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Abstract

This thesis shows that abstractions provided by current mainstream Object Oriented (OO)
languages are not enough to address the modularization of distributed and concurrent algo-
rithms, protocols, or architectures. In particular, we show that code implementing concurrent
and distributed algorithms is scattered and tangled in the main implementation of JBoss
Cache, a real industrial middleware application. We also show that not only code is tangled,
but also conceptual algorithms are hidden behind object-based structures (i.e., they are not
visible in the code). Additionally, we show that such code is resilient to modularization. Thus,
we show that several cycles of re-engineering (we study the evolution of three different version
of JBoss Cache) using the same set of OO abstractions do not improve on the modularization
of distributed and concurrent code.

From these findings we propose a novel Aspect Oriented programming language with
explicit support for distribution and concurrency (AWED). The language uses aspects as main
abstractions and propose a model for distributed aspects and remote pointcuts, extending
sequential approaches with support for regular sequences of distributed events. The language
also proposes advanced support for the manipulation of groups of host, and the fine-grained
deterministic ordering of distributed events. To evaluate the proposal we perform several
experiments in different domains: refactoring and evolution of replicated caches, development
of automatic toll systems, and debugging and testing of distributed applications.

Finally, using this general model for distribution we provide two additional contributions.
First, we introduce Invasive Patterns, an extension to traditional communication patterns
for distributed applications. Invasive Patterns present an aspect-based language to express
protocols over distributed topologies considering different coordination strategies (Architec-
tural programming). The implementation of this approach is leveraged by the distributed
features of AWED and is realized by means of a transformation into it. Second, we add the
deterministic manipulation of distributed messages to our model by means of causally ordered
protocols.

iii



iv ABSTRACT



Résumé

Cette thèse montre que les abstractions fournies pour les langages orientés objets (OO) ne sont
pas suffisantes pour répondre aux problèmes de modularisation des algorithmes, protocoles,
et architectures pour la distribution et la concurrence. Ainsi, le code dédie à la concurrence
et à la distribution se trouve souvent dispersé et entrelacé dans l’implémentation des logiciels
distribués. En plus, nous montrons que ce code est résistante à la modularisation et que même
après plusieurs cycles de re–ingénierie, en utilisant le même paradigme de programmation OO,
la modularisation du code pour la distribution et la concurrence ne s’améliore pas.

À partir de ces résultats, nous proposons un nouveau langage pour la programmation à
aspects avec des abstractions explicites pour la distribution et la concurrence (AWED). Le
langage propose un modèle pour les aspects distribués et les coupures distantes, en étendant
des travaux sur les aspects séquentiels (non distribués) avec des mécanismes de langage pour
la détection de séquences des événements distribués. Le langage propose également un sup-
port avancé pour la manipulation des groupes des hôtes, l’exécution distante d’actions, et le
ordonnancement déterministe des messages distribués. Plusieurs expériences ont permis de
valider notre travail dans différents domaines: la re–factorisation et l’évolution d’un intergiciel
distribué, le développement de systèmes de péage automatique, et le débogage et les tests des
applications distribuées.

Finalement, à l’aide de ce modèle général pour la distribution, nous proposons deux con-
tributions supplémentaires. Tout d’abord, nous présentons les patrons invasifs: une extension
des patrons de communication traditionnels pour les applications réparties. Les patrons in-
vasifs présentent un langage d’aspects pour permettant d’exprimer des protocoles distribués
sur différents topologies et avec différents stratégies de coordination. Deuxièmement, nous
ajoutons à notre modèle la manipulation déterministe de messages distribués en utilisant les
relations de causalité entre messages.

Mots clés: Aspects, langages de programmation, intergiciel distribué, motifs envahissantes,
AWED.

Discipline: Informatique et applications.

No:.......................
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Chapter 1

Introduction

During design and implementation software engineers translate functionalities, domain con-
cepts, and properties of a system into units of abstraction of a specific programming language,
e.g., functions, procedures, classes, objects, components or packages. However, some proper-
ties and functionalities cannot be encapsulated into these units of abstraction, and instead,
have to be coded involving many small fragments that are scattered over and tangled with
one another as part of a large code base. Such functionalities are called crosscutting concerns
and said to crosscut the implementation. Furthermore, changes in the specification of one
of the properties will affect the implementation artifacts and the encapsulation units (e.g., a
function, procedure or objects) of (potentially many) others.

Crosscutting has been identified as a major problem in software engineering. Many func-
tionalities have been identified as crosscutting concerns, including such diverse ones as per-
formance optimization in graphical systems [KLM+97] and disk prefetching in operating sys-
tems [CK03]. Lopes [VL97] has studied distribution and concurrency as crosscutting concerns.
She has shown, in particular, how these concerns lead to tangled code in the context of an
application managing a book library. In particular she showed how, when dealing with con-
currency, several programming strategies involving semaphores, monitors, guards, and inher-
itance produced different degrees of tangling depending on the support in the programming
language for each synchronization construct. She has observed a similar situation for the
communication concern. For example, in object oriented languages serialization and param-
eter passing often lead to tangled code because e.g., classes have to be split into smaller ones
and handled separately to achieve an optimized size when passing objects. Similarly, other
research studied qualitatively [HK02] and quantitatively [GSF+05] identified design pattern
implementation as a source of crosscutting code.

Distributed applications implemented using current object oriented mainstream languages
suffer from crosscutting code. In 1997 Kiczales et al. introduced Aspect Oriented Program-
ming [KLM+97] as a programming technique using new language abstractions to modularize
such crosscutting concerns. Even though distribution and concurrency were identified early
as crosscutting concerns and first addressed during initial work on aspects languages [VL97],
current mainstream aspect languages do not provide explicit abstractions to deal with dis-
tribution or concurrency. Furthermore, few approaches have investigated the use of aspects
for distributed programming, notable exceptions being [PSD+04, LJ06, NST04, TT06]. In-
stead, mainstream aspect languages rely on the basic mechanisms for distribution and con-
currency provided by base languages (e.g., monitors or Remote method Invocation in Java).

1
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Although concurrent and distributed applications can be implemented this way, crosscutting
due to concurrency and distribution concerns cannot be resolved using this implementation
method [SLB02, KG02]. This is a major problem for AOP because many large-scale applica-
tions involve distribution and concurrency as central concerns.

To address this significant problem, we have explored the following main hypotheses:

• Scattered and tangled code found in the implementation of distributed applications can
be adequately modularized using an aspect language with explicit support for concur-
rency and distribution.

• The corresponding non-sequential aspects provide a conceptual basis for the adoption
and development of new general-purpose programming artifacts for distributed appli-
cations.

To confirm these hypotheses we have structured our research as follows: first we have
studied the problem of crosscutting code due to concurrency and distribution in the evolution
of an industrial middleware (JBoss Cache); based on this study, and on previous research
on aspects for distribution we have designed an aspect language with explicit support for
distribution (AWED); on top of this language, we have then built a language supporting a
new notion of distributed patterns for heterogeneous distributed applications; finally, we have
explored means to deal with the non-determinism inherent to distributed applications, by
introducing causal aware constructs at the language level and using them in the context of
debugging tools for distributed middleware.

In the following, we briefly present an example of crosscutting in concurrent and dis-
tributed code. We then present a detailed overview of contributions presented in this disser-
tation. Finally, we present the structure of this document.

1.1 Crosscutting concerns in the JBoss Cache distributed mid-

dleware

As an example of how non-modular implementations of major concerns pose problems for
distributed software systems we now briefly discuss replications and transactions in JBoss
Cache (a detailed discussion is presented in chapter 3).

Scattering

Consider the example of a replicated transactional cache, a component commonly used to
support clustering in distributed applications. In such a middleware replication (i.e., dis-
tributed replication) and transactional support are two major concerns. However, we have
found that even the most frequently used replication and transactional code is scattered over
the implementation of replicated caches.

Figure 1.1 represents the code structure of package interceptors, a major part of JBoss
Cache 2.0.0.GA [JBo08b], a popular replicated cache 1. In the figure, the boxes represent
classes, the black lines correspond to code for transactions and the gray lines correspond

1In order to create this kind of figures we use manually coded aspects to match method calls of the dedicated
API and an automatic tool to generate the graphical representation. The tool used to generate such figures is
the AspectJ plugin for the Eclipse development framework [asp08].
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Figure 1.1: Crosscutting concerns in JBoss Cache’s interceptor package (version 2.0.0.GA)

to code for replication. This figure shows that transactional and replication code is not
encapsulated but is scattered over several classes. From the figure, we cannot evaluate the
complexity of the scattered code. However, below, we show that scattering means in this case
that statements get interlaced inside methods in a very fine-grained manner.

Tangling

Figure 1.2 shows an excerpt of code from the method invoke of class ReplicationIntercep-
tor in JBoss Cache 2.0.0.GA [JBo08b]. The code includes statements from several func-
tionalities: line 6 corresponds to code implementing a filter design pattern (see Core J2EE
patterns [AMC+03]); line 7, lines 13–16, and lines 23–25 correspond to code for transac-
tions; lines 9–11 correspond to code for replication; finally, lines 18–21 correspond to code
for logging. In this method transactions, replication, filter management, and logging are thus
tangled.

1.2 Contributions

Even though distribution and concurrency are major concerns in many current large-scale ap-
plications, current mainstream aspect-based approaches adopted a model for sequential AOP
development. Such a model often proposes a mechanisms to query events in the execution
of the application (pointcuts), a method-like mechanism to implement the concerns (advice),
and a mechanism to define and bind pointcuts and advice. All these mechanisms only have
local semantics, i.e., do not allow to refer, without recourse to the base language, to remote
activities in any way.

The first steps towards a comprehensive model for distributed AOP have been proposed
through the introduction of distributed aspects and remote advice in JAC [PSD+04], and the
introduction of remote pointcuts as part of DJCutter [NST04]. This thesis builds on top of
these approaches by presenting a much more expressive model for distributed AOP realized
in form of two concrete aspect-based languages, and validated by several experiments over
real-world distributed applications.

This thesis present contributions of different types. First, we have studied the problem of
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1 publi
 
lass ReplicationInterceptor extends BaseRpcInterceptor

2 {

3

4 publi
 Object invoke(InvocationContext ctx) throws Throwable

5 {

6 MethodCall m = ctx.getMethodCall();

7 GlobalTransaction gtx = ctx.getGlobalTransaction();

8

9 // bypass for buddy group org metod calls.

10 if (MethodDeclarations.isBuddyGroupOrganisationMethod(m.getMethodId()))

11 return super.invoke(ctx);
12

13 boolean isLocalCommitOrRollback =

14 gtx != null && !gtx.isRemote()

15 && (m.getMethodId() == MethodDeclarations.commitMethod_id

16 || m.getMethodId() == MethodDeclarations.rollbackMethod_id);

17

18 if (log.isTraceEnabled())

19 log.trace("isLocalCommitOrRollback? " +

20 isLocalCommitOrRollback +

21 "; gtx = " + gtx);

22

23 // pass up the chain if not a local commit or

24 // rollback (in which case replicate first)

25 Object o = isLocalCommitOrRollback ? null : super.invoke(ctx);

Figure 1.2: A first example of tangled code in class Replication interceptor of JBoss Cache
2.0.0.GA

crosscutting in detail by means of the analysis of the evolution of a large concrete distributed
middleware. We have then proposed a general model for distributed AOP by means of the
design of a concrete language supporting such a model. We have also implemented a compiler
and runtime support for this language. Finally, we have validated our main hypotheses
introduced above by addressing several different problems of distributed systems, and several
experiments over real-world applications.

Concretely, this dissertation presents the following contributions:

• First, we analyze how the problem of scattered and tangled code, due to crosscutting
concerns (in particular concurrency and distribution), applies to large-scale software
systems. Furthermore, we analyze how the evolution of such software systems affects
the modularization of crosscutting concerns. We have investigated, among others, the
middlewares JBoss Cache [JBo08b] and Apache’s ActiveMQ [sf08a], as well as the grid
benchmarking application Nasgrid [Fru01].

• Based on the study of the evolution of crosscutting concerns in real-world industrial mid-
dleware, we designed an aspect oriented language with explicit distribution (AWED).
This language provides as main features remote pointcuts, distributed control flow,
pointcuts for regular sequences of remote events, a/synchronous distributed advice, dis-
tributed aspect deployment and instantiation, and group based communication.

• To validate our approach we have applied AWED to different problems of distributed



1.3. STRUCTURE OF THE DOCUMENT 5

software systems, e.g., implementing sophisticated replicated-caching policies, and refac-
toring and extension of JBoss Cache.

• We present a model to bridge the gap between high level architectures and implemen-
tation, by means a new notion of patterns, so called invasive distributed patterns.

• Finally, this dissertation presents language constructs for taking into account fine-
grained message ordering and its application to the implementation of development
tools for distributed applications. Concretely, we show that the implementation of new
development tools (e.g., debuggers) can benefit from research on determinism and cor-
rectness trough causal message ordering.

1.3 Structure of the document

This document consists, apart from the introduction, of six chapters.

• Chapter 2 introduces a taxonomy for distributed aspect languages based on the taxon-
omy for distributed languages and calculi proposed by Caromel and Henrio [CH05], and
providing an extension of taxonomy for aspect languages proposed by Südholt [Sü07].
Using this new taxonomy, the chapter presents a detailed analysis of aspect-based lan-
guages and frameworks for distribution.

• Chapter 3 gives concrete evidence for the importance of crosscutting in middleware.
Concretely, it presents the evolution of crosscutting concerns trough three versions of
JBoss Cache. This study shows that even after several cycles of re-engineering the
crosscutting concerns are resilient to modularization.

• Chapter 4 presents AWED, an aspect language with explicit distribution. The chapter
presents the basic assumptions and hypotheses taken during the design of AWED, the
syntax and informal semantics of the language, and several examples to evaluate the
applicability of the approach. The chapter also discuss the main implementation issues.

• Chapter 5 introduces invasive patterns, a new notion of pattern for heterogeneous
distributed applications and a corresponding pattern language. We show how these
patterns can be used to refactor JBoss Cache and to completely modularize its repli-
cation and transaction functionalities by substantially reducing the complexity of its
implementation at the same time. The chapter also presents a definition of invasive
patterns using a formal transformation into AWED.

• Chapter 6 considers ordering of messages in the distribution model of AWED. We
propose, in particular, a language extension to support causal ordering of messages,
allowing to restrict non-deterministic message orders to deterministic subtraces based
on guarded state finite machines. We evaluate the resulting extension of AWED in the
context of debugging scenarios for distributed middleware.

• Chapter 7 concludes and presents directions of future work.
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Chapter 2

State of the art

This chapter presents the state-of-the-art of Aspect Oriented approaches for distributed pro-
gramming. The chapter first introduces the main concepts in the field by means of a taxonomy
of AO concepts relevant for distribution approaches. Then we discuss the main approaches
for aspects for distributed applications in detail, classifying them according to the taxonomy.

Note that this chapter only presents the approaches that are directly related to its main
subject area, aspects and distribution. Related work on adjacent fields that is relevant to this
thesis is presented in the chapters presenting corresponding contributions: related work on
software patterns and aspects is presented in chapter 5 where invasive patterns are introduced;
related work on causal ordering in distributed middleware and aspects is included in chapter 6
where our approach of causal aspects is detailed.

2.1 A taxonomy for distributed aspects

Distributed aspect languages and systems deal with the modularization of crosscutting con-
cerns in distributed applications. However, each of the systems currently proposed provides
different mechanisms to fulfil this objective. This section introduces a taxonomy that serves
to characterize, differentiate, and compare distributed aspect-based systems. The taxonomy
has been defined based on a study of distributed object languages by Caromel and Henrio
(Chapter 2 of [CH05]), and a taxonomy of sequential aspects by Südholt [Sü07].

We have divided the taxonomy in four subsections. The communication and synchroniza-
tion model is discussed in subsection 2.1.1. The remote pointcut model is discussed in 2.1.2.
Subsection 2.1.3 discusses the remote advice model. Finally, subsection 2.1.5 presents the
elements to characterize composition of distributed aspects.

2.1.1 Communication model

The first section of the taxonomy characterize the communication model (see table 2.1).
Aspect-based languages and systems for distribution need communication capabilities that
are either supported by the base language they extend, or by explicit mechanisms in the
aspect language.

The first element in the communication model is the communication mechanism. A se-
quential (non-distributed) aspect system extending a language like Java often uses Remote
Method invocation as its communication mechanism (see AspectJ [KHH+01]). A language

7



8 CHAPTER 2. STATE OF THE ART

Taxonomy elements Values
Communication model

Communication mechanisms
Remote method call yes/no
Join point propagation yes/no
Controlled remote advice invocation yes/no
Group communication yes/no

Parameter passing modes by reference, or by copy
Synchronization model

Synchronization mechanisms synchronous control, non-blocking, or futures
Communication timing synchronous, asynchronous with rendezvous,

asynchronous FIFO, asynchronous without guarantee
Asynchronous hypothesis yes/no

Causal predicates yes/no

Table 2.1: Taxonomy for the communication model in distributed aspect-based systems

like AWED provides join point propagation and controlled remote advice invocation as com-
munication (and distribution) mechanisms. Join point propagation refers to join points being
sent as messages to be processed by remote aspects. Remote advice invocation refers to
chains of applicable advice being controlled by the host where the join point occurs (see chap-
ter 4 for a detailed explanation). Other systems, like DYMAC [LJ06] extend communication
capabilities of component frameworks, like J2EE, by aspect support.

Once a communication mechanism is in place several other elements enter into considera-
tion. First, passing values between remote processes are defined by parameter passing modes
(e.g., passing parameters by reference or by copy). Then, synchronization between processes
needs to be expressible. Several mechanisms have been proposed for synchronization: an
aspect system can, once again, rely on the base language mechanism (e.g., JAVA monitors)
or on explicit mechanisms introduced at the aspect level like AWED’s futures.

Finally, the model defines the guarantees provided for the distribution of messages. For
example, a system may be synchronous when a process is suspended waiting for the response
of a remote process. It may also be asynchronous with rendezvous when the message is
sent and a confirmation of delivery is received (the sender not blocking while the response is
calculated). A system may also be asynchronous but preserve the order of messages coming
from each process. Finally, a system may be asynchronous without any guarantee, but may
provide additional control over messages, like AWED’s causal predicates. Thus, instead of
defining a total order on the distributed messages (all hosts seeing messages in the same
order), a partial order is defined that may imply additional properties, e.g., causality.

2.1.2 Remote pointcut model

Pointcut models are an essential element of aspect languages. A pointcut model defines the set
of join points that can be considered, and the mechanisms to predicate over them (pointcuts).
Join points are events occurring during the execution of a program that can be matched using
pointcut expressions; such points are used to trigger specific behavior defined in pieces of
advice (see below: advice models). Pointcuts are used to concisely define relations among
(potentially many) join points. Pointcut expressions are constructs that match specific sets of
join points. These expressions may be constructed using pointcut languages (e.g., see systems
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Taxonomy elements Values
Remote pointcut model

Expressiveness:
Atomic yes/no
Sequential control flow yes/no
Distributed control flow yes/no
History based yes/no

Finite-state yes/no
Vpa yes/no
Context-free yes/no
Turing-complete yes/no

Remote join point support
All pointcuts yes/no
Location Single host, Multiple host groups

Paradigm:
Object-oriented yes/no
Functional yes/no
Logic yes/no

Table 2.2: Taxonomy for remote pointcut models in distributed aspect-based systems

like AWED, DJCutter [NST04], or DYMAC [LJ06]) or API extensions (e.g., see systems like
ReflexD [TT06], or JAC [PSD+04]). Most of the aspect-based approaches proposing explicit
distribution consider either pointcuts that can predicate over the localization of distributed
join points, or local join points attached to remote pieces of behavior. Table 2.2 shows the
part of our taxonomy concerning remote pointcuts of distributed.

A first major issue consists in the expressiveness of the model. The expressiveness ranges
from atomic pointcuts that match sets of otherwise unrelated join points (e.g., method calls),
via pointcut models able to predicate over control flow relations (e.g., a method call in the
control flow of another method call, possibly a remote call), to history-based pointcut models.
History-based pointcut models define pointcuts that enable relations to be expressed among
several join points that occur in the execution of a program. Such relations can be expressed
using languages of different expressiveness 1, including finite state automata, visibly pushdown
automata 2 (VPA), and Turing-complete languages 3. Finally, the hierarchy includes remote
join points to describe systems allowing predicates over join points that occur on different
locations.

The taxonomy also permits to classify the different approaches according to the paradigm
and the generality of their models. Pointcut models may use object-oriented abstractions,
functional-languages abstractions, or logic-language abstractions to predicate over join points.
Pointcut models may also be dedicated to a specific domains (domain specific pointcut lan-
guages), or be general purposes.

1See the Chomsky hierarchy [Cho59, Cho56] for a detailed explanation on grammar classification.
2See Alur and Madhusudan [AM04] for a detailed discussion on visibly pushdown automata.
3See Turing original paper ”On Computable Numbers with an Application to the Entscheidungs Prob-

lem” [Tur36] for a detailed discussion on Turing machines and Chomsky hierarchy [Cho59, Cho56] for their
use in grammar classification
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Taxonomy elements Values
Remote advice model

Filtering and ordering yes/no
Location Single host, Multiple host groups
Synchronization mode Synchronous and asynchronous
Parameter passing modes by reference and by copy
Proceed support yes/no

Remote host only yes/no
Remote and originating host yes/no

Synchronization mechanisms Blocking, transparent futures
Mobility Strong, weak
Reflective access to program state yes/no

Table 2.3: Taxonomy for remote advice models in distributed aspect-based systems

2.1.3 Remote advice model

The advice model describes how pieces of advice (method-like elements) are defined and
bound to specific pointcut expressions. The defining hierarchy in the taxonomy regarding the
advice model is structured as shown in table 2.3.

Regarding distribution, an advice may be executed locally or remotely. When executed
remotely the advice can be executed on one or several remote places, raising the problem
of execution ordering, and filtering/selecting the locations where remote processes advice
is to be executed. Additionally, such remotely executed pieces of advice may be executed
synchronously or asynchronously with respect to the process that triggered the advice exe-
cution(s). The advice model must deal with the problem of data passing and coordination
between processes. In particular, the system must define a model for parameter passing to
the remote advice (that may be different than the parameter passing in the communication
model before). The advice model may also include means for the coordination of concurrent
processes among advice and the base application, for example, by means of futures [RHH85].
The taxonomy also also allows advice execution to be classified as using strong mobility (pass-
ing of objects and their execution state) and weak mobility (passing only program or object
definitions) as classifying element. Finally, the taxonomy includes access to information from
the base program via reflection as a classification element.

2.1.4 Aspect model

Aspects are often modeled as syntactic class-like units that define pointcuts, advice, methods,
and local state (fields for OO approaches). The defining part of the taxonomy for aspects is
structured as shown in table 2.4.

The first element in the hierarchy deals with the instantiation of aspects. Instantiation
may be defined by static declarations, e.g., aspects may define one instance per process, one
instance per class, one instance per object, or one instance per control flow. Alternatively,
this instantiation may also be determined dynamically at execution time. The model also
discuss the deployment mechanism and the deployment scope (where aspects are deployed).
Additionally, state sharing between aspect instances is an important issue. This sharing may
be between aspects in the same process, aspects in processes belonging to the same group,
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Taxonomy elements Values
Aspect model

Instantiation Declarative, imperative
Declarative

Per thread yes/no
Per class yes/no
Per object yes/no
singleton yes/no
Per cflow yes/no
Per binding yes/no

Deployment Dynamic, static, imperative
Deployment scope global,local, group of hosts, remote host

State sharing global, local, group, no
Weaving mechanisms static, load-time, framework-based

Table 2.4: Taxonomy for aspect models in distributed aspect-based systems

or aspects deployed in any process of the distributed application. Finally, the aspect model
proposes aspect weaving mechanism as a classifying issue.

Taxonomy elements Values
Aspect composition

Type Implicit: Non-deterministic, Deterministic, Undefined; Explicit
Mechanisms Precedence: partial, total; Operator; Program
Object Advice, aspect
Scope All, stateful
Expressiveness Finite-state, Turing-complete
Distributed guarantee yes/no

Table 2.5: Taxonomy for aspect composition models in distributed aspect-based systems

2.1.5 Aspect composition

The final part of the taxonomy deals with aspect composition. Two aspects that may match
the same join point in the executing application, the means provided to deal with this interac-
tion are defined by the composition model. Note that this is a limited notion of composition
and more general models are conceivable but have not (yet) been included in models for
distributed aspects. The composition taxonomy shown in table 2.5.

The first classification element in the taxonomy is the type of the composition. Most
aspect-based languages provide implicit ways to deal with interactions. For example, by
defining the order in which the weaver weaves aspects may determine how they are com-
posed. The model may also provide means to explicitly define compositions or leave the
conflict unresolved. For example, AspectJ provides a mechanism to define precedence but if
precedence is not declared the application order of interacting advice is undefined.

The taxonomy also proposes the composition mechanisms themselves as classification ele-
ment. Several mechanisms may be used to deal with composition in aspect-based approaches.
AspectJ proposes a precedence language. EAOP [DFS05] provides operators to compose as-
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pects. JASCO [SVJ03] provides program hooks to deal with composition at the program
level. DyMAC proposes aspect compositions in the application description over a component
framework (a la J2EE).

Additionally, these mechanisms may be applied over different elements like aspects or
pieces of advice (see category Object), they may also have different scopes (see category
scope). The scope of the composition may be the whole execution of the program or be
defined according to the current state of the program (stateful). The composition approaches
can also be classified according to the expressiveness of the composition mechanism, ranging
from approaches comparable to finite-state languages to Turing-complete approaches.

Finally, the taxonomy includes an element related to the coherent control of composition
over aspects running in multiple sites. AWED implements such control in its model.

2.1.6 The complete taxonomy

Table 2.6 shows the complete taxonomy.

2.2 Manipulation of distributed infrastructures using sequen-

tial aspect languages

One of the main research question of Aspect Oriented Programming (AOP) [KLM+97] is
what language constructs allow programmers to well modularize crosscutting concerns. Sev-
eral proposals have been presented to address this question, even before the term AOP was
introduced (see for example composition filters [AWB+94], and work on meta-object proto-
cols and reflection [KdRB91, MWY91, Chi95, KFRGC98]). In 1997 Kiczales at al. proposed
Aspect Oriented programming to address encapsulation of crosscutting concerns [KLM+97]
using aspect oriented languages. In general, an AOP language is defined on top of a base
language (e.g., Java [GJSB05]) used to express the actual application, and an advice lan-
guage to express the crosscutting concern, and a pointcut language to compose and to co-
ordinate base functionality and crosscutting concerns. These ideas have been embodied in
AspectJ [KHH+01] in 2001.

This section first introduces the basic mechanisms of aspect oriented programming by
means of an analysis of AspectJ, then briefly introduces more advanced concepts of other se-
quential aspect languages, and then considers their application to distributed infrastructures.

2.2.1 AspectJ languages’ structure

AspectJ is a general purpose aspect oriented language that extends the Java programming
language. AspectJ introduces aspects as syntactic units to modularize crosscutting concerns.
An aspect is basically composed of pointcut definitions, defining points of interest in the
base program, and pieces of advice. Pointcuts are defined using a pointcut language that
semantically denotes sets of execution events (i.e., join points). The pieces of advice bound
to such pointcut definitions are method-like constructs that define what to do when one of
the points of interest is reached. An advice can, in particular, execute some code before, after
or instead of a join point. We now present in some detail these basic mechanisms. We do not
consider advanced mechanisms here, such as aspect instances and application of aspects to
other aspects: these will be introduced later as needed.
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Taxonomy elements Values
Communication model

Communication mechanisms
Remote method call yes/no
Join point propagation yes/no
Controlled remote advice invocation yes/no
Group communication yes/no

Parameter passing modes by reference and by copy
Synchronization model

Synchronization mechanisms synchronous control, non-blocking, or futures
Communication timing synchronous, asynchronous with rendezvous,

asynchronous FIFO, asynchronous without guarantee
Asynchronous hypothesis yes/no

Causal predicates yes/no
Remote pointcut model

Expressiveness:
Atomic yes/no
Sequential control flow yes/no
Distributed control flow yes/no
History based yes/no

Finite-state yes/no
Vpa yes/no
Context-free yes/no
Turing-complete yes/no

Remote join point support
All pointcuts yes/no
Location Single host, Multiple host groups

Paradigm:
Object-oriented yes/no
Functional yes/no
Logic yes/no

Remote advice model

Filtering and ordering yes/no
Location Single host, Multiple host groups
Synchronization mode Synchronous and asynchronous
Parameter passing modes by reference and by copy

Parameter passing mechanism tag language, object graph query language
Proceed support yes/no

Remote host only yes/no
Remote and originating host yes/no

Synchronization mechanisms Blocking, transparent futures
Mobility Strong, weak
Reflective access to program state yes/no

Aspect model

Instantiation Declarative, imperative
Declarative

Per thread yes/no
Per class yes/no
Per object yes/no
singleton yes/no
Per cflow yes/no
Per binding yes/no

Deployment Dynamic, static, imperative
Deployment scope global,local, group of hosts, remote host

State sharing global, local, group, no
Weaving mechanisms static, load-time, framework-based

Aspect composition

Type Implicit: Non-deterministic, Deterministic, Undefined; Explicit
Mechanisms Precedence: partial, total; Operator; Program
Object Advice, aspect
Scope All, stateful
Expressiveness Finite-state, Turing-complete
Distributed guarantee yes/no

Table 2.6: Taxonomy for distributed aspect-based systems

Aspects

As mentioned before the aspect is the main unit of encapsulation in AspectJ. An aspect is a
class-like construct that is composed of method, variable, pointcut and advice declarations.
Figure 2.1 shows a simple aspect. Aspects, as Java classes, may have package and import
declarations, the figure illustrates that the aspect belongs to package edu.emn.awed, see
line 1. Line 3 shows the declaration of the aspect InvokeAspect with the access modifier
public. In the aspect body, a protected integer variable i is declared (see line 5). Between
lines 7 and 9, the public method increaseCounter is defined. A pointcuts definitions is
defined in lines 11 to 12. The keyword pointcut starts the definition of the invokeCall

pointcut with an Object argument. After the colon a pointcut expression is defined. Here,
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1 pa
kage edu.emn.awed;

2

3 publi
 aspe
t InvokeAspect {

4

5 int i = 0;

6

7 private void increaseCounter(){

8 this.i++;
9 }

10

11 point
ut invokeCall(Object o):

12 
all(* org.jboss.cache.interceptors.*.invoke(..)) && args(o);
13

14 before(Object o): invokeCall(o){

15 increaseCounter();

16 }

17 }

Figure 2.1: AspectJ’s aspect example

the expression defines a pointcut that matches all the calls to method invoke in any class of
package interceptors. Note that the parameter of the call pointcut is a method pattern,
and the pointcut matches each method call whose signature matches that method pattern.
Finally, lines 14 to 16 show an advice definition. Here, the advice increases the counter before
each call matching the pointcut definition.

Pointcut language

Pointcuts are language constructs that typically quantify over different execution events. They
may be defined using various mechanisms, frequently in terms of sets or logical expressions
that match join points [GB03]. The pointcut language of AspectJ [KHH+01] quantifies over
specific statically defined points of the program structure e.g., method calls, and based on
some dynamic conditions, e.g., a method call occurring within the control flow of another
method call.

Figure 2.2 shows an excerpt of AspectJ grammar defining basic pointcut constructors.
AspectJ proposes a model that includes pointcuts to match method calls, method execu-
tions, object initialization, field referencing and setting, and advice execution. Each of these
join points have associated information about the executing object (extracted using the this

pointcut), the target object (extracted using the target pointcut), and, in the case of meth-
ods, the arguments (args pointcut). Additionally, the model proposes pointcuts that relate
pairs of join points, thus these pointcuts are triggered when a relation between two pointcuts
is fulfilled. In particular, AspectJ the model proposes pointcuts to match join points in the
control flow of other join points (see pointcuts cflow and cflowbelow), and pointcuts to
match join points inside methods, constructors, and class definitions (see pointcuts within

and withincode). Finally, the model proposes an if pointcut that is parameterized with a
boolean condition, and pointcuts predicating over annotations (not further described here).
A detailed description of this language is outside the scope of this thesis, the interested reader
may read the documentation found in [asp08].

The following excerpt of AspectJ grammar defines pointcut expressions:
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Pc ::= call(MethodOrConstructorPattern)
| execution(MethodOrConstructorPattern)
| get(FieldPattern)
| set(FieldPattern)
| handler(TypePattern)
| initialization(ConstructorPattern)
| preinitialization(ConstructorPattern)
| staticinitialization(TypePattern)
| adviceexecution( )
| this(TypeOrIdentifier)
| target(TypeOrIdentifier)
| args(FormalsOrIdentifiersPattern)
| cflow(PcExpression)
| cflowbelow(PcExpression)
| within(TypePattern)
| withincode(MethodOrConstructorPattern)
| if(BooleanJavaExpression)
| AnnotationPointcut

Figure 2.2: Excerpt of AspectJ grammar defining basic pointcut constructs

PcExpression ::= Pc
| !PcExpression
| (PcExpression)
| PcExpression && PcExpression
| PcExpression || PcExpression,

A primitive pointcut (Pc) defines a set of join points in the execution of a program. Pro-
grammers can then construct expressions using union (||), intersection (&&), and complement
(!).

For example, a method call join point can be matched using a call primitive pointcut:

call(Object edu.emn.Client.invoke(String))

This pointcut definition matches the calls to method invoke in class Client in the package
edu.emn. A method call is only picked out if the method signature matches exactly the
method pattern definition. In the previous example, the call pointcut only matches the
method call if it returns an object of type Object and has one argument of type String. We
can restrict the set of join points, e.g., , as follows:

call(Object edu.emn.Client.invoke(String)) && this(edu.emn.Controller)

This pointcut matches only the calls to method invoke that are made by an objects of static
type Controller.

The following is an example of the cflow pointcut:

call(Object edu.emn.Client.invoke(String)) &&
cflow(call(∗ edu.emn.Controller∗(..))),

picks out the calls to the method invoke that occur in the control flow, i.e., between the
entry and exit of calls to methods of an object of static type Controller.
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Advice

AspectJ advice is a method-like construct that is triggered when a join point is matched by
an associated pointcut definition. AspectJ advice allows advice to be executed before, after
or instead of a specific joinpoint. The proceed pseudo-method is used to call the matched
join point (in case it is a method call or execution) form advice. Furthermore, reflective
capabilities can be used to access specific information relative to the join point and the
aspect application. For example, a programmer defining an advice triggered by a method call
may access the signature of the method call and change its target object and its arguments.

A simple example of an advice definition is the following:

Object around(Object o): invokeCall(o){
Class callerObjectType = thisJoinPoint.getThis().getClass();
Class targetObjectType = thisJoinPoint.getTarget().getClass();
increaseCounter(callerObjectType, targetObjectType);
return proceed(o);

}

The code shows an around advice (i.e., executed instead of the triggering call point) that
returns an object. The two first lines in the body of the advice use the thisJoinPoint

object to access the reflective information of the current join point, in this case to extract the
information about the caller object and the target object. Then the advice calls the method
increaseCounter that counts the calls between objects of different types (see parameters
callerObjectType and targetObjectType). Finally, the method calls the original behavior
of the current joinpoint using the proceed keyword and returns the corresponding value.

2.2.2 History-based aspects

AspectJ-like languages propose a set of atomic pointcuts (see [Süd07]), i.e., pointcuts that
match individual unrelated events in the program execution. Such pointcuts do not permit
to predicate over the history of events (In AspectJ the cflow, and in some sense, the if

pointcuts are the only exceptions). In contrast, Douence et al. [DFS02, DFS05], Walker and
Viggers [WV04], and Allan et al. [A+05], among others, have explored language features
to predicate over event relations. These kind of stateful relations are particularly useful to
handle crosscutting in heterogeneous distributed algorithms as shown in chapters 5 and 6 of
this document. This section briefly presents the main characteristics of such history–based
aspect languages by first introducing one of the first such approaches, regular aspects, and
then a more recent, influential one,tracematches. Other work in the area has addressed non-
regular, non turing-complete pointcut languages [NS06, WV04]. For example, Nguyen and
Südholt propose an aspect language based on visibly pushdown automata. However, since our
work is not based on such explicit representation of non–regular aspects, we do not consider
these approaches any further.

Regular aspects

In 2002, Douence, Fradet, and Südholt [DFS02, DFS05] introduced stateful aspects as part
of a framework for the resolution of aspects interactions. This model was based on a form
of regular expressions between execution events to be used as triggering condition of advice.
Concretely, this model abstracts the base program into a sequence of events, and the weaver
is defined as a monitor that applies each aspect to appropriate events of the base execution.
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An example of an aspect language instantiating such model is defined using the following
grammar (presented by Douence et al. in [DFS05]):

A ::= C ⊲ I; A ;sequence
| C ⊲ I; var ;end of sequence
| A1 � A2 ;choice

The grammar allows recursive definition of aspects, sequence composition of aspects, and
aspect composition by deterministic choice. The basic aspect sequence is defined by the form
C ⊲ I; A, where C stands for an atomic pointcut, I (inserts) stands for an advice, and A is
the next aspect in the sequence. The form C ⊲ I; var allows the basic case for recursion and
marks the end of a sequence. Finally, A1 � A2 presents a prioritized choice operator: A2 is
applied only if A1 cannot be applied.

As a concrete example consider a replication aspect for a group of hosts:

RplStart = StartRpl(group) ⊲ skip ; RplAsp

ReplAsp = (StopRpl(group) ⊲ skip ; RplStart) �

((putValue(x) ⊲ rManager.put(x,group) � getValue(x) ⊲ skip); RplAsp)

The aspect RplStart defines an aspect sequence that waits for the method call StartRpl
to start replicating in a specific group of hosts, the group name is bound to the free variable
group. The advice skip defines an action that does nothing. The aspect ReplAsp defines a
choice composition: the first branch waits for a join point stopping replication behavior on
the specific group. If this branch is not matched, the right branch waits for a put (event put
value) or get (event get value) method calls. If a put value method call is matched, the value
is replicated to the specific group, calls to get value are ignored.

In this Ph.D. work we apply and extend this model in a distributed setting. We provide,
in particular, different forms of distributed sequence pointcuts that permit to predicate over
regular sequences of distributed events. Furthermore, an if pointcut allows the matching of
turing–complete protocols.

Tracematches

Alan et al. [A+05] have presented another aspect-based language feature, called tracematch,
to match regular patterns of events in a program execution. This construct provides more
extensive support for free variables than regular aspects [DFS05]. In particular, tracematches
allow events to be matched not only based on the event kind but also on the values associated
to the free variables. A tracematch is defined as follows:

TraceMatch ::= [perthread] tracematch(VarDecl)
{
TokenDcl +
REGEX
MethodBody
}

In the tracematch declaration the perthread keyword indicates if the matching is done over
a particular thread (the default behavior matches events over the entire application). The
tracematch keyword indicates that a tracematch is being defined with a list of free variables



18 CHAPTER 2. STATE OF THE ART

(non terminal VarDecl). In the body of the tracematch three components are defined: the
symbols of the regular expression (This is in contrast to regular aspects and allows to forbid
matching of events that are not declared as symbols), a regular expression, and the method
that will be triggered when the final symbol in the regular expression is matched. Symbols
are defined as follows:

TokenDcl ::= sym Name Kind : Pointcut ;

The symbols are named (non terminal Name) and then defined using pointcuts, e.g., a method
call, and a reference point for the pointcut. A reference point may refer to the point before,
or after a method call, or even after a method return or throwing an exception.

The following example shows how cache replication can be supported using tracematches.

tracematch (Group g, Cache c, Value v){
sym start replication after:

call(∗ Cache.start(Group)) && args(g) && target(c);

sym replicate value after:
call(∗ Cache.put(Value)) && args(v) && target(c);

sym stop replication after:
call(∗ Cache.stop(Group)) && args(g) && target(c);

start replication replicate value∗
{

replicationManager.put(g, v);
logManager.log(c,g,v); // replication action logged

}
}

The example defines in its header three variables: g of type Group, c of type Cache, and v of
type Value. Three symbols are defined. First, symbol start replication matches all the
calls to the method start, on objects of type Observer, with an argument of type Group

as parameter. The pointcut args(g) binds the value of the argument to g, and the pointcut
target(c) binds the target object of type cache to c. The second symbol, replicate value,
matches all the calls to the method put on the object of type Cache. Because of the use of
the pointcut target(c) the call is only matched if the value corresponds to the previously
bound value. The third symbol matches all the calls to method stop. This pointcut only
matches if the target object of type Cache and the parameter of type Group are the same as
those bound to c and g.

Finally the tracematch defines the regular expression and the advice to be applied when the
last symbol of the regular expression is matched. The regular expression matches one symbol
start replication and zero or more symbols replicate value. The symbol stop replication

is part of the alphabet but not of the regular expression definition. This symbol serves to
stop the matching of the regular expression.

An interesting point of this approach is that a single tracematch definition can handle
replication of multiple cache objects over different groups of replication, supporting even
dynamic group creation. However, the advice is bound only to the last symbol on the regular
expression, limiting the expressivity and power of the defined aspects. Furthermore, the
pointcuts match only local events.
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2.2.3 Distribution and concurrency using sequential AOP

Distribution and concurrency have been early identified as crosscutting concerns. However,
it has been shown that sequential AOP, in particular AspectJ, is not sufficient to achieve the
modularization of such concerns [SLB02, KG02].

Kienzle and Guerraoui [KG02] studied the implementation, using aspects, of concurrency
and fault safety in distributed systems. They argue that the use of AOP for such concerns
is hindered first by the need of a high degree of knowledge and expertise in concurrency, and
second by the semantic coupling between the modeled objects and the concurrency semantics,
i.e., implying a fundamental impossibility to separate concurrency from the modeled objects.

Similarly, Soares, Laureano and Borda [SLB02] showed that the separation of distribution
code into aspects using AspectJ over RMI based applications requires a high degree of knowl-
edge of the RMI internals. Furthermore, they show that simple conceptual solutions, like
wrapping and redirecting calls to remote objects cannot easily be expressed using sequential
aspect oriented languages. For example, consider a system with a single class serving the
requests of multiple clients. Such a system may be distributed by separating this class from
the middleware handling client requests (this is a typical architecture of web applications
implementing enterprise information system). An implementation seems quite simple to be
done using ASpectJ and RMI:

public aspect RemoteRedirectionAspect {

pointcut serverFacadeCalls(FacadeServer fs):
call(∗ FacadeServer.∗(..)) &&
!call(static ∗ FacadeServer.∗(..)) && target(fs);

Object around((FacadeServer fs): serverFacadeCalls(){
return proceed(remoteFS);

}
}

The aspect defines a pointcut serverFacadeCalls that match all the calls to non-static
methods in FacadeServer objects. These calls are then wrapped and redirected to a remote
reference of the FacadeServer objects (remoteFS). However this aspect won’t work because,
due to RMI restrictions, the type of remote objects like remoteFS must be a remote interface
and not the original FacadeServer type. To solve this problem, a programmer could make
FacadeServer implement a remote interface, changing the original code and add some RMI
code to the application. Another solution consists in a wrapping advice for each server
method and calling the method explicitly in the remote object remoteFS. However, in this
case maintenance and extension becomes tedious and error prone (programmers will need to
implement an advice for each method on the server). Authors, selected the second approach
for their experiments. Similar problems apply to applications with more complex distributed
requirements [CC04].

Colyer and Clement have studied the applicability of AspectJ over large-scale middle-
ware [CC04] with heterogeneous distributed requirements. The authors presented an exper-
iment to refactor specific requirements into separate modules from a middleware product
line. They attempted to separate the EJB support from application server implementations.
Thus, the main idea was to produce application servers, e.g., web application servers, with
and without EJB support by pushing a switch in the software product line. The authors
have found simplifications in the application structure, and improvements in performance
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and memory footprint in the generated applications. However, these results do not include
metrics over the modularization structure of the refactored code. It is unclear in particular,
if the refactored code was suffering of crosscutting code due to transactions and distribution.
Furthermore, the authors do not report on the presence of implicit communication patterns
that lead to crosscutting code in the generated code (e.g., see chapter 5).

Finally, several other approaches have adopted sequential AOP on top of distributed
frameworks, e.g., JBoss AOP [JBo08a] and Spring AOP [spr08]. A common problem of these
frameworks is that the binding between pointcuts and advice is made at configuration time in
XML files. These files tend to be verbose, and complex to debug and maintain. Additionally,
none of these frameworks present pointcut expressions sensible to localization of events as
advocated in this thesis.

2.2.4 Classification and discussion

In this section we have analyzed several non sequential AOP systemas and how they are
used to implement distributed applications. We now present the classification of four of
these approaches with respect to the taxonomy presented in section 2.1. Table 2.7 shows the
classification of the systems: AspectJ using RMI for distribution, Stateful aspects using RMI
for distribution, TraceMatches using RMI for distribution, and JBoss AOP (i.e., AOP over a
J2EE framework).

These approaches are all based on the remote method invocation communication mecha-
nism, inherited to RMI and J2EE–compliant frameworks. Similarly and even though, RMI
and J2EE frameworks support by–reference argument passing, we have classified the pass-
ing mechanism as by–copy : this is the default behavior, and by–reference behavior requires
programmers to modify invasively their code, concretely, by implementing special remote
interfaces explicitly in the code. Synchronization mechanism are reused also from the base
language. In this case the approaches deal with Java’s monitors and the implicit synchronous
behavior of remote method invocation.

Regarding the pointcut model, the four aspect systems propose sequential pointcuts that
predicate over local join points. Such pointcut models are differentiated only by the level
of expressivity. Most notably, atomic vs. stateful aspects (EAOP and stateful aspects) that
support the definition of regular expressions over events in the execution of the application.

None of these aspect systems has a remote advice model. All the advice are locals and
distributed behavior can only be achieved using the underlying distribution framework.

Most of these systems include several mechanism for aspect instantiation. Having only the
number of supported “per” clauses as differentiator. However, JBoss AOP allows programmer
to define instantiation factories that can be defined by programmers, thus we have included in
the table such value as imperative. Additionally, the models define the deployment mechanism
ad a local deployment scope, only systems supporting J2EE are considered to have distributed
deployment.

Finally, regarding composition, only local composition mechanisms are provided. The
table indicates the different mechanism for each approach. Most notably, stateful aspects use
operators to define compositions of different aspects over a particular join point, while AspectJ
+ RMI and JBoss + J2EE use a precedence mechanism. Tracematches does not include a
composition mechanism. The expressiveness of the composition mechanisms is considered as
similar to those generated by star-free languages, except for the EAOP approaches.
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AspectJ + EAOP + TraceMatch + AOP +
Taxonomy elements RMI RMI RMI J2EE

Communication model

Communication mechanisms
Remote method call yes yes yes yes
Join point propagation no no no no
Controlled remote advice invocation no no no no
Group communication no no no no

Parameter passing modes by copy by copy by copy by copy

Synchronization model

Synchronization mechanisms monitors monitors monitors monitors
Communication timing synchronous synchronous synchronous synchronous

Asynchronous hypothesis no no no no
Causal predicates no no no no

Pointcut model

Expressiveness:
Atomic yes yes yes yes
Sequential control flow yes yes yes yes
Distributed control flow no no no no
History based no yes yes no

Finite-state no yes yes no
Remote join point support

All pointcuts no no no no
Location no no no no

Paradigm:
Object-oriented yes yes yes yes

Remote advice model

Filtering and ordering no no no no
Location no no no no
Synchronization mode Synchronous synchronous synchronous synchronous
Parameter passing modes n/a n/a n/a n/a
Proceed support no no no no

Remote host only no no no no
Remote and originating host no no no no

Synchronization mechanisms Blocking Blocking Blocking Blocking
Mobility n/a n/a n/a n/a
Reflective access to program state yes yes yes yes

Aspect model

Instantiation Declarative Declarative Declarative Imperative
Declarative

Per thread yes no yes yes
Per class yes no no yes
Per object yes no no yes
singleton yes yes yes yes
Per cflow yes no no no
Per binding no no yes no

State sharing no no no no
Deployment static static static dynamic

Deployment scope local local local distributed
Weaving mechanisms static static static load–time

Aspect composition

Mechanisms Precedence Operator undefined precedence
Object aspect aspect aspect aspect
Scope All stateful All All
Expressiveness Star-Free Finite-state Star-Free Star-Free
Distributed composition no no no no

Table 2.7: Classification of sequential aspect-based systems for the implementation of dis-
tributed systems
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2.3 Aspect oriented programming for distributed applications

We now turn to AOP systems that include explicit mechanisms for distribution at the aspect
language level. First, we discuss domain-specific languages for the separation of synchroniza-
tion and distribution concerns. In particular, we analyze the D framework of languages pro-
posed by Lopes [VL97] (Java, RIDL, and COOL). We then present aspect oriented frameworks
that provide AO mechanisms for distribution (JAC [PSD+04] , ReflexD [TT06]). Finally, we
discuss a set of language based approaches: DyMAC [LJ06] that extends J2EE with AOP
for distribution, remote pointcuts [NST04], and recent approaches dealing with imperative
deployment and scoping of distributed aspects.

2.3.1 Domain specific languages

Lopes has proposed D [VL97], a framework of three languages to modularize concurrency
and distribution issues in distributed applications. This AO framework used Java as the base
language and two additional domain specific languages: COOL and RIDL. Using COOL pro-
grammers define syntactical units called coordinators to handle concurrency (trough mutual
exclusion specifications). RIDL provides syntactical units called portals to address problems
of remote invocation and data passing between execution spaces. These two languages pro-
vide an example of how, using separate languages for specific concerns, we can modularize
crosscutting concerns. Note that this framework weaves three programs (a Java program,
a COOL program, and a RIDL program) into one executable. We now present the main
characteristics of each of the two domain-specific aspect languages.

COOL

COOL is a language that deals with mutual exclusion, synchronization state, guarded sus-
pension, and notification. Using COOL, programmers write coordinators that are associated
to instances of the classes they coordinate. A coordinator is defined as follows:

Coordinator ::=
[per class] coordinator ClassList
CoordinatorBody

If the optional per class declaration is omitted coordinators are associated to one specific ob-
ject by default. Such coordination is referred to as “coordination per object” and implies that
there will be a coordinator instance for each object of the classes in the class list (non-terminal
ClassList). On the other hand, if per class is used, one coordinator is associated to all the
objects of the classes in ClassList. The coordinator’s (non-terminal CoordinatorBody) body
may include condition variables, regular variables, self exclusive declarations on methods,
declarations on mutually exclusive methods, and method managers (used to define guarded
suspension and notifications of thread,i.e., used to define method coordination).

Figure 2.3 shows an example of a coordinator for the ConnectionPool class, a typi-
cal component of information systems in distributed setting (e.g., a data base connection
pool). The coordinator uses the default instantiation (per object). The first line in the
body of the coordinator declares the methods getConnection and releaseConnection,
from ConnectionPool, as self exclusive, i.e., in the same object neither putConnection nor
takeConnection can be executed by more than one thread at a time (e.g., two threads
cannot execute the getConnection method concurrently). Line 3 defines getConnection
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1 
oordinator ConnectionPool {

2 selfex getConnection, releaseConnection;

3 mutex {getConnection, releaseConnection};

4 condition empty = false, full = false;
5 getConnection: requires !empty;

6 on_exit {

7 if (full) full = false;
8 if (usedConnections == capacity) empty = true;
9 }

10 releaseConnection: requires !full;

11 on_exit {

12 if (empty) empty = false;
13 if (usedConnections == 0) full = true;
14 }

15 }

Figure 2.3: COOL coordinator example

Portal ::= portal ClassName ’{’PortalBody ’}’

PortalBody ::= {RemoteMethodsDecl} [default: TransferableTypeList]

RemoteMethodsDecl ::= ReturnType MethodName(ParameterList) [’{’ ObjectTranferDecl ’}’]
ReturnType ::= JavaType | void

ObjectTransferDecl ::= ObjectId : Mode
ObjectId ::= Id | return

Mode ::= gref | copy [’{’{CopyDirective}’}’]
CopyDirective ::= ClassName SelectionPrimitive VariableList
SelectionPrimitive ::= only | bypass

VariableList ::= VariableName | all.TypeName

Figure 2.4: RIDL language (excerpts)

and releaseConnection as mutually exclusive, i.e., both methods cannot be executed con-
currently in one object. In lines 5 to 9 the coordinator defines a method manager for the
getConnection method. This method manager requires the pool to have at least one con-
nection (!empty). Additionally, on the method exit the manager updates the condition
variables depending of the values found in variables usedConnections and capacity from
ConnectionPool. Note that full and empty are defined as condition variables in line 4, they
can thus be used for guarded suspension purposes. Finally, the coordinator defines a method
manager for method releaseConnection in lines 10 to 14.

RIDL

RIDL is a domains specific aspect language for remote interfaces used to encapsulate code re-
lated to remote invocation and data transfer between different execution spaces. The grammar
shown in figure 2.4 shows the essentials of the RIDL language. A RIDL program is composed
of a set of portals. Portals are syntactic units defining remote methods, parameter passing,



24 CHAPTER 2. STATE OF THE ART

1 portal BankSystem {

2 boolean fundTransfer(Account originAccount, Account account, Value value) {

3 //Only strings are copied.

4 originAccount: 
opy {Account only all.String;}

5 account: 
opy {Account only all.String;}

6 value: 
opy {Value;}

7 };

8 Value withdraw(Account account, Value value){

9 //for return object, exclude this edge; this excludes the copies

10 // and breaks nasty cycle.

11 return: 
opy
12 account: 
opy {Account only id}

13 value: 
opy
14 };

15 Value credit(Account account, Value value) {

16 //for return object copy the return value

17 return: 
opy
18 // for Account, bypass the amount

19 account: 
opy {Account bypass amount;}

20 };

21 }

Figure 2.5: RIDL portal example

and distributed behavior of objects. A portal is declared using the terminal portal, an exist-
ing java class name, and a portal body. A unique portal instance is associated to each instance
of the defining class. The portal body may contain declarations of remote methods, and a
default rule for parameter passing in remote calls (see non-terminal RemoteMethodsDecl).
Such remote method declarations define a subset of the publicly available methods of the
defining class. The methods declared in the body will represent the remote interface of the
respective object. Besides the method signature (i.e., return type, method name, and param-
eters), the remote declaration may be extended with a set of explicit rules defining parameter
passing modes for the remote method declaration. Those rules can predicate over method
return values and parameters. Concretely, programmers may decide that objects are to be
passed by reference (see terminal gref) or by copy (terminal copy). Additionally, the copy

directive allows programmers to control how the object graph with the respective object as
root is serialized and transfered. In particular, programmers can state which fields in the
respective object are copied, using the only directive, or which fields should not be copied,
using bypass.

Figure 2.5 shows an example of a RIDL portal for a bank system. The example header
defines the portal for objects of type BankSystem (see line 1). The body declares as remote
three different methods from BankSystem class: fundTransfer, withdraw, and credit. Each
declaration is modified by data passing directives. For example, in the first remote method
declaration the statement in line 4 states that only the fields of type string from objects of
type Account will be included, when copying the parameter originAccount. Similarly, the
definition as a remote method of withdraw (lines 8 to 13) states that the copies of objects
of type Account only contain a copy of the id field (see line 12) in the copied object graph
having as root parameter account. Finally, in the declaration of method credit the field
amount from classes Account is bypassed, i.e., not serialized (see line 20) when the account
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value is copied.

Classification

Table 2.8 shows the classification of the D framework according to the taxonomy presented
in section 2.1. From the table one of the differentiating features of this approach is the object
graph query language that is used to have a fine grained access to the passing by copy behavior.
Additionally the language proposes remote method calls as distribution mechanism, mutual
exclusion for concurrency, and synchronous communication between processes. The pointcut
language is restricted to atomic methods executions. Finally, the framework proposes static
deployment, per class and per object instantiation, static weaving, and limited means for
composition.

2.3.2 Frameworks for distributed AOP

Many aspect-based approaches have been implemented as frameworks. Frameworks, in gen-
eral are provided as APIs over an existing programming language. In contrast to programming
languages, the use of frameworks typically provide less support for compile time error check-
ing, are more verbose and more difficult to understand. They do, however, not require users
to learn a new programming language and are often simpler to extend by new functionality.

Several frameworks providing AOP facilities for distributed applications have been pro-
posed. In this section we present frameworks of two different kinds: first, JAC [PSD+04] and
ReflexD [TT06], which provide language extensions on top of Meta Object Protocols (MOPs)
and reflective properties of languages; second, DyMAC [LJ06], which extends a distributed
component by AOP features.

JAC

Pawlak et al. [PSD+04] introduced JAC (Java Aspect Components) as a framework for as-
pect oriented programming of distributed applications. JAC extends Java’s MOP to provide
mechanisms to create aspects, pointcuts, and wrappers to implement crosscutting concerns.
Additionally, JAC provides a composition mechanism to allow programmers to configure pre-
defined aspects into existing applications. The main constituents of the JAC framework are
Aspect Components. Aspect components are hosted in JAC containers that are remotely ac-
cessible and define modifications applied to a set of classes in the distributed base application.

Pointcuts are defined as part of aspect components through pointcut methods (aspect
components extend framework classes and methods named as pointcut are inherited meth-
ods). The following code excerpt shows a pointcut definition:

pointcut(”ALL”,”Cache”,”put:void || get:void”,
”MyWrapper”,null,true);

The pointcut matches the methods put and get (third parameter), in classes of type Cache

(second parameter), in all objects (first ALL) independently of their name (in JAC everything
may be named, e.g., objects or hosts). Additionally it defines a wrapper class MyWrapper

that contains the wrapping method invoke that defines the behavior, i.e., advice. The last
parameter, the boolean value, defines the instantiation method of the wrapping objects. The
default of this parameter is false, and defines a single wrapper instance (singleton), a value
true states that a wrapper instance is associated to each matched method. Note that JAC
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Taxonomy elements D framework

Communication model

Communication mechanisms
Remote method call yes
Join point propagation no
Controlled remote advice invocation no
Group communication no

Parameter passing modes by reference, by copy

Synchronization model

Synchronization mechanisms mutual-exclusion
Communication timing synchronous
Asynchronous hypothesis no

Causal predicates no

Remote pointcut model

Expressiveness:
Atomic yes, only method execution
Sequential control flow no
Distributed control flow no
History based no
Remote join point support no

Paradigm:
Object-oriented no
Functional no
Logic no

Remote advice model

Filtering and ordering no
Location no
Synchronization mode Synchronous
Parameter passing modes by reference and by copy

Parameter passing mechanism tag language and object graph query language
Proceed support no
Synchronization mechanisms Blocking
Mobility no
Reflective access to program state yes

Aspect model

Instantiation Declarative
Declarative

Per thread no
Per class yes
Per object yes
singleton no
Per cflow no
Per binding no

State sharing no
Deployment static

Deployment scope local
Weaving mechanisms static

Aspect composition

Mechanisms undefined
Distributed guarantee no

Table 2.8: Classification of D as an aspect-based systems for distribution

allows to create complex expressions using logical operators and regular expressions. Finally,
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the null parameter corresponds to a non-specified exception handler.)4

In JAC, aspect components are distributed in order to define distribution behavior. Thus,
pointcut definitions may contain regular expressions over the host names in an additional
parameter (hosts are named at application startup time). For example, an extended version
of the previous example could be:

pointcut(”cache#0”,”Cache”,”put:void || get:void”,
”MyWrapper”, ”host0” ,null,true);

In this case the additional parameter with value "host0" is a regular expression over the
names of hosts. The pointcut is only applied if the aspect is in host with name host0. Hence,
aspects are not aware of actions taken in remote hosts.

Additionally, distribution is achieved using remote method calls. Figure 2.6 shows an
example of an aspect component for replication. The component is declared as a Java class
extending the AspectComponent class. In the constructor (line 3 to 9) of this class the pointcut
is defined on line 7. This pointcut matches the calls to the methods put and get in objects
of type Cache and with name cache#0 (a replica of this object with the same name on each
host is created at deployment time).

Then, an inner class ReplicationWrapper is defined (lines 12 to 40). This class extends
the Wrapper class and implements the replication behavior. The class declares the method
invoke (lines 16 to 18) that is called by default if a join point is matched, this method
redirects the call to the method replicate (lines 20 to 39). The replicate method gets
remote references of the replicas of the wrapped object (i.e., object with name cache#0 on
each host) into the vector replicas (line 22). Then, in a for loop, remote method invocations
are performed using reflective access to information (lines 31 to 35). Finally, the original join
point is invoked on line 38. Note that using the proceed at the end of the method replicate

simulates an advice defined as a before advice.
This framework includes support for distributed deployment and management of compo-

nents. However, the activation behavior of advice restricts its expressive power and makes
the remote invocations as verbose as those of systems without explicit distributed support.
Note that AWED provides a similar mechanism for advice activation, based on host groups,
by means of the on pointcut. However, it also provides pointcuts aware of remote events,
thus augmenting the expressive power and simplifying implementation of remote invocation.

ReflexD

Reflex is a library for structural and behavioral reflection in Java [TNCC03] that has evolved
into a kernel for multi-language AOP [TN05]. ReflexD [TT06] is an extension of this frame-
work to support the implementation of distributed AOP approaches.

The Reflex model for behavioral reflection. Links, hook sets, and meta objects are
the main elements in the model of behavioral reflection in Reflex. Links bind a set of join
points (a hook set) to a meta objects. A hook set is defined as a condition over reifications of
language elements, e.g., classes, fields, methods, method invocation, hosts, or constructors.
The following statement shows a pointcut example in Reflex:

Hookset pcutCallsOnServer = new Hookset(MsgSend.class, new NameCS(”Server”),
new NameOs(”invoke”));

4API definitions were taken from JAC’s online documentation [Con08]
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1 publi
 
lass ReplicationAspect extends AspectComponent {

2

3 ReplicationAspect(){

4 // This aspect is applied on ALL hosts using the

5 // regular expression .*

6

7 pointcut("cache#0","Cache","put:void || get:void",

8 new ReplicationLoadBalancingWrapper(this, replicaExpr), ".*" ,null,true);
9 }

10

11 // Inner class defining the advice

12 
lass ReplicationWrapper extends Wrapper{

13 Vector replicas = null;
14 boolean retry = true;
15

16 publi
 Object invoke(MethodInvocation invocation){

17 return replicate((Interaction) invocation);

18 }

19

20 publi
 Object replicate(Interaction interaction) {

21 if (doFill) {

22 replicas = Topology.getPartialTopology(".*").getReplicas(

23 interaction.wrappee);

24 retry = false;
25 }

26 if (replicas.size() == 0) {

27 // none replicas where found, we perform a local call and

28 // will try to get them again on the next call

29 retry = true;
30 }

31 for(int i=0; i < replicas.size(); i++) {

32 ((RemoteRef) replicas.get(count++)).invoke(

33 interaction.method.getName(),

34 interaction.args);

35 }

36

37 // we perform always the local call

38 return proceed(interaction);

39 }

40 }

41 }

Figure 2.6: Aspect component for replication in JAC framework
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The example declares a new hook set that will match message send actions involving the
invoke method from class Server as target (see the name-based class and operation selectors:
NameCS and NameOs). The model provides a hierarchical representation of source code at the
byte-code level. Thus, a RPool objects serves as root of an object graph which has several
RClass objects representing classes which have access to their respective members,e.g., fields,
methods, constructors. All the elements provided as reified objects (e.g., RField, Rmethod)
may be used to define hook sets.

As mentioned before Reflex provides Links to bind hook sets to specific actions defined
in objects. A link for the previous hook set may be:

Link trace = Links.get(pcutCallsOnServer, new Tracer());
trace.setControl(Control.BEFORE);
trace.setCall(”Tracer”, ”log”, Parameter.THIS);

This example creates a trace link to bind the pcutCallsOnServer hook set to a new Tracer

meta object. Then the code sets the meta object control to BEFORE in order to execute the
advice before the corresponding matched execution point. Finally, the code explicitly defines
the method Tracer.log to be used as advice and the predefined parameter THIS is passed.

ReflexD. To address distribution issues, ReflexD provides extended features for hook sets,
links, and actions. In particular, a new element reifiying the executing process has been added
to the reflective model. Concretely, Reflex-enabled VMs (ReflexD processes) have been reified
into RHost objects. These objects allow programmers to define selectors that can then be
used in hook sets. A simple example of a selector is defined as follows:

public class DataBaseServerSelector implements HostSelector{
public boolean accept(RHost aHost){

return ”true”.equals(aHost.getProperties().get(”isDataServer”));
}

}

This selectors implements the HostSelector interface provided by ReflexD. Then, it evaluates
the property whether the given process is or is not a data base server. This constructor can
then be used as part of a hook set as follows:

Hookset pcutCallsOnDataServer = new Hookset(MsgSend.class, new NameCS(”Server”),
new NameOs(”invoke”), new DatabaseServerSelector());

The hook set pcutCallsOnDataServer matches all calls to method invoke on objects of type
Server on data base hosts.

Once a hook set is defined to match events in different hosts, a link can be defined to bind
an action to these events. The following code excerpt defines a link that binds the previous
host set to a remote meta object:

RHost host = RHosts.get(”178.1.3.4:4523”,”ReplicationServer”);
Link remoteTrace = Links.get(pcutCallsOnDataServer, new MODefinition.Class(”Replication”,

new ExecHost(host)));
remoteTrace.setCall(”Replication”, ”replicate”, new ByRef(Parameter.THIS)),

Parameter.HOST);

In this example, a remote Replication object is created on the replication server and bound
to the hook set pcutCallsOnDataServer. ReflexD follows Java’s Remote Method Invocation
(RMI) semantics for parameter passing, that is, only remote objects are passed by reference.
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1 ao_composition {

2 AdvisingComponent : ReplicationComponent;

3 Scope : Singleton;

4 Binding {

5 Pointcut {

6 Kind : execution ;

7 MethodMessage : * * ( . . ) ;

8 Caller {

9 Hostgroup : clients; }

10 Callee {

11 Interface : IERPService ;}}

12 Advice {

13 Kind : around ;

14 MethodMessage : ReplicateCallIntoReplicationService;

15 }}

16 }

Figure 2.7: Replication in DyMAC

The example also shows how ReflexD allows to set the advice class and the advice method
remotely and transparently, and how parameters are passed to the framework.

Additionally, ReflexD provides mechanisms to deal with scope, and instantiation of dis-
tributed aspects. ReflexD offers the instantiation of one aspect instance per object, per class,
and per host. Finally, ReflexD provides means to explicitly and implicitly instantiate the
action objects, including remote deployment.

DyMAC

Lagaisse and Joosen proposed DyMAC [LJ06] an aspect oriented middleware platform with
an aspect-component model for distributed applications. This framework address the problem
of software development by means of composition of third parties components (à la J2EE or
.NET), and the composition of crosscutting services by means of AO mechanisms. One of the
main feature of Dymac is that it provides aspect based abstractions (e.g., pointcuts, advice)
to deal with the elements of the component model. Thus, in contrast to, e.g., JBoss AOP,
aspects are not applied to the underlying class model, but instead to the component model.
To this purpose, DyMAC provides pointcuts to predicate over calls and executions of remote
method invocations, and advice defined in remote components.

Concretely, the model provides components to define advice behavior, and application
descriptors for aspect oriented compositions. These application descriptors are composed of a
set of bindings where each binding defines a pointcut, a component and an advising method,
and the kind of advice (before, after, around). Figure 2.7 shows how a replication service in
an Enterprise Resource Management (ERP) application can be implemented using DyMAC.
In line 3, the component is instantiated as a singleton (i.e., one instance in the distributed
system). Then the composition defines a pointcut that matches all method calls (lines 6 and
7), of all hosts from the clients host group that implement the IERPService interface. Finally,
the composition defines an around advice using the ReplicateCallIntoReplicationService
method from the ReplicationComponent .

The previous example shows already the main features of DyMAC. First, DyMAC pro-
poses several explicit scoping modes: one instance in the system (Singleton); one instance
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per host or host group, per application domain, per application, per component, and one in-
stance per logical (distributed) thread. Regarding the pointcut language, the DyMAC model
proposes elements to match method calls, and method executions. Additionally, pointcuts
allow to predicate over component context features, e.g., component names, or caller and
callee names. Similarly, pointcuts may evaluate infrastructure context information, e.g., host
names, or host groups. Regarding advice definitions, methods defined as part of components
are used. Such methods and components are bound to specific pointcuts stating a particular
kind of advice (around/before/after). Finally, the model proposes the inclusion of advising
restrictions that annotate the advice-methods (not shown in the example). Such annotations
are part of the component interface and are controlled automatically by the framework. In
particular, a component method may include the types of advice that it supports, requires, or
prohibits. Finally, the model provides remote proceed semantics, thus a proceed invocation
in an around advice will execute the method call or execution corresponding to the original
joinpoint.

2.3.3 Classification ad discussion

Table 2.9 shows the classification of the three frameworks for distributed AOP that we have
analyzed: JAC, ReflexD, DyMAC. One of the fundamental differences with AWED is that
join point matching in these approaches has local semantics (see item Remote join point

support). Thus join points are matched in local machines, even though advice may be
triggered on a remote host. For example, in JAC aspect and wrapper instances are replicated
on each host, and thus the distributed behavior is implemented based on this model: each
replica matches the join points in its respective host. In ReflexD, links bind pointcuts to
remote meta objects. This means that either the link is defined in the corresponding host or
it has to be defined in a link repository, hence augmenting the complexity of the deployed
architecture. DyMAC, on the other hand, matches remote calls in the component framework,
thus distribution of the underlying application is assumed, and is complemented with the
possibility of using remote components in the aspect compositions.

2.4 Language support for distributed aspects

Currently, there are few approaches that provide language support for distributed aspects.
In this section we discuss two notable exceptions: support for remote pointcuts and for the
instantiation as well as scoping of distributed aspects.

2.4.1 Remote pointcuts in DJCutter

In 2004, Nishizawa, Chiba, and Tatsubori [NST04] presented the DJCutter language, intro-
ducing the concept of “remote pointcuts” to designate pointcut constructs that could match
join points that occur remotely in a different application space.

DJCutter is an AspectJ-like compiler and runtime supporting explicit distribution. This
approach was the first to consider a model of remote join points where any join point, in-
dependent from their physical location, can be matched by a pointcut definition. (However,
the DJCutter model was rather limited in that advice was always executed on a specific cen-
tral host; this property was motivated by its intended application domain: remote testing).
DJCutter also provided aspect weaving at load time, and remote deployment of aspects.
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Taxonomy elements JAC ReflexD DyMAC
Communication model

Communication mechanisms
Remote method call yes yes yes
Join point propagation no
Controlled remote advice invocation no no no
Group communication no no yes

Parameter passing modes by ref., by copy by ref., by copy by ref., by copy
Synchronization model

Synchronization mechanisms mutual-exclusion mutual-exclusion mutual-exclusion
Communication timing synchronous synchronous synchronous
Asynchronous hypothesis no no no

Causal predicates no no no
Remote pointcut model

Expressiveness:
Atomic yes yes yes
Sequential control flow no yes no
Distributed control flow no yes no
History based no no no
Remote join point support no no no

Paradigm:
Object-oriented yes yes no
Component based yes no yes
Functional no
Logic no

Remote advice model

Filtering and ordering no no no
Location yes yes yes
Synchronization mode Synchronous Synchronous Synchronous
Parameter passing modes by ref., by copy by ref., by copy by ref., by copy

Parameter passing mechanism Framework default Framework defined Framework default
Proceed support yes yes yes
Synchronization mechanisms Blocking Blockin Blocking
Mobility no no no
Reflective access to program state yes yes yes

Aspect model

Instantiation Imperative Imperative Declarative
Mechanisms

Per thread no no yes
Per class no yes yes
Per object no yes yes
Per join point yes no no
singleton yes yes yes
Per cflow no no no
Per binding no no no

State sharing no no no
Deployment dynamic dynamic dynamic

Deployment scope global remote hosts group of hosts
Weaving mechanisms load–time load–time framework–based

Aspect composition

Mechanisms Precedence undefined undefined
Object aspect n/a n/a
Scope All n/a n/a
Distributed guarantee no no no

Table 2.9: Classification of AOP frameworks for distribution: JAC, ReflexD, and DyMAC

An example of a DJCutter pointcut for monitoring accounts withdrawals is the following:

pointcut withdrawMonitor(): call(void Account.withdraw(int))

Here, a call pointcut matches the calls to the method withdraw of class Account. The
pointcut will match such calls in any participating host. Hence, a single pointcut definition
written in a non-distributed fashion will serve to match join points in a distributed setting.
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The language provides the hosts pointcut constructor that allows matching to be restricted to
sets of hosts. Finally, DJCutter also introduced a notion of distributed cflow that was aware
of the distributed deployment. The implementation of this pointcut uses RMI customized
socket features to pass information of the call stack to the aspect server.

Taxonomy elements DJCutter

Communication model

Communication mechanisms
Remote method call yes
Join point propagation yes
Controlled remote advice invocation no
Group communication no

Parameter passing modes by reference, by copy

Synchronization model

Synchronization mechanisms mutual-exclusion
Communication timing synchronous
Asynchronous hypothesis no

Causal predicates no

Remote pointcut model

Expressiveness:
Atomic yes
Sequential control flow yes
Distributed control flow yes
History based no
Remote join point support yes

All pointcuts yes
Location Single host, all hosts

Paradigm:
Object-oriented yes
Functional no
Logic no

Remote advice model

Filtering and ordering no
Location no
Synchronization mode Synchronous
Parameter passing modes by copy, and by reference

Parameter passing mechanism only Remote objecs are passed by reference
Proceed support no
Synchronization mechanisms Blocking
Mobility no
Reflective access to program state yes

Aspect model

Instantiation Declarative
Mechanisms

singleton yes
State sharing no
Deployment dynamic

Deployment scope global, local
Weaving mechanisms load–time

Aspect composition

Mechanisms undefined
Distributed guarantee no

Table 2.10: Classification of DJCutter as an aspect-based language for distribution

Table 2.10 shows the classification of DJCutter according to our taxonomy of distributed
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aspects.

This thesis, especially the AWED model and system, has been motivated initially by the
work on DJCutter. It extends its predecessor approach in several ways. First, AWED ex-
tends the pointcut model by providing a richer model of remote pointcuts, a model for fully
distributed cflow, and pointcuts for distributed trace matching using state machines. Sec-
ond, we provide a model for distributed advice including the manipulation of host groups.
Third, AWED provides a decentralized model for advice execution, where aspects are dis-
tributed when needed. Finally, AWED provides a model allows restrictions to be placed on
non-deterministic executions in distributed systems using features for message ordering and
expression of causality between messages.

2.4.2 Aspect scoping and instantiation

Finally, our work has also strived for new mechanisms for scoping and instantiation of dis-
tributed aspects.

The scope of an aspect defines the set of joinpoints that may be matched by an aspect
(see, e.g., [AGMO06, ET08, FB07, ETFD+08]). Even though an aspect scope may be re-
stricted using pointcuts definitions, several aspect languages have proposed explicit scoping
mechanisms. For example, in AspectJ [KHH+01], if an aspect is declared using a pertar-
get(Pointcut) clause, an aspect instance is created for each individual target object matched
by the pointcut definition. For such aspects, an advice will be executed at join points only
occurring in the context of the corresponding target object. Other possible example of per
clauses attach an aspect instance to a specific control flow or to the this object of a specific
join point. In these kind of models the concepts of instantiation and aspect scope are mixed.

A different model is proposed by Alan et al. [A+05] as part of the tracematch approach.
In their aspect language, a tracematch is used to match regular sequence of events (see section
2.2.2). The language allows free variables to be used in the definition of the regular expres-
sions. Free variables can then be bound to different objects and are a source of parametrization
in the regular expression. Using this technique, a single tracematch can match all possible
traces occurring in a program, even with different bindings for the free variables. Note that
the language does not create an instance for each possible trace, instead it proposes an efficient
algorithm to handle all possible bindings.

The two approaches presented before define aspect scopes and instances at build time. To
the contrary, CaesarJ [MO03] supports dynamic aspect instantiation and scoping per thread:
aspects are instantiated at runtime as defined programmatically using deploy blocks:

deploy(anAspect){ ... }

In the above example, the aspect anAspect can potentially be applied to all join points pro-
duced in the dynamic extension of the code defined in the statement body. Other approaches
like AspectScheme proposes lexical scoping for aspect deployment, thus an aspect will see all
the join points produced in the lexical scope of a code block. Similarly, CaesarJ provides
explicit languages mechanism to deploy an aspect in a specific thread execution. However,
in CaesarJ the scope of an aspect is always either global, allowing aspects to see all events
in a program, or limited to a specific thread of control. A perobject deployment strategy, for
instance, is not provided.

CaesarJ also proposes an approach for distributed deployment of aspects. The approach
allows the programmer to send an aspect to a remote process running CaesarJ. The deploy-
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1 CaesarHost host = new CaesarHost("rmi://awed.org/Server/");

2 ReplicationAspectAgent raa = new ReplicationAspectAgent();

3 raa.setAdvicedObject((Cache)host.resolve("MyCache"));
4 localCache.observe(raa);

5 host.deployAspect(raa);

Figure 2.8: Distributed deployment in CaesarJ

ment scope will be the process where the aspect was deployed. Figure 2.8 shows a code
example of remote deployment in CaesarJ. Line 1 defines a CaesarHost object. Line 2 in-
stantiates an aspect ReplicationAspectAgent. Lines 3 initializes an instance of a Cache

object in the remote host. This object will be the object monitored for application by the
aspect. A local cache is set to observe the aspect in line 4. Finally, the aspect is deployed in
the remote host. Once deployed, the aspect will match join points in the remote host and will
call the method update in the observer localCache. CaesarJ transparently manages remote
references, however the semantics of pointcut matching is a local one.

All previous approaches present different but limited semantics for aspect scoping. In a
recent proposal, Tanter [ET08] generalized these approaches proposing an explicit way to deal
with scope of dynamically deployed aspects. Using this approach, the programmer can specify
explicitly the scope of an aspect using deployment strategies based on orthogonal dimensions
of propagation (e.g., along the call stack, and as part of delayed evaluation) and join point
filtering. A programmer can then create aspects that will propagate following the dynamic
activity of an object e.g., the control flow, or she can create aspects that will be deployed
using the delayed evaluation e.g., affecting the behavior of objects created at some later point
in time.

Classification. Table 2.11 shows the classification of CaesarJ according to the taxonomy.
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Taxonomy elements CaesarJ

Communication model

Communication mechanisms
Remote method call yes
Join point propagation no
Controlled remote advice invocation no
Group communication no

Parameter passing modes by reference, by copy

Synchronization model

Synchronization mechanisms mutual-exclusion
Communication timing synchronous
Asynchronous hypothesis no

Causal predicates no

Remote pointcut model

Expressiveness:
Atomic yes
Sequential control flow yes
Distributed control flow yes
History based no
Remote join point support no

Paradigm:
Object-oriented yes
Functional no
Logic no

Remote advice model

Filtering and ordering no
Location no
Synchronization mode Synchronous
Parameter passing modes by reference and by copy

Parameter passing mechanism Transparent references of any object
Proceed support yes local
Synchronization mechanisms Blocking
Mobility weak
Reflective access to program state yes

Aspect model

Instantiation Imperative, Declarative
Mechanisms

Per thread yes
Per class no
Per object yes
singleton yes
Per cflow yes
Per binding no

State sharing no
Deployment dynamic

Deployment scope remote host
Weaving mechanisms load–time

Aspect composition

Mechanisms Program
Object cclass
Scope stateful
Distributed guarantee no

Table 2.11: Classification of CaesarJ as an aspect-based systems for distribution



Chapter 3

Crosscutting and evolution of JBoss

Cache

One of the major open questions of AOSD is how stable aspect-oriented designs and programs
are in the presence of evolution of the underlying application. This question has been inves-
tigated only rudimentarily, for instance, by Coady and Kiczales [CK03] study on evolution
of crosscutting concerns in operating systems, or the study on EJB support over application
server product lines by Coyler and Clement [CC04].

As part of this PhD work, we have investigated JBoss Cache over three years. While being
initially simply an medium-sized real-world application to which our aspect model has been
applied, JBoss Cache has undergone two major evolution steps during that period. In this
chapter, we present a detailed introduction to the (crosscutting and inter-dependent) func-
tionalities of replication and transaction management in JBoss Cache on an architectural and
implementation level. As a second contribution, we provide a detailed study of the relation-
ship between the two evolution steps and the crosscutting functionalities. Summarizing our
main result, we show that, although one of the evolution steps mainly introduced additional
support for the modularization of transactional behavior, the crosscutting characteristics of
replication and transactions as well as significant problems in the understanding, maintenance
and evolution of JBoss Cache persist in all versions of the software.

Concretely, our analysis clearly pinpoints three specific problems of JBoss Cache

• We show how fundamental concerns in middleware development, e.g., replication and
transactions, that can be handled by a simple conceptual architecture, are heavily scat-
tered and tangled in the JBoss Cache implementation.

• We show that current encapsulation techniques and derived abstractions (e.g., classes,
packages, or design patterns) are insufficient to address the encapsulation of these cross-
cutting concerns.

• We show that the main crosscutting properties of replication and transactional behavior
in JBoss Cache have been largely proven to be resilient to evolution, even to OO means
geared explicitly towards resolving this modularity issue.

Note that we strongly reckon that these problems are typical for Java-based middlewares. We
have, in particular, performed similar studies, albeit of more limited scope, in the context

37
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of other middlewares, e.g., ActiveMQ, the Apache messaging middleware framework, see
Chapter 6.

Our study involved an analysis of JBoss Cache over three major versions during which
this infrastructure has evolved from 13,000 lines of code (13 KLOC) in the first version we
considered to more than 40 KLOC in the third version. In the following, we first introduce the
main problems as well as architectural and implementation artifacts of JBoss Cache, version
1.2.1 (release date: 2005-03-14). We then study how these issues and artifacts have evolved
via versions 1.4.1 (release date: 2006-11-14) to version 2.0.0 (release date: 2007-08-08).

The chapter is structured as follows. Section 3.1 presents an overview of replication and
transaction management in JBoss Cache. In section 3.2 we give a detailed analysis of the
main architectural and implementation artifacts of JBoss Cache and show that replication
and transactional concerns are heavily crosscutting. Section 3.3 provides evidence that the
transformation of JBoss Cache performed over the two evolution steps has not been sufficient
to address the problem of modularization of transactional behavior and replication, even
though dedicated OO abstractions have been introduced for the management of transactional
behavior. Finally, we present a quantitative analysis of the crosscutting characteristics of
JBoss Cache.

3.1 Overview of replication and transaction management

A replicated cache is a data structure (e.g., a tree, a vector, a hash table, a queue) that has
been augmented with functionalities supports replication of data in a distributed system in
order to speed up accesses to otherwise remote data and may support additional functionality
such as data persistence and transactional behavior. In the case of JBoss Cache, the data
structure storing replicated data is a tree with a hash table on each node.1

The implemented data structure has a simple write and read protocol. An example of the
usage of JBoss Cache Java’s API is

cacheInstance.put(”\a\c\d”, ”name”, ”Jhon”)

Here, the object cacheInstance receives a call to method put with three string objects
as parameters. The first parameter represents the path to the node where the information is
going to be stored, in this case the information is stored in node d, that is reached walking
from the root node to node a, then to child node c, and finally to child node d. Once in node
d the string parameter ”name” is used as a key to store the string object ”Jhon” in node’s
hash table. The following graphical representation shows the tree data structure after the
execution of the statement:

root

a
c

d�
B
B
B

key value

name Jhon

1Note that the tree structure allows a fine-grained mapping of object graphs. Thus replication can be done
efficiently over atomic elements of the object graph, e.g., a field in an object.



3.1. OVERVIEW OF REPLICATION AND TRANSACTION MANAGEMENT 39

To obtain a fully distributed middleware data should be also replicated to other caches in
the cluster. To achieve this purpose the data structure implementation has been augmented
with code for replication and transactions, i.e., the coherence of the data in the caches forming
a common cluster is ensured using a transactional model of concurrency control [EGLT76,
Gra78]. In its basic behavior JBoss Cache can either be configured to be local, in which case
no data is replicated to other caches on other machines, or it can be global, which means that
all changes are replicated to all the other caches (on all other machines) that are part of the
cluster. Regarding transactions JBoss Cache can be configured to use pessimistic [EGLT76,
Gra78] or optimistic locking [KR79]. Pessimistic locking algorithm locks the nodes on the
tree that are participating in a transaction (all along the transaction), and commits only if no
conflicts are found in remote nodes (this algorithm is more efficient if the probability of two
transactions accessing the same node is high). In optimistic locking, conversely, the system
creates a copy of each node involved in the transaction, then at commit time the node is
locked and the transaction is committed if all involved nodes haven’t been changed and if
there are no conflicts in remote nodes (this algorithm is more efficient if the probability of
two transactions accessing the same node is low). In both cases, once a transaction is finished
on the local machine, a two phase commit protocol [LS76] is initiated to replicate the new
data. We can modify our previous example to use transactions as follows,

tx.begin();
cacheInstance.put(”\a\c\d”, ”name”, ”Jhon”);
tx.commit();,

in the example the call to method put is now guarded by a begin-commit block (tx is
a transaction object). In this case the put method is not replicated and is only applied on
the local cache, then, once the commit statement is reached the two phase commit protocol
is started. First, a prepare statement is sent, with all the information of the transaction,
towards all the cache instances in the hosts participating in the replication cluster. If all the
caches can acquire the necessary local locks to enable the modifications, a commit message is
sent to finalize the transaction, otherwise the transaction is rolled back on all hosts.

Figure 3.1: Architecture of transaction handling with replication in JBoss Cache

Figure 3.1 presents a high-level pattern-based view of the corresponding runtime archi-
tecture of JBoss Cache. In the figure, a transaction is triggered by a specific method call
represented by the first node in the pattern. Then successive calls to get, remove or put

methods on the cache are executed and the information is stored for further replication.
Once the end of a transaction is reached, the originating cache engages a two phase commit
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Figure 3.2: Interceptor chain pattern implementation in JBoss Cache.

protocol. In such a protocol the originating cache sends a prepare message with the trans-
action control information (edges numbered 1 in the right part of the figure), followed by
answers from all hosts confirming agreement or non agreement (edges numbered 2). Finally,
the originating cache sends a final commit or a rollback message depending on the answers it
received (edges numbered 3).

3.2 JBoss Cache implementation: principles and crosscutting

The runtime description above and system architecture of JBoss Cache shown in figure 3.1
provide an easy-to-grasp high-level view of its operation. However, a crucial question is how
faithfully such abstract representation can be transposed into an a object-oriented (Java-
based) implementation. In this section we answer this question in three steps. We first
present the design principles guiding the JBoss Cache implementation. It turns out that
the implementation does not rely on standard Java-based structuring mechanisms (such as
packages, classes and objects) but uses so-called interceptors, a more complex reflection-based
means for application structuring. Second, we provide first evidence for the crosscutting na-
ture of JBoss Cache’s main functionalities. Third, we discuss why JBoss AOP, a component of
the JBoss application server, is not suitable to address the crosscutting issues of JBoss Cache.
Basically, JBoss AOP falls short because it is is a subset of the (sequential) AspectJ model
that is not appropriate for the modularization of non-sequential crosscutting functionalities
as discussed in chapter 2.

3.2.1 Design principles

JBoss Cache uses an interceptor filter pattern as a main structuring mechanism at the code
level, see figure 3.2. The main idea behind this pattern is that method calls to the cache
data structure are pre-processed by a chain of filters, where each filter implements a specific
concern, e.g., replication or transactions. In the figure, class TreeCache implements the tree
data structure and the filters are implemented by classes called interceptors. Each method
invocation to a TreeCache object is then processed by the elements of the interceptor chain.
For example, a call to the method put (edge numbered 1) on the cache, is first transformed,
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1 publi
 Object put(Fqn fqn, Object key, Object value)

2 throws CacheException {

3 GlobalTransaction tx=getCurrentTransaction();

4 MethodCall m=new MethodCall(putKeyValMethodLocal,

5 new Object[]{tx, fqn, key,

6 value, Boolean.TRUE});

7 return invokeMethod(m);

8 }

Figure 3.3: Low-level transaction handling in class TreeCache

using reflection, into a MethodCall object and is then passed to the chain of filters (edge
numbered 2). Conceptually, each filter then fully implements its respective functionality, e.g.,
the replication filter replicates the class to other caches (edge numbered 3). As we show later,
however, the modularization of the key functionalities is far from perfect. Finally, once the
call has passed all the filters in the filter chain, the actual behavior is invoked in the data
structure (edge numbered 4).

3.2.2 Implementation structure and crosscutting issues

The implementation of this design principles is subject to severe crosscutting issues. Such
issues are present in the implementation of the basic methods managing the replication data
structure but also in the replication and transaction filters themselves.

Tangling in the replication data structure. This code structure is apparent in the
low-level cache manipulation methods of class TreeCache. For example, figure 3.3 shows
the definition of method put. As defined in the method signature, it returns an object and
receives, as parameters, a fully qualified name, a key object, and a value object. In the body
definition the code has to get the transactional context (Line 3), modify it if necessary, create
(using reflection) an object of type MethodCall (Lines 4 to 6), and invoke it reflectively, that
is, pass it along the interceptors chain.2 Note that this description already strongly hints at
a code tangling problem of the implementation of the put method (and similarly, the other
low-level cache management methods). In particular, transactions, the creation of an object
for replication (an object of type MethodCall), and the calls to and from the filter patterns
are tangled.

Crosscutting and filters. Figure 3.4 shows two different representations of the code struc-
ture of the filter patterns in JBoss Cache 1.2.1 . The class diagram (Figure 3.4a) shows the
main classes participating in the implementation: a class representing the main data struc-
ture (TreeCache), that use a chain of interceptors represented by the class Interceptor that
can be chained to other Interceptor objects (see the aggregation labeled “next” that rep-
resents the field next of type Interceptor). The Interceptor class is then specialized by
specific interceptor classes (e.g., classes implementing replication, transactions or locking).
The class diagram also shows that the class implementing transparent caching of POJOs

2This put method differs slightly form the one presented in section 3.1: there, the method receives three
String objects as parameter, however the implementation of that method redirects the call to the one presented
here after processing and converting the String objects.
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(TreeCacheAOP) is a specialization of the main data structure (see an explanation of JBoss
AOP and JBoss cache below in 3.2.3).

Even though, the implementation of code shown before follows well known practices for
design and modularization i.e., design patterns and inheritance, an analysis of the code shows
that modularization is not achieved and the code is subject to crosscutting by the code for
replication and transactions, see figure 3.4b. The figure, a standard crosscutting view gener-
ating using the AJDT Eclipse environment for AspectJ, depicts the scattering of replication
and transaction code in the main class TreeCache (represented by the leftmost column in
the figure) and in the classes belonging to the interceptor package (right block in the figure).
Replication-related code is colored gray, transaction-related code is marked black. The fig-
ures clearly exhibit scattering and tangling of replication and transactional code with respect
to each other and with respect to the functional code of the cache. Furthermore, the code
related to the implementation of the interceptor filters — that was added to help modulariza-
tion — is subject to severe crosscutting itself. Thus the mechanism used for modularization
generates itself modularization problems. Concrete figures that provide evidence for these
claims are given in section 3.3.3. In the addition to crosscutting directly due to replication
and transactional code, calls between the interceptor package and the remaining code parts ,
which we have not included here to stress our main point, are also crosscutting.

3.2.3 Caching of POJOs and JBoss AOP.

Besides the filters discussed above, JBoss AOP, another AO-related component of the JBoss
application server could potentially have been used to improve the modularization properties
of JBoss Cache. JBoss AOP is a framework for Aspect-Oriented programming of JBoss and
is used in JBoss Cache to cache “plain old” Java objects (“POJOs”) in a transparent manner.
Concretely, this mechanism handles object inheritance, aggregation, as well as the object
graph, e.g., for serialization, in the context of caching.

However, this use of JBoss AOP does not contribute to the goal of a better modularization
of the cache: JBoss AOP is solely used to facilitate the use of JBoss Cache in an application
but does not address modularization or extension of JBoss Cache core functionalities. Con-
ceptually, JBoss AOP is not suited to achieve this goal: as a subset of the (sequential) AspectJ
model, any implementation involving several cache members, which is at the very heart of
the crosscutting problem we want to solve, would be subject to the problems presented in
Sec. 1.1.

3.3 Evolution and crosscutting in JBoss Cache

We now analyze how crosscutting concerns evolved through three different versions of JBoss
Cache. In particular we study how the design principles and implementation strategies shown
before have evolved and what the effects on the crosscutting characteristics of JBoss Cache’s
core functionality has been. Concretely, we show that introduction of new OO abstractions ex-
plicitly aimed at the improvement of modularization properties combined with re-engineering
and refactoring techniques have proven insufficient.
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(a) (b)

Figure 3.4: Code structure of JBoss Cache: a) Class diagram of filter pattern implementation,
b) Crosscutting diagram of scattered and tangled code for distribution and transactions.

3.3.1 Evolution of the interceptor framework

In this section we compare the evolution of main features and code structures (classes) in
three different versions of JBoss Cache: version 1.2.1 (that is used in sections 3.1, 3.2, and
3.2.2 to introduce replication and transaction management, its architecture, and the main
implementation structures), version 1.4.1, and version 2.0.0. (Henceforth, we refer to the
three versions as 1.2, 1.4 and 2, respectively.)

Table 3.1 shows the commonalities and differences between the three versions with re-
spect to the interceptor mechanism that is the main modularization mechanism in JBoss
Cache. In the first column, it shows the list of interceptors (i.e., filters) classified accord-
ing to the main features of JBoss Cache. The table make explicit which interceptors have
been present in which version of JBoss Cache. For example, line three indicates that the
interceptor BaseInterceptor appeared in version 1.4 but then disappears in version 2. Ad-
ditionally, the table provides information about the inheritance relationships between in-
terceptors: inheritance is indicated using indentation; the class Interceptor (line 2), for
example, is the base class in the hierarchy (the super class of all other classes) (The class
OrderedSynchronizationHandler, see line 17, is not a subclass of the Interceptor class,
however I included it in the list under the hierarchy because it is located in the package
Interceptors, and is related to transaction management.) Note that the information about
sub-classing (inheritance) is given for the latest version (2) of JBoss Cache, some of the classes
can be located in different hierarchies in previous versions. This is discussed to some extent
later in this section.

Table 3.1 provides useful information regarding evolution, in particular about package
and class extensions, and refactorings. Regarding extensions, comparing versions 2 and
1.2 we can see a large increase in functional and non functional features. Version 1.2
included nine classes to implement interceptors, while version 2 comprises 34 such classes.
Version 2 includes new support for replication, in particular, support for data gravitation,
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a replication mechanism towards “buddy” nodes a subset of the nodes in a cache that have
explicitly announced their interest in the data, see line 8. Similarly, line 9 presents the
interceptor that adds support for replication by invalidation: instead of replicating a change
a change is detected, the respective node is invalidated and this invalidation information (only
the data indicating what node is invalidated) is replicated to other caches, forcing them to
read information from persistent storage. Other extensions introduce the following: support
of optimistic locking for transactions (lines 18-22); support for node eviction (line 31),e.g.,
based on a timeout policy; support for passivation (line 33), e.g., storing state on disk when
memory gets low; and support for service management (line 35).

Table 3.1 also hints at refactorings. For example, classes that have appeared and disap-
peared are: class BaseInterceptor (line 2), class CreatIfNotExistsInterceptor (line 5),
class BaseCacheLoaderInterceptor (line 28). An example regarding renaming is found in
class LockInterceptor (version 1.2), that evolved into class PessimisticLockInterceptor
in versions 1.4 and 2 (line 23). Refinement is also noticeable: an important difference be-
tween versions 1.4 and version 2.0 is the refinement of the implementation for transaction
management, in particular the management of transactional contexts that has been refined
using three new classes, see lines 13 to 15. Even though these changes present evidence of
refactoring and refinement, a class list is not definite evidence for these kinds of evolution:
below we will have a closer look on this modifications and show that the implementation is
largely resilient to the improvement of their crosscutting characteristics.

3.3.2 Implementation structures and crosscutting

Figure 3.5 shows a more detailed view by means of class diagrams of the evolution of the main
object-oriented implementation structures (i.e., data structure and interceptors) in JBoss
Cache (JBC) versions 1.4 and 2. In JBoss Cache version 1.4 (see figure 3.5a) the classes
supporting the TreeCache data structure and the POJO caching functionalities are almost
unchanged with respect to version 1.2 (see figure 3.4a): only one new class PojoCache appears
in the inheritance hierarchy, this class replaces the class TreeCacheAOP from version 1.2 (see
figure 3.4a); the classTreeCacheAOP is kept only as a wrapper to assure backward compat-
ibility. JBoss Cache version 2 includes changes to the main structures, see figure 3.5b. In
the latest version, the POJO caching functionality is structured as a hierarchy composed by
the interface PojoCache and an implementing class, PojoCacheImpl (note that the abbrevi-
ation “AOP” has disappeared form the naming conventions). The cache now uses the classes
implementing the caching functionality, i.e., the interface CacheSPI and the class CacheImpl.

The hierarchy of interceptors has also been subject to notable changes since version 1.2.
First, as we have mentioned before, the hierarchy has been extended and now contains in-
terceptors supporting new functionality, e.g., data gravitation (see class DataGravitation-

Interceptor under BaseRcpInterceptor class hierarchy). Second, some code structures
have been refactored, and we can see how they evolved in the hierarchy during evolution. For
example, the interceptor for replication ReplicationInterceptor inherited directly from
class Interceptor in version 1.2 (see figure 3.4a), however in versions 1.4 and 2 it is located
under the hierarchy of the more general interceptor BaseRcpInterceptor, that supports a
sub-hierarchy of specialized replication interceptors.

To complete this qualitative analysis of the JBoss Cache code structure we have performed
a detailed statement-level analysis for the later versions as presented before for the first
version, see figure 3.4b. Figure 3.6 illustrates the scattering of replication and transaction
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2.0.0 1.4.1 1.2.1
1 Interceptor mechanism

2 Interceptor x x x
3 BaseInterceptor x
4 CallInterceptor x x x
5 CreateIfNotExistsInterceptor x x
6 Replication

7 BaseRpcInterceptor x x
8 DataGravitatorInterceptor x x
9 InvalidationInterceptor x x
10 OptimisticReplicationInterceptor x x
11 ReplicationInterceptor x x x
12 Transactions

13 BaseTransactionalContextInterceptor x
14 InvocationContextInterceptor x
15 NotificationInterceptor x
16 TxInterceptor x x
17 OrderedSynchronizationHandler x x x
18 OptimisticInterceptor x x
19 OptimisticCreateIfNotExistsInterceptor x x
20 OptimisticLockingInterceptor x x
21 OptimisticNodeInterceptor x x
22 OptimisticValidatorInterceptor x x
23 PessimisticLockInterceptor x x LockInterceptor
24 UnlockInterceptor x x x
25 Cache Loading

26 CacheLoaderInterceptor x x x
27 ActivationInterceptor x x
28 BaseCacheLoaderInterceptor x
29 CacheStoreInterceptor x x x
30 Eviction

31 EvictionInterceptor x x
32 Pasivation

33 PassivationInterceptor x x
34 Management and JMX

35 Several classes 10 Classes 9 Classes

Table 3.1: List of interceptors classes in the three versions of JBoss Cache classified according
to the main features
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(a) JBC 1.4.1 (b) JBC 2.0.0

Figure 3.5: Evolution of code structure in JBoss Cache

code in versions 1.4 and 2 of JBoss Cache. The main data structure class are represented by
the left column in the figures, and the interceptor packages are represented on the right. As
before, replication code is colored gray in each subfigure, and transaction code is marked black.
The figures clearly exhibit scattering and tangling of replication and transactional code with
respect to one another and with respect to functional code of the cache, as exhibited before for
version 1.2. Furthermore, the figures show that the tangled code has not diminished over the
two evolution steps and, even worse, it seems that the scattering phenomena has augmented.
To sum up, these results show that a clean modularization of the replication and transaction
functionalities of JBoss Cache has not been achieved through two major evolution steps, even
though evolution has partially explicitly been targeted towards addressing modularization
issues of these functionalities.

3.3.3 Quantitative analysis of crosscutting concerns

To complete our analysis and provide definite evidence to the claim that crosscutting has
prevailed over the evolution of JBoss Cache, table 3.2 presents metrics regarding the mod-
ularization of three crosscutting concerns: replication, transactional behavior and the calls
to/from the interceptor package. For example, the TreeCache class, the main data struc-
ture in JBoss Cache version 1.2, comprises 188 methods and consists of 1741 lines of code
(LOC): the scattered code relevant for replication amounts to more than 196 LOC; the code
for transactions accounts for more than 228 LOC. The situation for the interceptor framework
is similar: it includes nine classes consisting of 1263 LOC altogether; the (lower-bound) line
counts for code relevant to replication, transactions and calls to TreeCache respectively are
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(a) JBC 1.4.1

(b) JBC 2.0.0

Figure 3.6: Entangled and scattered code for distribution (gray) and transactions (black) in
the evolution of JBoss Cache. On the left of each figure the main class implementing the tree
data structure, and on the right side the interceptors package.

JBoss Cache version
1.2.1 1.4 2.0.0

Main Design structure

LOC for replication 196 74 55

LOC for Transactions 228 280 197

Total LOC 1741 3802 2899

Interceptor Package

Number of classes 9 33 34

LOC for replication 30 123 121

LOC for Transactions 41 137 274

LOC for calls to the main structure 73 165 132
(i.e., class representing the cache)

Total LOC 1263 5099 5219

Table 3.2: Metrics evolution in the refactoring process of JBoss Cache
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30, 41, and 73.
As to version 2, from the 2899 lines of code (LOC) of class CacheImpl, the analogue to

TreeCache in version 1.2, the scattered code relevant for replication amounts to more than
55 LOC and the code for transactions accounts for more than 197 LOC. The situation of the
interceptor framework is similar, complexity and scattering of code is increasing. The package
includes 34 classes consisting of 5219 LOC altogether; the (lower-bound) line counts for code
relevant for replication, transactions and calls to Cache (CacheImpl interface) respectively
are 121, 274, and 132. This provides strong evidence that the interceptor mechanism is not
sufficient to modularize crosscutting concerns and that continuous refactoring does not reduce
or simplify the complexity problem due to crosscutting concerns.

3.4 Discussion

This section has shown that understanding the replication and transactional behavior of the
JBoss Cache implementation, which uses the interception mechanism (i.e., filter pattern),
is far from trivial. It also shows that continuous evolution that implies far-reaching re-
engineering and refactoring actions has not resulted in a better separation of concerns in the
evolved code. This crosscutting code results in difficulties for the extension of the cache, for
example, by even simple new replication policies. This applies, e.g., if the replication policy
should be modified to one replicating only when a cache is interested in some specific data
and only within the subgroup of hosts that are also interested in the same data instead of
replicating always between all members of a cluster (Note that this is a dynamic caching
behavior, different from the buddy replication, or the region support proposed in the newest
versions of JBoss Cache). Finally, note that traditional AspectJ-like languages are not appro-
priate in this context: as shown by Nishizawa et al. [NST04] and Soares et al. [SLB02] they
are subject to limitations, in particular, requiring inadequately complex aspect definitions in
the context of distributed crosscutting functionalities.



Chapter 4

The AWED language

Modularization of crosscutting concerns for distributed applications using an aspect language,
i.e., in terms of pointcut, advice and aspect abstractions, suggests support for the following
issues: (i) a notion of remote pointcuts allowing to capture relationships between execution
events occurring on different hosts, (ii) a notion of groups of hosts which can be referred
to in pointcuts and manipulated in advice, (iii) execution of advice on different hosts in
an asynchronous or synchronous way and (iv) flexible deployment, instantiation, and state
sharing models for distributed aspects.

AWED provides such support through three key concepts at the language level. First,
remote pointcuts, which enable matching of join points on remote hosts and include remote
calls and remote cflow constructs (i.e., matching of nested calls over different machines).
As an extension of previous approaches AWED supports remote regular sequences as other
approaches did for (non-distributed) regular sequence pointcuts [DFS02, DFS04, DFL+05,
A+05, VSCDF05]. Second, support for distributed advice: advice can be executed in an
asynchronous or synchronous fashion on remote hosts and pointcuts can predicate on where
advice is executed. Third, distributed aspects, which enable aspects to be configured using
different deployment and instantiation strategies. Furthermore, aspect state can be shared
flexibly among aspect instances, as well as among sequence instances which are part of an
aspect.

Apart from these conceptual considerations AWED design considers and addresses four
insufficiencies found in the approaches described in chapter 2. First, we avoid technology
rigidity, making an extensible language which can be connected to different technologies for
distribution, e.g., Java RMI, JGroups, J2EE, CORBA, using adapters. Second, we do not
have a centralized architecture, instead AWED supports a decentralized architecture with
dynamic management of new hosts. Third, we provide language support with an extensible
library, combining the advantages of language with the flexibility of libraries. Finally, we
provide explicit management of groups of hosts as a mechanism for more expressivity of
distributed predicates.

4.1 AWED as a distributed aspect language

AWED is an aspect language for distribution, therefore it can be classified according to the
taxonomy presented in section 2.1. We use such classification as a guide to detail the main
hypothesis and restrictions influencing AWED design. Table 4.1 summarizes AWED features
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according to the taxonomy.

Taxonomy elements Values
Communication model

Communication mechanisms
Remote method call yes
Join point propagation yes
Controlled remote advice invocation yes
Group communication yes

Parameter passing modes by reference and by copy
Synchronization model

Synchronization mechanisms synchronous control, non-blocking, or futures
Communication timing synchronous, causaly ordered

asynchronous FIFO
Asynchronous hypothesis yes

Causal predicates yes
Remote pointcut model

Expressiveness:
Atomic yes
Sequential control flow yes
Distributed control flow yes
History based yes

Finite-state yes
Vpa no
Context-free no
Turing-complete yes

Remote join point support
All pointcuts yes
Location Single host, Multiple host groups

Paradigm:
Object-oriented yes
Functional no
Logic no

Remote advice model

Filtering and ordering yes
Location Single host, Multiple host groups
Synchronization mode Synchronous and asynchronous
Parameter passing modes by reference and by copy

Parameter passing mechanism tag language
Proceed support yes

Remote host only yes
Remote and originating host yes

Synchronization mechanisms Blocking and transparent futures
Mobility weak
Reflective access to program state yes

Aspect model

Instantiation Declarative
Declarative

Per thread yes
Per class yes
Per object yes
singleton yes
Per cflow yes
Per binding yes

Deployment Dynamic
Deployment scope global,local, group of hosts, and remote host

State sharing global, local, group
Weaving mechanisms load-time

Aspect composition

Type Explicit
Mechanisms Precedence
Object Advice
Scope All
Expressiveness Order
Distributed guarantee yes

Table 4.1: Taxonomy for distributed aspect-based systems

AWED is designed as an extension of Java and as such shares some of the features pro-
vided by Java. First, AWED relies on processes and threads as abstractions for activities.
A process is an independent execution space, that do no shares memory with others pro-
cesses, and where many threads may be running at the same time. During this discussion
we refer to these processes as hosts. Even though, processes are independent units with no
shared memory, AWED allows to define specific state variables inside aspects to be shared
among groups of hosts. Regarding communication, AWED relies on remote procedure call,
as a super set of remote method invocation, that includes remote advice invocation (see issue
remote method call on table 4.1). For such invocations AWED supports object passing by-
copy and by-reference (issue parameter passing mode). To address synchronization between
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asynchronous processes AWED provides transparent futures [RHH85]. For the sake of scala-
bility, low coupling, and flexibility, communication may be synchronous, causally ordered, and
asynchronous with FIFO (first in first out) guarantee (issue communication timing). Note
that FIFO guarantee is only provided to messages coming from the same host (i.e., process).
The causality support builds conceptually from AWED’s design as system with asynchronous
FIFO support (where as demonstrated by Charron-Bost, Mattern, and Tel [CBMT96] the
following hierarchy holds: Synchronous ⊂ Causally Ordered ⊂ Asynchronous FIFO 1).

AWED provides a pointcut model based on remote pointcuts, i.e., all pointcuts have
distributed semantics. Therefore, the atomic pointcuts provided by AWED match atomic
events (e.g., method calls) on any participating host unless they are restricted with location
pointcuts (see issue remote join point support and expressiveness). Additionally to atomic
pointcuts AWED also supports history based pointcuts (issue history based). For example, it
can match join points that spawn over several host in the same control flow. Furthermore, it
supports regular aspects that match patterns of join points defined by means of a finite state
machines. Note that pointcuts semantics are based on object oriented abstractions.

The remote advice model provides synchronous and asynchronous advice execution, filter-
ing and ordering of remote advice execution, explicit location of advice execution inside group
of hosts, and weak mobility for aspects (i.e., aspects definitions are copied to remote hosts).
Note that composition of aspects is determined by the aspect precedence, that is controlled
by the originating host, i.e., the host where the join points occurs. Note also that AWED
provides declarative means to deal with instantiation of aspects. Finally, AWED supports
asynchronous systems and do not impose a global clock as an hypothesis in the model (i.e.,
no global clock).

We now analyze the syntax and semantics of the resulting language.

4.2 Syntax and semantics

AWED’s syntax is shown in Fig. 4.1 using EBNF formalism (i.e., square brackets express
optionality; brackets denote multiple occurrences, possibly none; terminal parentheses are
enclosed in apostrophes).

4.2.1 Pointcuts

AWED employs a model where, upon occurrence of a join point, pointcuts are evaluated on
all hosts where the corresponding aspects are deployed. Thus, in AWED all join points are
remote and in principle and each join point is distributed to the hosts that are interested
on it (i.e., hosts where an aspect that may match the join point is deployed). However, not
all possible join points are distributed (i.e., all method calls). Instead, AWED uses pointcut
definitions to decide what specific join points may be matched and then distributed. For

1The ⊂ operator represents the subset relation, implying for example that Synchronous systems are a
subset of Causally Ordered systems. In [CBMT96] the authors consider a distributed systems as a set of n

processes, communicating only by message exchange, and without any assumption over the processors speed
or message propagation delay. In such a model the authors formally define a distributed computation as a
n-tuple C = (C1, ..., Cn) of local computations Ci (where each local computation represent the sequence of
events on each process), and a set of pairs representing the communication messages ComMsg = {(s, r) ∈
Ci × Cj : s and r are the send and receive events of a message} . Using this model authors define several
types of computations, e.g., synchronous computations, and are able to prove several properties (e.g., the one
presented in the document). Further information can be found in [CBMT96].
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// Pointcuts

Pc ::= call(MSig) | execution(MSig)
| get(FSig) | set(FSig)
| cflow(Pc) | Seq
| host(Group) | on(Group[, Select ])
| target({Type}) | args({Arg})
| eq(JExp, JExp) | if(JExp)
| within(Type)
| passbyval({Id})
| Pc ‖ Pc | Pc && Pc | !Pc

Seq ::= [Id :] seq({Step}) | step(Id ,Id)
Step ::= [Id :] Pc [→Target ] | start: →Target
Target ::= Id | Id ‖ Target
Group ::= { Hosts }
Hosts ::= localhost | jphost | ”Ip:Port”

| GroupId
GroupId ::= String
Select ::= JClass

// Advice

Ad ::= [asyncex] Pos({Par}) : PcAppl ’{’ {Body} ’}’
Pos ::= before | after | around

PcAppl ::= Id({Par})
Body ::= JStmt | proceed({Arg}) | localproceed({Arg})

| addGroup(Group) | removeGroup(Group)

// Aspects

Asp ::= [Depl ] [Inst ] [Shar ] aspect Id ’{’ {Decl} ’}’
Depl ::= single | all

Inst ::= perthread | perobject | perclass

| perbinding

Shar ::= local | global | inst | group(Group)
Decl ::= [Shar ] JVarD | PcDecl | Ad
PcDecl ::= pointcut Id({Par}) : Pc

// Standard rules (intensionally defined)

MSig , FSig ::= // method, field signatures (AspectJ-style)
Type ::= // type expressions
Arg ,Par ::= // argument, parameter expressions (AspectJ-style)
Id ::= // identifier
Ip,Port ::= // integer expressions
JClass ::= // Java class name
JExp ::= // Java expressions
JStmt ::= // Java statement
JVarD ::= // Java variable declaration

Figure 4.1: AWED language
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Figure 4.2: Remote pointcuts and advice in AWED

example, consider a graphical application that contains an excerpt of code that calls several
methods:

aCircle.setCenter(5.0, 7.8);
aCircle.setRadius(3.7);
aCircle.draw();

A programmer implementing a system to reproduce the drawing in host A into host B may
write a pointcut to match (i.e., to detect) a call to the method draw in host A. In such case, an
event signaling that a specific host has reached a call to the method draw will be distributed
to host B.

Pointcuts (which are generated by the non-terminal Pc) are basically built from call

constructors (execution allows to denote the execution of the method body), field getters and
setters, nested calls (cflow) and sequences of calls (non-terminal Seq). Pointcuts may then
contain conditions about (groups of) hosts where join points originate (term host(Group)),
i.e., where calls or field accesses occur. Furthermore, pointcuts may be defined in terms of
where advice is executed (term on(Group)). Advice execution predicates may further specify
a class implementing a selection strategy (using the term on(Group, Select)) which may act
as an additional filter or define an order in which the advice is executed on the different hosts.
Groups are sets of hosts which may be constructed using the host specifications localhost,
jphost and adr:port, which respectively denote the host where a pointcut matches, the host
where the corresponding join point occurred and any specific host. Alternatively, groups may
be referred to by name. (Named groups are managed dynamically within advice by adding
and removing the host which an aspect is located on, see Sec. 4.2.4 below.)

Finally, pointcut definitions may extract information about the executing object (target)
and arguments (args). They may also test for equality of expressions (eq), the satisfaction of
general conditions (if), and whether the pointcut lexically belongs to a given type (within).
Pointcuts may also be combined using common logical operators.

Figure 4.2 illustrates the model for remote pointcuts and advice. Pointcuts essentially
allow to match sequences of execution events that occur on different hosts. Hosts can be
referred to using absolute addresses but can also be defined relative to the host on which an
aspect is deployed (term localhost, in the figure the host colored in gray). Remote advice
can be triggered on other hosts using the on specifier. Besides the host specifications available
for pointcut definitions, advice execution can also be specified to take place on the host where
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the pointcut has been matched (term jphost). Pointcuts and remote advice execution may
depend on explicitly defined groups of hosts. In pointcuts, such groups may limit matching
of execution events to sets of hosts; as to advice executions, groups allow to execute advice
on several hosts. Furthermore, AWED allows to execute pieces of advice synchronously or
asynchronously with the execution of the base application and with other aspects.

As a first example, the following simple pointcut could be part of a replicated cache aspect:

call(void initCache()) && host(”192.168.0.1:5678”)

Here, the pointcut matches calls to the cache’s initCache method that originate from the
host that has the specified address. The advice will be executed on any host where the aspect
is deployed (possibly multiple ones) as there is no restriction on the advice execution host.
The following example restricts the execution hosts to be different from the host where the
joinpoint occurred:

pointcut putCache(Object key, Object o):
call(∗ Cache.put(Object,Object)) && !on(jphost) && args(key, o)

Here, the first line defines the pointcut putCache with two arguments of type Object key

and o. Then the pointcut definition defines a pointcut that matches calls to the cache’s put
operation on hosts other than the joinpoint host and binds the corresponding data items: first,
a call pointcut is defined to match methods calls to method put on objects of type Cache

with any returning value. Then, the on pointcut is defined to execute the advice in hosts
that are not the host where the pointcut was originated, i.e., not in the hot of the join point
(!on(jphost)). Finally, using the args pointcut the code binds the first argument of matched
method to the first parameter of pointcut definition (argument key), and the second argument
of the matched method to the second argument of the pointcut (argument o). Note that in
this case the clause !host(localhost) could replace !on(jphost) to achieve exactly the same
effect of matching non-local joinpoints. If the corresponding advice puts the item in the local
cache, a condition on the aspect type (named, e.g., ReplCache), such as !within(ReplCache),
can be used to avoid triggering the pointcut during the advice execution.

4.2.2 Sequences

Sequences (derived by the non-terminal Seq in figure 4.1) are supported by two constructions
on the pointcut level. First, the term [Id :] seq({Step}) allows to define sequences which may
be named using an identifier and consist of a list of (potentially named) steps (non-terminal
Step). A step may define the steps to be executed next (non-terminal Target).2 A sequence
matches if the sequence is completed, i.e., if the current joinpoint matches the last step and
previous joinpoints of the execution trace matched the previous steps in order. Second, the
term step(seq ,step) matches if the step named step of the sequence named seq occurs. This
allows advice to be triggered after a specific step within a sequence using a term of the form
s: seq(... l: logout() ...) && step(s, l).

To illustrate the use of sequence pointcuts, consider the following pointcut, which could
be part of a simple cache replication protocol:

pointcut replPolicy(Cache c):

2Note that while our sequences obviously encode finite-state automata, many applications of regular struc-
tures, in particular communication protocols [DFL+05], are effectively sequence-like, i.e., of a one-dimensional
directed structure, so that we decided to use the more intuitive terminology for AWED.
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Figure 4.3: Automaton representing first sequence example

replS: seq(s1: initCache() && target(c) > s3 || s2 || s4,
s2: cachePut() > s3 || s2 || s4,
s3: stopCache() > s1,
s4: cacheInconsistency())

(Here, identifiers like initCache denote undefined pointcuts specifying corresponding call
pointcuts.) The pointcut above defines a sequence of four steps. An initialization step which
may be followed either by a put operation (s2), termination of the cache (s3) or an error step
(s4). A put operation (s2) may be repeated, followed by a cache termination event (s3) or
resulting in a cache inconsistency (s4). After cache termination, the cache may be initialized
once again. Finally, a cache inconsistency terminates the sequence (and may be handled
by advising the pointcut). Figure 4.3 shows a graphical representation of this automaton,
in the automaton each state is defined according to the transitions (steps) that it accepts.
Additionally, if the initial state is not specified in the definition (term start), the first state
accepts only the first defined transition by default.

Note that the above definition does not enforce that the steps are taking place in the
context of the same cache. This is, however, simple to achieve by binding the targets of
the different steps using target(c), and use eq or if pointcuts to ensure the appropriate
relationships at different steps in a sequence.

A step may be referred to in pointcuts and advice as exemplified in the following example:

pointcut putVal(Cache c, String key, Object o):
step(replS, s2) && target(c) && args(key, o)

which shows how to provide a special pointcut for the second step in the previous sequence
(and how to bind the variables used in that step) so that advice can later be attached to it.

4.2.3 Parameter passing

Sharing of remote object information is an inherent need in distributed applications. AWED’s
proposal includes a mechanism to manage explicitly how parameters of a given joinpoint are
distributed.

The pointcut language model allows joinpoint information like parameters, the caller
object, and the target object to be bound to specific variables in pointcut or advice definitions.
The model also allows those variables to be explicitly distributed by value or by reference (the
latter being the default behavior). The first option, by value, creates a copy of the object in
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1 point
ut myDef(Integer i, Object y, Vector v, MyObject c):

2 
all(* foo(Integer,Object, Vector, String)) &&

3 args(i, y, v, String) && target(c) &&

4 passbyval(i, c);

Figure 4.4: Parameter passing example using a pointcut definition

the hosts where remote advice are executed and binds the new value to the formal parameter
used in the advice body. The second option, by reference, creates a remote reference to the
original object. Once the remote reference or the copy are bound, they can be treated as local
objects without any distinction in the advice body. Note that we could have defined the pass
by value term as a modifier of the parameters of the execution or call pointcuts. However,
to avoid confusion with the matching semantics of those constructs, and to allow reuse of
pointcut definitions with different parameter passing policies we reify parameter passing as
an independent pointcut construct.

Figure 4.4 shows an example of the usage of the pass by value behavior. The pointcut
definition has four variables i, y, v and c. The parameters of the matched method, foo, and
the target object of that method are bound to the pointcut’s variables. The term passbyval

is used to annotate the variables i and c to be passed by value.
As usual, by value passing has to be used with care, in particular, because it implies

copying the whole object graph below the object that is passed by value. AWED allows
all objects to be referenced remotely, copied and distributed. Reflective information queried
through the thisJoinPoint keyword is always passed by reference. For instance, when invok-
ing getTarget() method in the thisJoinPoint object inside an advice, a remote reference
to the target is returned. This is done allow programmers to access the original objects, if
they are interested only in a copy they can use the passing mechanisms to bind the copies to
specific arguments in the pointcut definition.

The remote reference model of AWED is fully transparent with respect to the object
model. This means that there is no distinction between the remotely referenced objects and
the locally referenced objects. However, it is important to note that the language provides
a richer and finer grained model for parameter passing in the pointcut definition language
than the one provided in direct method invocation over objects. When a method is invoked
directly in a remote referenced object, the parameters are passed by value as with normal
Java method invocations. There is no language support to specify pass-by-reference behavior
(although a work-around using a proxy object is possible). This is motivated by the fact that
we aim to stay as close as possible to Java and changing the method invocation syntax and
semantics would be a drastic departure of this principle.

4.2.4 Advice

Advice (non-terminal Ad in Fig. 4.1) is mostly defined as in AspectJ: it specifies the position
(Pos) where it is applied relative to the matched join point, a pointcut (PcAppl) which triggers
the advice, a body (Body) constructed from Java statements, and the special statement
proceed (which enables the original call to be executed).

In an environment where advice may be executed on other hosts (which is possible in
AWED using the on pointcut specifier), the question of synchronization of advice execu-
tion with respect to the base application and other aspects arises. AWED proposes one
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unified model for (local and remote) advice execution: all advice (including remote ones)
are triggered by one controller. This means that there is only one advice chain per join-
point. The host where the joinpoint occurs is responsible for managing the advice chain.
As such, there is a well-defined precedence as defined by the AspectJ precedence rules (e.g.
declareprecedence), even for advice executed on remote hosts.

Per default, advice executes synchronously to the base application, meaning that the
application waits until completion of the advice in order to proceed to the original behavior or
to execute the next advice in the chain. Both remote and local advice conform to this general
model. The programmer may also choose to execute an advice asynchronously with respect
to the application on the joinpoint host by marking the advice with the asyncex keyword.
This means that the base application proceeds with the original behavior or executes the
next advice in the chain while the asynchronous advice is executing. Of course, asynchronous
advice is still treated in the same advice chain and thus are only executed when the previous
synchronous advice are finished or when previous asynchronous advice are started.

Multiple around advice applying at a joint point is executed as usual in a nested fashion
as part of a chain controlled by the invocation of proceed (see figure 4.5). Such advice is
expected to return a value that can be processed by the previous advice that invoked proceed
or by the original application in case of the first advice. In case of asynchronous advice, this
value is possibly not yet computed, so the invocation of such an advice returns a future3

object [RHH85] that synchronizes with the remote advice in case the object is claimed. The
future object is implicit, as such the advice caller can safely treat the return value as an actual
value. The AWED infrastructure and run-time weaver take care of generating a transparent
future and claiming it whenever its value might be accessed. It is also possible to make the
future explicit by casting it to a standard Java Future object4 when useful. This way, the
invoking advice may manage its behavior depending on the availability of the result.

Figure 4.5: Around advice chaining in AWED. Advice applicable to the same joinpoint execute
in a single advice chain, regardless of execution host.

AWED introduces one general model for (a)synchronous distributed advice. The seman-
tics of AWED remains backward compatible with AspectJ. The semantics of advice is also
independent of whether the joinpoint host is different or the same as the execution host. This
is in contrast to the previous version of AWED [BNSV+06a], where advice was treated dif-

3A future object is an object that represents the result of an asynchronous computation, the actual value
of the computation is bound to the object once the concurrent computation is finished. This concept was first
presented in MULTILISP [RHH85].

4Java supports futures since version 1.5 through the java.util.concurrent API.
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1 around(User user,Object ttarget): toAuthenticate(user,ttarget) {

2 if(userMayAccess(user,ttarget))
3 pro
eed();
4 else throw new AccessSecurityException(user,ttarget);

5 }

Figure 4.6: Simple authentication around advice

1 point
ut distribution(Facade f):

2 target(f) && 
all(* *(..)) &&

3 && !host("Serveripadr:port") && on("Serveripadr:port");
4

5 syn
ex Object around(Facade f): distribution(f) {

6 return lo
alpro
eed(Facade.getInstance()); }

Figure 4.7: Distribution as an aspect

ferently because every host had its own advice chain. In that model, advice always executes
asynchronously to advice on different hosts, impeding, for instance, remote authentication
that blocks all other advice and the original behavior until authentication has been success-
ful. The new general model of AWED is able to support such behavior as illustrated by the
code fragment of figure 4.6. The authentication advice is guaranteed to always execute before
other advice that applies to that joinpoint such as, for instance, a billing advice [DJ04]. The
billing advice will not be executed when the authentication fails because the authentication
advice does not invoke proceed in that case.

The advice body has one important additional keyword in comparison to AspectJ: localproceed.
The invocation of localproceed makes sure that the original behavior (i.e., the joinpoint)
is executed on the host where the advice occurs instead of on the host where the original
behavior originated from (i.e., the joinpoint host). As an example, consider the aspect shown
in Fig. 4.7 that implements the distribution concern. It is well-known that distribution can
be seen as a crosscutting concern that can be modularized using aspects (see, e.g., [SLB02]).
The distribution pointcut selects all calls to Facade methods on the client and makes sure
that the accompanying advice is only executed at the server side. By employing the negation
of the host designator, calls on the server side will not match the pointcut themselves. The
redirection behavior is encapsulated in a synchronous around advice. As the around advice
gets executed on the server host, the getInstance method of the Facade class will retrieve an
instance which is local to the server host The localproceed expression makes sure to invoke
the original behavior on the server host instead of that on the joinpoint host. An interesting
variation of the distribution concern would be to mark the advice asynchronous. The result
is that the original sequential application is not only distributed but also parallelized. In such
a case, a future object is immediately returned to the base application and the advice is exe-
cuted in parallel with the base program. The base program and the advice get synchronized
once the actual value of the computation is claimed through the future.

Finally, note that AWED enables advice to manage named groups of hosts: addGroup

adds the current host to a given group, removeGroup allows to remove the current host from
a group.
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4.2.5 Aspects

Aspects (non-terminal Asp) are composed of a set of fields as well as pointcut and advice
declarations. Aspects may be dynamically deployed (Depl) on all hosts (term all) or only
the local one (term single).

Furthermore, aspects support four instantiation modes (Inst): similar to several other
aspect languages, aspects may be instantiated per thread, per object, or per class. However,
aspect instances may also be created for different sets variable bindings arising from sequences
(term perbinding) as introduced in [DFL+05, A+05]. In this last case, a new instance is
created for each distinct set of bindings of the variables in the sequence, i.e., of the variables
declared as arguments of a sequence pointcut or fields used in the sequence pointcut 5.

Finally, AWED allows distributed aspects of the same type to share local state (Shar):
values of aspect fields may be shared among all aspects of the same type (term global), all
instances of an aspect which have been created using the instantiation mechanisms introduced
before (non terminal Inst), all aspects belonging to the same group (term group(Group)) or
all aspects on the one host (term local; note that these possibly belong to different execution
environments, such as JVMs). Sharing modifiers can be given for an aspect as a whole or
individual fields (Decl), if both are given, the latter have priority.

4.3 AWED by example

In this section, several applications of AWED are presented to show the basic capabilities of
the language:

• First, we illustrate the usage of some of the basic mechanisms for explicit distribution
in AWED: host and on pointcuts, and a synchronous around advice. In particular we
show how distribution can me introduced into a non-distributed application (Sec. 4.3.1),

• we then extent such distribution example showing how execution clustering concerns
can be introduced concisely using groups and remote execution policies (Sec. 4.3.2).

• Finally, in section 4.3.3 we illustrate a more complex example showing how replicated,
cooperating distributed caches can be modularly implemented.

4.3.1 Distribution

In [SLB02], Soares et al. illustrate how AOP techniques can be employed to explicitly intro-
duce distribution within existing, non-distributed applications. For this, AspectJ is employed
to automatically insert the required RMI code fragments. Their proposal requires two types
of aspects: one aspect for handling server distribution concerns and one aspect for handling
client distribution concerns. At the server side, a Remote interface is statically introduced
for each object that should be remotely available. Additional methods are introduced by
means of the server aspect to export and manage the remote objects. The client side aspect
is responsible for capturing and redirecting the local method calls and declaring these meth-
ods to throw remote exceptions. In addition, each method specified in the remote interface
requires a dedicated redirection advice, as in RMI the type of remote objects is the remote
interface type and not the actual object type, and as such, AspectJ does not allow to change

5The current prototype implementation of AWED does not include perbinding instantiation support.
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1 point
ut distribution(Facade f):

2 target(f) && 
all(* *(..)) &&

3 && !host("Serveripadr:port") && on("Serveripadr:port");
4

5 Object around(Facade f): distribution(f) {

6 return lo
alpro
eed(Facade.getInstance()); }

Figure 4.8: Distribution as an aspect

the target object by another of different type in a proceed statement, which is required to
redirect the calls to the remote objects. Additionally, AspectJ is used to implement the mech-
anism to handle synchronization of objects passed remotely by copy (default behavior in RMI
for method’s parameters and method’s returning objects that do not implement the Remote

interface) and their remote pairs.

AWED allows for a more elegant solution, which does not require the overhead of in-
troducing the required RMI-specific code. AWED allows to solve this distribution problem
using a single aspect which is illustrated in figure 4.8. The distribution pointcut selects
all calls to Facade methods on the client and makes sure that the accompanying advice is
only executed at the server side. By employing negation of the host designator, calls on the
server side will not match the pointcut themselves. The redirection behavior is encapsulated
in a synchronous around advice. As the around advice gets executed on the server host,
the getInstance method of the Facade class will retrieve an instance which is local to the
server host (this could be generalized in order not to rely on a single object, the singleton
idiom is used for simplicity and could be replaced by a naming mechanism, e.g., Java Naming
and Directory Interface (JNDI) [Myc08]). The proceed expression will invoke the original
behavior on that Facade instance located on the server host. The AWED solution improves
on the AspectJ-based solution: first, there is no need for RMI specific code to be injected in
the server classes, which is a tedious process, and secondly, only one aspect with one pointcut
and advice suffices while in the AspectJ solution at least two aspects and a pointcut-advice
pairs for each method in the Facade class are necessary. Note that AWED shares this advan-
tage with other middleware-based AOP approaches, such as DJCutter [NST04] (Sec. 2.4.1),
DAOP [PFFT02], and DYMAC [LJ06] (Sec. 2.3.2).

4.3.2 Clustering

When multiple servers are available to handle remote requests, one can choose to cluster
these servers together such that incoming requests can be dispersed, e.g., to balance the
server load. Again, AWED provides an elegant solution and allows this clustering behavior to
be encapsulated in a single aspect. Figure 4.9 illustrates this clustering pointcut. All available
servers are part of the ServerGroup and the on designator specifies that the accompanying
advice should be executed only on a server that is part of that specific group. As only one
specific host should be the target of the redirection, a Round Robin load balancing mechanism
is employed, which assigns a server host on a rotating base.
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1 point
ut clustering(Facade f):

2 target(f) && 
all(* *(..)) && !host("Servergroup")
3 && on("Servergroup", awed.hostselection.RoundRobin);

4

5 Object around(Facade f): clustering(f) {

6 return pro
eed(Facade.getInstance()); }

Figure 4.9: Clustering as an aspect

1 all aspe
t CacheReplication{

2 point
ut cachePcut(Object key, Object o):

3 
all(* Cache.put(Object,Object))

4 && args(key,o) && !on(jphost) &&

5 !within(CacheReplication);
6

7 before(Object key, Object o): cachePcut(key,o){

8 Cache.getInstance().put(key, o); }

9 }

Figure 4.10: Cache replication as an aspect

4.3.3 Caching revisited

n chapter 3 we have presented distributed caching and, in particular, its support through
the JBoss Cache OO framework, as a motivating example for crosscutting in distributed
applications. This section shows two different strategies of replication for distributed caches.

Simple strategy

Fig. 4.10 shows how an aspect for cache replication can be implemented using AWED. This
aspect accounts for all places where cache elements are requested and replicated to all other
caches in a cluster, i.e., an essential part of the functionality of replication within JBoss
Cache’s TreeCache class.

The aspect declaration in line 1 indicates that the aspect will be distributed globally and
that a singleton instance (AWED’s default instantiation mode) is created on each host. The
pointcut defined in lines 2–5 matches calls putting elements in the cache; the term !on(jphost)
limits advice execution to aspects which are not deployed on the host where the join point
matched. The advice (lines 7–8) simply puts the element in the cache. As the pointcut
ensures that only aspects which are remote to the matching join point perform this advice,
replication is thus achieved.

Adaptive summary-based strategy

As a more intricate example, we consider an example of the large number of replication
strategies for caches that use hierarchical, cooperative and adaptive caching strategies [BO00,
ICP]. Such strategies typically do not distribute data over whole clusters but replicate objects
only to caches in the cluster that explicitly request them. Furthermore, cooperative behavior
is useful, e.g., looking for a copy in neighboring caches before (slowly) accessing farther caches
or a centralized server holding the master copy of the data at hand. This kind of behavior
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request summary update
request data,provide data

Summary−based access

Figure 4.11: Adaptive cache behavior

is not part of the current JBoss Cache specification and would be very difficult to graft on
its implementation without the use of AO techniques due to the crosscutting problems of its
replication code.

In the following we present the heart of a summary-based cooperative cache strategy using
AWED. Such caching strategies (see, e.g., [FCAB00]) use “summaries”, i.e., small digests of
the cache contents of neighboring caches. The summaries can be used to test whether a cache
contains a value with high probability. They can therefore be used to guide the decision
which neighboring caches to contact and thus reduce network traffic.In particular, a cache
that receives a query for a specific value will first look locally for that value, if the value is
not present it will check in the summary for some remote caches containing the value, and
then it will ask for the specific value to the caches that may contain it. A instance of such
case are web-proxies and web servers. There a proxy that receives a request for a specific web
page will look for the page locally, and then, if the page is not stored locally, it will check in a
summary list if other proxies have the specific page. If one of the other proxies has the page
the proxy will ask for it. If non of the proxies has the page the request will be redirected to
the web server.

Fig. 4.11 schematically illustrates a summary-based caching strategy used in the context
of a cooperative replicated cache scheme. In the following, we present an aspect Collabo-

rativeCachePolicy (see Fig. 4.12) realizing cache groups which replicate data among them
as introduced in the previous example (see “simple strategy” above), but which also uses
summaries to selectively get data from farther caches outside the cache group. These two
sets of hosts are represented by groups cacheGroup and summaryHosts, respectively (line 3).
Summary information is shared between hosts of the cache groups and the farther hosts at
the border using AWED’s group sharing feature. This provides for a concise integration of
summaries (no additional code to handle summary management a replication) and is appro-
priate because summary-based caching algorithms only infrequently update summaries. A
simpler (and at times more inefficient) sharing mechanism than for the cached data itself can
therefore be used for them.

Overall, the aspect consists of a three step remote sequence replPolicy (line 20) which
represents the initialization of the cache, the query strategy, and the replication strategy. The
sequence first matches the cache initialization, followed by repeated cache accesses and cache
replication operations.Concretely, at cache initialization time (see the pointcut at line 8) the
two host groups are set up as well as initial summary information (advice at line 25). A
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1 all aspe
t CollaborativeCachePolicy {

2

3 group(cacheGroup, summaryHosts) SummaryT summaries;

4 group(cacheGroup, summaryHosts) int cacheMisses = 0;

5 final int THRESHOLD = 1000;

6 ...

7

8 point
ut initCache(Cache c):

9 
all(* Cache.init()) && host(lo
alhost) && target(c);
10

11 point
ut getCache(Cache c, String key):

12 
all(* Cache.get(String)) && host(cacheGroup)
13 && target(c) && args(key);
14

15 point
ut putCache(Cache c, String key, Object data):

16 
all(* Cache.put(String, Object)) && target(c)
17 && args(key, data) && !on(jphost) && on(cacheGroup)
18 && !within(CollaborativeCachePolicy);
19

20 point
ut replPolicy(Cache c):

21 replP: seq(s0: initCache(c) -> s1 || s2

22 s1: getCache(c, k1) -> s2,|| s2

23 s2: putCache(c, k2, val) -> s1 || s2);

24

25 after(Cache c): step(replP, s0) && target(c) {

26 if (c.isDomain(cache)) addGroup(cacheGroup);

27 if (c.isDomain(border)) addGroup(summaryHosts);

28 initializeSummaries(); }

29

30 around(Cache c, String key): step(replP, s1) && args(c, key) {

31 Object obj = c.get(key);

32 if (obj == null) {

33 obj = pro
eed();
34 if(obj != null) {

35 c.put(key, obj);

36 cacheMisses++; } }

37 return obj; }

38

39 syn
ex around(Cache c, String key):

40 step(replP, s1) && args(c, key)

41 && on(summaryHosts, awed.combination.and(

42 awed.targets.filter(summaries),

43 awed.result.getFirst)) {

44 if (cacheMisses > THRESHOLD)

45 updateSummaries(summaries.getHosts())

46 return c.get(key, o); }

47

48 before(Cache c, String key, Object o):

49 step(replP, s2) && args(c, key, o) {

50 c.put(key, o); }

51 }

Figure 4.12: Aspect-based cooperative cache
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cache access using getCache (line 11) first looks up the value locally, and, if not found in
the cache group, attempts to acquire it from the outside. The advice at line 30 first accesses
the local cache. If the data is not found, it calls proceed to trigger a synchronous remote
advice (line 39) which (because of the on clause) queries hosts of group summaryHosts: this
is achieved using a filter selecting hosts whose summaries indicate that the value should be
present (the filter is specified as an argument in the on pointcut, in order to define a selection
policy for the group of hosts declared in the same on construct). The remotely executed advice
body returns the query result and requests updates of the summaries if a threshold number
of cache modifications has been exceeded (this accounts for the basic property of infrequent
updates of summary information, see [FCAB00]). The replication within the cache group is
achieved as above by matching put operations using the pointcut putCache (line 15). This
pointcuts triggers the advice at line 48 which executes a put operation on all hosts in the
cache group which are different from the host where the original put occurred.

4.4 Advanced examples: JBoss cache extension and refactor-

ing

This section presents results on two evaluations using aspects with explicit distribution for
refactoring (i) and extension (ii) of the standard replication strategy of JBoss Cache. These
examples show how to cleanly modularize the crosscutting functionalities discussed before
and how to support extension of legacy replication strategies.

4.4.1 Refactoring of JBoss replication code

In chapter 3 we have identified replication and transaction as two functionalities contributing
to crosscutting within JBoss cache. We show here a re-implementation of the basic replication
mechanism, and the transaction-guarded replication mechanism. As described in chapter 3,
the basic replication mechanism replicates all changes on the cache. In the other hand, in
transaction-guarded replication, the replication protocol first executes the transaction locally
(a transaction may be composed of several changes on the cache), requiring, in particular, only
the acquisition of local locks. Once the commit method is invoked in the current transaction,
all the modifications are replicated to all the nodes in a cache replication group: at remote
hosts a prepare phase is executed and, if successful in all nodes, the transaction is committed.
If a prepare phase in any node fails, the transaction is rolled back at all nodes.

Basic replication mechanism

Figure 4.13 shows a re-implementation of the basic mechanism of replication proposed by
JBossCache. The pointcut definition matches a call to the method put in the class TreeCache
on all the hosts that are not the joinpoint-host. Once the joinpoint is matched, a replicating
advice is executed only if the matched joinpoint was not inside a transaction.

Transaction-guarded replication

Figure 4.14 shows a re-implementation of the transaction-guarded replication strategy of
JBoss Cache. AWED allows to cleanly modularize the transaction-guarded replication pro-
tocol in a single aspect. The first advice is executed when a local commit method is invoked,
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1 all aspe
t TreeCacheTransactionReplication {

2 point
ut cachePut(GlobalTransaction gtx, String fqn, Object key, Object value):

3 
all(* org.jboss.cache.TreeCache._put(GlobalTransaction , Fqn , Object , Object, boolean))
4 && args(gtx, fqn, key, value, boolean) && !on(jphost)
5 && !within(TreeCacheTransactionReplication);
6

7 before(GlobalTransaction gtx, String fqn, Object key, Object value):

8 cachePut(gtx, fqn, key, value){

9 testDjascoCachePolicyExtension cp = testDjascoCachePolicyExtension.getInstance();

10 if(gtx==null){
11 System.out.println("Replicating without tx..");

12 cp.getTc().put((Fqn.fromString(fqn), key, value);

13 }

14 }

Figure 4.13: Refactoring the JBoss replication code (principle)

the code is used to extract information from the context and invoke an auxiliary method used
to trigger the replication protocol. The aspect then defines two pointcuts that represent a
RemoteCommit and a RemoteRollBack respectively. With those pointcuts definitions in place,
three synchronous around advices are defined to implement the two phase commit protocol.
The first around advice is used to rollback the transaction in the joinpoint host if an error
occurs during the prepare phase. The second around advice executes replication handling at
other nodes through a remote call to preparePhase() and raises an exception in case of errors.
The third around advice commits the transaction. Note that two different selection classes
are used during the protocol execution. The class AWED.hostselection.AllSuccessfull is
used to execute the synchronous advice in all hosts and returns an exception if any of the
hosts reports an exception. The class AWED.hostselection.All is used to execute the advice
in all hosts. Finally an advice that matches any remote rollback is put in place to assure local
rollback of transactions when the prepare phase fails in any of the remote hosts.

4.4.2 Extension of the JBoss replication strategy

As a second evaluation, we realized an extension to the JBoss standard replication strategy:
data should only be replicated to nodes that have explicitly requested it, i.e., new objects
inserted in a cache group are not replicated spontaneously.

Figure 4.15 shows an aspect definition using AWED that enables lazy replication in a
JbossCache. The aspect defines two piontcuts startSelectiveMode and finishSelectiveMode,
respectively used to define the start and end events of the selctive replication mode. The im-
plementation uses a sequence pointcut replS which implements a distributed protocol: this
protocol starts selective replication mode, followed by local interception of get operations
(which explicitly indicate interest in some data). Then the aspect intercepts local replication
operations, replicating only when some interest to the data has been registered, until selective
mode is terminated. Data which is to be replicated is selected through the advice applied
before get operations (step 2 in the sequence replS) which registers interest to the data.
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1 all aspe
t LocalTransacCommit {

2 point
ut localCommit():

3 
all(* org.jboss.cache.transaction.DummyTransaction.commit()) && on(jphost)
4 && !within(org.emn.djasco.cache.TransacReplication);
5

6 before(): localCommit() {

7 testDjascoCachePolicyExtension cp = testDjascoCachePolicyExtension.getInstance();

8 GlobalTransaction gtx=cp.getTc().getCurrentTransaction();

9 TransactionEntry entry= cp.getTc().getTransactionTable().get(gtx);

10 List modifications= new LinkedList(entry.getModifications());

11 ReplicationHelper.getInstance().txReplication(gtx, modifications);

12 }

13

14 point
ut remoteCommit(GlobalTransaction gtx, List modifications):

15 
all(* org.emn.djasco.cache.ReplicationHelper. txReplication(GlobalTransaction, List))

16 && args(gtx, modifications) && !within(org.emn.djasco.cache.TransacReplication);
17

18 point
ut remoteRollBack(GlobalTransaction gtx, List modifications):

19 
all(* org.emn.djasco.cache.ReplicationHelper. rollBack(gtx, modifications))

20 && args(gtx, modifications) && !within(org.emn.djasco.cache.TransacReplication);
21

22 //Local advice roolbaks if something fails

23 //in the two phase commit protocol

24 syn
ex around(GlobalTransaction gtx, List modifications):

25 remoteCommit(gtx, modifications) && on(jphost){
26 testDjascoCachePolicyExtension cp = testDjascoCachePolicyExtension.getInstance();

27 try{
28 pro
eed();
29 }
at
h(Exception e){

30 ReplicationHelper.getInstance().rollBack(gtx, modifications);

31 throw e;

32 }

33 }

34 //Execute the prepare phase in all the hosts

35 syn
ex around(GlobalTransaction gtx, List modifications):

36 remoteCommit(gtx, modifications) && !on(jphost, AWED.hostselection.AllSucessfull){

37 testDjascoCachePolicyExtension cp = testDjascoCachePolicyExtension.getInstance();

38 try{
39 ReplicationHelper.getInstance().preparePhase(gtx, modifications);

40 }
at
h(Exception e){

41 ReplicationHelper.getInstance().rollBack(gtx, modifications);

42 throw e;

43 }

44 pro
eed();
45 }

46 //commits definetly in all the hosts

47 syn
ex around(GlobalTransaction gtx, List modifications):

48 remoteCommit(gtx, modifications) && !on(jphost, AWED.hostselection.All){

49 testDjascoCachePolicyExtension cp = testDjascoCachePolicyExtension.getInstance();

50 try{
51 ReplicationHelper.getInstance().commitPhase(gtx, modifications);

52 }
at
h(Exception e){

53 //don’t do nothing if fails commiting locally

54 }

55 pro
eed();
56 }

57

58 before(GlobalTransaction gtx, List modifications):

59 remoteRollBack(gtx, modifications) && !on(jphost){
60 //roll back the transaction

61 }

62 }

Figure 4.14: Refactoring the JBoss replication code (detailed excerpt)
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1 all aspe
t lazyReplication {

2 point
ut cacheGet(String fqn):

3 
all(* org.jboss.cache.TreeCache.get(String))

4 && args(fqn) && on(jphost) && !
flow(* lasyReplication.*(*));

5

6 point
ut cacheReplicate(MethodCall method_call):

7 
all(* org.jboss.cache.interceptors.ReplicationInterceptor. replicate(MethodCall))

8 && args(method_call) && on(jphost);
9

10 //this pointcut can be matched by any execution on

11 // any host, is not host restricted

12 point
ut startLasyModeEvent():

13 
all(* AWED.utils.LazyMode.start());

14

15 //finish lazy mode event

16 point
ut finishLasyModeEvent():

17 
all(* AWED.utils.LazyMode.end());

18

19 point
ut replPolicy(String fqn, MethodCall method_call):

20 replS: seq(s1:startLasyModeEvent() -> s4 || s3 || s2 ,

21 s2: cacheGet(fqn) -> s4 || s3 || s2,

22 s3: cacheReplicate(method_call) -> s4 || s3 || s2,

23 s4: finishLasyModeEvent() -> s1)

24

25 around(String fqn):

26 step(replS, s2){

27 IamInterestedIn(fqn);

28 return pro
eed();
29 }

30

31 around(MethodCall method_call): step(replS, s3){

32 Method meth=method_call.getMethod();

33 if(meth.equals(TreeCache.prepareMethod) ||

34 meth.equals(TreeCache.commitMethod) || meth.equals(TreeCache.rollbackMethod)) {

35 return pro
eed();
36 }

37 else if(amIInterested(method_call)){
38 return pro
eed();
39 }

40 }

Figure 4.15: Extending the JBoss replication strategy
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1 //Class DummyTransaction

2 publi
 void commit() throws ... {

3 ...

4 try {

5 boolean outcome=notifyBeforeCompletion();

6 ...

7 notifyAfterCompletion(doCommit? Status.STATUS_COMMITTED :

8 Status.STATUS_MARKED_ROLLBACK);

9 ....

10 }

11 finally {

12 // Disassociate tx from thread.

13 tm_.setTransaction(null);
14 }

15 }

16

17 //Class SynchronizationHandler

18 publi
 void beforeCompletion() {

19 TransactionEntry entry=tx_table.get(gtx);

20 ...

21 // REPL_SYNC only from now on

22 try {

23 int status=tx.getStatus();

24 swit
h(status) {

25 ...

26 
ase Status.STATUS_PREPARING:

27 try {

28 MethodCall prepare_method;

29 prepare_method=new MethodCall(TreeCache.prepareMethod,

30 new Object[]{gtx, modifications,

31 (Address)cache.getLocalAddress(), Boolean.FALSE});

32 runPreparePhase(gtx, prepare_method,

33 (Address)cache.getLocalAddress(), modifications, false);
34 }
at
h(Throwable t) {

35 log.warn("runPreparePhase() failed. Transaction is marked as rolled back", t);

36 tx.setRollbackOnly();

37 throw t;

38 }

39 break;}
40 }
at
h(Throwable t) {

41 throw new NestedRuntimeException("", t);

42 }

43 }

44

45 //Class ReplicationInterceptor

46 prote
ted void runPreparePhase(GlobalTransaction tx,

47 MethodCall prepare_method, Address coordinator,

48 List modifications, boolean async) throws Exception {

49 List rsps;

50 int num_mods=modifications != null? modifications.size() : 0;

51 // this method will return immediately if we’re

52 // the only member (because exclude_self=true)

53 if(log.isTraceEnabled()) log.trace(...);

54 rsps = cache.callRemoteMethods(cache.getMembers(), TreeCache.replicateMethod,

55 new Object[]{prepare_method},

56 !async, // sync or async call ?

57 true, // exclude self

58 cache.getSyncReplTimeout());

59 if(!async && rsps != null) checkResponses(rsps);

60 // throws an exception if one of the rsps is an exception

61 }

Figure 4.16: JBoss cache transaction replication implementation
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4.4.3 Comparison to a JBoss-only solution

To conclude this section, let us compare the two previous examples to the implementation
based only on JBoss. Figure 4.16 shows three methods from three different classes that re-
spectively participate in the coordination and replication of the prepare phase, of the two
phase commit protocol used, and in the host that is starting the replication of the transac-
tion. First, the commit method is called in the class implementing the Transaction interface
(i.e. DummyTransaction) this method uses the before-completion and after-completion idiom:
if the beforeCompletion method of any of the listeners has failed, the afterCompletion

method used to roll back the transaction. When a before-completion method is called
all the listeners are notified, in particular the listener SynchronizationHandler. When
SynchronizationHandler’s beforeCompletion method is called the runPreparePhase method
of the class ReplicationInterceptor is invoked. Using reflection and the Jgroups API, the
remote calls are distributed to all the participating hosts, waiting for an answer in the case
of synchronous distribution. Note that this behavior corresponds only to the code executed
in the host from which the transaction originates. Once a remote host receives a message
to replicate, the TreeCache class invokes the replicate method that belongs to the class
ReplicationInterceptor. In that class, the transaction is decomposed, each call is then
replicated using a local call inside a local transaction, using the normal interceptors chain,
see chapter 3. This code excerpt shows that replication code gets scattered in multiple classes
and tangled with other functionalities as well as infrastructure support code (e.g., code im-
plementing interceptors and listeners).

Contrary to the tangled implementation of transaction and replication code in JBoss
Cache, our aspect refactoring clearly separates replication and transactions (transactions ap-
pear, apart from their setup, only in exception handlers). Concretely, we have been able to
refactor the scattered replication functionality and the corresponding transaction handling
which amounts to around 500 LOC in JBoss into one aspect of around 100 LOC. Further-
more, our aspect does not require any particular transaction management but reuses the
default transaction management of JBoss Cache. Finally, the second example shows how
extensions can be easily integrated using AWED, in particular, because distributed protocols
can concisely be expressed using sequence aspects.

4.5 Implementation

Two of the main features the AWED language requires from its underlying middleware im-
plementation are the ability to intercept joinpoints from other hosts and the capability to
execute advice on other hosts. A static aspect compiler, as for instance employed by As-
pectJ [KHH+01], is not well suited to facilitate a flexible distributed AOP platform, as this
setup requires all aspects to be present on all the applicable hosts at compile or weave time.
As such, all hosts need to be known and fixed in advance, which losses a lot of flexibility. A
dynamic AOP approach however, allows to dynamically add/remove hosts and aspects, which
is an important feature for large-scale distributed systems.

Therefore, we have chosen the JAsCo [SVJ03] dynamic AOP framework as an imple-
mentation platform for the AWED language. JAsCo can be easily extended and provides
highly efficient advice execution through its Hotswap and Jutta systems [VS04]. Further-
more, JAsCo already natively supports a model of stateful aspects based on finite state ma-
chines [VSCDF05], which can be extended to support distributed sequences as well(JAsCo’s
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sequences and AWED’s sequences are both based in the model for regular aspects presented
by Douence, Fradet, and Südhot [DFS02, DFS05]). We start the discussion with an overview
of AWED implementation.

4.5.1 AWED implementation overview

AWED is designed to support the implementation of homogeneous distributed applications,
but also to support the modification of distribution semantics in heterogeneous legacy dis-
tributed applications. Therefore, to allow a flexible platform adaptable to the heterogeneity
of the distribution realm, we have used several extensible library/framework during im-
plementation. Concretely, regarding communication design, we have based the internal
communications of AWED runtime infrastructure in a flexible protocol stack, provided by
JGroups [Ban02], and developed semantic connectors to address the interaction with legacy
code in other communication frameworks (e.g., Java’s RMI). Figure 4.17 shows a high level
view of the main components used during the implementation of AWED. To support remote
pointcuts, and remote deployment of aspects we use JGroups [Ban02], an advanced library
for group communication, and JavaAssist [Chi00] for bytecode manipulation. The compiler,
aspect support, and dynamic weaving are granted by JAsCo’s owns infrastructure. Finally,
to implement distributed control flow over RMI applications, RMI, and parameter passing we
use Java’s network and Remote Method Invocation APIs.

Figure 4.17: Main components used in the implementation of AWED.

Overview of supported features

Table 4.5.1 shows an overview of the main features of AWED and their implementation
techniques. The rest o this chapter briefly introduce the AWED run-time architecture, then
presents a detailed description of the implementation of main features (see table 4.5.1), and
finally discusses some optimizations inherited from JAsCo.

4.5.2 AWED architecture

AWED is a dynamic aspect language that weaves aspects with classes at load time and al-
lows aspect deployment and undeployment at execution time. Its implementation presents
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Features Implementation Techniques

Remote pointcuts join point controlled advice chain invocation

Control flow Java’s customized sockets

Remote Sequences JAsCo sequences and remote pointcuts

Remote advice Based on activation of deployed aspects

Aspect distribution Aspect dynamic deployment and bytecode propagation

Aspect state sharing AWED aspects

Parameter passing, remote references AWED aspects

Causal sequences Logical clocks, Vector clocks

Table 4.2: Overview of AWED’s features and their corresponding implementation techniques

an optimized partially evaluated interpreter for distributed aspects. Figure 4.18 shows the
overall architecture, i.e., its compilation chain and the main structures of its runtime frame-
work. In the top left part of the figure we can see how the application and aspect code is
compiled into Java bytecode. The bytecode is then read by AWED’s instrumentation and
transformation framework at load time, producing a version of the application that is instru-
mented at the necessary joinpoints (here a subset of the method calls). When executing the
instrumented application, and once it reaches an instrumented joinpoint, the application dis-
patches joinpoint notifications to the Registry framework that takes care of the recognition
of distributed sequence pointcuts (see detailed description bellow). This framework passes
the joinpoint notification to each aspect instance, that, in turn, evaluates each joinpoint to
match pointcuts and to apply advice. An AWED runtime framework, including a registry,
is running at runtime on each logical host,i.e., JVM. In order to support remote pointcuts
each host controls the advice chain of join points occurring on that host. As such the com-
piled code at load time will be coordinate remote registries to execute remote advice using
an extension of the JGroups framework [Ban02]. This part of the infrastructure contains all
necessary support for remote regular sequence pointcuts. In figure 4.18, we have also detailed
the communication framework (see the box labelled “JGroups” in the figure). In the figure we
show a traditional protocol stack that supports different protocols, including the User Data-
gram Protocol (UDP). This architecture also allows the composition of different aspects over
a single join point, in particular AWED uses precedence declaration inherited from JAsCo to
address this particular issue. Thus, in a single JAsCo controller the instantiation behavior,
the concrete pointcuts, and the precedence of several aspects can be declared.

Detailed runtime behavior of the registry framework

The run-time architecture can be distributed using two different strategies: either a single
connector registry is kept for all hosts or each host separately maintains a dedicated connector
registry. The first solution has the advantage that a single registry is responsible for the
aspect execution, whereas the second solution requires the distributed connector registries to
be synchronized. In general, a central entity is considered to be a problematic solution in a
distributed setting, as it inherently does not scale and can become a performance bottleneck.
Therefore we choose to deploy a separate connector registry at each host (see figure 4.19).

Every connector registry is responsible for the locally intercepted joinpoints and its locally
deployed aspects. In order to allow aspect execution on remote joinpoints, the intercepted
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Figure 4.18: AWED architecture.

joinpoints need to be sent to the other hosts. Likewise, in order to allow aspect execution on
remote hosts, the aspects need to be distributed as well.

4.5.3 Remote pointcuts

In order to execute advice that trigger on remote joinpoints, the joinpoint information should
be distributed to all interested hosts. To this end, a plugin for the connector registry has
been implemented that: 1) intercepts all joinpoints, 2) prepares them for transmission and 3)
sends them to the remote hosts. Joinpoints need to be prepared before transmission as not
all joinpoint information might be transmittable. Our current system uses Java Serialization
to transmit objects from one host to another. For this, all contextual information (e.g. callee,
actual arguments) that is neither serializable nor primitive or that has been labeled to be
passed by value is transformed according to the remote reference model (see Sec. 4.5.3). In a
last step, the joinpoint information is sent to the remote hosts. In order to locate and send
this information to other interested hosts, the JGroups framework is employed [Ban02].
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Figure 4.19: Detailed runtime behavior and architecture of the registry framework.

Remote References

The AWED model offers object transparency, and allows objects to be passed by ref as well as
by value, this transparency includes the reflective information of joint points. Java’s standard
infrastructure for remote method invocation RMI is not sufficient for our purpose, because it
does not provide object transparency and does not support different parameter passing modes.
Furthermore, when using RMI’s remote referencing model, the advice implementation cannot
access advice variables nor reflectively query joinpoint information that is not serializable.
Although this is an important limitation, it is typical in such distributed environments. For
instance, arguments of Java RMI method invocations need to be serializable or primitive as
well. Therefore, we have decided to implement the AWED infrastructure on top of RMI,
extending it with aspects to support object transparency, i.e., local and remote objects are
treated in the same way.

RMI requires objects to be explicitly instrumented in order to make them behave as remote
objects. To avoid this complication AWED uses two indirection layers on top and below RMI.
The layer on top of RMI provides remote delegation proxies that redirect remote method calls
to actual methods in the objects that are referenced remotely. These proxies are deployed
in hosts where the actual objects reside. The layer below RMI provides redirection-proxy
aspects that are deployed in the hosts where the remote references are actually used.

As mentioned above the layer on top of RMI is implemented using indirection proxy
objects (see Figure 4.20). An indirection proxy is a remote object, remote in the RMI sense,
that holds a reference (local reference) to a POJO (referenced) object. This proxy exposes
a remote method that passes the calls to the referenced object using the reflection API.
Using this technique, no previous instrumentation is needed to reference an object remotely.
Any object can be selected to be passed by reference in a remote invocation. However, this
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host1

Actual object
of type X

Remote proxy

host2

Dummy object
of type X

Proxy aspect
RMI

Figure 4.20: AWED’s remote reference model implementation. The actual object is referenced
by a remote proxy object and represented by a dummy object of the same type in the remote
host. Such a dummy object is instrumented by an aspect that redirects calls to the remote
proxy. The remote proxy then redirects calls to the actual object.

technique poses a problem: The RMI remote reference is now of type remote indirection proxy
and not of the type of the referenced object.

This problem of type mismatch is solved using a proxy aspect. We have modified the
reflective joinpoint model to include the type information of the remote reference of each
argument in each particular joinpoint. Using the type information, dummy objects are in-
stantiated to behave as the remote references. These dummy objects are instrumented using
a dynamic proxy aspect that holds a reference to the actual remote proxy. Any call that
is made to the dummy object is caught by the aspect and redirected to the remote proxy.
This proxy receives the call in the remote host and redirects it to the actual object that is
being referenced remotely. Note that the dummy object and the actual object that is being
referenced remotely are of the same type. Figure 4.20 illustrates this mechanisms.

Sequences

JAsCo’s stateful aspects, i.e., finite-state based sequences [VSCDF05], have been extended to
a distributed setting in order to implement AWED’s distributed sequences. This is a rather
straightforward process, because the state of a sequence pointcut is not managed by the
JAsCo run-time infrastructure (deployed locally, see figure 4.19), but by the aspect itself.
The aspect intercepts remote joinpoints, matching its stateful pointcut description in a similar
way as for joinpoints matching regular pointcuts. Afterwards, the internal state is updated
by firing the relevant transition(s) in the internal state machine.

4.5.4 Aspect Distribution

In order to execute advice on remote hosts, the aspects themselves should also be distributed
to the host(s) in question. One solution would be to force an administrator to manually
deploy the aspects on every applicable host. However, as an advice execution host sometimes
depends on complex expressions with several variables, it might be difficult to manually de-
ploy the aspects onto remote hosts in an optimal fashion. For instance, deploying aspects
to hosts where they can never be applicable is useless and wastes the system resources of
those particular hosts. Hence, the DJAsCo extension automatically distributes the aspects to
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all remote hosts that might be applicable. (The current implementation still uses automatic
aspect deployment on all hosts, however, like the advice chain is controlled by the registry
where the join point was generated, the extension of current distributed loader into a dis-
tributed lazy class loader is unproblematic.) When a new host joins, the DJAsCo run-time
infrastructure detects this event, and the host automatically receives the possibly applicable
aspects. Likewise, when new aspects are deployed at a particular host, they are automatically
deployed at the relevant remote hosts. It is possible to avoid this automatic deployment of
aspects on remote hosts by marking them with the single modifier.

Technically, JGroups is again employed to transfer the aspects and to be informed of
changes in the network setup such as newly joined hosts. In contrast to joinpoints, aspects
are class-based entities and it suffices to send the class byte-code to the remote hosts. Hence,
possible serialization problems are avoided.

4.5.5 Asynchronous Advice and Futures

When advices execute asynchronously, the return value might not yet be available while the
advised base application expects a value. Consider e.g. a compPrice method that computes
the price of a certain order where a discount around advice that substracts a fixed value
is applied. The invoker of compPrice expects a computed price, but in case the around
advice executes asynchonously, this value might not yet be available. A common technique
to solve the return value issue with asynchronous invocations is the use of futures [RHH85].
A future object represents the return value and waits for its availablity in case the value is
explicitly claimed. The main problem in our case is that the base application does not expect
a future. The caller of compPrice for instance expects a numeric value. Therefore, we employ
transparent proxies that wrap the future object. The transparent proxy is an instance of the
same type as the expected return value. An AWED aspect is applied onto the transparant
proxy and intercepts all method executions. For the first invocation, the future is claimed
and thus synchronized with the remote advice. Afterwards, the aspect simply redirects the
invocation to the available result of the future. Using the technique, the base application
remains oblivious of the existance of the future object. The performance impact is limited
to the equivalent of one additional method invocation. It would be possible to improve this
even more by employing the technique proposed by Pratikakis et al [PSH04].

4.5.6 State Sharing

The AWED language supports state sharing between different instances of the same aspect
type regardless of the location and/or VM where they are executed. In order to implement
local sharing, we generates one master field on every host for each locally shared aspect field.
All aspect instances of the aspect type on that host automatically refer to that field using
Java RMI. Field queries and updates are automatically redirected to the shared field. This
redirection takes place by employing another AWED aspect that is dynamically generated
and weaved when an aspect, defining a shared field, is being deployed. Visibility modifiers
for the fields (such as private) do not hinder the sharing implementation because they can
be overridden at run-time.

The global state sharing could be implemented in a similar fashion, i.e., having one
globally shared field. However, this solution suffers from a serious robustness problem as all
aspect instances of the same type would rely on one specific host that holds the shared field.
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Therefore, the local master fields are explicitly synchronized using yet another AWED aspect
that is automatically generated at deployment time. Figure 4.21 illustrates a simplified version
6 of this global state sharing aspect. The after advice is triggered for every state change of
the myfieldname field of the myaspectname aspect. The advice is executed on every host
except on the one that triggered the joinpoint. As such, the state change is propagated to
all other hosts. The advice implementation first fetches an aspect instance of the given type
on the host where it is executing and than changes the value to the newly assigned value.
Because all aspect instances on that host refer to the same field, the new value is immediately
propagated to all aspect instances of the myaspectname type on the host at hand.

1 all aspe
t StateSharing {

2 point
ut stateChanged(Object value):

3 set(myaspectname.myfieldname) && args(value) && !on(jphost);
4

5 after(Object value): stateChanged(value) {

6 myaspectname aspectinstance = myaspectname.apectOf();

7 aspectinstance.myfieldname=value; }

8 }

Figure 4.21: State sharing as a AWED aspect

4.5.7 Optimizations

In addition to the connector registry, JAsCo’s run-time architecture consists of two other
systems: HotSwap and Jutta. HotSwap allows to dynamically install traps only at those
joinpoint shadows that are subject to aspect application. When a new aspect is deployed, the
applicable joinpoints shadows are hot-swapped at run-time with their trapped equivalents.
Likewise, the original byte code is reinstalled when an aspect is removed and no other aspects
are applicable on the joinpoint shadow at hand. Jutta on the other hand, is a just-in-time
compiler for aspects that allows to generate a highly optimal code fragment for every joinpoint
shadow. By caching these code fragments, an important performance gain is realized. Both of
these systems are inherited from JAsCo. The JAsCo run-time weaver, based on HotSwap and
Jutta, is able to compete performance-wise with statically compiled aspect languages such
as AspectJ, while still preserving dynamic AOP features [FVSB05]. A major concern of the
AWED design is to preserve compatibility of the weaver with these two tools, in particular
to enable the optimization of remote pointcuts.

The JAsCo HotSwap and Jutta systems are compatible with the AWED architecture.
Because all aspects are present at every applicable host (even aspects that might execute
their advice elsewhere), the local HotSwap system still knows where to insert traps. Aspects
that do not define pointcuts relevant for the local host are not deployed and are of no interest
to the HotSwap system as they do not induce newly trapped joinpoints. Remote joinpoints
are represented similarly to local joinpoints. Hence, the Jutta system is still able to generate
and cache a code fragment for executing the joinpoint locally. As such, apart from the
network delay and serialization/deserialization cost, no additional overhead is required for
remote pointcuts and distributed advice executions.

6Notice that this aspect has been simplified for presentation purposes. For example, it does not cope with
the fact that aspect types might not be present on every host.



Chapter 5

Invasive Patterns

5.1 Introduction

Software patterns have proven a versatile tool for program development, be it for the devel-
opment of application designs [GHJV94], architecture descriptions [TS+03] or program im-
plementations [E+06]. Design patterns have been very successful in the domain of sequential,
and in particular object-oriented applications. Similarly, pattern-based development methods
have been extensively applied in the parallel computing domain for the derivation and imple-
mentation of massively parallel algorithms [TS+03, SDGS96, Col89]. However, pattern-based
approaches have been much less successful in the domain of distributed programming. In
particular, if such patterns are defined over irregular communication topologies and subject
to heterogeneous synchronization constraints. Consequently, patterns for distributed pro-
gramming (see, for instance, patterns for distributed enterprise information systems and grid
applications [SSRB00, Cor, E+06]) are often expressed as mere programming recipes. These
recipes are not backed up by concrete architecture or implementation entities that can be
reused as building blocks for applications.

In this chapter we investigate a major reason for the difficulty in applying programming
patterns, which embody common computation and communication patterns, to distributed
applications: frequently, applications of such patterns in realistic contexts depend on infor-
mation on the execution state that is not directly available when the pattern is to be applied.
This is, for instance, the case in two frequent cases: (i) in legacy contexts where patterns
could be used to improve the application structure but in which instructions for communi-
cation instructions and manipulation of related execution state are frequently scattered over
numerous places and (ii) in distributed applications that have been designed using less flexible
abstractions than provided by communication and computation patterns.

In this chapter we introduce invasive patterns for distributed programming. Such patterns
essentially provide well-known regular computation and communication patterns but extend
them by a built-in abstraction for access to non-local execution state whose access is required
to enable pattern applications. We provide evidence that techniques from Aspect-Oriented
Programming (AOP) [ACEF04] can be used to augment patterns by structured access to such
non-local state.

The chapter is structured as follows. First, we discuss different pattern-based approaches
for parallelism and distribution (section 5.2.1). Then, we present a detailed motivation for
invasive patterns and corresponding aspect-oriented support based on a detailed analysis of

77
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the use of implicit patterns architectures in the JBoss Cache strategy for replication in the
context of transactions, thus extending the analysis presented in chapter 3 (Section 5.3).
Section 5.5 introduces a pattern language that allows to concisely define invasive variants
of well-known patterns for distributed applications. Section 5.7 briefly sketches a prototype
implementation of invasive patterns using a transformation into the AWED language. Finally,
we give an evaluation of our approach by discussing how invasive patterns can be used to
improve the structure of JBoss Cache and applying them in the context of a benchmark
application for grid programming (section 5.7).

5.2 Pattern-based approaches for distributed development

5.2.1 Massively parallel patterns

In 1989 Cole introduced algorithmic skeletons for parallel computations [Col89]. These skele-
tons described general high level algorithms based on problem decomposition and distribu-
tion into parallel processors. These abstract algorithms are instantiated using higher order
functions, i.e., functions accepting functions as parameters and as return values. Thus, a
programmer could select a skeleton as the main program and provide specific domain func-
tions, following skeleton specification, to create a program which reused the parallel algorithm
described by the skeleton. An example of Cole’s work is the Fixed Degree Divide & Conquer
skeleton (FDDC). This skeleton was inspired by the common solution of dividing complex
problems in simpler sub problems. For example, having a list, the problem of ordering such
list can be solved using a recursive algorithm: first divide the list in two sublists, then ap-
ply the ordering algorithm to those sublists recursively, i.e., dividing the sublists in smaller
sublists, and finally merge the two resulting lists in order. A general algorithmic skeleton for
this kind of problems is defined as follows:

FDCC indivisible splitk joink f = F

where F P = f P , if indivisible P
= joink (map F (splitkP )), otherwise

Thus, for any problem domain where the problem is of type prob and the solutions are
of type sol the programmer must provide the following functions:

indivisible : prob → boolean

f : prob → sol

splitk : prob → [prob]
joink : [sol] → sol

Where indivisible is a function which inspects the problem and decides whether it can be
solved recursively. The function f is the base case (i.e., indivisible case). splitk is the function
which decompose a problem always in k subproblems, easier to solve. joink is the function
knowing how to join the k solution of the subproblems, and k is an integer fixed by the
programmer and respected by functions joink and splitk. This integer is used to give some
rigidity and homogeneity to the distribution schema, facilitating the mapping from the decom-
position three into a system of parallel processors. For example, figure 5.1 shows graphically
a representation of a binary tree distribution in a grid of processors. This distribution of
process represents a symmetric distribution of processes for the simplest FDDC algorithm (k
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Figure 5.1: H tree topology

= 2).
Note that this approach essentially relies on an underlying regular communication topology

and uses a homogeneous synchronization model, two properties that do not hold for the
applications we are targeting. Furthermore, crosscutting access to execution state on which
pattern application depend are not addressed explicitly. Recent work in parallel patterns
have not focussed on these restrictions. Instead, it has focused on the application of such
pattern-based parallelism to large-scale imperative applications (see, e.g., [TS+03, SDGS96]).
In particular, in the design of supporting tools for the automatic generation of code.

Our approach extends these approaches by addressing the problems of homogeneity and
regular communication models. Concretely, we provide dynamic mechanisms for the definition
of distributed algorithms instantiated concretely in an aspect based language.

5.2.2 Architectural patterns for distributed applications

Patterns have been instantiated in terms of different artifacts and at different levels of ab-
stractions. One of these instantiations is the conceptual documentation (in catalogues) of
recurrent practices to solve particular problems. In the domain of distributed software sev-
eral pattern catalogues have been proposed [BMR+96, SSRB00, AMC+03]. These catalogs
describe either architectural patterns, designs patterns, idioms, or all of them.

Architectural patterns describe the decomposition of a system into subsystems(e.g., [BMR+96,
SSRB00]) providing guides to organize its relationships, and specifying their responsibilities.
For example, the pipes and filter architectural pattern from [BMR+96], provides a structure
for systems processing a stream of data. In such case each filter receives an stream of data as
an input, and outputs a modified stream of data (see figure 5.2). That stream can then be
used as the input of the following filter. Each filter is connected to the next filter using pipes.
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Pipes serve to synchronize and communicate output between filters. Thus, several systems
can be constructed using different sequences of filter connected by pipes. A popular instan-
tiation of this pattern can be found in Unix-like systems where for example the command ls

| less is connect by a pipe (|), and composed by less and ls subsystems. The resulting
processing pipeline will take as input the directory contents and will output them into the
terminal allowing forward and backward navigation.

This pattern allows concurrent processing of the stream. Thus, the next filter in the chain
can start processing the stream before the previous filter finishes the process of all the stream.
Figure 5.2 shows a graphical representation of such pattern. In the picture the stream flows
from left to right passing through all the filters.

Figure 5.2: Pipes and filter pattern

Architecture description languages

Distributed applications are often built using rich middleware structures which provide basic
services for the implementation of typical computation and communication patterns. How-
ever, the middleware infrastructures do not include dedicated support for pattern definitions.
In the domain of grid computing, for instance, Globus one of the most popular middleware for
grid architectures, uses the resource specification language RSL [Glo] to support the deploy-
ment of applications. The corresponding specifications include, among others, information
related to the application (location of the executables, number of instances of a program,
etc.), as well as information on the execution environment (names of computers, job submis-
sion methods, working directory, environment variables, etc.). However, in contrast to the
notion of invasive patterns advocated here, computation and communication patterns have to
be programmed in an ad hoc manner. In particular because RSL cannot describe connection
constraints between the various parts of an application that depend on execution state that
is encapsulated by the distributed nodes.

A common means to overcome such restrictions are architecture description languages, in
which patterns or pattern-like structures are used for system specification and implementation.
This approach is particularly widespread in component-based systems. Such systems are
typically constructed from a set of components that are interconnected through well-defined
ports. To mention just one of the many corresponding approaches, a Corba Component Model
(CCM) [CCM] architecture description, for instance, contains one or more components as well
as two specific pieces of deployment-relevant information: component placement information
and component interconnection information. Furthermore, CCM and other component-based
models contain mechanism that are used to implement patterns, e.g., mechanisms for the
implementation of asynchronous broadcast services. However, as for grid middleware, these
programming abstractions are not made explicit in the architectural description that defines
the interconnection properties and, in contrast to our approach, no explicit means for the
embedding of pattern-like interconnection structures in crosscutting contexts is provided.
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Client F i l t e rManager

Fi l terChain Fi l terTwo

Fi l terOne

Fi l terThree

Target

Figure 5.3: Standard startegy of filter pattern [AMC+03]

5.2.3 Design Patterns for distributed applications

Design patterns in their most popular instantiation propose object oriented descriptions of
recurrent practices in object oriented programming [GHJV94]. Such patterns are particu-
larly widespread in component-based systems, e.g., the CORBA and J2EE platforms [CCM,
AMC+03]. These component systems provide communication and concurrency mechanisms
that are used to implement patterns, e.g., for the implementation of asynchronous broadcast
services. However, most of these descriptions provide a local structural organization of code,
assuming implicit communication support by the underlying framework (e.g., J2EE).

Figure 5.3 shows the class diagram of the filter pattern, as presented in J2EE Core pat-
terns book [AMC+03]. The pattern is conceptually similar to the Filter and Pipes pattern
presented before. However, in this case we found concrete instances represented as classes.
The figure shows a class diagram with a class FilterManager that creates filter chains (classes
FilterChain and Filter), and processes the requests between the client and the target ob-
ject. Even though, the pattern does not explicitly define the client as remote, the context of
the book (J2EE patterns) and the detailed description imply a remote interaction (e.g., an
interaction between an http client and an application server).

Patterns can have several implementation strategies. For example, figures 5.4 and 5.5 show
two different sequence diagrams for two different implementation strategies. Figure 5.4 shows
a sequence diagram that matches exactly the class description presented in figure 5.3. The
Client sends a request to the FilterManager, which creates a FilterChain, which applies
each filter over the request. Finally, the FilterManager forwards the filtered request to the
target object. In the other hand, figure 5.5 shows an implementation strategy similar to that
described in chapter 3 for JBoss Cache. This strategy uses a Decorator pattern [GHJV94]
to create a chain of filters where each filter wraps the next one, calling directly its Execute

method. At the end of the chain the target object receives the filtered request.

5.2.4 Aspect oriented pattern approaches

Design and architectural patterns propose abstract reusable solutions for software applications
and systems architecture. However, design and architectural patterns are not instantiated in
reusable software artifacts, instead, they serve as documented guides. Furthermore, during
the implementation of such patterns several issues have to be considered. We are particularly
interested in traceability and reusability. Traceability of design pattern is often lost in the
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Figure 5.4: Sequence diagram of standard startegy of filter pattern [AMC+03]

Figure 5.5: Sequence diagram for custom filter pattern: implementation using Decorator
pattern [GHJV94]
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implementation. As shown in chapter 3, patterns are not easily identifiable at the code level
and they do not encapsulate cleanly the concerns they were designed for (similar problems
were first identified by Soukup [Sou95] and Bosh [Bos98]).

Regarding reusability, design patterns and architectural patterns are provided as design
guides. These design guides are not, in general, first class elements of the language. Hence,
they can not be reused in other implementations. This problem was identified early in re-
search literature and addressed with specific language constructs and extensions (e.g., see
[Sou95, Bos98]). Another solution to address reusable implementation of design patterns was
proposed by Hannemann and Kiczales in [HK02]. In particular, they show that several quality
attributes, such as locality of definition and code reusability, of GoF pattern implementations
can be improved through usage of AspectJ.

A number of approaches have been put forward that use distributed AOP for the modu-
larization of crosscutting functionalities in distributed and concurrent applications (see chap-
ter 2). These approaches, while in principle being able to express invasive patterns as we
propose, can only do so by modularizing crosscutting functionalities using separate aspects
for each node in a distributed system. Our approach, through its pattern language is much
more declarative by directly expressing distribution-relevant relationships within single as-
pects, thus resulting in more concise programs that facilitate program understanding and
maintenance.

5.3 Pattern-like structures in distributed middleware

In this section we present modularization problems of pattern-like computations in JBoss
Cache.

5.3.1 Pattern-like structures in JBoss Cache

We have analyzed the occurrences of pattern-like computation structures and the dependen-
cies of such pattern-like structures on the underlying execution state in JBoss Cache, as an
extension to the study presented in chapter 3. In the following we briefly describe the results
of our analysis of software patterns that are used implicitly in this infrastructure.

Explicit design using design patterns

As presented in chapter 3, JBoss Cache implementation consists of two main parts: (i) a
main class CacheImpl that represents the main data structure, a tree with a hash table on
each leaf, and (ii) a set of filters that is used to implement the major part of the behavior
of non-functional requirements, mainly transactions and data replication. Each call to the
CacheImpl API is first transformed into a method call object using a reflection mechanism.
Once this object is created, it is passed to a chain of filters where each filter adds some
behavior, e.g., optimistic locking is added by the transaction filter. Eventually, the filtered
method call is performed (see chapter 3 for more details). This simple design is implemented
using a filter pattern. The components of such a pattern can be found explicitly instantiated
in the class structure of JBoss Cache. However, the comunication patterns and their relations
are not explicitly found in the code.
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Figure 5.6: Architecture of transaction handling with replication in JBoss Cache

Implicit comunication patterns

The current production version (2.0.0) of JBoss Cache has an architecture that can be ex-
pressed nicely in terms of patterns using, e.g., a pipeline pattern for transaction control and
a farm pattern for replication actions. Note that JBoss Cache provides several configurable
feaures, e.g., transaction locking strategies (e.g., pesimistic, optimistic), buddy replication
(group of preferred hosts for initial replication), and replication protocol (one phase commit,
two phase commit). Here and in the rest of this chapter we assume the cache to be configured
for transactions with pessimistic locking and a two phase commit protocol.

Figure 5.6 presents a high-level pattern-based view of the corresponding (similar to archi-
tectural patterns) system structure of JBoss Cache. In the figure, a transaction is triggered
by a specific method call represented by the first node in the pattern. Then successive calls
to get, remove or put methods on the cache are executed and the information is stored for
further replication. When a particular value is not present in the cache, the cache looks for the
value in a group of selected neighboring nodes, its so-called buddies, illustrated by the three
edges starting in the second node of the figure. Once the end of a transaction is reached, the
originating cache engages in a two phase commit protocol [LS76, Gra78]. In such a protocol
the originating cache sends a prepare message with the transaction control information (edges
numbered 1 in the right part of the figure), followed by answers from all buddies confirming
agreement or non-agreement (edges numbered 2). Finally, the originating cache sends a final
commit or a rollback message depending on the answers it received (edges numbered 3). Note
that in this interaction we can identify, at least, two well separated groups of hosts, one for
the search of values at buddy nodes and the other for the replication behavior from a node
to other nodes.

In chapter 3 we have analyzed the complexity of the implementation of the JBoss Cache
framework. In particular, we have shown that replication and transaction instructions are
widely scattered over the code base and tangled with one another in numerous places. Even
though JBoss Cache conceptually is characterized by a pattern-based structure as shown in
Fig. 5.6, the current implementation does not allow conventional communication patterns
for distributed systems to be applied due to the scattering and tangling of code. A detailed
qualitative analysis of such code leads to the identification of three basic problems:
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1. Transactional and replication behavior depends on the state that is stored in different
classes. Such a state is modified in scattered pieces code that e.g., reify the current
transactional state as mentioned above so that it can later be tested in another class in
order to decide which replication action to perform.

2. The relationships governing the interplay between the main concerns, transactions and
replication, are not made explicit anywhere in the code. Instead, scattered pieces of
code implicitly coordinate these concerns, thus generating tangled code and breaking
the modularization aimed at by the JBoss Cache filter mechanisms.

3. JBoss cache includes several distribution-related concerns (e.g., replication, cache load-
ers and buddy lookup) that require communication between different groups of hosts.
Groups overlapping and interactions between different groups generate additional tan-
gling.

5.3.2 Source code representation of pattern-like structures

Figure 5.7 shows a piece of code of the main filter method invoke of the DataGravitation-

Interceptor class that is responsible for the so-called data gravitation concern, i.e., buddy
lookup. This method clearly exhibits the problems stated above, providing evidence of tan-
gling of three concerns: replication, transactions and buddy lookup. The code uses a common
idiom in the JBoss Cache to address transactions control inside a switch instruction (lines
7 to 19). The right branch in the switch statement is taken depending on static information
in the execution state, e.g., a configuration-time choice between optimistic and pessimistic
locking, and dynamic information about the execution state, e.g., the dynamic type of the
current processed method call. There, in order to calculate the method id (see line 5) the
application relies on an ad-hoc mapping that is defined in the class MethodDeclarations.
Similarly, the choice between optimistic and pessimistic locking is made at configuration time
inside the TreeCache class as well as part of the class InterceptorChainFactory (this choice
in turn affects at runtime the configuration of the dynamically created chain of filters).

Note that the corresponding piece of code is found inside the filter class DataGravitation
and uses data that is calculated in many different places, thus expliciting problem 1 above.
The kind of idiom involving switch statements (that clearly represent a mismatch between
the conceptual pattern-based architecture and its concrete implementation) is scattered over
multiple places in the implementation. We have found 67 places where such a switch action is
used, and more than 27 places where it occurs in the context of transactions and replication
operations (thus providing testimony for the problems 1 and 2 introduced above).

Furthermore, the DataGravitation class plays an unexpected role in the two phase com-
mit protocol. A method of type commitMethod is processed in order to send a commit message
on those caches that are not part of the current buddy group, see line 34 in the docommit

method (i.e., being subject to problem 3 above). Remember that the DataGravitation class
was supposed not to control the transactional behavior or the replication of transactions which
should normally be performed by the transactions and replication filters.

5.4 Motivation and requirements for Invasive patterns

There is a very large choice of potential basic architectural patterns for distributed program-
ming. A set of basic patterns could be derived, for instance, from schema for the implemen-
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1 //----- Piece of code in the invoke method of

2 //----- DataGravitationClass

3 try
4 {

5 swit
h (m.getMethodId())

6 {

7 
ase MethodDeclarations.prepareMethod_id:

8 
ase MethodDeclarations.optimisticPrepareMethod_id:

9 Object o = super.invoke(ctx);
10 doPrepare(ctx.getGlobalTransaction());

11 return o;

12 
ase MethodDeclarations.rollbackMethod_id:

13 transactionMods.remove(ctx.getGlobalTransaction());

14 return super.invoke(ctx);
15 
ase MethodDeclarations.commitMethod_id:

16 doCommit(ctx.getGlobalTransaction());

17 transactionMods.remove(ctx.getGlobalTransaction());

18 return super.invoke(ctx);
19 }

20 }

21 
at
h (Throwable throwable)

22 {

23 transactionMods.remove(ctx.getGlobalTransaction());

24 throw throwable;

25 }

26

27 //---- The docommit method in DataGravitation class

28 private void doCommit(GlobalTransaction gtx) throws Throwable

29 {

30 if (transactionMods.containsKey(gtx))

31 {

32 if (log.isTraceEnabled())

33 log.trace("Broadcasting commit for gtx " + gtx);

34 replicateCall(getMembersOutsideBuddyGroup(),

35 MethodCallFactory.create(

36 MethodDeclarations.commitMethod,

37 new Object[]{gtx}),

38 syncCommunications);

39 }

40 else
41 {

42 if (log.isTraceEnabled())

43 log.trace(

44 "Nothing to broadcast in commit phase for gtx " + gtx);

45 }

46 }

Figure 5.7: Tangled code of a two phase commit (2PC) protocol inside the invoke method of
the DataGravitationInterceptor class.
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Figure 5.8: Basic patterns

tation of publish-subscribe relationships [EFGK03], from the large pool of patterns that have
been studied for distributed and parallel programming [Col89], or from more recent work on
patterns for current distributed systems(e.g., grid-based systems [E+06]). However, depen-
dencies as those motivated before for JBoss Cache between transaction-related actions and
replication operations cannot simply be modularized using standard patterns for workflow-
related computations, such as pipelining, farming out or gathering computations as illustrated
in Fig. 5.8. In the figure circles denote calculations that possibly take place on different hosts
and edges denote communication. In fact, taking scattering and tangling of transactions and
replication into account does not fit the common interpretation of such patterns in which
each circle denotes a well-defined entity, in our motivating example such entity is some nicely
modularized piece of code within JBoss Cache.

In such cases effective support for a pattern-based programming style should allow:

• The definition of patterns to include access to the data it depends on but that is defined
at other places in the underlying distributed program.

• Allow such patterns to be applied possibly at numerous places in a program, including
remote places.

• Distributed work and data flow (see distribution and parallelism in chapter 2)

• Coordination. First, coordination of the different parts inside an Invasive pattern, e.g.,
data access. Second, external coordination between invasive patterns. (see concurrency
in chapter 2.)

• Allow composition of multiple patterns.

5.5 Invasive patterns

5.5.1 Structure and design

We pursue the idea of invasive pattern at the programming level by extending skeleton
based patterns, as presented by Cole [Col89] (see section 5.2.1), with a notion of aspects
to modularize crosscutting access. Concretely, we provide a notion of reusable architectural-
communication patterns (e.g., pipe, farm, gather) and the corresponding programming arti-
facts. The resulting notion of invasive patterns is illustrated in Fig. 5.9 for the case of a gather
pattern. On the three nodes on the left hand side, different invasive-access (represented by
dashed lines) are used to access information that is then prepared by “source” computation
(represented by the filled rectangles) to be sent to the right hand side node. Once all relevant



88 CHAPTER 5. INVASIVE PATTERNS

Figure 5.9: Invasive patterns

data has been passed to the right hand side node, a “target” computation is used to integrate
the transmitted data with an existing or new computation on the target node. In order to
support the declarative definition of such crosscutting access, we leverage results on so-called
stateful pointcut languages [DFS02] that enable matching of sequences of execution events to
be defined using expressive languages, in particular finite-state automata.

Besides a definition of basic invasive patterns a suitable notion of pattern composition
is needed. Reconsider the (abstract) architecture of transaction handling with replication in
JBoss Cache (see Fig. 5.6) this architecture can naturally be expressed in terms of composi-
tions of the three basic patterns introduced above, where the steps denoted 1–3 in the figure
correspond, for instance, to two applications of the farm pattern and one application of the
gather pattern. Our approach supports the compositional construction of such architectures
from the basic patterns on the programming and the implementation level. As discussed in
Sec. 5.3.1, this architecture is essentially hidden in the actual JBoss implementation. Our
approach can therefore be seen as a means to make explicit such architectures, and thus help
program understanding and maintainability.

5.5.2 Synchronization

A crucial issue concerning invasive patterns as motivated before it is shown how the different
activities (invasive-access, local and remote computation) are synchronized with one another.
In this section, we first discuss corresponding design choices and then present our language
for the definition of invasive architectural patterns.

The definition of distributed algorithms using patterns over a state-based programming
paradigm essentially depends of the correct synchronization on the different parts of inva-
sive patterns and between different invasive patterns. Pattern-based computations can be
synchronized roughly at three different levels:
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1. Synchronization within an invasive pattern. Most basically, a target computation is
executed only after a rendez-vous synchronization of all source computations. In the
case of the gather-pattern shown in Fig. 5.9, the target computation is started only
after the three target hosts have “agreed” to trigger it. Second, a target computation
may be executed in a synchronous or asynchronous fashion. Synchronous execution of
parts of the pipe pattern of Fig. 5.8a corresponds to a fully sequential (a.k.a. batch)
computation, while its asynchronous execution corresponds to a pipelined computation.
We support both behaviors.

2. Computations involving consecutive executions of patterns may be synchronized with
one another. The gather pattern may, for instance, be synchronized with the execution
of the following pattern. The following pattern is represented in the right hand side node
by the invasive-access (the dotted lines), the source computation (the small rectangle)
and the arrow leaving the node to the right. Execution of a follow pattern on a node n

must start after control of the previous pattern has entered n (otherwise the two pattern
executions could not be said to be consecutive) but may be reasonably started either
when the target computation of the previous pattern is started or when it terminates.

3. Most generally, synchronization constraints may be imposed on arbitrary segments of
pattern compositions. Such general constraints are useful, e.g., because computations
may be executed on the same host and therefore give rise to problems, such as race con-
ditions. Such synchronization strategies cannot, however, be defined simply in terms of
individual patterns as considered here. In this work we present a sequential pattern
constructor, however, other pattern constructs considering different synchronization
specifications are subject of future work, e.g., a construct that receives two patterns
as parameters, and starts the two patterns in parallel depending of specific state condi-
tions.

Summarizing, we provide in this chapter explicit support for intra-pattern synchronization
and synchronization between consecutive pattern executions. We do not, however, provide
general synchronization strategies over pattern compositions because they are difficult to
comprehend and may easily lead to performance bottlenecks or even deadlocks. We envision
that specific properties over pattern compositions can be analyzed and enforced in terms
of the more restricted means for synchronization we introduce here.This issue is, however,
considered as future work, interested readers revised preliminary work on the formalization
of invasive patterns [BNDNS08].

5.6 Pattern language

Because crosscutting of non-local execution state that enables pattern applications is at the
heart of invasive patterns, Aspect-Oriented Programming [Kic96, ACEF04] seems a promising
approach for the modularization of such patterns and the corresponding data access. Thus,
we have decided to provide programming artifacts in form of an aspect based programming
language. At the core of a such language we have a kind of parameterized higher order
function, similar to those provide by Cole [Col89], that receives aspects, patterns, and groups
of hosts as parameters. Such functions define the composition of pattern sequences that
structure the common communication patterns defined above and their composition.
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P ::= patternSeq G1 A1 G2 A2 . . .Gn

G ::= H G | P G | ǫ

A ::= aspect { around((Id*): PCD SourceAdvice [sync] TargetAdvice }
PCD ::= call(MSig) | target(Id) | args(Id+)

| PCD && PCD | PCD || PCD | !PCD
| Seq

Figure 5.10: Pattern language

Figure 5.11: Pattern Compositions

5.6.1 Syntax and informal semantics

We are now ready to introduce the pattern language we have designed that realizes the above
design choices. Figure 5.10 shows the syntax of our pattern language.

Patterns

The pattern constructor patternSeq takes as argument a list G1 A1 G2 A2 . . . Gn of al-
ternating group and aspect definitions. Each triple Gi Ai Gi+1 in this list corresponds to a
pattern application that uses the aspect Ai to trigger the pattern in a source group Gi and
realize effects in the set of target hosts Gi+1. A group G is either defined as a set of host
identifiers H or through a pattern constructor term itself. In the latter case, the group is
defined as the source or target group of the constructor term depending on the argument po-
sition the term is used in. This constructor enables the definition of the basic patterns shown
in Fig. 5.8: pipe as a patternSeq from a single host to another, farm as a patternSeq from
a single host to several hosts and gather as a patternSeq from several hosts to a single one.
Pattern compositions can be defined with more complex patternSeq terms. For instance,
the left hand side of Figure 5.11 defines a composition pipe then farm, and its right hand
side defines a composition pipe, farm then gather. These examples make clear it is easy to
define sophisticated compositions akin to the architecture of transaction handling in JBoss
Cache (cf. Fig. 5.6).

Aspects

Aspects A that define the behavior of invasive patterns specify a pointcut PCD that allows the
modularization of crosscutting code that triggers a pattern, and defines a source advice and a
target advice executed respectively on the source and target groups of a pattern. Advice can
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1 aspe
t ReplicatingCache {

2 around(String fqn, String key, String value):

3 
all(* Cache.put(..)) && args(fqn, key, value)

4 { pro
eed(); }

5 { (NamingCache.lookup("registered Cache")).put(fqn, key, value)}

6 }

Figure 5.12: A Session Profiling Aspect

be parametrized by bound values (see args below). An advice is a standard block of code,
but a source advice can call the matched base call with the proceed keyword. Otherwise, the
base call triggers the aspect but the execution of the corresponding base method is skipped.
When a sync annotation is used to qualify target advice, the base program execution on
source hosts is not resumed before the end of the target advice. The default behavior is an
asynchronous execution.

Pointcuts

We consider pointcut definitions that are essentially restricted to matching of method call
joinpoints. This pointcuts may, additionally, extract target objects with target, extract ar-
guments of calls with args, and use logical compositions of pointcuts. Following the paradigm
of stateful pointcuts [DFS02, BNSV+06a] (and unlike AspectJ [asp08, KH+01]) pointcuts may
match sequences (non-terminal Seq) of calls in the base program execution. We omit the syn-
tax of sequences for now, but they are basically defined in terms of a finite-state automaton
by declaring its states and by labelling state transitions with pointcuts (see AWED syntax
for detailed definition). Note that remote pointcuts are not allowed, and the matching has
local semantics.

Let us consider a small example. The aspect ReplicatingCache in Figure 5.12 is used
to replicate calls to the put method over an object of type Cache. When the method put

is called the local advice performs it (through a call to proceed()) and the target advice
replicates the call to the put method. This aspect can be applied using the expression:

patternSeq(h1, ReplicatingCache, h2, ReplicatingCache, (h3, h4))

The left part of figure 5.11 shows a graphical representation of such a composition (for this
example in the figure A1 = A2 = ReplicatingCache). The resulting composition defines a
two level cache that first replicates calls to the put method from host h1 to host h2, and then
from host h2 to hosts h3 and h4. This two level caching is a common architecture enabled
through complicated configuration time deployments in JBoss Cache.

5.7 Implementation

In order to implement the pattern language presented in the previous section, support for
three main mechanisms is necessary: (i) aspects providing a modular abstraction for invasive
access on the source hosts and triggering activities on target hosts, (ii) flexible means for
synchronization within individual patterns and between consecutive pattern executions, and
(iii) the concise definition of the communication topologies of patterns.
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We have implemented invasive patterns using AWED, which provides direct support for
most of the necessary features and allows the accommodation of the remaining ones based on
its native abstractions.

Intuitively, a farm pattern can be mapped to an AWED aspect using a pointcut expression
as

call(* *.put()) && host(”sources”) && on(”targets”),

there, the call pointcut matches calls to the put method. The pointcut host(”sources”)
matches the join points (events) that appear in a host that belongs to the sources group.
Finally the pointcut on(”targets”) triggers the execution of the advice in hosts that belong
to the targets group. AWED also supports the Seq pointcut that allows the specification
of specify finite-state automata that permit to match sequences of join points in distributed
applications. The sequence constructor is used to map direct uses of Seq pointcuts of our
pattern language (see Fig. 5.10) and to implement rendez-vous synchronization in gather-like
patterns. The Seq construct allows the definition of pointcut triggered automatons. Regard-
ing the rendez-vous implementation, the Seq construct is used to implement an automaton
matching any particular ordering of messages coming form a set of hosts.

5.7.1 Transformation of invasive patterns into AWED

We have developed a formally-defined transformation from our aspect language into exe-
cutable AWED programs. Figure 5.13 formally defines the central part of the transformation
of the pattern language defined in Fig. 5.10 into AWED aspects. Even though AWED does
not have a formally defined semantics, the transformation into AWED provides informal
semantics for the pattern language.

The transformation mainly consists of rules for the two main concepts of our pattern
language: pattern sequences patternSeq in the pattern language (see Fig. 5.10) as well as
aspects that govern the behavior of patterns on source and target hosts. A remark on the
use of fonts in the definition: underlined terminals belong to the transformation language,
while not underlined terminals belong either to the pattern language (if they appear on the
left hand side of a defining equation) or to the AWED language (if they appear on the right
hand side).

Transforming the patternSeq construct

A patternSeq term (cf. def. TP ) results in the transformation of each individual pattern
definition (A0 G A G2 ) where A0 denotes the aspect defining the pattern that precedes and
triggers the current one and A denotes the behavior-defining aspect of the current pattern
that is applied to the source group G and the target group G2 . In order to cope with nested
patterns (remember G can contain hosts but also patternSeq terms), functions first , last
respectively extract the source and target hosts to which the aspect A is applied.

The function TA[[]] transforms the aspect that defines the pattern behavior. The resulting
AWED aspect consists of two pointcuts for the source hosts (spc) and target hosts (tpc), two
corresponding advice definitions (sad , tad), and an empty function triggerNext that is used
to trigger the execution of the following pattern by the current one. This transformation
implements invasive patterns as follows:
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TP [[patternSeq gas]] = foreach (A0 G A G2 ) in gas do TA[[A]](last(G),first(G2 ))(A0 )

TA[[aspect { (around(hps) pcd sad syncMode tad) }]](G1 , G2 )(precAsp) =

all aspect createName() {
pointcut spc(TAL[[hps]]): // source pointcut

Seq(precAsp.triggerNext(); TPCD[[pcd]]);

pointcut tpc(TAL[[hps]]): // target pointcut
PermutationSeq(G1 ,TPCD[[pcd]]);

around(hps): spc(TAL[[hps]]) && host(localhost) { // source advice
sad;

}

syncMode after(hps): tpc(TAL[[hps]]) && on(G2) { // target advice
triggerNext();
tad;

}

void triggerNext() {}
}

TPCD[[call(M )]] = call(M )
. . . // other pointcut constructors also valid in AWED

TAL[[as]] = // argument list translation

// Auxiliary functions

createName // creates a fresh name
first // returns group of source hosts of a pattern expression
last // returns group of target hosts of a pattern expression
PermutationSeq // seq. constructor matching all

// permutations of a set of joinpoints (part of the AWED library)

Figure 5.13: Transformation into AWED
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• The source pointcut spc first waits for the triggering event triggerNext of the previous
pattern and then matches for the pointcut pcd given as part of the pattern definition.

• The target pointcut tpc uses the pointcut constructor PermutationSeq(G , p) from the
AWED library that matches any permutation of events matched on hosts on the group
G . This implements a rendez-vous.

• The source advice executes the advice body on the source hosts (which are identified
by localhost after deployment). The argument list of the corresponding advice in
the pattern definition, a list of (host, argument list)-pairs, has to be transformed to a
suitable Java representation (TAL[[]], whose straightforward definition is not shown).

• The target advice first triggers execution of the following pattern and then executes the
body tad specified in the pattern definition. The argument list of this advice must also
be transformed as for the source advice.

The formal definition in terms of the transformation above has served two main purposes.
First, it provides a quite simple but precise definition of our current implementation of invasive
patterns. Second, it allows a precise characterization of two fundamental synchronization
properties of invasive patterns that have been informally introduced in the previous work:

• Target advice is only executed after all source activities have terminated. This property
is ensured by use of the PermutationSeq(G , p) pointcut constructor. This pointcut only
matches after events of all source hosts have been matched and therefore implements
the rendez-vous of all source hosts before the execution of the remote advice on a target
host.

• Two consecutive pattern applications in a pattern sequence should be serialized. This
is ensured by triggering pattern executions by preceding patterns. The above trans-
formation interprets this synchronization constraint by triggering the source aspect of
the following pattern as soon as the target advice of the preceding pattern is executed,
which is useful, in particular, if follow aspects can react on events introduced through
patterns. It is, however, also be possible to trigger the execution of the follow pattern
after termination of the target aspect of the preceding pattern.

These two properties, together with the explicit representation of the topology of pattern
compositions, pave the way for the investigation of synchronization properties of complex
pattern compositions, such as wave-like progress of pattern compositions. This is, however,
the subject of future work.

5.8 Evaluation

In this section we evaluate our approach by presenting how invasive patterns can be used
to restructure transaction handling and replication in JBoss Cache. We first show how to
implement these concerns using the proposed pattern language, thus making explicit their
pattern-based structure. We then briefly discuss the resulting implementation in AWED.
Third, we qualitatively evaluate the resulting pattern-based implementation by discussion the
difference in conciseness of the original and new implementation. Finally, we briefly discuss
first results of benchmarking we have performed by executing the refactored implementation
of JBoss Cache using the current AWED implementation [AWE08].
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1 gCaches = {H1, H2, H3}

2 pipe([h],
3 Atransac,

4 farm(
5 gather(
6 farm([h], Aprepare, syn
 gCaches-[h]),

7 Apresp,

8 [h]),

9 Acommit,

10 gCaches-[h])

11 );

Figure 5.14: Pattern-based definition of the JBoss Cache two phase commit

5.8.1 JBoss Cache revisited

Invasive patterns allow the concise expression of the essentials of the pattern-based architec-
ture for transaction handling and replication in JBoss Cache as shown in Fig. 5.6. Concretely,
we have implemented support for transactions with pessimistic locking and the two phase
commit protocol using invasive patterns.

The corresponding solution is formulated in terms of a nested composition involving four
pattern expressions, see Fig. 5.14. First, we apply a pipe pattern to be able to relate the start
of transactions with the replication operations, i.e., the start node and the final replication
group, respectively, of Fig. 5.6. Once a commit is encountered, a farm pattern is used to farm-
out the prepare phase of the two phase commit protocol. Then, a gather pattern is used
to collect the answers from the involved buddy caches. Finally, after all answers have been
received we use again a farm pattern to distribute the final decision of commit or rollback.
The code in the figure defines this algorithm for three replicated caches. Note that replication
can be triggered from any of the three caches. Once the triggering node (h in the algorithm)
is selected the expression gcaches-h represents the group of caches without the triggering
one.

Invasive access required to make this solution work are provided by the involved aspects.
As a typical example, consider the aspect Atransac, shown in Fig 5.15, that explicitly relates
the start of transactions with the replication code. It defines, in particular, the pointcut
transaction that is used to capture sequences of transaction and replication-relevant events.
The pointcut defines an automaton that first waits for a call to begin of a transaction. Next,
the automaton waits for a put, remove, get or end actions that interact with the cache. If
the end state is reached, the sequence is restarted in order to handle a new transaction.

Figure 5.16 shows the pattern-defining aspect Aprepare that farms out the prepare in-
formation of the two phase commit protocol. Occurrences of calls to the prepare method
are matched and executed (because of the call to proceed in the source advice). On the
target hosts, the target advice executes the prepare phase followed by the invocation of an
agreement or disagreement method, depending on the answer of the target caches. The aspect
takes care of transactions that perform nested calls in the prepare method using the cflow

pointcut construct: this constructs forbids new replication actions within the dynamic extent
of an open call to the prepare method.

To complete the implementation in the pattern language, we describe the aspects that
provide the gathering and the final farming-out of decisions. Figure 5.17 shows the Aresp



96 CHAPTER 5. INVASIVE PATTERNS

1 all aspe
t Atransac perthread {

2

3 String transacId;

4 DataStorage transacData;

5 DataStorage currentAction;

6

7 private DataStorage storeAction(String s, Object fqn, Object key, Object value ) {

8 if(transacData == null) {

9 transacData = new DataStorage(s, fqn, key, value);

10 currentAction = transacData;

11 } else {

12 currentAction = currentAction.setNext(new DataStorage(s, fqn,key, value));

13 }

14 return currentAction;

15 }

16

17 point
ut transaction(): seq(
18 sbegin: 
all(* Transaction.begin(..))

19 && host(lo
alhost) > sput || sremove || sget || sEnd;

20 sput: 
all(* TreeCache.put(..))

21 && host(lo
alhost) > sput || sremove || sget || sEnd;

22 sremove: 
all(* TreeCache.remove(..))

23 && host(lo
alhost) > sput || sremove || sget || sEnd;

24 sget: 
all(* TreeCache.get(..))

25 && host(lo
alhost) > sput || sremove || sget || sEnd;

26 sEnd: 
all(* TreeCache.rcommit(..))

27 && host(lo
alhost) > sbegin;

28 }

29

30 before sbegin () { /** Do Noting */ }

31

32 around sput () {

33 System.out.println("asp inside put");

34 Object[] args= thisJoinPoint.getArgumentsArray();

35 storeAction("put", args[0], args[1], args[2]);
36 return pro
eed();
37 }

38

39 around sremove () { /* Similar to sput */ }

40 around sget () { /* get actions are not stored */ }

41

42 around sEnd () {

43 transacId = Thread.currentThread().getName();

44 PrepareHelper ph = new PrepareHelper();

45 ph.send(transacData, transacId);

46 return pro
eed();
47 }

48 }

Figure 5.15: Pointcut definition for transactional behavior in the pipe aspect
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1 aspe
t Aprepare {

2 org.jboss.cache.TreeCache tc = CacheRegistry.getInstance().getCache();

3

4 around(DataStorage d, String txId):

5 
all(* PrepareHelper.send(..)) && args(d,s) &&

6 !
flow(
all(TransactionManager.prepare(..)))
7

8 // Source advice

9 { pro
eed(); }

10

11 // Target advice

12 { TransactionManager tm = TransactionManager.getInstance();

13 PrepareHelper ph = new PrepareHelper();

14 try{
15 tm.prepare(d, txId, tc);

16 ph.respAgree(txId);

17 } 
at
h(Exception e) {

18 ph.respNotAgree(txId);

19 }

20 }

21 }

Figure 5.16: 2PC invasive aspect Aprepare

aspect that is in charge of gathering the responses to the prepare phase. The advice now
receives a list of pairs consisting of, for each pair, a host and the parameters of each matched
join point (each cache can answer respAgree or respNotAgree). The example shows pseudo
code for the remote advice where all the answers are considered: if any of the answers was
a notAgree a rollback is triggered. In any other case, a final commit is triggered. Finally
the Acommit aspect is a trivial version of a farm aspect that publishes the final commit or
rollback. Note that the aspect does not take into account the result of commit or rollback
phases, as this is also the current behavior in JBoss Cache.

These solutions represent a fully decoupled message oriented solution. Each cache re-
ceives, consumes and sends messages without blocking or waiting for remote answers. The
synchronization and distribution requirements are handled automatically by the pattern lan-
guage.

Implementation using AWED. The result of the transformation1 of the pattern program
shown in Fig. 5.14 is a set of AWED aspects that implement the replication under pessimistic
locking. Each aspect of the pattern-based solution is translated into an AWED aspect that
modularizes source and target parts of a pattern expression. Figure 5.18 presents the resulting
implementation of the Aprepare pattern-level aspect. In this case the generated source point-
cut uses a sequence to explicitly relate the relevant transaction-related event to the call send
that initiates replication, i.e., farming out the prepare action. The target advice executes
the prepare method in the target caches and calls an respAgree or respNotAgree method
to yield the answer. Note that the permutation sequence that establishes the rendez-vous
between source and target hosts corresponds in this case just to one possible value.

The implementation of a gathering aspect is different and more complex. Figure 5.19 shows

1we have applied the transformation manually for this evaluation but its automation is straight forward.
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1 aspe
t Aresp{

2

3 around((h1, Object txId1),

4 (h2, Object txId2)):

5 (
all(* PrepareHelper.resp*Agree(..))

6 && args(txId);
7 //Sources

8 {

9 pro
eed();
10 }

11

12 //Targets

13 {

14 if(//any answer was respNotAgree)

15 TransactionManager.getInstance().notAgree(txid);

16 else
17 TransactionManager.getInstance().agree(txid);

18 }

19 }

20

21 aspe
t Acommit{

22

23 around(Object txId): 
all(* TransactionManager.*gree(..)) &&

24 args(txId);
25

26 //Sources

27 {

28 pro
eed();
29 }

30

31 //Targets

32 {

33 if(//Use reflection == notAgreeFinal)

34 TransactionManager.getInstance().notAgreeFinal(txid);

35 else
36 TransactionManager.getInstance().agreeFinal(txid);

37 }

38 }

Figure 5.17: 2PC aspects to complete the protocol
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1 all aspe
t Aprepare_AWED {

2 org.jboss.cache.TreeCache tc = CacheRegistry.getInstance().getCache();

3

4 Group[] targetGs = {new Group("h1"), new Group("h2"), new Group("h3")};

5

6 point
ut sourcePrepareCall(TransactionData d, String txId):

7 seq(init:
all(* Atransac.triggerNext()),

8 pcd: 
all(* PrepareHelper.send(..)));

9

10 point
ut targetPrepareCall(Transaction tx)(TransactionData d, String txId):

11 
all(* PrepareHelper.send(..));

12

13 // source advice

14 around(TransactionData d, String txId): sourcePrepareCall(d, txId) && host(lo
alhost) {

15 pro
eed();
16 }

17

18 // target advice

19 after(TransactionData d, String txId): targetPrepareCall(tx) && on(targetGs) {

20 TransactionManager tm = TransactionManager.getInstance();

21 PrepareHelper ph = new PrepareHelper();

22 try{
23 tm.prepare(Tx.getTransacData(), Tx.getId(), tc);

24 ph.respAgree(txId);

25 } 
at
h(Exception e) { ph.respNotAgree(txId); }

26 void triggerNext() {};

27 }

Figure 5.18: 2PC invasive AWED aspect for the creation of the transactional behavior
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1 all aspe
t Aresp perbinding{
2

3 Group[] sourceGs = {new Group("h1"), new Group("h2"),

4 new Group("h3")};

5 boolean allEntries = false, adviceEnd = false;
6 point
ut respPointcut (Object txId):

7 (
all(* PrepareHelper.resp*Agree(..))

8 && args(txId));
9 point
ut rrespPointcut(Object txId):

10 PermutationSeq(respPointcut(txId),

11 targetGs.diference(

12 GroupHelper.getInstance().getTargetGroup()),

13 GroupHelper.getInstance().getTargetGroup());

14

15 around(Object txId): lpid (Object txId) && host(lo
alhost) {

16 pro
eed();
17 }

18

19 after(Object txId): rpid (Object txId) && on("h1"){
20 allEntries = true;
21 if(//use reflection if any respNotAgree)

22 TransactionManager.getInstance().notAgree(txid);

23 else
24 TransactionManager.getInstance().agree(txid);

25 adviceEnd = true;
26 void triggerNext(){};

27 }

28 }

Figure 5.19: 2PC AWED aspects for gathering the response

the Aresp aspect after transformation. The source pointcut matches any call to respAgree

or respNotAgree. The advice attached to this pointcut just proceeds to the target one. The
target pointcut is the resulting permutation of the source matches at all hosts belonging to
the difference of group sourceGs and the target host. The target advice launches the actions
to the farm the final commit or the final rollback depending of the gathered answers. This
aspect is instantiated using AWED’s perbinding keyword: thus, there will be an instance
for each txId value. This way we can handle multiple transactions that JBoss Cache handles
using multiple threads.

Multithreading and multiple transactions A particular interesting point is how to
handle multithreading and multiple transactions. We handle this using aspect instantiations
that help us to limit the scope of matched joinpoints and control the instantiation mechanism
of new patterns. In particular the TransactionAsp aspect uses perthread instantiation
mechanism, guaranteeing that it will be one instance per thread and that it will match local
actions only in the thread. This is a common implementation technique used in transactions
, e.g. Jboss cache implementation, consisting in relating the thread to a transaction. One of
the problems of the fully decoupled version of the two phase commit protocol is that there is
no control flow relation between messages (opposed to current JbossCache implementation)
so we use the perbinding mechanism to relate different events with an specific instance of
an aspect. Note that the control-flow version of the algorithm can be implemented using
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AWED, but we wanted to show how composition and interaction can be easily achieved
between different patterns.

5.8.2 Qualitative and quantitative evaluation

In Section 5.3 we have motivated that the current implementation of JBoss Cache is subject to
problems concerning modularization, in particular, scattered and tangled code for the control
of the transaction and replication concerns. Our solution improves the implementation in
all those respects. First, each crosscutting concern is now modeled as an aspect and the
choreography and interaction is defined without crosscutting by means of the pattern language
(and AWED aspects on the implementation level). Second, distribution issues, coordination
and composition of patterns are easily identifiable and modifiable in our solution. These
advantages appear clearly in the Aprepare aspect: the source pointcut clearly defines the
exact context (the sequence of method calls matched in the source pointcut) required to
trigger the replication; furthermore, the related actions relevant to replication on different
hosts are modularized in the aspect. Overall, our solution facilitates understanding and is
easier to extend.

We have measured how our refactored version of JBoss Cache compares quantitatively
to the plain JBoss Cache solution. For the corresponding experiments, we have considered
transactions with pessimistic locking in JBoss cache. In the original code, there are more than
2674 LOC in 17 classes related to this concern. In our solution, the code consists of 532 LOC
in 11 well-modularized aspects and classes: roughly a reduction of 80% of complexity (in terms
of LOC). Most of this reduction is due to the fact that the transaction and communication
protocol that is scattered and duplicated in switch structures is now re-factorized in well
modularized entities.

5.9 Grids: a case of study for invasive patterns

In recent years, grids have become a powerful system architecture that allows to execute large-
scale applications as diverse as scientific applications or large-scale information systems. This
kind of architecture, composed of multiple local federations, provides a highly heterogeneous
environment to users [Fos01]. To overcome this heterogeneity issue, grid architectures and
applications are typically built using special purpose middleware that allows to bridge between
existing, often component-based, infrastructures.

Currently, the development of grid applications using such middleware is frequently ham-
pered by two issues: limited means to describe topologies and lack of support for the invasive
composition of legacy components. For instance, grid topologies that underlie grid applica-
tions are mostly defined only implicitly through message passing as part of a grid application
or using low-level means for topology definition, such as graph constructors whose links to
the grid application have to be defined once and for all. As to the composition of legacy
grid components, it often requires significant rewriting of the involved legacy components,
for example, because the composition requires data to be passed that is not exported by the
legacy components.

To overcome these problems in this section we evaluate the applicability of invasive pat-
terns. First, we show how invasive patterns and their aspect-oriented features for explicitly
distributed programming can be used to modularize crosscutting accesses in the context of
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Figure 5.20: Patterns for NAS Grid

the NAS Grid Benchmark (NGB) [Fru01], and thus provide effective support for the pattern-
based implementation of grid algorithms over large topologies. Then, we evaluate the ap-
proach qualitatively and quantitatively for a non-trivial extension of NGB that extends it
with error recovery support in form of a checkpoint algorithm.

5.9.1 Motivation: communication patterns on grid applications

To motivate our approach we have analyzed the NAS Grid benchmark (NGB) framework [Fru01]
for grid infrastructures. The NGB framework is a benchmark suite for computational grids
that addresses one of the most important features of grid computing, the ability to execute
distributed, communicating processes. NGB is frequently used for testing programming tools
and compiler optimizations. Furthermore, it provides a real-world example of the use of
computational and communication patterns in real-world grid applications.

In general terms, NAS Grid provides facilities for the benchmarking of grid applications
that are based on the following four patterns [dWF04] (see Fig. 5.20): Embarrassingly Dis-
tributed (ED), Helical Chain (HC), Visualization Pipe (VP) and Mixed bag (MB).

Benchmarks are produced using the NAS Grid framework by defining graphs of nodes
that represent calculations and edges that indicate how results of computations have to be
calculated, ordered and passed between nodes. An instance of a benchmark is specified by a
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static data flow graph (DFG). The DFG consists of nodes connected by directed arcs. NAS
Grid includes an imperative and low-level language to describe such graphs by enumerating
all nodes and edges. Communication between nodes is asynchronous. A DFG node receives
input data from other nodes through its input arc(s); this data is used by the target node(s)
to set initial conditions and to perform the target nodes’ calculations. A DFG node starts
its computation only after it receives all data from its predecessor(s) in the graph. After
performing its calculation, it sends the computed result along all of its output arcs.

Example: Global Checkpoint Error Recovery

In order to illustrate the problems in the implementation of distributed algorithms over grid
architectures and evaluate our solution to them we investigate a fundamental service in grids,
global checkpoint error recovery.

Checkpoint recovery is a service that facilitates the recovery and the continuation of an
interrupted computation. This service is essential for large, long-running computations to
minimize downtime and other costs incurred by system or applications failures that stop the
computations. A checkpointing service periodically saves the state of the applications and
the manipulated data. For a distributed application, a distributed checkpoint is a set of local
checkpoints, one from each process constituting the overall distributed computation. In this
situation, the service must ensure the global consistency of the captured state. Consequently,
a checkpointing service has to inspect and modify the local computations in an invasive
manner.

In grid environments, global checkpoint recovery is particularly important to facilitate
migration and continuation of incomplete computations in the context of temporarily un-
available resources. However, for large scale applications, checkpointing is subject to two
specific problems. First, some specific applications embody theoretically and experimentally
validated algorithms, whose correctness must not be endangered through source code modifi-
cation. In this situation, a generic approach that does not require any code modification can
be used but impacts the memory footprint and thus frequently is not viable for performance
reasons [SS98]. Our solution that uses an aspect based approach allows a checkpointing service
to be implemented while transparently modifying the interaction between legacy components
with a negligible impact on the memory footprint and other performance characteristics. Sec-
ond, defining grid algorithms concisely over large-scale topologies depends on the application
at hand and is, for instance, very error-prone and tedious using NGB’s low-level means for
topology definitions. In the case of global checkpoint recovery, a complete representation of
the communication state is needed to ensure the necessary global coordination for the capture
of a coherent state: a coordination algorithm that may be complex and specific to the appli-
cation communication model thus has to be developed. Invasive patterns support the concise
description of modifications to computations and communications between components and
thus enable, in particular, checkpointing to be added modularly to the NGB.

5.9.2 Evaluation

To evaluate our approach we have implemented an extension to the NAS Grid benchmarking
framework by adding checkpointing support. This implementation coexists with the native
communication mechanism of the NAS Grid framework (we used its Java RMI instance);
AWED is exclusively used to implement the checkpointing concern. This concern uses a dif-
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ferent distributed topology than that directly implementable by the different configurations
of NAS Grid. Figure 5.21a shows the topology structure and distributed messages of the
checkpointing algorithm that we have used in the experiment. In the experiment, any node,
even an external node, can generate a Checkpoint signal: upon reception of that signal, a node
stops its current computation, stores a consistent state, sends that state to the centralized
checkpointing monitor and waits for a resume signal. Thus, the application will use a com-
position of the farm and gather topologies as presented in section 5.4 figures 5.8b and 5.8c.
This simple algorithm does not require synchronization between nodes but needs to weave the
underlying application with joinpoints that have to be propagated in the (distributed) grid:
this algorithm allows to evaluate the actual overhead of the runtime infrastructure imposed
by the AWED implementation of invasive patterns. The algorithm is fully distributed and
any node can serve as coordinator of the checkpointing protocol.

Figure 5.21b shows a representation of the state machine controlling the checkpointing
algorithm in the distributed nodes. In the native infrastructure, we have identified two join-
points per node that are relevant for our implementation of checkpointing. The first joinpoint
(START transition) corresponds to the execution point when data from previous calculations
is received by a node; the second (STOP) corresponds to a node having just sent calcula-
tion results to the next node in the calculation graph. When a checkpoint signal (CHKPT
transition) is received a consistent local state (state before calculation) is stored locally and
also, by our checkpointing implementation, remotely in the checkpoint data structure. Thus,
after a failure, recovery will be carried out locally by each node depending on the state of
the node. If it determines that it has been in the third state, it will relaunch the calculation,
otherwise no specific action is needed (because the result of the last computation has already
been sent).

(a) Topology (b) State machine

Figure 5.21: Topology and state machine representation of the protocol implementation for
check pointing.

Figure 5.22 shows the implementation of this checkpointing algorithm using AWED. The
aspect defines two local fields to store the checkpoint image. The image is created when the
first event defining the START transition is received by the advice triggered by the pointcut
step(chkptSequence(), START). As a second step, the aspect waits for a checkpoint event
(transition labeled CHKPT) or a finalization event (transition STOP). In case of a checkpoint
event the aspect waits for a resume event (see transition RESUME) to reinitialize the calculation.
Finally, the transition IGNORE ensures that terminated calculations are ignored and avoid
gathering data or restarting computations in this case. This last transition guarantees that
no further events are sent after a checkpoint image is captured: checkpointing thus conforms to
the notion of consistency introduced in section 5.9.1 (a checkpoint is taken between reception
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of data and the end of the corresponding calculation).

1 aspe
t ChkPtAsp perobje
t {

2 BMRequest req;

3 BMResults res;

4

5 publi
 BMRequest requestChkPtInfo(){}

6

7 point
ut chkptSequence():

8 seq(
9 START: 
all(* BenchUnion.startBenchmark(..))

10 && host(lo
alhost) > STOP || CHKPT;

11 STOP: 
all(* BenchServer.PutArcData(..))

12 && host(lo
alhost);
13 CHKPT: 
all(* chkimpl.MainConsole.stopCalculNow(..))

14 && !host(lo
alhost) > RESUME || IGNORE;

15 IGNORE: 
all(* BenchServer.PutArcData(..))

16 && host(lo
alhost) > RESUME || IGNORE;

17 RESUME:

18 
all(* chkimpl.MainConsole.startCalculNow(..))

19 && !host(lo
alhost) > STOP || CHKPT);

20

21 before(): step(chkptSequence(), START)

22 { System.out.println("Asp:Iniciando...");

23 BenchUnion comp =

24 (BenchUnion) thisJoinPoint.getCalledObject();

25 req =

26 (new BenchUnionInspector(comp)).getRequest();

27 }

28

29 around(): step(chkptSequence(), IGNORE){

30 return new Object();}

31

32 after(): step(chkptSequence(), RESUME)

33 { BenchUnion comp = new BenchUnion(req);

34 comp.startBenchmark();

35 }}

Figure 5.22: Checkpoint concern implemented using AWED

Qualitative evaluation

We have first performed a qualitative evaluation by comparing how concise grid applications
can be expressed in terms of the native topology configuration language provided by NAS
Grid and our pattern language.

A comparison between the native NAS Grid language for the definition of DFGs (fig. 5.23)
and our pattern language (fig. 5.24) shows that the abstraction of host groups we introduce
make the declaration of grid topologies much more concise. A large-scale grid application is
frequently composed of over 1,000 processes. Without patterns and pattern composition, the
task of defining a grid application relying only on the NAS Grid language is very tedious.
Typically one needs to write one line to define a node and one for the link between two nodes.
Our language is concise (a few lines define groups and connect them with patterns), and it
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supports pre-established properties (e.g., synchronization, topology). For the sake of read-
ability, we directly use pattern names such as farm and gather. These terms can be formally
defined as syntactic sugar in forms of macros that are expanded into plain aspect definitions:
farm(G1,Afarm,G2), for example, becomes G1 {aspect Afarm ...} G2 in terms of the
pattern language introduced in Sec. 5.5. (In our prototype implementation, we have used a
straightforward script to expand intensional group definitions, such as G2={h1..h7}).

1 graph: {

2 title: "ED.A"

3 node:{title: "0" label: "SPTask.A.h0"}

4 node:{title: "1" label: "SPTask.A.h1"}

5 node:{title: "2" label: "SPTask.A.h2"}

6 node:{title: "3" label: "SPTask.A.h3"}

7 node:{title: "4" label: "SPTask.A.h4"}

8 node:{title: "5" label: "SPTask.A.h5"}

9 node:{title: "6" label: "SPTask.A.h6"}

10 node:{title: "7" label: "SPTask.A.h7"}

11 node:{title: "8" label: "SPTask.A.h8"}

12 edge:{sourcename: "0" targetname:"1"}

13 edge:{sourcename: "0" targetname:"2"}

14 edge:{sourcename: "0" targetname:"3"}

15 edge:{sourcename: "0" targetname:"4"}

16 edge:{sourcename: "0" targetname:"5"}

17 edge:{sourcename: "0" targetname:"6"}

18 edge:{sourcename: "0" targetname:"7"}

19 edge:{sourcename: "1" targetname:"8"}

20 edge:{sourcename: "2" targetname:"8"}

21 edge:{sourcename: "3" targetname:"8"}

22 edge:{sourcename: "4" targetname:"8"}

23 edge:{sourcename: "5" targetname:"8"}

24 edge:{sourcename: "6" targetname:"8"}

25 edge:{sourcename: "7" targetname:"8" }}

Figure 5.23: Farm-Gather topology with NAS language

1 G1={h0}

2 G2={h1..h7}

3 G3={h8 }

4 gather(farm(G1,Afarm,G2),Acalc,G3)

Figure 5.24: Farm-Gather topology with pattern language

We have implemented the functionality for checkpointing and recovery using AWED by
two classes and one aspect accounting for a total of 93 lines of code (LOC). Achieving the same
functionality in native NAS Grid using Java RMI will require the modification of the current
framework for distribution that amounts to 3939 LOC. We could also create an additional
framework for the distribution, concurrency and coordination of the checkpoint functionality,
but in both cases we still have to modify the original framework. It is clear that our a compact
implementation facilitates maintenability and redability.
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Performance Evaluation

In order to evaluate the performance impact due to our AWED implementation, we have
run the NAS Grid benchmark on Grid’5000, a grid of 5,000 processing units distributed over
9 French sites. Note that the number of resources that can be allocated for an individual
experiment depends of the number of request from affiliated laboratories.

In order to present the overhead of our AWED-based implementation, we compare the
runtime of two different NASGrid Benchmark configurations that represent typical data-
flow application topologies: HC, a fully sequential distributed topology; and FG a typical
master/slave distributed topology where an initial node propagates tasks to a farm, and then
results are gathered on single node. In both cases, each node is running the same component.
For each experiment, we have deployed the components on two different clusters located on
two different sites and run the experiment 3 times. Figure 5.25 shows the average overhead
due to the AWED framework and the checkpoint service, using two different application
topology and a variable amount of computing nodes. As described earlier, the checkpointing
service records a consistent state of each host at two joinpoints: first, when a local node
receives data from previous calculations, second when the node just sent calculation results
to the next node(s) in the calculation graph.
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Figure 5.25: Impact of AWED implementation in NASGrid

The AWED implementation shows an acceptable (less that one second) overhead in the
case of the massively parallel (FG) benchmark: in this case the runtimes of the native bench-
mark and the benchmark with AWED are comparable. On the fully sequential benchmark
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HC, the global overhead is more important but still acceptable. This is due to the local over-
head between each node that accumulates over sequential executions. Note that AWED’s
current implementation generates a distributed message for every call to startBenchMark

in the class BenchUnion: thus the total number of messages including checkpointing is circa
double that of the NAS Grid algorithm without checkpointing. It can be expected that fur-
ther optimization in aspect weaving and message delivery lead to a smaller communication
overhead.

Other approaches for grid programming

Frameworks for grid applications. Distributed applications are often built using rich
middleware structures, which provide basic services for the implementation typical computa-
tion and communication patterns. In the domain of grid computing, for instance, Globus, one
of the most popular middleware for grid architectures, uses the resource specification language
RSL [Glo] to support the deployment of applications. In contrast to the notion of invasive
patterns advocated here, computation and communication patterns have to be programmed
in an ad hoc manner, in particular because RSL cannot describe connection constraints be-
tween the parts of an application that depend on execution state that is encapsulated by the
distributed nodes.

Sequential Aspects for grid applications. Some research and industrial approaches
have addressed the use of AOP techniques in the context of grid applications. Sequential as-
pects have been used to implement monitoring and management of grid applications [GPB05].
Furthermore, they have been employed to address composition in workflow systems for grid
services [JVS06]. Finally, recent industrial efforts, such as the Gridgain approach [gri] claim to
use AOP to enable transparent configuration and modification of grid applications. These ap-
proaches apply directly traditional sequential AOP techniques and do not explore declarative
support of aspects to define and implement fully distributed invasive patterns as motivated
by our research. As discussed in this section, such approaches cannot implement crosscutting
concerns in distributed applications as concisely as using our proposal when such a concern
has to refer to different nodes.

5.10 Discussion and future work

Software patterns have proven a versatile tool for program development. They facilitate ap-
plication development and maintenance by raising the abstraction level of descriptions for
software artifacts. Patterns have been very successful for sequential object-oriented applica-
tions, as well as for massively parallel algorithms. However, pattern-based approaches have
been much less successful in the domain of distributed programming that are defined on irreg-
ular topologies and subject to inhomogeneous synchronization requirements. In this chapter
we have identified a major reason for the difficulty in applying programming patterns to dis-
tributed applications: applications of such patterns frequently depend on information that is
not locally available where the pattern is to be applied.

In this chapter we have proposed a solution: invasive patterns. Such patterns provide
well-known computation and communication patterns (e.g., pipe, farm and gather) but also
offer a built-in abstraction based on AOP for access to non-local state. We have motivated our
approach in the context of JBoss Cache, a real-world infrastructure for transactional replicated
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caching. We have introduced a language for defining and composing invasive patterns that
has been implemented by a translation into AWED, a system for explicitly distributed AOP.
Finally, we have evaluated our approach qualitatively and quantitatively by presenting a
non-trivial pattern-based refactoring of parts of JBoss Cache.

Our proposal provides a solid basis for numerous future work. First, invasive patterns
currently support static only topologies, but AWED supports groups of hosts that evolve dy-
namically. Our language could easily be extended to benefit from this mechanism. Second, our
semantics is a simple translation to AWED so it offers many optimization opportunities (e.g.,
aspects deployment on specific hosts, pattern composition specialization). Finally, patterns
raise abstraction level of software and are prime candidates for formal methods (properties
to be analyzed include communication protocol compliance, absence of deadlock, topology
invariants, fault tolerance).
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Chapter 6

Causally ordered sequences:

debugging and testing distributed

middleware

Many tasks that involve the dynamic manipulation of middleware and large-scale distributed
applications, such as debugging and testing, require the monitoring of intricate relationships
of execution events that trigger modifications to the executing system. Such relationships,
which often include events occurring on different hosts, have to be defined declaratively as
well as monitored and modified efficiently. Consider, for instance, coherency of replicated
data under transactional control in middleware cache infrastructures, such as JBoss Cache:
in this case, the correctness of sequences of events corresponding to executions of two-phase-
commit protocols involving multiple machines has to be checked. Furthermore, execution
events of a distributed system frequently are of interest only if they occur as part of specific
execution traces but not in the presence of different interleavings of the events that are part
of those traces and occur due to non-deterministic executions. The definition of reproducible
test cases, for instance, frequently requires constraints to be imposed on non-deterministic
executions.

Several approaches to define such relationships among and constraints on events in dis-
tributed systems have been proposed. Such approaches include, for example, causal event rela-
tionships based on logical clocks [Lam78, FZ90, And01], data path expressions for concurrent
programs [PHK91], and control-flow based event relationships [Li03]. However, such declara-
tive means for the definition of event relationships have not been integrated into mainstream
middlewares and corresponding support in current tools for the debugging and testing of
distributed infrastructures is very limited. Intricate relationships between distributed events
and restrictions on the interleavings of concurrent events can be directly defined in current
execution environments only in terms of conditions on the execution state of individual hosts.
Hence, relationships involving multiple hosts have to be expressed using complex encodings
that are difficult to understand, to maintain, and result in inefficient event monitoring and
execution of modifications.

In this chapter, we argue for the use of high-level abstractions for the definition of rela-
tionships between execution events of distributed systems, their modification and the control
of non-deterministic interleavings of events. Concretely, we have structured the chapter as fol-
lows. First, related work is discussed in Sec. 6.1. Second, we motivate that such mechanisms
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improve on current debugging and testing methods for distributed systems, in particular,
real-world middleware infrastructures (Sec. 6.2). Third, we introduce corresponding aspect-
based programming language support that provides declarative means to monitor and modify
causal sequences of events in pointcuts and advice. We then present suitable language support
(Sec. 6.3), based on existing notions of logical clocks, and a corresponding implementation
(Sec. 6.4) in terms of an extension of the AWED language and system. Then, we evaluate our
approach in Sec. 6.5 in the context Java-based middlewares, in particular, for debugging and
testing of JBoss Cache, and ActiveMQ, the Apache message broker. We also show how cur-
rent best practices for the debugging and testing of distributed systems can be improved using
our approach in a practical and efficient manner. A closing discussion is given in Sec. 6.6.

6.1 Related work

Our approach for causality is based on vector clocks introduced by Mattern [Mat88] (that itself
extended Lamport’s approach on logical time introduced in the landmark paper [Lam78]).
These results were later integrated into actual middleware for reliable distributed systems
based on group communication,e.g., see the Horus framework [vRBM96]. The benefits and
limitations of using causal communications, in particular, the resulting overhead that is added
to all communication, has been actively discussed [CS93, Bir94, SM94]. Our approach ex-
tends similar current approaches, e.g., the support for causality in JGroups [Ban02] that
strive for the use of limited notions of causality that are used to ensure selected properties of
distributed systems. We have provided concrete evidence that expression of causal commu-
nication at the language level is useful in the presence of real-world debugging scenarios in
current middleware.

Research on logical clocks was also related to research on deterministic global states in
distributed applications, see e.g., work by Chandy and Lamport on global snapshots [CL85]
and the work on the state machine approach [Sch90] by Schneider. Our work address these
ideas allowing the programmer to control the ordering of messages and the definition of finite
state machines that are controlled by distributed events. Thus, the programmer can simulate
replicated state machines that consume events, respecting a partial ordering of events.

Debugging of control-flow based relationships between execution events has been one of the
main domains of application of causality and logical clocks, see e.g., [PHK91, HK90, FZ90,
DRGL+07, SVAR04]. Hseush et al. [HK90] and Ponamgi et al. [PHK91] have presented Data
Path Expressions (DPE), a control-flow based debugging language for concurrent applica-
tions. The language addressed causal relations in a concurrent program. Their model for a
debugger proposed a centralized process for DPE evaluation that consumes events provided
by other processes instrumented by the debugger. Our sequence construct combined with
the pointcut language provide similar flexibility as their theoretical language, additionally
we provide a fully distributed solution with no central monitoring component. Fowler and
Zwaenepoel [FZ90] have introduced causal breakpoints that are based on the idea of having
consistent global states in distributed applications. When a traditional sequential breakpoint
is reached their system returns to a stable state, i.e., a causally consistent one with respect
to the breakpoint. Our approach, though supports more sophisticated pointcuts.

More recently Sen et al. [SVAR04] proposed an algorithm for decentralized monitoring
used to check violations of safety properties in distributed systems. Monitoring expressions
in their approach are written in past time linear logic. Their proposal presents knowledge
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vectors (inspired by vector clocks) and propose the Diana tool and actors as an implementation
support. The approach also propose a weaving mechanism at the byte code level as we do.
Their epistemic construct is similar to our host pointcut, which is used to predicate over the
process (host) where the event occurred. Our approach provides richer expressivity because
of our general notion of transition guards and allows group relationships to be expressed.

Other approaches have addressed the implementation and formalization of distributed
models for debugging (e.g., see [DRGL+07, MK07]). However, either they do not consider
the causality concept and ordering of events (e.g., De Rosa et al. [DRGL+07]) or, they restrict
the concept of causality to the concept of distributed control flow (e.g., Mega and Kon [MK07]
as well as Li’s work on monitoring of component-based systems [Li03]) who considers causal
relationships between execution events of distributed (CORBA or COM) component-based
applications that are defined in terms of control-flow relationships only. These approaches can
only express a small subset of the relationships we consider. Finally, control flow relationships
for the debugging using aspects have been considered only for the sequential case, notably by
Chern and De Volder [CV07].

Finally, scalability and decoupling in distributed systems has been addressed using event
driven approaches. Several language related abstractions has been proposed and studied, e.g.,
see API like extensions defined in the JMS specification [HBS+02], type safety in Type-based
publish subscribe [Eug07]), or even approaches addressing synchronization and business con-
cern separation using aspect oriented techniques and linear temporal logic [MS05]. However,
none of them present all features needed to support distributed debugging as presented in
this chapter. Our approach adds abstractions for synchronization and distribution that scale
well by means of a decentralized architecture, and provides dynamic and efficient weaving of
aspect for distributed debugging.

Programming languages offers numerous features (e.g., classes, mixins, modules, functors,
etc.) to support separation of concerns. AOP offers programming language support for
separation of crosscutting concerns. AspectJ is probably the most well-known and used aspect
weaver [KH+01] it offers an aspect language and and an aspect weaver (i.e., compiler) for Java
but it does not provided concurrency or distributed related features. Awed [BNSV+06a] is an
aspect weaver for Java that explicitly support distribution with notions such as distributed
pointcuts, remote advice, asynchronous advice, etc. Our work is based on awed but invasive
patterns provide a higher level abstraction that makes it easy to program and compose aspects.

6.2 Motivation

In this chapter, we argue for the use of explicit relationships between events to be used to
monitor and manipulate middleware and distributed infrastructures. We claim, in particular,
that control-flow based relationships, sequence relationships and events that are causally-
connected, e.g., with respect to a notion of logical time, are crucial in this context. In
this section, we motivate these claims for typical debugging and testing tasks of distributed
infrastructures.

6.2.1 Expressive breakpoints for distributed debugging

Current tools for distributed debugging, such as Eclipse and the Distributed Debugging
Tool [Sof08, Fou08], apply debugging techniques for sequential programs to distributed appli-
cations. Such tools almost always employ a centralized debugging component that coordinates
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execution of independent local debuggers that only support breakpoints in terms of local en-
tities (e.g., updates of local objects, local files, etc.). The distributed debugger can match
local breakpoints in different machines and control the execution by, e.g., stopping it and
inspecting the local state of different machines. However, this kind of tools has not been
widely adopted by developers, mainly because they do offer only small added value over the
use of sequential debuggers on a per-machine basis.

We argue that there are three major reasons for this lack of added value:

• Lack of means for the expressive definitions of distributed breakpoints involving, in
particular, control flow and sequence relationships between distributed execution events.

• Lack of means to handle non-determinism in distributed and concurrent applications.

• Inefficient implementations based on centralized architectures that are difficult to deploy
on top of a distributed application.

In the following, we consider three basic debugging scenarios that frequently occur in mid-
dlewares to illustrate these issues involving control-flow relationships and non-deterministic
relationships among events, especially ones involving causally-connected events (thus effec-
tively extending discussions in recent work on distributed debugging [Li03, MK04]).

Debugging control flow

As a first example, consider a distributed application that uses synchronous remote method
invocation (e.g., Java RMI) for communication between three different hosts. A developer
may be interested in setting a line breakpoint in one host, H say, that is triggered only
in the dynamic extent of a (previous) method call occurring on another host G. Note that
such debugging scenarios are based on (typically implicit) specifications of correct program
behavior. e.g., that an erroneous execution path is characterized by the sequence of calls G;H
on the mentioned hosts where H occurs before the call to G returns. Using current tools, the
developer has three options:

• She can apply a breakpoint to the method called on host G and once this match is
triggered she can, at runtime, add the line breakpoint at H. However, in this case all
subsequent occurrences of the second breakpoint are matched: identifying a specific call
of interest can be very difficult.

• The programmer could pollute the original code with state information to track the
necessary control flow dependencies (i.e., store state information that then has to be
suitably forwarded to the other hosts) and match the specific breakpoint in H.

• The programmer could add a breakpoint directly on the execution of H, match the
corresponding breakpoint there without taking into account the originating control flow
and decide manually what to do at each match.

Using (formal or informal) reasoning mechanisms, all of these options could be proven to
correctly identify the erroneous path with respect to the specifications above. However,
clearly none of these situations is acceptable, because they are tedious to implement and are
highly error prone. All three represent, however, common practice with current debuggers
for distributed middleware and applications.
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Debugging non-deterministic event relations

Events that may occur concurrently and that should trigger debugging operations only if they
are interleaved in specific ways further complicate matters. Debugging of replicated caching
infrastructures, for example, may involve replication actions that originate from the same
transaction but are triggered asynchronously (e.g. as part of a two phase-commit protocol).
Errors often depend in this case on the order in which the replication actions are applied but
the decision, as part of a debugging action, whether two actions occur in the relevant order
is difficult to take if debugging processes (as is typically the case) may introduce arbitrary
delays in the observation of events.

Since current debugging tools do not provide abstractions to concisely express such cases,
programmers once again have to resort to manually encode and interpret distributed state by
applying one of the three options introduced above. This approach becomes, however, rapidly
unmanageable if many events and many hosts are involved.

Often such debugging tasks can be much facilitated by ensuring that occurrences of events
obey strict ordering requirements, possibly imposing deterministic sequences of events in a
previously non-deterministic systems. This is useful, in particular, in order to systematically
explore possible erroneous traces. Once again current debuggers do not support such facilities,
but have to resort to encodings of distributed state. Extending previous work [HK90, PHK91,
Li03, MK04] that has highlighted casual relationships as a means to remedy this problem, our
approach seamlessly integrates notions of causality with expressive control-flow based event
relationships.

6.2.2 Test-driven development

Current techniques for the test-driven development for distributed applications are also lim-
ited by a lack of support for the expression of distributed event relationships. Distributed
unit test cases, in particular, are almost always implemented by means of sequential abstrac-
tions that test conditions of distributed concerns on the local state of individual machines.
For example, test cases related to replication in JBoss Cache [JBo08b] frequently use a seem-
ingly intuitive testing scenario: a test case is defined in terms of two cache instances, such
that after an operation on a source cache, the state of the second cache can be tested to
compare the new and old versions. This idiom seems obvious and simple; however, it does
not allow to take into account, for example, the communication behavior, such as sequences
of intermediate synchronous or asynchronous calls, which obviously may strongly interfere
with the cache behavior. Consequently, the definition of reproducible test cases is subject to
the same restrictions as discussed above, for example, if reproducibility depends on specific
interleavings of a set of concurrent events being tested (that are part of a potentially much
larger set of possible interleavings).

As we show below, expressing test cases in terms of sophisticated event relations as de-
scribed above (control-flow, sequence and causal relationships) also greatly facilitates the
definition and application of distributed test cases.

6.3 Language support

In this section we propose a language to support manipulations and evolutions of distributed
applications. It is based on the AWED system (See chapter 4): that explicitly supports
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monitoring of sequences of distributed execution events that trigger dynamic modifications.
This enables us to concisely express different debugging scenarios involving control-flow and
sequence-like relationships between events. Furthermore, we introduce in this chapter an
extension of AWED in order to support causally-related events and causal communications
(based on event reordering mechanisms).

Concretely, we have integrated causal relationships and reordering mechanisms extending
the AWED language for the manipulation of distributed applications using aspects with
explicit features for distribution. AWED natively supports pointcuts that match sequences
over (nested or not nested) method calls and trigger advice that may be executed on hosts
different from that on which the pointcut matched. This resulting model of distributed
programming can also be seen as an event-based model with expressive means to match
execution events (through pointcuts) and trigger new functionality that modifies (including
replacement of) matched execution events (through advice).

The original AWED model provides a notion of remote pointcuts for matching of se-
quences of execution events without support for causality relationships. As we will show,
these pointcuts generalize advanced debugging facilities that have been proposed previously.
The extensions for causal pointcuts and pointcuts with causality-dependent reordering aug-
ment the languages expressiveness, supporting, in particular, the causality-dependent debug-
ging techniques discussed before and integrate smoothly with the non-causal pointcuts on the
syntactic and semantic level.

In the remainder of this section we introduce the resulting language in three steps. First,
we show how AWED allows a more general treatment than several previous approaches to
debugging based on event sequences. Second, we provide background information on causality
relationships. Finally, we extend the AWED language by means for the definition of causal
pointcuts that allow logical time to be taken into account as well as pointcuts matching event
sequences that are reordered according to causality relationships.

6.3.1 Distributed debugging with AWED

AWED can be applied to debug intricate relationships between execution events. It gen-
eralizes previous approaches to the debugging of control-flow based relationships between
events. In this subsection we show how the original AWED model allows to handle debugging
problems expressed in terms of control-flow-based and arbitrary sequence-based relationships
between distributed events.

Distributed control flow

Sequences of calls that are nested within each other’s control flow can be defined using the
cflow pointcut constructor. As an example consider testing and debugging of JBoss Cache
as presented in the motivation section. A concrete problem of the two-phase commit protocol
consists in ensuring that remote calls to prepare methods are always triggered by a corre-
sponding call at a local cache site. A remote call that has not been appropriately triggered
can be caught by the following pointcut:

!cflow(call(∗ Transaction.prepare(..)) && host(”source”))
&& call(∗ Cache.remotePrepare(..)) && host(”target”)

This pointcut matches all the calls to the remotePrepare method on hosts belonging to
the host (or host group) target that are not in the distributed control flow of calls to the
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Figure 6.1: Distributed Cflow graphical representation

prepare method occurring at source hosts. Hence, a simple pointcut definition can address
the complexity of a distributed control flow breakpoint. Such control-flow relationships for
debugging have already been studied, e.g., as part of Li’s work [Li03] for distributed (CORBA
and COM) component-based systems and Chern and De Volder’s work on sequential control-
flow based breakpoints [CV07]: we extend such approaches by supporting the notion of control
flow in the presence of asynchronous and synchronous method calls.

Figure 6.1 represents graphically the concept of control flow. The parallel lines represent
the processes on two different hosts source and target. The dark bars represent the execu-
tion of the corresponding method, i.e., the execution of the body of the method before the
method’s return. Considering synchronous communication, the figure represents a call to the
remotePrepare method that is in the control flow of a prepare method, thus in this case the
previous pointcut definition will not match the call to method prepare.

Distributed sequences of events

As introduced above, AWED supports pointcuts over sequences of execution events, e.g.,
sequences of calls that do not have to be nested into other calls of the sequence. Hence, such
sequences allow the definition of more general event-based contexts than the control-flow
based event sequences considered above.

In the context of the debugging of JBoss Cache, for example, a very frequent require-
ment consists in the definition of contexts depending on the activation state of the cache.
Concretely, one may want to identify remote put operations (which introduce data in the
cache) that occur after the local cache has been initialized and before it has been stopped. A
corresponding pointcut can be specified in AWED as follows:

a1 : seq(start > t1,
t1: call(∗ Cache.start(..)) && host(localhost)> t2 || t3,
t2: call(∗ Cache.put(..)) && !host(localhost) > t2 ||t3,
t3: call(∗ Cache.stop(..)) && host(localhost) > t1)

&& step(a1,t2)

This pointcut defines an automaton named a1 having three transitions t1, t2 and t3:
once started, put operations can occur or the cache can be stopped. Note that the start and
stop operations of the cache are matched on the local host, while the put operations must not
occur on the local host. The term step(a1, t2) allows an advice to be triggered relative to
a specific transition t2 of the automaton. At the first line start > t1 defines that the initial
transition is t1. The expression t1: pointcutDef > t2 || t3 is interpreted as follows:
if pointcutDef matches the current event, then the automaton is now ready to accept an
execution event as defined by t2 or t3. Figure 6.2 shows the graphical interpretation of the
defined automaton.
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Figure 6.2: Graphical representation of a start-action(s)-stop automaton

The expressive power of our approach is mainly determined by the expressivity of our
pointcut language. AWED basically provides regular pointcuts. An extension by guards
on transitions of the corresponding finite-state machines, thus providing a turing-complete
pointcut language, is however unproblematic (and is provided as part of the existing im-
plementation). This feature would also allow to directly characterize concurrent and timed
events. By explicitly providing regular pointcuts, existing analysis techniques of, e.g., dead-
locks using model checking of distributed and concurrent systems, should be applicable. This
is, however, subject of future work.

A second element determining the power of our approach is the granularity of events
that can be referred to by pointcuts. We have restricted the pointcut language deliberately to
method calls: a more fine-grained event model that would allow, e.g., to refer to the evaluation
of subexpressions of arithmetical expressions (that are supported by some aspect approaches)
could incur considerable execution overhead and are less relevant for the debugging of mid-
dlewares.

6.3.2 The case for causality relationships

Sequence pointcuts in AWED do not guard against problems of the underlying communication
network, in particular concerning message delivery such as inversion of sent messages due to
random delays in message transmission. The previous sequence pointcut involving start,
put and stop on JBoss Cache events is unproblematic in this respect since message inversions
resulting in put operations outside the ordinary operating conditions of cache can be easily
filtered out by additional pointcuts if necessary. In other cases, e.g., inversion of bank deposits
and withdrawals, such problems would however wreak havoc.

Generally, AWED’s automata-based pointcuts are therefore subject to two problems:

• They may not match valid sequences of events that happen to arrive in the wrong order
at the host where the sequence is to be matched.

• They may match wrong sequences that stem from events that occur at different hosts
in the wrong order but whose order has been inverted, e.g., because of message delays,
at the host where the sequence is matched.

An AWED developer has to take care in order to avoid these problems: either by the
careful definition of pointcuts and manual synchronization of distributed executions or by
ensuring that additional constraints on the base application’s semantics exclude them. The
next subsection proposes new language constructs to enable pointcuts to directly support
causality relationships and ordering constraints of messages.
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Figure 6.3: Graphical representation of the happened before relation.

6.3.3 Background: logical time and causality

Determining the order in which different events occur in a distributed system constitutes
the essential problem underlying the limitations of general sequence pointcuts as introduced
above.

Much research work has been done on orderings of execution of distributed events starting
with Lamport’s landmark paper [Lam78] on the use of logical time to determine and ensure
orderings among events. Basically, such approaches exploit the property, that in order to de-
cide how two events are ordered in a distributed system, it is not necessary to have knowledge
of the physical time of their respective occurrences. Instead, one can use a logical clock that
is maintained locally by each process and that is only synchronized between interacting nodes
upon arrival of messages. Furthermore, (logical) clocks do not have to agree on the physical
time of events but only on a (partial) order in which events were emitted.

Happened before relation

We have based our extension of the AWED model on the definition of logical time in terms
of Lamport’s ”happens before” relation: two events a and b are related by a → b (a happens
before b) if one of the following holds:

1. a and b are events in the same process and a occurs before b.

2. a is the event of sending a message from one process and b is the event of receiving the
same message by another process.

3. a, b and c are events, such that a → c and c → b hold, i.e., the happens-before relation
is transitive.

Note that the happens-before relation can be seen to express a notion of causality meaning
that, if a → b, that occurrence of b would not have happened if a had not occurred. (This
is obviously only an approximation to causality in the sense that a could be the underlying
reason for the occurrence of b.) Conversely, x 6→ y ∧ y 6→ x ensures that x and y occurred
concurrently and may not have caused each other. Since logical time does not bear any direct
relationship to physical time, concurrence in this sense does, however, not imply that x and
y occurred at the same (physical) time or even during a sufficiently small time interval, but
only that one event did not causally influence the other one.

Figure 6.3 illustrates the definition of the happened before relation. In the figure physical
time flows form past (left) to future (right). The horizontal lines represent processes in
particular hosts, the dots represent events, and the diagonal lines are messages. The figure
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Figure 6.4: Lamport’s scalar logical clocks.

shows two processes in hosts host1 and host2 respectively, six events (a, b, c, d, e, f),
and three messages (m1, m2, m3). According to 1, in the definition of the happened before
relation: in host1 a happened before d (a → d) and d happens before e (d → e); similarly
in host host2, we found that b happened before c (b → c) and c happened before f (c → f).
Because of message sending and reception (see 2 in the definition of happened before relation)
a happened before b (a → b) and c happened before e (c → e). Now using transitivity ( see
3 in the definition of happened before) b happens before f (b → f); and e happens before f

(e → f). Finally, b and d are concurrent (b 6→ d∧ d 6→ b); as well as c and d (c 6→ d ∧ d 6→ c).

Logical clocks

Logical time and causal relations are formalized and implemented using the notion of logical
clocks. A logical clock is a function Ci in process Pi that assigns a value Ci(e) to any event e

occurring in process Pi. The global clock value for event e is C(e) where, for all i, C(e) = Ci(e)
if e occurs in Pi. Additionally for any two events x and y, if x → y then C(x) < C(y) (called
the Clock condition).

A large number of different functions have been proposed for the definition of logical
clocks that support (or not) different forms of causality relations. Lamport’s original notion
of logical clocks has been defined as scalar-valued functions. They can be implemented using
a counter that has to be incremented before the occurrence of any event in a process. The
clock value can then be sent together with distributed messages to implement global syn-
chronization algorithms for distributed applications, e.g., to implement mutual exclusion, in
a completely distributed fashion without any global knowledge. However, the limited infor-
mation transmitted by this kind of clocks does not allow causality information as introduced
above to be deduced.

Figure 6.4 shows a distributed system supporting the happened before relation by means
of an implementation of Lamport’s scalar logical clocks. The figure shows a system of three
distributed processes running on three different hosts (host1, host2, host3). Each process
has an independent clock that is incremented after each event in the process (note that clocks
speed is different for each process). Additionally, six messages are exchanged in the system.

Each clock Ci assigns a number to each event so that the clock condition is respected.
Thus if events a and b occur in the same process Pi and a → b then Ci(a) < Ci(b). Similarly,
if a is the sending of a message in process Pi and b is the reception a that message in process
Pj then Ci(a) < Cj(b). To support this condition the system adds 1 to each clock after each
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Figure 6.5: Graphical representation of the behavior of a distributed system implementing
causality with vector clocks

event, time stamp each message with the new clock value, and synchronize clocks upon arrival
of a message adding 1 to the maximum between the time stamp and the current clock value.

For example, when message m1 is sent from P1, C1 is increased to 1, and the message is
time stamped with that value. Once the message arrives to P2 the clock there is synchronized
to C2 = max(0, 1) + 1 = 2. We can follow all the message paths and check how clocks
are synchronized, for instance if we follow the path m1, m3, m5, the clocks are synchronized
successively as follows: C2 = max(0, 1)+1 = 2, C1 = max(1, 3)+1 = 4, C2 = max(5, 5)+1 =
6. In the system the happened before relation is respected, thus if a → b then Ci(a) < Ci(b).
However, the inverse is not true, we can’t sat that if Ci(a) < Ci(b) then a → b. Hence, as
stated before, this lack of information does not allow the causality information to be inferred
from the clock values.

Vector clocks

To solve the problem of causality between events in a distributed system, vector clocks have
been proposed by Mattern [Mat88]. Vector clocks do not use a counter per process but
associate, for each process, a vector of counters for each other processes of the distributed
application. Thus, each node will dispose of information of the time at all other hosts. The
following extension of the AWED model is based (as far as the matching semantics and its
implementation is concerned) on vector clocks.

Previous uses of logical clocks were focused in the problem of having a deterministic and
complete representation of the distributed state of a distributed application. A lot of work
around this idea has been published, e.g., [CL85]. They have been also used to model
mutual exclusion [Lam78], high level debugging by means of behavioral patterns [BW83], and
to address the problem of global predicates [TG98].

We are going to use a simple example to give an intuitive notion of causality as supported
by vector clocks. Figure 6.5 present a system with three hosts that exchange messages and
use vector clocks to maintain causality. Physical time flows from left to right. All vector
clocks start with a vector of value (0,0,0). Each time a message is sent the local vector
clock is augmented with one. For example when the event A is emitted the clock in host 1
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// Pointcuts
Seq ::= Id : SeqCons({Step}) | step(Id ,Id)
SeqCons ::= seq | seqCausal | seqCausalOrder

Step ::= [[!]causal | conc]Id : Pc →Target

Figure 6.6: AWED with causal pointcuts

is augmented to (1, 0, 0) the new value is also attached to the message being sent. Upon
arrival of a distributed message each host calculates a new value for its vector clock as follows:
assuming that V ci is the vector clock of host i and V cm is the vector clock in the arriving
message, the new vector clock is V ci[k] = maxV ci[k], V cm[k]. Note that the new vector
clock is calculated only if the arriving message is causally the next expected message. To
determine this the host should compare his own vector clock with the arriving vector clock.
If the host j sends a message to the host i, then, the host i will only process the message if
V cm[j] = V ci[j] + 1 or if V cm[k] ≤ V ci[k] for all k 6= i. With this conditions a host can now
causally order the messages and accept them in the correct order. In the figure, host number
three delays the acceptance of messages C and B to process them in the right order. A more
detailed information about vector clocks can be found in [Mat88].

6.3.4 AWED with causal pointcuts

Our approach to causal pointcuts is based on vector clocks [Mat88]. These clocks can be used
to enforce causal relations between events and implement causal communication by reordering
events. We now show how we have integrated these notions into AWED.

Causal sequences without reordering

To extend AWED with causal information, without including reordering of messages, we
have introduced a new sequence constructor seqCausal and two transition modifiers, causal
and conc, see Fig. 6.6. The two modifiers respectively ensure that the labelled transition is
causally related to or concurrently executed with respect to the transitions leading to the start
state of the labelled transition. The constructor seqCausal is syntactic sugar for sequence
pointcuts whose transitions are by default labelled as causal unless they have been explicitly
declared using conc to execute concurrently.

As an example let us consider the following pointcut definition:

a1 : seqCausal(causal s1: call(∗ Cache.prepare(..)) && host(”source”) > s2,
conc s2: call(∗ Cache.commit(..)) && host(”target”) > s1)

&& step(a1, s2)

This sequence matches a prepare event in a JBoss Cache transaction, followed by a commit

only if it is not causally related to the prepare event. Then the following prepare event is
matched only if it is causally related to the previous matched commit event. This pointcut
can therefore be used to test for unexpected calls to commit methods. As we show in the
evaluation section, Sec. 6.5, this pointcut is useful, among others, to test for real bugs that
have affected the JBoss Cache infrastructure.
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Causal pointcuts with reordering

Causal pointcuts without reordering only enforce that only causally-related events are matched
but they do not ensure all sequences will be matched.

To resolve this second problem, we harness the property — already demonstrated by
Lamport’s totally ordered broadcast operation [Lam78] — that logical time values cannot
only be used to test for causality relationships but that they also support the reordering
of messages that arrive at a host in the wrong order. To allow reordering according to
causal relationships, we have extended AWED with a third sequence pointcut constructor,
seqCausalOrder that ensures that all causal relations are matched by, if necessary reordering,
incoming events. Its semantics ensures that each event is delayed to wait for the event that
precedes it causally.

As a concrete example, the following pointcut can be used to ensure that commit operations
are correctly interleaved with prepare operations:

a1 : seqCausalOrder(
t1: call(∗ Cache.prepare(..)) && host(”source”) > t2 || t3,
t2: call(∗ Cache.commit(..)) && host(”target”) > t1,
t3: call(∗ Cache.prepare(..)) && host(”source”))

&& step(a1, t3)

Indeed, a web cache repeats sequences of prepare commit. So, two prepare should never
occur in a row (transition t3): an error should be reported in this case. In order to prevent
reporting of spurious errors (e.g., when a commit occurs before prepare but is monitored
after it) the messages must be ordered as specified by seqCausalOrder.

Note that this construct requires a larger overhead than the one without reordering. In
particular with the previous construct the events are consumed as soon as they arrive, and
causality is only an additional test defined by the causal and conc labels. In the case of
causally ordered sequences, messages are delayed and processed only once all the causally
preceding messages are received. The causal and conc labels are automatically supported
in the totally ordered construct (they do not pose an additional overhead).

6.4 Implementation

In this section, we present how distributed aspects with support for causal events and message
reordering have been implemented by extending the non-causal implementation of the AWED
system (see chapter 4). Note that while we present a Java-based implementation (and an
evaluation of Java-based middlewares in the following section), conceptually our approach
is not tied to Java. The Arachne aspect system, for instance, features (non causal) regular
sequence pointcuts for C applications and has been applied to the modification of network
protocols used for the communication in distributed systems [DFL+05].

In the following, we first present the overall architecture of the resulting system. Second,
we discuss how AWED can be used to test causality on distributed infrastructures that have
not been prepared for the provision or use of causality information. Third, we discuss the
implementation of the framework that supports causal finite state machines to support causal
sequences without message reordering. Finally, we will present the mechanisms for message
reordering that were included to support the pointcut construct seqCausalOrder.
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6.4.1 AWED architecture

AWED is a dynamic aspect language that weaves aspects with classes at load time and allows
aspect deployment and undeployment at execution time. Its implementation presents an op-
timized partially evaluated interpreter for distributed aspects. Figure 6.7 shows the overall
architecture, i.e., its compilation chain and the main structures of its runtime framework. In
the top left part of the figure we can see how the application and aspect code is compiled into
Java bytecode. The bytecode is then read by AWED’s instrumentation and transformation
framework at load time, producing a version of the application that is instrumented at the
necessary joinpoints (here a subset of the method calls). When executing the instrumented
application, and once it reaches an instrumented joinpoint, the application dispatches join-
point notifications to the Registry framework that takes care of the recognition of distributed
sequence pointcuts. This framework passes the joinpoint notification to each aspect instance,
that, in turn, evaluates each joinpoint to match pointcuts and to apply advice. An AWED
runtime framework, including a registry, is running at runtime on each logical host, i.e., JVM.
In order to support remote pointcuts each registry, i.e., each JVM, communicates joinpoint
notifications to the other JVMs using an extension of the JGroups framework [JGr08], one
of the most popular Java-based middleware for group communication. This part of the in-
frastructure contains all necessary support for non-causal event relationships, in particular
remote regular sequence pointcuts.

In figure 6.7, we have also detailed the two main extensions incorporated to the runtime
framework in order to support the causal constructs. First, the communication framework (see
the box labelled “JGroups extension” in the figure) has been extended to support causality-
supporting protocols. The extended JGroups component uses the original JGroups framework
augmented with specific protocols for causality. In the figure we show a traditional protocol
stack that supports different protocols, including the User Datagram Protocol (UDP). The
protocol stack shows, at the top, the Causal AWED protocol. This protocol can be any of
two new protocols that we have implemented. Second, the pointcut class hierarchy (see the
class diagram for causal pointcuts highlighted in magnifying glass in the figure) has been
augmented by support for causal sequence-based aspects, concretely by support for causal
pointcuts with or without reordering and a notion of transition guards. In the following we
present both extensions in some more detail.

Causality-supporting protocols The two new protocols that support causality do not
modify actual communication, but just handle causality and delegate actual communication
to the other protocols in the protocol stack. The first protocol that we have implemented is the
Causal tags + clock increase protocol. This protocol tags the distributed messages with
a vector clock time, and will calculate the value of the new vector clock times at a host upon
arrival of new messages. This protocol can be used to detect causal relations, but it can not be
used to impose causal ordering of messages. The second protocol that we have implemented is
Causal tags. This is a more lightweight protocol that tags messages with vector clock times
but does not update the vector clock. This protocol can be used with specialized adapters to
add causality information to distributed infrastructures and applications that have not been
aware of causality information in the first place.
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Figure 6.7: AWED architecture.
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6.4.2 Adding causality to non-causal distributed applications

Most distributed infrastructures and applications do not implement causality natively. Adapt-
ing such applications to support causality typically is very cumbersome and error prone. To
avoid this problem, we propose specialized adapters that can be used to instrument causality
transparently in legacy applications. To prove that this is a feasible solution we have imple-
mented an adapter for RMI based applications, thus covering a wide spectrum of distributed
Java applications. This adapter is realized using Java’s notion of customized sockets.

The adapter basically implements a mechanism similar to that provided by the Causal

tags + clock increase protocol. Thus, each message in the legacy application is now
tagged with a vector clock and a local vector clock is updated upon arrival of each RMI
message. This connector can be combined with the AWED framework that is running the
Causal tags protocol to detect causal relations in the legacy application. This deployment
method does not need any particular modification of the legacy application. To use the specific
connector, the programmer just specifies an option for the JVM when invoking AWED.

Causal sequence constructs with guarded finite state machines

In order to implement the causal sequence construct as presented in section 6.3 we have
modified the compiler and the runtime infrastructure of the previous non-causal execution
system of AWED. The previous AWED system has already used finite state machines to
support regular sequence pointcuts. The corresponding implementation evaluates each join
point and, depending on the current state of the automaton, accepts or rejects a joinpoint.
In case of acceptance, a state transition is executed before executing the advice. We have
extended this model to support guards. Thus, at compile time the state machine is constructed
with specific guards, mainly to support the causal tests required by causal relationships
expressed using the conc or causal transition modifiers.

At runtime, the new execution system includes two major extensions. First, before ac-
cepting or rejecting a joinpoint, the state machine evaluates the corresponding guard, e.g.,
the causal information of the current joinpoint, and if the guard is satisfied the joinpoint
is evaluated. The second modification address the management of vector clocks: evaluation
of causal regular sequences has to compute a new value for the vector clock each time that
it accepts a joinpoint. This approach has a major benefit compared with other frameworks
implementing causality: finer grained control over events tagged with vector clocks and, as a
consequence, less performance overhead.

Causally ordered sequences

To implement the causal sequence construct with reordering we have further extended the
automata-based pointcut recognition component. Each such component now has its own
vector clock that is advanced each time a message is processed (including messages not in the
alphabet of the state machine). To address reordering, the state machine uses a delay queue
where it stores the messages that do not arrive in the right (causal) order. The messages
in this queue are causally ordered but not necessarily consecutive. Upon arrival of a new
message it gets evaluated: if it is accepted and if the message causally is the next message
with respect to the vector clock of the state machine, it is processed and the first message in
the delay queue is evaluated again.
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1 private void performTest() throws Exception {

2 // repeat the test several times since it’s not always reproducible

3 for (int i = 0; i < NUM_RUNS; i++) {

4 if (exception != null) { // terminate the test on the first failed worker

5 fail("Due to an exception: " + exception); }

6 // start several worker threads to work with the same FQN

7 Worker[] t = new Worker[NUM_WORKERS];

8 for (int j = 0; j < t.length; j++) {

9 t[j] = new Worker("worker " + i + ":" + j); t[j].start(); }

10 // wait for all workers to complete before repeating the test

11 for (Worker aT : t) aT.join(); } }

Figure 6.8: Deadlock detection test case method

Finally, a note on the scalability of our approach: Concerning scalability of the pointcut
matching, the principal property is that the AWED architecture (cf. Fig. 4) does not impose
any centralized control, in particular, for the monitoring of pointcuts that involve causal
relationships. The other components of the AWED architecture (principally matching of
other pointcut types and execution of remote advice) do not require central control either as
discussed as part of chapter 4.

6.5 Evaluation

In this section we present a qualitative and quantitative evaluation of our approach using
JBoss Cache [JBo08b], and ActiveMQ [sf08a], a message broker implemented by the Apache
foundation [sf08b]. First, we analyze a non-trivial test case for JBoss’s replicated caching
and show that aspects based on control-flow and causal patterns significantly improve the
corresponding debugging and unit testing tasks. Second, we evaluate the performance of
our prototype implementation in a two-fold manner. A series of micro-benchmarks provides
evidence that our implementation supports regular causal sequences with no to reasonable
small performance overhead. Finally, in order to provide concrete evidence that we meet
the objectives set out in the motivation, we compare the use of AWED’s use of sophisticated
regular causal sequences to the use of the Eclipse debugger as a popular tool for the debugging
of distributed Java applications by means of loose coordination of per-host debugging sessions.

6.5.1 Qualitative evaluation

In the following we present a qualitative evaluation of our approach involving debugging
and testing scenarios for two Java-based middlewares, JBoss Cache [JBo08b] and Apache’s
ActiveMQ [sf08a].

Deadlock testing in JBoss Cache.

In JBoss Cache (Ver. 2.0.0GA) the method performTest of class ReplicatedTransaction-
DeadlockTest (see Fig. 6.8) implements a test case to detect a deadlock bug. The test case
uses two caches, actions on the first cache are replicated onto the second cache by means of
the replication framework. The method triggers multiple workers in multiple threads. Each
worker starts a transaction, puts a value in the cache (all workers use the same memory
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1 pointcut deadlock():
2 s1:seqCausalOrder(
3 tPrep:
4 call(∗ ReplicationInterceptor.runPreparePhase(..)) && host(src) > tCommit || t2ndPrep,
5 tCommit: call(∗ PessimisticLockInterceptor.commit(..)) && host(targ) > tPrep,
6 tSecondPrepare: call(∗ ReplicationInterceptor.runPreparePhase(..)) && host(src)) &&
7 step(s1, tSecondPrepare);

Figure 6.9: Pointcut for deadlock detection in a synchronous transactional cache.

1 pointcut prepare(): call(∗ ReplicationInterceptor.runPreparePhase(..)) && host(src);
2 pointcut commit(): ... && call(∗ BaseRpcInterceptor.replicateCall(..)) && ...
3

4 pointcut generateDeadlock():
5 s1:seqOrderedCausal(
6 tPrep : prepare() > tCommit || t2ndPrep,
7 tCommit : commit() > tCommit || t2ndPrep,
8 t2ndPrep: prepare() );
9

10 before(): generateDeadlock() && step(s1, tCommit) { while(block){ Thread.yield(); } }
11 after(): generateDeadlock() && step(s1, t2ndPrep) { block=false; }

Figure 6.10: Aspect ensuring the generation of the buggy behavior for deadlock detection.

position in the cache) and commits the transaction. The test has to be repeated a number
of times (first for block in the figure) since it can’t be reproduced easily. The original bug
occurred when a worker, after a successful prepare phase of the two phase commit protocol,
commits a transaction and releases the lock over the source cache after the local commit but
before completing the final commit phase with the remote caches. In this case, other workers
may interleave their transaction operations, in particular, acquire the lock at the same cache
position and thus preclude the first transaction to terminate its remote commit phase, thus
entering a deadlock situation, because no worker can acquire all necessary local and remote
locks anymore.

A programmer dealing with that bug faces tree problems: (i) how two reproduce the
problem, (ii) how to debug it and (iii) how to write a suitable test case to identify it in the
future. To deal with the first problem, the code shown in Fig. 6.8 triggers several threads
that execute transactions concurrently, hoping for the bug to be reproduced. This approach
is subject to several problems, in particular, that a unit test session could pass over the bug
without noticing it. Regarding the second problem, as part of a corresponding debugging
session a programmer would have to apply a breakpoint either to the line for remote prepare
or in the line that throws the corresponding exception. In the first case the debugger will
stop on each prepare (buggy or not). In the second case it will, eventually, stop only on an
error of one of the threads. Then, depending of how threads are scheduled, it could stop the
application(s) in a buggy state or in a correct state, because the other action could have or had
not enough time to complete the transaction. Additionally, the programmer could perform
many runs without reproducing the bug. A test case for this bug is, of course, subject to all
the problems detailed above.

Using our approach we can improve on the three development scenarios: debugging, unit
testing and bug reproduction. Fig. 6.9 shows a pointcut that can be used to define a breakpoint
that will occur only if the bug appears. The pointcut implements a sequence (i.e., finite state
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machine) with three states and three transitions. The first state accepts a call to the method
runPreparePhase, from the ReplicationInterceptor class in the cache that belongs to the
source group (source and target are dynamic groups that can be handled using AWED).
Once such a method is received, the state machine changes its state to a state that accepts
tCommit transitions and tSecondPrepare, the latter representing a prepare operation issued
by another worker. If the target cache receives a tCommit message, the normal behavior, it
returns to the first state. Finally, if the sequence detects after the first tPrepare message
a tSecondPrepare message on the source cache, the state machine recognizes a deadlock
state. Note that the sequence definition must be ordered causally in order to ensure that the
events will be detected in the correct order in any distributed execution.

AWED’s regular causal pointcut definitions can also be helpful for bug reproduction and
unit testing. The main problem with current test case definitions, such as that introduced
above, is that it is of haphazard nature, i.e., it does not always allow to reproduce the bug
situation. Figure 6.10 shows an excerpt of code from an aspect that will interact with the
original test case of Fig. 6.8 to impose the desired order of events in the presence of only two
workers. The aspect excerpt includes the definition of a state machine that matches a call to
the method runPreparePhase, which means that the corresponding transaction has acquired
the lock and is going to broadcast a prepare message to the target cache. Then, if it detects
a call to the replicateCall method having as parameter a commit method call, a before
advice will suspend the current thread until another runPreparePhase is detected. A buggy
implementation will allow this reordering of events, a correct implementation will produce a
lock-timeout exception because the cache node will be locked by the second transaction.

Debugging ActiveMQ

We have also performed experiments over the Apache project’s ActiveMQ message bro-
ker [sf08a] that is used, e.g., for the integration of enterprise information systems. From
an analysis of the list of the 359 open issues in ActiveMQ’s bug tracking system as of Aug.
2008, we have found six issues classified as blockers: at least four of these are caused by the
wrong ordering of events or messages. Similarly, out of the 13 messages classified as critical at
least five are related to message or event ordering. We have successfully woven causal aspects
on ActiveMQ. To test the applicability of our approach we have debugged a use case regarding
a deadlock situation in a configuration setting with four brokers and a use case involving the
wrong ordering of repeatedly delivered messages in the context of transactions session with
roll back. In both cases we have successfully defined simple pointcut definitions that exactly
test for the corresponding error situations. These tests provide evidence that our approach,
in particular the AWED system, is applicable generally to Java-based middleware. Finally, as
for JBoss Cache, these debugging experiments have incurred only minimal overhead in both
the Java client and the ActiveMQ broker.

6.5.2 Micro-Benchmarks

We have run performance tests of our implementation using the performance framework of
JBoss Cache. This framework allows to run multiple performance test over cache configura-
tions. It provides several features including centralized reporting and pluggable tests. In all
the cases we have used the Web-Session simulation test. This test case simulates the usage
and replication of http sessions objects in a cluster of application servers. The tests were per-
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formed in a cluster of 4 nodes. Each node was equipped with a double core AMD Opteron 250
(2400 MHz) processor in 32 bit mode, 4 GB of memory and a 1 GB network interface. We
have performed several tests over the specific protocols developed for AWED and its run-
time. In the following, we first present the test case scenario, then the tests performed the
protocol implementations to show the difference of overhead compared to the native JGroups
protocols. Finally, we test the full runtime performance of our approach comparing it with a
session of remote debugging in Eclipse 3.2.

The test case scenario we have used is the default Web-Session simulator of the JBoss
Cache framework that basically simulates the interaction of a replicated http session in a
cluster of application servers. This test can be parameterized on the number of requests
and the ratio of reads to writes requests. For each test, we specify below what protocol
configuration stack we have used and what parameter values have been used. Performance is
measured by the number of requests processed per second on each node. In the performance
tables given below we provide the average number and standard deviation of the requests
processed per second. The average and the standard deviation values have been obtained
from eight different individual runs.

AWED’s causal protocols vs. JGroups native protocols. We have developed two
protocols that extent the set of protocols available in JGroups: the first one includes event
tagging with vector clocks, increase of local clock and no reordering; the second protocol
implements event tagging with vector clocks and no reordering. We have evaluated the
performance of the extended protocols developed to support causality in AWED. To test
only the protocol implementation and not to pollute the tests with framework overhead, we
have used JBoss Cache (JBC) and the performance framework only. To this end, we have
compared four different protocol configurations: (i) the performance of JBoss Cache with
a standard, non-causal, configuration of its communication protocol stack (denoted Normal

below), (ii) the causality protocol Causal natively provided by JGroups and (iii) our new
protocols Causal tags and Causal tags + clock increment.

Protocol Requests per second
20% writes 80% writes

Average Standard dev. Average Standard dev.
Normal 63,350.23 7,004.93 58,033.77 9,792.51
Causal 60,961.14 11,867.69 53,814.05 7,085.89
Causal tags + clock inc. 52,107.34 27,790.92 53,463.53 7,310.65
Causal tags 60,396.03 7,420.05 59,487.43 7,405.64

Table 6.1: Test results of 100.000 requests with respectively 20% and 80% writes

Table 6.1 shows the results of several test sessions in our cluster. The first set of sessions
was performed with a ratio of 80% reads and 20% writes over 100.000 operations (left part
of the table) and the second set of tests considers a ratio of 20% reads and 80% writes (right
part of the table). Each node in the test executes 100.000 requests and only the writes are
replicated to the other members. The data shows that in both cases the Normal protocol and
the Causal tags protocol presents the best performance average, as expected, since in the
former no causal relations at all are involved and the latter is just a tagging protocol with no
other additional actions. For the test with 20% writes, the Causal protocol (full causality,
i.e., vector clocks, clock increment and reordering) presents lower performance overhead than
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Protocol Requests per second No. of Requests per second No. of
Average Std. dev. requests Average Std. dev. requests

Eclipse Normal 55,111.79 7,792.45 105 2.80 0.21 100
Debugger Causal 55,172.60 5,764,97 105 3.39 0.30 100
AWED Causal tags + clock inc. 56,079.85 5,983.75 105 234.77 5.07 105

Invasive causality 53,045.19 10,223.90 105 237.61 7.58 105

Table 6.2: Debugging session without breakpoints (left half) and with a high-frequency break-
point (right half).

the Causal tags + clock increment protocol. As this situation is not reproduced in the
test with 80% writes, we can deduce that the network does not impose a large number
of reorderings for low volumes of messages. Overall our new protocols do not impose a
significant performance overhead (especially in the case of a large number of writes to the
cache) compared to the standard JBoss Cache protocols.

6.5.3 Remote debugging vs. distributed debugging

In order to provide evidence that we have achieved the main objective set out in the motivation
part, that is, that regular causal sequences improve on a per-host approach to debugging,
we compare the performance of a remote debugging session with Eclipse and a distributed
debugging session with AWED. To this end, we have again used the JBoss Cache benchmark
framework. We first compare two debugging sessions, one with Eclipse and one with AWED,
without breakpoints in order to measure the overhead of the frameworks. We then compare
both debugging sessions in the presence of a high-frequency breakpoint (i.e., reached and
fired many times).

AWED runtime overhead vs. Eclipse remote debugging overhead. Table 6.2 (left
part) compares the overhead of the debugging infrastructure posed by eclipse in a debugging
session and the overhead posed by our AWED prototype. This test doesn’t include any
breakpoint, thus it only compares the overhead of the execution frameworks. The table
shows small and comparable overhead for both frameworks. This is not surprising due to the
fact that both frameworks are based on the Java agent technology and no breakpoints are
evaluated. Note that the eclipse debugger is connected to the respective virtual machines,
thus simulating a remote debugging session. AWED, by default, supports distribution.

As a last experiment we have compared the overhead of Eclipse and AWED in the pres-
ence of a high-frequency breakpoint: a breakpoint in the method invoke of the interceptor
class ReplicationInterceptor. Table 6.2 (right part) shows the behavior of the Eclipse
debugger attached to four nodes running the JBoss Cache framework and the behavior of
AWED breakpoints under such conditions. In table 6.2 the protocol configuration labeled
as invasive causality implies that the application being debugged has been invasively modi-
fied with an adapter for causality, thus AWED system can predicate over application’s own
messages. Using the Eclipse debugger we have executed the benchmarks first in JBoss Cache
normal configuration and then with JBoss Cache using JGroups default CAUSAL protocol.
The performance in these configurations is very bad and after several problems with memory
overflow and unacceptable delays for the test we have reduced the number of requests to
100. On the other hand, the test of performance using the AWED framework are at least
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seventy times faster and do not impose any restrictions in the conditions of the test. This
is due to the fact that, even though the Eclipse debugger and AWED’s dynamic framework
use similar execution technology, AWED implements several optimization techniques and was
designed with distribution in mind [BNSVV06]. Our approach thus scales much better than
the discussed debugging methods using Eclipse.

Even though the evaluation presented here address only a partial set of features introduced
by our approach it already gives important data to asses such features and gives insights for
future work. Concretely, we have shown that current debugging practices in distributed mid-
dleware can benefit form such granular control over event ordering. We also show that current
implementation strategies for distributed debugging can be improved by aspect techniques for
distributions as dynamic weaving, finner grained language control, distributed deployment,
and no centralized architectures with support for causality. Furthermore, the combination of
finite state machines definitions with causal and concurrent constructs allow the construction
complex and interesting patterns, e.g., specifying concurrent events of interest within a time
frame (delimited by specific events). However, the need for an graphical tool for dedicated
debugging is evident, in order to realize systematic studies over different sets of applications.
In particular, future work should focus in the evaluation of systematic ordering scenarios with
several untracked and unresolved bugs. Additionally, even though we test the causal connec-
tors specified for JGroups we need to evaluate the RMI connector and develop new ones, for
example in the context of the different languages supported in ActiveMQ.

6.6 Discussion

In this chapter, we have argued for the use of programming abstractions as expressive support
for the debugging and testing of distributed middleware, in particular for the definition of so-
phisticated relationships between distributed events and the recognition of event sequences in
the presence of non-deterministic executions. We have presented a corresponding aspect-based
language and implementation support that introduces causal event sequences into AWED,
an aspect system for the dynamic manipulation of distributed systems. We have validated
our approach in the context of Java-based middleware, in particular for the debugging and
unit testing of a JBoss Cache and Apache’s ActiveMQ. This evaluation has shown that our
implementation has reasonable overhead and that our approach significantly improves on the
use of debuggers, such as Eclipse, that are based on the manual coordination of per-host
debugging sessions.

This work paves the way for several leads of future work. On a conceptual level, more
flexible abstractions to define relationships that mix events that partially are causally or-
dered and partially are not are of foremost interest. Furthermore, exploring the use of our
abstractions in other application domains, such as grid infrastructures, should be explored.
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Conclusion and future work

Crosscutting has been identified as a fundamental problem in the implementation of dis-
tributed software systems. However, few approaches for the modularization of crosscutting
concerns in distributed applications have been proposed. In this thesis, we have investigated
the problem of crosscutting due to the concurrent and distributed nature in large-scale appli-
cations, and developed better means to modularize such crosscutting concerns. In particular
we have proposed the following contributions:

Crosscutting in large distributed applications. As part of this thesis work, we have
studied the complexity of distributed software due to crosscutting concerns in object oriented
implementations. In particular, we have investigated how code for distribution and con-
currency is scattered and tangled in distributed object oriented middleware, such as JBoss
Cache. The study has shown that even after several cycles of re-engineering and refactoring
that crosscutting was resistant to modularization efforts using non aspect-oriented mecha-
nisms. This resistance has provided strong evidence of the need for aspects with explicit
distribution.

Language for distributed aspects. We have provided a model, corresponding program-
ming language and implementation for aspects with explicit distribution (the AWED model
and system) that incorporates several new mechanisms for remote pointcuts, remote advice,
and distributed aspects as the three main abstractions for the modularization of crosscutting
concerns. First, remote pointcuts enable matching of join points on remote hosts and include
support for remote calls and distributed control flow constructs. AWED’s pointcut model also
supports the definition and matching of remote regular sequences of events. These sequence
pointcuts have been further extended to support fine-grained control over distributed message
ordering. We have integrated, in particular, support for the causal ordering of messages. Sec-
ond, AWED includes remote advice that permits advice to be executed in a synchronous and
asynchronous fashion with advice, transparent futures for synchronization of asynchronous
executions, as well as support for different parameter passing modes, transparent remote ob-
ject references, and customized policies for filtering and ordering of remote executions. Third,
the model for distributed aspects provides a class-like abstraction to encapsulate pointcuts,
and advice definitions to deal with remote deployment, instantiation, and data sharing among
hosts. Finally, orthogonally to these main features AWED supports groups of host to be used
in and manipulated as part of distributed aspects.
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Invasive patterns for distributed programming .

We have explored the notion of distributed aspects in order to define new program-level
abstractions for distributed programming. In particular, we have investigated how implicit in-
teractions among the major runtime entities of distributed applications can be declaratively
and concisely defined. we have shown that such implicit interactions can lead to intricate
tangled and scattered code that is very difficult to understand and maintain. As a first
step towards a general solution to this problem, we have proposed invasive patterns as a
new mechanism for distributed programming languages that extend standard parallel com-
munication and computation patterns to modularize the crosscutting code governing such
interactions. We have implemented invasive patterns by a transformation into AWED and
presented several examples of how it can be used to implement those complex distributed
protocols that are commonly hidden in distributed applications when standard programming
and implementation techniques are used.

Causal distributed aspects. Based on AWED’s support for distributed sequences of
events we have introduced support for causality between events in distributed aspects. Con-
cretely, we have investigated how debugging and testing tasks in distributed applications
require monitoring of intricate relationships between execution events occurring in different
hosts. Due to the lack of support in current OO languages, such relationships are frequently
defined implicitly and very difficult to observe and manipulate. In order to address this
problem, we have extended sequence pointcuts with causality guards. Hence, guarded finite
automata may be defined that may predicate over the causal relationship of events, thus
identifying, e.g., two events to occur concurrently or to be causally related. We have im-
plemented this model by exploiting logical clocks (specifically vector clocks), and developed
several techniques to adapt legacy applications to support causal predicates transparently.
Finally, we have applied this technique successfully to the debugging and tests of different
distributed middleware.

Application to large scale middleware and applications. To validate the notions,
methods and techniques developed as part of this we have realized several experiments over
industrial medium to large-scale applications. First, we have applied AWED to extend and re-
factor replicated caches, and to manage service composition in a service-oriented framework.
Second, we have applied invasive patterns to implement transactional replicated protocols
over distributed caches, and to define and implement a check-pointing algorithm over grid
applications. Finally, we have used causal aspects to debug distributed applications like
message brokers and compared our result with real mainstream debuggers. These experiments
have given qualitative and quantitative information about the benefits of the proposed models.

7.1 Future work and perspectives

The research reported on in this thesis paves the way for different leads of future work in the
short and medium term, as well as perspectives for more fundamental results in the long term.
As to future work, our results should be beneficial for future work investigating concepts and
semantics of aspect and distributed programming languages, corresponding implementation
techniques and tool support. An interesting long term perspective consists in a general notion
of architectural programming.
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Concepts and semantics for aspect and distributed programming languages. AWED
and invasive patterns have been defined informally and validated by concrete implementations
and experiments. We have already proposed a first step towards a formal models for AWED
and invasive patterns [BNDNS08]. This work presented two semantics based on labeled tran-
sitions systems (LTS), one for AWED and one for invasive patterns. Using these semantics
we prove liveness and safety properties. However, the formal definition of the semantics and
analysis of properties of AWED, more generally, aspectual concepts for concurrent and dis-
tributed programs such as invasive patterns represents a fundamental, diverse and highly
interesting open issue.

Implementation of new abstractions. The implementation of AWED allows the ex-
perimentation of several semantic variants including full propagation of events, controlled
propagation (i.e., by means of advice chains), or control flow predicates over legacy RMI
applications. Experimentation with such variants and its interactions, and experimentation
with optimized constructs for finite-sate pointcuts constitute a rich source of ideas for future
research. Furthermore, a recent shift in AOP research provides more imperative control over
aspect constructs and mechanisms, especially as far as scoping, instantiation, and deployment
of distributed aspects is concerned.

Tool development. The implementation of development and re-engineering tools for as-
pects with explicit distribution and invasive patterns, the implementation of optimized dis-
tributed debuggers using causal patterns, and the exploration the benefits of the state-machine
approach [Sch90, Lam78] (i.e., finite-state pointcuts combined with total and causal ordering
of message to address replication and determinism) also opens a whole range of interesting
leads for future work.

Architectural programming. We have shown that the definition of complex distributed
protocols are often hidden in sequential object oriented implementations. Such protocols can
be seen as embodying the relations that are essential to the definition of the runtime archi-
tectures of distributed applications. We have shown that there is a clear mismatch between
the definition of such abstract architectures and their implementation. Invasive patterns are
a first step towards closing this gap. Concretely, invasive patterns present a model that pro-
vides concrete language abstractions to define communication protocols among the different
elements of a distributed architecture. As we have shown for JBoss Cache, they enable com-
plex distributed systems with heterogeneous patterns of computations and synchronization be
implemented in a way that allow to declaratively define their abstract runtime architectures
on the program level. Generalizing this idea, such architectural programming would unite the
benefits of declarative and concise architectural descriptions with the precision of concrete
implementations.
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