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Segmentation robuste de lésions
focales de sclérose en plaques d’IRM
multi séquence

Introduction

L’objectif de cette thése est la création d’une application qui permettra la segmen-
tation automatique des lésions focales que 'on peut observer sur les images par
résonances magnétiques des patients atteints de sclérose en plaques (SEP). Dans
cette section, nous réalisons un résumé en francais du manuscrit qui a été écrit en
anglais. Nous conservons la méme structure et les mémes acronymes que dans le
document en anglais.

1. La sclérose en plaques et I'imagerie par résonance
magnétique

La sclérose en plaques est une des causes les plus importantes de handicap chez
le jeune adulte : elle touche plus de 80.000 personnes en France. L’imagerie par
résonance magnétique permet la visualisation du cerveau et est largement utilisée
dans le diagnostic et le suivi de patients atteints de SEP.

La sclérose en plaques

La sclérose en plaques est une maladie inflammatoire et démyélinisante du systéme
nerveux central qui a été décrite par Charcot [Charcot 1868].

Du point de vue clinique, la SEP peut étre décrite comme une maladie chronique
qui comporte une grande variété de symptomes différents. En fonction de I’évolution
de la maladie, on parle de quatre formes cliniques de la maladie ( Figure 1):

Récurrente-rémittente (RRMS) : 55% des patients ont ce type d’évolution qui
est caractérisé par des poussées suivies de rémissions de symptomes aprés une
courte période en laissant peu ou pas de handicap.

Secondaire progressive (SPMS) : 30% des patients sont SPMS ce qui se carac-
térise par une évolution progressive de la maladie qui peut étre accompagnée
de poussées.
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Primaire-progressive (PPMS) : I’évolution est progressive et sans poussée et
elle concerne 10% des patients de SEP.

Progressive-rémittente(RRMS) : se caractérise par une évolution progressive
de la maladie qui peut étre accompagnée de poussées et elle concerne 5% des
patients de SEP.

Progressive relapsing MS (PRMS)

Secondary progressive MS (SPMS)

Primary progressive MS (PPMS)

Relapsing-remitting MS (RRMS)

Increasing Disability

Time ——>

Figure 1: Evolution des quatre types cliniques de SEP. (Source:
http://commons.wikimedia.org/)

2. I’imagerie par résonance magnétique

L’imagerie par résonance magnétique (IRM) est un type d’imagerie médicale basé
sur les propriétés magnétiques de quelques noyaux atomiques comme 'hydrogéne,
qui sont présents dans les tissus du corps humain.

Lésions focales

I’TRM montre des anormalités dans la matiére blanche chez la majorité des patients
de SEP [Paty and Ebers 1997|. Ces anormalités ont été associées a des lésions dans
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des études qui combinent des analyses histopatologiques avec 'IRM [Groot et al.
2001].

Il y a plusieurs types de lésions focales et pour les classifier nous avons besoin de
plusieurs séquences IRM. Selon leur intensité, nous pouvons trouver trois types de
lésions (Figure 2):

Lésions T2-w : Ces lésions sont hyper-intenses comparées a 'intensité de la matiére
blanche en T2-w, PD et FLAIR. Elles ne sont pas spécifiques d’'un processus
particulier et sont produites par inflammation, oedéme, demyelinitiation ou
perte axonale.

Lésions avec prise de contraste en Gadolinium : Une augmentation dans le
contraste peut étre observée dans les images avant et aprés l'injection du
Gadolinium dans T1-w. Ces lésions sont moins nombreuses que les lésions
T2-w et sont associées au processus inflammatoire.

“Trous noirs” : Ces lésions sont hypo-intenses par rapport a la matiére blanche
dans les images T1-w. Il y a quelques hypo-intensités qui disparaissent apreés
un mois ou deux, donc I’hypo-intensité doit étre présente pendant au moins
trois mois pour étre considérée comme un trou noir. Les trous noirs sont
souvent associés a la perte axonale.

3. La segmentation des lésions de SEP

Nous pouvons classifier les méthodes de segmentation de lésion de SEP selon trois
facteurs: le degré d’intervention humaine, le nombre de dimensions et la stratégie
de fusion des informations des différentes séquences.

Selon le degré d’intervention humaine, nous pouvons différencier:

Interactives : Ces méthodes nécessite I'intervention d’un utilisateur humain pour
procéder a la segmentation. Nous pouvons différencier la segmentation semi-
automatique, ol la méthode aide I'utilisateur dans le processus de segmenta-
tion, et la segmentation complétement manuelle, qui est normalement utilisée
comme méthode de référence.

Automatiques : Les méthodes automatiques produisent une segmentation sans in-
teraction humaine. Nous pouvons classifier les méthodes entre supervisées et
les méthodes non-supervisées. Les premiéres ont besoin des données segmen-
tées pour “apprendre” comment segmenter les lésions tandis que les méthodes
non-supervisées extraient tout 'information exclusivement de 1’'image.

Souvent, plusieurs images du méme patient sont prises au cours du temps pour
suivre ’évolution de la maladie. Nous classifions les méthodes selon le nombre de
dimensions utilisées :

2D : Chaque coupe de l'image est segmentée indépendamment |Grimaud et al.
1996.
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(O Black Holes
O T2-w Lesions
O Gd T1-w Lesions

A Gd T1l-w

a

Figure 2: Exemples des lésions de SEP en IRM: T1-w, T2-w, FLAIR and T1-w avec
contraste en Gadolinium.

3D : Toute l'image est traitée comme une image 3D pour utiliser 'information
anatomique et spatiale [Van Leemput et al. 2001|.

3D+t : Quelques méthodes utilisent des informations temporales pour créer un
modéle temporal des lésions [Shahar and Greenspan 2004| ou pour utiliser
'information longitudinale redondante [Ait-Ali et al. 2005].

Finalement, les méthodes utilisent différentes stratégies pour combiner 'information
des séquences:

Mono-séquence : Quelque méthodes utilisent exclusivement une séquence pour
la segmentation des lésions, notamment FLAIR [Khayati et al. 2008, Anbeek
et al. 2008].

Multi-sequence-Parallel : Chaque séquence peut étre segmentée individuellement
pour ensuite fusionner les résultats pour améliorer la segmentation [Johnston
et al. 1996, Ardizzone et al. 2002].

Multi-séquence-Joint : Cees méthodes utilisent toutes les séquences en méme
temps afin d’améliorer la segmentation [Van Leemput et al. 2001, Zijdenbos
et al. 1994].
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Multi-séquence-Hierarchical : Dans ce cas, chaque séquence est utilisé pour une
tache spécifique, et le résultat de’une tache est utilisée pour simplifier la tache
suivante [Sajja et al. 2006, Dugas-Phocion et al. 2004a).

3. La chaine de traitement pour la segmentation des
lésions de SEP

La segmentation est la derniére étape d’une chaine de traitements qui comprend :
débruitage, correction des inhomogénéités, recalage et extraction du cerveau. Tout
ces traitements sont des prérequis nécessaires avant ['utilisation de la méthode de
segmentation.

Débruitage

Les images sont corrompues par le bruit lié au processus d’acquisition des images. De
nombreuses méthodes de correction du bruit ont été proposées pour les résonances
magnétiques. Dans notre cas, nous utilisons la méthode de moyennes non-locales
(NLM) [Coupé et al. 2008] qui a montré de meilleurs résultats que des approches
classiques comme la diffusion anisotropique et la variation totale.

Correction des inhomogénéités d’intensité

La non-uniformité du champ magnétique dans un scanner de résonance magnétique
est une des causes de 'inhomogénéité de I'intensité dans 'image. A cause de cet effet,
I'intensité d’'un méme tissu dans I'image varie selon sa position dans 'image. Cet
effet n’affecte pas la lecture effectuée par un radiologue mais il réduit la performance
des méthodes de segmentation et de recalage qui nécessitent que 'intensité des tissus
soit homogeéne. Nous avons réalisé une comparaison des différentes méthodes de
correction d’inhomogénéité d’intensité pour des images de patients atteints de SEP.
Ce travail nous a permis d’étudier la réduction obtenue avec chacune des méthodes

et son comportement autour des lésions. Nous avons retenu la méthode du logiciel
BrainVISA [Mangin 2000].

Recalage

Pendant ’acquisition de plusieurs séquences le patient peut bouger, ce qui provoque
que les images ne soient pas toujours spatialement alignées. Le processus d’alignement
des images s’appelle recalage et est nécessaire avant 1'utilisation des images dans la
segmentation. Nous utilisons une méthode de recalage qui se sert de I'information
mutuelle entre les deux images qui a été largement employée dans le traitement
d’images médicales. Nous utilisons, en particulier, une nouvelle méthode d’optimisation,
plus rapide que l'originale [Wiest-Daesslé et al. 2007].
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Extraction du cerveau

Pour simplifier la segmentation des lésions de SEP, dans la plupart des méthodes,
il faut extraire le cerveau et éliminer les restes de voxels. Cette étape est trés
compliquée parce que le cerveau est trés hétérogéne et les structures voisines peu-
vent étre confondues avec lui. Une comparaison des méthodes a été réalisée récem-
ment |[Fennema-Notestine et al. 2006]. Nous utilisons une méthode qui se base sur
un modeéle déformable qui est adapté au bord du cerveau en utilisant des forces
locales [Smith 2002]; et qui a été utilisé dans la segmentation du cerveau de patients
de SEP |Akselrod-Ballin et al. 2006, Lao et al. 2008].

Chaine de traitement proposée

L’objectif de cette chaine de traitement est de traiter les images originales provenant
du scanner et d’obtenir une image de sortie o chaque voxel est identifié comme
matiére blanche (WM), matiére grise (GM), liquide céphalo-rachidien (CSF) ou
autre. Nous proposons la chaine de traitement décrite dans la Figure 3. Les images
sont débruitées (Denoise) et ensuite 'inhomogénéité d’intensité est corrigée (ITH
correction) sauf pour I'image T2-w. En utilisant FLAIR comme référence, les images
sont recalées rigidement (Registration) et le cerveau est extrait grace a 'image T1-w
(Skull Stripping). Nous allons par la suite décrire trois méthodes de segmentation
qui pourraient étre utilisées comme derniére partie de cette chaine.

4. STREM: Estimation robuste pour la segmentation
des lésions de SEP

Dans la derniére section, nous avons proposé une chaine de traitement pour la seg-
mentation. Dans cette section, nous présentons STREM [Ait-Ali 2006, une ap-
proche paramétrique qui servira de base pour les prochaines méthodes. En plus,
nous décrirons quelques modifications pour améliorer la méthode.

Meéthode

La méthode classifique chaque voxel du cerveau comme une de quatre classes suiv-
antes: WM, GM, CSF, or MS lésions. Nous utilisons un protocole IRM classique
(T1-w, T2-w and PD) comme entrée de la méthode mais d’autres séquences, comme
FLAIR, peuvent étre intégrées avec quelques modifications. La Figure 4 montre la
chaine de traitement proposée pour la segmentation de lésions de SEP. Les images
sont débruitées, les inhomogénéités sont corrigées et toutes les images sont recalées
dans le méme espace. Notre algorithme de segmentation est composé de trois étapes:
estimation du modéle NABT, détection de données aberrantes et utilisation des ré-
gles pour sélectionner les lésions parmi toutes les données aberrantes.
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T1l-w T2-w FLAIR

v v

Denoise

IIH
correction

Skull
Stripping
Reformating
Image

s,
s,
S,
s,
S,

Piae
Piae
Piae

MS lesion

Segmentation _)Segmentation

method

Figure 3: Chaine de traitement proposée pour la segmentation de lésions de SEP.

Estimation du modéle NABT

Le bruit dans les IRM suit normalement une loi ricienne |Dietrich et al. 2008] qui
est souvent approximé pour une loi gaussienne quand le rapport signal-bruit est
élevé. La distribution des intensités de chaque tissu du cerveau peut étre approx-
imé par une loi gaussienne. Pour le cerveau, nous utilisons un modéle avec trois
Gaussiens (GMM!) ou chaque Gaussien correspond a un des tissus d’apparence nor-
male (NABT) du cerveau : WM, GM et CSF.

Le vecteur des intensités y; = [y;, ...y, | du voxel i peut étre modelé comme

3

Fil) =Y a;- N(p;, %)) (1)

=1

oil la moyenne p; et la matrice de covariance 3; font partie de la Gaussien N (p;, X;).
Tous les paramétres font partie de vecteur de parameétres 6.
Ce modéle est souvent calculé grace a I’estimateur de maximum de vraisemblance

(MLE):

0 = arg max L(f) = arg maxH f(yil0) (2)
0 o i

'En anglais Gaussian Mixture Model
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T1l-w T2-w PD-w
4 )
Preprocessing Preprocessing Preprocessing
- J

Skullstripping | g~ “w ~ 3
— ™Y NABT

\

estimation

Detection of

|

|

|

|

|

|
Candidate [
Lesions '
|

|

|

|

o Classified
Heuristic Rules|—» Image
!

< Segmentation /'

~ T - - - = =

\

Figure 4: Schéma de la méthode STREM.

si on considére y; comme étant des variables identiques et indépendantes.

Pour obtenir le MLE, lalgorithme d’expectation-maximisation (EM) est souvent
utilisé parce qu’il est trés simple a implémenter et qu’il converge toujours vers un
maximum local de vraisemblance. Mais il a deux limites. La premiére limite vient
du fait que 'EM garantit seulement ’obtention d’un maximum local; différentes
initialisations de ’algorithme peuvent donner différentes solutions, c¢’est pouquoi une
initialisation correcte de 'EM est importante. La deuxiéme limite est la sensibilité
du MLE aux données aberrantes. Nous proposons deux solutions pour minimiser ces
limites : utiliser une approche hiérarchique pour I'initialisation de I'EM et remplacer
le MLE par l'estimateur de vraisemblance tamisée (TLE).

Initialisation hiérarchique

Notre méthode est basée sur I'utilisation des initialisations aléatoires pour minimiser
la possibilité de converger vers un maximum local. En plus, nous profitons du bon
contraste existant dans la séquence T1-w pour réduire le temps de calcul. Il y a
deux avantages par rapport a Uinitialisation par atlas [Ait-Ali 2006]: le recalage de
I’atlas est long et ce type d’initialisation peut ne pas étre optimale chez des patients
qui ont une grand atrophie ou une large charge lésionelle.
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Estimateur de vraisemblance tamisé

Neykov et al. [Neykov et al. 2007 a proposé I'estimateur de vraisemblance tamisée
qui est une modification du MLE pour le rendre plus robuste aux données aberrantes.
L’idée est de maximiser la vraisemblance tamisée

k
TLE) = [ [ fvuw]6) (3)
i=1
ou le paramétre k détermine combien de voxels sont rejetés de l'estimation et v/(i)
ordonne les voxels en fontion de sa probabilité

fyuwl0) = fyv@)l0) = . = f(yuwlf)- (4)

Il est prouvé que cet estimateur converge vers un maximum local de TL et qu’il
peut étre robuste méme en présence de n — k données aberrantes.

Détection des possibles lésions

Une valeur trés élevée du parameétre k doit étre choisie pour étre sur que ’estimation
du modéle NABT ne soit pas affectée par les lésions et autres artefacts. Pour affiner
la sélection des données aberrantes nous utilisons la distance de Mahalanobis entre le
voxel i et chacune des Gaussiens. Si la distance de Mahalanobis est supérieure a un
seuil donné pour la loi x2,, le voxel est considéré comme étant une lésion candidate.

Reégles

Les voxels détectés avec la distance de Mahalanobis incluent les 1ésions, les vaisseaux,
et d’autres artefacts de I'image. Nous utilisons trois régles pour rejeter les voxels
qui ne sont pas des lésions

Intensité : Les lésions de SEP sont hyper-intenses comparées avec la WM en T2-
w, PD et FLAIR. Un voxel est considéré comme lésion seulement si I'intensité
dans les trois séquences est hyper-intense.

Taille : Pour éviter de fausses détections, une lésion doit étre d’une taille minimale
de 3 voxels.

Voisinage : 1l y a de nombreux artefacts dans le CSF externe. Pour éviter de
fausses détections, nous éliminons toutes les détections qui ne sont pas con-
tigues a la WM.

5. MS4MS: Mean shift Appliqué a la SEP

Dans la derniére section, nous avons présenté STREM, une méthode pour la seg-
mentation de lésions qui est basée exclusivement sur l'intensité des voxels. Dans
ce chapitre, nous proposons une nouvelle méthode pour la segmentation ol nous
incluons l'information spatiale en plus de I'information d’intensité.
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Notre hypothése est que la segmentation d’un voxel isolé est plus compliquée
que la segmentation d’une région de I'image. Une région est une groupe de voxels
dans une méme partie de 1'image avec des caractéristiques d’intensité similaires.
Premiérement, nous divisons le cerveau en régions grace a I'algorithme mean shift et
deuxiémement, nous classifions les lésions en utilisant la méthode STREM proposée
dans la derniére section.

Mean Shift

L’algorithme mean shift est une technique non paramétrique qui sert a estimer le
gradient de la densité de probabilité proposé |[Fukunaga and Hostetler 1975]. Co-
maniciu et Meer [Comaniciu and Meer 2002] ont appliqué le mean shift pour le
traitement d’images comme la segmentation ou le suivi vidéo. Dans la segmenta-
tion, cet algorithme crée un nombre indéterminé de régions en utilisant seulement
I'information locale.

Récemment, le mean shift a été employé pour la segmentation d’'IRM de sujets
sains [Jimenez-Alaniz et al. 2006, Mayer and Greenspan 2009|. Les premiers ont
utilisé le mean shift pour créer des régions qu’ils ont ensuite classifiées a I'aide d’un
atlas en WM, GM et CSF. Les deuxiémes ont utilisé une version adaptative du mean
shift [Georgescu et al. 2003] pour créer des régions et ils les ont classifiées en utilisant
I’algorithme de k-moyennes.

Méthode

La Figure 5 montre un schéma de notre méthode. Nous utilisons le modéle NABT qui
sert a normaliser toutes les séquences et a détecter les lésions candidates. Ensuite,
nous utilisons le mean shift pour diviser le cerveau en régions. Finalement, chaque
région est identifiée et les lésions sont déterminées en utilisant les régles heuristiques.

Estimation du modéle NABT

Nous réalisons I'estimation du modéle NABT de la méme fagon que pour STREM.
Nous considérons un modéle avec trois Gaussiens qui représentent les trois tissus du
cerveau GM, WM et CSF. Nous utilisons le TLE pour estimer les paramétres du
modéle afin d’éviter que les lésions affectent 'estimation.

Normalisation des séquences

Toutes les images sont normalisées avant d’étre segmentées avec le mean shift. Nous
normalisons les images pour que la variance de la matiére blanche dans toutes les
séquences soit égale a 10.000. Cela permet de fixer les paramétres du mean shift
pour toutes les images.

Segmentation par mean shift

Comme expliqué précédemment, le mean shift crée un nombre indéterminé de ré-
gions. Notre hypothése est que chaque région appartient seulement a un tissu et
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Figure 5: Schéma de la méthode MS4MS.

que l'identification d’une région est plus simple que l'identification de chaque voxel
indépendamment.

Fusion de régions

Pour réduire le nombre de régions données par le mean shift, nous utilisons une méth-
ode pour fusionner les régions. Dans les parties de 'image qui sont homogénes, le
mean shift peut créer trop de régions. Pour réduire le nombre de régions, nous fusion-
nons deux régions si la distance entre les deux est inférieure a un seuil donné [Soille
2008].

Dénormalisation

Aprés la segmentation donnée par le mean shift, nous dénormalisons les images pour
récupérer les intensités originales pour chaque région.

Détection de lésions candidates

De la méme facon que pour STREM, nous utilisons la distance de Mahalanobis pour
détecter les régions qui sont des lésions candidates.
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Reégles

Pour limiter le nombre de fausses détections, nous appliquons les mémes régles que
pour STREM.

6. GCEM: Segmentation de lésions de SEP par coupe
de graphes

Dans la plupart des situations, les médecins voudraient corriger les segmentations
fournies par les méthodes automatiques de segmentation. Les méthodes de segmen-
tation par coupes de graphes® (GC) [Boykov and Funka-Lea 2006] sont des méthodes
semi-automatiques qui ont été employées dans des domaines médicaux différents avec
de bonns résultats.

Dans ce chapitre, nous étudions la possibilité d’automatiser les méthodes par
coupe de graphes. L’objectif est de proposer une méthode automatique que soit
rapide et qui donne la possibilité aux experts de corriger facilement une segmenta-
tion. Ce travail a été réalisé en collaboration avec J. Lecoeur.

La coupe de graphes

Les méthodes par coupe de graphes minimisent une énergie qui se compose de deux
termes: un terme régional (regional term) et un terme de contour (boundary term).
Le terme de contour mesure la similarité des voxels voisins et le terme régional mesure
la similarité des voxels avec les caractéristiques d’intensité de I'objet & segmenter.

Méthode

Notre approche est décrite dans la Figure 6. Nous utilisons le gradient spectrale
comme terme de contour et nous utilisons une méthode paramétrique pour déter-
miner les terme régional.

Terme de contour

La coupe de graphes souvent a été utilisée dans des méthodes de segmentation mono-
séquence mais nous 'appliquons la segmentation multi-séquence de lésions de SEP.
Nous utilisons le gradient spectral proposé pour la segmentation semi-automatique
des cerveaux et des lésions de SEP [Lecoeur 2010].

Le gradient spectral considére que les les trois séquences IRM forment une
pseudo-image couleur RVB, ce qui permet d’utiliser un détecteur de contour col-
orimétrique [Lecoeur 2010].

Terme régional

Nous utilisons une approche similaire a celle de STREM. Dans un premier temps,
nous estimons les modéles d’intensité du cerveau en utilisant un modéle avec trois

2En anglais graph cut
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Figure 6: Schéma de la méthode GCEM.

classes Gaussiens. Ensuite, nous utilisons la distance de Mahalanobis pour définir
les zones de l'images qui ont des intensités eloignées de notre modéle de tissus
d’apparence normale. La grande différence par rapport a STREM, c’est la sub-
stitution des seuils pour des régles floues pour incrémenter 'information fournie a
la coupe de graphes.

7. Validation

Dans cette section nous évaluons la précision de notre segmentation et nous com-
parons les méthodes proposées avec les segmentations manuelles réalisées par des
experts. Ici nous montrons une partie de la validation réalisé dans le manuscript.

Données de MINI

Les images des dix patients ont été prises a I'Institut Néurologique de Montréal
(MNI). Le protocole d’acquisition consiste en des images T1-w, T2-w et PD avec
des coupes de 3 mm et une résolution de 1 mm.

Les images ont été segmentées manuellement deux fois par 5 experts, au total il y
a dix segmentations par image. Pour obtenir une vérité terrain afin de comparer nos
algorithmes, nous avons utilisé une méthode de consensus. Dans notre vérité terrain,
un voxel est considéré comme lésion seulement si au moins 6 des 10 segmentations
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Figure 7: Résultat de la segmentation avec les données du MNI, en utilisant notre
approche en deux étapes pour adapter notre méthode a la charge lésionelle. Nous
utilisons le coefficient de Dice (DSC) dans ’évaluation.

considérent que le voxel est une lésion. Cette méthode nous permet de réduire les
problémes de variabilité existant entre les experts.

Résultats

La Figure 7 montre les résultats de nos algorithmes en comparaison avec la variabilité
des experts. Nous observons que nos méthodes obtiennent des résultats similaires
a celles des experts (IRDSC). Dans la Figure 8, nous observons une coupe de la
segmentation et nous pouvons voir la similarité entre nos méthodes et la vérité
terrain.

Conclusion

Cette theése porte sur les méthodes automatiques de segmentation des lésions de
SEP dans des images par résonance magnétique. Cette segmentation joue un role
trés important dans les études cliniques ou la mesure précise du volume des lésion
est utilisée comme biomarqueur. Dans ce document, nous avons présenté une bréve
introduction de la SEP et 1'utilisation de 'TRM dans I’étude de la maladie. Nous
avons remarqué l'importance de 'analyse automatique des images pour réduire la
variabilité et nous avons proposé un classification des méthodes de segmentation des
lésions de SEP.

Les travaux de thése de Laure Ait-Ali [Ait-Ali 2006], qui a introduit 'estimateur
de vraisemblance tamisé (TLE) pour la segmentation du cerveau et des lésions de
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Figure 8: Résultats de la segmentation pour le patient 4. De haut en bas et de
gauche a droite: T1-w et T2-w; PD et la vérité terrain; STREM et MS4MS; GCEM
et EMS Van Leemput et al. [2001].



20 Résumé

SEP, ont été notre point de départ. Dans sa méthode STREM, chaque voxel est
classifié en fonction de son intensité sans utiliser d’information spatiale.

Nous avons considéré que la classification d’une région de I'image est plus facile
que la classification d’un seul voxel. Nous avons donc proposé¢ MS4MS, une méth-
ode qui, dans un premiér temps, crée plusieurs régions dans I'image & en utilisant
I’algorithme mean shift, et les segmente ensuite grace au TLE.

Les segmentations automatiques sont trés souvent vérifiées par un expert qui
valide la segmentation ou la modifie en cas d’erreur. Les méthodes de coupe de
graphes permettent la segmentation semi-automatique d’une facon interactive. En
collaboration avec Jeremy Lecoeur, qui a travaillé sur la segmentation semi-automatique
avec des méthodes de coupe de graphes [Lecoeur 2010|, nous avons proposé une
méthode automatique pour la segmentation de lésions de SEP. [’avantage de cette
nouvelle méthode c’est que le résultat obtenu par la méthode automatique peut étre
modifié par un expert.

Les trois méthodes ont été validées en utilisant des images synthétiques et clin-
iques. Les images synthétiques ont permis d’étudier le comportement des méthodes
avec des niveaux de bruit et inhomogénéité différents. En plus, les images cliniques
nous ont permis d’évaluer nos méthodes dans des conditions réelles.

Contributions

Nous pouvons différentier deux contributions principales dans ce travail. Nous avons
proposé deux nouvelles méthodes pour la segmentation automatique des lésions de
SEP. Premiérement, nous avons étudié le comportement de STREM et proposé
plusieurs améliorations. Deuxiémement, nous avons proposé deux approches dif-
férentes pour inclure de 'information spatiale qui se sont montrées efficaces contre
le bruit et I'inhomogénéité. En plus, nous avons proposé une cadr de validation pour
les méthodes de segmentation de lésions de SEP composé de trois étapes: étude des
paramétres de la méthode, évaluation avec des données synthétiques et validation
avec des images cliniques. Cette approche a été employée avec les trois méthodes ce
qui a permis de comparer le méthodes a plusieurs niveaux.

Limites
Définition des lésions

La validation avec les images clinique a montré des résultats contradictoires. *

Nos méthodes automatiques ont obtenu des résultats similaires a la segmentation
manuelle dans une base de données cliniques mais les résultats dans l'autre base
de données cliniques étaient trés différents. Les deux bases de données proviennent
de deux centres différents, elles ont été acquises avec des scanners différents et,
différence plus importante, la définition des lésions pour la segmentation manuelle
n’était pas la méme. La variabilité obtenue pendant le workshop de segmentation a
MICCATI’'08 est un exemple de la grande variabilité existant dans la définition des
lésions entre les différentes centres spécialisés en SEP. Un groupe international de
travail devrait étre créé pour établir une définition commune des lésions et réduire
cette variabiliteé.
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Informations globales et locales

Les deux méthodes proposées combinent des informations globales et locales. Nous
avons démontré comment 'inclusion de cette information locale améliore les résul-
tats des méthodes en présence de bruit et inhomogénéité d’intensité. Les 1ésions
sont hétérogenes et peuvent paraitre plus ou moins hyper-intense sur les images.
L’utilisation d’une définition globale de hyper-intensité peut empécher la détection
de certaines lésions. L’utilisation des définitions locales d’hyper-intensité devrait
réduire ce phénoméne.

Chaine de traitement

Pour utiliser une méthode de segmentation, elle doit étre incluse dans une chaine
de traitement. Nous avons proposé une chaine de traitement mais le choix de cette
chaine de traitement été réalisé a partir d’expériments réalisées seulement avectrois
patients. La validation de la chaine doit évaluer chacun des traitements indépen-
damment ainsi que sa position dans la chaine dans une processus de validation plus
complexe.

Perspectives
Perspectives méthodologiques

Nos méthodes détectent fauusses lésions sur les images FLAIR due aux nombreux
artefacts présent dans ce type d’images. Il est nécessaire de créer d’autres régles pour
éviter ces effets. Notre modéle contient seulement trois gaussiennes pour modeler les
intensités du cerveau. L’utilisation de modéles paramétriques plus complexes avec
I'inclusion de volumes partiels ou une estimation locale des paramétres pourrait
améliorer I'estimation du modéle NABT.

Perspectives liées a la validation

L’utilisation de plusieurs segmentations manuelles proportionne plus d’information
lors du processus de validation. Une priorité est d’augmenter le nombre de segmen-
tations manuelles sur les images de Rennes pour réaliser une validation plus compléte
et comprendre les résultats obtenus. Nous considérons que la validation doit aussi
inclure la comparaison avec d’autres méthodes de segmentation. Nous voulons seg-
menter les images du workshop MICCAI avec les deux nouvelles méthodes pour
faciliter la comparaison de nos méthodes avec d’autres centres de recherche, malgré
les limites de ce workshop.

La derniére étape de validation consisterait & utiliser nos méthodes avec des
images venant des grandes études cliniques pour tester la performance dans des cas
réels et étudier la corrélation des lésions avec ’évolution de la maladie. Un autre
aspect important a étudier est la reproductibilité. Ce type d’analyse a besoin de
protocoles d’acquisition particuliers ot nous acquérons plusieurs images du méme
patient sur une courte période de temps pour que la maladie n’ait pas le temps
d’évoluer.
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Perspectives liées a 1’application

L’hopital universitaire de Pontchaillou (Rennes, France) fait partie d’un projet multi-
centrique qui vise a étudier 'utilisation d’un nouveau produit de contraste, ’'USPIO.
Notre objectif est de mettre au point un logiciel automatique et facile & utiliser pour
la segmentation de lésions de SEP. De nouveaux développements seront nécessaires
pour intégrer de nouvelles images obtenues avec I’'USPIO.

Un autre aspect important est la distribution des méthodes de segmentation.
Notre méthode de segmentation est en train d’étre incluse dans NeuroLOG. Neu-
roLOG est un projet ANR qui vise a développer un réseau distribué avec pour but
de partager les données cliniques et les chaines de traitement pour ces données entre
plusieurs sites francais, faisant transparent pour les utilisateurs ’hétérogénéité exis-
tante entre les différents sites. En plus, nous sommes en train d’intégrer notre chaine
de traitement sur notre propre site web. De la méme facon que d’autres méthodes
sont dispobiles en ligne, nous allons proposer un service web qui permettra d’'utiliser
nos méthodes de segmentation en ligne® .

http://www.irisa.fr /visages/benchmarks/



Introduction

Since ancient times, humans have tried to heal each other using different treatments
varying from medical herbs to magic rituals which were often linked with traditions,
superstition and religion.

Modern medicine applies the scientific method in the discovery of treatments.
Evaluations of the safety and efficacy are necessary before accepting a new treatment.
These evaluations are performed in form of a clinical trial.

Clinical trials study the effects of a treatment on a cohort of patients and healthy
subjects so as to evaluate its efficacy, limitations and secondary effects. The outcome
of these trials often includes clinical examinations, laboratory analyses and medical
images. The statistical power of clinical trials depends, amongst other things, on
the number of patients studied and the variability of the outcome measures.

Multiple sclerosis (MS) is the most common disabling neurological disease among
young adults. Medical imaging, especially magnetic resonance imaging (MRI), is
employed in clinical trials as a secondary outcome, but the interpretation of these
images varies depending on the expert who performs the interpretation. This vari-
ability in the interpretation of images requires a large cohort of patients in order to
obtain statistically significant results.

In this document, we focus on the focal lesions of the brain that are present
in the majority of the images of MS patients. The lesions are associated with the
demyelinating process that occurs in MS and their number and volume are used as
measure in clinical trials. The manual delineation (or segmentation) of MS lesions
is a time-consuming task which shows high inter- and intra-expert variability.

The objective of this work is to obtain an automatic, accurate and reliable seg-
mentation of focal MS lesions in MRI of patients with MS. The objective is to
simplify the processing of large cohorts of patients and eliminate the variability in
experts’ interpretations, which should increase the statistical power of clinical trials.

This document is organized as follows.

Chapter 1: Multiple Sclerosis and Magnetic Resonance Imag-
ing

In this chapter, we propose an overview of multiple sclerosis and the applications of
MRI used in the study of the disease.

23
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Chapter 2: Segmentation of MS Lesions on Conventional MRI

In the second chapter, we propose a classification of MS lesion segmentation methods
and describe the validation of these methods.

Chapter 3: MS Lesion Segmentation Workflow

In the third chapter, we introduce the concepts of segmentation method and segmen-
tation workflow and propose a workflow for the segmentation of MS lesions. Part of
this work has been published in a international abstract conference |[Garcia-Lorenzo
et al. 2008b] and an international workshop [Garcia-Lorenzo et al. 2008d].

Chapter 4: STREM: Spatio-Temporal Robust Expectation Max-
imization

In this chapter, we introduce STREM, the segmentation method developed by Laure
Ait-Ali [ATt-Ali 2006], propose several improvements, and study the influence of the
parameters on the behavior of this method. The improved version of STREM was

entered into the segmentation challenge held during MICCAT 2008 |Garcia-Lorenzo
et al. 2008c].

Chapter 5: MS4MS: Mean Shift Clustering for MS Lesion
Segmentation
In the fifth chapter, we describe a new segmentation method where global and

local information is used to obtain a more robust segmentation. This method was
presented at an international workshop |Garcia-Lorenzo et al. 2008a].

Chapter 6: GCEM: A Graph Cut Approach With an Expectation-
Maximization Initialization

In this chapter, another method for the segmentation of MS lesions is presented.
The advantage of this method is that it offers the possibility of refining the result
semi-automatically using the graph cut approach. This method was presented in an
international conference |Garcia-Lorenzo et al. 2009].

Chapter 7: Validation

In the last chapter, we validate the three methods using one synthetic database and
two databases with clinical images. We also compare the three methods using a
freely available state-of-the-art algorithm.



Chapter 1

Multiple Sclerosis and Magnetic
Resonance Imaging

Multiple Sclerosis (MS) is one of the main causes of handicap in the young adult and
affects around 80,000 people in France [ARSEP 2010]. Magnetic Resonance Imaging
(MRI) is a non-invasive imaging technique that offers the possibility of visualizing
the brain. It is a sensitive marker for MS and is extensively used in diagnosis,
follow-up and prognosis.

In this chapter we introduce the role of MRI in MS. The first section describes
MS and its main characteristics. The second section focuses on the application of
MRI in MS;, its advantages and its limitations.

1.1 Multiple Sclerosis

Multiple sclerosis is a chronic autoimmune disease which affects the central nervous
system (CNS). Although some treatments slow the evolution, to date there is no
known cure for MS.

It was first described by Charcot [Charcot 1868] and was named after the scars (in
French sclérose) that are caused by the disease. The brain is composed of neurons
that are divided into cell body and axon (Figure 1.1). The axon of the neuron
transmits information and is covered by sheaths of myelin. The myelin sheaths are
composed of lipids and proteins and accelerate the transmission of information along
the axon. In MS, the myelin is destroyed, causing problems in the transmission of
information and, in a later stage of the disease, the axon can be destroyed, causing
neurological handicap.

The destruction of myelin can occur at any location in the CNS (brain and spinal
cord). Depending on the location of the destruction, the symptoms vary. In this
section, we will briefly describe some aspects of MS that might be necessary for the
understanding of this manuscript. For more details, the reader can refer to these
reference books [Compston et al. 2006, Paty and Ebers 1997].

25
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Figure 1.1: Diagram of a neuron and the destruction process: a) Structure of a
healthy neuron. b) Demyelination process. c) Destruction of the axon. Modified
from msdecision.org.uk .

1.1.1 Pathology

The first description of multiple sclerosis was given by the pathological analysis of
the brain [Charcot 1868]. He observed destruction of myelin sheaths and injury of
the axons. For more details, the reader can refer to this review paper [Lassmann
2005].

Luccinetti et al. [Lucchinetti et al. 2000] discovered the heterogeneity of MS le-
sions. They analyzed 51 biopsies and 32 autopsies with histologically proven MS,
studied lesions accounting for structural and immunological features and differenti-
ated four different patterns of demyelination.

This heterogeneity in MS could explain the partial results obtained by some
treatments. For example, Gold and Hartung [Gold and Hartung 2005| observed
that patients with pattern II responded to plasma exchange while patients with
patterns I or IIT showed no response.

1.1.2 Causes

The cause of MS is unknown, although there is a range of factors that lead to higher
chances of developing MS.

Several epidemiological studies have been performed to study the distribution
of the disease in order to discover environmental factors that could be responsible
for the development of the disease. The incidence of the disease varies according to
geographical location (Figure 1.2). MS is more common the further we go from the
tropics although no determining factors have been found [Paty and Ebers 1997].

Many studies evaluated the genetic susceptibility to MS. For example, they found
that the probability of two monozygotic twins to have MS was around 25% while the
probability of MS in dizygotic twins was around 4% [Ebers et al. 1986]. Researchers
are trying to find the gene or set of genes that causes this susceptibility [Dyment
et al. 2004].

The hypothesis of MS being caused by a virus is yet to be discarded. In 90% of
patients with MS, high concentrations of IgG antibodies were found. High concen-
trations of IgG are also found in other inflammatory and infectious diseases where
the IgG is directed against the virus. Although no virus has been isolated or directly
linked with MS, Gilden |Gilden 2005] suggested that “MS is an immune-mediated
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Figure 1.2: Regional prevalence of multiple sclerosis around the world (Source:
http://commons.wikimedia.org).

disease, probably triggered by an infectious agent”.

1.1.3 Evolution of the Disease

From a clinical point of view, MS was first described as a chronic disease with neu-
rological attacks that could be followed by remission of the symptoms. An attack,
also called relapse, is defined as a symptom or symptoms of neurological dysfunction
which last more than 24 hours [Poser et al. 1983|. Remission refers to the improve-
ment of the symptoms of an attack. To be considered remission, the improvement
should last at least for one month.

An international survey among neurologists pointed out different types of evo-
lution in patients with MS [Lublin et al. 1996]. Four different clinical types of MS
were defined according to this survey (Figure 1.3). No relation has yet been found
between the four patterns of demyelination and the four clinical types of MS.

The most common type is the relapsing-remitting MS (RRMS), where sudden
relapses of handicap remit after a short period of time, from days to months, leaving
little or no handicap. This type accounts for 55% of MS patients. In a later stage of
the disease, the majority of RRMS patients converts to secondary progressive MS
(SPMS). This type of MS is characterized by a progressively increasing handicap
after RRMS period and affects 30% of MS patients.

Progressive-remitting MS (PRMS) is characterized by the progressive evolution
of the disease in addition to relapses, and affects only 5% of patients with MS.
Primary progressive MS (PPMS) shows a progressive evolution with no relapses and
affects 10% of MS patients.
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Figure 1.3: Evolution of the four different clinical types of multiple sclerosis. (Source:
http://commons.wikimedia.org/)

1.1.4 Diagnosis

Treatments for MS try to preserve the brain from axonal loss. To reduce axonal loss,
early diagnosis of MS is important. Multiple Sclerosis is a demyelinating disease and
only the histopathological analysis of the brain after death can confirm with absolute
certainty the MS diagnosis. Clinical criteria were developed for the diagnosis of MS
during patient’s life. The objective of these criteria is to verify the dissemination of
the disease in time and space.

The first clinical criteria were defined using only neurological examinations [Schu-
macher et al. 1965]. Then the Poser criteria [Poser et al. 1983] included other tests:
CSF analysis, evoked potentials and tissue imaging. These tests were used to confirm
the diagnosis but neurological examinations constituted the main source of informa-
tion. Two relapses with different symptoms were required to verify the dissemination
of the disease in time and space.

MRI shows abnormalities in 95% of patients with MS. With the generalization of
MRI scanners, several MRI criteria were proposed for the diagnosis of MS. In these
criteria, only the number and location of the lesions visible on MRI were used to
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make the diagnosis. The Barkhof criteria were the most widely used [Barkhof et al.
1997].

In 2001, the International Panel on the Diagnosis of Multiple Sclerosis presented
its new diagnostic criteria [McDonald et al. 2001|, known as the McDonald criteria.
Basically, these new criteria incorporated the MRI information proposed by the
Barkhof criteria into the Poser criteria. In these criteria, MRI plays an important
role in demonstrating the dissemination of lesions in time and space. The McDonald
criteria were revised in 2005 in order to account for new findings in spinal cord
imaging and CSF analysis [Polman et al. 2005].

1.1.5 Disability

The variability in the symptoms and evolution of the disease complicates longitudinal
and group studies. Kurtzke proposed a disability scale to evaluate the impairment
of MS patients known as the Expanded Disability Status Scale (EDSS) [Kurtzke
1983|. This scale ranges from 0.0 (no disability) to 10.0 (death). and evaluates eight
different functional systems: pyramidal, cerebellar, brainstem, sensory, bowel and
bladder, visual, cerebral, and other. For each functional system, there is a Func-
tional System Scale (FSS) which measures the handicap on this particular functional
system. EDSS is used in clinical practice in the follow-up of patients and in clinical
trials to measure the efficacy of new treatments.

EDSS is heavily weighted towards movement handicap. Other measures, such
as MSFC |Fischer et al. 1999|, were developed in order to take into account the
cognitive handicap.

1.2 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI), previously called nuclear magnetic resonance
imaging (NMR), is a medical imaging technique based on the magnetization prop-
erties of some nuclei of some elements such as hydrogen, which are contained in the
body tissues. MRI is a non-ionizing technique well adapted for repeated examina-
tions and follow-up studies.

In MRI, tissues are, at a given strength of the magnetic field, characterized by
their relaxation time constants T1 and T2. Several MR Sequences can be used
to acquire images with different intensity contrasts. Depending on the sequence
parameters, the images will be weighted on T1, T2 or proton density (PD) . For a
better understanding of MRI the reader can refer to these reference books [McRobbie
et al. 2003, Haacke et al. 1999|.

Intensity abnormalities can be found in the conventional MR images of 90%
of patients with MS. Among the conventional MR sequences employed in clinical
practice [Traboulsee et al. 2005], there are :

e Dual Echo: two different images are obtained: T2-weighted (T2-w) and proton
density weighted (PD).

e Tl-weighted without a contrast agent (T1-w).
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e Tl-weighted after the injection of a contrast agent (Gadolinium) (Gd T1-
w): Gadolinium is a paramagnetic ion that modifies the relaxation times and
increases the intensity contrast in the inflamed regions of the brain.

e Fluid Attenuating Inversion Recovery (FLAIR): This sequence suppresses the
intensity of the fluids in the brain increasing the contrast between the CSF
and the periventricular lesions.

Non-conventional MRI techniques [Filippi and Rocca 2005] yielding interesting
findings have been proposed but their use is up to now restricted to research. These
techniques include: magnetization transfer (MT), diffusion weighted imaging (DWT)
and proton MR spectroscopy (*H-MRS). The set of MR sequences that is acquired
from a patient in one session is referred to as an MR protocol.

In the next sections we describe the three main aspects studied using MRI: focal
lesions, atrophy and normal appearing brain tissues.

1.2.1 Focal Lesions

Conventional MRI images show signal abnormalities in the white matter in the
majority of MS patients [Paty and Ebers 1997]. These signal abnormalities have
been associated with lesions in combined MRI and histopathological analysis |Groot
et al. 2001].

Although lesions also exist in the gray matter [Kidd et al. 1999|, they are hard
to distinguish on conventional MRI due to the low contrast between the intensity
of the gray matter lesions and the intensity of the surrounding gray matter. Geurts
et al. [Geurts et al. 2005] compared the detection of cortical lesions in postmortem
MRI and histopathology. They only detected 5% of the gray matter lesions observed
in the histopathology on FLAIR images.

Several MR sequences are necessary in order to classify the MS lesions. Signal ab-
normalities are classified into three types of MS lesions according to their intensities
in the MR images (Figure 1.4):

T2-w lesions: These lesions have a hyper-intense signal compared to the white
matter (WM) in T2-w, PD and FLAIR. These lesions are not specific to any
particular process and can be due to inflammation, edema, demyelination or
axonal loss.

Gd enhancing T1-w lesions: These lesions an increased of the contrast can be
observed after Gd injection on T1-w images and are hyper-intense compared
to WM on T2-w, PD and FLAIR. They can also be hypo-intense compared to
WM on T1-w before the Gd injection. They are usually less numerous than
T2-w lesions and are associated with inflammatory activity.

Black holes: These lesions are hypo-intense compared to WM on T1-w images
and usually hyper-intense in T2-w, PD and FLAIR. Some hypo-intensities
disappear after a month or two, thus the hypo-intensity must be present at
least for three months and must not enhance with gadolinium in order to be
considered a black hole. Black holes appear after T2-w lesions and are usually
associated with axonal loss.
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Figure 1.4: Examples of MS lesions on MRI: T1-w, T2-w, FLAIR and gadolinium
enhanced T1-w (Gd T1-w).

The number and the volume of lesions that can be observed in MR images depend
on the strength of the magnetic field, the slice thickness and the MR sequences
employed. More lesions are detected on images acquired on a 4.7T scanner than
on images acquired on a 1.5T scanner |[Keiper et al. 1998]. Similarly, thin slices
increase the lesion volume obtained and its reproducibility [Molyneux et al. 1998|.
Finally, the lesion volume measured using FLAIR images is higher than the volume
measured using dual-echo (T2-w and PD) images |Filippi et al. 1999|.

Many studies correlated MRI lesions and disability, usually EDSS, with low to
moderate results (see review |Zivadinov and Leist 2005]). We can point out five
possible reasons for these low and moderate correlations:

e Silent lesions: they are MS lesions with no associated clinical disability.

e Cortical lesions: they are difficult to detect and are not taken into account in
the studies, but are also associated with disability.

e Spinal cord lesions: lesions can appear in the spinal cord but MR images of
the spinal cord are difficult to acquire.

e Diffuse lesions: the existence of a more diffuse pathology that cannot be ob-
served in conventional images.
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e EDSS: this measure is heavily weighted towards movement handicap.

Due to this lack of correlation, some groups tried to study the influence of the
location of the lesions on the disability. In a study with 452 patients, Charil et
al. [Charil et al. 2003] studied the correlation of each functional system [Kurtzke
1983] to the anatomical location of the lesions. For each functional system, they
found the brain region that correlated the best with the disability. Vellinga et
al [Vellinga et al. 2009] performed a similar analysis on EDSS findings, but only
periventricular lesions correlated with disability and disease duration.

The limited correlation found between lesions and disability restricts the use of
the volume and number of lesions as a secondary outcome in clinical trials [Miller
2004] and maintains the clinical evaluation as the primary outcome in the evaluation
of new treatments.

1.2.2 Normal Appearing Brain Tissues

Conventional MRI has enabled the study of focal lesions but is unable to give infor-
mation about the normal appearing brain tissues (NABT). Non-conventional tech-
niques give more specific information about the brain and enable the study of the
NABT. Here, we summarize some findings regarding MS using these techniques; a
more detailed review can be found in the following book chapter [Filippi and Rocca
2005].

Diffusion-weighted imaging measures the microscopic movements, or diffusivity,
of water molecules. Wiest-Daesslé found significant differences in the diffusivity
between the NABT of MS patients and controls [Wiest-Daesslé 2009).

The magnetization transfer ratio (MTR) was strongly correlated with demyeli-
nation and axonal loss in post-mortem studies [Van Waesberghe et al. 1999]. In two
studies, the MTR values in the NABT of MS patients were lower than in the NABT
of controls, especially for SPMS and PPMS [Tortorella et al. 2000].

The 'H-MRS, referred to as MR spectroscopy, studies the concentration of metabo-
lites. One of these metabolites, the N-acetylaspartate (NAA), is correlated with
axonal loss. A significant decrease in NAA was found in MS lesions but also in the
NAWM in MS patients [Stefano et al. 2005].

1.2.3 Atrophy

Early pathological studies described the existence of brain atrophy in MS patients.
With the development of imaging techniques, atrophy of the brain has been demon-
strated even in the early development of the disease [Chard et al. 2002].

The causes of atrophy remain unclear but two processes seem to occur simulta-
neously [Bermel and Bakshi 2006]: focal atrophy and diffuse atrophy. The lesions
cause the destruction of the myelin and axons, leading to focal atrophy of the brain.
Studies show that the focal lesions fail to completely explain the atrophy of the
brain [Meier et al. 2004]. The rest of the atrophy would appear to be due to the
diffuse demyelination process that affects the NABT.

Many studies tried to correlate the disability with atrophy of the brain. While
some authors were interested in atrophy of the whole brain [Rudick et al. 1999],
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other authors focus on atrophy of a particular structure of the brain: gray matter,
putamen or spinal cord. Spinal cord atrophy was found to have a good correlation
with physical disability [Lin et al. 2003|. Recently, new techniques for the detection
of local atrophy were developed using non-linear registration [Kezele et al. 2007].
For more details on atrophy in MS, the reader can refer to the following review
paper [Bermel and Bakshi 2006].

1.3 Conclusion

Multiple sclerosis is a heterogeneous disease. The existence of different demyelination
patterns and several clinical types makes the study of the disease very complicated.
The cause of MS is unknown, which makes the search for a cure even more compli-
cated. Nowadays, treatments try to slow down the evolution of the disability and
axonal loss; early diagnosis is crucial.

MRI has been proven to be a powerful biomarker in the study of MS. Non-
conventional techniques have shown the importance of studying the NABT. These
techniques still require further development for their standardization and use in
clinical trials. Nowadays, clinical trials use the number and volume of lesions seen
in conventional images. In the next chapter, we will focus on the delineation of these
lesions on conventional MRI.
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Chapter 2

Segmentation of MS Lesions on
Conventional MRI

The number and the volume of MS lesions are used as a secondary outcome in
clinical trials but the detection and posterior delineation of MS lesions is not trivial.
Lesions are usually small and numerous and have fuzzy borders which make them
difficult to delineate [Miller et al. 1998|.

In image processing, the delineation of lesions is called segmentation. Segmenta-
tion is the process that divides the images into the target (in this case the MS lesions)
and the background. We differentiate segmentation from classification whereby each
voxel of the image is assigned to a different class.

In this chapter we provide an overview of segmentation methods of MS lesions
and how they are validated. We propose a classification of the segmentation meth-
ods in Section 2.1. Section 2.2 provides an overview of interactive segmentation of
MS lesions and Section 2.3 describes the automatic methods. Finally, Section 2.4
presents the procedures for the validation of segmentation methods.

2.1 Classification of Methods for MS Lesion Seg-
mentation

Segmentation methods are usually classified according to the mathematical method
employed in the segmentation [Suri et al. 2002]. We propose to classify MS lesion
segmentation methods according to three factors: human interaction, number of
dimensions in the algorithm and way information in the MR sequences is merged.

Depending on the human interaction involved, segmentation methods can be
classified as follows:

Interactive: These methods require a human user to segment an image. We differ-
entiate semi-automatic methods, where a computer assists the human in the
segmentation process, from the manual segmentation, which is usually used as
the reference method.

Automatic: These methods carry out a segmentation without human interaction.
A further classification can be made between supervised learning methods and

35
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data-driven methods, where the first group requires images which have already
been segmented in order to “learn” how to segment the lesions.

In clinical trials, several images from the same patient are acquired so as to follow
the evolution of the disease. We divide the algorithms depending on the number of
dimensions employed in the algorithm:

2D: Each slice of the MR image is processed independently |Grimaud et al. 1996].

3D: The MR image is processed as a whole in order to use the anatomical and
spatial information [Van Leemput et al. 2001].

3D-+t: Some methods include temporal information so as to create a time model
of the lesions [Shahar and Greenspan 2004] or to use redundant information
across the longitudinal images [Ait-Ali et al. 2005].

Finally, the methods employ different strategies to combine the information con-
tained in the MR sequences:

Mono sequence: MS segmentation is usually done with several MR sequences so
as to be as specific as possible, but some methods rely on the information
found in one sequence only, for example FLAIR [Khayati et al. 2008, Anbeek
et al. 2008].

Multisequence-Parallel: In this case, sequences are segmented individually in
parallel, then some rules are created to merge all results in order to complete
segmentation of the MS lesions [Johnston et al. 1996, Ardizzone et al. 2002].

Multisequence-Joint: These methods use all the sequences at the same time in
order to improve segmentation [Van Leemput et al. 2001, Zijdenbos et al. 1994].

Multisequence-Hierarchical: These methods use each sequence for a specific
step, with each step using the result of the previous step [Sajja et al. 2006,
Dugas-Phocion et al. 2004a]. They are different from parallel methods in so
far as in hierarchical methods, a step is dependent to the previous one, while
in parallel segmentation, each sequence is processed independently.

The difference with the parallel methods is that, in hierarchical methods the
steps are dependent from each order while in parallel segmentation the pro-
cessing of each sequence is completely independent.

2.2 Interactive Segmentation

Manual segmentation was the first method to be used to delineate MS lesions. Tt
implies that the expert chooses the voxels he considers to be lesions without any
computer assistance. Users usually visualize several sequences at the same time,
and have to “paint” the lesion or contour the edges of the lesion depending on
the software employed. Volumes computed by manual segmentation are already
employed in clinical trials but they require long processing time and have large intra-
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and inter-expert variabilities, with up to 44% inter-expert variability in different
centers [Zijdenbos et al. 2002].

In order to reduce the variability of manual segmentation, several semi-automatic
methods have been developed. As MS lesions are hyper-intense compared to white
matter, Wicks et al. [Wicks et al. 1992| proposed a global threshold to identify
the hyper-intense regions of the brain where the threshold value was chosen by
the expert. The variability of this method was found to be lower than in manual
segmentation but small variations in the threshold value imply large variations in
volume. Filippi et al. [Filippi et al. 1998| proposed a local thresholding technique
whereby the expert chooses local thresholds in order to correctly segment each lesion,
the advantage of this method being less sensitive to intensity inhomogeneity.

These two methods show how the interaction required for each method can vary.
We can be classify semi-automatic methods into two categories: lesion-by-lesion
methods and minimal interaction methods. On the one hand, lesion-by-lesion meth-
ods assist the expert in the delineation of the lesion but the expert needs to detect
all the lesions one by one. On the other hand, minimal interaction methods seek
to reduce the interaction of the expert helping the expert in both detecting and de-
lineating the MS lesions. The interaction can vary from selecting some voxels from
different tissues [Johnston et al. 1996] to segmenting one lesion only [Ashton et al.
2003]. The algorithm then detects and delineates the rest of the lesions.

In the category of lesion-by-lesion methods, region growing methods were pro-
posed whereby the expert select a voxel at the center of the lesion and the region
expands automatically to reach the contour of the lesion [Parodi et al. 2002, Ashton
et al. 2003]. Grimaud et al. [Grimaud et al. 1996 proposed a gradient-based method
whereby the user selects a voxel in the contour of the lesion and the computer de-
tects the contour of the lesion using the gradient information. They showed that
their method has less variability than manual segmentation and the global threshold
method [Wicks et al. 1992], although the processing time increased.

Lesion-by-lesion methods reduce variability in the delineation of the lesion, but
the expert must detect all the lesions. Molyneux et al. [Molyneux et al. 1999] showed
that there is a low level of agreement among experienced experts regarding the
number of lesions in an image. Hence minimal interaction methods were developed
to assist the user in detecting and delineating MS lesions. Ghazel et al. [Ghazel
et al. 2006| proposed a texture-based segmentation whereby the user only selects a
ROI in the white matter where all the lesions are included. Ashton et al. [Ashton
et al. 2003| presented a method based on Bayesian theory whereby only the manual
delineation of an MS lesion was necessary. They compared it with a lesion-by-lesion
method and manual segmentation. Their method was faster than the lesion-by-lesion
method but showed a slightly larger inter-expert variability as the users might have
not chosen the same lesion in each patient. According to the authors, the use of
both methods can be complementary - the lesion-by-lesion method can be used both
to initialize the minimal interaction method and subsequently correct the missed
lesions. Some methods require the user to select some points or regions of interest
(ROI) in the different tissues. Johnston et al. [Johnston et al. 1996] initialized an
iterated conditional modes (ICM) algorithm separately on T2-w and PD using ROI
of each tissue. The results of each sequence were then merged in a final segmentation.



38 Chapter 2

Udupa et al. [Udupa et al. 1997] defined fuzzy relations among neighboring voxels
using the fuzzy-connectedness theory [Udupa and Samarasekera 1996 and, from
some seed points on each tissue, they segmented the MS lesions. Recently, Lecoeur
et al. [Lecoeur et al. 2008] proposed a semi-automatic graph cut approach based on
the spectral gradient that was applied to MS lesion segmentation.

2.3 Automatic Segmentation

When it comes to processing large databases with hundreds of images, interactive
methods require too much human interaction and automatic methods are more suit-

able.

2.3.1 Supervised Learning Methods

Supervised Learning methods require a initial learning stage where a training database
of previously segmented images is used to tune the algorithm. These methods are
very powerful when the database covers completely the whole variety of possibilities.
The main drawback is the initial training stage.

Creating a training database is a problem in itself. Two main limitations are the
segmentation of the training database and the MR protocol of the training set. Su-
pervised methods require a training database where the MS lesions are segmented.
These segmentations are usually performed using one of the above-mentioned in-
teractive techniques, thus the training database will be biased towards the expert
that performed the segmentation and the technique employed. These methods are
mainly used in mono-center studies where the MR protocol is fixed, which limits
the variability of the images. In order to use the same algorithm with another MR
protocol or MR scanner, another training set must be created and another learning
procedure should be done which reduces its usability in multi-centric clinical trials.

Kamber et al. [Kamber et al. 1995] compared four different supervised classifiers
and demonstrated the utility of an atlas in order to restrict the search for MS lesions
to the white matter to reduce the number of false detections. Sajja et al. [Sajja et al.
2006] proposed a hierarchical method whereby lesions and CSF were first segmented
by a Parzen-window density estimator in T2 and FLAIR, and then white matter
and gray matter were segmented on T2-w and PD sequences using a Hidden Markov
Random Field coupled with an EM algorithm [Zhang et al. 2001]. In addition, some
heuristic rules were employed to reduce the number of false positives.

Several authors have proposed the use of the k-nearest neighbor (k-NN) algo-
rithm [Duda et al. 2000]. This algorithm classifies each voxel using information
given by the k nearest voxels from the training database. Cardenes et al. [Cardenes
et al. 2003| combined k-NN algorithm using intensity information in conjunction
with distance relabeling and connected-components operations to include spatial in-
formation. Anbeek et al. [Anbeek et al. 2004; 2008] used k-NN algorithm including
both intensity and spatial information to improve the segmentation. Warfield et
al. [Warfield et al. 2000] described a mono-sequence method that combines k-NN
algorithm with the nonlinear registration of an atlas in order to merge intensity and
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spatial information. Wu et al. [Wu et al. 2006] later extended this method to a
multidimensional version.

The artificial neural network (ANN) [Duda et al. 2000] is a mathematical model
inspired by biological neural networks that has been widely used in supervised clas-
sification. Zijdenbos et al. |Zijdenbos et al. 1994] proposed a trained ANN capable
of classifying each voxel as one of the brain tissues or lesions. Later, they improved
their method including spatial information in form of an atlas [Zijdenbos et al. 2002,
while Blonda et al. [Blonda et al. 1998] proposed the use of a fuzzy neural network.
Other methods combined a two-step hierarchical approach whereby candidate lesions
were found using the fuzzy c-means (FCM) [Alonge et al. 2001] or fuzzy connectiv-
ity [Admasu et al. 2003] algorithms and the ANN was used to determine whether or
not the lesion actually exists.

Other supervised learning techniques have also been employed in MS lesion seg-
mentation. Lao et al. [Lao et al. 2006; 2008] classified MS lesions using a support
vector machine (SVM) and Kroon et al. [Kroon et al. 2008| proposed the use of
a principal component analysis (PCA) adding spatial information included in the
form of an atlas. Welti et al. [Welti et al. 2001| included longitudinal acquisitions
of FLAIR in PCA to characterize the evolution of the lesion. In order to increase
accuracy in the detection of lesions, recent methods have included at the same time
spatial, texture and intensity information in the classification. Two examples are
Morra et al. [Morra et al. 2008] using the AdaBoost classifier and Akselrod-Ballin
et al. [Akselrod-Ballin et al. 2006] using segmentation by weighted aggregation.

2.3.2 Data-driven Methods

Data-driven methods replace the training database with a priori information, which
make them more robust to changes in the MR protocol. This a priori information is
formalized in several ways. We can distinguish between two types of methods: para-
metric and non-parametric. Parametric methods incorporate a priori information in
the form of a mathematical model. This model tries to explain the characteristics of
the brain, usually the intensities, and the parameters of the model must be extracted
from the images. Non-parametric methods, on the contrary, avoid the use of models
and use other image processing techniques to segment the brain.

2.3.2.1 Non-parametric Methods

Atkins et al. [Atkins et al. 2000] proposed a transformation of T2-w and PD images
into log(T2-w) —log(T2-w + PD) where, with three linear regression, they were able
to find an optimal threshold for lesion segmentation. Pachai et al. [Pachai et al.
1998| implemented a multi-resolution scheme where automatic local thresholds were
computed in each level to segment the MS lesions.

Other methods analyzed the intensities of the brain using clustering techniques
to classify the brain voxels. Clustering methods try to separate the data points
into different homogeneous clusters. One of these methods is the FCM that has
been widely used for the segmentation of healthy brains [Pham and Prince 1999,
Hou et al. 2007]. In FCM, each cluster is represented by its center, and each point
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has associated a membership value to each of the clusters between 0.0 and 1.0.
Boudraa et al. [Boudraa et al. 2000| proposed a hierarchical segmentation method
whereby the FCM is used twice in PD-w images, first, to detect the lesion and CSF
cluster, and secondly to refine the segmentation of lesions. Similarly, Ardizzone
et al. [Ardizzone et al. 2003] employed the FCM twice in PD-w images, it is used
first, to detect the parameters of an anisotropic diffusion filter to denoise images, and
second, to actually segment the MS lesions. Yang et al. [Yang et al. 2003| proposed a
segmentation of T1-w and T2-w images using the FCM in each sequence separately
to detect MS lesions and then delineate the lesion correctly applying deformable
models segmentation. Recently, Admiraal-Behloul et al. [Admiraal-Behloul et al.
2005] carried out parallel FCM segmentation of T1-w, T2-w and FLAIR images and,
then, they proposed to apply some fuzzy rules and to integrate the information of an
atlas in order to merge the information found on each sequence. The simultaneous
use of several sequences in a joint segmentation can improve the results of clustering
methods. For example, Ardizzone et al. [Ardizzone et al. 2002| also proposed a
two-channel FCM in T2-w and PD at the same time. In order to include spatial
information in the FCM algorithm, Shiee et al. [Shiee et al. 2008] modified the FCM
algorithm to include topological constraints of the brain and atlas information.

2.3.2.2 Parametric Methods

All parametric methods follow a similar framework. First, a model with a reduced
number of parameters is chosen to describe the brain, mainly the intensities of the
brain. Second, a cost function is associated with the model to measure the degree
of similarity between the model and the image. Third, an estimator is employed to
determine the parameters of the model using the cost function. A widely used para-
metric method for healthy subjects consists in the use of a Gaussian Mixture Model
(GMM), the likelihood as a cost function and the Expectation-Maximization (EM)
algorithm [Dempster et al. 1977] to estimate the model parameters. The EM algo-
rithm [Dempster et al. 1977| is an iterative method for estimating the model parame-
ters and has been widely used for estimating the GMM in healthy patients [Wells TIT
et al. 1996, Cuadra et al. 2005] because it is easy to implement and converges at least
to a local maximum of the solution. The GMM usually consists of three Gaussians
distributions which correspond to the three following classes: grey matter (GM),
white matter (WM) and cerebrospinal fluid (CSF).

For MS, this framework has been adapted in different ways in order to include MS
lesions. Some authors modified the GMM and added an extra class for MS lesions: a
Gaussian class [Kikinis et al. 1999, Warfield et al. 1995] or a uniform class [Rouainia
et al. 2006]. The different types of existing lesions (T2 lesions, black holes, etc.) make
it difficult to model the intensities of the MS lesions, thus other authors considered
the MS lesions as outliers to the healthy brain model [Van Leemput et al. 2001,
Ait-Ali et al. 2005]. An outlier is any point in the data that cannot be explained by
the model.

Van Leemput et al. [Van Leemput et al. 2001] proposed a weighted EM algorithm
whereby the voxels situated far from the model are less taken into account in the
estimation and are considered potential lesions. Aft-ali et al. [Ait-Ali et al. 2005|
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modified the cost function and employed the trimmed likelihood estimator to avoid
the outliers in the estimation as proposed by Neykov et al. [Neykov et al. 2007].

GMM is a basic model for explaining the brain intensities, hence some authors
have proposed more complex models. Shahar et al. [Shahar and Greenspan 2004|
proposed a 3D+t model for the evolution of MS lesions in order to segment MS
lesions in longitudinal images from the same patient. Harmouche et al. [Harmouche
et al. 2006] used a model where the brain is divided into different regions because
the intensity of each tissue varies slightly in each region. Freifeld et al. [Freifeld
et al. 2007] employed a constrained Gaussian mixture model (CGMM), successfully
applied to healthy brains [Greenspan et al. 2006], whereby, in addition to the image
intensities, the spatial coordinates are also included in the model. CGMM allows
each Gaussian to be localized in the space, making the segmentation local instead
of global, as it is in the other models. In this method, the final delineation of the
lesion was performed by active contours in order to correctly determine the borders.

But EM is not the only algorithm that is used to estimate the GMM. Prastawa
et al. [Prastawa and Gerig 2008| used a robust estimator, called the Minimum Co-
variance Determinant, using an atlas to determine the regions where WM, GM and
CSF are located. Khayati et al. [Khayati et al. 2008] proposed an adaptive mixture
model, that automatically chooses the number of classes and then the output is
reduced to four classes using certain heuristic rules before segmentation.

In order to avoid intensity inhomogeneity effects, several methods included in-
tensity inhomogeneity correction in the estimation of the model for healthy sub-
jects [Wells IIT et al. 1996, Van Leemput et al. 1999, Prima et al. 2001] and have
been employed in MS lesion segmentation [Kikinis et al. 1999, Van Leemput et al.
2001, Rouainia et al. 2006]. Spatial information has been included in the estimation
by the means of a Markov random field (MRF) whereby the neighbor voxels are
taken into account for estimating the class of each voxel [Van Leemput et al. 2001,
Rouainia et al. 2006, Harmouche et al. 2006| or by the use of a double Markov chain,
whereby the information about of the neighbor voxels and of an atlas are coupled to
improve the segmentation [Bricq et al. 2008]. Recently, Rousseau et al. [Rousseau
et al. 2008 combined a Mean Shift segmentation with a GMM using the a contrario
approach [Desolneux et al. 2003|. First, the mean shift segmentation created small
local regions and then the a contrario approach determines which regions did not
fit the model and were considered lesions.

Due to the limited resolution of the MRI, voxels on the border between two
tissues can contain a mix of the two tissues with an intermediate intensity; this
problem is called partial volumes (PV). Different solutions have been proposed to
solve this problem in healthy brains with parametric methods [Santago and Gage
1993, Cuadra et al. 2005, Ruan. et al. 2000]. The idea is to model these partial
volume voxels with another class. Santago et al. [Santago and Gage 1993] proposed
a mathematical approach whereby the partial volume class is calculated from an
integral based on the two tissues. Cuadra et al. [Cuadra et al. 2005] considered the
PV classes to be a Gaussian in order to simplify the computation of PV. Ruan et
al. [Ruan. et al. 2000] defined the PV as several Gaussians whose mean and variance
are determined by the two normal tissues. This last model was employed in the MS
lesion segmentation by Dugas-Phocion et al. [Dugas-Phocion et al. 2004b].
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2.4 Validation of Segmentation

Any segmentation method must be tested in order to evaluate its accuracy, precision
and robustness before being applied in clinical studies [Udupa et al. 2006]. This
evaluation is usually called validation. The validation of medical image processing
is, in general, very difficult due to the lack of ground truth with which to compare
it [Warfield et al. 2004]. It is very complicated to evaluate and compare MS lesions
for two reasons:

e Methods are not usually freely available, which makes the comparison more
complex.

e MR protocols are usually specific to each center. Each method is optimized
to a specific MR protocol, making it difficult for one method to be applied to
another MR protocol.

Jannin et al. [Jannin et al. 2006] proposed different levels for the validation of
algorithms. In segmentation, these levels extend from completely synthetic images
used to evaluate the behavior of the algorithm to large multi-center clinical trials
used to evaluate the robustness over different MR scanners and acquisitions.

Two of these levels have been employed in the validation of MS segmentation.
On the one hand, a database of synthetic images has been developed representing
brains from healthy subjects or MS patients [Cocosco et al. 1997, Collins et al. 1998|.
This database enables the accurate determination of MR parameters and artifacts
providing at the same time a ground truth for the evaluation of the segmentation.
On the other hand, researchers used clinical images to evaluate their algorithms
in actual conditions and compare their results with the segmentation performed
by one or more experts. Recently, a comparison of different algorithms was done.
During the Medical Image Computing and Computer-Assisted Intervention confer-
ence (MICCAI) in 2008, a workshop was organized to compare different automatic
algorithms for the segmentation of MS lesion. [Styner et al. 2008].

2.4.1 Brainweb

Brainweb (BW) is a database of synthetic MR images available online' [Cocosco
et al. 1997, Collins et al. 1998]. A healthy subject was scanned twenty times to
obtain a high-SNR image. From this image, a healthy anatomical phantom was
created where each voxel belongs to a specific tissue class. Simulated MR images are
created thanks to this phantom and an MR simulator. In the MR simulator, we can
choose the MR parameters (TE, TR, resolution, sequence, etc.) and some artifact
parameters (noise and intensity inhomogeneity). Three conventional sequences are
available: T1-w, T2-w and PD. From the healthy phantom, three different MS
phantoms are created with different lesions loads: mild, moderate and severe. The
great advantage of this database is the existence of a ground truth that enables a
direct comparison of the segmentation results with the phantom.

"http://www.bic.mni.mcgill.ca/brainweb/
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The usual measure employed in MS lesion segmentation is the Dice Similarity
Coefficient (DSC) which is computed as follows

2x|RNS|

DSC =
Rl + 5]

(2.1)

where R is the reference segmentation and S is the segmentation. DSC ranges from
0.0 to 1.0 (perfect segmentation), with a value of 0.7 generally considered to be a
good segmentation [Zijdenbos et al. 1994].

These phantoms have been used to evaluate MS lesion segmentation algorithms
due to the simplicity of the evaluation and it is a good comparison method although
there are three limitations:

Only one phantom: As there is only one brain model, there is no anatomical
variability, although efforts were made to address this issue [Aubert-Broche
et al. 2006].

Too simple: Although it is based on real images, the final image is not completely
realistic and it is easier to segment than are clinical images.

Limited to T1l-w, T2-w and PD: Other useful MR sequences such as FLAIR
are not present, limiting the validation of some methods.

Supervised methods require a training database and are difficult to evaluate as
there is only one phantom. Zijdenbos et al. [Zijdenbos et al. 2002] used a database
of clinical images as a training database and then applied their method to the Brain-
web database. On the contrary, Akselrod-Ballin et al. [Akselrod-Ballin et al. 2006]
employed half of the brain for training and validated their algorithm on the other
half, which prevents the comparison of their results with other algorithms.

Even though many authors have evaluated their methods using Brainweb, it is
difficult to compare results because the number of slices and images used in the
validation varies from author to author. Some authors [Akselrod-Ballin et al. 2006,
Freifeld et al. 2007, Zhu and Basir 2003| choose a limited number of slices for their
comparison instead of the whole brain, making their results impossible to compare
with those of other methods.

The MR parameters are always set to their default values, but there are vari-
ations in lesion load, noise and intensity inhomogeneity. The evaluation of some
clinical images showed that normal parameters are 3% noise? and 20% inhomogene-
ity? |[Zijdenbos et al. 2002| , which have been used by some authors on the phantom
with moderate lesion load |Zhu and Basir 2003, Akselrod-Ballin et al. 2006]. Other
authors preferred to remove the intensity inhomogeneity in their evaluations [ATt-Ali
et al. 2005, Rousseau et al. 2008]. For instance, only two authors vary the parameters
of the phantom to provide an indication of the response of their method. Freifeld

2For the Rician noise, the notation 3% means that the Gaussian noise used in complex domain
of the image is equivalent to N (0,v - (3/100)), where v is the value of the brightest tissue in the
image (150 for T1-w and 250 for T2-w) [Coupé et al. 2008].

3The notation 20% refers to a maximum deviation in intensity over the ideal uniform case,
+10% over the intracraneal volume [Zijdenbos et al. 2002].
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Name Lesion Load | Noise | Inhomogeneity | Sequences

bw  mild mild 3% 20% Tl-w, T2-w & PD
bw_moderate | moderate 3% 20% T1-w, T2-w & PD
bw_severe severe 3% 20% T1-w, T2-w & PD

Table 2.1: Typical synthetic images employed in the evaluation of the segmentation
methods of MS lesions

et al. [Freifeld et al. 2007] demonstrated the robustness to noise and Zijdenbos et
al. |Zijdenbos et al. 2002| varied intensity inhomogeneity and noise in order to give
an overall idea of the performance of their algorithm in presence of image artifacts.
The performance of the segmentation can vary depending on the lesion load but
few authors employed the three phantoms in their evaluation [Akselrod-Ballin et al.
2006, Rousseau et al. 2008].

In conclusion, and in spite of the utility of this synthetic database, it is difficult
to compare the results obtained by the different methods due to this variability.
We believe that the use of Brainweb should be standardized to allow authors to
compare their methods with previous ones. This includes the use of the same metrics,
acquisition parameters and validation conditions.

We employ some images of this database in order to study the parameters of our
methods in next chapters. These images are summarized in Table 2.1.

2.4.2 Clinical Images

Segmenting MR images from MS patients is a necessary step in the evaluation of
a segmentation method. The main issue is the lack of ground truth with which
evaluate the segmentation results. As manual segmentation is considered to be the
gold standard for MS lesion segmentation, semi-automatic and automatic methods
have been compared to manual segmentation

Semi-automatic methods, especially lesion-by-lesion methods, allow the expert to
modify the segmentation until it is found to be satisfactory. In this context, methods
are evaluated not according to their precision but according to their ability to reduce
inter- and intra-expert variability and processing time. Images are segmented several
times by several experts in order to measure TLL variations in both manual and
semi-automatic methods. Semi-automatic methods [Filippi et al. 1998, Grimaud
et al. 1996, Parodi et al. 2002, Ashton et al. 2003| showed a reduction inter- and
intra-expert, variability compared to manual segmentation, although in some cases
the processing time increased [Grimaud et al. 1996]. Other minimal interaction
methods [Johnston et al. 1996, Ghazel et al. 2006, Lecoeur et al. 2008| are compared
with a manual segmentation only.

Due to the absence of a ground truth, automatic methods are compared with
manual segmentation that is considered to be the gold standard in MS lesion segmen-
tation. Most methods are compared with only one expert’s segmentation [Akselrod-
Ballin et al. 2006, Sajja et al. 2006, Khayati et al. 2008, Lao et al. 2008, Ait-Ali 2006,
Anbeek et al. 2004]. Although this evaluation provided an indication of the similar-
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ity of the segmentations, the significance of the results obtained with this evaluation
is limited due to inter- and intra-expert variability found in manual segmentation;
it is not possible to differentiate the dissimilarities between manual and automatic
segmentation due to errors in the algorithm or due to variability in the manual
segmentation. For this reason, some authors compared their methods with more
than one expert in order to account for manual segmentation variability [Admiraal-
Behloul et al. 2005, Zijdenbos et al. 1994; 2002, Warfield et al. 1995, Wei et al. 2002,
Harmouche et al. 2006]. For example, Harmouche et al. [Harmouche et al. 2006] cre-
ated a consensus ground truth, whereby a voxel is considered a lesion if at least three
out of five experts considered it as a lesion, thus reducing the effects of variability.
Zijdenbos et al. [Zijdenbos et al. 2002] having carried out a full validation using the
Brainweb phantom, compared their automatic method with manual segmentation
performed in seven different MS centers. MS centers showed a large variability in
the estimation of the lesion load (44% + 20%).

Accuracy is not the only important aspect of the validation; the reproducibility
of the measures is also crucial for longitudinal trials. In order to test reproducibility,
MS patients undergo MR imaging several times within a short period ranging from
several hours to several days. As the images are obtained within a short space of
time, it is assumed that the disease has not evolved during this period. Guttmann et
al. [Guttmann et al. 1999] used this method to evaluate how each of the steps in their
segmentation workflow varied and conclude that the MR acquisition generated more
variability in the result than their segmentation method did. Similarly, Asthon et
al. [Ashton et al. 2003] found greater variability in the semi-automatic segmentation
of different MR scans of the same patient than in different segmentations of the
same image, leading to the same conclusion.

2.4.3 3D Segmentation in the Clinic II: MS Lesion Segmen-
tation

At the MICCAI 2008 conference, a workshop was organized for the comparison of
segmentation algorithms |[van Ginneken et al. 2007]. The objective of this work-
shop was to compare different segmentation methods in the form of a competition.
On this occasion, one of the segmentation challenges was the segmentation of MS
lesions [Styner et al. 2008]*.

The organizers gathered a database of images (T1-w, T2-w, FLAIR, DWI) from
two different sites with more than 50 images. Images were manually segmented by
two experts from different sites so as to measure the level of variability. The images
were registered and up-sampled to isotropic 0.5 mm. The database was separated
in three parts:

Training set: 20 images and their manual segmentations were given to the partic-
ipants in order to adapt the algorithms to the MR protocol and the experts’
definition of lesion. Supervised methods used this database in order to train
their methods.

“http://www.ia.unc.edu/MSseg/
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“Off site” test set: 25 images, without the segmentations, were given to the par-
ticipants to be processed in their own laboratories. The automatic segmenta-
tion results had to be sent to the organizers for evaluation.

“On site” test set: 7 images were given to the participants during the workshop
with a limited amount of time to be processed.

Figure 2.1: Some artifacts of the workshop database (from left to right): CHB testl
06 T2-w and FLAIR, UNC testl Case07 T1-w (probably Gadolinium-enhancing
T1-w).

There are three limitations that need to be discussed: the quality of the images,
the preprocessing and the manual segmentation performed by the experts. First,
multiple artifacts were found in several images due to the movement of patients dur-
ing acquisition (Figure 2.1). The quality of the segmentation can be greatly affected
by these artifacts, making it a challenge to evaluate the robustness of the algorithm
rather than its accuracy. Second, the segmentation is usually performed after pre-
processing steps, such as inhomogeneity correction and denoising. The challenge
proposed already registered and up-sampled images, reducing the effectiveness of
the denoising methods as the assumption of the independence of the noise was no
longer valid. This could reduce the performance of the algorithms where denoising
is necessary for the segmentation. Third, the manual segmentation was performed
by two experts from different centers and showed great variability. For example,
the two experts only agreed on 68% of the lesions, which shows the great variability
between them.

Despite these limitations, this workshop is an interesting initiative to compare
the algorithms. Souplet et al. [Souplet et al. 2008] were the winners of the challenge
while the method we present in Chapter 4 finished fourth.

2.5 Conclusion

In this chapter, we presented an overview of methods for the segmentation of MS
lesions and how they are validated. We discussed the interests of both interactive and
automatic approaches, and how the latter are necessary for large clinical trials. We
proposed a classification the methods found in the literature and made a distinction
between supervised and data-driven methods. We described how supervised methods
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have the drawback of necessitating a training period, while data-driven methods may
be more robust as they are based on the information in the image. Among the data-
driven methods available, we described in detail the parametric methods where the
distribution of the intensities of the brain are considered to follow a mathematical
model. These methods have been widely used with good results.

Finally, we stressed the importance and difficulty of validating the methods de-
scribed. Synthetic images give a first evaluation of segmentation methods under
controlled conditions but clinical images are necessary in order to fully assess the
performance of a method. Recently, the MICCAT segmentation challenge proposed
a good starting point for the comparison of methods although several important
aspects required to be improved.
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Chapter 3

MS Lesion Segmentation Workflow

The term segmentation method is somewhat ambiguous. Some authors include in
this term the whole series of image processing algorithms, from the raw data to the
classified image. Other authors consider the segmentation method to be just the final
step, where, once the images are registered and corrected for image artifacts (e.g.
noise, intensity inhomogeneity, etc.), the images are classified. In this document,
we use the latter definition of segmentation method and speak about segmentation
workflow when we want to consider all the steps together.

There are several processing steps that must be performed in order to prepare the
data for segmentation. These processing steps usually include denoising, intensity
inhomogeneity correction, registration and skull-stripping. Several authors |Zijden-
bos et al. 2002, Sajja et al. 2006, Kikinis et al. 1999| proposed workflows where
different algorithms are used in a different order. Each segmentation method needs
a workflow which is adapted to its requirements in order to obtain the best possible
segmentation.

In this chapter, we describe the workflow proposed for MS lesion segmentation.
The processing steps are described in Section 3.1, and the way these steps are con-
nected in our segmentation workflow is presented in Section 3.2.

3.1 Processing Steps

In this section, we describe each of the processing steps required for our MS lesion
segmentation workflow.

3.1.1 Denoising

The MR images are corrupted by noise. This noise modifies the intensity of the voxels
and is mainly caused by the MR scanner and Brownian noise. Although traditionally
MR image noise is considered to have a Rician distribution [Gudbjartsson and Patz
1995], images may have other noise distributions depending on the MR sequence
and the reconstruction method employed [Dietrich et al. 2008|.

High levels of noise can affect the usability of the images, especially for automated
registration and segmentation methods. For this reason, many denoising methods
have been proposed [Buades et al. 2005|. Recently, Coupé et al. [Coupé et al. 2008|

49
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proposed an optimized non-local means (NLM) algorithm that outperforms classical
denoising methods such as anisotropic diffusion and total variation minimization.

3.1.2 Intensity Inhomogeneity Correction

Besides noise, another undesired effect on MR images is known as intensity inho-
mogeneity (ITH). This effect causes a smooth variation of intensity in homogeneous
tissues across the images and is produced by the sum of two different sources [Vovk
et al. 2007]. On the one hand, there are MR scanner related sources [Sled et al.
1998] which include the inhomogeneity of the By field, the limited bandwidth of the
scanner and the radio frequency. On the other hand, the dielectric and permeability
properties of the imaged object can also cause intensity inhomogeneity. Sled and
Spike [Sled et al. 1998] measured IIH variations of around 20% in the same tissue.

This effect hardly affects human readers’ interpretation of images but it can
greatly affect image processing algorithms such as registration and segmentation
methods, as one of the usual assumptions is the spatial homogeneity of tissue in-
tensity. Many methods have been proposed for ITH correction in recent years (see
reviews [Vovk et al. 2007, Hou 2006]) which can be divided into two types of meth-
ods: prospective and retrospective. Prospective methods are performed before the
acquisition using phantoms or special acquisitions [Vovk et al. 2007] but only cor-
rect MR scanner inhomogeneities. Retrospective methods are based on information
extracted from the image and on some a priori information. The advantages of ret-
rospective methods are that they can be automatic, correct all sources of IIH and
require no further acquisitions.

One group of retrospective IIH correction methods is based on segmentation.
These methods iteratively perform tissue classification and correct ITH [Wells 11T
et al. 1996, Prima et al. 2001]. These methods work correctly on T1-w where good
intensity contrast among tissues is observed, but, in sequences with less contrast
among tissues between GM and WM, such as T2-w or PD, they can encounter
problems to separate the two tissues. Some of these methods have been adapted, as
we mentioned in the last chapter, for MS lesion segmentation [Van Leemput et al.
2001, Kikinis et al. 1999, Rouainia et al. 2006].

An interesting group of retrospective IIH correction methods is based on his-
togram analysis [Vovk et al. 2007]. These methods make little or no assumptions
about the MR sequence employed and correct the IIH by information minimiza-
tion |Likar et al. 2000, Mangin 2000| or by high-frequency maximization [Sled et al.
1998]. These methods can be employed directly in MS patients [Sled et al. 1998|,
although some undesired effects may occur if MS lesions are considered to be TTH.

3.1.3 Registration

In order to employ the information yielded from the different MR sequences dur-
ing the segmentation process, images must be spatially aligned. Different image
resolutions or patient’s movements during the acquisition may lead to spatial mis-
alignments.
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Registration is the process whereby two images are spatially aligned. We re-
fer to mono-modal registration for images of the same modality (or sequence) and
to multimodal registration for images of different modalities. Depending on the
transformation of the image, one of two types of registration may be used (linear
or non-linear). Linear transformations are simple space transformations that can
be represented by a 4x4 matrix, and include scale changes, rotations, translations
and stretches. Non-linear transformations are mainly used to map images into a
template or to detect local movements in order to measure the deformation between
the two images.

In MS lesion segmentation, all MR sequences from the same patient are registered
together so as to avoid slight misalignments caused by the patient’s movement. A
multimodal registration with a rigid transformation is used. Rigid transformation
is a particular linear transformation whereby the image can only be translated and
rotated. This transformation is employed for the registration of images of the same
patient because only head movements are searched.

Maes et al. [Maes et al. 1997| proposed a multimodal registration technique based
on mutual information that has been widely employed on medical image processing.
Later, Tan et al. [Tan et al. 2002| evaluated its accuracy and its influence in MS
lesion segmentation and found that errors in the repositioning of the patient in the
scanner were more important than the error of misalignment after registration of
images. Recently, Wiest-Daesslé et al. [Wiest-Daesslé et al. 2007| proposed a new
optimization algorithm to improve the efficiency of the algorithm.

3.1.4 Skull Stripping

In order to simplify MS lesion segmentation, many methods require a preliminary
step where all the non-brain voxels are removed, which is commonly named skull
stripping. It is a difficult task because the brain is very heterogeneous and its
surrounding structures can be easily confused with the brain. There are many
published automatic skull stripping methods that can be roughly divided into three
categories [Ségonne et al. 2004]: region-based, boundary-based and hybrid. Region-
based methods are mainly based on intensity information and use morphological
filtering to identify the brain. Boundary-based methods model the brain as a surface
and fit this surface to the image. Hybrid methods combine the latter two methods.

Boundary-based methods focus on the border of the brain and can be more robust
to intensity abnormalities such as MS lesions in the center of the brain. One of these
methods Brain Extraction Tool (BET) [Smith 2002| used a deformable model that
is adapted with local forces to the border of the brain.

A complete comparison of four skull striping methods was conducted recently [Fennema-
Notestine et al. 2006]. Souplet et al. [Souplet et al. 2007, Souplet 2009] later com-
pared five methods on 30 MS patients using as ground truth the combination of the
five methods with STAPLE [Warfield et al. 2004]. This kind of evaluation without
experts’ segmentation was studied by Bouix et al. [Bouix et al. 2007] and proved to
have interesting results although it “may not be sufficient to a precise performance
evaluation”.
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3.1.5 MS Lesion Segmentation

The result of this step is a segmentation image where the voxels are classified into
four classes: gray matter (GM), white matter (WM), cerebrospinal fluid (CSF)
and MS lesions. An overview of the state of the art in MS lesion segmentation
was given in Chapter 2. For our workflow, we propose three different methods,
explained in Chapters 4, 5 and 6. The segmentation method assumes images are
registered and corrected for acquisition imperfections such as IIH and noise. In
addition, segmentation methods only work on brain voxels thus they required to
perform skull stripping before segmentation.

3.2 Proposed Workflow

Our objective is to create a workflow that uses as input the raw images from the
MR scanner, and generate a segmentation image where each voxel is classified as
WM, GM, CSF, MS lesions or background.

In order to construct our workflow, we select one algorithm for each processing
step. In theory, we should compare all the possible combinations of algorithms so
as to obtain the best workflow, but the number of algorithms available makes this
approach impossible.

The NLM denoising method [Coupé et al. 2008| showed better performance than
the anisotropic diffusion method employed by other workflows [Zijdenbos et al. 2002,
Sajja et al. 2006], so we selected it for our workflow. The BET [Smith 2002] skull
stripping method was chosen due to the reduced number of parameters needed and
because it has already been successfully used in MS lesion segmentation [Akselrod-

Ballin et al. 2006, Lao et al. 2008|.

Similarly, the registration implementation proposed by Wiest-Daesslé et al. [Wiest-
Daesslé et al. 2007| was chosen as it improves performance over classical approaches [Maes
et al. 1997]. We chose the FLAIR image as the reference image and the other se-
quences are registered to it. In the absence of FLAIR, the target image is the
T2-w image because the PD image is already registered as both images are acquired
simultaneously.

Arnold et al. [Arnold et al. 2001| compared different ITH methods but this eval-
uation is insufficient for us to choose an ITH correction method because T1-w is
evaluated only and because only healthy subjects are used. In MS, ITH correction
must be applied to all sequences and special attention has to be paid to the MS
lesions, as some methods may consider MS lesions to be IIH. In order to choose a
ITH method, we made a comparison of five freely available ITH correction methods
which is described in the next section.

A second evaluation was performed so as to decide the order and impact of the
different algorithms. Several workflows are compared in order to measure the effects
of the processing algorithms and the best manner in which to order them in the
workflow.
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Figure 3.1: Example of lesion processing using the Coefficient of Lesion Variation
(CLV). From left to right: T2-w image, manual segmentation, and resulting inner
and outer rings.

3.2.1 Comparison of IIH Correction Methods

We propose a specific comparison for the correction of IIH on images from MS
patients, taking into account two main aspects: the reduction of IIH in the NABT
and the preservation of the contrast between MS lesions and the white matter.
Two measures have been widely employed in the evaluation of IIH correction
methods: the coefficient of variation (C'V;) for one tissue and the coefficient of joint
variation (CJV; ;) for two tissues |Likar et al. 2001].
The coeflicient of variation measures the variation of the tissue ¢ is defined as

oV, =2 (3.1)
Hi
where o; is the standard deviation of the tissue, and p; its mean. An IIH correction
method must reduce the C'V; for all the brain tissues.

In addition, the C'JV;; was proposed to ensure that the contrast between two
tissues ¢ and j was not reduced when the variation within each tissue was corrected.
It is defined as
o; + g;j
M — [y

These measures can be used to evaluate the impact of IIH correction in the
NABT, but as the intensity of MS lesions may not be homogeneous, its application
to MS is limited. We propose to create a new metric in order to compare the effects of
ITH correction in the surroundings of MS lesions. The goal of this specific measure
is to evaluate whether the IIH correction method keeps the contrast between the
lesion and the surrounding NABT.

From the manual segmentation of each MS lesion, we use mathematical mor-
phology to create two ring-like regions of 1 voxel-width, with one just inside and the
other just outside the contour of the lesion (Figure 3.1). The CJV of each lesion
is then calculated within those two regions and the average is computed for each
image. We call this measure the Coefficient of Lesion Variation (CLV).

In this study, we apply IIH correction to T1-w, T2-w and FLAIR images. Two
MS patients are included in this study. Images from the first patient were acquired
on a 3T Philips (1mm isotropic 3D T1-w, 3-mm slice thickness T2-w and 3-mm slice

CJV;; =

. (3.2)
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Figure 3.2: Example of regions employed for the evaluation. Top line, from left
to right: T1-w image and automatic classification. Bottom line, from left to right:
manual post processing and final regions.

thickness FLAIR). Images from the second patient were acquired on a 3T Siemens
TRIO with two different protocols, the “2D” (T1-w, T2-w and FLAIR 3-mm slice
thickness) and “fully 3D” (1mm isotropic 3D T1l-w, 1mm isotropic 3D T2-w and
lmm isotropic 3D FLAIR).

The MS lesions for each patient were segmented manually. Grey matter and
white matter were segmented automatically |Zhang et al. 2001] and the results were
edited manually where necessary. In order to avoid partial volumes, the mask of
each tissue was eroded using mathematical morphology (Fig. 3.2).

Five different and freely available methods were compared in order to select the
best ITH correction method for NABT and MS lesion segmentation. Among all [TH
correction methods, only those that are not based on segmentation have been used
because they can be applied to any sequence without any a priori information. All
methods are used with the default parameters. The methods compared are:

e BrainVISA [Mangin 2000] ( http://brainvisa.info/index_f .html)
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Sequence | Measure | Brainvisa | Manjon N3 | SPM2 | Likar
T1-w CV 46.4% | 41.4% | 26.5% | 21.9% | 17.3%
T1-w CJV -0.4% 1.3% | 16.5% | 5.6% | -8.0%
T1-w CLV 13.8% 129% | 7.4% | 6.3% | 6.7%
T2-w CV 3.2% 10.7% | 2.7% | 8.9% | 11.1%
T2-w CJV 84% | 29.4% | 5.9% | 25.8% | 14.6%
T2-w CLV -1.1% -0.2% | 0.1% | -0.4% | 0.0%
FLAIR CV 31.1% | 23.7% | 16.5% | 15.1% | 10.1%
FLAIR CJV 72.9% 75.% | 65.1% | 67.4% | 1.6%
FLAIR CLV 5.3% 50% | 33% | 21% | 1.7%

Table 3.1: Results for tissue comparison for ITH correction methods.

Manjon [Manjon et al. 2007| ( http://personales.upv.es/jmanjon/bias/
index.htm).

N3 [Sled et al. 1998] ( http://www.bic.mni.mcgill.ca/software/minc/)

SPM2 ( http://www.fil.ion.ucl.ac.uk/spm/software/spm2/)

Likar [Likar et al. 2000] ( http://lit.fe.uni-1j.si/shading/)

For each method, four different measures were computed: C'V, C'JVgyww and
CLV. The results are summarized in Table 3.1.

All TTH methods were primarily designed for T1-w images (Figure 3.3), and there-
fore the best improvements are shown with this type of sequence. The BrainVISA
method obtained the best results for CV and CLV although it failed to separate GM
and WM on 3mm T1-w images. N3 proved to be a better option in terms of dis-
tinguishing GM and WM. The impact of ITH on other MR sequences has attracted
little interest in the literature, but our results show that it should also be taken into
account for FLAIR images. BrainVISA and Manjon’s method obtained the best
results, followed by N3 and SPM2. Finally, only minor improvements are found for
T2-w images where in our testing images ITH is less pronounced.

We decided to include in our workflow the ITH algorithm used by BrainVISA
software [Mangin 2000]. The results of N3 are almost as good as those of BrainVISA,
but technical aspects simplify the inclusion of BrainVISA in our workflow. We avoid
to correct IIH on T2-w images as this effect is less present in these images.

3.2.2 Evaluation of the MS Lesion Segmentation Workflow

The objective is to find the best combination of algorithms in order to improve the
quality of the segmentation. We evaluated different workflows and their precision
compared to manual segmentation performed by an expert. In this evaluation,
we used a segmentation method developed in our laboratory by Ait-Ali [ATt-Ali
2006]. We focus our attention on the use of the denoising method, the non-local
means |[Coupé et al. 2008], and the ITH correction method [Mangin 2000|. Skull-
stripping and registration are mandatory in order to perform the segmentation.
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Figure 3.3: Results for ITH correction methods in the 3D protocol

Three different MR protocols are used in the experiments. For datasets including
Dual Echo acquisitions, the PD image is discarded because of poor contrast. For
each subject, an expert reader manually segmented the MS lesions on the FLAIR
sequence. We consider the manual segmentation to be the ground truth. The
protocols are:

subjectl Images acquired on a 3T Siemens TRIO: 3D 1mm isotropic T1-w, 2D
3-mm axial slice thickness Dual Echo (T2-w and PD) and 2D 3-mm axial slice
thickness FLAIR.

subject2 Images acquired on a 3T Philips ACHIEVA: 3D 1mm isotropic T1-w, 2D
3-mm axial slice thickness Dual Echo (T2-w and PD) and 2D 3-mm axial slice
thickness FLAIR.

subject3 Images acquired on a 3T Siemens TRIO: 3D 1mm isotropic T1-w, 3D
Imm isotropic T2-w and 3D Imm isotropic FLAIR.

The same parameters are used in every step for all subjects. Five different
workflows are tested in this experiment:

Basic: No preprocessing before registration.

NLM: Denoising before registration.

ITH: Intensity correction before registration.

ITH+NLM: Intensity correction and then denoising before registration.

NLM-+ITH: Denoising and then intensity correction before registration.
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The different workflows and segmentation methods are comparing by assessing
the quality of the segmentation. In order to evaluate the differences between the
automatic segmentation and the ground truth, we use the Dice Similarity Coefficient
(DSC) that is commonly used in segmentation evaluation |Zijdenbos et al. 1994].

Table 3.2 shows the results of all different workflows. The NLM-+IIH workflow
displays better results for each subject. The preprocessing task which most impacts
the segmentation results is ITH correction. This can be explained by the fact that the
segmentation method [A1t-Ali 2006] is based exclusively on intensities and therefore
spatial ITH causes poor detection of MS lesions.

The effects of denoising are more difficult to evaluate. Denoising without 1TH
correction may not be of any help if images have a large IIH as in Subject 3. Subject
1 shows little or no improvements after the correction; the T1-w image has a low
contrast between GM and WM that leads to a poor segmentation.

In addition, the order of preprocessing steps is not obvious. Denoising methods
are supposed to work better with piecewise constant regions, that is why IIH correc-
tion is usually used before denoising [Montillo et al. 2003]. The drawback is that IIH
correction locally changes the nature of the noise when correcting a multiplicative
inhomogeneity field affecting the denoising algorithm.

Subjl | Subj2 | Subj3

Basic 0.31 0.20 0.42
NLM 0.33 0.29 0.42
ITH 0.31 0.49 0.53

ITH+NLM | 0.30 0.46 0.48
NLM-+ITH | 0.31 0.49 0.56

Table 3.2: DSC values for all subjects and workflows.

In this evaluation, there are not enough patients to be able to make a firm
statement about the best workflow. In any case, we can deduce two main ideas from
the results: IIH correction is very important and greatly improves the results, and
the image denoising should be performed before IIH correction.

3.3 Conclusion

In this chapter, we explained the concept of a workflow. The segmentation of MS
lesions is a complex task that can be divided into smaller tasks. We described each of
these tasks and explained our choice for each task as well as the optimal combination
we found among the processing methods.

We proposed a workflow for MS lesion segmentation (Figure 3.4). First, images
are denoised and corrected for intensity inhomogeneity (except T2-w images). Then
FLAIR is used as the reference, all images are registered rigidly and T1-w is used
to obtain the brain mask. The last step is to apply the segmentation method with
all the registered images and the brain mask.

In the next three chapters, we propose three different segmentation methods.
Any of the three methods can be used as the final step in this workflow.
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Figure 3.4: Proposed workflow for the automatic segmentation of MS lesions.
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STREM: Spatio-Temporal Robust
Expectation Maximization

In the previous chapter, we proposed a segmentation workflow and used a parametric
algorithm called STREM [A1t-Ali 2006].

In this chapter, we describe STREM which will serve as a basis for the methods
described in the following chapters. STREM is a parametric segmentation method
that was developed to segment longitudinal data but in this chapter we present the
method only as a one time-point segmentation method because no longitudinal data
was available for validation. In addition, we describe some modifications we perform
in order to make this method faster, more robust and accurate.

4.1 Method

Our method classifies each voxel of the brain as one of four classes: MS lesions,
white matter (WM), gray matter (GM), or cerebrospinal fluid (CSF). We consider
a typical MR protocol for MS lesions (T1-w, T2-w and PD) as input of our method.
However, other sequences can be added with few modifications, for example FLAIR.
Figure 4.1 illustrates the workflow proposed for the segmentation of MS lesions
and NABT. MR images go through a preprocessing stage composed of three steps:
correction of intensity inhomogeneities, reduction of image noise, and registration
of all images in the same space. The T1-w image is used for skull stripping in
order to focus the segmentation on the brain voxels. Our segmentation algorithm is
composed of three steps: estimation of the NABT model, detection of outliers, and
use of heuristic rules to extract the MS lesions from these outliers.

4.1.1 Estimation of the NABT Model

MRI noise usually follows a Rician distribution [Dietrich et al. 2008], which can be
approximated by a Gaussian distribution for high SNR [Sijbers et al. 1998|. Follow-
ing this approximation, the distribution of intensities within each brain structure
can be approximated by a Gaussian distribution. We model the image intensities
of a healthy brain with a 3-class GMM, where each Gaussian represents one of the

29
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Figure 4.1: Workflow of STREM.

brain tissue WM, GM and CSF. We consider the m MR sequences as a multidimen-
sional image with n voxels. The intensity vector y; = [y, ...4;,,] of the voxel i can be
modeled as follows

f(yil0) = Z%‘ - N(py, 35) (4.1)

where the mean p; and the covariance matrix 3; define the parameters of each
Gaussian N (p;, 3;). These parameters and the mixing parameter a; are merged in
the parameter vector 6.

These parameters can be estimated using the Maximum Likelihood Estimator
(MLE)

0 = argmax L(6) = arg maxH f(yil0) (4.2)
o o s

if we consider y; as i.i.d..

In order to obtain the MLE, we can employ the EM algorithm [Dempster et al.
1977], a technique which is used to iteratively estimate 0. From 0;, the EM algorithm
obtains another 6, where L(6,,1) > L(6,).

This method is usually chosen because is easy to compute and always converges
to, at least, a local maximum of L, but it has two main drawbacks. The first
drawback is that the EM algorithm enables only a local maximum to be reached;
different initial parameters 6, may enable different solutions to be reached, which
makes the choice of 6y an important issue. The second drawback is the sensitivity of
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MLE to outliers. In statistics, this sensitivity is measured by the Breakdown Point
(BP), which can be defined as the smallest number of outliers that can cause the
estimator to take arbitrary large values [Miiller and Neykov 2003|, and, in the case
of the MLE, BP is equal to zero.

We propose two solutions to minimize the effect of these two drawbacks: em-
ploying a hierarchical initialization in order to increase the chances of reaching the
global maximum, and replacing the MLE with the trimmed likelihood estimator
TLE |Neykov et al. 2007] which was introduced for the estimation of the NABT
model by Ai-Ali [Ait-Ali 2006].

4.1.1.1 Hierarchical Initialization

In general, finding a good initialization is a trade-off between accuracy and computa-
tional cost [Meild and Heckerman 2001]. A general approach uses the EM algorithm
with different starting parameters and then selects the solution with maximum L;
to gain more chances of reaching the global maximum, more starting parameters are
needed which increases the computational time.

The initialization can be given by a probabilistic atlas [ATt-Ali 2006], where each
voxel contains the probabilities of belonging to the WM, GM or CSF. The atlas is
linearly registered to the patient images and the mean and variance can be computed
using the probability of each tissue given by the atlas. The atlas-based initialization
method has two drawbacks: the registration is a time-consuming task, and the atlas
may provide improper initializations in MS patients displaying considerable brain
atrophy or lesion load.

Biernacki et al. [Biernacki et al. 2003| proposed to reduce the computational
cost of the above-mentioned random technique with a four-step method. First, they
chose multiple starting parameters at random. Second, they ran the EM algorithm
with a fixed number of iterations for each starting parameters. Third, they selected
the solution providing the best likelihood and fourth, they ran the EM algorithm
again until the convergence was reached starting with the solution selected.

We propose a new method to initialize our multi-sequence NABT estimation
which includes a prior: information in order to reduce the computation cost. First,
we perform a NABT estimation on the T1-w only, applying the Biernacki et al.
initialization, and classify each voxel to one of the three classes according to their
highest probability. This NABT model on T1-w provides us with the mean and
variance on T1-w of the three tissues. Second, we have to estimate the mean and
variance for the other sequences. Using this information, we can therefore compute
the histogram for each tissue ¢ (CSF, GM and WM) and sequence s (T1l-w, T2-w
and PD), and find all local maxima. For each tissue and sequence, we choose one
of the local maxima as the mean p;, (see Table 4.1). The objective is to avoid
missclassification in the T1-w estimations due to vessels and skull stripping errors.
Then the standard deviation is computed using a robust variance estimator

o2, = (14918 - med|y; — ). (4.3)

and the final covariance matrix for each tissue t is given by
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Sequence | Tissue | Selected Maximum
T2-w/PD | WM | Absolute maximum
T2-w/PD | GM Absolute maximum
T2-w/PD | CSF | Brightest maximum
FLAIR WM Absolute maximum
FLAIR GM Absolute maximum
FLAIR CSF Absolute maximum

Table 4.1: Table of the selected maximum of the histogram for each tissue ¢ and
sequence s. In T2-w and PD the brightest maximum is chosen to avoid vessels and
skull stripping voxels missclassified as CSF in T1-w.

0714 0 0
0 o079y (4.4)
0 0 oppy

4.1.1.2 Trimmed Likelihood

Neykov et al. [Neykov et al. 2007| recently proposed a modification of the MLE in
order to make it more robust to outliers. The basic idea consists in maximizing not
(4.2) but the trimmed likelihood

TL0) = ][ Fewlo) (4.5)

where the trimming parameter k (n/2 < k < n) determines how many voxels are
rejected from the estimation and the permutation function v(i) sorts the voxels

We use the parameter h instead of k, where h = ”T’k and 0 < h < 0.5. For
h = 0, the TL is equivalent to MLE. We can prove that this algorithm converges to,
at least, a local maximum of the T'L and that BP = h [Miiller and Neykov 2003],
which means that the TLE can obtain a good estimation of the data even if the data
are contaminated with A% of outliers.

4.1.2 Detection of Candidate Lesions

A high value should be chosen for the trimming parameter h in order to ensure all
MS lesions voxels and other artifacts are rejected from the estimation of the NABT
model. In practice, the h rejected voxels contain inliers that actually fit the NABT
model reasonably well. Thus, to refine the detection of outliers, we define distance
d; as the minimal Mahalanobis distance of the voxel 7 from one of the Gaussians in
the NABT model.

d = H\gn{\/(yi — ) 2 (v —uj)}- (4.7)
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If we consider that voxel intensities of each tissue follow a Gaussian law, the
Mahalanobis distance follows a x2, law with m degrees of freedom [A7it-Ali et al. 2005,
Dugas-Phocion et al. 2004a|, where m is the number of MR sequences. The voxel
1 is considered a candidate lesion when the distance d; is greater than a threshold
that is defined by the x?2, law for a given p-value puana.

4.1.3 Heuristic Rules

Candidate lesions detected with the Mahalanobis distance include MS lesions, ves-
sels, registration errors, flow artifacts, noise, etc. Ait-Ali |ATt-Ali 2006] proposed
some intensity rules to discriminate true MS lesion voxels from the other voxels. We
included two other rules to reduce the number of false positives: the small lesions
rule and the neighbor information rule.

4.1.3.1 Intensity Rules

MS lesions are known to be hyper-intense compared to the WM intensity on T2-w
and PD-w and FLAIR sequences.rm We use the information given by the NABT
model to define hyper-intensity [Ait-Ali 2006].

A voxel is considered to be hyper-intense for a given sequence (e.g. T2-w) if its
intensity y is greater than a threshold y;;, that is defined by the probability of the
Gaussian distribution

Phyper :/ N(NE\?M;U\?VQM)dy- (4.8)
Yth

If the voxel is not considered hyper-intense on every sequence, it is discarded as
a lesion. We focus our method on T2-w hyper-intense lesions, but rules can also be
defined for other types of lesions [Ait-Ali et al. 2005].

4.1.3.2 Small Lesions Rule

In order to avoid false positives, candidate lesions smaller than 3 voxels in size
are rejected. These small candidate lesions are usually produced by noise or flow
artifacts. In clinical practice, lesions must have a radius of 3 mm to be considered
as such [Barkhof et al. 1997].

4.1.3.3 Neighbor Information Rule

In MRI, external CSF usually contains artifacts such as fluid flow or partial volumes.
These effects can cause voxels in the cortex or external CSF to have similar intensities
to MS lesions. In order to reduce the number of false positives due to these effects,
we remove all candidate lesions that are not contiguous to WM voxels or that are
contiguous to the brain mask border.
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4.2 Parameters Setup

In this section, we perform two experiments on the Brainweb images in order to
fix the three parameters of our method. The first experiment studies the trimming
likelihood estimator for the estimation of the NABT model. The second experiment
studies Mahalanobis distance and heuristic rules for the detection of lesions.

4.2.1 Estimation of the NABT Model

We study the behavior of the TLE in the presence of outliers as well as the influence
of h. Typical outliers, other than MS lesions, come from errors occuring in the
brain extraction step. We create imperfect masks of the brain where skull voxels
are included and perform the estimation of the NABT model. We classify each
voxel using the NABT model and compute the DSC for each tissue (CSF, GM and
WM). In this section, we do not perform lesion detection because we focus on the
estimation of the NABT model only.

We employ the images bw moderate (Table 2.1) and compute the imperfect
masks dilating the perfect brain mask mask, from the phantom with spherical
structuring elements of different sizes: 1, maskq (4% of outliers); 2, maskq (8%
of outliers); and 3, maskqs (12% of outliers). We perform the TLE with h varying
from 0 (equivalent to MLE) to 0.49 (the limit at which convergence is guaranteed).
We assign to each voxel the class of the model with the highest probability and we
compute the DSC for each tissue (CSF, GM and WM). The DSC is only computed
in the brain voxels and not in those added in the dilating operations.

For MLE (h = 0), we observe a decrease in the DSC for all the dilated masks
compared to the perfect mask (Figure 4.2); this effect is more pronounced on the
CSF. For TLE, we can divide the h range into three ranges: h < outliers, outliers
< h and outliers > h. For h < outliers, the DSC increases when we increase h.
Once outliers < h, the DSC values are stable and similar to the DSC obtained for
the perfect mask. But when outliers > h, the algorithm considers many voxels to
be outliers and the DSC decreases.

The TLE estimation of the NABT model was stable even in the presence of
outliers when h is higher than the number of outliers. The MLE (h = 0) utilizes all
the voxels in the estimation of the NABT model and therefore, in the presence of
outliers, the estimation is biased by these outliers making the classification of tissues
less accurate. The TLE is able to deal with the outliers when A is higher than the
number of outliers although for very high h (0.35 < h), many voxels are considered
outliers, and this leads to a poor estimation of the model and low DSC scores. In
our method, we set h = 0.20 for real images, although for Brainweb images where
no outliers are present we use h = 0.05.

4.2.2 Detection of Lesions

In our method, lesion detection consists of two steps: the detection of candidate
lesions and the use of heuristic rules to discriminate the real lesions from the other
outliers. The detection of candidate lesions depends on the pp.n. and the use of
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Figure 4.2: DSC for each brain tissue when we vary h on Brainweb images. TLE
algorithm shows good stability when we increase the number of outliers compared
to the MLE (h = 0).

heuristic rules depends on puyper-

In this experiment, we employ the images from Table 2.1. We perform our
segmentation using the ground truth mask and by changing the values of pan, and
Phyper- We compare our segmentation with the ground truth using the DSC.

The results are displayed in Figure 4.3. We observe that the best DSC value
varies for each lesion load, increasing for the lesion load: mild (> 0.7), moderate
(> 0.8) and severe (> 0.85). If we intersect the zones of the graph using best results
for each lesion load, we obtain that the best parameters found are 0.3 < ppana < 0.35
and 11072 < pmana < 5- 1074,

The DSC is sensitive to the size of the segmentation, which may explain the
lower results of the mild lesion load compared to the severe lesion load [Zijdenbos
et al. 1994]. For our algorithm, we choose ppans = 0.3 and ppana = 11073,

4.3 Conclusion

We presented a new version of STREM that was already proposed by Ait-Ali [Ait-
Ali 2006| where some improvements were made in order to improve the performance
of the algorithm. We analyzed the different parameters of the algorithm in order to
optimize their values using the Brainweb database.

In the following two chapters, we propose two new segmentation methods that
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Figure 4.3: DSC values for the automatic segmentation varying the Mahalanobis
threshold (pmana) and the hyper-intensity definition (phyper) on the Brainweb images.

are based on this method but incorporate spatial information to improve the seg-
mentation.
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MS4MS: Mean Shift Clustering for
MS Lesion Segmentation

In Chapter 4 we presented STREM, a segmentation method that uses intensity
information only in the segmentation of MS lesions.

The intensity of a voxel can be altered by the image noise, which can cause
problems in the segmentation. Including spatial information in the segmentation
can reduce the effects of noise, providing a more reliable segmentation. Some
methods include spatial information in the model estimation using Markov Ran-
dom Fields [Van Leemput et al. 2001 or a probabilistic atlas [Dugas-Phocion et al.
2004a).

In this chapter, our assumption is that the segmentation of a voxel is more
difficult than the segmentation of a region of the image. A region is a group of
voxels in the same spatial location with similar intensity characteristics. We first
divide the brain into regions where each region contains only voxels of the same
tissue, and then determine whether each region is an MS lesion or a healthy tissue.

We use the mean shift algorithm (MeS)! [Fukunaga and Hostetler 1975| to create
these regions in the image. Mean shift is a non-parametric algorithm that uses local
spatial information only and can be employed in data clustering, image smoothing
and data filtering.

In this chapter, we improve the segmentation method proposed in Chapter 4.
We use the mean shift algorithm to create meaningful regions in the brain and then
classify these regions using a Gaussian Mixture Model. The chapter starts with a
description of the mean shift algorithm. Then the method is described and finally
some experiments are done to explain the parameters of our method.

5.1 The Mean Shift Algorithm

The mean shift algorithm is a non-parametric technique for the estimation of the
probability density gradient. Fukunaga and Hostetler [Fukunaga and Hostetler 1975|
described the mean shift approach and applied it to clustering and data filtering.

!Mean shift is usually abbreviated to MS, but in this document MS is reserved for multiple
sclerosis.

67
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Cheng [Cheng 1995| generalized the formulation and gave a mathematical description
of the mean shift algorithm. Later, Comaniciu and Meer [Comaniciu and Meer 2002]
applied mean shift in image processing tasks such as segmentation, video tracking
and discontinuity preserving smoothing.

Recently, the mean shift algorithm was employed in the segmentation of brain
MRI of healthy subjects [Jimenez-Alaniz et al. 2006, Mayer and Greenspan 2009].
The first method [Jimenez-Alaniz et al. 2006] used an atlas to label the regions
given by mean shift in three classes: WM, GM and CSF. It uses a mean shift
approach coupled with an edge detector [Meer and Georgescu 2001]. The second
method [Mayer and Greenspan 2009] applied an adaptive version of the mean shift
clustering |[Georgescu et al. 2003], and then performed a k-means clustering on the
results in order to classify the three tissues.

Given n data points x;, @ = 1,..,n in the d-dimensional space R? the Parzen
window density estimator [Duda et al. 2000], with kernel K (z) and bandwidth b, is
given by

fbK bn ZKb l’ - {L’Z . (51)

We are interested in radially symmetric kernels that verify that

) 52

where the profile k(x) is only defined for > 0 and ¢ is a constant [Cheng 1995].
Typical kernels are described in Figure 5.1. Thus we can rewrite equation (5.1) as

for (z — Z k ( > : (5.3)

The gradient of the density can then be estimated as
2
> . (5.4)

We define g(z) = —k/'(z), where g(z) is the profile of the kernel G(x). The kernel
K (z) is called the shadow of G(x).
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The mean shift vector always points towards the direction of the maximum increase
of the density [Comaniciu and Meer 2002].

mpg(x) =

Epanechnikov
— Biweight
Gaussian

Figure 5.1: Typical profile kernels in the mean shift algorithm

The mean shift procedure is performed by the iteration of two steps for each
point z; (Algorithm 1). In every iteration j, the point z; is moved towards a zone
of zero gradient and of local maximum of density called mode that we note M (z;).
The convergence becomes slow when the gradient is near zero; mean shift is stopped
when the mean shift vector is smaller than a constant ¢, which we set as ¢ = 0.005.

Algorithm 1 Mean shift procedure

1. While ||mpq(z) )| > ¢
2. compute the mean shift vector m, 4(x7), equation (5.7)
3. move the point 2™ = my 4 (x7) + 27

Clustering is one of the applications of the mean shift algorithm, whereby points
are classified into an undetermined number of clusters (Algorithm 2). Each cluster
is characterized by a mode M;, which is the local maximum of density of the cluster,
and ¢,,04. defines the minimal distance existing between two modes and is usually
equal to half of the bandwidth.

The choice of bandwidth parameter influences the final clustering obtained by
the mean shift algorithm. A large bandwidth finds less modes in the image but small
clusters might disappear while a small bandwidth might create too many clusters.
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Algorithm 2 Mean shift clustering

0. define L, a list containing the modes
1. forx;, 1=1,.... N
2. compute the mean shift procedure, obtain x
3. for M; in L
4. compute |M; — x|
5. if |M; — 28| < Crode
6. M(x;) = M,
7. go to 1.
8. add mode M (z;) = x{°™ to L

conv
3

5.1.1 Mean Shift for Images

There are two different ways to use the mean shift clustering algorithm in image
segmentation. The first option is to perform the clustering using only the intensity
information. In this case, the point x; will correspond to the intensities of the voxel
1 for the different MR sequences. Mean shift clustering is then performed in m di-
mensions, where m is the number of different MR sequences. In this case, no spatial
information of the image is used. The second option consists in adding the three spa-
tial dimensions to the clustering. The point x; contains m intensities and the three
spatial dimensions x, y and z, thus mean shift is performed in m+ 3 dimensions [Co-
maniciu and Meer 2002]. The advantage of this option is that it enables spatial and
the intensity information to be incorporated into the segmentation process. In this
case, the clusters formed by the algorithms are usually called regions.

The kernel K(x) can be decomposed into two independent kernels with two
different bandwidth parameters — one for spatial components b, and another one
for intensity components b, — as in

Koo (2) = K (2”—) K (fg—) (5.8)

where x° contains the three spatial dimensions and z" contains m intensity compo-
nents.

Separated kernels were already employed in medical image segmentation |Jimenez-
Alaniz et al. 2006] and simplify the concept of bandwidth, as independent band-
widths are chosen for the intensity and spatial features. In the adaptive mean
shift [Mayer and Greenspan 2009]|, the kernel is not computed using a bandwidth
parameter but with the k-nearest neighbors. In this method, the relation between
spatial and intensity features remains unclear.

5.1.2 Optimization of the Mean Shift Algorithm

One of the limitations of the mean shift algorithm is its high computational cost.
The computational cost of the mean shift depends on three main aspects: the kernel
computation, the number of iterations of the mean shift procedure and the number
of points to process.
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Kernel computation: In order to compute the mean shift vector, it is necessary
to find all neighboring points in order to compute the distance between the
points. In high-dimensional spaces, the search for these points can be compu-
tationally expensive. For generic clustering, advanced neighborhood searching
techniques have been employed |Georgescu et al. 2003]. In image segmenta-
tion, we can take advantage of the regular spatial distribution of voxels to find
the neighboring points without the need for these search methods [Carreira-
Perpinan 2006].

Number of iterations: When the kernel is Gaussian, mean shift can be seen as a
EM algorithm and its convergence is mainly linear [Carreira-Perpinan 2007].
When the density gradient is low, e.g. near the mode, the convergence of the
mean shift is very slow. Some authors have proposed accelerating the mean
shift procedure to reduce the number of iterations, although these accelerations
can reduce the accuracy of the regions found. Exampes of such accelerations
include adaptive over-relaxed mean shift [Shen and Brooks 2005], mean shift
with quasi-Newton Methods [Yang et al. 2003| and sparse mean shift [Carreira-
Perpinan 2006].

Number of points: Other optimizations methods reduce the number of points on
which perform the mean shift. One option is spatial discretization |Carreira-
Perpinan 2006], the basic idea of which is that points in a similar spatial
position converge to the same mode. This method creates a super-resolution
grid from the image, and during the mean shift procedure, the grid points are
assigned to the same mode as the processed point. When another point is
found in those grid points, it is directly assigned to the same mode.

5.1.3 Implementation Details

Our implementation of the mean shift clustering reduces the execution time by two
different means. We implement an optimization method called the basin of attraction
to reduce the number of points to be processed. In addition, we propose a multi-
threaded implementation to accelerate the execution on machines with more than
one Processor.

5.1.3.1 Basin of Attraction

The objective here is to reduce the number of points on which we perform the mean
shift procedure. We discarded spatial discretization |[Carreira-Perpinan 2006| be-
cause the creation of a super-resolution grid will cause memory allocation problems
since the images are rather large already. Instead, we propose another implementa-
tion of the same idea: points with similar features converge to the same mode. Tt
can be seen as if each point has a basin of attraction where all the points that fall
into this basin of attraction converge to the same mode (Figure 5.2).

To explain the basin of attraction, we consider a unique bandwidth parameter b;
the extension to two different bandwidths is straightforward. We define a parameter
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Figure 5.2: Example of the basin of attraction in 2D. We observe an iteration of
the mean shift procedure on the blue point. In yellow, the mean shift kernel with
bandwidth b. In green, the basin of attraction of radius r,. In red, a point in the
basin of attraction of the blue point.

a (0 < a < 1) that defines a radius of attraction r, = a-b, and we consider that two
points within a radius of attraction converge to the same mode (Algorithm 3).

The advantage of this implementation is that there is no significant increase in
the computational cost, because in the computation of the mean shift vector, we
already need to compute ka — xz H Then we just verify if this value is smaller
than r,.

5.1.3.2 Multi-threaded Implementation

The use of a multi-threaded implementation does not modify the computational cost
of the algorithm, but reduces the execution time in multi-core machines, the use of
which is nowadays widespread. A thread is essentially an independent subprogram
that runs independently of the main program. The objective is to create multiple
threads that work in parallel, thus accelerating the execution. We expect to divide
the execution time by almost the number of processors in the machine.

The mean shift procedure can be easily parallelized because each point is com-
puted independently of the result of other points. There are only two aspects that
limit the performance of the parallelization: the management of the modes and the
basin of attraction.

Once a mode is found using the mean shift clustering, it is stored in a list of
found modes. If two threads try to access the mode list at the same time, one of the
threads will have to wait, limiting the performance.
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Algorithm 3 Mean shift procedure with basin of attraction
1. While ||mp (2] )| > ¢
2. for neighbor x
3. if ka—xm <71
4. if z; has an associated mode M (k,)
5. M(x;) = M(k,)
6. stop
7. if x;, has no associated mode
8. when finished, M (xy) = M (k;)
9. compute the mean shift vector my ,(z?)

10. move the point 27" = my, 4(x]) +

The basin of attraction requires the result of the mean shift procedure on the
neighboring points, which removes the independence of the mean shift clustering. If
one thread tries to access a point that is being processed by another thread, it will
have to wait for the thread to finish, thus reducing the performance.

To avoid these decreases in performance, we propose to process the image in
blocks. We divide the image into rectangular blocks where the number of blocks is
greater or equal to the number of threads. Each block is processed independently
by just one thread and has its own independent list of modes in order to eliminate
interaction between threads. The basin of attraction problem is reduced as only
one thread is processing the neighboring points inside the same block thus avoiding
conflicts.

Creating a local list of modes for each block may cause two neighboring blocks
having a similar mode. This issue is solved in a subsequent step called region fusion
(details in Section 5.2.4). The limitation due to the basin of attraction can still
occur on the border between two blocks. We propose to process the blocks non-
consecutively, thus reducing the chances of two neighboring blocks being processed
at the same time.

5.2 Method

As explained previously, the mean shift algorithm creates an undetermined number
of regions in the image. In this section, we describe how we use mean shift in order
to segment MS lesions.

Figure 5.3 shows the workflow of our method. First, we estimate the NABT
model as in Chapter 4. This model serves, on the one hand, to normalize the
different sequences, and, on the other hand, to detect candidate lesions.. Second, we
apply the mean shift segmentation followed by a region fusion procedure to obtain
meaningful regions of the brain. Finally, we apply heuristic rules to discriminate the
lesions from other tissues in order to obtain the final segmentation.
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Figure 5.3: Workflow of MS4MS.

5.2.1 Estimation of the NABT Model

As explained in Section 4.1.1, we consider the intensities of the brain to follow a
3-class GMM, where each Gaussian represents a brain tissue: GM, WM or CSF.
This model excludes the MS lesions that are detected afterwards as outliers to this
model. We employ the TLE [Neykov et al. 2007] to compute the model parameters
because the TLE is more robust to outliers than the traditional MLE.

5.2.2 Sequence Normalization

Each MR sequence has a different intensity range and therefore the bandwidth pa-
rameter b, may be inefficient. In (5.8), the kernel can be decomposed again to
have one b, parameter per sequence, but it will increase the processing time of the
algorithm.

We normalize all the images so that the variance of the standard deviation of
WM is equal to 100 using the previously estimated NABT model. This normalization
enables us to have a common bandwidth parameter for all the sequences, and to use
the same bandwidth parameter for different MR protocols.

5.2.3 Mean Shift Segmentation

As described earlier, the mean shift algorithm creates an undetermined number of
output regions using both spatial and intensity information. Our assumption is that
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each region belongs to one tissue class only and that classifying one region is easier
than classifying each voxel individually.

5.2.4 Region Fusion

To reduce the number of regions given by the mean shift algorithm, we employ a
region fusion method. In homogeneous regions, the density gradient is near zero and
the mean shift vector is very small, which may cause oversegmentation. Essentially,
region fusion methods merge neighboring regions if their intensities are similar.

Two regions are usually merged if the distance from one another is lower than
a fixed threshold «, which can be called a-connected [Soille 2008|. This method
can have a chaining effect when the intensity increases slowly. The reason for this
is that an a-connected relation is not transitive; when a region a is a-connected
with regions b and ¢, b and ¢ might not be a-connected. To resolve this issue, we
employ another definition of connectivity known as (a,w)-connected [Soille 2008],
which is transitive. Basically, the distance between neighbor regions must be lower
than a and the maximum distance between all connected regions regions must be
lower than w. Both parameters are set to half of the feature bandwidth.

5.2.5 Denormalization

After performing mean shift segmentation, we denormalize to recover the original
intensities of the brain for each region. This step is necessary for classifying each
region using the NABT model.

5.2.6 Detection of Candidate Lesions

In the same way as in Section 4.1.2, we compute the Mahalanobis distance between
the mode of each region in the image and the previously estimated NABT model.
Considering that voxels intensities in each NABT follows a Gaussian law, the Ma-
halanobis distances follow a x? law with m degrees of freedom [Ait-Ali et al. 2005,
Dugas-Phocion et al. 2004a|, where m is the number of MR sequences. Each region
in the image is considered to be a candidate lesion when the Mahalanobis distance
for every class is greater than a threshold that is defined by the x? law for a given

p-value pmana-

5.2.7 Heuristic Rules

The outliers detected by the previous step come from different sources: MS lesions,
vessels and skull-stripping. In order to reduce the number of false positives, we use
the same rules as in Section 4.1.3.

5.3 Parameter Setup

As in Chapter 4, we describe the behavior of our method when we vary its parame-
ters. We first describe a new measure created to study the mean shift segmentation.
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Then we study three aspects of this method: the mean shift bandwidth, the opti-
mization of the mean shift implementation, and the MS rules.

5.3.1 Optimistic Overlap

In order to select the parameters of the mean shift algorithm, a measure to evaluate
the accuracy of the mean shift regions is required. The only requirement for a mean
shift region is that all the voxels in the region belong to the same tissue class; regions
with voxels belonging to more than one class are considered to be wrong.

We define the Optimistic Overlap (OO) as the best possible overlap between the
regions and the ground truth. We call this overlap measure as “optimistic” because
each region is assigned to the class that gives the best score without the use of any
classification method. The advantage of this technique is that we do not evaluate the
performance of the classification algorithm and we focus exclusively on the specificity
of the mean shift regions.

We consider image [ with n voxels, the mean shift regions r;,7 = 1..n and the
ground truth with K classes. For each r;, we count the number of voxels that belong
to each class k, v}, ...,v5. We write the optimistic overlap as

n K k
OO — Zi:l mjLXkZI(Ui ) ) (59)

The values range from 1 (perfect) to 1/K. This measure can be seen as the best
result we could obtain if our subsequent classification is perfect. Taking into account
that the volume of MS lesions is very small compared to the volume of the brain,
the value of OO should be very high in order to ensure accurate segmentation.

5.3.2 Mean Shift Bandwidth

Our objective is to obtain a reduced number of regions, but each region must gather
voxels from the same class only. Jimenez-Alaniz et al. proposed a spatial bandwidth
of 6 mm and a feature bandwidth of 9 for the segmentation of healthy brains on T1-
w images [Jimenez-Alaniz et al. 2006]. The spatial bandwidth depends on the size
of objects we wish to segment. In our case, we consider that the spatial bandwidth
proposed for healthy patients is adequate for the segmentation of MS patients and
therefore we set the same spatial bandwidth, b, = 6 mm.

The feature bandwidth should take into account the contrast and intensity range
of the image. The feature bandwidth parameter depends on the way in which the
images are normalized. Jimenez-Alaniz et al. omitted the normalization process they
used. As described earlier in Section 5.2.2, we normalize the standard deviation of
the white matter to 100.

To study the feature bandwidth, we perform the mean shift on the images
bw_moderate (Table 2.1). We want to measure two different aspects: the reduc-
tion and accuracy of the mean shift regions. The reduction is evaluated using the
ratio between the number of modes found and the number of voxels in the brain.
To assess the accuracy, we employ the optimistic overlap (OO) described earlier.
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We perform the mean shift segmentation using different feature bandwidths ranging
from 50 to 300. No optimization is used in the mean shift.

Figure 5.4 shows the results of the experiment. We observe that there is a small
reduction in the number of modes when the feature bandwidth is 100 or lower. The
number of modes is reduced to less than 10% when b, < 125. The OO is around
100% for b, < 125 and decreases for higher bandwidth values.

We observe that b, has to be higher than the normalization vale in order to reduce
the number of modes significantly. We notice that the values of OO are higher than
98% for all parameters, which means that less than 2% of the voxels of the brain
were incorrectly classified. MS lesions occupy only 0.2% of the volume of the brain;
small variations of the OO can modify our segmentation significantly (Figure 5.5).
In order to obtain a reduced number of regions yet minimize overlap errors, we set

our bandwidth to 125.

100 : ; . ; 100
g 801 3
e =
§ 601 E e
@ g
0] (@]
S Q
> 40t ®
3 £ 99r
3 S
o joR
= 20} o
0 . : 08.5 . . . .
50 100 150 200 250 300 50 100 150 200 250 300
Feature Bandwidth Feature bandwidth

Figure 5.4: Results on bw moderate with varying feature bandwidths. Left: Ratio
between the number of modes and voxels. There are fewer regions when the feature
bandwidth is high. Right: Optimistic Overlap. There are more overlap errors when
the feature bandwidth is high.

5.3.3 Implementation Optimization

In this section, we evaluate the efficiency of the optimization proposed for the mean
shift and select the best parameters for this optimization. In the first experiment,
we study the efficiency of the basin of attraction and in the second one we focus on
the execution time.

5.3.3.1 Basin of Attraction

As explained earlier, the basin of attraction has one parameter a that determines
which voxels are close enough together to be attracted by each other. If a is large,
this optimization can attract voxels that should belong to different regions, causing
segmentation errors.

We perform the mean shift segmentation on bw_moderate (Table 2.1) with a
feature bandwidth of 125 and a spatial bandwidth of 6 mm, and with the parameter
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Figure 5.5: From tom to bottom, from left to right: Brainweb T1-w image, ground
truth, and mean shift results with bandwidths 125 and 300. When the bandwidth is
equal to 300, regions seems more homogeneous but some CSF regions were merged
with GM leading to problems in the segmentation.
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a varying from 0 to 0.9. We compute the optimistic overlap and count the number
of voxels that are processed using our basin of attraction.
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Figure 5.6: Results on bw_ moderate with varying parameter a of the basin of at-
traction. Left: Percentage of voxels processed by the basin of attraction, which is a
measure of the efficiency of the optimization. Right: Optimistic Overlap.

The results are shown in Figure 5.6. On the left, we observe that when a in-
creases, the number of voxels that are attracted also increases. When a > 0.3, the
number of attracted voxels is higher than 50%. On the right, the optimistic overlap
is almost constant for values of a < 0.4. When a > 0.4, the optimistic overlap
decreases rapidly.

The objective of the basin of attraction is to reduce the number of operations of
the mean shift yet yielding a similar result to the mean shift without optimization.
For our method, we choose a = 0.3 in order to obtain the best possible optimization
without reducing the quality of the mean shift segmentation.

5.3.3.2 Execution Time

We measure the execution time of the mean shift algorithm using the multi-threaded
version of the algorithm and the basin of attraction. We perform the mean shift
segmentation on bw_moderate (Table 2.1) on a machine with four cores. We vary
the number of threads from 1 to 8 with and without the basin of attraction and
measure the execution time.

The results are shown in Table 5.7. We can observe that the use of the basin
of attraction reduces the execution time to 14% of the original time showing a
significant improvement. As for the multi-threaded implementation, we can observe
that the reduction is close to optimal with and without the basin of attraction.
When the number of threads is greater than or equal to the number of cores, the
reduction is almost 25% compared to the non-threaded version.

The basin of attraction gives the best time reduction. In addition, multi-core
machines are nowadays very common and the multi-threaded version improves the
execution time depending on the number of cores in the machine.
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Basin of Attraction
Threads Without With
1 27082 (100.0%) | 3865 (14.0%)
12701 (46.9%) | 1965  (7.3%)
6843  (25.3%) | 1104  (4.1%)
6875  (25.4%) | 1130  (4.0%)

o = N

Figure 5.7: Execution time of the mean shift algorithm (in seconds) when we vary
the number of threads with and without the basin of attraction. Experiments were
run once only.

5.3.4 Rules

We perform a similar study to that conducted in Section 4.2.2. We perform the
MS lesion segmentation on bw_ mild, bw moderate and bw_severe (Table 2.1) |
varying the pp,qnq of the Mahalanobis threshold and the pyy,., of the hyper-intensity
definition. The automatic segmentation is compared with the ground truth using
DSC.

Figure 5.8 shows DSC for the three lesion loads. For bw_mild, the best DSC
values are found around pane = 0.4 and pryper = 5 - 1073, The best results for
bw_moderate are found around py,ane = 0.35 and pryper = 5 - 10~*. For bw_severe,
the best DSC values are obtained for pyane = 0.3 and pryper = 1 - 1074,

We observe that for the three lesion loads, there is a flat zone where the algorithm
is stable to small variations in the parameters. For moderate and severe lesion loads,
the algorithm is robust to variations in p,,.na, and obtain high DSC scores for almost
the whole range of values once ppy,e, is correctly chosen. We set the parameters of
the algorithm as pane = 0.35 and ppyper = 1 - 1072

If we compare these results with the ones obtained in the last chapter (Figure 4.3),
we observe that the selection of parameters is less critical because the range of
parameters leading to good results is wider for this new method. Creating mean shift
regions simplifies the subsequent classification and small variations in the parameters
leave the results unchanged.

5.3.5 Conclusion

In this chapter, we have presented a new method for the segmentation of MS lesions
which integrates the use of the mean shift algorithm into our previous method.
This method is based on the assumption that a region of similar voxels is easier to
classify than each voxel independently. Mean shift creates these regions using local
spatial information that are subsequently classified using our model estimation. The
experiments we conducted showed that this method is less sensitive to the choice of
parameters than STREM.

The main drawback of mean shift is the computational cost involved. We pro-
posed a multi-threaded implementation and the basin of attraction in order to reduce
considerably the execution time without losing accuracy.
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Figure 5.8: DSC values for automatic segmentation, varying the Mahalanobis thresh-
0ld (Pmana) and the hyper-intensity definition (phyper) on the Brainweb images..
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Chapter 6

GCEM: A Graph Cut Approach
With an Expectation-Maximization
Initialization

In Chapter 5, we described a segmentation method that combined both a global and
a local algorithms so as to include spatial information in the segmentation of MS
lesions using mean shift.

In many situations, clinicians would like to refine a particular segmentation given
by an automatic segmentation method. Graph cut (GC) [Boykov and Funka-Lea
2006] is a recently developed technique for semi-automatic segmentation which has
been successfully employed in different medical areas. It is based on both regional
and contour information, is very fast to compute and the result can easily be refined
interactively.

In this chapter, we explore the possibility of improving our automatic MS lesion
segmentation using a graph cut framework. We propose to automate the graph cut
algorithm so as to segment MS lesions using several MR sequences. The initialization
for graph cut is given by a Gaussian Mixture Model (GMM) estimated by a robust
version of the Expectation-Maximization (EM) algorithm [Neykov et al. 2007]|. The
advantage of this method over previous methods is the possibility for an expert to
easily refine the segmentation semi-automatically thanks to the graph cut framework.

This work was carried out in collaboration with Jeremy Lecoeur, who worked in
the semi-automatic segmentation of brain images with graph cut. The objective is
to automatize the spectral graph cut [Lecoeur et al. 2008] for the segmentation of
MS lesions.

6.1 The Graph Cut Framework

The rapid computation of the graph cut has opened up the possibility of using a new
family of graph-based semi-automatic segmentation methods for medical images.
Boykov and Jolly [Boykov and Jolly 2000] proposed the use of graph cut for the
segmentation of cardiac MRI and CT. The user only needed to select some seeds
from the object and the background to perform the segmentation. The advantage is
that the segmentation can be refined iteratively in a fast and simple way. Esneault
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et al. [Esneault et al. 2007] used graph cut to segment liver tumors on CT images.
Recently, the graph cut was also applied to brain MRI. Song et al. [Song et al. 2006|
employed graph cut with atlas priors for the segmentation of brain tissues in neonatal
brains and Lecoeur et al. [Lecoeur et al. 2008] semi-automatically segmented tumors
and MS lesions in multi-sequence brain MRI.

Figure 6.1 describes the graph cut algorithm in an intuitive way. The segmen-
tation problem can be described by a flow graph G = (P, ) which represents the
image [Boykov and Jolly 2001]. In the graph G, each voxel of the image corresponds
to a node p in P. The node set P also contains two particular nodes called terminal
nodes - also known as source and sink - which represent the classes object and back-
ground respectively. Two neighbor nodes are connected with undirected links and
N contains all the links of the image. All the nodes are connected to both object
and background nodes. The segmentation is represented by the vector V, where the
value of the binary variable V), can be either object or background.

We define an energy function E(V) that includes spatial and intensity informa-
tion as

EV)=a-> R,(V,)+ > By (6.1)
{

peEP P,q}EN
Vp#Vq

The regional term R,(-) expresses how the voxel p fits the given models of the
object and background. In the graph, this relation is expressed by the connection
of all the nodes to the object and background nodes, called t-links.

The boundary term By, g reflects the similarity between the voxels p and g.
Neighboring nodes are connected in the graph, n-links, with weight By, 1. Their
values are close to zero when the existence of a contour between p and q is very
likely and are large otherwise. The coefficient « is used to adjust the importance of
the region and boundary terms.

When the energy function (6.1) is minimized, the resulting vector V' gives the
result of the segmentation. Greig et al. [Greig et al. 1989] proposed an efficient
method to compute the global minima using the max-flow /min-cut algorithm. The
basic idea of this algorithm is that the cut with the minimal cost can be found
using the maximum flow from the object to the background. Recently, Boykov
and Kolmogorov [Boykov and Kolmogorov 2004 proposed an optimization of the
algorithm allowing faster computation of the graph cut. For more information, the
reader can refer to the work by Lecoeur [Lecoeur 2010].

6.2 Method

As explained before, graph cut requires two different sources of information: the
regional term and the boundary term. In the semi-automatic approach, the regional
term is given by the seeds chosen by the user. In our method, we avoid the user
interaction and compute the regional term automatically.

Figure 6.2 illustrates the workflow employed in this method. The boundary term
is computed using the spectral gradient proposed for the segmentation of multi-
sequence MRI [Lecoeur 2010]. The regional term is computed in three steps: the
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Figure 6.1: Example of a graph cut segmentation. (Images extracted from |Lecoeur 2010])

In the image, the user chooses seeds from the background (B) and the
target object (O).

The image is transformed into a graph; each pixel is represented by
a node in the graph. Neighbor voxels are connected by a link. In
addition, two other nodes corresponding to the object (S) and the
background (T) are created, which are connected to all the pixels in
the images.

Each link between two nodes has an associated weight that represents
the similarity between the two nodes (this is represented by the width
of each connection). The algorithm “cuts” the weakest links in order
to split the graph into two sub-graphs.

Once the cut is made, the graph is converted back into the result
image.

85



86 Chapter 6

Images
e S \
/ \ / ( \ \
| o NABT |
| Lo estimation |
| | : '
| | :
|| Spectral L Mahalanobis !
[ Gradient . Distance |
| I o ) :
' b |
| | | |
: L Background Object '
| : | Weights Weighs ] !
| | | I
\ Boundary Term, ' Regional Term /
N o 7 e 7
GRAPH CUT Classified
Image

Figure 6.2: Workflow of the proposed automatic segmentation method based on
graph cut.

estimation of the NABT model (as described in Chapter 4), the Mahalanobis dis-
tance and the estimation of the object and background weights for the regional
term.

In the following sections, we consider the MR sequences as a unique multidimen-
sional image of dimension m equal to the number of sequences. We assume that
all the MR sequences of the same patient have been previously registered in the
same space, that intensity inhomogeneity correction has been performed and that
the brain has been extracted.

6.2.1 Boundary Term

The boundary weights By, ;1 are usually computed by an edge detection technique
such as the local intensity gradient [Boykov and Kolmogorov 2004] or the Lorentzian
error norm [Song et al. 2006]. The majority of these techniques are performed on
one sequence only although recently some techniques have been proposed for the
use of graph cut in the tensor space [Weldeselassie and Harmaneh 2007]. As the
boundary term, we choose the spectral gradient that was already employed for the
semi-automatic segmentation of brain multi-sequence MRI [Lecoeur et al. 2008].
The objective is to consider our three MR sequences as a RGB color image
and use an invariant color-edge detector |Lecoeur et al. 2008, Lecoeur 2010]. This
detector is based on a physical property of color, the spectral intensity e, and its
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derivatives with respect to the light wavelength A, ey and e,,, that are simple to
compute [Geusebroek et al. 2000].

For the graph, the detector is discretized, giving the following boundary term |Lecoeur
et al. 2008]:

(e(p) — £(9))* + (ealp) — £x(@))? 1
B = — . 6.2
{p,q} exp ( 20_2 dist(p, q) ( )
where ¢ is a smoothing parameter (in our experiments o = 1), and
1 0de ey de e-ex—ex
.= _2 d =_— =22 A 6.3
T o\ e an g/\ O\ e? (6:3)

6.2.2 Regional Term

In semi-automatic frameworks, the weights R,(B) and R,(O) for the voxel p are
usually defined as follows

o0 if peB ; 0 ifpeB
—In P(I,|0) elsewhere —In P(1,|B) elsevvh(%r(jl |

The point sets B and O are the seeds of the background and the object respec-
tively. The probability P(I,|B) reflects how the intensity vector I, of voxel p fits
into the intensity model estimated using B. Most authors assume that seeds follow a
Gaussian distribution [Song et al. 2006, Lecoeur et al. 2008, Boykov and Funka-Lea
2006.

Our objective is to eliminate dependency on the seeds in order to create a fully
automated method. We replace P(I,|B) and P(I,|O) in (6.4) for some weights Wg
and Wy in order to have a more general definition, Wy, Wg € [0, 1]. For example,
W should be close to 0 when the voxels are very likely to be a MS lesion and close
to 1 otherwise.

00 ifpeB o 0 %fp €B
R,(B) =0 ifpeo (0) = § o0 ifpe0O
—InWyo elsewhere
—InWpg elsewhere (6.5)

In order to enable the subsequent semi-automatic processing by a user, the point sets
B and O are maintained in (6.5) althought, in the case of automatic segmentation,
weights Wy and Wp are used only .

In order to determine these weights, we follow a similar approach to the one in
Chapter 4. First, we consider the NABT intensities to follow a 3-class Gaussian
model and we compute the model parameters using the trimmed likelihood estima-
tor [Neykov et al. 2007|. Second, we compute the distance of each voxel from the
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model using the Mahalanobis distance and compute the ppana for each voxel (see
Section 4.1.1). Voxels with low ppana are more likely to be outliers. In the graph
cut framework, weights can have any value from 0 to 1 thus we do not apply any
thresholding regarding pmana, contrary to the methods in Chapters 4 and 5.

For each type of weight, W and Wy, we define specific rules so as to include
more information in the graph cut framework:

Background weights (WWp): Voxels that follow the NABT model should have a
weight close to zero. We define these weights using the ppa1, mentioned earlier
as:

W5 =1 — pmana- (6.6)

Object weights (Wy): Outliers, voxels with 10w ppan,, are usually MS lesions,
but they can also occur due to veins or registration and skull-stripping errors.
This is why we need more information to precisely determine the weights. To
select MS lesions from other outliers, we apply a priori knowledge about the
intensity of the lesions.

Fuzzy weight

Sb Se

X=(Y r~Hrp Dogy

Figure 6.3: Fuzzy definition of hyper-intensity. When the intensity x < 5, we
consider the voxel as not being not hyper-intense. Between S, and S., the function
varies between 0 and 1. Finally when z > S., the voxel is considered as being
completely hyper-intense.

As we mentioned before, MS lesions are usually described as hyper-intense
compared to the WM in T2-w, PD-w or FLAIR images. In Chapter 4, we
described the hyper-intensity using hard thresholds because we needed to ob-
tain a binary MS lesion segmentation. In this case, the weights can have any
value between 0 and 1, thus we choose a fuzzy approach to model this experts’
knowledge. Instead of defining a binary threshold for hyper-intensity, we define
a fuzzy weight. This fuzzy weight is computed for each sequence and needs
two parameters to define the fuzzy function: slope beginning 5, and slope end
Se (Figure 6.3).

As an example, for T2-w images, considering the intensity of the T2-w im-
age Yr,, we can normalize the intensity according to the WM mean g™ and

standard deviation o))", as follows



Parameter Setup 89

WM
g = 2 Hr (6.7)

WM
O-TQ

the equation of the fuzzy weight then becomes

0 if x <5
We = 5% if 5, >2> 5, (6.8)
1 if x> S,

The information given by the Mahalanobis distance and the hyper-intensity
fuzzy rules is merged into one weight using the fuzzy AND operator:

WO - AND{WPD, WT2; WFLAIRv pmaha}' (69)

One post-processing step is performed after graph cut. As many false positives
occur due to artifacts in the external CSF, all lesions detected neighboring the brain
border are removed from the segmentation.

6.2.3 Semi-automatic Post-processing

Users of automatic segmentation methods need to be able to verify the automatic
segmentations and refine the segmentation by adding missed lesions and removing
false positives. As mentioned in Section 6.2.2, our graph cut method offers the
possibility of user interaction.

Figure 6.4 shows an example of the possible interaction. Once the automatic
segmentation is displayed, the user discovers a missed lesion in the images of the
patient. The user adds an object seed in the lesion, see equation (6.5). The graph
cut is then recalculated and the new lesion is added.

6.3 Parameter Setup

In this section, we propose two experiments to analyze the behavior of our method
with respect to « of the graph cut framework and to the fuzzy rules of the regional
term.

6.3.1 Fuzzy Rules

MS lesions are considered as hyper-intense compared to white matter, but there is
no consensus on how to define hyper-intensity. In the two last chapters we defined a
hard threshold with which determine the hyper-intensity, but we proposed to use a
fuzzy definition of hyper-intensity, as a binary decision is already made by the graph
cut.

The idea of this experiment is to vary our fuzzy definition of hyper-intensity. In
practice, we have to vary two parameters: the slope beginning 5, and the slope end
S.. We note that when S, = S,, the fuzzy rule becomes a binary rule. We perform
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Figure 6.4: Example of semi-automatic postprocessing. Top line: T1-w and PD-w.
Bottom line: automatic GC solution and semi-automatic solution (Red: object seed,
Green: graph cut solution, Blue: automatic segmentation).

the segmentation on bw_mild, bw_moderate and bw_severe (Table 2.1) using our
method modifying S, and S, from 1 to 4 in steps of 0.5. The segmentations are
compared to the ground truth using the DSC (see Chapter 2). As proposed by
Lecoeur et al. [Lecoeur et al. 2008|, o was set to 10 in this experiment.

The results for every pair of Sy; S, values are shown in Figure 6.5. The best set
of parameters varies for each lesion load: mild (2.5;3.5), moderate (3;4) and severe
(3.5;4). For every lesion load, the fuzzy rule is better than any of the hard threshold
rules (S, = Se). The best overall set of parameters is S, = 2.5 and S, = 3.5.

6.3.2 Alpha

Regional and boundary terms are influenciated by «. Lecoeur et al. [Lecoeur et al.
2008] set & = 10 but we modify « in order to gain a better understand its influence
on the graph cut algorithm.

We choose from the Brainweb database the images with moderate lesion load,
20% inhomogeneity and two levels of noise (3% and 5%). In this case, we set the
fuzzy rules S, = 2.5 and S, = 3.5 and vary «a from 0 to 100. The segmentation is
then compared to the ground truth of the lesions using the DSC.

It is interesting to notice the two extreme situations of the analysis. When a = 0,
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Figure 6.5: Results of DSC for different fuzzy values on Brainweb images. Note that
when S, = S, the fuzzy rule becomes a hard threshold.

the regional term is not employed and only the information of the boundary term
is employed. If we replace & = 0 in (6.5), we can observe that only the seeds can
influence the segmentation, thus for the automatic segmentation this is of little use.
On the contrary, when « increases, the regional term has a greater weight in the
cost function and the spatial information is no longer employed in the segmentation.
When o — inf, the graph cut becomes a threshold where only the value of the two
weights is taken into account.

Figure 6.6 describes the behavior of . We observe that the best performance of
the algorithm is situated around the 3-10. When « < 1, the boundary information
has more influence than the regional information and the algorithm fails to yield a
good result.

When a > 60, the boundary information has little influence and the graph cut
becomes an automatic threshold technique; no spatial information is employed and
the method is sensible to the noise.
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Figure 6.6: Results on Brainweb with different values of «.

Figure 6.7 shows some visual results. When o = 100, the boundary information
has little influence and the graph cut becomes an automatic threshold technique,
small points are detected as lesions, thus producing multiple false positives. When
a = 2, we observe that the top right elongated lesion is truncated. This happens
because the cost of the boundary term is higher than the cost of the regional term,
which is commonly known as shrinking bias [Vicente et al. 2008|, and causes that
elongated targets to be incorrectly segmented. When the regional term becomes is
higher (a = 10) this effect disappears.

6.4 Comparison with the Semi-automatic Approach

We compared our results with the semi-automatic method proposed by Lecoeur et
al. [Lecoeur et al. 2008]. Comparing of an automatic method with a semi-automatic
method is a complicated process as the semi-automatic method is user-dependent;
the results of the segmentation varies depending the expert’s experience in MS lesion
detection and expertise on the segmentation method employed.

In order to simplify the evaluation, we simulated the seed selection by two means:
Random and Erosion. In the Random selection, a percentage of the ground truth
voxels are selected as seeds at random. In the Erosion selection, a percentage of the
ground truth voxels is selected, starting with the voxels in the center of the lesions.
This second selection method should be more reliable as raters usually select voxels
in the center of a lesion.

We compute the semi-automatic method in bw moderate and compare it with
our automatic method in terms of DSC (Figure 6.8). The results of our automatic
method correspond to a percentage of seeds of 5% for the random seeds and a 7%
for the seeds selected by erosion. This means that the rater has to select around 175
voxels at random or up to 245 voxels from the center of the lesions, which shows
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Figure 6.7: Top line, from left to right, top to bottom: Brainweb ground truth and
automatic segmentation with a = 100. Bottom line, from left to right: automatic
segmentations with o = 10 and o = 2.

that the gain obtained by our algorithm is significant, although a further analysis
would be necessary using real raters.

6.5 Conclusion

We proposed an automatization of the graph cut framework for the segmentation
of MS lesions. Based on the method proposed in Chapter 4, we proposed a new
segmentation method that incorporates spatial information thanks to the spectral
gradient.

This new method offers two main advantages. First, it includes gradient infor-
mation which should make the method more robust to noise and intensity inho-
mogeneity. Second, the method offers the possibility of subsequently refining the
segmentation if the expert is not completely satisfied.
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Figure 6.8: Results on Brainweb (n = 3% and rf = 20%) for the semiautomatic
version of graph cuts [Lecoeur et al. 2008], with random selection of seeds and with
selection of seeds by erosion.
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Validation

In Chapter 2, we gave an overview about the validation of MS lesion segmentation
methods. In this chapter, we evaluate the three method proposed in the last three
chapters to measure their accuracy.

We start describing the metrics employed in the validation of our methods and
compare our methods using a database of synthetic images and two databases of
clinical images. We then finish with our conclusions of the comparison.

7.1 Metrics

The evaluation of a segmentation method changes whether the exact solution is
known or not. On synthetic images, this solution is available and is known as
the ground truth. When the ground truth is available, the evaluation consists in
measuring the dissimilarities between the results of the segmentation method and
the ground truth.

In clinical images, the ground truth is not available and the evaluation of the
segmentation is more complex. In MS lesion segmentation, automatic methods are
usually compared against gold standards based on manual segmentations. A basic
evaluation method considers the manual segmentation to be the ground truth.

Dissimilarities between the results of an automatic segmentation method and
gold standards can be due to both errors from the automatic segmentation method
or variability in inter- and intra-experts’ segmentations [Grimaud et al. 1996]. When
several manual segmentations are available, other evaluation methods can be applied
where the expert’s variability is taken into account in the comparison.

7.1.1 Evaluation Against the Ground Truth

The evaluation of a segmentation method on synthetic images consists of comparing
the segmentation result against the ground truth that served to create the images.
This approach is also employed in clinical images when only one expert’s manual
segmentation is available and we consider the manual segmentation to be the ground
truth.

Many metrics have been employed for the comparison of a segmentation result
with a reference image. As we mentioned in Chapter 2, the most popular measure

95
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in MS lesion segmentation is the Dice Similarity Coefficient
(7.1)

Values ranges from 0.0 to 1.0, indicating complete failure or perfect segmentation
respectively, with 0.7 typically considered to be a good agreement [Zijdenbos et al.
1994]. We can rewrite this equation using the information in Figure 7.1 as

2x TP
D = ) 2
5C 2xTP+ FN+ FP (7.2)

Segmentation Reference

TN

FP
FN

TP

Figure 7.1: Description of the four possibilities when comparing two images: true
positives (TP), true negatives (TN), false positives (FP) and false negatives (FN).

7.1.2 Evaluation Against Several Manual Segmentations

In this kind of evaluation, the question we want to answer is whether the automatic
segmentation method is as good as an experts’ manual segmentation.

First, manual segmentations are employed to create an improved segmentation,
which is called a silver standard. The automatic segmentation methods are then
evaluated using this silver standard and compared to the variability obtained among
experts.

7.1.2.1 STAPLE

The STAPLE (Simultaneous Truth And Performance Level Estimation) algorithm
was designed to study the performance of different experts when the ground truth
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is not available [Warfield et al. 2004]. This algorithm takes into account that all
segmentation methods or experts are somehow imperfect and that their sensitivity
and specificity can be measured. The sensitivity and specificity of each method is
estimated using an EM approach that estimates at the same time the STAPLE silver
standard (SSS).

Once the SSS is created, we can compute the sensitivity Se and specificity Sp of

other methods as follows

"D W
Se = —Z’z::% zWWz (7.3)
i=0 Vi

_ Z?:o Di ) (1 - VVz)
DY R

where D; is the voxel ¢ of the binary segmentation and W; is the probability of the
voxel ¢ on SSS.

There are three different options to use STAPLE with both manual and au-
tomatic segmentations. The first option is to include all manual and automatic
segmentations in the STAPLE computation and obtain simultaneously the SSS, and
the sensitivity and specificity for every segmentation. In this option, the hypothesis
is that the quality of the automatic segmentations is similar to the quality of manual
segmentations and thus they can be included in STAPLE. The number of manual
segmentations should be larger than the number of automatic segmentations or the
SSS might be biased against the automatic methods.

The second option assumes that segmentations from experts are better than seg-
mentations from automatic methods and therefore STAPLE is employed to create
SSS with manual segmentations only. The Se and Sp of automatic methods are
computed afterwards using equations (7.3) and (7.4). Since only manual segmen-
tations are used in the creation of the SSS, it would be biased towards automatic
segmentation methods.

The third option requires the experts to perform two manual segmentations for
each image. The first manual segmentation of every expert is employed in the com-
putation of the SSS. Then, we compute sensitivity and specificity for all automatic
segmentations and the second manual segmentations using equations (7.3) and (7.4).
The advantage of this option compared to the former two options is that the cre-
ation of the SSS and the evaluation of the sensitivity and specificity are performed
with different images, which leads to a less biased comparison. The drawback of this
option is the requirement of additional time-consuming manual segmentations.

Sp (7.4)

7.1.2.2 Voting Silver Standard

Due to the variability between experts, one strategy is to employ the consensus
among experts to create a silver standard. A voxel is considered a lesion if the
majority of the manual segmentations consider it as a lesion, we call this resulting
image the Voting Silver Standard (VSS).

We propose a measure based on the DSC to measure the variability among
experts and to compare the variability with the automatic method. We call this
measure the raters DSC (rDSC). If we consider R experts, for every pair of experts
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r and s, we compute the DSC, g, the mean and the standard deviation of the rDSC
gives us an indication of the level of agreement among experts.

R R
urDsc—TZ Z DSC.s (7.5)
(&) 7=

5=0,s

ODsC = (DSC,.5 — tensc)’ (7.6)
r=0 s=0,s#r

To evaluate an automatic segmentation method, we compute the DSC using the
VSS as reference and compare the values obtained with the rDSC. The advantage
of this strategy is that the creation of the silver standard is intuitive and the DSC
is a well known measure in the domain of segmentation of MS lesions.

7.2 Brainweb Database

In Section 2.4.1, we introduced the Brainweb database, which is a realistic synthetic
database of MR images. These images were already used to study the parameters
of the three proposed segmentation methods.

7.2.1 Data

This database contains three MS phantoms with different lesion loads (mild, moder-
ate and severe). From each of these phantoms, we can produce synthetic MR images
with different MR parameters and image artifacts. For all levels of noise (1%, 3%,
5%, 7% and 9%) and ITH (0%, 20% and 40%), we obtain the three sequences (T1-w,
T2-w and PD) from the three MS phantoms The TLL of each phantom is: mild,
0.4 cm?; moderate, 3.5 cm?; and severe, 10.1 cm?.

7.2.2 Results

We process all images in the Brainweb database using default parameters for our
three automatic segmentation methods. The images are already aligned and no fur-
ther preprocessing was employed on images. We use the ground truth to determine
the brain mask and DSC was computed for each method (Figures 7.2, 7.3 and 7.4).

For the mild lesion load ( Figure 7.2), we obtained lower DSC than for the other
two lesion loads, We also notice that with the mild lesion load phantom with 40%
inhomogeneity, all three methods obtained poor DSC. The DSC is more sensitive
when the segmentation region is small [Zijdenbos et al. 1994].

Our methods obtained a lower DSC for 1% than for 3% noise. On images with
1% noise, variance on each class is very small when there is 1% noise which results
in poor detection of the candidate lesions. The variance on clinical is greater than
Brainweb with 1% noise and therefore this case is of little practical interest.

MS4MS obtains higher DSC than STREM in presence of ITH and noise. GCEM
shows higher DSC than the other two methods for high levels of noise. It also



Brainweb Database 99

exhibits a similar behavior to MS4MS in regards to the IIH. GCEM obtains the best
score in overall, however MS4MS obtains the highest DSC for the normal conditions
(noise=3% and 1TH=20%), which are the conditions employed in the optimization
of parameters.

Mild Lesion Load (IIH 0%) Mild Lesion Load (IIH 20%)
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Figure 7.2: DSC results for images with mild lesion load from the Brainweb database
for our three methods: STREM, MS4MS and GCEM. Each graphic represents one
level of intensity inhomogeneity (ITH): 0%, 20% and 40%.

7.2.3 Conclusion

The comparison on synthetic data gives information about the behavior of the meth-
ods with different levels of noise and inhomogeneity. The parameters of all methods
were optimized for 3% of noise and therefore they obtained their best results.

STREM accuracy decreases rapidly in presence of noise and inhomogeneity. The
creation of regions with MS4MS improves the robustness of the method against
noise and inhomogeneity yielding better DSC values than STREM because a region
is easier to classify than a voxel alone.

GCEM is more robust to noise than the other two methods. The inclusion of
contour information given by the intensity gradient makes the method robust to
both noise and inhomogeneity.

Table 7.1 show the results of our methods and several state-of-the-art methods
on the Brainweb database. Each method uses only some images from the Brainweb
database making the comparison complicated. We observe that our methods obtain
similar results to those in the literature.
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Figure 7.3: DSC results for images with moderate lesion load from the Brainweb
database for our three methods: STREM, MS4MS and GCEM. Each graphic repre-
sents one level of intensity inhomogeneity (ITH): 0%, 20% and 40%.

7.3 Rennes Database

Images in this database are available with no preprocessing. We then apply the
complete segmentation workflow proposed in Chapter 3 using our three segmentation
methods.

7.3.1 Data

Images of thirteen MS patients were acquired on a Philips Achieva 3T System
(Philips Medical Systems, Best, The Netherlands). The MR protocol consisted of:

T1-w: SENSE=4, TE=4.6 ms, voxel size 1 x 1 x 1 mm.

Dual Echo: TSE, TR=2000 ms, TE1/TE2=10/90 ms, voxel size 0.93 x 0.93 x
3 mm.

FLAIR: TSE, TR=11000 ms, TE=125 ms, TI=2800 ms, voxel size 0.93 x 0.93 x
3 mm.

Images were acquired at the Pontchaillou University Hospital (Rennes, France)
on clinical routine. There were no selection criteria for the patients, as such there
was a great variability on disease progression. Because of confidentiality reasons, no
clinical information of the patients was available. In all patients, MS lesions were
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Figure 7.4: DSC results for images with severe lesion load from the Brainweb
database for our three methods: STREM, MS4MS and GCEM. Each graphic repre-

sents one level of intensity inhomogeneity (ITH): 0%, 20% and 40%.

manually delineated on FLAIR images by one expert using the Anatomist software’.
In this database, all images are in the DICOM format without any processing thus
the complete segmentation workflow can be evaluate. PD images showed a intensity
contrast similar to the T2-w images and was discarded for the segmentation.

Patients were ordered by TLL which was computed from the expert’s manual
segmentation (Figure 7.5). We observe that four patients have a similar TLL to
bw_maild, five patients obtain a similar TLL to bw_moderate and four patients have
a TLL higher than bw_severe.

7.3.2 Results

We perform the segmentation using the workflow proposed in Chapter 3 using T1-
w, T2-w and FLAIR images with the three proposed segmentation methods. The
segmentation results are compared with manual segmentation using DSC.

Figure 7.6 shows the DSC values for all segmentation methods. We observe that
the three segmentation methods obtain similar results. GCEM obtains a higher
DSC on the last three patients, and MS4MS obtains the best average for the four
patients with lower lesion load. On average (Table 7.2), GCEM is slightly better
than the other two methods although results show a low agreement between the

'http://brainvisa.info/
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Method bw_mild | bw _moderate | bw_ severe
STREM 0.72 0.72 0.80
MS4MS 0.72 0.80 0.87
GCEM 0.74 0.76 0.84
|Rousseau et al. 2008] 0.52 0.63 0.82
[Freifeld et al. 2007] 0.77*

[Van Leemput et al. 2001] 0.80*

|Zijdenbos et al. 2002] 0.79

[Shiee et al. 2009] 0.81

Table 7.1: DSC values on the Brainweb images bw_mild, bw _ moderate and
bw_severe for the three methods and other results obtained from the literature.
(* DSC was only computed on slices from 60 to 120)
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Figure 7.5: Total lesion load (TLL) computed from the manual segmentation of the
expert on the Rennes database.

manual segmentation and the automatic methods.

7.3.3 Visual Comparison

The observed effects of the preprocessing workflow are described in this section
(Figure 7.7). In the raw images, we observe an important intensity inhomogeneity
in the T1-w image, where the white matter in center of the brain is brighter than
the anterior part of the brain. We also observe intensity noise, especially in T1-w
and FLAIR images. Once the correction methods are applied, we obtain images
that contain less noise and are more homogeneous than the originals without any
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Figure 7.6: DSC results for Rennes database.

Method | Average DSC
STREM | 0.39
MS4MS | 0.40
GCEM | 0.42

Table 7.2: Average DSC values for the three workflows on the Rennes database.

lesions to disappear.

We visually compare patients 5 and 7 that have similar lesion loads but different
DSC score.

Figure 7.8 shows the results on patient 5, on which the automatic methods obtain
a DSC around 0.6. We observe a good agreement in the contour of the lesions
between manual segmentation and the automatic methods. In the FLAIR images,
the interface between the ventricles and the white matter is bright resulting many
false positives in our segmentation.

Figure 7.9 shows the results on patient 7, on which the automatic methods obtain
a DSC around 0.3. We also observe false positive in the bright region between the
two ventricles in the FLAIR images. One of the four lesions is missed by the three
segmentation methods, the intensity contrast of these lesion is less important than
the contrast of the others. We observe that the lesions in T2-w are smaller than
the lesions in FLAIR, which has been pointed out in the literature |Filippi et al.
1999]. Our methods consider voxels as part of a lesion only when the intensity of
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both FLAIR and T2-w are hyper-intense. This could explain the systematic under-
segmentation of our methods.

Figure 7.7: Preprocessing results of patient 5 from the Rennes database. Top line,
from left to right: original T1-w, T2-w and FLAIR. Bottom line, form left to right:
processed T1-w, T2-w and FLAIR.

7.3.4 Conclusion

In this database, only one expert segmented the images and therefore the variability
of the manual segmentation was not evaluated. We can point out two main reasons
for the low agreement found between our methods and the manual segmentation.

First, the manual rater segmented lesions on FLAIR images without comparing
the contour with T2-w images. Our methods only segment lesions visible in both
FLAIR and T2-w which explains our systematic under segmentation. A solution
would consist in detecting the lesions using both images and delineating the exact
contour only using FLAIR.

Second, FLAIR shows a high contrast between white matter and lesions but also
contains many bright regions in between ventricles and white matter that causes
multiple false positives in our segmentation.
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Figure 7.8: Segmentation results of patient 5 from the Rennes database. Top line,
from left to right: processed T2-w and FLAIR. Middle line, form left to right:
manual segmentation and STREM. Bottom line, from left to right: MS4MS and
GCEM.
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Figure 7.9: Segmentation results of patient 7 from the Rennes database. Top line,
from left to right: processed T2-w and FLAIR. Middle line, form left to right: manual
segmentaion and STREM. Bottom line, from left to right: MS4MS and GCEM.
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The existence of only one rater limits the conclusions of this evaluation. More
manual segmentations would give us information of the variability of the expert
and enable the creation of a silver standard to compare our methods. In order to
compare our methods to this database, some modifications are required to adapt
the definition of lesions of our methods to the one of the expert.

7.4 MNI database

This database was created in the Montreal Neurological Institute (Montreal, Canada)
to evaluate their segmentation methods. The advantage of this database is the exis-
tence of multiple manual segmentations that provides the possibility to employ the
methods above mentioned for multiple experts.

Images in the database were already corrected for intensity inhomogeneity and
registered in the same space, thus only the segmentation methods are evaluated and
not the whole segmentation workflow.

7.4.1 Data

Images from ten relapsing-remitting MS patients were acquired on a GE 1.5T System
(General Electrics, USA) at the Montreal Neurological Institute (MNI). The MR
protocol included T1-w and Dual Echo (T2-w and PD) images with 3-mm axial
slice thickness and with slice-resolution of 1mm.

Images were rigidly registered |[Collins et al. 1994] and corrected for intensity
inhomogeneity [Sled et al. 1998]. Five experts manually segmented MS lesions on
the processed images using the display? software developed at the McConnell Brain
Imaging Center. The same images were segmented again by the same experts. To
sum up, each patient has associated 10 manual segmentations of the MS lesions, two
segmentations per expert.

Figure 7.10 shows the variation of the TLL computed using the manual segmen-
tation from the experts, patients were ordered by TLL. Comparing the TLL of the
clinical patients with the Brainweb phantom, we notice that the three last patients
have more than twice the TLL of the severe Brainweb phantom and the distribution
of TLL is similar to the Rennes database.

7.4.2 Results

We perform BET [Smith 2002| skull-stripping to restrict our segmentation to the
brain, and segment MS lesions using our three segmentation methods. In addition,
we compare our methods to one state-of-the-art MS lesion segmentation method
called Expectation-Maximization Segmentation (EMS) [Van Leemput et al. 2001].
EMS? is an automatic segmentation method also based on the estimation of a
GMM for the NABT. It is based on a modified EM algorithm where voxels are
weighted in the estimation according to the probability that they are outliers. The

2http://www.bic.mni.mcgill.ca/software/Display/(MNI) Display.html
http:/ /www.medicalimagecomputing.com /downloads/ems.php
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Figure 7.10: Total lesion load (TLL) computed from the manual segmentation of
the experts. We observe high variability especially for the highest lesion loads.

modified EM algorithm includes the information from a brain atlas and also corrects
for intensity inhomogeneity. EMS is employed with the default parameters and the
resulting probabilistic map is thresholded at 0.5 to get the final binary segmentation.

7.4.2.1 STAPLE

We use the STAPLE approach to analyze the sensitivity and specificity of the experts
and the automatic segmentation methods. Each image in this database have each
been segmented twice by the experts. For this reason, we employ the third option
described in Section 7.1.2.1, where the first set of segmentations is employed in the
construction of the Staple silver standard (SSS) and the second set of segmentations
is employed in the evaluation of the experts.

Specificity is not a very useful measure in the context of MS lesion segmentation.
The volume of lesions is very small compared to the volume of the brain mask. In
percentage, lesions occupy 0.1 —4% of the brain. A specificity of 99% means that 1%
of voxels were uncorrectly segmented as lesions, which is equivalent to the lesions in
some patients.

Figure 7.11 shows sensitivity and specificity for the five experts and the auto-
matic methods. We observe great variations in sensitivity and specificity for the
five experts. EMS shows higher sensitivity but lower specificity than the proposed
automatic methods. GCEM shows a better sensitivity than MS4MS and STREM
but again, lower specificity.

There is no expert that is clearly superior to the others. For example, expert 1
shows the highest sensitivity but also the lowest specificity. From this, we deduce
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that he tended to oversegment in comparison to the other experts. Automatic seg-
mentation methods have the same behavior, STREM obtains the lowest sensitivity

and the best specificity and EMS obtains the opposite.
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Figure 7.11: Boxplot of the sensitivity (top) and specificity (bottom) for each expert

and automatic method on the MNI database.
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Method | Average DSC
HrDSC 0.68
STREM | 0.64
MS4MS | 0.65
GCEM | 0.65
EMS 0.57

Table 7.3: Average DSC values for the MNI database.

7.4.2.2 Voting Silver Standard

We construct a voting silver standard (VSS) using the 10 manual segmentations
available. In the VSS, a voxel is considered to be a lesion if 6 out of 10 experts of
the manual segmentations considered it a lesion. The objective is to create a binary
image with less variability to compare the results of the automatic segmentation
methods. We also compute u,psc and o,psc to measure the variability of the experts
segmentation. We segment all images using the automatic methods and compute
DSC using the VSS as reference.

Figure 7.12 shows results of the automatic segmentations against the variability
of the manual segmentations. We observe that in 8 out of 10 patients the DSC of
our three methods is within u,psc £ orpsc while for the EMS it happens in 7 out
of 10 patients. The low scores for our methods correspond to the two patients with
highest TLL while the low scores for EMS are found in the three patients with lowest
TLL.

If we compare our methods against EMS, we observe that in the first 7 patients
(8 for GCEM) the DSC of our methods is higher than EMS. EMS has a higher
DSC than our three methods in the two patients with the highest TLL only. If we
compare our three methods, we observe three different patterns regarding the lesion
load. For mild TLL (Patients 1,2 and 3), STREM is the best followed by MS4MS
and GCEM. For moderate TLL (Patients 4, 5, 6 and 7), STREM and MS4MS are
very similar and slightly better than GCEM. For severe TLL (Patients 8, 9 and 10),
GCEM is the best method followed by MS4MS and then STREM.

The parameters of our methods were optimized using the Brainweb database,
which have sequences are similar to the MNI database. This may explain the good
results obtained for the 8 patients with lowest lesion load. Three patients of the MNI
database have higher TLL (20, 34 and 48 ¢m?) than the severe Brainweb phantom
(10 ¢cm?®), as such the parameters obtained for our methods are not suited for these
patients.

7.4.3 Towards an Automatic Selection of Parameters

In the last section, we have pointed out the limitation of our segmentation methods
in images from patients with high lesion loads. The Brainweb database does not
provide images with TLL higher than 10 em?® which limits our previous search of
parameters.

We observe that our methods under estimate the TLL of the patients with high
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Figure 7.12: DSC results for MNI database.
Method | Fixed Parameters High TLL parameters

STREM Pmaha = 0357 Prules = Se — 4 Pmaha = 0407 Prules = 5e —3
MS4MS Pmaha = 0357 Prules = le -3 Pmaha = 0457 Prules = le —2
GCEM S, =25, 5 =35 Sy=1.5, 5. =3.0

Table 7.4: Parameters of the three proposed segmentation methods for the two-step
approach.

lesion loads (Figure 7.13). To obtain more accurate segmentation, we propose a two-
step approach to adapt our parameters to the lesion load of each patient. In the first
step, we process the patient with the proposed parameters and compute the TLL. If
the estimated TLL is higher than a certain threshold TLL, the patient is recomputed
with another set of parameters optimized for high lesion loads (Table 7.4).

We first perform the segmentation using STREM because is the fastest method.
If the TLL estimated in this first segmentation is higher than 10cm?3, we perform
the segmentation a second time using the parameters for high lesion loads using the
selected method (STREM, MS4MS or GCEM). In this approach, the estimation of
the NABT is only performed the first time thus there is no significantly increase in
the processing time.

The results obtained with this two-step approach are shown in Figure 7.14. We
observe that the three patients with the highest lesion loads now obtain DSC values
in the range of the experts scores.

A complete validation of this two-step approach requires a larger database to
evaluate both the parameters for high lesion loads and the TLL threshold. Any
other method to obtain an estimation of the lesion load could be integrated in this
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7.4.4 Visual Comparison

Figure 7.15 shows a slice of the images of patient 4 and the results for the four
automatic methods employed. We observe how the segmentation given by EMS
has many false positives. There are many incorrectly detected lesions of one or two
voxels even though the spatial information given by the Markov random field should
limit this effect.

The three proposed method obtain similar segmentation results. We observe
that there are some false positives due to the partial volumes found between the
white matter and the CSF. We tried to model these partial volumes using series of
Gaussians [Dugas-Phocion 2006], but this did not results in improvements in the
segmentation.

STREM uses no spatial information in the segmentation and therefore we can
observe in the lesion in the bottom left in Figure 7.15 how some voxels in the middle
of the lesion were incorrectly segmented, contrary to MS4MS and GCEM.

7.4.5 Conclusion

The MNI database made it possible to a complete validation framework to evaluate
the MS lesions segmentation. The multiple manual segmentations permitted the
quantification of inter-expert variability and evaluate our segmentation methods.

We employed two different methods to evaluate our segmentation methods. Re-
cently, STAPLE was developed to evaluate segmentation methods without a ground
truth, but conclusions obtained using this method were limited. The specificity is
MS lesions segmentation is not a very descriptive measure and all methods obtained
higher specificities than 99%. The relation between sensitivity and specificity is not
clear and in the majority of comparisons ended with one method being more specific
but less sensitive than the other. In this respect, we observed that our methods were
less sensitives but more specific than EMS.

We performed a second evaluation using a Voting Silver Standard. DSC is a
well-known measure and we employed it in our comparison. This evaluation is more
intuitive as there is only one measure for each method. Our methods obtain results
comparable with experts’ segmentations, when the lesion load is under 20cm3. We
proposed a simple method to overcome with this limitation but we require more
patients to evaluate this approach.

As shown in Table 7.5, our methods obtain similar DSC to those of other proposed
methods in the literature. Each method was evaluated with a different database
of clinical images and thus the comparison cannot be conclusive. In an effort to
facilitate the comparison of algorithms, we participated in a segmentation challenge
(Section 2.4.3) where STREM finished fourth of the nine methods proposed.

7.5 Conclusion

In this chapter, we described the evaluation metrics employed and evaluated our
automatic methods.
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Figure 7.15: Segmentation results of patient 4 in the MNI database. From top to
bottom and left to right: T1-w and T2-w; PD and voting silver standard (VSS);
STREM and MS4MS; GCEM and EMS.



Conclusion 115

Method Average DSC
STREM 0.64
MS4MS 0.65
GCEM 0.65
adaptive STREM 0.71
adaptive MS4MS 0.71
adaptive GCEM 0.69
|[Van Leemput et al. 2001] | 0.51
|Zijdenbos et al. 2002] 0.60
|[Harmouche et al. 2006] 0.61*
[Shiee et al. 2009] 0.63
|Khayati et al. 2008] 0.75
[Sajja et al. 2006] 0.78

Table 7.5: Comparison of DSC for the lesion segmentation between different meth-
ods. (* The value is obtained using the x index instead of DSC)

We compared our segmentation methods using synthetic images. MS4MS and
GCEM obtained higher DSC than STREM when the intensity inhomogeneity and
the noise was increased. This justify the inclusion of spatial information of those
two methods.

We also evaluated our methods in two databases with completely opposite re-
sults. Our methods showed a good agreement with manual segmentation of the MNI
database but low agreement with the manual segmentation of the Rennes database.
Both databases have many differences, which may explain the differences obtained.

The definition of lesions in both databases was different. In the MNI database
manual segmentation was performed in T2-w and PD images and in the Rennes
database it was performed on FLAIR. The contours on T2-w images and FLAIR
differ what explains the under segmentation found in the Rennes database. FLAIR
images showed more artifacts than other images and these artifacts should be taken
into account to reduce the number of false positives.

All three methods obtains similar results in the clinical images but the Brainweb
database show some differences. In overall, GCEM is more robust in presence of noise
and inhomogeneity than STREM and faster than MS4MS, and has the advantage
that it can be semi-automatically refined if necessary.



116 Chapter 7



Conclusion

This thesis studies the automatic methods used in the segmentation of lesions on
patients with MS. The segmentation of MS lesions plays an important role in clinical
trials and the automatic segmentation of these lesions will provide a robust and
reproducible biomarker for clinical trials.

We began with a brief introduction to MS and the application of MRI in the
diagnosis, treatment and follow-up of the disease. We showed the importance of
segmenting MS lesions and described the methods employed in this task. Manual
and semi-automatic segmentation methods are currently used in clinical trials, but
automatic methods should eliminate user dependence, thus eliminating the variabil-
ity of these methods.

We then presented our workflow for the segmentation of MS lesions and proposed
various automatic segmentation methods. Methods are based on the work of Laure
Aft-Ali [A1t-Ali 2006] who introduced the trimmed likelihood estimator (TLE) for
the estimation of NABT model on the segmentation method STREM.

We proposed MS4MS, where voxels are first classified into homogeneous regions
using spatial information, which are then classified into lesions or other tissues. Our
assumption was that the classification of a region should be more robust and accurate
than the classification of a single voxel.

GCEM was born of the collaboration with Jeremy Lecoeur, who worked in the
semi-automatic segmentation of MRI images |[Lecoeur 2010]. In practice, the auto-
matic segmentation is always verified by an expert who validates the segmentation
and edits it when necessary. Thanks to the graph cut approach, we have integrated
both an automatic and a semi-automatic segmentation method in order to simplify
verification by the expert.

To conclude, the three methods were validated using synthetic and clinical images
from two different centers. It is necessary to validate methods in different conditions
in order to measure the performance and evaluate the limitations of the algorithms
used.

Contributions

We can differentiate two main contributions of this work:

e We proposed two new methods for the segmentation of MS lesions. First, we
studied the behavior of STREM and proposed several improvements. Then
we proposed to different approaches so as to include spatial information and
we showed how those approaches are more robust to noise and inhomogeneity
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than STREM. Another advantage of GCEM is that it offers the possibility of
subsequently refining the segmentation.

e We proposed a common validation process for MS lesion segmentation methods
consisting of three steps: studying the parameters of the algorithm, evaluating
the results on synthetic images and validating the method on clinical images.
This process has been applied for the three methods described in this docu-
ment. In each chapter, we analyzed each parameter and studied how its value
can be optimized. Then, all methods were compared using synthetic images
to measure robustness to noise and inhomogeneity. Finally, we compared the
methods with manual segmentation using two clinical databases.

Limitations

Definition of lesions

The validation showed contradictory results. Our methods obtained similar scores to
manual segmentation on one clinical database, but the results for the other clinical
database were poor. The two databases came from different sites, had different MR
protocols and probably most importantly, had different definitions of lesions.

The variability shown at the MICCAI workshop (see Section 2.4.3) is an example
of the high level of variability existing in the definition of lesions between MS centers.
An international panel of neurologists and neuroradiologists must agree on a common
definition of MS lesion in MRI in order to reduce this variability. Without agreement,
the use of the same segmentation method across different centers will remain a
problem.

Global vs. Local information

Two proposed methods merge global and local information. We demonstrated how
the inclusion of local information by means of mean shift and graph cut algorithms
improved robustness to noise and inhomogeneity. Lesions are heterogeneous and can
be more or less hyper-intense; using the global definition of hyper-intensity causes
some lesions to be missed. Using a local definition of hyper-intensity may reduce
this problem.

Segmentation workflow

In order to use the segmentation methods, the latter must be included in a seg-
mentation workflow. In Chapter 2, we proposed a segmentation workflow, but the
validation of this workflow was limited to three subjects. Validating the workflow
would require each step and its position in the workflow to be analyzed in a much
more complex validation process.
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Perspectives

Methodological perspectives

Our methods detected many false positives in FLAIR images due to hyper-intensities
in the brain ventricles because the difference between these artifacts and periventric-
ular lesions is subtle. Applying the inclusion rules concerning the shape of lesions
may help to resolve this issue.

Although we performed some tests with partial volume modeling, we used three
Gaussians only to model the NABT. The use of more complex models or local
estimation approaches [Scherrer et al. 2007] may improve the estimation of the
NABT model.

Validation perspectives

Performing the validation process using multiple manual segmentations provides
more information about the accuracy of the algorithm. Our priority would therefore
be to obtain more manual segmentations from the Rennes database in order to be
able to offer a more comprehensive evaluation and understand the relatively poor
results yielded by our methods.

We consider that the validation process also requires the comparison of segmen-
tation methods. With this in mind, we would like to apply our two methods of
segmentation the images of the MICCAI workshop mentioned in Section 2.4.3. Al-
though there are some limitations in the comparison done by this workshop, we
consider that this comparison will provide us with interesting and rather impartial
information about our algorithms and will allow a comparison with other recent
methods.

The next level of validation consists in the use of the segmentation methods in
large clinical trials in order to test the robustness of the method and study the
correlation of the lesions with the evolution of the disease. Another area requiring
study is the reproducibility of the segmentation results, which would require a special
protocol whereby patient images are acquired several times in a short period of time
in order to measure the robustness of the segmentation.

Application perspectives

The University Hospital Pontchaillou (Rennes, France) is currently taking part in a
multi-centric project where the use of the new contrast agent ultra-small superpara-
magnetic Iron oxide (USPIO) in MS is being evaluated. Our objective is to provide
an automatic and reliable tool to segment MS lesions. In addition, new developments
may be necessary in order to include the images where USPIO is used.

Another important aspect is the distribution of the segmentation methods. Our
segmentation workflow is being included in NeuroLOG. NeuroLOG is an ANR
project involving the development of a grid-based network in order to share clinical
data and process workflows among several French centers, making the heterogene-
ity of data and workflows transparent to the user. This project will simplify the
usability of our workflow in other MS research centers in France.



120 Conclusion

In addition, we are integrating our workflow on our own website. Similarly to
other methods developed by our team, we will propose an online service* where any
user can upload images that will be processed in our servers and sent back by email.

“http://www.irisa.fr /visages/benchmarks /
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Acronyms

BET Brain Extraction Tool

BP Breakdown Point

BW Brainweb

CLV Coefficient of Lesion Variation

CNS Central Nervous System

CSF Cerebrospinal Fluid

CV Coefficient of Variation

CVJ Coefficient of Joint Variation

DSC Dice Similarity Coefficient

EDSS Extended Disability Status Scale

EM Expectation Maximization algorithm
EMS Expectation-Maximization Segmentation
FLAIR FLuid Attenuating Inversion Recovery
FSS Fuctional System Scale

GC Graph Cut

GCEM Graph Cut with an Expectation Maximization initialization
GM Gray Matter

GMM Gaussian Mixture Model

ITH Intensity Inhomogeneity

MICCAI Medical Image Computing and Computer-Assisted Intervention
MLE Maximum Likelihood Estimator

MNI Montreal Neurological Institute
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MRI Magnetic Resonance Imaging

MS Multiple Sclerosis

MS4MS Mean Shift for Multiple Sclerosis
MeS Mean Shift

NABT Normal Appearing Brain Tissues
NAWM Normal Appearing White Matter
NLM Non-Local Means

NMR Nuclear Magnetic Resonance

OO Optimistic Overlap

PD Proton Density

PPMS Primary Progressive MS

PRMS Primary Relapsing MS

PV Partial Volumes

ROI Region of interest

RRMS Relapsing Remitting MS

SPMS Secondary Progressive MS

SSS STAPLE Silver Standard

STAPLE Simultaneous Truth Performance Level Experts
STREM Spatio Temporal Robust Expectation Maximization
TLE Trimmed Likelihood Estimator

VSS Voting Silver Standard

WM White Matter
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Résumé

La sclérose en plaques (SEP) atteint autour de 80.000 personnes en France. L’imagerie
par résonance magnétique (IRM) est un outil essentiel pour le diagnostic de la SEP.

Plusieurs bio-marqueurs sont obtenus a partir des IRM, comme le volume des lé-

sions, et sont utilisés comme mesure dans des études cliniques en SEP, notamment

pour le développement des nouveaux traitements. La segmentation manuelle des

lésions est une tache encombrante et dont les variabilités intra- et inter-expert sont

grandes.

Nous avons développé une chaine de traitement automatique pour la segmenta-
tion des lesions focales en SEP. La méthode de segmentation est basée sur I’estimation
robuste d’un modéle paramétrique des intensités du cerveau qui permet de détecter
les 1ésions comme des données aberrantes. Nous avons aussi proposé deux méthodes
pour ajouter de 'information spatiale avec les algorithmes mean shift et graph cut.

Nous avons validé quantitativement notre approche en utilisant des images syn-
thétiques et cliniques, provenant de deux centres différents pour évaluer la précision
et la robustesse.

Mots-clés: segmentation, imagerie par résonance magnétique, sclérose en plaques,
modéles paramétriques

Abstract

Multiple sclerosis (MS) affects around 80.000 people in France. Magnetic resonance
imaging (MRI) is an essential tool for diagnosis of MS and MRI-derived surrogate
markers such as MS lesion volumes are often used as measures in MS clinical trials for
the development of new treatments. The manual segmentation of these MS lesions
is a time-consuming task that shows high inter- and intra-rater variability.

We developed an automatic workflow for the segmentation of focal MS lesions on
MRI. The segmentation method is based on the robust estimation of a parametric
model of the intensities of the brain; lesions are detected as outliers to the model.
We proposed two methods to include spatial information in the segmentation using
mean shift and graph cut.

We performed a quantitative evaluation of our workflow using synthetic and
clinical images of two different centers to verify its accuracy and robustness.

Keywords: segmentation, magnetic resonance imaging, multiple sclerosis, para-
metric models



