N

N

A Hierarchical Component Model with Interaction
Protocols

Sébastien Pavel

» To cite this version:

Sébastien Pavel. A Hierarchical Component Model with Interaction Protocols. Software Engineering
[cs.SE]. Université de Nantes, 2009. English. NNT: . tel-00484788v1

HAL Id: tel-00484788
https://theses.hal.science/tel-00484788v1
Submitted on 19 May 2010 (v1), last revised 26 May 2010 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00484788v1
https://hal.archives-ouvertes.fr

_ UNIVERSITE DE NANTES
FACULTE DES SCIENCES ET DES TECHNIQUES

ECOLE DOCTORALE

SCIENCES ET TECHNOLOGIES
DE I’INFORMATION ET DES MATERIAUX

Année 2008 N° attribué par la bibliothéque

ED 503-037

Un modéle de composants hiérarchiques
avec protocoles d’interaction

A Hierarchical Component Model with Interaction Protocols

THESE DE DOCTORAT

Spécialité Informatique
Présenté et soutenue publiquement par

Sebastian Pavel
Le 21 Octobre 2008

a I’Ecole Nationale Supérieure des
Techniques Industrielles et des Mines de Nantes

devant la commission d’examen composée de :

Rapporteurs : Laurence Duchien Professeur des Universités, Lille I
Antoine Beugnard Emnseignant-Chercheur, HDR, ENST de Bretagne
Examinateurs : Frédéric Besson Chargé de Recherche, INRTA
: Mourad Oussalah Professeur des Universités, Nantes
: Jacques Noyé Maitre-Assistant, Ecole des Mines de Nantes
Directeur de thése : Jean-Claude Royer Professeur, Ecole des Mines de Nantes

Laboratoire d’accueil : Laboratoire d’Informatique de Nantes-Atlantique (UMR 6241)
Equipe d’accueil : Ecole des Mines de Nantes - Objets, Aspects et Composants (OBASCO)

Résumé

L’utilisation et la gestion des composants sont au coeur des nouvelles architectures
logicielles. Les composants représentent les briques de bases des logiciels. Les efforts de
recherche actuels se concentrent sur ’élaboration de modéles a base de composants qui
intégrent des propriétés importantes comme, par exemple, la description et 'intégration
des composants avec des comportements explicites (protocoles d’interaction). Ce sont ces
descriptions plus complétes que les interfaces classiques (les points d’entrée et de sortie),
qui ouvrent la voie vers la correction des assemblages.

Comme aboutissement des travaux de cette thése, nous proposons un modéle de com-
posants qui utilise des Systémes de Transitions Symboliques (STSs) pour décrire les com-
portements des composants. Les composants de notre modéle sont des boites noires com-
municant exclusivement par I'intermédiaire de leurs interfaces étendues avec des protocoles
d’interaction. Le modéle spécifie aussi les régles de compatibilité, les algorithmes de vérifi-
cation des assemblages des composants et de la substitution et un langage de description
des composants.

Nous proposons une implémentation dans le langage Java en suivant une approche
générative ou le code Java est généré & partir des descriptions des composants de haut
niveau. Le code est donc garanti a étre conforme & la spécification.

Mots-clés : modéle de composants, protocoles d’interaction, systémes de transitions sym-
boliques (STS), génération de code, Java.

Abstract

Title : A Hierarchical Component Model with Interaction Protocols

The component-based Software Engineering (CBSE) represents an important trend in
the development of software architectures. The components are the core of the software
applications and the recent efforts concentrate on conceiving component models integrating
important properties as for example explicit interaction protocols. Interaction protocols
allow a component to publish its behavior in terms of message emission and receipt. Thus,
component assemblages can be more effective than in the traditional approach where only
static interfaces (input and output) are available.

In this thesis, we propose a component model considering black-box components inte-
grating interaction protocols described as Symbolic Transition Systems (STSs). STSs allow
the description and verification of complex protocols while dealing with the state explosion
problem for example. The model also specifies the compatibility rules, the substitution and
the assemblage verification algorithms and a component description language. We propose
a generative approach on implementing our model in the Java programming language. The
Java code is automatically generated starting from high level component descriptions as-
suring that the component code is conforming with its specification.

Keywords : component models, interaction protocols, symbolic transition systems (STS),
code generation, Java.

Remerciements

Je remercie tout d’abord les membres du jury qui ont accepté d’évaluer mon travail.
Merci aux rapporteurs de cette thése, Laurence Duchien professeur a I’'Universités de Lille
I qui m’a soutenu pendant les quelques années d’interaction dans le cadre du projet ACI
Dispo et a Antoine Beugnard, enseignant-chercheur & ENST de Bretagne qui, m’a beau-
coup influencé par son travail dans le domaine des composants logiciels. Merci aux autres
membres pour l'intérét dans mon travail et pour I’honneur qui me font de participer dans
ce jury.

Merci & Jean-Claude Royer, mon directeur de thése. Sans toi Jean-Claude, je n’ai
surement pas pu arriver si loi. Ta confiance et ton énergie m’ont beaucoup aidé & surmonter
les difficultés et suivre le bon chemin. Merci aussi & Jacques Noyé, mon co-encadrant pour
son rigueur et sa minutie. C’est la poursuite de la perfection qui te définit Jacques et je ne
peut-étre que reconnaissant pour tes conseils.

Merci aux membres du département informatique de ’Ecole de Mines de Nantes qui
m’ont accueilli parmi eux avec un trés grand merci & Pierre Cointe, ancien chef du service,
qui a tout fait pour que je puisse intégrer 'EMN dans les meilleures conditions. Merci a
Remy Douence et & Mario Siidholt pour leur soutien et leur bonne parole dans des moments
difficiles.

Merci aussi a toi Thierry Petit pour ton courage et ta volonté qui me donne la force de
continuer & me battre et aussi & profiter des choses simples.

Merci aussi aux membres du projet ACI Dispo avec lesquels j’ai pu échanger beaucoup
sur la recherche et qui ont représenté pour moi un soutien important tant sur le plan
personnel que professionnel.

Merci aux anciens thésards parmi lesquels j’ai fait mes premiers pas dans le monde de
la recherche : Yann-Gaél Guéhéneuc, Marc Ségura-Devillechaise, Gustavo Bobeff, Simon
Denier et tous les autres.

Merci & ma famille et & mes amis qui ont su me soutenir et aussi me supporter dans
beaucoup des moments trés difficiles.

Sans toutes ces personnes, ce long travail n’aurait pas pu étre amené au bout. Un grand
merci & tous.

Table des matiéres

II

Résumé en Francais

Résumé

1.1 Domaine d’étude
1.1.1 L’ingénierie des composants
1.1.2 Protocoles d’interaction : formalismes connus

1.2 Objectifs et propositions L L
1.2.1 Lemodéle CwSTS
1.2.2 L’implémentation du modéle
1.2.3 Perspectives

1.3 Structure du mémoire de thése

Work Context in English

Introduction
2.1 Objectives and Contributions
2.2 Document Structure

Component Models and Languages

3.1 From Objects and Modules to Software Components

3.2 Component Models
3.2.1 Component Model Characteristics
3.2.2 Academic Models
3.2.3 Industrial Models

3.3 From Components to Software Architecture
3.3.1 Software Architecture Definition
3.3.2 Software Connectors
3.3.3 Software Architecture Use
3.3.4 Architecture Description Languages (ADLs)
3.3.5 Service-Oriented Architectures (SOA)
3.3.6 Component-Oriented Programming (COP)
3.3.7 The Coordination Paradigm

3.4 Conclusions

15

17
19
19
23
24
26
33
44
46

49

51
92
54

10 Table des matiéres

4 Interaction Protocols
4.1 Introduction L
4.2 Formalisms e
421 Process Algebra
4.2.2 Behavioral Typeso
4.2.3 Finite State Machines
4.24 Temporal Logicso
4.2.5 Other Approaches
4.3 Component Models and Interaction Protocols
4.3.1 Automata-Based Models oL
4.3.2 Regular Types
4.3.3 Coordination-Based Models
4.3.4 Other Approacheso
4.4 Conclusions

III Contribution in English
5 A Component Model with Explicit Interaction Protocols
5.1 Introductiono
5.1.1 Components, a Generative Approach
5.2 Informal Presentation L
52.1 Components. e
5.22 Imterfaces
5.2.3 Composition
524 Life Cycle o o
5.3 Model Definition oL
53.1 Components. e
5.3.2 Imteraction Protocols oo
5.3.3 Composition
5.3.4 Component Substitutability
54 CwSTS-Interface Description Language
5.4.1 Primitive Components o
5.4.2 Composite Components Lo
5.4.3 Symbolic Finite State Processes (SF'SP) a process algebra for STSs .
5.5 Conclusion
6 CwSTS Implementation
6.1 Component Implementation
6.1.1 Introduction. L
6.1.2 Java Packages and Component Entities
6.1.3 Primitive Component Implementation
6.1.4 Architectures Implementation

6.2 Behavioral Composition Implementation

Table des matiéres 11
6.2.1 Distributed Synchronization Mechanism 147

6.2.2 Distributed Synchronization Mechanism Integration in CwSTS-P . . 148

6.2.3 Distributed Synchronization Mechanism Evaluation 151

6.2.4 Centralized Synchronization Mechanism 152

6.2.5 Centralized Synchronization Mechanism Integration in CwSTS-P . . 153

6.2.6 Centralized Synchronization Mechanism Evaluation 155

6.3 Code Generation 155
6.4 Conclusion. e 157

7 Conclusions and Perspectives 159
7.1 Perspectives 163

12

Table des matiéres

Table des figures

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22

3.1
3.2
3.3
3.4

0.1
0.2
5.3
0.4
5.5

Syntaxe graphique d'un composant CwSTS. 27
Le protocole du composant client du serveur de messagerie. 28
Le composant StatisticsEnabledServer. 30
Le protocole du composant serveur de messagerie. 31
Le protocole du composant StatisticsReporter. 31
Le protocole du composant adaptateur.. 32
Le role du composant adaptateur dans ’architecture du systéme de messagerie. 32
Raffinement de la fonction f par la fonctiong. 33
Grammaire du langage de description des interfaces CwSTS-IDL. 34
La grammaire abstraite du langage SESP. o000 34
La définition du composant client du serveur de messagerie. 35
Scénarios de génération de composants.o 36
Structuration d’un composant sous la forme d’un package Java. 37
Vue fonctionnelle sur la structure d’un composants primitif. 38
Vue de configuration sur la structure d’un composant primitif. 38
Création d’une instance d’un composant primitif. 39
Interaction des entités du composant primitif.o 0oL 40
Vue fonctionelle sur la structure d’un composant composite. 41
Vue de configuration sur la structure d’un composant composite. 42
Création d’une instance d’un composant composite. 43
Exécution paralléle de deux actions. Lo 45
Etats mixtes dans Uinteraction entre deux composants. 46
Architecture composite component.o 64
Fractal Architecture. 68
CCM Component. i 72
CORBA Component Model Execution Environment. 73
A Generative Approach to Components. 111
Graphical Component Syntax. L oo 114
Message Client Protocol.o 116
Composite Component Example. 0oL, 117
The Synchronous Product.o 117

14 Table des figures
5.6 StatisticsEnabledServer Protocol Representing the Synchronous Product of
the Server and StatisticsReporter Protocols with Hidden Internal Actions. . 118
5.7 The Server Protocol. 119
5.8 The StatisticsReporter Protocol. o 0oL 119
5.9 Adaptor Component Protocol. 122
5.10 Complete Architecture of the Case Study. 122
5.11 Function refinement type relationships. 127
5.12 CwSTS Abstract EBNF Grammar. 129
5.13 Client Component Definition. 130
5.14 StatisticsEnabled composite component definition. 131
5.15 SFSP Abstract Grammar. 132
5.16 Client SFSP definition. 132
6.1 Component Package in Java. 0oL 136
6.2 Primitive Component Structure with a Partial View Over the Interactions. . 138
6.3 Primitive Component Class Diagram. 138
6.4 Primitive Component Internals. oL, 139
6.5 Component Structure. o 140
6.6 Primitive Component Instance Creation. 140
6.7 Composite Functional Structure. 142
6.8 Composite Control Structure. Lo 142
6.9 Composite Instance Creation., 144
6.10 Composite Execution. L o 145
6.11 ComponentController Java Class Excerpt. 149
6.12 Mixed State Situation. L L 151
6.13 Centralized Arbiter Entity oL 152
6.14 Component Protocols. 153
6.15 Synchronization Mechanism in Action. 154
6.16 Arbiter Implementation. Lo 154
7.1 Parallel Execution of Two Actions. 164
7.2 Mixed State Situation. Lo 164

Premiére partie

Résumé en Francais

Chapitre 1

Résumé

Dans les années soixante il est devenu évident que la facon de produire les logiciels
avait besoin d’étre reconsidérée. Les logiciels étaient développés sur demande et trés sou-
vent sans rien capitaliser des développements précédents. Les premiers désavantages sont
apparus au fur et & mesure que la demande a augmenté : la qualité était souvent médiocre
et les cotlits d’exploitation et de maintenance trés élevés. De plus, la dynamique du marché
a imposé que les applications logicielles soient rapidement modifiables pendant la phase de
développement et aussi de plus en plus complexes, évolutives ou adaptables. Les pressions
exercées par le marché et les clients avaient également un impact négatif sur la documenta-
tion : le temps alloué a celle-ci était insuffisant et le résultat souvent un produit incomplet
voire méme incorrect.

L’ingénierie des composants (Component-Based Software Engineering | |
en anglais) propose des réponses pour palier aux difficultés présentées ci-dessus. L'ingénie-
rie des composants considére les composants logiciels comme la brique de base de toute
construction logicielle. La notion de composant logiciel a été mentionnée pour la premiére
fois par Mcllroy | | dans son discours & la conférence de 'OTAN en 1968. L’idée
de brique logicielle comme solution aux problémes de développement a émergé a cette
époque. Les composants logiciels sont liés aux modules | , | et a la
programmation par objets (Object-Oriented Programming en anglais).

Les composants logiciels sont liés aux modules par le fait que la technologie des com-
posants ameéne a mettre en place des solutions modulaires. Ceci dit, si la modularité est un
prérequis, des régles supplémentaires (comme par exemple l'indépendance des composants
et le contrdle explicite des dépendances entre les composants) sont nécessaires pour former
des composants plutét que des modules.

A la fin des années 90, le constat a été fait que ’approche de la programmation par ob-
jets était insuffisante pour construire des logiciels de grande taille et d’améliorer fortement
la réutilisation. En contraste avec les mécanismes & objets qui introduisent un couplage fort
entre les classes de base et les classes dérivées (probléme connu sous le nom de classe de
base fragile | , |), Papproche par composants fournit une meilleure
séparation entre I'implémentation d'un composant et son interface. Chaque composant est
une entité indivisible de type boite noire qui peut étre composée avec d’autres composants

18 Résumé

et peut étre déployée indépendamment des autres composants. La construction des logi-
ciels est réalisée par assemblage de ces composants. Dans cette approche, interface du
composant est d’une importance primordiale car elle définit un contrat entre le composant
et son environnement. L’interface décrit d’une maniére trés explicite ce que le composant
fournit et ce qu’il requiert de son environnement dans le but de réaliser sa finalité dans
I’architecture de 'application.

Les caractéristiques particuliéres d’un composant sont décrites par les modéles de com-
posants. Un modéle de composants décrit ce qu'un composant est (par définition de ses
parties constitutives) et spécifie comment les composants peuvent étre assemblés en sui-
vant des régles de composition. Le modeéle de composant décrit également le cycle de vie
du composant et les roles associés aux différents acteurs du développement logiciel et de
I’exploitation des applications.

Les composants sont des entités qui collaborent en échangeant des messages pour co-
ordonner des actions ou seulement échanger des données. Pour une interaction réussie,
les composants doivent se conformer & une forme de contrat d’interaction. Les protocoles
d’interaction décrivent généralement le comportement d’une entité (objet, acteur, agent ou
composant) en termes de séquences de messages qui peuvent étre échangés par les entités
pour réaliser le comportement global attendu de ’application.

L’ingénierie des composants considére les protocoles d’interaction au niveau des in-
terfaces des composants. Au début, les interfaces ont seulement décrit les signatures des
services fournis et requis par le composant. Plus récemment, les protocoles d’interaction
ont fait leur apparition dans des modéles de composants plus élaborés ol le comportement
dynamique est explicitement décrit. Ceci permet une meilleure documentation du compor-
tement visible du composant et une meilleure intégration dans une architecture logicielle,
mais ouvre également la voie & des outils et des techniques de vérification pour par exemple
vérifier, a priori, la validité d'un assemblage.

En découplant l'interface de son implémentation, une question importante se pose :
comment assurer que l'implémentation est conforme (ou cohérente) avec linterface. Si
dans une approche purement syntaxique ol seulement les signatures des services sont spé-
cifiées par une interface, le test de conformité est simple. Dans le cas ol le comportement
dynamique est également spécifié, I'implémentation se révéle plus difficile a réaliser. Beau-
coup de modeéles de composants de I'état de I'art actuel ne prennent pas en compte ce
probléme. D’autres se basent sur des techniques d’analyse de code pour assurer la confor-
mité du code. Les langages de programmation de composants (component programming
language en anglais) considérent ce probléme en permettant la programmation avec des
composants plutét que des objets. Le code est conforme & son interface car la description
de l'interface se fait au méme niveau que 'implémentation et le compilateur vérifie cer-
taines propriétés importantes comme l'intégrité de la communication qui stipule que les
composants ne peuvent communiquer que par des canaux bien spécifiés. Finalement, les
techniques génératives assurent par construction que I'implémentation est conforme & la
spécification de l'interface.

Les modeles et langages de composants actuels intégrent souvent des concepts trop
nombreux ou ils sont trop spécifiques & certains contextes. Il est alors difficile d’analyser
les conséquences de I'ajout de nouveaux concepts (comme les protocoles d’interaction) ou

1.1. Domaine d’étude 19

de nouvelles fonctionnalités dans un modéle de composants existant. Les objectives de

cette thése sont donc de proposer un modéle de composants qui intégre des protocoles

d’interaction explicites donnés sous la forme des systémes de transitions symboliques.
Suite a des expérimentations avec la programmation par composants (voir

[| pour une proposition générative de développement des composants en Arch-
Java | |) et avec I’élaboration d’un modele de composants qui intégre des proto-
coles d’interaction et des communications asynchrones | , , I,

nous proposons un modele de composants appelé CwSTS (Components with Symbolic
Transition Systems en anglais). Des détails de notre proposition sont présentés dans la
section 1.2 a la page 24.

1.1 Domaine d’étude

1.1.1 L’ingénierie des composants

Les caractéristiques particuliéres d’un composant sont décrites par les modeéles de com-
posants. Un modéle de composants décrit ce qu’est un composant (par la définition de ses
parties constitutives) et spécifie la fagon dont les composants peuvent étre assemblés en
suivant des régles de composition. Le modéle de composant décrit également le cycle de
vie du composant et les réles associés aux différents acteurs du développement logiciel et
de Vexploitation des applications.

L’état de 'art actuel dans le domaine des modeéles de composants n’a pas établi
de consensus concernant une définition du terme composant. Plusieurs définitions co-
existent | , , , , |. Malgré ces diffée-
rences, il est communément admis qu'un composant a au moins les propriétés suivantes :

— il est une unité indépendante de déploiement ;

— son état interne n’est pas visible de I'extérieur ;

— il est une unité de composition.

Szyperski | | définit un composant logiciel comme une unité de composition
avec des interfaces spécifiées contractuellement contenant uniquement des dépendances
contextuelles explicites. Il peut étre déployé d’une maniére indépendante et il fait I'objet
de composition par des tiers.

Cette définition a plusieurs implications. Premiérement, un composant a besoin d’en-
capsuler son implémentation et peut communiquer avec son environnent uniquement par
I'intermédiaire des interfaces explicites. Ensuite, le composant est préparé pour étre com-
posé avec d’autres composants pour obtenir des applications logicielles. Cette définition
implique aussi ’existence d’un cycle de vie associé au composant qui, d’'une maniére tradi-
tionnelle, consiste en quatre phases : la création, ’assemblage, le déploiement, et ’exécu-
tion. Une notion moins explicite est celle d’environnement ot le composant peut se trouver
dans ses différentes phases du cycle de vie.

20 Résumé

1.1.1.1 Les contrats d’interfaces

La précédente définition des composants implique le fait que les dépendances contex-
tuelles des composants soient explicites. Ceci est réalisé par l'intermédiaire des interfaces
des composants. Les interfaces sont définies comme un ensemble de services que le compo-
sant fournit ou requiert de son environnement. Elles sont vues comme des contrats entre
le composant et son environnement d’exécution. Antoine Beugnard | | propose
une taxonomie des contrats qui est liée aux interfaces de composants. Conformément a
cette taxonomie, il y a quatre niveaux de contrats :

— basique;

— comportemental

— de synchronisation;

— quantitatif;

Le niveau basique considére les propriétés syntaxiques : des noms, types de paramétres,
types de retour et les exceptions des messages échangés par le composant. Le niveau com-
portemental considére des propriétés qui peuvent étre spécifiées par des préconditions,
postconditions et invariants. Ces propriétés sont liées & une opération et spécifient les
types de paramétres et les dépendances entre les valeurs de ces paramétres. Le niveau de
synchronisation considére les propriétés concernant les interactions des composants. Ces
propriétés ne peuvent étre exprimées seulement par 'intermédiaire de pré- et postcondi-
tions, car elles doivent décrire une séquence de pas a exécuter par le composant. Le niveau
quantitatif correspond aux propriétés dites non-fonctionnelles comme la qualité de service,
la gestion des ressources et le temps de réponse. Ces types de contrats sont les plus difficiles
& exprimer et analyser car ils dépendent des propriétés qui ne sont pas connues au moment
de la description de I’architecture.

1.1.1.2 Le mécanisme de composition

La composition est un mécanisme permettant la construction de composants complexes
(appelés composants composites) & partir de composants plus simples (appelés composants
primitifs). La composition est réalisée en mettant en correspondance les services des com-
posants définis dans leurs interfaces. Plusieurs schémas de composition (bind, ezport, import
et glue) sont utilisées pour obtenir des applications exécutables a partir des composants
(voir la section 3.2.1.3 a la page 64).

La compatibilité est un concept trés important qui intervient dans le mécanisme de
composition. Indifféremment des schémas de composition utilisés, les services mis en cor-
respondance doivent étre compatibles. En fonction du niveau de contrats auquel nous nous
placons, la compatibilité a un sens différent. Les services (et par extrapolation les inter-
faces) incompatibles ne devraient pas étre connectés dans une architecture. Une adaptation
peut étre réalisée dans certaines conditions et par I'intermédiaire d’un adaptateur. L’adap-
tateur est appelé du code glu | | et dans certains cas il faut plus de temps pour
le développer que les composants concernés.

1.1. Domaine d’étude 21

1.1.1.3 Modéles de composants dans la recherche et 1’industrie

Aujourd’hui, il existe deux catégories de modéles de composants : les modéles acadé-
miques et les modeéles industriels. Les modéles académiques (voir par exemple | ,

7 7)) 7) 7

7 7) 7) Y]) s€
concentrent sur les concepts clés liés aux composants comme la définition des composants,

de leurs interfaces et des mécanismes de composition. Différentes propriétés comme par
exemple la substituabilité, la compatibilité et ’adaptation dynamique du comportement
des composants sont étudiées. Les modéles industriels se concentrent sur la production,
la, distribution et I’exécution des applications industrielles. Ils fournissent des solutions
comme par exemple la distribution, les transactions, la persistance et la sécurité dans le
contexte des applications distribuées.

1.1.1.4 Architectures logicielles

Le standard ANSI/IEEE 1471 de 2000 définit 'architecture logicielle | ,
| comme organisation fondamentale d’un systéme incarnée dans ses composants,
leurs relations avec Uenvironnement et les principes qui guident sa conception et son évo-
lution | , |- Plus spécifiquement, I’architecture logicielle est 1'organi-
sation d'un systéme logiciel comme une collection de composants, de connexions entre les
composants et des contraintes sur les modes d’interaction entre les composants.
L’utilisation d’une architecture logicielle peut étre faite soit pour la conception et
Iimplémentation d’'un systéme logiciel individuel, soit en tant que ligne de produits lo-
giciels ', soit comme une architecture standard utilisée pour un modéle public de com-
posants | |- Les architectures logicielles sont généralement utilisées dans les but
de :

1. Réduire le cotiit de développement.

2. Améliorer la qualité des logiciels en termes de fiabilité, maintenance et utilisation
efficace des ressources.

3. Réduire le temps de mise sur le marché.
4. Réduire le cofit de la maintenance.

Les connecteurs logiciels sont des éléments réutilisables de conception qui encapsulent
un style particulier d’interaction entre les composants. Ils sont considérés comme des entités
de premiére classe dans les architectures logicielles | |. Les connecteurs régissent
les régles d’interaction et précisent les mécanismes auxiliaires nécessaires dans ces interac-
tions | |- Plusieurs catégories de connecteurs existent, par exemple client-serveur,
architecture en anneau, publish-subscribe, etc. | |. Alors que les connecteurs de com-
munication assurent la transmission des données entre composants, ceux de coordination
assurent le transfert de controle d'un composant a un autre. Des connecteurs spécifiques
peuvent aussi convertir I'interaction fournie par un composant vers 'interaction requise par
un autre composant. Finalement, les connecteurs peuvent aussi faciliter la médiation de

1. http ://www.sel.cmu.edu/productlines/

22 Résumé

I'interaction entre composants. Des mécanismes comme les optimisations des interactions
sont typiquement réalisés par ce type de connecteurs.

1.1.1.5 Les langages de description d’architectures

Les langages de description d’architecture (Architecture Description Languages en an-
glais), représentent une avancée dans le domaine des architectures logicielles. Leur objectif
est d’aider dans la structuration et la composition des briques logicielles dans le but d’ob-
tenir des architectures valides. Un langage de description d’architecture est défini comme
une notation formelle ou informelle, textuelle ou graphique, qui permet la spécification
des architectures logicielles et qui est accompagnée d’outils spécifiques comme présenté
dans | |. Le résultat de l'utilisation d’un langage de description d’archi-
tecture est une vision abstraite de 'application en termes de composants, connecteurs
et configurations. Medvidovic et Taylor | | donnent un cadre de classifi-
cation et de comparaison des langages de description d’architecture existants. Parmi les
langages de description d’architecture actuels, Darwin | |, Wright | | et
Rapide | | sont les plus connus.

1.1.1.6 Langages de programmation de composants

La plupart du temps, la vision concréte de 'implémentation est ignorée dans une
approche de type langage de description d’architecture. L’analyse architecturale réali-
sée avec un langage de description d’architecture peut révéler des propriétés importantes,
mais celles-ci ne sont pas en général garanties par I'implémentation. Pour permettre une
analyse architecturale au niveau du code, le code doit étre conforme a l'implémenta-
tion | |. La programmation par composants propose le développement de lo-
giciels en les programmant directement avec des composants plutét que des objets. Parmi
les langages de programmation par composants, ArchJava |) I,
Java/A | | et Jiazzi | | sont les plus avancés.

1.1.1.7 Le paradigme de la coordination

La coordination est une approche centrée sur la collaboration entre processus. Cette
approche consideére la programmation des systémes distribués ou paralléles comme la com-
binaison de deux activités distinctes : I'activité de calcul proprement dite qui contient les
processus impliqués dans la manipulation des données et 'activité de coordination qui est
responsable de la, communication et de la coopération des processus. Papadopoulos et Ar-
bab | | argumentent le fait que les modéles de coordination peuvent étre
rangés en deux catégories : les modéles orientés données et les modéles orientés controle.
Dans la premiére approche, I’évolution des calculs est contrélée par les types et les pro-
priétés des données impliquées dans lactivité de coordination. Dans le cas des modéles
orientées controle (ou orientées processus), les changements dans 1’état des processus co-
ordonnés sont réalisés par des événements spécifiques.

La coordination peut-étre utilisée comme base pour des modéles de composants. Arbab
et al. | |, par exemple, propose un modele de composants qui utilise des canauz

1.1. Domaine d’étude 23

mobiles pour une communication anonyme, point & point et qui permette une configuration
dynamique des connexions a l’exécution.
La coordination est largement présenté dans la section 3.3.7 & la page 89.

1.1.2 Protocoles d’interaction : formalismes connus

Les entités qui collaborent pour réaliser des actions utilisent trés souvent ’échange de
messages pour coordonner leurs actions ou pour simplement échanger des données. Pour
réaliser une interaction, les entités (objets, agents ou composants) ont besoin de se confor-
mer & un contrat d’interaction. Les protocoles d’interaction décrivent le comportement de
I’entité en termes de séquences de messages qui doivent étre échangés par l'entité pour par-
ticiper a la réalisation du comportement global du systéme. Plusieurs approches coexistent
pour formaliser, analyser et implémenter les interactions entre les composants. Les algébres
de processus, les types comportementaux, les machines & états finis et les logiques tempo-
relles sont les formalismes les plus utilisés pour spécifier des protocoles d’interaction.

1.1.2.1 Algébres de processus

Les algébres de processus représentent une famille de techniques de spécification
particuliérement adaptées & la spécification des systémes de composants concurrents
communicants. Elles décrivent les interactions d’un processus en termes de calcul. Les

plus importantes algébres de processus sont CCS | |, CSP | | et LO-
TOS | | car elles servent aussi de base pour d’autres algébres de processus
comme Pi-calcul | , | et les agents mobiles | |. Méme si a pre-

miére vue, CCS, CSP et LOTOS semblent étre trés similaires (elles se basent sur la notion
de processus composé d’actions atomiques avec des sémantiques opérationnelles et beau-
coup d’opérateurs communs), des différences subtiles existent notamment au niveau des
sémantiques des opérateurs qui sont souvent identiques d’un point de vue syntaxique.

1.1.2.2 Types comportementaux

Des travaux récents présents dans |) | défendent la these de
I'extension des théories de types classiques pour permettre la description des propriétés
dynamiques des objets dans le cadre d’un modéle comportemental. Ces nouveaux types sont
appelés types comportementaur car ils ne spécifient pas seulement I’ensemble de messages
que les entités vont échanger mais aussi, le plus important, des contraintes sur les séquences
acceptables de ces messages.

1.1.2.3 Machines a états finis

Les protocoles d’interaction peuvent étre spécifiés comme des processus réguliers, c.-a-d.
des processus avec un nombre fini d’états ou de comportements. Les formalismes basés sur
les machines a états finis (comme les systémes de transitions étiquetées [|, systémes
de transitions symboliques, automates a entrées et sorties | | et les diagrammes
d’états UML | |) permettent la description des comportements des systémes & un

24 Résumé

certain niveau d’abstraction. Les machines & états finis décrivent ’ensemble des traces
possibles qu’un composant peut produire en interagissant avec ses partenaires.

1.1.2.4 Les logiques temporelles

Les logiques temporelles sont utilisées pour décrire et raisonner sur les propositions qua-
lifiées en termes de temps. En pratique, les logiques temporelles permettent la spécification
et la vérification des propriétés comme la streté, la vivacité, I’équité et ’absence de blo-
cage. Les plus connues des logiques temporelles sont PLTL | | et CTL | |
L’expression des protocoles d’interaction est réalisée directement en utilisant les opérateurs
de base spécifiés par | |, mais compte tenu du fait que les logiques temporelles sont
trés cotiteuses en termes de verification, il y a trés peu de logiques temporelles réellement
utilisables.

1.1.2.5 Langages et modéles 4 composants avec protocoles d’interaction

Des nombreux modéles et langages de composants intégrent les formalismes présentés
antérieurement pour décrire des protocoles d’interaction. Par exemple, Darwin | |
permet la description des protocoles d’interaction sous la forme de LTS et la vérifica-
tion des propriétés est réalisée en utilisant FSP (Finite State Processes en anglais). Une
autre approche basée sur des automates | | permet la description des protocoles
d’interaction dans le modeéle de composants Fractal | |. Au niveau des types
comportementaux, les travaux de Yellin et Strom | | sont considérés comme une
référence dans le domaine de l'intégration des descriptions des comportements au niveau
des interfaces des composants. Le modéle de composants CwEP | | et les travaux
de Cyril Carrez | | sont d’autres avancées importantes dans ce domaine. Arbab
et al. | | propose un modeéle de coordination pour les systémes & base de com-
posants qui est basé sur la notion de canaux mobiles. Les canaux mobiles permettent des
communications point & point anonymes avec la possibilité de reconfigurer dynamiquement
les connexions. En dehors des types de formalismes présentés, le modéle de composants
SOFA | |, Venvironnement visuel PACOSUITE | | et le langage de
spécification des comportements MIDAS | | représentent des approches alternatives
a la spécification et 'implémentation des protocoles d’interaction.

1.2 Objectifs et propositions

Les modeles et langages de composants actuels intégrent souvent des concepts trop
nombreux ou ils sont trop spécifiques & certains contextes. Il est alors difficile d’analyser
les conséquences de I'ajout de nouveaux concepts (comme les protocoles d’interaction) ou
de nouvelles fonctionnalités dans un modéle de composants existant.

Dans cette thése nos objectifs sont de proposer un nouveau modéle de composants qui
intégre des protocoles d’interaction explicites donnés sous la forme de systémes de transi-
tions symboliques (STS). Les STS sont une extension des LTS (Labelled Transition Systems

1.2. Objectifs et propositions 25

en anglais) ou les transitions sont dites symboliques. Le symbolisme se manifeste par la pré-
sence de données échangées, de complexité quelconque, et 1'utilisation de conditions pour
le déclenchement des transitions (concept classique de garde).

Les protocoles d’interaction, qu’ils soient basés sur des STS ou sur d’autres forma-
lismes, ont comme but principal une meilleure intégration des composants logiciels dans
une architecture. Les régles spécifiées par les protocoles d’interaction sont utilisées pour
détecter de possibles incompatibilités entre les composants. Une fois la propriété de compa-
tibilité prouvée, les architectures & base de composants bénéficient d’une meilleure qualité,
indispensable surtout dans certains contextes ou domaines d’activité.

L’intérét d’utiliser des formalismes basés sur les automates & états finis comme les
LTS ou les STS réside dans les techniques automatiques de vérification et dans les outils
correspondants. La lisibilité et la compacité de ce type de formalisme sont souvent avancées
comme un des avantages pour leur utilisation. En contraste avec les LTSs, les transitions
des STSs décrivent des classes d’opérations possibles. Les transitions sont paramétrées avec
des paramétres formels d’entrée et peuvent étre gardées avec des conditions (opérations
booléennes) paramétrées. Le principal avantage lié a 1'utilisation des STS consiste dans
leur format compact, la lisibilité et I’expressivité. Les descriptions STS sont plus faciles &
utiliser par un ingénieur classique ce qui permet de les utiliser plus souvent en pratique.

Nous souhaitons également avoir un langage de description de composants qui facilite
I’écriture et la compréhension des composants par les développeurs. Notre volonté est
d’orienter nos travaux vers une intégration facile dans le monde du développement des
applications a base de composants. Dans cette optique nous pensons que les STS présentent
des avantages notables par rapport & d’autres formalismes : notamment leur lisibilité et
compacité.

Un des problémes soulevés par les modeéles et langages de composants qui intégrent des
protocoles d’interaction est la conformité entre la spécification et I'implémentation. Pour
pallier & ce probléme nous proposons une approche générative en ce qui concerne 'implé-
mentation. En effet, la génération du code peut assurer par construction la conformité de
I'implémentation & sa spécification conceptuelle.

Sur la base des travaux préliminaires présentés précédemment, nous avons développé un
modéle de composants que nous appelons CwSTS (Components with Symbolic Transition
Systems en anglais). CwSTS est con¢u comme un modéle de composants o les commu-
nications sont réalisées exclusivement par 'intermédiaire d’une seule interface (composée
de deux types d’interfaces). L'interface décrit les services fournis et les services requis par
le composant. En plus de cette interface, que nous appelons interface structurelle car elle
ne définit que les signatures des services, CwSTS propose une interface complémentaire
décrivant le protocole d’interaction du composant. Cette interface est appelée interface
comportementale car elle spécifie le comportement du composant en terme des messages
envoyés et recus et de leur ordonnancement logique. Notre modele est basé sur une vision
hiérarchique de la composition des composants. Deux ou plusieurs composants peuvent
étres composés dans un composant unique appelé composant composite. Le composant
composite adhére aux mémes régles quun composant primitif et en plus il peut étre utilisé
comme s’il était un composant primitif dans des compositions futures. Ceci corresponds a
I'idée du patron de conception Composite | |.

26 Résumé

CwSTs-IDL est le langage de description d’interface (Interface Description Language
en anglais) que nous proposons avec notre modeéle. Il est utilisé pour décrire les interfaces
structurelles des composants et aussi les interfaces comportementales. Les interfaces com-
portementales sont décrites avec un langage formel sous-jacent que nous appelons SFSP
(Symbolic Finite State Processes en anglais). SFSP est inspiré du langage appelé FSP (Fi-
nite State Processes en anglais) | | mais nous ne retenons que les transitions, le
choix et la récursivité. De plus, les actions sont paramétrables avec des types de données
quelconques dans SFSP, contrairement & FSP.

1.2.1 Le modéle CwSTS

Le modéle CwSTS est un modéle simple concu dans le but de pouvoir analyser I'inté-
gration des protocoles d’interaction donnés sous la forme des STS. De plus, nous adoptons
une approche générative quant & la construction des composants et nous proposons une
implémentation dite distribuée (en rapport avec la réalisation du comportement global) des
architectures.

Dans ce but nos considérons que dans notre modéle :

~ chaque composant expose une seule et unique interface (contenant les informations

structurelles et comportementales) ;

— les communications entre les composants sont de type point & point ;

— Denvoie et le réception d’un message se réalisent d’une maniére ; synchrone (le client
qui envoie le message est bloqué tant que la réception n’as pas eu lieu) mais il n’y a
pas de restriction quant a 'exécution proprement dite du message (donc, en fonction
de 'implémentation du composant, ["exécution du message peut étre synchrone ou
asynchrone relatif au composant qui envoie le message) ;
les architectures sont statiques, c.a.d. qu’il n’y a pas de possibilité de réconfiguration
de I’architecture en cours d’exécution;

Ces hypothéses peuvent paraitre limitatives mais nous avons opté pour la simplicité
dans notre approche. Néanmoins, certains extensions de ce modéle pour permettre des
communications de groupe, notamment, sont faciles a réaliser (voir la section 7.1 a la
page 163 pour les perspectives de ce travail).

1.2.1.1 Les composants CwSTS

La figure 1.1 représente la représentation graphique d'un composant CwSTS. Le compo-
sant implémente une interface unique. L’interface est composée de ’ensemble des services
que le composant fournit et requiert de son environnement. En plus 'interface inclut un
protocole d’interaction (donné sous la forme d’un STS) qui spécifie les régles qui régissent
I’ordonnancement des messages que le composant échange avec son environnement.

L’interaction entre deux composants est réalisée par ’envoi d’une requéte d’exécution
de service de la part du composant qui requiert le service envers le composant qui fournit
(et implémente) le service correspondant. D’un point de vue opérationnel, le composant
qui requiert un service envoie un message qui va étre recu et finalement exécuté par le
composant qui fournit le service. En effet, nous ne spécifions pas si 'exécution effective

1.2. Objectifs et propositions 27

Component Type
=
I3
E
—
S >
S »n
S e i
25 . a == Required
& B 2 /
. = 2 £
Implementation g5 E Service signatures
Q - =
= (=
=2 b i
2= ~<— Provided
= 2
=
=
n

FI1GURE 1.1 — Syntaxe graphique d’un composant CwSTS.

du message recu se fasse en synchrone ou en asynchrone avec ’appel du client. Il peut
étre exécuté immédiatement aprés son arrivée (exécution synchrone) et tout en bloquant
le client ou ultérieurement & son arrivée (exécution asynchrone) & un moment non spécifié.

Dans le modéle CwSTS, nous parlons des types de composant quand nous considérons
la, définition du composant. L’ implémentation du composant est représentée par la somme
des binaires qui réalisent I'interface spécifiée dans le type du composant. Une instance du
composant est une instance du type du composant qui est utilisée dans une configuration
spécifique a ’exécution.

1.2.1.2 Les interfaces des composants

Comme indiqué dans la figure 1.1, I'interface d’'un composant CwSTS décrit les signa-
tures des services qui sont requis ou fournis par le composant (l'interface structurelle). L'in-
terface structurelle correspond au premier niveau des contrats dans la taxonomie proposé
par Antoine Beugnard | |. L'interface comportementale spécifie les instants ou
un message spécifique peut étre recu par le composant mais aussi les moments ot le compo-
sant lui-méme est susceptible d’envoyer un message. Les protocoles dans le modéle CwSTS
correspondent au troisiéme niveau des contrats de la taxonomie citée ci-dessus.

Les systémes de transitions symboliques (STS) ont été développés initialement comme
une solution aux problémes d’explosion des états et des transitions dans les algébres de
processus avec passage de valeurs entre les processus. Ce formalisme étend les systémes
de transitions étiquetées avec l'introduction des parameétres et gardes sur les actions des
transitions. Nous avons choisi de décrire les protocoles d’interaction au niveau de CwSTS
avec une généralisation du formalisme STS. Notre proposition associe un systéme d’états
et transitions symboliques avec une description du type de données qui est représenté par
le code d’implémentation du composant. Cette approche n’est pas nouvelle et a prouvé son
utilité comme décrit dans | , , |-

28 Résumé

'l ogout () ‘0_ 'l ogin()

lunsubscri be(Topi ¢ topic) I'subscri be(Topi ¢ topic)

[1 oggedl n()]

?messageEvent (Message nsg)

FIGURE 1.2 — Le protocole du composant client du serveur de messagerie.

D’un point de vue opérationnel, I'interface structurelle est une interface statique, car
les informations qu’elle décrit ne changent pas pendant la phase d’exécution du compo-
sant. L’interface comportementale est une interface dynamique car elle spécifie les services
disponibles & des moments précis de 'exécution du composant.

La figure 1.2 présente le protocole d’un composant qui joue le role du client d’un serveur
de messagerie. Le client va s’identifier auprés du serveur et va s’enregistrer pour recevoir un
type spécifique de message. L’interface statique de ce composant est constituée des services
requis login, logout, subscribe et unsubscribe. Le service fourni messageEvent est
appelé par le serveur pour signifier arrivée d’un message. Le protocole est composé de deux
états (les états 0 et 1) qui représentent des états logiques dans ’exécution du composant.
Tous les services définis dans l'interface structurelle sont représentés comme des actions
forcant la transition du protocole d’un état source & un état destination. La transition qui
réalise I’action subscribe est gardée par ’évaluation de 'opération booléenne loggedIn()
qui assure que cette action ne sera pas réalisée tant que la garde n’est pas vraie.

1.2.1.3 La composition

La composition est hiérarchique dans le sens décrit dans le patron de conception Com-
posite | |- En composant deux ou plusieurs composants primitifs nous obtenons
des composants composites qui a leur tour pourront étre utilisés comme des composants
dans de futures compositions. Dans notre modéle les composants composites ne contiennent
pas de code métier. Ils représentent seulement des agrégats de composants primitifs qui
implémentent la logique métier. Ce sont les composants primitifs qui générent les messages
de sortie ou qui consomment les messages recus par le composant composite.

La composition est réalisée tant au niveau des interfaces structurelles qu’au niveau
des interfaces comportementales. Au niveau structurel, le modéle propose des schémas de
composition binding, import et export qui permettent respectivement de connecter deux
services correspondants requis/fourni, d’importer un service requis par un sous-composant
au niveau de l'interface du composite et d’exporter un service fourni d’un sous-composant
au niveau de l'interface du composite. L’interface comportementale du composant compo-

1.2. Objectifs et propositions 29

site est représentée par le produit synchronisé | , | des protocoles des
sous-composants. Le produit synchronisé est ’automate produit libre qui ne contient que
les transitions qui sont authorisées par les régles de synchronisation (et en conformité avec
le vecteur de synchronisation). D’une maniére générale le produit synchronisé ne contient
que les états et les transitions globaux qui sont atteignables dans le cas d’'une exécution
du protocole du produit. Le vecteur de synchronisation est déterminé par les connexions
dans I'architecture (la mise en correspondence des services compatibles conformément a la
section 1.2.1.4).

La figure 1.3 présente le composant composite StatisticsEnabledSever représentant
un serveur de messagerie qui est capable de réaliser des statistiques. Dans cette figure les
services fournis et requis du composant composite et les connexions entre sous-composants
sont représentées. Le protocole du composant StatisticsEnabledSever correspond au
produit synchronisé des protocoles de ses sous-composants (leurs protocoles sont représen-
tés dans la figure 1.4 et respectivement dans la figure 1.5 a la page 31).

1.2.1.4 La compatibilité

D’un point de vue informel deux ou plusieurs composants sont compatibles dans une
architecture si :

1. Les services qui sont mis en relation sont compatibles (compatibilité structurelle).

2. Les protocoles d’interaction des tous les composants impliqués sont compatibles (com-
patibilité comportementale).

3. L’architecture est valide.

Deux services sont compatibles s’ils ont le méme nom et signature. La compatibilité
comportementale fait référence a 'absence de blocage dans le produit synchronisé des pro-
tocoles des composants impliqués. Une architecture est considérée comme wvalide si toutes
les connexions nécessaires & ’exécution de ’application sont réalisées. En effet, le modéle
CwSTS ne requiére pas que tous les services des composants soient connectés dans une ar-
chitecture particuliére. Certains services peuvent étre connectés dans une architecture alors
qu’ils ne le sont pas dans une autre architecture. Le fait qu’il n’y ait pas de dépendance
du contexte environnemental est d’une importance majeure au moment de la construction
des composants, car ceci assure le fait qu'un composant peut étre assemblé et déployé dans
plusieurs architectures et environnements différents. Une architecture exécutable est une
architecture qui ne requiert pas de services externes, et qui est donc compléte.

1.2.1.5 Adaptation des composants

Dans le cas ou deux ou plusieurs composants ne sont pas compatibles dans une ar-
chitecture, le modéle CwSTS propose 1'utilisation de composants d’adaptation que nous
appelons des adaptateurs. Au niveau des interfaces structurelles les adaptateurs permettent
de changer les noms et signatures des services (ils implémentent le patron de conception
Adapter| |). Au niveau des comportements, ’adaptateur peut étre introduit pour
éliminer le blocage qui apparait au niveau du produit synchronisé. La figure 1.7 présente

30

Résumé

StatisticsEnabledServer

—>— subscribe @~ [-too- '
.
—>{unsubscribe ~ [TTTTTTo03 Procoee -
.
—<— messageEvent ~ r------- <--------d

2unsubscri be(Topic topic) ?subscri be(Topic topic)
[val i dTopi c(topic)]

! messageEvent (Message nmsg)

B server:Server reporter:StatisticsReporter [
N o
S
S =
S
e =
= =]
— A S
— =3 Bt @
=) Q 2 oe s oe i =
= S statisticsReq —<—------------ —<—statisticsReq = 3
- 1=} =3
= o ge . ge =3 L
§ A~ statisticsReport —>——------------ —>—statisticsReport] é &
St
5 @ subscribe —<—— FIRE:
wn 9 . ' v £
R unsubscribe < ! Rz <
" < -
messageEvent —>—. | = 2
:
:
| s
.
.
:
:
:
:
:

FI1GURE 1.3 — Le composant StatisticsEnabledServer.

1.2. Objectifs et propositions

31

?statisticsReq()

IstatisticsReport(Statistics stat)

?unsubscri be(Topi ¢ topic) ?subscri be(Topi c topic)

[val i dTopi c(topic)]

?statisticsReq() I nessageEvent (Message nsQ)

IstatisticsReport(Statistics stat)

FIGURE 1.4 — Le protocole du composant serveur de messagerie.

?statisticsReport(Statistics stat) I'statisticsRequest ()

FIGURE 1.5 — Le protocole du composant StatisticsReporter.

32 Résumé

Plogout () < (0 Jg —>?login()

I nessageEvent (Message nsg) ?nmessageEvent (Message nsg)

FIGURE 1.6 — Le protocole du composant adaptateur.

messageEvent
Adapter
login/logout
messageEvent StatisticsEnabledServer
Client Server
subscribe/unsubscribe

statisticsReq + + statisticsReport
Statistics
Reporter

F1GURE 1.7 — Le role du composant adaptateur dans ’architecture du systéme de messa-
gerie.

le cas ou un composant adaptateur doit étre utilisé pour connecter le client du systéme
de messagerie au serveur de messagerie di au fait que les interfaces des deux composants
ne sont pas compatibles. Le composant client implémente le fait qu’il faut se connecter
et se déconnecter avant de souscrire et recevoir des messages de la part du serveur qui
lui ne requiert pas ces étapes. Le protocole du composant adaptateur est présenté dans
la figure 1.6 et décrit le fait que le client peut faire login/logout sans que ces messages
arrivent au serveur. Les messages de type messageEvent sont transférés du serveur vers le
client.

I’adaptateur n’as pas besoin d’intercepter toutes les messages échangés par les com-
posants. Il intercepte que ce que doit étre adapté. Dans cet exemple, 'adaptateur doit
seulement faire en sorte que les messages login/logout soit absorbés sans que le serveur
les recoivent. Evidement, les messages subscribe/unsubscribe pourront aussi passer par
I'adaptateur mais ceci ne servirait & rien dans ce cas. Avec les adaptateurs nous fournissons
un mécanisme d’adaptation trés configurable et adaptable aux différentes cas d’utilisation.

1.2.1.6 Substitution des composants

La substitution définit une notion de raffinement sur le type des entités considéré
(fonctions, objets ou composants). Les langages de programmation a objets tels que Java

1.2. Objectifs et propositions 33

fC T) Ry
IN VI
g T,) Ry

Fi1GURE 1.8 — Raffinement de la fonction f par la fonction g.

ont déja abordé ce probléme en introduisant une relation de sous-typage (I’héritage). La
substitution des composants est plus difficile & réaliser car elle doit considérer les services
requis et fournis et aussi les protocoles d’interaction.

Dans le modele CwSTS, I'intuition que nous avons est que nous pouvons faire une
analogie entre la substitution d’'un composant et la substitution d’une fonction. En effet,
si nous considérons I’ensemble des signatures des services fournis par le composant comme
son type d’entrée et I’ensemble des signatures des services requises comme son type de
sortie, le paralléle avec le raffinement d’une fonction (comme présenté dans la figure 1.8
ou les notions de variance et covariance sont représentées explicitement) est immeédiat. Un
composant peut remplacer un autre composant au niveau des interfaces structurelles s’il
fournit au moins ce que le composant remplacé fournit. De plus, le composant remplacant
requiert au plus ce que le composant remplacé requiert. Nous nous retrouvons dans le cas
classique des relations de covariance/contravariance entre les types des deux composants.

Le raffinement comportemental implique le fait que si nous considérons une séman-
tique des traces associée aux protocoles STS, le protocole du composant remplacant doit
accepter au moins les méme traces (envois et réceptions des messages) que le composant
remplacé. De plus, le composant remplacant doit refuser les mémes requétes que le com-
posant remplacé. Nierstratz | | définit ce type de substitution en fonction des
traces et défaillances. Alors que les traces définissent ’ensemble des actions & exécuter, les
défaillances définissent les requétes qu'un composant ne peut pas accepter aprés qu’une
trace spécifique ait été exécutée.

1.2.1.7 Le langage de description de composants CwSTS-IDL

Nous avons développé un langage de description des interfaces des composants CwSTS.
Ce langage permet la description des interfaces structurelles et comportementales. La syn-
taxe abstraite de ce langage est présentée dans la figure 1.9. Le protocole est défini en
utilisant un langage de processus appelé SESP (Symbolic Finite State Processes). SFSP est
inspiré de FSP (Finite State Processes) | | mais retient seulement les transitions,
le choix et la récursivité. De plus les actions sont paramétrables avec des types de données
quelconques. La syntaxe abstraite du langage SFSP est présentée dans la figure 1.10 & la
page 34. A titre d’exemple, la figure 1.11 a la page 35 présente la description structurelle
et celle comportementale, du composant client du systéme de messagerie.

1.2.2 L’implémentation du modéle

CwSTS-P est 'implémentation préliminaire de notre modéle dans le langage de pro-
grammation & objets Java. Le role de cette implémentation est de permettre une validation

34 Résumé

component_def ::= primitive_def | composite_def
primitive_def ::= component_type
primitive_strct_def
guards_def
primitive_protocol
primitive_struct_def ::=service_def+
service_def ::=service_type op_id formal_parameter_list? | op_id formal_parameter_list?
guards_def ::= op_id formal_parameter_list?
service_type ::= 'required’ | 'provided’
composite_def ::= component_type

subcomponent_decl+
composite_structural_def?
connection_def+

subcomponent_decl ::=component_type subcomponent_id
composite_struct_def ::= service_def+

connection_def ::=bind_exp | export_exp | import_exp

bind_exp := subcomponent_op_id 'to' subcomponent_op_id
export_exp := subcomponent_op_id 'as' op_id

import_exp == op_id 'to' subcomponent_op_id
subcomponent_op_id := subcomponent_id "' op_id

FIGURE 1.9 — Grammaire du langage de description des interfaces CwSTS-IDL.

specification ::= process_def+

process_def ::= process_id formal_param_list process_body
process_body ::= choice+

choice ::= action+ process_inst

process_inst ::= process_id actual_param_list | special_process
special_process ::=STOP

action ::=receive_act | send_act | internal_act
receive_act ::= action_id formal_param_list

send_act == action_id actual_param_list

internal_act == action_id actual_param_list
formal_param_list ::= param_type param_id | formal_param_list | €
actual_param_list ::= param_id | actual_param_list | £

FI1GURE 1.10 — La grammaire abstraite du langage SFSP.

1.2. Objectifs et propositions 35

primitive component Client {
interface
provided messageEvent(Message msg);
required login();
required logout();
required subscribe(Topic topic);
required unsubscribe();

guards
loggedIn();

protocol
P=!login -> P | !logout[!loggedIn()] -> P | !subscribe[!loggedIn()] -> Q,
Q= ?messageEvent -> Q | lunsubscribe() -> P.

F1GURE 1.11 — La définition du composant client du serveur de messagerie.

des notions conceptuelles décrites dans le modéle de composants CwSTS et de fournir des
outils de génération de code, d’analyse des propriétés des architectures (validité, compa-
tibilité) et d’adaptation des composants & ’origine non compatibles tel que décrit dans le
modeéle CwSTS.

Nous nous basons sur une approche générative dans la construction des composants CwSTS.
La figure 1.12 présente les deux scénarios que nous considérons :

~ Scénario A. Nous partons d’une ou plusieurs descriptions de composants (des-
criptions des interfaces structurelles et comportementales) qui, avec des instructions
d’instrumentation, sont passées & un moteur de génération de code. Le résultat est un
composant CwSTS valide pour chaque description de composant fournie en entrée.
Cette implémentation représente soit une implémentation par défaut du code métier
du composant soit une implémentation orientée code d’adaptation (code d’implé-
mentation du composant adaptateur). Le code métier par défaut ne contient pas de
comportement particulier et est préparé pour étre personnalisé afin de répondre &
des besoins spécifiques. La construction du code personnalisé doit ensuite utiliser un
certain nombre de régles simples afin de garantir la conformité de 'implémentation
vis-a-vis de la spécification.
Les composants adaptateurs générés sont utilisés dans une architecture qui requiert
I’adaptation structurelle et/ou comportementale des composants la constituant. Le
code des adaptateurs n’a pas besoin d’étre personnalisé pour répondre aux besoins
pour lesquels il a été généré.

— Scénario B.
Ce scénario est différent du premier scénario par le fait qu’au moment de la
génération, nous fournissons aussi le code représentant le code métier du composant
généré. Nous partons donc du code qui a besoin d’étre instrumenté pour obtenir

36 Résumé

instrumentation
instructions

Code Generation
Process

Y

CwSTS Component

Implementation

Interaction Protocol
Symbolic Transition System
interface

FI1GURE 1.12 — Scénarios de génération de composants.

un composant conforme au modéle CwSTS. Dans ce scénario, la description du
composant doit étre conforme au code fourni, et ceci aux niveaux structurel et
comportemental.

Notre approche générative répond au besoin d’assurer que l'implémentation est
conforme aux spécifications. En suivant n’importe lequel des deux scénarios présentés ci-
dessus, nous assurons par construction que le code d’implémentation du composant CwSTS
est conforme tant en terme de structure que de comportement aux spécifications.

Dans ce qui suit nous allons présenter des points significatifs de 'implémentation des
composants : 'encapsulation du code Java pour répondre aux exigences du modéle CwSTS,
la structure d’un composant (primitif ou composite) et I'implémentation du controle du
comportement d’un composant.

1.2.2.1 Structure des composants

Dans le prototype CwSTS-P, chaque composant est structuré sous la forme d’un package
de classes Java classique. Ce package contient les classes d’implémentation du composant.
La figure 1.13 présente la structure du package oul les classes et les interfaces constituant
le code du composant sont structurées dans des sous-packages.

Le nom du package est le nom du composant pendant la phase de développement. Le
nom est conforme au standard proposé qui est : fr.emn.CwSTS-P. NomDuComposant. La

1.2. Objectifs et propositions 37

Interface
fr.emn.CwSTS-P
<public>ComponentProvidedInterface

ComponentName | | <public>ComponentRequiredinterface
@D <public>ComponentIDRequiredInterface
—JInterface

—{ utilities Utilities

<public>ComponentFactory

ComponentName

<public>ComponentProtocolController
<protected>Component
<protected>ComponentExecutor

FicUrE 1.13 — Structuration d’un composant sous la forme d’un package Java.

racine de ce package contient les classes qui seront instanciées pour obtenir une instance
de composant exécutable. Les deux sous-packages Interface et Utilities contiennent les
interfaces déclarées du composant et une classe factory. Les interfaces définissent les services
fournis et requis par le composant et la factory est utilisée pour obtenir de nouvelles
instances du composant de ce type.

Notre modéle de composants définit des composants de type boite noire. Ceci signi-
fie que la structure interne du composant n’est pas visible de 'extérieur du composant a
I’exécution. Le seul moyen d’interagir avec le composant est d’utiliser ses interfaces. L’en-
capsulation du code d’exécution du composant sous la forme d’un package Java va dans la
direction de répondre a cette contrainte. Mais le package Java tout seul ne suffit pas. Afin
de parfaitement isoler les classes du package de I'environnement d’exécution du composant,
les seules entités publiques du package sont les interfaces, le controleur de protocole (qui
représente le front-end du composant) et le factory correspondant au composant.

1.2.2.2 Implémentation d’un composant primitif

Un composant primitif CwSTS-P est constitué de trois types d’entités : une ou plusieurs
classes contenant le code métier du composant, un exécuteur du composant et une classe
qui joue le role de contréleur du protocole implémenté par le composant. La figure 1.14
présente une vue fonctionnelle de la structure du composant.

Le code métier

Le code métier (business logic en anglais), est le code qui realise la fonctionnalité du
composant. Il implémente les interfaces fournies par le composant et est donc capable
d’exécuter les messages recus par le composant. C’est aussi cette entité qui génére des
messages & destination d’autres composants.

L’exécuteur

L’exécuteur du composant fonctionne comme un mandataire (prozy en anglais) au nom
du code métier. Son réle principal est d’intercepter les fils d’exécution (threads en anglais)
qui appellent les méthodes du code métier et d’exécuter ces appels mais dans des fils

38

Résumé

Protocol
Controller

e r
I’ — Provided Interface
I® — Required Interface

I"E_ Required Enhanced Interface

FIGURE 1.14 — Vue fonctionnelle sur la structure d’un composants primitif.

Protocol
Controller

Ic I

I'“ - Life Cycle Interface
I° - Configuration Interface

FiquRrEe 1.15 — Vue de configuration sur la structure d’un composant primitif.

1.2. Objectifs et propositions 39

User ComponentFactory ComponentController Component ComponentAsyncExec

1.newComponent(id)

: 2.component = newInstancei()

3.config() _J

4.executor = newInstance()é |

A 2

5.setProvidedImpIementor(c%)mponent)

6.controller=newInstance() |

7.setProvidedImpIementor(e}(ecutor)

!

A

8.setController(controller)

A

 return ComponentControllel

9.setDispatcher(dispatcher);

! 10.start() : | 1Lstart()

FIGURE 1.16 — Création d’une instance d’un composant primitif.

différents de ceux qui contiennent ’appel d’origine. Ceci est utile pour implémenter les
spécifications du modele CwSTS qui stipule que la réception d’un message est toujours
synchrone avec son envoi par un autre composant mais que ’exécution proprement dite
du message (de 'appel encapsulant le message) est soit synchrone soit asynchrone avec
I’envoi. En effet, le fil d’exécution démarré par 'exécuteur découple I'appel de ’exécution
du message.

Le contrdleur

Le contréleur du protocole du composant contréle les appels qui entrent et qui sortent
du composant. Le protocole implémenté par le composant spécifie la séquence des messages
que le composant doit recevoir ou émettre. Le contréleur assure que 'ordre des appels en-
capsulant les messages va étre conforme au protocole. Le controleur implémente l'interface
fourni par le composant et l'interface requise augmentée d'une information qui est ’identi-
fiant du composant lui méme. Ce mécanisme est nécessaire pour permettre la composition
du composant dans une architecture (voir les explications sur le répartiteur a la page 41).

40 Résumé

Client ComponentController ComponentAsyncExecutor Component

1.[guard] call provided service
J 2.call provided service

»— 3.start new thread

<

4.call method

]

5.call required service (T

L

7.enhanced call required service _*
<

|

6.call required service

A

Fiqure 1.17 — Interaction des entités du composant primitif.

La configuration, 1’instanciation et ’exécution des composants

La figure 1.15 présente la vue de configuration sur les relations entre les différentes
entités d’'un composant primitif. Plusieurs phases ont lieu avant 1’exécution proprement
dite du composant (voir la figure 1.16). Les instances Java du code meétier (Component
dans la figure), du code exécuteur (ComponentAsyncFEzec dans la figure) et du contréleur
(ComponentController dans la figure) sont créées. Aprés une phase de paramétrage des
trois entités, la référence au controleur du protocole est retournée au client ayant demandé
Iinstanciation du composant. Le client peut aussi configurer des informations environ-
nementales avant de démarrer ’exécution proprement dite du composant en appelant la
méthode start (), appel qui sera propagée au code métier du composant.
Une fois démarré, le composant se comporte comme indiqué dans la figure 1.17. La garde
sur la ligne 1 du diagramme de séquence indique la présence d’un mécanisme qui en uti-
lisant la notion de monitor Java, permets la synchronisation de l'appel du client avec la
réception au niveau du ComponentController. Dans le cas d'un appel émis par le com-
posant lui-méme (appel provenant du code meétier), le controleur du composant transfére
I’appel aprés une phase de décoration de I’appel avec des informations d’identification du
composant. Ces informations sont utilisées par le composant composite (comme présenté
ci-dessus) pour diriger ’appel vers son composant destinataire (et ceci conformément aux
liens structurels définis dans ’architecture).

1.2.2.3 Implémentation d’un composant composite

Conformément aux spécifications du modéle CwSTS, le composant composite ne
contient pas de code métier : la fonctionnalité du composite est réalisée a I'exécution par
I'interaction entre les sous-composants qui le composent. De plus, le composant composite
comporte un controleur (similaire au controleur des composants primitifs) et une entité
répartiteur (dispatcher en anglais). Le répartiteur implémente une stratégie de transfert

1.2. Objectifs et propositions 41

d’appels qui réalise & l’exécution les relations structurelles entre les sous-composants du
composant composite. La figure 1.18 présente la structure d’un composant composite.

Composite Component

C1
C2
C3
Composite
Controller
A
IRE v IP

I" — Provided Interface
I* — Required Interface
RE_ Required Enhanced Interface

FI1GURE 1.18 — Vue fonctionelle sur la structure d’un composant composite.

Sous-composant

Un composant composite contient plusieurs sous-composants. Les sous-composants sont
soit des composants primitifs soit des composants composites (car la composition est hié-
rarchique dans CwSTS). Les sous-composants ne sont pas directement interconnectés dans
un composite. Ils sont tous connectés a 'entité répartiteur.

Le répartiteur

Le répartiteur est responsable du transfert des appels qui proviennent des sous-
composants vers les composants spécifiés dans l’architecture du composite. Le répartiteur
est basé sur une table de routage qui représente & ’exécution les relations structurelles
entre les sous-composants du composant composite. Le répartiteur ne contient pas du code
de synchronisation Java et donc aucun blocage n’est possible & son niveau. La synchronisa-
tion effective entre les composants se réalise au niveau des sous-composants qui controlent
localement les réceptions et les émissions des appels. Pour réaliser le routage des appels, le
répartiteur doit connaitre 'identité des composants qui sont la source des appels. Comme
spécifié dans la figure 1.18, le répartiteur implémente toutes les interfaces requises des
sous-composants du composant composite. De plus, ces interfaces sont personnalisées avec
un paramétre qui est I'identificateur du sous-composant a l'origine de 'appel.

42 Résumé

Le contrdleur

Le controleur est le front-end du composant composite. Tous les appels qui sortent ou
qui entrent dans le composant composite sont interceptés par cette entité. Dans ce but,
le controleur implémente les interfaces fournies et requises par le composant composite. A
I'opposé du controleur d’un composant primitif, le controleur du composite ne réalise pas
de vérification du protocole. En effet, le contréleur ne connait méme pas le protocole du
composite, car celui-ci est réalisé & ’exécution par les interactions entre les sous-composants
qui réalisent le produit synchronisé de leurs protocoles. C’est le controle réalisé au niveau
de chaque composant primitif qui permet la réalisation des synchronisations nécessaires au
bon comportement du composant composite.

La configuration, 1’instanciation et ’exécution des composants
La configuration, 'instanciation et ’exécution des composants composites sont réalisées
?
en utilisant les relations statiques présentées dans la figure 1.19.

Composite Component
c1 1°
A C2
ILC‘ “IC I“
C3
CA A e
Composite ! I
Controller
A
ILC IC

I'“ - Life Cycle Interface

I° - Configuration Interface

F1GURE 1.19 — Vue de configuration sur la structure d’un composant composite.

La phase de configuration a lieu entre les actions de création d’instances de sous-
composants et de démarrage d’exécution (voir figure 1.20). Le client d'un composant
composite configure les données nécessaires au composite pour s’exécuter. Le controleur
du composite se charge de transmettre ces informations au niveau des sous-composants.
Habituellement, ces informations contiennent les valeurs de paramétres d’initialisation
nécessaires aux composants. D’autres informations qui sont complétement transparentes
pour les clients du composite incluent la référence du répartiteur qui est transmise aux
sous-composants et les relations structurelles entre les sous-composants. Ces relations
structurelles sont codées dans la table de routage au niveau du répartiteur.

1.2. Objectifs et propositions 43

Une fois la phase de configuration terminée et les composants démarrés les appels qui
arrivent au niveau du composite sont interceptés par le controleur qui les transfére au
niveau du répartiteur. En fonction de l'identité de 'appelant (les sous-composants ou le
controleur), le répartiteur route les appels vers leur destinataire. Les appels émis par le
composant sont traités de la méme maniére.

User CompositeFactory ClFactory C2Factory C3Factory Dispatcher

1.newComponent(id1)

2.c1=newComponent(id2)

3.c2=newComponent(id3) H

4.c3=newComponent(id4) | |
|-

u] >
5.dispatcher=createDispatcher() H

6.setDispatcher(dispatcher) H

7.setDispatcher(dispatcher) H

8.setDispatcher(dispatcher) |
=

- >
9.setDispatcher(dispatcher) U

'—_T_I

10.configureDispatch(this,c1,c2,c3,corifiguration)

11.start() 12.cl.start()

'_‘_T_I

13.c2.start()

'_‘_T_I

14.c3.start()

FiGUuRE 1.20 — Création d’une instance d’un composant composite.

1.2.2.4 La composition comportementale

Comme indiqué auparavant, un composant composite n’implémente pas le protocole
représentant le produit synchronisé de ses sous-protocoles. Le produit synchronisé n’est
donc pas contrélé par le controleur du composite. C'est ’exécution des sous-composants
qui réalise le produit synchronisé global de leurs protocoles respectifs.

Ceci représente une solution dite distribuée de controle du protocole. Les synchronisations
entre 'envoi et la réception des messages encapsulés sous la forme des appels dun
composant envers un autre composant se réalisent au niveau de chaque composant (au

44 Résumé

niveau du controleur des composants primitifs plus exactement). L’envoi et la réception
du message sont exécutés d’une maniére synchrone, c.a.d. que le composant émetteur est
bloqué une fois I’émission démarrée et tant que le composant receveur n’as pas recu le
message. Une fois la réception acquittée, le composant receveur débloque I’émetteur et
procéde a l'exécution immeédiate ou différée du message recu. C’est dans ce mécanisme
que réside I'implémentation de la synchronisation nécessaire & la réalisation du produit
synchronisé des composants qui interagissent. Un composant émetteur va émettre un
message uniquement si les conditions spécifiées par la garde indiquée dans son protocole
d’interaction sont vérifiées. Sinon, aucun message n’est émis. Un composant receveur peut
recevoir le message uniquement si, par rapport & son protocole d’interaction, il se trouve
dans un état ol il peut recevoir ce message. Sinon, le message est mis en attente de
réception, ce qui bloque son émetteur, qui n’est pas autorisé a exécuter d’autres actions
pendant toute la période de blocage. Au moment ol le composant receveur se trouve dans
un état permettant la réception du message bloqué, la réception a lieu et ’émetteur est
débloqué. Méme si le protocole du receveur est dans un état ou il peut recevoir un message
particulier, la garde spécifique & la transition doit étre vraie. Si ce n’est pas le cas, le
message n’est pas regu et mis en attente. Le receveur n’est jamais bloqué par un message
en attente d’étre recu ce qui fait que d’autres messages recus peuvent changer 1’état
interne du composant en permettant & une nouvelle évaluation des gardes de débloquer
un message en attente de réception diie aux évaluations des gardes. L’implémentation est
non déterministe dans le sens ou si deux ou plusieurs gardes deviennent franchissables le
message recu n’est pas déterminé d’une maniére statique. Ceci dépends des mécanismes
de controdle des fils d’exécution au niveau de la machine virtuelle Java.

Ce meécanisme a prouvé son efficacité dans I'implémentation du produit synchronisé,
sans avoir a recourir & un mécanisme dit centralisé ou a une entité spécifique (comme
par exemple un controleur du protocole global d’une application) qui fera le controle de
chaque paire d’actions émission/réception. Une approche centralisée pose des problémes
importants tant en terme d’efficacité que de passage & l'échelle car complétement contre-
indiquée dans un environnement réparti.

Pour 'implémentation effective de notre mécanisme distribué de synchronisation nous
avons recours au mécanisme de synchronisation du langage Java ou les fils d’exécution
des applications Java sont instrumentés pour arriver & une exécution chorégraphié. Le
prototype CwSTS-P étant implémenté en utilisant la version Java 5, nous avons utilisé
des structures de synchronisation trés optimisées comme par exemple les files d’attentes,
les verrous explicites (les locks en anglais), etc pour réaliser la synchronisation des fils
d’exécution qui encapsulent les appels d’un composant & un autre.

1.2.3 Perspectives

Nous avons opté pour une approche générative en ce qui concerne la construction des
composants. Ceci est en phase avec 'approche MDA actuellement en pleine reconnais-
sance dans le monde du développement des applications logicielles. La génération permet
de construire plus rapidement des applications plus sfires et peut étre intégrée avec des

1.2. Objectifs et propositions 45

techniques de verification et d’analyse sophistiquées. Les outils proposés avec 'implémen-
tation du modéle CwSTS représentent les briques de base pour pouvoir réaliser des logiciels
de génération de code qui intégrent des protocoles d’interaction sous la forme de systémes
de transitions symboliques.

Le modéle actuel prend en charge uniquement des configurations statiques. Une fois
les composants de 'architecture configurés et démarrés, aucune modification structurelle
ou comportementale des composants n’est plus possible. La tendance actuelle dans le dé-
veloppement des logiciels est de fournir aux applications la possibilité de se reconfigurer
rapidement ¢ chaud. Ceci signifie qu’une application est capable de se reconfigurer tout en
continuant son exécution, ou du moins sans avoir a tout recompiler et redéployer. Une des
possibles évolutions du modéle CwSTS est donc de permettre aux composants de se recon-
figurer (surtout en termes de connexions & 'intérieur d’un composite) sans avoir a arréter
complétement ’exécution de 'application. Ceci sera possible en concevant des composants
qui fonctionnent suivant plusieurs phases (démarré, en configuration, en pause, en arrét,
par exemple) aprés le démarrage de lapplication.

Pour des raisons de simplicité, nous n’avons considéré que le cas ol les communications
entre les composants sont point & point. Ceci signifie que le service fourni par un composant
ne peut étre appelé qu’a partir d’un seul et unique autre composant pendant toute la vie de
I’application. Dans la réalité des applications logicielles d’aujourd’hui, la communication
point & point est trés restrictive surtout si nous considérons des applications client-serveur
ou un seul composant serveur peut recevoir des appels d’exécution de services en prove-
nance de plusieurs clients. D’autres schémas d’interaction peuvent étre considérés par une
extension du modeéle CwSTS. Ces schémas peuvent inclure la communication n & 1 ou 1
a n permettant de concevoir des architectures complexes en termes d’interaction entre les
composants. Le mécanisme de synchronisation permettant la réalisation du produit syn-
chronisé est, en partie, équipé pour faire face a de tels schémas de communication mais des
études complémentaires et leurs implémentations sont a prévoir.

FIGURE 1.21 — Exécution paralléle de deux actions.

Le langage SFSP (basée sur le langage FSP) est un langage de processus qui décrit les
protocoles d’interactions des composants. Le langage est trés précis dans la description des
transitions des protocoles mais pour le cas ot nous voulons décrire deux transitions qui
peuvent s’exécuter en paralléle, nous sommes obligés de transcrire cette situation comme
présenté dans la figure 1.21. Les langages FSP et SFSP décrivent les actions paralléles en
les représentant d’une maniére séquentielle plutét qu’en restant indépendanites et en faisant
abstraction de la facon dont I’exécution des actions aura lieu. Une possible évolution du
langage SFSP sera de considérer ce cas précis de description des transitions en paralléle

46 Résumé

qui fera abstraction de la maniére exacte de 'exécution pourvu que le comportement décrit
soit réalisé. Dans un environnement distribué, ’exécution des actions se réalise rarement
d’une maniére séquentielle ce qui indique une fois de plus l'utilité d’une telle extension.

Protocol A Protocol B Synchronization Product
of A and B

FIGURE 1.22 — Etats mixtes dans l'interaction entre deux composants.

En ce qui concerne I'implémentation du modéle et plus particuliérement 'implémenta-
tion de la réalisation du produit synchronisé a I’exécution, le cas des états miztes | |
n’est pas complétement pris en compte. La figure 1.22 présente un exemple de ce cas. Si
deux composants qui communiquent entre eux se trouvent chacun dans un état ou ils
peuvent tous les deux émettre ou recevoir un message, notre implémentation ne garan-
tit pas qu’il n’y aura pas d’interblocage applicatif (da au fait que les deux composants
essaient d’envoyer un message « au méme moment »). Comme l'implémentation actuelle
bloque I’émetteur tant que le receveur n’a pas recu le message, chacun des deux composants
peut étre bloqué en attendant que son partenaire de communication recoive son message.
Une evolution de I'implémentation devrait donc éliminer cette limitation qui, en pratique,
est généralement imprévisible et dépend exclusivement des entrelacements des actions des
composants. Ceci pourra étre basé sur I'intégration de la synchronisation distribué avec
une forme de controle centralisé (basé sur I'idée de moniteur centralisé présenté dans la
section 6.2).

Toujours en rapport avec SFSP, le langage FSP propose aujourd’hui des outils de visua-
lisation et de vérification des propriétés comme par exemple l'interblocage. Une évolution
future de I'implémentation de notre modéle pourrait proposer des outils similaires qui
permettront une meilleure description et vérification des protocoles d’interaction.

1.3 Structure du mémoire de thése

Le corps de ce mémoire en anglais est structuré en deux parties. La premiére partie
présente le contexte de notre travail. La deuxiéme partie de ce document présente la contri-
bution de notre travail : un modéle de composants intégrant un formalisme lisible, expressif
et compact basé sur des systémes de transitions symboliques.

1.3. Structure du mémoire de thése 47

La premiére partie présente le contexte de notre travail. Dans la section 3.1 nous pré-
sentons ’état de ’art des caractéristiques des modéles de composants actuels et nous
I'illustrons avec des propositions du domaine de la recherche et de I'industrie. Les lan-
gages de description d’architectures | | sont présentés dans la section 3.3.4.
Un ADL est défini comme une notation formelle ou informelle, textuelle ou graphique qui
permet la spécification des architectures logicielles et qui est accompagnée d’outils spéci-
fiques comme présenté dans | |. Le résultat de l'utilisation d’un langage de
description d’architecture est une vision abstraite en termes de composants, connecteurs
et configurations sur ’application.

La plupart du temps, la vision concréte de I'implémentation est ignorée dans une ap-
proche de type langage de description d’architecture. L’analyse architecturale réalisée avec
un ADL peut révéler des propriétés importantes, mais celles-ci ne sont pas en général ga-
ranties par 'implémentation. Pour permettre une analyse architecturale au niveau du code,
le code doit étre conforme a I'implémentation. L’approche de la programmation & base de
composants (COP pour Component-Oriented Programming) dans la section 3.3.6) propose
de développer des logiciels en les programmant directement avec des composants plutot
que des objets.

Le paradigme de coordination est présenté dans la section 3.3.7. La coordination est
une approche académique centrée sur la collaboration entre processus. Cette approche
congidére la programmation des systémes distribuées ou paralléles comme la combinaison
de deux activités distinctes : 'activité de calcul proprement dite, qui contient un nombre
des processus impliqués dans la manipulation des données et ’activité de coordination qui
est responsable de la communication et de la coopération des processus.

Apreés cela, nous considérons I’état de 'art dans le domaine de la spécification des
protocoles d’interaction. Différents formalismes et modéles de composants intégrant ces
formalismes sont présentés. Les algeébres de processus sont présentées dans la section 4.2.1.
Le terme algébre de processus fait référence a une famille de techniques de spécification par-
ticuliérement adaptées a la description des systémes concurrents. Le processus d’interaction
est décrit en termes de régles de calcul sur des expressions représentant des processus.

La section 4.2.2 et la section 4.2.3 présentent les types comportementaux et les for-
malismes basées sur les machines & états finis. Les logiques temporelles sont présentées en
dernier dans la section 4.2.4, pour clore cette partie sur les formalismes de description des
protocoles d’interaction.

La deuxiéme partie de ce document présente la contribution de notre travail : un modéle
de composants intégrant un formalisme lisible, expressif et compact basé sur des systémes
de transitions symboliques.

Nous commencons par décrire notre modéle de composants d’un point de vue informel
dans la section 5.2. Les composants, leurs interfaces, les régles de composition et les détails
sur les protocoles STS sont illustrés avec un exemple qui nous sert de fil conducteur.

Les notions de composant, d’interface structurelle et comportementale, ainsi que la
compatibilité et la substitution des composants sont définies formellement dans la sec-
tion 5.3. Le langage de description d’interfaces de notre modele, CwSTS-IDL (Components
with STS - Interface Description Language), et est présenté dans la section 5.4. SFSP le

48 Résumé

langage de description des protocoles d’interaction de composants CwSTS est détaillé dans
la section 5.4.3.

Le prototype (CwSTS-P) de notre modéle et son implémentation sont présentés dans
la section 6.1. L’encapsulation de l'implémentation d’'un composant sous la forme d’un
paquetage Java sur lequel nous imposons des restrictions est présentée dans la section 6.1.2.
Dans la section 6.1.3 nous présentons la structure standard d’un composant primitif avec
ses entités constituantes et e mécanisme de configuration, d’instanciation et d’exécution.
La structure d’un composant composite est indiquée dans la section 6.1.4 et le mécanisme
de composition des protocoles d’interaction est présenté dans la section 6.2.

Nous formulons les conclusions et les perspectives de notre travail dans le chapitre 7.

Part 11

Work Context in English

Chapter 2

Introduction

By the end of the sixties, it became obvious that the way of developing software needed
to be reconsidered. At that time, applications were made on demand and developed from
scratch. As the demand was constantly augmenting, the first drawbacks of this approach
to software development made their appearance: the software quality was poor and the
exploitation and maintenance costs were high. Imposed by the market dynamics, the rapid
changes on application development could not be performed as rapidly as required. Time to
market and the clients pressure resulted in the fact that the documentation provided with
applications was usually incomplete or even incorrect. By this fact, it was very difficult, if
not impossible, to reuse parts of an application in another project.

The Component-Based Software Engineering (CBSE) paradigm is trying to overcome
these issues by using software component entities at the heart of any software application.
The notion of software component was firstly mentioned by Mcllroy | | in his
speech to the OTAN conference in 1968 and the idea of software reutilization emerged as
a solution to the above-mentioned problems. This would had been realized by the creation
of a software industry where applications were created by reusing software components
rather than creating them from scratch.

Components relate to modules in that component technology unavoidably leads to mod-
ular solutions. While modularity is a prerequisite, rules beyond the traditional modularity
criteria are needed to form components rather than just modules. Adopting component
technology requires adoption of principles of independence and controlled explicit depen-
dencies.

The Object-Oriented Programming (OOP) credo in reutilization fully revealed its weak-
ness by the end of the nineties. In contrast with the OOP mechanisms, which introduces a
strong coupling relation between base classes and derived ones (problem known under the
name of Fragile Base Class), the CBSE approach provides a better separation between the
implementation of a software component and its interface. Each component is an indivisi-
ble black-box entity that can be composed and independently deployed. The construction
of applications is realized by assembling components. In this approach, the component
interface is of major importance as it defines a contract between the component and its
environment. It clearly describes what the component provides to and what it requires

52 Introduction

from its environment in order to fulfill its intended purpose in an architecture.

Particular component characteristics are described by models (component models). A
component model describes what a component is (by defining its constituent parts) and
says how components can be eventually composed (by following some composition rules).
It also describes the component life cycle and the roles associated with different actors in
the development and exploitation of applications.

One important notion related to a component is its interface. The interface represents
the component boundary and offers a view on the component by abstracting on implemen-
tation details. Collaborating entities as software components are, often exchange messages
in order to coordinate actions or simply exchange data. Components communicate through
their interfaces and thus interfaces play an important role in the composition mechanism.

In order to successfully interact, entities (either objects, agents or components) need to
conform to a certain form of interaction contract. Interaction protocols, generally, describe
the entity behavior in terms of allowed message sequences that must be exchanged between
entities in order to perform the system intended global behavior.

CBSE integrates interaction protocols at the component interface level. For many years,
component interfaces have only described the signatures of their provided or required ser-
vices. More recently, interaction protocols have made their appearance in more elaborated
component models where the component behavior is also explicitly stated. This allows for
more trust in the component behavior and a better integration of a specific component in
an architecture.

One important issue when decoupling interfaces and implementation is to ensure that
the implementation conforms to the interface. While for a pure syntactical approach where
only the service signatures are specified the implementation conformance test is simpler,
for the cases where behavioral descriptions are also included, the implementation reveals
itself harder to be realized. Many state-of-the-art component models or languages do not
address this issue. Others rely on code analysis techniques in order to detect non confor-
mance. Component programming languages address this issue by allowing programming
with component entities rather than objects. The code conforms to its interface since the
interface description is at the same level as the implementation and the compiler verifies
some important properties such as communication integrity. Finally, generative techniques
assure by construction that the implementation code conforms to the interface description.

2.1 Objectives and Contributions

Component models and languages presented in the state-of-the-art integrate too many
concepts or are too specific. In this context, it is very difficult to analyze the consequences
of adding new concepts (like interaction protocols) or functionalities in an already defined,
full-fledged component model.

In this thesis, we propose a new, general, component model allowing explicit interaction
protocols given under the form of Symbolic Transition Systems (STSs). STSs are an
extension of LTSs (Labeled Transition Systems) | | where transitions are symbolic.
The interest of using finite-state automata based formalism like LT'Ss and ST'Ss resides in

2.1. Objectives and Contributions 93

the automatic verification techniques and tools already developed. The readability and
compactness of this kind of formalisms is also usually considered. Unlike LTSs, in STSs,
transitions describe classes of possible operations to be effectively executed. Transitions are
parameterized with formal input parameters and can be also guarded with parameterized
guards (boolean operations). The main benefit of considering STSs is their readability,
compactness and expressiveness. In addition, STSs address the well-known state explosion
problem that appears in classical LTSs formalisms.

Interaction protocols, whatever formalism they are based on, have as main purpose
a better integration of software components in an architecture. The rules specified by
the interaction protocols are used in order to detect possible incompatibilities between
interacting components. Once the compatibility property, which takes the interaction pro-
tocols into account, is proven, component-based architectures are better trusted especially
in specific domains or contexts | |.

Our interest in software component development is related to previous experiment
proposals. In | |, we experiment with an existing component programming language
(see Section 3.3.6 page 86) called ArchJava | |. By applying software product
lines, an emerging approach to software development, we propose a generative method in
order to develop complete software architectures. Guaranteeing that the implementation
conforms to the architecture raises new issues with respect to dynamic configuration. We
show how this can be solved in ArchJava by making the components auto-configurable,
which corresponds to replacing components by component generators. Such a scheme can
be implemented in various ways, in particular with a two-stage generator. This solution
goes beyond the initial technical ArchJava issue and complements the standard static
generative approach to software product line implementation.

Our proposal presented in | , , | considers a component model
integrating STS protocols and its implementation in the Java programming language. The
implementation is based on the use of component controllers (for the realization of the
interaction protocol behavior) and communication channels (for inter-component commu-
nication). Both of these entities are considered as component first class entities in the
proposed model.

Based on these previous experiments we propose a component model we baptize CwSTS
(Components with Symbolic Transition Systems). CwSTS is designed as a simple black-box
component model (i.e. communication among components is realized exclusively through
their interfaces) integrating only some features like a unique service interface describing
services both provided and required by the component. In addition to this description (that
we will call structural interface as it defines only the signatures of the services), CwSTS
also proposes a complementary interface information describing the allowed interaction
protocol of the component with its environment. We call this information a behavioral
interface as it specifies the rules that govern the behavior of the component in terms of
message emissions and receipts. Our model is based on a hierarchical view of component
composition. Two or more components (also called primitive components) can be composed
into a unique component (also called composite component). Regarding its interfaces and
behavior, the composite adheres to the same rules of the component model as the initial
primitive ones. Further on, the newly obtained composite component, can be used, as if

54 Introduction

a primitive component, in other compositions. This corresponds to the Composite design
pattern | | approach.

CwSTS-IDL is an interface definition language we propose in order to describe com-
ponent interfaces. Composite component architectures are also described by using this
language and include the declaration of subcomponent type instances and connection direc-
tives. CwSTS-IDL include a behavioral IDL for the description of the interaction protocols.
This behavioral language called SFSP (Symbolic Finite State Processus) is inspired from
the FSP (Finite State Processus) | | language but keeps only the transition, choice
and recursion constructs. In addition, actions are parameterized with type parameters in
SESP.

We follow a generative approach to constructing CwSTS components. One of the ben-
efits of such an approach is that it ensures that component implementations are consistent
(conform to) with their interface descriptions. CwSTS-P is the prototype implementation
of our model in the Java programming language. Following two generative scenarios, we
present the main features of the implementation of our component model. Important fea-
tures include the encapsulation of a component entity under the form of a Java package,
the implementation of a primitive and composite component in order to conform to the
rules of the structural interfaces in our component model and finally the details on how
the behavioral implementation is realized both at the primitive and composite component
level.

2.2 Document Structure

This document is structured in two main parts The first part presents the context of
our work. The second part of this document presents the contribution of our work, a
component model definition integrating a readable, expressive and easy-to-use formalism
for a component designer or user.

The first part presents the context of our work. Firstly, in Section 3.1 we present
state-of-the-art component model characteristics. We exemplify this state-of-the-art with
some pertinent component model proposals both from the academic and industrial worlds.
We also summarize ADLs (Architecture Description Languages) | | propos-
als (see Section 3.3.4). An ADL is defined as a formal or informal notation, either tex-
tual or graphical, allowing to specify software architectures and accompanied with specific
tools | |. The result of using an ADL is mostly an abstract view over an
application in terms of components, connectors and configurations, rather than a concrete
view over the implementation details.

While architectural analysis in existing ADLs may reveal important architectural prop-
erties, these properties are not guaranteed to hold in the implementation. In order to enable
architectural reasoning about an implementation, the implementation must conform to its
architecture. The Component-Oriented Programming paradigm (see Section 3.3.6) is a re-
cent proposal for developing components by programming directly with component entities
rather than objects. Component programming languages (or architectural programming

2.2. Document Structure 55

languages) are presented in order to indicate the research directions of this new trend.

The coordination paradigm is addressed in Section 3.3.7. Coordination is a research
area with an interdisciplinary focus. The coordination paradigm implies that programming
a distributed or parallel system can be seen as the combination of two distinct activities:
the actual computing part comprising a number of processes involved in manipulating data
and a coordination part responsible for the communication and cooperation between the
processes.

Secondly, we present the state-of-the-art in the specification of interaction protocols.
Different formalisms and component models integrating these formalisms are discussed.
Section 4.2.1 presents the process algebra formalisms. The term process algebra refers
to a family of specification techniques particularly well suited to describing systems of
concurrent communicating components. Process algebras describe the process interactions
in terms of calculus (an ensemble of rules defined on a set of process expression construction
operators).

Next, Section 4.2.2 depicts the formalisms based on behavioral types. Behavioral types
specify not only a set of messages (structural interface) to be exchanged between entities
in order to communicate but also constraints on acceptable sequences of these messages.

Finite State Machine (FSM) formalisms are presented in Section 4.2.3.FSM-based for-
malisms are generally assumed to be complete descriptions of system behavior at some
level of abstraction. From a component modeling perspective, the system behavior is what
an external entity can observe about the interactions of the system with its environment.
This is usually the messages the system (black-box component) exchanges with its envi-
ronment in terms of emissions and receipts. A finite state machine describes the set of all
possible traces a component can produce when interacting with its partners.

Finally, temporal logic is depicted in Section 4.2.4. In computer science, temporal logics
are used to specify and verify properties like safety, liveness and fairness. Due to the fact
that the verification and verification of the specifications are very expensive both in terms
of time and space, there are only a small number of usable temporal logics.

The main critics that can be done regarding some of these formalisms is the abstraction
level, much too weak to describe higher level entities like components. Another drawback
is the fact that some important properties like deadlock are not decidable. Some other
formalisms sacrifice expressiveness in order to increase decidability. Developing object
models, important notions like substitutability and refinement made their appearance,
easing the way to developing satisfactory component models integrating protocols.

The second part of this document presents the contribution of our work, a component
model definition integrating a readable, expressive and easy-to-use formalism for a com-
ponent designer or user. We start by describing our component model from an informal
point of view (see Section 5.2). The components, their interfaces, the composition rules,
and the details on our STS-based interaction protocols are exemplified by a running ex-
ample. We formalize our model in Section 5.3. The formal definitions of a component, the
structural and behavioral interface are described together with some important properties
like the component compatibility and substitutability (see Section 5.3.3). CwSTS-IDL is
presented in Section 5.4. SFSP, our interaction protocol description language is presented

56 Introduction

in Section 5.4.3.

CwSTS-P, the prototype implementation of our model is presented in Section 6.1. The
encapsulation of a component implementation under the form of a restricted Java package
is explained in Section 6.1.2. Section 6.1.3 presents the standard structure of a primitive
component together with its constituent parts. The configuration, instantiation, and exe-
cution mechanism is depicted in Section 6.1.3.2. The structure of a composite component
is presented in Section 6.1.4 and the behavioral composition mechanism implementation
in Section 6.2.

We conclude and present some possible evolutions related to our work at the end of
this second part in Chapter 7.

Chapter 3

Component Models and Languages

In this chapter we present state-of-the-art component models and languages. We
start from a history of component-based software engineering and proceed to
present component models characteristics along with examples both from the
academic and industrial worlds. Next, we present the research fields related to
software architecture: software connectors, Architecture Description Languages
(ADLs), the emerging paradigm of Component-Oriented Programming (COP),
Service-Oriented Architecture (SOA) and Coordination.

Contents
3.1 From Objects and Modules to Software Components 58
3.2 Component Models L 59
3.2.1 Component Model Characteristics 59
3.2.2 Academic Models oL 67
3.2.3 Industrial Modelso Lo 71
3.3 From Components to Software Architecture. 76
3.3.1 Software Architecture Definition 76
3.3.2 Software Connectors 76
3.3.3 Software Architecture Use 78
3.3.4 Architecture Description Languages (ADLs) 79
3.3.5 Service-Oriented Architectures (SOA) 83
3.3.6 Component-Oriented Programming (COP) 86
3.3.7 The Coordination Paradigm 89

3.4 Conclusions. e e 91

o8 Component Models and Languages

3.1 From Objects and Modules to Software Components

By the end of the sixties, it became obvious that the way of developing software needed
to be reconsidered. At that time, the applications were made on demand and developed
from scratch. As the demand was constantly augmenting, the first drawbacks of this
approach to software development made their appearance: the software quality was poor
and the exploitation and maintenance costs were high. In addition, the rapid changes on
application development, imposed by the market dynamics, could not be performed as
rapidly as required. Time to market and the clients pressure resulted in the fact that the
documentation provided with applications was usually incomplete or even incorrect. By
this fact, it was very difficult, if not impossible, to reuse parts of the application in other
projects.

The notion of software component was first mentioned by Mecllroy | | in his
speech to the OTAN conference in 1968 and the idea of software reutilization emerged as a
solution to the above-mentioned problems. This would have been realized by the creation
of a software industry where applications would have been created by reusing software
components rather than creating them from scratch | |

Important developments in this direction were realized starting from the end of the
nineties. By this time, the weaknesses of the object paradigm especially concerning reuti-
lization were fully revealed. In the field of object-oriented development, the main reuti-
lization mechanism is inheritance. This mechanism induces a strong coupling between the
base class and the derived classes. This drives to the problem identified under the name
of Fragile Base Class |) |. Fragility comes from the fact that one
modification at the base class level can result in a problem at the derived class level and
is due to a white-box approach when constructing software.

The Component-Based Software Engineering (CBSE) paradigm | | is try-
ing to overcome the limitations of the object-oriented approach. The CBSE approach
proposes a better separation between the implementation of a software component and its
interface. The interface defines a contract between the component and its environment.
It clearly describes what the component provides to and what it requires from its envi-
ronment in terms of services. In more elaborated models, the interface also describes the
details of the interactions between the component and its partners. This kind of descrip-
tion is generally accepted under the term of behavioral description. Each component is
an indivisible black-box entity that can be composed and deployed. The construction of
applications is realized by assembling components. Adopted in practice, the component
paradigm improves the speed of producing reliable, high quality applications.

Besides objects, components also relate to modules |) | in that the
component technology unavoidably leads to modular solutions. Many modularity criteria
go back to Parnas (1972) and include the principle of maximizing cohesion of modules
while minimizing dependencies between modules. While modularity is a prerequisite, rules
beyond the traditional modularity criteria are needed to form components rather than
just modules. For example, modules can be built to use global (static) variables to ex-
pose observable state, while a component defined as in definition 1 at page 60 does not
allow non-abstract observable state. Furthermore, modules tend to statically depend on

3.2. Component Models 99

implementations in other modules by importing direct interfaces from other modules. For
components, such static dependencies are not recommended to enable flexible composition
using multiple implementations of the same interface | |-

The CBSE approach encompasses developments in component models definition, Soft-
ware Architectures, Architecture Description Languages (ADLs), Component-Oriented
Programming, etc. However, the current state-of-the-art in component technology does
not solve all the problems related to software development. This is in phase with the pre-
diction of The Mythical Man Month | | foretelling that there is no miracle solution
to software development as it is intrinsically complex. Further developments still need to
be realized to fulfill the CBSE promising results even if some practices and approaches are
better than others in achieving those goals.

3.2 Component Models

Particular component characteristics are described by models (component models). A
component model describes what a component is (by defining its constituent parts) and
says how components can be eventually composed (by following some composition rules).
It also describes the component life cycle and the roles associated with different actors in
the development and exploitation of applications.

One important notion related to a component is its interface. The interface represents
the component boundary and offers a view on the component by abstracting on implemen-
tation details. Collaborating entities like software components, often exchange messages in
order to coordinate actions or simply exchange data. Components communicate through
their interfaces and thus interfaces play an important role in the composition mechanism.
There are two categories of component models: academic and industrial.

Academic component models focus on key concepts related to components like the def-
inition of components and their interfaces and on their composition. They also explore dif-
ferent properties like, for example, the substitutability, the compatibility and the dynamic
adaptation of their behavior. Industrial approaches focus on the production, distribution
and execution of industrial applications. They are successful in providing solutions (like
distribution, transactions, persistence and security) in the context of distributed applica-
tions.

In this section we start (Section 3.2.1) by presenting the main generally accepted char-
acteristics of a component model. Next, we detail the two component model categories:
academic and industrial (Section 3.2.2 and Section 3.2.3).

3.2.1 Component Model Characteristics

3.2.1.1 Component Notion

There is no unique definition of what a component is. Instead a multitude of definitions
coexist | , , , , |. However, it is
commonly accepted that a component has at least the following properties:

1. it is a unit of composition,

60 Component Models and Languages

2. it has no (externally) non-abstract observable state,
3. it is a unit of independent deployment.

One commonly accepted definition of what a component is, was formulated for the first
time at the 1996 European Conference on Object-Oriented Programming (ECOOP) as an
outcome of the Workshop on Component-Oriented Programming.

Definition 1 (Software Component) “A software component is a unit of composition
with contractually specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to composition by third parties.”

[/

This definition has several implications. One important implication is that a component
needs to encapsulate its implementation and interact with its environment only by means of
well-defined interfaces (black-box approach). Another implication is that the component
is prepared to be composed with other components in order to obtain an application
(composition rules are required). This definition also implies the existence of a life cycle
associated to a component entity, traditionally consisting of at least four phases: creation,
assembling, deployment and execution. A less explicit notion implied by this definition is
that of an environment where the component can exist at different phases of its life cycle.

Some other definitions of a software component have been given. In fact, different
authors gave different definitions and meanings of what a component is. This drove to
confusions and the lack of precise discussions around components. In addition, the terms
of component, component type, component instance or component implementation were
used one for the other. Section 3.2.1.4 at page 66 gives a precise classification of the terms
we use in this document to designate a software component during its lifetime.

3.2.1.2 Component Interface

In the general field of software systems, an interface defines the communication boundary
between two entities, such as pieces of software, hardware devices, or users. It generally
refers to an abstraction that an entity provides of itself to the outside world. This interface
separates the methods for external communication from internal operations, and allows the
entity to be internally modified without affecting the way outside entities interact with it.
It also allows the entity to provide multiple abstractions of itself. It may also provide
a means of translation between entities which do not speak the same language, such as
between a human and a computer.

In object-oriented programming, an interface is what objects use to communicate with
each other. These are definitions of methods and values which the objects agree upon in
order to cooperate. The interface of an object is usually a description of:

1. the messages that are understood by the object,
2. the arguments that these messages may be supplied with, and

3. the types of results that these messages return.

3.2. Component Models 61

4. the invariants that are preserved despite modifications to the state of the object.

5. the exceptional situations that will be required to be handled by clients of the object.

Based on this definition of interface for objects, the component interface can be defined
following two complementary points of view, that is the collection, respectively the con-
tractual, point of view. By the collection point of view we mean the fact that we can see
the interface of a component as the set of operations the component provide its partners
with. From a contractual point of view, we see a component interface as a contract between
the component and its partners. With respect to the contractual point of view, a compo-
nent interface also integrates what is called required operations, in addition to the provided
operations. While the provided operations define what is offered by the component, a re-
quired operation defines what is needed by the component in order to execute. This kind
of interface is more adapted to describe the two roles client-server inherently associated
to a component. The definition of a component interface integrating both provided and
required operations is in conformity with the component definition 1 at page 60, where
context dependencies have to be made explicit.

The definition above takes into consideration only operation signatures, either provided
or required. Nowadays, this simple definition is considered obsolete. Antoine Beugnard
et al. | | propose a taxonomy of contracts related to component interfaces.
According to this taxonomy there are four levels of contracts related to the exchanges of a
component with its environment:

1. basic - this is the syntactic level, as described in the informal definition we gave at
the beginning of this subsection. This level considers the syntactical properties of
the names, parameters types, return types and exceptions.

2. behavioral - this level considers the properties that can be specified using pre-
conditions, post-conditions and invariants. These properties are linked to an opera-
tion (method in the object world) and specify the parameter types and the depen-
dencies between the values of these parameters. One can also see in these properties
the intent of the method.

3. synchronization - this level deals with properties concerning the components interac-
tions. These properties cannot be expressed only by using pre- and post-conditions
on a method. They consider the component interactions with its environment. As
these interactions influence the internal behavior of the component, we can describe
their execution as a sequence of steps that are to be followed. The indeterminism
related to operation calling and the execution concurrency have also to be taken into
account when describing these properties.

4. quantitative - this level corresponds to all nonfunctional properties as the quality of
service, resource management or response time. These contracts are called Quality
of Service (QoS) contracts. They are the most difficult to express and analyze as
they usually depend on the properties to be verified, the environment and the exe-
cution context, pieces of information that are usually not known at the moment of
architecture description.

62 Component Models and Languages

All current component models deal with the basic level as it is based uniquely on opera-
tion signatures and considers only functional properties. This is realized by using Interface
Description Languages (IDLs) that let the component designer specify the operations to
be performed, the input and output parameters that are required by the component and
the possible exceptions that might be raised during execution. This is also the only level
of contracts not allowing for negotiation between the interacting partners.

Levels two to four are more or less dealt with in the current state-of-the-art component
models. This is due to the complexity in expressing and analyzing this kind of properties.

The behavioral level is closely related to Design By Contract (DbC) | |- This
method is based on the theory of abstract data types | | and on the contract
metaphor in the juridical sense of the term, binding two parties together. The idea be-
hind DbC is that software entities have responsibilities towards the entities they interact
with. These responsibilities are based on formalized rules: functional specifications, or
contracts, are created even before they are really implemented. The interactions are ruled

by these contracts. Work in this domain includes the Eiffel language | |, OCL
for UML | , |, and JML |]. The design by contracts methodol-
ogy was initially developed for the object-oriented design and programming fields. Some
approaches like | , | explored the inclusion of contracts into component
models.

The synchronization level contracts deal with the sequencing of messages related to
component communication. In a distributed concurrent environment, components are
usually autonomous processes simultaneously executing and exchanging information. Each
component is located on different machines and evolve independently. In order to com-
municate with another component, a synchronization takes place when exchanging mes-
sages. We talk about asynchronous parallelism | |. State-of-the-art component
approaches will be given in the following subsection.

The last level of contracts from the taxonomy deal with non-functional properties as-
sociated to the notion of QoS. There are many approaches in the direction of specifying
quality of service properties at the component interface level. We point out for exam-

ple | : , ,].

Blackbox, whitebox, graybox or glassbox component flavours

According to definition 1 page 60, a component interacts with its environment exclu-
sively through its interfaces. As the interface is abstracting from the implementation,
a component communicating exclusively through its interfaces and not revealing its im-
plementation details is said to be of black-box type. Objects communicate through their
interfaces (defining their public methods) but can also communicate through their instance
variables. Components based on other definitions than definition 1 could also expose im-
plementation details besides their interface descriptions thus breaking encapsulation. For
example, in the JavaBeans model, a component allows communication through its inter-
faces but also through its instance variables. Depending on the degree of implementation
details offered by the component, we can speak about a gray-box or a white-box component
type | |. While JavaBeans | | components are of white-box type, other

3.2. Component Models 63

models and languages like, for example, Oberon' describe components in terms of pre-
and post-conditions on the input and the output of the services provided by the compo-
nent | |. This kind of approach is usually insufficient to describe the component
behavior | |. Some authors further distinguish between white-boxes and glass-
boxes, with a white-box allowing for manipulation of the implementation and a glass-box
merely allowing study of the implementation.

Operations, Services, Interfaces, Ports

The terminology related to component operations, services, interfaces and ports abounds
in the literature. Despite the fact that there is no general consensus on the meaning
of these terms, from a collection point of view, we can consider as valid the following
definitions | |:

e An operation is a component action. This action is called by a client component and
is executed by a server component.

e An interface is a set of operations united by the component designer following a
coherent point of view. It is considered that an operation cannot be part of more
than one interface, that is, interfaces define a partition of the set of operations.

e A service is the set of accessible component operations.

e A port is the union of some interfaces following a coherent point of view. The
subjacent idea related to ports is that if an interface belonging to a port is used
by another component it is likely that another interface is also used in the same
interaction between the two components. Another idea is that a port is a designation
entity, at least at execution time.

The contractual point of view completes these definitions with the point of views asso-
ciated to the roles of client and server:

e A required operation (interface, service, port) characterizes the needs of the client.
The required character implies the existence of the specified operation (interface,
service, port) in the component environment. In a required interface, service or port,
all specified operations are required.

e A provided operation (interface, service, port) characterizes the realization proposed
by the server. The called operation realizes a computation defined by the specification
associated to the provided operation. In a provided interface, service or port, all
specified operations are provided.

One particular definition is that of a port in UML 2.0. A UML 2.0 port assembles
required and provided interfaces. This definition is relevant as the notions of network
port or distributed port, for example, assemble the input and the output communications.
Thus, it is appropriate to introduce a structure allowing the specification of both provided
operations and required operations.

1. http://www.oberon.ethz.ch

64 Component Models and Languages

3.2.1.3 Composition

Composition is a mech-

anism allowing the con- [Architecture

struction of complex com- C1 a b c2 f
ponents (composite compo- bind
nents) starting from sim-
pler components (base com- ‘*’C 'fd <

o=

ponents). Figure 3.1 de- ¢ import export ! ! glue
picts the case of a com- ‘+c' 'i‘d' ,i‘e

posite component Architec-
ture, obtained by compos-
ing components C1 and C2.
Component C1 provides the a operation and requires the ¢ operation. C2 requires the
b operation and provides the d and f operations. The obtained composite component
Architecture, provides the d’ and e operations and requires the ¢’ and e’ operations. The
composition is obtained by binding operations provided by one component to operations
required by a partner component or by delaying the binding of an operation (from the
subcomponent level) by making it explicit in the interface of the composite. Note that it
is allowed not to bind an unused provided operation (as the provided operation f of C2).

Figure 3.1: Architecture composite component.

Composition schemas.
With respect to the composition mechanism we can identify four configuration schemas:

e binding a required operation to a provided one - this is the base mechanism associat-
ing a required operation in one subcomponent with a provided operation in another
subcomponent.

e cxporting a provided operation from the subcomponent level to the composite level
- this mechanism makes it possible to associate an operation provided by one of the
subcomponents with a corresponding operation at the composite level. While the
subcomponent operation has an implementation, the operation of the composite is
merely forwarding calls from its clients to the subcomponent service.

e importing a required operation from the composite level to the subcomponent level -
instead of binding the required operation to a provided one, this mechanism makes it
possible to delay this binding by exposing it (under the identification of an external
operation) for further composition schemas.

e gluing a provided operation to a corresponding required operation of the same com-
posite - this schema allowsfor passing through a composite component; instead of
providing an implementation for the provided operation, the component delegates
this responsibility to another component.

Figure 3.1 depicts the case of an architecture where the only operations exposed by
the composite correspond to operations defined by subcomponents. In this case, we talk

3.2. Component Models 65

about composites that only realize configurations. No additional functional code (imple-
mentations for operations at the composite interface level) is present in the composite, this
is used only to compose subcomponents. Operations e and e’ do not have correspondents
inside the composite, they do not correspond to some functional code inside the composite
either. Composites implementing both architectures and their own interfaces (without any
correspondence with the operations of the subcomponents) belong to particular compo-
nent models. In both cases, however, this type of composition is called hierarchical as it
makes it possible to obtain composites starting from base components, composites that
are likely to be used in further compositions as if they were base components. This is dif-
ferent from other approaches where the composition is flat. For example, the component
model presented in | | proposes a composition mechanism where components can
be obtained by regrouping the interfaces of the base components into a new interface, and
by applying regrouping rules to the implementation. The resulting component can then
be used by clients by directly calling operations from this interface.

Composition can also be used for connection-oriented programming | |- The
connection-oriented programming style is useful when “wiring” prefabricated components
or objects provided by such component models. This is in analogy with the integrated
circuits (IC) from which the CBSE approach got inspired. The connection-oriented style
implies the view of connections as entities of their own. They are symmetrical (interfaces
describe both provided and required operations). Safety is of major importance in this
approach because of the very late binding of components.

Compatibility.

One important concept that intervenes in the composition mechanism is the compatibil-
ity of the operations we want to associate with each other. Indeed, in order to allow a valid
configuration, the operations we bind, export, import or glue together must be compati-
ble. With respect to the taxonomy presented in Section 3.2.1.2 and the binding schema,
different component models define compatibility in function of the level of conformance to
the taxonomy. The first-level contracts, the syntactical ones, consider that a provided op-
eration is compatible with a required operation if they have the same name and signature,
where signature is the type and name of input and output parameters and the return type
of the operation. In addition to this constraint, interface contracts of the second level,
consider that we can connect two corresponding operations only if the descriptions (given
in terms of pre-, post-conditions and invariants) match. More evolved models also define
compatibility of behavioral descriptions | |- From the QoS level point of view, the
compatibility is harder to define and verify as it depends on properties that are possibly
not known at the moment of composition | |.

One important concept related to that of compatibility is subtyping. Subtyping makes
it possible to substitute a type (interface type) with a subtype without breaking the com-
patibility rules. Usually, in order to allow for substitution, the type-subtype relationship
must adhere to the variant-covariant specifications. Less strict definitions of compatibility
also consider the type-subtype relationship when connecting corresponding operations.

Incompatible operations cannot be directly connected. Instead, an adaptation can be
realized under certain conditions. The incompatibility is mediated by an adaptor that takes

66 Component Models and Languages

in charge the adaptation of interfaces (both syntactical and behavioral, when present). The
adaptor is usually implemented as glue code | | and, in certain cases, needs more
time to be developed than the component itself. ADLs address this issue by including the
adaptation code into connector entities used to actually connect the two components.

Models that regroup interfaces into ports, define the compatibility at the port level
following the same guidelines as previously presented.

3.2.1.4 Life Cycle

The component life cycle defines the steps to follow when constructing and executing an
application based on components. Traditionally, the life cycle consists of four phases:
creation, assembly, deployment, and execution.

1. Creation. During this phase, component interfaces are defined and an implementa-
tion conforming to the interfaces is realized. Once ready, all the component con-
stituents parts (interface descriptions and implementation entities) are packaged to
be distributed to tiers.

2. Assembly. An application based on components is obtained by assembling existing
components into a final architecture. The assembly phase also consists in defining
the assembling configurations needed in the deployment phase. When assembling
components, each individual component can also be configured to fit the specific
architecture.

3. Deployment. The deployment of an application takes in consideration a configura-
tion specifying details like, for example, the initial values for instances (component
instances).

4. Execution. During this phase, the application is installed by the administrator and
is used by clients.

Depending on implementations, the third and fourth phases also include instantiation of
components. In case of EJBs (see below) component instantiation takes place after the
application is deployed and before the first use of the components.

The life cycle makes it possible to define roles associated to each of its phases. For
example, in the ENTERPRISEJAVABEANS component model, we can find the following roles:

e Entreprise Bean Provider

Application Assembler

Deployer

EJB Server Provider

EJB Container Provider

System Administrator

3.2. Component Models 67

While the Entreprise Bean Provider and the Application Assembler roles relate respectively
to the creation and the assembly phase, the next roles transgress the deployment and
execution phases. In EJB, the deployment takes place into an environment called container.
The container is integrated into an application server and the administrator is in charge
of surveying the execution of the application.

Software Components, Component Types and Component Instances. The life
cycle phases are generally the same in all component models. However, there are some
differences in the definition of each phase depending on proposed models | ,

|. One potential source of misunderstandings is related to the use of the term
software component. In fact, this term is used through all the phases of the life cycle.
It, naturally, takes different forms. In this document we will talk about component type
to denote the information related to the description of the required and provided services
and, in case of a composite, to denote a configuration. We call component implementation
the set of sources and/or binaries allowing the realization of a component. Finally, we
talk about component instances to denote an existing entity executing in a specific envi-
ronment. A component instance is deployed and is characterized by a unique reference, a
component type and an implementation of this type.

3.2.2 Academic Models

Among current propositions of academic component models we can cite | ,

7 7 7 7 7 7 7

9 9)) 9 Y]'

Many of these models also integrate an ADL (see Section 3.3.4 page 79) or interaction
protocols (see Chapter 4 page 93). In this section we will discuss Fractal an extensible
component model and SOFA, a component model integrating interaction protocols. Frac-
tal also integrates an ADL, but our focus is to present its main characteristics and discuss
its results.

The choice of these two models is sustained by the fact that both of them are general
purposed component representative for the current state-of-the-art in component models.
They have many things in common but they also differ in some significant points: static
versus dynamic architectures, use of explicit connectors or not, etc.

3.2.2.1 Fractal

The Fractal component model is developed by the ObjectWeb ? consortium (led by France
Telecom R&D) and by INRIA (I'Institut National de Recherche en Informatique et en
Automatique). Fractal goals are to authorize the definition, configuration and dynamic
reconfiguration of an architecture based on components and to provide a clear separation of
functional concerns from the non-functional ones. Fractal is a also an extensible component
model allowing the developer to add structural and behavioral elements, and go beyond
the possibilities defined by the base model.

2. http://www.objectweb.org

68 Component Models and Languages

Control Interfaces
0

Server Interface Client Interface

|_ |

> Membrane

—> Content

liaison

Composite

Figure 3.2: Fractal Architecture.

Fractal is defined on two levels of abstraction (and two corresponding models). The
general model describes the notion of a component system from an abstract point of view.
This model describes the notion of cell having a content (plasm) and a membrane. The
model is inspired by a metaphor between a component and a biological cell. The concrete
model specializes the general one to obtain a more operational model. This specialization
introduces a type system ingpired from the target programming language.

Components, interfaces and composition.

A component in Fractal is made of a membrane and a content (Figure 3.2). The mem-
brane is constituted by the a set of interfaces defining the operations required and provided
by the component. The content makes it possible to distinguish two types of components:
primitives and composites. The content of a primitive component is represented by a soft-
ware module realizing the component services. The content of a composite component is
an assemblage of primitive components satisfying the services defined by the composite
interfaces.

Fractal interfaces are of two types: server interfaces and control interfaces (the mem-
brane corresponds to the entire set of control interfaces). An interface is composed of
a name, a signature and a type. While the business interfaces represent the points of
interaction with the environment of the component, the control interfaces deal with non
applicative properties like the management of the life cycle or the connections of the com-
ponent.

The composition is possible by using what the authors call liaisons. A ligison is a
connection between a client interface and a server interface (Figure 3.2). Because of the
strongly typed system, a server interface can be connected to a client interface only if its
type is identical or if it its type is a subtype of the client interface.

The membrane allows the definition of both external and internal interfaces. Internal
interfaces are accessible only from the inside of the component (the content). An internal
interface exists symmetrically with an external interface and is used to create pass-through
links from the membrane to the content level without losing the liaison semantics.

The Fractal model makes it possible to construct hierarchical architectures. However,
the specificity of a Fractal architecture is that a primitive component can be shared by
multiple composite components.

3.2. Component Models 69

Life cycle and dynamic reconfigurations.

The phases of creation and deployment are realized in a traditional way (Section 3.2.1.4
page 66). At execution time, the API provided by Fractal allows the navigation and
introspection of the structure of components: to discover component interfaces and content,
and navigate along the liaisons between interfaces.

In addition it is possible to dynamically modify the structure of an application by modi-
fying the content of composite components and creating or destroying ligisons. Component
instances can be created at execution time either using a Factory or by using Templates.
A component instance is active as long as there is at least one liaison between its interfaces
and the environment.

Fractal implementations.

There are many implementations of Fractal. Julia | | is the reference im-
plementation of Fractal in the Java programming language. Think | | is a
C implementation targeting the development of embedded applications and extensible
OS cores. FracNet | | is an implementation for the NET framework. AO-
KELL | |, PLASMA |] and FracTalk ® implement Fractal in Aspectl,
C++ and SmallTalk, respectively.

Behavioral descriptions in Fractal.
Fractal is an extensible component model. It makes it possible to extend the model in
order to add structural or behavioral elements. Different approaches target to integrate

"contracts" at the interface level. ConFract | | proposes the use of assertions at the
interface level. Barros | | also proposes to use LTS* to describe the component
behavior.

3.2.2.2 SOFA

SOFA | | (SOFtware Appliances) is a component model natively allowing the spec-
ification of behavior protocol at interface level. A SOFA component can be of either atomic
or compound type. While an atomic component relies on an implementation language, a
compound component solely defines a component hierarchy (architecture). A compound
component is specified by using an interface description and an architecture description.
The interface description gives a black-box view over the component by specifying only the
required and provided services. The architecture description gives a grey-box view over the
component by specifying the subcomponents and their interconnections. Interconnections
are realized by employing four types of connectors: binding, delegating, subsuming and
exempting. SOFA provides a CDL (Component Definition Language) in order to describe
interfaces and architectures.

Interfaces in SOFA allow the definition of behavior protocols. A behavior protocol de-
scribes all the service traces a component can accept and are specified by using a formalism

3. http://csl.ensm-douai.fr/FracTalk
4. Labeled Transition System

70 Component Models and Languages

based on regular expressions. The model provides means to verify the coherence of the
architecture but not the coherence of the implementation with its specification.

A SOFAnode represents a deployment and execution environment for SOFA compo-

nents. A network of SOFAnodes constitutes a SOFAnet representing the runnable configu-
ration of an application. SOFA model also allows for the dynamic update of a component,
mechanisms to distributed deployment and version control.
In order to allow for a dynamic update of a component, SOFA defines a component type
called DCUP | |. This type of component comprises two parts. A permanent part
which is specific to each component version and a replaceable part being renewed at each
component update.

3.2.2.3 Fractal and SOFA Evaluation

Fractal is a general-purpose component model. It uses a hierarchical component model
without connectors. Connectors can be simulated using "normal" components (the Fractal
specification even instructs to do so), however this results into rather unclean and diffi-
cult to comprehend architectures mixing different levels of abstraction. Fractal separates
components functional and non-functional (control) parts. The non-functional part is man-
aged using controllers, which are from the architectural point of view provided interfaces.
Fractal also introduces the concept of shared components, i.e. a single subcomponent
instance shared by several composite components. Such an approach easily allows for run-
time changes of an architecture, but it breaks a component encapsulation hierarchy and
can result in clumsy and uncontrollable architectures. By itself, Fractal is just a specifica-
tion defining a set of component features and standard interfaces, and it has a number of
implementations.

The SOFA component model is like Fractal a general-purpose component model. It
also uses a hierarchical component model but with connectors (and therefore with multiple
communications styles). In addition, these connectors allow for transparently distributed
applications. Component behavior can be described using behavior protocol and these can
be subsequently used to verify component composition and communication. For describing
components and architectures, SOFA uses its own ADL. Similarly to Fractal, SOFA com-
ponents also exist and may be instantiated at runtime. The weak points of SOFA comprise
no support for dynamic changes of an architecture (it just supports a dynamic update of
a single component), not clearly separated and non-extensible control part of components,
and a limited set of communication styles.

Both SOFA and all implementations of Fractal create a component platform over the
Java platform; in fact they are Java libraries. At runtime, instances of components exist
but they are mapped to a set of Java classes. As components in SOFA and Fractal are
implemented in pure Java, they can be much more easily integrated with other legacy
systems.

3.2. Component Models 71

3.2.3 Industrial Models

Industrial component models focus on the implementation of system services for the pro-
gramming of distributed application. Development of applications in the large, is sustained
by the adoption of a three-tier architecture design approach and the use of system services
like the distribution, transactions, persistence and security. There are three main actors
in the industrial world proposing industrial component models: OMG ® with the CCM ¢
component model, SUN " with the EJB | | component model and Microsoft with
the couple COM+ (component model)/ . NET architecture.

Unlike academic models, industrial propositions generally define all the component
model characteristics as presented in Section 3.2.1 page 59. The specifications related to
these approaches describe component types, the execution environment and deployment
strategies.

3.2.3.1 CORBA Component Model (CCM)

OMG (acronym for Object Management Group) is a consortium of more than 800 member
companies in the computing industry. OMG original aim was the standardization of "what-
ever it takes" to achieve interoperability at all levels of an open market for "objects". The
main result of their efforts is the definition of CORBA (Common Object Request Broker
Architecture) and related standards. From the very beginning, the goal behind CORBA
was to enable open interconnection of a wide variety of languages, implementations and
platforms. The downside of OMG approach is that individual CORBA-compliant prod-
ucts cannot interoperate on an efficient binary level. Instead, they must engage in costly
high-level protocols.

At the very heart of CORBA stands the ORB (acronym for Object Request Broker)
which is essentially a high level, transparent, remote method invocation service. The
most common use of ORBs in industry is to replace sockets and remote procedure calls in
applications spanning several server machines. Beside ORBs, a set of invocation interfaces
and a set of adapters represent the core of CORBA. An Interface Description Language
(OMG IDL) is used to describe object interfaces and a compiler generates stubs/skeletons
starting from these descriptions. In addition, language bindings from OMG IDL to general
programming languages like Java, C, C++4, Smalltalk, etc. are also provided. Stubs and
skeletons are good solutions when dealing with regular method invocations. CORBA also
provides a dynamic invocation interface (DII) and a dynamic skeleton interface (DSI)
to allow the dynamic selection of the operation to be invoked at execution time either
the client’s end (DII) or at the server’s end (DSI). With CORBA 3, OMA (acronym
for Object Management Architecture) also adds three new areas of standardization: a
set of common object service specifications (CORBAservices), a set of common facility
specifications (CORBAfacilities), a set of application object specifications and the CCM
(CORBA Component Model).

5. Object Management Group - http://www.omg.org
6. Corba Component Model
7. http://www.sun.com/

72 Component Models and Languages

Equivalent interface ?

Receptacles

O Facet A

Provided interfaces

O Facet B

Event sources

An A&

Attributes Event sinks

b s

Receptacle holds stub of another
component instance's facet

-<>— Event source holds reference to another

component instance's event sink

Figure 3.3: CCM Component.

The CORBA Component Model is an extension of Entreprise JavaBeans (see Sec-
tion 3.2.3.2). It introduces several novel features, promises a fully compatible embedding
of existing EJB solutions and aims to maintain the original CORBA goal of being both
language and platform independent. A CCM application is an assembly of CCM compo-
nents, each of which may be custom-built or off-the-shelf, in-house or acquired. Entreprise
JavaBeans components and CCM components can also be combined in a single application.

A CCM component is characterized by a number of features like (Figure 3.3):

e ports (facets, receptacles, event sources and event sinks) representing the provided
(facets) and required (receptacles) interfaces. Event sources and sinks are similar to
facets and receptacles but they are connected to event channels instead of to each
other.

e primary keys, which are values used to allow client identification of the instances.

e attributes and configurations, which are named values exposed via accessors and
mutators.

e home interfaces providing factory functionality to create new instances.

A special facet (interface) of a CCM component is the equivalent interface enabling the

3.2. Component Models 73

navigation between the different facets of a CCM component. A CCM component can also
be classified into one of the fourth categories:

service - are instantiated per incoming call and cannot maintain state across calls.
session - instances maintain state for the duration of a transactional session.

entity - they have persistent instances, correspond to entities in database and can be
accessed by presenting the database entity’s primary key.

process - instances lifetime corresponds to the lifetime of some processes they are
servicing and have persistent state.

In CCM as in any industrial approach, a component unit is an archive file containing
the component definition (compiled files) and a deployment descriptor. More specifically,
in CCM, a component unit contains:

the component implementation.
the corresponding IDL description.

the component descriptor (CCD, CORBA Component Descriptor) specifying the
services (like persistence, transactions, security, etc.) the container must provide.

a property descriptor (CPF, Component Property File) defining the component at-
tributes default values.

a packaging descriptor (CSD, Corba Software Descriptor) giving informations like
author, licence, etc.

@)
O
O
Container
(execution environment)

Figure 3.4: CORBA Component Model Execution Environment.

Each component instance is placed inside an execution environment (see Figure 3.4).
In the case of CCM this environment is represented by a CCM container. The container is

74 Component Models and Languages

responsible for providing the component with the required services (mainly transactions,
security, persistence and notification services). Containers are themselves coordinated by
an application server.

The standards described by CORBA 3 are very numerous and the overall architec-
ture tends to be very complex. These are, probably, the reasons for not having many
CORBA-compliant implementations available at this time. Vendors like BEA, IBM IONA
or Borland tried to provide developers with CORBA-compliant application servers, con-
tainers and IDEs (Integrated Development Environment) but the variety and, some times,
the rapid changes in standards specifications made that they are not fully compliant. Con-
cerning CCM, at this time even fewer compliant server-side implementations (like the K2
Component Model ®) exist.

3.2.3.2 Component Models in the Java World

At the end of the nineties, SUN Microsystems started elaborating several component mod-
els designed to address the development of distributed applications. These models are all
based on the Java | | programming language. Currently, the Java universe counts
five component models: applets and JavaBeans (parts of J2SE?), Enterprise JavaBeans,
servlets/JSPs and application client components (parts of J2EE '°). While applets target
developing client-side applications, J2EE define standards for component models targeting
server-side development.

Applets were the first Java component model, aiming at downloadable lightweight com-
ponents that would augment websites displayed in a browser. The security model related
to applets was too tight and later developments in browser standards and technologies
made the applet technology obsolete.

The JavaBeans models is rather an object model than a fully fledged component model
(according to characteristics defined in Section 3.2.1 at page 59). JavaBeans focus on
supporting connection-oriented programming (Chapter 10 in | |) and is useful
on both clients and servers. The proposed model is of white-box type as the communication
between JavaBeans objects can be realized also by fields and events notifications in addition
to interfaces (public methods). The event mechanism adheres to the publish/subscribe
paradigm | , |. JavaBeans support two types of variables representing
the source of events: bound properties and consiraini properties and the event mechanism
is used as a composition mechanism.

Enterprise JavaBeans focuses on container-integrated services supporting EJB beans
(components) that request services using declarative attributes and deployment descrip-
tors. EJB follows an entirely different path than JavaBeans. There is no provisions for
connection-oriented programming at all (adding this is one of the main improvements of
CCM over EJB). EJB deals with the conteztual composition. Contextual composition is
about the automatic composition of component instances with appropriate services (like
transactions and security policies) and resources. An EJB container (representing the bean

8. http://www.icmgworld.com/corp/k2/k2.overview.asp
9. Java 2 Standard Edition
10. Java 2 Enterprise Edition

3.2. Component Models 75

execution environment) configures services to match the needs of contained beans. These
needs are expressed declaratively in a bean’s deployment descriptor or, more recently, us-
ing annotations. Currently, there are four kinds of beans: stateless, stateful, entity and
message-driven. They are all united by a common top-level contract between beans and
containers and their use of deployment descriptors. Message-driven beans appeared in
EJB 2.0 and are different from entity and session (stateless or stateful) beans. Entity and
session beans share the design of EJB Object and EJB Home interface (non-functional in-
terface). Message-driven beans behave as asynchronous event consumers | |. They
are stateless, not persistent but can use the transaction service. In EJB an application
passes through all the phases of the life cycle defined in Section 3.2.1.4 that is: creation,
assembly, deployment and execution. At creation time, interfaces, implementation classes
and deployment descriptors related to a component are gathered into a package. At assem-
bly time, components can be composed and corresponding packages for composite compo-
nents created. The phase of deployment sees the beans being instantiated and initialized
depending on descriptor specifications and configuration files. The execution phase con-
sists in running the application. The container (the execution environment) controls the
execution of the deployed beans by, among others, providing them with the non-functional
services they require.

Java servlets pick up the spirit of applets but live on a server and are (usually)
lightweight components instantiated by a web server processing, typically, web pages. Java
ServerPages (JSP) can be used to declaratively define web pages to be generated. JSPs
are then compiled to servlets.

J2EE introduces application client components. These are essentially unconstrained
Java applications that reside on clients. A client component uses the JNDI (Java Naming
Directory Interface) enterprise naming context to access environment properties, EJBs and
resources on J2EE servers (for example, access to e-mail through JavaMail or databases
via JDBC).

Among the panoply of "component" models in the Java world, the Enterprise JavaBeans
seems to conform the most to the definitions of components, interfaces, composition and
life cycle defined in Section 3.2.1 at page 59.

3.2.3.3 Component Object Model (COM)

The COM+ component model extends the COM ! (Component Object Model) model of
Microsoft with transactional, service browsing and request instrumentation services. COM
was introduced with the operation systems family on 32 bits (Windows 95 and Windows N'T
3.1). Later, DCOM (Distributed COM) | | was proposed to allow the construction
of distributed applications.

The COM model allows the definition of black-box components implementing multiple
interfaces and that can be dynamically connected to other components, possibly provided
by different vendors | |. Component interfaces specify both the required
and the provided operations and implementations in different programming languages are
possible.

11. www.microsoft.com/com

76 Component Models and Languages

NET | | is a newer component model proposed by Microsoft. .NET can be
seen as an update of the COM+ model but without replacing COM+ components: each
.NET component is also a COM+ component. .NET components evolves inside a common
language execution environment dealing with execution aspects and providing services like
memory management, distribution and security.

3.3 From Components to Software Architecture

3.3.1 Software Architecture Definition

Definition 2 The Software Architecture of a program or computing system is the structure
or structures of the system, which comprise software components, the externally visible
properties of those components and the relationships among them [/.

According to the ANSI/IEEE 1471 2000-standard, software architecture is: "The fun-
damental organization of a system embodied in its components, their relationships to
each other and to the environment and the principles guiding its design and evolution"
[, I

More clearly, the software architecture | , , | is the organiza-
tion of a software system as a collection of components, connections between the compo-
nents, and constraints on how the components interact.

3.3.2 Software Connectors

Among the first-class entities (as suggested in | |) of software architectures, con-
nectors play an important role in component interactions. They establish the rules of inter-
actions and indicate all the auxiliary mechanisms needed in theses interactions | |-

Definition 3 A connector can be defined as a reusable design element that supports a
particular style of component interaction. By extension, the corresponding implementation
elements are also called connectors.

3.3.2.1 Categories of Connectors
Connectors are very diverse and can be categorized according to the services they provide

and the way the provide these services.

Categories of Services - The categories of services provided by connectors as described
in | | are presented below:

Communication: Communication connectors support transmission of data among
components.

3.3. From Components to Software Architecture 7

Coordination: Coordination connectors support transfer of control among compo-
nents 2. Components interact by passing the thread of execution to each other. Function
calls and method invocations are examples of coordination connectors'®. Higher-level
connectors, such as signals and load balancing connectors, provide richer, more complex
interactions built around coordination services.

Conversion: These connectors convert the interaction provided by one component
to that required by another. Conversion services allow components that have not been
specifically tailored for each other to establish and conduct interactions. Conversion of
data formats and wrappers for legacy components are examples of connectors providing
this interaction service.

Facilitation: Facilitation connectors mediate and streamline component interaction.
Even when heterogeneous components have been designed to interoperate with each other,
there is a need to provide mechanisms for facilitating and optimizing their interactions.
Mechanisms like load balancing, scheduling services, and concurrency control are required
to meet certain extra-functional system requirements and to reduce coupling between com-
ponents.

Every connector provides services that belong to at least one of these categories. It is
also possible to have multi-category connectors to satisfy the need for a richer set of in-
teraction services. For example, it is possible to have a connector that provides both
communication and coordination services.

Connector Types - There is a need to classify connectors into different types based on
the way in which they realize interaction services. These types of connectors, as described
in | |, are listed below:

Procedure Call: Procedure call connectors model the flow of control among compo-
nents through various invocation techniques (coordination). They also perform transfer
of data among the interacting components through the use of parameters (communication).

Event'*: Event connectors are similar to procedure call connectors in that they model
the flow of control among components (coordination). Once the event connector learns
about the occurrence of an event, it generates messages for all interested parties and yields
control to the components for processing these messages. Messages can be generated upon
the occurrence of a single event or a specific pattern of events. The contents of an event can
be structured to contain more information about the event, such as the time and place of
occurrence, and other application-specific information (communication). Virtual connec-
tors are formed between components interested in the same event topics. Event connectors

12. Transfer of control from component A to component B does not necessitate the loss of control by
Al

13. Note that function calls and method invocations provide communication services in addition to
coordination services.

14. An event can be defined as "the instantaneous effect of the (normal or abnormal) termination of the
invocation of an operation on an object, and it occurs at that object’s location" [|-

78 Component Models and Languages

are found in distributed applications that require asynchronous communication.

Data Access: Data access connectors allow components to access data maintained by
a data store component (communication). Data access often requires preparation of the
data store before and clean-up after access has been completed. In case there is a difference
in the format of the required data and the format in which data is stored and provided,
data access connectors may perform translation of the information being accessed (conver-
sion). The data can be stored either persistently or temporarily, in which case the data
access mechanisms will vary.

Linkage: Linkage connectors are used to tie the system components together and hold
them in such a state during their operation. Linkage connectors enable the establishment
of ducts, the channels for communication and coordination, which are then used by higher-
order connectors to enforce interaction semantics (facilitation).

Stream: Streams are used to perform transfers of large amounts of data between
autonomous processes (communication). Streams can be combined with other connector
types, such as data access connectors, to provide composite connectors for performing
database and file storage access, and event connectors, to multiplex the delivery of a large
number of events.

Arbitrator: When components are aware of the presence of other components but
cannot make assumptions about their needs and state, arbitrators streamline system oper-
ation and resolve any conflicts (facilitation), and redirect the flow of control (coordination).
Arbitrators can provide facilities to negotiate service levels and mediate interactions requir-
ing guarantees for isolation levels, reliability, and atomicity. They also provide scheduling
and load balancing services. Arbitrators can ensure system trustworthiness by providing
crucial support for dependability in the form of reliability, safety, and security.

Adaptor: Adaptor connectors provide facilities to support interaction between compo-
nents that have not been designed to interoperate. Adaptors involve matching communica-
tion policies and interaction protocols among components (conversion). These connectors
are necessary for interoperation of components in heterogeneous environments, such as
different programming languages or computing platforms.

Distributor: Distributor connectors perform the identification of interaction paths
and subsequent routing of communication and coordination information among compo-
nents along these paths (facilitation). They never exist by themselves, but provide assis-
tance to other connectors, such as streams or procedure calls.

3.3.3 Software Architecture Use

An architecture may be used for three main purposes (as specified in | |): for an
individual software system, as a product-line architecture or as a standard architecture

3.3. From Components to Software Architecture 79

used for a public component model.

The software architecture for an individual software system is part of the normal devel-
opment cycle, preceded by requirement extraction and specification and followed by detail
design, implementation, validation and deployment.

The use of a software architecture as a product-line architecture is, in the opinion of
many authors, the most promising technique for achieving increased productivity, time-to-
market and software quality. A software product line (SPL) is a set of software-intensive
systems that share a common, managed set of features satisfying the specific needs of a
particular market segment or mission and that are developed from a common set of core
assets in a prescribed way.

The third type of software architectural use is the standardization for a particular
domain. It may be used by component developers and users as the means to agree on
functionality covered by components, provided and required interfaces and dependencies
between components. In | |, this type of architecture is referred to as a com-
ponent framework.

When using Software Architectures, one systematically targets to:

e reduce the development cost,

e improve the quality in terms of reliability, maintainability and resource efficiency,
e reduce time-to-market,

e reduce maintenance cost.

These goals become more specific when using particular paradigms or approaches. See for
example the benefits of using a Service-Oriented Architecture in Section 3.3.5.2.

3.3.4 Architecture Description Languages (ADLs)

The ADLs represent one of the results of the research done in the field of Software Ar-
chitectures. Their objectives is to help application architects structure and compose their
software parts in order to obtain valid applications. An ADL is defined as a formal or
informal notation, either textual or graphical, making it possible to specify software archi-
tectures and that are accompanied with specific tools | |- The result of using
an ADL is mostly an abstract view over an application in terms of components, connectors
and configurations, rather than a concrete view over the implementation details.

In this context, a component is a process or a data storage unit. A connector
put components in relation and, in some ADLs, models their interaction. A configura-
tion is a graph of components and connectors, defining the architecture structure. In
order to exemplify ADLs, in the sequel, we present the Darwin | | ADL and
Tracta | | its extension allowing to add a behavioral description to each
Darwin component.

15. http://www.sei.cmu.edu/productlines/

80 Component Models and Languages

3.3.4.1 Darwin

Darwin was developed by the Distributed Software Engineering Group of the London
Imperial College. It proposes an ADL for the construction of distributed applications. Its
particularity is that it allows the specification of the dynamics of an application in terms
of component creation all along its lifetime.

Darwin components.

A Darwin component is defined by an interface describing the required and provided
services. The semantics associated to a component is the process, each component corre-
sponds to a created process.

Darwin connectors.

The interaction between components is realized through provided and required services.
The concept of connector is not explicitly present in Darwin. Instead, each interaction is
represented by the binding of a required services in one component to a provided service
in another component. Services have no functional connotation, they only designate the
type of the communication object used to and authorized to use a component function.
This type of objects are defined by the Darwin’s distributed execution environment called
Regis. Among these type of objects, the port is the most used.

Darwin configuration.
In order to offer the possibility of a hierarchical architecture, Darwin allows the descrip-
tion of two types of components:

e the primitive components are entities of encapsulation of functions and data. They
are defined by their name and interface declaring the required and provided services
of the component business logic.

e the composite component is defined as a configuration unit based on primitive and
composite components. It describes the components interactions. Thus, the final
structure of an application is represented by a composite component.

By default, before the actual binding of services, Darwin carries out a simple equivalence
test concerning the name and types of the services. If the required service is compatible
with the provided one, the configuration is considered valid.

Regis: an execution platform for Darwin.

Regis provides a C+—+ coded execution environment to construct and execute distributed
programs specified by Darwin. The primitive components are C+-+ classes inheriting from
the Process class. For the communication between components, Regis provides the pro-
grammers with several types of communication objects like ports or message multicasting.

3.3. From Components to Software Architecture 81

Component deployment.

Darwin provides a deployment model related to its execution platform Regis. Each
component is associated to a deployment site of the Darwin environment. The component
creation site is determined in an absolute manner. This is realized at instantiation time by
specifying a number designating the creation site. This number corresponds to an available
site in the execution environment.

Expression of the dynamics.

An important characteristics of Darwin is the fact that it can describe the dynamic
creation of components. This represents a notable advancement because the architecture
is no longer considered as a collection of components and connections specified once for all
at the conceptual phase. The mechanisms used in Darwin to describe dynamic structures
are:

e [azy instantiation is a pre-declaration of instances being effectively created not in the
phase of initialisation but when the first call to the instance is issued. Lazy instan-
tiation allows the description of the potential configuration at execution time by the
specification of dynamical structures at conception time. Unfortunately, this mech-
anism allows the instantiation of a unique component by clause of interconnection.

e dynamic instantiation allows the description of a component instance creation by
providing it with initialization parameters. In a general manner, the dynamical
creation of a component is realized inside a composite component. The access to this
dynamically created component is managed by the composite component. All these
declarations are realized by using the configuration language provided by Darwin.

Behavioral descriptions.

Tracta | |, an extension of Darwin, makes it possible to add a behav-
ioral description to each component. In Tracta, an architect adds a behavioral description
to each primitive component. In addition, a set of properties that the system has to satisfy
is also provided. Darwin uses FSP 10 | |, a high level language derived from CSP,
to describe the components behavior. FSP provides a concise syntax for the definition of
LTSs modeling the behavior of a primitive component. The behavior of the composite
components is obtained from the descriptions of the primitive ones.

The association of the definition of services, of the dynamics of the architecture and
of the components behavior makes of Darwin an important approach for the specification
and analysis of distributed applications.

The behavioral descriptions allows for the detection of deadlocks and the verification
of safety and liveness properties. From a liveness perspective, Darwin defines the notion of
the progression property. In the case of a process scheduling priority policy, this property
guarantees that for an infinite executions of a process we can be sure that at least one
action defined by the property will be executed an infinite time. This type of property

16. Finite State Processes

82 Component Models and Languages

makes it possible to prove, in some cases, that some actions would never have the chance
to be executed.

Darwin evaluation.

Darwin proposes a clear and functional view of a software architecture. The major bene-
fit of Darwin over the existing ADLs is the consideration of dynamic software architectures.
By using Tracta, Darwin allows the modeling of system behavior by using the process alge-
bra language FSP. Darwin, also allows the description of interfaces of level three according
to the taxonomy proposed by Beugnard et al. | |

Among the inconveniences of Darwin, the fact that a component can be associated
only to a process semantics can be seen as a major drawback as a component cannot
express another element like a file of the shared memory, for example. The environment
utilization code is not transparent for the programmer. There is a unique implementation
of Darwin, the application developer cannot make the choice of the execution platform and
the explicit use of ports is required to perform communication. Finally, the description of
the application dynamics remains limited. For example, it is not possible to dynamically
destroy components or to allow a primitive component to communicate with dynamically
created ones.

3.3.4.2 ADLs Evaluation

An ADL provides means to model and analyse both the static and dynamic properties
of a Software Architecture. Medvidovic and Taylor | | give an extensive
classification and comparison framework of existing ADLs. Examples include Wright and
Rapide ADLs.

The main advantage of Wright is to provide a formal language (CSP) to specify the
components and connectors. Thus, the architecture can be analyzed. Wright is one of
the first ADLs providing an interface description according to the third level proposed
by the taxonomy of Beugnard et al. | |. Wright is the result of research in
the field of formal specifications. Important efforts were realized in order to allow the
analysis of assemblies, but the problem of code generation was not sufficiently taken into
consideration.

Unlike Wright, Rapide is a concurrent object language used to design distributed ap-
plication architectures. An architecture is defined in Rapide as a set of modules, module
interfaces, connection rules and many formal constraints. An interface defines provided
and required services but also reactive executable rules. A reactive executable rule is de-
fined like an event schema executed in an event model called poset | |. A
connector defines data synchronous or asynchronous communication between interfaces. A
formal constraint specifies restrictions on the interfaces and connectors, restrictions related
to the communication order and data.

While ADLs like Darwin, Wright and Rapide are used in the analysis and design steps
of the classical development phases, the implementation step, is at best, only supported
by code generation facilities. The result is that the implementation tends to loose its con-
nection to the intended architectural structure during the maintenance steps. The same

3.3. From Components to Software Architecture 83

result for a generated code when not strictly adhering to the model-driven discipline. The
result is "architectural erosion" | | mainly represented by the fact that im-
plementation languages cannot guarantee that the implementation code obey architectural
constraints. In order to deal with this problem, a new class of languages, namely Com-
ponent Programming Languages (also referred as Architectual Programming Languages)
tent to counter architectural erosion by the inclusion of architectural notions into general-
purpose programming languages.

3.3.5 Service-Oriented Architectures (SOA)

Service-Oriented Architecture (SOA) is a relatively new approach to software architecture
where functionality is grouped around business processes and packaged as interoperable
services. SOA is above all a design and a way of thinking about building systems using
heterogeneous network addressable software components and is often seen as an evolution
of distributed computing based on the request /reply design paradigm for synchronous and
asynchronous applications. A SOA architecture is made up of components (implement-
ing services) and interconnections that stress interoperability and location transparency
through the use of a service layer.

A service is a behavior that is provided by a component for use by any other component-
based only on the interface contract. The key to services is their loosely coupled nature:
the interface is independent of implementation and application developers or system inte-
grators can build applications by composing services without even knowing the underlying
implementation of the services. The contractualization is a critical activity in a SOA and
the difference between a public interface and a published interface comes into play. While a
public interface is an interface that can be used by components within a system, a published
interface is one that is exposed to the network.

The services in the business logic layer have the ability to be invoked over a network.
The technologies used to invoke the interface of the services stress interoperability. The
services in the service layer also stress location transparency so they may be discovered
and used dynamically by using a third party mechanism. Consequently, hard coding of a
machine location is not consistent with a service-oriented approach.

As a summary, specific architectural principles for design and service definition focus
on specific themes that influence the intrinsic behavior of a system and the style of its
design. These principles include:

e service encapsulation - many webservices are consolidated to be used under the SOA
architecture. Often such services have not been planned to be under SOA.

e service loose coupling - services maintain a relationship that minimizes dependencies
and only requires that they maintain an awareness of each other.

e service contract - services adhere to a communications agreement, as defined collec-
tively by one or more service description documents.

e service abstraction - beyond what is described in the service contract, services hide
logic from the outside world.

84 Component Models and Languages

e service reusability - logic is divided into services with the intention of promoting
reuse.

e service composability - collections of services can be coordinated and assembled to
form composite services.

e service autonomy - services have control over the logic they encapsulate.

e service optimization - all else equal, high-quality services are generally considered
preferable to low-quality ones.

e service discoverability - services are designed to be outwardly descriptive so that they
can be found and assessed via available discovery mechanisms.

3.3.5.1 SOA implementation

A SOA is commonly built using Web services '” standards that have gained broad industry
acceptance. These standards (also referred to as Web Service specifications) also provide
greater interoperability and some protection from lock-in to proprietary vendor software.
One can, however, implement SOA using any service-based technology, such as Jini'®
CORBA, DCOM, WCF ¥ or REST#" | |

High-level languages such as BPEL 2! and specifications such as WS-CDL ?? and WS-
Coordination extend the service concept by providing a method for defining and supporting
orchestration of fine grained services into more coarse-grained business services, which in
turn can be incorporated into workflows and business processes implemented in composite
applications or portals.

An emerging approach in implementing SOA is Service Component Architecture
(SCA) ?3. The value proposition of SCA, is to offer the flexibility for true composite applica-
tions, flexibly incorporating reusable components in an SOA programming style. The over-
head of business logic programmer concerns regarding platforms, infrastructure, plumbing,
policies and protocols are removed, enabling a high degree of programmer productivity.

3.3.5.2 Benefits of using a SOA approach

While the SOA approach is fundamentally not new, it differs from existing distributed
technologies in that most vendors accept it and have an application or platform suite that
enables SOA. SOA, with a ubiquitous set of standards, brings better reusability of existing
assets or investments in the enterprise and allows for the creation of applications that can
be built on top of new and existing applications. SOA enables changes to applications while
keeping clients or service consumers isolated from evolutionary changes that happen in the

17. http://www.w3.org/2002/ws/

18. http://www.sun.com/software/jini/

19. Windows Communication Foundation

20. Representational State Transfer

21. Web Services Business Process Execution Language

22. Web Services Choreography Description Language

23. http://www.osoa.org/display/Main/Service+Component+Architecture+Home

3.3. From Components to Software Architecture 85

service implementation. SOA enables upgrading individual services or services consumers;
it is not necessary to completely rewrite an application or keep an existing system that no
longer addresses the new business requirements. Finally, SOA provides enterprises better
flexibility in building applications and business processes in an agile manner by leveraging
existing application infrastructure to compose new services. SOA benefits as seen from an
industrial point of view can be summarized in the followings:

e better return on investment - as the architecture design makes possible the creation
of services that can be reused in many contexts,

e code mobility - as the location transparency is a key property of the service layer,

e better parallelism in development and focused developer roles - as the architecture
design forces an application to have multiple layers and thus the need to clearly
specify roles in the development,

e better testing/fewer defects - as the modular implementation of the services allow
for extensive unit testing without involving the rest of the application,

e support for multiple client types - as the data format exchanged between the client
and the server is standard,

e more reuse and service assembly - as services are meant to be composed in many
different contexts,

e better maintainability and better scalability,

e higher availability - as due to the location transparency, multiple servers may have
multiple instances of a service running on them.

3.3.5.3 Challenges in using SOA approach

While the importance and benefits of using a SOA approach are obvious, some challenges
to pass from theory to practice also exist.

One obvious and common challenge faced is managing services descriptions (metadata).
SOA-based environments can include many services which exchange messages to perform
tasks. Depending on the design, a single application may generate an important number of
messages. Managing and providing information on how services interact is a complicated
task.

Another challenge is providing appropriate levels of security. Security models built into
an application may no longer be appropriate when the capabilities of the application are
exposed as services that can be used by other applications. That is, application-managed
security is not the right model for securing services. A number of new technologies and
standards are emerging to provide more appropriate models for security in SOA.

As SOA and the WS specifications are constantly being expanded, updated and refined,
there is a shortage of skilled people to work on SOA based systems, including the integration
of services and construction of services infrastructure.

86 Component Models and Languages

There is significant vendor hype concerning SOA that can create expectations that may
not be fulfilled. SOA does not automatically guarantee reduced I'T costs, improved systems
agility or faster time to market. Successful SOA implementations may realize some or all
of these benefits depending on the quality and relevance of the system architecture and
design.

3.3.6 Component-Oriented Programming (COP)

While architectural analysis in existing ADLs may reveal important architectural proper-
ties, these properties are not guaranteed to hold in the implementation. In order to enable
architectural reasoning about an implementation, the implementation must conform to its
architecture. Luckham and Vera | | identify three criteria for architectural
conformance:

e decomposition (each component in the architecture has a corresponding component
in the implementation),

e interface conformance (each implementation component must conform to its archi-
tectural interface)

o communication integrity (each implementation component may only communicate
directly with the components to which it is connected in the architecture)

In order to deal with these three requirements, a new approach was born, that is
programming with components. A new class of programming languages integrating ar-
chitectural abstractions into a general-purposed language like Java. Below we present
some of the actual so called component programming languages (others use the term of
architectural programming languages | |) used to support the paradigm of
Component-Oriented Programming.

3.3.6.1 ArchJava

ArchJava | , | is a small, backwards-compatible extension of Java
that integrates software architecture with Java implementation code. ArchJava supports a
flexible object-oriented programming style, allowing data sharing and supporting dynamic
architectures where components are created and connected at run time. An important
feature of ArchJava is a type system that guarantees communication integrity between an
architecture and its implementation, even in the presence of shared objects and runtime
architecture configuration | |-

Architectural reasoning is supported in ArchJava by using entities like components,
ports and connections inside Java code. A component is a special kind of object that
communicates with other components in a structured way. Components are instances of
component classes (described with a slightly modified Java language). Components can
only communicate with other components at their level in the architecture through explic-
itly declared ports. Regular method calls between components are not allowed. A port

3.3. From Components to Software Architecture 87

represents a logical communication channel between a component and one or more compo-
nents that it is connected to. Ports declare required and provided methods, thus conforming
to the connection-oriented programming style | |. Hierarchical composition is
expressed with composite components, which are made up of interconnected subcompo-
nents. Connections interconnect two or more ports by binding each required method to
a provided method with the same name and signature. Inheritance is also supported in
ArchJava, that is component classes can inherit from other component classes. One re-
striction is that component subclasses may not specify new required methods because this
could break subtype substitutability.

Dynamic component creation is supported by the new syntax used to create ordi-
nary objects. However, communication integrity places restrictions on the ways com-
ponent instances can be used | |. In addition to the new operator, connect
patterns/expressions are used to connect together component instances at runtime. Multi-
plicity is supported by declaring port interfaces. Port interfaces can be seen as port types
that are to be instantiated at run-time for each particular connection that will be realized
between component instances.

Component and connection instances are garbage collected as in Java, when they are no
longer reachable through direct references, running threads or architectural connections.

Limitations of the ArchJava language include the fact that it cannot be used in a dis-
tributed environment, as ArchJava programs must be run in the same JVM. ArchJava’s
definition of communication integrity supports reasoning about communication through
method calls between components; however components may still use shared data to com-
municate in ways that are not directly expressed in the architecture. Finally, ArchJava
lacks port protocols or other abstract means to specify component behavior. Thus, rea-
soning about communication integrity is limited to analysis on the interface level.

3.3.6.2 Java/A

Java/A | | extends Java by providing support for architectural concepts in-
troducing port, required and provided interfaces, simple and composite component and
assembly keywords. Unlike ArchJava, Java/A also includes port protocol descriptions as
UML state machines and allows a developer to deal with behavioral descriptions at port
level.

The component interfaces are bound to ports that regulate message exchange by proto-
cols and ports can be linked by connectors establishing a communication channel between
their owning components. Thus, safe communication can be specified and verified. The
number of component in an assembly (composite component), the number of ports a com-
ponent offers; the linkage of ports between components can vary dynamically, providing
basic means for dynamic reconfiguration. Java/A is supported by a compiler which trans-
lates Java/A programs to Java classes and includes the possibility to check port protocols
for compatibility (i.e. that two connected ports will only exchange messages the com-
munication partner understands, and the trace of messages will not lead to a deadlock).
This kind of verification is done at compile time by employing the HUGO model checker
encapsulated within the JAVA /A compiler.

88 Component Models and Languages

The Java/A language resides on an abstract component model formalized using in-
terface automate design (for behavior) and states-as-algebras approach (representing the
internals of components and assemblies).

3.3.6.3 Jiazzi

Jiazzi | | does not extend Java. Instead, it provides separate compilation
in order to obtain components out of Java code (externally linked code modules called
units). Jiazzi components (atoms or compounds) can be thought of as generalizations of
Java packages with added support for external linking and separate compilation. Jiazzi
components are practical because they are constructed out of standard Java source code.
Jiazzi requires neither extensions to the Java language nor special conventions for writing
Java source code that will go inside a component. Jiazzi components are expressive because
Jiazzi supports cyclic component linking and mixins, which are used together in an open
class pattern that enables the modular addition of new features to existing classes. Unlike
Java/A, Jiazzi does not provide any support for behavioral descriptions.

Thanks to Jiazzi architecture, units can act as effective "aspect" constructs with the
ability to separate crosscutting concern code in a non-invasive and safe way | |
Unit linking provides a convenient way for programmers to explicitly control the inclusion
and configuration of code that implements a concern, while separate compilation of units
enhances the independent development and deployment of the concern. The expressiveness
of concern separation is enhanced by units in two ways. First, classes can be made open
to the addition of new behavior, fields, and methods after they are initially defined, which
enables the direct modularization of concerns whose code crosscut object boundaries. Sec-
ond, the signatures of methods and classes can also be made open to refinement, which
permits more aggressive modularization by isolating the naming and calling requirements
of a concern implementation.

The actual implementation of Jiazzi consists of a stub generator and linker. Stubs
are generated for imported classes to ensure they are used correctly in classes that the
atom contains. The linker ensures that the atom classes are consistent with the atom unit
signature. For compounds, the linker ensure that the linking of units within the compound
is consistent with the compound unit signature. Thus, the linker performs type checking
ensuring that architectural constraints hold in implementation.

3.3.6.4 ComponentlJ

A similar approach to those of ArchJava and Java/A is proposed by ComponentJ | |
ComponentJ is a programming language for the Java platform which favors code reuse
by composition instead of implementation inheritance. Components and objects are the
main ingredients of a ComponentJ program. ComponentJ is based on a component core
calculus presented in | | that formally presents the basic concepts of the language
and develops a type system that ensures the safety of those constructions.

ComponentJ integrates well with Java. The compiler takes ComponentJ type declara-
tions and produces two kinds of gadgets that help integrate ComponentJ and Java code.

3.3. From Components to Software Architecture 89

From a component type one can produce skeleton classes that allow one to naively program
a component. On the other hand, one can produce stub classes that allow Java programs
to use ComponentJ components.

The compiler works by translating ComponentJ code to Java. ComponentJ source files
are type checked and transformed into a set of Java classes and interfaces. The resulting
code is then processed by a standard Java compiler to produce executable bytecode. The
packaging and deployment of compiled components is still undefined, hence a ComponentJ
component is here represented by a set of class files.

A different approach is based on incremental development of applications by using lay-
ers. JavaLayers | | extends Java by implementing a software component model
in which applications are constructed incrementally in layers. Applications are built by
composing components and are changed by specifying new compositions.

3.3.7 The Coordination Paradigm

A new class of models, formalisms and mechanisms has evolved for describing concurrent
and distributed computations based on the concept of "coordination" (a concept by no
means limited to computer science). Malone and Crowston | | characterize coor-
dination as an emerging research area with an interdisciplinary focus, playing a key issue
in many disciplines such as economics and operational research, organization theory and
biology. Consequently, there are many definitions of what coordination is. In the area of
programming languages, coordination is the process of building programs by gluing together
active pieces | |. From this perspective, a coordination model is the glue that
binds separate activities into an ensemble. Furthermore, a coordination language is the
linguistic embodiment of a coordination model, offering facilities for controlling synchro-
nization, communication, creation and termination of computational activities.

The coordination paradigm implies that programming a distributed or parallel sys-
tem can be seen as the combination of two distinct activities: the actual computing part
comprising a number of processes involved in manipulating data and a coordination part
responsible for the communication and cooperation between the processes.

Coordination is closely related to the concepts of multilinguality and heterogeneity.
Since the coordination component is separate from the computational one, the former
views the processes comprising the latter as blackboxes; hence, the actual programming
languages used to write computational code play no important role in setting up the coor-
dination apparatus. Furthermore, since the coordination component offers a homogeneous
way for interprocess communication and abstracts away the machine-dependent details,
coordination encourages the use of heterogeneous ensembles of architectures.

The purpose of a coordination model and associated language is to provide a means of
integrating a number of possibly heterogeneous components together, by interfacing with
each component in such a way that the collective set forms a single application that can
execute on and take advantage of parallel and distributed systems. Almost all of these
models share the same intent, to provide a framework which enhances modularity, reuse
of existing (sequential or parallel) components, portability and language interoperability.
However, they differ in how they precisely define the notion of coordination, what exactly

90 Component Models and Languages

is being coordinated, how coordination is achieved and what are the relevant metaphors
that must be used.

Papadopoulos and Arbab | | argue that the existing coordination mod-
els fall into two major categories, namely either data-driven or control-driven. In a data-
driven approach, the evolution of computation is driven by the types and properties of
data involved in the coordination activities. In control-driven (or process-oriented) mod-
els, changes in the coordination processes are triggered by events signifying (among other
things) changes in the states of their coordinated processes.

Configuration and architectural description are closely related to coordination. Config-
uration and architecture description languages share the same principles with coordination
languages. From a slightly liberal point of view, one can include configuration and ADLs
in the category of coordination languages.

In the sequel, we detail the characteristics of coordination models and languages, where
by coordination we also mean configuration and architectural description. For a more
exhaustive comparison of existing coordination models and languages, the technical rapport
presented by Papadopoulos and Arbab | | is considered as a reference.

3.3.7.1 Data-Driven Coordination

In a data-driven approach, the state of the computation at any moment in time is defined
in terms of both the values of the data being received or sent and the actual configuration
of the coordinated components. This means that, at least stylistically or linguistically,
there exists a mixture of coordination and computation code within a process definition.
The immediate consequence is that processes cannot be easily distinguished as either coor-
dination of computational processes. It is usually up to the programmer to design her/his
program in such a way that the coordination and the computational concerns are clearly
separated and are made the responsibility of different processes. However, most of the time
such a clear separation is not enforced at the syntactic level by the coordination model.

The data-driven category tends to be used mostly for parallelizing computational prob-
lems. Almost all data-driven coordination models have evolved around the notion of
shared dataspace | |, that is a common, content-addressable data structure. All
processes involved in some computation can communicate (by posting, broadcasting or
retrieving information) among themselves only indirectly via this medium. Historically,
Linda | , | is the first genuine member of the family of coordination
languages. It is based on the so-called generative communication paradigm: if two pro-
cesses wish to exchange some data, then the sender generates a new data object (referred
as a tuple) and places it in some shared dataspace (a tuple space) from which the receiver
can retrieve it. Linda is in fact not a fully-fledged coordination language but a set of
some simple coordination primitives that are completely independent of the host language.
Thus, it is possible to derive natural Linda variants of almost any programming language
(like C, Modula, Pascal, Ada, Prolog, Lisp, Eiffel or Java) or paradigm (imperative, logic,
functional, object-oriented).

Based on the concepts originally proposed by Linda, different coordination models and
languages have been designed | |.

3.4. Conclusions 91

3.3.7.2 Control-Driven Coordination

In a control-driven approach, the state of computation at any moment in time is defined
in terms of only the coordinated patterns that the processes involved in some computa-
tion adhere to. The actual values of the data being manipulated by the processes are
almost never involved. This means that the coordination component is almost completely
separated from the computational component. The control-driven category tends to be
used primarily for modelling systems. In such systems, processes communicate with their
environment by means of clearly defined interfaces, usually referred to as input or out-
put ports. Producer-consumer relationships are formed by means of setting up stream or
channel connections between output ports of producers and input ports of consumers. In
addition to using ports, processes often send out to their environment conirol messages or
events with the purpose of letting other interested processes know in which state they are
of informing of any state change.

Considering these properties of control-driven (or process-oriented) coordination mod-
els, it is easy to observe that some of the ADLs fall into this category. For example,
Darwin/Regis | | and Rapide| | are considered to be evolutions of the
Conic | | model. Conic is a programming language which is a variant of Pascal
enhanced with message-passing primitives, plus a configuration language featuring log-
ical nodes configured together by means of links established among their input/output
ports. PCL (Proteus Configuration Language) | | is a language designed
to model architectures of multiple versions of computer-based systems. Coordination is
viewed as a configuration where the unit of configuration is a family entity, representing
one or more versions of a logical component or system. Some other examples of control-
driven coordination approaches are: Durra | |, CSDL |) I,
POLYLITH | |, ConCoord | | and MANIFOLD | |-

3.4 Conclusions

In this chapter we have presented the current state-of-the-art related to components, com-
ponents models, software architectures, ADLs, Service-Oriented Architecture, component
programming languages (also referred as architectural programming languages), and coor-
dination. All of these are part of the ongoing work in CBSE to provide efficient methods,
languages and tools for the development of component-based applications.

Particular component characteristics are described by component models. A compo-
nent model describes what a component is (by defining its constituent parts) and says
how components can be eventually composed (by following some composition rules). It
also describes the component life cycle and the roles associated with different actors in the
development and exploitation of applications.

One important notion related to a component is its interface. The interface represents
the component boundary and offers a view on the component by abstracting from im-
plementation details. Collaborating entities, as software components are, often exchange
messages in order to coordinate actions or simply exchange data. Components communi-
cate through their interfaces and thus interfaces play an important role in the composition

92 Component Models and Languages

mechanism.

The Software architecture | , , | is the organization of a soft-
ware system as a collection of components, connections between the components, and
constraints on how the components interact. When using Software architectures, one
systematically targets to: reduce the development cost, improve the quality in terms of
reliability, maintainability and resource efficiency, reduce time-to-market and reduce main-
tenance costs.

The ADLs represent one of the results of the research done in the field of Software
architectures. Their objectives is to aid application architects structure and compose their
software parts in order to obtain valid applications. An ADL is defined as a formal or
informal notation, either textual or graphical, allowing to specify software architectures
and that are accompanied with specific tools | | The result of using an
ADL is mostly an abstract view over an application in terms of components, connectors
and configurations, rather than a concrete view over the implementation details.

Service-Oriented Architecture (SOA) is a relatively new approach to software architec-
ture where functionality is grouped around business processes and packaged as interopera-
ble services. SOA is above all a design and a way of thinking about building systems using
heterogeneous network addressable software components and is often seen as an evolution
of distributed computing based on the request /reply design paradigm for synchronous and
asynchronous applications. A SOA architecture is made up of components (implement-
ing services) and interconnections that stress interoperability and location transparency
through the service layer use.

While architectural analysis in existing ADLs may reveal important architectural prop-
erties, these properties are not guaranteed to hold in the implementation. In order to
enable architectural reasoning about an implementation, the implementation must con-
form to its architecture. Luckham and Vera | | identify three criteria for
architectural conformance: decomposition, interface conformance and communication in-
tegrity. In order to deal with these three requirements, a new approach was born, that
is programming with components. A new class of programming languages integrating
architectural abstractions into a general-purpose language like Java. Examples include
ArchJava | , |, Java/A | | and Jiazzi | |-

A new class of models, formalisms and mechanisms has evolved for describing con-
current and distributed computations based on the concept of coordination (a concept
by no means limited to computer science). The purpose of a coordination model and its
associated language is to provide a means of integrating a number of possibly heteroge-
neous components together, by interfacing with each component in such a way that the
collective set forms a single application that can execute on and take advantage of parallel
and distributed systems. Configuration and architectural description are closely related to
coordination. Configuration and architecture description languages share the same prin-
ciples with coordination languages. From a slightly liberal point of view, one can include
configuration and ADLs in the category of coordination languages.

In the next chapter we present formalisms usually employed in order to describe and
verify interaction (behavioral) protocols. We also present different component models and
languages currently integrating interaction protocols expressed by these formalisms.

Chapter 4

Interaction Protocols

In this chapter we start by presenting state-of-the-art formalisms usually
employed to describe and verify interaction protocols. Different categories of
formalisms like process algebras, behavioral types, finites state machines or tem-
poral logic are presented. Next, we discuss the integration of these formalisms
i existing component models and finally conclude.

Contents
4.1 Introduction e e 93
4.2 Formalismso 94
4.2.1 Process Algebra Lo 94
4.2.2 Behavioral Types Lo 96
4.2.3 Finite State Machines 98
424 Temporal Logics oo 100
4.2.5 Other Approaches 101
4.3 Component Models and Interaction Protocols 101
4.3.1 Automata-Based Models 101
4.3.2 Regular Types L 102
4.3.3 Coordination-Based Models 103
4.3.4 Other Approaches L. 104
4.4 ConcluSionS v v i e e e e e e e e e e 105

4.1 Introduction

Collaborating entities often exchange messages in order to coordinate actions or simply
exchange data. In order to successfully interact, entities (either objects, agents or com-
ponents) need to conform to a certain form of interaction contract. Interaction protocols,

94 Interaction Protocols

generally, describe the entity behavior in terms of allowed message sequences that must be
exchanged between entities in order to perform the system intended global behavior.

Multiple approaches coexist in order to formalize, analyze and implement interactions
between entities composing a larger system. In the following, we start by presenting
the mainstream research directions that focus on providing the software community with
methods and tools that allow the description, analyze and implementation of interaction
protocols. However, an in-depth, formal comparison of all the presented formalisms is out
of the scope of this thesis.

In the second part of this chapter, we present some component models integrating
different forms of interaction protocols.

4.2 Formalisms

4.2.1 Process Algebra

The term process algebra refers to a family of specification techniques particularly well
suited to describing systems of concurrent communicating components. Process alge-
bras describe the process interactions in terms of calculus (an ensemble of rules defined
around a small set of process expression construction operators). There are many pro-
cess algebra formalisms issued from the research field. The most important ones are
CCS | | and CSP | | as they stand at the base of other algebras like the PI-
calculus | , | and the mobile agents | |, integrating primitives
for the expression of distribution and mobility.

At first glance, CCS, CSP and LOTOS | |, a process algebra derived from
the first two ones, are very similar in their basic concepts. They all begin with the notions
of processes composed from atomic actions, have operational semantics and include many
operators in common. However, they also differ in their philosophy and area of application.
Some syntactically identical operators have very different semantics and some semantic
requirements are expressed differently from one language to another.

In the remaining of this section, we present some details on CSP, CCS and LOTOS
as they stand as the basis for other process algebra languages and as they have proven
valuable in the specification and design of distributed systems | |, for formal
reasoning | | and for rapid prototyping | |. We also give a short com-
parison in Section 4.2.1.4 at page 96.

4.2.1.1 CSP

CSP | | allows the description of an application like an ensemble of parallel pro-
cesses communicating through communication channels and using events. The communi-
cation among processes is unidirectional and synchronous. CSP proposes a set of operators
in order to define processes: the operators for deterministic and non deterministic choices
are an example. The composition operator allows the composition of independent (no
communication between processes) or dependent processes.

4.2. Formalisms 95

CSP is based on the mathematical theory of traces and failures. The process behavior
consists of all the traces that can be realized at execution. A trace is a finite sequence of
events realized up to a specific moment in time. A failure defines the set of events that
cannot be executed after a certain trace. The specificity of CSP is that it distinguishes
between events representing the sending and receiving of messages.

CSP is a very expressive language allowing, among others, the modeling of operation
systems. Also, CSP provides interesting abstractions for the description of communicating
processes behavior but they lack in abstractions allowing the definition of data structures.

4.2.1.2 CCS

CCS | | was developed in order to model concurrent processes communicating
through signals. A process is defined like an ensemble of agents interacting through two
unique actions: the sending and receiving of signals through defined ports. An agent
is constructed from operators like the prefix, the choice, the composition and the rep-
etition/recursion. The choice operator, for example, allows the environment to choose
between different action alternatives provided by an agent. The Agent composition allows
two processes to communicate.

All the actions an agent can realize generate the so called derivation tree. The behavior
of an agent is defined like a property of its derivation tree, obtained from the application
of derivation rules defining the CCS semantics. The observation of processes is supported
by equivalence relations allowing the comparison of processes behavior. Among the equiv-
alence relations there are the strong equivalence and the weak equivalence (also called
bissimulations).

CCS is a general-purpose language providing abstractions that allow the definition
of interaction protocols between processes. Meanwhile, the absence of support for the
definition of data structures and the low-level encapsulation prevent the direct application
of this formalism to a component model.

4.2.1.3 LOTOS

LOTOS | | consists of an algebra specification language for defining data and
a language of communicating processes developed for the formal description of the OSI!
architecture. While inheriting its main characteristics from CCS and CSP, its semantics
is very close to that of CCS. In LOTOS, an application is viewed as a set of processes
interacting and exchanging data among themselves and their environment. Tools like
CADP? | | can be used to analyze and execute architectures defined in LO-
TOS.

Like CSP and CCS, LOTOS is a general-purpose language offering abstractions that
are too low-level to be used in a component model. Some work using LOTOS in order to
define an architecture description language is presented in | |.

1. Open Systems Interconnect
2. Caesar/Aldebaran Distribution Package

96 Interaction Protocols

4.2.1.4 Process Algebra Evaluation

The process algebras CSP, CCS and LOTOS are all very similar in their basic concepts.
Each formalism is described in terms of a set of operators over the same basic domain:
processes and actions. However, they differ in their philosophy and area of application.

With regards to syntax and semantics of operators, it can be seen that CSP and LOTOS
are quite similar and useful as practical specification languages, while CCS is more suited
to small theoretical investigations. Indeed, CCS was defined with the intention to have
a minimal set of operators which allow the semantics of the language to be more easily
explored. On the other hand, CSP and LOTOS in particular were designed for large
communication systems and therefore have a lot of operators which make it easy to build
a large specification out of smaller parts.

The three formalisms, although based on a common semantic model (CSP can also be
defined in terms of labeled transition systems (LTS)), have slight differences in the way in
which that model is interpreted. While, for example, communication in CSP and LOTOS
is based on multi-way synchronization, CCS restricts communication to two parties.

Another difference is the use of distinguished actions. CSP has one distinguished action
which signifies successful termination. Although the hiding operator in CCS, as in LOTOS,
produces internal, invisible, actions, CSP has no special notation for this. CCS, on the
other hand, relies quite heavily on the internal action for the result of communication, and
for modeling nondeterminism.

Finally, when considering implementation of processes, CSP is closely related to the
language Occam ®, CCS is incorporated in the language LCS [|, and tools
exist which translate LOTOS into C.

4.2.2 Behavioral Types

Behavior models are precise, abstract descriptions of the intended behavior of a system.
Behavior models have solid mathematical foundations that can be used to support rigorous
analysis and mathematical verification of properties. Effective techniques and tools have
been developed for this purpose and have shown that behavior modeling and analysis are
successful in uncovering the subtle errors that can appear when designing concurrent and
distributed systems.

According to type theory, a type system defines how a programming language classifies
values and expressions into types, how it can manipulate those types and how they interact.
A type indicates a set of values that have the same sort of generic meaning or intended
purpose (although some types, such as abstract types and function types, might not be
represented as values in the running computer program). Type systems vary significantly
between languages with, perhaps, the most important variations being their compile-time
syntactic and run-time operational implementations.

Much of the work on developing type-theoretic foundations for programming languages
has its roots in typed lambda calculus. In such approaches, an instance of a type is viewed
as a record of functions together with a hidden representation type | |. We talk

3. http://www.wotug.org/occam/

4.2. Formalisms 97

about service types when referring to such an instance as it only describes the signatures
of the services an entity (either object or component) provides to or requires from its
communication partners.

More recent work (| , |) advocate for the extension of classical
service types in order to allow the description of dynamic properties of objects (and also
components) and their composition. This kind of types are called behavioral types as they
specify not only a set of messages to be exchanged between entities in order to communicate
but also constraints on acceptable sequences of these messages.

4.2.2.1 Regular types and non-regular types

O. Nierstratz proposes behavioral types for active objects | |. While service
types describe types of service execution request and reply, the author also defines reqular
types that express the abstract states in which services are available and when transitions
between abstract states may take place. Regular types are used to express non uniform
service availability especially in concurrent object-oriented languages, where active objects
may have their own thread of control and may delay the servicing of certain requests ac-
cording to synchronization constraints. We talk about an object protocol. Protocols are
described as regular processes, that is processes with a finite number of states or behav-
iors | , , , |. By process, it is meant an abstract
machine communicating by passing messages along named channels as in CCS.

Regular types may be refined according to a subtype relation called request substi-
tutability specifying that services may be refined as long as the original promises are still
upheld | |. That is, an object that conforms to the protocol of another object is
substitutable for the second object, in the sense that clients expecting that protocol to be
supported will receive no unpleasant surprises | |.

Puntigam | | proposes process types in order to deal with the behavioral
properties of objects. In his approach, process types specify sequences of acceptable mes-
sages. Even if the set of acceptable messages changes dynamically, a type checker can
statically ensure that only acceptable messages are exchanged. In | |, Putigam
proposes to increase the expressiveness of process types in order to specify non-regular
message sequences (i.e. non deterministic message sequences). This proposal assures that
type equivalence and subtyping are decidable, sound and complete even for non-regular
process types, provided that these relations conform to an extensibility criterion.

4.2.2.2 Similar approaches on behavioral types

The proposal of Najim and Nimour | | has a similar purpose as process types of
Putigam. A limitation of their proposal compared to that of Putigam, however, is that at
any time only one client is allowed to interact with a server through an interface specifying
acceptable message changes.

A similar definition of subtyping as that proposed by Nierstratz was given by Bowman et
al. | |- The proposal of Nielson and Nielson | | can deal with constraints
on message ordering. Their system cannot ensure that all messages are understood, but

98 Interaction Protocols

subtyping is supported.

Liskov et al. | | also propose a behavioral notion of subtyping. They define
a new notion of subtype relation based on the semantic properties of the subtype and
supertype. An object type determines both a set of legal values and an interface with
its environment (through calls on its methods). The interest is in preserving properties
about supertype values and methods when designing a subtype. They require that a
subtype preserve the behavior of the supertype methods and also all invariants and history
properties of its super type.

Largely outside the object-oriented or component-based design community, type sys-
tems that capture various dynamic properties of programs have been studied under various
settings, such as concurrent ML, actor-based languages, w-calculus, the CNAM formalism,
etc.

4.2.3 Finite State Machines

A finite state machine (FSM) is an abstract machine that is used to study and design
systems that recognize and identify patterns. The idea of a finite state machine comes
from an interdisciplinary branch of mathematics called formal language theory. Its roots
are also in computer science and linguistics.

Whenever pattern recognition is vital to scientific inquiry, finite state machines may
play an important role. Although a finite state machine cannot identify and recognize
all types of patterns, it is still very powerful. It is the simplest and most basic pattern-
recognizer and pattern-describer used in computer science.

State machine based formalisms are generally assumed to be complete descriptions of
system behavior at some level of abstraction. From a component modeling perspective,
the system behavior is what an external entity can observe about the system’s interaction
with its environment. This is usually the messages the system (black-box component)
exchanges with its environment in terms of emissions and receipts. A finite state machine
is describing the set of all possible traces a component can produce when interacting with
its partners.

4.2.3.1 LTS

Labelled Transition Systems (LTS) | , | represent one of the FSM based
formalisms employed in order to describe process behavior. An LTS consists of a finite set
of states and a corresponding set of transitions between states.

Formally, an LTS is a tuple (S, A, A) where S is a set (of states), A is a set (of labels)
and A C S x A x S is a ternary relation.
If p,g € Sand o € A, then (p, o, q) € A is written as p — q.
This represents the fact that there is a transition from state p to ¢ with label a. A label
can represent different things depending on the language of interest. Typical use of labels
include representing input, conditions that must be true to trigger the transition, or actions
performed during the transition.
LTS states generally represent "logical states" in the entity execution. Logical states

4.2. Formalisms 99

represent the set of values of all the variables of an entity at a specific moment.

The composition of two or more LTSs results in the synchronous product of the ensem-
ble. The synchronous product represents the global behavior of all the interacting entities.
Formally, the synchronous product of two LTSs (||) is defined as:

P||Q = (S1 x Sa2, A1 U A2, A) where A is the smallest relation satisfying the rules:

P2, p Q= Q' P P QS Q)
_P=P agA, Q@ g4 T
Pllo—= P|Q # 4o PIQ-SP|Qf # A PlQ— P'|| @

specifying that transitions (on different LTSs) with the same labels are executed syn-
chronously (in the same) from a compositional point of view where P = (S1, A1, A1) and
Q = (Sy, A2, Ag) are two distinct LTSs.

The Labelled Transition System Analyzer | | provides model checking and
animation functionality over behavior models written in the Finite State Processes (FSP)
process algebra | |.

Number of LTS extensions were proposed. For example, PLTSs (Partial LTSs)
[| extend LTSs by explicitly modeling in each state the set of actions that must
not occur, i.e. the set of proscribed actions at each state. Indeed, when considering pure
LTSs, there is no possibility to make a distinction between proscribed behavior and behav-
ior that has not yet been defined especially during the development phase. By explicitly
modeling the aspects of system behavior that are unknown, PLTS makes it possible to
generate meaningful feedback to users leading to more comprehensive descriptions of the
system behavior | |

4.2.3.2 I/0 Automata

[/O Automata provide an appropriate model for discrete event systems consisting of
concurrently-operating components. The input/output automaton model has been defined
in | | as a tool for modeling this kind of systems. Such systems are often character-
ized by the fact that they continuously receive input from and react to their environment.
One characteristic of this model is that I/O automata are unable to block inputs or elim-
inate undesirable inputs. In other words, if the environment behaves correctly, then the
automaton behaves correctly. Instead of allowing the automaton to block bad inputs, the
model permit the automaton to exhibit arbitrary behavior when they do (usually by error
messages). /O automata may be nondeterministic and this is an important characteristic
of the model descriptive power. One important notion in the I/O automata model is fair
executions. When I/0 automata are run, they generate executions (alternating sequences
of states and actions). Fair executions are those that permit each of the automaton prim-
itive components to have infinitely many chances to perform output or internal actions.

The 1/0 automata model is especially helpful when describing the interfaces between
system components and it provides a clean composition model for fair composition. Al-
though I/O automata can be used to model synchronous systems, they are best suited for
modeling systems in which the components operate asynchronously.

A number of extensions to this initial model exist. In | |, the authors propose
to augment the I/O automata model with a notion of time in order to reason about time

100 Interaction Protocols

in concurrent systems. The Interface Automata proposal in | |, starts from the
initial I/O automata model but takes a rather optimistic approach when considering com-
ponents in their environment. While the pessimistic approach considers two components
compatible if they can be used together in all systems, under the optimistic approach two
components are compatible if they can be used together in at least one design. By not
accepting certain inputs, the interface automaton expresses the assumption that the envi-
ronment never generates these inputs. In this way, environment assumptions can be used
to encode restrictions on the order of method calls, and on the types of return values and
exceptions.

4.2.3.3 STS - Symbolic Transition Systems

LTSs suffer from a very important drawback when it comes to model infinite systems, big
systems with data, complex conditions or input/output informations. In order to deal
with this issue, STSs extend LTSs by using symbolic transitions. Unlike LTSs, in STSs
transitions describe classes of possible operations to be effectively executed. One transition
defines an operation that can be parameterized with input and output parameters. In
addition a transition can be guarded, allowing the execution of the operation only if the
condition of the guard is true. Where an LTS explicitly describes all the traces that can be
realized at execution, an STS abstracts on the possible traces. Thus, an STS description
is much more readable, compact and expressive than a classical LTS description.

4.2.3.4 UML State Machine Diagrams

State machine diagrams, formerly named state charts were introduced by | |

and adopted in UML | |. A state machine diagram is a visual formalism used to
describe concurrent and reactive systems. This formalism is an extension of the approaches
based on state diagrams | |. A state machine is defined by a sequential automata

where the transitions are guarded by conditions that must be satisfied before the action
can be realized. It can be composed by using simple, parallel or hierarchical operators
to describe more complex systems. In order to interact with each other, state machine
automata must designate the messages that must be exchanged in order to modify their
behavior. Some work like that presented in | | propose techniques to translate
architecture description languages to state diagrams.

4.2.4 Temporal Logics

In logic, the term temporal logic is used to describe any system of rules and symbolism
for representing, and reasoning about, propositions qualified in terms of time. Initially
introduced by the the notable computer scientist Amir Pnueli | |, temporal logics
are used to specify and verify properties like safety, liveness, and fairness. Among the
numerous temporal logics, the most known are: Linear Temporal Logic (PLTL) | |
and the Arborescent Temporal Logic (CTL) | |. The biggest advantage of using
temporal logics is that they allow a concise definition of different properties.

4.3. Component Models and Interaction Protocols 101

The expression of interaction protocols is realized directly in temporal logic by using the
base operators defined by | |. Due to the fact that the verification and execution
of the specifications is very expensive both in terms of time and space, there are only a
small number of executable temporal logics.

4.2.5 Other Approaches

Some other research efforts were directed towards developing object-oriented languages
that natively integrate interaction protocols. One example of this kind of language is
PROCOL | |. PROCOL (for PROtocol-constrained Concurrent Object Lan-
guage) is an OOL with strong support for explicit parallelism. It also integrates explicit
protocols to control access by communication. The protocols specify the object interaction
but only from a server point of view, that is the provided interface services. Transitions in
protocols contain guards written in the C language. PROCOL also provides an execution
environment controlling the object interactions in order for the protocols to be correctly
executed. One important drawback of this language, however, is the lack of a formal model
allowing the analysis and verification of important properties.

The reactive programming allows the design of independent applications communicating
through synchronous or asynchronous events. A reactive application specifies the actions
to be realized in concordance with the already treated events traces. In other words, a
reactive application executes an interaction protocol. The development stages of a re-
active application include the specification, prototyping, simulation and validation. The
specification consists in defining the actions to be taken in function of external events.
Examples of reactive languages include Esterel | | and the proposal presented in
[|. However, reactive languages are generally too low level and are not providing
enough high-level abstractions in order to allow the design of software components.

4.3 Component Models and Interaction Protocols

In the previous section we have presented the formalisms used in order to describe inter-
action protocols. In this section we present different component models and languages
currently integrating interaction protocols described by either of the formalisms previously
presented.

4.3.1 Automata-Based Models

Darwin (see Section 3.3.4.1 at page 80) addresses the issue of component behavior. Behav-
ior is specified in terms of LTSs and properties verification is realized by using the Finite
State Process (FSP) algebra. Properties are separated into two classes: safety and liveness.
For a complete description of the behavioral model see Section 3.3.4.1 at page 81.

Barros et al. | | propose a Fractal (see Section 3.2.2.1 at page 67) extension in
order to introduce behavioral descriptions at interface level. Their model is an adaptation of
the symbolic transition graphs with assignment of | | into the synchronization networks
of | |: they extend the general notion of Labeled Transition Systems (LTS) and

102 Interaction Protocols

hierarchical networks of communication systems (synchronization networks) by adding
parameters to the communication events in the spirit of | |.

A parameterized LTS is a LTS with parameterized actions and with a set of parameters
(defining a family of similar LTSs) and variables attached to each state. Parameters and
variables types are simple. Additionally, the transitions can be guarded and have a resulting
expression which assigns the variables associated to the target state.

They describe both the functional behavior and the non-functional features (life-cycle
management) of components in terms of synchronized transition systems. They define a
notion of correct component composition and they show how to prove temporal properties
of a component system using compositional model-checking techniques. Reconfigurations
of a system, for example replacement of a sub-component, are expressed as transforma-
tions of its behavioral semantics, allowing to prove preservation of some properties, or the
validity of new properties after transformation. The concept of Correctness (with respect
to behavior) covers the absence of dead-locks and general safety and liveness properties.
After reconfiguration, the preservation of some properties valid before transformation and
the satisfaction of a new set of properties, corresponding to features added by the trans-
formation. These proofs take into account the intricate interplay between functional and
non-functional actions during transformation, like the management of the internal state of
components.

A Java tool has been developed that automatically and incrementally generates the
synchronization files for a component system from its description and the CADP* tool
is used to calculate the synchronous product, minimize the systems, and model-check the
formulas.

4.3.2 Regular Types

CwEP (acronym for Components with Explicit Protocol) | | is a component model
integrating explicit interaction protocols. CwEP also specifies a notion of identity at inter-
face level. A protocol defines the availability of provided services, specifies the component
interactions and supports point-to-point communication between components. The iden-
tity is used in order to identify component collaborators.

In addition to the enhanced interface definition, the CwEP model also defines a notion
of protocol refinement (based on the notion of substituability defined by Nierstratz, Section
4.2.2.1 at page 97) and coherence between interface description and implementation, and
some compositional operators for protocols and components.

One particularity of CwEP is that it is not hierarchical in the structural sense. A
CwEP application is viewed as a flat hierarchy of interacting components that ask for ser-
vice execution to their partners. The composition of two or more components is another
component simply regrouping the provided services of the constituting components. The
communication is of synchronous type and realized exclusively through component inter-
faces (one component actually implements only one interface). Protocol refinement defines
a notion of refinement of regular types and is specified in function of traces and failures
(see Section 4.2.2.1 at page 97). The notion of coherence specifies that a protocol and the

4. http://www.inrialpes.fr/vasy/cadp/

4.3. Component Models and Interaction Protocols 103

component implementation are coherent if the protocol specifies the requests realized by
the component and vice-versa. Its verification is realized by extracting a protocol starting
from the implementation and is compared to the protocol defined at interface level. If the
implementation protocol can be substituted to the interface protocol and vice-versa the
conclusion is that the implementation is coherent with the specification. At a more formal
level of explanation, the two protocols must have the same traces and failures in order to
be substitutable.

Yellin and Strom | | studied the integration of behavioral protocols with com-
ponent interfaces. They do not propose a component model but define a notion of interface
compatibility where the typed interfaces define the components. The protocols, similar to
the regular types of Nierstratz (see Section 4.2.2.1 at page 97), deterministically describe
the component interactions in terms of emissions and receipts. The interactions take place
under a synchronous semantics: the two protocols (one for each component) must be
in a state where one component sends a message and the other component receives the
same message. Notions of compatibility and substitutability are proposed. They both
consider the request/response directions of message passing. A theorem guarantees that
if a protocol p is compatible with another protocol r, then the protocol ¢, subtype of p
is also compatible with the protocol r. Based on these notions of substitutability, Yellin
and Strom propose a methodology allowing the generation of component adaptors. Thus,
incompatible components get the chance to be connected in an architecture.

Cyril Carrez | | defines a behavioral interface type language constituting a
behavioral contract. This language is inspired from the regular types by following a message
passing semantics. The notions of allowed and mandatory actions (inspired from the
deontic logic | |) are considered, imposing restrictions both on the component
itself and on its environment. The language specifies behavioral contracts used to realize
two types of verifications:

e that the component respects its interface contract: a component semantic and rules
on how to verify the coherence between component internal behavior and interface
behavior are defined

e at composition time, that interconnected interfaces are compatible

These kinds of verifications continue the trend started by |) | and guar-
antee that each sent message will be consumed and that there will be no deadlock between
components.

4.3.3 Coordination-Based Models

Arbab et al. | | propose a coordination (see Section 3.3.7 at page 89) model for
component-based software systems based on the notion of mobile channels. Channels allow
anonymous and point-to-point communication among components, while mobility allows
dynamic reconfiguration of channel connections in a system. From a software develop-
ment point of view, mobile channels provide a highly expressive data-flow architecture for
the construction of complex coordination schemes, independent of the computation parts

104 Interaction Protocols

of components. This enhances the reusability of systems: components developed for one
system can easily be reused in other systems with different coordination schemes. Coor-
dination schemes include messaging, events, shared data spaces, and channels | |
Channel employment also decouples the component updates from that of channels updates.

In the presented model, a channel is called mobile when the identities of its channel-
ends can be passed on through channels to other components in the system. Furthermore,
in distributed systems the ends of a mobile channel can physically move from one location
to another, where location is a logical address space where component execute. Because
the communication via channels is anonymous, when a channel-end moves, the component
at its other end is not affected.

The model can be implemented in any modern programming language. The authors
chose to describe the implementation guidelines in the Java programming language.

The coordination model based on mobile channels opens the possibility to apply more
powerful coordination paradigms. One example of paradigm is Pew | | supporting
composition of channels into complex connectors whose semantics are independent of the
components they connect to.

4.3.4 Other Approaches

SOFA component (see Section 3.2.2.2 at page 69) behavior is specified by a formalism
close to the regular expressions. In SOFA, each method call and return is realized as an
atomic event. Each event is represented by a particular symbol in order to distinguish
between emission and receipt of calls and returns. Sequences of symbols define traces and
the behavior of a SOFA component is defined as the set of all traces that can be produced.
The CDL compiler in SOFA is capable of verifying the coherence between a behavioral
specification and an implementation.

PACOSUITE | | is a visual environment used in component composi-

tion. PACOSUITE provides a language employed in order to document behavioral speci-
fications called scenarios. A scenario is specified as an message sequence graph (under the
form of a UML state diagram) and describes the possible interactions between a specific
component and other abstract entities (component descriptions).
A composition pattern defines the interactions among multiple abstract components and
due to its abstract nature it can be easily reused. While trying to compose components
in terms of behavior, adaptors are automatically proposed in order to deal with incompat-
ibilities. However, the PACOSUITE approach is reduced to a mechanism of component
documentation (compound components included) but no coherence between specification
and implementation is guaranteed.

MIDAS | | is a specification language for interaction protocols among concur-
rent components in a distributed environment. MIDAS descriptions are annotated with
formal specifications of protocols and verifications over these descriptions are realized in
the conceptual phase of the component development.

A component encapsulates a state and realizes a behavior defined by its roles. A role can
specify a set of provided or required services and consists of a name, a type and final inter-
action point. Interactions are described like finite state machines and are asynchronous.

4.4. Conclusions 105

They are also bidirectional, concerning only two interacting components. Like the other
approaches presented in this section, MIDAS does not provide tools in order to verify the
coherence between specification and implementation.

4.4 Conclusions

In order to successfully interact, components need to conform to a certain form of interac-
tion contract (interaction protocol based on the notion of behavior protocol). Interaction
protocols describe the entity behavior in terms of sequences of messages exchanged be-
tween a component and its environment. In this chapter we have presented the formalisms
usually employed to specify this kind of component interaction contracts and we illus-
trated the integration of some types of formalisms inside fully fledged component models
or less developed models but with great impact on component software development (see
for example the work of Yellin and Strom, Section 4.3.2 at page 103).

The main criticisms that can be made regarding some of these formalisms is the abstrac-
tion level, much too weaker to describe higher level entities like components. Some other
formalisms sacrifice expressiveness in order to increase decidability. While developing ob-
ject models, important notions like substitutability and refinement made their appearance,
easing the way to developing satisfactory component models integrating protocols.

In component models, interaction protocols usually specify component externally vis-
ible behavior. The specification is done at interface level and enhances purely structural
interfaces with behavioral descriptions. Practically, none of the presented component mod-
els consider the coherence between the specification and the implementation. Excepting for
CwEP (see Section 4.3.2 at page 102), the other component models have a rather evasive
approach when considering implementation issues. However, CwEP is only flat hierarchical
component model and structural hierarchical composition is not considered at all.

What misses is a component model integrating a form of interaction protocol that is
readable, expressive and easy-to-use by an average component designer. The implemen-
tation has to be part of the main concerns when developing the component model as the
coherence between specification and implementation is essential when applying the model
in a real software development. Generative techniques, either by using an MDA ° approach
or a rather empirical one, represent an appealing research field.

The second part of this thesis presents our proposal: a component model based on
Symbolic Transition Systems (STS) focusing on the description of interaction protocols
and on the component implementation by using a generative approach, guaranteeing thus
that the implementation is coherent with the specification.

5. Model Driven Architecture

106 Interaction Protocols

Part 111

Contribution in English

Chapter 5

A Component Model with Explicit
Interaction Protocols

In this chapter we present CwSTS (Components with STS), a simple, yet
general component model that we propose in order to explicitly integrate inter-
action protocols. Following a generative approach, we present the component
model details in an informal fashion. Components, interfaces, compatibility
and adaptation are all exemplified by a guideline example. Next, we present
a formalized view over CwSTS and we end up by CwSTS-IDL which is our
component model interface description language.

Contents
5.1 Imtroduction 110
5.1.1 Components, a Generative Approach 111
5.2 Informal Presentationo oL 112
521 Componentso e e e 114
5.2.2 Interfaces L 114
5.2.3 Composition o 0 e 116
524 Life Cycle e 121
5.3 Model Definition 122
5.3.1 Componentso 123
5.3.2 Interaction Protocols oL 123
5.3.3 Composition L o 125
5.3.4 Component Substitutability 126
5.4 CwSTS-Interface Description Language 128
5.4.1 Primitive Components 128
5.4.2 Composite Components 129

5.4.3 Symbolic Finite State Processes (SFSP) a process algebra for
STSs . . o o e e e 131

110 A Component Model with Explicit Interaction Protocols

5.5 Conclusion e e 133

5.1 Introduction

In this chapter we present a simple, yet general, component model we baptize CwSTS
(acronym for Components with Symbolic Transition Systems). Component models and
languages presented in the state of the art integrate too many concepts or are too specific.
In this context, it is very difficult to analyze the consequences of adding new concepts (like
interaction protocols) or functionalities in an already defined, fully-fledged component
model. We make the choice of proposing a new, general, model integrating some minimal
features. CwSTS proposes, in particular, interaction protocols both at the conceptual and
at the implementation level.

CwSTS is designed as a simple black-box component model (for example, the com-
munication among components is realized exclusively through their interfaces) integrating
only some features like a unique interface. This interface consists of two parts: a structural
interface and a behavioral interface. While the structural interface describes the signatures
of the services provided and required by the component, the behavioral interface (given
under the form of an interaction protocol) describes the rules that govern the behavior of
the component in terms of message emissions and receipts.

The interaction (communication) between components is point to point (binary) and
is realized at the level of individual services from the interface. This means that commu-
nication 1 to 1 (from a component defining a required service to a component defining a
corresponding provided service) and oriented (one way, no rendez-vous as in process al-
gebras |)). Our model considers only static architectures, that is,
once created, an architecture cannot be modified at execution time. Components cannot
be dynamically created and bound in the architecture, nor can they be eliminated.

We voluntarily restrict the set of features of the CwSTS model (only one interface,
communication is 1 to 1, only static architectures) in order to simplify the model and the
implementation and easily analyse the integration of interaction protocols at the level of
component interfaces. However, the model can be extended in order to provide communi-
cation multiplicity for example. Future work related to our component model is suggested
in Section 7.1 at page 163.

Our model is based on a hierarchical view of component composition. Two or many
components (also called primitive components) can be composed in a unique component
(also called composite component). Regarding its interfaces and behavior, the composite
adheres to the same rules of the component model as the initial primitive ones. Further
on, the newly obtained composite component, can be used, as if a primitive component,
in other compositions. This corresponds to the Composite design pattern | |
approach.

5.1. Introduction 111

instrumentation
instructions

g ' component
Code Generation | «—————————— [P

description
Process

description implementation

CwSTS Component

interface

Implementation

Interaction Protocol
Symbolic Transition System

Figure 5.1: A Generative Approach to Components.

5.1.1 Components, a Generative Approach

We follow a generative approach to constructing CwSTS components. One of the benefits
of such an approach is that it ensures that components implementations are consistent
with their interface descriptions. This concern is of major importance in CBSE as most
of the component state-of-the-art models and languages decouple component specifica-
tions activity from the implementation stage in a way that makes it hard to ensure that
implementation conforms to specification.

Beside the component model definition, our interest is in providing associated tools
allowing the maximum of code generation for the given CwSTS component descriptions.
More specifically, we base our proposal on a two-scenario approach when automatically
generating component implementation (see Figure 5.1). Naturally, the characteristics of
the CwSTS model we propose are adapted towards the realization of the two scenarios:

e Scenario A: We start from one or many component descriptions (i.e. both structural
and behavioral descriptions) and together with some instrumentation instructions we
pass them to a generation engine that creates one CwSTS valid implementation per

’ Scenario B
. component business code
+

112 A Component Model with Explicit Interaction Protocols

provided component description. This implementation comes either with a default
business implementation or an adaptor-oriented implementation. The default busi-
ness implementation contains no business code and it is suited to be extended in
order to address the specificities of the desired implementation.

Adaptor components (i.e. structural and behavioral adaptation) generated by fol-
lowing this scenario, are used in an architecture where existing components need
adaptation code in order to be successfully interconnected. The adaptor code needs
no further modification in order to be inserted in an architecture.

e Scenario B is different from Scenario A in that we start from existing code that
need to be instrumented in order to obtain a valid CwSTS component implementation
rather than starting from component definitions. In this scenario (as the business
code is provided independently of the generated code), the component description
must be consistent with the characteristics of the provided implementation code
(both structural and behavioral). We can ensure this constraint by applying analysis
techniques and tools (although we do not address this kind of concern in this thesis).
This scenario allows the creation of component implementations from already existing
business code and guarantees that the specification is consistent with the generated
component implementation code.

For the remaining of this chapter, we begin (Section 5.2) by giving an informal presen-
tation of our component model. We describe what a component is, how we compose it in
an architecture and what is its life cycle. Next, we continue with a more formal definition of
the component model (Section 5.3 at page 122). We present the use of Symbolic Transition
System protocols in our model in Section 5.3.2 at page 123. The composition properties
are discussed in Section 5.2.3 at page 116 (informal) and Section 5.3.3 at page 125 (formal)
and the associated component language (CwSTS-IDL) is presented in Section 5.4 at page
128. Finally, Section 5.5 at page 133 concludes on the proposed model.

5.2 Informal Presentation

CwSTS is a simple (yet general) black-box, hierarchical component model explicitly inte-
grating interaction protocols in the component interface descriptions. As a specificity of
our proposal and for simplicity reasons, a CwSTS component implements only one inter-
face. This interface consists of two parts: a structural interface and a behavioral interface.
While the structural interface describes the signatures of the services provided and required
by the component, the behavioral interface (given under the form of an interaction pro-
tocol) describes the rules that govern the behavior of the component in terms of message
emissions and receipts.

As in any other model where we explicitly consider both provided and required service
descriptions, a component plays a double role: the server and the client role. When treating
calls to its provided services, a component conforms to the role of a server. On the other
hand, in order to provide the specified service, a component may rely on other services

5.2. Informal Presentation 113

provided by other components. When calling services on other components, the component
plays the role of a client.

In order to clarify things, when we talk about a message emission event we consider
the encapsulation of the service call in a message that passes over the communication
medium from the caller to reach the corresponding component really implementing the
service. A message receipt event does not automatically mean message treatment (i.e.
service execution on the receiving component). It only means that the message (the call
of a service) was received (passed the component interface frontier) but not necessarily
executed. The actual execution of the message (service) is realized depending on the
implementation of the component.

In other words, when looking at a component interface, we make no assumption on
the actual execution of the messages passing through the interface level of a component.
The execution can be synchronous (the execution takes place as soon as the message was
received) or asynchronous (the execution takes place at another non specified time after
the message receipt). We consider CwSTS components as active entities (running one or
many execution threads, depending on implementation) and all we require in this model is
that the component supplies an implementation for each provided service in the interface
and that at execution time, the business logic encapsulated in the component conforms to
the behavioral description given by the interaction protocol.

We consider a black-box, hierarchical model where components can communicate only
through their interface and where the composition of two components (also called primi-
tive components) results in a third component (also called composite component) that can
be later used in further compositions. This composition schema conforms to the Com-
posite design pattern | | but in addition to the pure structural properties of the
composition, our model also considers composition at the level of behavioral description
(interaction protocols). As a specificity of our model, the composite components contain
only architecture descriptions (no business code), the actual computation being provided
by the interaction of its subcomponents. A composite component also guarantees that its
behavior conforms to the synchronous product of the protocols of its subcomponents.

The interaction (communication) between components is point to point (binary) and
is realized at the level of individual services from the interface. This means communica-
tion is 1 to 1 (from a component defining a required service to a component defining a
corresponding provided service) and oriented (one way, no rendez-vous as in process al-
gebras |)). Our model considers only static architectures, that is,
once created, an architecture cannot be modified at execution time. Components cannot
be dynamically created and bounded in the architecture, nor they can be eliminated.

Another particularity of our approach is that we voluntarily restricted the set of features
of the CwSTS model (only one interface, communication is 1 to 1, only static architectures)
in order to simplify things and easily analyse the integration of interaction protocols at
the level of component interfaces. However, the model can be extended in order to provide
communication multiplicity for example. Future work related to our component model is
suggested in Section 7.1 at page 163.

We also propose a component language associated to our CwSTS model (see Section 5.4
at page 128). This language (CwSTS-IDL) is an Interface Description Language allowing

114 A Component Model with Explicit Interaction Protocols

Component Type
=
2
S
S »
5 .g . q a =~ Required
o= 3] /
: g £ &
Implementation g5 E, Service signatures
Q = =
[~ L)
] b i
g = ~<— Provided
=
P
=
=
»n

Figure 5.2: Graphical Component Syntax.

for the description of component interfaces (including a Behavioral IDL for the interaction
protocol descriptions). Composite component architectures are also described by using
this language and include the declaration of subcomponent type instances and connection
directives.

5.2.1 Components

A CwSTS component is a software unit implementing a unique interface. The interface is
composed of a set of service signatures representing the services the component provides
to or requires from the environment and of an interaction protocol description specifying
the rules ordering the message exchange between the component and its environment (the
graphical syntax of a CwSTS component is given in Figure. 5.2)

The interaction between two components is realized by sending a service execution
request message from the component requiring the service to the component actually pro-
viding (and implementing) the specified service. From an operational point of view, the
component requiring a service execution sends a message that will be received and even-
tually executed by the component providing the service.

In order to deal with the difference between a component type, a component imple-
mentation and a component instance, we will further talk about component types when
considering component definitions. The component implementation is given by the set of
binaries or sources realizing the interface specified in the component type. A component
instance is an instance of a component type used in a specific configuration, at runtime.

5.2.2 Interfaces

The interface of a CwSTS component type consists of two parts: a structural interface and
a behavioral interface.

5.2. Informal Presentation 115

The structural interface describes the signatures of services either provided or required
by the component. The structural interface corresponds to the first level of contracts in the
taxonomy of Beugnard et al. |. The behavioral interface is specified under the
form of an interaction protocol. The protocol plays an important role in the component
interaction as it, on the one hand, specifies if a request to its services can be accepted at
a certain moment or not, and, on the other hand, it also specifies the moments when the
component itself is susceptible to generate a service request to another component.

From an informal point of view a protocol can be defined as:

Definition 4 (Protocol) A component interaction protocol describes, at any moment in
the execution of a component instance, the availability of a service request event (client
role) or service receipt event (server role) depending on the actions performed before.

Protocols are often depicted by using finite state automata [|. A protocol
defines states and transitions. We use a FSM '-based approach in order to integrate pro-
tocols. In our model, a state in the protocol represents an abstract state in the component
instance execution. A transition represents an action executed by the component. Actions
can be of three types: message reception, message emission and internal action. Message
receipt/emission is in correspondence with the service request. The internal action is the
execution of an operation with no externally visible effect. Transitions can be guarded by
boolean expressions. This means that a specific transition (and its corresponding action)
cannot be realized while the corresponding guard is not true. Guard operations are re-
stricted to not introduce side effects like, for example, an operation execution in order to
change component state.

Protocols in CwSTS correspond to the third level in the taxonomy of Beugnard and
al | |. They are based on the Symbolic Transition System (STS) formalism.
Thus, interaction protocols in the CwSTS model consider parameterized actions and pa-
rameterized boolean operations guarding transitions.

From an operational point of view, the structural interface is a static interface as it
does not change during the time of the execution, while, from a liberal point of view, the
behavioral interface can be seen as a dynamic interface as it describes the services that are
available at specific moments in time in the execution of the component.

The interaction protocol depicted in Figure 5.3 describes the behavioral interface of a
component playing the role of a typical Client component registering to a messaging server
in order to receive particular message types. The structural interface of the Client com-
ponent includes the required services login, logout, subscribe and unsubscribe, each
of them with their corresponding formal parameters. The provided service messageEvent
is also part of the static interface.

The typical execution of this component is that it logs in to a messaging server and
subscribes to one topic (i.e. of interest to the component). After subscribing, the Client
component is waiting in order to receive messages of the specified topic from the server (the
messageEvent action). At any time after subscribing to a particular topic, the component
can unsubscribe to that topic in order to subscribe to another one or simply log out and
stop.

1. Finite State Machine

116 A Component Model with Explicit Interaction Protocols

'l ogout () ‘0_ 'l ogin()

lunsubscri be(Topi ¢ topic) I'subscri be(Topi ¢ topic)

[1 oggedl n()]

?messageEvent (Message nsg)

Figure 5.3: Message Client Protocol.

The protocol is composed of two abstract states 0 and 1. All the services defined in
the structural interface are represented as actions forcing the transition from one state of
the protocol to another one. The transition realizing the action is also guarded by the
evaluation to true of the internal boolean action loggedIn() assuring that this action (the
corresponding message emission) cannot occur while the guard action does not evaluate
to true. In this case, the Client component is not allowed to subscribe to a topic before
being logged in. As a particularity of our model, guards can be parameterized with values
of the actual parameters of the transition actions (as shown in Figure 5.7 at page 119).

5.2.3 Composition

Composition in CwSTS is hierarchical in the sense that it adheres to the composite design
pattern | |. When composing two or more components (also called primitive
components) we obtain a composite component that can be used in further compositions
as if it were a primitive one. Composite components do not contain any business logic, they
simply constitute an aggregate of primitive components that are actually implementing the
business logic dealing with input messages or generating output messages.

The composition is realized both at the structural and the behavioral interfaces levels.
At a structural level, CwSTS includes the binding, tmport and export composition schemas
described in Section 3.2.1.3 at page 64. The resulting static interface of the composite
depends on the schema used to compose the primitive components. The behavioral inter-
face of the composite is given by the synchronous product | | of the primitive
component interaction protocols.

Figure 5.4 depicts the composition of two components c1 and c2. From a structural
point of view, the resulting composite component only exports the same service a as the c1
component. The requested service b from c¢2 is bind to the corresponding service b from c1.
From a behavioral point of view, the interaction protocol of the Composite component is
the resulting synchronous product (see Figure 5.5) between the protocols of the c1 (where
the b action is possible only after the a action was realized) and ¢2 components where the
internal b action is hidden as it is not relevant, in terms of emission or reception, from the

5.2. Informal Presentation 117

Composite Type
c:C d:D
——— e e - - b
7a b
0 7
P .
7a tau

Figure 5.4: Composite Component Example.

exterior of the composite component.

As a practical example let us consider the composition of two components Server and
StatisticsReporter that we integrate in order to obtain a composite component actually
implementing the messaging server. Figure 5.6 depicts this composite component waiting
for topic subscriptions from clients and logging statistics about messages sent to those
clients. The protocol illustrated in this figure represents the synchronous product of the
two protocols of the Server and StatisticsReporter components (see Figure 5.7 and Figure
5.8 at page 119) but the internal actions are hidden as they are not relevant to the exterior
of the composite component.

Figure 5.5: The Synchronous Product.

118 A Component Model with Explicit Interaction Protocols

StatisticsEnabledServer

B server:Server reporter:StatisticsReporter [T
- -
S
—_
8 =
e £
= (=]
— ~ St
— = B D
[3 . ge s gs 8 =
g S statisticsReq —<—------------ —<—statisticsReq = S
= | £ - - &l | g
g ~ statisticsReport —>—------------ —>statisticsReport é [~
S W)
5 4 subscribe —<—— FIRE=
/5] [9 = 7]
3 —< . 7] E=]
3 unsubscribe b £ E
messageEvent —>— | e 2]
I L |
i
g d
b
A
o
:
—>— subscribe =~ [-rooooeee > - i
[
—>{unsubscribe ~ [TTTTT7o0d Procoee i
:
—<— messageEvent ~ r------- <--------d
?unsubscri be(Topic topic) ?subscri be(Topic topic)

[val i dTopi c(topic)]

! messageEvent (Message msg)

Figure 5.6: StatisticsEnabledServer Protocol Representing the Synchronous Product of the
Server and StatisticsReporter Protocols with Hidden Internal Actions.

5.2. Informal Presentation 119

?statisticsReq()

IstatisticsReport(Statistics stat)

?unsubscri be(Topi c topic) ?subscri be(Topi c topic)

[val i dTopi c(topic)]

?statisticsReq() | messageEvent (Message nsg)

IstatisticsReport(Statistics stat)

Figure 5.7: The Server Protocol.

?statisticsReport(Statistics stat) I'statisticsRequest ()

Figure 5.8: The StatisticsReporter Protocol.

120 A Component Model with Explicit Interaction Protocols

5.2.3.1 Compatibility

When composing primitive components in an architecture, the components interfaces com-
patibility is of major importance. From a structural point of view, the bind between two
services that are not compatible is not possible. From a behavioral point of view, the
protocols of the components involved in the composition need also to be compatible. If
this condition is not satisfied, the global behavior of the composite component is, in the
best case, not satisfying the safety properties (i.e. no deadlock) that are usually expected
in such a case.

From an informal point of view, two or more components are compatible in an archi-
tecture if:

1. the bind services between any two components are compatible (structural compati-
bility),

2. the interaction protocols of all the components involved in the composition are also
compatible (behavioral compatibility),

3. the architecture is valid.

In CwSTS, we consider that two services are compatible if they have the same name
and signature (i.e. formal parameter list). This might seem like a severe limitation as it
might be unacceptable not to be able to bind two services that are different only in their
name or the names of their parameters. For the sake of simplicity in CwSTS, we propose to
consider services structurally compatible if their name and signature match but we address
the problem of incompatibilities by employing adaptors (as explained in Section 5.2.3.2 at
page 121). This also solves the issue of component substitutability: when replacing a
component in an architecture with another one the architecture must remain compatible.
Adaptors are of big importance in this case of situations.

Protocol compatibility refers to the absence of any deadlock in the resulting syn-
chronous product of the involved protocols. A deadlock (the execution of the compos-
ite component would result in a deadlock) signifies that the subcomponents cannot be
successfully integrated in an architecture.

Valid architectures refer to the fact that, in an CwSTS architecture, not all component
services must be bound. The actual services that are required to be bound is determined
by the architecture itself. Some services could be connected in one architecture while they
are not in another completely different one. Environmental context abstraction is of major
importance when constructing components as it makes it possible that a component can
be assembled and deployed in many different architectures and environments.

Checking architecture validity consists in removing the states and transitions corre-
sponding to the services not connected in an architecture from the synchronous product
of the component protocols and test for deadlock. If a deadlock occurs, it means that
there is at least a service that must be connected in the given architecture. The states and
transitions corresponding to the services not connected are those that cannot be reached
in executing the synchronous product of the component protocols.

5.2. Informal Presentation 121

A valid architecture does not automatically mean a complete executable one. A com-
posite component that exports or imports services from or to its subcomponents is usually
not executable as its execution depends on the effective connection of these services in a
larger composite. We consider a complete architecture (and so it is executable) a valid
architecture where the largest composite component (actually representing the complete
architecture) does not import any services.

5.2.3.2 Adaptation

In case where two components are not compatible (both structural and behavioral) as is,
the CwSTS model proposes the use of adaptor entities (actually adaptor components) that
can be employed in order to adapt components interfaces. At the structural interface level,
an adaptor can act in the sense of changing services names, parameters order or parameters
instrumentation (combination of two parameters in a single one, etc.) thus implementing
the Adaptor design pattern | |. In this way, two services that are initially not
compatible can be finally connected by introducing a level of indirection (the adaptor
component itself). At the behavioral level, an adaptor component interaction protocol can
be used to prevent deadlock from the resulting synchronous product and, thus, enable the
interconnection of the given initial components.

Adaptor components are first class entities in CwSTS. Due to their function in an ar-
chitecture, their implementation code can be automatically generated from their structural
and behavioral interface description.

Let us reconsider our running example where a Client component needs to login to
a messaging Server component in order to subscribe a topic and receive messages. The
problem is that the Client component cannot directly connect all its services to those of
the Server or even StatisticsEnabledServer components. This is due to the fact that the
Server component does not require a login and logout behavior. In order to interconnect
the client and the server an adaptor component is used. Figure 5.9 depicts the Adaptor
component protocol and the complete architecture of our example is shown in Figure
5.10 where we indicate only the components involved in the architecture and the sense of
message passing.

In this specific example the adaptor entity intercepts only the interactions that can-
not be directly realized by the interconnected components. The adaptor component
could have also intercepted the subscribe and unsubscribe messages but this is not
necessary because these messages can be directly exchanged between the Client and
StatisticsEnabledServer components respectively and because the global order of mes-
sage exchange is not influenced by the fact that they are not intercepted by the Adaptor
component.

5.2.4 Life Cycle

The lifecycle of a CwSTS component consists of four phases:

e Creation. The component is defined by describing the interface (both structural and
behavioral parts) and providing the implementation of this interface. In this phase

122 A Component Model with Explicit Interaction Protocols

Plogout () < (0 Jg —>?login()

I nessageEvent (Message nsg) ?nmessageEvent (Message nsg)

Figure 5.9: Adaptor Component Protocol.

messageEvent
Adapter
login/logout
messageEvent StatisticsEnabledServer
Client Server
subscribe/unsubscribe

statisticsReq + + statisticsReport
Statistics
Reporter

Figure 5.10: Complete Architecture of the Case Study.

we talk about component types.

o Assembly. The components are composed in order to obtain composite components
and finally a complete architecture that can be deployed and then executed as is.
Component types are combined in order to obtain another component types.

e Deployment. Component types are instantiated (at this level we talk about compo-
nent instances).

e FExecution. Component instances are initialized and then executed. At runtime, from
an external point of view (reception/emission of messages), each component behaves
as described by the interaction protocol (its behavioral interface). At the architec-
ture level, the global execution of the system conforms to the resulting synchronous
product of all the component instances behavioral interfaces.

5.3 Model Definition

In this section we give a more formalized definition of the notions of component, interface,
interaction protocol and operational semantics.

5.3. Model Definition 123

5.3.1 Components

Definition 5 (Component Definition) A component ¢ is described as ¢ = (1€, Impl°),
where 1¢ = (i€, p°) is the interface of ¢ defined by a structural interface i¢ and a protocol
p°¢ and Impl® represents the implementation code realizing I€.

In this definition:

e (¢ is given as a set of service definitions (name and formal parameter list).
i = s~ @ sT where s~ is a required service and sT is a provided service.
If we define n¢ as the set of non connected services n® C ¢, then i“\n¢ is the com-
plementary of n in €,

e p¢ is given under the form of an STS defining an automaton were the alphabet

is constituted from the parameterized actions encoding either message receipt or
emission (see Section 5.3.2),

e I'mpl€ is either the source or the binaries of the code realizing the component interface
Ie.

5.3.2 Interaction Protocols

Symbolic Transition Systems (STS) | , | have initially been devel-
oped as a solution to the state and transition explosion problem in value-passing process
algebras using substitutions associated to states and symbolic values in transition. This
formalism extends the LTSs (Labeled Transition Systems) formalism with parameters and
explicit guards on transitions.

We choose to describe the interaction protocols in CwSTS by using a generalization
of the STS formalism. Our proposition associates a symbolic state and transition system
with a data type description given as a set of Java classes (the implementation of a CwSTS
component). This kind of association is not new. Several authors proposed to give the
data type description under the form of an algebraic specification | , |
or under the form of a model-oriented specification | |

In the following, we give the formal definitions of Parameterized Actions, STSs and
Composition and an introduction to the graphical language associated to the STSs.

5.3.2.1 Parameterized Actions

Our STS proposition considers parameterized actions. The two actions that are related to
transitions in the symbolic system are the actions representing the reception of a call to
a certain service in the interface or the actions representing a call to a specific service on
another component.

Each action is parameterized with a set of formal parameters (see for example the
Server component in Figure 5.7 at page 119 where the subscribe transition represents an
action with the Topic topic formal parameter). As in our model we forbid component
types in interface descriptions (in order to preserve the integrity property | |) we

124 A Component Model with Explicit Interaction Protocols

allow any type from the implementation target language (Java in our case) to be present
in the definition of the parameters.

Definition 6 (Parameterized actions) Paramelerized actions are ?s(x) encoding the
reception of a call to the service s (E) will be affected by the arguments of the call) and
!m(g) encoding a call to the service m of another component with the arguments €.

In Definition 6, Z and € represent the list of the formal parameters of the s and m
services, respectively. These formal parameters will be affected by the arguments of the
service call at execution.

We say that two actions are complementary if they are defined in different components
and have the same name and formal parameter lists. These actions are the operational
correspondent of the provided and required services defined in the static interface. Com-
plementary actions are intended to be considered as unitary at execution.

5.3.2.2 STS Definition

Definition 7 (STS) A Symbolic Transition System (STS) is a tuple
(S, A, A, s0) where:

e S is a finite set of states,
o A is the set of parameterized guarded actions (pga) where pga = (g(x),a(z)):

— g 1s the boolean parameterized action representing the transition guard, and

— a 1s o parameterized action.

e AC S xAXS, denotes a transition relation that maps from a state and an action
onto another state,

e sg € S is the initial state. In CwSTS we consider only one initial state representing
the fact that the execution already starts with that particular state.

Next we give the definition of a transition from a particular state in the STS to another
state (considered as the initial state of a subprotocol of the initial protocol).

Definition 8 (STS Transition) P lsls, P’ denotes the guarded transition from STS P

to STS P’ where:
P = (S,A,A,s), and
P = (S A A S, and
(g,a) € A and (s,(g,a), s') € A.

5.3. Model Definition 125

The transition from one state to another state can represent either a message emission,
a message receipt or an internal action. We already stated that CwSTS protocols do
not specify if the message receipt also means message execution. It only specifies that a
message was received. The actual component implementation can consider a synchronous
or asynchronous execution of the message that was received.

Another important remark is that guards block the receipt or emission of a message.
The complementary emission and receipt are realized in the same logical time so the guard
actually blocks the two complementary actions (emission and receipt) on the two collabo-
rating components.

5.3.3 Composition

Definition 9 (Component Composition) If c=({i¢, p°), Impl¢) and d=({i%, p?), Impl?)
and +. is the component composition operator then:
cted = ((i€+; 1%, p¢ +, p?), Impl® +| Impl®)).

In this definition:
e the +; operator denotes the composition of the static interfaces of ¢ and d,
e the +, operator denotes the composition of the protocols of ¢ and d,

e the +|| operator denotes the parallel execution of the implementations code it takes
as arguments.

5.3.3.1 Static interface composition

The result of the i¢+4;i? operation is the set representing all the services defined by the two
interfaces but without those services that are actually bind in the architecture. Implicitly,
two complementary (one required and the other provided) services with the same name
and signature are bind in the architecture. In order to simplify things in this definition, we
consider there are no two services (either provided or required) with the same name and
signature defined by different components and that could introduce confusion when using
this operator. In practice, this kind of situation is allowed.

With this restriction i€ +; i% = (i¢ U i%) - {Sm, Sn | sm € i and s, € i% and s,, has
the same name and signature as sy, Sy, and s, represent either a required service s~ or a
provided service sT and s,, and s, are connected in the architecture}.

Definition 9 considers the composition of only two components. Below we give the
definition for the composition of n static interfaces where each static interface can be
restricted (by using the \ operator) to the services that are actually connected in the
specific composition architecture.

Definition 10 (Static Interface Composition) The static interface composition oper-
ator is defined as:

+N_(™\8) =UN_, i™ - {s|s =5 ors=sT and s is bind in the architecture}.

126 A Component Model with Explicit Interaction Protocols

5.3.3.2 Behavioral interface composition

+, represents the composition of the interaction protocols of the components in the con-
figuration. The semantics of the composition of two STSs (Definition 11) is given by the
synchronous product (SP) of the automata where complementary actions (shared actions)
are synchronized in the sense that they are considered to be synchronously executed.

Definition 11 (STS Composition) For P = (Sy, A1, A1,51) and Q = (S2, Az, Ag, s2),
the composition of P and Q) is represented by the synchronous product of the two STSs.
P||@Q = (S1 X S2, A1 U Ag, A, (51, 82)) where A is the smallest relation satisfying the rules:

lgla , lgla -, lo1ler 5, Alg2laa -,
P P — P— P, Q=
[l ad Ay, — [l S a Ay, [gs]rQ ¢
PllQ— P'||Q PlQ—P||Q’ PlQ=— P'| Q'

where g3 is the logical conjunction between g1 and g2 and

the name(a1) = name(az) and signature(ay) = signature (az) and

a1, az denote complementary actions (when a; denotes a message receipt, az denote a
message emission and vice-versa,).

In the CwSTS model, complementary actions (shared actions to be synchronized) are
always in pair: message emission and message receipt. Consequently, the synchronous
product denotes that the message emission on one component takes place in the same
logical time as the message receipt (synchronous communication semantics). Note that in
the actual composite component interface, 7 transitions are not presented as they have
no relevance for the interaction of the composite component with its environment. Also,
as already specified, message receipt on one component does not automatically represent
message execution (execution of the corresponding operations on receiver side).

Definition 11 defines the SP of two protocols. However, due to our model specificity (1
to 1 service connection) the generalization to the general case (composition of n protocols)
is straightforward. Another consequence of the binary communication specificity is that
one action in an STS will be shared with at most one other complementary action in
another component at a specific type.

5.3.4 Component Substitutability

In this subsection we consider the conditions under which a component can be successfully
replaced by another component. The substitutability usually defines a refinement notion
on the types of entities we consider (functions, objects, components).

Substitutability was already addressed in all the area of mathematics and computer
science. A function with a parameter of type T (defined as fun £ (x : T) : Integer)
can be replaced by a function g (defined as fun g (x : S) : Integer)if T <S. In other
words, if g cares less about the type of its parameter, then it can replace £ anywhere, since
both return an Integer. We say that the type of g parameter is a generalization of the
type of £ parameter or that the type of £ parameter is a specialization of the type of g
parameter. So, in a language accepting function arguments, g < f and the type of the

5.3. Model Definition 127

fC T) Ry
IN VI
g T,) Ry

Figure 5.11: Function refinement type relationships.

parameter to f is said to be contravariant. While the type of the parameter of g is said to
be contravariant, the type of the return value is said to be covariant (as the return type of
g > the return type of f). Figure 5.11 depicts the case where a function g can successfully
replace a function £ because of the covariance and contravariance type relationships.

Objectual programming languages like Java consider the substitution of an object with
another one if there is a relation of subtyping (usually by inheritance) from the class of
the second one to the class of the first one. Design by Contract principles also play an
important role when taken into consideration. According to the aforementioned principles,
a subtype can only have weaker pre-conditions and stronger post-conditions than its base
class.

Component substitutability is more difficult to define as it must consider containing
both the required and provided services and its behavior (i.e. interaction protocol). In the
followings, we analyze the structural and behavioral substitutability in CwSTS component
model.

5.3.4.1 Structural substitutability

In CwSTS the structural interface is composed of the set of all provided and required
services. If we consider the set of signatures of all provided services as the input type of
a component and the set of signatures of all required services as the output type we can
make an analogy with the function refinement presented above.

The intuition we have in a case of a component refinement indicates that a component
can replace another component at the structural interface level if it provides at least what
the replaced component provided and requires at most what the replaced component re-
quired. By this we assure that a new component will provide what the first one provided
or plus and that it requires less or equal as the initial one. We are here in the classical
contravariant /covariant relationship between the types of the two components, considering
that we call a component input type the set of signatures of all its provided services and
the return type the set of signatures of all its required services.

5.3.4.2 Behavioral substitutability

Behavioral refinement implies that a refined component must behave as explained below.
If we consider a trace semantics for our STS based protocols, a component protocol must
accept at least the same traces (inputs and outputs) as the substituted component protocol.
In addition, the component protocol must refuse at most as much requests as the initial
component protocol. Nierstratz | | define this kind of substitutability notion

128 A Component Model with Explicit Interaction Protocols

in function of traces and failures. While traces define the set of executed actions, failures
define the requests that a component cannot accept after a specific trace was executed.

5.3.4.3 Practical component substitution

In a practical case we can see a component refinement following two different contexts. If
we want to substitute a component in isolation, the rules presented above must be applied.
If the substituted component is already in an architecture, adaptors must be created in
order to adapt the interface and the protocol of the newly created component to the rest of
the architecture. Adaptors are essential here as we imposed the strong restriction services
can not be interconnected while their name and signature are not the same. This limitation
can be relaxed in a future evolution of our model definition and implementation. For the
instant, adaptors are most likely to be created when replacing a component already present
in an architecture.

Lets reconsider our guideline example presented in Figure 5.10 at page 122. In this
case we were obliged to use an Adaptor component in order to connect the Client and
Server component as the client protocol was not compatible with the server protocol (see
Figure 5.3 at page 116 and Figure 5.7 at page 119 for the Client and Server protocols).

If we consider substituting the Client component with another client component that
do not require the login and logout behavior before actually subscribing to a specific topic,
the new client component will fit in the architecture without any problem and without the
use of an Adaptor component.

5.4 CwSTS-Interface Description Language

In this section we present CwSTS-IDL an interface definition language that we propose in
order to describe both primitive and composite CwSTS component interface (both struc-
tural and behavioral).

In the followings, we present conceptual details of CwSTS-IDL. Starting by an abstract
grammar presented in Figure 5.12, we discuss the main characteristics of this language.
We exemplify each important section, like component interface definition, composite ar-
chitecture and protocol specification, by presenting examples driven from our guideline
example. These examples are written in a concrete language that we actually use to de-
velop component-based architectures.

5.4.1 Primitive Components

Conforming to the rules specified by the abstract grammar presented in Figure 5.12, a
classical component definition contains the name of the component type and in its descrip-
tion two important parts: one defining the structural interface and the other one defining
the interaction protocol associated with the component. The structural interface is given
in terms of operation names and signatures, each operation represents a provided or a
required. The protocol description is given as a SFSP process definition (see Section 5.4.3
at page 131).

5.4. CwSTS-Interface Description Language 129

component_def ::= primitive_def | composite_def
primitive_def 1= component_type
primitive_strct_def
guards_def
primitive_protocol
primitive_struct_def ::=service_def+
service_def ::=service_type op_id formal_parameter_list? | op_id formal_parameter_list?
guards_def ::= op_id formal_parameter_list?
service_type ::= 'required’ | 'provided’
composite_def ::= component_type

subcomponent_decl+
composite_structural_def?
connection_def+

subcomponent_decl ::=component_type subcomponent_id
composite_struct_def ::= service_def+

connection_def ::=bind_exp | export_exp | import_exp

bind_exp ::= subcomponent_op_id 'to' subcomponent_op_id
export_exp ::= subcomponent_op_id 'as' op_id

import_exp ::=op_id 'to' subcomponent_op_id

subcomponent_op_id ::= subcomponent_id ' op_id

Figure 5.12: CwSTS Abstract EBNF Grammar.

Following the concrete language that we employ to describe components, the definition of
the Client component type in our guideline reservation system is presented in Figure 5.13.

5.4.1.1 Component Interface Definition

Structural interface is specified in the interface section of the component definition. Service
definitions contain the provided or required modifier in order to indicate that this service
is provided or required by the component. In addition the service name and signature is
specified. The signature contains no return type as our model only considers one direction
message transmission. The formal parameter list can omit parameter names as the only
important think is the parameter type.

5.4.1.2 Guard Definition

Guards, boolean operations guarding component transitions are defined in the guards sec-
tion of the primitive component definition. In order to define a guard only the name and
the formal parameter list is required to be specified. Guard definitions are to be used in
the protocol description of a component as shown in Figure 5.13.

5.4.2 Composite Components

A composite CwSTS component is given in terms of subcomponent instances having their
services either bound among themselves or exported/imported at the composite interface

130 A Component Model with Explicit Interaction Protocols

primitive component Client {
interface
provided messageEvent(Message msg);
required login();
required logout();
required subscribe(Topic topic);
required unsubscribe();

guards
loggedIn();

protocol
P=!login -> P | llogout[!loggedIn()] -> P | !subscribe[!loggedIn()] -> Q,
Q= ?messageEvent -> Q | lunsubscribe() -> P.

Figure 5.13: Client Component Definition.

level (see Figure 5.14). When describing a composite component, we start by declaring
subcomponent variables of an already defined component type definition. Individual oper-
ations of each declared subcomponent are connected in the architecture by following any
of the three composition schemas (i.e. bind, export and import) in the CwSTS model. Ad-
ditionally, the structural interface of the composite must also be defined when operations
need to be exported or imported. The interaction protocol of the composite (actually, the
synchronous product of all the subcomponent protocol) is not provided in the declaration
as it can be automatically computed by a tool in CwSTS-P.

5.4.2.1 Composite Subcomponents

Naturally, we follow an incremental process in the hierarchical component definitions. We
start by defining primitive components and then define incremental architectures based on
already existing definitions (either of primitive or of composite ones).

Subcomponents are defined inside the subcomponents section of a composite component
type. They are given under the form of a component type name followed by the subcom-
ponent identifier. Subcomponent identifiers are farther used in the interface, protocol and
connect sections of the composite definition.

5.4.2.2 Composite Interface Definition

The composite component interface is constituted of the services exported or imported by
its subcomponents. In Figure 5.14, section interface of the SystemReservation composite
component contains the code lines defining the export and import of specific subcomponent
services. Those services are automatically becoming the services required and provided
by the composite component. In case when services with different name or signature
are required to be specified by the composite component, a regular service definition, as
specified in Figure 5.13 (definition of a primitive component) is allowed. Notice that we

5.4. CwSTS-Interface Description Language 131

1 composite component StatisticsEnabledServer {

2 subcomponents

3 Server server;

4 StatisticsReporter reporter;

5

6 interface

7 export server.subscribe() as subscribe();

8 export server.unsubscribe() as unsubscribe();

9 import messageEvent() to server.messageEvent();
10

11 protocol

12

13 connect

14 server.statisticsReq() to reporter.statisticsReq();
15 reporter.statisticsReport() to server.statisticsReport();
16 }

Figure 5.14: StatisticsEnabled composite component definition.

can not directly export or import a service to/as another service without the same name
and signature. In order to cope with this situation an adaptor component must be used
as for the case of connecting incompatible subcomponents.

5.4.2.3 Subcomponents Interconnection

The actual architecture of interconnected subcomponents is specified in the connect section
of the composite component definition. As shown in Figure 5.14, the syntax specifies the
service of a component instance that is to be connected to the service of another component
instance.

5.4.3 Symbolic Finite State Processes (SFSP) a process algebra for STSs

In order to describe component protocols we developed a processes definition language
we baptize SFSP. Symbolic Finite State Processus is inspired from the FSP (Finite State
Processus) | | language but keeps only the transition, choice and recursion. In
addition, actions are parameterized with types parameters in SFSP. SFSP is a very intuitive
language and its semantics is easy to understand. Figure 5.15 depicts the abstract grammar
for SFSP. A concrete language is actually used to describe CwSTS protocols (see Annexes
for the concrete grammar of SFSP).

5.4.3.1 Primitive Component Protocol Definition

The primitive component protocol is defined in the protocol section of the component
definition (see Figure 5.13 at page 130). As a concrete example lets consider the protocol
definition of the Client component in the case study example. Figure 5.16 depicts the
protocol description. This textual description is identical to the graphical description
presented in Figure 5.3 at page 116 but allows for tool analysis and checking.

132 A Component Model with Explicit Interaction Protocols

specification ::= process_def+

process_def ::= process_id formal_param_list process_body
process_body ::= choice+

choice ::= action+ process_inst

process_inst 1= process_id actual_param_list | special_process
special_process ::=STOP

action ::=receive_act | send_act | internal_act
receive_act ::= action_id formal_param_list

send_act == action_id actual_param_list

internal_act == action_id actual_param_list
formal_param_list ::= param_type param_id | formal_param_list | €
actual_param_list ::= param_id | actual_param_list | £

Figure 5.15: SFSP Abstract Grammar.

P=!login -> P | logout[!loggedIn()] -> P | !subscribe[!loggedIn()] -> Q,
Q= ?messageEvent -> Q | lunsubscribe() -> P.

Figure 5.16: Client SFSP definition.

A protocol description always starts with the definition of the P process as the entry
point in the execution of the component protocol. The P protocol represents the totality
of the component protocol. Other processes described at this level (like @ process for
example) are viewed as subprotocols of the global protocol defined by P.

A process can contain choice (the | operator) and the process definition can be recursive
(as the definition of the P process).

A transition specification contains the identifier of the action to be taken (subscribe
for example), the provided or the required identifier (! or ?) and the guard identifier
(LoggedIn()).

5.4.3.2 Composite Component Protocol Definition

The composite component protocol description can be automatically generated as it rep-
resents the synchronous product of the subcomponent protocols (the parallel execution of
the corresponding ST'S protocols).

5.4.3.3 SFSP To STS Correspondence

In the followings we present some formal definitions showing the relationship between SFSP
and STS, the STOP processus, transition, choice, recursion, and finally the semantics of
SEFSP composition.

Definition 12 (SFSP to STSs correspondence) The correspondence is defined by the
function:

5.5. Conclusion 133

sts: Bxp — vy

where Ezp is the set of SFSP process expressions and v the set of STSs. The function
sts is defined inductively on the structure of the SFSP process expressions.

Definition 13 (STOP) the special SFSP process :
sts(STOP) = ({s}.{}.{},s)

Definition 14 (Transition —) If sts(E) = (S, A, A,q) then sts([gla — E) = (S U {p},
AU{(g,a)}, AU{(p,(g,a),q)}, p) where p & S,g represents a parameterized quard action
and a represents a parameterized action.

Definition 15 (Choice |) Let 1 <i <n, and sts(E;) = (S;, Ai, A, qi) then:

sts([gilar — Eil...|[gnlan — Eyn) =

(S U {p}7 A U {al'”an}v A U {(p7 (gla al)a Q1)(p7 (g’rM an)7Qn)}7p>;
where p € S;, S =U;S;, A=U;A;, A =UA;.

Definition 16 (Recursion) We represent the SFSP process defined by the recursive equa-
tion X = F as rec(X = E), where X is a variable in E. The process defined by the re-
cursive definition X = ([gla — X) is represented as rec(X = ([gla — X)). We use
X[X « rec(X = E)] to denote the SFSP expression that is obtained by substituting
rec(X = E) for X in E. Then, sts(rec(X = E)) is the smallest STS that satisfies the
following rule:

sts(E[XHTec(X:E)])%P

sts(rec(X=E)) e p

Intuitively, any action inferred by the expression E unwound once can also be inferred
by the process represented by the recursive definition. Mutually recursive equations can
be reduced to the simple form described above.

Definition 17 (SFSP Composition) sts(Q1||Q2) = sts(Q1) || sts(Q2).

5.5 Conclusion

Component models and languages presented in the state-of-the-art (see Chapter 3 at page
57) integrate too many concepts or are too specific. In this context it was very difficult to
analyze the consequences of adding new concepts like the interaction protocols and code
generation in a fully fledged component model.

CwSTS (acronym for Component with Symbolic Transition System) is a simple, yet
general component model integrating only the minimal features required in order to analyze

134 A Component Model with Explicit Interaction Protocols

the integration of interaction protocols at component interface level. CwSTS features black-
box components, communicating exclusively through one declared interface. The interface
consists of two parts: a structural interface and a behavioral interface. The structural
interface describes the required and provided component service signatures and corresponds
to the first level of contracts in the taxonomy of Beugnard and al | | (see
Section 3.2.1.2 at page 61). The behavioral interface describes the component interaction
protocol (the rules governing the component in term of message emission and receipt). It
corresponds to the third level of contracts in the aforementioned taxonomy.

Interaction protocols are expressed as Symbolic Transition Systems (STSs) where tran-
sitions are composed of actions to be executed at message receipt or actions resulting in
message emission and guards (boolean operations with parameters) that condition the tran-
sition from the initial state to its final state. STS based formalisms offer advantages over
the classical LTSs (Labelled Transition Systems). Namely, STSs cope better with state
explosion problem, are more expressive and are more likely to be adopted by ordinary
component developers.

Composition is hierarchical in the sense of GoF Design Pattern (a composite can be
further on composed with other components into a larger architecture) but in addition to
the classical structural composition our model also exhibits behavioral composition.

In order to describe components and their protocols we propose both a graphical and
a textual language. CwSTS-IDL is a concrete textual language employed to describe com-
ponent interfaces, architecture (component composition) and protocol. As part of CwSTS-
IDL, SFSP (Symbolic Finite State Processus) is a process description language inspired
from FSP (Finite State Processus) where we keep only the transition, choice and recursion.
SFSP is a very intuitive language and its semantics is easy to understand. In addition,
previous experience with FSP (a suit of tools available at http://www.doc.ic.ac.uk/ltsa/)
could be extended in order to allow the visualization and verification of behavioral STS
architectures.

CwSTS characteristics are cornered out to allow a generative approach when construct-
ing components. We target two utilization scenarios (see Section 5.1.1 at page 111) each
of them requiring automatic code generation starting from component type definitions.

We voluntarily restricted the set of features of the CwSTS model (only one interface,
communication is 1 to 1, only static architectures) in order to simplify things and eas-
ily analyse the integration of interaction protocols at the level of component interfaces.
However, the model can be extended in order to provide communication multiplicity for
example. Future work related to our component model is suggested in Section 7.1 at
page 163 and take into consideration the extension of CwSTS in order to include 1 to
many communication, multiple interfaces, dynamic configurations, etc.

The next chapter presents the prototype implementation of our model we baptize
CwSTS-P.

Chapter 6

CwSTS Implementation

In this chapter we present CwSTS-P, the prototype implementation of our
component model in the Java programming language. We give details on how
we achieve the implementation of primitive and composite components that con-
form to the model specification.

Contents
6.1 Component Implementation 135
6.1.1 Introduction L L 135
6.1.2 Java Packages and Component Entities 136
6.1.3 Primitive Component Implementation 137
6.1.4 Architectures Implementation 141
6.2 Behavioral Composition Implementation 146
6.2.1 Distributed Synchronization Mechanism 147
6.2.2 Distributed Synchronization Mechanism Integration in CwSTS-P 148
6.2.3 Distributed Synchronization Mechanism Evaluation 151
6.2.4 Centralized Synchronization Mechanism 152
6.2.5 Centralized Synchronization Mechanism Integration in CwSTS-P 153
6.2.6 Centralized Synchronization Mechanism Evaluation 155
6.3 Code Generation 155
6.4 Conclusion e 157

6.1 Component Implementation

6.1.1 Introduction

In this chapter we present CwSTS-P the prototype implementation of our component
model. We use the Java programming language to implement the components with all

136 CwSTS Implementation

their structural entities and the synchronization mechanism involved in the component
composition. We also provide tools to implement the component compatibility and substi-
tution and architecture completeness algorithms. Finally, component generator tools are
also proposed in order to automatically generate component code. Our generators address
only the code related to the component structure and interaction with its environment. The
component business code is not generated in our approach and remains up to the program-
mer to provide it by either of the two approaches indicated in Section 5.1.1 at page 111.
Adaptors, a special case of components, can be automatically and fully generated as their
business behavior is completely determined by the interaction context.

As specified in Chapter 5 at page 110, the CwSTS model defines encapsulated black-
box components communicating exclusively through declared interfaces. A component has
only one business interface (defining both provided and required service) and behaves as
defined by its declared interaction protocol. The interaction protocol defines the valid
sequences of messages exchange between the component and its environment.

Each primitive component also comes equipped with a mechanism for composition into
larger structures called architectures or composite components. A composite component
does not provide additional business logic code other than that contained in its subcom-
ponents. Composition is also hierarchical, in the sense that a composite components can
be further on composed (integrated) into larger architecture.

In the following subsections we present the details on the implementation of primitive
and composite CwSTS components in the Java programming language. Important details
include how the packaging of a CwSTS component is realized in Java and how the structural
and behavioral composition is achieved.

6.1.2 Java Packages and Component Entities

In CwSTS-P, each component entity is packaged as a classical Java package containing the
component implementation classes. Figure 6.1 presents the structure of this package where
constituent classes and interfaces are structured in sub-packages.

Interface |
fremn.CwSTS-P
r-emn.Lw <public>ComponentProvidedinterface
ComponentName | | <public>ComponentRequiredinterface

> <public>ComponentIDRequiredInterface
—Jinterface

— utilities Utilities

<public>ComponentFactory

ComponentName

<public>ComponentProtocolController
<protected>Component
<protected>ComponentExecutor

Figure 6.1: Component Package in Java.

The name of the package is the name of the component during its development and
packaging phases of its lifetime. The name conforms to a defined standard which is:

6.1. Component Implementation 137

fr.emn.CwSTS-P.ComponentName. The root of this package contains the classes (see
Section 6.1.3) that will be actually instantiated to obtain a runnable component entity.
The two subpackages Interface and Utilities contain the component declared interfaces and
a component factory class, respectively. While interfaces define the component provided
and required services, the factory class is used at instantiation time to obtain a new instance
of this component type.

Our component model defines encapsulated black-box components. This means that
the component internals are not visible and cannot be interacted with both before and
after the instantiation time. The component implementation code is not visible to parties
that are not given explicitly access and at execution time, the only possible interaction
with the component instance is through the explicitly defined interfaces. In order to cope
with these requirements, once created and tested, a component package is compressed as a
jar ! file. Further on, the only public entities in the component package are the component
interfaces, the protocol controller (which represents the component front end) and the
component specific factory class. The other classes inside the component are declared
as protected ensuring that, once the development phase is over, the component could be
accessed exclusively through the controller object (actually implementing all the component
declared interfaces). Details on component structure are given in the next subsections.

6.1.3 Primitive Component Implementation

In this section we present the standard structure of a component, the details of each entity
composing a component and the relationships (both structural and behavioral) between
them.

6.1.3.1 Component Structure

A primitive CwSTS-P component is constituted of three entity types: one or more business
logic implementation classes, a component executor class and a protocol controller class.
Figure 6.2 presents a partial view of the different entities interaction, that is, the functional
interaction view, where entities cooperate in order to provide the components implemented
functionality.

Business Logic Entity

The business logic entity represents the code actually realizing the component func-
tionality. As a consequence, it implements the declared component provided interface.
Figure 6.3 depicts a use case class diagram where a component C'Type entities constituents
implement different interfaces needed in order to form a valid CwSTS component. The class
fr.emn. CWSTS-P.CType.C represents the components business logic entity implementing
the components provided interface (fr.emn. CWSTS-P.CType.CProvidedInterface). Besides
the functional interface, this entity also implements a configuration interface (allowing to
configure it before execution) and a lifecycle interface (allowing to control the start and
stop events).

1. Java Archive

138 CwSTS Implementation

Primitive Component

Business | 1P

. L Executor
Logic [*

fr

®’ Protocol
» Controller

REy | P

I’ — Provided Interface
I® — Required Interface

I*E_ Required Enhanced Interface

Figure 6.2: Primitive Component Structure with a Partial View Over the Interactions.

&3 fr.emn.CwSTSPrototype.interfaces.ConfigurationInterface <>
&9 fr.emn.CWSTS-P.CT ype.Interface.CRequiredInterface

@ getlifeCyclelnterface(): LifeCycleInterface
@ getProvidedInterface(): TestProvidedInterface A
@ getRequiredInterface(): TestRequiredInterface
@ setDispatcher(dispatcher: Dispatcher): void

JAN JAN

T [C] fr.emn.CWSTS-P.CType.CAsynchronousExecutor

|G fr.emn.CWSTS-P.CType.C | |G fr.emn.CWSTS-P.CType.CProtocolController

\V4
(1) fr.emn.CwSTSPrototype.interfaces.LifeCycleInterface

A\VAVA

‘ 9 fr.emn.CWSTS-P.CT ype.Interface.CProvidedInterface

4...........

@ start(): boolean

@ stop(): boolean

Figure 6.3: Primitive Component Class Diagram.

6.1. Component Implementation 139

Component Executor Entity

The component executor entity acts as a proxy in behalf of the business logic entity. Its
main purpose is to intercept the threads calling the methods of the business logic entity
and to proceed with the call but in a different thread (see Figure 6.4). This is useful
to implement our model requirement that we assure messages receipt in a synchronous
manner and that we do no assumption on when/how these messages will be consumed
(corresponding methods on business logic entity actually executed).

Client ComponentController ComponentAsyncExecutor Component

1.[guard] call provided service
J 2.call provided service

3.start new thread

<

4.call method

]

o 5.call required service (T

L

7.enhanced call required service _* 6.call required service
<

u]

Figure 6.4: Primitive Component Internals.

A

Component Protocol Controller

The component protocol controller has as its main purpose the control of component
inbound and outbound calls and this according to the component declared protocol. The
protocol specifies the allowed sequence of service calling (either targeting or leaving the
component). The controller assures that call order will occur exactly as specified by the
protocol. Details on how the protocol is "executed" and "controlled" are given in Sec-
tion 6.2 at page 146 where we also explain how the behavioral synchronization (message
exchange synchronization) is achieved in our prototype implementation. In order to com-
ply with the composition mechanism, the controller implements the components provided
interface but also a slightly enhanced version of the required interface (see Section 6.1.4.1
at page 141, the dispatcher explanation).

6.1.3.2 Component Configuration, Instantiation and Execution

Figure 6.5 depicts the configuration view over the relationships between the different enti-
ties of a primitive component. Different phases are taken before the component is actually
starting execution (see sequence diagram in Figure 6.6). A new instance of the business
logic entity (Component), of the component executor (ComponentAsyncEzrec) and of the
controller entity (ComponentController) are created. Different settings are done at the

140 CwSTS Implementation

Primitive Component

Business
Logic

Executor

A 4

1€| Protocol
Controller

1C
I A A

ILC IC

I'“ - Life Cycle Interface

I° - Configuration Interface

Figure 6.5: Component Structure.

User ComponentFactory ComponentController Component ComponentAsyncExec

1.newComponent(id)

: 2.component = newInstancei()

A 4

3.config()

4.executor = newInstance()é |

A 4

5.setProvidedImplementor(cinmponent]

6.controller=newInstance() |

7.setProvidedImpIementor(e'kecutor)

J

A 4

8.setController(controller)

A

 return ComponentControllel

9.setDispatcher(dispatcher)

! 10.start() : | 1L.start()

Figure 6.6: Primitive Component Instance Creation.

6.1. Component Implementation 141

level of the three entities instances. Finally, the reference to the component controller is
returned to the client that can further on set the components environmental information
(the composite dispatcher as explained later) and then start the component execution (by
calling the start () method which is propagated to the business logic entity).

Once started, for each inbound service call, the component behaves as depicted in
Figure 6.4. The guard in line 1 of the sequence diagram states that the call is received
under some conditions (see explanations on implementing the distributed synchronization
in Section at page) at the level of the ComponentController entity. In case of a required
service call (issued by the component itself), the business logic entity’s call is just forwarded
by the component controller after enhancing it with some identification information in
order for the composite to reroute correctly this call towards the right subcomponent in
the architecture.

6.1.4 Architectures Implementation
6.1.4.1 Composite Component Structure

The structure of a composite component is depicted in Figure 6.7 at page 142. Unlike a
primitive component, a composite one does not contain a business logic entity. Instead,
the functionality of a composite component is given at execution time by the interaction of
the containing primitive components. One composite can contain one or more components
(either primitives, in the sense described in Section 6.1.3, or composite components, as the
composition is hierarchical) also designed as subcomponents. Besides the set of subcom-
ponents, a composite also contains a controller entity (similar to the one in the primitive
component structure) and a dispatcher entity. The dispatcher is implementing a call for-
ward strategy that realizes at run time the structural relationships between components.
In the following, we present the composite component entities in more details and how
they differ from the entities of a row primitive component.

Subcomponent

A composite component is composed of two or many subcomponents. Originally subcom-
ponents can be row primitive components or other composite components (as composition
is hierarchical). As shown in Figure 6.7 at page 142, subcomponents are not directly func-
tionally interconnected. Instead, they are all connected to the centralized dispatcher entity.
As already showed in Section 6.1.3 each row primitive component implements the specific
provided interface and a slightly enhanced required interface in order to correctly connect
to the composite dispatcher.

Dispatcher

The dispatcher is responsible for routing calls coming from subcomponents to their exact
destination subcomponents. In this purpose, the dispatcher integrates a routing table
implementing the structure of the composite component as defined in its specification.
In order to implement its purpose (that of routing calls between subcomponents) the
dispatcher needs to know the source of a service call. As depicted in Figure 6.7, the

142 CwSTS Implementation

Composite
Controller

I’ — Provided Interface

® - Required Interface
RE_ Required Enhanced Interface

Figure 6.7: Composite Functional Structure.

Composite
Controller

I'“ - Life Cycle Interface
I° - Configuration Interface

Figure 6.8: Composite Control Structure.

6.1. Component Implementation 143

dispatcher implements all the required interfaces of the composite subcomponents. As the
dispatcher needs to know the source of a call, these interfaces are all enhanced with an
single parameter which is the id of the subcomponent that issued the call.

Composite Controller

The composite controller represents, as in the case of a primitive component, the com-
posites front end. All calls issued or targeting the composite component pass through it.
In this purpose, the controller implements the composite provided and required interfaces.
But, unlike the primitive controller, no execution protocol checking is realized. In fact,
when composing compatible components in an architecture, the execution of all the com-
ponents realize the synchronous product of the set of all protocols in the architecture. The
control is needed only at row primitive component levels to ensure the synchronization is
correctly realized.

The package of the composite has the same structure as the primitive one. One ad-
ditional requirement is that the required packages containing the subcomponent classes
are in the classpath at runtime. If the application is to be deployed as a single unit, an
additional /lib directory entry can be specified in the composite package. This directory
contains the classes of all of the subcomponents of the architecture application.

6.1.4.2 Architecture Configuration, Instantiation and Execution

Figure 6.8 depicts the configuration view over the interaction of all the composite entities
and subcomponents. The phase of configuration is interlaced between the two actions of
component creation and component execution start showed in Figure 6.9. The user of a
composite component sets the data needed by the composite for execution. The composite
controller charges itself to propagate required data to subcomponents. Usually, the kind
of data to be set is the value of initialization parameters. Other data, like for example
the dispatcher reference is set into the subcomponents transparently for the user of the
composite component. Other data that do not depend on composite external information is
the structural links between subcomponents. Figure 6.9 shows the composite instantiation
sub-phases, where subcomponents are created (by the bias of specific component factories),
the dispatcher re-routing table is configured and set into subcomponents and where the
components are started.

Once configured and started, inbound and outbound composite calls are treated as in
the case study presented in Figure 6.10. Calls to the composite cut down to the composite
controller entity which forwards them to the dispatcher entity. Based on the identity of
the caller (either the subcomponents or the controller itself) and the re-routing table, the
dispatcher decides to which entity the call will be forwarded. Calls issued by the composite
component follow a similar path.

144 CwSTS Implementation

User CompositeFactory ClFactory C2Factory C3Factory Dispatcher

1.newComponent(id1)

2.c1=newComponent(id2)

3.c2=newComponent(id3) H R
4.c3=newComponent(id4)] | _

= L
5.dispatcher=createDispatcher() H R
6.setDispatcher(dispatcher) R VU
7.setDispatcher(dispatcher) U _

8.setDispatcher(dispatcher)

= >
9.setDispatcher(dispatcher) H

'_‘_T_I

10.configureDispatch(this,c1,c2,c3,corffiguration)

11.start() 12.c1.start()

'_‘_T_I

13.c2.start()

'—_T_I

14.c3.start()

Figure 6.9: Composite Instance Creation.

6.1. Component Implementation

145

2

c

User

r

i 1.call(a)

Composite Controller Dispatcher

Componentl

Component2

Component3

A 4

2.call(a, idComposite)

3.decide(a, idComposite)

10.call(c)

4.call(a)

- 5.call(b, idComponent1)

<

6.decide(b, idComponent1)

7.call(b)

<

v
—
L

8.call(c, idComponent3)

9.decide(c, idComponent3)

11.call(c)

Figure 6.10: Composite Execution.

146 CwSTS Implementation

6.2 Behavioral Composition Implementation

The synchronous product of the set of interaction protocols associated to components
describe the global behavior of the system obtained after the composition. The semantics
of the synchronous product stipulate that shared actions (i.e. one message emission and one
message receipt) are seen as executing in the same time. That means that the corresponding
transitions (in individual component protocols) are considered as a unitary transition in
the composition synchronous product protocol.

Conversely, in an implementation, the action of sending a message and that of receiving
the corresponding message must be unitary executed as if they were in a transaction. More
precisely, in order to obtain the synchronous product behavior at execution time, each
emission /receipt pair actions must begin and end in the same (absolute) time. But this
is hard to realize as components are individual entities executing in parallel (possibly, on
different machines) and without any global clock in order to synchronize actions.

Regarding the implementation of the synchronous product realization, we identified
two different approaches: the distributed and the centralized synchronization mechanisms.
The distributed synchronization mechanism is our first experimentation and consists in
encapsulating and deploying the code for action synchronization at the component level.
This seems to be the ideal solution when in a distributed environment as it maximizes the
parallelism in the execution of the global system. The current prototype proposal is based
on this approach and the component structure presented in the previous sections is targeted
to integrate in the distributed synchronization mechanism. However, this solution also
suffers from an important limitation: the mized states problem as identified in | |
is not effectively addressed. Mixes states are explained in detail in Section 6.2.3 at page 151.

In order to cope with this important situation, we explored a second solution where
there is a unique centralized arbiter entity that guides components in the shared actions
synchronization. Using such an entity avoids the problem of mixed states but also rep-
resents a non efficient solution especially in a distributed context with a large number of
interacting components.

It is obvious that a pure distributed solution can not successfully consider the case of
mixed states and a form of centralized synchronization must intervene in order to resolve
this special situation. Future work must consider the combination of the two approaches
with the objective of dealing with the mixed states situation in a distributed approach.
In the following, we will start by presenting the general mechanism associated with each
solution and then show how we can integrate each solution into our implementation of
CwSTS.

Lets remember that we consider only 1 to 1 one way communication and that we place
our components in both a structural and behavioral hierarchical composition. Components
are seen as autonomous active entities executing their own protocol. This means that the
externally visible actions of a component are decided in function of its protocol. A specific
message can be sent only when the execution of the component has arrived in a state where
the specific message can be emitted. This is also true for message receptions. At execution
time, a component independently decides on one particular send action to perform from
the set of actions that are specified by its protocol in its current execution state. The two

6.2. Behavioral Composition Implementation 147

following approaches decline these requirements.

6.2.1 Distributed Synchronization Mechanism

The purpose of this approach is to propose a completely decentralized solution to the
problem of synchronizing executing components. This mechanism we propose allows a
maximum of parallelism in the execution of the components especially when components
are deployed in a distributed environment. In addition, the extra communication needed for
coordination (synchronization) purposes is reduced to zero as it is completely encapsulated
in the regular communication between components.

This mechanism relies on the following principles:

e cach component is executing its protocol (in terms of emissions, receipts, internal
actions and guard evaluation) and no unspecified behavior is issued,

e ecach component plays the role of a client (for the component sending a message) and
the role of a server (for the component receiving a message),

while playing the role of a server, each component manages a queue of incoming
messages that are to be treated by the component,

e cach component is, at any specific time, executing any of the following operations:

1. execute an internal action (as specified by the protocol)
2. involve in an emission phase (as specified by the protocol)
3. treat a waiting message (to be received) from the queue
e when in an emission phase, a component can not execute any other operation while

the message is not acknowledged by the other party, in other words it is blocked
while waiting for the message receipt,

when a change occurs in its logical state, each component is verifying if any message
is waiting in the queue and if so proceed as follows:

1. take one waiting message (a non deterministic choice) and test if that specific
message can be receipt in the current logical state of the component,

2. if the message can be receipt in the current state, test if the guard associated
with the transition evaluates to true,

3. if the guard evaluation returns true, acknowledge the receipt and proceed with
another operation,

4. if the guard or the state tests fail, leave the message in the queue and proceed
with another operation (often, another queue message treatment).

e when receiving an acknowledgment for the message is sending, the component in-
volved in an emission phase unblocks and proceed with its execution.

148 CwSTS Implementation

This mechanism is close to the approach of data-driven coordination (see Section 3.3.7.1
at page 90) where it is the data (the message in our case) that determines the coordination
(of message emission and its receipt).

It is a simple mechanism assuring that each component will finally behave as described
by the protocol and that the global observed behavior of the system is identical to that
of the synchronous product. This is realized due to the fact that each sending component
is blocked while the other party is not acknowledging the receipt. The queue of waiting
messages is a structure that allows the component to execute normally (in concordance
with its protocol) and to pool for waiting messages only when it is ready to treat them.

6.2.2 Distributed Synchronization Mechanism Integration in CwSTS-P

The integration of the distributed synchronization mechanism in CwSTS-P was realized
by using the support for multithreading in the Java programming language. Much of this
support centers on thread synchronization which is coordinating activities and data access
among multiple threads. The mechanism that Java uses to support synchronization is the
monitor.

A monitor is a special entity associated with any java object that can be occupied by
only one thread at a time. The entity usually contains some data. From the time a thread
enters this entity to the time it leaves, it has exclusive access to any data associated with
the entity and also to the object methods the monitor is attached to.

Related to our component synchronization mechanism, the monitor assures that only
one thread will execute some code at the component level at any given moment in time. In
order to achieve the correct communication synchronization, we need to impose the right
conditions on the thread synchronization.

The actual implementation details assuring the component synchronization are given
bellow:

e incoming and outgoing calls are encapsulating message receiving and sending, re-
spectively. Incoming calls are carried out by threads generated by the other parties.
As the component is an active entity (one or multiple threads are executing the
component business code), outgoing calls are carried out by the thread (or threads)
generated inside the component itself.

e when inside the monitor, each incoming call thread execute a specific method im-
plementing the message receipt. This method is actually implementing the message
receive operation related to a transition specified in the component protocol. The
method integrates the control related to the logic state of the component and the
test of the guard (restricting the transition) if the component is in the right state
to receive the corresponding message. The method also implement an indirection
towards the actual implementation of the business logic code related to the specific
message.

e when exiting the monitor, the active thread signals the JVM? to awake a waiting

2. Java Virtual Machine

6.2. Behavioral Composition Implementation 149

thread to enter the monitor.

e the JVM awakes a waiting thread based on a non deterministic algorithm and as
the monitor is no longer occupied, the newly activated thread is free to execute the
method actually implementing the message receipt.

e the thread carrying out an outgoing call is constraint in the same way as the incoming
call threads. The outgoing call can be issued only if the thread owns the monitor
and if the logical state of the components allows that specific message.

public class ComponentController {
/[Protocol field definition.

//Protocol current state execution field definition .

/[Private boolean guard implementing methods definition.

public synchronized void aMessage(Object...parameters) {
/* Do not allow the thread to continue until the condition is OK.
The wait() method call allows for another thread to enter the
monitor.
*/
while (!condition) wait();

/* Proceed with a call to the component Executor entity.
The message was RECEIVED!
*/

/* The current thread finished its work and as the message was
received, the method return in order to unblock the caller.
But before ... wake up other threads waiting to enter the
monitor after the current thread quits.

*/
notifyAll();

Figure 6.11: ComponentController Java Class Excerpt.

The success of this implementation resides in the fact that the monitor is allowing
only one waiting thread to access to the component methods actually implementing the
message receipt. Also, the fact that the methods implementing receipts integrate the
tests for the logical state and the guard evaluation assure that the thread will actually
succeed in executing the receiving method code only if the conditions required to do so
are accomplished. If not, the thread is put in a waiting state (that of waiting to enter
the monitor) expecting that the required conditions will be met. Figure 6.11 presents an

150 CwSTS Implementation

excerpt of the implementation of the ComponentController class (the class implementing
the component controller entity as described in Section 6.1.3 at page 137).

The class integrates a protocol structure to represent the component communication
protocol and an internal indicator to keep the current state in the execution of the protocol.
Boolean operations representing the protocol transition guards are also defined inside this
class. The method aMessage(Object...parameters) represent a message receipt method
treatment. This method is declared as synchronized meaning that only one thread can
access it at any given moment in time. The method is also public and returns void thus
conforming to the specification of our model where the clients access the component by
well defined access points (the public methods of the ComponentController entity) and
communication is only one way (no return on method calls).

Once inside the method, a thread will test for conditions. These conditions are rep-
resented by the logical state in which the component is present and that must allow for
the specific message receipt and the guard evaluation, if any. While these conditions are
not satisfied, the thread is put in waiting state (the wait() method call). Next time the
thread is awaken, and if the conditions are satisfied, the message receipt method can be
successfully executed. This execution carry out a call to the component executor entity
which decouples the receipt from the actual execution of the message by the component
business code.

Before exiting the method execution, the thread will update the current protocol logical
state to the state specified to be reached after the receipt of this specific message. The
last line in the method definition is notifyAl1() which will awake all the threads waiting
to enter the component monitor allowing thus to proceed with execution once the current
thread finished. When the thread exits the method, a reply is issued to the caller (the
component client) thus unblocking it from waiting that the message is received at the
callee side.

The current implementation specifies that each ComponentController class implements
as many public synchronized methods as there are provided services specified by the com-
ponent protocol. The fact that they are all declared as synchronized assure that only one
thread will be able to execute any of these methods at any moment in time.

Required services are implemented at the ComponentController class level as
protected, synchronized methods. They are called by the component business logic
code implementation and are only implementing the same controls as the methods treat-
ing message receipts.

Thus, incoming and outgoing threads are synchronized in their execution by the monitor
attached to the ComponentController entity. The monitor assure that only one thread
is executing the corresponding message receipt or emission method and control inside the
methods assure that the execution will proceed only when the conditions required to do
so are satisfied (the component execution is in the right state to execute that action and
the associated guard, if any, evaluates to true) .

The use of wait, notify and notifyAll represent a rather basic approach to imple-
menting thread synchronization in the Java programming language. Better synchronization
structures are available starting from the release of Java 5. Thus, Condition factors out
the monitor methods (wait, notify and notifyAll) into distinct objects to give the effect

6.2. Behavioral Composition Implementation 151

of having multiple wait-sets per object, by combining them with the use of arbitrary Lock
implementations. Where a Lock replaces the use of synchronized methods and statements,
a Condition replaces the use of the monitor methods.

The use of Condition and Lock objects allow for a better implementation of our mech-
anism as, for example, we are capable of awakening threads that are waiting for a specific
condition rather than awake all waiting threads of a monitor even if they do not have the
chance to enter it as their conditions are not satisfied.

6.2.3 Distributed Synchronization Mechanism Evaluation

In the context of a large number of distributed interacting components the distributed
synchronization mechanism represents the real solution. There is no extra overhead related
to the synchronization as it is the communication coordination realized at the receivers side
that determines the component interaction synchronization.

This mechanism is close to the approach of data-driven coordination (see Section 3.3.7.1
at page 90) where it is the data (the message in our case) that determines the coordination
(of message emission and its receipt).

As each interaction is synchronized at the receiver level, the distributed mechanism
allows for a better parallelism in the execution of the global system as independent actions
can take place without the need for a global entity to decide.

la ?b ?a 'b a b
Protocol A Protocol B Synchronization Product
of A and B

Figure 6.12: Mixed State Situation.

One drawback of our current implementation is that the current implementation does
not explicitly consider a special case known under the name of mized states | |-
Figure 6.12 depicts such a case where two components (A and B) each of them executing its
own protocol (Protocol A and Protocol B respectively) are in a state where a receipt or an
emission is possible. For this special case, our current implementation does not guarantee
that the interaction of the two protocol is deadlock free. For a better understanding, lets
assume that the two components initiate a sending in the same time. According to our
implementation, the sender is blocked until the receiver acknowledges the receipt but in
this case the two components will be blocked as each of them is in a sending phase that

152 CwSTS Implementation

do not allow for a receipt. This behavior is completely non deterministic and depends
uniquely on the thread management at the JVM level.

In order to cope with this limitation we explored a second solution: the centralized
synchronization mechanism. This mechanism, even if not actually implemented in our
CwSTS prototype, is presented in the next subsections as it represents the base for a
solution to the mixed states situation.

6.2.4 Centralized Synchronization Mechanism

This solution implies the existence of an Arbiter entity that helps components synchronize
on executing actions. The role of the Arbiter is that of a monitor actually observing the
messages that are going to be exchanged among the components and that based on its
local information decides the beginning of specific pair actions (message emission/receipt)
on different components.

Each component is an active entity (i.e. running thread)
executing its own protocol and that before actually executing a

specific action (either a send or receive) in its protocol, must ask Cl 2

the Arbiter to allow the action execution. Figure 6.13 depicts

this situation where all components in the system are linked to -
Arbiter

a unique centralized entity (the arbiter).
This situation implies that each component in the system has

knowledge of the arbiter entity. Additionally, the arbiter entity I_C_3_|
knows all the components and also their associated actions (that
they need to synchronize on). Figure 6.13: Centralized

The actual mechanism that allows the Arbiter to synchronize Arbiter Entity
actions on components is based on a two synchronization barrier
mechanism. Before each action (a send or a receive) to be performed, the concerned
component sends a syncOn message to the Arbiter. The Arbiter blocks those calls while
the conditions required to proceed are not fulfilled. These conditions typically concern the
presence of calls from both a sender and a receiver for the same message. In other words,
the Arbiter allows components to proceed only when one sender notified the Arbiter (by
a blocking syncOn call) that it is ready for the specified action and that a receiver (or the
specified number of receivers in case of group communication) has done the same thing for
the complementary action. At this moment, the Arbiter unblocks the syncOn calls of all
concerned components. Once released, components proceed with their action (the sender
will actually send the message to the receiver(s)) and the receiver will wait to be called.
Once the message was sent and received, each component will sent a syncOff message to the
Arbiter. This is identical with the syncOn message, but while syncOn helps components
synchronize on the beginning of the message transfer, syncOff helps them synchronize on
the end of message transfer. The second synchronization barrier is of major importance
because it assures that components finish their message transfer phase in the same time
and before proceeding with another different action.

Figure 6.15 depicts the sequence diagram of a possible execution of an architecture
based on three components C1, C2 and C3 and an Arbiter entity. Each component executes

6.2. Behavioral Composition Implementation 153

c1 , 7h C2 C3 Arbiter

Figure 6.14: Component Protocols.

its own protocol and the Arbiter must assure the behavior described by the synchronous
product (see Figure 6.14).

One important remark is that the Arbiter is not knowing (nor executing) the syn-
chronous product protocol of the component system. However, at execution, with the
information related to components, the resulting behavior is conforming to that specified
by the synchronous product. This is also possible because each component follows the two
synchronization barrier mechanism either for send or for receive actions.

6.2.5 Centralized Synchronization Mechanism Integration in CwSTS-P

The centralized synchronization can be realized by seeing the synchronization as a sub-
sidiary service (as for example security, transactions and persistence in commercial com-
ponent models). Components, firstly, register themselves to the Arbiter entity by sending
it the information needed in order to provide the synchronization service. The Arbiter is
itself a server playing the role of a system monitor (see Figure 6.16). It monitors the actions
that are going to be executed by the connected components and, based on its local infor-
mation, at any moment in time, decides what components can proceed with their actions
such that the global behavior of the system is followed by communicating components.
After the register phase, components start executing by following a two synchronization
barrier protocol identical to that explained in the preceding subsection. However, the ac-
tual communication is realized directly among components (see Figure 6.16). The Arbiter
is only deciding which action (and so, which components must execute) is to be realized
at any specific moment in time.

As the synchronization service is transparent if seen from an architectural point of
view, the hierarchical composition property of the CwSTS model is straightforward in
the provided implementation. Composites themselves, at the configuration phase, will
recursively instruct subcomponents to register on the Arbiter. Note, that only primitive
components (those that are really providing business code) will actually register on the
Arbiter as communication is generated and finally targeted to them.

In CwSTS, a transition can be realized only if the associated guard (if any) evaluates
to true. Due to the fact that guards are implemented as private operations (only internal
access) and can take parameters (that will be known only when a message arrive), the
Arbiter can not decide on what transition to execute based on guard evaluation. This
must be done once the Arbiter decided on the transition to execute and when a component
actually receives a message. At this time, however, the guard evaluation can return false
thus resulting in a thread deadlock, as the message can not be receipt while the guard is

154 CwSTS Implementation

(o] [= Yo

‘ \ \
! \ \ \
|j syncOn(a) | syncOna) ‘
|]
| | syncOn(b) |
| i ‘
| | [decided(a)] [decided(a)] |

— tif tif

< i notify(a) | | notify(a) »L—rl

\ \

1 a 1

\ \

Off(a) | \ syncOff(a)
sync a

| 1 > |
! \ \ \
| syncOn(b) | »_‘_ ‘
D \ \
! \ [decided(b)] \
\ notify(b) |
in T |
\ b | |

syncOff(b)
LT \
syncOff(b) \ \
| > |
\ \

Figure 6.15: Synchronization Mechanism in Action.

Arbiter

Composite

C1 L
O—»O

?a

Na

c2 . c3
g S

Figure 6.16: Arbiter Implementation.

=\

6.3. Code Generation 155

not true.

6.2.6 Centralized Synchronization Mechanism Evaluation

Applying a two synchronization barrier mechanism in order to synchronize complementary
actions on different components is a very natural solution. The centralized monitor entity
(the arbiter) is the masterpiece of such a solution as it actually coordinates communicating
components in order to achieve synchronization. The arbiter is not executing any protocol
(i.e. the synchronous product), but based on the architecture topology (i.e. the number
of components and the actions to be executed by each component) it restricts the global
behavior of the system in order to exhibit the behavior specified by the synchronous prod-
uct of the components interaction protocols. This solution also relies on the idea that
each component, prior to actually executing a specific action (an emission or a reception,
according to its protocol), asks the Arbiter for permission. Only after the Arbiter allows
this action the component can proceed with its execution.

The idea of having the components ask permission to "receive" a specific message might
not seam natural, especially at the implementation level. But if we remove this constraint
from the synchronization mechanism, the Arbiter will have to know the synchronous prod-
uct protocol of the component architecture. Otherwise, it cannot be capable of deciding
the right moment when a specific message can be safely sent and received. Moreover, in
such a case we would have to find a solution to remove the second synchronization barrier
(the one synchronizing on the end of the message transfer) and guarantee the realization
of the synchronous product by using only one synchronization barrier.

This mechanism is close to the ones used in control-driven coordination (see Sec-
tion 3.3.7.2 at page 91) where the actual coordination of entities is realized by employing
coordination signals (syncOn and syncOff messages on Arbiter in our case).

What makes the force of this mechanism (the centralized arbiter) also represents its
disadvantage. In a distributed environment it is not always possible nor convenient to
insert a centralized monitor. The coordination of an increasing number of components
can cause loss of information and bottleneck, with corresponding increase of the response
time of the centralized arbiter. Furthermore, as each component is an autonomous entity
in communication with different partners, we would like to maximize parallelism when
possible. Applying the two synchronization barrier mechanism with a centralized arbiter
forces the global execution of the components to be totally sequenced.

6.3 Code Generation

We follow a generative approach when constructing components. We actually take into
consideration two scenarios (see Section 5.1.1 at page 111) each of them requiring the gen-
eration of java code in order to obtain valid CwSTS components. The main objectives we
pursuit when employing code generation are the conformance between the component de-
scriptions and the implementation code and the automation of the creation of non business
and adaptation code. Conformance between the component description and its implemen-
tation code is obtained by construction. It is the generation process that assures that final

156 CwSTS Implementation

code will behave as specified.

From an informal point of view, the generator engine uses previously developed tem-
plates that are going to be customized in order to obtain final code. As already specified,
we do address the creation of business code. Business code must fit into the set of the
entities that represent the component implementation code.

In the first scenario, the business code is created after the generation of the component
outer layer (the set of interfaces and the entities presented in Sections 6.1.3 and 6.1.4). It
is the developer responsibility to create the business logic class (or classes) that exhibit the
right behavior in term of emissions and receipts and to implement the communication type
(synchronous or asynchronous) regarding the actual execution of the received messages.

In the second scenario, the business code is already present before the generation pro-
cess. Thus, the generator wraps the existing code in order to interface it with the generated
outer layer. In order to realize that, the generator is provided with information regarding
the existing business code that must be wrapped.

The component generation process comprises four stages. Starting from each compo-
nent description and some additional information, the generation engine:

e generates the Java interfaces and packages (as presented in the beginning of this
chapter) that represent a CwSTS component in Java,

e generates the Protocol Controller entity (the one responsible to assure component
synchronization with its environment),

e generates the Executor entity (synchronous or asynchronous),
e plugs in the business logic implementation.

Adaptors are seen as first class components in our model. This means that they have
the same internal structure as any other component in the architecture. The difference
comes from the fact that their interface and behavior is employed to connect two or more
components that can not directly connect due to their incompatibility. To generate adap-
tors rather then business components, the generation engine is given the description of
the adaptor component and the information needed in order to adapt provided services to
required ones (the signature transformation for example). Based on this information, the
generation engine will automatically generate an executor (synchronous by default) and a
by default business logic implementation. The business logic is only forwarding messages
received to a provided service to the corresponding required service after processing some
transformations as instructed.

The current state in the development of the prototype consider only a limited set of
featured related to the generator capabilities. Thus, we do not offer tools that analyze
the existing business code (in the case of the second scenario) or tools to check that the
business code created in the first scenario approach can safely connected to the generated
code. However, this can be addressed in a future evolution of the prototype where some
other important improvements (see the Perspectives section in the next chapter) can be
realized.

6.4. Conclusion 157

6.4 Conclusion

In this chapter we presented details on CwSTS-P, the prototype implementation of our
component model. We use the Java programming language to implement the components
with all their structural entities and the synchronization mechanism involved in the com-
ponent composition.

In CwSTS-P, each component entity is packaged as a classical Java package containing
the component implementation classes. Our component model defines encapsulated black-
box components. This means that the component internals are not visible and cannot be
interacted with both before and after the instantiation time. The component implemen-
tation code is not visible to parties that are not given explicitly access and at execution
time, the only possible interaction with the component instance is through the explicitly
defined interfaces. In order to cope with these requirements, once created and tested, a
component package is compressed as a jar® file. Further on, the only public entities in the
component package are the component interfaces, the protocol controller (which represents
the component front end) and the component specific factory class. The other classes in-
side the component are declared as protected ensuring that, once the development phase is
over, the component could be accessed exclusively through the controller object (actually
implementing all the component declared interfaces).

A primitive CwSTS-P component is constituted of three entity types: one or more
business logic implementation classes, a component executor class and a protocol controller
class. The business logic entity represents the code actually realizing the component func-
tionality. The component executor entity acts as a proxy in behalf of the business logic
entity. Its main purpose is to intercept the threads calling the methods of the business
logic entity and to proceed with the call but in a different thread. The component protocol
controller has as its main purpose the control of component inbound and outbound calls
and this according to the component declared protocol. The protocol specifies the allowed
sequence of service calling (either targeting or leaving the component). The controller
assures that call order will occur exactly as specified by the protocol.

Unlike a primitive component, a composite one does not contain a business logic entity.
Instead, the functionality of a composite component is given at execution time by the
interaction of the containing primitive components. One composite can contain one or
more components (either primitives, in the sense described in Section 6.1.3, or composite
components, as the composition is hierarchical) also designed as subcomponents. Besides
the set of subcomponents, a composite also contains a controller entity (similar to the
one in the primitive component structure) and a dispatcher entity. The dispatcher is
implementing a call forward strategy that realizes at run time the structural relationships
between components. In the following, we present the composite component entities in
more details and how they differ from the entities of a row primitive component.

Different configuration phases are taken before the components are actually starting
execution. At a primitive component level, new instances of the business logic entity, of
the component executor and of the controller entity are created. Different settings are

3. Java Archive

158 CwSTS Implementation

done at the level of the three entities instances. Finally, the reference to the component
controller is returned to the client that can further on set the components environmental
information and then start the component execution (by calling the start() method which
is propagated to the business logic entity). At a composite component level, the user sets
the data needed by the composite for execution. The composite controller charges itself
to propagate required data to subcomponents. Usually, the kind of data to be set is the
value of initialisation parameters. Other data, like for example the dispatcher reference is
set into the subcomponents transparently for the user of the composite component. Other
data that do not depend on composite external information is the structural links between
subcomponents.

The synchronous product of the set of interaction protocols associated to components
describe the global behaviour of the system obtained after the composition. The seman-
tics of the synchronous product stipulates that shared actions (i.e. one message emission
and one message receipt) are seen as executing in the same time. That means that the
corresponding transitions (in individual component protocols) are considered as a unitary
transition in the composition synchronous product protocol.

Conversely, in an implementation, the action of sending a message and that of receiving
the corresponding message must be unitary executed as if they were in a transaction. More
precisely, in order to obtain the synchronous product behaviour at execution time, each
emission /receipt pair actions must begin and end in the same (absolute) time. But this
is hard to realise as components are individual entities executing in parallel (possibly, on
different machines) and without any global clock in order to synchronise actions.

We presented two implementation solutions to the synchronous product realization
problem. The distributed synchronization mechanism is our first experimentation and
consists in encapsulating and deploying the code for action synchronization at the com-
ponent level. This seems to be the ideal solution when in a distributed environment as it
maximizes the parallelism in the execution of the global system. The current prototype
proposal is based on this approach and the component structure presented in this chap-
ter is targeted to integrate in the distributed synchronization mechanism. However, this
solution also suffers from an important limitation: the mized states problem as identified
in | | is not effectively addressed.

In order to cope with this important situation, we explored a second solution where
there is a unique centralized arbiter entity that guides components in the shared actions
synchronization. Using such an entity avoids the problem of mixed states but also rep-
resents a non efficient solution especially in a distributed context with a large number of
interacting components.

It is obvious that a pure distributed solution can not successfully consider the case of
mixed states and a form of centralized synchronization must intervene in order to resolve
this special situation. Future work must consider the combination or the extension of
the two approaches with the objective of dealing with the mixed states situation in a
distributed approach.

Chapter 7

Conclusions and Perspectives

In this thesis we considered the design and implementation of a model defining black-box
software components that integrate interaction protocols at the interface level. The interac-
tion protocol represents an interaction contract between a component and its environment
and a special formalism based on Symbolic Transition Systems is employed in order to
facilitate the description of complex interactions. The implementation follows a generative
approach where components execution code is generated from high level descriptions of
their structural and behavioral interfaces.

The notion of software component was firstly mentioned by MclIlroy | | in his
speech to the OTAN conference in 1968 and the idea of software reutilization emerged as
a solution to the problem encountered in the development of increasingly larger and com-
plex software applications. The CBSE paradigm considers the software component as the
hearth of any software application that need to meet high quality standards in its design,
implementation, deployment and execution. The CBSE approach encompasses develop-
ments in component models definition, Software Architectures, Architecture Description
Languages (ADLs) | |, Component-Oriented Programming, etc.

Particular component characteristics are described by models (component models). A
component model describes what a component is (by defining its constituent parts) and
says how components can be eventually composed (by following some composition rules).
It also describes the component life cycle and the roles associated with different actors in
the development and exploitation of applications. There are two categories of component
models: academic and industrial.

The Software Architecture | ; ; | is the organization of a
software system as a collection of components, connections between the components, and
constraints on how the components interact. When using Software Architectures, one
systematically targets to: reduce the development cost, improve the quality in terms of
reliability, maintainability and resource efficiency, reduce time-to-market and reduce main-
tenance costs.

The ADLs represent one of the results of the research done in the field of Software
Architectures. Their objectives is to aid application architects structure and compose
their software parts in order to obtain valid applications. An ADL is defined as a formal

160 Conclusions and Perspectives

or informal notation, either textual or graphical, allowing to specify software architectures
and that are accompanied with specific tools | |. The result of using an
ADL is mostly an abstract view over an application in terms of components, connectors
and configurations, rather than a concrete view over the implementation details.

While architectural analysis in existing ADLs may reveal important architectural prop-
erties, these properties are not guaranteed to hold in the implementation. In order to
enable architectural reasoning about an implementation, the implementation must con-
form to its architecture. Luckham and Vera | | identify three criteria for
architectural conformance: decomposition, interface conformance and communication in-
tegrity. In order to deal with these three requirements, a new approach was born, that
is programming with components. A new class of programming languages integrating
architectural abstractions into a general-purposed language like Java. Examples include
ArchJava | , |, Java/A | | and Jiazzi | |-

A new class of models, formalisms and mechanisms has evolved for describing con-
current and distributed computations based on the concept of "coordination" (a concept
by no means limited to Computer Science). The purpose of a coordination model and
associated language is to provide a means of integrating a number of possibly heteroge-
neous components together, by interfacing with each component in such a way that the
collective set forms a single application that can execute on and take advantage of parallel
and distributed systems. Configuration and architectural description are closely related to
coordination. Configuration and architecture description languages share the same prin-
ciples with coordination languages. From a slightly liberal point of view, one can include
configuration and ADLs in the category of coordination languages.

In order to successfully interact, components need to conform to a certain form of
interaction contract (interaction protocol based on the notion of behavior protocol). Inter-
action protocols describe the entity behavior in terms of sequences of messages exchanged
between a component and its environment.

The term process algebra refers to a family of specification techniques particularly well
suited to describing systems of concurrent communicating components. Process algebras
describe the process interactions in terms of calculus (an ensemble of rules defined on a
set of process expression construction operators). There are many process algebra for-

malisms issued from the research field. The most important ones are CCS | | and
CSP | | as they stand at the base of other algebras like the PI-calculus | ,
| and the mobile agents | |, integrating primitives for the expression of

distribution and mobility.

Behavior models are precise, abstract descriptions of the intended behavior of a system.
Behavior models have solid mathematical foundations that can be used to support rigorous
analysis and mathematical verification of properties. Effective techniques and tools have
been developed for this purpose and have shown that behavior modeling and analysis are
successful in uncovering the subtle errors that can appear when designing concurrent and
distributed systems.

Much of the work on developing type-theoretic foundations for programming languages
has its roots in typed lambda calculus. In such approaches, an instance of a type is viewed
as a record of functions together with a hidden representation type | |. We talk

161

about service types when referring to such an instance as it only describes the signatures
of the services an entity (either object or component) provides to or requires from its
communication partners.

More recent work (| , |) advocate for the extension of classical
service types in order to allow the description of dynamic properties of objects (and also
components) and their composition. This kind of types are called behavioral types as they
specify not only a set of messages to be exchanged between entities in order to communicate
but also constraints on acceptable sequences of these messages.

State machine based formalisms are generally assumed to be complete descriptions of
system behavior at some level of abstraction. From a component modeling perspective,
the system behavior is what an external entity can observe about the system’s interaction
with its environment. This is usually the messages the system (black-box component)
exchanges with its environment in terms of emissions and receipts. A finite state machine
is describing the set of all possible traces a component can produce when interacting with
its partners. Labelled Transition Systems (LTS) | | represent one of the FSM based
formalisms employed in order to describe process behavior. An LTS consists of a finite
set, of states and a corresponding set of transitions between states. LTS suffer from a very
important drawback when it comes to model checking: the well known state explosion
problem. When considering the synchronized product of two or many LTSs, the potential
number of states (an transitions) can be enormous. Model checking tools used to analyze
the configuration can be hardly used or fail in this context In order to deal with these
issue, STSs extend LTSs by using symbolic transitions. Unlike LTSs, in STSs transitions
describe classes of possible operations to be effectively executed. One transition defines
an operation that can be parameterized with input and out parameters. In addition a
transition can be guarded allowing the execution of the operation only if the condition of
the guard is true. Where an LTS explicitly describes all the traces that can be realized
at execution, an STS abstracts on the possible traces. Thus, an STS description is much
more readable, compact and expressive than classical LTS.

I/O Automata provide an appropriate model for discrete event systems consisting of
concurrently-operating components. I/O automata may be nondeterministic and this is an
important characteristic of the model’s descriptive power. Describing algorithms as nonde-
terministically as possible tends to make results about the algorithms quite general. The
I/O automata model is especially helpful when describing the interfaces between system
components and it provides a clean composition model for fair composition. Although I1/0
automata can be used to model synchronous systems, they are best suited for modeling
systems in which the components operate asynchronously.

The main critics that can be done regarding some of these formalisms is the abstraction
level, much too weaker to describe higher level entities like components. Some other draw-
back is the fact that some important properties like deadlock are not decidable. Some other
formalisms sacrifice expressiveness in order to increase decidability. Developing object
models, important notions like the substitutability and refinement made their appearance,
easing the way to developing satisfactory component models integrating protocols.

In component models, interaction protocols usually specify component externally vis-
ible behavior. The specification is done at interface level and enhances purely structural

162 Conclusions and Perspectives

interfaces with behavioral descriptions. Practically, non of the presented component mod-
els consider the coherence between the specification and implementation. Excepting for
CwEP (see Section 4.3.2 at page 102), the other component models have a rather evasive
approach when considering implementation issues (see Section 4.3 at page 101). However,
CwEP is only flat hierarchical component model and structural hierarchical composition
is not considered at all.

It is obvious from the state-of-the-art that it misses a component model integrating a
form of interaction protocol that is readable, expressive and easy-to-use by an average com-
ponent designer. The implementation has to be part of the main concerns when developing
the component model as the coherence between specification and implementation is essen-
tial when applying the model in a real software development. Generative techniques, either
by using an MDA ! approach or a rather empirical one, represent an appealing research
field when considering the component implementation.

The result of our research work is CwSTS. CwSTS (acronym for Component with Sym-
bolic Transition System) is a simple, yet general component model integrating only the
minimal features required in order to analyze the integration of interaction protocols at
component interface level. CwSTS features black-box components, communicating exclu-
sively through one declared interface. The interface consists of two parts: a structural
interface and a behavioral interface. The structural interface describes the required and
provided component service signatures and corresponds to the first level of contracts in
the taxonomy of Beugnard and al | | (see Section 3.2.1.2 at page 61). The
behavioral interface describes the component interaction protocol (the rules governing the
component in term of message emission and receipt). It corresponds to the third level of
contracts in the aforementioned taxonomy.

Interaction protocols are expressed as Symbolic Transition Systems (STSs) where tran-
sitions are composed of actions to be executed at message receipt or actions resulting
in message emission and guards (boolean operations with parameters) that condition the
transition from the initial state to its final state. STS based formalisms offer advantages
over the classical LTSs (Labelled Transition Systems). Namely, STSs cope better with
state explosion problem and are more expressive.

Composition is hierarchical in the sense of GoF Design Pattern (a composite can be
further on composed with other components into a larger architecture) but in addition to
the classical structural composition our model also exhibits behavioral composition.

In order to describe components and their protocols we propose both a graphical and
a textual language. CwSTS-IDL is a concrete textual language employed to describe com-
ponent interfaces, architecture (component composition) and protocol. As part of CwSTS-
IDL, SFSP (Symbolic Finite State Processus) is a process description language inspired
from FSP (Finite State Processus) where we keep only the transition, choice and recursion.
SEFSP is a very intuitive language and its semantics is easy to understand. In addition,
previous experience with FSP (a suit of tools available at http://www.doc.ic.ac.uk/ltsa/)
could be extended in order to allow the visualization and verification of behavioral STS
architectures.

1. Model Driven Architecture

7.1. Perspectives 163

CwSTS characteristics are cornered out to allow a generative approach when construct-
ing components. We presented two implementation solutions to the synchronous product
realization problem. The distributed synchronization mechanism is our first experimenta-
tion and consists in encapsulating and deploying the code for action synchronization at the
component level. This seems to be the ideal solution when in a distributed environment as
it maximizes the parallelism in the execution of the global system. The current prototype
proposal is based on this approach and the component structure presented in this chap-
ter is targeted to integrate in the distributed synchronization mechanism. However, this
solution also suffers from an important limitation: the mized states problem as identified
in | | is not effectively addressed.

In order to cope with this important situation, we explored a second solution where
there is a unique centralized arbiter entity that guides components in the shared actions
synchronization. Using such an entity avoids the problem of mixed states but also rep-
resents a non efficient solution especially in a distributed context with a large number of
interacting components.

It is obvious that a pure distributed solution can not successfully consider the case of
mixed states and a form of centralized synchronization must intervene in order to resolve
this special situation. Future work must consider the combination or the extension of
the two approaches with the objective of dealing with the mixed states situation in a
distributed approach.

7.1 Perspectives

We have chosen a generative approach when constructing CwSTS components. This is in
line with the actual trend imposed by the MDA approach to constructing software applica-
tions. Code generation allows for a faster and safer software development then a classical
approach and can be integrated with sophisticated verification and analysis techniques.
The tools we propose in our CwSTS prototype represent the base modules required in
order to construct powerful generators dealing with interaction protocols described under
the Symbolic Transition System formalism.

The actual CwSTS model considers solely static configurations. That is, once the com-
ponent architecture is configured, deployed and executed, no structural and behavioral
modification is possible. The actual tendency in the software development is to allow ap-
plications to reconfigure on the fly, while executing. One of the possible CwSTS evolutions
is to allow the components to reconfigure themselves at execution time, especially when
considering intra-component connections, without having to recompile code. Another com-
plementary evolution could allow components to substitute their interaction protocol with
a compatible one (protocol substitution was studied in Section 5.3.4 at page 126) at ex-
ecution time. This would be possible by conceiving components capable of executing by
following many phases like, for example, started, in configuration, paused, stopped. For
simplicity reasons we studied only the case where components communicate by following
a point to point (1 to 1) communication schema. This means that a component provided
service can be called by only one unique other component requiring that service. In reality,

164 Conclusions and Perspectives

the point to point communication is very restrictive especially if we consider client-server
applications where multiple clients access the services of one server component. Other
communication schemas could be considered by an extension of the CwSTS model. These
schemas could include 1 to n or n to 1 communications allowing for the design of com-
plex architectures. The synchronization mechanism as already implemented is partially
equipped in order to deal with these kind of communication schemas, but complementary
studies have to be realized for an effective implementation.

Figure 7.1: Parallel Execution of Two Actions.

SFSP is a process-based description language. This language is very precise in describ-
ing interaction protocols, but for a special case when we want to describe two transitions
that can be executed in parallel, the only possible way is to represent it as presented in
Figure 7.1. The SFSP and FSP languages describe parallel transitions as executing in a
sequential manner. However, in a distributed environment, the execution of individual
actions is rarely sequential. What we require from a protocol description at this level is
to abstract from execution details which, for this case, seems not to be the case. One
possible evolution of the SFSP language will be to abstract from the parallel execution
implementation in order to allow for a more general description of interaction protocols.

i

Protocol A Protocol B Synchronization Product
of A and B

Figure 7.2: Mixed State Situation.

Our CwSTS-P implementation deals with the realization of the synchronous product
in a very simple way. However, the current (distributed synchronisation) implementation
does not explicitly consider a special case known under the name of mized states | |-
Figure 7.2 depicts such a case where two components (A and B) each of them executing

7.1. Perspectives 165

its own protocol (Protocol A and Protocol B respectively) are in a state where a receipt
or an emission is possible. For this special case, the distributed synchronisation does
not guarantee that the interaction of the two protocol is deadlock free. For a better
understanding, lets assume that the two components initiate a sending in the same time.
According to our implementation, the sender is blocked until the receiver acknowledges the
receipt but in this case the two components will be blocked as each of them is in a sending
phase that do not allow for a receipt.

For the centralised synchronisation mechanism mixed states does not represent a prob-
lem. However, the main disadvantage of this mechanism is the overhead communication
necessary in order to synchronise components and the fact that guards can not be evalu-
ated at the arbiter level thus representing a problem in the realisation of the synchronous
product. Future work can consider the combination of the two mechanisms that will solve
the problems related to mixed states or the extension of the two mechanisms to allow
multiplicity, or another guard evaluation mechanism in the case of the centralised solution.

Some other future evolutions can include the development of visualization and verifi-
cation tools associated with our SFSP language as this is the case for the FSP language
(see at http://www.doc.ic.ac.uk/ltsa/).

166 Conclusions and Perspectives

Bibliography

[Abadi 93] M. Abadi & L. Lamport. Composing specifications. ACM Trans. Program.
Lang. Syst., vol. 15, no. 1, pages 73-132, 1993.

[Abadi 95| M. Abadi & L. Lamport. Conjoining Specifications. ACM Transactions on
Programming Languages and Systems, vol. 17, no. 3, pages 507-535, May 1995.

[Ahuja 86] S. Ahuja, N. Carriero & D. Gelernter. Linda and Friends. IEEE Computer,
pages 26-34, August 1986.

[Aldrich 02a] J. Aldrich, C. Chambers & D. Notkin. Architectural Reasoning in ArchJava,
2002.

[Aldrich 02b] J. Aldrich, C. Chambers & D. Notkin. ArchJava: Connecting Software Ar-
chitecture to Implementation, May 2002.

|Aldrich 02¢| J. Aldrich, C. Chambers & D. Notkin. ArchJava: Connecting software archi-
tecture to implementation. In Proceedings of the 24th International Conference
on Software Engineering (ICSE-02), pages 187-197. ACM Press, 19-25 2002.

[Allen 97| R. J. Allen. A formal approach to software architecture. PhD thesis, Carnegie
Mellon University, 1997.

[André 96] C. André. Representation and Analysis of Reactive Behaviors: A Synchronous
Approach. In Computational Engineering in Systems Applications (CESA),
pages 19-29, Lille (F), July 1996. IEEE-SMC.

[Arbab 93| F. Arbab, I. Herman & P. Spilling. An Overview of Manifold and its Imple-
mentation, September 23 1993.

|Arbab 01| F. Arbab. Coordination of Mobile Components. Electr. Notes Theor. Comput.
Sci., vol. 54, 2001.

[Arbab 02| F. Arbab, J. V. Guillen Scholten, F.S. de Boer & M. M. Bonsangue. A Channel-
Based Coordination Model for Components. Rapport technique, Centruum voor
Wiskunde en Informatica, 2002.

|Arnold 94| A. Arnold. Finite Transition Systems. International Series in Computer Sci-
ence. Prentice-Hall, 1994.

168 Bibliography

[Arnold 98] K. Arnold & J. Gosling. The Java programming language. The Java Series.
Addison-Wesley, 2nd edition, 1998.

[Attiogbé 03] C. Attioghé, P. Poizat & G. Salatin. Integration of Formal Datatypes within
State Diagrams. In FASE’2003, volume 2621 of Lecture Notes in Computer
Science, pages 344-355. Springer-Verlag, 2003.

[Barbacci 90] M. R. Barbacci & J. M. Wing. A language for distributed applications. In
Proceedings: 1990 International Conference on Computer Languages, pages
59-68. IEEE Computer Society Press, 1990.

[Barros 05] T. Barros, L. Henrio & E. Madelaine. Behavioral Models for Hierarchical
Components. In Proceedings of SPIN’05. Springer-Verlag, 2005. To Appear.

[Bass 98] L. Bass, P. Clements & R. Kazman. Software Architecture in Practice. Series
in Software Engineering. Addison Wesley, Reading, MA, USA, 1998.

[Baumeister 06] H. Baumeister, F. Hacklinger, R. Hennicker, A. Knapp & M. Wirsing. A
Component Model for Architectural Programming. Electr. Notes Theor. Com-
put. Sci., vol. 160, pages 75-96, 2006.

[Bellissard 95| L. Bellissard, S.B. Atallah, A. Kerbrat & M. Riveill. Component-based
programming and Application Management with Olan, June 1995.

[Bergstra 84| J. A. Bergstra & J. W. Klop. The Algebra of Recursively Defined Processes
and the Algebra of Regular Processes. In J. Paredaens, editeur, Proceedings
ICALP ’84, volume 172 of LNCS, pages 82-95, Antwerp, 1984. Springer-Verlag.

[Bergstra 01] J. A. Bergstra, A. Ponse & S. A. Smolka, editeurs. Handbook of Process
Algebra. Elsevier, 2001.

[Berry 92| G. Berry & G. Gonthier. The Esterel Synchronous Programming Language:
Design, Semantics, Implementation. Sci. Comput. Program., vol. 19, no. 2,
pages 87-152, 1992.

[Berthomieu 89| B. Berthomieu. Implementing CCS, the LCS experiment. Rapport tech-
nique 89425, 1989.

[Beugnard 99| A. Beugnard, J.-M. Jézéquel, N. Plouzeau & D. Watkins. Making Compo-
nents Contract Aware, July 1999.

[Bosch 00] J. Bosch. Design and Use of Software Architectures - Adopting and evolving a
Product Line Approach. Addison-Wesley, 2000.

[Bowman 97| H. Bowman, C. Briscoe-Smith, J. Derrick & B. Strulo. On behavioural sub-
typing in LOTOS, 1997.

[Brinksma 87| E. Brinksma, G. Scollo & C. Steenbergen. LOTOS Specifications, their
Implementations and their Tests, 1987.

Bibliography 169

|Brockschmidt 95| K. Brockschmidt. Inside OLE. Microsoft Press, 2nd edition, 1995.
[Brooks 75] F. Brooks. The Mythical Man-Month, 1975.

[Brown 96] A. W. Brown & K. C. Wallnau. FEngineering of Component-Based Systems.
In Alan W. Brown, editeur, Component-Based Software Engineering: Selected
Papers from the Software Engineering Institute, pages 7-13. IEEE Computer
Society Press, Los Alamitos, CA, 1996.

[Brown 98] A. W. Brown & K. C. Wallnau. The Current State of CBSE, September/
October 1998.

[Bruneton 04] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma & J.-B. Stefani. An Open
Component Model and Its Support in Java. In Ivica Crnkovic, Heinz W. Schmidt
Judit A. Stafford & Kurt C.Wallnau, editeurs, CBSE, volume 3054, pages 7-22.
Lecture Notes in Computer Science, 2004.

[Biichi 97] M. Biichi & W. Weck. A Plea for Grey-Box Components. In Gary T. Leav-
ens & Murali Sitaraman, editeurs, Proceedings of the First Workshop on the
Foundations of Component-Based Systems, Zurich, Switzerland, September 26
1997, pages 39-49, September 1997.

[Calder 02] M. Calder, S. Maharaj & C. Shankland. A Modal Logic for Full LOTOS Based
on Symbolic Transition Systems. The Computer Journal, vol. 45, no. 1, pages
55-61, 2002.

[Cardelli 85| L. Cardelli & P. Wegner. On Understanding Types, Data Abstraction, and
Polymorphism. ACM Computing Surveys, vol. 17, no. 4, pages 471-522, De-
cember 1985.

[Cardelli 98] L. Cardelli & A.D. Gordon. Mobile Ambients, 1998. Held as Part of the
Joint European Conferences on Theory and Practice of Software (ETAPS’98),
(Lisbon, Portugal, March/April 1998).

[Cardone 00] R. Cardone, D. Batory & C. Lin. Java Layers: Fxtending Java to Support
Component-Based Programming, June 2000.

[Carreiro 89] N. Carreiro & D. Gelernter. Linda in Context. Communications of the ACM,
vol. 32, no. 4, 1989.

[Carrez 03] C. Carrez. Contrats Comportementauz pour Composants. Theése, December 01
2003.

[Cherinka 98] R. Cherinka, C. Michael Overstreet, J. Ricci & M. Schrank. Maintaining
a COTS Component-Based Solution Using Traditional Static Analysis Tech-
niques. In LNCS, volume 1543, pages 165-166, 1998.

170 Bibliography

[Choppy 00] C. Choppy, P. Poizat & J.-C. Royer. A Global Semantics for Views. In 'T. Rus,
editeur, International Conference, AMAST’ 2000, volume 1816 of Lecture Notes
in Computer Science, pages 165—180. Springer-Verlag, 2000.

[Choppy 01] C. Choppy, P. Pascal & J.-C. Royer. The Korrigan Environment, January
2001.

[Clarke 81] E.M. Clarke & E.A. Emerson. Design and synthesis of synchronization skele-
tons using branching-time temporal logic, May 1981.

[Clarke 00] E. M. Clarke, S. M. German, Y. Lu, H. Veith & D. Wang. Ezecutable Protocol
Specification in ESL, 2000.

[Collet 05] P. Collet, R. Rousseau, T. Coupaye & N. Rivierre. A Contracting System for
Hierarchical Components. In George T. Heineman, Ivica Crnkovic, Heinz W.
Schmidt, Judith A. Stafford, Clements Szyperski & Kurt C. Wallnau, editeurs,
CBSE, volume 3489, pages 187-202. Lecture Notes in Computer Science, 2005.

[Coupaye 02| T. Coupaye, E. Bruneton & J.-B. Stéfani. The Fractal Composition Frame-
work, 2002.

|de Alfaro 01| L. de Alfaro & T. Henzinger. Interface automata. In Proceedings of the.
ACM Press, January 2001.

[DePaoli 93] F. DePaoli & F. Tisato. Development of a Collaborative Application in CSDL.
In Robert Werner, editeur, Proceedings of the 13th International Conference
on Distributed Computing Systems, pages 210-218, Pittsburgh, PA, May 1993.
IEEE Computer Society Press.

[DePaoli 94] F. DePaoli & F. Tisato. Cooperative Systems Configuration in CSDL. In
Proceedings of the 14th International Conference on Distributed Computing
Systems, pages 304311, Los Alamitos, CA, USA, June 1994. IEEE Computer
Society Press.

[Eddon 98| G. Eddon & H. Eddon. Microsoft Programming Series. Microsoft Press, Red-
mond, WA, 1998.

[E.M. Clarke 83] E.M. Clarke, E.A. Emerson & A.P. Sistla. Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic. In Proceedings of the
tenth Annual ACM Symposium on Principles of Programming Languages, 1983.

|[Escoffier 05] C. Escoffier & D. Donsez. FractNet - Une implémentation du modéle ¢ com-
posant Fractal pour .NET. In Lionel Seinturier, editeur, 2nd French Workshop
on Aspect-Oriented Software Development (JFDLPA 2005), September 2005.

[Eugster 01| P. Eugster, R. Guerraoui & C. Damm. On objects and events, October 2001.

Bibliography 171

|Farias 03] A. Farias. Un modéle de composants avec des protocoles explicites. PhD thesis,
Ecole Doctorale Sciences et Technologies de l4information et des Materiaux,
December 2003.

[Fassino 02| J.-P. Fassino, J.-B. Stefani, J. Lawall & G. Muller. THINK: a Software Frame-
work for Component-based Operating System Kernels. In 2002 USENIX Annual
Technical Conference, pages 73-86, Monterey, CA, June 2002. USENIX.

[Fernandez 92| J.-C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez &
J. Sifakis. A Toolbox for the Verification of LOTOS Programs, May 1992.

[Fielding 00] R. T. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, IRVINE, 2000.

[Findler 01] R. B. Findler, M. Latendresse & M. Felleisen. Behavioral Contracts and Be-
havioral Subtyping. In Volker Gruhn, editeur, Proceedings of the Joint 8th Eu-
ropean Software Engeneering Conference and 9th ACM SIGSOFT Symposium
on the Foundation of Software Engeneering (ESEC/FSE-01), volume 26, 5 of
SOFTWARE ENGINEERING NOTES, pages 229-236, New York, September
10-14 2001. ACM Press.

[Flatt 98] M. Flatt & M. Felleisen. Units: Cool modules for HOT languages, May 1998.

[Frolund 98] S. Frolund & J. Koistinen. Quality of Service Specification in Distributed
Object Systems Design. In Proceedings of The Fourth USENIX Conference on
Object-Oriented Technologies and Systems, pages 1-18. The USENIX Associ-
ation, 1998.

[Gamma 95| E. Gamma, R. Helm, R. Johnson & J. Vlissides. Design patterns.
Addison Wesley Professional Computing Series. Addison Wesley, 1995.
http://www.aw.com.

|Garavel 03] H. Garavel. Défense et illustration des algébres de processus. In Zoubir Mam-
mer, editeur, Actes de I’Ecole dété Temps Réel ETR, Toulouse, France, septem-
bre 2003.

|Garlan 94| D. Garlan & M. Shaw. An Introduction to Software Architecture. Technical
Report CS-94-166, Carnegie Mellon University, School of Computer Science,
Software architecture, software design, software engineering 1994.

[Gelernter 92] D. Gelernter & N. Carriero. Coordination languages and their significance.
Communications of the ACM, vol. 35, no. 2, pages 97-107, 1992.

|Giannakopoulou 99| D. Giannakopoulou. Model Checking for Concurrent Software Archi-
tectures, 1999.

[Godefroid 91| P. Godefroid & P. Wolper. Using partial orders for the efficient verifica-
tion of deadlock freedom and safety properties. In Proc. 1991 Computer-Aided
Verification Workshop, 1991.

172 Bibliography

|Graf 86| S. Graf & J. Sifakis. A Logic for the Specification and Proof of Regular Con-
trollable Processes of CCS. ACTAINF: Acta Informatica, vol. 23, 1986.

Haase 02] K. Haase. Java™ Message Service API Tutorial, November 2002. Version 1.3.

[

[Hamilton 97] G. Hamilton. JavaBeans'™ July 1997. Version 1.01.

|Harel 87| D. Harel. Statecharts: A Visual Formalism for Complex System, March 1987.
|

Heineman 0la] G. T. Heineman & W. T. Councill, editeurs. Component-based software
engineering. Addison Wesley, 2001.

[Heineman 01b] G. T. Heineman & W. T. Councill. Component-Based Software Engineer-
ing: Putting the Pieces Together, 2001.

[Heisel 97] M. Heisel & N. Lévy. Using LOTOS Patterns to Characterize Architectural
Styles, 1997.

|[Hoare 85] C. A. R. Hoare. Communicating Sequential Processes, 1985.

[Holzbacher 96] A. A. Holzbacher. A Software Environment for Concurrent Coordinated
Programming. In P. Ciancarini & C. Hankin, editeurs, Coordination Languages
and Models, volume 1061 of LNCS, pages 249-266. Springer-Verlag, Berlin,
Germany, 1996.

[Hopcroft 01] J. E. Hopcroft, R. Motwani & J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation, 2001.

[Hoschka 98| P. Hoschka. An Introduction to the Synchronized Multimedia Integration
Language; World Wide Web Consortium;. IEEE-MULTIMEDIA, vol. 5, no. 4,
pages 84-88, October—December 1998.

[Ingolfsdottir 01] A. Ingolfsdottir & H. Lin. A Symbolic Approach to Value-passing Pro-
cesses, chapitre 7 in | |, pages 427-478. Elsevier, 2001.

[Keller 76] R. M. Keller. Formal verification of parallel programs. Commun. ACM, vol. 19,
no. 7, pages 371-384, 1976.

[Kenney 95| J. J. Kenney. Ezecutable Formal Models of Distributed Transactions Systems
based on Event Processing, December 1995.

[Kramer 90| J. Kramer, J. Magee & A. Finkelstein. A Constructive Approach to the Design
of Distributed Systems. In Proceedings of the 10th International Conference on
Distributed Computing Systems (ICDCS), pages 580-587, Washington, DC,
1990. TEEE Computer Society.

[Kriiger 99| L. Kriiger, R. Grosu, P. Scholz & M. Broy. From MSCs to Statecharts, 1999.

[Larsson 00] M. Larsson. Applying Configuration Management Techniques to Component-
Based Systems, 2000.

Bibliography 173

|Layaida 05] O. Layaida & D. Hagimont. Plasma: A component-based framework for build-
ing self-adaptive applications. In SPIE/IS&T Symposium On Electronic Imag-
ing, Conference of Embedded Multimedia Processing and Communications, San
Jose, CA, USA, January 2005.

|[Leavens 00] G. T. Leavens, K. Rustan, M. Leino, E. Poll, C. Ruby & B. Jacobs. JML:
notations and tools supporting detailed design in Java. In OOPSLA 2000 Com-
panion, Minneapolis, Minnesota, pages 105-106, 2000.

Legond-Aubry 03] F. Legond-Aubry, G. Florin & D. Enselme. Modéle abstrait
g g
d’assemblage de composants par contrats. Technical report livrable 1.4, Pro-
jet RNTL Accord, 2003.

[Lin 96] H. Lin. Symbolic Transition Graph with Assignment. In International Confer-
ence on Concurrency Theory, pages 50-65, 1996.

[Liskov 94] B. H. Liskov & J. M. Wing. A Behavioral Notion of Subtyping. ACM Transac-
tions on Programming Languages and Systems, vol. 16, no. 6, pages 1811-1841,
November 1994.

[Logrippo 92| L. Logrippo, M. Faci & M. Haj-Hussein. An introduction to LOTOS: Learn-
ing by examples. Computer Networks and ISDN Systems, vol. 23, pages 325-
342, 1992.

[Lomuscio 04] A. Lomuscio & D. Nute, editeurs. Deontic logic in computer science, 7th in-
ternational workshop on deontic logic in computer science, deon 2004, madeira,
portugal, may 26-28, 2004. proceedings, volume 3065 of Lecture Notes in Com-
puter Science. Springer, 2004.

[Loureiro 91] A. A. F. Loureiro, Samuel T. Chanson & Song T. Vuong. FDT Tools For
Protocol Development. Rapport technique TR-91-05, Department of Computer
Science, University of British Columbia, May 1991. Tue, 22 Jul 1997 22:21:25
GMT.

[Luckham 95a] D. C. Luckham, J. L. Kenney, L. M. Augustin, J. Vera, D. Bryan &
W. Mann. Specification and Analysis of System Architecture Using Rapide.
IEEE Transactions on Software Engineering, vol. 21, no. 4, pages 336-355,
1995.

[Luckham 95b] D.C Luckham & J. Vera. An Ewvent-Based Architecture Definition Lan-
guage, 1995.

[Lowy 01] J. Lowy. COM and .NET component services. O’Reilly, September 2001.

|[Lynch 87| N. Lynch & M. Tuttle. Hierarchical Correctness Proofs for Distributed Algo-
rithms, 1987.

174 Bibliography

[Magee 92| J. Magee, N. Dulay & J. Kramer. Structuring Parallel and Distributed Pro-
grams. In Proceedings of the International Workshop on Configurable Dis-
tributed Systems, London, 1992.

[Magee 95| J. Magee, N. Dulay, S. Eisenbach & J. Kramer. Specifying Distributed Software
Architectures, 25-28 September 1995.

[Magee 99| J. Magee & J. Kramer. Concurrency: State models & Java programs. Wiley,
1999.

[Malone 94| T. W. Malone & K. Crowston. The Interdisciplinary Study of Coordination.
ACM Computing Surveys, vol. 26, no. 1, pages 87-119, March 1994.

[Marvie 02| R. Marvie & M.-C. Pellegrini. Modéles de composants, un état de ’art, 2002.

[Matena 06| V. Matena & M. Hapner. Enterprise JavaBeans™ specification v3.0, March
2006. Final Release.

[McDirmid | S. McDirmid & W.C. Hsieh. Aspect-Oriented Programming with Jiazzi.

[McDirmid 01| S. McDirmid, M. Flatt & W. C. Hsieh. Jiazzi: New-Age Components for
Old-Fashioned Java, 2001.

[Mcllroy 68] M.D. Mcllroy. Mass produced software components. In P. Naur & B. Randell,
editeurs, Proceedings of the NATO Conference on Software Engineering, pages
138-155, Garmish, Germany, October 1968. NATO Science Committee.

[Medvidovic 96] N. Medvidovic, P. Oreizy, J. E. Robbins & R. N. Taylor. Using Object-
Oriented Typing to Support Architectural Design in the C2 Style, October 16-18
1996.

[Medvidovic 00a] N. Medvidovic & R. N. Taylor. A Classification and Comparison Frame-
work for Software Architecture Description Languages. IEEE - Transactions on
Software Engineering, vol. 26, no. 1, pages 70-93, 2000.

[Medvidovic 00b] N. Medvidovic & R. N. Taylor. A Classification and Comparison Frame-
work for Software Architecture Description Languages, 2000.

[Mehta 00] N. R. Mehta, N. Medvidovic & S. Phadke. Towards a tazonomy of software
connectors. In ICSE ’00: Proceedings of the 22nd international conference on
Software engineering, pages 178-187, New York, NY, USA, 2000. ACM.

[Mercouroff 97] N. Mercouroff & A. Parhar. TINA Computational Modelling Concepts and
Object Definition Language. In IS&N, pages 15-24, 1997.

[Merritt 91| M. Merritt, F. Modugno & M.R. Tuttle. Time-Constrained Automata. In
J. C. M. Baeten & J. F. Groote, editeurs, CONCUR: 2nd International Confer-
ence on Concurrency Theory, volume 527 of Lecture Notes in Computer Science,
pages 408-423, Berlin, August 1991. Springer-Verlag.

Bibliography 175

[Meyer 91| B. Meyer. Eiffel: The Language, 1991.
[Meyer 92| B. Meyer. Applying “Design by Contract”, October 1992.

[Mikhajlov 98] L. Mikhajlov & E. Sekerinski. A Study of the Fragile Base Class Problem. In
Eric Jul, editeur, ECOOP 98 — Object-Oriented Programming, 12th European
Conference , Brussels, Proceedings, volume 1445 of Lecture Notes in Computer
Science, pages 355—382. Springer-Verlag, July 1998.

[Milner 84| R. Milner. A Complete Inference System for a Class of Regular Behaviors.
Journal of Computer and System Sciences, vol. 28, no. 3, pages 439-466, June
1984.

[Milner 89| R. Milner. Communication and concurrency. Prentice-Hall, Inc., 1989.

[Milner 92| R. Milner, J. Parrow & D. Walker. A Calculus of Mobile Processes, I, Septem-
ber 1992.

[Milner 99| R. Milner. Communicating and Mobile Systems: the m-Calculus, May 1999.

[Mitchell 79] J. G. Mitchell, W. Maybury & R. Sweet. Xerox Research Center, Palo Alto,
CA, 1979.

[Morisio 00] M. Morisio, C. B. Seaman, A. T. Parra, V. R. Basili, S. E. Kraft & S. E.
Condon. Investigating and improving a COTS-based software development. In
Proceedings of the 22nd International Conference on Software Engineering,
pages 32-41. ACM Press, June 2000.

[Najm 99| E. Najm & A. Nimour. FEzplicit Behavioral Typing for Object Interfaces. In
Ana M. D. Moreira & Serge Demeyer, editeurs, ECOOP Workshops, volume
1743 of Lecture Notes in Computer Science, page 321. Springer, 1999.

[Nielson 93] F. Nielson & H. R. Nielson. From CML to Process Algebras (Extended Ab-
stract). In Eike Best, editeur, CONCUR, volume 715 of Lecture Notes in Com-
puter Science, pages 493-508. Springer, 1993.

[Nierstrasz 93] O. Nierstrasz. Regular types for active objects. In Proceedings of the eighth
annual conference on Object-oriented programming systems, languages, and
applications, pages 1-15. ACM Press, 1993.

[Noyé 05| J. Noyé, S. Pavel, P. Poizat & J.-C. Royer. A Formal Component Model with
Explicit Symbolic Protocols and its Java Implementation. Rapport technique,
Ecole des Mines de Nantes, 2005.

[OCL 03] Object Management Group. Object Constraint Language Specification,, March
2003. statut : « Version 1.5 ».

[Ozanne 07] A. Ozanne. Interact : un modéle général de contrat pour la garantie des
assemblage de composants et services. PhD thesis, Université Pierre et Marie
Curie (Paris VI), November 2007.

176 Bibliography

|[Papadopoulos 98| G. A. Papadopoulos & F. Arbab. Coordination Models and Languages.
In The Engineering of Large Systems, volume 46 of Advances in Computers,
pages 329-400. Academic Press, August 1998.

[Pavel 04| S. Pavel, J. Noyé & J.-C. Royer. Dynamic Configuration of Software Product
Lines in ArchJava. In Robert L. Nord, editeur, Software Product Lines: Third
International Conference, LNCS, pages 90-109, Boston, MA, USA, September
2004. Springer-Verlag Heidelberg.

[Pavel 05a] S. Pavel, J. Noyé, P. Poizat & J.-C. Royer. A Java Implementation of a Com-
ponent Model with Explicit Symbolic Protocols. In Proceedings of the 4th Inter-
national Workshop on Software Composition (SC’05), volume 3628 of LNCS,
pages 115-125. Springer-Verlag, April 2005.

[Pavel 05b| S. Pavel, J. Noyé & J.-C. Royer. Un modéle de composant avec protocole
symbolique. In Journée du groupe Objets, Composants et Modéles, Bern, Suisse,
March 2005.

[Plasil 98] F. Plasil, D. Bélek & R. Janecxek. SOFA/DCUP: Architecture for Component
Trading and Dynamic Updating, January 1998.

[Pnueli 77| A. Pnueli. The temporal logic of programs, October 1977.
[Pnueli 81] A. Pnueli. The temporal semantics of concurrent programs, November 1981.

[Pryce 98] N. Pryce & S. Crane. A Model of Interaction in Concurrent and Distributed
Systems. Lecture Notes in Computer Science, vol. 1429, pages 57-77, 1998.

[Puntigam 96| F. Puntigam. Types for Active Objects based on Trace Semantics. In
Elie Najm et al., editeur, Proceedings of the Workshop on Formal Methods for
Open Object-based Distributed Systems (FMOODS’96), Paris, France, 1996.
Chapman & Hall.

[Puntigam 99| F. Puntigam. Non-Regular Process Types. In P. Amestoyet al., editeurs,
Proceedings of the 5th Furopean Conference on Parallel Processing (Euro-
Par’99), numéro 1685, Toulouse, France, 1999. Springer-Verlag.

[Purtilo 94] J. M. Purtilo. The POLYLITH Software Bus. ACM Transactions on Program-
ming Languages and Systems, vol. 16, no. 1, pages 151-174, January 1994.

[Roman 90| G.-C. Roman & H. C. Cunningham. Mized Programming Metaphors in a
Shared Dataspace Model of Concurrency. IEEE Transactions on Software En-
gineering, vol. 16, no. 12, pages 1361-1373, December 1990.

[Rosenblum 97] D. S. Rosenblum & A. L. Wolf. A Design Framework for Internet-
Scale Event Observation and Notification. Lecture Notes in Computer Science,
vol. 1301, pages 344-360, 1997.

Bibliography 177

|[Royer 03a| J.-C. Royer. The GAT Approach to Specify Mized Systems. Informatica,
vol. 27, no. 1, pages 89-103, 2003.

[Royer 03b] J.-C. Royer & M. Xu. Analysing Mailbozes of Asynchronous Communicating
Components. In D. C. Schmidt R. Meersman Z. Tari & al., editeurs, CooplS,
DOA, and ODBASE, volume 2888 of Lecture Notes in Computer Science, pages
1421-1438. Springer-Verlag, 2003.

[Ruane 84] L. M. Ruane. Abstract data types in assembly language programming. j-
SIGPLAN, vol. 19, no. 1, pages 63-67, January 1984.

[Rumbaugh 90| J. Rumbaugh, W. Lorenson & M. Blaha. Object-Oriented Modeling and
Design, 1990.

[Seco 00] J. Costa Seco & L. Caires. A Basic Model of Typed Components. In Elisa
Bertino, editeur, ECOOP, volume 1850 of Lecture Notes in Computer Science,
pages 108-128. Springer, 2000.

[Seco 02] C. J. Seco & L. Caires. ComponentJ in a nutshell, 2002.

[Seinturier 05] L. Seinturier. Réflexivité, aspects et composants pour l'ingénierie des in-
tergiciels et des applications réparties. Habilitation a diriger des recherches,
Université de Pariv VI, France, December 2005.

[Shaw 95| M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young & G. Zelesnik. Ab-
stractions for Software Architecture and Tools to Support Them. IEEE Trans-
actions on Software Engineering, vol. 21, no. 4, pages 314-335, April 1995.

[Shaw 96a] M. Shaw. Procedure Calls Are the Assembly Language of Software Intercon-
nection: Connectors Deserve First-Class Status. Lecture Notes in Computer
Science, vol. 1078, pages 17-32, 1996.

[Shaw 96b] M. Shaw & D. Garlan. Software architecture. perspectives on an emerging
discipline. Prentice-Hall, 1996.

[Siegel 00] J. Siegel. Corba 8 Fundamentals and Programming, January 2000.

[Sommerville 94] 1. Sommerville & G. Dean. PCL: A configuration language for modelling
evolving system architectures. Rapport technique, January 05 1994.

[Sreedhar 02| V. C. Sreedhar. Mizin’Up components, May 19-25 2002.

[Staehli 03] R. Staehli, F. Eliassen, J. @. Aagedal & G. S. Blair. Quality of Service Seman-
tics for Component-Based Systems. In Middleware Workshops, pages 153-157,
2003.

[Szyperski 96| C. Szyperski. Independently Extensible Systems — Software Engineering Po-
tential and Challenges. In Proceedings of the 19th Australian Computer Science
Conference, Melbourne, Australia, February 1996.

178 Bibliography

[Szyperski 02| C. Szyperski. Component Software: Beyond Object-Oriented Programming,
2002. 2nd edition.

[Turner 93| K. J. Turner, editeur. Using formal description techniques, an introduction to
estelle, lotos and sdl. Wiley, 1993. ISBN 0-471-93455-0.

[Uchitel 03] S. Uchitel, J. Kramer & J. Magee. Behaviour model elaboration using partial
labelled transition systems. In ESEC/FSE-11: Proceedings of the 9th European
software engineering conference held jointly with 11th ACM SIGSOFT inter-
national symposium on Foundations of software engineering, pages 19-27, New
York, NY, USA, 2003. ACM Press.

[UML 03] Object Management Group. Unified Modeling Language, March 2003. statut :
« Version 1.5 ».

[van den Bos 89| J. van den Bos & C. Laffra. PROCOL: A Parallel Object Language with
Protocols. In Norman Meyrowitz, editeur, OOPSLA’89 Conference Proceedings,
pages 95-102. ACM Press, 1989.

[van Ommering 00] R. van Ommering, F. van der Linden, J. Kramer & J. Magee. The
Koala Component Model for Consumer Electronics Software, March 2000.

[Vanderperren 03] W. Vanderperren, D. Suvée, B. Wydaeghe & V. Jonckers. PacoSuite and
JAsCo: A Visual Component Composition Environment with Advanced Aspect
Separation Features. In Mauro Pezzé, editeur, FASE, volume 2621 of Lecture
Notes in Computer Science, pages 166-169. Springer, 2003.

[Wang 02| C. Wang, A. Carzaniga, D. Evans & A.L Wolf. Security Issues and Requirements
for Internet-Scale Publish-Subscribe Systems, January 2002.

[Wegner 88] P. Wegner & S. B. Zdonik. Inheritance as an Incremental Modification Mech-
anism or What Like Is and Isn’t Like. Lecture Notes in CS, vol. 322, page 55,
1988.

[Wegner 97| P. Wegner. Why Interaction is more Powerful than Algorithms. Communica-
tions of the ACM, vol. 40, no. 5, pages 80-91, May 1997.

[Wirth 77] N. Wirth. MODULA : A Language for Modular Multiprogramming. Software
Practice and Experience, vol. 7, pages 3-35, 1977.

[Yellin 97] D. M. Yellin & R. E. Strom. Protocol Specifications and Component Adaptors.
ACM Transactions on Programming Languages and Systems, vol. 19, no. 2,
pages 292-333, 1997.

	I Résumé en Francais
	Résumé
	Domaine d'étude
	L'ingénierie des composants
	Protocoles d'interaction: formalismes connus

	Objectifs et propositions
	Le modèle CwSTS
	L'implémentation du modèle
	Perspectives

	Structure du mémoire de thèse

	II Work Context in English
	Introduction
	Objectives and Contributions
	Document Structure

	Component Models and Languages
	From Objects and Modules to Software Components
	Component Models
	Component Model Characteristics
	Academic Models
	Industrial Models

	From Components to Software Architecture
	Software Architecture Definition
	Software Connectors
	Software Architecture Use
	Architecture Description Languages (ADLs)
	Service-Oriented Architectures (SOA)
	Component-Oriented Programming (COP)
	The Coordination Paradigm

	Conclusions

	Interaction Protocols
	Introduction
	Formalisms
	Process Algebra
	Behavioral Types
	Finite State Machines
	Temporal Logics
	Other Approaches

	Component Models and Interaction Protocols
	Automata-Based Models
	Regular Types
	Coordination-Based Models
	Other Approaches

	Conclusions

	III Contribution in English
	A Component Model with Explicit Interaction Protocols
	Introduction
	Components, a Generative Approach

	Informal Presentation
	Components
	Interfaces
	Composition
	Life Cycle

	Model Definition
	Components
	Interaction Protocols
	Composition
	Component Substitutability

	CwSTS-Interface Description Language
	Primitive Components
	Composite Components
	Symbolic Finite State Processes (SFSP) a process algebra for STSs

	Conclusion

	CwSTS Implementation
	Component Implementation
	Introduction
	Java Packages and Component Entities
	Primitive Component Implementation
	Architectures Implementation

	Behavioral Composition Implementation
	Distributed Synchronization Mechanism
	Distributed Synchronization Mechanism Integration in CwSTS-P
	Distributed Synchronization Mechanism Evaluation
	Centralized Synchronization Mechanism
	Centralized Synchronization Mechanism Integration in CwSTS-P
	Centralized Synchronization Mechanism Evaluation

	Code Generation
	Conclusion

	Conclusions and Perspectives
	Perspectives

