N

N

FieSta: An approach for Fine-Grained Scope Definition,
Configuration and Derivation of Model-Driven Software
Product Lines
Hugo Arboleda

» To cite this version:

Hugo Arboleda. FieSta: An approach for Fine-Grained Scope Definition, Configuration and Deriva-
tion of Model-Driven Software Product Lines. Software Engineering [cs.SE]. Université de Nantes;
Universidad Los Andes, Bogota, 2009. English. NNT: . tel-00484779

HAL Id: tel-00484779
https://theses.hal.science/tel-00484779
Submitted on 19 May 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00484779
https://hal.archives-ouvertes.fr

FieSta: An approach for Fine-Grained Scope
Definition, Configuration and Derivation of
Model-Driven Software Product Lines

Universidad de Los Andes

Hugo Fernando Arboleda Jiménez

A dissertation submitted in partial fulfillment of the requirements for the
degree of Doctor in Engineering in the School of Engineering, Department
of Systems and Computing

Supervised by
Rubby Casallas
and
Jean-Claude Royer

Jury

Rubby Casallas - Director
Jean-Claude Royer - Director
Laurence Duchien - Reviewer

Juan Francisco Diaz - Reviewer

Dario Correal - Reviewer
Dirk Deridder - Reviewer

October 2009

UNIVERSITE DE NANTES
UFR SCIENCES ET TECHNIQUES

ECOLE DOCTORALE SCIENCES ET TECHNOLOGIES
DE L INFORMATION ET DES MATHEMATIQUES

Année 2009 N° attribué par la bibliotéque

FieSta: An approach for Fine-Grained

Scope Detinition, Configuration and

Derivation of Model-Driven Software
Product Lines

THESE DE DOCTORAT

Specialité: Informatique et Applications
Présentée
et soutenue publiquement par

Hugo Fernando Arboleda Jiménez
Le 28 Octobre 2009 a Bogotd, devant le jury ci-dessous

Président
Rapporteurs : Laurence Duchien Professeur, Universit de Lille 1
Juan Francisco Diaz Professeur, Universidad del Valle
Examinateurs : Rubby Casallas Professeur, Universidad de Los Andes
Jean-Claude Royer Professeur, Ecole des Mines de Nantes
Dario Correal Matre Assistant, Universidad de Los Andes
Dirk Deridder Postdoctoral Researcher, Vrije Universiteit Brussel

Directeures de thése : Rubby Casallas et Jean-Claude Royer

Laboratoire : UMR Laboratoire informatique de Nantes Atlantique (LINA)
Etablissement(s) d’accueil : Ecole des Mines de Nantes-INRIA, LINA
Addresse : La Chantrerie — 4, rue Alfred Kastler — 44307 Nantes cedex 3 — France

ED: 503-029

to Lina, my lovely wife

a Lina, mi encantadora esposa

Abstract

We present FieSta, an approach based on Model-Driven Development ideas
to create Software Product Lines (SPLs). In Model-Driven SPL approaches,
the derivation of a product starts from a domain application model. This
model is transformed through several stages reusing model transformation
rules until a product is obtained. Transformations rules are selected ac-
cording to variants included in configurations created by product designers.
Configurations include wariants from wariation points, which are relevant
characteristics representing the variability of a product line. FieSta (1) pro-
vides mechanisms to improve the expression of variability of Model-Driven
SPLs by allowing designers to create fine-grained configurations of products,
and (2) integrates a product derivation process which uses decision mod-
els and Aspect-Oriented Programming facilitating the reuse, adaptation and
composition of model transformation rules.

We introduce constraint models which make it possible for product line archi-
tects to capture the scope of product lines using the concepts of constraint,
cardinality property and structural dependency property. To configure prod-
ucts, we create domain models and binding models, which are sets of bindings
between model elements and variants and satisfy the constraint models.

We define a decision model as a set of aspects. An aspect maintains informa-
tion of when transformation rules that generate commonalities of products
must be intercepted (joinpoints) and what transformation rules (advices)
that generate variable structures must be executed instead. Our strategy
maintains uncoupled variants from model transformation rules. This solves
problems related to modularization, coupling, flexibility and maintainability
of transformations rules because they are completely separated from variants;
thus, they can evolve independently.

i

Resumen

Presentamos FieSta, un enfoque basado en el desarrollo dirigido por mode-
los para la creaciéon de lineas de producto de software. En los enfoques de
creacion de lineas de producto basados en el desarrollo dirigido por modelos,
la derivacion de un producto parte de un modelo de dominio. Este modelo es
transformado en varias etapas, hasta que se obtiene un producto, reusando
reglas de transformacion de modelos . Las reglas de transformacion son se-
leccionadas de acuerdo con variantes incluidos en configuraciones creadas
por diseadores de producto. Las configuraciones incluyen variantes de pun-
tos de wvariacion, los cuales son caracteristicas relevantes que representan la
variabilidad de una linea de producto. FieSta (1) proveé mecanismos para
mejorar la expresion de variabilidad de lineas de producto creadas usando el
paradigma de desarrollo dirigido por modelos, permitiendo a diseadores de
producto crear configuraciones finas, e (2) integra un proceso de derivacion
que usa modelos de decision y programacion orientada por aspectos facil-
itando el reuso, adaptacion y composicion de reglas de transformacion de
modelos.

Introducimos los modelos de restricciones, los cuales hacen posible que ar-
quitectos de lineas de producto capturen el alcance de lineas de producto
usando los conceptos de restriccion, propiedad de cardinalidad, y propiedad
de dependencia estructural. Para configurar productos, creamos modelos de
dominio y modelos de relaciones, los cuales son conjuntos de relaciones entre
elementos de modelos y variantes, y satisfacen los modelos de restricciones.

Definimos un modelo de decisién como un conjunto de aspectos. Un aspecto
mantiene informacién de qué y cuando reglas de transformacion que generan
caracteristicas comunes de products deben ser interceptadas (joinpoints) y
qué reglas de transformacin (advices) que generan estructuras variables deben

iii

ser ejecutadas en su lugar. Nuestra estrategia mantiene desacoplados los vari-
antes de las reglas de transformacion. Esto resuelve problemas relacionados
con modularizacion, acoplamiento, flexibilidad y mantenibilidad de reglas de
transformacion debido a que estas tltimas permanecen completamente sep-
aradas de los variantes; asi, ellas pueden evolucionar independientemente.

v

Résumé

Nous présentons FieSta, une approche basée sur les idées de l'ingénierie
dirigée par les modles pour créer des lignes de produits logiciels. Dans les
approches dirigée par les modles pour créer lignes de produits logiciels, la
dérivation d’un produit commence par un modle d’application du domaine.
Ce modle est transformé en plusieurs étapes en utilisant des rgles de trans-
formation de modles, jusqu’ ce qu’un produit final soit obtenu. Les rgles de
transformations sont choisies selon les variantes incluses dans les configura-
tions créés par le concepteur des produits. Les configurations comportent
des variantes associées des points de variation, qui sont des caractéristiques
représentant la variabilité d’un ligne de produit. FieSta (1) fournit des mé-
canismes pour améliorer 'expression de la variabilité des lignes de produits
dirigées par les modles en permettant des concepteurs de créer des configura-
tions grain fin des produits, et (2) intgre un processus de dérivation des pro-
duits qui emploie des modles de décision et la programmation dirigé par les
aspects pour faciliter la réutilisation, 'adaptation et la composition des rgles
de transformation des modles. Nous présentons les modles de contraintes qui
permettent aux architectes du produit de capturer le domaine des produits
en utilisant les concepts de contrainte, de propriété de cardinalité et de pro-
priété de dépendance structurale. Pour configurer les produits, nous créons
les modles de domaine et les modles de décision, qui sont des ensembles de
liens entre des éléments et des variantes et satisfont les modles de contraintes.
Nous définissons un modle de décision comme un ensemble d’aspects au sens
de la programmation par aspects. Un aspect mémorise 'information concer-
nant quand, o et comment intercepter une rgle de transformation produisant
la base commune du produit. Ces aspects détectent les points de jonctions
o de nouvelles rgles de transformation, gérant la variabilité, doivent tre exé-
cutées. Notre stratégie maintient la création des variantes découplé des rgles

de transformation pour les parties communes. Ceci résout des problmes liés
la modularisation, I'appariement, la flexibilité et la maintenance des rgles de
transformations. Parceque les rgles communes sont compltement séparées
des variantes, elles peuvent plus facilement évoluer indépendamment.

vi

Acknowledgement

The work presented in this thesis was funded in a large part by COLCIEN-
CIAS - “Departamento Administrativo de Ciencia Tecnologia e Innovacion”
and by The European Commission STREP Project AMPLE IST-033710.

Thank you to the members of the ASCOLA/OBASCO Group at the Ecole
des Mines de Nantes for giving me the opportunity to do my thesis with
them.

Thank you to the members of the Software Construction Group at the Uni-
versity of Los Andes. A very special thanks to Andrés Romero for his col-
laboration on tool support and case study development, in addition to the
enriching discussion and feedback he provided me.

I owe my gratitude to my Ph.D. committee members for taking the time to
read this dissertation in detail, and for providing me with valuable comments.
Apart from my advisors, Rubby and Jean-Claude, the committee members
are Prof. Dr. Laurence Duchien, Prof. Dr. Juan Francisco Diaz, Prof. Dr.
Dario Correal and Prof. Dr. Dirk Deridder.

Thank you to all my friends in France, especially Daniel (and his wife Maury),
Stephane, Fabricio, Joost, Ali, Angel, and Veronica, who ensured that our
stay at Nantes was wonderful. T would also like to thank my colleagues and
friends, Oscar Gonzales and Andrés Yie, who have made my job more pleas-
ant and were always available for interesting discussions. I'd like to thank
my closest friends, Yulder (now in Pittsburgh, US), Lucho, Jose, Mauricio
(now in Madrid, ES), Julian Valencia, Juian Cifuentes (now in Buenos Aires,
AR), Fernando, and Jonas, for keeping in touch with me after I moved to
Bogota and Nantes. Despite not seeing one another for a long time, they
have consistently been in touch with me to give me their support.

Vil

I would like to thank Nelson Perlaza and Aura Rosa de Perlaza for offering
their support to me, and for sharing their friendship with my parents.

I would like to thank my parents, Hugo and Elsa, who have always supported
my studies from the very beginning. 1 would also like to thank my sister,
Angela, and her husband, Luis Fernando, my brother, Gabriel, as well as my
aunt, Georgina, for all their help with our home and love they showed to me
and my brothers. I would not be who I am without them.

All my love and gratefulness goes to my wife, Lina, for giving me emotional
support during my years of studies. She was always unconditionally there
when I needed her the most.

My deepest thanks goes to my advisors. Rubby Casallas, since the time
of my Masters’ thesis, believed in me and provided me with guidance and
encouragement. Jean-Claude Royer (and his wife Zara) welcomed Lina and
me warmly during our stay in France and supported me with cooperative
supervision. Thank you, Jean-Claude and Zara, for making us feel at home.

viii

Agradecimientos

El trabajo presentado en esta tesis fue auspiciado en gran parte por COL-
CIENCIAS - Departamento Administrativo de Ciencia Tecnologia e Inno-
vacion y por The European Commission STREP Project AMPLE IST-033710.

Gracias a los miembros del grupo ASCOLA /OBASCO en la Ecole des Mines
de Nantes por darme la oportunidad de realizar esta tesis con ellos.

Gracias a los miembros del Grupo de Construccion de Software en la Univer-
sidad de Los Andes. Quiero agradecer especialmente a Andrés Romero por
su colaboracion en el desarrollo de las herramientas de soporte y los casos de
estudio que acompaan esta tesis, ademas de las enriquecedoras discusiones y
retroalimentacion.

Debo mi gratitud a los miembros del comité evaluador de mi tesis, por tomar
el tiempo para leer mi disertacion en detalle y por darme sus valiosos co-
mentarios. Aparte de mis asesores Rubby y Jean-Claude, los miembros del
comité son Prof. Dr. Laurence Duchien, Prof. Dr. Juan Francisco Diaz,
Prof. Dr. Dario Correal y Prof. Dr. Dirk Deridder.

Gracias a todos mis amigos en Francia, especialmente a Daniel y su esposa
Maury, Stephane, Fabricio, Joost, Ali, Angel y Veronica, quienes ayudaron a
que nuestra estadia en Nantes fuera muy agradable. Quisiera agradecer tam-
bién a mis colegas y amigos Oscar Gonzales y Andrés Yie, quienes hicieron
mi trabajo mas placentero y siempre estuvieron ahi para interesantes dis-
cusiones. Quisiera agradecer a mis amigos méas cercanos, Yulder (ahora en
Pittsburgh, US), Lucho, Jose, Mauricio (ahora en Madrid, Es), Julian Va-
lencia, Julian Cifuentes (ahora en Buenos Aires, Ar), Fernando y Jonas, por
mantenerse en contacto conmigo luego de que me movi a Bogota y a Nantes.
Incluso luego de no vernos por mucho tiempo, siempre han estado en contacto

1X

para darme su apoyo.

Un agradecimiento muy especial a Nelson Perlaza y Aura Rosa de Perlaza
por ofrecerme su apoyo, y por compartir su amistad con mis padres.

Quisiera agradecer a mis padres, Hugo y Elsa, quienes siempre han apoyado
mis estudios desde el principio. Tambien quisiera agradecer a mi hermana
Angela y su esposo Luis Fernando, mi hermano Gabriel, asi como a mi tia
Georgina por toda su ayuda con nuestro hogar y su amor para mis hermanos
y para mi. Yo no seria quien hoy soy si no hubiera contado siempre con ellos.

Todo mi amor y gratitud para mi esposa, Lina, por darme soporte emocional
durante mis anos de estudio. Ella siempre estuvo incondicionalmente ahi
cuando maés la necesité.

Mis més profundos agradecimientos a mis asesores. Rubby Casallas, quien
desde el tiempo de mi tesis de mestria creyé en mi, me brind6 su guia y me
alent6 para seguir adelante. Jean-Claude Royer (y su esposa Zara), quien
nos acogid calurosamente a Lina y a mi durante nuestra estadia en Francia,
quien compartié conmigo importantes consejos y siempre me apoyd con su
supervision. Gracias Jean-Claude y Zara por hacernos sentir en casa.

Contents

(1__Introductionl 24
LI Contextl« o v v 24
(1.2 Problem Statement| 0oL 26
(1.3 Research Objectives|. 28
(1.4 Approach - in a nutshelll, 29
(.o Contributions| 31
.6 Thesis Structurel. oo 33

2 Model-Driven Software Development| 38
2.1 Introduction|o 38
2.2 Models and Metamodels 39

[2.2.1 Domain Specific Modeling and Metamodels|. 39
[2.2.2 The 4-Level Metamodeling Framework| 40
2.2.3 The Nature of Models 42
2.3 Model Transformations| 43
[2.3.1 Scheduling of Iranstormation Rules| 45
2.3.2 Model Transformation Patternsl 46
2.3.3 Classification of Model Iransformationsl. 47
2.3.4 Vertical Model Transformations 47
2.3.5 Horizontal Model Transformations. 48
2.4 Modeling Frameworks| 49
[2.4.1 The Eclipse Modeling Framework| 49
[2.4.2 The Topcased toolkitf o1
[2.50 Model Transformation Languages| 52
[2.5.1 The openArchitectureWare Framework| 53
[2.5.2 The Xtend Language| 04
2.6 Summary| 57

xi

[3 Model-Driven Software Product Line Engineering] 60

3.1 Introduction|. o 60
[3.2 Software Product Line Engineeringl 61
[3.3 Variability Management in SPL Engineeringl 62
[3.4 The Domain Engineering Process| 63
[3.4.1 Expressing Varabilityl 63
[3.4.2 Core Assets Development| 67
[3.0 The Application Engineering Process| 69
[3.5.1 Product Configuration| 69
B.5.2 Product Derivation|, 70
B.6 Model-Driven Software Product [anes/. 71
3.6.1 The Czarnecki and Antkiewicz’s Approach [CAQ5] . . 72

3.6.2 The Wagelaar’s Approach [Wag05, Wag08b, [Wag08al| . 75

3.6.3 The Loughran et al.’s Approach [LSGF, SLEGO8]| . . . 79

3.6.4 The Voelter and Groher’s Approach [VGO7b] 82
B.65 Discussionl 84
[3.7 Summary| 89

[4 Binding Models, Constraint Models and Decision Models| 94

4.1 Introductionl 94
[4.2 CaseStudy| o 95
[4.2.1 Smart-Home System’s Domain|. 95
[4.2.2 Case Study Requirements| 96
[4.3 Variability Expression and Product Configuration| 99
4.3.1 Metamodelso 000000 100
432 Feature Models 105
(4.4 Binding Models and Constraint Models| 110
[4.4.1 Binding Models| 111
M42 Constraint Modeld 111
[4.4.3 The Cardinality Property] 114
[4.4.4 The Structural Dependency Property| 115

[4.4.5 T'he Constraint Metamodel and 'I'he Binding Metamodel|116
[4.4.6 Validating Binding Models against Constraint Models| . 118

[4.5 Core Assets Development and Product Derivation| 119
[4.5.1 Rule Transtormations in the Smart-Home systems’ SPL{120

[4.5.2 Creating and Using Decision Models| 124

[4.6 Deriving Products based on Constraint Models and Binding |

[Modelsl 129

xii

[from Decision Models and Constraint Models] 133
4. ldentified Limitationso 134
[4.8 Summary| 137

[Validation and Tool Support| 138
.l Introduction| oo 138
(5.2 Running MD-SPLs| 140

[>.2.1 The Smart-Home Systems” SPL{ 140
b.2.2 An MD-SPL of Stand Alone Applications to Manage |

[Data Collectionsl 145

(5.3 Variability Expression and Product Configuration| 150
[>.3.1 MD-SPL Project Creation 150
[6.3.2 Metamodels and Feature Models Creationl 151
[6.3.3 Constraint Models Creationl 153
[5.3.4 Domain Models and Binding Models Creation 157

[>.4 Core Assets Development and Product Derivation| 161
[0.4.1 Iransformation Rules Creation| 161
b.4.2 Decision Models Creation| 164
Ei3 . IE . M Model T [. l

[Workflowsl 168
(5.0 Summary| 168

6 Conclusion| 172
6.1 Introduction|.o 172
(6.2 Thesis Summary| 172
6.3 Results and Contributionsl 173

[6.3.1 Metamodeling and Feature Modeling| 174
[6.3.2 Multi-Staged Configuration ot Products|. 174
[6.3.3 Coarse- and Fine-Grained Variations and Configurations|l 75
[6.3.4 Core Assets Development and Decision Models|. 175
6.3.5 Product Derivation| 176
[6.3.6 Summary| 177

6.4 Future Workl. oo o 177
[6.4.1 Dealing with Current Limitations: Features Combina- |

[tory, Features Interaction and Bindings Interaction| . . 177

[6.4.2 Using Complementary Variability Models|. 179

xiil

[6.4.3 Integrating Architectural Description Languages| 179

[6.4.4 Incorporating Aspect Oriented Modeling] 180
[6.4.5 Using Declarative Programming to Create Transforma- [
[tion Rulesf 180
[6.4.6 Formalizing the Approach| 181
[A_Model Transformation Rules| 193
[oAW Workflows From Decision Modelsl 193
| pressions From Constraint Models| 201

Xiv

List of Figures

(L1 Creation Process of an MD-5PI.] 27
.2 General Process) 30
.3 Structure of the Document) 33
2.1 Metamodel for Class Models) 40
2.2 Class Model Example.| 41
[2.3 'The Four-Layer Metadata Architecture.. 41
2.4 Low-Level Abstraction Class Modell. 43
[2.5 Class Model with Persistence’s Properties.| 44
2.6 Model Transformation Scenariolo 44
2.7 Example of a Model Transtormation Pattern.|. 46
2.8 Example of Vertical Transtormation.| 48
2.9 The Fcore Meta-Metamodell 50
[2.10 Ecore Class Model Example.| 51
211 EME Models” Editor) o oo oo oo 51
[2.12 'Topcased Model Editor Example.| 52
[3.1 The Processes of Domain and Application Engineering.| 63
[3.2 Feature Model Example.fo o000 65
13.3 The Czarnecki et al.’s Feature Metamodel [CHEO4]| 66
O 72

13.5 Example of a UML Class Diagram with Annotations [CAO5].| . 74
[3.6 Example of a Platform Instance for Describing Java Runtime |

Environments (WagO8b|.| 76
[3.7 Example of a Configuration Metamodel in the Wagelaar’s Ap- |
proach [WagO8bl.| 77

13.8 Example of a Template Model in the Wagelaar’s Approach [Wag08b|.| 78

XV

[3.9 Example of a Reterence Architecture in the Loughran et al.’s |

Approach [SLFGOS[.| 80

[4.1 Staged-lranstormations to Derive SPL Members.| 101
4.2 ‘T'he Domain Metamodello 102
4.3 Example of a Domain Model.| 102
4.4 The Facilities Metamodel] 103
[4.5 'The Components Metamodel.| 104
4.6 ‘I'he Architecture Metamodell 105
[4.7 Example of Configuration without Variability Models.|. 105
[4.8 Simplified Feature Metamodel.|. 106
[4.9 Smart-Homes” Facilities Feature Modell 107
4.10 Architecture Feature Modell 108
[4.11 Summary of the Smart-Home Systems’ Configuration Process.| 109
[4.12 Example of Configuration with Variability Models.| 109
[4.13 Binding Model Example.| 112
[4.14 Constraint Model Example|00 0. 113
4.15 Constraint Metamodelo 117
[4.16 Binding Metamodel| 118
[4.17 Example of a Smart-Home Systems” Components Model.| . . . 122
[4.18 Example of a Smart-Home System.| 125
[4.19 Example of a Decision Model to Create Smart-Home Systems.| 127
[4.20 Decision Model including External Composition.|. 128
421 Decision Metamodell 129
[4.22 Example of a Decision Model to create Smart-Home Systems |

Having into Account Binding Models.| 132

[4.23 Decision Metamodel Having into Account Binding Models.| . . 133

[>.1 Overview of Our Implementation Strategy to Create MD-SPLs.[140

(5.2 Examples of Buildings Created by Building Architects.| 141
[>.3 Stages to Configure and Derive Products.|. 142
[b.4 Example One of the GUI of a Fine-Grained Configured Smart- |

Home System.|.o 145
(5.5 Example Two of the GUI of a Fine-Grained Configured Smart- |

Home System.|. o000 146
[>.6 Graphical User Interface of a Collection Manager System.|. . . 147
[b.7 Problem Space Metamodel and Problem Space Model.| 148

XVl

(5.8 Feature Model for The Product Line of Stand-Alone Applica- |

[tions to Manage Data Collections.| 148
[>.9 Graphical User Interface of a Fine-Grained Configured Collec- [
| tion Manager System.| L. 149
[5.10 Screenshot of the Project Creator Plug-In.| 150
[5.11 Feature Models for the Smart-Home systems’ SPL.| 152
[5.12 Eclipse View ot The Constraint Models Creator.| 153
(.13 Example of a Domain Model Created with our Smart-Homes’ [
[Domain Models Creator 158
[5.14 Eclipse View of The Constraint Models Creator.| 159

[5.15 View of the Main Room of the Configured Smart-Home System.|161
[0.16 View of the Living Room of the Configured Smart-Home Sys- |

I =7 R 162
[>.17 Components’ Model Derived trom a Domain Model.|. 164
.18 Folders” Structure for Iransformation Rules Files) 165
[5.19 Graphical User Intertace of our Decision Models Editor.|. . . . 166
[5.20 Decision Model Including an Aspect to Derive Doors with Fin- |

[gerprint as Lock Door Control Mechanism.| 167
[0.21 Source Code of a Generated Smart-Home system.| 169

XVii

XViil

List of Tables

[3.1 Example of a Textual Decision Model| 68
[3.2 Related Work’s Comparison lTablel. 90

[4.1 Examples of Conditions on Feature Configurations which Im- [
| ply to Adapt a Base-Line (Transformation Rules’) Ordering| . 126
[4.2 Examples of Fine-Grained Conditions on Feature Configura- |
| tions which Imply to Adapt a Base-Line (Transformation Rules’) |

| Orderingl e 131
[b.1 Example of a Fine-Grained Configuration for a Smart-Home |
| System including Smart-Homes” Facilities|. 143
[b.2 Example of a Coarse-Grained Configuration for a Smart-Home |
| System including Smart-Homes” Facilities|. 143
[b.3 Example of a Fine-Grained Configuration for a Smart-Home |
| System including Software Components’ Variants| 144
[b.4 Example of a Coarse-Grained Configuration for a Smart-Home |
[System including Sottware Components’ Variants| 144
55 C L el M Tl and he Facln l
[Feature Modello oo 156
[5.6 Constraints Between the Components” Metamodel and the Ar- |
[chitecture Feature Maodell 157
(5.7 Bindings Between the Domain Model trom Figure |5.13] and |
[OQur Facilities Feature Modell 160
[>.8 Bindings Between the Components” Model From Figure [5.17] |
[and Our Architecture Feature Model| 163

[6.1 Summary of the Discussion Regarding our Contribution to the [
[MD-5PL Engineering Domain| 178

Xix

XX

List of Abbreviations

AOM
AOP
API
ATL
DSM
DSML
EMF
FODA
GUI
MDD
MD-SPL
MOF
OCL
OMG
0AW
QVT
SEI
SPL

Aspect Oriented Modeling

Aspect Oriented Programming
Application Programming Interface
ATLAS Transformation Language.
Domain Specific Modeling

Domain Specific Modeling Language
Eclipse Modeling Framework
Feature-Oriented Domain Analysis
Graphical User Interface

Model Driven Development

Model Driven Software Product Line
Meta Object Facility

Object Constraint Language

Object Management Group
openArchitectureWare

Query/View /Transformation Language
Software Engineering Institute

Software Product Line

XX1

UML Unified Modeling Language
OWL Web Ontology Language
XMI XML Metadata Interchange
XML Extensible Markup Language

xx1i

Part I. Introduction

22

23

Chapter 1

Introduction

1.1 Context

Software engineering aims at speeding up software development and main-
tenance processes, decreasing costs, and improving productivity and qual-
ity. Addressing those objectives, Software Product Line (SPL) Engineering
searches to develop software products using already developed artifacts well
tested and improved [CNNOI) Bos00]. Thus, products should be rapidly de-
veloped, and their quality should be as good as the quality of the artifacts
used for their construction. A Software Product Line is defined as a set
of similar products, in the context of one specific application domain, cre-
ated from reusable artifacts [CEQ0]. In SPL Engineering, product designers
configure and derive products by reusing the available artifacts created by
product line architects.

The description of the set of products which are part of an SPL is called
the scope of the product line [Cle02]. To capture and express the scope of
SPLs, product line architects first determine the commonalities, i.e. the char-
acteristics all products in a product line share, and then the ways in which
they can vary (variability). Variability models include wvariation points and
variants. Variation points are relevant characteristics that can have different
values or variants according to the variability of a product line [PBvdLO05].

Many approaches to create SPLs have emerged based on Model-Driven Devel-

24

opment (MDD), e.g. [VGOTh, [Wag05]. These are called MDD-based SPL ap-
proaches or MD-SPL approaches. MDD conceives the whole software devel-
opment cycle as a process of creation, iterative refinement and integration of
models. An MD-SPL is a set of products developed from domain application
models, and derived from a set of reusable model transformation rules. For
many in the domain (e.g. [VGO7D]), including us [ARCR09, [ACR09], these
model transformations may require several stages. At each stage, domain
application models are automatically transformed to include more imple-
mentation details. It means, models including only problem space concerns
are incrementally transformed to include the solution space, i.e. concerns of
software design and /or technological platforms. At the end of a staged model
transformation process, models including all the implementation details are
transformed into source code of software systems.

There are two major processes related to our work. On the one hand, there
is the process of capturing and expressing variability in MD-SPLs, which im-
pacts consequently the process of configuring product line members. On the
other hand, there is the process of deriving products reusing and composing
model transformations based on product configurations.

Most of the current MD-SPL approaches [VGOT7h, [Wag05, [LSGF| [SLEGO0S|
create separately domain application metamodels and variability models to
capture and express variability. For configuring a particular product, prod-
uct designers create configurations that consist of (1) domain application
models and (2) instances of variability models. An instance of a variability
model includes a selection of variants from the variability model. MD-SPL
approaches using multi-staged model transformations also easy the configu-
ration of products before each model transformation stage starts by creating
specific instances of variability models. For example, product designers can
select software architectural details before executing model transformations
in charge of adding architectural information. Therefore, the staged trans-
formation of a domain application model may derive products with different
software architecture or products to run on different technological platforms.

During the product derivation process, the instances of variability models
are used to decide what transformation rules must be applied. Thus, from
different instances of variability models, different products can be derived
from a same domain application model.

Figure [L.1] summarizes the process of creating an MD-SPL’s example. Each

25

product line member manages its data by means of a relational database
schema. In this example, product line architects have chosen to use the
UML Class Metamodel to capture and express the variability related to
problem space concerns. Thus, product designers are able to start the
configuration process of products by creating diverse class models. To
capture variability in the context of relational database schemas, product
line architects create a variability model which includes one variation point,
Primary Key Structure, which has two alternative variants, With Primary
Key and Without Primary Key. Additionally, the architects relate one dif-
ferent model transformation rule to each variant. The Rule One is related
to the variant With Primary Key and the Rule Two is related to the variant
Without Primary Key. Product designers complete the configuration pro-
cess of products by creating instances of the variability model. If the variant
With Primary Key is selected in an instance of the variability model, using
the Rule One, all the class elements in a Source Class Model are trans-
formed into table elements with one primary key. If the variant Without
Primary Key is selected in other instance of the variability model, using the
Rule Two, all the class elements in a Source Class Model are transformed
into table elements without a primary key.

1.2 Problem Statement

P1. MD-SPL approaches limit the expression of variations between
product line members only to coarse-grained ones.

Most of the current MD-SPL approaches capture and express the possible
variations between product line members by creating separate metamodels
and variability models. When variants are associated to metaconcepts to
denote possible variations, we call it coarse-grained variations. This is be-
cause during models transformation processes the association of a selected
variant to a metaconcept will affect all the model elements that conform
to such a metaconcept. For example (see Figure , when we associate
the variant With Primary Key to the metaconcept Class we are denoting
a coarse-grained variation. This is because during the model transforma-
tion process of class models into table models all the Table elements will be
generated with a primary key.

26

Primary Key
Structure
ith Primary ithout Primary
Key Ke
Y N

2 J i
Class | {Transformation, {Transformation}| |Entity-Relationship
Metamodel 'l Rule One i | Rule Two ‘ Metamodel
I .
|

Product Line

Architect __Model Transformation Rules
conforms to Prértrrlﬁ?t/uiey conforms to
ith Primary ithout Primary
Keyy Ke
Cl 3 lationsh
ass Entity-Relationship)
Product Designer Model »_ i — > Model
4
G2
™

Source Code |

Figure 1.1: Creation Process of an MD-SPL.

When wvariants are associated to model elements instead of metaconcepts
to denote possible variations, we call it fine-grained variations. MD-SPL
approaches lack of mechanisms that allow product line architects and prod-
uct designers to capture fine-grained variations to express, for instance, that
products can vary in the particular tables that have a primary key. For exam-
ple, a fine-grained variation must allow a product designer to indicate that
the feature With Primary Key affects individually a class Student, while
the feature Without Primary Key affects individually a class Professor.
It is also required a mechanism to restrict the valid fine-grained variations.
For example to indicate that the features With Primary Key and Without
Primary Key could affect Class elements individually, but it is not valid that
they affect Attribute elements from class models.

These are all problems in application domains where (1) model elements must
be configured individually and (2) products must be configured in multiple
stages, sometimes by designers with different domain knowledge.

P2. The mechanisms used by MD-SPL approaches to derive prod-

27

ucts make difficult the maintenance, reuse and evolution of reusable
core assets of MD-SPLs.

During the process of deriving products, model transformation rules must
be composed in order to derive configured products. The composition is
done based on each configuration. Most of the existing MD-SPL approaches
maintain the information of relationships between variants and their related
transformation rules coupled inside the source code of the transformation
rules. This makes difficult to maintain and reuse transformation rules and/or
variability models.

Additionally, the abstraction level at which current MD-SPL approaches
can (fully) adapt the required transformation rule’s composition is too low
(e.g. using Ant scripts). High-level mechanisms to adapt the execution
scheduling of model transformations is then required.

Finally, MD-SPL approaches only provide mechanism to create coarse-
grained configurations and derive products based on them. It lacks some
mechanism to derive products based on fine-grained configurations.

1.3 Research Objectives

RO1. To provide Model-Based mechanisms for extending the
power of expression of variability and to extend the scope of MD-
SPLs.

It is our first objective to extend the power of expression of variability in
MD-SPL approaches in such a way that new and more detailed products can
be configured. We plan to achieve this objective in two stages:

e Introducing a mechanism that allows product line architects to capture
and express the possible fine-grained variations between members of a
product line.

e Developing a mechanism that allows product designers to create fine-
grained configurations which represent wvalid products. We define a
valid product as a runnable system that accomplish the requirements
that product designer specify by means of configurations.

28

RO2. To provide a Model-Based mechanism for deriving prod-
ucts that facilitates the maintenance, reuse and evolution of model
transformations and variability models in MD-SPL approaches.

We plan to achieve this objective in two stages:

e Developing a strategy to capture separately (1) the model transfor-
mation rules used to derive product line members, (2) the variants
included in variability models, and (3) the relationships between model
transformations and variants.

e Developing a mechanism to compose model transformation rules and
adapt their execution ordering according to configurations. This must

be a high-level mechanism that facilitates maintenance and evolution
of MD-SPLs’ core assets.

RO3. To create new tool support for deriving MD-SPLs

Our aim is to create Model-Based tool support which implements facilities
to (1) capture fine-grained variations between members of product lines, (2)
configure new and more detailed products, and (3) derive fine-grained con-
figured products.

1.4 Approach - in a nutshell

We propose FieSta, an approach to create SPLs based on MDD. FieSta (1)
provides mechanisms to extend the power of expression of variability in MD-
SPLs by using coordinately metamodeling and feature modeling, and (2) in-
tegrates a product derivation process which uses decision models and Aspect-
Oriented Programming facilitating the reuse, adaptation and composition of
model transformation rules. Figure presents an activity diagram summa-
rizing the processes involved in FieSta.

During the domain engineering process, product line architects create domain
application metamodels, feature models and constraint models to capture the
variability and commonalities of MD-SPLs.

Metamodels define the common and variable structure of sets of models and
serve as a vocabulary that is familiar to the practitioners of a specific ap-

29

Transformation
Rules Creation

Metamodels
Creation

Constraint
Models
Creation

Decision Model
Creation

Feature Models
Creation

Domain Models
Creation

Binding Models
Creation

C

Binding Model
Validation

Model
Transformation
Rules Execution

Product Line
Member
(Java code)

Figure 1.2: General Process.

Application Engineering | Domain Engineering

plication domain. Feature models, which are probably the most well-known
and accepted notation for specifying variability of a product line, represent
variation points and variants allowing to configure products only by selecting
features.

We introduce constraint models which make it possible for product line archi-
tects to capture and express the valid fine-grained variations between prod-
uct line members using the concepts of constraint, cardinality property and
structural dependency property. A constraint model is a set of constraints.
A constraint C' = [M, F, A, D] is a tuple composed of a metaconcept M, a
feature F', and two properties A and D. A constraint C' expresses the fact
that during the product configuration process, model elements that conform
to the metaconcept M can be bound to the feature F' to create product
fine-grained configurations.

During the domain engineering process, product line architects create model
transformations which consist of sets of transformation rules. Each trans-

30

formation rule is responsible for producing a part of a final product. Model
transformation rules implement algorithms to transform domain application
models into refined models (or source code) including concerns from a differ-
ent abstraction level. Two groups of transformation rules are created: trans-
formation rules to generate commonalities of products, and transformation
rules to generate variability of products.

Product line architects also create decision models. Decision models are
the base of our mechanism to derive products including variability. They
capture the execution ordering of transformation rules to be performed by the
model transformation engine to derive configured products. We use Aspect-
Oriented Programming (AOP) to build the scheduling of the transformations
rules, i.e. the order in which transformation rules are going to process model
elements to accomplish the desired derivation. Thus, we define a decision
model as a set of aspects. An aspect maintains information of what and
when transformation rules that generate commonalities of products must
be intercepted (joinpoints) during the product derivation process which is
driven by a product configuration, and what transformation rules (advices)
that generate variable structures must be executed instead.

To configure a product during the application engineering process, product
designers create (1) domain application models that conform to domain ap-
plication metamodels, and (2) binding models, which are sets of bindings
between model elements and features. After a binding model is created, we
validate this against a set of OCL-Type sentences derived from its respective
constraint model.

To derive a complete product according to a binding model, we dynamically
adapt the parameters of model transformation executions. We achieve it
using model transformation rules which are selected from the binding model
and the pre-created decision models.

1.5 Contributions

C1. A Model-Based mechanism that allows extending the power of
expression of variability in MD-SPLs and consequently extending
the scope of products that can be fine-grained configured.

31

We have created a mechanism that allows product line architects to capture
the possible fine-grained variations between members of MD-SPLs by cre-
ating constraint models. Constraint models facilitate to capture constraints
that product configurations must satisfy. Our mechanism includes facilities
to generate OCL-type expressions from constraint models, and then to val-
idate product configurations against the OCL-type expressions. This work
has been presented in [ACR09].

Regarding product configuration, We have created a mechanism that in-
cludes a configuration process which allows product designers to create
fine-grained configurations of products by means of binding models. We
present how binding models facilitate staged-configuration of products by
binding, in different stages, model elements from domain application mod-
els to variants from variability models. We first introduce our mecha-
nism for creating fine-grained configurations in |[GPAT07|, then we used it
in [ACR09, [ACRO7bL IAGGa™08, [ACR07al.

C2. A mechanism to derive fine-grained configured products that

facilitates the maintenance, reuse and evolution of core assets from
MD-SPLs.

We have created a mechanism that allows deriving product by adapting

model transformation rules according to binding models and decision models.
We introduced this work in [ACRO0S8, [ARCR09], and we used it in [ACR09].

C3. Tool support.

We have developed a toolkit, named FieSta Toolkit. This toolkit assists:
(1) product line architects during the domain engineering process to create
feature models, constraint models and decision model; and, (2) product de-
signers during the application engineering process to create binding models
and validate them against constraint models.

In addition, we have added components to the openArchitectureWare frame-
work (0AW) [BBMO03] for allowing product derivation based on binding mod-
els. Our 0AW components are described in [ACROS].

The FieSta Toolkit and the o0oAW components are available at
http://qualdev.uniandes.edu.co/wikiMain/doku.php?id=projects:
md-slp_engineering:toolkit.

32

http://qualdev.uniandes.edu.co/wikiMain/doku.php?id=projects:md-slp_engineering:toolkit
http://qualdev.uniandes.edu.co/wikiMain/doku.php?id=projects:md-slp_engineering:toolkit

C4. Two case studies of MD-SPLs.

We have created two case studies of SPLs that have been developed by us-
ing our mechanisms and tool support. One case study refers to a prod-
uct line of Smart-Home systems. The other one refers to a product line of
stand-alone applications to manage data collections. The case studies, in-
cluding detailed documentation of metamodels and source code are avail-
able at http://qualdev.uniandes.edu.co/wikiMain/doku.php?id=projects:
md-slp_engineering.

1.6 Thesis Structure

Figure presents the structure of this document, which is organized in for
parts: Introduction, State of The Art, Proposal and Conclusion. Following
this chapter, a background chapter on the Model-Driven Development and
a chapter including background and State-of-the-Art on Model-Driven Soft-
ware Product Line Engineering provide the base for our approach. The next
chapter discusses our approach itself. Following, the next chapter presents
the results we obtained creating products of MD-SPLs and the tools we de-
veloped for supporting the MD-SPL Engineering mechanisms we introduced.
The final chapters present the conclusion of this thesis, including a discussion
and considering future work. We will now give a detailed description of each
chapter.

(Part I. Introduction (Part I11. Proposal
Chapter 1. (Chapter 4.
Introduction Binding Models,
L) Constraint Models and
Decision Models)
(Part I1. State of The Art)
Chapter 5.
Chapter 2. P
Model Driven Development] L Vahdastf;pilrl? Tool |
Chapter 3. -
Model-Driven (Part IV. Conclusi
Software Product Line 2 - Oncchl:;;? 3
L Engincering ') L Conclusion J
.

Figure 1.3: Structure of the Document.

33

 http://qualdev.uniandes.edu.co/wikiMain/doku.php?id=projects:md-slp_engineering
 http://qualdev.uniandes.edu.co/wikiMain/doku.php?id=projects:md-slp_engineering

Chapter 2: Model-Driven Development. This chapter introduces the
main concepts about MDD: model, meta-model and model transformations.
Regarding models, we introduce some definitions and we explain the concept
of separation of concerns of a system in different models. We also discuss the
concept of level of abstraction of models, and we classify levels of abstrac-
tion as a particular case of separation of concerns. We explain the general
concepts of metamodeling: Domain Specific Modeling (DSM), the relation of
conformity and the four-layer metamodeling framework. We also introduce
the Eclipse Modeling Framework (EMF), which is a metamodeling and mod-
eling framework. Finally, we define the concept of model transformations and
we classify them into four major categories: model-to-model, model-to-text,
horizontal and vertical transformations. We introduce the Xpand and the
Xtend model transformation languages, which are languages included in the
openArchitectureWare framework.

Chapter 3: Model-Driven Software Product Line Engineering. This
chapter introduces the Software Product Line (SPL) Engineering. The major
stages in SPL development are discussed: (1) the domain engineering process
and (2) the application engineering process. Feature modeling is introduced
as a mechanism for expressing product line variability and configuring prod-
ucts. Decision models are included as artifacts used to relate reusable core
assets and variants from product lines, and support the product derivation
process based on product configurations. The development of SPL based
on MDD is the most interesting part for our work. This topic is discussed
in detail and different MDD approaches to create SPLs are presented and
compared.

Chapter 4: Binding Models, Constraint Models and Decision Mod-
els. The previous chapters presented the background for this chapter in
which FieSta, our approach to create SPLs based on MDD, is introduced.
This chapter starts introducing one case study which is used to illustrate
the different axes of our approach. Constraint models, which are reusable
artifacts we build to capture the scope of Model-Driven SPLs, are presented
and their use is illustrated in the context of our case study. Binding models,
which serves to configure products and are sets of bindings between model
elements and features that satisfy the constraint models, are explained and
also illustrated with our case study. We then show how we derive products
based on binding models and decision models, which are sets of aspects we

34

use to adapt model transformations required to derive configured products.
Finally, we present limitations of our approach for deriving products based
on decision models.

Chapter 5: Validation and Tool Support.

In this chapter we aim to validate FieSta, our MD-SPL approach, by pre-
senting examples of products that we are able to derive using our MD-SPL
mechanisms. We present results of configuring and deriving products of two
MD-SPLs. We also present the implementation strategy for FieSta. The
implementation strategy defines the general process for the implementation
of our MD-SPL engineering mechanisms for creating product lines. Our im-
plementation strategy includes (1) the required activities to create products,
and (2) the tools we created to support these activities. We present the
tool support for expressing variability and configuring products, and the tool
support for deriving configured products.

Chapter 6: Conclusion. This chapter concludes this thesis presenting (1)
a summary of our work, (2) a reflection taking into account the contributions
we do to the field of Model-Driven Software Product Line Engineering to rich
the research objectives we considered, and (3) future research directions.

35

Part II. State of The Art

36

37

Chapter 2

Model-Driven Software
Development

2.1 Introduction

The Model Driven Development (MDD) paradigm proposes a framework,
using models as first engineering artifacts, to i) define software development
methodologies, ii) develop systems at any level of abstraction, and iii) or-
ganize and automate testing and validation [FS04]. Thus, MDD conceives
the whole software development cycle as a process of creation, iterative re-
finement and integration of models [GSCK04, [SVC06|. During the software
lifecycle, stakeholders create models and use model transformations to derive
products.

This chapter presents the main concepts involved in the MDD paradigm:
models, metamodels and model transformations. Additionally, this chapter
introduces some representative modeling frameworks and model transforma-
tion languages. These MDD-frameworks and the transformation languages
provide specific functionalities to create and process models based on the
MDD principles.

38

2.2 Models and Metamodels

MDD uses models as first-class entities during the whole software develop-
ment process. There is no a standard definition of what a model is, even in
the software engineering field. There is, however, a common consensus be-
tween many definitions about one fundamental characteristic: a model is an
abstraction of a system and/or its environment. The MDA guide [OMGO03|
defines a model of a system as follows: "A model of a system is a description
or specification of that system and its environment for some certain purpose.”

2.2.1 Domain Specific Modeling and Metamodels

Domain-Specific Modeling (DSM) is a way of developing software systems
that involves the use of Domain-Specific Modeling Language (DSML) to rep-
resent different concerns of an application domain. Such languages tend to
support high-level abstractions which are closer to the problem domain than
to the implementation domain [MRV0S].

Defining a Domain-Specific Modeling Language (DSML) involves at least
three aspects: (1) a notation for the construction of models, which is defined
by a concrete syntax, (2) a description of the vocabulary (concepts, relation-
ships, and integrity constraints) of the domain concepts, which is defined by
an abstract syntax, and (3) the way to use the domain concepts to create
well-formed models, which is defined by the semantic domain. The semantic
domain is usually defined by means of some mathematical formalism in terms
of which the meaning of the models is explained [ESB04]. This can be also
defined using OCL expressions.

The standard way to define the abstract syntax of the language is by means
of metamodels. A metamodel describes the concepts of the language, the re-
lationships between them, and the structuring rules that constrain the model
elements and combinations in order to respect the domain rules [MRVO0S].

The relation between a model and its reference model is called confor-
mance [B05]. Thus, we normally say that a model conforms to its meta-
model, 7.e. that a model is written in the language defined by its metamodel.
The relation of conformance is neither injective (several model elements may

39

be associated to the same metaconcept) nor surjective (not all metaconcepts
need to be associated to a model element) |B0O5, [TB06).

Figure 2.1] presents a sample metamodel for UML class models. This meta-
model is expressed as a UML class diagram and includes the abstract
metaconcept of Classifier, which comprises the concrete metaconcepts
PrimitiveDataType and Class. A Package is composed by classes, and a
Class contains attributes.

PrimitiveDataType Classifier type Attribute
> .

-name : String -name : String 1 -name : String

lﬁ -attributes | *
Package
9 Class
-name : String | -elements 1
1 *

Figure 2.1: Metamodel for Class Models.

Figure presents a class model that conforms to the metamodel for class
models. The concrete syntax we used to create this model presents model
elements as stereotyped boxes. Each stereotype indicates the metaconcepts
to which the model element conforms to. Values for element’s properties are
displayed inside each box. Relationships between model elements are repre-
sented by standard class model’s arrows (directed-composition or directed-
association arrows). Thus, the class model has one package, School, con-
taining two classes, Student and Program. Student has two attributes,
studentName of type String and registeredProgram of type Program.
Program has one attribute, programName, which is of type String.

2.2.2 The 4-Level Metamodeling Framework

Since metamodels are also models, they need to be written in another lan-
guage, which is described by its meta-metamodel. This recursive defini-
tion normally ends at that level, since meta-metamodels conform to them-
selves [B05, [OMGOGH].

40

-attribute1

< <Attribute>>
name = programName

-class2 <<Class>> -type
name =Program
<<Package> > < <Attribute> >
name = School name =registeredProgram
-attribute1
0SS Class> > -type
name = Student < <Primitive DataType> >

name = String

< <Attribute> > —'ty-ﬁ

-attribute2 |name =studentName

Figure 2.2: Class Model Example.

The OMG has introduced the Meta Object Facility (MOF), a 4-
level meta-modeling framework that removes ambiguities from the term
meta [OMGO6b]. This framework is based on a four-layer metadata ar-
chitecture used to conceptualization of the relationships between data and
descriptions of them. These layers are System, Model, Metamodel and
Meta-metamodel. The System layer comprises the data to describe. The
Model layer contains metadata that describe the data in the information
layer. The Metamodel layer is composed of descriptions that define the struc-
ture and semantics of metadata. The Meta-metamodel layer is composed of
the descriptions of the structure and semantics of meta-metadata. Figure|2.3
presents the four-layer metadata architecture.

; Conforms To

M3 - MetaMetamodel
T Conforms To

M2 - Metamodel
T Conforms To

M1 - Model

T Represented By

MO - Information

Figure 2.3: The Four-Layer Metadata Architecture.

41

MOF is the meta-metamodel proposed by the OMG [OMGOG6b]|. As defined
in its specification v2.0, MOF provides among others the following four basic
meta-metaconcepts for creating metamodels:

e (Classes are types. Metaconcepts that conform to Class have identity,
state, and behavior. The state of a Class metaconcept is expressed by
its Attributes and Constants, and its behavior is governed by Opera-
tions and Exceptions.

e Associations describe binary relationships between Classes. They may
express composite or non-composite aggregation semantics. MOF as-
sociations have no object identity.

e Packages are nestable containers for modularizing and partitioning
metamodels into logical subunits. Generally, a non-nested Package
contains all of the elements of a metamodel.

e Constraints specify the well-formedness rules that govern valid domain
models. MOF provides several features for metamodel composition,
extension, and reuse, including Class inheritance, Package inheritance,
Class importation, and Package importation.

As part of our work we have used Ecore as meta-metamodel. Ecore is a
core subset of the MOF model. Ecore and the Eclipse Modeling Frame-
work (EMF) [BBMO3|, which is a framework that aims to follow the MOF
standard and use Ecore as meta-metamodel, are explained in detail in Section

2.4

2.2.3 The Nature of Models

An intrinsic characteristic of MDD is the separation of concerns of a soft-
ware system in different models. In MDD it is possible to create and process
simultaneously several models from the same system, regarding different per-
spectives or point of views of different stakeholders.

The models describing a system can be classified in terms of their level of
abstraction. The level of abstraction of a model refers to the amount of imple-
mentation details that the model has or, in other words, it indicates how close
to the problem space the model is. Closer to the problem space, higher the
level of abstraction; closer to the solution space, lower the level of abstraction.

42

For example, stakeholders may create high-level abstraction models which in-
clude only domain-specific application details or only concepts regarding the
problem. Other stakeholders may create, or interact, with models including
details of software design. These models can be considered as medium-level
abstraction models. Finally, stakeholders could process models including de-
tails of the technological platforms used to implement the system. These
models are considered low-level abstraction models. Thus, we conceive soft-
ware development as a chain of modifications (enhancements) where models
of a system are transformed through different levels of abstraction starting
at the problem space and finishing at the solution space

The model presented before in Figure is an example of a high-level ab-
straction model including only concepts regarding the problem space. Fig-
ure[2.4]presents a lower-level abstraction model. This model includes software
design concerns to represent EJBSession and EJBEntity elements. Thus,
this model is closer to the solution space, i.e. it includes more implementa-
tion details than the model presented in Figure 2.2

<< EJBSession>> < < EJBEntity > >
Student Student

Figure 2.4: Low-Level Abstraction Class Model.

The separation of concerns of a system in different models according to the
level of abstraction is only one of the criteria that stakeholders can use to
separate models. At each different level of abstraction of a system, different
stakeholders may have different points of view of the system. Figure [2.5
presents an example of a high-level class model including an extra property,
isPersistent, related to Class elements. This property allows stakeholders
marking the Class elements whose data require to be maintained in a data
base repository in the final software system.

2.3 Model Transformations

Model transformation appears to be one of the most useful operations on
models. Model transformations are software artifacts that implement algo-
rithms to transform models that conform to source metamodels into either
models that conform to target metamodels or source code.

43

-attribute1

< <Attribute>>

name =programName
-class2 <<Class>> -type
i ? name = Program ;
isPersistent =false
<<Package> > < <Attribute> >
name = School name =registeredProgram
-attribute1
-Class1 <<Class>> -type.
name = Student < <Primitive DataType> >
isPersistent = true name = String

?ﬁ < <Attribute> > -type

-attribute2 | name = studentName

Figure 2.5: Class Model with Persistence’s Properties.

Figure [2.6| presents the scenario of a model transformation with one source
model and one target model. Note that (1) each model conforms to its re-
spective metamodel and (2) the model transformation refers the source and
target metamodels. Metamodels are used in model transformation to nav-
igate models by using transformation rules. Transformation rules are con-
sidered as functions or procedures implementing some transformation step.
They are the smallest units of model transformations [CHO6]. Finally, a
transformation engine is in charge of executing the model transformation on
the source model to derive the target model.

navigates] navigates
'Model Transformation

Source Metamodel Target Metamodel

]
Conforms To Conforms To
executes

Source Model - Target Model
Model Transformation

reads Engine writes

Figure 2.6: Model Transformation Scenario.

44

2.3.1 Scheduling of Transformation Rules

As said before, transformation rules are the smallest units of model trans-
formations |[CHO6]. To transform source models into target models several
transformation rules are required as well as an execution ordering. Czarnecky
and Helsen name scheduling of transformation rules the execution ordering
of a set of transformation rules [CHO6|. Basically the scheduling of transfor-
mation rules is a call graph in the context of routines to transform models.
A call graph is a directed graph that represents calling relationships between
subroutines in a program. FEach node represents a procedure and each edge
(f,g) indicates that procedure f calls procedure g [Ryd79].

The manner to describe the scheduling of transformation rules depends of the
paradigms followed by the model transformation language chosen to write
the transformation rules. Current model transformation languages use well
known paradigms for programming languages. The most common paradigms
used actually in model transformation languages are the declarative and the
imperative paradigms [JK05].

In declarative programming the logic of a computation is expressed without
describing its control flow. Model transformation languages applying declar-
ative programming, e.g. ATL [JK05| and Tefkat [LRO7]|, attempt to minimize
or eliminate side effects by describing what the program should accomplish,
rather than describing how to go about accomplishing it. In imperative pro-
gramming computations are described in terms of statements that change
a program state. Imperative transformation rules define sequences of com-
mands to perform on source models, and require a detailed description of
the algorithm to be run and the scheduling of transformation rules. Exam-

ples of model transformation languages applying imperative programming
are Xtend and Xpand [OAWQ9b].

We selected an imperative model transformation language in the implemen-
tation of the approach we describe in Chapter 4. One of the reasons we had
for selecting an imperative model transformation language is that we can
have always control on the call graph of transformation rules; thus we can
manipulate it when required.

45

2.3.2 Model Transformation Patterns

Transformation rules are written in terms of the source and target metamod-
els. It means that models are transformed following transformation patterns
defined in terms of metaconcepts of the source and target metamodels. Fig-
ure presents an example to illustrate this characteristic of model trans-
formation rules. In the example, Class elements are transformed into Table
elements using a transformation rule that is written in terms of the meta-
concepts Class and Table.

<<Class>> <<Table>>
Student Student
<<Class>> Transformation <<Table>>
P - Rule = Program
rogram Class-to-Table g
<<Class>>| __ | <<Table>>
Course Course

Figure 2.7: Example of a Model Transformation Pattern.

This characteristic of transformation rules implies that several transfor-
mation rules must be written when model elements that conform to the
same metaconcept must be transformed following several (different) trans-
formation patterns. For example, we can write a transformation rule
ClassToPersistentClass to transform elements that conform to the Class
metaconcept from Figure [2.2]into elements that conform to the Class meta-
concept from Figure which has a boolean property isPersistent.
ClassToPersistentClass transforms any source Class element following a
transformation pattern which creates a target Class element with the prop-
erty isPersistent set to true. If we need to transform source Class elements
into target Class element with the property isPersistent set to false, we
must create another transformation rule.

In Section we present some mechanisms which allows to select the
transformation rules that must be executed according to particular require-
ments of stakeholders. For instance, if a stakeholder needs to create a tar-
get Class element with the property isPersistent set to true, the rule
ClassToPersistentClass is automatically selected. These mechanisms also

46

include strategies to modify the scheduling of transformation rules and thus
to derive several (different) products.

2.3.3 Classification of Model Transformations

It is possible to classify model transformations according to several criteria.
Given the particular interest of our work, we focus on two general classifica-
tions.

On the one hand, Czarnecky and Helsen have classified model transforma-
tions establishing as their major categories model-to-model and model-to-
text transformations [CHO3| [(CHO6]. The reason for this distinction is that
the techniques, languages and tools used for both categories are different.
Model-to-model transformations are used to transform models that con-
form to source metamodels into models that conform to target metamodels.
Model-to-text transformations are mostly utilized for transforming low-level
abstraction models into source code of a specific programming language, and
also for generating low-level artifacts including technology implementation
details such as deployment descriptors or configuration files.

On the other hand, France and Bieman categorize model transformations
along vertical and horizontal dimensions [FBO1]. Vertical transformations
occur when a source model is transformed into a target model at a different
level of abstraction. A horizontal transformation involves transforming a
source model into a target model that is at the same level of abstraction as
the source model. The next two subsections extend these explanations and
present some examples.

2.3.4 Vertical Model Transformations

Vertical transformations transform models between different abstraction lev-
els. This type of model transformation is classified in refinement and abstrac-
tion transformations [FBO1]|. Refinement transformations transform models
at a higher abstraction level into models at a lower abstraction level, whereas
abstraction transformations transform models at a lower abstraction level
into models at a higher abstraction level.

47

Figure presents an example of a refinement transformation. On the left,
the high-level abstraction model presented before in Figure[2.2]is transformed
into the lower-level abstraction model from Figure [2.4L In this example
Package elements are transformed into Model elements and Class elements
still remain as Class elements. One Controler element and one View el-
ement are created from each Package element and associated to the corre-
sponding Model element. Thus, the target model includes software design
concerns to represent a basic Model-View-Controller (MVC) architectural
design pattern.

Source Model | | Target Model
<<Class>> <<Class>>
name = Program name = Program
—class? << Controler >> class?2
name = School

< <Package> >

s| <<Model >>
name = School

name = School

[
| N
-class1 [<<View >> | | -class1
name ZSchool] | <<Class>>
<<Class>> || K || s <Class>>
name = Student [
T | ' ' l /’\

Figure 2.8: Example of Vertical Transformation.

2.3.5 Horizontal Model Transformations

Horizontal transformations relate or integrate models covering different as-
pects or domains within a system, but at the same level of abstraction.
Horizontal transformations are classified in migration, merge and identifica-
tion transformations [FB01]. Migration transformations transform one model
that conforms to a source metamodel into another model that conforms to a
target metamodel. The source and target metamodels can be the same meta-
model. Merge transformations combine individual models, seen as different
views, to form a complete model. Finally, identification transformations cre-
ate target models including subsets of elements from the source models; for
this, a selection filter is used.

48

As part of the approach we introduce in Section [} on the one hand we use
vertical (refinement) transformations to incrementally add implementation
details to high-level abstraction models until to derive software systems. On
the other hand, we use horizontal (migration and merge) transformations
for adding to models various concerns from the same abstraction level in
different model transformation stages.

2.4 Modeling Frameworks

The Eclipse Modeling Framework (EMF) [BBMO3| is the main academic
and industrial reference of modeling frameworks. Other modeling frame-
works extend the facilities that EMF provides as is the case of the Topcased
toolkit [Pttt07]. Through our work, we use the Topcased facility to create
model editors. This section introduces EMF and Topcased.

2.4.1 The Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) [BBM03] is a modeling framework
and code generation facility for building tools and other applications based
on models. EMF started as an implementation of the Meta Object Facil-
ity (MOF) specification and currently it uses Ecore as meta-metamodel,
which is a core subset of the MOF model.

EMEF offers editing tools for creating and manipulating metamodels that
conform to Ecore, and models that conform to such metamodels. This sup-
port includes reusable classes for building model editors and code generation
capabilities. EMF also offers runtime support for operations with models,
including change notification, persistence support with XML Metadata In-
terchange (XMI) serialization, and a reflective API for manipulating EMF
objects.

Figure 2.9 presents a subset of the Ecore meta-model. Fcore prefixes an "E"
before all its meta-classes. This helps for example to distinguish between
Ecore metaconcepts and UML metaconcepts. It also makes a distinction
between EAttribute and EReference. The difference is that the type of an
EAttribute is always a primitive type, such as String or integer, while the

49

type of an EReference is always an EClass. Associated EReferences are
related to each other using the eOpposite property.

-eSuperTypes
EClass -eAttributes EAttribute -eAttributeType EData
-name : String -name : String 1 -name : String
-eReferenceType |1
EReference
-eReferences
. -name : String o it
-containment : boolean -eLpposite
-low erBound : int 0..1
-upperBound : int

Figure 2.9: The Ecore Meta-Metamodel.

Ecore models, i.e. metamodels that conform to the Ecore meta-metamodel,
can be defined in at least three ways: creating (1) Java Interfaces, (2) UML-
type Class Diagrams and (3) XML Schemas. Once a model is created using
one of the three different ways, EMF can generate the others. Figure [2.10
presents the EMF editor to create Ecore models using UML-type Class Dia-
grams. On the left, a sample Ecore model that correspond to a part of the
class metamodel shown in Figure [2.1]is presented. On the right, the "palette"
of options to create Ecore models is displayed.

EMF also provides facilities to create models that conform to Ecore models,
the syntax used to do it is a general tree structure. A tree structure is a way
of representing the hierarchical nature of a model. Figure presents an
example where the EMF model editor is used to create a class model that
conforms to the class metamodel. The root of the tree is a package, School.
This package contains two classes, Student and Program, which in turn have
one attribute each one.

20

[d] dassMetamodel.ecore_diagram 53 ‘ =0
2 Palette [
& (]
'H Package dlascec ETTEE g EClass 4
= NAME |age = name ## EPackage
0..* fim EAnnotation B
B EDataType
& EEnum
o EAttribute]

Figure 2.10: Ecore Class Model Example.

Lo} emfClassModel.xmi &3

= ka' platform: fresource fdocuments femfClassModel, xmi B

= 4+ Package School
=4 Class Student
< Attribute studentMame
=4 Class Program
<+ Attribute programMame
[+ ?-1 platform: fresource/documents, dassMetamodel.ecore

Figure 2.11: EMF Models’ Editor.

2.4.2 The Topcased toolkit

The Toolkit In OPen source for Critical Applications and SystEms Develop-
ment (TOPCASED) |Pttt07] is an integrated model-oriented System/Soft-
ware engineering toolkit. It covers the stages from requirements analysis to
implementation, as well as some transversal activities such as version con-
trol, and requirements traceability. Topcased provides model editors, model
checkers and model transformations.

Topcased also provides a generative component for developing graphical ed-
itors based on Ecore models. Thus, the toolkit allows DSML developers
creating and associating concrete syntax to particular metamodels instead
of using the general model editor provided by EMF. Figure 2.12] presents an
example of a model editor to create class models. On the left, the figure
presents the customized palette of options to create models that conform
to the class metamodel from Figure [2.10] and, on the right a class model

o1

example.

classmodeleditor : null f DefaultMame

[+ Select
Student Programm

programMame
L

v 13 Marquee
studentMame
[

J Moke

[-= ClassDiagramElements <2
Class
Attribute

Figure 2.12: Topcased Model Editor Example.

2.5 Model Transformation Languages

OMG proposes MOF-QVT (Query/View /Transformation) [OMGO6a| as the
standard language for specifying model transformations. QV'T exists as an
OMG specification, however, even when there are some implementations for
the concrete syntax of QVT such as SmartQVT [Tel09], at the moment of
this writing there is not an official reference implementation.

There are several implemented MOF-based model-to-model transformation
languages such as ATL [JK06] and Kermeta [MEFJ05]. Similarly, the openAr-
chitectureWare (0AW) framework [OAWO09b| provides a textual language to
support the activities of model-to-model transformations, the Xtend lan-
guage, but also a language to support the activities of code generation, the
Xpand language.

Xtend and Xpand are built up on a common type system and expression
language. Therefore, they can operate on models, metamodels and meta-
metamodels by using the same syntax. We have implemented the approach
we present in Chapter [] using and extending oAW. Consequently, we have
selected Xtend and Xpand as our transformation languages. In the following
subsections we introduce oAW, the type system and the expression language
used by the Xtend and Xpand languages, and the Xtend languages it self.
Given that the Xpand language use the same type system, the expression

o2

language, and the general facilities that Xtend uses, in this section we do

not include a particular description of Xpand. For details please refer to the
0AW manual reference [OAW09al.

2.5.1 The openArchitectureWare Framework

openArchitectureWare (0AW) [OAWO9b] is an MDD framework integrated
into Eclipse. 0AW offers facilities to transform models-to-models and models-
to-text (source code). At the core of 0AW, there is a workflow engine allow-
ing the definition of model transformation workflows by sequencing diverse
workflow components. A workflow component specifies a step in a model
transformation chain.

0AW has some pre-built workflow components that facilitate the reading and
instantiation of models, checking them for constraint violations, and trans-
forming them into other models or source code. Transformation workflows
are built using XML files that describe the steps needed to be executed in a
generator run.

oAW provides support for Aspect Oriented Modeling (AOM) and Aspect
Oriented Programming (AOP) in the context of MDD. In Section [2.5.2 we will
illustrate how AOP is integrated into MDD. This characteristic is specially
useful to create SPLs using the MDD principles [Voe05, I[GSV08, VG0T7al
VGO7b], and it is one of the main reasons why we had selected 0AW as the
implementation framework for our approach.

The oAW Type System.

In the 0AW generator framework every object (e.g. metaconcepts, model el-
ements, values, etc) has a type. Every type has a simple name (e.g. String)
and an optional namespace used to distinguish between two types
with the same name. Thus, a fully qualified name looks like this:
my::fully::qualified: :typeName.

The type system provides access to built-in types such as String, Object,
Collection, List or Set. Each type contains properties and operations. For
instance, the String type has a library which is especially important for code
generation. The type system supports the >+’ operator for concatenation,

23

the usual java.lang.String operations and some special operations like
toFirstUpper () and toFirstLower().

The type system is also extensible allowing for accessing types corresponding
to models or metamodels created by MDD developers. For example, an MDD
developer can register in the type system the class metamodel from Figure[2.1
and then having access to the types Package, Class, and Attribute.

The oAW Expression Language.

The 0AW expression language is a syntactical mixture of Java and OCL. For
instance to access a model element property the following syntax is used:
myModelElement .property. Respectively, a boolean expression looks like
this: ! ("textExample".startsWith(’t’) && ! false).

The expression language provides several literals for built-in types, for ex-
ample, the boolean literals are true and false. Like OCL, the expres-
sion language also defines several special operations on collections such as
select, collect, reject, forAll and exist between others. For instance,
the forAll operation allows specifying a boolean expression, which must be
true for all objects in a collection in order for the forAll operation to return
true: collection.forAll(v | boolean-expression-with-v).

The expression language includes conditional expressions (if and switch ex-
pressions), expressions to instantiate new objects (create expressions) and
expressions to define local variables (let expressions) among others.

2.5.2 The Xtend Language

The Xtend language is a textual and functional transformation language. As
said before, Xtend is built up on the common type system and expression
language of 0AW. Listing presents an example of an Xtend file including
transformation rules to transform models that conform to the class meta-
model from Figure into models that conform to a metamodel of rela-
tional database schemas for a relational database management system. The
relational database schemas’ metamodel has two metaconcepts, Table and
Column. A Table contains columns and both Table and Column have a name

property.

24

O~ O Tk W N =

= = =
N = O O

import classMetamodel;
import relationalDatabaseMetamodel;

create Table class2ER (Class myClass):
this.setName (myClass.name)—>
myClass. attributes.createColumn (this)—>
this;

create Column createColumn (Attribute myAtt, Table myTable):
this.setName (myAtt.name)—>
myTable.add(this)
this;

Listing 2.1: Example of an Xtend Model Transformation.

In line 1 and line 2 of Listing 2.1 import statements are used to import the
name spaces of several types, in this case the types corresponding to meta-
concepts of the classMetamodel and the relationalDatabaseMetamodel.
In line 4 a transformation rule appears. This transformation rule receives
one Class element as parameter, myClass, and returns a Table element.
As soon as this transformation rule starts its execution, a Table element
is created. In line 5 the name property of myClass is assigned to the name
property of the created Table element. In line 9 the transformation rule
createColumn (Attribute myAtt, Table myTable) is called for each at-
tribute of myClass. This transformation rule receives an Attribute element
and a Table element, creates a Column element from the received attribute,
adds it to the collection of attributes of the received Table element, and
returns the created Column element.

In Xtend a function is evaluated only once for each unique combination of
parameters. Thus, one can call the same function with the same number
of arguments multiple times, and it will only be evaluated the first time.
This is an indispensable feature when working with graph transformations,
especially, if they contain circular references.

The Xtend language also provides the possibility to define libraries of inde-
pendent operations and non-invasive metamodel extensions based on either
Java methods or oAW expressions. Those libraries can be referenced from
all other textual languages that are based on the expressions framework such

95

<component class="oaw.xtend.XtendComponent">

1

2

3 <metaModel class="oaw.type.emf. EmfMetaModel">

4 <metaModelFile value="classMetamodel.ecore"/>
5 </metamodel>
6
7
8

<metaModel class="oaw.type.emf. EmfMetaModel">
<metaModelFile value="erMetamodel.ecore"/>
9 < /metaModel>
10
11 <invoke value—"my::path::class2ER (sourceModel)"/>
12 <outputSlot value="transformedErModel"/>
13 </component>

Listing 2.2: Example of a Workflow Configuration of the Xtend.

as Xpand.

Workflow Components.

To run the oAW model transformation engine, we have to define a workflow.
It controls which steps (loading models, checking and transforming them,
generating code, etc) the engine executes. To transform models-to-models
Xtend can be invoked within a workflow. An example of a workflow config-
uration of the Xtend component is presented in Listing 2.2] In line 4 and
line 8, the source and target metamodels are registered in the execution con-
text. Thus, the types from the metamodels are added to the set of types
available in the type system. In line 11 the root transformation rule, create
Table class2ER (Class myClass) is invoked and its result is left in the
outputSlot (line 9).

Aspect-Oriented Programming in Xtend.

In the 0AW context, aspect orientation is about weaving code into different
points inside the call graph of a program. Such points are called join points.
One specifies on which join points the contributed code should be executed
by specifying a pointcut, which is a set of join points. Whenever the program
execution reaches one of the join points described in the pointcut, a piece of
code associated with the pointcut (called advice) is executed.

26

1 around my:: path::createColumn (Attribute myAtt, Table myTable):
2 log ("Invoking" + ctx.name) —> ctx.proceed();

Listing 2.3: Example of an Xtend Advice.

In Xtend the join points are the invocations to transformation rules. Xtend
provides a mechanism to define and use around advices. Thus, it is possible to
reuse available transformation rules changing part of their behaviour without
modifying any code.

Listing presents an example of an advice which is weaved around ev-
ery invocation of the transformation rule createColumn(Attribute myAtt,
Table myTable). This advice is saved as any other Xtend file with extension
.ext, for instance myAdvice.ext. Note that the parameters of the transfor-
mation rule must be also specified in the point cut. Inside the advice (line 2)
we call the underlying transformation rule. This is done using the implicit
variable ctx that provides an operation proceed(), which invokes the un-
derlying transformation rule with the original parameters. Thus, the advice
adds an entry to the execution log indicating which underlying transforma-
tion rule is invoked, and then it invokes the transformation rule.

To weave the defined advice into the selected join points, one need to config-
ure the XtendComponent indicating the (fully qualified) name of the Xtend
file containing the advice. Listing presents an example of such a config-
uration. Note that in line 13, the workflow definition from Listing now
includes the name of the Xtend file containing the advice.

2.6 Summary

In this chapter we have introduced the Model Driven Development (MDD)
paradigm, which conceives the whole software development cycle as a pro-
cess of creation, iterative refinement and integration of models. We presented
Domain-Specific Modeling (DSM) as a way of developing software systems
that involves the use of Domain-Specific Modeling Language (DSML) to rep-
resent the different concerns of an application domain. In the context of
MDD and DSML we introduce the concept of metamodels, the relation of
conformance between models and metamodels, and the MOF 4-level Meta-

37

<component class="oaw.xtend.XtendComponent">

1

2

3 <metaModel class="oaw.type.emf. EmfMetaModel">

4 <metaModelFile value="classMetamodel.ecore"/>
5 </metamodel>
6
7
8

<metaModel class="oaw.type.emf. EmfMetaModel">
<metaModelFile value="erMetamodel.ecore"/>
9 < /metaModel>
10
11 <invoke value—"my::path::class2ER (sourceModel)"/>
12 <outputSlot value="transformedErModel"/>
13 <value="my:: Advices :: myAdvice" />
14
15 </component>

Listing 2.4: Example of a Workflow Configuration including Advices.

modeling framework. We have explained how MDD uses model transforma-
tions to achieve the transition of models between several levels of abstraction
by means of vertical transformations. We have also presented horizontal
transformations as the mechanism to transform models at the same level of
abstraction but integrating several concerns or point of views of an applica-
tion domain.

We introduced in particular the Eclipse Modeling Framework (EMF), the
Topcased toolkit and the openArchitectureWare (0AW) framework, since
the implementation strategy of our approach for creating MD-SPLs builds
on these technologies. Along with the presentation of 0AW, we introduced
Xtend and Xpand, which are the model transformation languages provided
by 0oAW. We also introduced the main characteristics of Xtend including their
type system and the facilities for including Aspect Oriented Programming in
MDD.

The next chapter presents the Software Product Line (SPL) Engineering,
and how MDD is used to support the creation of SPLs.

o8

29

Chapter 3

Model-Driven Software Product
Line Engineering

3.1 Introduction

Software systems are complex and their development is time-consuming and
error-prone. The strategy of reusing software artifacts has been seen as a
means to alleviate these and other problems associated with software devel-
opment. Reuse of software artifacts facilitates the composition of products
from a set of artifacts already developed and tested, instead of the construc-
tion of products from scratch.

Software Product Line Engineering is a paradigm that provides a means
to incorporate the reuse strategy as a central part of software develop-
ment [CNNOI, Bos00]. A Software Product Line (SPL) is a set of software
products that share many common properties to be built from a common set
of assets [CEQ0]. Approaches to create SPLs have emerged based on MDD,
e.g. [VGQOTb, Wag05]. These are called MDD-based SPL approaches or MD-
SPL approaches. MD-SPLs are developed from domain application mod-
els which conform to domain application metamodels using reusable model
transformation rules. Two international events have been recently created
focus on MD-SPL approaches [Mez09, [Goe09].

In this chapter we first introduce the basis of SPL Engineering, including the

60

main processes involved in the creation of SPLs: domain engineering process,
Section [3.4] and application engineering process, Section [3.5 Then, we intro-
duce the MD-SPL Engineering paradigm and we present a State-of-the-Art
of it, Section[3.6] At the end of Section [3.6] we present a discussion emphasiz-
ing on the advantages and drawbacks of representative MD-SPL approaches
with respect to two aspects. The first one is related to the mechanisms the
approaches use for expressing variability and configuring products. The sec-
ond one is related to the core assets development and the mechanisms for
deriving products. These two aspects deserve our attention given that they
are at the core of the research problems exposed in this thesis.

3.2 Software Product Line Engineering

The Software Engineering Institute (SEI) [Car09], which has been the most
important promoter of the paradigm, provides the following definition of what
an SPL is: "A software product line is a set of software-intensive systems
sharing a common, managed set of features that satisfy the specific needs of a
particular market segment or mission and that are developed from a common
set of core assets in a prescribed way" [CNNOI|. This definition uses the term
core asset that are reusable artifacts considered as building blocks in SPL
Engineering; these reusable artifacts can be models, common components,
documentation, requirements, test cases and so on.

In order to obtain benefits from the creation of reusable common assets, it
is important to be able to derive from the assets many products. In SPL
Engineering, the description of the set of products which are part of an SPL
is called the scope of the product line. To achieve a profitable SPL, its scope
must be neither very large nor very small. If the scope is very large, then
the core assets will loose their ability to satisfy the variability, economies of
product derivation will be lost, and the product line will fall down into the
traditional style of one-product-per-time. If the scope is very small, then the
core assets might not be built in a generic enough way, and the return on
investment will never be achieved [Cle02), [CNNOT].

To capture the scope of SPLs, product line architects determine the common-
alities, i.e. the characteristics that all products in a product line share, and
the ways in which they can vary (variability). The management of variability

61

is the most important activity in SPL development. Variability management
is a transversal activity performed during the whole product line development
cycle.

3.3 Variability Management in SPL Engineer-
ing

Variability management in SPL Engineering is the set of activities related
to the identification, expression, and binding of common and variable fea-
tures included in the scope of product lines. The management of variability
is of primary importance for product line development. The effectiveness
of a product line approach depends on how well it manages the variability
throughout the development life cycle, from early analysis to final derivation
of products [SVCO6]. The management of variability in SPLs is the most
general and important topic concerning our work and it is at the core of the
approach we present in Chapter

Different definitions related to variability management can be found in the
literature. Here we list two of them which refer variability and variability
management.

Variability 1s the ability of a software system or artifact to be changed, cus-
tomized or configured for use in a particular context [vGB02).

Variability management encompasses the activities of explicitly representing
variability in software artifacts throughout the lifecycle, managing dependen-
cies among different variability, and supporting the instantiations of the vari-

ability [SJ04].

Pohl et al. [PBvdL05| define variability management as the set of activities for
defining and exploiting variability throughout the SPL development lifecycle.
The concept covers the following issues: (1) supporting activities concerned
with variability and commonality analysis which includes identification and
documentation of variability, and (2) supporting activities concerned with
variability binding and variability realization which includes configuration of
product line members and derivation of these products.

62

Typically, (1) the variability and commonality analysis is performed during
the domain engineering process; (2) the variability binding and variability
realization is performed during the application engineering process [CEQQ,
PBvdL05, WL99, vdL.02|. Figure summarizes the main four activities
involved in the two SPL engineering processes. Next section explains these
activities.

Variability S Core assets
Expression Development

| |

Product S Product
Configuration Derivation

Application Engineering | Domain Engineering

Figure 3.1: The Processes of Domain and Application Engineering.

3.4 The Domain Engineering Process

Domain engineering is the process of SPL Engineering in which the com-
monality and the variability of the product line are defined [PBvdL05]. The
development of an SPL starts with the analysis and modeling of common
and variable features of the product line. First, (i) variability is identified,
classified and documented. Second, (ii) reusable core assets are built to fulfill
the identified and classified variations.

3.4.1 Expressing Variability

There are large number of methods for classifying and documenting vari-
ability in software product lines [CBAQ9]. Several approaches for classifying

63

and documenting variability center their attention on the use of variability
models [SD07, Bay06]. The main concepts regarding variability models are
variation point and variant. Variation points are relevant characteristics that
can have different values or variants according to the variability of a product
line.

At the present, there is no a standard way to represent variation point and
variants in variability models. However, one of the most used methods to
represent variation point and variants is by means of feature models. Feature
modeling deserves special attention for our work.

Feature Modeling.

Feature modeling is a method and notation for capturing commonalities and
variability in product lines [KCH™90, KKL 798, RBSP02, [CHE05, VGOTH].
Features describe the common and variable functionality of a system under
development. The feature modeling approach eases the construction of a
hierarchical decomposition of features into a tree structure which represents
variation points and variants. As said before, a variation point is a relevant
characteristic of a system, for example the operative system under which
a system can run. A variation point can have different values or variants
according to the variability of a product line, for instance, variants of the
operative system variation point can be Linux and MS-Windows.

Feature modeling was first introduced by Kang et al. as Feature-Oriented
Domain Analysis (FODA) [KCHT90]. FODA is described as a domain anal-
ysis method for identifying prominent and distinctive features of a set of
systems in a specific domain. In FODA the features are used to define a
specific domain in terms of their mandatory, optional, or alternative charac-
teristics. After Kang et al. other authors extended the concepts regarding
feature modeling. Among these extensions there are the concepts of feature
cardinality |[CEQQ|, groups and group cardinality [RBSP02|, and attributes
for features [CBUE0O2| between others. The purpose of these extensions is to
restrict the set of variants that can be selected from feature models to create
particular configurations.

One of the most cited works on feature modeling is the presented by Czarnecki
et al. [CHEO4], where the authors propose a cardinality-based notation for fea-
ture modeling including solitary, group and grouped features. This approach
integrates a number of existing extensions of previous approaches. Figure|3.2

64

presents an example to illustrate the concepts introduced by Czarnecki et al.
by using a feature model of an operating system security profile [CHEQ4].

<<Root Feature>>
Security Profile
|71..1]

<<Solitary>>
Password Policy

<<Group>> <<Group>>
Expiration Chars

/C\[]“]] [1..2}b\

<<Grouped>> | |<<Grouped>> | |<<Grouped>> | |<<Grouped>>
inDays (Int) Never Lower Case Upper Case

Figure 3.2: Feature Model Example.

The Password Policy of the Security Profile has associated a policy
to manage the password Expiration date. For the Password Policy a
solitary feature has been created. In this case, the solitary feature
has associated the cardinality [1..1], which means that one and only one
Password Policy can be defined for a particular system under development.
For the Expiration date a group feature is created. A group feature has
a set of grouped features. In this example the Expiration date has two
grouped features, inDays and Never. Thus, passwords can be set to expire
after a given number of days, or never expire. The number of days a pass-
word remains valid can be set in an integer attribute associated to the inDays
feature. The constraints on the number of policies for the Expiration date
are captured in the cardinality associated to the group feature. In this case
the Expiration date has the cardinality [1..1], which means that one and
only one policy for expiration date can be selected.

The feature model also takes into account the possible requirements on the
characters to be used in a password. The constraints on characters required in
a password are specified by a group feature, Chars, with cardinality [1..2].
This means that any actual password policy must specify between one and
two requirements on characters (Chars) in a password, Upper Case and/or
Lower Case.

Figure presents the Czarnecki et al.’s feature metamodel [CHEO04].

65

FeatureGroup expresses a choice over the set of GroupedFeatures in
the group and its groupCardinality defines the restriction on the num-
ber of choices. A GroupedFeature does not have cardinality and a
SolitaryFeature is a feature that is not grouped by any FeatureGroup.
The cardinality of a SolitaryFeature specifies the maximum number of
times this feature can appear in a final feature configuration. Thus for ex-
ample, if a SolitaryFeature has cardinality [1..2], this feature can appear
between one and two times in a feature configuration. The process of creat-
ing several features in feature configurations from one SolitaryFeature is
called cloning, and the features created from SolitaryFeature in a feature
configuration are called clones. Finally, features may have Attributes of
different type and references (FDReference) to other features. The values
for the attributes related to clones can be different for each clone.

FeatureGroup Attribute

) —| TypedValue
aroupCardiaality G 0 1_
’ 0.1 FAY

\\
) " . ’_UL‘
- - ot StringValue IntVal
ContainableByFG ContainableByF ‘ [F(JC,,Z:W | e

value value
VAN N W VAN
. . ‘

/ ™

« \ FeatureModel
//\\ N .
FDReference GroupedFeature SolitaryFeature M’mi'xi
: 1

featureCardinality

Figure 3.3: The Czarnecki et al.’s Feature Metamodel [CHEO04].

Staged Expression of Variability.

Currently in SPL Engineering there is a trend to separate in several variabil-
ity models different concerns involved in a product line. For example, it can
be desirable to create a variability model including software design’s concerns
separately from technological platform’s concerns. This separation of con-
cerns facilitates to product line architects focusing on particular concerns at
different times. Similarly, when products are configured, staged feature con-
figurations could be created by different groups of product designers focusing
on particular concerns.

66

To facilitate the separation of concerns, and then the staged configuration of
products, separated feature models can be created. Czarnecki et al. moti-
vate the concept of staged configuration and stepwise specialization of feature
models [CHEO05]. They propose to create separated feature models but main-
taining relationships between them. Thus, they avoid a breakdown between
the different concerns of individual feature models. For instance, they create
a feature model including software architectural concerns and another feature
model including technological platform concerns. They maintain relation-
ships between these feature models. For example, one relationship indicates
that only if the feature ObservablePattern of the architectural feature model
appears in a feature configuration, then the feature OSGi-PeriodicComponent
of the platform feature model will be available to be selected.

In Chapter [4| we present how we have introduced the concept of staged ex-
pression of variability and staged configuration of products in our MD-SPL
approach.

3.4.2 Core Assets Development

Core assets are reusable artifacts considered as building blocks in SPL Engi-
neering; these artifacts include reusable common models, components, docu-
mentation, requirements and test cases among others. Product line architects
create core assets according to the variants identified and documented during
the activity of variability expression. For instance, for the Expiration fea-
ture from Figure [3.2] a product line architect creates two (different) software
components, one for each grouped feature of the group, inDays and Never.
The first software component has services for checking that passwords are
changed each defined number of days, and for supporting the requirement
of changing a password. This software component is created for the inDays
feature. The second software component, created for the Never feature, only
has one service to inform that passwords cannot be changed.

In practice there is a significant gap between variability at a conceptual level
(variation points and variants) and variability at the implementation level
(concrete core assets). Decision models [ABM00, BFG00, FMP08, DGROS]
intend to close that gap.

A decision model is defined as a model that captures variability in a prod-

67

Table 3.1: Example of a Textual Decision Model

Decision Resolution Effect
What policy for Password will expire The PasswordExpire component is
Password expiration in a determinated deployed with the rest of the
Will be used? number of days common components.
Password will never The PasswordNeverExpire component
expire. is deployed with the rest of the

common components.

uct line in terms of open decisions and possible resolutions [BFGO0]. Each
decision is expressed in terms of a selected variation point and associated
to a set of possible resolutions, which in turn refer to variants of selected
variation points. A set of effects is associated to each possible resolution. An
effect indicates how a particular core asset is reused to create a product line
member.

Decision model instances, also called resolution models, are created at config-
uration time of products. In resolution models all decisions must be resolved.
As resolutions are related to variants and effects on particular core assets,
a resolution model defines a product line member including (1) a subset of
chosen variants, (2) the core assets required to derive the desired product,
and (3) the adaptation that must be performed on the core assets to obtain
a product line member.

Table presents a decision model example to create an SPL which includes
variants of the security profile from Figure This decision model includes
only one decision expressed in terms of the variation point Expiration date,
which has been created as a FeatureGroup. This decision is associated with
two possible resolutions, which in turn refer to variants from the Expiration
date variation point, inDays and Never. One effect is associated to each res-
olution. Each effect indicates what software components must be deployed
in case of selecting each particular resolution. Thus for instance, if a resolu-
tion model is created including the resolution "Passwords will expire in
a determinated number of days", then the PasswordExpire component
is deployed with the rest of the common components.

Even when decision models help in the process of creating SPLs, there are
still several remaining problems regarding the gap between variability at a

68

conceptual level and variability at the implementation level. These problems
have special importance for us when they are taken into the field of MD-SPL
approaches. We go deeply into these particular problems in Section

3.5 The Application Engineering Process

Pohl et al. define application engineering as "the process of SPL Engineering
in which product line members are built by reusing core assets and exploiting
the product line variability” [PBvdL05|. During this process, product design-
ers use the variability identified and the core assets created during domain
engineering to ensure the correct derivation of desired products.

The application engineering process is composed of activities for (i) config-
uring individual products inside the set of valid variation points (product
configuration), and (ii) creating product line members by using the available
core assets (product derivation).

3.5.1 Product Configuration

In SPL Engineering during the product configuration activity, product de-
signers are responsible for configuring particular product line members by
choosing sets of valid combinations of variants identified at the domain en-
gineering process.

When product designers select variants to appear in a particular product
configuration is called binding time of the variability |BGJT03, BFGT02,
PBvdLO05|. Some authors have identified the advantages of deciding very
late on the binding time, and thus making the binding time variable [vO02,
CHEOQ5, [AMS07]. The advantage of postponing the binding time is that de-
cisions, 4.e. design or technological decisions, may be open until very late in
the configuration and derivation processes. This adds flexibility to the prod-
uct line and decouples platform decisions from design decisions or functional
requirements.

Product configurators are artifacts defined to support the creation of prod-
uct configurations. The basic functionality of a configurator is to facili-
tate to product designers the creation of valid configurations from given

69

variability models. According to Asikainen et al., "a configurator must
make deductions based on the requirements the product designer has entered

so far, and prevents or discourages the designer from making incompatible
choices" [AMSOT].

Different configurators have been proposed to support configuration of prod-
ucts at different stages of the product configuration activity, e.g. [AMS07,
AC04], [Wag05, PMO06]. One example of a product configurator using feature
models is the FeaturePlugin [AC04]. The FeaturePlugin is a feature mod-
eling plug-in for Eclipse. The tool supports configuration based on feature
models that conform to the Czarnecki et al.’s feature metamodel from Fig-
ure [3.3] This configurator implements cardinality-based feature modeling,
which includes feature and group cardinalities, and feature attributes. In
Chapter [5| we present the product configurator we created to support our
MD-SPL approach.

3.5.2 Product Derivation

Product derivation is the activity related to the manual or automated con-
struction of product line members from the available assets. The requirement
specifications of products, which are captured in product configurations, are
the main input for the product derivation activity. Therefore, to derive
products, it is necessary to adapt and assemble core assets according to the
variants chosen from the variability models, and captured in product config-
urations.

As introduced in Section there is a significant gap between the concep-
tual representation of variation points and variants, and the concrete assets
that must be created to implement such variants. Decision models intend
to close the gap capturing variability in terms of open decisions and possible
resolutions.

Resolution models are created at configuration time of products to resolve all
the decisions in decision models. A resolution model defines a product line
member including (1) a subset of chosen variants, (2) the core assets required
to derive the desired product, and (3) the required adaptation and assembly
of such core assets. In practice, however, the actual adaptation and assembly
of core assets still remains as an open issue. Some of the questions still open

70

are: how to derive a product when variants are scattered through several core
assets? how to derive a product when variants have dependencies between
them and core assets were created without taking it into account?

Several authors have introduced approaches to derive products based on
product configurations and their particular decision models, e.g. [FSJ99,
AMS07, [ABMO00, MOO04]. Some approaches used to adapt and assemble
core assets are based on traditional mechanisms such as polymorphism, in-
heritance, interface definitions or directive’s compilation, e.g. [FSJ99]. Other
approaches use Aspect Oriented Programming (AOP) as their main mecha-
nism to adapt the call graph of a program [MOO04]. In Chapter |4 we present
how we deal with the problem of adapting and assembling core assets in the
field of MD-SPL approaches, and how we use proven mechanisms such as

AQOP.

3.6 Model-Driven Software Product Lines

MDD-based SPLs, or MD-SPLs for short, are product lines which are created
based on MDD principles (see Chapter [2)).

A product line member of an MD-SPL is created from a domain appli-
cation model which (1) conforms to a domain application metamodel and
(2) is transformed until to obtain the application by using model-to-model
and model-to-text transformations. There is no reference framework for
creating MD-SPLs. For many in the domain (e.g. [VGOT7DH]), including
us [ARCR09, [ACR09], these model transformations may require several
stages and may include horizontal and vertical transformations. At each
transformation stage, domain application models are automatically trans-
formed to include new concerns from a particular abstraction level or more
implementation details from lower abstraction levels.

Several approaches to create SPLs have emerged that are based on MDD. In
this section we discuss four of the most representative works presented in the
area. These approaches are: Czarnecki and Antkiewicz’s approach [CAQ5],
Wagelaar’s approach [Wag05h, Wag08b, [Wag08a], Loughran et al.’s ap-
proach |[LSGF| [SLEGO0S]|, and, Voelter and Groher’s approach [VGQOTb].

We have chosen to present each work following two aspects, see Figure 3.4

71

The first one, located at the problem space [CEQ0], is related to the mech-
anisms the approaches use for expressing variability and configuring prod-
ucts. The second one, located at the solution space |CEQQ], is related to the
core assets development and the mechanisms for deriving products. These
two aspects deserve our attention given that they are at the core of the re-
search problems exposed in this thesis, which we aim to resolve with our
proposal (Chapter [4)).

Aspetc One: Aspetc Two:
Problem Space : ! Solution Space

Expression Development

i
R

Product ; :; Product
Configuration b Derivation

Variability i :; Core assets

Application Engineering | Domain Engineering

Figure 3.4: .

At the end of this section, we present a discussion emphasizing on the ad-
vantages and drawbacks of the different mechanisms used by the presented
approaches. Therefore we will remark by comparison where our work presents
a contribution to the domain.

3.6.1 The Czarnecki and Antkiewicz’s Approach [CA05]

Problem Space: Expressing Variability and Configuring Products.

To express variability Czarnecki and Antkiewicz propose an approach where
variation points and variants are captured by means of feature models. They
extend the FODA approach by adding cardinality and attributes for features

72

between others, see Section [3.4.1] Products are configured by creating feature
configurations.

Solution Space: Core Assets Development and Products Deriva-
tion.

The main core assets built by product line architects to derive products in
Czarnecki and Antkiewicz’s approach are template models and model trans-
formations.

Template models are expressed using UML and represent all the possible el-
ements required to create product line members. For example, to represent
a family of UML 2.0 activity models, both the model template and the tem-
plate instances are expressed using the UML 2.0 activity modeling notation.
A template model is a superimposition of all the possible model elements
required to derive diverse products according to feature configurations.

Template models are annotated by product line architects using presence
conditions and meta-expressions. The annotations are defined in terms of
features from a feature model which capture the variability of the product
line under development. Presence conditions indicate whether an element
should be present in or removed from a template instance because of the
presence of a particular feature in feature configurations. Meta-expressions
indicate how to compute attributes of model elements, such as the name of
an element or the return type of an operation, based on values assigned to
feature attributes in feature configurations.

Product line architects also create model-to-model transformations to in-
stantiate automatically the template models and thus to derive configured
product line members. In these model-to-model transformations both the in-
put and output models conform to the UML 2.0 metamodel. Several model
transformations are created, each one is in charge of removing elements from
the template model and/or compute attributes of model elements according
to the annotations in the template model. Thus, based on a feature con-
figuration, a template model can be instantiated automatically by using the
model transformations.

Decision models are not explicitly created to support the product deriva-
tion process. The resolution of variability is performed by product designers
creating feature configurations. However, the effects on UML models are

73

specified in the model annotations. This produces a high coupling between
the core assets and the required effects to create products.

Thus, products are derived from UML models executing the created model
transformations. The execution order of the set of model transformations
is pre-defined by product line architects. To assure the consistency of the
created template instances after the model transformations are executed,
the Czarnecki and Antkiewicz’s approach proposes two additional processing
steps: patch application and simplification. A patch is a transformation that
automatically fixes a problem which may result from removing elements. It
is defined for situations in which there exists a unique and intuitive solution
to a problem created by element removal. Simplification involves removing
elements that have become redundant after removing other elements.

Figure [CAOQ5] presents an example of a UML class diagram with anno-
tations. In this example some of the annotations indicate the following: the
class Category is present in a template instance if the feature Categories
appears in a feature configuration, a containment hierarchy for Category is
present if the feature MultiLevel is selected, the class Asset is present in
a template instance if the feature AssociatedAsset is chosen, the feature
PhysicalGoods implies the attribute weight in the class Product, and so
on.

Presence conditions:

true I MultiLevel I

AssociatedAssets [l ' MultipleClassification 3

PhysicalGoods 2 Categories & !MultipleClassification — NE_—_15

Categories BN ° MultipleClassification | |Categories -
Product :

1

ir= subCategories
Asset | —associatedAssets -String name Category -

1 -float price —products

—product

—categories

Catalog

4
—produq{ts _—‘ -

Figure 3.5: Example of a UML Class Diagram with Annotations [CA05].

74

3.6.2 The Wagelaar’s Approach [Wag05, [Wag08b,
Wag08a]

Problem Space: Expressing Variability and Configuring Products.

The Wagelaar’s approach focuses on variability related to technological plat-
forms. The author proposes an explicit platform model, which serves as a
vocabulary for describing technological platforms. The platform model is
expressed using the Web Ontology Language (OWL) [Mic04].

Ontologies are commonly used to represent domain knowledge and to pro-
vide a controlled vocabulary in specific domains. OWL supports the nec-
essary concepts of a general ontology language such as classes, properties,
individuals and relationships between these individuals. In OWL domain
concepts are generally represented as simple named classes, which can have
subclasses. Class members or instances are called individuals. Properties
allow us to assert general facts about members of classes and specific facts
about individuals. A property is a binary relationship. Two types of prop-
erties are distinguished, datatype and object properties. Datatype properties
describe relations between instances of classes and primitive data types. Ob-
ject properties describe relations between instances of two classes.

To capture variation points and variants regarding particular technological
platforms, the author creates instances of the platform model, or platform
instances for short. Each platform instance is composed by a set of class
members or OWL individuals of the ontology representing the platform
model. Figure [Wag08b| presents an example of a platform instance
for describing Java runtime environments. The JavaPackageManager is a
class member of the class platform:PackageManager, which is a class from
the platform model. This class member, or individual, represents a varia-
tion point with three possible variants, JavaWebApplet, JavaWebStart and
JavaMIDlet. Thus, a product line architect may create different platform
instances for different technological platforms.

The author proposes creating configuration metamodels as a means to com-
plement the expression of variability having into account concerns different
from technological platforms. Figure [Wag08b| presents a metamodel cap-
turing possible variations of an instant messengers’ SPL. In the figure, the
UserInterface metaconcept represents a variation point with three vari-

)

platform:PackageManager

isa

JavaPackageManager

isa

JavaWebApplet

JavaWebStart ‘

JavaMIDlet

Figure 3.6: Example of a Platform Instance for Describing Java Runtime
Environments [Wag08b|.

ants, AWTUserInterface, SwingUserInterface and LCDUIUserInterface.
The Packaging metaconcept represents a variation point with three vari-
ants, WebAppletPackaging, IpkgPackaging and MIDletPackaging. The
JabberTransport metaconcept represents a variation point with two vari-
ants, DefaultJabberTransport and MEJabberTransport. Therefore, a
product designer could, for instance, configure an instant messenger with
a SwingUserInterface, while also s/he selects the WebAppletPackaging
as packaging method and the DefaultJabberTrasport as selected jabber
transporter.

The approach suggests extending configuration metamodels with annota-
tions based on platform instances. This linking between metaconcepts and
technological platform constraints allows imposing certain platform depen-
dency constraints to the choices provided by the configuration metamodel.
Products are configured by creating configuration models. Thus, whenever
a model element is included in a configuration model, the platform depen-
dency constraints related to the metaconcept to which such a model element
conforms, apply.

Solution Space: Core Assets Development and Products Deriva-
tion.

Similarly as in the Czarnecki and Antkiewicz’s approach, product line mem-
bers are derived from UML class models which are created as templates. Each
template model is created for a group of variants included in a configuration
metamodel. A template model represents a superimposition of all the pos-
sible classes, properties and operations required to include their respective

76

instantmessenqen:l

InstantMessengerConfiguration 1 1.

Userlnterface
+deploymentTarget : EString >
Y 4 i - +canfig +userInterface AN
| .. +confi
+eonfig”’ 1T +config N 9 I I —!—
) AWTUserInterface SwingUserlnterface LCDUTUserInterface
1 | +jabberNetwork

1 +jabberTranspor

labberMNetwork JabberTransport

+jabberNetwork 1 il +packaging | 1

. ! Packaging
| DefaultlabberTransport || MEJabberTransport
1| +localNetwork [I T

Loca|Network WebfppletPackaging IpkaAppletPackaging J|etPackagin

Figure 3.7: Example of a Configuration Metamodel in the Wagelaar’s Ap-
proach [Wag08b].

variants in a final product. Figure [Wag08b| presents an example of a
template model. This template model is created for the JabberTransport
variation point from Figure Then, a template instance is derived from
this template model according to the variant selected for a product designer:
DefaultJabberTransport or MEJabberTransport. Some of the class ele-
ments, their properties and operations are annotated. These annotations
are used during the process of transforming the template models into final
products.

Product line architects create several groups of model transformations to de-
rive products from template models. Each group is in charge of transforming
one template model into a part of a final product that runs on a particular
technological platform. Thus, when a product designer creates a configura-
tion model and selects a target technological platform, the template models
related to the selected variants are transformed using the respective group of
model transformations created for the selected target technological platform.

Decision models are not explicitly created to support the product deriva-
tion process. The resolution of variability is performed by product designers
creating configuration models and selecting a target technological platform.
The effects on template models, which are used as starting core assets to

7

package jabber J

<<0bservable>>
Network
{from networking)

+name : String
+login (uid : String, pwd : String)

Hogout()
taddContact(c : Contact) <<interface>> <<interface>> <<interface>>
+removeContact(c : Contact) MessagelListener PresencelListener IQListener
+send(msg : Message) |from jabberwookiel| |{from jabberwookiell |{from jabberwgokiel)|
+discoverNetworks() A
i 4 7 —
/ e -
ra -~ - -
s P -
-~ -
labber L -7
+uid: String -7 Client2Server
<<Create>>+Jabber () : Jabber - 1 |—{from [abberwookje)
+login{uid : String, pwd : String) 1 ——
+logout() Of/'-FEo/r;nection
+addContact(c : Contact) +jabber
+removeContact(c : Contact) 1 State
+send({msqg : Message) g 1 L et e
——— +login{uid : String, pwd : Strin
-registerUser(user : String, pwd : String) : Boolean _jabber > +Icgou(t() 9, P 9
_s.trlpRe.soTrc?m,dl : String) : String ~state +addContact(c : Contact)
+!ncom!ng§(|q : 1Q) ‘M +removeContact{c : Contact)
+!ncom!ng essage(message : Message) +send(msg : Message)
+incomingPresence(presence : Presence)
#connect(host : String) ,/
Z
From Jabber ﬁ
- - ~ N
ConnectedState DisconnectedState
<<asynchronous=>z+ logout() <<asynchronous==+login(uid ; String, pwd : String)

+addContact(c : Contact)

+removeContact(c ; Contact)

+send{msg : Message)
<<asynchronous=>>-addContactAsync(c : Contact)
<<asynchronous=>=>-remaveContactAsync (¢ : Contact)
<=<asynchronous>>-sendAsync(msg : Message)

Figure 3.8: Example of a Template Model in the Wagelaar’s Ap-
proach [Wag08h).

78

derive products, are specified in the model transformations. Therefore, the
effects must be expressed in terms of the model transformations: what model
transformations must be used?, and, what is the execution ordering required
to include selected variants?

The selection of the groups of model transformations to be used is defined
from the selected variants, i.e. the model elements included in the configura-
tion models, and the selected target technological platform. The execution
ordering of the model transformations is predefined by creating a type of
abstract execution ordering. The abstract execution ordering defines the
required sequence of calls to abstract transformation rules. The concrete
transformation rules are executed once the groups of model transformations
to be used are defined from the selected variants and the selected target
technological platform.

To replace the abstract transformation rules by the concrete transformation
rules at execution time of the model transformations, the authors propose a
composition technique that they call module superimposition. To apply this
technique, transformation rules must be grouped in modules. This technique
allows modifying an execution ordering, which include transformation rules
from a module "m-1", overriding it to include: (1) new calls to transformation
rules from a module different to "m-1", and (2) calls to transformation rules
with the same names and the same parameters that the included in the mod-
ule "m-1", but from a module different to "m-1". This mechanism has been
implemented to work on the ATLAS Transformation Language (ATL) [JKO05].

3.6.3 The Loughran et al.’s Approach [LSGF, [SLFGO0S]

Problem Space: Expressing Variability and Configuring Products.

Loughran et al. propose an approach where variability is expressed using
cardinality-based feature models. Products are configured creating feature
configurations.

The main purpose of Loughran et al. is to provide support for composition
of software components based on feature configurations. Configuration of
products could be performed by product designers in one or several stages.
However, the authors only consider one configuration stage to capture domain
(non-architectural) choices.

79

| LockControl |

| AuthenticationDevice | | AutomaticLock | DoorOpeper

/// \\\—‘

— —

ad || FingerprintScanner || Can\Reader\

)
]
<
O

class| LockContrdI

<<componen <<componen <<component|
Keypad Fingerprint Card
----- Reader Reader Reader
/) . <<components|
IAc{cess 1 Door
IDoor Actuator T'
~ <<component>]

\ LockControlMng

IRegiste s <<component:7]
h Lock
ILockControl
ock&ontro ‘..@ Control
N
IVerify
<<component:l]| | <<componentl]| | <<component=l]
KeypadAuth FingerprintAuth CardAuth

Figure 3.9: Example of a Reference Architecture in the Loughran et al.’s
Approach [SLFGOS].

Solution Space: Core Assets Development and Products Deriva-
tion.

Product line members are derived from component models of UML 2.0. A
set of component models is created for each feature in the feature model. Ad-
ditionally, a set of common components is created. Common components are
present in every product of the product line. Figure [SLEGOS8| presents
an example of a feature model (top) and a reference architecture model (bot-
tom) including the set of components related to the different features. Thus
for example, if the Keypad feature is selected in a feature configuration, the
KeypadReader component must be connected to the common component
LockControlMng to derive a final product.

Loughran et al. propose a language, VML, to express how software compo-

80

—

O O 0~ Tk W

Concern LockControl {
VariationPoint AuthenticationDevice {
Kind: alternative ;
Variant Keypad {
SELECT:
connect (KeypadReader , LockControlMng)
using interface (IAccess);
UNSELECT:
remove (KeypadReader) ;

Listing 3.1: Example of a VML Specification.

nents must be composed according to feature configurations. VML includes
constructors that correspond to possible operations on components such as
connect(component-1, component-2) or disconnect(component-1, component-
2). VML also supports to specify the links between features and components,
indicating how the components of the reference architecture model must be
composed according to features selected in feature configurations. For ex-
ample, it is possible to specify that the KeypadReader component must be
connected to the common component LockControlMng using the interface
TAccess if the Keypad feature was selected in a feature configuration. List-
ing presents the VML specification for this example.

Therefore, VML allows for creating decision models using its well structured
constructors. Using the VML constructors it is possible to relate (1) a set
of effects on the reference architecture and (2) features in a determinate
state (selected/unselected). For instance, from Listing [3.1] if SELECTED the
Keypad feature, then execute commands from line 6; if UNSELECTED the Key-
pad feature, then execute commands from line 8. Commands from line 6 and
line 8 imply effects on the reference architecture. Using the VML construc-
tors it is not possible, however, relating (1) a set of effects on the reference
architecture model and (2) a subset of features in determinate states. For
instance, if SELECTED the Keypad feature "and" UNSELECTED the CardReader
feature, then execute a set of commands.

To transform VML specifications into a set of model transformations in
charge of transforming reference architecture models into final products the
authors have created a High Order Transformation (HOT). A HOT is a model

81

transformation that generates other model transformations. For executing
the created HOT, the authors propose first to transform VML specifica-
tions into models that conform to a VML metamodel. Thus for instance, for
the line 6 of the VML specification from Listing the HOT generates a
transformation rule to transform the reference architecture model from Fig-
ure into a model including the connection between the KeypadReader
and LockControlMng components by using the IAccess interface.

Thus, when a product designer creates a feature configuration, the generated
model transformations are executed and the final product is derived. The ex-
ecution ordering of the generated model transformations must be predefined,
and they are fixed, to avoid inconsistencies in the final product.

3.6.4 The Voelter and Groher’s Approach [VGOT7b]|

Problem Space: Expressing Variability and Configuring Products.

The Voelter and Groher’s approach proposes to create metamodels in con-
junction with cardinality-based feature models to capture and express vari-
ability. This approach supports the explicit and separated modeling of vari-
ability in metamodels and feature models.

Product line architects create different metamodels during domain engineer-
ing; each metamodel captures concerns related to diverse concerns. One
metamodel is the domain metamodel and serves as a vocabulary that is fa-
miliar to the practitioners of the system’s domain. A domain model does
not include concepts regarding details of the structure or processing of the
system. Others metamodels are the architectural metamodel, which contains
software architectural concerns, and the platform metamodel, which contains
technological platform concerns.

Regarding feature models, only one feature model is created grouping differ-
ent concerns.

This approach is particularly interested in staged-configuration and staged-
derivation of products. To configure a product, first a product designer
creates a model that conforms to the domain metamodel. After, another
product designer selects features from the feature model including choices
from concerns different to the general application domain.

82

Solution Space: Core Assets Development and Products Deriva-
tion.

Products are derived from (1) domain models, (2) reusable models that con-
form to the architectural and platform metamodels, (3) reusable pieces of
source code, (4) and model transformations in charge of adapting the reusable
models and pieces of code according to domain models and the valid feature
configurations.

For each feature in the feature model the authors suggest to create a set of
reusable models, source code and model transformations. Model transforma-
tions are created to transform (1) domain models into architectural models,
(2) architectural model into platform models, and finally, (3) platform mod-
els into source code. Thus, if a feature is selected in a feature configuration,
the domain model is incrementally transformed using the model transfor-
mations associated to the selected feature. The model transformations not
only create new model structures in the architectural and platform domains,
but they also take the reusable models and weave them to the new crated
model structures. Similarly, in the latest transformation, the model-to-text
transformations create source code and reuse pieces of code to create final
products.

For the implementation of this approach, the authors use the oAW frame-
work, including its AOP mechanism (see Section[2.5.2). Thus, decision mod-
els are created in form of textual descriptors, oAW workflows, to support
the product derivation process. In these descriptors the authors indicate the
model transformations that must be executed, and the required execution or-
dering according to selected features. For modifying the execution ordering
having into account feature configurations, the authors have created a new
0AW component. This component allows for querying a feature configura-
tion at model transformation execution time, and weaving an 0AW aspect if
a particular feature appears in the configuration (selected or unselected).

Listing presents an example of an 0AW workflow using the created com-
ponent. The baseModelTransformation from line 6 transforms a domain
model into an architectural model. For this the first rule to be executed is
transformationRuleBase (domainModel) (line 9). The normal call graph
of this rule is modified if the featureExample is selected. This is spec-
ified in line 2. If the feature appears selected in a feature configuration
the transformationAdvice is executed, modifying thus the base execution

83

—_ =

— O W0 -0 T W

<feature isSelected="featureExample">

<transformationAspect adviceTarget="baseModelTransformation">

<extensionAdvice value="transformationAdvice" />
</transformationAspect>
</feature>

<transform id="baseModelTransformation">
<invoke value="transformationRuleBase (domainModel)" />
<outputSlot value="architectureModel” />

</transform>

Listing 3.2: Example of a Workflow Using the Voelter and Groher’s Compo-
nent.

ordering. For details of how the AOP mechanism of oAW works see Sec-

tion and [OAW09al.

3.6.5 Discussion

In this section, we emphasize on the advantages and drawbacks of the pre-
sented approaches. We tackle this discussion regarding the mechanisms for
expressing variability and configuring products, and, we review if the ap-
proaches consider (1) metamodeling and feature modeling, (2) multi-staged
configuration of products and (3) expression of possible fine-grained varia-
tions between product line members, and fine-grained configuration of prod-
ucts.

Regarding the mechanisms to develop core assets and to derive products, we
review how the approaches (1) create and use decision models, and (2) how
they tackle the derivation of fine-grained configured products.

Metamodeling and Feature Modeling.

Metamodeling and feature modeling are the most common mechanisms used
in MD-SPL approaches for capturing and expressing variability. Both meta-
modeling and feature modeling can be used for capturing not only structural
but also behavioral variations. However they are different in many ways. On

84

the one hand, metamodels facilitate the modeling of variations at language
level. Product designers who are domain experts are capable of configuring
different products by creating diverse and rich domain application models.
Thus, metamodeling implies a constructive approach that requires a high
level of expertise. On the other hand, feature modeling allows configuring
products only by selecting features, hiding the complexity of building com-
plex models; this is a selection-based approach that requires only domain
knowledge.

Regarding the use of alternative mechanisms for capturing and expressing
variability, such as ontology models, they seem to be very useful and still re-
quire much exploration to become well exploited in the MD-SPL Engineering
field. As part of our future work (see Chapter @, we plan to explore how we
can incorporate the use of ontology models into our approach.

Using feature modeling and metamodeling together, such as Voelter and
Groher propose, gives to MD-SPL approaches the advantage of counting with
the flexibility and power of expression of metamodels, and the simplicity, well-
known and well-defined structure of feature models. To use feature modeling
and metamodeling together it is necessary to establish relationships between
them.

Multi-Staged Configuration of Products.

MD-SPL approaches such as those presented by Czarnecki and Antkiewicz,
Wagelaar, and Loughran et al. only consider one-stage activity for config-
uration of products. The Loughran et al.s’ approach focuses on capturing
variations including only domain (non-architectural) concepts. The software
architecture of products is predefined and it cannot vary. The Wagelaar’s ap-
proach is more focused on technological platform variations and the Czarnecki
and Antkiewicz’s approach is only worry about problem space variations. All
these approaches have the advantage to focused on the domain level where
they are experts (e.g. architectural domain or platform technology domain),
but this limits the scope of product lines because it is not possible to configure
variations from other domains.

Voelter and Groher’s approach supports the explicit and separated model-
ing of variability. Products may be configured at different binding times
where at each stage specific variants are chosen creating domain models or
feature configurations. Then, e.g. design or technology decisions may be left

85

open or postponed to the latest possible binding time in the configuration
process. Furthermore, multi-stage configuration facilitates the intervention
of product designers with different domain-knowledge at different binding
times [CHEQ5]. For instance, assume we want to create an MD-SPL from
diverse class models that are transformed into models of relational database
schemas, and then into source code of product line members. To make the
scope of the product line wider, a feature model is created with one feature
group, Primary Key Structure, which groups two alternative grouped fea-
tures, With Primary Key and Without Primary Key. Thus, two different
product designers could configure products at different binding time by cre-
ating class models and feature configurations. If the feature With Primary
Key is selected, all the class elements are transformed into table elements
with one primary key. If the feature Without Primary Key is selected, all
the class elements are transformed into table elements without a primary
key.

Coarse- and Fine-Grained Variations and Configurations.

The MD-SPL approaches we have presented capture and express the possible
variations between members of a product line by creating separate metamod-
els and/or variability models. This allows product line architects to capture
and express coarse-grained variations between products. For example, using
the above example of the MD-SPL created from diverse class models that are
transformed into models of relational database schemas, a first product has
a coarse-grained variation in relation with a second product if all the tables
storing data of the first product have a primary key, and none of the tables
storing data of the second product have a primary key.

Coarse-grained variations between members of a product line are obtained
from the coarse-grained configuration that product designer can create using
separate metamodels and variability models. A coarse-grained configuration
consists of models that conform to metamodels, and instances of variabil-
ity models. Thus, for instance, a first product can be coarse-grained con-
figured by creating a class model and selecting the variant With Primary
Key. A second product can be coarse-grained configured by using the same
class model created to configure the first product, and selecting the variant
Without Primary Key. When products are derived, a coarse-grained varia-
tion between them appears: all the tables storing data of the first product
will have a primary key, and none of the tables storing data of the second

86

product will have a primary key.

The presented MD-SPL approaches lack of mechanisms to capture and ex-
press fine-grained variations between products. For instance, a first product
has a fine-grained variation in relation with a second product if tables storing
data of both products have primary key, but the two products differ in their
particular tables which have primary key.

Along with the need of expressing the possible fine-grained variations between
members of a product line is the need of defining a mechanism for creating
fine-grained configurations. A fine-grained configuration must allow product
designers to configure model elements individually based on variability mod-
els. For example, a fine-grained configuration must allow indicating that the
feature With Primary Key affects individually a class Student, while the
feature Without Primary Key affects individually a class Professor. This
also requires a mechanism to restrict the valid fine-grained configurations.
For example to indicate that the features With Primary Key and Without
Primary Key could affect Class elements individually, but it is not valid that
they affect Attribute elements from class models.

In the next chapter we present the mechanisms we propose for dealing with
fine-grained variations, fine-grained configurations and for constraining their
creation.

Core Assets Development and Decision Models.

Approaches such as the Czarnecki and Antkiewicz’s approach and the Wage-
laar’s approach couple their core assets and their variability models. The
Czarnecki and Antkiewicz’s approach propose to annotate UML models with
features. The Wagelaar’s approach relates the model transformations with
the platform instances created to express possible variations in particular
technological platforms. The coupling of core assets and variants makes dif-
ficult the maintenance and reuse of transformation rules, other core assets
such as UML models, and variability models. For avoiding this problem
decision models are a good proven solution.

The Loughran et al.s” approach and the Voelter and Groher’s approach are
representative examples of approaches using explicit decision models. The
Loughran et al.’s approach uses its defined language VML to create decision
models. The Voelter and Groher’s approach takes advantage of the ocAW

87

framework for creating decision models by means of 0AW workflows. Both
the Loughran et al.’s approach and the Voelter and Groher’s approach, how-
ever, have some limitations to create decision models.

On the one hand, the Loughran et al.’s approach only has into account the
individual selection of features to adapt the architectural model of prod-
uct line members. This approach does not take into account that several
features selected together may imply different adaptation than the required
when features are selected separately. Thus, this approach does not study
the effects that different combinations of features may have in reference ar-
chitectural models. On the other hand, the Voelter and Groher’s approach
is restricted to use a platform-dependent language to create decision models.
This is the Xtend language provided by oAW. This limits the portability of
the approach.

Product Derivation.

An important characteristic required in MD-SPL approaches is the ability
to select transformation rules and modify their execution ordering according
to selected variants. The Czarnecki and Antkiewicz’s approach does not
provide this characteristic. Instead, the approach proposes executing always
a predefined set of transformation rules which from source annotated models
generate target models. Since the approach does not provide a mechanism to
indicate a required execution ordering, they have to use a post-transformation
process to eliminate inconsistencies in target models. This mechanism is very
restricted dealing only with well-identified inconsistencies in UML models.

The Wagelaar’s approach and the Voelter and Groher’s approach provide
mechanisms for selecting transformation rules and modifying their execution
ordering according to selected variants. These mechanisms are however at-
tached to particular model transformation languages. On the one hand, the
Wagelaar’s approach implements its mechanism using the ATL language. On
the other hand, the Voelter and Groher’s approach implements its mechanism
using the Xtend language.

The Loughran et al.’s approach in turn provide a mechanism for selecting
transformation rules according to selected features, but it does not provide
a mechanism for modifying their execution ordering. Thus, transformation
rules are always executed in a predefined ordering. This mechanism works
well in systems where the execution ordering of transformation rules does

38

not affect the resultant target models. This is however a characteristic that
limits the generation of real software systems, where the selection of different
variants necessarily requires adaptation of the execution ordering of model
transformations.

Comparison Summary.

Table presents a comparison summary based on the discussion presented
in this section.

3.7 Summary

In this chapter we have introduced the Software Product Line Engineering
paradigm. We were focus on the management of variability through the
whole development lifecycle of SPLs. We described the Domain Engineering
process and the Application Engineering process as the core processes in SPL
Engineering. On the one hand, we explained how the Domain Engineering
process involves activities for capturing and expressing variability in SPLs,
and for developing the core assets which are reused for derivation of products.
On the other hand, we explained how the Application Engineering process
involves activities for configuring and deriving products.

We introduced MDD-based SPLs (MD-SPLs), which are the type of SPLs
on which we are specially interested. We have presented four approaches for
creating MD-SPLs explaining their mechanisms for expressing variability and
configuring products, and developing core assets and deriving products. At
the end of this section, we presented a discussion remarking the advantages
and drawbacks of these approaches.

The next chapter presents our proposal of MD-SPL approach including the
mechanisms we developed for sorting out the drawbacks found in related
work.

89

Table 3.2: Related Work’s Comparison Table

Czarnecki Wagelaar Loughran Voelter
and et and
Antkiewicz al. Groher

Metamodeling for expressing
variability and modeling for
configuring products No Yes No Yes

Multi-staged configuration
of products No No No Yes

Expression of fine-grained

variations and creation of

fine-grained

configurations No No No No

Creation of explicit
decision models No No Yes Yes

Decision models take

into account the effects that

possible feature combinations

may have in final products n/a n/a No Yes

Decision models are independent
of particular implementation
languages n/a n/a Yes No

Selection of transformation
rules according to selected
variants No Yes Yes Yes

Modification of transformation
rules’ execution ordering
according to selected variants No Yes No Yes

Mechanisms for modifying

execution ordering of

transformation rules independent

of particular model

transformation languages n/a No n/a Yes

90

91

Part I11. Proposal

92

93

Chapter 4

Binding Models, Constraint
Models and Decision Models

4.1 Introduction

In Chapter [3 we have presented how MDD can be used to enhance SPL
Engineering. We have shown that models and model transformations can be
used to support respectively the configuration and derivation of product line
members. We have also discussed how current MD-SPL approaches (1) have
some limitations to express variability and configure products, and (2) do not
provide appropriated mechanisms to derive products that facilitate the main-
tenance, reuse and evolution of reusable core assets such as transformation
rules.

This chapter first introduces a case study which is used through the descrip-
tion of our approach, Section [4.2] We then present the base strategy we use
in the processes of expressing variability and configuring products supported
on metamodels and feature models, Section [£.3] After, we present FieSta,
our MD-SPL approach. We present our proposal to improve the power of
expression of variability, Section where we introduce our mechanism to
capture and express fine-grained variations between products of a MD-SPL.
Finally, we present our mechanisms for deriving configured products sup-
ported on decision models, Section and Section At the end of this
chapter, we present limitations of FieSta, Section

94

4.2 Case Study

In order to better explain the general concepts, the problems related to this
thesis and our approach to achieve the thesis objectives and validate our
results, through this document we use an example that is part of a product
line of Smart Home systems.

The Smart Home case study is taken from the domain of home automa-
tion. "A smart home is a building for living equipped with a set of electri-
cal and electronic sensors and actuators in order to allow for an intelligent

sensing and controlling of the building’s devices: windows, heaters, lights,
etc.” [EFGT08].

The objective of this case study is to generate software that can be tested in
our own simulation environment. This environment serves for demonstration
and validation of the model-driven product line engineering mechanisms and
tools developed as part of this thesis, which has been developed in the context
of the AMPLE project [AMPQ9].

4.2.1 Smart-Home System’s Domain

Currently homes are equipped with a wide range of electronic and electrical
devices such as light arrays, temperature sensors and thermostats, electri-
cally steered blinds and windows, door sensors and door openers etc. A
Smart-Home software system coordinates and controls such devices enabling
inhabitants to manage them from a common user interface.

A Smart Home system shall offer high level functionality in which several
sensors and actuators are working together. Sensors are physical devices
that measure properties of the environment and make them available to the
Smart-Home system. Actuators activate devices whose state can be moni-
tored and changed. All installed devices, including sensors and actuators,
are part of the Smart-Home network. The status of devices can either be
changed by inhabitants via the user interface or by the system using prede-
fined policies. Policies let the system act autonomously in case of certain
events. For example, in case of low indoor temperature, windows get closed
automatically.

95

The architectural structure of buildings (e.g. the number of floors, rooms or
windows), the sensors and actuators as well as other devices, their location
inside the buildings, and the policies that let the system act, are particular
for each Smart-Home system and must be defined by Smart-Home system’s
designers. Thus, Smart-Home systems can be created with the necessary
and sufficient software components to respond to particular requirements of
Smart-Homes’ owners. At run time of a Smart-Home system, the system
is then ready to respond to external or internal stimulus depending on the
defined structure of the building, its devices and the policies acting on them.

Some of the functions that Smart-Home systems must provide are the fol-
lowing;:

e Climate control system. Climate control devices must be orches-
trated to keep a preferred temperature in the rooms of the house.

e Security system. Door and window sensors and motion detectors
should be used to detect if people who are not allowed to enter the
house try to do it. If the house detects any attempt of intrusion, it
should take emergency actions.

e Energy saving. House devices should be orchestrated to use the least
amount of energy as possible.

4.2.2 Case Study Requirements

Several types of houses, different customer demands, the need for short time-
to-market, and saving of costs are the main causes for variability and motivate
the need for product lines of Smart-Home systems. For our particular case
study, we characterize a Smart-Home system’s product line according to the
following three sources of variability:

e Architectural structure. Each house may have a particular archi-
tectural structure with several floors, rooms, stairs, doors and windows.

e Smart-Home’s Facilities. Each house may be equipped with several
facilities related to controlled devices.

e Software Architecture. Each Smart-Home system has a technol-
ogy platform integrating their devices under different software archi-

96

tectures.

The objective of this case study is to develop diverse Smart-Home systems
which (1) are able to manage particular variants of Smart-Homes and (2)
only include the necessary software components to satisfy the requirements
of Smart-Homes’ owners. It is not our interest to develop only one Smart-
Home system which can be dynamically configured to support the considered
variability. The following subsections describe in more detail the particular
variants related to each of the three source of variability our product line
considers.

Architectural structure.

The structure of houses is the most evident source of variation. The descrip-
tion of a house includes structural elements as floors and rooms. In our case
study, we take into account the following structural elements: floors, rooms,
staircases, doors and windows. Thus, houses can have different number of
floors; floors can have different number of rooms; rooms can have different
number of windows or doors; staircases connect the different floors in the
house, and so on. Therefore, the configuration of the architectural structure
of houses must be performed by building architects.

Smart-Home’s Facilities

We take into account the need of incorporating houses automation facilities
that are orthogonal to the house structure. By orthogonal we mean facilities
that affect multiple structural entities. These facilities let the house act
autonomously according to defined policies.

Thus, houses include electrical and electronic devices such as automatic
lights, electric windows, security devices as alarms, security systems for au-
thentication, among others. These devices, and therefore their behavior, are
related to optional facilities that the designer has to select and bind to other
elements that already exist in the house. For instance, the automatic lights
can be bound to all rooms in the house or the security alarm system can be
bound only to the main door entrance.

For this case study we consider two groups of facilities. The first group is
related to the access control facilities. The second one is related to environ-
mental control facilities.

97

e Access Control. This facility should assure that only inhabitants
and authorized visitors may go into the house. Two alternative op-
tions must be provided to control the access of inhabitants: (1) keypad
authentication and (2) fingerprint authentication.

e Environmental Control. This facility must add the capability of
measuring the indoor temperature and take some actions according to
predefined rules. Two alternative options must be provided to envi-
ronmental control: (1) automatic windows and (2) air conditioning.
Automatic windows must be automatically opened if the temperature
in a room rises above a certain threshold and closed if the temperature
falls below a certain threshold. Similarly, air conditioning is turned on
if the temperature in a room rises above a certain threshold and turned
off if the temperature falls below a certain threshold.

The configuration of Smart-Homes’ facilities must be in charge of experts
who know the domain of configuring houses including devices such as sen-
sors and actuators. Fuacilities designers must also support houses’ owners
to take decisions about distribution of devices, for example to save costs of
construction and maintenance of Smart-Home systems.

Software Architecture.

We build Smart-Home systems using a component-based development strat-
egy. We create components to manage the different devices included in
Smart-Home systems. For our case study we use OSGi (Open Services Gate-
way Initiative) [OSG09| as our base components integration platform because
it is currently the preferred platform for home automation.

We classify software components according to their type, Periodic or Seruvice
components, and their instantiation mode, on Deployment or on Invocation.
Thus, regarding the architecture of Smart-Home systems, this can vary de-
pending of the type of components we create to manage the devices, and the
instantiation mode the components implement.

e Components Type: Periodic or Service Components. On the
one hand, periodic components are active components offering exactly
one service. The infrastructure invokes this service periodically after a
configurable time period. Periodic components have their own threads
of control and they are started once the component is activated. On the

98

other hand, service Components are passive components offering ser-
vices to other components. The type of a component depends on the
particular services the component will provide. For instance, a com-
ponent providing a service to open/close automatic windows according
to the temperature of rooms is a good candidate to be a periodic com-
ponent. This component could check periodically the temperature of
rooms to open/close the automatic windows. A component providing
services to open/close doors only when inhabitants arrive is a better
candidate to be a service component.

e Instantiation Mode: on Deployment or on Invocation. A com-
ponent can be instantiated either when it is deployed or when one of
their services is invocated.

The configuration of the software architecture of Smart-Home systems must
be in charge of software architects who have experience in taking software
design decisions.

Thus, for each different source of variability, one expert with particular skills
is required to configure a Smart-Home system. In our case study these are
the building architect, the facilities designer and the software architect. As
presented before in Section [3.4.1] this is one of the main reasons that imply
the use of staged-configuration mechanisms. In each stage, an expert with
particular skills must be involved in the configuration process.

4.3 Variability Expression and Product Config-
uration

As presented in Chapter [3, the most common mechanisms used to capture
variability and configure products in MD-SPLs are metamodels and feature
models. As part of our approach to create MD-SPLs, playing the role of
product line architects we use metamodels and feature models as our base
core assets. Playing the role of product designers, we configure products
creating models that conform to metamodels and feature configurations.

99

4.3.1 Metamodels

Because we use a multi-staged approach for configuration and derivation
of products, we separate domain-specific concepts in several metamodels.
The first one is the domain metamodel which serves as a vocabulary that
is familiar to the practitioners of the system’s domain. A domain model
does not include concepts regarding details of the structure or processing
of the system. The other metamodels contain facilities and architectural
concepts which are orthogonal to the concepts in the domain metamodel.
This concepts represent variability that affect multiple domain concepts and
their subsequent processing (i.e. transformation and generation) stages.

Each metamodel has as main objective to capture the variability that char-
acterizes a product line; however, they play different roles during the product
line development lifecycle. Product designers use the first metamodel, the
domain metamodel, during the configuration process. This metamodel is the
reference to create domain models, which are the starting point to derive
product line members.

We create three metamodels to capture, separately, the three sources of vari-
ability that characterize our Smart-Home system’s product line (see Sec-

tion [4.2.2)):

e Domain Metamodel. This metamodel includes concepts regarding
architectural structure of houses.

e Smart-Home’s Facilities Metamodel. @ Each house may be
equipped with several facilities related to controlled devices.

o Software Architecture. FEach Smart-Home system has a technol-
ogy platform integrating their devices under different software archi-
tectures.

Besides these three metamodels, we create another metamodel: the com-
ponent metamodel. This metamodel includes only concepts regarding
component-based development. This metamodel is important to represent
the problem domain in terms of software components.

The first stage to configure a product starts with the creation of domain
model; ¢.e.the model that represents a particular building. Figure
presents the staged-transformations a domain model suffers after it is cre-

100

ated by a product designer, in this case a building architect. The model
transformation rules are used in four stages. The first set of rules is defined
from the domain metamodel to the facilities metamodel. The second set is
defined from the facilities metamodel to the components metamodel. The
third set is defined from the components metamodel to the architecture meta-
model. Finally, the fourth set of rule transformations includes model-to-text
transformations which produce the source code of product line members. We
create model-to-text transformation rules from the facilities and the archi-
tecture metamodel to Java source code. Next sections present the details
about the model transformations, and the possible variations these model
transformations can have according to the SPL variability.

Domain Facilities > conforms to...
High Metamodel Metamodel Horizontal
on 1st Transformation
Abstraction Transformation Vertical
Level Domain Stage Facilities _ veruca)
Model Model Transformation
‘l Components Architecture
Medium i | Metamodel Metamodel
Abstraction 2nd | 3rd
Level Transformation% Transformation
Stage | ("Components Architecture
Model Model
""""""""""""""""""""""" N
Low Transformationl
Abstraction ge

Sta
Level Java Source I
Code

Figure 4.1: Staged-Transformations to Derive SPL. Members.
In the following we present our four metamodels in detail.

Domain Metamodel.

The first metamodel is the domain metamodel which includes domain appli-
cation concepts that facilitate the creation of models representing the struc-
ture of houses. Figure 4.2| presents the domain metamodel. Using this meta-
model we can create houses with several architectural structures including
several Floor, Room, Door and Window elements.

Figure [1.3|shows a domain model example that conforms to the domain meta-
model. The model defines firstFloor and secondFloor. These conform to

101

Door

House -name : String
name : String -doors
-author : String
-ow ner : String Floor Room .
-buildingArchitect : String ~floors st st Window
-facilities Designer : String * :Q?amz . imnng -rooms | @M - S1Ng -window s | -name : String
-softw areArchitect : String ge - . "

Figure 4.2: The Domain Metamodel.

the Floor metaconcept. In the firstFloor there are two rooms, 1ivingRoom
and kitchen. In the secondFloor there is another room, mainRoom, which
has two windows, mainRoomW1 and mainRoomW2. There are also two doors.
The first door, livingRoomD1, is in the livingRoom. The second door,
mainRoomD2, is in the mainRoom.

-room1

; < <Room>> -door1 < <Door> >
name = livingRoom name = livingRoomD1
-floor1 < <Floor>>
[name = firstFloor _room2
stage =1
e ou <<Room> > < <Window> >

name =myHouse name =kitchen name =mainRoomW1

Y -floor2

<<Floor>> —
name =secondFloor -w indow
stage =2 <<Room>>
t name =mainRoom <<Window> >
- name = mainRoomW2

! -w indow 2

-door2

< <Door> >
name = mainRoomD2

Figure 4.3: Example of a Domain Model.

Facilities Metamodel.

The facilities metamodel is presented in Figure [£.4 This metamodel is
at the same level of abstraction as the domain metamodel. The facilities
metamodel includes, however, metaconcepts of Smart-Homes’ facilities such
as environmental control and authentication devices. Based on this meta-
model it is possible to add facilities to Smart-Homes. The Window meta-
concept is now specialized in Automatic and Manual metaconcepts. Thus,
windows can be configured as automatic or manual windows. The Room

102

metaconcept contains one EnvironmentalControl metaconcept, which is
specialized in the WindowsController and AirConditioning metaconcepts.
Thus rooms can be configured to manage air conditioning or automatic win-
dows as environmental control. Finally, the Door metaconcept contains the
LockDoorControl metaconcept, which is specialized in the Fingerprint and
Keypad metaconcepts. Thus, doors can be configured to manage fingerprint
or keypad as lock door control.

House Floor

-name : String - -name : String
-floors |-level : int

-rooms
Window . Room Door
-window s -doors -name : String
-name : String 5, -name : String ’
,L\ 1 -environmentalControl ’ -lockControl
Automatic Manual EnvironmentalControl LockDoorControl
-name : String -name : String

I#I,L‘

WindowsController | | AirConditioning Fingerprint | [Keypad

Figure 4.4: The Facilities Metamodel.

Components Metamodel.

The (software) components metamodel, is used to represent concepts of
Component-Based development. This metamodel includes more implementa-
tion details than the domain metamodel and the facilities metamodel. That
is because we said this metamodel is at a lower abstraction level than the
two previously presented metamodels.

Figure |4.5| presents our components metamodel. We take the basic concepts
from the UML2 metamodel to create a simplified metamodel of components.
A Component is a modular, replaceable, and deployable piece of software
which interacts with its environment via interfaces or ports [LH05|. We spe-
cialize the Component metaconcepts in the Periodic metaconcept. Thus,
we can create Periodic (Component) elements when the component is can-

103

didate to be a periodic component in the final software architecture of a
Smart-Home system. A Port serves as a contract between the elements it
connects. Ports are usually of the type Interface. In UML2, interfaces
can be either Provided or Required ones. Provided interfaces specify the
providedOperations that a component offers to their clients. Required in-
terfaces specify the requiredOperations that a component needs to perform
its functions. In UML2 Provided and Required interfaces are related using
Connectors. To simplify our metamodel we connect Provided and Required
interfaces creating a directed relationship between them, useProvided. Fi-
nally, a Component owns a unique identifier, componentName, and a set of
Property elements.

System. Com pone.nt -ports Port erfaces Interface

-name : String| | -name : String -name : String - -name : String
t 1 S
-components Provided]
Periodic rovide useProvided Required

Property . 1
-key : Strin i
-va?lue : Sltr?ng -properties Operation

-providedOpera*iions -operationName : String

*-requiredOperations

Figure 4.5: The Components Metamodel.

The Architecture Metamodel.

The architecture metamodel is at the same level of abstraction than the
components metamodel is. However, the architecture metamodel includes
new metaconcepts to represent the variants identified regarding architectural
design. Figure presents the architecture metamodel. The Component
metaconcept is now specialized also in Service, thus components can be
configured to be either periodic or service components. Furthermore, the
Component metaconcept includes the property instantiationMode to indi-
cate when a component is instantiated, ON _INVOCATION or ON DEPLOYMENT.

104

-ports
System Component * Port -interfaces | Interface

*

-name : String -name : String -name : String
-instantiationMode : InstantiationMode

-name : String

| 5 T
t ' <<enumeration>> Provided I
-components e useProvided Required
. InstantiationMode
Property ’ ON_DEPLOYMENT | § 1
-properties .
-key : String propert ON_INVOCATION Operation
-value : String Service | | Periodic . {-operationName : String
-providedOperation *-requiredOperation

Figure 4.6: The Architecture Metamodel.

4.3.2 Feature Models

Because of the different sources of variability, MD-SPL approaches must
allow product designers to configure a product giving its domain model,
and selecting variants from the sources of variability. For instance, in our
case study those are the variants from Smart-Home’s facilities and software
architecture.

Figure presents an example of how limited the configuration and the
derivation of Smart-Home systems will be in case of only allowing product
designers to configure a product by means of a specific domain model. In
the example, from a building representing the architectural structure of a
Smart-Home, only one possible Smart-Home system could be derived, with-
out including variants from concerns different to buildings’ structure.

‘ ' /\ B
@

C™ o .
/ SmartHome
j Floors Rooms
) L. floor 1 Name:
44444 Current Temperature:

(<< JE == |

Doors
Door
% nchitag: Fnﬁ

Figure 4.7: Example of Configuration without Variability Models.

105

We use feature modeling to allow product designers configuring products
from sources other than the application domain. Likewise metamodeling,
feature modeling can be used for capturing not only structural but also be-
havioural variations. Metamodeling facilitates the configuration of products
by creating rich models using a constructive approach that requires a high
level of expertise. Feature modelling facilitates the configuration of products
by selecting features, hiding the complexity of building models from scratch;
this is a selection-based approach that requires only domain knowledge.

We create our feature models based on the Czarnecki et al.’s meta-
model [CHEO4], which is itself based on FODA [KCHT90].

Figure presents our simplified feature metamodel. Such as in the Czar-
necki et al.’s metamodel, a FeatureGroup expresses a choice over the set of
GroupedFeatures in the group and its cardinality defines the restriction on
the number of choices. A GroupedFeature does not have cardinality and
a SolitaryFeature is a feature that is not grouped by any FeatureGroup.
Examples of feature models are given in the next subsection using our case
study.

Feature
-name : String
-selected : Boolean | 1 -parentFeature
gAY
[[]
RootFeature GroupedFeature SolitaryFeature
-min : int
-max : int
-children | *
FeatureGroup -parentFeature
-name : String 1
-min : int g
-max - int Cointainable ByF .
—D - —
-children

Figure 4.8: Simplified Feature Metamodel.

For our case study’s SPL, playing the role of product line architects, we
create a feature model that represents variants of Smart-Homes’ facilities,
and another one that represents variants of architectural (software) design.
Thus, product designers are able to configure products by creating feature
configurations including choices of Smart-Homes’ facilities and (software) ar-

106

chitecture. These feature configurations are inputs to the product derivation
process. They are used to select the transformation rules to be used in each
stage of the model transformation chain.

The Facilities Feature Model.

As we introduced in Section we take into account the need of incor-
porating the house automation facilities that are orthogonal to the house
structure. We consider particularly two groups of facilities: access control
facilities and environmental control facilities.

Figure presents our Smart-Homes’ facilities feature model. One
FeatureGroup appears for each group of facilities. The Lock Door Control
feature groups the features Fingerprint and Keypad and has cardinality
[0..1], which smplicitly means that Door elements can have either key-
pad, fingerprint, or none of them as lock door control mechanism. The
Environmental Control feature groups the features Air Conditioning and
Automatic Windows and also has cardinality [0..1], which ¢mplicitly means
that Room elements can have either automatic windows, air conditioning, or
none of them as lock environmental control mechanism. We say implic-
itly because there is no semantics in traditional feature models, neither in
metamodels, to formally denote that features represent variants that affect

particular model elements.
<<RootFeature>>
Facilities

<<FeatureGroup>> <<FeatureGroup>>
Lock Door Control Environmetnal Control

[0..1] [0..1]

<<GroupedFeature>> (<<GroupedFeature>>)
Keypad Air Conditioning

<<GroupedFeature>> [<<GroupedFeature>>}
Fingerprint Automatic Windows

Figure 4.9: Smart-Homes’ Facilities Feature Model.

The Architecture Feature Model

Figure presents our architecture feature model. Given that we have clas-
sified software components according to their type, and their instantiation

107

mode, we create one FeatureGroup for each classification. The Component
Type feature groups the features Periodic and Service and has cardinal-
ity [1..1], which implicitly means that Component elements can be either
periodic or service components. The Instantiation mode feature groups
the features Deployment and Invocation and also has a cardinality [1..1],
which implicitly means that Component elements can be instantiated either
on deployment or on invocation.

<<RootFeature>>
Architecture
<<FeatureGroup>> <<FeatureGroup>>
Component Type Instantiation Mode
[1..1] [1..1]

(<<Grou pedFeature> >> (<<Grouped Feature> >>
Periodic Deployment

<<GroupedFeature>> (< <GroupedFeatu re>>)
Service Invocation

Figure 4.10: Architecture Feature Model.

Figure summarizes the processes of (1) expressing the variability in
our case study SPL and (2) configuring a Smart-Home system, by using
only metamodels and feature models. First, a building architect creates a
Domain Model based on the Domain Metamodel. Then, a facilities designer
creates a feature configuration based on the facilities feature model. The
facilities feature model affects the transformation of the Domain Model into
the Facilities Model. According to selected facilities features, particular
transformation rules must be executed to transform domain models into fa-
cilities models. For instance, if the feature Automatic Windows is selected,
a particular transformation rule is executed to transform Window elements
into Automatic Windows elements. If the feature Automatic Windows is
not selected, another different transformation rule is executed to transform
Window elements into Manual Window elements. The Facilities Model is
transformed into a Components model and then a software architect cre-
ates another feature configuration based on the architecture feature model.
The Architecture Feature Model Configuration affects the transforma-
tion of the Components Model into the Architectural Model. Finally, the
Architectural Model and the Facilities Model are used to generate the

108

final Java Source Code. The next section details the process of deriving
products using the described model transformation stages.

Domain Facilities Feature Facilities o ;C(J?r;if;orrr:ﬂtzlto...
Metamodel Model Configuration Metamodel — Transformation
High _., Vertical
Abstrac?ton Domain Facilities Transformation
Leve Model Model —3» Affects
!= Components) Architecture
Medium !i Metamodel | Architecture Feature | Metamodel
Abstraction i Model Configuration
Level li

! IL Components Architecture
{_ Model Model
Low i |

Abstraction e ot T e — —»{Java Sourcel
Level Code

Figure 4.11: Summary of the Smart-Home Systems’ Configuration Process.

Figure presents an example of the staged configuration of two different
Smart-Home systems. In the example we only present two stages. In the
first stage a building architect configures the architectural structure of a
building. In the second one a facilities designer creates two configurations to
derive two different Smart-Home systems from the same building: on the left
the configuration indicates that the Smart-Home system will have keypad as
lock door control in all the doors, on the right the configuration indicates
that the Smart-Home system will have automatic windows as environmental
control, which implies that all the windows will be automatic windows.

<<FeatureGroup>>
Environmetnal Control
[0.1]

<<FeatureGroup>>
Lock Door Control
[0..1]

M-GroupedFeature>> <<GroupedFeature>>

Air Conditioning

<<GroupedFeature>>

Fingerprint

<<GroupedFeatu S

Automatic Windows

Bullding Facllities
Archlitect Designer

Figure 4.12: Example of Configuration with Variability Models.

109

4.4 Binding Models and Constraint Models

The base mechanisms we have introduced until now in this chapter allow
product line architects to capture and express the possible variations between
members of a product line by separately creating metamodels and feature
models. This allows us to capture and express coarse-grained variations
between products. For example, a first Smart-Home system has a coarse-
grained variation in relation with a second Smart-Home system if all the
Windows in the first Smart-Home system are Automatic Windows, and none
of the Windows in the second Smart-Home system are Automatic Windows.

We obtain coarse-grained variations between members of our product line
example by creating coarse-grained configurations. A coarse-grained con-
figuration consists of models that conform to metamodels, and instances
of feature models. Thus, for instance, a first Smart-Home system can be
coarse-grained configured by creating a domain model and selecting the fea-
ture Fingerprint. A second Smart-Home system can be coarse-grained
configured by using the same domain model, and selecting the feature
Keypad. When Smart-Home systems are derived, a coarse-grained varia-
tion between them appears: all the Doors in the first Smart-Home system
have Fingerprint as lock door control mechanism, and all the Doors in the
second Smart-Home system have Keypad as lock door control mechanism.

We propose to improve the power of expression of variability providing a
mechanism to capture and express that we have named fine-grained vari-
ations between products of a MD-SPL. For instance, a first Smart-Home
system has a fine-grained variation in relation with a second Smart-Home
system if both systems have automatic windows, but they differ in the par-
ticular windows which are automatic.

Additionally, we propose a mechanism to create fine-grained configurations,
which allows us to configure model elements individually based on fea-
tures. For example, by creating a fine-grained configuration we could con-
figure the mainRoom to manage Air Conditioning as environmental control
and the livingRoom to manage Automatic Windows as environmental con-

trol [ACR0).

The mechanisms we propose are based on that we have named constraint
models and binding models. To facilitate the understanding of our proposal,

110

first we introduce our mechanism for configuring products by using binding
models, after we present our approach to improve the power of expression of
variability in MD-SPLs by using constraint models.

4.4.1 Binding Models

We call a binding the relationship between a model element and a feature.
For example, to express that the leavingRoom (see Figure has Air
Conditioning as environmental control mechanism (see Figure[L.9). A bind-
ing B is a pair composed by a model element E and a feature F, B = [E, F/,
where [is either a SolitaryFeature or a GroupedFeature. For example,
a product designer can create a binding relating the livingRoom and the
Automatic Windows feature, B = [livingRoom, Automatic Windows].

We define a binding model as the set of bindings defined by a product
designer between a model that conforms to a metamodel and a feature
model, which conforms to a feature metamodel. Figure presents a
binding model example for our case study. This binding model is created
between the domain model from Figure [4.3] and the facilities feature model
from Figure 1.9 bindingl configures the livingRoomD1 to have Keypad
as Lock Door Control. binding2 denotes the designer selection of Air
Conditioning in the livingRoom as environmental control system. Finally,
the binding3 defines that the mainRoomW1 is configured to be an Automatic
Windows. We include in Chapter 5| a complete example of the configuration
and derivation of a Smart-Home system of our case study. The example also
includes a binding model between a component model and the architecture
feature model.

4.4.2 Constraint Models

Product line architects must use constraint models to restrict the bindings
among model elements and features. For example, to express that only do-
main models can be bound to facilities models, or that maximum three Room
elements can be bound to the feature Air Conditioning.

A constraint model is a set of constraints. A constraint C' = [M, F, A, D] is
a tuple composed of a metaconcept M, a feature F', and two properties A

111

-floor1

<<House>>
name = myHouse

-floor2

-room1

< <Floor>>
name = firstFloor
stage =1

<<Room>>

name = livingRoom

-door1

< <Floor>>
name =secondFloor
stage =2

<<Door>>

name = livingRoomD1

<<RootFeature>>
Facilities

binding?2}

-room3,

<<Room>>

name =mainRoom

<<Window>>

name =mainRoomW1

-window 1

-w indow 2

<<Window>>

name = mainRoomW2

[0..1]

<FeatureGroup>>
Lock Door Control

bindingl C

<<FeatureGroup>>
Environmetnal Control
[0..1]

C

<GroupedFeature>>) C<

Keypad

Air Conditioning

<GroupedFeature>>)‘

(<<GroupedFeature>>) C<<GroupedFeature>

Fingerprint

Autom

tic Windows

)

binding3

Figure 4.13: Binding Model Example.

and D. A constraint C' expresses the fact that model elements that conform
to the metaconcept M can be bound to the feature F. Each constraint is
unique in a constraint model; this means, only one constraint includes a pair

(M, F].

Our constraints serve to avoid inconsistencies during the configuration and
derivation processes. Constraints must prevent the following:

e Any model is bound to any feature model. For example in our case

study, only domain models can be bound to the facilities feature models
and only components models can be bound to the architecture feature
model.

Model elements that conform to any metaconcept are bound to any fea-
ture. For example, for a requirement of the product line (R1) specifying
that only windows can be automatic, a constraint must prevent that,
e.g. Door elements are associated to the Automatic Windows feature.

Any number of model elements that conform to a metaconcept is bound
to any number of features. For example, since the installation of au-
tomatic windows could be expensive, in a product line for econom-
ical Smart-Homes a product line architect may deal with a require-
ment (R2) which specifies that only (maximum) one window can be
automatic. Thus, a constraint must prevent more than one Window
element being bound to the Automatic Windows feature.

112

e Model elements and features are bound without taking into account
properties inherent in functional requirements. For example, for a re-
quirement of the product line (R3) which specifies that automatic win-
dows must have sensors, a constraint must prevent Window elements
without an associated Sensor element being configured as Automatic
Windows.

e Model elements and features are bound without taking into account
configuration’s prerequisites. For example, for a requirement of the
product line (R4) which specifies that automatic windows only can be
selected from rooms which are not configured to have air conditioning.
A constraint must prevent Window elements with their rooms associ-
ated to the Air Conditioning feature being configured as Automatic
Windows.

Therefore for our case study, regarding the requirement (R1), a product
line architect could define a constraint between the Window metaconcept
and the Automatic Windows feature, constraintl= [Window, Automatic
Windows, A, D]. The constraint describes that, during the configuration of
a product, product designers can bind Window elements, for example the
mainRoomW2 with the feature Automatic Windows (see Figure[4.13). Another
constraint can be created between the Door metaconcept and the Lock Door
Control feature, constraint2= [Door, Lock Door Control, A, D]. The
constraint describes that product designers can bind Door elements with
either the feature Keypad or the feature Fingerprint. Figure [4.14] presents
these constraints. In Chapter [5[we present the constraint models we created
for our Smart-Home systems’ SPL.

House Floor (<<RootFeature>>)
-name : String -name : String Facilities

-author : String * |-stage : int

ow ner : String .

L ¥ o constraint? /<<FeatureGroup>> <<FeatureGroup>>
-buildingArchitect N String At Lock Door Control Environmetnal Control
-facilitiesDesigner : String *.ro0 i [0..1] [0.1]

-softw areArchitect : String

Room

- <<GroupedFeature>> <<GroupedFeature>>
-name : String

-doors Keypad Air Conditioning
Door <<GroupedFeature>> (<<GroupedFeature>>)
Fingerprint Automatic Windows

-name : String
” -window s

Window

-name : String constraintl

Figure 4.14: Constraint Model Example.

113

Semantics of constraints can be different. For example, a product line ar-
chitect could also define a constraint between the Room metaconcept and
the Automatic Windows feature, constraint3. The constraint describes
that product designers may bind Room elements with the feature Automatic
Windows to indicate that all the windows in the bound room are automatic
windows. Product line architects can add descriptions to constraints to help
product designers during the creation of bindings. Thus, for constraintl
we added the description: A window may be an automatic window; for
constraint3: All the windows in a room may be automatic windows.

4.4.3 The Cardinality Property

To fulfill the requirement R2 presented before, which specifies that only (max-
imum) one window can be automatic, our approach includes the definition
of the cardinality property (A).

The cardinality property has a similar form to feature cardinality. We define
the cardinality as a UML-like cardinality A = [i..j], where ¢ <= j, i and j
are natural numbers, and j can be denoted by * to express an unbounded
number. Cardinality (A) adds semantics to a constraint C' = [M, F, A, D]
by expressing the fact that the designer can create a restricted number of
bindings between model elements that conform to M and the feature F' (a
number between ¢ and j).

The requirement (R2) is an example where cardinality is required to limit
the number of bindings among model elements and features. This indicates
that only (maximum) one window can be automatic.

The next two sub-sections present the semantics of the cardinality property
in a constraint. The semantics depend on the type of feature included in the
constraint, 4.e. group, grouped or solitary. The introduction of the cardinality
property particularizes the cardinality of the original features in the feature
model.

Cardinality on Solitary and Grouped Features.

In a constraint C' = [M, F, A = [i..j], D] where F is a solitary or grouped
feature, the meanings of ¢ and j are respectively the minimum and maxi-
mum number of model elements that conform to M that can be bound to F'

114

For example, if a product line architect wants to restrict to 0 or 1 the num-
ber of automatic windows, s/he must add the cardinality A = [0..1] to the
constraintl presented in Figure Thus, maximum one window could
be automatic, e.g. the mainRoomW2 (see Figure [4.13).

Cardinality on Group Features.

In a constraint C' = [M, F, A = [i..j], D] where F' is a group feature, the
meanings of ¢ and j are respectively the minimum and maximum number of
features grouped by F' that can be bound to a particular model element that
conforms to M.

For example, for a requirement of the product line specifying that lock doors
control can be managed by using either keypad or fingerprint, the product line
architect creates a constraint using the Room metaconcept and the Lock Door
Control feature, constraint2= [Door, Lock Door Control, A, D] (see Fig-
ure [1.14)). The architect sets the cardinality A = [0..1], constraining to zero
or one the number of grouped features (Fingerprint, Keypad) that can be
bound to a Door element. Thus a door, e.g. the 1livingRoomD1 (Figure[1.13)),
can be bound to only one of the features Keypad or Fingerprint.

When a group feature F' has the cardinality [n..m], the cardinality of a con-
straint C' = [M, F, A, D] has to be inside the limits of the cardinality of F.
It implies that for A = [i..j], i > n and j < m. This ensures that constraint
models are consistent with feature models used for their construction.

4.4.4 The Structural Dependency Property

The structural dependency property D in a C' = [M, F, A, D], denotes con-
ditions that model elements have to satisfy in order to be bound to specific
features. An example from requirement R3 presented before is: automatic
windows must have sensors. In this case, the model elements we identi-
fied in the conditions are Window and Sensor, and the feature is Automatic
Windows. Thus, to bind a Window element to the Automatic Windows fea-
ture, allowed by the constraintl, the Window element should have a Sensor
element.

Another example is a requirement specifying that only one room can have
automatic windows. This requirement particularizes the requirement (R1),

115

specifying that windows must be localized in the same room. Then, only
Window elements from the same Room element can be bound to the Automatic
Windows feature.

We also use the dependency property to describe dependencies between bind-
ings. For example, the requirement (RR4), which specifies that automatic win-
dows only can be selected from rooms which are no configured to have air
conditioning, implies that a Window element can be bound to the Automatic
Windows feature only if the Room element where the window is located is not
bound to the Air Conditioning feature.

We express the value of the property D as a set of OCL sentences. For
example, for the requirement (R3) a product line architect must set the
structural dependency property of the constraintl to D = {sensor —
notEmpty () }.

4.4.5 The Constraint Metamodel and The Binding
Metamodel

The Constraint Metamodel.

We have created a constraint metamodel to facilitate the creation of con-
straint models. Our constraint metamodel is based on our feature meta-
model (see Figure [1.8)). We extended its semantics to include the constraints
for managing binding models.

Figure 4.15| presents our constraint metamodel. The main new concepts and
attributes added to our feature metamodel are the following:

e GroupConstraint. It allows us to create constraints including group
features.

e Constraint. It allows us to create constraints including solitary or
grouped features.

e fineMin and fineMax attributes. They allow us to relate the cardinal-
ity property to constraints.

e OCLExpression. It represents the structural dependency property of
constraints.

116

e Metaconcept. It represents metaconcepts related to constraints.

Feature
-name : String
-selected : Boolean | 1 -parentFeature
Ay
[[]
RootFeature GroupedFeature SolitaryFeature
-min : int
-children|* -feature|1 smex - int
FeatureGroup -parentFeature
-name : String 1
-min : int *
-max : int Cointainable ByF
-children
* -constraints -feature 1 -constraints | *
GroupConstraint .ﬂ%ionsv Constraint
-min : int OCLExpression -min @ int
-max : int - - -max : int
-metaConcept : String -expression : String -metaConcept : String
-description : String -description : String
-expressions’l\ *

Figure 4.15: Constraint Metamodel.

Thus, in a constraint C = [M,F, A D], C conforms either to
GroupConstraint or Constraint, M conforms to MetaConcept; F' con-
forms to either Grouped or CointainableByF (Group or Solitary), i and
J (from A = [i, j]) conforms to fineMin and fineMax, and D conforms to
OCLExpression.

The Binding Metamodel.

To introduce the concept of binding, we create a binding metamodel, Fig-
ure [£.16] This metamodel extends our constraint metamodel with concepts
for binding model elements to features. Thus, associated to a RootFeature,
a set of Configurations can be created. A Configuration groups a set
of bindings between Features and model elements. We maintain the in-
formation of model elements as properties of the Binding metaconcept,
metaconceptName and elementName.

117

RootFeature Configuration| -bindings Binding

*

-name : String -metaconceptName : String

J7 -elementName : String
1

Feature -configuration

-name : String

-feature
-selected : Boolean

1

Figure 4.16: Binding Metamodel.

4.4.6 Validating Binding Models against Constraint
Models

We say a binding B = [E, F}] satisfies a constraint C' = [M, Fy, A, D] when E
conforms to M, Fy = F» and B satisfies the restrictions defined by the proper-
ties A and D. We note this relationship B - C. For example, binding3 from
Figure |4.13| satisfies the constraintl from Figure because mainRoomW2
conforms to Window and B satisfies the restrictions defined by the properties
A and D of the constraintl. The validation of a binding model against a
constraint model implies that every existing binding satisfies one constraint
in the constraint model.

We validate existing bindings in a binding model automatically against
a set of OCL-type sentences that we generate from each constraint in a
constraint model. For example, if the feature involved in the constraint
C' = [$metaConcept, $feature, [$fineMin, $fineMax], D] is a grouped or
solitary feature, we generate the sentence in Listing[4.1] The dollar symbol $
denotes variables and the operator aCollection.between(a,b) is equivalent
to the expression (aCollection.size>a) && (aCollection.size<b).
Listing presents the particular sentence generated for the
constraint= [Window,Automatic Windows, [0..1],D], where D = bind-
ings.select(b|b.elementName=="mainRoomW1").between(0,0). In this case
D specifies that cannot exists any binding where the mainRoomW1 is involved.

For the generation of OCL-type sentences we have created model-to-text
transformation rules. These transformation rules generate Check expres-
sions. Check is a language included in the 0AW framework which allows us
to validate models against OCL-type expressions [OAW09a]. We generate

118

= W DN =

CU k= W N =

Context Configuration inv:
bindings.select (b|b.feature.name=—$feature and

b.metaConceptName=—$metaConcept).between($fineMin , $fineMax) and $D;

Listing 4.1: Example of a Generated OCL-Type Sentence.

Context Configuration inv:
bindings.select (b|b.feature.name=="Automatic_Windows"
and b.metaConceptName—"Window").between (0 ,1)

and bindings.select (b|b.elementName—"mainRoomW1").between (0 ,0);

Listing 4.2: Example of a Generated OCL-Type Sentence.

Check expressions from the constraint models we create using the constraint
models creator that we present in Chapter [5. Therefore, product designers
are able to validate binding models against the generated Check expressions.
We present details of the model-to-text transformation rules in charge of cre-
ating Check expression in Appendix [A] In Chapter [5] we present a complete
example of the staged configuration and derivation of Smart-Home systems
of our MD-SPL. This example includes examples of the generated Check
expressions for our constraint models.

4.5 Core Assets Development and Product
Derivation

We have introduced metamodels and feature models as the core assets to
express variability and configure products. Similar to many other MD-SPL
approaches, we use model transformation rules as the main core assets to
derive product line members.

In the next two subsections we present (1) the transformation rules we have
created for our case study and (2) the mechanism we use to create decision
models, i.e., models where we relate the created transformation rules to
features configurations and we define the required execution ordering of such

119

transformation rules to derive configured products.

4.5.1 Rule Transformations in the Smart-Home sys-
tems’ SPL

As we introduced before (see Figure [{.1] and Figure [4.11)), the rule transfor-
mations we have created for our case study are used in four stages. The first
set of rules is defined from the domain metamodel to the facilities metamodel.
They are created taking into account the facilities feature model. The second
set is defined from the facilities metamodel to the components metamodel.
The third set is defined from the components metamodel to the architecture
metamodel. These, in turn, are created taking into account the architec-
ture feature model. Finally, the fourth set of rule transformations includes
model-to-text transformations which produce the source code of product line
members.

First Stage: Domain-to-Facilities Transformation Rules.

The purpose of these transformation rules is adding to domain models infor-
mation about Smart-Homes’ facilities. These are horizontal model-to-model
transformations. It means, they transform models inside the same abstrac-
tion level, the application domain abstraction level, but adding concerns
related to Smart-Homes’ facilities.

In this stage we create two sets of transformation rules: the base and
the specific ones. On the one hand, base transformation rules do not
depend of any variant of the product line. Thus, they are always ex-
ecuted during the transformation process. For instance, we create a
base transformation rule to transform DomainMetamodel: :House elements
into FacilitiesMetamodel: :House elements. Similarly, we create a base
transformation rule to transform DomainMetamodel: :Floor elements into
FacilitiesMetamodel: :Floor elements.

On the other hand, we create specific transformation rules taking into ac-
count the possible features which can affect the transformation process. In
this case, those are features from the facilities feature model. For instance,
we create two transformation rules to transform DomainMetamodel: :Window
elements. The first one, taking into account the Automatic Windows fea-

120

ture, creates FacilitiesMetamodel: : Automatic (Window) elements and one
FacilitiesMetamodel: :WindowsController element for each created Room
element. The second one, taking into account the Air Conditioning fea-
ture, creates FacilitiesMetamodel::Manual (Window) elements and one
FacilitiesMetamodel: :AirConditioning element for each created Room
element. Therefore, if the feature Automatic Windows is selected the first
transformation rule must be executed; if the feature Air Conditioning is
selected the second transformation rule must be executed.

Similarly, we create two different transformation rules to trans-
form DomainMetamodel::Door elements. The first one cre-
ates FacilitiesMetamodel::Door elements containing each one
a DomainMetamodel::Fingerprint element; the second one cre-
ates FacilitiesMetamodel::Door elements containing each one a
DomainMetamodel: :Keypad element. The model-to-model and the
model-to-text transformation rules we have created for our case study are
available in the web-site of our research group under the link MD-SPL
Engineering [Sof09].

Second Stage: Facilities-to-Components Transformation Rules.

The second set of transformation rules are defined from the facilities meta-
model to the components metamodel. These are vertical model-to-model
transformations since they transform models between different abstraction
levels. The source abstraction level is the application domain abstraction
level, the target one is the abstraction level including concerns related to
software components.

We create only base transformation rules given that there are no feature
models affecting this transformation stage. However, in this particular case,
not all the base transformation rules are always executed. Their execution
depends of the facility models to be transformed. For instance, only if exists
at least one FacilitiesMetamodel: :WindowsController element, then a
base transformation rule in charge of creating a component which serves as
controller for the automatic windows is executed.

Figure presents an example of a derived component model. This model
is presented using the UML2 syntax. Periodic components in this model
can (or cannot) become Periodic components after the next transformation
stage, which creates architecture models. The components inside dashed

121

squares are not always created. The conditions to create such components
are the following:

e The rule to create the WindowController component, its
ports and interfaces, is only executed if exists at least one
FacilitiesMetamodel: :WindowsController element in the source
model.

e The rule to create the AirConditioningController component,
its ports and interfaces, is only executed if exist at least one
FacilitiesMetamodel: :AirConditioning element in the source
model.

<<Service>>

Window
4) i)
|| <<Periodic>> '
IWindow Windows
Controller
| = t | IWindow s Controller
o L - _ _ _ _)
<<Service>> <<Service>> <<Service>>
House Floor Room
i%)_/ Q
IFIoor IRoom
S <<Service>>
@ DoorLock
IHopise Controller
_ | = = = N IDoor
(
| L .
<<Periodic>> : <<Service>>
l AirConditioning FQ <<Se(;\slce>> Door
| Controller | 1ACController

IDoorController

Figure 4.17: Example of a Smart-Home Systems’ Components Model.

The GUI component corresponds to the Graphical User Interface (GUI) of
the Smart-Home systems. This component requires services of all the other
components. In this figure we only include one of its Required interfaces,
IDoorController. In Chapter[5|we present a complete example of the staged

122

configuration and derivation of Smart-Home systems of our MD-SPL. This
example includes the description of a particular component model derived
for a particular configuration.

Third Stage: Components-to-Architecture Transformation Rules.

The purpose of these transformation rules is adding to component models
information about the type of the components, periodic or service, and their
instantiation mode, on nvocation or on deployment. These are horizontal
model-to-model transformations given that models are transformed inside
the same abstraction level.

In this stage we create base and specific transformation
rules. For instance, we create a base transformation rule
to transform ComponentMetamodel: :Interface elements into
ArchitectureMetamodel: : Interface elements.

We create specific transformation rules having into account the possible
features which can affect the transformation process. In this case, those
are features from the architecture feature model. For instance, we create
two transformation rules to transform ComponentMetamodel: :Component
elements. The first one, having into account the Service fea-
ture, creates ArchitectureMetamodel::Service (Component) elements.
The second one, having into account the Periodic feature, cre-
ates ArchitectureMetamodel::Periodic (Component) elements from
ComponentMetamodel: :Periodic elements. Therefore, if the feature
Service is selected the first transformation rule must be executed; if the
feature Periodic is selected the second transformation rule must be exe-
cuted.

Similarly, we create two different specific transformation rules to
transform DomainMetamodel: :Door elements. The first one cre-
ates FacilitiesMetamodel::Door elements containing each one
a DomainMetamodel::Fingerprint element; the second one cre-
ates FacilitiesMetamodel::Door elements containing each one a
DomainMetamodel: :Keypad element.

Fourth Stage: Model-to-Text Transformation Rules.

The model-to-text transformation rules produce the source code of prod-

123

uct line members. These transformation rules have as input an architecture
model and a facilities model. On the one hand, the architecture model is
transformed into the source code of OSGi components (Bundles) as the pre-
sented in Figure[4.17, For this transformation we reuse pieces of code already
written. Thus, the transformation rules are only in charge of connecting the
already created pieces of code representing components.

On the other hand, the facilities model is transformed into an extra OSGi
component, HouseStructure, which manages the structural design of the con-
figured Smart-Home. Thus, if the Smart-Home has been configured to have
one floor and two rooms, the HouseStructure component maintains this struc-
ture to provide the required services to the configured structural element.
These model-to-text transformation rules are available along with the model-
to-model transformation rules in the web-site of our research group under the
link MD-SPL Engineering [Sof(9].

Figure presents an example of the Graphical User Interface correspond-
ing to one configured Smart-Home System. The Smart-Home system was
configured to have one floor with one room, the Main Room. This room has
Automatic Windows as Environmental Control. The only door in the Main
Room has Fingerprint as Door Lock Control.

4.5.2 Creating and Using Decision Models

In the previous section we explained that we create specific transformation
rules having into account the possible features which can affect a model
transformation stage. For instance, in the first transformation stage those
are features from the facilities feature model.

Given that one objective of our MD-SPL approach is to automate completely
the process of transforming models, we have the need of using a mechanism
which allows selecting and executing automatically the base transformation
rules and only some specific transformation rules. These are specific rules
related to selected features in feature configurations. This mechanism must
also ensure the correct execution ordering, also called execution scheduling, of
the selected transformation rules. By correct we mean an execution ordering
which allows deriving the desired configured product.

We propose the use of explicit decision models in the context of MDD as

124

E]E

&)
Windows
A Window Automatic Open/Close
[- H ome mainRoomW1 | |
- mainRoomW2 | [
Floors Rooms
1. floor 1, temperature=20,7 Name: Main Room
Current Temperature: 17.0 g E] @ @
Desired Temperature: 19.0
Minimun Temperature: 20.0 /
Maximun Temperature: 21.0 II
(<< Ji =7 |

(Update Data Room / |
(Environmental Control

Doors

Door Open/Close
door 1

Refuse Fingerprint

[Cancel |

Figure 4.18: Example of a Smart-Home System.

a mechanism for composition of transformation rules based on feature con-
figurations [ARCR09]. This mechanism can be used in conjunction with
transformation languages which provide facilities for composition of trans-
formation rules. In particular we used the 0AW modeling framework and the
Xtend and Xpand model transformation languages, which provide a mech-
anism based on Aspect-Oriented Programming (AOP) for composition of
transformation rules (see Section [2.5.2)).

Our decision models are useful to capture (1) the relationships between fea-
tures and specific transformation rules, and (2) the required execution order-
ing of transformation rules to create products based on feature configurations.
Our basic idea to obtain a final execution scheduling is to construct a base-
line ordering, which is modified according to valid feature configurations. A
base-line ordering describes a sequence of calls to base transformation rules.
Our mechanism to adapt the base-line ordering is supported by AOP ideas.
We capture in decision models information about aspects that must be woven
with a base-line ordering to adapt it. Aspects maintain the information of
what base transformation rules must be intercepted (joinpoints) and what
specific transformation rules must then be executed (advices) according to

125

Table 4.1: Examples of Conditions on Feature Configurations which Imply
to Adapt a Base-Line (Transformation Rules’) Ordering

Condition Joinpoint Advice

Feature One Selected Rule A Rule A’
Feature Two Unselected Rule B Rule B’

Feature One Unselected
and
Feature Three Selected Rule A Rule C

defined conditions on feature configurations.

Table presents examples of conditions on feature configurations that we
can capture in our decision models. These conditions imply modifying a
base-line ordering. In the first column we present examples of conditions,
in the second column we present the name of the base rule in the base-line
ordering to be intercepted (joinpoint), in the third column we present the
name of the specific rule (advice) to be executed if the condition appears
in a feature configuration. Thus, if the Feature One appears Selected in
a feature configuration, no matter the other features, the Rule A must be
intercepted and the Rule A’ must be executed instead. If the Feature Two
appears Unselected in a feature configuration, no matter the other features,
the Rule B must be intercepted and the Rule B’ must be executed instead.
We can also capture more complex conditions. For instance, in row three,
we express that if the Feature One appears Unselected and the Feature
Three appears Selected in a feature configuration, no matter the other
features, the Rule A must be intercepted and the Rule C must be executed
instead.

For example in the context of our case study, during the derivation of
a Smart-Home system, if the feature Automatic Windows is selected in a
feature configuration, the base sequence to transform domain models into
facilities models must be modified. This modification is done in a de-
fined point to include an alternative step where the transformation rule
in charge of creating automatic windows is called. Figure 4.19) presents
a small part of our decision model to transform domain models into fa-
cilities models. We first define a base-line ordering which includes the
execution of the transformation rules domainFloorsToFacilitiesFloors

126

and domainWindowsToFacilitiesWindows. We after create an aspect
which indicates that if the feature Automatic Windows is selected in
a feature configuration, the execution of the base transformation rule
domainWindowsToFacilitiesWindows must be intercepted and the specific
transformation rule windowsToAutomaticWindows must be then executed.

<<Model2Model>>
domainModelToFacilitiesModel —lﬁrstBaseRule

‘ domainFloorsToFacilitiesFloors ‘

next

feature = Automatic Windows |
SelectionType = SELECTED |

specificRule-1 Jjoinpoint ZspectSS e
‘ utomatic Window,
‘ domainFloorsToFacilitiesFloors

| advice

domainWindowsToFacilitiesWindows

Figure 4.19: Example of a Decision Model to Create Smart-Home Systems.

Our decision models also allow us to capture the different transformation
stages included in a product line derivation process. For our case study these
are four transformation stages, from domain models until to obtain Java
source code. This type of composition, which compose transformation rules
using the output model of a rule as the input model of another rule is called
external composition [Wag08a]. Figure presents the part of our decision
model capturing the external composition required for deriving Smart-Home
systems given our four transformation stages. We create this model using
the decision model editor we present in Chapter 5] In Section [£.7] we discuss
limitations of our mechanism to derive products based on decision models.

The Decision Metamodel.

Figure presents the decision metamodel we have created to cre-
ate decision models. A model transformation Workflow contains
a sequence of TransformationPrograms. A TransformationProgram
is either a Model2Model or a Model2Text transformation. Each
TransformationProgram uses a set of TransformationRules and a set of
Aspects to perform its process of transformation. As introduced before, we
classify TransformationRules in Base and Specific ones. An Aspect spec-

127

[<<Transformation Workflow>> | firstModelTransformation
SmartHomeWorkflow

“domainModel
<<Model2Model>> —

domainModelToFacilitiesModel 1 mpu

next ‘ output facilitiesModel

<<Model2Model>> input
facilitiesModelToComponentModel

]

next output , ;componentsModel)

<<Model2Model>> input
componentModelToArchitectureModel|

next l_OWM. architectureModel)

<<Model2Text>> input .
modelsToJava input

\ output

]

t

JavaSourceCode

|

Figure 4.20: Decision Model including External Composition.

ifies its advice, which is a Specific transformation rule, and its joinpoint,
which in turn is a Base transformation rule. A Workflow must have into
account a set of ExecutionConditions, which depends of a set of Features
with a particular SelectionType, SELECTED or NOT SELECTED. Finally, an
Aspect must be woven if its executionCondition appears in a feature con-
figuration.

Creating Executable Model Transformation Workflows from Deci-
sion Models.

As we mentioned before, we use the 0AW modelling framework and the
Xtend and Xpand model transformation languages to implement our ap-
proach and case study. We then had the need of transforming our deci-
sion models into 0AW workflows which include the required instructions (1)
to execute model transformations in different stages (external composition),
and modifying a base-line ordering of a set of transformation rules (inter-
nal composition [Wag08a]). For transforming our decision models into 0AW
workflows we created a model-to-text transformation. This model-to-text
transformation is presented in Appendix[A] We use this model-to-text trans-
formation in the decision models editor (Chapter [5)) to provide the facility of

128

Workflow -modelsJ,*
| -fileConfiguration : String -r’nodelTransformationi* -sourceModels, Model
-name : String 1 - [1..* | -alias : String
TransformationProgram | -next -xmiFile : String
-first | _name - String 0.1 -name : String
-transformationRules| * 2 -targetModel | 1
TransformationRule -aspects |, *
-fileName : String Aspect
-path : String T
-name : String -confomTo 71
i Model2Text Model2Model Metamodel
-targetPath : String
Base Specific
-identifier : String
-ruleName : String
-advice | 1
L
FjoinPoint 1
: i <<enumeration>>
-executionConditions 1_yexecutionCondition Feature SelectionType
. ExecutionCondition -nameFeature : String yp
_name : Stri JariantStates | -selected : SelectionTy SELECTED
name : String varian S1a fs selected : SelectionType NOT_SELECTED

Figure 4.21: Decision Metamodel.

transforming decision models into executable 0AW workflows.

Listing presents a part of a sample generated 0AW work-
flow. This workflow specifies that the transformation rule
domainWindowsToFacilitiesWindows is intercepted (line 2-3 and line
9) and the transformation rule adviceWindowsToAutomaticWindows is
executed (line 5) if the feature Automatic Windows is selected in a feature
configuration (line 1).

4.6 Deriving Products based on Constraint
Models and Binding Models

In Section [£.5.2] we introduced decision models in the context of MDD as our
mechanism for composition of transformation rules based on feature configu-
rations. We discussed how our decision models are useful to capture (1) the
relationships between features and specific transformation rules, and (2) the
required execution ordering of transformation rules to create products based

129

O~ O Tk W N =

= = =
N = O O

<Feature selected="Automatic_Windows">
<transformationAspect adviceTarget=
"domainWindowsToFacilitiesWindows ">
<extensionAdvice
value="adviceWindowsToAutomaticWindows" />
</transformationAspect>
</Feature>

<transform id="domainWindowsToFacilitiesWindows">
<invoke value—"domainWindowsToFacilitiesWindows" />
</transform>

Listing 4.3: Example of a Generated oAW Workflow.

on feature configurations.

Our basic idea to obtain a final execution scheduling was to construct a
baseline ordering, which is modified according to valid feature configura-
tions. Thus for example, during the derivation of a Smart-Home system, if
the feature Automatic Windows was selected in a feature configuration, the
base sequence to transform domain models into facilities models was mod-
ified to replace the rule domainWindowsToFacilitiesWindows by the rule
windowsToAutomaticWindows.

Binding models imply to modify a base line ordering having into account
not only features from feature configurations, but also bindings from binding
models. Thus for example, if any Window element is bound to the feature
Automatic Windows in a binding model, the base sequence to transform
domain models into facilities models must be modified. This modification
implies to replace the rule domainWindowsToFacilitiesWindows by the rule
particularWindowsToAutomaticWindows. This rule must transform only
the DomainMetamodel: :Window elements, which are bound to the Automatic
Windows feature, into FacilitiesMetamodel:Automatic window elements.
For instance, from the binding model presented in Figure [4.13] given that the
mainRoomW2 is the only window bound to the feature Automatic Windows,
this is the only window that must be transformed into an automatic window.

Table presents examples of conditions on binding models that we can

130

Table 4.2: Examples of Fine-Grained Conditions on Feature Configurations
which Imply to Adapt a Base-Line (Transformation Rules’) Ordering

Condition Joinpoint Advice

Exists at least one binding By = [E4, F1]
that satisfies the constraint
Cl = [Afl, Fl, A,D] Rule A Rule A’(El)

Feature Two Unselected and
exists at least one binding By = [Ea, F3]
that satisfies the constraint
CQ = [Mg, FQ, A,D] Rule B Rule B’(E2)

capture in our extended decision models. These conditions imply modifying
a base-line ordering. In the first column we present examples of conditions,
in the second column we present the name of the base rule in the base-line
ordering to be intercepted (joinpoint), in the third column we present the
name of the specific rule (advice) to be executed if the condition appears
in a binding model. We express conditions in terms of bindings that satisfy
constraints. Thus, row one in Table expresses that if exists at least one
binding B; = [E1, F1] that satisfies the constraint C; = [M;, F1, A, D] in a
binding model, the Rule A must be intercepted and the Rule A’ must be
executed instead using F; as parameter. We can also capture conditions
which have into account not only bindings but also selection of features. For
instance, in row two, we express that if the Feature Two appears Unselected
and exists at least one binding By = [Es, F5] that satisfies the constraint
Cy = [My, Fy, A, D] in a binding model, the Rule B must be intercepted and
the Rule B’ must be executed instead using Fs as parameter.

Figure presents a small part of our decision model to trans-
form domain models into facilities models having into account bind-
ing models. Similarly as presented before in Section we
first define a base-line ordering which includes the execution of
the transformation rules domainFloorsToFacilitiesFloors and
domainWindowsToFacilitiesWindows. We after create an aspect in-
dicating that if exist bindings satisfying the constraintl, which
describes that product designers can bind Window elements with
the feature Automatic Windows, the execution of the base trans-
formation rule domainWindowsToFacilitiesWindows must be inter-

131

cepted. After the interception is done, the specific transformation rule
particularWindowsToAutomaticWindows must be then executed. This rule
queries the binding model used to configure the product which is derived,
and transforms only the Window elements bound to the Automatic Windows
feature. In Section .7 we discuss limitations of our mechanism to derive
products based on decision models.

<<Model2Model>>
domainModelToFacilitiesModel lﬁrstBaseRule

‘ domainFloorsToFacilitiesFloors ‘

next

Feature = Automatic Window
Metaconcept = Window

domainWindowsToFacilitiesWindows

specificRule-1 Jjoinpoint Aspect>=
‘ utomatic Window,
particularWindowsToAutomatic Windows.

| advice

Figure 4.22: Example of a Decision Model to create Smart-Home Systems
Having into Account Binding Models.

4.6.1 The Extended Decision Metamodel.

We extended the decision metamodel that we presented before in Figure[4.21
Figure presents our decision metamodel which allows us for deriving
products having into account binding models.

We still include the concepts of Workflow, TransformationProgram,
TransformationRule and Aspect. We modify, however, the con-
cept of ExecutionCondition. In this extended decision metamodel an
ExecutionCondition depends of a set of Variants, which we specialized
in CoarseCondition and FineCondition. A CoarseCondition represents a
feature that can be SELECTED/NOT SELECTED. A FineCondition represents
a constraint.

Thus, based on a binding model, we can indicate that a Specific trans-
formation rule must be woven with a Base transformation rule when exist
bindings that satisfy the constraint denoted by a FineCondition element.
For instance, we can indicate that a specific transformation rule must be

132

woven with a base transformation rule when the feature Air Conditioning
appears bound to a Window element.

Workflow o tions "T‘Ode's\lf
| -fileConfiguration : String . -sourceModels Model
-name : String 1 — 1.* |-alias : String
first TransformationProgram | -next -xmiFile : String
- - Stri 0..1 -name : String
-transformationRulegy*——= name : String
TransformationRule -targetModel | 1
-fileName : String ts] * /—L formT
_path : String -aspects 4-conformiTo
Aspect Model2Text Metamodel
T -name : String| |-targetPath : String

Base Specific
-identifier :_Sstrif)g -advice Model2Model <<enumeration>>
-ruleName : String 7 SelectionType

1 -joinPoint . SELECTED
-executionConditions) N Variant NOT_SELECTED
. —|ExecutionCondition ~executionCondition -nameFeature : String
-name : String -variantStates 1..* T
[]
CoarseCondition FineCondition

-selected : SelectionType | |-metaConcept : String

Figure 4.23: Decision Metamodel Having into Account Binding Models.

4.6.2 Creating Executable Model Transformation
Workflows from Decision Models and Constraint
Models.

As we presented before, we transform our decision models into 0AW work-
flows which include the required instructions to (1) execute model transfor-
mations in different stages (external composition), and modifying a base-line
ordering of a set of transformation rules (internal composition).

For transforming our decision models into 0AW workflows having into ac-
count, constraint models and binding models, we modified the model-to-
text transformation we introduce before in Section [£.5.21 This model-to-
text transformation allows us for generating executable oAW from decision
models where we indicate that binding models must by query locking for

133

[N

—
— O O 00~ O Ut = W

—

<fineFeature toFeature="Automatic" boundMetaconcept—"Window">
<transformationAspect adviceTarget=
"domainWindowsToFacilitiesWindows ">
<extensionAdvice
value="particularWindowsToAutomaticWindows" />
</transformationAspect>
</fineFeature>

<transform id="domainWindowsToFacilitiesWindows">
<invoke value—"domainWindowsToFacilitiesWindows" />
</transform>

Listing 4.4: Example of a Generated oAW Workflow.

bindings that satisfy particular constraints. Listing presents a part of a
generated 0AW workflow. This workflow specifies that the transformation
rule domainWindowsToFacilitiesWindows is intercepted (line 2-3 and line
9) and the transformation rule particularWindowsToAutomaticWindows is
executed (line 5) if exist bindings that satisfy the constraint created between
the Automatic Windows feature and the Window metaconcept (line 1).

We created the oAW component which allows us for querying binding models
locking for bindings that satisfy a particular constraint. The line 1 from
Listing shows a call to our oAW component. The component queries a
binding model which has been previously loaded in the execution context of
an 0AW workflow. The model-to-text transformation we created to generate
0AW workflows from decision models is available in Appendix [A]

4.7 Identified Limitations

In previous sections we discussed how our decision models are useful to cap-
ture (1) the relationships between features and/or bindings, and specific
transnformation rules, and (2) the required execution ordering of transforma-
tion rules to create products based on feature configurations and/or binding
models. Our idea to obtain a final execution scheduling was to construct a
baseline ordering, which is modified according to execution conditions defined

134

in terms of feature configurations and/or binding models.

We have identified at least three limitations in our strategy of relating exe-
cution conditions to specific transformation rules. Two of them occur when
conditions only take into account feature configurations (see Table . The
other one occurs when conditions take into account not only feature config-
urations but also binding models (see Table [4.2)).

Features Combinatory.

The first limitation of our approximation lies in the fact that the number of
valid feature configurations that can be created based on one feature model
is big.

In our current approach we do not include mechanisms to guarantee neither
that for all possible valid feature configurations there is a set of transfor-
mation rules in charge of generating a runnable product, nor that in our
decision models we include execution conditions that take into account each
valid feature configuration. Currently, this is a responsibility of product line
architects.

Features Interaction.

A feature interaction occurs when a feature modifies or influences another
feature in defining overall system behaviour [CKMMO3|. For example, as-
sume a feature model including three features, A, B and C. If the feature A
interacts with the features B and C, the selection in a feature configuration
of A along with B will imply to adapt a base line ordering of transformation
rules, the selection of A along with C will imply a different adaptation, and,
it will be required another adaptation when only the feature A is selected.

The problem of dealing with feature interactions is an important problem
which currently deserves special attention in the field of feature model-
ing [Rei09).

In our current approach, we take into account that the presence of one par-
ticular feature in different valid feature configurations may imply different
adaptations of a baseline ordering of transformation rules. For instance, in
Table the presence of the Feature One in two different possible feature
configurations implies a different adaptation. In row one we specify that if
the Feature One appears Selected in a feature configuration, no matter

135

the other features, the Rule A must be intercepted and the Rule A’ must be
executed instead. In row three, we express that if the Feature One appears
Unselected and the Feature Three appears Selected in a feature config-
uration, no matter the other features, the Rule A must be intercepted and
the Rule C must be executed instead.

Nevertheless, it is responsibility of product line architects (1) to identify fea-
ture interactions, (2) to define transformation rules for the different scenarios
derived from feature interactions, (3) to define execution conditions for such
scenarios and (4) to create and relate transformations rules to the defined
execution conditions. Our approach does not provide mechanisms to validate
that all possible feature interactions are taken into account.

Bindings Interaction.

When conditions take into account binding models (see Table , our ap-
proach allows product line architects to create decision models where deci-
sions consider bindings satisfying only one constraint. For instance, row one
in Table expresses that if exists at least one binding B, = [E}, F1] that
satisfies the constraint Cy; = [M;, F1, A, D] in a binding model, the Rule A
must be intercepted and the Rule A’ must be executed instead using E; as

parameter. In this case we only consider bindings satisfying one constraint,
Ch.

To understand why we cannot consider bindings that satisfy more than one
constraint, please assume the following scenario. Suppose we have a condition
expressing that if exists in a binding model at least one binding By = [F1, Fi]
that satisfies the constraint C; = [My, Fy, A, D] and at least one binding
By = [E,, F] that satisfies the constraint Cy = [Ms, F», A, D], then the Rule
B must be intercepted and the Rule B’ must be executed instead using Ej
and F, as parameter. Now suppose we have a binding model with two
bindings that satisfy Cy, By = [E4, Fi] and By, = [Ey/, Fi], and two bindings
that satisfy Cy, By = [Es, Fy| and By = [Ey, F3|. In this case, it is not
possible to know the ordering of the parameters to execute the Rule B’. It
means, we are not able to know if we must invoke Rule B’(Fj, E,), Rule
B’ (Ey, Ey) or Rule B’(E, Ey).

Therefore, if for each condition we consider bindings satisfying several con-
straints, we cannot guarantee that the specific rules (advices) will be executed
with the suitable parameters.

136

4.8 Summary

In this chapter we first introduced a case study of a Smart-Home systems’
SPL. We used this case study through the whole chapter for explaining the
mechanism we used to create MD-SPLs. We presented the base mechanisms
we use in the processes of (1) expressing variability and configuring prod-
ucts, and (2) deriving configured products. These mechanisms included the
use of metamodels and feature models for expressing variability and con-
figuring products, and decision models to derive product line members. We
presented the MDD mechanisms we propose in this thesis to improve the cre-
ation of MD-SPLs. These mechanisms include the use of constraint models
which include the cardinality and structural properties, binding models and
more expressive decision models. We have also described the metamodels
we created to support the creation of constraint, binding and decision mod-
els. We discussed our general strategy for validating binding models against
constraint models and for generating executable model transformation work-
flows from decision models, which allow us to derive product line members.
Finally, we presented limitations of our approach for deriving products based
on decision models.

137

Chapter 5

Validation and Tool Support

5.1 Introduction

Section [5.2] presents a validation of FieSta, our MD-SPL approach, using
examples of products that we are able to derive by means of our MD-SPL

mechanisms. We present results of configuring and deriving products of two
MD-SPLs.

Then, we present our implementation strategy for FieSta. The implemen-
tation strategy defines the general process for the implementation of our
MD-SPL engineering mechanisms for creating product lines. Our implemen-
tation strategy includes (1) the required activities to create products, and (2)
the tools we have created to support these activities. We present the tool
support for expressing variability and configuring products, Section and
the tool support for deriving configured products, Section

Our tool support assists product line architects and product designers during
the whole development lifecycle of MD-SPLs. We provide Eclipse plug-ins to
create MD-SPL projects, feature models, constraint models, binding models,
OCL-type expressions to validate binding models against constraint models,
and decision models. We also provide openArchitectureWare (0AW) com-
ponents to facilitate the processing of binding models and decision models
to derive products. The entire FieSta toolkit, the instructions for installing
it and two case studies, can be found in the web-site of our research group

138

under the link MD-SPL Engineering [Sof09).

For the implementation of our tool support we chose EMF as modeling frame-
work, which means we express all our metamodels based on the Ecore meta-
metamodel (see Section [2). We opted to use oAW as our model transforma-
tion engine. We selected 0oAW because, as presented before in Section [2] this
is a complete MDD framework integrated with Eclipse that makes the read-
ing, instantiation, checking, and transformation of models possible. 0AW has
been used successfully to create SPLs, and there is an active community of
SPL and MDD developers using and improving it.

The UML activity diagram in Figure presents the general overview of the
implementation strategy for FieSta. Domain engineering and application en-
gineering organize the activities. For domain engineering, we built tools to
support product line architects in the creation of a special type of Eclipse
projects, MD-SPL projects. An MD-SPL project includes the required 0AW
and EMF dependencies to create MD-SPLs and predefine a hierarchical fold-
ers structure to manage and centralize the core assets used to derive prod-
ucts. Then, architects can create and manage in a common repository do-
main metamodels, feature models and constraint models, which capture
and express the possible fine-grained variations affecting the product line.
Product line architects also create transformations rules and decision
models, which are transformed into (executable) model transformation
workflows.

During Application Engineering product designers use the variabil-
ity identified and the core assets created during Domain Engineering,
metamodels, feature models, models and model transformation
workflows, to ensure the correct derivation of desired products. Product
designers create domain models and binding models, which must satisfy
the constraint models created before, to configure and derive products.
Finally, designers execute the generated model transformation workflows
using domain models and binding models as inputs, and transformation
rules for processing the inputs.

139

MD-SPL Project +——> Metamodels Transformation
Creation Creation Rules Creation
‘ i

\ Constraint P Model .
Feature Models Models Decision Model || Transformation
Creation Creation Creation Workflow
h \ h Generation

(;J

}

Domain Models Binding Models — g \
Creation Creation Binding Model
Validation
(Model
Transformation
Workflow
Execution

Application Engineering | Domain Engineering

]
!

Product Line
Member
(Java code)

Figure 5.1: Overview of Our Implementation Strategy to Create MD-SPLs.

5.2 Running MD-SPLs

5.2.1 The Smart-Home Systems’ SPL

The SPL we use through this chapter is the SPL of Smart-Home systems that
was introduced in Chapter [4 We present examples of diverse Smart-Home
systems which can be derived from the Small Building in Figure To
derive such Smart-Home systems we reuse a common set of base and specific
transformation rules that we developed as product line architects.

Figure presents the stages to configure and derive products. To configure
diverse Smart-Home systems, on the one hand, facilities designers have three
features from the facilities feature model (see Figure [4.9): Fingerprint,
Keypad and Automatic Windows. On the other hand, software architects two
features from the architecture feature model (see Figure[£.10): Periodic and
Service. We have created specific transformation rules for deriving products
taking into account possible configurations the designers can create. For
instance, we created one specific transformation rule for creating automatic

140

Back Door

= =
Y | B ——

Sk ;\ r I -

/—WindOW—l /—Main Door iWindOW-Z/ ’ H

a. Small Building b. Big Building

Figure 5.2: Examples of Buildings Created by Building Architects.

windows. This transformation rule is reused each time an automatic window
must be created.

In the second configuration stage (see Figure , facilities designers re-
late facilities to structural elements of buildings. For example, the Small
Building can be configured to use Fingerprint in the Main Door as lock
door control and Keypad in the Back Door. Similarly, each window can be
individually configured as Automatic or Manual Window. Table presents
the possible fine-grained configurations a facilities designer can create from
the Small Building taking into account the variants Fingerprint, Keypad
and Automatic Windows. These are sixteen (16) possible Smart-Home sys-
tems.

Table presents the possible configurations a designer can create taking
into account only coarse-grained variations, such as related approaches pro-
pose (see Section[3.6). In this case only four (4) possible Smart-Home systems
can be configured.

In the third configuration stage (see Figure , software architects re-
late software architecture variants to model elements representing software
components. Table presents the possible fine-grained configurations a
software architect can create for the Smart-Home system from row one in
Table (SH-1), taking into account the variants Periodic and Service.
There are four possible Smart-Home systems that can be configured. Thus,
from the Small Building, taking into account the variants Fingerprint,
Keypad and Automatic Windows, and the variants Periodic and Service,
product designers are able to configure sixty four (64) Smart-Home systems.

141

Common
Transformation
Rulles

e =
Building Model Fine-Grained j

Architect v

Conflguratlon, Model
Facilities' Transformation

First Configuration Stage

i

Facilities' D€SI9Ner S
Features l
Second Configuration Stage Facilities
(Model)

Model
Transformation<-

Components
Model % Fine-Grained

Configuratior

— > Model
SOftV.VEN'e Transformation
Architect ==
Architecture ' l
Features
Third Configuration Stage Arcp/ll(tjzztlure
Common l
Model-to-Text || _ Model-to-Text
Transformation Transformation
Rules S

Figure 5.3: Stages to Configure and Derive Products.

Table presents the possible configurations a software architect can create
for the Smart-Home system from row one in Table (SH-1), taking into
account the variants Periodic and Service, but taking into account only
coarse-grained variations. In this case, product designers only can configure
two (2) different Smart-Home systems. Therefore, from the Small Building,
taking into account the variants Fingerprint, Keypad, Automatic Windows,
Periodic and Service, but considering only coarse-grained variations, prod-
uct designers can configure only eight (8) Smart-Home systems.

Using this small example, we showed how the concept of fine-grained con-
figuration allows product designers to extend the scope of MD-SPLs. From

142

Table 5.1: Example of a Fine-Grained Configuration for a Smart-Home Sys-

tem including Smart-Homes’ Facilities

Smart-Home Window-1 Window-2 Main Door Back Door
SH-1 Automatic ~ Automatic Keypad Keypad
SH-2 Automatic Automatic Fingerprint Fingerprint
SH-3 Automatic ~ Automatic Keypad Fingerprint
SH-4 Automatic ~ Automatic Fingerprint Keypad
SH-5 manual manual Keypad Keypad
SH-6 manual manual Fingerprint Fingerprint
SH-7 manual manual Keypad Fingerprint
SH-8 manual manual Fingerprint Keypad
SH-9 Automatic manual Keypad Keypad

SH-10 Automatic manual Fingerprint Fingerprint
SH-11 Automatic manual Keypad Fingerprint
SH-12 Automatic manual Fingerprint Keypad
SH-13 manual Automatic Keypad Keypad
SH-14 manual Automatic Fingerprint Fingerprint
SH-15 manual Automatic Keypad Fingerprint
SH-16 manual Automatic Fingerprint Keypad

Table 5.2: Example of a Coarse-Grained Configuration
System including Smart-Homes’ Facilities

for a Smart-Home

Smart-Home Window-1 Window-2 Main Door Back Door
SH-1 Automatic Automatic Keypad Keypad
SH-2 Automatic ~ Automatic Fingerprint Fingerprint
SH-3 manual manual Keypad Keypad
SH-4 manual manual Fingerprint Fingerprint

eight (8) Smart-Home systems that can be configured using coarse-grained
configurations, we have shown how we can configure sixty four (64) Smart-
Home systems using the concept of fine-grained configuration. These fine-
grained configurations satisfy the constraints defined in the constraint models
of our case study, which capture the possible variability of the MD-SPL.

Regarding the derivation of the configured products, we created transforma-
tion rules that guarantee we can generate valid products from the fine-grained
configurations. We define a valid product as a runnable system that accom-
plish the requirements that product designer specify by means of fine-feature
configurations, or binding models, which satisfy constraint models. How-

143

Table 5.3: Example of a Fine-Grained Configuration for a Smart-Home Sys-
tem including Software Components’ Variants

Windows Doors Lock

Smart- Main Back Controller Controller
Home Window-1 Window-2 Door Door Component Component
SH-1.1 Automatic Automatic Keypad Keypad Periodic Periodic
SH-1.2 Automatic Automatic Keypad Keypad Service Service
SH-1.3 Automatic Automatic Keypad Keypad Periodic Service
SH-1.4 Automatic Automatic Keypad Keypad Service Periodic

Table 5.4: Example of a Coarse-Grained Configuration for a Smart-Home
System including Software Components’ Variants

Windows Doors Lock

Smart- Main Back Controller Controller
Home Window-1 Window-2 Door Door Component Component
SH-1.1 Automatic Automatic Keypad Keypad Periodic Periodic
SH-1.2 Automatic Automatic Keypad Keypad Service Service

ever, taking into account the limitations presented in Section [£.7] it was our
responsibility as product line architects to create the transformations rules.
Our approach does not provide mechanisms to validate that exist transfor-
mation rules to guarantee that valid products are derived from fine-grained
configurations.

Figure 5.4] and Figure 5.5 are examples of the Graphical User Interfaces cor-
responding to one (fine-grained) configured Smart-Home Systems we derived.
The Smart-Home system was configured to have one floor with two rooms,
the Main Room and the Living Room. Figure presents the Main Room
which has Air Conditioning as Environmental Control, and its door has
Fingerprint as Door Lock Control. In this case the product was config-
ured to have the Air Conditioning Controller (software) component as
a Service component. That is the reason why the air conditioning must be
turned on/off manually.

Figure presents the Living Room which has Automatic Windows as
Environmental Control, and its door has Keypad as Door Lock Control.
The Living Room has three windows, two of them were (fine-grained) con-
figured as Automatic Windows.

144

Air Conditioning

Sma \7H0me [Turned On.Press to tunitoff. |

Floors Rooms
1. floor 1, temperature=20,7 ra— Main Room
Current Temperature: 17.0
Desired Temperature: 13.0
Minimun Temperature: 20.0
Maximun Temperature: 21.0
[<< IE 2
[Update Data Room
[Environmental Control
Doors
Door Open/Close
door 1] = 3
| Refuse Fingerprint |
[Cancel |

Figure 5.4: Example One of the GUI of a Fine-Grained Configured Smart-
Home System.

Regarding the cost of production, the highest cost of producing members of
the MD-SPL of Smart-Home systems is concentrated in the activities of core
assets development (metamodels, feature models, transformation rules and
decision models development), which are responsibility of product line archi-
tects who must be also MDD developers. However, we achieve a good return
of investment since we obtain high quality in derived products and product
designers invest few time configuring products. Given that the activities of
products configuration are respousibility of several (specialized) product de-
signers, e.g. building architects, facilities designers and software architects,
designers are focus on particular concerns.

5.2.2 An MD-SPL of Stand Alone Applications to Man-
age Data Collections

Besides our Smart-Home systems’ MD-SPL, we have also created a product
line of stand-alone applications to manage data collections. We call collection
manager system a product line member of this MD-SPL. For example, a col-
lection manager system manages students from a school, and their personal

145

L)

Floors Rooms

1. floor 1, temperature=20,7 e Livina Room || ywindows
Current Temperature: 17.0 - §
Desired Temperature: 19.0 Window Automatic Open/Close ‘
Minimun Temperature: 20.0 window 1 [V] [v]
Maximun Temperature: 21.0 window 2 []]
[<< I T window 3 [V]
[Update Data Room T

Environmental Control #

Open/Close

Figure 5.5: Example Two of the GUI of a Fine-Grained Configured Smart-
Home System.

information: name, address, e-mail, etc. Another product manages discs in
a music store, and their related information: name, artist, price, etc. At
the architecture level, products are structured in two tiers: the kernel and
the Graphical User Interface (GUI). The kernel tier implements functional
requirements to add elements into the collection and to order the collection.
The GUI tier implements visualization and interaction with the final users
and the kernel component.

Kernel Commonalities. The kernel manages data associated to instances
of a business logic concept such as student or music store. We use an aggre-
gation structure to represent the business concept and its related attributes.
For example, a student assembles the set of attributes code, name, address,
and e-mail. Any modeled business concept has a name attribute and all the
products of the product line have functionality for adding data.

GUI Commonalities. Graphical User Interfaces use elements like panels,
lists, labels, and images, among others. All the GUI elements are grouped by
different types of views. There are five types of views that are mandatory for
any product: (1) main, (2) list, (3) information, (4) order, and (5) creation
view. The main view is in charge of communicating the kernel and the
GUI by grouping all the other views. The list view displays data related

146

to the name attribute of created instances of the business logic concept.
The information view is used to show the data related to all the attributes
of created instances of the business logic concept. The order view is used
to select an attribute that will be used as reference for ordering the data
displayed in the information and list views. The creation view is used to
enter data for new instances of the business logic concept. Figure[5.6|presents
the GUI of a product managing information of students.

£ school

E School Information Manager
Students Student Address: .
== e el
John Smith Mame: lDavid Alan
Michel Jones Address: |42nd & Broadway, Mew York NY | Create Student
Amanda Bond l | 4
email: dalan@domain.com
T Creation View }—,]\
‘ ‘ Information View
Mame hd —
List View
Ordering Time: 0.002 | (ms) ¢ Order View
| Addstudet || || Order Students | «— Main View

Figure 5.6: Graphical User Interface of a Collection Manager System.

Kernel Variability.

The most evident source of variation is the business concept and its at-
tributes. As we presented before, products can be created to manage data
such as students, music stores, or address books. A product may (or may
not) provide functionality for ordering data. If it does, data can be ordered
using either the bubble or insertion algorithms.

GUI Variability.

The user can select two different alternative views to present the data in the
information view. The first one is a simple view with labels and text fields for
each attribute related to the problem space concept managed by the product.
Instances are displayed one-by-one such as presented in Figure 5.6l The
second one uses a grid component. Grid component facilitates the display of
many instances of the problem space concept at the same time.

Configuring and Deriving a Collection Manager System’s Example.

147

Such as for the Smart-Home systems’ MD-SPL, for the product line of stand-
alone applications to manage data collections we use a staged process for
capturing variability, configuring and deriving products.

In this MD-SPL the most evident source of variation is the business concept
and its attributes. We have created a Problem Space Metamodel to capture
this structural variability. Figure presents this metamodel (left) and an
example of a problem space model (right).

Problem Space

School : Problem Space

concept |_‘ Student: Concept)
-name * String | 1-concept
Code : Attribute

Name : Attribute
Address : Attribute)
E-mail : Attribute)

Attribute

“name - String -attributes

-type : String

Figure 5.7: Problem Space Metamodel and Problem Space Model.
We capture in a feature model the variations regarding the type of algorithms

that can be used to order data of our collections. Figure [5.8| presents part of
the feature model including two variants, Bubble and Insertion.

<<RootFeature>>
Kernel

<<FeatureGroup>>
Ordering Algorithms
[1..1]
(<<GroupedFeature>>)(<<GroupedFeature>>)
Bubble Insertion

Figure 5.8: Feature Model for The Product Line of Stand-Alone Applications
to Manage Data Collections.

148

Thus, using the problem space model from Figure and the feature model
from Figure 5.8 product designers are able to create fine-grained configura-
tions where Attributes are related to the features Bubble or Insertion. For
instance, if the attribute Code is related to the feature Insertion, data will
be ordered by using the Insertion algorithm when the criteria for ordering
is the attribute Code. Figure 5.9 presents a collection manager system that
was configured to order data using the Bubble algorithm when the ordering
criteria is the attribute Name.

School Q@@

School Management Information

Students Student
Code: 200213457
Johin Smith
Michel Jones Mame:

Amanda Bond

Address: @ Ordering Algorithm:

email: dalan@d

| Aceptar H Cancelar

Order By
‘Name -|
Ordering Time: 0.002 | {ms)
4
‘ Add Student ‘ ‘ [Order Students) ‘

Figure 5.9: Graphical User Interface of a Fine-Grained Configured Collection
Manager System.

This case study, including detailed documentation of metamodels, constraint
models, decision models, and other core assets, is available along with the
case study of the product line of Smart-Home systems at http://qualdev.
uniandes.edu.co/wikiMain/doku.php?id=projects:md-slp_engineering|

149

 http://qualdev.uniandes.edu.co/wikiMain/doku.php?id=projects:md-slp_engineering
 http://qualdev.uniandes.edu.co/wikiMain/doku.php?id=projects:md-slp_engineering

5.3 Variability Expression and Product Config-
uration

5.3.1 MD-SPL Project Creation

We built an Eclipse plug-in that allows product line architects creating a
particular type of Eclipse projects. This type of projects includes the required
0AW and EMF dependencies to create MD-SPLs and predefine a hierarchical
folders’ structure to manage and centralize the core assets associated to an
MD-SPL project. We named this plug-in the (MD-SPL) Project Creator.

Figure [5.10| presents on the left a screenshot of the Eclipse menu including
the option to create MD-SPL projects. On the right Figure presents the
folders’ structure of an empty MD-SPL project.

Select a wizard

Wizards:

Itv,'pe filter text

[#- (= Java Emitter Templates rS
= MD-SPL Tools

@ ConfigurationMetamodel Model

[ConstraintMetamode! Model

&) DecisionMetamadel Model
[FeatureMetamodel Model H-(&= bin
B-E b
[openArchitecture\Vare &H-§= META-INF
S : = metamodels
(= models
- src
(& src-gen
& B .dasspath
L B .project

@ build.properties

Figure 5.10: Screenshot of the Project Creator Plug-In.

150

5.3.2 Metamodels and Feature Models Creation

Metamodels Creation.

Once an MD-SPL project has been created product line architects can create
metamodels and feature models.

Product line architects create metamodels by using MagicDraw [No 09],
which is a UML2 modeling tool that allows us for creating UML Class Mod-
els and exporting them into UML2 XMI files. Thus, from the UML2 XMI
files, product line architects generate Ecore models by using a component
provided by 0oAW to transforms UML2 class models into Ecore models.

The MD-SPL projects we create by using our Project Creator plug-in in-
clude an 0AW workflow file which invokes the oAW component in charge of
transforming UML2 XMI files into Ecore models. To generate Ecore mod-
els, product line architects parameterize this oAW workflow file and then
execute it to obtain the Ecore model. Therefore, we allow product line archi-
tects to create metamodels from a classic UML perspective, which facilitates
the creation of domain metamodels.

Listing presents an example of a parameterized oAW workflow file to
generate Ecore models from UML2 XMI files. In line 3 we define the location
of the UML2 model to be transformed. In line 4 we specify the target location
of the resultant Ecore model. Line 5 to line 8 describe some additional
properties required to perform the transformation.

The Feature Models Creator.

To create feature models we provide the Feature Models Creator, which is
an Eclipse plug-in. We decided to create our own Feature Models Creator
instead of using commercial tools such as pure::variants [Pur09| or tools which
are under development and do not provide mature APIs such as fmp [AC04].

Our Feature Models Creator includes a facility for validation of feature mod-
els. This plug-in validates that (1) the lower bound of features’ cardinality
is minor or equal than the upper bound of features’ cardinality and (2) soli-
tary features have cardinality between zero and one, this is, the cardinality

is [0..1] or [1..1].

151

—

O O 0~ Tk W

<cartridge
file="org/openarchitectureware/util /uml2ecore/
coo.uml2ecoreWorkflow .oaw"
uml2ModelFile="..\ uml2Models\ domainMetamodel . uml2"
outputPath="..\ ecoreModels\domainMetamodel. ecore"
nsUriPrefix="http://domainModel"
includedPackages="Data"
addNameAttribute="false"
resourcePerToplevelPackage="false"/>

Listing 5.1: Example of an oAW Workflow to Generate Metamodels from
UML2 XMI files.

To perform the validation of a feature model, we modified the Eclipse contex-
tual menu that is related to files with extension .featuremetamodel, which is
the extension that the Feature Models Creator associates to feature models.
Thus, we provide the option to Validate Feature Models Structure, and we
are able to present messages to inform if any inconsistency was found in a
feature model.

Metamodels and Feature Models for The Smart-Home Systems’
SPL.

In Section we introduced in detail the metamodels and feature models
for our case study of the Smart-Home systems’ SPL (see from Figure
to Figure [£.10). Figure presents the feature models created with the
Feature Models Creator for this case study. Figure on the left presents the
facilities feature model and the one on the right presents the architecture
feature model.

S oot Feature Facitis BN oot Featre Archiectre
= 4 Feature Group Lock Doar Cantral (= 4 Feature Group Component Type
4 Grouped Feature Fingerprint <» Grouped Feature Periodic
< Grouped Feature Keypad 4 Grouped Feature Service
=~ 4 Feature Group Environmental Contral [z 4 Feature Group Instantiation mode
4 Grouped Feature Air Conditioning < Grouped Feature Deployment
4 Grouped Feature Automatic Windows < Grouped Feature Invocation

Figure 5.11: Feature Models for the Smart-Home systems’ SPL.

152

5.3.3 Constraint Models Creation

The Constraint Models Creator.

We built an Eclipse plug-in to create constraint models, the Constraint Mod-
els Creator. Figure[5.12| presents the view associated to the Constraint Mod-
els Creator. The figure shows the creation of constraints between the domain
metamodel and the facilities feature model from our Smart-Home systems’
SPL. Using our Constraint Models Creator product line architects can load
a metamodel and a feature model, create and delete constraints, cleane the
works’ areas and then reloade a new metamodel and a new feature model,
and save a constraint model. The Constraint Models Creator allows for cap-
turing the minimum and maximum cardinality that defines the constraint’s
cardinality property, and a description associated to the constraint.

§.& Constraints Model View &2

Areas of buttons —(,.': EM J})v
Metamodel Feature Model
= # domainMetamodel =l < RootFeature[name=house]
H House [=- #& FeatureGroup[name=Lock Door Contral]
H Floor #- 4 GroupedFeature [name=Fingerprint]
H room [+ < GroupedFeature[name=Keypad]

& FeatureGroup[name =Environmental Contral]
H Door +- < GroupedFeature[name=Air Condition]

8 78 GroupedFeature[name =Automatic Window])

m
R3]

@ Constraint

Min value:

| |

Max value:

| |

Description:

Field Min value, can not be null

Figure 5.12: Eclipse View of The Constraint Models Creator.

When a product line architect selects to save a constraint model, the plug-in
performs two activities. First, it saves a file with extension .constraintmeta-

153

—_ =

— O W0 -0 T W

context Binding FRROR loc () +
"There_are_less_than_1_Door_element_bound"+
"to_the_feature_Lock_Door_Control":

(this.metaConcept = ’Door’ &&
this.feature.parentFeature.name =— ’Lock Door Control’
&& ((Configuration)this.eContainer). binding.
select (b|b.name—this .name && this.metaConcept=="Door’
&& this.feature.parentFeature.name=='Lock Door Control’).
size >= 1);

Listing 5.2: Example of a Check file generated by The Constraint Models
Creator.

model containing the constraint model. Second, it saves a file with extension
.chk which contains the Check expressions to validate binding models against
the constraint model. Listing presents an example of a Check expression
generated by the Constraint Models Creator. The expression is generated
from a constraint specifying that it has to exist at least one Door element
bound to the feature Lock Door Control in the binding model that is being
validated.

Our current implementation of the Constraint Models Creator allows product
line architects to create the constraint properties associated to constraints.
This implementation does not allow, however, product line architects to cre-
ate the structural properties associated to constraints. Therefore, the struc-
tural properties must be written directly on the Check files.

Listing presents an example of a Check expression for a structural prop-
erty. This is related to a constraint between the Component metaconcept and
the feature Periodic. The structural property defines that a Component ele-
ment only can be bound to the feature Periodic if the Component element is
also bound to the feature On Invocation. As part of our future work, we will
allow product line architects to create the structural properties associated to
constraints directly on the Constraint Models Creator.

Summarizing, our Constraint Models Creator allows product line architects
to capture and express the variability described by possible fine-grained con-

154

—

O O 0~ Tk W

context Binding FRROR loc () +
"The_Component"+ this.elementName +"must_be"+
"also_bound_to_the_xOn_Invocation*_feature":

(this.metaConcept = ’'Component’ &&
this.feature.name — ’'Periodic’
&& ((Configuration)this.eContainer). binding.
select (b|b.name—this .name && this.feature.name—
'On Invocation ').size — 1);

Listing 5.3: Example of a Check Expression for a Structural Property.

figurations, which we represent by using binding models, taking into account
that fine-grained configurations have to be also restricted to represent valid
products.

Constraint Models for The Smart-Home Systems’ SPL.

We create two constraint models for our Smart-Home Systems’ SPL. The
first one is created between the domain metamodel and the facilities feature
model. Table presents these constraints which allow product line ar-
chitects to capture and express the possible fine-grained variations between
Smart-Home systems regarding domain and facilities’ concepts.

For example, product line architects can express that between one and two
Doors can have Fingerprint as Lock Door Control in Smart-Home sys-
tems. As a result, product designers will be able to configure a Smart-
Home system with one particular door having Fingerprint as Lock door
control and another Smart-Home system with two selected doors having
Fingerprint as Lock door control.

The second constraint model is created between the components metamodel
and the architecture feature model. Table presents these constraints
which allow product line architects to capture and express the possible fine-
grained variations between Smart-Home systems regarding software compo-
nents and software architecture concepts.

As a result, product line architects can express that in Smart-Home systems,
for example, a component for managing Automatic Windows could be either

155

Table 5.5: Constraints Between the Domain Metamodel and the Facilities
Feature Model

Metaconcept Feature Cardinality Description
Door Lock Door Control [0..1] Doors can have
either Fingerprint
or Keypad

or none of them as
Lock Door Control

Door Fingerprint [1..2] Between one and two
Doors can have
Fingerprint as
Lock doorcontrol

Door Keypad [0..1] Between zero and one
Doors can have
Keypad as
Lock Door Control

Room Environmental Control [0..1] Rooms can have
either
Automatic Windows
or Air Conditioning
or none of them as
Environmental Control

Room Automatic Windows [1..1] Only one Room can
have Automatic Windows
as
Environmental Control

Room Air Conditioning [1..3] Between one and three
Rooms can have
Air Conditioning as
Environmental Control

Window Automatic Windows [0..4] Between zero and
four Windows can be
Automatic Windows

156

Table 5.6: Constraints Between the Components’ Metamodel and the Archi-
tecture Feature Model
Metaconcept Feature Cardinality Description

Periodic Component Type [0..1] Components classified as
Periodic can be
either Service or
Periodic Components
in the final software
architecture

Component Instantiation Mode [1..2] Components can be
instantiated either
On Deployment or
On Invocation

a Service Component or a Periodic Component. Product designers will be
able to configure a Smart-Home system with the component for managing
Automatic Windows as a Periodic Component. This component will check
automatically the temperature of the room where the automatic windows
are used to open or close the windows. Another product designers will be
able to configure a Smart-Home system with the component for managing
Automatic Windows as a Service Component. In this case, the inhabitants
must manually select checking the temperature of the room where the auto-
matic windows are. The inhabitants must also manually open or close the
windows.

5.3.4 Domain Models and Binding Models Creation

Domain Models Creation.

We built an Eclipse plug-in to create domain models using the facility pro-
vided by Eclipse to generate model editors from Ecore models. We named
this plug-in the Smart-Homes” Domain Models Creator. Product line archi-
tects have to create new domain metamodels and new domain models’ editors
for producing new MD-SPLs.

Figure presents a domain model created with our Smart-Homes” Do-
main Models Creator. The model, which is created by a building architect,
defines firstFloor and secondFloor. In the firstFloor there are two

157

rooms, livingRoom and kitchen. In the secondFloor there is another room,
mainRoom, which has two windows, mainRoomW1 and mainRoomW2. There are
also two doors. The first door, 1livingRoomD1, is in the livingRoom. The
second door, mainRoomD2, is in the mainRoom.

(54 House MyHouse

=< Floor firstFloor
=4 Room livingRoom
¢ Door livingRoomD1
4 Room kitchen
= <+ Floor secondFloor
= 4 Room mainRoom
4 Window mainRoomi 1
4 Window mainRoomi/2

_ % Door mainRoomD2)

Figure 5.13: Example of a Domain Model Created with our Smart-Homes’
Domain Models Creator.

The Binding Models Creator.

We developed an Eclipse plug-in named the Binding Models Creator to create
binding models. Figure presents the view associated to the Binding
Models Creator. In the figure we present the creation of bindings between
the domain model and the facilities feature model from our Smart-Home
systems’ SPL.

Using the Binding Models Creator, product designers can load a feature
model, a domain model, and a constraint model, which will be used to val-
idate the created binding model. Designers can create and delete bindings,
or select a feature. The facility to select features is useful when coarse-
grained configurations are required. Therefore, we can select for example the
automatic windows for all the windows in the house only by selecting the
Automatic Windows feature.

When a product designer selects to save a binding model, the plug-in per-
forms two activities. First, it saves a file with extension .configurationmeta-
model containing the binding model. Second, the binding model is validated
against the constraint model loaded before. What really occurs is that the
Check expressions generated from the constraint model are used to check the
binding model to know if it satisfies the constraints. After the validation,
the product designer obtains messages informing the state of the validation.

158

Configuration View &3

Feature Model
= |:| RootFeature[name =Facilities]
=& FeatureGroup[name=Lock Door Contral]
|:| GroupedFeature[name=Fingerprint]
D GroupedFeature[name=Keypad]
=K FeatureGroup[name =Environmental Control]
D GroupedFeature[name=Air Conditioning]

Areas of buttons —(L & B 4})

D GroupedFeature [name =Automatic Window]

Problem Space Model

= @ House[name=MyHouse] :
W Floor [name =firstFloor]
= Qg Room[name =livingRoom]
W Door[name=livingRoomD 1]
Qg Room[name =kitchen]
=4 Floor[name=secondFloor]
= 4 Room[name=mainRoom]
W window[name =mainRoomi 1]
sz Window [name =mainRoom\ 2]
W Door[name=mainRoomD2]

Constraint Model

Metaconcept Feature Min Max Description
Door Lock Door Control 0 1
Room Environmental Control 0 1

Figure 5.14: Eclipse View of The Constraint Models Creator.

Summarizing, our Binding Models Creator allows product designers to create
fine-grained configurations by means of binding models. Our Binding Models
Creator also allows product designers to validate the configurations against
constraints expressing the valid fine-grained variations between products of
the MD-SPL. This guarantees the configuration and subsequent derivation
of valid products.

Binding Models for The Smart-Home Systems’ SPL.

Product designers can create several binding models, as well as domain mod-
els, to configure diverse Smart-Home systems of our MD-SPL. In the follow-
ing, we will present the process of configuring one particular Smart-Home
system by creating the required binding models, which must satisfy the con-
straints presented before in Table [5.5] and Table [5.5] The result will be a
complete fine-grained configuration of a particular Smart-Home system of
our MD-SPL.

Table presents a set of bindings between the domain model from Fig-
ure [5.13] and our facilities feature model. These bindings are created by a fa-
cilities designer, and along with the domain model are part of the fine-grained
configuration of the particular Smart-Home system we are configuring. They
must satisfy the constraints presented in Table [5.6

159

Table 5.7: Bindings Between the Domain Model from Figure [5.13] and Our
Facilities Feature Model

Element Feature Description

livingRoom Air Conditioning The livingRoom will manage
Air Conditioning as
Environmental Control

livingRoomD1 Fingerprint The livingRoomD1 will manage
Fingerprint as
Lock Door Control System

mainRoomW1 Automatic Windows The mainRoomW1 will be an
Automatic Window

mainRoomD2 Keypad The mainRoomD2 will manage
Keypad as
lock Door Control system

Accordingly to this configuration, after the execution of the model trans-
formation process, the product designer will obtain a particular Smart-
Home system which GUI is presented in Figure [5.15 and Figure 5.16] Fig-
ure [5.15|shows the view associated to the mainRoom, which has one Automatic
Windows, mainRoomW1, and its door, mainRoomD2, has Keypad as Lock Door
Control mechanism.

Figure presents the view associated to the livingRoom. In this case the
Air Conditioning is managed by a Periodic software component. That
is the reason why the system automatically turns it on/off according to the
desired temperature of the room. In this case the Desired Temperature of
the Living Room is 19 degrees and the Current Temperature is 17 degrees,
then the Air Conditioning is turned off. The door, 1ivingRoomD1, has
Fingerprint as Lock Door Control mechanism.

Figure presents the component’s model derived from the domain model
in Figure |5.13| given the bindings from Table 5.7l Product designers, who are
software architects, have to create a binding model between this generated
components’ model and the architecture feature model. This binding model
corresponds to the fine-grained configuration of the software components
included in the Smart-Home system, and these bindings have to satisfy the
constraints presented in Table [5.6

160

Floors Rooms Windows
1. floor 1, temperature=20,7 e Main Roomll| Window Automatic Open/Close
Current Temperature: 17.0 mainRoomW1 | |
Dgs_lred Temperature: 19.0 mainRoomW2 | O | O
Minimun Temperature: 20.0
Maximun Temperature: 21.0

[<< I 55 |
[Update Data Room /|
Environmental Control

Open/Close

Figure 5.15: View of the Main Room of the Configured Smart-Home System.

Table presents a set of bindings between the components’ model from
Figure[5.17]and our architecture feature model. These bindings complete the
required configuration to derive the Smart-Home system we are configuring.
According to these bindings, the final architecture model for the Smart-Home
system presented in Figure [5.15 and Figure [5.16] will have only one Periodic
Component, the Air Conditioning Controller Component. Furthermore,
the House and Floor Components will be instantiated on Invocation. The
other components will be instantiated on Deployment.

5.4 Core Assets Development and Product
Derivation

5.4.1 Transformation Rules Creation
In Section [4.5 we introduced the several stages of model-to-model and model-
to-text transformation rules for deriving configured Smart-Home systems.

Figure |5.18| presents a screenshot of the folders’ structure to maintain our
model transformation rules. We use the Xpand and Xtend languages to
create our transformation rules. These languages create files with extensions

161

Floors Rooms

1. floor 1, temperature=20,7 Name: Livina Reom

Current Temperature: 17.0

Desired Temperature: 19.0

Minimun Temperature: 20,0

Maximun Temperature: 210
[<< I e VA
[Update Data Room [/ |
[Environmental Control 7]
Doors

Door Open/Close
livingRoomD 1

Refuse Fingerprint

[Cancel |

Figure 5.16: View of the Living Room of the Configured Smart-Home Sys-
tem.

.xpt and .ext respectively. We create two sets of transformation rules: the
base and the specific ones. On the one hand, base transformation rules
do not depend of any variant of the product line. Thus, they are always
executed during the transformation process. On the other hand, we create
specific transformation rules having into account features that can affect the
transformation process. Our transformation rules are organized in folders
created for each transformation step.

Listing presents an example of part of the model-to-text transformation
rule to transform Component elements into Java source code. As we intro-
duced in Chapter] we reuse pieces of code which have been previously
tested to build complete OSGi implementations. As a result we guarantee
the quality of derived Smart-Home systems. The source code in Listing
correspond to the method we created to turn on the air conditioning located
in a particular room.

162

Table 5.8: Bindings Between the Components’ Model From Figure [5.17 and
Our_Architecture Feature Model.

Element Feature Description

Windows Controller Service The Windows Controller
component will be
a Service Component

Air Conditioning Controller Periodic The Air Conditioning
Controller component will
be a Periodic Component

House Invocation The House Component will be
instantiated on Invocation

Floor Invocation The Floor Component will be
instantiated on Invocation

"DEFINE_implementation FOR_componentsMetamodel : : Component "
public void start(Integer floorld , Integer roomld)
throws Exception{

Room room = getRoom (floorId , roomld);
if (room != null && room.getEnvironmentalControl () =
TypeEnvironmentalControl . AIRCONDITIONING) {
room.setAirConditionStatus (true);
}
}
"ENDDEFINE"

Listing 5.4: Model-to-Text Transformation Rule to Transform Component
Elements into Java Source Code.

163

<<Service>>
Window

<<Periodic>>
Windows
Controller IWindows Controller
<<Service>> <<Service>> <<Service>>
House Floor Room

| T L

<<Service>>

DoorLock
IHouse Controller D_?
IDoor
<<Periodic>> <<Service>> <<Service>>
AirConditioning () Gul Door

Controller IACController IDoorC\ontroIIer

Figure 5.17: Components’ Model Derived from a Domain Model.
5.4.2 Decision Models Creation

The Decision Models Editor.

We built an Eclipse plug-in to create decision models, the Decision Models
Editor. This editor was developed by using the Topcased’s facility to create
model editors (see Section , and is part of the contributions of the Master
thesis of Andrés Romero [Rom09).

Figure presents the GUI of our Decision Models Editor. On the left, we
present the palette of options to create Model-to-Model and Model-to-Text
transformations, Base and Specific transformation rules, Aspects,
Execution Conditions, CoarseConditions and FineConditions. Options
also include to define the Source and Target models of the model transfor-
mations. On the right, we present part of the decision model created for our
Smart-Home systems’ SPL.

Our Decision Models Editor allows product line architects to maintain uncou-

164

ﬂE\ [k transformations \
== model2model
&% components2architecture
= base
[E} cm2am.ext 1.1
= spedific
I_f_’, advicelnstantiation_deployment.ext 1.1
I_f_’, adviceInstantiation_invocation.ext 1.1
&% domain2facilities
= base
[E} dm2fm.ext 1.1
H-{=F spedific
- fadlities2components
= base
[E} fm2cm.ext 1.1
== model2tex
=& architecture2code
[base
= specific
If_’, adviceDeploymentInstantiation.xpt 1.1
If_’, adviceInvocationInstantiation.xpt 1.1
If_’, advicePeriodicComponent.xpt 1.1
=-[=F fadlities2code
= [=F base

k [T} fm2code.xpt 1.1 /

Figure 5.18: Folders’ Structure for Transformation Rules Files.

pled (1) the information of features, (2) the transformation rules, and (3) the
possible execution’s conditions of transformation rules that particular fea-
ture configurations imply. Furthermore, our Decision Models Editor allows
product line architects to capture as independent Aspects the information of
how transformation rules must be composed to derive configured products.
This is a high-level mechanism which is independent of the technology used
to implement our approach. Finally, our plug-in can capture execution’s con-
ditions of transformation rules in order to derive products based on binding
models, which represent fine-grained configurations.

Decision Models for The Smart-Home Systems’ SPL.

The decision models of our case study facilitates to derive any product which

165

@ Topcased Modeling

File Edit Refactor Mavigate Search Project Scripts SmartQWT Run ADELE Window Help
' 2 e iq- '
Ro o wh | Ofd of o7F B &
== | £ Topcased Modeling |3}J Java |1 Resource
[decisionMadel.dmfdi 3 = &
= Jco.edu,uniandes, casestudy , collectionManager . decisionModelfmodelsdecisionModel, dmfdi
EE [# Selact Decision Model Configuration Wiew : null [unnamed -
v L_s Margues
= Mok <<Model2Model>>
o NOLE domainModelToFacilitiesModel —1ﬁrstBaseRule
= [=- Objects B
L Coarse Exe, ‘ domainFloorsToFacilitiesFloors ‘ B
Condition .
. " nexi [feature = Automatic Windows |
Fine Exe, Condition | SelectionType = SELECTED |
Mz2T TransFormation domainWindowsToFacilitiesWindows ’,/'
MzM Transformation specificRule-1 pecsSS
Base Rule utomaticWindow:
e domainFloorsToFacilitiesFloors
Specific Rule advice
fspeck
(= Links £
exe, Condition
joinPoink
advice
“
nexck Tram, Model —
45 | >
g B

Figure 5.19: Graphical User Interface of our Decision Models Editor.

166

<<Model2Model>>
domainModelToFacilitiesModel —lfirstBaseRule

‘ domainFloorsToFacilitiesFloors ‘

l next

‘|' next
Feature = Fingerprint
‘ domainDoorsToFacilitiesDoors ‘ . Metaconcept = Door |
\ -)
specificRule-n T Jjoinpoint <Aspect>>/
‘ Fingerprint
doorToDoorWithFingerprint
| advice

Figure 5.20: Decision Model Including an Aspect to Derive Doors with Fin-
gerprint as Lock Door Control Mechanism.

has been configured by creating (1) a domain model, (2) a valid binding model
between the facilities metamodel and the domain model, and (3) a valid
binding model between the architecture metamodel and the components’
model derived from the domain model.

In Section we introduced part of the decision model we created for de-
riving configured Smart-Home systems. Similarly to Figure we defined
an Aspect element related to each constraint in the two constraint models.
As a result, we can guarantee that any binding satisfying a constraint will
be taken into account during the derivation process. The model element in-
volved in the binding will be transformed using a specific transformation rule
in charge of transforming it according to the feature involved in the binding.

For instance, Figure [5.20| presents another part of the decision model for
deriving configured Smart-Home systems. In this case, we present the
Aspect we created for the constraint between the Door metaconcept and
the Fingerprint feature. This Aspect specifies that any Door element in
a binding model will be transformed by using the specific transformation
rule doorToDoorWithFingerprint. As a result, we can guarantee that any
binding satisfying the constraint between the Door metaconcept and the
Fingerprint feature will be taken into account to derive a Smart-Home
system. The doors involved in the bindings will have fingerprint as lock door
control mechanism.

167

5.4.3 Generation and Execution of Model Transforma-
tion Workflows

As we explained in Chapter [} to execute our decision models we need to
transform them into executable 0AW workflows by using a model-to-text
transformation. This transformation is achieved using a model-to-text trans-
formation, which we include in Appendix [A]l As a result, we can execute the
generated model transformation workflows on the model transformation en-
gine of 0oAW. Thus, we derive any (fine-grained) configured product.

Figure [5.21] presents the final result of executing the sequence of model trans-
formations we defined to generate a Smart-Home system of our product line.
The files correspond to Java (OSGi) source code and XML descriptors which
have been generated departing from the domain model in Figure [5.13| and
the binding models in Table [5.8] and Table |5.8]

We include in the web-site of our research group, under the link MD-SPL
Engineering [Sof(9], details about our entire tool support and the instructions
for installing it. We also included all the core assets to create MD-SPLs of
Smart-Home systems such as the one we have used through this document
to illustrate our work. Additionally, we present another MD-SPL of stand-
alone systems for managing collections, including all the required core assets
to derive its product line members.

5.5 Summary

In this chapter we presented the FieSta toolkit, which includes the tools we
developed for supporting our MD-SPL Engineering mechanisms to create
SPLs. We also presented the results obtained of using these mechanisms
and tool support. We introduced each tool we developed integrated into our
toolkit. Among these tools, we presented our Constraint Models Creator,
our Binding Models Creator and our Decision Models Editor. Through this
chapter we have presented several examples of Smart-Home systems we de-
rived using our MD-SPL engineering mechanisms and tool support. We also
presented some particular (fine-grained) configurations we created to derive
these Smart-Home systems.

168

& Java - Eclipse Platform

File Edit Source Refactor Refactor MNavigate Search Project Run Window Help

1 i 2 R R W B 4 &0 Ea|&)

N Nr=N A S it] =]

(42 Package Explorer E@ i s ¥ = O =8|

L)

=4 sre
-8 co.edu,uniandes. AirConditioningController
_m Activatar. java
i e m AirConditioningControllerServiceImpl. java
-8 co.edu,uniandes. AirConditioningController service
=] _m IairConditioningCaontrallerService java
1] 1AirConditioningCantrollerService
[+ B JRE System Library [jred] - ‘ .
[#- =, Plug-in Dependencies E—' Pri@] & @ — O
.j:Eb-METF\INF : |<1='|-:,>= 3
B D build, properties
el c0. 2du, uniandes

4 c0. edu, uniandes

el 1 1, edu, uniande

[€

e
| w

0 10items selected @g

Figure 5.21: Source Code of a Generated Smart-Home system.

169

Part IV. Conclusion

170

171

Chapter 6

Conclusion

6.1 Introduction

The main motivation for this thesis was to propose Model-Based mechanisms
to assist product line architects and product designers during the creation of
Software Product Lines. We were interested in (1) to extend the power of
expression of variability, and consequently to extend the scope of products
that can be fine-grained configured, and (2) to facilitate the maintenance,
reuse and evolution of the core assets developed to derive MD-SPLs.

We designed and implemented three domain-specific modeling languages to
support the definition of constraint models, binding models and decision
models. We also provided the model transformations required to (1) validate
binding models against constraint models and (2) execute decision mod-
els into a workflow engine to automatically derive products. This chapter
presents a summary of this work, its main contributions, our conclusions and
potential future research directions.

6.2 Thesis Summary

In the first part of this thesis, we introduced our context of work, research
problems and research objectives.

172

In the second part, we introduced the main concepts regarding Model-Driven
Development and Software Product Line Engineering, and we introduced and
analyzed several Model-Driven Software Product Line approaches. We ex-
plained the concept of separation of concerns of a system in different models
and we discussed the concept of level of abstraction of models. We introduced
the concept of Domain Specific Modeling, the relation of conformity, and the
four-layer metamodeling framework. We defined the concept of model trans-
formations and transformation rules, and we classified them into four major
categories. We introduced some modeling frameworks and model transfor-
mation languages such as Xpand and Xtend. We presented the basis of
Software Product Line Engineering, discussing the main processes involved
in the creation of Software Product Lines: the domain engineering process
and the application engineering process. Finally, we introduced the MD-SPL
Engineering paradigm and we presented a State-of-the-Art of it, presenting
a discussion emphasizing on the advantages and drawbacks of representative
MD-SPL approaches.

In the third part of this document we presented FieSta, our Model-Driven
Software Product Line approach, and a case study we used to validate it.
Constraint models were presented and their use was illustrated in the context
of our case study. Binding models were explained and also illustrated with
our case study. We then showed how we derived products based on binding
models and decision models. We also presented limitations of our approach
for deriving products based on decision models. Finally, we validated our
approach presenting examples of products that we are able to derive using
our Model-Based mechanisms. We present results of configuring and deriving
products of two product lines. We also presented the implementation strategy
for our approach, including (1) the required activities to create products,
and (2) the tools we created to support these activities.

6.3 Results and Contributions

In this section, we analyze the advantages and drawbacks of FieSta regard-
ing the MD-SPL engineering mechanisms we propose (1) for expressing vari-
ability and configuring products in MD-SPLs, and (2) for deriving config-
ured products. We remark, by comparison with others MD-SPL approaches,

173

where our work presents a contribution to the MD-SPL engineering domain.
This allows us to emphasize on the significance of our results in terms of the
research objectives of this thesis.

6.3.1 Metamodeling and Feature Modeling

We use Metamodeling and feature modeling for capturing and expressing
variability. Metamodels facilitate modeling variations at language level.
Product designers, for instance building architects, are capable of configuring
different products by creating diverse building’s models. Feature modeling
allows us configuring products by selecting features. Therefore, for instance
facilities designers and software architects can configure products without
the need of creating complex models.

Using feature modeling and metamodeling separately gives us the flexibility
and power of expression of metamodels, and the simplicity of feature models.
We have also proposed to relate metamodels and feature models to create
what we named constraint models. Constraint models allow us expressing
fine-grained variations between products of MD-SPLs. We have shown how
to express the possible fine-grained variations between products of an MD-
SPL by creating relationships between metamodels and feature models. For
example to express that two Smart-Home systems could be different by the
location of their automatic windows.

Such as we demonstrated in Chapter [5) our mechanism for expressing fine-
grained variations between products of an MD-SPL using constraint models
extends the power of expression of variability in MD-SPLs, and consequently
it extends the scope of products that can be fine-grained configured. This
satisfies our research objective RO1 presented in Chapter [II We presented
this mechanism in [ACR09].

6.3.2 Multi-Staged Configuration of Products

Our approach supports the modeling of variability in several stages. we allow
product line architects, at different (staged) times, to express and capture
coarse- and fine-grained variations between members of product lines. This

174

facilitates to product line architects with different skills focusing on particular
concerns at different moments.

At configuration time, we allow product designers configuring products at
different binding times where s/he can chose at each stage specific variants to
create domain models and binding models. Thus, we postponed the binding
time of variations facilitating the intervention of stakeholders with different
profiles in the configuration process. For instance, regarding Smart-Homes’
facilities and software architecture, facilities designers and software architects
can provide their choices at different time.

6.3.3 Coarse- and Fine-Grained Variations and Config-
urations

As far as we know, our approach is the only MD-SPL approach allowing
for creating fine-grained configurations and deriving products based on such
configurations. We have presented the way as we represent fine-grained
configurations between product line members by means of binding mod-
els. A binding model allows us configuring model elements individually
based on features. For example, we have created a binding to indicate
that the feature Periodic Component affects individually the component
Air Conditioning Controller, and the feature Keypad affects individually
the door mainDoorD2.

We first introduce our mechanism for creating fine-grained configurations
in [GPAT07], then we used it in [ACR09, [ACRO7D, IAGGa™08, [ACROT7a].
This mechanism contributes to satisfy our research objective RO1 presented
in Chapter [1]

6.3.4 Core Assets Development and Decision Models

We introduced the use of explicit decision models in MD-SPL engineering.
Our decision models allow us to capture separately (1) the base and specific
model transformation rules used to derive product line members, (2) the
variants represented in feature models, and (3) the relationships between
model transformations and variants. Decision models are the key of our

175

mechanism to compose model transformations and adapt their execution
ordering according to particular product configurations.

Other approaches such as Loughran et al.’s approach [LSGF, [SLFGO08| and
Voelter and Groher’s approach [VGO7b| have proposed the use of decision
models. Our approach, however, is concerned about both (1) the prob-
lem of transformation rules composition based on product configurations,
which is a complex problem in MD-SPL Engineering, and (2) the indepen-
dency from model transformation languages to create decision models. As
we have presented before in Section the Loughran and Colleagues’ ap-
proach in only concerned about the composition of software components, and
the Voelter and Groher’s approach is restricted to use a platform-dependent
language, Xtend, to create decision models. Furthermore, our mechanism
based on decision models to derive products has into account that several
features selected together may imply different adaptation than the required
one when features are selected separately. This is not taken into account by
the Loughran and Colleagues’ approach.

As we have presented in this thesis, our decision models also capture the
required information about how transformation rules must be composed to
derive fine-grained configured products. Given that our approach takes into
account fine-grained variations and fine-grained configurations, this is also
worry about how to derive fine-grained configured products. Our decision
models has been presented in [ACR09, [ARCR09, [ACR08|, and contributes
to satisfy our research objective RO2.

6.3.5 Product Derivation

Based on our decision models, we propose a mechanism for selecting trans-
formation rules and modifying their execution ordering according to selected
variants. In our current implementation we have used the model transfor-
mation engine of 0AW to execute model transformation workflows derived
from our decision models. Our decision models, however, are independent of
model transformation languages and can be used to support product deriva-
tion in contexts different to the 0AW context. For instance, currently we
explore how our decision models can be used to derive products by using the
ATL language and its facilities for transformation rules composition [RA09].
Further work on this field is part of our future work.

176

Our mechanism for product derivation has been presented in [ACR09,
ACRO8|, and contributes to satisfy our research objective RO2 presented.

6.3.6 Summary

Table presents a summary of this section having into account our ap-
proach and the related approaches.

Regarding the scalability of our MDD mechanisms to traditional SPL en-
gineering, where models are used only as artifacts for documentation, we
believe this is easily reachable. Currently MDD is being used not only in
academic exercises but also in real industry. Several international events,
journals and research projects are concern about the subject. Thus, body
of knowledge including tool support is being created to support MDD. We
have shown through this document how our MDD mechanisms contribute to
make SPL engineering more feasible and profitable, and consequently more
interesting for SPL developers to adopt it.

6.4 Future Work

In this thesis we integrated Model-Driven Development, Software Product
Line Engineering, and Aspect-Oriented Programming. We proposed a coor-
dinated use of these paradigms to solve the research problems we described
in Chapter [I] The following sections present some logical continuations of
this work.

6.4.1 Dealing with Current Limitations: Features Com-
binatory, Features Interaction and Bindings Inter-
action

We discussed in Section some limitations of our approach. We consider
important to improve our approach overcoming such limitations. First, it
is required a mechanism to validate that, for each possible feature configu-
ration, product line architects provide the required transformation rules to

177

Table 6.1: Summary of the Discussion Regarding our Contribution to the
MD-SPL Engineering Domain

Our Czarnecki ~Wagelaar Loughran Voelter
Work and et and
Antkiewicz al. Groher

Metamodeling for expressing
variability and modeling for
configuring products Yes No Yes No Yes

Multi-staged configuration
of products Yes No No No Yes

Expression of fine-grained
variations and creation of
fine-grained configurations Yes No No No No

Creation of explicit
decision models Yes No No Yes Yes

Decision models take

into account the effects that

possible feature combinations

may have in final products Yes n/a n/a No Yes

Decision models independent
of particular implementation
languages Yes n/a n/a Yes No

Selection of transformation
rules according to selected
variants Yes No Yes Yes Yes

Modification of transformation
rules’ execution ordering
according to selected variants Yes No Yes No Yes

Mechanisms for modifying

execution ordering of

transformation rules

independent of particular

model transformation

languages Yes n/a No n/a Yes

178

derive valid products. Second, it is required another mechanism that allows
product line architects to capture possible feature interactions by means of
scenarios, and thus, to create and relate transformations rules to such scenar-
ios. Finally, it is required to consider bindings that satisfy several constraints
when execution ordering of transformation rules is modified according to
binding models.

6.4.2 Using Complementary Variability Models

We focused on the use of feature models as variability models. However,
other variability models, such as Ontology models or the one presented by
Bayer et al. [Bay06], involve other relevant concepts different that only Group,
Grouped or Solitary Feature. These variability models deserve special
attention for the rich semantics they provide to express variability in product
lines. We consider important to integrate variability models such as Ontology
models into our approach. This will complement feature models improving

the power of expression of variability and allowing to extend the scope of
MD-SPLs.

6.4.3 Integrating Architectural Description Languages

Our approach supports staged capture of variability, and also staged configu-
ration of products. We showed, using our case study, how one of these stages
involve concerns about software architecture based on components. For this,
we created one specialized metamodel capturing concepts of component-
based software development. There are, however, several Architectural De-
scription Languages (ADL) such as [AMS07, DvdHTO05|, which are based
on metamodels that include very complete information about architectural
concerns. We consider important to include the use of these ADLs into our
approach to extend the scope of variations we are able to manage regarding
software architecture, no matter the domain of the MD-SPL we are interested
in developing.

179

6.4.4 Incorporating Aspect Oriented Modeling

We considered Aspect Oriented Programming as the indicated paradigm to
tackle the problem of adapting the execution ordering of transformation rules.
Recent work (see [onl08]), have shown also how Aspect Oriented Model-
ing (AOM) is a valuable paradigm to be incorporated in Model-Driven De-
velopment. AOM allows product line architects to create reusable models,
which during the derivation of product line members can be woven with
other models according to variability choices performed by product design-
ers. We believe that AOM enables the explicit expression and modularization
of variability on model level, and facilitates the maintainability and reuse of
models as core assets. Thus, we consider important to integrate AOM in our
approach.

6.4.5 Using Declarative Programming to Create Trans-
formation Rules

Declarative programming minimize side effects by describing what the pro-
gram should accomplish, rather than describing how to go about accomplish-
ing it [L1o94]. Declarative programming in MDD has a number of advantages.
Declarative transformation rules are based on specifying relations between
source and target patterns, hiding the details related to selection of source
elements, rule triggering and ordering [JK05|. We believe that the integra-
tion of declarative transformation rules may help to deal with the problem
of adapting the execution ordering of transformations rules given different
product configurations.

Furthermore, currently we explore constraint programming, which is a type
of declarative programming, to tackle the problem of relating transformation
rules to sets of variants with particular interactions stated in the form of
constraints. The idea of using constraints to define suitable configurations
can be extended to the design and implementation of a Constraint System
specialized in that kind of constraints, in which all the power of specialized
solvers can be used to validate if proposed configurations are feasible or not.
Likewise, it could be important to explore if modelling the transformation
rules scheduling problem using constraints can be a more efficient way to
solve it instead of using aspect oriented programming.

180

6.4.6 Formalizing the Approach

We have started a work tending to formalize our approach using basic set
theory. Our aim is to generalize our MD-SPL approach making it extensible
and independent of specific platform modelling frameworks and/or model
transformation languages.

181

Bibliography

[ABMOO0]

[AC04]

[ACRO7a|

[ACROT7b]

[ACROS]|

Colin Atkinson, Joachim Bayer, and Dirk Muthig. Component-
based product line development: The kobra approach. In
P. Donohoe, editor, Proceedings of 1st Software Product Line
Conference, pages 289-309, Norwell, MA, USA, 2000. Kluwer
Academic Publishers.

Michal Antkiewicz and Krzysztof Czarnecki. Featureplugin: Fea-
ture modeling plug-in for eclipse. In Proceedings of the Workshop
on Eclipse Technology eXchange at OOPSLA’04, pages 67-72,
2004.

H. Arboleda, R. Cassallas, and J. C. Royer. Implementing an
MDA Approach for Managing Variability in Product Line Con-
struction Using the GMF and GME Frameworks. In Proceed-
ings of the 5th Nordic Workshop on Model Driven Software Engi-
neering (NW-MoDE’07), pages 67-82, Ronneby, Sweden, August
2007.

Hugo Arboleda, Rubby Casallas, and Jean-Claude Royer. Deal-
ing with constraints during a feature configuration process in a
model-driven software product line. In Proceedings of the 7th
Workshop on Domain-Specific Modeling at the 22th ACM Confer-
ence on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’07), pages 178-183, Montreal, Canada,
2007.

Hugo Arboleda, Rubby Casallas, and Jean-Claude Royer. Using
transformation-aspects in model-driven software product lines. In
Proceedings of the 3th International Workshop on Aspects, De-

182

[ACRO9)

pendencies, and Interactions at 22nd Furopean Conference on
Object-Oriented Programming (ECOOP’08), pages 46-56, Pa-
phos, Cyprus, July 2008.

Hugo Arboleda, Rubby Casallas, and Jean-Claude Royer. Dealing
with fine-grained configurations in model-driven spls. In Proceed-
ings of the 13th International Software Product Line Conference
(SPLC’09), San Francisco, US, August 2009.

[AGGat08] N. Anquetil, B. Grammel, I. Galvao, J. Noppen, S. Shakil, H. Ar-

[AMPOY]

|AMS07]

[ARCRO9)

[B05]
[Bay06]
[BBMO3|

[BFGOO

boleda, A. Rashid, and A. Garcia. Traceability for model driven,
software product line engineering. In Proceedings of the 4th Work-
shop on Traceability at the jth Furopean Conference on Model
Driven Architecture (ECMDA’08), Berlin, Germany, June 2008.

AMPLE project. European Commission STREP Project AMPLE
[ST-033710, last visited in June 2009.

Timo Asikainen, Tomi Ménnist6, and Timo Soininen. Kumbang:
A domain ontology for modelling variability in software product
families. Adv. Eng. Inform., 21(1):23-40, 2007.

Hugo Arboleda, Andres Romero, Rubby Casallas, and Jean-
Claude Royer. Product derivation in a model-driven software
product line using decision models. In Proceedings of the 12th
Iberoamerican Conference on Requirements Engineering and Soft-
ware Environments (IDEAS’09), pages 59-72, Medellin, Colom-
bia, April 2009.

Jean Bézivin. On the unification power of models. Software and
Systems Modeling, 4(2):171-188, May 2005.

Consolidated Product Line Variability Modeling, pages 195-241.
Springer Berlin Heidelberg, 2006.

Frank Budinsky, Stephen A. Brodsky, and Ed Merks. Eclipse
Modeling Framework (EMF). Pearson Education, 2003.

Joachim Bayer, Oliver Flege, and Cristina Gacek. Creating prod-
uct line architectures. In IW-SAPF-3: Proceedings of the Interna-
tional Workshop on Software Architectures for Product Families,
pages 210-216, London, UK, 2000. Springer-Verlag.

183

[BEGT02]

[BGJ03]

|Bos00]

[CA03]

|Car09]

[CBAOY]

[CBUE0?]

[CEO0]

Jan Bosch, Gert Florijn, Danny Greefhorst, Juha Kuusela,
Henk J. Obbink, and Klaus Pohl. Variability issues in software
product lines. In PFE °01: Revised Papers from the 4th Interna-
tional Workshop on Software Product-Family Engineering, pages
13-21, London, UK, 2002. Springer-Verlag.

Felix Bachmann, Michael Goedicke, Julio, Robert L. Nord, Klaus
Pohl, Balasubramaniam Ramesh, and Alexander Vilbig. A meta-
model for representing variability in product family development.
In Proceedings of the 5th International Workshop on Software
Product-Family Engineering, volume 3014 of Lecture Notes in
Computer Science, pages 66-80, Siena, Italy, November 2003.
Springer.

Jan Bosch. Design and Use of Software Architectures: Adapting
and Evolving a Product-Line Approach. Addison-Wesley, Boston,
MA, USA, 2000.

Krzysztof Czarnecki and Michal Antkiewicz. Mapping features to
models: A template approach based on superimposed variants. In
Robert Gliick and Michael R. Lowry, editors, GPCFE, volume 3676
of Lecture Notes in Computer Science, pages 422—437. Springer,
2005.

Carnegie Mellon University. The Software Engineering Institute,
last visited in June 2009.

Lianping Chen, Muhammad A. Babar, and Nour Ali. Variabil-
ity management in software product lines: A systematic review.
In Proceedings of the XIII Software Product Line International
Conference, San Francisco, CA, USA, August 2009.

Krzysztof Czarnecki, Thomas Bednasch, Peter Unger, and Ul-
rich W. Eisenecker. Generative programming for embedded soft-
ware: An industrial experience report. In Proceedings of the 1st
Conference on Generative Programming and Component Engi-
neering, pages 156-172. Springer-Verlag, 2002.

K. Czarnecki and U. W. Eisenecker. Generative Programming:
Methods, Tools, and Applications. ACM Press/Addison-Wesley
Publishing Co. New York, NY, USA, 2000.

184

[CHO3]

[CHO6]

[CHEO04]

[CHE05]

Krzysztof Czarnecki and Simon Helsen. Classification of model
transformation approaches. In OOPSLA’03 Workshop on Gen-
erative Techniques in the Context of Model-Driven Architecture,
Oct 2003.

K. Czarnecki and S. Helsen. Feature-based survey of model trans-
formation approaches. IBM Syst. J., 45(3):621-645, 2006.

K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration
using feature models. In Proceedings of the 3th Software Prod-
uct Line Conference 2004, pages 266—282. Springer, LNCS 3154,
2004.

Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker.
Staged configuration through specialization and multilevel con-
figuration of feature models. Software Process: Improvement and
Practice, 10(2):143-169, 2005.

|[CKMMO03] Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan R.

|Cle02]

[CNNO1]

[DGROS)]

Marganiec. Feature interaction: a critical review and considered
forecast. Comput. Netw., 41(1):115-141, 2003.

Paul C. Clements. On the importance of product line scope. In
PFE °01: Reuvised Papers from the 4th International Workshop
on Software Product-Family Engineering, pages 70-78, London,
UK, 2002. Springer-Verlag.

Paul Clements, Linda Northrop, and Linda M. Northrop. Soft-
ware Product Lines : Practices and Patterns. Addison-Wesley
Professional, August 2001.

Deepak Dhungana, Paul Griinbacher, and Rick Rabiser. Deci-
sionking: A flexible and extensible tool for integrated variability
modeling. In Proceedings of the 2nd Int. Workshop on Variability
Modelling of Software-intensive Systems, Essen, Germany, Jan-
uary 2008.

|[DvdHTO05| Eric M. Dashofy, André van der Hoek, and Richard N. Taylor.

A comprehensive approach for the development of modular soft-
ware architecture description languages. ACM Trans. Softw. Eng.
Methodol., 14(2):199-245, 2005.

185

[EFGT08]

[ESB04|

[FBO1]

[FMPOS]|

[FS04]

[FSJ99]

|Goe09]

[GPA*07]

[GSCKO04]

Christoph Elsner, Ludger Fiege, Iris Groher, Michael Jéger,
Christa Schwanninger, and Markus Vélter. Ample project. de-
liverable d5.3 - implementation of first case study: Smart home.
Technical report, December 2008.

Matthew Emerson, Janos Sztipanovits, and Ted Bapty. A mof-
based metamodeling environment. Journal of Universal Com-
puter Science, 10:1357-1382, October 2004.

R. France and J. Bieman. Multi-view software evolution: A uml-
based framework for evolving object-oriented software. Software
Maintenance, 17th IEEE International Conference on Software
Maintenance (ICSM’01), 0:386, 2001.

Thomas Forster, Dirk Muthig, and Daniel Pech. Understanding
decision models. visualization and complexity reduction of soft-
ware variability. In Proceedings of the 2nd Int. Workshop on Vari-
ability Modeling of Software-intensive Systems, Essen, Germany,
January 2008.

Frédéric Fondement and Raul Silaghi. Defining model driven
engineering processes. In Proceedings of the 3rd Workshop in
Software Model Engineering. WiSME, 2004.

Mohamed E. Fayad, Douglas C. Schmidt, and Ralph E. Johnson.
Building Application Frameworks: Object-Oriented Foundations
of Framework Design. John Wiley & Sons, Inc., New York, NY,
USA, 1999.

1st international workshop on model-driven approaches in soft-
ware product line engineering (maple 2009). San Francisco, US,
August 20009.

Kelly Garces, Carlos Parra, Hugo Arboleda, Andrés Yie, and
Rubby Casallas. Variability management in a model-driven soft-
ware product line. Avances en Sistemas e Informdtica, 4(2):3-12,
2007.

Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Soft-
ware Factories: Assembling Applications with Patterns, Models,
Frameworks, and Tools. Wiley, Indianapolis, US, 2004.

186

[GSVO8]

17B06]

[JK05]

[JK06]

[KCH*+90]

[KKTL*98]

[LHO5|

[L1094]

[LRO7]

Iris Groher, Christa Schwanninger, and Markus Voelter. An in-
tegrated aspect-oriented model-driven software product line tool
suite. In ICSE Companion '08: Companion of the 30th interna-
tional conference on Software engineering, pages 939-940, New

York, NY, USA, 2008. ACM.

Frédéric Jouault and Jean Bézivin. Km3: A dsl for metamodel
specification. In Roberto Gorrieri and Heike Wehrheim, editors,
FMOODS, volume 4037 of Lecture Notes in Computer Science,
pages 171-185. Springer, 2006.

Frédéric Jouault and Ivan Kurtev. Transforming models with
atl. In MoDELS Satellite Events, volume 3844 of Lecture Notes
in Computer Science, pages 128-138. Springer, 2005.

Frédéric Jouault and Ivan Kurtev. On the architectural align-
ment of atl and qvt. In SAC °06: Proceedings of the 2006 ACM
symposium on Applied computing, pages 1188-1195, New York,
NY, USA, 2006. ACM.

K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-
oriented domain analysis (foda) feasibility study. Technical Re-
port CMU/SEI-90-TR-21, 1990.

Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Fuiseob
Shin, and Moonhang Huh. Form: A feature-oriented reuse
method with domain-specific reference architectures. Annals of
Software Engineering, 5:143-168, 1998.

Shourong Lu and Wolfgang A. Halang. Platform-independent
specification of component architectures for embedded real-time
systems based on an extended uml. In C. Atkinson, C. Bunse,
H. G. Gross, and C. Peper, editors, Component-Based Soft-
ware Development for Embedded Systems, volume 3778 of Lec-
ture Notes in Computer Science, pages 123—142. Springer-Verlag,
Berlin Heidelberg, 2005.

J. W. Lloyd. Practical Advantages of Declarative Programming.
In Joint Conference on Declarative Programming, 1994.

Michael Lawley and Kerry Raymond. Implementing a practical
declarative logic-based model transformation engine. In SAC "07:

187

[LSGF|

[Mez09]

[MEFJO05]

| Mic04]

[MO04]

[MRV0S]

[No 09
[OAW09a)

|OAWO9b)

[OMGO3]

Proceedings of the 2007 ACM symposium on Applied computing,
pages 971-977, New York, NY, USA, 2007. ACM.

N. Loughran, P. Sanchez, A. Garcia, and L. Fuentes. Language
support for managing variability in architectural models. In Pro-
ceeding of the 7th International Symposium on Software Compo-
sition, volume 4954 of Lecture Notes in Computer Science, pages
36-51, Budapest, Hungary, March. Springer.

1st international workshop on model-driven product line engi-
neering (mdple’2009). Enschede, The Netherlands, June 2009.

Pierre A. Muller, Franck Fleurey, and Jean M. Jézéquel. Weaving
executability into object-oriented meta-languages. In Lionel C.
Briand and Clay Williams, editors, Proceedings of the 8th Inter-
national on Model Driven Engineering Languages and Systems,
volume 3713 of Lecture Notes in Computer Science, pages 264—
278, Montego Bay, Jamaica, October 2005. Springer.

Michael K. Smith and Chris Welty and Deborah L. McGuinness.
Owl web ontology language guide. world wide web consortium.
Technical report, February W3C Recommendation 10 February
2004.

Mira Mezini and Klaus Ostermann. Variability Management with
Feature-Oriented Programming and Aspects. SIGSOFT Softw.
FEng. Notes, 29(6):127-136, 2004.

Nathalie Moreno, José R. Romero, and Antonio Vallecillo. An
Overview Of Model-Driven Web Engineering and the Mda, chap-
ter 12, pages 353-382. Springer, 2008.

No Magic, Inc. Magicdraw, last visited in June 2009.

OAW. openArchitectureWare 4.3 User Guide., last visited in June
2009.

OAW. The Openarchitectureware Framework, last visited in June
2009.

OMG. Object Management Group. Model driven architecture,
mda guide version 1.0.1. Technical report, June 2003.

188

[OMGO064a]

[OMGO6b|

|onl08]
|OSG09]
[PBvdLO3|

[PMO6]

[Pt407]

[Pur09)]

[RA09]

[RBSP02]

[Rei09)]

|[Rom09]

OMG. Object Management Group. Meta object facility (mof)
2.0. query/view/transformation specification. Technical report,
January 2006.

OMG. Object Management Group. Meta object facility, mof
specification version 2.0. Technical report, January 2006.

Aspect-oriented modelling workshops website, 2008.
OSGi Alliance. Osgi framework., last visited in June 2009.

Klaus Pohl, Giinter Bockle, and Frank van der Linden. Software
Product Line Engineering: Foundations, Principles, and Tech-
niques. Springer, Berlin, 2005.

Klaus Pohl and Andreas Metzger. Variability management in
software product line engineering. In ICSE ’06: Proceedings of
the 28th international conference on Software engineering, pages

1049-1050, New York, NY, USA, 2006. ACM.

Marc Pantel, ACADIE team, OLC team, and TOPCASED
team. The topcased project - a toolkit in open source for crit-
ical applications and systems design. In TOOLS EUROPE /
Model-Driven Development Tool Implementers Forum (MDD-
TIF), Zurich, Switzerland, 2007.

Pure Systems. Pure::variants, last visited in June 2009.

Andres Romero and Hugo Arboleda. Modelos de decision
como mecanismo decomposicion de reglas de transformacion.
Paradigma, 3(2), August 2009.

M. Riebisch, K. Bollert, D. Streitferdt, and I. Philippow. Extend-
ing feature diagrams with uml multiplicities. In Proceedings of the

6th World Conference on Integrated Design € Process Technology
(IDPT2002), Pasadena, California, 2002.

10th international conference on feature interactions (icfi 2009).
Lisbon, Portugal, June 2009.

Andres Romero. Derivacion en Lineas de Productos de Software
Dirigidas por Modelos Usando Modelos de Decision. PhD thesis,
Universidad de Los Andes, Bogota, Colombia, July 2009.

189

[Ryd79]
[SDO7]

[SJ04]

[SLFGO8]

[Sof09]

[SVCO06]

[Tel09]

[vdLO02]

VG074

[VGOTD]

[vGB02]

B. G. Ryder. Constructing the call graph of a program. IEFEE
Trans. Softw. Eng., 5(3):216-226, 1979.

Marco Sinnema and Sybren Deelstra. Classifying variability mod-
eling techniques. Inf. Softw. Technol., 49(7):717-739, 2007.

Klaus Schmid and Isabel John. A customizable approach to full
lifecycle variability management. Science of Computer Program-
ming, 53(3):259-284, 2004.

P. Sanchez, N. Loughran, L. Fuentes, and A. Garcia. Engineer-
ing languages for specifyingproduct-derivation processes in soft-
wareproduct lines. In Proceedings of the First International Con-
ference in Software Language Engineering (SLE’08), Toulouse,
France, September 2008.

Software Construction Group, University of Los Andes. Model-
Driven Software Product Line Engineering: Tool Support and
Case Studies, last visited in June 2009.

Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. Model-
Driven Software Development: Technology, Engineering, Man-
agement. John Wiley & Sons, 2006.

France Telecom. SmartQVT: An open source model transforma-
tion tool implementing the MOF 2.0 QVT-Operational language.
Web Site, last visited in June 2009.

Frank van der Linden. Software product families in europe: The
esaps & café¢é projects. IEEE Softw., 19(4):41-49, 2002.

M. Voelter and I. Groher. Handling variability in model transfor-
mations and generators. In Proceedings of the Tth Workshop on
Domain-Specific Modeling (DSM’07) at OOPSLA 07, 2007.

Markus Voelter and Iris Groher. Product line implementation us-
ing aspect-oriented and model-driven software development. In
Proceedings of the 11th International Software Product Line Con-
ference, pages 233-242, 2007.

Jilles van Gurp and Jan Bosch. Design erosion: problems and
causes. Journal of Systems and Software, 61(2):105-119, 2002.

190

[vO02]

[Voe05]

[Wag05]

[Wag08al

[Wag08b]

[WL99]

Rob van Ommering. Building product populations with software
components. In ICSE ’02: Proceedings of the 24th International
Conference on Software Engineering, pages 255265, New York,
NY, USA, 2002. ACM.

Markus Voelter. Patterns for handling cross-cutting concerns in
model-driven software development. In Proceedings of the 10th
Furopean Conference on Pattern Languages of Programs (Euro-
PLoP), Trsee, Bavaria, Germany, July 2005.

Dennis Wagelaar. Context-driven model refinement. In MDAFA,
volume 3599 of Lecture Notes in Computer Science, pages 189—
203. Springer, 2005.

Dennis Wagelaar. Composition techniques for rule-based model
transformation languages. In ICMT °08: Proceedings of the 1st
international conference on Theory and Practice of Model Trans-
formations, pages 152—-167, Berlin, Heidelberg, 2008. Springer-
Verlag.

Dennis Wagelaar. Platform Ontologies for the Model-Driven Ar-
chitecture. PhD thesis, April 2008.

David M. Weiss and Chi T. R. Lay. Software product-line engi-
neering: a family-based software development process. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

191

Appendix A

Model Transformation Rules

In this appendix we present the following:

1. The model-to-text transformation rules to generate executable 0 AW
workflows from decision models.

2. The model-to-text transformation rules to generate Check expressions
from constraint models.

A.1 Model-to-Text Transformation Rules to
Generate Executable oAW Workflows
From Decision Models

«REM»

x $Id: appendizA . tex v 1.13 2009/08/11 23:40:04 hf.
arboleda34 Exp §

$Responsible: Hugo Arboleda$

$Plug—in: Decision models to workflow

$Rule Type: Model2Text§

Universidad de los Andes (Bogotd — Colombia)
Departamento de Ingenieria de Sistemas y Computacion
Software Construction Group

S S SR S

192

Sk T T e e e e

«DEFINE Root(String nameFile) FOR decisionModel :: Workflow»

«FILE nameFile —»
<?7xml version="1.0"7>
<workflow >

<component class="co.features.ConfigureKeywords" />
<property file="workflow.properties" />

<readFineConfig uri="«fileConfiguration»" />

«EXPAND loadConfiguration FOR this —»
«EXPAND transformationProgram (this) FOR first —»

</workflow >
«ENDFILE—»
«ENDDEFINE»

«DEFINE loadConfiguration FOR decisionModel :: Workflow —»
<component class="org.eclipse .mwe.emf. Reader">
<useSingleGlobalResourceSet value="true" />
<uri value="«fileConfiguration»" />
<modelSlot value="configurationModel" />

< /component>
«ENDDEFINE»

«DEFINE transformationProgram (decisionModel :: Workflow wf)
FOR decisionModel :: TransformationProgram —»
«FOREACH sourceModels AS sModel—»
«IF !wf.modelTransformations.select (e|e.metaType——
decisionModel :: Model2Model) . exists (e|((decisionModel ::

193

Model2Model)e) . targetModel . alias =— sModel. alias) —»
«EXPAND loadModel FOR sModel —»
«ENDIF —»
«ENDFOREACH —»

«IF this.metaType — decisionModel :: Model2Model —»

«EXPAND transformationModel2Model FOR (decisionModel ::
Model2Model) this —»

«ELSEIF this.metaType = decisionModel :: Model2Text —»

«EXPAND transformationModel2Text FOR (decisionModel ::
Model2Text) this —»

«ENDIF»

«IF next != null —»

«EXPAND transformationProgram (wf) FOR next —»
«ENDIF —»

«ENDDEFINE»

«DEFINE loadModel FOR decisionModel :: Model —»
«IF this != null—»
<component class="org.eclipse .mwe.emf. Reader">
<useSingleGlobalResourceSet value="true" />
<uri value="«xmiFile»" />
<modelSlot value=" «alias»" />
< /component>
«ENDIF —»
«ENDDEFINE»

«DEFINE transformationModel2Model FOR decisionModel ::
Model2Model —»
«FOREACH aspects AS aspect»
«EXPAND featureOpen ('M2M’) FOR aspect —»
«EXPAND aspectM2M (this) FOR aspect —»
«EXPAND featureClose FOR aspect —»
«ENDFOREACH »
«FOREACH transformationRules.select(e|e.metaType ==
decisionModel :: Base) AS rule»
«EXPAND baseRuleM2M (this) FOR (decisionModel :: Base)rule —
»

194

«ENDFOREACH »
«EXPAND saveModel FOR targetModel —»
«ENDDEFINE»

«DEFINE transformationModel2Text FOR decisionModel ::
Model2Text —»
«FOREACH aspects AS aspect»
«EXPAND featureOpen (’M2T’) FOR aspect —»
«EXPAND aspectM2T (this) FOR aspect —»
«EXPAND featureClose FOR aspect —»
«ENDFOREACH »
«FOREACH transformationRules.select (e|e.metaType =
decisionModel :: Base) AS rule»
«EXPAND baseRuleM2T (this) FOR (decisionModel :: Base)rule —
»
«ENDFOREACH »
«ENDDEFINE»

«DEFINE baseRuleM2M (decisionModel :: Model2Model model) FOR
decisionModel :: Base —»
<transform id="«identifier» ">
<globalVarDef name="configurationModel" value="
configurationModel. configuration"/>
«EXPAND metamodels FOR (decisionModel ::
TransformationProgram)model —»
«EXPAND invokeRule (model) FOR this —»
<outputSlot value="«model.targetModel.alias»" />
</transform>
«ENDDEFINE»

«DEFINE baseRuleM2T (decisionModel :: Model2Text model) FOR
decisionModel :: Base —»

<component id="«identifier»" class="org.
openarchitectureware .xpand2. Generator'>

<globalVarDef name="configurationModel" value="
configurationModel.configuration"/>

<metaModel class="org.openarchitectureware.type.emf.
EmfMetaModel"><metaModelFile value="
configurationMetamodel . ecore" /></metaModel>

195

«EXPAND metamodels FOR (decisionModel ::
TransformationProgram) model —»
«EXPAND expandRule (model) FOR this —»
<outlet path="«model.targetPath» ">
<postprocessor class="org.openarchitectureware.xpand2.
output.JavaBeautifier" />
</outlet >
< /component>
«ENDDEFINE»

«DEFINE invokeRule(decisionModel :: TransformationProgram
transformation) FOR decisionModel :: Base—»
«IF this != null —»
<invoke value="«path» :: «fileName» :: «ruleName» («<EXPAND_
modelsParameters FOR_transformation_—»)" />
«ENDIF —»
«ENDDEFINE»

«DEFINE expandRule(decisionModel :: TransformationProgram
transformation) FOR decisionModel :: Base—»
«IF this != null —»
<expand value="«path» :: «fileName» :: «ruleName» _FOR_«EXPAND
_modelsParameters FOR_transformation_—»" />
«ENDIF —»
«ENDDEFINE»

«DEFINE modelsParameters FOR decisionModel ::
TransformationProgram —»

«FOREACH sourceModels AS sModel SEPARATOR " ," —»

«sModel. alias —»

«ENDFOREACH —»

«ENDDEFINE»

«DEFINE aspectM2M (decisionModel : : Model2Model model) FOR
decisionModel :: Aspect —»
<transformationAspect adviceTarget="«joinPoint.
identifiery ">
<extensionAdvice value="«advice.path» :: «advice.fileName»
" />
</transformationAspect>

196

«ENDDEFINE»

«DEFINE aspectM2T (decisionModel :: Model2Text model) FOR
decisionModel :: Aspect —»
<generatorAspect adviceTarget="«joinPoint.identifier» ">
<Advice value="«advice.pathy :: «advice.fileName»" />
</generatorAspect >
«ENDDEFINE»

«DEFINE metamodels FOR decisionModel :: TransformationProgram
—»
«FOREACH sourceModels AS sModel—»
<metaModel class="org.openarchitectureware.type.emf.
EmfMetaModel"><metaModelFile value="«sModel.conformTo
.xmiFile» " /></metaModel>
«ENDFOREACH —»
«IF this.metaType — decisionModel :: Model2Model —»
<metaModel class="org.openarchitectureware.type.emf.
EmfMetaModel"><metaModelFile value="«((decisionModel::
Model2Model) this) . targetModel . conformTo.xmiFile—»"
/>< /metaModel>
«ENDIF —»

«ENDDEFINE»

«DEFINE saveModel FOR decisionModel :: Model—»

<component class="org.openarchitectureware.emf. XmiWriter">
<inputSlot value="«alias»" />
<modelFile value="«xmiFile»" />

< /component>

«ENDDEFINE»

«DEFINE featureOpen (String typeTransformation) FOR
decisionModel :: Aspect —»
«FOREACH executionCondition.variantStates.select(e]e.
metaType—decisionModel :: FineCondition) AS selection —»
«EXPAND fineFeatureOpen FOR (decisionModel:: FineCondition
)selection —»
«EXPAND fineFeatureEcho (typeTransformation) FOR (
decisionModel :: FineCondition)selection —»

197

«ENDFOREACH-»
«IF executionCondition.variantStates.exists (e|e.metaType
— decisionModel :: CoarseCondition) —»
«EXPAND coarseFeatureOpen FOR this —»
«EXPAND coarseFeatureEcho (typeTransformation) FOR this —»
«ENDIF —»
«ENDDEFINE»

«DEFINE featureClose FOR decisionModel :: Aspect —»

«IF executionCondition.variantStates.exists (e|e.metaType
— decisionModel :: CoarseCondition) —»

«EXPAND coarseFeatureClose FOR this —»

«ENDIF —»

«FOREACH executionCondition.variantStates.select(e]e.
metaType = decisionModel :: FineCondition) AS
variantStateConfiguration —»

«EXPAND fineFeatureClose FOR this —»

«ENDFOREACH-»

«ENDDEFINE»

«DEFINE coarseFeatureOpen FOR decisionModel :: Aspect —»
<coarseFeature «EXPAND isSelectedProperty FOR this —»

«EXPAND isNotSelectedProperty FOR this —»>
«ENDDEFINE»

«DEFINE isSelectedProperty FOR decisionModel :: Aspect —»

«IF executionCondition != null —»

«IF executionCondition.variantStates.select(e|e.metaType=—
decisionModel :: CoarseCondition). exists (e|((decisionModel
:: CoarseCondition)e) .selected=—decisionModel ::
SelectionType : : SELECTED) —»isSelected="«EXPAND_
getSelectedFeatures _FOR_this.executionCondition _—»"
«ENDIF—»

«ENDIF—»

«ENDDEFINE»

«DEFINE isNotSelectedProperty FOR decisionModel :: Aspect —»

«IF executionCondition != null—»

«IF executionCondition.variantStates.select(e|e.metaType=—
decisionModel :: CoarseCondition). exists (e|((decisionModel

198

:: CoarseCondition)e).selected=—decisionModel ::
SelectionType : :NOT_SELECTED) —»isNotSelected="«EXPAND_
getNotSelectedFeatures _[FOR_this.executionCondition_—»"
«ENDIF—»

«ENDIF—»

«ENDDEFINE»

«DEFINE getSelectedFeatures FOR decisionModel ::
ExecutionCondition —»

«FOREACH variantStates.select (e|e.metaType——decisionModel ::
CoarseCondition) .select (e|((decisionModel ::
CoarseCondition)e).selected =— decisionModel ::
SelectionType : :SELECTED) AS variantState SEPARATOR ’,’
—»«variantState .nameFeature —»«ENDFOREACH —»

«ENDDEFINE»

«DEFINE getNotSelectedFeatures FOR decisionModel ::
ExecutionCondition —»

«FOREACH variantStates.select (e|e.metaType=—=decisionModel ::
CoarseCondition) .select (e|((decisionModel ::
CoarseCondition)e).selected = decisionModel ::
SelectionType ::NOT_SELECTED) AS variantState SEPARATOR
7,7 —y»«variantState.nameFeature —»«ENDFOREACH —»

«ENDDEFINE»

«DEFINE coarseFeatureClose FOR decisionModel :: Aspect —»
</coarseFeature>
«ENDDEFINE»

«DEFINE coarseFeatureEcho (String typeTransformation) FOR
decisionModel :: Aspect —»
<echo>
<message value="executing_coarse_aspect._
«typeTransformationy _isSelected =[«EXPAND_
getSelectedFeatures FOR_this.executionCondition_—»]|_
isNotSelected =[«EXPAND_getNotSelectedFeatures _FOR_
this.executionCondition_—»|" />
</echo>
«ENDDEFINE»

199

«DEFINE fineFeatureOpen FOR decisionModel :: FineCondition —»
<fineFeature toFeature="«nameFeatures»" boundMetaconcept="

«metaConcept» ">
«ENDDEFINE»

«DEFINE fineFeatureClose FOR decisionModel :: Aspect —»
</fineFeature>
«ENDDEFINE»

«DEFINE fineFeatureEcho (String typeTransformation) FOR
decisionModel :: FineCondition —»
<echo>
<message value="executing_fine_aspect._
«typeTransformation» _toFeature=[«nameFeature» |_
boundMetaconcept=|«metaConcepty |" />
</echo>
«ENDDEFINE»

Listing A.1: Model-to-Text Transformation Rules to Generate Executable
0AW Workflows From Decision Models.

A.2 Model-to-Text Transformation Rules to
Generate Check Expressions From Con-
straint Models

«REM»

x $Id: appendizA . tex v 1.13 2009/08/11 23:40:04 hf.
arboleda34 Exp §

$Responsible: Hugo Arboleda$

$Plug—in: Check exzpressions generator$

$Rule Type: Model2Text§

Universidad de los Andes (Bogotd — Colombia)
Departamento de Ingenieria de Sistemas y Computacion
Software Construction Group

* X XK X KX K X

*/
«ENDREM»

«EXTENSION templates::chk:: chkGenerator»

«REM»
/2.

x Transformation Rules Begin

«REM»

Root transformation , generates the check file. This
transformation creates restrictions to validate

bindings between features and elements. Moreover, invokes
transformations to create others restrictions.

«ENDREM»

«DEFINE main (String nameFile) FOR constraintMetamodel ::
RootFeature»

«FILE nameFile+".chk" —»
import configurationMetamodel;

extension org::openarchitectureware:: util::stdlib ::naming;

«IF eAllContents.exists(e|e.metaType = constraintMetamodel
:: Constraint) —»

context Binding ERROR loc ()+"You_can_not_create_a_binding_
between_element_("+metaConcept+")_and_feature_("+
feature .namet")":

«FOREACH eAllContents.select (e|e.metalType —
constraintMetamodel :: Constraint) AS const SEPARATOR
S

«EXPAND constraintText FOR (constraintMetamodel ::
Constraint)const —»
«ENDFOREACH —» ;
«ENDIF —»

201

«FOREACH eAllContents AS eobject —»
«IF eobject .metaType == constraintMetamodel :: Constraint —
»
«EXPAND constraintValidation FOR (constraintMetamodel ::
Constraint)eobject —»
«ELSEIF eobject .metaType = constraintMetamodel ::
GroupConstraint —»
«EXPAND groupConstraintValidation FOR (
constraintMetamodel :: GroupConstraint)eobject —»
«ENDIF —»
«ENDFOREACH —»

«ENDFILE—»
«ENDDEFINE»

«REM»
Invokes transformations to create restrictions for
constraintMetamodel :: GroupConstraint elements
«ENDREM>»
«DEFINE groupConstraintValidation FOR constraintMetamodel ::
GroupCounstraint —»
«EXPAND constraintl (max, min,feature.getFeatureName (),
metaConcept) FOR this —»
«ENDDEFINE»

«REM»
Invokes transformations to create restrictions for
constraintMetamodel :: Constraint elements
«ENDREM»
«DEFINE constraintValidation FOR constraintMetamodel::
Constraint —»
«IF feature.metaType
SolitaryFeature —»
«EXPAND constraintl (max, min,feature.getFeatureName (),
metaConcept) FOR this —»
«ELSEIF feature.metaType = constraintMetamodel ::
FeatureGroup —»
«EXPAND constraint2 (max, min,feature.getFeatureName (),
metaConcept) FOR this —»

constraintMetamodel ::

202

«ENDIF —»
«ENDDEFINE»

«REM»
Constraint to specify the min and max number of bindings
between features and elements for elements conform
to metaconcept constraintMetamodel:: SolitaryFeature and
constraintMetamodel :: GroupConstraint
«ENDREM>»
«DEFINE constraintl (Integer max, Integer min, String name,
String metaConcept) FOR emf:: EObject»
context Configuration ERROR loc() + "there_are_less_than_
«miny _ «metaConcept» _element _bound_to_the_feature_«name»"

this.binding.select (b|b.feature.name=="«name»’ && b.
metaConcept=="«metaConcept» *).size >= «min»;

context Configuration ERROR loc() + "there_are_more_than_
«max» _ «metaConcept» _element _bound_to_the_feature_«name»"

this.binding.select (b|b.feature.name=="«name»’ && b.
metaConcept=="«metaConcept» >).size <= «max»;
«ENDDEFINE»

«REM»

Constraint to specify the min and max number of bindings
between features and elements for elements conform

to metaconcept constraintMetamodel :: FeatureGroup

«ENDREM»

«DEFINE constraint2 (Integer max, Integer min, String name,
String metaConcept) FOR constraintMetamodel :: Constraint»

context Binding ERROR loc () + "there_are_less_than_«min»_
«metaConcept» _element _bound_to_the_feature_«name»":

(this.metaConcept — ’«metaConcepty ' &&

this.feature .metaType — configurationMetamodel ::
GroupedFeature &&

((configurationMetamodel :: GroupedFeature) this.feature) .

parentFeature .name — ’«name» &&
((Configuration)this.eContainer).binding.select (b|b.name ==
this .name && this.metaConcept = ’“«metaConcepty» ’ && ((

203

configurationMetamodel :: GroupedFeature) this . feature) .

parentFeature.name = ’«name» ’) .size >= «miny) ||
(this.metaConcept != ’«metaConcept»’) ||
(this.metaConcept = ’«metaConcepty ' &&
this.feature . metalype == configurationMetamodel ::

GroupedFeature &&
((configurationMetamodel :: GroupedFeature) this.feature) .
parentFeature.name != ’«namey»’) ;

context Binding ERROR loc () + "there_are_more_than_«maxy_
«metaConcept» _element _bound_to_the_feature_«name»":

(this.metaConcept — ’«metaConcepty ' &&

this.feature .metaType — configurationMetamodel ::
GroupedFeature &&

((configurationMetamodel :: GroupedFeature) this.feature) .

parentFeature .name — ’«name» &&
((Configuration)this.eContainer).binding.select (b|b.name ==
this.name && this.metaConcept = ’«metaConcepty = && ((
configurationMetamodel :: GroupedFeature) this.feature) .
parentFeature.name — ’«name» ') .size <= «max») ||
(this.metaConcept != ’«metaConcept» ’) ||
(this.metaConcept = ’«metaConcepty ' &&
this.feature.metaType == configurationMetamodel ::

GroupedFeature &&
((configurationMetamodel :: GroupedFeature) this.feature) .
parentFeature.name != ’«namey»’) ;
«ENDDEFINE»

«REM»

«REM>»
Prints the feature name for constraintMetamodel::
CointainableByF elements
«ENDREM>»

204

«DEFINE featureName FOR constraintMetamodel ::
CointainableByF —»

«IF this.metaType = constraintMetamodel :: SolitaryFeature —
»«((constraintMetamodel :: SolitaryFeature) this).name —»

«ELSEIF this.metalType =— constraintMetamodel :: FeatureGroup
—»«((constraintMetamodel :: FeatureGroup) this) .name —»

«ENDIF—»

«ENDDEFINE»

«DEFINE constraintText FOR constraintMetamodel:: Constraint
—»

«IF feature.metaType — constraintMetamodel::
SolitaryFeature —»

«EXPAND constraintTextSolitaryFeature (metaConcept) FOR (
constraintMetamodel :: SolitaryFeature) feature —»

«ELSEIF feature.metaType == constraintMetamodel ::
FeatureGroup —»

«EXPAND constraintTextGroupFeature (metaConcept) FOR (
constraintMetamodel :: FeatureGroup) feature —»

«ENDIF —»

«ENDDEFINE»

«DEFINE constraintTextGroupFeature (String nameMetaconcept)
FOR constraintMetamodel :: FeatureGroup —»

«FOREACH children AS gruopedfeature SEPARATOR ||’ —»

(metaConcept = ’"«nameMetaconcepty = && feature.name — "
«EXPAND_featureName _FOR_gruopedfeature» ")

«ENDFOREACH —»

«ENDDEFINE»

«DEFINE constraintTextSolitaryFeature (String
nameMetaconcept) FOR constraintMetamodel::
SolitaryFeature —»

(metaConcept = ’«nameMetaconcepty = && feature.name — "
«EXPAND_featureName _FOR_this» ")

«ENDDEFINE»

«REM»

205

Prints the feature name for constraintMetamodel::
GroupedFeature elements
«ENDREM>»
«DEFINE featureName FOR constraintMetamodel::
GroupedFeature —»«name» «kENDDEFINE»

Listing A.2: Model-to-Text Transformation Rules to Generate Check
Expressions From Constraint Models.

206

	Introduction
	Context
	Problem Statement
	Research Objectives
	Approach - in a nutshell
	Contributions
	Thesis Structure

	Model-Driven Software Development
	Introduction
	Models and Metamodels
	Domain Specific Modeling and Metamodels
	The 4-Level Metamodeling Framework
	The Nature of Models

	Model Transformations
	Scheduling of Transformation Rules
	Model Transformation Patterns
	Classification of Model Transformations
	Vertical Model Transformations
	Horizontal Model Transformations

	Modeling Frameworks
	The Eclipse Modeling Framework
	The Topcased toolkit

	Model Transformation Languages
	The openArchitectureWare Framework
	The Xtend Language

	Summary

	Model-Driven Software Product Line Engineering
	Introduction
	Software Product Line Engineering
	Variability Management in SPL Engineering
	The Domain Engineering Process
	Expressing Variability
	Core Assets Development

	The Application Engineering Process
	Product Configuration
	Product Derivation

	Model-Driven Software Product Lines
	The Czarnecki and Antkiewicz's Approach Czarnecki-et-al3-05
	The Wagelaar's Approach Wagelaar-05,Wagelaar-08,Wagelaar2-08
	The Loughran et al.'s Approach Loughran-et-al-08,Sanchez-et-al-08
	The Voelter and Groher's Approach Voelter-et-al2-07
	Discussion

	Summary

	Binding Models, Constraint Models and Decision Models
	Introduction
	Case Study
	Smart-Home System's Domain
	Case Study Requirements

	Variability Expression and Product Configuration
	Metamodels
	Feature Models

	Binding Models and Constraint Models
	Binding Models
	Constraint Models
	The Cardinality Property
	The Structural Dependency Property
	The Constraint Metamodel and The Binding Metamodel
	Validating Binding Models against Constraint Models

	Core Assets Development and Product Derivation
	Rule Transformations in the Smart-Home systems' SPL
	Creating and Using Decision Models

	Deriving Products based on Constraint Models and Binding Models
	The Extended Decision Metamodel.
	Creating Executable Model Transformation Workflows from Decision Models and Constraint Models.

	Identified Limitations
	Summary

	Validation and Tool Support
	Introduction
	Running MD-SPLs
	The Smart-Home Systems' SPL
	An MD-SPL of Stand Alone Applications to Manage Data Collections

	Variability Expression and Product Configuration
	MD-SPL Project Creation
	Metamodels and Feature Models Creation
	Constraint Models Creation
	Domain Models and Binding Models Creation

	Core Assets Development and Product Derivation
	Transformation Rules Creation
	Decision Models Creation
	Generation and Execution of Model Transformation Workflows

	Summary

	Conclusion
	Introduction
	Thesis Summary
	Results and Contributions
	Metamodeling and Feature Modeling
	Multi-Staged Configuration of Products
	Coarse- and Fine-Grained Variations and Configurations
	Core Assets Development and Decision Models
	Product Derivation
	Summary

	Future Work
	Dealing with Current Limitations: Features Combinatory, Features Interaction and Bindings Interaction
	Using Complementary Variability Models
	Integrating Architectural Description Languages
	Incorporating Aspect Oriented Modeling
	Using Declarative Programming to Create Transformation Rules
	Formalizing the Approach

	Model Transformation Rules
	Model-to-Text Transformation Rules to Generate Executable oAW Workflows From Decision Models
	Model-to-Text Transformation Rules to Generate Check Expressions From Constraint Models

