rather
simple metamodel extensions enable to generate complex transformation code, and in two different
languages. This use case will be published a [23]. It is avalable for download at
(http://vww.eclipse.org/gmt/amw/usecases/mergeSV G/). This page contains general documentation,
an example, aHowTo and the sources.

rule Candidate {

7.7 Moded annotation

Models are annotated or decorated to insert information that is not defined in the metamodel.
Annotation data usually is not conceptually relevant to be part of the metamodel. For example,
annotations are often meta-information used for pre-processing, testing, logging, versioning, or
parameterization.

This use case shows how a weaving model is used to annotate terminal models. Consider a Java
terminal model that conforms to the Java 1.4 metamodel, as shown in Figure 7.21. The metamodel
defines the basic elements of Java, eg., classes, fields, methods and packages. However, this
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metamodel does not support annotations, since annotations are first included in the Java 5 metamodel.
The Java 1.4 metamodel cannot be extended to keep the compatibility.

The model annotations are defined in a weaving model. This scenario differs from typical scenarios
where two maodels are woven. In this case only one model iswoven, i.e., the annotated terminal model.
The annotations are created as a pair key-value. These annotations are linked with the Java elements.
These links and annotations are defined in the weaving model Mw.

Java MMw +
metamodel annotation
c2 c2

Figure 7.21 Annotating a Java model with a weaving model

The weaving model conforms to an annotation extension to the core weaving metamodel. The
annotation extension isillustrated in Figure 7.22.

class AnnotationModel extends WModel {
reference contents[*] ordered container : Annotation
reference referencedModel container : AnnotatedModel;

}

class AnnotatedModel extends WModelRef ({

}

class AnnotatedModelElementRef extends WElementRef {
class Annotation extends WLink {
reference properties[*] ordered container : Property
reference annotatedModelElement container : AnnotatedModelElement;

}

class AnnotatedModelElement extends WLinkEnd {
class Property {

attribute key : String;

attribute value : String:;

Figure 7.22 Metamodel extension for annotation

It is important to note that the AnnotationModel class has a single-valued reference to
AnnotatedModel. This means the annotations are defined only for one model. The same analogy is true
for the Annotation class, which contains a single-valued reference to the model elements, plus alist of
properties. The properties have an identification key and the corresponding value. The
AnnotatedModel Element classis the proxy for the linked elements.

The annotations are created and modified using the AMW graphical interface. The interface
automatically adapts to the number of woven models, and creates only two panels, one with the
weaving model and another with the annotated model.
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Figure 7.23 shows a screenshot of the annotated model. The left panel has the Java terminal model.
This model is formed by class Person, with fields nhame and address, methods getName () and
setName (String name); class Address, with fields number, street and city. The right panel has the
annotation weaving model. It annotates classes Person and Address, and method getName. This shows
that it is possible to annotate different types of elements using the same mechanism. The annotations
can have one or more properties. For instance, class Person is annotated with a property release, value
1.0; method getName is annotated with two properties, override and canBeNull.

*Annotatedlava.ame X =g
'] referencedModel 6 &+ b ¥ Weaving model tt ES + ok
=l < Package E 0 platform: jresource/Modeldnnotation/models)AnnotatedJava. amw
=4 Java Class Person = < Annokation Model
4 Method getMame -l g =<contents == Annokation
=~ 4 Method sethame % Property release (1.0}
< Feature Parameter name Az < <annotatedModelElement > = Annotated Model Element Person
< Field name - #F <<conkents > Annokation
< Field address < Property override
=4 Java Class Address < Property canBeMull
< Field number 4# < <annotatedModelElement == Annotated Model Element gethlame
4 Field strest -~ £# =<rontents= = Annokation
4 Field city 4 Property author
< Primitive Type String “* < <annotatedMadelElement == annotated Madel Elerment Address

Figure 7.23 Annotations in the Atlas Model Weaver

This use case shows how weaving models are used to annotate models. We develop a generic
metamodel extension for annotations. The extension supports any annotation in the form key-value.
This approach has many advantages. The creation of the annotations in a separated weaving model
avoids polluting the Java model with additional information, keeping the design clean. This is
particularly useful when using different types of annotations. The annotation metamodel can be
extended to add specific types of annotations, not only our generic representation. This scenario also
shows the flexibility of the extensible metamodels and of the AMW adaptive user interface. The
model weaver showed it adapts well even in cases where only one model is woven. This use case is
available for download at (http://www.eclipse.org/gmt/amw/usecases/annotation/).

7.8 Calculating the difference between models

This use case demonstrates how weaving models are used to save the differences between two
KM3 models. Calculating the difference between two models is an essential process to control the
changes and evolutions of models. The result of the difference is used to apply a patch in one of the
models.

Consider a distributed development environment in which a KM3 model can be modified by
different persons. There is one centralized repository that contains the "official" version M (v1). A
developer recuperates M (v1), creates a personal working copy M (v2), and modifies it. Both versions
must be synchronized (i.e., a new up-to-date version is created), as shown in Figure 7.24. The
synchronization (Patch operation) is based on a difference weaving model. This model is calculated
using a Diff operation.
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KM3 KM3
c2 c2 2 c2
M(v1) ¢ M(v2) M(v1)  |{ M(v2)
Patch

Figure 7.24 Difference and patch

The genera difference processis divided in two main phases:

Matching: the matching phase identifies the elements that did not change between the two models.
The result of a matching is saved in a weaving model, which contains equivalence links between the
elements that were not modified in both KM3 models. This phase is encapsulated in the Match
operation.

Difference calculation: the result weaving model is used to compute which elements were added,
removed or modified. The difference agorithm is implemented using ATL transformations. It
produces another weaving model that represents the difference between the two versions. This
weaving model conforms to the metamodel extension for difference shown in Figure 7.25.

_ link linkEnd

WLink T WLinkEnd
A A
{ subsets}
from
Added
o link -
<* LinkEnd
‘
Deleted t:’m R

Figure 7.25 Metamode extension for difference

This extension supports deletion or inclusion of elements. Added links are created for the elements
that were added in the repository model. Deleted links are created for the elements that were removed.
For instance, if aClass A is added in the Package B of the repository model, the addition element links
the Package B (from reference) with Class A (to reference).

The screenshot in Figure 7.26 shows the difference between the two KM3 models. The models
represent two versions of a relational database. The left panel contains the repository version. The
right panel contains the working version, and the middle panel contains the different weaving model.
The selected element is an Added link that indicates the attribute value is added into the class Named
in the new version.
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Figure 7.26 Difference weaving model between KM3 models

The difference weaving model is used as input to a Patch transformation. This transformation
analyses the different kinds of links and executes the patch operation, i.e., addition or deletion of
elements.

We generalize our solution to perform the difference and patch independently of the metamodel. In
this case higher-order transformations are used to analyze the input metamodels (e.g., KM3, SQL) and
to produce ATL transformations that execute the metamodel-specific Match, Diff and Patch
operations.

To summarize, this use case shows how aweaving model can be used to deploy a model difference
and patch solution. The possibility to save the result of a difference algorithm in a weaving modd is
an important result. This weaving model can be visualized in the generic interface, and it is used to
apply a Patch operation afterwards. The difference weaving model can be stored to maintain a registry
of the differences. Finally, we generalize our solution to be able to obtain the difference between
models conforming to different metamodels. This use case is available for download at
(http://wvww.eclipse.org/gmt/amw/usecases/diff/). It has been developed as part of a master thesis. This
page contains general documentation, an example, a HowTo and the sources.

7.9 Conclusions

In this chapter we have presented eight use cases of model weaving. We have developed different
extensions to the core weaving metamodel. The diversity of the use cases demonstrated that it is not
possible to efficiently handle every application requirement by using general purpose mechanisms,
such as transformation languages, or fixed mapping models. We created domain-specific metamodel
extensions for al the use cases. We used the AMW tool to implement all the presented use cases,
showing the genericity and the adaptability of our solution. Most of the use cases are based on real-
world scenarios, with models of reasonable size and complexity. This also shows that our solution has
achieved a reasonable maturity level to be used in industrial scenarios. Moreover, other use cases not
presented in this thesis are publicly available for download at
(http://www.eclipse.org/gmt/amw/usecases/). These use cases have been developed in the context on
thisthesis and aso in collaboration with different organizations.






8 Conclusions

In this chapter we present the general conclusions of this thesis. First, we revisit the major issues
for creating a generic model weaving solution. Then, we present the contributions of our approach.
Finally, we present the future work, and the list of publications and the extra activities that have been
carried out during this thesis.

8.1 Issues on model weaving

A model weaving solution should support the representation, computation and utilization of various
kinds of relationships between model elements. We have identified a set of issues that have been
investigated during thisthesis.

o Firgt, it is necessary to establish a coherent conceptual foundation (definitions and terminology).

e None of the existing approaches supported relationships with extensible representations. An
extensible representation allows establishing relationships adapted to different application
scenarios.

e |t is necessary to define several kinds of relationships for different application scenarios. And,
particularly, complex kinds of relationships targeted to data interoperability.

e It is necessary to define mechanisms to easily create, to reuse and to adapt matching techniques.
They should support different relationships’ specifications.

e The task of producing transformations based on a set of relationships should be factorized in a
generic process.

e Finaly, thereisalack of adaptive tools that support model weaving and related solutions.

8.2 Contributions of thisthesis

In this thesis, we have presented model weaving. Model weaving is a new approach that
encompasses the representation, computation and utilizations of relationships, providing a generic
MDE solution for relationship (i.e., link) management. The major conclusion after studying extensive
related work is that existing solutions lack adaptability and genericity in practicaly every aspect of
rel ationship management.

We have identified the major aspects for relationship management and presented an inventory of
existing solutions. This enabled us to present a set of definitions that unify different applications of
model weaving. The basic requirements for relationship management are supported by a weaving
metamodel. Weaving models conforming to this metamodel enable the creation of links between
different model elements. However, through several experiments, we have shown that there are several
different kinds of links. Thus, we presented a core weaving metamodel that is based on a strong
extension mechanism. This is one of the central contributions of this thesis. The extension of
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metamodels is performed using a metamodel extension operation. This operation uses weaving models
to define the extension links between two metamodels. We have shown how to define the extension
operation using a version of the core weaving metamodel that is bootstrapped with inheritance links.
We were able to define different kinds of links adapted to different application scenarios; for instance,
data interoperability, model merging, or traceability of model transformations.

However, we have seen that extensible metamodels have implications in every aspect of model
weaving: representation, computation and utilization. Every time we create a new weaving metamodel
extension, the set of tools and procedures to create and to use the weaving models must adapt to
support these extensions.

Thus, we have presented a set of techniques to handle different weaving metamodels. With respect
to the computation of weaving models, we have designed an adaptive tool named ATLAS Model
Weaver (AMW). The tool has strong extension mechanisms. The user interface is auto-generated
according to the metamodel extensions that are loaded. This means we were able to create weaving
models conforming to any metamodel that is an extension to the core weaving metamodel.

In addition to the adaptive capabilities of AMW, we have presented matching transformations as a
solution to semi-automate the creation of weaving models. The matching transformations enabled the
implementation of matching techniques and the support of different metamodel extensions. We
separated the overall matching process in different kinds of matching transformations. We have
developed severa existing techniques, and we improved a well-known technique. We take advantage
of the relationships between metamodels to create different kinds of propagation of similarities. The
complex kinds of links are created using link rewriting transformations. Moreover, we have extended
the AMW tool to combine and to customize the execution of matching transformations. We create a
configuration model with a set of customization parameters. The configuration model conforms to a
configuration metamodel. The configuration model stores the parameters of a particular execution.
This enables the fine-tuning of the execution of matching transformation, and the utilization of this
tuning in further executions.

We have used model weaving and model transformations to improve existing data interoperability
approaches. We have defined several kinds of links with variable complexity. These links were all
expressed in terms of weaving metamodel extensions. This allows creating a hierarchy that organizes
different kinds of links according to their semantic relations. The weaving models were used as
specification for producing transformations. We encapsulated this task in a TransfGen model
management operation. To the best of our knowledge, thisis the first solution that factors out this task
in amodel management operation.

This operation is based on a generic pattern of transformation that specifies how to interpret the
different kinds of links defined in the weaving models. The links are trandated into elements of
transformation models. The pattern may be incrementally modified to handle different semantic
heterogeneities. This enables isolating the query discovery task in a single operation. Moreover, since
we considered transformations as models, we were able to define this operation using higher-order
transformations.

We validated the genericity of model weaving by developing several use cases with the AMW tool.
The use cases showed the genericity and the adaptability of our solution. Most of the use cases are
based on real-world scenarios, with models of reasonable size and complexity level. This also shows
that our solution has achieved a reasonable maturity level to be used in industrial scenarios.
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8.3 Summary of contributions

The major contributions of this thesis are the following:

e We have presented model weaving as a novel approach for relationship management. Model
weaving is a unifying solution that subsumes the different aspects of representation, computation
and utilization of relationships between different model elements.

¢ We have defined the conceptual foundations of model weaving. We presented a set of definitions
for weaving models, metamodels, and metamodel extension operation. The extensible weaving
metamodels can express different kinds of links.

e We have defined a set of weaving metamodel extensions and weaving models for different
application scenarios. We validated these extensions by applying them in a set of case studies.

e We have factored out the process of producing transformations in a generic model management
operation called TransfGen. Thisis afirst step to generalize this task.

e We have presented matching transformations as a practical solution to semi-automatically create
weaving models. This approach enabled to easily develop new or to adapt existing matching
techniques.

e We have implemented an adaptive model weaving tool. The interface adapts to different
metamodel extensions, and it is completely integrated with an existing transformation engine. The
tool is available for download in the official site of Eclipse, and it has extensive documentation,
examples, aswell asagrowing user community.

8.4 Future work

There are different issues that are subject for future work. We separate possible research effortsin
three main topics:. metamodel extensions, production of transformations and matching transformations.

84.1 Metamode extensions

In Chapter 7, we have presented several use cases, using different metamodel extensions. The
extensions covered different domains, such as model annotation or tool interoperability. The set of
metamodel extensions can constitute a library of metamodel extensions. Such a library is aready
available in the site of the AMW tool. However, it can be enriched with different extensions. Once the
number of extensions will be greater, the library should be reorganized by application-domain, to be
ableto easily find specific extensions.

There are different improvements that may be done in the case studies that have been presented,
which are listed below:

e The extensions for interoperability may be refined with different kinds of links to capture a broader
set of transformation expressions. The AMW tool can be deployed with different subsets of
extensions according to the user needs.

e We have presented an extension to capture the difference between two models. However, it
supports only the inclusion or exclusion of model elements. This approach may be extended to
identify also the elements that are updated. It can take stock of existing approaches about
difference. This information enables a better understanding of the changes executed in the model
elements.

e The graphical user interface can be adapted with new functionalities; for instance, with a new
weaving panel specific for model or metamodel comparison. A new implementation of the weaving
panel can have an interface similar with the existing tools used for comparing Java files (e.g.,
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CVYS). The implementation of a similar interface can diminish the training time, since such tools
are already widely used by developers.

e The composition of different models requires the utilization of precise operators, such as override,
merge, or inherit. A composition operation specifies how to compose different models. There are
different ways to compose models. The operation would be constructed using a set of primitive
operators, which are not natively supported by general-purpose transformation languages. The set
of primitive operators should be first identified. Then, a weaving metamodel extension could
capture this set of operators [87]. The composition operation can be specified in two ways. First, by
using the standard AMW interface. Second, a textual concrete syntax may be created, enabling the
creation of the operation using an adapted textual editor.

The definition of concrete textual syntaxes for creating weaving models can be used in different
scenarios different of model composition; for instance, model or metamodel annotations. In the
AMMA architecture, the annotation of KM3 metamodels is done directly in the KM3 file, using a
specific kind of comment followed by keyword (e.g., “--@version 1.0" or “--@author didonet”).
These annotations should not be created directly in the metamodel. A concrete syntax for defining
these annotations enables the storage of this additional information in a separated file. This file can be
injected in the form of aweaving model, to be processed by a model transformation engine.

8.4.2 Production of transfor mations

The TransfGen pattern presented in Chapter 5 enabled the production of transformation models
based on a weaving model that captures different kinds of links. The weaving models conform to a
metamodel extension for interoperability scenarios. Once new kinds of links are added into this
extension, the higher-order transformation that implements the operation should be extended as well.
There are different issues that can be studied about the TransfGen operation.

The transformations that are generated are not guaranteed to be correct. They should be verified by
domain-experts to validate the result. The manua verification of the correctness of these
transformations should be minimized as much as possible, in order to automate the whole process. In
addition, the TransfGen operation may be implemented in different ways, to produce transformations
that are optimized for trandating large models. The pattern has a'so been implemented to produce a
bridge between KM3 and SQL-DDL. This case study should be compared with existing solutions of
Model Gen operations.

8.4.3 Matching transformations

The matching transformations enabled the implementation of several matching techniques. To
produce weaving models more accurate as possible, it is necessary to create new matching
transformations implementing different techniques. Every time that new metamodel extensions are
created, the existing transformations should be adapted as well. The solutions presented in this thesis
should be tested with different kinds of models, for instance, ontologies or XML documents. The
matching transformations should be evaluated with respect to their performance. These evaluations are
necessary to be able to scale up to very large models. It is very important to have specialized
mechanismsto verify the result of the matching transformations, especially for large models.

We have implemented matching transformations between a pair of models. However, it is
technically possible to implement matching transformations between more than two models. This can
be a typical scenario in complex systems (e.g., avionics systems) where several versions of different
models may coexist. There are two solutions to be explored. First, the transformations can take extra
models as input parameters, and the transformations rules can be modified to have more than two
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elements in the input pattern. Second, the models can be linked pair-wise, and the result would be used
as input to another matching transformation. The matching transformations implemented are based on
lexical or structural properties. However, there are metamodels that provide less useful information
that can be used in the matching than others. These metamodels could be enriched with specific
annotations that could be used as additional input for the matching transformations.

The AMW tool stored the execution parameters of a set of transformation in a configuration model.
We have defined a specific configuration model to be used in the metamodel comparison and model
migration scenario. While it yielded good results, new combinations of transformations and execution
parameters should be tested, especialy in application scenarios that have not been explored. The
parameterization of the matching transformations is a difficult problem, which requires the realization
of several tests. We propose the creation of application-specific configuration models, with a set of
optimized parameters and combination of transformations. These configuration models should be
easily accessed by the user community, in order to reuse or to optimize existing parameters.

We have seen that the development of matching transformations helped on the implementation of
different matching techniques because it diminishes the gap between the conceptual structures and the
implementation. This motivates the creation of a domain-specific language (DSL) for developing
matching techniques. The language may provide a set of built-in techniques with the most common
matching techniques and with easy ways of parameterization. The language would have specialized
keywords. A textua editor with syntax coloring can ease the task of finding errors and of developing
new algorithms or heuristics. The language may also have a debugger, an outline, and navigation
facilities. The matching language can be developed in the top of the AMMA platform, using KM3 to
create the metamodel and TCS for injecting the concrete syntax into a model conforming to this
metamodel. The language would be directly transformed into the byte-code executed by the virtual
machine of ATL. This transformation should be optimized to produce a performing byte-code. This
means the language would have the support of a complete development environment.
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Appendix A

This appendix lists a set of key web resources about the ATLAS Model Weaver tool and model
weaving.

Official site

http://www.eclipse.org/gmt/amw/

The official site of the AMW tool contains extensive information about the tool: it explains the
base concepts; it contains a set of use cases and it provides user documentation. The site is divided in
different sections.

Use Cases

http://www.eclipse.org/gmt/amw/usecases/

The use cases section contains a list of use cases of AMW. All the use cases presented in this thesis
are available for download in this section. They are presented through a short overview. The use cases
contain the sources (metamodel extensions, model transformations, weaving models) and additional
user documentation. This section aso contains additional use cases not introduced in this thesis, which
cover avariety of application scenarios.

M etamodel extensions Zoo

http://www.eclipse.org/gmt/amw/zoo/

This section contains the metamodel extensions to the core weaving metamodel presented in this
thesis and also used in the different application scenarios.

Wiki

http://wiki.eclipse.org/index.php/AMW

The AMW Wiki contains general information about the tool. It informally introduces model
weaving and the core weaving metamodel. The AMW Wiki describes how to use the tool using the
standard interface, how to extend the tool for different applications and how to use a set of advanced
features.

Download

http://www.eclipse.org/gmt/amw/downl oad/

The AMW tool can be downloaded in this section. This section describes the steps to download and
install the tool.
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Gestion de M éadonnées Utilisant Tissage et Transformation de Modéles

Résumé

L'interaction et I’interopérabilité entre différentes sources de données sont une préoccupation majeure dans
plusieurs organisations. Ce probléme devient plus important encore avec la multitude de formats de données,
APIs et architectures existants. L’ingénierie dirigée par modéles (IDM) est un paradigme relativement nouveau
qui permet de diminuer ces problémes d'interopérabilité. L'IDM considére toutes les entités d'un systéme
comme un modéle. Les plateformes IDM sont composées par des types de modéles différents. Les modéles de
transformation sont des acteurs majeurs de cette approche. IlIs sont utilisés pour définir des opérations entre
modéles. Par contre, il y existe d’ autres types d’ interactions qui sont définies sur la base des liens. Une solution
d'IDM compléte doit supporter des différents types de liens. Les recherches en IDM se sont centrées dans
I” étude des transformations de modéles. Par conséquence, il y a beaucoup de travail concernant différents types
desliens, ainsi que leursimplications dans une plateforme IDM.

Cette thése étudie des formes différentes de liens entre les éléments de modéles différents. Je montre, & partir
d’une étude des nombreux travaux existants, que le point le plus critique de ces solutions est le manque de
généricité, extensibilité et adaptabilité. Ensuite, je présente une solution d’IDM générique pour la gestion des
liens entre les éléments de modéles. La solution s appelle le tissage de modéles. Le tissage de modeles propose
I’ utilisation de modéles de tissage pour capturer des types différents de liens. Un modéle de tissage est conforme
a un métamodéle noyau de tissage. Jintroduis un ensemble des définitions pour les modeles de tissage et
concepts liés. Ensuite, je montre comment les modéles de tissage et modéles de transformations sont une
solution générique pour différents problémes d' interopérabilité des données. Les modéles de tissage sont utilisés
pour générer des modéles de transformations. Ensuite, je présente un outil adaptive et générique pour la création
de modéles de tissage. L' approche sera validée en implémentant un outil de tissage appelé AMW (ATLAS
Model Weaver). Cet outil sera utilisé comme solution de base pour différents cas d’ applications.

Mots-clés: tissage de modéles, transformation de modeles, interopérabilité des données, ingénierie des
modéles

Metadata Management Using Model Weaving and Model Transformation

Abstract

The interaction and interoperability between different data sources is a major concern in many organizations.
The different formats of data, APls, and architectures increases the incompatibilities, in a way that
interoperability and interaction between components becomes a very difficult task. Model driven engineering
(MDE) is a paradigm that enables diminishing interoperability problems by considering every entity as a model.
MDE platforms are composed of different kinds of models. Some of the most important kinds of models are
transformation models, which are used to define fixed operations between different models. In addition to fixed
transformation operations, there are other kinds of interactions and relationships between models. A complete
MDE solution must be capable of handling different kinds of relationships. Until now, most research has
concentrated on studying transformation languages. This means additional efforts must be undertaken to study
these relationships and their implications on a MDE platform.

This thesis studies different forms of relationships between models elements. We show through extensive
related work that the major limitation of current solutions is the lack of genericity, extensibility and adaptability.
We present a generic MDE solution for relationship management called model weaving. Model weaving
proposes to capture different kinds of relationships between model elements in a weaving model. A weaving
model conforms to extensions of a core weaving metamodel that supports basic relationship management. After
proposing the unification of the conceptual foundations related to model weaving, we show how weaving models
and transformation models are used as a generic approach for data interoperability. The weaving models are used
to produce model transformations. Moreover, we present an adaptive framework for creating weaving modelsin
a semi-automatic way. We validate our approach by developing a generic and adaptive tool called ATLAS
Model Weaver (AMW), and by implementing several use cases from different application scenarios.

K eywords. model weaving, model transformations, data interoperability, model driven engineering
Discipline: Informatique
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