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AbstratConstraint Programming is an optimization tehnology that assoiates rih modeling lan-guages with e�ient solving engines. It ombines methods from di�erent domains suh asarti�ial intelligene, mathematial programming, and graph theory. A main hallenge in this�eld is to provide high-level languages for failitating the problem modeling phase. Anotherimportant onern is to design robust arhitetures to map high-level input models to di�er-ent and e�ient solving models. Handling these two onerns is remarkably hard sine manyaspets have to be investigated, for instane, the expressiveness and the abstration level ofthe language as well as the tehniques used to transform the high-level model into eah ofthe solver's languages. In this thesis, we propose a new perspetive to fae those hallenges.We introdue a novel onstraint programming arhiteture in whih the problem is seen asa set of high-level onstrained objets de�ned through a new modeling language. The modeltransformation is performed by a model-driven proess in whih the elements of languages arede�ned as onepts of a model of models alled metamodel. This new arhiteture allows oneto takle the modeling and the model transformation phases in a higher-level of abstrationand onsequently to redue the inherent omplexity behind them.Keywords: Constraint Programming, Constraint Modeling Languages, Model TransformationRésuméLa programmation par ontraintes est une tehnologie pour l'optimisation qui assoie deslangages de modélisation rihes ave des moteurs de résolution e�aes. Elle ombine destehniques de plusieurs domaines tels que l'intelligene arti�ielle, la programmation mathé-matique et la théorie des graphes. Un dé� majeur dans e domaine onerne la dé�nitionde langages de haut-niveau pour failiter la phase de modélisation des problèmes. Un autreaspet important est de onevoir des arhitetures robustes pour transformer des modèlesde haut-niveau et obtenir des modèles exéutables e�aes, tout en visant plusieurs moteursde résolution. Répondre à es deux préoupations est très di�ile, ar de nombreux aspetsdoivent être pris en ompte, omme par exemple, l'expressivité et le niveau d'abstration dulangage ainsi que les tehniques utilisées pour traduire le modèle de haut-niveau dans haundes langages de résolution. Dans ette thèse, nous proposons une nouvelle perspetive pourfaire fae à es dé�s. Nous introduisons une nouvelle arhiteture pour la programmation parontraintes dans laquelle le problème est dé�ni omme un ensemble d'objets ontraints dansun nouveau langage de modélisation haut-niveau. La transformation des modèles est réaliséeà l'aide de l'ingénierie des modèles. Les éléments des langages sont alors onsidérés omme desonepts dé�nis dans un modèle de modèles appelé métamodèle. Cette nouvelle arhiteturepermet d'aborder les phases de modélisation et de transformation de modèles en raisonnantà un niveau d'abstration supérieur et, par onséquent, de réduire la omplexité inhérente àes deux phases.Mots-lés: Programmation par ontraintes, Langages de modélisation par ontraintes, Trans-formation de modèles am Classi�ationCategories and Subjet Desriptors : D.3.2 [Programming Languages℄: LanguageClassi�ations�Constraint and logi languages; D.3.3 [Programming Languages℄: Lan-guage Construts and Features�Classes and objets, Constraints; D.2.2 [Software Engi-neering℄: Design Tools and Tehniques�User interfaes.
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CHAPTER1
Introduction

C onstraint Programming (CP) is known to be an e�ient software tehnology for solvingombinatorial and ontinuous problems. Under this framework, problems are formulatedas Constraint Satisfation Problems (CSP). Suh a representation desribes a problem in termsof variables and onstraints. Variables are unknowns lying in a set of values alled domain, andonstraints are relations among these variables restriting the values that they an adopt. Thegoal is to �nd a variable-value assignment that satis�es the whole set of onstraints.As an example, let us onsider the 8-queens problem, whih onsists in plaing eight hessqueens on a 8x8 hessboard suh that none of them is able to apture any other using thestandard hess queen's moves. A solution requires that no two queens share the same row,olumn, or diagonal.Eight variables an be identi�ed, Q1, ..., Q8, where Qi denotes the row position of the queenplaed in the ith olumn of the hessboard. The domain for eah of these variables is given by theinteger interval domain [1, 8], whih represents the potential positions of the queens on the rowsof the hessboard. One the variables have been identi�ed with their orresponding domains,we an formulate the onstraints of the problem as the following inequalities for i ∈ [1, 7] and
j ∈ [i + 1, 8]:� To avoid that two queens are plaed in the same row: Qi 6= Qj .� To avoid that two queens are plaed in the same South-West�North-East diagonal: Qi+i 6=

Qj + j.� To avoid that two queens are plaed in the same North-West�South-East diagonal: Qi−i 6=
Qj − j.

Figure 1.1 � A solution of the 8-queens problem.A solution to this problem is depited in Figure 1.1, it orresponds to the sequene (3,5,2,8,1,7,4,6), the �rst queen from the left is plaed on the third row from the top, the seond queen isplaed on the �fth row, the third queen is plaed on the seond one and so on.1



2 Chapter 1 � Introdution1.1 From the Roots of CP to Modern ArhiteturesThe resolution proess of CSPs involves two main aspets. A language to express the problem,and algorithms to perform the solving proess. In some sense, this integration was �rstly perfor-med around 1963 by Ivan Sutherland, who developed a language for speifying onstraints ondrawings [Sut63℄. After this landmark, a natural separation ourred between these two aspets,and the researh work was divided [FM06℄ into two main streams: the language stream and thealgorithm stream.In the language stream, the notion of onstraint was inorporated in several programminglanguages and systems. For instane, around 1967, Elok developed a delarative languagealled Absys [El90℄ based on the manipulation of equational onstraints. Burstall employeda form of onstraint in a program for solving ryptarithmeti puzzles [Bur69℄. Then, the ad-vanes in the programming languages �eld allowed to inorporate onstraints in di�erent pa-radigms. For instane, Borning ombined objets, onstraints, and visual environments in theThingLab simulation laboratory [Bor81℄. Constraint were also mixed with logi programming inthe form of onstraint logi programming (CLP) [JMSY92℄. Some examples are Prolog III [Col90℄,CLP(ℜ) [JL87℄, and CHIP [Van89℄.In the algorithm stream, the researh work was heavily in�uened by the arti�ial intelli-gene (AI) domain. The fous was to develop more e�ient searh and heuristi methods. Forexample, Waltz introdued in the mid-1970s a �ltering algorithm to aelerate the resolutionproess of the sene labeling CSP [Wal75℄. Then, Montanari developed other kind of �lteringmehanisms, tehnially alled loal onsistenies, and a general framework for reasoning aboutonstraints [Mon74℄ was established. The algorithm stream followed growing and new AI om-munities working around the onept of �reasoning� were developed suh as onstraint-basedreasoning [FM92℄ and ase-based reasoning [AP94℄.The separation of both streams ontinued until the early 1990s when a group of sientists fromdi�erent �elds attempt to reintegrate them to reate a new single paradigm alled �onstraintprogramming�. The idea was to reate a new tehnology under the following priniple: The userstates the onstraints and a general purpose onstraint satisfation engine solve them. Fromthose days many onstraint programming systems have been developed, always integrating thetwo aforesaid streams and sometimes involving other approahes, for example ECLiPSe [WNS97℄and GNU Prolog [DC00℄ for onstraint logi programming or Oz [SSW94℄, a multiparadigmlanguage ombining onstraint-based inferene and distributed omputing. Also, several librarieshave been introdued, generally built on top of well-known programming languages suh as ILOGSolver [Pug94℄ and Geode [ST06℄ using C++; and CHOCO [www12 ℄ running under Java.At the beginning of the urrent deade, an important issue arose. The ommunity realizedthat just a redued number of experts mastered the CP tehnology. One of the main reasons wasthe omplexity of the CP's usage. The fruitful use of existing tools implied to have a onsiderablelevel of CP expertise, for instane to deal with enoding aspets of host languages or to tunesearh strategies to perform e�ient solving proesses, in onlusion, the modeling onerns tostate problems were not enough. This important issue enouraged the reation of the so-alledmodeling languages, suh as OPL [Van99℄, where a more �user-understandable� language is given.The user deals with a higher-level language without needing to overome the enoding aspetsof a host language or to speify a searh strategy.Three years ago, onstraint programming systems evolved and the last generation of CParhitetures has been proposed, some examples are Essene [FGJ+07℄, Zin [RGMW07℄ and



Chapter 1 � Introdution 3MiniZin [NSB+07℄. This new arhiteture onsiders three layers, a modeling language on thetop, a set of CP systems on the bottom and a mapping tool on the middle. The modeling languageallows users to state problems in a high-level of abstration. The mapping system takes this modeland translates it to one of the underlying CP systems, whih alulates the solution. These CPsystems, generially alled solvers, normally have a lower level of abstration ompared to themodeling language. An interesting feature of this arhiteture is the apability of proessing onemodel with di�erent solvers. This feature is useful for experimentation tasks, onsidering thatthere exists many kind of models and there is no solver having the best resolution for all.1.2 Motivations & ContributionsThe researh of high-level languages and �exible arhitetures for model transformation is animportant hallenge in the CP �eld. The task is hard sine many aspets must be investigated.The de�nition of high-level languages requires to onsider several onerns. For instane, provi-ding support for a wide range of problems depends on the de�nition of suitable levels of expres-siveness. The design of elegant modeling styles is essential for getting onise and lear models.Extensibility mehanisms are important to enlarge the expressiveness of languages, and tuningapabilities are useful for ahieving e�ient solving proesses. Software features to improve reuseand model management are desirable partiularly for handling larger problems. Building �exibleand e�ient arhitetures for model transformation involves the study of additional onerns.For instane, the orret seletion of tools and tehniques is a key deision to implement �exibleand modular mappings. Another important aspet is the openness of this arhiteture, i.e. itmust be possible to plug new solvers to the underlying layer.The development of languages and systems for CP is a long story. Various evolutions, im-provements and ombinations of previous approahes an be regarded. However, most of theaforementioned aspets are reent and they have not been studied enough. In this thesis, wepresent a new vision for handling those onerns. Software engineering praties are omplemen-ted with several innovations to provide high-level problem modeling. Powerful tehniques fromthe model engineering world ensure modular and �exible mappings toward the solver resolution.This new approah onsists of three main omponents: the s-COMMA language, the s-COMMA GUI,and a middle tool for transforming models to solver programs.s-COMMA is the modeling language of the arhiteture [SG07b℄. Its design is based on theexperiene of the software engineering world. Features from objet-oriented languages suh asmodularity, omposition, and inheritane are introdued to support reuse and the managementof onstraint models. The ore of the language is a ombination of a high-level objet-orientedlanguage with a onstraint language. The onstraint language inludes usual data strutures,ontrol operations, and �rst-order logi to de�ne onstraint-based formulas. The objet-orientedpart of the language has been simpli�ed to avoid the omplex enoding onerns present inprogramming languages. As a onsequene, the language is able to elegantly apture the stru-ture of problems in single objets. This new modeling style is just the �rst innovation of ourapproah. The seond innovation of s-COMMA onerns its tuning apabilities. A simple forma-lism is provided to perform ustomized solving proesses [SG08b℄. This formalism is unique inobjet-oriented onstraint modeling and it pro�ts of the objet-oriented style to on�gure sol-ving options in multiple manners. The third innovation of our approah is about extensibility.An extension mehanism is provided to adapt the modeling language to further upgrades of the



4 Chapter 1 � Introdutionsolver layer. This mehanism allows us to add new funtionalities suh as new global onstraints,new funtions, or new tuning options [SG07a℄.The s-COMMA GUI [CGS08℄ is the assoiated authoring tool of the arhiteture. The visuallanguage provided an be seen as the graphial representation of the s-COMMA language. Thedesign of this new language has also been in�uened by software engineering praties. In fat,the objet-oriented style of s-COMMA has been naturally represented by means of an extensionof the UML lass artifat. This new language is the fourth innovation of the arhiteture, beingthe support of a visual and a more onise pereption of models.The mapping tool is the third omponent of the arhiteture. This tool is responsible fortransforming an input model into an exeutable solver program. A main hallenge must be faedat this stage. The transformations must be �exible and easy to implement in order to permit theintegration of new solvers to the platform. This issue is evidently a model transformation onern.Aordingly, as the �fth innovation of the arhiteture, the mapping tool has been enhanedwith the inorporation of a model-driven arhiteture [CGS08℄. This approah provides propermetamodeling and transformation tehniques to build �exible mapping tools.The transformation proess performed in s-COMMA is similar to that of Zin or Rules2CP[FM08℄, exept for the transformation of graphial artifats. In s-COMMA we onsider a three-step transformation phase (see Figure 1.2). Firstly, graphial artifats are transformed to theorresponding s-COMMAmodel. This model must then be transformed to the Flat s-COMMA [SG08a℄intermediate language to be loser, in terms of language onstruts, from the solver language.In this proess, several high-level onstruts �not supported at the solver level� are transformedto simpler ones. For instane, loops are unrolled, onditionals are refatored, or objet-orientedompositions are �attened. This allows one to simplify both the translation proess and theintegration of new solver transformations. Finally, this intermediate model is diretly transformedto the exeutable solver program.
s-COMMA
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Visual-to-Textual

Visual Model
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Model
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Textual-to-Flat

Flat s-COMMA
Model

Transformation
Flat-to-Solver1

Solver 1

Transformation
Flat-to-Solver1

Solver 2

Transformation
Flat-to-SolverN

Solver NFigure 1.2 � The transformation proess in s-COMMA.The s-COMMA platform is the result of an investigation of several important onerns inthe development of modern arhitetures for CP. Many innovations and bene�ts an be foundin this new approah. A high-level language is provided to smoothly apture the struture ofproblems. An aurate graphial representation of this language is given to ahieve a more oniserepresentation of problems. As opposed to previous approahes, the expressiveness of s-COMMAan be extended to support new funtionalities. The use of tuning mehanisms in objet-orientedmodeling is another innovation of s-COMMA, it permits performing ustomized solving proesses.The platform also provides support for experimentation tasks, as the possibility of proessing



Chapter 1 � Introdution 5a same model with di�erent solvers is present. Finally, the struture of the arhiteture an beupdated. New solvers an be onneted to the platform in order to enlarge the experimentationpossibilities.A seond work is presented in this thesis as well [CGS09℄. This new approah an be seen asan improvement of the solver-independent arhiteture. We introdue a new framework allowingto de�ne bridges between di�erent modeling and solver languages. The main motivation behindthis work onerns the fat that de�ning a universal modeling language1 for CP is hard, and theusers usually have their own preferenes. Therefore, we believe that a transformation frameworkto de�ne mappings between many modeling languages and many solvers would be desirable.This new approah involves important advantages. For instane, users may hoose their favoritemodeling language and the best known solving tehnology for a given problem provided thatthe transformation between languages is implemented. Additionally, it may be easy to reate aolletion of benhmarks for a given language from di�erent soure languages. This feature mayspeed up prototyping of one solver, avoiding the rewriting of problems in its modeling language.
Source Model
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Source-to-Pivot

Target Model

Transformation
Pivot-to-Target

Pivot-to-Pivot
Refactoring/
OptimizationFigure 1.3 � The transformation framework for CP.We implement this transformation framework by means of an arhiteture ompletely builtusing a model-driven approah. A generi and �exible pivot model (intermediate model) hasbeen introdued, to whih di�erent languages an be mapped. This arhiteture allows one toperform a omplete transformation in three main steps: from the soure to the pivot model,refatoring/optimization of the pivot model, and from the pivot to the target model (see Fi-gure 1.3). Refatoring and optimization steps are always implemented over the pivot so as toguarantee independene from external languages. This re�ning phase is omparable to the oneperformed from s-COMMA to Flat s-COMMA, but more �exible sine the proess is not �xed, i.e. itis possible to selet the re�ning steps to be applied in a transformation. For instane, if loopsare supported at the target level it is useless to unroll them. This feature allows one to make useof the onstruts provided at the target level and therefore to redue the di�erenes (in terms ofmodel struture) between the soure and the target model.The work done on this transformation framework an be seen as a natural ontinuation ofthe arhiteture implemented in s-COMMA. Two main innovations an be observed with respetto previous work. The possibility of using di�erent modeling languages as the soure of a trans-formation, and the possibility of seleting the appropriate re�ning phases in a transformation.The �rst feature speeds up prototyping of solvers and motivates model sharing, and the seondone enables users to generate models targeting a desired solving tehnology.

1 The de�nition of a standard language has been established as an important future hallenge at the CP 2006onferene. At the CP 2007 onferene, MiniZin has been proposed as a standard language.



6 Chapter 1 � Introdution1.3 OutlineThis thesis is omposed of three main parts: Part one is devoted to the state of the artand it is divided into two hapters. The �rst hapter gives an overview of tehniques developedfor solving CSPs. We inlude the main proedures and we illustrate them by means of severalexamples. The seond hapter gives a summary of languages and systems for modeling andsolving CSPs. The spetrum is very wide, from programming to modeling languages and fromlogi to objet-oriented paradigms. We also introdue various models of the n-queens problem inorder to ontrast the di�erent approahes.Part two presents the s-COMMA platform. The �rst hapter of this part is devoted to themodeling features of s-COMMA. A tour of the s-COMMA language is �rstly given, followed by adetailed illustration of the modeling onstruts supported. The hapter ends with a presentationof the s-COMMA GUI and its graphial artifats. The seond hapter of this part fouses on thewhole transformation hain, from graphial artifats to solver models. We present the mainelements involved in the system (e.g. parsers, metamodels and transformation rules) and thetools and tehniques for implementing them.The seond approah we developed is presented in Part three. The �rst hapter presentsthe arhiteture of the transformation framework and motivates its implementation through anexample onerning several transformation issues. The following hapter fouses on the imple-mentation of the main parts of the transformation framework. We explain the struture of thearhiteture and the transformation proess from soure to target models. The thesis ends withthe onlusion and the future work.



PART IState-of-the-art





CHAPTER2
Solving Techniques

C onstraint satisfation involves various solving approahes, whih are mainly based onarti�ial intelligene. In this hapter, we give an overview of these approahes. We �rstlyintrodue some basi notations and then we present the foundations of tehniques to solve CSPs.We onsider the basi searh algorithms as well as more advaned proedures that involve �lteringmehanisms.2.1 Constraint Satisfation ProblemsDe�nition 2.1 (Constraint Satisfation Problem). A Constraint Satisfation Problem P is de-�ned by a triple P = 〈X ,D, C〉 where:� X is a set of variables {x1, x2, . . . , xn}.� D is a set of domains {d1, d2, . . . , dn} suh that di is the domain of xi de�ned as a subsetof some set Ei alled universe, for i = 1, . . . , n.� C is a set of onstraints {c1, c2, . . . , cm} suh that cj is a relation over a set of variables
{xj1, . . . , xjnj

} alled its sope, de�ned as the set Γj ⊆ dj1 × · · · × djnj
, for j = 1, ...,m.

cj(xj1 , . . . , xjnj
) is also used to denote a onstraint cj over its sope xj1, . . . , xjnj

.A solution to a CSP is an assignment {x1 → a1, . . . , xn → an} suh that:� ai ∈ di for i = 1, . . . , n.� (aj1, . . . , ajnj
) ∈ Γj, for j = 1, . . . ,m.If the CSP has a solution we say that it is onsistent; otherwise we say that it is inonsistent.There exist di�erent lasses of CSPs, for instane:� A �nite domain CSP orresponds to a CSP in whih eah domain is a �nite subset of Z(universe of variables). The onstraints are generally de�ned as arithmeti, logi, or setexpressions.� A numerial CSP orresponds to a CSP in whih eah domain is an interval ontainingvalues from R. The onstraints are generally de�ned as linear and non linear equations orinequalities.2.2 Solving CSPsSolving CSPs requires to explore the spae of potential solutions. Suh an exploration anbe performed using a tree data struture, where the root is the initial problem and eah nodeorresponds to a sub-problem. The tree is built by splitting the domain of variables to obtain9



10 Chapter 2 � Solving Tehniquesthose sub-problems. There exist di�erent strategies for traversing the tree suh as deep-�rstsearh and breadth-�rst searh, and also various algorithms for generating and exploring thetree. The most basi one is the Generate and Test algorithm.2.2.1 Basi Searh AlgorithmsGenerate and TestThe Generate and Test (GT) algorithm onsists in generating a potential solution and hekingwhether it satis�es all the onstraints. This proess is done by generating a tree that representsthe Cartesian produt of domains.
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b Figure 2.1 � Solving the 4-queens problem using GT.Let us illustrate the GT proess by means of the 4-queens problem, a smaller version of the8-queens problem introdued in Chapter 1. Figure 2.1 depits an extrat of the proess done bythe GT algorithm to reah a solution for this problem1. The �gure shows that onstraints areheked only when all the variables of the problem have been instantiated. Thus, failures annotbe deteted as soon as only the variables relevant to a onstraint have been instantiated. Thisapproah is simple to implement, however the searhing ost is too expensive.BaktrakingBaktraking (BT) [Lu91, GB65℄ is another approah for the exploration/generation of thesearh tree. In this method the potential solutions are generated inrementally by repeatedlyhoosing a value for another variable and as soon as all the variables involved in a onstraintare instantiated, the onstraint is heked. Thus, if a partial solution violates a onstraint, thealgorithm returns to the most reently instantiated variable that still has alternatives available(to ahieve a solution), eliminating as a onsequene the on�iting subspae.Figure 2.2 depits the searh proess performed by the BT proedure on the 4-queens problem.The �gure shows that BT is able to detet failures as soon as two variables are instantiated (at
1Figures 2.1, 2.2, 2.4 and 2.5 have been adapted from [www4 ℄.



Chapter 2 � Solving Tehniques 11the middle level of the tree), that is muh earlier than in the GT approah. Despite this, the BTapproah is not able to detet failures before assigning the values to all the variables involved ina on�iting onstraint. This problem an be addressed by using �ltering tehniques.
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bFigure 2.2 � Solving the 4-queens problem using BT.2.2.2 Filtering tehniquesThe performane of basi searh algorithms an be improved by reduing the variables' do-mains of eah generated sub-problem. This is possible by alulating a onsisteny property onthe onstraints. The idea is to enfore suh a property on eah sub-problem by using a onstraintpropagation algorithm. The most used notion of onsisteny is the ar onsisteny [Ma77℄.De�nition 2.2 (Ar Consisteny). Let cj(xj1 , . . . , xjnj
) be a onstraint and let k be an integer,

k ∈ {j1, . . . , jnj
}. We say that cj is ar onsistent wrt. xk i�:

∀ak ∈ dk : ∃aj1 ∈ dj1 , . . . ,∃ak−1 ∈ dk−1,∃ak+1 ∈ dk+1, . . . ,∃ajnj
∈ djnj

suh that
(aj1, . . . , ajnj

) ∈ ΓjA onstraint is said to be ar onsistent if it is ar onsistent wrt. to all its variables. A CSPis said to be ar onsistent if all its onstraints are ar onsistent.Ar onsisteny allows one to verify that for eah value of a domain it exists at least onevalue in the domain of the other variables suh that the onstraint involved is satis�ed. Thisproperty an be alulated by a onstraint propagation algorithm in order to redue the domainsof variables. As an example, let us onsider the plaement of the �rst queen on the ell (1,1) ofthe hessboard (see Figure 2.3). Three ells have been eliminated to make the sub-problem aronsistent. The value 1 has been removed from the domain of Q2 sine there is no orresponding



12 Chapter 2 � Solving Tehniquesvalue in the domain of Q1 suh that the onstraint Q1 6= Q2 is satis�ed (onsidering that thedomain of Q1 beame {1} after the instantiation). In the same way, the value 1 has been removedfrom the domain of Q3 and Q4. This proess is done for eah onstraint of the problem allowingto avoid several potential wrong instantiations. Let us note that there exist di�erent algorithmsto enfore ar onsisteny, for instane AC-3 [Ma77℄, AC-4 [MH86℄ and AC-5 [VDT92℄.
b

Q1=1 Q2=1 Q3=1 Q4=1

Figure 2.3 � Enforing ar onsisteny.There also exist stronger onsisteny notions, whih may eliminate a larger number of on�i-ting values from domains, but at higher ost in terms of omputations. Some examples are thepath onsisteny [Mon74℄ and the k-onsisteny [Fre78℄.2.2.3 Solving AlgorithmsA searh algorithm an be ombined with onstraint propagation to obtain a more e�-ient solving proedure. The most ommon approah is to ombine the BT algorithm with thear onsisteny. Some examples are Forward Cheking (FC) and Maintaining Ar Consisteny(MAC).Forward ChekingForward heking [MG79℄ is able to prevent future on�its by performing ar onsistenyon the not yet instantiated variables. This is done by removing temporarily the values of thevariables that will further ause a on�it with the urrent variable assignment. Hene, the algo-rithm immediately detets that the urrent partial solution is inonsistent and onsequently thesearh spae an be pruned earlier than using simple baktraking.Figure 2.4 illustrates this proess: values from domains are removed sine the seond levelof the tree. One a queen is stated, its future on�iting values are temporarily removed, forinstane the queen stated at the position (1,1) removes all values orresponding to the �rst rowand the NW-SE diagonal. Then, in the left subtree, the seond queen is plaed at the position(3,2) whih is immediately set as inonsistent sine it does not leave available plae for the thirdqueen. The propagation follows for every queen on the hessboard, allowing to avoid most ofwrong instantiations done by the BT approah.



Chapter 2 � Solving Tehniques 13
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Figure 2.4 � Solving the 4-queens problem using FC.Maintaining Ar ConsistenyThe Maintaining Ar Consisteny (also alled Full Look Ahead) [Gas74, SF94℄ is a stron-ger solving algorithm. It heks the on�its between future variables in addition to the testbetween the urrent and the future variables.
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4Figure 2.5 � Solving the 4-queens problem using MAC.Figure 2.5 illustrates this proess, where we an see that the MAC algorithm is able toprune the searh spae earlier than the forward heking, but doing muh work on eah variableassignment. For instane, when the �rst queen is plaed at the position (1,1) the on�its betweenthe urrent position and the future positions are removed. After that, the algorithm heks theon�its among the future variables starting with the �rst available position on the seond olumnthat is, the ell (3,2). The algorithm �nds out that the position (3,2) is inonsistent sine it doesnot leave available plae for the third queen, thus the position (3,2) is removed. The algorithmfollows with the ell (4,2), the next available position on the seond olumn. This plaement



14 Chapter 2 � Solving Tehniquesleaves the ell (2,3) as the unique available position on the third olumn, whih is then set asinonsistent sine it does not leave available plae for the fourth queen. The proess follows untilthe result is reahed on the right subtree.2.2.4 Solving numerial CSPsIn the presene of onstraints over real numbers, the already presented �ltering tehniquesannot be applied due to three main limitations:� Deiding the onsisteny of onstraints over real numbers is not possible in a generalontext [Ri68℄.� The representation of reals in numerial omputations is not exat sine it is ommonlydone by means of �oating-point numbers, whih orrespond to a �nite set of rationalnumbers [Gou00℄.� The use of �oating point numbers may lead to rounding errors.As a onsequene, spei� �ltering tehniques have been de�ned in order to deal with realnumbers. These tehniques mainly rely on the alulation of approximations over domains re-presented by intervals bounded by �oating-point numbers. Some tehniques are based on hullonsisteny [Lho93, Lv93, BO97℄ and on box onsisteny [BMV94℄.2.2.4.1 Interval arithmetiBefore presenting the �ltering tehniques dediated to numerial CSPs, let us give an overviewof interval arithmeti [Moo66℄.De�nition 2.3 (Floating-point Interval). An interval I bounded by �oating-point numbers isde�ned as:
I = [a, b] = {r ∈ R|a ≤ r ≤ b, with a, b ∈ F}We denote inf(I) as the lower bound and sup(I) as the upper bound of the interval. The fourbasi operations to be used on �oating-point intervals are the following:

[a, b] ⊕ [c, d] = [⌊a + c⌋, ⌈b + d⌉]
[a, b] ⊖ [c, d] = [⌊a − d⌋, ⌈b − c⌉]

[a, b] ⊗ [c, d] = [min(⌊ac⌋, ⌊ad⌋, ⌊bc⌋, ⌊bd⌋), max(⌈ac⌉, ⌈ad⌉, ⌈bc⌉, ⌈bd⌉)]
[a, b] ⊘ [c, d] = [min(⌊a/c⌋, ⌊a/d⌋, ⌊b/c⌋, ⌊b/d⌋),max(⌈a/c⌉, ⌈a/d⌉, ⌈b/c⌉, ⌈b/d⌉)], 0 /∈ [c, d]De�nition 2.4. Given a ∈ R, we denote a+ as the smallest element of F greater than a, and

a− as the greatest element of F smaller than a.De�nition 2.5 (Canonial Interval). We say that a nonempty interval I is anonial if :
I = [a, b] suh that b ≤ a+, with a, b ∈ FDe�nition 2.6 (Hull Operator). The hull of a set S ⊆ R is de�ned as the smallest intervalenlosing S :

hull(S) = [⌊inf(S)⌋, ⌈sup(S)⌉]



Chapter 2 � Solving Tehniques 15De�nition 2.7 (Interval Extension). An interval funtion F : I
n → I is an interval extensionof a real funtion f : R

n → R i� :
∀B ∈ I

n : {f(x)|x ∈ B} ⊆ F (B)There are various implementations of interval extensions. The natural interval extension ofa real funtion f is de�ned as the funtion F in whih eah real onstant is replaed by its hulland eah real operation is replaed by its orresponding interval operation. As an example let usonsider the following funtion f de�ned over real numbers:
f(x, y) = x2 − (x × y) + 2|x, y ∈ Rthe natural extension F of the funtion f is de�ned as follows:

F (X,Y ) = X2 ⊖ (X ⊗ Y ) ⊕ [2, 2]|X,Y ∈ IGiven x ∈ X = [0, 2] and y ∈ Y = [1, 3] we have:
F (X,Y ) = [0, 4] ⊖ [0, 6] ⊕ [2, 2]

F (X,Y ) = [−6, 4] ⊕ [2, 2]

F (X,Y ) = [−4, 6] ⊇ {f(x, y)|x ∈ X, y ∈ Y }2.2.4.2 Consisteny notionsIn this setion we present two of the onsisteny notions devoted to numerial CSPs: hullonsisteny (also alled 2B-onsisteny) and box onsisteny.De�nition 2.8 (Hull Consisteny). Given a real onstraint cj(xj1 , . . . , xjnj
), a box B = I1 ×

. . .×In ⊆ I
n, the box B′ = Ij1 ×· · ·×Ijnj

, an integer k ∈ {j1, . . . , jnj
}, we say that the onstraint

cj is hull onsistent wrt. xk i� :
Ik = hull(πk(Γj ∩ B′)),where πk orresponds to the projetion of cj on xk. We say that the onstraint cj is hull onsistentwrt. B′ if that relation is true for k ∈ {j1, . . . , jnj

}.De�nition 2.9 (Box Consisteny). Given a real onstraint cj of the form fj(xj1, . . . , xjnj
) = 0,

Fj a natural interval extension of fj, a box B = I1 × . . .× In ⊆ I
n, the box B′ = Ij1 × · · · × Ijnj

,an integer k ∈ {j1, . . . , jnj
}, we say that the onstraint cj is box onsistent wrt. xk i� :

Ik = hull({ak ∈ Ik|0 ∈ Fj(Ij1 , . . . , Ik−1, hull({ak}), Ik+1, . . . , Ijnj
)})We say that the onstraint cj is box onsistent wrt. B′ if that relation is true for k ∈ {j1, . . . , jnj

}.For the sake of simpliity we de�ne the box onsisteny only wrt. equalities, but this de�nitionan be easily extended for inequalities, onsidering that f ≤ 0 ⇔ f = z, z ∈ [−∞, 0].The box onsisteny property is generally weaker than hull onsisteny (a omparison an befound in [CDR99℄). Let us note that there also exist additional onsistenies for numerial CSPs,for instane 3B-onsisteny, kB-onsisteny [Lho93℄, and CID-onsisteny [TC07℄.



16 Chapter 2 � Solving Tehniques2.2.4.3 Filtering algorithmsIn this setion, we illustrate two �ltering algorithms by using the already presented onsis-tenies.Enforing hull onsistenyThe hull onsisteny an be enfored by using interval arithmeti in two main phases: forwardevaluation and bakward propagation As an example, let us onsider the not hull onsistent CSP
P = 〈〈x, y, z〉, 〈Dx ∈ [4, 9],Dy ∈ [2, 7],Dz ∈ [3, 8]〉, 〈x = y + z〉〉.

=

[4,9]x +

y z

[5,9]

[5,15]

[2,7] [3,8]

=

[5,9]x +

y z

[5,9]

[5,9]

[2,6] [3,7]

Forward Evaluation Backward PropagationFigure 2.6 � Enforing hull onsisteny.Figure 2.6 depits the proess performed by the hull onsisteny algorithm. Suh a proessbegins with the forward evaluation, whih is a bottom-up tree traversal to evaluate its terms.The expression y + z is evaluated by onsidering the interval addition operation, giving as aresult the interval [5, 15]. The root of the tree orresponds to an equal symbol, whih operatesas an intersetion. Thus, the result of this node is given by [4, 9] ∩ [5, 15] = [5, 9]. The forwardevaluation is followed by the bakward propagation, where the onstraint is projeted on a top-down tree traversal. Starting with the root, the interval [5, 9] is interseted with its hild nodes,both nodes beome [5, 9], and the hull onsistent domain of x is obtained. Then, to alulatethe hull onsistent domain of y, we reorganize the equation as follows: y = [5, 9] ⊖ z. Usingthe interval subtration operation, and replaing z by its domain, the result of the equation isgiven by [5, 9]⊖ [3, 8] = [−3, 6]. The new interval is interseted with the previous domain of y toobtain the hull onsistent domain of y ([−3, 6] ∩ [2, 7] = [2, 6]). The hull onsistent domain of zis alulated in the same way.Enforing box onsistenyFor the sake of simpliity we onsider a simple algorithm using box onsisteny (the origi-nal proedure inludes the interval Newton method [Neu90℄). This algorithm begins by testingwhether the domain ontains solutions. If the domain is inonsistent it is rejeted; otherwise its lo-wer anonial interval [inf(D),inf(D)+℄ is tested. If the anonial interval satis�es the onstraint,
inf(D) is the new lower bound. Otherwise, D is biseted and the proedure is performed againwith the interval [inf(D)+, inf(D)+sup(D)

2 ] and the interval [ inf(D)+sup(D)
2 , sup(D)]. As an example,



Chapter 2 � Solving Tehniques 17let us onsider the not box onsistent CSP P = 〈〈x〉, 〈Dx ∈ [−2, 2]〉, 〈x2 < 2〉〉 shown in Fi-gure 2.7.
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Figure 2.7 � The CSP P = 〈〈x〉, 〈Dx ∈ [−2, 2]〉, 〈x2 < 2〉〉.Figure 2.8 illustrates the proess performed by the algorithm. The proess begins by testingthe domain [−2, 2] whih ontains onsistent values but its anonial lower bound ([−2,−2+]) isinonsistent, so it is biseted into the intervals [−2+, 0] and [0, 2]. The same proess is done withthe lower interval, whih is biseted again into the intervals [−2++

,−1] and [−1, 0]. The lowerinterval [−2++

,−1] is biseted again, and the new lower interval is rejeted sine no solution isfound. The proess ontinues until both the lower and the upper anonial intervals are onsistent.The lower bound of the onsistent lower anonial interval and the upper bound of the onsistentupper anonial interval orrespond to the bounds of the box onsistent domain.
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18 Chapter 2 � Solving Tehniques2.2.5 Variable and Value Ordering HeuristisSearh algorithms start the proess by seleting a variable to enumerate or to biset. Theorder in whih this hoie is done is referred to as the variable ordering. Several experimentshave demonstrated that a orret ordering deision an be ruial to perform an e�etive solvingproess. There exist several heuristis for seleting the variable ordering:� Fail-�rst: to selet the variable with the smallest domain. This hoie is motivated by theassumption that a suess an be ahieved by �rst trying the variables that have a biggerhane to fail, in this ase, the values with a smaller number of available alternatives. Thisheuristi is known to be more adapted to disrete domains.� Most-onstrained variable: this hoie an be justi�ed by the fat that the instantiation ofsuh a variable should lead to a bigger tree pruning through the onstraint propagation.� Redue-�rst: to selet the variable with the biggest domain. This heuristi is known to bemore adapted to ontinuous domains.� Round-robin: to selet the variables in some rational and equitable order, for instane fromthe �rst variable de�ned in the model to the last one.After seleting the variable to enumerate or biset, the algorithms have to selet a valuefrom the variable's domain. This seletion is alled the value ordering and it an also have aonsiderable impat. For example, if the right value is hosen on the �rst try for eah variable,a solution an be found without performing baktraks. However, if the CSP is inonsistent orthe whole set of solutions is required, the value ordering is irrelevant. The literature presentsdi�erent ways to perform this seletion whih, depending on the problem nature, may lead to amore e�ient onstraint propagation [Apt03℄.For instane, ontinuous domains are generally biseted, i.e. eah interval is split to obtaintwo size-equivalent intervals. It is also possible to enumerate a set of little intervals, whose sizeorresponds to the preision of variables. The disrete domains are, in general, enumerated,however it is also possible to biset them as usually done in ontinuous domains. After theenumeration, it is possible to hoose the �rst value as well as the smallest, the median or themaximal value. There also exist more omplex value ordering heuristis whih are in general eitherbased on estimating the number of solutions or estimating the probability of a solution [van06℄.2.3 SummaryIn this hapter we have presented the main tehniques for solving CSPs. We have illustratedbasi searh algorithms as well as more advaned proedures suh as the ones involving onstraintpropagation. Constraint propagation is a �ltering mehanism apable of improving the e�ienyof searh algorithms by enforing a onsisteny property. Di�erent kinds of onsisteny notionsexist, whih an be applied depending on the nature of the CSP.In the next hapter, we present a large list of languages and systems for modeling and solvingCSPs. Most of them embed in their internal solving engines the algorithms and tehniquespresented in this hapter.



CHAPTER3
Languages and Systems

L anguages and systems for modeling and solving CSPs have been developed under di�erentpriniples. As we have mentioned, the �rst system dates bak from the 1960s, followedby a large list where very di�erent paradigms beame involved. For instane, the use of logiprogramming as the support for the CLP paradigm or the use of objets for the simulation ofproblems under onstraints. From an implementation point of view, di�erent ways have beenproposed, for instane, using libraries upon a host programming language or building a newprogramming language with support for onstraints. The development of a pure modeling lan-guage instead of a programming language is a more reent onern, the idea is to provide amore �user-understandable� language. In the following paragraphs we give an overview of lan-guages and systems for onstraint satisfation organized in six groups: CLP systems, libraries,modeling languages, programming languages, mathematial programming systems, and objet-oriented languages. To give a general view of similarities and di�erenes of suh languages, ateah setion's end a model of the n-queens problem is introdued.3.1 Constraint Logi ProgrammingConstraint Logi Programming is the paradigm that extends logi programming to supportonstraint solving. This extension is known to be natural, as the delarativeness of logi pro-gramming is suitable for stating onstraints, and the built-in baktraking engine an be used tosimplify the implementation of searh mehanisms. This idea was pioneered by Colmerauer, inthe development of Prolog II [Col82℄. Suh an approah was then generalized in the CLP shemeestablished by Ja�ar and Lassez in [JL87℄. Then, many other systems inluding additional fea-tures were developed, some examples are presented in the following.Prolog III-IVProlog III [Col90℄ is the suessor version of the pioneering Prolog II system. This approahwas one of the �rst in replaing the logi programming uni�ation mehanism by the more generalmehanism of onstraint solving whih, from a tehnial standpoint, is one of the basi priniplesof CLP. The last version of this set of suessors is alled Prolog IV [Col96℄, a CLP systemdesigned to support onstraints over di�erent domains suh as integers, reals and booleans.CLP(ℜ)CLP(ℜ) [JMSY92℄ is another preursor CLP tool. It was de�ned as an instane of the CLPsheme established by Ja�ar and Lassez. The implementation was designed to support onstraint19



20 Chapter 3 � Languages and Systemsover reals by means of an algebrai built-in onstraint solver able to deal with linear arithmetiand non-linear onstraints.CHIP (Constraint Handling In Prolog)CHIP [Van89℄ is also onsidered a pioneering CLP system together with the already pre-sented CLP(ℜ) and Prolog III systems. It was originally developed as an extension of Prolog,being the �rst one in inluding global onstraints. The urrent version, CHIP V5, is also avai-lable as a C and C++ library. CHIP V5 inludes several features suh as support for di�erentkinds of onstraints, interfaes to graphial omponents and relational databases. The systemalso integrates Xpress-MP [www24 ℄ as its solver for linear programming.ECLiPSeECLiPSe [WNS97℄ is a more reent CLP system. It provides a very wide range of featuresfor solving problems under onstraints, inluding the most typial suh as lists, arrays and re-ords, support for sets, and ontrol statements suh as onditionals and for loops. ECLiPSealso provides a set of libraries, for example, for handling ontinuous CSPs, for CHR (ConstraintHandling Rules) [Frü98℄ and for mathematial programming. Some of them an be ombined tosolve problems by means of a hybrid style. The de�nition of ustomized searh proedures andvariable and value orderings is also supported.GNU PrologGNU Prolog is another system belonging to the CLP group [DC00℄. GNU Prolog has beendesigned to support �nite domain CSPs, however it an be interfaed to handle CSP over reals.It provides a large list of prede�ned Prolog prediates and onstraints as well as support forommon onstruts suh as lists, sets, and onditionals. Optimization problems and orderingheuristis are also supported. An interfae has been inluded to all external routines written inC.SICStus PrologThe SICStus Prolog system [COC97℄ is based on a solver platform for �nite domains, onti-nuous domains and CHR. The host language provides typial data strutures suh as lists andarrays, and also more omplex suh as sets and Prolog-like objets. Support for onditional sta-tements, optimization problems and variable ordering heuristis is available as well. It is alsoworth mentioning that SICStus Prolog has one of the most e�ient implementations of globalonstraints. The system also provides multiple interfaes, for instane, for C, C++, .NET andJava.MeruryOriginally, Merury [SHC96℄ was designed as a logi/funtional programming language. Cur-rently, as part of the G12 projet [SGM+05℄, it also provides support for CLP. An interesting



Chapter 3 � Languages and Systems 21aspet of Merury is that allows users to speify non-delarative ode in a spei� module. Thisfaility avoids to de�ne interfaes with other programming languages whih normally add anoverhead to the resolution proess.Example in ECLiPSeFigure 3.1 depits an ECLiPSe model for the n-queens problem. The �le is omposed of aall to a required library and a Prolog-like prediate alled queens. This prediate is used tostate the problem, and its header owns two arguments, N and Board. The �rst argument holdsthe quantity of queens and the seond one is an array representing the row positions of thequeens on the hessboard. The size of this array is given by N (line 5) and the domain of itsvariables is given by the interval 1..N (line 6). Between lines 8 and 14, two for loops ensure thatthe onstraints of the problem are applied over all the queens, param is used to de�ne parame-ters, i.e. the variables stated outside the loop sope that must remain onstant aross iterations.Inside those loops, the three onstraints of the problem are posted. The �rst onstraint forbidstwo queens plaed in the same row (line 10), the seond one avoids two queens plaed in thesame South-West � North-East diagonal (line 11), and the third one avoids two queens in thesame North-West � South-East diagonal (line 12). The `#\=' symbol orresponds to the not equaloperator over integer expressions. At line 16, Board is onverted to a list alled Vars (due to thelabeling prediate annot be used over arrays). At the end of the �le, the solving proess islaunhed.1. :- lib(i).2.3. queens(N, Board) :-4.5. dim(Board, [N℄),6. Board[1..N℄ :: 1..N,7.8. ( for(I,1,N), param(Board,N) do9. ( for(J,I+1,N), param(Board,I) do10. Board[I℄ #\= Board[J℄,11. Board[I℄+I #\= Board[J℄+J,12. Board[I℄-I #\= Board[J℄-J13. )14. ),15.16. Board =.. [_|Vars℄,17. labeling(Vars).Figure 3.1 � An ECLiPSe model of the n-queens problem.3.2 LibrariesLibraries provide a language for stating problems under onstraints in the form of built-ins embedded in a host programming language. These built-ins are generally implemented bymeans of spei� lasses and methods, for instane, a given lass is used to state variables and



22 Chapter 3 � Languages and Systemsmethods de�ne relations over them. This approah is a ommon way for implementing onstraintsystems sine there is no need to implement a new language. However, the user is fored to have abakground about the host language to use the library orretly, whih is normally more omplexand verbose ompared to a pure modeling language.ILOG SolverILOG Solver [Pug94℄ is a onstraint-based optimization engine written as a C++ library.ILOG Solver provides a rih set of built-ins, for instane to support �nite domain and �oating-point variables. The library also supports optimization problems, the spei�ation of heuristiorderings, and ustomized searh proedures. Currently, the ILOG solver belongs to the ILOGCP suite, whih is distributed together with ILOG Sheduler (for sheduling problems) and withILOG Dispather (for vehile routing problems).Geode & Geode/JGeode [ST06℄ is another library written on top of C++. It has been designed to support�nite domain variables. The onstraint set is very large involving di�erent kinds of onstraints,over integer, boolean, and set variables. The Geode system supports the de�nition of variableand value orderings as well as the spei�ation of ustomized searh and branhing strategies.Geode programs an be written in Java by using the Geode/J interfae.KoalogKoalog Solver [www7 ℄ is a Java library for onstraint satisfation and onstraint optimization. Itsupports �nite domain onstraints and �nite set onstraints. The spei�ation of variable heuris-tis is supported, and ustomized searh mehanisms an be built by de�ning speialized solverobjets.ChooChoo [www12 ℄ is a onstraint programming solver written as a Java library. A large set ofonstraints is provided to be applied over integer, real and set variables. Support for optimi-zation problems is given, and the searh proess an be ustomized by seleting prede�ned oruser-de�ned variable and value ordering heuristis.Example in Geode/JFigure 3.2 depits a Geode/J model for the n-queens problem. A Java lass is used to statethe entire problem. Suh a lass is omposed of several elements: pakage and import statements(lines 1 to 4), a onstrutor (lines 9 to 25), a opy onstrutor required by the Geode engine(lines 27 to 30), a proedure to show the results (lines 32 to 40), and a main method (lines 42to 50). The onstrutor of the lass is used to state the onstants, variables and onstraints ofthe problem. For instane, the onstant holding the number of queens is de�ned at line 11 (it isset to 8, at line 44 in the main method of the lass), and the array representing the positions of



Chapter 3 � Languages and Systems 23the queens is stated at line 12. This array is initialized with �ve parameters: the reserved wordthis indiates the urrent lass instane, n orresponds to the size of the array, IntVar.lassorresponds to the lass of objets ontained in the array, and �nally `1,n' de�nes the domainof the array. The three onstraints of the problem are stated between lines 16 and 21. They areenapsulated in two forall loops and stated by means of the post method. Suh a method de�nesa onstraint between two expression objets. The `new Expr().p(board.get(i))' Geode/J ex-pression orresponds to the Board[i℄ expression in ECLiPSe. The IRT_NQ parameter representsto the not equal operator, and p and m represent the `+' and `−' operators, respetively. At line24, the labeling proess is determined by a all to the branh method. This method requires thearray to be proessed, and the variable and value ordering heuristis.At the end of the �le, the main method sets several options, for instane, the size of theproblem (line 44) and the use of the Geode/J graphial interfae (line 45). The proess islaunhed by alling the doSearh method.Another version for this problem an be stated by using a global onstraint [vK06℄. Figure 3.3depits this new model, where the three onstraints of the problem has been replaed by alls tothe alldi�erent global onstraint.NoteA global onstraint an be seen as a onstraint that enapsulates a set of other onstraints.For instane, the alldifferent(X1, ...,Xn) onstraint spei�es that the values assigned to thevariables X1, ...,Xn must be pairwise distint [Rég94℄. This same onstraint an be representedas a set of single inequality onstraints. A main advantage of global onstraints is that theyan be assoiated to more powerful �ltering algorithms sine they an take into aount thesimultaneous presene of single onstraints to further redue the domains of the variables.In Geode/J, the alldi�erent onstraint is represented by the distintmethod. The boardi 6=
boardj onstraint is stated as distint(this, board) (line 22). The seond and third onstraint(lines 23 and 24) are similar, but involve an array (pos and neg) whih have been �lled withthe neessary o�sets (lines 14 to 20) to represent the boardi + i 6= boardj + j and the boardi −
i 6= boardj − j onstraint, respetively. This model is probably less intuitive for understanding,however it is more e�ient sine the �ltering algorithm of the alldi�erent onstraint is able toenfore the loal onsisteny in a more e�etive way.3.3 Modeling LanguagesModeling languages aim at simplifying the de�nition of onstraint problems. They attempt tomove users away from ompliated enoding onerns present in typial libraries or programminglanguages. The ore of the language is generally more omprehensible, as simpler syntax andsemantis are provided. In some approahes, the spei�ation of searh proedures is permitted,but not mandatory.AlieAlie [Lau78℄ is also known as a preursor system in onstraint programming. It dates bak to1978, as a result of the J.L. Lauriere Ph.D. Thesis. In this approah, variables and onstraints



24 Chapter 3 � Languages and Systems1. pakage examples;2. import stati org.geode.Geode.*;3. import stati org.geode.GeodeEnumConstants.*;4. import org.geode.*;5.6. publi lass Queens extends Spae {7. publi VarArray<IntVar> board;8.9. publi Queens(Options opt) {10. super();11. int n = opt.size;12. board = new VarArray<IntVar>(this, n, IntVar.lass, 1, n);13.14. for(int i=0;i<=n-1;i++) {15. for(int j=i+1;j<=n-1;j++) {16. post(this, new Expr().p(board.get(i)),IRT_NQ,17. new Expr().p(board.get(j)));18. post(this, new Expr().p(board.get(i)).p(i),IRT_NQ,19. new Expr().p(board.get(j)).p(j));20. post(this, new Expr().p(board.get(i)).m(i),IRT_NQ,21. new Expr().p(board.get(j)).m(j));22. }23. }24. branh(this, board, BVAR_SIZE_MIN, BVAL_MIN);25. }26.27. publi Queens(Boolean share, Queens queens) {28. super(share, queens);29. board = new VarArray<IntVar>(this, share, queens.board);30. }31.32. publi String toString() {33. int i;34. String st = "";35. for (i=0;i<board.size();i++){36. if(board.get(i).assigned())37. st += board.get(i).val() + " ";38. }39. return st;40. }41.42. publi stati void main(String[℄ args) {43. Options opt = new Options();44. opt.size = 8;45. opt.gui = true;46. opt.parse(args);47. opt.name = "Queens";48. Queens queens = new Queens(opt);49. opt.doSearh(queens);50. }51. } Figure 3.2 � A Geode/J model of the n-queens problem.
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1. pakage examples;2. import stati org.geode.Geode.*;3. import stati org.geode.GeodeEnumConstants.*;4. import org.geode.*;5.6. publi lass Queens extends Spae {7. publi VarArray<IntVar> board;8.9. publi Queens(Options opt) {10. super();11. int n = opt.size;12. board = new VarArray<IntVar>(this, n, IntVar.lass, 1, n);13.14. int pos[℄ = new int[n℄;15. for (int i=0; i<n; i++)16. pos[i℄ = i;17.18. int neg[℄ = new int[n℄;19. for (int i=0; i<n; i++)20. neg[i℄ = -i;21.22. distint(this, board);23. distint(this, pos, board);24. distint(this, neg, board);25.26. branh(this, board, BVAR_SIZE_MIN, BVAL_MIN);27. }28. ...Figure 3.3 � A Geode/J model of the n-queens problem using global onstraints.



26 Chapter 3 � Languages and Systemsare posted in a delarative style and the solutions are omputed by an internal solving engine.This engine involves a graph, whih is responsible for managing the variables and domains aswell as the onstraint propagation.OPLOPL [Van99℄ is a leading modeling language. Its syntax and semantis have been used asthe base of modern modeling languages. The whole OPL language is omposed of many high-level onstruts, e.g. data strutures suh as arrays and reords, �nite domain variables, loopsand onditional statements, and a set of built-ins for resoure alloation. Heuristis for de�ningvariable and value orderings are also supported. An interesting feature of OPL and perhaps itsmain novelty, is that searhing strategies an be spei�ed using the same elegant way as the usedfor stating the problem.ZinZin [RGMW07℄ is a reent modeling language belonging to the G12 projet. The Zin syn-tax an be seen as an extension of OPL with support for user-de�ned prediates and funtions.Typial data strutures, sets, ontrol abstrations, and �nite and ontinuous domains are provi-ded. The platform is supported by a solver-independent arhiteture where Zin models an bemapped to three ECLiPSe models: a onstraint programming model, a loal searh model, anda mathematial programming model. An intermediate model alled FlatZin is also involved tofailitate the translation from soure to target models.MiniZinMiniZin [NSB+07℄ is a smaller version of Zin where user-de�ned types, funtions and someoerions have been exluded. MiniZin is also built upon a solver-independent arhiteture allo-wing mappings from MiniZin to ECLiPSe and Geode. The mapping proess is supported by aterm rewriting-based transformation system alled Cadmium [BDPS08℄ whih allows to speifythe translations from soure to target models, a FlatZin intermediate model is also used tofailitate the translation.EsseneEssene [FGJ+07℄ is a language for speifying ombinatorial problems. Its syntax an be seenas a ombination of natural language and disrete mathematis. Essene supports typial mo-deling onstruts and features for �nite domain problems. Also, it provides the possibility ofde�ning nested types of arbitrary depths (e.g. a set of sets of sets) on whih onstraints anoperate. The arhiteture is solver-independent on whih Essene models an be mapped eitherto ECLiPSe or Minion [GJM06℄. An intermediate OPL-like model alled Essene' is used tofailitate the mapping hain. This model an be generated by means of the Conjure [FJMHM05℄transformation system.



Chapter 3 � Languages and Systems 27ESRAESRA [FPÅ04℄ is another modeling language based on the OPL's syntax. It has been designedfor �nite domain problems and supports ommon modeling onstruts suh as enumerations andarrays, and ontrol abstrations suh as forall loops. ESRA uses the notion of relation (e.g. in-jetion, bijetion), whih often allows to de�ne more onise and shorter models ompared toOPL. ESRA models an be ompiled into OPL and SICStus Prolog models.NP-SPECNP-SPEC [CIP+00℄ is a logi-based language for the spei�ation of problems belonging to theomplexity lass NP. A NP-SPEC model is divided into two setions, one setion holds the dataand the other the problem spei�ation. The problem is mainly de�ned by means of Prolog-likeprediates, �rst-order onstraints on �nite domains, and rules. NP-SPEC models are translatedand then solved in the ECLiPSe platform.
F

F [Hni03℄ extends OPL by introduing, among others, the notion of funtion problem, i.e.problems where the objetive is to �nd funtions from a soure set to a target set suh that someonstraints are satis�ed. In this arhiteture, F models are mapped to an intermediate languagealled L and then solved with ILP or CP tehniques.Rules2CPRules2CP is a new modeling language [FM08℄. The main idea behind this approah is toombine the business rules knowledge representation paradigm with a CLP-based language. Thisombination may motivate the use of the CP tehnology in a wider audiene sine the extensiveknowledge of business rules in the industry. Rules2CP models are ompiled to SICStus Prologvia rewriting rules.Example in MiniZinA MiniZin model for the n-queens problem is shown in Figure 3.4. This model is dividedinto two �les, a data �le and a model �le. The data �le is used to assign values to the onstantsof the model. For instane, the onstant n is de�ned as an integer in the �rst line of the modeland set to 8 in the data �le. The board array holding the positions of the queens is de�ned at line2. It ontains deision variables lying in the domain 1..n. The three onstraints of the problemare posted between lines 6 and 8, the `!=' symbol orresponds to the not equal operator and
/\ represents the `and' logial operator. The two forall loops required to traverse the array areembedded in just one forall. Finally, the solve satisfy statement is used to launh the solvingproess.



28 Chapter 3 � Languages and SystemsData File1. n=8;Model File1. int: n;2. array [1..n℄ of var 1..n: board;3.4. onstraint5. forall (i in 1..n, j in i+1..n) (6. board[i℄ != board[j℄ /\7. board[i℄ + i != board[j℄ + j /\8. board[i℄ - i != board[j℄ - j;9. );10.11. solve satisfy;Figure 3.4 � A MiniZin model of the n-queens problem.3.4 Programming LanguagesMany programming languages with support for onstraint satisfation have been developed,some of them have been spei�ally written for onstraint satisfation (e.g., CoJava, Comet)and others inlude support for onstraints as an additional feature (e.g. Alma-0, OZ). In theselanguages the enoding possibilities are larger than in pure modeling languages, not only adelarative part is in general given, but also an imperative part. Thus, more freedom is given toprogrammers, however the learning proess for non-experts may be slower ompared to a puremodeling language.Alma-0Alma-0 [ABPS98℄ is an imperative programming language with support for delarative pro-gramming. The language allows to de�ne arrays, reords, and ontrol statements suh as ondi-tionals and loops. The delarative part is devoted to problems involving searh, being possible tode�ne �rst-order onstraints and Prolog-like prediates. The Alma-0 arhiteture merges teh-niques used to ompile both imperative languages (RISC arhiteture) and logial languages(WAM Mahine) in order to exeute optimized programs.OzOz [SSW94℄ is the language of the Mozart Programming System. Oz an be seen as a multi-paradigm language sine it supports several programming styles suh as delarative and objet-oriented programming as well as onurrent and onstraint programming. The onstraint pro-gramming omponent has been developed for sets and �nite domain onstraints. Support foroptimization problems is given and the de�nition of ustom searh strategies is permitted. Ano-ther interesting feature of the platform is the Oz Explorer, a GUI (Graphial User Interfae) forthe interative exploration of searh spaes.



Chapter 3 � Languages and Systems 29CometComet [MV02℄ is an objet-oriented programming language for ombinatorial optimizationproblems. The COMET semantis supports typial data strutures suh as arrays and ontrolabstration suh as forall loops. A rih language is used to post onstraints and to de�ne searhstrategies, whih are de�ned in a style as elegant as in OPL. However, today Comet is a moregeneral approah ompared to OPL sine it inludes not only a language and a CP solver, butalso a loal searh solver.MinionMinion [GJM06℄ is a solver for �nite domain onstraint problems. It has been designed tobe interfaed with a modeling language suh as Essene or OPL mainly sine no syntati sugarfor modelers is provided. The input format is based on matrix models that is, the CSP is repre-sented by one or more matries of deision variables on whih onstraints are applied, e.g. on therows, olumns or planes. The solving engine supports optimization problems and di�erent kindsof onstraints suh as global and rei�ed onstraints. Support for ordering heuristis is also given.CoJavaCoJava [BN06℄ is an extension of the Java programming language that provides support foronstraint optimization problems. The syntax of CoJava is idential to that of Java, and thesupport for CSPs and optimization problems is implemented in the form of a spei� lass. Thislass provides the neessary methods to de�ne variables, domains, onstraints and objetive fun-tions. CoJava problems are ompiled and transformed into a mathematial model to be solvedin AMLP.Example in Alma-0Figure 3.5 depits an Alma-0 model for the n-queens problem. The onstant giving the numberof queens is stated at the beginning of the �le. A new type alled board is delared at line 2.Suh a type de�nes the array representing the positions of the queens. The proedure to statethe model begins at line 3, its input parameter is an array alled x of type board. Within thisproedure, the onstraints of the problem are embedded in the required iteration loops.3.5 Mathematial ProgrammingThere exist several toolkits for mathematial programming. They mainly fous on solving op-timization problems, their solving engines are based on mathematial programming proedures,and some of them have been boosted with onstraint satisfation mehanisms (e.g. Numeria,RealPaver). An important advantage of this �eld is that problems an be stated by means of astandard language, failitating problem sharing, writing and experimentations [Pug04℄.



30 Chapter 3 � Languages and Systems1. CONST N = 8;2. TYPE board = ARRAY[1..N℄ OF [1..N℄;3. PROCEDURE Queens(Var x: board);4. VAR i;5. BEGIN6. FOR i := 1 TO N DO7. FOR j := i+1 TO N DO8. x[i℄ <> x[j℄;9. x[i℄ + i <> x[j℄ + j;10. x[i℄ - i <> x[j℄ - j;11. END;12. END13. END Queens; Figure 3.5 � An Alma-0 model of the n-queens problem.AMPLAMPL [FGK90℄ is a modeling language for mathematial programming. It supports linearand nonlinear optimization problems involving disrete or ontinuous variables. The languageprovides separation of model and data, data strutures, and ontrol abstrations suh as loopsand onditionals. The platform an be interfaed with a large list of solvers, e.g. CPLEX [www8 ℄,MINOS [www14 ℄, Xpress-MP [www24 ℄ and SNOPT [www23 ℄. AMPL an also be linked to problem analysistools suh as MProbe [www16 ℄ to identify the shape of funtions. This information an be useful formodeling or for seleting an appropriate solving tool.GAMSGAMS [BKM92℄ is another modeling language for mathematial programming. As AMPL,GAMS is supported by a ompiler and a large set of underlying solvers, some of them are MO-SEK [www15 ℄, LINGO [www13 ℄, Xpress-MP and CPLEX. The ore of the syntax supports typialmathematial programming modeling onstruts, e.g. arrays, sets and ontrol features suh asloops and onditionals. Several ontributions have been developed to omplement the GAMSplatform, for instane an interfae with MATLAB [www17 ℄ and tools for analyzing models and thegiven solutions.NumeriaNumeria [VMD97℄ is a modeling language for global optimization based upon ommon ma-thematial notation, like AMPL and GAMS. An interesting feature of Numeria is related to itssolving engine, it ombines numerial analysis with onsisteny tehniques for an e�ient solvingproess. The use of intervals leads to another important aspet: the orretness of its omputedresults, i.e. no wrong solutions are produed in Numeria (modulo hardware or software errors).RealPaverRealPaver [GB06℄ is a onstraint satisfation system for modeling and solving linear and non-linear systems. As in Numeria, the reliability of solutions is guaranteed by the use of intervals.



Chapter 3 � Languages and Systems 31The modeling language is loser to AMPL, providing support for disrete and ontinuous va-riables, data strutures suh as arrays, and mathematial notation for posting onstraints. Thehull and the box onsisteny tehniques an be used to tune the performane of searh proesses.Example in AMPLAn AMPL model for the n-queens problem is depited in Figure 3.6. The problem is mo-deled using the integer programming formulation, whih is more appropriate for mathematialprogramming tools. Here, the hessboard is represented as a matrix ontaining binary variables(line 6). The size of the board is given by the sets stated at lines 3 and 4. In this formulation, fouronstraints are needed. The �rst onstraint alled olumn_attak avoids two queens sharing thesame olumn. The sum funtion performs an addition of the olumn values of the matrix board.The row_attak onstraint avoids two queens sharing the same row, and the last two onstraintshek the diagonals of the hessboard.1. param n := 8;2.3. set ROWS := {1..n};4. set COLUMNS := {1..n};5.6. var board {ROWS,COLUMNS} binary;7.8. olumn_attaks {j in COLUMNS}:9. sum {i in ROWS} board[i,j℄ = 1;10.11. row_attaks {i in ROWS}:12. sum {j in COLUMNS} board[i,j℄ = 1;13.14. diagonal1_attaks {k in 3..2*t-1}:15. sum {i in ROWS, j in COLUMNS: i+j=k} board[i,j℄ <= 1;16.17. diagonal2_attaks {k in -(n-2)..(n-2)}:18. sum {i in ROWS, j in COLUMNS: i-j=k} board[i,j℄ <= 1;Figure 3.6 � An AMPL model of the n-queens problem.3.6 Objet-oriented languagesAn objet-oriented language an also be merged with onstraints in the form of onstrainedobjets. In other words, a onstrained objet is an instane of a lass that enapsulates thevariables and onstraints of a problem (or of a sub-problem). This approah is useful for modelingproblems whose struture an be organized in many parts, as eah one of these parts an berepresented by a lass. It is said that the bene�ts given by this ombination are loser to thosegained by writing software in an objet-oriented language, e.g. enapsulation (of variables andonstraints), modularity, reuse, et. From the beginnings of onstraint satisfation, objets havebeen mixed with onstraints through di�erent ways.



32 Chapter 3 � Languages and SystemsSkethpadSkethpad [Sut63℄ is onsidered a main ontribution to the omputer siene �eld, not onlyin onstraint satisfation systems, but also in omputer-aided drafting and objet-oriented pro-gramming. Skethpad was the �rst system in using a omplete graphial user interfae wherethe notion of objets and onstraints was present. The system allowed the user to state masterdrawings (whih an be regarded as a primitive form of a lass) whih ould be instantiated togenerate dupliates (objets), so if the master drawing hanged, all the instanes would hangetoo. Constraints ould be applied on drawings, for instane to �x the length of a line of the anglebetween two lines.ThingLabThingLab [Bor81℄ was a diret suessor of Skethpad. The main idea behind ThingLab wasto de�ne a omputer-based environment for onstruting interative graphi simulations, i.e. thesimulation of an eletrial iruit or a mehanial linkage. ThingLab allowed to perform thesesimulations by stating objets subjet to onstraints in a graphial user interfae. Compared toSkethpad, the major innovations were the support for multiple inheritane and the de�nition ofloal proedures for satisfying the onstraints.GiannaGianna [Pal95℄ is a visual modeling environment where the objet-oriented onepts havebeen merged with the notion of onstraint graph. A Gianna model is a graph formed by theassoiation of several graphial omponents, eah one representing an objet-oriented entity.The assoiations de�ne onstraints as well as relations between the entities. For instane anassoiation between lasses is a lass relation, and an assoiation between objets is an objetrelation. An assoiation between lass attributes is a lass onstraint, and an objet onstraintis determined by an assoiation of objet attributes.COBCOB [JT02℄ is a more reent language for onstrained objets. It has been designed for mode-ling problems under onstraints mainly from the engineering �eld. The language allows one toenapsulate the variables and the onstraint of the problem as well as CLP prediates to de�nemodular models. A graphial interfae for COB exists, allowing users to design engineering pro-blems using lass diagrams. This graphial model is transformed into COB ode, whih is thenompiled to a CLP solving engine.Hinrihs et al. ApproahIn [HLP+04℄, Hinrihs et al. present an objet-oriented language involving onstraint seman-tis devoted to automated onstrained on�gurations. The approah an be seen as an extension



Chapter 3 � Languages and Systems 33of the Common Information Model [www9 ℄ (a ommon language for representing resoure on�-guration in the industry) with an embedded language for posting �rst-order formulas as theonstraints of the problem. The onstruts supported by the language are limited to the automa-ted on�guration domain, and an internal theorem prover based solver performs the resolutionphase.SysMLSysML [www21 ℄ is an extension of the UML, de�ned for modeling systems from the enginee-ring �eld. As main novelty with respet to UML, SysML inorporates two new diagrams: therequirement diagram and the parametri diagram. The �rst diagram allows one to handle therequirements of the system and the seond one permits modeling mathematial equations asonstraints on the properties of suh systems, for instane on their reliability or their perfor-mane. SysML models an be exported in XMI �les and then pre-proessed by an intermediateomponent alled XaiTools. This tool is able to generate exeutable models to be launhed inMathematia [www5 ℄ or in the Ansys [www3 ℄ analysis tool.s-COMMAs-COMMA is an objet-oriented modeling language for CP problems. The ore of the languagesupports several modeling onstruts, suh as arrays, enumerations, �nite and ontinuous do-main variables and sets. Control abstrations suh as loops and onditionals as well as globalonstraints and optimization statements are also supported. A spei� simple formalism has beeninluded to de�ne variable and value orderings as well as the onsisteny levels for onstraints.Additionally, an interesting extension mehanism allows the integration of new solver proedures.The whole system is supported by a solver-independent arhiteture where models an be map-ped to many solvers (Geode/J, ECLiPSe, GNU Prolog and RealPaver). The integration of newsolvers is possible by means of standard model transformation mehanisms. The platform alsoo�ers the s-COMMA GUI, whih allows users to state problems using an extension of the UML lassdiagram.Example in s-COMMAFigure 3.7 depits a s-COMMA model for the n-queens problem. Model from data indepen-dene is provided in s-COMMA. The data �le is used to de�ne and to assign values to onstants(e.g. n:=8). In the model �le, the problem is stated through lasses. For this problem, just onemain lass alled Queens is delared. Inside this lass, the board array is de�ned, it ontains n de-ision variables with domain [1,n℄. Between lines 5 and 10, a onstraint zone alled noAttak isstated. Constraint zones are used to group onstrains and statements. In the noAttak onstraintzone, the two required forall loops have been embedded in one forall delaration. Within thisloop the three onstraints of the problem are posted.



34 Chapter 3 � Languages and SystemsData File1. n:=8;Model File1. main lass Queens {2.3. int board[n℄ in [1,n℄;4.5. onstraint noAttak {6. forall(i in 1..n, j in i+1..n) {7. board[i℄ <> board[j℄;8. board[i℄+i <> board[j℄+j;9. board[i℄-i <> board[j℄-j;10. }11. }12. } Figure 3.7 � A s-COMMA model of the n-queens problem.3.7 Comparing s-COMMA with related approahesIn this setion, we give a more preise omparison between s-COMMA and its related ap-proahes. We selet the losest systems and we ompare their features to give a more lear visionof how s-COMMA is positioned. In Table 3.1, s-COMMA is ontrasted with �ve approahes onside-ring six important features.Table 3.1 � Comparing s-COMMA with �ve approahes. The meaning of eah row is as follows.Objet-Orientation: the language provides objet-oriented apabilities. GUI: the system o�ers agraphial interfae. Solver-Independene: the arhiteture is able to perform the problem resolu-tion through di�erent solvers. Mapping tool: the system provides a framework to add new solversto the platform. Extensibility: the language an be extended for instane to support new globalonstraints or funtions. Solving Options: the de�nition of heuristis orderings and onsistenylevels of onstraints are allowed.Gianna COB Essene Zin MiniZin s-COMMAObjet-Orientation √ √ - - - √GUI √ √ - - - √Solver-Independene - - √ √ √ √Mapping - - Hand-Written TR+CHR TR+CHR Model-DrivenToolExtensibility - - - - - √Solving Options - - - - √ √



Chapter 3 � Languages and Systems 35Gianna and COB are the �rst systems inluded in the omparison. They belong to thesame group as s-COMMA sharing some features suh as objet-oriented apabilities1 and graphialinterfaes. However, as opposed to s-COMMA, their modeling styles are not purely objet-oriented.The COB language merges objets with CLP prediates and Gianna ombines objets withonstraints graphs. Additionally, they lak of solver-independene, a mapping-tool, extensibility,and the possibility of de�ning solving options.Zin, MiniZin and Essene are the state-of-the-art systems and they are supported by asolver-independent arhiteture. The Essene exeution platform allows to map spei�ationsinto ECLiPSe and Minion solver. A model transformation system alled Conjure is involved, butthe integration of solver translators is not its sope. Translators from Essene' to solver ode arewritten by hand. Zin and MiniZin an be mapped to the underlying solver layer via Cadmium,a transformation system based on Term-Rewriting (TR) [BN98℄ and Constraint Handling Rules(CHR) [Frü98℄. s-COMMA is also built upon a solver-independent arhiteture, where models anbe mapped to di�erent solvers by means of model-driven translators.Model-driven translators o�er important advantages. The tools for implementing them arewidely supported by the model engineering ommunity. A onsiderable amount of doumentationand several implementation examples are available at the Elipse IDE site [www10 ℄. Tools suh asElipse plug-ins are also available for developing and debugging appliations. It is not less impor-tant to mention that ATL [KvJ07℄ (the language used for de�ning the model transformations)is onsidered a standard solution for model transformation in Elipse. We believe this is a keyissue to motivate and failitate the addition of new solvers to the platform. Another importantadvantage is the separation of model and syntax onerns (we illustrate this in Setion 5.3.2).This independene allows one to de�ne lear and onise transformation rules, whih are thebase of our mapping tool.From a language standpoint, s-COMMA is as expressive as MiniZin and Essene, in fat theseapproahes provide similar onstruts and modeling features. However, additional importantfeatures of s-COMMA remarkably di�erenes it from those languages, for instane, the objet-oriented modeling style, the extensibility mehanisms, and the possibility of modeling problemsusing a visual language.3.8 SummaryIn this hapter, we have presented a large list of onstraint satisfation systems. We havelassi�ed these systems in six groups: CLP systems, libraries, modeling languages, programminglanguages, mathematial programming systems, and objet-oriented modeling languages inlu-ding support for onstraints. Several di�erenes arise among these di�erent approahes. The CLPparadigm extends logi programming by adding support for onstraint solving. Libraries are builtupon a host programming language, whih provides its full semantis to the user. However, it ismandatory to master this language to suessfully use the library. Programming languages havea larger expressiveness as well, they ommonly provide a delarative and an imperative part tostate models. The use of a modeling language is generally easier ompared with a library or aprogramming language. Modeling languages provide a more understandable language, in whih
1It is important to larify that objet-oriented apabilities are also provided by languages suh as CoJava, andin libraries suh as Geode or ILOG SOLVER. The main di�erene here is that the host language provided isa programming language but not a high-level modeling language. As we have explained, advaned programmingskills may be required to deal with these tools.



36 Chapter 3 � Languages and Systemsomplex enoding onerns are in general absent. Mathematial programming tools target opti-mization problems. Their ore is supported by mathematial programming solving tehniques andsome of them inlude onstraint satisfation mehanisms. Finally, an objet-oriented languagean also be ombined with onstraints. The idea is to involve the bene�ts of objet-orientationin a onstraint satisfation ontext.At the end of the hapter, we have ompared s-COMMA with �ve onstraint satisfation sys-tems. We have shown how it is positionned with respet to its losest approahes through sixfeatures: objet-orientation, GUI, solver-independene, mapping tool, extensibility and solvingproess ustomization. In the following hapter we present all these features in detail, we startby a giving an overview of the s-COMMA language to �nish with a presentation of the s-COMMAGUI.



PART IIThe s-COMMA platform





CHAPTER4
Modeling Language &

Graphical Artifactss-COMMA is a new language for modeling CP problems. Suh a language an be seen as afusion of a high-level objet-oriented language with a onstraint language. This fusion has beenomplemented with useful features suh as: solver-independene, extensibility, and a mehanismto ustomize the solving proess.The ombination of these features provides interesting advantages. Users an model problemsusing a high-level modeling language. The objet-oriented style provided an be used to organizeproblems in sub-problems to be aptured in single lasses. The extensibility mehanism allowsone to extend the expressiveness of s-COMMA i.e., new funtionalities an be added to the baselanguage. A simple mehanism to tune models an be used to ustomize the solving proess.A graphial user interfae is also inluded in the platform. Visual models an be stated in thes-COMMA GUI by means of UML-based lass diagram artifats.In this hapter we desribe the various features of the s-COMMA language and the trade-o�swe faed in its design. We begin by giving a tour of the s-COMMA language over six well-knownCP problems. The tour is followed by a presentation of every modeling onstrut presented inthe language. Then, the formalism to ustomize the solving proess is introdued, followed bythe extensibility mehanisms. At the end of the hapter, we illustrate the s-COMMA GUI and itsmain drawing and modeling omponents.4.1 A Tour of the s-COMMA languageLet us begin the tour of the s-COMMA language by using the famous SEND + MORE =
MONEY ryptarithmeti puzzle. The idea is to �nd distint digits for the letters S, E, N , D,
M , O, R, Y suh that the equation SEND + MORE = MONEY is satis�ed.4.1.1 The SEND + MORE = MONEY ProblemFigure 4.1 depits the orresponding s-COMMA model for this problem. A main lass alledSend is used to state the whole model. Within this lass, we identify s,e,n,d,m,o,r,y as thevariables of the problem. Sine these variables represent digits, their domains are given by theinteger type. The integer domain [0,9℄ is used for the variables e,n,d,o,r,y and the integerdomain [1,9℄ for variables s and m. These variables represent leading digits of the sum, beingunable to take 0 as value. At line 6, a onstraint zone alled equality is stated to post theonstraints of the problem. 39



40 Chapter 4 � Modeling Language & Graphial Artifats1. main lass Send {2.3. int e,n,d,o,r,y in [0,9℄;4. int s,m in [1,9℄;5.6. onstraint equality {7. 1000*s + 100*e + 10*n + d8. + 1000*m + 100*o + 10*r + e9. = 10000*m + 1000*o + 100*n + 10*e + y;10. alldifferent();11. }12. }Figure 4.1 � A s-COMMA model of the ryptarithmeti puzzle SEND + MORE = MONEY .
RemarkConstraint zones have been designed to group onstraints under a desriptive name and to o�erthe possibility of overriding onstraints in an inheritane ontext (see Setion 4.2.5). Suh aonstrut is another innovation of s-COMMA.Between lines 7 and 9, the equation of the problem is represented as an equality onstraint.Finally, the alldifferent global onstraint is posted to de�ne that all the variables involved inthe problem must take di�erent values.4.1.2 The Paking Squares ProblemLet us ontinue the tour by presenting the paking square problem. This problem onsistsin ompletely overing a square base with a given set of squares, possibly having di�erent sizes,with no overlappings among them.A s-COMMA model for this problem is shown in Figure 4.2. Three onstants are de�ned forthis problem, whih are imported from the data �le PakingSquares.dat. The side size of thesquare base is given by sideSize, squares orresponds to the quantity of squares, and the arraysize ontains their sizes.RemarkIn s-COMMA the data an be provided independently from the model �le. This feature permitsreusing models for di�erent instanes without hange.In the model �le, two integer arrays of variables are de�ned to represent respetively the x andy oordinates of the square base. For example, x[2℄=1 and y[2℄=1 means that the seond squaremust be plaed in row 1 and olumn 1, indeed in the upper left orner of the square base. Botharrays are onstrained, the deision variables must have values into the domain [1,sideSize℄.
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Data File1. int sideSize:=5;2. int squares:=8;3. int size:=[3,2,2,2,1,1,1,1℄;Model File1. import PakingSquares.dat;2.3. lass PakingSquares {4.5. int x[squares℄ in [1,sideSize℄;6. int y[squares℄ in [1,sideSize℄;7.8. onstraint inside {9. forall(i in 1..squares) {10. x[i℄ <= sideSize - size[i℄ + 1;11. y[i℄ <= sideSize - size[i℄ + 1;12. }13. }14.15. onstraint noOverlap {16. forall(i in 1..squares, j in i+1..squares) {17. x[i℄ + size[i℄ <= x[j℄ or18. x[j℄ + size[j℄ <= x[i℄ or19. y[i℄ + size[i℄ <= y[j℄ or20. y[j℄ + size[j℄ <= y[i℄;21. }22. }23.24. onstraint fitBase {25. (sum(i in 1..squares) (size[i℄^2)) = sideSize^2;26. }27. } Figure 4.2 � A s-COMMA model of the paking squares problem.



42 Chapter 4 � Modeling Language & Graphial ArtifatsAt line 8, a onstraint zone alled inside is delared. In this onstraint zone, a forallloop ontains the neessary onstraints to ensure that eah square is plaed inside the base, oneonstraint ats over rows and the other one over the olumns.RemarkLoops have been designed to be used with loop variables (i and j in the example). A loopvariable is valid only within the sope of its orresponding loop, and to simplify the model, notype is needed to delare it.At line 15, the noOverlap onstraint zone ensures that no overlapping ours in the plaement.Finally, the onstraint zone alled fitBase ensures the whole overage of the square base. Thesum loop is used to perform the addition of the areas of the square set.Figure 4.3 depits an analogous version of this model. An additional lass alled Square hasbeen integrated to model the squares (line 3). This lass ontains the squares' attributes suh asthe x and y oordinates, and the size.The data �le of this model version is similar, the side size of the base and the quantity ofsquares have been de�ned. The third element of the data �le orresponds to a variable assignmentfor the array s de�ned in the PakingSquare lass at line 11. Variable assignments allow usto assign values to lass attributes. The elements enlosed by `{}' symbols represent objetsontaining values for their attributes. In the example, a set of values is assigned to the thirdattribute of eah Square objet ontained by s. The assignments are performed by respetingthe order of arrays and lass' attributes. For instane, the value 3 is assigned to the size attributeof the �rst objet of the array. The value 2 is assigned to the size attribute of the seond, thirdand fourth objet of the array. The value 1 is assigned to the size attribute of remaining objets.The `_' symbol is used to omit assignments.RemarkVariable assignments have been designed to perform diret assignments of values to deisionvariables. This feature o�ers the following bene�ts: (1) The de�nition of onstrutors1 for eahlass is not neessary. (2) Calling a onstrutor eah time an objet is stated is not required. Ifwe need to perform an assignment we do it diretly in the data �le. (3) The omission of thesestatements allows one to obtain a leaner lass de�nition. s-COMMA is unique in providing suha feature.The main lass of the problem is stated at line 9. This lass is omposed of an array andthree onstraint zones. The array ontains the Square objets, and the onstraint zones play thesame role as in the previous paking squares model. Let us note that aess to objet attributesis ahieved by using standard modeling notation, e.g. s[2℄.x orresponds to aessing the xattribute of the seond objet of the array alled s.
1A onstrutor is a speial funtion used to set up the lass attributes with values. It is used in most ofobjet-oriented programming languages.
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Data File1. int sideSize := 5;2. int squares := 8;3. Square PakingSquares.s := [{_,_,3},{_,_,2},{_,_,2},{_,_,2},{_,_,1},{_,_,1},{_,_,1},{_,_,1}℄;Model File1. import PakingSquares.dat;2.3. lass Square {4. int x in [1,sideSize℄;5. int y in [1,sideSize℄;6. int size;7. }8.9. main lass PakingSquares {10.11. Square s[squares℄;12.13. onstraint inside {14. forall(i in 1..squares){15. s[i℄.x <= sideSize - s[i℄.size + 1;16. s[i℄.y <= sideSize - s[i℄.size + 1;17. }18. }19.20. onstraint noOverlap {21. forall(i in 1..squares, j in i+1..squares){22. s[i℄.x + s[i℄.size <= s[j℄.x or23. s[j℄.x + s[j℄.size <= s[i℄.x or24. s[i℄.y + s[i℄.size <= s[j℄.y or25. s[j℄.y + s[j℄.size <= s[i℄.y;26. }27. }28.29. onstraint fitBase {30. (sum(i in 1..squares) (s[i℄.size^2)) = sideSize^2;31. }32. } Figure 4.3 � An objet-oriented s-COMMA model of the paking squares problem.



44 Chapter 4 � Modeling Language & Graphial ArtifatsRemarkIn this example, the representation is more natural sine eah square is independently handledas an objet. The objet-oriented style used here permit us to obtain a more modular model inwhih the struture of the problem has been aptured in a single lass omposition.4.1.3 The Stable Marriage ProblemThe third problem of the tour is the stable marriage problem. Suh a problem onsiders agroup of n women and a group of n men who must marry. Eah woman has a preferene rankingfor her possible husband, and eah man has a preferene ranking for his possible wife. The aimis to �nd a mathing between groups suh that the marriages are stable, i.e. there is no pair ofpeople of opposite sex that like eah other better than their respetive spouses.The data �le of this problem is depited in Figure 4.4. Two enumerations and two variableassignments an be identi�ed. The menList enumeration holds the names of men and womenListholds the names of women. The StableMarriage.man variable assignment provides values forthe man array de�ned at line 15 in the model �le (see Figure 4.5). This variable assignment isomposed of 5 objets, one for eah man of the group. Eah of these objets has two elements,the �rst element is an array (enlosed by `[ ℄') and the seond one is the `_' symbol. The �rstelement sets the preferenes of men, assigning the values to the rank array of Man objets (e.g.Rihard prefers Tray 1st, Linda 2nd, Wanda 3rd, et).Data File1. enum menList := {Rihard,James,John,Hugh,Greg};2. enum womenList := {Helen,Tray,Linda,Sally,Wanda};3. Man StableMarriage.man :=4. [Rihard: {[Helen:5 ,Tray:1, Linda:2, Sally:4, Wanda:3℄,_},5. James : {[Helen:4 ,Tray:1, Linda:3, Sally:2, Wanda:5℄,_},6. John : {[Helen:5 ,Tray:3, Linda:2, Sally:4, Wanda:1℄,_},7. Hugh : {[Helen:1 ,Tray:5, Linda:4, Sally:3, Wanda:2℄,_},8. Greg : {[Helen:4 ,Tray:3, Linda:2, Sally:1, Wanda:5℄,_}℄;9.10. Woman StableMarriage.woman :=11. [Helen: {[Rihard:1, James:2, John:4, Hugh:3, Greg:5℄,_},12. Tray: {[Rihard:3, James:5, John:1, Hugh:2, Greg:4℄,_},13. Linda: {[Rihard:5, James:4, John:2, Hugh:1, Greg:3℄,_},14. Sally: {[Rihard:1, James:3, John:5, Hugh:4, Greg:2℄,_},15. Wanda: {[Rihard:4, James:2, John:3, Hugh:5, Greg:1℄,_}℄;Figure 4.4 � Data �le of the stable marriage problem.The model �le is stated through three lasses, a lass to represent men, a lass to representwomen and a main lass to desribe the stable marriages. The lass representing men is omposedof two attributes, the �rst one represents the preferenes of a man, while the seond one representsits wife. The rank array is indexed by the enumeration type womenList (line 2 of the data �le),meaning that the 1st index of the array is Helen, the 2nd is Tray, the 3rd is Linda and so on.The wife attribute is typed with an enumeration, therefore its domain is given by the values ofthat enumeration ({Helen,Tray,Linda,Sally, Wanda}). The de�nition of the Women lass isanalogous.
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Model File1. import StableMarriage.dat;2.3. lass Man {4. int rank[womenList℄;5. womenList wife;6. }7.8. lass Woman {9. int rank[menList℄;10. menList husband;11. }12.13. main lass StableMarriage {14.15. Man man[menList℄;16. Woman woman[womenList℄;17.18. onstraint mathHusbandWife {19. forall(m in menList)20. woman[man[m℄.wife℄.husband = m;21.22. forall(w in womenList)23. man[woman[w℄.husband℄.wife = w;24. }25.26. onstraint forbidUnstableCouples {27. forall(m in menList, w in womenList){28. man[m℄.rank[w℄ < man[m℄.rank[man[m℄.wife℄ ->29. woman[w℄.rank[woman[w℄.husband℄ < woman[w℄.rank[m℄;30.31. woman[w℄.rank[m℄ < woman[w℄.rank[woman[w℄.husband℄ ->32. man[m℄.rank[man[m℄.wife℄ < man[m℄.rank[w℄;33. }34. }35. } Figure 4.5 � A s-COMMA model of the stable marriage problem.



46 Chapter 4 � Modeling Language & Graphial ArtifatsThe main lass of the problem is stated at line 13. This lass is omposed of two arrays andtwo onstraint zones. The �rst array models the group of men and the seond one the groupof women. The onstraint zone alled mathHusbandWife inludes two forall loops, eah oneinluding a onstraint. These onstraints are satis�ed whether the pairs man-wife math with thepairs woman-husband. The forbidUnstableCouples onstraint zone ontains two loops holdingtwo logial formulas to guarantee that marriages are stable.RemarkEnumerations have been designed for multiple usages. For instane, as type for deision va-riables (e.g. womenList wife), as the set of values to be traversed by a loop (e.g. forall(m inmenList)) and for de�ning the size of arrays (e.g. Man man[menList℄).
4.1.4 The Soial Golfers ProblemThe fourth problem of this overview orresponds to the Soial Golfers Problem. This problemonsiders a group of n soial golfers whih play golf one a week, and always in groups of size
g. The goal is to arrange a shedule for these players for w weeks, suh that no two golfers playtogether more than one.Figure 4.6 depits the data �le of this problem. It onsists of one enumeration and threeonstants. The enumeration ontains the name of the golfers and the onstants hold the size ofgroups, the number of weeks, and the quantity of groups playing per week.Data File1. enum name := {a,b,,d,e,f,g,h,i};2. int s := 3; //size of groups3. int w := 4; //number of weeks4. int g := 3; //groups per weekFigure 4.6 � Data �le of the soial golfers problem.The model �le is divided into three lasses (see Figure 4.7). One to model the groups, one tomodel the weeks and a main lass to arrange the shedule of the soial golfers. The Group lassowns the players attribute orresponding to a set of golfers playing together, eah golfer beingidenti�ed by a name given in the enumeration from the data �le. In this lass, the onstraint zonegroupSize restrits the size of the golfers group. The Week lass has an array of Group objetsand the onstraint zone playOnePerWeek ensures that eah golfer takes part of a unique groupper week. Finally, the SoialGolfers lass has an array of Week objets and the onstraint zonedifferentGroups states that eah golfer never plays two times with the same golfer throughoutthe onsidered weeks.
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Model File1. import SoialGolfers.dat;2.3. lass Group {4. name set players;5. onstraint groupSize {6. ard(players) = s;7. }8. }9.10. lass Week {11. Group groupShed[g℄;12. onstraint playOnePerWeek {13. forall(g1 in 1..g, g2 in g1+1..g)14. ard(groupShed[g1℄.players interset15. groupShed[g2℄.players)= 0;16. }17. }18.19. main lass SoialGolfers {20.21. Week weekShed[w℄;22.23. onstraint differentGroups {24. forall(w1 in 1..w, w2 in w1+1..w)25. forall(g1 in 1..g, g2 in 1..g)26. ard(weekShed[w1℄.groupShed[g1℄.players interset27. weekShed[w2℄.groupShed[g2℄.players) <= 1;28. }29. } Figure 4.7 � Model �le of the soial golfers problem.



48 Chapter 4 � Modeling Language & Graphial Artifats4.1.5 The Prodution ProblemThe �fth problem of the tour orresponds to an optimization problem. This problem onsidersa fatory that must satisfy a determined demand of produts. These produts an be either ma-nufatured inside the fatory or purhased from an external market. The aim is to determine thequantity of produts that must be produed inside the fatory and the quantity to be purhasedin order to minimize the total ost.Model File1. import Prodution.dat;2.3. lass Produt {4. int demand;5. int insideCost;6. int outsideCost;7. int onsumption[resoureList℄;8. int inside in [0,5000℄;9. int outside in [0,5000℄;10. }11.12. main lass Fatory {13.14. int apaity[resoureList℄;15. Produt produtSet[produtList℄;16.17. onstraint noExeedCapaity {18. forall(r in resoureList)19. apaity[r℄ >= sum(p in produtList)20. (produtSet[p℄.onsumption[r℄ *21. produtSet[p℄.inside);22. }23.24. onstraint satisfyDemand {25. forall(p in produtList)26. produtSet[p℄.inside + produtSet[p℄.outside >= produtSet[p℄.demand;27. }28.29. onstraint minimizeCost {30. [minimize℄ sum(p in produtList)31. (produtSet[p℄.insideCost * produtSet[p℄.inside +32. produtSet[p℄.outsideCost * produtSet[p℄.outside);33. }34. } Figure 4.8 � A s-COMMA model of the prodution problem.Figure 4.8 shows a s-COMMA model for this problem. The model is represented by two lasses.The �rst one models the produts while the seond one models the fatory. Within the Produtlass, several attributes are de�ned: the demand, the inside and the outside ost, the onsumption,and the quantity that must be produed inside and outside the fatory. The main lass of theproblem is stated at line 12. Two arrays are de�ned, the �rst one ontains the amount of resouresavailable for manufaturing the produts and the seond one ontains the set of produts. At line



Chapter 4 � Modeling Language & Graphial Artifats 4917, a onstraint zone alled noExeedCapaity is stated to ensure that the resoures onsumedby the produts manufatured inside do not exeed the total quantity of available resoures. Atline 24, a onstraint zone is de�ned to satisfy the demand of all the produts. Finally, at line30, an optimization statement is posted to determine the quantity of produts that must beprodued inside the fatory and the quantity to be purhased in order to minimize the total ost.Data File1. enum resoureList := {flour, eggs};2. enum produtList := {kluski, apellini, fettuine};3. int Fatory.apaity := [200,400℄;4. Produt Fatory.produtSet := [kluski:{1000,6,8,[flour:5,eggs:2℄,_,_},apellini:{2000,2,9,[flour:4,eggs:4℄,_,_},fettuine:{3000,3,4,[flour:3,eggs:6℄,_,_}℄;Figure 4.9 � Data �le of the prodution problem.The data �le of this problem is shown in Figure 4.9. It is omposed of two enumerations andtwo variable assignments. The name of resoures and produts are held by the enumerations.The �rst variable assignment sets 200 as the flour apaity and 400 as the eggs apaity. TheFatory.produtSet variable assignment de�nes values for three produts. Several values areset to those produts. For instane, 1000 orresponds to the demand of the kluski, its insideost is 6 and its outside ost is 8, �nally, its manufature requires 5 �our items and 2 egg units.4.1.6 The Engine ProblemLet us �nish the tour by presenting an aademi problem from the engineering �eld. Considerthe task of on�guring a ar engine subjet to design onstraints. The omposition of the engineis depited in Figure 4.10 using UML lass diagram notation. Suh a �gure shows that the engineis the root of the system, it is built from a rankase, a ylinder system, a blok and a ylinderhead at the seond level. The ylinder system is a subsystem made of a valve system, an injetionand a piston system. Both valve and piston systems have their own omposition rules.
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Figure 4.10 � The Engine Problem.Figure 4.11 depits the data �le and the main lass of the model. The attributes Case,Syst, blok and Head represent the subsystems of the engine. The last attribute de�nes its



50 Chapter 4 � Modeling Language & Graphial Artifatsvolume and dim enapsulates a onstraint between that attribute and the volume attribute ofthe Case objet.Data File1. enum size := {small,medium,large};2. enum flow := {diret,indiret};Model File1. main lass Engine {2. CrankCase Case;3. CylSystem Syst;4. Blok blok;5. CylHead Head;6. int volume;7. onstraint dim {8. volume > Case.volume;9. }10. } Figure 4.11 � A s-COMMA model of the engine problem.The CylSystem lass is depited in Figure 4.12. It has two integer variables, and three subsys-tems denoted by inj, vSyst, and pSyst. Its onstraint zone enapsulates a onditional onstraint.This onstraint states that 6-ylinder-engines have to be a distane between ylinders bigger than6, and in others kinds of engines this distane must be bigger than 3. In onditional onstraints,whether the ondition holds, the onstraints belonging to the if blok are ativated; otherwisethe onstraints of the else blok are ativated.1. lass CylSystem {2. int quantity in [2,12℄;3. int distBetCyl in [3,18℄;4. Injetion inj;5. ValveSystem vSyst;6. PistonSystem pSyst;7. onstraint determineDistane {8. if (quantity = 6)9. distBetCyl > 6;10. else11. distBetCyl > 3;12. }13. } Figure 4.12 � The CylSystem lass of the engine model.The injetion subsystem is depited in Figure 4.13. It onsists of three attributes: gasFlow,admValve, and pressure. The ompValues onstraint zone enapsulates a built-in ompatibilityonstraint [GF03℄. Suh a onstraint limits the ombination of allowed values for a group ofdeision variables to a limited set. For example, only four ombinations of values are permittedfor the variables gasFlow, admValve and pressure. The possible values are desribed inside the



Chapter 4 � Modeling Language & Graphial Artifats 51ompatibility built-in onstraint. Let us notie that the remaining lasses of the model havebeen omitted sine they are irrelevant for the purpose of this tour.1. lass Injetion {2. flow gasFlow;3. size admValve;4. int pressure;5. onstraint ompValues {6. ompatibility(gasFlow,admValve,pressure) {7. ("diret", "small", 80);8. ("diret", "medium", 90);9. ("indiret", "medium", 100);10. ("indiret", "large", 130);11. }12. }13. }14. ... Figure 4.13 � The Injetion lass of the engine model.RemarkIn s-COMMA, all lasses are publi. Currently, we see no need to onsider further visibility notionssuh as private or proteted. This will fore modelers to onsider an additional onern and as aonsequene to make more di�ult the modeling tasks. However, whether these options beomea neessity we may inlude them.
4.2 Modeling FeaturesIn the previous setion we have introdued some s-COMMA models to give an overview of itsfeatures. In this setion, we provide a more extended presentation of suh features. We introdue�rst the elements to be stated in data �les suh as onstants and variable-assignments, and thenthe elements belonging to model �les suh as lasses, attributes and onstraint zones1. We alsoinlude in this setion the formalism to tune the solving proess and the extension mehanisms.4.2.1 ConstantsConstants, also alled parameters or data variables, are the variables that have a �xed valuein the model. In s-COMMA, onstants are delared in the data �le and they have to be pre�xedby a type. The available types for onstants are: real, integer, boolean, and enumeration. Asshown in Figure 4.14, onstants an be inluded in one-dimensional and two-dimensional arrays.Boolean values an be de�ned by means of `0' and `1' digits or by using the tokens `true' and`false'. Enumerations an ontain real values, integer values or strings.

1The grammar of the s-COMMA modeling language an be found in the appendix.



52 Chapter 4 � Modeling Language & Graphial Artifatsint anIntegerConstant := 5;int aOneDimArrayOfIntegerConstants := [1,2,3℄;int aTwoDimArrayOfIntegerConstants := [[1,2,3℄,[1,2,3℄,[1,2,3℄℄;real aRealConstant := 5.2e-5;real aOneDimArrayOfRealConstants := [1.1,2.2,3.3℄;real aTwoDimArrayOfRealConstants := [[1.1,2.2,3.3℄,[1.1,2.2,3.3℄,[1.1,2.2,3.3℄℄;bool aBooleanConstant := false;enum anEnumeration := {Frane, Italy, Germany};Figure 4.14 � Constants.4.2.2 Variable assignmentsA variable assignment permits setting values to variables in order to onvert them intoonstants. Variable assignments are also stated in the data �le, and they allow to assign va-lues to many elements, for instane to deision variables, arrays ontaining deision variables,and objets. Figure 4.15 shows two examples. In the �rst one, the value 2.5 is given to theattribute a of the lass Test. In the seond one, the value 200 and the value 400 are assigned tothe �rst and seond ell of the apaity array, respetively.real Test.a := 2.5;int Fatory.apaity := [200,400℄;Figure 4.15 � Variable assignments.As we have mentioned, variable assignments are performed by respeting the order of theinvolved elements. For instane, on the assignment of the array apaity, the value 200 is givento the �rst ell of the array, and 400 to the seond ell of the array. However, whether theindex of the array element is expliitly stated, this impliit ordered mathing is omitted, and theassignments are guided by the indexes. For instane, Figure 4.16 depits two variable assignmentsfor the produtSet array. Although the organization of both assignments di�ers, the resultantassignments are equivalent.Produt Fatory.produtSet := [kluski:{1000,6,8,[flour:5,eggs:2℄,_,_},apellini:{2000,2,9,[flour:4,eggs:4℄,_,_},fettuine:{3000,3,4,[flour:3,eggs:6℄,_,_}℄;Produt Fatory.produtSet := [apellini:{2000,2,9,[eggs:4,flour:4℄,_,_},kluski:{1000,6,8,[eggs:2,flour:5℄,_,_}fettuine:{3000,3,4,[eggs:6,flour:3℄,_,_}℄;Figure 4.16 � Variable assignments guided by indexes.



Chapter 4 � Modeling Language & Graphial Artifats 534.2.3 ClassesClasses are the main element of models. They enapsulate the attributes and the onstraints ofthe problem allowing to organize models and to apture the struture of problems. The main lassof the model is de�ned using the main reserved word, if there is no main lass in the model, thelast lass delared is set as main. Two kinds of relations are permitted among lasses: ompositionand inheritane. Composition allows a lass to be omposed of many objets, and inheritanepermits to de�ne a new lass based upon a superlass. Figure 4.17 shows a omposition relationbetween the engine and its subsystems. On the right side of the �gure a spei� turbo enginelass has been de�ned as a sublass of the lass Engine. The reserved word extends is used toinherit the attributes and onstraint zones of a superlass.lass Engine { lass TurboEngine extends Engine {CrankCase Case; boost in [5,8℄;CylSystem Syst; ...Blok blok; }CylHead Head;...} Figure 4.17 � Composition and inheritane.RemarkTo ensure termination, reursive omposition (a lass having as attribute an instane of itself)and reursive inheritane (a lass inheriting from itself) are not allowed.Let us note that modularity of s-COMMA models an be enhaned sine single models an bestored in di�erent �les to be imported in a main �le. Figure 4.18 depits a model representingthe design of a ar. Eah ar's subsystem (the engine, the eletri system, the exhaust system,et.) has been modeled in a di�erent �le whih has been then imported from the ar model �le.import Engine.maimport EletSystem.ma...main lass Car {Engine eng;EletriSystem elSyst;ExhaustSystem exSyst;SuspSystem suSyst;DriveTrain drSyst;Chassis hass;...} Figure 4.18 � Importing models.



54 Chapter 4 � Modeling Language & Graphial ArtifatsRemarkModularity, omposition and inheritane are important strengths of the objet-oriented style.In s-COMMA we an bene�t from that and motivate the reuse of existing elements.4.2.4 AttributesAttributes are used to de�ne objet properties. In s-COMMA, attributes are stated withinlasses and they have to be pre�xed with a type. Attributes may represent deision variables,sets or objets.4.2.4.1 Deision VariablesDeision variables orrespond to the unknowns of the problem. s-COMMA allows deisionvariables to be ontained in one-dimensional and two-dimensional arrays (see Figure 4.19). Thesize of the arrays an be de�ned by an integer onstant, an integer value or an integer onstantexpression. The latter stands for an expression omposed only of integer values and/or integeronstants.RemarkTo avoid non-terminating iteration over an array, no deision variable is permitted to de�ne itssize.int anIntegerDeisionVariable;real aTwoDimArrayOfRealDeisionVariables[5,anIntegerConstant+1℄;Figure 4.19 � Deision variables.Deision variables and arrays of deision variables an be onstrained to a determined domain(see Figure 4.20). The nature of values to de�ne the domains depends on the nature of deisionvariables. For instane, integer values, integer onstants and integer onstant expressions are usedto de�ne domains for both integer and real deision variables. Real values, real onstants and realonstant expressions an only be used to de�ne the domain of real deision variables. Deisionvariables with no domain stated adopt a default domain in the translation proess, whih dependson the solver used. An enumeration an be used as the type for a deision variable in order toadopt as domain the set of values ontained in the enumeration.int anIntegerDeisionVariable in [0,anIntegerConstant + 1℄;real aRealDeisionVariable in [0.5,aRealConstant + 5.5℄;enum menNames := {Rihard,James,John,Hugh,Greg};menNames husband;Figure 4.20 � Deision variables, domains and enumerated domains.



Chapter 4 � Modeling Language & Graphial Artifats 554.2.4.2 SetsA set an be seen as a speial kind of deision variable for whih the resolution proess mustsearh a set of values. Sets are used in many problems and spei� relations an at over them(e.g. union, intersetion, disjuntion, et.). Sets are de�ned with the reserved word set, and theyan be ontained in one-dimensional and two-dimensional arrays. The domains of sets an begiven by integer values, integer onstants, integer onstant expressions, and enumerations. Threeexamples are depited in Figure 4.21.int set aSet in [0,9℄;int set aTwoDimArrayOfSets[3,3℄ in [0,9℄;name set players; Figure 4.21 � Sets.4.2.4.3 Objets and Constrained ObjetsObjets are instanes of lasses and they must be typed with the orresponding lass name.Objets embedding one or more onstraints are alled onstrained objets. In Figure 4.22, the pobjet is an instane of the Produt lass, and g is a onstrained objet as its players attributeis subjet to a onstraint.Produt p;lass Produt {int demand;int insideCost;int outsideCost;int onsumption[resoureList℄;int inside in [0,5000℄;int outside in [0,5000℄;}Group g;lass Group {name set players;onstraint groupSize {ard(players) = s;}} Figure 4.22 � Objets and onstrained objets.



56 Chapter 4 � Modeling Language & Graphial Artifats4.2.5 Constraint ZonesConstraint zones are used to group onstraints enapsulating them inside a lass. A onstraintzone an ontain onstraints, loops, onditional statements, ompatibility onstraints, an opti-mization statement, and global onstraints. Figure 4.23 depits a onstraint zone of the pakingsquares problem.onstraint inside {forall(i in 1..squares){x[i℄ <= sizeArea - size[i℄ + 1;y[i℄ <= sizeArea - size[i℄ + 1;}} Figure 4.23 � A onstraint zone.The name of the onstraint zone is hosen by the modeler. It an be used to desribe therole of the onstraint zone on the problem and also to allow the onstraint zone to be overriddenby a sublass. Constraint zone overriding an be seen as method overriding in objet-orientedlanguages. In other words, when a lass inherits from a superlass, the onstraint zones of thesuperlass (having a same name) are no longer onsidered and they are replaed by the onstraintzones of the sublass. In Figure 4.24, the onstraint zone distaneBetAxes is overridden by thesublass TurboEngine, resulting in a replaement of the onstraint left + 2320 = right by theonstraint left + 2840 = right.lass Engine {...onstraint distaneBetAxes {left + 2320 = right;}}lass TurboEngine extends Engine {...onstraint distaneBetAxes {left + 2840 = right;}} Figure 4.24 � Constraint zone overriding.4.2.5.1 ConstraintsConstraint are relations among variables, being posted using mathematial-like notation. s-COMMA supports most of ommon relations among values, onstants, deision variables and sets(see Table 4.1).
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Table 4.1 � Binary and unary operators. Higher preedene means lower priority. T representsinteger, real, or boolean types. N represents integer or real types.Operator Operation Preedene Relation<-> Bi-impliation 1300 (boolean × boolean) → boolean-> Impliation 1200 (boolean × boolean) → boolean<- Reverse impliation 1200 (boolean × boolean) → booleanor Disjuntion 1100 (boolean × boolean) → booleanxor Exlusive or 1100 (boolean × boolean) → booleanand Conjuntion 1000 (boolean × boolean) → booleannot Unary negation 900 boolean → boolean< Less than 800 (T × T ) → boolean> Greater than 800 (T × T ) → boolean<= Less than or equal 800 (T × T ) → boolean>= Greater than or equal 800 (T × T ) → boolean==,= Equality 800 (T × T ) → boolean or

(set × set) → boolean!=,<> Inequality 800 (T × T ) → boolean or
(set × set) → booleansubset Subset 700 (set × set) → booleansuperset Superset 700 (set × set) → booleanunion Union 600 (set × set) → setdiff Di�erene 600 (set × set) → setsymdiff Symmetri di�erene 600 (set × set) → set+ Addition 500 (N × N) → N- Subtration 500 (N × N) → N* Multipliation 400 (N × N) → N/ Division 400 (N × N) → Ninterset Intersetion 300 (set × set) → set� Exponent 200 (N × N) → N- Unary subtration 100 N → N



58 Chapter 4 � Modeling Language & Graphial Artifats4.2.5.2 LoopsTwo kinds of loops are provided by s-COMMA, the forall loop and the sum loop. The forallloop is used to iterate over loop variables stated within onstraints and the sum loop is used toperform the mathematial summation.The forall loop an ontain loops, onditionals, onstraints, and global onstraints. The loopheader is delared in two parts. The left part de�nes the loop variable and the right part de�nesthe set of values to be traversed by the loop variable. The right part an be stated by using arange of values. This range must be de�ned by integer values, integer onstants, loop variables,or integer onstant expressions (inluding loop variables). An enumeration, or a one-dimensionalarray an also be used to de�ne the right part of the loop header. In these ases, the loop willross from 1 until the size of the enumeration or array (see Figure 4.25).forall(i in j+1..5+n) { forall(i in anEnumeration) { forall(i in aOneDimArray) {a[i℄ > i; a[i℄ > i; a[i℄ > i;... ... ...} } }Figure 4.25 � forall loops.To ompat models, it is possible to embed an arbitrary number of nested forall loops ina single forall de�nition (see Figure 4.26). Forall loops holding only one statement an omittheir urly brakets.forall(i in 1..5) { forall(i in 1..5, j in i+1..5, k in j+1..5){forall(j in i+1..5) { ...forall(k in j+1..5) { }...}}}forall(m in menList)woman[man[m℄.wife℄.husband = m;Figure 4.26 � Nested forall loops.The sum loop performs an addition of a set of expressions. Its header is de�ned in the samemanner as in forall loops. Figure 4.27 depits an example, where the expression `a[1℄*1 +a[2℄*2 + a[3℄*3' has been ompressed in a sum loop. To avoid ambiguities, parentheses arounda[i℄*i are mandatory.sum(i in 1..3) (a[i℄*i) Figure 4.27 � The sum loop.4.2.5.3 ConditionalsConditionals are stated by means of the if and the if-else statement. Loops, onditionals,onstraints, an optimization statement, and global onstraints an be stated inside the body of



Chapter 4 � Modeling Language & Graphial Artifats 59onditionals. The ondition an be stated through an expression ontaining values, onstantsor deision variables. Curly brakets are mandatory when the onditional holds more than onestatement. Examples are shown in Figure 4.28.if (quantity = 6)distBetCyl > 6;elsedistBetCyl > 3;if (quantity = 6) {distBetCyl > 6;...} else {distBetCyl > 3;...} Figure 4.28 � Conditionals.4.2.5.4 OptimizationOptimization statements allow to model optimization problems. Optimization statements arede�ned with a tag speifying the kind of optimization to be applied. The [maximize℄ tag is usedfor maximizing and the [minimize℄ tag for minimizing expressions. An example is shown inFigure 4.29.onstraint redue {a + b > ;[minimize℄ a + b;} Figure 4.29 � Optimization statement.4.2.5.5 Global ConstraintsTwo versions of the alldi�erent onstraint are provided. The alldifferent() fores that allthe values de�ned in the lass must be di�erent, and the alldifferent(anIntegerArray) foresthat all the values inside the given array must be di�erent.The alldifferent onstraint is the unique global onstraint inluded in s-COMMA. Additionalglobal onstraints an be added using the extension mehanisms presented in Setion 4.2.7.4.2.5.6 Compatibility ConstraintsA ompatibility onstraint is used to limit the ombination of allowed values for a group ofdeision variables to a group of given tuples. For instane, the ompatibility onstraint depitedin Figure 4.30 de�nes that only three possible tuples of values satisfy the onstraint. This built-inonstraint an also be seen as syntati sugar for a boolean formula (depited on the right sideof the �gure).



60 Chapter 4 � Modeling Language & Graphial Artifatsompatibility(a,b,,d) { (a=3 and b=5 and =8 and d=6) or(3, 5, 8, 6); (a=1 and b=2 and =5 and d=8) or(1, 2, 5, 8); (a=9 and b=0 and =3 and d=2)(9, 0, 3, 2);} Figure 4.30 � A ompatibility onstraint.4.2.6 Heuristi Orderings & Consisteny TehniquesThe formalism to ustomize the solving options of objet-oriented models is one of the manyinnovations of s-COMMA. Suh a formalism permits the spei�ation of the value and variableordering as well as the onsisteny level of onstraints.4.2.6.1 Variable and Value OrderingAs mentioned in Setion 2.2.5, variable and value orderings stand for the sequene in whihthe variables and values are seleted for the variable-value assignment performed during the re-solution proess. Di�erent heuristis exist for arrying out this proess, s-COMMA inludes themost solver-supported ones:Variable orderings:� min-dom-size: selets the variable with the smallest domain size.� max-dom-size: selets the variable with the largest domain size.� min-dom-val: selets the variable with the smallest value in its domain.� max-dom-val: selets the variable with the greatest value in its domain.� min-regret-min-dif: selets the variable that has the smallest di�erene between thesmallest value and the seond-smallest value of its domain.� min-regret-max-dif: selets the variable that has the greatest di�erene between thesmallest value and the seond-smallest value of its domain.� max-regret-min-dif: selets the variable that has the smallest di�erene between thelargest value and the seond-largest value of its domain.� max-regret-max-dif: selets the variable that has the greatest di�erene between the lar-gest value and the seond-largest value of its domain.Value orderings:� min-val: selets the smallest value.� med-val: selets the median value.� max-val: selets the maximal value.To exemplify the use of this feature let us introdue a fragment of the engineering designproblem presented in [GF03℄. The aim of this problem is to assemble an industrial mixer subjetto on�guration onstraints. Figure 4.31 shows the omposition of suh a system.
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Figure 4.31 � The industrial mixer problem.s-COMMA provides four possibilities for de�ning heuristi orderings: (1) to selet the variableordering, (2) to selet the value ordering, (3) to selet both or (4) not selet any option, in thisase the solving proess will be performed using the default option given by the solver. Figure 4.32depits the four ases.// variable ordering seleted // value ordering seletedmain lass Mixer [min-dom-size℄ { main lass Mixer [min-val℄ {... ...// both seletions // no seletionmain lass Mixer [min-dom-size,min-val℄ { main lass Mixer {... ...Figure 4.32 � Value and variable orderings.RemarkSine the searhing proess is performed for the entire problem, we annot onsider di�erentheuristis for eah lass. So, if more than one lass inludes any ordering option, just the optionstated at the main lass will be onsidered.4.2.6.2 Consisteny LevelAs we have explained in Setion 2.2.3, baktraking proedures an be omplemented withonsisteny algorithms to detet failures earlier, thus avoiding the inspetion of useless spaes.This task is in general performed by variants of the ar-onsisteny algorithm embedded in thesearh engine of the solver. s-COMMA provides the most-solver supported onsisteny levels, thebound and the domain onsisteny:� bound: an ar-onsisteny algorithm is used to redue the domain of involved variables, butjust the bounds of the variables' domain are updated.� domain: an ar-onsisteny algorithm is used to redue the domain of involved variables,but the full domain of variables is updated.To speify these options s-COMMA provides three possibilities: (1) to selet the onsistenylevel for a lass, (2) to selet the onsisteny level for an objet; and (3) to selet the onsisteny



62 Chapter 4 � Modeling Language & Graphial Artifatslevel for a onstraint. Let us note that ases 1 and 2 lead to a �asade e�et� i.e., the seletedoption will be inherited by objets and onstraints belonging to the omposition. Only objetsand onstraints with their own option do not inherit, they keep their own seleted option.Figure 4.33 depits an example on whih two lasses of the mixer problem have been tuned.The Mixer lass has been on�gured with a domain onsisteny level leading the �asade e�et� toset the objets and onstraints of the mixer's omposition (Vessel, Agitator, Cooler, Condenser,et.) with the domain option, exept for the Engine objet e and the onstraint e.power >=2*i.power whih keep their own option (bound onsisteny).RemarkThe asade e�et provided by the objet-oriented style of s-COMMA allows us to avoid thede�nition of solving options for onstraints one by one.// tuned lassmain lass Mixer [domain℄ {Vessel v;Agitator a;onstraint design {a.i.rps <= v.diameter/a.i.diameter;a.i.diameter <= a.i.ratio*v.diameter;...// tuned objet & tuned onstraintlass Agitator {[bound℄ Engine e;Impeller i;Shaft s;onstraint power {[bound℄ e.power >= 2*i.power;... Figure 4.33 � Consisteny level.Let us note that the ombination of onsisteny level with value and variable orderings ispermitted (see Figure 4.34).main lass Mixer [min-dom-size,min-val,domain℄ {... Figure 4.34 � Ordering heuristis & onsisteny level.NoteA given heuristi ordering or a given onsisteny level an only be used if the seleted underlyingsolver has support for it.



Chapter 4 � Modeling Language & Graphial Artifats 634.2.7 ExtensibilityExtensibility is another important feature of s-COMMA. New onstraints, funtions, orderingheuristis and onsisteny levels an be integrated by de�ning extension �les. This mehanismensures the semantis of the s-COMMA language adaptable to potential upgrades of the solverlayer.4.2.7.1 Adding onstraintsLet us present this feature by realling the soial golfers problem. Consider that a programmeradds to the Geode/J solver a new global onstraint to enfore the a <lex b lexiographi ordering.This onstraint operates over a set a = {x0, x1, ..., xn} and a set b = {y0, y1, ..., yn} of n integervalues, ensuring that: x0 < y0; x1 < y1 when x0 = y0; x2 < y2 when x0 = y0 and x1 =
y1; ...;xn−1 < yn−1 when x0 = y0, x1 = y1, ..., and xn−2 = yn−2 [FHK+02℄. The a <lex bonstraint will be used to remove the symmetries [Pug93, CGLR96, GS00℄ (eliminate redundantsolutions) of the already presented soial golfers model.To use this new onstraint we an extend the semantis of the s-COMMA onstraint language.This an be ahieved by de�ning an extension �le where the rules of the translation are stated.Suh a �le may be omposed of one or more main bloks (see Figure 4.35). Main bloks hold thetranslation rules and denote the solver to whih the mapping must be performed. For instane,the �rst main blok de�nes the mapping rules for the Geode/J solver.1. GeodeJ {2. Constraint {3. lexOrder(a,b) -> "geodeJLexialOrdering($a$,$b$);";4. }5. }6.7. ECLiPSe {8. Constraint {9. ...10. }11. ... Figure 4.35 � Adding onstraints to s-COMMA.Within the GeodeJ blok, a Constraint blok has been de�ned. This blok owns the mappingrule of the new onstraint to be added. This rule onsists of two parts. The left part of the rulede�nes the statement used to all the new funtion from the s-COMMA language, and the rightpart de�nes the statement used to all the new built-in method from the solver �le. In thisway, the rule states that lexorder(a,b) will be translated to geodeJLexialOrdering(a,b)in the mapping proess from s-COMMA to Geode/J,. To failitate the translation of the inputparameters, variables (a and b) must be tagged with `$' symbols. In the example, the �rstparameter and the seond parameter of the new s-COMMA onstraint will be translated as the�rst parameter and the seond parameter of the Geode/J method all, respetively. The use ofthe new onstraint in the soial golfers problem is shown in Figure 4.36.



64 Chapter 4 � Modeling Language & Graphial Artifats1. import lexOrderings.ext;2. ...3.4. main lass SoialGolfers {5.6. Week weekShed[w℄;7.8. onstraint differentGroups {9. forall(w1 in 1..w, w2 in w1+1..w)10. forall(g1 in 1..g, g2 in 1..g)11. ard(weekShed[w1℄.groupShed[g1℄.players interset12. weekShed[w2℄.groupShed[g2℄.players) <= 1;13. }14.15. onstraint removeSymmetries {16. forall(w1 in 1..weeks, g1 in 1..groups-1)17. lexOrder(weekShed[w1℄.groupShed[g1℄.players,18. weekShed[w1℄.groupShed[g1+1℄.players);19.20. forall(w1 in 1..weeks-1)21. lexOrder(weekShed[w1℄.groupShed[1℄.players,22. weekShed[w1+1℄.groupShed[1℄.players);23. }24. } Figure 4.36 � Removing symmetries from the soial golfers problem.4.2.7.2 Adding funtionsTo present the usefulness of this feature, let us introdue the Sudoku problem. This problemonsists in �lling a 9 × 9 matrix so that eah olumn, eah row, and eah of the nine 3 × 3 sub-matries ontains di�erent digits from 1 to 9. A model for this problem is depited in �gure 4.37.The data �le is omposed of two onstants and a variable assignment. The onstant n de�nesthe size of the matrix and s the size of the sub-matries. The variable assignment is used to�ll some of the ases of a two-dimensional array alled puzzle. This array is stated at line 5of the model �le and represents the matrix of the problem. The onstraint zones of the modelare de�ned next. The differentInRowsAndColumns onstraint zone ensures that every row andolumn of the matrix ontains di�erent values, and differentInSubMatries guarantees thatall the 3 × 3 sub-matries get di�erent values.Let us now onsider that three new funtions operating over two-dimensional arrays are addedto Geode/J. A funtion to get the rows, another to get the olumns and a third one to get sub-matries. Figure 4.38 depits the orresponding extension �le. The parameter mat orrespondsto the matrix on whih the funtion ats, i and j are the indexes of the row and of the olumnto be obtained, respetively. The third funtion has four parameters, the pair (i1,j1) representsthe oordinates of the upper-left orner of the sub-matrix and the pair (i2,j2) represents thelower-right orner of the sub-matrix.The resulting model using these new funtions is depited in Figure 4.39. Here, we an seethat the model has been de�ned in a more onise and elegant way. In addition, the use of thealldi�erent onstraint will improve the resolution proess of the problem.



Chapter 4 � Modeling Language & Graphial Artifats 65Data File1. int s := 3;2. int n := 9;3. int Sudoku.puzzle := [[_, _, _, _, _, _, _, _, _℄,[_, 6, 8, 4, _, 1, _, 7, _℄,[_, _, _, _, 8, 5, _, 3, _℄,[_, 2, 6, 8, _, 9, _, 4, _℄,[_, _, 7, _, _, _, 9, _, _℄,[_, 5, _, 1, _, 6, 3, 2, _℄,[_, 4, _, 6, 1, _, _, _, _℄,[_, 3, _, 2, _, 7, 6, 9, _℄,[_, _, _, _, _, _, _, _, _℄℄;Model File1. import Sudoku.dat;2.3. main lass Sudoku {4.5. int puzzle[n,n℄ in [1,n℄;6.7. onstraint differentInRowsAndColumns {8. forall(k in 1..n, i in 1..n, j in i+1..n) {9. puzzle[k,i℄ != puzzle[k,j℄;10. puzzle[i,k℄ != puzzle[j,k℄;11. }12. }13.14. onstraint differentInSubMatries {15. forall(x1 in 1..s, y1 in 1..s, x2 in 1..s) {16. forall(y2 in 1..s, x3 in 1..s, y3 in 1..s) {17. if(x2 != x3 and y2 != y3)18. puzzle[(x1 - 1) * s + x2, (y1 - 1) * s + y2℄ !=19. puzzle[(x1 - 1) * s + x3, (y1 - 1) * s + y3℄;20. }21. }22. }23. } Figure 4.37 � The Sudoku problem.1. GeodeJ {2. Constraint {3. lexOrder(a,b) -> "geodeJLexialOrdering($a$,$b$);";4. }5. Funtion {6. getRow(mat,i) -> "geodeJGetRow($mat$,$i$);";7. getColumn(mat,j) -> "geodeJGetColumn($mat$,$j$);";8. getSubMatrix(mat,i1,i2,j1,j2) -> "geodeJGetSubMatrix($mat$,$i1$,$i2$,$j1$,$j2$);";9. }10. }11. ... Figure 4.38 � Adding new funtions.



66 Chapter 4 � Modeling Language & Graphial Artifats1. main lass Sudoku {2.3. int puzzle[n,n℄ in [1,n℄;4.5. onstraint differentInRowsAndColumns {6. forall(i in 1..n) {7. alldifferent(getColumn(puzzle, i));8. alldifferent(getRow(puzzle, i));9. }10. }11.12. onstraint differentInSubMatries {13. forall(i in 1..s, j in 1..s)14. alldifferent(getSubMatrix(puzzle,(i-1)*s + 1,i*s,(j-1)*s + 1,j*s));15. }16. } Figure 4.39 � Using the new funtions in the Sudoku problem.4.2.7.3 Adding heuristi orderings and onsisteny levelsExtensibility for heuristi orderings and onsisteny levels is also provided. Three new bloksan be added to the extension �le: a Variable-Ordering blok, a Value-Ordering blok, and aConsisteny-Level blok. As an example, let us onsider that new solving options are introduedin the Geode/J solver. A variable ordering alled BVAR_NONE, whih selets the leftmost variable.A value ordering alled BVAL_SPLIT_MIN, whih selets the �rst value of the lower half of thedomain; and the ICL_VAL onsisteny level, whih performs the Geode value onsisteny [www1 ℄.The orresponding extension �le and the Mixer lass tuned with the new options are shown inFigure 4.40 and in Figure 4.41, respetively.1. GeodeJ {2. Constraint {3. ...4. Variable-Ordering {5. first -> BVAR_NONE;6. }7. Value-Ordering {8. lower-half -> BVAL_SPLIT_MIN;9. }10. Consisteny-Level {11. value -> ICL_VAL;12. }13. } Figure 4.40 � Adding new heuristi orderings and onsisteny levels.



Chapter 4 � Modeling Language & Graphial Artifats 671. main lass Mixer [first,lower-half℄ {2. [value℄ Vessel v;3. Agitator a;4. onstraint design {5. [value℄ a.i.rps <= v.diameter/a.i.diameter;6. [value℄ a.i.diameter <= a.i.ratio*v.diameter;7. }8. } Figure 4.41 � The tuned mixer lass.4.3 The s-COMMA GUIThe s-COMMA GUI is the graphial user interfae for the s-COMMA language. The visual languageof the s-COMMA GUI provides a more onise pereption of models, allowing to state problems viatwo kinds of graphial artifats: Data artifats and lass artifats (see Figure 4.42).

Figure 4.42 � Class and data artifats.Class artifats orrespond to the graphial representation of lasses. Class artifats have bydefault three ompartments, the upper ompartment for the lass name, the middle ompart-ment for attributes and the bottom one for onstraint zones. By liking on the lass artifat itsspei�ation an be opened to de�ne its properties, its attributes and onstraint zones. Severallass properties an be de�ned, for instane, the name, if the lass is a main lass, a super-lass, a desription and the solving options. Relationships an be used to de�ne inheritane or



68 Chapter 4 � Modeling Language & Graphial Artifatsomposition between lasses. Data �les are represented by data artifats, being omposed of twoompartments, one for the �le name and another for both the onstants and variable assignments.NoteThe graphial artifats of the s-COMMA GUI have been designed as an extension of the UML lassartifat provided by the UML Infrastruture Library Basi Pakage. This ensures the s-COMMAGUI notation to be entirely supported by the UML Infrastruture Spei�ation [www19 ℄.Figure 4.43 shows a snapshot of the s-COMMA GUI where the stable marriage problem is re-presented by a lass diagram. This diagram is omposed of three lass artifats, one to representmen, another to represent women, and a third one to desribe the stable marriages. The ompo-sition relationships are depited through onnetions among lasses. The right-panel of the toolshows the orresponding s-COMMA textual version, whih is instantly generated one graphialartifats are stated on the drawing frame.

Figure 4.43 � The stable marriage problem on the s-COMMA GUI.



Chapter 4 � Modeling Language & Graphial Artifats 69The StableMarriage lass has two attributes, one array to represent the group of men andother array to represent the group of women. Attributes an be stated using the attribute panelof the lass window illustrated in Figure 4.44. The attribute panel permits to add, modify anddelete attributes. Eah attribute an be de�ned by giving its type, name, and domain. To de�neattributes as one-dimensional arrays the left array �eld must be �lled with its size. Matries arede�ned �lling both array �elds, the left one for the row size and the right one for the olumnsize. In the example, the attribute man is an array having Man as its type and menList as its size.The domain �elds are not �lled sine the attribute is an objet array. The hek box allows oneto de�ne set variables and the last �eld is used to de�ne an optional onsisteny level to be usedfor objets.

Figure 4.44 � Attributes on the s-COMMA GUI.Constraint zones are stated in a similar way. Figure 4.45 shows the onstraint zone panel,where onstraint zones an be added, modi�ed and deleted. Shortut buttons are provided togenerate a ode framework to be then ompleted by the user, for instane to state loops, ondi-tionals, optimization statements, and ompatibility onstraints. The onstraints must be writtenby hand.Both onstants and variable assignments are stated in the data window. They are de�nedgiving a type, a name, and a value. Figure 4.46 shows the enumeration onstant menList, thevalue �eld is �lled with the names of the group of men.The s-COMMA GUI inludes typial operations for handling projets, managing some prefe-renes and printing draws and odes. Also, ommon shortuts suh as ut, opy, paste, undo andredo are provided. Buttons for hanging the properties of the drawing frame (zoom-in, zoom-out,saling the grid) have been onsidered as well (see Figure 4.47).
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Figure 4.45 � Constraints on the s-COMMA GUI.

Figure 4.46 � Data �les on the s-COMMA GUI.
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Figure 4.47 � Some shortuts of the s-COMMA GUI.4.4 SummaryIn this hapter we have presented the s-COMMA language and the s-COMMA GUI. We haveillustrated several CP models through the s-COMMA language, showing that the expressivenesso�ered is suitable for di�erent kinds of problems. The objet-oriented style provided is usefulfor getting elegant and modular models. These models an be tuned with a simple formalismto get e�ient solving proesses. This formalism permits to de�ne heuristi orderings as well asthe onsisteny level of onstraints. The expressiveness of the base language an be extended,an extension �le an be de�ned to add new funtions, onstraints, and solving options to thelanguage. Finally, the s-COMMA GUI provides a visual and more onise representation of models.The next hapter fouses on the transformation proess from graphial artifats to solvermodels. We present the tools and tehniques involved in the transformation, and we illustrateseveral examples of the platform implementation.





CHAPTER5
Mapping Models to

Solvers

A main purpose of our approah is to transform a solver-independent model to di�erentsolver-dependent models. That requires (1) to translate languages, from high-level mode-ling languages to lower level onstraint solving languages or omputer programming languages,and (2) to modify model strutures aording to the apabilities of solvers, for instane to unrollloops, or to �atten an objet-oriented omposition.
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Figure 5.1 � The s-COMMA arhiteture.To support these requirements we introdue a new solver-independent arhiteture able toperform the whole transformation in three main stages (see Figure 5.1). Firstly, the s-COMMA GUIgenerates the orresponding s-COMMA model by means of a set of Java pakages and proedures.In the seond stage, the s-COMMA model is parsed, semantially heked and then transformedto the intermediate Flat s-COMMA model. During this translation, several refatoring steps areperformed to be loser to the solver level. The idea is to simplify the mapping proess to thesolver model, and onsequently to failitate the integration of new solvers to the platform. Inthe third and last stage, the Flat s-COMMA model is parsed and transformed to the solver model.This stage is performed by our so-alled mapping tool, in whih two transformation approahesan be identi�ed. The �rst approah has been built using a parsing tool and hand-written Javaproedures, and the seond approah has been designed and implemented using tehniques andtools from the model engineering world.In this hapter, we present the omplete transformation proess from graphial artifats tosolver programs. The �rst setion is devoted to the transformation from the s-COMMA GUI to the73



74 Chapter 5 � Mapping Models to Solverss-COMMA model. Some Java lasses and proedures are illustrated to provide an overview of thattransformation. The following setion presents the transformation from s-COMMA to Flat s-COMMA.The tehnial aspets of the parsing, semanti heking, and refatoring steps are illustrated bymeans of several examples. We believe this is of interest to designers of further CP languages. Thelast setion targets the design of the mapping tool. The grammar approah and the model-drivenapproah are illustrated and ompared.5.1 From s-COMMA GUI to s-COMMAThe prototype implementation of the s-COMMA GUI is ompletely written in Java (about 30000ode lines inluding the s-COMMA ompiler) and the Swing widget library is used to design thegraphial interfaes. Three main Java pakages an be identi�ed to support the transformationfrom graphial artifats to s-COMMA models (see Figure 5.2):� dialogBoxes: ontains the dialog boxes that allow users to �ll the information of the model.� artifats: ontains the lasses that allow users to reate, to drag, and to resize the artifatsin the drawing pane of the s-COMMA GUI.� modelInformation: ontains the lasses that store the information of the model (e.g.,onstants, lasses, attributes and onstraint zones).
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bb bFigure 5.2 � s-COMMA GUI Java pakages.In the dialogBoxes pakage, eah graphial element appearing in a model has a dialog boxde�ned by a Java lass. For instane, one lass for data artifats, one for lass artifats, andanother for relationships. Every element ontained in a graphial artifat has a dediated lassas well. For instane, one lass to manage the attributes, one to manage the onstants and onefor the onstraint zones. Eah of these lasses is omposed of the ommon methods to de�ne theposition of frames, text �elds and buttons in the layout of the dialog box. These buttons triggerations to add, delete or modify elements of the model. Dialog box lasses ontain objets, from



Chapter 5 � Mapping Models to Solvers 75both the artifat pakage and the modelInformation pakage. These objets are responsiblefor gathering the information provided by the user and for storing it in order to generate theorresponding s-COMMA textual version.To show the interation among these omponents, let us onsider the addition of a s-COMMAattribute to a s-COMMA lass artifat. Four lasses partiipate in this proess: AttributeDialog,ClassArtifat, SCommaClass, and SCommaAttribute. The pakages owning these lasses andthe relationships among them an be seen in Figure 5.2. The goal is to apture the informa-tion of the s-COMMA attribute from the orresponding dialog box, and then storing it in themodelInformation pakage.The proess begins when the user �lls the properties (type, name, array dimensions, if thevariable is de�ned as a set, domain, and onsisteny level) of the s-COMMA attribute throughthe dialog box. These properties are aptured between lines 6 and 12 of the AttributeDialoglass (see Figure 5.3). The getText() method returns the string provided by the user in the text�eld, and isSeleted() returns true whether the hek box is heked. At the end of the �le,attribute is added to an instane of a ClassArtifat lass alled lArtifat.1. publi lass AttributeDialog extends JDialog implements AtionListener {2. ...3. private ClassArtifat lArtifat;4. private SCommaAttribute attribute;5. ...6. attribute.setType(attType.getText());7. attribute.setName(attName.getText());8. attribute.setOneDimArray(attOneDimArray.getText());9. attribute.setTwoDimArray(attTwoDimArray.getText());10. attribute.setIsSet(attIsSet.isSeleted());11. attribute.setDomain(attDomMin.getText(),attDomMax.getText());12. attribute.setConsLevel(attConsLevel.getText());13. lArtifat.addAttribute(attribute);14. ... Figure 5.3 � The AttributeDialog lass.The ClassArtifat aptures the attribute objet via the addAttribute method (line 5 ofFigure 5.4), whih then stores it in an instane of a sCommaClass.1. publi lass ClassArtifat extends ArtifatDrawing {2.3. private SCommaClass sCClass = new SCommaClass();4. ...5. publi void addAttribute(SCommaAttribute attribute) {6. sCClass.addAttribute(attribute);7. }8. ... Figure 5.4 � The ClassArtifat lass.The sCommaClass is illustrated in Figure 5.5. It is omposed of attributes (lines 3 to 9) tostore the properties of s-COMMA lasses (e.g. desription, name, et) and methods to managethese attributes (lines 11 to 20). The proess �nish when the s-COMMA attribute is stored in the



76 Chapter 5 � Mapping Models to Solversmodel information pakage. This is done via the addAttribute method, whih adds the inputparameter att (reeived from the ClassArtifat lass at line 6) to the attributes array (line12).1. publi lass SCommaClass {2.3. private String desription;4. private String name;5. ...6. private ArrayList<SCommaAttribute> attributes =7. new ArrayList<SCommaAttribute>();8. private ArrayList<SCommaConstraintZone> Zones =9. new ArrayList<SCommaConstraintZone>();10.11. publi void addAttribute(SCommaAttribute att) {12. attributes.add(att);13. }14. ...15. publi void deleteAttribute(String name) {16. for (SCommaAttribute a : attributes)17. if (a.getName().equals(name))18. attributes.remove(a);19. }20. ... Figure 5.5 � The SCommaClass lass.One the information obtained from the dialog boxes is stored in the modelInformationpakage, it an be retrieved to generate the orresponding s-COMMA textual model. This proessis automatially done when the user loses the dialog box. On the left side of Figure 5.6, theJava method to produe the ode of s-COMMA lasses is illustrated. An example of a generateds-COMMA lass is shown on the right side of the same �gure.1. publi String getCode() {2.3. StringBuffer str = new StringBuffer();4.5. str.append(generateDes()); //This lass represents a Turbo Engine6. str.append(generateIsMain()); main lass TurboEngine extends Engine [bound℄ {7. str.append("lass ");8. str.append(sCClass.getName()); ...9. str.append(generateSuperClass());10. str.append(generateSolvingOpt());11. str.append(" {\n");12. str.append(generateAttributes()); int diameter in [34, 250℄;13. str.append(generateConstraintZones()); onstraint distane { ... }14. str.append("}"); }15. return str.toString();16. } Figure 5.6 � The getCode method.The ode is built from a systemati union of strings. The desription of the s-COMMA lassis the �rst string to be appended. The ode of the lass follows. The lass header onsists of an



Chapter 5 � Mapping Models to Solvers 77optional token main, a lass token, a lass name, an optional inheritane de�nition, and solvingoptions. The body of the lass is enlosed with urly braket symbols (`{}'), whih are appendedat lines 11 and 14. Within the lass body, the attributes and onstraint zones are added.5.2 From s-COMMA to Flat s-COMMAThe transformation from s-COMMA to Flat s-COMMA is the most omplex part of the wholeproess. Several transformations must be done so as to failitate the task of solver-translators,and also to ease the integration of new solvers to the platform. Three main tasks are identi�ed:parsing, semanti heking and refatoring to Flat s-COMMA.5.2.1 ParsingThe parsing proess is responsible for heking the orretness of the syntax of the inputstring, and for building an abstrat syntax tree (AST) to be explored in the following phases.The parsing proess onsists of two main tasks: the lexial analysis and the syntati analysis.The lexial analysis must detet tokens from the input string, and the syntati analysis deter-mines whether these tokens form valid expressions onform to the grammar of the language. Theimplementation of these two main tasks has been supported by the ANTLR language reognitiontool [www11 ℄. An ANTLR lexer performs the lexial analysis and an ANTLR parser deals with thesyntati heking.5.2.1.1 LexerThe lexer is able to generate the tokens given an input string by means of a set of reservedword de�nitions and regular expressions (also alled rules in ANTLR). Figure 5.7 illustrates afragment of the lexer �le. The reserved words of the language are de�ned in a spei� blokalled tokens (to avoid ambiguities with identi�ers). Identi�ers are used for giving a name tolanguage onstruts that require it, for instane a lass name, a variable name, a onstraint zonename, et. The rule to reognize them is stated at line 12. The option testLiterals=true isused to expliitly state that identi�ers must be heked with respet to the reserved words of thetokens blok. The paraphrase option is used for showing "an identifier" in error messagesinstead of the name of the token (an error message an be seen in Figure 5.14). The IDENT rulestates that an identi�er must �rstly be omposed of a LETTER or an undersore symbol followedby a set of zero or more LETTER, DIGIT or undersore symbols. The rules to reognize letters anddigits are de�ned next, the double dot operator ('..') is used to onsider a range of haraters.In the following lines, several other rules are delared, for instane to reognize the puntuationsymbols (lines 24 to 26), the brakets (lines 29 to 31) and the operators (lines 34 to 36).Dealing with rule ambiguitiesThe rule to reognize numbers (reals and integers) is shown in Figure 5.8. This proess ismore omplex sine the number of tokens to hek may be undetermined. For instane, to beable to reognize 5.2 as a real (and not as an integer) it should be neessary to detet just twotokens (2-lookahead), 5 as a digit and then the dot as a puntuation symbol.



78 Chapter 5 � Mapping Models to SolversNoteThe lookahead determines the number of tokens to be reognized for mathing a rule, it isnormally set to 2. Bigger lookaheads may lead to slower parsing proesses.1. tokens2. {3. RES_IMPORT = "import" ;4. RES_MAIN = "main" ;5. RES_CLASS = "lass" ;6. RES_EXTENDS = "extends" ;7. RES_CONSTRAINT = "onstraint" ;8. RES_FORALL = "forall" ;9. ...10. }11.12. IDENT13. options {testLiterals=true; paraphrase="an identifier";}14. : (LETTER|'_') (LETTER|DIGIT|'_')*15. ;16.17. LETTER : 'a'..'z'18. | 'A'..'Z'19. ;20.21. DIGIT : '0'..'9';22. ...23.24. PUN_SEMI_COLON : ';' ;25. PUN_COMMA : ',' ;26. PUN_DOT : '.' ;27. ...28.29. BRA_CURLY_OPEN : '{' ;30. BRA_CURLY_CLOSE : '}' ;31. BRA_ROUND_OPEN : '(' ;32. ...33.34. OP_PLUS : '+' ;35. OP_MINUS : '-' ;36. OP_MULTIPLICATION : '*' ;37. ... Figure 5.7 � Tokens and rules in the ANTLR lexer of s-COMMA.However, a 2-lookahead may not be enough to math di�erent rules sharing more than twoinitial tokens. For example, a real number with an integer part having two or more digits annotbe reognized sine the two initial digits may belong as well to an integer number as to a realnumber. This kind of ambiguities an be avoided by using a syntati prediate [PQ94℄, whihis a spei� ANTLR feature that permit us to arbitrary extend the lookahead of a determinedrule. Syntati prediates are de�ned as (a) ⇒ a|b, where a is the rule to be mathed with anextended lookahead, and b is the rule to be reognized if a annot be mathed. For instane, the



Chapter 5 � Mapping Models to Solvers 79rule to de�ne a NUMBER is omposed of a statement to reognize reals (line 2) and a statementto reognize integers (line 3). The �rst statement de�nes that a real is omposed of a set of oneor more digits followed by a dot and another set of one or more digits. The seond statementde�nes that an integer is omposed of one or more digits. The rule �rst tries to math reals, ifthis ours the token is set as a real literal (LIT_REAL). Otherwise, the rule reognizes an integer.1. NUMBER : ((DIGIT)+ PUN_DOT (DIGIT)+) =>2. (DIGIT)+ PUN_DOT (DIGIT)+ { $setType (LIT_REAL);}3. | (DIGIT)+ { $setType (LIT_INT);}4. ; Figure 5.8 � The lexer rule to de�ne numbers.NoteThe use of syntati prediates generates a grammar alled pred-LL(K), where K denotes thelookahead.5.2.1.2 ParserThe parser is able to perform the syntati analysis by mathing a set of rules omposed of thetokens stated in the lexer �le. These rules are built onform to the grammar of the language andthey are responsible for apturing the grammatial struture of the analyzed string by produingan abstrat syntati tree (AST).In ANTLR, ASTs are built using a Lisp-based notation, `#' being the operator to de�ne treestrutures. For instane, #(#a,#b,#) orresponds to a tree where a is the root, and b and are its hild nodes. For example, onsider the �rst rule showed in Figure 5.9, whih mathes anaddition between two integer tokens. The AST for this rule is built using OP_PLUS as the root,and the integer tokens as hild nodes. A simpler equivalent version of this rule (line 5) an bestated by using the `�' operator. The orresponding AST is shown on the right side of the �gure.Non leaf nodes are represented by a folder ion and leaf nodes by a �le ion.1. add_expr : e1:LIT_INT op:OP_PLUS e2:LIT_INT2. { ## = #(#op, #e1, #e2);}3. ;4.5. add_expr : LIT_INT OP_PLUS^ LIT_INT6. ; Figure 5.9 � Three parser rules in ANTLR.In the ase of rules having no appropriate token to be used as AST root, it is possible tointrodue a root token. In Figure 5.10, the rule identList is de�ned as a set of one or moreIDENT tokens, and no token is suitable to beome the AST root. A new token alled LIST isintrodued, and the tree is formed with the LIST token as root and the set of IDENT tokens asits hild nodes.



80 Chapter 5 � Mapping Models to Solvers1. identList : (IDENT)+2. {## = #( #[LIST, "LIST"℄ ,##);}3. ; Figure 5.10 � Introduing a proper tree node.Figure 5.11 illustrates �ve rules of the parser �le of s-COMMA. Suh rules are omposed oftokens, alls to other rules and statements for building ASTs. The �rst rule onsists of tworule alls (staImport and defClass) and a statement to de�ne the root of the AST ({## = #(#[MODEL, "MODEL"℄ ,##);}). The rule states that a model is omposed of a set of zero or moreimport statements followed by a set of zero or more lass de�nitions. Let us notie that lowerase is used to rule names in order to di�erentiate them from tokens.1. model : (staImport)* (defClass)*2. {## = #( #[MODEL, "MODEL"℄ ,##);}3. ;4.5. defClass : (RES_MAIN)? RES_CLASS^ IDENT6. (extendsClause)? (solvingOpts)?7. BRA_CURLY_OPEN! lassBody8. BRA_CURLY_CLOSE!9. ;10.11. lassBody : attributeSet onstraintZoneSet12. { ## = #( #[CLASS_BODY,13. "CLASS_BODY"℄,##);}14. ;15.16. attributeSet : (attribute)*17. { ## = #( #[ATTRIBUTE_SET,18. "ATTRIBUTE_SET"℄,##);}19. ;20.21. onstraintZoneSet : (onstraintZone)*22. { ## = #( #[CONSTRAINT_ZONE_SET,23. "CONSTRAINT_ZONE_SET"℄,##);}Figure 5.11 � Parser rules of s-COMMA.Lines 5 to 8 desribe the rule for reognizing s-COMMA lasses. A lass de�nition begins withthe main reserved word given by the RES_MAIN token. The use of this token is optional, denoted bythe `?' symbol. The RES_MAIN token is followed by the lass reserved word and by an identi�erorresponding to the name of the lass. The extendsClause rule is also optional, being alledonly if the s-COMMA lass owns a superlass. Then, the solvingOpts rule all is used to reognizethe solving options stated in the lass. The body of the lass is de�ned within urly brakets.Eah braket token is post�xed with a `!' symbol. Suh a symbol de�nes the no inlusion of atoken in the ASTs. It is used for tokens giving no relevant information for the parsing proess.



Chapter 5 � Mapping Models to Solvers 81The body of a lass is de�ned as a set of attributes and a set of onstraint zones. Attributesare reognized by the �rst rule of Figure 5.12. Suh a rule states that the delaration of anattribute begins with its onsisteny level. This rule all is optional and followed by the type ofthe attribute. The reserved word set is next de�ned, it is also optional and it is used to state setvariables. The name of the variable follows as an IDENT token. Then, the optional array rule allis used to de�ne arrays. The domain of the variable is de�ned by the reserved word in followedby a all to the domain rule. The delaration must be terminated by a semiolon symbol.1. attribute: (onsLevel)? type (RES_SET)? IDENT2. (array)? (RES_IN! domain)? PUN_SEMI_COLON!3. { ## = #( #[ATTRIBUTE, "ATTRIBUTE"℄ ,##);}4. ...5.6. onstraintZone : RES_CONSTRAINT! IDENT7. BRA_CURLY_OPEN! onstraintZoneBody8. BRA_CURLY_CLOSE!9. { ## = #( #[CONSTRAINT_ZONE,10. "CONSTRAINT_ZONE"℄,##);}11. ;12.13. onstraintBody : (onstraint|globalCons|14. ompatibilityCons|staOpt|15. staForall|staIfElse)*16. ;17.18. onstraint : (onsLevel)? expression PUN_SEMI_COLON!19. { ##=#(#[CONSTRAINT, "CONSTRAINT"℄, ##);}20. ;21. ... Figure 5.12 � Parser rules of s-COMMA.A onstraint zone delaration (line 6) must begin with the reserved word onstraint givenby the RES_CONSTRAINT token. This token is followed by IDENT, whih represents the onstraintzone name. The onstraint zone body is de�ned inside urly brakets. It an be omposed ofseveral onstruts, i.e. onstraints, global onstraints, ompatibility onstraints, an optimizationstatement, forall loops and onditionals. A onstraint is de�ned as an expression, pre�xed by itsoptional onsisteny level and �nished by a semiolon.Expressions are reognized using a set of rules (see Figure 5.13), eah one inluding one ormore operators having the same priority. The idea is to perform alls from one rule to the nextone respeting the priority of these operators (from lower to higher). Eah rule is of the form a : b
(op b)∗, where a is the name of the rule, b is a all to the next rule, and op is the operator. The�rst rule inludes the lowest priority operator (the operator priorities an be found in Table 4.1),whih orresponds to the equivalene (<->) symbol. The next rule inludes the impliation (->)and reverse-impliation (<-) operators. Several rules follow respeting the operator preedenes.The rule stated at line 32 deals with unary arithmeti operators. If a unary minus operator isdeteted, it is not inluded in the AST, but the operand is aptured in an additional node alledOP_UN_MINUS (this is done to improve readability of ASTs). In the ase of deteting a unary plusoperator (whih is optional), it is not inluded in the AST, but no additional node is used sinethis operator has no relevane within expressions.



82 Chapter 5 � Mapping Models to SolversThe last rule deals with operands. An operand may be a value (integer, real or boolean), anidenti�er (e.g. a variable, a onstant), an aess (an aess to the attribute of an objet or anaess to an array), or a funtion (e.g. a sum loop, the ardinality of a set, et). Finally, theoperand an also be an expression enlosed with parentheses.1. expression : exprIMP (OP_EQV^ exprIMP)*2. ;3. exprIMP : exprOR ((OP_IMP^|OP_RIMP^) exprOR)*4. ;5. exprOR : exprAND ((RES_XOR^|RES_OR^) exprAND)*6. ;7. exprAND : exprNot (RES_AND^ exprNot)*8. ;9. expNot : (RES_NOT^)* exprRel10. ;11. exprRel : exprSetRel ((OP_EQUAL^|12. OP_DISTINCT^|13. OP_LESS_THAN^|14. OP_GREATER_THAN^|15. OP_LESS_THAN_OR_EQUAL^|16. OP_GREATER_THAN_OR_EQUAL^)17. exprSetRel)*18. ;19. exprSetRel : exprSetOp ((OP_SUBSET^|OP_SUPERSET^)20. exprSetOp)*21. ;22. exprSetOp : exprSum ((OP_UNION^|OP_DIFF^|OP_SYMDIFF^) exprSum)*23. ;24. exprSum : exprProdut ((OP_PLUS^|OP_MINUS^) exprProdut)*25. ;26. exprProdut : exprInter ((OP_MULTIPLICATION^|OP_DIVISION^) exprInter)*27. ;28. exprInter : exprExpon ((OP_INTERSECT^) exprExpon)*29. ;30. exprExpon : unMinus (OP_EXPON^ unMinus)*31. ;32. unMinus : (OP_MINUS! exprUnit)33. { ##=#(#[OP_UN_MINUS, "OP_UN_MINUS"℄, ##) ;}34. | ((OP_PLUS!)? exprUnit)35. ;36. exprUnit : value|IDENT|aess|funtion|37. (BRA_ROUND_OPEN expression BRA_ROUND_CLOSE)38. ; Figure 5.13 � The rule to reognize expressions.Syntati ErrorsLet us notie that syntati errors are automatially handled by ANTLR. When the parsingrules are not able to math a given input string, the relevant information of the syntati erroris gathered and displayed to the user. An example is shown in Figure 5.14. The error has beengenerated from a model �le having a lass delaration in whih the name is missing (lass {).The error message ontains the �le name, the line number, and the olumn number related to the



Chapter 5 � Mapping Models to Solvers 83on�it. The paraphrase "an identifier" de�ned in the lexer has been used to denote IDENTas the missing token.

Figure 5.14 � A syntati error.5.2.2 Semanti ChekingThe lexial and syntati analysis are unable to detet all the errors appearing in a model. Thelexial analysis detets the tokens and the syntati analysis groups these tokens into grammatialstrutures. The role of the semanti analysis is to hek the �meaning� of these grouped tokensonform to the semanti rules of the language. The semanti heking is performed by exploringthe AST and by building a symbol table to store the relevant information for the heking. Inthe s-COMMA arhiteture, the exploration of the AST is done by ANTLR top-down tree walkers.The notation used to de�ne the AST exploration is analogous to the one used for the ASTonstrution. For instane, a tree omposed of a root and two hild nodes an be explored bythe rule #(A b ), where A is the name of the root token and b and  are alls to the exploringrules of the left and right subtree, respetively.Performing the whole semanti heking proess requires to ombine the AST explorationwith another routines. For instane to reate the table of symbols, to handle the orrespondingsemanti errors, and to build intermediate representations. These routines are implemented inJava and ANTLR permits alling them, embedded in ode bloks, from the exploration rules.NoteAn intermediate representation of the s-COMMA model is built during the semanti heking.This intermediate representation is stored in several Java objets, whih are then exploredto build the Flat s-COMMA model. Details about ode generation mehanisms an be seen inSetion 5.3.1.3.Figure 5.15 depits the rule to explore lass de�nitions. The rule states that the �rst nodeto be explored must be the reserved word lass. The �rst hild of that node orresponds to theoptional main token. Suh a node is stored in a loal variable alled isMain, whih is then usedas input parameter of the Java method all addClass. The hekMainClass method is alled toensure that models own at most one main lass. The next node to be explored orresponds to anIDENT token, being also stored in a loal variable. This loal variable is the input parameter ofthe setIdClass method all, whih sets the id of the lass in a global variable alled idClass.Suh a global variable will be used in further exploration rules. In the following line, two optionalrule alls are stated. In the �rst one, the token of the reserved word extends is read, and the



84 Chapter 5 � Mapping Models to Solversname of the superlass is stored in idSuperClass. In the seond one, the solving options areexplored and stored. At line 4, the addClass method adds the lass to the symbol table and tothe intermediate representation of the model.1. defClass : #(RES_CLASS ((isMain:RES_MAIN {this.hekMainClass()})?2. id:IDENT {this.setIdClass(Id)}3. (RES_EXTENDS idSuperClass:IDENT)? (sOptClass:solvingOpts)?4. {mI.addClass(isMain,id,idSuperClass,sOptClass);}5. (lassBody)))6. ; Figure 5.15 � Tree walker of s-COMMA.Let us note that ANTLR is unable to automatially handle the semanti errors (as it doesit for the syntati errors), being neessary to de�ne spei� proedures to handle them. Forinstane, multiple lass name delarations are heked within the addClass method (see Fi-gure 5.16). This proedure �rstly tests if there is no lass previously delared using the sameidenti�er. The id variable is a tree node ontaining the information of the token onerning thename of the lass to be added, and id.getText() returns the name of the lass. If the onditionof the proedure is satis�ed, the new lass is added to model. Otherwise, an error message istriggered. The message is formatted by the semantiError method to display the relevant errorinformation. The �le name, the line number and the olumn number of the on�iting token areobtained from id. The error message is shown in Figure 5.17.1. publi void addClass(AST isMain, AST id, AST idSuperClass, AST sOptClass) {2. if (!model().ontainsClass(id.getText())) {3. model().addClass(isMain,id,idSuperClass,sOptClass);4. } else {5. Message.semantiError("redelaration of lass '" + id.getText()6. + "'", id);7. }8. } Figure 5.16 � A Java proedure to hek lass redelarations.

Figure 5.17 � A semanti error.



Chapter 5 � Mapping Models to Solvers 85Handling Semanti Errors in a Seond Top-Down Tree ExplorationAll the potential semanti errors of a model annot be deteted in one top-down tree explo-ration. For instane, type heking annot be performed if the information of all the lasses isunavailable in the symbol table. As an example, onsider the model shown in Figure 5.18. Thetree walker begins by exploring the �rst lass. The attribute b is reognized but the tree walkeris unable to hek its type sine the lass B has not been explored yet. Likewise, the struture ofthe aess b.a annot be heked either.lass A {B b;onstraint z {b.a < 2;}}lass B {int a in [0,9℄;} Figure 5.18 � Two s-COMMA lasses.A ommon way used in objet-oriented languages is to perform a seond exploration of theAST. Figure 5.19 illustrates the rule of the seond tree walker to hek the type of attributes. Themethod all is embedded in the type rule, whih ats when the type is de�ned as an IDENT. Themethod heks if the variable is orretly typed. There are two valid possibilities: the variablehas been typed with an enumeration or it orresponds to an objet instane.1. attribute : #(ATTRIBUTE ((onsLevel)? type (RES_SET)? IDENT2. (array)? (domain)?));3.4. type : (TYPE_INT|TYPE_REAL|TYPE_BOOL5. |id:IDENT {vI.hekObjetOrEnumType(id);});Figure 5.19 � The rule to hek attributes in the seond pass.The rule to hek onstraints in the seond tree parser is depited in Figure 5.20. The rulebegins by mathing the CONSTRAINT node, whih owns two hildren: the onsisteny level ofthe onstraint and an expression. The orret formation of these expressions is validated by thehekExpression method (line 2). Finally, the onstraint is stored in the intermediate repre-sentation. Expressions are read using one big rule (line 5). Every possible operator is exploredwith its orresponding hild nodes, whih are de�ned as expressions. At the end of the rule, thepotential operands are explored (value, variable, aess and funtion). Two methods hek if thevariables and the aesses have been orretly delared.
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1. onstraint : #(CONSTRAINT Level:onsLevel exp:expression2. {vI.hekExpression(exp);}3. {sI.addConstraint(idClass,idConstraintZone,Level,exp);});4.5. expression6. : #(OP_EQV expression expression)7. | #(OP_IMP expression expression)8. | #(OP_RIMP expression expression)9. | #(RES_OR expression expression)10. | #(RES_XOR expression expression)11. | #(RES_AND expression expression)12. | #(RES_NOT expression)13. | #(OP_EQUAL expression expression)14. | #(OP_DISTINCT expression expression)15. | #(OP_LESS_THAN expression expression)16. | #(OP_GREATER_THAN expression expression)17. | #(OP_LESS_THAN_OR_EQUAL expression expression)18. | #(OP_GREATER_THAN_OR_EQUAL expression expression)19. | #(RES_IN expression expression)20. | #(OP_SUBSET expression expression)21. | #(OP_SUPERSET expression expression)22. | #(OP_UNION expression expression)23. | #(OP_DIFF expression expression)24. | #(OP_SYMDIFF expression expression)25. | #(OP_PLUS expression expression)26. | #(OP_MINUS expression expression)27. | #(OP_MULTIPLICATION expression expression)28. | #(OP_DIVISION expression expression)29. | #(OP_INTERSECT expression expression)30. | #(OP_EXPON expression expression)31. | #(OP_UN_MINUS expression)32. | value33. | id: IDENT {vI.hekVariable(idClass,id);}34. | a: aess {vI.hekAess(idClass,a);}35. | funtion36. | BRA_ROUND_OPEN expression BRA_ROUND_CLOSE37. ; Figure 5.20 � The rule to hek onstraints in the seond pass.



Chapter 5 � Mapping Models to Solvers 875.2.3 Refatoring PhaseThe translation to Flat s-COMMA is arried out by applying several refatoring steps. In fat,it is neessary to transform the modeling onstruts provided by s-COMMA for whih no supportexists in the solver layer. To guarantee the independene of solver translators from these omplexrefatoring steps, the result of the transformation is aptured in an intermediate model alledFlat s-COMMA, from whih the solver translator generates the exeutable solver ode. The idea isto redue the work of the mapping tool and as a onsequene to simplify the integration of newsolvers to the platform.Flat s-COMMA1 an be seen as an unrolled version of s-COMMA, i.e. the objet-oriented style isbroken (omposition and inheritane relationships are refatored) to state a model just omposedof variables and onstraints. The syntax to de�ne variables and onstraint is equivalent to s-COMMA, but the amount of modeling omponents supported is minor. For instane, ontrolstatements suh as loops, onditionals are not provided. Enumerations and spei� onstrutssuh as ompatibility onstraints are not supported.To handle this transformation we de�ne a set of refatoring steps. These steps have beenimplemented in hand-written Java proedures, whih are applied one the semanti hekingsueeds. An overview of suh steps is given in the following.Loop unrollingThis phase unrolls the forall and the sum loops. The proess onsists in replaing the loopby the whole set of elements that it impliitly ontains. Within expressions, the iterator variableused by the loop statement is replaed by an integer orresponding to the urrent number of loopturns. An example is depited in Figure 5.21, the loop belonging to the inside onstraint zoneof the paking squares problem is shown on the left olumn of the �gure, the unrolling result isshown on the right one.//s-COMMA //Flat s-COMMAforall(i in 1..squares) { x[1℄ <= sideSize - size[1℄ + 1;x[i℄ <= sideSize - size[i℄ + 1; y[1℄ <= sideSize - size[1℄ + 1;y[i℄ <= sideSize - size[i℄ + 1; x[2℄ <= sideSize - size[2℄ + 1;} y[2℄ <= sideSize - size[2℄ + 1;...Figure 5.21 � Loop unrolling.Enumeration substitutionIn general, solvers do not support non-numeri values. So, the enumerations are replaed byinteger values. In Figure 5.22, the enumeration size used as type for the attribute base of thelass CrankCase is replaed by the domain [1,3℄. The value small is represented by the integer1, the value medium is replaed by the integer 2, and large by the integer 3. Let us note thatthe original values are stored to give the results in the initial format.
1The grammar of Flat s-COMMA an be found in the appendix.



88 Chapter 5 � Mapping Models to Solversenum size := {small,medium,large};size base in [1,3℄; Figure 5.22 � Enumeration substitution.Data substitutionIn this step, every data variable used in the model is replaed by its orresponding valuede�ned in the data �le.Composition �atteningThis step eliminates the hierarhy generated by objet ompositions. The proess is done byexpanding eah objet delared in the main lass adding its attributes and onstraints in the Flats-COMMA �le. The name of eah attribute has a pre�x orresponding to the onatenation of thenames of objets of origin in order to avoid name redundany. The expansion of objets Caseand Syst of the engine problem is shown in Figure 5.23.size Case_base_;int Case_oilVesselVol_;int Case_bombePower_;int Case_volume_;int Syst_quantity_ in [2,12℄;int Syst_distBetCyl_ in [3, 18℄;flow Syst_inj_gasFlow_;...volume > Case_volume_; Figure 5.23 � Composition �attening.Array ontaining objets are deomposed into a set of arrays, one for eah attribute of theobjet. If the attribute of the objet also orresponds to an objet, the array is deomposedagain. For instane, in the paking squares problem, the array of objets alled s is deomposedinto three arrays, one for eah attribute. The name of eah variable is omposed of the name ofthe array (s) and the name of the attribute. The value 8 in the size of arrays and the value 5 inthe variables' domain ome from the data substitution of the onstant squares and the onstantsideSize, respetively. The domain of s_size_[8℄ orresponds to the size of squares given bythe variable assignment of the model.int s_x_[8℄ in [1,5℄;int s_y_[8℄ in [1,5℄;int s_size_[8℄ in [1,3℄;Figure 5.24 � Flattening arrays ontaining objets.



Chapter 5 � Mapping Models to Solvers 89Conditional removalConditional statements are transformed to logial formulas. For instane, if a then b else is replaed by (a ⇒ b) ∧ (a ∨ c) (see Figure 5.25). If the statement ondition is omposed ofonstant values the statement is evaluated and the useless onstraint are removed. An exampleis shown in Figure 5.26.//s-COMMA //Flat s-COMMAif (quantity = 6) ((quantity = 6) -> (distBetCyl > 6)) anddistBetCyl > 6; ((quantity = 6) or (distBetCyl > 3));elsedistBetCyl > 3; Figure 5.25 � Conditional removal.//Data File //After Data substitutionn := 1; if (2 < 4) {s := 2; x < 1;y < 1;//Model file } else {... x < 2;if (2 < 1 + n + s) { y < 2;x < 1; }y < 1;} else { //After evaluationx < 2; x < 1;y < 2; y < 1;} Figure 5.26 � Conditional evaluation.Compatibility removalCompatibility onstraints are also translated to a logial formula. We reate a onjuntiveboolean expression for eah n-tuple of allowed values. Then, eah onstraint of the n-tuple is sta-ted in a disjuntive onstraint. The transformed ompatibility onstraint of the Engine problemis shown in Figure 5.27. Non-numeri values were replaed by the orresponding integer valuesin the enumeration substitution step.//s-COMMA //Flat s-COMMAompatibility ((gasFlow=1) and (admValve=1) and (pressure=80)) or(gasFlow,admValve,pressure) { ((gasFlow=1) and (admValve=2) and (pressure=90)) or("diret", "small", 80); ((gasFlow=2) and (admValve=2) and (pressure=100)) or("diret", "medium", 90); ((gasFlow=2) and (admValve=3) and (pressure=130));("indiret", "medium", 100);("indiret", "large", 130);} Figure 5.27 � Compatibility removal.



90 Chapter 5 � Mapping Models to SolversLogi formulas transformationSome logi operators are not supported by solvers. For example, logial equivalene (a ⇔ b)and reverse impliation (a ⇐ b). We transform logial equivalene expressing it in terms of logialimpliation ((a ⇒ b) ∧ (b ⇒ a)). Reverse impliation is simply inverted (b ⇒ a).Expression evaluationIn this step we evaluate expressions omposed of onstants in order to redue them and/orto eliminate useless onstraints. Figure 5.28 illustrates the evaluation of an expression ontainingarithmeti and logi operators. Sine the resulting value of the expression has no impat on themodel, the onstraint is removed.(((1+1) < (1+1)) and ((1+1) < (1+1))) -> ((((1+1) < (1+1)) and ((1+1) < (1+1)))((2 < 2) and (2 < 2)) -> ((2 < 2) and (2 < 2))(false and false) -> (false and false)false -> falsetrueFigure 5.28 � Expression evaluation.
5.2.3.1 A Flat s-COMMA modelTo exemplify some of these refatoring steps, we illustrate the resultant Flat s-COMMA model ofthe stable marriage problem (see Figure 5.29). The model is omposed of four bloks: variables,onstraints, enumeration types, and solving options. Within the variables blok, the whole setof arrays has been generated from the omposition �attening step. The array man_wife_ (line3) ontains the deision variables wife of the original array man, and the array woman_husband_(line 9) ontains the deision variables husband of the original array woman. The size of the arrayman_wife_ has been set to 5, this value is given by the enumeration substitution step whih setsthe size of the array with the size of the enumeration menList. The domain [1,5℄ has been alsoprodued by this step. The type of both arrays has been maintained to give the solutions in theenumeration format. These values are stored in the blok enum-types. The arrays stated fromlines 4 to 8 and 10 to 14 ontain the ranking values for eah man and women, respetively.The onstraints posted between lines 18 and 25 ome from the loop unrolling phase of theforall statements of the mathHusbandWife onstraint zone. Likewise, lines 28 to 36 have beengenerated by the loops of forbidUnstableCouples. Within these onstraints, the data substi-tution step has replaed several onstants with their orresponding integer values. At the endof the �le, the solving options are stated. Sine no solving option was de�ned in the s-COMMAmodel, the default solving option is stated.
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1. variables:2.3. womenList man_wife_[5℄ in [1,5℄;4. int man_1_rank_[5℄ in [1,5℄;5. int man_2_rank_[5℄ in [1,5℄;6. int man_3_rank_[5℄ in [1,5℄;7. int man_4_rank_[5℄ in [1,5℄;8. int man_5_rank_[5℄ in [1,5℄;9. menList woman_husband_[5℄ in [1,5℄;10. int woman_1_rank_[5℄ in [1,5℄;11. int woman_2_rank_[5℄ in [1,5℄;12. int woman_3_rank_[5℄ in [1,5℄;13. int woman_4_rank_[5℄ in [1,5℄;14. int woman_5_rank_[5℄ in [1,5℄;15.16. onstraints:17.18. woman_husband_[man_wife_[1℄℄=1;19. woman_husband_[man_wife_[2℄℄=2;20. woman_husband_[man_wife_[3℄℄=3;21. ...22.23. man_wife_[woman_husband_[1℄℄=1;24. man_wife_[woman_husband_[2℄℄=2;25. man_wife_[woman_husband_[3℄℄=3;26. ...27.28. 5<man_1_rank_[man_wife_[1℄℄ ->29. woman_1_rank_[woman_husband_[1℄℄<1;30. 1<woman_1_rank_[woman_husband_[1℄℄ ->31. man_1_rank_[man_wife_[1℄℄<5;32.33. 1<man_1_rank_[man_wife_[1℄℄ ->34. woman_2_rank_[woman_husband_[2℄℄<3;35. 3<woman_2_rank_[woman_husband_[2℄℄ ->36. man_1_rank_[man_wife_[1℄℄<1;37. ...38.39. enum-types:40.41. menList := {Rihard,James,John,Hugh,Greg};42. womenList := {Helen,Tray,Linda,Sally,Wanda};43.44. solving-opts: default;Figure 5.29 � A Flat s-COMMA model of the stable marriage problem.



92 Chapter 5 � Mapping Models to Solvers5.3 From Flat s-COMMA to solversThe transformation from Flat s-COMMA toward the solver model is performed via the map-ping tool of the platform. Two kinds of translators have been built for this mapping tool (seeFigure 5.30). The �rst ones belong to a previous version of our platform, and they have beenwritten by hand in Java (HW) with the support of the ANTLR tool for parsing the Flat s-COMMA�le. The seond ones belong to the last implementation of the platform, and they have beenimplemented using a model-driven (MD) approah. Both kinds of translators are presented andompared in the following setions.
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HW Approach

Parsing Code
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MD Approach

Solver
ModelFigure 5.30 � The mapping tool.5.3.1 Hand-Written TranslatorsThe generation of solver �les through our Java hand-written translators requires a prior par-sing of the Flat s-COMMA model. We arry out this proess using the same tools as in the previousphase. An ANTLR lexer and an ANTLR parser perform the parsing proess and produe theorresponding AST. This AST is then explored by an ANTLR tree walker in order to generatethe intermediate representation from whih the translator builds the target �le.5.3.1.1 ParsingThe lexial analysis is the �rst phase of the parsing proess. A portion of the ANTLR lexerto perform this task is shown in Figure 5.31. Suh a �le is very similar to the one of s-COMMA.Let us note that the options testLiterals and paraphrase are not inluded in the IDENT token,as there is no need to hek for ambiguities and to show error messages at this stage.NoteA Flat s-COMMA model is automatially generated from a syntatially and semantially orrets-COMMA model, being unneessary to re-analyze it.



Chapter 5 � Mapping Models to Solvers 931. tokens2. {3. RES_VARIABLES = "variables" ;4. RES_CONSTRAINTS = "onstraints" ;5. RES_ENUM_TYPES = "enum-types" ;6. RES_SOLV_OPT = "solving-opts" ;7. RES_AND = "and" ;8. ...9. }10.11. IDENT12. : (LETTER|'_') (LETTER|DIGIT|'_')*13. ;14. ... Figure 5.31 � Tokens and the IDENT rule in the ANTLR lexer of Flat s-COMMA.Figure 5.32 illustrates the rule to parse a Flat s-COMMA model (line 1). Four optional rulealls de�ne the omposition of a Flat s-COMMA model. The �rst rule all reognizes the variables,the seond one the onstraints, the third one the enumeration types, and the �nal one thesolving options of the model. The resulting AST is aptured in a root node alled MODEL. Theorresponding rules to parse the set of variables and the set of onstraints are depited below.1. model : (variableSet)? (onstraintSet)?2. (enumSet)? (solvingOpts)?3. {## = #( #[MODEL, "MODEL"℄ ,##);}4. ;5.6. variableSet : RES_VARIABLES! PUN_COLON! (variable)*7. { ## = #( #[VARIABLE_SET, "VARIABLE_SET"℄ ,##);};8.9. onstraintSet : RES_CONSTRAINTS! PUN_COLON! onstraintSetBody10. { ## = #( #[CONSTRAINT_SET, "CONSTRAINT_SET"℄ ,##);};Figure 5.32 � Parser rules of Flat s-COMMA.The rules to reognize variables and onstraints are illustrated in Figure 5.33. The variablerule is very similar to the attribute rule de�ned in s-COMMA. The body of a onstraint blokmay be omposed of three kinds of model omponents: a onstraint, a global onstraint, or anoptimization statement.NoteThe optional onsLevel rule all is absent in the variable rule sine the onsisteny level optionan only be spei�ed on objets, whih do not partiipate in Flat s-COMMA. The omposition�attening phase has eliminated them.



94 Chapter 5 � Mapping Models to Solvers1. variable : type (RES_SET)? IDENT (array)?2. RES_IN! domain PUN_SEMI_COLON!3. { ## = #( #[VAR, "VAR"℄ ,##);}4. ;5.6. onstraintSetBody : (onstraint|globalCons|staOpt)*7. ;8.9. onstraint : (onsLevel)? expression PUN_SEMI_COLON!10. { ##=#(#[CONSTRAINT, "CONSTRAINT"℄, ##) ;}11. ; Figure 5.33 � Parser rules of Flat s-COMMA.5.3.1.2 Exploring the ASTOne the AST has been built, it must be explored to generate the intermediate representation.Figure 5.34 depits three rules of the tree walker to explore the Flat s-COMMA AST. As we havementioned, no semanti heking is needed, so Java methods embedded in rules are just used togenerate the intermediate representation.1. model : #(MODEL (variableSet)? (onstraintSet)?2. (enumSet)? (solvingOpts)?)3. ;4.5. variableSet : #(VARIABLES (variable)*)6. ;7.8. variable : #(VAR (t:type (set:RES_SET)? idVar:IDENT9. (arr:array)? dom:domain10. {vI.addVar(t,set,idVar,arr,dom);}))11. ; Figure 5.34 � Tree walker of Flat s-COMMA.5.3.1.3 Code GenerationAfter the exploration of the AST, the intermediate representation is ready to be examinedby the solver translators. The translators are organized in four Java �les. One for the ode ge-neration of variables, one for the ode generation of onstraints, one to format variable namesand a main �le to generate the headers and spei� proedures for the solver �le. Figure 5.35shows the initial proedure of the Geode/J translator main �le. This proedure alls eah oneof the methods required to build the ode representing the Geode/J model: to reate the �le, tobuild the headers, to build the onstrutors, to build the ode for showing the results, to buildthe main method of the �le, and �nally to lose the �le.



Chapter 5 � Mapping Models to Solvers 951. publi void buildFile() {2. reateFile();3. buildHeader();4. buildConstrutor();5. buildCopyConstrutor();6. buildResults();7. buildMain();8. loseFile();9. }Figure 5.35 � The initial proedure of the main Java lass of the Geode/J translator.The proedure to write the onstrutor of the Geode/J model is shown in Figure 5.36. In theonstrutor, the variables and onstraint of the problem are posted. deVars.translate() (line6) generates the variables and onstraints.translate() (line 7) generates the onstraints. Atline 8, the solving options for the resolution proess are given. The method println is used towrite strings on the �le and nL to write a newline harater.1. publi void buildConstrutor() {2. println(" publi " + lassName + "(Options opt) {");3. println(" super();");4. println(" vars = new VarArray<IntVar>();");5. nL();6. println(deVars.translate());7. println(onstraints.translate());8. println(" branh(this, vars," + buildSolvingOptions() + ");");9. println(" }");10. nL();11. } Figure 5.36 � Code generation of the Geode/J onstrutor.Figure 5.37 illustrates a method for the ode generation of a one dimensional array (vetor)ontaining Geode/J deision variables. The delaration of a vetor begins with the type of theJava variable (VarArray<IntVar>) followed by its name. The name is obtained from the deVarobjet, whih was generated in the intermediate representation. Then, the initialize methodis used to set four parameters of the vetor, e.g. its name (to show the results), its size, and thelower and the upper bounds of its domain. Finally, the new vetor is added to a global array forperforming the labeling proess (vars.addAll).The ode generation of onstraints is more ompliated sine they may be omposed byseveral elements. This phase is handled by representing the onstraints in the form of a tree. AnANTLR tree walker explores this tree and performs alls to the neessary methods to transformthe nodes of the tree into the solver ode. Figure 5.38 depits the ANTLR onstraint tree walker.Constraint are explored in the same way as in the semanti heking of s-COMMA. Eah ope-rator and operand stated in the rule inludes a method all to a ode generation proedure. Themethods to generate the ode of an addition and a distint relation are depited in Figure 5.39.The onstraints are systematially generated and stored in a data struture alled odeStore,whih is then read by the main translator �le to write the onstraints in the solver program.For instane, the expression a + b is generated as new Expr(a).p(b), where p represents the
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1. publi StringBuffer integer(FlatVetorDeVar deVar) {2.3. StringBuffer str = new StringBuffer();4. str.append(" VarArray<IntVar> "); VarArray<IntVar> man_wife_ =5. str.append(deVar.getName()); initialize("man_wife_",5,1,5);6. str.append(" = initialize(\"");7. str.append(deVar.getName());8. str.append("\",");9. str.append(deVar.getSize());10. str.append(",");11. str.append(deVar.getIntLowerBound());12. str.append(",");13. str.append(deVar.getIntUpperBound());14. str.append(");\n");15. str.append(" vars.addAll(");16. str.append(deVar.getName());17. str.append(");\n");18. return str;19. } Figure 5.37 � Code generation of Geode/J variables.
1. expression2. : #(OP_EQV expression expression) {eT.equivalene();}3. | #(OP_IMP expression expression) {eT.impliane();}4. ...5. | #(OP_DISTINCT expression expression) {eT.distint();}6. | #(OP_LESS_THAN expression expression) {eT.less();}7. ...8. | #(OP_PLUS expression expression) {eT.plus();}9. | #(OP_MINUS expression expression) {eT.minus();}10. | #(OP_MULTIPLICATION expression expression) {eT.mult();}11. | #(OP_DIVISION expression expression) {eT.div();}12. | #(OP_INTERSECT expression expression) {eT.interset();}13. | #(OP_EXPON expression expression) {eT.expon();}14. | #(OP_UN_MINUS expression) {eT.unMinus();}15. | val: value {eT.addValue(val);}16. | id: IDENT {eT.addIdent(id);}17. | a: aess {eT.addAess(a);}18. | f:funtion {eT.addFuntion(f);}19. | BRA_ROUND_OPEN expression BRA_ROUND_CLOSE20. ; Figure 5.38 � The tree walker for the ode generation of onstraints.



Chapter 5 � Mapping Models to Solvers 97`+' operator and the operands are obtained from odeStore. Relations are generated using thepost method. For instane, a <> b is generated as post(this, new Expr(a),IRT_NQ, newExpr(b)), IRT_NQ being the not equal operator.1. publi void plus() {2. StringBuffer str = new StringBuffer();3. str.append("new Expr("); new Expr(a).p(b)4. str.append(odeStore.getCode());5. str.append(").p(");6. str.append(odeStore.getCode());7. str.append(")");8. odeStore.add(str);9. }10.11. publi void distint() {12. StringBuffer str = new StringBuffer();13. str.append("post(this, new Expr("); post(this, new Expr(a),IRT_NQ, new Expr(b))14. str.append(odeStore.getCode());15. str.append("),IRT_NQ, new Expr(");16. str.append(odeStore.getCode());17. str.append("))");18. odeStore.add(str);19. } Figure 5.39 � Two proedures for the ode generation of onstraints.5.3.1.4 A Geode/J model generated from Flat s-COMMAFigure 5.40 depits an extrat of the Geode/J �le generated for the stable marriage problem.The initial lines state the headers (pakage and import statements) of the Geode/J model. Theman_wife_ array is de�ned at line 5, being initialized with size 5 and domain [1,5℄. At line 6,this array is added to a global array alled vars in order to perform the labeling proess. Lines 11and 12 illustrate two onstraints, whih are stated by means of the post method. The get(a,b)method returns an element of an array, a being the array and b the position of the element. TheIRT_EQ parameter represents the equality operator.1. pakage omma.solverFiles.geodej;2. import stati org.geode.Geode.*;3. ...4.5. VarArray<IntVar> man_wife_ = initialize("man_wife_",5,1,5);6. vars.addAll(man_wife_);7.8. VarArray<IntVar> woman_husband_ = initialize("woman_husband_",5,1,5);9. vars.addAll(woman_husband_);10.11. post(this, new Expr(get(woman_husband_,get(man_wife_,1))),IRT_EQ, new Expr(1));12. post(this, new Expr(get(woman_husband_,get(man_wife_,2))),IRT_EQ, new Expr(2));13. ... Figure 5.40 � A Geode/J model of the stable marriage problem.



98 Chapter 5 � Mapping Models to Solvers5.3.2 Model-Driven TranslatorsModel-driven translators have been developed using a general model-driven transformationframework. Under this approah, the development of languages is seen from another point of view.A language is not de�ned by means of grammars and regular expressions. Languages are de�nedvia metamodels and onrete syntax tools. The metamodel spei�es the onepts appearing ina language and the onrete syntax tool de�nes how these onepts appear in the syntax of thelanguage.A model-driven transformation framework allows us to de�ne a transformation from a sourelanguage to a target one using a Model-Driven Arhiteture (MDA) [www20 ℄ (see Figure 5.41). Thelevel M1 holds the model. The level M2 desribes the semantis of the level M1 and thus identi�esonepts handled by this model through a metamodel. The level M3 is the spei�ation of thelevel M2 and it is self-de�ned. Transformation rules are de�ned to translate models from a souremodel to a target one, the semantis of these rules is also de�ned by a metamodel.
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conformsToFigure 5.41 � A general MDA for model transformation.The implementation of this approah in our platform is illustrated in Figure 5.42. The Flats-COMMA orresponds to the soure model and its semantis is de�ned by its metamodel. Thetranslation to the target language is performed by transformation rules. These rules arry out thetransformation proess by mathing the onepts of the Flat s-COMMA metamodel to the oneptsof the solver metamodel.
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Chapter 5 � Mapping Models to Solvers 99RemarkA major strength of using this metamodeling approah is that models are onisely representedby metamodels. This allows one to de�ne transformation rules that only operate on the oneptsof metamodels (at the M2 level of the MDA approah), not on the onrete syntax of a language.Syntax onerns are de�ned independently (we illustrate this in Setion 5.3.2.4). This separationis a great advantage for a lear de�nition of transformation rules and syntax desriptions, whihare the base of our mapping tool.5.3.2.1 MetamodelingThe metamodeling phase is arried out by using the KM3 language [JB06℄ (Kernel Meta MetaModel). Suh a language supports most metamodeling standards and it is based on the simplenotion of lasses to de�ne eah one of the onepts of a metamodel. These onepts are neededto de�ne the transformation rules and also to generate the target �les. Figure 5.43 illustrates themain onepts of the Flat s-COMMA metamodel. The onepts expressed in KM3 are shown onthe left side of the �gure and the orresponding metamodel using UML lass diagram notationis depited on the right side.1. lass Model {2. attribute name : String;3. referene variables [0-*℄ ontainer : Variable;4. referene onstraints [0-*℄ ontainer : ConstraintStatement;5. referene enumTypes [0-*℄ ontainer : EnumType;6. referene solvingOpts [0-3℄ ontainer : SolvingOpt;7. }8.9. lass Variable {10. attribute name : String;11. attribute type : String;12. attribute isSet : Boolean;13. referene array [0-1℄ ontainer : Array;14. referene domain ontainer : Domain;15. }16.17. lass Array {18. attribute row : Integer;19. attribute ol [0-1℄ : Integer;20. } Figure 5.43 � An extrat of the KM3 �le of Flat s-COMMA.
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In the metamodel, a Flat s-COMMA model is de�ned by the Model onept. This onept isomposed of one attribute and four referenes. The attribute name at line 2 represents the nameof the model and it is delared with the basi type String. Line 3 states that the lass Model isomposed of a set of objets from the lass Variable. The reserved word referene is used tode�ne relationships with instanes of other lasses. The statement [0-*℄ de�nes the multipliityof the relationship. If the multipliity statement is omitted the relationship is de�ned as [1-1℄.Lines 4 to 6 are similar and de�ne that the lass Model is also omposed of onstraints,



100 Chapter 5 � Mapping Models to SolversenumTypes, and solvingOpts. Three solving options an be de�ned: variable ordering, valueordering and the onsisteny level used. The lass Variable is omposed of three attributes andtwo referenes. The �rst attribute de�nes the name of the variable and the following its type. Thethird attribute is a boolean value used to speify set variables. The referene stated at line 13 isused to de�ne arrays of variables. The delaration of the Variable lass ends with the refereneto state the domain. At line 17, the Array lass is omposed of two attributes. The �rst one isused to de�ne the array row size, while the seond one used to de�ne the array olumn size.A onstraint statement is speialized in three onepts: Constraint, GlobalConstraint andOptStatement. The KM3 de�ning the omposition of the Constraint onept is illustratedin Figure 5.44. It onsists of an Expression onept and an optional attribute to speify itsonsisteny level. Two kinds of expressions an be identi�ed, binary and unary expressions. Thelass to de�ne binary expressions is stated at line 12. This lass ontains two referenes, leftorresponds to the left operand and right to the right operand of an expression. Both operandsare also expressions. At line 17, the lass to de�ne unary expressions is de�ned, just one operandis required. The attribute to de�ne the operator in unary and binary expressions is inheritedfrom the ExpOperator lass (line 8).1. lass Constraint extends ConstraintStatement {2. attribute onsLevel [0-1℄ : String;3. referene assertion ontainer : Expression;4. }5.6. abstrat lass Expression {}7.8. abstrat lass ExpOperator extends Expression {9. attribute name : String;10. }11.12. lass BinaryExpression extends ExpOperator {13. referene left ontainer : Expression;14. referene right ontainer : Expression;15. }16.17. lass UnaryExpression extends ExpOperator {18. referene left ontainer : Expression;19. } Figure 5.44 � Constraints in the KM3 �le of Flat s-COMMA.
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An expression may have three kinds of operands: a value, a variable, or a funtion. In Fi-gure 5.45, the lasses to de�ne the values are stated between lines 1 and 9. The lass to de�nevariables as operands follows. Suh a lass is named VariableOurrene and it is omposed ofone attribute and two referenes. The delaration attribute ontains the name of the variableourrene, and the referenes are used for array ourrenes. The i referene is used for thearray row index and j for the array olumn index. Both indexes are de�ned through expressions.At the end, the lass to de�ne funtion alls (e.g. the ardinality of a set) is stated. Its name andits input parameters are given.



Chapter 5 � Mapping Models to Solvers 1011. abstrat lass Value extends Expression {}2.3. lass IntValue extends Value {4. attribute value : Integer;5. }6.7. lass RealValue extends Value {8. attribute value : Double;9. }10.11. lass VariableOurrene extends Expression {12. attribute delaration : String;13. referene i [0-1℄ ontainer : Expression;14. referene j [0-1℄ ontainer : Expression;15. }16.17. lass FuntionCall extends Expression {18. attribute name : String;19. referene parameters[*℄ ontainer : Expression;20. } Figure 5.45 � Operands in the KM3 �le of Flat s-COMMA.
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5.3.2.2 Transformation RulesThe transformation rules to de�ne the mapping between Flat s-COMMA and the solver languageare implemented in ATL (Atlas Transformation Language). This language is strongly based onOCL [www18 ℄, and supports most of its funtions and its types. The ATL rules are able to performa transformation by de�ning how the onepts are mathed from soure to target metamodels.Figure 5.46 shows an ATL rule to transform the onepts of the Flat s-COMMA metamodel to theonepts of the Geode/J metamodel. The Geode/J metamodel is omitted here sine it is verysimilar to the Flat s-COMMA metamodel.1. rule ModelToModel {2. from3. s : FlatsComma!Model (4. )5. to6. t : GeodeJ!Model(7. name <- s.name,8. variables <- s.variables,9. onstraints <- s.onstraints,10. enumTypes <- s.enumTypes,11. solvingOpts <- s.solvingOpts12. )13. } Figure 5.46 � ATL rules for the Flat s-COMMA to Geode/J transformation.
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RemarkFlat s-COMMA has been designed to be as lose as possible from the solving level. This ensuresthe Flat s-COMMA metamodel to be very lose to solver metamodels. This is a great advantagesine translation rules beome simple: we mainly need one to one transformations.The transformation rule is alled ModelToModel and it de�nes the mathing between theonepts Model expressed in Flat s-COMMA and Geode/J. The soure elements are stated withthe reserved word from (line 2) and the target ones with the reserved word to (line 5). Theseelements are delared like variables with a name (s,t) and a type orresponding to a lass ina metamodel (FlatsComma!Model, GeodeJ!Model). In the target part of the rule, the nameattribute of the Flat s-COMMA problem is assigned to the Geode/J name (name <- s.name),this mathing orresponds to a simple string assignment. The following four mathings are as-signments between onepts that are de�ned as referene in the metamodel. Handling thesemathings requires to de�ne additional rules. For instane, the Flat s-COMMA KM3 metamodelde�nes that the referene variables orresponds to a set of Variable elements. Thus, the state-ment variables <- s.variables impliitly alls the rule VariableToVariable, whih de�nesthe mathing between the elements ontained in Variable objets. The VariableToVariablerule is depited in Figure 5.47, suh a rule mathes �ve elements. The �rst two statements arestring assignments, the third one is a boolean assignment, and the remaining ones are refereneassignments. The �rst referene assignment mathes Array objets while the seond one mathesDomain objets. The rule to math arrays an be seen on the right side of the �gure.1. rule VariableToVariable { 14. rule ArrayToArray {2. from 15. from3. s : FlatsComma!Variable ( 16. s : FlatsComma!Array4. ) 17. to5. to 18. t : GeodeJ!Array(6. t : GeodeJ!Variable ( 19. row <- s.row,7. name <- s.name, 20. olumn <- s.olumn8. type <- s.type, 21. )9. isSet <- s.isSet, 22. }10. array <- s.array,11. domain <- s.domain12. )13. } Figure 5.47 � ATL rules for the Flat s-COMMA to Geode/J transformation.Although the rules used here are not omplex, ATL is able to perform more di�ult rules.For instane, the most di�ult rule we de�ned, was the transformation rule from Flat s-COMMAmatries ontaining sets, whih must be unrolled in the ECLiPSe models (sine set matries arenot supported). This unroll proess is arried out by de�ning a single set in ECLiPSe for eahell in the matrix. The name of eah single variable is omposed of the name of the matrix,and the orresponding row and olumn index. Let us note that this proedure inludes alls toATL helpers, whih are used to de�ne spei� funtions. ATL helpers an be seen as the ATLequivalent to Java methods.
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1. rule ModelToModel {2. from3. s : FlatsComma!Model (4. s.hasSetMatrix5. )6. to7. t : ECLiPSe!Model (8. name <- s.name,9. onstraints <- s.onstraints,10. enumTypes <- s.enumTypes,11. solvingOpts <- s.solvingOpts12. )13. do {14. t.variables <- s.variables->ollet(e|15. if e.isSetMatrix() then16. thisModule.getMatrixCells(e)->ollet(f|17. thisModule.SetMatrixVariableToVariable(f.var,f.i,f.j)18. )19. else20. e21. endif22. )->flatten();23. }24. }25.26. rule SetMatrixVariableToVariable(var : FlatsComma!Variable,27. i : Integer, j : Integer) {28. to29. t : ECLiPSe!Variable(30. name <- var.name + i.toString() + '_' + j.toString() + '_',31. type <- var.type,32. domain <- var.domain33. )34. do {35. t;36. }37. } Figure 5.48 � ATL rules for deomposing matries ontaining sets.



104 Chapter 5 � Mapping Models to SolversFigure 5.48 depits the rules for handling the matrix transformation. The rule ModelToModelis stated at the beginning of the �le. It holds a ondition (line 4), whih alls the helperhasSetMatrix to hek whether set matries are de�ned in the model. If the ondition is true,name, onstraints, enumTypes, and solvingOpt are mathed normally, but variables has aspeial proedure to deompose the set matrix. This proedure begins at line 13 with a do blok.In this blok, the ollet loop iterates over the variables. Then, eah of these variables (e)is heked to determine whether it has been de�ned as a set matrix (line 15). If this ours,the helper getMatrixCells(e) alulates the set of tuples orresponding to all the ells of thematrix (thisModule is used to expliitly all helpers or rules). Eah tuple is omposed of theFlat s-COMMA variable (f.var), a row index (f.i) and a olumn index (f.j). Then, the ruleSetMatrixVariableToVariable is applied to eah tuple in order to generate the ECLiPSe va-riables. This rule has no soure blok sine the soure elements are the input parameters. Therule sets to the attribute name, the onatenation of the name of the matrix with the respetiverow (i.toString()) and olumn (j.toString()). Attributes type and domain are also mathed.Finally, flatten() is an OCL inherited method used to math the generated set of variableswith t.variables.5.3.2.3 Code GenerationThe ode generation proess is also performed using the ATL language. An ATL query isde�ned to reate a new target �le and to all a set of ATL helpers. These helpers are able toombine the metamodel elements with the syntax of the target language in order to generate thestring to be written in the target �le. Figure 5.49 depits the helper for the ode generation of aone dimensional Geode/J array.1. helper ontext GeodeJ!Variable def: toString2() :2. if thisModule.isVetor(self) then3. 'VarArray<IntVar> ' + VarArray<IntVar> man_wife_ =4. self.name + initialize("man_wife_",5,1,5);5. ' = initialize(\"' +6. self.name +7. '\",' + self.array.toString2() +8. ',' + self.domain.toString2()+');\n' +9. ' vars.addAll(' + self.name + ');\n'10. ... Figure 5.49 � ATL helper to generate a Geode/J vetor.The header of the helper is delared at line 1, its name is toString2 and it is de�ned forthe GeodeJ!Variable onept. A ondition, at line 2, heks if the urrent objet (self) isa one dimensional array. If so, the ode of the Geode/J vetor delaration is generated. Theself.name statement gets the name of the variable, and self.array.toString2() alls a helperto get the string representing the array dimensions. Analogously, self.domain.toString2()generates the string orresponding to the domain. At the end, the array is added to the globalarray for performing the labeling proess.The ode of onstraints is generated in a very similar manner. For instane, the helper togenerate the ode of an addition in binary expressions is shown in Figure 5.50. The helperappends the left and the right part of the expression with the neessary operators for buildingthe addition expression. Let us notie that left and right are de�ned as expressions in the



Chapter 5 � Mapping Models to Solvers 105metamodel. Thus, if the operands of a binary expression are also formed by binary expressions,the ATL engine performs a reursive all to this helper so as to build the whole expression.1. helper ontext GeodeJ!BinaryExpression def: toString2() : String=2. if (self.name = '+')3. 'new Expr(' + new Expr(a).p(b)4. self.left.toString2() + ')' +5. '.p' +6. '(' + self.right.toString2() + ')'7. ... Figure 5.50 � ATL helper to generate an addition.5.3.2.4 ParsingTCS (Textual Conrete Syntax) [JBK06℄ is the language used to parse the Flat s-COMMA�le. This proess is ahieved by bridging the Flat s-COMMA metamodel with the Flat s-COMMAsyntax. Figure 5.51 shows an extrat of the TCS �le for Flat s-COMMA. Eah lass of the Flats-COMMA metamodel has a dediated template delared with the same name. Within templates,words between double quotes are tokens in the grammar (e.g. "variables", ":"). Words withoutdouble quotes an be seen as template alls, being used to introdue the orresponding list ofonepts. For instane, the Model template de�nes the syntati struture of a Flat s-COMMA mo-del. The four bloks of a Flat s-COMMA model are de�ned (variables, onstraints, enum-types,and solving-opts). The isDefined funtion is used to state that the blok is optional. For ins-tane, `isDefined(variables) ?' is stated to parse the variables blok only if the model ontainsvariables. After this onditional statement, the syntati struture of the variables blok is de-�ned. It begins with the reserved word "variables" followed by a olon token and by a all tothe Variable template. Let us notie that the TCS ompiler is able to perform this all sinevariables is de�ned as a referene to Variable objets in the KM3.1. template Model2. : (isDefined(variables) ? "variables" ":" variables) variables :3. (isDefined(onstraints) ? "onstraints" ":" onstraints) ...4. (isDefined(enumTypes) ? "enum-types" ":" enumTypes)5. (isDefined(solvingOpts) ? "solving-opts" ":" solvingOpts)6. ;7.8. template Variable int set foo[6℄ in [1,5℄;9. : type10. (isSet ? "set")11. name12. (isDefined(array) ? array)13. "in" domain ";"14. ;15.16. template Array17. : "[" row (isDefined(ol) ? "," ol ) "℄"18. ; Figure 5.51 � Three templates of the TCS �le of Flat s-COMMA.



106 Chapter 5 � Mapping Models to SolversThe Variable template de�nes the syntati struture of a variable delaration, whih beginswith the type of the variable followed by a onditional struture (isSet ? "set"). This ondi-tional struture permits the use of an optional token set for de�ning set variables. If the settoken is enountered in the variable delaration, the isSet attribute of the metamodel is set totrue. Then, the name of the variable is stated. It is followed by another onditional struture,whih states that the template Array is only alled if the variable has been de�ned as an array.The delaration ends with the de�nition of the reserved word in followed by the domain. Thetemplate onerning the Array onept is delared at line 16. The array indexes (row and ol)are enlosed with box brakets and separated by a omma token. The ol attribute is optional,being used only by two-dimensional arrays.RemarkTCS is not required to add a new translator, as just the TCS for Flat s-COMMA is needed in theplatform.
5.3.2.5 Transformation proessTCS and KM3 work together and their ompilation generates a Java pakage (whih inludeslexers, parsers and ode generators) for Flat s-COMMA (FsC), whih is then used by the ATL �lesto generate the target model. Figure 5.52 depits the omplete transformation proess. The Flat s-COMMA �le is the input of the Java pakage whih generates a XMI (XML Metadata Interhange)for Flat s-COMMA. Over this �le, ATL rules at and generate a XMI �le for Geode/J. Finally,this �le is transformed into a solver �le by means of the ATL query.
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Figure 5.52 � The model-driven transformation proess on the example of Flat s-COMMA (FsC) toGeode/J.NoteThe XMI �le used in the transformation inludes an organized representation of models in termsof its metamodel onepts in order to failitate the task of transformation rules.



Chapter 5 � Mapping Models to Solvers 1075.3.2.6 Diret Code GenerationThere is another approah to develop translators using the model-driven approah. For ins-tane, if we want to use just the Flat s-COMMA features that are supported by the solver, we anomit the transformation rules and we an apply the ATL query diretly on the soure metamodel.Figure 5.53 shows the diret ode generation proess.
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Figure 5.53 � Diret ode generation.Although this approah is simpler, it is less �exible sine we lose the possibility of using moreelaborated transformations suh as the set matrix deomposition presented in Setion 5.3.2.2.5.3.3 DisussionWe have presented two di�erent approahes for building translators in solver-independentarhitetures. Comparing both approahes, let us make the following onluding remarks.� The development of hand-written translators is in general a hard task. Their reation,modi�ation and reuse requires to have a deep insight in the ode and in the arhitetureof the platform, even more if they have a spei� or omplex design. For instane, in ourimplementation, it is mandatory to master ASTs, Java and intermediate representationsto generate the target solver �les.� As we mentioned in Setion 5.3.2.2, solver metamodels are similar to the Flat s-COMMAmetamodel, and ATL rules orrespond mainly to one-to-one transformations. We believetherefore that the development of KM3 and ATL rules for new solver-translators shouldnot be a hard task, and the onrete work for plugging a new solver should be just reduedto the de�nition of the ATL query for the ode generation. This task may also be failitatedwith the reuse of existing ode generation �les.� The development of hand-written translators requires more ode lines. In our implemen-tation, the soure �les of Java translators are approximately 60% bigger than the model-driven translators soure �les (ATL + KM3).� In the model-driven approah, the syntax onerns of a language are divided into the abs-trat syntax (KM3 metamodel) and the onrete syntax (ATL and TCS). This separationgives us a more organized and modular view of the language, whih has simpli�ed thereation and motivated the reuse of our translators. It is also important to ontrast thisfeature with the mapping mehanism used in Cadmium, whose rules operate diretly onZin expressions (by means of term mathing), having no independene between abstratand onrete syntaxes. This property may generate smaller Cadmium programs, but lessmodular ompared to our approah.



108 Chapter 5 � Mapping Models to Solvers5.3.3.1 ExperimentsTo ompare the performane of both kind of translators, in terms of translation time, wehave performed a set of tests. The tests have been performed on a 3GHz Pentium 4 with 1GBRAM running Ubuntu 6.06, and the benhmarks used were the following:� The ryptoarithmeti puzzle Send + More = Money (Send).� The stable marriage problem (Stable).� Two versions of the n-queens problem (10-queens and 18-queens).� Paking 8 squares into a square of area 25 (Paking).� The prodution-optimization problem (Prodution).� Solving 20 linear inequalities (Ineq20).� The assembly of a ar engine subjet to design onstraints (Engine).� The Sudoku logi-based number plaement puzzle (Sudoku).� The soial golfers problem (Golfers).Table 5.1 shows the translation times for both approahes. The �rst olumn gives the problemnames. The seond and third olumn depit the translation times using hand-written (HW) andmodel-driven (MD) translators (using translation rules), from Flat s-COMMA (FsC) to Geode/Jand from Flat s-COMMA to ECLiPSe, respetively. Translation times from s-COMMA (sC) to Flats-COMMA are given for referene in the last olumn (this proess involves syntati and semantiheking, and refatoring to Flat s-COMMA). The table exhibits that MD translators are slowerthan HW translators. This is expeted sine HW translators have been designed spei�ally fors-COMMA. They take as input a Flat s-COMMA de�nition and diretly generate the solver �le. Thetransformation proess used by MD translators is not diret, it performs intermediate phases(XMI to XMI). However, we believe that translation times using MD translators are reasonableand this loss of performane is an aeptable prie to pay for using a generi approah.Table 5.1 � Translation times (seonds).FsC to Geode/J FsC to ECLiPSe sC toProblems HW MD HW MD FsCSend 0.052 0.688 0.048 0.644 0.237Stable 0.137 1.371 0.143 1.386 0.51410-Queens 0.106 1.301 0.115 1.202 0.40918-Queens 1.122 3.194 0.272 2.889 0.659Paking 0.172 1.224 0.133 1.246 0.333Prodution 0.071 0.887 0.066 0.783 0.28820 Ineq. 0.072 0.895 0.072 0.891 0.343Engine 0.071 0.815 0.071 0.844 0.285Sudoku 1.290 4.924 0.386 4.196 3.503Golfers 0.098 1.166 0.111 1.136 0.380We have performed another test to show that the automati generation of solver �les doesnot lead to a loss of performane in terms of solving time. In Table 5.2 we ompare the solver



Chapter 5 � Mapping Models to Solvers 109�les generated by MD translators (Generated) with native solver �les written by hand (Native).The results show that generated solver �les are in general bigger than solver versions written byhand. This is explained by the loop unrolling and omposition �attening proesses presented inSetion 5.3. However, this inrease in terms of ode size does not ause a negative impat onthe solving time. In general, generated solver versions are very ompetitive with hand-writtenversions. The data also shows that Geode/J �les are bigger than ECLiPSe �les, this is beausethe Java syntax is more verbose than the ECLiPSe one.NoteIn the omparison, we do not onsider solver �les generated by HW translators sine they haveno relevant di�erenes ompared to solver �les generated by MD translators.Table 5.2 � Solving times (seonds) and model sizes (number of tokens).Geode/J ECLiPSeBenhmark Native Generated Native GeneratedSolv. time Size Solv. time Size Solv. time Size Solv. time SizeSend 0.002 590 0.002 615 0.01 231 0.01 329Stable 0.005 1898 0.005 8496 0.01 1028 0.01 465910-Queens 0.003 460 0.003 9159 0.01 193 0.01 195818-Queens 0.008 460 0.008 30219 0.02 193 0.02 6402Paking 0.009 663 0.009 12037 0.49 355 0.51 3212Prodution 0.026 548 0.028 1537 0.014 342 0.014 70320 Ineq 13.886 1576 14.652 1964 10.34 720 10.26 751Engine 0.012 1710 0.012 1818 0.01 920 0.01 1148Sudoku 0.007 1551 0.007 33192 0.21 797 0.23 11147Golfers 0.005 1618 0.005 4098 0.21 980 0.23 1147
5.4 SummaryIn this hapter we have presented the transformation proess from graphial artifats to solverprograms. The arhiteture supporting this proess is omposed of three main elements: the s-COMMA GUI, the s-COMMA ompiler, and the mapping tool. A omplete transformation inludesseveral phases. The s-COMMA GUI transforms its graphial artifats into the orresponding s-COMMA textual model by means of a set of Java pakages. This model is parsed and semantiallyheked using the ANTLR tool. If the heking proess sueeds, the model is transformed to anintermediate language alled Flat s-COMMA. In this transformation, several s-COMMA onstrutsare refatored to failitate the transformation to the solver language. Finally, the generated Flats-COMMA model is the input of the mapping tool, whih builds the exeutable solver �le. Themapping tool ontains two kinds of solver translators: hand-written translators and model-driventranslators. The hand-written translators are written in Java, while the model-driven translators



110 Chapter 5 � Mapping Models to Solversare developed using metamodels and transformation rules. The model-driven approah involvesimportant advantages, whih mainly onern implementation tasks.In the following hapter, we begin the third part of this thesis by giving an overview ofthe transformation framework for CP. We present the main purpose of this framework and weillustrate a pratial example. The seond and �nal hapter of this third part onerns theimplementation of the framework.



PART IIIThe Transformation Framework for CP





CHAPTER6
Overview

T his hapter gives an overview of the transformation framework for CP. The main impro-vement of this approah with respet to our previous work and in turn with respet to thestate-of-the-art solver-independent arhitetures is the possibility of hoosing di�erent modelinglanguages as the soure of a transformation. This an be ahieved by using a pivot model (inter-mediate model) whih is independent from the target model, but also from soure languages. Theindependene of this pivot an be ontrasted with urrent approahes in whih the intermediatemodel is strongly tied (in terms of syntax and onstruts supported) to the modeling language,for instane Flat s-COMMA to s-COMMA, or �atZin to Zin and MiniZin. This new approah issupported by a �exible arhiteture on whih model-driven translators an be plugged to performthe mappings among the di�erent languages. We believe that this new framework involves twoimportant advantages:� The user will be able to hoose his favourite modeling language and the best known solvingtehnology for a given problem provided that the transformation between languages isimplemented.� It may be easy to reate a olletion of benhmarks for a given language from di�erentsoure languages. This feature may speed up prototyping of one solver, avoiding the rewri-ting of problems in its modeling language.This arhiteture has been fully implemented using the MDA approah. The implementationis based on the tools presented in the previous hapter (KM3, ATL and TCS). The aim is to takeadvantage of the MDA bene�ts to de�ne both lear and onise mapping rules and grammarspei�ations.6.1 The Model-Driven Transformation FrameworkFigure 6.1 depits the arhiteture of our model-driven transformation framework, whih isdivided in two layers: M1 and M2. M1 holds the models representing onstraint problems andM2 de�nes the semantis of M1 through the metamodels. The transformation rules are de�nedto perform a omplete translation in three main steps: translation from the soure model tothe pivot model, refatoring/optimization on the pivot model, and translation from the pivotmodel to the target model. Soure and target models may be de�ned through any CP languages.The pivot model may be re�ned several times in order to adapt it to the desired target model(see Setion 7.2.1.2). These re�ning phases are similar to the ones performed from s-COMMA toFlat s-COMMA, but more �exible sine it is possible to selet the re�ning steps to be applied ina transformation. For instane, if loops are supported at the target level it is not neessary tounroll them or, if matries are permitted, there is no need to �atten them. This new feature113



114 Chapter 6 � Overviewpermits us to make use of the onstruts provided by the target language and to thus redue thestrutural di�erenes between soure and target models.
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Figure 6.1 � The transformation framework.
6.2 A Motivating ExampleTo give an overview of the mapping proess, and to show some interesting aspets of therefatoring steps applied, let us illustrate the result of an automati transformation of the soialgolfers model from s-COMMA to ECLiPSe by using the pivot as the intermediate model.The s-COMMA soial golfers model is shown in Figure 6.2, and the generated ECLiPSe modelis depited in Figure 6.3. The ECLiPSe model has been built as a single prediate whose bodyis a sequene of atoms. The sequene is made of the problem dimensions (lines 2 to 4), the listof integer sets L (lines 6 and 7), and three nested loop bloks (lines 9 to 36) resulting from thetransformation of the three s-COMMA lasses. It turns out that parts of both models are similar.Indeed, the original loop struture has been transferred to the ECLiPSe model. However, someonstruts are very di�erent and spei� proessing may be required. For instane, objets mustbe handled by means of the omposition �attening proess sine they are not supported by thetarget language. This implies to perform many hanges on the model. For example, the weekShedarray of Week objets de�ned at line 21 of the s-COMMA model is refatored and transformed tothe WEEKSCHED_GROUPSCHED_PLAYERS_ �at list stated at line 6 in Figure 6.3. It is also neessaryto insert new loops in order to traverse arrays of objets and to post the whole set of onstraints.For instane, the seond blok of for loops in the ECLiPSe model (lines 16 to 24) has been builtfrom the playOnePerWeek onstraint zone of the s-COMMA model, but there is an additional forloop (line 16) sine the Week instanes are ontained in the weekShed array. Another issue isrelated to lists that annot be aessed in the same way as arrays in s-COMMA. Thus, auxiliaryvariables (Vi) and the well-known nth Prolog prediate are introdued in the ECLiPSe model.Let us notie that in the ECLiPSe onstraints, the `#' symbol orresponds to the ard funtionand /\ represents the interset operator.
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Data File1. enum name := {a,b,,d,e,f,g,h,i};2. int s := 3; //size of groups3. int w := 4; //number of weeks4. int g := 3; //groups per weekModel File1. import SoialGolfers.dat;2.3. lass Group {4. name set players;5. onstraint groupSize {6. ard(players) = s;7. }8. }9.10. lass Week {11. Group groupShed[g℄;12. onstraint playOnePerWeek {13. forall(g1 in 1..g, g2 in g1+1..g)14. ard(groupShed[g1℄.players interset15. groupShed[g2℄.players)= 0;16. }17. }18.19. main lass SoialGolfers {20.21. Week weekShed[w℄;22.23. onstraint differentGroups {24. forall(w1 in 1..w, w2 in w1+1..w)25. forall(g1 in 1..g, g2 in 1..g)26. ard(weekShed[w1℄.groupShed[g1℄.players interset27. weekShed[w2℄.groupShed[g2℄.players) <= 1;28. }29. } Figure 6.2 � A s-COMMA model of the soial golfers problem.
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1. soialGolfers(L):-2. S $= 3,3. W $= 4,4. G $= 3,5.6. intsets(WEEKSCHED_GROUPSCHED_PLAYERS_,12,1,9),7. L = WEEKSCHED_GROUPSCHED_PLAYERS_,8.9. (for(I1,1,W),param(L,S,W,G) do10. (for(I2,1,G),param(L,S,W,G,I1) do11. V1 is G*(I1-1)+I2,nth(V2,V1,L),12. #(V2, V3), V3 $= S13. )14. ),15.16. (for(I1,1,W),param(L,G) do17. (for(G1,1,G),param(L,G,I1) do18. (for(G2,G1+1,G),param(L,G,I1,G1) do19. V4 is G*(I1-1)+G1,nth(V5,V4,L),20. V6 is G*(I1-1)+G2,nth(V7,V6,L),21. #(V5 /\ V7, 0)22. )23. )24. ),25.26. (for(W1,1,W),param(L,W,G) do27. (for(W2,W1+1,W),param(L,G,W1) do28. (for(G1,1,G),param(L,G,W1,W2) do29. (for(G2,1,G),param(L,G,W1,W2,G1) do30. V8 is G*(W1-1)+G1,nth(V9,V8,L),31. V10 is G*(W2-1)+G2,nth(V11,V10,L),32. #(V9 /\ V11, V12),V12 $=< 133. )34. )35. )36. ),37.38. label_sets(L).Figure 6.3 � The soial golfers problem expressed in ECLiPSe.



Chapter 6 � Overview 1176.3 SummaryIn this hapter, we have presented the transformation framework for CP. An interestingfeature of this framework is the possibility of using di�erent modeling languages as the soure ofa transformation. This an be seen as an improvement of the state-of-the-art solver-independentarhitetures, whose mapping proess is restrited to a unique modeling language. This newarhiteture performs a transformation in three main steps: translation from soure model to thepivot model, refatoring/optimization on the pivot model, and translation from the pivot modelto the target model. A pratial example has been introdued to show some interesting aspetsof a transformation. In the following hapter, we fous on the implementation of this framework.We present the three main phases of the proess and the tools used for supporting them.





CHAPTER7
From Source to Target

I n this hapter we present a omplete transformation through the framework. We onsiderthe three main parts: from soure to pivot, pivot refatoring, and pivot to target. Theproess is illustrated by using as example the s-COMMA-to-ECLiPSe transformation. At the endof the hapter, we disuss some experiments performed on the arhiteture.7.1 From soure to pivotThe transformation proess from the soure to the pivot model requires the metamodel (KM3)of the soure, the onrete syntax (TCS) of the soure, and the transformation rules from thesoure to the pivot. Figure 7.1 depits three lasses of the s-COMMA metamodel in KM3, theorresponding metamodel using UML lass diagram notation is illustrated on the right side ofthe �gure.1. lass Model {2. attribute name : String;3. referene modelElements [0-*℄ ontainer : ModelElement;4. }5.6. abstrat lass ModelElement {7. attribute name : String;8. }9.10. lass Class extends ModelElement {11. attribute isMain : Boolean;12. referene superClass [0-1℄ : Class;13. referene solvingOpts [0-3℄ ontainer : SolvingOpt;14. referene attributes [0-*℄ ontainer : Attribute;15. referene onstraintZones [0-*℄ ontainer : ConstraintZone;16. } Figure 7.1 � Three lasses of the KM3 �le of s-COMMA.
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The metamodel spei�es that a s-COMMA model is omposed of an undetermined number ofModelElement objets. The lass representing model elements is abstrat and it is stated as thesuperlass of two metamodel onepts: Class and Constant. The Class lass represents s-COMMAlasses and it is omposed of attributes and onstraint zones. It inherits from the ModelElementlass its name and it an be de�ned as the main lass of the model using the isMain attribute.A s-COMMA lass an inherit from a superlass and it an also ontain solving options.119



120 Chapter 7 � From Soure to TargetThe lass representing attributes is depited in Figure 7.2. It serves as superlass of variablesand objets. The Variable lass is stated at line 5 and it an be de�ned as a set using the isSetattribute. It also has optional referenes to the Array and to the Domain onept.1. lass Attribute {2. attribute name : String;3. }45. lass Variable extends Attribute {6. attribute type : String;7. attribute isSet : Boolean;8. referene array [0-1℄ ontainer : Array;9. referene domain [0-1℄ ontainer : Domain;10. } Figure 7.2 � Attributes and variables in the KM3.
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The KM3 �le onerning the onstraint zones is depited in Figure 7.3. The ConstraintZoneonept onsists of a set of onstraint zone elements. Three kinds of onstraint zone elementsare de�ned: IfElse, Forall and ConstraintStatement. For instane, the IfElse statement isomposed of the ondition and two set of onstraint zone elements. The �rst set responds to atrue ondition, and the seond one to a false ondition. The Constraint lass is depited at line16. It is omposed of an Expression and of its optional onsisteny level. The objet hierarhybelow the Expression lass an be seen in the Flat s-COMMA metamodel (Figure 5.44).1. lass ConstraintZone {2. attribute name : String;3. referene onstraintZoneElements [0-*℄ ontainer : ConstraintZoneElements;4. }5.6. abstrat lass ConstraintZoneElement {}7.8. lass IfElse extends ConstraintZoneElement {9. referene ondition ontainer : Expression;10. referene trueCtrs [1-*℄ ordered ontainer :11. ConstraintZoneElement;12. referene falseCtrs [0-*℄ ordered ontainer :13. ConstraintZoneElement;14. }15.16. lass Constraint extends ConstraintZoneElement {17. attribute onsLevel [0-1℄ : String;18. referene assertion ontainer : Expression;19. } Figure 7.3 � Constraint zones and statements in the KM3.
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Figure 7.4 depits some templates of the s-COMMA TCS �le. The �rst template de�nes amodel, whih is omposed of a set of model elements. The main ontext keywords are used toreate a main symbol table. At line 5, the template for the ModelElement onept is stated. It



Chapter 7 � From Soure to Target 121orresponds to an abstrat onept in the metamodel, being neessary to delare it as abstratin the TCS. The Class template is de�ned at line 7. A lass delaration is added to the symboltable by means of the addToContext keyword. The syntati struture of a Class begins with theoptional token main, whih de�nes the main lass of the model. The reserved word lass and thelass name follow. Then, two optional strutures are stated. One is used to de�ne a superlass,while the other one states the solving options. The refersTo=name statement is used to getthe name of the superlass. Finally, a pair of urly braket symbols enloses the attributes andonstraint zones of a lass. The last template de�nes the syntax of a variable, whih is de�nedwith a type, an optional set token, and a name. The optional array and domain elements follow,ended by a semiolon token.1. template Model main ontext2. : modelElements3. ;4.5. template ModelElement abstrat;6.7. template Class ontext addToContext8. : (isMain ? "main") "lass" name9. (isDefined(superClass) ? "extends" superClass{refersTo=name})10. (isDefined(solvingOpts) ? solvingOpts)11. "{"12. attributes13. onstraintZones14. "}"15. ;16.17. template Attribute abstrat;18.19. template Variable addToContext20. : type (isSet ? "set")21. name (isDefined(array) ? array)22. (isDefined(domain) ? "in" domain) ";"23. ; Figure 7.4 � Some templates of the TCS �le of s-COMMA.One the KM3 and TCS are de�ned, the transformation from the soure to the pivot is per-formed by means of ATL rules. Figure 7.5 depits two transformation rules from s-COMMA tothe pivot. The rules inlude only one-to-one transformations sine every onstrut of s-COMMAis supported by the pivot.RemarkThe pivot model has been designed to support as muh as possible the features of most CPlanguages, for instane variables of di�erent types, data strutures suh as arrays and objets,�rst-order onstraints, ommon global onstraints, and ontrol statements. The main idea is toover a wide range of onstruts to failitate the integration of new translators to the arhite-ture.



122 Chapter 7 � From Soure to Target1. rule ModelToModel { 11. rule VariableToVariable {2. from 12. from3. s : sComma!Model ( 13. s : sComma!Variable (4. ) 14. )5. to 15. to6. t : Pivot!Model( 16. t : Pivot!Variable(7. modelElements <- s.modelElements 17. type <- s.type,8. ) 18. isSet <- s.isSet,9. } 19. name <- s.name,10. 20. array <- s.array,21. domain <- s.domain22. )23. }Figure 7.5 � Two ATL rules for a transformation from s-COMMA to pivot.7.2 Pivot refatoringThe pivot only requires a metamodel and the transformation rules to re�ne it. No TCS �le isrequired. A syntax struture for the pivot is unneessary sine the whole set of transformationsis applied only over the onepts de�ned in its metamodel.RemarkThe pivot metamodel has been designed to be independent from CP languages, i.e. it has nosyntax and the onstruts supported do not depend on a partiular modeling or solver lan-guage. This an be ontrasted with the state-of-the-art arhitetures, in whih the intermediatelanguage is strongly tied to the syntax and onstruts of the modeling language.Figure 7.6 depits the main onepts of the pivot metamodel, several onepts are shared withthe s-COMMA metamodel. This is due to both metamodels represent CP onepts, e.g. variables,onstraints and statements. However, the pivot metamodel is somewhat larger. For instane,it admits lasses ontaining onstant delarations. It also provides support for reords, whihare inluded in some CP languages, suh as OPL and Zin. Moreover, it inludes the prediateonept to handle CLP languages.7.2.1 Refatoring phaseWith the aim of bridging the gap between the soure and the target model we have de�nedseveral steps of pivot model refatoring. These steps are ommonly needed in several transforma-tions from modeling to solver languages. The idea is to re�ne and to optimize a model to �t asmuh as possible with the target language onepts. This phase is implemented in several modeltransformations over the pivot model, and it orresponds to the most omplex part of the wholetransformation proess. The refatoring steps involved have been enapsulated in a set of ATLproedures, whih an be reused one a new language is added to the framework.
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Figure 7.6 � A fragment of the pivot metamodel.
RemarkSine the omplex re�ning work is always done on the pivot, the rules from/to pivot beomesimpler, and as a onsequene the integration of new translators is failitated.To simplify the explanations of omplex transformations we have de�ned a pseudo-odelanguage based on ATL. The notations of this language are de�ned in the following.7.2.1.1 Rule notationsFigure 7.7 depits a simple transformation rule from a language alled Soure to a languagealled Target. The rule is alled AToA, and the type of both onepts to be mapped is denotedby A. The rule mathes four attributes, from attribute1 to attribute4. The same rule an beexpressed in the pseudo-ode language as `s: A => t: A'.1. rule AToA {2. from3. s : Soure!A (4. )5. to6. t : Target!A(7. attribute1 <- s.attribute1,8. attribute2 <- s.attribute2,9. attribute3 <- s.attribute3,10. attribute4 <- s.attribute411. )12. } Figure 7.7 � An example of transformation rule.



124 Chapter 7 � From Soure to TargetThe left part of the pseudo-ode rule (s:) orresponds to the soure, and the right part (t:)to the target. The type of both s and t is denoted by A. Sine the mathing is performed betweenonepts having the same type, we assume that every attribute held by the soure is impliitlymathed to its orresponding one on the target. In the example, the four attributes of the soureare mathed to the four attributes of the target.This same rule an be �ltered using the where keyword followed by a boolean expression. Forinstane, the following rule allows the mathing only if the name attribute is de�ned in s. TheisDefined statement is a funtion all representing the orresponding all to an ATL helper.s: A where isDefined(s.name) => t: AIt is also possible to ustomize a mathing for an attribute. For instane, we expliitly statebelow that the name attribute of t must be generated as the onatenation of the strings repre-sented by the name and surname attributes of s. The other attributes of s are simply dupliated.s: A where isDefined(s.name) => t: A { name <- s.name + s.surname }Additionally, if the types or strutures of entities involved in a transformation are notthe same, only the shared attributes (having ompatible types) and expliit mathings (id <-s.name in the next example) are performed.s: A where isDefined(s.name) => t: B { id <- s.name }A olletion of entities an be reated from one soure entity by speifying a sequene typefor the target entity, as follows,s: A => t: Sequene of B(s.elements)where elements is an attribute of s orresponding to a sequene of entities. There are two ases:either the entities of s.elements math the B type, or other rules must desribe how to transformthese entities to some entities onformly to B.7.2.1.2 Pivot refatoring rulesThe refatoring steps applied on the pivot are very similar to the ones performed on thes-COMMA-to-Flat s-COMMA transformation. For instane: omposition �attening, loop unrolling,enumeration substitution, data substitution, onditional removal, auxiliary variables insertionand expression evaluation. In the following paragraphs we give an overview of this proess bypresenting four refatoring phases. We use the pseudo-ode language introdued to illustrate thetransformation rules.Composition �atteningThis refatoring step replaes objets by their attributes and onstraints. To prevent nameon�its, the names of attributes are pre�xed with the name of objets. In Figure 7.8, the �rstrule (lines 1 and 2) generates a sequene of model features (e.g. variables and onstraints),whih orrespond to the elements enapsulated in the objet. If this generated model elementorresponds to a variable, the seond rule ats (lines 3 and 4). The parentIsObjet funtion is



Chapter 7 � From Soure to Target 125used to test whether the variable is ontained in an objet. Then, the rule expliitly assign a newvalue to the name attribute of the generated variable by onatenating four strings. The resultof this transformation on the s-COMMA objet entities of the soial golfers model is depited inFigure 7.9.1. s: Objet =>2. t: Sequene of ModelFeature (s.modelFeatures)3. s: Variable where parentIsObjet(s) =>4. t: Variable { name <- s.parent.name + '_' + s.name + '_' }Figure 7.8 � The omposition �attening transformation rule.//Before flattening //After flatteningmain lass SoialGolfers { name set weekShed_groupShed_players_[g*w℄;Week weekShed[w℄;...}lass Week {Group groupShed[g℄;...}lass Group {name set players;...} Figure 7.9 � Composition �attening on the soial golfers problem.The name of the new array is generated from the onatenation of the names in the objetshierarhy. Sine the weekShed array is omposed of Week objets, the pre�x of the new name isweekShed followed by groupShed and players. The size of the array is given by g×w. Finally,as we mentioned at the end of Setion 6.2, when transforming an array of objets ontainingonstraints, the set of onstraints is enapsulated in a forall statement. The loop variable ofthis statement iterates from 1 to the size of the array.NoteThis proess di�ers from the omposition �attening in Flat s-COMMA. The use of loops in this im-plementation allows us to enapsulate onstraints (resulting from the �attening) within forallstatements, instead of unrolling them.Enumeration substitutionThis rule substitutes enumerations by integer values (see Figure 7.10). In the rule, threeVariable elements are mathed, domain is mathed to d, whih is omputed by the rule statedat line 3. The size of the domain is given by the getSize funtion, whih returns the numberof elements ontained in the enumeration. The result on the soial golfers problem is shown inFigure 7.11.



126 Chapter 7 � From Soure to Target1. s: Variable where isEnum(s.type) =>2. t: Variable {name <- s.name, type <- "int", domain <- d} and3. d: Domain {lower <- 1, upper <- getSize(s.type)}Figure 7.10 � The enumeration substitution transformation rule.//Before enumeration substitution //After enumeration substitutionenum name := {a,b,,d,e,f,g,h,i}; name set players in [1,9℄;name set players;Figure 7.11 � Enumeration substitution on the soial golfers problem.Forall unrollingThis step unrolls forall loops, i.e. the loop is replaed by the whole set of onstraint entitiesthat it impliitly ontains. In the rule depited in Figure 7.12, foreah is a funtion takingas �rst parameter an iterator de�nition and as seond parameter the statement to repeat. Thefuntion replae takes three parameters: the entity to replae, the entity to put instead and theentities to proess. Thus, the sequene of onstraint is initialized with all the onstraints returnedby the foreah funtion, whih generates s.start - s.end times the set of onstraints withinloop entities.1. s: Forall =>2. t: Sequene of Constraint(foreah(it in s.start .. s.end,3. replae(s.loopVar,it,s.statements)))Figure 7.12 � The forall unrolling transformation rule.Auxiliary variable insertionIn some CLP languages, it is not possible to use the braket operator (`[ ℄') to aesslists, being neessary to introdue loal variables and nth prediate alls (as we have shown inFigure 6.3). Figure 7.14 depits the transformation rules of this phase, and a result is shown inFigure 7.13. This rule ats over one-dimensional arrays stated as operand in expressions. TheVariableOurrene onept represents a variable stated as operand in an expression1. At lines3 and 4, a new auxiliary variable is reated with its orresponding variable ourrene (V1 in theexample). The funtion getNextAuxVarName() returns the name of the next auxiliary variable.The following statement builds the nth funtion all. Its parameters are mathed with a sequeneof expression objets omposed of the variable ourrene orresponding to the new auxiliaryvariable, the row index of the array (X in the example), and a variable ourrene orrespondingto the array L. The variable V1 will be then used to represent L[X℄ within expressions.
1The Expression and the VariableOurrene onepts an be seen in Figure 5.44.



Chapter 7 � From Soure to Target 1271. s: VariableOurrene where (isDefined(s.array.row)2. and isUndefined(s.array.ol)) =>3. t: Variable{name <- getNextAuxVarName()} and4. u: VariableOurrene{delaration <- t} and5. v: FuntionCall {name <- "nth",6. parameters <- Sequene of Expression(u,s.array.row,w)} and7. w: VariableOurrene{delaration <- s.delaration}Figure 7.13 � Auxiliary variable insertion transformation rules.//Before ruleL[X℄//After rulenth(V1,X,L) Figure 7.14 � Auxiliary variable insertion proess.
RemarkLet us note that the pivot metamodel an be extended. For instane, if a new language isplugged to the framework and no support exists for some of its features, e.g. a global onstraint.It su�es to add to the pivot the onept representing suh a global onstraint or to add theorresponding refatoring phase to transform the global onstraint in a representation (if exists)supported by the target language.7.3 From pivot to targetThe transformation from pivot to target is similar to the soure-to-pivot transformation.Mainly one-to-one transformation rules are performed. Like the �rst step, this phase requiresthe KM3, the TCS of the target language, and the transformation rules to math with the pivotmetamodel.NoteA same TCS �le an be used for parsing a soure language and for generating target �les inthat language. This avoid us to reate an ATL query for the ode generation tasks.Figure 7.15 depits the main onepts of the ECLiPSe metamodel. An ECLiPSe model anbe seen as a set of Prolog-like prediates. Eah prediate is omposed of variables, and prediatefeatures. A prediate feature is speialized in two lasses: VariableFeature and Statement. Fourlasses inherits from VariableFeature: Domain, Array, Set and Constant. Let us note that thestruture of this lass hierarhy di�ers from previous metamodels. It has been de�ned in thismanner to orretly handle the di�erent variable delarations provided by ECLiPSe. Finally, the
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Figure 7.15 � A fragment of the ECLiPSe metamodel.sub-elements of the Statement onept are very similar to previous metamodels.Figure 7.16 depits three templates of the ECLiPSe TCS �le. The �rst template de�nes themodel, whih is omposed of a set of prediates. Prediates are de�ned with a name and a set ofinput parameters separated by a omma.1. template Model main ontext2. : prediates3. ;4.5. template Prediate ontext addToContext6. : name queens(N, Board) :-7. "(" parameters{separator=","} ")"8. ":-"9. prediateElements{separator=","} solvingOpts "." ...10. ;11. template PrediateElement abstrat; dim(Board, [N℄),12. template VariableFeature abstrat;13.14. template Array15. "dim"16. "(" varName{refersTo=name}17. "," "[" row (isDefined(ol) ? "," ol) "℄" ")"18. ; Figure 7.16 � Five templates of the TCS �le of ECLiPSe.A parameter orresponds to a Variable objet. The parameters are enlosed by a pair ofround braket tokens and followed by the `:-' Prolog symbol. A set of prediate elements follows,whih are also separated by a omma token. The prediate delaration ends with the solvingoptions followed by a dot symbol. The PrediateElement and the VariableFeature are abstrattemplates. The Array template is de�ned at line 18. The dim reserved word begins the array



Chapter 7 � From Soure to Target 129delaration. The name of the variable and the dimensions of the array are then inluded. TherefersTo=name statement is used to get the name of the variable, whih is de�ned within theVariable onept. The ol attribute is optional, being only used for two-dimensional arrays.7.4 Transformation proessAs presented in Setion 5.3.2.5, the ompilation of the TCS �le with the orresponding KM3metamodel generates the neessary lexers, parsers and ode generators. The omplete transfor-mation proess is shown in Figure 7.17. The model �le of the soure language (the s-COMMA�le) is the input of the system. This �le is transformed to the orresponding s-COMMA XMI �le(injetion phase). The s-COMMA XMI is transformed through the ATL rules to the pivot XMI�le. Over this XMI �le, the whole set of refatoring steps is performed. The re�ned XMI pivot�le is mapped to the XMI �le of the target language (ECLiPSe). Finally, the model of the targetlanguage (the ECLiPSe �le) is generated (extration phase).
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Figure 7.17 � The transformation proess on the example of s-COMMA to ECLiPSe.7.4.1 Seleting the refatoring steps.Applying the whole set of refatoring steps presented in Setion 7.2 is not neessary in everytransformation hain. Indeed, it learly depends on the modeling strutures of the soure andtarget languages. The idea is to use most of onstruts supported by the target language to havea target model lose, in terms of onstruts, to our soure model. For instane, in a s-COMMA toECLiPSe translation, we should transform the objets using the omposition �attening step. Wealso may need the enumeration substitution and other refatoring steps suh as the use of loalvariables and nth prediates. Optionally, we may selet the expression simpli�ation step.



130 Chapter 7 � From Soure to TargetRemarkThis feature may be ontrasted with previous approahes (e.g. Zin, s-COMMA), where the re-fatoring steps are always applied. This normally breaks the original struture of the model(e.g. the unrolling loop phase generates a model ompletely di�erent ompared to one with nounrolled loops). The possibility of ustomizing the steps to be applied on the transformationallows one to transfer the soure modeling features to the target model. We believe this mayenable readability and understanding on the target model.The set of re�ning steps to be applied in a transformation an be hosen by means of Antsripts [www6 ℄. Figure 7.18 depits an Ant sript speifying a transformation. The �rst blok (lines1 to 7) states the transformation from s-COMMA to the pivot and the seond blok (lines 9 to 14)selets the enumeration substitution refatoring step. Lines 3, 5 and 11 de�ne whih metamodelsto use and lines 4 and 12 speify whih models to proess. Lines 6 and 13 orrespond to theprodued models.1. <!--s-COMMA to Pivot-->2. <am3.atl path="/sCOMMAtoPivot/sCOMMAtoPivot.atl">3. <inmodel name="sCOMMA" model="sCOMMA"/>4. <inmodel name="IN" model="mysCOMMA"/>5. <inmodel name="Pivot" model="Pivot"/>6. <outmodel name="OUT" model="myPivot" metamodel="Pivot"/>7. </am3.atl>8.9. <!--Enumeration Substitution-->10. <am3.atl path="/PivotRefining/enumerationSubstitution.atl">11. <inmodel name="Pivot" model="Pivot"/>12. <inmodel name="IN" model="myPivot"/>13. <outmodel name="OUT" model="myPivot" metamodel="Pivot"/>14. </am3.atl> Figure 7.18 � An Ant sript for seleting transformations.7.5 ExperimentsTo highlight the performane of this new approah, in terms of translation time, we havetested the s-COMMA to ECLiPSe translation on �ve CP problems. Table 7.1 depits the results ofthis �rst experiment. The �rst olumn gives the problem names. The seond olumn depits thesize (in number of lines) of the s-COMMA soure �les. The following olumns orrespond to the timeof atomi steps (in seonds): model injetion (Injet), transformations from s-COMMA to pivot (s-to-p), omposition �attening (Comp), enumeration substitution (Enum), transformations frompivot to ECLiPSe (p-to-E), and target �le extration (Extrat). The next olumn details thetotal time of the omplete transformation, and the last olumn shows the number of lines of thegenerated ECLiPSe �les.The results show that the text proessing phases (injetion and extration) are e�ient,but we may remark that the given problems are onisely stated (maximum of 112 lines). Thetransformation s-COMMA to pivot is slower than the transformation pivot to ECLiPSe. This isexplained by the refatoring phases performed on the pivot that redue the number of elements



Chapter 7 � From Soure to Target 131Problems Size Injet s-to-p Comp Enum p-to-E Extrat Total SizeGolfers 42 0.107 0.169 0.340 0.080 0.025 0.050 0.771 38Engine 112 0.106 0.186 0.641 0.146 0.031 0.056 1.166 78Send 16 0.129 0.160 0.273 - 0.021 0.068 0.651 21Stable 46 0.128 0.202 0.469 0.085 0.027 0.040 0.951 2610-queens 14 0.132 0.147 0.252 - 0.017 0.016 0.564 16Table 7.1 � Times of omplete transformation hains.to handle on the pivot to ECLiPSe step. The omposition �attening step is the more expensive.In partiular, the Engine problem exhibits the slowest running time sine it ontains a biggernumber of objet ompositions. In summary, onsidering the whole set of phases involved, theresults show reasonable translation times.The seond test we performed aims at analyzing saling our approah. To this end we haveapplied the loop unrolling step to six versions (from n=50 to n=100) of the n-queens problem.Table 7.2 depits the results of this seond test. Columns two to eight show the atomi steps ofthe transformation (in seonds). Column nine ontains the sizes (in number of lines) of generatedECLiPSe �les, whih have been heavily impated by the loop unrolling step (sine the size ofthe unrolled loops depends on n). At the �nal olumn, a ratio exhibits the e�ieny of a trans-formation hain onsidering the exeution time per generated lines. Considering the signi�antdi�erenes of model sizes (from 7505 to 30005 lines) the values indiate this ratio slowly inreases,showing that the approah an be used for large models.Problems Injet s-to-P Comp Forall P-to-E Extrat Total Size Total/Size50-queens 0.132 0.147 0.252 32.773 16.21 1.059 50.573 7505 ≈0.006760-queens 0.132 0.147 0.252 49.247 28.577 1.509 79.864 10805 ≈0.007470-queens 0.132 0.147 0.252 68.283 47.951 2.033 118.798 14705 ≈0.008080-queens 0.132 0.147 0.252 92.693 81.401 2.689 177.314 19205 ≈0.009290-queens 0.132 0.147 0.252 126.338 123.743 3.390 254.002 24305 ≈0.0104100-queens 0.132 0.147 0.252 165.395 182.871 4.193 352.990 30005 ≈0.0117Table 7.2 � Time of omplete transformation hains of the n-queens problem.7.6 SummaryIn this hapter, we have presented the omplete transformation proess performed by theframework. The implementation of the three main phases has been explained. The �rst andthe last phase onern the soure and the target language, respetively. The implementationof both phases requires the de�nition of a metamodel, a TCS �le, and a set of transformationrules to math with the pivot. The middle phase is responsible for applying a set of refatoringsteps on the pivot. This model is a key omponent of the arhiteture sine the most omplextransformations are performed on it. This allows us to simplify the transformation from/tothe pivot and onsequently to failitate the addition of new translators to the platform. Thepivot model is also independent from modeling and solver languages, i.e. it has no syntax and



132 Chapter 7 � From Soure to Targetthe onstruts supported do not depend on a partiular modeling or solver language. Anotherinteresting feature of the arhiteture is that the set of single steps inluded in a transformationan be ustomized. This allows us to obtain a target model loser, in terms of onstruts, to oursoure model.The development of this framework orresponds to the urrent work of the author and itis in a preliminary stage. Only three languages have been plugged to the framework (s-COMMA,ECLiPSe and RealPaver). Thus, at the moment, it is not possible to ompletely ensure thatthe pivot is able to support all the onstruts provided by every existing modeling language.However, we believe that it represents a onsiderable basis to support a large list of ommononstruts. Another limitation of the framework is that only the delarative parts of models anbe proessed sine it is not possible to partially exeute a omputer program that builds theonstraint store. In the following hapter we onlude the thesis and we propose some futureresearh perspetives.



CHAPTER8
Conclusion

I n this thesis, we have presented two main works: the s-COMMA platform and a model-driventransformation framework for CP languages. In this hapter, we reall the most importantaspets of these two approahes, we disuss their limitations and we give the orrespondingonluding remarks. We �nish the hapter by presenting some future researh diretions.8.1 s-COMMAs-COMMA is the �rst work we presented in this thesis. Suh a system involves an objet-orientedlanguage for modeling CP problems and a solver-independent arhiteture. This approah is theresult of an investigation of several important onerns in the development of modern CP arhi-tetures. Several innovations and advantages an be found:� The objet-oriented style provided allows us to elegantly apture the inherent strutureof problems. The problem an be divided in subproblems to be aptured in single lasses.The result is in general a more modular model, whih motivates the reuse and failitatesthe management of onstraint models.� The s-COMMA language an be naturally represented through graphial omponents. Thes-COMMA GUI is the graphial interfae of the platform, allowing users to obtain a visualand a more onise representation of models.� The s-COMMA language an be extended. An extension mehanism is able to adapt themodeling language to further updates of the solving layer. Suh a mehanism works by de-�ning extension �les on whih the rules of the translation between the new funtionalitiesand s-COMMA are de�ned.� The searh proess is a main phase of the problem resolution. Aordingly, a simple pa-rameter formalism is provided. This formalism permits to de�ne ordering heuristis overlasses, and onsisteny levels over objets, lasses and onstraints.� s-COMMA is supported by a �exible and extensible solver-independent arhiteture. Thisarhiteture enables users to proess one model with di�erent solvers in order to failitateexperimentation tasks. Additionally, the platform is open to be onneted with new solvers.This task an be arried out via powerful model transformation tehniques.We believe s-COMMA is a omplete approah for modeling a wide range of CP problems, itsexpressiveness is onsiderable and it an even be inreased by extension mehanisms. The objet-133



134 Chapter 8 � Conlusionoriented style is the basis to get onise and elegant models. Suh models an also be tuned toobtain e�ient searh proesses. The graphial tool is a useful option for users looking for avisual modeling perspetive, and the solver-independent arhiteture is an exellent support forexperimentation tasks.Finally, it is neessary to mention some limitations, whih are mainly related to the apabi-lities of the underlying solvers. For instane, the language features of s-COMMA not supported bysolvers annot always be suessfully mapped nor transformed. A ommon example is the useof real numbers in s-COMMA, whih are not supported by �nite domain solvers (e.g. Geode).Another example onerns the use of interval solvers (e.g. RealPaver), in whih is not possible tohek the equality of values, allowing only the use of some relation operators (<=,=>,=). Thesame problem ours with the heuristi ordering and onsisteny level parameters, just the op-tions provided by the hosen solver an be used at the modeling phase. The urrent implementedsolution is to inform the user with warning messages.8.2 Transformation framework for CP languagesWe have presented a new framework for CP model transformations as the seond work of thisthesis. This framework is supported by a set of MDE tools and by an independent pivot modelto whih di�erent languages an be mapped. In this framework, a transformation hain is madeof three main steps: from the soure to the pivot model, re�ning of the pivot model, and fromthe pivot model to the target. This new approah follows important advantages.� Modelers are able to use their favorite language and to solve the problem by means of thebest known solving tehnology. Experimentation of new solvers may also be easier, as aolletion of benhmarks in this new language an be built from di�erent soures.� Refatoring and optimization steps are always implemented over the pivot. In this way, thetranslation from/to the pivot beomes simpler, failitating the addition of new translators.Additionally, the refatoring phases to be applied in a transformation an be seleted toget a target model loser, in terms of modeling onstruts, to the soure model.The work done on this framework an be seen as an improvement of the arhiteture imple-mented in s-COMMA. The framework is in preliminary stage and the main limitation is that onlythe modeling fragments of languages (i.e. the delarative part) an be proessed sine it is notpossible to partially exeute a omputer program that builds the onstraint store.8.3 Future researh diretionsSolver-independent arhitetures and model transformation in onstraint programming is areent trend. Just a few platforms involving both onerns have been developed. We believethat extension or improvement of suh platforms may lead to a wide future work. For instane,s-COMMA an be extended in several ways, the more visible way is to inrease the number ofunderlying solvers, whih may belong to the CP �eld as well as to the mathematial �eld (e.g.AMPL, GAMS). The use of solvers using loal searh tehniques will be interesting too. Thismay imply faing up to several new hallenges in terms of model transformation onerns.



Chapter 8 � Conlusion 135We are also interested in extending s-COMMA to be used in the dynami CSP framework [GF03,MF90℄. We urrently support the de�nition of ativity and ompatibility onstraints, but we donot support ativity objets (the reation of an objet is subjet to onstraints) and the dynamide�nition of objet attributes (the de�nition of attributes is subjet to onstraints). This willallow us to state dynami CP models in a more elegant way.The transformation framework we presented an be improved as well. As in s-COMMA themost visible diretion to follow is to extend the list of translators supported. To study andimplement new refatoring/optimization pivot phases suh as the automati transformation ofglobal onstraints is another aspet to be onsidered. We also want to better manage omplexCP models transformation hains. Models ould be quali�ed to determine their level of strutureand to automatially hoose the required refatoring steps aording to the target language.Our last future goal is related to the MD-transformation tools. We have used ATL as thetransformation language over the entire framework and sometimes the implementation of someomplex transformations on the pivot was quite di�ult to arry out. We believe it may be inter-esting to extend ATL with some built-ins to perform omplex tasks (e.g. omposition �attening,loop unrolling, et.). Suh an extension may probably lead to the de�nition of a new languageompletely aimed at CP model transformation.
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APPENDIXA
GrammarsA.1 s-COMMA GrammarIn this appendix we desribe the grammar of s-COMMA and Flat s-COMMA. The desription isdone by means of EBNF using the following onventions: Angle brakets are used to denote non-terminals (e.g. 〈Class-Body〉). Bold font and underlined bold font are used to denote terminals(e.g. lass, ;). Square brakets denotes optional items (e.g.[〈Array〉℄). Square brakets with aplus symbol de�nes sequenes of one or more items (e.g.[〈Class〉℄+). Square brakets with a starsymbol are used for sequenes of zero or more items (e.g. [〈Import〉℄∗), and square brakets witha range {a, b} de�nes sequenes from a to b items (e.g. [〈Solving-Option〉℄{0,2})Model

〈Model〉 ::= [〈Import〉℄∗ [〈Class〉℄∗
〈Import〉 ::= import 〈Path〉
〈Class〉 ::= [main℄ lass 〈Identi�er〉 [extends 〈Identi�er〉℄ [[〈Solving-Options〉℄℄

{〈Class-Body〉}
〈Class-Body〉 ::= [〈Attribute〉℄∗ [〈Constraint-Zone〉℄∗
〈Path〉 ::= [〈Identi�er〉.℄∗〈Identi�er〉;Attributes
〈Attribute〉 ::= 〈Variable〉 | 〈Objet〉
〈Variable〉 ::= 〈Var-Type〉 [set℄ 〈Mult-Id-Def 〉 [in 〈Domain〉℄;
〈Mult-Id-Def 〉 ::= 〈Identi�er〉 [〈Array〉℄ [, 〈Identi�er〉 [〈Array〉℄℄∗
〈Objet〉 ::= [[〈Cons-Level〉℄℄ 〈Mult-Id-Def 〉;
〈Var-Type〉 ::= 〈Basi-Type〉 | 〈Identi�er〉
〈Array〉 ::= [〈Array-Size〉[, 〈Array-Size〉℄℄
〈Array-Size〉 ::= 〈Int-Expr〉 | 〈Identi�er〉
〈Basi-Type〉 ::= int | real | bool
〈Domain〉 ::= [〈Bound〉, 〈Bound〉℄
〈Bound〉 ::= 〈Num-Expr〉 | 〈Identi�er〉Constraints
〈Constraint-Zone〉 ::= onstraint 〈Identi�er〉 {〈Constraint-Body〉}
〈Constraint-Body〉 ::= [〈Constraint〉 | 〈Global-Constraint〉 | 〈Compatibility-Constraint〉 |

〈Forall〉 | 〈If-Else〉℄∗ [〈Optimization〉℄
〈Constraint〉 ::= [[〈Cons-Level〉℄℄ 〈Expr〉 ; 139
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〈Compatibility-Constraint〉 ::= ompatibility (〈Aess〉[ ,〈Aess〉℄∗) {[〈Valid-Tuples〉℄+}
〈Valid-Tuples〉 ::= (〈Literal〉[ ,〈Literal〉℄∗);
〈Literal〉 ::= 〈Value〉 | 〈String〉
〈Global-Constraint〉 ::= 〈Identi�er〉 (〈Param〉[ ,〈Param〉℄∗);
〈Param〉 ::= 〈Aess〉 | 〈Literal〉Expressions
〈Expr〉 ::= 〈Expr-Imp〉[<->〈Expr-Imp〉℄∗
〈Expr-Imp〉 ::= 〈Expr-Or〉[〈Op-Imp〉 〈Expr-Or〉℄∗
〈Op-Imp〉 ::= -> | <-
〈Expr-Or〉 ::= 〈Expr-And〉[〈Op-Or〉 〈Expr-And〉℄∗
〈Op-Or〉 ::= xor | or
〈Expr-And〉 ::= 〈Expr-Not〉[and 〈Expr-Not〉℄∗
〈Expr-Not〉 ::= [not℄∗ 〈Expr-Rel〉
〈Expr-Rel〉 ::= 〈Expr-Set-Rel〉[〈Op-Rel〉 〈Expr-Set-Rel〉℄∗
〈Op-Rel〉 ::= <> | != | = | == | < | > | <= | >=
〈Expr-Set-Rel〉 ::= 〈Expr-Set-Op〉[〈Op-Set-Op〉 〈Expr-Set-Op〉℄∗
〈Op-Set-Rel〉 ::= subset | superset
〈Expr-Set-Op〉 ::= 〈Expr-Sum〉[〈Op-Set-Rel〉 〈Expr-Sum〉℄∗
〈Op-Set-Op〉 ::= union | di� | symdi�
〈Expr-Sum〉 ::= 〈Expr-Prod〉[〈Op-Sum〉 〈Expr-Prod〉℄∗
〈Op-Sum〉 ::= - | +
〈Expr-Prod〉 ::= 〈Expr-Int〉[〈Op-Prod〉 〈Expr-Int〉℄∗
〈Op-Prod〉 ::= * | /
〈Expr-Int〉 ::= 〈Expr-Expon〉[interset 〈Expr-Expon〉℄∗
〈Expr-Expon〉 ::= 〈Un-Expr-Min〉[� 〈Un-Expr-Min〉℄∗
〈Un-Expr-Min〉 ::= - 〈Expr-Unit〉 | [+℄ 〈Expr-Unit〉
〈Expr-Unit〉 ::= 〈Value〉 | 〈Aess〉 | 〈Funtion-Call〉 | (〈Expr〉)
〈Num-Expr〉 ::= 〈Num-Expr-Prod〉[〈Op-Sum〉 〈Num-Expr-Prod〉℄∗
〈Num-Expr-Prod〉 ::= 〈Num-Un-Expr-Min〉[〈Op-Prod〉 〈Num-Un-Expr-Min〉℄∗
〈Op-Prod〉 ::= * | /
〈Num-Un-Expr-Min〉 ::= - 〈Num-Expr-Unit〉 | [+℄ 〈Num-Expr-Unit〉
〈Num-Expr-Unit〉 ::= 〈Integer〉 | 〈Float〉 | 〈Identi�er〉 | 〈Funtion-Call〉 | (〈Num-Expr〉)
〈Int-Expr〉 ::= 〈Int-Expr-Prod〉[〈Op-Sum〉 〈Int-Expr-Prod〉℄∗
〈Int-Expr-Prod〉 ::= 〈Int-Un-Expr-Min〉[〈Op-Prod〉 〈Int-Un-Expr-Min〉℄∗
〈Int-Un-Expr-Min〉 ::= - 〈Int-Expr-Unit〉 | [+℄ 〈Int-Expr-Unit〉
〈Int-Expr-Unit〉 ::= 〈Integer〉 | 〈Identi�er〉 | 〈Funtion-Call〉 | (〈Int-Expr〉)
〈Value〉 ::= 〈Integer〉 | 〈Float〉 | 〈Boolean〉
〈Aess〉 ::= [〈Identi�er〉[〈Array〉℄.℄∗〈Identi�er〉 [〈Array〉℄
〈Funtion-Call〉 ::= 〈Identi�er〉 (〈Param〉[ ,〈Param〉℄∗)Statements
〈Forall〉 ::= forall(〈Loop-Header〉 [, 〈Loop-Header〉℄∗) {〈Forall-Body〉}
〈Loop-Header〉 ::= 〈Identi�er〉 in 〈Value-Set〉
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〈Value-Set〉 ::= 〈Identi�er〉 | 〈Int-Expr〉 .. 〈Int-Expr〉
〈Forall-Body〉 ::= [〈Forall〉 | 〈If-Else〉 | 〈Constraint〉 | 〈Global-Constraint〉℄∗
〈If-Else〉 ::= if(〈Constraint〉) {[〈If-Else-Body〉℄∗} [else{[〈If-Else-Body〉℄∗}℄
〈If-Else-Body〉 ::= [〈Forall〉 | 〈If-Else〉 | 〈Constraint〉 | 〈Global-Constraint〉℄∗ [〈Optimization〉℄
〈Optimization〉 ::= 〈Opt-Value〉 〈Expression〉 ;
〈Opt-Value〉 ::= maximize | minimize
〈Sum-Loop〉 ::= sum(〈Loop-Header〉 [, 〈Loop-Header〉℄∗) (〈Num-Expr〉)Data
〈Data〉 ::= [〈Constant〉 | 〈Var-Assignment〉℄∗
〈Constant〉 ::= 〈Data-Type〉 〈Identi�er〉 := 〈Constant-Assig〉 ;
〈Constant-Assig〉 ::= 〈Value〉 | 〈Vetor-Data〉 | 〈Matrix-Data〉 | 〈Enum-Data〉
〈Data-Type〉 ::= 〈Basi-Type〉 | enum
〈Vetor-Data〉 ::= [〈Value〉 | 〈Undersore〉 [,〈Value〉 | 〈Undersore〉℄∗℄
〈Enum-Data〉 ::= {〈Literal〉 [, 〈Literal〉℄∗}
〈Matrix-Data〉 ::= [〈Vetor-Data〉 [,〈Vetor-Data〉℄∗℄
〈Var-Assignment〉 ::= 〈Aess-Assig〉 := 〈Var-Assignment-Assig〉;
〈Var-Assignment-Assig〉 ::= 〈Objet〉 | 〈Vetor-Objet〉 | 〈Matrix-Objet〉
〈Aess-Assig〉 ::= 〈Identi�er〉[.〈Identi�er〉℄+
〈Objet〉 ::= {〈Value〉 | 〈Undersore〉 [, 〈Value〉 | 〈Undersore〉℄∗}
〈Vetor-Objet〉 ::= [〈Objet〉 [, 〈Objet〉℄∗℄
〈Matrix-Objet〉 ::= [〈Vetor-Objet〉 [, 〈Vetor-Objet〉℄∗ ℄
〈Undersore〉 ::= _Solving Options
〈Solving-Options〉 ::= [〈Solving-Option〉[,〈Solving-Option〉℄{0,2}℄
〈Solving-Option〉 ::= 〈Var-Ordering〉 | 〈Val-Ordering〉 |〈Cons-Level〉
〈Var-Ordering〉 ::= min-dom-size | max-dom-size | min-dom-val | max-dom-val |min-regret-min-dif | min-regret-max-dif |max-regret-min-dif | max-regret-max-dif
〈Val-Ordering〉 ::= min-val | med-val | max-val
〈Cons-Level〉 ::= bound | domain
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〈Model〉 ::= [〈Variable-Blok〉℄[〈Constraint-Blok〉℄ [〈Enum-Blok〉℄[〈Solving-Blok〉℄
〈Variable-Blok〉 ::= variables: [〈Variable〉℄∗
〈Constraint-Blok〉 ::= onstraints: 〈Constraint-Statement〉
〈Enum-Blok〉 ::= enum-types: [〈Enum-Type〉℄∗
〈Solving-Blok〉 ::= solving-opts: 〈Solving-Options〉Variables
〈Variable〉 ::= 〈Var-Type〉 [set℄ 〈Identi�er〉 [〈Array〉℄ in 〈Domain〉;
〈Var-Type〉 ::= 〈Basi-Type〉 | 〈Identi�er〉
〈Array〉 ::= [〈Integer〉 [,〈Integer〉℄℄
〈Basi-Type〉 ::= int | real | bool
〈Domain〉 ::= [〈Bound〉 , 〈Bound〉℄
〈Bound〉 ::= 〈Integer〉 | 〈Float〉Constraints
〈Constraint-Statement〉 ::= [〈Constraint〉 | 〈Global-Constraint〉℄∗ [〈Optimization〉℄
〈Constraint〉 ::= [[〈Cons-Level〉℄℄ 〈Expr〉 ;
〈Global-Constraint〉 ::= 〈Identi�er〉 (〈Param〉[ ,〈Param〉℄∗);
〈Param〉 ::= 〈Identi�er〉 | 〈Literal〉
〈Literal〉 ::= 〈Value〉 | 〈String〉
〈Optimization〉 ::= 〈Opt-Value〉 〈Expr〉 ;
〈Opt-Value〉 ::= maximize | minimizeExpressions
〈Expr〉 ::= 〈Expr-Imp〉[<->〈Expr-Imp〉℄∗
〈Expr-Imp〉 ::= 〈Expr-Or〉[〈Op-Imp〉 〈Expr-Or〉℄∗
〈Op-Imp〉 ::= -> | <-
〈Expr-Or〉 ::= 〈Expr-And〉[〈Op-Or〉 〈Expr-And〉℄∗
〈Op-Or〉 ::= xor | or
〈Expr-And〉 ::= 〈Expr-Not〉[and 〈Expr-Not〉℄∗
〈Expr-Not〉 ::= [not℄∗ 〈Expr-Rel〉
〈Expr-Rel〉 ::= 〈Expr-Set-Rel〉[〈Op-Rel〉 〈Expr-Set-Rel〉℄∗
〈Op-Rel〉 ::= <> | != | = | == | < | > | <= | >=
〈Expr-Set-Rel〉 ::= 〈Expr-Set-Op〉[〈Op-Set-Op〉 〈Expr-Set-Op〉℄∗
〈Op-Set-Rel〉 ::= subset | superset
〈Expr-Set-Op〉 ::= 〈Expr-Sum〉[〈Op-Set-Rel〉 〈Expr-Sum〉℄∗
〈Op-Set-Op〉 ::= union | di� | symdi�
〈Expr-Sum〉 ::= 〈Expr-Prod〉[〈Op-Sum〉 〈Expr-Prod〉℄∗
〈Op-Sum〉 ::= - | +



Appendix A 143
〈Expr-Prod〉 ::= 〈Expr-Int〉[〈Op-Prod〉 〈Expr-Int〉℄∗
〈Op-Prod〉 ::= * | /
〈Expr-Int〉 ::= 〈Expr-Expon〉[interset 〈Expr-Expon〉℄∗
〈Expr-Expon〉 ::= 〈Un-Expr-Min〉[� 〈Un-Expr-Min〉℄∗
〈Un-Expr-Min〉 ::= - 〈Expr-Unit〉 | [+℄ 〈Expr-Unit〉
〈Expr-Unit〉 ::= 〈Value〉 | 〈Identi�er〉 | 〈Funtion-Call〉 | (〈Expr〉)
〈Value〉 ::= 〈Integer〉 | 〈Float〉 | 〈Boolean〉
〈Funtion-Call〉 ::= 〈Identi�er〉 (〈Param〉[ ,〈Param〉℄∗)
〈Optimization〉 ::= 〈Opt-Value〉 〈Expr〉 ;Enumerations
〈Enum-Type〉 ::= 〈Identi�er〉 := 〈Enum-Data〉 ;
〈Enum-Data〉 ::= {〈Literal〉 [, 〈Literal〉℄∗}Solving Options
〈Solving-Options〉 ::= 〈Solving-Option〉[,〈Solving-Option〉℄{0,2}

〈Solving-Option〉 ::= 〈Var-Ordering〉 | 〈Val-Ordering〉 | 〈Cons-Level〉 | default
〈Var-Ordering〉 ::= min-dom-size | max-dom-size | min-dom-val | max-dom-val |min-regret-min-dif | min-regret-max-dif |max-regret-min-dif | max-regret-max-dif
〈Val-Ordering〉 ::= min-val | med-val | max-val
〈Cons-Level〉 ::= bound | domain
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Langages et transformation de modèles enprogrammation par ontraintesRiardo SotoRésuméLa programmation par ontraintes est une tehnologie pour l'optimisation qui assoie des langages de modéli-sation rihes ave des moteurs de résolution e�aes. Elle ombine des tehniques de plusieurs domaines telsque l'intelligene arti�ielle, la programmation mathématique et la théorie des graphes. Un dé� majeur danse domaine onerne la dé�nition de langages de haut-niveau pour failiter la phase de modélisation des pro-blèmes. Un autre aspet important est de onevoir des arhitetures robustes pour transformer des modèlesde haut-niveau et obtenir des modèles exéutables e�aes, tout en visant plusieurs moteurs de résolution.Répondre à es deux préoupations est très di�ile, ar de nombreux aspets doivent être pris en ompte,omme par exemple, l'expressivité et le niveau d'abstration du langage ainsi que les tehniques utilisées pourtraduire le modèle de haut-niveau dans haun des langages de résolution. Dans ette thèse, nous proposonsune nouvelle perspetive pour faire fae à es dé�s. Nous introduisons une nouvelle arhiteture pour la pro-grammation par ontraintes dans laquelle le problème est dé�ni omme un ensemble d'objets ontraints dansun nouveau langage de modélisation haut-niveau. La transformation des modèles est réalisée à l'aide de l'ingé-nierie des modèles. Les éléments des langages sont alors onsidérés omme des onepts dé�nis dans un modèlede modèles appelé métamodèle. Cette nouvelle arhiteture permet d'aborder les phases de modélisation et detransformation de modèles en raisonnant à un niveau d'abstration supérieur et, par onséquent, de réduirela omplexité inhérente à es deux phases.Mots-lés: Programmation par ontraintes, Langages de modélisation par ontraintes, Transformationde modèles
Languages and Model Transformation in ConstraintProgrammingAbstratConstraint Programming is an optimization tehnology that assoiates rih modeling languages with e�ientsolving engines. It ombines methods from di�erent domains suh as arti�ial intelligene, mathematialprogramming, and graph theory. A main hallenge in this �eld is to provide high-level languages for failitatingthe problem modeling phase. Another important onern is to design robust arhitetures to map high-levelinput models to di�erent and e�ient solving models. Handling these two onerns is remarkably hard sinemany aspets have to be investigated, for instane, the expressiveness and the abstration level of the languageas well as the tehniques used to transform the high-level model into eah of the solver's languages. In thisthesis, we propose a new perspetive to fae those hallenges. We introdue a novel onstraint programmingarhiteture in whih the problem is seen as a set of high-level onstrained objets de�ned through a newmodeling language. The model transformation is performed by a model-driven proess in whih the elementsof languages are de�ned as onepts of a model of models alled metamodel. This new arhiteture allows oneto takle the modeling and the model transformation phases in a higher-level of abstration and onsequentlyto redue the inherent omplexity behind them.Keywords: Constraint Programming, Constraint Modeling Languages, Model Transformationam Classi�ationCategories and Subjet Desriptors : D.3.2 [Programming Languages℄: Language Classi�-ations�Constraint and logi languages; D.3.3 [Programming Languages℄: Language Construtsand Features�Classes and objets, Constraints; D.2.2 [Software Engineering℄: Design Tools andTehniques�User interfaes.
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