
HAL Id: tel-00483262
https://theses.hal.science/tel-00483262

Submitted on 13 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Languages and Model Transformation in Constraint
Programming

Ricardo Soto

To cite this version:
Ricardo Soto. Languages and Model Transformation in Constraint Programming. Other [cs.OH].
Université de Nantes, 2009. English. �NNT : �. �tel-00483262�

https://theses.hal.science/tel-00483262
https://hal.archives-ouvertes.fr

Année

École Centrale de Nantes Université de Nantes École des Mines de Nantes

ÉCOLE DOCTORALE STIM

« SCIENCES ETTECHNOLOGIES DE L’I NFORMATION ET DESMATÉRIAUX »

No attribué par la bibliothèque

Langages et transformation de modèles en
programmation par contraintes

THÈSE DEDOCTORAT

Discipline : INFORMATIQUE

Présentée
et soutenue publiquement par

Ricardo S OTO

le 25 juin 2009 à l’UFR Sciences & Techniques, Université de Nantes,
devant le jury ci-dessousPrésident : Éri
 Monfroy, Professeur UTFSM, ChiliRapporteurs : François Fages, Dire
teur de Re
her
he INRIA Ro
quen
ourt, Fran
eMi
hel Rueher, Professeur Université de Ni
e, Fran
eExaminateurs : Arnaud Lallouet, Professeur Université de Caen, Fran
eÉri
 Monfroy, Professeur UTFSM, Chili

Directeur de thèse : Pr. Laurent GRANVILLIERS

Laboratoire :L ABORATOIRE D’ I NFORMATIQUE DE NANTES ATLANTIQUE .
UMR CNRS. , rue de la Houssinière,BP   –   Nantes, CEDEX . No ED 503-053

favet neptunus eunti

Langages et transformation de modèles enprogrammation par
ontraintesLanguages and Model Transformation in ConstraintProgramming
Ri
ardo Soto

⊲⊳

Université de Nantes

Ri
ardo SotoLangages et transformation de modèles en programmation par
ontraintesxviii+154 p.

This do
ument was edited with these-LINA v. 2.7 LATEX2e
lass of the �As-so
iation of Young Resear
hers on Computer S
ien
e (LoGIN)� from theUniversity of Nantes (available at : http://login.irin.s
ien
es.univ-nantes.fr/).This LATEX2e
lass is under the re
ommendations of the Natio-nal Edu
ation Ministry of Undergraduate and Graduate Studies(
ir
ulaire no 05-094 du  Mar
h ) of the University of Nantes and theDo
toral S
hool of � Te
hnologies de l'Information et des Matériaux(ed-stim)Print : template-these.tex � 16/11/2009 � 11:35.Last
lass review: these-LINA.
ls,v 2.7 2006/09/12 17:18:53 man
heron Exp

http://login.irin.sciences.univ-nantes.fr/
http://www.sup.adc.education.fr/bib/Acti/These/circulaire.rtf
http://www.univ-nantes.fr/
http://edstim.univ-nantes.fr/

Abstra
tConstraint Programming is an optimization te
hnology that asso
iates ri
h modeling lan-guages with e�
ient solving engines. It
ombines methods from di�erent domains su
h asarti�
ial intelligen
e, mathemati
al programming, and graph theory. A main
hallenge in this�eld is to provide high-level languages for fa
ilitating the problem modeling phase. Anotherimportant
on
ern is to design robust ar
hite
tures to map high-level input models to di�er-ent and e�
ient solving models. Handling these two
on
erns is remarkably hard sin
e manyaspe
ts have to be investigated, for instan
e, the expressiveness and the abstra
tion level ofthe language as well as the te
hniques used to transform the high-level model into ea
h ofthe solver's languages. In this thesis, we propose a new perspe
tive to fa
e those
hallenges.We introdu
e a novel
onstraint programming ar
hite
ture in whi
h the problem is seen asa set of high-level
onstrained obje
ts de�ned through a new modeling language. The modeltransformation is performed by a model-driven pro
ess in whi
h the elements of languages arede�ned as
on
epts of a model of models
alled metamodel. This new ar
hite
ture allows oneto ta
kle the modeling and the model transformation phases in a higher-level of abstra
tionand
onsequently to redu
e the inherent
omplexity behind them.Keywords: Constraint Programming, Constraint Modeling Languages, Model TransformationRésuméLa programmation par
ontraintes est une te
hnologie pour l'optimisation qui asso
ie deslangages de modélisation ri
hes ave
 des moteurs de résolution e�
a
es. Elle
ombine deste
hniques de plusieurs domaines tels que l'intelligen
e arti�
ielle, la programmation mathé-matique et la théorie des graphes. Un dé� majeur dans
e domaine
on
erne la dé�nitionde langages de haut-niveau pour fa
iliter la phase de modélisation des problèmes. Un autreaspe
t important est de
on
evoir des ar
hite
tures robustes pour transformer des modèlesde haut-niveau et obtenir des modèles exé
utables e�
a
es, tout en visant plusieurs moteursde résolution. Répondre à
es deux préo

upations est très di�
ile,
ar de nombreux aspe
tsdoivent être pris en
ompte,
omme par exemple, l'expressivité et le niveau d'abstra
tion dulangage ainsi que les te
hniques utilisées pour traduire le modèle de haut-niveau dans
ha
undes langages de résolution. Dans
ette thèse, nous proposons une nouvelle perspe
tive pourfaire fa
e à
es dé�s. Nous introduisons une nouvelle ar
hite
ture pour la programmation par
ontraintes dans laquelle le problème est dé�ni
omme un ensemble d'objets
ontraints dansun nouveau langage de modélisation haut-niveau. La transformation des modèles est réaliséeà l'aide de l'ingénierie des modèles. Les éléments des langages sont alors
onsidérés
omme des
on
epts dé�nis dans un modèle de modèles appelé métamodèle. Cette nouvelle ar
hite
turepermet d'aborder les phases de modélisation et de transformation de modèles en raisonnantà un niveau d'abstra
tion supérieur et, par
onséquent, de réduire la
omplexité inhérente à
es deux phases.Mots-
lés: Programmation par
ontraintes, Langages de modélisation par
ontraintes, Trans-formation de modèles a
m Classi�
ationCategories and Subje
t Des
riptors : D.3.2 [Programming Languages℄: LanguageClassi�
ations�Constraint and logi
 languages; D.3.3 [Programming Languages℄: Lan-guage Constru
ts and Features�Classes and obje
ts, Constraints; D.2.2 [Software Engi-neering℄: Design Tools and Te
hniques�User interfa
es.

http://www.acm.org/class/

À Stefanie

Remerciements

J e tiens tout d'abord à remer
ier vivement mon dire
teur de thèse Laurent Granvillierspour sa qualité humaine, sa disponibilité et son énergie débordante tout au long de mestravaux de thèse de do
torat. Pendant
es trois années, j'ai eu le plaisir de rédiger plusieursarti
les ave
 lui, de pro�ter de sa rigueur s
ienti�que et de son appré
iation obje
tive. Cela aainsi été très enri
hissant aussi bien personnellement que professionnellement.Je souhaite aussi exprimer toute ma gratitude envers les membres de mon jury, en parti
ulierÉri
 Monfroy pour l'avoir présidé ; Mi
hel Rueher et François Fages, rapporteurs, pour avoir lumon manus
rit ave
 soin et fait des remarques pertinentes. Un grand mer
i à Arnaud Lallouetpour ses questions qui m'ont aidé à orienter mes futurs travaux de re
her
he.J'adresse aussi mes sin
ères remer
iements aux membres du département d'informatique del'Université Ponti�
ale Catholique de Valparaíso. Je remer
ie parti
ulièrement Broderi
k Craw-ford, Éri
 Monfroy et Carlos Castro qui ont fortement
ontribué à ma venue en Fran
e. Je tiensaussi à remer
ier Jaime Zavala pour son aide pré
ieuse dans la préparation de mon séjour.Je voudrais également remer
ier Raphaël Chenouard pour nos é
hanges fru
tueux. Nos
ontri-butions sont naturellement présentées dans
e manus
rit. En plus d'être un ami, il m'a aidé etsoutenu sans relâ
he tout au long de ma thèse.De nombreuses autres personnes ont
ontribué à faire
es années de thèse à Nantes une périodeagréable. Anthony, Eduardo, Jim, gra
ias pour votre amitié, votre disponibilité et votre soutien.Thomas et Ni
o, mer
i pour votre aide et pour
es innombrables
onversations fru
tueuses. Lesmembres permanents de l'équipe MEO du LINA ont également toute ma gratitude : Christophe,Fred et Alex, mer
i. Charlotte et Lorraine mer
i aussi pour votre amitié et votre amabilité.Je tiens aussi à remer
ier mes amis pro
hes : Stéphane, Angel, Wen
e, Denisse, mer
i à vouspour tous
es moments agréables qu'on a vé
u en Fran
e. Je remer
ie aussi mes amis du Chiliqui m'ont toujours soutenu malgré la distan
e : Alfredo, Negro, Pato et Andrés, je vous serredans mes bras.J'adresse une pensée à ma famille, Papa, Maman, Xime et Vero, mer
i pour votre énormesoutien et
es longues
onversations téléphoniques. Je remer
ie aussi mes beaux-parents pour leursoutien et leurs nombreuses visites qui ont rendu notre séjour en Fran
e en
ore plus plaisant.En�n,
omment ne pas remer
ier ma femme sans qui rien n'aurait été possible. Tu sais queton appui in
onditionnel, tes en
ouragements et ton amour ont été le moteur pour mener à bien
es trois dures années de thèse. Tous
es moments di�
iles qu'on a vé
u ensemble et la for
e quet'a eu pour y faire fa
e, tu sais
'est admirable. Stefanie, en
ore une fois je te remer
ie, je t'aimeet à juste titre je te dédie
ette thèse.

Table of Contents

List of Tables xiiiList of Figures xv�Body of the Dissertation�1 Introdu
tion 11.1 From the Roots of CP to Modern Ar
hite
tures . 21.2 Motivations & Contributions . 31.3 Outline . 6Part I � State-of-the-art2 Solving Te
hniques 92.1 Constraint Satisfa
tion Problems . 92.2 Solving CSPs . 92.2.1 Basi
 Sear
h Algorithms . 102.2.2 Filtering te
hniques . 112.2.3 Solving Algorithms . 122.2.4 Solving numeri
al CSPs . 142.2.5 Variable and Value Ordering Heuristi
s . 182.3 Summary . 183 Languages and Systems 193.1 Constraint Logi
 Programming . 193.2 Libraries . 213.3 Modeling Languages . 233.4 Programming Languages . 283.5 Mathemati
al Programming . 293.6 Obje
t-oriented languages . 313.7 Comparing s-COMMA with related approa
hes . 343.8 Summary . 35Part II � The s-COMMA platform4 Modeling Language & Graphi
al Artifa
ts 394.1 A Tour of the s-COMMA language . 394.1.1 The SEND + MORE = MONEY Problem . 394.1.2 The Pa
king Squares Problem . 40ix

x TABLE OF CONTENTS4.1.3 The Stable Marriage Problem . 444.1.4 The So
ial Golfers Problem . 464.1.5 The Produ
tion Problem . 484.1.6 The Engine Problem . 494.2 Modeling Features . 514.2.1 Constants . 514.2.2 Variable assignments . 524.2.3 Classes . 534.2.4 Attributes . 544.2.5 Constraint Zones . 564.2.6 Heuristi
 Orderings & Consisten
y Te
hniques . 604.2.7 Extensibility . 634.3 The s-COMMA GUI . 674.4 Summary . 715 Mapping Models to Solvers 735.1 From s-COMMA GUI to s-COMMA . 745.2 From s-COMMA to Flat s-COMMA . 775.2.1 Parsing . 775.2.2 Semanti
 Che
king . 835.2.3 Refa
toring Phase . 875.3 From Flat s-COMMA to solvers . 925.3.1 Hand-Written Translators . 925.3.2 Model-Driven Translators . 985.3.3 Dis
ussion . 1075.4 Summary . 109Part III � The Transformation Framework for CP6 Overview 1136.1 The Model-Driven Transformation Framework . 1136.2 A Motivating Example . 1146.3 Summary . 1177 From Sour
e to Target 1197.1 From sour
e to pivot . 1197.2 Pivot refa
toring . 1227.2.1 Refa
toring phase . 1227.3 From pivot to target . 1277.4 Transformation pro
ess . 1297.4.1 Sele
ting the refa
toring steps. 1297.5 Experiments . 1307.6 Summary . 1318 Con
lusion 1338.1 s-COMMA . 133

TABLE OF CONTENTS xi8.2 Transformation framework for CP languages . 1348.3 Future resear
h dire
tions . 134�Appendixes�A Grammars 139A.1 s-COMMA Grammar . 139A.2 Flat s-COMMA Grammar . 142Bibliography 145Hypertext Referen
es 151

List of Tables

�Body of the Dissertation�Part I � State-of-the-art3.1 Comparing s-COMMA with �ve approa
hes. The meaning of ea
h row is as follows.Obje
t-Orientation: the language provides obje
t-oriented
apabilities. GUI: thesystem o�ers a graphi
al interfa
e. Solver-Independen
e: the ar
hite
ture is ableto perform the problem resolution through di�erent solvers. Mapping tool: thesystem provides a framework to add new solvers to the platform. Extensibility:the language
an be extended for instan
e to support new global
onstraints orfun
tions. Solving Options: the de�nition of heuristi
s orderings and
onsisten
ylevels of
onstraints are allowed. 34Part II � The s-COMMA platform4.1 Binary and unary operators. Higher pre
eden
e means lower priority. T representsinteger, real, or boolean types. N represents integer or real types. 575.1 Translation times (se
onds). 1085.2 Solving times (se
onds) and model sizes (number of tokens). 109Part III � The Transformation Framework for CP7.1 Times of
omplete transformation
hains. 1317.2 Time of
omplete transformation
hains of the n-queens problem. 131�Appendixes�

xiii

List of Figures

�Body of the Dissertation�1.1 A solution of the 8-queens problem. 11.2 The transformation pro
ess in s-COMMA. 41.3 The transformation framework for CP. 5Part I � State-of-the-art2.1 Solving the 4-queens problem using GT. 102.2 Solving the 4-queens problem using BT. 112.3 Enfor
ing ar

onsisten
y. 122.4 Solving the 4-queens problem using FC. 132.5 Solving the 4-queens problem using MAC. 132.6 Enfor
ing hull
onsisten
y. 162.7 The CSP P = 〈〈x〉, 〈Dx ∈ [−2, 2]〉, 〈x2 < 2〉〉. 172.8 Enfor
ing box
onsisten
y. 173.1 An ECLiPSe model of the n-queens problem. 213.2 A Ge
ode/J model of the n-queens problem. 243.3 A Ge
ode/J model of the n-queens problem using global
onstraints. 253.4 A MiniZin
 model of the n-queens problem. 283.5 An Alma-0 model of the n-queens problem. 303.6 An AMPL model of the n-queens problem. 313.7 A s-COMMA model of the n-queens problem. 34Part II � The s-COMMA platform4.1 A s-COMMA model of the
ryptarithmeti
 puzzle SEND + MORE = MONEY . . . 404.2 A s-COMMA model of the pa
king squares problem. 414.3 An obje
t-oriented s-COMMA model of the pa
king squares problem. 434.4 Data �le of the stable marriage problem. 444.5 A s-COMMA model of the stable marriage problem. 454.6 Data �le of the so
ial golfers problem. 464.7 Model �le of the so
ial golfers problem. 474.8 A s-COMMA model of the produ
tion problem. 484.9 Data �le of the produ
tion problem. 494.10 The Engine Problem. 494.11 A s-COMMA model of the engine problem. 504.12 The CylSystem
lass of the engine model. 50xv

xvi LIST OF FIGURES4.13 The Inje
tion
lass of the engine model. 514.14 Constants. 524.15 Variable assignments. 524.16 Variable assignments guided by indexes. 524.17 Composition and inheritan
e. 534.18 Importing models. 534.19 De
ision variables. 544.20 De
ision variables, domains and enumerated domains. 544.21 Sets. 554.22 Obje
ts and
onstrained obje
ts. 554.23 A
onstraint zone. 564.24 Constraint zone overriding. 564.25 forall loops. 584.26 Nested forall loops. 584.27 The sum loop. 584.28 Conditionals. 594.29 Optimization statement. 594.30 A
ompatibility
onstraint. 604.31 The industrial mixer problem. 614.32 Value and variable orderings. 614.33 Consisten
y level. 624.34 Ordering heuristi
s &
onsisten
y level. 624.35 Adding
onstraints to s-COMMA. 634.36 Removing symmetries from the so
ial golfers problem. 644.37 The Sudoku problem. 654.38 Adding new fun
tions. 654.39 Using the new fun
tions in the Sudoku problem. 664.40 Adding new heuristi
 orderings and
onsisten
y levels. 664.41 The tuned mixer
lass. 674.42 Class and data artifa
ts. 674.43 The stable marriage problem on the s-COMMA GUI. 684.44 Attributes on the s-COMMA GUI. 694.45 Constraints on the s-COMMA GUI. 704.46 Data �les on the s-COMMA GUI. 704.47 Some short
uts of the s-COMMA GUI. 715.1 The s-COMMA ar
hite
ture. 735.2 s-COMMA GUI Java pa
kages. 745.3 The AttributeDialog
lass. 755.4 The ClassArtifa
t
lass. 755.5 The SCommaClass
lass. 765.6 The getCode method. 765.7 Tokens and rules in the ANTLR lexer of s-COMMA. 785.8 The lexer rule to de�ne numbers. 795.9 Three parser rules in ANTLR. 795.10 Introdu
ing a proper tree node. 80

LIST OF FIGURES xvii5.11 Parser rules of s-COMMA. 805.12 Parser rules of s-COMMA. 815.13 The rule to re
ognize expressions. 825.14 A synta
ti
 error. 835.15 Tree walker of s-COMMA. 845.16 A Java pro
edure to
he
k
lass rede
larations. 845.17 A semanti
 error. 845.18 Two s-COMMA
lasses. 855.19 The rule to
he
k attributes in the se
ond pass. 855.20 The rule to
he
k
onstraints in the se
ond pass. 865.21 Loop unrolling. 875.22 Enumeration substitution. 885.23 Composition �attening. 885.24 Flattening arrays
ontaining obje
ts. 885.25 Conditional removal. 895.26 Conditional evaluation. 895.27 Compatibility removal. 895.28 Expression evaluation. 905.29 A Flat s-COMMA model of the stable marriage problem. 915.30 The mapping tool. 925.31 Tokens and the IDENT rule in the ANTLR lexer of Flat s-COMMA. 935.32 Parser rules of Flat s-COMMA. 935.33 Parser rules of Flat s-COMMA. 945.34 Tree walker of Flat s-COMMA. 945.35 The initial pro
edure of the main Java
lass of the Ge
ode/J translator. 955.36 Code generation of the Ge
ode/J
onstru
tor. 955.37 Code generation of Ge
ode/J variables. 965.38 The tree walker for the
ode generation of
onstraints. 965.39 Two pro
edures for the
ode generation of
onstraints. 975.40 A Ge
ode/J model of the stable marriage problem. 975.41 A general MDA for model transformation. 985.42 Model-driven translation in s-COMMA. 985.43 An extra
t of the KM3 �le of Flat s-COMMA. 995.44 Constraints in the KM3 �le of Flat s-COMMA. 1005.45 Operands in the KM3 �le of Flat s-COMMA. 1015.46 ATL rules for the Flat s-COMMA to Ge
ode/J transformation. 1015.47 ATL rules for the Flat s-COMMA to Ge
ode/J transformation. 1025.48 ATL rules for de
omposing matri
es
ontaining sets. 1035.49 ATL helper to generate a Ge
ode/J ve
tor. 1045.50 ATL helper to generate an addition. 1055.51 Three templates of the TCS �le of Flat s-COMMA. 1055.52 The model-driven transformation pro
ess on the example of Flat s-COMMA (FsC) toGe
ode/J. 1065.53 Dire
t
ode generation. 107

xviii LIST OF FIGURESPart III � The Transformation Framework for CP6.1 The transformation framework. 1146.2 A s-COMMA model of the so
ial golfers problem. 1156.3 The so
ial golfers problem expressed in ECLiPSe. 1167.1 Three
lasses of the KM3 �le of s-COMMA. 1197.2 Attributes and variables in the KM3. 1207.3 Constraint zones and statements in the KM3. 1207.4 Some templates of the TCS �le of s-COMMA. 1217.5 Two ATL rules for a transformation from s-COMMA to pivot. 1227.6 A fragment of the pivot metamodel. 1237.7 An example of transformation rule. 1237.8 The
omposition �attening transformation rule. 1257.9 Composition �attening on the so
ial golfers problem. 1257.10 The enumeration substitution transformation rule. 1267.11 Enumeration substitution on the so
ial golfers problem. 1267.12 The forall unrolling transformation rule. 1267.13 Auxiliary variable insertion transformation rules. 1277.14 Auxiliary variable insertion pro
ess. 1277.15 A fragment of the ECLiPSe metamodel. 1287.16 Five templates of the TCS �le of ECLiPSe. 1287.17 The transformation pro
ess on the example of s-COMMA to ECLiPSe. 1297.18 An Ant s
ript for sele
ting transformations. 130�Appendixes�

CHAPTER1
Introduction

C onstraint Programming (CP) is known to be an e�
ient software te
hnology for solving
ombinatorial and
ontinuous problems. Under this framework, problems are formulatedas Constraint Satisfa
tion Problems (CSP). Su
h a representation des
ribes a problem in termsof variables and
onstraints. Variables are unknowns lying in a set of values
alled domain, and
onstraints are relations among these variables restri
ting the values that they
an adopt. Thegoal is to �nd a variable-value assignment that satis�es the whole set of
onstraints.As an example, let us
onsider the 8-queens problem, whi
h
onsists in pla
ing eight
hessqueens on a 8x8
hessboard su
h that none of them is able to
apture any other using thestandard
hess queen's moves. A solution requires that no two queens share the same row,
olumn, or diagonal.Eight variables
an be identi�ed, Q1, ..., Q8, where Qi denotes the row position of the queenpla
ed in the ith
olumn of the
hessboard. The domain for ea
h of these variables is given by theinteger interval domain [1, 8], whi
h represents the potential positions of the queens on the rowsof the
hessboard. On
e the variables have been identi�ed with their
orresponding domains,we
an formulate the
onstraints of the problem as the following inequalities for i ∈ [1, 7] and
j ∈ [i + 1, 8]:� To avoid that two queens are pla
ed in the same row: Qi 6= Qj .� To avoid that two queens are pla
ed in the same South-West�North-East diagonal: Qi+i 6=

Qj + j.� To avoid that two queens are pla
ed in the same North-West�South-East diagonal: Qi−i 6=
Qj − j.

Figure 1.1 � A solution of the 8-queens problem.A solution to this problem is depi
ted in Figure 1.1, it
orresponds to the sequen
e (3,5,2,8,1,7,4,6), the �rst queen from the left is pla
ed on the third row from the top, the se
ond queen ispla
ed on the �fth row, the third queen is pla
ed on the se
ond one and so on.1

2 Chapter 1 � Introdu
tion1.1 From the Roots of CP to Modern Ar
hite
turesThe resolution pro
ess of CSPs involves two main aspe
ts. A language to express the problem,and algorithms to perform the solving pro
ess. In some sense, this integration was �rstly perfor-med around 1963 by Ivan Sutherland, who developed a language for spe
ifying
onstraints ondrawings [Sut63℄. After this landmark, a natural separation o

urred between these two aspe
ts,and the resear
h work was divided [FM06℄ into two main streams: the language stream and thealgorithm stream.In the language stream, the notion of
onstraint was in
orporated in several programminglanguages and systems. For instan
e, around 1967, El
o
k developed a de
larative language
alled Absys [El
90℄ based on the manipulation of equational
onstraints. Burstall employeda form of
onstraint in a program for solving
ryptarithmeti
 puzzles [Bur69℄. Then, the ad-van
es in the programming languages �eld allowed to in
orporate
onstraints in di�erent pa-radigms. For instan
e, Borning
ombined obje
ts,
onstraints, and visual environments in theThingLab simulation laboratory [Bor81℄. Constraint were also mixed with logi
 programming inthe form of
onstraint logi
 programming (CLP) [JMSY92℄. Some examples are Prolog III [Col90℄,CLP(ℜ) [JL87℄, and CHIP [Van89℄.In the algorithm stream, the resear
h work was heavily in�uen
ed by the arti�
ial intelli-gen
e (AI) domain. The fo
us was to develop more e�
ient sear
h and heuristi
 methods. Forexample, Waltz introdu
ed in the mid-1970s a �ltering algorithm to a

elerate the resolutionpro
ess of the s
ene labeling CSP [Wal75℄. Then, Montanari developed other kind of �lteringme
hanisms, te
hni
ally
alled lo
al
onsisten
ies, and a general framework for reasoning about
onstraints [Mon74℄ was established. The algorithm stream followed growing and new AI
om-munities working around the
on
ept of �reasoning� were developed su
h as
onstraint-basedreasoning [FM92℄ and
ase-based reasoning [AP94℄.The separation of both streams
ontinued until the early 1990s when a group of s
ientists fromdi�erent �elds attempt to reintegrate them to
reate a new single paradigm
alled �
onstraintprogramming�. The idea was to
reate a new te
hnology under the following prin
iple: The userstates the
onstraints and a general purpose
onstraint satisfa
tion engine solve them. Fromthose days many
onstraint programming systems have been developed, always integrating thetwo aforesaid streams and sometimes involving other approa
hes, for example ECLiPSe [WNS97℄and GNU Prolog [DC00℄ for
onstraint logi
 programming or Oz [SSW94℄, a multiparadigmlanguage
ombining
onstraint-based inferen
e and distributed
omputing. Also, several librarieshave been introdu
ed, generally built on top of well-known programming languages su
h as ILOGSolver [Pug94℄ and Ge
ode [ST06℄ using C++; and CHOCO [www12 ℄ running under Java.At the beginning of the
urrent de
ade, an important issue arose. The
ommunity realizedthat just a redu
ed number of experts mastered the CP te
hnology. One of the main reasons wasthe
omplexity of the CP's usage. The fruitful use of existing tools implied to have a
onsiderablelevel of CP expertise, for instan
e to deal with en
oding aspe
ts of host languages or to tunesear
h strategies to perform e�
ient solving pro
esses, in
on
lusion, the modeling
on
erns tostate problems were not enough. This important issue en
ouraged the
reation of the so-
alledmodeling languages, su
h as OPL [Van99℄, where a more �user-understandable� language is given.The user deals with a higher-level language without needing to over
ome the en
oding aspe
tsof a host language or to spe
ify a sear
h strategy.Three years ago,
onstraint programming systems evolved and the last generation of CPar
hite
tures has been proposed, some examples are Essen
e [FGJ+07℄, Zin
 [RGMW07℄ and

Chapter 1 � Introdu
tion 3MiniZin
 [NSB+07℄. This new ar
hite
ture
onsiders three layers, a modeling language on thetop, a set of CP systems on the bottom and a mapping tool on the middle. The modeling languageallows users to state problems in a high-level of abstra
tion. The mapping system takes this modeland translates it to one of the underlying CP systems, whi
h
al
ulates the solution. These CPsystems, generi
ally
alled solvers, normally have a lower level of abstra
tion
ompared to themodeling language. An interesting feature of this ar
hite
ture is the
apability of pro
essing onemodel with di�erent solvers. This feature is useful for experimentation tasks,
onsidering thatthere exists many kind of models and there is no solver having the best resolution for all.1.2 Motivations & ContributionsThe resear
h of high-level languages and �exible ar
hite
tures for model transformation is animportant
hallenge in the CP �eld. The task is hard sin
e many aspe
ts must be investigated.The de�nition of high-level languages requires to
onsider several
on
erns. For instan
e, provi-ding support for a wide range of problems depends on the de�nition of suitable levels of expres-siveness. The design of elegant modeling styles is essential for getting
on
ise and
lear models.Extensibility me
hanisms are important to enlarge the expressiveness of languages, and tuning
apabilities are useful for a
hieving e�
ient solving pro
esses. Software features to improve reuseand model management are desirable parti
ularly for handling larger problems. Building �exibleand e�
ient ar
hite
tures for model transformation involves the study of additional
on
erns.For instan
e, the
orre
t sele
tion of tools and te
hniques is a key de
ision to implement �exibleand modular mappings. Another important aspe
t is the openness of this ar
hite
ture, i.e. itmust be possible to plug new solvers to the underlying layer.The development of languages and systems for CP is a long story. Various evolutions, im-provements and
ombinations of previous approa
hes
an be regarded. However, most of theaforementioned aspe
ts are re
ent and they have not been studied enough. In this thesis, wepresent a new vision for handling those
on
erns. Software engineering pra
ti
es are
omplemen-ted with several innovations to provide high-level problem modeling. Powerful te
hniques fromthe model engineering world ensure modular and �exible mappings toward the solver resolution.This new approa
h
onsists of three main
omponents: the s-COMMA language, the s-COMMA GUI,and a middle tool for transforming models to solver programs.s-COMMA is the modeling language of the ar
hite
ture [SG07b℄. Its design is based on theexperien
e of the software engineering world. Features from obje
t-oriented languages su
h asmodularity,
omposition, and inheritan
e are introdu
ed to support reuse and the managementof
onstraint models. The
ore of the language is a
ombination of a high-level obje
t-orientedlanguage with a
onstraint language. The
onstraint language in
ludes usual data stru
tures,
ontrol operations, and �rst-order logi
 to de�ne
onstraint-based formulas. The obje
t-orientedpart of the language has been simpli�ed to avoid the
omplex en
oding
on
erns present inprogramming languages. As a
onsequen
e, the language is able to elegantly
apture the stru
-ture of problems in single obje
ts. This new modeling style is just the �rst innovation of ourapproa
h. The se
ond innovation of s-COMMA
on
erns its tuning
apabilities. A simple forma-lism is provided to perform
ustomized solving pro
esses [SG08b℄. This formalism is unique inobje
t-oriented
onstraint modeling and it pro�ts of the obje
t-oriented style to
on�gure sol-ving options in multiple manners. The third innovation of our approa
h is about extensibility.An extension me
hanism is provided to adapt the modeling language to further upgrades of the

4 Chapter 1 � Introdu
tionsolver layer. This me
hanism allows us to add new fun
tionalities su
h as new global
onstraints,new fun
tions, or new tuning options [SG07a℄.The s-COMMA GUI [CGS08℄ is the asso
iated authoring tool of the ar
hite
ture. The visuallanguage provided
an be seen as the graphi
al representation of the s-COMMA language. Thedesign of this new language has also been in�uen
ed by software engineering pra
ti
es. In fa
t,the obje
t-oriented style of s-COMMA has been naturally represented by means of an extensionof the UML
lass artifa
t. This new language is the fourth innovation of the ar
hite
ture, beingthe support of a visual and a more
on
ise per
eption of models.The mapping tool is the third
omponent of the ar
hite
ture. This tool is responsible fortransforming an input model into an exe
utable solver program. A main
hallenge must be fa
edat this stage. The transformations must be �exible and easy to implement in order to permit theintegration of new solvers to the platform. This issue is evidently a model transformation
on
ern.A

ordingly, as the �fth innovation of the ar
hite
ture, the mapping tool has been enhan
edwith the in
orporation of a model-driven ar
hite
ture [CGS08℄. This approa
h provides propermetamodeling and transformation te
hniques to build �exible mapping tools.The transformation pro
ess performed in s-COMMA is similar to that of Zin
 or Rules2CP[FM08℄, ex
ept for the transformation of graphi
al artifa
ts. In s-COMMA we
onsider a three-step transformation phase (see Figure 1.2). Firstly, graphi
al artifa
ts are transformed to the
orresponding s-COMMAmodel. This model must then be transformed to the Flat s-COMMA [SG08a℄intermediate language to be
loser, in terms of language
onstru
ts, from the solver language.In this pro
ess, several high-level
onstru
ts �not supported at the solver level� are transformedto simpler ones. For instan
e, loops are unrolled,
onditionals are refa
tored, or obje
t-oriented
ompositions are �attened. This allows one to simplify both the translation pro
ess and theintegration of new solver transformations. Finally, this intermediate model is dire
tly transformedto the exe
utable solver program.
s-COMMA

Transformation
Visual-to-Textual

Visual Model
s-COMMA

Model

Transformation
Textual-to-Flat

Flat s-COMMA
Model

Transformation
Flat-to-Solver1

Solver 1

Transformation
Flat-to-Solver1

Solver 2

Transformation
Flat-to-SolverN

Solver NFigure 1.2 � The transformation pro
ess in s-COMMA.The s-COMMA platform is the result of an investigation of several important
on
erns inthe development of modern ar
hite
tures for CP. Many innovations and bene�ts
an be foundin this new approa
h. A high-level language is provided to smoothly
apture the stru
ture ofproblems. An a

urate graphi
al representation of this language is given to a
hieve a more
on
iserepresentation of problems. As opposed to previous approa
hes, the expressiveness of s-COMMA
an be extended to support new fun
tionalities. The use of tuning me
hanisms in obje
t-orientedmodeling is another innovation of s-COMMA, it permits performing
ustomized solving pro
esses.The platform also provides support for experimentation tasks, as the possibility of pro
essing

Chapter 1 � Introdu
tion 5a same model with di�erent solvers is present. Finally, the stru
ture of the ar
hite
ture
an beupdated. New solvers
an be
onne
ted to the platform in order to enlarge the experimentationpossibilities.A se
ond work is presented in this thesis as well [CGS09℄. This new approa
h
an be seen asan improvement of the solver-independent ar
hite
ture. We introdu
e a new framework allowingto de�ne bridges between di�erent modeling and solver languages. The main motivation behindthis work
on
erns the fa
t that de�ning a universal modeling language1 for CP is hard, and theusers usually have their own preferen
es. Therefore, we believe that a transformation frameworkto de�ne mappings between many modeling languages and many solvers would be desirable.This new approa
h involves important advantages. For instan
e, users may
hoose their favoritemodeling language and the best known solving te
hnology for a given problem provided thatthe transformation between languages is implemented. Additionally, it may be easy to
reate a
olle
tion of ben
hmarks for a given language from di�erent sour
e languages. This feature mayspeed up prototyping of one solver, avoiding the rewriting of problems in its modeling language.
Source Model

Transformation

Pivot Model

Source-to-Pivot

Target Model

Transformation
Pivot-to-Target

Pivot-to-Pivot
Refactoring/
OptimizationFigure 1.3 � The transformation framework for CP.We implement this transformation framework by means of an ar
hite
ture
ompletely builtusing a model-driven approa
h. A generi
 and �exible pivot model (intermediate model) hasbeen introdu
ed, to whi
h di�erent languages
an be mapped. This ar
hite
ture allows one toperform a
omplete transformation in three main steps: from the sour
e to the pivot model,refa
toring/optimization of the pivot model, and from the pivot to the target model (see Fi-gure 1.3). Refa
toring and optimization steps are always implemented over the pivot so as toguarantee independen
e from external languages. This re�ning phase is
omparable to the oneperformed from s-COMMA to Flat s-COMMA, but more �exible sin
e the pro
ess is not �xed, i.e. itis possible to sele
t the re�ning steps to be applied in a transformation. For instan
e, if loopsare supported at the target level it is useless to unroll them. This feature allows one to make useof the
onstru
ts provided at the target level and therefore to redu
e the di�eren
es (in terms ofmodel stru
ture) between the sour
e and the target model.The work done on this transformation framework
an be seen as a natural
ontinuation ofthe ar
hite
ture implemented in s-COMMA. Two main innovations
an be observed with respe
tto previous work. The possibility of using di�erent modeling languages as the sour
e of a trans-formation, and the possibility of sele
ting the appropriate re�ning phases in a transformation.The �rst feature speeds up prototyping of solvers and motivates model sharing, and the se
ondone enables users to generate models targeting a desired solving te
hnology.

1 The de�nition of a standard language has been established as an important future
hallenge at the CP 2006
onferen
e. At the CP 2007
onferen
e, MiniZin
 has been proposed as a standard language.

6 Chapter 1 � Introdu
tion1.3 OutlineThis thesis is
omposed of three main parts: Part one is devoted to the state of the artand it is divided into two
hapters. The �rst
hapter gives an overview of te
hniques developedfor solving CSPs. We in
lude the main pro
edures and we illustrate them by means of severalexamples. The se
ond
hapter gives a summary of languages and systems for modeling andsolving CSPs. The spe
trum is very wide, from programming to modeling languages and fromlogi
 to obje
t-oriented paradigms. We also introdu
e various models of the n-queens problem inorder to
ontrast the di�erent approa
hes.Part two presents the s-COMMA platform. The �rst
hapter of this part is devoted to themodeling features of s-COMMA. A tour of the s-COMMA language is �rstly given, followed by adetailed illustration of the modeling
onstru
ts supported. The
hapter ends with a presentationof the s-COMMA GUI and its graphi
al artifa
ts. The se
ond
hapter of this part fo
uses on thewhole transformation
hain, from graphi
al artifa
ts to solver models. We present the mainelements involved in the system (e.g. parsers, metamodels and transformation rules) and thetools and te
hniques for implementing them.The se
ond approa
h we developed is presented in Part three. The �rst
hapter presentsthe ar
hite
ture of the transformation framework and motivates its implementation through anexample
on
erning several transformation issues. The following
hapter fo
uses on the imple-mentation of the main parts of the transformation framework. We explain the stru
ture of thear
hite
ture and the transformation pro
ess from sour
e to target models. The thesis ends withthe
on
lusion and the future work.

PART IState-of-the-art

CHAPTER2
Solving Techniques

C onstraint satisfa
tion involves various solving approa
hes, whi
h are mainly based onarti�
ial intelligen
e. In this
hapter, we give an overview of these approa
hes. We �rstlyintrodu
e some basi
 notations and then we present the foundations of te
hniques to solve CSPs.We
onsider the basi
 sear
h algorithms as well as more advan
ed pro
edures that involve �lteringme
hanisms.2.1 Constraint Satisfa
tion ProblemsDe�nition 2.1 (Constraint Satisfa
tion Problem). A Constraint Satisfa
tion Problem P is de-�ned by a triple P = 〈X ,D, C〉 where:� X is a set of variables {x1, x2, . . . , xn}.� D is a set of domains {d1, d2, . . . , dn} su
h that di is the domain of xi de�ned as a subsetof some set Ei
alled universe, for i = 1, . . . , n.� C is a set of
onstraints {c1, c2, . . . , cm} su
h that cj is a relation over a set of variables
{xj1, . . . , xjnj

}
alled its s
ope, de�ned as the set Γj ⊆ dj1 × · · · × djnj
, for j = 1, ...,m.

cj(xj1 , . . . , xjnj
) is also used to denote a
onstraint cj over its s
ope xj1, . . . , xjnj

.A solution to a CSP is an assignment {x1 → a1, . . . , xn → an} su
h that:� ai ∈ di for i = 1, . . . , n.� (aj1, . . . , ajnj
) ∈ Γj, for j = 1, . . . ,m.If the CSP has a solution we say that it is
onsistent; otherwise we say that it is in
onsistent.There exist di�erent
lasses of CSPs, for instan
e:� A �nite domain CSP
orresponds to a CSP in whi
h ea
h domain is a �nite subset of Z(universe of variables). The
onstraints are generally de�ned as arithmeti
, logi
, or setexpressions.� A numeri
al CSP
orresponds to a CSP in whi
h ea
h domain is an interval
ontainingvalues from R. The
onstraints are generally de�ned as linear and non linear equations orinequalities.2.2 Solving CSPsSolving CSPs requires to explore the spa
e of potential solutions. Su
h an exploration
anbe performed using a tree data stru
ture, where the root is the initial problem and ea
h node
orresponds to a sub-problem. The tree is built by splitting the domain of variables to obtain9

10 Chapter 2 � Solving Te
hniquesthose sub-problems. There exist di�erent strategies for traversing the tree su
h as deep-�rstsear
h and breadth-�rst sear
h, and also various algorithms for generating and exploring thetree. The most basi
 one is the Generate and Test algorithm.2.2.1 Basi
 Sear
h AlgorithmsGenerate and TestThe Generate and Test (GT) algorithm
onsists in generating a potential solution and
he
kingwhether it satis�es all the
onstraints. This pro
ess is done by generating a tree that representsthe Cartesian produ
t of domains.
b

b

b

b

b

b

b

b b

b b b b b b b b

b

b

b

b b

b

b b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b b

b

b

b

b

b

b

b b

b

b

b b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b b b b b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bbb

b

b

b

b

b b b b b b b b bbbb b

b

b

b Figure 2.1 � Solving the 4-queens problem using GT.Let us illustrate the GT pro
ess by means of the 4-queens problem, a smaller version of the8-queens problem introdu
ed in Chapter 1. Figure 2.1 depi
ts an extra
t of the pro
ess done bythe GT algorithm to rea
h a solution for this problem1. The �gure shows that
onstraints are
he
ked only when all the variables of the problem have been instantiated. Thus, failures
annotbe dete
ted as soon as only the variables relevant to a
onstraint have been instantiated. Thisapproa
h is simple to implement, however the sear
hing
ost is too expensive.Ba
ktra
kingBa
ktra
king (BT) [Lu
91, GB65℄ is another approa
h for the exploration/generation of thesear
h tree. In this method the potential solutions are generated in
rementally by repeatedly
hoosing a value for another variable and as soon as all the variables involved in a
onstraintare instantiated, the
onstraint is
he
ked. Thus, if a partial solution violates a
onstraint, thealgorithm returns to the most re
ently instantiated variable that still has alternatives available(to a
hieve a solution), eliminating as a
onsequen
e the
on�i
ting subspa
e.Figure 2.2 depi
ts the sear
h pro
ess performed by the BT pro
edure on the 4-queens problem.The �gure shows that BT is able to dete
t failures as soon as two variables are instantiated (at
1Figures 2.1, 2.2, 2.4 and 2.5 have been adapted from [www4 ℄.

Chapter 2 � Solving Te
hniques 11the middle level of the tree), that is mu
h earlier than in the GT approa
h. Despite this, the BTapproa
h is not able to dete
t failures before assigning the values to all the variables involved ina
on�i
ting
onstraint. This problem
an be addressed by using �ltering te
hniques.
b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b b

b

b b

b

b

b

b

b

b

b b

b

b

b b b

b

b

b

b

b

b

b

b

b

b

b

b

b

bbb

b

b

b

b

b

b

b

b

b

b

b

bbbb

b b

b

b

bFigure 2.2 � Solving the 4-queens problem using BT.2.2.2 Filtering te
hniquesThe performan
e of basi
 sear
h algorithms
an be improved by redu
ing the variables' do-mains of ea
h generated sub-problem. This is possible by
al
ulating a
onsisten
y property onthe
onstraints. The idea is to enfor
e su
h a property on ea
h sub-problem by using a
onstraintpropagation algorithm. The most used notion of
onsisten
y is the ar

onsisten
y [Ma
77℄.De�nition 2.2 (Ar
 Consisten
y). Let cj(xj1 , . . . , xjnj
) be a
onstraint and let k be an integer,

k ∈ {j1, . . . , jnj
}. We say that cj is ar

onsistent wrt. xk i�:

∀ak ∈ dk : ∃aj1 ∈ dj1 , . . . ,∃ak−1 ∈ dk−1,∃ak+1 ∈ dk+1, . . . ,∃ajnj
∈ djnj

su
h that
(aj1, . . . , ajnj

) ∈ ΓjA
onstraint is said to be ar

onsistent if it is ar

onsistent wrt. to all its variables. A CSPis said to be ar

onsistent if all its
onstraints are ar

onsistent.Ar

onsisten
y allows one to verify that for ea
h value of a domain it exists at least onevalue in the domain of the other variables su
h that the
onstraint involved is satis�ed. Thisproperty
an be
al
ulated by a
onstraint propagation algorithm in order to redu
e the domainsof variables. As an example, let us
onsider the pla
ement of the �rst queen on the
ell (1,1) ofthe
hessboard (see Figure 2.3). Three
ells have been eliminated to make the sub-problem ar

onsistent. The value 1 has been removed from the domain of Q2 sin
e there is no
orresponding

12 Chapter 2 � Solving Te
hniquesvalue in the domain of Q1 su
h that the
onstraint Q1 6= Q2 is satis�ed (
onsidering that thedomain of Q1 be
ame {1} after the instantiation). In the same way, the value 1 has been removedfrom the domain of Q3 and Q4. This pro
ess is done for ea
h
onstraint of the problem allowingto avoid several potential wrong instantiations. Let us note that there exist di�erent algorithmsto enfor
e ar

onsisten
y, for instan
e AC-3 [Ma
77℄, AC-4 [MH86℄ and AC-5 [VDT92℄.
b

Q1=1 Q2=1 Q3=1 Q4=1

Figure 2.3 � Enfor
ing ar

onsisten
y.There also exist stronger
onsisten
y notions, whi
h may eliminate a larger number of
on�i
-ting values from domains, but at higher
ost in terms of
omputations. Some examples are thepath
onsisten
y [Mon74℄ and the k-
onsisten
y [Fre78℄.2.2.3 Solving AlgorithmsA sear
h algorithm
an be
ombined with
onstraint propagation to obtain a more e�-
ient solving pro
edure. The most
ommon approa
h is to
ombine the BT algorithm with thear

onsisten
y. Some examples are Forward Che
king (FC) and Maintaining Ar
 Consisten
y(MAC).Forward Che
kingForward
he
king [M
G79℄ is able to prevent future
on�i
ts by performing ar

onsisten
yon the not yet instantiated variables. This is done by removing temporarily the values of thevariables that will further
ause a
on�i
t with the
urrent variable assignment. Hen
e, the algo-rithm immediately dete
ts that the
urrent partial solution is in
onsistent and
onsequently thesear
h spa
e
an be pruned earlier than using simple ba
ktra
king.Figure 2.4 illustrates this pro
ess: values from domains are removed sin
e the se
ond levelof the tree. On
e a queen is stated, its future
on�i
ting values are temporarily removed, forinstan
e the queen stated at the position (1,1) removes all values
orresponding to the �rst rowand the NW-SE diagonal. Then, in the left subtree, the se
ond queen is pla
ed at the position(3,2) whi
h is immediately set as in
onsistent sin
e it does not leave available pla
e for the thirdqueen. The propagation follows for every queen on the
hessboard, allowing to avoid most ofwrong instantiations done by the BT approa
h.

Chapter 2 � Solving Te
hniques 13
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

1
2
3
4

1 2 3 4

Figure 2.4 � Solving the 4-queens problem using FC.Maintaining Ar
 Consisten
yThe Maintaining Ar
 Consisten
y (also
alled Full Look Ahead) [Gas74, SF94℄ is a stron-ger solving algorithm. It
he
ks the
on�i
ts between future variables in addition to the testbetween the
urrent and the future variables.
b

b

b

b

b

1 2 3 4 1 2 3 4

1

2

3

4

1

2

3

4Figure 2.5 � Solving the 4-queens problem using MAC.Figure 2.5 illustrates this pro
ess, where we
an see that the MAC algorithm is able toprune the sear
h spa
e earlier than the forward
he
king, but doing mu
h work on ea
h variableassignment. For instan
e, when the �rst queen is pla
ed at the position (1,1) the
on�i
ts betweenthe
urrent position and the future positions are removed. After that, the algorithm
he
ks the
on�i
ts among the future variables starting with the �rst available position on the se
ond
olumnthat is, the
ell (3,2). The algorithm �nds out that the position (3,2) is in
onsistent sin
e it doesnot leave available pla
e for the third queen, thus the position (3,2) is removed. The algorithmfollows with the
ell (4,2), the next available position on the se
ond
olumn. This pla
ement

14 Chapter 2 � Solving Te
hniquesleaves the
ell (2,3) as the unique available position on the third
olumn, whi
h is then set asin
onsistent sin
e it does not leave available pla
e for the fourth queen. The pro
ess follows untilthe result is rea
hed on the right subtree.2.2.4 Solving numeri
al CSPsIn the presen
e of
onstraints over real numbers, the already presented �ltering te
hniques
annot be applied due to three main limitations:� De
iding the
onsisten
y of
onstraints over real numbers is not possible in a general
ontext [Ri
68℄.� The representation of reals in numeri
al
omputations is not exa
t sin
e it is
ommonlydone by means of �oating-point numbers, whi
h
orrespond to a �nite set of rationalnumbers [Gou00℄.� The use of �oating point numbers may lead to rounding errors.As a
onsequen
e, spe
i�
 �ltering te
hniques have been de�ned in order to deal with realnumbers. These te
hniques mainly rely on the
al
ulation of approximations over domains re-presented by intervals bounded by �oating-point numbers. Some te
hniques are based on hull
onsisten
y [Lho93, Lv93, BO97℄ and on box
onsisten
y [BMV94℄.2.2.4.1 Interval arithmeti
Before presenting the �ltering te
hniques dedi
ated to numeri
al CSPs, let us give an overviewof interval arithmeti
 [Moo66℄.De�nition 2.3 (Floating-point Interval). An interval I bounded by �oating-point numbers isde�ned as:
I = [a, b] = {r ∈ R|a ≤ r ≤ b, with a, b ∈ F}We denote inf(I) as the lower bound and sup(I) as the upper bound of the interval. The fourbasi
 operations to be used on �oating-point intervals are the following:

[a, b] ⊕ [c, d] = [⌊a + c⌋, ⌈b + d⌉]
[a, b] ⊖ [c, d] = [⌊a − d⌋, ⌈b − c⌉]

[a, b] ⊗ [c, d] = [min(⌊ac⌋, ⌊ad⌋, ⌊bc⌋, ⌊bd⌋), max(⌈ac⌉, ⌈ad⌉, ⌈bc⌉, ⌈bd⌉)]
[a, b] ⊘ [c, d] = [min(⌊a/c⌋, ⌊a/d⌋, ⌊b/c⌋, ⌊b/d⌋),max(⌈a/c⌉, ⌈a/d⌉, ⌈b/c⌉, ⌈b/d⌉)], 0 /∈ [c, d]De�nition 2.4. Given a ∈ R, we denote a+ as the smallest element of F greater than a, and

a− as the greatest element of F smaller than a.De�nition 2.5 (Canoni
al Interval). We say that a nonempty interval I is
anoni
al if :
I = [a, b] su
h that b ≤ a+, with a, b ∈ FDe�nition 2.6 (Hull Operator). The hull of a set S ⊆ R is de�ned as the smallest intervalen
losing S :

hull(S) = [⌊inf(S)⌋, ⌈sup(S)⌉]

Chapter 2 � Solving Te
hniques 15De�nition 2.7 (Interval Extension). An interval fun
tion F : I
n → I is an interval extensionof a real fun
tion f : R

n → R i� :
∀B ∈ I

n : {f(x)|x ∈ B} ⊆ F (B)There are various implementations of interval extensions. The natural interval extension ofa real fun
tion f is de�ned as the fun
tion F in whi
h ea
h real
onstant is repla
ed by its hulland ea
h real operation is repla
ed by its
orresponding interval operation. As an example let us
onsider the following fun
tion f de�ned over real numbers:
f(x, y) = x2 − (x × y) + 2|x, y ∈ Rthe natural extension F of the fun
tion f is de�ned as follows:

F (X,Y) = X2 ⊖ (X ⊗ Y) ⊕ [2, 2]|X,Y ∈ IGiven x ∈ X = [0, 2] and y ∈ Y = [1, 3] we have:
F (X,Y) = [0, 4] ⊖ [0, 6] ⊕ [2, 2]

F (X,Y) = [−6, 4] ⊕ [2, 2]

F (X,Y) = [−4, 6] ⊇ {f(x, y)|x ∈ X, y ∈ Y }2.2.4.2 Consisten
y notionsIn this se
tion we present two of the
onsisten
y notions devoted to numeri
al CSPs: hull
onsisten
y (also
alled 2B-
onsisten
y) and box
onsisten
y.De�nition 2.8 (Hull Consisten
y). Given a real
onstraint cj(xj1 , . . . , xjnj
), a box B = I1 ×

. . .×In ⊆ I
n, the box B′ = Ij1 ×· · ·×Ijnj

, an integer k ∈ {j1, . . . , jnj
}, we say that the
onstraint

cj is hull
onsistent wrt. xk i� :
Ik = hull(πk(Γj ∩ B′)),where πk
orresponds to the proje
tion of cj on xk. We say that the
onstraint cj is hull
onsistentwrt. B′ if that relation is true for k ∈ {j1, . . . , jnj

}.De�nition 2.9 (Box Consisten
y). Given a real
onstraint cj of the form fj(xj1, . . . , xjnj
) = 0,

Fj a natural interval extension of fj, a box B = I1 × . . .× In ⊆ I
n, the box B′ = Ij1 × · · · × Ijnj

,an integer k ∈ {j1, . . . , jnj
}, we say that the
onstraint cj is box
onsistent wrt. xk i� :

Ik = hull({ak ∈ Ik|0 ∈ Fj(Ij1 , . . . , Ik−1, hull({ak}), Ik+1, . . . , Ijnj
)})We say that the
onstraint cj is box
onsistent wrt. B′ if that relation is true for k ∈ {j1, . . . , jnj

}.For the sake of simpli
ity we de�ne the box
onsisten
y only wrt. equalities, but this de�nition
an be easily extended for inequalities,
onsidering that f ≤ 0 ⇔ f = z, z ∈ [−∞, 0].The box
onsisten
y property is generally weaker than hull
onsisten
y (a
omparison
an befound in [CDR99℄). Let us note that there also exist additional
onsisten
ies for numeri
al CSPs,for instan
e 3B-
onsisten
y, kB-
onsisten
y [Lho93℄, and CID-
onsisten
y [TC07℄.

16 Chapter 2 � Solving Te
hniques2.2.4.3 Filtering algorithmsIn this se
tion, we illustrate two �ltering algorithms by using the already presented
onsis-ten
ies.Enfor
ing hull
onsisten
yThe hull
onsisten
y
an be enfor
ed by using interval arithmeti
 in two main phases: forwardevaluation and ba
kward propagation As an example, let us
onsider the not hull
onsistent CSP
P = 〈〈x, y, z〉, 〈Dx ∈ [4, 9],Dy ∈ [2, 7],Dz ∈ [3, 8]〉, 〈x = y + z〉〉.

=

[4,9]x +

y z

[5,9]

[5,15]

[2,7] [3,8]

=

[5,9]x +

y z

[5,9]

[5,9]

[2,6] [3,7]

Forward Evaluation Backward PropagationFigure 2.6 � Enfor
ing hull
onsisten
y.Figure 2.6 depi
ts the pro
ess performed by the hull
onsisten
y algorithm. Su
h a pro
essbegins with the forward evaluation, whi
h is a bottom-up tree traversal to evaluate its terms.The expression y + z is evaluated by
onsidering the interval addition operation, giving as aresult the interval [5, 15]. The root of the tree
orresponds to an equal symbol, whi
h operatesas an interse
tion. Thus, the result of this node is given by [4, 9] ∩ [5, 15] = [5, 9]. The forwardevaluation is followed by the ba
kward propagation, where the
onstraint is proje
ted on a top-down tree traversal. Starting with the root, the interval [5, 9] is interse
ted with its
hild nodes,both nodes be
ome [5, 9], and the hull
onsistent domain of x is obtained. Then, to
al
ulatethe hull
onsistent domain of y, we reorganize the equation as follows: y = [5, 9] ⊖ z. Usingthe interval subtra
tion operation, and repla
ing z by its domain, the result of the equation isgiven by [5, 9]⊖ [3, 8] = [−3, 6]. The new interval is interse
ted with the previous domain of y toobtain the hull
onsistent domain of y ([−3, 6] ∩ [2, 7] = [2, 6]). The hull
onsistent domain of zis
al
ulated in the same way.Enfor
ing box
onsisten
yFor the sake of simpli
ity we
onsider a simple algorithm using box
onsisten
y (the origi-nal pro
edure in
ludes the interval Newton method [Neu90℄). This algorithm begins by testingwhether the domain
ontains solutions. If the domain is in
onsistent it is reje
ted; otherwise its lo-wer
anoni
al interval [inf(D),inf(D)+℄ is tested. If the
anoni
al interval satis�es the
onstraint,
inf(D) is the new lower bound. Otherwise, D is bise
ted and the pro
edure is performed againwith the interval [inf(D)+, inf(D)+sup(D)

2] and the interval [inf(D)+sup(D)
2 , sup(D)]. As an example,

Chapter 2 � Solving Te
hniques 17let us
onsider the not box
onsistent CSP P = 〈〈x〉, 〈Dx ∈ [−2, 2]〉, 〈x2 < 2〉〉 shown in Fi-gure 2.7.

−
√

2 =

−1.41421...

√
2 =

1.41421...

0 1 2 3−1−2−3

1

2

3

4

Figure 2.7 � The CSP P = 〈〈x〉, 〈Dx ∈ [−2, 2]〉, 〈x2 < 2〉〉.Figure 2.8 illustrates the pro
ess performed by the algorithm. The pro
ess begins by testingthe domain [−2, 2] whi
h
ontains
onsistent values but its
anoni
al lower bound ([−2,−2+]) isin
onsistent, so it is bise
ted into the intervals [−2+, 0] and [0, 2]. The same pro
ess is done withthe lower interval, whi
h is bise
ted again into the intervals [−2++

,−1] and [−1, 0]. The lowerinterval [−2++

,−1] is bise
ted again, and the new lower interval is reje
ted sin
e no solution isfound. The pro
ess
ontinues until both the lower and the upper
anoni
al intervals are
onsistent.The lower bound of the
onsistent lower
anoni
al interval and the upper bound of the
onsistentupper
anoni
al interval
orrespond to the bounds of the box
onsistent domain.
[-2 ,0]

[-2,2]

[0,2]

[-2 ,-1] [-1,0]

[-2 ,-1.5] [-1.5,-1]

[-1.5 ,-1.25] [-1.25,-1]

[-1.5 ,-1.375] [-1.375,-1.25]

[-1.5,-1.4375] [-1.4375,-1.375]

[-1.4375,-1.40625] [-1.40625,-1.375]

+

++

++
+

+

++

++
+

+Figure 2.8 � Enfor
ing box
onsisten
y.

18 Chapter 2 � Solving Te
hniques2.2.5 Variable and Value Ordering Heuristi
sSear
h algorithms start the pro
ess by sele
ting a variable to enumerate or to bise
t. Theorder in whi
h this
hoi
e is done is referred to as the variable ordering. Several experimentshave demonstrated that a
orre
t ordering de
ision
an be
ru
ial to perform an e�e
tive solvingpro
ess. There exist several heuristi
s for sele
ting the variable ordering:� Fail-�rst: to sele
t the variable with the smallest domain. This
hoi
e is motivated by theassumption that a su

ess
an be a
hieved by �rst trying the variables that have a bigger
han
e to fail, in this
ase, the values with a smaller number of available alternatives. Thisheuristi
 is known to be more adapted to dis
rete domains.� Most-
onstrained variable: this
hoi
e
an be justi�ed by the fa
t that the instantiation ofsu
h a variable should lead to a bigger tree pruning through the
onstraint propagation.� Redu
e-�rst: to sele
t the variable with the biggest domain. This heuristi
 is known to bemore adapted to
ontinuous domains.� Round-robin: to sele
t the variables in some rational and equitable order, for instan
e fromthe �rst variable de�ned in the model to the last one.After sele
ting the variable to enumerate or bise
t, the algorithms have to sele
t a valuefrom the variable's domain. This sele
tion is
alled the value ordering and it
an also have a
onsiderable impa
t. For example, if the right value is
hosen on the �rst try for ea
h variable,a solution
an be found without performing ba
ktra
ks. However, if the CSP is in
onsistent orthe whole set of solutions is required, the value ordering is irrelevant. The literature presentsdi�erent ways to perform this sele
tion whi
h, depending on the problem nature, may lead to amore e�
ient
onstraint propagation [Apt03℄.For instan
e,
ontinuous domains are generally bise
ted, i.e. ea
h interval is split to obtaintwo size-equivalent intervals. It is also possible to enumerate a set of little intervals, whose size
orresponds to the pre
ision of variables. The dis
rete domains are, in general, enumerated,however it is also possible to bise
t them as usually done in
ontinuous domains. After theenumeration, it is possible to
hoose the �rst value as well as the smallest, the median or themaximal value. There also exist more
omplex value ordering heuristi
s whi
h are in general eitherbased on estimating the number of solutions or estimating the probability of a solution [van06℄.2.3 SummaryIn this
hapter we have presented the main te
hniques for solving CSPs. We have illustratedbasi
 sear
h algorithms as well as more advan
ed pro
edures su
h as the ones involving
onstraintpropagation. Constraint propagation is a �ltering me
hanism
apable of improving the e�
ien
yof sear
h algorithms by enfor
ing a
onsisten
y property. Di�erent kinds of
onsisten
y notionsexist, whi
h
an be applied depending on the nature of the CSP.In the next
hapter, we present a large list of languages and systems for modeling and solvingCSPs. Most of them embed in their internal solving engines the algorithms and te
hniquespresented in this
hapter.

CHAPTER3
Languages and Systems

L anguages and systems for modeling and solving CSPs have been developed under di�erentprin
iples. As we have mentioned, the �rst system dates ba
k from the 1960s, followedby a large list where very di�erent paradigms be
ame involved. For instan
e, the use of logi
programming as the support for the CLP paradigm or the use of obje
ts for the simulation ofproblems under
onstraints. From an implementation point of view, di�erent ways have beenproposed, for instan
e, using libraries upon a host programming language or building a newprogramming language with support for
onstraints. The development of a pure modeling lan-guage instead of a programming language is a more re
ent
on
ern, the idea is to provide amore �user-understandable� language. In the following paragraphs we give an overview of lan-guages and systems for
onstraint satisfa
tion organized in six groups: CLP systems, libraries,modeling languages, programming languages, mathemati
al programming systems, and obje
t-oriented languages. To give a general view of similarities and di�eren
es of su
h languages, atea
h se
tion's end a model of the n-queens problem is introdu
ed.3.1 Constraint Logi
 ProgrammingConstraint Logi
 Programming is the paradigm that extends logi
 programming to support
onstraint solving. This extension is known to be natural, as the de
larativeness of logi
 pro-gramming is suitable for stating
onstraints, and the built-in ba
ktra
king engine
an be used tosimplify the implementation of sear
h me
hanisms. This idea was pioneered by Colmerauer, inthe development of Prolog II [Col82℄. Su
h an approa
h was then generalized in the CLP s
hemeestablished by Ja�ar and Lassez in [JL87℄. Then, many other systems in
luding additional fea-tures were developed, some examples are presented in the following.Prolog III-IVProlog III [Col90℄ is the su

essor version of the pioneering Prolog II system. This approa
hwas one of the �rst in repla
ing the logi
 programming uni�
ation me
hanism by the more generalme
hanism of
onstraint solving whi
h, from a te
hni
al standpoint, is one of the basi
 prin
iplesof CLP. The last version of this set of su

essors is
alled Prolog IV [Col96℄, a CLP systemdesigned to support
onstraints over di�erent domains su
h as integers, reals and booleans.CLP(ℜ)CLP(ℜ) [JMSY92℄ is another pre
ursor CLP tool. It was de�ned as an instan
e of the CLPs
heme established by Ja�ar and Lassez. The implementation was designed to support
onstraint19

20 Chapter 3 � Languages and Systemsover reals by means of an algebrai
 built-in
onstraint solver able to deal with linear arithmeti
and non-linear
onstraints.CHIP (Constraint Handling In Prolog)CHIP [Van89℄ is also
onsidered a pioneering CLP system together with the already pre-sented CLP(ℜ) and Prolog III systems. It was originally developed as an extension of Prolog,being the �rst one in in
luding global
onstraints. The
urrent version, CHIP V5, is also avai-lable as a C and C++ library. CHIP V5 in
ludes several features su
h as support for di�erentkinds of
onstraints, interfa
es to graphi
al
omponents and relational databases. The systemalso integrates Xpress-MP [www24 ℄ as its solver for linear programming.ECLiPSeECLiPSe [WNS97℄ is a more re
ent CLP system. It provides a very wide range of featuresfor solving problems under
onstraints, in
luding the most typi
al su
h as lists, arrays and re-
ords, support for sets, and
ontrol statements su
h as
onditionals and for loops. ECLiPSealso provides a set of libraries, for example, for handling
ontinuous CSPs, for CHR (ConstraintHandling Rules) [Frü98℄ and for mathemati
al programming. Some of them
an be
ombined tosolve problems by means of a hybrid style. The de�nition of
ustomized sear
h pro
edures andvariable and value orderings is also supported.GNU PrologGNU Prolog is another system belonging to the CLP group [DC00℄. GNU Prolog has beendesigned to support �nite domain CSPs, however it
an be interfa
ed to handle CSP over reals.It provides a large list of prede�ned Prolog predi
ates and
onstraints as well as support for
ommon
onstru
ts su
h as lists, sets, and
onditionals. Optimization problems and orderingheuristi
s are also supported. An interfa
e has been in
luded to
all external routines written inC.SICStus PrologThe SICStus Prolog system [COC97℄ is based on a solver platform for �nite domains,
onti-nuous domains and CHR. The host language provides typi
al data stru
tures su
h as lists andarrays, and also more
omplex su
h as sets and Prolog-like obje
ts. Support for
onditional sta-tements, optimization problems and variable ordering heuristi
s is available as well. It is alsoworth mentioning that SICStus Prolog has one of the most e�
ient implementations of global
onstraints. The system also provides multiple interfa
es, for instan
e, for C, C++, .NET andJava.Mer
uryOriginally, Mer
ury [SHC96℄ was designed as a logi
/fun
tional programming language. Cur-rently, as part of the G12 proje
t [SGM+05℄, it also provides support for CLP. An interesting

Chapter 3 � Languages and Systems 21aspe
t of Mer
ury is that allows users to spe
ify non-de
larative
ode in a spe
i�
 module. Thisfa
ility avoids to de�ne interfa
es with other programming languages whi
h normally add anoverhead to the resolution pro
ess.Example in ECLiPSeFigure 3.1 depi
ts an ECLiPSe model for the n-queens problem. The �le is
omposed of a
all to a required library and a Prolog-like predi
ate
alled queens. This predi
ate is used tostate the problem, and its header owns two arguments, N and Board. The �rst argument holdsthe quantity of queens and the se
ond one is an array representing the row positions of thequeens on the
hessboard. The size of this array is given by N (line 5) and the domain of itsvariables is given by the interval 1..N (line 6). Between lines 8 and 14, two for loops ensure thatthe
onstraints of the problem are applied over all the queens, param is used to de�ne parame-ters, i.e. the variables stated outside the loop s
ope that must remain
onstant a
ross iterations.Inside those loops, the three
onstraints of the problem are posted. The �rst
onstraint forbidstwo queens pla
ed in the same row (line 10), the se
ond one avoids two queens pla
ed in thesame South-West � North-East diagonal (line 11), and the third one avoids two queens in thesame North-West � South-East diagonal (line 12). The `#\=' symbol
orresponds to the not equaloperator over integer expressions. At line 16, Board is
onverted to a list
alled Vars (due to thelabeling predi
ate
annot be used over arrays). At the end of the �le, the solving pro
ess islaun
hed.1. :- lib(i
).2.3. queens(N, Board) :-4.5. dim(Board, [N℄),6. Board[1..N℄ :: 1..N,7.8. (for(I,1,N), param(Board,N) do9. (for(J,I+1,N), param(Board,I) do10. Board[I℄ #\= Board[J℄,11. Board[I℄+I #\= Board[J℄+J,12. Board[I℄-I #\= Board[J℄-J13.)14.),15.16. Board =.. [_|Vars℄,17. labeling(Vars).Figure 3.1 � An ECLiPSe model of the n-queens problem.3.2 LibrariesLibraries provide a language for stating problems under
onstraints in the form of built-ins embedded in a host programming language. These built-ins are generally implemented bymeans of spe
i�

lasses and methods, for instan
e, a given
lass is used to state variables and

22 Chapter 3 � Languages and Systemsmethods de�ne relations over them. This approa
h is a
ommon way for implementing
onstraintsystems sin
e there is no need to implement a new language. However, the user is for
ed to have aba
kground about the host language to use the library
orre
tly, whi
h is normally more
omplexand verbose
ompared to a pure modeling language.ILOG SolverILOG Solver [Pug94℄ is a
onstraint-based optimization engine written as a C++ library.ILOG Solver provides a ri
h set of built-ins, for instan
e to support �nite domain and �oating-point variables. The library also supports optimization problems, the spe
i�
ation of heuristi
orderings, and
ustomized sear
h pro
edures. Currently, the ILOG solver belongs to the ILOGCP suite, whi
h is distributed together with ILOG S
heduler (for s
heduling problems) and withILOG Dispat
her (for vehi
le routing problems).Ge
ode & Ge
ode/JGe
ode [ST06℄ is another library written on top of C++. It has been designed to support�nite domain variables. The
onstraint set is very large involving di�erent kinds of
onstraints,over integer, boolean, and set variables. The Ge
ode system supports the de�nition of variableand value orderings as well as the spe
i�
ation of
ustomized sear
h and bran
hing strategies.Ge
ode programs
an be written in Java by using the Ge
ode/J interfa
e.KoalogKoalog Solver [www7 ℄ is a Java library for
onstraint satisfa
tion and
onstraint optimization. Itsupports �nite domain
onstraints and �nite set
onstraints. The spe
i�
ation of variable heuris-ti
s is supported, and
ustomized sear
h me
hanisms
an be built by de�ning spe
ialized solverobje
ts.Cho
oCho
o [www12 ℄ is a
onstraint programming solver written as a Java library. A large set of
onstraints is provided to be applied over integer, real and set variables. Support for optimi-zation problems is given, and the sear
h pro
ess
an be
ustomized by sele
ting prede�ned oruser-de�ned variable and value ordering heuristi
s.Example in Ge
ode/JFigure 3.2 depi
ts a Ge
ode/J model for the n-queens problem. A Java
lass is used to statethe entire problem. Su
h a
lass is
omposed of several elements: pa
kage and import statements(lines 1 to 4), a
onstru
tor (lines 9 to 25), a
opy
onstru
tor required by the Ge
ode engine(lines 27 to 30), a pro
edure to show the results (lines 32 to 40), and a main method (lines 42to 50). The
onstru
tor of the
lass is used to state the
onstants, variables and
onstraints ofthe problem. For instan
e, the
onstant holding the number of queens is de�ned at line 11 (it isset to 8, at line 44 in the main method of the
lass), and the array representing the positions of

Chapter 3 � Languages and Systems 23the queens is stated at line 12. This array is initialized with �ve parameters: the reserved wordthis indi
ates the
urrent
lass instan
e, n
orresponds to the size of the array, IntVar.
lass
orresponds to the
lass of obje
ts
ontained in the array, and �nally `1,n' de�nes the domainof the array. The three
onstraints of the problem are stated between lines 16 and 21. They areen
apsulated in two forall loops and stated by means of the post method. Su
h a method de�nesa
onstraint between two expression obje
ts. The `new Expr().p(board.get(i))' Ge
ode/J ex-pression
orresponds to the Board[i℄ expression in ECLiPSe. The IRT_NQ parameter representsto the not equal operator, and p and m represent the `+' and `−' operators, respe
tively. At line24, the labeling pro
ess is determined by a
all to the bran
h method. This method requires thearray to be pro
essed, and the variable and value ordering heuristi
s.At the end of the �le, the main method sets several options, for instan
e, the size of theproblem (line 44) and the use of the Ge
ode/J graphi
al interfa
e (line 45). The pro
ess islaun
hed by
alling the doSear
h method.Another version for this problem
an be stated by using a global
onstraint [vK06℄. Figure 3.3depi
ts this new model, where the three
onstraints of the problem has been repla
ed by
alls tothe alldi�erent global
onstraint.NoteA global
onstraint
an be seen as a
onstraint that en
apsulates a set of other
onstraints.For instan
e, the alldifferent(X1, ...,Xn)
onstraint spe
i�es that the values assigned to thevariables X1, ...,Xn must be pairwise distin
t [Rég94℄. This same
onstraint
an be representedas a set of single inequality
onstraints. A main advantage of global
onstraints is that they
an be asso
iated to more powerful �ltering algorithms sin
e they
an take into a

ount thesimultaneous presen
e of single
onstraints to further redu
e the domains of the variables.In Ge
ode/J, the alldi�erent
onstraint is represented by the distin
tmethod. The boardi 6=
boardj
onstraint is stated as distin
t(this, board) (line 22). The se
ond and third
onstraint(lines 23 and 24) are similar, but involve an array (pos and neg) whi
h have been �lled withthe ne
essary o�sets (lines 14 to 20) to represent the boardi + i 6= boardj + j and the boardi −
i 6= boardj − j
onstraint, respe
tively. This model is probably less intuitive for understanding,however it is more e�
ient sin
e the �ltering algorithm of the alldi�erent
onstraint is able toenfor
e the lo
al
onsisten
y in a more e�e
tive way.3.3 Modeling LanguagesModeling languages aim at simplifying the de�nition of
onstraint problems. They attempt tomove users away from
ompli
ated en
oding
on
erns present in typi
al libraries or programminglanguages. The
ore of the language is generally more
omprehensible, as simpler syntax andsemanti
s are provided. In some approa
hes, the spe
i�
ation of sear
h pro
edures is permitted,but not mandatory.Ali
eAli
e [Lau78℄ is also known as a pre
ursor system in
onstraint programming. It dates ba
k to1978, as a result of the J.L. Lauriere Ph.D. Thesis. In this approa
h, variables and
onstraints

24 Chapter 3 � Languages and Systems1. pa
kage examples;2. import stati
 org.ge
ode.Ge
ode.*;3. import stati
 org.ge
ode.Ge
odeEnumConstants.*;4. import org.ge
ode.*;5.6. publi

lass Queens extends Spa
e {7. publi
 VarArray<IntVar> board;8.9. publi
 Queens(Options opt) {10. super();11. int n = opt.size;12. board = new VarArray<IntVar>(this, n, IntVar.
lass, 1, n);13.14. for(int i=0;i<=n-1;i++) {15. for(int j=i+1;j<=n-1;j++) {16. post(this, new Expr().p(board.get(i)),IRT_NQ,17. new Expr().p(board.get(j)));18. post(this, new Expr().p(board.get(i)).p(i),IRT_NQ,19. new Expr().p(board.get(j)).p(j));20. post(this, new Expr().p(board.get(i)).m(i),IRT_NQ,21. new Expr().p(board.get(j)).m(j));22. }23. }24. bran
h(this, board, BVAR_SIZE_MIN, BVAL_MIN);25. }26.27. publi
 Queens(Boolean share, Queens queens) {28. super(share, queens);29. board = new VarArray<IntVar>(this, share, queens.board);30. }31.32. publi
 String toString() {33. int i;34. String st = "";35. for (i=0;i<board.size();i++){36. if(board.get(i).assigned())37. st += board.get(i).val() + " ";38. }39. return st;40. }41.42. publi
 stati
 void main(String[℄ args) {43. Options opt = new Options();44. opt.size = 8;45. opt.gui = true;46. opt.parse(args);47. opt.name = "Queens";48. Queens queens = new Queens(opt);49. opt.doSear
h(queens);50. }51. } Figure 3.2 � A Ge
ode/J model of the n-queens problem.

Chapter 3 � Languages and Systems 25

1. pa
kage examples;2. import stati
 org.ge
ode.Ge
ode.*;3. import stati
 org.ge
ode.Ge
odeEnumConstants.*;4. import org.ge
ode.*;5.6. publi

lass Queens extends Spa
e {7. publi
 VarArray<IntVar> board;8.9. publi
 Queens(Options opt) {10. super();11. int n = opt.size;12. board = new VarArray<IntVar>(this, n, IntVar.
lass, 1, n);13.14. int pos[℄ = new int[n℄;15. for (int i=0; i<n; i++)16. pos[i℄ = i;17.18. int neg[℄ = new int[n℄;19. for (int i=0; i<n; i++)20. neg[i℄ = -i;21.22. distin
t(this, board);23. distin
t(this, pos, board);24. distin
t(this, neg, board);25.26. bran
h(this, board, BVAR_SIZE_MIN, BVAL_MIN);27. }28. ...Figure 3.3 � A Ge
ode/J model of the n-queens problem using global
onstraints.

26 Chapter 3 � Languages and Systemsare posted in a de
larative style and the solutions are
omputed by an internal solving engine.This engine involves a graph, whi
h is responsible for managing the variables and domains aswell as the
onstraint propagation.OPLOPL [Van99℄ is a leading modeling language. Its syntax and semanti
s have been used asthe base of modern modeling languages. The whole OPL language is
omposed of many high-level
onstru
ts, e.g. data stru
tures su
h as arrays and re
ords, �nite domain variables, loopsand
onditional statements, and a set of built-ins for resour
e allo
ation. Heuristi
s for de�ningvariable and value orderings are also supported. An interesting feature of OPL and perhaps itsmain novelty, is that sear
hing strategies
an be spe
i�ed using the same elegant way as the usedfor stating the problem.Zin
Zin
 [RGMW07℄ is a re
ent modeling language belonging to the G12 proje
t. The Zin
 syn-tax
an be seen as an extension of OPL with support for user-de�ned predi
ates and fun
tions.Typi
al data stru
tures, sets,
ontrol abstra
tions, and �nite and
ontinuous domains are provi-ded. The platform is supported by a solver-independent ar
hite
ture where Zin
 models
an bemapped to three ECLiPSe models: a
onstraint programming model, a lo
al sear
h model, anda mathemati
al programming model. An intermediate model
alled FlatZin
 is also involved tofa
ilitate the translation from sour
e to target models.MiniZin
MiniZin
 [NSB+07℄ is a smaller version of Zin
 where user-de�ned types, fun
tions and some
oer
ions have been ex
luded. MiniZin
 is also built upon a solver-independent ar
hite
ture allo-wing mappings from MiniZin
 to ECLiPSe and Ge
ode. The mapping pro
ess is supported by aterm rewriting-based transformation system
alled Cadmium [BDPS08℄ whi
h allows to spe
ifythe translations from sour
e to target models, a FlatZin
 intermediate model is also used tofa
ilitate the translation.Essen
eEssen
e [FGJ+07℄ is a language for spe
ifying
ombinatorial problems. Its syntax
an be seenas a
ombination of natural language and dis
rete mathemati
s. Essen
e supports typi
al mo-deling
onstru
ts and features for �nite domain problems. Also, it provides the possibility ofde�ning nested types of arbitrary depths (e.g. a set of sets of sets) on whi
h
onstraints
anoperate. The ar
hite
ture is solver-independent on whi
h Essen
e models
an be mapped eitherto ECLiPSe or Minion [GJM06℄. An intermediate OPL-like model
alled Essen
e' is used tofa
ilitate the mapping
hain. This model
an be generated by means of the Conjure [FJMHM05℄transformation system.

Chapter 3 � Languages and Systems 27ESRAESRA [FPÅ04℄ is another modeling language based on the OPL's syntax. It has been designedfor �nite domain problems and supports
ommon modeling
onstru
ts su
h as enumerations andarrays, and
ontrol abstra
tions su
h as forall loops. ESRA uses the notion of relation (e.g. in-je
tion, bije
tion), whi
h often allows to de�ne more
on
ise and shorter models
ompared toOPL. ESRA models
an be
ompiled into OPL and SICStus Prolog models.NP-SPECNP-SPEC [CIP+00℄ is a logi
-based language for the spe
i�
ation of problems belonging to the
omplexity
lass NP. A NP-SPEC model is divided into two se
tions, one se
tion holds the dataand the other the problem spe
i�
ation. The problem is mainly de�ned by means of Prolog-likepredi
ates, �rst-order
onstraints on �nite domains, and rules. NP-SPEC models are translatedand then solved in the ECLiPSe platform.
F

F [Hni03℄ extends OPL by introdu
ing, among others, the notion of fun
tion problem, i.e.problems where the obje
tive is to �nd fun
tions from a sour
e set to a target set su
h that some
onstraints are satis�ed. In this ar
hite
ture, F models are mapped to an intermediate language
alled L and then solved with ILP or CP te
hniques.Rules2CPRules2CP is a new modeling language [FM08℄. The main idea behind this approa
h is to
ombine the business rules knowledge representation paradigm with a CLP-based language. This
ombination may motivate the use of the CP te
hnology in a wider audien
e sin
e the extensiveknowledge of business rules in the industry. Rules2CP models are
ompiled to SICStus Prologvia rewriting rules.Example in MiniZin
A MiniZin
 model for the n-queens problem is shown in Figure 3.4. This model is dividedinto two �les, a data �le and a model �le. The data �le is used to assign values to the
onstantsof the model. For instan
e, the
onstant n is de�ned as an integer in the �rst line of the modeland set to 8 in the data �le. The board array holding the positions of the queens is de�ned at line2. It
ontains de
ision variables lying in the domain 1..n. The three
onstraints of the problemare posted between lines 6 and 8, the `!=' symbol
orresponds to the not equal operator and
/\ represents the `and' logi
al operator. The two forall loops required to traverse the array areembedded in just one forall. Finally, the solve satisfy statement is used to laun
h the solvingpro
ess.

28 Chapter 3 � Languages and SystemsData File1. n=8;Model File1. int: n;2. array [1..n℄ of var 1..n: board;3.4.
onstraint5. forall (i in 1..n, j in i+1..n) (6. board[i℄ != board[j℄ /\7. board[i℄ + i != board[j℄ + j /\8. board[i℄ - i != board[j℄ - j;9.);10.11. solve satisfy;Figure 3.4 � A MiniZin
 model of the n-queens problem.3.4 Programming LanguagesMany programming languages with support for
onstraint satisfa
tion have been developed,some of them have been spe
i�
ally written for
onstraint satisfa
tion (e.g., CoJava, Comet)and others in
lude support for
onstraints as an additional feature (e.g. Alma-0, OZ). In theselanguages the en
oding possibilities are larger than in pure modeling languages, not only ade
larative part is in general given, but also an imperative part. Thus, more freedom is given toprogrammers, however the learning pro
ess for non-experts may be slower
ompared to a puremodeling language.Alma-0Alma-0 [ABPS98℄ is an imperative programming language with support for de
larative pro-gramming. The language allows to de�ne arrays, re
ords, and
ontrol statements su
h as
ondi-tionals and loops. The de
larative part is devoted to problems involving sear
h, being possible tode�ne �rst-order
onstraints and Prolog-like predi
ates. The Alma-0 ar
hite
ture merges te
h-niques used to
ompile both imperative languages (RISC ar
hite
ture) and logi
al languages(WAM Ma
hine) in order to exe
ute optimized programs.OzOz [SSW94℄ is the language of the Mozart Programming System. Oz
an be seen as a multi-paradigm language sin
e it supports several programming styles su
h as de
larative and obje
t-oriented programming as well as
on
urrent and
onstraint programming. The
onstraint pro-gramming
omponent has been developed for sets and �nite domain
onstraints. Support foroptimization problems is given and the de�nition of
ustom sear
h strategies is permitted. Ano-ther interesting feature of the platform is the Oz Explorer, a GUI (Graphi
al User Interfa
e) forthe intera
tive exploration of sear
h spa
es.

Chapter 3 � Languages and Systems 29CometComet [MV02℄ is an obje
t-oriented programming language for
ombinatorial optimizationproblems. The COMET semanti
s supports typi
al data stru
tures su
h as arrays and
ontrolabstra
tion su
h as forall loops. A ri
h language is used to post
onstraints and to de�ne sear
hstrategies, whi
h are de�ned in a style as elegant as in OPL. However, today Comet is a moregeneral approa
h
ompared to OPL sin
e it in
ludes not only a language and a CP solver, butalso a lo
al sear
h solver.MinionMinion [GJM06℄ is a solver for �nite domain
onstraint problems. It has been designed tobe interfa
ed with a modeling language su
h as Essen
e or OPL mainly sin
e no synta
ti
 sugarfor modelers is provided. The input format is based on matrix models that is, the CSP is repre-sented by one or more matri
es of de
ision variables on whi
h
onstraints are applied, e.g. on therows,
olumns or planes. The solving engine supports optimization problems and di�erent kindsof
onstraints su
h as global and rei�ed
onstraints. Support for ordering heuristi
s is also given.CoJavaCoJava [BN06℄ is an extension of the Java programming language that provides support for
onstraint optimization problems. The syntax of CoJava is identi
al to that of Java, and thesupport for CSPs and optimization problems is implemented in the form of a spe
i�

lass. This
lass provides the ne
essary methods to de�ne variables, domains,
onstraints and obje
tive fun
-tions. CoJava problems are
ompiled and transformed into a mathemati
al model to be solvedin AMLP.Example in Alma-0Figure 3.5 depi
ts an Alma-0 model for the n-queens problem. The
onstant giving the numberof queens is stated at the beginning of the �le. A new type
alled board is de
lared at line 2.Su
h a type de�nes the array representing the positions of the queens. The pro
edure to statethe model begins at line 3, its input parameter is an array
alled x of type board. Within thispro
edure, the
onstraints of the problem are embedded in the required iteration loops.3.5 Mathemati
al ProgrammingThere exist several toolkits for mathemati
al programming. They mainly fo
us on solving op-timization problems, their solving engines are based on mathemati
al programming pro
edures,and some of them have been boosted with
onstraint satisfa
tion me
hanisms (e.g. Numeri
a,RealPaver). An important advantage of this �eld is that problems
an be stated by means of astandard language, fa
ilitating problem sharing, writing and experimentations [Pug04℄.

30 Chapter 3 � Languages and Systems1. CONST N = 8;2. TYPE board = ARRAY[1..N℄ OF [1..N℄;3. PROCEDURE Queens(Var x: board);4. VAR i;5. BEGIN6. FOR i := 1 TO N DO7. FOR j := i+1 TO N DO8. x[i℄ <> x[j℄;9. x[i℄ + i <> x[j℄ + j;10. x[i℄ - i <> x[j℄ - j;11. END;12. END13. END Queens; Figure 3.5 � An Alma-0 model of the n-queens problem.AMPLAMPL [FGK90℄ is a modeling language for mathemati
al programming. It supports linearand nonlinear optimization problems involving dis
rete or
ontinuous variables. The languageprovides separation of model and data, data stru
tures, and
ontrol abstra
tions su
h as loopsand
onditionals. The platform
an be interfa
ed with a large list of solvers, e.g. CPLEX [www8 ℄,MINOS [www14 ℄, Xpress-MP [www24 ℄ and SNOPT [www23 ℄. AMPL
an also be linked to problem analysistools su
h as MProbe [www16 ℄ to identify the shape of fun
tions. This information
an be useful formodeling or for sele
ting an appropriate solving tool.GAMSGAMS [BKM92℄ is another modeling language for mathemati
al programming. As AMPL,GAMS is supported by a
ompiler and a large set of underlying solvers, some of them are MO-SEK [www15 ℄, LINGO [www13 ℄, Xpress-MP and CPLEX. The
ore of the syntax supports typi
almathemati
al programming modeling
onstru
ts, e.g. arrays, sets and
ontrol features su
h asloops and
onditionals. Several
ontributions have been developed to
omplement the GAMSplatform, for instan
e an interfa
e with MATLAB [www17 ℄ and tools for analyzing models and thegiven solutions.Numeri
aNumeri
a [VMD97℄ is a modeling language for global optimization based upon
ommon ma-themati
al notation, like AMPL and GAMS. An interesting feature of Numeri
a is related to itssolving engine, it
ombines numeri
al analysis with
onsisten
y te
hniques for an e�
ient solvingpro
ess. The use of intervals leads to another important aspe
t: the
orre
tness of its
omputedresults, i.e. no wrong solutions are produ
ed in Numeri
a (modulo hardware or software errors).RealPaverRealPaver [GB06℄ is a
onstraint satisfa
tion system for modeling and solving linear and non-linear systems. As in Numeri
a, the reliability of solutions is guaranteed by the use of intervals.

Chapter 3 � Languages and Systems 31The modeling language is
loser to AMPL, providing support for dis
rete and
ontinuous va-riables, data stru
tures su
h as arrays, and mathemati
al notation for posting
onstraints. Thehull and the box
onsisten
y te
hniques
an be used to tune the performan
e of sear
h pro
esses.Example in AMPLAn AMPL model for the n-queens problem is depi
ted in Figure 3.6. The problem is mo-deled using the integer programming formulation, whi
h is more appropriate for mathemati
alprogramming tools. Here, the
hessboard is represented as a matrix
ontaining binary variables(line 6). The size of the board is given by the sets stated at lines 3 and 4. In this formulation, four
onstraints are needed. The �rst
onstraint
alled
olumn_atta
k avoids two queens sharing thesame
olumn. The sum fun
tion performs an addition of the
olumn values of the matrix board.The row_atta
k
onstraint avoids two queens sharing the same row, and the last two
onstraints
he
k the diagonals of the
hessboard.1. param n := 8;2.3. set ROWS := {1..n};4. set COLUMNS := {1..n};5.6. var board {ROWS,COLUMNS} binary;7.8.
olumn_atta
ks {j in COLUMNS}:9. sum {i in ROWS} board[i,j℄ = 1;10.11. row_atta
ks {i in ROWS}:12. sum {j in COLUMNS} board[i,j℄ = 1;13.14. diagonal1_atta
ks {k in 3..2*t-1}:15. sum {i in ROWS, j in COLUMNS: i+j=k} board[i,j℄ <= 1;16.17. diagonal2_atta
ks {k in -(n-2)..(n-2)}:18. sum {i in ROWS, j in COLUMNS: i-j=k} board[i,j℄ <= 1;Figure 3.6 � An AMPL model of the n-queens problem.3.6 Obje
t-oriented languagesAn obje
t-oriented language
an also be merged with
onstraints in the form of
onstrainedobje
ts. In other words, a
onstrained obje
t is an instan
e of a
lass that en
apsulates thevariables and
onstraints of a problem (or of a sub-problem). This approa
h is useful for modelingproblems whose stru
ture
an be organized in many parts, as ea
h one of these parts
an berepresented by a
lass. It is said that the bene�ts given by this
ombination are
loser to thosegained by writing software in an obje
t-oriented language, e.g. en
apsulation (of variables and
onstraints), modularity, reuse, et
. From the beginnings of
onstraint satisfa
tion, obje
ts havebeen mixed with
onstraints through di�erent ways.

32 Chapter 3 � Languages and SystemsSket
hpadSket
hpad [Sut63℄ is
onsidered a main
ontribution to the
omputer s
ien
e �eld, not onlyin
onstraint satisfa
tion systems, but also in
omputer-aided drafting and obje
t-oriented pro-gramming. Sket
hpad was the �rst system in using a
omplete graphi
al user interfa
e wherethe notion of obje
ts and
onstraints was present. The system allowed the user to state masterdrawings (whi
h
an be regarded as a primitive form of a
lass) whi
h
ould be instantiated togenerate dupli
ates (obje
ts), so if the master drawing
hanged, all the instan
es would
hangetoo. Constraints
ould be applied on drawings, for instan
e to �x the length of a line of the anglebetween two lines.ThingLabThingLab [Bor81℄ was a dire
t su

essor of Sket
hpad. The main idea behind ThingLab wasto de�ne a
omputer-based environment for
onstru
ting intera
tive graphi
 simulations, i.e. thesimulation of an ele
tri
al
ir
uit or a me
hani
al linkage. ThingLab allowed to perform thesesimulations by stating obje
ts subje
t to
onstraints in a graphi
al user interfa
e. Compared toSket
hpad, the major innovations were the support for multiple inheritan
e and the de�nition oflo
al pro
edures for satisfying the
onstraints.GiannaGianna [Pal95℄ is a visual modeling environment where the obje
t-oriented
on
epts havebeen merged with the notion of
onstraint graph. A Gianna model is a graph formed by theasso
iation of several graphi
al
omponents, ea
h one representing an obje
t-oriented entity.The asso
iations de�ne
onstraints as well as relations between the entities. For instan
e anasso
iation between
lasses is a
lass relation, and an asso
iation between obje
ts is an obje
trelation. An asso
iation between
lass attributes is a
lass
onstraint, and an obje
t
onstraintis determined by an asso
iation of obje
t attributes.COBCOB [JT02℄ is a more re
ent language for
onstrained obje
ts. It has been designed for mode-ling problems under
onstraints mainly from the engineering �eld. The language allows one toen
apsulate the variables and the
onstraint of the problem as well as CLP predi
ates to de�nemodular models. A graphi
al interfa
e for COB exists, allowing users to design engineering pro-blems using
lass diagrams. This graphi
al model is transformed into COB
ode, whi
h is then
ompiled to a CLP solving engine.Hinri
hs et al. Approa
hIn [HLP+04℄, Hinri
hs et al. present an obje
t-oriented language involving
onstraint seman-ti
s devoted to automated
onstrained
on�gurations. The approa
h
an be seen as an extension

Chapter 3 � Languages and Systems 33of the Common Information Model [www9 ℄ (a
ommon language for representing resour
e
on�-guration in the industry) with an embedded language for posting �rst-order formulas as the
onstraints of the problem. The
onstru
ts supported by the language are limited to the automa-ted
on�guration domain, and an internal theorem prover based solver performs the resolutionphase.SysMLSysML [www21 ℄ is an extension of the UML, de�ned for modeling systems from the enginee-ring �eld. As main novelty with respe
t to UML, SysML in
orporates two new diagrams: therequirement diagram and the parametri
 diagram. The �rst diagram allows one to handle therequirements of the system and the se
ond one permits modeling mathemati
al equations as
onstraints on the properties of su
h systems, for instan
e on their reliability or their perfor-man
e. SysML models
an be exported in XMI �les and then pre-pro
essed by an intermediate
omponent
alled XaiTools. This tool is able to generate exe
utable models to be laun
hed inMathemati
a [www5 ℄ or in the Ansys [www3 ℄ analysis tool.s-COMMAs-COMMA is an obje
t-oriented modeling language for CP problems. The
ore of the languagesupports several modeling
onstru
ts, su
h as arrays, enumerations, �nite and
ontinuous do-main variables and sets. Control abstra
tions su
h as loops and
onditionals as well as global
onstraints and optimization statements are also supported. A spe
i�
 simple formalism has beenin
luded to de�ne variable and value orderings as well as the
onsisten
y levels for
onstraints.Additionally, an interesting extension me
hanism allows the integration of new solver pro
edures.The whole system is supported by a solver-independent ar
hite
ture where models
an be map-ped to many solvers (Ge
ode/J, ECLiPSe, GNU Prolog and RealPaver). The integration of newsolvers is possible by means of standard model transformation me
hanisms. The platform alsoo�ers the s-COMMA GUI, whi
h allows users to state problems using an extension of the UML
lassdiagram.Example in s-COMMAFigure 3.7 depi
ts a s-COMMA model for the n-queens problem. Model from data indepen-den
e is provided in s-COMMA. The data �le is used to de�ne and to assign values to
onstants(e.g. n:=8). In the model �le, the problem is stated through
lasses. For this problem, just onemain
lass
alled Queens is de
lared. Inside this
lass, the board array is de�ned, it
ontains n de-
ision variables with domain [1,n℄. Between lines 5 and 10, a
onstraint zone
alled noAtta
k isstated. Constraint zones are used to group
onstrains and statements. In the noAtta
k
onstraintzone, the two required forall loops have been embedded in one forall de
laration. Within thisloop the three
onstraints of the problem are posted.

34 Chapter 3 � Languages and SystemsData File1. n:=8;Model File1. main
lass Queens {2.3. int board[n℄ in [1,n℄;4.5.
onstraint noAtta
k {6. forall(i in 1..n, j in i+1..n) {7. board[i℄ <> board[j℄;8. board[i℄+i <> board[j℄+j;9. board[i℄-i <> board[j℄-j;10. }11. }12. } Figure 3.7 � A s-COMMA model of the n-queens problem.3.7 Comparing s-COMMA with related approa
hesIn this se
tion, we give a more pre
ise
omparison between s-COMMA and its related ap-proa
hes. We sele
t the
losest systems and we
ompare their features to give a more
lear visionof how s-COMMA is positioned. In Table 3.1, s-COMMA is
ontrasted with �ve approa
hes
onside-ring six important features.Table 3.1 � Comparing s-COMMA with �ve approa
hes. The meaning of ea
h row is as follows.Obje
t-Orientation: the language provides obje
t-oriented
apabilities. GUI: the system o�ers agraphi
al interfa
e. Solver-Independen
e: the ar
hite
ture is able to perform the problem resolu-tion through di�erent solvers. Mapping tool: the system provides a framework to add new solversto the platform. Extensibility: the language
an be extended for instan
e to support new global
onstraints or fun
tions. Solving Options: the de�nition of heuristi
s orderings and
onsisten
ylevels of
onstraints are allowed.Gianna COB Essen
e Zin
 MiniZin
 s-COMMAObje
t-Orientation √ √ - - - √GUI √ √ - - - √Solver-Independen
e - - √ √ √ √Mapping - - Hand-Written TR+CHR TR+CHR Model-DrivenToolExtensibility - - - - - √Solving Options - - - - √ √

Chapter 3 � Languages and Systems 35Gianna and COB are the �rst systems in
luded in the
omparison. They belong to thesame group as s-COMMA sharing some features su
h as obje
t-oriented
apabilities1 and graphi
alinterfa
es. However, as opposed to s-COMMA, their modeling styles are not purely obje
t-oriented.The COB language merges obje
ts with CLP predi
ates and Gianna
ombines obje
ts with
onstraints graphs. Additionally, they la
k of solver-independen
e, a mapping-tool, extensibility,and the possibility of de�ning solving options.Zin
, MiniZin
 and Essen
e are the state-of-the-art systems and they are supported by asolver-independent ar
hite
ture. The Essen
e exe
ution platform allows to map spe
i�
ationsinto ECLiPSe and Minion solver. A model transformation system
alled Conjure is involved, butthe integration of solver translators is not its s
ope. Translators from Essen
e' to solver
ode arewritten by hand. Zin
 and MiniZin

an be mapped to the underlying solver layer via Cadmium,a transformation system based on Term-Rewriting (TR) [BN98℄ and Constraint Handling Rules(CHR) [Frü98℄. s-COMMA is also built upon a solver-independent ar
hite
ture, where models
anbe mapped to di�erent solvers by means of model-driven translators.Model-driven translators o�er important advantages. The tools for implementing them arewidely supported by the model engineering
ommunity. A
onsiderable amount of do
umentationand several implementation examples are available at the E
lipse IDE site [www10 ℄. Tools su
h asE
lipse plug-ins are also available for developing and debugging appli
ations. It is not less impor-tant to mention that ATL [KvJ07℄ (the language used for de�ning the model transformations)is
onsidered a standard solution for model transformation in E
lipse. We believe this is a keyissue to motivate and fa
ilitate the addition of new solvers to the platform. Another importantadvantage is the separation of model and syntax
on
erns (we illustrate this in Se
tion 5.3.2).This independen
e allows one to de�ne
lear and
on
ise transformation rules, whi
h are thebase of our mapping tool.From a language standpoint, s-COMMA is as expressive as MiniZin
 and Essen
e, in fa
t theseapproa
hes provide similar
onstru
ts and modeling features. However, additional importantfeatures of s-COMMA remarkably di�eren
es it from those languages, for instan
e, the obje
t-oriented modeling style, the extensibility me
hanisms, and the possibility of modeling problemsusing a visual language.3.8 SummaryIn this
hapter, we have presented a large list of
onstraint satisfa
tion systems. We have
lassi�ed these systems in six groups: CLP systems, libraries, modeling languages, programminglanguages, mathemati
al programming systems, and obje
t-oriented modeling languages in
lu-ding support for
onstraints. Several di�eren
es arise among these di�erent approa
hes. The CLPparadigm extends logi
 programming by adding support for
onstraint solving. Libraries are builtupon a host programming language, whi
h provides its full semanti
s to the user. However, it ismandatory to master this language to su

essfully use the library. Programming languages havea larger expressiveness as well, they
ommonly provide a de
larative and an imperative part tostate models. The use of a modeling language is generally easier
ompared with a library or aprogramming language. Modeling languages provide a more understandable language, in whi
h
1It is important to
larify that obje
t-oriented
apabilities are also provided by languages su
h as CoJava, andin libraries su
h as Ge
ode or ILOG SOLVER. The main di�eren
e here is that the host language provided isa programming language but not a high-level modeling language. As we have explained, advan
ed programmingskills may be required to deal with these tools.

36 Chapter 3 � Languages and Systems
omplex en
oding
on
erns are in general absent. Mathemati
al programming tools target opti-mization problems. Their
ore is supported by mathemati
al programming solving te
hniques andsome of them in
lude
onstraint satisfa
tion me
hanisms. Finally, an obje
t-oriented language
an also be
ombined with
onstraints. The idea is to involve the bene�ts of obje
t-orientationin a
onstraint satisfa
tion
ontext.At the end of the
hapter, we have
ompared s-COMMA with �ve
onstraint satisfa
tion sys-tems. We have shown how it is positionned with respe
t to its
losest approa
hes through sixfeatures: obje
t-orientation, GUI, solver-independen
e, mapping tool, extensibility and solvingpro
ess
ustomization. In the following
hapter we present all these features in detail, we startby a giving an overview of the s-COMMA language to �nish with a presentation of the s-COMMAGUI.

PART IIThe s-COMMA platform

CHAPTER4
Modeling Language &

Graphical Artifactss-COMMA is a new language for modeling CP problems. Su
h a language
an be seen as afusion of a high-level obje
t-oriented language with a
onstraint language. This fusion has been
omplemented with useful features su
h as: solver-independen
e, extensibility, and a me
hanismto
ustomize the solving pro
ess.The
ombination of these features provides interesting advantages. Users
an model problemsusing a high-level modeling language. The obje
t-oriented style provided
an be used to organizeproblems in sub-problems to be
aptured in single
lasses. The extensibility me
hanism allowsone to extend the expressiveness of s-COMMA i.e., new fun
tionalities
an be added to the baselanguage. A simple me
hanism to tune models
an be used to
ustomize the solving pro
ess.A graphi
al user interfa
e is also in
luded in the platform. Visual models
an be stated in thes-COMMA GUI by means of UML-based
lass diagram artifa
ts.In this
hapter we des
ribe the various features of the s-COMMA language and the trade-o�swe fa
ed in its design. We begin by giving a tour of the s-COMMA language over six well-knownCP problems. The tour is followed by a presentation of every modeling
onstru
t presented inthe language. Then, the formalism to
ustomize the solving pro
ess is introdu
ed, followed bythe extensibility me
hanisms. At the end of the
hapter, we illustrate the s-COMMA GUI and itsmain drawing and modeling
omponents.4.1 A Tour of the s-COMMA languageLet us begin the tour of the s-COMMA language by using the famous SEND + MORE =
MONEY
ryptarithmeti
 puzzle. The idea is to �nd distin
t digits for the letters S, E, N , D,
M , O, R, Y su
h that the equation SEND + MORE = MONEY is satis�ed.4.1.1 The SEND + MORE = MONEY ProblemFigure 4.1 depi
ts the
orresponding s-COMMA model for this problem. A main
lass
alledSend is used to state the whole model. Within this
lass, we identify s,e,n,d,m,o,r,y as thevariables of the problem. Sin
e these variables represent digits, their domains are given by theinteger type. The integer domain [0,9℄ is used for the variables e,n,d,o,r,y and the integerdomain [1,9℄ for variables s and m. These variables represent leading digits of the sum, beingunable to take 0 as value. At line 6, a
onstraint zone
alled equality is stated to post the
onstraints of the problem. 39

40 Chapter 4 � Modeling Language & Graphi
al Artifa
ts1. main
lass Send {2.3. int e,n,d,o,r,y in [0,9℄;4. int s,m in [1,9℄;5.6.
onstraint equality {7. 1000*s + 100*e + 10*n + d8. + 1000*m + 100*o + 10*r + e9. = 10000*m + 1000*o + 100*n + 10*e + y;10. alldifferent();11. }12. }Figure 4.1 � A s-COMMA model of the
ryptarithmeti
 puzzle SEND + MORE = MONEY .
RemarkConstraint zones have been designed to group
onstraints under a des
riptive name and to o�erthe possibility of overriding
onstraints in an inheritan
e
ontext (see Se
tion 4.2.5). Su
h a
onstru
t is another innovation of s-COMMA.Between lines 7 and 9, the equation of the problem is represented as an equality
onstraint.Finally, the alldifferent global
onstraint is posted to de�ne that all the variables involved inthe problem must take di�erent values.4.1.2 The Pa
king Squares ProblemLet us
ontinue the tour by presenting the pa
king square problem. This problem
onsistsin
ompletely
overing a square base with a given set of squares, possibly having di�erent sizes,with no overlappings among them.A s-COMMA model for this problem is shown in Figure 4.2. Three
onstants are de�ned forthis problem, whi
h are imported from the data �le Pa
kingSquares.dat. The side size of thesquare base is given by sideSize, squares
orresponds to the quantity of squares, and the arraysize
ontains their sizes.RemarkIn s-COMMA the data
an be provided independently from the model �le. This feature permitsreusing models for di�erent instan
es without
hange.In the model �le, two integer arrays of variables are de�ned to represent respe
tively the x andy
oordinates of the square base. For example, x[2℄=1 and y[2℄=1 means that the se
ond squaremust be pla
ed in row 1 and
olumn 1, indeed in the upper left
orner of the square base. Botharrays are
onstrained, the de
ision variables must have values into the domain [1,sideSize℄.

Chapter 4 � Modeling Language & Graphi
al Artifa
ts 41
Data File1. int sideSize:=5;2. int squares:=8;3. int size:=[3,2,2,2,1,1,1,1℄;Model File1. import Pa
kingSquares.dat;2.3.
lass Pa
kingSquares {4.5. int x[squares℄ in [1,sideSize℄;6. int y[squares℄ in [1,sideSize℄;7.8.
onstraint inside {9. forall(i in 1..squares) {10. x[i℄ <= sideSize - size[i℄ + 1;11. y[i℄ <= sideSize - size[i℄ + 1;12. }13. }14.15.
onstraint noOverlap {16. forall(i in 1..squares, j in i+1..squares) {17. x[i℄ + size[i℄ <= x[j℄ or18. x[j℄ + size[j℄ <= x[i℄ or19. y[i℄ + size[i℄ <= y[j℄ or20. y[j℄ + size[j℄ <= y[i℄;21. }22. }23.24.
onstraint fitBase {25. (sum(i in 1..squares) (size[i℄^2)) = sideSize^2;26. }27. } Figure 4.2 � A s-COMMA model of the pa
king squares problem.

42 Chapter 4 � Modeling Language & Graphi
al Artifa
tsAt line 8, a
onstraint zone
alled inside is de
lared. In this
onstraint zone, a forallloop
ontains the ne
essary
onstraints to ensure that ea
h square is pla
ed inside the base, one
onstraint a
ts over rows and the other one over the
olumns.RemarkLoops have been designed to be used with loop variables (i and j in the example). A loopvariable is valid only within the s
ope of its
orresponding loop, and to simplify the model, notype is needed to de
lare it.At line 15, the noOverlap
onstraint zone ensures that no overlapping o

urs in the pla
ement.Finally, the
onstraint zone
alled fitBase ensures the whole
overage of the square base. Thesum loop is used to perform the addition of the areas of the square set.Figure 4.3 depi
ts an analogous version of this model. An additional
lass
alled Square hasbeen integrated to model the squares (line 3). This
lass
ontains the squares' attributes su
h asthe x and y
oordinates, and the size.The data �le of this model version is similar, the side size of the base and the quantity ofsquares have been de�ned. The third element of the data �le
orresponds to a variable assignmentfor the array s de�ned in the Pa
kingSquare
lass at line 11. Variable assignments allow usto assign values to
lass attributes. The elements en
losed by `{}' symbols represent obje
ts
ontaining values for their attributes. In the example, a set of values is assigned to the thirdattribute of ea
h Square obje
t
ontained by s. The assignments are performed by respe
tingthe order of arrays and
lass' attributes. For instan
e, the value 3 is assigned to the size attributeof the �rst obje
t of the array. The value 2 is assigned to the size attribute of the se
ond, thirdand fourth obje
t of the array. The value 1 is assigned to the size attribute of remaining obje
ts.The `_' symbol is used to omit assignments.RemarkVariable assignments have been designed to perform dire
t assignments of values to de
isionvariables. This feature o�ers the following bene�ts: (1) The de�nition of
onstru
tors1 for ea
h
lass is not ne
essary. (2) Calling a
onstru
tor ea
h time an obje
t is stated is not required. Ifwe need to perform an assignment we do it dire
tly in the data �le. (3) The omission of thesestatements allows one to obtain a
leaner
lass de�nition. s-COMMA is unique in providing su
ha feature.The main
lass of the problem is stated at line 9. This
lass is
omposed of an array andthree
onstraint zones. The array
ontains the Square obje
ts, and the
onstraint zones play thesame role as in the previous pa
king squares model. Let us note that a

ess to obje
t attributesis a
hieved by using standard modeling notation, e.g. s[2℄.x
orresponds to a

essing the xattribute of the se
ond obje
t of the array
alled s.
1A
onstru
tor is a spe
ial fun
tion used to set up the
lass attributes with values. It is used in most ofobje
t-oriented programming languages.

Chapter 4 � Modeling Language & Graphi
al Artifa
ts 43
Data File1. int sideSize := 5;2. int squares := 8;3. Square Pa
kingSquares.s := [{_,_,3},{_,_,2},{_,_,2},{_,_,2},{_,_,1},{_,_,1},{_,_,1},{_,_,1}℄;Model File1. import Pa
kingSquares.dat;2.3.
lass Square {4. int x in [1,sideSize℄;5. int y in [1,sideSize℄;6. int size;7. }8.9. main
lass Pa
kingSquares {10.11. Square s[squares℄;12.13.
onstraint inside {14. forall(i in 1..squares){15. s[i℄.x <= sideSize - s[i℄.size + 1;16. s[i℄.y <= sideSize - s[i℄.size + 1;17. }18. }19.20.
onstraint noOverlap {21. forall(i in 1..squares, j in i+1..squares){22. s[i℄.x + s[i℄.size <= s[j℄.x or23. s[j℄.x + s[j℄.size <= s[i℄.x or24. s[i℄.y + s[i℄.size <= s[j℄.y or25. s[j℄.y + s[j℄.size <= s[i℄.y;26. }27. }28.29.
onstraint fitBase {30. (sum(i in 1..squares) (s[i℄.size^2)) = sideSize^2;31. }32. } Figure 4.3 � An obje
t-oriented s-COMMA model of the pa
king squares problem.

44 Chapter 4 � Modeling Language & Graphi
al Artifa
tsRemarkIn this example, the representation is more natural sin
e ea
h square is independently handledas an obje
t. The obje
t-oriented style used here permit us to obtain a more modular model inwhi
h the stru
ture of the problem has been
aptured in a single
lass
omposition.4.1.3 The Stable Marriage ProblemThe third problem of the tour is the stable marriage problem. Su
h a problem
onsiders agroup of n women and a group of n men who must marry. Ea
h woman has a preferen
e rankingfor her possible husband, and ea
h man has a preferen
e ranking for his possible wife. The aimis to �nd a mat
hing between groups su
h that the marriages are stable, i.e. there is no pair ofpeople of opposite sex that like ea
h other better than their respe
tive spouses.The data �le of this problem is depi
ted in Figure 4.4. Two enumerations and two variableassignments
an be identi�ed. The menList enumeration holds the names of men and womenListholds the names of women. The StableMarriage.man variable assignment provides values forthe man array de�ned at line 15 in the model �le (see Figure 4.5). This variable assignment is
omposed of 5 obje
ts, one for ea
h man of the group. Ea
h of these obje
ts has two elements,the �rst element is an array (en
losed by `[℄') and the se
ond one is the `_' symbol. The �rstelement sets the preferen
es of men, assigning the values to the rank array of Man obje
ts (e.g.Ri
hard prefers Tra
y 1st, Linda 2nd, Wanda 3rd, et
).Data File1. enum menList := {Ri
hard,James,John,Hugh,Greg};2. enum womenList := {Helen,Tra
y,Linda,Sally,Wanda};3. Man StableMarriage.man :=4. [Ri
hard: {[Helen:5 ,Tra
y:1, Linda:2, Sally:4, Wanda:3℄,_},5. James : {[Helen:4 ,Tra
y:1, Linda:3, Sally:2, Wanda:5℄,_},6. John : {[Helen:5 ,Tra
y:3, Linda:2, Sally:4, Wanda:1℄,_},7. Hugh : {[Helen:1 ,Tra
y:5, Linda:4, Sally:3, Wanda:2℄,_},8. Greg : {[Helen:4 ,Tra
y:3, Linda:2, Sally:1, Wanda:5℄,_}℄;9.10. Woman StableMarriage.woman :=11. [Helen: {[Ri
hard:1, James:2, John:4, Hugh:3, Greg:5℄,_},12. Tra
y: {[Ri
hard:3, James:5, John:1, Hugh:2, Greg:4℄,_},13. Linda: {[Ri
hard:5, James:4, John:2, Hugh:1, Greg:3℄,_},14. Sally: {[Ri
hard:1, James:3, John:5, Hugh:4, Greg:2℄,_},15. Wanda: {[Ri
hard:4, James:2, John:3, Hugh:5, Greg:1℄,_}℄;Figure 4.4 � Data �le of the stable marriage problem.The model �le is stated through three
lasses, a
lass to represent men, a
lass to representwomen and a main
lass to des
ribe the stable marriages. The
lass representing men is
omposedof two attributes, the �rst one represents the preferen
es of a man, while the se
ond one representsits wife. The rank array is indexed by the enumeration type womenList (line 2 of the data �le),meaning that the 1st index of the array is Helen, the 2nd is Tra
y, the 3rd is Linda and so on.The wife attribute is typed with an enumeration, therefore its domain is given by the values ofthat enumeration ({Helen,Tra
y,Linda,Sally, Wanda}). The de�nition of the Women
lass isanalogous.

Chapter 4 � Modeling Language & Graphi
al Artifa
ts 45
Model File1. import StableMarriage.dat;2.3.
lass Man {4. int rank[womenList℄;5. womenList wife;6. }7.8.
lass Woman {9. int rank[menList℄;10. menList husband;11. }12.13. main
lass StableMarriage {14.15. Man man[menList℄;16. Woman woman[womenList℄;17.18.
onstraint mat
hHusbandWife {19. forall(m in menList)20. woman[man[m℄.wife℄.husband = m;21.22. forall(w in womenList)23. man[woman[w℄.husband℄.wife = w;24. }25.26.
onstraint forbidUnstableCouples {27. forall(m in menList, w in womenList){28. man[m℄.rank[w℄ < man[m℄.rank[man[m℄.wife℄ ->29. woman[w℄.rank[woman[w℄.husband℄ < woman[w℄.rank[m℄;30.31. woman[w℄.rank[m℄ < woman[w℄.rank[woman[w℄.husband℄ ->32. man[m℄.rank[man[m℄.wife℄ < man[m℄.rank[w℄;33. }34. }35. } Figure 4.5 � A s-COMMA model of the stable marriage problem.

46 Chapter 4 � Modeling Language & Graphi
al Artifa
tsThe main
lass of the problem is stated at line 13. This
lass is
omposed of two arrays andtwo
onstraint zones. The �rst array models the group of men and the se
ond one the groupof women. The
onstraint zone
alled mat
hHusbandWife in
ludes two forall loops, ea
h onein
luding a
onstraint. These
onstraints are satis�ed whether the pairs man-wife mat
h with thepairs woman-husband. The forbidUnstableCouples
onstraint zone
ontains two loops holdingtwo logi
al formulas to guarantee that marriages are stable.RemarkEnumerations have been designed for multiple usages. For instan
e, as type for de
ision va-riables (e.g. womenList wife), as the set of values to be traversed by a loop (e.g. forall(m inmenList)) and for de�ning the size of arrays (e.g. Man man[menList℄).
4.1.4 The So
ial Golfers ProblemThe fourth problem of this overview
orresponds to the So
ial Golfers Problem. This problem
onsiders a group of n so
ial golfers whi
h play golf on
e a week, and always in groups of size
g. The goal is to arrange a s
hedule for these players for w weeks, su
h that no two golfers playtogether more than on
e.Figure 4.6 depi
ts the data �le of this problem. It
onsists of one enumeration and three
onstants. The enumeration
ontains the name of the golfers and the
onstants hold the size ofgroups, the number of weeks, and the quantity of groups playing per week.Data File1. enum name := {a,b,
,d,e,f,g,h,i};2. int s := 3; //size of groups3. int w := 4; //number of weeks4. int g := 3; //groups per weekFigure 4.6 � Data �le of the so
ial golfers problem.The model �le is divided into three
lasses (see Figure 4.7). One to model the groups, one tomodel the weeks and a main
lass to arrange the s
hedule of the so
ial golfers. The Group
lassowns the players attribute
orresponding to a set of golfers playing together, ea
h golfer beingidenti�ed by a name given in the enumeration from the data �le. In this
lass, the
onstraint zonegroupSize restri
ts the size of the golfers group. The Week
lass has an array of Group obje
tsand the
onstraint zone playOn
ePerWeek ensures that ea
h golfer takes part of a unique groupper week. Finally, the So
ialGolfers
lass has an array of Week obje
ts and the
onstraint zonedifferentGroups states that ea
h golfer never plays two times with the same golfer throughoutthe
onsidered weeks.

Chapter 4 � Modeling Language & Graphi
al Artifa
ts 47

Model File1. import So
ialGolfers.dat;2.3.
lass Group {4. name set players;5.
onstraint groupSize {6.
ard(players) = s;7. }8. }9.10.
lass Week {11. Group groupS
hed[g℄;12.
onstraint playOn
ePerWeek {13. forall(g1 in 1..g, g2 in g1+1..g)14.
ard(groupS
hed[g1℄.players interse
t15. groupS
hed[g2℄.players)= 0;16. }17. }18.19. main
lass So
ialGolfers {20.21. Week weekS
hed[w℄;22.23.
onstraint differentGroups {24. forall(w1 in 1..w, w2 in w1+1..w)25. forall(g1 in 1..g, g2 in 1..g)26.
ard(weekS
hed[w1℄.groupS
hed[g1℄.players interse
t27. weekS
hed[w2℄.groupS
hed[g2℄.players) <= 1;28. }29. } Figure 4.7 � Model �le of the so
ial golfers problem.

48 Chapter 4 � Modeling Language & Graphi
al Artifa
ts4.1.5 The Produ
tion ProblemThe �fth problem of the tour
orresponds to an optimization problem. This problem
onsidersa fa
tory that must satisfy a determined demand of produ
ts. These produ
ts
an be either ma-nufa
tured inside the fa
tory or pur
hased from an external market. The aim is to determine thequantity of produ
ts that must be produ
ed inside the fa
tory and the quantity to be pur
hasedin order to minimize the total
ost.Model File1. import Produ
tion.dat;2.3.
lass Produ
t {4. int demand;5. int insideCost;6. int outsideCost;7. int
onsumption[resour
eList℄;8. int inside in [0,5000℄;9. int outside in [0,5000℄;10. }11.12. main
lass Fa
tory {13.14. int
apa
ity[resour
eList℄;15. Produ
t produ
tSet[produ
tList℄;16.17.
onstraint noEx
eedCapa
ity {18. forall(r in resour
eList)19.
apa
ity[r℄ >= sum(p in produ
tList)20. (produ
tSet[p℄.
onsumption[r℄ *21. produ
tSet[p℄.inside);22. }23.24.
onstraint satisfyDemand {25. forall(p in produ
tList)26. produ
tSet[p℄.inside + produ
tSet[p℄.outside >= produ
tSet[p℄.demand;27. }28.29.
onstraint minimizeCost {30. [minimize℄ sum(p in produ
tList)31. (produ
tSet[p℄.insideCost * produ
tSet[p℄.inside +32. produ
tSet[p℄.outsideCost * produ
tSet[p℄.outside);33. }34. } Figure 4.8 � A s-COMMA model of the produ
tion problem.Figure 4.8 shows a s-COMMA model for this problem. The model is represented by two
lasses.The �rst one models the produ
ts while the se
ond one models the fa
tory. Within the Produ
t
lass, several attributes are de�ned: the demand, the inside and the outside
ost, the
onsumption,and the quantity that must be produ
ed inside and outside the fa
tory. The main
lass of theproblem is stated at line 12. Two arrays are de�ned, the �rst one
ontains the amount of resour
esavailable for manufa
turing the produ
ts and the se
ond one
ontains the set of produ
ts. At line

Chapter 4 � Modeling Language & Graphi
al Artifa
ts 4917, a
onstraint zone
alled noEx
eedCapa
ity is stated to ensure that the resour
es
onsumedby the produ
ts manufa
tured inside do not ex
eed the total quantity of available resour
es. Atline 24, a
onstraint zone is de�ned to satisfy the demand of all the produ
ts. Finally, at line30, an optimization statement is posted to determine the quantity of produ
ts that must beprodu
ed inside the fa
tory and the quantity to be pur
hased in order to minimize the total
ost.Data File1. enum resour
eList := {flour, eggs};2. enum produ
tList := {kluski,
apellini, fettu
ine};3. int Fa
tory.
apa
ity := [200,400℄;4. Produ
t Fa
tory.produ
tSet := [kluski:{1000,6,8,[flour:5,eggs:2℄,_,_},
apellini:{2000,2,9,[flour:4,eggs:4℄,_,_},fettu
ine:{3000,3,4,[flour:3,eggs:6℄,_,_}℄;Figure 4.9 � Data �le of the produ
tion problem.The data �le of this problem is shown in Figure 4.9. It is
omposed of two enumerations andtwo variable assignments. The name of resour
es and produ
ts are held by the enumerations.The �rst variable assignment sets 200 as the flour
apa
ity and 400 as the eggs
apa
ity. TheFa
tory.produ
tSet variable assignment de�nes values for three produ
ts. Several values areset to those produ
ts. For instan
e, 1000
orresponds to the demand of the kluski, its inside
ost is 6 and its outside
ost is 8, �nally, its manufa
ture requires 5 �our items and 2 egg units.4.1.6 The Engine ProblemLet us �nish the tour by presenting an a
ademi
 problem from the engineering �eld. Considerthe task of
on�guring a
ar engine subje
t to design
onstraints. The
omposition of the engineis depi
ted in Figure 4.10 using UML
lass diagram notation. Su
h a �gure shows that the engineis the root of the system, it is built from a
rank
ase, a
ylinder system, a blo
k and a
ylinderhead at the se
ond level. The
ylinder system is a subsystem made of a valve system, an inje
tionand a piston system. Both valve and piston systems have their own
omposition rules.
Cylinder System Block Cylinder HeadCrankcase

Valve System

Connecting Rod

Engine

Piston System

Valve Camshaft CrankshaftPiston

Injection

Figure 4.10 � The Engine Problem.Figure 4.11 depi
ts the data �le and the main
lass of the model. The attributes
Case,
Syst, blo
k and
Head represent the subsystems of the engine. The last attribute de�nes its

50 Chapter 4 � Modeling Language & Graphi
al Artifa
tsvolume and dim en
apsulates a
onstraint between that attribute and the volume attribute ofthe
Case obje
t.Data File1. enum size := {small,medium,large};2. enum flow := {dire
t,indire
t};Model File1. main
lass Engine {2. CrankCase
Case;3. CylSystem
Syst;4. Blo
k blo
k;5. CylHead
Head;6. int volume;7.
onstraint dim {8. volume >
Case.volume;9. }10. } Figure 4.11 � A s-COMMA model of the engine problem.The CylSystem
lass is depi
ted in Figure 4.12. It has two integer variables, and three subsys-tems denoted by inj, vSyst, and pSyst. Its
onstraint zone en
apsulates a
onditional
onstraint.This
onstraint states that 6-
ylinder-engines have to be a distan
e between
ylinders bigger than6, and in others kinds of engines this distan
e must be bigger than 3. In
onditional
onstraints,whether the
ondition holds, the
onstraints belonging to the if blo
k are a
tivated; otherwisethe
onstraints of the else blo
k are a
tivated.1.
lass CylSystem {2. int quantity in [2,12℄;3. int distBetCyl in [3,18℄;4. Inje
tion inj;5. ValveSystem vSyst;6. PistonSystem pSyst;7.
onstraint determineDistan
e {8. if (quantity = 6)9. distBetCyl > 6;10. else11. distBetCyl > 3;12. }13. } Figure 4.12 � The CylSystem
lass of the engine model.The inje
tion subsystem is depi
ted in Figure 4.13. It
onsists of three attributes: gasFlow,admValve, and pressure. The
ompValues
onstraint zone en
apsulates a built-in
ompatibility
onstraint [GF03℄. Su
h a
onstraint limits the
ombination of allowed values for a group ofde
ision variables to a limited set. For example, only four
ombinations of values are permittedfor the variables gasFlow, admValve and pressure. The possible values are des
ribed inside the

Chapter 4 � Modeling Language & Graphi
al Artifa
ts 51
ompatibility built-in
onstraint. Let us noti
e that the remaining
lasses of the model havebeen omitted sin
e they are irrelevant for the purpose of this tour.1.
lass Inje
tion {2. flow gasFlow;3. size admValve;4. int pressure;5.
onstraint
ompValues {6.
ompatibility(gasFlow,admValve,pressure) {7. ("dire
t", "small", 80);8. ("dire
t", "medium", 90);9. ("indire
t", "medium", 100);10. ("indire
t", "large", 130);11. }12. }13. }14. ... Figure 4.13 � The Inje
tion
lass of the engine model.RemarkIn s-COMMA, all
lasses are publi
. Currently, we see no need to
onsider further visibility notionssu
h as private or prote
ted. This will for
e modelers to
onsider an additional
on
ern and as a
onsequen
e to make more di�
ult the modeling tasks. However, whether these options be
omea ne
essity we may in
lude them.
4.2 Modeling FeaturesIn the previous se
tion we have introdu
ed some s-COMMA models to give an overview of itsfeatures. In this se
tion, we provide a more extended presentation of su
h features. We introdu
e�rst the elements to be stated in data �les su
h as
onstants and variable-assignments, and thenthe elements belonging to model �les su
h as
lasses, attributes and
onstraint zones1. We alsoin
lude in this se
tion the formalism to tune the solving pro
ess and the extension me
hanisms.4.2.1 ConstantsConstants, also
alled parameters or data variables, are the variables that have a �xed valuein the model. In s-COMMA,
onstants are de
lared in the data �le and they have to be pre�xedby a type. The available types for
onstants are: real, integer, boolean, and enumeration. Asshown in Figure 4.14,
onstants
an be in
luded in one-dimensional and two-dimensional arrays.Boolean values
an be de�ned by means of `0' and `1' digits or by using the tokens `true' and`false'. Enumerations
an
ontain real values, integer values or strings.

1The grammar of the s-COMMA modeling language
an be found in the appendix.

52 Chapter 4 � Modeling Language & Graphi
al Artifa
tsint anIntegerConstant := 5;int aOneDimArrayOfIntegerConstants := [1,2,3℄;int aTwoDimArrayOfIntegerConstants := [[1,2,3℄,[1,2,3℄,[1,2,3℄℄;real aRealConstant := 5.2e-5;real aOneDimArrayOfRealConstants := [1.1,2.2,3.3℄;real aTwoDimArrayOfRealConstants := [[1.1,2.2,3.3℄,[1.1,2.2,3.3℄,[1.1,2.2,3.3℄℄;bool aBooleanConstant := false;enum anEnumeration := {Fran
e, Italy, Germany};Figure 4.14 � Constants.4.2.2 Variable assignmentsA variable assignment permits setting values to variables in order to
onvert them into
onstants. Variable assignments are also stated in the data �le, and they allow to assign va-lues to many elements, for instan
e to de
ision variables, arrays
ontaining de
ision variables,and obje
ts. Figure 4.15 shows two examples. In the �rst one, the value 2.5 is given to theattribute a of the
lass Test. In the se
ond one, the value 200 and the value 400 are assigned tothe �rst and se
ond
ell of the
apa
ity array, respe
tively.real Test.a := 2.5;int Fa
tory.
apa
ity := [200,400℄;Figure 4.15 � Variable assignments.As we have mentioned, variable assignments are performed by respe
ting the order of theinvolved elements. For instan
e, on the assignment of the array
apa
ity, the value 200 is givento the �rst
ell of the array, and 400 to the se
ond
ell of the array. However, whether theindex of the array element is expli
itly stated, this impli
it ordered mat
hing is omitted, and theassignments are guided by the indexes. For instan
e, Figure 4.16 depi
ts two variable assignmentsfor the produ
tSet array. Although the organization of both assignments di�ers, the resultantassignments are equivalent.Produ
t Fa
tory.produ
tSet := [kluski:{1000,6,8,[flour:5,eggs:2℄,_,_},
apellini:{2000,2,9,[flour:4,eggs:4℄,_,_},fettu
ine:{3000,3,4,[flour:3,eggs:6℄,_,_}℄;Produ
t Fa
tory.produ
tSet := [
apellini:{2000,2,9,[eggs:4,flour:4℄,_,_},kluski:{1000,6,8,[eggs:2,flour:5℄,_,_}fettu
ine:{3000,3,4,[eggs:6,flour:3℄,_,_}℄;Figure 4.16 � Variable assignments guided by indexes.

Chapter 4 � Modeling Language & Graphi
al Artifa
ts 534.2.3 ClassesClasses are the main element of models. They en
apsulate the attributes and the
onstraints ofthe problem allowing to organize models and to
apture the stru
ture of problems. The main
lassof the model is de�ned using the main reserved word, if there is no main
lass in the model, thelast
lass de
lared is set as main. Two kinds of relations are permitted among
lasses:
ompositionand inheritan
e. Composition allows a
lass to be
omposed of many obje
ts, and inheritan
epermits to de�ne a new
lass based upon a super
lass. Figure 4.17 shows a
omposition relationbetween the engine and its subsystems. On the right side of the �gure a spe
i�
 turbo engine
lass has been de�ned as a sub
lass of the
lass Engine. The reserved word extends is used toinherit the attributes and
onstraint zones of a super
lass.
lass Engine {
lass TurboEngine extends Engine {CrankCase
Case; boost in [5,8℄;CylSystem
Syst; ...Blo
k blo
k; }CylHead
Head;...} Figure 4.17 � Composition and inheritan
e.RemarkTo ensure termination, re
ursive
omposition (a
lass having as attribute an instan
e of itself)and re
ursive inheritan
e (a
lass inheriting from itself) are not allowed.Let us note that modularity of s-COMMA models
an be enhan
ed sin
e single models
an bestored in di�erent �les to be imported in a main �le. Figure 4.18 depi
ts a model representingthe design of a
ar. Ea
h
ar's subsystem (the engine, the ele
tri
 system, the exhaust system,et
.) has been modeled in a di�erent �le whi
h has been then imported from the
ar model �le.import Engine.
maimport Ele
tSystem.
ma...main
lass Car {Engine eng;Ele
tri
System elSyst;ExhaustSystem exSyst;SuspSystem suSyst;DriveTrain drSyst;Chassis
hass;...} Figure 4.18 � Importing models.

54 Chapter 4 � Modeling Language & Graphi
al Artifa
tsRemarkModularity,
omposition and inheritan
e are important strengths of the obje
t-oriented style.In s-COMMA we
an bene�t from that and motivate the reuse of existing elements.4.2.4 AttributesAttributes are used to de�ne obje
t properties. In s-COMMA, attributes are stated within
lasses and they have to be pre�xed with a type. Attributes may represent de
ision variables,sets or obje
ts.4.2.4.1 De
ision VariablesDe
ision variables
orrespond to the unknowns of the problem. s-COMMA allows de
isionvariables to be
ontained in one-dimensional and two-dimensional arrays (see Figure 4.19). Thesize of the arrays
an be de�ned by an integer
onstant, an integer value or an integer
onstantexpression. The latter stands for an expression
omposed only of integer values and/or integer
onstants.RemarkTo avoid non-terminating iteration over an array, no de
ision variable is permitted to de�ne itssize.int anIntegerDe
isionVariable;real aTwoDimArrayOfRealDe
isionVariables[5,anIntegerConstant+1℄;Figure 4.19 � De
ision variables.De
ision variables and arrays of de
ision variables
an be
onstrained to a determined domain(see Figure 4.20). The nature of values to de�ne the domains depends on the nature of de
isionvariables. For instan
e, integer values, integer
onstants and integer
onstant expressions are usedto de�ne domains for both integer and real de
ision variables. Real values, real
onstants and real
onstant expressions
an only be used to de�ne the domain of real de
ision variables. De
isionvariables with no domain stated adopt a default domain in the translation pro
ess, whi
h dependson the solver used. An enumeration
an be used as the type for a de
ision variable in order toadopt as domain the set of values
ontained in the enumeration.int anIntegerDe
isionVariable in [0,anIntegerConstant + 1℄;real aRealDe
isionVariable in [0.5,aRealConstant + 5.5℄;enum menNames := {Ri
hard,James,John,Hugh,Greg};menNames husband;Figure 4.20 � De
ision variables, domains and enumerated domains.

Chapter 4 � Modeling Language & Graphi
al Artifa
ts 554.2.4.2 SetsA set
an be seen as a spe
ial kind of de
ision variable for whi
h the resolution pro
ess mustsear
h a set of values. Sets are used in many problems and spe
i�
 relations
an a
t over them(e.g. union, interse
tion, disjun
tion, et
.). Sets are de�ned with the reserved word set, and they
an be
ontained in one-dimensional and two-dimensional arrays. The domains of sets
an begiven by integer values, integer
onstants, integer
onstant expressions, and enumerations. Threeexamples are depi
ted in Figure 4.21.int set aSet in [0,9℄;int set aTwoDimArrayOfSets[3,3℄ in [0,9℄;name set players; Figure 4.21 � Sets.4.2.4.3 Obje
ts and Constrained Obje
tsObje
ts are instan
es of
lasses and they must be typed with the
orresponding
lass name.Obje
ts embedding one or more
onstraints are
alled
onstrained obje
ts. In Figure 4.22, the pobje
t is an instan
e of the Produ
t
lass, and g is a
onstrained obje
t as its players attributeis subje
t to a
onstraint.Produ
t p;
lass Produ
t {int demand;int insideCost;int outsideCost;int
onsumption[resour
eList℄;int inside in [0,5000℄;int outside in [0,5000℄;}Group g;
lass Group {name set players;
onstraint groupSize {
ard(players) = s;}} Figure 4.22 � Obje
ts and
onstrained obje
ts.

56 Chapter 4 � Modeling Language & Graphi
al Artifa
ts4.2.5 Constraint ZonesConstraint zones are used to group
onstraints en
apsulating them inside a
lass. A
onstraintzone
an
ontain
onstraints, loops,
onditional statements,
ompatibility
onstraints, an opti-mization statement, and global
onstraints. Figure 4.23 depi
ts a
onstraint zone of the pa
kingsquares problem.
onstraint inside {forall(i in 1..squares){x[i℄ <= sizeArea - size[i℄ + 1;y[i℄ <= sizeArea - size[i℄ + 1;}} Figure 4.23 � A
onstraint zone.The name of the
onstraint zone is
hosen by the modeler. It
an be used to des
ribe therole of the
onstraint zone on the problem and also to allow the
onstraint zone to be overriddenby a sub
lass. Constraint zone overriding
an be seen as method overriding in obje
t-orientedlanguages. In other words, when a
lass inherits from a super
lass, the
onstraint zones of thesuper
lass (having a same name) are no longer
onsidered and they are repla
ed by the
onstraintzones of the sub
lass. In Figure 4.24, the
onstraint zone distan
eBetAxes is overridden by thesub
lass TurboEngine, resulting in a repla
ement of the
onstraint left + 2320 = right by the
onstraint left + 2840 = right.
lass Engine {...
onstraint distan
eBetAxes {left + 2320 = right;}}
lass TurboEngine extends Engine {...
onstraint distan
eBetAxes {left + 2840 = right;}} Figure 4.24 � Constraint zone overriding.4.2.5.1 ConstraintsConstraint are relations among variables, being posted using mathemati
al-like notation. s-COMMA supports most of
ommon relations among values,
onstants, de
ision variables and sets(see Table 4.1).

Chapter 4 � Modeling Language & Graphi
al Artifa
ts 57
Table 4.1 � Binary and unary operators. Higher pre
eden
e means lower priority. T representsinteger, real, or boolean types. N represents integer or real types.Operator Operation Pre
eden
e Relation<-> Bi-impli
ation 1300 (boolean × boolean) → boolean-> Impli
ation 1200 (boolean × boolean) → boolean<- Reverse impli
ation 1200 (boolean × boolean) → booleanor Disjun
tion 1100 (boolean × boolean) → booleanxor Ex
lusive or 1100 (boolean × boolean) → booleanand Conjun
tion 1000 (boolean × boolean) → booleannot Unary negation 900 boolean → boolean< Less than 800 (T × T) → boolean> Greater than 800 (T × T) → boolean<= Less than or equal 800 (T × T) → boolean>= Greater than or equal 800 (T × T) → boolean==,= Equality 800 (T × T) → boolean or

(set × set) → boolean!=,<> Inequality 800 (T × T) → boolean or
(set × set) → booleansubset Subset 700 (set × set) → booleansuperset Superset 700 (set × set) → booleanunion Union 600 (set × set) → setdiff Di�eren
e 600 (set × set) → setsymdiff Symmetri
 di�eren
e 600 (set × set) → set+ Addition 500 (N × N) → N- Subtra
tion 500 (N × N) → N* Multipli
ation 400 (N × N) → N/ Division 400 (N × N) → Ninterse
t Interse
tion 300 (set × set) → set� Exponent 200 (N × N) → N- Unary subtra
tion 100 N → N

58 Chapter 4 � Modeling Language & Graphi
al Artifa
ts4.2.5.2 LoopsTwo kinds of loops are provided by s-COMMA, the forall loop and the sum loop. The forallloop is used to iterate over loop variables stated within
onstraints and the sum loop is used toperform the mathemati
al summation.The forall loop
an
ontain loops,
onditionals,
onstraints, and global
onstraints. The loopheader is de
lared in two parts. The left part de�nes the loop variable and the right part de�nesthe set of values to be traversed by the loop variable. The right part
an be stated by using arange of values. This range must be de�ned by integer values, integer
onstants, loop variables,or integer
onstant expressions (in
luding loop variables). An enumeration, or a one-dimensionalarray
an also be used to de�ne the right part of the loop header. In these
ases, the loop will
ross from 1 until the size of the enumeration or array (see Figure 4.25).forall(i in j+1..5+n) { forall(i in anEnumeration) { forall(i in aOneDimArray) {a[i℄ > i; a[i℄ > i; a[i℄ > i;...} } }Figure 4.25 � forall loops.To
ompa
t models, it is possible to embed an arbitrary number of nested forall loops ina single forall de�nition (see Figure 4.26). Forall loops holding only one statement
an omittheir
urly bra
kets.forall(i in 1..5) { forall(i in 1..5, j in i+1..5, k in j+1..5){forall(j in i+1..5) { ...forall(k in j+1..5) { }...}}}forall(m in menList)woman[man[m℄.wife℄.husband = m;Figure 4.26 � Nested forall loops.The sum loop performs an addition of a set of expressions. Its header is de�ned in the samemanner as in forall loops. Figure 4.27 depi
ts an example, where the expression `a[1℄*1 +a[2℄*2 + a[3℄*3' has been
ompressed in a sum loop. To avoid ambiguities, parentheses arounda[i℄*i are mandatory.sum(i in 1..3) (a[i℄*i) Figure 4.27 � The sum loop.4.2.5.3 ConditionalsConditionals are stated by means of the if and the if-else statement. Loops,
onditionals,
onstraints, an optimization statement, and global
onstraints
an be stated inside the body of

Chapter 4 � Modeling Language & Graphi
al Artifa
ts 59
onditionals. The
ondition
an be stated through an expression
ontaining values,
onstantsor de
ision variables. Curly bra
kets are mandatory when the
onditional holds more than onestatement. Examples are shown in Figure 4.28.if (quantity = 6)distBetCyl > 6;elsedistBetCyl > 3;if (quantity = 6) {distBetCyl > 6;...} else {distBetCyl > 3;...} Figure 4.28 � Conditionals.4.2.5.4 OptimizationOptimization statements allow to model optimization problems. Optimization statements arede�ned with a tag spe
ifying the kind of optimization to be applied. The [maximize℄ tag is usedfor maximizing and the [minimize℄ tag for minimizing expressions. An example is shown inFigure 4.29.
onstraint redu
e {a + b >
;[minimize℄ a + b;} Figure 4.29 � Optimization statement.4.2.5.5 Global ConstraintsTwo versions of the alldi�erent
onstraint are provided. The alldifferent() for
es that allthe values de�ned in the
lass must be di�erent, and the alldifferent(anIntegerArray) for
esthat all the values inside the given array must be di�erent.The alldifferent
onstraint is the unique global
onstraint in
luded in s-COMMA. Additionalglobal
onstraints
an be added using the extension me
hanisms presented in Se
tion 4.2.7.4.2.5.6 Compatibility ConstraintsA
ompatibility
onstraint is used to limit the
ombination of allowed values for a group ofde
ision variables to a group of given tuples. For instan
e, the
ompatibility
onstraint depi
tedin Figure 4.30 de�nes that only three possible tuples of values satisfy the
onstraint. This built-in
onstraint
an also be seen as synta
ti
 sugar for a boolean formula (depi
ted on the right sideof the �gure).

60 Chapter 4 � Modeling Language & Graphi
al Artifa
ts
ompatibility(a,b,
,d) { (a=3 and b=5 and
=8 and d=6) or(3, 5, 8, 6); (a=1 and b=2 and
=5 and d=8) or(1, 2, 5, 8); (a=9 and b=0 and
=3 and d=2)(9, 0, 3, 2);} Figure 4.30 � A
ompatibility
onstraint.4.2.6 Heuristi
 Orderings & Consisten
y Te
hniquesThe formalism to
ustomize the solving options of obje
t-oriented models is one of the manyinnovations of s-COMMA. Su
h a formalism permits the spe
i�
ation of the value and variableordering as well as the
onsisten
y level of
onstraints.4.2.6.1 Variable and Value OrderingAs mentioned in Se
tion 2.2.5, variable and value orderings stand for the sequen
e in whi
hthe variables and values are sele
ted for the variable-value assignment performed during the re-solution pro
ess. Di�erent heuristi
s exist for
arrying out this pro
ess, s-COMMA in
ludes themost solver-supported ones:Variable orderings:� min-dom-size: sele
ts the variable with the smallest domain size.� max-dom-size: sele
ts the variable with the largest domain size.� min-dom-val: sele
ts the variable with the smallest value in its domain.� max-dom-val: sele
ts the variable with the greatest value in its domain.� min-regret-min-dif: sele
ts the variable that has the smallest di�eren
e between thesmallest value and the se
ond-smallest value of its domain.� min-regret-max-dif: sele
ts the variable that has the greatest di�eren
e between thesmallest value and the se
ond-smallest value of its domain.� max-regret-min-dif: sele
ts the variable that has the smallest di�eren
e between thelargest value and the se
ond-largest value of its domain.� max-regret-max-dif: sele
ts the variable that has the greatest di�eren
e between the lar-gest value and the se
ond-largest value of its domain.Value orderings:� min-val: sele
ts the smallest value.� med-val: sele
ts the median value.� max-val: sele
ts the maximal value.To exemplify the use of this feature let us introdu
e a fragment of the engineering designproblem presented in [GF03℄. The aim of this problem is to assemble an industrial mixer subje
tto
on�guration
onstraints. Figure 4.31 shows the
omposition of su
h a system.

Chapter 4 � Modeling Language & Graphi
al Artifa
ts 61
Mixer

ImpellerEngine Shaft

Agitator

Cooler Condensor

Vessel

Figure 4.31 � The industrial mixer problem.s-COMMA provides four possibilities for de�ning heuristi
 orderings: (1) to sele
t the variableordering, (2) to sele
t the value ordering, (3) to sele
t both or (4) not sele
t any option, in this
ase the solving pro
ess will be performed using the default option given by the solver. Figure 4.32depi
ts the four
ases.// variable ordering sele
ted // value ordering sele
tedmain
lass Mixer [min-dom-size℄ { main
lass Mixer [min-val℄ {... ...// both sele
tions // no sele
tionmain
lass Mixer [min-dom-size,min-val℄ { main
lass Mixer {... ...Figure 4.32 � Value and variable orderings.RemarkSin
e the sear
hing pro
ess is performed for the entire problem, we
annot
onsider di�erentheuristi
s for ea
h
lass. So, if more than one
lass in
ludes any ordering option, just the optionstated at the main
lass will be
onsidered.4.2.6.2 Consisten
y LevelAs we have explained in Se
tion 2.2.3, ba
ktra
king pro
edures
an be
omplemented with
onsisten
y algorithms to dete
t failures earlier, thus avoiding the inspe
tion of useless spa
es.This task is in general performed by variants of the ar
-
onsisten
y algorithm embedded in thesear
h engine of the solver. s-COMMA provides the most-solver supported
onsisten
y levels, thebound and the domain
onsisten
y:� bound: an ar
-
onsisten
y algorithm is used to redu
e the domain of involved variables, butjust the bounds of the variables' domain are updated.� domain: an ar
-
onsisten
y algorithm is used to redu
e the domain of involved variables,but the full domain of variables is updated.To spe
ify these options s-COMMA provides three possibilities: (1) to sele
t the
onsisten
ylevel for a
lass, (2) to sele
t the
onsisten
y level for an obje
t; and (3) to sele
t the
onsisten
y

62 Chapter 4 � Modeling Language & Graphi
al Artifa
tslevel for a
onstraint. Let us note that
ases 1 and 2 lead to a �
as
ade e�e
t� i.e., the sele
tedoption will be inherited by obje
ts and
onstraints belonging to the
omposition. Only obje
tsand
onstraints with their own option do not inherit, they keep their own sele
ted option.Figure 4.33 depi
ts an example on whi
h two
lasses of the mixer problem have been tuned.The Mixer
lass has been
on�gured with a domain
onsisten
y level leading the �
as
ade e�e
t� toset the obje
ts and
onstraints of the mixer's
omposition (Vessel, Agitator, Cooler, Condenser,et
.) with the domain option, ex
ept for the Engine obje
t e and the
onstraint e.power >=2*i.power whi
h keep their own option (bound
onsisten
y).RemarkThe
as
ade e�e
t provided by the obje
t-oriented style of s-COMMA allows us to avoid thede�nition of solving options for
onstraints one by one.// tuned
lassmain
lass Mixer [domain℄ {Vessel v;Agitator a;
onstraint design {a.i.rps <= v.diameter/a.i.diameter;a.i.diameter <= a.i.ratio*v.diameter;...// tuned obje
t & tuned
onstraint
lass Agitator {[bound℄ Engine e;Impeller i;Shaft s;
onstraint power {[bound℄ e.power >= 2*i.power;... Figure 4.33 � Consisten
y level.Let us note that the
ombination of
onsisten
y level with value and variable orderings ispermitted (see Figure 4.34).main
lass Mixer [min-dom-size,min-val,domain℄ {... Figure 4.34 � Ordering heuristi
s &
onsisten
y level.NoteA given heuristi
 ordering or a given
onsisten
y level
an only be used if the sele
ted underlyingsolver has support for it.

Chapter 4 � Modeling Language & Graphi
al Artifa
ts 634.2.7 ExtensibilityExtensibility is another important feature of s-COMMA. New
onstraints, fun
tions, orderingheuristi
s and
onsisten
y levels
an be integrated by de�ning extension �les. This me
hanismensures the semanti
s of the s-COMMA language adaptable to potential upgrades of the solverlayer.4.2.7.1 Adding
onstraintsLet us present this feature by re
alling the so
ial golfers problem. Consider that a programmeradds to the Ge
ode/J solver a new global
onstraint to enfor
e the a <lex b lexi
ographi
 ordering.This
onstraint operates over a set a = {x0, x1, ..., xn} and a set b = {y0, y1, ..., yn} of n integervalues, ensuring that: x0 < y0; x1 < y1 when x0 = y0; x2 < y2 when x0 = y0 and x1 =
y1; ...;xn−1 < yn−1 when x0 = y0, x1 = y1, ..., and xn−2 = yn−2 [FHK+02℄. The a <lex b
onstraint will be used to remove the symmetries [Pug93, CGLR96, GS00℄ (eliminate redundantsolutions) of the already presented so
ial golfers model.To use this new
onstraint we
an extend the semanti
s of the s-COMMA
onstraint language.This
an be a
hieved by de�ning an extension �le where the rules of the translation are stated.Su
h a �le may be
omposed of one or more main blo
ks (see Figure 4.35). Main blo
ks hold thetranslation rules and denote the solver to whi
h the mapping must be performed. For instan
e,the �rst main blo
k de�nes the mapping rules for the Ge
ode/J solver.1. Ge
odeJ {2. Constraint {3. lexOrder(a,b) -> "ge
odeJLexi
alOrdering(a,b);";4. }5. }6.7. ECLiPSe {8. Constraint {9. ...10. }11. ... Figure 4.35 � Adding
onstraints to s-COMMA.Within the Ge
odeJ blo
k, a Constraint blo
k has been de�ned. This blo
k owns the mappingrule of the new
onstraint to be added. This rule
onsists of two parts. The left part of the rulede�nes the statement used to
all the new fun
tion from the s-COMMA language, and the rightpart de�nes the statement used to
all the new built-in method from the solver �le. In thisway, the rule states that lexorder(a,b) will be translated to ge
odeJLexi
alOrdering(a,b)in the mapping pro
ess from s-COMMA to Ge
ode/J,. To fa
ilitate the translation of the inputparameters, variables (a and b) must be tagged with `$' symbols. In the example, the �rstparameter and the se
ond parameter of the new s-COMMA
onstraint will be translated as the�rst parameter and the se
ond parameter of the Ge
ode/J method
all, respe
tively. The use ofthe new
onstraint in the so
ial golfers problem is shown in Figure 4.36.

64 Chapter 4 � Modeling Language & Graphi
al Artifa
ts1. import lexOrderings.ext;2. ...3.4. main
lass So
ialGolfers {5.6. Week weekS
hed[w℄;7.8.
onstraint differentGroups {9. forall(w1 in 1..w, w2 in w1+1..w)10. forall(g1 in 1..g, g2 in 1..g)11.
ard(weekS
hed[w1℄.groupS
hed[g1℄.players interse
t12. weekS
hed[w2℄.groupS
hed[g2℄.players) <= 1;13. }14.15.
onstraint removeSymmetries {16. forall(w1 in 1..weeks, g1 in 1..groups-1)17. lexOrder(weekS
hed[w1℄.groupS
hed[g1℄.players,18. weekS
hed[w1℄.groupS
hed[g1+1℄.players);19.20. forall(w1 in 1..weeks-1)21. lexOrder(weekS
hed[w1℄.groupS
hed[1℄.players,22. weekS
hed[w1+1℄.groupS
hed[1℄.players);23. }24. } Figure 4.36 � Removing symmetries from the so
ial golfers problem.4.2.7.2 Adding fun
tionsTo present the usefulness of this feature, let us introdu
e the Sudoku problem. This problem
onsists in �lling a 9 × 9 matrix so that ea
h
olumn, ea
h row, and ea
h of the nine 3 × 3 sub-matri
es
ontains di�erent digits from 1 to 9. A model for this problem is depi
ted in �gure 4.37.The data �le is
omposed of two
onstants and a variable assignment. The
onstant n de�nesthe size of the matrix and s the size of the sub-matri
es. The variable assignment is used to�ll some of the
ases of a two-dimensional array
alled puzzle. This array is stated at line 5of the model �le and represents the matrix of the problem. The
onstraint zones of the modelare de�ned next. The differentInRowsAndColumns
onstraint zone ensures that every row and
olumn of the matrix
ontains di�erent values, and differentInSubMatri
es guarantees thatall the 3 × 3 sub-matri
es get di�erent values.Let us now
onsider that three new fun
tions operating over two-dimensional arrays are addedto Ge
ode/J. A fun
tion to get the rows, another to get the
olumns and a third one to get sub-matri
es. Figure 4.38 depi
ts the
orresponding extension �le. The parameter mat
orrespondsto the matrix on whi
h the fun
tion a
ts, i and j are the indexes of the row and of the
olumnto be obtained, respe
tively. The third fun
tion has four parameters, the pair (i1,j1) representsthe
oordinates of the upper-left
orner of the sub-matrix and the pair (i2,j2) represents thelower-right
orner of the sub-matrix.The resulting model using these new fun
tions is depi
ted in Figure 4.39. Here, we
an seethat the model has been de�ned in a more
on
ise and elegant way. In addition, the use of thealldi�erent
onstraint will improve the resolution pro
ess of the problem.

Chapter 4 � Modeling Language & Graphi
al Artifa
ts 65Data File1. int s := 3;2. int n := 9;3. int Sudoku.puzzle := [[_, _, _, _, _, _, _, _, _℄,[_, 6, 8, 4, _, 1, _, 7, _℄,[_, _, _, _, 8, 5, _, 3, _℄,[_, 2, 6, 8, _, 9, _, 4, _℄,[_, _, 7, _, _, _, 9, _, _℄,[_, 5, _, 1, _, 6, 3, 2, _℄,[_, 4, _, 6, 1, _, _, _, _℄,[_, 3, _, 2, _, 7, 6, 9, _℄,[_, _, _, _, _, _, _, _, _℄℄;Model File1. import Sudoku.dat;2.3. main
lass Sudoku {4.5. int puzzle[n,n℄ in [1,n℄;6.7.
onstraint differentInRowsAndColumns {8. forall(k in 1..n, i in 1..n, j in i+1..n) {9. puzzle[k,i℄ != puzzle[k,j℄;10. puzzle[i,k℄ != puzzle[j,k℄;11. }12. }13.14.
onstraint differentInSubMatri
es {15. forall(x1 in 1..s, y1 in 1..s, x2 in 1..s) {16. forall(y2 in 1..s, x3 in 1..s, y3 in 1..s) {17. if(x2 != x3 and y2 != y3)18. puzzle[(x1 - 1) * s + x2, (y1 - 1) * s + y2℄ !=19. puzzle[(x1 - 1) * s + x3, (y1 - 1) * s + y3℄;20. }21. }22. }23. } Figure 4.37 � The Sudoku problem.1. Ge
odeJ {2. Constraint {3. lexOrder(a,b) -> "ge
odeJLexi
alOrdering(a,b);";4. }5. Fun
tion {6. getRow(mat,i) -> "ge
odeJGetRow(mat,i);";7. getColumn(mat,j) -> "ge
odeJGetColumn(mat,j);";8. getSubMatrix(mat,i1,i2,j1,j2) -> "ge
odeJGetSubMatrix(mat,$i1$,$i2$,$j1$,$j2$);";9. }10. }11. ... Figure 4.38 � Adding new fun
tions.

66 Chapter 4 � Modeling Language & Graphi
al Artifa
ts1. main
lass Sudoku {2.3. int puzzle[n,n℄ in [1,n℄;4.5.
onstraint differentInRowsAndColumns {6. forall(i in 1..n) {7. alldifferent(getColumn(puzzle, i));8. alldifferent(getRow(puzzle, i));9. }10. }11.12.
onstraint differentInSubMatri
es {13. forall(i in 1..s, j in 1..s)14. alldifferent(getSubMatrix(puzzle,(i-1)*s + 1,i*s,(j-1)*s + 1,j*s));15. }16. } Figure 4.39 � Using the new fun
tions in the Sudoku problem.4.2.7.3 Adding heuristi
 orderings and
onsisten
y levelsExtensibility for heuristi
 orderings and
onsisten
y levels is also provided. Three new blo
ks
an be added to the extension �le: a Variable-Ordering blo
k, a Value-Ordering blo
k, and aConsisten
y-Level blo
k. As an example, let us
onsider that new solving options are introdu
edin the Ge
ode/J solver. A variable ordering
alled BVAR_NONE, whi
h sele
ts the leftmost variable.A value ordering
alled BVAL_SPLIT_MIN, whi
h sele
ts the �rst value of the lower half of thedomain; and the ICL_VAL
onsisten
y level, whi
h performs the Ge
ode value
onsisten
y [www1 ℄.The
orresponding extension �le and the Mixer
lass tuned with the new options are shown inFigure 4.40 and in Figure 4.41, respe
tively.1. Ge
odeJ {2. Constraint {3. ...4. Variable-Ordering {5. first -> BVAR_NONE;6. }7. Value-Ordering {8. lower-half -> BVAL_SPLIT_MIN;9. }10. Consisten
y-Level {11. value -> ICL_VAL;12. }13. } Figure 4.40 � Adding new heuristi
 orderings and
onsisten
y levels.

Chapter 4 � Modeling Language & Graphi
al Artifa
ts 671. main
lass Mixer [first,lower-half℄ {2. [value℄ Vessel v;3. Agitator a;4.
onstraint design {5. [value℄ a.i.rps <= v.diameter/a.i.diameter;6. [value℄ a.i.diameter <= a.i.ratio*v.diameter;7. }8. } Figure 4.41 � The tuned mixer
lass.4.3 The s-COMMA GUIThe s-COMMA GUI is the graphi
al user interfa
e for the s-COMMA language. The visual languageof the s-COMMA GUI provides a more
on
ise per
eption of models, allowing to state problems viatwo kinds of graphi
al artifa
ts: Data artifa
ts and
lass artifa
ts (see Figure 4.42).

Figure 4.42 � Class and data artifa
ts.Class artifa
ts
orrespond to the graphi
al representation of
lasses. Class artifa
ts have bydefault three
ompartments, the upper
ompartment for the
lass name, the middle
ompart-ment for attributes and the bottom one for
onstraint zones. By
li
king on the
lass artifa
t itsspe
i�
ation
an be opened to de�ne its properties, its attributes and
onstraint zones. Several
lass properties
an be de�ned, for instan
e, the name, if the
lass is a main
lass, a super-
lass, a des
ription and the solving options. Relationships
an be used to de�ne inheritan
e or

68 Chapter 4 � Modeling Language & Graphi
al Artifa
ts
omposition between
lasses. Data �les are represented by data artifa
ts, being
omposed of two
ompartments, one for the �le name and another for both the
onstants and variable assignments.NoteThe graphi
al artifa
ts of the s-COMMA GUI have been designed as an extension of the UML
lassartifa
t provided by the UML Infrastru
ture Library Basi
 Pa
kage. This ensures the s-COMMAGUI notation to be entirely supported by the UML Infrastru
ture Spe
i�
ation [www19 ℄.Figure 4.43 shows a snapshot of the s-COMMA GUI where the stable marriage problem is re-presented by a
lass diagram. This diagram is
omposed of three
lass artifa
ts, one to representmen, another to represent women, and a third one to des
ribe the stable marriages. The
ompo-sition relationships are depi
ted through
onne
tions among
lasses. The right-panel of the toolshows the
orresponding s-COMMA textual version, whi
h is instantly generated on
e graphi
alartifa
ts are stated on the drawing frame.

Figure 4.43 � The stable marriage problem on the s-COMMA GUI.

Chapter 4 � Modeling Language & Graphi
al Artifa
ts 69The StableMarriage
lass has two attributes, one array to represent the group of men andother array to represent the group of women. Attributes
an be stated using the attribute panelof the
lass window illustrated in Figure 4.44. The attribute panel permits to add, modify anddelete attributes. Ea
h attribute
an be de�ned by giving its type, name, and domain. To de�neattributes as one-dimensional arrays the left array �eld must be �lled with its size. Matri
es arede�ned �lling both array �elds, the left one for the row size and the right one for the
olumnsize. In the example, the attribute man is an array having Man as its type and menList as its size.The domain �elds are not �lled sin
e the attribute is an obje
t array. The
he
k box allows oneto de�ne set variables and the last �eld is used to de�ne an optional
onsisten
y level to be usedfor obje
ts.

Figure 4.44 � Attributes on the s-COMMA GUI.Constraint zones are stated in a similar way. Figure 4.45 shows the
onstraint zone panel,where
onstraint zones
an be added, modi�ed and deleted. Short
ut buttons are provided togenerate a
ode framework to be then
ompleted by the user, for instan
e to state loops,
ondi-tionals, optimization statements, and
ompatibility
onstraints. The
onstraints must be writtenby hand.Both
onstants and variable assignments are stated in the data window. They are de�nedgiving a type, a name, and a value. Figure 4.46 shows the enumeration
onstant menList, thevalue �eld is �lled with the names of the group of men.The s-COMMA GUI in
ludes typi
al operations for handling proje
ts, managing some prefe-ren
es and printing draws and
odes. Also,
ommon short
uts su
h as
ut,
opy, paste, undo andredo are provided. Buttons for
hanging the properties of the drawing frame (zoom-in, zoom-out,s
aling the grid) have been
onsidered as well (see Figure 4.47).

70 Chapter 4 � Modeling Language & Graphi
al Artifa
ts

Figure 4.45 � Constraints on the s-COMMA GUI.

Figure 4.46 � Data �les on the s-COMMA GUI.

Chapter 4 � Modeling Language & Graphi
al Artifa
ts 71

Figure 4.47 � Some short
uts of the s-COMMA GUI.4.4 SummaryIn this
hapter we have presented the s-COMMA language and the s-COMMA GUI. We haveillustrated several CP models through the s-COMMA language, showing that the expressivenesso�ered is suitable for di�erent kinds of problems. The obje
t-oriented style provided is usefulfor getting elegant and modular models. These models
an be tuned with a simple formalismto get e�
ient solving pro
esses. This formalism permits to de�ne heuristi
 orderings as well asthe
onsisten
y level of
onstraints. The expressiveness of the base language
an be extended,an extension �le
an be de�ned to add new fun
tions,
onstraints, and solving options to thelanguage. Finally, the s-COMMA GUI provides a visual and more
on
ise representation of models.The next
hapter fo
uses on the transformation pro
ess from graphi
al artifa
ts to solvermodels. We present the tools and te
hniques involved in the transformation, and we illustrateseveral examples of the platform implementation.

CHAPTER5
Mapping Models to

Solvers

A main purpose of our approa
h is to transform a solver-independent model to di�erentsolver-dependent models. That requires (1) to translate languages, from high-level mode-ling languages to lower level
onstraint solving languages or
omputer programming languages,and (2) to modify model stru
tures a

ording to the
apabilities of solvers, for instan
e to unrollloops, or to �atten an obje
t-oriented
omposition.
Flat s-COMMA

s-COMMA compiler

Graphical
Artifacts

Parsing Semantic
Checking

s-COMMA

Model Model

Solver
Model

Refactoring +
Code Generation

Parsing

Code
Generation

Mapping Tool

Code
Generation

s-COMMA
GUI

Approach

Parsing

Code
Generation

Hand-Written
Approach
Model Eng.

Figure 5.1 � The s-COMMA ar
hite
ture.To support these requirements we introdu
e a new solver-independent ar
hite
ture able toperform the whole transformation in three main stages (see Figure 5.1). Firstly, the s-COMMA GUIgenerates the
orresponding s-COMMA model by means of a set of Java pa
kages and pro
edures.In the se
ond stage, the s-COMMA model is parsed, semanti
ally
he
ked and then transformedto the intermediate Flat s-COMMA model. During this translation, several refa
toring steps areperformed to be
loser to the solver level. The idea is to simplify the mapping pro
ess to thesolver model, and
onsequently to fa
ilitate the integration of new solvers to the platform. Inthe third and last stage, the Flat s-COMMA model is parsed and transformed to the solver model.This stage is performed by our so-
alled mapping tool, in whi
h two transformation approa
hes
an be identi�ed. The �rst approa
h has been built using a parsing tool and hand-written Javapro
edures, and the se
ond approa
h has been designed and implemented using te
hniques andtools from the model engineering world.In this
hapter, we present the
omplete transformation pro
ess from graphi
al artifa
ts tosolver programs. The �rst se
tion is devoted to the transformation from the s-COMMA GUI to the73

74 Chapter 5 � Mapping Models to Solverss-COMMA model. Some Java
lasses and pro
edures are illustrated to provide an overview of thattransformation. The following se
tion presents the transformation from s-COMMA to Flat s-COMMA.The te
hni
al aspe
ts of the parsing, semanti

he
king, and refa
toring steps are illustrated bymeans of several examples. We believe this is of interest to designers of further CP languages. Thelast se
tion targets the design of the mapping tool. The grammar approa
h and the model-drivenapproa
h are illustrated and
ompared.5.1 From s-COMMA GUI to s-COMMAThe prototype implementation of the s-COMMA GUI is
ompletely written in Java (about 30000
ode lines in
luding the s-COMMA
ompiler) and the Swing widget library is used to design thegraphi
al interfa
es. Three main Java pa
kages
an be identi�ed to support the transformationfrom graphi
al artifa
ts to s-COMMA models (see Figure 5.2):� dialogBoxes:
ontains the dialog boxes that allow users to �ll the information of the model.� artifa
ts:
ontains the
lasses that allow users to
reate, to drag, and to resize the artifa
tsin the drawing pane of the s-COMMA GUI.� modelInformation:
ontains the
lasses that store the information of the model (e.g.,
onstants,
lasses, attributes and
onstraint zones).
DataDialog ClassDialog

dialogBoxes

RelationDialog

b

ClassArtifact

artifacts

b bb

SCommaClass

modelInformation

bb

ConstantDialog

AttributeDialog

SCommaAttribute

bb bFigure 5.2 � s-COMMA GUI Java pa
kages.In the dialogBoxes pa
kage, ea
h graphi
al element appearing in a model has a dialog boxde�ned by a Java
lass. For instan
e, one
lass for data artifa
ts, one for
lass artifa
ts, andanother for relationships. Every element
ontained in a graphi
al artifa
t has a dedi
ated
lassas well. For instan
e, one
lass to manage the attributes, one to manage the
onstants and onefor the
onstraint zones. Ea
h of these
lasses is
omposed of the
ommon methods to de�ne theposition of frames, text �elds and buttons in the layout of the dialog box. These buttons triggera
tions to add, delete or modify elements of the model. Dialog box
lasses
ontain obje
ts, from

Chapter 5 � Mapping Models to Solvers 75both the artifa
t pa
kage and the modelInformation pa
kage. These obje
ts are responsiblefor gathering the information provided by the user and for storing it in order to generate the
orresponding s-COMMA textual version.To show the intera
tion among these
omponents, let us
onsider the addition of a s-COMMAattribute to a s-COMMA
lass artifa
t. Four
lasses parti
ipate in this pro
ess: AttributeDialog,ClassArtifa
t, SCommaClass, and SCommaAttribute. The pa
kages owning these
lasses andthe relationships among them
an be seen in Figure 5.2. The goal is to
apture the informa-tion of the s-COMMA attribute from the
orresponding dialog box, and then storing it in themodelInformation pa
kage.The pro
ess begins when the user �lls the properties (type, name, array dimensions, if thevariable is de�ned as a set, domain, and
onsisten
y level) of the s-COMMA attribute throughthe dialog box. These properties are
aptured between lines 6 and 12 of the AttributeDialog
lass (see Figure 5.3). The getText() method returns the string provided by the user in the text�eld, and isSele
ted() returns true whether the
he
k box is
he
ked. At the end of the �le,attribute is added to an instan
e of a ClassArtifa
t
lass
alled
lArtifa
t.1. publi

lass AttributeDialog extends JDialog implements A
tionListener {2. ...3. private ClassArtifa
t
lArtifa
t;4. private SCommaAttribute attribute;5. ...6. attribute.setType(attType.getText());7. attribute.setName(attName.getText());8. attribute.setOneDimArray(attOneDimArray.getText());9. attribute.setTwoDimArray(attTwoDimArray.getText());10. attribute.setIsSet(attIsSet.isSele
ted());11. attribute.setDomain(attDomMin.getText(),attDomMax.getText());12. attribute.setConsLevel(attConsLevel.getText());13.
lArtifa
t.addAttribute(attribute);14. ... Figure 5.3 � The AttributeDialog
lass.The ClassArtifa
t
aptures the attribute obje
t via the addAttribute method (line 5 ofFigure 5.4), whi
h then stores it in an instan
e of a sCommaClass.1. publi

lass ClassArtifa
t extends Artifa
tDrawing {2.3. private SCommaClass sCClass = new SCommaClass();4. ...5. publi
 void addAttribute(SCommaAttribute attribute) {6. sCClass.addAttribute(attribute);7. }8. ... Figure 5.4 � The ClassArtifa
t
lass.The sCommaClass is illustrated in Figure 5.5. It is
omposed of attributes (lines 3 to 9) tostore the properties of s-COMMA
lasses (e.g. des
ription, name, et
) and methods to managethese attributes (lines 11 to 20). The pro
ess �nish when the s-COMMA attribute is stored in the

76 Chapter 5 � Mapping Models to Solversmodel information pa
kage. This is done via the addAttribute method, whi
h adds the inputparameter att (re
eived from the ClassArtifa
t
lass at line 6) to the attributes array (line12).1. publi

lass SCommaClass {2.3. private String des
ription;4. private String name;5. ...6. private ArrayList<SCommaAttribute> attributes =7. new ArrayList<SCommaAttribute>();8. private ArrayList<SCommaConstraintZone>
Zones =9. new ArrayList<SCommaConstraintZone>();10.11. publi
 void addAttribute(SCommaAttribute att) {12. attributes.add(att);13. }14. ...15. publi
 void deleteAttribute(String name) {16. for (SCommaAttribute a : attributes)17. if (a.getName().equals(name))18. attributes.remove(a);19. }20. ... Figure 5.5 � The SCommaClass
lass.On
e the information obtained from the dialog boxes is stored in the modelInformationpa
kage, it
an be retrieved to generate the
orresponding s-COMMA textual model. This pro
essis automati
ally done when the user
loses the dialog box. On the left side of Figure 5.6, theJava method to produ
e the
ode of s-COMMA
lasses is illustrated. An example of a generateds-COMMA
lass is shown on the right side of the same �gure.1. publi
 String getCode() {2.3. StringBuffer str = new StringBuffer();4.5. str.append(generateDes
()); //This
lass represents a Turbo Engine6. str.append(generateIsMain()); main
lass TurboEngine extends Engine [bound℄ {7. str.append("
lass ");8. str.append(sCClass.getName()); ...9. str.append(generateSuperClass());10. str.append(generateSolvingOpt());11. str.append(" {\n");12. str.append(generateAttributes()); int diameter in [34, 250℄;13. str.append(generateConstraintZones());
onstraint distan
e { ... }14. str.append("}"); }15. return str.toString();16. } Figure 5.6 � The getCode method.The
ode is built from a systemati
 union of strings. The des
ription of the s-COMMA
lassis the �rst string to be appended. The
ode of the
lass follows. The
lass header
onsists of an

Chapter 5 � Mapping Models to Solvers 77optional token main, a
lass token, a
lass name, an optional inheritan
e de�nition, and solvingoptions. The body of the
lass is en
losed with
urly bra
ket symbols (`{}'), whi
h are appendedat lines 11 and 14. Within the
lass body, the attributes and
onstraint zones are added.5.2 From s-COMMA to Flat s-COMMAThe transformation from s-COMMA to Flat s-COMMA is the most
omplex part of the wholepro
ess. Several transformations must be done so as to fa
ilitate the task of solver-translators,and also to ease the integration of new solvers to the platform. Three main tasks are identi�ed:parsing, semanti

he
king and refa
toring to Flat s-COMMA.5.2.1 ParsingThe parsing pro
ess is responsible for
he
king the
orre
tness of the syntax of the inputstring, and for building an abstra
t syntax tree (AST) to be explored in the following phases.The parsing pro
ess
onsists of two main tasks: the lexi
al analysis and the synta
ti
 analysis.The lexi
al analysis must dete
t tokens from the input string, and the synta
ti
 analysis deter-mines whether these tokens form valid expressions
onform to the grammar of the language. Theimplementation of these two main tasks has been supported by the ANTLR language re
ognitiontool [www11 ℄. An ANTLR lexer performs the lexi
al analysis and an ANTLR parser deals with thesynta
ti

he
king.5.2.1.1 LexerThe lexer is able to generate the tokens given an input string by means of a set of reservedword de�nitions and regular expressions (also
alled rules in ANTLR). Figure 5.7 illustrates afragment of the lexer �le. The reserved words of the language are de�ned in a spe
i�
 blo
k
alled tokens (to avoid ambiguities with identi�ers). Identi�ers are used for giving a name tolanguage
onstru
ts that require it, for instan
e a
lass name, a variable name, a
onstraint zonename, et
. The rule to re
ognize them is stated at line 12. The option testLiterals=true isused to expli
itly state that identi�ers must be
he
ked with respe
t to the reserved words of thetokens blo
k. The paraphrase option is used for showing "an identifier" in error messagesinstead of the name of the token (an error message
an be seen in Figure 5.14). The IDENT rulestates that an identi�er must �rstly be
omposed of a LETTER or an unders
ore symbol followedby a set of zero or more LETTER, DIGIT or unders
ore symbols. The rules to re
ognize letters anddigits are de�ned next, the double dot operator ('..') is used to
onsider a range of
hara
ters.In the following lines, several other rules are de
lared, for instan
e to re
ognize the pun
tuationsymbols (lines 24 to 26), the bra
kets (lines 29 to 31) and the operators (lines 34 to 36).Dealing with rule ambiguitiesThe rule to re
ognize numbers (reals and integers) is shown in Figure 5.8. This pro
ess ismore
omplex sin
e the number of tokens to
he
k may be undetermined. For instan
e, to beable to re
ognize 5.2 as a real (and not as an integer) it should be ne
essary to dete
t just twotokens (2-lookahead), 5 as a digit and then the dot as a pun
tuation symbol.

78 Chapter 5 � Mapping Models to SolversNoteThe lookahead determines the number of tokens to be re
ognized for mat
hing a rule, it isnormally set to 2. Bigger lookaheads may lead to slower parsing pro
esses.1. tokens2. {3. RES_IMPORT = "import" ;4. RES_MAIN = "main" ;5. RES_CLASS = "
lass" ;6. RES_EXTENDS = "extends" ;7. RES_CONSTRAINT = "
onstraint" ;8. RES_FORALL = "forall" ;9. ...10. }11.12. IDENT13. options {testLiterals=true; paraphrase="an identifier";}14. : (LETTER|'_') (LETTER|DIGIT|'_')*15. ;16.17. LETTER : 'a'..'z'18. | 'A'..'Z'19. ;20.21. DIGIT : '0'..'9';22. ...23.24. PUN_SEMI_COLON : ';' ;25. PUN_COMMA : ',' ;26. PUN_DOT : '.' ;27. ...28.29. BRA_CURLY_OPEN : '{' ;30. BRA_CURLY_CLOSE : '}' ;31. BRA_ROUND_OPEN : '(' ;32. ...33.34. OP_PLUS : '+' ;35. OP_MINUS : '-' ;36. OP_MULTIPLICATION : '*' ;37. ... Figure 5.7 � Tokens and rules in the ANTLR lexer of s-COMMA.However, a 2-lookahead may not be enough to mat
h di�erent rules sharing more than twoinitial tokens. For example, a real number with an integer part having two or more digits
annotbe re
ognized sin
e the two initial digits may belong as well to an integer number as to a realnumber. This kind of ambiguities
an be avoided by using a synta
ti
 predi
ate [PQ94℄, whi
his a spe
i�
 ANTLR feature that permit us to arbitrary extend the lookahead of a determinedrule. Synta
ti
 predi
ates are de�ned as (a) ⇒ a|b, where a is the rule to be mat
hed with anextended lookahead, and b is the rule to be re
ognized if a
annot be mat
hed. For instan
e, the

Chapter 5 � Mapping Models to Solvers 79rule to de�ne a NUMBER is
omposed of a statement to re
ognize reals (line 2) and a statementto re
ognize integers (line 3). The �rst statement de�nes that a real is
omposed of a set of oneor more digits followed by a dot and another set of one or more digits. The se
ond statementde�nes that an integer is
omposed of one or more digits. The rule �rst tries to mat
h reals, ifthis o

urs the token is set as a real literal (LIT_REAL). Otherwise, the rule re
ognizes an integer.1. NUMBER : ((DIGIT)+ PUN_DOT (DIGIT)+) =>2. (DIGIT)+ PUN_DOT (DIGIT)+ { $setType (LIT_REAL);}3. | (DIGIT)+ { $setType (LIT_INT);}4. ; Figure 5.8 � The lexer rule to de�ne numbers.NoteThe use of synta
ti
 predi
ates generates a grammar
alled pred-LL(K), where K denotes thelookahead.5.2.1.2 ParserThe parser is able to perform the synta
ti
 analysis by mat
hing a set of rules
omposed of thetokens stated in the lexer �le. These rules are built
onform to the grammar of the language andthey are responsible for
apturing the grammati
al stru
ture of the analyzed string by produ
ingan abstra
t synta
ti
 tree (AST).In ANTLR, ASTs are built using a Lisp-based notation, `#' being the operator to de�ne treestru
tures. For instan
e, #(#a,#b,#
)
orresponds to a tree where a is the root, and b and
are its
hild nodes. For example,
onsider the �rst rule showed in Figure 5.9, whi
h mat
hes anaddition between two integer tokens. The AST for this rule is built using OP_PLUS as the root,and the integer tokens as
hild nodes. A simpler equivalent version of this rule (line 5)
an bestated by using the `�' operator. The
orresponding AST is shown on the right side of the �gure.Non leaf nodes are represented by a folder i
on and leaf nodes by a �le i
on.1. add_expr : e1:LIT_INT op:OP_PLUS e2:LIT_INT2. { ## = #(#op, #e1, #e2);}3. ;4.5. add_expr : LIT_INT OP_PLUS^ LIT_INT6. ; Figure 5.9 � Three parser rules in ANTLR.In the
ase of rules having no appropriate token to be used as AST root, it is possible tointrodu
e a root token. In Figure 5.10, the rule identList is de�ned as a set of one or moreIDENT tokens, and no token is suitable to be
ome the AST root. A new token
alled LIST isintrodu
ed, and the tree is formed with the LIST token as root and the set of IDENT tokens asits
hild nodes.

80 Chapter 5 � Mapping Models to Solvers1. identList : (IDENT)+2. {## = #(#[LIST, "LIST"℄ ,##);}3. ; Figure 5.10 � Introdu
ing a proper tree node.Figure 5.11 illustrates �ve rules of the parser �le of s-COMMA. Su
h rules are
omposed oftokens,
alls to other rules and statements for building ASTs. The �rst rule
onsists of tworule
alls (staImport and defClass) and a statement to de�ne the root of the AST ({## = #(#[MODEL, "MODEL"℄ ,##);}). The rule states that a model is
omposed of a set of zero or moreimport statements followed by a set of zero or more
lass de�nitions. Let us noti
e that lower
ase is used to rule names in order to di�erentiate them from tokens.1. model : (staImport)* (defClass)*2. {## = #(#[MODEL, "MODEL"℄ ,##);}3. ;4.5. defClass : (RES_MAIN)? RES_CLASS^ IDENT6. (extendsClause)? (solvingOpts)?7. BRA_CURLY_OPEN!
lassBody8. BRA_CURLY_CLOSE!9. ;10.11.
lassBody : attributeSet
onstraintZoneSet12. { ## = #(#[CLASS_BODY,13. "CLASS_BODY"℄,##);}14. ;15.16. attributeSet : (attribute)*17. { ## = #(#[ATTRIBUTE_SET,18. "ATTRIBUTE_SET"℄,##);}19. ;20.21.
onstraintZoneSet : (
onstraintZone)*22. { ## = #(#[CONSTRAINT_ZONE_SET,23. "CONSTRAINT_ZONE_SET"℄,##);}Figure 5.11 � Parser rules of s-COMMA.Lines 5 to 8 des
ribe the rule for re
ognizing s-COMMA
lasses. A
lass de�nition begins withthe main reserved word given by the RES_MAIN token. The use of this token is optional, denoted bythe `?' symbol. The RES_MAIN token is followed by the
lass reserved word and by an identi�er
orresponding to the name of the
lass. The extendsClause rule is also optional, being
alledonly if the s-COMMA
lass owns a super
lass. Then, the solvingOpts rule
all is used to re
ognizethe solving options stated in the
lass. The body of the
lass is de�ned within
urly bra
kets.Ea
h bra
ket token is post�xed with a `!' symbol. Su
h a symbol de�nes the no in
lusion of atoken in the ASTs. It is used for tokens giving no relevant information for the parsing pro
ess.

Chapter 5 � Mapping Models to Solvers 81The body of a
lass is de�ned as a set of attributes and a set of
onstraint zones. Attributesare re
ognized by the �rst rule of Figure 5.12. Su
h a rule states that the de
laration of anattribute begins with its
onsisten
y level. This rule
all is optional and followed by the type ofthe attribute. The reserved word set is next de�ned, it is also optional and it is used to state setvariables. The name of the variable follows as an IDENT token. Then, the optional array rule
allis used to de�ne arrays. The domain of the variable is de�ned by the reserved word in followedby a
all to the domain rule. The de
laration must be terminated by a semi
olon symbol.1. attribute: (
onsLevel)? type (RES_SET)? IDENT2. (array)? (RES_IN! domain)? PUN_SEMI_COLON!3. { ## = #(#[ATTRIBUTE, "ATTRIBUTE"℄ ,##);}4. ...5.6.
onstraintZone : RES_CONSTRAINT! IDENT7. BRA_CURLY_OPEN!
onstraintZoneBody8. BRA_CURLY_CLOSE!9. { ## = #(#[CONSTRAINT_ZONE,10. "CONSTRAINT_ZONE"℄,##);}11. ;12.13.
onstraintBody : (
onstraint|globalCons|14.
ompatibilityCons|staOpt|15. staForall|staIfElse)*16. ;17.18.
onstraint : (
onsLevel)? expression PUN_SEMI_COLON!19. { ##=#(#[CONSTRAINT, "CONSTRAINT"℄, ##);}20. ;21. ... Figure 5.12 � Parser rules of s-COMMA.A
onstraint zone de
laration (line 6) must begin with the reserved word
onstraint givenby the RES_CONSTRAINT token. This token is followed by IDENT, whi
h represents the
onstraintzone name. The
onstraint zone body is de�ned inside
urly bra
kets. It
an be
omposed ofseveral
onstru
ts, i.e.
onstraints, global
onstraints,
ompatibility
onstraints, an optimizationstatement, forall loops and
onditionals. A
onstraint is de�ned as an expression, pre�xed by itsoptional
onsisten
y level and �nished by a semi
olon.Expressions are re
ognized using a set of rules (see Figure 5.13), ea
h one in
luding one ormore operators having the same priority. The idea is to perform
alls from one rule to the nextone respe
ting the priority of these operators (from lower to higher). Ea
h rule is of the form a : b
(op b)∗, where a is the name of the rule, b is a
all to the next rule, and op is the operator. The�rst rule in
ludes the lowest priority operator (the operator priorities
an be found in Table 4.1),whi
h
orresponds to the equivalen
e (<->) symbol. The next rule in
ludes the impli
ation (->)and reverse-impli
ation (<-) operators. Several rules follow respe
ting the operator pre
eden
es.The rule stated at line 32 deals with unary arithmeti
 operators. If a unary minus operator isdete
ted, it is not in
luded in the AST, but the operand is
aptured in an additional node
alledOP_UN_MINUS (this is done to improve readability of ASTs). In the
ase of dete
ting a unary plusoperator (whi
h is optional), it is not in
luded in the AST, but no additional node is used sin
ethis operator has no relevan
e within expressions.

82 Chapter 5 � Mapping Models to SolversThe last rule deals with operands. An operand may be a value (integer, real or boolean), anidenti�er (e.g. a variable, a
onstant), an a

ess (an a

ess to the attribute of an obje
t or ana

ess to an array), or a fun
tion (e.g. a sum loop, the
ardinality of a set, et
). Finally, theoperand
an also be an expression en
losed with parentheses.1. expression : exprIMP (OP_EQV^ exprIMP)*2. ;3. exprIMP : exprOR ((OP_IMP^|OP_RIMP^) exprOR)*4. ;5. exprOR : exprAND ((RES_XOR^|RES_OR^) exprAND)*6. ;7. exprAND : exprNot (RES_AND^ exprNot)*8. ;9. expNot : (RES_NOT^)* exprRel10. ;11. exprRel : exprSetRel ((OP_EQUAL^|12. OP_DISTINCT^|13. OP_LESS_THAN^|14. OP_GREATER_THAN^|15. OP_LESS_THAN_OR_EQUAL^|16. OP_GREATER_THAN_OR_EQUAL^)17. exprSetRel)*18. ;19. exprSetRel : exprSetOp ((OP_SUBSET^|OP_SUPERSET^)20. exprSetOp)*21. ;22. exprSetOp : exprSum ((OP_UNION^|OP_DIFF^|OP_SYMDIFF^) exprSum)*23. ;24. exprSum : exprProdu
t ((OP_PLUS^|OP_MINUS^) exprProdu
t)*25. ;26. exprProdu
t : exprInter ((OP_MULTIPLICATION^|OP_DIVISION^) exprInter)*27. ;28. exprInter : exprExpon ((OP_INTERSECT^) exprExpon)*29. ;30. exprExpon : unMinus (OP_EXPON^ unMinus)*31. ;32. unMinus : (OP_MINUS! exprUnit)33. { ##=#(#[OP_UN_MINUS, "OP_UN_MINUS"℄, ##) ;}34. | ((OP_PLUS!)? exprUnit)35. ;36. exprUnit : value|IDENT|a

ess|fun
tion|37. (BRA_ROUND_OPEN expression BRA_ROUND_CLOSE)38. ; Figure 5.13 � The rule to re
ognize expressions.Synta
ti
 ErrorsLet us noti
e that synta
ti
 errors are automati
ally handled by ANTLR. When the parsingrules are not able to mat
h a given input string, the relevant information of the synta
ti
 erroris gathered and displayed to the user. An example is shown in Figure 5.14. The error has beengenerated from a model �le having a
lass de
laration in whi
h the name is missing (
lass {).The error message
ontains the �le name, the line number, and the
olumn number related to the

Chapter 5 � Mapping Models to Solvers 83
on�i
t. The paraphrase "an identifier" de�ned in the lexer has been used to denote IDENTas the missing token.

Figure 5.14 � A synta
ti
 error.5.2.2 Semanti
 Che
kingThe lexi
al and synta
ti
 analysis are unable to dete
t all the errors appearing in a model. Thelexi
al analysis dete
ts the tokens and the synta
ti
 analysis groups these tokens into grammati
alstru
tures. The role of the semanti
 analysis is to
he
k the �meaning� of these grouped tokens
onform to the semanti
 rules of the language. The semanti

he
king is performed by exploringthe AST and by building a symbol table to store the relevant information for the
he
king. Inthe s-COMMA ar
hite
ture, the exploration of the AST is done by ANTLR top-down tree walkers.The notation used to de�ne the AST exploration is analogous to the one used for the AST
onstru
tion. For instan
e, a tree
omposed of a root and two
hild nodes
an be explored bythe rule #(A b
), where A is the name of the root token and b and
 are
alls to the exploringrules of the left and right subtree, respe
tively.Performing the whole semanti

he
king pro
ess requires to
ombine the AST explorationwith another routines. For instan
e to
reate the table of symbols, to handle the
orrespondingsemanti
 errors, and to build intermediate representations. These routines are implemented inJava and ANTLR permits
alling them, embedded in
ode blo
ks, from the exploration rules.NoteAn intermediate representation of the s-COMMA model is built during the semanti

he
king.This intermediate representation is stored in several Java obje
ts, whi
h are then exploredto build the Flat s-COMMA model. Details about
ode generation me
hanisms
an be seen inSe
tion 5.3.1.3.Figure 5.15 depi
ts the rule to explore
lass de�nitions. The rule states that the �rst nodeto be explored must be the reserved word
lass. The �rst
hild of that node
orresponds to theoptional main token. Su
h a node is stored in a lo
al variable
alled isMain, whi
h is then usedas input parameter of the Java method
all addClass. The
he
kMainClass method is
alled toensure that models own at most one main
lass. The next node to be explored
orresponds to anIDENT token, being also stored in a lo
al variable. This lo
al variable is the input parameter ofthe setIdClass method
all, whi
h sets the id of the
lass in a global variable
alled idClass.Su
h a global variable will be used in further exploration rules. In the following line, two optionalrule
alls are stated. In the �rst one, the token of the reserved word extends is read, and the

84 Chapter 5 � Mapping Models to Solversname of the super
lass is stored in idSuperClass. In the se
ond one, the solving options areexplored and stored. At line 4, the addClass method adds the
lass to the symbol table and tothe intermediate representation of the model.1. defClass : #(RES_CLASS ((isMain:RES_MAIN {this.
he
kMainClass()})?2. id:IDENT {this.setIdClass(Id)}3. (RES_EXTENDS idSuperClass:IDENT)? (sOptClass:solvingOpts)?4. {mI.addClass(isMain,id,idSuperClass,sOptClass);}5. (
lassBody)))6. ; Figure 5.15 � Tree walker of s-COMMA.Let us note that ANTLR is unable to automati
ally handle the semanti
 errors (as it doesit for the synta
ti
 errors), being ne
essary to de�ne spe
i�
 pro
edures to handle them. Forinstan
e, multiple
lass name de
larations are
he
ked within the addClass method (see Fi-gure 5.16). This pro
edure �rstly tests if there is no
lass previously de
lared using the sameidenti�er. The id variable is a tree node
ontaining the information of the token
on
erning thename of the
lass to be added, and id.getText() returns the name of the
lass. If the
onditionof the pro
edure is satis�ed, the new
lass is added to model. Otherwise, an error message istriggered. The message is formatted by the semanti
Error method to display the relevant errorinformation. The �le name, the line number and the
olumn number of the
on�i
ting token areobtained from id. The error message is shown in Figure 5.17.1. publi
 void addClass(AST isMain, AST id, AST idSuperClass, AST sOptClass) {2. if (!model().
ontainsClass(id.getText())) {3. model().addClass(isMain,id,idSuperClass,sOptClass);4. } else {5. Message.semanti
Error("rede
laration of
lass '" + id.getText()6. + "'", id);7. }8. } Figure 5.16 � A Java pro
edure to
he
k
lass rede
larations.

Figure 5.17 � A semanti
 error.

Chapter 5 � Mapping Models to Solvers 85Handling Semanti
 Errors in a Se
ond Top-Down Tree ExplorationAll the potential semanti
 errors of a model
annot be dete
ted in one top-down tree explo-ration. For instan
e, type
he
king
annot be performed if the information of all the
lasses isunavailable in the symbol table. As an example,
onsider the model shown in Figure 5.18. Thetree walker begins by exploring the �rst
lass. The attribute b is re
ognized but the tree walkeris unable to
he
k its type sin
e the
lass B has not been explored yet. Likewise, the stru
ture ofthe a

ess b.a
annot be
he
ked either.
lass A {B b;
onstraint
z {b.a < 2;}}
lass B {int a in [0,9℄;} Figure 5.18 � Two s-COMMA
lasses.A
ommon way used in obje
t-oriented languages is to perform a se
ond exploration of theAST. Figure 5.19 illustrates the rule of the se
ond tree walker to
he
k the type of attributes. Themethod
all is embedded in the type rule, whi
h a
ts when the type is de�ned as an IDENT. Themethod
he
ks if the variable is
orre
tly typed. There are two valid possibilities: the variablehas been typed with an enumeration or it
orresponds to an obje
t instan
e.1. attribute : #(ATTRIBUTE ((
onsLevel)? type (RES_SET)? IDENT2. (array)? (domain)?));3.4. type : (TYPE_INT|TYPE_REAL|TYPE_BOOL5. |id:IDENT {vI.
he
kObje
tOrEnumType(id);});Figure 5.19 � The rule to
he
k attributes in the se
ond pass.The rule to
he
k
onstraints in the se
ond tree parser is depi
ted in Figure 5.20. The rulebegins by mat
hing the CONSTRAINT node, whi
h owns two
hildren: the
onsisten
y level ofthe
onstraint and an expression. The
orre
t formation of these expressions is validated by the
he
kExpression method (line 2). Finally, the
onstraint is stored in the intermediate repre-sentation. Expressions are read using one big rule (line 5). Every possible operator is exploredwith its
orresponding
hild nodes, whi
h are de�ned as expressions. At the end of the rule, thepotential operands are explored (value, variable, a

ess and fun
tion). Two methods
he
k if thevariables and the a

esses have been
orre
tly de
lared.

86 Chapter 5 � Mapping Models to Solvers
1.
onstraint : #(CONSTRAINT
Level:
onsLevel exp:expression2. {vI.
he
kExpression(exp);}3. {sI.addConstraint(idClass,idConstraintZone,
Level,exp);});4.5. expression6. : #(OP_EQV expression expression)7. | #(OP_IMP expression expression)8. | #(OP_RIMP expression expression)9. | #(RES_OR expression expression)10. | #(RES_XOR expression expression)11. | #(RES_AND expression expression)12. | #(RES_NOT expression)13. | #(OP_EQUAL expression expression)14. | #(OP_DISTINCT expression expression)15. | #(OP_LESS_THAN expression expression)16. | #(OP_GREATER_THAN expression expression)17. | #(OP_LESS_THAN_OR_EQUAL expression expression)18. | #(OP_GREATER_THAN_OR_EQUAL expression expression)19. | #(RES_IN expression expression)20. | #(OP_SUBSET expression expression)21. | #(OP_SUPERSET expression expression)22. | #(OP_UNION expression expression)23. | #(OP_DIFF expression expression)24. | #(OP_SYMDIFF expression expression)25. | #(OP_PLUS expression expression)26. | #(OP_MINUS expression expression)27. | #(OP_MULTIPLICATION expression expression)28. | #(OP_DIVISION expression expression)29. | #(OP_INTERSECT expression expression)30. | #(OP_EXPON expression expression)31. | #(OP_UN_MINUS expression)32. | value33. | id: IDENT {vI.
he
kVariable(idClass,id);}34. | a

: a

ess {vI.
he
kA

ess(idClass,a

);}35. | fun
tion36. | BRA_ROUND_OPEN expression BRA_ROUND_CLOSE37. ; Figure 5.20 � The rule to
he
k
onstraints in the se
ond pass.

Chapter 5 � Mapping Models to Solvers 875.2.3 Refa
toring PhaseThe translation to Flat s-COMMA is
arried out by applying several refa
toring steps. In fa
t,it is ne
essary to transform the modeling
onstru
ts provided by s-COMMA for whi
h no supportexists in the solver layer. To guarantee the independen
e of solver translators from these
omplexrefa
toring steps, the result of the transformation is
aptured in an intermediate model
alledFlat s-COMMA, from whi
h the solver translator generates the exe
utable solver
ode. The idea isto redu
e the work of the mapping tool and as a
onsequen
e to simplify the integration of newsolvers to the platform.Flat s-COMMA1
an be seen as an unrolled version of s-COMMA, i.e. the obje
t-oriented style isbroken (
omposition and inheritan
e relationships are refa
tored) to state a model just
omposedof variables and
onstraints. The syntax to de�ne variables and
onstraint is equivalent to s-COMMA, but the amount of modeling
omponents supported is minor. For instan
e,
ontrolstatements su
h as loops,
onditionals are not provided. Enumerations and spe
i�

onstru
tssu
h as
ompatibility
onstraints are not supported.To handle this transformation we de�ne a set of refa
toring steps. These steps have beenimplemented in hand-written Java pro
edures, whi
h are applied on
e the semanti

he
kingsu

eeds. An overview of su
h steps is given in the following.Loop unrollingThis phase unrolls the forall and the sum loops. The pro
ess
onsists in repla
ing the loopby the whole set of elements that it impli
itly
ontains. Within expressions, the iterator variableused by the loop statement is repla
ed by an integer
orresponding to the
urrent number of loopturns. An example is depi
ted in Figure 5.21, the loop belonging to the inside
onstraint zoneof the pa
king squares problem is shown on the left
olumn of the �gure, the unrolling result isshown on the right one.//s-COMMA //Flat s-COMMAforall(i in 1..squares) { x[1℄ <= sideSize - size[1℄ + 1;x[i℄ <= sideSize - size[i℄ + 1; y[1℄ <= sideSize - size[1℄ + 1;y[i℄ <= sideSize - size[i℄ + 1; x[2℄ <= sideSize - size[2℄ + 1;} y[2℄ <= sideSize - size[2℄ + 1;...Figure 5.21 � Loop unrolling.Enumeration substitutionIn general, solvers do not support non-numeri
 values. So, the enumerations are repla
ed byinteger values. In Figure 5.22, the enumeration size used as type for the attribute base of the
lass CrankCase is repla
ed by the domain [1,3℄. The value small is represented by the integer1, the value medium is repla
ed by the integer 2, and large by the integer 3. Let us note thatthe original values are stored to give the results in the initial format.
1The grammar of Flat s-COMMA
an be found in the appendix.

88 Chapter 5 � Mapping Models to Solversenum size := {small,medium,large};size base in [1,3℄; Figure 5.22 � Enumeration substitution.Data substitutionIn this step, every data variable used in the model is repla
ed by its
orresponding valuede�ned in the data �le.Composition �atteningThis step eliminates the hierar
hy generated by obje
t
ompositions. The pro
ess is done byexpanding ea
h obje
t de
lared in the main
lass adding its attributes and
onstraints in the Flats-COMMA �le. The name of ea
h attribute has a pre�x
orresponding to the
on
atenation of thenames of obje
ts of origin in order to avoid name redundan
y. The expansion of obje
ts
Caseand
Syst of the engine problem is shown in Figure 5.23.size
Case_base_;int
Case_oilVesselVol_;int
Case_bombePower_;int
Case_volume_;int
Syst_quantity_ in [2,12℄;int
Syst_distBetCyl_ in [3, 18℄;flow
Syst_inj_gasFlow_;...volume >
Case_volume_; Figure 5.23 � Composition �attening.Array
ontaining obje
ts are de
omposed into a set of arrays, one for ea
h attribute of theobje
t. If the attribute of the obje
t also
orresponds to an obje
t, the array is de
omposedagain. For instan
e, in the pa
king squares problem, the array of obje
ts
alled s is de
omposedinto three arrays, one for ea
h attribute. The name of ea
h variable is
omposed of the name ofthe array (s) and the name of the attribute. The value 8 in the size of arrays and the value 5 inthe variables' domain
ome from the data substitution of the
onstant squares and the
onstantsideSize, respe
tively. The domain of s_size_[8℄
orresponds to the size of squares given bythe variable assignment of the model.int s_x_[8℄ in [1,5℄;int s_y_[8℄ in [1,5℄;int s_size_[8℄ in [1,3℄;Figure 5.24 � Flattening arrays
ontaining obje
ts.

Chapter 5 � Mapping Models to Solvers 89Conditional removalConditional statements are transformed to logi
al formulas. For instan
e, if a then b else
 is repla
ed by (a ⇒ b) ∧ (a ∨ c) (see Figure 5.25). If the statement
ondition is
omposed of
onstant values the statement is evaluated and the useless
onstraint are removed. An exampleis shown in Figure 5.26.//s-COMMA //Flat s-COMMAif (quantity = 6) ((quantity = 6) -> (distBetCyl > 6)) anddistBetCyl > 6; ((quantity = 6) or (distBetCyl > 3));elsedistBetCyl > 3; Figure 5.25 � Conditional removal.//Data File //After Data substitutionn := 1; if (2 < 4) {s := 2; x < 1;y < 1;//Model file } else {... x < 2;if (2 < 1 + n + s) { y < 2;x < 1; }y < 1;} else { //After evaluationx < 2; x < 1;y < 2; y < 1;} Figure 5.26 � Conditional evaluation.Compatibility removalCompatibility
onstraints are also translated to a logi
al formula. We
reate a
onjun
tiveboolean expression for ea
h n-tuple of allowed values. Then, ea
h
onstraint of the n-tuple is sta-ted in a disjun
tive
onstraint. The transformed
ompatibility
onstraint of the Engine problemis shown in Figure 5.27. Non-numeri
 values were repla
ed by the
orresponding integer valuesin the enumeration substitution step.//s-COMMA //Flat s-COMMA
ompatibility ((gasFlow=1) and (admValve=1) and (pressure=80)) or(gasFlow,admValve,pressure) { ((gasFlow=1) and (admValve=2) and (pressure=90)) or("dire
t", "small", 80); ((gasFlow=2) and (admValve=2) and (pressure=100)) or("dire
t", "medium", 90); ((gasFlow=2) and (admValve=3) and (pressure=130));("indire
t", "medium", 100);("indire
t", "large", 130);} Figure 5.27 � Compatibility removal.

90 Chapter 5 � Mapping Models to SolversLogi
 formulas transformationSome logi
 operators are not supported by solvers. For example, logi
al equivalen
e (a ⇔ b)and reverse impli
ation (a ⇐ b). We transform logi
al equivalen
e expressing it in terms of logi
alimpli
ation ((a ⇒ b) ∧ (b ⇒ a)). Reverse impli
ation is simply inverted (b ⇒ a).Expression evaluationIn this step we evaluate expressions
omposed of
onstants in order to redu
e them and/orto eliminate useless
onstraints. Figure 5.28 illustrates the evaluation of an expression
ontainingarithmeti
 and logi
 operators. Sin
e the resulting value of the expression has no impa
t on themodel, the
onstraint is removed.(((1+1) < (1+1)) and ((1+1) < (1+1))) -> ((((1+1) < (1+1)) and ((1+1) < (1+1)))((2 < 2) and (2 < 2)) -> ((2 < 2) and (2 < 2))(false and false) -> (false and false)false -> falsetrueFigure 5.28 � Expression evaluation.
5.2.3.1 A Flat s-COMMA modelTo exemplify some of these refa
toring steps, we illustrate the resultant Flat s-COMMA model ofthe stable marriage problem (see Figure 5.29). The model is
omposed of four blo
ks: variables,
onstraints, enumeration types, and solving options. Within the variables blo
k, the whole setof arrays has been generated from the
omposition �attening step. The array man_wife_ (line3)
ontains the de
ision variables wife of the original array man, and the array woman_husband_(line 9)
ontains the de
ision variables husband of the original array woman. The size of the arrayman_wife_ has been set to 5, this value is given by the enumeration substitution step whi
h setsthe size of the array with the size of the enumeration menList. The domain [1,5℄ has been alsoprodu
ed by this step. The type of both arrays has been maintained to give the solutions in theenumeration format. These values are stored in the blo
k enum-types. The arrays stated fromlines 4 to 8 and 10 to 14
ontain the ranking values for ea
h man and women, respe
tively.The
onstraints posted between lines 18 and 25
ome from the loop unrolling phase of theforall statements of the mat
hHusbandWife
onstraint zone. Likewise, lines 28 to 36 have beengenerated by the loops of forbidUnstableCouples. Within these
onstraints, the data substi-tution step has repla
ed several
onstants with their
orresponding integer values. At the endof the �le, the solving options are stated. Sin
e no solving option was de�ned in the s-COMMAmodel, the default solving option is stated.

Chapter 5 � Mapping Models to Solvers 91
1. variables:2.3. womenList man_wife_[5℄ in [1,5℄;4. int man_1_rank_[5℄ in [1,5℄;5. int man_2_rank_[5℄ in [1,5℄;6. int man_3_rank_[5℄ in [1,5℄;7. int man_4_rank_[5℄ in [1,5℄;8. int man_5_rank_[5℄ in [1,5℄;9. menList woman_husband_[5℄ in [1,5℄;10. int woman_1_rank_[5℄ in [1,5℄;11. int woman_2_rank_[5℄ in [1,5℄;12. int woman_3_rank_[5℄ in [1,5℄;13. int woman_4_rank_[5℄ in [1,5℄;14. int woman_5_rank_[5℄ in [1,5℄;15.16.
onstraints:17.18. woman_husband_[man_wife_[1℄℄=1;19. woman_husband_[man_wife_[2℄℄=2;20. woman_husband_[man_wife_[3℄℄=3;21. ...22.23. man_wife_[woman_husband_[1℄℄=1;24. man_wife_[woman_husband_[2℄℄=2;25. man_wife_[woman_husband_[3℄℄=3;26. ...27.28. 5<man_1_rank_[man_wife_[1℄℄ ->29. woman_1_rank_[woman_husband_[1℄℄<1;30. 1<woman_1_rank_[woman_husband_[1℄℄ ->31. man_1_rank_[man_wife_[1℄℄<5;32.33. 1<man_1_rank_[man_wife_[1℄℄ ->34. woman_2_rank_[woman_husband_[2℄℄<3;35. 3<woman_2_rank_[woman_husband_[2℄℄ ->36. man_1_rank_[man_wife_[1℄℄<1;37. ...38.39. enum-types:40.41. menList := {Ri
hard,James,John,Hugh,Greg};42. womenList := {Helen,Tra
y,Linda,Sally,Wanda};43.44. solving-opts: default;Figure 5.29 � A Flat s-COMMA model of the stable marriage problem.

92 Chapter 5 � Mapping Models to Solvers5.3 From Flat s-COMMA to solversThe transformation from Flat s-COMMA toward the solver model is performed via the map-ping tool of the platform. Two kinds of translators have been built for this mapping tool (seeFigure 5.30). The �rst ones belong to a previous version of our platform, and they have beenwritten by hand in Java (HW) with the support of the ANTLR tool for parsing the Flat s-COMMA�le. The se
ond ones belong to the last implementation of the platform, and they have beenimplemented using a model-driven (MD) approa
h. Both kinds of translators are presented and
ompared in the following se
tions.
Flat s-COMMA

Model

Solver
Model

Parsing Code
Generation

Mapping Tool

HW Approach

Parsing Code
Generation

MD Approach

Solver
ModelFigure 5.30 � The mapping tool.5.3.1 Hand-Written TranslatorsThe generation of solver �les through our Java hand-written translators requires a prior par-sing of the Flat s-COMMA model. We
arry out this pro
ess using the same tools as in the previousphase. An ANTLR lexer and an ANTLR parser perform the parsing pro
ess and produ
e the
orresponding AST. This AST is then explored by an ANTLR tree walker in order to generatethe intermediate representation from whi
h the translator builds the target �le.5.3.1.1 ParsingThe lexi
al analysis is the �rst phase of the parsing pro
ess. A portion of the ANTLR lexerto perform this task is shown in Figure 5.31. Su
h a �le is very similar to the one of s-COMMA.Let us note that the options testLiterals and paraphrase are not in
luded in the IDENT token,as there is no need to
he
k for ambiguities and to show error messages at this stage.NoteA Flat s-COMMA model is automati
ally generated from a synta
ti
ally and semanti
ally
orre
ts-COMMA model, being unne
essary to re-analyze it.

Chapter 5 � Mapping Models to Solvers 931. tokens2. {3. RES_VARIABLES = "variables" ;4. RES_CONSTRAINTS = "
onstraints" ;5. RES_ENUM_TYPES = "enum-types" ;6. RES_SOLV_OPT = "solving-opts" ;7. RES_AND = "and" ;8. ...9. }10.11. IDENT12. : (LETTER|'_') (LETTER|DIGIT|'_')*13. ;14. ... Figure 5.31 � Tokens and the IDENT rule in the ANTLR lexer of Flat s-COMMA.Figure 5.32 illustrates the rule to parse a Flat s-COMMA model (line 1). Four optional rule
alls de�ne the
omposition of a Flat s-COMMA model. The �rst rule
all re
ognizes the variables,the se
ond one the
onstraints, the third one the enumeration types, and the �nal one thesolving options of the model. The resulting AST is
aptured in a root node
alled MODEL. The
orresponding rules to parse the set of variables and the set of
onstraints are depi
ted below.1. model : (variableSet)? (
onstraintSet)?2. (enumSet)? (solvingOpts)?3. {## = #(#[MODEL, "MODEL"℄ ,##);}4. ;5.6. variableSet : RES_VARIABLES! PUN_COLON! (variable)*7. { ## = #(#[VARIABLE_SET, "VARIABLE_SET"℄ ,##);};8.9.
onstraintSet : RES_CONSTRAINTS! PUN_COLON!
onstraintSetBody10. { ## = #(#[CONSTRAINT_SET, "CONSTRAINT_SET"℄ ,##);};Figure 5.32 � Parser rules of Flat s-COMMA.The rules to re
ognize variables and
onstraints are illustrated in Figure 5.33. The variablerule is very similar to the attribute rule de�ned in s-COMMA. The body of a
onstraint blo
kmay be
omposed of three kinds of model
omponents: a
onstraint, a global
onstraint, or anoptimization statement.NoteThe optional
onsLevel rule
all is absent in the variable rule sin
e the
onsisten
y level option
an only be spe
i�ed on obje
ts, whi
h do not parti
ipate in Flat s-COMMA. The
omposition�attening phase has eliminated them.

94 Chapter 5 � Mapping Models to Solvers1. variable : type (RES_SET)? IDENT (array)?2. RES_IN! domain PUN_SEMI_COLON!3. { ## = #(#[VAR, "VAR"℄ ,##);}4. ;5.6.
onstraintSetBody : (
onstraint|globalCons|staOpt)*7. ;8.9.
onstraint : (
onsLevel)? expression PUN_SEMI_COLON!10. { ##=#(#[CONSTRAINT, "CONSTRAINT"℄, ##) ;}11. ; Figure 5.33 � Parser rules of Flat s-COMMA.5.3.1.2 Exploring the ASTOn
e the AST has been built, it must be explored to generate the intermediate representation.Figure 5.34 depi
ts three rules of the tree walker to explore the Flat s-COMMA AST. As we havementioned, no semanti

he
king is needed, so Java methods embedded in rules are just used togenerate the intermediate representation.1. model : #(MODEL (variableSet)? (
onstraintSet)?2. (enumSet)? (solvingOpts)?)3. ;4.5. variableSet : #(VARIABLES (variable)*)6. ;7.8. variable : #(VAR (t:type (set:RES_SET)? idVar:IDENT9. (arr:array)? dom:domain10. {vI.addVar(t,set,idVar,arr,dom);}))11. ; Figure 5.34 � Tree walker of Flat s-COMMA.5.3.1.3 Code GenerationAfter the exploration of the AST, the intermediate representation is ready to be examinedby the solver translators. The translators are organized in four Java �les. One for the
ode ge-neration of variables, one for the
ode generation of
onstraints, one to format variable namesand a main �le to generate the headers and spe
i�
 pro
edures for the solver �le. Figure 5.35shows the initial pro
edure of the Ge
ode/J translator main �le. This pro
edure
alls ea
h oneof the methods required to build the
ode representing the Ge
ode/J model: to
reate the �le, tobuild the headers, to build the
onstru
tors, to build the
ode for showing the results, to buildthe main method of the �le, and �nally to
lose the �le.

Chapter 5 � Mapping Models to Solvers 951. publi
 void buildFile() {2.
reateFile();3. buildHeader();4. buildConstru
tor();5. buildCopyConstru
tor();6. buildResults();7. buildMain();8.
loseFile();9. }Figure 5.35 � The initial pro
edure of the main Java
lass of the Ge
ode/J translator.The pro
edure to write the
onstru
tor of the Ge
ode/J model is shown in Figure 5.36. In the
onstru
tor, the variables and
onstraint of the problem are posted. de
Vars.translate() (line6) generates the variables and
onstraints.translate() (line 7) generates the
onstraints. Atline 8, the solving options for the resolution pro
ess are given. The method println is used towrite strings on the �le and nL to write a newline
hara
ter.1. publi
 void buildConstru
tor() {2. println(" publi
 " +
lassName + "(Options opt) {");3. println(" super();");4. println(" vars = new VarArray<IntVar>();");5. nL();6. println(de
Vars.translate());7. println(
onstraints.translate());8. println(" bran
h(this, vars," + buildSolvingOptions() + ");");9. println(" }");10. nL();11. } Figure 5.36 � Code generation of the Ge
ode/J
onstru
tor.Figure 5.37 illustrates a method for the
ode generation of a one dimensional array (ve
tor)
ontaining Ge
ode/J de
ision variables. The de
laration of a ve
tor begins with the type of theJava variable (VarArray<IntVar>) followed by its name. The name is obtained from the de
Varobje
t, whi
h was generated in the intermediate representation. Then, the initialize methodis used to set four parameters of the ve
tor, e.g. its name (to show the results), its size, and thelower and the upper bounds of its domain. Finally, the new ve
tor is added to a global array forperforming the labeling pro
ess (vars.addAll).The
ode generation of
onstraints is more
ompli
ated sin
e they may be
omposed byseveral elements. This phase is handled by representing the
onstraints in the form of a tree. AnANTLR tree walker explores this tree and performs
alls to the ne
essary methods to transformthe nodes of the tree into the solver
ode. Figure 5.38 depi
ts the ANTLR
onstraint tree walker.Constraint are explored in the same way as in the semanti

he
king of s-COMMA. Ea
h ope-rator and operand stated in the rule in
ludes a method
all to a
ode generation pro
edure. Themethods to generate the
ode of an addition and a distin
t relation are depi
ted in Figure 5.39.The
onstraints are systemati
ally generated and stored in a data stru
ture
alled
odeStore,whi
h is then read by the main translator �le to write the
onstraints in the solver program.For instan
e, the expression a + b is generated as new Expr(a).p(b), where p represents the

96 Chapter 5 � Mapping Models to Solvers
1. publi
 StringBuffer integer(FlatVe
torDe
Var de
Var) {2.3. StringBuffer str = new StringBuffer();4. str.append(" VarArray<IntVar> "); VarArray<IntVar> man_wife_ =5. str.append(de
Var.getName()); initialize("man_wife_",5,1,5);6. str.append(" = initialize(\"");7. str.append(de
Var.getName());8. str.append("\",");9. str.append(de
Var.getSize());10. str.append(",");11. str.append(de
Var.getIntLowerBound());12. str.append(",");13. str.append(de
Var.getIntUpperBound());14. str.append(");\n");15. str.append(" vars.addAll(");16. str.append(de
Var.getName());17. str.append(");\n");18. return str;19. } Figure 5.37 � Code generation of Ge
ode/J variables.
1. expression2. : #(OP_EQV expression expression) {eT.equivalen
e();}3. | #(OP_IMP expression expression) {eT.impli
an
e();}4. ...5. | #(OP_DISTINCT expression expression) {eT.distin
t();}6. | #(OP_LESS_THAN expression expression) {eT.less();}7. ...8. | #(OP_PLUS expression expression) {eT.plus();}9. | #(OP_MINUS expression expression) {eT.minus();}10. | #(OP_MULTIPLICATION expression expression) {eT.mult();}11. | #(OP_DIVISION expression expression) {eT.div();}12. | #(OP_INTERSECT expression expression) {eT.interse
t();}13. | #(OP_EXPON expression expression) {eT.expon();}14. | #(OP_UN_MINUS expression) {eT.unMinus();}15. | val: value {eT.addValue(val);}16. | id: IDENT {eT.addIdent(id);}17. | a

: a

ess {eT.addA

ess(a

);}18. | f:fun
tion {eT.addFun
tion(f);}19. | BRA_ROUND_OPEN expression BRA_ROUND_CLOSE20. ; Figure 5.38 � The tree walker for the
ode generation of
onstraints.

Chapter 5 � Mapping Models to Solvers 97`+' operator and the operands are obtained from
odeStore. Relations are generated using thepost method. For instan
e, a <> b is generated as post(this, new Expr(a),IRT_NQ, newExpr(b)), IRT_NQ being the not equal operator.1. publi
 void plus() {2. StringBuffer str = new StringBuffer();3. str.append("new Expr("); new Expr(a).p(b)4. str.append(
odeStore.getCode());5. str.append(").p(");6. str.append(
odeStore.getCode());7. str.append(")");8.
odeStore.add(str);9. }10.11. publi
 void distin
t() {12. StringBuffer str = new StringBuffer();13. str.append("post(this, new Expr("); post(this, new Expr(a),IRT_NQ, new Expr(b))14. str.append(
odeStore.getCode());15. str.append("),IRT_NQ, new Expr(");16. str.append(
odeStore.getCode());17. str.append("))");18.
odeStore.add(str);19. } Figure 5.39 � Two pro
edures for the
ode generation of
onstraints.5.3.1.4 A Ge
ode/J model generated from Flat s-COMMAFigure 5.40 depi
ts an extra
t of the Ge
ode/J �le generated for the stable marriage problem.The initial lines state the headers (pa
kage and import statements) of the Ge
ode/J model. Theman_wife_ array is de�ned at line 5, being initialized with size 5 and domain [1,5℄. At line 6,this array is added to a global array
alled vars in order to perform the labeling pro
ess. Lines 11and 12 illustrate two
onstraints, whi
h are stated by means of the post method. The get(a,b)method returns an element of an array, a being the array and b the position of the element. TheIRT_EQ parameter represents the equality operator.1. pa
kage
omma.solverFiles.ge
odej;2. import stati
 org.ge
ode.Ge
ode.*;3. ...4.5. VarArray<IntVar> man_wife_ = initialize("man_wife_",5,1,5);6. vars.addAll(man_wife_);7.8. VarArray<IntVar> woman_husband_ = initialize("woman_husband_",5,1,5);9. vars.addAll(woman_husband_);10.11. post(this, new Expr(get(woman_husband_,get(man_wife_,1))),IRT_EQ, new Expr(1));12. post(this, new Expr(get(woman_husband_,get(man_wife_,2))),IRT_EQ, new Expr(2));13. ... Figure 5.40 � A Ge
ode/J model of the stable marriage problem.

98 Chapter 5 � Mapping Models to Solvers5.3.2 Model-Driven TranslatorsModel-driven translators have been developed using a general model-driven transformationframework. Under this approa
h, the development of languages is seen from another point of view.A language is not de�ned by means of grammars and regular expressions. Languages are de�nedvia metamodels and
on
rete syntax tools. The metamodel spe
i�es the
on
epts appearing ina language and the
on
rete syntax tool de�nes how these
on
epts appear in the syntax of thelanguage.A model-driven transformation framework allows us to de�ne a transformation from a sour
elanguage to a target one using a Model-Driven Ar
hite
ture (MDA) [www20 ℄ (see Figure 5.41). Thelevel M1 holds the model. The level M2 des
ribes the semanti
s of the level M1 and thus identi�es
on
epts handled by this model through a metamodel. The level M3 is the spe
i�
ation of thelevel M2 and it is self-de�ned. Transformation rules are de�ned to translate models from a sour
emodel to a target one, the semanti
s of these rules is also de�ned by a metamodel.

Model A

Transformation A-to-B

MetaModel
Transformation

MetaMetaModel

MetaModel A MetaModel B

Model B

M1

M2

M3

conformsTo

conformsTo

conformsTo

conformsToFigure 5.41 � A general MDA for model transformation.The implementation of this approa
h in our platform is illustrated in Figure 5.42. The Flats-COMMA
orresponds to the sour
e model and its semanti
s is de�ned by its metamodel. Thetranslation to the target language is performed by transformation rules. These rules
arry out thetransformation pro
ess by mat
hing the
on
epts of the Flat s-COMMA metamodel to the
on
eptsof the solver metamodel.
Flat s-COMMA Model

Transformation

Matching Rules

Flat s-COMMA MetaModel Solver MetaModel

Solver Model

M1

conformsTo

conformsTo

conformsTo

M2

Figure 5.42 � Model-driven translation in s-COMMA.

Chapter 5 � Mapping Models to Solvers 99RemarkA major strength of using this metamodeling approa
h is that models are
on
isely representedby metamodels. This allows one to de�ne transformation rules that only operate on the
on
eptsof metamodels (at the M2 level of the MDA approa
h), not on the
on
rete syntax of a language.Syntax
on
erns are de�ned independently (we illustrate this in Se
tion 5.3.2.4). This separationis a great advantage for a
lear de�nition of transformation rules and syntax des
riptions, whi
hare the base of our mapping tool.5.3.2.1 MetamodelingThe metamodeling phase is
arried out by using the KM3 language [JB06℄ (Kernel Meta MetaModel). Su
h a language supports most metamodeling standards and it is based on the simplenotion of
lasses to de�ne ea
h one of the
on
epts of a metamodel. These
on
epts are neededto de�ne the transformation rules and also to generate the target �les. Figure 5.43 illustrates themain
on
epts of the Flat s-COMMA metamodel. The
on
epts expressed in KM3 are shown onthe left side of the �gure and the
orresponding metamodel using UML
lass diagram notationis depi
ted on the right side.1.
lass Model {2. attribute name : String;3. referen
e variables [0-*℄
ontainer : Variable;4. referen
e
onstraints [0-*℄
ontainer : ConstraintStatement;5. referen
e enumTypes [0-*℄
ontainer : EnumType;6. referen
e solvingOpts [0-3℄
ontainer : SolvingOpt;7. }8.9.
lass Variable {10. attribute name : String;11. attribute type : String;12. attribute isSet : Boolean;13. referen
e array [0-1℄
ontainer : Array;14. referen
e domain
ontainer : Domain;15. }16.17.
lass Array {18. attribute row : Integer;19. attribute
ol [0-1℄ : Integer;20. } Figure 5.43 � An extra
t of the KM3 �le of Flat s-COMMA.
OptStatementConstraint Global

Constraint

Model

ConstraintStatement

Variable

Domain Array

EnumType SolvingOpt

In the metamodel, a Flat s-COMMA model is de�ned by the Model
on
ept. This
on
ept is
omposed of one attribute and four referen
es. The attribute name at line 2 represents the nameof the model and it is de
lared with the basi
 type String. Line 3 states that the
lass Model is
omposed of a set of obje
ts from the
lass Variable. The reserved word referen
e is used tode�ne relationships with instan
es of other
lasses. The statement [0-*℄ de�nes the multipli
ityof the relationship. If the multipli
ity statement is omitted the relationship is de�ned as [1-1℄.Lines 4 to 6 are similar and de�ne that the
lass Model is also
omposed of
onstraints,

100 Chapter 5 � Mapping Models to SolversenumTypes, and solvingOpts. Three solving options
an be de�ned: variable ordering, valueordering and the
onsisten
y level used. The
lass Variable is
omposed of three attributes andtwo referen
es. The �rst attribute de�nes the name of the variable and the following its type. Thethird attribute is a boolean value used to spe
ify set variables. The referen
e stated at line 13 isused to de�ne arrays of variables. The de
laration of the Variable
lass ends with the referen
eto state the domain. At line 17, the Array
lass is
omposed of two attributes. The �rst one isused to de�ne the array row size, while the se
ond one used to de�ne the array
olumn size.A
onstraint statement is spe
ialized in three
on
epts: Constraint, GlobalConstraint andOptStatement. The KM3 de�ning the
omposition of the Constraint
on
ept is illustratedin Figure 5.44. It
onsists of an Expression
on
ept and an optional attribute to spe
ify its
onsisten
y level. Two kinds of expressions
an be identi�ed, binary and unary expressions. The
lass to de�ne binary expressions is stated at line 12. This
lass
ontains two referen
es, left
orresponds to the left operand and right to the right operand of an expression. Both operandsare also expressions. At line 17, the
lass to de�ne unary expressions is de�ned, just one operandis required. The attribute to de�ne the operator in unary and binary expressions is inheritedfrom the ExpOperator
lass (line 8).1.
lass Constraint extends ConstraintStatement {2. attribute
onsLevel [0-1℄ : String;3. referen
e assertion
ontainer : Expression;4. }5.6. abstra
t
lass Expression {}7.8. abstra
t
lass ExpOperator extends Expression {9. attribute name : String;10. }11.12.
lass BinaryExpression extends ExpOperator {13. referen
e left
ontainer : Expression;14. referen
e right
ontainer : Expression;15. }16.17.
lass UnaryExpression extends ExpOperator {18. referen
e left
ontainer : Expression;19. } Figure 5.44 � Constraints in the KM3 �le of Flat s-COMMA.
UnaryExpression

ExpOperator

Constraint

Expression

BinaryExpression

An expression may have three kinds of operands: a value, a variable, or a fun
tion. In Fi-gure 5.45, the
lasses to de�ne the values are stated between lines 1 and 9. The
lass to de�nevariables as operands follows. Su
h a
lass is named VariableO

urren
e and it is
omposed ofone attribute and two referen
es. The de
laration attribute
ontains the name of the variableo

urren
e, and the referen
es are used for array o

urren
es. The i referen
e is used for thearray row index and j for the array
olumn index. Both indexes are de�ned through expressions.At the end, the
lass to de�ne fun
tion
alls (e.g. the
ardinality of a set) is stated. Its name andits input parameters are given.

Chapter 5 � Mapping Models to Solvers 1011. abstra
t
lass Value extends Expression {}2.3.
lass IntValue extends Value {4. attribute value : Integer;5. }6.7.
lass RealValue extends Value {8. attribute value : Double;9. }10.11.
lass VariableO

urren
e extends Expression {12. attribute de
laration : String;13. referen
e i [0-1℄
ontainer : Expression;14. referen
e j [0-1℄
ontainer : Expression;15. }16.17.
lass Fun
tionCall extends Expression {18. attribute name : String;19. referen
e parameters[*℄
ontainer : Expression;20. } Figure 5.45 � Operands in the KM3 �le of Flat s-COMMA.

RealValue

Value

Expression

IntValue

FunctionCallVariableOccurence

5.3.2.2 Transformation RulesThe transformation rules to de�ne the mapping between Flat s-COMMA and the solver languageare implemented in ATL (Atlas Transformation Language). This language is strongly based onOCL [www18 ℄, and supports most of its fun
tions and its types. The ATL rules are able to performa transformation by de�ning how the
on
epts are mat
hed from sour
e to target metamodels.Figure 5.46 shows an ATL rule to transform the
on
epts of the Flat s-COMMA metamodel to the
on
epts of the Ge
ode/J metamodel. The Ge
ode/J metamodel is omitted here sin
e it is verysimilar to the Flat s-COMMA metamodel.1. rule ModelToModel {2. from3. s : FlatsComma!Model (4.)5. to6. t : Ge
odeJ!Model(7. name <- s.name,8. variables <- s.variables,9.
onstraints <- s.
onstraints,10. enumTypes <- s.enumTypes,11. solvingOpts <- s.solvingOpts12.)13. } Figure 5.46 � ATL rules for the Flat s-COMMA to Ge
ode/J transformation.

102 Chapter 5 � Mapping Models to Solvers
RemarkFlat s-COMMA has been designed to be as
lose as possible from the solving level. This ensuresthe Flat s-COMMA metamodel to be very
lose to solver metamodels. This is a great advantagesin
e translation rules be
ome simple: we mainly need one to one transformations.The transformation rule is
alled ModelToModel and it de�nes the mat
hing between the
on
epts Model expressed in Flat s-COMMA and Ge
ode/J. The sour
e elements are stated withthe reserved word from (line 2) and the target ones with the reserved word to (line 5). Theseelements are de
lared like variables with a name (s,t) and a type
orresponding to a
lass ina metamodel (FlatsComma!Model, Ge
odeJ!Model). In the target part of the rule, the nameattribute of the Flat s-COMMA problem is assigned to the Ge
ode/J name (name <- s.name),this mat
hing
orresponds to a simple string assignment. The following four mat
hings are as-signments between
on
epts that are de�ned as referen
e in the metamodel. Handling thesemat
hings requires to de�ne additional rules. For instan
e, the Flat s-COMMA KM3 metamodelde�nes that the referen
e variables
orresponds to a set of Variable elements. Thus, the state-ment variables <- s.variables impli
itly
alls the rule VariableToVariable, whi
h de�nesthe mat
hing between the elements
ontained in Variable obje
ts. The VariableToVariablerule is depi
ted in Figure 5.47, su
h a rule mat
hes �ve elements. The �rst two statements arestring assignments, the third one is a boolean assignment, and the remaining ones are referen
eassignments. The �rst referen
e assignment mat
hes Array obje
ts while the se
ond one mat
hesDomain obje
ts. The rule to mat
h arrays
an be seen on the right side of the �gure.1. rule VariableToVariable { 14. rule ArrayToArray {2. from 15. from3. s : FlatsComma!Variable (16. s : FlatsComma!Array4.) 17. to5. to 18. t : Ge
odeJ!Array(6. t : Ge
odeJ!Variable (19. row <- s.row,7. name <- s.name, 20.
olumn <- s.
olumn8. type <- s.type, 21.)9. isSet <- s.isSet, 22. }10. array <- s.array,11. domain <- s.domain12.)13. } Figure 5.47 � ATL rules for the Flat s-COMMA to Ge
ode/J transformation.Although the rules used here are not
omplex, ATL is able to perform more di�
ult rules.For instan
e, the most di�
ult rule we de�ned, was the transformation rule from Flat s-COMMAmatri
es
ontaining sets, whi
h must be unrolled in the ECLiPSe models (sin
e set matri
es arenot supported). This unroll pro
ess is
arried out by de�ning a single set in ECLiPSe for ea
h
ell in the matrix. The name of ea
h single variable is
omposed of the name of the matrix,and the
orresponding row and
olumn index. Let us note that this pro
edure in
ludes
alls toATL helpers, whi
h are used to de�ne spe
i�
 fun
tions. ATL helpers
an be seen as the ATLequivalent to Java methods.

Chapter 5 � Mapping Models to Solvers 103
1. rule ModelToModel {2. from3. s : FlatsComma!Model (4. s.hasSetMatrix5.)6. to7. t : ECLiPSe!Model (8. name <- s.name,9.
onstraints <- s.
onstraints,10. enumTypes <- s.enumTypes,11. solvingOpts <- s.solvingOpts12.)13. do {14. t.variables <- s.variables->
olle
t(e|15. if e.isSetMatrix() then16. thisModule.getMatrixCells(e)->
olle
t(f|17. thisModule.SetMatrixVariableToVariable(f.var,f.i,f.j)18.)19. else20. e21. endif22.)->flatten();23. }24. }25.26. rule SetMatrixVariableToVariable(var : FlatsComma!Variable,27. i : Integer, j : Integer) {28. to29. t : ECLiPSe!Variable(30. name <- var.name + i.toString() + '_' + j.toString() + '_',31. type <- var.type,32. domain <- var.domain33.)34. do {35. t;36. }37. } Figure 5.48 � ATL rules for de
omposing matri
es
ontaining sets.

104 Chapter 5 � Mapping Models to SolversFigure 5.48 depi
ts the rules for handling the matrix transformation. The rule ModelToModelis stated at the beginning of the �le. It holds a
ondition (line 4), whi
h
alls the helperhasSetMatrix to
he
k whether set matri
es are de�ned in the model. If the
ondition is true,name,
onstraints, enumTypes, and solvingOpt are mat
hed normally, but variables has aspe
ial pro
edure to de
ompose the set matrix. This pro
edure begins at line 13 with a do blo
k.In this blo
k, the
olle
t loop iterates over the variables. Then, ea
h of these variables (e)is
he
ked to determine whether it has been de�ned as a set matrix (line 15). If this o

urs,the helper getMatrixCells(e)
al
ulates the set of tuples
orresponding to all the
ells of thematrix (thisModule is used to expli
itly
all helpers or rules). Ea
h tuple is
omposed of theFlat s-COMMA variable (f.var), a row index (f.i) and a
olumn index (f.j). Then, the ruleSetMatrixVariableToVariable is applied to ea
h tuple in order to generate the ECLiPSe va-riables. This rule has no sour
e blo
k sin
e the sour
e elements are the input parameters. Therule sets to the attribute name, the
on
atenation of the name of the matrix with the respe
tiverow (i.toString()) and
olumn (j.toString()). Attributes type and domain are also mat
hed.Finally, flatten() is an OCL inherited method used to mat
h the generated set of variableswith t.variables.5.3.2.3 Code GenerationThe
ode generation pro
ess is also performed using the ATL language. An ATL query isde�ned to
reate a new target �le and to
all a set of ATL helpers. These helpers are able to
ombine the metamodel elements with the syntax of the target language in order to generate thestring to be written in the target �le. Figure 5.49 depi
ts the helper for the
ode generation of aone dimensional Ge
ode/J array.1. helper
ontext Ge
odeJ!Variable def: toString2() :2. if thisModule.isVe
tor(self) then3. 'VarArray<IntVar> ' + VarArray<IntVar> man_wife_ =4. self.name + initialize("man_wife_",5,1,5);5. ' = initialize(\"' +6. self.name +7. '\",' + self.array.toString2() +8. ',' + self.domain.toString2()+');\n' +9. ' vars.addAll(' + self.name + ');\n'10. ... Figure 5.49 � ATL helper to generate a Ge
ode/J ve
tor.The header of the helper is de
lared at line 1, its name is toString2 and it is de�ned forthe Ge
odeJ!Variable
on
ept. A
ondition, at line 2,
he
ks if the
urrent obje
t (self) isa one dimensional array. If so, the
ode of the Ge
ode/J ve
tor de
laration is generated. Theself.name statement gets the name of the variable, and self.array.toString2()
alls a helperto get the string representing the array dimensions. Analogously, self.domain.toString2()generates the string
orresponding to the domain. At the end, the array is added to the globalarray for performing the labeling pro
ess.The
ode of
onstraints is generated in a very similar manner. For instan
e, the helper togenerate the
ode of an addition in binary expressions is shown in Figure 5.50. The helperappends the left and the right part of the expression with the ne
essary operators for buildingthe addition expression. Let us noti
e that left and right are de�ned as expressions in the

Chapter 5 � Mapping Models to Solvers 105metamodel. Thus, if the operands of a binary expression are also formed by binary expressions,the ATL engine performs a re
ursive
all to this helper so as to build the whole expression.1. helper
ontext Ge
odeJ!BinaryExpression def: toString2() : String=2. if (self.name = '+')3. 'new Expr(' + new Expr(a).p(b)4. self.left.toString2() + ')' +5. '.p' +6. '(' + self.right.toString2() + ')'7. ... Figure 5.50 � ATL helper to generate an addition.5.3.2.4 ParsingTCS (Textual Con
rete Syntax) [JBK06℄ is the language used to parse the Flat s-COMMA�le. This pro
ess is a
hieved by bridging the Flat s-COMMA metamodel with the Flat s-COMMAsyntax. Figure 5.51 shows an extra
t of the TCS �le for Flat s-COMMA. Ea
h
lass of the Flats-COMMA metamodel has a dedi
ated template de
lared with the same name. Within templates,words between double quotes are tokens in the grammar (e.g. "variables", ":"). Words withoutdouble quotes
an be seen as template
alls, being used to introdu
e the
orresponding list of
on
epts. For instan
e, the Model template de�nes the synta
ti
 stru
ture of a Flat s-COMMA mo-del. The four blo
ks of a Flat s-COMMA model are de�ned (variables,
onstraints, enum-types,and solving-opts). The isDefined fun
tion is used to state that the blo
k is optional. For ins-tan
e, `isDefined(variables) ?' is stated to parse the variables blo
k only if the model
ontainsvariables. After this
onditional statement, the synta
ti
 stru
ture of the variables blo
k is de-�ned. It begins with the reserved word "variables" followed by a
olon token and by a
all tothe Variable template. Let us noti
e that the TCS
ompiler is able to perform this
all sin
evariables is de�ned as a referen
e to Variable obje
ts in the KM3.1. template Model2. : (isDefined(variables) ? "variables" ":" variables) variables :3. (isDefined(
onstraints) ? "
onstraints" ":"
onstraints) ...4. (isDefined(enumTypes) ? "enum-types" ":" enumTypes)5. (isDefined(solvingOpts) ? "solving-opts" ":" solvingOpts)6. ;7.8. template Variable int set foo[6℄ in [1,5℄;9. : type10. (isSet ? "set")11. name12. (isDefined(array) ? array)13. "in" domain ";"14. ;15.16. template Array17. : "[" row (isDefined(
ol) ? ","
ol) "℄"18. ; Figure 5.51 � Three templates of the TCS �le of Flat s-COMMA.

106 Chapter 5 � Mapping Models to SolversThe Variable template de�nes the synta
ti
 stru
ture of a variable de
laration, whi
h beginswith the type of the variable followed by a
onditional stru
ture (isSet ? "set"). This
ondi-tional stru
ture permits the use of an optional token set for de�ning set variables. If the settoken is en
ountered in the variable de
laration, the isSet attribute of the metamodel is set totrue. Then, the name of the variable is stated. It is followed by another
onditional stru
ture,whi
h states that the template Array is only
alled if the variable has been de�ned as an array.The de
laration ends with the de�nition of the reserved word in followed by the domain. Thetemplate
on
erning the Array
on
ept is de
lared at line 16. The array indexes (row and
ol)are en
losed with box bra
kets and separated by a
omma token. The
ol attribute is optional,being used only by two-dimensional arrays.RemarkTCS is not required to add a new translator, as just the TCS for Flat s-COMMA is needed in theplatform.
5.3.2.5 Transformation pro
essTCS and KM3 work together and their
ompilation generates a Java pa
kage (whi
h in
ludeslexers, parsers and
ode generators) for Flat s-COMMA (FsC), whi
h is then used by the ATL �lesto generate the target model. Figure 5.52 depi
ts the
omplete transformation pro
ess. The Flat s-COMMA �le is the input of the Java pa
kage whi
h generates a XMI (XML Metadata Inter
hange)for Flat s-COMMA. Over this �le, ATL rules a
t and generate a XMI �le for Ge
ode/J. Finally,this �le is transformed into a solver �le by means of the ATL query.

FsC File

FsC KM3

M1

conformsTo conformsTo

M2

FsC XMI Gecode/J XMI Gecode/J File

Gecode/J KM3

FsC-to-Gecode/J ATL Rules

FsC TCS ATL query

Figure 5.52 � The model-driven transformation pro
ess on the example of Flat s-COMMA (FsC) toGe
ode/J.NoteThe XMI �le used in the transformation in
ludes an organized representation of models in termsof its metamodel
on
epts in order to fa
ilitate the task of transformation rules.

Chapter 5 � Mapping Models to Solvers 1075.3.2.6 Dire
t Code GenerationThere is another approa
h to develop translators using the model-driven approa
h. For ins-tan
e, if we want to use just the Flat s-COMMA features that are supported by the solver, we
anomit the transformation rules and we
an apply the ATL query dire
tly on the sour
e metamodel.Figure 5.53 shows the dire
t
ode generation pro
ess.
FsC File

FsC KM3

M1

conformsTo

M2

XMI FsC Solver File

FsC TCS ATL query

Figure 5.53 � Dire
t
ode generation.Although this approa
h is simpler, it is less �exible sin
e we lose the possibility of using moreelaborated transformations su
h as the set matrix de
omposition presented in Se
tion 5.3.2.2.5.3.3 Dis
ussionWe have presented two di�erent approa
hes for building translators in solver-independentar
hite
tures. Comparing both approa
hes, let us make the following
on
luding remarks.� The development of hand-written translators is in general a hard task. Their
reation,modi�
ation and reuse requires to have a deep insight in the
ode and in the ar
hite
tureof the platform, even more if they have a spe
i�
 or
omplex design. For instan
e, in ourimplementation, it is mandatory to master ASTs, Java and intermediate representationsto generate the target solver �les.� As we mentioned in Se
tion 5.3.2.2, solver metamodels are similar to the Flat s-COMMAmetamodel, and ATL rules
orrespond mainly to one-to-one transformations. We believetherefore that the development of KM3 and ATL rules for new solver-translators shouldnot be a hard task, and the
on
rete work for plugging a new solver should be just redu
edto the de�nition of the ATL query for the
ode generation. This task may also be fa
ilitatedwith the reuse of existing
ode generation �les.� The development of hand-written translators requires more
ode lines. In our implemen-tation, the sour
e �les of Java translators are approximately 60% bigger than the model-driven translators sour
e �les (ATL + KM3).� In the model-driven approa
h, the syntax
on
erns of a language are divided into the abs-tra
t syntax (KM3 metamodel) and the
on
rete syntax (ATL and TCS). This separationgives us a more organized and modular view of the language, whi
h has simpli�ed the
reation and motivated the reuse of our translators. It is also important to
ontrast thisfeature with the mapping me
hanism used in Cadmium, whose rules operate dire
tly onZin
 expressions (by means of term mat
hing), having no independen
e between abstra
tand
on
rete syntaxes. This property may generate smaller Cadmium programs, but lessmodular
ompared to our approa
h.

108 Chapter 5 � Mapping Models to Solvers5.3.3.1 ExperimentsTo
ompare the performan
e of both kind of translators, in terms of translation time, wehave performed a set of tests. The tests have been performed on a 3GHz Pentium 4 with 1GBRAM running Ubuntu 6.06, and the ben
hmarks used were the following:� The
ryptoarithmeti
 puzzle Send + More = Money (Send).� The stable marriage problem (Stable).� Two versions of the n-queens problem (10-queens and 18-queens).� Pa
king 8 squares into a square of area 25 (Pa
king).� The produ
tion-optimization problem (Produ
tion).� Solving 20 linear inequalities (Ineq20).� The assembly of a
ar engine subje
t to design
onstraints (Engine).� The Sudoku logi
-based number pla
ement puzzle (Sudoku).� The so
ial golfers problem (Golfers).Table 5.1 shows the translation times for both approa
hes. The �rst
olumn gives the problemnames. The se
ond and third
olumn depi
t the translation times using hand-written (HW) andmodel-driven (MD) translators (using translation rules), from Flat s-COMMA (FsC) to Ge
ode/Jand from Flat s-COMMA to ECLiPSe, respe
tively. Translation times from s-COMMA (sC) to Flats-COMMA are given for referen
e in the last
olumn (this pro
ess involves synta
ti
 and semanti

he
king, and refa
toring to Flat s-COMMA). The table exhibits that MD translators are slowerthan HW translators. This is expe
ted sin
e HW translators have been designed spe
i�
ally fors-COMMA. They take as input a Flat s-COMMA de�nition and dire
tly generate the solver �le. Thetransformation pro
ess used by MD translators is not dire
t, it performs intermediate phases(XMI to XMI). However, we believe that translation times using MD translators are reasonableand this loss of performan
e is an a

eptable pri
e to pay for using a generi
 approa
h.Table 5.1 � Translation times (se
onds).FsC to Ge
ode/J FsC to ECLiPSe sC toProblems HW MD HW MD FsCSend 0.052 0.688 0.048 0.644 0.237Stable 0.137 1.371 0.143 1.386 0.51410-Queens 0.106 1.301 0.115 1.202 0.40918-Queens 1.122 3.194 0.272 2.889 0.659Pa
king 0.172 1.224 0.133 1.246 0.333Produ
tion 0.071 0.887 0.066 0.783 0.28820 Ineq. 0.072 0.895 0.072 0.891 0.343Engine 0.071 0.815 0.071 0.844 0.285Sudoku 1.290 4.924 0.386 4.196 3.503Golfers 0.098 1.166 0.111 1.136 0.380We have performed another test to show that the automati
 generation of solver �les doesnot lead to a loss of performan
e in terms of solving time. In Table 5.2 we
ompare the solver

Chapter 5 � Mapping Models to Solvers 109�les generated by MD translators (Generated) with native solver �les written by hand (Native).The results show that generated solver �les are in general bigger than solver versions written byhand. This is explained by the loop unrolling and
omposition �attening pro
esses presented inSe
tion 5.3. However, this in
rease in terms of
ode size does not
ause a negative impa
t onthe solving time. In general, generated solver versions are very
ompetitive with hand-writtenversions. The data also shows that Ge
ode/J �les are bigger than ECLiPSe �les, this is be
ausethe Java syntax is more verbose than the ECLiPSe one.NoteIn the
omparison, we do not
onsider solver �les generated by HW translators sin
e they haveno relevant di�eren
es
ompared to solver �les generated by MD translators.Table 5.2 � Solving times (se
onds) and model sizes (number of tokens).Ge
ode/J ECLiPSeBen
hmark Native Generated Native GeneratedSolv. time Size Solv. time Size Solv. time Size Solv. time SizeSend 0.002 590 0.002 615 0.01 231 0.01 329Stable 0.005 1898 0.005 8496 0.01 1028 0.01 465910-Queens 0.003 460 0.003 9159 0.01 193 0.01 195818-Queens 0.008 460 0.008 30219 0.02 193 0.02 6402Pa
king 0.009 663 0.009 12037 0.49 355 0.51 3212Produ
tion 0.026 548 0.028 1537 0.014 342 0.014 70320 Ineq 13.886 1576 14.652 1964 10.34 720 10.26 751Engine 0.012 1710 0.012 1818 0.01 920 0.01 1148Sudoku 0.007 1551 0.007 33192 0.21 797 0.23 11147Golfers 0.005 1618 0.005 4098 0.21 980 0.23 1147
5.4 SummaryIn this
hapter we have presented the transformation pro
ess from graphi
al artifa
ts to solverprograms. The ar
hite
ture supporting this pro
ess is
omposed of three main elements: the s-COMMA GUI, the s-COMMA
ompiler, and the mapping tool. A
omplete transformation in
ludesseveral phases. The s-COMMA GUI transforms its graphi
al artifa
ts into the
orresponding s-COMMA textual model by means of a set of Java pa
kages. This model is parsed and semanti
ally
he
ked using the ANTLR tool. If the
he
king pro
ess su

eeds, the model is transformed to anintermediate language
alled Flat s-COMMA. In this transformation, several s-COMMA
onstru
tsare refa
tored to fa
ilitate the transformation to the solver language. Finally, the generated Flats-COMMA model is the input of the mapping tool, whi
h builds the exe
utable solver �le. Themapping tool
ontains two kinds of solver translators: hand-written translators and model-driventranslators. The hand-written translators are written in Java, while the model-driven translators

110 Chapter 5 � Mapping Models to Solversare developed using metamodels and transformation rules. The model-driven approa
h involvesimportant advantages, whi
h mainly
on
ern implementation tasks.In the following
hapter, we begin the third part of this thesis by giving an overview ofthe transformation framework for CP. We present the main purpose of this framework and weillustrate a pra
ti
al example. The se
ond and �nal
hapter of this third part
on
erns theimplementation of the framework.

PART IIIThe Transformation Framework for CP

CHAPTER6
Overview

T his
hapter gives an overview of the transformation framework for CP. The main impro-vement of this approa
h with respe
t to our previous work and in turn with respe
t to thestate-of-the-art solver-independent ar
hite
tures is the possibility of
hoosing di�erent modelinglanguages as the sour
e of a transformation. This
an be a
hieved by using a pivot model (inter-mediate model) whi
h is independent from the target model, but also from sour
e languages. Theindependen
e of this pivot
an be
ontrasted with
urrent approa
hes in whi
h the intermediatemodel is strongly tied (in terms of syntax and
onstru
ts supported) to the modeling language,for instan
e Flat s-COMMA to s-COMMA, or �atZin
 to Zin
 and MiniZin
. This new approa
h issupported by a �exible ar
hite
ture on whi
h model-driven translators
an be plugged to performthe mappings among the di�erent languages. We believe that this new framework involves twoimportant advantages:� The user will be able to
hoose his favourite modeling language and the best known solvingte
hnology for a given problem provided that the transformation between languages isimplemented.� It may be easy to
reate a
olle
tion of ben
hmarks for a given language from di�erentsour
e languages. This feature may speed up prototyping of one solver, avoiding the rewri-ting of problems in its modeling language.This ar
hite
ture has been fully implemented using the MDA approa
h. The implementationis based on the tools presented in the previous
hapter (KM3, ATL and TCS). The aim is to takeadvantage of the MDA bene�ts to de�ne both
lear and
on
ise mapping rules and grammarspe
i�
ations.6.1 The Model-Driven Transformation FrameworkFigure 6.1 depi
ts the ar
hite
ture of our model-driven transformation framework, whi
h isdivided in two layers: M1 and M2. M1 holds the models representing
onstraint problems andM2 de�nes the semanti
s of M1 through the metamodels. The transformation rules are de�nedto perform a
omplete translation in three main steps: translation from the sour
e model tothe pivot model, refa
toring/optimization on the pivot model, and translation from the pivotmodel to the target model. Sour
e and target models may be de�ned through any CP languages.The pivot model may be re�ned several times in order to adapt it to the desired target model(see Se
tion 7.2.1.2). These re�ning phases are similar to the ones performed from s-COMMA toFlat s-COMMA, but more �exible sin
e it is possible to sele
t the re�ning steps to be applied ina transformation. For instan
e, if loops are supported at the target level it is not ne
essary tounroll them or, if matri
es are permitted, there is no need to �atten them. This new feature113

114 Chapter 6 � Overviewpermits us to make use of the
onstru
ts provided by the target language and to thus redu
e thestru
tural di�eren
es between sour
e and target models.
Model A

MetaModel A

M2

M1

conformsTo Pivot Model

Transformation
A-to-Pivot

Transformation
Pivot-to-Pivot
(Refactoring/

Model B

Transformation
Pivot-to-B

MetaModel BPivot MetaModel

Optimization)

conformsTo

conformsTo

Figure 6.1 � The transformation framework.
6.2 A Motivating ExampleTo give an overview of the mapping pro
ess, and to show some interesting aspe
ts of therefa
toring steps applied, let us illustrate the result of an automati
 transformation of the so
ialgolfers model from s-COMMA to ECLiPSe by using the pivot as the intermediate model.The s-COMMA so
ial golfers model is shown in Figure 6.2, and the generated ECLiPSe modelis depi
ted in Figure 6.3. The ECLiPSe model has been built as a single predi
ate whose bodyis a sequen
e of atoms. The sequen
e is made of the problem dimensions (lines 2 to 4), the listof integer sets L (lines 6 and 7), and three nested loop blo
ks (lines 9 to 36) resulting from thetransformation of the three s-COMMA
lasses. It turns out that parts of both models are similar.Indeed, the original loop stru
ture has been transferred to the ECLiPSe model. However, some
onstru
ts are very di�erent and spe
i�
 pro
essing may be required. For instan
e, obje
ts mustbe handled by means of the
omposition �attening pro
ess sin
e they are not supported by thetarget language. This implies to perform many
hanges on the model. For example, the weekS
hedarray of Week obje
ts de�ned at line 21 of the s-COMMA model is refa
tored and transformed tothe WEEKSCHED_GROUPSCHED_PLAYERS_ �at list stated at line 6 in Figure 6.3. It is also ne
essaryto insert new loops in order to traverse arrays of obje
ts and to post the whole set of
onstraints.For instan
e, the se
ond blo
k of for loops in the ECLiPSe model (lines 16 to 24) has been builtfrom the playOn
ePerWeek
onstraint zone of the s-COMMA model, but there is an additional forloop (line 16) sin
e the Week instan
es are
ontained in the weekS
hed array. Another issue isrelated to lists that
annot be a

essed in the same way as arrays in s-COMMA. Thus, auxiliaryvariables (Vi) and the well-known nth Prolog predi
ate are introdu
ed in the ECLiPSe model.Let us noti
e that in the ECLiPSe
onstraints, the `#' symbol
orresponds to the
ard fun
tionand /\ represents the interse
t operator.

Chapter 6 � Overview 115
Data File1. enum name := {a,b,
,d,e,f,g,h,i};2. int s := 3; //size of groups3. int w := 4; //number of weeks4. int g := 3; //groups per weekModel File1. import So
ialGolfers.dat;2.3.
lass Group {4. name set players;5.
onstraint groupSize {6.
ard(players) = s;7. }8. }9.10.
lass Week {11. Group groupS
hed[g℄;12.
onstraint playOn
ePerWeek {13. forall(g1 in 1..g, g2 in g1+1..g)14.
ard(groupS
hed[g1℄.players interse
t15. groupS
hed[g2℄.players)= 0;16. }17. }18.19. main
lass So
ialGolfers {20.21. Week weekS
hed[w℄;22.23.
onstraint differentGroups {24. forall(w1 in 1..w, w2 in w1+1..w)25. forall(g1 in 1..g, g2 in 1..g)26.
ard(weekS
hed[w1℄.groupS
hed[g1℄.players interse
t27. weekS
hed[w2℄.groupS
hed[g2℄.players) <= 1;28. }29. } Figure 6.2 � A s-COMMA model of the so
ial golfers problem.

116 Chapter 6 � Overview
1. so
ialGolfers(L):-2. S $= 3,3. W $= 4,4. G $= 3,5.6. intsets(WEEKSCHED_GROUPSCHED_PLAYERS_,12,1,9),7. L = WEEKSCHED_GROUPSCHED_PLAYERS_,8.9. (for(I1,1,W),param(L,S,W,G) do10. (for(I2,1,G),param(L,S,W,G,I1) do11. V1 is G*(I1-1)+I2,nth(V2,V1,L),12. #(V2, V3), V3 $= S13.)14.),15.16. (for(I1,1,W),param(L,G) do17. (for(G1,1,G),param(L,G,I1) do18. (for(G2,G1+1,G),param(L,G,I1,G1) do19. V4 is G*(I1-1)+G1,nth(V5,V4,L),20. V6 is G*(I1-1)+G2,nth(V7,V6,L),21. #(V5 /\ V7, 0)22.)23.)24.),25.26. (for(W1,1,W),param(L,W,G) do27. (for(W2,W1+1,W),param(L,G,W1) do28. (for(G1,1,G),param(L,G,W1,W2) do29. (for(G2,1,G),param(L,G,W1,W2,G1) do30. V8 is G*(W1-1)+G1,nth(V9,V8,L),31. V10 is G*(W2-1)+G2,nth(V11,V10,L),32. #(V9 /\ V11, V12),V12 $=< 133.)34.)35.)36.),37.38. label_sets(L).Figure 6.3 � The so
ial golfers problem expressed in ECLiPSe.

Chapter 6 � Overview 1176.3 SummaryIn this
hapter, we have presented the transformation framework for CP. An interestingfeature of this framework is the possibility of using di�erent modeling languages as the sour
e ofa transformation. This
an be seen as an improvement of the state-of-the-art solver-independentar
hite
tures, whose mapping pro
ess is restri
ted to a unique modeling language. This newar
hite
ture performs a transformation in three main steps: translation from sour
e model to thepivot model, refa
toring/optimization on the pivot model, and translation from the pivot modelto the target model. A pra
ti
al example has been introdu
ed to show some interesting aspe
tsof a transformation. In the following
hapter, we fo
us on the implementation of this framework.We present the three main phases of the pro
ess and the tools used for supporting them.

CHAPTER7
From Source to Target

I n this
hapter we present a
omplete transformation through the framework. We
onsiderthe three main parts: from sour
e to pivot, pivot refa
toring, and pivot to target. Thepro
ess is illustrated by using as example the s-COMMA-to-ECLiPSe transformation. At the endof the
hapter, we dis
uss some experiments performed on the ar
hite
ture.7.1 From sour
e to pivotThe transformation pro
ess from the sour
e to the pivot model requires the metamodel (KM3)of the sour
e, the
on
rete syntax (TCS) of the sour
e, and the transformation rules from thesour
e to the pivot. Figure 7.1 depi
ts three
lasses of the s-COMMA metamodel in KM3, the
orresponding metamodel using UML
lass diagram notation is illustrated on the right side ofthe �gure.1.
lass Model {2. attribute name : String;3. referen
e modelElements [0-*℄
ontainer : ModelElement;4. }5.6. abstra
t
lass ModelElement {7. attribute name : String;8. }9.10.
lass Class extends ModelElement {11. attribute isMain : Boolean;12. referen
e superClass [0-1℄ : Class;13. referen
e solvingOpts [0-3℄
ontainer : SolvingOpt;14. referen
e attributes [0-*℄
ontainer : Attribute;15. referen
e
onstraintZones [0-*℄
ontainer : ConstraintZone;16. } Figure 7.1 � Three
lasses of the KM3 �le of s-COMMA.

Model

ModelElement

Class Constant

ConstraintZoneAttribute

The metamodel spe
i�es that a s-COMMA model is
omposed of an undetermined number ofModelElement obje
ts. The
lass representing model elements is abstra
t and it is stated as thesuper
lass of two metamodel
on
epts: Class and Constant. The Class
lass represents s-COMMA
lasses and it is
omposed of attributes and
onstraint zones. It inherits from the ModelElement
lass its name and it
an be de�ned as the main
lass of the model using the isMain attribute.A s-COMMA
lass
an inherit from a super
lass and it
an also
ontain solving options.119

120 Chapter 7 � From Sour
e to TargetThe
lass representing attributes is depi
ted in Figure 7.2. It serves as super
lass of variablesand obje
ts. The Variable
lass is stated at line 5 and it
an be de�ned as a set using the isSetattribute. It also has optional referen
es to the Array and to the Domain
on
ept.1.
lass Attribute {2. attribute name : String;3. }45.
lass Variable extends Attribute {6. attribute type : String;7. attribute isSet : Boolean;8. referen
e array [0-1℄
ontainer : Array;9. referen
e domain [0-1℄
ontainer : Domain;10. } Figure 7.2 � Attributes and variables in the KM3.
Attribute

Variable Object

Domain Array

The KM3 �le
on
erning the
onstraint zones is depi
ted in Figure 7.3. The ConstraintZone
on
ept
onsists of a set of
onstraint zone elements. Three kinds of
onstraint zone elementsare de�ned: IfElse, Forall and ConstraintStatement. For instan
e, the IfElse statement is
omposed of the
ondition and two set of
onstraint zone elements. The �rst set responds to atrue
ondition, and the se
ond one to a false
ondition. The Constraint
lass is depi
ted at line16. It is
omposed of an Expression and of its optional
onsisten
y level. The obje
t hierar
hybelow the Expression
lass
an be seen in the Flat s-COMMA metamodel (Figure 5.44).1.
lass ConstraintZone {2. attribute name : String;3. referen
e
onstraintZoneElements [0-*℄
ontainer : ConstraintZoneElements;4. }5.6. abstra
t
lass ConstraintZoneElement {}7.8.
lass IfElse extends ConstraintZoneElement {9. referen
e
ondition
ontainer : Expression;10. referen
e trueCtrs [1-*℄ ordered
ontainer :11. ConstraintZoneElement;12. referen
e falseCtrs [0-*℄ ordered
ontainer :13. ConstraintZoneElement;14. }15.16.
lass Constraint extends ConstraintZoneElement {17. attribute
onsLevel [0-1℄ : String;18. referen
e assertion
ontainer : Expression;19. } Figure 7.3 � Constraint zones and statements in the KM3.
OptStatementConstraint Global

Constraint

ConstraintStatementForallIf-Else

ConstraintZone

ConstraintZoneElement

Figure 7.4 depi
ts some templates of the s-COMMA TCS �le. The �rst template de�nes amodel, whi
h is
omposed of a set of model elements. The main
ontext keywords are used to
reate a main symbol table. At line 5, the template for the ModelElement
on
ept is stated. It

Chapter 7 � From Sour
e to Target 121
orresponds to an abstra
t
on
ept in the metamodel, being ne
essary to de
lare it as abstra
tin the TCS. The Class template is de�ned at line 7. A
lass de
laration is added to the symboltable by means of the addToContext keyword. The synta
ti
 stru
ture of a Class begins with theoptional token main, whi
h de�nes the main
lass of the model. The reserved word
lass and the
lass name follow. Then, two optional stru
tures are stated. One is used to de�ne a super
lass,while the other one states the solving options. The refersTo=name statement is used to getthe name of the super
lass. Finally, a pair of
urly bra
ket symbols en
loses the attributes and
onstraint zones of a
lass. The last template de�nes the syntax of a variable, whi
h is de�nedwith a type, an optional set token, and a name. The optional array and domain elements follow,ended by a semi
olon token.1. template Model main
ontext2. : modelElements3. ;4.5. template ModelElement abstra
t;6.7. template Class
ontext addToContext8. : (isMain ? "main") "
lass" name9. (isDefined(superClass) ? "extends" superClass{refersTo=name})10. (isDefined(solvingOpts) ? solvingOpts)11. "{"12. attributes13.
onstraintZones14. "}"15. ;16.17. template Attribute abstra
t;18.19. template Variable addToContext20. : type (isSet ? "set")21. name (isDefined(array) ? array)22. (isDefined(domain) ? "in" domain) ";"23. ; Figure 7.4 � Some templates of the TCS �le of s-COMMA.On
e the KM3 and TCS are de�ned, the transformation from the sour
e to the pivot is per-formed by means of ATL rules. Figure 7.5 depi
ts two transformation rules from s-COMMA tothe pivot. The rules in
lude only one-to-one transformations sin
e every
onstru
t of s-COMMAis supported by the pivot.RemarkThe pivot model has been designed to support as mu
h as possible the features of most CPlanguages, for instan
e variables of di�erent types, data stru
tures su
h as arrays and obje
ts,�rst-order
onstraints,
ommon global
onstraints, and
ontrol statements. The main idea is to
over a wide range of
onstru
ts to fa
ilitate the integration of new translators to the ar
hite
-ture.

122 Chapter 7 � From Sour
e to Target1. rule ModelToModel { 11. rule VariableToVariable {2. from 12. from3. s : sComma!Model (13. s : sComma!Variable (4.) 14.)5. to 15. to6. t : Pivot!Model(16. t : Pivot!Variable(7. modelElements <- s.modelElements 17. type <- s.type,8.) 18. isSet <- s.isSet,9. } 19. name <- s.name,10. 20. array <- s.array,21. domain <- s.domain22.)23. }Figure 7.5 � Two ATL rules for a transformation from s-COMMA to pivot.7.2 Pivot refa
toringThe pivot only requires a metamodel and the transformation rules to re�ne it. No TCS �le isrequired. A syntax stru
ture for the pivot is unne
essary sin
e the whole set of transformationsis applied only over the
on
epts de�ned in its metamodel.RemarkThe pivot metamodel has been designed to be independent from CP languages, i.e. it has nosyntax and the
onstru
ts supported do not depend on a parti
ular modeling or solver lan-guage. This
an be
ontrasted with the state-of-the-art ar
hite
tures, in whi
h the intermediatelanguage is strongly tied to the syntax and
onstru
ts of the modeling language.Figure 7.6 depi
ts the main
on
epts of the pivot metamodel, several
on
epts are shared withthe s-COMMA metamodel. This is due to both metamodels represent CP
on
epts, e.g. variables,
onstraints and statements. However, the pivot metamodel is somewhat larger. For instan
e,it admits
lasses
ontaining
onstant de
larations. It also provides support for re
ords, whi
hare in
luded in some CP languages, su
h as OPL and Zin
. Moreover, it in
ludes the predi
ate
on
ept to handle CLP languages.7.2.1 Refa
toring phaseWith the aim of bridging the gap between the sour
e and the target model we have de�nedseveral steps of pivot model refa
toring. These steps are
ommonly needed in several transforma-tions from modeling to solver languages. The idea is to re�ne and to optimize a model to �t asmu
h as possible with the target language
on
epts. This phase is implemented in several modeltransformations over the pivot model, and it
orresponds to the most
omplex part of the wholetransformation pro
ess. The refa
toring steps involved have been en
apsulated in a set of ATLpro
edures, whi
h
an be reused on
e a new language is added to the framework.

Chapter 7 � From Sour
e to Target 123

OptStatementConstraint Global
Constraint

ModelFeature

ConstraintStatementConstant Variable Object ForallIf-Else

Class

Domain Array

StatementRecord

Model

ModelElement

TypedElement

Predicate

Figure 7.6 � A fragment of the pivot metamodel.
RemarkSin
e the
omplex re�ning work is always done on the pivot, the rules from/to pivot be
omesimpler, and as a
onsequen
e the integration of new translators is fa
ilitated.To simplify the explanations of
omplex transformations we have de�ned a pseudo-
odelanguage based on ATL. The notations of this language are de�ned in the following.7.2.1.1 Rule notationsFigure 7.7 depi
ts a simple transformation rule from a language
alled Sour
e to a language
alled Target. The rule is
alled AToA, and the type of both
on
epts to be mapped is denotedby A. The rule mat
hes four attributes, from attribute1 to attribute4. The same rule
an beexpressed in the pseudo-
ode language as `s: A => t: A'.1. rule AToA {2. from3. s : Sour
e!A (4.)5. to6. t : Target!A(7. attribute1 <- s.attribute1,8. attribute2 <- s.attribute2,9. attribute3 <- s.attribute3,10. attribute4 <- s.attribute411.)12. } Figure 7.7 � An example of transformation rule.

124 Chapter 7 � From Sour
e to TargetThe left part of the pseudo-
ode rule (s:)
orresponds to the sour
e, and the right part (t:)to the target. The type of both s and t is denoted by A. Sin
e the mat
hing is performed between
on
epts having the same type, we assume that every attribute held by the sour
e is impli
itlymat
hed to its
orresponding one on the target. In the example, the four attributes of the sour
eare mat
hed to the four attributes of the target.This same rule
an be �ltered using the where keyword followed by a boolean expression. Forinstan
e, the following rule allows the mat
hing only if the name attribute is de�ned in s. TheisDefined statement is a fun
tion
all representing the
orresponding
all to an ATL helper.s: A where isDefined(s.name) => t: AIt is also possible to
ustomize a mat
hing for an attribute. For instan
e, we expli
itly statebelow that the name attribute of t must be generated as the
on
atenation of the strings repre-sented by the name and surname attributes of s. The other attributes of s are simply dupli
ated.s: A where isDefined(s.name) => t: A { name <- s.name + s.surname }Additionally, if the types or stru
tures of entities involved in a transformation are notthe same, only the shared attributes (having
ompatible types) and expli
it mat
hings (id <-s.name in the next example) are performed.s: A where isDefined(s.name) => t: B { id <- s.name }A
olle
tion of entities
an be
reated from one sour
e entity by spe
ifying a sequen
e typefor the target entity, as follows,s: A => t: Sequen
e of B(s.elements)where elements is an attribute of s
orresponding to a sequen
e of entities. There are two
ases:either the entities of s.elements mat
h the B type, or other rules must des
ribe how to transformthese entities to some entities
onformly to B.7.2.1.2 Pivot refa
toring rulesThe refa
toring steps applied on the pivot are very similar to the ones performed on thes-COMMA-to-Flat s-COMMA transformation. For instan
e:
omposition �attening, loop unrolling,enumeration substitution, data substitution,
onditional removal, auxiliary variables insertionand expression evaluation. In the following paragraphs we give an overview of this pro
ess bypresenting four refa
toring phases. We use the pseudo-
ode language introdu
ed to illustrate thetransformation rules.Composition �atteningThis refa
toring step repla
es obje
ts by their attributes and
onstraints. To prevent name
on�i
ts, the names of attributes are pre�xed with the name of obje
ts. In Figure 7.8, the �rstrule (lines 1 and 2) generates a sequen
e of model features (e.g. variables and
onstraints),whi
h
orrespond to the elements en
apsulated in the obje
t. If this generated model element
orresponds to a variable, the se
ond rule a
ts (lines 3 and 4). The parentIsObje
t fun
tion is

Chapter 7 � From Sour
e to Target 125used to test whether the variable is
ontained in an obje
t. Then, the rule expli
itly assign a newvalue to the name attribute of the generated variable by
on
atenating four strings. The resultof this transformation on the s-COMMA obje
t entities of the so
ial golfers model is depi
ted inFigure 7.9.1. s: Obje
t =>2. t: Sequen
e of ModelFeature (s.modelFeatures)3. s: Variable where parentIsObje
t(s) =>4. t: Variable { name <- s.parent.name + '_' + s.name + '_' }Figure 7.8 � The
omposition �attening transformation rule.//Before flattening //After flatteningmain
lass So
ialGolfers { name set weekS
hed_groupS
hed_players_[g*w℄;Week weekS
hed[w℄;...}
lass Week {Group groupS
hed[g℄;...}
lass Group {name set players;...} Figure 7.9 � Composition �attening on the so
ial golfers problem.The name of the new array is generated from the
on
atenation of the names in the obje
tshierar
hy. Sin
e the weekS
hed array is
omposed of Week obje
ts, the pre�x of the new name isweekS
hed followed by groupS
hed and players. The size of the array is given by g×w. Finally,as we mentioned at the end of Se
tion 6.2, when transforming an array of obje
ts
ontaining
onstraints, the set of
onstraints is en
apsulated in a forall statement. The loop variable ofthis statement iterates from 1 to the size of the array.NoteThis pro
ess di�ers from the
omposition �attening in Flat s-COMMA. The use of loops in this im-plementation allows us to en
apsulate
onstraints (resulting from the �attening) within forallstatements, instead of unrolling them.Enumeration substitutionThis rule substitutes enumerations by integer values (see Figure 7.10). In the rule, threeVariable elements are mat
hed, domain is mat
hed to d, whi
h is
omputed by the rule statedat line 3. The size of the domain is given by the getSize fun
tion, whi
h returns the numberof elements
ontained in the enumeration. The result on the so
ial golfers problem is shown inFigure 7.11.

126 Chapter 7 � From Sour
e to Target1. s: Variable where isEnum(s.type) =>2. t: Variable {name <- s.name, type <- "int", domain <- d} and3. d: Domain {lower <- 1, upper <- getSize(s.type)}Figure 7.10 � The enumeration substitution transformation rule.//Before enumeration substitution //After enumeration substitutionenum name := {a,b,
,d,e,f,g,h,i}; name set players in [1,9℄;name set players;Figure 7.11 � Enumeration substitution on the so
ial golfers problem.Forall unrollingThis step unrolls forall loops, i.e. the loop is repla
ed by the whole set of
onstraint entitiesthat it impli
itly
ontains. In the rule depi
ted in Figure 7.12, forea
h is a fun
tion takingas �rst parameter an iterator de�nition and as se
ond parameter the statement to repeat. Thefun
tion repla
e takes three parameters: the entity to repla
e, the entity to put instead and theentities to pro
ess. Thus, the sequen
e of
onstraint is initialized with all the
onstraints returnedby the forea
h fun
tion, whi
h generates s.start - s.end times the set of
onstraints withinloop entities.1. s: Forall =>2. t: Sequen
e of Constraint(forea
h(it in s.start .. s.end,3. repla
e(s.loopVar,it,s.statements)))Figure 7.12 � The forall unrolling transformation rule.Auxiliary variable insertionIn some CLP languages, it is not possible to use the bra
ket operator (`[℄') to a

esslists, being ne
essary to introdu
e lo
al variables and nth predi
ate
alls (as we have shown inFigure 6.3). Figure 7.14 depi
ts the transformation rules of this phase, and a result is shown inFigure 7.13. This rule a
ts over one-dimensional arrays stated as operand in expressions. TheVariableO
urren
e
on
ept represents a variable stated as operand in an expression1. At lines3 and 4, a new auxiliary variable is
reated with its
orresponding variable o

urren
e (V1 in theexample). The fun
tion getNextAuxVarName() returns the name of the next auxiliary variable.The following statement builds the nth fun
tion
all. Its parameters are mat
hed with a sequen
eof expression obje
ts
omposed of the variable o

urren
e
orresponding to the new auxiliaryvariable, the row index of the array (X in the example), and a variable o

urren
e
orrespondingto the array L. The variable V1 will be then used to represent L[X℄ within expressions.
1The Expression and the VariableO
urren
e
on
epts
an be seen in Figure 5.44.

Chapter 7 � From Sour
e to Target 1271. s: VariableO

urren
e where (isDefined(s.array.row)2. and isUndefined(s.array.
ol)) =>3. t: Variable{name <- getNextAuxVarName()} and4. u: VariableO

urren
e{de
laration <- t} and5. v: Fun
tionCall {name <- "nth",6. parameters <- Sequen
e of Expression(u,s.array.row,w)} and7. w: VariableO

urren
e{de
laration <- s.de
laration}Figure 7.13 � Auxiliary variable insertion transformation rules.//Before ruleL[X℄//After rulenth(V1,X,L) Figure 7.14 � Auxiliary variable insertion pro
ess.
RemarkLet us note that the pivot metamodel
an be extended. For instan
e, if a new language isplugged to the framework and no support exists for some of its features, e.g. a global
onstraint.It su�
es to add to the pivot the
on
ept representing su
h a global
onstraint or to add the
orresponding refa
toring phase to transform the global
onstraint in a representation (if exists)supported by the target language.7.3 From pivot to targetThe transformation from pivot to target is similar to the sour
e-to-pivot transformation.Mainly one-to-one transformation rules are performed. Like the �rst step, this phase requiresthe KM3, the TCS of the target language, and the transformation rules to mat
h with the pivotmetamodel.NoteA same TCS �le
an be used for parsing a sour
e language and for generating target �les inthat language. This avoid us to
reate an ATL query for the
ode generation tasks.Figure 7.15 depi
ts the main
on
epts of the ECLiPSe metamodel. An ECLiPSe model
anbe seen as a set of Prolog-like predi
ates. Ea
h predi
ate is
omposed of variables, and predi
atefeatures. A predi
ate feature is spe
ialized in two
lasses: VariableFeature and Statement. Four
lasses inherits from VariableFeature: Domain, Array, Set and Constant. Let us note that thestru
ture of this
lass hierar
hy di�ers from previous metamodels. It has been de�ned in thismanner to
orre
tly handle the di�erent variable de
larations provided by ECLiPSe. Finally, the

128 Chapter 7 � From Sour
e to Target

OptStatementConstraint Global
Constraint

Predicate

PredicateElementVariable

VariableFeature

Domain Array Set ForallIf-Else

Statement

ConstraintStatementConstant

Model

Figure 7.15 � A fragment of the ECLiPSe metamodel.sub-elements of the Statement
on
ept are very similar to previous metamodels.Figure 7.16 depi
ts three templates of the ECLiPSe TCS �le. The �rst template de�nes themodel, whi
h is
omposed of a set of predi
ates. Predi
ates are de�ned with a name and a set ofinput parameters separated by a
omma.1. template Model main
ontext2. : predi
ates3. ;4.5. template Predi
ate
ontext addToContext6. : name queens(N, Board) :-7. "(" parameters{separator=","} ")"8. ":-"9. predi
ateElements{separator=","} solvingOpts "." ...10. ;11. template Predi
ateElement abstra
t; dim(Board, [N℄),12. template VariableFeature abstra
t;13.14. template Array15. "dim"16. "(" varName{refersTo=name}17. "," "[" row (isDefined(
ol) ? ","
ol) "℄" ")"18. ; Figure 7.16 � Five templates of the TCS �le of ECLiPSe.A parameter
orresponds to a Variable obje
t. The parameters are en
losed by a pair ofround bra
ket tokens and followed by the `:-' Prolog symbol. A set of predi
ate elements follows,whi
h are also separated by a
omma token. The predi
ate de
laration ends with the solvingoptions followed by a dot symbol. The Predi
ateElement and the VariableFeature are abstra
ttemplates. The Array template is de�ned at line 18. The dim reserved word begins the array

Chapter 7 � From Sour
e to Target 129de
laration. The name of the variable and the dimensions of the array are then in
luded. TherefersTo=name statement is used to get the name of the variable, whi
h is de�ned within theVariable
on
ept. The
ol attribute is optional, being only used for two-dimensional arrays.7.4 Transformation pro
essAs presented in Se
tion 5.3.2.5, the
ompilation of the TCS �le with the
orresponding KM3metamodel generates the ne
essary lexers, parsers and
ode generators. The
omplete transfor-mation pro
ess is shown in Figure 7.17. The model �le of the sour
e language (the s-COMMA�le) is the input of the system. This �le is transformed to the
orresponding s-COMMA XMI �le(inje
tion phase). The s-COMMA XMI is transformed through the ATL rules to the pivot XMI�le. Over this XMI �le, the whole set of refa
toring steps is performed. The re�ned XMI pivot�le is mapped to the XMI �le of the target language (ECLiPSe). Finally, the model of the targetlanguage (the ECLiPSe �le) is generated (extra
tion phase).
s-COMMA File

s-COMMA KM3

M1

conformsTo conformsTo

M2

s-COMMA XMI Pivot XMI Eclipse XMI

Pivot KM3

s-COMMA-to-Pivot

s-COMMA TCS

Eclipse File

Eclipse TCS

ATL Rules

Pivot-to-Pivot (Refactoring)
ATL Rules

Pivot-to-Eclipse
ATL Rules

Eclipse KM3

conformsTo

Injection Extraction

Figure 7.17 � The transformation pro
ess on the example of s-COMMA to ECLiPSe.7.4.1 Sele
ting the refa
toring steps.Applying the whole set of refa
toring steps presented in Se
tion 7.2 is not ne
essary in everytransformation
hain. Indeed, it
learly depends on the modeling stru
tures of the sour
e andtarget languages. The idea is to use most of
onstru
ts supported by the target language to havea target model
lose, in terms of
onstru
ts, to our sour
e model. For instan
e, in a s-COMMA toECLiPSe translation, we should transform the obje
ts using the
omposition �attening step. Wealso may need the enumeration substitution and other refa
toring steps su
h as the use of lo
alvariables and nth predi
ates. Optionally, we may sele
t the expression simpli�
ation step.

130 Chapter 7 � From Sour
e to TargetRemarkThis feature may be
ontrasted with previous approa
hes (e.g. Zin
, s-COMMA), where the re-fa
toring steps are always applied. This normally breaks the original stru
ture of the model(e.g. the unrolling loop phase generates a model
ompletely di�erent
ompared to one with nounrolled loops). The possibility of
ustomizing the steps to be applied on the transformationallows one to transfer the sour
e modeling features to the target model. We believe this mayenable readability and understanding on the target model.The set of re�ning steps to be applied in a transformation
an be
hosen by means of Ants
ripts [www6 ℄. Figure 7.18 depi
ts an Ant s
ript spe
ifying a transformation. The �rst blo
k (lines1 to 7) states the transformation from s-COMMA to the pivot and the se
ond blo
k (lines 9 to 14)sele
ts the enumeration substitution refa
toring step. Lines 3, 5 and 11 de�ne whi
h metamodelsto use and lines 4 and 12 spe
ify whi
h models to pro
ess. Lines 6 and 13
orrespond to theprodu
ed models.1. <!--s-COMMA to Pivot-->2. <am3.atl path="/sCOMMAtoPivot/sCOMMAtoPivot.atl">3. <inmodel name="sCOMMA" model="sCOMMA"/>4. <inmodel name="IN" model="mysCOMMA"/>5. <inmodel name="Pivot" model="Pivot"/>6. <outmodel name="OUT" model="myPivot" metamodel="Pivot"/>7. </am3.atl>8.9. <!--Enumeration Substitution-->10. <am3.atl path="/PivotRefining/enumerationSubstitution.atl">11. <inmodel name="Pivot" model="Pivot"/>12. <inmodel name="IN" model="myPivot"/>13. <outmodel name="OUT" model="myPivot" metamodel="Pivot"/>14. </am3.atl> Figure 7.18 � An Ant s
ript for sele
ting transformations.7.5 ExperimentsTo highlight the performan
e of this new approa
h, in terms of translation time, we havetested the s-COMMA to ECLiPSe translation on �ve CP problems. Table 7.1 depi
ts the results ofthis �rst experiment. The �rst
olumn gives the problem names. The se
ond
olumn depi
ts thesize (in number of lines) of the s-COMMA sour
e �les. The following
olumns
orrespond to the timeof atomi
 steps (in se
onds): model inje
tion (Inje
t), transformations from s-COMMA to pivot (s-to-p),
omposition �attening (Comp), enumeration substitution (Enum), transformations frompivot to ECLiPSe (p-to-E), and target �le extra
tion (Extra
t). The next
olumn details thetotal time of the
omplete transformation, and the last
olumn shows the number of lines of thegenerated ECLiPSe �les.The results show that the text pro
essing phases (inje
tion and extra
tion) are e�
ient,but we may remark that the given problems are
on
isely stated (maximum of 112 lines). Thetransformation s-COMMA to pivot is slower than the transformation pivot to ECLiPSe. This isexplained by the refa
toring phases performed on the pivot that redu
e the number of elements

Chapter 7 � From Sour
e to Target 131Problems Size Inje
t s-to-p Comp Enum p-to-E Extra
t Total SizeGolfers 42 0.107 0.169 0.340 0.080 0.025 0.050 0.771 38Engine 112 0.106 0.186 0.641 0.146 0.031 0.056 1.166 78Send 16 0.129 0.160 0.273 - 0.021 0.068 0.651 21Stable 46 0.128 0.202 0.469 0.085 0.027 0.040 0.951 2610-queens 14 0.132 0.147 0.252 - 0.017 0.016 0.564 16Table 7.1 � Times of
omplete transformation
hains.to handle on the pivot to ECLiPSe step. The
omposition �attening step is the more expensive.In parti
ular, the Engine problem exhibits the slowest running time sin
e it
ontains a biggernumber of obje
t
ompositions. In summary,
onsidering the whole set of phases involved, theresults show reasonable translation times.The se
ond test we performed aims at analyzing s
aling our approa
h. To this end we haveapplied the loop unrolling step to six versions (from n=50 to n=100) of the n-queens problem.Table 7.2 depi
ts the results of this se
ond test. Columns two to eight show the atomi
 steps ofthe transformation (in se
onds). Column nine
ontains the sizes (in number of lines) of generatedECLiPSe �les, whi
h have been heavily impa
ted by the loop unrolling step (sin
e the size ofthe unrolled loops depends on n). At the �nal
olumn, a ratio exhibits the e�
ien
y of a trans-formation
hain
onsidering the exe
ution time per generated lines. Considering the signi�
antdi�eren
es of model sizes (from 7505 to 30005 lines) the values indi
ate this ratio slowly in
reases,showing that the approa
h
an be used for large models.Problems Inje
t s-to-P Comp Forall P-to-E Extra
t Total Size Total/Size50-queens 0.132 0.147 0.252 32.773 16.21 1.059 50.573 7505 ≈0.006760-queens 0.132 0.147 0.252 49.247 28.577 1.509 79.864 10805 ≈0.007470-queens 0.132 0.147 0.252 68.283 47.951 2.033 118.798 14705 ≈0.008080-queens 0.132 0.147 0.252 92.693 81.401 2.689 177.314 19205 ≈0.009290-queens 0.132 0.147 0.252 126.338 123.743 3.390 254.002 24305 ≈0.0104100-queens 0.132 0.147 0.252 165.395 182.871 4.193 352.990 30005 ≈0.0117Table 7.2 � Time of
omplete transformation
hains of the n-queens problem.7.6 SummaryIn this
hapter, we have presented the
omplete transformation pro
ess performed by theframework. The implementation of the three main phases has been explained. The �rst andthe last phase
on
ern the sour
e and the target language, respe
tively. The implementationof both phases requires the de�nition of a metamodel, a TCS �le, and a set of transformationrules to mat
h with the pivot. The middle phase is responsible for applying a set of refa
toringsteps on the pivot. This model is a key
omponent of the ar
hite
ture sin
e the most
omplextransformations are performed on it. This allows us to simplify the transformation from/tothe pivot and
onsequently to fa
ilitate the addition of new translators to the platform. Thepivot model is also independent from modeling and solver languages, i.e. it has no syntax and

132 Chapter 7 � From Sour
e to Targetthe
onstru
ts supported do not depend on a parti
ular modeling or solver language. Anotherinteresting feature of the ar
hite
ture is that the set of single steps in
luded in a transformation
an be
ustomized. This allows us to obtain a target model
loser, in terms of
onstru
ts, to oursour
e model.The development of this framework
orresponds to the
urrent work of the author and itis in a preliminary stage. Only three languages have been plugged to the framework (s-COMMA,ECLiPSe and RealPaver). Thus, at the moment, it is not possible to
ompletely ensure thatthe pivot is able to support all the
onstru
ts provided by every existing modeling language.However, we believe that it represents a
onsiderable basis to support a large list of
ommon
onstru
ts. Another limitation of the framework is that only the de
larative parts of models
anbe pro
essed sin
e it is not possible to partially exe
ute a
omputer program that builds the
onstraint store. In the following
hapter we
on
lude the thesis and we propose some futureresear
h perspe
tives.

CHAPTER8
Conclusion

I n this thesis, we have presented two main works: the s-COMMA platform and a model-driventransformation framework for CP languages. In this
hapter, we re
all the most importantaspe
ts of these two approa
hes, we dis
uss their limitations and we give the
orresponding
on
luding remarks. We �nish the
hapter by presenting some future resear
h dire
tions.8.1 s-COMMAs-COMMA is the �rst work we presented in this thesis. Su
h a system involves an obje
t-orientedlanguage for modeling CP problems and a solver-independent ar
hite
ture. This approa
h is theresult of an investigation of several important
on
erns in the development of modern CP ar
hi-te
tures. Several innovations and advantages
an be found:� The obje
t-oriented style provided allows us to elegantly
apture the inherent stru
tureof problems. The problem
an be divided in subproblems to be
aptured in single
lasses.The result is in general a more modular model, whi
h motivates the reuse and fa
ilitatesthe management of
onstraint models.� The s-COMMA language
an be naturally represented through graphi
al
omponents. Thes-COMMA GUI is the graphi
al interfa
e of the platform, allowing users to obtain a visualand a more
on
ise representation of models.� The s-COMMA language
an be extended. An extension me
hanism is able to adapt themodeling language to further updates of the solving layer. Su
h a me
hanism works by de-�ning extension �les on whi
h the rules of the translation between the new fun
tionalitiesand s-COMMA are de�ned.� The sear
h pro
ess is a main phase of the problem resolution. A

ordingly, a simple pa-rameter formalism is provided. This formalism permits to de�ne ordering heuristi
s over
lasses, and
onsisten
y levels over obje
ts,
lasses and
onstraints.� s-COMMA is supported by a �exible and extensible solver-independent ar
hite
ture. Thisar
hite
ture enables users to pro
ess one model with di�erent solvers in order to fa
ilitateexperimentation tasks. Additionally, the platform is open to be
onne
ted with new solvers.This task
an be
arried out via powerful model transformation te
hniques.We believe s-COMMA is a
omplete approa
h for modeling a wide range of CP problems, itsexpressiveness is
onsiderable and it
an even be in
reased by extension me
hanisms. The obje
t-133

134 Chapter 8 � Con
lusionoriented style is the basis to get
on
ise and elegant models. Su
h models
an also be tuned toobtain e�
ient sear
h pro
esses. The graphi
al tool is a useful option for users looking for avisual modeling perspe
tive, and the solver-independent ar
hite
ture is an ex
ellent support forexperimentation tasks.Finally, it is ne
essary to mention some limitations, whi
h are mainly related to the
apabi-lities of the underlying solvers. For instan
e, the language features of s-COMMA not supported bysolvers
annot always be su

essfully mapped nor transformed. A
ommon example is the useof real numbers in s-COMMA, whi
h are not supported by �nite domain solvers (e.g. Ge
ode).Another example
on
erns the use of interval solvers (e.g. RealPaver), in whi
h is not possible to
he
k the equality of values, allowing only the use of some relation operators (<=,=>,=). Thesame problem o

urs with the heuristi
 ordering and
onsisten
y level parameters, just the op-tions provided by the
hosen solver
an be used at the modeling phase. The
urrent implementedsolution is to inform the user with warning messages.8.2 Transformation framework for CP languagesWe have presented a new framework for CP model transformations as the se
ond work of thisthesis. This framework is supported by a set of MDE tools and by an independent pivot modelto whi
h di�erent languages
an be mapped. In this framework, a transformation
hain is madeof three main steps: from the sour
e to the pivot model, re�ning of the pivot model, and fromthe pivot model to the target. This new approa
h follows important advantages.� Modelers are able to use their favorite language and to solve the problem by means of thebest known solving te
hnology. Experimentation of new solvers may also be easier, as a
olle
tion of ben
hmarks in this new language
an be built from di�erent sour
es.� Refa
toring and optimization steps are always implemented over the pivot. In this way, thetranslation from/to the pivot be
omes simpler, fa
ilitating the addition of new translators.Additionally, the refa
toring phases to be applied in a transformation
an be sele
ted toget a target model
loser, in terms of modeling
onstru
ts, to the sour
e model.The work done on this framework
an be seen as an improvement of the ar
hite
ture imple-mented in s-COMMA. The framework is in preliminary stage and the main limitation is that onlythe modeling fragments of languages (i.e. the de
larative part)
an be pro
essed sin
e it is notpossible to partially exe
ute a
omputer program that builds the
onstraint store.8.3 Future resear
h dire
tionsSolver-independent ar
hite
tures and model transformation in
onstraint programming is are
ent trend. Just a few platforms involving both
on
erns have been developed. We believethat extension or improvement of su
h platforms may lead to a wide future work. For instan
e,s-COMMA
an be extended in several ways, the more visible way is to in
rease the number ofunderlying solvers, whi
h may belong to the CP �eld as well as to the mathemati
al �eld (e.g.AMPL, GAMS). The use of solvers using lo
al sear
h te
hniques will be interesting too. Thismay imply fa
ing up to several new
hallenges in terms of model transformation
on
erns.

Chapter 8 � Con
lusion 135We are also interested in extending s-COMMA to be used in the dynami
 CSP framework [GF03,MF90℄. We
urrently support the de�nition of a
tivity and
ompatibility
onstraints, but we donot support a
tivity obje
ts (the
reation of an obje
t is subje
t to
onstraints) and the dynami
de�nition of obje
t attributes (the de�nition of attributes is subje
t to
onstraints). This willallow us to state dynami
 CP models in a more elegant way.The transformation framework we presented
an be improved as well. As in s-COMMA themost visible dire
tion to follow is to extend the list of translators supported. To study andimplement new refa
toring/optimization pivot phases su
h as the automati
 transformation ofglobal
onstraints is another aspe
t to be
onsidered. We also want to better manage
omplexCP models transformation
hains. Models
ould be quali�ed to determine their level of stru
tureand to automati
ally
hoose the required refa
toring steps a

ording to the target language.Our last future goal is related to the MD-transformation tools. We have used ATL as thetransformation language over the entire framework and sometimes the implementation of some
omplex transformations on the pivot was quite di�
ult to
arry out. We believe it may be inter-esting to extend ATL with some built-ins to perform
omplex tasks (e.g.
omposition �attening,loop unrolling, et
.). Su
h an extension may probably lead to the de�nition of a new language
ompletely aimed at CP model transformation.

Appendixes

APPENDIXA
GrammarsA.1 s-COMMA GrammarIn this appendix we des
ribe the grammar of s-COMMA and Flat s-COMMA. The des
ription isdone by means of EBNF using the following
onventions: Angle bra
kets are used to denote non-terminals (e.g. 〈Class-Body〉). Bold font and underlined bold font are used to denote terminals(e.g.
lass, ;). Square bra
kets denotes optional items (e.g.[〈Array〉℄). Square bra
kets with aplus symbol de�nes sequen
es of one or more items (e.g.[〈Class〉℄+). Square bra
kets with a starsymbol are used for sequen
es of zero or more items (e.g. [〈Import〉℄∗), and square bra
kets witha range {a, b} de�nes sequen
es from a to b items (e.g. [〈Solving-Option〉℄{0,2})Model

〈Model〉 ::= [〈Import〉℄∗ [〈Class〉℄∗
〈Import〉 ::= import 〈Path〉
〈Class〉 ::= [main℄
lass 〈Identi�er〉 [extends 〈Identi�er〉℄ [[〈Solving-Options〉℄℄

{〈Class-Body〉}
〈Class-Body〉 ::= [〈Attribute〉℄∗ [〈Constraint-Zone〉℄∗
〈Path〉 ::= [〈Identi�er〉.℄∗〈Identi�er〉;Attributes
〈Attribute〉 ::= 〈Variable〉 | 〈Obje
t〉
〈Variable〉 ::= 〈Var-Type〉 [set℄ 〈Mult-Id-Def 〉 [in 〈Domain〉℄;
〈Mult-Id-Def 〉 ::= 〈Identi�er〉 [〈Array〉℄ [, 〈Identi�er〉 [〈Array〉℄℄∗
〈Obje
t〉 ::= [[〈Cons-Level〉℄℄ 〈Mult-Id-Def 〉;
〈Var-Type〉 ::= 〈Basi
-Type〉 | 〈Identi�er〉
〈Array〉 ::= [〈Array-Size〉[, 〈Array-Size〉℄℄
〈Array-Size〉 ::= 〈Int-Expr〉 | 〈Identi�er〉
〈Basi
-Type〉 ::= int | real | bool
〈Domain〉 ::= [〈Bound〉, 〈Bound〉℄
〈Bound〉 ::= 〈Num-Expr〉 | 〈Identi�er〉Constraints
〈Constraint-Zone〉 ::=
onstraint 〈Identi�er〉 {〈Constraint-Body〉}
〈Constraint-Body〉 ::= [〈Constraint〉 | 〈Global-Constraint〉 | 〈Compatibility-Constraint〉 |

〈Forall〉 | 〈If-Else〉℄∗ [〈Optimization〉℄
〈Constraint〉 ::= [[〈Cons-Level〉℄℄ 〈Expr〉 ; 139

140 Appendix A
〈Compatibility-Constraint〉 ::=
ompatibility (〈A

ess〉[,〈A

ess〉℄∗) {[〈Valid-Tuples〉℄+}
〈Valid-Tuples〉 ::= (〈Literal〉[,〈Literal〉℄∗);
〈Literal〉 ::= 〈Value〉 | 〈String〉
〈Global-Constraint〉 ::= 〈Identi�er〉 (〈Param〉[,〈Param〉℄∗);
〈Param〉 ::= 〈A

ess〉 | 〈Literal〉Expressions
〈Expr〉 ::= 〈Expr-Imp〉[<->〈Expr-Imp〉℄∗
〈Expr-Imp〉 ::= 〈Expr-Or〉[〈Op-Imp〉 〈Expr-Or〉℄∗
〈Op-Imp〉 ::= -> | <-
〈Expr-Or〉 ::= 〈Expr-And〉[〈Op-Or〉 〈Expr-And〉℄∗
〈Op-Or〉 ::= xor | or
〈Expr-And〉 ::= 〈Expr-Not〉[and 〈Expr-Not〉℄∗
〈Expr-Not〉 ::= [not℄∗ 〈Expr-Rel〉
〈Expr-Rel〉 ::= 〈Expr-Set-Rel〉[〈Op-Rel〉 〈Expr-Set-Rel〉℄∗
〈Op-Rel〉 ::= <> | != | = | == | < | > | <= | >=
〈Expr-Set-Rel〉 ::= 〈Expr-Set-Op〉[〈Op-Set-Op〉 〈Expr-Set-Op〉℄∗
〈Op-Set-Rel〉 ::= subset | superset
〈Expr-Set-Op〉 ::= 〈Expr-Sum〉[〈Op-Set-Rel〉 〈Expr-Sum〉℄∗
〈Op-Set-Op〉 ::= union | di� | symdi�
〈Expr-Sum〉 ::= 〈Expr-Prod〉[〈Op-Sum〉 〈Expr-Prod〉℄∗
〈Op-Sum〉 ::= - | +
〈Expr-Prod〉 ::= 〈Expr-Int〉[〈Op-Prod〉 〈Expr-Int〉℄∗
〈Op-Prod〉 ::= * | /
〈Expr-Int〉 ::= 〈Expr-Expon〉[interse
t 〈Expr-Expon〉℄∗
〈Expr-Expon〉 ::= 〈Un-Expr-Min〉[� 〈Un-Expr-Min〉℄∗
〈Un-Expr-Min〉 ::= - 〈Expr-Unit〉 | [+℄ 〈Expr-Unit〉
〈Expr-Unit〉 ::= 〈Value〉 | 〈A

ess〉 | 〈Fun
tion-Call〉 | (〈Expr〉)
〈Num-Expr〉 ::= 〈Num-Expr-Prod〉[〈Op-Sum〉 〈Num-Expr-Prod〉℄∗
〈Num-Expr-Prod〉 ::= 〈Num-Un-Expr-Min〉[〈Op-Prod〉 〈Num-Un-Expr-Min〉℄∗
〈Op-Prod〉 ::= * | /
〈Num-Un-Expr-Min〉 ::= - 〈Num-Expr-Unit〉 | [+℄ 〈Num-Expr-Unit〉
〈Num-Expr-Unit〉 ::= 〈Integer〉 | 〈Float〉 | 〈Identi�er〉 | 〈Fun
tion-Call〉 | (〈Num-Expr〉)
〈Int-Expr〉 ::= 〈Int-Expr-Prod〉[〈Op-Sum〉 〈Int-Expr-Prod〉℄∗
〈Int-Expr-Prod〉 ::= 〈Int-Un-Expr-Min〉[〈Op-Prod〉 〈Int-Un-Expr-Min〉℄∗
〈Int-Un-Expr-Min〉 ::= - 〈Int-Expr-Unit〉 | [+℄ 〈Int-Expr-Unit〉
〈Int-Expr-Unit〉 ::= 〈Integer〉 | 〈Identi�er〉 | 〈Fun
tion-Call〉 | (〈Int-Expr〉)
〈Value〉 ::= 〈Integer〉 | 〈Float〉 | 〈Boolean〉
〈A

ess〉 ::= [〈Identi�er〉[〈Array〉℄.℄∗〈Identi�er〉 [〈Array〉℄
〈Fun
tion-Call〉 ::= 〈Identi�er〉 (〈Param〉[,〈Param〉℄∗)Statements
〈Forall〉 ::= forall(〈Loop-Header〉 [, 〈Loop-Header〉℄∗) {〈Forall-Body〉}
〈Loop-Header〉 ::= 〈Identi�er〉 in 〈Value-Set〉

Appendix A 141
〈Value-Set〉 ::= 〈Identi�er〉 | 〈Int-Expr〉 .. 〈Int-Expr〉
〈Forall-Body〉 ::= [〈Forall〉 | 〈If-Else〉 | 〈Constraint〉 | 〈Global-Constraint〉℄∗
〈If-Else〉 ::= if(〈Constraint〉) {[〈If-Else-Body〉℄∗} [else{[〈If-Else-Body〉℄∗}℄
〈If-Else-Body〉 ::= [〈Forall〉 | 〈If-Else〉 | 〈Constraint〉 | 〈Global-Constraint〉℄∗ [〈Optimization〉℄
〈Optimization〉 ::= 〈Opt-Value〉 〈Expression〉 ;
〈Opt-Value〉 ::= maximize | minimize
〈Sum-Loop〉 ::= sum(〈Loop-Header〉 [, 〈Loop-Header〉℄∗) (〈Num-Expr〉)Data
〈Data〉 ::= [〈Constant〉 | 〈Var-Assignment〉℄∗
〈Constant〉 ::= 〈Data-Type〉 〈Identi�er〉 := 〈Constant-Assig〉 ;
〈Constant-Assig〉 ::= 〈Value〉 | 〈Ve
tor-Data〉 | 〈Matrix-Data〉 | 〈Enum-Data〉
〈Data-Type〉 ::= 〈Basi
-Type〉 | enum
〈Ve
tor-Data〉 ::= [〈Value〉 | 〈Unders
ore〉 [,〈Value〉 | 〈Unders
ore〉℄∗℄
〈Enum-Data〉 ::= {〈Literal〉 [, 〈Literal〉℄∗}
〈Matrix-Data〉 ::= [〈Ve
tor-Data〉 [,〈Ve
tor-Data〉℄∗℄
〈Var-Assignment〉 ::= 〈A

ess-Assig〉 := 〈Var-Assignment-Assig〉;
〈Var-Assignment-Assig〉 ::= 〈Obje
t〉 | 〈Ve
tor-Obje
t〉 | 〈Matrix-Obje
t〉
〈A

ess-Assig〉 ::= 〈Identi�er〉[.〈Identi�er〉℄+
〈Obje
t〉 ::= {〈Value〉 | 〈Unders
ore〉 [, 〈Value〉 | 〈Unders
ore〉℄∗}
〈Ve
tor-Obje
t〉 ::= [〈Obje
t〉 [, 〈Obje
t〉℄∗℄
〈Matrix-Obje
t〉 ::= [〈Ve
tor-Obje
t〉 [, 〈Ve
tor-Obje
t〉℄∗ ℄
〈Unders
ore〉 ::= _Solving Options
〈Solving-Options〉 ::= [〈Solving-Option〉[,〈Solving-Option〉℄{0,2}℄
〈Solving-Option〉 ::= 〈Var-Ordering〉 | 〈Val-Ordering〉 |〈Cons-Level〉
〈Var-Ordering〉 ::= min-dom-size | max-dom-size | min-dom-val | max-dom-val |min-regret-min-dif | min-regret-max-dif |max-regret-min-dif | max-regret-max-dif
〈Val-Ordering〉 ::= min-val | med-val | max-val
〈Cons-Level〉 ::= bound | domain

142 Appendix AA.2 Flat s-COMMA GrammarModel
〈Model〉 ::= [〈Variable-Blo
k〉℄[〈Constraint-Blo
k〉℄ [〈Enum-Blo
k〉℄[〈Solving-Blo
k〉℄
〈Variable-Blo
k〉 ::= variables: [〈Variable〉℄∗
〈Constraint-Blo
k〉 ::=
onstraints: 〈Constraint-Statement〉
〈Enum-Blo
k〉 ::= enum-types: [〈Enum-Type〉℄∗
〈Solving-Blo
k〉 ::= solving-opts: 〈Solving-Options〉Variables
〈Variable〉 ::= 〈Var-Type〉 [set℄ 〈Identi�er〉 [〈Array〉℄ in 〈Domain〉;
〈Var-Type〉 ::= 〈Basi
-Type〉 | 〈Identi�er〉
〈Array〉 ::= [〈Integer〉 [,〈Integer〉℄℄
〈Basi
-Type〉 ::= int | real | bool
〈Domain〉 ::= [〈Bound〉 , 〈Bound〉℄
〈Bound〉 ::= 〈Integer〉 | 〈Float〉Constraints
〈Constraint-Statement〉 ::= [〈Constraint〉 | 〈Global-Constraint〉℄∗ [〈Optimization〉℄
〈Constraint〉 ::= [[〈Cons-Level〉℄℄ 〈Expr〉 ;
〈Global-Constraint〉 ::= 〈Identi�er〉 (〈Param〉[,〈Param〉℄∗);
〈Param〉 ::= 〈Identi�er〉 | 〈Literal〉
〈Literal〉 ::= 〈Value〉 | 〈String〉
〈Optimization〉 ::= 〈Opt-Value〉 〈Expr〉 ;
〈Opt-Value〉 ::= maximize | minimizeExpressions
〈Expr〉 ::= 〈Expr-Imp〉[<->〈Expr-Imp〉℄∗
〈Expr-Imp〉 ::= 〈Expr-Or〉[〈Op-Imp〉 〈Expr-Or〉℄∗
〈Op-Imp〉 ::= -> | <-
〈Expr-Or〉 ::= 〈Expr-And〉[〈Op-Or〉 〈Expr-And〉℄∗
〈Op-Or〉 ::= xor | or
〈Expr-And〉 ::= 〈Expr-Not〉[and 〈Expr-Not〉℄∗
〈Expr-Not〉 ::= [not℄∗ 〈Expr-Rel〉
〈Expr-Rel〉 ::= 〈Expr-Set-Rel〉[〈Op-Rel〉 〈Expr-Set-Rel〉℄∗
〈Op-Rel〉 ::= <> | != | = | == | < | > | <= | >=
〈Expr-Set-Rel〉 ::= 〈Expr-Set-Op〉[〈Op-Set-Op〉 〈Expr-Set-Op〉℄∗
〈Op-Set-Rel〉 ::= subset | superset
〈Expr-Set-Op〉 ::= 〈Expr-Sum〉[〈Op-Set-Rel〉 〈Expr-Sum〉℄∗
〈Op-Set-Op〉 ::= union | di� | symdi�
〈Expr-Sum〉 ::= 〈Expr-Prod〉[〈Op-Sum〉 〈Expr-Prod〉℄∗
〈Op-Sum〉 ::= - | +

Appendix A 143
〈Expr-Prod〉 ::= 〈Expr-Int〉[〈Op-Prod〉 〈Expr-Int〉℄∗
〈Op-Prod〉 ::= * | /
〈Expr-Int〉 ::= 〈Expr-Expon〉[interse
t 〈Expr-Expon〉℄∗
〈Expr-Expon〉 ::= 〈Un-Expr-Min〉[� 〈Un-Expr-Min〉℄∗
〈Un-Expr-Min〉 ::= - 〈Expr-Unit〉 | [+℄ 〈Expr-Unit〉
〈Expr-Unit〉 ::= 〈Value〉 | 〈Identi�er〉 | 〈Fun
tion-Call〉 | (〈Expr〉)
〈Value〉 ::= 〈Integer〉 | 〈Float〉 | 〈Boolean〉
〈Fun
tion-Call〉 ::= 〈Identi�er〉 (〈Param〉[,〈Param〉℄∗)
〈Optimization〉 ::= 〈Opt-Value〉 〈Expr〉 ;Enumerations
〈Enum-Type〉 ::= 〈Identi�er〉 := 〈Enum-Data〉 ;
〈Enum-Data〉 ::= {〈Literal〉 [, 〈Literal〉℄∗}Solving Options
〈Solving-Options〉 ::= 〈Solving-Option〉[,〈Solving-Option〉℄{0,2}

〈Solving-Option〉 ::= 〈Var-Ordering〉 | 〈Val-Ordering〉 | 〈Cons-Level〉 | default
〈Var-Ordering〉 ::= min-dom-size | max-dom-size | min-dom-val | max-dom-val |min-regret-min-dif | min-regret-max-dif |max-regret-min-dif | max-regret-max-dif
〈Val-Ordering〉 ::= min-val | med-val | max-val
〈Cons-Level〉 ::= bound | domain

Bibliography[ABPS98℄ K.R. Apt, J. Brunekreef, V. Partington, and A. S
haerf. Alma-0: An ImperativeLanguage that Supports De
larative Programming. ACM Transa
tions on Pro-gramming Languages and Systems (ACM TOPLAS), 20(5):1014�1066, 1998.[AP94℄ A. Aamodt and E. Plaza. Case-Based Reasoning: Foundational Issues, Methodolo-gi
al Variations, and System Approa
hes. Arti�
ial Intelligen
e Communi
ations,7(1):39�59, 1994.[Apt03℄ K.R. Apt. Prin
iples of Constraint Programming. Cambridge Press, 2003.[BDPS08℄ S. Brand, G. J. Du
k, J. Pu
hinger, and P. J. Stu
key. Flexible, Rule-BasedConstraint Model Linearisation. In Pro
eedings of the 10th International Sympo-sium on Pra
ti
al Aspe
ts of De
larative Languages (PADL), volume 4902 of Le
tureNotes in Computer S
ien
e, pages 68�83. Springer, 2008.[BKM92℄ A. Brooke, D. Kendri
k, and A. Meeraus. GAMS: A User's Guide. The S
ienti�
Press, 1992.[BMV94℄ F. Benhamou, D. M
 Allester, and P. Van Hentenry
k. CLP(Intervals) Revisited.In Pro
eedings of the 1994 International Symposium on Logi
 programming (ILPS),pages 124�138. MIT Press Cambridge, MA, USA, 1994.[BN98℄ F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Univ. Press,1998.[BN06℄ A. Brodsky and H. Nash. CoJava: Optimization Modeling by Nondeterministi
Simulation. In Pro
eedings of the 12th International Conferen
e on Prin
iples andPra
ti
e of Constraint Programming (CP 2006), volume 4204 of Le
ture Notes inComputer S
ien
e, pages 91�106. Springer, 2006.[BO97℄ F Benhamou and W. Older. Applying Interval Arithmeti
 to Real, Integer, andBoolean Constraints. Journal of Logi
 Programming, 32(1):1�24, 1997.[Bor81℄ A.H. Borning. The Programming Languages Aspe
ts of ThingLab, a Constraint-Oriented Simulation Laboratory. ACM Transa
tions on Programming Languagesand Systems (ACM TOPLAS), 3(4):353�387, 1981.[Bur69℄ R. M. Burstall. A Program for Solving Word Sum Puzzles. Computer Journal,12(1):48�51, 1969.[CDR99℄ H. Collavizza, F. Delobel, and M. Rueher. Comparing Partial Consisten
ies. Re-liable Computing, 5(3):213�228, 1999.[CGLR96℄ J. M. Crawford, M. L. Ginsberg, E. M. Luks, and A. Roy. Symmetry-BreakingPredi
ates for Sear
h Problems. In Pro
eedings of the 5th International Conferen
eon Prin
iples of Knowledge Representation and Reasoning (KR 96), pages 148�159,1996.[CGS08℄ R. Chenouard, L. Granvilliers, and R. Soto. Model-Driven Constraint Program-ming. In Pro
eedings of the 10th International ACM SIGPLAN Symposium onPrin
iples and Pra
ti
e of De
larative Programming (PPDP), pages 236�246, 2008.145

146 BIBLIOGRAPHY[CGS09℄ R. Chenouard, L. Granvilliers, and R. Soto. Rewriting Constraint Models withMetamodels. To Appear In Pro
eedings of the 8th Symposium on Abstra
tion, Re-formulation and Approximation (SARA). 2009.[CIP+00℄ M. Cadoli, G. Ianni, L. Palopoli, A. S
haerf, and D. Vasile. NP-SPEC: an exe
utablespe
i�
ation language for solving all problems in NP. Computer Languages, 26(2�4):165�195, 2000.[COC97℄ M. Carlsson, G. Ottosson, and B. Carlson. An Open-Ended Finite DomainConstraint Solver. In Pro
eedings of the 9th International Symposium on Program-ming Languages: Implementations, Logi
s, and Programs (PLILP), volume 1292 ofLe
ture Notes in Computer S
ien
e, pages 191�206. Springer, 1997.[Col82℄ A. Colmerauer. Prolog II Referen
e Manual and Theoreti
al Model. Te
hni
al re-port, Groupe d'Intelligen
e Arti�
ielle, Université d'Aix-Marseille II, Luminy, 1982.[Col90℄ A. Colmerauer. An Introdu
tion to Prolog III. Communi
ations of the ACM,33(7):69�90, 1990.[Col96℄ A. Colmerauer. Les Bases de Prolog IV. Te
hni
al report, Laboratoire d'Informa-tique de Marseille, 1996.[DC00℄ D. Diaz and P. Codognet. The GNU Prolog System and its Implementation. InPro
eedings of the 2000 ACM Symposium on Applied Computing (SAC), pages 728�732, 2000.[El
90℄ E. W. El
o
k. Absys: The First Logi
 Programming Language - A Retrospe
tiveand a Commentary. Journal of Logi
 Programming, 9(1):1�17, 1990.[FGJ+07℄ A. M. Fris
h, M. Grum, C. Je�erson, B. Martínez-Hernández, and I. Miguel. TheDesign of ESSENCE: A Constraint Language for Spe
ifying Combinatorial Pro-blems. In Pro
eedings of the 20th International Joint Conferen
e on Arti�
ial In-telligen
e (IJCAI), pages 80�87, 2007.[FGK90℄ R. Fourer, D.M. Gay, and B.W. Kernighan. A Modeling Language for Mathemati
alProgramming. Management S
ien
e, 36:519�554, 1990.[FHK+02℄ A. M. Fris
h, B. Hni
h, Z. Kiziltan, I. Miguel, and T. Walsh. Global Constraintsfor Lexi
ographi
 Orderings. In Pro
eedings of the 8th International Conferen
e onPrin
iples and Pra
ti
e of Constraint Programming (CP), volume 2470 of Le
tureNotes in Computer S
ien
e, pages 93�108. Springer, 2002.[FJMHM05℄ A.M. Fris
h, C. Je�erson, B. Martínez-Hernández, and I. Miguel. The Rules ofConstraint Modelling. In Pro
eedings of the 19th International Joint Conferen
e onArti�
ial Intelligen
e (IJCAI), pages 109�116, 2005.[FM92℄ E. C. Freuder and A. K. Ma
kworth. Introdu
tion to the Spe
ial Volume onConstraint-Based Reasoning. Arti�
ial Intelligen
e, 58:1�2, 1992.[FM06℄ E. C. Freuder and A. K. Ma
kworth. Handbook of Constraint Programming,
hapter2 - Constraint Satisfa
tion: An Emerging Paradigm. Elsevier, 2006.[FM08℄ F. Fages and J. Martin. Des Règles aux Contraintes ave
 le Langage de Modé-lisation Rules2CP. In Pro
eedings of the Quatrièmes Journées Fran
ophones deProgrammation par Contraintes (JFPC), pages 361�371, 2008.

BIBLIOGRAPHY 147[FPÅ04℄ P. Flener, J. Pearson, and M. Ågren. Introdu
ing ESRA, a Relational Languagefor Modelling Combinatorial Problems. In Pro
eedings of the 13th InternationalSymposium on Logi
 Based Program Synthesis and Transformation (LOPSTR),volume 3018 of Le
ture Notes in Computer S
ien
e, pages 214�232. Springer, 2004.[Fre78℄ E. C. Freuder. Synthesizing
onstraint expressions. Commun. ACM, 21(11):958�966, 1978.[Frü98℄ T. Frühwirth. Theory and Pra
ti
e of Constraint Handling Rules. JLP, 37(1�3):95�138, 1998.[Gas74℄ J. Gas
hnig. A Constraint Satisfa
tion Method for Inferen
e Making. In Pro
eedings12th Annual Allerton Conferen
e on Cir
uit and System Theory, pages 866�874,1974.[GB65℄ S. W. Golomb and L. D. Baumert. Ba
ktra
k Programming. Journal of the ACM,12(4):516�524, 1965.[GB06℄ L. Granvilliers and F. Benhamou. Algorithm 852: RealPaver: An Interval SolverUsing Constraint Satisfa
tion Te
hniques. ACM Transa
tions on Mathemati
alSoftware (ACM TOMS), 32(1):138�156, 2006.[GF03℄ E. Gelle and B. Faltings. Solving Mixed and Conditional Constraint Satisfa
tionProblems. Constraints, 8(2):107�141, 2003.[GJM06℄ I. P. Gent, C. Je�erson, and I. Miguel. Minion: A Fast S
alable Constraint Solver.In Pro
eedings of the 17th European Conferen
e on Arti�
ial Intelligen
e (ECAI),pages 98�102. IOS Press, 2006.[Gou00℄ F. Goualard. Langages et Environnements en Programmation par Contraintes d'In-tervalles. PhD thesis, IRIN, Université de Nantes, 2000.[GS00℄ I. P. Gent and B. M. Smith. Symmetry Breaking in Constraint Programming.In Pro
eedings of the 14th European Conferen
e on Arti�
ial Intelligen
e (ECAI),pages 599�603. IOS Press, 2000.[HLP+04℄ T. Hinri
hs, N. Love, C. J. Petrie, L. Ramshaw, A. Sahai, and S. Singhal. UsingObje
t-Oriented Constraint Satisfa
tion for Automated Con�guration Generation.In Pro
eedings of the 15th IFIP/IEEE International Workshop on Distributed Sys-tems: Operations and Management (DSOM), volume 3278 of Le
ture Notes in Com-puter S
ien
e, pages 159�170. Springer, 2004.[Hni03℄ B. Hni
h. Fun
tion Variables for Constraint Programming. PhD thesis, Departmentof Information S
ien
e, Uppsala University, 2003.[JB06℄ F. Jouault and J. Bézivin. KM3: A DSL for Metamodel Spe
i�
ation. In Pro-
eedings of the 8th IFIP WG 6.1 International Conferen
eon Formal Methods forOpen Obje
t-Based Distributed Systems (FMOODS), volume 4037 of Le
ture Notesin Computer S
ien
e, pages 171�185. Springer, 2006.[JBK06℄ F. Jouault, J. Bézivin, and I. Kurtev. TCS: a DSL for the Spe
i�
ation of TextualCon
rete Syntaxes in Model Engineering. In Pro
eedings of the 5th Internatio-nal Conferen
e on Generative Programming and Component Engineering (GPCE),pages 249�254, 2006.[JL87℄ J. Ja�ar and J.L. Lassez. Constraint Logi
 Programming. In Pro
eedings of the14th Annual ACM Symposium on Prin
iples of Programming Languages (POPL),pages 111�119, 1987.

148 BIBLIOGRAPHY[JMSY92℄ J. Ja�ar, S. Mi
haylov, P. J. Stu
key, and R. Yap. The CLP(ℜ) Language andSystem. ACM Transa
tions on Programming Languages and Systems (ACM TO-PLAS), 14(3):339�395, 1992.[JT02℄ B. Jayaraman and P.Y. Tambay. Modeling Engineering Stru
tures with ConstrainedObje
ts. In Pro
eedings of the 4th International Symposium on Pra
ti
al Aspe
ts ofDe
larative Languages (PADL), volume 2257 of Le
ture Notes in Computer S
ien
e,pages 28�46. Springer, 2002.[KvJ07℄ I. Kurtev, K. van Den Berg, and F. Jouault. Rule-based Modularization in ModelTransformation Languages Illustrated with ATL. S
ien
e of Computer Program-ming,, 68(3):138�154, 2007.[Lau78℄ J.L. Laurière. A Language and a Program for Stating and Solving CombinatorialProblems. Arti�
ial Intelligen
e, 10(1):29�127, 1978.[Lho93℄ O. Lhomme. Consisten
y Te
hniques for Numeri
 CSPs. In Pro
eedings of the 13thInternational Joint Conferen
e on Arti�
ial Intelligen
e (IJCAI), pages 232�238,1993.[Lu
91℄ E. Lu
as. Ré
réations Mathématiques. Gauthier Villar, Paris, 2nd edition, 1891.[Lv93℄ J. H. Lee and M. H. van Emden. Interval Computation as Dedu
tion in CHIP.Journal of Logi
 Programming, 16(3):255�276, 1993.[Ma
77℄ A. Ma
kworth. Consisten
y in Networks of Relations. Arti�
ial Intelligen
e,8(1):99�118, 1977.[M
G79℄ J. J. M
Gregor. Relational Consisten
y Algorithms and Their Appli
ation in Fin-ding Subgraph and Graph Isomorphisms. Information S
ien
e, 19(3):229�250, 1979.[MF90℄ S. Mittal and B. Falkenhainer. Dynami
 Constraint Satisfa
tion Problems. InPro
eedings of the 8th National Conferen
e on Arti�
ial Intelligen
e (AAAI), pages25�32. The MIT Press, 1990.[MH86℄ R. Mohr and T. Henderson. Ar
 and Path Consisten
y Revisited. Arti�
ial Intel-ligen
e, 28(2):225�233, 1986.[Mon74℄ U. Montanari. Networks of Constraints: Fundamental Properties and Appli
ationsto Pi
ture Pro
essing. Information S
ien
es, 7:95�132, 1974.[Moo66℄ R.E. Moore. Interval Analysis. Prenti
e-Hall, 1966.[MV02℄ L. Mi
hel and P. Van Hentenry
k. A Constraint-Based Ar
hite
ture for Lo-
al Sear
h. In Pro
eedings of the 2002 ACM SIGPLAN Conferen
e on Obje
t-Oriented Programming Systems, Languages and Appli
ations (OOPSLA), pages83�100, 2002.[Neu90℄ A. Neumaier. Interval Methods for Systems of Equations. Cambridge UniversityPress, 1990.[NSB+07℄ N. Nether
ote, P. J. Stu
key, R. Be
ket, S. Brand, G. J. Du
k, and G. Ta
k. Mi-niZin
: Towards A Standard CP Modelling Language. In Pro
eedings of the 13thInternational Conferen
e on Prin
iples and Pra
ti
e of Constraint Programming(CP), volume 4741 of Le
ture Notes in Computer S
ien
e, pages 529�543. Springer,2007.

BIBLIOGRAPHY 149[Pal95℄ M. Paltrinieri. A Visual Constraint-Programming Environment. In Pro
eedingsof the 1st International Conferen
e on Prin
iples and Pra
ti
e of Constraint Pro-gramming (CP), volume 976 of Le
ture Notes in Computer S
ien
e, pages 499�514.Springer, 1995.[PQ94℄ T. Parr and R. Quong. Adding Semanti
 and Synta
ti
 Predi
ates To LL(k): pred-LL(k). In Pro
eedings of the 5th International Conferen
e on Compiler Constru
tion(CC), volume 786 of Le
ture Notes in Computer S
ien
e, pages 263�277. Springer,1994.[Pug93℄ J.F. Puget. On the Satis�ability of Symmetri
al Constrained Satisfa
tion Problems.In Pro
eedings of the 7th International Symposium on Methodologies for IntelligentSystems (ISMIS), volume 689 of Le
ture Notes in Computer S
ien
e, pages 350�361.Springer, 1993.[Pug94℄ J.F. Puget. A C++ Implementation of CLP. In Pro
eedings of the 2nd SingaporeInternational Conferen
e on Intelligent Systems (SPICIS), 1994.[Pug04℄ J.F. Puget. Constraint Programming Next Challenge: Simpli
ity of Use. In Pro
ee-dings of the 10th International Conferen
e on Prin
iples and Pra
ti
e of ConstraintProgramming (CP), volume 3258 of Le
ture Notes in Computer S
ien
e, pages 5�8.Springer, 2004.[Rég94℄ J.-C. Régin. A Filtering Algorithm for Constraints of Di�eren
e in CSPs. InPro
eedings of the 12th National Conferen
e on Arti�
ial Intelligen
e (AAAI), pages362�367, 1994.[RGMW07℄ R. Rafeh, M. J. Gar
ía de la Banda, K. Marriott, and M. Walla
e. From Zin
to Design Model. In Pro
eedings of the 9th Symposium on Pra
ti
al Aspe
ts ofDe
larative Languages (PADL), volume 4354 of Le
ture Notes in Computer S
ien
e,pages 215�229, 2007.[Ri
68℄ D. Ri
hardson. Some Unsolvable Problems Involving Elementary Fun
tions of aReal Variable. Journal of Symboli
 Logi
, 33:514�520, 1968.[SF94℄ D. Sabin and E. C. Freuder. Contradi
ting Conventional Wisdom in Constraint Sa-tisfa
tion. In Pro
eedings of the 11th European Conferen
e on Arti�
ial Intelligen
e(ECAI), pages 125�129, 1994.[SG07a℄ R. Soto and L. Granvilliers. Dynami
 parser
ooperation for extending a
onstrai-ned obje
t-based modeling language. In Pro
eedings of the 21st Workshop on(Constraint) Logi
 Programming (WLP 2007), pages 70�78, Wuerzburg, Germany,2007. Te
hni
al Report 434, University of Wuerzburg, Germany.[SG07b℄ R. Soto and L. Granvilliers. The Design of COMMA: An Extensible Frameworkfor Mapping Constrained Obje
ts to Native Solver Models. In Pro
eedings of the19th IEEE International Conferen
e on Tools with Arti�
ial Intelligen
e (ICTAI),pages 243�250, 2007.[SG08a℄ R. Soto and L. Granvilliers. On the Pursuit of a Standard Language for Obje
t-Oriented Constraint Modeling. In New Challenges in Applied Intelligen
e Te
hnolo-gies, volume 134 of Studies in Computational Intelligen
e, pages 123�133. Springer,2008.

150 BIBLIOGRAPHY[SG08b℄ R. Soto and L. Granvilliers. Tuning Constrained Obje
ts. In Pro
eedings of the21st International Conferen
e on Industrial, Engineering and Other Appli
ations ofApplied Intelligent Systems (IEA/AIE), volume 5027 of Le
ture Notes in Arti�
ialIntelligen
e, pages 408�414. Springer, 2008.[SGM+05℄ P. J. Stu
key, M. J. Gar
ía de la Banda, M. Maher, K. Marriott, J. Slaney, Z. So-mogyi, M. Walla
e, and T. Walsh. The G12 Proje
t: Mapping Solver IndependentModels to E�
ient Solutions. In Pro
eedings of the 11th International Conferen
eon Prin
iples and Pra
ti
e of Constraint Programming (CP), volume 3709 of Le
-ture Notes in Computer S
ien
e, pages 13�16. Springer, 2005.[SHC96℄ Z. Somogyi, F. Henderson, and T. Conway. The Exe
ution Algorithm of Mer
ury,an E�
ient Purely De
larative Logi
 Programming Language. Journal of Logi
Programming, 29(1-3):17�64, 1996.[SSW94℄ C. S
hulte, G. Smolka, and J. Würtz. En
apsulated Sear
h and Constraint Pro-gramming in Oz. In Pro
eedings of the 2nd International Workshop on Prin
iplesand Pra
ti
e of Constraint Programming (PPCP), volume 874 of Le
ture Notes inComputer S
ien
e, pages 134�150. Springer, 1994.[ST06℄ C. S
hulte and G. Ta
k. Views and Iterators for Generi
 Constraint Implementa-tions. In Re
ent Advan
es in Constraints (2005), volume 3978 of Le
ture Notes inArti�
ial Intelligen
e, pages 118�132. Springer, 2006.[Sut63℄ I. E. Sutherland. Sket
hpad, A Man-Ma
hine Graphi
al Communi
ation System.Outstanding Dissertations in the Computer S
ien
es. Garland Publishing, 1963.[TC07℄ G. Trombettoni and G. Chabert. Constru
tive interval disjun
tion. In Pro
eedingsof the 13th International Conferen
e on Prin
iples and Pra
ti
e of Constraint Pro-gramming (CP), volume 4741 of Le
ture Notes in Computer S
ien
e, pages 635�650.Springer, 2007.[Van89℄ P. Van Hentenry
k. Constraint Satisfa
tion in Logi
 Programming. MIT Press,1989.[Van99℄ P. Van Hentenry
k. The OPL Language. The MIT Press, 1999.[van06℄ P. van Beek. Handbook of Constraint Programming,
hapter 4 - Ba
ktra
king Sear
hAlgorithms. Elsevier, 2006.[VDT92℄ P. Van Hentenry
k, Y. Deville, and C.-M. Teng. A Generi
 Ar
-Consisten
y Algo-rithm and its Spe
ializations. Arti�
ial Intelligen
e, 57(2-3):291�321, 1992.[vK06℄ W.-J. van Hoeve and I. Katriel. Handbook of Constraint Programming,
hapter 6 -Global Constraints. Elsevier, 2006.[VMD97℄ P. Van Hentenry
k, L. Mi
hel, and Y. Deville. Numeri
a: a Modeling Language forGlobal Optimization. MIT Press, 1997.[Wal75℄ D. Waltz. Understanding Line Drawings of S
enes with Shadows. In The Psy
hologyof Computer Vision, pages 19�91. M
Graw-Hill, 1975.[WNS97℄ M. Walla
e, S. Novello, and J. S
himpf. ECLiPSe: A Platform for Constraint Logi
Programming. Te
hni
al report, IC-Par
, Imperial College, London, 1997.

Hypertext References

[www1 ℄ Ge
ode System (Visited 9/2008).. .http://www.ge
ode.org[www3 ℄ ANSYS, In
. Software Produ
ts (Visited 9/2008).. .http://www.ansys.
om[www4 ℄ Roman Bartak's On-Line Guide to Constraint Programming (Visited 9/2008).. .http://ktiml.mff.
uni.
z/~bartak/
onstraints/[www5 ℄ Wolfram Mathemati
a (Visited 9/2008).. .http://www.wolfram.
om/produ
ts/mathemati
a/index.html[www6 ℄ The Apa
he Ant Proje
t (Visited 1/2009).. .http://ant.apa
he.org/[www7 ℄ Koalog System (Visited 9/2008).. .http://www.koalog.
om[www8 ℄ ILOG CPLEX (Visited 10/2008).. .http://www.ilog.
om/produ
ts/
plex/[www9 ℄ CIM (Common Information Model) (Visited 10/2008).. .http://www.dmtf.org/standards/
im/[www10 ℄ E
lipse Model-to-model transformation, (Visited 12/2008).. .http://www.e
lipse.org/m2m/151

http://www.gecode.org
http://www.ansys.com
http://ktiml.mff.cuni.cz/~bartak/constraints/
http://www.wolfram.com/products/mathematica/index.html
http://ant.apache.org/
http://www.koalog.com
http://www.ilog.com/products/cplex/
http://www.dmtf.org/standards/cim/
http://www.eclipse.org/m2m/

152 HYPERTEXT REFERENCES[www11 ℄ ANTLR Referen
e Manual (Visited 11/2008).. .http://www.antlr.org[www12 ℄ Cho
o Solver (Visited 9/2008).. .http://www.emn.fr/x-info/
ho
o-solver/doku.php[www13 ℄ LINGO - Optimization Modeling Software for Linear, Nonlinear, and Integer Programming(Visited 9/2008).. .http://www.lindo.
om/[www14 ℄ MINOS Solver (Visited 9/2008).. .http://www.aimms.
om/aimms/produ
t/solvers/minos.html[www15 ℄ The MOSEK Optimization Software (Visited 9/2008).. .http://www.mosek.
om/[www16 ℄ MProbe 5.0 an assistant for mathemati
al programming (Visited 9/2008).. .http://www.s
e.
arleton.
a/fa
ulty/
hinne
k/mprobe.html[www17 ℄ MATLAB - The Language of Te
hni
al Computing (Visited 9/2008).. .http://www.mathworks.
om/produ
ts/matlab/[www18 ℄ OMG - Obje
t Constraint Language (OCL) 2.0, 2006 (Visited 11/2008).. .http://www.omg.org/
gi-bin/do
?formal/2006-05-01[www19 ℄ OMG - The Uni�ed Modeling Language (UML) 2.1.1 Infrastru
ture Spe
i�
ation, 2007(Visited 11/2008).. .http://www.omg.org/spe
/UML/2.1.2/[www20 ℄ OMG - Model Driven Ar
hite
ture (MDA) Guide V1.0.1, 2003 (Visited 11/2008).. .http://www.omg.org/
gi-bin/do
?omg/03-06-01

http://www.antlr.org
http://www.emn.fr/x-info/choco-solver/doku.php
http://www.lindo.com/
http://www.aimms.com/aimms/product/solvers/minos.html
http://www.mosek.com/
http://www.sce.carleton.ca/faculty/chinneck/mprobe.html
http://www.mathworks.com/products/matlab/
http://www.omg.org/cgi-bin/doc?formal/2006-05-01
http://www.omg.org/spec/UML/2.1.2/
http://www.omg.org/cgi-bin/doc?omg/03-06-01

HYPERTEXT REFERENCES 153[www21 ℄ OMG - Systems Modeling Language (SysML) v1.0, 2007 (Visited 11/2008).. .http://www.omg.org/
gi-bin/do
?formal/2007-09-01[www23 ℄ SNOPT Solver (Visited 9/2008).. .http://www.aimms.
om/aimms/produ
t/solvers/snopt.html[www24 ℄ Xpress-MP (Visited 8/2008).. .http://www.dashoptimization.
om/

http://www.omg.org/cgi-bin/doc?formal/2007-09-01
http://www.aimms.com/aimms/product/solvers/snopt.html
http://www.dashoptimization.com/

Langages et transformation de modèles enprogrammation par
ontraintesRi
ardo SotoRésuméLa programmation par
ontraintes est une te
hnologie pour l'optimisation qui asso
ie des langages de modéli-sation ri
hes ave
 des moteurs de résolution e�
a
es. Elle
ombine des te
hniques de plusieurs domaines telsque l'intelligen
e arti�
ielle, la programmation mathématique et la théorie des graphes. Un dé� majeur dans
e domaine
on
erne la dé�nition de langages de haut-niveau pour fa
iliter la phase de modélisation des pro-blèmes. Un autre aspe
t important est de
on
evoir des ar
hite
tures robustes pour transformer des modèlesde haut-niveau et obtenir des modèles exé
utables e�
a
es, tout en visant plusieurs moteurs de résolution.Répondre à
es deux préo

upations est très di�
ile,
ar de nombreux aspe
ts doivent être pris en
ompte,
omme par exemple, l'expressivité et le niveau d'abstra
tion du langage ainsi que les te
hniques utilisées pourtraduire le modèle de haut-niveau dans
ha
un des langages de résolution. Dans
ette thèse, nous proposonsune nouvelle perspe
tive pour faire fa
e à
es dé�s. Nous introduisons une nouvelle ar
hite
ture pour la pro-grammation par
ontraintes dans laquelle le problème est dé�ni
omme un ensemble d'objets
ontraints dansun nouveau langage de modélisation haut-niveau. La transformation des modèles est réalisée à l'aide de l'ingé-nierie des modèles. Les éléments des langages sont alors
onsidérés
omme des
on
epts dé�nis dans un modèlede modèles appelé métamodèle. Cette nouvelle ar
hite
ture permet d'aborder les phases de modélisation et detransformation de modèles en raisonnant à un niveau d'abstra
tion supérieur et, par
onséquent, de réduirela
omplexité inhérente à
es deux phases.Mots-
lés: Programmation par
ontraintes, Langages de modélisation par
ontraintes, Transformationde modèles
Languages and Model Transformation in ConstraintProgrammingAbstra
tConstraint Programming is an optimization te
hnology that asso
iates ri
h modeling languages with e�
ientsolving engines. It
ombines methods from di�erent domains su
h as arti�
ial intelligen
e, mathemati
alprogramming, and graph theory. A main
hallenge in this �eld is to provide high-level languages for fa
ilitatingthe problem modeling phase. Another important
on
ern is to design robust ar
hite
tures to map high-levelinput models to di�erent and e�
ient solving models. Handling these two
on
erns is remarkably hard sin
emany aspe
ts have to be investigated, for instan
e, the expressiveness and the abstra
tion level of the languageas well as the te
hniques used to transform the high-level model into ea
h of the solver's languages. In thisthesis, we propose a new perspe
tive to fa
e those
hallenges. We introdu
e a novel
onstraint programmingar
hite
ture in whi
h the problem is seen as a set of high-level
onstrained obje
ts de�ned through a newmodeling language. The model transformation is performed by a model-driven pro
ess in whi
h the elementsof languages are de�ned as
on
epts of a model of models
alled metamodel. This new ar
hite
ture allows oneto ta
kle the modeling and the model transformation phases in a higher-level of abstra
tion and
onsequentlyto redu
e the inherent
omplexity behind them.Keywords: Constraint Programming, Constraint Modeling Languages, Model Transformationa
m Classi�
ationCategories and Subje
t Des
riptors : D.3.2 [Programming Languages℄: Language Classi�-
ations�Constraint and logi
 languages; D.3.3 [Programming Languages℄: Language Constru
tsand Features�Classes and obje
ts, Constraints; D.2.2 [Software Engineering℄: Design Tools andTe
hniques�User interfa
es.

http://www.acm.org/class/

	Cover
	Front matter
	French Abstract
	English Abstract
	ACM Classification
	Dédicace
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures

	Body of the Dissertation
	1 Introduction
	1.1 From the Roots of CP to Modern Architectures
	1.2 Motivations & Contributions
	1.3 Outline

	2 Solving Techniques
	2.1 Constraint Satisfaction Problems
	2.2 Solving CSPs
	2.2.1 Basic Search Algorithms
	2.2.2 Filtering techniques
	2.2.3 Solving Algorithms
	2.2.4 Solving numerical CSPs
	2.2.5 Variable and Value Ordering Heuristics

	2.3 Summary

	3 Languages and Systems
	3.1 Constraint Logic Programming
	3.2 Libraries
	3.3 Modeling Languages
	3.4 Programming Languages
	3.5 Mathematical Programming
	3.6 Object-oriented languages
	3.7 Comparing s-COMMA with related approaches
	3.8 Summary

	4 Modeling Language & Graphical Artifacts
	4.1 A Tour of the s-COMMA language
	4.1.1 The SEND + MORE = MONEY Problem
	4.1.2 The Packing Squares Problem
	4.1.3 The Stable Marriage Problem
	4.1.4 The Social Golfers Problem
	4.1.5 The Production Problem
	4.1.6 The Engine Problem

	4.2 Modeling Features
	4.2.1 Constants
	4.2.2 Variable assignments
	4.2.3 Classes
	4.2.4 Attributes
	4.2.5 Constraint Zones
	4.2.6 Heuristic Orderings & Consistency Techniques
	4.2.7 Extensibility

	4.3 The s-COMMA GUI
	4.4 Summary

	5 Mapping Models to Solvers
	5.1 From s-COMMA GUI to s-COMMA
	5.2 From s-COMMA to Flat s-COMMA
	5.2.1 Parsing
	5.2.2 Semantic Checking
	5.2.3 Refactoring Phase

	5.3 From Flat s-COMMA to solvers
	5.3.1 Hand-Written Translators
	5.3.2 Model-Driven Translators
	5.3.3 Discussion

	5.4 Summary

	6 Overview
	6.1 The Model-Driven Transformation Framework
	6.2 A Motivating Example
	6.3 Summary

	7 From Source to Target
	7.1 From source to pivot
	7.2 Pivot refactoring
	7.2.1 Refactoring phase

	7.3 From pivot to target
	7.4 Transformation process
	7.4.1 Selecting the refactoring steps.

	7.5 Experiments
	7.6 Summary

	8 Conclusion
	8.1 s-COMMA
	8.2 Transformation framework for CP languages
	8.3 Future research directions

	Appendixes
	A Grammars
	A.1 s-COMMA Grammar
	A.2 Flat s-COMMA Grammar

	Bibliography
	Hypertext References

	Back cover

