Annexe I

A.I. Paramètres environnementaux et cristaux utilisés dans les expériences de Lavalle (1853), Becker et Day (1905), Taber (1916), Correns et Steinborn (1939, 1949), Bruhns et Mercklenburg (1913).

Auteurs	Type de cristal	Type de	Appareil de	Mode de	Humidité	Température
		contrainte	mesure	sursaturation	Relative	_
Lavalle 1853	-	-	Observations	-	-	-
			visuelles			
Becker et Day	$KAl(SO_4)_2.12H_2O$	Plaque de	Sphéromètre	Evaporation	-	« Room
1905	CuSO ₄ .3H ₂ O	verre	à vis et Pied	+		temperature »
	$K_2Fe(CN)_6.3H_2O$	chargée	à coulisse	Refroidissement		20°C
	$Pb(NO3)_2$	par				ou 10°C
		différents				
		poids				
Taber 1916	$KAl(SO_4)_2.12H_2O$	Plaque de	Sphèromètre	Refroidissement	Dessicateur	Passage de
	$CuSO_4.3H_2O$	verre	à vis avec		$\sim 0\%$	20°C à 12°C
	K_2SO_4	+ quelques	une			Ou
	$KCr(SO_4)_2.12H_2O$	fois papier	graduation			refroidissement
		filtre	de 0.01mm			à température
						de la pièce
Correns 1939-	$KAl(SO_4)_2.12H_2O$	Plaque de :	Appareillage	Evaporation	-	20°C
1949	Contraint selon	Verre	spécial +			
	$\{111\}, \{100\}$ et	Gypse	papier filtre			
	{110}	Міса				
	Chlorure de	+papier				
	sodium	filtre				
Bruhns et	$KAI(SO_4)_2.12H_2O$	Plaque de	Sphéromètre	Evaporation	-	-
Mercklenburg		verre	à vis			
1913		chargée				
		par				
		différents				
	1	poids				1

Tableau I-1: Synthèses des paramètres environnementaux cités dans les publications des différents auteurs (- signifie qu'aucune information n'est fournie).

Figure I-1 : Variation de la solubilité en fonction de la température du $Pb(NO_3)_{2,}$ KAl $(SO_4)_2$. $12H_2O$, CuSO₄. $3H_2O$, utilisés par les promoteurs de la croissance cristalline. (Mullin 1972)

Figure I-2 : Variation de la solubilité en fonction de la température du NaCl et du KNO₃. (Mullin 1972)

Annexe II

II.1 La méthode de Czochralski (1918)

La méthode de Czochralski est une méthode de croissance par tirage d'un monocristal à partir d'un bain fondu. Cette méthode consiste à cristalliser le matériau à partir de sa phase liquide en trempant à la surface du bain fondu un germe monocristallin orienté du cristal à obtenir. Le bain se modifie sur le germe légèrement plus froid. Le cristal formé est extrait en tirant lentement ce germe vers le haut. Le diamètre de croissance du cristal peut être contrôlé en faisant varier la température du bain et/ou la vitesse de tirage. Aujourd'hui on utilise une pesée du cristal (ou du creuset) pour contrôler le diamètre du cristal. La température du bain, du moins à l'interface, est fixée par l'équilibre solide-liquide. En réalité, on fait varier l'apport d'énergie au bain et le cristal compense la différence d'énergie en générant plus ou moins de chaleur latente de solidification, donc en modifiant son diamètre.

Un appareillage Czochralski est généralement composé de 2 parties : une partie supérieure supportant la tête de tirage et une partie inférieure où se trouve le creuset calorifugé, chauffé par induction haute fréquence (**Erreur ! Source du renvoi introuvable.**). L'ensemble doit pouvoir travailler aussi bien à l'air ambiant que sous gaz inerte ou sous vide. La perfection du cristal est souvent liée à la précision mécanique du dispositif de tirage, à la sensibilité de la pesée et au dispositif thermique entourant le creuset. L'interface de croissance que l'on peut ajuster en jouant sur la vitesse de rotation du germe doit être la plus plate possible afin d'éviter les tensions qui ont pour effet d'augmenter fortement la densité de dislocations. Du fait des hautes températures de fusion, les creusets doivent être constitués d'un matériau neutre chimiquement vis-à-vis du matériau à élaborer et de l'atmosphère, ce qui impose des métaux nobles : platine ou iridium pour les oxydes. En particulier l'utilisation de l'iridium interdit de travailler en atmosphère riche en oxygène. La croissance est généralement décomposée en 3 phases :

- l'affinage au diamètre du germe (quelques millimètres) qui permet d'éliminer les défauts en provenance de celui-ci

- la réalisation de la tête du cristal qui consiste à atteindre plus ou moins rapidement le diamètre nominal du cristal (25, 50, 75,100... millimètres), ce qui permet de diminuer certains défauts du type dislocations.

- le tirage au diamètre qui doit être le plus stable possible, sans fluctuations de diamètre, sans à-coups de puissance et de translation et qui peut durer plusieurs dizaines d'heures. En fin de tirage le cristal est soulevé lentement du bain, puis une rampe de refroidissement est appliquée.

Les vitesses de croissance utilisées en technique Czochralski sont de l'ordre de quelques millimètres par heure.

Figure II- 1: Principe de la méthode de tirage Czochralsky

II.2 La méthode Kyropoulos

La méthode Kyropoulos est une méthode Czochralski modifiée permettant la croissance en grand diamètre de certains cristaux.

Le concept de base est le même que pour le Czochralski mais après démarrage de la croissance, la translation est stoppée et le contrôle de la croissance est réalisé par une diminution de la puissance du générateur à haute fréquence. Cette méthode est essentiellement utilisée pour la croissance de gros cristaux d'halogénures alcalins.

II.3 La méthode de Bridgman-Stockbarger

La méthode de Bridgman-Stockbarger (1925) est aussi un procédé de croissance de monocristaux. Les matériaux à faire croître sont d'abord mis dans une ampoule scellée (Figure 2). L'ampoule est ensuite chauffée avec un gradient de température vertical, de sorte que les matériaux soient en phase liquide dans le haut de l'ampoule, et soient sous forme solide dans le bas de l'ampoule. L'ampoule est ensuite lentement tirée vers le bas, de la zone chaude vers la zone froide, afin de provoquer la cristallisation. L'ampoule est ensuite brisée pour récupérer le cristal (figure 2).

Annexe III

La microscopie confocale à codage chromatique et champs étendu

Cette technique d'observation, employé au C2RMF^{*} n'a été utilisée que sur les cristaux parfaitement clivés et a permis d'obtenir la microtopographie de leur surface avant et après expérience de croissance en solution. Mais à cause des artéfacts du à la transparence et à l'état de surface des faces du KCl, les résultats n'ont pas pu être exploité

III.1 Matériel employé

La station de microtopographie CHR- STILL utilisée au C2RMF (figure III-1) se compose d'une table de translation de précision à motorisation pas à pas, d'une sonde de mesure dite crayon optique, d'un boîtier optoélectronique (source et spectromètre, le crayon et le boîtier sont reliés par une fibre optique), et d'une unité centrale pour l'acquisition et le traitement des données.

Nous avons utilisé le crayon optique CL1- 130 μ m. La distance de travail est de 3,3 mm avec une résolution en z axiale de 0,01 μ m et une précision de 0,1 μ m. Le diamètre du spot est de 2 μ m (Ezrati, communication personnelle).

Le logiciel de traitement des données est le logiciel Mountains. Il a permis d'obtenir des images de synthèse 3D et des profils (2D) de rugosité de surface en fausses couleurs après traitement par filtre gaussien.

Figure III-1: Microstation CHR-STIL utilisée au C2RMF

III.2 Principe de l'imagerie confocale chromatique

Le principe de mesure est celui de la microscopie confocale à champs étendu grâce au codage spectral de ce champ. La microscopie confocale n'image qu'un seul point du champ, lequel doit ensuite être scruté point par point par balayage (x,y). Ceci est rendu possible par ajout d'un double filtre spacial qui permet de n'éclairer qu'un seul point de l'objet et de ne détecter en retour que la lumière réfléchie et/ou diffusée de ce point.

^{*} Centre de recherche et de restauration des musées de France

Figure IErreur ! Il n'y a pas de texte répondant à ce style dans ce document.-2 : **Principe de codage chromatique (tirée de Perrin, 1996)**

III.3 Principe de la microtopographie de surface (Perrin, 1996)

La microtopographie de la surface d'un objet consiste à enregistrer l'altitude "Z" de chaque point de cette surface. Afin de déterminer cette altitude, il faut procéder à un codage de l'espace de mesure, autre que temporel. L'espace de mesure est codé spectralement en mettant à profit le chromatisme axial des objectifs. Le chromatisme axial est dû à la dispersion (variation de l'indice de réfraction avec la longueur d'onde) des verres utilisés dans les instruments d'optique. Comme les caractéristiques optiques d'un objectif dépendent de la longueur d'onde, l'image d'une source ponctuelle de lumière blanche est généralement un continuum de points images monochromatiques répartis le long de l'axe optique (Figure III-2).

Dans les mesures réalisées, la source de lumière blanche est imagée au moyen de l'objectif à chromatisme axial étendu en une série d'images ponctuelles monochromatiques dans l'espace de mesure (Figure III-3). Lorsqu'un objet intercepte l'espace de mesure au point M, une seule des images ponctuelles monochromatiques est alors focalisée en M. Par application de la propriété de confocalité seule la longueur d'onde λ M sera transmise avec un maximum d'efficacité à travers le filtre spatial, les autres longueurs d'ondes étant par essence défocalisées au point M.

Annexes IV

IV.I Humidité relative au dessus d'une solution saline

On présente dans cette annexe une sélection de solutions saturées de sels, dont les valeurs de HR à une température donnée correspondent à des points fixes (ou repères) dans l'échelle d'humidité relative (tableau IV-1).

De plus, on indique les conditions dans lesquelles les solutions saturées peuvent être utilisées en tant que solutions hygrostatiques. Une solution hygroscopique reproduit la valeur de l'humidité relative dans les conditions suivantes:

La pression totale de vapeur d'eau et du mélange d'air dans l'espace de gaz au-dessus de la solution est proche de la pression normale (101 325 Pa).

Il y a équilibre thermodynamique entre solide, liquide (solution) et gaz (mélange d'air et de vapeur d'eau).

La solution est utilisée à une température convenable (20°C).

L'humidité relative varie beaucoup avec la température. En plus de leur effet hygroscopique, les solutions salines placées dans l'enceinte d'essai fermée produisent une diminution de la température par rapport à la température ambiante. Dans une petite enceinte climatique contenant un sel avec une large surface libre, l'influence de variations lentes de la température sur la valeur d'humidité relative sera réduite par l'action de la solution de sel.

				H	IUMIDITE	RELATI	VE (%)				
T(°C)	Solution de Fluorure de Césium CsF	Solution de Bromure de Lithium LiBr	Solution de Chlorure de Lithium LiCl	Solution d'Acétate de Potassium CH3CO2	Solution de Chlorure de Magnésium MgCl	Solution de Carbonate de Potassium K2CO3	Solution de Bromure de Sodium NaBr	Solution d'Iodure de Potassium IK	Solution de Chlorure de Sodium NaCl	Solution de Chlorure de Potassium KCl	Solution de Sulfate de Potassium K2SO4
5		7.4 ± 0.8	13 (3)		33.6 ± 0.3	43.1 ± 0.5	63.5± 0.7	73.3 ± 0.3	$\begin{array}{c} 75.7 \pm \\ 0.3 \end{array}$	87.7 ± 0.5	98.5 ± 0.9
10		7.1 ± 0.7	13 (4)	23.4 ± 0.5	33.5 ± 0.2	43.1 ± 0.4	62.2± 0.6	72.1 ± 0.3	75.7 ± 0.2	86.8 ± 0.4	98.2 ± 0.8
15	4.3(1)± 1.4(2)	6.9 ± 0.6	12 (5)	23.4 ± 0.3	33.3 ± 0.2	43.2 ± 0.3	60.7± 0.5	71.0 ± 0.3	75.6±0.2	85.9 ± 0.3	97.9 ± 0.6
20	3.8 ± 1.1	6.6 ± 0.6	12 (6)	23.1 ± 0.3	33.1 ± 0.2	43.2 ± 0.3	59.1± 0.4	69.9 ± 0.3	75.5 ± 0.1	85.1 ± 0.3	97.6 ± 0.5
25	3.4 ± 0.9	6.4 ± 0.5	11.3 ± 0.3	22.5 ± 0.3	32.8 ± 0.3	43.2 ± 0.4	57.6± 0.4	68.9 ± 0.2	75.3 ± 0.1	84.3 ± 0.3	97.3 ± 0.5
30	3.0 ± 0.8	6.2 ± 0.5	11.3 ± 0.2	21.6 ± 0.5	32.4 ± 0.1	43.2 ± 0.5	56.0± 0.4	67.9 ± 0.2	75.1 ± 0.1	83.6 ± 0.3	97.0 ± 0.4
35	2.7 ± 0.6	6.0 ± 0.4	11.3 ± 0.2		32.1 ± 0.1		54.6± 0.4	67.0 ± 0.2	74.9 ± 0.1	83.0 ± 0.3	96.7 ± 0.4
40	2.4 ± 0.5	5.8 ± 0.4	11.2 ± 0.2		31.6 ± 0.1		53.2± 0.4	66.1± 0.2	74.7 ± 0.1	82.3 ± 0.3	96.4 ± 0.5
(1)	valeur d	lu point fi	xe d'hum	idité	1	(5) Dispers	ion des d	onnées de	données	de 11.3%à	13.8%

(2) incertitude avec laquelle est connue le point fixe (6) Dispersion des données de données de 11.1% à 12.6%

(3) Disperssion des données de 11.2% à 14%

(7) valeur de point fixe selon Greenspan (1977)

(4) Dispersion des données de données de 11.3%à14.3%

Tableau .IV.1 : Valeurs d'humidité relative d'équilibre pour différentes solutions saturées à différentes température

Annexe V : Activité et coefficient d'activité

V.I Le comportement idéal et non idéal des solutions aqueuses :

Chaque ion formé lors de la dissolution des solutés est solvaté par des molécules d'eau. La molécule H_2O est globalement non chargée, mais la distribution électronique dans la molécule est telle que O est plus négatif que H qui, de ce fait, est positif. Dans nos expériences, l'eau est en mesure de solvater aussi les ions K+ que Cl- (dans nos expériences). Les ions se trouvent isolés et le comportement des ions solvatés est indépendant de la source^{*}.

En conséquence, il faut distinguer deux cas :

- Dans le cas de solution très diluée la solvatation est complète. La concentration est faible, la distance entre un ion donné est son plus proche voisin est relativement grande. Chaque ion peut être considéré comme une entité séparée qui se comporte indépendamment des autres ions présents, on dit que le comportement est idéal ;
- A l'inverse, en solution concentrée, la situation change essentiellement en deux points :
- le nombre de molécule d'eau est insuffisant pour solvater complètement chaque ion. Un ion ne peut être complètement isolé de ces voisins ;
- Les forces de répulsion et d'attraction s'exercent entre les ions de mêmes charges et de charges opposées. Le comportement individuel de chaque ion est influencé par la présence des autres. Un ion de charge donnée est entouré d'une atmosphère ionique de charge opposée et cet arrangement n'est pas permanent.

Les propriétés de ces solutions sont modifiées avec la concentration, ces solutions sont non idéales.

V.II Activité et coefficient d'activité

L'activité est une grandeur de comportement qui prend en compte les interactions entre les différents constituants d'une solution :

$$a_i = c_i . \gamma_i$$

ai est l'activité de l'espèce (ou constituant) i en solution, c_i la concentration de i en solution et γ_i le coefficient d'activité ionique.de i qui est sans unité et fonction du nombre d'espèces ioniques en solution, toujours positif et au plus (lorsque la solution est idéale) égal à 1. Debye et Hückel (1923) tentèrent de prédire l'activité des solutions et montrèrent que les deux facteurs qui influençaient le coefficient d'activité étaient :

- La proximité de chaque ion avec son voisin, qui est reliée à la concentration,
- Les charges des ions : la force d'attraction entre les ions doublement chargés est plus grande qu'entre les ions monochargés.

Tenant compte de ces deux facteurs, ils introduisirent la notion de « force ionique totale » I de la solution définie en fonction des charges Z_i et des concentrations C_i des ions i présents en solution :

$$I = \frac{1}{2} \Sigma C_i Z_i^2$$

^{*} Cl⁻ a un comportement propre qu'il provienne de la mise en solution de KCl ou de HCl

Seuls les sels solubles [•] créent une force ionique. Pour un sel formé de deux ions monovalents comme le KCl, la force ionique est égale à la molarité (M, Beljean-Leymarie, J,Beljean-Leymarie, 2006).

Les relations semi-empiriques énoncées par Debye et Hückel (1923) ne permettent de déterminer le coefficient d'activité de l'espèce i que pour des molarités inférieures ou égales à 0,2M.

En revanche Robinson et Stokes (1959) ont déterminé le coefficient d'activité de nombreuses solutions électrolytiques en fonction de leur molarité, et notamment du KCl .

Figure V-1: Coefficient d'activité de l'électrolyte KCl en fonction de la molalité de la solution

Le calcul des coefficients moyens d'activité du KCl $\gamma \pm a$ été fait grâce à l'approche de Pitzer « ion-interaction » en fonction des molalités obtenues dans nos expériences :

$$\ln \gamma \pm = \int^{\gamma} + mB^{\gamma} + m^2 C^{\gamma}$$

Avec $\gamma \pm$ coefficient d'activité, \int^{γ} le terme électrostatique à grande échelle, m la molalité de la solution, B^{γ} et C^{γ} respectivement le second et troisième coefficient viriel qui sont donnés par :

$$\int^{\gamma} = -A_{\Phi} \left[\frac{m^{1/2}}{(1+bm^{1/2})} + \left(\frac{2}{b}\right) \ln(1+bm^{1/2}) \right]$$
$$B^{\gamma} = 2\beta^{(0)} + \left(\frac{2\beta^{(1)}}{\alpha^{2}I}\right) \left[1 - \left(\frac{1+\alpha I^{1/2} - \alpha^{2}I}{2}\right) \exp(-\alpha I^{1/2}) \right]$$

^{• :} La solubilité molaire d'un sel est définie comme étant le nombre de mole de ce sel que l'on peut dissoudre dans un litre de solution (eau solvant) avant qu'un précipité n'apparaisse, à une température et une pression données (Boistelle, (1985). Par convention un composé est dit soluble si sa solubilité est supérieure à 0.1 molL⁻¹.

$$C^{\gamma} = \left(\frac{3}{2}\right)C^{\Phi}$$

 A_{Φ} étant le coefficient de Debye-Hückel en fonction du coefficient osmotique.

Dans le cas du KCl, les valeurs utilisées dans ce calcul à la température de 298,15K ont été tirée de Silvester & Pitzer 1977, la force ionique est égale à la molalité m pour le KCl.

.Les paramètres empiriques α et b ont des valeurs conventionnelles de 2 kg^{1/2} -mol^{1/2} alors que $\beta^{(0)}\beta^{(1)}C_{\Phi}$ sont des paramètres spécifiques à chaque électrolyte.

Les résultats obtenus sont reportés dans le tableau X

	A_{Φ}	$\beta^{(0)}$	$\beta^{(1)}$	C_{Φ}
KCl (298,15K)	0,392	0,04631	0,2157	0,00003

Tableau V-2: Paramètres utilisés dans l'équation de Pitzer tirée de Silvester, Pitzer, 1977.

	$\gamma \pm_{o}$	$\gamma \pm _{sat}$	$\gamma \pm_{80\%}$	$\gamma \pm_{60\%}$	$\gamma \pm_{40\%}$
KC1	0,517288792	0,517289895	0,5173724108	0,5174757016	0,05173930623
(298,15)					

Tableau V-3: Coefficient d'activité moyen calculée à partir de l'approche de Pitzer (1973)

Beljean-Leymarie, M., Beljean-Leymarie, J. (2006). Chimie analytique, Chimie des solutions Masson. Paris: 10-15.

Boistelle, R. (1985). Concept de la cristallisation en solution.

Pitzer, K. S. (1973). "Thermodynamic of electrolytes." Journal of physic and chemistry 77: 268.

Robinson, R. A., Stokes, R. H. (1959). Electrolyte Solutions n. edition, Courier Dover publication: 571

Sylvester, L. F., Pitzer, J (1977). Journal of physic and chemistry 81: 1822.

Annexe V

V.1 Calcul de la force imposée sur la face basale de chaque cristal

La force imposée a été calculée dans chaque cas car elle dépend du poids du cristal et de la surface d'appui (Figure V-1).

Figure V-1 : Schéma des différentes forces appliquées sur la face basale du cristal posé au fond d'un bécher et immergés dans une solution saturée

R Réaction du sol

P la force imposée par le poids du cristal.

 \vec{F}_A la poussée d'Archimède.

 \vec{F} h force de pression exercée sur la face inférieure du cristal (dirigée vers le haut)

F b Force de pression exercée sur la face supérieure du cristal dirigée vers le bas

D'un point de vue statique, le cristal immergé est en équilibre, ce qui signifie que:

$$\vec{R} + \vec{P} + \vec{F_A} = \vec{0}$$

Avec \vec{R} la force résultante (réaction du sol), \vec{P} la force imposée par le poids du cristal \vec{F}_A la poussée d'Archimède = $\vec{F}\mathbf{h} + \vec{F}\mathbf{b}$ (avec $F_A = Fh - Fb$)

La face inférieure est soumise à deux forces : \vec{R} et \vec{F} h R + F_A = P R = P - F_A

Calcul de la force imposée par le poids :

$$P = \rho_{crist} \ . \ V \ . \ g$$

Avec ρ_{crist} la masse volumique du cristal, V le volume du cristal et g la pesanteur **Calcul de la poussée d'Archimède :**

$$F_A = \rho_{sol} \cdot V \cdot g$$

Avec ρ_{sol} la masse volumique de la solution saturée de KCl.

Calcul de la force exercée sur la face inférieure $F_{\rm h}$

$$F_h = \rho_{sol} \cdot g \cdot h \cdot S$$

Avec h la hauteur d'eau dans le bécher et S la surface d'appuie du cristal sur le fond du bécher

Calcul de la force imposée sur la face basale : la face inférieure est soumise à deux forces : \vec{R} et $\vec{F}\,h$

 F_{basale} : mg - $\rho_{\text{sol.}}V.g + \rho_{\text{sol.}}g.h.S$

La force minimale^{*} imposée sur la face basale de chaque cristal (Tableau V-3) augmente avec la hauteur du cristal.

Cristal	C.2mm	C. 4mm	C. 6mm	C.8mm	C.10mm
Surface	11,8	13,51	14,6	36,39	99,09
d'appui (S)					
(mm^2)					
Volume	22,51	54,05	88,49	301	974,14
(mm^3)					
Hauteur du	1,905	4,002	6,061	8,28	9,8
cristal (mm)					
P (N)	4,40.10 ⁻⁴	1,05.10 ⁻³	1,72.10 ⁻³	5,86.10 ⁻³	1.89.10 ⁻²
$F_A(N)$	2,76. 10 ⁻⁴	6,62.10 ⁻⁴	1,08. 10 ⁻³	3,69.10 ⁻³	1,19.10 ⁻²
R(N)	1,64. 10 ⁻⁴	3,88.10 ⁻³	6,40. 10 ⁻⁴	2,17. 10 ⁻³	7,00.10 ⁻³
Fh (N)	1,59.10 ⁻³	1,74.10 ⁻³	1,88.10 ⁻³	4,68.10 ⁻³	1,23.10 ⁻²
F _{basale}	1,70.10 ⁻³	2,13.10 ⁻³	2,59.10 ⁻³	6,85.10 ⁻³	1,97.10 ⁻²

Tableau V-1: Caractéristiques des cristaux et des différentes forces minimales qui lui sont imposées (N)

V.2 Cristal suspendu en solution

Figure V-2 : Schéma des différentes forces appliquées sur la face basale du cristal suspendu immergé dans une solution saturée

 \vec{P} la force imposée par le poids du cristal.

 $\vec{\mathsf{F}}_{\mathrm{A}}$ la poussée d'Archimède.

 \vec{F} h force de pression exercée sur la face inférieure du cristal (dirigée vers le haut)

F b Force de pression exercée sur la face supérieure du cristal dirigée vers le bas

 \vec{F} force exercée par le fil

A l'équilibre la somme des forces appliquée est nulle

$$\vec{F} + \vec{P} + \vec{F_A} = \vec{0}$$

 \vec{P} la force imposée par le poids du cristal

 \vec{F}_A la poussée d'Archimède = $\vec{F} \mathbf{h} + \vec{F} \mathbf{b}$ (avec $F_A = Fh - Fb$)

 \vec{F} la force exercée par le fil

^{*} La surface réelle de contact entre la face basale et le fond du bécher n'étant pas connue, la force calculée est minimale car nous considérons que la surface d'appui est représentée par la surface totale de la face basale du cristal.

Calcul de la force imposée sur la face basale : la face inférieure est soumise à une seule force : $\vec{F}\,h$

$$\vec{F}h = = \rho_{sol} \cdot g \cdot h \cdot S$$

La force exercée sur la face basale du cristal CS1 est de 0,0125 N

Annexe VII

I.CP1.80%

I.1 Conditions expérimentales

	Cristal
Type de cristal	Cristal poli
Durée expérimentale	300h
Humidité relative moyenne %	$80,5 \pm 0,4\%$
Température moyenne °C	21,2±0,3°C
Concentration finale de la solution gL ⁻¹	$340,24 \pm 0,01$
Sursaturation relative finale (σ)	7.10 ⁻⁴
Volume de solution de départ	40 ml
Charge	Plaque de verre (10g)
Palpeur utilisé	050A52L01
Lieu expérimental	Laboratoire photo

I.2 Poids du cristal

	Poids initial pesé (g)	Poids initial calculé (g)	Poids final pesé (g)	Poids final calculé (g)	Gain de poids (P) obtenu par pesée (g)	Gain de poids (P) obtenu par calcul (g)
CP1.80%	1,797	1,837	2,092	2,184	+0,295	+0,347

I.3 Dimension du cristal

A.Dimensions mesurées *ex-situ*

	Avant	t expérie (mm)	ence	Après expérience (mm)				
	hauteur	lar	geur	hauteur	uteur Largeur			
	[001]	[100]	[010]	[001]		[100]	[010]	
					PartiePartiehautebasse		Partie haute	Partie basse
Pied à	9,700	9,85	9,811	9,700	- 11,65		10	11,561
coulisse	±0,05	±0,05	±0,048	$\pm 0,08$	$\pm 0,10$ $\pm 0,098$ $\pm 0,05$ $\pm 0,08$			±0,08
ImageJ	9,65	9,80	9,78	9,643		11,53		11,4

B.Variation mesurées ex-situ

		Variation (µm)						
	hauteur	hauteur Largeur						
	[001]	[1	00]		[010]			
		Partie haute	Partie basse	Partie haute	Partie basse			
Pied à coulisse	0 ±130	- ±20	$^{+1800}_{\pm 148}$	- ±	+ 1750 ± 128			
ImageJ	- 7 ± 1	- ±	+ 1730	-	+ 1620			

C.Dimensions mesurées in-situ

Figure I.1 :Variations de la hauteur du cristal et de la plaque de verre (courbe orange) (Δz_{cp}), variations de la hauteur de la plaque de verre immergée dans la solution (Δz_{T1}) (courbe verte), variations de la hauteur du cristal à cause du fluage (courbe rouge (Δz_{T2}), variations de hauteur du cristal lui-même (courbe bleue) (Δz_{c}).

Figure I.2 :Le point d'intersection des tangentes des deux parties de la courbe (rupture de pente) permet d'identifier la durée des deux régimes de dissolution.

La diminution finale de hauteur du cristal est de 6,2 μ m. La vitesse de diminution est de 1,61.10⁻² μ mh⁻¹(R²=0,34).

I.4 Macrophotographie des cristaux (variation de faciès) Face sommitale

Figure I.3 : Macrophotographie de la face sommitale du cristal CP1.80% avant (à gauche) et après (à droite) expérience

Face basale

Figure I.4 : Macrophotographie de la face basale du cristal CP1.80% avant (à gauche) et après (à droite) expérience

Face latérale (100)

Figure I.5 : Macrophotographie de la face latérale (100) du cristal CP1.80% avant (à gauche) et après (à droite) expérience

II CP2.80%

II.1 Conditions expérimentales

	Cristal
Type de cristal	Cristal poli
Durée expérimentale	260h
Humidité relative moyenne %	81,0 ± 0,5%
Température moyenne °C	$21,7\pm0,2^{\circ}C$
Concentration finale de la solution gL ⁻¹	$340,22 \pm 0,01$
Sursaturation relative finale (σ)	6,5.10 ⁻⁴
Volume de solution de départ	40 ml
Charge	Plaque de verre (10g)
Palpeur utilisé	000A648 L02
Lieu expérimental	Laboratoire photo

II.2 Poids du cristal

	Poids initial pesé (g)	Poids initial calculé (g)	Poids final pesé (g)	Poids final calculé (g)	Gain de poids (P) obtenu par pesée (g)	Gain de poids (P) obtenu par calcul (g)
CP2.80%	1,780	1,815	2,052	2,140	+0,272	+0,325

II.3 Dimension du cristal

A. Dimensions mesurées *ex-situ*

	Avant expérience (mm)				А	près expérie	nce (mm)	
	hauteur	lar	geur	hauteur Largeur				
	[001]	[100]	[010]	[001] [100] [010		10]		
					Partie haute	Partie basse	Partie haute	Partie basse
Pied à	9,700	9,800	9,800	9,690		11,200	10	11,200
coulisse	±0,080	±0,70	±0,050	±0,031	$\pm 0,10$ $\pm 0,041$ $\pm 0,05$ $\pm 0,101$			±0,101
ImageJ	9,622	9,74	9,75	9,615		11,19		11,33

B.V	Va	ria	tions	mesurées	ex-situ

		Variation (µm)				
	hauteur	hauteur Largeur				
	[001]	[100]		[010]		
		Partie haute	Partie basse	Partie haute	Partie basse	
Pied à coulisse	10 ±300	- ±	+ 1500 ± 111	- ±	+ 1500 ± 151	
ImageJ	- 7 ±	- ±	+ 1450	-	+ 1580	

C.Dimensions mesurées in-situ

Figure II.1 : Variations de la hauteur du cristal et de la plaque de verre (courbe orange) (Δz_{cp}), variations de la hauteur de la plaque de verre immergée dans la solution (Δz_{T1}) (courbe verte), variations de la hauteur du cristal à cause du fluage (courbe rouge (Δz_{T2}), variations de hauteur du cristal lui-même (courbe bleue) (Δz_{c}).

Figure II.2 : Le point d'intersection des tangentes des deux parties de la courbe (rupture de pente) permet d'identifier la durée des deux régimes de dissolution.

La diminution finale de hauteur est de 5,7 μ m. La vitesse de diminution est de 2,04.10⁻² μ mh⁻¹ (R²=0,82)

I.4 Macrophotographie des cristaux (variation de faciès) Face sommitale

Figure II.3 : Macrophotographie de la face sommitale du cristal CP2.80% avant (à gauche) et après (à droite) expérience

Figure II.4 : Macrophotographie de la face sommitale du cristal CP2.80% avant (à gauche) et après (à droite) expérience

Face latérale (100)

Figure II.5 : Macrophotographie de la face sommitale du cristal CP2.80% avant (à gauche) et après (à droite) expérience

III.CP3.80%

III.1 Conditions expérimentales

	Cristal
Type de cristal	Cristal poli
Durée expérimentale	300h
Humidité relative moyenne %	79,1 ± 0,3%
Température moyenne °C	$19,8 \pm 0,3^{\circ}C$
Concentration finale de la solution gL ⁻¹	$340,28 \pm 0,01$
Sursaturation relative finale (σ)	8,2.10 ⁻⁴
Volume de solution de départ	40 ml
Charge	Plaque de verre (10g)
Palpeur utilisé	000A648 L02
Lieu expérimental	Laboratoire photo

III.2 Poids du cristal

	Poids initial pesé (g)	Poids initial calculé (g)	Poids final pesé (g)	Poids final calculé (g)	Gain de poids (P) obtenu par pesée (g)	Gain de poids (P) obtenu par pesée (g)
CP3.80%	1,913	1,953	2,257	2,337	+0,344	+0,384

III.3 Dimension du cristal

A.Dimensions mesurées ex-situ

	Avant ex	Avant expérience (mm)			Après expérience (mm)				
	hauteur	largeur		hauteur	Largeur				
	[001]	[100]	[010]	[001]		[100]	[0]	10]	
					Partie haute	Partie basse	Partie haute	Partie basse	
Pied à	10,100 +0.010	10,150 +0.012	9,850 +0.030	10,090 +0.041	8,750 +0.028	10,950 +0.041	8,550 +0.042	11,550 +0.080	
ImageJ	10,060	9,95	9,82	10,053	8,660	11,630	8,430	11,330	

		Variation (µm)				
	hauteur	hauteur Largeur				
	[001]	[100]			[010]	
		Partie haute	Partie basse	Partie haute	Partie basse	
Pied à coulisse	10 ± 51	- 1400 ± 40	+ 1800 ± 53	-1300 ± 71	+ 1700 ± 110	
ImageJ	- 7 ± 1	- 1390±	+ 1680	- 1290±	+ 1660	

B.Variations mesurées ex-situ

C.Dimensions mesurées in-situ

Figure III.1 : Variations de la hauteur du cristal et de la plaque de verre (courbe orange) (Δz_{cp}), variations de la hauteur de la plaque de verre immergée dans la solution (Δz_{T1}) (courbe verte), variations de la hauteur du cristal à cause du fluage (courbe rouge (Δz_{T2}), variations de hauteur du cristal lui-même (courbe bleue) ($\Delta z_c^{-)}$.

Figure III.2 : Le point d'intersection des tangentes des deux parties de la courbe (rupture de pente) permet d'identifier la durée des deux régimes de dissolution.

La vitesse de dissolution est de $1,5410^{-2}$ (R²= 0,94)

III.4 Macrophotographie des cristaux (variation de faciès) Face sommitale

Figure III.3 : Macrophotographie de la face sommitale du cristal CP3.80% avant (à gauche) et après (à droite) expérience

Face basale

Figure III.4 :Macrophotographie de la face basale du cristal CP3.80% avant (à gauche) et après (à droite) expérience

Face latérale (100)

Figure III.5 : Macrophotographie de la face latérale du cristal CP3.80% avant (à gauche) et après (à droite) expérience

III.5 Vue en microcopie Face sommitale

Figure III.6 : Vue en microscopie photonique d'un angle de la face sommitale avant (à gauche) et après (à droite) expérience

La face basale

Figure III.7 : Vue en microscopie optique de l'arrête de la face basale du cristal avant expérience (à gauche) et après expérience (au droite).

Figure III- 8 : Vue en microscopie électronique à balayage de l'arête de la face basale après expérience

Figure III- 9 : Vue en microscopie électronique à balayage du centre de la face basale après expérience

Figure III-41 : Vue en microscopie électronique à balayage du bord de la face basale sous un angle de 30° après expérience

Figure III-42 : Vue en microscopie électronique à balayage en fausse couleur : en bleu la face basale originelle en rouge la surcroissance

III.6 Microrugosité Face cristal polis avant expérience

Figure III-8: Image AFM d'une surface de 3600µm² du centre du cristal CP3.80% avant expérience (en bas à gauche) et sa dérivée (en bas à droite). Le profil de microrugosité (en haut) a été réalisé sur la section tracée sur l'image AFM.

Face sommitale après expérience

Figure III- 1 : Image AFM d'une surface de 3600µm² du centre du cristal CGP3.80% après expérience (en bas à gauche) et sa dérivée (en bas à droite). Le profil de microrugosité (en haut) a été réalisé sur la section tracée sur l'image AFM.

Figure III- 2: Image AFM d'une surface de 3600µm² du centre de la face basale du cristal CP3.80% après expérience (en bas à gauche) et sa dérivée (en bas à droite). Le profil de microrugosité (en haut) a été réalisé sur la section tracée sur l'image AFM.

IV.CPC1.80%

IV.1 Conditions expérimentales

	Cristal
Type de cristal	Cristal parfaitement clivé
Durée expérimentale	300h
Humidité relative moyenne %	81,0±0,5%
Température moyenne °C	$20,2 \pm 0,8^{\circ}\text{C}$
Concentration finale de la solution gL ⁻¹	$340,22 \pm 0,01$
Sursaturation relative finale (σ)	6,5.10 ⁻⁴
Volume de solution de départ	40 ml
Charge	Plaque de verre (10g)
Palpeur utilisé	000A648 L02
Lieu expérimental	Laboratoire photo

IV.2 Poids du cristal

	Poids initial pesé (g)	Poids initial calculé (g)	Poids final pesé (g)	Poids final calculé (g)	Gain de poids (P) obtenu par pesée (g)	Gain de poids (P) obtenu par calcul(g)
CPC1.80%	2,059	2,064	2,381	2,396	+0,322	+0,333

IV.3 Dimension du cristal

A.Dimensions mesurées ex-situ

	Avant expérience (mm)			Après expérience (mm)				
	hauteur	larg	largeur		Largeur			
	[001]	[100]	[010]	[001]	[[100]	[0]	10]
					Partie	Partie	Partie	Partie
					haute	basse	haute	basse
Pied à	10,138	10,400	10,128	10,128	10,23	11,900	9,840	11,300
coulisse	±0,038	±0,050	±0,041	$\pm 0,05$	±0,10	±0,050	±0,080	±0,110
Comparateur	10,121	10,380	10,111	10,03		11,920		11,230
-	±0,010	±0,020	±0,021			±0,050		±0,031
ImageJ	10,110	10,360	9,920	10,099	10,196	11,97	9,762	11,20

.Va	riation mesurées <i>e</i> .	x-situ								
			Variation (µm)							
		hauteur [001]		Largeur						
			[1	.00]	[010]					
			Partie haute	Partie basse	Partie haute	Partie basse				
	Pied à coulisse	10 ±79	- 170 ± 100	$+ 1500 \pm 140$	-160 ± 170	$+ 1300 \pm 200$				
	Comparateur	10 ± 31		$+1540 \pm 70$		$+ 1140 \\ \pm 110$				
	ImageJ	- 11 ± 1	- 164±	+ 1610	- 158±	+ 1280				

Variat: B.V

C.Dimensions mesurées in-situ

Figure IV.1 : Variations de la hauteur du cristal et de la plaque de verre (courbe orange) (Δz_{cp}), variations de la hauteur de la plaque de verre immergée dans la solution (Δz_{T1}) (courbe verte), variations de la hauteur du cristal à cause du fluage (courbe rouge (Δz_{T2}), variations de hauteur du cristal lui-même (courbe bleue) (Δz_c) .

FigureIV.1 : Le point d'intersection des tangentes des deux parties de la courbe (rupture de pente) permet d'identifier la durée des deux régimes de dissolution.

		Premier reg	gime	Second regime			
	Durée (h)	Variation de hauteur (µm)	Taux de dissolution µmh ⁻¹	Durée (h)	Variation de hauteur (µm)	Vitesse de dissolution µmh ⁻¹	
Cristal	25	3,7±0,4	1,5.10 ⁻¹	275	5,85±0,4	$1,9.10^{-2}$ R ² = 0.96	

Tableau IV.1 : Caractéristique de la courbe de variation de hauteur

IV.4 Macrophotographie des cristaux (variation de faciès)

Face sommitale

Figure IV.3 : Macrophotographie de la face sommitale du cristal CPC1.80% avant (à gauche) et après (à droite) expérience

Face basale

Figure IV.4 : Macrophotographie de la face basale du cristal CPC1.80%avant (à gauche) et après (à droite) expérience

Face latérale (100)

Figure IV.5 : Macrophotographie de la face latérale CPC1.80% du cristal CPC1.80% avant (à gauche) et après (à droite) expérience

IV.5 Vue en microscopie

Face sommitale

Figure IV.6 : Vue en microscopie photonique d'un angle de la face sommitale du cristal CPC1.80% avant expérience (à gauche) et après expérience (à droite) Face basale

Vue en microscopie photonique d'un bord de la face basale du cristal CPC3.80% avant expérience (à gauche) et après expérience (à droite).

Vue en microscopie électronique à balayage d'un angle de la face basale du cristal CPC3.80% avant (à gauche) et après (à droite) expérience

IV.5 La microrugosité Face du cristal avant expérience

Figure III-49 : Image AFM d'une surface de 3600µm² du centre du cristal CPC1.80% avant expérience (en bas à gauche) et sa dérivée (en bas à droite). Le profil de microrugosité (en haut) a été réalisé sur la section tracée sur l'image AFM.

Face sommitale après expérience

Figure III-50: Image AFM d'une surface de 3600µm² du centre de la face sommitale du cristal CPC1.80% après expérience (en bas à gauche) et sa dérivée (en bas à droite). Le profil de microrugosité (en haut) a été réalisé sur la section tracée sur l'image AFM.

Face basale après expérience

Figure III-54: Image AFM d'une surface de 3600µm² du centre de la face sommitale du cristal CPC1.80% après expérience (en bas à gauche) et sa dérivée (en bas à droite). Le profil de microrugosité (en haut) a été réalisé sur la section tracée sur l'image AFM).

V.CPC2.80%

V.1 Conditions expérimentales

	Cristal
Type de cristal	Cristal parfaitement clivé
Durée expérimentale	300h
Humidité relative moyenne %	$79,5 \pm 0,3\%$
Température moyenne °C	$19,8 \pm 0,3^{\circ}C$
Concentration finale de la solution gL ⁻¹	$340,2-\pm 0,01$
Sursaturation relative finale (σ)	7,6.10 ⁻⁴
Volume de solution de départ	40 ml
Charge	Plaque de verre (10g)
Palpeur utilisé	000A648 L02
Lieu expérimental	Laboratoire photo

V.2 Poids du cristal

	Poids initial pesé (g)	Poids initial calculé (g)	Poids final pesé (g)	Poids final calculé (g)	Gain de poids (P) obtenu par pesée (g)	Gain de poids (P) obtenu par pesée (g)
CPC2.80%	2,275	2,281	2,648	2,666	+0,373	+0,384

III Dimension du cristal

A. Dimensions mesurées *ex-situ*

	Avant expérience (mm)			Après expérience (mm)				
	hauteur	larg	geur	hauteur	Largeur			
	[001]	[100]	[010]	[001]	[[100]	[010]	
					Partie	Partie	Partie	Partie
					haute	basse	haute	basse
Pied à	10,200	10,800	10,600	10,190	10,650	12,100	10,460	12,300
coulisse	±0,043	$\pm 0,08$	$\pm 0,080$	±0,031	±0,038	±0,008	$\pm 0,088$	±0,048
Comparateur	10,180	10,761	10,552	10,170	-	12,051	-	12,312
-	±0,008	±0,032	±0,035	±0,021		±0,010		±0,031
ImageJ	10,174	10,730	10,520	10,162	10,585	12,06	10,382	12,34

B .Variation mesurées ex-situ

	Variation (µm)							
	hauteur	Largeur						
	[001]	[1	00]		[010]			
		Partie	Partie	Partie	Partie basse			
		haute	basse	haute				
Pied à coulisse	- 11 ±74	- 150	+ 1300	-150	+ 1700			
		± 118	± 160	± 168	± 128			
Comparateur	- 10	-	+ 1290	-	+ 1760			
ImageJ	- 12 ± 1	- 145±	+ 1330	- 138±	+ 1820			

C.Dimensions mesurées in-situ

Figure V.1 : : Variations de la hauteur du cristal et de la plaque de verre (courbe orange) (Δz_{cp}), variations de la hauteur de la plaque de verre immergée dans la solution (Δz_{T1}) (courbe verte), variations de la hauteur du cristal à cause du fluage (courbe rouge (Δz_{T2}), variations de hauteur du cristal lui-même (courbe bleue) (Δz_c^{-}).

Figure V.2Le point d'intersection des tangentes des deux parties de la courbe (rupture de pente) permet d'identifier la durée des deux régimes de dissolution.

		Premier reg	gime	Second regime			
	Durée (h)	Variation	Taux de	Durée (h)	Variation	Vitesse	
		de hauteur	dissolution		de hauteur	dissolution	
		(µm)	μmh^{-1}		(µm)	μmh^{-1}	
Cristal	17,5	5,3±0,4	3,2.10 ⁻¹	282,5	4,6±0,4	$1,52.10^{-2}$	
						$R^2 = 0,5$	

Tableau V.1 : Caractéristique de la courbe de variation de hauteur

IV Macrophotographie des cristaux (variation de faciès)

Face basale

Macrophotographie de la face basale du cristal CPC2.80% avant (à gauche) et après (à droite) expérience.

Macrophotographie de la face latérale (100) du cristal CPC2.80% avant (à gauche) et après (à droite) expérience.

Face latérale (100)

VI CPC3.80%

VI.1 Conditions expérimentales

	Cristal
Type de cristal	Cristal parfaitement clivé
Durée expérimentale	300h
Humidité relative moyenne %	$78,7 \pm 0,3\%$
Température moyenne °C	$19,8 \pm 0,3^{\circ}C$
Concentration finale de la solution gL ⁻¹	$340,32 \pm 0,01$
Sursaturation relative finale (σ)	9,2.10 ⁻⁴
Volume de solution de départ	40 ml
Charge	Plaque de verre (10g)
Palpeur utilisé	000A648 L02
Lieu expérimental	Laboratoire photo

VI.2 Poids du cristal

	Poids initial pesé (g)	Poids initial calculé (g)	Poids final pesé (g)	Poids final calculé (g)	Gain de poids (P) obtenu par pesée (g)	Gain de poids (P) obtenu par calcul (g)
CPC3.80%	2,154	2,158	4,279	4,295	+2,125	+2,137

VI.3 Dimension du cristal

A.Dimensions mesurées ex-situ

	Avant expérience (mm)			Après expérience (mm)						
	hauteur	larg	geur	hauteur Largeur						
	[001]	[100]	[010]	[001]	[100]		1] [100]		[0]	10]
					Partie	Partie	Partie	Partie		
					haute	basse	haute	basse		
Pied à	10,650	10,580	9,800	10,640	9,980	16,68	9,300	16,150		
coulisse	±0,080	$\pm 0,080$	$\pm 0,080$	$\pm 0,08$	±0,120	±0,080	±0,080	±0,050		
Comparateur	10,620	10,558	9,798	10,610	-	16,698	-	16,108		
-	±0,042	±0,041	±0,031	±0,050		±0,100		±0,051		
ImageJ	10,58	10,510	9,770	10,567	9,872	16,6	9,228	16,13		

D	τ.	· ·	· •	,	• .
в	v	aru	ation	mesurees	PX-SITU
ъ.	•	u1 1	auton	medureed	C. Still

	Variation (µm)							
	hauteur	hauteur Largeur						
	[001]	[1	00]		[010]			
		Partie	Partie	Partie	Partie basse			
		haute	basse	haute				
Pied à coulisse	-10 ± 160	- 600	+ 6100	- 500	+6350			
		± 200	± 160	± 160	± 130			
Comparateur	-10 ± 92	-	+6140	-	+6350			
			±141		± 92			
ImageJ	- 11 ± 1	- 638	+6090	- 542	+6360			

C.Dimensions mesurées in-situ

Figure IV.1 : Variations de la hauteur du cristal et de la plaque de verre (courbe orange) (Δz_{cp}), variations de la hauteur de la plaque de verre immergée dans la solution (Δz_{T1}) (courbe verte), variations de la hauteur du cristal à cause du fluage (courbe rouge (Δz_{T2}), variations de hauteur du cristal lui-même (courbe bleue) ($\Delta z_c^{-)}$.

FigureIV.2 : Le point d'intersection des tangentes des deux parties de la courbe (rupture de pente) permet d'identifier la durée des deux régimes de dissolution.
	Premier regime			Second regime			
	Durée (h)	Variation de hauteur	Taux de dissolution	Durée (h)	Variation de hauteur	Vitesse de dissolution	
		(µm)	μmh ⁻		(µm)	µmh [*]	
Cristal	29	5,9±0,4	2,03.10-1	271	4,55±0,4	1,4.10 ⁻²	
						$R^2 = 0.78$	

Tableau IV.1 Caractéristique de la courbe de variation de hauteur

IV Macrophotographie des cristaux (variation de faciès)

Face sommitale

Figure IV.3 : Macrophotographie de la face sommitale du cristal CPC3.80% avant expérience (à gauche) et après expérience (à droite)

Figure VI.4 : Image de synthèse de la face sommitale du cristal CPC3.80% avant expérience réalisée en microscopie confocale à codage chromatique et champs proche

Figure VI.5: Image de synthèse de la face sommitale du cristal CPC3.80% après expérience réalisée en microscopie confocale à codage chromatique et champs proche

Figure IV.6 : Macrophotographie de la face basale du cristal CPC3.80% avant expérience (à gauche) et après expérience (à droite).

Figure IV.7: Image de synthèse en 3D de la face basale du cristal CPC3.80% avant expérience. réalisée en microscopie confocale à codage chromatique et champs proche

Figure IV.8: Image de synthèse en 3D de la face basale du cristal CPC 1 après expérience. . réalisée en microscopie confocale à codage chromatique et champs proche

Figure VI.10 : Vue en microscopie électronique à balayage du bord bas de la face basale. A gauche image en fausse couleur de la surcroissance en rouge et de la face basale originelle en bleue.

Figure VI.4 : Vue en microscopie électronique à balayage du bord haut de la face basale. A gauche image en fausse couleur de la surcroissance en rouge et de la face basale originelle en bleue.

Figure IV.5 : Macrophotographie de la face latérale (100) du cristal CPC3.80% avant (à gauche) et après (à droite) expérience

Face latérale (100)

VII CGC1.80%

VI.1 Conditions expérimentales

	Cristal
Type de cristal	Cristal grossièrement clivé
Durée expérimentale	300h
Humidité relative moyenne %	$79,9 \pm 0,4\%$
Température moyenne °C	$20,1\pm0,2^{\circ}C$
Concentration finale de la solution gL ⁻¹	$340,30 \pm 0,01$
Sursaturation relative finale (σ)	8,8.10 ⁻⁴
Volume de solution de départ	40 ml
Charge	Plaque de verre (10g)
Palpeur utilisé	000A648 L02
Lieu expérimental	Laboratoire photo

VII.2 Poids du cristal

	Poids initial pesé (g)	Poids initial calculé (g)	Poids final pesé (g)	Poids final calculé (g)	Gain de poids (P) obtenu par pesée (g)	Gain de poids (P) obtenu par pesée (g)
CGC1.80%	1,808	1,833	1,945	1,978	+0,137	+0,145

VII.3 Dimension du cristal

A.Dimensions mesurées ex-situ

	Avant expérience (mm)			Après expérience (mm)				
	hauteur	larg	largeur		Largeur			
	[001]	[100]	[010]	[001]	[100]		[010]	
					Partie haute	Partie basse	Partie haute	Partie basse
Pied à	9,950 +0.090	9,600 +0.070	9,850 +0.050	9,915 +0.09	9,540 +0.050	10,350	9,770 +0.020	10,600
Comparateur	9,914	9,600	9,850	9,892	-	10,290	-	10,590
ImagaI	$\pm 0,040$	$\pm 0,050$	$\pm 0,020$	$\pm 0,05$	0.500	$\pm 0,030$	0.760	$\pm 0,030$
ImageJ	9,883	9,550	9,830	9,848	9,500	10,270	9,760	10,580

B.Variations mesurées ex-situ

	Variation (µm)						
	hauteur	Largeur					
	[001]	[1	00]	[010]			
		Partie haute	Partie basse	Partie haute	Partie basse		
Pied à coulisse	- 35 ±1800	-60 ± 120	$+750 \pm 150$	-80 ± 70	+ 750 ± 130		
Comparateur	-32 ± 90	-	+690 ± 80		+ 740 ± 50		
ImageJ	- 35 ± 1	-50 ±	+ 720	- 70	+ 750		

C. Dimensions mesurées in-situ

Figure VII.1 : Variations de la hauteur du cristal et de la plaque de verre (courbe orange) (Δz_{cp}), variations de la hauteur de la plaque de verre immergée dans la solution (Δz_{T1}) (courbe verte), variations de la hauteur du cristal à cause du fluage (courbe rouge (Δz_{T2}), variations de hauteur du cristal lui-même (courbe bleue) ($\Delta z_c^{-)}$.

Figure VII.2 : Le point d'intersection des tangentes des deux parties de la courbe (rupture de pente) permet d'identifier la durée des deux régimes de dissolution.

	Premier regime			Second regime			
	Durée (h)	Variation	Taux de	Durée (h)	Variation de	Vitesse de	
		de hauteur	dissolution		hauteur	dissolution	
		(µm)	μmh^{-1}		(µm)	mmh^{-1}	
Cristal	85	21,6±0,4	2,95.10 ⁻¹	205	5,9±0,4	3.2.10 ⁻²	
						$R^{2}=0.99$	

Tableau VII.1 :. Caractéristique de la courbe de variation de hauteur

VII.4 Macrophotographie des cristaux (variation de faciès)

Figure VII.4 : Vue en microscopie photonique de la partie supérieure de la face latérale (100)

Figure VII.5 : Vue en microscopie photonique du bord de la partie basse de la face latérale (100).

Face sommitale

Figure VII.6 : Macrophotographie de la face sommitale contrainte avant expérience (à gauche) et après expérience (à droite).

Face basale

Figure VII.7 : Macrophotographie de la face basale contrainte du cristal avant (à gauche) et après (à droite) expérience

Face latérale (100)

Figure VII.8 : Macrophotographie de la face latérale (100) du cristal avant expérience (à gauche) et après expérience (à droite)

VII.6 Vue en microscopie photonique Face sommitale

Figure VII.9 : Vue en microscopie photonique d'un angle tronqué de la face sommitale du cristal avant expérience (à gauche) et après expérience (à droite).

Figure VII-9: vue en microscopie photonique des gradins avant expérience à gauche et après expérience à droite au centre de la face sommitale.

Figure VII-10 : Vue en microscopie photonique d'un angle de la face basale du cristal avant expérience (à gauche) et après expérience (au centre).

Figure VII-11 : Représentation schématique de la zone observée en microscopie électronique à balayage

Figure VII-12 : Vue en microscopie électronique à balayage de la face basale du cristal CGC1.80% après expérience

Figure VII-13 : Vue en microscopie électronique à balayage de la zone encadré en rouge de la figure précédente

Figure VII-14 :Vue en microscopie électronique à balayage en fausse couleur. En bleu, la face basale originelle et en rouge la surcroissance

VII.7 La microrugosité Face du cristal avant expérience

Figure VII-15 : Image AFM d'une surface de 3600µm² du centre du cristal CGC1.80% avant expérience (en bas à gauche) et sa dérivée (en bas à droite). Le profil de microrugosité (en haut) a été réalisé sur la section tracée sur l'image AFM)

Face sommitale après expérience

Figure VII-16 : Image AFM d'une surface de 3600µm² du centre de la face sommitale du cristal CGC1.80% après expérience (en bas à gauche) et sa dérivée (en bas à droite). Le profil de microrugosité (en haut) a été réalisé sur la section tracée sur l'image AFM.

Face basale après expérience

Figure VII-17: Image AFM d'une surface de 3600µm² du centre de la face basale du cristal CGC1.80% avant expérience (en bas à gauche) et sa dérivée (en bas à droite). Le profil de microrugosité (en haut) a été réalisé sur la section tracée sur l'image AFM.

VIII.CGC2.80%

VIII.1 Conditions expérimentales

	Cristal
Type de cristal	Cristal grossièrement clivé
Durée expérimentale	300h
Humidité relative moyenne %	$79,3 \pm 0,4\%$
Température moyenne °C	$20,1\pm0,2^{\circ}C$
Concentration finale de la solution gL ⁻¹	$340,28 \pm 0,01$
Sursaturation relative finale (σ)	8,2.10 ⁻⁴
Volume de solution de départ	40 ml
Charge	Plaque de verre (10g)
Palpeur utilisé	000A648 L02
Lieu expérimental	Laboratoire photo

VIII.2 Poids du cristal

	Poids initial pesé (g)	Poids initial calculé (g)	Poids final pesé (g)	Poids final calculé (g)	Gain de poids (P) obtenu par pesée (g)	Gain de poids (P) obtenu par calcul (g)
CGC2.80%	1,820	1,852	1,951	1,990	+0,134	+0,138

VIII.3 Dimension du cristal

A.Dimensions mesurées ex-situ

	Avant expérience (mm)			Après expérience (mm)				
	hauteur	larg	largeur		Largeur			
	[001]	[100]	[010]	[001]	[[100]	[0]	10]
					Partie	Partie	Partie	Partie
					haute	basse	haute	basse
Pied à	10,000	9,550	9,900	9,970	9,510	10,250	9,850	10,600
coulisse	±0,050	±0,020	$\pm 0,080$	±0,050	±0,040	±0,050	±0,090	±0,080
Comparateur	9,970	9,541	9,863	9,940	-	10,191	-	10,563
_	±0,030	±0,010	±0,040	±0,010		±0,030		±0,040
ImageJ	9,960	9,533	9,820	9,930	9,490	10,220	9,760	10,540

C.Variation mesurées *ex-situ*

	Variation (µm)						
	hauteur	Largeur					
	[001]	[1	00]	[010]			
		Partie haute	Partie basse	Partie haute	Partie basse		
Pied à coulisse	-30 ± 100	-40 ± 60	+ 700 ±70	-50 ± 170	$+700 \pm 160$		
Comparateur	-30 ± 40	-	$\begin{array}{r} + 650 \\ \pm 30 \end{array}$		+ 700 ± 80		
ImageJ	- 30 ± 1	-40 ±	+ 690	- 60	+ 700		

D.Dimensions mesurées in-situ

Figure VIII.1 : Variations de la hauteur du cristal et de la plaque de verre (courbe orange) (Δz_{cp}), variations de la hauteur de la plaque de verre immergée dans la solution (Δz_{T1}) (courbe verte), variations de la hauteur du cristal à cause du fluage (courbe rouge (Δz_{T2}), variations de hauteur du cristal lui-même (courbe bleue) (Δz_c^{-}).

FigureVIII.2 :Le point d'intersection des tangentes des deux parties de la courbe (rupture de pente) permet d'identifier la durée des deux régimes de dissolution.

С						
		Premier reg	gime	Second regime		
	Durée (h)	Variation de hauteur (µm)	Taux de dissolution µmh ⁻¹	Durée (h)	Variation de hauteur (µm)	Taux de dissolution µmh ⁻¹
Cristal	10	16,5±0,1	1,65.10 ⁻⁴	290	$10,7 \pm 0,4$	3,8.10 ⁻² R ² =0,098

Tableau VIII.1 : Caractéristiquse de la courbe de variation de hauteur

VIII.4 Macrophotographie des cristaux (variation de faciès)

Face sommitale

Figure VIII.3 : Macrophotographie de la face sommitale du cristal CGC2.80% avant (à gauche) et après (à droite) expérience

Figure VIII.4 : Macrophotographie de la face basale du cristal CGC2.80% avant (à gauche) et après (à droite) expérience

Face latérale (100)

Figure VIII.5 : Macrophotographie de la face latérale (100) du cristal CGC2.80% avant (à gauche) et après (à droite) expérience

IX CGC3.80%

IX.1 Conditions expérimentales

	Cristal
Type de cristal	Cristal grossièrement clivé
Durée expérimentale	300h
Humidité relative moyenne %	$78,7 \pm 0,3\%$
Température moyenne °C	$20,3 \pm 0,5^{\circ}C$
Concentration finale de la solution gL ⁻¹	$340,32 \pm 0,01$
Sursaturation relative finale (σ)	9,4.10 ⁻⁴
Volume de solution de départ	40 ml
Charge	Plaque de verre (10g)
Palpeur utilisé	000A648 L02
Lieu expérimental	Laboratoire photo

IX.2 Poids du cristal

	Poids initial pesé (g)	Poids initial calculé (g)	Poids final pesé (g)	Poids final calculé (g)	Gain de poids (P) obtenu par pesée (g)	Gain de poids (P) obtenu par calcul (g)
CGC3.80%	2,013	2,059	2,173	2,223	+0,160	+0,164

XI.3 Dimension du cristal

A.Dimensions mesurées ex-situ

	Avant ex	périenc	e (mm)	Après expérience (mm)				
	hauteur	larg	geur	hauteur	Largeur			
	[001]	[100]	[010]	[001]	[100]		[010]	
					Partie	Partie	Partie	Partie
					haute	basse	haute	basse
Pied à	9,990	10,300	10,170	9,960	10,250	11,100	10,120	10,970
coulisse	±0,030	±0,050	±0,050	±0,040	±0,030	±0,090	±0,050	±0,030
Comparateur	9,984	10,280	10,161	9,958	-	11,000	-	10,941
-	±0,020	±0,020	±0,020	±0,020		±0,020		±0,010
ImageJ	9,963	10,260	10,143	9,937	10,220	11,010	10,070	10,950

B.Variation mesurées ex-situ

		r	Variation (µı	n)				
	hauteur	Largeur						
	[001]	[1	00]	[010]				
		Partie haute	Partie basse	Partie haute	Partie basse			
Pied à coulisse	-30 ± 70	- 50 ± 80	$^{+\ 800}_{\pm\ 100}$	-50 ± 100	$+800 \pm 80$			
Comparateur	-26 ± 40	-	+ 720 ± 40		$\begin{array}{c} +780\\ \pm 30\end{array}$			
ImageJ	-25 ± 1	-40 ±	+ 750	- 60	+ 810			

C.Dimensions mesurées in-situ

Figure IX.1 : Variations de la hauteur du cristal et de la plaque de verre (courbe orange) (Δz_{cp}), variations de la hauteur de la plaque de verre immergée dans la solution (Δz_{T1}) (courbe verte), variations de la hauteur du cristal à cause du fluage (courbe rouge (Δz_{T2}), variations de hauteur du cristal lui-même (courbe bleue) (Δz_c^{-}).

Figure IX.2 : Le point d'intersection des tangentes des deux parties de la courbe (rupture de pente) permet d'identifier la durée des deux régimes de dissolution.

		Premier reg	gime	Second regime			
	Durée (h)	Variation	Taux de	Durée (h)	Variation	Vitesse de	
		de hauteur	dissolution		de hauteur	dissolution	
		(µm)	μ mh ⁻¹		(µm)	μmh ⁻¹	
Cristal	42	17,0±0,4	4,04.10 ⁻¹	258	7,9±0,4	3,3.10-2	
						$R^2 = 0.86$	

Tableau IX.1 : Caractéristique de la courbe de variation de hauteur

Macrophotographie des cristaux (variation de faciès) **IX.4**

Face sommitale

Figure IX.3 : Macrophotographie de la face sommitale du cristal CGC3.80% avant (à gauche) et après (à droite) expérience

10 mm 0 mm

Figure IX.4 : Macrophotographie de la face basale du cristal CGC3.80% avant (à gauche) et après (à droite) expérience

Face la<u>térale (100)</u>

FigureIX.5 : Macrophotographie de la face latérale (100) du cristal CGC3.80% avant (à gauche) et après (à droite) expérience

X CGC4.80%

X.1 Conditions expérimentales

	Cristal
Type de cristal	Cristal grossièrement clivé
Durée expérimentale	300h
Humidité relative moyenne %	81,3±0,6%
Température moyenne °C	$21,0 \pm 0,5^{\circ}C$
Concentration finale de la solution gL ⁻¹	$340,2 \pm 0,01$
Sursaturation relative finale (σ)	6.10 ⁻⁴
Volume de solution de départ	40 ml
Charge	Plaque de verre (10g)
Palpeur utilisé	000A648 L02
Lieu expérimental	Laboratoire photo

X.2 Poids du cristal

	Poids initial pesé (g)	Poids initial calculé (g)	Poids final pesé (g)	Poids final calculé (g)	Gain de poids (P) obtenu par pesée (g)	Gain de poids (P) obtenu par pesée (g)
CGC4.80%	2,007	2,052	2,095	2,143	+0,088	+0,091

X.3 Dimension du cristal

A. Dimensions mesurées *ex-situ*

	Avant ex	périenc	e (mm)	Après expérience (mm)				
	hauteur	larg	geur	hauteur	Largeur			
	[001]	[100]	[010]	[001]	[100]		[0]	10]
					Partie haute	Partie basse	Partie haute	Partie basse
Pied à	10,070	10,250	10,100	10,030	10,210	10,750	10,050	10,480
coulisse	±0,050	±0,050	±0,050	±0,030	±0,050	±0,040	±0,050	±0,05
Comparateur	10,064	10,251	10,075	10,033	-	10,721	-	10,475
_	±0,030	±0,030	±0,030	±0,030		±0,01		±0,020
ImageJ	10,037	10,221	10,071	10,004	10,171	10,730	10,031	10,491

			Variation (µr	n)				
	hauteur	Largeur						
	[001]	[1	00]		[010]			
		Partie	Partie	Partie	Partie basse			
		haute	basse	haute				
Pied à coulisse	-40 ± 80	-40 ± 100	+500	-50	+ 450			
			± 90	± 100	± 100			
Comparateur	-31 ± 60	-	+470		+400			
-			± 40		± 50			
ImageJ	- 33 ±	-50 ±	+ 510	- 40	+ 420			

B Variation mesurées *ex-situ*

B.Dimensions mesurées in-situ

Figure X.1 : Variations de la hauteur du cristal et de la plaque de verre (courbe orange) (Δz_{cp}), variations de la hauteur de la plaque de verre immergée dans la solution (Δz_{T1}) (courbe verte), variations de la hauteur du cristal à cause du fluage (courbe rouge (Δz_{r2}), variations de hauteur du cristal lui-même (courbe bleue) (Δz_{c}).

Figure X.2 :Le point d'intersection des tangentes des deux parties de la courbe (rupture de pente) permet d'identifier la durée des deux régimes de dissolution.

		Premier reg	gime	Second regime			
	Durée (h)	Variation	Taux de	Durée (h)	Variation	Vitesse de	
		de hauteur	dissolution		de hauteur	diminution	
		(µm)	μmh^{-1}		(µm)	μmh ⁻¹	
Cristal	75	21,7±0,4	2,92.10 ⁻¹	225	8,9±0,4	4,5.10-2	
						$R^2 = 0.92$	

 Tableau X.1 : Caractéristique de la courbe de variation de hauteur

X.4 Macrophotographie des cristaux (variation de faciès)

Face sommitale

Figure X.3 : Macrophotographie de la face sommitale du cristal CGC4.80% avant (à gauche) et après (à droite) expérience.

Figure X.5 : Macrophotographie de la face basale du cristal CGC4.80% avant (à gauche) et après (à droite) expérience.

Face la<u>térale (100)</u>

Figure X.6 : Macrophotographie de la face latérale (100) du cristal CGC4.80% avant (à gauche) et après (à droite) expérience.

XI CGC5.80%

XI.1 Conditions expérimentales

	Cristal
Type de cristal	Cristal grossièrement clivé
Durée expérimentale	300h
Humidité relative moyenne %	$79,3 \pm 0,4\%$
Température moyenne °C	$21 \pm 0.5^{\circ}$ C
Concentration finale de la solution gL ⁻¹	$340,22 \pm 0,01$
Sursaturation relative finale (σ)	6,5.10 ⁻⁴
Volume de solution de départ	40 ml
Charge	Plaque de verre (10g)
Palpeur utilisé	000A648 L02
Lieu expérimental	Laboratoire photo

XI.2 Poids du cristal

	Poids initial pesé (g)	Poids initial calculé (g)	Poids final pesé (g)	Poids final calculé (g)	Gain de poids (P) obtenu par pesée (g)	Gain de poids (P) obtenu par pesée (g)
CGC5.80%	2,235	2,269	2,353	2,377	$+0,1\overline{18}$	+0,138

XI.3 Dimension du cristal

A.Dimensions mesurées ex-situ

	Avant ex	périenc	e (mm)	Après expérience (mm)				
	hauteur	larg	geur	hauteur	Largeur			
	[001]	[100]	[010]	[001]	[100]		[010]	
					Partie	Partie	Partie	Partie
					haute	basse	haute	basse
Pied à	10,700	10,440	10,350	10,680	10,380	10,89	10,310	10,85
coulisse	±0,050	±0,050	±0,05	±0,04	±0,040	±0,05	±0,031	±0,041
Comparateur	10,681	10,424	10,331	10,663	-	10,844	-	10,811
_	±0,020	±0,03	±0,02	±0,02		±0,01		±0,019
ImageJ	10,663	10,391	10,310	10,646	10,341	10,851	10,270	10,820

В	Variation	mesurées	ex-situ
~			

	Variation (µm)							
	hauteur	r Largeur						
	[001]	[1	00]		[010]			
		Partie haute	Partie basse	Partie haute	Partie basse			
Pied à coulisse	-20 ± 90	- 60± 60	$\begin{array}{r} + 450 \\ \pm 100 \end{array}$	-40 ± 81	+ 500 ± 91			
Comparateur	- 18 ± 40	-	$^{+420}_{\pm40}$		+ 480 ± 39			
ImageJ	- 17 ± 1	- 50 ±	+460	- 40	+ 510			

C. Dimensions mesurées in-situ

Figure IX.1 : Variations de la hauteur du cristal et de la plaque de verre (courbe orange) (Δz_{cp}), variations de la hauteur de la plaque de verre immergée dans la solution (Δz_{T1}) (courbe verte), variations de la hauteur du cristal à cause du fluage (courbe rouge (Δz_{T2}), variations de hauteur du cristal lui-même (courbe bleue) (Δz_c^{-b} .

Figure XI.2 :Le point d'intersection des tangentes des deux parties de la courbe (rupture de pente) permet d'identifier la durée des deux régimes de dissolution.

		Premier rég	gime	Second régime			
	Durée (h) Variation Taux de de hauteur dissolution (μm) μmh^{-1}		Durée (h)	Variation de hauteur (µm)	Vitesse de diminution µmh ⁻¹		
Cristal	75 15,1±0,4		2.10-1	125	8±0,4	$4,1.10^{-2}$ R ² =0.93	

 Tableau XI.1 : Caractéristique de la courbe de variation de hauteur

IV Macrophotographie des cristaux (variation de faciès)

Face sommitale

Figure XI.4 : Macrophotographie de la face sommitale du cristal CGC5.80% avant (à gauche) et après (à droite) expérience

Figure IX.5 : Macrophotographie de la face basale du cristal CGC5.80% avant (à gauche) et après (à droite) expérience

Face latérale (100)

Figure IX.6 : Macrophotographie de la face latérale (100) du cristal CGC5.80% avant (à gauche) et après (à droite) expérience

XII CGC6.80%

XII.1 Conditions expérimentales

	Cristal
Type de cristal	Cristal grossièrement clivé
Durée expérimentale	300h
Humidité relative moyenne %	80,3±1,0%
Température moyenne °C	$20,5 \pm 0,5^{\circ}C$
Concentration finale de la solution gL ⁻¹	$340,21 \pm 0,01$
Sursaturation relative finale (σ)	6,1.10 ⁻⁴
Volume de solution de départ	40 ml
Charge	Plaque de verre (10g)
Palpeur utilisé	000A648 L02
Lieu expérimental	Laboratoire photo

XII.2 Poids du cristal

	Poids initial pesé (g)	Poids initial calculé (g)	Poids final pesé (g)	Poids final calculé (g)	Gain de poids (P) obtenu par pesée (g)	Gain de poids (P) obtenu par pesée (g)
CGC6.80%	2,128	2,176	2,135	2,286	+0,107	+0,109

XII.3 Dimension du cristal

A.Dimensions mesurées ex-situ

	Avant expérience (mm)			Après expérience (mm)				
	hauteur	Lar	geur	hauteur	Largeur			
	[001]	[100]	[010]	[001]	[100]		[010]	
					Partie haute	Partie basse	Partie haute	Partie basse
Pied à	10,120	10,200	10,130	10,08	10,15	10,700	10,080	10,630
coulisse	±0,04	±0,030	±0,05	±0,04	±0,031	±0,051	±0,042	±0,045
Comparateur	10,111	10,231	10,130	10,075	-	10,681	-	10,630
	±0,031	±0,021	±0,020	±0,031		±0,011		±0,029
ImageJ	10,08	10,211	10,114	10,043	10,16	10,681	10,05	10,664

B.Variation mesurées *ex-situ*

	Variation (µm)							
	hauteur	Largeur						
	[001]	[1	[100] [010]					
		Partie haute	Partie basse	Partie haute	Partie basse			
Pied à coulisse	- 40 ±80	-50 ± 60	$+500 \pm 81$	-50 ±92	+ 500 ± 95			
Comparateur	-36 ± 60	-	$+450 \pm 31$		$+500 \pm 49$			
ImageJ	- 37 ± 1	-50 ±	+ 470	- 60	+ 550			

C.Dimensions mesurées in-situ

Figure XII.1 : Variations de la hauteur du cristal et de la plaque de verre (courbe orange) (Δz_{cp}), variations de la hauteur de la plaque de verre immergée dans la solution (Δz_{T1}) (courbe verte), variations de la hauteur du cristal à cause du fluage (courbe rouge (Δz_{T2}), variations de hauteur du cristal lui-même (courbe bleue) (Δz_c)[.]

Figure XII.2 : Le point d'intersection des tangentes des deux parties de la courbe (rupture de pente) permet d'identifier la durée des deux régimes de dissolution.

		Premier reg	gime	Second regime			
	Durée (h) Variation Taux de		Durée (h)	Variation	Vitesse de		
		de hauteur (µm)	dissolution µmh ⁻¹		de hauteur (μm)	diminution µmh ⁻¹	
Cristal	20	21,2±0,4	10.6.10 ⁻¹	280	15.1±0,4)	4,4.10-2	
						$R^2 = 0.98$	

Tableau XII.1 : Caractéristique de la courbe de variation de hauteur

XII.4 Macrophotographie des cristaux (variation de faciès)

Face sommitale

Figure XII.3 : Macrophotographie de la face sommitale du cristal CGC2.80% avant (à gauche) et après (à droite) expérience

Figure XII.4/Macrophotographie de la face basale du cristal CGC2.80% avant (à gauche) et après (à droite) expérience

Face latérale (100)

Figure XII.5 : Macrophotographie de la face latérale (100) du cristal CGC2.80% avant (à gauche) et après (à droite) expérience

XIII CGC7.80%

XIII.1 Conditions expérimentales

	Cristal
Type de cristal	Cristal grossièrement clivé
Durée expérimentale	300h
Humidité relative moyenne %	$80,3 \pm 0,5\%$
Température moyenne °C	$20,1\pm 0,2^{\circ}C$
Concentration finale de la solution gL ⁻¹	$340,27 \pm 0,01$
Sursaturation relative finale (σ)	8.10 ⁻⁴
Volume de solution de départ	40 ml
Charge	Plaque de verre (10g)
Palpeur utilisé	000A648 L01
Lieu expérimental	Laboratoire photo

XIII.2 Poids du cristal

	Poids initial pesé (g)	Poids initial calculé (g)	Poids final pesé (g)	Poids final calculé (g)	Gain de poids (P) obtenu par pesée (g)	Gain de poids (P) obtenu par pesée (g)
CGC7.80%	1,996	2,041	2,128	2,174	+0,132	+0,133

XIII.3 Dimension du cristal

A.Dimensions mesurées ex-situ

	Avant expérience (mm)			Après expérience (mm)				
	hauteur largeur			hauteur	Largeur			
	[001]	[100]	[010]	[001]	[100]		[010]	
					Partie	Partie	Partie	Partie
					haute	basse	haute	basse
Pied à	10,110	10,141	10,080	10,070	10,071	10,841	10,020	10,76
coulisse	±0,02	±0,021	±0,051	±0,041	±0,042	±0,050	±0,050	±0,055
Comparateur	10,105	10,128	10,082	10,069	-	10,778	-	10,712
_	±0,008	±0,01	±0,035	±0,005		±0,032		±0,019
ImageJ	10,10	10,12	10,050	10,063	10,05	10,80	9,99	10,70

B.Variation mesurées ex	x-situ
-------------------------	--------

	Variation (µm)							
	hauteur	Largeur						
	[001]	[100]		[010]				
		Partie haute	Partie basse	Partie haute	Partie basse			
Pied à coulisse	- 40 ±61	- 70 ± - 63	+ 700 ± 71	-60 ±90	+ 680 ± 95			
Comparateur	-36 ± 13	-	+650 ±42		+ 630 ± 54			
ImageJ	- 37 ± 1	-70 ±	+ 680	- 60	+ 650			

C.Dimensions mesurées in-situ

Figure XIII.1 : Variations de la hauteur du cristal et de la plaque de verre (courbe orange) (Δz_{cp}), variations de la hauteur de la plaque de verre immergée dans la solution (Δz_{T1}) (courbe verte), variations de la hauteur du cristal à cause du fluage (courbe rouge (Δz_{T2}), variations de hauteur du cristal lui-même (courbe bleue) ($\Delta z_c^{-)}$.

Figure XIII.2 : Le point d'intersection des tangentes des deux parties de la courbe (rupture de pente) permet d'identifier la durée des deux régimes de dissolution.

С						
	Premier régime			Second régime		
	Durée	Variation de	Taux de	Durée (h)	Variation	Vitesse de
	(h)	hauteur	dissolution		de hauteur	diminution
		(µm)	μmh^{-1}		(µm)	μmh^{-1}
Cristal	25	26,6±0,4	10,6.10 ⁻¹	275	7,4±0,4	3,5.10 ⁻²
						$R^2 = 0.98$

Tableau XIII.1 : Caractéristique de la courbe de variation de hauteur

XIII.4 Macrophotographie des cristaux (variation de faciès)

Face sommitale

Figure XIII.4 : Macrophotographie de la face sommitale du cristal CGC7.80% avant (à gauche) et après (à droite) expérience

Figure XIII.5 : Macrophotographie de la face basale du cristal CGC7.80% avant (à gauche) et après (à droite) expérience

Face latérale (100)

Figure XIII.6 : Macrophotographie de la face latérale (100) du cristal CGC7.80% avant (à gauche) et après (à droite) expérience
XIV CGC1.60%

XIV.1 Conditions expérimentales

	Cristal
Type de cristal	Cristal grossièrement clivé
Durée expérimentale	300h
Humidité relative moyenne %	61,0±0,3%
Température moyenne °C	$22,0\pm 0,2^{\circ}C$
Concentration finale de la solution gL ⁻¹	$340,67 \pm 0,01$
Sursaturation relative finale (σ)	19,9.10 ⁻⁴
Volume de solution de départ	40 ml
Charge	Plaque de verre (10g)
Palpeur utilisé	000A648 L02
Lieu expérimental	Laboratoire photo

XIV.2 Poids du cristal

	Poids initial pesé (g)	Poids initial calculé (g)	Poids final pesé (g)	Poids final calculé (g)	Gain de poids (P) obtenu par pesée (g)	Gain de poids (P) obtenu par calcul (g)
CGC1.60%	1,964	2,006	2,159	2,206	+0,195	+0,200

XIV.3 Dimension du cristal

	D'	•	,	• .
A	Dimen	SIONS	mesurees	ex-situ
		010110	1110001000	0.0 5000

	Avant ex	Avant expérience (mm)			Après expérience (mm)				
	hauteur	larg	geur	hauteur	Largeur				
	[001]	[100]	[010]	[001]	[100] [0:			10]	
					Partie	Partie	Partie	Partie	
					haute	basse	haute	basse	
Pied à	9,95	10,139	10,120	9,931	10,109	11,139	10,09	11,12	
coulisse	±0,05	±0,043	±0,050	±0,03	±0,041	±0,05	±0,05	±0,08	
Comparateur	9,951	10,20	10,111	9,932	-	11,138	-	11,031	
_	±0,031	±0,025	±0,03	±0,03		±0,048		±0,061	
ImageJ	9,919	10,10	10,08	9,901	10,07	11,08	10,03	10,955	

B.	Variation	mesurées	ex-situ

	Variation (µm)						
	hauteur	Largeur					
	[001]	[1	00]		[010]		
		Partie	Partie	Partie	Partie basse		
		haute	basse	haute			
Pied à coulisse	- 19 ±80	- 30 ± 84	+ 1000	- 50	+ 1000		
			± 93	± 100	± 130		
Comparateur	- 19± 61	-	+ 1010	-	+ 920		
			±73		0,086±		
ImageJ	-18 ± 1	- 30	+980	- 50	+ 875		

Figure XIV.1 : Variations de la hauteur du cristal et de la plaque de verre (courbe orange) (Δz_{cp}), variations de la hauteur de la plaque de verre immergée dans la solution (Δz_{T1}) (courbe verte), variations de la hauteur du cristal à cause du fluage (courbe rouge (Δz_{T2}), variations de hauteur du cristal lui-même (courbe bleue) ($\Delta z_c^{-)}$.

Figure XIV.2 : Le point d'intersection des tangentes des deux parties de la courbe (rupture de pente) permet d'identifier la durée des deux régimes de dissolution.

		Premier reg	gime	Second regime			
	Durée (h)	Variation	Taux de	Durée (h)	Variation	Vitesse de	
		de hauteur	diminution de		de hauteur	diminution	
		(µm)	hauteur µmh ⁻¹		(µm)	μ mh ⁻¹	
Cristal	80	12,5±0,4	1,56.10 ⁻¹	220	4,1±0,4	1,1.10-2	
						R ² =0,55	

Tableau XIV.1 : Caractéristique de la courbe de variation de hauteur

XIV.4 Macrophotographie des cristaux (variation de faciès)

Figure XIV.4 : Vue au microscope photonique de la partie haute de la face latérale (100)

Figure XIV.5 : Vue en microscopie photonique d'un angle de la partie basse de la face latérale (100)

Face sommitale

Figure XIV.6 : Macrophotographie de la face sommitale du cristal CGC.1 60% avant (à gauche) et après (à droite) expérience

Face basale

Figure XIV.7 : Macrophotographie de la face basale du cristal CGC.1 60% avant (à gauche) et après (à droite) expérience

Face latérale (100)

Figure XIV.8 : Macrophotographie de la face latérale (100) du cristal CGC.1 60% avant (à gauche) et après (à droite) expérience

XIV.5 Vue en microscopie

La face sommitale

Figure XIV-9 : Vue en microscopie photonique d'un angle de la face sommitale avant expérience (à gauche) et après expérience (à droite)

Figure XIV-9 : Vue en microscopie photonique du gradin le plus profond traversant la surface de la face sommitale avant expérience (à gauche) et après expérience (à droite)

FigureX IV-10 : Vue en microscopie photonique du centre de la face sommitale avant (A) et après (B) expérience. Détails de la face sommitale après expérience en microscopie photonique (C). Vue en microscopie électronique à balayage de la face sommitale (D).

La face basale

Figure XIV-11 : Vue en microscopie photonique d'un angle de la face basale $(00\overline{1})$ avant (à gauche) et après expérience (à droite).

Figure XIV-12 : Zone de la face basale observée au microscope électronique à balayage

Figure XIV-13:Vue en microscopie électronique à balayage du profil de la face basale après expérience.

Figure XIV-14 : Vue en microscopie de la face basale après expérience sous un angle de 30°

Figure IV-15 : Vue microscopie électronique à balayage en fausse couleur de sous un angle de 30°

0 M m X 6 0

mm

XIV.La microrugosité

Figure XIV-16 : Image AFM d'une surface de 3600µm² du centre du cristal CGC1.60% avant expérience (en bas à gauche) et sa dérivée (en bas à droite). Le profil de microrugosité (en haut) a été réalisé sur la section tracée.

Face sommitale après expérience

Figure XIV-17: Image AFM d'une surface de 3600µm² du centre de la face sommitale du cristal CGC1.60% après expérience (en bas à gauche) et sa dérivée (en bas à droite). Le profil de microrugosité (en haut) a été réalisé sur la section tracée sur l'image AFM).

La face basale après expérience

Figure XIV-18 : Image AFM d'une surface de 3600µm² du centre de la face basale du cristal CGC1.60% après expérience (en bas à gauche) et sa dérivée (en bas à droite). Le profil de microrugosité (en haut) a été réalisé sur la section tracée sur l'image AFM).

XV CGC2.60%

XV.1 Conditions expérimentales

	Cristal
Type de cristal	Cristal grossièrement clivé
Durée expérimentale	300h
Humidité relative moyenne %	$61,9 \pm 0,3\%$
Température moyenne °C	22,0±0,2°C
Concentration finale de la solution gL ⁻¹	$340,64 \pm 0,01$
Sursaturation relative finale (σ)	19.10 ⁻⁴
Volume de solution de départ	40 ml
Charge	Plaque de verre (10g)
Palpeur utilisé	000A648 L02
Lieu expérimental	Laboratoire photo

XV.2 Poids du cristal

	Poids initial pesé (g)	Poids initial calculé (g)	Poids final pesé (g)	Poids final calculé (g)	Gain de poids (P) obtenu par pesée (g)	Gain de poids (P) obtenu par pesée (g)
CGC2.60%	1,832	1,869	2,012	2,052	+0,180	+0,183

XV.3 Dimension du cristal

A Dimensions	mesurées	ex-situ
11.01110110110	mesurees	CA SUU

	Avant expérience (mm)			Après expérience (mm)					
	hauteur	larg	geur	hauteur	Largeur				
	[001]	[100]	[010]	[001]		[100]	[0]	[010]	
					Partie haute	Partie basse	Partie haute	Partie basse	
Pied à	9,85	9,90	9,75	9,830	9,860	10,900	9,700	10,750	
coulisse	±0,05	±0,04	±0,05	±0,050	±0,050	±0,090	±0,050	±0,310	
Comparateur	9,825	9,907	9,773	9,806	-	10,887	-	10,643	
_	±0,01	±0,01	±0,03	±0,018		±0,050		±0,100	
ImageJ	9,81	9,861	9,710	9,792	9,821	10,821	9,660	11,565	

	Variation (µm)						
	hauteur	Largeur					
	[001]	[1	00]		[010]		
		Partie	Partie	Partie	Partie basse		
		haute	basse	haute			
Pied à coulisse	- 20 ±100	-40 ± 90	+ 1000	- 50	+ 1000		
			± 130	± 100	± 370		
Comparateur	- 19 ± 28	-	+ 1010	-	+ 900		
			±60		±130		
ImageJ	- 18 ± 1	- 40	+ 960	- 50	+ 855		

Figure XV.1 : Variations de la hauteur du cristal et de la plaque de verre (courbe orange) (Δz_{cp}), variations de la hauteur de la plaque de verre immergée dans la solution (Δz_{T1}) (courbe verte), variations de la hauteur du cristal à cause du fluage (courbe rouge (Δz_{T2}), variations de hauteur du cristal lui-même (courbe bleue) ($\Delta z_c^{-)}$.

Figurexv ;é/ Le point d'intersection des tangentes des deux parties de la courbe (rupture de pente) permet d'identifier la durée des deux régimes de dissolution.

	Premier regime			Second regime			
	Durée (h)	Variation de hauteur (µm)	Taux de dissolution µmh ⁻¹	Durée (h)	Variation de hauteur (µm)	Vitesse de dissolution µmh ⁻¹	
Cristal	90	15,2±0,4	1,68.10 ⁻¹	210	4,05±0,40	$1,45.10^{-2}$ R ² =0.58	

Tableau XV.1 : Caractéristique de la courbe de variation de hauteur

XV.4 Macrophotographie des cristaux (variation de faciès)

Face sommitale

Figure XV.3 : Macrophotographie de la face sommitale du cristal CGC2.60% avant (à gauche) et après (à droite) expérience.

Face basale

Figure XV.5 : Macrophotographie de la face basale du cristal CGC2.60% avant (à gauche) et après (à droite) expérience.

XVI CGC3.60%

XVI.1 Conditions expérimentales

	Cristal
Type de cristal	Cristal grossièrement clivé
Durée expérimentale	300h
Humidité relative moyenne %	$62,0 \pm 0,3\%$
Température moyenne °C	$21,7\pm0,2^{\circ}C$
Concentration finale de la solution gL ⁻¹	$340,63 \pm 0,01$
Sursaturation relative finale (σ)	18,5.10 ⁻⁴
Volume de solution de départ	40 ml
Charge	Plaque de verre (10g)
Palpeur utilisé	000A648 L02
Lieu expérimental	Laboratoire photo

XVI.2 Poids du cristal

	Poids initial pesé (g)	Poids initial calculé (g)	Poids final pesé (g)	Poids final calculé (g)	Gain de poids (P) obtenu par pesée (g)	Gain de poids (P) obtenu par pesée (g)
CGC3.60%	2,074	2,118	2,247	2,295	+0,173	+0,177

XVI.3 Dimension du cristal

A.Dimensions mesurées ex-situ

	Avant expérience (mm)			Après expérience (mm)				
	hauteur	larg	geur	hauteur	Largeur			
	[001]	[100] [010]		[001]	[100]		[010]	
					Partie haute	Partie basse	Partie haute	Partie basse
Pied à	10,100	10,300	10,350	10,082	10,25	11,25	10,300	11,15
coulisse	±0,043	$\pm 0,038$	$\pm 0,050$	±0,05	±0,051	±0,110	±0,05	±0,095
Comparateur	10,095	10,277	10,330	10,077	-	11,177	-	10,154
_	±0,017	±0,015	±0,030	±0,01		±0,031		±0,05
ImageJ	10,082	10,262	10,302	10,067	10,212	11,142	10,262	11,052

B.Variation mesurées ex-situ

	Variation (µm)						
	hauteur	hauteur Largeur					
	[001]	[100] [010]					
		Partie Partie		Partie	Partie basse		
		haute	basse	haute			
Pied à coulisse	- 18 ±93	- 50 ± 89	+ 950	- 50	+ 800		
			± 148	± 100	±145		
Comparateur	- 18 ± 27	-	$+900 \pm 46$	-	$+770 \pm 80$		
ImageJ	- 15 ± 1	- 50	+ 880	- 40	+ 750		

Figure XVI.1 : Variations de la hauteur du cristal et de la plaque de verre (courbe orange) (Δz_{cp}), variations de la hauteur de la plaque de verre immergée dans la solution (Δz_{T1}) (courbe verte), variations de la hauteur du cristal à cause du fluage (courbe rouge (Δz_{T2}), variations de hauteur du cristal lui-même (courbe bleue) ($\Delta z_c^{-)}$.

Figure XVI.2 :Le point d'intersection des tangentes des deux parties de la courbe (rupture de pente) permet d'identifier la durée des deux régimes de dissolution.

	Premier régime			Second régime			
	Durée (h)	Variation	Taux de	Durée (h)	Variation	Vitesse de	
		de hauteur	dissolution en		de hauteur	diminution	
		(µm)	μ mh ⁻¹		(µm)	μmh ⁻¹	
Cristal	101	10,0±0,40	1,00.10 ⁻¹	199	2,9±0,4	1,31.10 ⁻²	
						$R^{2}=0.92$	

 Tableau XVI.1 : Caractéristique de la courbe de variation de hauteur

XVII CGC1.40%

XVII.1 Conditions expérimentales

	Cristal
Type de cristal	Cristal grossièrement clivé
Durée expérimentale	300h
Humidité relative moyenne %	$43 \pm 0,3\%$
Température moyenne °C	$20,4\pm0,4^{\circ}C$
Concentration finale de la solution gL ⁻¹	$340,39 \pm 0,01$
Sursaturation relative finale (σ)	11,4.10 ⁻⁴
Volume de solution de départ	40 ml
Charge	Plaque de verre (10g)
Palpeur utilisé	000A648 L02
Lieu expérimental	Laboratoire photo

XVII.2 Poids du cristal

	Poids initial	Poids initial	Poids final	Poids	Gain de	Gain de
	pesé (g)	calculé (g)	pesé (g)	final	poids (P)	poids (P)
				calculé	obtenu	obtenu
				(g)	par pesée	par pesée
					(g)	(g)
CGC1.40%	2,063	2,076	2,303	2,319	+0,240	+0,243

XVII.3 Dimension du cristal

A.Dimensions mesurées *ex-situ*

	Avant expérience (mm)		Après expérience (mm)					
	hauteur	largeur		hauteur	Largeur			
	[001]	[100]	[010]	[001]	[[100]	[0]	10]
					Partie	Partie	Partie	Partie
					haute	basse	haute	basse
Pied à	10,280	9,950	10,300	10,20	9,93	11,150	10,270	11,500
coulisse	±0,043	±0,050	±0,032	±0,03	±0,032	±0,09	±0,033	±0,08
Comparateur	10,265	9,940	10,300	10,185	-	11,174	-	10,450
-	± 0,012	±0,032	±0,021	±0,008		$\pm 0,08$		± 0,038
ImageJ	10,258	9,910	10,280	10,180	9,90	11,060	10,260	11,410

B Variation mesurées *ex-situ*

	Variation (µm)						
	hauteur	Largeur					
	[001]	[1	00]	[010]			
		Partie	Partie	Partie	Partie basse		
		haute	basse	haute			
Pied à coulisse	-80 ± 75	-20 ± 82	+ 1200	- 30	+ 1200		
			± 140	± 55	± 110		
Comparateur	-80 ± 20	-	+1200	-	+ 1150		
			±132		± 59		
ImageJ	-78 ± 1	- 20	+1150	- 20	+1130		

Figure XVII.1 :Variations de la hauteur du cristal et de la plaque de verre (courbe orange) (Δz_{cp}), variations de la hauteur de la plaque de verre immergée dans la solution (Δz_{T1}) (courbe verte), variations de la hauteur du cristal à cause du fluage (courbe rouge (Δz_{T2}), variations de hauteur du cristal lui-même (courbe bleue) ($\Delta z_c^{-)}$.

Figure XVII.1b Le point d'intersection des tangentes des deux parties de la courbe (rupture de pente) permet d'identifier la durée des deux régimes de dissolution Ajout de solution. Apparition de paillettes

XVII.4 Macrophotographie des cristaux (variation de faciès) La face latérale

FigureXVII.2Vue en macrophotographie de la face latérale (100) du cristal CGC1.60% avant (à gauche) et après expérience (à droite).

Face sommitale contrainte

Figure XVII.3 Représentation schématique de la variation de faciès du cristal. En noir le faciès initial et en rouge le faciès après expérience

Figure XVII.4 : Vue en microscopie photonique de la partie haute de la face latérale (100).

Figure XVII.5 : Vue en microscopie photonique d'un angle de la partie basse de la face latérale (100).

Face sommitale

Figure XVII.6 : Macrophotographie de la face sommitale du cristal CGC1 40% avant expérience (à gauche) et après expérience (à droite)

Face basale

Figure XVII-7 : Macrophotographie de la face basale avant expérience (à gauche) et après expérience (à droite)

Face latérale (100)

Figure XVII.8 : Macrophotographie de la face latérale (100) du cristal CGC1 40% avant expérience (à gauche) et après expérience (à droite)

Figure XVII-9 :Vue en microscopie photonique d'un angle de la face (001) avant expérience (à gauche) et aprè expérience (à droite) du cristal CGC1.40%.

Figure XVII-10: Vue en microscopie photonique du centre de la face sommitale avant (à gauche) et après (à droite) expérience du cristal CGC1.40%.

Figure XVII-11 : Vue en microscopie électronique à balayage d'une arête de la face (001) après expérience du cristal CGC1.40%

La face basale

Figure XVII-12 : Vue en microscopie électronique à balayage du centre de la face (001) après expérience du cristal CGC1.40%

Figure XVII-13 : Vue en microscopie photonique du bord de la face basale du cristal CGC1.40% avant (à gauche) et après expérience (à droite).

Figure XVII-14 : Vue en microscopie photonique du centre de la face basale avant (à gauche) et après (à droite)expérience du cristal CGC1.40%.

Figure XVII-15: Zone de la face basale observée au microscope électronique à balayage

Figure XVII-16 : Vue en microscopie électronique à balayage de la face basale du cristal CGC1.40% sous un angle de 30°

Figure XVII-18 : Vue en microscopie électronique à balayage de la face basale du cristal CGC1.40% sous un angle de 20°

Figure XVII-19 : Vue en microscopie électronique à balayage en fausse couleur de la face basale du cristal CGC1.40% sous un angle de 30°

Figure XVII-20 : Vue en microscopie photonique d'un angle de la face basale du cristal CGC2.40%

Figure XVII-21 : Vue en microscopie photonique d'un bord de la face basale du cristal CGC2.40%

Figure XVII-22 : Vue en microscopie photonique du centre de la face basale du cristal CGC2.40%

Figure XVII-23 : Image AFM d'une surface de 3600µm² du centre du cristal CGC1.40% avant expérience (en bas à gauche) et sa dérivée (en bas à droite). Le profil de microrugosité (en haut) a été réalisé sur la section tracée sur l'image AFM).

La face sommitale après expérience

Figure XVII-24: Image AFM d'une surface de 3600µm² du centre de la face sommitale du cristal CGC1.40% après expérience (en bas à gauche) et sa dérivée (en bas à droite). Le profil de microrugosité (en haut) a été réalisé sur la section tracée sur l'image AFM).

La face basale après expérience

Figure XVII-25: Image AFM d'une surface de 3600µm² du centre de la face basale du cristal CGC1.40% après expérience (en bas à gauche) et sa dérivée (en bas à droite). Le profil de microrugosité (en haut) a été réalisé sur la section tracée sur l'image AFM).

XVIII CGC2.40%

XVIII.1 Conditions expérimentales

	Cristal
Type de cristal	Cristal grossièrement clivé
Durée expérimentale	300h
Humidité relative moyenne %	$43 \pm 0,3\%$
Température moyenne °C	20,7±0,2°C
Concentration finale de la solution gL ⁻¹	$340,37 \pm 0,01$
Sursaturation relative finale (σ)	11.10 ⁻⁴
Volume de solution de départ	40 ml
Charge	Plaque de verre (10g)
Palpeur utilisé	000A648 L02
Lieu expérimental	Laboratoire photo

XVIII.2 Poids du cristal

	Poids initial pesé (g)	Poids initial calculé (g)	Poids final pesé (g)	Poids final calculé (g)	Gain de poids (P) obtenu par pesée (g)	Gain de poids (P) obtenu par pesée (g)
CGC2.40%	1,926	1,938	2,162	2,178	+0,236	+0,240

XVIII.3 Dimension du cristal

A.Dimensions mesurées *ex-situ*

	Avant expérience (mm)			Après expérience (mm)				
	hauteur	larg	geur	hauteur	Largeur			
	[001]	[100]	100] [010] [001]		[[100]	[0]	10]
					Partie	Partie	Partie	Partie
					naute	basse	naute	basse
Pied à	9,960	9,800	10,09	9,915	9,770	11,000	10,070	11,290
coulisse	±0,038	±0,040	±0,050	±0,045	±0,031	±0,091	±0,062	±0,090
Comparateur	9,958	9,808	10,070	9,911	-	10,978	-	11,192
_	± 0,016	±0,025	±0,020	$\pm 0,01$		$\pm 0,041$		± 0,021
ImageJ	9,946	9,770	10,04	9,901	9,75	10,920	10,010	11,20

B.Variation mesurées ex-situ

	Variation (µm)							
	hauteur	ur Largeur						
	[001]	[1	00]		[010]			
		Partie	Partie	Partie	Partie basse			
		haute	basse	haute				
Pied à coulisse	- 45 ±83	- 30 ± 71	+ 1200	- 30	+ 1200			
			± 141	± 112	± 140			
Comparateur	-47 ± 26	-	+1170	-	+ 1122			
			±66		± 41			
ImageJ	-45 ± 1	- 20	+1150	- 30	+1160			

Figure XVIII.1 : Variations de la hauteur du cristal et de la plaque de verre (courbe orange) (Δz_{cp}), variations de la hauteur de la plaque de verre immergée dans la solution (Δz_{T1}) (courbe verte), variations de la hauteur du cristal à cause du fluage (courbe rouge (Δz_{T2}), variations de hauteur du cristal lui-même (courbe bleue) (Δz_c).

Figure XVIII.2 : Le point d'intersection des tangentes des deux parties de la courbe (rupture de pente) permet d'identifier la durée des deux régimes de dissolution. Apparition de paillettes. Ajout se solution.

XIX CGC1.Sat

XIX.1 Conditions expérimentales

	Cristal
Type de cristal	Cristal grossièrement clivé
Durée expérimentale	300h
Température moyenne °C	$20,5\pm0,2^{\circ}C$
Concentration finale de la solution gL ⁻¹	$340,002 \pm 0,01$
Sursaturation relative finale (σ)	0,05.10 ⁻⁴
Volume de solution de départ	40 ml
Charge	Plaque de verre (10g)
Palpeur utilisé	000A648 L02
Lieu expérimental	Laboratoire photo

XIX.2 Poids du cristal

	Poids initial pesé (g)	Poids initial calculé (g)	Poids final pesé (g)	Poids final calculé (g)	Gain de poids (P) obtenu par pesée (g)	Gain de poids (P) obtenu par pesée (g)
CGC1.sat	1,890	1,9151	1,898	1,9236	+0,008	+0,0084

XIX.3 Dimension du cristal

A.Dimensions mesurées *ex-situ*

	Avant expérience (mm)			Après expérience (mm)				
	hauteur	larg	geur	hauteur Largeur				
	[001]	[100]	[010]	[001]	[001] [100] [010]		10]	
					Partie	Partie	Partie	Partie
					haute	basse	haute	basse
Pied à	9,95	9,95	9,85	9,91	9,76	10,06	9,68	9,95
coulisse	±0,15	±0,20	±0,2	±0,15	±0,10 ±0,05		±0,05	±0,08
Comparateur	9,92	9,99	9,85	9,88	-	10,08	-	9,94
ImageJ	9,885	9,95	9,80	9,843	9,762	10,04	9,635	9,88

.B.Variation mesurées ex-situ

	Variation (µm)							
	hauteur	Largeur						
	[001]	[1	00]		[010]			
		Partie	Partie	Partie	Partie basse			
		haute	basse	haute				
Pied à coulisse	-40 ± 100	-200 ± 62	+ 110	- 170	+ 100			
			± 89	± 100	± 130			
Comparateur	-40 ± 77	-	+ 110	-	+ 90			
			± 60		±60			
ImageJ	- 42 ± 1	- 188	+ 90	- 165	+ 80			

Figure XIX.1 : Variations de la hauteur du cristal et de la plaque de verre (courbe orange) (Δz_{cp}), variations de la hauteur de la plaque de verre immergée dans la solution (Δz_{T1}) (courbe verte), variations de la hauteur du cristal à cause du fluage (courbe rouge (Δz_{T2}), variations de hauteur du cristal lui-même (courbe bleue) ($\Delta z_c^{-)}$.

Figure XIX.2 : Le point d'intersection des tangentes des deux parties de la courbe (rupture de pente) permet d'identifier la durée des deux régimes de dissolution.

		Premier reg	gime	Second regime			
	Durée (h)	Variation	Taux de	Durée (h)	Variation	Vitesse de	
		de hauteur	dissolution		de hauteur	dissolution	
		(µm)	μmh^{-1}		(µm)	μ mh ⁻¹	
CGCsat.1	115	21,8±0,4	1,89.10 ⁻¹	185	14,7±0,4	8,01.10-2	
						$R^2=0.98$	

Tableau XIX.1 : Caractéristique de la courbe de variation de hauteur

XIX.4 Macrophotographie et vue en microscopie du cristal Face sommitale

Figure XIX.2 :: Macrophotographie de la face sommitale avant expérience (à gauche) et après expérience (à droite)

Figure XIX-3: Vue en microscopie photonique d'un angle de la face sommitale du cristal CGC1.sat avant à gauche) et après (à droite) expérience.

Figure XIX-4 : Vue en microscopie électronique à balayage du centre de la face sommitale au niveau des canaux.

La face basale

Figure XIX.5 : Macrophotographie de la face basale $(00\bar{1})$ contrainte du cristal CGCsat.3 avant (à gauche) et après (à droite) expérience.

Figure XIX.6: Vue en microscopie photonique du bord de la face basale avant (à gauche) et après (à droite) expérience.

Figure XIX-7: Vue en microscopie électronique à balayage d'un angle de la face basale du cristal CGC1.sat après expérience

Figure XIX-8 : Zone de la face basale observée au microscope électronique à balayage

<u>а. ЮКИ</u> <u>1mm</u> 3. <u>ЮКИ</u> <u>1mm</u> 25 mm СІМаМ 3. <u>ØKU</u> <u>1mm</u> 25 mm

Figure XIX-9 : Vue en microscopie électronique à balayage de deux bords de la face basale de cristal CGC1.sat

Figure XIX-10 : Vue en microscopie électronique à balayage en fausse couleur de deux bords de la face basale de cristal CGC1.sat

La face latérale

Figure XIX-11 : Macrophotographie de la face latérale (100) du cristal CGCsat.3 avant expérience (à gauche) et après expérience à droite

Figure XIX-12 : Macrophotographie d'une arête du cristal après expérience

Figure XIX-14 : Vue en microscopie photonique de la partie haute de la face latérale

Figure XX-13 : Représentation schématique de la variation de faciès

Figure XIX-15: Vue en microscopie photonique de figure de croissance sur le bas de la face latérale

La microrugosité La face avant expérience

Figure XIX-16 : Image AFM d'une surface de 3600µm² du centre du cristal CGC1.sat avant expérience (en bas à gauche) et sa dérivée (en bas à droite). Le profil de microrugosité (en haut) a été réalisé sur la section tracée sur l'image AFM).

La face sommitale après expérience

Figure XIX-17 : Image AFM d'une surface de 3600µm² du centre de la face sommitale du cristal CGC1.sat après expérience (en bas à gauche) et sa dérivée (en bas à droite). Le profil de microrugosité (en haut) a été réalisé sur la section tracée sur l'image AFM).

La face basale

Figure XIX .18: Image AFM d'une surface de 3600µm² du centre de la face basale du cristal CGC1.sat après expérience (en bas à gauche) et sa dérivée (en bas à droite). Le profil de microrugosité (en haut) a été réalisé sur la section tracée sur l'image AFM).

XX CGC2.Sat

XX.1 Conditions expérimentales

	Cristal
Type de cristal	Cristal grossièrement clivé
Durée expérimentale	300h
Température moyenne °C	22,9±0,4°
Concentration finale de la solution gL ⁻¹	$340,005 \pm 0,01$
Sursaturation relative finale (σ)	0,14.10 ⁻⁴
Volume de solution de départ	40 ml
Charge	Plaque de verre (10g)
Palpeur utilisé	000A648 L02
Lieu expérimental	Laboratoire photo

XX.2 Poids du cristal

	Poids initial pesé (g)	Poids initial calculé (g)	Poids final pesé (g)	Poids final calculé (g)	Gain de poids (P) obtenu par pesée (g)	Gain de poids (P) obtenu par pesée (g)
CGC2.sat	1,8880	1,9153	1,8970	1,9251	+0,0090	+0,0098

XX.3 Dimension du cristal

A.Dimensions mesurées *ex-situ*

	Avant expérience (mm)			Après expérience (mm)				
	hauteur	larg	geur	hauteur	Largeur			
	[001]	[100]	[010] [001]		[[100]	[0]	10]
					Partie	Partie	Partie	Partie
					haute	basse	haute	basse
	0.010	0.041	0.001	0.070	0.741	10.051	0.651	0.001
Pied a	9,910	9,941	9,881	9,870	9,741	10,051	9,651	9,991
coulisse	±0,041	±0,039	±0,05	±0,045	±0,050	±0,050	$\pm 0,050$	±0,080
Comparateur	9,901	9,928	9,859	9,861	-	10,038	-	9,969
_	$\pm 0,021$	±0,018	±0,020	±0,025		±0,036		±0,038
ImageJ	9,88	9,915	9,840	9,840	9,712	10,015	9,614	9,930

B. Variation mesurées *ex-situ*

		Variation (µm)								
	hauteur	Largeur								
	[001]	[1	00]		[010]					
		Partie haute	Partie basse	Partie haute	Partie basse					
Pied à coulisse	- 40 ±96	- 200 ± 89	+ 110 ± 89	- 230 ± 100	+ 110 ± 130					
Comparateur	- 40± 46	-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
ImageJ	- 40 ± 1	- 203	+ 90	- 226	+ 90					

Figure XX.1 : Variations de la hauteur du cristal et de la plaque de verre (courbe orange) (Δz_{cp}), variations de la hauteur de la plaque de verre immergée dans la solution (Δz_{T1}) (courbe verte), variations de la hauteur du cristal à cause du fluage (courbe rouge (Δz_{T2}), variations de hauteur du cristal lui-même (courbe bleue) ($\Delta z_c^{-)}$.

Figure XX.2 : Le point d'intersection des tangentes des deux parties de la courbe (rupture de pente) permet d'identifier la durée des deux régimes de dissolution.
	Premier regime			Second regime		
	Durée (h)	Variation de hauteur (µm)	Taux de dissolution µmh ⁻¹	Durée (h)	Variation de hauteur (µm)	Vitesse de dissolution µmh ⁻¹
CGC2.sat	45	16,6±0,4	3,6.10 ⁻¹	255	25,9±0,4	$9,73.10^{-2}$ R ² =0.99

Tableau XX.1 : Caractéristique de la courbe de variation de hauteur

XX.4 Macrophotographie des cristaux (variation de faciès)

Face sommitale

Figure XX.3 : Macrophotographie de la face sommitale du cristal CGC2.sat avant (à gauche) et après (à droite) expérience

Figure XX.4 : Macrophotographie de la face basale du cristal CGC2.sat avant (à gauche) et après (à droite) expérience

Face basale

Face latérale (100)

Figure XX.5 : Macrophotographie de la face latérale (100) du cristal CGC2.sat avant (à gauche) et après (à droite) expérience

XXI CGC3.Sat

XXI.1 Conditions expérimentales

	Cristal
Type de cristal	Cristal grossièrement clivé
Durée expérimentale	300h
Température moyenne °C	22,1±0,4°C
Concentration finale de la solution gL ⁻¹	$340,003 \pm 0,01$
Sursaturation relative finale (σ)	0,08.10 ⁻⁴
Volume de solution de départ	40 ml
Charge	Plaque de verre (10g)
Palpeur utilisé	000A648 L02
Lieu expérimental	Laboratoire photo

XXI.2 Poids du cristal

	Poids initial pesé (g)	Poids initial calculé (g)	Poids final pesé (g)	Poids final calculé (g)	Gain de poids (P) obtenu par pesée (g)	Gain de poids (P) obtenu par pesée (g)
CGC3.Sat	2,1360	2,1667	2,1440	2,1753	+0,008	+0,0086

XX.3 Dimension du cristal

A.Dimensions mesurées ex-situ

	Avant expérience (mm)		Après expérience (mm)					
	hauteur	largeur		hauteur	Largeur			
	[001]	[100]	[010]	[001]	[[100]	[0]	10]
					Partie	Partie	Partie	Partie
					haute	basse	haute	basse
Pied à	10,400	10,319	10,23	10,340	10,129	10,429	10,080	10,350
coulisse	±0,05	±0,018	±0,031	±0,05	±0,028	±0,039	±0,050	±0,081
Comparateur	10,381	10,310	10,220	10,321	-	10,420	-	10,350
-	±0,027	±0,008	±0,01	±0,021		±		± 0,032
ImageJ	10,359	10,304	10,216	10,299	10,136	10,394	10,075	10,326

B Variation mesurées ex-situ

	Variation (µm)					
	hauteur Largeur					
	[001]	[100] [010]				
		Partie	Partie	Partie	Partie basse	
		haute	basse	haute		
Pied à coulisse	-60 ± 100	-190 ± 46	+ 110	- 150	+ 120	
			± 57	± 81	± 131	
Comparateur	-60 ± 48	-	+ 110	-	+ 130	
			± 39		± 42	
ImageJ	- 60 ± 1	- 168	+ 90	- 131	+ 110	

C.Dimensions mesurées in-situ

Figure XXI.1 : Variations de la hauteur du cristal et de la plaque de verre (courbe orange) (Δz_{cp}), variations de la hauteur de la plaque de verre immergée dans la solution (Δz_{T1}) (courbe verte), variations de la hauteur du cristal à cause du fluage (courbe rouge (Δz_{T2}), variations de hauteur du cristal lui-même (courbe bleue) ($\Delta z_c^{-)}$.

Figure XXI.2 : Le point d'intersection des tangentes des deux parties de la courbe (rupture de pente) permet d'identifier la durée des deux régimes de dissolution.

	Premier regime			Second regime		
	Durée (h)	Variation de hauteur (µm)	Taux de dissolution µmh ⁻¹	Durée (h)	Variation de hauteur (µm)	Vitesse de dissolution mmh ⁻¹
CCsat.2	95	28,7±0,4	5,7.10-1	205	44,4±0,4	$1,3.10^{-4}$ R ² =0.91

 Tableau XXI.1 : Caractéristique de la courbe de variation de hauteur

XXII CS.1

XXII.1 Conditions expérimentales

	Cristal
Type de cristal	Cristal grossièrement clivé
Durée expérimentale	300h
Humidité relative %	$78,8 \pm 3\%$
Température moyenne °C	$19,8\pm 0,4^{\circ}C$
Concentration finale de la solution gL ⁻¹	$340,33 \pm 0,01$
Sursaturation relative finale (σ)	9,7.10 ⁻⁴
Volume de solution de départ	40 ml
Charge	Plaque de verre (10g) enduire de PDMS
Palpeur utilisé	000A648 L02
Lieu expérimental	Laboratoire photo

XXII.2 Poids du cristal

	Poids initial pesé (g)	Poids final pesé (g)	Gain de poids (P) obtenu par pesée (g)
CS1	2,246	3,596	+ 1,35

XXII.3 Dimension du cristal

A.Dimensions mesurées ex-situ

Les mesures ont été réalisées à l'aide d'un pied à coulisse et par imagerie. Le faciès final du cristal a rendu impossible les mesures après expérience avec le comparateur.

	Dimension du cristal avant expérience (mm)			Dimension du cristal après expérience (mm)		
	[100]	[010]	[001]	[100]	[010]	[001]
Pied à	$10,40 \pm$	$10,50 \pm$	$10,50 \pm$	$12,20 \pm$	$12,20 \pm$	$12,20 \pm$
coulisse	0,05	0,05	0,05	0,05	0,05	0,08
Comparateur	10,42	$10,50 \pm$	10,51 ±	$12,18 \pm$	$12,18 \pm$	12,15 ±
	$\pm 0,05$	0,04	0,03	0,03	0,03	0,05
ImageJ	10,370	10,460	10,505	12,150	12,140	12,255

Tableau XXII.1 : Dimensions du cristal avant et après expérience

	Dimension du cristal avant expérience (mm)				
	[100] [010] [001]				
Pied à	$1,80 \pm 0,10$	$1,70 \pm 0,10$	$1,70 \pm 0,13$		
coulisse					
Comparateur	$1,76 \pm 0,08$	$1,\!68 \pm 0,\!07$	$1,64 \pm 0,08$		
ImageJ	1,78	10,68	1,75		

Tableau XXII.2 : Variation des dimensions du cristal après expérience

XXII.4 Macrophotographie des cristaux (variation de faciès) Face $(00\overline{1})$

Figure XXII1 : Face (001) du cristal CS1.80% avant (à gauche) et après (à droite) expérience

Figure XXII.2 : Face (100) du cristal CS1.80% avant (à gauche) et après (à droite) expérience

Figure XXII-3: Face (010) du cristal CS1.80% avant (à gauche) et après (à droite) expérience

Face latérale (100)

XXIII CS.2

XXIII.1 Conditions expérimentales

	Cristal
Type de cristal	Cristal grossièrement clivé
Durée expérimentale	300h
Humidité relative %	$80,0 \pm 3\%$
Température moyenne °C	19,8±0,4°C
Concentration finale de la solution gL ⁻¹	$340,30 \pm 0,01$
Sursaturation relative finale (σ)	8,8.10 ⁻⁴
Volume de solution de départ	40 ml
Charge	Plaque de verre (10g) enduire de PDMS
Palpeur utilisé	000A648 L02
Lieu expérimental	Laboratoire photo

XXIII.2 Poids du cristal

	Poids initial pesé (g)	Poids final pesé (g)	Gain de poids (P) obtenu par pesée (g)
CS2	1,840	3,080	+ 1,22

Poids du cristal avant et après expérience

XXIII.3 Dimension du cristal

Dimensions mesurées ex-situ

Les mesures ont été réalisées à l'aide d'un pied à coulisse et par imagerie. Le faciès final du cristal a rendu impossible les mesures après expérience avec le comparateur.

	Dimension du cristal avant		Dimension du cristal après			
	ex	expérience (mm)		expérience (mm)		n)
	[100]	[010]	[001]	[100]	[010]	[001]
Pied à	9,880	9,860	9,620	$11,600 \pm$	$11,670 \pm$	$11,480 \pm$
coulisse	$\pm 0,010$	$\pm 0,010$	$\pm 0,010$	0,010	0,010	0,010
Comparateur	9,880	9,858	9,622	11,600	11,669	11,471
	$\pm 0,007$	$\pm 0,008$	$\pm 0,008$	$\pm 0,007$	$\pm 0,008$	$\pm 0,007$
ImageJ	9,874	9,851	9,615	11,594	11,661	11,465

Tableau XXIII.1 : Dimensions du cristal avant et après expérience

	Dimension du cristal avant expérience (mm)					
	[100] [010] [001]					
Pied à	1,720	1,810	1,860			
coulisse	$\pm 0,02$	$\pm 0,020$	$\pm 0,020$			
Comparateur	1,720	1,811 ±	1,849			
	$\pm 0,014$	0,016	± 0,015			
ImageJ	1,720	1,810	1,85			

Tableau XXIII.2 : Variation des dimensions du cristal après expérience

XXIII.4 Macrophotographie du cristal La face (100)

Figure V- 1: Macrophotographie de la face latérale (100) du cristal CS1.80% avant (à gauche) et après (à droite) 300h d'expérimentation (T = 20° C HR = 80°). (le fil de nylon sur la face observée)

Figure V-2: Macrophotographie de la face latérale (010) du cristal CS1.80% avant (à gauche) et après (à droite) 300h d'expérimentation (T= 20°C HR=80%). (le fil de nylon sur la face observée)

La face (010)

XXIV CTP.1 XXIV.1 Conditions expérimentales

	Cristal
Type de cristal	Cristal grossièrement clivé
Durée expérimentale	300h
Humidité relative %	$79,2 \pm 3\%$
Température moyenne °C	20,1±0,3°C
Concentration finale de la solution gL ⁻¹	$340,28 \pm 0,01$
Sursaturation relative finale (σ)	8,210 ⁻⁴
Volume de solution de départ	40 ml
Charge	Plaque de verre (10g) enduire de PDMS
Palpeur utilisé	000A648 L02
Lieu expérimental	Laboratoire photo

XXIV.2 Poids du cristal

	Poids initial pesé (g)	Poids final pesé (g)	Gain de poids (P) obtenu par pesée (g)
CTP1	2,03	8,18	+ 6,15

XXIV.3 Dimension du cristal

A.Dimensions mesurées ex-situ

Les mesures ont été réalisées à l'aide d'un pied à coulisse et par imagerie. Le faciès final du cristal a rendu impossible les mesures après expérience avec le comparateur.

	Avant expérience (mm)			Après expérience (mm)		
	hauteur	largeur		hauteur	Lar	geur
	[001]	[100]	[010]	[001]	[100]	[010]
Pied à	9,900	10,000	10,350	10,130	18,400	22,130
coulisse	±0,040	±0,050	±0,030	±0,010	±0,050	±0,010
Comparateur	9,900	10,045	10,350	10,125	18,450	22,125
	±0,030	$\pm 0,008$	±0,020	$\pm 0,008$	±0,050	±0,008
ImageJ	9,877	10,041	10,329	10,120	18,400	22,121

Tableau XXIV.1 : Dimensions du cristal avant et après expérience

	Variation des dimensions (mm)				
	hauteur largeur				
	[001]	[100]	[010]		
Pied à coulisse	$+0,230\pm0,050$	$+$ 8,400 \pm 0,100	+ 11,78 ±0,040		
Comparateur	$+0,225\pm0,038$	+ 8,405 ±0,058	+ 11,775 ±0,028		
ImageJ	+0,249	+ 8,359	+ 11,792		

Tableau XXIV.2 : Variation des largeurs et de la hauteur du cristal après expérience

Figure XXIV.1 :Augmentation de la taille du cristal dans la direction non directement contrainte en fonction du temps.

XXIV.4 Macrophotographie des cristaux (variation de faciès)

Figure XXIV.2 : Macrophotographie de la face sommitale du cristal CTP1 avant (à gauche) et après (à droite) expérience

Face basale

Figure XXIV.3 : Macrophotographie de la face basale du cristal CTP1 avant (à gauche) et après (à droite) expérience

Face latérale (100)

Figure XXIV.4 : Macrophotographie de la face latérale (100) du cristal CTP1ant (à gauche) et après (à droite) expérience

XXIV.5 Vue en microscopie

Figure XXIV- 5 : Vue en microscopie photonique en lumière réfléchie du centre de la face sommitale du cristal CTP1 après 2000h d'expérimentation.

Figure XXIV- 6 : Vue en microscopie photonique en lumière réfléchie de l'arête de la face sommitale après 2000h d'expérimentation.

La face basale

Figure XXIV-7 : Vue en microscopie photonique en lumière réfléchie du centre de la face basale du cristal CTP1 après 2000h d'expérimentation

Figure XXIV-8: Vue en microscopie photonique en lumière réfléchie de l'arête de la face basale originelle après 2000h d'expérimentation

XXV CTP.2

XXV.1 Conditions expérimentales

	Cristal
Type de cristal	Cristal grossièrement clivé
Durée expérimentale	300h
Humidité relative %	79,6 ± 3%
Température moyenne °C	19,8±0,3°C
Concentration finale de la solution gL ⁻¹	$340,28 \pm 0,01$
Sursaturation relative finale (σ)	8,210 ⁻⁴
Volume de solution de départ	40 ml
Charge	Plaque de verre (10g) enduire de PDMS
Palpeur utilisé	000A648 L02
Lieu expérimental	Laboratoire photo

XXV.2 Poids du cristal

	Poids initial pesé (g)		Gain de poids (P) obtenu par pesée
			(g)
CTP1	2,03	6,888	+ 5,15

XXV.3 Dimension du cristal

ADimensions mesurées ex-situ

Les mesures ont été réalisées à l'aide d'un pied à coulisse et par imagerie. Le faciès final du cristal a rendu impossible les mesures après expérience avec le comparateur.

	Avant expérience (mm)		Après expérience (mm)			
	hauteur	largeur		hauteur	Lar	geur
	[001]	[100]	[010]	[001]	[100]	[010]
Pied à	10,250	10,21	10,130	10,500	17,600	16,610
coulisse	±0,010	±0,010	±0,010	±0,020	±0,010	±0,010
Comparateur	10,245	10,210	10,125	10,488	17,598	16,610
	$\pm 0,008$	$\pm 0,008$	±0,007	±0,015	±0,020	±0,008
ImageJ	10,240	10,203	10,123	10,479	17,579	16,603

Tableau XXV.1 :Dimensions du cristal avant et après expérience

	Variation des dimensions (mm)					
	hauteur largeur					
	[001]	[100]	[010]			
Pied à coulisse	$+0,250\pm0,030$	$+7,390\pm0,020$ $+6,48\pm0,0$				
Comparateur	+ 0,243 ±0,023	+ 7,388 ±0,028	+ 6,485 ±0,015			
ImageJ	+ 0,239	+ 7,376	+ 6,480			

 Tableau XXV.2 :Variation des largeurs et de la hauteur du cristal après expérience

XXV.4 Macrophotographie des cristaux (variation de faciès) Face sommitale

Figure XXV.1 : Macrophotographie de la face sommitale du cristal CTP2 avant (à gauche) et après (à droite) expérience

Figure XXV.2 : Macrophotographie de la face basale du cristal CTP1 avant (à gauche) et après (à droite) expérience

Face latérale (100)

Figure XXV.3 : Macrophotographie de la face latérale (100) du cristal CTP2 avant (à gauche) et après (à droite) expérience

XXVI CPDMS.1

Cette expérience a été réalisée avec deux plaques de verre enduite de PDMS. Ces résultats ne sont pas montrés dans le manuscrit à cause des propriétés collanteS du PDMS qui a moulé la surface.

	Cristal
Type de cristal	Cristal grossièrement clivé
Durée expérimentale	300h
Température moyenne °C	$20,3\pm0,4^{\circ}\text{C}$
Concentration finale de la solution gL ⁻¹	$340,27 \pm 0,01$
Sursaturation relative finale (σ)	8.10 ⁻⁴
Volume de solution de départ	40 ml
Charge	Plaque de verre (10g) enduire de PDMS
Palpeur utilisé	000A648 L02
Lieu expérimental	Laboratoire photo

XXVI.1 Conditions expérimentales

XXVI.2 Poids du cristal

	Poids initial pesé	Poids final pesé	Gain de poids (P) obtenu par pesée				
	(8)	(8)	(g)				
CPDMS1	2,03	3,54	+ 1,51				

XXVI.3 Dimension du cristal

A.Dimensions mesurées *ex-situ*

Les mesures ont été réalisées à l'aide d'un pied à coulisse et par imagerie. Le faciès final du cristal a rendu impossible les mesures après expérience avec le comparateur.

	Avant expérience (mm)			Après expérience (mm)				
	hauteur	larg	geur	hauteur	Largeur			
	[001]	[100]	[010]	[001]	[100]		[010]	
					Partie haute	Partie basse	Partie haute	Partie basse
	10.010	10.001	0.0(1	10.010	5.720	10.570	5.500	10.104
Pied à	10,019	10,281	9,961	10,019	5,729	19,570	5,509	19,104
coulisse	±0,020	±0,020	±0,015	±0,020	±0,015	±0,200	±0,010	±0,150
ImageJ	10,000	10,264	9,947	9,997	5,714	19,543	5,502	19,086

D. I allacion medal ces en sun	B	V	ariatio	n mesurées	ex-situ
--------------------------------	---	---	---------	------------	---------

	Variation (mm)						
	hauteur Largeur						
	[001]	[1	00]	[010]			
		Partie haute	Partie basse	Partie haute	Partie basse		
Pied à coulisse	0 ±0,040	- 4,552 ± 0,035	+ 9,289 ± 0,220	- 4,452 ± 0,025	+ 9,142 ± 0,165		
ImageJ	- 0,003 ±	- 4,550	+ 9,279	- 4,445	+ 9,139		

C.Dimensions mesurées in-situ

Figure XXVI.1: Variations de la hauteur du cristal et de la plaque de verre (courbe orange) (Δz_{cp}), variations de la hauteur de la plaque de verre immergée dans la solution (Δz_{T1}) (courbe verte), variations de hauteur du cristal lui-même (courbe bleue) (Δz_c).

Figure XXVI.2 : Courbe de variation de la hauteur du cristal CPDMS1 (Δz_c) corrigée des variations dues à l'appareillage et au fluage

La diminution finale de hauteur du cristal pendant 300h est de 2,35 μ m. La vitesse de diminution est de 7,9.10⁻³ μ mh⁻¹.

IV Macrophotographie des cristaux (variation de faciès) Face sommitale

Figure XXVI.3 : Vue en macrophotographie de la face sommitale du cristal CPDMS1 avant (à gauche) et après (à droite)

Face basale

Figure XXVI.4 : Vue en macrophotographie de la face basale avant (à gauche) et après (à droite) expérience

Face latérale (100)

Figure XXVI.5 : Vue en macrophotographie de la face latérale du cristal avant (à gauche) et après expérience (à droite).

XXVI.5 Vue en microscopie

: Vue en microscopie photonique d'un angle de la face sommitale du cristal CPDMS1 avant expérience (à gauche) et après (à droite) expérience

Vue en microscopie photonique de la face sommitale du cristal CPDMS.2

Vue en microscopie photonique de la face basale du cristal CPDMS.2

Vue en microscopie photonique du centre de la face sommitale du cristal CPDMS1 avant (à gauche) et après (à droite)

La face basale en

Vue en microscopie photonique du centre de la face basale du cristal CPDMS1 avant (à gauche) et après (à droite) expérience.

Figure V- 3 : Vue en microscopie photonique en lumière réfléchie de la face basale du cristal CPDMS2 après 300h d'expérimentation (T = 20° C et HR = 80%))

Figure V- 4 : Image AFM d'une surface de 3600µm² du cristal CPDMS 1 avant expérience (en bas à gauche) et sa dérivée (en bas à droite). Le profil de microrugosité (en haut) a été réalisé sur la section tracée sur l'image AFM).

La face sommitale après expérience

Figure V- 5 : Image AFM d'une surface de 3600µm² du centre de la face sommitale du cristal CPDMS1 après expérience (en bas à gauche) et sa dérivée (en bas à droite). Le profil de microrugosité (en haut) a été réalisé sur la section tracée sur l'image AFM.

La face basale après expérience

Figure V- 6 : Image AFM d'une surface de 3600 µm² du centre de la face basale du cristal CPDMS 1.après expérience (à gauche) et image de sa dérivée à droite. En haut, le profil de microrugosité réalisée à partir du tracé de l'image AFM.