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Constructive Verification for Component-based Systems

Vérification Constructive des Systèmes à base de Composants

Abstract

The goal of the thesis is to develop theory, methods and tools for the compositional
and incremental verification for component-based systems. We propose a compositional
verification method for proving safety properties. The method is based on the use of
two kinds of invariants: component invariants which express local aspects of systems and
interaction invariants which characterize global constraints induced by synchronizations
between components. We provide efficient methods for computing these invariants. We
also propose a new technique that takes the incremental design of the system into account.
The integration of verification into design process allows to detect an error as soon as it
appears. Moreover, the technique helps to avoid redoing all the verification process by
reusing intermediate verification results. It takes advantage of the system structure for
coping with complexity of the global verification and therefore, reduces significantly the
cost of verification in both time and memory usage. The methods have been implemented
in D-Finder tool-set. The experimental results obtained on non trivial examples and case
studies show the efficiency of our methods as well as the capacity of D-Finder.

Key words: BIP, compositional verification, incremental verification, incremental de-
sign, invariant, deadlock detection, static analysis, D-Finder.
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Introduction

Problems and Needs

Computer science nowadays plays an important role in the development of science and of
society. Despite of being a new domain, it appears almost everywhere, from small systems
such as a cell phone, a music player to huge systems such as a plane, a spacecraft. The
increasing need of computer systems increases also the need of their reliability, correct
behavior, etc.

Constructing correct systems is an essential requirement crossing all areas. A system is
correct if it behaves following an expected manner or in other words, it satisfies an explicit
set of requirements. The expected behavior is called formal specification of the system and
is often expressed as a set of desired requirements. The correctness of a system is assigned if
the system is correct with respect to its specification. Ensuring the correctness is specially
important for critical systems since their failure or malfunction may cause a catastrophe
such as loss of human life, high economical costs or environmental harm. For example, the
crash of Ariane 5, an European expendable launch system, is one of the most infamous
computer bugs in history and resulted in the loss of more than 370 millions dollars.

Unfortunately, with the growing of the demand for scalability and complexity of sys-
tems, it becomes more and more difficult to design correctly their models. The scale and
complexity not only increases potential violations of desired properties but also makes them
harder to detect and to handle. The construction of a system that operates reliably despite
of complexity is highly desirable but also not always feasible. Therefore the check of the
correctness of the system is essential and important to ensure that all requirements are
respected. The check process is based on techniques for detecting property violations of the
model and the correctness is achieved by the absence of such violations.

There are two main approaches for detecting property violations of a system: formal
testing and formal verification. Consider a model of a system, an environment in which the
system interacts, and some properties that the designed system is expected to guarantee,
one can choose one of the following approaches depending on their goal:
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• Formal testing [Bei90, Tre90, Mye04, FFMR07] is a method used to find defects
on a system implementation, either during the development or after the complete
construction of the system. To do that, testing generates some inputs from envi-
ronment (test cases) and executes the system to determine whether it produces the
required results. Testing, depending on method employed, can be used at any time
of development process. It is a quick and direct way to detect bugs or violations
in the system. However, testing is not capable of covering all the possibilities that
may happen while running the system in reality. The number of possible situations is
usually so large that we can test a tiny proportion of them. The absence of property
violations provided by testing does not imply the correctness of the system.

• Formal verification [UP83, BM79, QS82, CE81] can both search for input patterns
which violate the desired properties or prove the correctness of the system if such
input patterns do not exist. In contrast to formal testing, formal verification covers
all the possibilities that the system can behave, hence it proves the correctness of
the system in the case of the absence of property violation. It relies on the use of
mathematical techniques to prove or disprove the correctness of a design with respect
to a certain formal specification. Formal verification has been successfully applied to
verify both software and hardware systems. The verification of these systems is done
by providing a formal proof on an abstract mathematic model of the system. The
mathematic objects that are often used to model these systems are: labeled transition
systems, petri nets, finite state machines, boolean formula, etc.

The goal of our work is to provide a theory, methods and tools for achieving the correct-
ness of systems. We focus on the formal verification since, as mentioned above, it allows
to achieve the correctness of systems. We provide below a brief description of the current
state of the art in formal verification.

State of the Art in Formal Verification

There are basically two main directions in formal verification - theorem proving and model-
checking.

Theorem proving [BM79, BM88, GH93, GM93, ORR+96] uses mathematical proofs
to show that a system satisfies its requirements. In this approach, both system and re-
quirement are expressed in form of formulas in some mathematical logic. This logic defines
a set of axioms and inference rules that theorem proving uses, together with intermediate
lemmas, to find a proof of a desired property. An advantage of theorem proving is the ca-
pacity of dealing directly with infinite systems by using techniques like structure induction.
However, one can not get counterexample when the proof fails. Although many theorem
prover tools have been developed to support building and checking the proofs, the finding
of these proofs is not always feasible and may require a lot of expert intervention from
users, that makes the theorem proving process slow and often error-prone. The lack of
automation prevents this approach from being largely used in the industrial context.

Thesis 4 Nguỹên Thanh-Hùng



Model-checking [QS82, CE81, CGP99] is a fully automatic verification technique
which relies on building a finite model of the system and checking whether that model
meets its specification. Usually the system is modeled as a finite state machine and the
specification is expressed as a temporal logic formula. The temporal logic allows describ-
ing the change over time and is therefore suitable for most of the necessary correctness
properties such as safety properties (always, i.e. something bad never happens), liveness
properties (eventually, i.e. something good happens), etc.. The check is performed by using
an efficient search procedure on the exhaustive state space graph of the system’s model.
Model checking has been extensively developed and used for verifying both software and
hardware systems. The automatic nature of model-checking makes it attractive for prac-
tical use in the industry. It can be also used for checking partial specification when the
system has not been completely specified. Moreover, if a property does not hold, model
checking provides a counterexample, a path through the model that reveals this violation.

Despite having been successfully applied in the industrial community, there are several
problems which make model-checking difficult for verifying large systems:

• Model checking needs to explore the entire state space of the models of systems, there-
fore it is not suitable for infinite-state systems. However, a big number of important
systems are infinite, and the exploration of the state space of their infinite-state mod-
els is not possible or requires extra pre-processing (such as abstraction) to make it
feasible.

• Even with finite-state systems, model checking is not always scalable. The systems
nowadays become more and more complex with a large number of parallel processes.
Model checking techniques examine all possible paths through the system’s model to
determine whether or not the property being verified is violated, and that is the source
of difficulty because the number of possibilities in the global model is exponential in
the number of component processes. This is called state space explosion problem in
Model-Checking.

• Model checking is not a priori guarantee of correctness. It helps developer detect,
understand and then fix inconsistencies, ambiguities, bugs, etc., in the model of the
system. However if errors or bugs are found after the complete construction of the
system’s model, we might have to reconstruct or modify the global model which may
cause significant loss of time, money or human resource.

A lot of work has been done to overcome the problems in model-checking, specially the
state space explosion problem. The major goal is to make the formal verification scalable
in order to increase the size of the systems that can be handled. They can in general be
categorized into two approaches: optimization/improvement of model-checking algorithms
and compositional reasoning.

Verimag - May 2010 5 Nguỹên Thanh-Hùng



Model-Checking Improvement

Symbolic Model Checking

A well-known improvement of model-checking algorithms is symbolic model-checking [McM93,
BCM+90]. This method represents implicitly the state graph as a formula in propositional
logic instead of building it explicitly. It uses boolean encoding for representing state ma-
chine and set of states, therefore allows manipulating a set of states rather than a single
state in the explicit enumeration of states. All operations are handled as boolean functions
by using the Binary Decision Diagrams (BDDs).

A symbolic representation based on BDDs provides a canonical form for boolean formula
that is more compact than conjunctive and disjunctive normal form. The use of BDDs allows
to verify extremely large systems having up to 10120 states. It is also successful in verifying
several systems of industrial complexity. The property to be verified is evaluated recursively
by iterative fixed-point computations on the reachable state space. More precisely, the rough
procedure for checking a safety property is : initially, the set of initial states is represented
as a BDD from which an iterative process starts. At each step i, the iteration adds to the
BDDs the set of states that can be reached in i steps from the initial states and intersects
the new states with the set of states violating the property. If the intersection is not empty,
it means that an violation has been detected. The process terminates when there is no
more new reachable states or an error is found. If the process terminates without any error,
the property holds; otherwise, a counterexample is provided.

In spite of such success, symbolic model checking still has its limitations due to the size
of BDDs. In some cases the BDD representation can be exponential in the size of system
description. Moreover, BDDs are very sensitive to ordering of variables. Finding a good
ordering, which yields the smallest BDD for a given formula is an NP-complete problem.

Bounded Model Checking

An alternative method that can avoid the state space explosion is Bounded Model Checking
(BMC) [BCCZ99, CBRZ01] proposed by Biere et al. in 1999. The basic idea of the method
is to search for a counterexample within a bounded number steps of executions. Given a
bounded execution length k, BMC constructs a propositional formula that represents the
set of initial states and the states that can be reached from initial states within k steps. It
also constructs a formula expressing the violation of a property P in one of these k steps.
Then the conjunction of two formulas is checked. If the conjunction is satisfiable, BMC
provides a counterexample of length at most k. If it is not satisfiable, we can either increase
k until a violation is found or stop if time or memory constraints are exceeded.

The BMC problem is reduced to a propositional satisfiability problem that determines
whether a propositional formula in conjunctive normal form has a truth assignment that
makes the formula true. This problem can be efficiently solved by powerful SAT tools.
BMC and BDD-based symbolic model-checking are incomparable. There are several case
studies that can not be verified by symbolic model checking but can be verified by BMC
and vice-versa. A disadvantage of BMC is the incompleteness of the method. The absence
of error after k execution steps does not prove the correctness. A possible solution is the
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finding of the longest shortest path between any two states (the maximum value kmax of
k). The states obtained in kmax steps allows covering all the reachable states since the the
path from the initial states to any reachable state is always shorter than or equal to kmax.
However finding such kmax is extremely hard.

Partial order reduction

Partial order reduction [God91, GW92, Pel94, CGP99] is a verification method that sim-
plifies the size of state space to be searched by a model-checking algorithm. It exploits
the commutativity and concurrently executed transitions, which result in the same state
when executed in different orders. Intuitively, if two transitions t1 and t2 are executed
consequently but in any order, the system arrives in the same state, so it is not necessary
to consider both the t1t2 and t2t1 interleavings.

Compositional Reasoning

The second approach is compositional reasoning [CLM89, CMP94, Lon93] that verifies each
component of the system in isolation and allows global properties to be inferred about the
entire system. The basic idea is the use of divide-and-conquer approach: the system is
decomposed into subsystems and these subsystems are analyzed individually. Since subsys-
tems are smaller than the whole system, the individual analysis of the subsystems reduce
the effects of the state space explosion problem. The guarantee of global property is then
determined by composing the results of these individual analysis. Since through this thesis,
we propose a compositional method for the verification of component-based systems, we
will focus on compositional approach by presenting below several existing compositional
methods.

Abstraction

Abstraction [CC77, Lon93, CGL94, DF95, LGS+95] is a popular technique which verifies
properties on a system by firstly simplifying it. The simplification is often based on the
conservative aggregation of states. The simplified system, which is called abstract system,
is usually smaller than the original system (concrete system), so the state space is reduced.
For a system obtained from the parallel composition of a set of components, i.e S = B1 ‖
· · · ‖ Bn, the compositional abstraction first computes, for each component Ba, an abstract
component Ba

i , then it composes the abstract components Sa = Ba
1 ‖ · · · ‖ Ba

n to obtain an
abstract system Sa of S. The abstraction is required to be sound, i.e. the properties that
hold on the abstract system also hold on the concrete system. However, the abstraction is
often not complete, i.e. not all true properties of the concrete system are also true on the
abstract system so that a process of abstraction refinement may be necessary.

Assume-guarantee

Assume-guarantee [MC81, Jon83, Pnu85, HQR98, dRdBH+00, GPB02, CGP03] is a semi-
automatic compositional approach that decomposes properties into two parts. One is an

Verimag - May 2010 7 Nguỹên Thanh-Hùng



assumption about the global behavior of the environment and the other is a property
guaranteed by the component when the assumption about its environment holds. The
assumption is needed since when a subsystem is verified it may be necessary to assume that
the environment behaves in a certain manner. Consider a system S which is decomposed
into two subsystems S1 and S2. P is a property to be verified on the parallel composition
of S1 and S2, denoted by S1 ‖ S2. The basic assume-guarantee rule is as follows:

〈A〉S1〈P 〉
〈true〉S2〈A〉

〈true〉S1 ‖ S2〈P 〉

That is, if under assumption A, subsystem S1 satisfies property P and A is satisfied by
subsystem S2, then the system resulting from the parallel composition S1 ‖ S2 satisfies the
property P . Even though it is widely touted, many issues make the application of assume-
guarantee rules difficult. They are discussed in detail in a recent paper [CAC08]. The
paper provides an evaluation of automated assume-guarantee techniques. In many cases,
the verification based on assume-guarantee is not better than monolithic verification in time
and memory usage. The main difficulty is finding decompositions into sub-systems in the
case of many parallel sub-systems S1 ‖ · · · ‖ Sn. The verification performance depends on
the way of decomposition but finding a good decomposition is not always feasible. Another
problem is choosing adequate assumptions for a particular decomposition. The assumption
should be weak enough to be satisfied by a sub-system but strong enough to prove the
global property.

Interface processes

[CLM89] proposes a method for reducing the complexity of temporal logic model checking in
systems composed of many parallel processes. It minimizes the global state transition graph
by focusing on the communication among the component processes. The method models
the environment of a process by another process called an interface process. In interface
process, only variables involved in the interface between two components are considered and
events that do not relate to the communication variables are eliminated. Therefore, the
interface process is often smaller than the original process but it preserves properties that
refer to interface variables. This method is specially suitable for loosely coupled systems
through a small number of interacting variables. However, the method is not very efficient
with the tightly coupled systems because the interface process may not be smaller than
the original process. And the method has difficulty in handling more general properties
involving temporal assertions about several processes.

Partitioned Transition Relations

In model checking, the set of reachable states from initial states (or co-reachable from
bad states) is obtained by computing the set of successors (or predecessors). This process
requires the construction of the transition relation of the global systems and that is a source
of difficulties. [BCL91] provide methods for computing that set by using the transition
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relations of each component separately during traversal of the state graph. The set of states
in the global graph is then obtained by combining the individual results. More precisely,
model-checking requires the computation of the image or pre-image of a set of states under
a transition relation. For example, if S(V ) is a set of states depending on a set of variables
V , and N(V, V ′) is a transition relation relating the current state variables V and next
state variables V ′, then the image of S is given by ∃V [S(V ) ∧N(V, V ′)]. The computation
of the value of a large formula with many quantifiers is quite expensive. The method
called partitioned transition relations in [BCL91] deals with this problem by decomposing
the global formula into sub-formulas and the quantifier elimination is performed on these
smaller sub-formulas and therefore reduces the cost of the operation.

Lazy Parallel Composition

In contrast to partitioned transition relations method, lazy parallel composition presented
in [TSL+90] restricts the transition relation of each component before generating the global
restricted transition relation. The method is based on the agreement between the restricted
transition relation and the global transition relation for "important" states, while other
states may behave in a different way. If the original global transition relation N and a set
of state S, the computation of the set of successors of S can use any restricted transition
relation such that N ′|S = N |S , i.e. N and N ′ agree on transitions that start from states in
S. The advantage of the method is that the restricted transition relation is often smaller
than the global transition relation.

Lazy Compositional Verification

A compositional method, lazy compositional verification, is presented in [Sha98]. The
method allows to prove a global property by showing that it is satisfied by composing
a component with an abstract environment and this environment eventually holds of the
other components in the system. More concretely, a property C of a component P is sat-
isfied by the composition P ‖ E where E is an abstract environment specification E that
captures the expected behavior of the environment. Then when P is composed with an-
other component Q, C might not be property of P ‖ Q but C is property of P ‖ (Q ∧ E).
If P ‖ (Q ∧ E) can be simplified to P ‖ Q, then E is redundant and can be eliminated.
However, in contract to assume-guarantee approach, it is not necessary that Q implies E.
While E has eventually to be shown to hold of other components in the system, this proof
obligation can be discharged lazily as the system design is being refined. The advantage of
lazy compositional verification is that the proof that one component meets the expectations
of other components can be delayed until sufficient detail has been added to the design.

Deductive Verification

Deductive methods for proving safety properties, which are also considered as invariance
properties, of transition systems are based on a proof rule which can be formulated as
follows. To prove that some given predicate Φ is an invariant of a given program S, i.e.
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every reachable state of S satisfies Φ, it is necessary and sufficient to find an auxiliary
predicate Φaux with the following properties:

• Φaux is stronger than Φ,

• Φaux is preserved by every transition of S, i.e., for every states s and s′, if s satisfies
Φaux and s′ is reachable from s by a transition, then s′ also satisfies Φaux,

• Φaux is satisfied by every initial state of S.

As shown e.g., in [MP95], this rule is sound and (relatively) complete for proving invariance
properties of transition systems. It is very important to understand that the completeness
result/proof of this rule does not give a clue of how to find the auxiliary predicate. Indeed,
choosing the set of reachable states Reach(S) as auxiliary predicate reduces the original
problem to the checking of the first premise. Moreover, if S is a finite-state system the
predicates can be expressed in propositional logic and checking the premises can be done
algorithmically. However, in general, one needs an assertion language which is at least as
expressive as integer arithmetic to express predicates, which makes checking the premises of
the rule undecidable. Even worse, there are systems for which Reach(S) is expressible using
closed formula over integers yet computing such a representation cannot be done effectively.
The deductive rule provides only a partial answer to the verification of invariance properties.
It leaves open (i) how to find the auxiliary predicate Φaux and (ii) how to prove that Φaux is
preserved by every transition of S and satisfied by the initial states. Problem (ii) is related
to the problem of proving tautologies of the underlying assertion language.

Problems in Formal Verification

On exploring the current state of the art in formal verification, it becomes clear that a
formal verification method needs to address the following problems:

• Scalability that avoids the state space explosion problem and therefore allows in-
creasing the size of systems to be verified.

• Effectiveness that permits to detect as early as possible errors of systems’ models
in the design phase.

• Incrementality that integrates verification into the design process.

• Compositionality that allows inferring global properties of a system from the known
local properties of its sub-systems.

We have mentioned the problems, the needs in software and hardware engineering to
construct correct systems. We have also presented the existing approaches addressing to
these needs and its general limitations. We have given a brief presentation on some related
work that has been done in the formal verification together with its advantages and dis-
advantages. In the next section, we will present our methods for the compositional and
incremental verification.
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Our Approach

We present, in this thesis, a compositional approach for verifying safety properties of
component-based systems. We exploit both local and global aspects of systems. The former
is related to the local behaviors of components. The latter represents global constraints
between components which are strongly synchronized. These constraints are important,
specially for checking deadlock-freedom since the global deadlocks are due to the strong
synchronization. Furthermore, the synchronizations restrict the global behavior and there-
fore these global constraints allow to eliminate product states which are not feasible by the
semantics of parallel composition.

Our rule can be seen as an instance of the proof rule of the deductive approach. We
describe techniques for generating automatically auxiliary predicates by using two kinds
of invariants of systems: component invariants and interaction invariants. Component
invariants express constraints on local state space of components. Interaction invariants
characterize restrictions enforced by synchronizations between components on the global
state space of the systems. They are computed automatically from the set of component
invariants and the set of interactions between components.

The general rule of our approach is shown in Equation (1).

{Bi < Φi >}i, Ψ ∈ II(‖γ{Bi}i, {Φi}i), (
∧

i Φi) ∧ Ψ ⇒ Φ

‖γ{Bi}i < Φ >

(1)

That is, if {Φi}i are respectively component invariants of a set of atomic components {Bi}i,
Ψ are interaction invariants computed from a set of interactions γ between {Bi}i and {Φi}i,
and if the conjunction of these invariants

∧
i Φi ∧ Ψ implies a predicate Φ, then Φ is an

invariant of the system resulting from the parallel composition of the set {Bi}i by the set
of interactions γ.

The rule allows to prove invariance of a predicate Φ for a system obtained by using a n-
ary composition operation parameterized by a set of interactions γ. It uses global invariants
which are the conjunction of individual invariants of components Φi and an interaction
invariant Ψ. Interaction invariants are computed symbolically by solving a set of boolean
equations called Boolean Behavioral Constraints obtained from the set of interactions. In
the case of system with data, interaction invariants are computed from abstractions of the
system to be verified. These are the composition of finite state abstractions Bα

i of the
components Bi with respect to their invariants Φi. Finally, the invariance of Φ is verified
by checking tautology (

∧
i Φi) ∧ Ψ ⇒ Φ which can simply be done by using a SAT-Solver

tool to check the unsatisfiability of (
∧

i Φi) ∧ Ψ ∧ (¬Φ).
Figure 1 illustrates the idea of our method for a system composing of two components

strongly synchronized. The basic idea is to approximate as precisely as possible the set of
reachable states of the system. In the figure, black area is the set of reachable states of the
system that we want to approximate, Φ1 and Φ2 are components invariants. Starting from
component invariants, the intersection of Φ1 and Φ2 is already an over-approximation of the
set of reachable states. However this intersection characterizes the maximal combination
of the state spaces of two components. It does not take into account the restrictions by
strong synchronizations on two components and therefore is a very weak approximation.
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ψ

φ2

φ1

Figure 1: Idea of the method

By adding some interaction invariant Ψ, we can reduce this intersection and get a more
precise over-approximation of the set of reachable states.

Our method differs from assume-guarantee methods in that it avoids combinatorial ex-
plosion of the decomposition and is directly applicable to systems with n-ary interactions.
Furthermore, it only needs guarantees for components. It replaces the search for adequate
assumptions for each component by the use of interaction invariants. These can be com-
puted automatically from given component invariants (guarantees). Interaction invariants
correspond to a “cooperation test” in the terminology of [AFdR80] as they allow to eliminate
product states which are not feasible by the semantics of parallel composition.

We also study and propose methods for incremental construction and verification. In-
cremental construction aims to deal with the complexity of heterogeneous and large-scale
systems. It allows building a composite component from smaller parts. Incremental con-
struction provides flexibility in building systems. During the incremental construction
process, the verification is necessary to detect early errors in the constructed system. The
verification should take advantages of the incremental construction by integrating verifi-
cation into construction phase. The idea is that, at each stage of the construction, some
properties are established and ideally, they should be preserved in the new system obtained
in the next steps of the construction. If they are not preserved, at least they can be used
in establishing properties for the new system.

We first provide a systematic methodology for incremental construction of components-
based systems. We propose rules on invariant preservation from which the already estab-
lished invariants would not be violated during the incremental construction. However, it is
not always possible to apply these rules because many systems do not satisfy them. More-
over, the preserved invariants are often not strong enough to prove safety properties because
they do not take into account the new constraints enforced to the system in the incremen-
tal construction process. Therefore, we propose methods for incremental computation of
invariants from the established invariants.

The idea of the incremental computation of invariants is presented in Figure 2. At
some stage of the incremental construction, we have obtained sub-systems with estab-
lished invariants I1 and I2. These sub-systems are then composed to build a new system

Thesis 12 Nguỹên Thanh-Hùng
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Figure 2: Incremental Verification Idea

and the invariants of the new system are computed from I1 and I2 by some function F :
I12 = F (I1, I2). Similarly, the new system is then composed with another sub-system with
established invariants I3. The invariants of the global system are computed in the same
way from I12 and I3: I123 = F (I12, I3). The incremental verification by computing in-
crementally invariants reduces significantly the verification cost in both time and memory
usage.

The main contributions of the thesis are:

• We propose a heuristic method for proving safety properties [BBNS08, BBNS10]. For
a given property, the method consists in iteratively conjoining the predicate charac-
terizing violations of the property with an over-approximation of the reachable states
of the system. The over-approximation is the conjunction of two kinds of invariants:
component invariants and interaction invariants. If the conjunction is false, then the
property is guaranteed. Otherwise, to eliminate infeasible counterexample, new in-
variants are computed until either the conjunction becomes false or the method fails
to prove invariance of the property. In this case, additional reachability techniques
can be used for finer analysis.

• We provide heuristics for computing two types of invariants. Component invariants
are over-approximation of reachable states of the components and are generated by
simple forward analysis of their behaviors. Interaction invariants characterize global
constraints on the global state space induced by strong synchronizations between
components. We propose several methods for computing interaction invariants from
boolean constraints obtained from interactions.

• We also provide incremental construction and verification methods which are based
on a construction process leading to a composite component through a sequence of
constituent components [BBL+09, BLN+10]. The sequence starts from a set of atomic
components and applies incrementally synchronization constraints. Incremental veri-
fication relates the verification process to system construction. It takes advantage of
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the system structure for coping with complexity of the global verification. We study
rules which allow preserving established invariants during the incremental construc-
tion. For the general case where a system may not satisfy these rules, we propose
methods for computing incrementally invariants of the entire system from the estab-
lished invariants of its constituents.

• We propose a method for dealing with data transfer on interactions between com-
ponents. The method is based on a projection of the changes on interactions into
components and on a replacement of data transfer by a type of component called
interaction component. These projection and replacement enable the construction
of an equivalent abstract system without data transfer on which we can apply our
verification method.

• The compositional and incremental methods have been fully implemented in the
D-Finder tool-set [BBNS09]. We have successfully applied these methods to prove
deadlock-freedom of non-trivial case studies, some of them are case studies of our
projects, described in the BIP language [BGL+08, BGI+09]. Interesting and signifi-
cant results show the efficiency of the method as well as the capacities of D-Finder.

Organization of the Thesis

The thesis is split into five parts: the first (Chapter 1) presents an overview of the BIP
framework; the second (Chapter 2) describes our compositional verification approach and
methods for computing two types of invariants; the third (Chapter 3) presents incremental
construction and verification methods; the fourth (Chapter 4) presents a method for dealing
with systems with data transfer; the fifth (Chapter 5) describes the D-Finder tool together
with the implementation; the sixth (Chapter 6) presents the experimental results on some
case studies; and the last part draws the conclusions and future work. The details of all
chapters are as follows:

• Chapter 1 presents the basic ideas about component-based methodology, the basic
notions about components, their composition using glues, and the necessary proper-
ties for component-based construction of systems. It introduces the BIP component
framework, describing its architecture, its semantics as well as its properties.

• In Chapter 2 we present our method for verifying safety properties of component-
based systems by using invariants. We also present methods for computing two types
of invariants: component invariants and interaction invariants. Component invariants
are over-approximations of the set of the reachable states generated by forward prop-
agation techniques. Interaction invariants are derived automatically from component
invariants and their interactions. When proving invariance of a property fails, it is
possible to find stronger invariants by computing stronger component invariants from
which stronger interaction invariants are obtained. An application of the method to
deadlock detection is also presented in this chapter.
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• Incremental construction and verification methods are presented in Chapter 3. First,
we formalize an incremental component-based construction process. A composite
component is obtained as the composition of a set of atomic components. Then,
we formalize the process of incremental construction based on the operation of in-
crements. The construction is hierarchical: increments can be applied either at the
same level or at different levels. We associate with the incremental construction the
incremental verification. We study rules which allow preserving already established
properties. For the general case where a system may not satisfy these rules, we propose
methods for incremental computation of global invariants of a composite component
from the invariants of its constituent components.

• In Chapter 4, we propose a method for verifying safety properties of component-based
systems with data transfer. The method is based on the transformation from a system
with data transfer into an equivalent system without data transfer. The transforma-
tion is done by projecting the changes of data on interactions into components and
by replacing the data transfer by a component called interaction invariant.

• In Chapter 5, we present the D-Finder tool and the implementation of the modules in
D-Finder: the modules for generating component invariants, for making abstractions,
for generating interaction invariants, for checking deadlock-freedom, etc. In the in-
teraction invariant generation module, we implement several methods for computing
interaction invariants: an enumerative method using the SMT Sat-Solver Yices and
the CUDD package; two symbolic methods based on two symbolic operations: Posi-
tive Mapping and Fixed-Point computation. Moreover, two incremental methods are
also implemented in D-Finder to support incremental verification.

• In Chapter 6, we provide non trivial case studies showing the capacities of D-Finder as
well as the efficiency of the method. First we present results on two systems without
data, the Dining Philosopher, a classical problem in detecting deadlocks, and Gas
Station where we increase as much as possible the size of the system to show the
scalability of the method. Then we present results on an Automatic Teller Machine
(ATM) case study which has quite complex structure with a number of variables.
And finally, we consider a module in a robotic system which is a case study in one of
our projects.

• We conclude the thesis in Chapter 7, with an overview of the work and its future
perspectives.
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BIP Modeling Framework
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The design technique and formal verification have mutual influence. A clear and simple
design of systems can reduce the cost of verification. The major goal of formal verification is
to check the correctness of the system and to provide diagnostics when a requirement is not
met. These diagnostics on a clear model can help designers understand easily the problems
and locate their source. The modification/correction of the model may be expensive if it
requires significant changes of the model, specially with the growing size and complexity of
systems. The design techniques are therefore important to reduce this cost by dealing with
the complexity of systems.
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1.1. COMPONENT-BASED DESIGN

1.1 Component-based Design

Component-based design techniques are used to cope with the complexity of the systems.
The idea is that complex systems can be obtained by assembling components (building
blocks). This is essential for the development of large-scale, evolvable systems in a timely
and affordable manner. It offers flexibility in the construction phase of systems by support-
ing the addition, removal, or modification of components without any or very little impact
on other components. Components are usually characterized by abstractions that ignore
implementation details and describe properties relevant to their composition, e.g., transfer
functions, interfaces. Composition is used to build complex components from simpler ones.
It can be formalized as an operation that takes, as input, a set of components and their
integration constraints and provides, as output, the description of a new, more complex
component. This approach mitigates the complexity of systems by offering incrementality
in the construction phase. However, for being able to deal with complexity in verification,
the component frameworks need to allow constructivity along the design process.

Constructivity is the possibility to build complex systems that meet given requirements
by assembling components with known properties. The correctness of the systems is in-
ferred and guaranteed by construction with little computation. Component-based design
techniques confer numerous advantages, in particular through reuse of existing components.
A key issue is the existence of composition frameworks ensuring the correctness of compos-
ite components. In particular, we need frameworks allowing not only reuse of components
but also reuse of their properties for establishing global properties of composite compo-
nents from properties of their constituent components. Hence, we need theory allowing
constructivity and meeting the following requirements:

Incrementality. This means that composite systems can be considered as the com-
position of smaller parts. Incrementality provides flexibility in building systems by
simply adding or removing components and the result of construction is independent
of the order of integration. It is necessary for progressive analysis and the application
of compositionality rules. Incrementality allows coping with the complexity of the
heterogenous and large-scale systems in both construction and verification phases.

Compositionality. Compositionality rules allow inferring global system properties
from the local properties of the sub-systems. (e.g, inferring global deadlock-freedom
from the deadlock-freedom of the individual components). Compositionality is nec-
essary for obtaining correctness-by-construction.

Composability. Composability rules guarantee that, under some conditions, es-
sential properties of a component will be preserved after integration. Composability
means stability of previously established component properties across integration, e.
g, a deadlock-free component will remain deadlock-free after gluing together with
other components. Composability is essential for incremental construction as it en-
ables the construction of large systems without disturbing the behavior of their com-
ponents.
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CHAPTER 1. BIP MODELING FRAMEWORK

Verimag has developed a Component-based Modeling Framework called BIP (Behavior
- Interaction - Priority) [BBS06] for modeling heterogeneous real-time components. We
will provide in this chapter a short description of the BIP framework. We start by giving
notions about component-based framework: the ideas about component, their composition
and the necessary properties for component-based construction of systems.

1.2 Basic Ideas

Component-based design consists in building a component satisfying a given property from:

• a set of components B1, B2, . . . Bn, described by their behavior, and

• a set of glue operators GL = {gl1, gl2, . . . gln} on components characterizing co-
ordination between components.

A component is an entity with well-defined interfaces for interacting with its environment. It
denotes an executable description of which the run can be modeled as sequences of actions.
Tasks, processes, threads, functions, blocks of code can be considered as components. Two
types of components are considered:

• Atomic component, a basic element that only represents behavior.

• Compound component, a composition of a set of components by using glue.

A component is denoted graphically by a box. The box of an atomic component contains
behavior inside and the box of a composite component contains other components and glue.
Behavior is represented by a labeled transition system (LTS).

Definition 1 (Labeled Transition System) A labeled transition system is a triple B =
(L, P, T ), where L is a set of locations, P is a set of actions, and T ⊆ L × P × L is a set
of transitions, each labeled by an action.

For any pair of locations l, l′ ∈ L and an action p ∈ P , we write l
p
→ l′, iff (l, p, l′) ∈ T . If

such l′ does not exist, we write l 6
p
→.

When components are composed together, it might be necessary to restrict the product
of behaviors in order to meet some global properties. Glue are used for this purpose. The
glue is a separate layer that composes the underlying layer of behaviors. It is a set of
operators mapping tuples of behaviors into an equivalent behavior. Given {B1, B2, . . . , Bn}
a set of atomic components, their composition with the glue GL is a composite component
B (figure 1.1) represented as follows:

B = GL(B1, B2, . . . Bn)

The new behavior B is obtained by applying restrictions implied by the meaning of the
glue to the product of the behaviors of B1, B2, . . . Bn. Since glue restrict the product of
the behavior, the behavior of B is smaller than the product of B1, B2, . . . Bn. This new
component B can be further used for composition with other components.
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1.3. BIP MODELING FRAMEWORK

B1 Bn

B
B2 . . .

GL

Figure 1.1: Component Composition.

1.3 BIP Modeling Framework

BIP is a component framework where the composition of behaviors are performed by two
kinds of glue: interactions and priorities. Interactions characterize collaborations between
components and priorities allow choosing an interaction to be executed amongst possi-
ble interactions. The construction of BIP components is based on a 3-layers architecture
(figure 1.2): Behavior, Interaction and Priority. Compound components are built by com-
position of simpler components and its layers are obtained by composing separately the
layers of the constituents. A component is composed of:

HEB A V I O R

Priorities (conflict resolution)

Interactions (collaborations)

Figure 1.2: Layered component model

- Behavior: behavior is a labeled transition system describing elementary transforma-
tions of states. Transitions consist of triggers and local computations. Triggers are
conditions depending on local state and port expressions which characterize ability of
the component to interact with its environment.

- Interactions: interactions are architecture constraints on behavior. An interaction
is a global transformation of the states of different components. Interactions can be
considered as a function allowing computing the interactions of a component from
those of its constituents.

- Priorities: priorities provide a mechanism for restricting the global behavior of the
layers underneath by filtering amongst possible interactions. They are very useful for
enforcing state invariant properties such as mutual exclusion and scheduling policies.

A component in BIP can also be viewed as a point in a three-dimensional space represented
in Figure 1.3. The dimension Behavior characterizes component behavior and the space
Interactions × Priorities characterizes the overall structure of the system.
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CHAPTER 1. BIP MODELING FRAMEWORK

system Interaction

architecture

Priority

Behavior

Figure 1.3: Three-dimentional space construction

1.3.1 Atomic Components

A BIP atomic component is a Labeled Transition System extended with data. It consists of
a set of ports used for the synchronization with other components, a set of control locations,
a set of transitions and a set of local variables. The transitions describe the behavior of the
component.

Definition 2 (Atomic Component) An atomic component is a transition system ex-
tended with data B = (L, P, T , X, {gτ}τ∈T , {fτ}τ∈T ) , where:

• (L, P, T ) is a transition system, that is

– L = {l1, l2, . . . , lk} is a set of control locations,

– P = {p1 . . . pn} is a set of ports,

– T ∈ L × P × L is a set of transitions,

• X = {x1, . . . , xn} is a set of variables and for each τ ∈ T respectively, gτ is a guard,
a predicate on X, and fτ (X,X ′) is an update relation, a predicate on X (current)
and X ′ (next) state variables.

A transition is of the form τ = (l, p, gτ , fτ , l
′) where l (respectively l′) is the source (re-

spectively destination) location, p is a port through which an interaction is sought. The
transition τ can be executed only if its guard gτ , a boolean condition on the set of variables
X, is true. gτ is also known as the pre-condition for interaction through the port p. fτ is a
computation step consisting of local state transformations. A transition can be represented
in a simple form τ = (l, p, l′) to insist only the state transformation or in case that the
guard gτ = true and there is no internal computation fτ .

In BIP there are two kinds of ports:

• Complete port : an active port which can initiate an interaction without synchroniza-
tion with other ports. Complete port is graphically represented by a triangle.

• Incomplete port : a passive port hence it needs a synchronization with other ports to
execute its transitions. An incomplete port is denoted by a circle.
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Figure 1.4: Temperature Control System

A port is enabled if at least one of its transitions is enabled, or disabled if all its transitions
are disabled. A transition τ = (l, p, gτ , fτ , l

′) is enabled if its source location l is reached
and its guard gτ is true. Conversely, the transition τ is disabled if the component is not at
l or its guard gτ is false.

The behavior of an atomic component is a labeled transition system with moves of the
form (l1, x)

p
→ (l2, x

′), where l1, l2 are control locations of the automaton and x, x′ are

respectively valuations of the variables at each control location. The move (l1, x)
p
→ (l2, x

′)
is possible if there exists a transition (l1, p, gτ , fτ , l2), such that gτ (x) = true. As a result
of the move, the set of variables are modified to x′ = fτ (x). The semantics of execution of
transitions is formally defined as follows:

Definition 3 (Semantics) The semantics of B = (L, P, T , X, {gτ}τ∈T , {fτ}τ∈T ), is a
transition system (Q, P, T0) such that

• Q = L × X is a set of states, where X denotes the set of valuations of variables X,

• T0 is the set including transitions ((l,x), p, (l′,x′)) such that gτ (x)∧fτ (x,x′) for some

τ = (l, p, l′) ∈ T . As usual, if ((l,x), p, (l′,x′)) ∈ T0 we write (l,x)
p
→ (l′,x′).

We define here useful notions for later use: given a transition τ = (l, p, l′) ∈ T , l and
l′ are respectively, the source and the target location denoted respectively by •τ and τ•.
We extend this notation for ports: •p = {•τ |τ = (l, p, l′)} and p• = {τ•|τ = (l, p, l′)} are
respectively the set of source and target locations of the transitions labeled by the port p.

We present below the Temperature Control System, a case study in BIP, which is used
as an example for illustrating the modeling of components and of system in BIP. This case
study will also be used for showing the application of our compositional verification method
in the next chapter.

Example 1 (Temperature Control System) [ACH+95] This system controls the coolant
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temperature in a reactor tank by moving two independent control rods. The goal is to main-
tain the coolant between the temperatures θm and θM . When the temperature reaches its
maximum value θM , the tank must be refrigerated with one of the rods. The temperature
rises at a rate vr and decreases at rate vd. A rod can be moved again only if T time units
have elapsed since the end of its previous movement. If the temperature of the coolant cannot
decrease because there is no available rod, a complete shutdown is required.

We provide a discretized model of the Temperature Control System in BIP, decomposed
into three atomic components: a Controller and two components Rod1, Rod2 modeling the
rods. We take θm = 100◦, θM = 1000◦, T = 3600 seconds. Furthermore, we assume
that vr = 1◦/s and vd = 2◦/s. Figure 1.4 presents the BIP model of Temperature Control
System. The components Rod1 and Rod2 are identical, up to the renaming of locations and
ports. Each one has two control locations and four transitions: two loop transitions labeled
by tick and two transitions synchronized with transitions of the Controller. The Controller
will be described in detail here as an example for atomic component.

Controller component is composed of a set of locations L = {l5, l6}, a set of ports
P = {heat, cool, tick}, a variable θ representing the temperature of the system and a set of
the transitions T = {τ1, τ2, τ3, τ4} where:

• τ1 = (l5, tick, g = (θ < 1000), f = (θ := θ+1), l5): from l5 location, tick transition can
take place if θ < 1000 and it increases the temperature θ by 1. Since this transition
is a loop, the component is still at l5 location after the transition.

• τ2 = (l5, cool, g = (θ = 1000), l6): from l1 location, if the temperature θ = 1000, cool
transition must take place to refrigerate the system by triggering one of two Rods.

• τ3 = (l6, tick, l6): at l6 location, tick loop transition can be executed if θ > 100 and it
decreases the temperature θ by 2.

• τ4 = (l6, rest, l5): from l6 location, heat transition must be executed if the temperature
θ reaches 100 (θ = 100). The component returns to location l5.

The textual for atomic components in BIP is the following:

✞
atomic component : :=

component component_id
{port complete/ incomplete port_id+}+

[ data type_id data_id+ ] +

behavior

i n i t i a l do statement to state_id
{ state state_id

{on port_id [ provided guard ]
[do statement ] to state_id}+}+

end

end
✡✝ ✆

That is, an atomic component consists of a declaration followed by the definition of its
behavior. Declaration consists of ports and data. Ports are identifiers and are specified as
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complete or incomplete. For data, basic C types (int, double, char, etc.) can be used. In
the behavior, guard and statement denote respectively C expressions and statements.

The above description of a component defines a type of atomic component from which
a set of component instances can be created and used as atomic components to build a
system. The creation of instances will be described in the composite component section.

Behavior is defined by a set of transitions. The initial location of the component together
with the initial action specifying initial valuations of variables is described following the
keyword initial. The keyword state is followed by a control location and the list of outgoing
transitions from this location. Each transition is labeled by a port identifier followed by its
guard, its function and a target location.

Example 2 The BIP text of the Controller component in Example 1 is as follows:

✞
component Cont ro l l e r

port incomplete t i ck , cool , heat
data int th /∗ temperature va r i ab l e theta ∗/
behavior

i n i t i a l do th = 100 to l 5
state l 5

on t i c k provided th < 1000 do th = th + 1 to l 5
on coo l provided th == 1000 to l 6

state l 6
on t i c k provided th > 100 do th = th − 2 to l 6
on heat provided th == 100 to l 5

end

end
✡✝ ✆

1.3.2 Interactions

In BIP, components communicate through a set of interactions. An interaction is a non-
empty subset of ports of different components and it synchronizes the executions of the
ports.

Definition 4 (Interactions) Given a set of components (B1, B2, . . . , Bn), where Bi =
(Li, Pi, Ti, Xi, {gτ}τ∈Ti

, {fτ}τ∈Ti
), an interaction a is a set of ports, subset of

⋃n
i=1 Pi, such

that ∀i = 1, . . . , n |a ∩ Pi| ≤ 1.

When we write a = {pi}i∈I , I ∈ 1 . . . n, we suppose that for each i ∈ I, pi ∈ Pi. The
interaction model is specified by a set of interactions γ ⊆ 2P .

In this thesis, to simplify notation, we write for an interaction {p1, . . . , pk} the expression
p1 . . . pk. Furthermore, for a set of interactions {a1, . . . , an} we write a1 + · · · + an.

We extend interactions with data transfer between the synchronizing components. For
an interaction a, we use a guard Ga (boolean condition) and data transfer function Fa to
specify data transfer.
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Figure 1.5: Composition by Interactions

Interactions can be enabled or disabled. An interaction is enabled iff its guard is true
and all its ports are enabled. Contrarily, it is disabled iff its guard is false or at least one
of its ports is disabled.

Example 3 For the Temperature Control System presented in Example 1, the set of in-
teractions between the Controller and two Rods is (Figure 1.4): γ = cool1cool + cool2cool +
rest1heat + rest2heat + tick1tick2tick.

We now provide the operational semantics for the composition of a system of behavior
with respect to an interaction model.

Definition 5 (Parallel Composition) Given n components Bi=(Li,Pi,Ti, Xi, {gτ}τ∈Ti
,

{fτ}τ∈Ti
) and a set of interactions γ, we define B = γ(B1, . . . , Bn) as the component (L,γ,

T , X, {gτ}τ∈Ti
, {fτ}τ∈Ti

), where:

• L = L1 × L2 × . . . × Ln is the set of control locations,

• X =
⋃n

i=1 Xi is the set of variables,

• T is a set of transitions of the form τ = ((l1, . . . , ln), a, gτ , fτ , (l
′
1, . . . , l

′
n)) obtained

by synchronization of sets of transitions {τi = (li, pi, gτi
, fτi

, l′i) ∈ Ti}i∈I such that
{pi}i∈I = a ∈ γ and l′j = lj if j 6∈ I, for arbitrary I ⊆ {1, ..., n}, the associated guard
and function are respectively gτ = Ga ∧

∧
i∈I gτi

and fτ = Fa ∧
∧

i∈I fτi
∧

∧
i6∈I(X

′
i =

Xi).

The obtained behavior B = γ(B1, . . . , Bn) can execute a transition a ∈ γ, iff for each i ∈ I,
the action a∩Pi is enabled in Bi. The states of the transition system that do not participate
in the interaction a remain unchanged. Notice that for γ⊥ =

∑n
i=1

∑
p∈Pi

p, the component
γ⊥(B1, . . . , Bn) is the transition system obtained by interleaving the transitions of atomic
components.

Example 4 Figure 1.5 provides an example on the composition of two components B1, B2

by a set of interactions γ = ac + b. The right side is the composed behavior obtained after
the application of the interactions. The overall graph (including solid and dotted arrows)
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shows the product of the two behaviors. The solid arrows are the transitions allowed by the
interactions and the graph with these solid arrows presents the composition of two behaviors
by the interactions. The dotted transitions are not legal.

In BIP, interactions are structured by connectors. A connector is a set of ports char-
acterizing a set of interactions. For example, if p1, p2, p3 are ports of distinct atomic
components, then the connector γ consisting of {p1, p2, p3} has seven possible interactions
p1 +p2 +p3 +p1p2 +p1p3 +p2p3 +p1p2p3. To specify the feasible interactions of a connector
γ, we use two types of synchronizations:

- Strong synchronization or rendez-vous, when the only feasible interaction of γ is the
maximal one, i. e., it contains all the ports of γ.

- Weak synchronization or broadcast, when feasible interactions are all those containing
a complete port which initiates the broadcast. That is, if γ consists of {p1, p2, p3} and
the broadcast is initiated by p1, then the feasible interactions are p1 + p1p2 + p1p3 +
p1p2p3.

It is possible to represent any arbitrary interaction through a connector by structured
combination of the above two basic synchronization protocols.

To characterize these synchronizations, we associate two types with complete and in-
complete ports. A feasible interaction of a connector is a set of its ports such that either it
contains some complete port, or it is maximal, i.e, consisting of all the incomplete ports.

(a) (b) (c)

p1 p2 p1 p2 p1

p2

p3

γ = p1p2 γ = p1 + p1p2 γ = p1 + p1p2 + p1p3 + p1p2p3

Figure 1.6: Connectors and their interactions.

Example 5 Example of sets of connectors and their feasible interactions are shown in
figure 1.6:

• In (a), the connector consists of two incomplete ports p1 and p2, hence the only fea-
sible interaction is p1p2. It represents a rendez-vous, meaning that both actions are
necessary for the synchronization.

• In (b), the interaction between p1 and p2 is asymmetric. p1 is a complete port and
can occur alone, even if p2 is not possible. Nevertheless, p2 is an incomplete port and
it needs to synchronize with p1 to occur. The feasible interactions are γ = p1 + p1p2.
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• In (c), the interactions between p1, p2 and p3 are also asymmetric. The port p1 is
complete, it can occur alone or synchronize with either or both p2 and p3, hence the
feasible interactions are γ = p1 + p1p2 + p1p3 + p1p2p3.

The textual for connector description in BIP is as follows:

✞
interaction : := port_id+

connector : :=
connector connector_id = port_id+

[ complete interaction ]
behavior

[on interaction [ provided guard ] [do statement ] ] +

end
✡✝ ✆

That is, the keyword connector is followed by a name and a set of ports. The keyword
complete define a minimal set of ports to be considered as complete interaction. Then
any superset (including) of ports of that minimal set corresponds to a feasible interaction.
Since a connector contains a set of interactions, the behavior is defined following the keyword
behavior for each interaction: the keyword on is followed by an interaction together with
its guard and its function.

If the definition of complete interaction is omitted, then all interactions containing a
complete port (if it exists) are feasible, or only the maximal interaction (if all the ports are
incomplete) is feasible.

1.3.3 Priorities

Priorities are a powerful tool for enforcing a given property by restricting nondeterminism.
It allows selecting interactions to be executed amongst the feasible ones based on the current
global state of the system. The definition of a priority, followed by the composition of
behaviors using the priority glue are provided below.

Definition 6 (Priority) A priority is a relation ≺⊆ γ × L × γ, where γ is the set of
interactions, and L is the global set of locations. We write a ≺l a′ for (a, l, a′) ∈≺. Fur-
thermore, we require that for all l ∈ L, ≺l is a strict partial order on γ. a ≺l a′ means that
interaction a has less priority than a′ at location l.

The textual for the description of priorities is defined by:

✞
priority : :=

priority [priority_id [ i f cond ] interaction < interaction ] +

✡✝ ✆

That is, priorities are a set of rules, each consisting of an ordered pair of interactions
associated with a condition (cond). The condition is a boolean expression in C on the
variables of the components involved in the interactions. When the condition holds and
both interactions are enabled, only the higher one is eligible for execution. Conditions can
be omitted for static priorities.
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1.3.4 Composite Components

In BIP, a composite component allows defining new components which consist of:

• a set of instances of existing sub-components (atomic or composite).

• a set of connectors between the component instances.

• a set of priorities between the interactions.

The BIP textual of a composite component is defined by:

✞
composite component : :=

component component_id
{contains component_id {instance_id[parameters]}+}+

[ connector ] +

priority
end

✡✝ ✆

The instances can have parameters providing initial values to their variables through a
named association.

Finally, we consider systems defined as parallel composition of components together
with an initial state.

Definition 7 (System) A system S is a pair 〈B, Init〉 where B is a component and Init
is the initial state of B.

We seperate Init from components because we want to reuse components. A component
type is used to build different parts of a system or different systems. And depending on the
system, the component might have different initial states. Hence the separation of initial
states and components provides flexibility in the reuse of components.

We can consider Init in the form of state, that is the set of initial states of components
in B, or in the form of a state predicate characterizing the initial state of B.

Example 6 The components in Temperature Control presented in Example 1 are composed
by using the following set of interactions, indicated by connectors in the Figure 1.4:

γ = tick tick1 tick2 + cool cool1 + cool cool2 + heat rest1 + heat rest2

The initial state of the system is Init = (l5∧(θ = 100), l1∧(t1 = 3600), l3∧(t2 = 3600)).
Init can also be represented in the form of initial condition as Init = (l5 ∧ (θ = 100)) ∧
(l1 ∧ (t1 = 3600)) ∧ (l3 ∧ (t2 = 3600)).

The Temperature Control System is represented by S = 〈B, Init〉 where B is the Tem-
perature Control composite component described in BIP language as follows:
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✞
component TemperatureContro l ler

contains Rod rod1 , rod2
contains Cont ro l l e r c t r l

connector t i c k = c t r l . t i ck , rod1 . t i ck1 , rod2 . t i c k 2
behavior

on c t r l . t i ck , rod1 . t i ck1 , rod2 . t i c k 2
provided t rue do {# #}

end

connector coo l1 = c t r l . coo l , rod1 . coo l1
behavior

on c t r l . coo l , rod1 . coo l1 provided t rue do {# #}
end

connector coo l2 = c t r l . coo l , rod2 . coo l2
behavior

on c t r l . coo l , rod2 . coo l2 provided t rue do {# #}
end

connector heat1 = c t r l . heat , rod1 . r e s t 1
behavior

on c t r l . heat , rod1 . r e s t 1 provided t rue do {# #}
end

connector coo l1 = c t r l . heat , rod2 . r e s t 2
behavior

on c t r l . heat , rod2 . r e s t 2 provided t rue do {# #}
end

end
✡✝ ✆

1.4 Properties of BIP Components

1.4.1 Invariants

A state predicate I is an invariant of a system S, if every reachable state of the system S
satisfies I. In other words, each state that is reached during the computation of S satisfies
I. We first define the set of reachable states of a system.

Definition 8 (Reachable States) Given a system S = 〈B, Init〉 where B is a compo-
nent and Init is the initial state of B. A state l is called reachable (accessible) in S if from

the initial state there exists an execution sequence Init
p1
→ l1

p2
→ . . .

pn
→ ln such that ln = l.

We denote the set of reachable states of S by Reach(S).

Formally, we have the following definition of system invariants:

Definition 9 (Invariants of System) Given a system S and its set of reachable states
Reach(S). A state predicate I is an invariant of S, denoted by inv(S, I), if every state of
Reach(S) satisfies I.
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In component-based construction, components can be reused to build different systems
or different parts of a system. And the initial states of different instances of a component
type may be different. Therefore, we define here the notion of invariants of component.
Then the invariants of a system are obtained from the invariants of components that are
used to build the system depending on the initial state of the system.

Definition 10 (Invariants of Component) Given a component B = (L, P, T , X, {gτ}τ∈T ,
{fτ}τ∈T ), a state predicate I is an invariant of B, denoted by inv(B, I), if for any state

l ∈ L and any port p ∈ P , I(l) and l
p
→ l′ ∈ T imply I(l′), where I(l) means that l satisfies

I.

That is, a state predicate I is an invariant of a component B if for any state l of B that
satisfies I, all the states reached from l also satisfy I.

For a system S = 〈B, Init〉, all the states reached from the initial state are the set of
reachable states of the system. Therefore by Definitions 9 and 10, any invariant of B that
is satisfied by the initial state is also invariant of the system S.

Proposition 1 Given a system S = 〈B, Init〉 where B is a component and Init is the
initial state, then any invariant I of B is also invariant of S, denoted by inv(S, I), if the
initial state Init satisfies I.

Proof The proposition is proven from the facts that Init satisfies I and because I is an
invariant of B, according to Definition 10 all the states reached from Init satisfies I.

We extensively use the following well-known results about invariants.

Proposition 2 Let I1, I2 be two invariants of a component B. Then I1 ∧ I2, I1 ∨ I2 are
invariants of B.

Proof If l is a state of B such that (I1 ∧ I2)(l), we have I1(l) and I2(l). For any successor
l′ of l, we have I1(l

′) and I2(l
′) because I1 and I2 are invariants of B, therefore (I1 ∧ I2)(l

′).
Similarly for I1 ∨ I2.

Similarly if I1 and I2 are invariants of a system S, then I1∧ I2 and I1∨ I2 are invariants
of S.

The proof that a given predicate I is an invariant of a given component B can be done
by finding a stronger invariant, i.e, a predicate that is an invariant of the component B and
implies the predicate I. We have the following proposition:

Proposition 3 Given a predicate I of a component B. If there exists an invariant I ′ of
B such that I ′ ⇒ I then I is also an invariant of the component B.
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1.4.2 Local Deadlock-freedom

In the rest of the thesis, we consider control locations of atomic components as boolean
variables.

Definition 11 (Deadlock-free States) Given a component B = (L, P, T , X, {gτ}τ∈T ,
{fτ}τ∈T ), we present by DFS the state predicate characterizing deadlock-free states:

DFS =
∨

l∈L

∨

τ∈l•

en(τ) where en(τ) = l ∧ gτ

The predicate en(τ) of a transition τ = (l, p, gτ , fτ , l
′) characterizes a set of states from

which the transition τ is enabled, i.e the component is at its source location l and its guard
gτ is true. The following lemma gives a useful characterization of DFS:

Lemma 1 Given a component B = (L, P, T , X, {gτ}τ∈T , {fτ}τ∈T ),

DFS =
∧

l∈L

(l ⇒
∨

τ∈l•

gτ ) =
∨

l∈L

(l ∧
∨

τ∈l•

gτ )

Proof The proof is based on the fact that
∨

l∈L l and ¬(l ∧ l′) for l 6= l′.

The predicate DFS characterizes the deadlock-freedom property of a component. A
component is deadlock-free if whenever it reaches a location, it always can go out by at
least one of its outgoing transitions, i.e the guard of at least one outgoing transition is true.

1.4.3 Global Deadlocks

A system has global deadlocks if at some global state, there is no interaction that can be
executed. The global deadlocks therefore depend on the enabledness of the interactions.
Hence we first define the enabledness condition of an interaction.

Definition 12 (Enabledness) Given a component B = γ(B1, . . . , Bn) we define, for
each interaction a ∈ γ, an enabledness predicate under which the interaction a is feasible
as follows:

en(a) =
∧

p∈a

en(p) where en(p) =
∨

port(τ)=p

en(τ)

port(τ) for a transition τ is the port labeling that transition.

That is, en(a) characterizes all the states from which interaction a can be executed. The
interaction a can be executed if all its ports are ready for synchronizing and a port is ready
if at least one of its transitions is enabled.

We now define a predicate called DIS that characterizes a set of global deadlocks of a
system.
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Figure 1.7: The BIP Tool-Chain

Definition 13 (Deadlock States) We define the predicate DIS characterizing the set
of the states of γ(B1, . . . , Bn) from which all interactions are disabled:

DIS =
∧

a ∈ γ

¬en(a)

Example 7 For the Temperature Control System (see Figure 1.4), we have:
DIS = (¬(l5 ∧ θ < 1000))

∧
(¬(l6 ∧ θ = 100) ∨ ¬l2)∧

(¬(l6 ∧ θ > 100))
∧

(¬(l5 ∧ θ = 1000) ∨ ¬(l3 ∧ t2 ≥ 3600))∧
(¬(l5 ∧ θ = 1000) ∨ ¬(l1 ∧ t1 ≥ 3600))

∧
(¬(l6 ∧ θ = 100) ∨ ¬l4)

The system 〈γ(B1, . . . , Bn), Init〉 is deadlock-free if the predicate ¬DIS is an invariant
of the system.

1.5 BIP Tool-Chain

The BIP tool-chain provides a set of tools for the modeling, the execution, the verification
and the static transformation of BIP models.

The overview of the BIP tool-chain is shown in Figure 1.7. It includes the following
tools:

• An editor, for describing textually a system in BIP language.
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• A compiler, for generating a BIP model from BIP description source.

• A code generator, for generating, from a model, C++ code executable on the BIP
engine. The code-generator can also produce THINK specification [PPRS06], from
which the Think tool-chain can generate code to be executed over a choice of target
platforms.

• D-Finder, of which the method and the implementation are presented in this thesis,
is a compositional verification tool for component-based systems described in BIP
language [BBNS09].

• BIP2BIP transformations, allow useful transformations which generate an efficient
monolithic component from a composite component [BJS09].

• An exporter to connect with external tools such as IF toolbox or analysis tools.

• A set of translators from other languages (Lustre, Matlab/Simulink, ect.) to BIP. For
example, an AADL-to-BIP translation from Architecture Analysis & Design Lan-
guage (AADL) into BIP [CRBS08], allows simulation of systems specified in AADL
and application to these systems of formal verification techniques developed for BIP,
e.g. deadlock detection.

The editor, compiler and code generator form the front-end of the tool-chain. The back-
end provides a platform for analyzing and executing the C++ application code which
is generated by front-end. The back-end includes an engine and the associated software
infrastructure. The engine is a controller which selects and executes interactions between
the components. First it considers the states of the components and the interaction model
to find all the enabled interactions. Then it applies the priority rules to eliminate lower
priority interactions, then chooses one amongst the maximal enabled for execution.

1.6 Summary

Component-based approach is aimed to deal with the complexity of systems. It is based
on the idea of building a complex system by assembling basic components (blocks). It
provides important characteristics for system construction such as reuse, incrementality,
compositionality, etc. It allows not only the reuse of components but also the reuse of
known properties of constituent components.

We have presented BIP, a component-based framework for modeling heterogeneous sys-
tems. The BIP component model is the superposition of three layers: the lower layer de-
scribes the behavior of a component as a transition system; the intermediate layer consists
of the interactions between transitions of the layer underneath; the upper layer describes
the priorities characterizing a set of scheduling policies for interactions. Such a layering
offers a clear separation between components’ behaviors and the structure of the system
(interactions and priorities).
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BIP modeling framework allows dealing with complexity of systems by providing in-
cremental composition of heterogeneous components. It also considers correctness-by-
construction for a class of essential properties such as deadlock-freedom [GS05].

We have also presented several important properties of BIP components such as in-
variants, deadlock-freedom. We have defined predicates characterizing deadlock-freedom of
atomic components as well as of systems.

The BIP tool-chain has been developed providing automated support for component
integration and generation of glue code meeting given requirements. Efficient model trans-
formations, verification methods have also been studied and implemented in the BIP tool-
chain.

We are now going to present our compositional verification method for component-based
systems. We will also show applications of our method for verifying systems described in
the BIP language.
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Formal verification based on Model-Checking nowadays suffers from the state space
explosion problem because of the growing size and complexity of systems. Compositional
verification approach is used for alleviating this problem. The idea is to apply “divide-and-
conquer” techniques to infer global properties of a system from properties of its subsystems.
Instead of verifying globally the entire system, compositional approach first decomposes it
into small subsystems and verifies each of them individually. The size of a subsystem
is often quite smaller compared to the size of the whole system, hence there is less risk of
explosion of state space. Then, properties of the global system are inferred from the verified
properties of its subsystems.

In this chapter, we present a compositional method for the verification of safety proper-
ties for component-based systems described in a subset of the BIP language encompassing
multi-party interactions. The BIP framework allows to define rich interaction models by
using hierarchical interactions extended with data transfer as presented in [Bas08]. How-
ever in this chapter, we restrict to pure synchronizations, i.e. synchronizations without
data transfer. The absence of hierarchy is not a real limitation, as long as hierarchical in-
teraction models can be statically transformed into equivalent flat interaction models with
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a potential increased number of interactions [BJS09]. For the systems with data transfer
between components, we will present a method to deal with them in Chapter 4.

The organization of this chapter is as follows: Section 1 presents the compositional ver-
ification rule together with methods for computing invariants. We then present in Section
2 an abstraction technique that we use to deal with systems with data. Section 3 shows the
procedure of the verification method for checking safety properties. In Section 4 we provide
an application of the method for checking deadlock-freedom of component-based systems
described in BIP. And we finish this chapter by giving conclusions in Summary. We use the
Temperature Control System presented in the previous chapter as running example through
the chapter for illustrating invariant computation, abstraction and deadlock-freedom check-
ing.

2.1 Compositional Verification Method

2.1.1 Compositional Verification Rule

We propose a compositional method for verifying safety properties. The idea of the method
is based on the inference rules represented in Equations 2.1 and 2.2. The rule in Equation
2.1 says that if the initial state Init of a system S satisfies a predicate Φ and Φ is preserved
by every transition τ of the system, that is every reachable state of S satisfies Φ, then Φ
is an invariant of S. Such invariant Φ is called inductive invariant. Unfortunately, most of
invariants are not inductive, that is they are not preserved by every transition. Therefore,
an extension rule is proposed in Equation 2.2 which allows proving the invariance property
of Φ by finding an auxiliary predicate Φaux such that : (1) Φaux is stronger than Φ; (2)
Φaux is satisfied by the initial state; and (3) Φaux is preserved by every transition of the
system.

Init |= Φ
{Φ}τ{Φ} ∀τ ∈ S

S |= �Φ
(2.1)

Init |= Φaux

{Φaux}τ{Φaux} ∀τ ∈ S
Φaux ⇒ Φ

S |= �Φ
(2.2)

The best solution as an auxiliary predicate Φaux is the set of reachable states Reach(S).
However, the computation of the reachable state set causes the well-known state space
explosion problem. Hence another solution, on which our method is based, is to take an
over-approximation ReachApp(S) of the reachable state set. If ReachApp(S) implies the
predicate Φ, then the system S satisfies Φ.

The goal of the method is therefore to compute a strong-enough over-approximation
of the set of reachable states to be able to prove invariance properties. Our method for
computing such approximation focuses on two aspects of systems: one is the local behavior
of atomic components; the other is the global constraints between atomic components based
on the interactions between them. Since over-approximation of the reachable state set can
be characterized by invariants, we exploit two kinds of invariants:

- Component invariants Φi of Bi which are over-approximations of components’ reach-
ability sets. They are computed by forward propagation techniques.
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- Interaction invariants Ψ which are global constraints on the states of atomic compo-
nents involved in interactions. Interactions force the synchronized atomic components
to move together from a set of states to another set of states, hence there are explicit
constraints on the states of these atomic components. Interaction invariants captures
these constraints by statically exploiting the structure of the interaction set. They
are computed from Boolean Behavioral Constraints which are a set of implications
obtained from interactions and local behavior.

The main rule of our approach is as follows:

{Bi < Φi >}i, Ψ ∈ II(‖γ{Bi}i, {Φi}i), (
∧

i Φi) ∧ Ψ ⇒ Φ

‖γ{Bi}i < Φ >
(2.3)

The rule 2.3 allows to prove invariance of a predicate Φ for a system obtained by using a
n-ary composition operation parameterized by a set of interactions γ on a set of components
{Bi}i. It uses global invariants which are the conjunction of component invariants {Φi}i and
interaction invariants Ψ. The verification of invariance-property Φ is then done by checking
tautology (

∨
i Φi) ∧ Ψ ⇒ Φ or equivalently the unsatisfiability of (

∨
i Φi) ∧ Ψ ∧ (¬Φ).

Methods for computing component invariants and interaction invariants will be pre-
sented in the next sub-sections.

2.1.2 Component Invariants

Component invariants are over-approximation of the set of reachable states of components.
If an atomic component B is finite state with the initial state Init, then we can take
Φ = Reach(〈B, Init〉), the set of reachable states of B or any upper approximation of
Reach(〈B, Init〉). If the components are infinite state, Reach(〈B, Init〉) can be approx-
imated as shown in [LBBO01]. In this section, we present a lightweight method for the
computation of sequences of increasingly stronger inductive invariants for atomic compo-
nents. Component invariants are computed by using the post predicate transformer which
defines the propagation of a predicate through a transition or a transition system. The post
predicate transformer allows computing state successors of atomic components. Its formal
definition is as follows :

Definition 14 (Post Predicate Transformer w.r.t Transition) Given a component
B = (L, P, T , X, {gτ}τ∈T , {fτ}τ∈T ) and a predicate ϕ on the set of variables X. We define
a post predicate transformer of ϕ w.r.t a transition τ = (l, p, gτ , fτ , l

′) ∈ T , which is a
propagation of ϕ by the transition τ , as follows:

postτ (ϕ)(X) = ∃X ′.ϕ(X ′) ∧ gτ (X
′) ∧ fτ (X

′, X)

Transition τ can be executed only if its guard gτ (X
′) (X ′ is the previous valuation of X

at the source location l) is true. The run of the transition executes function fτ (X
′, X)

which updates the value of the predicate ϕ(X ′) at the source location l and a new predicate
postτ (ϕ)(X) is produced at the destination location l′.

We define in a similar way, the pre predicate transformer for a transition τ , preτ (ϕ)(X) =
∃X ′.gτ (X) ∧ fτ (X, X ′) ∧ ϕ(X ′).
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p, gτ = (x ≥ 1)

f = (x := x + 1)
l l′

ϕ(x) = (x ≥ 0) ϕ′(x) = postτ (ϕ) = (x ≥ 2)

Figure 2.1: An example of post predicate

Rod2

tick

l6

heat

tick

l5

θ = 100

θ < 1000

θ := θ + 1

cool

θ > 100
θ := θ − 2

θ = 1000

t1 := t1 + 1

tick1

tick1

cool1

t1 := 0

rest1

l1

l2

tick2

tick2

l3

l4

cool2 rest2

t2 := 0

t2 := t2 + 1

tick tick2tick1

rest1 cool1 cool heat rest2 cool2

t1 ≥ 3600 t2 ≥ 3600

Rod1
Controller

Figure 2.2: Temperature Control System

Example 8 Figure 2.1 illustrates a propagation of a predicate ϕ = (x ≥ 0) by a transition
τ from l to l′ with its guard gτ = (x ≥ 1) and its update function fτ = (x := x+1). The post
condition of ϕ with respect to the transition τ is ϕ′(x) = postτ (ϕ)(x) = ∃x′.(x′ ≥ 1)∧ (x =
x′ + 1) ∧ (x′ ≥ 0) = (x ≥ 2). ϕ′(x) is the propagation of ϕ(x) through the transition τ .

If τ is a loop transition, i.e it is of the form τ = (l, p, gτ , fτ , l), we can use post∗ predicate
transformer which defines the iterative propagation by the loop transition according to the
number of iterations. The condition for using post∗ is that we can find a transitive closure
Fτ (n, X ′, X) [CJ98, BIL09] of the function fτ (X

′, X) where n is the number of iterations.
For example, if the function fτ is of the form x = x′ + a where a is a constant, then
its transitive closure is Fτ (n, x′, x) = (x = x′ + a ∗ n). It means that, an iteration step
increases the value of x by a, hence after n times of iterations, the value of x is increased
by a ∗ n. The predicate transformer of a predicate ϕ(x) over τ is post∗τ (x) = ∃n∃x′.(n ≥
1) ∧ ϕ(x′) ∧ gτ (x

′ + a ∗ (n − 1)) ∧ (x = x′ + a ∗ n).

Example 9 Consider the component Controller in Figure 2.2 which has a loop transition
τ = (l5, tick, θ < 1000, θ = θ + 1, l5). The predicate to be propagated by the loop transition
is ϕ = (θ = 100) which is obtained from the post predicate transformer of heat incoming
transition. The loop transition τ can occur if the guard θ < 1000 is true and it increases the
value of the variable θ by 1. The value of θ after n times of iterations is (100 + 1 ∗ n). The
post∗τ of ϕ w.r.t the transition τ is post∗τ (ϕ)(θ) = ∃n∃θ′.(n ≥ 1)∧(θ′ = 100)∧(θ′+1∗(n−1) <
1000) ∧ (θ = θ′ + 1 ∗ n) = (101 ≤ θ ≤ 1000).
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Consider a predicate ϕl at each control location l of a component B = (L, P, T , X,
{gτ}τ∈T , {fτ}τ∈T ), the global predicate is

∨
l∈L(l ∧ ϕl). The transformation of the global

predicate is done by the propagation on all the transitions of the component.

Definition 15 (Post Predicate Transformer w.r.t Transition System) Given a com-
ponent B = (L, P, T , X, {gτ}τ∈T , {fτ}τ∈T ) and a predicate Φ =

∨
l∈L(l ∧ ϕl) where ϕl is

a predicate at control location l, we define the post predicate transformer of Φ w.r.t to the
transition system of B as follows:

post(Φ) =
∨

l∈L


 ∨

τ=(l,p,l′)

(l′ ∧ postτ (ϕl))




.

Equivalently, we have that post(Φ) =
∨

l∈L l∧(
∨

τ=(l′,p,l) postτ (ϕl′)). This allows computing
post(Φ) by forward propagation of the assertions associated with control locations in Φ.

For a component B = (L, P, T , X, {gτ}τ∈T , {fτ}τ∈T ), ϕl = true is the weakest invariant
at each control location of S, and Φ =

∨
l∈L l ∧ true is the weakest component invariant.

The iterative forward propagation of this predicate by transition system provides a stronger
invariant. The iteration terminates when a fix point is reached. The following proposition
provides such means to compute increasingly stronger invariants of a component.

Proposition 4 Given a system S = 〈B, Init〉 where Init is the initial condition of the
component B, the following iteration defines a sequence of increasingly stronger inductive
invariants:

Φ0 = true Φi+1 = Init ∨ post(Φi)

Proof By induction. Φ0 is an inductive invariant. If Φi is an inductive invariant then
Init∨postτ (Φi) ⇒ Φi. As post is monotonic and distributes over disjunction, postτ (Φi+1) =
post(Init∨ post(Φi)) ⇒ post(Φi) ⇒ Φi+1. Moreover, Init ⇒ Φi+1. So Φi+1 is an inductive
invariant.

We use different strategies for producing such invariants. We usually iterate until we
find good enough invariants. The good enough invariants mean that they are able to prove
some safety properties. This will be explained in Section 2.3.

Example 10 For the Temperature Control System of figure 2.2, the predicates Φ1 = (l1 ∧
t1 ≥ 0) ∨ (l2 ∧ t1 ≥ 3600) and Φ2 = (l3 ∧ t2 ≥ 0) ∨ (l4 ∧ t2 ≥ 3600) are respectively
inductive invariants of the Rod1 and Rod2 components given the initial conditions Init1 =
l1 ∧ t1 = 3600 and Init2 = l3 ∧ t2 = 3600. Also, the predicate Φ3 = (l5 ∧ 100 ≤ θ ≤
1000) ∨ (l6 ∧ 100 ≤ θ ≤ 1000) is a non-inductive invariant of the Controller component,
given the initial condition Init3 = l5 ∧ θ = 100. An auxiliary inductive invariant that
implies Φ3 is Φaux

3 = (l5 ∧ 100 ≤ θ ≤ 1000) ∨ (l6 ∧ 100 ≤ θ ≤ 1000) ∧ (θ is even).
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A key issue is efficient computation of such invariants as the precise computation of
post requires quantifier elimination. An alternative to quantifier elimination is to compute
over-approximations of post based on syntactic analysis of the predicates. In this case,
the obtained invariants may not be inductive. We present below lightweight techniques for
computing component invariants by avoiding quantifier elimination process.

Lightweight Computation of Component Invariants

We provide a brief description of a syntactic technique used for approximating post predicate
transformer for a transition τ . The idea is that the post can be approximated by predicates
which are not affected by the update function of the transition, therefore the methods
focuses on finding such predicates. Theses techniques and also some other techniques for
generating post predicate transformer and component invariants are proposed and well
presented in [BL99].

Given a component B = (L, P, T , X, {gτ}τ∈T , {fτ}τ∈T ), consider a transition τ =
(l, p, gτ , fτ , l

′) ∈ T where its guard gτ is a predicate of the form gτ (Y ), fτ is of the form
Z ′ = eτ (U); Y, Z, U are subsets of the set of variables X. If Z ∩ U = ∅ which means
that variables in the set U are not affected by the associate update function eτ , then the
predicate Z = eτ (U) is preserved by the transition τ . Similarly, if Z ∩Y = ∅, the predicate
gτ (Y ) is also preserved by the transition. Moreover, for an arbitrary predicate ϕ at l′, we
find a decomposition ϕ = ϕ1(Y1) ∧ ϕ2(Y2) such that Y2 ∩ Z = ∅ i.e. ϕ2(Y2) is not affected
by the update function fτ , then the predicate ϕ2(Y2) still holds after the execution of the
transition.

To formulate the general case, given a transition τ above, we denote by func(τ) the pred-
icate Z = eτ (U) and by guard(τ), the guard gτ (Y ). For a transition τ = (l′, p, g(Y ), Z ′ =
e(U), l) we have Z ∩ (Y ∪ U) = ∅ and for an arbitrary predicate ϕ at l′, we find a decom-
position ϕ = ϕ1(Y1) ∧ ϕ2(Y2) such that Y2 ∩ Z = ∅. Then, the post predicate transformer
can approximated by postaτ = ϕ2(Y2) ∧ guard(τ) ∧ func(τ).

The required condition for Φl to be an invariant is Z ∩ (Y ∪ U) = ∅. If this condition
is not satisfied, by considering separately the condition for Z ∩ Y and Z ∩ U , we can get
postaτ as follows:

postaτ (ϕ) = ϕ2(Y2) ∧





guard(τ) ∧ func(τ) if Z ∩ (Y ∪ U) = ∅

func(τ) if Z ∩ U=∅ and Z ∩ Y 6= ∅

guard(τ) if Z ∩ Y=∅ and Z ∩ U 6= ∅

true otherwise

(2.4)

Example 11 Figure 2.3 illustrates examples for the cases defined in Equation 2.4. In all
the transitions, the predicate at the source location is ϕ(y, z) = y ≥ 0 ∧ x ≥ 0 which can be
decomposed into ϕ(y) = y ≥ 0 and ϕ(z) = z ≥ 0.

• In example (a), the variable y of the guard is not affected by fτ , hence postaτ (ϕ) =
ϕ(y) ∧ func(τ) ∧ guard(τ) = (z = y + 2) ∧ (y ≥ 1).
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(a)

(c)

(b)

l′
y ≥ 1

z := y + 2
l

ϕ = (y ≥ 0) ∧ (z ≥ 0) postaτ (ϕ) = (y ≥ 1) ∧ (z = y + 2)

y ≥ 1

z := z + 2
l l′

postaτ (ϕ) = (y ≥ 1)ϕ = (y ≥ 0) ∧ (z ≥ 0)

l′
y ≥ 1

y := z + 2
l

ϕ = (y ≥ 0) ∧ (z ≥ 0) postaτ (ϕ) = (z ≥ 0) ∧ (y = z + 2)

Figure 2.3: Examples of postaτ

• In example (b), the variable y of the guard is changed through the transition but the
variable z on the right side of f is unchanged, hence postaτ (ϕ) = ϕ(z) ∧ func(τ) =
(z ≥ 0) ∧ (y = z + 2).

• In the third example (c), y of the guard stays unchanged through the transition but
the variable z appears on both sides of the function, therefore postaτ (ϕ) = ϕ(y) ∧
guard(τ) = (y ≥ 1).

In the case Z ∩ Y 6= ∅ or Z ∩ U 6= ∅, we still can apply the above rules by
decomposing Y and U into two parts: one part is disjoint with Z and the other part is not
disjoint with Z.

Consider a transition τ = (l, p, gτ , fτ , l
′) of a component B. Assume that its guard is of

the form gτ (Y ) and the associated update function fτ is of the form Z ′
1 = eτ (U)∧Z ′

2 = Z2

where Y,Z1, Z2, U ⊆ X. Z ′
1 and Z ′

2 are respectively next valuations of Z1 and Z2. For an
arbitrary predicate ϕ, we find a decomposition ϕ = ϕ1(Y1)∧ϕ2(Y2) such that Y2 ∩Z1 = ∅,
the post predicate transformer for the transition τ can be approximated as follows:

postaτ (ϕ) = ϕ2(Y2) ∧

{
gτ (Y ) if Z1 ∩ Y = ∅
true otherwise

}
∧

{
Z1 = eτ (U) if Z1 ∩ U = ∅

true otherwise

}
(2.5)

Example 12 Figure 2.4 is an example where we can apply Equation 2.5. The transition
τ has a guard gτ = (x ≥ 2), a function fτ = (y := z + 2); (t := t + 2). Consider a predicate
ϕ = (x ≥ 0)∧ (y ≥ 2) which can be split into two parts: ϕ1 = (x ≥ 0) where x is unchanged
through the transition and ϕ2 = (y ≥ 2) where y is affected by function fτ . Similarly, the
update function can be decomposed into two parts: f1 = (y := z + 2) where variable on the
right side is different from the left and f2 = (t := t + 2) where the variable t is on both
the right and the left sides. Finally we have postaτ (ϕ) = ϕ1 ∧ guard(τ) ∧ func1(τ) = (x ≥
2) ∧ (y = z + 2).
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x ≥ 2

y := z + 2

t := t + 2

l′l

ϕ(x) = (x ≥ 0) ∧ (y ≥ 2) postaτ (ϕ) = (x ≥ 2) ∧ (y = z + 2)

Figure 2.4: Examples of postaτ

The following proposition says that, for a transition τ and a predicate ϕ, postaτ (ϕ) is an
over approximation of the post predicate transformer postτ (ϕ).

Proposition 5 If τ and ϕ are respectively a transition and a state predicate as above,
then postτ (ϕ) ⇒ postaτ (ϕ).

Proof We can over-approximate successively postτ (ϕ) as follows:

postτ (ϕ)(X ′) = ∃X.
(
ϕ(X) ∧ gτ (X) ∧ fτ (X, X ′)

)

= ∃Z1, Z2.
(
ϕ1(Y1) ∧ ϕ2(Y2) ∧ gτ (Y ) ∧ Z ′

1 = eτ (U) ∧ Z ′
2 = Z2

)

⇒ ∃Z2.
(
ϕ2(Y2) ∧ Z ′

2 = Z2

) ∧
∃Z1, Z2.

(
gτ (Y ) ∧ Z ′

1 = eτ (U) ∧ Z ′
2 = Z2

)

= ϕ2(Y
′
2)

∧
∃Z1, Z2.

(
gτ (Y ) ∧ Z ′

1 = eτ (U) ∧ Z ′
2 = Z2

)

⇒ ϕ2(Y
′
2)

∧ {
gτ (Y

′) if Z1 ∩ Y = ∅
true otherwise

} ∧ {
Z ′

1 = eτ (U
′) if Z1 ∩ U = ∅

true otherwise

}

= postaτ (ϕ)(X ′).

2.1.3 Interaction Invariants

For the sake of clarity, we present methods for computing interaction invariants of systems
without data. For systems with data, the methods can be applied by using abstraction
techniques which will be presented in the next section.

The idea of our compositional verification method, as explained in the method rule, is
that we try to compute as precisely as possible over approximations of the set of reachable
states. Given a system consisting of n atomic components B1, . . . , Bn synchronized by a
set of interactions γ, an over-approximation of the global reachable states can be obtained
by the intersection of the component invariants of these atomic components. For example,
figure 2.5(a) illustrates two components B1 and B2 strongly synchronized by a set of two
interactions γ = a1a2 + b1b2. By taking Init = l1 ∧ l3 as initial condition, we have the
set of reachable states Reach(〈γ(B1, B2), Init〉) = (l1 ∧ l3) ∨ (l2 ∧ l4) (Figure 2.5(b)). The
component invariants of the components B1 and B2 are respectively Φ1 = (l1∨l2) and Φ2 =
(l3∨l4). The intersection Φ1∧Φ2 = (l1∨l2)∧(l3∨l4) = (l1∧l3)∨(l1∧l4)∨(l2∧l3)∨(l2∧l4) is an
over-approximation of the global reachable states. Unfortunately this over-approximation
is often quite large and not strong enough to prove invariance properties because it does
not take into account global constraints due to strong synchronizations between atomic
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(b)(a)
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Figure 2.5: Two components with interactions (a) and its composition (b)

components. In this section we present a type of invariants called interaction invariant
which captures these constraints and therefore represents a more precise over-approximation
of the reachable states.

Interactions are used to restrict the global behavior of systems in order to meet given
requirements. An interaction consists of a set of ports of different components. The ac-
tions of the ports of an interaction must occur simultaneously. There are therefore strong
constraints on the moves of the synchronized components. Consider the example in Fig-
ure 2.5(a), at control locations l1 and l3, interaction a1a2 can take place and enforces two
components moving together to control locations l2 and l4. From l2 and l4, interaction
b1b2 can occur and similarly enforces two components back to l1 and l3. Here we have
strong constraints between two components: if B1 is at control location l2 (respectively l1),
B2 must be at control location l4 (respectively l3) and vice-versa. Interaction invariants
characterize such constraints on the global state space induced by strong synchronizations
between atomic components.

Consider a set of atomic components B = (B1, . . . , Bn), where Bi = (Li, Pi, Ti), syn-
chronized by a set of interactions γ. Intuitively, an interaction invariant of γ(B) is a
predicate in the disjunctive form Ψ =

∨
l∈LΨ

l where LΨ ⊆
⋃n

1 Li such that if any control
location of LΨ is reached, then there is always at least a control location of LΨ which is
reached by the execution of any interaction of γ. In other words, LΨ is a set of locations
of atomic components such that for any location l ∈ LΨ, at least one of its successors
by the execution of interactions in γ must belong to LΨ. For a system S = 〈γ(B), Init〉,
Ψ =

∨
l∈LΨ

is an invariant of S if it is an invariant of γ(B) and it is initially true, that is
LΨ has at least an initial location of an atomic component in B. Interaction invariants are
computed by solving Boolean Behavioral Constraints which characterize a set of successors
of every location of atomic components or by Fixed-point computation.

Example 13 Consider the component γ(B1, B2) in Figure 2.5(a) where γ = a1a2 + b1b2,
a set of locations {l1, l4} corresponds to an interaction invariant l1∨ l4 because l4 is reached
from l1 by the interaction a1a2 and l1 is reached from l4 by the interaction b1b2.

There is a similarity between the notion of interaction invariants and the notion of traps
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in a type of Petri-net called 1-safe Petri-net, i.e. each place of an 1-safe Petri-net can not
have more than one token. An important property of trap is that if a trap initially has a
token, it will always have at least a token. The set of places in a Petri-net corresponds to
a set of locations in atomic components, initial tokens correspond to initial locations and a
place having a token means that its corresponding location is reached.

In this sub-section, we present methods for computing interaction invariants. We first
define Forward Interaction Set of a location according to a set of interactions which is used
in the methods.

We recall that we use •τ (respectively τ•) to denote the source and destination locations
of τ . Similarly, for a port p we have •p = {•τ | τ = (l, p, l′)} and p• = {τ• | τ = (l, p, l′)},
for an interaction a we have •a = {•p | p ∈ a} and a• = {p• | p ∈ a}.

Definition 16 (Forward Interaction Sets) Given a component γ(B1, . . . , Bn) where
Bi = (Li, Pi, Ti) are transition systems, we define for every location l ∈

⋃n
i=1 Li its forward

interaction set as follows:

−→
lγ =

{
{τi}i∈I | ∀i.[(τi ∈ Ti) ∧ (∃i.•τi = l) ∧ ({port(τi)}i∈I ∈ γ)]}

pi . . .

τ1 τi τm

. . . pm

l′ml′i

p1

l1 li lm

l′1

{p1 . . . pi . . . pm} ∈ γ

{τ1 . . . τi . . . τm} ∈
−→
l
γ
1

Figure 2.6: Forward interaction sets.

That is,
−→
lγ consists of sets of transitions involved in some interaction of γ in which

a transition τi issued from l can participate. A transition is involved in an interaction if
the port labeling the transition participates in the interaction. For example, in Figure 2.6,

the set {τ1 . . . τi . . . τm} belongs to the Forward Interaction Sets
−→
lγ1 (and also belongs to

−→
lγ2 , . . .

−→
lγi , . . .

−→
lγm).

Method based on Positive Mapping

We propose a method for computing interaction invariants from Boolean Behavioral Con-
straints (BBCs). We first give definition of BBCs and show that every solution of BBCs
corresponds to an invariant. Then we provide a method for obtaining all the interaction
invariants from BBCs by using an operation called Positive Mapping.
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Boolean Behavioral Constraint (BBC) of a location l of an atomic component can be
considered as a constraint enforced by a set of interactions γ from that location to a global
location. It describes a set of successors of l according to γ, i.e. a set of locations of atomic
components which are reached from l by involved interactions in γ. The Boolean Behavioral
Constraints (BBCs) of a system is the conjunction of the BBC of all its locations.

We use Bool[L] to denote the free algebra generated by the set of locations L. We
provide the formal definition of Boolean Behavioral Constraints (BBCs) for a connector γ
on a set of components as follows:

Definition 17 (Boolean Behavioral Constraints (BBCs)) Let γ be a connector over
a tuple of components B = (B1, . . . , Bn) where Bi = (Li, Pi, Ti) are transition systems. The
Boolean Behavioral Constrains for component γ(B) with a set of locations L =

⋃n
i=1 Li, are

defined by a function |.| : γ(B) → Bool(L) such that:

|γ(B)| =
∧

l∈L


l ⇒

∧

{τi}i∈I ∈
−→
lγ




∨

l′ ∈ {τ•
i }i∈I

l′







If γ = ∅, then |γ(B)| = true, which means that no interactions between the components
of B will be considered. |γ(B)| can be written as the disjunction of monomials, i.e. |γ(B)| =∨

i∈I mi, which we call BBC-solutions.

Example 14 In Figure 2.6, consider the interaction a = p1 . . . pi . . . pm ∈ γ between tran-
sitions li

pi−→ l′i for i = 1, . . . ,m, the corresponding BBCs is

|a(B)| =

m∧

i=1

(li ⇒
m∨

j=1

l′j)

In Figure 2.5(a) the BBCs for the the set of interactions γ = a1a2 + b1b2 is |γ(B)| = (l1 ⇒
l2 ∨ l4) ∧ (l3 ⇒ l2 ∨ l4) ∧ (l2 ⇒ l1 ∨ l3) ∧ (l4 ⇒ l1 ∨ l3).

The following theorem provides means for computing interaction invariants from BBCs.

Theorem 1 Let B = (B1, · · · , Bn) be a set of components with Bi = (Li, Pi, Ti) and
L =

⋃n
i=1 Li, γ be a connector over B, and v : L → {true, false} be a boolean valuation

different from false. If v is a solution of |γ(B)|, i.e. |γ(B)|(v) = true, then
∨

v(l)=true l is
an invariant of γ(B).

Proof According to Definition 17, the constraints are the conjunction of all the implications
for interactions of γ. Consider a valuation v such that |γ(B)|(v) = true. In order to prove
that

∨
v(l)=true l is an invariant, assume that for some global state l = (l1, · · · , ln), there

exists li such that v(li) = true. If from li there is an interaction a such that li ∈
•a, then

there exists l′j ∈ a•, such that v(l′j) = true by Definition 17. So any successor state of l by
an interaction a satisfies the invariant.

Verimag - May 2010 47 Nguỹên Thanh-Hùng
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That is, the disjunction of positive valuations in any solution of BBCs is an interaction
invariant of γ(B). Concretely, if v =

∧
i∈I li ∧

∧
j∈K l̄j is a solution of BBCs, then the

disjunction of the positive valuations
∨

i∈I li is an interaction invariant of γ(B).
A naive way to compute interaction invariants is to get all the solutions of BBCs,

but here there is a risk of explosion if the number of solutions is huge. We therefore
provide below a method for computing symbolically interaction invariants based on an
operation called Positive Mapping which allows removing all the negative valuations of a
set of variables in a boolean formula expressed as the disjunction of monomials.

Definition 18 (Positive Mapping) Given two sets of variables X,Y such that X ⊆ Y ,
and a boolean formula f on Y expressed as the disjunction of monomials. We define an
operation, called Positive Mapping, that deletes all the negative variables that do not belong
to X, denoted by fp(X), as follows:

(
∧

li∈Y li ∧
∧

lj∈X l̄j
∧

lk∈Y −X l̄k)
p(X) =

∧
li∈Y li ∧

∧
lj∈X l̄j ,

(f1 ∨ f2)
p(X) = f

p(X)
1 ∨ f

p(X)
2

Here we use l̄ for ¬l. When X is empty, the positive mapping will remove all the negative
variables in f , which is denoted by fp. If all the variables are negative in f , we have
fp = false.

Example 15 Given a boolean function f = (x∧y∧ z̄)∨(x∧ ȳ∧z) and a subset of variables
X = {x, y}, we have Positive Mapping fp(X) = (x∧y)∨(x∧ ȳ∧z) and fp = (x∧y)∨(x∧z).

The global interaction invariant is obtained by conjunction of all interaction invariants. The
following theorem allows computing symbolically the global interaction invariant of γ(B)
from its Boolean Behavioral Constraints |γ(B)|. But first let us define the dual operation
which is used in the computation of interaction invariants.

Definition 19 (Dual Operation) Given a boolean formula f(X) on a set of variables

X = {x1, . . . , xn}. We define the dual operation on f(X), denoted by f̃(X), as follows:

f̃(X) = f(X̄) where f(X̄) is a boolean formula obtained from f(X) by replacing, for each
variable xi ∈ X, its positive form xi (respectively its negative form x̄i) by its negative form
x̄i (respectively its positive form xi).

Example 16 For the boolean formula f = (x ∧ ȳ) ∨ (y ∧ z̄) ∨ (x ∧ z), we have its dual
f̃ = (x ∨ ȳ) ∧ (y ∨ z̄) ∧ (x ∨ z).

Theorem 2 For any connector γ applied to a tuple of components B = (B1, · · · , Bn), the
global interaction invariant of γ(B) can be obtained as the dual of the positive mapping of

|γ(B)|, denoted by ˜|γ(B)|p.

Proof (Sketch). |γ(B)| can be written as the disjunction of monomials, that is |γ(B)| =∨
i∈I mi, where mi is of the form mi =

∧
j∈I lij ∧

∧
k∈K lik . We have |γ(B)|p =

∨
i∈I mp

i =
∨

i∈I(
∧

j∈I lij ), hence ˜|γ(B)|p =
∧

i∈I(
∨

j∈I lij ) is the global interaction invariant of γ(B)
according to Theorem 1.
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Here we obtain by ˜|γ(B)|p all the possible interaction invariants of γ(B). For a system
S = 〈γ(B), Init〉 where Init is the initial state (the set of initial locations of components
in B), the interaction invariants of S are obtained from interaction invariants of γ(B) by
selecting all the invariants that have at least an initial location. The global interaction

invariants of S can be obtained as ˜(|γ(B)| ∧
∨

l∈Init l)p.

Example 17 We use the example in Figure 2.5 to illustrate the computation of invariants,
where B = (B1, B2) and γ = a1a2 + b1b2. The BBCs for γ(B), according to Example 14 is:

|γ(B)| = (l1 ⇒ l2 ∨ l4) ∧ (l2 ⇒ l1 ∨ l3) ∧ (l3 ⇒ l2 ∨ l4) ∧ (l4 ⇒ l1 ∨ l3)
= (l̄1 ∧ l̄2 ∧ l̄3 ∧ l̄4) ∨ (l1 ∧ l2) ∨ (l2 ∧ l3) ∨ (l1 ∧ l4) ∨ (l3 ∧ l4)

By applying the Positive Mapping operation, we have:

|γ(B)|p = (l1 ∧ l2) ∨ (l2 ∧ l3) ∨ (l1 ∧ l4) ∨ (l3 ∧ l4)

Thus the global interaction invariant is:

˜|γ(B)|p = (l1 ∨ l2) ∧ (l3 ∨ l4) ∧ (l1 ∨ l4) ∧ (l2 ∨ l3)

From the global interaction invariant obtained in Example 17, if we take into account the

initial state Init = {l1, l3}, we have the same global interaction invariant Ψ = ˜|γ(B)|p

for the system S = 〈γ(B), Init〉 (because all the interaction invariants of γ(B) have at
least an initial location). The global reachable states of S are approximated by the global
interaction invariant Ψ = (l1 ∨ l2) ∧ (l3 ∨ l4) ∧ (l1 ∨ l4) ∧ (l2 ∨ l3) = (l1 ∧ l3) ∨ (l2 ∧ l4). In
this case, the obtained global interaction invariant represents exactly the set of reachable
states.

Method based on Fixed-point Computation

Fixed-point-based methods are widely used in Model-Checking for computing reachable
states. Starting from the global initial states, the global successor states are iteratively
computed until no more new global state is generated, i.e, we have reached fixed-points in
computing reachable states.

The interaction invariants can be iteratively computed by using fixed-point computation
technique. In our fixed-point method, we start from a control location of an atomic com-
ponent, and then iteratively compute a set of successors of that location by global image
vector obtained from the set of interactions. The iteration stops when no more successor
is generated, that is we have reached fixed-points. A fixed-point corresponds to a set of
locations such that if a location of the set is reached, then at any time, at least one location
of the set is reached.

The main difference of our method from the fixed-point method used in Model-Checking
is that we do not compute iteratively the global successors of a global state which can be
exponential in the size of system. Our fixed-point method computes iteratively successors
of every location of atomic components, therefore it does not suffer from the state space
explosion problem.
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l4

l1

b1

l2

a1 b1

a1 a2

a2 b2

b2 B2B1

l3

Figure 2.7: An example of two components strongly synchronized

Definition 20 (Image Vector) Let γ be a connector over a set of components B =
(B1, . . . , Bn) where Bi = (Li, Pi, Ti). The image vector for a set of locations L =

⋃n
i=1 Li

according to γ is defined as follows:

Vγ = {Vγ(l) = l ∧ fγ
l (L) | l ∈ L} where fγ

l (L) =
∧

{τi}i∈I∈
−→
lγ


 ∨

l′∈{τ•
i }i∈I

l′




The image Vγ(l) of a location l according to a connector γ defines the set of locations
(including l) that can be reached from l by involved interactions in γ.

The formula fγ
l (L) is actually the right side of the implication in the BBC of the location

l according to definition 17. Let l ⇒ fγ
l (L) be an implication for a location l ∈ L, we have

l = l ∧ fγ
l (L).

Example 18 For the example illustrated in Figure 2.7 with γ = a1a2 + b1b2, the Boolean
Behavioral Constraints of locations l1, l2, l3, l4 are respectively:

l1 ⇒ l2 ∨ l4 l2 ⇒ l1 ∨ l3 l3 ⇒ l2 ∨ l4 l4 ⇒ l1 ∨ l3

The corresponding image vector is Vγ = {Vγ(l1), Vγ(l2), Vγ(l3), Vγ(l4)} where:

Vγ(l1) = l1 ∧ (l2 ∨ l4) Vγ(l3) = l3 ∧ (l2 ∨ l4)
Vγ(l2) = l2 ∧ (l1 ∨ l3) Vγ(l4) = l4 ∧ (l1 ∨ l3)

Definition 21 (Image Function) Let V be an image vector on a set of variables L, φ
be a predicate on L in the disjunctive form of monomials φ =

∨
i ϕi, the image function of

φ with the image vector V is defined by:

Image(V, φ) =
∨

i

(
∧

l∈Lϕi

V(l))

where Lϕi
is the set of variables in ϕi.
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That is, the Image function replaces every variable l of each monomial ϕi by the corre-
sponding image V(l).

Definition 22 (Fixed-points) Let V be an image vector on a set of variables L, φ be
a predicate on L, we define an iteration process that allows computing fixed-points starting
from φ according to the image vector V as follows:

φ0 = φ

φk+1 = Image(V, φk)

When φk+1 = φk, the iteration terminates and φk is the fixed-points of the computation,
denoted by F(V, φ).

Example 19 For the example presented in Figure 2.7 with the image vector obtained in
Example 18, and for a predicate φ = l1, the iterations are as follows:

φ0 = φ = l1
φ1 = Image(Vγ , φ0) = (l1 ∧ l2) ∨ (l1 ∧ l4)
φ2 = Image(Vγ , φ1) = (l1 ∧ l2) ∨ (l1 ∧ l4)

The iteration stops because φ2 = φ1 and we obtain the fixed-points F(Vγ , l1) = (l1 ∧ l2) ∨
(l1 ∧ l4). Similarly, from locations l2, l3, l4 we obtain respectively the following fixed-points:

F(Vγ , l2) = (l1 ∧ l2) ∨ (l2 ∧ l3)
F(Vγ , l3) = (l2 ∧ l3) ∨ (l3 ∧ l4)
F(Vγ , l4) = (l1 ∧ l4) ∨ (l3 ∧ l4)

The following theorem provides means for computing interaction invariants from fixed-
points.

Theorem 3 Let B = (B1, . . . , Bn) be a set of components with Bi = (Li, Pi, Ti) and
L =

⋃n
i=1 Li, γ be a connector over B with the image vector Vγ. For any location li ∈ L,

if m =
∧

lj is a solution (a fixed-point) of F(Vγ , li), then the dual of m, that is m̃ =
∨

lj,
is an invariant of γ(B).

Proof Let Lm be the set of location variables in the solution m. We assume that for
some global state l = (l1, . . . , ln), these exists lk such that lk ∈ Lm. If from lk there is an
interaction a such that lk ∈ •a, then there exists l′k ∈ a•, such that l′k ∈ Lm by Definition
20, 21 and 22. So any successor state of l by an interaction a satisfies m̃ =

∨
lj∈Lm

lj .

Example 20 According to the fixed-points obtained in Example 19, we have the following
interaction invariants:

Ψl1 = (l1 ∨ l2) ∧ (l1 ∨ l4) Ψl2 = (l1 ∨ l2) ∧ (l2 ∨ l3)
Ψl3 = (l2 ∨ l3) ∧ (l3 ∨ l4) Ψl4 = (l1 ∨ l4) ∧ (l3 ∨ l4)

Verimag - May 2010 51 Nguỹên Thanh-Hùng
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The global interaction invariant is obtained by conjunction of all interaction invariants.
The following theorem allows computing symbolically the global interaction invariant of
γ(B) by fixed-points starting from the disjunction of locations of atomic components in B.

Theorem 4 Let B = (B1, . . . , Bn) be a set of components with Bi = (Li, Pi, Ti) and
L =

⋃n
i=1 Li, γ be a connector over B with the image vector Vγ, the global interaction

invariant of γ(B) can be obtained as the dual of fixed-points F(Vγ ,
∨

l∈L l), denoted by

F̃(Vγ ,
∨

l∈L l).

Proof We have F(Vγ ,
∨

l∈L l) =
∨

l∈L F(Vγ , l), hence F̃(Vγ ,
∨

l∈L l) =
∧

l∈L F̃(Vγ , l) is the
global interaction invariant according to Theorem 3.

Example 21 For the example presented in Figure 2.7 with the image vector obtained in
Example 18, and for a predicate φ = l1 ∨ l2 ∨ l3 ∨ l4, the iterations are as follows:

φ0 = φ = l1 ∨ l2 ∨ l3 ∨ l4
φ1 = Image(Vγ , φ0) = (l1 ∧ l2) ∨ (l1 ∧ l4) ∨ (l2 ∧ l3) ∨ (l3 ∧ l4)
φ2 = Image(Vγ , φ1) = (l1 ∧ l2) ∨ (l1 ∧ l4) ∨ (l2 ∧ l3) ∨ (l3 ∧ l4)

The iteration stops because φ2 = φ1 and we obtain the fixed-points F(Vγ , l1) = φ1 from
which we obtain the global interaction invariant:

Ψ = F̃(Vγ , l1 ∨ l2 ∨ l3 ∨ l4) = (l1 ∨ l2) ∧ (l1 ∨ l4) ∧ (l2 ∨ l3) ∧ (l3 ∨ l4)

We call F(Vγ ,
∨

l∈L l) fixed-points of γ(B). For a system S = 〈γ(B), Init〉 where γ is
a connector on a set of components B and Init is the initial state, since every interaction
invariant must contain at least an initial location of a component in B, we start the iter-
ation for fixed-point computation from the initial locations of atomic components. That
is the global interaction invariant of S is obtained as F̃(Vγ ,

∨
l∈Init l). This guarantees the

existence of the initial locations in all the obtained invariants.

2.2 Abstraction

Abstraction techniques have been widely developed and used in verification in order to
alleviate the state space explosion problem, specially for the verification of infinite systems.
For finite systems, abstraction is also necessary and important to the success of the veri-
fication. The goal of abstraction is to build, for each concrete system, an abstract system
which preserves properties to verify and is less expensive to analyze or to check by existing
verification tools such as Model-Checkers.

We have provided two methods for computing interaction invariants of systems without
data. For systems with data, an abstraction technique is needed to abstract away the data
before applying the methods. The process for computing interaction invariants of systems
with data is presented in figure 2.8. It consists of three steps:

• First we need to make an abstraction of the system:
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System with data System without data

S Sa

Concretization

Abstraction

B1 Bn. . . . . .

Φ1 Φn

Ψ

Bα
1 Bα

n

Ψα

γ, Init γα, Initα

Figure 2.8: Interaction invariants computation for systems with data

– for each atomic component Bi with data of the system S, an abstraction is made
to obtain a corresponding abstract atomic component Bα

i without data.

– abstract connector γα is obtained from γ by generating for each interaction in γ
a corresponding abstract interaction.

– abstract initial condition Initα is made from Init.

• Then the methods for computing interaction invariants of systems without data is
applied for the abstract systems Sα. We obtain a set of abstract interaction invariants
Ψα of Sα.

• Finally, interaction invariants Ψ of the concrete system S are obtained by concretizing
the set of the abstract interaction invariants Ψα.

The abstraction technique we use is based on the method proposed by Bensalem et
al. in [BLO98a]. The basic idea of the method is to use a splitting algorithm to refine
an abstract structure in order to preserve properties in the abstract-concrete direction,
that is any property satisfied by abstract system will be satisfied by the concrete system.
The advantage of this method is that it produces an abstract system which has the same
structure as the concrete one. This allows for further application of abstraction and gives a
clear correspondence between abstract and concrete transitions which is useful for debugging
the concrete system. This method has been implemented in the InVeSt tool [BLO98b].

Given a concrete system S, the abstraction method allows to compute an abstract sys-
tem Sα that S simulates Sα, that is every computation of S can be mapped to a computa-
tion of Sα. Consider a system S = 〈γ(B1, . . . , Bn), Init〉 and a set of component invariants
Φ1 . . .Φn associated with the atomic components. We show below, for each component Bi

and its associated invariant Φi, how to define a finite state abstraction αi and to compute
an abstract transition system Bαi

i .

Definition 23 (Abstraction Function) Let Φ be an invariant of a system 〈B, Init〉
written in disjunctive form Φ =

∨
l∈L l ∧ (

∨
m∈Ml

ϕlm) such that atomic predicates of the
form l ∧ ϕlm are disjoint. Given Φ, an abstraction function α is an injective function
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associating with each atomic predicate l∧ϕlm a symbol φ = α(l∧ϕlm) called abstract state.
We denote by Φα the set of the abstract states.

Example 22 Consider the component Controller in the Temperature Control System (Fig-
ure 2.2). The component invariant predicate at each location can be written in the disjunc-
tive form according to the post predicate transformers of its incoming transitions as follows:

• Φl5 = l5 ∧ (θ = 100 ∨ 101 ≤ θ ≤ 1000)

• Φl6 = l6 ∧ (θ = 1000 ∨ 100 ≤ θ ≤ 998)

Therefore, we have four abstract states:

Φ51 = l5 ∧ θ = 100 Φ61 = l6 ∧ θ = 1000
Φ52 = l5 ∧ 101 ≤ θ ≤ 1000 Φ62 = l6 ∧ 100 ≤ θ ≤ 998

The abstraction function maps concrete states to abstract states taken from a finite set,
hence we obtain a finite state system which can be analyzed algorithmically. This allows
us to compute an over approximation of the set of reachable states which is sufficient for
the verification of invariants. Using the abstraction function, an abstract system is defined
as follows:

Definition 24 (Abstract System) Given a system S = 〈B, Init〉, an invariant Φ and
an associated abstraction function α, we define the abstract system Sα = 〈Bα, Initα〉 where

• Bα = (Φα, P, ) is a transition system with  such that for any pair of abstract

states φ = α(l ∧ ϕ) and φ′ = α(l′ ∧ ϕ′) we have φ
p
 φ′ iff ∃τ = (l, p, l′) ∈ T and

postτ (ϕ) ∧ ϕ′ 6= false (or equivalently ϕ ∧ preτ (ϕ
′) 6= false),

• Initα =
∨

φ∈Φα
0

φ where Φα
0 = {φ ∈ Φα | α−1(φ) ∧ Init 6= false} is the set of the

initial abstract states.

The method proceeds by elimination, starting from the universal relation on abstract
states. We eliminate pairs of abstract states in a conservative way. To check whether φ

p
 φ′,

where φ = α(l ∧ ϕ) and φ′ = α(l′ ∧ ϕ′), can be eliminated, we check that for all concrete
transitions τ = (l, p, l′) we have postτ (ϕ)∧ϕ′ = false or equivalently ϕ∧preτ (ϕ

′) = false.

Example 23 The table below provides the abstract states constructed from the component
invariants Φ1,Φ2,Φ3 of respectively Rod1, Rod2, Controller given in example 10.

φ11 = l1 ∧ t1 = 0 φ51 = l5 ∧ θ = 100 φ31 = l3 ∧ t2 = 0
φ12 = l1 ∧ t1 ≥ 1 φ52 = l5 ∧ 101 ≤ θ ≤ 1000 φ32 = l3 ∧ t2 ≥ 1
φ21 = l2 ∧ t1 ≥ 3600 φ61 = l6 ∧ θ = 1000 φ41 = l4 ∧ t2 ≥ 3600

φ62 = l6 ∧ 100 ≤ θ ≤ 998

Figure 2.9 presents the computed abstraction of the Temperature Control System with respect
to the considered invariants.

We take several transitions of Controller component to illustrate the construction of the
abstract transitions, for example:
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Figure 2.9: Abstraction of the Temperature Control System

• transition τα = (φ52, cool, φ61) is established because there exists a concrete transition
τ = (l5, cool, l6) and postτ (ϕ52) ∧ ϕ61 6= false where postτ (ϕ52) = (θ = 1000) and
ϕ61 = (θ = 1000).

• transition τα = (φ52, cool, φ62) is eliminated since postτ (ϕ52) ∧ ϕ62 = false where
postτ (ϕ52) = (θ = 1000) and ϕ62 = (100 ≤ θ ≤ 998).

Consider the concrete initial condition Init = l5 ∧ (θ = 100) ∧ l1 ∧ (t1 = 3600) ∧ l3 ∧ (t2 =
3600), we have the abstract initial condition Initα = φ51 ∧ φ12 ∧ φ32.

By combining well-known results about abstractions, we can compute interaction in-
variants of 〈γ(B1, ..., Bn), Init〉 from interaction invariants of 〈γ(Bα

1 , . . . , Bα
n ), Initα〉.

The following proposition says that γ(Bα1
1 , . . . , Bαn

n ) is an abstraction of B = γ(B1, ..., Bn)

Proposition 6 If Bαi

i is an abstraction of Bi with respect to an invariant Φi and its
abstraction function αi for i = 1, ..., n , then Bα = γ(Bα1

1 , . . . , Bαn
n ) is an abstraction of

B = γ(B1, ..., Bn) with respect to
∧n

i=1 Φi and an abstraction function α obtained as the
composition of the αi.

The following proposition says that invariants of the abstract system are also invariants of
the concrete system.

Proposition 7 If Bα is an abstraction of B with respect to Φ and its abstraction function
α, then Bα simulates B. Moreover, if Φα is an invariant of 〈Bα, Initα〉 then α−1(Φα) is
an invariant of 〈B, Init〉.

Proof We show that the relation (l,x)Rφ is a simulation if α−1(φ) = l ∧ ϕ and ϕ(x) for

the valuation x. If (l,x)
p
→ (l′,x′) is a transition of B and (l,x)Rφ for some abstract state

φ, then we show that there exists φ′ = α(l′ ∧ ϕ′) such that φ
p
 φ′. As Φ is an invariant of

B, if (l′,x′) is reachable then ∃ϕ′ l′∧ϕ′ ⇒ Φ such that ϕ′(x′) and φ′ = α(l′∧ϕ′). Moreover,

as ϕ(x) ∧ ϕ′(x′), we have ϕ(x) ∧ preτ (ϕ)(x) 6= false for τ = (l, p, l′) and therefore φ
p
 φ′.
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Thus, it is possible to compute from interaction invariants of the abstract system, interaction
invariants for the concrete system 〈γ(B1, ..., Bn), Init〉.

We can show by application of the following proposition that the iteration process gives
progressively stronger invariants, in particular that for stronger component invariants we
get stronger interaction invariants.

Proposition 8 Let 〈B, Init〉 be a system and Φ, Φ′ two non empty invariants such that
Φ ⇒ Φ′. If α and α′ are the abstraction functions corresponding to Φ and Φ′ respectively,
then Bα simulates Bα′

.

Proof For two successive component invariants Φi and Φ′
i for Bi, we have Φi ⇒ Φ′

i.

From proposition 8 we deduce that Bαi

i simulates B
α′

i

i where αi and α′
i are the abstraction

functions corresponding to Φi and Φ′
i. As the simulation relation is preserved by parallel

composition, we have γ(Bα1
1 , ..., Bαn

n ) simulates γ(B
α′

1
1 , ..., B

α′
n

n ). We can show that for each

positive valuation set L′ of a solution of γ(B
α′

1
1 , ..., B

α′
n

n ) there exists a positive valuation
set L of a solution of γ(Bα1

1 , ..., Bαn
n ) such that L ⊆ L′. From this we infer that for

each interaction invariant of γ(B′
1, ..., B

′
n) there exists a stronger interaction invariant of

γ(B1, ..., Bn).

Below we provide an example on the Temperature Control System for showing the compu-
tation of abstract interaction invariants and then the concretization to obtain interaction
invariants of the concrete system.

Example 24 For the abstraction of the Temperature Control System given in figure 2.9,
we have the following Boolean Behavioral Constraints:

φ11 ⇒ (φ12 ∨ φ32 ∨ φ52)
∧ (φ12 ∨ φ32 ∨ φ62)
∧ (φ12 ∨ φ41 ∨ φ52)
∧ (φ12 ∨ φ41 ∨ φ62)

φ12 ⇒ (φ61 ∨ φ21)
φ21 ⇒ (φ51 ∨ φ11)
φ31 ⇒ (φ12 ∨ φ32 ∨ φ52)

∧ (φ12 ∨ φ32 ∨ φ62)
∧ (φ21 ∨ φ32 ∨ φ52)

∧ (φ21 ∨ φ32 ∨ φ62)
φ32 ⇒ (φ61 ∨ φ41)
φ41 ⇒ (φ51 ∨ φ31)
φ51 ⇒ (φ12 ∨ φ32 ∨ φ52)

∧ (φ21 ∨ φ41 ∨ φ52)
∧ (φ21 ∨ φ32 ∨ φ52)
∧ (φ12 ∨ φ41 ∨ φ52)

φ52 ⇒ (φ61 ∨ φ21)
∧ (φ61 ∨ φ41)

φ61 ⇒ (φ12 ∨ φ32 ∨ φ62)
∧ (φ21 ∨ φ41 ∨ φ62)
∧ (φ21 ∨ φ32 ∨ φ62)
∧ (φ12 ∨ φ41 ∨ φ62)

φ62 ⇒ (φ51 ∨ φ11)
∧ (φ51 ∨ φ31)

According to theorem 2, by applying the positive mapping and the dual operation, we
obtain the following global abstract interaction invariant of the abstract system:

Ψa = (φ11 ∨ φ31 ∨ φ32 ∨ φ52 ∨ φ61 ∨ φ62) ∧ (φ21 ∨ φ41 ∨ φ51 ∨ φ52)
∧ (φ11 ∨ φ12 ∨ φ31 ∨ φ52 ∨ φ61 ∨ φ62) ∧ (φ12 ∨ φ21 ∨ φ51)
∧ (φ11 ∨ φ12 ∨ φ31 ∨ φ32 ∨ φ61 ∨ φ62) ∧ (φ32 ∨ φ41 ∨ φ51)

The concretization of the global abstract interaction invariant provides the global interaction
invariant of the concrete system:
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Ψ = ((l2 ∧ t1 ≥ 3600) ∨ (l4 ∧ t2 ≥ 3600) ∨ (l5 ∧ 100 ≤ θ ≤ 1000))∧
((l1 ∧ t1 ≥ 0) ∨ (l2 ∧ t1 ≥ 3600) ∨ (l3 ∧ t2 ≥ 0)∨ (l4 ∧ t2 ≥ 3600))∧
((l3 ∧ t2 ≥ 1) ∨ (l4) ∨ (l5 ∧ θ = 100))∧
((l1 ∧ t1 ≥ 0) ∨ (l3 ∧ t2 ≥ 0) ∨ (l6 ∧ θ = 1000) ∨ (l6 ∨ 100 ≤ θ ≤ 998))∧
((l1 ∧ t1 ≥ 1) ∨ (l2) ∨ (l5 ∧ θ = 100))

2.3 Checking Safety Properties

We have presented the methods for computing component invariants and interaction invari-
ants. We have also presented an abstraction technique to compute interaction invariants of
systems with data. In this section, we will show the procedure for the verification of safety
properties by using these invariants.

We give a sketch of a semi-algorithm in Algorithm 1 allowing to prove invariance of a
safety property Φ by iterative application of the verification rule (2.3). The semi-algorithm
takes a system 〈γ(B1, . . . , Bn), Init〉 and a predicate Φ. It iteratively computes invariants
of the form X = Ψ ∧ (

∧n
i=1 Φi) where Ψ is an interaction invariant and Φi an invariant of

component Bi. It consists of the following steps:

function verify(S = 〈γ(B1, . . . , Bn), Init〉, Φ)1

begin2

for each component Bi do3

Φi = true;4

end5

while true do6

for each component Bi do7

compute component invariants Φ′
i;8

Φi = Φi ∧ Φ′
i;9

compute abstraction Ba
i = α(Bi,Φi);10

end11

compute abstract system 〈γ(Ba
1 , . . . , B

a
n), Inita〉;12

compute interaction invariants Ψa of 〈γ(Ba
1 , . . . , B

a
n), Inita〉;13

concretize abstract invariants Ψ = α−1(Ψa);14

X = Ψ ∧ (
Vn

i=1 Φi);15

if ¬Φ ∧ X is unsatisfiable then16

return Φ is an invariant;17

end18

else if receive stop or timeout then19

return inconclusive;20

end21

end22

end23

Algorithm 1: Checking Invariance-Property Φ

• Step 0: every component invariant Φi is initially true (line 4).

• Step 1: for each component Bi, a stronger invariant Φ′
i is computed (line 8) and Φi

is updated by conjoining with Φ′
i (line 9).
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• Step 2: Φi is then used, together with Bi, to compute an abstraction of Bi by the
abstract function α (line 10).

• Step 3: the abstract system 〈γ(Ba
1 , . . . , Ba

n), Initα〉 is computed from the set of ab-
stract components, the set of interactions γ and the initial condition Init (line 12).

• Step 4: interaction invariants are computed from the abstract system (line 13) and
their concretization provides concrete interaction invariants of the concrete system
(line 14).

• Step 5: the global invariant X = Ψ ∧ (
∧n

i=1 Φi) is used to verify the invariance of Φ
by checking whether ¬Φ ∧ X is unsatisfiable. If it is, the verification terminates and
results the invariance of Φ (line 17). If X is not strong enough for proving that Φ is
an invariant then either a new iteration with stronger Φi is started by returning to
Step 1 or we can stop. In this case, we cannot conclude about invariance of Φ and
inconclusive result is returned (line 20).

2.4 Application for Checking Deadlock-Freedom

We present an application of the method for checking deadlock-freedom. To guarantee that
global deadlocks are exclusively due to synchronizations, we use the local deadlock-freedom
property of atomic components, that is if an atomic component reaches a state, it is always
able to go out by at least one of the out-going transitions from that state. This property
is checked for all the atomic components of the system to be verified before checking the
global deadlock-freedom property of the system.

According to Definition 13, the predicate DIS characterizes a set of deadlock states, i.e
a set of states from which no interaction can take place. A system is deadlock-free if the
predicate ¬DIS is an invariant because in that case, all the reachable states of the system
satisfy ¬DIS which means that no state in DIS is reachable.

To check that ¬DIS is an invariant, we need a stronger invariant Φ such that Φ ⇒ ¬DIS
or equivalently Φ∧DIS = false. We apply the algorithm 1 and here the invariance property
Φ to be proved is ¬DIS.

Example 25 This example illustrates the verification of deadlock-freedom of the Temper-
ature Control System. The DIS predicate of the system is as follows (Example 7):
DIS = (¬(l5 ∧ θ < 1000))

∧
(¬(l6 ∧ θ = 100) ∨ ¬l2)∧

(¬(l6 ∧ θ > 100))
∧

(¬(l5 ∧ θ = 1000) ∨ ¬(l3 ∧ t2 ≥ 3600))∧
(¬(l5 ∧ θ = 1000) ∨ ¬(l1 ∧ t1 ≥ 3600))

∧
(¬(l6 ∧ θ = 100) ∨ ¬l4)

Φ = Φ1∧Φ2∧

Φ3 is the conjunction of the component invariants given in example 10. The predicate
Φ ∧ DIS is satisfiable and it is the disjunction of the following terms:

1. (l1 ∧ 0 ≤ t1 < 3600) ∧ (l3 ∧ 0 ≤ t2 < 3600) ∧ (l6 ∧ θ = 100)

2. (l1 ∧ 0 ≤ t1 < 3600) ∧ (l4 ∧ t2 ≥ 3600) ∧ (l5 ∧ θ = 1000)

3. (l1 ∧ 0 ≤ t1 < 3600) ∧ (l3 ∧ 0 ≤ t2 < 3600) ∧ (l5 ∧ θ = 1000)
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4. (l2 ∧ t1 ≥ 3600) ∧ (l3 ∧ 0 ≤ t2 < 3600) ∧ (l5 ∧ θ = 1000)

5. (l2 ∧ t1 ≥ 3600) ∧ (l4 ∧ t2 ≥ 3600) ∧ (l5 ∧ θ = 1000)

Each one of the above terms represents a family of possible deadlocks. To decrease
the number of potential deadlocks, we find a new invariant Φ′ stronger than Φ, such that
Φ′ = Φ ∧ Ψ, where Ψ is the global interaction invariant obtained in Example 24.

The predicate Φ′ ∧ DIS is reduced to:

6. (l1 ∧ 1 ≤ t1 < 3600) ∧ (l3 ∧ 1 ≤ t2 < 3600) ∧ (l5 ∧ θ = 1000)

7. (l1 ∧ 1 ≤ t1 < 3600) ∧ (l4 ∧ t2 ≥ 3600) ∧ (l5 ∧ θ = 1000)

8. (l2 ∧ t1 ≥ 3600) ∧ (l3 ∧ 1 ≤ t2 < 3600) ∧ (l5 ∧ θ = 1000)

Finally, it can be checked by using finite state reachability analysis on an abstraction of
the system without variables, that only the first term represents feasible deadlocks, the two
other being spurious. This term characterizes deadlock configurations leading to complete
shutdown.

2.5 Summary

We have introduced our compositional method for verifying safety properties of component-
based systems. The method is based on two kinds of invariants characterizing both local and
global constraints of systems: component invariants and interaction invariants. Component
invariants are over approximation of reachable states sets of components and are computed
by using forward propagation. Interaction invariants characterize global constraints related
to strong synchronizations between components. We have proposed two methods based
on Positive Mapping and Fixed-point for computing symbolically the set of interaction
invariants.

The methods for computing interaction invariants are applied for systems without data.
For systems with data, we need to abstract away data before applying the methods. The
concrete invariants are then obtained by concretizing abstract ones. An abstraction tech-
nique based on the component invariants is therefore introduced.

We have also presented an algorithm to verify safety properties by using component
invariants and interaction invariants.

Finally, we shown an application of the compositional verification method on checking
deadlock-freedom. We illustrated the method on an example, the Temperature Control
System. We proved that the system is not deadlock-free and provided potential deadlocks
of the system.

The innovation of our compositional verification method is that we use interaction invari-
ants to characterize contexts of individual components. By using component invariants and
interaction invariants, we have successfully combined constraints on both local and global
aspects of systems. Moreover, the techniques we use to analyze systems are lightweight,
hence it is possible to increase the size and the complexity of systems that can be handled.

The next chapter presents incremental construction and verification methods.
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Incremental Construction and Verification
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Compositional verification approach avoids the state space explosion problem and there-
fore allows increasing significantly the size and complexity of the systems that can be han-
dled. In the previous chapter, we presented our compositional verification method which is
based on the use of invariants. Though we use lightweight techniques for computing invari-
ants, the method may still suffer from the fast increasing size and complexity of systems.
The computation of invariants from scratch for a system having thousands of components
might be very expensive.

Moreover, nowadays the incremental construction deals with the complexity of the het-
erogeneous and large-scale systems in the construction phase. The idea is that composite
systems can be considered as the composition of smaller parts. The verification should
take advantage of the incremental construction process by integrating verification into con-
struction phase in order to detect as soon as possible errors in the model. The verification
should also be able to reuse the established properties of sub-systems in the verification of
the global system.

The motivation of the work in this chapter is to provide a systematic methodology
for the incremental construction and verification of component-based systems. We first
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Figure 3.1: Incremental Verification Idea

formalize the incremental construction of component-based construction, then we propose
rules on invariant preservation from which the already established invariants would not be
violated during the incremental construction.

However, when the incremental construction is beyond of the invariant preservation
rules, the verification process is still required to ensure the system correctness and the
generation of new invariants is needed. Therefore, we propose a method for the incremental
computation of invariants. It takes advantage of the system structure for coping with
complexity of monolithic verification. The incremental method allows reusing the computed
invariants from sub-systems which can be considered as the decomposed parts according
to concepts of the incremental construction. The reuse of established invariants reduces
significantly both time and memory usage in the verification of the system.

Figure 3.1 illustrates the idea of the method for the incremental computation of invari-
ants. First we consider the composite component B12 = γ12(B1, B2) which is built from two
constituents B1, B2 with its established invariants I1, I2. The incremental method allows
computing invariants of the composite component B12 from invariants of its constituents:
I12 = F (I1, I2). Similarly, if B12 is composed with another constituent B3 to build another
composite component B123, then the invariants of B123 are also computed from the estab-
lished invariants of B12 and B3: I123 = F (I12, I3). It means that invariants of a composite
components are always computed from the invariants of its constituents.

The chapter is organized as follows: first we give a formal definition of incremental
construction based on the operation of increment of a connector. At some stage of the con-
struction, a component can be transformed only by an increment operation which enforces
synchronization between interactions of its connectors. The construction is hierarchical:
increments can be applied ether at the same level or at different levels. We also provide
rules to preserve the invariants during the incremental construction. Since the invariant
preservation rules are not always satisfied by the systems, we present, in section 2, a method
for incremental computation of invariants of a composite component from invariants of its
constituent components. We finish the chapter by some conclusions.

In this chapter, the incremental verification method is considered for systems without
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data. For systems with data, we need to use the abstraction technique presented in the
previous chapter and then apply the method on abstract systems. We also recall that, to
simplify notation, for a connector γ = {a1, . . . , an}, we write γ = a1 + · · · + an.

3.1 Incremental Construction and Invariant Preservation

In component-based systems, the construction of composite component is hierarchical and
step-wise. We assume that a system is obtained from a set of atomic components represented
by their behavior by adding progressively interactions. It is important to ensure the system
correctness by verification during the construction in order to detect early errors. At some
stage of the construction we have a component γ(B) and a set of established invariants.
We want to preserve the already established invariants after adding new interactions -
an incremental modification of the behavior. In this section, we present the incremental
construction framework and the rules for that the established invariants are preserved.

3.1.1 Incremental Construction

In the incremental construction of component-based systems, layers of connectors are ap-
plied to build the system bottom-up. γ⊥(B) can be viewed as the initial composite com-
ponent obtained as the interleaving of individual components, where B = (B1, . . . , Bn). If
at some stage of the construction, we have obtained a component γ(B), the construction
process continues by enforcing new synchronizations on interactions of γ. We call these
interactions generated by enforcing new synchronizations increments. When building a
composite system in a bottom-up manner, it is essential that some already enforced syn-
chronizations are not relaxed when increments are added. To guarantee this property, we
propose the notion of forbidden interactions.

Definition 25 (Closure and Forbidden Interactions) Let γ be a connector.

• The closure γc of γ, is the set of the non-empty interactions contained in some inter-
action of γ. That is γc = {a 6= ∅ | ∃b ∈ γ. a ⊆ b}.

• The forbidden interactions γf of γ is the set of the interactions strictly contained in
all the interactions of γ. That is γf = γc − γ.

It is easy to see that for two connectors γ1 and γ2, we have (γ1 + γ2)
c = γc

1 + γc
2 and

(γ1 + γ2)
f = (γ1 + γ2)

c − γ1 − γ2.

Example 26 Consider a connector γ = p1p2 + p3 + p4, we have γc = p1 + p2 + p3 + p4

and γf = γc − γ = p1 + p2.

In our theory, a connector describes a set of interactions and, by default, also those
interactions in where only one component can make progress. This assumption allows us
to define new increments in terms of existing interactions.
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Figure 3.2: Incremental construction example

Definition 26 (Increments) Consider a connector γ over B and let δ ⊆ 2γ be a set
of interactions. We say δ is an increment over γ if for any interaction a ∈ δ we have
interactions b1, . . . , bn ∈ γ such that

⋃n
i=1 bi = a.

In practice, one has to make sure that existing interactions defined by γ will not break the
synchronizations that are enforced by the increment δ. For doing so, we remove from the
original connector γ all the interactions that are forbidden by δ. This is done with the
operation of Layering, which describes how an increment can be added to an existing set
of interactions without breaking synchronization enforced by the increment. Formally, we
have the following definition.

Definition 27 (Layering) Given a connector γ and an increment δ over γ, the new set
of interactions obtained by combining δ and γ, also called layering, is given by the following
set δγ = (γ − δf ) + δ the incremental construction by layering, that is, the incremental
modification of γ by δ.

The above definition describes one-layer incremental construction. By the successive appli-
cation of increments, we can construct the system with multiple layers.

Example 27 Consider the example presented in Figure 3.2, let γ = a0 + b0 + c0 + d0 +
a1 + b1 + c1 + d1 and δ1 = a0a1 + b0b1, we have δ1γ = a0a1 + b0b1 + c0 + d0 + c1 + d1.

Besides the fusion of interactions, incremental construction can also be obtained by first
combining the increments and then apply the result to the existing system. This process is
called Superposition. Formally, we have the following definition.

Definition 28 (Superposition) Given two increments δ1, δ2 over a connector γ, the op-
eration of superposition between δ1 and δ2 is defined by δ1 + δ2.

Superposition can be seen as a composition between increments, with looser coupled rela-
tion. If we combine the superposition of increments with the layering proposed in Definition
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27, then we obtain an incremental construction from a set of increments. Formally, we have
the following proposition.

Proposition 9 Let γ be a connector over B, the incremental construction by the super-
position of n increments {δi}1≤i≤n is given by

(
n∑

i=1

δi)γ = (γ − (
n∑

i=1

δi)
f ) +

n∑

i=1

δi (3.1)

The above proposition provides a way to transform incremental construction by a set
of increments into the separate constituents, where γ − (Σn

i=1δi)
f is the set of interactions

that are not tightened during the incremental construction process.

We conclude the subsection with the following example.

Example 28 In the example of Figure 3.2, let γ = a0+b0+c0+d0+a1+b1+c1+d1. Two
increments are δ1 = a0a1 + b0b1 and δ2 = c0c1 + d0d1. When we consider two increments
together, we have (δ1 + δ2)γ = a0a1 + b0b1 + c0c1 + d0d1.

Notice that (δ1 +δ2)γ 6= δ1γ +δ2γ. For example, δ1γ +δ2γ = a0a1 +b0b1 +c0c1 +d0d1 +
a0 + b0 + c0 + d0 + a1 + b1 + c1 + d1 in Example 28. The reason is that δ1γ + δ2γ means the
composition of two connectors.

3.1.2 Invariant Preservation in Incremental Construction

In Sub-section 3.1.1, we have presented a methodology for the incremental design of com-
posite systems. In this section, we study the concept of invariant preservation. More
precisely, we propose sufficient conditions that guarantee that already satisfied invariants
are not violated when new interactions are added to the design.

We start by introducing the looser synchronization preorder on connectors, which we
will use to characterize invariant preservation. As we have seen, interactions characterize
the behavior of a composite component. We observe that if two interactions do not contain
the same port, the execution of one interaction will not block the execution of the other
interaction. Formally, we have the following definition of conflict-free interactions.

Definition 29 (Conflict-free Interactions) Given a connector γ, let a1, a2 ∈ γ, if
a1 ∩ a2 = ∅, we say that there is no conflict between a1 and a2. If there is no conflict
between any interactions of γ, we say that γ is conflict-free.

The conflict-free connector ensures that the execution of one interaction will not disable
other interactions. For example, connector γ = p1p2 + p2p3 is not conflict-free. The
execution of p1p2 makes a transition labeled by p2 move to its target location from the
source location and p2p3 may not be enabled.

We now propose a preorder relation that allows to guarantee the absence of conflicts
when new interactions are added. Formally, we have the following definition.
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Definition 30 (Looser synchronization Pre-order) We define the looser synchroniza-

tion pre-order 4⊆ 22P
× 22P

. For two connectors γ1, γ2, γ1 4 γ2 if for any interaction
a ∈ γ2, there exist interactions b1, . . . , bn ∈ γ1, such that a =

⋃n
i=1 bi and there is no con-

flict between any bi and bj, where 1 ≤ i, j ≤ n and i 6= j. We simply say that γ1 is looser
than γ2.

The above definition requires that the stronger synchronization should be obtained by the
fusion of conflict-free interactions. The reason is that the execution of interactions may be
disturbed by two conflict interactions, i.e., the execution of one interaction could block the
transitions issued from the other interaction. However, if we fuse them together, it means
that the transitions of both interactions can be executed, which violates the constraints of
the previous behavior.

Example 29 For two connectors γ1 = {p1p2, p3p4, p5p6, p7p8} which is conflict-free and
γ2 = {p1p2p3p4, p5p6p7p8}, we have γ1 4 γ2.

It is easy to see that if γ1, γ2, γ3, γ4 are connectors such that γ1 4 γ2, and γ3 4 γ4,
then we have γ1 + γ3 4 γ2 + γ4.

Definition 31 (Reachable States) Given a connector γ over a component B, L is the

set of states of B, we define Reach(l, γ(B)) = {li |∃ai ∈ γ ∧ l
ai−→

∗
li} ∪ {l} the set of

reachable states from l ∈ L by any interaction of γ.

The above definition provides a notation to record the set of reachable states from a state
l through all possible interactions in γ(B). If there is no executable interaction from l, we
have that reach(l, γ(B)) = {l}.

Lemma 2 Given two connectors γ1, γ2 over B, if γ1 4 γ2, we have Reach(l, γ2(B)) ⊆
Reach(l, γ1(B)) for any l ∈ L,

Proof If there exists a path from l ∈ L in γ2(B), we have l
a1−→ l1

a2−→ · · ·
am−−→ lm,

where ai ∈ γ2. Because γ1 4 γ2, for any ai, we have a set of interactions bj ∈ γ1 such

that ai =
⋃k

j=1 bj . From any state li, there exists a set of interactions
⋃k

j=1 bj such that

li
b1−→ · · ·

bk−→ li+1. Therefore, we conclude that Reach(l, γ2(B)) ⊆ Reach(l, γ1(B)) for any
l ∈ L.

This lemma shows that from the same state the set of reachable states under a tighter
connector is always a subset of reachable states under a looser connector.

We now propose the following proposition which establishes a link between the Looser
Synchronization Preorder and invariant preservation.

Proposition 10 Let γ1, γ2 be two connectors over B. If γ1 4 γ2, we have inv(γ1(B),
I) ⇒ inv(γ2(B), I).
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Proof Let Reach(l, γ2(B)) be the set of reachable states from the path started from l ∈
L in γ2(B). Because Reach(l, γ2(B)) ⊆ Reach(l, γ1(B)), for any l′ ∈ Reach(l, γ2(B)),
l′ is reachable in γ1(B). As inv(γ1(B), I), we have I(l′). Then we can conclude that
inv(γ2(B), I).

The above proposition, which will be used in the incremental design, simply says that if an
invariant is satisfied, then it will remain when combinations of conflict-free interactions are
added (following our incremental methodology) to the connector. This is not surprising as
the tighter connector can only restrict the behaviors of the composite system.

We now switch to the more interesting problem of providing sufficient conditions to
guarantee that invariants are preserved by the incremental construction.

Proposition 11 Let γ be a connector over B and δ be an increment of γ such that γ 4 δ,
then we have γ 4 δγ.

Proof Because γ 4 γ − δf , we have γ 4 (γ − δf ) + δ = δγ.

The above proposition, together with Proposition 10, says that the addition of an increment
preserves the invariant if the initial connector is looser than the increment.

We continue our study and discuss the invariant preservation between the components
obtained from superposition of increments and separately applying increments over the
same set of components. We use the following definition.

Definition 32 (Interference-free Connectors) Given two connectors γ1, γ2, for any
a1 ∈ γ1, a2 ∈ γ2, if either a1 and a2 are conflict-free or a1 = a2, we say that γ1 and γ2 are
interference-free.

This definition considers a relation between two connectors. We observe that two interference-
free connectors will not break or block the synchronizations specified by each other. Though
we require that the interactions between γ1 and γ2 are conflict-free, γ1 or γ2 respectively
can contain conflict interactions. For example, consider two connectors γ1 = p1 p2 + p2 p3,
γ2 = p4 p5. γ1 is not conflict-free, but γ1 and γ2 are interference-free.

Lemma 3 Given two interference-free connectors γ1, γ2, we have γ1∩γf
2 = ∅ and γ2∩γf

1 =

∅, and (γ1 + γ2)
f = γf

1 + γf
2 .

Proof Since γ1 and γ2 are interference-free, if γ1 ∩ γ2 = ∅, we have γ1 ∩ γf
2 = ∅ and

γ2∩γf
1 = ∅. If γ1∩γ2 6= ∅, for any a ∈ γ1∩γ2, we know that a 6∈ γf

1 and a 6∈ γf
2 . γ1∩γf

2 = ∅

and γ2 ∩ γf
1 = ∅ are still correct.

According to Definition 25, we have (γ1 +γ2)
f = γc

1 +γc
2− (γ1 +γ2) = (γc

1− (γ1 +γ2))+

(γc
2 − (γ1 + γ2)). Because γ1 and γ2 are interference-free, γc

1 − (γ1 + γ2) = γc
1 − γ1 = γf

1 and

γc
2 − (γ1 + γ2) = γf

2 . So we have (γ1 + γ2)
f = γf

1 + γf
2 .

We now present the main result of the section.
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Figure 3.3: Invariant preservation for looser synchronization relation

Proposition 12 Consider two increments δ1, δ2 over γ such that γ 4 δ1 and γ 4 δ2,
if δ1 and δ2 are interference-free, and inv(δ1γ(B), I1), inv(δ2γ(B), I2), we have inv((δ1 +
δ2)γ(B), I1 ∧ I2).

Proof We will show that δ1γ 4 (δ1 + δ2)γ and δ2γ 4 (δ1 + δ2)γ, then the conclusion can
be obtained Proposition 10.

Because δ1 and δ2 are interference-free, we have (δ1+δ2)
f = δf

1 +δf
2 , then γ−(δ1+δ2)

f =

γ − (δf
1 + δf

2 ). As γ − (δf
1 + δf

2 ) ⊆ γ − δf
1 , we obtain that γ − δf

1 4 γ − (δf
1 + δf

2 ) and

γ − δf
1 + δ1 4 γ − (δf

1 + δf
2 ) + δ1. Because δ1 and δ2 are interference-free, δ2 ∩ δf

1 = ∅ and

γ 4 δ2, we have γ − δf
1 4 δ2. So γ − δf

1 + δ1 4 γ − (δf
1 + δf

2 ) + δ1 + δ2. The same rule
can be applied to δ2γ. Therefore, we have δ1γ 4 (δ1 + δ2)γ and δ2γ 4 (δ1 + δ2)γ, thus
inv((δ1 + δ2)γ(B), I1 ∧ I2).

The above proposition considers a set of increments {δi}1≤i≤n over γ that are interference-
free. The proposition says that if for any δi the separate application of increments over
component δiγ(B) preserves the original invariants of γ(B), then the system obtained from
considering the superposition of increments over γ preserves the conjunction of the invari-
ants of individual increments.

We now briefly study the relation between the looser synchronization preorder and
property preservation. Figure 3.3 shows the three ingredients of the BIP toolset, that are
(1) priorities, which we will not use here, (2) interactions, and (3) behaviors of components.
We shall see that the looser synchronization preorder preserves invariants (Proposition 12).
This means that the preorder preserves the so-called reachability properties. On the other
hand, the preorder does not preserve deadlocks. Indeed, adding new interactions may lead
to the addition of new deadlock conditions. Given two connectors γ1 and γ2 over component
B such that γ2 is tighter than γ1, i.e. γ1 4 γ2, we can conclude that if γ2(B) is deadlock-
free, then γ1(B) is deadlock-free. However, we can still reuse the invariant of γ1(B) as an
over-approximation of the one of γ2(B).

Discussion. Though we can reuse invariants to save computation time, the invariants
of the system with a looser connector may be too weak with respect to a new system
obtained with a tighter connector. Consider the example given in Figure 3.4 and let γ =
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Figure 3.4: Example for the invariant preservation

p1 + p2 + q1 + q2, δ1 = p1 p2, and δ2 = q1 q2. By using the technique presented in the
next section, we shall see that the invariant for δ1γ(B) and δ2γ(B) is (l1 ∨ l2) ∧ (l3 ∨ l4).
By applying Proposition 12, we obtain that this invariant is preserved for (δ1 + δ2)γ(B).
This invariant is weaker than the invariant (l1 ∨ l2) ∧ (l3 ∨ l4) ∧ (l1 ∨ l4) ∧ (l2 ∨ l3) that is
directly computed on (δ1 + δ2)γ(B). To overcome the above problem, we will now propose
an approach that can be used to compute invariants in an incremental manner.

3.2 Incremental Computation of Invariants

In the previous section, we have shown the rules for invariant preservation during incremen-
tal construction. However, in general we can not always apply these rules. In this section,
we put forward the method to compute incrementally invariants in more general case of
incremental component-based construction which can also be applied for incremental ver-
ification. The method is lightweight because we can reuse the computed invariants from
constituents that can be considered as the decomposed parts according to concepts of the
incremental construction.

3.2.1 Incremental Computation of BBCs

From BBC definition and Theorem 1 and 2 in the previous chapter we know that the
invariants can be computed from connectors. And Section 3.1.1 shows that the increments
will not be modified during the incremental construction. Therefore, we could start from
increments to compute incrementally their BBCs and invariants. In this subsection, we
provide a method for incremental computation of global BBCs.

Lemma 4 Given two connectors γ1, γ2 over B, we have

|(γ1 + γ2)(B)| = |γ1(B)| ∧ |γ2(B)|

Proof By Definition 17, we have |(γ1 + γ2)(B)| =
∧

a∈(γ1+γ2) |a(B)| =
∧

a∈γ1
|a(B)| ∧∧

a∈γ2
|a(B)| = |γ1(B)| ∧ |γ2(B)|.
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The following proposition provides a method for obtaining the Boolean Behavioral Con-
straints taking into account component structure.

Proposition 13 Let γ be a connector over B, the Boolean Behavioral Constraint for the
system obtained by superposition of n increments {δi}1≤i≤n can be written as

|(
n∑

i=1

δi)γ(B)| = |(γ − (

n∑

i=1

δi)
f )(B)| ∧

n∧

i=1

|δi(B)| (3.2)

Proof By Equation 3.1, the union of γ − (
∑n

i=1 δi)
f and

∑n
i=1 δi is the set of interactions

from the superposition of increments {δi}1≤i≤n over γ. The proof can be concluded by the
application of Lemma 4.

Proposition 13 provides a way to decompose the computation of BBCs with respect
to increments. The decomposition is based on the fact that different increments describe
the interactions between different components. To simplify the notation, γ − (Σn

i=1δi)
f is

represented by δ0. We have the following example.

Example 30 For Example 28, consider the two increments δ1 = a0a1 + b0b1 and δ2 =
c0c1 +d0d1. The composite component is (δ1 + δ2)γ = a0a1 + b0b1 + c0c1 +d0d1. The BBCs
for interactions of δ1 and δ2 respectively are

|δ1(B)| = (l0 ⇒ l1 ∨ l4) ∧ (l1 ⇒ l0 ∨ l3) ∧ (l3 ⇒ l1 ∨ l4) ∧ (l4 ⇒ l0 ∨ l3)
|δ2(B)| = (l0 ⇒ l2 ∨ l6) ∧ (l2 ⇒ l0 ∨ l5) ∧ (l5 ⇒ l2 ∨ l6) ∧ (l6 ⇒ l0 ∨ l5)

Because γ − (δ1 + δ2)
f = ∅, we have |(δ1 + δ2)γ(B)| = |δ1(B)| ∧ |δ2(B)| where |δ1(B)| and

|δ2(B)| are the BBCs above.

3.2.2 Incremental Computation of Invariants based on Positive Mapping

In the previous sub-section we have shown how to compute incrementally BBCs. The BBCs
of a composite component can be obtained as the conjunction of BBCs of constituent com-
ponents. In this sub-section, we propose a method which allows computing incrementally
invariants from invariants obtained from increments. It does not consider the relations
between increments which is more flexible.

To distinguish the shared variables between different BBCs, we define the common
location variables shared by multiple connectors. We recall that for an interaction a, we
denote by •a (respectively a•) the set of source locations (respectively destination locations)
of the transitions involved in a. We also extend this notation for connectors: •γ =

⋃
a∈γ

•a
(respectively γ• =

⋃
a∈γ a•).

We propose the following definition that will help in the process of reusing existing
invariants.

Definition 33 (Common Location Variables Lc) Given a set of connectors {γ1, . . . ,
γn}, we define the set of common location variables by:
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Lc =
⋃

i,j∈[1,n]∧i6=j(sup(γi) ∩ sup(γj))

where sup(γ) = •γ ∪ γ• is the set of locations involved in some interaction a of γ.

When the set of common state variables is empty, the connectors are really disjoint. And
there is no common variables between their BBCs.

Example 31 For the example presented in Figure 3.2, consider δ1 = a0a1 + b0b1 and
δ2 = c0c1 + d0d1, we have sup(δ1) = •(a0a1)∪ (a0a1)

• ∪ •(b0b1)∪ (b0b1)
• = {l0, l1, l3, l4} and

similarly sup(δ2) = {l0, l2, l5, l6}, hence Lc = sup(δ1) ∩ sup(δ2) = {l0}.

Given a set of increments {δ1, . . . , δn} over γ, according to Proposition 9 and Proposition
13, during the incremental construction, the set of interactions (

∑n
i=1 δi)γ (respectively

BBCs |(
∑n

i=1 δi)γ(B)|) can be obtained from the sets of interactions γ−
∑n

i=1 δi and {δi}
n
i=1

(respectively from the set of BBCs |γ −
∑n

i=1 δi(B)| and {|δi(B)|}n
i=1). From that we

propose a method for computing interaction invariants of (
∑n

i=1 δi)γ(B) by using interaction
invariants obtained from |γ −

∑n
i=1 δi(B)| and {|δi(B)|}n

i=1.

Proposition 14 Consider a composite component B. Let γ be a connector for B and
assume a set of increments {δi}1≤i≤n over γ(B). Let δ0 = γ − (

∑n
i=1 δi)

f , Iδi
= {φk}k∈Ii

,
for i = 0, . . . , n, be the interaction invariants for each |δi(B)|, Sδi

= {mk}k∈Ii
, for i =

0, . . . , n, be the corresponding BBC-solutions, and let

• Lφ be the set of location variables in invariant φ,

• Lc be the common location variables between {δ0, δ1, . . . , δn}.

Then the interaction invariant of (Σn
i=1δi)γ(B) is obtained as follows:

I =




n∧

i=0

∧

k ∈ Ii∧
Lφk

∩ Lc = ∅

φk




∧


 ∧

(ki1,...,kir)∈D

r∨

j=1

φkij




where
D = {(ki1, . . . , kir)|(kij ∈ Iij ∀j = 1 . . . r) ∧ (Lφkij

∩ Lc 6= ∅) ∧ (
∧r

j=1 mkij
6= false) ∧

((ki1, . . . , kir) is maximal)}.

Proof In every Sδi
, there exists a solution m0i without any variables in the positive form,

which has no invariant corresponding to. For any φk, k ∈ Ii, there exists mk such that

φk = m̃p
k. According to Proposition 13, the BBC-solution of |(Σn

i=1δi)γ(B)| is
∧n

i=0 Sδi
=∧n

i=0

∨
k∈Ii

mk =
∨

k0∈I0,...,kn∈In

∧n
i=0 mki.

• If an mki does not contain any common location variables, there exists solution m0j

containing only negations in Sδj
such that i 6= j and (

∧n
j=0∧j 6=i mki ∧ m0j)

p = mp
ki,

so φki is one of the BBC-invariants of (Σn
i=1δi)γ(B).
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• If there is a maximal set {mki1
, . . . ,mkir

}, kij ∈ Iij∀j = 1 . . . r such that all of them
contain common location variables, and

∧r
j=1 mkij

= false, it is not a solution of

|(Σn
i=1δi)γ(B)|. If

∧r
j=1 mkij

6= false, we have ˜(
∧r

j=1 mkij
)p =

˜∧r
j=1 φ̃kij

=
∨r

j=1 φkij
.

That is, if an interaction invariant obtained from BBCs of δi contains only local location
variables of δi, then it is also invariant of the global system after the superposition because
it is not affected by others increments. If a set of invariants {φ0j0 , . . . , φnjn} obtained from
BBCs of {δ0, . . . , δn} which all contain common location variables, they have influence on
each other, hence we need to check the conjunction of the corresponding BBC-solutions. If
the conjunction is not false, it is a global BBC-solution and then an interaction invariant of
the global system is established by the disjunctions of all these invariants. Since each non
common variable occurs only in one of the BBCs, and the conjunction of BBC-solutions
is false or not depends only on the common location variables, we can delete the non-
common negative variables separately by the positive mapping in every BBC-solutions,
which drastically reduces complexity of computation.

Example 32 In Example 30, we illustrate the BBCs for the two increments in the example
presented in Figure 3.2 where δ1 = a0a1 + b0b1 and δ2 = c0c1 + d0d1. Here we show how
to compute the interaction invariants of (δ1 + δ2)γ(B) from interaction invariants obtained
from the increments (for this example γ − (δ1 + δ2) = ∅).

According to Example 31, we have Lc = {l0}. Let Sδ1 , Sδ2 be the BBC-solutions for
|δ1(B)| and |δ2(B)| respectively:

Sδ1 = (l̄0 ∧ l̄1 ∧ l̄3 ∧ l̄4) ∨ (l0 ∧ l1) ∨ (l1 ∧ l3) ∨ (l0 ∧ l4) ∨ (l3 ∧ l4)
Sδ2 = (l̄0 ∧ l̄2 ∧ l̄5 ∧ l̄6) ∨ (l0 ∧ l2) ∨ (l2 ∧ l5) ∨ (l0 ∧ l6) ∨ (l5 ∧ l6)

and Iδ1 , Iδ2 be their interaction invariants:

Iδ1 = (l0 ∨ l1) ∧ (l0 ∨ l4) ∧ (l1 ∨ l3) ∧ (l3 ∨ l4) Iδ2 = (l0 ∨ l2) ∧ (l0 ∨ l6) ∧ (l2 ∨ l5) ∧ (l5 ∨ l6)

By applying I(δ1+δ2)γ(B) = F (Iγ−(δ1+δ2)f , Iδ1 , Iδ2), we have:

• The invariants (l1 ∨ l3), (l3 ∨ l4), (l2 ∨ l5), (l5 ∨ l6) do not contain any common location
variables, so they are also interaction invariants of (δ1 + δ2)γ(B).

• The invariants (l0∨l1), (l0∨l4) (with the corresponding BBC-solutions (l0∧l1), (l0∧l4))
and (l0 ∨ l2), (l0 ∨ l6) (with the corresponding BBC-solutions (l0 ∧ l2), (l0 ∧ l6)) contain
the common location variable l0, and the conjunction between any two monomials from
two groups of BBC-solutions are not false, hence the disjunction of any two invariants
from two groups of invariants is an invariant of (δ1 + δ2)γ(B): (l0 ∨ l1 ∨ l2), (l0 ∨ l1 ∨
l6), (l0 ∨ l2 ∨ l4), (l0 ∨ l4 ∨ l6).

Finally, the global interaction invariant of (δ1 + δ2)γ(B) is:

I(δ1+δ2)γ(B) = (l0 ∨ l1 ∨ l2) ∧ (l0 ∨ l1 ∨ l6) ∧ (l0 ∨ l2 ∨ l4) ∧ (l0 ∨ l4 ∨ l6)

∧ (l1 ∨ l3) ∧ (l3 ∨ l4) ∧ (l2 ∨ l5) ∧ (l5 ∨ l6)
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3.2.3 Incremental Computation of Invariants based on Fixed-point

In the previous chapter, we presented the method for computing interaction invariants
based on fixed-point computation. According to Theorem 4, for a component γ(B), the
interaction invariants of γ(B) can be obtained as the dual of the fixed-points F̃(Vγ ,

∨
l∈L l).

We call F(Vγ ,
∨

l∈L l) fixed-points of γ(B). In this section, we provide a method which allows
computing fixed-points of a composite component from the fixed-points of its constituents.

According to Proposition 9, the set of interactions (
∑n

i=1 δi)γ can be obtained from
the sets of interactions γ − (

∑n
i=1 δi)

f and {δi}
n
i=1. From that, we propose a method

which allows computing fixed-points of (
∑n

i=1 δi)γ(B) from the fixed-points obtained from
γ − (

∑n
i=1 δi)

f and {δi}
n
i=1 over B.

First, for a set of connectors {γi}
n
i=1 over a component B, the following proposition

allows getting the global image vector of (
∑n

i=1 γi)(B) from the image vectors of γi(B).

Proposition 15 Given a set of connectors {γi}
n
i=1 over a set of components B = {Bi}

n
i=1

where Bi = (Li, Pi, Ti) and L =
⋃n

i=1 Li. Let Vγi
be image vector for all locations in L

according to γi, then the image vector Vγ for all the locations of L according to
∑n

i=1 γi can
be obtained as follows:

Vγ(l) =

{ ∧
l∈•γi

Vγi
(l) if l ∈

⋃n
i=1

•γi

l otherwise
(3.3)

Proof We have:

Vγ(l) =
∧

a∈γ∧l∈•a

Va(l) =
∧

l∈•γi

(
∧

a∈γi∧l∈•a

Va(l)) =
∧

l∈•γi

Vγi
(l)

The Proposition 15 allows to compute the image vector of (
∑n

i=1 δi)γ(B) from the image
vector of δ0 = γ − (

∑n
i=1 δi)

f and {δi}
n
i=1 as follows:

V(l) =

{ ∧
l∈•δi

Vδi
(l) if l ∈

⋃n
i=0

•δi

l otherwise
(3.4)

Example 33 In the example of Figure 3.5, let γ = a1+b1+c1+a2+b2+c2, δ1 = a1a2+c1c2,
δ2 = b1b2, we have:

(δ1 + δ2)γ = (γ − (δ1 + δ2)
f ) + δ1 + δ2 = a1a2 + c1c2 + b1b2

The image for every location according to δ1 are as follows:

Vδ1(l1) = l1 ∧ l2 ∨ l1 ∧ l5, Vδ1(l2) = l2, Vδ1(l3) = l1 ∧ l3 ∨ l3 ∧ l4
Vδ1(l4) = l2 ∧ l4 ∨ l4 ∧ l5, Vδ1(l5) = l5, Vδ1(l6) = l1 ∧ l6 ∨ l4 ∧ l6

The image of every location according to δ2 are as follows:

Vδ2(l1) = l1, Vδ2(l2) = l2 ∧ l3 ∨ l2 ∧ l6, Vδ2(l3) = l3
Vδ2(l4) = l4, Vδ2(l5) = l5 ∧ l6 ∨ l3 ∧ l5, Vδ2(l6) = l6
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3.2. INCREMENTAL COMPUTATION OF INVARIANTS

l1

l2 l3

a1 c1

a1

b1

c1

b1

a2

b2

c2

a2

b2

c2

l4

l5 l6

Figure 3.5: Example for incremental invariant computation

For (δ1 + δ2)γ(B), the image vector V is obtained from those of its increments as follows:

V(l1) = l1 ∧ l2 ∨ l1 ∧ l5, V(l2) = l2 ∧ l3 ∨ l2 ∧ l6
V(l3) = l1 ∧ l3 ∨ l3 ∧ l4, V(l4) = l2 ∧ l4 ∨ l4 ∧ l5
V(l5) = l5 ∧ l6 ∨ l3 ∧ l5, V(l6) = l1 ∧ l6 ∨ l4 ∧ l6

The following proposition allows computing fixed-points for (
∑n

i=1 δi)γ(B) from the
fixed-points obtained from γ − (

∑n
i=1 δi)

f and {δi}
n
i=1 over B.

Proposition 16 Given a connector γ over a set of components B, a set of increments
{δ1, . . . , δn} over γ, and sets of fixed-points {Si}

n
i=0 where:

• S0 = F(Vδ0 ,
∨

l∈•δ0
l) with δ0 = γ − (

∑n
i=1 δi)

f ,

• Si = F(Vδi
,
∨

l∈•δi
l) with 1 ≤ i ≤ n.

Let V be the image vector according to (
∑n

i=1 δi)γ, the fixed-points F(V,
∨n

i=0 Si) are the
fixed-points of (

∑n
i=1 δi)γ(B).

Proof Given two sets of monomials S1, S2, we denote S1 ⊑ S2 if if for all s1 ∈ S1 there
exists s2 ∈ S2 such that s2 implies s1.

From Proposition 15, for any set of interactions γ′ ∈ {γ − (
∑n

i=1 δi)
f , δ1, . . . , δn} and

for any location l ∈ •γ′ we have Vγ′(l) ⊑ V(
P

δi)γ(l). Let Si and S be respectively the
fixed-points obtained from l by Vγ′ and V(

P

δi)γ , we have l ⊑ Si ⊑ S. Therefore by starting
from

∨
Si, the fixed-points F(V,

∨n
i=0 Si) are the fixed-points of (

∑n
i=1 δi)γ(B).

The number of iterations to reach fixed-points F(V,
∨

i Si) starting from Si can be signifi-
cantly smaller compared to the number of iterations to reach fixed-points F(V,

∨
i li) where

we start from locations. Therefore the computation cost can be significantly reduced in
both time and memory usage.

Example 34 In the example of Figure 3.5 with γ = a1 + b1 + c1 + a2 + b2 + c2, δ1 =
a1a2+c1c2, δ2 = b1b2, since γ−(δ1+δ2)

f = ∅, we have two sets of fixed-points corresponding
to two increments:
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S1 = F(Vδ1 ,
∨

l∈•δ1
l) = (l1 ∧ l2) ∨ (l1 ∧ l5) ∨ (l4 ∧ l5) ∨ (l2 ∧ l4)

S2 = F(Vδ2 ,
∨

l∈•δ2
l) = (l2 ∧ l3) ∨ (l2 ∧ l6) ∨ (l5 ∧ l6) ∨ (l3 ∧ l5)

Let φ0 = S1 ∨ S2, the iteration with the image vector V obtained in Example 33 provides

φ1 = (l1 ∧ l2 ∧ l3) ∨ (l1 ∧ l2 ∧ l6) ∨ (l1 ∧ l5 ∧ l6) ∨ (l1 ∧ l3 ∧ l5)
∨ (l2 ∧ l3 ∧ l4) ∨ (l2 ∧ l4 ∧ l6) ∨ (l4 ∧ l5 ∧ l6) ∨ (l3 ∧ l4 ∧ l5)

Then φ2 = φ1, so F(V, S1 ∨ S2) = φ1 are the fixed-points of (δ1 + δ2)γ(B).

3.3 Summary

We have presented methods allowing incremental construction and verification of component-
based systems. Consider a system built from its constituents, we provide conditions in which
the established invariants are preserved after the construction. However these conditions are
quite limited because many systems do not satisfy these conditions. We therefore proposed
two methods for incrementally computing invariants of general systems from the established
invariants of their constituent: one is based on positive mapping operation and the other
is based on fixed-point computation. The reuse of established invariants (and established
fixed-points) reduces significantly the computation cost compared to the operation on the
global system from scratch.

We have presented compositional and incremental methods for verification of component-
based systems. However, all these methods are limited to systems without data transfer.
Hence we are going to present, in the next chapter, a method for dealing with systems with
data transfer.
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3.3. SUMMARY

Thesis 76 Nguỹên Thanh-Hùng



CHAPTER 4

Dealing with Data Transfer
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4.1 Idea and Methodology

The BIP framework allows to define rich interaction models by using interactions extended
with data as presented in [Bas08]. However, in the previous chapters, we considered the
interaction models without data transfer. Although it allows easier decomposition and
compositional reasoning on the system, the absence of data transfer between components
is a severe limitation in practice. The difficulty of handling the data transfer is that we can
not compute the component invariants of an atomic component in isolation from the others.
For example, if a variable involved in a local transition is updated during the execution of
an interaction, we should propagate the changes of valuations from the interaction into the
transition.

Our current compositional verification method ignores the data transfer in interactions
and therefore get a coarser abstraction. Nevertheless, we still expect to approximate the
state space by a tighter abstraction. And that motivates us to study the abstraction method
toward the interaction with data transfer. The idea is, since we already have a method for
dealing with systems containing only pure interactions, that is interactions without data
transfer, we want to transform the interaction models with data transfer into the models
without data transfer on which we can apply our previous method. In this chapter, we
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Figure 4.1: Modeling of Bakery in BIP

propose methods for computing invariants taking into account the data transfer. For com-
ponent invariants, we project the changes on interactions to transitions for the computation
of post predicate transformers over transitions. For interaction invariants, we propose to
generate new components to “replace" the data transfer on interactions and then apply our
previous methods to compute interaction invariants. Our method for dealing with data
transfer in BIP framework can be applied to other synchronous modeling mechanisms that
do not support shared variables.

The organization of the chapter is as follows: first we present a method for computing
component invariants in systems with data transfer. Then we present a method for gen-
erating interaction invariants based on the replacement of data transfer by a component
called interaction component. Finally, we apply the methods on an example, the Bakery
Protocol.

Example 35 (Bakery) We consider 2-process Bakery Protocol [Lam74] as an example
to illustrate the method presented in this Chapter. Figures 4.1 presents the model of Bakery
in BIP. Two components B1 and B2 model two processes and they are identical up to the
renaming of ports and locations. Hence we present the behavior of the component B1, the
behavior of B2 is similar. B1 has three locations: l1 if B1 is in idle section; l2 if B1 is
waiting to enter its critical section; and l3 if B1 it is in its critical section. It has a variable
x1 ranging over the natural numbers and representing the “tokens” of the process, 3 loop
transitions labeled by a allowing accessing the value of “token”, three transitions w, e, r for
moving between the locations. Initially in location l1, B1 can take w1 to move to the waiting
location l2. From l2, B1 can enter the critical location l3 by e1 transition. The return to l1
by transition r1 resets the “token” x1 to 0.

Two processes B1 and B2 communicate by a set of interactions γ = a1w2+a1e2+a2w1+
a2e1 + r1 + r2 with the corresponding guards and functions ga1e2 = (x1 = 0 ∨ x2 ≤ x1),
ga2e1 = (x2 = 0 ∨ x2 < x1), fa1w2 = (x2 := x1 + 1) and fa2w1 = (x1 := x2 + 1). The
function fa2w1 = (x1 := x2 + 1) allows B1 to get the “token” according to the “token” of B1

while moving to waiting location l2 by transition w1. The guard ga2e1 = (x2 = 0 ∨ x2 < x1)
allows B1 to move to the critical location l3 only if B2 is in idle location l1 (x2 = 0)
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or it has higher priority “token” (x1 ≥ x2). Similarly for fa1w2 = (x2 := x1 + 1) and
ga1e2 = (x1 = 0 ∨ x2 ≤ x1) for the process B2.

An important property for Bakery system is mutual exclusion: both components can not
be at the critical locations l3 and l6 at the same time, i.e P = ¬(l3 ∧ l6).

4.2 Component Invariant Generation

In a system without data transfer, variables are always modified only inside their atomic
components, and component invariants are computed by the post predicate transformer
w.r.t internal transitions of these components. However, in a system with data transfer,
variables can be modified by interactions between components, thus their values depend on
variables of other components, and the computation of component invariants should take
into account the constraints on the variables of other components. In other words, we need
to project the updates on interactions into components for the computation of component
invariants. We define below such projection.

Definition 34 (Interaction-to-Component Projection) Given a connector γ(B) where
B = (B1, . . . , Bn) with Bi = (Li, Pi, Ti, Xi, {gτ}τ∈Ti

, {fτ}τ∈Ti
), let a ∈ γ be an interac-

tion with guard Ga(X) and function Fa(X,X ′), let ϕ(X) be a random predicate and let
Φ(X) =

∧
X∩Xi 6=∅ Φi(Xi) be a predicate where Φi is an invariant of component Bi. The

projection P of ϕ over interaction a to component Bi is defined as follows:

Pa(ϕ)(Xi) = ∃X ′,∃(X \ Xi).ϕ(X ′) ∧ Φ(X ′) ∧ Ga(X
′) ∧ Fa(X

′, X)

where X \ Xi means to remove Xi from X.

Starting from the weakest invariant Φi(Xi) = true of component Bi, we can increasingly
compute tighter predicates.

Example 36 Consider the interaction w1a2 of the Bakery example in Figure 4.1 with an
update function x1 = x′

2 + 1 where variable x1 of component B1 is modified according to
variable x2 of component B2. Since x1, x2 are natural numbers, the predicate Φ2(x2) =
(x2 ≥ 0) (resp. Φ1(x1) = (x1 ≥ 0)) is always true and therefore is an invariant of B2 (resp.
B1). The predicate projection of ϕ = true to B1 over interaction w1a2 is:

Pw1a2(ϕ)(x1) = ∃x′
1∃x′

2∃x2.true ∧ Φ1(x
′
1) ∧ Φ2(x

′
2) ∧ (x1 = x′

2 + 1) = (x1 ≥ 1)

Similarly, we have Pw2a1(ϕ)(x2) = (x2 ≥ 1).

For an interaction a with a guard Ga and a function Fa, interaction a first executes the
interaction function Fa, then it executes the functions of the transitions of its ports. Since
the update function of a transition takes place after the update function of the interaction
that its port participates, the post predicate transformer over the transition have to take into
account the changes due to the interaction. Here, we extend the definition of post predicate
transformer over a transition defined in Chapter 2 by taking into account interaction-to-
component projection.
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Definition 35 (Transition-based Post Predicate Transformer) Given a component
γ(B) with B = (B1, . . . , Bn) where Bi = (Li, Pi, Ti, Xi, {gτ}τ∈Ti

, {fτ}τ∈Ti
), let τ ∈ Ti be a

transition with guard gτ (Xi) and function fτ (Xi, X
′
i), and let γi = {a | a ∈ γ∧Xu

a ∩Xi 6= ∅}
be a set of interactions whose update variables Xu

a involve some variables in Xi. The post
predicate transformer of ϕ(Xi) over τ is defined as follows:

postτ (ϕ)(Xi) = ∃X ′
i.(

∨

a∈γi

Pa(ϕ)(X ′
i)) ∧ gτ (X

′
i) ∧ fτ (X

′
i, Xi)

Roughly speaking, we consider all the possible predicate updates by the interactions, in
which the port of transition τ participates, as the predicate before executing transition τ .

Example 37 Let us consider the post predicate computation for all non loop transitions
of component B1 in Bakery example (Figure 4.1). Initially ϕ = true, we have:

• postw1(true)(x1) = ∃x′
1.Pw1a2(true)(x′

1) ∧ (x1 = x′
1) = (x1 ≥ 1). The invariant at l2

is therefore ϕl2 = (x1 ≥ 1).

• poste1(ϕl2)(x1) = ∃x′
1.Pe1a2(ϕl2)(x

′
1) ∧ (x1 = x′

1) where Pe1a2(ϕ2)(x1) = ∃x2.ϕl2 ∧
(x2 ≥ 0) ∧ ((x2 = 0) ∨ (x1 ≤ x2)) = (x1 ≥ 1), hence ϕl3 = poste1(ϕl2)(x1) = (x1 ≥ 1)
is invariant at l3.

• postr1(ϕl3)(x1) = (x1 = 0) is invariant at l1.

The component invariant of B1 is Φ1 = (l1∧x1 = 0)∨(l2∧x1 ≥ 1)∨(l3∧x1 ≥ 1). Similarly,
the component invariant of B2 is Φ2 = (l4 ∧ x2 = 0) ∨ (l5 ∧ x2 ≥ 1) ∨ (l6 ∧ x2 ≥ 1).

After computing the effects to the local components caused by the updates in the in-
teractions, we can deal with the interactions with data transfer and generate interaction
components to replace the data transfer on these interactions. The following subsection
will focus on the interaction component generation.

4.3 Interaction Invariant Generation

The computation of interaction invariants of a system with data transfer consists of two
main steps:

• First, we need to transform the system with data transfer to a corresponding system
without data transfer. In this section, we will focus on this transformation.

• Then we use the method presented in Chapter 2 to compute interaction invariants
for the system without data transfer.

Based on static analysis between a set of components and a set of interactions, the
method proposed in this section “replaces" the effect of data transfer on these interactions by
a component called interaction component. Then that interaction without data is connected
to the new component which allows to mimic the original behavior of the interaction. The
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new components encode the guards in the interactions and the updates between the involved
components into locations and transition relations. The locations in the new components
enumerate all the possible combinations between the guards on the interactions. And the
transition relations record the variable updates, which will be synchronized with the updates
of the original components.

The choice of the set of interactions from which an interaction component is generated
is based on the set of variables involved. Consider a set of variables X, we choose a set
of interactions γ such that its data transfer involves in X or the update functions of its
transitions involve in X. Moreover, γ should include all interactions involving in X, that
is X is not affected by any interaction outside the set γ.

Given a set of interactions with data transfer, we need to compute the transition sys-
tem for the interaction component and the new interactions. Therefore, it is necessary to
consider the predicates updated by executing one interaction.

Definition 36 (Interaction-based Post Predicate Transformer) Given a connector
γ(B) where B = (B1, . . . , Bn) with Bi = (Li, Pi, Ti, Xi, {gτ}τ∈Ti

, {fτ}τ∈Ti
) and X =⋃n

i=1 Xi, let a be an interaction of γ, the post predicate transformer of a predicate ϕ(X)
over the interaction a is defined as follows:

posta(ϕ)(X) =
∧

p∈a


 ∨

port(τ)=p

postτ (ϕ)(X)




where port(τ) is the port labeling the transition τ .

That is, the post predicate transformer of an interaction a represents the effect of its
execution taking into account the effect by the executions of all involved transitions.

The transformation from a system with data transfer to a system without data trans-
fer is based on the replacement of the data transfer by a component called interaction
component. If we remove the data transfer from an interaction, we need to know when
the interaction can be executed and the effect after the execution of the interaction. The
execution condition of the interaction is represented by the guard which is encoded in the
location of interaction component. The execution effect of the interaction is presented by
the post predicate transformer post defined above and is encoded into transitions of the
interaction component.

Definition 37 (Interaction Component) Given γ = {ai}i a set of interactions where
Gai

(X) and Fai
(X, X ′) are respectively guard and function of interaction ai, we define the

interaction component Bd = (Ld, P d, T d) over γ, where:

• Ld = {ϕd | ∃γ′ ⊆ γ.ϕd = (
∧

a∈γ′ Ga ∧
∧

a∈γ−γ′∧Ga 6=true Ga) 6= false} is a set of

the conjunctive combinations of the sets {{Ga, Ga}}a∈γ. We define the abstraction
function αd which associates each atomic predicate

∧
a∈γ′ Ga ∧

∧
b∈γ−γ′ Ga a symbol

ϕd.

• P d is a set of ports {pa} where each pa corresponds to an interaction a ∈ γ.
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• T d ⊆ Ld × P d × Ld where for any ϕd
1, ϕ

d
2 ∈ Ld, if there exists a ∈ γ such that

ϕd
1 ∧ Ga 6= false and ϕd

2 ∧ posta(ϕ
d
1)(X) 6= false, (ϕd

1, pa, ϕ
d
2) ∈ T d.

During the interaction component generation, we can update the interactions by connecting
with the ports of the interaction component, and generate an abstract system without data
transfer.

Definition 38 (Abstract System of Data Transfer) Given a connector γ(B) and a
set of interaction components {Bd

1 , . . . , Bd
k} with Bd

i = (Ld, P d, T d) generated from the
corresponding set of interactions γi ⊆ γ, we define the abstract system γd(B, Bd), where γd

is obtained from the following process:

• For any τ = {ϕd
i , pa, ϕ

d
j} ∈ T d, we generate a new interaction by adding the port pa

to the corresponding interaction a: ad = a.pa, and add a to the replaced interaction
list: γr = γr + a.

• After no more interaction is generated, add new interactions {ad} to γ and remove
replaced interactions in γr from γ: γd = γ + {ad} − γr.

Two definitions above provide the method to remove the data transfer in the interactions
and to connect the interaction components with other components.

The process for generating an interaction component for a set of interactions is presented
in Algorithm 2. It takes as input a set of interactions γ on a set of atomic components
(B1, . . . , Bn). These interactions have guards, functions or transitions involving in the same
set of variables X. It basically works as follows:

• First step is to generate a set of locations according to the interaction guards. For each
non-empty subset γ′ ⊆ γ such that the predicate ϕd =

∧
a∈γ′ Ga∧

∧
a∈γ−γ′∧Ga 6=true

Ga

is not false, we generate a location ϕd for the interaction component and add it to
the location sets Ld (lines 4, 5).

• Second step is to generate the set of ports and the set of transitions. We considered any
two locations ϕd

i , ϕ
d
j of Ld and any interaction a ∈ γ. If ϕd

i ∧Ga∧
∧

port(τ)∈a gτ 6= false

and posta(ϕ
d
i ) ∧ ϕd

j 6= false (line 10), that is there is a transition going out from ϕd
i

and coming into ϕd
j and its port participates to the interaction a. If pa does not exist

in P d, we create a port pa (line 12), a new interaction by adding pa to a (line 13) and
a is added to the replaced interaction list which will be remove at the end (line 14).
Then we generate a transition τ = (ϕd

i , pa, ϕ
d
j ) (line 16).

Finally, after the complete construction of the interaction component, the set of interactions
is obtained by removing the replaced interaction list γr from γ (line 20).

The following proposition shows that the abstract system γ′(B, B′) by removing data
transfer simulates γ(B), and invariants of γ′(B, B′) are also invariants of γ(B).

Proposition 17 Given γ(B) with data transfer on some of the interactions of γ, let B =
{Bi}1≤i≤n be a set of components with Bi = (Li, Pi, Ti, Xi, {gτ}τ∈Ti

, {fτ}τ∈Ti
), Bd =
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function generateInteractionComponent(γ(B1, . . . , Bn))1

begin2

Ld = ∅;P d = ∅; T d = ∅;3

forall γ′ ⊆ γ such that ϕd =
V

a∈γ′ Ga ∧
V

a∈γ−γ′∧Ga 6=true
Ga 6= false do4

Ld = Ld ∪ ϕd;5

end6

γr = ∅; /* set of interactions to be removed */7

forall ϕd
i , ϕ

d
j ∈ Ld do8

forall a ∈ γ do9

if (ϕd
i ∧Ga ∧

V

port(τ)∈a gτ 6= false)&(posta(ϕd
i ) ∧ ϕd

j 6= false) then10

if pa does not exist in P d then11

P d = P d ∪ pa;12

γ = γ ∪ {a.pa};13

γr = γr ∪ a;14

end15

T d = T d ∪ {(ϕd
i , pa, ϕ

d
j )};16

end17

end18

end19

γd = γ \ γr;20

end21

Algorithm 2: Interaction Component Generation

{Bd
j }1≤j≤k be a set of interaction components obtained from sets of interactions in γ with

Bd
j = (Ld

j , P
d
j , T d

j ), and γd be the corresponding set of interactions without data transfer,

then γd(B, Bd) simulates γ(B). Moreover, if Φαd is an invariant of Sd then α−1
d (Φαd) is

an invariant of S.

Proof Let (l, x) be a global state of γ(B), where l ∈ L1×· · ·×Ln, and (l, ϕd
1, . . . , ϕ

d
n, y) be a

global state of γ′(B, B′) where ϕd
j ∈ Ld

i and x, y ∈
⋃n

i=1 Xi. We show that (l, x)R(l, ϕd
1, . . . , ϕ

d
n, y)

is a simulation, if v(y) ∧
∧n

j=1 ϕd
j |= v(x), where v(x) is a valuation of x. If (l, x)

a
→ (l′, x′)

is a transition of γ(B), then we show that there exists b ∈ γ′ such that (l, ϕd
1, . . . , ϕ

d
n, y)

b
→

(l′, ϕ′d
1 , . . . , ϕ′d

n , y′) where a ∈ b and (l′, ϕ′d
1 , . . . , ϕ′d

n , y′) = (l′, ϕd
1, . . . , ϕ

d
n, y′).

• If a contains no data transfer, we have a = b and (l′, ϕd
1, . . . , ϕ

d
n, y′). Because no

variable is updated on a, (l′, x′)R(l′, ϕd
1, . . . , ϕ

d
n, y′).

• If a contains some data transfer, there exists B′
j and a∪{pj} ⊂ b ∈ γ′, and ϕd

j ∧Ga 6=

false∧ϕ′d
j ∧posta(ϕl) 6= false such that (l, ϕd

1, . . . , ϕ
d
n, y)

b
→ (l′, ϕd

1, . . . , ϕ
d
j−1, ϕ

′d
j , ϕd

j+1,

. . . , ϕd
n, y′). Suppose z is updated in interaction a, we have posta(ϕl)(z) |= v(z). In

interaction b, the transition from B′
j requires that ϕ′d

j ∧ posta(ϕl) 6= false. For other

variables, they are updated by transitions. So we have v(y) ∧
∧n

j=1 ϕ′d
j |= v(x′).

Example 38 For Bakery example, since the data transfer of all the interactions involve
in the set of variables {x1, x2} we will generate an interaction component B3 = (Ld, P d, T d)
to replace the data transfer on these interactions.
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Figure 4.2: Bakery example with interaction component

First we generate the set of locations from the guards of the set of interactions {ga1e2 , ga2e1}:
ga1e2 ∧ ga2e1 = (x1 = 0 ∨ x2 < x1) ∧ (x2 = 0 ∨ x1 ≤ x2) = (x1 = 0 ∨ x2 = 0)
ga1e2 ∧ ḡa2e1 = (x1 = 0 ∨ x2 < x1) ∧ (x2 > 0) ∧ (x1 > x2) = (x2 > 0 ∧ x1 > x2)
ḡa1e2 ∧ ga1e2 = (x1 > 0) ∧ (x2 ≥ x1) ∧ (x2 = 0 ∨ x1 ≤ x2) = (x1 > 0 ∧ x2 ≥ x1)

Since all the combinations are different from false, we generate a set of three correspond-
ing locations Ld = {l7, l8, l9} where:

l7 = ga1e2 ∧ ga2e1 = (x1 = 0 ∨ x2 = 0)
l8 = ga1e2 ∧ ḡa2e1 = (x1 > 0 ∧ x1 < x2)
l9 = ga2e1 ∧ ḡa1e2 = (x2 > 0 ∧ x2 < x1)

The ports and the transition system of the interaction component B3 is presented in the
figure 4.2. They are specified from the set of locations Ld and the set of interactions γ. For
example, there is a port pa1w2 together with one of its transition τ = (l7, pa2w1 , l8) since
l7 ∧ gw1a2 = l7 6= false and posta2w1(l7)(x1) = posta2(l7) ∧ postw1(l7) = ∃x′

1∃x′
2.(x

′
1 =

0 ∨ x′
2 = 0)∧ (x1 = x′

2 + 1) = (x1 > 0), hence posta2w1(l7) ∧ l8 = (x1 > 0) ∧ (x1 > 0 ∨ x1 <
x2) 6= false.

Example 39 (Checking Mutual Exclusion) Mutual exclusion is an important prop-
erty of Bakery example: two components can not be at the critical locations l3 and l6 at the
same time. The property is formally represented as P = ¬(l3 ∧ l6).

First we compute the component invariants of the system Φ = Φ1 ∧ Φ2 ∧ Φ3 where
Φ1 = (l1 ∧ x1 = 0) ∨ (l2 ∧ x1 > 0) ∨ (l3 ∧ x1 > 0),
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Φ2 = (l4 ∧ x2 = 0) ∨ (l5 ∧ x2 > 0) ∨ (l6 ∧ x2 > 0) and
Φ3 = l7 ∨ l8 ∨ l9 with l7 = (x1 = 0 ∨ x2 = 0), l8 = (x2 > 0 ∧ x1 > x2) and l9 = (x1 >
0 ∧ x2 ≥ x1).

From the Bakery abstract system computed in Example 38, we compute the abstract
interaction invariants and then the concrete interaction invariants that are respectively:

Ψd = (l5 ∨ l7 ∨ l8)
∧ (l2 ∨ l7 ∨ l9)
∧ (l2 ∨ l3 ∨ l5 ∨ l6 ∨ l7)

Ψ = ((l5 ∧ x2 > 0) ∨ (x1 = 0 ∨ x2 = 0) ∨ (x2 > 0 ∧ x1 > x2))
∧ ((l2 ∧ x1 > 0) ∨ (x1 = 0 ∨ x2 = 0) ∨ (x1 > 0 ∧ x2 ≥ x1))
∧ ((l2 ∧ x1 > 0) ∨ (l3 ∧ x1 > 0) ∨ (l5 ∧ x2 > 0) ∨ (l6 ∧ x2 > 0) ∨ (x1 = 0 ∨ x2 = 0))

Finally we verify the mutual exclusion property P by using Yices to check Φ∧Ψ∧¬P . The
unsat output of Yices shows that the property is guaranteed for the Bakery example.

4.4 Summary

We have presented a method for dealing with interaction models with data transfer. The
idea is that we first project the changes of variables by interactions into transitions, then
transform the models with data transfer into the models without data transfer on which
we can apply our compositional method for checking safety properties. The transformation
is done by replacing the data transfer by interaction components which allow preserving
the behavior of the interactions. We have also applied the method for verifying mutual
exclusion property of the Bakery example.

Although this method has not been implemented in our tool-set but the obtained re-
sult shows the perspectives of the method in dealing with interaction models with data
transfer.
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5.1 The D-Finder Tool

We have implemented the compositional and incremental methods in D-Finder, a tool for
verifying safety properties, specially for checking deadlock-freedom for component-based
systems described in the BIP language. D-Finder consists of a set of modules interconnected
as shown in Figure 5.1. It takes as input a system described in BIP and progressively finds
and eliminates potential deadlocks. It basically works as follows:

1. It constructs the predicate characterizing the set of deadlock states (DIS generation
module).

2. Iteratively, it constructs increasingly stronger component invariants (Φi generation
module). This step might need quantifier elimination that requires collaboration
with Omega tool.
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3. Component invariants are used to compute finer finite state abstractions and increas-
ingly stronger interaction invariants (Abstraction and Ψ generation module). The
computation of interaction invariants is done by collaborating with CUDD package
or Sat-solver tool Yices.

4. It verifies deadlock freedom by checking the unsatisfiability of
∧

Φi ∧ Ψ ∧ DIS (sat-
isfiability module). If it succeeds, the system is proven deadlock-free, else it may
continue or give up, according to the user’s choice. The unsatisfiability is checked by
a Sat-Solver tool Yices in the case of systems with data and by CUDD package in the
case of systems without data.

generation

Satisfiability

Abstraction and

confirmation

DIS
generation

BIPDeadlock

verification

deadlock-free
Φi

Ψ

Ψ generation
Cudd

Omega

Yices
V

Φi ∧ Ψ ∧ DIS

DIS

6= false-give up6= false-strengthen
false

BIP model

Deadlock-free Deadlocks

Local

V

Φi

simulation

Figure 5.1: The D-Finder tool

It is also connected to the state space exploration tool of the BIP platform, for finer
analysis when the heuristic fails to prove deadlock-freedom.

The main programming language used in the implementation of D-Finder is Java. How-
ever, since CUDD package is written in C, several parts which are connected to CUDD are
also written in C.

We provide below in detail the description of each module in D-Finder.

5.2 DIS Generation

The implementation of DIS generation module is presented in Algorithm 3. The input is a
set of interactions γ on a set of components B. The output is a predicate DIS characterizing
deadlock states, i.e a set of states from which no interaction of γ can take place. The DIS
generation process works as follows: first we compute the enabled condition ena for each
interaction a of γ by computing the enabled conditions for all its ports. A port p is enabled
if at least one of its transitions is enabled and a transition τ = (l, p, gτ , fτ , l

′) is enabled if
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its source location is reached and its guard is true (line 6). Hence the enabled condition of
p is the disjunction of the enabled conditions of all its transitions (line 8). The interaction
a is enabled if its guard Ga is true and all its ports are enabled (line 10). Finally, the
predicate DIS is obtained by the conjunction of the disabled conditions (the negation of
enabled conditions) of all the interactions in γ (line 12).

function generateDIS(Connector γ, Component B)1

begin2

for each interaction a of γ do3

for each port p of a do4

forall transitions τ = (l, p, gτ , fτ , l
′) do5

enτ = l ∧ gτ ;6

end7

enp =
W

port(τ)=p enτ ;8

end9

ena = Ga ∧
V

p∈a enp;10

end11

DIS =
V

a∈γ(¬ena);12

return DIS;13

end14

Algorithm 3: DIS Predicate Generation

5.3 Component Invariant Generation

The implementation of the Component Invariant Generation module is shown in Algorithm
4. Taking as input an atomic component, we generate the component invariants by com-
puting an invariant predicate, which is initially true, at each control location. Consider a
location l, we first compute post predicate transformers of all its incoming transitions by
calling computePost function (line 5) which returns, for a transition τ = (l′, p, gτ , fτ , l) and
an invariant predicate Φl′ at the source location l′, the propagation of Φl′ by τ . Then the in-
variant predicate at l is obtained by the disjunction of all these post predicate transformers
(line 7).

function computeCompInv(Component B)1

begin2

for each control location l of B do3

for each transition τ = {l′, p, gτ , fτ , l} do4

postτ = computePost(τ,Φl′);5

end6

Φl =
W

τ∈•l postτ ;7

return Φl;8

end9

end10

Algorithm 4: Compute Component Invariants
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function computePost(Transition τ , Predicate Φ)1

/* τ is of the form (l′, p, gτ (X), Y = fτ (Z), l) */;
/* Φ is a predicate on the sets of variables X, Y, Z */;
begin2

post = true;3

if gτ = null then4

gτ = true;5

end6

if fτ = null then7

post = gτ (X) ∧ Φ(X,Y, Z);8

return post;9

end10

if X ∩ Y = ∅ then11

post = post ∧ gτ ;12

end13

if Y ∩ Z = ∅ then14

post = post ∧ (Y = fτ (Z));15

else16

f = ∃X ′, Y ′, Z′.Φ(X ′, Y ′, Z′) ∧ gτ (X ′) ∧ (Y = fτ(Z′));17

f = callOmega(f);18

post = post ∧ f;19

end20

return post21

end22

Algorithm 5: Compute Post Predicate

An important function in generating component invariants is computePost, presented in
Algorithm 5, which computes the post predicate transformer of a predicate with respect to
a transition. It takes as inputs a transition τ of the form τ = (l′, p, gτ (X), Y = fτ (Z), l), a
predicate Φ at the source location l′. X,Y, Z are subsets of component’s variable set. The
function works as follows:

• If the guard gτ is null, the execution condition of τ is always true, hence gτ is assigned
to true (lines 4, 5).

• If the update function fτ is null, that is the set of variables is not affected by the
transition and therefore Φ still holds after the transition, the function returns gτ ∧
Φ(X, Y, Z) (lines 7, 8, 9) and terminates.

• If X ∩ Y = ∅ which means that the variables in the guard gτ are not affected by
the function, the guard gτ still holds after the transition. Hence, the post predicate
transformer is updated by conjuncting with gτ : post = post ∧ gτ (lines 11, 12).

• If Y ∩Z = ∅, the variables in the right side of the update function are not changed and
the predicate Y = fτ (X) holds after the transition. The post predicate transformer
is updated: post = post ∧ (Y = fτ (Z)) (line 15).

• If X ∩ Y 6= ∅, the variables in the right side of the update function are affected. The
new valuation is computed by taking into account the affect of the update function:
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there exists some valuation of X, Y, Z at the source location l′ (denoted by X ′, Y ′, Z ′)
such that the predicate Φ(X ′, Y ′, Z ′) is true, the guard gτ (X

′) is true (for that the
transition τ can be executed) and the new valuation is computed from the existing
valuation according to the update function Y = fτ (Z

′). We call the external tool
Omega to eliminate the quantifiers (line 18).

The function callOmega(f) writes the formula f to the input file of Omega. Then it calls
Omega to eliminate quantifier and get back the corresponding quantifier-free formula that
we might need to convert by a parser to get the expected form. An example of the input
file for the post predicate transformer of a predicate Φ = (x ≥ 0) by a transition τ with
gτ = (x < 10), fτ = (x := x + 1) is as follows:

F := {[x] : exists(tmp : (tmp ≥ 0) && (tmp < 10) && (x = tmp + 1))}

The output of Omega for this entry is the quantifier-free formula 1 ≤ x ≤ 10.

5.4 Checking Local Deadlock-Freedom

An assumption of our method for checking deadlock-freedom of a system is that every
component is deadlock-free. Hence it is necessary to check the local deadlock-freedom of
each atomic component before checking the global deadlock-freedom. An atomic component
is deadlock-free if at any location, it is always able to move by taking one of its outgoing
transitions. The function for checking local deadlock-freedom takes as input an atomic
component together with its component invariants. At each location l, the function verifies
whether its invariant Φl implies at least one of its outgoing transitions’ guard, i.e Φl ⇒∨

τ∈l• gτ . The satisfiability of this condition is checked by Yices tool. If it holds at all the
locations of the component, then the function returns deadlock-free. Otherwise, it returns
not deadlock-free output together with a set of locations that do not satisfy this condition.

5.5 Abstraction

Abstraction is used to transform a system with data into an equivalent system without data.
The implementation of abstraction process in the D-Finder tool is presented in Algorithm
6. It takes as input a system consisting of a set of components with their component
invariants and a set of interactions. The abstraction process consists of three main steps
corresponding to the generations of abstract components, of abstract interactions and of
abstract initial condition.

For the generation of an abstract component Bα from a concrete component B =
(L, P, T , X, {gτ}τ∈T , {fτ}τ∈T ) and its component invariants Φ =

∨
lj∈L(lj ∧

∨
k ϕjk), the

abstract function works as follows:

• First, the set of abstract locations Lα are generated by splitting concrete locations
according to the invariants. For each location lj where the invariant is of the form∨

k ϕjk, we create for each predicate ϕjk an abstract location lαjk = lj ∧ ϕjk (lines 8,
9).
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Interaction Invariant Generation

Incremental Computation

Global computation of
Interaction Invariants

of Interaction Invariants

γ(B), Init

Interaction
Invariantsγ,B, Init, {δi}i

Figure 5.2: Structure of Interaction Invariant Generation Module

• Then, the set of abstract transitions T α are generated. For each concrete transition
τ = (lm, p, gτ , fτ , ln), we have two sets of abstract source locations lamj and of abstract
destination locations lαnk. An abstract transition τa

mjnk = (lαmj , p, lαnk) is established
(line 15) only if the conditions ϕmj ∧ gτ 6= false and postτ (ϕmj) ∧ ϕnk 6= false (or
equivalently ϕmj ∧ preτ (ϕnk) 6= false) hold (line 14).

• The generation of abstract ports Pα is just the creation of an abstract port pα for
each concrete port p (lines 21, 22).

The generation of abstract interactions is done by creating, for each concrete interac-
tion γi = p1 . . . pn, a new interaction composed of the corresponding abstract ports γα

i =
pα
1 . . . pα

n (lines 29, 30).
The generation of initial conditions is to take, for each element lj ∧ϕinit

j of the set Init,

all abstract locations lαjk = lj ∧ ϕjk of lj such that ϕinit
j ∧ ϕjk 6= false (lines 36, 37).

5.6 Interaction Invariant Generation

We have implemented two sub-modules according to global and incremental computation
of interaction invariants as presented in Figure 5.2:

• global computation sub-module takes as input a global system 〈γ(B), Init〉 and com-
putes globally interaction invariants of the system.

• incremental computation sub-module takes as input a connector γ over a set of compo-
nents B with the initial conditions Init, and a set of increments {δi}

n
i=1 and computes

incrementally the set interaction invariants.

5.6.1 Global Computation of Interaction Invariants

Figure 5.3 shows the structure and the data flow for the global computation of interaction
invariants. There are several sub-methods for the computation: two enumerative methods
using Yices and CUDD; two symbolic methods based on positive mapping and fixed-point
using CUDD package. The implementation consists of the following functions:
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function abstract(γ(B1, . . . , Bn), (Φ1, . . . ,Φn), Init)1

begin2

/* Generate abstract components */3

for each component Bi do4

Lα = ∅;Pα = ∅; T α = ∅;5

for each location lj of Bi with Φlj = l ∧
W

k ϕjk do6

for each predicate ϕjk do7

lαjk = lj ∧ ϕjk;8

Lα = Lα ∪ lαjk;9

end10

end11

for each transition τ = (lm, p, gτ , fτ , ln) do12

forall lαmj and lαnk do13

if (ϕmj ∧ gτ 6= false) ∧ (postτ (ϕmj) ∧ ϕnk 6= false) then14

τα
mjnk = (lαmj , p, l

α
nk);15

T α = T α ∪ τα
mjnk;16

end17

end18

end19

for each port pj do20

create abstract port pα
j ;21

Pα = Pα ∪ pα
j ;22

end23

Bα
i = (Lα, Pα, T α);24

end25

/* Generate abstract interactions */26

γα = ∅;27

for each interaction γi = p1 . . . pn of γ do28

create γα
i = pα

1 . . . p
α
n;29

γα = γα ∪ γα
i ;30

end31

/* Generate abstract set of initial locations */32

Inita = ∅;33

for each lj ∧ ϕ
init
j ∈ Init do34

for each lajk = lj ∧ ϕjk do35

if ϕinit
j ∧ ϕjk 6= false then36

Initα = Initα ∪ lajk;37

end38

end39

end40

return 〈γα(Bα
1 , . . . , B

α
n ), Initα〉;41

end42

Algorithm 6: Abstraction
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Figure 5.3: Global Computation of Interaction Invariants Module

• A function for generating Boolean Behavioral Constraints (BBCs) from the set of
interactions and components.

• Different functions based on different methods for computing interaction invariants:

– two functions based on the enumerative method which computes explicitly the set
of interaction invariants. They use the Sat-Solver tool Yices or CUDD package
to solve equation systems.

– two functions based on the symbolic methods which compute the set of inter-
action invariants by using Positive Mapping or Fix-point. The computation is
performed using CUDD package.

Below we present in detail the implementation of each function.

Boolean Behavioral Constraints (BBCs) generation

Boolean Behavioral Constraints can be generated according to Definition 17: for any lo-
cation l, we need to build an implication corresponding to interactions that its outgoing
transitions are involved. However, the right sides of the implications in BBCs are different
even for the same interaction. For example, consider the interaction p1p2p3 in figure 5.4,
the transitions τ1 and τ2 are involved in the same interaction but the corresponding impli-
cations l1 ⇒ (l′1 ∨ l′3 ∨ l′5) ∧ (l′1 ∨ l′4 ∨ l′5) and l2 ⇒ (l′2 ∨ l′3 ∨ l′5) ∧ (l′2 ∨ l′4 ∨ l′5) have different
right sides. Therefore we have to visit an interaction many times for different implications
and the generation of BBCs is not efficient.

These two implications can be rewritten in the form l1 ⇒ l′1 ∨ (l′3 ∨ l′5) ∧ (l′4 ∨ l′5) and
l2 ⇒ l′2∨(l′3∨ l′5)∧(l′4∨ l′5) or equivalently l1 ⇒ l′1∨(l′3∧ l′4)∨ l′5 and l2 ⇒ l′2∨(l′3∧ l′4)∨ l′5 from
which we can see that for two transitions τ1, τ2 of the same component, the parts of other
components in the implications are the same (l′3∧ l′4)∨ l′5. Hence, in the implementation, we
generate a predicate once for each interaction and then reuse that predicate in generating
BBCs corresponding to that interaction.

Thesis 96 Nguỹên Thanh-Hùng
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We recall that for a port p, p• is a set of destination locations of its transitions. For
example, in figure 5.4, p•1 = {l′1, l

′
2}, p•2 = {l′3, l

′
4}, p•3 = {l′5}.

We define below a predicate called Forward Predicate for an interaction. This predicate
is generated once and then will be reused in generating implications corresponding to the
interaction.

Definition 39 (Forward Predicate of Interaction) Let a = p1p2 . . . pn be an interac-
tion, we define its forward location predicate as follows:

−→a =
∨

pi∈a

∧

l∈p•i

l

p1 p2 p3

l1 l2 l3 l4 l5

l′
2

l′
3 l′

4 l′
5

l′
1

p3
p2p2

p1 p1

Figure 5.4: An example for BBCs

Example 40 For the interaction a = p1p2p3 in Figure 5.4, the set of destination locations
of each component is respectively {l′1, l

′
2}, {l′3, l

′
4} and {l5}. Then we have the forward

location predicate of the interaction a is −→a = (l′1 ∧ l′2) ∨ (l′3 ∧ l′4) ∨ l′5.

Definition 40 (Forward Location Predicate) Given a location l and a set of interac-
tions γ, we define the forward location predicate of l with respect to γ as follows:

−→
l

γ
=

∧

τ∈l•∧l′∈τ•

(l′ ∨
∧

port(τ)∈a∧a∈γ

−→a )

where port(τ) is the port labeling the transition τ .

Example 41 Consider again the interaction a = p1p2p3 in Figure 5.4 with the forward
predicate −→a in Example 40. The forward location predicate of l1 corresponding to the tran-
sition τ1 can be obtained from −→a by using Definition 40 as follows:

−→
l1

a
= l′1 ∨

−→a = l′1 ∨ (l′1 ∧ l′2) ∨ (l′3 ∧ l′4) ∨ l′5 = l′1 ∨ (l′3 ∧ l′4) ∨ l′5

We can see that
−→
l1

a
is the right side of the implication from l1 according to the interaction

a.
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The following proposition shows that for a location l and an involved interaction a, its

Forward Location Predicate
−→
l

a
is the right side of the implication according to a. Therefore

we can save the computation effort by generating once, for every interaction a, the Forward
Predicate of Interaction −→a and then reuse them for generating the implications of involved
locations.

Proposition 18 Let γ be a connector over a tuple of components B = (B1, . . . , Bn). The
Boolean Behavioral Constraints for a connector γ(B) with a set of locations L of B can be
computed as follows:

|γ(B)| =
∧

l∈L

(l ⇒
−→
l

γ
)

Proof Given an interaction a = p1p2 . . . pn ∈ γ with the corresponding set of destination
locations for port pi is Li = p•i = {li1, . . . , limi

}, we first prove that
∧

φ∈L1×···×Ln

∨
l∈φ l =∨n

i=1

∧mi

j=1 lij by induction technique:

• For n = 2, we have:

∧
φ∈L1×L2

∨
l∈φ l = [(l11 ∨ l21) ∧ · · · ∧ (l11 ∨ l2m2)]

∧ . . .
∧ [(lm11 ∨ l21) ∧ · · · ∧ (lm11 ∨ l2m2)]
= [l11 ∨ (l21 ∧ · · · ∧ l2m2)] ∧ · · · ∧ [l12 ∨ (l21 ∧ · · · ∧ l2m2)]
= (l11 ∧ · · · ∧ l1m1) ∨ (l21 ∧ · · · ∧ l2m2)]

=
∨2

i=1

∧mi

j=1 lij

• suppose that for n = k we have
∧

φ∈L1×···×Ln
φ =

∨n
i=1

∧mi

j=1 lij , we will prove it is
also true for n = k + 1:

∧
φ∈L1×···×Lk+1

∨
l∈φ l =

∧
φ∈(L1×···×Lk)×Lk+1

∨
l∈φ l

= (
∨k

i=1

∧mi

j=1 lij ∨ l(k+1)1) ∧ · · · ∧ (
∨n

i=1

∧mi

j=1 lij ∨ l(k+1)mk+1
)

= (
∨k

i=1

∧mi

j=1 lij ∨ (l(k+1)1 ∧ · · · ∧ l(k+1)mk+1
)

=
∨k+1

i=1

∧mi

j=1 lij

According to Definition 17, the the right side of the implication for transition τ = (l′kt, pk, lkt)
is as follows:∧

φ∈L1×···×Lk−1×Lk+1×···×Ln
(lkt ∨

∨
l∈φ l) = lkt ∨ (

∧
φ∈L1×···×Lk−1×Lk+1×···×Ln

∨
l∈φ l). On

the other hand, by using Forward Predicate of Interaction −→a , we have lkt ∨
−→a = lkt ∨∧

φ∈L1×···×Ln

∨
l∈φ l = lkt ∨

∧
φ∈L1×···×Lk−1×Lk+1×···×Ln

∨
l∈φ l.

So the implication for transition τ by interaction a can be represented by l′kt ⇒ lkt ∨
−→a .

Hence, we have:

|γ(B)| =
∧

l∈L


l ⇒

∧

τ∈l•∧l′∈τ•

(l′ ∨
∧

port(τ)∈a∧a∈γ

−→a )


 =

∧

l∈L

(l ⇒
−→
l

γ
)
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−→
l

γ
can be used for generating image vector in the implementation of the method based

on fixed-point computation which will be presented later.

The implementation for generating Forward Location Predicate of a location l according
to a set of interaction γ on a set of components B is presented in Algorithm 7: for every
outgoing transition τ = (l, p, l′) of l, we make the conjunction of the Forward Predicates of
all the involved interactions (that is the interactions contain p) and assign the result to a

temporary variable tmp (line 5); then
−→
l

γ
is updated by the conjunction with l′ ∨ tmp (line

6); finally
−→
l

γ
, the Forward Location Predicate of l according to γ, is returned (line 8).

function generateForwardLocationPredicate(l, γ, B)1

begin2
−→
l

γ

= true;3

for each transition τ = (l, p, l′) do4

tmp =
V

p∈a∧a∈γ
−→a ;5

−→
l

γ

=
−→
l

γ

∧ (l′ ∨ tmp);6

end7

return
−→
l

γ

;8

end9

Algorithm 7: Generate Forward Location Predicate

The detail implementation of the function for BBCs generation is presented in Algorithm
8:

function generateBBC(γ,B)1

begin2

L =
S

Bi=(Li,Pi,Ti)∈B Li;3

for each location l of L do4
−→
l

γ

= generateForwardLocationPredicate(l, γ, B);5

end6

bbc =
V

l∈L(l ⇒
−→
l

γ

);7

return bbc8

end9

Algorithm 8: BBCs Generation

• The input is a set of interactions γ on a set of components B.

• First we get the union L of locations of components in B (line 3) and for each location

l of L, we compute the Forward Location Predicate
−→
l

γ
by calling generateForward-

LocationPredicate function (line 5).

• Then, BBCs is computed by the conjunction of the implications l ⇒
−→
l

γ
of all

locations l of L (line 7). The function terminates by returning BBCs, the Boolean
Behavioral Constraints of γ(B).
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Implementation of Enumerative Method

We have implemented two functions for the enumerative method: a function using SMT
Sat-Solver tool Yices and a function using CUDD package. The algorithms for the imple-
mentations of two functions are similar and are presented in Algorithm 9. Taking as input
the BBCs and the set of initial locations Init, the computation process works as follows:

• First, we get a formula f by the conjunction of BBCs with the disjunction of initials
locations in Init (line 3) to guarantee that every interaction invariant contains at
least an initial location.

• Then, we compute solutions of f . For every solution s =
∧

i li ∧
∧

j lj , we extract all
the positive valuations li in s to generate the corresponding interaction invariant and
then add it to Ψ (line 6). We want to avoid getting others solutions of f such that
their positive valuation sets are superset of that set of s because they correspond to
weaker invariants, hence we update f by adding

∨
i li before getting another solution

(line 7). This step is repeated until f is unsatisfiable.

• Finally, the function returns Ψ, the set of interaction invariants.

function computeEmumerativeII(BBCs, Init)1

begin2

f = BBCs ∧
W

li∈Init
li;3

Ψ = true;4

while f has a solution s =
V

li ∧
V

l̄j do5

Ψ = Ψ ∧
W

li;6

f = f ∧ (∨li);7

end8

return Ψ;9

end10

Algorithm 9: Enumerative Computation of Interaction Invariants

The enumerative method provides a clear, visual view of interaction invariants of the
system. However, there is a risk of explosion of solutions, if exhaustiveness of solutions is
necessary in the analyzing process.

Implementation of the Symbolic Method Based on Positive Mapping

In contract to the enumerative methods which extract positive variables from solutions of
BBCs, the method using positive mapping symbolically removes the negative variables from
BBCs. The implementation of the method is presented in Algorithm 10. Taking as input
BBCs and the set of initial locations Init, the computation process works as follows:

• First, the disjunction of initial conditions is conjuncted with BBCs (line 3) to make
sure that every invariant contains at least an initial condition.
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• Then, the positive mapping function positiveMapping is called (line 4) which elimi-
nates all the negative forms of the variables in BBCs. The returned result is assigned
to f .

• Finally, the dual function is called for f (line 5) and the result is assigned to Ψ which
is the symbolic interaction invariants.

function computeIIByPositiveMapping(bbcs, Init)1

begin2

f = bbcs ∧
W

li∈Init
li;3

f = positiveMapping(f);4

Ψ = dual(f);5

return Ψ;6

end7

Algorithm 10: Interaction Invariant Computation based on Positive Mapping

The implementation of positiveMapping function is presented in Algorithm 11: given a
function f(X) and a subset of variables Y ⊆ X, this function eliminates all the negative
forms of variables belonging to X\Y by using cofactor function provided in CUDD package.
If the subset Y is not provided, this function removes the negative forms of all the variables
of X.

function positiveMapping(f(X), Y ⊆ X )1

begin2

for each variable y of X \ Y do3

f′ = cofactor(f, ȳ);4

f = f′ ∨ f;5

end6

return f;7

end8

Algorithm 11: Positive Mapping Function

The algorithm for dual function is presented in Algorithm 12. Given a symbolic formula
f and a set of variables X = {x1, . . . , xn} in f , dual function first creates a set of variables
X ′ = {x′

1, . . . , x
′
n} such that x′

i = x̄i (lines 3, 4, 5). Then, it replaces each variable xi ∈ X
in f by x′

i ∈ X ′ and obtains f ′ (line 7). This is done by vectorCompose(f, X’) function
provided in CUDD which creates a new BDD by substituting the BDDs for the variables
of the BDD f . The negative form of f ′ is the dual of f (line 8).

Example 42 Consider a formula f = x1x2+x2x3 and its set of variables X = {x1, x2, x3}.
The dual function first creates a set X ′ = {x′

1, x
′
2, x

′
3} where x′

1 = x̄1, x
′
2 = x̄2, x

′
3 = x̄3.

Then it calls vectorCompose(f, X’) function which replaces variables in X by the correspond-
ing variables in X ′ and returns f ′ = x̄1x̄2 + x̄2x̄3. Finally it calls cudd_Neg(f ’) function
which returns f̃ = (x1 + x2)(x2 + x3), the dual of f .
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function dual(f(X = {x1, . . . , xn}))1

begin2

creates X ′ = {x′1, . . . , x
′
n};3

for each variable xi ∈ X do4

x′i = x̄i;5

end6

f′ = vectorCompose(f, X ′);7

f̃ = cudd_Neg(f′);8

return f̃;9

end10

Algorithm 12: Dual operation

Implementation of the Symbolic Method Based on Fixed-point

An alternative symbolic method for computing interaction invariants is based on fixed-point
computation. Taking as input a set of interactions γ over B and a set of initial locations
Init, the implementation of the method based on fixed-point is presented in Algorithm 13:

function computeIIByFixedpoint(γ,B, Init)1

begin2

V = computeImageVector(γ,B);3

f =
W

li∈Init
li;4

f = computeFixedpoint(V, f);5

Ψ = dual(f);6

return Ψ;7

end8

Algorithm 13: Fixed-point-based Computation of Interaction Invariants

• First, we compute functional vector V for all location variables by calling computeIm-
ageVector function (line 3).

• Then, we compute the fixed-points of the formula f which is initialized by the disjunc-
tion of initial location variables f =

∨
li∈Init li (line 4). Starting from this disjunction

guarantees that every interaction invariant contains at least an initial location. The
computation of fixed-points is done by computeFixedpoint function (line 5). The
returned result is assigned to f .

• Finally, the symbolic set of interaction invariants Ψ is computed by calling the dual
function for f (line 6).

There are two main functions in computing interaction invariants by fixed-points: com-
puteImageVector and computeFixedpoint.

The function computeImageVector allows computing, for each location variable l, an
image according to its involved interactions. Taking as input a set of interactions γ on a set
of components B, the implementation of the function is presented in Algorithm 14: first,
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function computeImageVector(γ,B)1

begin2

L =
S

Bi=(Li,Pi,Ti)∈B Li;3

for each location li of L do4
−→
li

γ

= generateForwardLocationPredicate(li, γ, B);5

V[i] = li ∧
−→
li

γ

;6

end7

return V;8

end9

Algorithm 14: Image Vector Generation

we get the set of locations L of B (line 3), then for each location li ∈ L, we call function

generateForwardLocationPredicate to compute its Forward Location Predicate
−→
li

γ
(lines 4,

5). The image of li is obtained by the conjunction of li and
−→
li

γ
(line 6).

function computeFixedpoint(V, f)1

begin2

while true do3

tmp = Cudd_bddVectorCompose(f,V);4

if Cudd_EquivDC(f,V) then5

return f;6

end7

else8

f = tmp ;9

end10

end11

end12

Algorithm 15: Fixed-point Computation

The function computeFixedpoint allows computing the fixed-point of a given formula
f according to an image function V. The implementation of this function is presented in
Algorithm 15:

• Step 1: we replace all location variables in f by their images in the image vector V

and the intermediate result is assigned to tmp (line 4). This operation is done by
the function Cudd_bddVectorCompse(f, img) in CUDD which creates a new BDD by
substituting the BDDs V for the variables of the BDD f. Then we continue to Step 2.

• Step 2: we compare the intermediate formula tmp with f by the function Cudd_EquivDC
provided in CUDD (line 5). If they are the same, i.e we have reached fix-points, the
iteration terminates and the fixed-points are returned (line 6); otherwise, we assign
the intermediate formula tmp to f (line 9) and return to Step 1.

5.6.2 Incremental Computation of Interaction Invariants

Similarly to the global symbolic computation of interaction invariants, there are two meth-
ods for incremental computation of interaction invariants based on Positive Mapping and
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Fixed-point Computation. The implementation of the Incremental Computation of Inter-
action Invariants module therefore consists of:

• A sub-module for the computation based on positive mapping which is composed of
two functions: a function for getting common locations involved in different connectors
and a function for incremental computation of interaction invariants by using positive
mapping.

• A sub-module for the computation based on fixed-point which allows computing the
global image vector and the global fixed-points from the sets of image vectors and
fixed-points of constituents.

Below we present in detail the implementation of these incremental methods.

Implementation of the Incremental Positive Mapping-based Method

Given connector γ over a set of components B, a set of increments {δ1, . . . , δn} over γ and
Lc the set of common location variables of {γ− (

∑n
i=1 δi)

f , δ1, . . . , δn}, the invariants of the
system (

∑n
i=1)γ(B), according to Proposition 14, can be computed as follows:

I(
Pn

i=1 δi)γ(B) = dual(
n∧

i=0

|δi(B)|p(Lc))p where δ0 = γ − (
n∑

i=1

δi)
f

The incremental computation of interaction invariants for the superposition (
∑n

i=1 δi)γ(B)
therefore consists of the following steps:

• First, we need to get the set of common locations Lc of the set {δi}
n
i=0.

• Then, we need to build Boolean Behavioral Constraints |δi(B)| for each δi. The partial
positive mapping is used to remove the negative forms of local locations variables, for
each |δi(B)| we obtain |δi(B)|p(Lc).

• We integrate |δ0(B)|p(Lc), . . . , |δn(B)|p(Lc), then remove the negative forms remaining
of common variables and apply the dual operation to obtain the global invariant.

The implementation of the function for getting common locations of a set of connectors
γ1, . . . , γn is presented in Algorithm 16:

• First, we get the set of components compListi involved in each connector γi (line 3).
A component is involved in a connector if its ports participate in any interaction of
the connector. Then we get the set of common components commonCompList of
{commpListi}

n
i=1 (lines 5, 6, 7, 8), that is the components that belong to at least two

of these sets. L is the union of the set of control locations of the common components
(line 12).
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• In the second step, for each location l in L, we get the set of interactions γl that
the incoming transitions and outgoing transitions of l are involved (lines 16, 17). A
transition τ = (l, p, l′) is involved in an interaction a if its port p participates in a.
For any two different interactions ai, aj of γl, if they belong to different connectors,
then the location l is common location and is added to the set of common locations
Lc (lines 19, 20, 21).

function getCommonLocations(γ1, . . . , γn, B)1

begin2

compListi = {Bj = (Lj , Pj , Tj) ∈ B | Pj ∩ γi 6= ∅};3

commonCompList = ∅;4

for each compListi do5

for each component Bj of compListi do6

if Bj ∈ compListk, k 6= i then7

commonCompList = commonCompList ∪Bj ;8

end9

end10

end11

L =
S

Bi∈commonCompList Li;12

Lc = ∅; /* list of common locations */13

for each location l ∈ L do14

γl = ∅;15

for each transition τ = (l′, p, l) or τ = (l, p, l′) do16

γl = γl ∪ {a ∈ γ | p ∈ a};17

end18

for any two interactions ai, aj , i 6= j of γl do19

if connectors of aj and aj are not the same then20

Lc = Lc ∪ l;21

break;22

end23

end24

end25

return Lc;26

end27

Algorithm 16: Common Location Getting

The implementation of the function for computing incrementally interaction invariants is
presented in Algorithm 17. The input consists of a connector γ over a set of components
B = (B1, . . . , Bm), a set of increments (δ1, . . . , δn) over γ, and the initial state Init. The
computation process is as follows:

• First, we get the set of locations L of all the components B1, . . . , Bm (line 3). We

denote γ −
∑n

i=1 δf
i by δ0 (line 4) and get the set of common locations Lc of the set

{δi}
n
i=0 by the function getCommonLocations (line 5).

• Then, for each δi, there are the following steps:

– we get Li, the set of locations involved in δi, i.e the union of locations of com-
ponents that its ports participate in δi (line 7),
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function computeIncrII((δ1, . . . , δn), γ, (B1, . . . , Bm), Init)1

begin2

L = ∪Li∈BiLi;3

δ0 = γ −
Pn

i=1 δ
f
i ;4

Lc = getCommonLocations(δ0, . . . , δn, B);5

for each δi do6

Li =
S

Pk∩δi 6=∅∧B=(Lk,Pk,Tk) Lk;7

Initi =
W

l∈(Init∩Li)
l;8

|δi(B)| = generateBBC(δi, B);9

|δi(B)|init = |δi(B)| ∧ Initi;10

|δi(B)|init = |δi(B)| ∧ Initi;11

|δi(B)|
p(Lc)
init = positiveMapping(|δi(B)|init, Lc);12

|δi(B)|
p(Lc)

init
= positiveMapping(|δi(B)|init, Lc);13

end14

finit = true, finit = true;15

for each δi do16

finit = (finit ∧ |δi(B)|
p(Lc)
init ) ∨ (finit ∧ |δi(B)|

p(Lc)

init
) ∨ (finit ∧ |δi(B)|

p(Lc)
init );17

finit = (finit ∧ |δi(B)|
p(Lc)

init
);18

end19

f
p
init = positiveMapping(finit, L \ Lc);20

Ψ = dual(fp
init);21

return Ψ;22

end23

Algorithm 17: Incremental Computation Based on Positive Mapping

– we generate the initial condition Initi from Init for δ (line 8),

– we generate the Boolean Behavioral Constraints |δi(B)| by function generateBBC
(line 9).

– |δi(B)| is then decomposed into two parts: one part |δi(B)|init satisfying initial
condition by adding Initi (line 10) and the other part |δi(B)|init which does not
satisfy the initial condition and is obtained by the conjunction of |δi(B)| and
Initi (line 11).

– the positive mapping function positiveMapping is called for both |δi(B)|init (line
12) and |δi(B)|init (line 13) to eliminate the negative forms of non-common

location variables. We obtain respectively |δi(B)|
p(Lc)
init and |δi(B)|

p(Lc)

init
.

• Now we integrate the above results. finit (resp. finit) represents the integrated
formula which satisfies (resp. does not satisfy) initial condition

∨
Initi. Since each

final invariant must satisfy the initial condition, we have several kinds of integrations
for each connector δi: three integrations which return a formula satisfying initial

condition: (finit ∧ |δi(B)|
p(Lc)
init ) ∨ (finit ∧ |δi(B)|

p(Lc)

init
) ∨ (finit ∧ |δi(B)|

p(Lc)
init ) and are

then assigned to finit (line 17); an integration which returns a formula that does not

satisfy initial condition: (finit ∧ |δi(B)|
p(Lc)

init
) and is then assigned to finit (line 18).

• After the integration, we call positiveMapping function for finit to remove the remain-

Thesis 106 Nguỹên Thanh-Hùng
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ing negative forms of common location variables (line 20).

• Finally we call the dual function dual for the formula fp
init (line 21) to get the global

interaction invariants Ψ of the system 〈(
∑n

i=1 δi)γ(B), Init〉.

Implementation of the Incremental Fixed-point-based Method

First we provide the implementation of the function for incremental computation of image
vector from a set of connectors. Given a set of connectors γ1, . . . , γn over a set of components
B together with the set of corresponding image vectors Vγ1 , . . . , Vγ1 , the function presented
in Algorithm 18 computes the image vector Vγ for (

∑n
i=1 γi)(B) from Vγ1 , . . . , Vγ1 .

The computation process is as follows: for every location l of L, the set of locations of
atomic components in B, we initialize the image Vγ(l) by l (line 5). Then for any γi such
that l ∈ •γi, Vγ(l) is updated by the conjunction with Vγi

(l) (lines 6, 7, 8). Finally, the
function returns Vγ , the image vector of (

∑n
i=1 γi)(B).

function computeIncrImageVector((γ1, . . . , γn), (Vγ1
, . . . ,Vγn), B)1

begin2

L is set of locations of atomic components in B;3

for each l of L do4

Vγ(l) = l;5

for each γi do6

if l ∈ •γi then7

Vγ(l) = Vγ(l) ∧ Vγi(l);8

end9

end10

end11

return Vγ ;12

end13

Algorithm 18: Incremental Computation Of Image Vector

Interaction invariants can be incrementally computed by using fixed-point computation
for a system resulting from the superposition of a set of increments. the implementation of
the method is presented in Algorithm 19. It takes as input a connector γ over a set of com-
ponents B, a set of increments {δi}

n
i=1, a set of image vector {Vi}

n
i=0 and a set of fixed-points

{Si}
n
i=0 where Vi = computeImageV ector(δi, B) and Si = computeF ixedpoint(Vi,

∨
l∈•δi

)
(or Si = computeF ixedpoint(Vi,

∨
l∈Init∪•δi

) in the case of system with initial state Init)

and δ0 = γ − (
∑n

i=1 δi)
f .

The function compute the fixed-points for (
∑n

i=1 δi)γ(B) starting from the sets of con-
stituent fixed-points above. The computation process is as follows:

• First we compute the image vector V for (
∑n

i=1 δi)γ(B) from the set of constituent
image vector {Vi}

n
i=1 by calling the function computeIncrImageVector (line 3).

• Then the starting point of the fixed-point iteration is set by the disjunction of the
constituent fixed-points

∨n
i=0 Si (line 4).
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function computeIncrIIByFixedpoint(γ,B, {δi}
n
i=0, {Vi}

n
i=0, {Si}

n
i=0)1

begin2

V = computeIncrImageVector({δi}
n
i=0, {Vδi

}n
i=0, B);3

S0 =
Wn

i=0 Si;4

S = computeFixedpoint(V, S0);5

return S;6

end7

Algorithm 19: Incremental Computation of Fixed-point

• Finally, the function computeFixedpoint is called to compute the global fixed-points
of (

∑n
i=1 δi)γ(B) using S0 and the global image vector V (line 5).

5.7 Checking Satisfiability

For systems without data, since the predicate DIS and component invariants can be sym-
bolically represented, the checking of unsatisfiability of

∧
Φi ∧ Ψ ∧ DIS can be done by

using CUDD package.

For systems with data, the check of unsatisfiability is performed by Yices, a Sat-Solver
tool. Given a formula f , Yices checks whether f is satisfiable. If it is, Yices provides a sat
output together with a solution satisfying f , otherwise an unsat output is produced. Since
Yices provides just one solution s satisfying the formula f , we need to update f by f ∧ (¬s)
to get another solution. And this step is repeated until f becomes unsatisfiable to get all the
solutions. An example of Yices input language for a formula f = (l1∧(x = 0))∨(l2∧(x ≥ 1))
is as follows:

✞
( define l 1 : : bool )
( define l 2 : : bool )
( define x : : int )
( assert (or (and l 1 (= x 0) ) (and l 2 (>= x 1 ) ) ) )
(check )

✡✝ ✆

In the symbolic methods, interaction invariants are generated and stored in a BDD, there-
fore a transformation is required to convert interaction invariants into a form accepted by
Yices. We have implemented this transformation in the Bdd2F function.

Bdd2F Transformation

We have implemented a function Bdd2F which allows transforming a BDD to a formula.
The implementation of the Bdd2F transformation function is described in Algorithm 20.
Here we provide a transformation from a BDD to a general formula, for a specific form of
formula, we just need to change the form of formula to be printed in an output file. Taking
as input a BDD representing a formula f and an output file, this function works as follows:

• First, we provide an unique name representing the value of each node of the BDD
(lines 6, 7).
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• Then, every node of the BDD is considered. A node n corresponds to a variable x
and it has two children : a “then” node tNode and an “else” node eNode. The value
of the node n is therefore either the value of “then” node (n.val = tV al) if x is true
or the value of “else” node (n.val = eV al) otherwise. The values of “then” node
(tNode) and “else” node (eNode) are specified as follows:

function Bdd2F(Bdd f, File file)1

begin2

index = 0;3

/* Set value name for each node */;4

for each Node n of Bdd f do5

n.val = “n_” + index ;6

index ++;7

end8

/* Convert Bdd to Yices formula */9

String tVal, eVal ;10

for each Node n of Bdd f do11

/* Get “then” node of n */12

Node tNode = cuddT(n);13

tVal = if isConst(tNode) then “true” else tNode.val;14

/* Get “else” node of n */15

Node eNode = cuddE(n);16

if isConst(eNode) then17

eVal = if isCompl(eNode) then “false” else “true”;18

end19

else20

eVal = if isCompl(eNode) then “not ” + eNode.val else eNode.val;21

end22

x = n.var; /* get corresponding variable of n */23

print(file, n.val + “ = if x then ” + tVal + “ else ” + eVal);24

end25

/* Assign f = true by assigning root node to true */26

Node rNode = f.root; /* get “root” node of f */27

print(file, “rNode.val = true”);28

end29

Algorithm 20: Bdd-to-formula Transformation

– If tNode is constant, i.e tNode is a true node since “then” node can not be
complemented, tV al = true. Otherwise tV al = tNode.val (lines 13, 14)

– If eNode is constant, since “else” node can be complemented, the constant can be
true or false node. If eNode is complemented eV al = false, else eV al = true
(lines 16, 17, 18). If eNode is not constant, we also consider two cases: if eNode
is complemented eV al = eNode.val, otherwise eV al = (not eNode.val) (line
21).

– The formula n.val = if x then tV al else eV al for the node n with the values
of tVal and eVal specified as above is written to a file (line 24).
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• Finally, we get the root node and assert its value to “true” (lines 27, 28).

CONST NODES

x0

x1

x2

x3

f

1

n_2

n_3 n_4

n_5

n_0

n_1

Figure 5.5: A bdd example

Example 43 Figure 5.5 is an example of a formula represented in a BDD. The formula
generated by Bdd2F function for this BDD is as follows:

n_5 = if x3 then true else false
n_4 = if x2 then true else n_5
n_3 = if x2 then true else false
n_2 = if x1 then true else n_4
n_1 = if x1 then true else n_3
n_0 = if x0 then true else n_1
f = n_0
assert (f = true)

5.8 Summary

We have provided an overview on the implementation of the D-Finder tool for checking
deadlock-freedom of component-based systems. We have first described the structure, the
procedure of D-Finder for checking deadlock-freedom together with the corresponding mod-
ules, then the detail on the implementation of each module.

An important module is Interaction Invariant Generation where we have implemented
several techniques for users to choose. One is based on Yices, a Sat-Solver tool; the others
are based on CUDD package and are either enumerative (enumerative method) or totally
symbolic (methods based on Positive Mapping and Fixed-point Computation). Moreover,
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for the symbolic computation of interaction invariants, we has implemented both global and
incremental methods. The global method computes directly invariants for the entire sys-
tems from scratch and the incremental method permits computing invariants of composite
components from their constituents. The implementation of different methods in D-Finder
allows it to handle a large range of systems.

In the next chapter, we are going to present the experimental results obtained by D-
Finder on several non-trivial case studies which show the efficiency of the methods as well
as the capacity of the D-Finder tool.
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This chapter provides some case studies verified by the D-Finder tool. Two case studies
without data are considered to check the scalability of the method. The first is Dining
Philosophers, a classical example in detecting deadlocks. The second is Gas Station where
we check the scalability by increasing the number of pumps and customers. We also verified
two case studies with data: one is Automatic Teller Machine system and the other is a mod-
ule of a robotic system, robot Dala developed at Laas laboratory. All the experimentations
are done on a Linux machine Intel Pentium 4 CPU 3.0 GHz and RAM 1G.

6.1 Dining Philosophers

The Dining Philosophers problem, illustrated in Figure 6.1, can be shortly presented as a
number of philosophers sitting at a table doing one of two things: eating or thinking. While
they are thinking, they are not eating and while they are eating, they are not thinking.
They sit at a round table and each philosopher has a spaghetti disk in front of him. Between
two any next philosophers, there is a fork. A philosopher can eat if he has both forks from
the left and from the right. And a philosopher can put two forks back to the table only if
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Figure 6.1: Dining Philosophers Problem

he has finished eating. Here there is a deadlock situation if they all have the same order of
taking forks and every philosopher has taken one fork, so everyone can not eat because each
has only one fork. However, if a Philosophers changes the order of taking forks, for example,

think
eatput eat

think

Philosopher
put

take_l take_r

take_l take_r

lth

l1f

l2f

lfi

Figure 6.2: Philosopher Component

Fork

use

use

free

free

lf

lu

Figure 6.3: Fork Component

he takes the right one before the left one while the others take the left one before the right
one, then there is no deadlock. We have considered both cases in the experimentation.

We have modeled the philosopher and the fork in BIP. Figure 6.2 represents the behavior
of a philosopher: initially in state lth, he can think by think transition or prepare for eating
by first taking the left fork (take_l transition) and moves to l1f location where he has
one fork on the left hand, then taking the right fork (take_r transition) and moves to l2f

location where he has two forks on both hands. At l2f he can eat by taking eat transition
and moves to lfi location where he has finished eating, hence he can put two forks by put
transition and returns to lt location. The think and the eat transitions are internal, they
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Figure 6.4: Dinning Philosophers with four Philosophers

can be executed without synchronizing with other components and hence their ports are
complete, represented by triangles in the figure. The other ports (take_l, take_r, put) are
incomplete (represented by circles) and their transitions need to synchronize with other
components to be executed.

The model of a fork is quite simple (Figure 6.3): it has two locations lf and lu. Initially
in the location lf , a fork can be taken by use transition and goes to lu location. From lu, a
fork is released if the free transition is executed and the fork returns to lf location. Both
ports use and free are incomplete.

6.1.1 Dining Philosophers with Deadlocks

In this model, all Philosophers have the same order in taking forks, we assume that all
Philosophers take the left fork before the right fork.

Figure 6.4 shows the model for Dinning Philosophers with 4 Philosophers and 4 forks.
In general case, given n philosophers and n forks, the interactions are:

γ[n] =
n∑

i=1

(thi + t_li ui + t_ri u(i mod n)+1 + ei + pi fri fr(i mod n)+1)

where thi, t_li, t_ri, ei, pi respectively represent the ports think, take_l, take_r, eat, put
of Philosopher philoi, and ui, fri respectively represent the ports use, free of Fork forki.

In the incremental construction, these interactions can be obtained from the superpo-
sition of a set of increments, each increment adds interactions for philosophers from n1 to
n2 with 1 ≤ n1, n2 ≤ n as follows:

δ[n1,n2] =

n2∑

i=n1

(thi + t_li ui + t_ri u(i mod n)+1 + ei + pi fri fr(i mod n)+1)
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Figure 6.5: Verification Time of Dining Philosopher with Deadlock

For example, the set of interactions for a system of 4 Philosophers is the superposition
of the two following increments:
δ[1,2] = th1 + t_l1u1 + t_r1u2 + e1 + p1fr1fr2 + th2 + t_l2u2 + t_r2u3 + e2 + p2fr2fr3

δ[3,4] = th3 + t_l3u3 + t_r3u4 + e3 + p3fr3fr4 + th4 + t_l4u4 + t_r4u1 + e4 + p4fr4fr1.

In Figures 6.5, 6.6 and Table 6.1, we provide experimental results on Dining Philoso-
phers. We increase the number of Philosophers and compare the verification time and
memory usage between the different methods implemented in D-Finder. We also compare
our methods with the well-known verification tool NuSmv. In two figures, x axis represents
the number n of Philosophers (and also the number of Forks), y axis respectively represents
the verification time (in minutes) and the memory usage (in Mb).

All the methods detected a deadlock and that is the real deadlock where all Forks are
at the busy location lu, i.e. they are being occupied by some Philosopher; all Philosophers
are at the location ll, i.e. they have taken the left fork and are waiting for the right one
(but no fork is available):

deadlock =
n∧

i=1

(philoi.l1f ∧ forki.lu)

The invariants generated by D-Finder which allows detecting the above deadlock for a

Thesis 116 Nguỹên Thanh-Hùng



CHAPTER 6. EXPERIMENTATION

 0

 200

 400

 600

 800

 1000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

M
em

or
y 

us
ag

e 
(M

b)

Number of philosophers

D-Finder: incremental based on positive mapping
D-Finder: incremental based on fixed-point

D-Finder: global based on positive mapping
D-Finder: global based on fixed-point

D-Finder: enumerative
NuSmv

Figure 6.6: Memory Usage of Dining Philosopher with Deadlock

system consisting of n Philosophers and n Forks are as follows:

Ψ =
n∧

i=1

(philoi.lth ∨ forki.lu ∨ philo(i mod n)+1.lth ∨ philo(i mod n)+1.l1f )

According to the experimentation with a time out of 60 minutes, we have:

• Verification time and memory usage by NuSmv increase exponentially. At the size of
130 Philosophers, NuSmv has time out and uses 900Mb over 1000Mb of memory.

• The global verification based on positive mapping can verify up to the size 1800
Philosophers within 60 minutes. The memory used by this method is low: for 1800
Philosophers, it uses less than 200 Mb.

• The global verification based on fixed-point is not good for this example. The reason
is that the Philosophers example has cycle structure which has invariants involved
in all the components of the system, hence the number of iterations in fixed-point
computation is big since the iteration process has to pass over the whole cycle (all
the components) to get these invariants.

• The global enumerative verification is better than the global symbolic methods, it
can verify up to the size of 2800 Philosophers within 60 minutes and uses less that
250 Mb of memory. The reason is that the number of interaction invariants of this
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Component information Time (minutes) Memory (MB)

philos locs intrs Smv Enum PM FP IPM IFP Smv Enum PM FP IPM IFP

100 600 500 1:32 0:06 0:13 22:41 0:4 0:19 533 34 46 75 10 32
500 3000 2500 - 1:51 4:01 - 0:34 10:03 - 55 61 - 29 60
1000 6000 5000 - 7:08 17:09 - 2:04 - - 90 105 - 60 -
1500 9000 7500 - 19:30 39:40 - 3:09 - - 126 148 - 74 -
2000 12000 10000 - 28:44 - - 4:14 - - 163 - 96 -
4000 24000 20000 - - - - 8:37 - - - - - 192 -
6000 36000 30000 - - - - 14:26 - - - - - 382 -
7000 42000 35000 - - - - 17:34 - - - - - 498 -
8000 48000 40000 - - - - 20:45 - - - - - 510 -
9000 53000 45000 - - - - 24:16 - - - - - 581 -

philos: number of philosophers Smv: NuSmv PM: Global Positive Mapping
locs: number of locations Enum: Enumerative IPM: Incremental Positive Mapping
intrs: number of interactions FP: Global Fixed-point IFP: Incremental Fixed-point

Table 6.1: Comparison between different methods on Dining Philosophers

example does not increase exponentially in the size of the systems. For example, the
system of 2000 Philosophers has 10003 interaction invariants and the system of 2800
Philosophers has 13003 interaction invariants.

• The incremental method based on positive mapping consumes almost linearly time
according to the size of the system. Each increment adds a set of interactions for 500
Philosophers and 500 Forks. The incremental verification of the system built from 18
increments (corresponding to a system of 9000 Philosophers and 9000 Forks) is done
in 25 minutes and uses less than 600Mb of memory.

6.1.2 Dining Philosophers without Deadlocks

In this model, all Philosophers have the same order in taking forks except a Philosopher
have different order, we assume that the first Philosopher takes the right fork before the
left, and the others take the left fork before the right.

We did the experimentation with the methods implemented in D-Finder and NuSmv. All
the methods report that the system is deadlock-free. The interaction invariants generated
by D-Finder which allow proving deadlock-freedom of a system having n Philosophers and
n Forks are as follows:

Ψ =

n−1∧

i=2

(philoi.lth ∨ forki.lu ∨ philo(i mod n)+1.lth ∨ philo(i mod n)+1.l1f )

∧
(philo1.l2f ∨ philo1.lfi ∨ fork1.lf ∨ philo2.l2f ∨ philo2.lfi)

∧
(philo1.lth ∨ philo1.l1f ∨ fork1.lu ∨ philo2.lth ∨ philo2.l1f )

∧
(philo1.lth ∨ forkn.lu ∨ philon.lth)

The performance of the different methods of D-Finder is almost similar to the performance
in verifying the Philosophers system with deadlocks presented in the previous subsection.
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Figure 6.7: Sketch of Gas Station

6.2 Gas Station

Gas Station [HL85] consists of an Operator with a computer, a set of pumps, and a set of
customers. Each pump can be used by a fixed number of customers. The set of the atomic
components involved in a system with n pumps and m customers for each pump is denoted
by B[n, m] = {Operator, {pumpi}1≤i≤n, {customerij}1≤i≤n,1≤j≤m}.

Before using a pump, each customer has to prepay for the transaction. Then the cus-
tomer uses the pump, collects his change and goes to a state from which he may start a
new transaction.

Before being used by a customer, the pumps have to be activated by the Operator.
When a pump is shut off, it can be re-activated for the next operation.

Figure 6.7 gives the model for Gas Station system for one pump and two customers.
The Operator has two control locations and three ports.The transition labeled with prepay
accepts a customer’s prepay and activates the pump for the customer. When a customer
is served, the transition labeled with finish will synchronize the pump and the customer.
A pump has three control locations and three ports. Besides the synchronization between
the Operator and customer through activate and finish ports, a pump and a customer are
synchronized through start ports.

We abbreviate port names by using only their first three letters. The ports of Operator
are respectively pre, fin, cha; the ports of pumpi are respectively acti, stai, fini and the
ports of customerj of pumpi are preij , staij , finij , chaij . The interactions for a system of
n pumps, each one used by m customers, are

γ[n, m] =

n∑

i=1

(

m∑

j=1

(pre acti preij + stai staij + fin fini finij + cha chaij))
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6.2. GAS STATION

 0

 10

 20

 30

 40

 50

 60

 0  2  4  6  8  10  12  14

V
er

ifi
ca

tio
n 

tim
e 

(m
in

ut
es

)

Gas Station: size = N x (50 pumps + 500 custumers)

D-Finder: incremental based on positive mapping
D-Finder: incremental based on fixed-point

D-Finder: global based on positive mapping
D-Finder: global based on fixed-point

NuSmv

Figure 6.8: Gas Station - Verification Time

The system consisting of n pumps and m customers can be incrementally built by the
superposition of a set of increments, each increment adds interactions for a set of pumps, a
set of customers and Operator. If each pump connects to m customers, the increment that
adds interactions for the pumps from n1 to n2 is:

δ[n1, n2, m] =

n2∑

i=n1

(

m∑

j=1

(pre acti preij + stai staij + fin fini finij + cha chaij))

For example, the system of two pumps and two customers can be built from two increments,
each increment contains interactions over a pump, a customer and Operator as follows:

δ1[1, 1, 1] = pre act1 pre11 + sta1 sta11 + fin fin1 fin11 + cha cha11

δ2[2, 2, 1] = pre act2 pre21 + sta1 sta21 + fin fin1 fin21 + cha cha21

D-Finder reports deadlock-freedom of the Gas Station system. The interaction invari-
ants generated by D-Finder which prove the deadlock-freedom of a Gas Station system
consisting of n pumps, each pump pumpi has mi customers, are as follows:

Ψ =

n∧

i=1

(pumpi.l0 ∨ pumpi.l1 ∨
mi∨

j=1

customerij .l2)

∧
n∧

i=1

(pumpi.l0 ∨ pumpi.l2 ∨
mi∨

j=1

customerij .l1)
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∧
n∧

i=1

(operator.l1 ∨ pumpi.l1 ∨ pumpi.l2 ∨
mi∨

j=1

customerij .l0)

∧
n∧

i=1

(operator.l0 ∨
n∨

i=1

mi∨

j=1

customerij .l3)

Figures 6.8, 6.9 and Table 6.2 present the verification time and memory usage for Gas
Station system by different methods implemented in D-Finder and by NuSmv. For the
incremental verification methods, N is number of increments and each increment adds
interactions for 50 pumps and 500 customers. Hence, the size of a system built from N
increments is N × 50 pumps and N × 500 customers. For the global verification method,
the number of pumps is N × 50 and the number of customers is N × 500. We also set the
time out to 60 minutes. According to the experimentation:

• NuSmv reaches timeout at the size (18 pumps + 180 customers) and uses 920Mb over
1000Mb of memory.

• The global symbolic method based on positive mapping can verify up to the size
8×(50 pumps + 500 customers) within 50 minutes and uses 300Mb of memory.

• The incremental method based on positive mapping has almost linear verification
time and memory usage according to the size of the system. It can verify up to the
size 14×(50 pumps + 500 customers) in 12 minutes and uses 107 Mb of memory.
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Component information Time (minutes) Memory (MB)

pumps locs intrs NuSMV PM FP IPM IFP NuSMV PM FP IPM IFP

18 776 720 1:43 0:18 0:8 0:9 0:9 921 48 35 17 17
50 2152 2000 - 0:50 0:17 0:49 0:17 - 48 53 47 53
100 4302 4000 - 2:58 0:38 1:51 0:52 - 76 65 47 52
200 8602 8000 - 11:34 1:34 2:26 1:55 - 135 107 47 65
300 12902 12000 - 26:00 2:53 4:11 2:85 - 194 160 49 68
400 17202 16000 - 47:38 5:01 5:34 3:51 - 270 215 76 93
500 21502 20000 - - 7:45 7:21 4:43 - - 261 86 101
600 25802 24000 - - 11:21 9:05 5:53 - - 316 97 115
700 30102 28000 - - 16:04 11:44 7:14 - - 350 107 138

pumps : number of pumps PM : Global Positive Mapping
locs : number of locations FP : Global Fixed-point
intrs : number of interactions IPM : Incremental Positive Mapping
Smv : NuSmv IFP : Incremental Fixed-point

Table 6.2: Comparison between different methods on Gas Station

User ATM Bank

Figure 6.10: ATM Structure

• The global symbolic method and incremental method based on fix-point have very
good performance compared to the corresponding methods based on positive mapping.
The reason is that there is a small cycle of interactions between the Operator, a Pump
and a Customer, hence the number of iterations to reach fixed-points is small (7
iterations) because the iteration process just has to pass over these three components
to reach a fix-point.

Figure 6.9 shows that the incremental methods gain not only in verification time but also
in memory usage compared to the global methods.

6.3 Automatic Teller Machine ATM

Automatic Teller Machine (ATM) is a computerized telecommunication device that pro-
vides services to access to financial transactions in a public space without the need for a
cashier, human clerk or bank teller.

The structural model of the ATM system [CEFH01] is presented in Figure 6.10. The
system is composed of the following components: User, ATM (modeling a cash dispenser)
and Bank (modeling some aspects of bank operation). User and Bank interact only with
ATM, but not with each other.

Figure 6.11 presents the modeling of ATM in BIP:

• Initially at location l0, user can insert the card by insert transition and enter the
confidential code (enter transition). Then there are two cases: if the code is invalid,
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Figure 6.11: Modeling of ATM system in BIP

user gets back the card by eject transition and returns to the initial state l0; otherwise,
user continues by entering the amount of cash he/she wants to withdraw. If the
amount is not accepted, the transaction is canceled (cancel transition); else there are
two cases: transition fails (fail transition) or is ready (success transition) for user to
withdraw the money. Finally user gets back their card.

• Initially at location l0, ATM is waiting for user to insert the card (insert transition)
and then to enter the confidential code (enter transition). The time-out for entering
the code is 5 time units then it validates the entered code. If it receives non-authorized
for the code by non_authorized transition, invalid transition takes place and then it
ejects the card. If it receives authorized signal by authorized transition, the transition
validated takes place and it moves to a location where user can enter the amount of
cash. The timeout for entering the amount is 6 time units. If the user cancels the
transaction or the amount is not allowed, it returns to l6 to eject the card; else it
accepts the amount and starts the transaction. If the transaction is forbidden (veto
transition), it will announce to user by fail transition; else it will wait for user to
withdraw the cash (withdraw transaction) and eject the card to finish the transaction.

• For Bank, there are two components: BankValidation component checks the valid-
ity of PIN code and BankTransaction component checks whether the transaction is
forbidden (veto) or allowed (fiat). The use of these parallel components allows sup-
porting multi Users and multi ATMs.

We abbreviate port names by using their first three letters except val_ed for validated
and non_aut for non_authorized. We also use [port]ui , [port]ai , [port]bt, [port]bv to represent
respectively the ports of useri, atmi, BankTransaction and BankValidation components.
The set of interactions for an ATM system with n ATMs and n Users is as follows (Figure
6.11):

γ =
n∑

i=1

(insu
i insa

i + entui entai + val_edu
i val_eda

i + invu
i inva

i + amou
i amoa

i + canu
i cana

i
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Figure 6.12: ATM Verification Time

+accu
i acca

i + faiui faiai + sucu
i suca

i + witui witai + ejeu
i ejea

i + autai autbv + valai valbv

+non_autai non_autbv + fiaafiabt + vetavetbt + traatrabt + tica + ticbv + ticbt)

In the incremental construction, the ATM system with n ATMs and n Users is built
by the superposition of a set of n increments, each increment adds interactions for a set
of ATMs and a set of Users. An increment which consists of interactions overs the ATMs
from n1 to n2 is as follows:

δ[n1, n2] =

n2∑

i=n1

(insu
i insa

i + entui entai + val_edu
i val_eda

i + invu
i inva

i + amou
i amoa

i

+canu
i cana

i + accu
i acca

i + faiui faiai + sucu
i suca

i + witui witai + ejeu
i ejea

i + autai autbv

+valai valbv + non_autai non_autbv + fiaafiabt + vetavetbt + traatrabt + tica + ticbv + ticbt)

D-Finder reports deadlock-freedom on the ATM system. Figure 6.12 and Table 6.3
shows the experimental results on ATM system by different methods:

• Global method based on positive mapping can verify up to (100 atms + 100 users)
within 50 minutes.
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Component information Time (minutes)

atms locs intrs vars NuSmv PM FP IPM IFP

5 1104 902 102 5:15 0:3 0:2 0:4 0:4
50 1104 902 102 - 10:49 3:17 1:23 2:20
100 2204 1802 202 - 43:00 6:50 1:57 6:00
200 402 - - 14:30 4:37 14:00
250 5504 4002 502 - - 17:56 4:46 17:16
300 602 - - 21:24 8:14 22:21
350 7704 6302 702 - - 39:35 8:14 27:54
400 802 - - - 12:24 -
500 1002 - - - 18:05 -
600 13204 10802 1202 - - - 24:17 -

atms : number of atms PM : Global Positive Mapping
locs : number of locations FP : Global Fixed-point
intrs : number of interactions IPM : Incremental Positive Mapping
vars : number of variables IFP : Incremental Fixed-point

Table 6.3: Comparison between different methods on ATM system

• The time for the verification by the incremental method based on positive mapping is
almost linear. We built the ATM system by the superposition of a set of increments,
each increment adds interactions for (10 atms + 10 users) and two Bank components.
The reason for the good performance is that the number of common components
between increments is small (just two Bank components), and therefore the number
of common locations is also small.

• The global and incremental methods based on fixed-point have almost the same per-
formance when the size of system is not too big (up to 300 atms + 300 users). The
reason is that the number of iterations to get fixed-points is the same for any number
of atms and users and this number is quite small, 19 iterations. Therefore the global
method based on fixed-point is quite fast. Moreover, in the incremental method based
on fixed-point, in the final step where we compute global fixed-points starting from
fixed-points obtained from increments, the number of iterations is 11 which is not
much smaller than the number of iterations in the global method. That is the reason
for the same performance of two methods based on fixed-points.

6.4 NDD Module of Dala Robot

Robot Dala, an iRobot ATRV, has been developed at LAAS laboratory. It is composed of
three layers (Figure 6.13):

• Functional layer includes all the basic built-in robot actions and perception capacities
(image processing, motion control, etc.)

• Decisional layer produces the task plan and supervises its execution.
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• Execution control level is an interface between the decisional and functional layers
that controls the execution of services in the functional layer according to some safety
constraints.
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Figure 6.13: The Dala Robot Architecture

We have used BIP to model the execution control and functional layers of the robot Dala.
The functional layer consists of a set of modules. A module has a set of services, a set
of execution tasks and a set of posters where the produced data is stored. A service has
a controller and an activity. An execution task is composed of a timer, a scheduler and
an activity. We proposed the following grammar which allows building the functional level
starting from basic components:

Functional level ::= (Module)+

Module ::= (Service)+.(Execution task)+.(Poster)+

Service ::= (Service controller).(Activity)
Execution task ::= (Timer).(Scheduler activity)

where + (plus) means the presence of one or more subcomponent and . (dot) means the
composition of different components.

We have used D-Finder to check deadlock-freedom of a module in the functional level,
module NDD (Figure 6.14), which is one of the most complex modules. It has totally
27 components, 144 control locations, 117 connectors between components, 16 boolean
variables and 11 integer variables. NDD module is responsible for the navigation of the
robot, that is to reach a goal while avoiding obstacles. It consists of the following control
elements:
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• InterfaceServer is the interface of the module with the decisional layer. It checks the
mailbox which is a shared memory and if there is any message, it will read the content
and then sends requests to the corresponding service.

• ExecutionControl keeps information about the number of services running in the
module. If a service is triggered, it increases the number by 1, if a service finishes, it
decreases the number by 1.

• ExecutionTask runs periodically to synchronize the executions of different services,
that is different services can be executed within a period but a service can not be
executed more than one time within a period.
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Figure 6.14: NDD Module

and the following services:

• PermanentTask computes the speed of the robot and it is executed periodically during
the execution of the robot.

• Init service initializes the module.

• SetParams service sets the necessary parameters of the module.

• SetSpeed service sets the moving speed of the robot which is computed by Perma-
nentTask.
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• GoTo service allows the robot moving to a given destination.

• Stop service allows stopping the robot at any time.

NDD also has a set of components called Poster (SpeedPoster, ParamPoster, Diagram-
Poster, AspectPoster, RefPoster, GoalPoster, AgePoster, MasterPoster) where data pro-
duced by the services of the module is stored and exchanged between different services of
NDD or with services of other modules.
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Figure 6.15: A service

A service basically has two components (Figure 6.15): a Controller and an Activity.
The Controller receives requests (trigger transition), checks parameters and execution con-
ditions (control transition) and if everything is fine, the Controller will trigger the Activity
(start transition) to perform the request. The Controller can cancel the request if there
is an error (error transition) or conflict (abort transition). The Controller updates the
status of the Activity by finish, inter and fail transitions. And finally, it sends a report
(send_final_report transition) to the ExecutionControl component.

The Activity is triggered by the Controller (start transition) and then it executes its
functions to perform the requested task (exec, internal_exec transitions). The execution
may finish normally (finish transition), may fail (fail transition) or may be interrupted
(inter transition). In any case, the Activity informs the result to the Controller.

We have first used the global symbolic method implemented in D-Finder to check the
deadlock-freedom of NDD. We have found potential deadlocks due to the strong synchro-
nization between the timers. We have then fixed these problems and verified again. Finally
we obtained the result proving deadlock-freedom of the module. The verification time of
the global method by positive mapping is up to 3 hours. However, the incremental verifi-
cation method based on positive mapping reduces dramatically the verification time: the
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module comps locs intrs vars time (minutes) memory (mb)

RFLEX 56 308 227 35 9:39 165
NDD 27 152 117 27 14:25 113
SICK 43 213 202 29 6:07 92
Aspect 29 160 117 21 1:00 80
Battery 30 176 138 23 4:34 65
Heating 26 149 116 19 0:39 57
Platine 37 174 151 25 8:47 97

module : module name intrs : number of interactions
comps : number of components vars : number of variables
locs : number of locations

Table 6.4: Time and memory usage for the verification of Dala robot modules

deadlock-freedom of the module is proven within 20 minutes. In the incremental construc-
tion and verification process, we build and check the deadlock-freedom of the NDD module
from the following increments:

• increment 1 consisting of interactions between PermanentTask, Init, AspectPoster,
InterfaceServer, ExecutionTask, Lock and ExecutionControl,

• increment 2 consisting of interactions between SetParams, SetSpeed, InterfaceServer,
ExecutionTask, Lock and ExecutionControl,

• increment 3 consisting of interactions between GoTo, Stop, InterfaceServer, Execu-
tionTask, Lock and ExecutionControl,

• increment 4 consisting of interactions between DiagramPoster, RefPoster, Param-
Poster, GoalPoster, SpeedPoster, AgePoster and MasterPoster.

Table 6.4 shows the verification time and memory usage for checking deadlock-freedom
of other modules in the robot Dala by D-Finder using the incremental positive mapping
method. D-Finder detected deadlocks in several modules. Based on the detected dead-
locks, we fixed their models and then we successfully proved the deadlock-freedom of these
modules.

6.5 Summary

We have provided the experimental results on the verification of several case studies by D-
Finder. The experimental results have shown the efficiency of the methods and the capacity
of D-Finder. D-Finder is able to check deadlock-freedom of systems up to more than ten
thousands of components, more than fifty thousands of control locations and about the
same number of interactions. Besides the scalability, D-Finder also shows the capacity in
dealing with complex systems with a significant number of boolean and integer variables.
Moreover, the different methods implemented in D-Finder allows handling many kinds of
systems such as cycle-structure or star-structure systems.
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We also compare the verification time and memory usage by D-Finder of some case
studies with an well-known model checking tool NuSmv. In all the case studies, D-Finder
provides much better performance than NuSmv in both verification time and memory us-
age. Moreover, the experimental results also show the significant gain by the incremental
verification methods compared to the global verification.
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Conclusions and Perspectives
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In this chapter, we conclude the thesis describing the main objectives of the work, the
goals we have achieved, the future work directions and its perspectives.

7.1 Conclusions

Constructing correct systems is alway an essential requirement for engineers. However with
the growing demand of the complexity and of the size of systems, it becomes more and
more difficult to build correctly a system with respect to its specification. The violation of
some property in systems, specially in critical systems, might cost expensively. Therefore
the check of correctness is essential to guarantee the correct behavior of the system.

In this thesis, we propose a compositional verification method for checking safety prop-
erties of component-based systems described in the BIP language. Our method is based on
the the use of two kinds of invariants: component invariants which approximate reachable
states of atomic components and interaction invariants which characterize global constraints
induced by strong synchronizations between atomic components.

There are two key issues in the application of the method. The first is the choice of
component invariants depending on the property to be proved. The second is the com-
putation of the corresponding interaction invariants. Here there is a risk of explosion, if
exhaustiveness of solutions is necessary in the analysis process. However, this issue is solved
by using symbolic computation using BDDs.

For the computation of component invariants, we use lightweight techniques which allow
computing increasingly stronger component invariants by using forward propagation over
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the transitions of components.
For the computation of interaction invariants, we have proposed different methods using

both SMT Sat-Solver and BDDs. The enumerative method using CUDD package or Yices
computes explicitly the set of interaction invariants. This method provides a clear, visual
view on the invariants and it is efficient for the systems of which the number of invariants
is not too big. The symbolic methods using CUDD package compute interaction invariants
based on symbolic operations performed directly on the BDDs. One symbolic method is
based Positive Mapping operation which removes symbolically the negative valuations of
variables from Boolean Behavioral Constraints. The other symbolic method uses fixed-
point computation technique to compute, starting from the set of single locations, all the
locations that can be reached from these locations by any interaction of the system.

The application of our verification method for proving deadlock-freedom of component-
based systems is promising. The class of component invariants that we use captures well
enough guarantees for component deadlock-freedom. Their computation does not involve
fixed-points and avoids state space explosion. The verification method applies an iteration
process for computing progressively stronger invariants. Best precision is achieved when
component reachability sets are used as component invariants. This is feasible for finite
state components. There are no restrictions on the type of data as long as we stay within
theories for which there exist efficient procedures.

We have also improved significantly the compositional verification method by proposing
incremental construction and verification method. The incremental method take advantage
of properties of the construction process based on the assumption that composite compo-
nents can be obtained from a set of atomic components by superposition of increments.
The verification should be applied in each stage of incremental construction process in or-
der to detect early the violations. Hence the reuse of established properties in the checking
of global properties is essential to reduce the verification cost. We proposed the rules on
invariant preservation from which the established properties are not violated during the
incremental construction. For the general systems where the preservation rules may not
hold, we proposed a method for incrementally computing invariants from the established
invariants of the increments.

Since the compositional and incremental methods are limited to systems without data
transfer over interactions, we have provided a method allowing dealing with systems with
data transfer. The method is based on the transformation of systems with data transfer
into equivalent systems without data transfer on which the compositional method can be
applied. The transformation is done by taking into account the data transfer in computing
component invariants and by replacing data transfer over a set of interactions by a com-
ponent called “interaction component”. This method has not been implemented but the
results obtained on several examples show the perspectives of the method.

We have fully implemented compositional and incremental methods in the D-Finder
tool. D-Finder allows checking safety properties, specially deadlock-freedom, of component-
based systems described in BIP. The implementation of different methods using different
techniques make D-Finder efficient in dealing with many kinds of systems, for example “star-
structural” systems, “cycle-structural” systems. It also allows users choosing the appropriate
method and technique according to their systems to be verified.
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We have used D-Finder for checking deadlock-freedom of several non-trivial case studies
which showed the capacities of D-Finder as well as the efficiency of the methods. Two case
studies without data (Dining Philosopher, Gas Station) are used to check the scalability
of the methods. Two other case studies with data (ATM machine, NDD module of Dala
robot) are used to show the capacities of the methods in dealing with complex systems.
Specially, NDD is a module of Dala robot, a real complex case study of our projects, where
D-Finder detected errors in the model. The obtained experimental results by D-Finder
are really convincing. D-Finder can handle very large systems with acceptable verification
time and memory usage. The experimental results also show significant gain of incremental
compositional methods compared to global compositional methods in both verification time
and memory usage.

We also compared D-Finder to a well-known monolithic tool NuSmv. In [CAC08],
Cobleigh et al. show for a set of finite state benchmarks that only for 30% of the considered
benchmarks, assume-guarantee tools outperform model-checking tools. On the contrary, for
all the case studies that we have verified by using D-Finder and monolithic model checkers,
D-Finder outperform these tools, in particular for large systems, in both verification time
and memory usage. Of course this comparison is not completely balanced because D-Finder
uses heuristics and is tuned for checking deadlock-freedom.

7.2 Perspectives

The main perspectives of our works can be categorized in two directions:

• The extension of the usability of component verification which involves the following
aspects:

– First, the tool should be able to handle richer models, e.g., the method for dealing
with data transfer should be implemented in D-Finder.

– Second, the methods should provide counter-example guided abstraction refine-
ment. The idea is to apply the method presented in [BM07] which allows gener-
ating an inductive invariant corresponding to a counter-example. If we succeed
to find this invariant, the counter-example is excluded. Moreover, we can use
this invariant to strengthen the already established invariants and therefore to
eliminate many others spurious counter-examples.

– Third, we can develop heuristics for properties other than deadlock-freedom,
e.g., partial deadlocks, live-lock. We have exploited the invariants corresponding
to notions of traps in Petri-net. However, there is another kind of constraints to
be exploited which corresponds to the notion of locks in Petri-net. That is if a
set of locations is not reached, it will be not reached forever. By combining the
these two kinds of constraints, we can detect local deadlocks of systems.

• Although the experimental results already shows the scalable capacity of the methods,
we still want to increase the scalable capacity by using other techniques for gener-
ating components invariants, by developing connection with Z3 SMT Solver or by
considering compositional abstraction methods.
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