
HAL Id: tel-00481955
https://theses.hal.science/tel-00481955

Submitted on 7 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance Modeling, Analysis and Optimization of
Multi-Protocol Asynchronous Circuits

E. Yahya

To cite this version:
E. Yahya. Performance Modeling, Analysis and Optimization of Multi-Protocol Asynchronous Cir-
cuits. Micro and nanotechnologies/Microelectronics. Institut National Polytechnique de Grenoble -
INPG, 2009. English. �NNT : �. �tel-00481955�

https://theses.hal.science/tel-00481955
https://hal.archives-ouvertes.fr

INSTITUT POLYTECHNIQUE DE GRENOBLE

 N° attribué par la bibliothèque
 978-2-84813-147-4

T H E S E

pour obtenir le grade de

DOCTEUR DE L’Institut polytechnique de Grenoble

Spécialité : «Micro et Nano Electronique»

préparée au laboratoire _«TIMA»___

 dans le cadre de l’Ecole Doctorale « Electronique, Electrotechnique, Automatique et Traitement du Signal»

présentée et soutenue publiquement

par

_________________________Eslam YAHYA_________________________

le ______________9 Décembre 2009 ________________

Modélisation, Analyse et Optimisation des Performances des Circuits Asynchrones Multi-
Protocoles

DIRECTEUR DE THESE : Marc RENAUDIN
CO-DIRECTEUR DE THESE: Laurent FESQUET

JURY

M. Michel ROBERT , Président
M. Jens SPARSØ , Rapporteur
Mme. Nathalie JULIEN , Rapporteur
M. Marc RENAUDIN , Directeur de thèse
M. Laurent FESQUET , Co-encadrant

Performance Modeling, Analysis and Optimization
of Multi-Protocol Asynchronous Circuits

By

Eslam Yahya

France, 2009

Eslam Yahya Grenoble INP, 2009

To ...
My Parents and my Sisters

My dear Wife and lovely kids, Amir and Faris

My love, the land of wonders, Egypt

Eslam Yahya Grenoble INP, 2009

Eslam Yahya Grenoble INP, 2009

“I know that I know nothing”

“There is only one good, knowledge, and one evil, ignorance”

Socrates

“The more I learn, The more I know that I do not know”

Eslam Yahya Grenoble INP, 2009

Eslam Yahya Grenoble INP, 2009

ACKNOWLEDGMENT

I would like to take this opportunity to express my deep sense of gratitude and

profound feeling of admiration to my thesis supervisor Prof. Marc Renaudin. This

work is inspired by his patience, motivation, enthusiasm, guidance and continues

support. His words were, and would be, precious gaudiness not only in the research

but also in life.

I also would like to express my deep gratitude to my co-supervisor Dr. Laurent

Fesquet for his sincere support in technical and administrative issues throughout the

course of my PhD. Without his appreciated help, I could not complete this work.

My deep regards for Dr. Gilles Sicard, for his precious friendly attitude and his

immediate help for many administrative issues.

My sincere acknowledgments for Prof. Michel ROBERT for being present of my

jury. I am also thankful for Prof. Jens SPARSO and Prof. Nathalie JULIEN for their

precious time they spent in reviewing my thesis manuscript.

I am grateful to Prof. Bernard Courtois, former TIMA director, and Prof. Dominique

Borrione, current TIMA directress, for their appreciated help and encouragement. I

also thankful to all the administrative staff of TIMA and EEATS for their great help

in making administrative things done smoothly.

ACKNOWLEDGMENT

Eslam Yahya Grenoble INP, 2009

None of the thanking words I had learned could express my deep gratitude to my

colleagues in CIS. Oussama and Hatem for their friendship and brotherhood, “the

USA trip was wonderful with you”. David and Gregory for the precious discussion

and time we spend together, “Ignorance is bless!! Mmm Yes but NO”. Khaled and

Hakim for giving me this amazing lifetime friendship, “regardless the years I will be

on this earth, I will never forget you”. Yannick and Fraidy for their friendly company

in our office, “you were the first who introduced asynchronous to me, what did you

do guys?!! ”. Saeed and Yasser for the time we spend together inside and outside

TIMA discussing for everything in life, “never forget the lunch with you in front of

the Isere”. Amr and Pierre, even if you are outside CIS but you are inside my heart

dear friends. Estelle, Liviere and Hawraa for their dear friendship. Cedric, Aurelian

and Bertrand for their appreciated time and helpful aide, “thanks for helping in C++

coding”. Taha and Franck for the great discussions and the open minded attitude.

Krzysztof for his nice company in Germany, it was short friendship but a precious

one. Joao and Alan, for the nice time and discussion. Jerimie and Rodrigo for the

dear friendship. Alex and Florent for their friendly company.

I would like to express the deepest thankful for my family, could not tell how much I

am indebted to you!!! My father who taught me how to be a man, May ALLAH

bless you. My mother who gave me everything in life, gave me the life itself. My

sisters who inspired my life with the real meaning of the family. My kids, Amir and

Faris who suffered a lot because of my absence and my busyness; dear sons, you are

the dearest touch in my life. Finally, this work could not be done without the

support, patience, understanding and continuous Sacrifices of the best wife on this

earth; my wife “THANK YOU”.

ACKNOWLEDGMENT

Eslam Yahya Grenoble INP, 2009

Finally, I would like to express my grateful thanking to my life friends Ahmad and

Eslam, my dearest teachers and professors those did great efforts to drive me up to

the scientific level I have now.

Eslam YAHYA

Grenoble, France

December 2009

ACKNOWLEDGMENT

Eslam Yahya Grenoble INP, 2009

Eslam Yahya Grenoble INP, 2009

ABSTRACT

Asynchronous circuits show potential interest from many aspects. However

modeling, analysis and optimization of asynchronous circuits are stumbling

blocks to spread this technology on commercial level. This thesis concerns

the development of asynchronous circuit modeling method which is based on

analytical models for the underlying handshaking protocols. Based on this

modeling method, a fast and accurate circuit analysis method is developed.

This analysis provides a full support for statistically variable delays and is

able to analyze different circuit structures (Linear/Nonlinear,

Unconditional/Conditional). In addition, it enables the implementation of

timing analysis, power analysis and process-effect analysis for asynchronous

circuits. On top of these modeling and analysis methods, an optimization

technique has been developed. This optimization technique is based on

selecting the minimum number of asynchronous registers required for

satisfying the performance constraints. By using the proposed methods, the

asynchronous handshaking protocol effect on speed, power consumption

distribution and effect of process variability is studied.

For validating the proposed methods, a group of tools is implemented using

C++, Java and Matlab. These tools show high efficiency, high accuracy and

fast time response.

Abstract

Eslam Yahya Grenoble INP, 2009

 ii

Eslam Yahya Grenoble INP, 2009

TABLE OF CONTENTS

Chapter 1. Introduction: Context and Motivation ... 1
Chapter 2. Asynchronous Circuits: Handshaking Protocols, Behavior Modeling

and Performance Analysis ... 5
2.1 Introduction to Asynchronous Circuits .. 5
2.2 Asynchronous Handshaking Protocols .. 9
2.3 Conclusion ... 17

Chapter 3. Asynchronous Circuits Performance Modeling 19
3.1 Introduction.. 19
3.2 Circuit Model ... 22
3.3 Delay Model .. 37
3.4 Analytical Model ... 46
3.5 Circuit Simulator ... 56
3.6 Conclusion ... 58

Chapter 4. Asynchronous Circuits Performance Analysis 61
4.1 Introduction ... 61
4.2 Some Notes about Test Circuits ... 61
4.3 Time Performance Analysis ... 64
4.4 Power Consumption Analysis ... 75
4.5 Response to Delay Variability ... 77
4.6 Conclusion .. 79

Chapter 5. Asynchronous Circuits Performance Optimization 81
5.1 Introduction.. 81
5.2 Pipeline Optimizer ... 81
5.3 Optimal (Brute Force) Algorithm .. 83
5.4 Efficient Optimal algorithm ... 88
5.5 Optimizing ANOC Link between Two Synchronous Processors98
5.6 Limitations and Extensions of the Optimization Algorithm .. 101
5.7 Conclusion ... 103

Chapter 6. Handshaking Protocol Effect ... 105
6.1 Introduction.. 105

Table of Contents iii

Eslam Yahya Grenoble INP, 2009

6.2 Protocol Effect: From Where? .. 105
6.3 Protocol Effect on Speed ... 107
6.4 Protocol Effect on Power Consumption Distribution 110
6.5 Protocol Effect on Process Variability 114
6.6 Conclusion ... 115

Chapter 7. AHMOSE: An Asynchronous High-speed Modeling and Optimization
Tool-Set .. 117
7.1 Introduction.. 117
7.2 Graphical User Interface “GUI” .. 118
7.3 The Core Tools .. 122
7.4 Delay Generator / Viewer and Post Processing 127
7.5 Conclusion ... 127

Chapter 8. Conclusion and Prospective .. 129
References

 v

Eslam Yahya Grenoble INP, 2009

LIST OF FIGURES

Figure 2.1: Synchronous Circuit vs. Asynchronous Circuit (Basic View) 5

Figure 2.2: Timing Diagrams of Asynchronous Handshaking Protocols 6

Figure 2.3: Basic Structures of Asynchronous Circuits .. 7

Figure 2.4: Asynchronous Linear Pipeline (LP) ... 9

Figure 2.5: Caltech Asynchronous Registers .. 10

Figure 2.6: The FDFB Register ... 14

Figure 3.1: Asynchronous Circuit: (a) Bundled Data (b) 1-Of-n Encoding

(c) F-Plus-R Equvilant Model (d) Linear Pipeline 23

Figure 3.2: Dependency Graph of a linear-pipeline circuit which is based on

WCHB protocol .. 25

Figure 3.3: Dependency Graphs of a linear-pipeline circuit which is based on

PCHB, PCFB and FDFB .. 27

Figure 3.4: Dependency Graph of WCHB Fork .. 30

Figure 3.5: Dependency Graph of PCHB, PCFB and FDFB Fork 31

Figure 3.6: Dependency Graph of WCHB Join ... 32

Figure 3.7: Dependency Graph of PCHB, PCFB and FDFB Join 33

Figure 3.8: Dependency Graph of WCHB Split .. 35

Figure 3.9: Dependency Graph of WCHB Merge ... 36

Figure 3.10: Example of Test Circuit for investigating the used PDFs 39

List of Figures vi

Eslam Yahya Grenoble INP, 2009

Figure 3.11: Empirical Rule .. 40

Figure 3.12: Delay Token Vector “DTV” Generator .. 43

Figure 3.13: Montcarlo Simulation for Inverter Circit .. 46

Figure 3.14: Deriving Analytical-Model for WCHB Linear Registers 47

Figure 3.15: Asynchronous Circuit Simulator .. 57

Figure 4.1: Ring Stage Chronogram ... 63

Figure 4.2: Asynchronous Self-Timed Ring Structure ... 63

Figure 4.3: Register Cycle Time ... 64

Figure 4.4: Timing Digram illustrating register Waiting Time 66

Figure 4.5: Connection between the Circuit Simulator and the Timing Analyzer 67

Figure 4.6: Examples of Test Circuit for Different Strusctures 69

Figure 4.7: F-Plus-R Model for Extracted Circuit from a µ-Processor................. 70

Figure 4.8: DTV Length (L) Effect on the Method Computation Time 73

Figure 4.9: Circuit Size (N) Effect on the Method Computation Time 74

Figure 4.10: Connection between the Circuit Simulator and the Power Analyzer . 76

Figure 5.1: The Tool Flow Including the Optimizer ... 82

Figure 5.2: Asynchronous Circuit Optimization by Controlling Number of

Registers ... 84

Figure 5.3: Number of Iterations for BF and RA .. 87

List of Figures vii

Eslam Yahya Grenoble INP, 2009

Figure 5.4: Dependencey Graph Explaining Breaking a Stage by Adding a

Register ... 89

Figure 5.5: A Comparison Between Diferrent Heuristics in the OL Optimization94

Figure 5.6: The Algorithm Performance After Applying Optimization to both IL

and OL .. 96

Figure 5.7: The Algorithm Performance After Applying Optimization to both IL

and OL .. 99

Figure 5.8: Optimization Algorithm Performance for ANOC Link between Two

Microprocessors .. 100

Figure 5.9: Determinstric Nonlinear Pipeline ... 101

Figure 6.1: Asynchronous Linear Pipeline .. 106

Figure 6.2: Two Microprocessors Communicating Asynchronouslly 108

Figure 6.3: Time Distribution for WCHB Activity ... 112

Figure 6.4: Time Distribution for PCHB Activity .. 112

Figure 6.5: Time Distribution for PCFB Activity ... 113

Figure 6.6: Time Distribution for FDFB Activity ... 113

Figure 7.1: General Block Diagram for the AHMOSE Project. 117

Figure 7.2: Basic Structures Suported by the GUI .. 119

Figure 7.3: Layout of the GUI ... 121

Figure 7.4: A sanpshot of the GUI .. 122

Figure 7.5: Block Diagram of The Asynchronous Circuit Simulator 123

List of Figures viii

Eslam Yahya Grenoble INP, 2009

Figure 7.6: Flowchart of The Asynchronous Circuit Simulator 124

Figure 7.7: Flowchart of The Performance Anlyzers .. 125

Figure 7.8: Flowchart of The Performance Anlyzers .. 126

Figure 7.9: Snapshots from the Core Tools Shell ... 127

 1

Eslam Yahya Grenoble INP, 2009

Chapter 1. Introduction: Context and Motivations

Recent nanometric silicon circuits show more sensitivity to process variability, voltage-

temperature change and Electromagnetic Interference “EMI”. Asynchronous circuits are

increasingly presented as a promising solution for these problems. They have interesting features

as low power consumption, no global-signal distribution problems, high security, low EMI and

robustness against Process-Voltage-Temperature (“PVT”) variations.

Synchronous design style is based on global timing assumptions determined by the clock.

Coping with this assumption, especially in recent technologies, is problematic from two points of

views. First, the increase of process variability implies inefficient increase in timing pessimism

while designing. Second, clock trees are gradually consuming more power and needing more

effort for managing. There are different solutions which are presented for these problems as

multi-clock systems and clock gating. Asynchronous circuit is an efficient alternative solution for

these problems. Asynchronous circuits have different styles in which timing assumptions are

localized or completely avoided; this drastically decreases the timing pessimism. As they do not

contain global timing signals, asynchronous circuits avoid global signal distribution problems

(power/design). One of the main stumbling blocks in the path of using asynchronous circuits is

the design flow. Especially, timing analysis and optimization of asynchronous circuits needs

more efficient methods and tools to support the designer needs. In addition to this, understanding

the behavior of asynchronous circuits, particularly their handshaking protocol, needs more

investigations.

The objective of this thesis is to formulate a method which first consists in modeling

different asynchronous circuit styles with different handshaking protocols. Based on this model,

we propose a timing analysis method which is able to support the asynchronous circuit design

flow. The ultimate goal of the thesis is to use the analysis method for developing automatic speed

optimization algorithms for asynchronous circuits. Throughout the work, all methods and tools

are designed so that they efficiently support delay variability. We strongly believe that including

delay variability is mandatory for analyzing and optimizing asynchronous circuits especially in

Chapter1. Introduction: Context and Motivation 2

Eslam Yahya Grenoble INP, 2009

recent technologies. Finally, explaining the effect of the handshaking protocols on different

performance metrics is one of the thesis objectives.

In the area of asynchronous circuits’ performance modeling and analysis, the following

main issues are identified:

1. Circuit Model.

2. Delay Model.

3. Solving Methodology.

4. Type of Performance Analysis.

5. Circuit Structure Limitations.

Circuit Model: Sub class of Petri nets [1] [2] are used in this thesis for modeling

asynchronous circuits. Petri nets are widely used in previous works [35], [51], [26].

Delay Model: There are many previous works which are based on static delays. They are

using either average delays [6], [26], or interval delays [10], [16], [21], [34]. Some other works

included delay variability in their analysis; however, they limit the variability to bounded

intervals [36], or to some specific Probability Density Functions PDFs [35], [18]. In [50] and [51]

they push to more general PDFs, however, they limit their analysis to the computation of average

Time Separation of Events (“TSE”). The delay model presented in this thesis is a generic model

which is efficiently supporting static delays and variable delays.

Solving Methodology: There are some previous works which analyze asynchronous

circuits by using closed form equations [5], [16], [66], [26]. Many other works tried to make the

analysis by using Graph based solutions for Petri nets and Markov chains [36], [50]. Some other

solutions are presented by using iterative simulation [51], [18]. In our method, the circuit is

formally modeled into analytical equations; these equations are iteratively solved to analyze the

circuit.

Type of Performance Analysis: there is no clear accord about the most useful

performance metrics for characterizing asynchronous circuits. Estimating some bounds on the

Chapter1. Introduction: Context and Motivation 3

Eslam Yahya Grenoble INP, 2009

TSE proposes a nice solution for the verification of asynchronous circuits [36] [50] [51].

However, it is not optimum for analyzing and optimizing the performance. As they should be

analyzed and optimized for their average case performance, asynchronous circuits could be

characterized by time distribution of their events. There are works which calculate the PDFs for

the Input/Output arrival times [35] [18]. The analysis we propose in our method falls in this

class.

Circuit Structure Limitations: There are some works which concerned linear

asynchronous pipelines [5] [16] [18]. Most of the previous works are restricted to acyclic/cyclic

deterministic asynchronous circuits (decision free) [35] [36] [26] [50]. Very few works tried to

support limited circuit classes which contain choices. For instance, in [51] they support Petri nets

with unique-choice places. To the best of our knowledge, there is no methodology supporting

general nondeterministic asynchronous structures. Since these structures are essential for building

a practical analysis method, the presented method in this thesis is designed so that asynchronous

structures with choices are supported.

This thesis is organized as follows:

In chapter2, an introduction to asynchronous circuits is proposed. In this introduction,

most of the used acronyms which are used through the thesis are defined. In addition to this,

asynchronous circuit classes are discussed stating the different handshaking protocols.

The proposed performance modeling methodology is presented in Chapter 3. In this

chapter, a comparison between the proposed method and previous works is introduced. A

complete structure of the proposed asynchronous circuit simulator is shown in this chapter.

Chapter 4 shows how to analyze the asynchronous circuits’ performance from different

points of views using the presented methodology. The method is illustrated using different test

circuits which are extracted from real implemented systems. The complexity of the method with

respect to the circuit size is analyzed in this chapter.

Performance optimization algorithms are developed in Chapter 5. The optimality of the

final solution is analyzed and formally proven. Applying the proposed optimization algorithms to

some test cases is presented in this chapter as well.

Chapter1. Introduction: Context and Motivation 4

Eslam Yahya Grenoble INP, 2009

Chapter 6 studies the relation between handshaking protocol and “circuit speed, power

consumption distribution and delay variability of the output”.

The developed tools are discussed in Chapter 7. This chapter is devoted to software

implementation issues. The complete tool flow using different platforms is introduced in this

chapter.

Finally, the conclusion of this thesis and the prospects are discussed in Chapter 8.

 5

Eslam Yahya Grenoble INP, 2009

Chapter 2. Asynchronous Circuits: Handshaking Protocols, Behavior
Modeling and Performance Analysis

2.1 Introduction to Asynchronous Circuits

In the recent technologies especially 45 nm and beyond, designers face various problems

in power consumption, process variability, environment-parameters variations and

Electromagnetic Interference “EMI”. Asynchronous circuits seem to be a practical solution for

such problems [30], [37]. Research and industry are increasingly motivated towards the

asynchronous circuits due to the following interesting features [23], [24], [46]: (1) Low power

consumption, (2) No global-signal distribution problems, (3) High security, (4) Low emitted EMI

noise, (5) Better modularity and composability and (6) Tolerance against process variability and

environment parameters change (PVT).

(b) Asynchronous Circuit

Function
Block

(F1)
Async

Register
(R1)

Function
Block
(FN)

Async
Register

(RN)

One stage

InAck OutAck

Function
Block

(F2)
Async

Register
(R2)

One stage

In

InAck

Out

OutAck

In OutFunction
Block

(F1)
Async

Register
(R1)

Function
Block
(FN)

Async
Register

(RN)

One stage

InAck OutAck

Function
Block

(F2)
Async

Register
(R2)

One stage

In

InAck

Out

OutAck

In Out

(a) Synchronous Circuit

Comp
Logic
(F1)

Sync
Register

(R1)

Comp
Logic
(FN)

Sync
Register

(RN)

One stage

Comp
Logic
(F2)

Sync
Register

(R2)

One stage

In OutIn Out

Clock

^ ^ ^

Comp
Logic
(F1)

Sync
Register

(R1)

Comp
Logic
(FN)

Sync
Register

(RN)

One stage

Comp
Logic
(F2)

Sync
Register

(R2)

One stage

In OutIn Out

Clock

Comp
Logic
(F1)

Sync
Register

(R1)

Comp
Logic
(FN)

Sync
Register

(RN)

One stage

Comp
Logic
(F2)

Sync
Register

(R2)

One stage

In OutIn Out

Clock

^ ^ ^

Figure 2.1: Synchronous Circuit vs. Asynchronous Circuit (Basic View)

In synchronous design style, shown in Figure 2.1 (a), circuit functionality is implemented

by combinational function blocks. Synchronous registers are sampling the output of these blocks.

A global clock signal is controlling the sampling time of the register. The clock period is fixed so

Chapter 2. Asynchronous Circuits: Handshaking Protocols, Behavior Modeling and Performance Analysis 6

Eslam Yahya Grenoble INP, 2009

that all function blocks correctly complete their operations and their data outputs are stable and

ready to be sampled. That implies a global timing assumption which is applied to the whole

circuit. Synchronization in asynchronous circuits, Figure 2.1 (b) is implemented by handshaking

protocols which control the communications between the adjacent function blocks. This local

synchronization avoids global timing-assumptions; localizing the synchronization is the main

reason behind many of asynchronous circuits’ advantages. Asynchronous circuits can be

classified based on their timing assumptions [24] [2], based on their handshaking protocol [24]

and based on their architecture [24].

Delays in electronic circuits are introduced by gates and wires. Delay Insensitive, “DI”,

circuits are designed to operate correctly with positive, unbounded delays in wires and gates.

Some circuits contain wire forks, when the wire delays in the fork branches are assumed to be

equal, these forks are called Isochronic Fork and the circuit is called Quasi Delay Insensitive

“QDI” circuit. In Speed Independent “SI” circuits, gates are assumed to have positive, unbounded

delays. However, wires are assumed to have zero delays.

(a) (b)(a) (b)

Figure 2.2: Timing Diagrams of Asynchronous Handshaking Protocols

 Asynchronous handshaking protocols can be classified into two main categories [24]

[2], 2-phase handshaking protocols, Figure 2.2 (a), and 4-phase handshaking protocols, Figure

2.2 (b). In 2-phase protocol, the sender emits the request; the receiver reads the data and then

sends an acknowledgment. To send a new data, the sender changes the request state to activate

the receiver which reads the new data and changes the acknowledgment state, etc. In 2-phase

handshaking protocols, each transition on the request signal is equivalent to a new data. 4-phase

protocols are working differently; the sender emits the request which activates the receiver. Then

receiver reads the data and sends the acknowledgment. After receiving the acknowledgment, the

Chapter 2. Asynchronous Circuits: Handshaking Protocols, Behavior Modeling and Performance Analysis 7

Eslam Yahya Grenoble INP, 2009

sender resets the request asking the receiver to get ready for the next data. As a result, the

receiver resets its acknowledgment telling that it is ready for the new data. Because handshaking

signals are activated and then reseted, 4-phase protocols are called Return to Zero protocols,

“RTZ” [24] [30]. In 4-phase protocols each data transfer requires two transitions on the request

signal and two transitions on the acknowledgment signal. When request and acknowledgment

signals are sent on separate lines which are bundled with the data lines, the protocol is called

Bundled Data protocol. These protocols rely on delay matching to insure the validity of evey data

with the corresponding request at the receiver input. To implement delay insensitive circuits,

request is encoded into data; 1-of-n encoding is used to implement these circuits. The most

common encoding uses two wires for encoding each data bit and it is known as Dual Rail

encoding. In dual rail channel, each data is composed of two Tokens, the Evaluation Token (also

called valid) and the Reset Token (also called invalid or empty). As an example, Data can be

encoded as (Evaluation “0”=01, Evaluation “1”=10, Reset=00). When the receiver consumes the

token and sends its corresponding acknowledge, then this token becomes a Bubble. The bubble is

an evaluation or reset token which is consumed by the receiver and can be overwritten. For each

single data bit in 4-phase protocol, we have to send the two tokens (Evaluation and Reset) to

preserve the protocol consistency.

FIn Out
R

Out_Req

Out_Ack

In_Req

In_Ack

Fk
LPZ

LPX

LPY

J
LPZ

LPX

LPY

S
LPZ

LPX

LPY

M
LPZ

LPX

LPY

Cont

Ack

Ack

Ack Ack

Ack

Ack

Ack

Ack Ack

Ack

Ack Ack

Ack Cont Ack

(a) Function Block (b) Register

(e) Fork (f) Join (g) Split (h) Merge

Tx
Out_Req

Out_Ack

(c) Transmitter

Rx
In_Req

In_Ack

(d) Receiver

Figure 2.3: Basic Structures of Asynchronous Circuits

Chapter 2. Asynchronous Circuits: Handshaking Protocols, Behavior Modeling and Performance Analysis 8

Eslam Yahya Grenoble INP, 2009

Based on structural point of view, asynchronous circuits can be classified into two main

categories, Linear Pipelines “LP” and Nonlinear Pipelines “NLP”. The basic structures of

asynchronous circuits are shown in Figure 2.3. Function Block “F” is the asynchronous

equivalent of combinatorial circuits. It is transparent for the handshaking signals. Asynchronous

Registers are representing the storage for the data tokens and implementing the handshaking

protocol which controls the token flow. Registers can be Linear Registers “R” as the one depicted

in Figure 2.3 (b). This register has a single input channel and a single output channel. It stores

the token which is received at the input request and replies by the input acknowledgment. Same

token is injected on the register output request and its consumption by another register is

confirmed by the output acknowledgment. When this register is the token producer, it has only an

output channel and is called Transmitter “TX”, Figure 2.3 (c). However if it is the token

consumer, it has only an input channel and is called Receiver “Rx”, Figure 2.3 (d). If the input

token is duplicated and distributed on multi output channels, this register is called Fork “Fk”,

Figure 2.3 (e). We use “Fk” for denoting Forks to make the distinction between them and the

Function block “F”. The letter “k” is not an index, it is a part of the name. On the contrary, if

multi input tokens are processed and injected to a single output channel, the register is called Join

“J”, Figure 2.3 (f). If the register behaves as a Demux, where it injects the input token to a

selected output channel (which is determined by a Control input), this register is called Split “S”,

Figure 2.3 (g). In contrast, if the register behaves as a Mux, where it selects a single input token

(which is determined by a Control input) to be injected to its output channel, this register is called

Merge “M”, Figure 2.3 (h). By using these Basic structures, designers are able to implement their

asynchronous circuits. In some classification, circuits which are composed of components (F, R,

Tx, Rx) are called Linear Pipelines. Circuits which contain components (Fk, J) are called

Uncontrolled Nonlinear-Pipelines. Where, circuits contain components (S, M) are called

Controlled Nonlinear-Pipelines. Other literatures [26], classifies circuits which are not containing

(S, M) as Deterministic Pipelines. When (S, M) are used in the design, they call it

Nondeterministic Pipelines. More details about these circuit classes are shown in the next

chapters.

Chapter 2. Asynchronous Circuits: Handshaking Protocols, Behavior Modeling and Performance Analysis 9

Eslam Yahya Grenoble INP, 2009

TX
R0

Function
Block

(F1)
Register

(R1)

Function
Block
(FN)

Register
(RN)

RX
RN+1

N stages

One stage

In0

In1

InAck

Out0

Out1

OutAck

TX
R0

Function
Block

(F1)
Register

(R1)

Function
Block
(FN)

Register
(RN)

RX
RN+1

N stages

One stage

In0

In1

InAck

Out0

Out1

OutAck

TX
R0

Function
Block

(F1)
Register

(R1)

Function
Block
(FN)

Register
(RN)

RX
RN+1

N stages

One stage

In0

In1

InAck

Out0

Out1

OutAck

Figure 2.4: Asynchronous Linear Pipeline (LP)

One example of using basic components to structure a linear pipeline is shown in Figure

2.4. This pipeline contains N-stages. Each Stage “Stg” consists of one function block and one

asynchronous register (Stgi is composed of Fi and Ri

2.2 Asynchronous Handshaking Protocols

).

There are different schemes to implement asynchronous handshaking protocols. The

developed methods and algorithms in this thesis are able to support those different schemes

including the ones developed by Williams [44] [45], Caltech [3] [31], and the university of

Manchester [42]. We are more involved into QDI circuit inside our research group.

Consequently, most of the examples which are shown in this thesis are based on handshaking

protocols from Caltech. These protocols are called WCHB (Weak-Conditioned Half Buffer),

PCHB (Pre-Charged Half Buffer) and PCFB (Pre-Charged Full Buffer).

Chapter 2. Asynchronous Circuits: Handshaking Protocols, Behavior Modeling and Performance Analysis 10

Eslam Yahya Grenoble INP, 2009

+

C1
Out0

+

C2
Out1

In0

In1

OutAck

C3InAck

Reset

Reset

Set

+

C4

-

+

+

C1

+

C1
Out0

+

C2

+

C2
Out1

In0

In1

OutAck

C3InAck

Reset

Reset

Set

+

C4

-

+
C2

C1 Out0

Out1

In0

In1

OutAck

InAck

Reset

Reset

C2

C1 Out0

Out1

In0

In1

OutAck

InAck

Reset

Reset

a) WCHB Schematic

OutAck

+

C1
Out0

+

C2
Out1

In0

In1

C3InAck

Reset

Reset

+

OutAck

+

C1

+

C1
Out0

+

C2

+

C2
Out1

In0

In1

C3InAck

Reset

Reset

+

b) PCHB Schematic c) PCFB Schematic

Inreq+

Inack-

Inreq-

Inack+

Outreq+

Outack-

Outreq-

Outack+

Inreq+

Inack-

Inreq-

Inack+

Outreq+

Outack-

Outreq-

Outack+

Inreq+

Inack-

Inreq-

Inack+

Outreq+

Outack-

Outreq-

Outack+

Int-

Int+

FInt+

FInt-

Inreq+

Inack-

Inreq-

Inack+

Outreq+

Outack-

Outreq-

Outack+

Int-

Int+

FInt+

FInt-

Inreq+

Inack-

Inreq-

Inack+

Outreq+

Outack-

Outreq-

Outack+

Int-

Int+

Inreq+

Inack-

Inreq-

Inack+

Outreq+

Outack-

Outreq-

Outack+

Int-

Int+

d) WCHB STG e) PCHB STG f) PCFB STG

Figure 2.5: Caltech Asynchronous Registers

These protocols are originally implemented as precharged logic, however, same protocols

can be implemented using standard logic. The circuit implementation shown in Figure 2.5 (a, b,

c) for WCHB, PCHB and PCFB respectively are using standard logic library. Their behavior is

modeled using STGs [39] [11] [12] which appears in Figure 2.5 (d, e, f). In [67] and [66] we

introduced a complete study for the operation of these circuitry.

2.2.1 Protocol Slack

Protocol Slack: is defined as “The number of cascaded tokens the register can

simultaneously memorize”. Cascaded tokens can be in any order (Evalj+Resetj) which are

corresponding to Dataj, or (Resetj+Evalj+1) which are the reset token of Dataj and the evaluation

token of the next data “Dataj+1”. Compared to static spread and cycle time which are properties of

Chapter 2. Asynchronous Circuits: Handshaking Protocols, Behavior Modeling and Performance Analysis 11

Eslam Yahya Grenoble INP, 2009

the pipeline (registers and functional blocks), the protocol slack characterizes the register itself

regardless the pipeline parameters.

WCHB and PCHB Slack: Figure 2.5 (a and b) show WCHB and PCHB circuit diagrams

respectively. The two Muller gates C1 and C2 in both buffers can only hold either an Evaluation

token or a Reset token at a time. After receiving the acknowledgment signal on the output side,

the token becomes a bubble and the buffer is ready to memorize another token. Consequently,

WCHBs and PCHBs have a slack of one token. They can only memorize half of the data pattern,

so they are called half buffers.

PCFB Slack: PCFB circuit appears in Figure 2.5 (c). In many of the literature, this

register is considered having a two token slack. Analyzing the circuit diagram shows that PCFB

is having a variable slack. In a linear pipeline as the one depicted in Figure 2.4, suppose that Ri is

empty, it receives an evaluation token, memorizes the token inside the Muller gates C1 and C2,

and then responds by putting the InAck low (acknowledgment for the evaluation token). That

means the outputs of C3 and C4 are low. Suppose that Fi+1 is slower than Fi and Ri-1 sends the

reset token. This makes C3 going high giving InAck high(acknowledgment for the reset token),

which means that the Ri input channel is free and Ri-1 can send the next token. Now Ri

Now suppose, R

 is

memorizing the evaluation token in (C1 and C2) and memorizing the reset token by two signals,

the low output of C4 and the high output of C3. In this case, PCFB is memorizing the two tokens,

Evaluation then Reset, simultaneously which equal to two token slack.

i+1 acknowledges the memorized Evaluation token by putting OutAck low,

C1 and C2 go low, which makes C4 going high. Currently, Ri is memorizing only the reset token.

Since C3 is high, Ri-1 sees the channel free. If it sends a new Evaluation token, can the Ri

memorize this new token as it is expected? As a register with two-token slack the answer should

be yes, but the real answer is no. The conclusion is that, PCFB has a slack of two tokens when it

memorizes an Evaluation token followed by a Reset token. However, it has a slack of one token

when it memorizes a Reset token followed by the next data evaluation token.

Chapter 2. Asynchronous Circuits: Handshaking Protocols, Behavior Modeling and Performance Analysis 12

Eslam Yahya Grenoble INP, 2009

2.2.2 Protocol Decoupling

Each asynchronous register defines a different protocol for handling the relation between

two adjacent stages. What is meant by Protocol Decoupling is “How much decoupling the

register introduces between two adjacent stages”. Analyzing the behavior of any register shows

that, at stagei, Ri receives data from Ri-1, memorizes this data, sends the data to Ri+1 and

acknowledges Ri. This behavior is ruled by two facts. The first fact is that, Ri cannot accept a

new token until Ri+1 acknowledges the previous token. The second fact is that, Ri cannot inject a

new token until this token is sent by Ri-1. These two facts are logical, but they enforce some

sequential relations between the register input and output sides. How can we break these two

facts, or one of them, to add some concurrency between the two sides? The first fact can easily,

but costly, be broken, simply by adding more slack to Ri. The more slack we add, the more

accepted token by Ri which have no place at Ri+1. What about the second fact? The answer lies in

the question: what does Ri expect from Ri-1? It expects data pattern that consists of two cascaded

tokens, Evaluation and Reset. Because Ri cannot predict what evaluation token (01, 10), will be

sent by Ri-1, then it must wait for this token. On the contrary, if Ri receives an evaluation token, it

knows that the coming token is a Reset one (even before it is sent by Ri-1). This is because Reset

tokens contain no data they are just for completing the 4-phase handshaking. Here we can gain

some concurrency if Ri generates the Reset token for Ri+1 before receiving it from Ri-1.

Subsequently, two kinds of gain can be defined. The Extra Slack Gain (ESG) “Which results

from adding more slack to the register”; and the Token Expectation Gain (TEG) “which appears

when Ri is able to generate the Reset token for Ri+1 before receiving it from Ri-1

Let us first consider WCHB, this protocol adds a single slack between two-cascaded

stages. In this case, if Stg

”.

i is in the evaluation phase then Stgi+1 is in reset phase and vise versa.

Supposing this linear pipeline has identical function blocks which have an evaluation delay of

“F↑” and a reset delay of “F↓”. If F↑ is longer than F↓ then the stage which is reseting will wait

the one which is evaluating and vise versa. That makes the time needed to complete a full

handshaking for a data pattern is twice the maximum between F↑ and F↓. This time is known as

the register Cycle Time “CT”.

Chapter 2. Asynchronous Circuits: Handshaking Protocols, Behavior Modeling and Performance Analysis 13

Eslam Yahya Grenoble INP, 2009

CTWCHB (2.1) = 2 * MAX [F↑ , F↓]

Regarding PCHB Figure 2.5 (b), suppose that F↓ is longer than F↑. Hence, while Stgi is

resetting, Stgi+1 finishes its evaluation and waits for the reset token. Here the key advantage of

PCHB appears. It generates the reset token for Stgi+1 causing an overlapping between the reset

phases of both sides (benefits of TEG). This reduces the total delay from twice the max of F↓ and

F↑ to their summation. On the contrary, if F↑ is longer than F↓, then PCHB performance will be

the same as WCHB. In this case, while Stgi is evaluating, Stgi+ 1

CT

 finishes its reset and asks for the

new evaluation token which can not be predicted by the register. Therefore, PCHB cycle time can

be estimated by:

PCHB (2.2) = F↑ + MAX [F↑ , F↓]

PCFB has the ability to generate the Reset token for Ri+1 before receiving it from Ri-1

CT

(TEG). In addition, it can memorize two tokens at a time with the order mentioned before (EBG).

Hence, its performance gains from the unequally Reset and Evaluation times not only when the

Reset time is longer but also when the Evaluation time is. However, this PCFB behavior is

restricted to pipelines with average delays (single delay for evaluation and single delay for reset).

More details about that will be discussed in the following chapters.

PCFB (2.3) = F↑ + F↓

The above equations are estimating each protocol cycle time in very simplified conditions

(identical function blocks which have average delays). However, they are efficient to understand

the basic behavioral-differences between different protocols. WCHB cannot gain from unequal

Evaluation and Reset times. Conversely, PCHB gains in case of longer Reset time. PCFB gains in

case of unequal Evaluation and Reset times regardless which one is the longest. Formal detailed

equations are derived in the next chapters to study these conclusions in case of nonsymmetrical

function blocks with time variable delays.

2.2.3 FDFB handshaking protocol

It is shown in the previous subsection that PCFB has a variable slack due to the order of

the tokens to be memorized. We were in need for a solution of this problem. Without a register of

two token slack, we had to cascade two registers whenever this slack is needed. This solution is

Chapter 2. Asynchronous Circuits: Handshaking Protocols, Behavior Modeling and Performance Analysis 14

Eslam Yahya Grenoble INP, 2009

not very efficient from area point of view. In this subsection, a new handshaking protocol and its

circuit implementation are proposed [58]. This circuit behaves as a register with fixed slack of

two tokens which is not dependent on the tokens order. The schematic diagram of the new

register is depicted in Figure 2.6.

+

C3
Out0

+

C4
Out1

In0

In1

OutAck

InAck

Reset

Reset

C5

C1

C2

Reset

a) FDFB STG b) FDFB Schematic

Inreq+

Inack-

Inreq-

Inack+

Outreq+

Outack-

Outreq-

Outack+

Int-

Int+

FInt+

FInt-

+

C3
Out0

+

C4
Out1

In0

In1

OutAck

InAck

Reset

Reset

C5

C1

C2

Reset

+

C3

+

C3
Out0

+

C4

+

C4
Out1

In0

In1

OutAck

InAck

Reset

Reset

C5

C1

C2

Reset

a) FDFB STG b) FDFB Schematic

Inreq+

Inack-

Inreq-

Inack+

Outreq+

Outack-

Outreq-

Outack+

Int-

Int+

FInt+

FInt-

Inreq+

Inack-

Inreq-

Inack+

Outreq+

Outack-

Outreq-

Outack+

Int-

Int+

FInt+

FInt-

Figure 2.6: The FDFB Register

We called this register “Fully Decoupled Full Buffer” because it provides a fully

decoupled relation between the input channel and the output channel. This means that the

previous stage register “Ri-1” can perform a complete handshake with this register “Ri”

independently on the status of the next stage register “Ri+1”; which was not always possible with

PCFB. As well, “Ri+1” can perform a complete handshake with the “Ri” independently on the

status of “Ri-1

The above functionality is realized by adding an extra state variable. This is shown in the

FDFB STG in Figure 2.6 (a). It has two internal states “Int” which is the same as the case of the

PCFB in addition of a new state called “F

”, supposing that an evaluation token is already stored in the register.

Int”. This new state is the key difference between the

new register and the PCFB circuit as it adds an extra slack to the old circuit. It is obvious that

“Inreq” can be acknowledged even if the output variable “Outreq” is occupied by an

Chapter 2. Asynchronous Circuits: Handshaking Protocols, Behavior Modeling and Performance Analysis 15

Eslam Yahya Grenoble INP, 2009

unacknowledged token. No doubt that this better performance will cost extra hardware to

implement the new register as it is clear in Figure 2.6 (b). Because this register has a real

memorization stage at its input and another one at its output, this register can memorize two

cascaded tokens. Contrarily to the PCFB, this register has a slack of two tokens regardless the

order of the incoming tokens. To confirm the proper functionality of this register, some

simulations of asynchronous loops have been done. It is known that in any asynchronous loop,

the circuit needs three stages to prevent deadlock. We put both PCFB Circuit and FDFB circuit in

a closed loop with an extra WCHB stage. Theoretically, both loops have three stages, which

prevent the deadlock. However, in case of PCFB circuit, the loop deadlocked; this is because of

its variable capacity with the token order. To avoid this deadlock we had to add an extra register.

Contrarily of this, the FDFB loop worked properly with the extra WCHB, which confirms that it

is a register with a two token slack.

FDFB not only has the advantage of generating the Reset token for Ri+1 before receiving

it from Ri-1

2.2.4 Comparing H/W Size and Performance

 (TEG), but also it has the advantage of having a constant capacity of two tokens

regardless the order. This gives released relation between the input side and the output side more

than any other register, especially when delays are time variable. Although it is the largest circuit

and its internal delays expected to be the largest, this register is expected to give the best

performance compared with the others, especially in coarse and medium grain pipelines (where

register delays are relatively small compared to function-block delays).

This subsection is a comparison between the four registers in terms of area and speed. The

proposed schematics in Figure 2.5 (a, b, c) and Figure 2.6 (b) are implemented using standard

cells which are based on our TAL (Tima Asynchronous Library) library that uses 65 nm CMOS

process. Table 2.1 shows the transistor count for each used gate in the schematics and the total

transistor count for each register.

Chapter 2. Asynchronous Circuits: Handshaking Protocols, Behavior Modeling and Performance Analysis 16

Eslam Yahya Grenoble INP, 2009

TABLE 2.1: GATES AND REGISTER TRANSISTOR-COUNT

Gate Type Number of
Transistors

Register Number of Transistors

Inverter 2 WCHB 28
NOR 4 PCHB 56
M2 (C5 Fig. 2.6) 9 PCFB 73
M2RB (C1 Fig. 2.6) 12 FDFB 81
M2D1P (C4 Fig. 2.5.c) 8
M3D1N1PS (C3 Fig. 2.5.c) 11
M3D1P2BRB(C3 Fig. 2.6) 20

To compare their speed, the four registers are used to pipeline an asynchronous FIFO

between two synchronous microprocessors [58]. More details about this example are shown in

the next chapters. The simulation results of this example are shown in Table 2.2.

TABLE 2.2: LATENCEY OF ASYNCHRONOUS FIFO USING DIFFERENT PROTOCOLS

Register FIFO Latency %WCHB %PCHB %PCFB
WCHB 13.8 ns - - -
PCHB 13.4 ns 2.9 % - -
PCFB 12.7 ns 7.9 % 5.2 % -
FDFB 9.7 ns 29.7 % 27.6 % 23.6 %

Results in Table 2.2 show how it is significant to use the new handshaking protocol

(FDFB). The best currently known protocol is the PCFB. It is able to enhance the latency by only

7.9 % compared to WCHB. However, FDFB is able to make an enhancement of 29.7 %

compared to WCHB and 23.6% compared to PCFB. This new register is one of the thesis

contributions.

Chapter 2. Asynchronous Circuits: Handshaking Protocols, Behavior Modeling and Performance Analysis 17

Eslam Yahya Grenoble INP, 2009

2.3 Conclusion

In this chapter, some introduction to asynchronous circuits is shown. This introduction

defines most of the basic acronyms which are used through the whole thesis. After that,

asynchronous registers behavioral-metrics as “Slack” and “Decoupling” are defined. As an

example, registers from Caltech [3] [31] are implemented and analyzed. The interest in these

registers comes from the fact that they are QDI templates which makes them a general example

compared to micropipeline registers. Moreover, QDI templates are more suitable for our research

activity in the group. A slack problem is highlighted with the Caltech registers. To solve that, a

new asynchronous register is designed and implemented. The comparison between the new

register and the other ones shows that our register is much faster due to its high decoupling. Some

of the contributions in this chapter are published in [66] and [58].

Chapter 2. Asynchronous Circuits: Handshaking Protocols, Behavior Modeling and Performance Analysis 18

Eslam Yahya Grenoble INP, 2009

 19

Eslam Yahya Grenoble INP, 2009

Chapter 3. Asynchronous Circuits Performance Modeling

3.1 Introduction

Performance modeling in asynchronous circuits is more complex compared to

synchronous. In synchronous circuits it is a matter of finding the longest latency path between

two registers; this determines the period of the clock signal. The global clock partitions the circuit

into many combinational circuits that can be analyzed individually. For an asynchronous circuit,

performance modeling is a global and therefore much more complex problem. The use of

handshaking makes the timing in one component dependent on the timing of its neighbors, which

again depends on the timing of their neighbors, etc. In addition, the performance of a circuit does

not depend only on its structure, but also on its initialization and its environment [24]. As a result,

asynchronous circuits need performance-modeling environment which is able to support high

concurrency inside the whole system.

Regarding delay considerations, in synchronous circuits, the global timing assumption

presented by the clock is simplifying the analysis. That enables, for a long time, the use of static

delays while analyzing synchronous circuits. This is known as static timing analysis and it is a

rather simple task, even for a large circuit. However, the nature of asynchronous circuit-behavior

implies the use of statistical variable delays for capturing the correct performance. Consequently,

the use of statistical timing analysis is essential for accurate and efficient asynchronous circuit

performance analysis and optimization.

In the area of asynchronous circuits’ performance modeling and analysis, the following

main issues can be identified:

1. Circuit Model.

2. Delay Model.

3. Solving Methodology.

4. Type of Performance Analysis.

5. Circuit Structure Limitations.

Chapter 3. Asynchronous Circuits Performance Modeling 20

Eslam Yahya Grenoble INP, 2009

Circuit Model: Petri nets [1] [2] are family of graphs which are composed of arcs,

transitions and places. Petri nets are very convenient environment for modeling and analyzing

concurrent systems. Consequently, they are widely used in the works concerning modeling of

asynchronous circuits. Most of the literature is using Petri nets and timed marked graphs [35],

[36], [50], [51], [26]. In our methodology, we are using a subclass of Petri nets called

“Dependency Graphs” [45], [43].

Delay Model: modeling delays is one of the most problematic issues in asynchronous

circuit analysis. Due to their nature, asynchronous circuit components have to be assigned

probabilistic delays for accurate timing analysis and optimization. However, including timing

variability makes the analysis very complex. As a result, there are many previous works which

are based on static delays. They are using either average delays [6], [26], or interval delays [10],

[16], [20], [21], [34]. This delay assumption could be practical only in the early design phase

(where rough timing estimations are quickly needed). Some other works included delay

variability in their analysis, however, they limit the variability to bounded intervals (as in [36]),

or to some specific PDFs (as in [35] they are restricted to exponential distributions and in [18]

they are restricted to only Gaussian distributions which are identical in all stages). In [50] and

[51] they push to more general PDFs , however, they limit their analysis to the computation of

average Time Separation of Events “TSE”. Moreover, their work only supports variability

scenarios which are fitted to regular PDFs. Generally speaking, works which are supporting

probabilistic delays are very expensive to be applied in situations where rough performance

estimations are quickly needed. Our delay model solved this contradictory between supporting

probabilistic delays and static delays.

Solving Methodology: there are numerous works which tried to analyze asynchronous

circuits by using closed form equations [5], [16], [66], [26]. Though it is a nice solution method,

closed form equations are not practical when time variability is considered. Many works tried to

make the analysis by using Graph based solutions for Petri nets and Markov chains [35], [36],

[50]. However, Graph based methods always suffer from state explosion problems and high

execution times. Some other works solved the problem using simulation based methods. In [51],

they modeled the circuit as a marked graph and then they iteratively simulated the graph. Some

Chapter 3. Asynchronous Circuits Performance Modeling 21

Eslam Yahya Grenoble INP, 2009

solutions based on circuit iterative simulation are introduced in [18]. Simulation based methods

always need large traces to reach reasonable accuracy. In our method, we propose an efficient

solution which is based on a mixture between analytical solutions and iterative simulation.

 Type of Performance Analysis: there is no clear consensus about the most useful

performance metrics for characterizing asynchronous circuits. Estimating some bounds on the

TSE proposes a nice solution for the verification of asynchronous circuits [36] [50] [51].

However, it is not optimum for analyzing and optimizing the performance. As they should be

analyzed and optimized for their average case performance, asynchronous circuits could be

characterized by time distribution of their events. There are works which calculate the PDFs for

the Input/Output arrival times [35] [18]. The analysis we propose in our method falls in this

class.

Circuit Structure Limitations: one of the most complex problems while reading the

literature is to identify the structure limitation for each work. There are some of works which

concerned linear asynchronous pipelines [5] [16] [18]. Most of the previous works are restricted

to acyclic/cyclic deterministic asynchronous circuits (decision free) [35] [36] [26] [50]. Very few

works tried to support limited circuit classes which contain choices. For instance, in [51] they

support Petri nets with unique-choice places. To the best of our knowledge, there is no

methodology supporting general nondeterministic asynchronous structures. Since supporting

these structures is essential for building a practical analysis method, we designed our

methodology so that asynchronous structures with choices are supported.

In this chapter, our performance modeling method is introduced. This method is

composed of three models, Circuit Model, Delay Model and Analytical model. The circuit model

is based on a class of Petri nets called “Dependency Graphs”. By means of this model, the

dependencies between the circuit transitions are captured. Our delay model is composed of delay

vectors; this model is flexible for representing static and statistical delays. From the circuit

model, analytical equations are derived to represent the behavior of the circuit handshaking. By

iteratively solving this model, timing information of the circuit events is extracted.

3.2 Circuit Model

Chapter 3. Asynchronous Circuits Performance Modeling 22

Eslam Yahya Grenoble INP, 2009

Firstly we are going to present a circuit level abstraction which is able to unify the

procedure for different circuit implementations. Afterward, the usage of dependency graphs to

model the abstracted circuits is detailed.

3.2.1 F-plus-R Circuit abstraction

There are many different implementations for asynchronous circuits. To build a general

method for modeling different styles, we need an abstraction step which is able to unify these

styles to a single abstracted model. This abstraction is very important to make the isolation

between the details of circuit implementation and the modeling methodology. As explained in

Section 2.1, asynchronous circuits can be implemented as Bundled data circuits or 1-of-n

encoded-data circuits. In Bundled data, Figure 3.1 (a), there are two paths: the data path and the

control path. In the data path, data are single rail and function blocks are normal combinational

functions. The control path contains the Request and Acknowledge signals for implementing the

handshaking protocol (2-phase, 4-phase). To maintain correct behavior, matching delays have to

be inserted in the request signal paths to compensate the propagation delays of the data path

function blocks. From timing analysis point of view, this implementation style can be modeled

using the register “R”, which implements the handshaking protocol with the corresponding

transition delays, and abstracted Function Block “F”, which abstracts the combinational function

into an equivalent time delay. We call this circuit model “F-Plus-R Model”.

Chapter 3. Asynchronous Circuits Performance Modeling 23

Eslam Yahya Grenoble INP, 2009

Ri Out_Req

Out_Ack

In_Req

In_Ack

Delay Ri+1 Out_Req

Out_Ack

In_Req

In_Ack

Comp
F

Data
Latch

Data
Latch

DATA

Control Path

Data Path

(Single Rail) Single Rail

(a) Bundled Data

(b) 1-Of-n Encoding

Ri Out_Req

Out_AckIn_Ack Out_Ack

In_Req

In_Ack

QDI
F

DATA Ri+1

n-Rail

1-Of-n
Encoded

Data

(c) F-plus-R Model

Ri Out_Req

Out_Ack

In_Req

In_Ack

Ri+1 Out_Req

Out_Ack

In_Req

In_Ack

F

(d) Linear Pipeline

TX
R0

Function
Block

(F1)
Register

(R1)

Function
Block
(FN)

Register
(RN)

RX
RN+1

One stage

InAck OutAck

Function
Block

(F2)
Register

(R2)

N stages

One stage

In

InAck

Out

OutAck

In Out

STG1 STG2 STGN

Ri Out_Req

Out_Ack

In_Req

In_Ack

Delay Ri+1 Out_Req

Out_Ack

In_Req

In_Ack

Comp
F

Data
Latch

Data
Latch

DATA

Control Path

Data Path

(Single Rail) Single Rail

Ri Out_Req

Out_Ack

In_Req

In_Ack

Delay Ri+1 Out_Req

Out_Ack

In_Req

In_Ack

Comp
F

Data
Latch

Data
Latch

DATA

Control Path

Data Path

(Single Rail) Single Rail

(a) Bundled Data

(b) 1-Of-n Encoding

Ri Out_Req

Out_AckIn_Ack Out_Ack

In_Req

In_Ack

QDI
F

DATA Ri+1

n-Rail

1-Of-n
Encoded

Data
Ri Out_Req

Out_AckIn_Ack Out_Ack

In_Req

In_Ack

QDI
F

DATA Ri+1

n-Rail

1-Of-n
Encoded

Data

(c) F-plus-R Model

Ri Out_Req

Out_Ack

In_Req

In_Ack

Ri+1 Out_Req

Out_Ack

In_Req

In_Ack

F
Ri Out_Req

Out_Ack

In_Req

In_Ack

Ri+1 Out_Req

Out_Ack

In_Req

In_Ack

F

(d) Linear Pipeline

TX
R0

Function
Block

(F1)
Register

(R1)

Function
Block
(FN)

Register
(RN)

RX
RN+1

One stage

InAck OutAck

Function
Block

(F2)
Register

(R2)

N stages

One stage

In

InAck

Out

OutAck

In Out

STG1 STG2 STGN

TX
R0

Function
Block

(F1)
Register

(R1)

Function
Block
(FN)

Register
(RN)

RX
RN+1

One stage

InAck OutAck

Function
Block

(F2)
Register

(R2)

N stages

One stage

In

InAck

Out

OutAck

In Out

STG1 STG2 STGN

Figure 3.1: Asynchronous Circuit:
 (a) Bundled Data (b) 1-Of-n Encoding (c) F-Plus-R Equvilant Model (d) Linear Pipeline

In case of the 1-of-n coding style, function blocks are more complex as they should be

hazard free circuits. The most common implementation style in such a case is Dual-Rail QDI

circuits. In most of the cases especially with the complex functionalities, these function-blocks

contain Muller gates which could be seen as memory elements. However, as long as these Muller

gates do not contain completion detection circuits, they do not break the propagation delay from

the input to the output. In such a case, we consider these Muller gates as a part of the function

blocks and we abstract all of the functionality in an equivalent delay. As a result, circuits which

are implemented using 1-of-n encoding can be modeled using the F-Plus-R model, where “R” are

Chapter 3. Asynchronous Circuits Performance Modeling 24

Eslam Yahya Grenoble INP, 2009

implementing the handshaking protocol with the corresponding transition delays, and “F” are

abstracting the hazard free function-blocks into an equivalent time delay.

In practice and for both implementation styles, function blocks can be easily analyzed by

standard timing analysis tools. Moreover, these function blocks are not depending on the

handshaking protocol implementation. For example, moving from WCHB to FDFB is not

affecting the function-block implementation. As a result, it is efficient to make the timing

analysis for the function blocks once and then abstract it as a time delay. After that we can insert

this function blocks into different circuits with different handshaking protocols.

The structural conventions in the F-plus-R model, Figure 3.1 (d), are that the pipeline is

composed of Stages “STG”, each stage is marked by an index (STG1, STG2, …. , STGN

3.2.2 Circuit Models for Linear Structures

). Each

stage is composed of a Register and any number of Function Blocks. TX and RX are modeling

the Input/Output characteristics of the environment. More details about modeling different

registers are explained in the next sub-sections.

In our method, the circuit model is based on Dependency Graphs [45], [43]. A

Dependency Graph is a time-marked directed-graph where the nodes of the graph correspond to

specific rising or falling transitions of circuit components, and the edges represent the

dependencies between signal transitions. The delay of each transition is represented by a value

assigned to the corresponding node in the graph.

Figure 3.2 (a) shows the circuit implementation of a Dual-Rail WCHB register, the circuit

is delimited by a dashed box. Due to the F-plus-R model, this circuit is to be abstracted to R

component; the interface outside the dashed box shows the F-plus-R abstraction of this circuit.

During the abstraction, if gates C1 and C2 have the same delays (say 60 ps), the register is

abstracted by a forward delay which is equal to 60 ps. Suppose C1 has a delay of 60 ps and C2

has a delay of 40 ps, the way that we calculate the forward delay is by multiplying probability of

going through C1 by its delay and the probability of going through C2 by its delay. In this way,

we can construct a statistical delay profile for the abstracted “R”. By means of this abstraction,

Chapter 3. Asynchronous Circuits Performance Modeling 25

Eslam Yahya Grenoble INP, 2009

bundled data, dual-rail and 1-of-8 registers end up with the same abstracted model with different

delay profiles.

TX

TX

F1 R1

F1 R1

A1

F2 R4

F2 R4

A4A1 A4

R2

R2

A2 A2

F3

F3

R3

R3

A3 A3

F4

F4

RX

RX

O_A O_A

R0 RegN+1

C2

C1 Out0

Out1

In0

In1

InAck

Reset

Reset OutAck

In_Req Out_Req

(a) F-plus-R abstraction for Dual-Rail WCHB Register

(c) Dependency Graph of Linear Pipeline based on WCHB Register

(b) Linear Pipeline

TX
R0

Function
Block

(F1)
Register

(R1)

Function
Block
(FN)

Register
(RN)

RX
RN+1

One stage

InAck OutAck

Function
Block

(F2)
Register

(R2)

N stages

One stage

In

InAck

Out

OutAck

In Out

STG1 STG2 STGN

TX

TX

F1 R1

F1 R1

A1

F2 R4

F2 R4

A4A1 A4

R2

R2

A2 A2

F3

F3

R3

R3

A3 A3

F4

F4

RX

RX

O_A O_A

R0 RegN+1
TX

TX

F1 R1

F1 R1

A1

F2 R4

F2 R4

A4A1 A4

R2

R2

A2 A2

F3

F3

R3

R3

A3 A3

F4

F4

RX

RX

O_A O_A

R0 RegN+1
TX

TX

F1 R1

F1 R1

A1

F2 R4

F2 R4

A4A1 A4

R2

R2

A2 A2

F3

F3

R3

R3

A3 A3

F4

F4

RX

RX

O_A O_A

R0 RegN+1

C2

C1 Out0

Out1

In0

In1

InAck

Reset

Reset OutAck

In_Req Out_Req

C2

C1 Out0

Out1

In0

In1

InAck

Reset

Reset OutAck

In_Req Out_Req

(a) F-plus-R abstraction for Dual-Rail WCHB Register

(c) Dependency Graph of Linear Pipeline based on WCHB Register

(b) Linear Pipeline

TX
R0

Function
Block

(F1)
Register

(R1)

Function
Block
(FN)

Register
(RN)

RX
RN+1

One stage

InAck OutAck

Function
Block

(F2)
Register

(R2)

N stages

One stage

In

InAck

Out

OutAck

In Out

STG1 STG2 STGN

TX
R0

Function
Block

(F1)
Register

(R1)

Function
Block
(FN)

Register
(RN)

RX
RN+1

One stage

InAck OutAck

Function
Block

(F2)
Register

(R2)

N stages

One stage

In

InAck

Out

OutAck

In Out

STG1 STG2 STGN

Figure 3.2: Dependency Graph of a linear-pipeline circuit which is based on WCHB protocol

Chapter 3. Asynchronous Circuits Performance Modeling 26

Eslam Yahya Grenoble INP, 2009

 Figure 3.2 (b) shows F-plus-R abstracted model for N-stages asynchronous linear-

pipeline which is based on WCHB register. When TX injects an evaluation token, this token

passes through the function block. This token creates a transition at the output of the function

block after a delay which is equal to the function block propagation delay; this delay is denoted

as “D_F↑” for evaluation phase and “D_F↓” for reset phase. After that, this transition fires the

register “R” input request, which propagates inside the register (gates C1 or C2 Figure 3.2 a) after

some delay; this delay is denoted as “D_R↑” for evaluation phase and “D_R↓” for reset phase.

After its propagation inside the register, this tokens creates a transition at the register output

which fires the input of the function block in the next stage and the input of the completion

detection circuit (the NOR gate in Figure 3.2 a). The completion detection circuit creates an

output transition (input acknowledgment signal) after some delay; this delay is denoted as

“D_A↑” for evaluation phase and “D_A↓” for reset phase. This process continues until the token

propagates through the whole pipeline.

Figure 3.2 (c) depicts the dependency graph of the pipeline in Figure 3.2 (b). Deriving this

dependency graph from the WCHB circuit, Figure 3.2 (a), is quite simple. When TX fires a

transition, F is directly firing an output transition as a consequence. This transition fires the

register input request, however this register forms a synchronization point (or rendezvous point)

between this transition and another one coming from the acknowledgment signal of the next

stage; this synchronization is implemented by a Muller gate. In the dependency graph, this

synchronization is represented by the two arcs coming at the inputs of R, where the output

transition of R can not fire until its two inputs are fired. From the dependency graph, it is very

clear how the events in such a pipeline are tightly coupled.

Chapter 3. Asynchronous Circuits Performance Modeling 27

Eslam Yahya Grenoble INP, 2009

+

C1
Out0

+

C2
Out1

In0

In1

OutAck

C3InAck

Reset

Reset

Set

+

C4

-

+

+

C1

+

C1
Out0

+

C2

+

C2
Out1

In0

In1

OutAck

C3InAck

Reset

Reset

Set

+

C4

-

+

(a) PCHB Schematic

OutAck

+

C1
Out0

+

C2
Out1

In0

In1

C3InAck

Reset

Reset

+

OutAck

+

C1

+

C1
Out0

+

C2

+

C2
Out1

In0

In1

C3InAck

Reset

Reset

+

(b) PCFB Schematic (c) FDFB Schematic

+

C3
Out0

+

C4
Out1

In0

In1

OutAck

InAck

Reset

Reset

C5

C1

C2

Reset

+

C3

+

C3
Out0

+

C4

+

C4
Out1

In0

In1

OutAck

InAck

Reset

Reset

C5

C1

C2

Reset

O_A

RegN+1
F1 R1

F1 R1

A1

F2 R2

F2 R2

A2

F3 R3

F3 R3

A3

FB4 R4

FB4 R4

ACK4A1 A2 A3 A4

TX

TX

Reg0
RX

RX

O_A O_A

RegN+1
F1 R1

F1 R1

A1

F2 R2

F2 R2

A2

F3 R3

F3 R3

A3

FB4 R4

FB4 R4

ACK4A1 A2 A3 A4

TX

TX

Reg0
RX

RX

O_A

F1 R1

F1 R1

F2 R2

F2 R2

A2

FB3 Reg3

FB3 Reg3

ACK3

F4 R4

F4 R4

A4Int1 Int2 Int3 Int4A1

A2 ACK3 A4Int1 Int2 Int3 Int4A1

TX

TX

Reg0
RX

RX

O_A O_A

RegN+1
F1 R1

F1 R1

F2 R2

F2 R2

A2

FB3 Reg3

FB3 Reg3

ACK3

F4 R4

F4 R4

A4Int1 Int2 Int3 Int4A1

A2 ACK3 A4Int1 Int2 Int3 Int4A1

TX

TX

Reg0
RX

RX

O_A O_A

RegN+1

F1 R1

F1 R1

F2 R2

F2 R2

A2

F3 R3

F3 R3

A3

F4 R4

F4 R4

ACK4Int1 Int2 Int3 Int4A1

A2 A3 ACK4Int1 Int2 Int3 Int4A1

FInt1 FInt2 FInt3 FInt4

FInt1 FInt2 FInt3 FInt4

TX

TX

Reg0
RX

RX

O_A O_A

RegN+1
F1 R1

F1 R1

F2 R2

F2 R2

A2

F3 R3

F3 R3

A3

F4 R4

F4 R4

ACK4Int1 Int2 Int3 Int4A1

A2 A3 ACK4Int1 Int2 Int3 Int4A1

FInt1 FInt2 FInt3 FInt4

FInt1 FInt2 FInt3 FInt4

TX

TX

Reg0
RX

RX

O_A O_A

RegN+1

(d) Dependency Graph of Linear Pipeline based on PCHB Register

(e) Dependency Graph of Linear Pipeline based on PCFB Register

(f) Dependency Graph of Linear Pipeline based on FDFB Register

Figure 3.3: Dependency Graphs of a linear-pipeline circuit which is based on PCHB, PCFB and FDFB

Chapter 3. Asynchronous Circuits Performance Modeling 28

Eslam Yahya Grenoble INP, 2009

Figure 3.3 (d, e and f) shows the dependency graphs of PCHB, PCFB and FDFB

protocols respectively. From the PCHB register schematic, Figure 3.3 (a), we can easily derive its

dependency graph. In the evaluation phase, PCHB is the same as WCHB. In the reset phase, we

can see that register Ri can generate a transition on its output independently of the reset transition

coming from the function block Fi

In addition to function-blocks and linear-registers, the above dependency graphs show

how to model the token producer (transmitter) “TX” and token consumer (receiver) “RX”. These

components are mandatory for modeling the environment interaction with the circuit.

; the Token Expectation Gain (Section 2.2.2). Regarding

PCFB, the internal state “Int”, the output of C4 in Figure 3.2 (b), makes the register able to

memorize a reset token in addition to the unacknowledged evaluation token. However, the

opposite order of the tokens is not possible, note the asymmetry in the dependency graph. The

FDFB dependency graph is completely symmetric which shows its regular capacity regardless

the order of the incoming tokens. The process of deriving the dependency graph from the circuit

is a systematic process. This formal representation is able to capture different asynchronous-

circuit styles.

3.2.2 Circuit Models for Nonlinear Structures

As discussed in Chapter 2, asynchronous nonlinear structures are classified into two

categories; Deterministic (or Choice Free) and non-deterministic (structures with choices). Most

of the previous works restricted their models to the deterministic nonlinear structures [26]. Few

of them slightly extended their work to cover limited classes on nondeterministic pipelines [20]

[51]. Most of these works relies on graph solutions of the Petri-net models of their circuits.

Solving Petri nets with choices is quite complex and is a time consuming problem. This explains

the restriction to either choice free circuit classes or limited circuit classes with choice. In this

PhD we propose a general and efficient solution for both nonlinear structures.

Deterministic-Nonlinear Structures: there are two nonlinear registers which are

deterministic, Forks “Fk” and Joins “J”. Figure 3.4 (a) shows the F-plus-R model of a Fork which

is connected to a circuit. Forks have a single input channel and multi output channels (from 2 to

n). When a token is injected to the input channel of the Fork, this token is duplicated n-times and

injected to all the Fork output channels; this is why some authors name Forks as “Duplicators”.

Chapter 3. Asynchronous Circuits Performance Modeling 29

Eslam Yahya Grenoble INP, 2009

The Dependency Graph, “DG”, of WCHB Fork is depicted in Figure 3.4 (b). Compared to

the dependency graph of a WCHB linear register (Figure 3.2 (c)), the Fork DG is the same except

that it is connected to multi outputs. Consequently, once the Fork produces a transition on its

output (Fk↑), this transition fires n-transitions (two in the graph Fx↑ and Fy↑). In addition, the

Fork is collecting the acknowledgment of its output branches. This is why Fk↑ has dependencies

on both Ax↑ and Ay↑. Despite that, the Fork DG is the same as a linear register DG. Deriving the

DGs of the other protocols is a straightforward process. We use the DG of a linear register and

duplicate its output dependencies n-times where “n” is the number of the Fork output branches.

Figures 3.5 (a, b and c) show the DG of PCHB, PCFB and FDFB Forks respectively.

 Figures 3.6 (a and b) show the F-plus-R model and the DG of a WCHB Join. Joins have a

multi input channels, (from 2 to n), and single output channel. Joins collect n-input tokens and

produce one output token at the output channel. Similarly to Forks, DG of different Join

protocols can be derived from linear register DGs. Depending on the required protocol, we place

the proper linear register DG and duplicate its input dependencies n-times, where “n” is the

number of the Join input-channels. The DGs of PCHB, PCFB and FDFB Joins are depicted in

Figure 3.7 (a, b and c)

Chapter 3. Asynchronous Circuits Performance Modeling 30

Eslam Yahya Grenoble INP, 2009

(a) F-plus-R Model for a Fork Connected in a Circuit

(b) Dependency Graph for a WCHB Fork

Rz

Rz

F

F

Fk

Fk

A A

Fx

Fx

FY

FY

Rx

RY

Rx

RY

AX

AY

AX

AY

Rz

Rz

F

F

Fk

Fk

A A

Fx

Fx

FY

FY

Rx

RY

Rx

RY

AX

AY

AX

AY

FkFZRZ

A

FX RX

FY RY

AX

AY

LPZ

LPX

LPY

FkFZRZ

A

FX RX

FY RY

AX

AY

LPZ

LPX

LPY

Figure 3.4: Dependency Graph of WCHB Fork

Chapter 3. Asynchronous Circuits Performance Modeling 31

Eslam Yahya Grenoble INP, 2009

Rz

Rz

F

F

Fk

Fk

A A

Fx

Fx

FY

FY

Rx

RY

Rx

RY

AX

AY

AX

AY

Rz

Rz

F

F

Fk

Fk

A A

Fx

Fx

FY

FY

Rx

RY

Rx

RY

AX

AY

AX

AY

Rz

Rz

Fk

Fk

Fx

Fx

FY

FY

Rx

RY

Rx

RY

AX

AY

AX

AY

F

F

A Int

A Int

Rz

Rz

Fk

Fk

Fx

Fx

FY

FY

Rx

RY

Rx

RY

AX

AY

AX

AY

F

F

A Int

A Int

Rz

Rz

Fk

Fk

Fx

Fx

FY

FY

Rx

RY

Rx

RY

AX

AY

AX

AY

F

F

A Int

A Int

FInt

FIntRz

Rz

Fk

Fk

Fx

Fx

FY

FY

Rx

RY

Rx

RY

AX

AY

AX

AY

F

F

A Int

A Int

FInt

FInt

(a) Dependency Graph of PCHB Fork

(b) Dependency Graph of PCFB Fork

(c) Dependency Graph of FDFB Fork

Figure 3.5: Dependency Graph of PCHB, PCFB and FDFB Fork

Chapter 3. Asynchronous Circuits Performance Modeling 32

Eslam Yahya Grenoble INP, 2009

(a) F-plus-R Model for a Join Connected in a Circuit

(b) Dependency Graph for a WCHB Join

RX

RX

RY

RY

FX

FY

FX

FY

J

J

FZ

FZ

A A

RZ

RZ

AZ AZ

RX

RX

RY

RY

FX

FY

FX

FY

J

J

FZ

FZ

A A

RZ

RZ

AZ AZ

J FZ RZ

AZ

FXRX

FYRY

A

A

LPZ

LPX

LPY

J FZ RZ

AZ

FXRX

FYRY

A

A

LPZ

LPX

LPY

Figure 3.6: Dependency Graph of WCHB Join

Chapter 3. Asynchronous Circuits Performance Modeling 33

Eslam Yahya Grenoble INP, 2009

(a) Dependency Graph of PCHB Join

(b) Dependency Graph of PCFB Join

(c) Dependency Graph of FDFB Join

RX

RX

RY

RY

FX

FY

FX

FY

J

J

A Int

A Int

FZ

FZ

RZ

RZ

AZ AZ

RX

RX

RY

RY

FX

FY

FX

FY

J

J

A Int

A Int

FZ

FZ

RZ

RZ

AZ AZ

RX

RX

RY

RY

FX

FY

FX

FY

FZ

FZ

RZ

RZ

AZ AZ

J

J

A Int

A Int

FInt

FInt

RX

RX

RY

RY

FX

FY

FX

FY

FZ

FZ

RZ

RZ

AZ AZ

J

J

A Int

A Int

FInt

FInt

RX

RX

RY

RY

FX

FY

FX

FY

J

J

FZ

FZ

A A

RZ

RZ

AZ AZ

RX

RX

RY

RY

FX

FY

FX

FY

J

J

FZ

FZ

A A

RZ

RZ

AZ AZ

Figure 3.7: Dependency Graph of PCHB, PCFB and FDFB Join

Chapter 3. Asynchronous Circuits Performance Modeling 34

Eslam Yahya Grenoble INP, 2009

Nondeterministic-Nonlinear Structures: Modeling asynchronous structures with choices

is always challenging. Petri nets are the modeling environment used to model asynchronous

systems in most of the literature. Solving Petri nets with choices is quite complex especially

when graph analysis methods are used. As previous works, we are using conditional Petri nets to

model structures with choices. However, our solving methodology is efficient enough to get rid

of the complexity of solving such models. That is discussed in more details in the next chapters.

 Normally, Dependency graphs are choice free graphs. However, they are a subset of Petri

nets so we can extend them to implement systems with choices. Figure 3.8 (a) shows the F-plus-

R model for a split structure “S”. Splits have a single input channel, “n” output-channels and a

control channel. When a token is injected to the input of a Split, this token is passed to a single

output channel which is determined by the control (selection) value. This functionality is

identical to the standard DEMUX functionality. The control input is modeled as an input channel

with a function block called “Cnt”. This function block expresses the delay characteristics of the

control channel. The register “Rc” is modeling the handshaking between the control-signal

generator and the Split. From the behavior point of view, there are dependencies between the

Split and all of its output channels. Unlike Forks, Split output has a dependency with a single

output channel per each data transfer. The selection of this output is determined by the value of

the control input. As a result, the dependency graph of the split, depicted in Figure 3.8 (b), is

similar to the dependency graph of a Fork except that all the dependencies between the Split

output and the output channels are conditioned by the value of the control input. In Figure 3.8,

the split has two output channels, x-channel and y-channel. Consequently, the control input has

either a value of “C0” (to select the x-channel) or a value of “C1” (to select the y-channel). In the

DG, all dependencies between S↑↓ and (Fx↑↓/Fy↑↓ , Ax↑↓/Ay↑↓) are conditioned by C0/C1.

Similarly, F-plus-R model and dependency graph of a Merge “M” are shown in Figure 3.9

(a and b) respectively. This time the control input determines which input channel is injected to

the output channel. This is similar to MUX functionality. The DGs of PCHB, PCFB and FDFB

Split/Merges can be systematically derived in a similar way as the WCHB ones.

Chapter 3. Asynchronous Circuits Performance Modeling 35

Eslam Yahya Grenoble INP, 2009

Rz

Rz

F

F

S

S

A A

Fx

Fx

FY

FY

Rx

RY

Rx

RY

AX

AY

AX

AY

C1

C1
C0

C1

C0

C0

C0

C1

Rz

Rz

F

F

S

S

A A

Fx

Fx

FY

FY

Rx

RY

Rx

RY

AX

AY

AX

AY

C1

C1
C0

C1

C0

C0

C0

C1

(a) F-plus-R Model for a Split Connected in a Circuit

(b) Dependency Graph for a WCHB Split

SFZRZ

A

FX RX

FY RY

AX

AY

RC

Cnt

AC

SFZRZ

A

FX RX

FY RY

AX

AY

RC

Cnt

AC

Figure 3.8: Dependency Graph of WCHB Split

Chapter 3. Asynchronous Circuits Performance Modeling 36

Eslam Yahya Grenoble INP, 2009

RX

RX

RY

RY

FX

FY

FX

FY

J

J

FZ

FZ

A A

RZ

RZ

AZ AZC0

C0

C0

C0

C1

C1

C1

C1

RX

RX

RY

RY

FX

FY

FX

FY

J

J

FZ

FZ

A A

RZ

RZ

AZ AZC0

C0

C0

C0

C1

C1

C1

C1

(a) F-plus-R Model for a Merge Connected in a Circuit

(b) Dependency Graph for a WCHB Merge

M FZ RZ

AZ

FXRX

FYRY

A

A

RC

Cnt

AC

M FZ RZ

AZ

FXRX

FYRY

A

A

RC

Cnt

AC

Figure 3.9: Dependency Graph of WCHB Merge

Chapter 3. Asynchronous Circuits Performance Modeling 37

Eslam Yahya Grenoble INP, 2009

3.3 Delay Model

No doubt that Static Timing Analysis “STA” is not a sufficient technique for analyzing

circuit performance especially with the recent technologies. Particularly with asynchronous

systems performance analysis, considering time variability is mandatory. Asynchronous circuits

are self timed which makes their performance affected much by variability. Same asynchronous

component could have different response times as many as the number of delays it has. That

makes asynchronous circuit having variable performance depending on the instantaneous delay

value of each component. Considering variability while analyzing asynchronous circuit is

mandatory not only for timing analysis, but also for the Electromagnetic Interference “EMI” and

reliability against process variability. Most of previous works consider average delays or static

time delays for the circuit components. This is not an accurate assumption as the main benefit of

asynchronous circuits, from the performance point of view, is their ability to compute in average

time instead of worst case which reduces the pessimism.

In this section, we briefly introduce some important concepts about delay variability and

its sources. After that, some investigations about the delay Probability Density Functions “PDF”

used in ST-Microelectronics technologies are done. Afterward, our delay model is introduced.

The main goals we take into consideration while choosing our delay model are as follows:

1. Generality: we need a model which is able to represent different delay types (average,

deterministic and statistical).

2. Adaptability: this is one of the most important goals as we want a model which adapts its

computation complexity to the delay characteristics. That means the model should be able to

represent complex statistical PDFs and become simple when static delays are used.

3. Simplicity: to reduce the computation needs as much as possible for obtaining an efficient

method this is able to analyze complex circuits in a reasonable time.

Parameters chosen by the designer are perturbed from their nominal values. Sources of

variation can be broadly classified into two classes [40], Process Variation and Environmental

Variation.

Process Variation: due to perturbations in the fabrication process (W, L, …).

Chapter 3. Asynchronous Circuits Performance Modeling 38

Eslam Yahya Grenoble INP, 2009

1. Inter-die variation: variation from die to die, and affect all the devices on the same chip in the

same way.

2. Intra-die variation: variability within a single die. It may affect devices on the same chip in a

different way.

Simulating the design at different corners solved the Inter-die variation for many years. However,

the intra-die variation could not be managed in the same way.

Environmental variation: due to the change in the operating conditions of the circuit.

(Supply voltage, Temp, radiation, ….)

A third source of variation can be identified; it is the Data Dependency. In this case we

take into account the variation in the circuit response depending on the value of the processed

data. One good example is the time response of an adder. These sources introduce variations

which are different in their nature. One can identify two main classes of the variation nature.

Random Variations: depicts random behavior that can be characterized in terms of a

distribution. This distribution may either be explicit (large number of samples provided by the

fab-house) or implicit (PDF).

Systematic Variation: show predictable variation-trends across a chip.

Random variations in some process or environmental parameters (as supply voltage and

temperature) often show some degree of local Spatial-Correlation, whereby variations in one

transistor in a chip are similar in nature to those in spatially-neighboring transistors. However,

they may significantly differ from transistors those are spatially far away.

Statistical Static Timing Analysis (SSTA): It is an extension of traditional STA

techniques to move beyond their deterministic nature. SSTA treats delays not as fixed numbers,

but as Probability Density Functions (PDFs).

At this level, we are in need to know what kinds of PDFs are used in different

technologies to model the delay variability. We did our investigation targeting 65nm and 45nm

ST-Microelectronics CMOS technologies since our TAL library is based on them. We used

simulation based methods for extracting the used PDFs. Various components of the TAL library

Chapter 3. Asynchronous Circuits Performance Modeling 39

Eslam Yahya Grenoble INP, 2009

are tested by composing them in circuits and doing MontCarlo simulation for their propagation

delays. Figure 3.10 shows an example of a test circuit for investigating the PDFs of an inverter.

Figure 3.10: Example of Test Circuit for investigating the used PDFs

In all the circuits, results always showed a Gaussian distribution for the propagation

delays in both cases of inter-die and intra-die variation and the composition of both. These results

are consistent with the results presented in [32] [27] which are extracted by simulation and

measuring of different silicon runs. Since the Gaussian PDF is widely used to model different

process variation, we did some investigation about the mathematical properties of this

distribution. However, we insisted while designing our delay model on generality (ability of

representing other PDF).

Chapter 3. Asynchronous Circuits Performance Modeling 40

Eslam Yahya Grenoble INP, 2009

Gaussian distribution is an important family of continuous probability distributions. Each

member of the family may be defined by two parameters, the mean ("average", μ) and variance

(standard deviation squared) σ2

Standard Deviation σ: In probability and statistics, the standard deviation is a measure of

the dispersion of a set of values.

, respectively.

Variance σ2

To indicate that a real-valued random variable X is normally distributed with mean μ and

variance σ² ≥ 0, we write: X ≈ N (μ , σ

: The variance of a random variable, probability distribution, or sample is one

measure of statistical dispersion, averaging the squared distance of its possible values from the

expected value (mean).

2

Standard deviation and confidence intervals: there is very important rule for Gaussian

distributions; it is called the Empirical Rule (also known as 68-95-99.7 rule, or three-sigma

rule). Figure 3.11 shows this rule.

).

Figure 3.11: Empirical Rule

The empirical rule tells us that if the data follows a normal distribution approximately

68% of the data values can be expected to lie within a one standard deviation interval around the

mean. Approximately 95% of the data values can be expected to lie within a two standard

deviation interval around the mean. Virtually all (approximately 99.7%) of the data values can be

expected to lie within a three standard deviation interval around the mean. To be able to claim

that a data sample is normally distributed we have to insure that the samples are following the

Chapter 3. Asynchronous Circuits Performance Modeling 41

Eslam Yahya Grenoble INP, 2009

Empirical rule. This, for sure, implies some conditions on the minimum number of values

representing this data.

One important property we recall here is the mathematical composition of two Gaussian

PDFs. If and are independent normal random variables,

then their sum is normally distributed with:

(3.1)

One other way to obtain the sum is to compute the convolution of the two density

functions.

3.3.1 Modeling variability in circuit components

Delay variability in a circuit component can be modeled in two ways:

1. By using a PDF representing the delay variability. This PDF is sampled and used when

composing this component with another one. Normally the delays of the circuit component

will be added to each others in each logic stage (Stage is composed of combinational logic

and registers). Adding delays represented by PDFs is done by convolving them.

Advantages: With relatively few numbers of samples we can represent the PDF,

especially if it is regular PDF as Gaussian distribution.

Disadvantages: It is restricted to regular delay distributions. Moreover, the algorithm of

the convolution is complex from the point of view of computational needs. The convolution of

two-sampled PDF will result another PDF but represented by more samples. In other words,

convolution results in increasing number of samples. This property forces any simulator using

convolution to watch the size of results and reduce the number of samples to avoid size-

explosions especially in large circuits [32]. Reducing number of samples is not a trivial operation

(from processing time point of view).

2. By using a sample which is following the delay PDF; we call this sample “Delay Vector”.

Each value of this vector represents a possible delay value. The overall distribution of the

delay-values is representing the component delay-PDF.

http://en.wikipedia.org/wiki/Statistical_independence�
http://en.wikipedia.org/wiki/Random_variable�

Chapter 3. Asynchronous Circuits Performance Modeling 42

Eslam Yahya Grenoble INP, 2009

Advantages: Generality; this way of representation enables representing regular PDFs as

well as irregular variability distributions. In addition of that, it needs simple operation to solve

the composition of two components; it is just an addition. In this case, adding two delay vectors

to each others producing the same number of samples. In other words, using this representation

gives number of samples at the output, which is equivalent to the number of samples in the input

(no sample increasing).

Disadvantages: First, we must start with relatively high number of samples to insure a

reasonable accuracy in representing the PDF.

3.3.2 Delay Token Vector

Delays in our model are found in Function Blocks “F” and Registers “R”. Time

characteristics of the environment are modeled by TX and RX. Each circuit component is

assigned a Delay Token Vector “DTV”. The DTV consists in a list of delay pairs [Di,j↑, Di,j

D

↓].

Whereas:

i,j

D

↑: the delay that component “i” needs to complete the evaluation of Token “j”.

i,j

i: the component index inside the circuit.

↓: the delay that component “i” needs to complete the reset of Token “j”.

j: the input-token index.

Every component in the circuit has its own DTV which specifies the component delay

characteristics. This model can simply represent static delays as well as time variable delays. If a

component is assigned average delay, the DTV of this component consists of a single pair

holding the evaluation and reset delays. In case of deterministic time variable delays, the DTV is

an ordered list of pairs providing a delay value each time the component is executed. If the

component has probabilistic delays then the DTV is filled with delay pairs which are following

the PDF of the delays. If the delay variation does not fit to a regular PDF and they are large

number of samples provided from fabrication line measurements, this case can be easily

implemented by the DTV where the samples are the vector components. The last case is

Chapter 3. Asynchronous Circuits Performance Modeling 43

Eslam Yahya Grenoble INP, 2009

practically very common especially when composed process and environmental variation-sources

are taken into consideration. To the best of our knowledge, none of the previous works has the

ability to support such situation.

As discussed earlier, we are targeting a General and Adaptable delay model. The DTV is

a general delay model hence it is able to capture all the possible delay natures especially those

having irregular variability distributions. In addition of that, the length of the DTV is proportional

to the complexity of the delay nature. This property makes our delay model completely

adaptable. If we insure that the complexity of the methodology is proportional to the DTV length

then the adaptability to the delay nature is guaranteed. This point is discussed in more details in

the next chapter.

Variability
Characteristics

DTV
Generator

Extracted Delays by
Standard Tools

DTVs for
Circuit Components

Variability
Characteristics

DTV
Generator

Extracted Delays by
Standard Tools

DTVs for
Circuit Components

Figure 3.12: Delay Token Vector “DTV” Generator

Figure 3.1 shows the block diagram of the DTV generator. First, delay characteristics for

each circuit component are extracted by standard timing analysis tools. After that and by using

library specifying the variability characteristics for the technology, a module called “DTV

Generator” generates the DTVs for the circuit components. The implementation of this module is

discussed in details in the chapter devoted to tools implementation.

Chapter 3. Asynchronous Circuits Performance Modeling 44

Eslam Yahya Grenoble INP, 2009

As discussed in sub-section 3.3.1, there are two ways to model variability in the circuit

component, by using PDFs or by using sampled vectors. Our delay model falls in the second

category. This is the key reason which gave our model its generality and adaptability. However,

the possible disadvantage of this way of modeling is the need for quite large number of samples

for reaching a reasonable accuracy. For investigating this point, we made many test circuit in 65

nm and 45 nm ST-Microelectronics technology. In these circuits we computed the results of

cascading components in one circuit by using two methods:

1. Using Montecarlo simulations in the Cadence Analog Design Flow.

2. Using our Simulator which is based on the DTV model.

 After that we compare the results by the exact delay PDF that is calculated

mathematically using Equation 3.1. The goal of this study is to end up with a figure about the

required DTV length to achieve a reasonable accuracy. Moreover, we should have an idea about

the performance of our delay model compared to the performance of the Montecarlo simulator.

One example for the test circuits is shown in Figure 3.10. This circuit is composed of

chains of inverters which are connected in series. By using the Cadence Montcarlo flow, the

delay-PDF of each inverter in the two branches is simulated. All inverters show Gaussian

distributions for their delays. This circuit is a simple combinational circuit, which means that

delays of the inverters are added to each others to determine the delay of the circuit. Since these

delays are Gaussian PDFs, there summation should follow Equation 3.1. By applying this

equation to calculate the total circuit delay, the delay is determined by the following relation:

µTotal↑ = (k x µInv↑) + (k x µInv↓) + µMul

σ

↑

2
Total↑ = (k x σ2

Inv↑) + (k x σ2
Inv↓) + σ2

Mul

↑
(3.2)

Where:

µTotal

µ

↑: is the mean of the total circuit-delay in the raising phase.

Inv

µ

↑: is the mean of the Inverter delay in the raising phase.

Inv↓: is the mean of the Inverter delay in the falling phase.

Chapter 3. Asynchronous Circuits Performance Modeling 45

Eslam Yahya Grenoble INP, 2009

µMul

σ

↑: is the mean of the Muller gate delay in the raising phase.

2
Total

σ

↑: is the variance of the total circuit-delay in the raising phase.

2
Inv

σ

↑: is the variance of the Inverter delay in the raising phase.

2
Inv

σ

↓: is the variance of the Inverter delay in the falling phase.

2
Mul

 2k: is the number of Inverter in series.

↑: is the variance of the Muller gate delay in the raising phase

This test circuit is simulated while considering the intra-die variation (named in Cadence

as “Mismatch”). After that, the same circuit is simulated while considering the inter-die variation

(named in Cadence as “Process”). Table 3.1 shows the comparison between the results obtained

from Montecarlo simulation, our DTV model and the exact delay distribution calculated by

Equation 3.2. A snapshot of the Montecarlo simulation done by Cadence is shown in Figure

3.13.

TABLE 3.1: COMPARISON BETWEEN MONTECARLO, DTV MODEL AND EXACT PDF (TIME VALUES IN PS)

 Inv Mul Eq 3.2 Montcarlo DTV
10 102 103 104 103 104 105

µ↑
6

9.86 44.4 459.6 0.39% 0.3% 0.23% 0.03% 0.05% 0.016% 0.018%
µ↓ 10.9 47.2 462.4 0.32% 0.27% 0.21% 0.03% 0.06% 0.010% 0.009%
σ↑ 0.47 2.81 3.89 27.7% 20% 15.2% 3.9 % 0.16% 0.06 % 0.02 %
σ↓ 0.37 2.30 3.78 26.9% 19.3% 14.6% 3.5% 0.16% 0.06 % 0.019%

Second and third columns in Table 3.1 show the delays extracted from a post layout

simulation for the Inverter and the Muller gate. Fourth column shows the total delay for the

circuit shown in Figure 3.10 calculated using Equation 3.2 (where k=20). For readability of the

error, values of standard deviation “σ” are shown in the table. Fifth and sixth columns show the

error percentages of the same values extracted by Montecarlo simulation and by our DTV Model

respectively. From the table, it is clear that both models are following the mathematical rules

while computing the Mean by an error which is less than 1%. However, Montcarlo is giving high

error percentage in computing the standard deviation. The best we can have using 104 iterations

is an error of 15% which is taking very long simulation time (about 80 hours of CPU time). On

Chapter 3. Asynchronous Circuits Performance Modeling 46

Eslam Yahya Grenoble INP, 2009

the contrary, our DTV model could reach an error of 0.16% by using 104 samples. This

simulation is taking a fraction of a second to calculate the results. That gives significant

enhancement in terms of accuracy and simulation time for our model. We can conclude from

these results, that we can safely use our DTV model with 104 or 105 and we guarantee an error

percentage which is less that 1%. Moreover, using this number of samples is also mandatory, for

both methods (Montacarlo and DTV), to be sure that we respect the imperial rule.

Figure 3.13: Montcarlo Simulation for Inverter Circit

3.4 Analytical Model

Previous sections introduce how to model the circuit structure and how to model the

delays in the components. As discussed earlier, there are three main methods for analyzing the

performance, by using graph based methods, by using closed form equations or by using iterative

Chapter 3. Asynchronous Circuits Performance Modeling 47

Eslam Yahya Grenoble INP, 2009

simulations. Our analysis method is a mixture between closed form equations and the iterative

simulations. The idea is to derive a closed form equation which calculates the absolute time of the

output events in terms of the absolute time input events and the circuit components delays. This

closed form equation is solved for a single output event, equivalently single input token.

Afterwards, these closed form equations are iteratively solved the absolute time for the set of

output events which are corresponding to the set of input tokens.

In previous works, the absence of the clock is considered as the absence of any barrier

which is partitioning the circuit. As a result, the circuit is modeled in a marked graph and then

this graph is solved as a single problem either by Markov process as in [35] or by using iterative

simulation for the graph as in [51]. Both methods are suffering huge processing time and

possibility of state explosion. In the contrary, our method considers asynchronous registers as

barriers which are partitioning asynchronous circuit into separate islands. As shown in Figure

3.1 (d), the presence of each register is defining a stage. The interaction between each stage and

its neighbors is defined by the register handshaking protocol. If we can model this protocol, we

are able to solve the circuit as many simple problems instead of a single huge problem.

3.4.1 Analytical Models for Linear Registers

In this subsection, the analytical models of the asynchronous linear-registers are derived.

As an example, we derived the analytical models of the WCHB, PCHB, PCFB and FDFB

handshaking protocols. However, the methodology can be applied to any other handshaking

protocol provided that the circuit model of this protocol is available.

TX

TX

F1 R1

F1 R1

A1

F2 R4

F2 R4

A4A1 A4

R2

R2

A2 A2

F3

F3

R3

R3

A3 A3

F4

F4

RX

RX

O_A O_A

R0 RegN+1
TX

TX

F1 R1

F1 R1

A1

F2 R4

F2 R4

A4A1 A4

R2

R2

A2 A2

F3

F3

R3

R3

A3 A3

F4

F4

RX

RX

O_A O_A

R0 RegN+1
TX

TX

F1 R1

F1 R1

A1

F2 R4

F2 R4

A4A1 A4

R2

R2

A2 A2

F3

F3

R3

R3

A3 A3

F4

F4

RX

RX

O_A O_A

R0 RegN+1
TX

TX

F1 R1

F1 R1

A1

F2 R4

F2 R4

A4A1 A4

R2

R2

A2 A2

F3

F3

R3

R3

A3 A3

F4

F4

RX

RX

O_A O_A

R0 RegN+1

Figure 3.14: Deriving Analytical-Model for WCHB Linear Registers

Chapter 3. Asynchronous Circuits Performance Modeling 48

Eslam Yahya Grenoble INP, 2009

Time Token Vectors “TTV” : As discussed earlier, the objectives of the analytical model

is calculating the absolute time of the output events in terms of the absolute time input events and

the circuit components delays. The Absolute Time of an Event “is the time difference between

time zero and the occurrence of the event”; where Time Zero “is the time of a reference event

(usually the injection of the first token into the system)”. For each register output, there is a

vector which is holding the absolute times of this output events which are corresponding to the

input tokens. We call this vector as Time Token Vector “TTV”.

Figure 3.14 shows the circuit model of a pipeline which is based on WCHB registers.

Suppose that we want to derive the analytical equation which is calculating the TTV of register

“R3”. R3 has four output events, R3↑, R3↓, A3↑ and A3↓. Let’s start with R3

1. The absolute time of “R

↑ (the solid arcs), the

absolute time of this event is the maximum between:

2↑” (previous stage request “Evaluation”) plus the delay of “F3

2. The absolute time of “A

↑”

(current stage Function Block propagation delay “Evaluation”).

4

Analytically, this is written as follows:

↑” (next stage acknowledgment corresponding to the Reset part of

previous Data).

T_R3,j↑ = Max [T_R2,j↑ + D_F3,j↑ ; T_A4,j-1↑] + D_R3,j

In the same way, the analytical equation for “R

↑

3

1. The absolute time of “R

↓” can be derived following the dashed

arcs, it is the maximum between:

2↓” (previous stage request “Reset”) plus the delay of “F3

2. The absolute time of “A

↓” (current

stage Function Block propagation delay “Reset”).

4

T_R

↓” (next stage acknowledgment corresponding to the Evaluation part

of current Data).

3,j↓ = Max [T_R2,j↓ + D_F3,j↓ ; T_A4,j↓] + D_R3,j

In the same way, the equations of A

↓

3↑ and A3↓ can be derived. By generalizing the

equations, we have the following:

Chapter 3. Asynchronous Circuits Performance Modeling 49

Eslam Yahya Grenoble INP, 2009

T_Ri,j↑ = Max [T_Ri-1,j↑ + D_Fi,j↑ ; T_Ai+1,j-1↑] + D_Ri,j

T_R

↑

i,j↓ = Max [T_Ri-1,j↓ + D_Fi,j↓ ; T_Ai+1,j↓] + D_Ri,j

↓

T_Ai,j↓ = T_Ri,j↑ + D_A i,j

T_A

↓

i,j↑ = T_Ri,j↓ + D_A i,j

↑

(3.3.a)

(3.3.b)

Where:

i: is the stage index inside the circuit.

j: is the Data index.

T_Ri,j

T_R

↑: absolute time of the output event in register “i” corresponding to Evaluation phase of

Data “j”.

i,j

D_R

↓: absolute time of the output event in register “i” corresponding to Reset phase of Data “j”.

i,j

D_R

↑: propagation delay of register “i” corresponding to Evaluation phase of Data “j”.

i,j

D_F

↓: propagation delay of register “i” corresponding to Reset phase of Data “j”.

i,j

D_F

↑: propagation delay of Function Block “i” corresponding to Evaluation phase of Data “j”.

i,j

T_A

↓: propagation delay of Function Block “i” corresponding to Reset phase of Data “j”.

i,j

T_A

↓: absolute time of the acknowledgment event in register “i” corresponding to Evaluation

phase of Data “j”.

i,j

D_A

↑: absolute time of the acknowledgment event in register “i” corresponding to Reset phase

of Data “j”.

i,j

D_A

↓: propagation delay of register “i” acknowledgment corresponding to Evaluation phase of

Data “j”.

i,j↑: propagation delay of register “i” acknowledgment corresponding to Reset phase of Data

“j”.

Chapter 3. Asynchronous Circuits Performance Modeling 50

Eslam Yahya Grenoble INP, 2009

For readability of the equations we omit the propagation delay of the register “forward

propagation delay” and of the register-acknowledgment “reverse propagation delay”. This is done

just for readability; however, the propagation delays “Forward/Reverse” are included in the

implementation. After omitting these terms Equation 3.3 becomes:

WCHB :

T_Ri,j↑ = Max [T_Ri-1,j↑ + D_Fi,j↑ ; T_Ai+1,j-1

T_R

↑]

i,j↓ = Max [T_Ri-1,j↓ + D_Fi,j↓ ; T_Ai+1,j

↓]

T_Ai,j↓ = T_Ri,j

T_A

↑

i,j↑ = T_Ri,j

↓

(3.4.a)

(3.4.b)

 In the same manner, the analytical models of PCHB, PCFB and FDFB registers can be

systematically derived from the corresponding circuit models appearing in Figure 3.3 (d, e, f)

respectively. After using the properties of the “Max” operation, the simplified equations of these

analytical models appear in Equations 3.5, 3.6 and 3.7.

PCHB:

T_Ri,j↑ = Max [T_Ri-1,j↑ + D_Fi,j↑ ; T_Ai+1,j-1

T_R

↑]

i,j↓ = Max [T_Ai,j↓ ; T_Ai+1,j

↓]

T_Ai,j↓ = T_Ri,j

T_A

↑

i,j↑ = Max [T_Ri-1,j↓ + D_Fi,j↓ ; T_Ri,j

↓]

(3.5.a)

(3.5.b)

PCFB :

T_Ri,j↑ = Max [T_Ri-1,j↑ + D_Fi,j↑ ; T_Ai+1,j-1

↑]

(3.6.a)

Chapter 3. Asynchronous Circuits Performance Modeling 51

Eslam Yahya Grenoble INP, 2009

T_Ri,j↓ = Max [T_Ai,j↓ ; T_Ai+1,j

↓]

T_Ai,j↓ = T_Ri,j

T_A

↑

i,j↑ = T_Ri-1,j↓ + D_Fi,j

↓

(3.6.b)

FDFB :

T_Ri,j↑ = Max [T_Ri-1,j↑ + D_Fi,j↑ ; T_Ai+1,j-1

T_R

↑]

i,j↓ = Max [T_Ai,j↓ ; T_Ai+1,j

↓]

T_Ai,j↓ = Max [T_Ri-1,j↑ + D_Fi,j↑ ; T_Ri,j-1

T_A

↓]

i,j↑ = Max [T_Ri-1,j↓ + D_Fi,j↓ ; T_Ri,j

↑]

(3.7.a)

(3.7.b)

The handshaking protocol properties discussed in Chapter 2 can be seen clearly in the

analytical models. For example, by comparing the evaluation phase by and reset phase in

Equation 3.4, 3.5, 3.6 and 3.7, one can see that PCHB, PCFB and FDFB registers generates the

output reset event “T_Ri,j↓” once the acknowledgment corresponding to the evaluation token is

received from the next stage register “T_Ai+1,j

Same derivation rules can be systematically applied to the dependency graphs of Forks,

Joins, Splits and Merges.

↓”.

3.4.2 Analytical Models for Forks

The dependency graphs of the WCHB, PCHB, PCFB and FDFB Forks appear in Figures

3.4 and 3.5. The corresponding analytical models appear in Equations 3.8, 3.9, 3.10 and 3.11

respectively.

Chapter 3. Asynchronous Circuits Performance Modeling 52

Eslam Yahya Grenoble INP, 2009

WCHB :

T_Fki,j↑ = Max [T_Ri-1,j↑ + D_Fi,j↑ ; T_AX,j-1↑ ; T_AY,j-1

T_Fk

↑]

i,j↓ = Max [T_Ri-1,j↓ + D_Fi,j↓ ; T_AX,j↓ ; T_AY,j

↓]

T_Ai,j↓ = T_Fki,j

T_A

↑

i,j↑ = T_Fki,j

↓

(3.8.a)

(3.8.b)

PCHB:

T_Fki,j↑ = Max [T_Ri-1,j↑ + D_Fi,j↑ ; T_AX,j-1↑ ; T_AY,j-1

T_Fk

↑]

i,j↓ = Max [T_Ai,j↓ ; T_AX,j↓ ; T_AY,j

↓]

T_Ai,j↓ = T_Fki,j

T_A

↑

i,j↑ = Max [T_Ri-1,j↓ + D_Fi,j↓ ; T_Fki,j

↓]

(3.9.a)

(3.9.b)

PCFB :

T_Fki,j↑ = Max [T_Ri-1,j↑ + D_Fi,j↑ ; T_AX,j-1↑ ; T_AY,j-1

T_Fk

↑]

i,j↓ = Max [T_Ai,j↓ T_AX,j↓ ; T_AY,j

↓]

T_Ai,j↓ = T_Fki,j

T_A

↑

i,j↑ = T_Ri-1,j↓ + D_Fi,j

↓

(3.10.a)

(3.10.b)

FDFB :

T_Fki,j↑ = Max [T_Ri-1,j↑ + D_Fi,j↑ ; T_AX,j-1↑ ; T_AY,j-1

↑]

(3.11.a)

Chapter 3. Asynchronous Circuits Performance Modeling 53

Eslam Yahya Grenoble INP, 2009

T_Fki,j↓ = Max [T_Ai,j↓ T_AX,j↓ ; T_AY,j

↓]

T_Ai,j↓ = Max [T_Ri-1,j↑ + D_Fi,j↑ ; T_Fki,j-1

T_A

↓]

i,j↑ = Max [T_Ri-1,j↓ + D_Fi,j↓ ; T_Fki,j

↑]

²

(3.11.b)

3.4.3 Analytical Models for Joins

The dependency graphs of the WCHB, PCHB, PCFB and FDFB Joins appear in Figures

3.6 and 3.7. The corresponding analytical models appear in Equations 3.12, 3.13, 3.14 and 3.15

respectively.

WCHB :

T_Ji,j↑ = Max [T_RX,j↑ + D_FX,j↑ ; T_RY,j↑ + D_FY,j↑ ; T_AZ,j-1

T_J

↑]

i,j↓ = Max [T_RX,j↓ + D_FX,j↓ ; T_RY,j↓ + D_FY,j↓ ; T_AZ,j

↓]

T_Ai,j↓ = T_Ji,j

T_A

↑

i,j↑ = T_Ji,j

↓

(3.12.a)

(3.12.b)

PCHB:

T_Ji,j↑ = Max [T_RX,j↑ + D_FX,j↑ ; T_RY,j↑ + D_FY,j↑ ; T_AZ,j-1

T_J

↑]

i,j↓ = Max [T_Ai,j↓ ; T_AZ,j

↓]

T_Ai,j↓ = T_Ji,j

T_A

↑

i,j↑ = Max [T_RX,j↓ + D_FX,j↓ ; T_RY,j↓ + D_FY,j↓ ; T_Ji,j

↓]

(3.13.a)

(3.13.b)

Chapter 3. Asynchronous Circuits Performance Modeling 54

Eslam Yahya Grenoble INP, 2009

PCFB :

T_Ji,j↑ = Max [T_RX,j↑ + D_FX,j↑ ; T_RY,j↑ + D_FY,j↑ ; T_AZ,j-1

T_J

↑]

i,j↓ = Max [T_Ai,j↓ ; T_AZ,j

↓]

T_Ai,j↓ = T_Ji,j

T_A

↑

i,j↑ = Max [T_RX,j↓ + D_FX,j↓ ; T_RY,j↓ + D_FY,j

↓]

(3.14.a)

(3.14.b)

FDFB :

T_Ji,j↑ = Max [T_RX,j↑ + D_FX,j↑ ; T_RY,j↑ + D_FY,j↑ ; T_AZ,j-1

T_J

↑]

i,j↓ = Max [T_Ai,j↓ ; T_AZ,j

↓]

T_Ai,j↓ = Max [T_RX,j↑ + D_FX,j↑ ; T_RY,j↑ + D_FY,j↑ ; T_J i,j-1

T_A

↓]

i,j↑ = Max [T_RX,j↓ + D_FX,j↓ ; T_RY,j↓ + D_FY,j↓ ; T_J i,j

↑]

(3.15.a)

²

(3.15.b)

3.4.5 Analytical Models for Splits

As discussed before, the model of Split is very similar to the model of a Fork. However

the main difference is the presence of a control input which is determining to which output

channel the input token should be injected. Consequently, the analytical equation of a Split is also

similar to the one for a Fork except that a new input is added to the Split equation. The

dependency graph of the WCHB Split appears in Figure 3.8. The corresponding analytical model

appears in Equations 3.16.

WCHB :

T_Si,j↑ = Max [T_Ri-1,j↑ + D_Fi,j↑ ; T_Rc i,j↑ + D_Cnt i,j

↑ ;

(3.16.a)

Chapter 3. Asynchronous Circuits Performance Modeling 55

Eslam Yahya Grenoble INP, 2009

 C0i,j * T_AX,j-1↑ ; C1i,j * T_AY,j-1

T_S

↑]

i,j↓ = Max [T_Ri-1,j↓ + D_Fi,j↓ ; T_Rc i,j↓ + D_Cnt i,j

 C0

↓ ;

i,j * T_AX,j↓ ; C1i,j * T_AY,j

↓]

T_Ai,j↓ = T_Si,j

T_A

↑

i,j↑ = T_Si,j

↓

(3.16.b)

Where:

Rc: the Control Register which is handling the interaction between the control circuit and the

Split.

T_Rc ↑/↓: the absolute time of Evaluation/Reset request event in the control register.

C0/C1: the control data which are selecting the output channel (they are 1-hot coded).

It is clear how the modeling of the choice is simple and straightforward. While solving the

analytical equation, we consider the term which is multiplied by an active select (either C0 or

C1). This analytical modeling for the problem avoids the use of graphical solutions of the

nondeterministic time marked graph. Analytical models of PCHB, PCFB and FDFB Splits can be

systematically derived by adding the control part to Equations 3.9, 3.10 and 3.11.

3.4.6 Analytical Models for Merges

The dependency graph of the WCHB Merge appears in Figure 3.9. The corresponding

analytical model appears in Equations 3.17.

WCHB :

T_Mi,j↑ = Max [T_RX,j↑ + D_FX,j↑ ; T_RY,j↑ + D_FY,j↑ ; T_AZ,j-1

T_M

↑]

i,j↓ = Max [T_RX,j↓ + D_FX,j↓ ; T_RY,j↓ + D_FY,j↓ ; T_AZ,j

↓]

(3.17.a)

Chapter 3. Asynchronous Circuits Performance Modeling 56

Eslam Yahya Grenoble INP, 2009

T_Ai,j↓ = T_Mi,j

T_A

↑

i,j↑ = T_Mi,j

(3.17.b)

↓

Analytical models of PCHB, PCFB and FDFB Merges can be systematically derived by

adding the control part to Equations 3.13, 3.14 and 3.15.

3.5 Circuit Simulator

The analytical equations form a very efficient basement for our analysis method. Each

equation solves the register-output Time Token Vectors “TTV” in terms of the input TTV and the

stage DTV. The next step is to program these equations into an event driven simulator which will

iteratively solve the input circuit to end up with the output TTVs. Any standard simulator, for

example a VHDL simulator, could solve the problem. However, exchanging Input/Output delay

data is quite complex with such simulators. In addition, the ultimate goal of the work is to extract

the performance metrics and then optimize the circuit. These objectives imply the application of

many complex algorithms which are continuously interacting with the circuit simulator, as shown

in next chapters. The realization of this interaction with standard simulator is very complex. As a

result, we choose to build our own circuit simulator; the block diagram of this simulator appears

in Figure 3.15.

Chapter 3. Asynchronous Circuits Performance Modeling 57

Eslam Yahya Grenoble INP, 2009

Extracted Delays by
Standard Tools

Circuit Structure

Circuit
Simulator

Analytical Models
For Different
Handshaking

Protocols

Absolute Time Info
(TTVs)

DTV GeneratorVariability
Characteristics

Extracted Delays by
Standard Tools

Circuit Structure

Circuit
Simulator

Analytical Models
For Different
Handshaking

Protocols

Absolute Time Info
(TTVs)

DTV GeneratorVariability
Characteristics

Figure 3.15: Asynchronous Circuit Simulator

First, the circuit structure is passed to the simulator. In this stage, the circuit components,

the connections between stages, the handshaking protocol of each register and the Input/Output

nodes are defined to the simulator. The simulator contains a library which is defining the

analytical models for the different handshaking protocols. By means of this library, the simulator

assigns the proper equation for each register in the circuit. Regarding the input delay information,

our simulator uses standard tools to extract the average delays for the circuit components

(especially Function Blocks “Fs”). The variability characteristics of the targeted technology are

passed to the DTV generator. This generator processes the delay information for each component

and applies the variability rules to produce a DTV for each circuit component. These DTVs are

passed to the Circuit Simulator which is using them as input data. After iteratively solving the

circuit, the simulator produces an output TTVs for each register. These output TTVs contain the

absolute time of the register output events. These vectors give us a detailed view about the arrival

time of the events in all the circuit nodes. By making a post processing to these vectors, we could

extract various performance metrics as the statistical distribution of the delays, Cycle Times,

Waiting Times inside the circuit, latencies and many more Standard/User-Defined metrics. The

analysis of these parameters is discussed in details in the next chapter.

Chapter 3. Asynchronous Circuits Performance Modeling 58

Eslam Yahya Grenoble INP, 2009

Regarding the implementation of our simulator, it is implemented in different

programming languages (mainly C and C++). To describe the circuit structure, a GUI is built in

Java to provide the user with a practical environment for the circuit entry. By using some special

APIs “Application Programming Interface”, this graphical representation of the circuit is

converted to a netlist like format; the user can directly use this format for the circuit entry. Some

Mathlab programs are used for the addition of the variability characteristics to the delays. These

programs implement the DTVs generator. Finally, some viewers are implemented for displaying

the output TTVs. Details about the issues of the simulator implementation are discussed in the

chapter devoted to software implementation.

3.6 Conclusion

This chapter is an important milestone in our work. Some of the work presented in this

chapter is published in [65] and [64]. In this chapter, the performance modeling methodology is

introduced. As in most of the previous works, time marked graphs are used for circuit modeling.

The method to build the circuit models for different asynchronous circuit styles is proposed. As

illustrative examples, circuit models for Linear/Nonlinear structures are built for four QDI

handshaking protocols. The same method can be used for any other implementation style and/or

handshaking protocols.

After that, we studied the variability in real technologies (45 and 65 nm ST-

Microelectronics). The conclusion was that, based on simulation, Gaussian distributions are used

to model the process variability. Due to the various variability sources, however, other

distributions including irregular distributions should be supported by the delay model. As a

consequence, we designed a delay model which is General (can support different delay styles)

and Adaptive (its complexity is adapting the delay complexity). These two properties solve the

criticisms of timing models found in the previous works. The accuracy and efficiency of the

delay model is compared to those of Montcarlo analysis. The comparison showed that our delay

model could reach a higher accuracy within a simulation time which is lesser by many orders of

magnitudes.

Chapter 3. Asynchronous Circuits Performance Modeling 59

Eslam Yahya Grenoble INP, 2009

 The analytical model in the proposed methodology is a mixture between closed form

equations and iterative simulation. Compared to previous works, our model avoids modeling the

whole circuit as a single problem. This is done by considering asynchronous registers as barriers

which are partitioning the circuit. From the circuit models, analytical models for

Linear/Nonlinear structures are derived. In this analytical model, nondeterministic structures are

efficiently supported. No restrictions on the circuit structures are needed for a correct behavior of

our model. To the best of our knowledge, this has never been done in the literature.

For validating our methodology, a complete event driven circuit simulator is developed.

This simulator provides the user a convenient GUI and a netlist like entry environment. A

complete analytical-models library of different handshaking protocols has been developed. The

circuit simulator is using a nice and efficient delay generator which is devoted for the inclusion of

the delay variability. The simulator analyzes the circuits and produces the output Time Token

Vectors “TTVs”. These vectors could be efficiently used to extract many interesting performance

metrics.

Chapter 3. Asynchronous Circuits Performance Modeling 60

Eslam Yahya Grenoble INP, 2009

 61

Eslam Yahya Grenoble INP, 2009

Chapter 4. Asynchronous Circuits Performance Analysis

4.1 Introduction

In the previous chapter, the complete modeling methodology is introduced. As shown in

Figure 3.15, the circuit simulator produces the circuit components’ Time Token Vectors “TTV”.

These vectors hold the absolute times of the registers’ output-events. These absolute times are

measured from a time reference Zero which is normally defined by the first token injected into

the circuit. By using the component TTV, one can graph the output signal. Although it is very

important step especially with nonlinear asynchronous structures, yet, this phase is not the

ultimate goal of our work. The knowledge of the absolute time of the circuits’ events opens the

door to unlimited analysis capability. If some algorithms are built to analyze the output TTVs,

various useful performance metrics can be extracted and analyzed.

In this chapter, we propose methods to analyze asynchronous-circuit performance from

different points of view; timing performance, power consumption, power consumption

distribution and the output delay variability.

First, some notes about the used test circuits are introduced. After that, some performance

metrics are defined and analyzed in many circuits to show the efficiency of the proposed

methods. In addition to that, analyzing the power consumption and its distribution is introduced.

Finally, the proposed modeling method is used to analyze the process variability effect on

asynchronous circuits.

4.2 Some notes about Test Circuits.

During the PhD course, we have tested many circuits. Some of these circuits are

developed by us and some are not. As the main goal of this PhD is not the design, fine details of

the test circuits are not shown. Most of the time circuit structures are shown using F-Plus-R

model.

Chapter 4. Asynchronous Circuits Performance Analysis 62

Eslam Yahya Grenoble INP, 2009

Circuit granularity is an important parameter in our study. It is used to demonstrate the

handshaking protocol effect on asynchronous circuits; details are shown in the next chapters. In

addition to general test circuits, there are specific test structures which are used to demonstrate

the granularity effect; a link in Asynchronous Network on Chip “ANOC” as a coarse grain

circuit, and Asynchronous Rings as fine grain circuits.

Here, we would like to discuss in more details the asynchronous rings. It is a special

example because of some analog effect called “Charlie Effect”. This effect and its impact on

modeling asynchronous rings is discussed in the next subsection.

 4.2.1 Charlie Effect and Asynchronous Rings

Charlie effect [15] [17] [48] [49] [53] can be summarized by the following phenomena: in

a Muller gate, the closer the input events the longer the propagation time. The drafting effect can

be summarized by the following phenomena: the closer the successive output transitions; the

shorter the propagation time.

() ()
 Drafting

A
y

Be

Charlie

ssCharlieDmeanDysCharlie
−

−

 −++= 2

min
2,

2
ffrr

mean
DD

D
+

= and 2min
ffrr DD

s
−

=

(4.1)

Where:

• s is the half separation time between inputs.
• Dff
• D

 the static forward propagation delay.
rr

• D
 the static reverse propagation delay.

charlie
• y the time between the previous output commutation and the mean input time.

 the amplitude of the Charlie effect.

• A the duration of the Drafting effect.
• B the amplitude of the Drafting effect.

See Figure 4.1 for more details

Chapter 4. Asynchronous Circuits Performance Analysis 63

Eslam Yahya Grenoble INP, 2009

Figure 4.1: Ring Stage Chronogram

Both Charlie and drafting effects have very limited contribution on the Muller gate

delays. However in some circuits, where register delays are dominating, these effects could

change the output event distributions in the steady state. Asynchronous Rings, Figure 4.2, are

good example for these circuits. It is known that asynchronous rings have two different modes of

oscillation: “Evenly Spaced Mode” and “Burst Mode”. In the evenly spaced mode, the events

inside the ring are equally spaced in time. In the burst mode, events are spaced in time non-

uniformly. In [54] we showed how digital models could falsely indicate the mode of operation for

an asynchronous ring. When we included the Charlie effect in our Muller gate model, digital

simulation gave the correct mode of operation. The conclusion is that in certain classes of

asynchronous circuits Charlie effect and Drafting effect should be considered to correctly model

the circuit. During this PhD, we designed and implemented a Programmable/Stoppable Oscillator

Based on Self-Timed Rings. To the best of our knowledge, this is the first time in the literature

these kind of programmable oscillators are designed and implemented. All details about this work

can be found in [54] [56].

C
F0

R0

C0 C
F1

R1

C1 C
F2

R2

C2 C
FL-1

RL-1

CL-1

[N-1][2][1][0] [……]

C
F0

R0

C0 C
F1

R1

C1 C
F2

R2

C2 C
FL-1

RL-1

CL-1

[N-1][2][1][0] [……]

C

F

R

C
C

F

R

C

a) Asynchronous Ring Stage a) Asynchronous Ring with N Stages

Figure 4.2: Asynchronous Self-Timed Ring Structure

Chapter 4. Asynchronous Circuits Performance Analysis 64

Eslam Yahya Grenoble INP, 2009

In addition to its importance for highlighting Charlie effect, asynchronous rings are also

important for our study as they are the ultimate example for fine-grain pipelined circuits. By

comparing it with coarse grain pipelines, this example is used to highlight pipeline granularity

effect in the next chapters.

4.3 Time Performance Analysis

The knowledge of the absolute time of the system events facilitates the analysis of

different key-performance metrics. In the following, we state definitions for some of the analyzed

metrics.

Cycle Time “CT”: Register Cycle Time can be defined as “Total time needed by the

register to finish a complete handshaking cycle for an input token”.

Ri

CTi,j CTi,j+1

T_Ri,j ↑ T_Ri,j ↓ T_Ri,j+1 ↑

Time

CTi,j↑

CTi,j↓
Ri

CTi,j CTi,j+1

T_Ri,j ↑ T_Ri,j ↓ T_Ri,j+1 ↑

Time

CTi,j↑

CTi,j↓

Figure 4.3: Register Cycle Time

Figure 4.3 depicts the output signal of register “Ri

CT

”. The register cycle time can be

calculated using the following equation.

i,j = CTi,j↑ + CTi,j

↓

CTi,j = T_Ri,j+1↑ - T_Ri,j

↑

(4.2)

The Maximum, Minimum and Average register cycle times can be computed by the

following equations.

Chapter 4. Asynchronous Circuits Performance Analysis 65

Eslam Yahya Grenoble INP, 2009

 CTi Max = Max|j Є [1 , L] (CTi,j

)

CTi Min = Min|j Є [1 , L] (CTi,j

)

CTi Avg = (Sum|j Є [1 , L] CTi,j

) / L

(4.3)

(4.4)

(4.5)

Where:

i: the component index inside the circuit.

j: the input-token index.

L: the number of tokens in the register input token-vector. In other words, input token-

vector Length.

Therefore, the Max and Min cycle times of the whole pipeline can be computed by using

the following equations.

CT Max = Max|i Є [1 , N] (CTi Max

)

CT Min = Min|i Є [1 , N] (CTi Max

(4.6)

) (4.7)

Where:

N: is the number of stages inside the circuit.

Waiting Time “WT”: In asynchronous pipelines, each stage has an impact on the pipeline

throughput. One of the possible optimization policies is to control the delay in each stage so that

no stage is waiting for the others. This can be achieved by many ways, for example adding more

slack or retiming. To do so, we need to characterize the pipeline stages by a performance metric

which is measuring the stage waiting time. This metric is previously introduced in [18]; we are

redefining it due to our conventions. If we try to study where does the waiting come from, we

figure out two possible sources of waiting. Stage number “i” (Stgi) may be waiting the new token

Chapter 4. Asynchronous Circuits Performance Analysis 66

Eslam Yahya Grenoble INP, 2009

coming from Stgi-1, or it may be waiting the acknowledgement signal coming from Stgi+1

CT

.

Consequently, register cycle time can be divided into three parts as shown in the following

equation. In this equation we omit register internal delays just for readability. Figure 4.4 depicts

this in details.

i,j↑ = WPi,j↓ + Fi,j↓ + WFi,j

↓

CTi,j↓ = WPi,j+1↑ + Fi,j+1↑ + WFi,j+1

↑

(4.8)

Where:

WP: “Wait Previous”, Stgi

WF: “Wait Following”, Stg

 waits for the previous stage.

i

CTi,j-1↓

WPi,j↑ Fi,j↑ WFi,j↑

Ri

Ri-1

Ri+1

WPi,j ↓ Fi,j ↓ WFi,j ↓

Time

CTi,j ↑

T_Ri-1,j ↑ T_Ri-1,j ↓

T_Ri,j-1↓ T_Ri,j↑ T_Ri,j ↓

T_Ri+1,j-1 ↑ T_Ri+1,j-1 ↓ T_Ri+1,j ↑

CTi,j-1↓

WPi,j↑ Fi,j↑ WFi,j↑

Ri

Ri-1

Ri+1

WPi,j ↓ Fi,j ↓ WFi,j ↓

Time

CTi,j ↑

T_Ri-1,j ↑ T_Ri-1,j ↓

T_Ri,j-1↓ T_Ri,j↑ T_Ri,j ↓

T_Ri+1,j-1 ↑ T_Ri+1,j-1 ↓ T_Ri+1,j ↑

 waits for the following stage

Figure 4.4: Timing Digram illustrating register Waiting Time

There are some other time performance metrics which are used inside the thesis. These

metrics are defined within the corresponding sections.

Chapter 4. Asynchronous Circuits Performance Analysis 67

Eslam Yahya Grenoble INP, 2009

4.3.1 Timing Analyzer

Based on the circuit simulator introduced in the previous chapter, a timing analyzer is

designed and implemented. Figure 4.5 shows the block diagram of this analyzer.

Timing Analyzer Timing-Metrics
Equations

Timing Performance
Metrics

Extracted Delays by
Standard Tools

Circuit Structure

Circuit
Simulator

Analytical Models
For Different
Handshaking

Protocols

Absolute Time Info
(TTVs)

DTV GeneratorVariability
Characteristics

Circuit Simulator

Timing Analyzer

Figure 4.5: Connection between the Circuit Simulator and the Timing Analyzer

Chapter 4. Asynchronous Circuits Performance Analysis 68

Eslam Yahya Grenoble INP, 2009

As shown in the figure, the asynchronous circuit simulator calculates the absolute time

information of the system events. The output Time Token Vectors “TTVs” are passed to the

timing analyzer. The timing analyzer is using a library of the different Timing-Metrics equations.

This library contains the different equations describing the timing metrics as the ones in

equations 4.2 to 4.8. The timing analyzer applies the necessary algorithms for calculating the

output timing metrics. The analyzer is implemented using C++; more details about

implementation issues are found in the tools chapter. This analyzer, in addition, facilitates the

user to update the metrics-equation library by “User Defined Equations”. This feature opens the

door for the designers to easily and efficiently define their equations which are calculating the

designer metrics of interest.

One of the advantages and powerfulness of implementing our own circuit simulator is

appearing here. We could easily apply post processing for the simulator output to extract the

timing performance metrics. However, doing the same job using standard simulators (as VHDL

simulators) is not an easy task and never will end up with the same flexibility while interacting

with the designer.

 4.3.2 Test Cases and Results

During the PhD we tested many circuits some are designed by ourselves and some are

extracted from available HW designs. The main criterion we used to evaluate results obtained by

our methods and tools is to compare them with golden references introduced by timed VHDL

simulation and analog simulation results. Figures 4.6 and 4.7 show some examples of tested

structures.

In Figure 4.6 (a), a model for a linear asynchronous circuit is shown. As a circuit

example, a linear pipeline with 11 stages, in addition to TX and RX is designed. The design is

implemented four times, each time with one of the handshaking protocols mentioned in the

previous chapters. For the sake of validation, a timed VHDL and analog simulations are

performed for the same circuit. Each component is being assigned a given delay distribution

(Gaussian, Exponential, Uniform…). The same circuits are analyzed using our tool and then the

results are compared with the VHDL and Analog counterparts.

Chapter 4. Asynchronous Circuits Performance Analysis 69

Eslam Yahya Grenoble INP, 2009

J

F
X1

R
X1

F
X2

R
X2

F
X3

F
Y1

R
Y1

F
Y2

R
Y2

F
Y3

R
Y3

TX1
R
X0

TX2
R
Y0

F
Y4

RX
R

N+1
F1 R1 F2 R2 F3 R3 F4 R3J

F
X1

R
X1

F
X2

R
X2

F
X3

F
Y1

R
Y1

F
Y2

R
Y2

F
Y3

R
Y3

TX1
R
X0

TX2
R
Y0

F
Y4

RX
R

N+1
F1 R1 F2 R2 F3 R3 F4 R3

TX
R0 F1 R1 F2 R2 F3 R3 F4 FK

F
X1

R
X1

F
X2

R
X2

F
X3

R
X3

F
X4

F
Y1

R
Y1

F
Y2

R
Y2

F
Y3

R
Y3

R
X4

RX1
R

N+1

RX2
R

N+1

TX
R0 F1 R1 F2 R2 F3 R3 F4 FK

F
X1

R
X1

F
X2

R
X2

F
X3

R
X3

F
X4

F
Y1

R
Y1

F
Y2

R
Y2

F
Y3

R
Y3

R
X4

RX1
R

N+1

RX2
R

N+1

TX
R0

F1
R1

FN
RN

RX
RN+1

InAck OutAck

F2
R2

N stages

One stage

In

InAck

Out

OutAck

In Out

Stg1 Stg2 StgN

TX
R0

F1
R1

FN
RN

RX
RN+1

InAck OutAck

F2
R2

N stages

One stage

In

InAck

Out

OutAck

In Out

Stg1 Stg2 StgN

(a) Linear Asynchronous Pipeline

(b) Asynchronous Pipeline with Fork

(c) Asynchronous Pipeline with Join

Figure 4.6: Examples of Test Circuit for Different Strusctures

Chapter 4. Asynchronous Circuits Performance Analysis 70

Eslam Yahya Grenoble INP, 2009

F
X1

R
X1

TX1
R
X0

F
X2

S

F
X3

M

F
Y1

R
Y1

TX2
R
Y0

F
Y2

R
Y2

F
Y3

R
Y3

F
Y4

F
Yu1

R
Yu1

F
Yu2

R
Yu2

F
Yu3

F1 R
1 F2 R

2 F3 FK

F
XX1

R
XX1

F
XX2

R
XX2

F
XX3

F
YY1

R
YY1

F
YY2

R
YY2

F
YY3

J F4 R
4 F5 R

5 F6 FK2

M2

F
XXX

1

R
XXX

1

F
XXX

2

R
XXX

2

F
XXX

3

R
XXX

3

F
XXX

4

F
YYY

1

R
YYY

1

F
YYY

2

R
YYY

2

F
YYY

3

R
YYY

3

RX2
Reg
YYY

0

F7 R
7 F8 R

8 F9 R
9

F
10

R
10

RX1
R
0

Cont

Cont

Cont

F
X1

R
X1

TX1
R
X0

F
X2

S

F
X3

M

F
Y1

R
Y1

TX2
R
Y0

F
Y2

R
Y2

F
Y3

R
Y3

F
Y4

F
Yu1

R
Yu1

F
Yu2

R
Yu2

F
Yu3

F1 R
1 F2 R

2 F3 FK

F
XX1

R
XX1

F
XX2

R
XX2

F
XX3

F
YY1

R
YY1

F
YY2

R
YY2

F
YY3

J F4 R
4 F5 R

5 F6 FK2

M2

F
XXX

1

R
XXX

1

F
XXX

2

R
XXX

2

F
XXX

3

R
XXX

3

F
XXX

4

F
YYY

1

R
YYY

1

F
YYY

2

R
YYY

2

F
YYY

3

R
YYY

3

RX2
Reg
YYY

0

F7 R
7 F8 R

8 F9 R
9

F
10

R
10

RX1
R
0

F
X1

R
X1

TX1
R
X0

F
X2

S

F
X3

M

F
Y1

R
Y1

TX2
R
Y0

F
Y2

R
Y2

F
Y3

R
Y3

F
Y4

F
Yu1

R
Yu1

F
Yu2

R
Yu2

F
Yu3

F1 R
1 F2 R

2 F3 FK

F
XX1

R
XX1

F
XX2

R
XX2

F
XX3

F
YY1

R
YY1

F
YY2

R
YY2

F
YY3

J F4 R
4 F5 R

5 F6 FK2

M2

F
XXX

1

R
XXX

1

F
XXX

2

R
XXX

2

F
XXX

3

R
XXX

3

F
XXX

4

F
YYY

1

R
YYY

1

F
YYY

2

R
YYY

2

F
YYY

3

R
YYY

3

RX2
Reg
YYY

0

F7 R
7 F8 R

8 F9 R
9

F
10

R
10

RX1
R
0

Cont

Cont

Cont

Figure 4.7: F-Plus-R Model for Extracted Circuit from a µ-Processor

TABLE 4.1: ANALYZING A LINEAR PIPELINE (TIME VALUES IN NS)

Cycle
Time

WCHB PCHB PCFB FDFB Mix1 Mix2 %Error
VHDL

%Error
Analog

CT 28.3 Min 24.4 23.9 22.5 25 23.3 - -
CT 162.7 Max 181 182 182.5 170.2 163 - -
CT 75.7 Avg 73.1 71.9 70.1 73.1 70 < 1% < 3%

Table 4.1 shows the powerfulness of the presented method. It is able to determine the

exact performance of an asynchronous pipeline which has nondeterministic time variable delays

(<1% error compared to timed VHDL and <3% error compared to analog). Implementations are

done on 130nm, 65nm and 45nm STMicroelectronics CMOS technologies. Our TAL (Tima

Asynchronous Library) and ST standard cell libraries are used. CADENCE design flow is used

for the design, simulation, layout and post layout simulations.

Chapter 4. Asynchronous Circuits Performance Analysis 71

Eslam Yahya Grenoble INP, 2009

It is expected that the more concurrency in the handshaking protocol, the less average

cycle time obtained (WCHB has the longest CTavg, where FDFB has the shortest one). However,

this is not always the case; in some tests WCHB can achieve better average CT. This depends on

the delay distribution in the pipeline and the pipeline granularity. If the register delays are

comparable with the function block delays then adding concurrency could even reduce the

performance due to the longer register delays. We applied a manual optimization algorithm to

mix the protocols inside the pipeline. In Mix1-Table 4.1, a mix between WCHB and PCHB is

made. Changing the protocol of certain stages from WCHB to PCHB leaded to the same CTavg

More complex structures as the ones depicted in Figure 4.6 (b, c) are tested. For example,

implemented circuits which are extracted from microprocessors (Figure 4.7); and from DES/AES

processors are modeled and analyzed. Results obtained by our methods are compared by the

different simulation results. Performance of the implemented tools shows very high efficiency

and accuracy. We could analyze the performance of circuits composed of tens of stages in a few

seconds. Always the error is ranging between 3% and 5% depending on the level of abstraction

we used while analyzing the average delays by standard tools for the different circuit

components. Table 4.2 shows a summary of these results.

 as

a full PCHB pipelined circuit. That is a great achievement in terms of both performance and area.

In Mix2, Table4.1, the algorithm is reapplied to mix all the protocols. This mix achieves the best

results in terms of speed and area. This mix between protocols is the optimum solution as it gives

the maximum speed with the minimum area. This kind of optimization had never been neither

investigated nor realized before. More about optimization is discussed in the next chapter.

TABLE 4.2: SOME TEST CIRCUITS RESULTS

Test Circuit Number of Stages CPU Time (Second)

Linear Pipeline 11 0.8
Asynchronous Ring 20 1.2
ANOC 16 1
Fork/Join 15 1.5
Split/Merge 20 1.4
Microprocessor 50 3.4
DES 65 4.8

Chapter 4. Asynchronous Circuits Performance Analysis 72

Eslam Yahya Grenoble INP, 2009

Asynchronous rings are linear pipelines; nevertheless, they need more CPU time for

analyzing them compared to linear pipelines. The reason is the complex models of the Muller

gates in case of asynchronous rings. These models are including Charlie effect which appears in

Equation 4.1. Models for Splits/Merges are more complex than Fork/Joins. However, 20 stages

Split/Merge circuits needs less CPU time compared to 15 stages Fork/Join circuit. Fork/Join

circuits are nondeterministic; where data are propagating unconditionally in all branches.

However data in conditional circuits composed of Splits/Merges propagate only in the selected

branches which is reducing the number of stages that have to be analyzed.

Compared to previous works, our methods have many advantages from different points of

view.

Flexibility: Our methods and tools can easily model and analyze Linear and Nonlinear

structures. We could analyze acyclic pipelines and cyclic pipelines as well; asynchronous rings

are an example for that. To the best of our knowledge, this is the first methodology which

analyzes controlled nonlinear (conditional branches) circuits with no limitation on their

structures. Moreover, as shown in Table 4.1, the method is efficiently able to mix different

handshaking protocols within one circuit. This strengthens the analysis especially when optimal

circuits are targeted. Many of the previous methods restricted the structure to a unique

handshaking protocol for the whole circuit. Regarding delays, we could use average delays when

rough and fast estimation for the performance is needed. That gives our method the advantage of

using average delay as the work done in [6], [26]. We could also implement delay intervals by a

limited number of samples for each DTV; that gives us the advantage as the work done in [10],

[16], [20], [21], [34]. Compared to works supporting variable distributed delays, our method

could support any PDF and even irregular distributions which are measured in the fabrication

line. In [35] distributions are limited to exponential and in [18] they are limited to identical

Gaussian PDFs in all stages. To test the efficiency of the proposed method with different

distributions, we lunched a test on a circuit where we change the length of the Delay Token

Vectors “DTVs” of the circuit components and record the required CPU time, the test is done on

a PC under Windows equipped with an AMD µp running at 2 GHz and 1 GB RAM.. Figure 4.8

depicts the response of the tools with the delay token vector length “L”.

Chapter 4. Asynchronous Circuits Performance Analysis 73

Eslam Yahya Grenoble INP, 2009

0.00001

0.0001

0.001

0.01

0.1

1

10

10 100 1000 10000 100000

DTV Length (L)

C
PU

 T
im

e
in

 S
Ec

s

Figure 4.8: DTV Length (L) Effect on the Method Computation Time

The figure clearly shows a linear growth in the method computation-time with respect to

the DTV length. This property gives our method the advantage of adapting its complexity to the

delay type used inside the system. In comparison to this, previous works which are supporting

delay variability have high overheads when they are used with simple average delays.

Complexity vs Circuit Size: another important property needs to be characterized: the

method complexity vs the circuit size. For evaluating such response, we use a circuit where we

fix the DTV lengths inside the circuit components. After that the number of stages is gradually

increased and the required CPU time is recorded. Figure 4.9 shows the tools response for this

test.

Chapter 4. Asynchronous Circuits Performance Analysis 74

Eslam Yahya Grenoble INP, 2009

0.00001

0.0001

0.001

0.01

0.1

1

10

10 100 1000 10000 100000

Circuit Size (N)

C
PU

 T
im

e
in

 S
ec

s

Figure 4.9: Circuit Size (N) Effect on the Method Computation Time

The graph shows that the method complexity grows linearly with respect to the circuit

size. The complexity of previous works as in [35], [36] and [50], which are based on Petri nets

and Markov chains, is growing exponentially with the circuit size. The linear response of our

method makes it a practical method for handling large size circuits.

Speed: all the test cases show very fast response of the proposed method. When we

compare the speed of our method with one of the fastest methods which is introduced in [35], we

can record three orders of magnitude enhancement in the computation speed. For instance, in one

test circuit they need 4686.126 Secs for analyzing the circuit. Our tools could analyze the same

circuit in 0.8 Sec which means 5823 times faster response. The machines where the two tests are

lunched are not exactly the same, however, they are still comparable.

Chapter 4. Asynchronous Circuits Performance Analysis 75

Eslam Yahya Grenoble INP, 2009

4.4 Power Consumption Analysis

The Circuit Simulator provides detailed information about the absolute time of the event

occurrence. This information can be collected and analyzed to draw the time profile of the event

activity in the circuit. No doubt each event has equivalent power-consumption (current-

consumption). Using standard tools, the equivalent power-consumption of an event on a certain

component can be extracted. Using this information, the power analyzer is able to map the events

activity to a time distribution of the power consumption. This tool is very efficient in estimating

the power consumption especially in the early phases of the design. Some of the potential

benefits of the power analyzer are:

1) Defining the power hungry parts of the system.

2) Showing the effect of the different handshaking protocols on the event/power-

consumption distribution.

3) Determining the power efficiency in the form of (Power consumed in processing /

Power consumed in registers).

Block diagram of the power analyzer is shown in Figure 4.10. The power analyzer contains a

library which is used for the mapping from events to power consumption. This library is one to

one library mapping that maps component event to power consumption (or current consumption).

Information about the analyzed circuit component should be contained in this library before the

analysis. Absolute time information is passed to the power analyzer which is profiling each

component for the up transition events and down transition events. By means of its library, the

power analyzer could produce a detailed consumption report for the different circuit components.

We characterized some of the TAL library components and STMicroelectronics standard library

components and feed the results in the power analyzer library. As a test, some circuits are

designed using 65 nm. The circuits are analyzed for its power consumption using CADENCE

design flow. Same circuits are modeled and analyzed by our tools; comparison results are shown

in Table 4.3. The test shows that our method calculates the consumed energy in the circuit with

an error < 3%.

Chapter 4. Asynchronous Circuits Performance Analysis 76

Eslam Yahya Grenoble INP, 2009

Power Analyzer
Event to

Power Consumption
Mapping

Power Consumption
Metrics

Extracted Delays by
Standard Tools

Circuit Structure

Circuit
Simulator

Analytical Models
For Different
Handshaking

Protocols

Absolute Time Info
(TTVs)

DTV GeneratorVariability
Characteristics

Circuit Simulator

Power Analyzer

Figure 4.10: Connection between the Circuit Simulator and the Power Analyzer

The effect of the protocol on power consumption distribution is discussed in chapter 6.

TABLE 4.3: ENERGY CONSUMPTION IN SOME TEST CIRCUITS

Test Circuit Energy (Analog) Energy (Our Method) Error %

Chapter 4. Asynchronous Circuits Performance Analysis 77

Eslam Yahya Grenoble INP, 2009

Cit1 4.8 E -13 4.78 E -13 2.5 %
Cit2 9.15 E -13 8.9 E -13 2.7 %

4.5 Response to Delay Variability

As discussed earlier, one of the main goals of this work is to be able to model circuits

with variable delays. Some circuits of asynchronous ring oscillators are designed and analyzed

for the effect of Within-Die and Die-To-Die process variability. These circuits are designed using

65 nm and 45 nm STMicroelectronics CMOS technology. CADENCE design flow is used for

making the Montcarlo simulations. As depicted in the block diagram of the circuit simulator, the

first step is to characterize the library components for their process variability PDFs. The ring

stage shown in Figure 4.2 is characterized for process variability effect for both Within-Die and

Die-To-Die. Results are shown in Table 4.4.

TABLE 4.4: COMPARISON BETWEEN MONTCARLO ANALYSIS AND OUR METHOD FOR TESTING PROCESS
VARIABILITY (TIME VALUES IN PS)

a) Library Characterization for Asynchronous Ring Stage

Within -Die Die-To-Die
µ σ µ σ

61.2 1.34 61.3 5

b) Test Case Results

M.C. (103 Methods (10) 5 Err %) Eff

µ

WD

σ

WD

CPU

WD

µ

DD

σ

DD

CPU

DD

µ

WD

σ

WD

CPU

WD

µ

DD

σ

DD

CPU

DD

µ σ

1225.2 6.1 16595 1227.8 98.8 16024 1224.3 6 1.2 1226.2 99.1 1.2 0.1% 0.95% 13641

The characterization of asynchronous ring stage shows that it has a Gaussian distribution

for its delay under the effect of process variability. In Table 4.4 (a), the first column shows the

Mean (µ) and Standard Deviation (σ) in case of Within Die variability. The second column shows

their values in case of Die-To-Die variability. The mean is almost the same in the two cases;

however, the standard deviation is larger in case of Die-To-Die variation. This result is logical as

Chapter 4. Asynchronous Circuits Performance Analysis 78

Eslam Yahya Grenoble INP, 2009

the dispersion is expected to be larger from a die to another one. A 20 stages asynchronous ring is

fully designed and simulated using Montcarlo simulator from CADENCE. Table 4.4 (b-first

column) shows the µ, σ and CPU time for Within-Die and Die-To-Die process variability for the

whole 20 stages ring. The results obtained for the standard deviation (σ) are perfectly following

the mathematical equation for accumulating Gaussian distributions (Equation 3.1) which is

reformulated in Equation 4.9.

σ Total = (σ2
Stg1 + σ2

Stg2 + + σ2
Stgn)

0.5

In case of “n” identical stages:
σ Total = (n)0.5 . σ

Stg

(4.9)

In case of (n=20 , σStg

σ

=1.34 “from Table 4.4 (a)”):

Total = (20)0.5 . 1.34 = 5.99 using MC: σTotal

It is clear that the results we obtained by Montcarlo simulation is following the

mathematical equations. This simulation is done using “10

 = 6.1

3

σ

” iterations. The more iterations that

we used, the better results that we had. The main problem we faced with using larger number of

iterations is the simulation time growth with the number of iterations. For this test circuit, the

simulator needs (4h 36mn 35s = 16595s). In this test, as well as all the tested circuits, results

obtained for the standard deviation in case of Die-To-Die variation are always following the next

equation.

Total_DD = σStg1 + σStg2 + + σ

Stgn

In case of “n” identical stages:
σTotal_DD = n . σ

Stg

(4.10)

In case of (n=20 , σStg

σ

=1.34 “from Table 4.4 (a)”):

Total_DD = 20 x 5 = 100 using MC: σ Total

We did not find an explanation for this rule, it seems that more information from the

fabrication and tools people are needed.

 = 98.8

Chapter 4. Asynchronous Circuits Performance Analysis 79

Eslam Yahya Grenoble INP, 2009

Same test suite is done using our tools. Results are shown in Table 4.4 (b-second column).

Comparing σ obtained by our method by the one from MC, we see that we have more accuracy

than MC (if the reference is the value obtained by Equation 4.9). We used (105) samples

compared to (103

) samples used for the MC simulation; that explains the enhancement in the

accuracy. Comparing the simulation time needed by our tools (1.2 Secs) to the time needed by

the MC simulation (16595 Secs) and even if we are using more samples, our tools show five

orders of magnitude improvement in the simulation time. The efficiency of using our tools is

calculated in Table 4.4 (b-fourth column). The accuracy of the results obtained by our tools (if

the MC results are the reference) is shown in Table 4.4 (b-third column); our tools have less than

1% error.

4.6 Conclusion

In this chapter, absolute time information of the circuit events is used to analyze the

circuit performance from different points of view.

First, a methodology for analyzing the time performance of asynchronous circuits is

described. This method is implemented and then applied to different test circuits which are

extracted from real implemented systems. Some analog phenomena known as Charlie effect is

briefly discussed. This phenomenon affects cyclic circuits (as asynchronous rings) and looped

circuits (as iterative looped DES). Our models are designed for considering this phenomenon

when necessary. Our methods and tools show flexibility with different circuit structures, mixing

handshaking protocols in a single circuit and using different delay types. One of the important

advantages of the proposed method is the linear growth of its complexity with respect to circuit

size. This property makes our tools much faster than the previously introduced works. Our tools

could reach three orders of magnitude enhancement in simulation time WRT previous works. The

accuracy of the proposed methods is evaluated by a comparison with analog and timed VHDL

simulations. Our methods give results with an error which is less than 5% compared to other

simulation methods.

Chapter 4. Asynchronous Circuits Performance Analysis 80

Eslam Yahya Grenoble INP, 2009

Second, a method for converting the circuit events into current/power consumption

information is used. By means of this method we built a power analyzer which is able to estimate

the power consumption and its distribution in time. The use of the power analyzer is

demonstrated by some examples. When comparing the energy consumption obtained by our

analyzer with those obtained by CADENCE flow, we can see an error less than 3% in our results.

The use of the power analyzer for profiling the time distribution of the power consumption is

discussed in next chapters.

Finally, we showed how it is efficient to use our methods for analyzing process

variability. The methods could analyze Within Die and Die To Die process variation with very

high accuracy. In comparison with Montcarlo simulator, our tools showed five orders of

magnitudes enhancement in the simulation time with an error which is less than 1%.

Unfortunately we could not make the comparison using considerably large circuits due to the

huge computation time and resources needed by the Montcarlo simulation.

Parts of the work presented in this chapter are published in [54] [56] [65] [64].

 81

Eslam Yahya Grenoble INP, 2009

Chapter 5. Asynchronous Circuits Performance Optimization

5.1 Introduction

The developed modeling and analysis methods are providing fast and accurate timing

analysis. Next step is to use these methods for guiding optimization of the analyzed circuit. There

are two main approaches in optimizing asynchronous circuits. The first approach is to develop

synthesis flow which is optimizing the mapping from the specification to the circuit

implementation [25]. The other approach is to use timing analysis method to guide some

structure changes which lead to an optimized implementation [26]. The optimization method

proposed in [26] is based on pipeline optimization. The idea is to find the minimum pipelining

degree to satisfy the performance constraints. That means using the minimum number of registers

which reduces the pipeline area and power consumption for a given performance. The

optimization technique introduced in this chapter can be classified in the same category.

The problem addressed in this chapter is the problem of a designer having asynchronous

pipelines where time delay variability can be taken into account. The designer needs to answer

two questions: “Targeting certain performance, what is the minimum number of asynchronous

registers that should be used? And, what is the optimum placing of these registers which not only

satisfies the target performance, but also results in the maximum possible performance using this

number of registers?” The answers to these two questions are the contribution of this chapter.

5.2 Pipeline Optimizer.

Figure 5.1 shows the connections between the Optimizer, the Circuit simulator and the

Timing analyzer. As shown in the figure, the optimization starts with a circuit specification

which contains the minimum number of registers those are needed to keep the circuit a live (no

deadlocks). The designers define their Cycle Time “CT” constraints to the optimizer. The circuit

simulator analyzes the initial structure and passes the output TTVs to the Timing Analyzer. The

Timing Analyzer solves the circuit cycle time and passes the results to the Optimizer. After that,

the Optimizer compares the circuit cycle time with the targeted cycle time. By applying certain

Chapter 5. Asynchronous Circuits Performance Optimization 82

Eslam Yahya Grenoble INP, 2009

algorithms, the optimizer estimates a suggested structure which might enhance the circuit

performance. This suggested structure is passed to the Circuit Simulator which analyzes the new

circuit structure and the cycle continues. Finally the Optimizer ends with the optimum circuit

structure which satisfies the targeted cycle time with the minimum number of registers. In

addition, this optimum structure defines the placement of the registers so that the circuit reaches

the maximum possible cycle time with this number of registers; that enhances the HW utilization.

Extracted Delays by
Standard Tools

Circuit Structure
(minimum Registers)

Circuit
Simulator

Analytical Models
For Different
Handshaking

Protocols

Absolute Time Info
(TTVs)

Delay Generator

Timing
Analyzer

Timing-Metrics
Equations

Timing Performance
Metrics

Optimizer

Circuit Structure
(Minimum Registers)

Suggested
Structure

Cycle Time

Cycle Time
Constraints

Optimum Structure

Extracted Delays by
Standard Tools

Circuit Structure
(minimum Registers)

Circuit
Simulator

Analytical Models
For Different
Handshaking

Protocols

Absolute Time Info
(TTVs)

Delay Generator

Timing
Analyzer

Timing-Metrics
Equations

Timing Performance
Metrics

Optimizer

Circuit Structure
(Minimum Registers)

Suggested
Structure

Cycle Time

Cycle Time
Constraints

Optimum Structure

Figure 5.1: The Tool Flow Including the Optimizer

It is clear that the optimizer is calling the performance analysis tool for many times until

the optimum structure is found. This means that the final computation time needed to find the

Chapter 5. Asynchronous Circuits Performance Optimization 83

Eslam Yahya Grenoble INP, 2009

optimum structure is not only determined by the optimizer but also by the time response of the

underlying performance analysis tool.

5.3 Optimal (Brute Force) Algorithm.

Before going deeply in the algorithms, it is needed to explain the problem to be solved

and some of its terminology. Figure 5.2 depicts Asynchronous pipeline before and after

optimization. The pipeline with the minimum number of registers which are necessary to keep the

liveness of the pipeline is shown in Figure 5.2 (a). This pipeline needs at least two registers at the

input and output (R0 and Rn

) to handle the interaction with the environment. In this pipeline there

are some possible places, denoted (P), to place the registers. These places are predetermined and

fixed inside the structure. That means that our algorithm does not perform retiming (in the sense

of breaking or merging function blocks). The Optimizer searches the minimum number of

registers which are needed to satisfy a given performance and find where to insert these registers

between the function blocks. In the figure there are seven places (P=7). Register1 (R1) and

Register2 (R2) are placed in places P2 and P6 respectively. The Stage consists of one register

with all its preceding Function Blocks. As an example, Stage2 (Stg2) consists of R2 plus (F5, F4,

F3, F2).

Chapter 5. Asynchronous Circuits Performance Optimization 84

Eslam Yahya Grenoble INP, 2009

TX F1 F2 F3 F4 F5 F6 RX

P1 P2 P3 P4 P5 P6 P7R0 Rn

TX F1 F2 F3 F4 F5 F6 RX

P1 P2 P3 P4 P5 P6 P7R0 Rn

TX F1 F2 F3 F4 F5 F6 RX

P1 P2 P3 P4 P5 P6 P7

Stage1 (Stg1) Stage2 (Stg2)

R1 R2

R0 Rn

TX F1 F2 F3 F4 F5 F6 RX

P1 P2 P3 P4 P5 P6 P7

Stage1 (Stg1) Stage2 (Stg2)

R1 R2

R0 Rn

(a) Asynchronous Pipeline with the Minimum Number of Registers

(b) The Circuit After Adding Some Registers

Figure 5.2: Asynchronous Circuit Optimization by Controlling Number of Registers

Please recall that each component in the circuit, (F, R, TX and RX), has its own Delay

Token Vector (DTV). The DTV Length is denoted by “L”. Each component will have Average,

Min and Max delays which are representing the average value of the whole DTV, the minimum

value of the whole DTV and the maximum value of the whole DTV, respectively. Taking

function block F3 as an example these delays will be respectively denoted as (DF3
Avg, DF3

Min,

DF3
Ma x

∑
=

=

=
5

2

2

1

i

i

Fi
Avg

Avg

R

R
DDt

). Here we define a new performance metric it is the Distance between two registers “Dt”.

The distance between two registers is “the sum of the delays in-between them; in other words, it

is the latency between them”. As an example, the average distance between R1 and R2 in Figure

5.2 (b) can be expressed as shown in Equation 5.1.

(5.1)

Chapter 5. Asynchronous Circuits Performance Optimization 85

Eslam Yahya Grenoble INP, 2009

The problem the optimizer is solving is as follows. Given a pipeline structure that has

possible places “P” and a cycle time in case of only necessary registers are placed “CTNR”, the

optimizer finds a minimum number of registers “η” for which the pipeline’s CT satisfies a target

cycle time constraints “CTT”. Moreover, the optimizer finds the optimum placing for the “η”

registers among the possible places “P”. It ends with “ηOpt” such that the pipeline’s CT is not

only satisfying CTT

A straightforward way to implement the optimizer is to do an exhaustive search for all the

possible η (from η=1 to η=P), and for each η the algorithm tests all the possible placing of the η

registers among the P places “

, but is also the minimum cycle time, Max throughput, that can be achieved

using the “η” registers.

Cη

P ”. With such a Brute Force (BF) algorithm, it is guaranteed that

the optimizer will find “ηOpt” for any requested CTT (once this CTT

BF

 is achievable by placing

“η≤P” registers). The complexity (number of iterations) of the BF algorithm is shown in Equation

5.2.

Iterations = 2 (5.2) P

Hereafter is the pseudo code of the BF algorithm.

{

 For (η = 1 → η = P)

 {

 Test all C
η

P and pick the one giving the least CT “ηOpt

 }

”;

 Out the min ηOpt where CT ≤ CTT

};

 ;

Chapter 5. Asynchronous Circuits Performance Optimization 86

Eslam Yahya Grenoble INP, 2009

Because this algorithm is enumerating all the possible structural combinations, we are

formally sure that this algorithm ends with optimum solution. Our basic goal is to develop an

algorithm which is proven formally to end with the optimum circuit structure.

One simple, but efficient, optimization is possible to be applied to the BF algorithm. Due

to the nature of the problem, the lower the numbers of registers “η”, the better the solution. This

means that if we could reach CTT with η = 3, for example, so no need to test the cases where

(3<η≤ P). In this way, we avoid unnecessary testing for greater values of η. Meanwhile, we are

formally sure that the resultant η is the “ηOpt

For (η = 1 → η = P)

”. Hereafter, the pseudo code of this simple

optimized algorithm, it will be denoted by the Reference Algorithm “RA”.

{

Test all C
η

P and pick the one giving the least CT (ηOpt

If (CT ≤ CT

) ;

T

};

) Break ;

As shown in Figure 5.1, the optimizer calls the Circuit Simulator and the Timing

Analyzer for each suggested structure. Consequently, its complexity determines the final

execution time needed for optimizing the circuit. Equation 5.3 gives the complexity of the RA.

∑∑
=

=

=

= −×
==

ηη i

i

i

i

i

PItrations iPi
PRA C

11)!(!
!

(5.3)

The BF algorithm and the RA are implemented in the Optimizer appears in Figure 5.1.

Many test cases were conducted to test the algorithms and their implementation. In one test case,

a pipeline as the one depicted in Figure 5.2 (a), is designed. This pipeline contains 11-function

blocks plus TX and RX, that means that P=12. Delay TVs are time variable probabilistic delays,

different probabilistic distributions are used. The design is analyzed and optimized targeting

many different cycle times. Figure 5.3 shows a comparison between the BF algorithm and the RA

Chapter 5. Asynchronous Circuits Performance Optimization 87

Eslam Yahya Grenoble INP, 2009

in terms of number of iterations needed to determine ηOpt. The X-axis represents 36 different CT

values in which the CTT

No of Iterations

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

BF RA

 is decreasing. The Y-axis represents the number of iterations.

Figure 5.3: Number of Iterations for BF and RA

Compared to BF, EA has much better performance for high CT, equivalently lower η. It is

explained by the fact that when η is low, EA gets the solution early and prunes many unnecessary

iterations. Same contribution can be derived from Equations 5.2 and 5.3.

Table 5.1 shows a comparison between the BF and the RA in terms of the average

number of iterations needed to solve the 36 CTT

TABLE 5.1: TOTAL ITERATIONS AND CPU TIMES IN BF AND RA (TIME VALUES IN SEC)

 in the test case of Figure 5.4. The RA

introduces a gain of 42.7% in terms of number of iterations compared to the BF algorithm.

Technique Iterations Gain% WRT BF

Brute Force (BF) 4095 -
Reference Algorithm (RA) 2346 42.7%

Chapter 5. Asynchronous Circuits Performance Optimization 88

Eslam Yahya Grenoble INP, 2009

Regarding the algorithm computation time, the RA needs 703.2 Sec to find ηopt

5.4 Efficient-Optimal Algorithms.

 for 12

possible places (P=12) where each function block has a probabilistic time variable delays with a

DTV length of L=10^5 tokens (execution times are measured on A SPARC III machine with

2GB of Ram).

The Brute Force algorithm is a way to enumerate all the possible solutions and pick the

optimum one. However, this algorithm is very costly from the execution-time point of view. The

RA is better in terms of execution time and it is still giving an optimum solution. However, the

RA is efficient only when the final solution is among the first 2 or 3 values of P. According to

Equation 5.3, its execution time grows exponentially with the values of P. More efficient

algorithms are needed. One possible way to strongly enhance the performance of the RA is to

apply the Branch and Bound technique (BB).

Branch and Bound (BB): is a general algorithm for finding optimal solutions of various

optimization problems. It consists of a systematic enumeration of all candidate solutions, where

large subsets of fruitless candidates are discarded, by using upper and lower estimated bounds of

the quantity being optimized.

The problem of finding the minimum number of registers “η” and finding the optimum

placing “ηOpt

],1[P∈η

” can be seen as a two-dimensional problem. The first dimension is to find η

where: . This dimension appears in the pseudo code of Section 5.3, in the main outer loop.

As a result we call it Outer Loop “OL”. For each suggested η, there is an inner loop enumerating

all possibilities for placing η registers among P places. This loop is the second dimension of the

problem and it is called the Inner Loop (IL). Optimizing both OL and IL can of course

significantly enhance the algorithm performance.

5.4.1 Outer Loop Optimization (OL)

It is simpler to start with the outer loop and apply the BB technique. The problem will be

enumerated so that the algorithm tests all the possible values for],1[P∈η . Now, an efficient

bounding criteria need to be defined to eliminate some non-promising possibilities of η.

Chapter 5. Asynchronous Circuits Performance Optimization 89

Eslam Yahya Grenoble INP, 2009

Therom1: For any linear pipeline, if the max internal delay of the registers “R” is lower

than the min delay of the Function Blocks “F”, then adding registers to a linear pipeline is

increasing the throughput monotonically. In other words, increasing the number of registers is

decreasing the cycle time of the pipeline.

R1 F1 R2F2

R1 F1 R2F2

R1 F1 R2F2

R1 F1 R2F2

R3

R3
a b

R1 F1 R2F2

R1 F1 R2F2

R1 F1 R2F2

R1 F1 R2F2

R3

R3
a b

Figure 5.4: Dependencey Graph Explaining Breaking a Stage by Adding a Register

Proof1: Figure 5.4 (a) shows the dependency graph of a stage which contains 2 cascaded

function blocks (F1,F2

DDDDDtCT RFFRR

R

22111

21
+++==

). The CT of the stage is:

If register R3

)](); 223311

2 [(DDDDDDMaxCT RFRRFR
++++=

 is added in between F1 & F2, as in Figure 5.4 (b), the CT becomes:

If: DDD RFR 223 +≤ & DDD FRR 113 +≤

CTCT 12 ≤∴ Adding a register is a monotonic problem.

IF DMinDMax Fj

Min

Pj

j

Ri

Max

i

i

=

=

<

=

= 11

η

(5.4)

Then η↑ → CT↓ and η↓ → CT↑

In words, “If the maximum delay of any register is less than the minimum delay of any

function block then adding registers to the pipeline will decrease the cycle time”. This means that

Chapter 5. Asynchronous Circuits Performance Optimization 90

Eslam Yahya Grenoble INP, 2009

if the condition in Equation 5.4 is satisfied, adding registers to the pipeline is guaranteed to affect

the cycle time monotonically. This is an important property which helps the designers to simplify

their circuit optimization.

If the algorithm starts searching the outer loop using an initial guess for η where: η = ηi ,

comparing the optimum CT in case of ηi with the target CTT will lead us to either increase or

decrease ηi . As a result either (ηi - 1) or (P - ηi) possible values of η are pruned. Depending on

the accuracy of the initial guess, the total number of iterations can be significantly reduced.

Hereafter the pseudo code of the algorithm which is using initial guess for the number of registers

(ηi

{ η = η

).

 Test all

i

Cη

P and pick the one giving the least CT (ηOpt

 η = η

) ;

Opt

 Compare resultant CT by CT

 ;

 {

T

 If (CT = CTT

 If (CT < CT

) Then (out η and break)

T) Then (Start = 1 and End = ηi

 If (CT > CT

) “decrease number of registers”

T) Then (Start = ηi

 }

+1 and End = P) “increase number of registers”

 For (η = Start → η = End)

 {

Test all C
η

P and pick the one giving the least CT (ηOpt

If (CT ≤ CT

) ;

T

 };

) Break ;

}

Chapter 5. Asynchronous Circuits Performance Optimization 91

Eslam Yahya Grenoble INP, 2009

Proof2 (optimality of the OL optimization): if the circuit satisfies the condition stated

in Equation 5.4, it is sure that the cycle time is monotonic with respect to the pipelining degree

(η↑ → CT↓ and η↓ → CT↑). Since the algorithm searches all the possibilities of the initial

guess ηi and then decides to either increases or decreases η. In both cases the algorithm slides η

and studies all the possible structures. As a result, no doubt that the algorithm finds the minimum

η. Due to the fact that the inner loop is responsible for finding the optimum placing, OL

optimization has no effect on ηOpt

Guessing an initial value η

. To conclude, the optimizer after applying the OL

optimization, under the condition in Equation 5.4, is finding the optimum solution.

i, which is near to the final solution, is the key parameter to

increase the outer loop efficiency. However, it is not an easy task to accurately guess this initial

value. In an asynchronous pipeline, there are very complex relations between all circuit

components. The behavior of the pipeline is affected by the handshaking protocol implemented in

the registers and the delay values in all the components. When time variable delay values are

considered, especially if they are probabilistic, circuit behavior becomes very complex and even

impossible to be predicted. Here after, many strategies to choose an initial degree of the pipeline,

ηi

CT

, are investigated.

NR/CTT: in an ideal pipeline, where all stages are identical in their delays, a perfect

estimation for the degree of pipeline is to divide (integer division) the cycle time of the structure

with only the necessary registers CTNR, by the target cycle time CTT

η

.

i = CTNR/CT (5.5) T

(CTNR/CTT)+1: in the above estimation, ηi

η

 takes the integer of the division result. Here,

one is added to that integer.

i = (CTNR/CTT (5.6)) + 1

Avg: the above estimations of ηi are very simple and optimistic. More realistic strategy is

needed. To achieve that, the estimation should be based on the real delays of the pipeline stages.

One possible way is to consider the average delay value of each function block. Using that

average and starting from the TX, the average delay is accumulated and when it violates CTT, a

Chapter 5. Asynchronous Circuits Performance Optimization 92

Eslam Yahya Grenoble INP, 2009

register is added. The resultant number of registers is taken as ηi

For (i = 1 → i = P)

. The following pseudo code

describes this strategy.

{

 Delay = Delay + D
Fi
Avg ;

 If (Delay > CTT

 {

)

 η = η + 1 ;

 Delay = D
Fi
Avg ;

 }

 }

Max and Min: in fact the average delays are relevant in case of static time average delays

or time variable delays with very long TVs. In case of short deterministic TVs it may not be the

best choice. Estimation can be done using the maximum or the minimum delay value in the TV

of each circuit component. In this case extremely pessimistic/optimistic estimation is done. The

change in the above pseudo code would be the use of DFi

Max
 or DFi

Min
 instead of DFi

Avg
 when

calculating ηi

(Max+Min)/2: in this strategy, η

.

i

DFi

Max

 is the average between the initial guess calculated using

 and calculated using DFi

Min
. this is not equivalent to the case of average delay. In case of

average delay the estimation is based on the average value of the DTVs (DFi

Avg
).

One question can be raised here: what is the cost of the initial guess based on average,

min and max; especially in case of very long DTVs as in probabilistic time variable delays? In

fact managing this point in the implementation is quite important. In the implemented tools,

Chapter 5. Asynchronous Circuits Performance Optimization 93

Eslam Yahya Grenoble INP, 2009

average, max and min are calculated and saved while reading the TVs. As a result, depending on

them to calculate the initial guess has almost no running-cost during the algorithm computation.

A pipeline as the one depicted in Figure 5.2 (a), is designed. This pipeline contains 11-function

blocks plus TX and RX, that means that P=12. The design is analyzed and optimized targeting

many different CTs. Fig.4 shows a comparison between the different proposed OL optimization-

strategies in terms of number of iterations needed to determine ηOpt. The X-axis represents 36

different CT values in which the CTT

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

BF RA CTNR/CTT (CTNR/CTT)+1

CTT

N
o.

 o
f I

te
ra

tio
ns

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

BF RA CTNR/CTT (CTNR/CTT)+1

CTT

N
o.

 o
f I

te
ra

tio
ns

 is decreasing. The Y-axis represents the number iterations

required to reach the target CT.

Chapter 5. Asynchronous Circuits Performance Optimization 94

Eslam Yahya Grenoble INP, 2009

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

BF AVG Max Min (Max+Min)/2

N
o.

 o
f I

te
ra

tio
ns

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

BF AVG Max Min (Max+Min)/2

N
o.

 o
f I

te
ra

tio
ns

Figure 5.5: A Comparison Between Diferrent Heuristics in the OL Optimization

The curve “BF” in Figure 5.5, represents the iterations of the Brute Force algorithm, this

curve is constant in the entire graph (2P). The second curve RA represents the response of the

reference algorithm. All the other curves represent the number of iterations after applying one of

the OL-optimization heuristics presented in this section. As it is clear from the figure, it is hard to

say which initial guess strategy is the best. For example, the “Max” strategy needs more

iterations compared to the other strategies at high CTT (the beginning of the curves). However it

gives the best results in case of low CTT

. In general, applying the OL optimization gives

significant enhancement compared to the BF algorithm.

5.4.2 Inner Loop Optimization (IL)

For each run of the OL the IL tests “Cη

P
” different structures. Indeed some of these

structures are non-promising. Again the BB technique is applied to optimize this loop. The goal

Chapter 5. Asynchronous Circuits Performance Optimization 95

Eslam Yahya Grenoble INP, 2009

is to find a bound that is able to prune some of the non-promising structures without affecting the

optimality of the solution. The distance between registers, Dt, can be a useful property to prune

some non promising solutions. If the minimum distance between any two suggested places for

inserting registers is larger than CTT

CTDtMax T
Min

Ri

Ri

i

i
>

+=

=

1

1

η

, then it is sure that this solution is not feasible and can be

safely discarded. This condition is shown in Equation 5.7.

(5.7)

Using the condition in Equation 5.7 as abound, a BB technique is applied to optimize the

IL. The condition is tested and whenever it is true for the suggested structure, the algorithm

discards this structure and avoids analyzing it. Same test case as the one in the previous

subsection is repeated while optimization for both IL and OL are applied. Figure 5.6 shows the

number of iterations for each heuristic.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

BF RA CTNR/CTT (CTNR/CTT)+1

CTT

N
o.

 o
f I

te
ra

tio
ns

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

BF RA CTNR/CTT (CTNR/CTT)+1

CTT

N
o.

 o
f I

te
ra

tio
ns

Chapter 5. Asynchronous Circuits Performance Optimization 96

Eslam Yahya Grenoble INP, 2009

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

BF Avg Max Min (Max+Min)/2

N
o.

 o
f I

te
ra

tio
ns

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

BF Avg Max Min (Max+Min)/2

N
o.

 o
f I

te
ra

tio
ns

Figure 5.6: The Algorithm Performance After Applying Optimization to both IL and OL

By comparing Figure 5.5 and Figure 5.6, benefits of applying the IL optimization are

clear. In Table 5.2 and Table 5.3, results of the test case of Figure 5.5 and Figure 5.6 are shown

respectively. The column “Iterations” represents average number of iterations needed to achieve

the different targeted CTT. The column “Gain% WRT BF”, is the percentage of the gain

introduced by each heuristic compared with the Brute Force algorithm. The column “Gain%

WRT RA”, is the percentage of the gain introduced by each heuristic compared with the

reference algorithm. Some figures of the optimizer execution time are shown in Table 5.3. These

execution times are measured on A SPARC III machine with 2GB of Ram. Generally speaking,

the OL optimization is contributing more than the IL optimization. Inspecting Figures 5.5 and 5.6

in addition to results presented in the tables, IL optimization is able to correct the behavior of the

OL optimization when it is too bad, as in case of heuristic based on “Min”. Before applying IL

optimization the gain was less than 1% compared to the RA, however it is increased to 25% after

the IL optimization. In general, applying both optimizations can result in an average gain of 50%

WRT RA and more than 70% WRT BF. This means a computation time reduction of nearly the

same percentage.

Chapter 5. Asynchronous Circuits Performance Optimization 97

Eslam Yahya Grenoble INP, 2009

TABLE 5.2: RESULTS AFTER APPLYING OL OPTIMIZATION

Technique Iterations Gain% wrt BF Gain% WRT RA

Brute Force (BF) 4095 -
Reference Alg (RA) 2346 42.7 -

CTNR/CTT 1682 58.9 28.2
(CTNR/CTT)+1 1315 67.9 43.9

Avg 1254 69.3 46.5
Max 1408 67 40
Min 2326 43.1 0.87

(Max+Min)/2 1328 67.6 43.40

TABLE 5.3: RESULTS AFTER APPLYING OL AND IL OPTIMIZATION

Technique Iterations Gain% wrt BF Gain% WRT RA CPU Time (Sec)

Brute Force (BF) 4095 -
Reference Alg (RA) 2346 42.7 - 703.8

CTNR/CTT 1549 62.2 33.9 464.7
(CTNR/CTT)+1 1267 69.1 46 380.1

Avg 1177 71.3 49.8 353.1
Max 1351 65.6 42.4 405.3
Min 1758 57.1 25 527.4

(Max+Min)/2 1173 71.3 49.99 351.9

The average number of iterations is considered just to give a unique figure for each

strategy of estimating ηi. However, it is clear that no method is always the best solution as it

depends on the value of CTT. Moreover, these figures are related somehow to the examples. That

means these figures may vary with another configuration of the test circuit. Generally speaking,

ηi which is based on average rules, “Avg” and “(Max+Min)/2”, are more promising. However, in

any particular example, it depends on the value of CTT

Regarding the algorithm computation time, the last column in Table 5.3 gives the average

computation time for each optimization technique. The table shows how our optimizer is fast. On

the average, it needs around 6 minutes to find η

 and the circuit properties.

opt for 12 possible places (P=12) where each

function block has a probabilistic time variable delays with a TV length of M=10^5 tokens. To

the best of our knowledge, the nearest work to the presented work in this chapter is the work

introduced in [26]. The main difference between the two works is that in [26], only average

delays are supported. It means that each component in the circuit is assigned a single delay value,

Chapter 5. Asynchronous Circuits Performance Optimization 98

Eslam Yahya Grenoble INP, 2009

and no time variability could be considered. In contrast, our work supports all types of delay

including probabilistic delays. Regarding the performance, in their paper they stated that their

algorithm needs 650 Millisec to pipeline a circuit having 15 places with 2 registers initially

placed. In comparison, our tool needs 354 Microsec to solve the test case example (12 places

with no initially placed registers) if average delays are considered. The comparison remains

difficult because we could not find the machine specification they used; however, based on the

data, our method seems to faster by around three orders of magnitude.

5.5 Optimizing ANOC Link between Two Synchronous Processors.

As another illustrative example, a dedicated asynchronous communication link between

two synchronous microprocessors in ANOC system is considered. This circuit is a coarse grain

structure as the delays of the routers are quite large compared to the delays of the registers. This

coarse grain granularity demonstrates well the effect of adding registers to the pipeline.

Moreover, the condition in Equation 5.4 is certainly applicable in this case. The example consists

of two synchronous microprocessors which are communicating using Asynchronous NOC link.

As shown in Figure 5.7, both processors have Sync/Async interfaces to handle the conversion

between the processors and the link. The goal is to optimize the communication channel which

transfers data from Processor-A (MP-A) to Processor-B (MP-B). The clock frequency of MP-A is

set to 500 MHz whereas the clock frequency of MP-B is set to 400 MHz. Both processors

emit/receive data bursts. Output/Input characteristics of MP-A/MP-B are modeled using

deterministic delays (where they have a train of data bursts separated by some waits; this pattern

is repeated periodically). Data bursts are modeled using DTVs so that the average data rate on

both sides is 100 M/Sec. However, data bursts on both sides are not synchronized. Which means

MP-A could be ready for sending data, however, MP-B is not ready to receive them. This makes

the task of the link more complex and justifies the need for pipelining this link.

Chapter 5. Asynchronous Circuits Performance Optimization 99

Eslam Yahya Grenoble INP, 2009

MP-A

500 MHz

Sync
/

Async

MP-B

400 MHz
F1

P2

F2

P3

F..

P..

F15

P16P1

Async
/

Sync

MP-A

500 MHz

Sync
/

Async

MP-B

400 MHz
F1

P2

F2

P3

F..

P..

F15

P16P1

Async
/

Sync

Figure 5.7: The Algorithm Performance After Applying Optimization to both IL and OL

The route between the two MPs is modeled as a pipeline where the routers are modeled as

the function block. This pipeline is predefined with 16 possible places to add asynchronous

registers; that gives us a problem of a pipeline with P=16. The goal is to optimally pipeline this

communication channel to satisfy different given CTs. Note that pipelining such an asynchronous

link, locally amplifies the signals and at the same time inserts registers in a FIFO like manner

which speeds up the communication throughput.

First of all, the communication rate between the two processors, when they directly

communicate without any register, is determined using the performance analysis tool. The

average CT obtained is 71.185ns, i.e. a communication rate of 14 MHz even though both

processors can afford a 100 MHz communication rate. The limitation in the communication rate

comes from the unmatched data bursts and the router delays. This result shows that the

communication channel needs registers to speed up the rate. The process variability PDF is

investigated and equivalent probabilistic time variable delays are assigned to the pipeline

registers and the routers (function blocks). The Out/In timing characteristics of the two

processors are modeled as deterministic delays in MP-A and MP-B. The designer question now

is: targeting a given cycle time “CTT”, what is the minimum number of registers he should use to

pipeline the channel between the processors? And, what is the optimum placing of these registers

which not only satisfies the CTT

Different CT

, but also results in the minimum possible CT using this number

of registers?

T are targeted, CTT is gradually decreased from the maximum (no register =

71 ns) to the minimum achievable with 16 registers. Table 5.4 shows the values of CTT with the

Chapter 5. Asynchronous Circuits Performance Optimization 100

Eslam Yahya Grenoble INP, 2009

corresponding η. A comparison between the Brute Force algorithm, Reference algorithm and an

optimization based on the average criterion is depicted in Figure 5.8. ANOC Link Optimization

TABLE 5.4: ANOC LINK OPTIMIZATION

η CTT (ns) RA Avg η CTT (ns) RA Avg
1 40.9 16 688 9 14.2 50642 31674
2 29.8 136 2343 10 13.7 58650 39286
3 25 696 1967 11 13.1 63018 43565
4 21.7 2516 1602 12 12.7 64838 37003
5 19.1 6884 4266 13 12.5 65398 22328
6 17.1 14892 8176 14 12.2 65518 22448
7 16.4 26332 15638 15 11.6 65534 20175
8 15 39202 23769 16 11 65535 20176

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

BF RA Avg

CTT

N
o.

 o
f I

te
ra

tio
ns

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

BF RA Avg

CTT

N
o.

 o
f I

te
ra

tio
ns

Figure 5.8: Optimization Algorithm Performance for ANOC Link between Two Microprocessors

In Table 5.4, the two columns titled “RA” and “Avg”, are showing the number of

iterations for the reference algorithm and the optimized algorithm (both OL and IL optimization

are applied). In the table, the strategy used for OL optimization is based on average delays. The

minimum CT that can be achieved using P=16 is “11 ns” which is a bit less than the ideal case

“CT=10 ns” to fully utilize the communication rates afforded by the two processors. On the

average, the optimization based on Avg strategy gives the best results in terms of computation

time for the current example. However, it is not always the best, as an example, it needs more

Chapter 5. Asynchronous Circuits Performance Optimization 101

Eslam Yahya Grenoble INP, 2009

iterations than the RA for the first three CTT (Cf. Figure 5.8). Afterwards, it starts to significantly

reduce the iterations. At the minimum CTT

5.6 Limitations and Extensions of the Optimization Algorithm.

, the reduction reached about 70%. That shows the

efficiency of the presented method.

As discussed in chapter 2, asynchronous circuits can be classified into two main

categories, deterministic pipelines and non-deterministic pipelines. Deterministic pipelines are

those which are Linear pipelines or Nonlinear-pipelines composed of Forks/Joins (Choice Free).

Optimizations introduced in this chapter are applied to Linear pipelines. As shown in Theorem1,

the cycle time of a linear pipeline respecting the condition in Equation 5.4 is affected by

adding/removing registers monotonically. As a result, proposed optimizations can be applied and

final solution is insured to be optimal as shown in Prove2.

F1
LPZ

LPX

LPY

J1

LPY

F2
LPA

LPB

LPC

LPA

LPW

F1
LPZ

LPX

LPY

J1

LPY

F2
LPA

LPB

LPC

LPA

LPW

Figure 5.9: Determinstric Nonlinear Pipeline

Chapter 5. Asynchronous Circuits Performance Optimization 102

Eslam Yahya Grenoble INP, 2009

Deterministic nonlinear pipelines are composed of linear pipelines which are connected

together through Forks and Joins; one example is shown in Figure 5.9. The circuit in the figure is

composed of seven linear pipelines (LPX, LPY, LPZ, LPW, LPA, LPB, LPC). It is proven in [6]

and [38] that the cycle time of deterministic pipelines is determined by the largest local cycle

time in the circuit. Consequently, the total cycle time of a deterministic nonlinear-pipeline is

determined by the largest cycle time of its linear branches. For example, the cycle time of the

circuit in Figure 5.9 is determined by the largest cycle time of its seven linear branches (LPX,

LPY, LPZ, LPW, LPA, LPB, LPC). When we applied our optimization algorithm to a circuit as in

the figure, Forks and Joins are considered necessary registers for keeping the circuit alive. This

means that the algorithm starts with registers placed only in Forks and Joins; no registers are

initially placed in the linear branches. After that, all the possible structures are enumerated; this is

the combination of the enumeration of the possible structure for each linear pipeline. The number

of possible structures in a deterministic nonlinear pipeline could be huge; however, the proposed

algorithms efficiently handle this. The algorithm starts to search a single branch, lets say LPX,

and detects the non-promising structures. These non promising structures in LPX

Unfortunately, same procedure could not be applied to non-deterministic pipelines (which

are based on Splits/Merges “conditional branches”). Optimization of a single branch in these

pipelines not necessarily leads to optimized performance for the whole circuit. The circuit

structure and how frequently each branch is selected are determining the right optimization

targets. The conclusion is that the optimization methods introduced in this chapter are applied

only on deterministic pipelines.

 tend to violate

the final target cycle time. This local violation, indeed, causes the whole circuit to violate the

target cycle time. As a result, all the possible structures of the nonlinear pipeline which are

containing the non-promising structures in LPX are discarded. This operation is repeated for all

the other linear branches which significantly reduces the number of structures should be

analyzed. The proposed algorithms showed a huge gain in computation time compared to the BF

algorithm.

We worked on an extension of our algorithms to cover the non deterministic pipelines.

The extension is based on defining time constraints on the input/output of each linear branch in

Chapter 5. Asynchronous Circuits Performance Optimization 103

Eslam Yahya Grenoble INP, 2009

the circuit. After that, our algorithms are applied for optimizing each branch individually.

Preliminary tests showed very interesting and promising results especially when the Waiting

timing metric is used. However, prove of optimality of the solution needs more work and time

investments. We strongly think this algorithm could introduce an efficient and generic solution

for optimizing asynchronous circuits.

5.7 Conclusion.

This chapter addressed the problem of optimizing deterministic asynchronous pipelines

by controlling the number of registers. The target is to find the minimum number of registers

should be used to satisfy given performance constraints. Moreover, the method finds the

optimum placing of these registers which not only satisfies the target performance, but also

results in the maximum achievable performance using this number of registers. To accomplish

these targets, an optimal algorithm is analyzed and implemented. The condition guaranteeing that

adding registers to the pipeline is monotonically decreasing the cycle time is stated and proven.

Two possible optimizations are addressed; the Outer Loop optimization and the Inner Loop

optimization. Both optimizations are analyzed and the optimality of the solution after applying

them is proven. Using “Branch and Bound”, different heuristics for optimizing the outer loop are

proposed. Branch and Bound is also used to optimize the Inner Loop. Both optimizations are

implemented inside the proposed optimizer. The test cases show the correctness and efficiency of

the implemented optimizer. Compared to recent similar works, our optimizer shows better

flexibility and accuracy in delay modeling and faster execution time.

Chapter 5. Asynchronous Circuits Performance Optimization 104

Eslam Yahya Grenoble INP, 2009

 105

Eslam Yahya Grenoble INP, 2009

Chapter 6. Handshaking Protocol Effect

6.1 Introduction

Throughout the thesis we figured out that the used handshaking protocol can significantly

affect the circuit performances. In some cases, the circuit could gain in speed by only using a

more concurrent handshaking protocol. On the contrary, some other circuits loose in speed when

more concurrent protocols are used. Not only speed, but also the power consumption distribution

is affected by changing the handshaking protocol. This affects the EMI characteristics of the

circuit and consequently affects the design robustness against DPA (Differential Power Analysis)

attacks. In addition to this, the ability of the circuit to absorb more delay variability in its

components and to exhibit less variability in the final output, is affected by the used handshaking

protocol.

By using these facts, the circuit performance (from different points of view) can be

optimized by selecting the appropriate handshaking protocol. This chapter introduces a brief

study about the handshaking protocol effect on different circuit performance metrics.

6.2 Protocol Effect: From Where?

There are two main circuit features which could determine the protocol effect; delay

characteristics and pipeline granularity.

Delay Characteristics: Figure 6.1 shows an example of a linear pipeline. Each function

block has delay characteristics for evaluation phase (D_F↑) and reset phase (D_F↓). Suppose that

all stages are identical and they have balanced propagation delay for evaluation and reset phase.

In this case, WCHB protocol is recommended. The more concurrent protocols have no chance for

enhancing the circuit speed. In the contrary, the more concurrent protocols are expected to reduce

the circuit speed due to their longer propagation delay. This appears in Table 6.1 – first row. For

simplicity, this table is measured while neglecting the internal propagation delay of the registers.

Chapter 6. Handshaking Protocol Effect 106

Eslam Yahya Grenoble INP, 2009

TX
R0

Function
Block

(F1)
Register

(R1)

Function
Block
(FN)

Register
(RN)

RX
RN+1

One stage

InAck OutAck

Function
Block

(F2)
Register

(R2)

N stages

One stage

In

InAck

Out

OutAck

In Out

STG1 STG2 STGN

TX
R0

Function
Block

(F1)
Register

(R1)

Function
Block
(FN)

Register
(RN)

RX
RN+1

One stage

InAck OutAck

Function
Block

(F2)
Register

(R2)

N stages

One stage

In

InAck

Out

OutAck

In Out

STG1 STG2 STGN

Figure 6.1: Asynchronous Linear Pipeline

TABLE 6.1: EXPERIMENTAL RESULTS TO EXPLAIN THE IMPORTANCE OF DELAY CHARACTERISTICS (DELAYS IN
TIME UNITS)

Delay D_F↑/D_F↓ WCHB
Cycle Time

PCHB
Cycle Time

PCFB
Cycle Time

FDFB
Cycle Time

300/300 600 600 600 600
300/100 600 600 400 400
100/300 600 400 400 400

10 non-identical stages 2166 1606 1392 1376

If the function-block delays are not balanced for evaluation and reset, then there is a

possibility for more concurrent protocols to introduce some gain. For example if D_F↑ > D_F↓

(Table 6.1 row 2), WCHB and PCHB give the same speed. However, PCFB and FDFB introduce

some gain. In the same table row 3, D_F↑ < D_F↓ which gives PCHB the chance to introduce

some gain compared to WCHB. For exploiting the concurrency, an experiment on 10 stages

pipeline is conducted. In this experiment each stage has different Evaluation/Reset delays which

are randomly chosen. As shown in Table 6.1 – row 4, the protocols show gradual decrease in the

circuit cycle time (equivalently increase in speed). The conclusion of this study is that delay

characteristics of the circuit components are determining the possibility of the handshaking

protocol to affect the performance. More details are explained in the next subsection.

Pipeline Granularity: one other important parameter which could determine the protocol

effect is the pipeline granularity. We mean here by pipeline granularity “the propagation delay of

the pipeline function blocks compared to the propagation delay of the registers”. Indeed moving

Chapter 6. Handshaking Protocol Effect 107

Eslam Yahya Grenoble INP, 2009

from less concurrent protocol to more concurrent ones should increase the stage latency. If the

registers internal delays are dominating the circuit delays, then adding more concurrent register is

expected to decrease the speed regardless the delay characteristics in the function blocks.

Next subsections show the effect of the handshaking protocol on speed, power-

consumption distribution and delay variability; process variability is taken as an example.

6.3 Protocol Effect on Speed.

Three circuit examples are shown in this subsection to summarize our experience with the

handshaking protocol effect on speed.

Example1: In this example, a pipelined circuit is implemented. Four versions of the

circuit are tested. Each version uses a handshaking protocol from the four types which are

mentioned in Chapter 2. The idea is to compare the same circuit performance when only the

handshaking protocol is altered. Implementations are done using 65 nm STMicroelectronics

CMOS technologies. Our TAL (Tima Asynchronous Library) and ST standard cell libraries are

used. CADENCE design flow is used for the design, simulation, layout and post layout

simulations.

TABLE 6.2: ANALYZING A PIPELINED CIRCUIT (TIME VALUES IN NS)

Cycle
Time

WCHB PCHB PCFB FDFB Mix1 Mix2

CT 28.3 Min 24.4 23.9 22.5 25 23.3
CT 162.7 Max 181 182 182.5 170.2 163
CT 75.7 Avg 73.1 71.9 70.1 73.1 70

Table 6.2 shows the results of this test circuit. There are considerable deviations in the

delay between the stages. In addition, this circuit is implemented in 45 nm which has the highest

process variability. These delay characteristics give the chance for the more concurrent protocols

to positively contribute in the circuit speed. As shown in the table, when a more concurrent

protocol is used, the average cycle time of the circuit is decreased (CTAvg in the table), which

means the circuit speed is increased. This gain in speed is exchanged with more hardware, more

power consumption and longer worst case cycle time. For example, if you look to the CTMax

Chapter 6. Handshaking Protocol Effect 108

Eslam Yahya Grenoble INP, 2009

(Max cycle time) in the table, one notes a gradual increase in its value. The reason is the increase

of the hardware size, equivalently the propagation delay, when we move from a protocol to a

more concurrent one. The understanding of this trade-off helps the designers to decide for the

proper handshaking protocol.

We applied a manual algorithm to mix the protocols inside the pipeline. In Mix1-Table

6.2, a mix between WCHB and PCHB is made. Changing the protocol of certain stages from

WCHB to PCHB leaded to the same CTavg

Example2: In this example a link in an asynchronous network on chip is chosen to be

analyzed. This application is a very interesting target for asynchronous circuits. The packet rate

variation and the bulk data transfer give asynchronous links various advantages in speed, power

consumption and EMI properties. In this ANOC, we supposed that a static link between two

processors is the network bottleneck. The performance of this link is analyzed considering

different handshaking protocols.

 as a full PCHB pipelined circuit. That is a great

achievement in terms of both performance and area. In Mix2, Table 6.2, the algorithm is

reapplied to mix all the protocols. This mix achieves the best compromise in terms of speed and

area/power-consumption. This mix between protocols is the optimum solution as it gives the

maximum speed with the minimum area. Selecting the correct protocol for the correct stage is a

very complex problem. The automation of this process is very useful for designing efficient

circuits. We suggest using the “Efficient-Optimal Algorithm” introduced in Chapter 5 for solving

this problem. With some modifications of the algorithm and some efficient heuristics, this

algorithm can end up with efficiently optimized circuits. Due to time limitations, this step is kept

as an extension of the work of this PhD.

MP-A

500 MHz

Sync
/

Async

MP-B

400 MHz
F1

R2

F2

R3

F..

R..

Fn

RnR1

Async
/

Sync

MP-A

500 MHz

Sync
/

Async

MP-B

400 MHz
F1

R2

F2

R3

F..

R..

Fn

RnR1

Async
/

Sync

Figure 6.2: Two Microprocessors Communicating Asynchronouslly

Chapter 6. Handshaking Protocol Effect 109

Eslam Yahya Grenoble INP, 2009

Figure 6.2 depicts our model for this example. The two synchronous microprocessors are

communicating through an asynchronous interconnect. Both processors have Sync/Async

interfaces to handle the data conversion process. Routers, repeaters and wire connections which

are implementing the link are modeled as function blocks “F”. Each function block is followed

by an asynchronous register. The goal is to analyze the effect of handshaking protocols on

performance of this link. In this example, function blocks are coarse grain logic (complete

routers) which makes the delay of registers quite small if compared with the function block

delays. Adding more concurrent protocols gives two contradictory effects on speed. On one side,

the concurrency is pushing towards enhancing the speed. On the other side, the bigger HW

(equivalently longer internal delay) of more concurrent registers is reducing the speed. When

register delays are relatively small compared to function block delays, this gives the concurrency

more opportunity for enhancing the speed.

As an implementation of this example, an asynchronous pipeline is designed to

implement the communication link between the two processors. The technology is 65 nm CMOS

process from STMicroelectronics, and the TAL library is used. The simulation results of using

different protocols in the link are shown in Table 6.3.

TABLE 6.3: COMPARISON BETWEEN DIFFERENT PROTOCOLS IN ANOC LINK

Register %Enhancement
with WCHB

%Enhancement
with PCHB

%Enhancement
with PCFB

PCHB 2.9% - -
PCFB 7.9% 5.2% -
FDFB 29.7% 27.6% 23.6%

As shown in the table, the experiment shows gradual increase in the speed as concurrency

is added to registers. In the first raw, changing all the link registers from WCHB to PCHB

enhances the speed by 2.9%. Implementing all registers in PCFB, gives 7.9% enhancement in

speed compared to WCHB and 5.2% compared to PCHB. FDFB enhances the speed by 29.7%,

27.6% and 23.6% compared to WCHB, PCHB and PCFB respectively. These results are

extracted while considering the die-to-die process variability.

Chapter 6. Handshaking Protocol Effect 110

Eslam Yahya Grenoble INP, 2009

This circuit example shows how handshaking protocols could be efficiently used to

enhance the speed. One should consider the area and power overhead for using more concurrent

protocols. This overhead is minimized in case of coarse grain pipelines.

Example3: asynchronous rings are nice examples for fine grain pipelines. Asynchronous

rings are composed of cascaded registers which are connected as a ring (last register is connected

to the first one). Consequently internal register delays are the main contributors to the ring total

delay. In this case it is expected that rings which are using more concurrent protocols have more

delay (lower oscillating frequency). More concurrent registers are adding overhead without any

promise for gaining from concurrency. For realizing these results, two asynchronous rings are

designed using 65nm CMOS process from STMicroelectronics. One of these rings is using

WCHB protocol and the other is implemented using PCHB. The WCHB ring is oscillating on 2.8

GHz while the PCHB ring is oscillating on 2.3GHz. As expected, more concurrent protocols have

no interest from the speed point of view in such a context.

These three examples show the following results:

1) Obviously, the speed of asynchronous circuits is affected by the used handshaking

protocol.

2) More concurrent protocols are promising in coarse grain pipelines. In the contrary,

using them in very fine grain pipelines is not efficient from the speed point of view.

3) Mixing handshaking protocols in asynchronous gives the optimum solutions for

speed, power consumption and hardware size.

6.4 Protocol Effect on Power Consumption Distribution.

In many applications where asynchronous logic is applied, the EMI is an important

property. Examples of these applications can be secure chips, synchronizers and ANOC in GALS

(Globally Asynchronous Locally Synchronous) systems. As a result, in the comparison between

different handshaking protocols, we performed a study of the effect of different protocols on the

time-distribution of the circuit activity. Different handshaking protocols give different

concurrency. As a result, event (Evaluation & Reset) time-distribution is affected by the used

Chapter 6. Handshaking Protocol Effect 111

Eslam Yahya Grenoble INP, 2009

protocol. Each event is equivalent to a current consumption in the circuit. This means that the

event distribution is a map to the current distribution. Consequently, studying the effect of the

handshaking protocol on the event distribution in time (equivalently current distribution) gives an

idea about the effect of the protocol on the EMI characteristics. Figure 6.3, 6.4, 6.5 and 6.6 show

the event distribution of an asynchronous pipeline using WCHB, PCHB, PCFB and FDFB

respectively.

From the time distribution in the figures, we can show that the more concurrency in the

protocol the less impulses in the current time-distribution and the higher switching frequency in

the circuit. This conclusion brings up two contradictory factors to optimize. Let us compare

between WCHB and FDFB as they are the two extremes. In WCHB the switching frequency is

lower however there are very high current peaks. On the contrary, FDFB has higher switching

frequency but lower current peaks. This means that the more concurrent protocol is smoothing

the current-consumption peaks in the trade of higher switching frequency. Using this conclusion,

designers can optimize their circuits in terms of power consumption distribution. By defining the

frequency domain of interest, designer can safely trade current peaks to switching frequency.

Chapter 6. Handshaking Protocol Effect 112

Eslam Yahya Grenoble INP, 2009

0 0.5 1 1.5 2 2.5

x 10
5

0

2

4

6

8

10

12

Time Axis

Ev
en

t

My Draw

Figure 6.3: Time Distribution for WCHB Activity

0 0.5 1 1.5 2 2.5

x 10
5

0

2

4

6

8

10

12

Time Axis

Ev
en

t

My Draw

Figure 6.4: Time Distribution for PCHB Activity

Chapter 6. Handshaking Protocol Effect 113

Eslam Yahya Grenoble INP, 2009

0 0.5 1 1.5 2 2.5

x 10
5

0

2

4

6

8

10

12

Time Axis

Ev
en

t

My Draw

Figure 6.5: Time Distribution for PCFB Activity

0 0.5 1 1.5 2 2.5

x 10
5

0

2

4

6

8

10

12

Time Axis

Ev
en

t

My Draw

Figure 6.6: Time Distribution for FDFB Activity

Chapter 6. Handshaking Protocol Effect 114

Eslam Yahya Grenoble INP, 2009

6.5 Protocol Effect on Process Variability.

Process variability causes deviations in the final circuit throughput. If the technology

supposes a statistical distribution for the gate delays, the circuit composed of these gates would

have statistical performance too. The more concurrency the circuit has the better chance for

averaging different delays. As a result, circuits which are based on more concurrent handshaking

protocols are expected to have less deviation from the average thorough. Concurrency is expected

to minimize the effect of process variability on the final circuit throughput.

For studying the relation between handshaking protocols and process variability effects,

two examples are considered in this sub-section. The first one is for the ANOC link where

different handshaking protocols are used and process variability effect on the final link speed is

recorded. The second example is an asynchronous ring where WCHB stages are replaced by

PCHB stages.

ANOC Link: Asynchronous registers in the link are changed from WCHB to PCHB,

PCFB and FDFB. The statistical distribution for the link throughput is recorded and the

enhancement in the standard deviation of the output is recorded; WCHB case is taken as a

reference. Table 6.4 shows the results of this coarse grain circuit.

TABLE 6.4: RELATION BETWEEN HANDSHAKING HROTOCOLS AND PROCESS VARIABILITY EFFECT

Register PCHB PCFB FDFB

Enhancement compared to WCHB 7.3% 12.6% 17.4%

As shown in the table, we can find a significant enhancement in the standard deviation of

the link speed by using more concurrent protocols. For example the standard deviation when

FDFB is used is 17.4% less than the standard deviation in case of WCHB. As the case in speed,

this enhancement comes in the price of more hardware and more power consumption dedicated

for the register implementation.

Asynchronous Ring: we use this example as a fine grain pipeline circuit. It is interested to

see if the more concurrent protocols would succeed enhancing the circuit properties due to

process variability or they would fail as in the case of speed. In this example, WCHB ring is

Chapter 6. Handshaking Protocol Effect 115

Eslam Yahya Grenoble INP, 2009

compared to PCHB ring and the standard deviation of the oscillating frequency is calculated.

When we replaced WCHB ring stages by PCHB ring stages we recorded an enhancement in the

output frequency standard deviation by around 1%. This result is not justifying the reduction in

frequency, extra HW and extra power consumption caused by PCHB ring stages. Consequently,

using more concurrent handshaking protocols in very fine grain pipelines is not recommended

neither from the speed point of view nor the process variability point of view.

 6.6 Conclusion.

In this chapter, the effect of handshaking protocols on speed, power consumption

distribution and effect of process variability is studied. Generally speaking, more concurrent

handshaking protocols would enhance the speed of the asynchronous circuits. However, in very

fine grain pipelines, the extra internal delays of more concurrent protocols would reduce the

speed and consume more power. The final conclusion of our study recommends mixing different

protocols inside the circuit for achieving the optimum compromise between speed, area and

power-consumption.

When events distribution is analyzed for the same circuit which is based on different

handshaking protocols, we noted that WCHB has the higher current impulses and the lower

switching frequency (for the same sequence of events). Adding more concurrency to the circuit,

by using PCHB – PCFB – FDFB, showed a reduction in current impulses and an increase in

switching frequency in the circuit. This study concludes that designers can optimize their circuits

in terms of power consumption distribution. By defining the frequency domain of interest,

designers can trade current peaks to switching frequency.

 Finally, more concurrent protocols reduce the effect of process variability on the final

circuit throughput. This result is more applied to coarse grain pipelined circuits. Fine grain

pipelines may not benefit from more concurrent protocols, so adding concurrency in this case is

not recommended from any point of view.

Chapter 6. Handshaking Protocol Effect 116

Eslam Yahya Grenoble INP, 2009

117

Eslam Yahya Grenoble INP, 2009

Chapter 7. AHMOSE: An Asynchronous High-speed Modeling and
Optimization Tool-Set

7.1 Introduction

Throughout the thesis work we developed various tools for realizing the presented

methods. Using different platforms, the AHMOSE (Asynchronous High-speed Modeling and

Optimization Tool-Set) project is implemented. The goal of this tool set is to provide a modeling,

analysis, and optimization environment. Figure 7.1 shows a general block diagram for the

AHMOSE tool-set.

Figure 7.1: General Block Diagram for the AHMOSE Project.

The project is composed of three main blocks; the Graphical User Interface (GUI), the

core tools, and the Delay-Generator/Viewer. The GUI is a convenient entry tool which allows the

designer to enter his circuit model in graphical mode. This tool is implemented using Java. The

Chapter7. AHMOSE: An Asynchronous High-speed Modeling and Optimization Tool-Set 118

Eslam Yahya Grenoble INP, 2009

function of this tool is to capture the graphical circuit-model and transform it into a proper format

which is passed to the core tools. The GUI transforms the circuit structure into two file formats;

binary files for storing/loading graphical circuit-structure and XML files for passing the circuit

structures to the core tools.

The core tools are the main part of the project. They are implementing the Asynchronous

circuit simulator, the analyzers, and the optimizer which are introduced in Chapters 3, 4 and 5.

These tools are implemented using C++ programming language. They accept two input formats,

XML file format and Text file format; both formats are human-readable. Results of these tools

are stored in text format. These results could be directly viewed by human eye; however this is

not so efficient especially for statistical outputs.

The third module is responsible for generating the statistical delay values using Matlab

functions. In addition, this module provides to the user visual tools for graphing and statistically

analyze the output results.

7.2 Graphical User Interface “GUI”

During my PhD I had co-supervised the training period (three moth) of two master

students “INP Grenoble TELECOM

The GUI is designed to provide the basic structures which are necessary for modeling

asynchronous circuits. These structures appear in Figure 2.3 in Chapter 2 and they are shown

again in Figure 7.2 for the reader convenience. In addition to the basic structures which are

discussed in Chapter 2, the GUI supports two other structures; the “Control” component and the

“Generic” component. The Control component is used to model the environment which is

providing the control input to Split and Merge (or any other controlled components). By means of

these component, we model the control sequences (which In/Out channel is selected) and the

control delays. Asynchronous circuits could contain some other structures, for instance, a multi-

input multi-output NOC router. This component could not be simply modeled using the basic

”. I would like to thank them for their appreciated help in

developing the GUI especially in writing the related Java code.

Chapter7. AHMOSE: An Asynchronous High-speed Modeling and Optimization Tool-Set 119

Eslam Yahya Grenoble INP, 2009

structures. As a result, we designed a Generic component which is reconfigurable by the user.

The numbers of input, output and control channels are defined by the user. For example, if the

user set this component to have three input channels, one output channel and one control; this

component model a three input Merge. If the Generic component is configured to have four input

channels, four output channels and one control; this could model 4x4 crossbar switch. Designer

should be sure that the new modeled component is supported by the analytical models library

(more details are discussed in the next section). Generic component adds flexibility and

efficiency to our tool set.

Figure 7.2: Basic Structures Suported by the GUI

Chapter7. AHMOSE: An Asynchronous High-speed Modeling and Optimization Tool-Set 120

Eslam Yahya Grenoble INP, 2009

As shown in Figure 7.1, the GUI deals with two kinds of files: files to store the graphical

representation of the circuit and files to provide serialized version of the circuit. Since the GUI is

implemented using Java, we made a study to choose the best file representation. In this study we

compared between XML, Text and Binary file formats; Table 7.1 shows the results of the

comparison. This study is done over ten circuits which are quite large.

TABLE 7.1: COMPARISON BETWEEN GUI FILE FORMATS

File
Format

Execution Time Size Readability Serialization
Complexity

Portability
Java <=> C++ Write Read

XML 1478ms 10004ms 26.2 Mb Yes Easy Yes

Text 628 ms 237 ms 4.2 Mb Yes Hard Yes

Binary 46 ms 67 ms 3.1 Mb No Easy No

The study shows that binary format is optimum for storing the graphical representation of

the circuit; it is fast and small size. Reading these files by human eye is not expected, hence, we

do not care for their readability. Files which are used to store the serialization of the circuit

graphs should be readable and portable between Java and C++. Using Text format is good from

the size and time points of view. However, serialization of the circuit would be complex in this

case. For simplifying the GUI implementation, we choose to serialize the circuit into XML

format. When the circuit is edited and been asked to be re-serialized this process is requested by

human. Therefore, the quite slow response of the XML file is not expected to reduce the tool

performance.

The next step is to design the layout of the GUI; this is shown in Figure 7.3. the layout

consists of:

1. Classical menu bar in which we can find save/load project, launch verification,
simulation etc…

2. Design window in which the user can create, delete and connect components.

3. Component bar contains all supported structures.

Chapter7. AHMOSE: An Asynchronous High-speed Modeling and Optimization Tool-Set 121

Eslam Yahya Grenoble INP, 2009

4. Component properties window which displays the properties of the selected

component. In this window, the user can modify the component properties.

5. Status window which provides the user information about the current running

modules, reading/writing files etc...

A snapshot of the implemented GUI appears in Figure 7.4. This GUI was very helpful

during the thesis for building, configuring and modifying the test circuits.

Figure 7.3: Layout of the GUI

Chapter7. AHMOSE: An Asynchronous High-speed Modeling and Optimization Tool-Set 122

Eslam Yahya Grenoble INP, 2009

Figure 7.4: A sanpshot of the GUI

7.3 The Core Tools

The Core tools are the main part of the project. They are implementing the methods which

are proposed throughout the thesis. The Core tools are composed of three main modules; the

Asynchronous Circuit Simulator “ACS”, the Performance Analyzer “PA” and the Performance

Optimizer “PO”.

Chapter7. AHMOSE: An Asynchronous High-speed Modeling and Optimization Tool-Set 123

Eslam Yahya Grenoble INP, 2009

 7.3.1 Asynchrones Circuit Simulator

The Asynchronous Circuit Simulator (ACS) is the module which is responsible for

parsing the input files and construct the circuit structure into the memory; Figure 7.5. The ASC

accepts two file formats, XML or Text Format. A parser module reads the input file and

constructs the circuit in the memory. The circuit simulator module solves the circuit and outs the

absolute time information for the different components. These information are passed to the

analyzer and the optimizer. The algorithm of the ASC is depicted in Figure 7.6.

Figure 7.5: Block Diagram of The Asynchronous Circuit Simulator

Chapter7. AHMOSE: An Asynchronous High-speed Modeling and Optimization Tool-Set 124

Eslam Yahya Grenoble INP, 2009

Figure 7.6: Flowchart of The Asynchronous Circuit Simulator

The ACS could be directly launched through a command shell or through the

“Simulation” window in the GUI. Depending on the file format, the ACS selects either XML

parser or Text parser. The parser analyzes the input file and builds the circuit structure into the

memory. After that, the ACS handles the circuit initialization. The components - which are

initialized - affect the status of the preceding and following components. For example, if a

register is initialized by a token then its output request and its input acknowledge have to be

activated. Activating these signals affect some flags in the preceding and following registers. In

the same step, the ACS builds what we call “Solving List (SL)”. This list contains the registers

which are ready to be solved. In other words, registers which have proper input status to store

Evaluation or Reset token. Registers in Solving List “SL” are solved one by one. When a register

is solved the proper signals (Acknowledge/Request) are propagated to the attached registers.

Chapter7. AHMOSE: An Asynchronous High-speed Modeling and Optimization Tool-Set 125

Eslam Yahya Grenoble INP, 2009

These attached registers are tested; if they are ready to be solved they are inserted into the

Solving List etc... The appropriate TTVs (Time Token Vectors) are updated to store the solution

step results. After consuming all the input tokens or solving for the requested simulation time, the

ACS passes the “TTVs” to the Analyzer and/or optimizer. There are cases in which the ACS is

launched by the optimizer. In these cases, the circuit structure is modified by the optimizer and is

requested to be re-analyzed.

7.3.2 Performance Analyzers

The connection between the Timing Analyzer “TA” and the ACS appears in Figure 4.5.

The connection between the Power Analyzer “PA” and the ACS appears in Figure 4.10. The

ACS passes the TTVs to the Analyzers. The requested analysis Timing/Power is passed to the

corresponding analyzer. Using the “Timing-Metrics Equations” library for the Timing Analyzer

and the “Event to Power” library for the Power Analyzer, the requested analysis is done and

passed to the user by displaying on the command shell or by writing into output files.

Figure 7.7: Flowchart of The Performance Anlyzers

Figure 7.7 depicts the algorithm used in the analyzers. The analysis requests come from

the command shell. Based on the analysis type (timing or power), the analyzer uses the

Chapter7. AHMOSE: An Asynchronous High-speed Modeling and Optimization Tool-Set 126

Eslam Yahya Grenoble INP, 2009

corresponding module. After calculating the requested metrics, the analyzer calls the optimizer (if

the user requests optimization for the results) or writes the output files.

 7.3.3 Performance Optimizer

If the user asks for optimizing the circuit, the timing analyzer calls the Optimizer.

Connection between ACS, Analyzer and Optimizer is shown in Figure 5.1. Optimizer applies the

optimization algorithms discussed in Chapter 5. After that, it checks if there are some possible

optimization for the circuit structure or not. If yes, the optimizer modifies the circuit structure in

the memory and calls the Asynchronous Circuit Simulator “ACS”. The ACS solves the new

circuit structure and passes the results to the analyzer. The timing analyzer determines the

concerned metrics and passes results to the optimizer which decides for the next step etc... Figure

7.8 shows the algorithm of the optimizer.

Figure 7.8: Flowchart of The Performance Anlyzers

All the core tools are implemented using C++. Object oriented programming paradigms

guarantee nicely organized implementation and the easily extension of the tools. For example,

when we added the generic component, it is needed to add the analytical model of this component

Chapter7. AHMOSE: An Asynchronous High-speed Modeling and Optimization Tool-Set 127

Eslam Yahya Grenoble INP, 2009

to the library and to extend the solving methods to cover the different structures such as crossbar

switches or network routers. Implementing analytical models in a separate library makes the

extension of the tools straightforward. Figure 7.9 shows some snapshots of the shell interface of

the tools.

Figure 7.9: Snapshots from the Core Tools Shell

7.4 Delay Generator / Viewer and Post Processing

All the Monte Carlo analysis show that the manufacturer models of the delay variability

uses Normal distributions. There are several methods to generate normal distributions; the most

Chapter7. AHMOSE: An Asynchronous High-speed Modeling and Optimization Tool-Set 128

Eslam Yahya Grenoble INP, 2009

basic is to invert the standard normal Cumulative Distribution Function “cdf”. More efficient

methods are also known such as the Box-Muller transform. An even faster algorithm is the

ziggurat algorithm. Matlab provides functions for generating different statistical distributions

especially Gaussian. Delay generator is implemented using these functions.

Moreover, Matlab provides efficient statistical tools which are able to process the

statistical output of our tools and give important information as standard deviation of the output.

For their efficiency and simplicity, Matlab functions are used to implement the viewer and post

processor tools. However, using Matlab gives two disadvantages to the flow. First, calling these

Matlab functions consumes nontrivial memory space even though the functions themselves are

quite simple. Second, the user of the current version of AHMOSE tools needs to have Matlab for

generating the Delay Token Vector “DTVs”. There are alternative solutions. For instance, the

GNU scientific library provides some modules for generating Gaussian distributions. Using these

functions could enhance the efficiency of our tools; however, this needs more investigation.

7.5 Conclusion

Various methods have been developed during the PhD work. An implementation of these

methods was needed for validation. Complete project is planned for implementing the tool flow.

Java is used for implementing a graphical user interface “GUI” which provides to the user an

efficient entry tool. Developed methods have been implemented using C++ in the three main

software modules. These modules are interacting to simulate, analyze and optimize the circuits.

The results are viewed and post processed using Matlab. While designing these tools, we have

taken into consideration the extension of their features. That makes straightforward the inclusion

of new components, new structures and new protocols. An evaluation version of the AHMOSE

tools is available on the internet. They can be downloaded and installed on Windows OS.

Many extensions of the current implementations are possible for enhancing the tools

features and the efficiency of their performance. Including the GNU library for the delay

generator, using some C++ modules for the viewer, enriching the analytical models library and

enhancing the GUI quality are examples of the potential enhancement.

 129

Eslam Yahya Grenoble INP, 2009

Chapter 8. Conclusion and Prospective

Asynchronous circuits are promising solution for many problems in recent technologies.

Design, analysis and optimization of asynchronous circuits are interesting topics for research and

development. Especially timing analysis and optimization need the development of new methods

and tools.

In this thesis, we investigated the behavior of asynchronous circuits in the presence of

delay variability. Based on a structural view, a modeling method for asynchronous circuits is

developed. This modeling method uses asynchronous registers as barriers for dividing the circuit

into separate islands. By means of analytical model for the handshaking between these islands,

the total circuit performance is analyzed. Based on this analysis, an optimization method is

presented. This method optimizes the number of asynchronous registers inserted inside the circuit

to achieve optimal hardware utilization. Throughout the work, we noticed an important impact of

the used handshaking protocol on speed, power consumption distribution and effect of delay

variability. This impact is investigated and some guidelines are presented. Finally, a complete

tool flow is developed for validating the presented methods.

Handshaking protocols are important milestone in the proposed method. Consequently,

we started by defining some behavioral metrics of different handshaking protocols. As an

illustrative example, the handshaking protocols from Caltech are analyzed based on these

metrics. A proposition for a new handshaking protocol is introduced and the QDI circuit

implementation of this protocol is shown.

 A class of time-marked graphs is used to develop analytical models for different

handshaking protocols. By means of these analytical models, a complete modeling method has

been developed. This method is a mixture between closed form equations and iterative simulation

solutions. Compared to previous works, our model avoids modeling the whole circuit as a single

problem. This is done by considering asynchronous registers as barriers which are partitioning

the circuit. In this modeling method, nondeterministic structures are efficiently supported. No

restrictions on the circuit structures are needed for a correct behavior of our model. The method

Chapter 8. Conclusion and Prospective 130

Eslam Yahya Grenoble INP, 2009

fully supports delay variability by means of a simple and flexible delay model. For validating our

method, a complete event-driven circuit simulator has been developed. This simulator provides a

convenient GUI and a netlist like entry environment to the user. A complete analytical-models

library of different handshaking protocols has also been implemented. The circuit simulator is

using a nice and efficient delay generator which is devoted for the inclusion of the delay

variability. The simulator analyzes the circuits and produces the output Time Token Vectors

“TTVs” which are very useful information to extract many interesting performance metrics.

Based on the produced “TTVs”, a method for analyzing the time performance of

asynchronous circuits is proposed. Our methods and tools show flexibility with different circuit

structures, mixing handshaking protocols in a single circuit and using different delay types. One

of the important advantages of the proposed method is the linear growth of its complexity with

respect to the circuit size. Afterward, a method for converting the circuit events into

current/power consumption information is used. By means of this method, we built a power

analyzer which is able to estimate the power consumption and its distribution in time. In addition

to this, the methods could analyze “Within Die” and “Die To Die” process variation with a very

high accuracy.

Subsequently, the problem of optimizing deterministic asynchronous pipelines by

controlling the number of registers is addressed. The target is to find the minimum number of

registers which satisfy the given performance constraints. Moreover, the method finds the

optimum placing of these registers which not only satisfies the target performance, but also

results in the maximum achievable performance using this number of registers. To accomplish

these targets, an optimal algorithm is analyzed and implemented. The condition guaranteeing that

adding registers to the pipeline is monotonically decreasing the cycle time is stated and proven.

Two possible optimizations are addressed and by using “Branch and Bound”, different heuristics

are applied. The optimality of the solution after applying these optimizations is proven.

The impact of the handshaking protocol on different performance metrics is discussed.

Generally speaking, more concurrent handshaking protocols would enhance the speed of the

asynchronous circuits. However, in very fine grain pipelines, the extra internal delays of more

concurrent protocols would reduce the speed and consume more power. The final conclusion of

Chapter 8. Conclusion and Prospective 131

Eslam Yahya Grenoble INP, 2009

our study recommends mixing different protocols inside the circuit for achieving the optimum

compromise between speed, area and power-consumption. We produced different versions of a

same circuit; each version is based on a different handshaking protocol. When event distribution

is analyzed for these versions, we noted that WCHB has the higher current impulses and the

lower switching frequency. Adding more concurrency to the circuit, by using PCHB – PCFB –

FDFB, shows a reduction in current impulses and an increase in switching frequency. This study

concludes that designers can optimize their circuits in terms of power consumption distribution.

By defining the frequency domain of interest, designer can trade current peaks to switching

frequency. Finally, more concurrent protocols reduce the process variability effects on the final

circuit throughput. This result is more applicable to coarse grain pipelined circuits.

Finally, a software platform is implemented to provide a complete flow for our methods.

A flexible GUI has been developed using Java. Matlab codes are used for producing delay PDFs

and final output viewers. By means of some interpreters, the graphical circuit structures and the

delay PDFs are used to produce a netlist circuit specification file. This file is used as an entry to

the event driven circuit simulator which is implemented in C++. Based on this simulator, timing

analyzer and power analyzer are implemented. On top of that, we added another application

which implements the proposed optimization algorithms. By using Matlab, some viewers and

post-processing functions are also implemented.

There are many possible extensions to this work such as hardware implementation of

different handshaking protocols of nonlinear elements. There are many investigations on how to

distribute and collect acknowledgment signals in nonlinear elements. The presented modeling

method provides the background for building an architecture analyzer. This analyzer would be

devoted for detecting the probability of having deadlocks in the circuit structures. Some

extensions to the presented optimization methods are possible too. Using “waiting times” is

probably a very efficient way to optimize asynchronous circuits. In addition, the presented

optimizations are extendable to cover non-deterministic pipelines. We already worked on that,

however, this point needs more investigations. The implemented tools have many possible

extensions too. They can be enhanced by including efficient modules and APIs which are

available.

Chapter 8. Conclusion and Prospective 132

Eslam Yahya Grenoble INP, 2009

 133

Eslam Yahya Grenoble INP, 2009

[1] T. Agerwala. Putting Petri nets to work. IEEE Computer, 12(12):85–94, December 1979.

References

[2] Al Davis, Steven M. Nowick: An Introduction to Asynchronous Circuit Design, UUCS-97-013, (1997)

[3] Andrew Lines: Pipelined Asynchronous Circuits. Master Thesis (1995)

[4] A. Ashkinazy, D. Edwards, C. Farnsworth, G. Gendel, and S. Sikand. Tools for validating asynchronous digital circuits. In
Proceedings of the International Symposium on Advanced Research in Asynchronous Circuits and Systems (Async94), pages
12-21. IEEE Computer Society Press, November 1994.

[6] Steven M. Burns. Performance Analysis and Optimization of Asynchronous Circuits. PhD thesis, California Institute of
Technology, 1991.

[5] Robert Berks and Jo Ebergen. Response time properties of linear pipelines with varying cell delays. In Proc. International
Workshop on Timing Issues in the Speciation and Synthesis of Digital Systems (TA U), December 1997.

[7] S. Chakraborty, D.L. Dill, K.-Y. Chang, and K.Y. Yun. Timing analysis for extended burst-mode circuits. In Proceedings of
the International Symposium on Advanced Research in Asynchronous Circuits and Systems (Async97). IEEE Computer
Society Press, April 1997.

[8] S. Chakraborty and D.L. Dill. More accurate polynomial-time min-max timing simulation. In Proceedings of the International
Symposium on Advanced Research in Asynchronous Circuits and Systems (Async97). IEEE Computer Society Press, April
1997.

[9] Supratik Chakraborty, David L. Dill, and Kenneth Y. Yun. Min-max timing analysis and an application to asynchronous
circuits. Proceedings of the IEEE, 87(2):332–346, February 1999.

[10] Tiberiu Chelcea, Girish Venkataramani, Seth C. Goldstein: “Area Optimizations for Dual-Rail Circuits Using Relative-
Timing Analysis”. In Proceedings of 13th IEEE International Symposium on Asynchronous Circuits and Systems, pages 117-
128. California, USA, 2007.

[11] T.-A. Chu. Synthesis of self-timed control circuits from graphs: an example. In Proceedings of the International Conference
on Computer Design, pages 565--571, 1986.

[12] T.-A. Chu, “Synthesis of self-timed VLSI circuits from graph-theoretic specifications,” Ph.D. dissertation, MIT, June 1987.

[13] Jo Ebergen. Squaring the FIFO in GasP. In Proc. International Symposium on Advanced Research in Asynchronous Circuits
and Systems, pages 194–205. IEEE Computer Society Press, March 2001.

[14] Jo Ebergen and Robert Berks. “Response Time Properties of Some Asynchronous Circuits”. Proceedings of the 3rd
International Symposium on Advanced Research in Asynchronous Circuits and Systems, Eindhoven, Netherlands, 1997.

[15] J. C. Ebergen, S. Fairbanks and I. E. Sutherland, “Predicting performance of micropipelines using Charlie diagrams”,
ASYNC’98, San Diego, CA, USA, IEEE, April 1998, pp. 238 - 246.

[16] Jo Ebergen and Robert Berks. Response time properties of linear asynchronous pipelines. Proceedings of the IEEE,
87(2):308-318, February 1999.

[17] S. Fairbanks and S. Moore, “Analog micropipeline rings for high precision timing”, ASYNC’04, CRETE, Greece, IEEE,
April 2004, pp. 41–50.

[18] O. Garnica, J. Lanchares, R. Hermida, “Optimization of asynchronous delay-insensitive pipeline latency using stage
reorganization and optimal stage parameter estimation” Proceedings of the International Conference on Application of
Concurrency to System Design (ACSD), Newcastle upon Tyne, UK, pp. 167-178, 2001.

[19] H. Hulgaard, S.M. Burns, T. Amon, and G. Borriello. Practical applications of an efficient time separation of events
algorithm. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pages 146-151. IEEE
Computer Society Press, November 1993.

[20] H. Hulgaard and S.M. Burns. Bounded delay timing analysis of a class of CSP programs with choice. In Proceedings of the
International Symposium on Advanced Research in Asynchronous Circuits and Systems (Async94), pages 2-11. IEEE
Computer Society Press, November 1994.

[21] H. Hulgaard, S. M. Burns, T. Amon, and G. Borriello. An algorithm for exact bounds on the time separation of events in
concurrent systems. IEEE Transactions on Computers, 44(11):1306–1317, November 1995.

References 134

Eslam Yahya Grenoble INP, 2009

[22] Henrik Hulgaard. Timing Analysis and Verification of Timed Asynchronous Circuits. PhD thesis, Department of Computer
Science, University of Washington, 1995.

[23] Jacques J.A., Simon Moore, Huiyun Li, Robert Mullins, George Taylor: Security Evaluation of Asynchronous Circuits.
CHES, pp. 137-151 (2003)

[24] Jens SparsØ, Steve Furber: Principles of Asynchronous Circuit Design. A System Perspective. Kluwer Academic Publishers
(2001)

[25] Jens Sparsø and Jørgen Staunstrup. Delay-insensitive multi-ring structures. The VLSI journal, 15(3):313–340, October 1993.

[26] Sangyun Kim and Peter Beerel: Pipeline Optimization for Asynchronous Circuits: Complexity Analysis and an Efficient
Optimal Algorithm. IEEE Transactions of Integrated Circuit and Systems , VOL. 25, NO. 3, 2006

[27] Benoit Lasbouygues, Robin Wilson, Member, IEEE, Nadine Azémard, and Philippe Maurine: “Temperature- and Voltage-
Aware Timing Analysis”. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND
SYSTEMS, VOL. 26, NO. 4, APRIL 2007.

[28] Benoit Lasbouygues, Robin Wilson, Member, IEEE, Nadine Azémard, and Philippe Maurine: “Temperature and Voltage
Aware Timing Analysis: Application to Voltage Drops”. In proceedings of DATE 07.

[29] Luciano Lavagno, Kurt Keutzer, Alberto L. Sangiovanni-Vincentelli, “Synthesis of Hazard-Free Asynchronous Circuits with
Bounded Wire Delays”, IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND
SYSTEMS, VOL. 14, NO. 1, JANUARY 1995.

[30] Marc Renaudin, Joao Leonardo: Asynchronous Circuits Design: An Architectural Approach. (2003)

[31] A. J. Martin, A. Lines, R. Manohar, M. Nystroem, P. Penzes, R. Southworth, and U. Cummings, “The design of an
asynchronous MIPS R3000 microprocessor” in Proc. Conf. Advanced Research VLSI, Ann Arbor, MI, Sep. 1997, pp. 164–
181.

[32] V. Migairou, R. Wilson, S. Engels, Z. Wu, N. Azemard, and P. Maurine. “A Simple Statistical Timing Analysis Flow and Its
Application to Timing Margin Evaluation”. PATMOS 2007, LNCS 4644, pp. 138–147.

[33] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE, 77(4):541–580, April 1989.

[34] Chris J. Myers and Teresa H.-Y. Meng. Synthesis of timed asynchronous circuits. IEEE Transactions on VLSI Systems,
1(2):106–119, June 1993.

[35] Peggy McGee, Steven Nowick, E.G. Coffman: Efficient performance analysis of asynchronous systems based on periodicity.
3rd IEEE / ACM / IFIP CODE (2005)

[36] Peggy McGee, Steven Nowick: “An efficient algorithm for time separation of events in concurrent systems”. ”. In
Proceedings of IEEE/ACM International Conference on Computer-Aided Design pp180-187. ICCAD 2007.

[37] Peter A. Beerel: Asynchronous Circuits: An Increasingly Practical Design Solution. Proceedings of ISQED’02, IEEE
Computer Society (2002)

[38] C. V. Ramamoorthy and G. S. Ho. Performance evaluation of asynchronous concurrent systems using Petri nets. IEEE
Transactions on Software Engineering, 6(5):440–449, September 1980.

[39] L. Y. Rosenblum and A. V. Yakovlev, “Signal graphs: From self-timed to timed ones,” in Int. Workshop. Timed Petri Nets,
Torino, Italy, 1985.

[40] Sachin Sapatnekar: “Timing”. Kluwer Academic Publishers, ISBN 1-4020-7671-1, 2004.

[41] A. Semenov and A. Yakovlev. Verification of asynchronous circuits using time Petri net unfolding. In 33rd ACM/IEEE
Design Automation Conference, June 1996.

[42] Stephen. B. Furber and Paul Day: Four-Phase Micropipline Latch Control Circuits. IEEE Transitions on VLSI Systems,
4(2):247-253, (1996)

[43] Ted Williams: Latency and Throughput Tradeoffs in Self-Timed Speed-Independent Pipelines and Rings. Technical Report
No. CSL-TR-90-431 (1990).

[44] T. E. Williams, “Self-timed rings and their application to division,” Ph.D. thesis, Dept. Elect. Eng. Comput. Sci., Stanford
Univ., CA, Jun. 1991.

References 135

Eslam Yahya Grenoble INP, 2009

[45] Ted Williams: Performance of Iterative Computation in Self-Timed Rings. Journal of VLSI Signal Processing, 7, 17-31
(1994).

[46] C.H. (KEES) Van Berkel, Mark B. Josephs, Steven M. Nowick: Scanning the Technology. Applications of Asynchronous
Circuits. Proceedings of the IEEE, Vol. 87, No 2 (1999)

[47] E. Verlind, G. de Jong, and B. Lin. Efficient partial enumeration for timing analysis of asynchronous systems. In 33rd
ACM/IEEE Design Automation Conference, June 1996.

[48] A. Winstanley and M. R. Greenstreet, “Temporal properties of self timed rings”, CHARM’01, London, UK, Springer-Verlag,
April 2001, pp. 140 - 154.

[49] A. J. Winstanley, A. Garivier, and M. R. Greenstreet, “An event spacing experiment,” Proceedings of the Eighth
International Symposium on Asynchronous Circuits and Systems, ASYNC’02, pp. 47–56, Apr. 2002.

[50] Aiguo Xie and Peter A. Beerel. Symbolic techniques for performance analysis of timed systems based on average time
separation of events. In Proc. International Symposium on Advanced Research in Asynchronous Circuits and Systems, pages
64–75. IEEE Computer Society Press, April 1997.

[51] Aiguo Xie, Sangyun Kim, and Peter A. Beerel. Bounding average time separations of events in stochastic timed Petri nets
with choice. In Proc. International Symposium on Advanced Research in Asynchronous Circuits and Systems, pages 94–107,
April 1999.

[52] A. Yakovlev and A. M. Koelmans. Petri nets and digital hardware design. In Lectures on Petri nets II: Basic Models, Lecture
Notes in Computer Science. Springer-Verlag, 1998.

[53] V. Zebilis and C. P. Sotiriou, “Controlling event spacing in self-timed rings”, ASYNC’05, New York, USA, IEEE, March
2005, pp. 109 - 115.

References 136

Eslam Yahya Grenoble INP, 2009

[54] Eslam Yahya, Oussama Elissati, Hatem Zakaria, Laurent Fesquet and Marc Renaudin : " Programmable/Stoppable Oscillator
Based on Self-Timed Rings", IEEE ASYNC’2009, May 17-20, 2009, UNC Chapel Hill, USA.

Publications produced during the thesis:

[55] Eslam Yahya and Laurent Fesquet, “Asynchronous Design: A Promising Paradigm for Electronic Circuits and Systems“to be
published IEEE ICECS’2009, 13th-16th December 2009, Hammamet, Tunisie.

[56] Oussama Elissati, Eslam Yahya, Laurent Fesquet and Sébastien Rieubon, “Oscillation Period and Power Consumption in
Configurable Self-Timed Ring Oscillators” IEEE NEWCAS-TIASA’2009, Jun 28–July 1st, 2009, Toulouse, France.

[57] Eslam Yahya, Laurent Fesquet and Marc Renaudin : " Asynchronous High-speed Modeling and Optimization tool Set
(AHMOSE)", DATE 2009 (University Booth), Nice, France, April 2009.

[58] Eslam Yahya, Marc Renaudin and Gregory Lopin: "Standard-Logic Quasi Delay Insensitive Registers”. VLSI-SOC'08,
Rhodes Island, Greece, pp: 465- 468, 2008

[59] Eslam Yahya and Marc Renaudin: "Optimal Asynchronous Linear-Pipelines". PRIME'08, Istanbul, Turkey, pp 9-12, 2008.
(Best Paper Award: Silver Leaf)

[60] Eslam Yahya and Marc Renaudin: "Asynchronous Linear Pipelines: An efficient-Optimal pipelining Algorithm". ICECS'08,
Malta, 2008

[61] Eslam Yahya and Marc Renaudin: " AHMOSE: Towards a Circuit Level Solution for Process Variability". Workshop on
Impact of Process Variability on Design and Test, Held at DATE'08, Munich, Germany, 2008

[62] Eslam Yahya and Marc Renaudin: "Asynchronous Linear-Pipeline with Time Variable Delays: Performance Modeling,
Analysis and Slack Optimization”. DCIS'08, Grenoble, France, 2008

[63] Eslam Yahya and Marc Renaudin: "Asynchronous High-speed Modeling and Optimization tool Set (AHMOSE)". Demo in
ASYNC'08 Exhibition & Demo Sessions, New-Castle, UK, 2008

[64] Eslam Yahya and Marc Renaudin: "Performance Modeling and Analysis of Asynchronous Linear-Pipeline with Time
Variable Delays". ICECS'07, Marrakech, Morocco, pp. 1288-1291, 2007

[65] Eslam Yahya and Marc Renaudin: "Performance Modeling and Analysis of Asynchronous Linear-Pipeline” SOC-SIP 2007,
Paris, France, 2007

[66] Eslam Yahya and Marc Renaudin: "QDI Latches Characteristics and Asynchronous Linear Pipeline Performance Analysis”
PATMOS 2006, Montpellier, France, pp 583-592, 2006

[67] Eslam Yahya, Marc Renaudin: Asynchronous Buffers Characteristics: Molding and Design. Research Report, TIMA-RR--
06/-01--FR 2006

[68] Eslam Yahya, Marc Renaudin and Gregory Lopin: Standard-Logic Quasi Delay Insensitive Latches, TIMA-RR--06/06-04--
FR 2006

Modélisation, Analyse et Optimisation des Performances des Circuits Asynchrones Multi-Protocoles

RESUME Les circuits asynchrones suscitent de nombreux intérêts à bien des égards. Cependant la modélisation,

l'analyse et l'optimisation des circuits asynchrones constituent des pierres d'achoppement à la diffusion de cette

technologie sur un plan commercial. Ce travail vise le développement de modèles de circuits asynchrones

capables de retranscrire efficacement les protocoles « poignée de main ». Sur la base de ces modèles, une

technique d’analyse rapide et précise des circuits a été développée. Cette technique offre un support complet

pour l’analyse de délais statistiquement variables et pour différentes structures de circuit (linéaire / non linéaire,

sans / avec condition). Elle permet de réaliser des analyses statiques de timing, de consommation électrique et

des effets des variabilités sur les circuits asynchrones. En sus de ces méthodes de modélisation et d'analyse, une

technique d'optimisation a été développée. Cette technique d'optimisation est basée sur une réduction du nombre

de registres asynchrones à un nombre minimal capable de satisfaire les contraintes de performance. L’utilisation

des méthodes proposées a permis l’étude de différents protocoles asynchrones et de leurs impacts sur la vitesse,

la consommation et la variabilité des procédés de fabrication. Les méthodes proposées ont été validées grâce à

un jeu d'outils logiciels écrits en C + +, Java et Matlab. Ces outils se sont avérés rapides, efficaces et dotés d’une

très bonne précision de calcul.

MOTS-CLES:“Logique asynchrone”, “Modélisation, Analyse et Optimisation des Performances”, “

Pipelines asynchrone non-linéaire ”, “ Variation PVT ”, “ Poignée de main asynchrone”.

Performance Modeling, Analysis and Optimization of Multi-Protocol Asynchronous Circuits

ABSTRACT Asynchronous circuits show potential interest from many aspects. However modeling, analysis

and optimization of asynchronous circuits are stumbling blocks to spread this technology on commercial level.

This thesis concerns the development of asynchronous circuit modeling method which is based on analytical

models for the underlying handshaking protocols. Based on this modeling method, a fast and accurate circuit

analysis method is developed. This analysis provides a full support for statistically variable delays and is able to

analyze different circuit structures (Linear/Nonlinear, Unconditional/Conditional). In addition, it enables the

implementation of timing analysis, power analysis and process-effect analysis for asynchronous circuits. On top

of these modeling and analysis methods, an optimization technique has been developed. This optimization

technique is based on selecting the minimum number of asynchronous registers required for satisfying the

performance constraints. By using the proposed methods, the asynchronous handshaking protocol effect on

speed, power consumption distribution and effect of process variability is studied. For validating the proposed

methods, a group of tools is implemented using C++, Java and Matlab. These tools show high efficiency, high

accuracy and fast time response.

Keywords:“ “Asynchronous Logic”, “Performance Modeling, Analysis and Optimization”, “Nonlinear

Asynchronous Pipelines”, “PVT Variation”, “Asynchronous Handshaking””.

Thèse préparée au laboratoire TIMA (Techniques de l’Informatique et de la Microélectronique pour
l’Architecture des ordinateurs), Grenoble INP, 46 avenue Félix Viallet, 38031, Grenoble Cedex 1, France.

ISBN 978-2-84813-147-4

	01_Couver_English
	02_Ded
	03_Ack
	04_Abst
	05_Table of Contents
	06_List_Of_Figuers
	07_Chapter1_ROK
	Chapter 1. Introduction: Context and Motivations

	08_Chapter2_ROK
	Chapter 2. Asynchronous Circuits: Handshaking Protocols, Behavior Modeling and Performance Analysis

	09_Chapter3_ROK
	Chapter 3. Asynchronous Circuits Performance Modeling

	10_Chapter4_ROK
	Chapter 4. Asynchronous Circuits Performance Analysis

	11_Chapter5_ROK
	Chapter 5. Asynchronous Circuits Performance Optimization

	12_Chapter6_ROK
	Chapter 6. Handshaking Protocol Effect

	13_Chapter7_ROK
	Chapter 7. AHMOSE: An Asynchronous High-speed Modeling and Optimization Tool-Set

	14_Chapter8_ROK
	Chapter 8. Conclusion and Prospective

	15_References_ROK
	16_Back_INPG
	Modélisation, Analyse et Optimisation des Performances des Circuits Asynchrones Multi-Protocoles
	RESUME Les circuits asynchrones suscitent de nombreux intérêts à bien des égards. Cependant la modélisation, l'analyse et l'optimisation des circuits asynchrones constituent des pierres d'achoppement à la diffusion de cette technologie sur un plan co...
	MOTS-CLES:“Logique asynchrone”, “Modélisation, Analyse et Optimisation des Performances”, “ Pipelines asynchrone non-linéaire ”, “ Variation PVT ”, “ Poignée de main asynchrone”.
	Performance Modeling, Analysis and Optimization of Multi-Protocol Asynchronous Circuits
	ABSTRACT Asynchronous circuits show potential interest from many aspects. However modeling, analysis and optimization of asynchronous circuits are stumbling blocks to spread this technology on commercial level. This thesis concerns the development of...
	Keywords:“ “Asynchronous Logic”, “Performance Modeling, Analysis and Optimization”, “Nonlinear Asynchronous Pipelines”, “PVT Variation”, “Asynchronous Handshaking””.

