N

N

Languages and Model Transformation in Constraint
Programming
Ricardo Soto

» To cite this version:

Ricardo Soto. Languages and Model Transformation in Constraint Programming. Other [cs.OH].
Université de Nantes, 2009. English. NNT: . tel-00483262

HAL Id: tel-00483262
https://theses.hal.science/tel-00483262
Submitted on 13 May 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00483262
https://hal.archives-ouvertes.fr

Ecole Centrale de Nantes Université de Nantes Ecole des Mines de Nantes

ECOLE DOCTORALE STIM
« SCIENCES ETTECHNOLOGIES DE LI NFORMATION ET DESMATERIAUX »

Année2009

NC attribué par la bibliotheque

Langages et transformation de modeles en
programmation par contraintes

THESE DEDOCTORAT

Discipline : INFORMATIQUE

Présentée
et soutenue publiquement par

Ricardo S oT1oO

le 25 juin 2009 a IUFR Sciences & Techniques, Université de Nantes,
devant le jury ci-dessous

Président . Eric MONFROY, Professeur UTFSM, Chili

Rapporteurs : Francois FAGES, Directeur de Recherche INRIA Rocquencourt, France
Michel RUEHER, Professeur Université de Nice, France

Examinateurs: Arnaud LALLOUET, Professeur Université de Caen, France
Eric MONFROY, Professeur UTFSM, Chili

Directeur de thése : Pr. LaurenRGNVILLIERS

Laboratoire L ABORATOIRE D' NFORMATIQUE DE NANTES ATLANTIQUE.
UMR CNRS6241. 2, rue de la Houssinierep 92 208 — 44 322 Nantes, EDEX 3. N° ED 503-053

LANGAGES ET TRANSFORMATION DE MODELES EN
PROGRAMMATION PAR CONTRAINTES

Languages and Model Transformation in Constraint
Programming

Ricardo SoTo

favet neptunus eunti

Université de Nantes

Ricardo SoTo
Langages et transformation de modéles en programmation par

contraintes
XVIIT+154 p.

This document was edited with these-LINA v. 2.7 TATEX2e class of the “As-
sociation of Young Researchers on Computer Science (IPGIN)” from the
University of Nantes (available at : http://login.irin.sciences.univ-nantes.fr/).
This IATEX2e class is under the recommendations of the Natio-
nal Education Ministry of Undergraduate and Graduate Studies
(circulaire n® 05-094 du 29 March 2005) of the University of Nantes and the
Doctoral School of « Technologies de I’'Information et des Matériaux(ED-sTIM)

Print : template-these.tex — 16/11/2009 — 11:35.

Last class review: these-LINA.cls,v 2.7 2006/09/12 17:18:53 mancheron Ezp

http://login.irin.sciences.univ-nantes.fr/
http://www.sup.adc.education.fr/bib/Acti/These/circulaire.rtf
http://www.univ-nantes.fr/
http://edstim.univ-nantes.fr/

Abstract

Constraint Programming is an optimization technology that associates rich modeling lan-
guages with efficient solving engines. It combines methods from different domains such as
artificial intelligence, mathematical programming, and graph theory. A main challenge in this
field is to provide high-level languages for facilitating the problem modeling phase. Another
important concern is to design robust architectures to map high-level input models to differ-
ent and efficient solving models. Handling these two concerns is remarkably hard since many
aspects have to be investigated, for instance, the expressiveness and the abstraction level of
the language as well as the techniques used to transform the high-level model into each of
the solver’s languages. In this thesis, we propose a new perspective to face those challenges.
We introduce a novel constraint programming architecture in which the problem is seen as
a set of high-level constrained objects defined through a new modeling language. The model
transformation is performed by a model-driven process in which the elements of languages are
defined as concepts of a model of models called metamodel. This new architecture allows one
to tackle the modeling and the model transformation phases in a higher-level of abstraction
and consequently to reduce the inherent complexity behind them.

Keywords: Constraint Programming, Constraint Modeling Languages, Model Transformation

Résumé

La programmation par contraintes est une technologie pour l’optimisation qui associe des
langages de modélisation riches avec des moteurs de résolution efficaces. Elle combine des
techniques de plusieurs domaines tels que l'intelligence artificielle, la programmation mathé-
matique et la théorie des graphes. Un défi majeur dans ce domaine concerne la définition
de langages de haut-niveau pour faciliter la phase de modélisation des problémes. Un autre
aspect important est de concevoir des architectures robustes pour transformer des modéles
de haut-niveau et obtenir des modeéles exécutables efficaces, tout en visant plusieurs moteurs
de résolution. Répondre & ces deux préoccupations est trés difficile, car de nombreux aspects
doivent étre pris en compte, comme par exemple, ’expressivité et le niveau d’abstraction du
langage ainsi que les techniques utilisées pour traduire le modéele de haut-niveau dans chacun
des langages de résolution. Dans cette thése, nous proposons une nouvelle perspective pour
faire face & ces défis. Nous introduisons une nouvelle architecture pour la programmation par
contraintes dans laquelle le probléme est défini comme un ensemble d’objets contraints dans
un nouveau langage de modélisation haut-niveau. La transformation des modéles est réalisée
a l’aide de I'ingénierie des modéles. Les éléments des langages sont alors considérés comme des
concepts définis dans un modéle de modeéles appelé métamodele. Cette nouvelle architecture
permet d’aborder les phases de modélisation et de transformation de modeéles en raisonnant
a un niveau d’abstraction supérieur et, par conséquent, de réduire la complexité inhérente a
ces deux phases.

Mots-clés: Programmation par contraintes, Langages de modélisation par contraintes, Trans-

formation de modéles

AcCM Classification

Categories and Subject Descriptors : D.3.2 [Programming Languages|: Language
Classifications—Constraint and logic languages; D.3.3 [Programming Languages|: Lan-
guage Constructs and Features—Classes and objects, Constraints; D.2.2 [Software Engi-
neering]: Design Tools and Techniques— User interfaces.

http://www.acm.org/class/

Remerciements

> e tiens tout d’abord & remercier vivement mon directeur de these Laurent Granvilliers

> pour sa qualité humaine, sa disponibilité et son énergie débordante tout au long de mes
travaux de thése de doctorat. Pendant ces trois années, j’ai eu le plaisir de rédiger plusieurs
articles avec lui, de profiter de sa rigueur scientifique et de son appréciation objective. Cela a
ainsi été trés enrichissant aussi bien personnellement que professionnellement.

Je souhaite aussi exprimer toute ma gratitude envers les membres de mon jury, en particulier
Eric Monfroy pour I'avoir présidé; Michel Rueher et Francois Fages, rapporteurs, pour avoir lu
mon manuscrit avec soin et fait des remarques pertinentes. Un grand merci & Arnaud Lallouet
pour ses questions qui m’ont aidé & orienter mes futurs travaux de recherche.

J’adresse aussi mes sincéres remerciements aux membres du département d’informatique de
I"Université Pontificale Catholique de Valparaiso. Je remercie particuliérement Broderick Craw-
ford, Eric Monfroy et Carlos Castro qui ont fortement contribué a ma venue en France. Je tiens
aussi a remercier Jaime Zavala pour son aide précieuse dans la préparation de mon séjour.

Je voudrais également remercier Raphaél Chenouard pour nos échanges fructueux. Nos contri-
butions sont naturellement présentées dans ce manuscrit. En plus d’étre un ami, il m’a aidé et
soutenu sans relache tout au long de ma thése.

De nombreuses autres personnes ont contribué a faire ces années de thése & Nantes une période
agréable. Anthony, Eduardo, Jim, gracias pour votre amitié, votre disponibilité et votre soutien.
Thomas et Nico, merci pour votre aide et pour ces innombrables conversations fructueuses. Les
membres permanents de 'équipe MEO du LINA ont également toute ma gratitude : Christophe,
Fred et Alex, merci. Charlotte et Lorraine merci aussi pour votre amitié et votre amabilité.

Je tiens aussi & remercier mes amis proches : Stéphane, Angel, Wence, Denisse, merci & vous
pour tous ces moments agréables qu’on a vécu en France. Je remercie aussi mes amis du Chili
qui m’ont toujours soutenu malgré la distance : Alfredo, Negro, Pato et Andrés, je vous serre
dans mes bras.

J’adresse une pensée a ma famille, Papa, Maman, Xime et Vero, merci pour votre énorme
soutien et ces longues conversations téléphoniques. Je remercie aussi mes beaux-parents pour leur
soutien et leurs nombreuses visites qui ont rendu notre séjour en France encore plus plaisant.

Enfin, comment ne pas remercier ma femme sans qui rien n’aurait été possible. Tu sais que
ton appui inconditionnel, tes encouragements et ton amour ont été le moteur pour mener a bien
ces trois dures années de thése. Tous ces moments difficiles qu’on a vécu ensemble et la force que
t’a eu pour y faire face, tu sais c’est admirable. Stefanie, encore une fois je te remercie, je t’aime
et & juste titre je te dédie cette thése.

Table of Contents

List of Tables XIII

List of Figures XV

—Body of the Dissertation—

1 Introduction 1
1.1 From the Roots of CP to Modern Architectures 2
1.2 Motivations & Contributions 3
1.3 Outline e 6
Part I — State-of-the-art
2 Solving Techniques 9
2.1 Constraint Satisfaction Problems o L 9
2.2 Solving CSPs 9
2.2.1 Basic Search Algorithms 10
2.2.2 Filtering techniques L 11
2.2.3 Solving Algorithms 12
2.24 Solving numerical CSPs 14
2.2.5 Variable and Value Ordering Heuristics 18
2.3 SUmMmMAry 18
3 Languages and Systems 19
3.1 Constraint Logic Programming 19
3.2 Libraries 21
3.3 Modeling Languages 23
3.4 Programming Languages L L 28
3.5 Mathematical Programming Lo L 29
3.6 Object-oriented languages Lo 31
3.7 Comparing s-COMMA with related approaches 34
3.8 Summary 35
Part IT — The s-COMMA platform
4 Modeling Language & Graphical Artifacts 39
4.1 A Tour of the ss=COMMA language 39
4.1.1 The SEND + MORE = MONEY Problem 39
4.1.2 The Packing Squares Problem 40

IX

X TABLE OF CONTENTS

4.1.3 The Stable Marriage Problem 44
4.1.4 The Social Golfers Problem, 46
4.1.5 The Production Problem 48
4.1.6 The Engine Problem 49
4.2 Modeling Features ol
421 Constants L 51
4.2.2 Variable assignmentso L Lo 52
4.2.3 Classes e 53
4.2.4 Astributes L e e 54
4.2.5 Constraint Zones L 56
4.2.6 Heuristic Orderings & Consistency Techniques 60
4.2.7 Extensibility 63
4.3 The ssCOMMA GUI e e e 67
4.4 SUMMATY oo e 71
5 Mapping Models to Solvers 73
5.1 From s-COMMA GUI to s-COMMA 74
5.2 From ssCOMMA to Flat ssCOMMA 77
D.2.1 Parsing L 7
5.2.2 Semantic Checking L 83
5.2.3 Refactoring Phase 87
5.3 From Flat ss=COMMA tosolvers it 92
5.3.1 Hand-Written Translators 92
5.3.2 Model-Driven Translators e 98
5.3.3 Discussion L e s 107
5.4 Summaryo e e 109

Part IIT — The Transformation Framework for CP

6 Overview 113
6.1 The Model-Driven Transformation Framework 113
6.2 A Motivating Example L 114
6.3 Summary L e 117
7 From Source to Target 119
7.1 From source to pivot L e e e e 119
7.2 Pivot refactoring 122
7.2.1 Refactoring phase L 122
7.3 From pivot to targeto 127
7.4 Transformation process Lo 129
7.4.1 Selecting the refactoring steps. Lo 129
7.5 Experiments. L e 130
7.6 SUMMATY . . . c ot o v e e e e e e 131
8 Conclusion 133

8.1 s-COMMA 133

TABLE OF CONTENTS X1

8.2 Transformation framework for CP languages 134
8.3 Future research directions L 134
—Appendixes—

A Grammars 139
Al sCOMMA Grammarottt e 139
A2 Flat sCOMMA Grammar oottt 142
Bibliography 145

Hypertext References 151

List of Tables

—Body of the Dissertation—

Part I — State-of-the-art

3.1 Comparing s-COMMA with five approaches. The meaning of each row is as follows.
Object-Orientation: the language provides object-oriented capabilities. GUI: the
system offers a graphical interface. Solver-Independence: the architecture is able
to perform the problem resolution through different solvers. Mapping tool: the
system provides a framework to add new solvers to the platform. Extensibility:
the language can be extended for instance to support new global constraints or
functions. Solving Options: the definition of heuristics orderings and consistency
levels of constraints are allowed. L.

Part IT — The s-COMMA platform

4.1 Binary and unary operators. Higher precedence means lower priority. T' represents
integer, real, or boolean types. N represents integer or real types.

5.1 Translation times (seconds).
5.2 Solving times (seconds) and model sizes (number of tokens).

Part IIT — The Transformation Framework for CP

7.1 Times of complete transformation chains.
7.2 Time of complete transformation chains of the n-queens problem.

—Appendixes—

XIII

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

—Body of the Dissertation—

A solution of the 8-queens problem. L.
The transformation process in ssCOMMA.
The transformation framework for CP.

Part I — State-of-the-art

Solving the 4-queens problem using GT.
Solving the 4-queens problem using BT.
Enforcing arc consistency.
Solving the 4-queens problem using FC.
Solving the 4-queens problem using MAC.
Enforcing hull consistency.o
The CSP P = ((z), (D, € [=2,2]),(x® <2))..
Enforcing box consistency. L

An ECL!PS® model of the n-queens problem.
A Gecode/J model of the n-queens problem.
A Gecode/J model of the n-queens problem using global constraints.
A MiniZinc model of the n-queens problem.
An Alma-0 model of the n-queens problem.
An AMPL model of the n-queens problem.
A s-COMMA model of the n-queens problem.

Part IT — The s-COMMA platform

A s-COMMA model of the cryptarithmetic puzzle SEND + MORE = MONEY. .
A s-COMMA model of the packing squares problem.
An object-oriented s-COMMA model of the packing squares problem.
Data file of the stable marriage problem. 0.
A s-COMMA model of the stable marriage problem.
Data file of the social golfers problem.
Model file of the social golfers problem.
A s-COMMA model of the production problem.
Data file of the production problem.
4.10 The Engine Problem
4.11 A s-COMMA model of the engine problem.
4.12 The CylSystem class of the engine model.

XV

e

XVI LIST OF FIGURES
4.13 The Injection class of the engine model. 51
4.14 Constants. L e 52
4.15 Variable assignments.o e 02
4.16 Variable assignments guided by indexes. oL 02
4.17 Composition and inheritance. oL 53
4.18 Importing models. 03
4.19 Decision variables.o 54
4.20 Decision variables, domains and enumerated domains. 54
421 Sebs. . . . oL 55
4.22 Objects and constrained objects. Lo 55
4.23 A constraint zone. L oL 56
4.24 Constraint zone overriding.o o6
4.25 forall loops. o8
4.26 Nested forall loops. o o L oL 58
427 The sumloop. o e o8
4.28 Conditionals. 59
4.29 Optimization statement.o 59
4.30 A compatibility constraint.o 60
4.31 The industrial mixer problem. o o 61
4.32 Value and variable orderings.o 61
4.33 Consistency level. 62
4.34 Ordering heuristics & consistency level. 0oL 62
4.35 Adding constraints to s-COMMA. 63
4.36 Removing symmetries from the social golfers problem. 64
4.37 The Sudoku problem. 65
4.38 Adding new functions.o 65
4.39 Using the new functions in the Sudoku problem. 66
4.40 Adding new heuristic orderings and consistency levels. 66
4.41 The tuned mixer class. L 67
4.42 Class and data artifacts.o 67
4.43 The stable marriage problem on the ss=COMMAGUL.. 68
4.44 Attributes on the ssCOMMA GUI. oo v ittt 69
4.45 Constraints on the sCOMMA GUL. i e i 70
4.46 Data files on the s-COMMA GUL. o0 it 70
4.47 Some shortcuts of the sCOMMA GUIL.o it 71
5.1 The ss=COMMA architecture. 73
5.2 sCOMMA GUI Java packages. o o o i 74
5.3 The AttributeDialogclass. L 6]
5.4 The ClassArtifact class. L L 75
5.5 The SCommaClass class. L e 76
5.6 The getCode method. 76
5.7 Tokens and rules in the ANTLR lexer of ss=COMMA. 78
5.8 The lexer rule to define numbers. oL 79
5.9 Three parser rulesin ANTLR. 79
5.10 Introducing a proper tree node. 80

LIST OF FIGURES XVII

5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
0.26
5.27
0.28
5.29
5.30
5.31
5.32
9.33
5.34
9.35
5.36
0.37
5.38
5.39
5.40
5.41
5.42
5.43
5.44
5.45
.46
5.47
0.48
5.49
5.50
5.51
5.52

9.53

Parser rules of s-=COMMA. 80
Parser rules of ss=COMMA. e 81
The rule to recognize expressions.o 82
A syntactic error. L L L 83
Tree walker of s-COMMA. 84
A Java procedure to check class redeclarations. L. 84
A semantic error. L. L L L 84
Two ss=COMMA classes. o o i 85
The rule to check attributes in the second pass. 85
The rule to check constraints in the second pass. 86
Loop unrolling. 87
Enumeration substitution. 0o 88
Composition flattening.o 88
Flattening arrays containing objects. oo 88
Conditional removal. 89
Conditional evaluation. 89
Compatibility removal.o 89
Expression evaluation. L L Lo 90
A Flat ssCOMMA model of the stable marriage problem. 91
The mapping tool. L e e 92
Tokens and the IDENT rule in the ANTLR lexer of Flat ssCOMMA. 93
Parser rules of Flat ss=COMMA. e 93
Parser rules of Flat ss=COMMA. i 94
Tree walker of Flat s-COMMA. it 94
The initial procedure of the main Java class of the Gecode/J translator. 95
Code generation of the Gecode/J constructor. 95
Code generation of Gecode/J variables. 96
The tree walker for the code generation of constraints. 96
Two procedures for the code generation of constraints. 97
A Gecode/J model of the stable marriage problem. 97
A general MDA for model transformation. L. 98
Model-driven translation in s-=COMMA. 98
An extract of the KM3 file of Flat sCOMMA. 99
Constraints in the KM3 file of Flat ss-COMMA. 100
Operands in the KM3 file of Flats-=COMMA. 101
ATL rules for the Flat s-COMMA to Gecode/J transformation. 101
ATL rules for the Flat s=COMMA to Gecode/J transformation. 102
ATL rules for decomposing matrices containing sets. 103
ATL helper to generate a Gecode/J vector. 104
ATL helper to generate an addition. 105
Three templates of the TCS file of Flat sCOMMA. 105
The model-driven transformation process on the example of Flat ssCOMMA (FsC) to
Gecode/J. . . . 106
Direct code generation.o 107

XVIII LIST OF FIGURES

Part IIT — The Transformation Framework for CP

6.1 The transformation framework.o Lo 114
6.2 A s-COMMA model of the social golfers problem. 115
6.3 The social golfers problem expressed in ECL'PS®. 116
7.1 Three classes of the KM3 file of s-COMMA. 119
7.2 Attributes and variables in the KM3. 120
7.3 Constraint zones and statements in the KM3. 120
7.4 Some templates of the TCS file of sCOMMA. 121
7.5 Two ATL rules for a transformation from s-COMMA to pivot. 122
7.6 A fragment of the pivot metamodel. 0oL 123
7.7 An example of transformation rule. L. 123
7.8 The composition flattening transformation rule. 125
7.9 Composition flattening on the social golfers problem. 125
7.10 The enumeration substitution transformation rule. 126
7.11 Enumeration substitution on the social golfers problem. 126
7.12 The forall unrolling transformation rule., 126
7.13 Auxiliary variable insertion transformation rules. 127
7.14 Auxiliary variable insertion process. 127
7.15 A fragment of the ECL/PS® metamodel. 128
7.16 Five templates of the TCS file of ECLIPS®. 128
7.17 The transformation process on the example of s=COMMA to ECL'PS®. 129
7.18 An Ant script for selecting transformations. 130

—Appendixes—

CHAPTER 1
Introduction

,é)) = onstraint Programming (CP) is known to be an efficient software technology for solving
\\\é\ combinatorial and continuous problems. Under this framework, problems are formulated
as Constraint Satisfaction Problems (CSP). Such a representation describes a problem in terms
of variables and constraints. Variables are unknowns lying in a set of values called domain, and
constraints are relations among these variables restricting the values that they can adopt. The
goal is to find a variable-value assignment that satisfies the whole set of constraints.

As an example, let us consider the 8-queens problem, which consists in placing eight chess
queens on a 8x8 chessboard such that none of them is able to capture any other using the
standard chess queen’s moves. A solution requires that no two queens share the same row,
column, or diagonal.

Eight variables can be identified, @1, ..., @s, where); denotes the row position of the queen
placed in the ith column of the chessboard. The domain for each of these variables is given by the
integer interval domain [1, 8], which represents the potential positions of the queens on the rows
of the chessboard. Once the variables have been identified with their corresponding domains,
we can formulate the constraints of the problem as the following inequalities for i € [1,7] and
jei+1,8:

— To avoid that two queens are placed in the same row: Q; # Q;.

— To avoid that two queens are placed in the same South-West—North-East diagonal: Q; +i #
Qj+J.

— To avoid that two queens are placed in the same North-West—South-East diagonal: Q; —i #
Qj—1J

Wy

il

Wy

Wy

Figure 1.1 — A solution of the 8-queens problem.

A solution to this problem is depicted in Figure 1.1, it corresponds to the sequence (3,5,2,8,1,7,
4,6), the first queen from the left is placed on the third row from the top, the second queen is
placed on the fifth row, the third queen is placed on the second one and so on.

2 CHAPTER 1 — Introduction

1.1 From the Roots of CP to Modern Architectures

The resolution process of CSPs involves two main aspects. A language to express the problem,
and algorithms to perform the solving process. In some sense, this integration was firstly perfor-
med around 1963 by Ivan Sutherland, who developed a language for specifying constraints on
drawings [Sut63]. After this landmark, a natural separation occurred between these two aspects,
and the research work was divided [FMO06] into two main streams: the language stream and the
algorithm stream.

In the language stream, the notion of constraint was incorporated in several programming
languages and systems. For instance, around 1967, Elcock developed a declarative language
called Absys [Elc90| based on the manipulation of equational constraints. Burstall employed
a form of constraint in a program for solving cryptarithmetic puzzles [Bur69]. Then, the ad-
vances in the programming languages field allowed to incorporate constraints in different pa-
radigms. For instance, Borning combined objects, constraints, and visual environments in the
ThingLab simulation laboratory [Bor81]. Constraint were also mixed with logic programming in
the form of constraint logic programming (CLP) [JMSY92]. Some examples are Prolog III [Col90],
CLP(R) [JL87], and CHIP [Van89].

In the algorithm stream, the research work was heavily influenced by the artificial intelli-
gence (AI) domain. The focus was to develop more efficient search and heuristic methods. For
example, Waltz introduced in the mid-1970s a filtering algorithm to accelerate the resolution
process of the scene labeling CSP [Wal75]. Then, Montanari developed other kind of filtering
mechanisms, technically called local consistencies, and a general framework for reasoning about
constraints [Mon74| was established. The algorithm stream followed growing and new Al com-
munities working around the concept of “reasoning” were developed such as constraint-based
reasoning [FM92] and case-based reasoning [AP94].

The separation of both streams continued until the early 1990s when a group of scientists from
different fields attempt to reintegrate them to create a new single paradigm called “constraint
programming”. The idea was to create a new technology under the following principle: The user
states the constraints and a general purpose constraint satisfaction engine solve them. From
those days many constraint programming systems have been developed, always integrating the
two aforesaid streams and sometimes involving other approaches, for example ECL'PS® [WNS97|
and GNU Prolog [DC00] for constraint logic programming or Oz [SSW94]|, a multiparadigm
language combining constraint-based inference and distributed computing. Also, several libraries
have been introduced, generally built on top of well-known programming languages such as ILOG
Solver [Pug94] and Gecode [ST06] using C++; and CHOCO [w#w] running under Java.

At the beginning of the current decade, an important issue arose. The community realized
that just a reduced number of experts mastered the CP technology. One of the main reasons was
the complexity of the CP’s usage. The fruitful use of existing tools implied to have a considerable
level of CP expertise, for instance to deal with encoding aspects of host languages or to tune
search strategies to perform efficient solving processes, in conclusion, the modeling concerns to
state problems were not enough. This important issue encouraged the creation of the so-called
modeling languages, such as OPL [Van99|, where a more “user-understandable” language is given.
The user deals with a higher-level language without needing to overcome the encoding aspects
of a host language or to specify a search strategy.

Three years ago, constraint programming systems evolved and the last generation of CP
architectures has been proposed, some examples are Essence [FGJ107], Zinc [RGMWO07] and

CHAPTER 1 — Introduction 3

MiniZinc [NSBT07]. This new architecture considers three layers, a modeling language on the
top, a set of CP systems on the bottom and a mapping tool on the middle. The modeling language
allows users to state problems in a high-level of abstraction. The mapping system takes this model
and translates it to one of the underlying CP systems, which calculates the solution. These CP
systems, generically called solvers, normally have a lower level of abstraction compared to the
modeling language. An interesting feature of this architecture is the capability of processing one
model with different solvers. This feature is useful for experimentation tasks, considering that
there exists many kind of models and there is no solver having the best resolution for all.

1.2 Motivations & Contributions

The research of high-level languages and flexible architectures for model transformation is an
important challenge in the CP field. The task is hard since many aspects must be investigated.
The definition of high-level languages requires to consider several concerns. For instance, provi-
ding support for a wide range of problems depends on the definition of suitable levels of expres-
siveness. The design of elegant modeling styles is essential for getting concise and clear models.
Extensibility mechanisms are important to enlarge the expressiveness of languages, and tuning
capabilities are useful for achieving efficient solving processes. Software features to improve reuse
and model management are desirable particularly for handling larger problems. Building flexible
and efficient architectures for model transformation involves the study of additional concerns.
For instance, the correct selection of tools and techniques is a key decision to implement flexible
and modular mappings. Another important aspect is the openness of this architecture, i.e. it
must be possible to plug new solvers to the underlying layer.

The development of languages and systems for CP is a long story. Various evolutions, im-
provements and combinations of previous approaches can be regarded. However, most of the
aforementioned aspects are recent and they have not been studied enough. In this thesis, we
present a new vision for handling those concerns. Software engineering practices are complemen-
ted with several innovations to provide high-level problem modeling. Powerful techniques from
the model engineering world ensure modular and flexible mappings toward the solver resolution.
This new approach consists of three main components: the s-COMMA language, the s-COMMA GUI,
and a middle tool for transforming models to solver programs.

s-COMMA is the modeling language of the architecture [SGO7b]. Its design is based on the
experience of the software engineering world. Features from object-oriented languages such as
modularity, composition, and inheritance are introduced to support reuse and the management
of constraint models. The core of the language is a combination of a high-level object-oriented
language with a constraint language. The constraint language includes usual data structures,
control operations, and first-order logic to define constraint-based formulas. The object-oriented
part of the language has been simplified to avoid the complex encoding concerns present in
programming languages. As a consequence, the language is able to elegantly capture the struc-
ture of problems in single objects. This new modeling style is just the first innovation of our
approach. The second innovation of s-=COMMA concerns its tuning capabilities. A simple forma-
lism is provided to perform customized solving processes [SGO8b|. This formalism is unique in
object-oriented constraint modeling and it profits of the object-oriented style to configure sol-
ving options in multiple manners. The third innovation of our approach is about extensibility.
An extension mechanism is provided to adapt the modeling language to further upgrades of the

4 CHAPTER 1 — Introduction

solver layer. This mechanism allows us to add new functionalities such as new global constraints,
new functions, or new tuning options [SG07a].

The s-COMMA GUI [CGS08] is the associated authoring tool of the architecture. The visual
language provided can be seen as the graphical representation of the s-COMMA language. The
design of this new language has also been influenced by software engineering practices. In fact,
the object-oriented style of ss=COMMA has been naturally represented by means of an extension
of the UML class artifact. This new language is the fourth innovation of the architecture, being
the support of a visual and a more concise perception of models.

The mapping tool is the third component of the architecture. This tool is responsible for
transforming an input model into an executable solver program. A main challenge must be faced
at this stage. The transformations must be flexible and easy to implement in order to permit the
integration of new solvers to the platform. This issue is evidently a model transformation concern.
Accordingly, as the fifth innovation of the architecture, the mapping tool has been enhanced
with the incorporation of a model-driven architecture [CGS08]. This approach provides proper
metamodeling and transformation techniques to build flexible mapping tools.

The transformation process performed in s-COMMA is similar to that of Zinc or Rules2CP
[FMO8], except for the transformation of graphical artifacts. In s-COMMA we consider a three-
step transformation phase (see Figure 1.2). Firstly, graphical artifacts are transformed to the
corresponding s-COMMA model. This model must then be transformed to the Flats-COMMA [SG08a|
intermediate language to be closer, in terms of language constructs, from the solver language.
In this process, several high-level constructs —not supported at the solver level- are transformed
to simpler ones. For instance, loops are unrolled, conditionals are refactored, or object-oriented
compositions are flattened. This allows one to simplify both the translation process and the
integration of new solver transformations. Finally, this intermediate model is directly transformed
to the executable solver program.

- Transformation
Transformation Transformation Flat-to-Solverl
Visual-to-Textual Textual-to-Flat ;
FUTROOTR SUPORRTRRPI ,< Solver 1

Transformation
SCOMMA Jeoiinn, S-COMMA)il Flat s-COMMA)i} u'a"wfs""’e”
Visual Model Model Model
HUURUURURUNS SOUUORPRRORON

Transformation
: | Flat-to-SolverN
N

Figure 1.2 — The transformation process in s-COMMA.

The s-COMMA platform is the result of an investigation of several important concerns in
the development of modern architectures for CP. Many innovations and benefits can be found
in this new approach. A high-level language is provided to smoothly capture the structure of
problems. An accurate graphical representation of this language is given to achieve a more concise
representation of problems. As opposed to previous approaches, the expressiveness of s-=COMMA
can be extended to support new functionalities. The use of tuning mechanisms in object-oriented
modeling is another innovation of s-=COMMA, it permits performing customized solving processes.
The platform also provides support for experimentation tasks, as the possibility of processing

CHAPTER 1 — Introduction 5

a same model with different solvers is present. Finally, the structure of the architecture can be
updated. New solvers can be connected to the platform in order to enlarge the experimentation
possibilities.

A second work is presented in this thesis as well [CGS09]. This new approach can be seen as
an improvement of the solver-independent architecture. We introduce a new framework allowing
to define bridges between different modeling and solver languages. The main motivation behind
this work concerns the fact that defining a universal modeling language® for CP is hard, and the
users usually have their own preferences. Therefore, we believe that a transformation framework
to define mappings between many modeling languages and many solvers would be desirable.
This new approach involves important advantages. For instance, users may choose their favorite
modeling language and the best known solving technology for a given problem provided that
the transformation between languages is implemented. Additionally, it may be easy to create a
collection of benchmarks for a given language from different source languages. This feature may
speed up prototyping of one solver, avoiding the rewriting of problems in its modeling language.

Transformation Transformation
Source-to-Pivot Pivot-to-Target
Source Model|--=-mrrrrrmeereeeee T e Target Model

Pivot Model

Pivot-to-Pivot
Refactoring/
Optimization

Figure 1.3 — The transformation framework for CP.

We implement this transformation framework by means of an architecture completely built
using a model-driven approach. A generic and flexible pivot model (intermediate model) has
been introduced, to which different languages can be mapped. This architecture allows one to
perform a complete transformation in three main steps: from the source to the pivot model,
refactoring/optimization of the pivot model, and from the pivot to the target model (see Fi-
gure 1.3). Refactoring and optimization steps are always implemented over the pivot so as to
guarantee independence from external languages. This refining phase is comparable to the one
performed from s-COMMA to Flat s=COMMA, but more flexible since the process is not fixed, i.e. it
is possible to select the refining steps to be applied in a transformation. For instance, if loops
are supported at the target level it is useless to unroll them. This feature allows one to make use
of the constructs provided at the target level and therefore to reduce the differences (in terms of
model structure) between the source and the target model.

The work done on this transformation framework can be seen as a natural continuation of
the architecture implemented in s-COMMA. Two main innovations can be observed with respect
to previous work. The possibility of using different modeling languages as the source of a trans-
formation, and the possibility of selecting the appropriate refining phases in a transformation.
The first feature speeds up prototyping of solvers and motivates model sharing, and the second
one enables users to generate models targeting a desired solving technology.

! The definition of a standard language has been established as an important future challenge at the CP 2006
conference. At the CP 2007 conference, MiniZinc has been proposed as a standard language.

6 CHAPTER 1 — Introduction

1.3 Outline

This thesis is composed of three main parts: Part one is devoted to the state of the art
and it is divided into two chapters. The first chapter gives an overview of techniques developed
for solving CSPs. We include the main procedures and we illustrate them by means of several
examples. The second chapter gives a summary of languages and systems for modeling and
solving CSPs. The spectrum is very wide, from programming to modeling languages and from
logic to object-oriented paradigms. We also introduce various models of the n-queens problem in
order to contrast the different approaches.

Part two presents the s-COMMA platform. The first chapter of this part is devoted to the
modeling features of s-=COMMA. A tour of the ss=COMMA language is firstly given, followed by a
detailed illustration of the modeling constructs supported. The chapter ends with a presentation
of the s=COMMA GUI and its graphical artifacts. The second chapter of this part focuses on the
whole transformation chain, from graphical artifacts to solver models. We present the main
elements involved in the system (e.g. parsers, metamodels and transformation rules) and the
tools and techniques for implementing them.

The second approach we developed is presented in Part three. The first chapter presents
the architecture of the transformation framework and motivates its implementation through an
example concerning several transformation issues. The following chapter focuses on the imple-
mentation of the main parts of the transformation framework. We explain the structure of the
architecture and the transformation process from source to target models. The thesis ends with
the conclusion and the future work.

PART 1

State-of-the-art

CHAPTER2
Solving Techniques

e

Q&

@,,é)) onstraint satisfaction involves various solving approaches, which are mainly based on
P W).A))
N

(N> artificial intelligence. In this chapter, we give an overview of these approaches. We firstly
introduce some basic notations and then we present the foundations of techniques to solve CSPs.
We consider the basic search algorithms as well as more advanced procedures that involve filtering

mechanisms.

2.1 Constraint Satisfaction Problems

Definition 2.1 (Constraint Satisfaction Problem). A Constraint Satisfaction Problem P is de-
fined by a triple P = (X, D,C) where:

- X is a set of variables {x1,xa,... ,xp}.

- D is a set of domains {d1,da,...,d,} such that d; is the domain of x; defined as a subset
of some set E; called universe, fori=1,...,n.

~ C is a set of constraints {c1,ca,...,cm} such that ¢ is a relation over a set of variables
{le,...,xjnj} called its scope, defined as the set I'; C dj x - x djnj, for 5 =1,...,m.
ci(jy, ... ,xjnj) is also used to denote a constraint c; over its scope xj, ... s L -

A solution to a CSP is an assignment {z1 — aq,...,x, — a,} such that:

- a; €d; fOI‘iZl,...,Tl.

- (ajl,...,ajnj) elj,forj=1,...,m.

If the CSP has a solution we say that it is consistent; otherwise we say that it is inconsistent.

There exist different classes of CSPs, for instance:

— A finite domain CSP corresponds to a CSP in which each domain is a finite subset of Z
(universe of variables). The constraints are generally defined as arithmetic, logic, or set
expressions.

— A numerical CSP corresponds to a CSP in which each domain is an interval containing
values from R. The constraints are generally defined as linear and non linear equations or
inequalities.

2.2 Solving CSPs

Solving CSPs requires to explore the space of potential solutions. Such an exploration can
be performed using a tree data structure, where the root is the initial problem and each node
corresponds to a sub-problem. The tree is built by splitting the domain of variables to obtain

10 CHAPTER 2 — Solving Techniques

those sub-problems. There exist different strategies for traversing the tree such as deep-first
search and breadth-first search, and also various algorithms for generating and exploring the
tree. The most basic one is the Generate and Test algorithm.

2.2.1 Basic Search Algorithms
Generate and Test
The Generate and Test (GT) algorithm consists in generating a potential solution and checking

whether it satisfies all the constraints. This process is done by generating a tree that represents
the Cartesian product of domains.

A FHeH
oum|
[mEEE
Cer 11

[oI | le[[[ele[T
IENIERCE|EEEE
[O T el

Figure 2.1 — Solving the 4-queens problem using GT.

Let us illustrate the GT process by means of the 4-queens problem, a smaller version of the
8-queens problem introduced in Chapter 1. Figure 2.1 depicts an extract of the process done by
the GT algorithm to reach a solution for this problem!. The figure shows that constraints are
checked only when all the variables of the problem have been instantiated. Thus, failures cannot
be detected as soon as only the variables relevant to a constraint have been instantiated. This
approach is simple to implement, however the searching cost is too expensive.

Backtracking

Backtracking (BT) [Luc91, GB65] is another approach for the exploration/generation of the
search tree. In this method the potential solutions are generated incrementally by repeatedly
choosing a value for another variable and as soon as all the variables involved in a constraint
are instantiated, the constraint is checked. Thus, if a partial solution violates a constraint, the
algorithm returns to the most recently instantiated variable that still has alternatives available
(to achieve a solution), eliminating as a consequence the conflicting subspace.

Figure 2.2 depicts the search process performed by the BT procedure on the 4-queens problem.
The figure shows that BT is able to detect failures as soon as two variables are instantiated (at

'Figures 2.1, 2.2, 2.4 and 2.5 have been adapted from [w47].

CHAPTER 2 — Solving Techniques 11

the middle level of the tree), that is much earlier than in the GT approach. Despite this, the BT
approach is not able to detect failures before assigning the values to all the variables involved in
a conflicting constraint. This problem can be addressed by using filtering techniques.

X X X X X

Figure 2.2 — Solving the 4-queens problem using BT.

2.2.2 Filtering techniques

The performance of basic search algorithms can be improved by reducing the variables’ do-
mains of each generated sub-problem. This is possible by calculating a consistency property on
the constraints. The idea is to enforce such a property on each sub-problem by using a constraint
propagation algorithm. The most used notion of consistency is the arc consistency [Mac77].

Definition 2.2 (Arc Consistency). Let ¢j(xj,,. .. ,$jnj) be a constraint and let k be an integer,
k€ {j1,---,Jn; }- We say that c; is arc consistent wrt. xy iff:

Yay € dy, : Hajl S dj17 ..o, dap_q € di_q, aak+1 S dk+1, ey Ha]’n]_ € djnj such that

(ajl,...,ajnj) S Fj

A constraint is said to be arc consistent if it is arc consistent wrt. to all its variables. A CSP
s said to be arc consistent if all its constraints are arc consistent.

Arc consistency allows one to verify that for each value of a domain it exists at least one
value in the domain of the other variables such that the constraint involved is satisfied. This
property can be calculated by a constraint propagation algorithm in order to reduce the domains
of variables. As an example, let us consider the placement of the first queen on the cell (1,1) of
the chessboard (see Figure 2.3). Three cells have been eliminated to make the sub-problem arc
consistent. The value 1 has been removed from the domain of ()5 since there is no corresponding

12 CHAPTER 2 — Solving Techniques

value in the domain of @7 such that the constraint Q1 # Q- is satisfied (considering that the
domain of @1 became {1} after the instantiation). In the same way, the value 1 has been removed
from the domain of (Y3 and Q4. This process is done for each constraint of the problem allowing
to avoid several potential wrong instantiations. Let us note that there exist different algorithms
to enforce arc consistency, for instance AC-3 [Mac77]|, AC-4 [MH86] and AC-5 [VDT92].

Q1=1 Q2=1 Q3=l Q4=l
®

Figure 2.3 — Enforcing arc consistency.

There also exist stronger consistency notions, which may eliminate a larger number of conflic-
ting values from domains, but at higher cost in terms of computations. Some examples are the
path consistency [Mon74] and the k-consistency [Fre78|.

2.2.3 Solving Algorithms

A search algorithm can be combined with constraint propagation to obtain a more effi-
cient solving procedure. The most common approach is to combine the BT algorithm with the
arc consistency. Some examples are Forward Checking (FC) and Maintaining Arc Consistency
(MAC).

Forward Checking

Forward checking [McGT79] is able to prevent future conflicts by performing arc consistency
on the not yet instantiated variables. This is done by removing temporarily the values of the
variables that will further cause a conflict with the current variable assignment. Hence, the algo-
rithm immediately detects that the current partial solution is inconsistent and consequently the
search space can be pruned earlier than using simple backtracking.

Figure 2.4 illustrates this process: values from domains are removed since the second level
of the tree. Once a queen is stated, its future conflicting values are temporarily removed, for
instance the queen stated at the position (1,1) removes all values corresponding to the first row
and the NW-SE diagonal. Then, in the left subtree, the second queen is placed at the position
(3,2) which is immediately set as inconsistent since it does not leave available place for the third
queen. The propagation follows for every queen on the chessboard, allowing to avoid most of
wrong instantiations done by the BT approach.

CHAPTER 2 — Solving Techniques 13

ENEAN N
[
I
¥

Figure 2.4 — Solving the 4-queens problem using FC.

Maintaining Arc Consistency

The Maintaining Arc Consistency (also called Full Look Ahead) [Gas74, SF94] is a stron-
ger solving algorithm. It checks the conflicts between future variables in addition to the test
between the current and the future variables.

1 2 3 2 3 4
1 1 —
2 2
3 3 []
4 4 o

X

Figure 2.5 — Solving the 4-queens problem using MAC.

Figure 2.5 illustrates this process, where we can see that the MAC algorithm is able to
prune the search space earlier than the forward checking, but doing much work on each variable
assignment. For instance, when the first queen is placed at the position (1,1) the conflicts between
the current position and the future positions are removed. After that, the algorithm checks the
conflicts among the future variables starting with the first available position on the second column
that is, the cell (3,2). The algorithm finds out that the position (3,2) is inconsistent since it does
not leave available place for the third queen, thus the position (3,2) is removed. The algorithm
follows with the cell (4,2), the next available position on the second column. This placement

14 CHAPTER 2 — Solving Techniques

leaves the cell (2,3) as the unique available position on the third column, which is then set as
inconsistent since it does not leave available place for the fourth queen. The process follows until
the result is reached on the right subtree.

2.2.4 Solving numerical CSPs

In the presence of constraints over real numbers, the already presented filtering techniques
cannot be applied due to three main limitations:

— Deciding the consistency of constraints over real numbers is not possible in a general
context [Ric68|.

— The representation of reals in numerical computations is not exact since it is commonly
done by means of floating-point numbers, which correspond to a finite set of rational
numbers [Gou00].

— The use of floating point numbers may lead to rounding errors.

As a consequence, specific filtering techniques have been defined in order to deal with real
numbers. These techniques mainly rely on the calculation of approximations over domains re-
presented by intervals bounded by floating-point numbers. Some techniques are based on hull
consistency [Lho93, Lv93, BO97| and on box consistency [BMV94].

2.2.4.1 Interval arithmetic

Before presenting the filtering techniques dedicated to numerical CSPs, let us give an overview
of interval arithmetic [Moo66].

Definition 2.3 (Floating-point Interval). An interval I bounded by floating-point numbers is
defined as:

I =Ja,b] ={r € Rla <r <b, with a,b € F}

We denote inf(I) as the lower bound and sup([/) as the upper bound of the interval. The four
basic operations to be used on floating-point intervals are the following:

[a,b] ® [c,d] = [|a+ c], [b+ d]]
[a,0) © [c,d] = [la —d], [b—c]]
[a,b] @ [c,d] = [min(|ac], |ad], |be], |bd]), maz([ac], [ad], [bc], [bd])]
la,b] © [¢,d] = [min([a/c], |a/d], [b/c], [b/d]), maz([a/c], [a/d], [b/c], [b/d])],0 ¢ [c,d]

Definition 2.4. Given a € R, we denote a™ as the smallest element of F greater than a, and
a~ as the greatest element of F smaller than a.

Definition 2.5 (Canonical Interval). We say that a nonempty interval I is canonical if :
I = [a,b] such that b < a™, with a,b € F

Definition 2.6 (Hull Operator). The hull of a set S C R is defined as the smallest interval
enclosing S :

hull(S) = [[inf(5)], [sup(5)]]

CHAPTER 2 — Solving Techniques 15

Definition 2.7 (Interval Extension). An interval function F : 1" — 1 is an interval extension
of a real function f:R"™ — R iff :
VB el": {f(x)|lxr € B} C F(B)

There are various implementations of interval extensions. The natural interval extension of
a real function f is defined as the function F' in which each real constant is replaced by its hull
and each real operation is replaced by its corresponding interval operation. As an example let us
consider the following function f defined over real numbers:

fla,y) =a® — (z xy) + 22,y €R

the natural extension F' of the function f is defined as follows:

FX,Y)=X’0(X®Y)®[2,2]X,Y €1
Given x € X =[0,2] and y € Y = [1, 3] we have:

F(X,Y)=[0,4]©10,6] & [2,2]
F(X,Y)=[-6,4 @ [2,2]
FX,Y) = [-4,6] 2 {f(z,y)lr € X,y €Y}

2.2.4.2 Consistency notions

In this section we present two of the consistency notions devoted to numerical CSPs: hull
consistency (also called 2B-consistency) and box consistency.

Definition 2.8 (Hull Consistency). Given a real constraint cj(le,...,xjnj), a box B =11 X
co.x I, CI", the box B' = I, x -+ x Ijnj7 an integer k € {j1, ..., jn, }, we say that the constraint
c; 15 hull consistent wrt. xy, iff :

I, = hull(m(T; N B")),

where Ty, corresponds to the projection of ¢; on . We say that the constraint c; is hull consistent
wrt. B if that relation is true for k € {j1,... s Jn; }-

Definition 2.9 (Box Consistency). Given a real constraint c; of the form f;(z;,, ... ,a:jnj) =0,
F; a natural interval extension of f;, a boxr B =1 x ... x I, CI", the box B' = I;, x --- X Ijnji
an integer k € {ji,... ,jnj}, we say that the constraint c; is box consistent wrt. xy, iff :

Ik = hull({ak S Ik|0 S P}'(Ijl, . ,Ik_l, hull({ak}),I/H_l, - ’Ijnj)})

We say that the constraint c; is box consistent wrt. B’ if that relation is true for k € {ji,... s Jnj }-

For the sake of simplicity we define the box consistency only wrt. equalities, but this definition
can be easily extended for inequalities, considering that f <0< f = z,2 € [—00,0].

The box consistency property is generally weaker than hull consistency (a comparison can be
found in [CDR99]|). Let us note that there also exist additional consistencies for numerical CSPs,
for instance 3B-consistency, kB-consistency [Lho93|, and CID-consistency [TCO7].

16 CHAPTER 2 — Solving Techniques

2.2.4.3 Filtering algorithms
In this section, we illustrate two filtering algorithms by using the already presented consis-

tencies.

Enforcing hull consistency

The hull consistency can be enforced by using interval arithmetic in two main phases: forward
evaluation and backward propagation As an example, let us consider the not hull consistent CSP
P = <<xaya Z>’ <D£B € [4’ 9]’Dy € [2’ 7]’DZ € [3’8]>’ <$ =Y + Z>>

Forward Evaluation Backward Propagation

Figure 2.6 — Enforcing hull consistency.

Figure 2.6 depicts the process performed by the hull consistency algorithm. Such a process
begins with the forward evaluation, which is a bottom-up tree traversal to evaluate its terms.
The expression y + z is evaluated by considering the interval addition operation, giving as a
result the interval [5,15]. The root of the tree corresponds to an equal symbol, which operates
as an intersection. Thus, the result of this node is given by [4,9] N [5,15] = [5,9]. The forward
evaluation is followed by the backward propagation, where the constraint is projected on a top-
down tree traversal. Starting with the root, the interval [5,9] is intersected with its child nodes,
both nodes become [5,9], and the hull consistent domain of x is obtained. Then, to calculate
the hull consistent domain of y, we reorganize the equation as follows: y = [5,9] © 2. Using
the interval subtraction operation, and replacing z by its domain, the result of the equation is
given by [5,9] ©[3,8] = [—3,6]. The new interval is intersected with the previous domain of y to
obtain the hull consistent domain of y ([-3,6] N [2,7] = [2,6]). The hull consistent domain of z
is calculated in the same way.

Enforcing box consistency

For the sake of simplicity we consider a simple algorithm using box consistency (the origi-
nal procedure includes the interval Newton method [Neu90]). This algorithm begins by testing
whether the domain contains solutions. If the domain is inconsistent it is rejected; otherwise its lo-
wer canonical interval [inf(D),inf(D)™] is tested. If the canonical interval satisfies the constraint,
inf(D) is the new lower bound. Otherwise, D is bisected and the procedure is performed again
with the interval [inf(D)™, W] and the interval [w, sup(D)]. As an example,

CHAPTER 2 — Solving Techniques 17

let us consider the not box consistent CSP P = ((z), (D, € [-2,2]),(z*> < 2)) shown in Fi-
gure 2.7.

| 4 - |
| |
| |
| 3+ |
| |
| |
2__
| |
| |
| 1+ |
| |
| |
—— ———
3 —2'-1 0 1' 2 3
V2= V2 =
~1.41421... 1.41421...

Figure 2.7 — The CSP P = ((z), (D, € [-2,2]), (z% < 2)).

Figure 2.8 illustrates the process performed by the algorithm. The process begins by testing
the domain [—2,2] which contains consistent values but its canonical lower bound ([—2, —2%]) is
inconsistent, so it is bisected into the intervals [—2T,0] and [0, 2]. The same process is done with
the lower interval, which is bisected again into the intervals [-27", —1] and [~1,0]. The lower
interval [—2+", —1] is bisected again, and the new lower interval is rejected since no solution is
found. The process continues until both the lower and the upper canonical intervals are consistent.
The lower bound of the consistent lower canonical interval and the upper bound of the consistent
upper canonical interval correspond to the bounds of the box consistent domain.

[-2,2]
[1 1
[-2*0] [0,2]
N : \ :
[-25-1] [-1,0]
[1 1 :
[-2%<1.5] [15,-1]
|
[1
[-1.5%-1.25] [-1.25,-1]
1 :
[1
[-1.5%-1.375] [-1.375,-1.25]
1 :
1 .
[-1}%375} [-1.4375,-1.375] '
|
[1
[-1.4375,-1.40625] [-1.40625,-1.375]

Figure 2.8 — Enforcing box consistency.

18 CHAPTER 2 — Solving Techniques

2.2.5 Variable and Value Ordering Heuristics

Search algorithms start the process by selecting a variable to enumerate or to bisect. The
order in which this choice is done is referred to as the variable ordering. Several experiments
have demonstrated that a correct ordering decision can be crucial to perform an effective solving
process. There exist several heuristics for selecting the variable ordering;:

— Fail-first: to select the variable with the smallest domain. This choice is motivated by the
assumption that a success can be achieved by first trying the variables that have a bigger
chance to fail, in this case, the values with a smaller number of available alternatives. This
heuristic is known to be more adapted to discrete domains.

— Most-constrained variable: this choice can be justified by the fact that the instantiation of
such a variable should lead to a bigger tree pruning through the constraint propagation.

— Reduce-first: to select the variable with the biggest domain. This heuristic is known to be
more adapted to continuous domains.

— Round-robin: to select the variables in some rational and equitable order, for instance from
the first variable defined in the model to the last one.

After selecting the variable to enumerate or bisect, the algorithms have to select a value
from the variable’s domain. This selection is called the value ordering and it can also have a
considerable impact. For example, if the right value is chosen on the first try for each variable,
a solution can be found without performing backtracks. However, if the CSP is inconsistent or
the whole set of solutions is required, the value ordering is irrelevant. The literature presents
different ways to perform this selection which, depending on the problem nature, may lead to a
more efficient constraint propagation [Apt03].

For instance, continuous domains are generally bisected, i.e. each interval is split to obtain
two size-equivalent intervals. It is also possible to enumerate a set of little intervals, whose size
corresponds to the precision of variables. The discrete domains are, in general, enumerated,
however it is also possible to bisect them as usually done in continuous domains. After the
enumeration, it is possible to choose the first value as well as the smallest, the median or the
maximal value. There also exist more complex value ordering heuristics which are in general either
based on estimating the number of solutions or estimating the probability of a solution [van06].

2.3 Summary

In this chapter we have presented the main techniques for solving CSPs. We have illustrated
basic search algorithms as well as more advanced procedures such as the ones involving constraint
propagation. Constraint propagation is a filtering mechanism capable of improving the efficiency
of search algorithms by enforcing a consistency property. Different kinds of consistency notions
exist, which can be applied depending on the nature of the CSP.

In the next chapter, we present a large list of languages and systems for modeling and solving
CSPs. Most of them embed in their internal solving engines the algorithms and techniques
presented in this chapter.

CHAPTER 3
Languages and Systems

anguages and systems for modeling and solving CSPs have been developed under different
% principles. As we have mentioned, the first system dates back from the 1960s, followed
by a large list where very different paradigms became involved. For instance, the use of logic
programming as the support for the CLP paradigm or the use of objects for the simulation of
problems under constraints. From an implementation point of view, different ways have been
proposed, for instance, using libraries upon a host programming language or building a new
programming language with support for constraints. The development of a pure modeling lan-
guage instead of a programming language is a more recent concern, the idea is to provide a
more “user-understandable” language. In the following paragraphs we give an overview of lan-
guages and systems for constraint satisfaction organized in six groups: CLP systems, libraries,
modeling languages, programming languages, mathematical programming systems, and object-
oriented languages. To give a general view of similarities and differences of such languages, at
each section’s end a model of the n-queens problem is introduced.

3.1 Constraint Logic Programming

Constraint Logic Programming is the paradigm that extends logic programming to support
constraint solving. This extension is known to be natural, as the declarativeness of logic pro-
gramming is suitable for stating constraints, and the built-in backtracking engine can be used to
simplify the implementation of search mechanisms. This idea was pioneered by Colmerauer, in
the development of Prolog IT [Col82]. Such an approach was then generalized in the CLP scheme
established by Jaffar and Lassez in [JL87]|. Then, many other systems including additional fea-
tures were developed, some examples are presented in the following.

Prolog III- 1V

Prolog III [Col90] is the successor version of the pioneering Prolog II system. This approach
was one of the first in replacing the logic programming unification mechanism by the more general
mechanism of constraint solving which, from a technical standpoint, is one of the basic principles

of CLP. The last version of this set of successors is called Prolog IV [Col96], a CLP system
designed to support constraints over different domains such as integers, reals and booleans.

CLP(R)

CLP(R) [JMSY92]| is another precursor CLP tool. It was defined as an instance of the CLP
scheme established by Jaffar and Lassez. The implementation was designed to support constraint

19

20 CHAPTER 3 — Languages and Systems

over reals by means of an algebraic built-in constraint solver able to deal with linear arithmetic
and non-linear constraints.

CHIP (Constraint Handling In Prolog)

CHIP [Van89] is also considered a pioneering CLP system together with the already pre-
sented CLP(R) and Prolog III systems. It was originally developed as an extension of Prolog,
being the first one in including global constraints. The current version, CHIP V5, is also avai-
lable as a C and C++ library. CHIP V5 includes several features such as support for different
kinds of constraints, interfaces to graphical components and relational databases. The system
also integrates Xpress-MP [24w] as its solver for linear programming.

ECL'PS®

ECL!PS® [WNS97] is a more recent CLP system. It provides a very wide range of features
for solving problems under constraints, including the most typical such as lists, arrays and re-
cords, support for sets, and control statements such as conditionals and for loops. ECL!PS®
also provides a set of libraries, for example, for handling continuous CSPs, for CHR (Constraint
Handling Rules) [Frii98] and for mathematical programming. Some of them can be combined to
solve problems by means of a hybrid style. The definition of customized search procedures and
variable and value orderings is also supported.

GNU Prolog

GNU Prolog is another system belonging to the CLP group [DC00]. GNU Prolog has been
designed to support finite domain CSPs, however it can be interfaced to handle CSP over reals.
It provides a large list of predefined Prolog predicates and constraints as well as support for
common constructs such as lists, sets, and conditionals. Optimization problems and ordering
heuristics are also supported. An interface has been included to call external routines written in

C.

SICStus Prolog

The SICStus Prolog system [COC97] is based on a solver platform for finite domains, conti-
nuous domains and CHR. The host language provides typical data structures such as lists and
arrays, and also more complex such as sets and Prolog-like objects. Support for conditional sta-
tements, optimization problems and variable ordering heuristics is available as well. It is also
worth mentioning that SICStus Prolog has one of the most efficient implementations of global
constraints. The system also provides multiple interfaces, for instance, for C, C++, .NET and
Java.

Mercury

Originally, Mercury [SHC96| was designed as a logic/functional programming language. Cur-
rently, as part of the G12 project [SGM105], it also provides support for CLP. An interesting

CHAPTER 3 — Languages and Systems 21

aspect of Mercury is that allows users to specify non-declarative code in a specific module. This
facility avoids to define interfaces with other programming languages which normally add an
overhead to the resolution process.

Example in ECL'PS¢

Figure 3.1 depicts an ECL'PS® model for the n-queens problem. The file is composed of a
call to a required library and a Prolog-like predicate called queens. This predicate is used to
state the problem, and its header owns two arguments, N and Board. The first argument holds
the quantity of queens and the second one is an array representing the row positions of the
queens on the chessboard. The size of this array is given by N (line 5) and the domain of its
variables is given by the interval 1..N (line 6). Between lines 8 and 14, two for loops ensure that
the constraints of the problem are applied over all the queens, param is used to define parame-
ters, i.e. the variables stated outside the loop scope that must remain constant across iterations.
Inside those loops, the three constraints of the problem are posted. The first constraint forbids
two queens placed in the same row (line 10), the second one avoids two queens placed in the
same South-West — North-East diagonal (line 11), and the third one avoids two queens in the
same North-West — South-East diagonal (line 12). The ‘#\=" symbol corresponds to the not equal
operator over integer expressions. At line 16, Board is converted to a list called Vars (due to the
labeling predicate cannot be used over arrays). At the end of the file, the solving process is
launched.

1. :- lib(ic).

2.

3. queens(N, Board) :-

4.

5. dim(Board, [N]1),

6. Board[1..N] :: 1..N,

7.

8. (for(I,1,N), param(Board,N) do
9. (for(J,I+1,N), param(Board,I) do
10. Board[I] #\= Board[J],

11. Board[I]+I #\= Board[J]+J,
12. Board[I]-I #\= Board[J]-J
13.)

14.),

15.

16. Board =.. [_|Vars],

17. labeling(Vars).

Figure 3.1 — An ECL!PS® model of the n-queens problem.

3.2 Libraries

Libraries provide a language for stating problems under constraints in the form of built-
ins embedded in a host programming language. These built-ins are generally implemented by
means of specific classes and methods, for instance, a given class is used to state variables and

22 CHAPTER 3 — Languages and Systems

methods define relations over them. This approach is a common way for implementing constraint
systems since there is no need to implement a new language. However, the user is forced to have a
background about the host language to use the library correctly, which is normally more complex
and verbose compared to a pure modeling language.

ILOG Solver

ILOG Solver [Pug94| is a constraint-based optimization engine written as a C+-+ library.
ILOG Solver provides a rich set of built-ins, for instance to support finite domain and floating-
point variables. The library also supports optimization problems, the specification of heuristic
orderings, and customized search procedures. Currently, the ILOG solver belongs to the ILOG
CP suite, which is distributed together with ILOG Scheduler (for scheduling problems) and with
ILOG Dispatcher (for vehicle routing problems).

Gecode & Gecode/J

Gecode [STO06] is another library written on top of C++. It has been designed to support
finite domain variables. The constraint set is very large involving different kinds of constraints,
over integer, boolean, and set variables. The Gecode system supports the definition of variable
and value orderings as well as the specification of customized search and branching strategies.
Gecode programs can be written in Java by using the Gecode/J interface.

Koalog

Koalog Solver [w#] is a Java library for constraint satisfaction and constraint optimization. It
supports finite domain constraints and finite set constraints. The specification of variable heuris-
tics is supported, and customized search mechanisms can be built by defining specialized solver
objects.

Choco

Choco [w@w| is a constraint programming solver written as a Java library. A large set of
constraints is provided to be applied over integer, real and set variables. Support for optimi-
zation problems is given, and the search process can be customized by selecting predefined or
user-defined variable and value ordering heuristics.

Example in Gecode/J

Figure 3.2 depicts a Gecode/J model for the n-queens problem. A Java class is used to state
the entire problem. Such a class is composed of several elements: package and import statements
(lines 1 to 4), a constructor (lines 9 to 25), a copy constructor required by the Gecode engine
(lines 27 to 30), a procedure to show the results (lines 32 to 40), and a main method (lines 42
to 50). The constructor of the class is used to state the constants, variables and constraints of
the problem. For instance, the constant holding the number of queens is defined at line 11 (it is
set to 8, at line 44 in the main method of the class), and the array representing the positions of

CHAPTER 3 — Languages and Systems 23

the queens is stated at line 12. This array is initialized with five parameters: the reserved word
this indicates the current class instance, n corresponds to the size of the array, IntVar.class
corresponds to the class of objects contained in the array, and finally ‘1,n’ defines the domain
of the array. The three constraints of the problem are stated between lines 16 and 21. They are
encapsulated in two forall loops and stated by means of the post method. Such a method defines
a constraint between two expression objects. The ‘new Expr().p(board.get(i))’ Gecode/J ex-
pression corresponds to the Board[i] expression in ECL‘PS®. The IRT_NQ parameter represents
to the not equal operator, and p and m represent the ‘4’ and ‘—’ operators, respectively. At line
24, the labeling process is determined by a call to the branch method. This method requires the
array to be processed, and the variable and value ordering heuristics.

At the end of the file, the main method sets several options, for instance, the size of the
problem (line 44) and the use of the Gecode/J graphical interface (line 45). The process is
launched by calling the doSearch method.

Another version for this problem can be stated by using a global constraint [vK06]. Figure 3.3
depicts this new model, where the three constraints of the problem has been replaced by calls to
the alldifferent global constraint.

Note

A global constraint can be seen as a constraint that encapsulates a set of other constraints.
For instance, the alldifferent(Xy,..., X;,) constraint specifies that the values assigned to the
variables X1, ..., X, must be pairwise distinct [Rég94]. This same constraint can be represented
as a set of single inequality constraints. A main advantage of global constraints is that they
can be associated to more powerful filtering algorithms since they can take into account the
simultaneous presence of single constraints to further reduce the domains of the variables.

In Gecode/J, the alldifferent constraint is represented by the distinct method. The board; #
board; constraint is stated as distinct (this, board) (line 22). The second and third constraint
(lines 23 and 24) are similar, but involve an array (pos and neg) which have been filled with
the necessary offsets (lines 14 to 20) to represent the board; + i # board; + j and the board; —
i # board; — j constraint, respectively. This model is probably less intuitive for understanding,
however it is more efficient since the filtering algorithm of the alldifferent constraint is able to
enforce the local consistency in a more effective way.

3.3 Modeling Languages

Modeling languages aim at simplifying the definition of constraint problems. They attempt to
move users away from complicated encoding concerns present in typical libraries or programming
languages. The core of the language is generally more comprehensible, as simpler syntax and
semantics are provided. In some approaches, the specification of search procedures is permitted,
but not mandatory.

Alice

Alice [Lau78] is also known as a precursor system in constraint programming. It dates back to
1978, as a result of the J.L.. Lauriere Ph.D. Thesis. In this approach, variables and constraints

24 CHAPTER 3 — Languages

and Systems

1. package examples;

2. import static org.gecode.Gecode.*;

3. import static org.gecode.GecodeEnumConstants.*;

4. import org.gecode.*;

5.

6. public class Queens extends Space {

7. public VarArray<IntVar> board;

8.

9. public Queens(Options opt) {

10. super () ;

11. int n = opt.size;

12. board = new VarArray<IntVar>(this, n, IntVar.class, 1, n);
13.

14. for(int i=0;i<=n-1;i++) {

15. for(int j=i+1l;j<=n-1;j++) {

16. post(this, new Expr().p(board.get(i)),IRT_NQ,
17. new Expr() .p(board.get(j)));

18. post(this, new Expr().p(board.get(i)).p(i),IRT_NQ,
19. new Expr().p(board.get(j)).p(j));
20. post(this, new Expr().p(board.get(i)).m(i),IRT_NQ,
21. new Expr().p(board.get(j)).m(j));
22. 1

23. }

24. branch(this, board, BVAR_SIZE_MIN, BVAL_MIN);
25. 1

26.

27. public Queens(Boolean share, Queens queens) {

28. super (share, queens);

29. board = new VarArray<IntVar>(this, share, queens.board);
30. }

31.

32. public String toString() {

33. int i;

34. String st = "";

35. for (i=0;i<board.size() ;i++){

36. if (board.get (i) .assigned())

37. st += board.get(i).val() + " ";

38. }

39. return st;

40. 1

41.

42. public static void main(String[]l args) {

43. Options opt = new Options();

44. opt.size = 8;

45. opt.gui = true;

46. opt.parse(args) ;

47 . opt.name = "Queens";

48. Queens queens = new Queens (opt);

49. opt.doSearch(queens) ;

50. ¥

51. }

Figure 3.2 — A Gecode/J model of the n-queens problem.

CHAPTER 3 — Languages and Systems

25

O 00 ~NO O WN =

NNNDNDNMNONNNDRRRERR B & 2 2 &2
00 ~NO U P WNHEH O WOWNOUd WNDE= O -

package examples;

import static org.gecode.Gecode.*;

import static org.gecode.GecodeEnumConstants.*;
import org.gecode.x*;

public class Queens extends Space {
public VarArray<IntVar> board;

public Queens(Options opt) {
super () ;
int n = opt.size;
board = new VarArray<IntVar>(this, n, IntVar.class, 1, n);

int pos[] = new int[n];
for (int i=0; i<n; i++)
posl[i]l = i;

int neg[] = new int[n];

for (int i=0; i<n; i++)
neg[i] = -1i;

distinct(this, board);

distinct(this, pos, board);

distinct (this, neg, board);

branch(this, board, BVAR_SIZE_MIN, BVAL_MIN);

Figure 3.3 — A Gecode/J model of the n-queens problem using global constraints.

26 CHAPTER 3 — Languages and Systems

are posted in a declarative style and the solutions are computed by an internal solving engine.
This engine involves a graph, which is responsible for managing the variables and domains as
well as the constraint propagation.

OPL

OPL [Van99] is a leading modeling language. Its syntax and semantics have been used as
the base of modern modeling languages. The whole OPL language is composed of many high-
level constructs, e.g. data structures such as arrays and records, finite domain variables, loops
and conditional statements, and a set of built-ins for resource allocation. Heuristics for defining
variable and value orderings are also supported. An interesting feature of OPL and perhaps its
main novelty, is that searching strategies can be specified using the same elegant way as the used
for stating the problem.

Zinc

Zinc [RGMWO0T7] is a recent modeling language belonging to the G12 project. The Zinc syn-
tax can be seen as an extension of OPL with support for user-defined predicates and functions.
Typical data structures, sets, control abstractions, and finite and continuous domains are provi-
ded. The platform is supported by a solver-independent architecture where Zinc models can be
mapped to three ECL'PS® models: a constraint programming model, a local search model, and
a mathematical programming model. An intermediate model called FlatZinc is also involved to
facilitate the translation from source to target models.

MiniZinc

MiniZinc [NSBT07] is a smaller version of Zinc where user-defined types, functions and some
coercions have been excluded. MiniZinc is also built upon a solver-independent architecture allo-
wing mappings from MiniZinc to ECL'PS® and Gecode. The mapping process is supported by a
term rewriting-based transformation system called Cadmium [BDPS08| which allows to specify
the translations from source to target models, a FlatZinc intermediate model is also used to
facilitate the translation.

Essence

Essence [FGJT07] is a language for specifying combinatorial problems. Its syntax can be seen
as a combination of natural language and discrete mathematics. Essence supports typical mo-
deling constructs and features for finite domain problems. Also, it provides the possibility of
defining nested types of arbitrary depths (e.g. a set of sets of sets) on which constraints can
operate. The architecture is solver-independent on which Essence models can be mapped either
to ECLPS® or Minion [GJMO06]. An intermediate OPL-like model called Essence’ is used to
facilitate the mapping chain. This model can be generated by means of the Conjure [FJMHMO05]
transformation system.

CHAPTER 3 — Languages and Systems 27

ESRA

ESRA [FPAO4] is another modeling language based on the OPL’s syntax. It has been designed
for finite domain problems and supports common modeling constructs such as enumerations and
arrays, and control abstractions such as forall loops. ESRA uses the notion of relation (e.g. in-

jection, bijection), which often allows to define more concise and shorter models compared to
OPL. ESRA models can be compiled into OPL and SICStus Prolog models.

NP-SPEC

NP-SPEC [CIPT00] is a logic-based language for the specification of problems belonging to the
complexity class NP. A NP-SPEC model is divided into two sections, one section holds the data
and the other the problem specification. The problem is mainly defined by means of Prolog-like
predicates, first-order constraints on finite domains, and rules. NP-SPEC models are translated
and then solved in the ECLPS® platform.

F

F [Hni03] extends OPL by introducing, among others, the notion of function problem, i.e.
problems where the objective is to find functions from a source set to a target set such that some
constraints are satisfied. In this architecture, F models are mapped to an intermediate language
called £ and then solved with ILP or CP techniques.

Rules2CP

Rules2CP is a new modeling language [FMO08]. The main idea behind this approach is to
combine the business rules knowledge representation paradigm with a CLP-based language. This
combination may motivate the use of the CP technology in a wider audience since the extensive
knowledge of business rules in the industry. Rules2CP models are compiled to SICStus Prolog
via rewriting rules.

Example in MiniZinc

A MiniZinc model for the n-queens problem is shown in Figure 3.4. This model is divided
into two files, a data file and a model file. The data file is used to assign values to the constants
of the model. For instance, the constant n is defined as an integer in the first line of the model
and set to 8 in the data file. The board array holding the positions of the queens is defined at line
2. It contains decision variables lying in the domain 1..n. The three constraints of the problem
are posted between lines 6 and 8, the ‘!=" symbol corresponds to the not equal operator and
/\ represents the ‘and’ logical operator. The two forall loops required to traverse the array are
embedded in just one forall. Finally, the solve satisfy statement is used to launch the solving
process.

28 CHAPTER 3 — Languages and Systems

Data File

1. n=8;

Model File

1. int: n;

2. array [1..n] of var 1..n: board;

3.

4. constraint

5. forall (i in 1..n, j in i+1..n) (

6. board[il '= board[j] /\
7. board[i] + i != board[j] + j /\
8. board[i] - i !'= board[j] - j;
9.)

10.

11. solve satisfy;

Figure 3.4 — A MiniZinc model of the n-queens problem.

3.4 Programming Languages

Many programming languages with support for constraint satisfaction have been developed,
some of them have been specifically written for constraint satisfaction (e.g., CoJava, Comet)
and others include support for constraints as an additional feature (e.g. Alma-0, OZ). In these
languages the encoding possibilities are larger than in pure modeling languages, not only a
declarative part is in general given, but also an imperative part. Thus, more freedom is given to
programmers, however the learning process for non-experts may be slower compared to a pure
modeling language.

Alma-0

Alma-0 [ABPS98| is an imperative programming language with support for declarative pro-
gramming. The language allows to define arrays, records, and control statements such as condi-
tionals and loops. The declarative part is devoted to problems involving search, being possible to
define first-order constraints and Prolog-like predicates. The Alma-0 architecture merges tech-
niques used to compile both imperative languages (RISC architecture) and logical languages
(WAM Machine) in order to execute optimized programs.

Oz

Oz [SSW94] is the language of the Mozart Programming System. Oz can be seen as a multi-
paradigm language since it supports several programming styles such as declarative and object-
oriented programming as well as concurrent and constraint programming. The constraint pro-
gramming component has been developed for sets and finite domain constraints. Support for
optimization problems is given and the definition of custom search strategies is permitted. Ano-
ther interesting feature of the platform is the Oz Explorer, a GUI (Graphical User Interface) for
the interactive exploration of search spaces.

CHAPTER 3 — Languages and Systems 29

Comet

Comet [MV02] is an object-oriented programming language for combinatorial optimization
problems. The COMET semantics supports typical data structures such as arrays and control
abstraction such as forall loops. A rich language is used to post constraints and to define search
strategies, which are defined in a style as elegant as in OPL. However, today Comet is a more
general approach compared to OPL since it includes not only a language and a CP solver, but
also a local search solver.

Minion

Minion [GJMO06] is a solver for finite domain constraint problems. It has been designed to
be interfaced with a modeling language such as Essence or OPL mainly since no syntactic sugar
for modelers is provided. The input format is based on matrix models that is, the CSP is repre-
sented by one or more matrices of decision variables on which constraints are applied, e.g. on the
rows, columns or planes. The solving engine supports optimization problems and different kinds
of constraints such as global and reified constraints. Support for ordering heuristics is also given.

CoJava

CoJava [BNOG6| is an extension of the Java programming language that provides support for
constraint optimization problems. The syntax of ColJava is identical to that of Java, and the
support for CSPs and optimization problems is implemented in the form of a specific class. This
class provides the necessary methods to define variables, domains, constraints and objective func-
tions. CoJava problems are compiled and transformed into a mathematical model to be solved
in AMLP.

Example in Alma-0

Figure 3.5 depicts an Alma-0 model for the n-queens problem. The constant giving the number
of queens is stated at the beginning of the file. A new type called board is declared at line 2.
Such a type defines the array representing the positions of the queens. The procedure to state
the model begins at line 3, its input parameter is an array called x of type board. Within this
procedure, the constraints of the problem are embedded in the required iteration loops.

3.5 Mathematical Programming

There exist several toolkits for mathematical programming. They mainly focus on solving op-
timization problems, their solving engines are based on mathematical programming procedures,
and some of them have been boosted with constraint satisfaction mechanisms (e.g. Numerica,
RealPaver). An important advantage of this field is that problems can be stated by means of a
standard language, facilitating problem sharing, writing and experimentations [Pug04].

30 CHAPTER 3 — Languages and Systems

1. CONST N = 8;
2. TYPE board = ARRAY[1..N] OF [1..N];
3. PROCEDURE Queens(Var x: board);
4. VAR i;
5. BEGIN
6. FOR i := 1 TO N DO
7. FOR j := i+1 TO N DO
8. x[1i] <> x[j1;
9. x[i] + i <> x[j] + j;
10. x[i] - i <> x[j] - j;
11. END;
12. END
13. END Queens;
Figure 3.5 — An Alma-0 model of the n-queens problem.
AMPL

AMPL [FGK90] is a modeling language for mathematical programming. It supports linear
and nonlinear optimization problems involving discrete or continuous variables. The language
provides separation of model and data, data structures, and control abstractions such as loops
and conditionals. The platform can be interfaced with a large list of solvers, e.g. CPLEX [u§],
MINOS [yi], Xpress-MP [24w] and SNOPT [2gi]. AMPL can also be linked to problem analysis
tools such as MProbe [i#6w] to identify the shape of functions. This information can be useful for
modeling or for selecting an appropriate solving tool.

GAMS

GAMS [BKM92]| is another modeling language for mathematical programming. As AMPL,
GAMS is supported by a compiler and a large set of underlying solvers, some of them are MO-
SEK [wéw], LINGO [w8u], Xpress-MP and CPLEX. The core of the syntax supports typical
mathematical programming modeling constructs, e.g. arrays, sets and control features such as
loops and conditionals. Several contributions have been developed to complement the GAMS
platform, for instance an interface with MATLAB [w#] and tools for analyzing models and the
given solutions.

Numerica

Numerica [VMD97] is a modeling language for global optimization based upon common ma-
thematical notation, like AMPL and GAMS. An interesting feature of Numerica is related to its
solving engine, it combines numerical analysis with consistency techniques for an efficient solving
process. The use of intervals leads to another important aspect: the correctness of its computed
results, i.e. no wrong solutions are produced in Numerica (modulo hardware or software errors).

RealPaver

RealPaver [GBO06] is a constraint satisfaction system for modeling and solving linear and non-
linear systems. As in Numerica, the reliability of solutions is guaranteed by the use of intervals.

CHAPTER 3 — Languages and Systems 31

The modeling language is closer to AMPL, providing support for discrete and continuous va-
riables, data structures such as arrays, and mathematical notation for posting constraints. The
hull and the box consistency techniques can be used to tune the performance of search processes.

Example in AMPL

An AMPL model for the n-queens problem is depicted in Figure 3.6. The problem is mo-
deled using the integer programming formulation, which is more appropriate for mathematical
programming tools. Here, the chessboard is represented as a matrix containing binary variables
(line 6). The size of the board is given by the sets stated at lines 3 and 4. In this formulation, four
constraints are needed. The first constraint called column_attack avoids two queens sharing the
same column. The sum function performs an addition of the column values of the matrix board.
The row_attack constraint avoids two queens sharing the same row, and the last two constraints
check the diagonals of the chessboard.

1. param n := 8;

2.

3. set ROWS := {1..n};

4. set COLUMNS := {1..n};

5.

6. var board {ROWS,COLUMNS} binary;

7.

8. column_attacks {j in COLUMNS}:

9. sum {i in ROWS} board[i,j] = 1;

10.

11. row_attacks {i in ROWS}:

12. sum {j in COLUMNS} board[i,j] = 1;

13.

14. diagonall_attacks {k in 3..2%t-1}:

15. sum {i in ROWS, j in COLUMNS: i+j=k} board[i,j] <= 1;
16.

17. diagonal2_attacks {k in -(n-2)..(n-2)}:

18. sum {i in ROWS, j in COLUMNS: i-j=k} board[i,j] <= 1;

Figure 3.6 — An AMPL model of the n-queens problem.

3.6 Object-oriented languages

An object-oriented language can also be merged with constraints in the form of constrained
objects. In other words, a constrained object is an instance of a class that encapsulates the
variables and constraints of a problem (or of a sub-problem). This approach is useful for modeling
problems whose structure can be organized in many parts, as each one of these parts can be
represented by a class. It is said that the benefits given by this combination are closer to those
gained by writing software in an object-oriented language, e.g. encapsulation (of variables and
constraints), modularity, reuse, etc. From the beginnings of constraint satisfaction, objects have
been mixed with constraints through different ways.

32 CHAPTER 3 — Languages and Systems

Sketchpad

Sketchpad [Sut63] is considered a main contribution to the computer science field, not only
in constraint satisfaction systems, but also in computer-aided drafting and object-oriented pro-
gramming. Sketchpad was the first system in using a complete graphical user interface where
the notion of objects and constraints was present. The system allowed the user to state master
drawings (which can be regarded as a primitive form of a class) which could be instantiated to
generate duplicates (objects), so if the master drawing changed, all the instances would change
too. Constraints could be applied on drawings, for instance to fix the length of a line of the angle
between two lines.

ThingLab

ThingLab [Bor81] was a direct successor of Sketchpad. The main idea behind ThingLab was
to define a computer-based environment for constructing interactive graphic simulations, i.e. the
simulation of an electrical circuit or a mechanical linkage. ThingLab allowed to perform these
simulations by stating objects subject to constraints in a graphical user interface. Compared to
Sketchpad, the major innovations were the support for multiple inheritance and the definition of
local procedures for satisfying the constraints.

Gianna

Gianna [Pal95] is a visual modeling environment where the object-oriented concepts have
been merged with the notion of constraint graph. A Gianna model is a graph formed by the
association of several graphical components, each one representing an object-oriented entity.
The associations define constraints as well as relations between the entities. For instance an
association between classes is a class relation, and an association between objects is an object
relation. An association between class attributes is a class constraint, and an object constraint
is determined by an association of object attributes.

COB

COB [JT02] is a more recent language for constrained objects. It has been designed for mode-
ling problems under constraints mainly from the engineering field. The language allows one to
encapsulate the variables and the constraint of the problem as well as CLP predicates to define
modular models. A graphical interface for COB exists, allowing users to design engineering pro-
blems using class diagrams. This graphical model is transformed into COB code, which is then
compiled to a CLP solving engine.

Hinrichs et al. Approach

In [HLP*04|, Hinrichs et al. present an object-oriented language involving constraint seman-
tics devoted to automated constrained configurations. The approach can be seen as an extension

CHAPTER 3 — Languages and Systems 33

of the Common Information Model [#gw] (a common language for representing resource confi-
guration in the industry) with an embedded language for posting first-order formulas as the
constraints of the problem. The constructs supported by the language are limited to the automa-
ted configuration domain, and an internal theorem prover based solver performs the resolution
phase.

SysML

SysML [@qw] is an extension of the UML, defined for modeling systems from the enginee-
ring field. As main novelty with respect to UML, SysML incorporates two new diagrams: the
requirement diagram and the parametric diagram. The first diagram allows one to handle the
requirements of the system and the second one permits modeling mathematical equations as
constraints on the properties of such systems, for instance on their reliability or their perfor-
mance. SysML models can be exported in XMI files and then pre-processed by an intermediate
component called XaiTools. This tool is able to generate executable models to be launched in
Mathematica [wsw] or in the Ansys [w$w] analysis tool.

s-COMMA

s-COMMA is an object-oriented modeling language for CP problems. The core of the language
supports several modeling constructs, such as arrays, enumerations, finite and continuous do-
main variables and sets. Control abstractions such as loops and conditionals as well as global
constraints and optimization statements are also supported. A specific simple formalism has been
included to define variable and value orderings as well as the consistency levels for constraints.
Additionally, an interesting extension mechanism allows the integration of new solver procedures.
The whole system is supported by a solver-independent architecture where models can be map-
ped to many solvers (Gecode/J, ECLPS®, GNU Prolog and RealPaver). The integration of new
solvers is possible by means of standard model transformation mechanisms. The platform also
offers the s-=COMMA GUI, which allows users to state problems using an extension of the UML class
diagram.

Example in ss=COMMA

Figure 3.7 depicts a ss=COMMA model for the n-queens problem. Model from data indepen-
dence is provided in s-COMMA. The data file is used to define and to assign values to constants
(e.g. n:=8). In the model file, the problem is stated through classes. For this problem, just one
main class called Queens is declared. Inside this class, the board array is defined, it contains n de-
cision variables with domain [1,n]. Between lines 5 and 10, a constraint zone called noAttack is
stated. Constraint zones are used to group constrains and statements. In the noAttack constraint
zone, the two required forall loops have been embedded in one forall declaration. Within this
loop the three constraints of the problem are posted.

34 CHAPTER 3 — Languages and Systems

Data File

1. n:=8;

Model File

1. main class Queens {

2.

3. int board[n] in [1,n];

4.

5. constraint noAttack {

6. forall(i in 1..n, j in i+l..n) {
7. board[i] <> board[jl;
8. board[i]l+i <> board[jl+j;

== e ©
N = O -

board[i]-i <> board[jl-j;

}
}

“

Figure 3.7 — A s-COMMA model of the n-queens problem.

3.7 Comparing s-COMMA with related approaches

In this section, we give a more precise comparison between s-=COMMA and its related ap-
proaches. We select the closest systems and we compare their features to give a more clear vision
of how s-=COMMA is positioned. In Table 3.1, ss=COMMA is contrasted with five approaches conside-
ring six important features.

Table 3.1 — Comparing s-COMMA with five approaches. The meaning of each row is as follows.
Object-Orientation: the language provides object-oriented capabilities. GUI: the system offers a
graphical interface. Solver-Independence: the architecture is able to perform the problem resolu-
tion through different solvers. Mapping tool: the system provides a framework to add new solvers
to the platform. Extensibility: the language can be extended for instance to support new global
constraints or functions. Solving Options: the definition of heuristics orderings and consistency

levels of constraints are allowed.

| | Gianna COB | Essence Zinc MiniZinc | s-COMMA |

Object-Orientation vV V - - - V

GUI Vi N - _ N v
Solver-Independence - - v v V V
Mapping - - Hand-Written TR+CHR TR+CHR | Model-Driven
Tool

Extensibility - - - - N v
Solving Options - - - - V V

CHAPTER 3 — Languages and Systems 35

Gianna and COB are the first systems included in the comparison. They belong to the
same group as s-=COMMA sharing some features such as object-oriented capabilities! and graphical
interfaces. However, as opposed to s=COMMA, their modeling styles are not purely object-oriented.
The COB language merges objects with CLP predicates and Gianna combines objects with
constraints graphs. Additionally, they lack of solver-independence, a mapping-tool, extensibility,
and the possibility of defining solving options.

Zinc, MiniZinc and Essence are the state-of-the-art systems and they are supported by a
solver-independent architecture. The Essence execution platform allows to map specifications
into ECL’PS® and Minion solver. A model transformation system called Conjure is involved, but
the integration of solver translators is not its scope. Translators from Essence’ to solver code are
written by hand. Zinc and MiniZinc can be mapped to the underlying solver layer via Cadmium,
a transformation system based on Term-Rewriting (TR) [BN98| and Constraint Handling Rules
(CHR) [Frii98]. s-COMMA is also built upon a solver-independent architecture, where models can
be mapped to different solvers by means of model-driven translators.

Model-driven translators offer important advantages. The tools for implementing them are
widely supported by the model engineering community. A considerable amount of documentation
and several implementation examples are available at the Eclipse IDE site [w@w]|. Tools such as
Eclipse plug-ins are also available for developing and debugging applications. It is not less impor-
tant to mention that ATL [KvJO07]| (the language used for defining the model transformations)
is considered a standard solution for model transformation in Eclipse. We believe this is a key
issue to motivate and facilitate the addition of new solvers to the platform. Another important
advantage is the separation of model and syntax concerns (we illustrate this in Section 5.3.2).
This independence allows one to define clear and concise transformation rules, which are the
base of our mapping tool.

From a language standpoint, s-COMMA is as expressive as MiniZinc and Essence, in fact these
approaches provide similar constructs and modeling features. However, additional important
features of s-COMMA remarkably differences it from those languages, for instance, the object-
oriented modeling style, the extensibility mechanisms, and the possibility of modeling problems
using a visual language.

3.8 Summary

In this chapter, we have presented a large list of constraint satisfaction systems. We have
classified these systems in six groups: CLP systems, libraries, modeling languages, programming
languages, mathematical programming systems, and object-oriented modeling languages inclu-
ding support for constraints. Several differences arise among these different approaches. The CLP
paradigm extends logic programming by adding support for constraint solving. Libraries are built
upon a host programming language, which provides its full semantics to the user. However, it is
mandatory to master this language to successfully use the library. Programming languages have
a larger expressiveness as well, they commonly provide a declarative and an imperative part to
state models. The use of a modeling language is generally easier compared with a library or a
programming language. Modeling languages provide a more understandable language, in which

Tt is important to clarify that object-oriented capabilities are also provided by languages such as CoJava, and
in libraries such as Gecode or ILOG SOLVER. The main difference here is that the host language provided is
a programming language but not a high-level modeling language. As we have explained, advanced programming
skills may be required to deal with these tools.

36 CHAPTER 3 — Languages and Systems

complex encoding concerns are in general absent. Mathematical programming tools target opti-
mization problems. Their core is supported by mathematical programming solving techniques and
some of them include constraint satisfaction mechanisms. Finally, an object-oriented language
can also be combined with constraints. The idea is to involve the benefits of object-orientation
in a constraint satisfaction context.

At the end of the chapter, we have compared s-COMMA with five constraint satisfaction sys-
tems. We have shown how it is positionned with respect to its closest approaches through six
features: object-orientation, GUI, solver-independence, mapping tool, extensibility and solving
process customization. In the following chapter we present all these features in detail, we start
by a giving an overview of the s-COMMA language to finish with a presentation of the s-=COMMA
GUI.

PART 11

The s-COMMA platform

CHAPTER4

Modeling Language &
Graphical Artifacts

s-=COMMA is a new language for modeling CP problems. Such a language can be seen as a
fusion of a high-level object-oriented language with a constraint language. This fusion has been
complemented with useful features such as: solver-independence, extensibility, and a mechanism
to customize the solving process.

The combination of these features provides interesting advantages. Users can model problems
using a high-level modeling language. The object-oriented style provided can be used to organize
problems in sub-problems to be captured in single classes. The extensibility mechanism allows
one to extend the expressiveness of s-COMMA i.e., new functionalities can be added to the base
language. A simple mechanism to tune models can be used to customize the solving process.
A graphical user interface is also included in the platform. Visual models can be stated in the
s-=COMMA GUI by means of UML-based class diagram artifacts.

In this chapter we describe the various features of the ss=COMMA language and the trade-offs
we faced in its design. We begin by giving a tour of the ssCOMMA language over six well-known
CP problems. The tour is followed by a presentation of every modeling construct presented in
the language. Then, the formalism to customize the solving process is introduced, followed by
the extensibility mechanisms. At the end of the chapter, we illustrate the s-COMMA GUI and its
main drawing and modeling components.

4.1 A Tour of the ss-COMMA language

Let us begin the tour of the s-COMMA language by using the famous SEND + MORE =
MONFEY cryptarithmetic puzzle. The idea is to find distinct digits for the letters S, E, N, D,
M, O, R, Y such that the equation SEND + MORE = MONUFEY is satisfied.

4.1.1 The SEND + MORE = MONEY Problem

Figure 4.1 depicts the corresponding s-COMMA model for this problem. A main class called
Send is used to state the whole model. Within this class, we identify s,e,n,d,m,o0,r,y as the
variables of the problem. Since these variables represent digits, their domains are given by the
integer type. The integer domain [0,9] is used for the variables e,n,d,o0,r,y and the integer
domain [1,9] for variables s and m. These variables represent leading digits of the sum, being
unable to take 0 as value. At line 6, a constraint zone called equality is stated to post the
constraints of the problem.

39

40 CHAPTER 4 — Modeling Language & Graphical Artifacts

main class Send {

int e,n,d,o,r,y in [0,9];
int s,m in [1,9];

constraint equality {
1000*%s + 100*%e + 10*n + d
+ 1000*m + 100*%0 + 10*r + e
= 10000*m + 1000%0 + 100*n + 10%*e + y;
alldifferent();
}

00 ~NO O WD -

== = O
N = O -
[

Figure 4.1 — A s-=COMMA model of the cryptarithmetic puzzle SEND + MORE = MONEY .

Remark

Constraint zones have been designed to group constraints under a descriptive name and to offer
the possibility of overriding constraints in an inheritance context (see Section 4.2.5). Such a
construct is another innovation of s-COMMA.

Between lines 7 and 9, the equation of the problem is represented as an equality constraint.
Finally, the alldifferent global constraint is posted to define that all the variables involved in
the problem must take different values.

4.1.2 The Packing Squares Problem

Let us continue the tour by presenting the packing square problem. This problem consists
in completely covering a square base with a given set of squares, possibly having different sizes,
with no overlappings among them.

A s-COMMA model for this problem is shown in Figure 4.2. Three constants are defined for
this problem, which are imported from the data file PackingSquares.dat. The side size of the
square base is given by sideSize, squares corresponds to the quantity of squares, and the array
size contains their sizes.

Remark

In s-COMMA the data can be provided independently from the model file. This feature permits
reusing models for different instances without change.

In the model file, two integer arrays of variables are defined to represent respectively the x and
y coordinates of the square base. For example, x[2]=1 and y[2]=1 means that the second square
must be placed in row 1 and column 1, indeed in the upper left corner of the square base. Both
arrays are constrained, the decision variables must have values into the domain [1,sideSize].

CHAPTER 4 — Modeling Language & Graphical Artifacts

41

Data File

1. int sideSize:=5;
. int squares:=8;
3. int size:=[3,2,2,2,1,1,1,1];

Model File

1. import PackingSquares.dat;

2.

3. class PackingSquares {

4.

5. int x[squares] in [1,sideSize];

6. int y[squares] in [1,sideSize];

7.

8. constraint inside {

9. forall(i in 1..squares) {

10. x[i] <= sideSize - sizel[i] + 1;
11. y[i] <= sideSize - size[i] + 1;
12. }

13. }

14.

15. constraint noOverlap {

16. forall(i in 1..squares, j in i+l..squares) {
17. x[i] + size[i] <= x[j] or

18. x[j1 + size[j] <= x[i] or

19. y[i]l + size[i] <= y[j] or

20. y[3]1 + sizeljl <= ylil;

21. }

22. }

23.

24. constraint fitBase {

25. (sum(i in 1..squares) (sizel[i]~2)) = sideSize~2;
26. }

27. '}

Figure 4.2 — A s-=COMMA model of the packing squares problem.

42 CHAPTER 4 — Modeling Language & Graphical Artifacts

At line 8, a constraint zone called inside is declared. In this constraint zone, a forall
loop contains the necessary constraints to ensure that each square is placed inside the base, one
constraint acts over rows and the other one over the columns.

Remark

Loops have been designed to be used with loop variables (i and j in the example). A loop
variable is valid only within the scope of its corresponding loop, and to simplify the model, no
type is needed to declare it.

At line 15, the noOverlap constraint zone ensures that no overlapping occurs in the placement.
Finally, the constraint zone called fitBase ensures the whole coverage of the square base. The
sum loop is used to perform the addition of the areas of the square set.

Figure 4.3 depicts an analogous version of this model. An additional class called Square has
been integrated to model the squares (line 3). This class contains the squares’ attributes such as
the x and y coordinates, and the size.

The data file of this model version is similar, the side size of the base and the quantity of
squares have been defined. The third element of the data file corresponds to a variable assignment
for the array s defined in the PackingSquare class at line 11. Variable assignments allow us
to assign values to class attributes. The elements enclosed by ‘{}’ symbols represent objects
containing values for their attributes. In the example, a set of values is assigned to the third
attribute of each Square object contained by s. The assignments are performed by respecting
the order of arrays and class’ attributes. For instance, the value 3 is assigned to the size attribute
of the first object of the array. The value 2 is assigned to the size attribute of the second, third
and fourth object of the array. The value 1 is assigned to the size attribute of remaining objects.
The ¢’ symbol is used to omit assignments.

Remark

Variable assignments have been designed to perform direct assignments of values to decision
variables. This feature offers the following benefits: (1) The definition of constructors! for each
class is not necessary. (2) Calling a constructor each time an object is stated is not required. If
we need to perform an assignment we do it directly in the data file. (3) The omission of these
statements allows one to obtain a cleaner class definition. s-=COMMA is unique in providing such
a feature.

The main class of the problem is stated at line 9. This class is composed of an array and
three constraint zones. The array contains the Square objects, and the constraint zones play the
same role as in the previous packing squares model. Let us note that access to object attributes
is achieved by using standard modeling notation, e.g. s[2].x corresponds to accessing the x
attribute of the second object of the array called s.

LA constructor is a special function used to set up the class attributes with values. It is used in most of
object-oriented programming languages.

CHAPTER 4 — Modeling Language & Graphical Artifacts

43

Data File

1. int sideSize := 5;

2. int squares := 8;

3. Square PackingSquares.s := [{_,_,3},{_,_,2},{_,_,2},{_,_,2},

{—’—’1}’{—’—’1}){—’—’1}’{—’—’1}];

Model File

1. import PackingSquares.dat;

2.

3. class Square {

4, int x in [1,sideSizel;

5. int y in [1,sideSize];

6. int size;

7. '}

8.

9. main class PackingSquares {

10.

11. Square s[squares];

12.

13. constraint inside {

14. forall(i in 1..squares){

15. s[i].x <= sideSize - s[i].size + 1;
16. s[i].y <= sideSize - s[i].size + 1;
17. }

18. }

19.

20. constraint noOverlap {

21. forall(i in 1..squares, j in i+l..squares)q{
22. s[i].x + s[i].size <= s[j]l.x or

23. s[jl.x + s[j]l.size <= s[i].x or

24. s[il.y + s[i].size <= s[jl.y or

25. s[jl.y + s[jl.size <= s[i].y;

26. }

27. }

28.

29. constraint fitBase {

30. (sum(i in 1..squares) (s[i].size"2)) = sideSize"2;
31. }

32. }

Figure 4.3 — An object-oriented s-COMMA model of the packing squares problem.

44 CHAPTER 4 — Modeling Language & Graphical Artifacts

Remark

In this example, the representation is more natural since each square is independently handled
as an object. The object-oriented style used here permit us to obtain a more modular model in
which the structure of the problem has been captured in a single class composition.

4.1.3 The Stable Marriage Problem

The third problem of the tour is the stable marriage problem. Such a problem considers a
group of n women and a group of n men who must marry. Each woman has a preference ranking
for her possible husband, and each man has a preference ranking for his possible wife. The aim
is to find a matching between groups such that the marriages are stable, i.e. there is no pair of
people of opposite sex that like each other better than their respective spouses.

The data file of this problem is depicted in Figure 4.4. Two enumerations and two variable
assignments can be identified. The menList enumeration holds the names of men and womenList
holds the names of women. The StableMarriage.man variable assignment provides values for
the man array defined at line 15 in the model file (see Figure 4.5). This variable assignment is
composed of 5 objects, one for each man of the group. Each of these objects has two elements,
the first element is an array (enclosed by ‘[1) and the second one is the ¢’ symbol. The first
element sets the preferences of men, assigning the values to the rank array of Man objects (e.g.
Richard prefers Tracy 1st, Linda 2nd, Wanda 3rd, etc).

Data File

1. enum menlList := {Richard,James,John,Hugh,Greg};

2. enum womenList := {Helen,Tracy,Linda,Sally,Wanda};

3. Man StableMarriage.man :=

4. [Richard: {[Helen:5 ,Tracy:1, Linda:2, Sally:4, Wanda:3],_},
5. James : {[Helen:4 ,Tracy:1, Linda:3, Sally:2, Wanda:5],_},
6. John : {[Helen:5 ,Tracy:3, Linda:2, Sally:4, Wanda:1],_},
7. Hugh : {[Helen:1 ,Tracy:5, Linda:4, Sally:3, Wanda:2],_},
8. Greg : {[Helen:4 ,Tracy:3, Linda:2, Sally:1, Wanda:5],_1}1;
9.

10. Woman StableMarriage.woman :=

11. [Helen: {[Richard:1, James:2, John:4, Hugh:3, Greg:5],_},
12. Tracy: {[Richard:3, James:5, John:1, Hugh:2, Greg:4],_},
13. Linda: {[Richard:5, James:4, John:2, Hugh:1, Greg:31,_},
14. Sally: {[Richard:1, James:3, John:5, Hugh:4, Greg:2],_},
15. Wanda: {[Richard:4, James:2, John:3, Hugh:5, Greg:1],_}1;

Figure 4.4 — Data file of the stable marriage problem.

The model file is stated through three classes, a class to represent men, a class to represent
women and a main class to describe the stable marriages. The class representing men is composed
of two attributes, the first one represents the preferences of a man, while the second one represents
its wife. The rank array is indexed by the enumeration type womenList (line 2 of the data file),
meaning that the 1st index of the array is Helen, the 2nd is Tracy, the 3rd is Linda and so on.
The wife attribute is typed with an enumeration, therefore its domain is given by the values of
that enumeration ({Helen,Tracy,Linda,Sally, Wanda}). The definition of the Women class is
analogous.

CHAPTER 4 — Modeling Language & Graphical Artifacts

Model File

1 import StableMarriage.dat;

2

3 class Man {

4, int rank[womenList];

5. womenList wife;

6 }

7

8 class Woman {

9. int rank[menList];

10. menList husband;

11. %

12.

13. main class StableMarriage {

14.

15. Man man[menList];

16. Woman woman[womenList];

17.

18. constraint matchHusbandWife {

19. forall(m in menList)

20. woman [man [m] .wife] .husband = m;

21.

22. forall(w in womenList)

23. man [woman [w] .husband] .wife = w;

24. }

25.

26. constraint forbidUnstableCouples {

27. forall(m in menlList, w in womenList){

28. man[m] .rank[w] < man[m].rank[man[m].wife] ->
29. woman [w] . rank [woman [w] .husband] < woman[w].rank[m];
30.

31. woman [w] .rank[m] < woman[w].rank[woman[w].husband] ->
32. man [m] .rank [man[m] .wife] < man[m].rank[w];
33. }

34. }

35. %}

Figure 4.5 — A s-=COMMA model of the stable marriage problem.

46 CHAPTER 4 — Modeling Language & Graphical Artifacts

The main class of the problem is stated at line 13. This class is composed of two arrays and
two constraint zones. The first array models the group of men and the second one the group
of women. The constraint zone called matchHusbandWife includes two forall loops, each one
including a constraint. These constraints are satisfied whether the pairs man-wife match with the
pairs woman-husband. The forbidUnstableCouples constraint zone contains two loops holding
two logical formulas to guarantee that marriages are stable.

Remark

Enumerations have been designed for multiple usages. For instance, as type for decision va-
riables (e.g. womenList wife), as the set of values to be traversed by a loop (e.g. forall(m in
menList)) and for defining the size of arrays (e.g. Man man[menList]).

4.1.4 The Social Golfers Problem

The fourth problem of this overview corresponds to the Social Golfers Problem. This problem
considers a group of n social golfers which play golf once a week, and always in groups of size
g- The goal is to arrange a schedule for these players for w weeks, such that no two golfers play
together more than once.

Figure 4.6 depicts the data file of this problem. It consists of one enumeration and three
constants. The enumeration contains the name of the golfers and the constants hold the size of
groups, the number of weeks, and the quantity of groups playing per week.

Data File

1. enum name := {a,b,c,d,e,f,g,h,i};
2. int s := 3; //size of groups

3. int w := 4; //number of weeks

4. int g := 3; //groups per week

Figure 4.6 — Data file of the social golfers problem.

The model file is divided into three classes (see Figure 4.7). One to model the groups, one to
model the weeks and a main class to arrange the schedule of the social golfers. The Group class
owns the players attribute corresponding to a set of golfers playing together, each golfer being
identified by a name given in the enumeration from the data file. In this class, the constraint zone
groupSize restricts the size of the golfers group. The Week class has an array of Group objects
and the constraint zone playOncePerWeek ensures that each golfer takes part of a unique group
per week. Finally, the SocialGolfers class has an array of Week objects and the constraint zone
differentGroups states that each golfer never plays two times with the same golfer throughout
the considered weeks.

CHAPTER 4 — Modeling Language & Graphical Artifacts

47

Model File

import SocialGolfers.dat;

1

2

3 class Group {

4. name set players;

5. constraint groupSize {
6 card(players) = s;
7

8

9

}

10. class Week {

11. Group groupSched[g];

12. constraint playOncePerWeek {

13. forall(gl in 1..g, g2 in gl+l..g)

14. card(groupSched[gl] .players intersect

15. groupSched [g2] .players)= 0;

16. }

7. '}

18.

19. main class SocialGolfers {

20.

21. Week weekSched[w];

22.

23. constraint differentGroups {

24. forall(wl in 1..w, w2 in wi+l..w)

25. forall(gl in 1..g, g2 in 1..g)

26. card (weekSched [w1] .groupSched[gl] .players intersect
27. weekSched [w2] . groupSched[g2] .players) <= 1;
28. }

29. }

Figure 4.7 — Model file of the social golfers problem.

48 CHAPTER 4 — Modeling Language & Graphical Artifacts

4.1.5 The Production Problem

The fifth problem of the tour corresponds to an optimization problem. This problem considers
a factory that must satisfy a determined demand of products. These products can be either ma-
nufactured inside the factory or purchased from an external market. The aim is to determine the
quantity of products that must be produced inside the factory and the quantity to be purchased
in order to minimize the total cost.

Model File

1. import Production.dat;

2.

3. class Product {

4, int demand;

5. int insideCost;

6. int outsideCost;

7. int consumption[resourcelList];

8. int inside in [0,5000];

9. int outside in [0,5000];

10. }

11.

12. main class Factory {

13.

14. int capacity[resourceList];

15. Product productSet[productList];

16.

17. constraint noExceedCapacity {

18. forall(r in resourceList)

19. capacity[r] >= sum(p in productList)

20. (productSet [p].consumption[r] *
21. productSet [p].inside);

22. }

23.

24. constraint satisfyDemand {

25. forall(p in productList)

26. productSet[p].inside + productSet[pl.outside >= productSet[p].demand;
27. }

28.

29. constraint minimizeCost {

30. [minimize] sum(p in productList)

31. (productSet[p] .insideCost * productSet[p].inside +
32. productSet [p] .outsideCost * productSet[pl.outside);
33. }

34. }

Figure 4.8 — A s-=COMMA model of the production problem.

Figure 4.8 shows a s-COMMA model for this problem. The model is represented by two classes.
The first one models the products while the second one models the factory. Within the Product
class, several attributes are defined: the demand, the inside and the outside cost, the consumption,
and the quantity that must be produced inside and outside the factory. The main class of the
problem is stated at line 12. Two arrays are defined, the first one contains the amount of resources
available for manufacturing the products and the second one contains the set of products. At line

CHAPTER 4 — Modeling Language & Graphical Artifacts 49

17, a constraint zone called noExceedCapacity is stated to ensure that the resources consumed
by the products manufactured inside do not exceed the total quantity of available resources. At
line 24, a constraint zone is defined to satisfy the demand of all the products. Finally, at line
30, an optimization statement is posted to determine the quantity of products that must be
produced inside the factory and the quantity to be purchased in order to minimize the total cost.

Data File

1. enum resourcelList := {flour, eggs};

2. enum productList := {kluski, capellini, fettucine};

3. int Factory.capacity := [200,400];

4, Product Factory.productSet := [kluski:{1000,6,8,[flour:5,eggs:2],_,_},

capellini:{2000,2,9, [flour:4,eggs:4],_,_},
fettucine:{3000,3,4, [flour:3,eggs:6],_,_}]1;

Figure 4.9 — Data file of the production problem.

The data file of this problem is shown in Figure 4.9. It is composed of two enumerations and
two variable assignments. The name of resources and products are held by the enumerations.
The first variable assignment sets 200 as the flour capacity and 400 as the eggs capacity. The
Factory.productSet variable assignment defines values for three products. Several values are
set to those products. For instance, 1000 corresponds to the demand of the kluski, its inside
cost is 6 and its outside cost is 8, finally, its manufacture requires 5 flour items and 2 egg units.

4.1.6 The Engine Problem

Let us finish the tour by presenting an academic problem from the engineering field. Consider
the task of configuring a car engine subject to design constraints. The composition of the engine
is depicted in Figure 4.10 using UML class diagram notation. Such a figure shows that the engine
is the root of the system, it is built from a crankcase, a cylinder system, a block and a cylinder
head at the second level. The cylinder system is a subsystem made of a valve system, an injection
and a piston system. Both valve and piston systems have their own composition rules.

[[[|
[Crankcase] [Cylinder System] [Block] [Cylinder Head]
[[|
[Valve System] [Injection] [Piston System]

[| [[|
[Valve] [Camshaft] [Connecting Rod] [Piston] [Crankshaft

Figure 4.10 — The Engine Problem.

Figure 4.11 depicts the data file and the main class of the model. The attributes cCase,
cSyst, block and cHead represent the subsystems of the engine. The last attribute defines its

50 CHAPTER 4 — Modeling Language & Graphical Artifacts

volume and dim encapsulates a constraint between that attribute and the volume attribute of
the cCase object.

Data File

1. enum size := {small,medium,large};
2. enum flow := {direct,indirect};
Model File

1. main class Engine {

2. CrankCase cCase;

3. CylSystem cSyst;

4. Block block;

5. CylHead cHead;

6. int volume;

7. constraint dim {

8. volume > cCase.volume;

9 }

[y
o -
()

Figure 4.11 — A s-COMMA model of the engine problem.

The CylSystem class is depicted in Figure 4.12. It has two integer variables, and three subsys-
tems denoted by inj, vSyst, and pSyst. Its constraint zone encapsulates a conditional constraint.
This constraint states that 6-cylinder-engines have to be a distance between cylinders bigger than
6, and in others kinds of engines this distance must be bigger than 3. In conditional constraints,
whether the condition holds, the constraints belonging to the if block are activated; otherwise
the constraints of the else block are activated.

1. class CylSystem {

2 int quantity in [2,12];
3 int distBetCyl in [3,18];
4 Injection inj;

5. ValveSystem vSyst;

6 PistonSystem pSyst;

7 constraint determineDistance {
8 if (quantity = 6)

9. distBetCyl > 6;

10. else

11. distBetCyl > 3;

12. }

13. }

Figure 4.12 — The CylSystem class of the engine model.

The injection subsystem is depicted in Figure 4.13. It consists of three attributes: gasFlow,
admValve, and pressure. The compValues constraint zone encapsulates a built-in compatibility
constraint [GF03]. Such a constraint limits the combination of allowed values for a group of
decision variables to a limited set. For example, only four combinations of values are permitted
for the variables gasFlow, admValve and pressure. The possible values are described inside the

CHAPTER 4 — Modeling Language & Graphical Artifacts 51

compatibility built-in constraint. Let us notice that the remaining classes of the model have
been omitted since they are irrelevant for the purpose of this tour.

1. class Injection {
2. flow gasFlow;
3. size admValve;
4. int pressure;
5. constraint compValues {
6. compatibility(gasFlow,admValve,pressure) {
7. ("direct", "small", 80);
8. ("direct", "medium", 90);
9. ("indirect", "medium", 100);
10. ("indirect", "large", 130);
11. ¥
12. ¥
13. }
14.
Figure 4.13 — The Injection class of the engine model.
Remark

In s-COMMA, all classes are public. Currently, we see no need to consider further visibility notions
such as private or protected. This will force modelers to consider an additional concern and as a
consequence to make more difficult the modeling tasks. However, whether these options become
a necessity we may include them.

4.2 Modeling Features

In the previous section we have introduced some s-COMMA models to give an overview of its
features. In this section, we provide a more extended presentation of such features. We introduce
first the elements to be stated in data files such as constants and variable-assignments, and then
the elements belonging to model files such as classes, attributes and constraint zones'. We also
include in this section the formalism to tune the solving process and the extension mechanisms.

4.2.1 Constants

Constants, also called parameters or data variables, are the variables that have a fixed value
in the model. In s-COMMA, constants are declared in the data file and they have to be prefixed
by a type. The available types for constants are: real, integer, boolean, and enumeration. As
shown in Figure 4.14, constants can be included in one-dimensional and two-dimensional arrays.
Boolean values can be defined by means of ‘0’ and ‘1’ digits or by using the tokens ‘true’ and
‘false’. Enumerations can contain real values, integer values or strings.

!The grammar of the s-=COMMA modeling language can be found in the appendix.

52 CHAPTER 4 — Modeling Language & Graphical Artifacts

int anIntegerConstant := b3
int aOneDimArrayOfIntegerConstants := [1,2,3];
int aTwoDimArrayOfIntegerConstants := [[1,2,3]1,[1,2,3],[1,2,3]]1;

real aRealConstant
real aOneDimArrayOfRealConstants
real aTwoDimArrayOfRealConstants

5.2e-5;
[1.1,2.2,3.3];
[ft.1,2.2,3.31,1.1,2.2,3.31,01.1,2.2,3.31];

bool aBooleanConstant := false;
enum anEnumeration := {France, Italy, Germanyl};

Figure 4.14 — Constants.

4.2.2 Variable assignments

A variable assignment permits setting values to variables in order to convert them into
constants. Variable assignments are also stated in the data file, and they allow to assign va-
lues to many elements, for instance to decision variables, arrays containing decision variables,
and objects. Figure 4.15 shows two examples. In the first one, the value 2.5 is given to the
attribute a of the class Test. In the second one, the value 200 and the value 400 are assigned to
the first and second cell of the capacity array, respectively.

real Test.a 2.5;

[200,400] ;

int Factory.capacity

Figure 4.15 — Variable assignments.

As we have mentioned, variable assignments are performed by respecting the order of the
involved elements. For instance, on the assignment of the array capacity, the value 200 is given
to the first cell of the array, and 400 to the second cell of the array. However, whether the
index of the array element is explicitly stated, this implicit ordered matching is omitted, and the
assignments are guided by the indexes. For instance, Figure 4.16 depicts two variable assignments
for the productSet array. Although the organization of both assignments differs, the resultant
assignments are equivalent.

Product Factory.productSet := [kluski:{1000,6,8,[flour:5,eggs:2],_,_},
capellini:{2000,2,9, [flour:4,eggs:4],_,_},

fettucine:{3000,3,4, [flour:3,eggs:6],_,_}]1;

Product Factory.productSet := [capellini:{2000,2,9, [eggs:4,flour:4],_,_},
kluski:{1000,6,8, [eggs:2,flour:5],_,_}

fettucine:{3000,3,4, [eggs:6,flour:3],_,_}]1;

Figure 4.16 — Variable assignments guided by indexes.

CHAPTER 4 — Modeling Language & Graphical Artifacts 53

4.2.3 Classes

Classes are the main element of models. They encapsulate the attributes and the constraints of
the problem allowing to organize models and to capture the structure of problems. The main class
of the model is defined using the main reserved word, if there is no main class in the model, the
last class declared is set as main. Two kinds of relations are permitted among classes: composition
and inheritance. Composition allows a class to be composed of many objects, and inheritance
permits to define a new class based upon a superclass. Figure 4.17 shows a composition relation
between the engine and its subsystems. On the right side of the figure a specific turbo engine
class has been defined as a subclass of the class Engine. The reserved word extends is used to
inherit the attributes and constraint zones of a superclass.

class Engine { class TurboEngine extends Engine {
CrankCase cCase; boost in [5,8];
CylSystem cSyst;
Block block; }

CylHead cHead;

Figure 4.17 — Composition and inheritance.

Remark

To ensure termination, recursive composition (a class having as attribute an instance of itself)
and recursive inheritance (a class inheriting from itself) are not allowed.

Let us note that modularity of s=COMMA models can be enhanced since single models can be
stored in different files to be imported in a main file. Figure 4.18 depicts a model representing
the design of a car. Each car’s subsystem (the engine, the electric system, the exhaust system,
etc.) has been modeled in a different file which has been then imported from the car model file.

import Engine.cma
import ElectSystem.cma

main class Car {
Engine eng;
ElectricSystem elSyst;
ExhaustSystem exSyst;

SuspSystem suSyst;
DriveTrain drSyst;
Chassis chass;

Figure 4.18 — Importing models.

54 CHAPTER 4 — Modeling Language & Graphical Artifacts

Remark
Modularity, composition and inheritance are important strengths of the object-oriented style.
In s-COMMA we can benefit from that and motivate the reuse of existing elements.

4.2.4 Attributes

Attributes are used to define object properties. In s-COMMA, attributes are stated within
classes and they have to be prefixed with a type. Attributes may represent decision variables,
sets or objects.

4.2.4.1 Decision Variables

Decision variables correspond to the unknowns of the problem. s-COMMA allows decision
variables to be contained in one-dimensional and two-dimensional arrays (see Figure 4.19). The
size of the arrays can be defined by an integer constant, an integer value or an integer constant
expression. The latter stands for an expression composed only of integer values and/or integer
constants.

Remark

To avoid non-terminating iteration over an array, no decision variable is permitted to define its
size.

int anlIntegerDecisionVariable;
real aTwoDimArrayOfRealDecisionVariables[5,anIntegerConstant+1];

Figure 4.19 — Decision variables.

Decision variables and arrays of decision variables can be constrained to a determined domain
(see Figure 4.20). The nature of values to define the domains depends on the nature of decision
variables. For instance, integer values, integer constants and integer constant expressions are used
to define domains for both integer and real decision variables. Real values, real constants and real
constant expressions can only be used to define the domain of real decision variables. Decision
variables with no domain stated adopt a default domain in the translation process, which depends
on the solver used. An enumeration can be used as the type for a decision variable in order to
adopt as domain the set of values contained in the enumeration.

int anIntegerDecisionVariable in [0,anIntegerConstant + 1];
real aRealDecisionVariable in [0.5,aRealConstant + 5.5];

enum menNames := {Richard,James,John,Hugh,Greg};
menNames husband;

Figure 4.20 — Decision variables, domains and enumerated domains.

CHAPTER 4 — Modeling Language & Graphical Artifacts 55

4.2.4.2 Sets

A set can be seen as a special kind of decision variable for which the resolution process must
search a set of values. Sets are used in many problems and specific relations can act over them
(e.g. union, intersection, disjunction, etc.). Sets are defined with the reserved word set, and they
can be contained in one-dimensional and two-dimensional arrays. The domains of sets can be
given by integer values, integer constants, integer constant expressions, and enumerations. Three
examples are depicted in Figure 4.21.

int set aSet in [0,9];
int set aTwoDimArrayOfSets[3,3] in [0,9];
name set players;

Figure 4.21 — Sets.

4.2.4.3 Objects and Constrained Objects

Objects are instances of classes and they must be typed with the corresponding class name.
Objects embedding one or more constraints are called constrained objects. In Figure 4.22, the p
object is an instance of the Product class, and g is a constrained object as its players attribute
is subject to a constraint.

Product p;

class Product {
int demand;
int insideCost;
int outsideCost;
int consumption[resourceList];
int inside in [0,5000];
int outside in [0,5000];
}

Group g;

class Group {
name set players;
constraint groupSize {
card(players) = s;

}

Figure 4.22 — Objects and constrained objects.

56 CHAPTER 4 — Modeling Language & Graphical Artifacts

4.2.5 Constraint Zones

Constraint zones are used to group constraints encapsulating them inside a class. A constraint
zone can contain constraints, loops, conditional statements, compatibility constraints, an opti-
mization statement, and global constraints. Figure 4.23 depicts a constraint zone of the packing
squares problem.

constraint inside {
forall(i in 1..squares){
x[i] <= sizeArea - size[i] + 1;
y[i] <= sizeArea - size[i] + 1;
}
}

Figure 4.23 — A constraint zone.

The name of the constraint zone is chosen by the modeler. It can be used to describe the
role of the constraint zone on the problem and also to allow the constraint zone to be overridden
by a subclass. Constraint zone overriding can be seen as method overriding in object-oriented
languages. In other words, when a class inherits from a superclass, the constraint zones of the
superclass (having a same name) are no longer considered and they are replaced by the constraint
zones of the subclass. In Figure 4.24, the constraint zone distanceBetAxes is overridden by the
subclass TurboEngine, resulting in a replacement of the constraint left + 2320 = right by the
constraint left + 2840 = right.

class Engine {

constraint distanceBetAxes {
left + 2320 = right;
}
}

class TurboEngine extends Engine {
constraint distanceBetAxes {

left + 2840 = right;
}

Figure 4.24 — Constraint zone overriding.

4.2.5.1 Constraints

Constraint are relations among variables, being posted using mathematical-like notation. s-
COMMA supports most of common relations among values, constants, decision variables and sets
(see Table 4.1).

CHAPTER 4 — Modeling Language & Graphical Artifacts

o7

Table 4.1 — Binary and unary operators. Higher precedence means lower priority. 1" represents
integer, real, or boolean types. N represents integer or real types.

Operator Operation Precedence Relation
<-> Bi-implication 1300 (boolean x boolean) — boolean
-> Implication 1200 (boolean x boolean) — boolean
<- Reverse implication 1200 (boolean x boolean) — boolean
or Disjunction 1100 (boolean x boolean) — boolean
xor Exclusive or 1100 (boolean x boolean) — boolean
and Conjunction 1000 (boolean x boolean) — boolean
not Unary negation 900 boolean — boolean
< Less than 800 (T x T) — boolean
> Greater than 800 (T x T) — boolean
<= Less than or equal 800 (T x T) — boolean
>= Greater than or equal 800 (T x T) — boolean
==,= Equality 800 (T x T)) — boolean or
(set x set) — boolean
1=,<> Inequality 800 (T x T) — boolean or
(set x set) — boolean
subset Subset 700 (set x set) — boolean
superset Superset 700 (set x set) — boolean
union Union 600 (set x set) — set
diff Difference 600 (set x set) — set
symdiff Symmetric difference 600 (set x set) — set
+ Addition 500 (NxN)— N
- Subtraction 500 (NxN)— N
* Multiplication 400 (NxN)— N
/ Division 400 (NxN)— N
intersect Intersection 300 (set x set) — set
B Exponent 200 (NxN)—N
- Unary subtraction 100 N — N

58 CHAPTER 4 — Modeling Language & Graphical Artifacts

4.2.5.2 Loops

Two kinds of loops are provided by s-COMMA, the forall loop and the sum loop. The forall
loop is used to iterate over loop variables stated within constraints and the sum loop is used to
perform the mathematical summation.

The forall loop can contain loops, conditionals, constraints, and global constraints. The loop
header is declared in two parts. The left part defines the loop variable and the right part defines
the set of values to be traversed by the loop variable. The right part can be stated by using a
range of values. This range must be defined by integer values, integer constants, loop variables,
or integer constant expressions (including loop variables). An enumeration, or a one-dimensional
array can also be used to define the right part of the loop header. In these cases, the loop will
cross from 1 until the size of the enumeration or array (see Figure 4.25).

forall(i in j+1..5+n) { forall(i in anEnumeration) { forall(i in aOneDimArray) {
ali]l > 1i; ali]l > 1i; alil > i;

Figure 4.25 — forall loops.

To compact models, it is possible to embed an arbitrary number of nested forall loops in
a single forall definition (see Figure 4.26). Forall loops holding only one statement can omit
their curly brackets.

forall(i im 1..5) { forall(i in 1..5, j in i+1..5, k in j+1..5){
forall(j in i+1..5) {
forall(k in j+1..5) { }
}
}
}

forall(m in menList)
woman [man[m] .wife] .husband = m;

Figure 4.26 — Nested forall loops.

The sum loop performs an addition of a set of expressions. Its header is defined in the same
manner as in forall loops. Figure 4.27 depicts an example, where the expression ‘a[1]*1 +
a[2]*2 + a[3]#3’ has been compressed in a sum loop. To avoid ambiguities, parentheses around
a[i]l*i are mandatory.

sum(i in 1..3) (a[il*i)

Figure 4.27 — The sum loop.

4.2.5.3 Conditionals

Conditionals are stated by means of the if and the if-else statement. Loops, conditionals,
constraints, an optimization statement, and global constraints can be stated inside the body of

CHAPTER 4 — Modeling Language & Graphical Artifacts 59

conditionals. The condition can be stated through an expression containing values, constants
or decision variables. Curly brackets are mandatory when the conditional holds more than one
statement. Examples are shown in Figure 4.28.

if (quantity = 6)
distBetCyl

else
distBetCyl > 3;

v
[e2]

if (quantity = 6) {

distBetCyl > 6;
} else {
distBetCyl > 3;

Figure 4.28 — Conditionals.

4.2.5.4 Optimization

Optimization statements allow to model optimization problems. Optimization statements are
defined with a tag specifying the kind of optimization to be applied. The [maximize] tag is used
for maximizing and the [minimize] tag for minimizing expressions. An example is shown in
Figure 4.29.

constraint reduce {
a+b>c;
[minimize] a + b;

}

Figure 4.29 — Optimization statement.

4.2.5.5 Global Constraints

Two versions of the alldifferent constraint are provided. The alldifferent () forces that all
the values defined in the class must be different, and the alldifferent (anIntegerArray) forces
that all the values inside the given array must be different.

The alldifferent constraint is the unique global constraint included in s-COMMA. Additional
global constraints can be added using the extension mechanisms presented in Section 4.2.7.

4.2.5.6 Compatibility Constraints

A compatibility constraint is used to limit the combination of allowed values for a group of
decision variables to a group of given tuples. For instance, the compatibility constraint depicted
in Figure 4.30 defines that only three possible tuples of values satisfy the constraint. This built-in
constraint can also be seen as syntactic sugar for a boolean formula (depicted on the right side
of the figure).

60 CHAPTER 4 — Modeling Language & Graphical Artifacts

compatibility(a,b,c,d) { (a=3 and b=5 and c=8 and d=6) or
(3, 5, 8, 6); (a=1 and b=2 and c=5 and d=8) or
(1, 2, 5, 8); (a=9 and b=0 and c=3 and d=2)
(9, 0, 3, 2);

}

Figure 4.30 — A compatibility constraint.

4.2.6 Heuristic Orderings & Consistency Techniques

The formalism to customize the solving options of object-oriented models is one of the many
innovations of ss=COMMA. Such a formalism permits the specification of the value and variable
ordering as well as the consistency level of constraints.

4.2.6.1 Variable and Value Ordering

As mentioned in Section 2.2.5, variable and value orderings stand for the sequence in which
the variables and values are selected for the variable-value assignment performed during the re-
solution process. Different heuristics exist for carrying out this process, ss=COMMA includes the
most solver-supported ones:

Variable orderings:

— min-dom-size: selects the variable with the smallest domain size.

— max-dom-size: selects the variable with the largest domain size.

— min-dom-val: selects the variable with the smallest value in its domain.

— max-dom-val: selects the variable with the greatest value in its domain.

— min-regret-min-dif: selects the variable that has the smallest difference between the
smallest value and the second-smallest value of its domain.

— min-regret-max-dif: selects the variable that has the greatest difference between the
smallest value and the second-smallest value of its domain.

— max-regret-min-dif: selects the variable that has the smallest difference between the
largest value and the second-largest value of its domain.

- max-regret-max-dif: selects the variable that has the greatest difference between the lar-
gest value and the second-largest value of its domain.

Value orderings:

— min-val: selects the smallest value.
— med-val: selects the median value.
— max-val: selects the maximal value.

To exemplify the use of this feature let us introduce a fragment of the engineering design
problem presented in [GF03|. The aim of this problem is to assemble an industrial mixer subject
to configuration constraints. Figure 4.31 shows the composition of such a system.

CHAPTER 4 — Modeling Language & Graphical Artifacts 61

[Coc|>|er] [cOndlensor] [Enslaine] [Impeller] [Shlaft]

Figure 4.31 — The industrial mixer problem.

s-COMMA provides four possibilities for defining heuristic orderings: (1) to select the variable
ordering, (2) to select the value ordering, (3) to select both or (4) not select any option, in this
case the solving process will be performed using the default option given by the solver. Figure 4.32
depicts the four cases.

// variable ordering selected // value ordering selected
main class Mixer [min-dom-size] { main class Mixer [min-val] {
// both selections // no selection

main class Mixer [min-dom-size,min-val] { main class Mixer {

Figure 4.32 — Value and variable orderings.

Remark

Since the searching process is performed for the entire problem, we cannot consider different
heuristics for each class. So, if more than one class includes any ordering option, just the option
stated at the main class will be considered.

4.2.6.2 Consistency Level

As we have explained in Section 2.2.3, backtracking procedures can be complemented with
consistency algorithms to detect failures earlier, thus avoiding the inspection of useless spaces.
This task is in general performed by variants of the arc-consistency algorithm embedded in the
search engine of the solver. s-COMMA provides the most-solver supported consistency levels, the
bound and the domain consistency:

— bound: an arc-consistency algorithm is used to reduce the domain of involved variables, but
just the bounds of the variables’ domain are updated.

— domain: an arc-consistency algorithm is used to reduce the domain of involved variables,
but the full domain of variables is updated.

To specify these options s-COMMA provides three possibilities: (1) to select the consistency
level for a class, (2) to select the consistency level for an object; and (3) to select the consistency

62 CHAPTER 4 — Modeling Language & Graphical Artifacts

level for a constraint. Let us note that cases 1 and 2 lead to a “cascade effect” i.e., the selected
option will be inherited by objects and constraints belonging to the composition. Only objects
and constraints with their own option do not inherit, they keep their own selected option.

Figure 4.33 depicts an example on which two classes of the mixer problem have been tuned.
The Mixer class has been configured with a domain consistency level leading the “cascade effect” to
set the objects and constraints of the mixer’s composition (Vessel, Agitator, Cooler, Condenser,
etc.) with the domain option, except for the Engine object e and the constraint e.power >=
2xi.power which keep their own option (bound consistency).

Remark

The cascade effect provided by the object-oriented style of ss=COMMA allows us to avoid the
definition of solving options for constraints one by one.

// tuned class
main class Mixer [domain] {
Vessel v;
Agitator a;
constraint design {
a.i.rps <= v.diameter/a.i.diameter;
a.i.diameter <= a.i.ratio*v.diameter;

// tuned object & tuned constraint
class Agitator {
[bound] Engine e;
Impeller i;
Shaft s;
constraint power {
[bound] e.power >= 2xi.power;

Figure 4.33 — Consistency level.

Let us note that the combination of consistency level with value and variable orderings is
permitted (see Figure 4.34).

main class Mixer [min-dom-size,min-val,domain] {

Figure 4.34 — Ordering heuristics & consistency level.

Note

A given heuristic ordering or a given consistency level can only be used if the selected underlying
solver has support for it.

CHAPTER 4 — Modeling Language & Graphical Artifacts 63

4.2.7 Extensibility

Extensibility is another important feature of s=COMMA. New constraints, functions, ordering
heuristics and consistency levels can be integrated by defining extension files. This mechanism
ensures the semantics of the ss=COMMA language adaptable to potential upgrades of the solver
layer.

4.2.7.1 Adding constraints

Let us present this feature by recalling the social golfers problem. Consider that a programmer
adds to the Gecode/J solver a new global constraint to enforce the a <j¢, b lexicographic ordering.
This constraint operates over a set a = {xg,z1,...,z,} and a set b = {yo, y1, ..., yn} of n integer
values, ensuring that: ro < yo; 1 < y1 when xy = yo; x2o < y2 when zg = yp and] =
Y13 Tp1 < Yn—1 When zg = yo, ¥1 = Y1,..., and T, o = yp_o [FHKT02|. The a <jp b
constraint will be used to remove the symmetries [Pug93, CGLR96, GS00] (eliminate redundant
solutions) of the already presented social golfers model.

To use this new constraint we can extend the semantics of the s-COMMA constraint language.
This can be achieved by defining an extension file where the rules of the translation are stated.
Such a file may be composed of one or more main blocks (see Figure 4.35). Main blocks hold the
translation rules and denote the solver to which the mapping must be performed. For instance,
the first main block defines the mapping rules for the Gecode/J solver.

1. GecodeJ {

2. Constraint {
3. lexOrder(a,b) -> "gecodeJLexicalOrdering(a,b);";
4. }

5. }

6.

7. ECLiPSe {

8. Constraint {
9.

10. %

11.

Figure 4.35 — Adding constraints to s-COMMA.

Within the GecodeJ block, a Constraint block has been defined. This block owns the mapping
rule of the new constraint to be added. This rule consists of two parts. The left part of the rule
defines the statement used to call the new function from the s-=COMMA language, and the right
part defines the statement used to call the new built-in method from the solver file. In this
way, the rule states that lexorder(a,b) will be translated to gecodeJLexicalOrdering(a,b)
in the mapping process from ssCOMMA to Gecode/J,. To facilitate the translation of the input
parameters, variables (a and b) must be tagged with ‘$’ symbols. In the example, the first
parameter and the second parameter of the new s-COMMA constraint will be translated as the
first parameter and the second parameter of the Gecode/J method call, respectively. The use of
the new constraint in the social golfers problem is shown in Figure 4.36.

64 CHAPTER 4 — Modeling Language & Graphical Artifacts

1. import lexOrderings.ext;

2.

3.

4. main class SocialGolfers {

5.

6. Week weekSched[w];

7.

8. constraint differentGroups {

9. forall(wl in 1..w, w2 in wi+l..w)

10. forall(gl in 1..g, g2 in 1..g)

11. card(weekSched[wl].groupSched[gl] .players intersect
12. weekSched [w2] . groupSched[g2] .players) <= 1;
13. }

14.

15. constraint removeSymmetries {

16. forall(wl in 1..weeks, gl in 1..groups-1)

17. lexOrder (weekSched[wl] .groupSched[gl] .players,
18. weekSched[w1] .groupSched[gl+1].players);
19.

20. forall(wl in 1..weeks-1)

21. lexOrder (weekSched[w1] .groupSched[1].players,

22. weekSched [wl+1] .groupSched[1] .players) ;
23. }

24. }

Figure 4.36 — Removing symmetries from the social golfers problem.

4.2.7.2 Adding functions

To present the usefulness of this feature, let us introduce the Sudoku problem. This problem
consists in filling a 9 x 9 matrix so that each column, each row, and each of the nine 3 x 3 sub-
matrices contains different digits from 1 to 9. A model for this problem is depicted in figure 4.37.
The data file is composed of two constants and a variable assignment. The constant n defines
the size of the matrix and s the size of the sub-matrices. The variable assignment is used to
fill some of the cases of a two-dimensional array called puzzle. This array is stated at line 5
of the model file and represents the matrix of the problem. The constraint zones of the model
are defined next. The differentInRowsAndColumns constraint zone ensures that every row and
column of the matrix contains different values, and differentInSubMatrices guarantees that
all the 3 x 3 sub-matrices get different values.

Let us now consider that three new functions operating over two-dimensional arrays are added
to Gecode/J. A function to get the rows, another to get the columns and a third one to get sub-
matrices. Figure 4.38 depicts the corresponding extension file. The parameter mat corresponds
to the matrix on which the function acts, 1 and j are the indexes of the row and of the column
to be obtained, respectively. The third function has four parameters, the pair (i1, j1) represents
the coordinates of the upper-left corner of the sub-matrix and the pair (12, j2) represents the
lower-right corner of the sub-matrix.

The resulting model using these new functions is depicted in Figure 4.39. Here, we can see
that the model has been defined in a more concise and elegant way. In addition, the use of the
alldifferent constraint will improve the resolution process of the problem.

CHAPTER 4 — Modeling Language & Graphical Artifacts 65

Data File

1. int s := 3;

2. int n := 9;

3. int Sudoku.puzzle := [[_, _, _, _, _, _, _, _» _1,
[,6,8,4, _,1, _, 7, 1,
L, ., -, _, 8,5, _, 3, 1,
L, 2,6,8, _,9, _, 4, 1,
L, .7y _s s _» 9, _, 1,
[,5, _,1, _, 6, 3,2, 1,
., 4, _, 6,1, _, _, _, 1,
,3, _,2, _, 7,6, 9, 1,
R B I

Model File

1. import Sudoku.dat;

2.

3. main class Sudoku {

4.

5. int puzzle[n,n] in [1,n];

6.

7. constraint differentInRowsAndColumns {

8. forall(k in 1..n, i in 1..n, j in i+1..n) {

9 puzzlelk,i] !'= puzzlelk,jl;

[y
o -

puzzle[i,k] !'= puzzlelj,k];
11. }
12. }
13.
14. constraint differentInSubMatrices {
15. forall(xl in 1..s, y1 in 1..s, %2 in 1..s) {
16. forall(y2 in 1..s, x3 in 1..s, y3 in 1..s) {
17. if(x2 !'= x3 and y2 != y3)
18. puzzlel[(xl - 1) * s + x2, (y1 - 1) * s + y2] !=
19. puzzle[(xl - 1) * s + x3, (yl1 - 1) * s + y3];
20. }
21. }
22. }
23. }

Figure 4.37 — The Sudoku problem.

1. GecodeJ {
2. Constraint {
3. lexOrder(a,b) -> "gecodeJLexicalOrdering(a,b);";
4. }
5. Function {
6. getRow (mat, i) -> "gecodeJGetRow (mat,i) ;" ;
7. getColumn (mat, j) -> "gecodeJGetColumn (mat,j) ;";
8. getSubMatrix(mat,il,i2,j1,j2) -> "gecodeJGetSubMatrix(mat,il,$i2%,$j18$,8j28);";
9. }
10. }
11.

Figure 4.38 — Adding new functions.

66 CHAPTER 4 — Modeling Language & Graphical Artifacts

main class Sudoku {
int puzzle[n,n] in [1,n];

constraint differentInRowsAndColumns {
forall(i in 1..n) {
alldifferent (getColumn(puzzle, i));
alldifferent(getRow(puzzle, i));
}

O 00 ~NO O WN -

e e el
gD W= O

}

constraint differentInSubMatrices {
forall(i in 1..s, j in 1..s)
alldifferent (getSubMatrix(puzzle, (i-1)*s + 1,i*s,(j-1)*s + 1,j*s));

e
N
()

Figure 4.39 — Using the new functions in the Sudoku problem.

4.2.7.3 Adding heuristic orderings and consistency levels

Extensibility for heuristic orderings and consistency levels is also provided. Three new blocks
can be added to the extension file: a Variable-Ordering block, a Value-Ordering block, and a
Consistency-Level block. As an example, let us consider that new solving options are introduced
in the Gecode/J solver. A variable ordering called BVAR_NONE, which selects the leftmost variable.
A value ordering called BVAL_SPLIT_MIN, which selects the first value of the lower half of the
domain; and the ICL_VAL consistency level, which performs the Gecode value consistency [wir].
The corresponding extension file and the Mixer class tuned with the new options are shown in
Figure 4.40 and in Figure 4.41, respectively.

1. GecodeJ {

2. Constraint {

3. .

4. Variable-0Ordering {

5. first -> BVAR_NONE;
6. }

7. Value-Ordering {

8. lower-half -> BVAL_SPLIT_MIN;
9. }

10. Consistency-Level {
11. value -> ICL_VAL;
12. }

13. }

Figure 4.40 — Adding new heuristic orderings and consistency levels.

CHAPTER 4 — Modeling Language & Graphical Artifacts 67

main class Mixer [first,lower-half] {
[value] Vessel v;
Agitator a;
constraint design {
[value] a.i.rps <= v.diameter/a.i.diameter;
[value] a.i.diameter <= a.i.ratio*v.diameter;

00 ~NO O W -

Figure 4.41 — The tuned mixer class.

4.3 The s-COMMA GUI

The s-COMMA GUI is the graphical user interface for the ss=COMMA language. The visual language
of the s=COMMA GUI provides a more concise perception of models, allowing to state problems via
two kinds of graphical artifacts: Data artifacts and class artifacts (see Figure 4.42).

ClassName R‘_
@ atribute: int ClassName
@ attribute2; int @ attribute1: int Q
@ attribute2: int
% constraintZone = @%
% constraintZone? = % constraintZone =] Q
% constraintZone?2 =
f Class r Attributes r Constraint Zones
Class
MName | Clazsklame |
ishlain ||
- Superclass [|
dataFile.dat
@ constant1: int
@ constant2: int Description
4] Il [1] |
Solving Options
| Ok H Cancel H Default

Figure 4.42 — Class and data artifacts.

Class artifacts correspond to the graphical representation of classes. Class artifacts have by
default three compartments, the upper compartment for the class name, the middle compart-
ment for attributes and the bottom one for constraint zones. By clicking on the class artifact its
specification can be opened to define its properties, its attributes and constraint zones. Several
class properties can be defined, for instance, the name, if the class is a main class, a super-
class, a description and the solving options. Relationships can be used to define inheritance or

68 CHAPTER 4 — Modeling Language & Graphical Artifacts

composition between classes. Data files are represented by data artifacts, being composed of two
compartments, one for the file name and another for both the constants and variable assignments.

Note

The graphical artifacts of the s-COMMA GUI have been designed as an extension of the UML class
artifact provided by the UML Infrastructure Library Basic Package. This ensures the ss=COMMA
GUI notation to be entirely supported by the UML Infrastructure Specification [i@u].

Figure 4.43 shows a snapshot of the s-COMMA GUI where the stable marriage problem is re-
presented by a class diagram. This diagram is composed of three class artifacts, one to represent
men, another to represent women, and a third one to describe the stable marriages. The compo-
sition relationships are depicted through connections among classes. The right-panel of the tool
shows the corresponding s-COMMA textual version, which is instantly generated once graphical
artifacts are stated on the drawing frame.

] s-COMMA GUI [=)[=]x]

File Edit Display Draw Code Help

; T 7] s
: Auto update !"ﬁabiithl I“‘ %]

AfGenerated with s-COMMA GUI w0.1
Ted Sep 17 12:48:1% CET 2003

import StableMarriage. dat;

class Man |
int rank[womenList];
womenlist wife;

StableMarriage

@ manfmenList]: Man +
clgss Womar |

I, <> @ womanwomenList]): Woman <)—E|
int rank[menlist];

% matchHusbandwife =] ; menlist husband;
% forbidUnstableCouples =

main class StableMarriage |

Man man [menlist];

= = Womar woman[womenlist] ;
Woman Man . .
constraint matchHushandili fe |
fed T FeET i forallim in menlist)
@ rank[menList]: int @ rank[womenList]: int reihat [[v £ | B sl e i
@ hushand: menList @ wife: wormenList : 5
forall{w in womenList)
man [woman[w] khashand] .wife = w;
+
constraint forbidlhstableCowples |
forallim in menlist, w in womenList
- man(n] . rank [w] < manin]. rank[nan
StableMarriage.dat woman [w] . rank [wonan [w] hushand]
woman[w]. rank[m] < woman[w].rank
@ menList. enum man(n] . rank [man[m].wife] < manlnm
4 +
@ womenList: enum }
% StableMarriage.man: Man 4
@ StableMarriage woman: Woman

4] I [»

Fress the |eft button and drag the mouse to place the last point. Release the button to finish the creation.

Figure 4.43 — The stable marriage problem on the s-=COMMA GUI.

CHAPTER 4 — Modeling Language & Graphical Artifacts 69

The StableMarriage class has two attributes, one array to represent the group of men and
other array to represent the group of women. Attributes can be stated using the attribute panel
of the class window illustrated in Figure 4.44. The attribute panel permits to add, modify and
delete attributes. Each attribute can be defined by giving its type, name, and domain. To define
attributes as one-dimensional arrays the left array field must be filled with its size. Matrices are
defined filling both array fields, the left one for the row size and the right one for the column
size. In the example, the attribute man is an array having Man as its type and menList as its size.
The domain fields are not filled since the attribute is an object array. The check box allows one
to define set variables and the last field is used to define an optional consistency level to be used
for objects.

] Parameters of the class EI

StableMarriage

@ man[menList] Man
@ waman[wamenList]: YWaman

oIyl

% matchHusbandwire =]
& forbidUnstableCouples = ﬁ @
Type [ham |
Class [Attributes rCDnstraim Zones |
Mame [man |
v Array [|merList |10 1
waman Attributes Domain i []
| New || Modity || Detete isSet O
Consistency Level | |

| oK || Cancel || Default |

Figure 4.44 — Attributes on the ss=COMMA GUI.

Constraint zones are stated in a similar way. Figure 4.45 shows the constraint zone panel,
where constraint zones can be added, modified and deleted. Shortcut buttons are provided to
generate a code framework to be then completed by the user, for instance to state loops, condi-
tionals, optimization statements, and compatibility constraints. The constraints must be written
by hand.

Both constants and variable assignments are stated in the data window. They are defined
giving a type, a name, and a value. Figure 4.46 shows the enumeration constant menList, the
value field is filled with the names of the group of men.

The s-COMMA GUI includes typical operations for handling projects, managing some prefe-
rences and printing draws and codes. Also, common shortcuts such as cut, copy, paste, undo and
redo are provided. Buttons for changing the properties of the drawing frame (zoom-in, zoom-out,
scaling the grid) have been considered as well (see Figure 4.47).

CHAPTER 4 — Modeling Language & Graphical Artifacts

= Parameters of the class IZI

StableMarriage

@ man[menList]: Man
@ woman[womenList]: Waman

% matchHushanoire =
% forbidUnstableCouples =

p Lo

Class | Attributes | Constraint Zones |

it SRS forall| sum| if |if—else| opt |c0mp|
forbidlnatableCouples Constraints
constraint matchBazhandiife |
| ey || Modify || Delete | forallim im menlist)
wonan [man [m] wife]. husband = m;
I
foralliw in womenLiszt) |
wan [woman [w] huashand] v fe = w;
i
¥
| Ok || Cancel || Default |
Name[mtcicbarite |
Figure 4.45 — Constraints on the s=COMMA GUI.
E] Parameters of the data [x]

StableMarriage.dat

@ menList: enum

@ womenList enum

@ StableMarriage.man: Man

@ StableMarriage woman: YWoman

plele

Data File Constants & Var. Assignments
eomenList Constants & Var. Assignments

StableMarriage man o ,enumi
StableMarriage. woman ‘ New || Modify H Delete | vp é
Name menList
Value

| Ok H Cancel || Default | {Pichard, Tames, Joke, Hach, Greg)

Figure 4.46 — Data files on the s-COMMA GUI.

CHAPTER 4 — Modeling Language & Graphical Artifacts 71

m s=-COMMA GUI
FiIe|Edit Display Draw Code Help

%uew project Ctrl-N |Q||Q||Q| ||:D||3£||ﬁ| ||v|| J‘|

ﬁ Open project Cirl-0
E Save project Ctrl-5

Save as project

Recent Files 4

& Bpon as... »

? Preferences Ctrl-P

(P print code Ctri-E
& print drawing <0

Quit Ctrl-W

Figure 4.47 — Some shortcuts of the s-COMMA GUI.

4.4 Summary

In this chapter we have presented the s-COMMA language and the s-COMMA GUI. We have
illustrated several CP models through the s-COMMA language, showing that the expressiveness
offered is suitable for different kinds of problems. The object-oriented style provided is useful
for getting elegant and modular models. These models can be tuned with a simple formalism
to get efficient solving processes. This formalism permits to define heuristic orderings as well as
the consistency level of constraints. The expressiveness of the base language can be extended,
an extension file can be defined to add new functions, constraints, and solving options to the
language. Finally, the s-=COMMA GUI provides a visual and more concise representation of models.

The next chapter focuses on the transformation process from graphical artifacts to solver
models. We present the tools and techniques involved in the transformation, and we illustrate
several examples of the platform implementation.

CHAPTER 5

Mapping Models to
Solvers

ling languages to lower level constraint solving languages or computer programming languages,
and (2) to modify model structures according to the capabilities of solvers, for instance to unroll
loops, or to flatten an object-oriented composition.

Graphical _
Artifacts Mapping Tool
Hand-Written Model Eng.
. Approach Approach
s-COMMA s-COMMA compiler
GUI | Parsing I | Parsing I
.............. ’
................. »
. . v v
Code _ s-COMMA Parsing | » Semaptlc , Refactoring + Flat S-COMMA
Generation Model Checking Code Generation Code Code
Model . .
Generation Generation
v
Solver
Model

Figure 5.1 — The s-COMMA architecture.

To support these requirements we introduce a new solver-independent architecture able to
perform the whole transformation in three main stages (see Figure 5.1). Firstly, the s COMMA GUI
generates the corresponding s-COMMA model by means of a set of Java packages and procedures.
In the second stage, the ss=COMMA model is parsed, semantically checked and then transformed
to the intermediate Flat s=COMMA model. During this translation, several refactoring steps are
performed to be closer to the solver level. The idea is to simplify the mapping process to the
solver model, and consequently to facilitate the integration of new solvers to the platform. In
the third and last stage, the Flat s=COMMA model is parsed and transformed to the solver model.
This stage is performed by our so-called mapping tool, in which two transformation approaches
can be identified. The first approach has been built using a parsing tool and hand-written Java
procedures, and the second approach has been designed and implemented using techniques and
tools from the model engineering world.

In this chapter, we present the complete transformation process from graphical artifacts to
solver programs. The first section is devoted to the transformation from the ss=COMMA GUI to the

73

74 CHAPTER 5 — Mapping Models to Solvers

s-=COMMA model. Some Java classes and procedures are illustrated to provide an overview of that
transformation. The following section presents the transformation from s-COMMA to Flat s-=COMMA.
The technical aspects of the parsing, semantic checking, and refactoring steps are illustrated by
means of several examples. We believe this is of interest to designers of further CP languages. The
last section targets the design of the mapping tool. The grammar approach and the model-driven
approach are illustrated and compared.

5.1 From s-COMMA GUI to s-COMMA

The prototype implementation of the ss=COMMA GUI is completely written in Java (about 30000
code lines including the s-=COMMA compiler) and the Swing widget library is used to design the
graphical interfaces. Three main Java packages can be identified to support the transformation
from graphical artifacts to s-COMMA models (see Figure 5.2):

— dialogBoxes: contains the dialog boxes that allow users to fill the information of the model.

— artifacts: contains the classes that allow users to create, to drag, and to resize the artifacts
in the drawing pane of the s=COMMA GUI.

— modelInformation: contains the classes that store the information of the model (e.g.,
constants, classes, attributes and constraint zones).

artifacts

ClassArtifact

*

di al ogBoxes

Dat aDi al og Cl assDi al og nodel | nf or mati on

SCommuCl ass

Rel ati onDi al og AttributeDi al og Y

SCommeAt tribute

Const ant Di al og coe

Figure 5.2 — s-=COMMA GUI Java packages.

In the dialogBoxes package, each graphical element appearing in a model has a dialog box
defined by a Java class. For instance, one class for data artifacts, one for class artifacts, and
another for relationships. Every element contained in a graphical artifact has a dedicated class
as well. For instance, one class to manage the attributes, one to manage the constants and one
for the constraint zones. Each of these classes is composed of the common methods to define the
position of frames, text fields and buttons in the layout of the dialog box. These buttons trigger
actions to add, delete or modify elements of the model. Dialog box classes contain objects, from

CHAPTER 5 — Mapping Models to Solvers 75

both the artifact package and the modelInformation package. These objects are responsible
for gathering the information provided by the user and for storing it in order to generate the
corresponding s-COMMA textual version.

To show the interaction among these components, let us consider the addition of a s-COMMA
attribute to a s-COMMA class artifact. Four classes participate in this process: AttributeDialog,
ClassArtifact, SCommaClass, and SCommaAttribute. The packages owning these classes and
the relationships among them can be seen in Figure 5.2. The goal is to capture the informa-
tion of the ss=COMMA attribute from the corresponding dialog box, and then storing it in the
modelInformation package.

The process begins when the user fills the properties (type, name, array dimensions, if the
variable is defined as a set, domain, and consistency level) of the s-COMMA attribute through
the dialog box. These properties are captured between lines 6 and 12 of the AttributeDialog
class (see Figure 5.3). The getText () method returns the string provided by the user in the text
field, and isSelected() returns true whether the check box is checked. At the end of the file,
attribute is added to an instance of a ClassArtifact class called clArtifact.

1. public class AttributeDialog extends JDialog implements ActionListener {
2. .

3. private ClassArtifact clArtifact;

4. private SCommaAttribute attribute;

5. .

6. attribute.setType(attType.getText());

7. attribute.setName (attName.getText());

8. attribute.setOneDimArray (attOneDimArray.getText());

9. attribute.setTwoDimArray (attTwoDimArray.getText());

10. attribute.setIsSet(attIsSet.isSelected());

11. attribute.setDomain(attDomMin.getText () ,attDomMax.getText());
12. attribute.setConsLevel (attConsLevel.getText());

13. clArtifact.addAttribute(attribute) ;

14.

Figure 5.3 — The AttributeDialog class.

The ClassArtifact captures the attribute object via the addAttribute method (line 5 of
Figure 5.4), which then stores it in an instance of a sCommaClass.

public class ClassArtifact extends ArtifactDrawing {
private SCommaClass sCClass = new SCommaClass();
public void addAttribute(SCommaAttribute attribute) {

sCClass.addAttribute (attribute) ;
}

W ~N O Ol d WN -

Figure 5.4 — The ClassArtifact class.

The sCommaClass is illustrated in Figure 5.5. It is composed of attributes (lines 3 to 9) to
store the properties of s-COMMA classes (e.g. description, name, etc) and methods to manage
these attributes (lines 11 to 20). The process finish when the s-=COMMA attribute is stored in the

76

CHAPTER 5 — Mapping Models to Solvers

model information package. This is done via the addAttribute method, which adds the input
parameter att (received from the ClassArtifact class at line 6) to the attributes array (line

12).

1. public class SCommaClass {

2.

3. private String description;

4. private String name;

5. .

6. private ArrayList<SCommaAttribute> attributes =
7. new ArrayList<SCommaAttribute>();

8. private ArrayList<SCommaConstraintZone> cZones =
9. new ArrayList<SCommaConstraintZone>();

10.

11. public void addAttribute(SCommaAttribute att) {
12. attributes.add(att);

13. 1

14. R

15. public void deleteAttribute(String name) {

16. for (SCommaAttribute a : attributes)

17. if (a.getName() .equals (name))

18. attributes.remove(a);

19. }

20.

Figure 5.5 — The SCommaClass class.

Once the information obtained from the dialog boxes is stored in the modelInformation
package, it can be retrieved to generate the corresponding s-COMMA textual model. This process
is automatically done when the user closes the dialog box. On the left side of Figure 5.6, the
Java method to produce the code of s-COMMA classes is illustrated. An example of a generated
s-COMMA class is shown on the right side of the same figure.

1. public String getCode() {

2

3 StringBuffer str = new StringBuffer();

4.

5. str.append(generateDesc()); » //This class represents a Turbo Engine
6 str.append(generateIsMain()); — 5 main class TurboEngine extends Engine [bound] {
7 str.append("class "); A T

8. str.append(sCClass.getName()); = t———T———J

9. str.append(generateSuperClass());

10. str.append(generateSolvingOpt());

11. str.append(" {\n");

12. str.append(generateAttributes()); —————— > int diameter in [34, 250];

13. str.append(generateConstraintZones()); ——— constraint distance { ... }

14. str.append("}"); > }

15. return str.toString();

Figure 5.6 — The getCode method.

The code is built from a systematic union of strings. The description of the ss=COMMA class
is the first string to be appended. The code of the class follows. The class header consists of an

CHAPTER 5 — Mapping Models to Solvers 7

optional token main, a class token, a class name, an optional inheritance definition, and solving
options. The body of the class is enclosed with curly bracket symbols (‘{}’), which are appended
at lines 11 and 14. Within the class body, the attributes and constraint zones are added.

5.2 From s-COMMA to Flat s-COMMA

The transformation from s-=COMMA to Flat ssCOMMA is the most complex part of the whole
process. Several transformations must be done so as to facilitate the task of solver-translators,
and also to ease the integration of new solvers to the platform. Three main tasks are identified:
parsing, semantic checking and refactoring to Flat ss=COMMA.

5.2.1 Parsing

The parsing process is responsible for checking the correctness of the syntax of the input
string, and for building an abstract syntax tree (AST) to be explored in the following phases.
The parsing process consists of two main tasks: the lexical analysis and the syntactic analysis.
The lexical analysis must detect tokens from the input string, and the syntactic analysis deter-
mines whether these tokens form valid expressions conform to the grammar of the language. The
implementation of these two main tasks has been supported by the ANTLR language recognition
tool [ii#w]. An ANTLR lexer performs the lexical analysis and an ANTLR parser deals with the
syntactic checking.

5.2.1.1 Lexer

The lexer is able to generate the tokens given an input string by means of a set of reserved
word definitions and regular expressions (also called rules in ANTLR). Figure 5.7 illustrates a
fragment of the lexer file. The reserved words of the language are defined in a specific block
called tokens (to avoid ambiguities with identifiers). Identifiers are used for giving a name to
language constructs that require it, for instance a class name, a variable name, a constraint zone
name, etc. The rule to recognize them is stated at line 12. The option testLiterals=true is
used to explicitly state that identifiers must be checked with respect to the reserved words of the
tokens block. The paraphrase option is used for showing "an identifier" in error messages
instead of the name of the token (an error message can be seen in Figure 5.14). The IDENT rule
states that an identifier must firstly be composed of a LETTER or an underscore symbol followed
by a set of zero or more LETTER, DIGIT or underscore symbols. The rules to recognize letters and
digits are defined next, the double dot operator (’..’) is used to consider a range of characters.
In the following lines, several other rules are declared, for instance to recognize the punctuation
symbols (lines 24 to 26), the brackets (lines 29 to 31) and the operators (lines 34 to 36).

Dealing with rule ambiguities

The rule to recognize numbers (reals and integers) is shown in Figure 5.8. This process is
more complex since the number of tokens to check may be undetermined. For instance, to be
able to recognize 5.2 as a real (and not as an integer) it should be necessary to detect just two
tokens (2-lookahead), 5 as a digit and then the dot as a punctuation symbol.

78 CHAPTER 5 — Mapping Models to Solvers

Note
The lookahead determines the number of tokens to be recognized for matching a rule, it is
normally set to 2. Bigger lookaheads may lead to slower parsing processes.

1. tokens

2. o

3. RES_IMPORT = "import"

4. RES_MAIN = "main" ;

5. RES_CLASS = "class" ;
6. RES_EXTENDS = "extends" ;
7. RES_CONSTRAINT = "constraint"
8. RES_FORALL = "forall"

9.

10. }

11.

12. IDENT

13. options {testLiterals=true; paraphrase="an identifier";}
14. (LETTER|’_>) (LETTER|DIGIT|’>_>)*
15. H

16.

17. LETTER : ’a’..’z’

18. | °A>..°2°

19. H

20.

21. DIGIT ’0°..°97;

22.

23.

24. PUN_SEMI_COLON : ’;° ;

25. PUN_COMMA 0,y

26. PUN_DOT A

27.

28.

29. BRA_CURLY_OPEN : °{’ ;

30. BRA_CURLY_CLOSE : ’}’ ;

31. BRA_ROUND_OPEN : >(;

32.

33.

34. O0P_PLUS HIRE

35. O0OP_MINUS -

36. OP_MULTIPLICATION : °’%’ ;

37.

Figure 5.7 — Tokens and rules in the ANTLR lexer of s-=COMMA.

However, a 2-lookahead may not be enough to match different rules sharing more than two
initial tokens. For example, a real number with an integer part having two or more digits cannot
be recognized since the two initial digits may belong as well to an integer number as to a real
number. This kind of ambiguities can be avoided by using a syntactic predicate [PQ94]|, which
is a specific ANTLR feature that permit us to arbitrary extend the lookahead of a determined
rule. Syntactic predicates are defined as (a) = a|b, where a is the rule to be matched with an
extended lookahead, and b is the rule to be recognized if a cannot be matched. For instance, the

CHAPTER 5 — Mapping Models to Solvers 79

rule to define a NUMBER is composed of a statement to recognize reals (line 2) and a statement
to recognize integers (line 3). The first statement defines that a real is composed of a set of one
or more digits followed by a dot and another set of one or more digits. The second statement
defines that an integer is composed of one or more digits. The rule first tries to match reals, if
this occurs the token is set as a real literal (LIT_REAL). Otherwise, the rule recognizes an integer.

1 NUMBER : ((DIGIT)+ PUN_DOT (DIGIT)+) =>
2. (DIGIT)+ PUN_DOT (DIGIT)+ { $setType (LIT_REAL);}
3. | (DIGIT)+ { $setType (LIT_INT);}
4

>

Figure 5.8 — The lexer rule to define numbers.

Note

The use of syntactic predicates generates a grammar called pred-LL(K), where K denotes the
lookahead.

5.2.1.2 Parser

The parser is able to perform the syntactic analysis by matching a set of rules composed of the
tokens stated in the lexer file. These rules are built conform to the grammar of the language and
they are responsible for capturing the grammatical structure of the analyzed string by producing
an abstract syntactic tree (AST).

In ANTLR, ASTs are built using a Lisp-based notation, ‘4’ being the operator to define tree
structures. For instance, # (#a,#b,#c) corresponds to a tree where a is the root, and b and ¢
are its child nodes. For example, consider the first rule showed in Figure 5.9, which matches an
addition between two integer tokens. The AST for this rule is built using OP_PLUS as the root,
and the integer tokens as child nodes. A simpler equivalent version of this rule (line 5) can be
stated by using the ‘*’ operator. The corresponding AST is shown on the right side of the figure.
Non leaf nodes are represented by a folder icon and leaf nodes by a file icon.

add_expr : LIT_INT OP_PLUS~ LIT_INT

1. add_expr : el:LIT_INT op:0P_PLUS e2:LIT_INT

2. { ## = #(#op, #el, #e2);} CJ oP_PLUS
3. ; [LIT_INT
4. [y LT_INT
5.

6.

Figure 5.9 — Three parser rules in ANTLR.

In the case of rules having no appropriate token to be used as AST root, it is possible to
introduce a root token. In Figure 5.10, the rule identList is defined as a set of one or more
IDENT tokens, and no token is suitable to become the AST root. A new token called LIST is
introduced, and the tree is formed with the LIST token as root and the set of IDENT tokens as
its child nodes.

80 CHAPTER 5 — Mapping Models to Solvers

3 LT
1. identList : (IDENT)+ [y IDENT
2. {## = #(#[LIST, "LIST"] ,##);} [IDENT
3. ; [IDENT

Figure 5.10 — Introducing a proper tree node.

Figure 5.11 illustrates five rules of the parser file of s-COMMA. Such rules are composed of
tokens, calls to other rules and statements for building ASTs. The first rule consists of two
rule calls (staImport and defClass) and a statement to define the root of the AST ({## = #(
#[MODEL, "MODEL"] ,##);}). The rule states that a model is composed of a set of zero or more
import statements followed by a set of zero or more class definitions. Let us notice that lower
case is used to rule names in order to differentiate them from tokens.

1. model : (staImport)* (defClass)=*

2. {## = #(#[MODEL, "MODEL"] ,##);}

3. ; CI MODEL

4. CJ 5TA_IMPORT

5. defClass : (RES_MAIN)? RES_CLASS~ IDENT |j class

6. (extendsClause)? (solvingOpts)? B main

7. BRA_CURLY_OPEN! classBody B IDEMT

8. BRA_CURLY_CLOSE!

9. ;] EXTENDS_CLAUSE
10.] SOLVING_OPTS
11. classBody : attributeSet constraintZoneSet C CLASS_BODY

12. { ## = #(#[CLASS_BODY, CI ATTRIBUTE_SET
iz- "CLASS_BODY"], ##);}] CONSTRAINT_ZONE_SET
15.

16. attributeSet : (attribute)*

17. { ## = #(#[ATTRIBUTE_SET,

18. "ATTRIBUTE_SET"],##);}

19. H

20.

21. constraintZoneSet : (constraintZone)*

22. { ## = #(#[CONSTRAINT_ZONE_SET,

23. "CONSTRAINT_ZONE_SET"],##);}

Figure 5.11 — Parser rules of ss=COMMA.

Lines 5 to 8 describe the rule for recognizing s-COMMA classes. A class definition begins with
the main reserved word given by the RES_MAIN token. The use of this token is optional, denoted by
the ‘?” symbol. The RES_MAIN token is followed by the class reserved word and by an identifier
corresponding to the name of the class. The extendsClause rule is also optional, being called
only if the s-COMMA class owns a superclass. Then, the solving0Opts rule call is used to recognize
the solving options stated in the class. The body of the class is defined within curly brackets.
Each bracket token is postfixed with a ‘!’ symbol. Such a symbol defines the no inclusion of a
token in the ASTs. It is used for tokens giving no relevant information for the parsing process.

CHAPTER 5 — Mapping Models to Solvers 81

The body of a class is defined as a set of attributes and a set of constraint zones. Attributes
are recognized by the first rule of Figure 5.12. Such a rule states that the declaration of an
attribute begins with its consistency level. This rule call is optional and followed by the type of
the attribute. The reserved word set is next defined, it is also optional and it is used to state set
variables. The name of the variable follows as an IDENT token. Then, the optional array rule call
is used to define arrays. The domain of the variable is defined by the reserved word in followed
by a call to the domain rule. The declaration must be terminated by a semicolon symbol.

1. attribute: (consLevel)? type (RES_SET)? IDENT

2. (array)? (RES_IN! domain)? PUN_SEMI_COLON!

Z. { ## = #(#[ATTRIBUTE, "ATTRIBUTE"] ,##);} Ij CLASS. BODY

5. CJ ATTRIBUTE_SET

6. constraintZone : RES_CONSTRAINT! IDENT CJATTRIBUTE

7. BRA_CURLY_OPEN! constraintZoneBody [COMNS_LEVEL

8. BRA_CURLY_CLOSE! B trpe

9. { ## = #(#[CONSTRAINT_ZONE, B et

10. "CONSTRAINT_ZONE"],##);} |j|

11. . IDEMT

12. 3 ARRAY

13. constraintBody : (constraint|globalCons| [DOMAIN

14. compatibilityCons|sta0pt| 3 COMSTRAIMT_ZOME_SET
15. staForall|staIfElse)* 3 CONSTRAINT_ZONE
if;- ; [IDENT

18. constraint : (consLevel)? expression PUN_SEMI_COLON! Ij CONSTRAINT
19. { ##=#(#[CONSTRAINT, "CONSTRAINT"], ##);}

20. H

21.

Figure 5.12 — Parser rules of ss=COMMA.

A constraint zone declaration (line 6) must begin with the reserved word constraint given
by the RES_CONSTRAINT token. This token is followed by IDENT, which represents the constraint
zone name. The constraint zone body is defined inside curly brackets. It can be composed of
several constructs, i.e. constraints, global constraints, compatibility constraints, an optimization
statement, forall loops and conditionals. A constraint is defined as an expression, prefixed by its
optional consistency level and finished by a semicolon.

Expressions are recognized using a set of rules (see Figure 5.13), each one including one or
more operators having the same priority. The idea is to perform calls from one rule to the next
one respecting the priority of these operators (from lower to higher). Each rule is of the form a : b
(op b)*, where a is the name of the rule, b is a call to the next rule, and op is the operator. The
first rule includes the lowest priority operator (the operator priorities can be found in Table 4.1),
which corresponds to the equivalence (<->) symbol. The next rule includes the implication (->)
and reverse-implication (<-) operators. Several rules follow respecting the operator precedences.
The rule stated at line 32 deals with unary arithmetic operators. If a unary minus operator is
detected, it is not included in the AST, but the operand is captured in an additional node called
OP_UN_MINUS (this is done to improve readability of ASTs). In the case of detecting a unary plus
operator (which is optional), it is not included in the AST, but no additional node is used since
this operator has no relevance within expressions.

82 CHAPTER 5 — Mapping Models to Solvers

The last rule deals with operands. An operand may be a value (integer, real or boolean), an
identifier (e.g. a variable, a constant), an access (an access to the attribute of an object or an
access to an array), or a function (e.g. a sum loop, the cardinality of a set, etc). Finally, the
operand can also be an expression enclosed with parentheses.

1. expression : exprIMP (OP_EQV~ exprIMP)*

2. B

3. exprIMP : exprOR ((OP_IMP~|0OP_RIMP~) exprOR)*

4. B

5. exprOR . exprAND ((RES_XOR~|RES_OR~) exprAND)*] CONSTRAINT

6. ;] OF_EQv

7. exprAND : exprNot (RES_AND~ exprNot)* CJ oP IMP

8. B -

9. expNot : (RES_NOT")* exprRel O E_OR

10. ; OF_AMD

11. exprRel : exprSetRel ((OP_EQUAL-|

12. OP_DISTINCT" | |j

13. OP_LESS_THAN" | OF_PLUS
14. OP_GREATER_THAN" | [IDENT
15. OP_LESS_THAN_OR_EQUAL~| D IDEMT
16. OP_GREATER_THAN_OR_EQUAL") |j

17. exprSetRel) * OF_FLUS
18. ; [OP_AND

19. exprSetRel : exprSetOp ((OP_SUBSET~|OP_SUPERSET")] OP_OR

20. exprSet0p) * 1 aoF IMP

21. ; -

22. exprSetOp : exprSum ((OP_UNION~|OP_DIFF~|OP_SYMDIFF~) exprSum)*

23. H

24. exprSum : exprProduct ((OP_PLUS~|0OP_MINUS") exprProduct)x*

25. 5

26. exprProduct : exprInter ((OP_MULTIPLICATION~|OP_DIVISION~) exprInter)x*

27. 5

28. exprlnter : exprExpon ((OP_INTERSECT") exprExpon)*

29. H

30. exprExpon : unMinus (OP_EXPON~ unMinus)*

31. B

32. unMinus : (OP_MINUS! exprUnit)

33. { ##=#(#[0OP_UN_MINUS, "OP_UN_MINUS"], ##) ;}

34. | ((OP_PLUS!)? exprUnit)

35 . t

36. exprUnit : value|IDENT|access|functionl|

37. (BRA_ROUND_OPEN expression BRA_ROUND_CLOSE)

38. H

>

Figure 5.13 — The rule to recognize expressions.

Syntactic Errors

Let us notice that syntactic errors are automatically handled by ANTLR. When the parsing
rules are not able to match a given input string, the relevant information of the syntactic error
is gathered and displayed to the user. An example is shown in Figure 5.14. The error has been
generated from a model file having a class declaration in which the name is missing (class {).
The error message contains the file name, the line number, and the column number related to the

CHAPTER 5 — Mapping Models to Solvers 83

conflict. The paraphrase "an identifier" defined in the lexer has been used to denote IDENT
as the missing token.

Fichier Edition Affichage Terminal Onglets Aide

soto@pc-soto; ~worksp... 3 |soto@pe-soto: ~fworksp... 3 |soto@pe-soto: ~fworksp... &

soto@pc-soto:~/workspace/s-comma-0.2% ./comma testing/test.cma -
s-COMMA System Version 0.2 2008

testing/test.cma:1:7: expecting an identifier, found '{'
soto@pc-soto:~fworkspacef8-comma-0.2$ I

Figure 5.14 — A syntactic error.

5.2.2 Semantic Checking

The lexical and syntactic analysis are unable to detect all the errors appearing in a model. The
lexical analysis detects the tokens and the syntactic analysis groups these tokens into grammatical
structures. The role of the semantic analysis is to check the “meaning” of these grouped tokens
conform to the semantic rules of the language. The semantic checking is performed by exploring
the AST and by building a symbol table to store the relevant information for the checking. In
the s-COMMA architecture, the exploration of the AST is done by ANTLR top-down tree walkers.
The notation used to define the AST exploration is analogous to the one used for the AST
construction. For instance, a tree composed of a root and two child nodes can be explored by
the rule #(A b c), where A is the name of the root token and b and c are calls to the exploring
rules of the left and right subtree, respectively.

Performing the whole semantic checking process requires to combine the AST exploration
with another routines. For instance to create the table of symbols, to handle the corresponding
semantic errors, and to build intermediate representations. These routines are implemented in
Java and ANTLR permits calling them, embedded in code blocks, from the exploration rules.

Note

An intermediate representation of the ssCOMMA model is built during the semantic checking.
This intermediate representation is stored in several Java objects, which are then explored
to build the Flat ss=COMMA model. Details about code generation mechanisms can be seen in
Section 5.3.1.3.

Figure 5.15 depicts the rule to explore class definitions. The rule states that the first node
to be explored must be the reserved word class. The first child of that node corresponds to the
optional main token. Such a node is stored in a local variable called isMain, which is then used
as input parameter of the Java method call addClass. The checkMainClass method is called to
ensure that models own at most one main class. The next node to be explored corresponds to an
IDENT token, being also stored in a local variable. This local variable is the input parameter of
the setIdClass method call, which sets the id of the class in a global variable called idClass.
Such a global variable will be used in further exploration rules. In the following line, two optional
rule calls are stated. In the first one, the token of the reserved word extends is read, and the

84 CHAPTER 5 — Mapping Models to Solvers

name of the superclass is stored in idSuperClass. In the second one, the solving options are
explored and stored. At line 4, the addClass method adds the class to the symbol table and to
the intermediate representation of the model.

1 defClass : #(RES_CLASS ((isMain:RES_MAIN {this.checkMainClass()})?

2 id:IDENT {this.setIdClass(Id)}

3. (RES_EXTENDS idSuperClass:IDENT)? (sOptClass:solvingOpts)?
4, {mI.addClass(isMain,id,idSuperClass,sOptClass) ;}

5 (classBody)))

6 H

Figure 5.15 — Tree walker of ss=COMMA.

Let us note that ANTLR is unable to automatically handle the semantic errors (as it does
it for the syntactic errors), being necessary to define specific procedures to handle them. For
instance, multiple class name declarations are checked within the addClass method (see Fi-
gure 5.16). This procedure firstly tests if there is no class previously declared using the same
identifier. The id variable is a tree node containing the information of the token concerning the
name of the class to be added, and id.getText () returns the name of the class. If the condition
of the procedure is satisfied, the new class is added to model. Otherwise, an error message is
triggered. The message is formatted by the semanticError method to display the relevant error
information. The file name, the line number and the column number of the conflicting token are
obtained from id. The error message is shown in Figure 5.17.

1. public void addClass(AST isMain, AST id, AST idSuperClass, AST sOptClass) {
2. if (!'model().containsClass(id.getText())) {

3. model () .addClass (isMain,id,idSuperClass,s0OptClass) ;

4. } else {

5. Message.semanticError("redeclaration of class ’" + id.getText()

6. + " id)

7. }

8.

Figure 5.16 — A Java procedure to check class redeclarations.

Fichier Edition Affichage Terminal Qnglets Aide

soto@pc-soto: ~fworksp... 3 |soto@pc-soto: ~fworksp... 3 |soto@pc-soto: ~fworksp... &

soto@pc-soto:~/workspace/s-comma-0.2% . /comma testing/test.cma =
5-COMMA System Version 0.2 2008

testing/test.cma:5:7: redeclaration of class 'test'
soto@pc-soto:~fw0rkspacefs-comma-0.2$ I

Figure 5.17 — A semantic error.

CHAPTER 5 — Mapping Models to Solvers 85

Handling Semantic Errors in a Second Top-Down Tree Exploration

All the potential semantic errors of a model cannot be detected in one top-down tree explo-
ration. For instance, type checking cannot be performed if the information of all the classes is
unavailable in the symbol table. As an example, consider the model shown in Figure 5.18. The
tree walker begins by exploring the first class. The attribute b is recognized but the tree walker
is unable to check its type since the class B has not been explored yet. Likewise, the structure of
the access b.a cannot be checked either.

class A {

B b;

constraint cz {
b.a < 2;

}

}

class B {
int a in [0,9];
}

Figure 5.18 — Two s-COMMA classes.

A common way used in object-oriented languages is to perform a second exploration of the
AST. Figure 5.19 illustrates the rule of the second tree walker to check the type of attributes. The
method call is embedded in the type rule, which acts when the type is defined as an IDENT. The
method checks if the variable is correctly typed. There are two valid possibilities: the variable
has been typed with an enumeration or it corresponds to an object instance.

attribute : #(ATTRIBUTE ((consLevel)? type (RES_SET)? IDENT
(array)? (domain)?));

type : (TYPE_INT|TYPE_REAL|TYPE_BOOL
|id:IDENT {vI.checkObjectOrEnumType(id);});

g W N

Figure 5.19 — The rule to check attributes in the second pass.

The rule to check constraints in the second tree parser is depicted in Figure 5.20. The rule
begins by matching the CONSTRAINT node, which owns two children: the consistency level of
the constraint and an expression. The correct formation of these expressions is validated by the
checkExpression method (line 2). Finally, the constraint is stored in the intermediate repre-
sentation. Expressions are read using one big rule (line 5). Every possible operator is explored
with its corresponding child nodes, which are defined as expressions. At the end of the rule, the
potential operands are explored (value, variable, access and function). Two methods check if the
variables and the accesses have been correctly declared.

CHAPTER 5 — Mapping Models to Solvers

© 00 N O WN -

WWWWWWwWwWNNNNMNNMNMNNMNNERERRRRRRR R B
NO O WNEFE, O WO NOOOU P WNEFE,O OO WNE~ O -

value

id: IDENT {vI.checkVariable(idClass,id);}
acc: access {vI.checkAccess(idClass,acc);}

function

BRA_ROUND_OPEN expression BRA_ROUND_CLOSE

constraint : #(CONSTRAINT cLevel:consLevel exp:expression
{vI.checkExpression(exp);}
{sI.addConstraint (idClass,idConstraintZone,cLevel,exp);1});
expression

: #(0OP_EQV expression expression)
| #(0OP_IMP expression expression)
| #(OP_RIMP expression expression)
| #(RES_OR expression expression)
| #(RES_XOR expression expression)
| #(RES_AND expression expression)
| #(RES_NOT expression)

| #(0OP_EQUAL expression expression)
| #(OP_DISTINCT expression expression)
| #(OP_LESS_THAN expression expression)
| #(OP_GREATER_THAN expression expression)
| #(OP_LESS_THAN_OR_EQUAL expression expression)
| #(OP_GREATER_THAN_OR_EQUAL expression expression)
| #(RES_IN expression expression)
| #(OP_SUBSET expression expression)
| #(0OP_SUPERSET expression expression)
| #(OP_UNION expression expression)
| #(OP_DIFF expression expression)
| #(OP_SYMDIFF expression expression)
| #(OP_PLUS expression expression)
| #(OP_MINUS expression expression)
| #(OP_MULTIPLICATION expression expression)
| #(OP_DIVISION expression expression)
| #(OP_INTERSECT expression expression)
| #(0OP_EXPON expression expression)
| #(OP_UN_MINUS expression)

I

I

I

I

I

>

Figure 5.20 — The rule to check constraints in the second pass.

CHAPTER 5 — Mapping Models to Solvers 87

5.2.3 Refactoring Phase

The translation to Flat s-COMMA is carried out by applying several refactoring steps. In fact,
it is necessary to transform the modeling constructs provided by s-COMMA for which no support
exists in the solver layer. To guarantee the independence of solver translators from these complex
refactoring steps, the result of the transformation is captured in an intermediate model called
Flat s-=COMMA, from which the solver translator generates the executable solver code. The idea is
to reduce the work of the mapping tool and as a consequence to simplify the integration of new
solvers to the platform.

Flat ssCOMMA! can be seen as an unrolled version of s-COMMA, i.e. the object-oriented style is
broken (composition and inheritance relationships are refactored) to state a model just composed
of variables and constraints. The syntax to define variables and constraint is equivalent to s-
COMMA, but the amount of modeling components supported is minor. For instance, control
statements such as loops, conditionals are not provided. Enumerations and specific constructs
such as compatibility constraints are not supported.

To handle this transformation we define a set of refactoring steps. These steps have been
implemented in hand-written Java procedures, which are applied once the semantic checking
succeeds. An overview of such steps is given in the following.

Loop unrolling

This phase unrolls the forall and the sum loops. The process consists in replacing the loop
by the whole set of elements that it implicitly contains. Within expressions, the iterator variable
used by the loop statement is replaced by an integer corresponding to the current number of loop
turns. An example is depicted in Figure 5.21, the loop belonging to the inside constraint zone
of the packing squares problem is shown on the left column of the figure, the unrolling result is
shown on the right one.

//s-COMMA //Flat s-COMMA

forall(i in 1..squares) { x[1] <= sideSize - size[1] + 1;
x[i] <= sideSize - size[i] + 1; y[1] <= sideSize - size[1] + 1;
y[i] <= sideSize - size[i] + 1; x[2] <= sideSize - size[2] + 1;

} y[2] <= sideSize - size[2] + 1;

Figure 5.21 — Loop unrolling.

Enumeration substitution

In general, solvers do not support non-numeric values. So, the enumerations are replaced by
integer values. In Figure 5.22, the enumeration size used as type for the attribute base of the
class CrankCase is replaced by the domain [1,3]. The value small is represented by the integer
1, the value medium is replaced by the integer 2, and large by the integer 3. Let us note that
the original values are stored to give the results in the initial format.

!The grammar of Flat s-COMMA can be found in the appendix.

88 CHAPTER 5 — Mapping Models to Solvers

enum size := {small,medium,large};
size base in [1,3];

Figure 5.22 — Enumeration substitution.

Data substitution

In this step, every data variable used in the model is replaced by its corresponding value
defined in the data file.

Composition flattening

This step eliminates the hierarchy generated by object compositions. The process is done by
expanding each object declared in the main class adding its attributes and constraints in the Flat
s-COMMA file. The name of each attribute has a prefix corresponding to the concatenation of the
names of objects of origin in order to avoid name redundancy. The expansion of objects cCase
and cSyst of the engine problem is shown in Figure 5.23.

size cCase_base_;

int cCase_oilVesselVol_;

int cCase_bombePower_;

int cCase_volume_;

int cSyst_quantity_ in [2,12];
int cSyst_distBetCyl_ in [3, 18];
flow cSyst_inj_gasFlow_;

volume > cCase_volume_;

Figure 5.23 — Composition flattening.

Array containing objects are decomposed into a set of arrays, one for each attribute of the
object. If the attribute of the object also corresponds to an object, the array is decomposed
again. For instance, in the packing squares problem, the array of objects called s is decomposed
into three arrays, one for each attribute. The name of each variable is composed of the name of
the array (s) and the name of the attribute. The value 8 in the size of arrays and the value 5 in
the variables’ domain come from the data substitution of the constant squares and the constant
sideSize, respectively. The domain of s_size_[8] corresponds to the size of squares given by
the variable assignment of the model.

int s_x_[8] in [1,5];
int s_y_[8] in [1,5];
int s_size_[8] in [1,3];

Figure 5.24 — Flattening arrays containing objects.

CHAPTER 5 — Mapping Models to Solvers 89

Conditional removal

Conditional statements are transformed to logical formulas. For instance, if a then b else
c is replaced by (a = b) A (a V ¢) (see Figure 5.25). If the statement condition is composed of
constant values the statement is evaluated and the useless constraint are removed. An example
is shown in Figure 5.26.

//s-COMMA //Flat s-COMMA

if (quantity = 6) ((quantity = 6) -> (distBetCyl > 6)) and
distBetCyl > 6; ((quantity = 6) or (distBetCyl > 3));

else

distBetCyl > 3;

Figure 5.25 — Conditional removal.

//Data File //After Data substitution
n :=1; if (2 < 4) {
s = 2; x < 1;
y<1;
//Model file } else {
. x < 2;
if (2<1+n+s)A{ y < 2;
x < 1; }
y < 1;
} else { //After evaluation
x < 2; x < 1;
y < 2; y<1;
}

Figure 5.26 — Conditional evaluation.

Compatibility removal

Compatibility constraints are also translated to a logical formula. We create a conjunctive
boolean expression for each n-tuple of allowed values. Then, each constraint of the n-tuple is sta-
ted in a disjunctive constraint. The transformed compatibility constraint of the Engine problem
is shown in Figure 5.27. Non-numeric values were replaced by the corresponding integer values
in the enumeration substitution step.

//s-COMMA //Flat s-COMMA

compatibility ((gasFlow=1) and (admValve=1) and (pressure=80)) or
(gasFlow,admValve,pressure) { ((gasFlow=1) and (admValve=2) and (pressure=90)) or
("direct", "small", 80); ((gasFlow=2) and (admValve=2) and (pressure=100)) or
("direct", "medium", 90); ((gasFlow=2) and (admValve=3) and (pressure=130));

("indirect", "medium", 100);
("indirect", "large", 130);

Figure 5.27 — Compatibility removal.

90 CHAPTER 5 — Mapping Models to Solvers

Logic formulas transformation

Some logic operators are not supported by solvers. For example, logical equivalence (a < b)
and reverse implication (a < b). We transform logical equivalence expressing it in terms of logical
implication ((a = b) A (b = a)). Reverse implication is simply inverted (b = a).

Expression evaluation

In this step we evaluate expressions composed of constants in order to reduce them and/or
to eliminate useless constraints. Figure 5.28 illustrates the evaluation of an expression containing
arithmetic and logic operators. Since the resulting value of the expression has no impact on the
model, the constraint is removed.

(((1+1) < (1+1)) and ((1+1) < (1+1))) -> ((((1+1) < (1+1)) and ((1+1) < (1+1)))
(2 < 2) and (2 < 2)) -> ((2 < 2) and (2 < 2))

(false and false) -> (false and false)
false -> false
true

Figure 5.28 — Expression evaluation.

5.2.3.1 A Flat s-COMMA model

To exemplify some of these refactoring steps, we illustrate the resultant Flat ss=COMMA model of
the stable marriage problem (see Figure 5.29). The model is composed of four blocks: variables,
constraints, enumeration types, and solving options. Within the variables block, the whole set
of arrays has been generated from the composition flattening step. The array man_wife_ (line
3) contains the decision variables wife of the original array man, and the array woman_husband_
(line 9) contains the decision variables husband of the original array woman. The size of the array
man_wife_ has been set to 5, this value is given by the enumeration substitution step which sets
the size of the array with the size of the enumeration menList. The domain [1,5] has been also
produced by this step. The type of both arrays has been maintained to give the solutions in the
enumeration format. These values are stored in the block enum-types. The arrays stated from
lines 4 to 8 and 10 to 14 contain the ranking values for each man and women, respectively.

The constraints posted between lines 18 and 25 come from the loop unrolling phase of the
forall statements of the matchHusbandWife constraint zone. Likewise, lines 28 to 36 have been
generated by the loops of forbidUnstableCouples. Within these constraints, the data substi-
tution step has replaced several constants with their corresponding integer values. At the end
of the file, the solving options are stated. Since no solving option was defined in the s-COMMA
model, the default solving option is stated.

CHAPTER 5 — Mapping Models to Solvers

91

variables:

1

2

3 womenList man_wife_[5] in [1,5];

4. int man_1_rank_[5] in [1,5];

5. int man_2_rank_[5] in [1,5];

6 int man_3_rank_[5] in [1,5];

7 int man_4_rank_[5] in [1,5];

8 int man_5_rank_[5] in [1,5];

9. menList woman_husband_[5] in [1,5];
10. int woman_1_rank_[5] in [1,5];

11. int woman_2_rank_[5] in [1,5];

12. int woman_3_rank_[5] in [1,5];

13. int woman_4_rank_[5] in [1,5];

14. int woman_5_rank_[5] in [1,5];

15.

16. constraints:

17.

18. woman_husband_[man_wife_[1]]=1;

19. woman_husband_[man_wife_[2]]=2;

20. woman_husband_[man_wife_[3]]1=3;

21.

22.

23. man_wife_[woman_husband_[1]]=1;

24. man_wife_[woman_husband_[2]]1=2;

25. man_wife_[woman_husband_[3]]=3;

26.

27.

28. 5<man_1_rank_[man_wife_[1]] ->

29. woman_1_rank_[woman_husband_[1]]<1;
30. 1<woman_1_rank_[woman_husband_[1]] ->
31. man_1_rank_[man_wife_[1]]1<5;

32.

33. 1<man_1_rank_[man_wife_[1]] ->

34. woman_2_rank_[woman_husband_[2]]<3;
35. 3<woman_2_rank_[woman_husband_[2]] ->
36. man_1_rank_[man_wife_[1]]1<1;

37.

38.

39. enum-types:

40.

41, menlList := {Richard,James,John,Hugh,Greg};
42, womenList := {Helen,Tracy,Linda,Sally,Wanda};
43.

44. solving-opts: default;

Figure 5.29 — A Flat sCOMMA model of the stable marriage problem.

92 CHAPTER 5 — Mapping Models to Solvers

5.3 From Flat s-COMMA to solvers

The transformation from Flat ssCOMMA toward the solver model is performed via the map-
ping tool of the platform. Two kinds of translators have been built for this mapping tool (see
Figure 5.30). The first ones belong to a previous version of our platform, and they have been
written by hand in Java (HW) with the support of the ANTLR tool for parsing the Flat s-COMMA
file. The second ones belong to the last implementation of the platform, and they have been
implemented using a model-driven (MD) approach. Both kinds of translators are presented and
compared in the following sections.

Flat s-COMMA
Model

v

Mapping Tool

HW Approach MD Approach

Code Parsing N Code

Parsing | » . .
Generation Generation

v v
Solver Solver
Model Model

Figure 5.30 — The mapping tool.

5.3.1 Hand-Written Translators

The generation of solver files through our Java hand-written translators requires a prior par-
sing of the Flat s-COMMA model. We carry out this process using the same tools as in the previous
phase. An ANTLR lexer and an ANTLR parser perform the parsing process and produce the
corresponding AST. This AST is then explored by an ANTLR tree walker in order to generate
the intermediate representation from which the translator builds the target file.

5.3.1.1 Parsing

The lexical analysis is the first phase of the parsing process. A portion of the ANTLR lexer
to perform this task is shown in Figure 5.31. Such a file is very similar to the one of ssCOMMA.
Let us note that the options testLiterals and paraphrase are not included in the IDENT token,
as there is no need to check for ambiguities and to show error messages at this stage.

Note
A Flat s-COMMA model is automatically generated from a syntactically and semantically correct
s-COMMA model, being unnecessary to re-analyze it.

CHAPTER 5 — Mapping Models to Solvers 93

1. tokens

2. A

3. RES_VARIABLES = "yvariables"

4. RES_CONSTRAINTS = "constraints" ;
5. RES_ENUM_TYPES = "enum-types"

6. RES_SOLV_OPT = "solving-opts" ;
7. RES_AND = "and" ;
8.

9. }

10.

11. IDENT

12. : (LETTER|’_’) (LETTER|DIGIT|’_’)*
13. 5

14.

Figure 5.31 — Tokens and the IDENT rule in the ANTLR lexer of Flat ssCOMMA.

Figure 5.32 illustrates the rule to parse a Flat ss=COMMA model (line 1). Four optional rule
calls define the composition of a Flat s-COMMA model. The first rule call recognizes the variables,
the second one the constraints, the third one the enumeration types, and the final one the
solving options of the model. The resulting AST is captured in a root node called MODEL. The
corresponding rules to parse the set of variables and the set of constraints are depicted below.

1. model : (variableSet)? (constraintSet)?

2. (enumSet)? (solvingOpts)? I MODEL

3. {## = #(#[MODEL, "MODEL"] ,##);} 3 ¥ARISBLE_SET
4. H I COMSTRAINT_SET
5.] ENUM_SET

6. variableSet : RES_VARIABLES! PUN_COLON! (variable)* I SOLVING_OPTS
7. { ## = #(#[VARIABLE_SET, "VARIABLE_SET"] ,##);};

8.

9. constraintSet : RES_CONSTRAINTS! PUN_COLON! constraintSetBody

10. { ## = #(#[CONSTRAINT_SET, "CONSTRAINT_SET"] ,##);};

Figure 5.32 — Parser rules of Flat s-=COMMA.

The rules to recognize variables and constraints are illustrated in Figure 5.33. The variable
rule is very similar to the attribute rule defined in s-=COMMA. The body of a constraint block
may be composed of three kinds of model components: a constraint, a global constraint, or an
optimization statement.

Note

The optional consLevel rule call is absent in the variable rule since the consistency level option
can only be specified on objects, which do not participate in Flat s-COMMA. The composition
flattening phase has eliminated them.

94 CHAPTER 5 — Mapping Models to Solvers

1. variable : type (RES_SET)? IDENT (array)?

2. RES_IN! domain PUN_SEMI_COLON!] wARIABLE_SET
3. { ## = #(#[VAR, "VAR"] ,##);} [VARIABLE

4. B [3 type

5. [set

6. constraintSetBody : (constraint|globalCons|staOpt)* [IDENT

7. H] ARRAY
8. [DOMAIN
9. constraint : (consLevel)? expression PUN_SEMI_COLON! [CONSTRAINT_SET
10. { ##=#(#[CONSTRAINT, "CONSTRAINT"], ##) ;} [COMSTRAINT
11. H

Figure 5.33 — Parser rules of Flat ss=COMMA.

5.3.1.2 Exploring the AST

Once the AST has been built, it must be explored to generate the intermediate representation.
Figure 5.34 depicts three rules of the tree walker to explore the Flat ssCOMMA AST. As we have
mentioned, no semantic checking is needed, so Java methods embedded in rules are just used to
generate the intermediate representation.

1 model : #(MODEL (variableSet)? (constraintSet)?
2 (enumSet)? (solvingOpts)?)

3 H

4.

5. variableSet : #(VARIABLES (variable)*)

6 H

7

8 variable : #(VAR (t:type (set:RES_SET)? idVar:IDENT
9. (arr:array)? dom:domain

10. {vI.addVar(t,set,idVar,arr,dom);}))

11. B

Figure 5.34 — Tree walker of Flat ss=COMMA.

5.3.1.3 Code Generation

After the exploration of the AST, the intermediate representation is ready to be examined
by the solver translators. The translators are organized in four Java files. One for the code ge-
neration of variables, one for the code generation of constraints, one to format variable names
and a main file to generate the headers and specific procedures for the solver file. Figure 5.35
shows the initial procedure of the Gecode/J translator main file. This procedure calls each one
of the methods required to build the code representing the Gecode/J model: to create the file, to
build the headers, to build the constructors, to build the code for showing the results, to build
the main method of the file, and finally to close the file.

CHAPTER 5 — Mapping Models to Solvers 95

1 public void buildFile() {
2 createFile();

3 buildHeader() ;

4. buildConstructor();

5. buildCopyConstructor() ;
6 buildResults();

7 buildMain() ;
8 closeFile();
9

Figure 5.35 — The initial procedure of the main Java class of the Gecode/J translator.

The procedure to write the constructor of the Gecode/J model is shown in Figure 5.36. In the
constructor, the variables and constraint of the problem are posted. decVars.translate() (line
6) generates the variables and constraints.translate() (line 7) generates the constraints. At
line 8, the solving options for the resolution process are given. The method println is used to
write strings on the file and nL to write a newline character.

1 public void buildConstructor() {

2 println(" public " + className + "(Options opt) {");
3 println(" super() ;") ;

4 println(" vars = new VarArray<IntVar>();");

5. nL();

6. println(decVars.translate());

7 println(constraints.translate());

8 println(" branch(this, vars," + buildSolvingOptions() + ");");
9. println(" 3}");

10. nL();

1. }

Figure 5.36 — Code generation of the Gecode/J constructor.

Figure 5.37 illustrates a method for the code generation of a one dimensional array (vector)
containing Gecode/J decision variables. The declaration of a vector begins with the type of the
Java variable (VarArray<IntVar>) followed by its name. The name is obtained from the decVar
object, which was generated in the intermediate representation. Then, the initialize method
is used to set four parameters of the vector, e.g. its name (to show the results), its size, and the
lower and the upper bounds of its domain. Finally, the new vector is added to a global array for
performing the labeling process (vars.addAll).

The code generation of constraints is more complicated since they may be composed by
several elements. This phase is handled by representing the constraints in the form of a tree. An
ANTLR tree walker explores this tree and performs calls to the necessary methods to transform
the nodes of the tree into the solver code. Figure 5.38 depicts the ANTLR constraint tree walker.

Constraint are explored in the same way as in the semantic checking of s-=COMMA. Each ope-
rator and operand stated in the rule includes a method call to a code generation procedure. The
methods to generate the code of an addition and a distinct relation are depicted in Figure 5.39.
The constraints are systematically generated and stored in a data structure called codeStore,
which is then read by the main translator file to write the constraints in the solver program.
For instance, the expression a + b is generated as new Expr(a).p(b), where p represents the

96 CHAPTER 5 — Mapping Models to Solvers
1. public StringBuffer integer(FlatVectorDecVar decVar) {
2.
3. StringBuffer str = new StringBuffer();
4. str.append(" VarArray<IntVar> "); — » VarArray<IntVar> man_wife_ =
5. str.append(decVar.getName()); A initialize("man_wife_",5,1,5);
6. str.append(" = initialize(\""); A r
7. str.append(decVar.getName());
8. str.append("\",");
9. str.append(decVar.getSize());
10. str.append(",");
11. str.append(decVar.getIntLowerBound());
12. str.append(",");
13. str.append(decVar.getIntUpperBound());
14. str.append(");\n");
15. str.append(" vars.addAll(");
16. str.append(decVar.getName());
17. str.append(");\n");
18. return str;
19. }
Figure 5.37 — Code generation of Gecode/J variables.
1. expression
2. : #(0OP_EQV expression expression) {eT.equivalence();}
3. | #(0OP_IMP expression expression) {eT.implicance();}
4. .
5. | #(OP_DISTINCT expression expression) {eT.distinct();}
6. | #(OP_LESS_THAN expression expression) {eT.less();}
7. .
8. | #(OP_PLUS expression expression) {eT.plus();}
9. | #(0OP_MINUS expression expression) {eT.minus();}
10. | #(OP_MULTIPLICATION expression expression) {eT.mult();}
11. | #(OP_DIVISION expression expression) {eT.div();}
12. | #(OP_INTERSECT expression expression) {eT.intersect();}
13. | #(0OP_EXPON expression expression) {eT.expon();}
14. | #(OP_UN_MINUS expression) {eT.unMinus();}
15. | val: value {eT.addValue(val);}
16. | id: IDENT {eT.addIdent (id);}
17. | acc: access {eT.addAccess(acc) ;}
18. | f:function {eT.addFunction(f) ;}
19. | BRA_ROUND_OPEN expression BRA_ROUND_CLOSE
20. 5

Figure 5.38 — The tree walker for the code generation of constraints.

CHAPTER 5 — Mapping Models to Solvers 97

‘+’ operator and the operands are obtained from codeStore. Relations are generated using the
post method. For instance, a <> b is generated as post(this, new Expr(a),IRT_NQ, new
Expr (b)), IRT_NQ being the not equal operator.

1 public void plus() {

2 StringBuffer str = new StringBuffer();

3 str.append("new Expr("); » new Expr(a).p(b)

4. str.append(codeStore.getCode()); A T T

5. str.append(").p(");

6 str.append(codeStore.getCode());

7 str.append(")");

8. codeStore.add(str);

9. }

10.

11. public void distinct() {

12, StringBuffer str = new StringBuffer();

13. str.append("post(this, new Expr("); — > post(this, new Expr(a),IRT_NQ, new Expr(b))
14. str.append(codeStore.getCode()); A T
15. str.append("),IRT_NQ, new Expr(");

16. str.append(codeStore.getCode());

17. str.append("))");

18. codeStore.add(str);

19. }

Figure 5.39 — Two procedures for the code generation of constraints.

5.3.1.4 A Gecode/J model generated from Flat s-COMMA

Figure 5.40 depicts an extract of the Gecode/J file generated for the stable marriage problem.
The initial lines state the headers (package and import statements) of the Gecode/J model. The
man_wife_ array is defined at line 5, being initialized with size 5 and domain [1,5]. At line 6,
this array is added to a global array called vars in order to perform the labeling process. Lines 11
and 12 illustrate two constraints, which are stated by means of the post method. The get(a,b)
method returns an element of an array, a being the array and b the position of the element. The
IRT_EQ parameter represents the equality operator.

1 package comma.solverFiles.gecodej;

2 import static org.gecode.Gecode.*;

3

4

5. VarArray<IntVar> man_wife_ = initialize("man_wife_",5,1,5);

6 vars.addAll (man_wife_);

7

8 VarArray<IntVar> woman_husband_ = initialize("woman_husband_",5,1,5);

9. vars.addAll (woman_husband_) ;

10.

11. post(this, new Expr(get(woman_husband_,get (man_wife_,1))),IRT_EQ, new Expr(1));
12. post(this, new Expr(get(woman_husband_,get (man_wife_,2))),IRT_EQ, new Expr(2));
13.

Figure 5.40 — A Gecode/J model of the stable marriage problem.

98 CHAPTER 5 — Mapping Models to Solvers

5.3.2 Model-Driven Translators

Model-driven translators have been developed using a general model-driven transformation
framework. Under this approach, the development of languages is seen from another point of view.
A language is not defined by means of grammars and regular expressions. Languages are defined
via metamodels and concrete syntax tools. The metamodel specifies the concepts appearing in
a language and the concrete syntax tool defines how these concepts appear in the syntax of the
language.

A model-driven transformation framework allows us to define a transformation from a source
language to a target one using a Model-Driven Architecture (MDA) [26w] (see Figure 5.41). The
level M1 holds the model. The level M2 describes the semantics of the level M1 and thus identifies
concepts handled by this model through a metamodel. The level M3 is the specification of the
level M2 and it is self-defined. Transformation rules are defined to translate models from a source
model to a target one, the semantics of these rules is also defined by a metamodel.

M3 MetaMetaModell

P

conf arnsTo

MetaModel
Transformation

MetaModel A MetaModel B
conf arnsTo

M1

fi

4o

Transformation A-to-B

conf arnsTo confgrmsTo

Figure 5.41 — A general MDA for model transformation.

The implementation of this approach in our platform is illustrated in Figure 5.42. The Flat
s-=COMMA corresponds to the source model and its semantics is defined by its metamodel. The
translation to the target language is performed by transformation rules. These rules carry out the
transformation process by matching the concepts of the Flat s=COMMA metamodel to the concepts
of the solver metamodel.

M2 -
Matching Rules
[Flat s-COMMA MetaModel] Solver MetaModel
confornsTo

Transformation

conf gr msTo conf or msTo

[Flat s-COMMA Model] .. Solver Model

Figure 5.42 — Model-driven translation in s-COMMA.

CHAPTER 5 — Mapping Models to Solvers 99

Remark

A major strength of using this metamodeling approach is that models are concisely represented
by metamodels. This allows one to define transformation rules that only operate on the concepts
of metamodels (at the M2 level of the MDA approach), not on the concrete syntax of a language.
Syntax concerns are defined independently (we illustrate this in Section 5.3.2.4). This separation
is a great advantage for a clear definition of transformation rules and syntax descriptions, which
are the base of our mapping tool.

5.3.2.1 Metamodeling

The metamodeling phase is carried out by using the KM3 language [JB06] (Kernel Meta Meta
Model). Such a language supports most metamodeling standards and it is based on the simple
notion of classes to define each one of the concepts of a metamodel. These concepts are needed
to define the transformation rules and also to generate the target files. Figure 5.43 illustrates the
main concepts of the Flat sCOMMA metamodel. The concepts expressed in KM3 are shown on
the left side of the figure and the corresponding metamodel using UML class diagram notation
is depicted on the right side.

1. class Model {
2. attribute name : String;
3. reference variables [0-*] container : Variable;
4. reference constraints [0-*] container : ConstraintStatement;
5. reference enumTypes [0-*] container : EnumType;
6. reference solvingOpts [0-3] container : SolvingOpt;
o
8. *
9. class Variable { \ |
10. attribute name : String; [EnumType} {SOM”QOP‘}
11. attribute type : String;
i .YP g ’#‘
12. attribute isSet : Boolean; { } [-
. Domain Array} {ConstralntStateme%t

13. reference array [0-1] container : Array;

. contal A T
14. reference domain container : Domain; [[\
15. } Const ﬂ Global OptStatemen}
16 oS | constrain
17. class Array {
18. attribute row : Integer;
19. attribute col [0-1] : Integer;
20. }

Figure 5.43 — An extract of the KM3 file of Flat ss=COMMA.

In the metamodel, a Flat s=COMMA model is defined by the Model concept. This concept is
composed of one attribute and four references. The attribute name at line 2 represents the name
of the model and it is declared with the basic type String. Line 3 states that the class Model is
composed of a set of objects from the class Variable. The reserved word reference is used to
define relationships with instances of other classes. The statement [0-*] defines the multiplicity
of the relationship. If the multiplicity statement is omitted the relationship is defined as [1-1].
Lines 4 to 6 are similar and define that the class Model is also composed of constraints,

100 CHAPTER 5 — Mapping Models to Solvers

enumTypes, and solvingOpts. Three solving options can be defined: variable ordering, value
ordering and the consistency level used. The class Variable is composed of three attributes and
two references. The first attribute defines the name of the variable and the following its type. The
third attribute is a boolean value used to specify set variables. The reference stated at line 13 is
used to define arrays of variables. The declaration of the Variable class ends with the reference
to state the domain. At line 17, the Array class is composed of two attributes. The first one is
used to define the array row size, while the second one used to define the array column size.

A constraint statement is specialized in three concepts: Constraint, GlobalConstraint and
OptStatement. The KM3 defining the composition of the Constraint concept is illustrated
in Figure 5.44. It consists of an Expression concept and an optional attribute to specify its
consistency level. Two kinds of expressions can be identified, binary and unary expressions. The
class to define binary expressions is stated at line 12. This class contains two references, left
corresponds to the left operand and right to the right operand of an expression. Both operands
are also expressions. At line 17, the class to define unary expressions is defined, just one operand
is required. The attribute to define the operator in unary and binary expressions is inherited
from the ExpOperator class (line 8).

1. class Constraint extends ConstraintStatement {

2. attribute consLevel [0-1] : String;

Z) reference assertion container : Expression;

5.

?. abstract class Expression {}

8. abstract class ExpOperator extends Expression {

9. attribute name : String;
10. } |

11. ! |
12. class BinaryExpression extends ExpOperator { [BinaryExpressiorj [UnaryExpressio
13. reference left container : Expression;

14. reference right container : Expression;

15. '}

16.

17. class UnaryExpression extends ExpOperator {

18. reference left container : Expression;

19. }

Figure 5.44 — Constraints in the KM3 file of Flat s=COMMA.

An expression may have three kinds of operands: a value, a variable, or a function. In Fi-
gure 5.45, the classes to define the values are stated between lines 1 and 9. The class to define
variables as operands follows. Such a class is named VariableOccurrence and it is composed of
one attribute and two references. The declaration attribute contains the name of the variable
occurrence, and the references are used for array occurrences. The i reference is used for the
array row index and j for the array column index. Both indexes are defined through expressions.
At the end, the class to define function calls (e.g. the cardinality of a set) is stated. Its name and
its input parameters are given.

CHAPTER 5 — Mapping Models to Solvers 101

1. abstract class Value extends Expression {}
2.
3. class IntValue extends Value {
4. attribute value : Integer; Expressio
5. } L. | t] ’J
6. [VariableOccurenc} [Value} [FunctionCaIﬂ
7. class RealValue extends Value {
8. attribute value : Double;
[ImvmueJ [Remvmu%
9. 1}
10.
11. class VariableOccurrence extends Expression {
12. attribute declaration : String;
13. reference i [0-1] container : Expression;
14. reference j [0-1] container : Expression;
15. }
16.
17. class FunctionCall extends Expression {
18. attribute name : String;
19. reference parameters[*] container : Expression;
20. }

Figure 5.45 — Operands in the KM3 file of Flat s-=COMMA.

5.3.2.2 Transformation Rules

The transformation rules to define the mapping between Flat s-COMMA and the solver language
are implemented in ATL (Atlas Transformation Language). This language is strongly based on
OCL [#87], and supports most of its functions and its types. The ATL rules are able to perform
a transformation by defining how the concepts are matched from source to target metamodels.
Figure 5.46 shows an ATL rule to transform the concepts of the Flat s-COMMA metamodel to the
concepts of the Gecode/J metamodel. The Gecode/J metamodel is omitted here since it is very
similar to the Flat ss=COMMA metamodel.

1. rule ModelToModel {

2. from

3. s : FlatsComma!Model (

4.)

5. to

6. t : GecodeJ!Model(

7. name <- s.name,

8. variables <- s.variables,
9. constraints <- s.constraints,
10. enumTypes <- s.enumTypes,
11. solvingOpts <- s.solvingOpts
12.)

13. }

Figure 5.46 — ATL rules for the Flat ss=COMMA to Gecode/J transformation.

102 CHAPTER 5 — Mapping Models to Solvers

Remark

Flat ssCOMMA has been designed to be as close as possible from the solving level. This ensures
the Flat s-COMMA metamodel to be very close to solver metamodels. This is a great advantage
since translation rules become simple: we mainly need one to one transformations.

The transformation rule is called ModelToModel and it defines the matching between the
concepts Model expressed in Flat sCOMMA and Gecode/J. The source elements are stated with
the reserved word from (line 2) and the target ones with the reserved word to (line 5). These
elements are declared like variables with a name (s,t) and a type corresponding to a class in
a metamodel (FlatsComma!Model, GecodeJ!Model). In the target part of the rule, the name
attribute of the Flat s-=COMMA problem is assigned to the Gecode/J name (name <- s.name),
this matching corresponds to a simple string assignment. The following four matchings are as-
signments between concepts that are defined as reference in the metamodel. Handling these
matchings requires to define additional rules. For instance, the Flat sCOMMA KM3 metamodel
defines that the reference variables corresponds to a set of Variable elements. Thus, the state-
ment variables <- s.variables implicitly calls the rule VariableToVariable, which defines
the matching between the elements contained in Variable objects. The VariableToVariable
rule is depicted in Figure 5.47, such a rule matches five elements. The first two statements are
string assignments, the third one is a boolean assignment, and the remaining ones are reference
assignments. The first reference assignment matches Array objects while the second one matches
Domain objects. The rule to match arrays can be seen on the right side of the figure.

1. rule VariableToVariable { 14. rule ArrayToArray {

2 from 15. from

3 s : FlatsComma!Variable (16. s : FlatsComma!Array
4) 17. to

5. to 18. t : GecodeJ!Array(

6 t : GecodeJ!Variable (19. row <- s.row,

7 name <- s.name, 20. column <- s.column
8. type <- s.type, 21.)

9. isSet <- s.isSet, 22. }

10. array <- s.array,

11. domain <- s.domain

12.)

13. }

Figure 5.47 — ATL rules for the Flat ss=COMMA to Gecode/J transformation.

Although the rules used here are not complex, ATL is able to perform more difficult rules.
For instance, the most difficult rule we defined, was the transformation rule from Flat s-COMMA
matrices containing sets, which must be unrolled in the ECL!PS® models (since set matrices are
not supported). This unroll process is carried out by defining a single set in ECL!PS® for each
cell in the matrix. The name of each single variable is composed of the name of the matrix,
and the corresponding row and column index. Let us note that this procedure includes calls to
ATL helpers, which are used to define specific functions. ATL helpers can be seen as the ATL
equivalent to Java methods.

CHAPTER 5 — Mapping Models to Solvers

103

O 00 N O WN -

WWWWWWwWwWNNNNMNNMNMNNMNDRERRRERRRRB B B
N U WNEFE, O WO NOOU P WNEFE, O OONOO WN- O -

rule ModelToModel {
from
s : FlatsComma!Model (
s.hasSetMatrix

to
t : ECLiPSe!Model (
name <- s.name,
constraints <- s.constraints,
enumTypes <- s.enumTypes,
solvingOpts <- s.solvingOpts
)
do {
t.variables <- s.variables->collect(el
if e.isSetMatrix() then
thisModule.getMatrixCells(e)->collect (f|
thisModule.SetMatrixVariableToVariable(f.var,f.i,f.j)
)
else
e
endif
)->flatten();

rule SetMatrixVariableToVariable(var : FlatsComma!Variable,
i : Integer, j : Integer) {
to
t : ECLiPSe!Variable(
name <- var.name + i.toString() + ’_° + j.toString() + ’_’,
type <- var.type,
domain <- var.domain
)
do {
t;
}
}

Figure 5.48 — ATL rules for decomposing matrices containing sets.

104 CHAPTER 5 — Mapping Models to Solvers

Figure 5.48 depicts the rules for handling the matrix transformation. The rule ModelToModel
is stated at the beginning of the file. It holds a condition (line 4), which calls the helper
hasSetMatrix to check whether set matrices are defined in the model. If the condition is true,
name, constraints, enumTypes, and solvingOpt are matched normally, but variables has a
special procedure to decompose the set matrix. This procedure begins at line 13 with a do block.
In this block, the collect loop iterates over the variables. Then, each of these variables (e)
is checked to determine whether it has been defined as a set matrix (line 15). If this occurs,
the helper getMatrixCells(e) calculates the set of tuples corresponding to all the cells of the
matrix (thisModule is used to explicitly call helpers or rules). Each tuple is composed of the
Flat ss=COMMA variable (f.var), a row index (f.i) and a column index (f.j). Then, the rule
SetMatrixVariableToVariable is applied to each tuple in order to generate the ECL!PS® va-
riables. This rule has no source block since the source elements are the input parameters. The
rule sets to the attribute name, the concatenation of the name of the matrix with the respective
row (i.toString()) and column (j.toString()). Attributes type and domain are also matched.
Finally, flatten() is an OCL inherited method used to match the generated set of variables
with t.variables.

5.3.2.3 Code Generation

The code generation process is also performed using the ATL language. An ATL query is
defined to create a new target file and to call a set of ATL helpers. These helpers are able to
combine the metamodel elements with the syntax of the target language in order to generate the
string to be written in the target file. Figure 5.49 depicts the helper for the code generation of a
one dimensional Gecode/J array.

helper context GecodeJ!Variable def: toString2() :
if thisModule.isVector(self) then
’VarArray<IntVar> ’ + » VarArray<IntVar> man_wife_ =

>

self .name + A initialize("man_wife_",5,1,5);

’ = initialize(\"’ + A T
self .name +

’\",? + self.array.toString2() +
’,? + self.domain.toString2()+’);\n’ +
’ vars.addA11(’ + self.name + ’);\n’

H © 00 ~NO®U D WN-

Figure 5.49 — ATL helper to generate a Gecode/J vector.

The header of the helper is declared at line 1, its name is toString2 and it is defined for
the GecodeJ!Variable concept. A condition, at line 2, checks if the current object (self) is
a one dimensional array. If so, the code of the Gecode/J vector declaration is generated. The
self .name statement gets the name of the variable, and self.array.toString2() calls a helper
to get the string representing the array dimensions. Analogously, self.domain.toString2()
generates the string corresponding to the domain. At the end, the array is added to the global
array for performing the labeling process.

The code of constraints is generated in a very similar manner. For instance, the helper to
generate the code of an addition in binary expressions is shown in Figure 5.50. The helper
appends the left and the right part of the expression with the necessary operators for building
the addition expression. Let us notice that left and right are defined as expressions in the

CHAPTER 5 — Mapping Models to Solvers 105

metamodel. Thus, if the operands of a binary expression are also formed by binary expressions,
the ATL engine performs a recursive call to this helper so as to build the whole expression.

1. helper context GecodeJ!BinaryExpression def: toString2() : String=

2. if (self.name = ’+’)

3. ‘new Expr(’ + » new Expr(a).p(b)
4. self.left.toString2() +)’ + A T T
5. ‘.p? +

6. ’(? + self.right.toString2() +)’

7.

Figure 5.50 — ATL helper to generate an addition.

5.3.2.4 Parsing

TCS (Textual Concrete Syntax) [JBKO06] is the language used to parse the Flat s-COMMA
file. This process is achieved by bridging the Flat s-COMMA metamodel with the Flat s-=COMMA
syntax. Figure 5.51 shows an extract of the TCS file for Flat s-COMMA. Each class of the Flat
s-COMMA metamodel has a dedicated template declared with the same name. Within templates,
words between double quotes are tokens in the grammar (e.g. "variables", ":"). Words without
double quotes can be seen as template calls, being used to introduce the corresponding list of
concepts. For instance, the Model template defines the syntactic structure of a Flat s-COMMA mo-
del. The four blocks of a Flat ssCOMMA model are defined (variables, constraints, enum-types,
and solving-opts). The isDefined function is used to state that the block is optional. For ins-
tance, ‘isDefined(variables) 7’ is stated to parse the variables block only if the model contains
variables. After this conditional statement, the syntactic structure of the variables block is de-
fined. It begins with the reserved word "variables" followed by a colon token and by a call to
the Variable template. Let us notice that the TCS compiler is able to perform this call since
variables is defined as a reference to Variable objects in the KM3.

1. template Model

2. : (isDefined(variables) ? "variables" ":" variables) ____ ,variables :

3. (isDefined(constraints) ? "constraints" ":" constraints)

4. (isDefined(enumTypes) ? "enum-types" ":" enumTypes)

5. (isDefined(solvingOpts) ? "solving-opts" ":" solvingOpts)

6. H

7.

8. template Variable int set foo[6] in [1,5];
9. : type A T LJ
10. (isSet ? "set") T

11. name

12. (isDefined(array) ? array)

13. "in" domain ";"

14.

15.

16. template Array

17. : "[" row (isDefined(col) ? "," col) "I"

18.

Figure 5.51 — Three templates of the TCS file of Flat s-=COMMA.

106 CHAPTER 5 — Mapping Models to Solvers

The Variable template defines the syntactic structure of a variable declaration, which begins
with the type of the variable followed by a conditional structure (isSet? "set"). This condi-
tional structure permits the use of an optional token set for defining set variables. If the set
token is encountered in the variable declaration, the isSet attribute of the metamodel is set to
true. Then, the name of the variable is stated. It is followed by another conditional structure,
which states that the template Array is only called if the variable has been defined as an array.
The declaration ends with the definition of the reserved word in followed by the domain. The
template concerning the Array concept is declared at line 16. The array indexes (row and col)
are enclosed with box brackets and separated by a comma token. The col attribute is optional,
being used only by two-dimensional arrays.

Remark

TCS is not required to add a new translator, as just the TCS for Flat ssCOMMA is needed in the
platform.

5.3.2.5 Transformation process

TCS and KM3 work together and their compilation generates a Java package (which includes
lexers, parsers and code generators) for Flat ss=COMMA (FsC), which is then used by the ATL files
to generate the target model. Figure 5.52 depicts the complete transformation process. The Flat s-
COMMA file is the input of the Java package which generates a XMI (XML Metadata Interchange)
for Flat ssCOMMA. Over this file, ATL rules act and generate a XMI file for Gecode/J. Finally,
this file is transformed into a solver file by means of the ATL query.

[FsC-to-Gecode/J ATL Rule};

IS

FsC KM3 Gecode/J KM3
FsC TCS ATL query

conf ornsTo

conf ornsTo

Gecode/J XMI

0 .

(9] .
(@)
o (X
Q.

[¢])

&

(&N

T

Figure 5.52 — The model-driven transformation process on the example of Flat s-COMMA (FsC) to
Gecode/J.

Note

The XMI file used in the transformation includes an organized representation of models in terms
of its metamodel concepts in order to facilitate the task of transformation rules.

CHAPTER 5 — Mapping Models to Solvers 107

5.3.2.6 Direct Code Generation

There is another approach to develop translators using the model-driven approach. For ins-
tance, if we want to use just the Flat s=COMMA features that are supported by the solver, we can
omit the transformation rules and we can apply the ATL query directly on the source metamodel.
Figure 5.53 shows the direct code generation process.

Figure 5.53 — Direct code generation.

Although this approach is simpler, it is less flexible since we lose the possibility of using more
elaborated transformations such as the set matrix decomposition presented in Section 5.3.2.2.

5.3.3 Discussion

We have presented two different approaches for building translators in solver-independent
architectures. Comparing both approaches, let us make the following concluding remarks.

— The development of hand-written translators is in general a hard task. Their creation,
modification and reuse requires to have a deep insight in the code and in the architecture
of the platform, even more if they have a specific or complex design. For instance, in our
implementation, it is mandatory to master ASTs, Java and intermediate representations
to generate the target solver files.

— As we mentioned in Section 5.3.2.2, solver metamodels are similar to the Flat s-COMMA
metamodel, and ATL rules correspond mainly to one-to-one transformations. We believe
therefore that the development of KM3 and ATL rules for new solver-translators should
not be a hard task, and the concrete work for plugging a new solver should be just reduced
to the definition of the ATL query for the code generation. This task may also be facilitated
with the reuse of existing code generation files.

— The development of hand-written translators requires more code lines. In our implemen-
tation, the source files of Java translators are approximately 60% bigger than the model-
driven translators source files (ATL + KM3).

— In the model-driven approach, the syntax concerns of a language are divided into the abs-
tract syntax (KM3 metamodel) and the concrete syntax (ATL and TCS). This separation
gives us a more organized and modular view of the language, which has simplified the
creation and motivated the reuse of our translators. It is also important to contrast this
feature with the mapping mechanism used in Cadmium, whose rules operate directly on
Zinc expressions (by means of term matching), having no independence between abstract
and concrete syntaxes. This property may generate smaller Cadmium programs, but less
modular compared to our approach.

108 CHAPTER 5 — Mapping Models to Solvers

5.3.3.1 Experiments

To compare the performance of both kind of translators, in terms of translation time, we
have performed a set of tests. The tests have been performed on a 3GHz Pentium 4 with 1GB
RAM running Ubuntu 6.06, and the benchmarks used were the following:

— The cryptoarithmetic puzzle Send + More = Money (Send).

— The stable marriage problem (Stable).

— Two versions of the n-queens problem (10-queens and 18-queens).

— Packing 8 squares into a square of area 25 (Packing).

— The production-optimization problem (Production).

— Solving 20 linear inequalities (Ineq20).

— The assembly of a car engine subject to design constraints (Engine).
— The Sudoku logic-based number placement puzzle (Sudoku).

— The social golfers problem (Golfers).

Table 5.1 shows the translation times for both approaches. The first column gives the problem
names. The second and third column depict the translation times using hand-written (HW) and
model-driven (MD) translators (using translation rules), from Flat ssCOMMA (FsC) to Gecode/]
and from Flat ssCOMMA to ECL!PS®, respectively. Translation times from s-=COMMA (sC) to Flat
s-=COMMA are given for reference in the last column (this process involves syntactic and semantic
checking, and refactoring to Flat s=COMMA). The table exhibits that MD translators are slower
than HW translators. This is expected since HW translators have been designed specifically for
s-=COMMA. They take as input a Flat ss=COMMA definition and directly generate the solver file. The
transformation process used by MD translators is not direct, it performs intermediate phases
(XMI to XMI). However, we believe that translation times using MD translators are reasonable
and this loss of performance is an acceptable price to pay for using a generic approach.

Table 5.1 — Translation times (seconds).

FsC to Gecode/J | FsC to ECL!PS® | sC to
Problems HW MD HW MD FsC
Send 0.052 0.688 0.048 0.644 0.237
Stable 0.137 1.371 0.143 1.386 0.514
10-Queens | 0.106 1.301 0.115 1.202 0.409
18-Queens | 1.122 3.194 0.272 2.889 0.659
Packing 0.172 1.224 0.133 1.246 0.333
Production | 0.071 0.887 0.066 0.783 0.288
20 Ineq. 0.072 0.895 0.072 0.891 0.343

Engine 0.071 0.815 0.071 0.844 0.285
Sudoku 1.290 4.924 0.386 4.196 3.503
Golfers 0.098 1.166 0.111 1.136 0.380

We have performed another test to show that the automatic generation of solver files does
not lead to a loss of performance in terms of solving time. In Table 5.2 we compare the solver

CHAPTER 5 — Mapping Models to Solvers 109

files generated by MD translators (Generated) with native solver files written by hand (Native).
The results show that generated solver files are in general bigger than solver versions written by
hand. This is explained by the loop unrolling and composition flattening processes presented in
Section 5.3. However, this increase in terms of code size does not cause a negative impact on
the solving time. In general, generated solver versions are very competitive with hand-written
versions. The data also shows that Gecode/J files are bigger than ECL!PS*® files, this is because
the Java syntax is more verbose than the ECL/PS¢ one.

Note
In the comparison, we do not consider solver files generated by HW translators since they have
no relevant differences compared to solver files generated by MD translators.

Table 5.2 — Solving times (seconds) and model sizes (number of tokens).

Gecode/J ECL'PS®

Benchmark Native Generated Native Generated

Solv. time Size | Solv. time Size | Solv. time Size | Solv. time Size
Send 0.002 590 0.002 615 0.01 231 0.01 329
Stable 0.005 1898 0.005 8496 0.01 1028 0.01 4659
10-Queens 0.003 460 0.003 9159 0.01 193 0.01 1958
18-Queens 0.008 460 0.008 30219 0.02 193 0.02 6402
Packing 0.009 663 0.009 12037 0.49 355 0.51 3212
Production 0.026 548 0.028 1537 0.014 342 0.014 703
20 Ineq 13.886 1576 14.652 1964 10.34 720 10.26 751
Engine 0.012 1710 0.012 1818 0.01 920 0.01 1148
Sudoku 0.007 1551 0.007 33192 0.21 797 0.23 11147
Golfers 0.005 1618 0.005 4098 0.21 980 0.23 1147

5.4 Summary

In this chapter we have presented the transformation process from graphical artifacts to solver
programs. The architecture supporting this process is composed of three main elements: the s-
COMMA GUI, the s-=COMMA compiler, and the mapping tool. A complete transformation includes
several phases. The ss=COMMA GUI transforms its graphical artifacts into the corresponding s-
COMMA textual model by means of a set of Java packages. This model is parsed and semantically
checked using the ANTLR tool. If the checking process succeeds, the model is transformed to an
intermediate language called Flat ss=COMMA. In this transformation, several s-=COMMA constructs
are refactored to facilitate the transformation to the solver language. Finally, the generated Flat
s-=COMMA model is the input of the mapping tool, which builds the executable solver file. The
mapping tool contains two kinds of solver translators: hand-written translators and model-driven
translators. The hand-written translators are written in Java, while the model-driven translators

110 CHAPTER 5 — Mapping Models to Solvers

are developed using metamodels and transformation rules. The model-driven approach involves
important advantages, which mainly concern implementation tasks.

In the following chapter, we begin the third part of this thesis by giving an overview of
the transformation framework for CP. We present the main purpose of this framework and we
illustrate a practical example. The second and final chapter of this third part concerns the
implementation of the framework.

PART 111

The Transformation Framework for CP

CHAPTER 6
Overview

‘g his chapter gives an overview of the transformation framework for CP. The main impro-
\’@ vement of this approach with respect to our previous work and in turn with respect to the
state-of-the-art solver- independent architectures is the possibility of choosing different modeling
languages as the source of a transformation. This can be achieved by using a pivot model (inter-
mediate model) which is independent from the target model, but also from source languages. The
independence of this pivot can be contrasted with current approaches in which the intermediate
model is strongly tied (in terms of syntax and constructs supported) to the modeling language,
for instance Flat ssCOMMA to s-=COMMA, or flatZinc to Zinc and MiniZinc. This new approach is
supported by a flexible architecture on which model-driven translators can be plugged to perform
the mappings among the different languages. We believe that this new framework involves two
important advantages:

— The user will be able to choose his favourite modeling language and the best known solving
technology for a given problem provided that the transformation between languages is
implemented.

— It may be easy to create a collection of benchmarks for a given language from different
source languages. This feature may speed up prototyping of one solver, avoiding the rewri-
ting of problems in its modeling language.

This architecture has been fully implemented using the MDA approach. The implementation
is based on the tools presented in the previous chapter (KM3, ATL and TCS). The aim is to take
advantage of the MDA benefits to define both clear and concise mapping rules and grammar
specifications.

6.1 The Model-Driven Transformation Framework

Figure 6.1 depicts the architecture of our model-driven transformation framework, which is
divided in two layers: M1 and M2. M1 holds the models representing constraint problems and
M2 defines the semantics of M1 through the metamodels. The transformation rules are defined
to perform a complete translation in three main steps: translation from the source model to
the pivot model, refactoring/optimization on the pivot model, and translation from the pivot
model to the target model. Source and target models may be defined through any CP languages.
The pivot model may be refined several times in order to adapt it to the desired target model
(see Section 7.2.1.2). These refining phases are similar to the ones performed from s-COMMA to
Flat s=COMMA, but more flexible since it is possible to select the refining steps to be applied in
a transformation. For instance, if loops are supported at the target level it is not necessary to
unroll them or, if matrices are permitted, there is no need to flatten them. This new feature

113

114 CHAPTER 6 — Overview

permits us to make use of the constructs provided by the target language and to thus reduce the
structural differences between source and target models.

M2
MetaModel A Pivot MetaModel MetaModel B
e confofmsTo L

Pivot Model

A

confofnmsTo conf or msTo

Model A [A e A R AR ’| Model B
Transformatio Transfc;rmatio
A-to-Pivot Pivot-to-B

Figure 6.1 — The transformation framework.

Transformatio
Pivot-to-Pivot
(Refactoring/
Optimization)

6.2 A Motivating Example

To give an overview of the mapping process, and to show some interesting aspects of the
refactoring steps applied, let us illustrate the result of an automatic transformation of the social
golfers model from s-COMMA to ECL!PS® by using the pivot as the intermediate model.

The s-=COMMA social golfers model is shown in Figure 6.2, and the generated ECL‘PS® model
is depicted in Figure 6.3. The ECL'PS® model has been built as a single predicate whose body
is a sequence of atoms. The sequence is made of the problem dimensions (lines 2 to 4), the list
of integer sets L (lines 6 and 7), and three nested loop blocks (lines 9 to 36) resulting from the
transformation of the three s-COMMA classes. It turns out that parts of both models are similar.
Indeed, the original loop structure has been transferred to the ECL’PS® model. However, some
constructs are very different and specific processing may be required. For instance, objects must
be handled by means of the composition flattening process since they are not supported by the
target language. This implies to perform many changes on the model. For example, the weekSched
array of Week objects defined at line 21 of the s-COMMA model is refactored and transformed to
the WEEKSCHED_GROUPSCHED_PLAYERS_ flat list stated at line 6 in Figure 6.3. It is also necessary
to insert new loops in order to traverse arrays of objects and to post the whole set of constraints.
For instance, the second block of for loops in the ECL‘PS® model (lines 16 to 24) has been built
from the playOncePerWeek constraint zone of the s-COMMA model, but there is an additional for
loop (line 16) since the Week instances are contained in the weekSched array. Another issue is
related to lists that cannot be accessed in the same way as arrays in s-COMMA. Thus, auxiliary
variables (V;) and the well-known nth Prolog predicate are introduced in the ECL‘PS® model.
Let us notice that in the ECL!PS® constraints, the ‘4’ symbol corresponds to the card function
and /\ represents the intersect operator.

CHAPTER 6 — Overview

115

Data File

1. enum name := {a,b,c,d,e,f,g,h,i};
2. int s := 3; //size of groups

3. int w := 4; //number of weeks

4. int g := 3; //groups per week

Model File

1. import SocialGolfers.dat;

2.

3. class Group {

4. name set players;

5. constraint groupSize {

6. card(players) = s;

7. }

8. 1}

9.

10. class Week {

11. Group groupSched[g];

12. constraint playOncePerWeek {

13. forall(gl in 1..g, g2 in gl+l..g)

14. card(groupSched[gl] .players intersect
15. groupSched[g2] .players)= 0;

16. }

17. }

18.

19. main class SocialGolfers {

20.

21. Week weekSched[w];

22.

23. constraint differentGroups {

24. forall(wl in 1..w, w2 in wi+l..w)

25. forall(gl in 1..g, g2 in 1..g)

26. card(weekSched[wl].groupSched[gl] .players intersect
27. weekSched [w2] . groupSched[g2] .players) <= 1;
28. }

29. }

Figure 6.2 — A ssCOMMA model of the social golfers problem.

116 CHAPTER 6 — Overview
1. socialGolfers(L):-

2. S $= 3,

3. W $= 4,

4, G $= 3,

5.

6. intsets (WEEKSCHED_GROUPSCHED_PLAYERS_,12,1,9),
7. L = WEEKSCHED_GROUPSCHED_PLAYERS_,

8.

9. (for(I1,1,W),param(L,S,W,G) do

10. (for(I12,1,G),param(L,S,W,G,I1) do

11. V1l is G*(I1-1)+I2,nth(V2,V1,L),

12. #(v2, V3), V3 $= S

13.)

14.),

15.

16. (for(I1,1,W),param(L,G) do

17. (for(G1,1,G) ,param(L,G,I1) do

18. (for(G2,G1+1,G) ,param(L,G,I1,G1) do
19. V4 is G*(I1-1)+G1,nth(V5,V4,L),
20. V6 is G*(I1-1)+G2,nth(V7,V6,L),
21. #(V5 /\ V7, 0)

22.)

23.)

24.),

25.

26. (for(Wi,1,W),param(L,W,G) do

27. (for(W2,W1+1,W) ,param(L,G,W1) do

28. (for(G1,1,G) ,param(L,G,W1,W2) do

29. (for(G2,1,G) ,param(L,G,W1,W2,G1) do
30. V8 is Gx(W1-1)+G1,nth(V9,V8,L),
31. V10 is G*x(W2-1)+G2,nth(V11,V10,L),
32. #(V9 /\ Vi1, V12),V12 $=< 1

33.)

34.)

35.)

36.),

37.

38. 1label_sets(L).

Figure 6.3 — The social golfers problem expressed in ECL'PS®.

CHAPTER 6 — Overview 117

6.3 Summary

In this chapter, we have presented the transformation framework for CP. An interesting
feature of this framework is the possibility of using different modeling languages as the source of
a transformation. This can be seen as an improvement of the state-of-the-art solver-independent
architectures, whose mapping process is restricted to a unique modeling language. This new
architecture performs a transformation in three main steps: translation from source model to the
pivot model, refactoring/optimization on the pivot model, and translation from the pivot model
to the target model. A practical example has been introduced to show some interesting aspects
of a transformation. In the following chapter, we focus on the implementation of this framework.
We present the three main phases of the process and the tools used for supporting them.

CHAPTER 7
From Source to Target

n this chapter we present a complete transformation through the framework. We consider
NY% the three main parts: from source to pivot, pivot refactoring, and pivot to target. The
process is illustrated by using as example the s-COMMA-to-ECL!PS® transformation. At the end
of the chapter, we discuss some experiments performed on the architecture.

7.1 From source to pivot

The transformation process from the source to the pivot model requires the metamodel (KM3)
of the source, the concrete syntax (TCS) of the source, and the transformation rules from the
source to the pivot. Figure 7.1 depicts three classes of the ss=COMMA metamodel in KM3, the
corresponding metamodel using UML class diagram notation is illustrated on the right side of
the figure.

1. class Model {

2. attribute name : String;

3. reference modelElements [0-*] container : ModelElement;

4. 1}

: (g
6. abstract class ModelElement {
7. attribute name : String; ’%
8. }

9. [Class } [Constant}
10. class Class extends ModelElement { ’—?—‘

11. attribute isMain : Boolean; Attribute ConstraintZon%
12. reference superClass [0-1] : Class;

13. reference solvingOpts [0-3] container : SolvingOpt;

14. reference attributes [0-*] container : Attribute;

15. reference constraintZones [0-*] container : ConstraintZone;

16. %

Figure 7.1 — Three classes of the KM3 file of s-COMMA.

The metamodel specifies that a ss=COMMA model is composed of an undetermined number of
ModelElement objects. The class representing model elements is abstract and it is stated as the
superclass of two metamodel concepts: Class and Constant. The Class class represents s-COMMA
classes and it is composed of attributes and constraint zones. It inherits from the ModelElement
class its name and it can be defined as the main class of the model using the isMain attribute.
A s-COMMA class can inherit from a superclass and it can also contain solving options.

119

120 CHAPTER 7 — From Source to Target

The class representing attributes is depicted in Figure 7.2. It serves as superclass of variables
and objects. The Variable class is stated at line 5 and it can be defined as a set using the isSet
attribute. It also has optional references to the Array and to the Domain concept.

1. class Attribute {

2. attribute name : String;

3. 1}

:

5. class Variable extends Attribute { T

6. attribute type : String; -
Variabl Object

7. attribute isSet : Boolean;

8. reference array [0-1] container : Array;

9. reference domain [0-1] container : Domain;

10. }

Figure 7.2 — Attributes and variables in the KM3.

The KM3 file concerning the constraint zones is depicted in Figure 7.3. The ConstraintZone
concept consists of a set of constraint zone elements. Three kinds of constraint zone elements
are defined: IfElse, Forall and ConstraintStatement. For instance, the IfElse statement is
composed of the condition and two set of constraint zone elements. The first set responds to a
true condition, and the second one to a false condition. The Constraint class is depicted at line
16. It is composed of an Expression and of its optional consistency level. The object hierarchy
below the Expression class can be seen in the Flat ssCOMMA metamodel (Figure 5.44).

1. class ConstraintZone {

2. attribute name : String;

3. reference constraintZoneElements [0-*] container : ConstraintZoneElements;

4. 1}

5.

6. abstract class ConstraintZoneElement {}

7.

8. class IfElse extends ConstraintZoneElement {

9. reference condition container : Expression; T»

10. reference trueCtrs [1-*] ordered container : -

11. ConstraintZoneElement ; {If-EIse} {Forall} {ConstralntStatemel}t
12. reference falseCtrs [0-*] ordered container :

13. ConstraintZoneElement; [[|
i;k } COnstramﬂ Slobal OptStatemen}
16. class Constraint extends ConstraintZoneElement {

17. attribute consLevel [0-1] : String;

18. reference assertion container : Expression;

19. 3%

Figure 7.3 — Constraint zones and statements in the KM3.

Figure 7.4 depicts some templates of the s-COMMA TCS file. The first template defines a
model, which is composed of a set of model elements. The main context keywords are used to
create a main symbol table. At line 5, the template for the ModelElement concept is stated. It

CHAPTER 7 — From Source to Target 121

corresponds to an abstract concept in the metamodel, being necessary to declare it as abstract
in the TCS. The Class template is defined at line 7. A class declaration is added to the symbol
table by means of the addToContext keyword. The syntactic structure of a Class begins with the
optional token main, which defines the main class of the model. The reserved word class and the
class name follow. Then, two optional structures are stated. One is used to define a superclass,
while the other one states the solving options. The refersTo=name statement is used to get
the name of the superclass. Finally, a pair of curly bracket symbols encloses the attributes and
constraint zones of a class. The last template defines the syntax of a variable, which is defined
with a type, an optional set token, and a name. The optional array and domain elements follow,
ended by a semicolon token.

1. template Model main context

2. : modelElements

3. B

4.

5. template ModelElement abstract;

6.

7. template Class context addToContext

8. : (isMain ? "main") "class" name

9. (isDefined (superClass) 7 "extends" superClass{refersTo=name})
10. (isDefined(solvingOpts) 7 solvingOpts)
11. "

12. attributes

13. constraintZones

14. "3

15. B

16.

17. template Attribute abstract;

18.

19. template Variable addToContext

20. : type (isSet 7 "set")

21. name (isDefined(array) 7 array)

22. (isDefined (domain) ? "in'" domain) ";"
23. H

Figure 7.4 — Some templates of the TCS file of s-COMMA.

Once the KM3 and TCS are defined, the transformation from the source to the pivot is per-
formed by means of ATL rules. Figure 7.5 depicts two transformation rules from s-COMMA to
the pivot. The rules include only one-to-one transformations since every construct of s-COMMA
is supported by the pivot.

Remark

The pivot model has been designed to support as much as possible the features of most CP
languages, for instance variables of different types, data structures such as arrays and objects,
first-order constraints, common global constraints, and control statements. The main idea is to
cover a wide range of constructs to facilitate the integration of new translators to the architec-
ture.

122 CHAPTER 7 — From Source to Target

1. rule ModelToModel { 11. rule VariableToVariable {
2. from 12. from
3. s : sComma!Model (13. s : sComma!Variable (
4.) 14.)
5. to 15. to
6. t : Pivot!Model(16. t : Pivot!Variable(
7. modelElements <- s.modelElements 17. type <- s.type,
8.) 18. isSet <- s.isSet,
9. } 19. name <- s.name,
10. 20. array <- s.array,
21. domain <- s.domain
22.)
23. }

Figure 7.5 — Two ATL rules for a transformation from s-COMMA to pivot.

7.2 Pivot refactoring

The pivot only requires a metamodel and the transformation rules to refine it. No TCS file is
required. A syntax structure for the pivot is unnecessary since the whole set of transformations
is applied only over the concepts defined in its metamodel.

Remark

The pivot metamodel has been designed to be independent from CP languages, i.e. it has no
syntax and the constructs supported do not depend on a particular modeling or solver lan-
guage. This can be contrasted with the state-of-the-art architectures, in which the intermediate
language is strongly tied to the syntax and constructs of the modeling language.

Figure 7.6 depicts the main concepts of the pivot metamodel, several concepts are shared with
the s-COMMA metamodel. This is due to both metamodels represent CP concepts, e.g. variables,
constraints and statements. However, the pivot metamodel is somewhat larger. For instance,
it admits classes containing constant declarations. It also provides support for records, which
are included in some CP languages, such as OPL and Zinc. Moreover, it includes the predicate
concept to handle CLP languages.

7.2.1 Refactoring phase

With the aim of bridging the gap between the source and the target model we have defined
several steps of pivot model refactoring. These steps are commonly needed in several transforma-
tions from modeling to solver languages. The idea is to refine and to optimize a model to fit as
much as possible with the target language concepts. This phase is implemented in several model
transformations over the pivot model, and it corresponds to the most complex part of the whole
transformation process. The refactoring steps involved have been encapsulated in a set of ATL
procedures, which can be reused once a new language is added to the framework.

CHAPTER 7 — From Source to Target 123

ModeIEIement

(o) (oo

[TypedEIemenjH{ RecordJ Statement
?
|]
Variable Object If- Else ForaII ConstramtStatemen}t
Constralna Global OptStatemen}
Constrain

Figure 7.6 — A fragment of the pivot metamodel.

[
Constant

Remark

Since the complex refining work is always done on the pivot, the rules from/to pivot become
simpler, and as a consequence the integration of new translators is facilitated.

To simplify the explanations of complex transformations we have defined a pseudo-code
language based on ATL. The notations of this language are defined in the following.

7.2.1.1 Rule notations

Figure 7.7 depicts a simple transformation rule from a language called Source to a language
called Target. The rule is called AToA, and the type of both concepts to be mapped is denoted
by A. The rule matches four attributes, from attributel to attribute4. The same rule can be
expressed in the pseudo-code language as ‘s: A => t: A’

1. rule AToA {

2. from

3. s : Source!A (

4.)

5. to

6. t : Target!A(

7. attributel <- s.attributel,
8. attribute2 <- s.attribute2,
9. attribute3 <- s.attribute3,
10. attribute4 <- s.attributed
11.)

12. }

Figure 7.7 — An example of transformation rule.

124 CHAPTER 7 — From Source to Target

The left part of the pseudo-code rule (s:) corresponds to the source, and the right part (t:)
to the target. The type of both s and t is denoted by A. Since the matching is performed between
concepts having the same type, we assume that every attribute held by the source is implicitly
matched to its corresponding one on the target. In the example, the four attributes of the source
are matched to the four attributes of the target.

This same rule can be filtered using the where keyword followed by a boolean expression. For
instance, the following rule allows the matching only if the name attribute is defined in s. The
isDefined statement is a function call representing the corresponding call to an ATL helper.

s: A where isDefined(s.name) => t: A

It is also possible to customize a matching for an attribute. For instance, we explicitly state
below that the name attribute of t must be generated as the concatenation of the strings repre-
sented by the name and surname attributes of s. The other attributes of s are simply duplicated.

s: A where isDefined(s.name) => t: A { name <- s.name + s.surname }

Additionally, if the types or structures of entities involved in a transformation are not
the same, only the shared attributes (having compatible types) and explicit matchings (id <-
s.name in the next example) are performed.

s: A where isDefined(s.name) => t: B { id <- s.name }

A collection of entities can be created from one source entity by specifying a sequence type
for the target entity, as follows,

s: A => t: Sequence of B(s.elements)

where elements is an attribute of s corresponding to a sequence of entities. There are two cases:
either the entities of s.elements match the B type, or other rules must describe how to transform
these entities to some entities conformly to B.

7.2.1.2 Pivot refactoring rules

The refactoring steps applied on the pivot are very similar to the ones performed on the
s-COMMA-to-Flat s-COMMA transformation. For instance: composition flattening, loop unrolling,
enumeration substitution, data substitution, conditional removal, auxiliary variables insertion
and expression evaluation. In the following paragraphs we give an overview of this process by
presenting four refactoring phases. We use the pseudo-code language introduced to illustrate the
transformation rules.

Composition flattening

This refactoring step replaces objects by their attributes and constraints. To prevent name
conflicts, the names of attributes are prefixed with the name of objects. In Figure 7.8, the first
rule (lines 1 and 2) generates a sequence of model features (e.g. variables and constraints),
which correspond to the elements encapsulated in the object. If this generated model element
corresponds to a variable, the second rule acts (lines 3 and 4). The parentIsObject function is

CHAPTER 7 — From Source to Target 125

used to test whether the variable is contained in an object. Then, the rule explicitly assign a new
value to the name attribute of the generated variable by concatenating four strings. The result
of this transformation on the s=COMMA object entities of the social golfers model is depicted in
Figure 7.9.

1 s: Object =>

2 t: Sequence of ModelFeature (s.modelFeatures)

3. s: Variable where parentIsObject(s) =>

4 t: Variable { name <- s.parent.name + ’>_’> + s.name + ’_° }

Figure 7.8 — The composition flattening transformation rule.

//Before flattening //After flattening
main class SocialGolfers { name set weekSched_groupSched_players_[g*w];
Week weekSched[w];

}

class Week {
Group groupSched[gl;

}

class Group {
name set players;

Figure 7.9 — Composition flattening on the social golfers problem.

The name of the new array is generated from the concatenation of the names in the objects
hierarchy. Since the weekSched array is composed of Week objects, the prefix of the new name is
weekSched followed by groupSched and players. The size of the array is given by g x w. Finally,
as we mentioned at the end of Section 6.2, when transforming an array of objects containing
constraints, the set of constraints is encapsulated in a forall statement. The loop variable of
this statement iterates from 1 to the size of the array.

Note

This process differs from the composition flattening in Flat ssCOMMA. The use of loops in this im-
plementation allows us to encapsulate constraints (resulting from the flattening) within forall
statements, instead of unrolling them.

Enumeration substitution

This rule substitutes enumerations by integer values (see Figure 7.10). In the rule, three
Variable elements are matched, domain is matched to d, which is computed by the rule stated
at line 3. The size of the domain is given by the getSize function, which returns the number
of elements contained in the enumeration. The result on the social golfers problem is shown in
Figure 7.11.

126 CHAPTER 7 — From Source to Target

1. s: Variable where isEnum(s.type) =>
2. t: Variable {name <- s.name, type <- "int", domain <- d} and
3. d: Domain {lower <- 1, upper <- getSize(s.type)}

Figure 7.10 — The enumeration substitution transformation rule.

//Before enumeration substitution //After enumeration substitution
enum name := {a,b,c,d,e,f,g,h,i}; name set players in [1,9];
name set players;

Figure 7.11 — Enumeration substitution on the social golfers problem.

Forall unrolling

This step unrolls forall loops, i.e. the loop is replaced by the whole set of constraint entities
that it implicitly contains. In the rule depicted in Figure 7.12, foreach is a function taking
as first parameter an iterator definition and as second parameter the statement to repeat. The
function replace takes three parameters: the entity to replace, the entity to put instead and the
entities to process. Thus, the sequence of constraint is initialized with all the constraints returned
by the foreach function, which generates s.start - s.end times the set of constraints within
loop entities.

1. s: Forall =>
t: Sequence of Constraint(foreach(it in s.start .. s.end,
3. replace(s.loopVar,it,s.statements)))

N

Figure 7.12 — The forall unrolling transformation rule.

Auxiliary variable insertion

In some CLP languages, it is not possible to use the bracket operator (‘[1’) to access
lists, being necessary to introduce local variables and nth predicate calls (as we have shown in
Figure 6.3). Figure 7.14 depicts the transformation rules of this phase, and a result is shown in
Figure 7.13. This rule acts over one-dimensional arrays stated as operand in expressions. The
VariableOcurrence concept represents a variable stated as operand in an expression'. At lines
3 and 4, a new auxiliary variable is created with its corresponding variable occurrence (V1 in the
example). The function getNextAuxVarName () returns the name of the next auxiliary variable.
The following statement builds the nth function call. Its parameters are matched with a sequence
of expression objects composed of the variable occurrence corresponding to the new auxiliary
variable, the row index of the array (X in the example), and a variable occurrence corresponding
to the array L. The variable V1 will be then used to represent L[X] within expressions.

'The Expression and the VariableDcurrence concepts can be seen in Figure 5.44.

CHAPTER 7 — From Source to Target 127

s: VariableOccurrence where (isDefined(s.array.row)
and isUndefined(s.array.col)) =>
t: Variable{name <- getNextAuxVarName()} and
u: VariableOccurrence{declaration <- t} and
v: FunctionCall {name <- "nth",
parameters <- Sequence of Expression(u,s.array.row,w)} and

N O O W N

w: VariableOccurrence{declaration <- s.declaration}

Figure 7.13 — Auxiliary variable insertion transformation rules.

//Before rule
L[X]

//After rule
nth(V1i,X,L)

Figure 7.14 — Auxiliary variable insertion process.

Remark

Let us note that the pivot metamodel can be extended. For instance, if a new language is
plugged to the framework and no support exists for some of its features, e.g. a global constraint.
It suffices to add to the pivot the concept representing such a global constraint or to add the
corresponding refactoring phase to transform the global constraint in a representation (if exists)
supported by the target language.

7.3 From pivot to target

The transformation from pivot to target is similar to the source-to-pivot transformation.
Mainly one-to-one transformation rules are performed. Like the first step, this phase requires
the KM3, the TCS of the target language, and the transformation rules to match with the pivot
metamodel.

Note
A same TCS file can be used for parsing a source language and for generating target files in
that language. This avoid us to create an ATL query for the code generation tasks.

Figure 7.15 depicts the main concepts of the ECL‘PS® metamodel. An ECL!PS® model can
be seen as a set of Prolog-like predicates. Fach predicate is composed of variables, and predicate
features. A predicate feature is specialized in two classes: VariableFeature and Statement. Four
classes inherits from VariableFeature: Domain, Array, Set and Constant. Let us note that the
structure of this class hierarchy differs from previous metamodels. It has been defined in this
manner to correctly handle the different variable declarations provided by ECL!PS¢. Finally, the

128 CHAPTER 7 — From Source to Target

Variable] [PredicateEIemeat

7
[Doniain} [Arrlay J [SLI J [ConlstantJ [lf-Ellse] [Fcirall] [ConstraintStatemer}t

[l |
Constrainﬁ Global OptStatemeni
Constrain

VariableFeature

Figure 7.15 — A fragment of the ECLPS® metamodel.

sub-elements of the Statement concept are very similar to previous metamodels.

Figure 7.16 depicts three templates of the ECL!PS¢ TCS file. The first template defines the
model, which is composed of a set of predicates. Predicates are defined with a name and a set of
input parameters separated by a comma.

template Model main context
: predicates

s

1
2
3
4
5. template Predicate context addToContext
6
7
8

: name » queens (N, Board) :-
"(" parameters{separator=",6"} ")" A T
ll:_ll

9. predicateElements{separator=","} solvingOpts "."

10. 5

11. template PredicateElement abstract; dim(Board, [N]),

12. template VariableFeature abstract;

13.

14. template Array

15. "dim"

16. "(" varName{refersTo=name}

17. mwon i row (isDefined(col) ? "," col) "I" ™"

18. 5

Figure 7.16 — Five templates of the TCS file of ECL/PS®.

A parameter corresponds to a Variable object. The parameters are enclosed by a pair of
round bracket tokens and followed by the ‘: -’ Prolog symbol. A set of predicate elements follows,
which are also separated by a comma token. The predicate declaration ends with the solving
options followed by a dot symbol. The PredicateElement and the VariableFeature are abstract
templates. The Array template is defined at line 18. The dim reserved word begins the array

CHAPTER 7 — From Source to Target 129

declaration. The name of the variable and the dimensions of the array are then included. The
refersTo=name statement is used to get the name of the variable, which is defined within the
Variable concept. The col attribute is optional, being only used for two-dimensional arrays.

7.4 Transformation process

As presented in Section 5.3.2.5, the compilation of the TCS file with the corresponding KM3
metamodel generates the necessary lexers, parsers and code generators. The complete transfor-
mation process is shown in Figure 7.17. The model file of the source language (the s-COMMA
file) is the input of the system. This file is transformed to the corresponding s-COMMA XMTI file
(injection phase). The ss=COMMA XMI is transformed through the ATL rules to the pivot XMI
file. Over this XMI file, the whole set of refactoring steps is performed. The refined XMI pivot
file is mapped to the XMI file of the target language (ECL?PS®). Finally, the model of the target
language (the ECL!PS® file) is generated (extraction phase).

M2 - - -
s-COMMA-to-Pivot Pivot-to-Eclipse
ATL Rules ATL Rules

A A

s-COMMA KM3 Pivot KM3 Eclipse KM3

conf ormsTo conf gr msTo confornsTo

s-COMMA TCS

Ml '...... ."._...
s-COMMA File |- ~* - s-COMMA XMI ¥ Eclipse XMl |-«~ Eclipse File |-

P— -
Injection Extraction

Eclipse TCS

Pivot XMI

L

Pivot-to-Pivot (Refactoring|
ATL Rules

Figure 7.17 — The transformation process on the example of ssCOMMA to ECL!PS®.

7.4.1 Selecting the refactoring steps.

Applying the whole set of refactoring steps presented in Section 7.2 is not necessary in every
transformation chain. Indeed, it clearly depends on the modeling structures of the source and
target languages. The idea is to use most of constructs supported by the target language to have
a target model close, in terms of constructs, to our source model. For instance, in a s-COMMA to
ECL!PS¢ translation, we should transform the objects using the composition flattening step. We
also may need the enumeration substitution and other refactoring steps such as the use of local
variables and nth predicates. Optionally, we may select the expression simplification step.

130 CHAPTER 7 — From Source to Target

Remark

This feature may be contrasted with previous approaches (e.g. Zinc, ss=COMMA), where the re-
factoring steps are always applied. This normally breaks the original structure of the model
(e.g. the unrolling loop phase generates a model completely different compared to one with no
unrolled loops). The possibility of customizing the steps to be applied on the transformation
allows one to transfer the source modeling features to the target model. We believe this may
enable readability and understanding on the target model.

The set of refining steps to be applied in a transformation can be chosen by means of Ant
scripts [wgrw]. Figure 7.18 depicts an Ant script specifying a transformation. The first block (lines
1 to 7) states the transformation from s-COMMA to the pivot and the second block (lines 9 to 14)
selects the enumeration substitution refactoring step. Lines 3, 5 and 11 define which metamodels
to use and lines 4 and 12 specify which models to process. Lines 6 and 13 correspond to the
produced models.

1. <!--s-COMMA to Pivot-->

2. <am3.atl path="/sCOMMAtoPivot/sCOMMAtoPivot.atl">

3. <inmodel name="sCOMMA" model="sCOMMA"/>

4. <inmodel name="IN" model="mysCOMMA"/>

5. <inmodel name="Pivot" model="Pivot"/>

6. <outmodel name="0OUT" model="myPivot" metamodel="Pivot'"/>
7. </am3.atl>

8.

9. <!--Enumeration Substitution-->

10. <am3.atl path="/PivotRefining/enumerationSubstitution.atl">
11. <inmodel name="Pivot" model="Pivot"/>

12. <inmodel name="IN" model="myPivot'"/>

13. <outmodel name="0UT" model="myPivot" metamodel="Pivot"/>

14. </am3.atl>

Figure 7.18 — An Ant script for selecting transformations.

7.5 Experiments

To highlight the performance of this new approach, in terms of translation time, we have
tested the s-COMMA to ECL!PS¢ translation on five CP problems. Table 7.1 depicts the results of
this first experiment. The first column gives the problem names. The second column depicts the
size (in number of lines) of the s-=COMMA source files. The following columns correspond to the time
of atomic steps (in seconds): model injection (Inject), transformations from s-COMMA to pivot (s-
to-p), composition flattening (Comp), enumeration substitution (Enum), transformations from
pivot to ECL'PS® (p-to-E), and target file extraction (Extract). The next column details the
total time of the complete transformation, and the last column shows the number of lines of the
generated ECLPS® files.

The results show that the text processing phases (injection and extraction) are efficient,
but we may remark that the given problems are concisely stated (maximum of 112 lines). The
transformation s-COMMA to pivot is slower than the transformation pivot to ECL‘PS®. This is
explained by the refactoring phases performed on the pivot that reduce the number of elements

CHAPTER 7 — From Source to Target 131

Problems || Size | Inject | s-to-p | Comp | Enum | p-to-E | Extract | Total | Size
Golfers 42 | 0.107 | 0.169 | 0.340 | 0.080 | 0.025 0.050 | 0.771 | 38
Engine 112 | 0.106 | 0.186 | 0.641 | 0.146 | 0.031 0.056 | 1.166 | 78
Send 16 | 0.129 | 0.160 | 0.273 - 0.021 0.068 | 0.651 | 21
Stable 46 | 0.128 | 0.202 | 0.469 | 0.085 | 0.027 0.040 | 0.951 | 26
10-queens || 14 | 0.132 | 0.147 | 0.252 - 0.017 0.016 | 0.564 | 16

Table 7.1 — Times of complete transformation chains.

to handle on the pivot to ECL!PS® step. The composition flattening step is the more expensive.
In particular, the Engine problem exhibits the slowest running time since it contains a bigger
number of object compositions. In summary, considering the whole set of phases involved, the
results show reasonable translation times.

The second test we performed aims at analyzing scaling our approach. To this end we have
applied the loop unrolling step to six versions (from n=50 to n=100) of the n-queens problem.
Table 7.2 depicts the results of this second test. Columns two to eight show the atomic steps of
the transformation (in seconds). Column nine contains the sizes (in number of lines) of generated
ECLPS® files, which have been heavily impacted by the loop unrolling step (since the size of
the unrolled loops depends on n). At the final column, a ratio exhibits the efficiency of a trans-
formation chain considering the execution time per generated lines. Considering the significant
differences of model sizes (from 7505 to 30005 lines) the values indicate this ratio slowly increases,
showing that the approach can be used for large models.

Problems Inject | s-to-P | Comp | Forall | P-to-E | Extract | Total Size | Total/Size
50-queens 0.132 | 0.147 | 0.252 | 32.773 16.21 1.059 50.573 | 7505 ~0.0067
60-queens 0.132 | 0.147 | 0.252 | 49.247 | 28.577 1.509 79.864 | 10805 | ~0.0074
70-queens 0.132 | 0.147 | 0.252 | 68.283 | 47.951 2.033 | 118.798 | 14705 | ~0.0080
80-queens 0.132 | 0.147 | 0.252 | 92.693 | 81.401 2.689 | 177.314 | 19205 | =~0.0092
90-queens 0.132 | 0.147 | 0.252 | 126.338 | 123.743 | 3.390 | 254.002 | 24305 | =~0.0104
100-queens || 0.132 | 0.147 | 0.252 | 165.395 | 182.871 | 4.193 | 352.990 | 30005 | =0.0117

Table 7.2 — Time of complete transformation chains of the n-queens problem.

7.6 Summary

In this chapter, we have presented the complete transformation process performed by the
framework. The implementation of the three main phases has been explained. The first and
the last phase concern the source and the target language, respectively. The implementation
of both phases requires the definition of a metamodel, a TCS file, and a set of transformation
rules to match with the pivot. The middle phase is responsible for applying a set of refactoring
steps on the pivot. This model is a key component of the architecture since the most complex
transformations are performed on it. This allows us to simplify the transformation from/to
the pivot and consequently to facilitate the addition of new translators to the platform. The
pivot model is also independent from modeling and solver languages, i.e. it has no syntax and

132 CHAPTER 7 — From Source to Target

the constructs supported do not depend on a particular modeling or solver language. Another
interesting feature of the architecture is that the set of single steps included in a transformation
can be customized. This allows us to obtain a target model closer, in terms of constructs, to our
source model.

The development of this framework corresponds to the current work of the author and it
is in a preliminary stage. Only three languages have been plugged to the framework (s-COMMA,
ECL‘PS® and RealPaver). Thus, at the moment, it is not possible to completely ensure that
the pivot is able to support all the constructs provided by every existing modeling language.
However, we believe that it represents a considerable basis to support a large list of common
constructs. Another limitation of the framework is that only the declarative parts of models can
be processed since it is not possible to partially execute a computer program that builds the
constraint store. In the following chapter we conclude the thesis and we propose some future
research perspectives.

CHAPTER8
Conclusion

> n this thesis, we have presented two main works: the s-COMMA platform and a model-driven

> transformation framework for CP languages. In this chapter, we recall the most important
aspects of these two approaches, we discuss their limitations and we give the corresponding
concluding remarks. We finish the chapter by presenting some future research directions.

8.1 s-COMMA

s-COMMA is the first work we presented in this thesis. Such a system involves an object-oriented
language for modeling CP problems and a solver-independent architecture. This approach is the
result of an investigation of several important concerns in the development of modern CP archi-
tectures. Several innovations and advantages can be found:

— The object-oriented style provided allows us to elegantly capture the inherent structure
of problems. The problem can be divided in subproblems to be captured in single classes.
The result is in general a more modular model, which motivates the reuse and facilitates
the management of constraint models.

— The s-COMMA language can be naturally represented through graphical components. The
s-=COMMA GUI is the graphical interface of the platform, allowing users to obtain a visual
and a more concise representation of models.

— The s-COMMA language can be extended. An extension mechanism is able to adapt the
modeling language to further updates of the solving layer. Such a mechanism works by de-
fining extension files on which the rules of the translation between the new functionalities
and s-COMMA are defined.

— The search process is a main phase of the problem resolution. Accordingly, a simple pa-
rameter formalism is provided. This formalism permits to define ordering heuristics over
classes, and consistency levels over objects, classes and constraints.

— ss=COMMA is supported by a flexible and extensible solver-independent architecture. This
architecture enables users to process one model with different solvers in order to facilitate
experimentation tasks. Additionally, the platform is open to be connected with new solvers.
This task can be carried out via powerful model transformation techniques.

We believe s=COMMA is a complete approach for modeling a wide range of CP problems, its
expressiveness is considerable and it can even be increased by extension mechanisms. The object-

133

134 CHAPTER 8 — Conclusion

oriented style is the basis to get concise and elegant models. Such models can also be tuned to
obtain efficient search processes. The graphical tool is a useful option for users looking for a
visual modeling perspective, and the solver-independent architecture is an excellent support for
experimentation tasks.

Finally, it is necessary to mention some limitations, which are mainly related to the capabi-
lities of the underlying solvers. For instance, the language features of s-COMMA not supported by
solvers cannot always be successfully mapped nor transformed. A common example is the use
of real numbers in s-=COMMA, which are not supported by finite domain solvers (e.g. Gecode).
Another example concerns the use of interval solvers (e.g. RealPaver), in which is not possible to
check the equality of values, allowing only the use of some relation operators (<=,=>,=). The
same problem occurs with the heuristic ordering and consistency level parameters, just the op-
tions provided by the chosen solver can be used at the modeling phase. The current implemented
solution is to inform the user with warning messages.

8.2 Transformation framework for CP languages

We have presented a new framework for CP model transformations as the second work of this
thesis. This framework is supported by a set of MDE tools and by an independent pivot model
to which different languages can be mapped. In this framework, a transformation chain is made
of three main steps: from the source to the pivot model, refining of the pivot model, and from
the pivot model to the target. This new approach follows important advantages.

— Modelers are able to use their favorite language and to solve the problem by means of the
best known solving technology. Experimentation of new solvers may also be easier, as a
collection of benchmarks in this new language can be built from different sources.

— Refactoring and optimization steps are always implemented over the pivot. In this way, the
translation from/to the pivot becomes simpler, facilitating the addition of new translators.
Additionally, the refactoring phases to be applied in a transformation can be selected to
get a target model closer, in terms of modeling constructs, to the source model.

The work done on this framework can be seen as an improvement of the architecture imple-
mented in s-COMMA. The framework is in preliminary stage and the main limitation is that only
the modeling fragments of languages (i.e. the declarative part) can be processed since it is not
possible to partially execute a computer program that builds the constraint store.

8.3 Future research directions

Solver-independent architectures and model transformation in constraint programming is a
recent trend. Just a few platforms involving both concerns have been developed. We believe
that extension or improvement of such platforms may lead to a wide future work. For instance,
s-=COMMA can be extended in several ways, the more visible way is to increase the number of
underlying solvers, which may belong to the CP field as well as to the mathematical field (e.g.
AMPL, GAMS). The use of solvers using local search techniques will be interesting too. This
may imply facing up to several new challenges in terms of model transformation concerns.

CHAPTER 8 — Conclusion 135

We are also interested in extending s-=COMMA to be used in the dynamic CSP framework [GF03,
MF90|. We currently support the definition of activity and compatibility constraints, but we do
not support activity objects (the creation of an object is subject to constraints) and the dynamic
definition of object attributes (the definition of attributes is subject to constraints). This will
allow us to state dynamic CP models in a more elegant way.

The transformation framework we presented can be improved as well. As in s-=COMMA the
most visible direction to follow is to extend the list of translators supported. To study and
implement new refactoring/optimization pivot phases such as the automatic transformation of
global constraints is another aspect to be considered. We also want to better manage complex
CP models transformation chains. Models could be qualified to determine their level of structure
and to automatically choose the required refactoring steps according to the target language.

Our last future goal is related to the MD-transformation tools. We have used ATL as the
transformation language over the entire framework and sometimes the implementation of some
complex transformations on the pivot was quite difficult to carry out. We believe it may be inter-
esting to extend ATL with some built-ins to perform complex tasks (e.g. composition flattening,
loop unrolling, etc.). Such an extension may probably lead to the definition of a new language
completely aimed at CP model transformation.

Appendixes

APPENDIXA

Grammars

A.1 s-COMMA Grammar

In this appendix we describe the grammar of s-COMMA and Flat ss=COMMA. The description is
done by means of EBNF using the following conventions: Angle brackets are used to denote non-
terminals (e.g. (Class-Body)). Bold font and underlined bold font are used to denote terminals
(e.g. class, ;). Square brackets denotes optional items (e.g.[(Array)]). Square brackets with a
plus symbol defines sequences of one or more items (e.g.[(Class)|"). Square brackets with a star
symbol are used for sequences of zero or more items (e.g. [(Import)|*), and square brackets with
a range {a,b} defines sequences from a to b items (e.g. [(Solving-Option)]{02})

Model

(Model) == [(Import)|* [(Class)|*
(Import) ::= import (Path)
(Class) ::= [main] class (Identifier) [extends (Identifier)] [[(Solving-Options)]|
{(Class-Body) }
= [(Attribute)|* [(Constraint-Zone)|*

(Class-Body)
[(Identifier).]* (Identifier);

(Path) ::=

Attributes

(Attribute) ::= (Variable) | (Object)
(Variable) ::= (Var-Type) [set| (Mult-Id-Def) [in (Domain)|;
(Mult-Id-Def) ::= (Identifier) [(Array)] [, (Identifier) [(Array)]]*
(Object) == [[(Cons-Level)]| (Mult-Id-Def);

(Var-Type) ::= (Basic-Type) | (Identifier)

(Array) = [(Array-Size)|, (Array-Size)|]

(Array-Size) ::= (Int-Expr) | (Identifier)

(Basic-Type) ::= int | real | bool

(Domain) ::= [(Bound), (Bound)]

(

Bound) ::= (Num-Ezpr) | (Identifier)

Constraints

(Constraint-Zone) ::= constraint (Identifier) {(Constraint-Body)}
(Constraint-Body) ::= [(Constraint) | (Global-Constraint) | { Compatibility- Constraint) |
(Forall) | (If-Else)|* [(Optimization)]

(Constraint) ::= [[(Cons-Level)]| (Ezpr) ;

139

140 APPENDIX A

(Compatibility-Constraint) ::= compatibility ({Access)| ,(Access)|*) {[(Valid-Tuples)]*}
(Valid-Tuples) ::= ((Literal)| ,(Literal)]*);) o -
(Literal) ::— (Value) | (String) N
(
{

Global-Constraint) = (Identifier) ((Param)| ,(Param)]*);
Param) ::= (Access) | (Literal)

Expressions

(Ezpr) = (Ezpr-Imp)|<->(Ezpr-Imp)|*

(Expr-Imp) ::= (Ezpr-Or)[(Op-Imp) (Ezpr-Or)|*
(Op-Imp) == -> | <-

(Expr-Or) == (Expr-And)[(Op-Or) (Ezpr-And)|*
(Op-Or) == xor | or

(Expr-And) ::= (Ezpr-Not)[and (Ezpr-Not)|*
(Ezpr-Not) ::= [not|* (Ezpr-Rel)

(Expr-Rel) ::= (Ezpr-Set-Rel)[{Op-Rel) (Ezpr-Set-Rel)|*
(Op-Rel) :=<>|!1=|=|==|<|>|<=]|>=
(Expr-Set-Rel) ::= (Expr-Set-Op)[(Op-Set-Op) (Expr-Set-Op)|*
(Op-Set-Rel) ::= subset | superset

(Ezpr-Set-Op) ::= (Expr-Sum)[(Op-Set-Rel) (Expr-Sum)|*
(Op-Set-Op) ::= union | diff | symdiff

(Expr-Sum) ::= (Ezpr-Prod)[{Op-Sum) (Ezpr-Prod)|*
(Op-Sum) == -| +

(Expr- Pmd) ::= (Ezpr-Int)|(Op-Prod) (Expr-Int)|*
(Op-Prod) ::=* |/

(Expr-Int) ::= (Ezpr-Exzpon)|intersect (Ezpr-Expon)|*
(Expr-Ezpon) ::= (Un-Expr-Min)|"~ (Un-Ezpr-Min)|*
(Un-Ezpr-Min) ::= - (Expr-Unit) | [+] (Ezpr-Unit)
(Ezpr-Unit) ::= (Value) | (Access) | (Function-Call) | ((Ezpr))

(Num-Expr) == (Num-Expr-Prod)[{ Op-Sum) (Num-Ezpr-Prod)|*

(Num-Ezpr-Prod) ::= (Num-Un-Expr-Min)[{Op-Prod) (Num-Un-Ezpr-Min)|*
(Op-Prod) == * | /

(Num-Un- Expr Min) ::= - (Num-Ezpr-Unit) | [+] (Num-Ezpr-Unit)
(Num-Ezpr-Unit) ::= (Integer) | (Float) | (Identifier) | (Function-Call) | ({(Num-Ezpr))
(Int-Expr) == (Int-Ezpr-Prod)[{Op-Sum) (Int-Ezpr-Prod)|* - -
(Int-Expr-Prod) ::= (Int Un-Ezpr-Min)[{Op-Prod) (Int-Un-Expr-Min)]*
(Int-Un-Expr-Min) = - (Int-Expr-Unit) | [+] (Int-Ezpr-Unit)

(Int-Expr-Unit) : ([nteger} | (Identifier) | (Function-Call) | ({Int-Ezpr))

(Value) ::= (Integer) | (Float) | (Boolean) - -

(Access) = [(Identifier)[(Array)].|* (Identifier) [(Array)]

(Function-Call) ::= (Identifier) ({Param)| ,(Param)|*)

==

Statements

(Forall) := forall((Loop-Header) [, (Loop-Header)|*) {(Forall-Body)}
(Loop-Header) ::= (Identifier) in (Value-Set)

APPENDIX A 141

(Value-Set) ::= (Identifier) | (Int-Expr) .. (Int-Expr)

(Forall-Body) == [(Forall) | (If-Else) | (Constraint) | (Global-Constraint)|*

(If-Else) ::= if ((Constraint)) {[(If-Else-Body)|*} [else{[({If-Else-Body)|*}|

(If-Else-Body) = [{Forall) | {If-Else) | { Constraint) | (Global-Constraint)|* [(Optimization)]
(Optimization) ::= (Opt-Value) (Ezpression) ;

(Opt-Value) ::= maximize | minimize)

(Sum-Loop) ::= sum((Loop-Header) [, (Loop-Header)|*) ({Num-Ezpr))

Data
(Data) ::= [(Constant) | (Var-Assignment)|*
(Constant) = (Data-Type) (Identifier) := (Constant-Assig) ;
(Constant-Assig) == (Value) | (Vector-Data) | (Matriz-Data) | (Enum-Data)
(Data-Type) := (Basic-Type) | enum
(Vector-Data) = [(Value) | (Underscore) [,{ Value) | (Underscore)|*]
(Enum-Data) :— {(Literal) [, (Literal)]*})
(Matriz-Data) == [(Vector-Data) [(Vecto_r—Data>]*]
(Var-Assignment) ::— (Access-Assig) := (Var-Assignment-Assig);
(Var-Assignment-Assig) == (Object) | (Vector-Object) | (Matriz-Object)
(Access-Assig) = (Identifier)|.(Identifier)|™
(Object) := {(Value) | (Underscore) [, (Value) | (Underscore)|*}
(Vector-Object) == [{Object) [, { Object)]*] B
(Matriz-Object) == [(Vector-Object) [, (Vector-Object)]*]
(Underscore) =))

Solving Options

(Solving-Options) ::= [(Solving-Option)[,(Solving-Option)]{02}]

(Solving-Option) = (Var-Ordering) | (Val-Ordering) |(Cons-Level)

(Var-Ordering) ::= min-dom-size | max-dom-size | min-dom-val | max-dom-val |
min-regret-min-dif | min-regret-max-dif |
max-regret-min-dif | max-regret-max-dif

(Val-Ordering) ::= min-val | med-val | max-val

(Cons-Level) ::= bound | domain

142 APPENDIX A

A.2 Flat ssCOMMA Grammar

Model

(Model) ::= [(Variable-Block)|[{ Constraint-Block)| [(Enum-Block)|[{Solving-Block)]
(Variable-Block) ::= variables: [(Variable)|*

(Constraint-Block) ::= constraints: (Constraint-Statement)

(Enum-Block) :—= enum-types: [(Enum-Type)|*

(Solving-Block) ::= solving-opts: (Solving-Options)

Variables

(Variable) ::= (Var-Type) [set] (Identifier) [(Array)| in (Domain);
(Var-Type) ::= (Basic-Type) | (Identifier)

(Array) ::= [(Integer) [,(Integer)]]

(Basic- Typ > = int | real | bool

(:= [(Bound) , (Bound)]

(Bound) ::= (Integer) | (Float)

Constraints

(Constraint-Statement) ::= [(Constraint) | (Global-Constraint)|* [(Optimization)]
(Constraint) ::= [[(Cons-Level)]| (Expr) ;

(Global-Constraint) == (Identifier) ((Param)| ,(Param)]*);

(Param) ::= (Identifier) | (Literal)) -

(Literal) ::= (Value) | (String)

(Optimization) = (Opt-Value) (Ezpr) ;

(Opt-Value) ::= maximize | minimize

Expressions

(Ezpr) = (Ezpr-Imp)|<->(Ezpr-Imp)|*

(Expr-Imp) ::= (Ezpr-Or)[(Op-Imp) (Ezpr-Or)|*
(Op-Imp) == -> | <-

(Expr-Or) = (Expr-And)[(Op-Or) (Ezpr-And)|*
(Op-Or) == xor | or

(Expr-And) ::= (Ezpr-Not)[and (Ezpr-Not)|*

(Ezpr-Not) ::= [not|* (Ezpr-Rel)

(Ezpr-Rel) ::= (Ezpr-Set-Rel)[{Op-Rel) (Ezpr-Set-Rel)|*
(Op-Rel) := <> |!=|=|==[<[>]|<=|>=
(Expr-Set-Rel) ::= (Expr-Set-Op)[(Op-Set-Op) (Ezpr-Set-Op)|*
(Op-Set-Rel) ::= subset | superset

(Expr-Set-Op) ::= (Erpr-Sum)|[(Op-Set-Rel) (Ezpr-Sum)|*
(Op-Set-Op) ::= union | diff | symdiff

(Expr-Sum) ::= (Expr-Prod)[(Op-Sum) (Expr-Prod)|*
(Op-Sum) == - | +

APPENDIX A 143

(Expr-Prod) ::= (Expr-Int)[{Op-Prod) (Ezpr-Int)]*
(Op-Prod) = * | /

(Ezxpr-Int) ::= (Ezpr-Ezpon)|intersect (Ezpr-Expon)|*
(Ezpr-Ezpon) ::= (Un-Expr-Min)|~ (Un-Ezpr-Min)|*
(Un-Expr-Min) ::= - (Ezpr-Unit) | [+] (Ezpr-Unit)
(Expr-Unit) == (Value) | (Identifier) | (Function-Call) | ({Ezpr))
(Value) ::= (Integer) | (Float) | (Boolean) - -
(Function-Call) ::= (Identifier) ({Param)| ,(Param)|*)

(

Optimization) ::= (Opt-Value) (Ezpr) ;

Enumerations

(Enum-Type) ::= (Identifier) := (Enum-Data) ;
(Enum-Data) ::= {(Literal) [, (Literal)|*}

Solving Options

(Solving-Options) ::= (Solving-Option)[,(Solving-Option)] {02}

(Solving-Option) := (Var-Ordering) | (Val-Ordering) | (Cons-Level) | default
(Var-Ordering) ::= min-dom-size | max-dom-size | min-dom-val | max-dom-val |
min-regret-min-dif | min-regret-max-dif |
max-regret-min-dif | max-regret-max-dif
(Val-Ordering) ::= min-val | med-val | max-val

(Cons-Level) ::= bound | domain

Bibliography

[ABPSOS]

[AP94]

[Apt03]
[BDPS0g]

[BKM92]

[BMV94]

[BNOg]

[BNOG|

[BO97|

[Bor81]

[Bur69]
[CDR9Y

[CGLRY6]

[CGS08]

K.R. Apt, J. Brunekreef, V. Partington, and A. Schaerf. Alma-0: An Imperative
Language that Supports Declarative Programming. ACM Transactions on Pro-
gramming Languages and Systems (ACM TOPLAS), 20(5):1014-1066, 1998.

A. Aamodt and E. Plaza. Case-Based Reasoning: Foundational Issues, Methodolo-
gical Variations, and System Approaches. Artificial Intelligence Communications,
7(1):39-59, 1994.

K.R. Apt. Principles of Constraint Programming. Cambridge Press, 2003.

S. Brand, G. J. Duck, J. Puchinger, and P. J. Stuckey. Flexible, Rule-Based
Constraint Model Linearisation. In Proceedings of the 10th International Sympo-
sium on Practical Aspects of Declarative Languages (PADL), volume 4902 of Lecture
Notes in Computer Science, pages 68-83. Springer, 2008.

A. Brooke, D. Kendrick, and A. Meeraus. GAMS: A User’s Guide. The Scientific
Press, 1992.

F. Benhamou, D. Mc Allester, and P. Van Hentenryck. CLP(Intervals) Revisited.
In Proceedings of the 1994 International Symposium on Logic programming (ILPS),
pages 124-138. MIT Press Cambridge, MA, USA, 1994.

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Univ. Press,
1998.

A. Brodsky and H. Nash. CoJava: Optimization Modeling by Nondeterministic
Simulation. In Proceedings of the 12th International Conference on Principles and
Practice of Constraint Programming (CP 2006), volume 4204 of Lecture Notes in
Computer Science, pages 91-106. Springer, 2006.

F Benhamou and W. Older. Applying Interval Arithmetic to Real, Integer, and
Boolean Constraints. Journal of Logic Programming, 32(1):1-24, 1997.

A H. Borning. The Programming Languages Aspects of ThinglLab, a Constraint-
Oriented Simulation Laboratory. ACM Transactions on Programming Languages
and Systems (ACM TOPLAS), 3(4):353-387, 1981.

R. M. Burstall. A Program for Solving Word Sum Puzzles. Computer Journal,
12(1):48-51, 1969.

H. Collavizza, F. Delobel, and M. Rueher. Comparing Partial Consistencies. Re-
liable Computing, 5(3):213-228, 1999.

J. M. Crawford, M. L. Ginsberg, E. M. Luks, and A. Roy. Symmetry-Breaking
Predicates for Search Problems. In Proceedings of the 5th International Conference
on Principles of Knowledge Representation and Reasoning (KR 96), pages 148-159,
1996.

R. Chenouard, L. Granvilliers, and R. Soto. Model-Driven Constraint Program-
ming. In Proceedings of the 10th International ACM SIGPLAN Symposium on
Principles and Practice of Declarative Programming (PPDP), pages 236-246, 2008.

145

146

BIBLIOGRAPHY

[CGS09]

[CIP*00]

[COC97]

[Col82]

[Col90]

[Col96]

[DCO0]

[Elc90]

[FGJ*07]

[FGK90]

[FHK*02]

[FIMHMO5)|

[FM92]
[FMO6]

[FMO8]

R. Chenouard, L. Granvilliers, and R. Soto. Rewriting Constraint Models with
Metamodels. To Appear In Proceedings of the 8th Symposium on Abstraction, Re-
formulation and Approzimation (SARA). 2009.

M. Cadoli, G. Ianni, L. Palopoli, A. Schaerf, and D. Vasile. NP-SPEC: an executable
specification language for solving all problems in NP. Computer Languages, 26(2—
4):165-195, 2000.

M. Carlsson, G. Ottosson, and B. Carlson. An Open-Ended Finite Domain
Constraint Solver. In Proceedings of the 9th International Symposium on Program-
ming Languages: Implementations, Logics, and Programs (PLILP), volume 1292 of
Lecture Notes in Computer Science, pages 191-206. Springer, 1997.

A. Colmerauer. Prolog IT Reference Manual and Theoretical Model. Technical re-
port, Groupe d’Intelligence Artificielle, Université d’Aix-Marseille IT, Luminy, 1982.

A. Colmerauer. An Introduction to Prolog III. Communications of the ACM,
33(7):69-90, 1990.

A. Colmerauer. Les Bases de Prolog IV. Technical report, Laboratoire d’Informa-
tique de Marseille, 1996.

D. Diaz and P. Codognet. The GNU Prolog System and its Implementation. In
Proceedings of the 2000 ACM Symposium on Applied Computing (SAC), pages 728~
732, 2000.

E. W. Elcock. Absys: The First Logic Programming Language - A Retrospective
and a Commentary. Journal of Logic Programming, 9(1):1-17, 1990.

A. M. Frisch, M. Grum, C. Jefferson, B. Martinez-Hernandez, and I. Miguel. The
Design of ESSENCE: A Constraint Language for Specifying Combinatorial Pro-
blems. In Proceedings of the 20th International Joint Conference on Artificial In-
telligence (IJCAI), pages 80-87, 2007.

R. Fourer, D.M. Gay, and B.W. Kernighan. A Modeling Language for Mathematical
Programming. Management Science, 36:519-554, 1990.

A. M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh. Global Constraints
for Lexicographic Orderings. In Proceedings of the 8th International Conference on
Principles and Practice of Constraint Programming (CP), volume 2470 of Lecture
Notes in Computer Science, pages 93—108. Springer, 2002.

A.M. Frisch, C. Jefferson, B. Martinez-Herndndez, and I. Miguel. The Rules of
Constraint Modelling. In Proceedings of the 19th International Joint Conference on
Artificial Intelligence (IJCAI), pages 109-116, 2005.

E. C. Freuder and A. K. Mackworth. Introduction to the Special Volume on
Constraint-Based Reasoning. Artificial Intelligence, 58:1-2, 1992.

E. C. Freuder and A. K. Mackworth. Handbook of Constraint Programming, chapter
2 - Constraint Satisfaction: An Emerging Paradigm. Elsevier, 2006.

F. Fages and J. Martin. Des Régles aux Contraintes avec le Langage de Modé-
lisation Rules2CP. In Proceedings of the Quatriémes Journées Francophones de
Programmation par Contraintes (JFPC), pages 361-371, 2008.

BIBLIOGRAPHY 147

[FPA04]

[Fre78|
[Friios]

[GasT4|

[GB65]

[GBO6]

[GFO3]

[GIMO6]

[Gou00]

[GS00]

[HLP+04]

[Hni03]

[TB06|

[TBKO06]

[TL87]

P. Flener, J. Pearson, and M. Agren. Introducing ESRA, a Relational Language
for Modelling Combinatorial Problems. In Proceedings of the 13th International
Symposium on Logic Based Program Synthesis and Transformation (LOPSTR),
volume 3018 of Lecture Notes in Computer Science, pages 214-232. Springer, 2004.

E. C. Freuder. Synthesizing constraint expressions. Commun. ACM, 21(11):958-
966, 1978.

T. Frithwirth. Theory and Practice of Constraint Handling Rules. JLP, 37(1-3):95-
138, 1998.

J. Gaschnig. A Constraint Satisfaction Method for Inference Making. In Proceedings
12th Annual Allerton Conference on Circuit and System Theory, pages 866—874,
1974.

S. W. Golomb and L. D. Baumert. Backtrack Programming. Journal of the ACM,
12(4):516-524, 1965.
L. Granvilliers and F. Benhamou. Algorithm 852: RealPaver: An Interval Solver

Using Constraint Satisfaction Techniques. ACM Transactions on Mathematical
Software (ACM TOMS), 32(1):138-156, 2006.

E. Gelle and B. Faltings. Solving Mixed and Conditional Constraint Satisfaction
Problems. Constraints, 8(2):107-141, 2003.

I. P. Gent, C. Jefferson, and I. Miguel. Minion: A Fast Scalable Constraint Solver.
In Proceedings of the 17th European Conference on Artificial Intelligence (ECAI),
pages 98-102. IOS Press, 2006.

F. Goualard. Langages et Environnements en Programmation par Contraintes d’In-
tervalles. PhD thesis, IRIN, Université de Nantes, 2000.

I. P. Gent and B. M. Smith. Symmetry Breaking in Constraint Programming.
In Proceedings of the 14th European Conference on Artificial Intelligence (ECAI),
pages 599-603. TOS Press, 2000.

T. Hinrichs, N. Love, C. J. Petrie, L. Ramshaw, A. Sahai, and S. Singhal. Using
Object-Oriented Constraint Satisfaction for Automated Configuration Generation.
In Proceedings of the 15th IFIP/IEEE International Workshop on Distributed Sys-
tems: Operations and Management (DSOM), volume 3278 of Lecture Notes in Com-
puter Science, pages 159-170. Springer, 2004.

B. Hnich. Function Variables for Constraint Programming. PhD thesis, Department
of Information Science, Uppsala University, 2003.

F. Jouault and J. Bézivin. KM3: A DSL for Metamodel Specification. In Pro-
ceedings of the 8th IFIP WG 6.1 International Conferenceon Formal Methods for
Open Object-Based Distributed Systems (FMOODS), volume 4037 of Lecture Notes
i Computer Science, pages 171-185. Springer, 2006.

F. Jouault, J. Bézivin, and I. Kurtev. TCS: a DSL for the Specification of Textual
Concrete Syntaxes in Model Engineering. In Proceedings of the 5th Internatio-
nal Conference on Generative Programming and Component Engineering (GPCE),
pages 249-254, 2006.

J. Jaffar and J.L. Lassez. Constraint Logic Programming. In Proceedings of the
14th Annual ACM Symposium on Principles of Programming Languages (POPL),
pages 111-119, 1987.

148 BIBLIOGRAPHY

[JMSY92] J. Jaffar, S. Michaylov, P. J. Stuckey, and R. Yap. The CLP(R) Language and
System. ACM Transactions on Programming Languages and Systems (ACM TO-
PLAS), 14(3):339-395, 1992.

[JT02] B. Jayaraman and P.Y. Tambay. Modeling Engineering Structures with Constrained
Objects. In Proceedings of the 4th International Symposium on Practical Aspects of
Declarative Languages (PADL), volume 2257 of Lecture Notes in Computer Science,
pages 28-46. Springer, 2002.

[KvJO7] I. Kurtev, K. van Den Berg, and F. Jouault. Rule-based Modularization in Model
Transformation Languages Illustrated with ATL. Science of Computer Program-
ming,, 68(3):138-154, 2007.

[Lau78] J.L. Lauriere. A Language and a Program for Stating and Solving Combinatorial
Problems. Artificial Intelligence, 10(1):29-127, 1978.

[Lho93] O. Lhomme. Consistency Techniques for Numeric CSPs. In Proceedings of the 13th
International Joint Conference on Artificial Intelligence (IJCAI), pages 232-238,
1993.

[Luc9l] E. Lucas. Récréations Mathématiques. Gauthier Villar, Paris, 2nd edition, 1891.

[Lv93] J. H. Lee and M. H. van Emden. Interval Computation as Deduction in CHIP.
Journal of Logic Programming, 16(3):255-276, 1993.

[Mac77] A. Mackworth. Consistency in Networks of Relations. Artificial Intelligence,
8(1):99-118, 1977.

[McGT79| J. J. McGregor. Relational Consistency Algorithms and Their Application in Fin-
ding Subgraph and Graph Isomorphisms. Information Science, 19(3):229-250, 1979.

[MF90] S. Mittal and B. Falkenhainer. Dynamic Constraint Satisfaction Problems. In
Proceedings of the 8th National Conference on Artificial Intelligence (AAAI), pages
25-32. The MIT Press, 1990.

[MHS6] R. Mohr and T. Henderson. Arc and Path Consistency Revisited. Artificial Intel-
ligence, 28(2):225-233, 1986.

[Mon74] U. Montanari. Networks of Constraints: Fundamental Properties and Applications
to Picture Processing. Information Sciences, 7:95-132, 1974.

[Moo66] R.E. Moore. Interval Analysis. Prentice-Hall, 1966.

[MV02] L. Michel and P. Van Hentenryck. A Constraint-Based Architecture for Lo-
cal Search. In Proceedings of the 2002 ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA), pages
83-100, 2002.

[Neu90| A. Neumaier. Interval Methods for Systems of Equations. Cambridge University
Press, 1990.

[NSB*07] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and G. Tack. Mi-

niZinc: Towards A Standard CP Modelling Language. In Proceedings of the 13th
International Conference on Principles and Practice of Constraint Programming

(CP), volume 4741 of Lecture Notes in Computer Science, pages 529-543. Springer,
2007.

BIBLIOGRAPHY 149

[Pal95]

[PQY4]

[Pug93]

[Pug94]

[Pug04]

[Reg94|

[RGMWO07]

[Ric68]

[SF94|

[SGOT7a]

[SGOTH]

[SGO08a]

M. Paltrinieri. A Visual Constraint-Programming Environment. In Proceedings
of the 1st International Conference on Principles and Practice of Constraint Pro-
gramming (CP), volume 976 of Lecture Notes in Computer Science, pages 499-514.
Springer, 1995.

T. Parr and R. Quong. Adding Semantic and Syntactic Predicates To LL(k): pred-
LL(k). In Proceedings of the 5th International Conference on Compiler Construction
(CC), volume 786 of Lecture Notes in Computer Science, pages 263—277. Springer,
1994.

J.F. Puget. On the Satisfiability of Symmetrical Constrained Satisfaction Problems.
In Proceedings of the 7th International Symposium on Methodologies for Intelligent
Systems (ISMIS), volume 689 of Lecture Notes in Computer Science, pages 350-361.
Springer, 1993.

J.F. Puget. A C++ Implementation of CLP. In Proceedings of the 2nd Singapore
International Conference on Intelligent Systems (SPICIS), 1994.

J.F. Puget. Constraint Programming Next Challenge: Simplicity of Use. In Procee-
dings of the 10th International Conference on Principles and Practice of Constraint
Programming (CP), volume 3258 of Lecture Notes in Computer Science, pages 5-8.
Springer, 2004.

J.-C. Régin. A Filtering Algorithm for Constraints of Difference in CSPs. In
Proceedings of the 12th National Conference on Artificial Intelligence (AAAI), pages
362-367, 1994.

R. Rafeh, M. J. Garcia de la Banda, K. Marriott, and M. Wallace. From Zinc
to Design Model. In Proceedings of the 9th Symposium on Practical Aspects of

Declarative Languages (PADL), volume 4354 of Lecture Notes in Computer Science,
pages 215229, 2007.

D. Richardson. Some Unsolvable Problems Involving Elementary Functions of a
Real Variable. Journal of Symbolic Logic, 33:514-520, 1968.

D. Sabin and E. C. Freuder. Contradicting Conventional Wisdom in Constraint Sa-
tisfaction. In Proceedings of the 11th European Conference on Artificial Intelligence
(ECAI), pages 125-129, 1994.

R. Soto and L. Granvilliers. Dynamic parser cooperation for extending a constrai-
ned object-based modeling language. In Proceedings of the 21st Workshop on
(Constraint) Logic Programming (WLP 2007), pages 70-78, Wuerzburg, Germany,
2007. Technical Report 434, University of Wuerzburg, Germany.

R. Soto and L. Granvilliers. The Design of COMMA: An Extensible Framework
for Mapping Constrained Objects to Native Solver Models. In Proceedings of the
19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI),
pages 243-250, 2007.

R. Soto and L. Granvilliers. On the Pursuit of a Standard Language for Object-
Oriented Constraint Modeling. In New Challenges in Applied Intelligence Technolo-
gies, volume 134 of Studies in Computational Intelligence, pages 123-133. Springer,
2008.

150

BIBLIOGRAPHY

[SGOSD]

[SGM*05]

[SHC96]

[SSW94]

[STO6]

[Sut63]

[TCO7]

[Van89]

[Van99|
[van06]

[VDT92|
[VKO06]
[VMD97|
[Wal75)

[WNS97]

R. Soto and L. Granvilliers. Tuning Constrained Objects. In Proceedings of the
21st International Conference on Industrial, Engineering and Other Applications of
Applied Intelligent Systems (IEA/AIE), volume 5027 of Lecture Notes in Artificial
Intelligence, pages 408-414. Springer, 2008.

P. J. Stuckey, M. J. Garcia de la Banda, M. Maher, K. Marriott, J. Slaney, Z. So-
mogyi, M. Wallace, and T. Walsh. The G12 Project: Mapping Solver Independent
Models to Efficient Solutions. In Proceedings of the 11th International Conference
on Principles and Practice of Constraint Programming (CP), volume 3709 of Lec-
ture Notes in Computer Science, pages 13-16. Springer, 2005.

Z. Somogyi, F. Henderson, and T. Conway. The Execution Algorithm of Mercury,
an Efficient Purely Declarative Logic Programming Language. Journal of Logic
Programming, 29(1-3):17-64, 1996.

C. Schulte, G. Smolka, and J. Wiirtz. Encapsulated Search and Constraint Pro-
gramming in Oz. In Proceedings of the 2nd International Workshop on Principles
and Practice of Constraint Programming (PPCP), volume 874 of Lecture Notes in
Computer Science, pages 134—-150. Springer, 1994.

C. Schulte and G. Tack. Views and Iterators for Generic Constraint Implementa-
tions. In Recent Advances in Constraints (2005), volume 3978 of Lecture Notes in
Artificial Intelligence, pages 118-132. Springer, 2006.

I. E. Sutherland. Sketchpad, A Man-Machine Graphical Communication System.
Outstanding Dissertations in the Computer Sciences. Garland Publishing, 1963.

G. Trombettoni and G. Chabert. Constructive interval disjunction. In Proceedings
of the 13th International Conference on Principles and Practice of Constraint Pro-
gramming (CP), volume 4741 of Lecture Notes in Computer Science, pages 635—650.
Springer, 2007.

P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,
1989.

P. Van Hentenryck. The OPL Language. The MIT Press, 1999.

P. van Beek. Handbook of Constraint Programming, chapter 4 - Backtracking Search
Algorithms. Elsevier, 2006.

P. Van Hentenryck, Y. Deville, and C.-M. Teng. A Generic Arc-Consistency Algo-
rithm and its Specializations. Artificial Intelligence, 57(2-3):291-321, 1992.

W.-J. van Hoeve and 1. Katriel. Handbook of Constraint Programming, chapter 6 -
Global Constraints. Elsevier, 2006.

P. Van Hentenryck, L. Michel, and Y. Deville. Numerica: a Modeling Language for
Global Optimization. MIT Press, 1997.

D. Waltz. Understanding Line Drawings of Scenes with Shadows. In The Psychology
of Computer Vision, pages 19-91. McGraw-Hill, 1975.

M. Wallace, S. Novello, and J. Schimpf. ECLiPSe: A Platform for Constraint Logic
Programming. Technical report, IC-Parc, Imperial College, London, 1997.

Hypertext References

Gecode System (Visited 9/2008).

http://www.ansys.com

Roman Bartak’s On-Line Guide to Constraint Programming (Visited 9/2008).

http://ktiml .mff.cuni.cz/“bartak/constraints/

Wolfram Mathematica (Visited 9/2008).

http://www.wolfram.com/products/mathematica/index.html

The Apache Ant Project (Visited 1/2009).

http://www.ilog.com/products/cplex/

CIM (Common Information Model) (Visited 10/2008).

http://www.dmtf.org/standards/cim/

Eclipse Model-to-model transformation, (Visited 12/2008).

http://wuw.eclipse.org/m2m/

151

http://www.gecode.org
http://www.ansys.com
http://ktiml.mff.cuni.cz/~bartak/constraints/
http://www.wolfram.com/products/mathematica/index.html
http://ant.apache.org/
http://www.koalog.com
http://www.ilog.com/products/cplex/
http://www.dmtf.org/standards/cim/
http://www.eclipse.org/m2m/

152 HYPERTEXT REFERENCES

[ittw] ANTLR Reference Manual (Visited 11/2008).

http://www.emn.fr/x-info/choco-solver/doku.php

[#@w| LINGO - Optimization Modeling Software for Linear, Nonlinear, and Integer Programming
(Visited 9/2008).

http://www.aimms.com/aimms/product/solvers/minos.html

[i#67] The MOSEK Optimization Software (Visited 9/2008).

http://www.mosek. com/

[#67| MProbe 5.0 an assistant for mathematical programming (Visited 9/2008).

http://www.sce.carleton.ca/faculty/chinneck/mprobe.html

[1#7] MATLAB - The Language of Technical Computing (Visited 9/2008).

http://wuw.mathworks.com/products/matlab/

[187] OMG - Object Constraint Language (OCL) 2.0, 2006 (Visited 11,/2008).

http://www.omg.org/cgi-bin/doc?formal/2006-05-01

[19w] OMG - The Unified Modeling Language (UML) 2.1.1 Infrastructure Specification, 2007
(Visited 11,/2008).

http://www.omg.org/spec/UML/2.1.2/

[@0w] OMG - Model Driven Architecture (MDA) Guide V1.0.1, 2003 (Visited 11/2008).

http://www.omg.org/cgi-bin/doc?omg/03-06-01

http://www.antlr.org
http://www.emn.fr/x-info/choco-solver/doku.php
http://www.lindo.com/
http://www.aimms.com/aimms/product/solvers/minos.html
http://www.mosek.com/
http://www.sce.carleton.ca/faculty/chinneck/mprobe.html
http://www.mathworks.com/products/matlab/
http://www.omg.org/cgi-bin/doc?formal/2006-05-01
http://www.omg.org/spec/UML/2.1.2/
http://www.omg.org/cgi-bin/doc?omg/03-06-01

HYPERTEXT REFERENCES 153

[@1v] OMG - Systems Modeling Language (SysML) v1.0, 2007 (Visited 11/2008).

http://www.omg.org/cgi-bin/doc?formal/2007-09-01

[@8w| SNOPT Solver (Visited 9/2008).

http://www.aimms.com/aimms/product/solvers/snopt.html

[@4w| Xpress-MP (Visited 8/2008).

http://www.dashoptimization.com/

http://www.omg.org/cgi-bin/doc?formal/2007-09-01
http://www.aimms.com/aimms/product/solvers/snopt.html
http://www.dashoptimization.com/

Langages et transformation de modéles en
programmation par contraintes

Ricardo SOTO

Résumé

La programmation par contraintes est une technologie pour 'optimisation qui associe des langages de modéli-
sation riches avec des moteurs de résolution efficaces. Elle combine des techniques de plusieurs domaines tels
que l'intelligence artificielle, la programmation mathématique et la théorie des graphes. Un défi majeur dans
ce domaine concerne la définition de langages de haut-niveau pour faciliter la phase de modélisation des pro-
blémes. Un autre aspect important est de concevoir des architectures robustes pour transformer des modéles
de haut-niveau et obtenir des modéles exécutables efficaces, tout en visant plusieurs moteurs de résolution.
Répondre a ces deux préoccupations est trés difficile, car de nombreux aspects doivent étre pris en compte,
comme par exemple, ’expressivité et le niveau d’abstraction du langage ainsi que les techniques utilisées pour
traduire le modéle de haut-niveau dans chacun des langages de résolution. Dans cette thése, nous proposons
une nouvelle perspective pour faire face a ces défis. Nous introduisons une nouvelle architecture pour la pro-
grammation par contraintes dans laquelle le probléme est défini comme un ensemble d’objets contraints dans
un nouveau langage de modélisation haut-niveau. La transformation des modéles est réalisée a ’aide de I'ingé-
nierie des modéles. Les éléments des langages sont alors considérés comme des concepts définis dans un modéle
de modéles appelé métamodéle. Cette nouvelle architecture permet d’aborder les phases de modélisation et de
transformation de modéles en raisonnant & un niveau d’abstraction supérieur et, par conséquent, de réduire
la complexité inhérente a ces deux phases.

Mots-clés: Programmation par contraintes, Langages de modélisation par contraintes, Transformation
de modéles

Languages and Model Transformation in Constraint
Programming

Abstract

Constraint Programming is an optimization technology that associates rich modeling languages with efficient
solving engines. It combines methods from different domains such as artificial intelligence, mathematical
programming, and graph theory. A main challenge in this field is to provide high-level languages for facilitating
the problem modeling phase. Another important concern is to design robust architectures to map high-level
input models to different and efficient solving models. Handling these two concerns is remarkably hard since
many aspects have to be investigated, for instance, the expressiveness and the abstraction level of the language
as well as the techniques used to transform the high-level model into each of the solver’s languages. In this
thesis, we propose a new perspective to face those challenges. We introduce a novel constraint programming
architecture in which the problem is seen as a set of high-level constrained objects defined through a new
modeling language. The model transformation is performed by a model-driven process in which the elements
of languages are defined as concepts of a model of models called metamodel. This new architecture allows one
to tackle the modeling and the model transformation phases in a higher-level of abstraction and consequently
to reduce the inherent complexity behind them.

Keywords: Constraint Programming, Constraint Modeling Languages, Model Transformation

AcM Classification

Categories and Subject Descriptors : D.3.2 [Programming Languages|: Language Classifi-
cations—Constraint and logic languages; D.3.3 [Programming Languages|: Language Constructs
and Features—Classes and objects, Constraints; D.2.2 [Software Engineering]: Design Tools and
Techniques— User interfaces.

http://www.acm.org/class/

	Cover
	Front matter
	French Abstract
	English Abstract
	ACM Classification
	Dédicace
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures

	Body of the Dissertation
	1 Introduction
	1.1 From the Roots of CP to Modern Architectures
	1.2 Motivations & Contributions
	1.3 Outline

	2 Solving Techniques
	2.1 Constraint Satisfaction Problems
	2.2 Solving CSPs
	2.2.1 Basic Search Algorithms
	2.2.2 Filtering techniques
	2.2.3 Solving Algorithms
	2.2.4 Solving numerical CSPs
	2.2.5 Variable and Value Ordering Heuristics

	2.3 Summary

	3 Languages and Systems
	3.1 Constraint Logic Programming
	3.2 Libraries
	3.3 Modeling Languages
	3.4 Programming Languages
	3.5 Mathematical Programming
	3.6 Object-oriented languages
	3.7 Comparing s-COMMA with related approaches
	3.8 Summary

	4 Modeling Language & Graphical Artifacts
	4.1 A Tour of the s-COMMA language
	4.1.1 The SEND + MORE = MONEY Problem
	4.1.2 The Packing Squares Problem
	4.1.3 The Stable Marriage Problem
	4.1.4 The Social Golfers Problem
	4.1.5 The Production Problem
	4.1.6 The Engine Problem

	4.2 Modeling Features
	4.2.1 Constants
	4.2.2 Variable assignments
	4.2.3 Classes
	4.2.4 Attributes
	4.2.5 Constraint Zones
	4.2.6 Heuristic Orderings & Consistency Techniques
	4.2.7 Extensibility

	4.3 The s-COMMA GUI
	4.4 Summary

	5 Mapping Models to Solvers
	5.1 From s-COMMA GUI to s-COMMA
	5.2 From s-COMMA to Flat s-COMMA
	5.2.1 Parsing
	5.2.2 Semantic Checking
	5.2.3 Refactoring Phase

	5.3 From Flat s-COMMA to solvers
	5.3.1 Hand-Written Translators
	5.3.2 Model-Driven Translators
	5.3.3 Discussion

	5.4 Summary

	6 Overview
	6.1 The Model-Driven Transformation Framework
	6.2 A Motivating Example
	6.3 Summary

	7 From Source to Target
	7.1 From source to pivot
	7.2 Pivot refactoring
	7.2.1 Refactoring phase

	7.3 From pivot to target
	7.4 Transformation process
	7.4.1 Selecting the refactoring steps.

	7.5 Experiments
	7.6 Summary

	8 Conclusion
	8.1 s-COMMA
	8.2 Transformation framework for CP languages
	8.3 Future research directions

	Appendixes
	A Grammars
	A.1 s-COMMA Grammar
	A.2 Flat s-COMMA Grammar

	Bibliography
	Hypertext References

	Back cover

