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Introduction

Context and problematic

Systems-on-Chips (SoCs) are gradually becoming an essential aspect of our professional and
personal lives. From avionics, transport, defense, medical and telecommunication systems to
general commercial appliances such as smart phones, high definition TVs, gaming consoles;
SoCs are now omnipresent, and it is difficult to find a domain where these miniaturized sys-
tems have not made their mark. In accordance with Moore’s law that will probably hold true
for the next several years, the continuous hardware evolution has permitted to double the num-
ber of integrated transistors in a single chip. Already, the 45nm technology mark has been
achieved, with future evolution aiming to move into the field of quantum or nanoelectronics, in
order to achieve the elusive single digit nm technology node. These future SoCs will be heavily
integrated in human lives, such as their implantation in human body to regulate body functions
and to monitor behavior; helping in executing tasks such as cooking, shopping and even driv-
ing advanced autopilot cars, akin to flyingmodern aircrafts with fly-by-wire and remote-control
driven systems.

Modern SoCs are also considered as an integral solution for designing embedded systems.
According to a modest estimate, until now, during the writing of this thesis; the global embed-
ded systems market has a current value of 88.144 million U.S dollars with an average annual
growth rate of 14%, due to the sale of over 10 billion embedded processors in 2008. Similarly,
the embedded software market has a current value of 3.488 million U.S dollars with an average
growth of 16%. SoCs offer advantages in the embedded domain such as reduction of physical
surface area, consumed energy and overall fabrication costs. These SoC based embedded sys-
tems generally target data intensive processing (DIP) applications where large amount of data are
processed in a regular manner by means of repetitive computations.

In addition to requiring more computing power, these applications are often subjected to
timing constraints that must be respected. Additionally, in order to keep up to pace with the
rapid hardware evolution, SoC software developers need to increase the computational capac-
ity of the targeted applications, for handling large numbers of incoming signals/data, on which
computations are to be applied rapidly. Optimization of these functionalities often results in par-
allelization of applications and resources that make up the embedded system. The parallelism
increases the number of computations executed at a time while limiting the energy consump-
tion levels. In SoCs, it is also possible to execute these applications as hardware functionalities:
i.e., hardware accelerators, in order to perform a parallel execution in comparison to a sequential
one. A hardware accelerator is an electronic circuit specifically designed to handle systematic
signal processing, and permits maximum parallelization of the computations necessary for the
execution of an application.

Reconfiguration can be seen as an integral feature of modern SoCs based embedded systems,
in an increasingly evolving market space. A reconfigurable SoC offers increased functional ex-
tensibility in return for lower performance. These systems can be reconfigured an arbitrary
number of times and offer designers the means to add new functionalities and make system
modifications after the fabrication of a SoC. Dynamic reconfiguration, which is a special type
of reconfiguration, enables system modification at run-time, introducing the concept of virtual
hardware. Thus designers can change the executing applications on these systems, depending
upon Quality-of-Service (QoS) criteria related to the environment or the platform: such as used
surface area, energy consumption levels, etc. Currently, Field Programmable Gate Array (FPGA)
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based SoCs offer an ideal solution for implementing dynamic reconfiguration. Moreover, SoC
application functionalities can be easily implemented as hardware designs on these reconfig-
urable SoCs. As compared to traditional SoCs, these dynamically reconfigurable SoCs offer
advantages such as low energy consumption, increased flexibility; with the compromise of ad-
ditional costs per unit. Normally, these systems also integrate some sort of a reconfiguration
controller that manages the reconfiguration process between the static and dynamically recon-
figurable regions of the system. This module is one of the key integral concepts in the system,
and is usually associated with some control semantics such as petri nets, state machines or au-
tomata. While much work has been realized related to run-time reconfigurable systems, many
of the research efforts have been primarily motivated by proposals of new reconfigurable archi-
tectures; and optimizations of the related low level technical details, that require careful manip-
ulations. Consequently, not enough attention has been given to the application-driven research.
This is one of the possible primary reasons why partial reconfiguration has not taken off in the
SoC industry.

In thewake of the continuous hardware/software evolution related to SoCs and the addition
of features such as dynamic reconfiguration, the complexity of design and development of SoC
has escalated to new heights in an exponential manner. If more hardware components are
integrated, or an application is deemed to providemore features, development costs and time to
market shoot up proportionally. Without the usage of effective design tools and methodologies,
large complex SoCs are becoming increasingly difficult to manage, resulting in a productivity
gap. The design space, representing all technical decisions that need to be elaborated by the
SoC design team is therefore, becoming difficult to explore. Similarly, manipulation of these
systems at low implementation levels such as Register Transfer Level (RTL) can be hindered by
human interventions and the subsequent errors.

It is therefore essential to offset the gradual building complexity of SoC by intensifying the
productivity of SoC designers. Indeed, it is one of the primary objectives in order to avoid the
rising development costs. Moreover, even if the cost was not a crucial constraint, the size of
a design team cannot be increased endlessly. There comes a time when the division of labor
no longer helps in reducing design time. This design time is directly linked to the time-to-
market, in order for a SoC vendor to be the first to produce a specific product in the electronics
industry. This in turn, insures a successful profit and helps in attaining a dominant foothold in
the industry.

Currently, we are therefore facedwith a need to designmore effective SoCs. Variousmethod-
ologies and propositions have been proposed for this purpose. A Platform or component based
approach is widely accepted in the SoC industry, permitting system conception and eventual de-
sign in a compositional manner. The hierarchy related to the SoC is visible quite clearly, and
designers are capable to re-use components that have been either developed internally or by
third parties. Other methodologies make use of high abstraction levels, in order to elevate the
low level technical details. The management of parallelism and repetitiveness in the system is a
key point that ought to be treated specifically, and must be conserved irrespective of the design
methodology. In addition, these systems should also be eventually developed, and efforts must
be made to maximize debugging and testing for minimizing the manufacturing costs, power
consumption levels and system size.

Contributions

It is in the context of improving the primary productivity of parallel embedded reconfigurable
SoCs, that this dissertation finds its proper place. One of the primary guidelines followed dur-
ing this work is the utilization of Model-Driven Engineering (MDE) for SoC Co-Design specifica-
tion and development. MDE is able to benefit from a component based model driven approach,
allowing to abstract and simplify the system specifications, while integrating a compilation
chain to transform the high level models into suitable code for SoC creation. The SoC Co-Design
specifications have been provided by the Object Management Group (OMG); in the form of the
Modeling and Analysis of Real-Time and Embedded Systems (MARTE) Unified Modeling Language
(UML) profile that is gradually becoming the de-facto industry standard, enabling increased
synergy between SoC vendors, designers and eventual users.
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One of the objectives of this dissertation was to evolve the MDE compliant Gaspard2 SoC
Co-Design framework that has been developed by the DaRT project-team at INRIA Lille-Nord
Europe. Gaspard2 uses the MARTE profile for unified high level specifications of SoC applica-
tions and architectures; along with their allocations and the eventual deployment to Intellectual
Properties (IPs). This representation is carried out in a graphical manner, and enables to target
different execution platforms for automatic generation of the respective code.

However, while Gaspard2 and in turn MARTE, permits abstract modeling of SoCs, in the
particular case of dynamically reconfigurable SoCs, the specifications lack suitable control se-
mantics for expressing reconfigurability at the high abstraction levels. Similarly, it is not evident
to determine which parts of a reconfigurable system can be specified via the MARTE specifica-
tions. In turn, the modeled SoCs are static in nature, and minute changes require modification
of the designmodels. Our dissertation addresses these limitations and introduces several contri-
butions which help to integrate dynamic reconfiguration in Gaspard2. The main contributions
of this dissertation are defined below:

• Selecting parts of dynamically reconfigurable SoCs for high level MARTE modeling: One
of the initial challenges faced by a SoC designer is selecting parts of the reconfigurable
system for eventual specification at the high abstraction levels. As described in the pre-
vious section, with respect to partial dynamic reconfiguration, research is more oriented
towards architectural aspects as compared to being application-driven, resulting in grad-
ual decrease in the evolution of this particular domain. Additionally, it is currently not
a simple task to bridge the gap between high level MARTE models and the SoC vendor
proprietary tools that help in the construction of these systems. This is one of the reasons
that we have selected to base this dissertation on an applicative oriented approach for the
conception of reconfigurable SoCs. We intend to provide high level models of two key
aspects related to a reconfigurable SoC, namely the control semantics related to the recon-
figuration controller; and the dynamically reconfigurable region which is created from the
MARTE compliant application model.

• Introduction of control semantics: Related to the first contribution, we initially provide
generic control semantics in the Gaspard2 framework. The introduced semantics permit
to integrate reconfigurability features at high modeling levels in Gaspard2, and respec-
tively in MARTE. Mode-automata control semantics were chosen due to their composi-
tional nature, facilitating integration in a component oriented MDE methodology. While
the control semantics can be added to any modeling level in a SoC framework, with re-
spect to run-time reconfiguration, the deployment level has been targeted for the success-
ful integration of the control semantics. These control semantics are related to producing
part of the code of a reconfigurable controller, for managing the dynamically reconfig-
urable region.

• Integrating configurations in deployment modeling level: Currently, one of the main fea-
tures of Gaspard2 is the ability to link the elementary components of the modeled applica-
tion/architecture to the available user defined or third party intellectual properties. Along
with the integration of control semantics, the current deployment level has also been ex-
tended to integrate the notion of configurations, which are unique global implementations
of a high level modeled application functionality, with each configuration comprised of
different combinations of IPs related to the elementary components. Using a combination
of the deployment level and the introduced control semantics, it is possible for a designer
to change the global configuration related to an application, permitting different results.
Ultimately, the MARTE metamodel and profile, respecting the MDE principles, have been
extended to support the control and deployment semantics; enabling expression of the
introduced semantics at the UML modeling level.

• Hardware execution model for reconfigurable MARTE applications: Another significant
contribution related to this dissertation is the proposal of a specific hardware execution
model. The model describes the behavior of a high level modeled MARTE application in
the context of the Gaspard2 framework, when it is translated into a hardware functionality
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for execution as a hardware accelerator. This hardware accelerator is treated as a dynam-
ically reconfigurable region in a targeted reconfigurable SoC, with the associated global
configurations serving as its different implementations. Among several available execu-
tion models, we have selected an execution model that corresponds to the requirements
of dynamic reconfiguration.

• Concepts for transforming high level models into Register Transfer Level equivalents:
This contribution introduces the Register Transfer Level (RTL)metamodelwhich comprises
of two different aspects. Firstly, it incorporates the concepts for translating the application
model into a hardware functionality using the execution model described previously. Sec-
ondly, the metamodel enriches the control semantics with details related to RTL. The two
aspects although share certain common metaclasses, are quite different in nature. The RTL
model, which is an instance of the RTL metamodel, mainly corresponds to the description
of the dynamically reconfigurable hardware accelerator and is the end model from which
eventual code can be generated.

• A complete transformation chain: Model transformations in our design flow enable cre-
ation of a complete model transformation chain for automatic code generation of high
level MARTE compliant UML models. The model-to-model transformations in our flow
permit to move from high level UML models to the RTL model, all the while enriching
the intermediate models. Thereafter, a model-to-text transformation generates HDL code
equivalent to the different implementations of the hardware accelerator. At the same time,
C/C++ language code is generated for the switch mechanism related to the reconfigura-
tion controller. Henceforth by using commercial synthesis tools, it is possible to create a
dynamically reconfigurable SoC.

Finally, the various contributions were implemented in the existing Gaspard2 framework.
Our design flow is built on the MDE principles which are used throughout the life cycle of our
methodology. We also limit the targeted application domain and the control semantics due to
certain limitations present in MARTE and in the Gaspard2 framework.

Plan

Our research tries to respond to some of the critical questions: how to model complex applica-
tions using the MARTE profile ? how to provide a control semantics at high modeling levels ?
how to integrate these models into a SoC Co-Design framework ? how to use these models for
implementation in a dynamically reconfigurable SoC ? how to generate code from these high
level models ?. We offer some answers regarding these questions in this document, with the
subsequent plan as follows:

This dissertation is structured into three main portions. The first part concerns the basic
concepts related to SoC, dynamic reconfiguration, component based design, MDE and the Gas-
pard2 framework.

• Chapter 1 : Systems-on-Chip: The first chapter gives a brief overview of concepts related
to SoCs such as the SoC Co-Design approach; and afterwards sheds lights on reconfig-
urable computing. We focus specially on dynamic reconfiguration in SoCs and provide
some in-depth details related to its functioning.

• Chapter 2 : Component Based Design: This chapter highlights a popular design methodol-
ogy offering possible partial solutions to reduce the problems plaguing the SoCCo-Design.
Concepts related to component models and frameworks are described while maintaining
the link with dynamic reconfiguration.

• Chapter 3 : Model-Driven Engineering and MARTE: An overview related to the basic ter-
minologies related to MDE concepts is provided, such as models, metamodels and model
transformations. Finally the MARTE profile has been summarized, along with its limita-
tions regarding reconfigurability features.
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• Chapter 4 : Gaspard2: An MDE-based framework for SoC Co-Design: The Gaspard2 SoC
Co-Design Framework is introduced in this chapter. Information about different available
modeling levels is given with special emphasis on the application and deployment levels
that are featured in this thesis.

The second and third portions of this dissertation are related to the personal contributions.
The second portion highlights the concepts that have been integrated in our design flow at the
high abstraction levels, for the eventual implementation and code generation phases, which are
detailed in the third portion.

Figure 1: This thesis: a combination of several domains

• Chapter 5 : Methodology for global contribution: This chapter summarizes the global
contributions of this dissertation. We first present the motivations behind our proposed
approach followed by the presentation of our design flow.

• Chapter 6 : Expressing adaptivity for SoC with MDE: This chapter first provides the basic
conditions and abstract concepts for the generic control models at different SoCCo-Design
levels. Afterwards, the different control models are compared, resulting in integration of
control semantics at the novel deployment level. Thereafter, concrete high level concepts
are provided to integrate the control and configuration aspects in the MARTE metamodel
for the eventual model transformations.

• Chapter 7 : A metamodel for targeting Register Transfer Level: This chapter provides
the details related to the RTL metamodel and the underlying concepts. We first describe
the choice of selecting a hardware execution model and the associated conditions, that
allow to describe the behavior of the hardware accelerator for executing the high level
modeled application. Equally, the RTLmetamodel contains concepts related to the control
semantics expressed at the modeling level. These semantics are converted into the code
for the reconfiguration controller by means of the model transformations present in our
design flow.

• Chapter 8 : Model transformations and code generation: The chapter specifies the dif-
ferent types of model transformations present in our design flow. The two main model-
to-model transformations permit to transform the high level models into an RTL model;
from which eventual code is generated for the hardware accelerator and the controller by
means of a model-to-text transformation.

• Chapter 9 : Case study: The validation of the transformation chain has been carried out by
means of a case study. An application illustrating a delay estimation correlation module
in an anti-collision radar detection system has been modeled via the MARTE profile, and
is subsequently deployed along with integration of the control semantics. The generated
code is then taken as input by commercial synthesis tools for final implementation on a
target FPGA based reconfigurable SoC.
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Finally, Figure 1 illustrates the various domains and methodologies contributing to this dis-
sertation. The MDE framework provides the solutions of modeling and model transformations
that bridge the gap between high-level specifications and low-level execution models. Control
semantics, specially mode automata semantics offer modular-base control aspects. Reconfigura-
bility, and especially dynamic reconfigurability, one of the emerging trends in SoC Co-design
is also explored. Finally we also focus on parallel data intensive processing applications which
are mainly used in these SoCs, and are specially targeted in Gaspard2.
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1.1 Introduction

Since the early 2000s, Systems-on-Chip (or SoCs) have emerged as a new paradigm and one of
the principle solutions for embedded systems design. Thanks to the rapid evolution in semi-
condutor technology, in a SoC, all the necessary components can be integrated in a single chip.
Most Systems-on-Chip (SoC) designs are based on a platform-based solution, where standard
components like microprocessors make up significant portion of the SoC. The components to be
integrated can be any of, but not restricted to, the following components listed below:

• Processors (Hard/Soft core microprocessors, Digital Signal Processors (DSPs), etc.);

• Memory blocks (RAM, ROM, Flash, etc.);

• Inter-component communication connections (bus, crossbar, Network-on-Chip, etc.);

• External interfaces (USB, FireWire, Ethernet, PCI, etc.);

• Analog/digital converters;

• Sensors;

• Timing sources (clocks, oscillators, phase-locked loops, etc.);

• Reconfigurable elements, such as Field Programmable Gate Array (FPGAs).
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As the whole system is integrated into a single chip, the system size is restricted by the chip
size. It has been estimated that the number of integrated transistors on chip increases by 50
% per year. Moreover, as the integration level escalates in accordance with Moore’s law [163],
the chip size is getting smaller and smaller. For example, TSMC started to produce 0.183 mm2

32 nanometer SRAM cells from 2005. Similarly in July 2009, Synopsys along with ARM, IBM,
Samsung Electronics and Chartered Semiconductor Manufacturing announced an agreement
to develop low power 22 nanometer node technologies which should be available by the end
of 2011. In August of 2009, research using DNA origami on silicon showed promising results
for reaching the six nanometer mark which is eight times better1 than the current industry pro-
cess. According to a safe estimate, this approach can be viable in the next 10 years. Similarly,
in September 2009, Intel unveiled the "Sodaville" 45nm Atom CE4100 SoC2 to bring multimedia
applications and specially Internet content to digital electronic devices, with a clock speed of
12 GHz. The reduction in size of a SoC is highly beneficial to the development of mobile elec-
tronic devices, such as smart phones and tablets which themselves, in turn, are becoming more
miniaturized. Low energy consumption is also one of the most significant features of SoCs: as
these SoCs are usually placed in other systems, or implemented as mobile systems; which do
not always provide large amounts of energy. In comparison with computing power growth,
research into improving energy technology has demonstrated a tardy progress. In consequence,
the low-energy consumption will be critical for future mobile devices, as the on-die signal de-
livery in SoCs helps to consume less energy. Figure 1.1 illustrates an example of a SoC with its
interconnected components. This chapter details the different aspects of SoC, such as SoC de-
sign methodologies, the targeted application domains and reconfigurable computing which is a
critical feature of modern SoCs. Afterwards we take a look at reconfigurable SoCs and different
types of reconfiguration currently existing in reality. Finally, issues related to SoC Co-Design
are mentioned at the end of the chapter.

Figure 1.1: An example of SoC from Wikipedia: consisting of an ARM based processor along
with communication interfaces

General computer systems are conceived as self-contained systems, which are capable of per-
forming general purpose computing tasks. Whereas SoCs can integrate dedicated hardware,
such as DSPs and hardware accelerators, to parallely execute specific applications or compu-
tation tasks (e.g., signal/image/video processing, Fast Fourier Transforms or FFTs3, Discrete

1http://news.bbc.co.uk/2/hi/technology/8204906.stm
2http://news.cnet.com/8301-13924_3-10361101-64.html
3http://en.wikipedia.org/wiki/FFT
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Cosine Transform or DCTs4, encryption, etc.); which can take too long for serial execution in an
embedded microprocessor. The software part of a SoC is written in accordance with the charac-
teristics of the hardware components (such as execution speed, memory availability etc). Gener-
ally, there are few software layers and the OS (Operating System) is minimal or non-existential.

Nonetheless, the design and manufacturing of SoCs is a costly and time consuming process.
For example, for fabrication on silicon, SoCs require creation of masks, which can cost about a
couple of million of Euros. Moreover, the process of photolithography requires mandatory ultra-
clean workspaces. Hence, manufacturing of SoCs is always involved in mass production as
compared to costly prototypes; in order to reduce the overall costs including non-recurring
engineering (NRE).

TowardsMultiprocessor SoCs. Additionally, due to the strong requirements of the embedded
systems community; and considering constraints such as time-to-market, fabrication costs etc.,
SoCs are expected to be specialized to respond to the previously mentioned needs, as well as
to the needs for flexibility, high-performance etc. Also due to physical constraints related to
frequency and voltage, it is not possible to just simply increase the size of the processor. It is
therefore necessary to put several processors in a SoC.

Multiprocessor SoCs (MPSoCs) [128] are thus emerging, where multiple homogeneous or
heterogeneous processing elements are integrated on the chip such as in Tile64 [25]; together
with on-chip interconnections like Network-on-Chip (NoC) [28], hierarchical memory, I/O com-
ponents, etc. MPSoCs are expected to satisfy the high-performance and low-energy consump-
tion requirements demanded by targeted SoC applications. The performance of these archi-
tectures corresponds no longer to the speed of program instructions (as in the case of normal
monoprocessors), but it is the absolute sum of the speed of the instructions of the different cores
and the available processors.

1.2 SoC design

The SoC design develops into a system design, as the chip itself is a complete system. SoC sys-
tem level design takes advantage of existing technologies to address SoC complexity issue [51],
such as system level architecture and architectural verification, hardware/software Co-Design,
and high level modeling.

1.2.1 SoC Co-Design

In [94], Gajski and Kuhn presented the Y chart for representing the different stages in SoC con-
ception. A SoC design can be considered from three basic viewpoints, irrespective of its com-
plexity. Each of the viewpoints represents a different aspect of the system. The Y chart has
three axes to represent behavioral (functional) specification, structure (electronic description)
and geometrical layout (physical arrangement) respectively. The Y chart also depicts different
levels of abstraction in the design. Several levels are illustrated through circles from outside to
the center in Figure 1.2. These levels denote different granularities and precisions in the design.
SoC development tools help to move from high levels to more detailed low levels and aid in
moving between the axes, with the final goal to have a precise physical design layout.

Inspired by the Y chart, the Y schema is generally adapted to represent the SoC Co-Design
approaches. Its three axes represent functional behavior, hardware architecture and final im-
plementation in specific technologies (e.g., circuit, programming languages, etc.). The central
point of these three axes denotes the allocation of the application resources (data and instruc-
tions) onto the hardware resources (such as processors and memories). In parallel, elementary
concepts in software and hardware can be deployed with user defined or third party Intellectual
Properties (IPs) implemented by some specific technologies.

As seen in Figure 1.3, the architectural (hardware) and behavioral (software) parts of a com-
plete system can be developed in parallel by different teams in order to benefit from their re-
spective experiences in different domains. Moreover, concurrent and parallel development of

4http://en.wikipedia.org/wiki/Discrete_cosine_transform
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hardware and software by different teams helps to shorten the overall design time. For instance,
the software teams need not wait for the final configuration/netlist5 of architecture conceived
by hardware teams; to start software development. The application behavior is then mapped
onto the hardware architecture, on which different analyses (such as simulation) can be carried.
Analysis results can be used for the modification of the original design at the system modeling
stage; and at the mapping stage for different purposes resulting in a Design Space Exploration
(DSE) strategy. If the mapping result is approved by the analysis, it can be utilized for imple-
mentation purposes.

Figure 1.2: Y chart for the system-level design

Figure 1.3: SoC Co-Design flow [51]

In the hardware design, IP building blocks have been widely used in the SoC design for
re-usability, cost effectiveness and time-to-market reasons. SoC hardware IPs can involve pro-
cessors, memories, I/O, etc. SoC software can also have IPs, such as some elementary functions
in embedded multimedia processing, which include FFTs, filters, codecs, etc. IPs help SoC de-
signers to avoid re-inventing the wheel for existing designs and help to reduce development

5In electronic design, a netlist describes the connectivity of the design
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time. IP technology has turned out to be one of the most encouraging aspects in the SoC ap-
proach, facilitating rapid design and development.

1.2.2 SoC application domains

Due to their numerous advantages, such as low energy consumption, powerful computing ca-
pacity and small size, SoC based embedded systems are omnipresent nowadays. For example,
as compared to 260 million processors that were sold in 2004, 14 billion embedded processors
(such as microprocessors, DSPs, micro-controllers, etc.) have been sold in 2008. The previously
mentioned characteristics make SoCs well adapted for diverse application domains such as
defense industry, satellite based systems, telecommunications, aeronautics, automobile, trans-
port, domestic appliances, medical equipments, mobile electronic products, etc. The targeted
embedded applications cover both critical as well as non-critical systems. Current SoC based
embedded systems can be used in more complex systems, such as electronic commerce, video
processing etc; as well as commercial electronic products for the general public (smart phones,
PDAs, set-top boxes, gaming consoles etc).

High-Performance Computing (HPC). HPC applications indicate a significant application do-
main of SoCs, such as embedded multimedia devices, radar/sonar signal processing devices,
defense based missile trajectory/tracking systems etc., which have become quickly widespread
over recent years. The applications on these devices are always involved in signal (data)-
intensive parallel computing, which are generally regular for reasons of high performance.
Moreover, some specific building blocks on SoCs are dedicated for handling large amounts
of data parallel processing with performance. These blocks can include DSPs, hardware accel-
erators, GPUs (Graphical Processing Units) etc.

1.3 Reconfigurable computing

Reconfigurable computing is also an emerging paradigm for present and future computing re-
quirements of embedded applications, in terms of flexibility and performance. Conventional
execution of complex algorithms employs two methods. The first is using traditional Von Neu-
mann computing by programming microprocessors, micro-controllers with sequential based
data processing. The secondmethod is the usage of application specific processors or integrated
circuits such as ASICs (Application Specific Integrated Circuits) with real data parallel process-
ing. The first solution offers increase flexibility with degraded performance while in the second
solution, the system is designed for customized applications with tight performance constraints
(such as latency, throughput, power consumption, area etc.); making future modifications non-
cost effective and improbable. The gap between these two approaches can be bridged by using
Reconfigurable Computing Systems (RCS) that were first introduced in the 1960s6. The general
definition of RCS can be stated as:

Computing via a post-fabrication and spatially as well as temporally programmed connection of
processing elements [34]

In a reconfigurable computing system, both the hardware and software parts can be recon-
figured depending upon the designer requirements. In [109], different terminologies such as
Configware, Morphware and Flowware have been used in connection with the development of
reconfigurable systems.

These reconfigurable systems normally consist of a matrix of large reconfigurable fabric (i.e.
computational units), along with a dense reconfigurable routing network superimposed on the
fabric. This fabric permits creation of custom functional units. These systems embed fine or
coarse-grain elements (logical functions, operators, memory blocks, etc.) which are organized
into clusters. A system might also incorporate some controlling processors which are coupled
with, or embedded in the fabric. The processor(s) can execute non-critical code sequentially,

6http://en.wikipedia.org/wiki/Reconfigurable_computing
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while key kernels of application that are time critical, exhibit high degree of parallelism and
could be efficiently mapped to hardware; can be ’executed’ by processing units that have been
allocated to the reconfigurable fabric, such as in the case of an FPGA. These mapped tasks/func-
tions can take advantage of the parallelism achievable in a hardware implementation (such as
hardware accelerators). Thus the interfaces between the processor(s) and the fabric, as well as
the interfaces between the fabric and the available memory are of utmost significance. Finally,
a system designer can develop the optimal combination of functional and storage units in the
reconfigurable fabric, providing an architecture that supports the application.

1.3.1 Classification of Reconfigurable Computing Systems

A detailed overview of reconfigurable computing systems has been presented in [55] and [249].
The main characteristics that nearly all these systems have in common are normally spatial
computation, distributed control, distributed resources and presence of a configurable datapath.
A large number of reconfigurable systems have been conceived by researchers as well as the
industry. These systems can be classified on the basis of several parameters [55]:

Figure 1.4: Architecture flexibility with regards to granularity and performance

• Granularity: The granularity of a RCS is defined as the size of its smallest functional unit.
These systems can be either fine-grain (e.g: Xilinx Virtex Series FPGAs7) for control and
bit oriented operations for a wide range of applications; or coarse-grain in nature. Coarse-
grain architectures such as Chameleon [220] and Rapid [79] use word-width data paths
and utilize functional levels of reconfiguration allowing to reach greater computational
density and power efficiency, as compared to fine grain architectures. Also, the amount
of needed configuration data is limited, but these architectures lose some of their utiliza-
tion and performance when smaller computations are required that cannot be executed by
their high granularity levels. They also target only precise domain specific applications
that are known in advance enabling the logic, memory and routing resources to be cus-
tomized. Architectures that fall in neither of these two categories are classified as medium-

7http://www.xilinx.com/products/v6s6.htm
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grain (e.g. Garp [110], CHESS [153]). Figure 1.4 represents the architecture flexibility with
regards to the performance and granularity of the above mentioned architectures.

• Degree of coupling: The degree of coupling can be of different types as illustrated in Figure
1.5 and determines the type of data transfers, latency, power consumption etc. A recon-
figurable fabric such as an FPGA can be standalone in nature, relying on an I/O interface
to communicate with a processor; that provides the control functions along with other
additional tasks. This type of coupling is the loosest form of coupling. A reconfigurable
fabric can be attached as an additional processor, or as a co-processor for forming a tight
coupling. In a tighter form of coupling, a reconfigurable fabric behaves as a functional
unit in the processor’s data path. Finally the last form of coupling is different from the
others in which a reconfigurable fabric has embedded processors as shown in Figure 1.6:
e.g. an FPGA with embedded microprocessor(s).

• Types of interconnect networks: There can be a fixed network for communication between
host and reconfigurable fabric, as well as a reconfigurable network for communication
between configurable logical and functional blocks attached with the host. A popular
style of interconnections can be found in current FPGAs which present an island style
layout: configurable blocks are arranged in arrays with horizontal and vertical routing.
Inadequate routing layout has drawbacks of poor flexibility and decreased performance.
In contrast, a layout with too many interconnects requires more transistors, more silicon
area, longer wires and hence more power consumption.

• Types of reconfiguration: Reconfiguration can be either static (passive) or dynamic (active)
in nature. Both types of reconfigurations can either be full or partial depending upon
the nature of the reconfigurable architecture and design specifications. These types of
reconfigurations are discussed later on in section 1.3.3.1.

Figure 1.5: Different degrees of coupling [55]

Figure 1.6: Tight on-chip coupling: Processor(s) embedded in a reconfigurable fabric

1.3.2 Reconfigurable Systems-on-Chips

The main difference between a classical SoC architecture and a reconfigurable SoC is the pres-
ence of reconfigurable areas: i.e., if FPGAs or Complex programmable logic devices (CPLDs) are
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part of the Systems-on-Chip device. Others may be design specific only: these types of SoCs
are thus implemented as ASICs. Classical ASIC based SoCs are normally designed to execute
only one application with very tight performance constraints (latency, area, power consump-
tion, throughput). Whereas reconfigurable SoCs are designed to execute different applications
relying on same hardware capabilities. They thus introduce the notion of virtual hardware. Sim-
ilarly in terms of fabrication, ASIC based solutions produce a extremely costly SoC with a long
time-to-market requiring intervention by different teams and multiple designers, resulting in
introduction of errors in the design cycle. The alternative solution is the utilization of FPGAs
for construction of the reconfigurable SoCs.

A Reconfigurable SoC (RSoC) offers the same type of custom IP support except that the IP is
implemented using the reconfigurable fabric. The software must set up the hardware before it
can be used. Co-Design of these reconfigurable SoCs permit application partitioning as well as
performance estimation techniques for evaluation of hardware/software implementations. Af-
terwards, integrated tools enable co-validation, co-simulation and design testing/de-bugging.
DSE exploration of RSoCs effectively permits to find the optimal architecture for an application
or applications family.

Figure 1.7 shows an example of a coarse grain reconfigurable SoC used in the European
MORPHEUS (Multi-purpOse dynamically Reconfigurable Platform for Intensive HEteroge-
neoUS processing) project. This 100 mm2 90 nanometer RSoC is composed of 97 million tran-
sistors along with an ARM9 microprocessor and three reconfigurable architectures (DREAM
PiCoCA, Abound Logic eFPGA, Pact XPP matrix), memories, buses, NoC etc. The first pro-
totype of MORPHEUS chip has been produced by STMicroelectronics earlier in 20098. The
complexity of such a large complex SoC architecture necessitates the use of an effective SoC
design methodology.

Figure 1.7: Morpheus: a dynamically reconfigurable SoC

1.3.2.1 Advantages and disadvantages

Reconfigurable FPGA based SoC designs have twomain features that distinguish them from tra-
ditional SoC designs. The first is that the hardware functionality can be switched by modifying
the corresponding executing configuration. So, a SoC can contain a digital-to-analog converter
for one application, reconfigured for a analog-to-digital converter for another application; or
even a completely different peripheral such as a network device. The second advantage is an
offshoot of the first. Some elements of the reconfiguration can be performed at run-time once
the initial configuration has been loaded allowing to handle issues related to fault tolerance and
system performance. Also, reconfiguration can be carried out an arbitrary number of times after
loading of the initial configuration.

8http://www.eetimes.com/showArticle.jhtml?articleID=21710013
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FPGA based reconfigurable SoCs have minimal upfront costs as compared to custom de-
signs implemented on ASICs. Design costs are reduced because changes can be immediately
made to the chip during development phases before final fabrication. They are thus a popu-
lar choice for prototyping as designers can initially implement, and afterwards, reconfigure a
complete SoC for the required customized solution. Thus these prototypes offer a path for final
customized ASIC or SoC implementation. Similarly, chip simulation becomes less tiresome as
the real hardware is available immediately. Other advantages include task swapping depending
upon application needs, overcoming hardware limitations andQuality-of-Service (QoS) require-
ments fulfillment (power consumption, performance, execution time etc.). In [234], researchers
found thatmoving critical software loops to reconfigurable hardware resulted in average energy
savings of 35% to 70% along with a speedup of 3 to 7 times. Similarly, FPGA based RSoCs have
been utilized in the Mars Spirit rover9 to adapt to environments that require utmost durability.

The main downside of using a standard reconfigurable SoC is the cost compared to a custom
SoC. The trade-off is related to the number of chips that will be shipped and any advantage
for getting the product to market sooner. While custom designs normally have large up-front
development costs, they offer low individual chip costs. Reconfigurable SoCs, on the other
hand, have a comparatively small up-front cost but usually they are more expensive per single
unit or chip.

1.3.3 Field Programmable Gate Arrays (FPGAs)

SRAM based Field Programmable Gate Arrays (FPGAs) are considered as an ideal solution
for SoC implementation due to their reconfigurable nature: they can be reconfigured an un-
limited number of times. These FPGAs usually consist of two layers. The first layer contains
the reconfigurable logical blocks, i.e., Configurable Logical Blocks (CLBs) or Logical Elements (LEs)
depending upon the FPGA vendor terminology. These logical blocks are present along with
a hierarchy of reconfigurable interconnects allowing inter-communication between the blocks.
This layer also incorporates different types of heterogeneous components such as RAM blocks,
DSPs, multipliers, processors etc. All blocks of the same type (except the I/O blocks) are aligned
into columns as shown in Figure 1.8. The second layer consists of the FPGA configuration mem-
ory layer. The configuration memory of FPGA contains the application specific data. Writing
into a configuration memory is accomplished via configuration files known as bitstreams (that
contain packets of configuration control information as well as the configuration data). Figure
1.9 shows the configuration memory layer for Xilinx Virtex-II/Pro series FPGAs. This layer
matches the first layer and is also organized into columns. Each column whose width depends
on the covered block-columns of the first layer is further composed into sub-columns called
frames. For Virtex-II/Pro series FPGAs, a frame is the smallest unit of reconfiguration informa-
tion which can be written on to the FPGA, while the more recent FPGAs such as Virtex-IV have
smaller units of granularity [189]. Each frame contains fractions of configuration information
required to configure the associated logical blocks assigned to a column.

In terms of reconfigurable architectures, FPGAs are given preference over CPLDs due to
the presence of higher level embedded functions such as adders, multipliers and embedded
memories. They are also more flexible due to the dominance of configurable interconnects, but
with a cost of increased design complexity. FPGAs find their use in any area or domain where
massive parallelism is a requirement. High performance applications also exploit FPGAs as key
computational kernels for executing operations, such as FFTs and convolution.

Traditionally, a system design consisting of the hardware portion is specified using Hard-
ware Description Languages such as VHDL or via a schematic design. The software portion re-
lated to hardware drivers and microprocessor code is written in assembly language or C/C++.
The hardware/software aspects are usually developed using an Electronic Design Automa-
tion (EDA) tool such as Xilinx’s Embedded Development ToolKit (EDK)10, or Altera’s SoPC
Builder11. Afterwards, a technology mapped netlist is created followed by the process of place-

9http://www.xilinx.com/prs_rls/design_win/0412_marsrover.htm
10http://www.xilinx.com/ise/embedded/edk_pstudio.htm
11http://www.altera.com/products/software/quartus-ii/subscription-edition/design-entry-synthesis/qts-des-ent-

syn.html#sopc
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and-route (PAR) (it includes floorplanning which decomposes an FPGA into zones where hard-
ware modules and other elements are to be placed). PAR tries to place and finally route the
netlist onto a target FPGA. This process is strongly dependent on an FPGA vendor’s propri-
etary place-and-route software. At each stage of the design process, simulation can be carried
out to remove design faults and errors. Similarly, timing analysis and other verifications can
also be accomplished. Afterwards, a bitstream is generated containing both the hardware and
software portions, and can be loaded onto an FPGA via a serial-bit interface like Joint Test Ac-
tion Group (JTAG) or a parallel byte interface such as SelectMAP [259]. An FPGA effectively
incorporates DSE strategies based on its reconfigurable nature [35].

There exists a large number of research works for determining the effective placement of
bitstreams onto an FPGA. We do not detail these works, which take into account different cri-
teria, such as configurable resources, routing area, nature of integrated components (homoge-
neous/heterogeneous), abstraction levels, etc. A brief summary about these works has been
presented in [143].

Figure 1.8: Configurable hardware layer in FPGAs

Figure 1.9: SRAM-Configuration memory layer for Xilinx Virtex-II/Pro series FPGAs

1.3.3.1 Types of reconfigurations

As research related to reconfigurable FPGAs is quite wide, a three-axis classification scheme is
used to classify a reconfigurable approach by the community: mainly where, when and how the
reconfiguration takes place. We briefly describe each point:
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• Where: Reconfiguration can either be exo-reconfigurable (external) or endo-reconfigurable (in-
ternal) in nature. In exo-reconfiguration, reconfiguration is initiated and controlled by an
external source. An example is an FPGA co-processor on a PCI bus. Where as in an endo-
reconfiguration, the FPGA itself loads the bitstream and reconfigures itself. In this case,
usually an embedded controller such as a hard/soft processor manages the reconfigura-
tion. For internal reconfiguration, special modules are needed inside the FPGA, which are
detailed later on in the chapter.

• When: The reconfiguration can be either static or dynamic. Static configuration requires
the FPGA to be inactive, while dynamic reconfiguration is carried out on the fly when the
FPGA is active and running. Dynamic reconfiguration can be directed by the application
and offers flexibility advantages for systems where static reconfiguration is not possible,
such as satellites.

• How: The reconfiguration can be either full or partial. Full reconfiguration completely
reconfigures the whole area of an FPGA, while partial reconfiguration concerns only a re-
gion or regions of FPGAwhile the remaining portions continue their normal execution. In
a full reconfiguration, a full device bitstream is transmitted over a communication chan-
nel even in the case of minute changes, resulting in needless high data transfers. This is
detrimental in bandwidth limited applications such as satellite payloads.

Figure 1.10 shows an overview of system reconfiguration. It should be noted that external
reconfiguration introduces additional latency, which can prohibit or complicate dynamic recon-
figuration. In contrast, internal reconfiguration is more suitable for rapidly evolving systems
such as SoCs. Internal Dynamic Partial Reconfiguration or Partial Dynamic Reconfiguration (PDR)
has shown tremendous advantages over other forms of reconfiguration. PDR or self reconfigu-
ration [17] as it is sometimes called, has been explored only recently, and is the reconfiguration
type addressed in this dissertation.

Figure 1.10: An overview of different types of reconfiguration

1.3.4 Partial Dynamic Reconfiguration (PDR)

PDR enables modification of specific regions of an FPGA on the fly, with the advantage of
time-sharing the available hardware resources for executingmultiple (mutually exclusive) tasks.
Some regions can be reconfigured dynamically, while others regions remain operational and
functioning. PDR enables context swapping depending upon application needs, hardware lim-
itations and Quality-of-Service (QoS) requirements, such as power consumption [122, 192, 193],
performance, execution time; etc. Partial reconfiguration shows tremendous potential for wide
variety of applications across different industries. The aerospace, telecommunications and de-
fense industries have taken a particular shine to this feature. PDR has also influenced the Soft-
ware Defined Radio (SDR) domain [124]. It allows to share multiple applications on the same
FPGA with benefits such as reduced energy consumption, fault tolerance: such as in case of
single event upsets (SEUs); and reduced overall costs.
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To the best of our knowledge, until the writing of this thesis in 2009, PDR is only fully sup-
ported by FPGAs fabricated by Xilinx. Xilinx provides a comprehensive tool support for PDR,
as compared to other vendors that have chosen not to incorporate this feature due to reliabil-
ity and economical issues. Xilinx FPGAs also support internal self dynamic reconfiguration, in
which an internal controller (a hardcore/softcore embedded processor) manages the reconfigu-
ration process [17].

Xilinx initially proposed two methodologies (difference based and module based) [257, 258]
followed by the Early Access Partial Reconfiguration (EAPR) flow [260] in 2006. We provide some
brief details related to these methodologies:

1.3.4.1 Difference based Partial Reconfiguration

This type of partial reconfiguration is carried out by making small modifications to a system
design. Afterwards, a bitstream is generated based on only the difference between the before and
after designs. The advantage of this approach is that configuration switch of a module between
the different designs is very rapid, as bitstream differences can be extremely minute in compar-
ison to a bitstream for configuring the whole FPGA. However the drawback of this approach is
that a designer has to edit the design with low level editing tools such as FPGA editor, by fine
tuning components such as Lookup tables (LUTs), RAMs, FlipFlops. This requires an in-depth
knowledge of the underlying FPGA architecture. Similarly this solution is not suitable for com-
plex designs requiring large reconfigurable areas; and signal integrity cannot be ensured on
reconfigurable modules boundaries.

1.3.4.2 Module based Partial Reconfiguration

This method is based on the Xilinx modular design flow [257, 258]. This feature allows to split
up the system design into multiple modules, permitting different designers to work indepen-
dently on different modules. These modules can either be static or dynamically reconfigurable
in nature. Afterwards, the modules can be merged together to form the complete FPGA design.
This methodology gains in time savings and enables modification of a module independently
from others in case of faults or user requirements. An initial full configuration bitstream is re-
quired for initial bootup along with partial bitstreams for each partial reconfigurable region. For
swapping a reconfigurable module with another, their external interfaces must remain the same.
The drawback of this approach is that a reconfigurable module occupies the full height of the
device, including the I/O blocks at the top and bottom of the reconfigurable module. Similarly,
driver contentions can occur if a module is written over immediately with another, which can
be avoided by first replacing a module with a default empty configuration before loading the
next module. Similarly, for large devices, full height of a reconfigurable module may not be
desired due to inefficient use of resources. In addition, there is a high probability that a static
signal path through a reconfigurable module will be re-routed during reconfiguration, making
the design non valid. If the modules are completely independent of other modules or static
portion of the FPGA: i.e, no common I/O except clocks; then no special mechanisms such as bus
macros are needed for inter-module communication.

Communication modules for Partial Dynamic Reconfiguration. Bus macros [258] which are
relationally placed macros (RPMs), are used to ensure proper communication routing between
the static and dynamic regions during and after reconfiguration. They are physical ports that
connect a reconfigurable module with other modules in the design. Initial design methodolo-
gies recommended tri-state buffer (TBUF) based bus macros which were hard-wired into the
architecture of Xilinx FPGAs [257]. However, this resulted in several drawbacks due to the pre-
determined locations of TBUFs, along with the fact that they were dispersed across the FPGA
architecture, introducing increased delays.

Xilinx then introduced CLB based bus macros in [260]. In Xilinx FPGA architectures, CLBs
are considered the basic primitives and are abundant in nature, allowing to create bus macros
for any architecture along with increased flexibility in their placement. The bus macros provide
a unidirectional 8-bit data transfer and have a specific signal direction. A condition for initial
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bus macros was that all connections between partially reconfigurable module(s) and static de-
sign must pass through the macros, with the exception of clock signals. However, with new bus
macros [260], static nets can also cross through reconfigurable modules.

Figure 1.11: Basic 8-input, 8-output left-to-right bus macro

Types of bus macros. Several different types of bus macros are available for each FPGA
architecture depending upon their signal direction and width. Regarding signal direction, for the
Virtex-II/Pro FPGAs, the bus macros can be either left-to-right or right-to-left. Virtex-IV series FP-
GAs also include top-to-bottom and bottom-to-top directional bus macros. Whether a bus macro
act as an input/output to the reconfigurable module depends directly on its signal direction and
placement. For example, a right-to-left bus macro placed on the right side of the reconfigurable
module acts as an input, while the same bus macro placed on the left side acts as an output. The
width of a bus macro can be varied as well. Bus macros can either be narrow or wide in nature.
A narrow bus macro is constructed of 2 CLBs as compared to a wide bus macro constructed of
4 CLBs. Here width refers to the physical width of a bus macro and not of the data bandwidth.
Wide bus macros can be nested or chained together in a single CLB column for increased band-
width. For more complex designs with many I/O pins on the reconfigurable modules, wide
bus macros are desirable to save vertical space. Finally bus macros can be either synchronous or
asynchronous in nature. Synchronous bus macros register signals passing through them and pro-
vide better timing performance, and are recommended by Xilinx. Lastly, bus macros provide an
optional bus macro enable control signal. When this signal is de-asserted, i.e., set to 0, the bus
macro outputs are set to 0 as well. Since output signals for a partially reconfigurable module
are unpredictable during partial reconfiguration, it is recommended that the enable signal be
de-asserted and asserted before and afterwards loading a partial bitstream respectively.

Bus macro placement. Bus macros are normally placed in a manner that one CLB is placed
inside the reconfigurable region while the other is outside in the static region. For modern state
of the art Virtex-V FPGAs, single CLB based bus macros are also available [261]. Figure 1.11
shows an example of a bus macro for Virtex-II/Pro FPGAs. It consists of 2 CLBs, one on each
side of a module boundary between a static and a dynamically reconfigurable region. Each
Virtex-II/Pro CLB contains four logical slices, with each slice implementing two unidirectional
connections (from left to right in case of the Figure 1.11). Details about these bus macros can be
found in [260]. Virtex devices also support the feature of glitchless dynamic reconfiguration: If a
configuration bit holds the same value before and after reconfiguration, the resource controlled
by that bit does not experience any discontinuity in operation, with the exception of LUTRAMs
and SRL16 primitives [189]. This limitation was removed in the Virtex-IV family. With the intro-
duction of EAPR flow tools, this problem has also been resolved for Virtex-II/Pro FPGAs and
designers do not have to explicitly exclude these resources from the reconfigurable module(s).
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Third party bus macros. [190] presented a modular approach that was more effective than
the initial Xilinx methodologies and were able to carry out 2D reconfiguration by placing hard-
ware cores above each other. The layout (size and placement) of these cores was predetermined.
They made use of reserved static routing in the reconfigurable modules which allowed signals
from the base region to pass through the reconfigurable modules permitting communication by
using the principle of glitchless dynamic reconfiguration.

[122] implemented 1D modular reconfiguration using a horizontal slice based bus macro.
All the reconfigurable modules that stretched vertically to the height of the device were con-
nected with the bus macro for communication. They followed by providing 2D placement of
modules of any rectangular size by using routing primitives that stretch vertically throughout
the device [148]. A module could be attached to the primitives at any location, hence providing
arbitrary placement of modules. The routing primitives are LUT based and need to be recon-
figured at the region where they connect to the modules. A drawback of this approach is that
the number of signals passing through the primitives are limited due to the utilization of LUTs.
This approach has been further refined in [46].

Figure 1.12: An overview of Internal Configuration Access Port (ICAP)

ICAP reconfiguration core for Dynamic Reconfiguration. At the heart of the PDRmechanism
lies the Internal Configuration Access Port (ICAP) [17], which is a subset of the SelectMAP 8-bit
parallel interface as shown in Figure 1.12. While PDR can also be carried out using SelectMAP
or the JTAG bit-serial interface, the reconfiguration times are much higher as compared to the
ICAP based approach [242]. Additionally, SelectMAP can only be used for carrying out external
partial reconfiguration.

The ICAP is an integral component that permits to modify the FPGA configuration mem-
ory at run-time. It is only used for partial dynamic reconfiguration and cannot be used for full
FPGA configuration; and thus enables self reconfiguration. Special care must be taken during
dynamic reconfiguration of a particular device so as not to reconfigure the ICAP circuitry. The
granularity of reconfiguration is also of importance. In the Virtex-II and Virtex-II Pro series FP-
GAs, the smallest unit of reconfiguration granularity is a frame. The number of bits present in a
frame is directly proportional to the height of the device that is measured in CLBs. For example,
for Virtex-II series FPGAs, the number of bits per frame ranges from 832 (the smallest device)
to 9152 (the largest device) bits per frame. In the Virtex-IV series FPGAs, the smallest unit of
reconfiguration granularity is a bit-wide column corresponding to 16 CLBs (or multiples, and
this unit is independent of the different device sizes or families). A configuration frame of a
Virtex-IV series FPGA contains forty one 32-bit words (1,312 bits per frame). The smaller gran-
ularity size allows more than one dynamically reconfigurable module to be placed vertically in
the same region of FPGA. This is not possible in the earlier series FPGAs such as Virtex-II/Pro.

The ICAP is present in nearly all Xilinx FPGAs ranging from the low cost Spartan-3A(N)
to the high performance Virtex-V FPGAs [22]. For Virtex-II and Virtex-II Pro series, the ICAP
furnishes 8-bit (1 byte) input/output data ports while with the Virtex-IV Series, the ICAP in-
terface has been updated with 32-bit input/output data ports and the width can be alternated
between 8 and 32 bits [1]. The ICAP cannot be directly connected to a system bus as it requires
a controller to manage the data flow coming from the reconfiguration controller. A classical
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ICAP controller is presented inside Xilinx’s EDK OPB HwICAP module [262], which serves as
a wrapper for the ICAP core and allows its interfacing with a global system controller such as
an embedded PowerPC hardcore processor. Hence it abstracts the low level details of the ICAP
and is connected to theOn-Chip Peripheral Bus (OPB) 12 as a slave peripheral. Another version is
the PLB ICAP [44] attached to the Processor Local Bus (PLB) 13, however this dissertation focuses
on the former version. For Virtex-II/Pro series FPGAs, only one ICAP core is present which
is located on the lower right side of the FPGA. For Virtex-IV and more modern FPGAs, two
ICAPs are presented that are normally located in the center of the FPGA. A study related to
design space exploration of ICAP architecture has been presented in [146].

Figure 1.13: An overview of OPB HwICAP core

Read-Modify-Write mechanism. The ICAP utilizes a read-modify-write (RMW) [147]
mechanism that enables the global controller (a hardcore PowerPC or a softcore Microblaze
processor) to modify the bitstream related to the reconfiguration module dynamically with the
help of the HwICAP module. The OPB HwICAP module provides access to the ICAP core
for reading or writing configuration data from the configuration memory. It also provides the
C/C++ software libraries for the ICAP core. The software library includes functions that per-
mit initializing, reading configuration data, writing a frame; and writing a partial bitstream, to
the ICAP. The module internally consists of an ICAP controller, a Block-RAM (BRAM) memory
and the ICAP core. The ICAP controller regulates the data and control flow between the ICAP
core, the reconfiguration controller and the BRAM memory. The exchange of data (configura-
tion packages) is carried out by the reconfiguration controller and the ICAP core via the BRAM.
Usually the BRAM memory has sufficient capacity (several KBs) [148, 205] to at least store one
configuration frame related to the region being reconfigured.

The BRAM is used to store the configuration data read from the device. A configuration
frame related to some FPGA resources is read out from the device’s configuration memory
and stored in the BRAM. Afterwards, the reconfiguration controller manipulates bits inside the
frame, related to the FPGA resources. Finally the partially modified frame is written back to the
configuration memory. The combination of the ICAPwith an internal reconfiguration controller
allows to build a self controlling dynamically reconfigurable system [17].

Reconfiguration time during dynamic switching is directly proportional to the average
throughput of the ICAP. The theoretical speed of the ICAP is 100 MHz [43], however, in re-
ality it is not always the case. For example in Virtex-II/Pro FPGAs, when the ICAP is clocked
over 50 MHz (100 MHz in Virtex-IV FPGAs), it is necessary to respect the ICAP’s handshaking
(busy) signal [44]. Thus maximum theoretical throughput cannot be achieved, as compared to
the real throughput which is about 94% to 96%.

1.3.4.3 Early Access Partial Reconfiguration Flow

In March of 2006, Xilinx introduced the Early Access Partial Reconfiguration (EAPR) [260] de-
sign flow along with the introduction of CLB based bus macros and possibility of creating 2D

12http://www.xilinx.com/products/ipcenter/OPB_Bus_Structure.htm
13http://www.xilinx.com/products/ipcenter/PLB_Bus_Structure.htm
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reconfigurable modules, thus resolving the drawbacks present in the earlier modular design
methodology. The concepts introduced in [190] and [122] were integrated in this flow. The
restriction of full column dynamic modules was removed allowing reconfigurable modules of
any arbitrary rectangular size to be created. The EAPR flow also supports static nets to cross
through the partially reconfigurable region(s) without the use of bus macros. This improves
timing performance, clock tree management; and simplifies overall design construction.

Figure 1.14: An overview of Partial Dynamic Reconfiguration: physical implementation in three
different layers

Terminologies related to EAPR. In this dissertation, respecting the terms as specified by Xil-
inx, a region of the FPGA to be reconfigured dynamically is termed as PRR or Partial Reconfig-
urable Region. A PRR can have several possible implementations or Partial ReconfigurableModules
(PRMs). An important point to consider is that all the PRMS of the PRR have the same external
interface to ease compatibility. We now utilize these terms during the course of this dissertation.
Using the principle of glitchless reconfiguration, no glitches will occur in signal routes as long
as they are implemented identically in every reconfigurable module for a PRR. The only limita-
tion of this approach is that all the partial bitstreams (PRMs) to be executed on a reconfigurable
region (PRR) must be predetermined. Additionally, the output frequency and phase shift of a
digital clock manager (DCM) can be modified as well.

Usually an initial bitstream is loaded on to the FPGA which consists of the static portion as
well as an initial PRM for the PRR(s). Afterwards, the controller only has to load the partial
bitstream related to an alternate PRM for the same PRR. Using glitchless reconfiguration and
the RMW mechanism, the difference between the two PRMS is noted and written back by the
controller resulting in implementation of the new PRM. Figure 1.14 shows an abstract overview
of a partial reconfigurable system.

The partial bitstream files to update the configuration memory can either be provided from
outside or inside the system. External Flash memory can be used to permanently store the
partial bitstreams depending upon their size. Bitstreams of small sizes can be placed on on-
chip BRAMmemories, where as large bitstreams for complex systems can be stored on off-chip
memories such as Flash and SDRAM memories. As the Flash memory is usually very slow (it
can only deliver several bits at small frequencies: such as 8 bits at 10 MHz in the case of Virtex-
IV FPGAs), SDRAMmemories are preferred. During initial bootup, the partial bitstreams from
a Flash memory can be transferred to a SDRAM to reduce reconfiguration times, however this
complicates the design process and reconfiguration management.
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1.3.4.4 Research related to PDR

We now detail some works in the domain of partial dynamic reconfiguration. This is not an
exhaustive collection and mentions just some significant contributions. Works related to PDR
can be categorized in several categories: Some research works try to elevate design abstraction
levels, such as providing specifications in system level languages like SystemC14; for decreasing
the complexity related to creation of dynamically reconfigurable systems. Others deals with
optimization directly at the Register Transfer Level15 (RTL) level by introducing new tools and
methodologies. We now provide an overview of some of these works.

Elevation of design abstraction levels. The MoPCoM project [3] aims to target modeling and
code generation of dynamically reconfigurable embedded systems using the MARTE UML pro-
file for SoC Co-Design [127]. However, the targeted applications are extremely simplistic in na-
ture, and do not represent complex application domains normally targeted in the SoC industry.
Similarly, while the authors claim that they are capable of creating a complete SoC Co-Design
framework, in reality, the high level application model is converted into an equivalent hard-
ware design, with each application task transformed into a hardware accelerator in a target
FPGA. Additionally, while the project permits modeling of the targeted FPGA architecture at
the UML level as inspired from the works presented in [203, 205], they are only capable of gener-
ating the microprocessor hardware specification file (.mhs) for input in Xilinx EDK tool for manual
manipulation of the PDR flow. Moreover, IP re-use in not possible with this methodology.

In the OverSoC project [218], the authors also provide a high level modeling methodology
for implementing dynamic reconfigurable architectures. They integrate an operating system
for providing and handling the reconfiguration mechanism. The global platform is conceptu-
ally divided into active and reactive components representing the reconfigurable architecture (an
FPGA) and the OS respectively. The OS is executed on a general purpose processor (GPP) inter-
facing with the FPGA. The active component is further composed of several sub components
that represent the computation and reconfiguration components, the former relating to FPGA
resources such as CLBs, LUTs, etc., while the latter corresponding to the ICAP core. Finally,
SystemC was used for simulation and verification of the OS for managing the reconfigurable
aspects. However, final implementation on FPGAs has not been carried out, and the OS de-
termines whether an application task should be executed on the GPP or the FPGA depending
upon its required resources. A more complex OS is presented in [168], as embedded uCLinux
as an RTOS is used for managing PDR. A customized device driver has been created to mange
the ICAP core, allowing users to carry out dynamic configuration in traditional Linux shell pro-
grams. However, the bitstreams are generated manually using the FPGA editor tool, raising
chances of design errors.

[38] uses a SystemC based design flow for implementing PDR. The SystemC kernel was
modified for the integration of reconfiguration operations for activation/dis-activation of the
reconfigurable modules. Initial simulation is carried out using a SystemC model, which is then
converted into a HDL RTL model for actual implementation and comparison. The drawback
of this approach is that the reconfiguration time related to module is predetermined by the de-
signers. Additionally, with respect to PDR, the system only provides on-off functionality for the
modules resulting in a simplified design. In contrast, [170] use HandleC in order to implement
PDR for Software defined Radio (SDR), however, they only provide the design methodology
and no actual implementation is carried out.

Optimizing details at RTL. Works such as [22] and [130] focus on implementing softcore in-
ternal configuration ports on Xilinx FPGAs such as the pure Spartan-3 that do not have the
hardware ICAP core rendering dynamic reconfiguration impossible via traditional means. In
[130] a soft ICAP known as JCAP (based on the serial JTAG interface) is introduced for realiz-
ing PDR while [22] introduces the notion of a PCAP, based on the parallel SelectMAP interface,
providing improved reconfiguration rates as compared to the JTAG approach. However this
approach is only suitable to reconfigure very small regions of FPGA and since the design is not

14http://www.systemc.org/
15http://en.wikipedia.org/wiki/Register_transfer_level
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an embedded one, it is impossible to retrieve bitstreams from an external memory. This issue
has been addressed in [78], where a complete reconfigurable embedded design on a Spartan-3
board has been implemented using a reconfigurable co-processor. The results show that this
achieves a compromise between the works presented in [22] and [130].

In [44], a new framework is introduced for implementing PDR by the utilization of a PLB
ICAP. The ICAP is connected to the PLB as a master peripheral with direct memory access
(DMA) to a connected BRAM as compared to the traditional OPB based approach. This pro-
vides an increased throughput of about 20 percent by lowering the process load. However,
no support for the read-modify-write mechanism is presented, nor it is possible to access the
ICAP in a virtual manner. An improved version of the PLB ICAP was introduced in [43] with a
speedup factor of 18 to 58 times depending upon the reconfiguration scenario. However, it also
suffers from the same disadvantages as its precedent version. [4] provides another flavor of a
PDR architecture by attaching a reconfigurable hardware accelerator to a softcore Microblaze
processor via a Fast Simplex Link16 (FSL) bus. This resulted in an area economization of 29.6%
with a performance loss of 1.5%, as compared to placing all hardware cores on the target FPGA.
However, this architecture is only valid for the chosen JPEG encoder and cannot be used for
different range of applications. In comparison, [49] advocates the use of OPB co-processors that
are attached to the Microblaze controller. The authors use OPB bus for connecting the modules
as compared to the normally preferred FSL bus. The advantage being that microprocessor uses
regular read/write instructions in contrast to specific FSL instructions; which is balanced by the
complexity of the design and increased reconfiguration times.

In [1], a customized ICAP controller is presented in order to speed up the reconfiguration
process depending on a specific reconfiguration scenario. This controller can be implemented
as either a PLB or an OPB ICAP and offers the possibility of different memory implementations:
slices or BRAMs. The ICAP controller has an additional FIFO that stores the incoming data
consisting of 4 bytes (in case of 32-bit data transfer) that are sent to the ICAP core one by one for
processing. Nevertheless, the metrics related to the customization only take the architectural
aspects into account.

In [53], the authors present new Xilinx Definition Language (XDL) based bus macros, similar
to the approach specified in [122, 148]. The advantage of this approach is that customized data
width bus macros can be generated. While the works focus on generation of bus macros, their
placement is user dependent; and does not reduces the complexity related to the creation of a
dynamically reconfigurable system.

In [131], the REPLICA filter has been introduced which uses the SelectMAP interface for
bitstream manipulation, for implementing PDR in the RAPTOR2000 platform. However, the
reconfigurable modules only have a mono-dimensional shape extending to the height of the tar-
geted FPGA. As well, the framework uses traditional TBUF bus macros; and the configuration
manager responsible for the configuration switch is implemented in a CPLD inside the platform.
This introduces additional reconfiguration overhead. Similarly, [115] introduces the notion of
Dynamic Hardware Plugins (DHPs). However this methodology targets the earlier Virtex-E series
FPGAs, and has not been tested on modern commercially available FPGAs.

Works such as [208] use ICAP to connect with a Network-on-chip (NoC) to allow distributed
access to speed up reconfiguration time. However the read-modify-write mechanism is not
supported which is an important factor to speed up the time period. This limitation has been
resolved in [45] where an ICAP communicates with a NoC using a light weight RMW method.
The reconfiguration times have been reduced to about 40 microseconds per frame of the multi-
ple FPGA nodes in the NoC architecture. However, the works focus primarily on architectural
aspects and the targeted application domains are not mentioned.

Tools and technologies for supporting PDR. Several tools have also been introduced for facil-
itating the implementation of PDR in FPGAs. Initial tools such as PARBIT [114] and JBits [156]
manipulate FPGA configuration bitstreams. However they lack support for modern FPGAs
and require tedious manual low level manipulations. PARBIT allows to relocate reconfigurable
modules but with an extremely high reconfiguration overhead. XPART [33], a Xilinx proprietary
tool, seemed promising for PDR, but was never actually released. In [133], the ReCoBus-Builder

16http://www.xilinx.com/products/ipcenter/FSL.htm
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has been introduced, which permits to generate communicating infrastructure at run-time for
the reconfigurable modules; and incorporates final bitstream generation features. Similarly, in
[223], the ReconfGenerator has been developed, resulting in a completely automatic design flow
as compared to Xilinx EAPR flow. Bus macro placement is done automatically by the gener-
ator resulting in optimized results. Similarly, synthesized netlists for reconfigurable modules
are translated, mapped, placed and routed automatically without user interaction. In [52], Com-
bitGen is illustrated, which improves on the Xilinx’s Multi Frame Write (MFWR) mechanism of
writing frames; and enables writing of single unique frames resulting in shorter bitstreams and
improved reconfiguration times. The only disadvantage of this approach is that if every frame
is to be configured in a column of configuration memory, the tool offers no optimization over
the current EAPR flow. The main problem related to all these above mentioned tools is that they
are not currently open source or compatible with each other.

Other issues related to PDR. There is a large number of issues related to implementing PDR.
Runtime relocation of partially reconfigurable modules has been addressed as well, which al-
lows PRMs of different regions to be swapped by one other. Detailed works related to this ap-
proach and related problems have been presented in [24, 123, 209]. Similarly other issues such
as compression of partial bitstreams for reducing reconfiguration times have been addressed in
works such as [191].

1.3.4.5 Summary related to partial dynamic reconfiguration

As seen in the section related to partial dynamic reconfiguration and the related research, nearly
all of the current efforts have been focusing on the low level architectural details of the targeted
reconfigurable platforms. The designers normally concentrate on the problems related to the
platforms and forget about the applications which are to be executed on these architectures.
While some of these architectures are custom built to focus on specific applications, their draw-
back lies on the strong dependency on the required application. Hence, they are not able to
execute a wide range of applications. There is thus a strong need to switch the designer perspec-
tive from the architectural aspects towards an application driven approach. Only [48] shares the
same perspectives as this dissertation, and tries to present an application-centered high model-
ing level approach using Simulink HDL coder17. However, in reality, this modeling level is still
not abstract enough to be totally independent of low technological details.

1.4 Challenges for SoC Co-Design

1.4.1 Productivity issues

According to Moore’s law, rapid evolution in hardware technology doubles the number of tran-
sistors in an Integrated Circuit (IC) nearly every two years. As the computational power in-
creases, more functionalities are expected to be integrated into the system. As a result, more
complex software applications and hardware architectures are integrated, leading to a system
complexity issue which is one of the main hurdles facing SoC Co-Design. The fallout of this
complexity is that the system design (particularly software design) does not evolve at the same
pace as that of hardware due to issues such as development budget limitations, reduction of
product life cycles and design time augmentation. It has been estimated that the productivity of
developers does not augment more than 30% per year. Current hardware technology allows to
integrate more than twenty million gates in a single chip, making it quite possible that the chip
will be under utilized by the targeted application. This evolution of balance between produc-
tion and hardware/software design has become a critical issue and has finally led to the famous
productivity gap.

According to the ITRS (International Technology Roadmap for Semiconductors) [121], this
productivity is based on the following elements: communication between hardware/software
designers, component re-utilization, validation and tests, platforms for SoC conception and

17http://www.mathworks.com/products/slhdlcoder/
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implementation; and finally the SoC design processes. SoC design tools maintainability and
evolution is also one of main concerns for SoC designers.

System reliability and verification are also the other issues related to SoC industry and are
directly affected by the design complexity. Design correctness is an important factor in SoC de-
sign, since it has a great impact on system performance, overall results, time-to-market, cost, etc.
For example, incorrect decisions taken at the SoC mapping design level can have catastrophic
performance results. For critical systems, ignoring design correctness can cause disasters result-
ing in loss of human lives.

However, SoC design correctness always remains one of themost difficult challenges to over-
come, as SoCs are becoming more complex. Validation accounts for about 70% of the overall
chip design cost, even so, design teams always deliver chips late and miss projected deadlines
due to verification problems. Simulations and tests offer a compromise between the verifica-
tion quality and cost. They are considered as partial solutions to the SoC productivity problem
nowadays. It is evident that new and effective SoC Co-Design methodologies are required that
increase the productivity of SoC designers.

1.4.2 Reconfigurability issues

Reconfigurability in SoCs adds another level of complexity to the already challenging SoC de-
sign aspects. System level modeling of reconfigurable SoCs must be efficient in order to combat
factors such as time-to-market and fabrication costs. Effective methodologies need to be devel-
oped in order to manage the hardware/software resources for full or partial dynamically recon-
figurable SoCs while offering seamless interfaces to the users. Overheads typically associated
with reconfiguration such as reconfiguration times, load balancing, scheduling reconfigurable
tasks must be reduced.

Robust control mechanisms for managing reconfiguration must be developed in order to
take advantage of SoC designer needs as well as QoS choices. These choices can be: changes
in executing functionalities, e.g., color or black and white picture modes in a video processing
application; 2) changes due to resource constraints of targeted hardware, for instance switching
from a high memory consumption mode to a smaller one; or 3) changes due to other environ-
mental and platform criteria such as communication quality and energy consumption. A suit-
able control mechanism must be generic enough to be applied to both software and hardware
design aspects.

Although PDR is fastly growing and gaining popularity in the domain of reconfigurable
computing, there is not sufficient initial information for a novice designer to implement this fea-
ture. Also the tools for implementing PDR are still in the development phases: for example, the
EAPR flow is still not available for the Xilinx Virtex-V and the recently released Virtex-VI series
FPGAs [263]. Similarly, as seen earlier in the chapter, dynamic reconfiguration is more archi-
tecture driven as compared to being application oriented, and is influenced by target platform
low-level details. These issues such as bus macro placement, have a drastic impact on overall
reconfiguration times, performance etc. Similarly the choice of selecting an appropriate location
for a particular partial reconfigurable region (PRR) is designer dependent and also impacts the
overall results.

These architectural details introduce increased complexity for the construction of dynami-
cally reconfigurable FPGA based SoCs, resulting in exponentially escalating system develop-
ment times. Similarly, designers need to master various different tools in order to implement
PDR resulting in increased time-to-market, system complexity as well as errors. Thus, there is
a critical need to abstract the low level details for addressing these issues.

1.4.3 Responding to challenges of SoC Co-Design

Many partial solutions to tackle the aforementioned issues have been proposed such as system-
level hardware/software Co-Design, IP reuse, behavioral synthesis, softwarization (memory,
processor), etc. However, neither of these approaches can provide a complete optimal solution.

An effective solution to SoC Co-Design problem consists in raising the design abstraction
levels. This solution can be seen through a top-down approach. The important requirement is
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to find efficient design methodologies that raise the design abstraction levels to reduce overall
SoC complexity.

Component based design is also a promising alternative. This approach increases productiv-
ity of software developers by reducing the amount of efforts needed to develop and maintain
complex systems [77]. It offers two main benefits. First, it offers an incremental or bottom-up sys-
tem design approach permitting to create complex systems, while making system verification
and maintenance more tractable. Secondly, this approach allows reuse of development efforts
as component can be reused across different software products.

Current SoC Co-Design practices mix many of these approaches to obtain the maximum de-
sign efficiency. For example, IP re-use, hardware/software Co-Design, high-level abstraction
can be proposed in a framework in order to benefit from the advantages provided by the three
approaches: IP re-use helps to separate concerns so that unacquainted work can be accom-
plished by certain experts of that domain; hardware/software Co-Design enables concurrent
design, moreover, hardware design becomes similar to software design, for instance, software
programming languages are extended for the hardware design (e.g., HandelC, SystemC, etc.),
which reduces the complexity by using the same programming languages; high-level abstrac-
tion contributes in designing a system without too many implementation details.

Finally the usage of high level component based design approach in development of real-time em-
bedded systems is also increasing to address the compatibility issues related to SoC Co-Design.
High abstraction level SoC co-modeling design approaches have been developed in this con-
text, such as Model-Driven Engineering (MDE) [186] that specify the system using the UML
graphical language. MDE enables high level system modeling (of both software and hardware)
with the possibility of integrating heterogeneous components into the system. Model transfor-
mations [237] can be carried out to generate executable models from high level models. MDE is
supported by several standards and tools.

Dynamic reconfigurability also possesses a challenge. A effective reconfigurable SoC must
have design methodologies which allow to express some reconfigurability aspects at high ab-
straction levels as compared to manipulation at lower technology levels. Unfortunately, due
to tool limitations of current dynamically reconfigurable FPGA based SoCs and lack of knowl-
edge related to these proprietary architectures, it is often difficult to bridge the gap between
high abstraction levels and low implementation details.

This thesis provides some answers related to the issues associatedwith SoC productivity and
integration of reconfigurable features. A model-driven high level component based methodol-
ogy seems promising as it integrates advantages provided by several partial solutions such as
IP reuse and elevation of design abstraction levels. With respects to current problems plaguing
the dynamic reconfiguration domain, we propose an alternative approach to shift the designer
focus from purely architectural point of view to application based perspectives.

1.5 Conclusions

This chapter gives a brief overview of SoCs, their reconfigurability features and issues regard-
ing to their design. As mentioned previously, SoCs offer numerous advantages over traditional
computing systems, which include reduced energy consumption, small physical size, improved
performance and throughput, etc. Thus, SoCs are increasingly found in real-time embedded
systems. However, traditional SoCs offer less flexibility with regard to general computing sys-
tems, particularly when new applications are to be integrated into SoCs. This limitation can
be removed by adapting aspects of reconfigurability in modern SoCs. Partial dynamically re-
configurable FPGA based SoCs are the wave of the future and address issues such as limited
hardware resources, hardware/software evolution and fault tolerance. These SoCs follow the
principles of hardware and software Co-Design approaches. The SoC validation is carried out
thorough repetitive simulation and verification, until the systems are completely considered to
be validated.

In spite of thewidespread usage, SoCs also face several challenges. Themain challenge is the
productivity issue, which is caused by the unbalanced evolution of hardware aswell as software.
Another dilemma is the validation issue, which is the most time-consuming stage in the SoC de-
sign. Integration of reconfiguration aspects, while offering tremendous long term advantages,
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complicate the already delicate design process. Despite these challenges, new methodologies
and technologies are continuously proposed to meet the requirements of SoC design. Partic-
ularly, component based system design and elevation of design abstraction levels are highly
encouraged. In the context of this thesis for addressing reconfigurable SoCs; a design approach
based on component based methodology and MDE driven high abstraction levels is taken into
account, which are presented in the following two chapters.
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This chapter provides a brief overview of component based design which is an existing and
popular design methodology mainly used in the software engineering domain. As mentioned
in the previous chapter, design complexity of SoCs can be reduced by developing the interior
parts as components or modules in order to separate the different concerns. Features such as
system hierarchy are more evident with this approach. We first provide a brief introduction
of components, followed by some key concepts such as component models and component
frameworks. Afterwards, reconfigurability in component based design is addressed which is
normally present in different granularity levels. Moreover, a brief overview of different compo-
nent models existing in literature is given with special focus on heterogeneity and adaptation.
Finally we discuss the usage of component based design in the conception of embedded sys-
tems and the related challenges.

2.1 Components

Components are widely used in the domain of Component Based Software Development (CBSD)
or Component Based Software Engineering (CBSE). The key concept is to visualize and structure
the system as an explicit composition of units or components [77]. A component based design
approach permits to increase software productivity, as it reduces efforts to conceive, develop,
update and maintain large complex systems. A component technology offers the following
crucial advantages:

• Modular based approach: A component based approach gives a modular structure to
the overall system design. The system can be divided into several small subsystems that
enables their independent design, thus making system debugging, verification and main-
tenance more tractable. A component should be clearly (formally) specified and must
be comprehensible. This modular approach also achieves separation of concerns related
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to the system at hand. A specific component can be used to implement non-functional
services, enabling separation of functional and non-functional concerns.

• Re-usability: Components can be re-used across different software products and appli-
cations, many of them not yet existing. New software applications can be created from
existing components, without being designed from scratch. The re-used components may
be integratedwith slight modifications or parameterizations. Some components may need
wrapping code for system integration purposes. A component should be easy to deliver
and implement, and easy to replace. In some cases, it may not be possible to re-use the
component, but only its interface, which needs to be refined and implemented again. This
type of partial re-use can also speed up the development life cycle.

• Expandability: System verification and validation are easier if they incorporate a clear
structure, i.e., a system composed of clearly defined components. For component based
legacy systems, future upgrades and maintenance is less troublesome.

Component based design approach can be viewed as a qualitative evolutionary jump
in software engineering, comparable to the progression from low level assembly language
programming to high level problem oriented languages in the 1970s, or the progression from
procedural programming to Object oriented programming (OOP) in the 1990s. A widely accepted
definition of components in software domain is given by Szyperski in [236]:

A component is a unit of composition with contractually specified interfaces and fully explicit context
dependencies that can be deployed independently and is subject to third-party composition.

In the software engineering discipline, a component is viewed as a representation of a self-
contained part or subsystem; and is used as a building block for designing a complex global
system. A component can require or provide services to its environment via well-specified inter-
faces [77]. Examples can be a telemetry subsystems module in an artificial satellite or an engine
in an automobile. These interfaces can be related to ports of the component. Development
of these components must be separated from the development of the system containing these
modules. Thus components can be used in different contexts, facilitating their reuse.

The definition given by Szyperski enables separation of the component behavior and the com-
ponent interface. Component behavior defines the functionality or the executable realization of
a component. This can be viewed as associating the component with an implementation such as
compilable code, binary form, byte code, etc.; depending upon the component model. This no-
tion allows to link the component to user defined or third party implementations or intellectual
properties (IPs). In pure software development, a component can be viewed as a software imple-
mentation that can be executed on a physical or logical device. This view includes components
present in high level languages and permits design-time composition. A component interface
represents the properties of the component that are externally visible to other parts of the sys-
tem, and are utilized in the design and development of the system. The interfaces may provide
additional information related to a component’s interaction with its environment or with other
components; or about extra-functional properties such as throughput, execution time etc. This
allows a more precise determination of system properties in the initial design phase.

2.2 Component models and infrastructure

Two basic prerequisites permit integration and execution of components. A component model
defines the semantics that components must follow for their proper evolution [77]. A component
infrastructure or component framework is the design-time and run-time infrastructure that per-
mits interaction between the different components and manages their assembly and resources.
Obviously, there is a strong correspondence between a component model and the supporting
mechanisms and services of a component framework.
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2.2.1 Component model

A component model determines the behavior of components within a component framework.
This model states what it means for a component to implement a given interface, it also im-
poses constraints on components, such as defining communication protocols between interact-
ing components etc., [77]. We have already briefly described the use of components in software
engineering. There exit many component models such as COM (Component Object Model),
DCOM, CORBA, CCM, EJB and .NET. Each of these component models have distinct semantics
which may render them incompatible with other component models. As component models
prove more and more useful for the design, development and verification of complex software
systems, research is being carried out by hardware designers at a steady pace in order to uti-
lize the existing concepts present in software engineering, for facilitating the development of
complex hardware platforms.

Already hardware and system description languages such as VHDL and SystemC which
support incremental modular structural concepts can be used to model embedded systems and
SoCs in a modular way.

2.2.2 Component infrastructure/framework

A component infrastructure provides a wide variety of services to enforce and support com-
ponent models. Using an simple analogy, components are to infrastructures what processes
are to an operating system. A component infrastructure manages the resources shared by the
different components [77]. It also provides the underlying mechanisms that allow component
interactions and final assembly. Components can either be classified as homogeneous or heteroge-
neous, in the context of the framework. Examples of homogeneous components can be found in
systems such as grids and cubes of computation units. In systems such at TILE64 [25], homo-
geneous instances of processing units are connected together by communication media. These
types of systems are partially homogeneous concerning the computation units but heteroge-
neous in terms of their interconnections. Nowadays, modern embedded systems are mainly
composed of heterogeneous components. These complex systems may contain ten of hundreds
of components. Thus a robust component infrastructure is needed that regulates the critical
interoperational aspects. Correct assembly of these components must be ensured to obtain the
desired interactions. A lot of research has been carried out to ensure the correctness of interface
composition in heterogeneous component models. Enriching the interface properties of a same
component permits to address different aspects such as timing and power consumption [74].
The semantics related to component assembly can be selected by designers according to their
system requirements. The component assembly can be either static or dynamic in nature. This
feature is discussed subsequently in section 2.3.

2.2.3 Concepts related to component technology

2.2.3.1 Architecture Description Languages

The software architecture of a computing system can be generally defined as:

The structure or structures of the system, which comprise of software components and connectors, the
externally visible properties of those components and connectors; and the relationships among them

[137]

The architecture of a system is an initial design decision and helps in determining the global
system parameters and constraints related to system functionality, maintainability, resource
management, performance etc. As compared to design, architecture casts non-functional deci-
sions and partition functional requirements, whereas design is a principle through which func-
tional requirements are accomplished.

Typically, in languages such asArchitecture Description Languages (ADLs), description of com-
plex system architectures is carried out via compositions of hardware and software modules or
objects. These components follow a component model; and the interaction between the compo-
nents is managed by a component infrastructure [137]. The common concepts shared by nearly
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all ADLs are components, ports, connectors, etc. They can also specify different types of compo-
nent properties, which are principally expressed via the component interfaces. ADLs are mainly
rooted in the solution space. Figure 2.1 shows the graphical notation of hardware and software
concepts as expressed in AADL or Architecture Analysis and Design Language [5], an ADL for
real-time embedded systems.

Figure 2.1: Graphical notation of system components in AADL [5]

2.2.3.2 Software vs. System components

By their very nature, software components differ from components used in embedded systems,
which can be termed as system components as they are used to present both hardware and soft-
ware perspectives of a complete system, and are addressed in this dissertation. For these types
of components, several critical properties such as timing, performance and energy consump-
tion, depend on characteristics of the underlying hardware platform. In [134], a distinction
has been proposed between software and system components. Extra functional properties such
as performance cannot be specified simply for just a software component in isolation. These
properties must be elaborated in relation with the targeted hardware platform for its design, or
paramaterized based on the properties of the underlying platform. Thus, a system component,
can be a self contained hardware and software subsystem or module with related functional
and non-functional properties.

2.3 Adaptability in component based design

For software engineering, system adaptation or reconfiguration [91] is considered to be a crucial
aspect as well as a challenge. Systems must be flexible enough to evolve in order to keep up to
pace with changing functional or non-functional requirements, or the environment itself. The
need for adaptivity may arise at any time in a software development life cycle: during the
development, implementation or maintenance phases. Adaptivity is considered to be more
simplified if the software applications are component oriented in nature rather than complex
monolithic blocks of codes. Adaptation or reconfiguration actions may involve changing the
assembly of components, insertion of new components, deletion or replacement of components.
For example, in SCORPIO [21], structural adaptation of software components is carried out.
Components are restructured in order to match heterogeneous structures when integrating new
components. The adaptation can be static in nature; where changes are carried out during
development or component implementation times. Changes applied during execution time
without halting the system are collectively termed as dynamic adaptation. Different types of
adaptation techniques have been studied with regards to component based design, such as
reconfigurations of component assemblies [39, 73], adapters for components [23] and Aspect
Oriented Programming (AOP) techniques [251].

34



2.3. ADAPTABILITY IN COMPONENT BASED DESIGN

Adaptation can be either viewed as having a safe or unsafe nature [145]. Unsafe adaptation
typically involves disruptive communication between components. An adaptive mechanism
involving inter-communicating components may disrupt normal functional communication be-
tween the adapted component and the rest of the system, introducing system inconsistencies. It
is up to the component infrastructure to ensure a safe adaptation and synchronization between
the static and dynamically reconfigured components. The semantics related to component in-
frastructure must take into consideration several key issues when dealing with adaptation: in-
stantiation and termination of these components, deletion in case of user requirements, etc.
Likewise, communication mechanisms such as message passing and operation calls can be cho-
sen for inter and intra communication when the components are hierarchically composed. The
component framework should constantly monitor and analyze the behavior of the components
to be adapted. The framework is generally based on adaptation policies and mechanisms, for
deciding a correct and safe adaptation in a particular scenario.

In component based software development, system adaptation can be defined at three levels
of granularity: the global level that deals with system level adaptation and component bindings,
a component level related to non-functional properties of individual components; and finally the
implementation levelwhich allows to change the implementations related to a component:

• Global System/Architecture level adaptation: This granularity deals with adaptation of
the whole system architecture, which represents how the components are binded together.
The relationships between the components are also clearly presented. During a global sys-
tem/architecture level adaptation, a reconfiguration and recomposition of a component
assembly takes place. Thus components can be added or replaced, component hierarchy
can be modified, connectors can be inserted between components for providing interac-
tions, and so on. For example, in [228], specific adapters which are connectors are used
to mediate interactions between different components. Adaptation at this level can be
considered as purely structural in nature, as only assembly or composition between the
components can be changed, as compared to their internal behavior.

• Component level adaptation: A component can be seen as a functional entity associated
with a set of non-functional properties. In architecture level adaptation, it is possible to re-
place a component with another provided that their interfaces are compatible and follow
similar protocols. However a mismatch can still occur, related to non-functional proper-
ties like temporal requirements, reliability, security, etc. This makes composition impos-
sible. Management of these properties are handled by so-called containers or membranes
[224] in different component models such as EJB, CCM and Fractal [39], which embody
interception based mechanisms such as reflection1 or AOP.

• Implementation/Program level adaptation: At this lowest granularity level, sequence of
operations or programs are considered as entities which are encapsulated by components.
Component behavior or implementation can be changed at this level, whichmay influence
the overall behavior of the system.

Normally in component infrastructures, the components can be binded together in a non
stringent manner termed as weak-coupling or loose coupling. In weak coupling, a component
does not have information about its neighboring components or their functionalities at design
time. The information is determined at runtime either by the component itself or another one.
Weak-coupling offers flexibility in terms of adaptation but has low levels of abstraction, pro-
hibiting complex designs. However, for complex embedded systems, the components may be
heavily coupled together due to their extra non-functional properties. This may result in a rigid
assembly where reconfiguration may not be easy to carry out.

A set of components that work together to provide certain services can be viewed as a sys-
tem configuration. This configuration can be global or for an intermediate composition level. A
configuration can be seen as a specific assembly of the inter-communicating components along
with their associated implementations. For a system, a global configuration can be either cor-
rect or incorrect. A system can only operate correctly when it is in one of its safe correct con-

1Reflection is a process by which a computer program can monitor and modify its own structure and behavior.
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figurations. A system moves from one configuration to another by performing configuration
switching operations.

Dynamic adaptation or reconfiguration in component based design depends on the context
required by designer and can be determined by different QoS criteria. Self adaptation is also
present in some component models. Usually this type of adaptation is executed by an adap-
tation manager or controller, typically a separate process or component that is responsible for
managing the adaptations. The controller communicates with adaptation agents attached to
processes involved in the reconfiguration. An agent receives adaptive commands from the con-
troller, performs adaptive actions, and reports the status of the local process to the controller.

One of the most popular dynamic component models is Fractal [39] as shown in Figure 2.2,
it provides a dynamically adaptable structural component platform, using aspects as adapting
tools. Components are considered as run-time entities and can be thus manipulated. Fractal
allows architectural introspection for system monitoring and intercession for dynamic reconfigu-
ration. Different types of controllers can be built within the infrastructure which help to control
the encapsulated components. Fractal has been used in THINK [125] tool that defines an envi-
ronment for development of dynamically reconfigurable systems. In [145], the authors propose
the usage of integrity constraints for assuring consistent safe reconfigurations in the Fractal
component model. The key characteristics of Fractal are its openness and light-weight nature.
It thus allows designers to introduce various new extensions with minimal restrictions. Last
but not least, a large number of tools supports exist for this component model.

Figure 2.2: Fractal concepts

In [73], a dynamic self-adaptive K-Componentmodel is introduced which enables individual
components to evolve with changing environments through a complex decentralized coordi-
nated model. The adaptation mechanism provided is aware of any modifications and can adapt
the base system via structural reflection. Kermeta [120], proposes a model that supports verifi-
cation of heterogeneous components. This approach has been used for the definition of self
reconfigurable applications in order to build Dynamic Software Product Lines (DSPLs) [93]. Sim-
ilarly SPEEDS! [232] enables the development of embedded systems and provides a uniform
framework; designers can integrate heterogeneous modeling paradigms due to the existence
of a robust component framework providing rich interfaces with components. However this
project focuses only on static systems and is not able to handle dynamic reconfigurable compo-
nents. SOFA [41] is another distributed component model, however has a limited support for
dynamic reconfiguration. These limitations have been addressed in SOFA 2.0, which proposes
reconfiguration patterns to avoid unsafe reconfigurations. Microcomponents are present in the
framework, which are parallel to Fractal controllers.

In case of real-time embedded systems such as SoCs, a suitable example can be of FPGAs
as presented earlier in section 1.3.3. These reconfigurable architectures are mainly composed
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of heterogeneous components, such as processors, memories, peripherals, I/O devices, clocks
and communication media such as buses and network-on-chips. For carrying out dynamic
reconfiguration, a controller component concept can be integrated into the system for managing
aspects of reconfigurability.

2.4 Overview of different component models and infrastruc-

tures

With the boom in component based design, a plethora of component models is emerging. Each
component system has its specific characteristics and particularities reflecting its desired focus
and the targeted application domain. Comparisons of component models can be found in nu-
merous surveys such as in [42, 56]. It is not possible here to give a detailed description of the
different component models. We thus provide a brief overview related to some existing exam-
ples in literature:

• Component Models for run-time composition: This category deals with components mod-
els and platforms which are not primarily developed for real-time embedded systems, but
in which the component implementation and composition is carried at run-time. Exam-
ples include Sun Microsystems Java Beans and Enterprise Java Beans (EJB); Component
Object Model (COM), Distributed Component Object Model (DCOM) and COM+; the
.NET framework; OMG’s CORBA and CORBA Component Model (CCM); and Real-time
CORBA which is a CORBA extension for applications with real-time requirements.

• Component models for embedded system design: This category lists some of the com-
ponent models and infrastructures that have been developed for applications targeting
embedded systems. Typically, component implementations are given in a compilable
language (such as C/C++) and are composed before compilation. Real-Time Operating
Systems (RTOS) or run-time executives manage the execution semantics. Some examples
are: Koala [187] (a component model developed by Philips for consumer electronic de-
vices); Rubus Component Model [6] (an RTOS developed by Arcticus Systems AB); and
PECOS [171] (a component model targeting smart cell phones, PDAs and industrial field
devices). In [65], the SysWeaver component modeling tool is illustrated for embedded
real-time applications, while [215] proposes a UML 2 profile for separating the functional
and non-functional (domain-specific) aspects of components. Other component models
include examples such as Robocop2 (being spearheaded by Nokia, Philips and other re-
search institutes); Procom3[227] and the Pin component technology4. Fractal as defined
previously, is a modular and extensible component model that has been used in the devel-
opment of real-time distributed dynamic embedded systems [125]. Similarly, a SOFA HI
profile based on SOFA component model has been proposed in [197], for specification of
high-integrity embedded systems.

• Infrastructures for heterogeneous system design: This category lists some infrastructures
or platforms which are used to model systems composed largely of heterogeneous sys-
tems. The system can contain interconnected components, which can be expressed in
different languages, modeling paradigms or formalisms. Examples include MetaH [113]
(a domain specific ADL for avionics systems created by DARPA and United States Army),
Metropolis [235] (where the components are composed at a model level); and Ptolemy II
[69] (a infrastructure with special focus on heterogeneous embedded systems) with an as-
sociated software environment used for a broad range of applications including parallel
processing and signal processing.

• Hardware/Software modeling languages: This category provides a brief overview of some
languages which are not component models, but are used to model and design real-time

2http://research.nokia.com/research/projects/trust4all/index.html
3http://www.mrtc.mdh.se/index.php?choice=publications&id=1467
4http://www.sei.cmu.edu/library/abstracts/reports/05tn001.cfm
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embedded systems in a modular way. VHDL is an HDL for the design of integrated
circuits at the Register Transfer Level. It can be used in wide range of contexts such as
implementation in reconfigurable architectures, i.e., FPGAs. VHDL supports modular
semantics; and abstract behavioral models can hide implementation details. A part of
VHDL is synthesizable and can be implemented on target FPGAs. Designers can construct
structural designs in VHDL using entities, ports, and signals. An entity can be instantiated
within other entities as a component, allowing structural design hierarchies. Ports and
signals permit data communication between the components; and have specific data types.
Finally, concurrent behaviors are modeled via processes. SystemC is a system description
level language at a higher abstraction level as compared to HDLs like VHDL or Verilog.
It permits system modeling above the Register Transfer Level. Similar to HDLs, modular
structures in SystemC can be created by the usage of modules, ports, and signals. One of
the challenges in providing a system-level design language is that there is a broad range
of design abstraction levels and Models of Computations (MoC).

Summary. As seen in this section, there exist a wide variety of component models, some are
more generic in nature and are purely used in software engineering domain, while others can be
used to model both hardware/software aspects. Some of these component models in turn have
been used in the specification and development of real-time embedded systems with special
focus on heterogeneity and adaptivity.

2.5 Towards embedded systems and reconfigurable SoCs

2.5.1 Present issues

Design of SoC based real-time embedded systems must consider constraints that do not apply
to traditional large component and object-based systems such as data processing systems. Some
of these constraints are detailed below:

• These critical systems must satisfy constraints on a diverse range of properties, such
as extra-functional properties: timing (e.g., latency, missed deadlines), QoS (e.g., per-
formance, consumed area), and dependability (including reliability, security and safety)
among others.

• These real-time systems often operate with scarce resources such as low processing power,
memory, communication bandwidth, etc.

• Some functional and extra-functional properties can be statically predicted, specifically if
the system is deemed to be safety-critical.

• Dynamic reconfigurability: Reconfiguration and especially dynamic reconfiguration is
still a complicated issue for SoC based component models. While component models like
Fractal [39] and its extensions such as FracL [229] target dynamic reconfiguration, they are
mostly used for distributed systems.

Therefore, definitions and hypothesis that hold true for large traditional component based
systems have to be reconsidered for real-time embedded systems. As stated before, [236] de-
fines components with contractually specified interfaces, completely explicit context dependen-
cies, independent deployment and third-party composition. While this definition fulfills the
requirement for component models used in non-critical, non-real time environments, it is not
completely suitable for component models where component implementation is carried out at
run-time; and specially for real-time embedded systems. Embedded systems also vary in range,
for e.g. from small smart phones to huge complex systems, such as illustrated in Figure 1.7,
with a wide range of requirements. A large embedded system may offer more resources and
can provide better prerequisites for using the most widely used component technologies, as
compared to smaller systems. Interfacing of these systems is also of utmost importance.

In current popular component technologies, the interfaces are usually created as object in-
terfaces supporting polymorphism by late binding [77]. While this mechanism permits assembly
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of components which are unaware of each other besides the connecting interface, this flexibil-
ity comes with a performance penalty that may be difficult to integrate for small embedded
systems. The need for a run-time environment may arise as well, to support the component
infrastructure with a set of offered services, such as management of dynamic reconfiguration.

Taking into account, all the present constraints for real-time embedded systems, there are
several reasons to perform component implementation and composition at design time rather
than run-time. Global optimizations can be carried out: e.g., in a static component composition
or design-time, interconnections between components could be transformed into function calls
instead of dynamic event notifications. Composition tools can generate a monolithic firmware
for the device from the component-based design. Similarly, verification and prediction of sys-
tem requirements can be done statically from component properties.

For small real-time systems, component technologies have been developed for particular
classes of systems. Often, these have been done within development organizations, and their
adaptation outside these organizations is limited. To avoid heavy-weight run-time platforms,
they mostly do not support run-time deployment of components and lack many services. Com-
position of components into a (sub)system is rather performed in the design environment, prior
to compilation, thus enabling static prediction of system properties and global optimizations.

Thus for embedded systems, a component model should incorporate different features: it
should be light-weight in nature. This is because heavy-weight component technologies are nor-
mally complex to implement and incur large overheads. These component models must have
adequate mechanisms to support reconfiguration, should incorporate aspects related to com-
ponent implementations, and may have different abstraction layers to allow designers having
different expertise to work at their respective layers.

2.6 Challenges related to component based design

While there has been a lot of research carried out in the domain of component based design
and especially targeted to embedded systems, the approach still faces some challenges. Some
of which are described below:

• Wide variety of approaches: A common trend in component based design related to the
real-time industry is to start using more widely adopted component technologies for em-
bedded systems. Examples are Fractal, COM and CORBA/RT-CORBA. This allows cost
savings in terms of resources, by using parts of these technologies needed by the design-
ers. The advantage of this trend is interoperability, as the developed system can interop-
erate with other systems using the fundamental technologies. The main disadvantage of
this trend is that the underlying technologies do not, a priori, support extra-functional
properties essential for real-time embedded systems.

• Absence of a common standard: In the previous sectionwe have also included design tools
such as MetaH and Ptolemy II, in which systems are designed by putting together pieces
that might be viewed as components. The advantage of these tools is that they support a
wide variety of design notations. However, these components can be assembled only in
the supporting tool, meaning that all the different developments must be developed in the
same environment. In this perspective, these tools have similarities to tools like SCADE5

or UML based tools.

• Independent and incompatible definitions: There are many efforts undergoing for defin-
ing component technologies for real-time embedded systems. However, examples such
as Koala and PECOS component models have not spread very rapidly outside the parent
organization in which they were conceived. An advantage of these models is that they
can be customized for their application domain. Disadvantages are the lack of synergy
across diverse range of application domains, as it is costly to develop tool support, and
such development is difficult to justify for proprietary component technologies.

5http://www.esterel-technologies.com/products/scade-suite/

39



CHAPTER 2. COMPONENT BASED DESIGN

• Integrating aspects of reconfigurability: Currently most component models for embed-
ded systems do not offer concrete features to specify reconfiguration aspects related to
SoCs. This issue must be tackled along with the other mentioned issues.

2.6.1 Standardization efforts and specification standards

This section provides a brief overview of some specification standards and implementation tech-
nology standards relevant to component based design. Over the last decade, there has been an
increasing emphasis on the development of component based design aiming towards high ab-
straction levels, in order to handle the issues related with a system’s complexity. The Unified
Modeling Language [179] (UML) was one of the first modeling languages to standardize soft-
ware engineering concepts, and it and related Object Management Group (OMG) standards
such as MDA [161, 174] are currently the de-facto standards for incorporating new concepts
into the software industry. UML offers a component based approach, and tends to use compo-
nents as a higher-level modeling artifact that can be used irrespective of the nature of the high
level models (specification design, implementation, etc.). Components are used throughout the
system development till component implementation. The implementation part of a component
becomes one of its aspects only relevant for the implementation stage. Details related to these
aspects are provided in the next chapter.

2.7 Conclusion

It is obvious that in the context of embedded systems and specially SoC, there is a critical need
for widely adapted component models and infrastructures. Also many current component tech-
nologies are rather tightly bound to; and thus make sense to, a particular platform (either run-
time or design platform). Thus platform independent models must be developed. Similarly,
adequate tool support should be present, as the adaptation of a component technology depends
on the development of its tools support. Information related to hardware platforms must also
be added to component infrastructures. Properties such as timing constraints and resource uti-
lization are some of the integral aspects. However, as different design platforms use different
component models for describing their customized components, there is a lack of consensus
on the development of components for real-time embedded systems. Similarly interaction and
interfacing of the components is another key concept.

Component verification and certification are so far unsolved problems. There seem to be
no standardized procedures for ensuring component trustworthiness. There are several sug-
gestions for how to handle functional and extra-functional properties of system design (timing,
QoS, etc.). Widely accepted techniques for specifying functional and extra-functional properties
of components remain to be developed. Managing reconfigurability and adaptation in a com-
ponent infrastructure is also a complicated issue. In order to meet the resource limitations of
embedded systems, there is a desire to be able to adapt components to use exactly the resources
and services that are needed in a particular service.

Finally, the MDA approach is of particular interest to the real-time community for resolving
the problems arising in component based design. The following chapter details the usage of
components in MDA and the gained benefits.
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In chapter 1, we have illustrated the advances in SoC design, particularly with respect to the
hardware aspects, with special focus on reconfigurability. On one hand, due to technological
evolution, computing capability of a processing unit increases very rapidly; on the other hand,
parallel architectures play more important role, with regards to criteria such as system perfor-
mance. This leads to the gap between software development and the hardware computational
capacity, as the former does not benefit from the same advancement rhythm as the latter. Simi-
larly, the level of complexity of these systems is increasing continuously to new heights as inte-
grated heterogeneous components become more and more common in these systems. Classical
programming languages are becoming increasingly difficult to be adapted in these complicated
system designs. Moreover, integrating reconfigurability features add new complexity layers to
these already convoluted systems. However, new design and development methodologies for
current system designs are emerging continuously. In chapter 2, traditional component based
design practices have been briefly explored to resolve the above mentioned issues plaguing
real-time embedded systems and specially SoC Co-Design. While interesting in nature, due
to a wide variety of approaches, incompatible methodologies and lack of common standards;
alone they are not sufficient enough to tackle SoC complexity.

Among the diverse range of intensive research activities that are dedicated to address fast
and efficient software design issues, MDE [157, 222] stands out as one of the most promising
approaches related to the design and development of real-time embedded systems. In section
3.1, MDE is briefly discussed, with emphasis on its principles. Afterwards, usage of MDE
in the field of embedded systems is discussed with special emphasis on the MARTE profile.
Subsequently, a brief comparison of MARTE with other industry standards and UML profiles
is given, followed by exploration of reconfigurable concepts specification in MARTE.



CHAPTER 3. MODEL-DRIVEN ENGINEERING AND MARTE

3.1 Model-Driven Engineering

According to Wikipedia1: "MDE pertains to software development, which refers to a range of develop-
ment approaches that are based on the use of software modeling as a primary form of expression."

As development in MDE and associated tools and technologies is increasing, it has become
a promising approach not only for software engineering but for hardware as well as system
engineering, attracting much attention in industry and academia. Above all, MDE plays a
very important role, which contributes to modeling, automatic code generation and bridging
between different technologies.

The key integral concept in MDE is amodel. Two core relations are related to amodel in MDE.
The first is representation (a model is a representation of a system); and secondly conformance (a
model conforms to a metamodel) [32]. These two relations are separately presented in section
3.1.1 and section 3.1.2. Another key notion of MDE, model transformation is also discussed in
section 3.1.3. The advantages of MDE are illustrated successively following the introduction of
the previous concepts. MDE in practice is also discussed in this chapter.

3.1.1 Models

A model signifies a representation of some reality or system with an accepted level of abstrac-
tion, i.e., all unnecessary details of the system are omitted for the sake of simplicity, formality,
comprehensibility, etc. A model has two key elements: concepts and relations. Concepts repre-
sent things and relations are the links between these things in reality. A model can be observed
from different abstract point of views (views in MDE). The abstraction mechanism avoids deal-
ing with details and eases re-usability.

However, the model concept is not a novelty. According to Favre [89], the notion of models
dates back to ancient times, approximately more than five thousand years ago. The alphabet of
Ugaritic cuneiform (3400 B.C.) already introduced a similar notion by defining a set of abstract
representations (characters) and rules (pronunciations) that permitted the expression of some
reality (sentences). Most recently, in information technology domain, programming languages,
relational data bases, semantic web, etc., are all based on the same fundamental principle, where
a set of predefined and linked (or concatenated) concepts represent some reality once they are
given certain interpretations.

Intuitively, according to different granularity degrees of detail, there may exist several levels
of abstraction. But these accepted levels of abstractions may not be unique, which is determined
according to specific system requirements. However the choice of a good abstraction level does
not imply a simple and non trivial task. First, the evolution of abstraction levels in software and
hardware design is briefly discussed, which partly explains the notion of models in MDE.

3.1.1.1 Raising abstraction levels in software design

The history of software evolution can be viewed as a history of raising design abstraction levels.
Since the very beginning, machine code (first generation languages) helped people to escape
from direct manipulations of physical elements in a machine. However it was a tedious task,
because programming with large set of binary numbers: "1"s and "0"s; implied a dull and daunt-
ing procedure.

The later assembly languages (second generation languages) somewhat helped in combat-
ing this tediousness by substituting the binary numbers by some literal instructions, but it still
remained a challenge for programmers because they needed to know precise hardware instruc-
tions for correct program execution. This turned out to be a huge obstacle for designers who
did not have any experience or knowledge about the hardware aspects.

Efforts were undertaken so that programming languages become independent from spe-
cific machines and platforms. High-level languages (third generation languages), such as FOR-
TRAN, LISP and C, have made this goal more possible. Developers can put their focus on
functionalities, which appear more interesting to them. Some of these languages, e.g., APL (A

1http://en.wikipedia.org/wiki/Model-driven_engineering
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Programming Language), C, PROLOG, and ML (ML stands for metalanguage) are major lan-
guage paradigms still in use in industry nowadays.

However, the increasing software complexity has resulted in the software crisis, which in-
volves factors such as development time, cost, etc. Object-Oriented Analysis and Design (OOAD)
has been developed to partly address this problem. The basic principle of OOAD is that a sys-
tem is composed of a set of interacting objects; which are independent from one another in the
sense that their local states are private; and can be only accessed by some provided operations.
This object independence makes their re-usability possible. OOAD also involves the definitions
of object, class and their relations. These classes are independent from implementation concerns.
They share several features, such as modularity, encapsulation, inheritance and polymorphism. At
run time, objects are created dynamically according to their class definitions.

These notions, such as class and object, imply a clear separation between specification and
implementation. However, the design of classes is still restrained by object-oriented languages
and the virtual machines on which their implementing objects execute. OOAD helps to address
the software complexity problem to some extent. Based on the practices of object-oriented de-
velopment, recent software research focuses on software/hardware modeling, domain-specific
modeling, heterogeneous system integration, high-level abstraction, etc., where OOAD is not
well adapted.

With respect to Component Based Design or Component Based Software Engineering, an object
in OOAD can be represented as a component subsystem. A component can be defined as a
package of objects and is specified using type or class definitions. These definitions collabo-
rate in offering a set of services, grouped into one or more interfaces. Class definitions can be
wrapped in order to conform to the component technology of choice. Analogously, at the OOAD
level, objects can be wrapped to conform to the notion of components. It has been argued that
this strategy offers advantages as compared to traditional object-orientation. Basically, it forces
good design practices upon developers, i.e. strict visibility rules, encapsulation and explicit
dependencies [136, 255].

3.1.1.2 Raising abstraction levels in hardware design

Since the advent of Integrated circuits (ICs) in the 1950s, the evolution in hardware technology
has directly elevated the design abstraction levels. Initial electronic circuits were crafted by
hand and the schematics were drawn on paper. Not surprisingly, this handcrafted way of de-
signing was prone to numerous errors and was extremely time-consuming. In response, Com-
puter Aided Engineering (CAE) was introduced in the late 1960s - early 1970s; and rudimentary
logic simulators were introduced. Proprietary text based gate-level netlists were utilized and
Test Vectors (test benches) were applied on inputs as stimuli for getting the simulation results.

However, as the IC evolution increased the number of integrated gates from mere ten or
hundreds to thousands, the simulation time shot up exponentially. Thus long hours were re-
quired for simulation and verification purposes. Layout editors by companies such as Calma in
the early 1970s offered digitized schematic designs. These digital files were subsequently used
in the creation of photo masks; which were then used in the fabrication of actual silicon chips.
These editors can be considered as ancestors of modern Computer-Aided Design (CAD) tools.

In 1980, the publication of Introduction to VLSI Systems [158] advocated chip design with
programming languages that compiled to silicon. This resulted in an immediate hundredfold
increase in complexity of chips that could be designed, with optimized access to design verifica-
tion tools using logic simulation. The chips were easier to lay out (placement and routing), but
were more accurate as well, as their designs were thoroughly simulated before fabrication. 1981
marks the beginning of Electronic Design Automation or EDA as an industry, in order to bring
together all the CAE and CAD design tools for increased synergy and compatibility.

In 1986, Verilog was first introduced as an hardware description language by Gateway; fol-
lowed by VHDL in 1987 by the US. Department of Defense. Following these introductions, HDL
simulators were quickly developed, permitting direct simulation of chip designs: executable
specifications. Within few more years, back-ends were developed to perform logic synthesis.

Electronic System Level (ESL) design and verification is an emerging high abstraction level
electronic design methodology. According to [19], it is defined as: "the utilization of appropri-
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ate abstractions in order to increase comprehension about a system, and to enhance the probability of
a successful implementation of functionality in a cost-effective manner." At present, ESL is an estab-
lished approach at most of the world’s leading SoC design companies. The basic objective is
to model the behavior of the system using a high-level language such as MATLAB, C/C++.
System level languages such as SystemC permit abstract system modeling at a higher level of
abstraction. Similarly, using EDA tools and processes such as High Level Synthesis (HLS) and
embedded software tools, rapid and correct-by-construction implementation of the system can
be automated, although much of it is performed manually today. From its conception as an
algorithm modeling methodology with no links to implementation, ESL has rapidly evolved into
a set of corresponding methodologies which enable embedded system design, verification and
validation, testing and debugging through to the hardware and software implementation of
system-on-board, custom SoC, system-on-FPGA and entire multi-board systems.

For SoC conception, currently following HLS approaches are utilized: the behavioral de-
scription of the system is refined into an accurate RTL design for SoC implementation. An
effective HLS flow must be adaptable to cope with the rapid hardware/software evolution and
maintainable by the tool designers. The underlying low level implementation details are hid-
den from users and their automatic generation reduces time to market and fabrication costs,
as compared to hand written HDL based implementations. However in reality, the abstraction
level of the user-side tools is usually not elevated enough to be totally independent from low
level implementations. Each particular implementation of the system (application/architecture)
requires a particular specification which is usually in SystemC or a similar language resulting
in several disadvantages. Immediate recognition of system information such as related to hi-
erarchy, data parallelism and dependencies is not possible; differentiation between different
concepts is a daunting task in a textual description and makes modifications complex and time
consuming, resulting in increased time-to-market.

3.1.1.3 Machine-recognizable models

Model based approaches play a significant role in software evolution, particularly related
to system analysis and design. Several modeling approaches that should be cited include:
Merise [243] (1970), Structured Systems Analysis and DesignMethodology (SSADM) [85] (1980)
and Unified Modeling Language (UML) [179] (1995). Similarly hardware evolution is also be-
ginning to benefit from model based design approaches. These approaches aid in the compre-
hension of the current MDEmodel concept. Each of these approaches proposes certain concepts,
semantics and notations to describe the system to be designed. The common point in all these
approaches is that in each stage of the system life cycle, a set of documents composed of some
diagrams are created; that allow designers, developers, users, etc., to share their system designs.

These approaches have some crucial advantages. The abstraction achieved by a modeling
approach permits to abstractly emphasize the overall system structure, while bypassing details
related to implementation and associated technologies. This enables conception and develop-
ment of huge complex systems in a speedy and efficient manner. These approaches enable
representing a system or a part of the system with different point of views, which permit sys-
tem separation by aspects related to specific domain views. These approaches can also be found
in aspect oriented programming (AOP) and Domain-Specific Languages (DSLs) [160].

However, these approaches have been criticized [89] for the heaviness and lack of flexibility
in rapid system design and development. The resulting models of these approaches, called con-
templativemodels by Favre et al., are essentially only used for communication and apprehension.
They remains passive with regards to production, although ironically the first concern of infor-
mation technology is to produce the artifacts interpretable by machines [89]. Hence, in order
to be productive so as to accelerate system design and implementation, machine-recognizable
models, which are not only human-recognizable, become indispensable and critical.

3.1.1.4 Models and MDE

MDE [157, 222] has emerged to mainly satisfy the requirements of two communities, i.e., pro-
gramming language community (particularly OOAD community); and the system analysis and
modeling community. Models, which are the key concept in MDE, are utilized systematically
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throughout the whole system life cycle. Unlike classes and objects found in OOAD, models in
MDE are flexible, as they are not required to take implementation aspects into account. The
modeling method proposed by MDE also makes up for the deficiency of traditional modeling
approaches through the proposition of machine-recognizable models. MDE provides a develop-
ment framework, where models transit from a contemplative state to a productive state. Thus,
models become the first class elements in a software development process, that aims to improve
its portability and maintainability through separation of concepts, particularly separation of
concepts of specific domains or technologies in order to boost productivity and quality. MDE
enables re-utilization of these models by the associated tools and design patterns and helps to
keep the models human readable.

Models: transition from solution space to problem space As compared to traditional pro-
gramming languages that focus on solution space, MDE aims to concentrate on the overall struc-
tural and behavioral modeling of a system; without being influenced due to some specific do-
mains of computing technologies. This analysis andmodeling is effectively carried out by using
the concepts of application domains that form the problem space, i.e., analysis and modeling
of the problem itself, not a solution to the problem. Several distinct advantages arise from this
transition such as the capability of representing large-scale complex systems and capacity of
handling heterogeneous systems. First, a designer can focus on the given problem without
knowing too many specific computing technologies. As a result, the accessible system complex-
ity can be increased gradually.

Secondly, MDE enables system level (software and hardware) modeling at a high specifica-
tion level permitting several abstraction layers. Thus a system can be viewed globally or from
a specific point of view of the system, allowing to separate the system model into parts accord-
ing to relations between system concepts defined at different layers. This Separation of Views
(SoV) gives a designer the opportunity to focus on a domain aspect related to an abstraction
layer. Also, when seen from a hardware design perspective, MDE can be viewed as aHigh Level
Design Flow containing several Internal Representations (IR), which bridge the gap between high
and low abstraction layers [102].

Thirdly, a model can be a composition of several other models, with each model adapted to
a specific formalism appropriate to a particular domain. The composition is possible because
all the models can be expressed in a common uniform language. Thus, different development
teams from different application domains can co-operate on the same heterogeneous system
with their appropriate domain concepts, where implementations of different computing tech-
nologies are not involved. Using a graphical modeling language i.e. UML (Unified Modeling
Language) for system description also increases the system comprehensibility. This allows de-
signers to provide high-level descriptions of the system that easily illustrate the internal con-
cepts (task/data parallelism, data dependencies and hierarchy). These specifications can be
reused, modified or extended due to their graphical nature.

3.1.2 Metamodel and metamodeling

In order to be interpretable by a machine, the expression, with which a model is represented is
pre-defined formally. This is achieved by a metamodel. In MDE, A metamodel is a collection of
concepts and relations for describing a model using a model description language; and is used
for defining the syntax of a model. A metamodel can be viewed as an internal representation in
a high-level synthesis flow.

Each model that is designed according to a given metamodel is said to conform to its meta-
model at a higher level. This relation is analogous to a text and its language grammar. Here
level does not signifies an abstraction level, but a definition level. A metamodel itself is also
a model, thus it also conforms to another metamodel. However, in order to define a model, it
is not convenient to define an infinite succession of metamodels, with each one conforming to
an other at a higher level. One formal solution to this issue is the definition of a metamodel,
which conforms to itself, i.e., it can be expressed only by using the concepts it defines. Cur-
rently, widely used metamodels, such as Ecore [80] and MOF [175], are examples of such kind
of metamodels or metametamodels.
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Figure 3.1 represents the relation between models and metamodels. One of the best known
metamodels is the UML metamodel. The M0 level is the representation of some reality (a com-
puter program). In this example, several variables (Number and Balance) take values that are
assigned to them. The M1 level is the lowest level of abstraction, where the concepts can be
manipulated by developers. In this example, declarations are found for the variables used at
the M0 level and the notion of Account, which contains these variables. The model at the M1
level conforms to the metamodel at the level of M2. The concepts manipulated by developers
atM1 are defined and situated at this level. Account is a Class, whereas variable declarations are
Attributes enclosed in the Class. Finally, a metamodel at the M2 level conforms to a metameta-
model (at the level of M3). The latter conforms to itself. In the example, the concepts, such
as Class and Attribute, are metaclasses, whereas the containing relation is a metarelation. The
metametamodel can describe itself, e.g., metaclass and metarelation are still metaclasses; and re-
lations such as source and destination are metarelations.

Figure 3.1: Different levels of modeling in MDE

If the highest-level metamodel has been defined so as to conform to itself in a formal way,
and the syntax and semantics of this metamodel are described explicitly, then the models that
conform to this metamodel can be interpreted by a computer. Once significations of the con-
cepts in this metamodel are programmed, a computer will be capable to read any model that
conforms to this recursive metamodel directly or indirectly. However, a metamodel is only com-
posed of structural information in relation to its models, no semantics are involved formally. A
model makes sense with the help of its interpretation, either by users through a provided speci-
fication, which includes the concepts of the metamodel, or by a machine during the transforma-
tion of the model.

3.1.3 Model transformations

Models in MDE are not only used for communication and comprehension but using model
transformations [219], produce concrete results such as executable source code. With the help
of metamodel(s), to which these models conform to, models can be recognized by machines. As
a result, they can be processed, i.e., a model is taken as input (source) and then some models
(target) are generated. This process is called a model transformation, as shown in Figure 3.2;
it is a compilation process that transforms a source model into a target model and allows to
move from an abstract model to a more detailed model. The condition for a successful model
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transformation is that both source and target models must conform to their explicitly specified
respective metamodels.

Figure 3.2: A model transformation allows to transform source models into target models via a
set of rules. These rules are defined by using the concepts of metamodels, to which the source/-
target models conform to

3.1.3.1 Classification of model transformations

MDE model transformations can be classified according to different point of views. Several
proposed classifications are briefly presented below. According to the homogeneity and hetero-
geneity of the models on the two sides (source and target sides) of a transformation; two kinds
of transformations: namely exogenous and endogenous can be distinguished [159]. An endoge-
nous transformation only considers a single metamodel, i.e., the same metamodel is used for
the source model and the target model. An exogenous transformation uses different source and
target metamodels. According to the abstraction level of source and target models, a transfor-
mation can be a vertical one, when two levels are different, or a horizontal one when the models
are situated at the same abstraction level.

In addition to the unidirectional transformation, whose direction is implied by a source and
target, a transformation can also be bidirectional in nature. In the unidirectional transforma-
tion case, only source mode can be modified by designers; and the target model is re-generated
accordingly. However, in case of a bidirectional transformation, the target model is also modifi-
able, requiring the source model to be modified in a synchronized way. Consequently, bidirec-
tional transformations always lead to model synchronization issues. [233] presents a survey on
bidirectional transformations. The above mentioned transformations can be termed as model-to-
model transformations, as compared to the model-to-text transformations, which convert models
to executable code for eventual implementation.

3.1.3.2 Transformation rules

Model transformations are always implemented by an engine that executes the transformations
based on a set of rules. The rules can be either declarative: where outputs are obtained from some
given inputs; or imperative (how to transform). Declarative rules, in general, are expressed in
three parts: two patterns and a rule body. The two patterns are the source and target patterns
respectively in a unidirectional transformation or the same pattern acting as source/target in
a bidirectional transformation. A source pattern is composed of some necessary information
about part of the source metamodel, according to which a segment of source model can be
transformed. Correspondingly, a target pattern consists of some necessary information about
part of the target metamodel, according to which a segment of target model can be generated.
The link between these two patterns is the rule body (or a logical part according to [60]), which
defines the relation between the source pattern and the target pattern.

Declarative rules can be composed in a sequential or hierarchical manner. Thus, flexibility
and re-usability in transformations can be achieved. In a sequential case, all the rules can be
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executed one by one, hence, all the source patterns of these rules cover the source model and all
the target patterns cover the target model. In the hierarchical case, the root rule can have sub-
rules. The corresponding source/target patterns directly cover the whole source/target models.
Transformation are in general, mixed-style in nature (having both declarative and imperative
rules) so that complex transformations can be implemented.

3.1.3.3 A multi-level approach in modeling and transformation

Between the different abstraction levels of a modeled system and its resulting code, intermedi-
ate levels can be created. At each intermediate level, a model and its corresponding metamodel
are defined, hence a complete model transformation turns into a compilation chain, consisting
of successive transformations. These intermediate models do not increase the overall work-
load. On the contrary, they are added when it is difficult to bridge the gap between two models
directly. At each intermediate level, implementation details are added to the model transfor-
mations. Usually, the initial high level models contain only domain specific concepts, while
technological concepts are introduced seamlessly in the intermediate levels.

A typical example is the Platform-Specific Model (PSM) defined in Model-Driven Architecture
(MDA) that is situated between Platform-Independent Model (PIM) and the resulting code. This
multi-level approach contributes in reducing the complexity of transformations. For instance,
the information needed to transform a high-level model to a low-level one is divided into sev-
eral portions, each of which is included in a transformation.

New rules in a model transformation extend the compilation process and each rule can be in-
dependently modified; this separation helps to maintain the compilation process and facilitates
in making the transformations modular. The advantage of this approach is that it enables to
define several model transformations from the same abstraction level but targeted to different
lower levels, offering opportunities to target different technology platforms. Another advan-
tage is that the development of a chain of transformations can be concurrent, once intermediate
models are defined.

3.1.3.4 Traceability

In some cases, model transformation information is expected to be logged for reasons related to
verification and debugging. For instance, relations between the elements of source and target
model and modifications or debug information of the target model, are needed to be logged in
order to backtrack and find the corresponding elements in the source model. Traceability in the
model transformations consists of finding the transformation relation between the elements in
source/target pattern. For instance, a trace can be observed and saved in the execution of a trans-
formation [9], which enables the traceability. However, traceability is still not well supported in
current transformation tools.

3.1.3.5 Productivity issue

The modeling approach proposed in MDE and its corresponding model transformation helps
to address the productivity issue. As mentioned in section 3.1.1, high-level modeling reduces
the complexity of system design, hence it contributes in improving productivity. Moreover, one
of the distinct features of MDE over other modeling approaches is: models can be directly used
to generate implementation-level results (e.g., executable source code) from high-level models.
This production is achieved by the model transformations.

3.1.3.6 Transformation tools

Currently, the only standard related to model query and transformations is the Meta-Object
Facility Query/View/Transformation (MOF QVT) [176], proposed by Object Management Group
(OMG). However, there exists a large number of transformation languages and tools such as the
ATLAS Transformation Language (ATL) [119], Kermeta [120] and ModelMorf [244]. The draw-
back of these tools is that they are very specific in nature and thus not suitable to be adapted as
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a standard. ATL is a model transformation language (a mixed style of declarative and impera-
tive constructions) designed according to QVT. Kermeta is a metaprogramming environment
based on an object-oriented DSL. Also, since the standardization of QVT, none of the investi-
gated tools are powerful enough to execute large complex transformations. Similarly, none of
the above mentioned engines is fully compliant with the QVT standard. However, new tools
such as SmartQVT [246] and QVTO [184], while also partially compliant to the QVT specifica-
tion, are more effective then the above mentioned tools. They are also being evolved to be fully
compliant with the QVT standard.

An alternative solution to QVT is the Eclipse Modeling Framework Technology (EMFT)
project2, which was initiated to develop new technologies that extend or complement the
Eclipse Modeling Framework (EMF)3, for model creation and modification. Its query compo-
nent offers capabilities to specify and execute queries against EMF model elements and their
contents. EMF Java Emitter Templates (JET) [82] is a generic template engine for code genera-
tion purposes. The code generation largely consists of gathering the information contained in a
model, and injecting it into different text files after an analysis. The JET templates are specified
by using a JSP (JavaServer Pages) like syntax and are used to generate Java implementation
classes. Finally these classes can be invoked to generate user customized source code, such as
Structured Query Language (SQL), eXtensible Markup Language (XML), Java source code or
any other user specified syntax. Similarly, Acceleo4 is a promising tool capable for automatic
code generation frommodels. Its syntax is similar to the syntax proposed in the upcomingMOF
model to text standard (Mof2Text) proposed by OMG. Other code generation tools exist as well,
such as Xpand5 from OpenArchitectureWare.

3.1.4 MDE in practice

MDE is still not completely well-rounded, and there still exist propositions and initiatives. In lit-
erature, we can find them undermany different names, such asModel-driven Architecture (MDA),
Model-Driven Development (MDD), Model Integrated Computing (MIC) and Model-Driven Software
development (MDSD). We insist on the essence of all proposals that form a foundation of princi-
ples and concepts, rather than the subtle nuances implied by these different names.

3.1.4.1 MDA

Figure 3.3: A global overview of the MDA approach

One of the best known MDE initiatives is MDA [161, 174], which is proposed by OMG [173].
In MDA, three types of models are distinguished according to the abstraction levels as shown
in Figure 3.3: Platform Independent Model (PIM), Platform Description Model (PDM) and Platform

2http://www.eclipse.org/emft
3http://www.eclipse.org/emf
4http://www.acceleo.org/pages/home/en
5http://www.eclipse.org/modeling/m2t/?project=xpand
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Specification Model (PSM). The first model generally expresses the structure of the application
independent of the platform, while the PDM is the model description of the targeted execution
platform. Finally the PSM is the model of the application specific to a platform or a particular
technology. A PSM can be an executable model itself, or be used to generate certain source code.
Transformation specifications are also proposed by OMG to bridge these types of models, such
as MOF QVT [176].

The goal of MDA is to drive the system development through platform independent mod-
els which can be semi-automatically translated into any platform specific language for which
a standard mapping has been defined. Thus, platform independence is obtained along with
greater flexibility, with regards to final implementation.

3.1.4.2 UML

UML is considered as one of the main unified visual modeling languages in MDE. The UML
metamodel [179] was standardized in 1997 by OMG. Since its standardization, UML has been
widely accepted and adopted in industry and academia. UML now provides support for a
wide variety of modeling domains, including real-time system modeling. It has been proposed
to answer the requirements of modeling specification, communication, documentation, etc. It
integrates the advantages of component re-use, unified modeling of heterogeneous system, dif-
ferent facet modeling of a system, etc. The proposition of UML is based on several languages,
such as OMT, Booch and OOSE, which had a great influence on the object-based modeling ap-
proach, as shown in Figure 3.4. Consequently, UML is very similar to object-based languages.
As UML is widely utilized in industry and academia for modeling purposes, a large number of
tools6 have been developed for its support.

Figure 3.4: History of UML through the years

UML distinguishes between structural and behavioral modeling. The fist one concentrates
on the static structure of a system, which involves constructs, such as class, component, packages
and deployment. The second one focuses on behavioral aspects of the system, which can be
expressed by activities, interactions, state machines, sequence diagrams, etc.

Unfortunately, the success of UML has its drawbacks, resulting in a bloated and complex
language. Its expressivity and precision are not always well defined in certain cases for the
specification of some specific systems.

There are also discussions on the semantics of UML. The specification of the language (a
metamodel of its abstract syntax with weakly defined semantics) has also become difficult to
manage and hard to understand due to its size and complexity. Some also believe that its se-
mantics are not well defined. In particular, the semantics of UML behavioral modeling brings
certain ambiguities [90]. This problem cannot be addressed byObject Constraint Language (OCL)
7, that is dedicated to the specification of static syntactic constraints on UML constructs. From

6http://en.wikipedia.org/wiki/List_of_UML_tools
7http://www.omg.org/technology/documents/formal/ocl.htm
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this point of view, the validation of UML applications cannot be achieved in a precise manner.
Related works [100, 225] have been carried out to give a clear and formal semantics to UML.

UML components

A UML component is a self-contained, modular and reusable entity that is considered as
an autonomous unit in a system or a subsystem. It is also replaceable in its environment at
design time and run-time if its fungible component has compatible interfaces. A component is
provided only with its specified interfaces or ports; and the functionality that it provides. Its
implementation is concealed, and its behavior is generally defined in terms of its interfaces.

As a subtype of class, a UML component has an external view (or black-box view) through its
publicly visible properties and operations. Moreover, a behavior, such as state machines, can be
associated with the component in order to express a more precise external view. A component
also has an internal view (white-box view) via its private properties and realizing classifiers. This
view shows how the external behavior is realized internally [178]. The UML component model
is very close to the component model described in chapter 2, thus permitting to very easily use
UML as modeling language or ADL for supporting a component based design methodology.

3.2 Profiles for real-time and embedded system design

3.2.1 Profiles

Figure 3.5: UML specialization by the profile mechanism

When UML is utilized in the framework of MDE, it is usually carried out through by its
internal metamodeling mechanism termed as a profile. A profile is a collection of extensions and
eventually restrictions. A profile is created when the UML metamodel is not sufficient enough
to model the concepts related to a specific domain. Creation of a profile permits to use UML as
a DSL. An extension at the profile level is called a stereotype. It specializes one or several UML
classes and can contain supplementary attributes known as tagged values.

With a profile, a designer has an increasing level of design freedom at his fingertips, as
he can model his targeted domain concepts via existing or user customized UML concepts.
Additionally, crucial or lacking features related to a domain can be added to the profile. Also,
UML profiles benefit from an extremely large presence of graphical UML modeling tools for
manipulating UML models. This is also one of the reasons that the metamodels related to a
model are also graphical in nature. This allows the designers to work with available tools and
carry out their proper extensions. With aid of model transformations, it is possible to pass from
an UML model conforming to a UML profile to another intermediate model conforming to its
respective metamodel (on which the model transformations are based).

3.2.2 Profiles for Real-Time Embedded Systems (RTES)

Several profiles for the design and development of real-time embedded systems have been de-
veloped and many of them have even been standardized. We separate these profiles into two
major categories. The first category regroups some of the profiles that are oriented towards
low level implementations and are interested in electronic circuits and the realization of these
components. These goal of the profiles is to generate the code from UML diagrams and to use
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UML as an HDL or system design language. UML for SoC [183] and UML for SystemC [211]
are among these profiles as shown in Figure 3.6. Each of these profiles has modeling concepts
corresponding to SystemC notions in order to guarantee automatic SystemC code generation,
or at least a skeleton of the code. However, the drawback of these profiles is that they are not
abstract enough and very close to the low level implementation details.

The second category regroups some of the profiles that model the systems with a functional
point of view. Parallel to the implementation, it is necessary to specify the functional models
which are abstract and comprehensible enough; before communicating the design intent, the
development of the software, carrying out different analyses and proceeding to the allocation.
For example, a scheduling analysis requires a view which sees the system as a collection of
processors, memories etc. Several UML profiles provide such a description, an example being
of the UML profile for Schedulability, Performance and Time (SPT) [182]. All these profiles
permit to annotate the functionality of a component depending upon its nature (computation,
memory, communication resource, etc.). However, irrespective of their abstraction levels, these
profiles are inadequate for the precise analysis or simulation of the system. For example, in
order to calculate the Worst Case Execution Time (WCET), we have to take in account the micro-
architecture details related to a processor. However this aspect has not been addressed in any
of these profiles.

Figure 3.6: UML profiles for RTES: strongly attached to low level implementation details

Figure 3.7: UML profiles for RTES: system modeling with functional aspects

Also as seen from these different profiles, there are currently too many specific approaches,
languages and tools. They can be sometimes redundant in nature, but generally are complemen-
tary to each other. Another disadvantage is that few of these approaches have interoperability
capabilities. Hence for a designer, it is mandatory to be an expert in all these approaches, creat-
ing the same problem as in traditional UML based object oriented approaches. Thus a unified
modeling standard for RTES is required that can offer useful advantages. A designer can fo-
cus more on a single language than several dedicated languages. Tool interoperability and tool
choices should also be readily available. This in turn, ensures that the designer requires an
expertise in a single unified language as compared to several dedicated ones. Afterwards, he
can choose the tool best suited for his needs. This while increases the competition between the
tool vendors to create the best tools for supporting the UML RTES standard, also gives the end
users better tools and choices. From a business point of view, RTES engineers will require less
training efforts. We now briefly summarize two of the most popular UML profiles currently
being used for the design, development and analysis of real-time embedded systems.

3.2.2.1 SysML

System Modeling Language (SYSML) [177] is the first UML standard for system engineering
proposed by OMG that aims at describing complex systems. SYSML allows describing of the
traceability requirements, and provides means to express the behavior and composition of the
system blocks. This profile also provides the designer with parametric formalisms which are
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used to express analytical models based on equations. The key contributions of the SYSML
standard are as follows:

• Architecture organization: The modeling concepts related to expressing architectural as-
pects. The concepts of View, Viewpoint and Rationale are most significant.

• Blocks and Flows: Blocks allow to represent complex systems in a composed manner.
Flows in SYSML enable modeling of data/control flow as well as physical flows, such as
electrical flows.

• Behavior: SYSML refines the UML common behavior concepts (such as state machines,
activities among others) for modeling continuous systems.

• Requirements: System requirements can also be modeled via SYSML. These requirements
can be presented either in graphical or tabular form and help with model traceability.

• Parametrics: SYSML allows designers to describe analytical relations and constraints in a
graphical manner.

However, while SYSML is used in the RTES community for SoC design, it was not mainly
created for modeling of embedded system designs. Non-functional properties such as timing
constraints, latency and throughput that are crucial for the design of RTES are absent in this
profile. This is not the case of the UML profile for Modeling and Analysis of Real-Time and
embedded Systems [181] (MARTE).

3.2.3 MARTE

MARTE [181] (Modeling and Analysis of Real-Time and Embedded Systems) is an upcoming
industry standard UML profile of OMG, dedicated to model-driven development of embed-
ded systems. MARTE extends UML along with added extensions (for e.g. performance and
scheduling analysis).

Figure 3.8: Global architecture of the MARTE profile
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The MARTE profile extends the possibilities to model the features of software and hardware
parts of a real-time embedded system and their relations. It also offers added extensions, for
example to carry out performance and scheduling analysis, while taking into consideration the
platform services (such as the services offered by an OS). Figure 3.8 presents the global architec-
ture of the MARTE profile and its decomposition in packages. The profile is structured in two
directions: first, the modeling of concepts of real-time and embedded systems and secondly, the
annotation of the models for supporting analyses of the system properties. The organization of
the profile reflects this structure, by its separation into two packages, the MARTE design model
and the MARTE analysis model respectively. These two major parts share common concepts,
grouped in the MARTE foundations package: for expressing non-functional properties (NFPs),
timing notions (Time), resource modeling (GRM), components (GCM) and allocation concepts
(Alloc). An additional package contains the annexes defined in the MARTE profile along with
predefined libraries.

3.2.3.1 Overview of the MARTE specifications

We briefly give an overall summary of the MARTE concepts present in both the MARTE meta-
model and the MARTE profile.

• Core Elements: Describes the basic core concepts in the MARTE specifications, such as
Models, Model Elements (such as Classifiers) and their associated behaviors. The behaviors
can be any thing such as state machines, activity diagrams, interactions (sequence dia-
grams/timing diagrams), automatas, etc.

• Non Functional Properties (NFPs): They allow to describe properties which are not re-
lated to functional aspects such as energy consumption, memory utilization, consumed
resources, etc. As specified in chapter 2, this is a critical aspect for a detail description of
an RTES.

• Time Modeling: The MARTE Time package allows concepts mainly used in synchronous
domain as well as in discrete real-time systems such as FPGAs. The most important no-
tion in that package is the usage of time constraints on UML behavioral models such as
sequence diagrams and state machines.

• Generic Resource Modeling (GRM): This package introduces the concept of Resource and
Resource Services. Resources can be classified into types, such as computing, storage and
synchronization resources. Resources can also be managed and brokered and can be
scheduled. This notion allows to model shared and mutually exclusive resources.

• Allocation: The allocation package permits allocating the application model onto the ar-
chitecture model. With combination of the distribute concept introduced in the repetitive
structure modeling (RSM) annex, the allocation of multiple tasks on multiple/single pro-
cessing units can be carried out. The allocation can either be spatial or temporal in nature.

• Generic Component Modeling (GCM): Permits to define concepts such as components, ports
and instances. The SYSML concepts of block diagrams and flow ports have been integrated
in MARTE.

• High Level Application Modeling (HLAM): The high level application modeling package
in MARTE permits describing features and functionalities related to real-time systems
or RTS. Quantitative features such as deadlines as well as qualitative features related to
communication and behavior can also be addressed and expressed.

• Detailed Resource Modeling (DRM): This package is divided into two sub packages:

– Software ResourceModeling (SRM): The SRM package inMARTE is used to describe
parts of standardized or designer based RTOS APIs. Thus multi-tasking libraries and
multi-tasking framework APIs can be described with this package.
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– Hardware Resource Modeling (HRM): The hardware concepts in MARTE allow to
represent hardware architectures in several views. The views can be either functional,
physical or hybrid in nature.

• Generic Quantitative Analysis Modeling (GQAM): The GQAM package enables designer
to focus on analysis via the MARTE profile. The analysis can be for the software behavior
(such as schedulability and performance) as well as other aspects such as power, energy,
fault tolerance, etc. The GQAM package gives the description of how the system behavior
uses the available resources. This package helps to determine timeliness of a response
(such as hard/soft deadlines) and other statistical measures such as average delays. Simi-
larly, memory and power usage are also addressed in this package.

• Schedulability Analysis Modeling (SAM): The SAM package extends the GQAM package
for the purposes of schedulability analysis. Schedulability of a system can be either related
to the system itself or related to a sub-module, for example tomeet certain constraints such
as related to time (e.g., deadlines, miss rations). Schedulability analysis also helps in the
optimization of the system. A system can be analyzed under different scenarios or input
values in order to observe the differences.

• Performance Analysis Modeling (PAM): The PAM package extends the GQAM package
for the analysis of temporal properties of real-time embedded systems.

• Value Specification Language (VSL): The language which is to be used in NFP constraints.
VSL defines data types, parameters, constants, enumerations and expressions. These VSL
expressions can be used to specify non-functional parameters, values, operations, values
and dependencies between different values in a model.

• Repetitive structure package (RSM): Enables compact expressions to represent massively
parallel applications and architectures. Grid and cube topologies can also be expressed,
as well as interconnection topologies present in NoCs and multistage interconnection net-
works [199, 206].

• Clock Handling Facilities: This annex provides the abstract syntax for specifying clock
dependencies and clocked values.

• MARTE Libraries This annex defines predefined MARTE libraries for primitive types, ex-
tended data types, as well as a time library that defines enumerations for time concepts.

3.2.4 Comparing MARTE with other existing standards and profiles

In this section, we provide a brief overview of MARTE with some popular existing profiles and
standards. This allows interoperability between different designers, research teams and indus-
trial partners and helps in the collaboration efforts. If there are compatible concepts present
in the profiles or standards, it can allow designers to port their modeling specifications to the
MARTE profile. This allows them to keep up to pace with current industry evolution and to
take advantage of associated modeling tools and technologies.

3.2.4.1 MARTE and existing profiles

While there exists a large number of UML profiles for modeling of real-time embedded systems
and SoC in particular, we have only focused on some of the most popular profiles associated
with the SoC domain.

Comparing MARTE with SysML SYSML and MARTE are complementary: SYSML allows
to model requirements in the early design phases while MARTE defines concepts to model the
timing and the non-functional aspects and is more suitable for the later design phases. SYSML
permits description of the traceability requirements, and provides means to express the behav-
ior and composition of the system blocks. This profile also provides the designer with para-
metric formalisms that are used to express analytical models based on equations. A detailed
comparison of the two profiles has been presented in [84].
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Comparing MARTE with UML for SoC and UML for SystemC As described before, some
of the existing UML profiles for modeling of real-time embedded systems such as UML for
SoC and UML for SystemC are too closely linked to the execution platforms; and lack the high
level abstractions required for the design and development of complex SoCs. As compared
to these profiles, MARTE provides a light-weight component based UML profile at a higher
abstraction level. In addition, MARTE enables specification of non-functional properties of SoC
components, which is not possible with these profiles.

Comparing MARTE with UML profile for SPT The UML profile for SPT was OMG’s first
UML profile for the specification of real-time systems. The profile included support for per-
formance analysis with mechanisms such as queuing theory and petri nets. It also provided
schedulability analysis, but lacked mechanisms for modeling hardware and software platforms.
Additionally, the constructs present in the profile were found to be too abstract in nature.
MARTE overcomes all these limitations, and incorporates concepts such as schedulability anal-
ysis and performance observation, via the GQAM, SAM and PAM packages.

3.2.4.2 MARTE and existing standards

There exist a large number of modeling frameworks that support the design specification, devel-
opment and analysis of real-time embedded systems. Each of these frameworks has its specific
strengths and weaknesses. We compare MARTE to some of these frameworks, in order to de-
termine common concepts that will permit increased synergy between designers of different
domains. Additionally, interesting concepts present in these frameworks can be the basis of
future extensions of the MARTE profile.

MARTE and AADL. AADL, that has its origins in the avionic domain, is a SAE8 standard
for the development of real-time embedded systems. In AADL, the design can be represented
in the forms of processes and threads which can interact via port connections, program calls
and shared data access. Once the application has been modeled, it is mapped or binded to a
target platform. In [88], the authors compared the relationship between AADL and MARTE.
By utilizing MARTE for modeling AADL applications, designers can model their applications
at earlier design stages. Similarly models can be conceived for different views related to time
properties, performance and scheduling. Once the applications have been developed, designers
can take advantage of existing AADL validation and verification techniques and tools. These
validation/verification aspects would come as a compliment to current MARTE aspects.

MARTE and AUTOSAR. AUTOSAR (Automotive Open System Architecture) [83] is a stan-
dardized and open automotive software architecture framework, developed jointly by different
automobile manufacturers, suppliers and tool developers. Its main goal is to define a complete
software architecture with standardized APIs and configuration files for automotive applica-
tions as well as the basic software, that permits exchanging parts of the system’s software in
ways that programmers know from manipulating Java or C++. With regards to AUTOSAR,
MARTE already covers many aspects of timing. One important example is the specification
of over-sampling and under-sampling in end-to-end timing chains (commonly found in complex
control systems).

3.3 Modeling reconfiguration concepts with MARTE

As described in the previous chapter, reconfiguration is an important aspect of a component
based designmethodology dealing withmodern real-time embedded systems. While standards
such as AADL [5] introduce the notion of modes related to a system, these concepts are not well
integrated in the MARTE profile and up to the writing of this dissertation, lack corresponding
modeling tools support.

8Society of Automotive Engineers: http://www.sae.org/servlets/index
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In AADL, each mode is associated with a system configuration, and events can trigger a
change from one configuration to another. Hence, dynamic reconfiguration of the system is
possible by the utilization of operational modes and mode transitions. Similarly SYSML makes
heavy usage of the traditional UML state machines to determine the different states of a system.
While the MARTE profile introduces abstract concepts for modeling system behavior, it is up
to the modeling tools and the underlying model transformations to accurately interpret these
concepts for code generation.

Additionally, although MARTE provides adequate modeling semantics for describing com-
puting resources such as processors and ASICs, it is not enriched enough to provide a detailed
FPGAmodel at the high abstraction levels. Figure 3.9 shows the profile concepts related to com-
puting resources as present in the MARTE HwComputing sub-package of the HRM package.

Figure 3.9: Concepts related to the FPGA modeling in the MARTE HRM package

The HwComputing sub-package in the HRM functional view defines a set of active process-
ing resources pivotal for an execution platform. A HwComputingResource symbolizes an ac-
tive processing resource that can be specialized as either a processor (HwProcessor), an ASIC
(HwASIC) or a PLD (HwPLD). An FPGA is represented by the HwPLD stereotype; it can contain a
RAM memory (HwRAM) (as well as other HwResources) and is characterized by a technology
(SRAM, Antifuse etc.). The cell organization of the FPGA is characterized by the number of
rows and columns, but also by the type of architecture (Symmetrical array, row based etc.). A
processor may contain some instruction set architectures (ISAs); and can have some HwCaches,
HwMMU (main memory units) along with zero or more branch predictors (HwBranchPredictor).
Firstly, the concepts related to representing a processor are not sufficient for a complex SoC
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on FPGA design, in which a complex processor can either be implemented as a softcore IP or
integrated as a hardcore IP. Thus additional concepts are needed to address this limitation. Sim-
ilarly, the concepts for HwPLD can be used for FPGA modeling; however, more details need to
be added to this concept such as number of DSP blocks, registers, Block-RAMs etc. Another so-
lution would be the definition of a specific ’FPGA’ metaclass as a stereotype in the profile, that
inherits from the HwPLD concept and adds the additional attributes to that class. Similarly when
communication between hardware components takes place, the latency and bandwidth needs
to be treated. While HRM takes bandwidth into consideration, the latency has to be addressed
as well.

The main limitation for modeling of reconfigurable architectures such as FPGAs is the abil-
ity to bridge the gap between high level models and the commercial tools provided by FPGA
vendors for implementing features such as partial dynamic reconfiguration. The high level
models are usually too abstract in nature and do not provide adequate mechanisms to take
into account issues such as floor planning, placement of reconfigurable modules, etc.; which
have been briefly detailed in chapter 1. Similarly, automatic generation of processors along
with their instruction set simulators9 (ISS) is a daunting task from high level models. While a
MARTE based approach has been presented regarding this aspect in [27], they are only able to
produce code for the TLM PA abstraction level. Additionally, albeit MARTE provides a layout
mechanism for modeling hardware architectures in grid like models, these specifications are not
supported by current modeling tools. Evolution of these modeling tools may make it possible
to take aspects such as floorplanning into account.

As this dissertation makes use of the MARTE profile for modeling reconfigurable FPGA
based SoCs, it is crucial to specify some modeling methodologies to express reconfigurability at
the high modeling levels. Regarding this, we have proposed an initial extension of the MARTE
profile for the high level modeling of reconfigurable FPGA based SoCs [203, 205], that is pre-
sented in appendix A. These works were the inspiration of the research presented in [127].
However, as explained in chapter 1, the authors are only able to generate a textual description
related to the hardware components in the modeled FPGA, which is taken as input by the FPGA
tools for eventual manual manipulation.

Hence, due to current limitations of the current MARTE profile to effectively model recon-
figurable architectures such as FPGAs at high modeling levels; and our initial motivation to
provide an application driven partial dynamic reconfiguration design flow, this dissertation
primarily focuses on the modeled applicative part which is afterwards transformed into a hard-
ware functionality as explained in chapter 7. Dynamic reconfiguration is still the main aim for
this dissertation, and an application driven high modeling approach for introducing system
configurability has been introduced later on in the dissertation.

3.4 Conclusions

As previously mentioned, MDE has several advantages: the possibility of platform-
independent modeling without involvement of implementation details; re-usability and pro-
ductivity of models; modeling and specification of different facets of a system from different
points of view and rapid automatic model transformations. We have also briefly compared dif-
ferent UML profiles and specially those related to RTES. While SYSML stands out as a strong
candidate, MARTE is slowly becoming the preferred de-facto industry standard for the model-
ing of RTES and SoCs. MARTE shares common concepts with ADLs such as AADL and other
standards and UML profiles. This will enable designers to port their design models in MARTE,
in order to benefit from its advantages and available tools and methodologies.

However, MARTE while suitable for modeling purposes, lacks means to move onto execu-
tion platforms. Suitable modeling concepts need to be introduced to address this lack. In the
subsequent chapter, we introduce a SoC Co-Design framework that bridges the gap between
MARTE and targeted platforms and technologies. Similarly reconfiguration aspects are drasti-
cally lacking in MARTE, and appropriate high level modeling mechanisms must be introduced
in the profile. This issue has been addressed in chapter 6.

9http://en.wikipedia.org/wiki/Instruction_set_simulator

58



Chapter 4

Gaspard2: An MDE-based
framework for SoC Co-Design

4.1 Application domain of Gaspard2 . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 High-level co-modeling for SoC design . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Component based modeling . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.2 Repetitive structure modeling . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.3 Application modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.4 Architecture modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.5 Allocation modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.6 Deployment modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.7 GaspardLIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Metamodels and model transformations in Gaspard2 . . . . . . . . . . . . . . 73

4.3.1 Domain-specific metamodels in Gaspard2 . . . . . . . . . . . . . . . . . 73
4.3.2 Model transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Related works in SoC Co-Design . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Reconfigurability features in Gaspard2 . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

In this chapter we present the Gaspard2 SoC Co-Design framework, as a solution to the de-
velopment of high performance embedded systems; addressing the aforementioned challenges
related to SoC Co-Design mentioned in chapter 1. The usage of a component based approach in
combination with high abstraction levels as specified in the last two chapters can aid in reduc-
tion of design development time and the inherent complexity. Thus this framework offers high
benefits for the design, development and eventual implementation of complex SoCs.

Gaspard2 (Graphical Array Specification for Parallel and Distributed Computing) [2, 63] is
a MDE oriented SoC Co-Design framework that utilizes a subset of the MARTE profile currently
supported by the SoC industry. Here, by framework, wemean an environment that provides de-
signers with at least the following means: a formalism for the description of embedded systems
at a high abstraction level, a methodology covering all system design steps; and a tool-set that
supports the entire design activity. In Gaspard2 as in MARTE, a clear separation of concerns ex-
ists between the hardware and software models. Gaspard2 provides an Integrated Development
Environment (IDE) dedicated to the visual co-modeling of embedded systems; and has been de-
veloped within the DaRT project-team at INRIA Lille-Nord Europe. The framework enables
fast design and code generation with the help of UML graphical tools (e.g., MagicDraw UML1

and Papyrus2) and Eclipse EMF.
Figure 4.1 shows the global architecture of the Gaspard2 framework. The main features of

Gaspard2 are classified into three categories:

1www.magicdraw.com/
2www.papyrusuml.org/
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Figure 4.1: A global view of the Gaspard2 environment for SoC design

High-level co-modeling: It enables a co-joint specification of the application and the architec-
tural parts of a system using the MARTE profile at a high level of abstraction, which
provides various packages for the modeling concepts related to software, hardware, allo-
cation, etc.

Model transformations: MDE transformation chains have been developed to generate exe-
cutable code for different domains and targets.

Usage of the generated code: Gaspard2 is capable of targeting different execution platforms
and technologies. Code can be generated for different goals, such as validation (with syn-
chronous languages), simulation (at Transaction Level Modeling Pattern Accurate or TLM PA
level [47, 71], synthesis (at Register Transfer Level with VHDL code) and execution (with
OpenMP or Fortran).

Gaspard2 has strongly contributed to the development of the MARTE UML profile and its
corresponding metamodel. The Repetitive Structure Modeling (RSM) package in MARTE and its
Model of Computation (MoC): Array-OL [36], have been inspired from Gaspard2 . The Hardware
Resource Modeling (HRM) package also inspires from architectural aspects present in Gaspard2.
Similarly, certain aspects have also been integrated into the MARTE Allocation package.

4.1 Application domain of Gaspard2

Gaspard2 aims to improve the design of SoC based embedded systems with a strong focus on
intensive signal processing applications. Signal processing can be considered as one of the most
important SoC application domains. It concerns the interpretation, analysis, storage andmanip-
ulation of signals, which can be signals of sound, image, video, radar, etc. A signal is the carrier
of the information of interest. According to the different signals to be processed, these appli-
cations can be classified into: analog signal processing (where signals are captured by sensors,
which are not yet digitized) and digital signal processing (digitized signals that can be processed
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by SoCs or computers directly). Only digital signal processing is considered here, which in-
cludes filtering, removal of noise, information extraction, compression and decompression, etc.

Among various types of digital signal processing, we are interested in intensive signal pro-
cessing (ISP), which is always decomposed into two steps: systematic signal processing (SSP) for
the first step and intensive data processing (IDP) for the second. SSP mainly consists of a chain of
filters and involves regular processing of large amounts of signals, which are independent of sig-
nal values. It results in a characterization of the input signals with values of interest. Whereas,
IDP is considered as irregular processing because the processing results rely on signal values.
Figure 4.2 shows the relation between these classifications of digital signal processing.

Figure 4.2: Global overview of Digital Signal Processing

Some application examples. Some typical examples of intensive signal processing are pre-
sented here, which include:

• Anti-collision radar systems: Collision avoidance in a system (such as a moving vehicle)
requires the use of an antenna (or antennas). The antenna sends a signal as a data flow con-
taining information relating to the presence of obstacles, i.e. an echo. This information is
masked by noise (interference) and is spread over the temporal data flow. A pre-treatment
systematic signal processing filters the signal in order to bring out the interesting features
(the presence of obstacles). The next step is more irregular and consists of analyzing this
data flow to validate the presence of an obstacle, trigger an action (such as performing
an emergency brake) or to continue normal functioning if necessary. An overview of the
above mentioned mechanism is illustrated in Figure 4.3.

               SSP

detection algorithm

                IDP

 decision algorithm

digital signal

 from a radar

              Decision taken,

          trigger of an action 

(such as an emergency brake)

         Signal treated,

 highlighting an obstacle

Figure 4.3: Mechanism related to an anti-collision radar system

• Sonar signal processing: A submarine is equipped with several hydrophones, which are
used for listening to and recording underwater sounds. A classical sonar signal processing
chain is composed of several stages. The first stage involves systematic signal processing,
which includes FFTs. FFTs add a frequency dimension to the processed signals. The re-
sults are used in the subsequent stages for communication or object detection purposes.

• Image encoding/decoding: JPEG 2000 is a wavelet-based image compression standard.
The encoder [8] can also be divided into several stages. The first few stages are consid-
ered to be systematic processing, such as color components transformation and tiling stages.

61



Gaspard2

The subsequent stages involve irregular processing, such as wavelet transform, quantiza-
tion and coding. The decoder works in an inverse way: irregular phases are followed by
systematic phases.

• Aspect ratio converting: the conversion of a high-definition video format (16:9) to a
standard-definition (4:3) [150] can also be divided into two stages: the first one consists of
line processing of the original 16:9 video signals in order to create pixels through interpo-
lation, the results are then processed by removing some lines so that the final ratio is set
to 4:3.

These examples show how signal processing can be divided into stages, such as SSP and
IDP. As SSP is independent from signal contents, it is possible to use certain generic models for
processing specification. However, IDP involves the processing of signal contents, which may
vary from one to another according to the signal contents. Hence it is not appropriate to use
some generic models for the computing specification.

Multidimensional arrays. Multidimensional arrays are often used as the main data structures
in SSP applications. As signal contents are not involved in the processing, it is appropriate to
abstract them, which facilitates the modeling of SSP. Consequently, array type and array shape
are sufficient for the modeling.

The previous examples also illustrate various semantics related to signal dimensions (2-
Dimensional images, temporal dimensions, frequency dimensions, etc.). For instance, the tem-
poral dimension can be represented by an infinite dimension. The dimension number of a signal
can also be changed (increased or decreased) in the processing. Moreover, some applications
can have signals with toric dimensions, i.e., data stored in these dimensions are processed in a
modulo way.

Some languages for signal processing. There exist numerous languages for the specification
of signal processing applications. Here, we only provide a brief overview of some of these
languages; and a detailed comparison between the existing languages and their underlying
model of computations can be found in [97]:

• StreamIt [248] and Synchronous Data Flow (SDF) [144] are stream processing languages, but
they are not considered to be multidimensional languages for signal processing. StreamIt
is an object-oriented imperative language that is intended to allow maximum optimiza-
tion for the specification of synchronous dataflow at a high level of abstraction. The
extension of SDF, MultiDimensional SDF [167] is a multidimensional language, whose
applications are described using oriented acyclic graph. The nodes, called actors in the
graph, consume and produce data, called tokens.

• The Alpha language [155] is a functional language, whose applications are composed of
systems of recurrent equations. Alpha is based on polyhedral model, which is extensively
used for automatic parallelization and the generation of systolic arrays. Alpha is a multi-
dimensional language with single assignment specification.

• High-performance Fortran(HPF) [111] is a language dedicated to scientific parallel comput-
ing. It takes high levels of abstraction into account. HPF uses multidimensional arrays in
parallel loops, where operations are carried out on sub-arrays. HPF also enables regular
data distributions.

• Synchronous dataflow languages also define arrays in order to deal with specific algo-
rithms and architectures. For instance, in Lustre, array concept has been introduced in
order to design and simulate systolic algorithms [106]. This work led to the implemen-
tation of their results on circuits [214]. More recently, an efficient compilation of array in
Lustre programs has been proposed [164]. It is similar to the Signal language. In con-
trast, concept of array of processes [29] has been introduced in Signal, which is adapted
to model systolic algorithms.
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• Finally, Array-OL [36, 37] is also a multidimensional language for the specification of in-
tensive signal processing, which is the underlyingMoC of the Repetitive Structure Modeling
package present in the MARTE profile. Gaspard2 makes heavy use of the RSM package,
and tries to remain compatible with Array-OL semantics.

4.2 High-level co-modeling for SoC design

Figure 4.4: The Gaspard2 SoC Co-Design environment

With the goal of making the Gaspard2 framework more complaint and standard, to help
facilitating in interfacing with other tools; and to profit from the related existing tools and tech-
nologies, efforts have been carried out within the DART team to render Gaspard2 completely
compatible with MARTE.

One of the most important features of Gaspard2 is its ability for system co-modeling using
the MARTE profile at a high level of abstraction. More precisely, it enables to model software
applications, hardware architectures, their allocations and IP deployment separately, but in a unique
modeling environment. This concept is partially based on the Y-chart (Figure 4.1 and [63]). In
Gaspard, models of software applications and hardware architectures can be defined concur-
rently and independently. Then, software applications can be mapped onto hardware architec-
tures via an allocation.

Although MARTE is suitable for modeling purposes, it lacks the means to move from high
level modeling specifications to execution platforms. Gaspard bridges this gap and introduces
the notion of IP deployment. This level associates every elementary component, of both the
hardware and the application, to an implementation, thus facilitating IP reuse. Until the deploy-
ment level, the integrated high abstraction level models are platform-independent, i.e., they are
not associated with a specific execution platform or technology.

Gaspard2 also profits from the recent development of the open source Papyrus UML ed-
itor which is integrable in the Eclipse environment. Using this approach, all the current de-
velopment in Gaspard2, from high level modeling to automatic code generation, is structured
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around the Eclipse platform. Thus added extensions in Gaspard2 can be developed and eas-
ily integrated in Eclipse. Figure 4.4 shows a screen shot of the Gaspard2 environment with
modeling of a system in Papyrus.

4.2.1 Component based modeling

Gaspard2 adopts a component based approach based on the UML MARTE profile. For this, it
uses the MARTE Generic Component Modeling Package (GCM) as its core foundation.

A Structured component [181] in the GCM package as shown in Figure 4.5 can be defined as
the UML Classifier concept [178] and relies mainly on UML structured classes. Thus it can be
used for the modeling of both class and component structures in their respective diagrams. A
structured component may also contain several properties such as assembly parts and interaction
ports. An assembly part can be viewed as an instance of another structured component, defined
elsewhere in the specification.

Figure 4.5: Concepts related to the MARTE StructuredComponent in the GCM package

A structured component can also have internal connectors. These connectors are termed
as MARTE assembly connectors. MARTE does not distinguish explicitly between the connector
types in comparison with pure UML specifications. The assembly connectors can thus play the
role of either delegate connectors, which permit connecting the ports of a structured component
to the ports of its sub components; or typical assembly connectors (which allow connecting the
input/outputting ports of different sub components).

An Interaction Port defines a point of interaction via which different components interact and
are linked by means of an assembly connector. It is not necessary for a component to have an
interaction port. An interaction port can be classified into two major types:

• Flow Port: mainly used for flow oriented communications schema e.g. control/data flow.
It can have several directions (in, out or inout). This concept bears resemblance to the flow
port concept defined in the SYSML profile. In Gaspard2, mainly flow ports are used for
the modeling purposes.

• Message Port: Message Ports are used for message oriented (request/reply) communica-
tion schema. They can support provided or/and required services.

Figure 4.6: An example of a Gaspard2 component modeled with the MARTE profile
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Finally, Figure 4.6 illustrates an example of a MARTE structured component in Gaspard2
environment. The ColorFilter component has respective input and output ports with asso-
ciated types and shapes.

4.2.2 Repetitive structure modeling

One of the key MARTE packages, the Repetitive Structure Modeling (RSM) package is inspired
from Gaspard2. Gaspard2, and in turn RSM, are based on the Array-OL [36, 37] model of com-
putation that describes the potential parallelism in a system; and is dedicated to data intensive
multidimensional signal processing. In Gaspard2, data are manipulated in the form of multidi-
mensional arrays. RSM permits to describe the regularity of a system’s structure (composed of
repetitions of structural components interconnected in a regular connection pattern) and topol-
ogy in a compact manner. In order to fully comprehend the RSM package and consequently the
Gaspard2 framework, we provide a brief summary about Array-OL, the model of computation
for RSM. Detailed information related to Array-OL can be found in [36, 37].

4.2.2.1 A high-level data dependency model: Array-OL

Array Oriented Language (Array-OL) was first proposed by Alain Demeure ([68] in French and
[67] in English) at THALESUnderwater System (TUS) in 1995. It is dedicated to the specification
of intensive signal processing where large number of signals are regularly processed by a set of
repeated tasks. Its typical applications include radar/sonar signal processing and multimedia
(image, audio and video) processing.

The first thing to remember is that Array-OL is not a programming language, but only a
specification language. Thus no execution concerns are involved in the language, and no rules
for executing an application written with Array-OL are present. Instead of specifying certain
specific scheduling of parallel tasks, only data dependencies between these tasks are specified.
Some tasks that achieve some computing functionalities, such as filters and FFT, are referred to
as elementary tasks, which are considered as black boxes provided with interfaces.

Basic characteristics. The basic goal of Array-OL is to provide a mixed graphical-textual lan-
guage for modeling of multidimensional intensive signal processing applications. As these
applications treat a massive amount of data with tight real-time constraints, effective use of
potential parallelism of the application or parallel hardware architectures is obligatory.

As mentioned before, detailed characteristics of this domain-specific language have been
presented in [36, 37]. Here we only mention some key points:

• Multidimensional arrays: Data manipulated in Array-OL are in the form of multidimen-
sional arrays, which have at most one possible infinite dimension. These arrays can be
specified with a certain type specification, such as an array shape. Nevertheless, data
types, e.g., Integer and Boolean, are unnecessary, because data values stored in the array
are not handled. Consequently data values are concealed. These features imply that only
array spatial manipulations are involved in the language. Moreover, these arrays can be
toroidal. This characteristic enables to model some spatial dimensions that represent some
physical tori (e.g. hydrophones around a submarine). Other examples are some frequency
domains obtained by FFTs.

• Data dependency expressions: Array-OL expresses true data dependencies in order to de-
scribe maximum parallelism in the application. In such a way, except for the minimal
partial order, which results from the specified data dependencies, no other order is a priori
assumed.

• Patterns: Access to data is carried out in the form of sub-arrays called patterns.

• Spatial and temporal specifications: The spatial and temporal dimensions are treated in the
same manner, in the form of arrays. Particularly, time is expanded as one dimension of
arrays. This is a direct consequence of the single assignment property of Array-OL.
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Array-OL is not a data-flow language, but can be projected as such. The language does
not manipulate flows, but instead focuses on multidimensional arrays. The environment or an
execution platform can impose an order and a granularity on the array elements in order to treat
them as a flow, but the choice of computation granularity is left to the compiler (or the designer)
and not the person doing the modeling (for example, with the same Array-OL specification, a
video represented in the form of a 3D array of pixels can be viewed as a flow of images, flow of
lines or even a flow of pixels).

Array-OL is not limited for the specification of signal processing, other similar processing,
e.g., data-intensive processing, are also its application domain. Hence, we call all these kinds
of processing data-parallel intensive processing (DIP), which defines the application domain of
Array-OL and Gaspard2, and is one of the contexts of this thesis.

Array-OL utilizes the multidimensional array data structure for the specification of inten-
sive data, which benefits from several advantages: toric arrays can be specified for some special
applications, such as sonar signal processing and frequency processing; temporal and spatial di-
mensions are processed in the same way, hence a maximum parallelism is specified, which can
be refactored according to an architecture when the application is mapped onto the architecture.

ADO (Array Distribution Operators in English,Opérateurs de Distribution de Tableaux in French)
operators permit a high-level data dependency specification (such as patterns) with regards to
the manipulation of arrays indexes, as patterns are also arrays. These kinds of dependencies en-
ables the specification of multi-granularity degrees, which make the application specifications
flexible. Array-OL only specifies data dependencies, and is independent from any execution
model, which contributes to a fast application specification. Properties, e.g., single assignment,
are defined in Array-OL to guarantee the correctness of specification. These characteristics
make Array-OL distinct from other languages in the same application domain, such as SDF,
Alpha, StreamIt, synchronous languages and HPF. However, as Array-OL is a specification
language, it is possible to project it onto the execution models provided by the previously men-
tioned languages [11, 76, 241, 265].

4.2.2.2 Overview of RSM

We now present some of the basic core concepts of the RSM package. The available RSM mech-
anisms are oriented towards two aspects:

RSM enables the possibility to specify the shape of a repetition, by a multidimensionality,
and also permits to represent a collection of potential links such as a multidimensional array.
This repetition can be specified for an instance or a port of a component. The advantage is dou-
ble fold: For hardware modeling, RSM presents a clear mechanism for expressing the links in
a topology, as well as increasing the expression power of the mechanism for describing these
complex topologies [199, 202]. Secondly, RSM provides a method of adding information about
topological relations between entities during their specification. It also permits to express topo-
logical links between the entities at run-time execution. Complex regular, repetitive structures
such as cubes and grids can be modeled easily via RSM, in a compact manner. Similarly for
application aspects, RSM helps to determine different types of parallelism.

Gaspard uses the RSM semantics to exploit the inherent parallelism included in repetitive con-
structions of both hardware and software elements (such as application loops). Large regular
hardware architectures (such as multiprocessor architectures) can be modeled in a condensed
precise manner. For an application functionality, both data parallelism and task parallelism can be
expressed easily via RSM. A composite component contains several parts (subcomponents) and
is viewed as an acyclic dependency graph. It allows to define complex functionalities in a mod-
ular way and provides a structural aspect of the application: specifically, task parallelism can
be described using such a component. A repetitive component expresses the data-parallelism in
an application (in the form of sets of input and output patterns consumed and produced by the
repetitions of the interior part).

The repetitive component is thus viewed as a repetition context task (RCT), which defines an
repetition context for a certain repeated task (RT), i.e., the RT is repeated in the RCT. An RCT and
its RT do not have the same interfaces, thus ADOs connect an RCT with its RT; and define how
the input/output arrays of the RCT are regularly accessed by the RT. Repetitions (or instances
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according to different context) of an RT are supposed to be independent from one another in
general. Finally elementary components can also be specified via RSM. An elementary task is
atomic (a black box) in nature and can be a part of a library.

Finally, the integration of RSM in the MARTE allocation package enables expressing tempo-
ral and spatial allocation of the application onto the hardware platform. Figure 4.7 shows the
basic core concepts of the RSM package.

Figure 4.7: RSM package of the MARTE profile

The concept of Shape can be assigned to an instance or a port of a component. It is specified
through the multiplicity property of the instance or the port, which implies a collection of the
corresponding elements. This collection is defined in the form of amultidimensional array, whose
elements are ordered positive integers indicating the maximum number of elements stored in
the corresponding array dimensions. For instance, a shape of {40, 30}, defined for a repeated
task in a repetition context indicates that the task is repeated 40 × 30 times. This shape is also
called the repetition space of this task; and is also a multidimensional array. The product of all the
elements in the repetition space determines the number of repetitions of this RT. This concept is
inspired by the bound notion of parallelly nested loops, which are present in high-performance
computing languages [36]. The same shape {40, 30} on a port indicates an [40, 30]-array that
is processed by the component owning the port. This shape is termed as a pattern shape that
basically represents the form of a pattern. A shape is extended to have a special dimension, i.e.
infinite dimension, which is the result of mapping some discrete time computing (or dataflow)
onto a space model.

A Tiler represents a special connector, used in a repetition context, and is associated with
some topological information for array processing. A tiler describes how an array can be cut
into sub-arrays with the same shape in a regular way or how some sub-arrays are used to build
an array. These sub-arrays can also be multidimensional arrays, which are inputs/outputs of
the RT. Whereas, the whole arrays are inputs/outputs of the RCT. In order to distinguish the
different usages of these subarrays, they are called tiles in the case that they are a part of an
array that belongs to an RCT, in contrast to patterns, which are taken as inputs/outputs of an RT.
A tiler defines: a fitting matrix describing how array elements fill tiles; an origin of the reference
pattern and a paving matrix describing how tiles cover arrays.

A Reshape connects two arrays, and can be considered as an array transformation between
these two arrays. The values stored in the arrays remain unchanged after the transformation.
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A reshape has two tilers at each end, which explain how to displace a tile from the source array
to the target array. A reshape represents run-time links between the source and target array
and enables to represent complex link topologies, in which the elements of a multidimensional
array are redistributed in another array.

An InterRepetition dependency (IRD) is used to specify an acyclic dependency among
the repetitions of the same component, compared to a tiler, which describes the dependency
between the repeated task and its owner RCT. Particularly, an interrepetition dependency spec-
ification leads to the sequential execution of repetitions of the repeated task. It connects one of
the outputs of an RTwith one of its inputs in the condition that the type of this input and output
must be identical. From the point of view of the RT itself, this interrepetition dependencymakes
it self-dependent. However, in the repetition context of the RT, a dependency vector associated to
the interrepetition dependency is used to ensure that one repetition of the RT relies on another
one (or some repetitions rely on some other ones), i.e., it expresses the dependency relation in
terms of a vector. If the depended repetition is not defined in the repetition space, a default
value is then chosen.

A defaultLink connector provides a default value for the repetitions of a task which are
linkedwith an interrepetition dependency, with the condition that the source of the dependency
is absent.

For RSM, the multidimensional modeling requires the specification of vectors and matrices
for the connectors (such as tiler, reshape, etc.) of the repetitive structures; and the shapes, for
multidimensional arrays and repetitions. For this, the RSM package makes use of the concepts
present in the MARTE library.

As illustrated in Figure 4.8, an IntegerVector is a vector of integer values as defined in
the MARTE library. This vector is defined as an ordered list of integer values (including having
a possible value of zero). An IntegerMatrix represents a matrix of integer values and is
represented by a list of integer vectors corresponding to the definition stated previously and
have the same shape. In MARTE, the matrices are written in a column by column manner. For

example, a matrix of
(

1 2
3 4
5 6

)

is represented by {{1, 3, 5}, {2, 4, 6}}. The integer vectors and matrices

are used to determine the attributes related to the concepts present in the RSM package: such
as tilers and interrepetition connectors.

Figure 4.8: An extract of the MARTE data types present in the MARTE Library

4.2.3 Application modeling

InMARTE, a vast variety of applications can bemodeled related to different domains. However,
as in Gaspard2, we are mainly interested in only data-parallel intensive processing (DIP), the
application components in Gaspard2 are not stereotyped explicitly as compared to the hardware
components. As this dissertation is mainly interested in the high level application aspects, we
thus explain the underlying modeling concepts.

4.2.3.1 Modeling of task parallelism

Figure 4.9 illustrates task parallelism on the top level component of a matrix multiplica-
tion application (this main component can be compared to the main of a C program). This
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MatrixMultiplicationMain component is composed of four sub components or parts/in-
stances. The two instances of initMatrix (iM1 and iM2) initialize the matrices (for example:
either by random initialization or due to data read from a file). Thesematrices are then provided
to the MatrixMultiplication component instance which will calculate the matrix multipli-
cation. Finally, the saveMatrix component instance will store this matrix in a file, for display
or verification purposes.

Figure 4.9: Illustration of Task Parallelism in Gaspard2 with the MARTE profile

4.2.3.2 Modeling of data parallelism

The modeling of data parallel Gaspard2 applications is based on the expression of data paral-
lelism present in Array-OL. Figure 4.10 represents the algorithmic expression of row/column
multiplication of two matrices3.

Figure 4.10: Representing Data Parallelism in Gaspard2 with the MARTE profile

The component MatrixMultiplication is composed of a repeated task: the dP instace
of the dotProduct component. This repeated task represents the computing task, which takes
one row and column; and produces one element in the final produced matrix. This task is
elementary in nature and is thus represented differently from other tasks; and can be henceforth
deployed. The tiler connectors express how the repeated task consumes and produces the
patterns by the indexes of the repetition in the repetition space. The input ports matrixIN1
and matrixIN2 represent the two input matrices, while the matrixOUT output port represents
the produced matrix.

3This algorithm is illustrated on small {4, 4} matrices for a simple example, however it be equally applied on large
matrices
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4.2.4 Architecture modeling

Figure 4.11: Modeling of an architecture QuadriPro with shared memory

Gaspard2 uses the HRM concepts in MARTE for modeling complex hardware architectures.
HRM consists of several views, a functional view (HwLogical sub-package), a physical view
(HwPhysical sub-package) or a merge of the two. The two sub-packages derive certain concepts
from the HwGeneral root package, in which HwResource is a core concept that defines a generic
hardware entity. A HwResource can be composed of other HwResource(s) (for example a pro-
cessor containing an ALU). This concept is then further expanded according to the functional or
physical specifications. The functional view of HRM defines hardware resources as either com-
puting, storage, communication, timing or device resources. The physical view represents hardware
resources as physical components with details about their shape, size and power consumption
among other attributes. Gaspard2 currently only supports the functional view. The HRM also
exploits the NFP package for specifying non-functional properties and quantitative annotations
with measurement units. The NFP package provides a rich library of basic types like Data size,
Data Transmission Rate and Duration.

Figure 4.11 represents the modeling of a QuadriPro architecture with shared memory. The
global architecture is modeled on the left side of Figure 4.11. This component is composed of a
repetition of processors connected with instruction and data memories via a crossbar. The repe-
tition of the processors is modeled on the right side of Figure 4.11. It is composed of repetitions
of the same processor, being repeated 4 times. Here the tilers represent the interconnecting
topology between the ports of the processors and the crossbar (via the hierarchy). Detailed
information about hardware modeling in Gaspard2 can be found in [27].

4.2.5 Allocation modeling

An allocation permits to associate the applicative part of the system onto the available hard-
ware resources (for e.g. mapping of a task or data onto a processor or a memory respectively).
Allocation plays an important role in the overall performance of the system. An allocation can
be of two types.

• Simple allocation:

An allocation can be viewed as an operation consisting of associating an element to an
other. In the case of a single task, it can be allocated to a processor which will be respon-
sible for its execution. In the MARTE profile, this operation is realized with the help of
a dependency from the source task to the target processor. This dependency uses the
allocate stereotype present in the profile. This operation is always carried out between
two elements having the same multiplicity or shape.
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• Distribution:

The distribution primarily consists of distributing repetitions of one element on to the
repetitions of another element. The basic principle of a distribution is to select a pattern in
the repetition space of the repeated task; and then to place this pattern on to the repeated
processors. This operation must be repeated the number of times it is necessary to at least
place once, each repetition of a task on to the processors.

Further details regarding effective allocation of applications onto hardware architectures
in the Gaspard2 framework can be found in [194].

4.2.6 Deployment modeling

Although MARTE is suitable for modeling purposes, it lacks the means to move from high
level modeling specifications to execution platforms. Gaspard bridges this gap and introduces
additional concepts and semantics to fill this requirement for SoC Co-Design.

Figure 4.12: Deployment of an elementary component dotProduct

Gaspard defines a notion of a Deployment specification level [16] in order to generate compi-
lable code from a SoC model. This level is related to the specification of elementary components
(ECs): basic building blocks of all other components having atomic functions. Although the
notion of deployment is present in UML, the SoC design has special needs, not fulfilled by this
notion. In order to generate an entire system from high level specifications, all implementation
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details of every EC have to be determined. Low level behavioral or structural details are much
better described by using usual programming languages instead of graphical UML models.

Hence, Gaspard extends the MARTE profile to allow deploying of ECs. To transform the
high abstraction level models to concrete code, detailed information must be provided. The
deployment level associates every EC (of both the hardware and the application) to an imple-
mentation (code) hence facilitating Intellectual Property (IP) re-use. Each EC ideally can have
several implementations. The reason is that in SoC design, a functionality can be implemented
in different ways. For example, an application functionality can either be optimized for a pro-
cessor, thus written in assembler or C/C++, or implemented as a hardware accelerator using
HDLs or SystemC. Hence the deployment level differentiates between the hardware and soft-
ware functionalities; and permits moving from platform-independent high level models to plat-
form dependent models for eventual implementation. Deployment provides IP information to
model transformations to form a compilation chain in order to transform the high abstraction
level models (application, architecture and allocation) for different domains: formal verifica-
tion, simulation, high performance computing or synthesis. Hence deployment can be seen a
potential extension of the MARTE profile enabling a complete flow from model conception to
automatic code generation. We now present a brief overview of the deployment concepts.

A VirtualIP expresses the behavior (functionality) of an elementary component, indepen-
dently from the compilation target. For an elementary component K, it associates K with all its
possible IPs. The desired IP(s) is (are) then selected by the SoC designer by linking it (them) to
K via an implements dependency. Finally, the concept of CodeFile is used to specify, for a
given IP, the file corresponding to the source code and its required compilation options. The
CodeFile thus identifies the physical path of the source code. It should be noted that the mod-
eling of a code file is not possible in the UML composite structure diagram but is carried out in
the UML deployment diagram in the current UML model tools such as Papyrus. The desired IP is
then selected by the SoC designer by linking it to the EC through an implements dependency.
As compared to the deployment specified in [16], the deployment level has been modified to
respect the semantics of traditional UML deployment.

Figure 4.13: Linking an IP to its associated CodeFile

Figures 4.12 and 4.13 show a clear description of the deployment level by deploying an el-
ementary component dotProduct of the matrix multiplication application shown in Figure
4.10. At the deployment level, this elementary component can have several possible implemen-
tation choices. These choices can be for the same execution platform (and same abstraction
level) in a given language, or can be for different ones (different abstraction levels or execution
platforms). In the illustrated example, the dotProduct has an implementation available for
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simulation in SystemC. The implements dependency from the dotProductimpC component to
the dotProduct component permits linking the IP (a softwareIP in this case) to the elemen-
tary component.

A fundamental limitation of the current deployment level is that for final compilation to an
execution platform, an elementary component can be linked to only one implementation (IP).
While this does make sense with regards to platforms where dynamic nature is not relevant, in
the case of reconfigurable and especially dynamically reconfigurable SoCs, this is an significant
limitation. Thus additional semantics are needed to address this issue.

4.2.7 GaspardLIB

The high level modeling of software and hardware IPs as described precedently is concretized
by the development of an IP library termed as GaspardLIB [27, 194]. The hardware components
of SoCLib [230] as well as internally developed hardware and software IPs have been integrated
in this library in order to construct complete complex SoCs. Figure 4.13 illustrates an example
of linking an IP to its associated source file present in GaspardLIB.

4.3 Metamodels and model transformations in Gaspard2

This section introduces some of the intermediate metamodels and model transformations
present in the Gaspard2 framework.

4.3.1 Domain-specific metamodels in Gaspard2

Once high level models have been specified using the MARTE profile, the Gaspard2 environ-
ment provides several intermediate domain-specific models. Each of these models conform to
their respective metamodels for eventual model transformations. The metamodels bridge the
gap between high level notions and some specific technologies. These metamodels include: De-
ployed MARTE, Polyhedron, Loop, OpenMP PL, Synchronous Equational and the RTL metamodel.

• Deployed MARTE metamodel bridges the gap between the MARTE profile diagrams and
the lower lever metamodels. It is a composition of several metamodels (application, archi-
tecture, allocation and deployment) [198].

• Polyhedron metamodel [194] is intended to implicit the allocation in Gaspard2 through
polyhedral technique, which enables the representation of a spatial allocation of comput-
ing resources (processors) to task repetitions through parametrized polyhedral concepts.

• Loop metamodel [126] has been proposed to refine the polyhedron metamodel for code
generation. This metamodel is very closely related to the Polyhedron metamodel. Loop
statements are described in this metamodel, compared to polyhedra information in the
polyhedron metamodel. Loop statements indicate how certain repetitions of a task are
executed by processors. They are therefore parametrized by the processor indexes. SoC
simulation and high-performance computing is the targeted application domain.

• OpenMP PL metamodel [126] enables representation of the essential parts of some proce-
dural languages, e.g., Fortran and C, accompanied with OpenMP statements [188]. This
metamodel is used for the code generation of high-performance computing on shared
memory computers without communication between the processors.

• Synchronous metamodel [104] has been proposed to carry out formal validation and ver-
ification of application modeling in Gaspard2. The verification is carried out via syn-
chronous equations.

• RTL metamodel [143] has been proposed to describe hardware accelerators at RTL, that
permits to translate high level modeled applications into hardware functionalities for
eventual implementation in a target integrated circuit. This metamodel introduces, e.g.,
the notion of clocks in order to manipulate some of the usual hardware design concepts.
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The RTL metamodel is independent from any HDL such as VHDL or Verilog. During
the course of this dissertation, this metamodel has been heavily modified to incorporate
aspects of dynamic reconfiguration.

4.3.2 Model transformations

Once Gaspard2 models are specified in a graphical environment, model transformations are car-
ried out via a transformation tool. However, as described in chapter 3, since the standardization
of QVT, few of the QVT transformation tools are capable to execute large complex transforma-
tions such as present in the Gaspard framework. Also none of these engines is fully compliant
with the QVT standard.

In order to solve this dilemma, In 2006, an initial transformation tool called MOMOTE
(MOdel to MOdel Transformation Engine) was developed internally in the team that was based
on EMFT QUERY [81]. MOMOTE is an enhanced Java framework that permits to perform
model-to-model transformations. It is composed of an API and an engine. It takes source mod-
els as input and produces target models with each conforming to somemetamodel. Another ad-
vantage of MOMOTE over the then existing transformation tools was that it supported external
black box calls: e.g. native function calls, rule inheritance, recursive rule call and integration of
imperative code. However, since that time, new tools such as SmartQVT [246] and QVTO [184]
have emerged that implement the QVT Operational language and are effective for handling the
complex Gaspard2 model transformations.

Currently, in order to standardize the model transformations and to render them compatible
with the future versions of the MARTE profile; we have chosen QVTO as the future transforma-
tion tool for Gaspard2. Current all the existing MOMOTE based transformation rules for each
execution platform have been, or are being converted into QVTO based transformation rules.
MOCODE (MOdels to CODe Engine) is another internal Gaspard2 integrated tool that allows
automatic code generation and is based on EMF JET (Java Emitter Templates) [82]. Similarly, as
MOMOTE based transformation chains are being migrated to QVTO based transformations; for
code generation, MOCODE based transformation rules are currently in the development phase
of being rewritten from scratch in Acceleo.

The Gaspard2 model transformations are organized as several transformation chains for
different languages, as illustrated in Figure 4.1.

• From Deployed modeling to Deployed Marte. This transformation converts the MARTE
UML profile diagrams to a deployed MARTE model (a MARTE model, in which elemen-
tary tasks are deployed with respective IPs).

• From Deployed MARTE model to Loop model. Two successive transformations are de-
fined in order to transform a deployed MARTE model into a Loop model (a model, which
conforms to the Loop metamodel). The first one involves the transformation of a MARTE
model into a Polyhedron model, where repetitions are expressed by polyhedrons, data ar-
rays are mapped on to memories, etc. The second transformation generates a model of
loop expressions from the Polyhedron model, which conforms to the Loop metamodel.

• From Loop model to SystemC/PA. This transformation enables the code generation for
SystemC at the TLM-PA level, where data access are based on patterns (instead of bytes).
The latter helps to speed up the simulation. The transformation generates the simulation
of hardware and software application components. The hardware components are trans-
formed into SystemCmodules with their interconnected ports. Part of the application that
executes on processors, is generated as sets of dynamically scheduled and synchronized
activities. The execution semantics of this part of application complies with the execution
model defined for the Gaspard2 MPSoC applications.

• From Loop model to OpenMP Fortran/C. OpenMP Fortran/C code can also be generated
from Loop models. Two steps are involved in this transformation: (1). generation of
an OpenMP PL model is carried out, where task scheduling, variable declarations and
synchronization barrier are addressed; (2). Then, generation of OpenMP Fortran/C code
from the OpenMP PL model takes place.
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• From Deployed MARTE model to Synchronous model. This transformation allows to gen-
erate a synchronous equation model. Code for synchronous languages: either Lustre,
Signal or Lucid synchrone, can be generated from this model. This allows checking of
functional properties of modeled applications.

• From Deployed MARTE model to RTL model. This transformation enables the generation
of RTL models from deployed MARTEmodels. The RTL model takes only modeled appli-
cation at the MARTE level and permits generation of VHDL code, with the intended goal
of synthesis onto FPGAs. This dissertation is mainly concerned with the evolution of this
transformation chain.

It should be noted that the different transformation chains: simulation, synthesis, verifica-
tion etc., are currently unidirectional in nature.

4.4 Related works in SoC Co-Design

This section covers some related works that take into account the aspects related to SoC Co-
Design, and propose respective design methodologies. A large number of these researches
focus on elevation of design abstraction levels in order to reduce design complexity. While it
is not possible to give a detailed description of all environments and tools focusing on SoC
Co-Design and particularly MDE, we try to give some significant contributions.

Works carried out at the NEC research lab at University of Lugano were among the first to
propose use of UML for SoC Co-Design, using a methodology termed as ACES [140]. The MOP-
COM project [3, 127] inspires from MDE fundamentals for the specification and development
of SoCs, and uses the IBM Harmony4 process coupled with Rhapsody5 UML modeling tool. In
the same manner, Sara Bocchio et al., working in the Advanced System Technology department of
STMicroelectronics equally proposed a SoC conception methodology, termed as UPSoC [212].
This methodology largely exploits The UML for System C profile [211], as well as the tools that
they have specialized for their utilization.

Similarly SPEEDS! (Speculative and Exploratory Design in Systems Engineering) [232] is an-
other European project for embedded systems development based on SYSML and AUTOSAR.
While the EPICURE project [129] defines a design methodology in order to bridge the gap be-
tween high abstract specifications and heterogeneous reconfigurable architectures. The frame-
work is based on Esterel design technologies and provides verification and synthesis capabili-
ties. However, one of the existing drawbacks of this framework is the lack of available support
for a high abstraction level design methodology, in order to reduce design complexity.

In [135], Klaus Kornlof and Ian Loiver, from Nokia, propose means to use executable use
cases for the specification of SoCs. Furthermore, in their approach, the textual specifications
are not completely excluded, but are expressed with the help of a specialized tool like DOORS6.
Initiatives such as presented in [210], search to exploit a structural and behavioral modeling
with SYSML for the generation of executable functional models. The MCSE methodology im-
plemented by the CoFluent Studio tool provides an architectural analysis in a SoC Co-Design
flow [54]. This tool permits rapid specification of annotated functional models along with mod-
els of execution platforms; and enables analytical evaluation followed by a dynamic one, by
simulating the results of a specific choice of projection between the two models. The language
used for these descriptions closely resembles UML concepts. TheMCSE approach has also been
adapted by Nokia in extending the approach proposed in [135]. Works are currently underway
in the MARTES project [154], for an effective interoperability between the two languages.

SynDEx which is a system level CAD tool based on the Algorithm Architecture Adequation
(AAA) methodology [101, 142], is also based on Y schema. This tool, developed by the initiative
of INRIA, permits to project a model of functional specifications onto a model of target platform.
SynDEx also integrates heuristics for an optimum placement of the functional model on the
given execution platform, under the given design constraints. Works are currently undergoing

4http://www-01.ibm.com/software/rational/services/harmony/
5http://www-01.ibm.com/software/awdtools/rhapsody/
6http://www-01.ibm.com/software/awdtools/doors/productline/
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in order for SynDEx to take MARTE profile diagrams as input for automatic code generation.
In [86], a SynDEx based design flow is presented to manage SoC reconfigurability via imple-
mentation in FPGAs, with the application and architecture parts modeled as components. In
[239, 240], the authors have contributed in the development of the HRM package of the MARTE
profile, and describe hardware platforms with parameterizable characteristics, enabling rapid
development of a simulator, before validating their works by execution of an application on the
modeled hardware.

While on the opposite side of the spectrum, The ACCORD/UML project7 uses MDA ini-
tiative for the conception of embedded real-time software. The platform also provides several
tools in order to help designers for the development of these complex applications. Similarly,
in [216], the authors provided an initial UML based methodology from initial requirement spec-
ifications to final generation of executable embedded code on a virtual machine, that can be
adapted for different types of real-time embedded kernels.

As described earlier in the dissertation, the AADL standard permits design of safety critical
real-time systems. AADL models integrate functional and non-functional properties, enabling
early analysis of the modeled systems to eventual code generation for the target hardware plat-
forms. In [226], the authors use the Open Source AADL Environment Tool8 (OSTATE), for es-
timating the power consumption levels at early SoC design phases. Power estimations have
been provided for a wide range of computing units, i.e., from GPPs, DSPs to complex micro-
processors present in current FPGAs. Additionally, the future extensions of the works aim for a
merged AADL/MARTE design methodology.

ROSES [253] is an environment for Multiprocessor SoC (MPSoC) design and specification,
however it does not conform to MDE concepts and as compared to our framework; starts from
a low level description equivalent to our deployment level. In [15], a simulink based graphical
HW/SWCo-Design approach for MPSoCs is proposed, but does not integrate an MDEmethod-
ology. In contrast, [92] uses the MDE approach for the design of a Software-Defined Radio
(SDR), but they do not utilize the MARTE profile as proposed by OMG and use only pure UML
specifications. In [218], the authors propose a UML based design flow to implement partial
dynamically reconfigurable architectures. Their abstract models, consisting of an FPGA and a
reconfigurable OS were modeled with pure UML specifications. The authors verified the func-
tionality of the OS by simulation in SystemC. However, the design methodology still lacked
code generation and synthesis stages. In [166], the authors provide a mixed modeling approach
based on SYSML and the MARTE profiles to address design space exploration strategies. How-
ever, they only provide implementation results by means of mathematical expressions and no
actual experimental results have been illustrated.

MILAN [217] is another project for SoC Co-Design benefiting from the MDE concepts but is
not compliant with the MARTE profile. The OMEGA European project [245] is also dedicated
to the development of critical real-time systems. However it uses pure UML specifications for
the system modeling and proposes a UML profile [138], which is a subset of the UML profile
for Scheduling, Performance and Time (SPT). It is used with UML graphical editors and tools
compatible with the XMI exchange format, such as Rational Rose and IBM’s Rhapsody. Other
environments such as GRACE++ [99], Metropolis [235], Ptolemy [40] and Artemis [195] are
also environments using model based approaches. They offer description semantics respecting
a reference metamodel; and offer tools for analysis, simulation or synthesis. The difference
between all these above mentioned environments are mainly: the chosen high specification
level language, model of computation, targeted application domains and the abstraction levels
of the generated code.

4.5 Reconfigurability features in Gaspard2

As illustrated in chapter 1, the evolution of SoC is continuing at a rapid pace, with the result
being the escalation of the design complexity at an exponential rate. Hence reconfigurability
and integration of dynamic features are becoming crucial to be adapted in the SoC industry.

7http://www-list.cea.fr/labos/fr/LLSP/accord_uml/AccordUML_presentation.htm
8The SAE AADL Standard Info Site: http://www.aadl.info
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Reconfigurable SoCs and especially partial dynamically reconfigurable SoCs are the future
as they offer increased flexibility in terms of functionality, as well as resource economization in
terms of target platforms. These systems provide advantages such as low energy consumption,
fault tolerance and virtualization of the available hardware resources. As Gaspard2 framework
is mainly oriented towards the design and development of SoCs, it is thus evident that these
features should be addressed and integrated in our framework.

For this purpose, in [139], an initial proposal was presented for expressing dynamic features
in Gaspard2. This proposal was mainly in the form of a hypothesis and no concrete semantics
or implementation were carried out. The limitations of this research were addressed in [104], in
order to refine the design methodology. The authors focused on expressing dynamic features
at a high abstraction level using the UML metamodel. They made use of UML state machines
and collaborations, for expressing dynamic aspects in a SoC Co-Design framework. In spite of
their intended goal, the introduced features are not generic in nature and can only be applied
onto the application modeling level in Gaspard2. Additionally, fusion of the above mentioned
concepts in the MARTE profile was not undertaken. Furthermore, the works suffer from the
same drawback as the earlier research, as no actual model transformations were developed
for translating the high level models for eventual mapping onto an actual execution platform.
Details related to these works are provided in the following chapter.

Henceforth, currently the Gaspard2 framework does not offer any concrete semantics: from
model specifications to automatic code generation, in the context of adaptive SoCs. This disser-
tation takes these issues into account, and provides some answers to address these challenges.
The following chapters inspire to provide a complete methodology for expressing reconfigura-
bility features in a SoC design, from high abstraction levels to eventual code generation. After-
wards the generated code can be used in commercial FPGA tools for the construction of partial
dynamically reconfigurable FPGA based SoCs.

4.6 Conclusions

This chapter focuses on Gaspard2, which is a MARTE compliant MDE oriented SoC Co-Design
framework. Gaspard2 benefits from several advantages provided by MDE: modeling at dif-
ferent levels of abstraction reduces the complexity in the modeling and model transformations
through the intermediate-level models. Additionally, modeling in a uniform language such
as UML helps in the integration of heterogeneous systems, technologies, etc. Being based on
the MARTE UML profile, Gaspard2 models are easily comprehensible by different designers.
Similarly usage of components and the deployment level in Gaspard2 introduces the notion of
re-usability, which helps to build complex systems at a reduced cost.

However, Gaspard2 still lacks a complete methodology for integrating aspects of reconfigu-
ration, and especially run time reconfiguration/partial dynamic reconfiguration. As Gaspard2
focuses on SoC Co-Design, and these architectures are moving towards the horizon of reconfig-
urability, this is a serious drawback for the existing framework. This issue has been addressed
in the subsequent chapters.
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This chapter presents our design methodology for targeting dynamically reconfigurable
SoCs using high abstraction levels. We first recall the motivations behind the dissertation fol-
lowed by an explanation of our proposed approach; and then provide an overview of the design
methodology developed during the course of this dissertation.

5.1 Motivations

As seen in chapter 1, SoC Co-Design complexity is increasing rapidly, necessitating the need
to find effective design methodologies that take into account different aspects such as time-to-
market, fabrication costs, etc.; while reducing development time. Reconfigurability features in
these modern SoCs increase their flexibility to cope with rapidly evolving environments and
change in user requirements, at the cost of increased complexity. While different solutions and
methodologies are proposed to address these challenges; a component based mechanism seems
prerequisite as it enables to view the systems in a precise composed manner, illustrating the
design hierarchy and offering separation of concerns, as emphasized in chapter 2. Different
components in a system can be designed independently and afterwards composed together to
form a final assembly.

Migration of a component based design to high abstraction levels offers additional benefits:
a high level model is independent from implementation details and is re-usable and maintain-
able as highlighted in chapter 3. A SoC Co-Design framework integrating all these aspects
while incorporating IP re-use seems a promising approach, as it offers designers to specify their
systems (applications, architectures or their allocations) in a graphical manner which increases
system comprehensibility. In chapter 4, the Gaspard2 framework is introduced which offers
these benefits. However, dynamic reconfiguration is still absent in the framework, necessitat-
ing the need to introduce additional semantics. This chapter presents our design methodology
to address this limitation, which can be viewed as a global view of our contributions. Once the
methodology has been introduced, we move onto addressing the various concepts and imple-
mentation details which make it possible to design and implement dynamically reconfigurable
SoCs from Gaspard2 environment.



5.2. PROPOSED APPROACH

5.2 Proposed approach

Adaptivity and reconfigurability are significant issues for the design and implementation of fu-
ture SoCs which must be able to cope with end user environment and requirements. These
SoCs must have robust effective and efficient mechanisms to deal with dynamic characteristics.
Normally, the reconfiguration is carried out in these complex systems by means of a control
mechanism (for example a RTOS or middleware, or a reconfiguration controller as specified in
section 1.3.4). This control mechanism is mostly mode based in nature and can depend on QoS
choices: such as changes in executing functionalities due to designer requirements, or changes
due to resource constraints of targeted hardware/platforms. The changes can also take place
to due to other environmental criteria such as communication quality, time and area consumed
for reconfiguration; and energy consumption levels.

For a SoC Co-Design framework, this control model must be generic enough to be applied
to both software and hardware design aspects. Similarly for a framework incorporating high
abstraction levels and specially MDE, the control model must respect all the related criteria.
While several control models exist, automata based control [151] are promising as they incor-
porate aspects of modularity present in component based approaches, for describing SoC in an
incremental fashion to build these complex systems.

5.2.1 Inspirations for our design flow

In this dissertation we present a generic control semantics for expressing reconfigurability in
SoCs. The introduced control semantics are introduced via a high abstraction level model-
ing approach, in MARTE profile (and its corresponding metamodel) and subsequently in the
Gaspard2 framework. Our design flow is inspired from the works present in [104], which as
explained in the last chapter, provided an initial design methodology for expressing dynamic
aspects in Gaspard2. Equally, the design methodology also incorporates aspects introduced
in [143], where a Gaspard2 application modeled with UML specifications was intended to be
converted into a hardware functionality (while keeping its characteristics intact, such as mul-
tidimensional arrays and repetitions that were specified at the modeling level). However this
design flow was static in nature and did not take dynamic reconfigurability into account. The
intention of the design flow was to create a hardware accelerator for final implementation on a
target FPGA. However, this approach had several drawbacks.

Firstly the design methodology did not take the MARTE profile into account at the high
modeling level, which could have enabled to conform to the soon to be industry standard for
modeling/design of SoCs. Secondly the final hardware design (the hardware accelerator) was
intended to be implemented in an FPGA as a black box, having a fixed rigid nature. Moreover
there is no notion of an heterogeneous system (processors, buses, etc.) in the final implemen-
tation that communicates with this hardware accelerator. As mentioned earlier in section 1.1,
modern SoCs are becoming more and more heterogeneous in nature. An additional repercus-
sion is that specification of dynamic reconfiguration semantics is not present at the high model-
ing levels. Finally the model transformations associated with this methodology were not able
to completely produce the HDL code for the eventual intended implementation.

5.2.2 Modeling aspects of reconfiguration controller

As seen in section 1.3.4 related to partial dynamic reconfiguration in FPGA based SoCs, a recon-
figuration controller is mandatory for dynamic reconfiguration in an FPGA. The controller itself
can be implemented in different manners. It can be external or internal; and can be a hardware
module written in an HDL acting as a controller. In this case, the reconfiguration is not self
reconfiguration as this simple controller is not capable to communicate with the ICAP core for
implementing internal partial dynamic reconfiguration. For self reconfiguration, an embedded
hard/soft core microprocessor is needed with complex reconfiguration mechanisms to not only
handle switching between the partial bitstreams related to a dynamically reconfigurable region,
but to also communicate with the ICAP core. In both types of controllers, the switching mecha-
nism for swapping one configuration with another is usually in the form of a state machine. For
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a microprocessor based controller, part of the code being executed relates to interfacing with the
ICAP core and fetching the necessary frames or bit wide columns (depending upon the FPGA
series); while another part is the state machine which basically alternates between the different
implementation choices.

The first part can be viewed as an essential low level macro code which cannot be modeled
at high abstraction levels; while the 2nd part corresponding to a state machine, depends upon
the nature of the functionality, the number of partially reconfigurable regions, their correspond-
ing implementations and the mechanism to change the implementations related to a dynamic
region. This state machine part can be modeled at high abstraction levels via introduction of
some associated control semantics.

Moreover, the reconfiguration controller can act upon the events provided by an external en-
vironment, or depends solely upon the tasks of the functionality present in the static/dynamic
portions. During the course of this dissertation, the first approach has been adapted, to provide
a basic design template. Equally, it is possible to divide the functionality in several portions, i.e.,
some parts of the application can be present in the static portion (even in the controller itself),
while a part(s) can be dynamically reconfigurable [4]. However, this approach can lead to an
increased complex design due to synchronization between the different static/reconfigurable
regions. For this reason, in the dissertation, the desired application functionality is treated as a
single reconfigurable region.

5.2.3 An application-driven approach

As it has been made evident in section 3.3, due to limitations in the MARTE profile, currently
it is not possible to completely specify the details related to dynamically reconfigurable FPGAs.
Moreover, due to limitations of the current tools for implementing partial reconfiguration, it is
difficult to bridge the gap between specifications of an FPGAmodeled with the MARTE profile,
and eventual synthesis and implementation. While efforts have been made in research such
as in [3, 127], the dynamic reconfiguration is still manipulated manually. Moreover, dynamic
reconfiguration should not be dependent on the underlying architectural details, but should be
application driven as explained in the introductory chapter. .

Thus, during this dissertation, only the application model (as present in Gaspard2) is taken
into account. It is specified at the high abstraction level with the MARTE profile, followed by its
respective deployment along with integration of certain control aspects. The goal is to specify
part of the partial dynamically reconfigurable system at high abstraction levels: notably the
dynamically reconfigurable region and the part of the reconfiguration controller related to a
configuration switch. The dynamically reconfigurable region refers to the modeled application,
which is successfully converted into a hardware functionality for eventual synthesis. While
the controller part of the system refers to a high level control semantics which is introduced
subsequently in the next chapter.

Normally in PDR based systems that focus on changing the context of the application (we
avoid the discussion related to PDR based NoCs, where the architecture itself can be flexible),
we see a trend to change either the tasks of an application or the application itself. Additionally,
as seen in chapter 4, Gaspard2 offers a deployment level which defines the relationship between
elementary components and their IPs. In our design flow, we focus mainly on changing the
IPs related to the elementary components of an application. This offers two advantages. An
application can retain the same structure and the same functionality while differing partly in the
manner by which it is implemented. This implementation choice can arise due to several factors
such as the available hardware resources, power consumption, reconfiguration time etc. The
other advantage is that by changing the elementary components, it is possible to partly change
the functionality of the application

Afterwards, via the model transformations, the code related to the application functionality
and the controller can be generated automatically. The state machine code is merged with the
macro code to produce the complete source code for execution in the reconfiguration controller.
Finally, using commercial tools, a complete PDR system can be developed.
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5.3 Our contributions in the Gaspard2 environment
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Figure 5.1: The Gaspard2 framework with integrated dynamic aspects

Figure 5.1 illustrates the contribution of this thesis with respect to the Gaspard2 framework.
Initially an application can be modeled at a high abstraction level, and afterwards its elemen-
tary components can be deployed to respective IPs. A control model has been integrated at the
deployment level which introduces QoS aspects in relation to the available IPs. This model in
collaboration with deployment, allows to create multiple implementations or modes of the mod-
eled application, each with different QoS criteria such as percentage of utilized FPGA resources,
etc. The modes of the modeled application depend upon designer requirements and environ-
ment specifications. Afterwards, the application is transformed into a hardware functionality
(specifically a hardware accelerator having multiple implementations) by the intermediate RTL
level, while the control model is transformed into suitable state machine semantics for imple-
mentation in a hard/soft core processor acting as a reconfigurable controller in a PDR system.
The choice of utilizing a microprocessor based controller over a simple HDL controller has been
made to implement self reconfiguration. However, our methodology can also be extended to
generate the control code for implementation in a hardware module (for example a VHDLmod-
ule) acting as a controller. Thus the semantics are generic in nature, until the code generation
phase; and depend upon the designer requirements and the final implementation choice of a
controller.
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5.3.1 The transformation chain

Figure 5.2 shows the global overview of our design flow with respect to the MDE based prin-
ciples. Initially the application is modeled and deployed, along with the associated control
aspects in the Gaspard2 environment with Papyrus; conforming to the UML MARTE profile
that has been extended during the course of this dissertation. This modeling is independent
from any implementation details until the deployment phase. Afterwards the UML2MARTE
model transformations enables conversion of the UML model into a DeployedMARTE model
which conforms to the Deployed MARTE metamodel as specified in chapter 6. Thereafter, the
MARTE2RTL transformations convert this model into an RTL model, which itself correspond
to its own metamodel. The RTL model is considered as a low abstraction level with details
nearly corresponding to RTL; it provides details related to the hardware accelerators and the
control features which can be used for eventual code generation. Finally using the model-to-
text RTL2Code transformation, we generate the code related to different implementations of a
hardware accelerator and the state machine for the reconfiguration controller.

Figure 5.2: An abstract overview of our design flow

Once the source code for the application and the reconfigurable controller (state machine
part) is obtained, the reconfigurable FPGA based SoC can be created by using usual Xilinx de-
sign tools related to partial dynamic reconfiguration such as Xilinx ISE1, EDK2 and PlanAhead
[169]. These implementation details have been specified in detail in chapter 9. Depending upon
the various deployment choices, the converted form of themodeled application (hardware func-
tionality) is treated as a PRR (Partial Reconfigurable Region) with several PRMs (Partial Recon-
figurableModules), which are unique implementations for a dynamically reconfigurable region.
Our design methodology allows to create several PRMs for a PRR on the basis of elementary
components and their associated IPs. Each PRM has the same shape and interface respecting
the partial reconfiguration semantics. The code generated from the control concepts is used
directly in the reconfiguration controller for switching between the PRMs.

Our aim is not to replace the commercial FPGA tools but to aid them in the conception of a
system. While tools like ISE and PlanAhead are capable of estimating the configurable FPGA
resources (CLBs and in turns the slices) required for implementing the hardware design, this
resource estimation is only possible after initial synthesis. In our design flow, the elementary
components can be synthesized independently to calculate the consumed FPGA resources. This
information can be then incorporated into the model transformations, making it possible to

1http://www.xilinx.com/ise/logic_design_prod/foundation.htm
2http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm
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calculate the approximate number of consumed FPGA resources of the overall application (at
the RTLmodel) before final code generation and eventual synthesis. Thus the designer is able to
compare the resources consumed by the modeled application and the total resources available
on the targeted FPGA resulting in an effective Design Space Exploration (DSE) strategy. If the
application is too big to be placed on the FPGA, the designer can carry out a refactoring of the
application, which has been detailed in [75, 98, 231]. A refactoring usually involves changing
the execution semantics related to the application, such as converting a sequential execution
into a parallel one or vice versa. It should be noted that a refactored Gaspard2 application
remains a Gaspard2 application and there is no change in its global functionality.

5.4 Limitations of our approach

While this thesis responds to several questions related to the introduction and development of
dynamically reconfigurable SoCs from high abstraction levels, certain limitations do exist re-
lated to our contributions. One of the initial drawbacks is the absence of architectural aspects at
the MARTE profile level, which could help in the conception of a complete SoC. Additionally,
MPSoC systems cannot be currently targeted due to this reason. Moreover, while we have suc-
cessfully presented an application oriented approach, issues such as control/data flow synchro-
nization and dataflow conservation during recnfiguration have not been fully treated. These
limitations are due to the underlying model of computation of Gaspard2, as indicated in section
6.2.5.2. Finally, resolution of some of these problems have been presented in the perspectives
related to this thesis.

5.5 Conclusion

This chapter represented the global contributions that have been carried out during the course
of this dissertation. The contributions relate to creating a complete high abstraction level
methodology for defining dynamic aspects in a SoC framework. After presenting our design
methodology, we now move onto the different contributions which help to integrate dynamic
reconfiguration in Gaspard2. These contributions are specified in the subsequent chapters. We
first present the control model that provides the underlying semantics for managing dynamic
reconfiguration in Gaspard2, in the next chapter.
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As explained before in chapter 4, Gaspard2 targets data intensive processing (DIP) applica-
tions. In reality, the applications targeted in Gaspard2 are mainly data flow oriented and there
is no concrete notion of control. This is because the core formalism of data parallelism in Gas-
pard2 (its MoC or Array-OL) is based on data dependency descriptions and repetition operators;
for expressing data parallel applications that compute large amounts of data in a regular man-
ner. The behavior of these applications is completely fixed statically and cannot be changed at
run-time. Thus dynamic behavior is considered to be disadvantageous to the regularity and
performance of targeted Gaspard2 applications.

However, as the field of reconfigurable computing is gaining a foothold in the SoC industry
at a rapidly increasing pace, dynamic behavior begins to appear more and more in these com-
plex systems; and is vital to resolving issues such as related to resource economization, QoS etc.
For integrating dynamic characteristics in a target platform, a control mechanism is integral, as
it provides system designers with increased flexibility in terms of design configurations, system
performance, consumed platform resources, energy consumption, etc. These design configura-
tions are similar in context to the definition given in section 2.3.
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While the MARTE profile permits modeling of behavioral aspects using state machines, ac-
tivity and sequence diagrams, it is up to the underlying framework to provide proper semantics
to translate these high level models. However, unfortunately, Gaspard2 does not provide ade-
quate semantics to model and specify dynamic behavior for the targeted platforms.

In turn, current systemsmodeled in Gaspard2 are rigid: they are too specific and static. Even
a small replacement or modification of a functionality in the system leads to system reconstruc-
tion. Thus suitable behavioral modeling concepts are required to address these issues.

A generic control semantics is thus necessary, which can be seamlessly integrated into a SoC
Co-Design framework, having compatible semantics for specifying the hardware and software
aspects of the framework. Not only these concepts should be effective and robust to remove
design faults and errors, but model transformations should be present to generate eventual
code for final implementation.

This chapter first presents a generic control semantics to address the above mentioned chal-
lenges. Initially, we provide some basic conditions and abstract concepts related to control mod-
eling at a high abstraction level. Afterwards, we investigate the advantages/disadvantages of
integrating the semantics at different levels of a SoC Co-Design framework. The investigation
results in the integration of the semantics at the deployment level in Gaspard2, which is also
presented in this chapter, along with the added extensions carried out during this dissertation.
The novel control semantics and the deployment concepts are added to the MARTE profile
and its corresponding metamodel by means of a merge mechanism, explained later on in the
chapter. Finally, graphical examples using the extended MARTE profile are given for a better
comprehension.

6.1 Control semantics for Gaspard2

We first present some basic conditions that must be respected for the specification of a control
semantics in the context of an MDE based SoC Co-Design framework.

6.1.1 Basic requirements

Behavior in systems can be specified in different forms, and at different abstraction levels, etc.
In this thesis, we focus on control-related behavior, which will only be called behavior afterwards
for the sake of simplicity. According to the context of Gaspard2, the behavior modeling and the
generic control semantics should take the following aspects into account:

• Conformance with MARTE profile. The proposed control mechanism should be compat-
ible with MARTE, i.e., the control concepts can be modeled using the MARTE profile or
MARTE compatible concepts in a graphical modeling tool supporting MARTE.

• Complete design flow. Only abstract modeling concepts are not sufficient. Concrete mod-
eling concepts at either theMARTE profile or its metamodel must be developed. Similarly,
model transformation chains must be developed that interpret these high level control
concepts and generate the required code.

• Precise semantics. The control needs to consider conciseness and clarity, which will benefit,
on one hand the documentation and communication, and on the other hand, the model
transformations that enable the implementation level code generation.

• State-based control. A state-based control mechanism, e.g., state machines, is preferable
in Gaspard2, not only because of its wide adoption in academia and industry, but its ver-
ifiability supported by large quantity of formal verification tools. Additional extensions
have been proposed based on the mode automata in [152].

• Control flow representation. As all the data in Gaspard2 are modeled in the form of
arrays, control events in Gaspard2 should also follow the same semantics, i.e., they should
be modeled as arrays. For example, an infinite flow of control events can be modeled
as an infinite array having a special shape of {∗}. The value of {∗} is used to denote an
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infinite dimension in the RSM package in MARTE. However, Gaspard2 specifications do
not take environment or platform aspects into account. Hence, control event arrays are
also modeled independently from environment constraints in the same way as data, e.g.,
what they are and when and how they are presented. Control event arrays, similar to data
arrays, are supposed to construct and exhibit data dependencies between tasks.

• Data/control separation. In [139], a separation between control/data flow has been pre-
sented. Extensions of this control separation have been presented in [95, 96, 104, 116].

While Gaspard2 respects Array-OL semantics, the proposed control extension does not aim
at full compliance, due to Array-OL’s nature as a pure data parallelism specification language.
The generic control semantics endows Gaspard2 with dynamic features. This permits Gaspard2
to become far more effective, as SoC applications and hardware functionalities are expected to
be increasingly flexible and adaptive. Similarly, for reasons of clarity, this control mechanism
provides precise semantics, so that the control can be easily understood.

6.1.2 Related works

We now provide some related works related to control and its specification. In several tools and
development environments dedicated to mixed dataflow/control-flow applications, a multi-
paradigm approach has been proposed to integrate languages in different styles, i.e., dataflow
and some imperative features:

• SIMULINK and STATEFLOW1: the former is used for the specification of block diagrams
where some operators of the latter are used to specify controllability.

• SCADE2: in the SCADE environment, state machines are embedded and used to activate
dataflow processing specified in Lustre [105].

• PTOLEMY II: state machines can also be mixed with dataflow equations [40].

In [141, 221], the authors concentrate on control based modeling and verification of real-time
embedded systems in which the control is specified at a high abstraction level via UML state
machines and collaborations; by using model checking. A similar approach has been presented
in [87]. However, control methodologies vary in nature as they can be expressed via different
forms such as petri nets [18], or other formalisms such as mode automata [151, 152].

Mode automata extend synchronous dataflow languages with an imperative style, but with-
out many modifications of language style and structure. They are a simplified version of State-
charts [107] in syntax, which have been adopted as a specification language for control oriented
reactive systems. Mode automata have a clear and precise semantics, making inference of sys-
tem behavior possible, and are supported by formal verification tools.

These constructs are mainly composed ofmodes and transitions. In an automaton, each mode
has the same interface, and equations are specified in the modes. Transitions are associated
with conditions, which serve to act as triggers. Mode automata can be composed together in
parallel; and enable formal validation by using the synchronous technology. Among existing
UML based approaches permitting design verification, we find examples in literature such the
Omega project [100] and Diplodocus [14]. These approaches essentially utilize model checking
and theorem proving.

In mode automata, computations in each state share the same basic clock with events (or
condition expressions) that fire the transitions. As a result, there is the coherence between the
computations and events with regard to their clocks. Unlike mode automata, in execution plat-
forms, the independence between control and computation makes it possible to have incom-
patible correspondence. The latter leads to an unsafe design. Mechanisms must be developed
to address this difficult challenge. Similarly in [139, 172], a multigranularity approach has been
proposed for synchronizing control/data flow. However, this introduces additional deficiencies

1http://www.mathworks.com/products/simulink
2http://www.esterel-technologies.com
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as the arrival of control events is non-deterministic in general, and thus not easily visible to the
SoC designer.

An initial hypothesis of control for expressing dynamic behavior in Gaspard2 at the appli-
cation level has been proposed in [139, 172]. The control is state-based, as it is inspired from
the mode automata. However unlike mode automata, the control and data computations are
specified in a separate manner, allowing a clear distinction between the two. As a result, data
computations can be specified independently from control. However this approach has several
drawbacks. Parallel and hierarchical compositions of automata have not been defined, these
compositions are considered as basic mechanisms that enable specification of complex reactive
control systems in Statecharts [107]. Similarly, synchronization between control and data is not
well defined to guarantee a safe design free from faults or errors.

Extensions to these works have been proposed in [95, 96, 104, 116] and introduce an im-
proved control at the application modeling level in Gaspard2, with hierarchical and parallel
compositions; and introduce formal semantics based on mode automata and the Array-OL lan-
guage. These works allow to express the control events as arrays not dissimilar to the data
arrays (An infinite flow of control events is modeled as an infinite array) which also have data
dependencies. The main drawback of this approach is that it is only an hypothesis and non-
generic in nature, and lacks actual model transformations. Similarly, this approach uses pure
UML semantics and does not provide a bridge between UML and MARTE specifications.

6.1.3 Abstract generic control model concepts

This section first describes the basic concepts related to our generic control model3. Several ba-
sic control concepts, such as Mode Switch Component and State Graphs are presented
first, which are abstract in nature. Afterwards, a basic composition of these concepts is il-
lustrated, that helps in the construction of a mode automata, which is the actual intention of
this generic control model. Thus the abstract modeling semantics derive from the concepts of
modes in mode automata. The notion of exclusion among modes helps to separate different
computations. As a result, programs are well structured and fault risk is reduced. Finally, the
control model follows a component based approach, in order to respect the semantics of mode
automata, and a SoC framework based on MDE methodology.

This control semantics can be integrated into different levels (application, architecture and
allocation) in a SoC Co-Design framework [66], which will be detailed later on in the chapter.
Similarly, concrete details and usage about these abstract concepts are discussed afterwards in
sections 6.4 and 6.5 respectively.

6.1.3.1 Modes

A mode is a distinct method of operation that produces different results depending upon the
user inputs. A Mode Switch Component in Gaspard2 contains at least more than one mode;
and offers a switch functionality that chooses execution of one mode, among several alternative
present modes [172]. The mode switch component in Figure 6.1 illustrates such a component
having a windowwith multiple tabs and interfaces. For instance, it has an m (mode value input)
port as well as several id (data input) and od (data output) input and output ports. The switch
between the different modes is carried out according to the mode value received through m.

The modes, M1, ..., Mn, in the mode switch component are identified by the mode values: m1,
..., mn. Each mode can be hierarchical or elementary in nature; and transforms the input data id
into the output data od. All modes have the same interface (i.e. id and od ports). All the input and
outputs share the same time dimension, ensuring correct one-on-one correspondence between
the inputs/outputs. The activation of a mode relies on the reception of mode value mk by the
mode switch component through m. For any receivedmode value mk, themode runs exclusively.
It should be noted that only mode value ports, i.e., m; are compulsory for creation of a mode
switch component, as illustrated in Figure 6.1. Other type of ports, such as input/output ports
are not necessary and are thus represented with dashed lines.

3Here control model refers to control semantics and not an UML model
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Figure 6.1: Abstract representation of a mode switch component in Gaspard2

6.1.3.2 State graphs

A state graph in Gaspard2 is similar to state charts [107], which are used to model the system
behavior using a state-based approach. We term these state graphs as Gaspard state graphs. A
state graph can be expressed as a graphical representation of transition functions as discussed
in [95]. A state graph is composed of a set of vertices, which are called states. A state connects
with other states through directed edges. These edges are called transitions. Transitions can be
conditioned by some events or Boolean expressions. A special label all, on a transition outgoing
from state s, indicates any other events that do not satisfy the conditions on other outgoing
transitions from s. Each state is associated with some mode value specifications that provide
mode values for the state. A state graph can be represented in different ways, for example, with
the help of state charts or via state tables. The right-hand side of Figure 6.2 illustrates a Gaspard
state graph which is similar to state charts [104]. Similarly, the left-hand side of the same figure
represents a state graph by an equivalent state-transition table. Formal definitions of Gaspard
state graphs have been presented in [104].

As compared to mode automata and state charts, state graphs do not require initial states.
In state charts or mode automata, transitions are carried out in an automatic manner, i.e., the
source state of one transition is identical (or same) to the target state of previous transition. If
there is no previous transition, then the initial state is taken by default. However, in state graphs,
only transitions are defined between the states, and no automatic sequential order is specified.
Thus, set of source states and events in the form of arrays can be provided to the state graph,
in order to get respective array sets of target states and mode values. The consequence of this
mechanism is that a state graph itself cannot be treated as an automaton. State graphs can also
be parallely composed as viewed in Figure 6.3, or composed in a hierarchy [104].

Figure 6.2: Different representations of a Gaspard State Graph

6.1.3.3 Gaspard State Graph Component

A state graph in Gaspard2 is associatedwith a Gaspard State Graph Component as shown
in Figure 6.3. Thus a state graph determines the internal behavior of a Gaspard state graph com-
ponent. A Gaspard state graph component or GSGC determines the mode value definition by
means of its associated state graph(s). The mode values allow activation of different exclusive
computations or modes in the related mode switch components. Thus, GSGCs are ideal com-
plements of mode switch components, with mode values being the relation between the two
concepts. A Gaspard state graph component can be viewed as a controller component while
the mode switch component switches between the modes according to the controller.

Similar to the mode switch component, a Gaspard state graph component has its interfaces.
These interfaces include event inputs from the environment, source state inputs, target state
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outputs andmode outputs. Event inputs are used to trigger transitions present in the associated
Gaspard state graph. The source state inputs determine the states from which the transitions
take place, while target state outputs determine the destination states of the fired transitions.
The mode outputs are associated with a mode switch component in order to select the correct
mode for execution.

In this dissertation, we focus mainly on simple non hierarchical Gaspard state graphs asso-
ciated with a GSGC. However, the control model makes it is possible for a Gaspard state graph
component to have parallel or hierarchical Gaspard state graphs. These concepts have not been
treated during the course of this dissertation; and can be considered as a future evolution of our
design methodology.

Figure 6.3: Examples of Gaspard State Graph Components

6.1.3.4 Combining modes and state graphs

Figure 6.4: An example of a macro structure

Once mode switch components and Gaspard state graph components are introduced, a
Macro Component can be used to compose them together. An abstract representation of the
macro component in Figure 6.4 illustrates one possible composition; and represents a complete
Gaspard2 control structure. In the macro, the Gaspard state graph component produces a mode
value (or a set of mode values) and sends it (them) to the mode switch component. The latter
switches the modes accordingly. Some data dependencies (or connections) between these com-
ponents are not always necessary, for example, data dependency between Id and id. They are
drawn with dashed lines in Figure 6.4. The illustrated figure is used as a basic composition,
however, other compositions are also possible, for instance, one Gaspard state graph compo-
nent can control several mode switch components [204]. In order to simplify the illustration,
events e1, e2 and e3 are only shown as a single event Ie.

In [104], the authors have illustrated that hierarchical composition of state graphs using the
concepts of mode switch components (MSCs) and Gaspard state graph components (GSGCs) is
possible. A mode switch component can contain a nested lower level Gaspard state graph as
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a mode. This hierarchical composition can be of two types: composition in a simple repetition
context; or composition in an hierarchical repetition context. The first type insures that all the
GSGCs at different hierarchical levels have the same transition rate, in comparison to the second
type, where low level GSGCs have a faster transition rate then the high level GSGCs. As we
do not treat hierarchical composition of Gaspard state graphs, this context is currently non
applicable to this dissertation.

In order to be compatible with underlying specifications in Gaspard2, the control modeled
as an array (section 6.2.5.2), can be mapped onto the same time dimension as data arrays. Thus
this time dimension is common to all control and data arrays in the specification. However, this
is not always the reality. Issues arise when Gaspard2 specifications are mapped onto an execu-
tion model, e.g., a dataflow model. These problems involve the relation and synchronization of
control event and dataflow, which are always ambiguously specified. These issues arise from
the specification and implementation gap of Gaspard2 dynamic behavior.

When the specifications are mapped onto a dataflow model, the control event-data relation
implies that the two flows (event and data) have the same clock and thus can be synchronized.
However, Gaspard2 is not associated with any specific execution model. In an execution model,
a control event may be uncorrelated with the repetitions of data computation with regards to
their clocks. For example, a person watching a program on television can change the channels
with the help of a remote control. The user input for channel change does not depend upon
or correspond with the TV data flow. This problem is caused by different specification styles
of control and data computation, i.e., state-based control adapts event-driven style [107, 108]
and data computation adapts dataflow style [36]. In [104], the authors choose to use classical
synchronous dataflow control mechanisms to resolve these problems. However, when targeting
execution platforms and technology levels such as RTL, amore elaboratemechanism is required,
which will be discussed later on in the dissertation.

6.2 Control at different system design levels

The previous section described an abstract control model for integrating dynamic aspects in a
system. Similarly, these control mechanisms can be integrated in different levels in a SoC Co-
Design framework, with the advantage of introducing dynamic semantics in these SoCs. We
first analyze the control integration at the application, architecture and allocation level in the
particular case of the Gaspard2 framework, followed by a comparison of the three approaches.

6.2.1 MARTE concepts for constructing mode automata

We first present some additional MARTE concepts which aid in the modeling of mode automata.
The basic concepts of Gaspard2 control have been presented in section 6.1.3, but complete com-
plete semantics have not been provided. Hence, we propose to integrate mode automata se-
mantics in the control. This choice is made to remove design ambiguity, enable desired proper-
ties and to enhance correctness and verifiability in the design. In addition to previously men-
tioned control concepts, three additional constructs as present in the RSM package in MARTE;
namely: interrepetition dependency (IRD), tiler and defaultLink connectors, are
used to build mode automata.

Hence, it is possible to establish mode automata from Gaspard2 control model, which
requires two subsequent steps. First, the internal structure of a generic Gaspard Mode
Automata is presented by the Macro component illustrated in Figure 6.4. The Gaspard state
graph component in the macro acts as a state-based controller and the mode switch component
achieves the mode switch function. Secondly, interrepetition dependency specifications should
be specified for the macro component and it should be placed in a repetition context.

The reasons are as follows: amacro component represents only one single transition function
(one map) from a source state to a target state, where as an automata has continuous transitions
which form an execution trace. In order to execute continuous transitions as present in a typi-
cal automata, the macro should be repeated to have multiple transitions. This functionality is
determined by the interrepetition dependency (IRD).
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Figure 6.5: Abstract representation of a generic Gaspard2 mode automata

A vector associated to an interrepetition dependency expresses the dependencies between
the repetitions inside the repetition context, i.e., the Gaspard Mode Automata component.
Thus an interrepetition dependency serializes the repetitions and data can be conveyed between
these repetitions. An IRD sends the target state of one repetition as the source state to the next
repetition. This permits the construction of mode automata which can be then executed. Figure
6.5 illustrates an example of this construction.

If a dependent repetition is not defined in the repetition space, a default value is selected.
The defaultLink provides default value for repetitions whose dependencies for the input are
absent. Additionally, this concept helps to give the initial state value for the first repetition
of the macro component. While in a graphical modeling approach, the initial state of a state
machine can be determined by an initial pseudostate, a Gaspard state graph does not contains
an initial state.

Thus this mechanism bridges the gap between a graphical representation as showed in sec-
tion 6.5 and the actual semantics. It thus creates an equivalency between a state graph (hav-
ing no initial state) and an automaton (having a initial defined state). Afterwards, the tiler
connectors help in interconnecting a repetition context (Gaspard mode automata) task to the
multiple repetitions of its interior repeated task.

Also, an infinite dimension is present on the input and output state, events ports of the
Gaspard mode automata component to account for continuous control/data flows. Similarly
the non obligatory mode output port(s) and input and output data ports also have an infinite
dimension in addition to other possible dimensions. Since the macro component represents one
single transition, its respective ports have shape values equal to {}, (except in the case of non-
obligatory data input/output ports) accounting for one value in the dataflow at an instant of
time t. Similarly the internal sub components of the macro also share the same shape values.

Finally, the shape value of {*} on the macro component represents its multiple (possible in-
finite) dimensions. The macro component is repeated in a sequential temporal dimension by
means of the interrepetition dependency. It should be made clear that the sequential execu-
tion of the control model must be synchronized with the execution of the hardware accelerator
which will be presented in the subsequent chapter. This synchronization procedure is explained
in detail in chapter 9.

We now present the integration of the generic mode automata at different SoC Co-Design
levels, starting with the application level.

6.2.2 Application level

Integration of control model and the construction of mode automata at application level
is very similar to the generic Gaspard mode automata shown in Figure 6.5. Figure 6.6
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represents a mode automata at the application level by illustrating an example of color
effect processing module (ColorEffectTask) used in typical smart phones. This mod-
ule is used to manage the color effects of a video clip and provides two possible options:
color or monochrome/black&white modes, which are implemented by ColorFilter and
MonochromeFilter respectively. These two filters are elementary tasks at the application
modeling level, which should be deployed to respective IPs. The changes between these two
filters are achieved by ColorEffectSwitch upon receiving mode values through its mode
port colorMode. The mode values are determined by EffectController, whose behavior
is demonstrated by its associated state graph.

Figure 6.6: An example of color style filter in a smart phone modeled with the Gaspard2 mode
automata

The ColorEffectFilters can be treated as a macro component; and is composed of
EffectController and ColorEffectSwitch components. ColorEffectFilters exe-
cutes the processing of one frame of the video clip, which should be repeated. In the ex-
ample, ColorEffectTask provides the repetition context for ColorEffectFilters. An
interrepetition dependency is also defined, which connects the different repetitions of the
ColorEffectFilters component. It has an associated vector with a value of -1. Simply
put, the source state of one ColorEffectFilters repetition relies on the target state of the previous
ColorEffectFilters repetition. The data computations inside a mode are set in the mode
switch component ColorEffectSwitch. The detailed formal semantics related to Gaspard
mode automata can be found in [95].

The control model enables the specification of system adaptivity at the application level
[104]. Each mode in the switch can have different effects with regards to environmental or
platform requirements. Each mode can have a different demand of memory, CPU load, etc.
Environmental changes/platform requirements are captured as events; and taken as inputs of
the control.

6.2.3 Architecture level

As stated in section 4.2.4, Gaspard2 uses the Hardware Resource Modeling (or HRM) package
of the MARTE profile in combination with the RSM package to model large regular hardware
architectures (such as multiprocessor architectures) in a compact manner. Complex interconnec-
tion topologies can also be modeled via Gaspard2 [199].

Control semantics can also be applied on to the architectural level in Gaspard2, utilizing a
similar approach as described previously for the application level. As compared to the inte-
gration of control in other modeling levels (such as application and allocation), the control in
architecture is more flexible and can be implemented in several forms. A controller can modify
the structure of the architecture in question, such as modifying the communication interconnec-
tions. The structure can either be modified globally or partially. In case of a global modification,
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the reconfiguration is viewed as static and the controller is present exterior to the targeted ar-
chitecture. If the controller is present inside the architecture, then the reconfiguration is partial
and could result in partial dynamic reconfiguration. However, the controller can be related to
both the structural and behavioral aspects of the architecture. An example can be of a controller
unit that is present inside a processing unit in the architecture for managing Dynamic frequency
scaling [266] or Dynamic voltage scaling [118]. These techniques help in power conservation by
reducing the frequency or the voltage of an executing processor.

6.2.4 Allocation level

Gaspard2 uses the Allocation modeling package (Alloc) to allocate SoC applications on to the
targeted hardware architectures. Allocation in MARTE can be either spatial or temporal in nature
[181]. Currently Gaspard2 only uses spatial allocation.

Integration of control at the allocation level can be used to decrease the number of active ex-
ecuting computing units in order to reduce the overall power consumption levels. Tasks of an
application that are executing parallely on processing units may produce the desired computa-
tion at an optimal processing speed, but at a cost of increased power consumption levels. Modi-
fying the allocation of the application on to the architecture can produce different combinations
and different end results. A task may be switched to another processing unit that consumes less
power, similarly, all tasks can be associated on to a single processing unit resulting in a tempo-
ral allocation as compared to a spatial one. This strategy reduces the power consumption levels
along with decrease in the processing frequency. Thus allocation level allows incorporation of
DSE aspects which in turn can be manipulated by the designers depending upon their chosen
QoS criteria.

6.2.5 Comparison of control at the three levels

Integrating control at different aspects of system (application, architecture and allocation) has
its advantages and disadvantages as briefly shown in the Figure 6.7. With respect to control
integration, we are mainly concerned with several aspects such as the range of impact on other
SoC design levels. We define the impact range as either local or global, with the former only
affecting the concerned modeling level while the later having consequences on other modeling
levels. These consequences may vary and cause changes in either functional or non-functional
aspects of the system. Control integration at the application level has a local impact and is
independent of the architecture or the allocation. The modification in application may arise
due to QoS criteria such as switching from a high resolution mode to a lower one in a video
processing functionality. However, the control model may have consequences, as change in an
application functionality or its structure may not have the intended end results.

Control integration in an architecture can have several possibilities. The control can be
mainly concerned with modification of the hardware parameters such as voltage and frequency
for manipulating power consumption levels. This type of control is local and mainly used for
QoS, while the second type of control can be used to modify the system structure either glob-
ally or partially. This in turn can influence other modeling levels such as the allocation. Thus
allocation needs to be modified every single time when there is a modification in the structure
of the execution platform.

Control at the allocation is local only when both the application and architecture models
have been predefined to be static in nature; which is rarely the actual scenario. If either the
application or the architecture is changed, the allocation must be adapted accordingly.

It is also possible to form a merged control by combining the control models at different
aspects of the system to form a mixed-level control approach. However, detailed analysis is
needed to ensure that any combination of control levels does not causes any unwanted conse-
quences. This is also a tedious task. During analysis, several aspects have to be monitored, such
as ensuring that no conflicts arise due to a merged approach. Similarly, redundancy should be
avoided: if an application control and architecture control produce the same results separately;
then suppression of control from one of these levels is warranted. However, this may also lead
to an instability in the system. It may also be possible to create a global controller that is re-
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sponsible for synchronizing various local control mechanisms. However, clear semantics must
be defined for the composition of the global controller, which could lead to an overall increase
in design complexity. Figure 6.7 shows an global comparison of control integration at the three
mentioned levels in SoC Co-Design.

Figure 6.7: Overview of control on the first three levels of a SoC framework

The global impact of any control model is undesirable as the modeling approach becomes
more complex and several high abstraction levels need to be managed. A local approach is
more desirable as it does not affect any other modeling level. However, in each of the above
mentioned control models, strict conditions must be fulfilled for their construction. These con-
ditions may not be met depending upon the designer environment. Thus an ideal control model
is one that has only a local impact range and does not have any strict construction conditions.
Thus, a control model at the Gaspard2 deployment level seems ideal as it is local and indepen-
dent from the three SoC Co-Design levels presented previously.

Additionally, the control presented at the different levels (such as application and architec-
ture level) is only considered with switching an application task, a hardware module or struc-
ture, and is not able to correspond to their implementations. In short, it corresponds to an
existing proposal of control aspects in Array-OL [104]. Thus new concepts related to implemen-
tations must be added in Array-OL, for integrating control at the deployment level.

6.2.5.1 Existing dynamic behavior in Array-OL

The proposed control extension introduced during the course of this dissertation can be treated
as a subset of Array-OL semantics. Subsequently, this subset allows introduction of dynamic
features in Gaspard2, at high modeling levels, from which eventual model transformations can
be carried out. We first recall certain Array-OL behavioral aspects crucial for understanding our
contribution. In Array-OL, behavior of a system can be presented at different levels: namely
intra-task, inter task and application levels, as specified in [104]. While Array-OL was initially
intended for application specification, it can be used to express parallelism for hardware archi-
tectures as well, as seen in chapter 4. Thus the different levels presented subsequently also hold
true for architecture modeling.

• An intra-task level is considered to be the finest level that makes a task dynamic. For in-
stance, the if/then/else statements specified in a task resulting in dynamic changes during
the execution of the task. However, these tasks are considered as atomic and elementary
in nature. With respect to pure Array-OL semantics, the associated internal behavior of
these tasks is invisible.

• An inter-task level, also results in an application having a dynamic behavior, via the change
of tasks. Only atomic tasks are taken in consideration at this level.

• Finally at the application level, complete applications can be changed by switching between
different applications. An application here can either refer to a global application task or
a hierarchical task that can accomplish a complete functionality.

Comparing the different levels to the existing adaptivity levels in component based design
as presented in section 2.3, the inter-task and application levels in Array-OL can be considered
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as global system level adaptations, as they can change component assemblies or the components
themselves. Where as intra-task level can be viewed as equivalent to the implementation/pro-
gramming level adaptation dealing with internal component behavior.

The overall behavior of the system can also be viewed as a composition of the control at
these three SoC design levels. However, in the initial control proposal for Array-OL presented
in [95, 96, 104, 116]; only inter-task and application levels have been taken into account. The
authors claim that the intra-task level is too fine grain in nature and does not influences the
overall application specification.

However, when an Array-OL elementary task is modeled at a high abstraction level in Gas-
pard2 using the MARTE profile, it can be associated with respective available implementation-
s/IPs at the deployment level. These implementations are also represented in a graphical man-
ner. While internal behavior of these implementations may not be expressed graphically in
UML due to their complex nature, properties associated with these implementations are mostly
related to QoS criteria and can be expressed easily. Each of these implementations has differ-
ent distinct hardware or software attributes, such as latency, consumed energy, performance
throughput, etc. Replacement of an implementation associated to an elementary task by an-
other, may result in significant changes.

For example, change in implementation of a task can occur easily, provided that the inter-
faces of the different implementations are compatible to each other and to the elementary task.
For instance, we consider a generic MultiplicationAddition task having two input ports in1 and
in2, and an output port out. The elementary task may have different available implementations
at the RTL level such as written in a DSP like fashion or an If-then-else construct. Both imple-
mentations express the same functionality related to the elementary task, albeit having different
properties such as consumed FPGA resources. Changing the implementation of the task in ques-
tion, may effect the overall application in terms of different QoS factors, such as performance,
the total reconfigurable area consumed on a target FPGA, etc. In some cases, a change of the
functionality of the task or of the application itself may be possible. This results in creation of a
novel implementation level in Array-OL, which is the special focus of this dissertation.

6.2.5.2 Implementation level in Array-OL

Figure 6.8: An example of task change in current Array-OL specification. A task, which is
represented by one of the blue boxes, is connected to its input array (extreme left-hand box)
and its output array (extreme right-hand box) through tilers. The repetition space of the task
is illustrated above the task box. The patterns taken by the task as input and output are also
placed aside of the task in the task box. Only the tiles used by the task repetition at [0,0] in the
repetition space are surrounded by a box with dashed lines

This subsection first presents the study of the existing control notion, which is compatible
with Array-OL specification model, without involvement of any execution model. The pre-
sented notion is taken in the context of Gaspard2 framework, but lacks aspects related to imple-
mentations. This control can be associated with four main types of elements: array, tiler, task
and repetition space. A study regarding these four elements has been carried out in [104]. Intu-
itively the behavior of a repetition context task (RCT) can be achieved by changing any of these
main elements or any combination of these elements.
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Figure 6.8 shows task switching (inter-task level): a task can be swapped in response to some
changes: such as requirements associated with the platform, application or the environment. In
Figure 6.8, either Task1 or Task2 can be exclusively selected to be executed according to some
control, which is not shown here. A prerequisite of this change is that the two tasks must have
the same interface so that they are compatible with other elements. Control presented earlier in
section 6.2 for different high level SoC Co-Design levels (mainly the application and architecture
aspects) is mainly concerned with inter-task and application (or respectively architecture) levels.

Figure 6.9: An example of the implementation level in Array-OL. The elementary task has dif-
ferent available implementations; and one can be replaced by another. Strict constraints enforce
change of implementations only

However, the focus of this thesis is the novel implementation level which allows tomanipulate
the associated behavior of a task, in combination with the introduction of a control model at
a SoC specification level dealing with component implementations. In order to be compatible
with our introduced semantics, we enforce certain restrictions which allow us to respect a subset
of Array-OL semantics.

In our introduced control compatible Array-OL model, we are mainly concerned with the
implementations associated with an elementary component. We first introduce the notion of
an implementation in Array-OL model. This notion may not be visible in pure Array-OL spec-
ifications, however when the same specifications are modeled in Gaspard2 at high modeling
levels, the implementations related to an elementary task are rendered visible in terms of their
interfaces and QoS properties.

Figure 6.9 shows an illustration of the newly introduced implementation level. A task can
have an arbitrary number of available implementations as indicated by Implementation1, Imple-
mentation2 and Implementation3. As compared to the previously mentioned control mechanism,
the input/output arrays, tilers, repetition space and the concerned tasks are considered fixed in
our control model. Adaptations are thus only possible with respect to the implementations.

6.2.5.3 Conditions for our control model

A Hybrid control scope level. As a dependency specification, data and control arrays need to
be matched to each other, i.e., a good correspondence is required. The correspondence between
control and data array indicates the control array can be regularly mapped onto the data array,
which also implies the control scope of the data. As the control array can be mapped onto
the data array, they can be also mapped onto the same concrete time. This mapping can be
considered as an affine-transformation that leads to different possible control scope levels: task
level, repetition level and same task-multiple implementations level. The first one indicates that all
the repetitions of a task are changed into those of other tasks. Hence this is a complete change
of the task in question. The second one, repetition-level control, enables to change the task at
a finer level, enabling the switch between the repetitions of different tasks. However, the end
result is an escalation in design complexity.

Finally the last level draws characteristics from the two control scope levels. Here different
repetitions of the same task can be associated with different implementations. However, this
introduces another level of complexity in the system design. We thus create a new control
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scope which derives characteristics from the hitherto mentioned control levels. This control
scope level is termed as the hybrid level: in which different repetitions of the same task are
always associated with one exclusive implementation during execution. If an implementation
associated with an elementary task is changed by the designer, then all the repetitions of the
elementary task reference the new implementation. This is expressed mathematically as:

∀R[n],∃ i ǫ I[m],∀ k ǫ [1 . . . n], Implement (Rk) = i (6.1)

In the above state equation, Rk represents a repetition identifier for each repetition of a re-
peated elementary task, having n repetitions in a RCT: R[n]. Whereas, i represents an implemen-
tation identifier for one unique implementation related to the elementary task among a set of
available implementations m, i.e. I[m]. The Implement (Rk) is a function that determines the actual
implementation i for each Rk.

Control/Data flow synchronization. Also, with regards to control and data flows, only data
dependency is taken into account in Gaspard2, which is a high-level specification language, i.e.,
no execution model or non-functional constraints are involved, hence the synchronization be-
tween control and data computation or data computation granularity with regards to control
is not considered. In a low-level implementation, according to the target execution platform or
technology, for example at the electronic RTL; different flows may have different clocks, partic-
ularly dataflow and control flows, which leads to the synchronization problem in the composi-
tion of these flows. Similarly for hardware circuits, different clocks having different rates may
de-synchronize the circuit.

In [139], a concept of Degree of Granularity has been proposed to introduce synchronization
between the control and data flows in Array-OL. This concept is based on the synchronous hy-
pothesis and assumes a basic common clock shared by the controlling and controlled tasks. Thus
they assume that control values produced by the controlling component along with data values,
arrive at a controlled component at the same instant of the time period specified by the common
clock. However this hypothesis is difficult to translate when these specifications are mapped
onto an execution platform such as RTL.

Not only that, but in Gaspard2, the timing aspects of different dataflows is invisible at the
high modeling level. Similarly, the appearances of control events are non-deterministic in gen-
eral, which are not visible to the designer. Another additional drawback of the aformentioned
approach is that it introduces additional hierarchies in the high level models which complicates
the design specifications; and only deals with task level adaptation.

Keeping in mind all these above mentioned problems, during the course of this dissertation,
the synchronization between control and data flows is considered less stringent, as its speci-
fication at the high modeling levels is currently not evident; and difficult to map onto even-
tual target execution platforms. Similarly Gaspard2 does not offer any middleware or RTOS to
support and manage dynamic and especially partial dynamic reconfiguration of the specified
models. Dataflow present before and afterwards a reconfiguration needs a mechanism which
is currently not possible in Gaspard2. We thus impose certain restrictions on our implementa-
tion based control model. Firstly, control/data flow synchronization is not specified at the high
modeling levels, as its introduction at these abstract levels force the designers to have detailed
information about the target low level platforms. This in turn causes a high level model to
become dependent on underlying platform details. This synchronization is thus treated at a tar-
geted execution platform level. In chapter 9, we provide a RTL level synchronization approach
for the control/data flow.

Secondly, the loss/disruption of dataflow during a reconfiguration is another important is-
sue. Currently Gaspard2 does not offer any mechanisms to avoid this pitfall. During this disser-
tation, in chapter 9, we provide a mechanism at the RTL level that assures that the PDR system
does not enter into an unsafe state during/after the reconfiguration, at the compromise of the
dataflow. The mechanism while a bit limited, assures a generic approach for modeling all types
of applications possible in Gaspard2. Future evolutions in Gaspard2 may make it possible to
propose a high level semantics for preserving dataflow and thus will serve as extension of our
design methodology.
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6.3 Control at deployment level

In this sectionwe explain control integration at another abstraction level in SoC Co-Design. This
level deals with linking the modeled application and architecture components to their respec-
tive implementations, and corresponds to the control notion specified in section 6.2.5.2. From
now on, the term control refers to this localized form of control.

Figure 6.10: Integrating control at deployment level

Figure 6.10 shows the integration of control at the deployment level in a SoC Co-Design
framework. As compared to control models at other levels which only incorporate structural
design aspects, this control model deals with comportmental aspects. The deployment level
automata, termed as Deployed Mode Automata deals with atomic elementary components
and their implementations which are present at the lowest hierarchical level in the modeling; in
order to address global system level implementations. As compared to other control models, a
mode in a mode switch component represents a global system implementation which is a collec-
tion of different local implementations associated with their respective elementary components.
Thus dataflow associated to the generic Gaspard mode automata is not explicitly expressed and
input/output data ports are suppressed at all hierarchical levels in this control model. As a
Gaspard state graph associated in this control model is related only to the global system imple-
mentations, this is the reason that we concern ourselves only with flat state graphs.

Also we need to address the issue related to the incoming events arriving in a deployed
mode automata. In a control model at application or architecture, the events arrive either from
the external environment (for example user generated stimuli) or the events are produced ran-
domly in the application or architecture itself (due to the actions of some elementary compo-
nents). However in the deployment level, the incoming events are not related to the high level
modeling but are basically used to represent low level user inputs depending upon the chosen
execution platform. For example at the RTL level, these user events can arrive in the form of
user or environment input from a camera attached to an FPGA, or inputs received via an UART
terminal. A designer modeling the system at a high level is not concerned with these low level
implementation details. However, in order to make this control model as flexible as possible,
and to respect the semantics of the abstract control model, event ports have been added to this
proposal. During the model transformations and eventual code generation, these event ports
are replaced and translated into actual event values which are used during FPGA implementa-
tion phase.

Similarly, for mode automata at application (or architecture) level, its initial state is given by
an application (or architecture) component that has input event ports and an output state port.
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Initially some events are generated and taken as input by that component in order to produce
the initiate state. After that, this component remains inactive due to the absence of the events
arriving on its input ports. This initial state is then sent to the mode automata and serves to
determine the initial state of the Gaspard state graph. However, for a deployed mode automata,
structural aspects are absent and only information related to elementary components is present.
Thus the initial state related to the deployed Gaspard state graph cannot be determined explic-
itly. This limitation has been removed by introduction of new concepts in the deployment level,
which help to determine the initial state of the deployed mode automata and are explained
later on in the chapter. However, the proposal retains the usage of initial state port and the
defaultLink concepts, as they help to conform to the abstract control model; and are used in
subsequent model transformations for eventual code generation.

Finally, the current control at deployment is only related to creating a state machine for a
reconfigurable controller. In cases of FPGAs supporting several embedded hardcore/softcore
processors; it is possible to select any one for acting as a controller. However, this requires
high level modeling and allocation of the reconfigurable system, currently absent in our design
flow. This information can thus be passed onto the deployment phase. Currently the code
generated from our design flow is explicitly linked to a generic controller, and it is up to the
user to determine the nature and position of the controller. This aspect has been detailed in
chapter 9.

6.3.1 Advantages of control deployment level

The advantage of using control at deployment is that the impact level remains local and there is
no influence on other modeling levels. Another advantage is that the application, architecture
and allocation models can be re-used again and only the necessary IPs are modified. As we val-
idate our methodology by implementing partial dynamically reconfigurable FPGAs, we need
to clarify about the option of choosing mode automata.

Although many different approaches exist for expressing control semantics, mode automata
were selected as they permit separation of control/data flow. They also adapt a state based ap-
proach facilitating seamless integration in our framework; and can be expressed at the MARTE
specification levels. The same control semantics are then used throughout our framework to
provide a single homogeneous approach. With regards to partial dynamic reconfiguration, dif-
ferent implementations of a reconfigurable region must have the same external interface for
integration with the static region at run-time. Mode automata control semantics can express
the different implementations (modes/configurations) collectively via the concept of a mode
switch, which can be expressed graphically at high abstraction levels using the concept of a
mode switch component. Similarly a state graph component expresses the controller responsi-
ble for the context switch between the different configurations.

This concludes the portion relating to the hypothesis of our proposed control model. We
now turn to actual concepts which help in the initial modeling and eventual model transforma-
tions of our control concepts.

6.4 Extending MARTE profile and metamodel

As stated before, the MARTE profile permits to model UML Behavioral semantics, however, in
absence of an underlying framework that interprets these high level models, the modeled dia-
grams can only be used for specification purposes. Additionally, while the MARTE metamodel
introduces the concept of Behavior, associated concepts that permit to concretize the exact be-
havior of a system are lacking. Hence the metamodel lacks the actual concepts of these specific
behaviors as present in pure UML specifications, and model transformations related to a model-
ing framework will not be capable to interpret and transform these high level modes into actual
code. It is thus up to the underlying modeling framework to extend the MARTE metamodel,
in order for a designer to correctly model a specific behavior. Similarly, model transformations
need to be developed that take into account the new concepts, for eventual code generation.

Moreover, a question arises about specification of the state-based behavioral modeling con-
cepts in MARTE, as presented earlier in the chapter. Thus we turn towards the basic UML
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behavioral modeling concepts such as state machines and collaborations [178] and integrate
them into the existing metamodel with some modifications, in order to respect semantics of the
MARTE metamodel and the model transformations.

In the extended version of the MARTE metamodel for integrating our control model, be-
havioral state machines are chosen to demonstrate the state-based behavior of an individual
component, which acts as a controlling element in the system. State machines are the first
choice because they are compatible with the state-based modeling presented previously in the
chapter in section 6.1.3.2. Additionally, they are considered as key kernel for a reconfiguration
controller. As in Gaspard2, control and computation are separated, the structure modeling of
the controlled computation is not enough, thus collaborations are used to illustrate the behavior
of the controlled components in the system.

Finally, while the MARTE profile and its metamodel enable specification of the application,
architecture and allocation levels of a SoC Co-Design framework, they lack the concepts for
linking the elementary components to their respective implementations. Thus the deployment
concepts present in Gaspard2 need to be integrated into the MARTE metamodel and its respec-
tive profile.

This section details the above mentioned concepts added in the current version of the
MARTEmetamodel; their integration leading to an extended version of the MARTEmetamodel
by means of a merge mechanism. We first recall some basic concepts related to this mechanism,
integral for understanding and functioning of the extended concepts.

6.4.1 Merge mechanism: extending metamodels

According to UML Infrastructure specifications [179], a merge mechanism is defined as how the
contents of one package are extended by the contents of another package. A metamodel is a collection
of packages, and a package can be considered a metamodel in its own right; as it itself can be
further composed of sub packages.

The merge mechanism is considered to be a directed relationship between two or more meta-
models (or packages); and implies a set of model transformations. It indicates that the contents
of the present metamodels are to be combined. Similar to the Generalization concept in UML,
the source element conceptually adds the characteristics of the target element to its own char-
acteristics. The result is an element that combines the characteristics of both source and target
elements. In the case where certain elements in different metamodels represent the same en-
tity (having same name and concept), their contents are merged into a single resulting element.
Details about the merge mechanism can be found in [179].

Figure 6.11: Simple example of merging (between packages) in UML

The semantics of the merge mechanism are defined by a set of constraints and transforma-
tions. The constraints specify the preconditions, while the transformations describe the seman-
tic effects (i.e., postconditions) of the merge. If any constraints are violated, the merge is ill
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formed and the resulting metamodel that contains it is invalid. This results in failure of the
subsequent model transformations which take the resulting merged metamodel as input.

For a merge, the general principle is always the same: a resulting element cannot be less
capable than it was prior to the merge. This means, for e.g., that the resulting multiplicity,
visibility, navigability etc., of a receiving model element will not be reduced as a result of the
merge. The merge mechanism is particularly useful in metamodeling and is extensively used
in the definition of the UML metamodel [178].

Figure 6.11 shows the abstract representation of merging between two packages Q and R.
The left-hand side of the figure shows the two packages while the right-hand side shows the
result of the merge. The expressions in square brackets in the merged S package indicate which
individual increments were merged to produce the final result. Here, the @ character denotes
the merge operator.

In the course of this dissertation, we employ the use of a merge mechanism developed in-
ternally in our team, via the usage of model transformations. This merge mechanism is used to
extend the current MARTE metamodel and enables its merging with the metamodels (or pack-
ages) detailing the concepts related to state machines and the IP deployment level as shown in
Figure 6.12. Direct modifications in the MARTE metamodel itself are undesirable, as it is soon
to become an industry standard and is currently being utilized by different research teams and
industrial partners. Thus, direct modifications will surely make a MARTE metamodel incom-
patible with other researches.

In contrast, a merge mechanism increases comprehensibility between different collabora-
tors, designers or research teams. Individual contributions are grouped together in the form
of new metamodels, packages, or concepts which allow to easily distinguish between the dif-
ferent contributions. Similarly, conflicts arising due to merging can be easily determined and
traced. Finally merging helps in the evolution of a metamodel, such as in the case of theMARTE
metamodel. Modifications in either of the inputed metamodels can be carried out, provided de-
pendencies between other input metamodels are respected and conflicts have been resolved.
Now, before moving onto the different metamodels which have been introduced in the current
MARTE metamodel, we briefly provide a summary of UML state machines and collaborations
which partly inspire the extended MARTE meta model.
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Figure 6.12: Overview of the merging mechanism in this dissertation

6.4.1.1 UML State Machines and Collaborations

UML state machines are object-based variant of State charts [107]. UML state machine package
defines similar concepts to State charts that can be used for either complex discrete behavior
modeling, or the expression of the usage protocol of a part of system. The former are called
behavioral state machines and the latter protocol state machines, which allow the specification of a
life-cycle of some objects or invocation order of its operations. Protocol state machines are not
involved in implementations; in contrast, they enforce legal object usage scenarios.

Figure 6.13 illustrates an extract of UML state machines metamodel, that includes the main
concepts of UML state machines and their relations, which are briefly presented subsequently:
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Figure 6.13: An extract of the metamodel of UML state machines [178]

StateMachine: a StateMachine is a concept used to exhibit the behavior of a part of system.
This behavior can be expressed by execution traces of the state machine, obtained when
transiting between states. The transitions are fired by events. During this execution, a
series of activities associated with the elements of the state machine can be carried out. A
StateMachine can be a sub-machine, i.e., it refines a state in another state machine. A state
machine may have Regions and Pseudostates.

Region: a Region is an orthogonal part of either a composite state or a state machine [178].
Simply, a region is introduced as an intermediate element in order to describe the relation
between state machines and other concepts used in them (e.g., states and transitions). A
region may contain vertexes (states/pseudostates) and transitions.

Vertex: a Vertex is similar to a node if state machines are considered as node-edge graphs. But
a node does not necessarily imply a state, i.e., a vertex can be also a Pseudostate, which is
not a state but conveys some information about some states or state machines.

State: A State in a state machine can be any of the following kinds: simple state, composite state
and sub-machine state. Composite states and sub-machine states make it possible to define
state machines in an hierarchical way. In this dissertation, we are only concerned with
simple states. This is due to the reason that we treat a state as a global system configu-
ration, which is not composed of hierarchical sub configurations. Figure 6.14 shows an
example of a state machine with simple states.
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Figure 6.14: An example of a simple state machine

Pseudostate: pseudostates can be classified into several families: initial, deepHistory, shallowHis-
tory, join, fork, junction, etc. These pseudostates convey the corresponding information
of the states or the state machine they are connected to. In our dissertation, we are only
interested in initial pseudo states as illustrated in Figure 6.15. The initial pseudostate is
connected to one of the states in a state machine (more precisely, in a region), which is the
initial state of the region.

Figure 6.15: Illustration of the initial pseudostate in UML

Transitions: a transition is a directed connection between a source vertex and a target vertex
(state or pseudostate). A transition can have several triggers, any satisfaction of these
triggers can fire the transition. In the previously illustrated example, the prefix when on
a transition signifies a trigger associated with ChangeEvents. The prefix all indicates a self
transition when no triggers are satisfied.

Collaboration

A collaboration specifies the relation between collaborating elements from a point of view of
the functionality that they co-operate to accomplish. However, collaboration is not intended to
define an overall structure of these elements. These elements in a collaboration are called roles,
whose properties or identification can be ignored, i.e., only their useful properties and types are
referenced in the collaboration.

Figure 6.16: An example of collaborations taken from [178]

Figure 6.16 illustrates an example of collaborations, which are defined in a composite struc-
ture diagram with components. The two dashed ellipses express two collaborations, which are
called Sale and BrokeredSale respectively. Sale describes the collaborating relation between Seller
and Buyer. Sale is then used in the BrokeredSale to depict a more complex collaborating relation
between Broker, Producer and Consumer.

105



Gaspard2

6.4.2 MARTE metamodel with integrated state machine concepts

A view based composition in MDE as described in section 3.1.1 permits to present the different
relations between the various concepts present in the extended MARTE metamodel. Hence a
view is not a total representation, but allows to focus on a subset of a metamodel. We utilize this
mechanism for the description of the extended MARTE metamodel.

Figure 6.13 shows an extract of the metamodel of UML state machines, which seems to be
too complex. The state machines (the state graphs) used for the modeling of Gaspard2 control
are only a subset of UML state machines. This is due to two reasons: a) UML state machines
have been intended to be applied in all application domains, howevermany associated concepts
are unnecessary in Gaspard2; b) in consideration of a concrete implementation in the form of
model transformations, Gaspard2 should remain concise but expressive enough to simplify the
development. Themain concepts of UML statemachines used in Gaspard2, and in turnMARTE,
are enumerated: StateGraph, Region, State, Vertex, Transition, Pseudostate, PseudostateKind, etc.
Relations between these concepts are illustrated in the Figure 6.20.

6.4.2.1 Overview

We first present the concept of a MARTE StructuredComponent, that enables associating
behavior such as state machines with this modeling element. Afterwards, we introduce the no-
tion of OpaqueBehavior in the MARTE metamodel that enables expressing those behaviors
that cannot be specified using a graphical modeling methodology. Thereafter, we present the
concepts of collaborations which help to determine behavior of certain modeled elements. En-
suingly, we present the global overview of the concepts related to state graphs which have been
integrated in the extended version of the MARTE metamodel. Finally, the relations between
events and state transitions are illustrated.

6.4.2.2 StructuredComponent and BehavioredClassifier

Figure 6.17 illustrates the basic concepts related to a MARTE StructuredComponent. This
is equivalent to the concept present in section 4.2.1. A StructuredComponent defines a
self-contained entity of a system, and can encapsulate structured data and behavior4. A
StructuredComponent in MARTE specializes the abstract BehavioredClassifier con-
cept. The BehavioredClassifier concept is the equivalent concept found in pure UML
specifications, that permits to associate a Behavior with a UML classifier (classes, compo-
nents and packages). This relation allows to model and associate behaviors such as state
machines, sequence and activity diagrams with a StructuredComponent. As MARTE
StructuredComponent has been previously presented in section 4.2.1, its details are not
given here.

Figure 6.17: MARTE GCM package: Relation between a structured component and a behavior

4This behavior is different from the control behavior expressed earlier in the chapter and explains general behavior
of a component
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6.4.2.3 Behavior

In particular since in UML, as in MARTE, a Behavior is a kind of class, it is possible for a
behavior to be its own structural context. A Behavior determines a specific comportment or
action of a StructuredComponent. Different types of Behavior can be expressed in UML,
such as automata (via usage of state machine diagrams, petri net like graphs by means of ac-
tivity diagrams, use cases etc). It is up to the designer to determine the exact behavior and
specification of a component associated with a behavior. Behavior can be either an atomic
Action behavior or a CompositeBehavior (which may contain several behaviors itself). The
model is inspired from (and hence compliant with) the Common Behavior model of the UML
superstructure [178].

If the Behavior is owned by a BehavioredClassifier as indicated by the
compositional ownedBehavior relationship, then the associated classifier (in turn the
StructuredComponent) is the context for execution of the Behavior. Otherwise, the context
is the first BehavioredClassifier reached by following the chain of owner relationships, as
indicated by the mainBehavior reference.

We have also added the concept of OpaqueBehavior in the extended MARTE metamodel.
An OpaqueBehavior respects the semantics of pure UML specifications, and allows to specify
the behavior related to a StructuredComponent to be expressed in any language, such as
natural language. The OpaqueBehavior class contains two attributes, specifically Body and
Language. The Body attribute can be used to express behavior in any language and can be used
to store user code or to express a custom action. The Language attribute determines the lan-
guage used for expressing the behavior. The values associated with these attributes are ordered
in the form of a list.

Figure 6.18: Behavior and OpaqueBehavior in MARTE

6.4.2.4 Collaboration

Figure 6.19 presents the integration of UML collaborations into the extended MARTE meta-
model. A UML collaboration specializes from UML StructuredClassifier and BehavioredClas-
sifier concepts. However, in the current MARTE profile, a StructuredComponent can be
viewed as a UML StructuredClassifier as it contains different ConnectableElements or Proper-
ties (such as ports and instances). A MARTE Collaboration thus specializes from the
BehavioredClassifier concept and has a reference collaborationRole to aMARTE Property
(such as AssemblyPart and InteractionPort). A collaborationRole references elements pos-
sibly owned by other classifiers (such as connectors and ports); and represents roles that assem-
bly parts play in this collaboration.
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Figure 6.19: Collaboration concept in the extended MARTE metamodel

6.4.2.5 StateGraph concepts

Figure 6.20 represents an extract of the Gaspard state graph concepts which have been included
in the extended MARTE metamodel. These concepts have been inspired from the metamodel
of UML state machines. Since in section 6.4.1.1, we have already given a brief overview of UML
state machines, and the added StateGraph concepts have nearly an one on one correspon-
dence with the UML concepts, we do not again give the detailed explanation regarding the new
concepts. A StateGraph concept coincides with the UML StateMachine concept, while other
concepts such as Region, Vertex, Transition etc., have similar significations as found in
UML. A StateGraph is a behavior which is in turn associatedwith a StructuredComponent,
for example a controlling component. The concepts of StateGraph may differ slightly from
the UML state machine concepts. This modification has been carried out explicitly in order to re-
spect the MARTE metamodel, and for correct functioning of the model transformations which
will take these concepts as inputs. A StateGraph may have at least one Region(s), which
contain vertices and transitions.

Figure 6.20: An extract of the Stategraph concept in MARTE

A State can be any of the following kinds: simple state, composite state and sub-machine
state. The composite and sub-machine states make it possible to specify state machines in an
hierarchical way. The extended state machine concepts introduced in the MARTE metamodel
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allow to specify such state machines. This step has been carried out explicitly to serve other
existing Gaspard2 transformation chains that may need these concepts. However, in this disser-
tation, we are only concerned with non hierarchical state machines. The hierarchical concepts
can however be also used in a future evolution of our design methodology. A State has a
specific doActivity , where we can specify a behavior carried out in this state. This behavior
can be specified as an OpaqueBehavior for its expression, for e.g., in a natural language.

A Vertex can be either a State or a Pseudostate. It is used to indicate the source and
target of a Transition. With respect to pseudostates, we are only interested in the initial
pseudostate type. Note that this pseudostate does not exist in Gaspard state graphs, but is used
to greatly simplify the graphical design in UML. It is kept in our proposition in order to respect
UML semantics.

An initial pseudostate is usually connected to one of the states in a state graph (more pre-
cisely, a region), which is the initial state of the state graph (region). But if there is an input state
port associated with a component linked to the state graph; and defined for the same region,
the initial state indicated by the initial pseudostate is re-defined by the state obtained from the
input state port.

Figure 6.21: An extract of the added concepts related to Events in MARTE

Figure 6.21 shows the relationship between Transitions, Triggers and Events. A
Transition between the source and target vertices (either states or pseudostates) is always
associated with one or more Triggers. In the current MARTE specifications, the nature of a
Trigger class is set as abstract, however in pure UML specifications, this is the inverse case.
This is an ambiguity in the MARTE specifications, and has serious consequences for the even-
tual model transformations. In order to respect UML semantics, the nature of the Trigger class
has been set as true. A Trigger is associated to one Event, which defines the specification of
some event occurrence, potentially triggering a transition.

An Event is also an abstract class and is further defined into several subtypes. We have only
integrated the subtypes MessageEvent and ChangeEvent which are crucial for the concepts
of StateGraph.

An event which is used in the trigger of a transition is generally a ChangeEvent. This
event has an expression called changeExpression that is a Boolean expression, which can result
in a change of a state. By means of a compositional relation, the exact type of the changeEx-
pression can be found in the Value Specification Language (VSL) package of the MARTE profile.
Thus a ChangeEvent contains a LiteralSpecification which is further specialized into
a LiteralString. Hence an expression or condition that helps to trigger a successful tran-
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sition from a vertex is finally transformed into a literal string. An other kind of event is the
AnyReceiveEvent, which can be considered as a default event. This event helps to trigger a
transition by the receipt of an event which is not explicitly referenced in another transition from
the same vertex. This AnyReceiveEvent specializes the MessageEvent class which itself is
abstract in nature. A MessageEvent specifies the receipt of an event or a signal.

6.4.2.6 Modifying the concept of Datatypes in the MARTE metamodel

Figure 6.22 presents the integration of the attribute nbbits to the DataType metaclass present
in the VSL package of the MARTE metamodel. This attribute has been added for the concepts
related to the creation of hardware accelerators in our design flow. For hardware accelerators
dealing with DIP applications, the incoming data from sensors/receptors is generally encoded
in bits. This data can be varied between different types such as integer, float, etc. For example,
[112] advocated the usage of 4-bit encoding of a digital signal for an analog-to-digital radar sig-
nal conversion. Moreover, in image processing applications, data streams of complex types are
used. Similarly, enumerated types are used for defining user defined types. MARTE already
provides these basic data types, however, as it does not targets a specific platform, the concepts
related to bits for representing data types are absent. As we deal with reconfigurable FPGA
based architectures, this is a crucial concept. Subsequently, its integration in the MARTE meta-
model allows to specify the type of incoming and outgoing data in a hardware accelerator5.

Figure 6.22: Modification of the data types concepts in MARTE metamodel

6.4.3 Deployment metamodel

Using the MARTE UML profile, Gaspard2 SoC Co-Design framework permits specification and
modeling of an application, an architecture and their respective allocation using a high level
component based approach. The system is completely detailed until the lowest hierarchical
level is achieved. This level consists of atomic elementary components, which can be viewed as
black boxes. Thus the interior functionality or behavior of such a component cannot be visualized
via a modeling approach such as state machines or activity diagrams as these components are
typically related to low level technological details.

Relating to the component definition specified in chapter 2, only the interface, i.e., the input
and output ports of the component are visible to the environment, and the component imple-
mentation remains invisible. However, for the conception of a complex system, knowing the
internal details of these components may not be extremely important as compared to their QoS
criteria, as they are the basic building blocks of the system and should be utilized as such. These
elementary components have corresponding available implementations in the form of source
code. For hardware modules/components, this code can be in the form of an HDL (such as
VHDL or Verilog) or SystemC. Similarly for software components, the implementation can be
either in the form of assembler code, or written in a high level language such as C/C++, Fortran,
etc. These related implementations are viewed as Intellectual Properties or IPs. This key term is

5The data types of the ports of our modeled applications for eventual conversion into hardware functionalities can
be specified with a range: For example, an input port having the type INTEGER RANGE 0 TO 7 is encoded in 4 bits
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mostly used in SoC hardware domain, but for reasons of symmetry, we also use this terminol-
ogy equally for their software counterparts frequently referred in the form of user specified or
standard libraries.

Figure 6.23: Global overview of the MARTE integrated Deployment package

In order to generate, and afterwards execute a complete SoC from high level models, the
designer should be able to precisely associate an elementary component with its corresponding
IP(s), while remaining at these high abstraction levels. This information is necessary in order to
assure that the model of a SoC is executable, i.e., it should not only be possible to just generate
the code skeleton, but the code should be correct, error free and effective enough to be directly
compiled and executed for different purposes, such as simulation or synthesis. For responding
to these questions, in [27, 194], some initial concepts have been presented which allowed to link
the high abstraction level models to the IPs. This collection of concepts was developed in the
form of a metamodel, termed as a Deployment metamodel (for utilization in the model transfor-
mations), and corresponding profile, i.e., theDeployment profile (utilized for the conception with
the help of UML tools such as Papyrus).

As compared to the deployment specified in these earlier approaches, in this dissertation,
we present a MARTE compliant deployment level, which also respects the semantics of tradi-
tional UML deployment mechanism. A part of this deployment is collectively developed by the
Gaspard2 research team, in addition to our own personal contributions. The respective deploy-
ment metamodel and profile concepts have been integrated into the MARTEmetamodel and its
profile respectively.

6.4.3.1 Overview

The basic principal of the deployment level is to give designers the means to link the basic build-
ing blocks, which are the elementary components, to implementations that embody the related
behavior. More precisely, sufficient information must be provided so that code integration in
these IPs can be carried out automatically, at the time of code generation and execution. Thus,
it should be made possible to associate at least an IP with each elementary component. Simi-
larly, information related to the IP interfaces must be taken into account as well. Thus, interface
compatibility between an elementary component and associated IP must be ensured in order to
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determine the exact manner for invocation of an IP. The deployment metamodel has three main
features, which are explained subsequently.

Associating IP with properties. Firstly, to properly correspond to the manner by which the
SoC industry operate, the IP must have associated properties. For example, in case of a hard-
ware IP, properties such as consumed platform resources must be provided. In case of FPGA
based reconfigurable SoCs, these resources can be the number of logical resources such as CLBs.
Similarly for software IPs, information related to compilation options must be provided.

Component re-utilization. Secondly, in order to correspond to SoC Co-Design aspects, this
level allows the re-utilization of components. As seen in chapter 1, the re-use of hardware
and software IPs is extremely important for design productivity. When developing a new SoC,
most elementary building blocks are not developed or created from scratch, but are off-the-shelf
components internally developed or purchased from third parties responsible for IP verification.
This level should also allow the creation of IP libraries. The deployment level extension in the
MARTE standard pays special attention that not only the IPs can be described independently
from a specific SoC model, but also that the usage of IP from a library is simple and intuitive as
possible. Particularly, evolution in the IP library and the SoC model must be independent from
each other. Additionally, deploying an elementary component to an IP must not be a tedious
task. Graphically it could be simple as drawing an arrow between the two concepts.

Abstraction of associated functionality. Finally, an elementary component linked to an IP is
an abstraction of the functionality related to the IP. However, this IP is specific to a target execu-
tion platform and technology. For example, for targeting simulation at SystemC TLM level, it is
preferable to use hardware components associated with SystemC TLM IPs. However, when the
same model is targeted for a more detailed lower technology level such as RTL, and there exists
an IP written in HDL such as VHDL; then it is preferable to select that IP. More importantly,
the IP can be changed respective of the final target. For example, if a software elementary com-
ponent is allocated to a programmble processor (for example, a hardcore/softcore embedded
processor in a target FPGA), then its IP will be implemented in assembler, C etc. However, if
the same component is to be treated as a hardware functionality and is consequently mapped
to a hardware accelerator, then the IP will be implemented in SystemC or VHDL, etc.

It is thus not desirable to change the deployment level each time a different allocation in the
SoC model is carried out or a different technology level is selected. This level must provide an
abstraction so that the different IPs having the same functionality can be regrouped and linked
with an elementary component, and thus provide flexibility related to the allocation and the
selected execution platform/technology level.

Figure 6.23 illustrates the global overview of the deployment metamodel. This view gives a
first impression of different metaclasses and their relationships. We now go into detail related
to each class or group of classes depending upon their functionality. It should be observed that
the root of this level is the DeploymentModel, and all the other classes are directly or indirectly
related to this class by means of a composition mechanism. Certain number of classes are not
specific to the deployment metamodel, but are concepts present in different packages of the
MARTE metamodel, such as StructuredComponent, etc. These metaclasses are the different
crossing points that permit to link deployment concepts to other existing concepts present in the
MARTE metamodel.

There also exists an additional part of the deployment level which is mainly concerned with
non-functional properties of hardware components. This is shown by the relation powerModel
between the concepts HardwareIP and CodeFile. As in this dissertation, we primarily focus
on the application aspects of a SoC model, we have not detailed this extension, which is written
in detail in [27].

The description of the deployment metamodel can be classified into three stages, in order to
increase flexibility at the high modeling level; and in order to avoid adding redundant informa-
tion. The lowest stage, expressed with the class CodeFile, corresponds to the description of a
source file. The intermediate stage, expressed with the abstract class IP determines the descrip-
tion of an IP/implementation for a particular target. Finally, the highest level is expressed with
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the help of the VirtualIP class, corresponding to a functionality, independent from a targeted
technology or execution platform. This concept permits to target different execution platforms,
from the same SoC model.

Each functionality can correspond to either a SoftwareIP (thus expressing the function-
ality of the system), or a HardwareIP. The notion of Implements helps to determine the
relations between the different stages of the deployment level and the SoC model. This con-
cept is further refined into several sub types and helps in the construction of an IP library. An
elementary component, its associated VirtualIP and available IPs are defined in a model.
Afterwards the chosen IP is linked to codefile(s) in another model. The following sections de-
scribe in detail each concept of the metamodel and their corresponding attributes.

6.4.3.2 CodeFile

The goal of the deployment level is two fold. Firstly it helps in the final code generation of the
high level SoC model. Secondly, it also provides the semantics to ensure correct code com-
pilation/execution by providing all necessary source files related to a selected IP. The class
CodeFile provides features for fulfilling this last aspect. A CodeFile provides a graphical
representation of only one source file. It thus provides the mandatory sourceFilePath attribute
for determining the physical location of the source file (it thus provides the name of the source
file along with its extension) in the file system of a computer, which carries out the code gen-
eration. This class also contains other additional attributes such as compilationDirective and
LinkDirective. Since we intend to treat the modeled application into a hardware functionality,
these attributes are not mandatory for our needs. Detailed explanation about these concepts
can be found in [194].

Figure 6.24 shows an example of utilization of the CodeFile in the MARTE profile with
integrated deployment concepts. Here two implementations VSIPL-Multiplication and
HwAcc-Multiplication are linked to their source files via their respective CodeFiles and
appropriate properties.

Figure 6.24: Example of the usage of Codefile in Gaspard2

6.4.3.3 IP

The abstract class IP directly represents the concept of an intellectual property or implemen-
tation, which can be either software or hardware based in nature. By means of the codeFile
reference, the source files necessary for implementing an IP are listed. There is no direct corre-
spondence between an IP and associated CodeFile. An IP may require several CodeFiles.
For example in C++; it is usual to have code and declaration files for each object. Similarly, a
hardware IP written in VHDL may require several source files in case of a compositional hier-
archy. Also, different IPs can share the same CodeFile as well. For example, a collection of
similar functions of a library can be regrouped in the same file.

The IP class contains several attributes, permitting to specify the relationship between the
generated code of a SoC model and the code of an IP. This information is the core foundation of
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the deployment level. The Language attribute determines the programming language used for
developing the IP, such as C, Fortran, SystemC, VHDL, Software Binary etc.

The entryName attribute helps to determine how the IP is invoked, if it is software based in
nature. The IP thus corresponds to a function which returns an integer value, and whose name
is determined by the entryName. Details related to invoking IP functions related to purely
software IPs have been presented in [194].

The logicalUnits attribute determines the number of logical units consumed for an imple-
mentation. This attribute can be either specified as a Logical Element (LE) or a Slice depending
upon the targeted FPGA series. Finally the DynamicPower attribute determines the dynamic
power consumption levels for a given implementation. These last two attributes have been
specifically created for resource/energy estimations at the RTL level and are independent of the
nature of the IP itself: either a hardware or software IP.

6.4.3.4 SoftwareIP

The class SoftwareIP inherits from the IP class and thus represents a particular implementa-
tion of an IP. It corresponds to an elementary component present in the application model of
the complete system. No matter the final generated form of the IP, all the IPs which correspond
to a Gaspard2 application are represented by this class. For example, an IP that carries out
an FFT is represented by a SoftwareIP, even if it is written in VHDL or Verilog (thus acting
as a hardware accelerator). Similarly, even if different tasks of an application are allocated on
different hardware resources present in a SoC, such as allocation of task1 onto an embedded
processor and task2 onto a hardware accelerator, IPs related to both tasks are still represented
by a SoftwareIP.

6.4.3.5 HardwareIP

The class HardwareIP permits representation of an IP corresponding to an elementary com-
ponent of the targeted hardware platform. It contains several attributes related to targeted
hardware platforms. A HardwareIP also contains a PowerModel, the details of which are out
of the scope of this dissertation. We refer the reader to [27] for a detailed explanation related to
these IPs.

6.4.3.6 Virtual IP

An IP represents an implementation for a given target (for example, an abstraction level in a
given language). If an elementary component is deployed directly onto a desired IP, then loss
of an abstraction occurs. The drawback of this absence is that it will not be possible to en-
tirely generate a SoC, and the different possible targets will not be compatible with this IP. Thus
the high level models become dependent on the final implementation technology/execution
platform. The principal disadvantage is making the designer modify the high level models, re-
spective of the selected model transformations. To avoid this pitfall, the notion of a VirtualIP
is present in the deployment level. This class regroups all the IPs having the same functionality.
A VirtualIP can contain several IPs. Each of these IPs must be equivalent: Each IP must have
the same interface, i.e., thus they must have the same number of in, out or inout ports. These
ports must have the same semantics, type and shape. Similarly, the VirtualIP associated to
these IPs must also share the interface characteristics which are shared by the grouped IPs.

Only non-functional properties of these IPs are allowed to be varied. Other than the pro-
gramming language of the IP, we can imagine that the IPs vary based on different QoS criteria
such as execution time, precision of computation, energy consumption, latency, consumed re-
sources, etc. These properties can be specified by means of attributes present in the class IP, as
well as its respective types: SoftwareIP and HardwareIP. During the deployment phase, a
SoC designer can link an elementary component to a VirtualIP, based only on the function-
ality desired by the designer, without specifying a precise IP.

It should be made evident that for reasons regarding comprehensibility and to promote the
usage of this abstract concept, an IP must be related to a VirtualIP component, even if there
is only one IP available for the elementary component. This could provide beneficial in the

114



6.4. EXTENDING MARTE PROFILE AND METAMODEL

long run, if other IPs with same functionality are developed or become available for the same
elementary component.

Figure 6.25: Grouping different implementations in the same functionality

Figure 6.25 shows an example of usage of a VirtualIP. Here two implementations
VSIPL-Multiplication and HwAcc-Multiplication are grouped together for the ab-
stract multiplication functionality VirtualMultiplication.

6.4.3.7 Implements

Until now, we have presented the mechanisms for the description of an IP and its interface. The
notion of the abstract Implements class permits to create concrete links between this descrip-
tion and the elementary components. This class is further decomposed into three subtypes. An
IPImplements permits to link different IPs to a VirtualIP, while a PortImplements per-
mits to associate ports of an IP to a VirtualIP, and consequently the ports of a VirtualIP
to the ports of an elementary component in question. Finally, the ComponentImplements per-
mits to link either a hardware/software IP or VirtualIP to an elementary component. These
classes are independent of other classes specified until now, and help in the creation of an IP
library. The IPs and the source files are defined in a self sufficient manner in themodel; and after-
wards, the concepts related to Implements and its subclasses can be modified independently
in order to create a link between the definitions of an IP and a SoC model. Care shold be taken
to ensure that different elementary components are not deployed on the same implementation
or IP.

6.4.3.8 PortImplementedBy

The class PortImplements creates an association between the ports of an elementary compo-
nent and the ports of a selected IP. In order for this relation to take place, several conditions
must be fulfilled. Firstly, a port of an IP must have the same direction as that of the respective
port of an elementary component. This ensures that the model rests coherent and error free.

Similarly, as the IPs are grouped together in the form of an abstract VirtualIP, this
condition must hold valid between the respective ports of the VirtualIP and the IP. Ini-
tially all the ports of an IP are linked to the respective ports of the VirtualIP by means
of PortImplements. Afterwards the ports of a VirtualIP are linked to the respective
ports of the elementary component also by PortImplements. This two stage approach of-
fers abstraction advantages, thus, when a designer needs to switch between different imple-
mentations related to an elementary component, via the abstraction mechanism offered by the
VirtualIP, he does not need to change the interface links between an elementary compo-
nent and a virtual implementation. he only needs to change a single reference, termed as a
ComponentImplements link. This concept is presented subsequently.
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Even if an implementation is not selected by an elementary components, its ports must
still be linked to the ports of a VirtualIP in case of future modifications of the model.
The references source and target permit to determine the source and target ports linked by a
PortImplements.

6.4.3.9 ComponentImplements

The class ComponentImplements contains two references source and target for linking two
MARTE structured components. This class offers two functionalities. First it enables linking a
VirtualIP to an elementary component. This permits an elementary component to be associ-
ated with a desired functionality represented by a VirtualIP and consequently the implemen-
tations. Secondly, among the different available implementations, once a designer selects an IP
based on different QoS criteria, this implementation can be linked to the elementary component
by means of a ComponentImplements dependency, for selecting the actual implementation
of the elementary component.

Figure 6.26: Explanation of the connectors

6.4.3.10 IPImplements

The class IPImplements helps in creating a link between an IP and a VirtualIP. Irrespective
of the IP selected for an elementary component, all the IPs available for an elementary compo-
nent must be linked to the VirtualIP. In combination with PortImplements, this concept
associates a functionality with its different implementation variations.

Finally, Figure 6.26 represents a clear global overview of the deployment mechanism related
to an elementary component, with the different implements dependencies highlighted for a clear
distinction.
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6.4.3.11 An adaptable deployment level

Limitations of current deployment level. The concepts of deployment until now, help to cre-
ate a static implementation of a reconfigurable system. This is due to the reason that while the
given concepts allow to associate multiple implementations to a given elementary component,
ambiguities arise when a designer needs to determine, and afterwards implement a system con-
figuration. This configuration in turn is concerned with the elementary components and their
associated implementations.

For e.g., in an application, an elementary component P has three implementations P1, P2
and P3. A designer may wish to select all implementations to be associated to P for targeting
a reconfigurable SoC. He may wish to implement three systems configurations ConfigurationQ,
ConfigurationR and ConfigurationS, associated to P1, P2 and P3 respectively. However, during
the implementation phase, it would not be possible to determine which implementation be-
longs to which configuration via the current deployment model semantics. As the number of
elementary components and their available implementations increase, the complexity increases
exponentially. Thus a mechanism needs to be put into place to resolve this design ambiguity
present at the high modeling deployment level.

Notion of Configurations. In order to respond to the above mentioned issues, we introduce
the notion of a Configuration in the deployment metamodel6. A Configuration can be
either specified for the application or architecture or can be viewed as a collective composition
(mapping of the two aspects to form a global system). Since in this dissertation, we only take
an application model as input for final implementation in a target FPGA, currently we associate
only the software implementations to a configuration. A SoftwareIP can thus be part of a
Configuration, helping in determining if the concerned IP is part of one or more configura-
tions for a reconfigurable system; or more specifically in the case of this dissertation, partially
reconfigurable FPGA based SoCs. It is however possible that a SoftwareIP is not included in
one or any of the configurations required by the designer or environment.

A Configuration has the following attributes. The name attribute helps to clarify the
configuration name given by a SoC designer. The ConfigurationID attribute permits to assign
unique values to each Configuration, which in turn are used by the control aspects presented
earlier in section 6.1.3. Theses values are used by a Gaspard state graph to produce the mode
values associated with its corresponding Gaspard state graph component. These mode values
are then sent to a mode switch component which matches the values with the names of its re-
lated collaborations. If there is a match, the mode switch component switches to the required
configuration. The InitialConfiguration attribute sets a Boolean value to a configuration to indi-
cate whether it is the initial configuration to be loaded on to the target FPGA. This attribute also
helps to determine the initial state of the Gaspard state graph.

Thus, in combination with the control concepts, deployment level creates several configu-
rations for the final effectuation(s) in an FPGA. Each configuration is viewed as a collection of
different IPs, with each IP associated with its respective elementary component. The current
model transformations for the RTL transformation chain have been modified to generate dif-
ferent implementations of a hardware accelerator (with each corresponding to one specified
configuration) in an FPGA, as illustrated in chapter 8.

An elementary component can also be associated with the same IP in different configura-
tions. This point is very relevant to the semantics of partial bitstreams (FPGA configuration
files for partial dynamic reconfiguration) supporting glitchless dynamic reconfiguration. If a con-
figuration bit holds the same value before and after reconfiguration, the resource controlled by
that bit does not experience any discontinuity in operation. If the same IP for an elementary
component is present in several configurations, that IP is not changed during reconfiguration.
It is thus possible to link several IPs with a corresponding elementary component; and each
link relates to a unique configuration. We apply a condition that for any n number of configu-
rations with each having m elementary components, each elementary component of a configu-
ration must have at least one IP. This allows successful creation of a complete configuration for

6While in the latest version of MARTE, a notion of configuration has also been presented, it is not associated to IP
levels, as illustrated in appendix B
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eventual final implementation. This condition is determined by the softwareIP reference from a
Configuration to the SoftwareIP class.

Figure 6.27 represents an abstract overview of the configuration mechanism introduced at
the deployment level. We consider a hypothetical Gaspard2 application having three elemen-
tary components EC X, EC Y and EC Z, having available implementations IPX1, IPX2; IPY1,
IPY2; and IPZ1 respectively. Being abstract in nature, the figure omits several concepts such as
VirtualIP and Implements. However, this representation is very close to UML modeling
as represented in section 6.5.2. A change in associated implementation of any of these elemen-
tary components may produces a different end result related to the overall functionality and
different QoS criteria such as used FPGA resources.

Figure 6.27: Abstract overview of configurations in deployment

Here two configurations Configuration C1 and Configuration C2 are illustrated in the figure.
Configuration C1 is selected as the initial configuration and has associated IPs: IPX1, IPY1 and
IPZ1. Similarly Configuration C2 also has its associated IPs. This figure illustrates all the possibil-
ities: an IP can be globally or partially shared between different configurations (such as IPX1),
or may not be included at all (case of IPX2).

6.4.4 GaspardLIB

GaspardLIB is an added extension in the Gaspard2 Framework, which represents a significant
collections of IPs in the form of a library. This library enables users to reuse components by
providing the related basic elementary components for construction of complex SoC models.
The library provides a clear distinction between the software and the hardware IPs for different
abstraction levels (TLM-PA, CABA, RTL) and different technologies. This library is currently
being adhered to the IP-XACT standard [13].

The library contains IPs from different environments such as SoCLib, as well as user defined
IPs. Currently a modeling mechanism of the IPs is underway, which will enable a designer
to view the different available IPs in the graphical Gaspard2 environment; facilitating in the
modeling of a SoC system. The associated properties related to the IPs in GaspardLIB have
already been detailed, such as the required source code files. However other attributes such as
dynamic power consumption depend on the chosen target platform. Currently the IPs related
to the RTL chain have been incorporated in GaspardLIB during this dissertation.

6.5 MARTE profile examples

In the previous sections, we first described abstract control semantics, followed by the control
and deployment metamodel concepts that are integrated into the current MARTE metamodel.
In order to provide a detailed understanding and usage of these concepts, we now provide
examples of some models specified using the MARTE profile with our integrated contribution.
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The MARTE profile has been integrated with the introduced deployment concepts, while the
control semantics use pure UML semantics, permitting their modeling with UML tools such as
Papyrus supporting the MARTE profile.

6.5.1 Example of a Multiplication-Addition application

Figure 6.28: A Multiplication-Addition application

In Figure 6.28, we provide an example of a typical DIP application modeled in the Gaspard2
framework. The application in question is a multiplication-addition application7 which takes
some data and coefficients and carries out multiplication and addition. Details about the func-
tioning of the application is presented in the case study in chapter 9.

The top level of the application TimeRepeatedMultiplicationAddition contains
three ports: InDataTRM and inCoeffTRM of input direction; and outDataTRM of output
direction, respectively with shapes of {∗}, {128, ∗} and {64, ∗}. The infinite dimension on the
InDataTRM port indicates that a single data value is present at each instant of time, while 128
coefficient values are consumed according to the shape value of inCoeffTRM, at each instant.
Finally 64 data outputs are produced similarly at outDataTRM at each instant of time.

If this application is targeted towards an execution model such as RTL, that means that
single data and 128 coefficients are consumed and 64 data outputs are produced at each clock
pulse. The TimeRepeatedMultiplicationAddition is viewed as an RCT and contains
a repeated RepeatedMultAdder task having a shape of {∗}, indicating that this component
is repeated once at each iteration of its repetition space. In simpler terms, it means that that
temporally repeated RT is executed sequentially at each clock pulse.

7The port types of this application have not been defined in this chapter, and are detailed subsequently in chapter 9
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The RepeatedMultAdder component has its respective input and output
ports: InDataM and InCoefffM, having respective shape values of {128} equiv-
alently. A tiler connector helps to connect the input port InDataTRM of the
TimeRepeatedMultiplicationAddition to the input port inDataM of the
RepeatedMultAdder component. Similarly other tilers connect the input/output ports
of the two entities.

The tiler connectors permit to determine how the initial data array is divided into sub-
arrays/patterns. In this particular case, at each instant of time, the RepeatedMultAdder
component consumes patterns of shape value of {128} on its data and coefficient ports, while
producing {64} data outputs.

Descending to another hierarchy level, the RepeatedMultAdder component itself contains
a repeated task. The MultiplicationAddition component has a shape of {64}, meaning
that it is repeated 64 times in parallel at each instant of time. This elementary component it-
self has its respective input and output ports inData1, inData2, inCoeff1, inCoeff2 and
outMwith shape of {} respectively. Two tiler connectors are used to connect the input data port
of RepeatedMultAdder to the input data ports of MultiplicationAddition component.
Similarly, two tiler connectors connect the respective coefficient ports of these two components.
Finally the output ports of these components are also connected by means of a tiler connec-
tor. These connectors also express the data dependencies between different repetitions of the
MultiplicationAddition.

Finally, the MultiplicationAddition is an atomic elementary component. Once the
application modeling is finished, we move on to the deployment phase where this elementary
task is deployed to the available IP(s), along with the modeling of the control features.

Figure 6.29: Deploying the elementary component of the multiplication addition application

6.5.2 Deploying the elementary component

The deployment of the elementary component MultiplicationAddition onto the avail-
able IPs is shown in Figure 6.29. The elementary task has two available IPs: DSPCase and
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IfThenElse to implement the same functionality but using different implementations, one
based on a DSP type implementation; while the other written as an if-then-else statement.

The two available IPs are written in VHDL, in order to convert the specified application
model into a hardware functionality. At the deployment level, the designer now has different
choices with respect to QoS aspects. If different QoS criteria of the available IPs are known
before hand due to a DSE strategy, the designer can deploy an elementary component to differ-
ent IPs for different scenarios, resulting in different overall results. In this example, we have
assumed hypothetically that different measures related to the IPs are available before hand.
Among several available QoS criteria, we choose to exploit the measures related to consumed
reconfigurable resources in a target FPGA, as this dissertation is mainly concerned with these
reconfigurable architectures. The DSPCase IP has the logicalElements attribute set with a value
of 0.03%, which determines the number of logical units (Slices or LEs) in the targeted FPGA.
Similarly, the IfThenElse IP has this value set to 0.026%. These values correspond to the con-
sumed resources for the IPs in a specific targeted FPGA. While these resources may seem trivial
related to a single IP, but when these IPs are repeated multiple times and form a part of complex
application that is translated into an hardware functionality; the consumed FPGA resources are
deemed significant.

Thus the designer can deploy the elementary component MultiplicationAddition to
either DSPCase or the IfThenElse IP for a static architecture, which will result in the gener-
ation of one complete hardware functionality (a hardware accelerator) in VHDL for synthesis
and subsequent implementation in the targeted FPGA. In the case of dynamic reconfiguration,
and specially partial dynamic reconfiguration, the designer can deploy both IPs to the elemen-
tary component, in order to be used in different configurations of the modeled application (and
the subsequent hardware accelerator). Currently in order to render the modeling simple for the
reader, we have only illustrated one single input port and the output port of the elementary
task. The multiple port implementations from the IPs to the Virtual IPs and to the elementary
component might make the diagram complex, and our intention is to initially provide a simple
explanation. However, the correct full version of the deployment contains all the ports of these
components and their respective port implementations, as illustrated in chapter 9.

The two modeled components DSPConfiguration and IfelseConfiguration repre-
sent the two possible configurations related to the elementary component, and the overall
application. The attribute ConfigurationID assigns the unique IDs of DSPMode and Ifelse-
Mode to DSPConfiguration and IfelseConfiguration respectively, which helps to dis-
tinguish between the configurations in the model transformations. The InitialState attribute
determines the initial configuration (in the form of a bitstream) to be loaded on to the FPGA.
In the case of PDR, this initial configuration is merged with the static part of the reconfig-
urable architecture (static bitstream) to form the default startup configuration. In this exam-
ple, DSPConfiguration is selected as the initial configuration. This attribute also helps to
determine the initial state of the deployed mode automata as explained earlier in section 6.4.2.

Finally the ip attribute permits to link a configuration to the available IPs. As stated before,
a configuration must contain at least one IP. As in this example, the application only contains
one elementary component having two available IPs, each configuration is associated with a
unique IP. For the sake of simplicity, we have omitted the visual representation between the IPs
and their respective CodeFiles associating an IP to its source file(s).

While the deployment modeling is sufficient for describing the different configurations re-
lated to an application functionality, it is not sufficient enough to present the actual switching
mechanism between the configurations. For this, we turn to the control concepts that we have
present precedently in the chapter.

6.5.3 Modeling of mode automata

Previously in this chapter, the abstract control semantics have been presented with clear syntax
and semantics specifications. However, as Gaspard2 is a graphical SoC Co-Design framework
with emphasis on describing a system with the help of modeling specifications, these control
concepts should also take a graphical form in alignment with other concepts used in the Gas-
pard2 framework, while respecting the UML MARTE profile.
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As previously stated, Gaspard2 adopts the component based approach in compliance with
MARTE. The interfaces associated with a component indicates how this component interacts
with external environment. UML behavioral state machines can be associated with compo-
nents and we have introduced similar semantics in the MARTE metamodel. However, these
state machines work on attributes and operations of a component in preference to its associated
ports, which differentiates behavioral state machines from UML protocol state machines. Also,
Gaspard2 is dedicated to the specification of DIP applications, whose nature is different from
the event-driven nature of UML state machines. UML state machines are also different from
mode automata for the same reason.

We now present the graphical modeling of the previously mentioned control semantics. The
specific usage of UML and consequently MARTE profile will not change the semantics of state
machines or collaborations. However, their semantics are changed under some conventions.
The result of this change can be considered as a variant of UML state machines, termed as
Gaspard state graphs as specified in section 6.1.3.2.

It should be made evident that the modeling of the mode automata is different from the
modeling of a Gaspard2 application. While both provide a structure for the application and
control respectively, the similarity ends there. During the design phase, the application model
can be created independently and thus subsequently deployed with absence of control seman-
tics, resulting in a static implementation. While the control model is directly dependent on the
deployment specifications; and results in introduction of dynamic characteristics. In this disser-
tation, the visual illustrations of the modeled control and application models are represented
differently, to emphasize their different natures.

6.5.3.1 Gaspard State Graph Component and State machines

Respecting the control semantics introduced previously, a MARTE StructuredComponent
which is associated with a Gaspard2 state graph is termed as a Gaspard State Graph
Component (GSGC) and reacts to external events. It is always considered as a controlling com-
ponent (as it is required to produce output mode values for other components). A GSGC as seen
in Figure 6.30 is an implementation of its associated state graphs, which in turn give a precise
external view with regards to the ports of the GSGC.

Figure 6.30: UML representation of a Gaspard State Graph Component

The interfaces of the GSGC are represented by ports and stereotyped accordingly as MARTE
FlowPorts. The shape of a port indicates the number of values arriving at a port at one instant of
time. As this proposal takes control/data flows into consideration, the shape corresponds to one
reaction of the state machine and is always mono-dimensional: having a value of {}. The input
ports of a GSGC can be either event or state ports. Event ports serve in triggering a transition
in the associated state graph and are normally of type Boolean. An event used in Gaspard2 for
triggering a transition is generally a ChangeEvent [185]. This event has a changeExpressionwhich
is a Boolean expression that can result in an event change. The second type of event is the
AnyReceiveEventwhich is considered as a default event when all the triggers of the transition of
a state are not satisfied. They are expressed as the all statement in the modeling of the Gaspard
state graph.

Values associated to state ports are termed as state values and identify the different states
in the state graphs. The input state port for a GSGC indicate the initial state upon entering
the GSGC. For a hierarchical state graph, multiple initial states may be required. This issue is
discussed in detail in [104], and is out of the scope of this dissertation, as we deal only with
non hierarchical state graphs. A GSGC also supports two kinds of output ports: mode ports and
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state ports. The state graph associated to the GSGC carries out transition functions on the states
and each state is associated to one mode. The output mode port thus carries mode values to
the Mode Switch Component; which are determined by the transitions of the state graphs.
The output state ports are similar to the input state ports and provide next state of the GSGC
(the next state after a transition). The mode values are defined in the deployment modeling
phase and are equivalent to the ConfiguratonID attribute related to a Configuration. These
mode values are independent of GSGC and its associated mode switch component for re-use
purposes. As a result, a Gaspard state graph component can be replaced by another GSGC,
provided that the replacing component follows the control and deployment level semantics
and is still compatible with the predefined mode values.

The two enumeration Statevalues and Modes related to the state and mode ports of a
GSGC are not illustrated here. The first enumeration contains as enumeration values, the states
defined in the associated Gaspard state graph. While the second enumeration contains the
collection of mode values possible, i.e., it contains the different ConfigurationIDs related to
the different configurations.

Figure 6.30 shows the Gaspard State Graph Component for the previously modeled appli-
cation. This component shows only the external interface of the controlling component. It also
contains two input event ports dsp_event and ifelse_eventwhich are used to trigger tran-
sitions. The iState is used to indicate which state of the state graph is the source state. The
target state and mode are produced through ostate and modevalue ports respectively. Each
of the ports is mono-dimensional in nature as indicated by the shape value of {}.

Figure 6.31: A Gaspard state graph associated with a Gaspard State Graph Component

Figure 6.31 illustrates an example of a Gaspard State graph associated with the GSGC for the
modeled application. This state graph has two states: State_DSP and State_Ifelse. One
of these states is connected to the initial pseudostate, indicating that this state is the initial state.
Some transitions connect these states, which can be fired by triggers on the transitions. Triggers
are defined on events, which are Boolean expressions of the event port variables (dsp_event,
ifelse_event) of the Gaspard state graph component. The condition when ifelse_event and not
dsp_event represents a trigger associated with a transition. The events associated to the event
ports are of the type ChangeEvent which can result in an event change. However, an event
may arrive on an input event port that does not fulfills the condition for triggering a successful
transition. These kinds of events are called AnyReceiveEvents, and are considered as default
events. They thus help to model a self transition in a state. They are modeled as the all
statement in Figure 6.31. An example of such a case can be when both events (dsp_event
and ifelse_event) arrive simultaneously on the input ports of a GSGC. Depending upon the
actual state at the moment, a self transition takes place.

A state has a specific doActivity, where we can specify a behavior carried out in this state.
This behavior can be specified as an OpaqueBehavior, which can be described in a natural
language. Due to the current limitation of the modeling tools, it is not possible to visualize this
behavior. In Gaspard2, we use this OpaqueBehavior in natural language to specify values
that are sent to output ports when the state is active. For instance, in Figure 6.30, the GSGC has
two output ports: state port ostate and mode port modevalue. The first one indicates the
current state of the state machine and second one indicates the mode to execute at this moment.
The doActivity related to a state can be specified as:
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region.ostate=self.name and app.modevalue=Configuration.ConfigurationID

where the left part of the statement concerns the port and the right part concerns their val-
ues. For instance, region.ostate and app.modevalue are port names of the component. Here region
is the name of a region, which owns the current state. Also, ostate is a string that denotes a
state port. The app represents the name of a component that requires this mode value. Finally
modevalue is also a string that denotes a mode port. On the right-hand side of the expression, self
indicates the state itself. This value can be replaced by either super or sub values to distinguish
a containing state or a sub-state, in case of state hierarchy. As we focus on flat state graphs, we
always use the self value that indicates the name of the state itself. ConfigurationID is the unique
ID assigned to a Configurationwhich is defined in the deployment model. For example, the
doActivity of the State_DSP state in Figure 6.31 is set as:

region.ostate=State_DSP and Gaspard_State_Graph.modevalue=DSPMode

6.5.3.2 Mode Switch Component and Collaborations

Figure 6.32: A mode switch component and its associated collaborations

A Mode Switch Component (MSC) is associated with collaborations and serves to switch
between the different exclusive present modes. The MSC has an input mode port which obtains
the mode values from the GSGC. The MSC acts on these mode values and executes the corre-
sponding mode. It has at least one mode, and only one exclusive mode can be selected at time
t depending upon the mode value present in the input mode port at that instant.

While the structure of the MSC can be defined using the MARTE general component con-
cepts as defined in the Generic Component Modeling (GCM) package, the behavioral semantics
of an MSC and the internal collaborations of its internal parts are not evident. For this reason,
Collaborations are associated with aMSC. These Collaborations specify roles of compo-
nents (instance level collaboration) via usage of connectors and parts in composite structures. A
collaboration specifies the relation between some collaborating components (or roles). Each of
these roles provides a specific function, and executes some required functionality in a collective
way. Only the concerned aspects of a role are included in a collaboration while others are omit-
ted. Figure 6.32 shows an example of a MSC for the modeled application described in section
6.5.1. The two collaborations depict the behavior of the MSC Mode Switch Component. The
name of the collaborations correspond to the mode values and thus these collaborations define
the activity of the MSC upon receiving a particular mode value. For example, the collaboration
DSPMode shows the relationship between the MSC and the mode/configuration DSPConfigura-
tion (indicating that mode value DSPMode switches the current executing mode to DSPConfigu-
ration). As in this mode only DSPConfiguration is to be executed, the second mode IfelseMode is
omitted along with the mode port of the MSC, due to the semantics of UML collaborations. The
collaboration is finally linked to the Mode Switch Component.
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6.5.3.3 Creation of a Gaspard Mode Automata

Figure 6.33: Modeling of the macro component

Figure 6.34: Modeling of the deployed mode automata

To create a mode automata at the deployment level, first its internal structure: a composition
of a GSGC and a MSC, is constructed. The GSGC produces mode values which are taken by the
MSC, which executes a switch function between the modes present in the MSC. Compared to
purely synchronousmode automata, the computations are not set in the states of a statemachine
(or a state graph), but are placed in the MSC. As specified in section 6.1.3.4, this composition is
termed as a Macro Component. Finally, Figure 6.33 shows the graphical representation of the
macro component while omitting the collaborations for the sake of simplicity.

Afterwards, the macro component is then placed in a repetition context termed as a
Deployed Automata with a shape value corresponding to {*}. In a Deployed Automata
component, a Macro Component can be executed in parallel (each repetition is independent
of other GSGCs; and a GSGC has no memory of the previous state as the inputs required by
each successive repetition of a GSGC are only present at one time). A macro component can
also be executed in a sequential manner (a dependency exists between the repetitions of a GS-
GCs allowing to introduce the concept of memory of previous states). In this dissertation, we
only address the second approach. A dependency in the sequential execution is represented by
the InterRepetition dependency (IRD). The repetitionShapeDependence vector asso-
ciated to the IRD expresses the dependencies between the repetitions inside the Deployed
Automata. If the depended repetition is not defined in the repetition space, a default value is
selected by means of the defaultLink connector. The Macro Component should be placed
in a Deployed Automatawith at least one IRD specification. Figure 6.34 shows the modeling
of the deployed mode automata concept.
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6.6 Conclusion

In this chapter, we first presented the conditions related to our control semantics. Afterwards,
the generic concepts related to control were explored at different levels in SoC Co-Design,
namely application, architecture and allocation level. Control at these levels were compared
with their advantages and disadvantages. Finally we propose the utilization of a local control
at the deployment level of a SoC framework. This control respects the conditions that we have
introduced earlier in the chapter and allows re-utilization of high level models. More over, in
order to implement partial dynamically reconfigurable SoCs, the control concepts along with
the deployment level semantics were integrated in the MARTE metamodel and profile.

This integration allows expression of dynamic aspects related to an application functionality
via current UML modeling tools supporting the MARTE profile. The intended goal is to inter-
pret the MARTE compliant UMLmodel and its corresponding metamodel in order to transform
it into an intermediate model (along with its corresponding metamodel) at a lower abstraction
level, closer to an execution platform. The metamodel corresponding to this abstraction level,
termed as the RTL metamodel is explained subsequently in the following chapter.
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In the previous chapter, we have detailed the initial concepts for integrating control in Gas-
pard2, for integrating dynamic aspects in SoC design specifications. The control concepts cor-
respond to semantics related to a reconfiguration controller, responsible for managing the con-
text switching. As specified earlier in the dissertation, another crucial part of a dynamically
reconfigurable system is the region selected for an effective swap during the reconfiguration.
In our design methodology, this dynamically reconfigurable part corresponds to a hardware
functionality; which is equivalent to a modeled high level deployed Gaspard2 application. The
conversion of this modeled application into a hardware functionality is due to the presence of
an intermediate metamodel (and corresponding namesake model) that enriches the specified
application for eventual code generation: namely the Register Transfer Level (RTL) metamodel.

This chapter introduces the RTL metamodel in the Gaspard2 framework and is a focal key
point of the design methodology presented in this dissertation. The RTL metamodel corre-
sponds to an intermediate level between the description of a modeled Gaspard2 application
(specified using the MARTE profile) along with its consequent deployment and control specifi-
cations at the high abstraction levels; and the automatic code generation, permitting final execu-
tion in a targeted FPGA for executing partial dynamic reconfiguration. Due to the presence of
control semantics introduced in the deployment level, the transformed hardware functionality
has multiple associated implementations, equivalent to the high level modeled configurations,
enabling the creation of a dynamically reconfigurable hardware accelerator. In that effect, the
RTL metamodel takes into account the deployment level details related for this translation.

The RTL metamodel can be viewed as a collection of different concepts, as shown in Figure
7.1. The metamodel contains some common features or metaclasses, utilized for the specifi-
cation of concepts related to the creation of a hardware functionality, while enriching control
aspects introduced in the last chapter. In parallel, there exist specific metaclasses and metarela-
tions, each corresponding uniquely to one of the above mentioned aspects.

For the description of the hardware functionality, the metamodel must be detailed enough in
order for the model transformations to generate efficient synthesizable code for a target FPGA
based SoC. For this, the chapter first provides a brief overview of hardware accelerators and
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the different works realized for conception of these components. As stated earlier, since a Gas-
pard2 application is transformed into a dynamically reconfigurable hardware accelerator; in
section 7.2, we present a detailed description of a hardware execution model for the applica-
tions modeled in the Gaspard2 environment. This execution model endows the related model
transformations with clear guidelines, for converting the presented application into an equiva-
lent hardware functionality.

Figure 7.1: An abstract overview of concepts related to the RTL metamodel

However, as specified before in chapter 4, data parallelism in Gaspard2 is based on the se-
mantics present in the MARTE RSM package, and its underlying model of computation: Array-
OL. Hence several execution models are possible: such as Single ProgramMultiple Data1 (SPMD),
pipeline or sequential execution models. Nevertheless, normally, these execution models are
mainly related to MPSoC architectures and not intended for development of hardware acceler-
ators. While in [256], the authors present an Array-OL based hardware execution model, the
proposal lacks aspects related to task parallelism. Additionally, in [143], the execution model
based on Array-OL enables expression of both task and data parallelism, unfortunately, the
works do not take aspects of dynamic reconfiguration into account and the intended generation
of hardware accelerator is intended to be static in nature.

Hence, the hardware execution model presented in this chapter safeguards the potential
parallelism of modeled applications while integrating reconfigurability features. From this exe-
cution model, we extract the concepts that serve as the basis of the RTLmetamodel presented in
section 7.3. This execution model is only concerned with the modeled application; and permits
its transformation into a hardware functionality with dynamic characteristics. In parallel, the
control concepts mentioned in chapter 6 are also integrated into the metamodel, for describing
the semantics and syntax of a reconfiguration controller. This controller is eventually respon-
sible for carrying out partial reconfiguration of the translated hardware functionality and its
various implementations. Thus, the RTL control concepts are eventually utilized in eventual
code generation for the reconfiguration controller.

7.1 Hardware accelerators

In traditional computing, hardware acceleration can be viewed as the utilization of hardware to
execute the desired functions faster in a parallel manner, as compared to a purely software func-
tionality which is executed sequentially, as illustrated in Figure 7.2. A hardware accelerator is a
dedicated integrated circuit specialized for performing data intensive processing. It allowsmax-
imum parallelism of computations required for the execution of an application; and provides
an optimal execution support for processing regular and repetitive tasks. Example of hardware
accelerators can be found in state of the art Graphical Processing Units (GPUs), co-processors or
modern FPGAs present in large complex SoCs.

In SoCs, these hardware accelerators are quite common for accelerating key kernel parts
of the targeted applications. Normally, these SoCs have integrated FPGAs or are FPGA based

1http://en.wikipedia.org/wiki/SPMD
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themselves, as detailed in chapter 1; resulting in two clear advantages. These architectures al-
low to express the potential parallelism required for high performance and data intensive SoC
applications. While on the other hand, the reconfigurable nature of these architectures permit
to introduce notions such as partial dynamic reconfiguration. This in turn, permits increased
flexibility while keeping intact the aspects related to performance and parallelism, that are crit-
ical for these complex systems. We now provide a brief overview of several significant works
developed for the creation of hardware accelerators.

Figure 7.2: Software versus Hardware execution

7.1.1 Related works related to hardware accelerators

The usual method of describing hardware accelerators at the RTL level is carried out via Hard-
ware Description Languages (HDL)s such as VHDL or Verilog. Numerous works exist based on
manual hand tuned HDL based accelerators and are typically involved in improving perfor-
mance of these accelerators. For example, in [247], a detailed summary about different con-
ception methodologies related to hardware accelerators has been given. Similarly in [30], a
FPGA based hardware accelerator implementation is proposed for a correlation module in an
anti-collision radar detection system.

However, hand-tuned designs of hardware accelerators at RTL level are usually plagued
with errors as they are directly dependent on designer expertise. Similarly, conception time for
large complex designs increases exponentially, due to necessary validation of correct function-
ality of each sub component in an accelerator. However, in spite of all the difficulties related to
their conception, hardware accelerators (such as FPGA or DSP based accelerators in SoCs) are
frequently utilized, specially in the domain of intensive signal processing specified in section
4.1. Similarly, tool based approaches have been proposed which aid in conception of hardware
accelerators as compared to direct manual RTL level implementations.

Creation of hardware accelerators by tools and methodologies. JHDL or Just Another HDL
[26] is a design tool for specification of dynamic circuit layouts, using abstraction levels nor-
mally found in object oriented languages. The tool supports both external partial and full re-
configuration, however the configurations are normally identified manually. The design tool
introduces a notion of an interface class, a PRSocket that illustrates the external interface of a
dynamically reconfigurable module, similar to the concepts related to a partial reconfigurable
region (PRR) in Xilinx methodologies. However, JHDL is a low level implementation tool.

For example, in [70, 162], generation of hardware accelerators at RTL level is proposed via
ALPHA0 and ALPHARD languages respectively, which are offshoots of the ALPHA language
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[155]. However, they do not take into consideration the FPGA resources necessary for final
implementation, requiring commercial tools to determine these measures using floor planning
related to final FPGA implementation. In [59], the authors illustrated the generation of VHDL
code from Synchronous Data Flow (SDF) [144]. However, SDF only allows to express data
dependencies on a single dimension; and the limitation is also evident in [59]; handling multi-
dimensions impossible. SIMULINK provides an HDL CODER2, for VHDL code generation for
applications. While in [20], SYNPLICITY’s SYNPLIFY DSP tool has been used in combination
with SIMULINK for VHDL code generation. Computational expressions of multidimensional
data along with the possibility of eventual code generation extends the usability of SIMULINK
for intensive signal processing. However, the data dependencies are always expressed with the
help of indexes, which is determined by the developer. This increases the chances of present
errors in the design, when expressing data dependencies on multidimensional arrays.

In [256], the authors used the Array-OL language (the basis of the RSM package of MARTE)
for writing applications for eventual hardware accelerator generation. Array-OL uses a factor-
ized form for expressing data dependencies on multidimensional arrays and avoids the pitfalls
present in the earlier approaches. The authors expressed data dependencies with mapping of
VHDL ports. This method permitted to express data dependencies in a factorized form, but
required a flat unrolled expression of the potential multidimensional ports on repeated tasks.
Apart from this inconvenience, an application contained only a single component and notions
of hierarchy and task parallelism are absent. Similarly data dependencies on time are not han-
dled, as only simple connections are realized for managing data dependencies on space. [143]
address these problems and propose a methodology for hardware based execution of applica-
tions where data and task parallelism are expressed via Array-OL. Data dependencies on time
and space are both managed and applications can be hierarchic in nature. However, the VHDL
code generated is not completely error free and the modeled applications are usually intended
to be in form of VHDL black boxes; and cannot be directly synthesized using commercial FPGA
tools. In addition, they do not take dynamic reconfiguration into account.

Dynamically reconfigurable hardware accelerators. In [64], the authors present a FPGA
based reconfigurable hardware accelerator for solving Boolean satisfiability problems (SAT).
They achieved a speed up of 3.7 to 38.6x compared to a modern CPU executing the same com-
putations. While in [4], a dynamically reconfigurable hardware accelerator is used to accelerate
key kernels (mainly the color conversion and 2D-DCT steps) of a JPEG encoder. Similarly in
[196], neural network simulation has been carried out with the aid of multiple runtime recon-
figurable accelerators. In [264], a dynamically adaptive reconfigurable loop accelerator is em-
ployed for unrolling loops to increase parallelism and subsequent performance of the system.
However, greater reconfigurable area is required for higher degree of loop unrolling. Using
partial reconfiguration, the authors illustrated a save of 93.6% of the resources at a compromise
of 1.6% in performance. While in [238], the authors illustrated FPGA implementation of dy-
namic run-time reconfiguration related to behavior of robots. They made use of UML sequence
diagrams for expressing fault tolerance and reconfiguration algorithms.

Augmenting the abstraction levels. Similarly, there has been a tendency to increase the ab-
straction levels for the generation of hardware accelerators using languages such as C/C++ or
similar languages such as HandleC. The choice of a language is dependent on the user exper-
tise. Numerous academic tools and commercial products have also been developed. On the
commercial side, we found products such as CATAPULT C3 and CODEVELOPER4, while on
the academic front, tools such as SPARK [103] and GAUT [57] are available.

A recent trend has been to use high abstraction levels based on MDE and UML for the
generation of these circuits. For example, in [62], a VHDL metamodel has been proposed for
eventual code generation purposes. However, this metamodel is strongly dependent on the syn-
tax of VHDL and cannot be used for specification of other HDLs. In [58], XML based parsing
methodology is used for the generation of VHDL code such as state machines from equivalent

2http://www.mathworks.com/products/slhdlcoder/
3http://www.mentor.com/products/esl/high_level_synthesis/catapult_synthesis/
4http://www.impulseaccelerated.com/products_universal.htm
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UML modeling. A similar approach has been proposed in [213], using XLST and XMI parsers
and the generated code was implemented on a Xilinx Spartan series FPGA. Several other works
have been developed to generate VHDL code from UML state machines. In [10], the authors
propose an exploratory study for using model driven methodologies in order to develop a com-
piler that transforms UML state machines to VHDL code. For this, they present state machines
and VHDL metamodels, along with MDE model transformations. Works such as [254] use a
mapping approach to create relationships between the concepts present in VHDL and UML. Fi-
nally in [61], the authors used an intermediate language for describing automata. The automata
described are generated from UML statecharts and allow eventual VHDL code generation.

There exist a large number of tools, but our intention is not to give a detailed description
of each, but to give a general overview. Comparison of these tools is difficult as they evolve
rapidly. Moreover, utilization of C/C++ for application description, for eventual translation
into hardware functionality is viewed as inconvenient as it raises different issues. As described
in section 3.1.1.2, the description is mostly text based in nature and system hierarchy and par-
allelism is not evident. Hierarchy is usually in the form of functions where as data parallelism
is in the form of nested loops. A graphical representation does not cause these inconveniences.
Similarly, potential parallelism of an application is usually expressed in C/C++ in the form
of sequential loops, which is not an easy task for the designer. A brief summary regarding
disadvantages of these approaches has been presented in [143]. As evident from the above
mentioned approaches, the domain related to hardware acceleration is extremely vast; and it
is not possible to give a detailed description in this document. Here, we have only covered
some design methodologies for the development of these integrated circuits. Dynamically re-
configurable hardware accelerators are being increasingly utilized in the SoC industry due to
their aforementioned advantages, and are addressed in this dissertation. We now look onto
the hardware execution model for a Gaspard2 application, permitting creation of a dynamically
reconfigurable hardware accelerator from our design flow.

7.2 Hardware execution model for Gaspard2 applications

In section 4.2.3, we have already illustrated that Gaspard2 applications are modeled indepen-
dently from low level implementation details, until the deployment phase. For generation of a
dynamically reconfigurable hardware accelerator, our design methodology transforms an UML
model (of a control integrated high level deployed application, respecting the MARTE profile)
into a RTL model conforming to the RTL metamodel. Correct specification of the RTL meta-
model is a critical aspect, in order to identify the key concepts related to the hardware execution
of Gaspard2 applications.

An example of a Gaspard2 application has been earlier presented in section 6.5.1. A partial
extract of this application is illustrated here to illustrate the concepts related to hardware exe-
cution in our design flow. Details related to the actual operations of this functionality will be
presented in chapter 9.

Figure 7.3: Partial extract of the Multiplication-Addition application
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The partial extract of the multiplication-addition application as shown in Figure 7.3 can be
itself treated as an application functionality. The Figure 7.4 represents the same application task
in an flat unrolled manner while expressing data parallelism in a factorized form.

Here in the figure, the source data and coefficient arrays are present in the left part of the il-
lustration, while the output array is present at the right side. The MultiplicationAddition
repeated task is repeated on the basis of the value of its repetition space: i.e. 64 times. Each
of the input data/coefficient ports of an instance consumes a data (or coefficient) of the respec-
tive input arrays, depending upon the associated index value; determined by tiler connectors
containing information related to origin, paving and fitting. For example, the 0th instance of the
MultiplicationAddition component consumes the first two data and coefficients present
in the respective input arrays. Similarly, for all the repetitions of the RT, the output port pro-
duces a single output element which is then taken by a tiler connector to construct the final
output array.

In order to facilitate the visualization of the data dependencies between repetitions of the
elementary task (RT) and the patterns they consume, all repetitions of the RT are colored in the
same manner. The colors and index values on the ports of a repetition determine their positions
in the input/output arrays. The data dependencies expressed by MARTE tiler connectors, form
an interconnection topology for linking the respective arrays to associated patterns.

In [143], the authors identified two main types of effective hardware executions, possible for
the Gaspard2 applications: namely a Parallel execution or a Sequential execution. Both executions
allow to transform an application into a hardware functionality for eventual integration/syn-
thesis in a target architecture. With respect to dynamically reconfigurable accelerators, a parallel
execution reduces design complexity as compared to a sequential one; as described later on in
the chapter (section 7.2.1.4). During the course of this dissertation, the parallel execution model
has been selected and is now described in detail along with its advantages over the sequen-
tial approach. It should be made evident that this parallel execution model is only concerned
with the application part of the RTL metamodel; as compared to the control which carries out
execution in a sequential manner. This point is explained later on in section 7.2.1.4.

Figure 7.4: An abstract flat unrolled representation of the modeled application: the MARTE
tiler connectors express the data dependency between the input/output arrays and patterns;
consumed and produced by different repetitions of a RT, in a RCT
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7.2.1 Parallel execution of hardware accelerators

7.2.1.1 Task Parallelism in hardware accelerators

As shown in Figure 4.9, Gaspard2 exhibits task parallelism in the form of an acyclic dependency
graph. Every task in a Gaspard2 application can be executed in hardware by means of a hard-
ware computation unit (HCU), implemented in the form of a component5. Several tasks can
thus be executed in parallel in a hardware accelerator by equivalent number of HCUs. The in-
put/outputs of the tasks are the data arrays; and the connectors connecting the different tasks
(by connecting their inputs/outputs) represent the data dependencies. This same structure can
be presented in a hardware functionality for expressing task parallelism: the HCUs are con-
nected by means of connectors6, and thus a task pipeline is created when a connector exists
between the outputs of one task and the inputs of the subsequent task.

At the RTL level, the HCUs can be synchronized by means of a clock, and their data arrays
are generated/computed at each clock cycle and directly read by other HCUs by means of con-
nectors. Thus a data stream is established that does not requires intermediate memories (hence
no data linearization is necessary for memory access). The quantity of resources necessary for
the implementation of an accelerator vary with the complexity of an application. A complex ap-
plication requiring a large number of resources may not be implemented if the resources present
in the target integrated circuit are inadequate. In that case, it is preferable to either change the
global structure of the application [31], or partition the application into several sub tasks for
implementation in different accelerators or standard architectures such as MPSoCs.

In terms of a hardware accelerator, pipelined execution of tasks permit to increase the opera-
tional frequency while decomposing the critical path. For that this execution is really pipelined,
registers having the same clock rate should be introduced in different data paths. Elementary
components containing registers in their data paths have been introduced in [143], permitting
generation of a data stream in the data paths of task parallelism. This stream implies that sev-
eral tasks are executed at the same time, but each task iterates on a different instant on the
temporal dimension of their repetition space. However, this pipeline introduces a latency in the
production of output arrays of a task as it is necessary to fill the pipeline.

However, the limitations related to the utilization of the pipelined approach in task paral-
lelism are evident. Different data dependencies are possible in a pipelined approach as evident
in Figure 7.5. Thus synchronization barriers may be required for a pipelined execution. It is
thus up to the designer of the application to guarantee that for a dependency graph, its corre-
sponding implementation not does de-synchronize the computations.

Figure 7.5: Different types of data dependencies in task pipeline

7.2.1.2 Data Parallelism in hardware accelerators

Gaspard2 applications are also able to express data parallelism as illustrated in Figure 4.10.
The data parallelism in a repetition context task (RCT) can be present in different forms: the
repetition space related to the interior repeated task (RT), the shape of the input/output patterns
related to the RT, the compact data dependency expressions determined by the tiler connectors;
and the shape of the input/output data arrays of the RCT. The hardware execution model takes
all these information into account. The tiler connectors express complex data dependencies
between the different iterations of the executed RT and the data arrays of a RCT. In the hardware
accelerators, the tilers do not exist in their compact factorized form, but are also compiled to
hardware components that illustrate the data dependencies exhibited by the tiler connectors,

5Thus a modeled application component is translated in the form of an HDL component with respective equivalent
interfaces

6Signals or Nets depending upon the syntax related to a particular HDL
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in the high level UML model. This step has been termed as ADO pre-computation, because the
data dependencies are computed at design time; before the synthesis and implementation of the
hardware accelerator on a target FPGA, for the eventual execution of the modeled application.

The repetition space of a repeated task does not force any execution order on the number
of its associated repetitions. The execution model permits to execute the data parallelism in
two manners as described before: either in a parallel manner or a sequential one. The parallel
execution enables generation of an accelerator having increased performance, while consuming
an increased amount of reconfigurable resources. While comparatively, a sequential accelerator
takes less amount of reconfigurable resources at a compromise of reduced performance. Both
types are able to handle data dependencies on time and provide adequate semantics for their im-
plementation in the generated accelerator. This process related to data dependencies is further
detailed in chapter 8. Finally, as described before, this dissertation takes only parallel execution
into account, in the context of partial dynamic reconfiguration.

Spatial-Temporal mapping The parallel execution of data parallelism requires a flat design of
the hardware accelerator7. This enables execution of different repetitions (RT) of a RCT at the
same instant of time (in the same clock cycle). Thus N HCUs are needed for the parallel execu-
tion of a repeated task having a repetition space value of N. While Gaspard2 is able to represent
spatial as well as temporal dimensions using the RSM package, there is an exception related to
execution of an infinite temporal dimension, on a repetition space in the corresponding hard-
ware execution model. An infinite repetition does not makes sense in the context of a hardware
execution, and is in turn adequately translated. This repetition is executed on the basis of the
clock related to the hardware accelerator (or a global architecture such as a SoC containing this
accelerator). Each new clock cycle causes a new iteration on the temporal repetition space of
the given application.

In simpler words, the clock permits sequential execution of temporal repeated tasks. A
similar principal is applied on the ports of a modeled application when one of the associated
dimensions has an infinite value. As equivalent hardware ports do not have an infinite dimen-
sion, the dimension determines a data stream. The overall result is the creation of a hardware
execution model of a mixed nature. The top hierarchical level of the hardware functionality
is executed sequentially at each clock pulse8, while the subcomponents at lower hierarchical
levels are executed in parallel. This is the case for the application modeled in Figure 6.28.

Related to partial dynamic reconfiguration, the generated hardware accelerator is placed in a
system having a common base clock. The hardware accelerator is clocked to a unique frequency.
This implies that the data present in the ports are consumed at the same rate as the execution of
tasks is carried out. This statement is validated in chapter 9, when we illustrate the simulation
results related to our case study.

However, the execution model has its limitations; and all the potential data dependencies
that can be expressed in Gaspard2, via the RSM semantics; cannot be taken into account.

7.2.1.3 Hierarchy and ADO pre-computations in accelerators

The presented hardware execution model can handle hierarchy in accelerators, can be com-
posed of either task or data parallelism or a combination of the two. This is possible because the
chosen parallel execution model forces all computations at the same clock cycle at the cost of in-
creased number of consumable FPGA resources. With regards to data dependencies, the ADOs
which are tiler connectors, compute these dependencies by means of the underlying semantics
of Array-OL [36, 37].

In a hardware accelerator, each data dependency is expressed by means of a hardware sig-
nal or a shift register, as explained in the next chapter. It is thus possible to implement these
dependencies using existing resources, hence reducing the overall consumed resources. The
pre-computation of these tilers can be used for resource optimization, for e.g., in the construc-
tion of a pattern related to a RT, or construction of all patterns in a RCT. In order to provide

7This is to say that all repetitions of a RT should be unrolled
8In an HDL such as VHDL, an infinite repetition is implemented using the GENERATE keyword, with lower and

upper bounds set equally to 1. This point is further explained in the next chapter
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a general mechanism for expressing the data dependencies, the modeled tiler connectors are
transformed themselves in respective HCUs that carry out the pre-computations. The process
related to the pre-computations is detailed in the next chapter.

Figure 7.6 illustrates an abstract representation of the electronic circuit of the application task
represented in Figure 7.3. The left side of the figure represents the input ports of the accelerator
corresponding to input data/coefficient arrays of the modeled application (part A). Similarly
on the right, the output ports represent the results, produced by the repetitions of the interior
repeated task in an accelerator (part B). These ports are connected to components representing
the different repetitions of the RT (part C). Each repetition is connected to the five tiler compo-
nents representing the input/output tiler connectors in the initial modeling using the MARTE
profile. The input tilers (part D) are connected to read the input arrays and produce the pat-
terns consumed by the different repetitions of the RT in the repetition space of a RCT. These
repetitions are executed in parallel and are repeated 64 times for this example. Each repetition
produces an output pattern which is then transmitted to the output tiler (part E) responsible for
reconstructing the output array.

Figure 7.6: Abstract representation of parallel execution of the modeled application task in an
electronic circuit

It should be observed that the modeled application task itself is a subcomponent in the
application represented in Figure 6.28. Thus this parallel execution of the hardware accelerator
could be treated as an intermediate hierarchical level in the final hardware accelerator produced
for the global application. In the case illustrated in this chapter, we have treated this application
task as a separate application, which however does not contain an continuous infinite repetition
as the modeled application in Figure 6.28; that illustrates a continuous data stream of consumed
and produced data arrays; as well as a sequential temporal execution.

7.2.1.4 Parallel or Sequential execution ?

The previous section introduced the hardware execution model for the Gaspard2 applications
specified with the MARTE profile. The execution of data parallelism related to the applications
can be either sequential or parallel in nature. Parallel execution permits to increase the perfor-
mance of the hardware accelerator and reduces latency; at the cost of reconfigurable resources
such as CLBs in a targeted FPGA. All the tasks are executed at the same clock cycle and data
dependencies are resolved by tilers components.
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The sequential execution of data parallelism introduces increased complexity in the overall
design. For a sequential execution, the different iterations of a repeated task in a repetition space
are not executed in parallel but in a sequential manner. Thus for the same application shown
before which executed in 1 clock cycle, 64 clock cycles are needed for a complete sequential
execution (one clock cycle for each iteration). Thus several clock cycles are needed to cover
the repetition space of the highest hierarchical level of the application. Similarly, additional
elements such as controllers, multiplexers and demultiplexers are needed for this execution
[143]. While the overall cost related to a sequential execution is considerably less as compared
to a parallel execution, it introduces additional latency.

For systems dealing with partial reconfiguration where time required for a reconfiguration
is a significant criteria, and needs to be optimum; this can be viewed as a critical drawback.
However sequential execution of hardware accelerators may be favored in some systems having
limited resources; and where reconfiguration time does not have a high priority as compared to
consumed resources.

Currently the hardware execution model offers a compromise. An application having a infi-
nite dimension at the highest level of hierarchy executes the different iterations in a sequential
manner; while lower levels are executed in parallel. This results in a parallel execution of tem-
poral repeated tasks. It should be made evident that the infinite dimension can only be present
at the highest level of hierarchy, as its presence in lower hierarchical levels denote the existence
of multiple clocks with different clock rates. This could cause a de-synchronization in the gen-
erated hardware functionality.

The mixed sequential-parallel execution of the hardware execution model offers another ad-
vantage. As seen in section 6.2.1, the control model is sequential in nature. In the RTL execution
model, this could permit a single clock to handle both the hardware accelerator computation
and the transitions of the mode automata control. Thus for a clock pulse, data is produced and
consumed by the different parallel parts of the presented application, while the control can carry
out a self transition or transition to another state. However, additional latency has to be taken
into account in an execution platform, related to the time taken for propagation of a configura-
tion switch command by a reconfiguration controller and the actual switching. Delays related
to task parallelism also should be taken in consideration. Similarly synchronization between
the control/data flow values related to the mode automata have to be taken into account. Some
of these problems have been addressed in chapter 9.

Finally, the last difference between the hardware accelerator and the control aspects in the
RTL metamodel is that hardware execution model only takes data flow into consideration, as
compared to control, that manages the control flow.

7.2.2 Interrepetition and defaultLink in RTL metamodel

As defined before, an interrepetition dependency specifies an acyclic dependency among the
different repetitions of a repeated task, leading to a sequential execution. A defaultLink pro-
vides an initial link for the repeated task when the source link to the first repetition is absent.
Similarly it can be used for the final link for the last repetition.

The statement defined above can be explained clearly with the help of Figure 7.16. It shows
a repeated task in a RCT with a repetition space of {3} along with pattern shapes for its input
and output ports set to be mono dimensional: having values of {} respectively. The value of
{−1} is related to the repetitionShapeDependence vector for determining the dependency between
the repetitions; and is thus interpreted differently as compared to usual shape values on ports
and RTs illustrating an infinite repetition. An interrepetition and defaultLink as a tiler, are trans-
formed into equivalent RTL components (RTL_Interrepetition and RTL DefaultLink)
by means of the model-to-model transformations. However, these components are treated dif-
ferently, as in our dissertation, they are related only to the control part of the RTL metamodel,
and their code generation is discussed in the next chapter. However, in the subsequent para-
graphs, we provide a justification of this approach, as their utilization in the creation of a hard-
ware accelerator raises several issues.
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Disadvantages for a dynamic hardware accelerator. For a RT having a finite repetition space,
the shape of the source and target ports of an interrepetitive hardware component can be set
to the product of the repetition space and the pattern shape of the RT, respectively. This ex-
pression is also valid for a RT having multidimensional shape values on its input/output ports
or repetition space. Respecting the semantics related to interrepetition, the shape values on
the input/output ports of the RT should be identical. Thus for the example in Figure 7.7, the
interrepetition component has 3 source and target ports. As the last iteration of the RT is not
connected to a defaultLink, the last port of the interrepetition component is not connected and
is therefore not shown.

Figure 7.7: Abstract representation of mechanism related to interrepetition and defaultLink

The numbers in the bottom side of the figure explain the sequential order of the data flow
related to the RT, the interrepetition and defaultLink components for a hardware execution.
The interrepetition component helps to determine the data dependencies between the different
iterations of the RT over time. However, this dependency forces to unroll the loop in case of a
finite repetition space associatedwith a RT, as shown in the figure. Thus here, 3 repetitions of the
repeated task are unrolled forming a chained pipeline, resulting in increased FPGA resources.
This interrepetition component can be associated with a buffering mechanism to store the data
between two successive repetitions of a RT.

A defaultLink connector can also be transformed into a RTL component as well. The dimen-
sions on the source port of a default link should be equal to the shape of the input array, while
for the output port, they are equal to the shape of the pattern shape of the RTs. We place a con-
straint that the shape of the input array and the consumed pattern should be equal for correct
functioning of a defaultLink.

The semantics that we have introduced related to interrepetition and defaultLink can be
used for either the hardware accelerator or the control concepts. However, the combination of
interrepetition and defaultLink force a dependent sequential execution of the related RT, and in
section 7.2.1.4, we have already stated the advantages of using a parallel hardware execution
model for Gaspard2 applications. The only advantage of these concepts is from a modeling
perspective, as they allow a designer to specify an explicit depended sequential execution of the
application at the high abstraction levels; as compared to ambiguous choice (parallel, sequential
or mixed sequential-parallel) related to a hardware execution in our design flow.
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However, it should be mentioned that in an extended version of our design flow adapted to
a sequential execution model, the sequential hardware execution of the repetitions of a RT will
be not dependent on each other. For example, in a sequential execution of the application task in
Figure 7.3, an ith repetition does not depend upon the output of the i−1th repetition as its input, as
compared to an sequential execution forced by the interrepetition dependency; with different
iterations strongly dependant on each other. Additionally, an infinite repetition related to an
interrepetition component is not possible to be translated into a hardware execution model.

Even if the repetition is finite in nature, the sequential execution requires a buffering mech-
anism to store the outgoing data produced by the sequential execution of the RTs. Similarly,
multiplexers, demultiplexers and controllers may be required as well, that are not illustrated in
the figure. For this reason, the concepts introduced in this section are currently only utilized
for control modeling and in the construction of mode automata. However, these concepts can
be enriched at a later date, for a dependent sequential execution of the hardware model with
RTs having a finite repetition space. Currently, during the final model-to-text transformations,
the interrepetition and defaultLink components in the RTL model are converted into variables
which help to determine the initial, current and next states of an automaton.

7.3 RTL metamodel

An initial version of the RTL metamodel has been proposed in [143], however as explained
before in the chapter, the metamodel does not integrate dynamic aspects, and is intended for
creation of a single static hardware accelerator for final implementation as a black box. The
current version of the RTL metamodel developed during this dissertation permits integration
of dynamic features, for facilitating the creation of a dynamically reconfigurable hardware ac-
celerator. The metamodel takes as input, a collection of concepts related to hardware execution
model of Gaspard2 applications described earlier in section 7.2, along with control concepts
introduced in chapter 6. In short, the generated hardware accelerator (and all its available im-
plementations) exhibits characteristics: such as hierarchy, data and task parallelism specified
in the high level UML application model. The part of the metamodel related to the hardware
accelerators is independent from syntax related to any specific HDL, yet its low abstraction
level enables code generation for a desired HDL. Similarly the enriched control concepts can
either be interpreted for generation of HDL code in case of an HDL based hardware controller
module; or a high level language such as C/C++ for implementation in a microprocessor based
controller. As this dissertation focuses mainly on internal self dynamic partial reconfiguration,
a microprocessor based solution is adapted, as discussed in chapter 5.

This section does not illustrates how generation of the hardware accelerator and control is
carried out via the RTLmodel and its correspondingmetamodel, but focusesmainly onwhat can
be described via the RTLmetamodel. Code generation is carried out by the RTL2CODE transfor-
mation (briefly summarized in chapter 6), for the hardware accelerator and the reconfiguration
controller; and is detailed in chapter 8. Here, we first mention some initial motivations for the
development of the RTL metamodel, followed by the description of the metamodel itself.

Independent nature. Firstly, the RTL metamodel possesses all the normal advantages exhib-
ited by metamodels in general. This is to say that this metamodel is generic in nature, and
enables re-utilization of clearly defined concepts (metaclasses) and their relationships (metarela-
tions). However, in the context of the Gaspard2 framework, the RTLmetamodel is an intermedi-
ate level between the UMLmodel of a control integrated deployed application and the eventual
code generation phase, as indicated in Figure 5.2; in turn permitting to separate the compilation
process. Thus the RTL model is independent of a target language (specifically C/C++ for the
control aspects and HDL languages such as VHDL or Verilog for hardware accelerator/control).

Influence of the MARTE metamodel. The RTL metamodel inspires from the MARTE meta-
model itself. Concepts found in the RSM package related to multidimensionality, as explained
in chapter 4, have been integrated into this metamodel. Similarly concepts such as compo-
nents, ports and connectors found in the MARTE GCM package have also been translated into
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near equivalent metamodel elements. However the MARTE metamodel (or even our extended
MARTE metamodel) does not provides detailed semantics for the generation of an integrated
circuit at the RTL level. Description at RTL requires enriched details related to execution plat-
forms which do not; and should not exist in the high level metamodels.

Subsequently, we provide an overview of an extended version of the RTL metamodel devel-
oped during this dissertation, following by a detailed analytical approach.

7.3.1 An overview of the RTL metamodel

The RTL metamodel is explained by means of a view based compositional approach, similar to
the one presented earlier in the precedent chapter. However, we do not express every minute
detail related to the metamodel, but instead choose to focus only on significant key points. We
now describe the necessary details required for expressing different concepts related to the hard-
ware accelerator and the control aspects; such as components, ports, connectors, implementa-
tions, configurations and stategraphs.

Naming terminology. We first provide a naming terminology for the concepts present in the
RTL metamodel. This terminology helps in a clear distinction between the concepts related to
either control or the hardware accelerator. Metaclasses that start with the RTL_ prefix, such as
RTL_Element or RTL_Model are the common concepts used for both the hardware accelerator
and the control features. While concepts initiating with the HW_ prefix such as HW_CodeFile
are used specifically for the construction of the dynamically reconfigurable hardware accelera-
tor. Similarly, metaclasses starting with the Control_ prefix are related only to the control.

7.3.2 Basic concepts

In the subsequent section, we move onto providing the basic concepts related to the construc-
tion of the RTL metamodel.

7.3.2.1 Kernel of the RTL metamodel

Figure 7.8: Kernel of the RTL metamodel

We first present the core concepts of the RTL metamodel. The highest concept present in
the RTL metamodel is the RTL_Element metaclass representing a generic abstract entity. The
RTL_NamedElement class specializes from this concept and provides a unique name by means
of its associated attribute, that assigns a name to each entity. The RTL_Model is one of the out-
put models produced by the MARTE2RTL transformation as discussed in chapter 6. This meta-
class encompasses all the other concepts present in the RTL metamodel, except the concepts re-
lated to port types, as specified later on in section 7.3.2.6, that are related to and produced in the
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RTL_PortTypemodel. A RTL_Modelmainly contains RTL_Component(s), HW_CodeFile(s),
HW_Implementation(s), RTL_Configuration(s) along with integer vectors and matrices:
RTL_IntVector and RTL_Matrix respectively.

A RTL_Component is a generic abstract component in the RTL metamodel: it can be used
as a basic component of the hardware accelerator or as a basic module for control. This entity
can be either hierarchic or elementary in nature. Details related to this concept are subsequently
presented in the next section. The concepts of HW_CodeFile and HW_Implementation have
equivalent meanings as their namesake concepts described in the deployed metamodel, pre-
sented in section 6.4.3. Similarly, the concept of a Configuration in the deployed metamodel is
translated into an equivalent RTL_Configuration metaclass. A RTL_Model can contain sev-
eral code files, implementations and configurations due to the presence of compositional files,
implementations and configurations metarelations respectively. A RTL_Matrix represents a ma-
trix specified at the high level UML model and is composed of RTL_IntVector(s) by means
of the vector relation.

7.3.2.2 Component concepts in RTL metamodel

A RTL_Component in the RTL metamodel, as shown in Figure 7.9, serves two functionali-
ties. It can either be considered as a component of the eventual hardware accelerator, gener-
ated from the RTL model corresponding to a RTL metamodel; or as a component of the con-
trol semantics introduced earlier in section 6.4. For example, a Mode Switch Component can be
viewed as a RTL_Component. A RTL_Component can be either hierarchical or elementary in
nature as evident by the specialized RTL_Hierarchical and RTL_Elementarymetaclasses.
A RTL_Component itself specializes from the RTL_NamedElement class, allowing a unique
name (in the form of a string of characters) for each RTL_Component.

Similar to the nature of the RTL_Component, RTL_Hierarchical and RTL_Elementary
metaclasses are abstract in nature. They help to differentiate the nature of components related
to hardware accelerators and control features. A RTL_Hierarchical metaclass is used for
components having some internal hierarchies, as compared to a RTL_Elementary class that is
atomic in nature. A RTL_Hierarchical metaclass contains RTL_Connector(s), in order to
define a relationship between two internal subcomponents.

As defined in section 4.2.2.2, a modeled Gaspard2 application can have subcomponents,
each either composite, repetitive or elementary in nature. Similarly in the RTL metamodel, these
concepts are also present for the accelerator: in the form of HW_RepetitiveComponent,
HW_CompoundComponent and the HW_TEmetaclasses. The HW_RepetitiveComponent and
HW_CompoundComponent both specialize from the RTL_Hierarchicalmetaclass. A HW_TE
represents an atomic element in the hardware execution model of Gaspard2 applications; and
does not have any internal structure. Its complex behavior is determined by one or several
IPs via the implementation reference. The relationship between a HW_TE and its respective
IPs is further defined in section 7.3.2.10. Finally, the HW_TE metaclass specializes from the
RTL_Elementary concept.

A HW_CompoundComponent expresses task parallelism in the hardware execution model
of the Gaspard2 applications. It can contain connectors as well as component instances, i.e.,
HW_ComponentInstance(s). A HW_ComponentInstance references a RTL_Component by
means of the hwcomponent reference. For a compound component, the internal component in-
stances represent the tasks exhibiting task parallelism and the connectors determine the data
dependencies between the tasks. The RTL metamodel does not impose any restriction on the
nature of a component referenced by its component instances. A composite component thus can
contain composite, repetitive or elementary components, permitting creation of an accelerator
with different hierarchical levels.

A HW_RepetitiveComponent concept in the RTL metamodel, contains a single compo-
nent instance. This metaclass is not illustrated here; and presented in the next section. The
metaclass expresses the data parallelism related to the hardware execution model and is ex-
plained further in section 7.3.2.3.

Similar to the application aspects present in the RTL metamodel, the control semantics
also contains components having composite, repetitive and atomic natures. For example, a
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Macro Component can be observed having a composite nature; as compared to the repetitive
Deployed Automata component; as evident in section 6.5.3. Similarly, a Gaspard State Graph Com-
ponent can be viewed as an atomic component; but having its behavior specified by a state
graph as compared to an IP. In order to take into account all these aspects, the metaclasses
Control_CompoundComponent, Control_RepetitiveComponent and Control_Node
have been created; for representing composite, repetitive and elementary concepts for control
respectively. These separate classes have been created to help facilitate the development of the
corresponding model transformations.

The difference between the atomic HW_TE and Control_Node components is evident. The
first represents an atomic component for a hardware accelerator with its behavior determined
by an IP. This behavior may not be expressed graphically. In contrast, a Control_Node repre-
sents an atomic concept for the control, but having its internal behavior expressed via a state
graph. Similarly, a control compound component can have several related Collaborations,
as compared to a compound component for the hardware accelerator. We now look at the repet-
itive components related to control and hardware accelerator in the RTL metamodel.

Figure 7.9: Concepts related to composite, repetitive and elementary components of hardware
accelerator and control

7.3.2.3 Repetitive components

A HW_RepetitiveComponentmetaclass as illustrated in Figure 7.10 defines a repetitive com-
ponent for a hardware accelerator; and permits to specify hardware execution of data paral-
lelism present in Gaspard2 applications. Parallel execution of data parallelism is enabled by
instantiating multiple instances of a repeated task, i.e, an RT. An HW_ComponentInstance
has a specific HW_Shape as indicated by the dim reference, for expressing the repeti-
tion space of a repeated task, in a RCT. This RCT corresponds to a component con-
taining the HW_ComponentInstance metaclass by means of the refComponentInstance rela-
tion. The types of the hardware or control repeated instances can be determined by re-
spective references to the RCT_Component as illustrated in the previous section. Similar
to a repetitive hardware component, for a repetitive component in the control model: a
Control_RepetitiveComponentmetaclass is created, its multiple instances are determined
by the Control_ComponentInstancemetaclass, having a respective associated RTL_Shape.

A repetitive component (either related to hardware accelerator or control) contains special
component instances which correspond to the tiler components: RTL_Tiler, defined later
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in section 7.3.2.8. In fact, these tiler components carry out the ADO pre-computations as de-
fined earlier in section 7.2.1.3. The concept of this component instance corresponds to either
the HW_ComponentInstance or Control_ComponentInstancemetaclasses; for hardware
accelerator or control respectively.

Figure 7.10: Concepts related to repetitive components in the RTL metamodel

To distinguish between the instantiations of a repeated task and that of a tiler, a
HW_ComponentInstance is referenced by refComponentInstance or refTilerInstance ap-
propriately. A similar mechanism is applied for the Control_ComponentInstance:
the refControlComponentInstance and refControlTilerInstance references by the
Control_RepetitiveComponent metaclass. In order to respect the RSM semantics, a
repetitive component (or a RCT) must contain at least one component instance of a repeated
task and one tiler instance. In fact, a RCT must contain at least one input or output tiler.

A Control_RepetitiveComponent also contains two other component instances: that
relate to an interrepetition dependency and a defaultLink. Details related to these concepts
have been presented in section 7.3.2.9. For their instantiation, metarelations refDefault-
Link and refInterrepetition are present between the Control_ComponentInstance and
Control_RepetitiveComponentmetaclasses.

7.3.2.4 Ports

Communication with a component is possible through its associated ports as shown in Fig-
ure 7.11. A RTL_Component can contain an arbitrary number of RTL_Ports by means of
the compositional ports relation. A RTL_Port specializes the RTL_ConnectableElement
concept and contains information on the organization of the data/control arrays by means
of a RTL_Shape; and their respective types by means of the RTL_PortType metaclass.
A RTL_Shape defines the dimensions of a port by means of the dim relation; while
RTL_PortType determines its type. The port types in the RTL metamodel are defined later
on in section 7.3.2.6. Moreover, a RTL_Port is specialized by its sub types: RTL_InputPort
and RTL_OutputPort representing input and output ports respectively.

Besides the communication aspects related to a component, no other functionality has been
attributed to the RTL_Port concept. Nevertheless, the advantage of a metamodel is that new
relations can be created quite easily. It is thus possible to create different new ports from new
unique relations between a RTL_Component and RTL_Port. For the context related to hard-
ware accelerators, each associated component of the RTL model contains clock and reset input
ports by means of the rst and clk relations with an RTL_InputPort. We impose a condition
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that a hardware accelerator component can only have single clock/reset ports in order to respect
general RTL semantics.

Figure 7.11: Each component in the RTL model contains several ports. Components related to
the hardware accelerator also possess input clock and reset ports

7.3.2.5 Instances

Figure 7.12: Concepts related to component instances in the RTL metamodel

From the point of view of the RTL metamodel, a port is directly accessible by its
owner component by means of the ports relation. When a component related to the con-
trol aspects or an accelerator is instantiated by means of the HW_ComponentInstance or
Control_ComponentInstance metaclass respectively; it contains its respective port in-
stances, by means of the compositional portsinstance or port_instance metarelations with the
RTL_PortInstance concept. The link between an instance of a port and the port itself is
defined by the ref relation, between the RTL_PortInstance and RTL_Portmetaclasses. Sim-
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ilarly, instance of a module of a hardware accelerator or control references a component by
means of hwcomponent or controlcomponent respectively.

The RTL_Port and RTL_PortInstance specialize from the RTL_ConnectableElement
which itself references a RTL_Connector. Each RTL_Connector possesses one source
and target port as specified by the sourcePort and targetport metarelations to the
RTL_ConnectableElement. A RTL_Connector is detailed later on in section 7.3.2.7.

7.3.2.6 Port Type

Figure 7.13: Different port types related to data and control flow in the RTL metamodel

The port types used in the RTL metamodel serve to determine the type of control or data
related to ports of a RTL_Component. In the previous chapter, we have already described the
integration of the concept related to bits for a MARTE data type, for a hardware functional-
ity. The RTL metamodel also inspires from these semantics, while enriching the concepts with
added information for RTL requirements.

In the RTL metamodel, the abstract RTL_PortType concept (for representing either
control or data) is specialized by several types: primitive RTL_PrimitiveType, complex
RTL_ComplexType and enumerated RTL_Enumerate as seen in Figure 7.13. We now briefly
describe each of these types:

• RTL_PrimitiveType: an elementary type in the RTLmetamodel. It permits to represent
basic types such as Integer, Boolean, Float etc. The control semantics usually make use of
Boolean types for determining the arrival of events.

• RTL_ComplexType: A complex type can be composed of several fields: RTL_Field(s),
each field referencing a specific port type. Hence, all possible combinations are possible
for the construction of a complex type, as no compositional restrictions are imposed by
the metamodel.

• RTL_Enumerate: An enumerated type that is composed of several enumerations or
RTL_EnumValue(s). Each of these values also references a port type. They permit defin-
ing of user customized types, and are mainly used in the control semantics.

Apart from the nature of a type, no semantics are attached to their behavior. However, the
metamodelization is not generic enough for the specification and generation of complex and
primitive types present in different languages. For this reason, an effective solution has been
adapted which allows to generate the code relating to primitive or complex types directly on
the basis of their names as specified at the MARTE modeling level.
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For the generation of hardware accelerator in the RTL metamodel, while the utilization of
names of different types is sufficient for the generation of a synthesizable HDL code; it is not
sufficient enough to give a concrete evaluation of the generated hardware functionality (for
example, the number of the reconfigurable FPGA resources such as slices or CLBs). In fact, this
estimation is directly dependent on the nature of a type: if a type requires an increased number
of bits for itself; the elements based on this type consume more resources. As we have already
introduced the notion of bits to a MARTE data type, the same semantics are applied in the RTL
metamodel. This notion permits to determine the quantity of registers required for storing the
different types.

7.3.2.7 Connectors

Figure 7.14: Connectors in the RTL metamodel

The concepts related to a RTL_Connector in the RTL metamodel are given in Figure 7.14.
A RTL_Connector can be translated into a hardware signal in the case of a hardware accelera-
tor, or is used as a link between different concepts for the control, such as connecting a Gaspard
State Graph component to a Mode Switch Component. A RTL_Connector has its respective type
and shape as indicated by the type and dim references to the RTL_PortType and RTL_Shape
metaclasses respectively. The connector metaclass specifies the link between two RTL compo-
nents, by means of a dependency between their ports, as shown by the sourcePort and targetPort
references to the RTL_ConnectableElementmetaclass.

A RTL_ConnectableElement is an abstract concept in the RTL metamodel. It is used
to represent certain concepts that can be connected or attached to a RTL_Component, such as
ports and connectors. It is inspired from the UML ConnectableElement concept [178].

A RTL_Signal specializes a connectable element and can be viewed as a connection
point to a component. For tiler components, having several source and target indexes, a
RTL_Signal specifies a connection point for each source/target index, and helps to connect
either a HW_SubConnector or a HW_DelayedConnector from a source index to a target in-
dex. These concepts are explained in the next section.

A RTL_RepetitionConnector is a special type of connector used to connect the output
and input ports of input and output tiler components respectively, to the various repeated com-
ponent tasks (component instances) in a repetition context task. For example in Figure 7.6, the
output connectors from a tiler component can be classified as RTL_RepetitionConnector(s).
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These connectors have two shapes: one defined by the repetitionDim reference to a RTL_Shape;
and the other (via the dim reference) due to the specialization of the RTL_Connectormetaclass.
The first shape corresponds to the repetition space of a repeated task, while the second corre-
sponds to its pattern shape. The product of these two shape values help to create the correct
number of links between the tiler component and the multiple repetitions of a repeated task.

In Figure 7.6, 64 RTL_RepetitionConnector(s) are created between an input tiler and
each input port of the 64 repetitions of the MultiplicationAddition component; due to the
repetition space value of {64} and a pattern shape value of {}. In a similar fashion, 64
RTL_RepetitionConnector(s) are created between the repeated task and the output tiler.

7.3.2.8 Tiler

The RTL_Tiler as represented by the Figure 7.15, extends the RTL_Elementary concept,
as it itself is an atomic element in the RTL metamodel. A RTL_Tiler is specialized by
RTL_InputTiler and RTL_OutputTiler metaclasses, which determine the direction of a
tiler connector. An input tiler helps to create the patterns from an input array; while an output
tiler constructs an output array from the produced patterns. Each tiler contains two RTL_Shape
concepts: one corresponding to the repetitionSpace and patternShape as illustrated by the equiv-
alent references. The first shape corresponds to the number of patterns consumed/produced
by a tiler; while the second shape determines the form of these patterns. An RTL_Tiler also
contains several RTL_Signals.

Figure 7.15: Concepts related to Tilers in RTL metamodel

As seen in section 7.2.1.3, hardware execution of Gaspard2 applications require ADO pre-
computations. This implies that the tilers do not exist anymore in their actual form as present
in the application model (MARTE connectors with origin, fitting and paving attributes), but
mainly in the form of an interconnection topology linking the data in arrays to data in patterns.
The concept of HW_SubConnector and HW_delayedSubConnector express these hardware
connections.

A HW_SubConnector extends a Connector and permits an interconnection between a
source and target index of a tiler component by means of the sourceIndex and targetIndex: a data
in a data array can be thus directly connected to data in a pattern. No constraints exist on the
dimensions of the arrays, permitting to create the connectors between the arrays independent
of their dimension.
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A HW_delayedSubConnector is a type of subconnector for the hardware accelerator part
of the RTL metamodel. It consists of a delay attribute that determines for a tiler component, the
delay existing between an instant, when the data is present in an input array, and the instant
it is transfered to the output pattern. This concept helps to create a shift register in a hardware
accelerator, for managing sliding windows data dependencies. The delay is presented in the
form of an integer value; and represents clock cycles: a delay value of 5 indicates that the data
is delayed by 5 clock cycles.

7.3.2.9 Interrepetition and defaultLink

Themechanisms related to the interrepetition dependency and defaultLink have been presented
in section 7.2.2. Similarly to tilers, these MARTE concepts do not retain their actual forms,
specified either in the application or control modeling levels. Currently the RTL metamodel
only treats these dependencies for the control semantics. These metaclasses specialize from
the abstract RTL_DefaultRepetition concept that permits formation of respective ports for
these concepts; due to the references repetitionSize and patternSize to the RTL_Shapemetaclass.

While both of these concepts can be utilized either for the hardware accelerator or control, as
explained previously, currently we have only implemented them for the control methodology
as they are integral for the conception of a mode automata.

Figure 7.16: The Interrepetition and defaultLink metaclasses in the RTL metamodel

7.3.2.10 Implementation Concepts

Figure 7.17: Concepts related to implementations in RTL metamodel

The concepts related to IPs, such as implementations, code files and configurations as spec-
ified in section 6.4.3, have a direct one to one relationship with similar concepts present in the
extended MARTE metamodel.

The HW_Implementation metaclass as shown in Figure 7.17 is an IP related to a HW_TE,
and can have several HW_CodeFile(s) as defined by the implementingFiles relationship between
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the two metaclasses. Respecting the conditions as specified in the previous chapter, an im-
plementation has an interface equivalent to its associated elementary component. This con-
dition is satisfied by the compositional relationship between a HW_Implementation and a
HW_PortImplementation. A HW_PortImplementation has a type similar to an equiva-
lent port of the elementary component. The reference implementation between a RTL_Port and
a port implementation helps to resolve the associated port of the elementary component.

A HW_Implementation can be associated with a RTL_Configurationwhich contributes
in introducing dynamic features in the RTL metamodel. As before, a RTL_Configuration
must have at least one implementation (of each elementary component) for a successful con-
figuration. A RTL_Model can have several configurations, with each representing one global
implementation of the hardware functionality modeled via the MARTE profile.

7.3.2.11 Collaboration

A Collaboration in the RTL metamodel has equivalent semantics to its counterpart as de-
fined earlier in section 6.4.2, with some slight changes to accommodate for the RTL details.
A Collaboration specializes from the RTL_Component and refers two metaclasses: the
Control_CompoundComponent and the RTL_Configuration, by means of the owncompo-
nent and ownconfiguration references. The specializations offer a unique name to a collaboration;
which can be viewed as a mode value.

We apply the constraints that one collaboration can only be associated to a single config-
uration and a control compound component. This is due to the proposed control semantics,
which permit to determine the internal behavior of a control compound component, i.e., the
mode switch component, by means of the collaborations. A single collaboration is responsible
for the mode switch related to one configuration in a mode switch component, by means of an
associated mode value.

Figure 7.18: Collaboration metaclass in the RTL metamodel

7.3.2.12 Automaton

This part of the RTL metamodel is mainly concerned with the concepts related to automata in
the RTLmetamodel. These concepts are similar to the Gaspard State graph concepts introduced
earlier in section 6.4.2.

A Control_Behavior corresponds to the Behavior concept in the extended MARTE meta-
model; and is associated with an atomic Control_Node. This Control_Behavior is com-
posed of an Automaton that contains State(s) and Transition(s).

As compared to the different types of states present in the StateGraph, the RTL metamodel
currently only takes simple states into account. Additionally, a PseudoState in the StateGraph
package in the extendedMARTEmetamodel is converted into a Statemetaclass in the RTLmeta-
model. The isState attribute related to this metaclass determines the nature of the state: whether
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it is an actual state or an initial pseudo state. A State itself has a control behavior as evident by
the function reference: the ControlOpaqueBehavior. This behavior corresponds to the doAc-
tivity of a state in a StateGraph. The opaque behavior of a state has two attributes, statevalue
and modevalue, that determine the current state and its related mode value. These values take
as input the expression provided by the doActivity feature, and separate it into proper relevant
parts for the eventual code generation.

Figure 7.19: Concepts related to control in the RTL metamodel: specification of mode automata

A State also has incoming and outgoing Transitions. A transition is always associated
with one or more Trigger(s). In turn, a Trigger is related to a TransitionCondition
which can be equivalent to an Event. A condition related to either a ChangeEvent or AnyRe-
ceiveEvent is taken as input for the value attribute associated with a transition condition. This
value is processed iteratively in order to separate it into Operand(s) and Operator(s). An
operand can be either TrueFalse in nature or its specializations: either True or False. Simi-
larly, an operator can be of different types: such as when, all, and, or, etc.
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For example, an expression: when ifelse_event and not dsp_event as illustrated in Figure 6.31
is processed iteratively using the model transformations as: 1) First, for the whole expression,
when is the operation, while ifelse_event and dsp_event is the operand. 2) Then the operand is
analysed and is also considered as an expression. Now the operator is and while operands are
ifelse_event and not dsp_event. Then finally, the last expression is evaluated with not being
the operator and dsp_event being an operand. This iterative mechanism is used to ease the
final code generation related to the mode automata.

7.4 Conclusions

This chapter provides the basic concepts that comprise the RTL metamodel in our design flow.
The metamodel mainly consists of two significant areas, one related to the hardware execu-
tion model of Gaspard2 applications, while the other is related to the conversion of a mode
automata from Gaspard state graphs. Basic principles related to the hardware execution model
are highlighted: such as conserving the parallelism specified in the application at the UML
model. Afterwards, the various concepts present in the metamodel are analyzed. While some
of these concepts have a one-to-one relationship with the extended MARTE metamodel intro-
duced in the previous chapter, the RTL metamodel enriches these concepts in order to bring the
abstraction level closer to the RTL for the eventual code generation.

This chapter concludes the theoretical contributions present in our dissertation. We now
move onto the implementation portion, which first details the various model transformations
present in our design flow, that help to convert the various concepts present in the different
metamodels. Afterwards, a case study is presented, that validates our design methodology.
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This chapter provides the details related to the model-to-model and model-to-text transfor-
mations present in our design flow for implementing partial dynamically reconfigurable SoCs.
With regards to model-to-model transformations, we present: UML2MARTE and MARTE2RTL,
the two principle transformations; and provide the basic semantics related to these transfor-
mations. The first transformation converts an UML model of a deployed application with in-
tegrated control aspects into a MARTE model, that is then taken as input by the second trans-
formation, for subsequent conversion into a model corresponding to the details related to the
RTL. Afterwards, we detail the semantics related to the RTL2CODE model-to-text transforma-
tion that permits to generate the source code, for eventual utilization in commercial synthesis
tools for implementing dynamic reconfiguration.

8.1 Model-to-Model transformations

As described in section 3.1.3, model transformations enabling conversion of higher abstraction
model(s) into lower enriched model(s), each corresponding to their respective metamodels. In
this section, initially, we first describe the general details of the twomain transformations in our
design methodology. Here, we do not describe how these transformations are carried out, but
instead focus on what is to be transformed. The first part is covered later on in the chapter. We
initially provide the basic goals of these transformations, before moving on to certain examples
in our transformation chain, specified in section 8.1.4. These examples illustrate the technical
details related to the above mentioned transformations.
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8.1.1 UML 2 MARTE transformation

Figure 8.1: The UML2MARTE model transformation in our design flow

Figure 8.1 shows the UML2MARTE transformation in our design flow. The transformation
has been developed internally in the DaRT team and allows to transform an UML model con-
sisting of a modeled deployed application, architecture or an allocation of the two into an in-
termediate MARTE model, as indicated in Figure 5.2. The UML model conforms to the UML
metamodel and the MARTE profile, while the MARTE model respects the extended MARTE
metamodel illustrated in section 6.4. While we have also contributed to the development of the
global UML2MARTE transformation, with respect to this dissertation and our proposed design
flow, we present the two main contributions that we have integrated in this transformation.

Contributions in UML2MARTE. Firstly, as seen in chapter 6, for the modeling of a mode au-
tomata, we make use of UML state machine diagrams in the Gaspard2 environment. While
these concepts are present in the UMLmodel (due to the presence of the associated metaclasses
in the UML metamodel), they cannot be interpreted directly by model transformations into a
MARTE model, due to the absence of corresponding metaclasses in the current MARTE meta-
model. Thus these necessary concepts were introduced in an extended version of the MARTE
metamodel, as specified in section 6.4, for a successful interpretation. Firstly, a UML compo-
nent adhering to the MARTE profile, modeled via a graphical modeling tool such as Papyrus, is
transformed into a MARTE StructuredComponent. This entity contains additional elements, such
as assembly parts, flow ports and connectors. As these concepts have been developed globally
by our research team and do not count as our unique contributions, they are represented differ-
ently in the Figure 8.2 with bold outlines, as compared to our unique contributions, presented
in a normal manner. The figure shows the global overview of this model transformation, with
respect to the design flow presented in this thesis.

In this transformation, we first transform a UML state machine attached to a component,
into a state graph related to a corresponding structured component. A state graph can have
several regions, each in turn can have multiple transitions and vertices. A Vertex is an abstract
concept and can either be a pseudostate or a state. A state in turn, can have a doActivity which
determines the behavior of the state. A transition consists of source and target vertices; andmay
havemultiple triggers. Each trigger is associated with an event, either a ChangeEvent or aAnyRe-
ceiveEvent. In case of the former, it contains a ChangeExpressionwhich is effectively transformed
into a MARTE LiteralString as specified in the VSL package. The UML collaborations, present
in the UML model are directly converted into MARTE collaborations in the MARTE model. A
collaboration in our transformation chain can have interior assembly parts which serve to de-
termine the behavior of a structured component, to which the collaboration relates to. While
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according to pure UML specifications, a collaboration can contain ports and connectors as well,
as seen in section 6.5.3 related to our control model, we only require the assembly parts in a
modeled collaboration.

Finally a configuration present in the UML model in the form of a component is also con-
verted into a structured component and contains information related to the software implemen-
tations in the UML model.

Figure 8.2: Overview of the UML2MARTE model transformation

8.1.2 MARTE 2 RTL transformation

Once the MARTE model has been created from the UML2MARTE transformation, we move
onto the second model transformation in our design flow as illustrated in Figure 8.3. The
MARTE2RTL transformation takes the MARTE model as input and generates two output mod-
els: the RTLModel, containing the concepts related to the hardware accelerator/control; and the
RTL PortType model, containing the control and data types present in the MARTE model. The
MARTE2RTL transformation chain, as illustrated in Figure 8.4 has been entirely developed dur-
ing the course of this dissertation. The transformations rules related to the RTL PortType model
permit creation of different control and data types related to the ports of the control concepts
and the application functionality. Namely three types are created: the RTL Primitive Type, RTL
Complex Type and RTL Enumeration.

With regards to the RTLmodel, the significant rules are as follows: AMARTE StructuredCom-
ponent having multiple component instances and no associated collaborations is transformed
into an HW Compound component, while a similar structured component having related collab-
orations (either associated to itself or a sub component at any lower hierarchical level, i.e., a
mode switch component or a macro component respectively) is converted into a Control Com-
pound component. The collaborations that are present in the MARTE model are directly con-
verted into their equivalent counterparts. A repetition context task having a RT is transformed
into aHWRepetitive component, if it only contains tiler (either input or output tilers) connectors.
In contrast, a RCT also having internal interrepetition dependency and defaultLink connectors is
translated into a Control Repetitive component.
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In similar manner, an atomic structured component having no related behavior is viewed
as an atomic element of the hardware accelerator and is subsequently converted into an HW
Elementary component. Inversely, if a behavior is associated with an atomic structured com-
ponent, the component is converted into a Control Node. The tiler connectors present in the
MARTE model are transformed into RTL Tiler components in the RTL model, as explained in
the previous chapter. These components related to the hardware accelerator carry out ADO
pre-computations, and help inf determining the data dependencies for the hardware function-
ality in the RTL model. Similarly, the abstract Control DefaultRepetition rule calls the Control
Interrepetition and Control DefaultLink sub rules.

Figure 8.3: TheMARTE2RTL model transformation in our design flow

Figure 8.4: Overview of the MARTE2RTL model transformation

In order to convert the deployment information present in the MARTE model, the RTL
model also contains equivalent concepts. A structured component which has been identified
as a configuration is converted into an equivalent RTL Configuration. Similarly, the RTL model
generates the HW Implementation(s) related to an HW Elementary component and the associated
CodeFile(s). Finally the port implementations belonging to an IP related to an elementary com-
ponent are created by means of the HW PortImplementation rule.

Figure 8.5 shows the rule hierarchy related to the Control Node. Many of these rules have a
one to one equivalence with the rules related to state graph as presented in the earlier section. A
Control Node contains its respective ports via the RTLPort rule. It also has an associated behavior
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in the form of an Automaton, itself containing several transitions and vertices. A Vertex is an
abstract concept and determines if the type of the vertex is either a pseudo state or a normal
state. A pseudo state in the RTL metamodel is also converted into a state from which the initial
transition takes place. A state contains an abstract Function that determines the next transited
state and its corresponding mode value. In a manner similar to the transition rule present in
UML2MARTE transformation, a transition in MARTE2RTL contains source and target states as
well as triggers. A trigger is associated with an Expression that can be either an AnyReceiveEvent
or ChangeEvent. In case of the former, the value of the expression is set as all, corresponding to a
self transition. In case of the latter type, the expression is evaluated in an iterative manner and
we get a list ofOperands andOperators, as explained in chapter 7. The near equivalence between
the rules related to a state graph in the UML2MARTE transformation; and the corresponding
automaton in the MARTE2RTL permits an easy one-to-one correspondence.

Figure 8.5: Transformation rules related to Control node

8.1.3 Implementing model-to-model transformations: QVT Operational
(QVTO)

As described in section 3.1.3.6, current Gaspard2 framework makes use of the Meta Object Fa-
cility Query/View/Transformation (MOF QVT) [176] based model-to-model transformation lan-
guages. The MOF QVT specifications provide the standard model transformation guidelines in
the OMG modeling framework. However, QVT is intended to be the industry standard only;
and does not provides actual reference implementations. Currently three types of QVT model
transformations have been hypothesized in the language dimension of QVT: mainly QVT Op-
eration (QVTO), QVT Relations (QVTR) and QVT Core. The Relations language has a strong
relationship with the Core language, as it is transformed into the Core language for execution.
The Relations language is intended to be a higher level declarative language as compared to the
Core language which is defined at a lower abstraction level.

However, both the Relations and Core languages are currently under development within
the Eclipse Model-to-Model Transformation (M2M) project1. Currently, at the time of writing of
this dissertation, only QVTO is available, and has been chosen as the de-facto transformation
language for the different models present in the Gaspard2 framework. QVTO makes extensive
use of OCL and is mainly imperative in nature2. The language is capable to handle both unidi-

1http://www.eclipse.org/m2m/
2however as other model transformation languages, it supports a mixed declarative/imperative rule structure
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rectional and bidirectional model-to-model transformations. Themixed imperative/declarative
nature of QVTO provides an advantage over a purely declarative approach where there is no
direct correspondence between the individual elements of source and target models. A QVTO
transformation is also capable of converting N source models intoM target models.

QVTO provides the advantage of traceability, as several language constructs are present to
provide trace information in a model transformation. This traceability information is also avail-
able in the execution semantics, i.e., if an operation has been executed before with similar input
parameters, a second execution does not creates new redundant target model elements, but in-
stead will return the already created elements. Mapping Operations in QVTO perform the main
task of generating output model elements from input model elements.

We now provide some basic concepts related to QVTO that are essential for understanding
our transformation examples presented subsequently. The goal is not to provide in depth details
related to QVTO, but to provide some significant key points which have been utilized in our
model transformation chain.

8.1.3.1 Declaration of a transformation

A QVTO based transformation is written in a file containing a transformation signature and
mainmapping body to serve as an entry point. The transformation can have one or more model-
type explicitly defined declarations, for importing the different metamodels used in the model
transformation. We provide a simple example of a model transformation which is a brief extract
of the MARTE2RTL transformation.

1 modeltype ecore uses ’http://www.eclipse.org/emf/2002/Ecore’;
modeltype Foundations uses Foundations(’http:///null/Foundations.ecore’);
modeltype GCM uses gcm(’http:///marte/GCM.ecore’);
modeltype Extension uses extensions(’http:///marte/CoreElements/extensions.ecore’);

5 modeltype Primitives uses primitiveTypes(’http:///marte/MARTE_PrimitiveTypes.ecore’);
modeltype VSL uses vsl(’http:///marte/VSL.ecore’);
modeltype Lib uses ’http:///marte/MARTE_Library/MARTE_DataTypes.ecore’;
modeltype RSM uses rsm(’http:///marte/RSM.ecore’);
modeltype dataTypes uses basicNfpTypes(’http:///marte/MARTE_Library/BasicNFP_Types.ecore’);

10 modeltype mmDeployment uses mmDeployment(’http:///mmDeployment.ecore’);
modeltype CommonBehavior uses ’http:///null/Causality/CommonBehavior.ecore’;
modeltype mmRTL uses mmRTL(’platform:/resource/fr.lifl.west.gaspard2.metamodel.rtl/model/rtl.ecore’);
-----------------------------------------------------------------------------------------------------
--This is the begining of the MARTE2RTL transformation, the transformation takes MARTE model as input

15 and produces two output models: RTL and RTL port type model

transformation MARTE2RTL (in marte : Foundations, out RTL_Model : mmRTL, out RTL_PortType_Model : mmRTL);
{

import library Strings;
20

main()
{

marte.objects()[Foundations::Model]->map toRTLModel();
marte.objects()[Foundations::Model]->map toRTL_PortType();

25 ...
...
...

}
30 }

Here the transformation definition is like a simple class declaration: containing import state-
ments, a signature and a main mapping entry point. This provides an analogy between QVTO
and normal OOP languages. Transformations are instantiated during their execution and have
related properties and (mapping) operations.

The modeltype declaration at the start of the transformation assigns a unique alias to a meta-
model which is being utilized in the context of the transformation. The uses part of the declara-
tion determines the name of the model and its associated URI. It should be mentioned that it is
not necessary to place the URI within the parentheses following the model name.

A model transformation contains several parameters that indicate the input and output mod-
els created during the transformation. These parameters can have a direction: either in, out or
inout. Parameters of the type in are not changed during a transformation; and mainly used for
read-only purposes, while out parameters signify the newly created results. Finally the inout
type allows to modify or update an existing model. This type of transformation is also called
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an in-place transformation and is mainly used for model cleansing or refinement. Finally, only a
single main operation is allowed per transformation.

8.1.3.2 Mapping operations

The Mapping Operations are considered as the fundamental behavior of the transformations.
They take one or more source elements and return one or more target model elements. A
mapping usually has a name and a type. Here in the example provided below, the mapping
operation is of the typeModel having a name toRTL_PortType(). An input object is referred in
the mapping by the self keyword, which is the standard OCL namespace syntax. A mapping
itself can have parameters and the result of the mapping is usually declared after the parame-
ter list (there are no parameters present in the current example). In the following example, the
return conforms to the type mmRTL::RTL_ModelType. The @ puts the contents of the rule in
the RTL_PortType_Model model.

A mapping operation can also contain a result keyword that is used to reference the return
object or a tuple (in case of multiple resulted objects). Before the mapping body are optional
when (a precondition or guard) and where (post-condition) sections which evaluate contained
Boolean expressions. If the when clause is evaluated to be false, the mapping is not executed
and a return object is not created, resulting in return of a literal null. Within the context of a
transformation, the null can comply to any type and signifies the absence of a value. It can be
used as the return of an operation, either explicitly or implicitly.

1 mapping Foundations::Model::toRTL_PortType() : mmRTL::RTL_ModelType @RTL_PortType_Model
{

--This transformation generates the port types and then resolves their types
init

5 {
log (’GASPARD2 SoC Co-Design Framework - RTL Chain’);
log(’-- model transformations done via QVT Operation Language’);
log(’1-Generating RTL Control/Data types from UML - MARTE specifications’);

}
10 name := self.name;

type := self.ownedElement[vsl::DataTypes::DataType]. map toRTLPorttype() ->asSet();
...
...
...

15 end
{
self.ownedElement[VSL::DataTypes::DataType]->map resolveTypeEnumerate();
self.ownedElement[VSL::DataTypes::DataType]->map resolveTypePrimitive();
self.ownedElement[VSL::DataTypes::DataType]->map resolveTypeComplex();

20 }
}

8.1.3.3 Mapping body

Within the mapping body, optional init, end and population blocks can be created. The init and
end blocks are not mandatory in a mapping operation; and the remaining area is treated as a
population. Generally, it is not required to use an explicit population section.

An init section allow to explicitly create objects, and here computation is carried out to ini-
tialize variables, etc.; before the effective instantiation of the mapping output is carried out. An
init can be used for instantiating an object which is a subtype of that defined as the result in the
mapping definition. The output values are present in the population area, while the termination
of the mapping and finalization of the computation occurs in the end section before the mapping
is returned.

8.1.3.4 Merging and Disjunction

Mappings in QVTO can extend other mappings by means of inheritance, can have their results
merged with the results of another mapping, or they can be executed on the basis of success
on their guard conditions. The merge mechanism for the fusion of different metamodels in our
design methodology (as explained in section 6.4.1) is carried out via a QVTO merge mapping.

ADisjunction permits to specify several mappings from a single root mapping, the mapping
which is first executed is the one that satisfies the guard conditions (type andwhen clause) of the
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root mapping. The different mappings are in the form of a list, after a disjuncts keyword in the
mapping declaration. During the execution of the mapping operation, each guard is evaluated
until one is found to be satisfied; resulting in the associated mapping to be carried out. If no
listed mapping satisfies the conditions, a null is returned. An example of disjuncts is present
below in the QVTO rules:

1 mapping CommonBehavior::Event::EventtoControlEvent() : mmRTL::TransitionCondition
--The disjuncts check the event types, and performs appropriate actions
disjuncts

CommonBehavior::AnyReceiveEvent::AnyReceiveControlEvent,
5 CommonBehavior::ChangeEvent::ChangeControlEvent

{

}

10

mapping CommonBehavior::AnyReceiveEvent::AnyReceiveControlEvent() : mmRTL::TransitionCondition

--When event is of AnyReceiveEvent type, its value is set to all
when{self.oclIsTypeOf(CommonBehavior::AnyReceiveEvent)}

15 {
name := self.name;
value := ’all’;
...

...
20 }

mapping CommonBehavior::ChangeEvent::ChangeControlEvent() : mmRTL::TransitionCondition
--When event is of ChangeEvent type, its value is set to the literal string value

when{self.oclIsTypeOf(CommonBehavior::ChangeEvent)}
25 {

name := self.name;
value := ’when’+’ ’+self.changeExpression.oclAsType(VSL::LitteralValues::LiteralString).value;
...

...
30 }

8.1.3.5 Helper operations

A helper operation such as a query is intended to help simplify expression writing in mapping
operations. The only restriction related to queries is that they are not able to create/update
object instances; other than for predefined and intermediate types (such as variables). In queries,
it is possible to define and assign local variables. The main difference between an helper and
a query is that a query does not have any side effects on the parameters passed into it. An
example of a query in the MARTE2RTL transformation is given below:

1 --This query creates a default logic type when a port type is not specified for
the hardware accelerator, and inserts it in the output model

query StructuredComponent::createDefaultLogicType() : mmRTL::RTL_PortType
5 {

var marteType := self.container().oclAsType(Foundations::Model).map
createDefaultLogicType();

var model := self.getTypesModel();
10 model.type += marteType;

return marteType;
}

8.1.3.6 QVTO: Summary

QVTO provides a rich collection of operations and iterators. Numerous imperative operations
such as while and switch are also present in QVTO. Additionally, imperative functions of OCL
can also be found in the language. Resolution operators such as resolve, resolveone and late resolve
reference trace data to resolve objects, or objects which are utilized as the source of an object
creation. QVTO also provides library operations that permit to manipulate objects. Moreover,
operations on models themselves are provided (such as model creation, copying/removing
elements from models, etc.).

Similarly, other types of operations such as String and List operations are also present in
QVTO. We refer the reader to the Eclipse modeling project3 for the detailed syntax of the QVTO

3http://www.eclipse.org/resources/resource.php?id=493
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language. Some examples of QVTO based rules present in our transformation chain are pre-
sented subsequently.

8.1.4 Rule examples

We now provide a few examples of the model-to-model transformations present in our design
flow. Only a few examples are presented, in order to describe the general mechanism of these
transformations, instead of writing every related minute detail. The illustrated examples are
related to theMARTE2RTL transformation in our design flow. We initially provide examples of
transformation rules related to the hardware accelerator portion in the RTL metamodel, before
moving onto the control aspects.

8.1.4.1 Repetitive component

In this section, we have chosen to illustrate the transformation related to a hardware repeti-
tive component in the RTL model. We first present a reference example of such a component
modeled in the Gaspard2 framework. Figure 8.6 illustrates a RepeatedAdditionStep5 com-
ponent, having input and output ports with shapes equal to 4 and 2 respectively, along with as-
sociated data types. The component contains an interior repeated task a of the type Addition,
that is repeated 2 times and has its respective input/output ports. The input/output tiler con-
nectors connect the respective ports of the RepeatedAdditionStep5 to the port instances of
the instance a.

Figure 8.6: A repetitive Gaspard2 application component

Figure 8.7: Generated result of the MARTE2RTL transformation. The ports of the input/output
tiler instances and the component instance are not illustrated in the figure

As explained before, the tiler connectors are converted into hardware computation units due
to the proposed hardware execution model for Gaspard2 applications. Thus in theMARTE2RTL
transformation that takes the RTL model as input, each of the tiler connectors present in the
model is transformed into the RTL_Tiler concept present in the RTL metamodel. The nature
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of the RTL_Tiler (whether input or output) depends on the direction of the tiler connectors. If
a tiler connector connects an input port of a component to an input port instance of its owned
component instance, then an input tiler is created; while if a tiler connector connects the output
port instance of a component instance to an output port of the owner component, the transfor-
mation creates an output tiler.

In the generated output result for the repetitive component, the tiler connectors are also
instantiated as special component instances (tiler instances) that refer to their respective com-
ponents (tiler components). Similarly, the repeated interior part is also instantiated having mul-
tiple repetitions and referencing its proper component. The Figure 8.7 illustrates the abstract
representation of the output generated by the transformation. It should be mentioned that
while this representation unrolls the multiple repetitions of the component instance a in order
to facilitate the visibility, the actual output generates a single component instance having a RTL
shape of 64. This shape value is taken by the corresponding model-to-text transformation to
create the multiple repetitions (for VHDL, we use the GENERATE keyword for this purpose).
This figure does not represent the electronic implementation result of the modeled application
component, but is nearly an accurate structure. This proximity between the output of the model
transformation (i.e., the RTL model) and the electronic level permits generation of the correct
VHDL structure via the subsequent RTL2CODE transformation.

In order to achieve the desired structure, the transformation rule is written accordingly. Fig-
ure 8.8 shows the global overview of the transformation rule related to a hardware repetitive
component. The toHardwareAccRepetitiveComponent rule takes an input pattern (a MARTE struc-
tured component having a repetitive structure); and checks its own associated conditions. If all
the conditions are true, the target pattern: HwRepetitiveComponent is created. Additional
sub rules present in this rule are subsequently invoked, resulting in creation of various ele-
ments of the output pattern such as clock and reset ports, input/output tiler instances and the
component instance corresponding to the interior part of the modeled application component.
Similarly, multiple connectors are created for connecting the port instances of the tiler instances
and the application component instance, to the ports of the repetitive component. In the illus-
trated example, the clock and reset ports of the component instance are not created in the rule,
but are created subsequently in a sub rule related to the owned component instance.

Figure 8.8: Transformation rules related to creation of a hardware repetitive component

Similarly as specified before, for a hardware accelerator component, clock and reset signals
are mandatory; thus we need to create clock and reset ports for the different components; sim-
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ilarly clock and reset port instances are created for the instances of these components. Clock
and reset ports are equally connected for each tiler component (and its instances). Finally
connectors are used to connect the various ports and port instances present in the repetitive
component. The input/output Tilerconnectors are connectors having a shape value correspond-
ing to the shape of the respective input/output ports of the repetitive component. While the
input/output TilerRepconnectors help to connect the port instances of the (input/output) tiler
instances to the different iterations of the component instance.

In the above example, an inputTilerconnector connected to the input tiler 1 instance has a
shape value equal to 4 due to the equivalent shape value on the input port of the repetitive
component. Correspondingly, the generated tiler component and its related tiler instances have
input ports (or port instances) with the same shape to assure correct connectivity. The input-
TilerRepconnector connected to the same tiler instance has a shape value equal to the repetition
space of the component instance and the pattern shape of its input port instances. As in the
following example, the repetition space of the component instance is 2 and pattern shape is 1;
the corresponding shape of the inputTilerRepconnector is set equal to 2 × 1. Similarly, the shape
of the output port (port instance) of the input tiler (tiler instance) is set to the same value. For
an output tiler (and its instances), a reverse mechanism is adapted.

We now present an extract of the QVTO based transformation rule related to the repetitive
component. This transformation calls several related sub rules in order to create the correspond-
ing elements of the repetitive component.

1 mapping GCM::StructuredComponent::toHardwareAccRepetitiveComponent() :
mmRTL::HW_RepetitiveComponent

--The transformation checks that only tiler connectors are present in the repetitive
5 component and then generates clock, reset ports, the component instance, tiler

instances and associated connectors

when {
self.ownedConnectors[GCM::AssemblyConnector]->size() > 0

10

and self.ownedProperties[GCM::AssemblyPart].shape.size != null

and self.ownedConnectors[GCM::AssemblyConnector]->select(topology.oclIsTypeOf
(RSM::linkTopology::InterRepetition))->isEmpty()

15

and (self.ownedConnectors[GCM::AssemblyConnector]->asSequence()->at(1).
topology.oclIsTypeOf(RSM::linkTopology::Tiler)

or self.ownedConnectors[GCM::AssemblyConnector]->asSequence()->at(2).
20 topology.oclIsTypeOf(RSM::linkTopology::Tiler)

or self.ownedConnectors[GCM::AssemblyConnector]->asSequence()->at(3).
topology.oclIsTypeOf(RSM::linkTopology::Tiler)

25 or self.ownedConnectors[GCM::AssemblyConnector]->asSequence()->at(4).
topology.oclIsTypeOf(RSM::linkTopology::Tiler))

}

{
30 init

{
String.startStrCounter(’Counting’);
}

35 name := self.name;
ports += self.oclAsType(GCM::StructuredComponent).ownedPorts.
oclAsType(GCM::FlowPort).map toRTLPort();

clk := self.map toHwClockPort();
40 raz := self.map toHwResetPort();

refComponentInstance := self.ownedProperties[GCM::AssemblyPart]->asSequence()
->first().oclAsType(GCM::AssemblyPart).map toHwRepComponentInstance();

45 refTilerInstance += self.ownedConnectors[GCM::AssemblyConnector]->map
toRTLInputTilerInstace();

refTilerInstance += self.ownedConnectors[GCM::AssemblyConnector]->map
toRTLOutputTilerInstace();

50

connector += self.ownedConnectors[GCM::AssemblyConnector]->map
toRTLConnectorInputTiler(String.incrStrCounter(’Counting’));

connector += self.ownedConnectors[GCM::AssemblyConnector]->map

163



Gaspard2

55 toHwRepetitiveInputTiler(String.incrStrCounter(’Counting’));

connector += self.ownedConnectors[GCM::AssemblyConnector]->map
toRTLConnectorOutputTiler(String.incrStrCounter(’Counting’));

60 connector += self.ownedConnectors[GCM::AssemblyConnector]->map
toHwRepetitiveOutputTiler(String.incrStrCounter(’Counting’));

connector += self.ownedConnectors[GCM::AssemblyConnector]->map
toRTLTilerClockConnector();

65

connector += self.ownedConnectors[GCM::AssemblyConnector]->map
toRTLTilerResetConnector();
...
...

70 }

8.1.4.2 Input Tiler component for Hardware accelerator

Figure 8.9: Transformation rules for the hardware Tiler component

Figure 8.9 shows the transformation rule related to the input tiler for the hardware accel-
erator. A similar approach is adapted for transformation of an output tiler. The toHardwareIn-
putTiler rule takes an AssemblyConnector (having a stereotype equal to a tiler, as specified in the
UML MARTE diagram) from the MARTE model and converts it into a tiler component. The
generated input tiler component has its specific repetition space and pattern shape. It also has
several ports: the input and output ports. When the tiler is instantiated in a repetitive compo-
nent, the equivalent created corresponding port instances are linked to the inputTilerconnector(s)
and inputTilerRepconnector(s) respectively.

Similarly a tiler component has its own clock/reset input ports. Finally the tiler component
contains subconnectors that enable to determine the data dependencies related to data paral-
lelism in a Gaspard2 application. The computation related to the subconnectors is carried out
via the ADO pre-computations, specified in section 8.1.5; and are invoked by the toInputTiler-
SubConnector subrule in the mapping function. Similarly, the other different elements related to
the input tiler are created via different sub rules, called from the toHardwareInputTiler rule:

1

--The transformation checks the condition that the tiler is of the direction in,
and then creates input, output, clock and reset ports for the tiler component,
and also calls a subrule for ADO pre-computations

5

mapping GCM::AssemblyConnector::toHardwareInputTiler(id : Integer) : mmRTL::RTL_InputTiler
when{

self._end->asSequence()->first().endPort.oclAsType(GCM::FlowPort).
10 direction = GCM::DirectionKind::_in

}
{

init {
var portEnd : Extension::AssemblyConnectorEnd := self._end[assemblyPart

15 = null]->asSequence()->first();
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var portInstEnd : Extension::AssemblyConnectorEnd := self._end
[assemblyPart != null]->asSequence()->first();

20 var nametemp := ’TilerIN_’ + id.toString()+portEnd.endPort.name.repr();
}

name := ’TilerIN_’ + id.toString()+portEnd.endPort.name.repr();
clk := self.map toHwClockPortConnector();

25 rst := self.map toHwResetPortConnector();
ports += portEnd.map toInTilerPort(nametemp);
ports += portInstEnd.map toInTilerInstPort(nametemp);
patternShape := portInstEnd.map toHwPatternShape();
repetitionSpace := portInstEnd.map toHwRepetitionSpace();

30 subConnector += self.map toInputTilerSubConnector();
...
...

}

8.1.4.3 ControlNode component

As seen in Figure 8.5, a control node in the control portion of the RTL metamodel contains its
respective ports as well as a behavior. The behavior differentiates a control node from the ele-
mentary component in the hardware accelerator portion in the RTLmetamodel. These elements
associated to a control node are called by their respective sub rules.

We now present a rule hierarchy related to the control node, corresponding to the hierarchy
illustrated in Figure 8.5. The toControlNode rule takes as input, a structured component in the
MARTE model having an associated behavior; and converts it into the control node pattern.
Afterwards it calles the toRTLPort and toControlBehavior sub rules. The latter itself calls the
toControlAutomaton rule in order to create the associated automaton. This succession of rules
continues as the automaton rule invokes the sub rules related to transitions and vertices by
means of the TransitiontoControlTransition and VertextoControlVertex rules. We do not detail the
whole hierarchy for creating the automaton related to the control node, but only describe some
of the above mentioned rules, as illustrated below:

• Mapping rule for Control Node:

1

--the rule checks the condition that there is an associated state graph
with the structured component and calls a behavior as a subrule

5 mapping GCM::StructuredComponent::toControlNode() : mmRTL::ControlNode
when {

self.ownedBehavior[CommonBehavior::StateGraph]->size() != 0
}

{
10 init{

var nom := self.name;
}

name := self.name;
ports += self.oclAsType(GCM::StructuredComponent).ownedPorts.

15 oclAsType(GCM::FlowPort).map toRTLPort();

ownedBehavior += self.ownedBehavior[CommonBehavior::Behavior]->
map toControlBehavior();

20 ...
...

}

• Mapping rule for Behavior:

1

--the rule in turn creates an automaton

mapping CommonBehavior::Behavior::toControlBehavior() : mmRTL::Control_Behavior
5

{
init
{

log(’Entering state graph’);
10 ...

...
}
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name := self.name;
15 automaton += self.subobjects()[CommonBehavior::Region]->

map RegiontoControlAutomaton();
...
...

20 }

• Mapping rule for Automaton:

1

--the rule calls subrules for creating states and transitions

mapping CommonBehavior::Region::RegiontoControlAutomaton() :mmRTL::Automaton
5 {

name := self.name;
transition += self.subobjects()[CommonBehavior::Transition]->

10 map TransitiontoControlTransition();

state += self.subobjects()[CommonBehavior::Vertex]->
map VertextoControlVertex();

15 ...
...

}

8.1.5 ADO pre-computations for tiler components

As defined earlier, the tiler connectors in the high level model are converted into components by
means of theMARTE2RTL transformation. For the hardware accelerator part, these components
are transformed into hardware computational units (HCUs), permitting the hardware execution
of data parallelism. They thus express the data dependencies expressed by the MARTE tiler
connectors, and help to connect each element in the input/output pattern to a data element in
its respective input/output array. This process is called the ADO pre-computations because the
data dependencies are computed during design time as compared to run-time implementation
on an FPGA. The pre-computations of an input tiler are symmetrical to the pre-computations
associated with an output tiler, hence here only pre-computations related to the input tilers are
demonstrated . Initially each of the tiler connector in a hardware RCT is transformed into a tiler
component, and is subsequently instantiated in the RCT, as shown earlier in Figure 8.7.

Figure 8.10: Tiler pre-computations: creation of an interconnection topology to determine data
dependencies
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The result of the pre-computations is the creation of an interconnection topology inside a
tiler component; permitting to connect the input pattern(s) required by a repetition of a com-
ponent instance, with the corresponding input array(s); by means of the information related to
a tiler connector (i.e., origin, paving and fitting values). Other information relevant to the pre-
computations are the shape values associated to the input array(s), the repetition space and the
pattern shape of the repeated task. In this section, we do not describe how the pre-computations
are carried out via the model transformations (these technical details are presented in appendix
C), but instead only focus on its mechanism.

Figure 8.10 shows the result of the tiler pre-computations related to the tiler connectors ex-
pressed in Figure 8.6. Each input tiler component contains 4 input ports, due to the equivalent
shape of the input array. Similarly, each input tiler component contains 2 output ports, i.e. (2×1);
due to the result of the shape value of the repetition space of the component instance, and the
mono-dimensional pattern shape associated to its port instances. This corresponds to the expla-
nation given in section 8.1.4.1. The pre-computations determine the data dependencies based
on the associated information given to each input tiler connector, and creates an interconnec-
tion between the respective source and target ports of each RTL input tiler component. The
connectors used in the interconnection topology are the HW SubConnectors which have been
introduced previously in section 7.3.2.8.

The algorithm related to the pre-computations first iterates on the (multidimensional) repeti-
tion space of the RT in a RCT, as well as each element present in the (multidimensional) pattern
shape by means of two loops. For each element in a (multidimensional) pattern, a subconnector
with an index value is created. A subconnector connects to its respective input/output ports in
a tiler component due to the Array-OL mathematical expressions related to the origin, paving
and fitting values. These expressions have been presented in detail in [36]. The index value re-
lated to source port of a subconnector determines the corresponding element in the input array,
while the index value of its target port defines the position of the element in the pattern which
is consumed by an iteration of the RT.

In [143], the authors proposed a similar approach for expressing data dependencies related
to the tiler components, however, the proposed approach used Java based external black boxes
integrated in their respective model transformations. This resulted in increased complexity
of the transformation rules and required the developer to be expert in several languages. As
compared to the above mentioned approach, the ADO pre-computations in our design flow are
implemented by using QVTO based transformations, thus simplifying the effort for developing
the corresponding model transformations.The QVTO rules for expressing the pre-computations
have been described in appendix C.

8.1.5.1 Sliding windows data dependencies

Figure 8.11: Tiler pre-computations: mechanism for sliding window data dependencies

The tiler connectors also allow to express special types of data dependencies, such as those
related to temporal sliding windows. This type of data dependency is frequently used in
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the domain of DIP applications, because it enables to filter the signals with respect to time.
The ADO pre-computations also take this type of data dependency into account. Figure 6.28
shows an example of a tiler connector expressing a temporal sliding window. The tiler con-
nector expressing this data dependency is the one connecting the InDataTRM port of the
TimeRepeatedMultiplicationAddition component to the input port instance InDataM
of the instance rm of the type RepeatedMultAdder.

Here the tiler connector resends the position of an element in an infinite data flow to the
different iterations of the RT in the RCT. The pre-computations algorithm creates a special con-
nector between an element of the pattern at an instant t to an element of the input array at the
instant t-n. The model transformations generate a tiler component having an input port with
a shape value equal to 1, corresponding to the infinite data flow. The output port of the tiler
component has a shape value equal to 128, corresponding to the pattern shape consumed by
the component instance. The tiler component thus connects the data present on its input port
at instant t, delays that data during n cycles, and sends the data to one of its output ports. In
the model transformation, this mechanism is achieved with the help of HW Delayed SubConnec-
tor, HW Signal and HW SubConnector concepts. A delayed subconnector is attached to different
repetitions of an HW signal, on the basis of an associated shape value. Finally, each iteration of
the signal is connected to a unique subconnector. Figure 8.11 shows the interior details of a tiler
component that realizes this type of data dependency.

In a hardware functionality, this sliding window data dependency mechanism can be per-
formed adequately by the utilization of shift registers. Thus during implementation in a target
FPGA, shift registers are present in the tiler component for the execution of this data depen-
dency, as illustrated in chapter 9.

The ADO pre-computations thus manage the data dependencies related to the data paral-
lelism expressed in Gaspard2 applications at the high modeling level. The computations also
takes into account, certain temporal dependencies such as related to sliding windows. The pre-
computations step does not place a restriction on the number of dimensions present in a pattern
or array. Thus data dependencies on multi-dimensions are also managed.

8.1.6 Advantages of QVTO over third party model-to-model transformation
languages

As stated in the previous section, the current model-to-model transformations from a UML
MARTE profile diagram to the eventual RTL model have been implemented with the QVTO
language. An initial version of the RTL transformation chain has been developed for Gaspard2
in [143], however it has several drawbacks. Firstly, the initial model is not based on the MARTE
profile, but instead the authors use their proper profile which is not an industry standard. The
UMLmodel is transformed into several intermediate models, followed by the eventual transfor-
mation into a static RTL model. This RTL model lacks sufficient details to completely generate
the HDL code for a dynamic hardware accelerator. Secondly the model transformations are
based on the internally developed MOMOTE transformation engine.

The advantage of QVTO over third party transformation languages is that it provides a
proper syntax for writing the transformation rules. Thus developers always have a strong struc-
ture to follow, in order to develop the corresponding transformation rules. Moreover, as QVTO
utilizes imperative Eclipse OCL constructs (for loop support, exceptions, variable initialization,
etc.), a transformation rule written in QVTO is more comprehensible and requires less develop-
ment effort as compared to its counterpart written in any other language.

Additionally, as QVT is an industry standard, QVTO based transformations can be under-
stood by different designers and research teams, increasing synergy. Currently, the only draw-
back of current QVTO based transformations is that while they do support black box calls in
the specifications, currently to this date, they cannot be implemented.
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8.2 Code generation

This section provides the code generation stage of our design flow, related to hardware accel-
erator and a reconfigurable controller (for a partially reconfigurable SoC), from the RTL model.
This generation is carried out by means of a model-to-text transformation, termed as RTL2CODE
in our design flow. This transformation is represented by the eclipse in Figure 8.12, and cur-
rently generates VHDL code for the hardware accelerator(s) part of our design flow, as well as
C/C++ code that is taken as input by the controller. The code related to hardware accelerator
can also be executed in isolation, without regards to dynamic reconfiguration. However, this
causes the creation of a static single hardware accelerator.

8.2.1 MDE code generation principles

According to the principles provided by MDE, the code generation can be viewed as rewriting a
model in a textual form. Here, the concepts present in a model are not transformed, but trans-
lated into text, which is then utilized by the usual tools (compilers, simulators, etc.). For an
effective code generation, it should be guaranteed that the abstraction level of the input model
is close to the generated text. Thus, code generation can be viewed as a one-to-one transforma-
tion, in which each concept in the model generates certain part of the overall text. Hence code
generation consists of producing, for each available concept, the syntax corresponding to this
concept in the targeted language.

Presently, a large number of model-to-text transformation tools exist in literature. Addition-
ally, OMG has proposed the MOF2Text standard4 for these types of transformations. In the
standard, a metamodel has been defined that helps in the development of these transforma-
tions by the presence of patterns of code generation. Similar to QVT, the tools respecting this
standard should be capable of successfully reading a model before interpreting it in the even-
tual code. Nonetheless, currently there is not a single unique tool which completely implements
the standard, yet the common idea in each tool is the presence of the patterns of code generation.
Similarly tools such as Acceleo [7], MOFScript5 and M2T6 are also based on these code patterns.

Figure 8.12: The RTL2CODE model-to-text transformation chain in our design flow

4http://www.omg.org/cgi-bin/doc?ad/2004-4-7
5http://www.eclipse.org/gmt/mofscript/
6http://www.eclipse.org/modeling/m2t/
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8.2.1.1 JET Templates

Currently in the Gaspard2 framework, for model-to-text transformations, we have selected the
usage of JET (Java Emitter Templates) [82] from theM2T project. Besides its capacity to be easily
integrable in the Eclipse environment, we find the notion of code patterns (which is common
among different model-to-text transformation engines).

8.2.1.2 Syntax of JET templates

In JET templates, we mainly find two types of elements: 1) the text which is written directly into
the required output code (VHDL and C/C++) in this case and 2) the Java code which is called
by delimiters <% and %>. The Java code can be itself of two different natures:

• <% SCRIPT %>: The script is directly produced in the intermediate Java class. This script
serves for analysis; such as evaluating loops whose length depends on the input model.

• <%= EXPRESSION %>: The expression generally depends on the input model.
For example, it is possible to write the name of a concept: RepeatedMultAd-
der, by means of the expression <%= REPEATEDMULTADDER.GETNAME()%>. It
is also possible to call sub templates corresponding to other concepts: <%=
TS.GENERATE(REPEATEDMULTADDER.GETPORTS()) %> calls a template corresponding
to a port notion related to current RepeatedMultAdder concept by means of reference Ports.

In the Gaspard2 framework, we do not directly utilize JET, but take advantage of an addi-
tional layer that links to Ecore, the Eclipse modeling technology; for simplifying JET utilization.
This software layer has been developed internally in the DaRT research team and has been
termed as MoCodE (Model to Code Engine). This layer also permits generation of the output
code in several separate files, which is not possible with JET.

Figure 8.13: Conception flow for JET

Figure 8.13 represents an abstract representation of JET functionality in the Gaspard2 envi-
ronment along with the MoCodE software layer, when a model (or models) (at the left side of
the figure) is transformed into text (right side of the figure). A JET Generator permits loading of
the initial model(s), and applies JET Genlets before saving the generated code in a file. A JET
Genlet is a Java class having a GENERATE method, that takes the arguments of the model (or
a part of the model); and returns a string of characters. These genlets are produced from JET
Templates: scripts that specify the relationships between a concept in the input model and the
output code.

The basic principle of MoCodE is to associate a source code pattern with each element in the
input metamodel. At the start of execution, only the root of the model is transformed. The code
present in the pattern traverses themodel and seeks the transformations of the desired elements,
with the help of the GENERATE function. Gradually, each of the different patterns scans a
portion of the input model and call other patterns. The transformation engine determines the
pattern corresponding to an element while searching for the pattern with the same name as
the type of element processed. Moreover, a developer can identify the elements that are to be
generated in their respective separate files. For other types, the string obtained by the execution
of a pattern on a given element is inserted into the file where its generation has been called. The
mechanism of writing a pattern is inspired from web technologies such as PHP and JSP.
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The code generation in JET is carried out by JET generator, while the templates are man-
aged by MoCodE. MoCodE also enables optimization of the templates, for example, enabling
hierarchy between concepts. We now present the choice of generating VHDL and C/C++ code
directly from the RTL model, instead of moving towards their respective metamodels.

8.2.2 Possible choices for code generation

A RTLmodel is not directly exploitable by classical tools for simulation and synthesis purposes;
contrary to the output produced code. Two approaches are possible for code generation, which
are explained below:

Figure 8.14: An alternative choice from the RTL metamodel

First solution: Creation of separate metamodels that respect the syntax of VHDL and C/C++
languages respectively. This is turn forces two additional model-to-model transforma-
tions, from the RTL model to the respective Code models as shown in Figure 8.14. From
these models, eventual code generation can be carried out.

Second solution: Generation of code directly from the RTL model. The advantage of this
method is that no other intermediate metamodels need to be inserted in our design flow.
The abstraction level of the RTL model is sufficient enough for the generation of VHDL
and C/C++ code for our requirements.

The first solution introduces certain disadvantages. Firstly, the development effort is in-
creased as additional metamodels and corresponding transformations are introduced in the
design flow. Additionally, for a designer wishing to generate the syntax of the hardware acceler-
ator in another HDL such as Verilog, he will need to create an additional metamodel respecting
Verilog syntax. Similarly, for the reconfiguration controller part, we have stated that the state
machine code can be either generated in C/C++ or VHDL depending upon the choice of the
selected reconfiguration. In case where both C/C++ and VHDL metamodels are present, either
the controller concepts have to be duplicated in both metamodels, or present only in a unique
metamodel. This decreases the flexibility currently present in our design flow.

For these above mentioned reasons, the second solution has been adapted, resulting in code
generation directly from the RTL model by means of the RTL2CODE transformation. This so-
lution is more generic in nature, but also decreases the development and maintenance efforts
demanded of the developers.

8.2.3 VHDL code generation for hardware accelerators

One of the objectives of design flow is the generation of correct and synthesizable VHDL code
which can be taken as input by commercial synthesis tools for implementation in a FPGA. This
VHDL code corresponds to the different implementations of the modeled application, or the
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various configurations of a dynamically reconfigurable hardware accelerator. In order for the
output VHDL code to have the same characteristics, such as data and task parallelism that were
present in the initial application model, we have imposed certain conditions which are taken
into account during the writing of the JET templates. Some of the critical conditions for code
generation are given below:

Accelerator Structure: The structure of the hardware accelerator(s) written in VHDL should
be equivalent to the modeled application at the MARTE profile level. Thus application
hierarchy is conserved in the final code.

Code generation for accelerator components: Each component in a configuration of the hard-
ware accelerator is written in a separate file, the name of the file corresponding to the
name of the component.

Expressed parallelism: The data parallelism of the Gaspard2 applications is expressed in the
accelerator(s) by means of the VHDL GENERATE keyword. Similarly, multidimensional
ports are not linearized during the code generation phase.

Configurations: Depending upon the number of configurations at the high modeling level,
we find the same number of hardware accelerator implementations. A separate folder
is created for each configuration/implementation of the hardware accelerator. Although
for each configuration, a large part of the generated VHDL code (top level code and the
code corresponding to the instantiated sub components) remains the same, the code cor-
responding to the elementary components is changed for each configuration. This choice
was selected to remove ambiguity and to ease the creation of partial bitstreams. While it
is possible to create only one hardware accelerator and manually change the implemen-
tations related to the elementary components; and afterwards create different configura-
tions in an non-automatic manner; this is a tedious task which augments in complexity
depending upon an increase in the number of elementary components or configurations.

We now move onto providing some examples of the templates utilized for the code genera-
tion. In the following sections, we present an example related to a generic hardware accelerator
component, followed by an example related to a repetition context task that expresses data par-
allelism in a hardware accelerator.

8.2.3.1 Code generation for hardware accelerator components

This subsection provides the basic template for generation of a typical component in a hard-
ware accelerator, irrespective of its nature (compound, repetitive or elementary). This template
represents the black box representation of the component by illustrating only its interfaces. The
interface of these components is determined by their input/output ports which can be multi-
dimensional in nature. From the point of view of code generation, a template that creates the
code for a component invokes the sub templates for creating the ports of the component.

We now present an example of a template associated with an INPUTPORT. This template
generates the name of the port, followed by inserting the keyword : IN; and terminates by
calling another template for determining the port type.

<%=element.getName()%> : IN <%=ts.generate(element.getType())%>

Thus the construction of a component interface requires the utilization of templates for creat-
ing input and output ports, as illustrated above. Whatever the type of the port and the manner
in which it is referenced by a component, the mechanism of code generation is similar by the
basis of the TS.GENERATE() keyword. TS.GENERATE() calls the template corresponding to the
element, in its parameter. In this case related to interface generation, the parameter is either an
input or output port. The template responsible for generating the interface of a generic hard-
ware accelerator component is as follows:
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ENTITY <%=element.getName()%> IS
PORT
(
<%=ts.generate(element.getClock())%>;
<%=ts.generate(element.getReset())%>
<%for (Port p : (List<Port>) element.getPorts())
%>;
<%=ts.generate(p)%><%

%>);
END <%=element.getName()%>;

In the RTL metamodel, the clock and reset ports of a hardware accelerator component are
referenced by clk and rst metarelations allowing for creation of these specific ports. The code
generation of these ports is separated from normal modeled ports referred in the metamodel
by means of the ports reference; and is carried out due to the line 6 in the template. Figure
8.15 exhibits the code generation for a component having 4 input ports and 1 output port. The
MARTE based modeling of this component has been previously illustrated in Figure 7.3.

1 ENTITY RepeatedMultAdder IS
PORT
(
c lock : IN STD_LOGIC ;

5 r e s e t : IN STD_LOGIC ;
inDataM : IN TABLE_TYPE_128_Integerrange8to7 ;
inCoeffM : IN TABLE_TYPE_128_Integerrange1to1 ;
outM : OUT TABLE_TYPE_64_Integerrange4096to4095 ) ;
END RepeatedMultAdder ;

Figure 8.15: The left side of the figure represents model of a component in the RTL metamodel,
while the right side demonstrates the code generated with the aid of the template described
previously

This template permits to create the interface related to a hardware accelerator component in
the RTLmetamodel, called ENTITY in VHDL. The generation of the code related to the behavior
of this component depends upon the type of the component itself. In case of an elementary
component, a related IP (corresponding to the associated configuration) is instantiated inside
the component, along with a mapping between the ports of the two components. For a com-
pound component expressing task parallelism, component instances are created along with con-
nectors, etc. The next section describes the template corresponding to the code generation of
loops present in a repetition context task (RCT) having a repeated task (RT).

8.2.3.2 Code generation for loops in RCT related to the hardware accelerator

The creation of loops in a RCT depends on the shape (i.e., the repetition space) associated with
a component instance (RT) in the RCT. This shape helps in the instantiation of an RT. The illus-
trated code represents a part of the template related to the code generation of a HW Repetitive
component, for enabling multiple instantiations of its interior repeated task.

<%int indexRepetition = 0;
for (Integer v : (List<Integer>) ...

... element.getRefComponentInstance().getDim().getValue()){
%>genit<%=indexRepetition%> : for ...

.....it<%=indexRepetition%> in 1 to <%=v%> generate
<% indexRepetition++;

}%>

<%=ts.generate(element.getRefComponentInstance())%>

<% indexRepetition = 0;
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for (Integer v : (List<Integer>) ...
... element.getRefComponentInstance().getDim().getValue())

%>end generate;
<% indexRepetition++;

%>

The following code presents the generated code for the RCT RepeatedMultAdder showed
earlier in Figure 7.3. As the RCT has a RT with a repetition space of a single dimension, only
one loop is present in the VHDL code, permitting to instantiate multiple repetitions of the RT,
equivalent to the shape of its associated repetition space. The port mapping for the different
repetitions depends on a sub template, which is illustrated in line 5 of the template written
above.

1

geni t0 : fo r i t 0 in 1 to 64 generate

. . .
5

end generate ;

It should be made clear that we have only illustrated an example for a RCT having RT with
a mono-dimensional repetition space. A repetition space having N dimensions generates N
nested loops in the VHDL code for a RCT, provided that no dimension is an infinite temporal
one. For an infinite repetition space associated with a RT in a RCT, such as the RepeatedMul-
tAdder repeated task in the TimeRepeatedMultiplicationAddition component in Figure 6.28, the
illustrated template generates the VHDL code illustrated below. Hence at each rise of the clock,
a new instance of the RepeatedMultAdder is generated, for a sequential temporal execution:

1

geni t0 : fo r i t 0 in 1 to 1 generate

. . .
5

end generate ;

8.2.4 Code generation for reconfiguration controller

This subsection deals with code generation of the controller managing the context switch related
to the different implementations of the hardware accelerator. The generated code is in the form
of C/C++ language due to the choice of utilizing an internal embedded processor in the target
FPGA, as specified earlier in chapter 5.

The modeled automata is transformed into a state machine in C/C++, with continuous infi-
nite transitions in order to be an equivalent transformation of the mode automata.

8.2.4.1 Converting mode automata model into code

For the code generation, in Figure 8.16 we first present an abstract representation of the mode
automata presented earlier in Figure 6.34. It is obvious that this representation is not an UML
diagram, but is illustrated to provide a general global overview of the mechanism related to
code generation of mode automata.

The MARTE2RTL model transformation presented earlier in the chapter, converts all the
modeled concepts present in the high level models into their near equivalent concepts in the
RTL model (such as states, collaborations etc). For code generation, MoCodE based templates
are written to parse through these concepts, in order to get the required information for the
generation of the controller code.

Initially the base template is called from the top hierarchical level control compound compo-
nent, i.e., the Deployed Automata component representing the modeling of the mode automata.
From this template, sub templates/rules are invoked for computing different operations, such
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as determining the number of present states, events etc. We now present the basic steps related
to code generation:

Figure 8.16: Abstract overview of the deployed automata

Information about states. Initially the information related to the different states present in a
Gaspard state graph is analyzed. An initially invoked template searches the modeled enumera-
tion representing the different states in the state graph and generates a corresponding ENUMER-
ATION in the final code, having entries equivalent to the enumeration literals of the modeled
enumeration. In this case, the enumeration Statevalues is converted into an enumeration in
the generated code.

Event ports. Similarly, another enumeration related to the event ports of the mode automata
is created in the code. A template returns the list of the names of the modeled input event
ports. While at the modeling level, all event ports are of the Boolean Type; during the code
generation in C/C++, the name of the event itself is taken into consideration. While it is also
possible to utilize the samemethodology at the high modeling level, this complicates the design
specifications and the corresponding model transformations. Additional semantics have to be
integrated into the RTLmetamodel to take into account details: such as creation of a special type
of port having no associated type. In contrast, associating the Boolean type assigns a unique
type to every input/output event port, helping in its identification in the corresponding model
transformations; and serves its purpose for the general control model introduced in chapter 6.

Relating configurations with a state. A state machine in C/C++ can be generally imple-
mented by means of nested switch-case statements. For a switch-case construct, each case can
relate to a specific state in the Gaspard state graph. Each of these cases calls its respective
nested switch-case construct for handling the events arriving on that particular state. The ar-
riving events result in a transition (self transition or transition to another state). In case of a
self transition, no action is carried out, while in a transition to other state, the associated func-
tion/doActivity is taken into account. In the model-to-text transformations, a template is called
that determines the mode value of the resulting state and compares that value with the name
of the collaborations attached to the mode switch component. In case of a match, a sub tem-
plate determines the name of the configuration present in the related collaboration, the related
name is subsequently used in the nested switch-case statement as the operation to be carried
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out. This operation can be viewed as changing the partial bitstream related to an implementa-
tion of the hardware accelerator, where the name of this bitstream corresponds to the name of
the configuration.

Creation of an empty configuration. The generate code also contains a special case related to
an empty hardware accelerator configuration which is normally created by the synthesis tools
carrying out partial reconfiguration. This is done to reduce power consumption levels in the
dynamically reconfigurable system. As this configuration does not contain any interior logic
related to the hardware accelerator, it is not modeled at the deployment level. The modeling
of an empty configuration can complicate the high level modeling and the associated transfor-
mations. Henceforth, the RTL2CODE transformation explicitly adds information related to this
concept for the final code generation. This step has not been illustrated in the template extract
given below, but is illustrated in the next chapter.

Conversion of defautLink, tiler and interrepetition connectors. The defaultLink and inter-
repetition components in the RTL model are converted into variables that help to determine the
initial, current and next states in the state machine. As we only deal with flat state machines,
that have no embedded hierarchical state machines, mechanisms related to the history are not
necessary; and consequently are not created. This choice is explained earlier in chapter 6, as the
states represent the global configurations related to the modeled application.

As compared to the above mentioned dependencies, the tiler components related to the
control model are collectively transformed into a VHDL component that allows to represent
an infinite flow of control events. This is due to the reason that control events are generally
unpredictable and can arrive at any time instant, while the control model introduced in Gas-
pard2 introduces a control flow having an infinite temporal dimension. This point has been
illustrated in the next chapter. An extract of JET template related to the state machine is given
subsequently:

<% integer caserepetition = 0;
for (Integer cr: (List<Integer>) element.getEnumState.literalvalue.listvalue()){
%>Case <%=ts.generate(Enumstate.getName())%> :

Switch (e)

<% integer nestedcaserepetition = 0;
for (Integer cr: (List<Integer>) element.getEventPorts.listvalue()){.......

%> Case <%=ts.generate(Event.geteventName())%> :
...
...
...
break;
<% nestedcaserepetition++; } %>

default;
theStateAfterTransition = <%=ts.generate(Interrepetition.getNextState())%>;

break;

break;
<% caserepetition++; %>

...

...
}%>
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Here e denotes the enumeration related to the list of event ports. The given example has two
nested for loops, each related to a case statement, the first loop is related to the case associated
with the different possible states, while the second is related to the events arriving at a particular
state. It then calls subsequent sub templates to determine the action related to a specific event.

Afterwards, templates related to the empty configuration and other parts of the controller
code help to complete the state machine part of the controller. An extract of the resulting code
from the root template related to the modeled deployed automata is given as follows:

1 {
case State_DSP:

switch(e)
{

5 case ’ifelse_event’:
// Change current configuration to IfelseConfiguration
theStateAfterTransition = State_Ifelse;
..
..

10 break;

default: // self transition in case of a random event/all
theStateAfterTransition = State_DSP;

break;
15 }

break;

case State_Ifelse:
switch(e)

20 {
case ’dsp_event’:
// Change current configuration to SwitchConfiguration
theStateAfterTransition = State_DSP;
..

25 ..
break;

default: // self transition in case of a random event/all
theStateAfterTransition = State_Ifelse;

30 break;
}
break;

}
35

...

...

It should be mentioned that the code illustrated above has been simplified for user compre-
hension. The details related to the actual configuration switch functions and the empty blank
configuration have not been presented here; and are detailed in the next chapter.

8.3 Synthesis results

In the previous sections, we have detailed the creation of the tiler components that determine
the data dependencies in the dynamic hardware accelerator generated from our design flow.
Once VHDL code related to these components is generated from the RTLmodel bymeans of the
RTL2CODE model-to-text transformation, the code can be verified by synthesis in traditional
commercial tools such as Xilinx ISE. Figure 8.17 shows the equivalent synthesis result of the
modeled application component illustrated in Figure 8.7.

The generated code for the two input tilers related to this synthesis result is presented below.
The component TILERIN_41INA5 represents the tiler connecting to the inData1 port instance
of the repeated component instance, while the second tiler connector is represented by the com-
ponent TILERIN_26INA5. The tilers are assigned unique names, along with input/output ports
for incoming and outgoing data. They also have clock and reset ports (that are not utilized for
the hardware functionality).
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Figure 8.17: Synthesis result of the modeled application component

By means of the ADO pre-computations described before, the tiler components have simple
subconnectors, which in their VHDL translated form, carry out mapping of the input data to
output data. In the illustrated example, both input and output data are mono dimensional in
nature7, however the tiler components can also treat multidimensional data. This claim can be
verified in the next chapter.

• Code for TilerIN_41inA5: represented as box number 2 in the synthesis result:

1 library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.numeric_bit.all;

5 use IEEE.numeric_std.all;
use IEEE.STD_LOGIC_ARITH.ALL;

library imran;
use imran.userlibrary.all;

10

ENTITY TilerIN_41inA5 IS
PORT
(
clk : IN STD_LOGIC;

15 rst : IN STD_LOGIC;
TilerIN_41inA5_InTilerIN_inA5 : IN TABLE_TYPE_4_Integerrange4096to4095;
TilerIN_41inA5_InTilerOUT_inData1 : OUT TABLE_TYPE_2_Integerrange4096to4095);
END TilerIN_41inA5;

20 ARCHITECTURE archiTilerIN_41inA5 OF TilerIN_41inA5 IS

BEGIN

TilerIN_41inA5_InTilerOUT_inData1(1) <= TilerIN_41inA5_InTilerIN_inA5(1);
25 TilerIN_41inA5_InTilerOUT_inData1(2) <= TilerIN_41inA5_InTilerIN_inA5(3);

7The types TABLE_TYPE_4_INTEGERRANGE4096TO4095 and TABLE_TYPE_2_INTEGERRANGE4096TO4095 are
generated separately in a library; and has been defined in a manner to conserve the multidimensionality of the port if
it is present
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END archiTilerIN_41inA5;

• Code for TilerIN_26inA5: represented as box number 3 in the synthesis result:

1 library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.numeric_bit.all;

5 use IEEE.numeric_std.all;
use IEEE.STD_LOGIC_ARITH.ALL;

library imran;
use imran.userlibrary.all;

10

ENTITY TilerIN_26inA5 IS
PORT
(
clk : IN STD_LOGIC;

15 rst : IN STD_LOGIC;
TilerIN_26inA5_InTilerIN_inA5 : IN TABLE_TYPE_4_Integerrange4096to4095;
TilerIN_26inA5_InTilerOUT_inData2 : OUT TABLE_TYPE_2_Integerrange4096to4095);
END TilerIN_26inA5;

20 ARCHITECTURE archiTilerIN_26inA5 OF TilerIN_26inA5 IS

BEGIN

TilerIN_26inA5_InTilerOUT_inData2(1) <= TilerIN_26inA5_InTilerIN_inA5(2);
25 TilerIN_26inA5_InTilerOUT_inData2(2) <= TilerIN_26inA5_InTilerIN_inA5(4);

END archiTilerIN_26inA5;

8.4 Conclusions

This chapter presented our contributions related to the model-to-model/text transformations
present in our design flow. The concepts introduced in the previous two chapters are
subsequently transformed by the two model-to-model transformations: UML2MARTE and
MARTE2RTL. We first provided a general overview of the two transformations, followed by
the choice of utilizing a standard model transformation language to carry out their implemen-
tations. Afterwards, some transformation examples have been provided that are present in our
design flow.

Once the model-to-model transformations have been executed, the resulting RTLmodel pro-
vides an accurate estimation of the details related to RTL. Similarly, the control concepts are en-
riched enough for eventual code generation. Using the model-to-text transformation described
in our design flow, we generated the code for different implementations of a dynamically recon-
figurable hardware accelerator, as well as the code for reconfiguration management. Finally, an
example related to the synthesis of a modeled application component is provided in the chapter.
We nowmove onto the validation of our design methodology, by providing a case study related
to a complex DIP Gaspard2 application.
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Vehicle based anti-collision radar detection systems are becoming increasingly popular in
automotive industry as well as in research. These devices provide additional safety by antici-
pating collisions and subsequent accidents; and can become mandatory aboard vehicles in the
years to come. The principle of such systems is to avoid collisions between the equipped vehicle
and the one in front, or other kind of obstacles (pedestrians, animals, etc.). The algorithms form-
ing the basis of these complex systems require large amounts of regular repetitive computations.
This computational necessity requires the execution of these algorithms in parallel hardware cir-
cuits, such as hardware accelerators [30]. We first provide a general overview of these systems,
followed by the modeling of their key components and eventual code generation. Finally the
chapter provides implementation details for integrating aspects of dynamic reconfiguration in
these systems.

9.1 Anti-collision radar detection system

The anti-collision radar detection system which has been studied during the course of this dis-
sertation is illustrated in Figure 9.1. The radar consists of two antennas; and emits a signal mod-
ulated with a Pseudo Random Binary Sequence1 (PRBS), resulting in formation of a reference code
[200]. The PRBS has interesting correlation as well intercorrelation characteristics [72]. When
the emitted wave encounters an obstacle, it is reflected back in the direction of the vehicle; thus

1http://en.wikipedia.org/wiki/Pseudorandom_binary_sequence
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creating an echo captured by means of the second antenna. The goal is to compare the received
wave with the emitted one, in order to find some similarities. The echo is converted into a sig-
nal containing information related to the distance of the detected obstacle. Unfortunately, this
information cannot be directly interpreted due to the presence of time delays and noise in the
incoming signal. The PRBS present in the received signal is recognized by means of a delay
estimation correlation module (DECM) present in the embedded system; and determines the
time of flight (distance between the car and the object). Periodic computation of this distance
permits estimation of the relative speed of the car and the object.

Figure 9.1: Block diagram of the anti-collision radar detection system

Additionally, it is not mandatory to exploit all the precision of the returned signal, since the
information contained in the least significant bits is embedded with noise. In [72], the authors
recommend to use only 4 bits of the incoming signal, because it is a good trade-off between
precision and the used resources.

For the radar system, the DECM can be implemented on an FPGA, as these reconfigurable
SoCs permit execution of the detection algorithm, for determining the necessary information
present in the incoming signal. This information corresponds to the PRBS utilized in the emis-
sion of the wave. The role of the detection algorithm is to highlight the similarities between the
reference code and the received signal: when the received signal corresponds with the reference
code in the emitted wave, a peak is observed in the results, indicating the presence of an obsta-
cle. The inverse case means that the received signal contains only a noised signal; little or no
information is present related to the reference code and therefore, objects are not effectively de-
tected. Hence detection of an object can be centred on one critical task: executing a correlation
on the emitted and received wave.

Figure 9.2 shows the result of a simulated correlation measurement in MATLAB2. The result
of a correlation between the reference code of a 127 length PRBS and the simulated received
signal (integrated with time delays and noise), results in a peak. The position of the peak corre-
sponds to the delay that we have introduced in the simulation. As the radar emits and receives
a signal continuously in a temporal dimension, the correlation step is also repeated unceasingly,
resulting in peaks at different time intervals. This repetition permits to determine the relative
speed of the object in question. In the figure, we illustrate the results of two correlations. A
peak in the correlation result indicates successful detection of an obstacle, whose distance d to
the radar is given by:

d = cα/2 (9.1)

Where c is the speed of the propagated signal (equal to 3.108 meters/seconds, corresponding
to the speed of light); and α is the time delay.

In this section, we have presented the structure of the anti-collision radar detection system.
The DECM module is the key element of this radar detection system, and the correlation com-
putation is extremely time consuming especially for longer PRBSs. Our case study is mainly
concerned with this functionality, and we now present the correlation detection algorithm for
this key component.

2http://www.mathworks.com/products/matlab/
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Figure 9.2: MATLAB result of the correlation between simulated emitted and received waves

9.1.1 Delay estimation correlation module

Correlation algorithms are among the type of digital processing largely employed in DSP (digi-
tal signal processing) based systems. They offer a large applicability range such as linear phase
and stability. A large number of correlation algorithms exist in literature, such as presented in
[30, 250]. The overall goal is to decrease the algorithm’s signal to noise ratio (SNR), effectively
increasing its maximum detection range for better anticipation of a possible collision.

A correlation algorithm normally takes some input data values and computes an output
which is then multiplied by a set of coefficients. Afterwards, the result of this multiplication
is added together to produce the final result. While a software implementation can be utilized
for implementing this functionality, the correlation functionality will be sequentially executed,
as illustrated in [30]. Where as a hardware implementation allows the correlation functions to
be executed in parallel, increasing the processing speed. However the implementation may not
be flexible for minute changes, thus a reconfigurable DECM is an ideal solution, as it offers the
flexibility of a software implementation while retaining the capability to construct customized
high performance computing circuits.

9.1.1.1 Correlation algorithm

The mathematical expression of a classical correlation algorithm is described as:

Ccy( j) =
1
N

N−1
∑

i=0

c(i) · y(i + j) (9.2)

Where c(i) represents the reference code for creating the emitted wave, y(i + j) the received
signal (shifted in time) and N is the length of the referenced code. In this dissertation, we
propose to study a case where our radar uses a pseudorandom binary sequence of length of
127 chips, for comparing the generated results with the MATLAB simulation results. In order
to produce an effective computation result, the algorithm requires 64 multiplications between
the 127 elements of the reference code and the last 127 received samples. The result of this
multiplication produces 64 data elements. The overall sum of these 64 data elements produces
the final result. This result can be sent as input to the monitoring unit of the anti-collision radar
detection system. As we focus on the correlation of a signal with a reference code consisting
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of 127 elements; and the standardization 1
127 does not improves the detection quality itself, the

above mentioned algorithm can be modified into the following expression:

Ccy( j) =
126
∑

i=0

c(i) · y(i + j) (9.3)

This correlation algorithm can also be termed as a Finite Impulse Response (FIR) filter, and
has been studied extensively in literature [247]. Similarly, dynamically reconfigurable filters
have been proposed in [50, 180]. Our proposed case study can be thus compared to some of the
existing hand tuned implementations, in order to compare the normal design time required for
such an application functionality, relative to a model driven one. We have initially presented
the correlation algorithm which is the basis of the detection operation in a radar system, we
now move onto the UML modeling of this functionality in the following section.

9.2 MARTE based modeling of the DECM

This section presents the UML modeling of the DECM application functionality with the
MARTE profile. Initially, details related to the DECM application functionality are presented,
followed by its subsequent deployment and mode automata construction phases.

9.2.1 Top level of the DECM

Figure 9.3: The top level view of the DECM

Figure 9.3 represents the top level of our modeled DECM module. The component in-
stance trm of the TimeRepeatedMultiplicationAddition component determines the
global multiplications while instance trat of component TimeRepeatedAdditionTree de-
termines the overall sum. The TimeRepeatedMultiplicationAddition component itself
carries out a partial sum between received elements of the reference code and the received
signal at each rise of the clock, the output being sent to the TimeRepeatedAdditionTree
component to execute the global addition operation. The instance trdg of component
TimeRepeatedDataGen produces the data values for the generated incoming signal while
the instance trcg of component TimeRepeatedCoeffGen produces the reference code.

For the generated signal, as the port out_TRDG of trdg instance has an infinite data flow
(produces data at each tick of the clock); it has a corresponding shape specification value set to
{*}. As we are only required to retain the 4 MSB (most significant bits) of the input signal, a type
INTEGER RANGE -8 TO 7 is utilized for this signal and is associated with the corresponding port.
The reference code is initially composed of 127 elements, and in order to standardize this input
port with a power of 2; a 128th element is added in the reference code. The value of this element
is neutral and does not affect the final computation result.

The reference code in the DECM can have different values: from a range of −1 to 1 where
0 allows encoding of the added element. Therefore, the type of the port out_TRCG of the com-
ponent instance trcg is set to INTEGER RANGE -1 TO 1 with a shape of {128, ∗}. The choice to
model the reference code in the form of a temporal data stream (on the basis of {∗} in its dimen-
sion) permits modification of the code during execution of the algorithm. Nevertheless, since
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we only have assigned a single IP to the elementary component responsible for generating the
reference code, this functionality has not been treated in the case study. However, it is possi-
ble to assign IPs signifying different reference code values or lengths, resulting in an increased
number of configurations and the eventual switch. Finally, Figure 9.4 shows the hierarchical
structure of TimeRepeatedDataGen and TimeRepeatedCoeffGen components related to
reference code and the generated signal respectively. Each of these components contain their
respective elementary components.

Figure 9.4: The TimeRepeatedDataGen and TimeRepeatedCoeffGen components

The output out_TRAT port of the instance trat also indicates an infinite data flow as illus-
trated by its dimension {*}. However, the algorithm permits us to specify that the maximum
value of the output (type of the output port of trat) will be between −4096 and 4095; hence
the associated primitive type is set as INTEGER RANGE -4096 TO 4095. In order to standardize
the system output, another component could be created between trat and trdc to convert the
output into an INTEGER. This step has not been taken in this case study. The generated output
is then sent out to the other modules present in the radar system.

Figure 9.5: Modeling of the Multiplication stage
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9.2.2 Modeling of the Multiplication step

The modeling of the global multiplication step is shown in Figure 9.5 by means of two
components. This step is equivalent to the modeled application illustrated earlier in Fig-
ure 6.28. The component TimeRepeatedMultiplicationAddition expresses the repeti-
tion in time while RepeatedMultAdder expresses the repetition in space. At the level of
TimeRepeatedMultiplicationAddition, the port inDataM of the instance rm consumes
a pattern of 128 data elements by means of a sliding window data dependency in time of length
127. This sliding window is expressed via the Tiler connector connected to ports inDataTRM
and inDataM; and expresses the data dependency between the two ports. Descending to an hi-
erarchical level, the component RepeatedMultAdder realizes 64 multiplications between the
data and coefficients on the ports inDataM and inCoeffM, by means of the repeated instantia-
tions of the elementary component MultiplicationAddition.

9.2.3 Modeling of the Addition step

Figure 9.6 represents the component realizing the overall addition of 128 data elements. Sim-
ilar to the mechanism illustrated previously, the component TimeRepeatedAdditionTree
expresses the repetition in time while AdditionTree expresses the repetition in space. For
the AdditionTree, its input port inAdditionTree has a dimension equal to {128} while the
shape of output port outAdditionTree has a value set to {}, indicating a pattern consisting of
one data element.

In the AdditionTree, The addition computation has been decomposed in a tree, with each
stage of this tree carrying out partial additions. While it is also possible to use a systolic topology
for carrying out the additions, in [30], the authors have illustrated the benefits of using a tree
topology. Here, the dimensions of the ports between each stage in the task pipeline reduce by
a factor of 2 (128 → 64 . . . 2 → 1). Figure 9.7 represents the second last stage, which realizes
a partial addition of four elements on an input port and produces two elements on its output
port. The computation task Addition is repeated two times and is elementary in nature. This
component has been equally presented earlier in Figure 8.6.

Figure 9.6: The Addition tree component
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Figure 9.7: An addition step in the Addition tree

9.2.4 Deployment

Figure 9.8: deployment of the elementary components of the DECM

Once the application is modeled, we need to carry out the deployment phase. For this appli-
cation, we find a total of four elementary components (ECs): namely DataGen, CoeffGen,
MultiplicationAddition and Addition. These elementary components are the basic
building blocks of the DECM functionality. For the MultiplicationAddition, we have
developed two different IPs: MyMultAddDSP and MyMultAddIfelse, respectively in the Gas-
pardLIB. All the other elementary components each have only a single IP available for final
implementation. For MultiplicationAddition, both IPs express the same functionality,
but each is expressed differently. The first IP is written using a DSP like expression, while the
other utilizes the if-then-else construct.

While this difference may seemminimal related to the overall application functionality, dur-
ing FPGA implementation, each IP related to the MultiplicationAddition consumes a
different amount of available FPGA resources. For example, during RTL synthesis, the first
implementation requires multipliers and adders, while an if-else requires multiplexers. The
multiple repetitions (64 in this case) of the elementary component attached to the selected IP in
a configuration consumes a significant portion of the FPGA resources.

Figure 9.8 shows an extract of the deployment phase related to two of the elementary com-
ponents: MultiplicationAddition and CoeffGen. For the first EC, both the available IPs
are deployed, each having related properties for helping the designer in a DSE strategy. As the
second EC has only one related IP, it is deployed accordingly. All the other ECs are deployed
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in a similar manner and are not illustrated in the figure. Subsequently, we create two global
configurations related to the DECM functionality, which are treated as its various implemen-
tations. The configurations DECM DSPConfiguration and DECM IfelseConfiguration
each contains a list of associated IPs. For the case study, the DECM DSPConfiguration has
been set as the initial configuration; and its configuration ID signifies the mode value utilized in
the subsequent mode automata model. Similarly, the second configuration also has its relevant
configuration ID.

9.2.5 Modeling of mode automata

Figure 9.9: mode automata concepts for the DECM

Once the deployment phase is carried out and all the elementary components are deployed,
the modeling of the mode automata related to the DECM is initiated; with the mode automata
serving to switch between the different DECM configurations.

Figure 9.9 shows the various concepts related to the construction of the mode automata.
This modeling approach is similar to the examples illustrated earlier in section 6.5.3, thus re-
dundant explanatory information is unnecessary. The illustration omits some concepts such
as the creation of a macro component. Here the DECM State Graph contains two states:
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state_DECM_DSP and state_DECM_Ifelse; corresponding to the respective configura-
tions modeled previously. This state graph determines the behavior of DECM State Graph
Component serving as a control component. Its counterpart, the controlled DECM MSC compo-
nent contains several collaborations, each signifying the internal behavior of this mode switch
component on the basis of their interior parts and the mode value present on the port of the
mode switch component. The combination of the control and controlled component forms the
basis of a macro component for representing a single transition in the mode automata. For con-
tinuous transitions, the macro is placed in a repetition context task: the DECM Mode Automata
component along with respective tilers, interrepetition and defaultLink connectors.

9.3 Code Generation of hardware accelerator and controller

As observed from the last section, in the modeling of the DECM functionality, the returned sig-
nal does not come from an external source, but is generated inside the application itself. This is
not due to the limitation of the modeling approach, but is due to the reasoning that a complex
data management mechanism is needed coupled with an intelligent controller; for managing
the incoming/outgoing data to/from the dynamically reconfigurable FPGA region during a
configuration switch. This mechanism is not generic is nature and is normally tailored for a
particular application, as compared to the range of application domains targeted by Gaspard2.
As currently our framework does not support a high level modeling approach for resolving
these issues, both the reference code and the data signals are generated in the application func-
tionality by means of elementary components. In case of a configuration switch, the executing
data is discarded and a computation related to the new configuration begins its execution. Sim-
ilarly, the output of the application during a reconfiguration switch may produce unpredictable
results, leading to an unsafe state. A solution to this problem is presented later on in the chapter.

Figure 9.10: The transformation flow related to our design flow

Asmentioned previously, one of the goals of our design flow is the creation of a dynamically
reconfigurable hardware accelerator with several configurations, that can be swapped dynam-
ically. The initial UML model is transformed by the various model transformations present in
our design methodology, for generating the different implementations related to the hardware
functionality. The control model is equivalently converted into a state machine for eventual uti-
lization by the reconfiguration controller. Figure 9.10 represents a screenshot of the Gaspard2
environment and the different models present in our design flow. The UMLmodel corresponds
to the modeled control integrated deployed application functionality; and is directly generated
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from the UML diagram with integrated MARTE profile, by UML modeling tools such as Pa-
pyrus. This model is taken as input by the model-to-model transformations presented in the
previous chapter, for creation of several intermediate models, such as the RTL model (corre-
sponding to the RTL metamodel) introduced in chapter 8. Finally, one of the steps of our design
flow consists of the generation of the code related to the hardware accelerator and the configu-
ration controller, by means of a model-to-text transformation.

We nowpresent some of the simulation results related specifically to the generated hardware
accelerator for validating the functionality associated with its different implementations.

9.3.1 Simulation of hardware accelerator implementations

Figure 9.11: First peak/correlation of the DSP configuration

Figure 9.12: Second peak/correlation of the DSP configuration

Figure 9.13: First peak/correlation of the If-then-else configuration

The verification of the modeled application and its eventual equivalent hardware execution
(i.e., different implementations) is first carried out by means of simulation using the industry
standard ModelSim3 simulation tool.

Once the code for the various configurations has been generated from the model transfor-
mations, we move on to the simulation part for verification of these functionalities. Figures
9.11 and 9.12 show two peak values, related to results of the two correlations for the DSP con-
figuration in a time window consisting of 8000 ns. This window is just sufficient enough to
observe two peaks, corresponding to the MATLAB simulation result illustrated in Figure 9.2.
As the simulation results are a near perfect match to the earlier results, the generated configu-
ration is considered valid. Similarly, Figures 9.13 and 9.14 represent the simulation results for
the second configuration. The simulation results verify the hardware execution related to the
different implementations of the high level application functionality. We now move onto the
implementation phase of a dynamically reconfigurable DECM.

3http://www.model.com/
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Figure 9.14: Second peak/correlation of the If-then-else configuration

9.4 Implementing a partial dynamically reconfigurable DECM

In the previous sections, we have presented the initial details related to the application selected
for this dissertation, along with its modeling at the MARTE profile level. Afterwards via the de-
sign flow presented during the course of this thesis, the integrated model-to-model/text trans-
formations generate the source code from the high abstraction level input models. Once the
source code has been generated, we move onto implementing a partial dynamically reconfig-
urable SoC [207]. This section deals with the implementation details and provides the valida-
tion of our design methodology.

9.4.1 Overview

Until now during the course of this dissertation, we have presented an abstract representation
of the partial dynamically reconfigurable system. We now illustrate the in depth details related
to this system. Firstly, the details related to the PDR based SoC are given, afterwards we present
the steps taken for integrating our contributions to the system, followed by the results and the
deduced conclusions.

9.4.2 Chosen architecture for implementing Partial Dynamic Reconfigura-
tion

Selection criteria. We first investigated the architectural choices available for implementing
PDR in Xilinx FPGAs. In Figure 9.15 we present the global structure of our reconfigurable archi-
tecture, implemented on the Xilinx Virtex-II Pro XC2VP30 FPGA on a XUP Board4. This particu-
lar type of structure is popular in the domain related to dynamically reconfigurable FPGAs, and
various variants have been built from this classical structure, such as presented in [44, 4]. The
choice of selecting the classical structure was a) to compare our system with other existing PDR
based systems in literature, and b) to provide the basic template for a model driven dynamically
reconfigurable system that can be optimized by the domain experts, in order to generate their
customized versions.

Choice of a controller. In our selected system structure, we make use of the embedded hard-
core PowerPCs present in the Xilinx Virtex-II Pro series FPGAs. One of the PowerPCs is selected
as the reconfigurable controller and the state machine code generated from the high level con-
trol model in our design flow is executed on this processor. This code is generic enough to be
implemented in either a hard or soft core microprocessor, but requires some fine tuning to be
completely compatible. For example, it needs integration with code managing the ICAP prim-
itive core. The fine tunings related to the executing code are presented later on in the chapter.
Additionally, the code can be executed equally on any of the two present PowerPCs, and it is a
design choice to select a specific PowerPC. In the case study, one of the PowerPC acts as the con-
troller, while the other one is inactive5. For implementing self dynamic reconfiguration, it is also

4http://www.xilinx.com/univ/xupv2p.html
5The choice of selecting a specific PowerPC is an arbitrary one, as our current design flow does not offer a complete

flow from high level FPGA modeling and allocation to final code generation
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possible to utilize a softcore Microblaze processor as the controller. However, a softcore proces-
sor itself uses the CLB reconfigurable resources of the FPGA. As we want to leave the maximum
space possible for the dynamically reconfigurable region, a hardcore controller approach seems
an appropriate choice. More details related to this particular selection are highlighted in section
9.4.5.

Figure 9.15: Block diagram of the architecture of our reconfigurable system

The PDR system. The PDR system can be mainly divided into two main regions. The static
region and the dynamically reconfigurable one. The static region mainly consists of a proces-
sor submodule containing the reconfiguration controller and other necessary peripherals for
dynamic reconfiguration. In this submodule, the reconfiguration controller connects directly
to the high speed 64-bit Processor Local Bus (PLB) and links with the slower slave peripherals,
which are themselves connected to the 32-bit On-Chip Peripheral Bus (OPB); via a PLB to OPB
Bridge. The buses and the bridge are a part of the IBM Coreconnect technology [117]. The OPB
bus is attached to several peripherals, such as SystemACE controller for accessing the partial bit-
streams placed in an external onboard Compact Flash (CF) card. The ICAP core is also present in
an OPB peripheral (Xilinx OPB HwIcap module) and carries out partial reconfiguration using
the read-modify-write mechanism. Finally the user inputs/events are taken by the processor
submodule by means of a RS232 UART controller module operating at a baud rate of 115200
(bits per second).

The processor submodule is connected to a dynamically reconfigurable hardware acceler-
ator via bus macros. This hardware accelerator is equivalent to the hardware functionality
generated from the modeled application in our design flow, and serves as the partial reconfig-
urable region (PRR) in the overall system. The various implementations/partial reconfigurable
modules (PRMs) related to the PRR are consistent with the configurations modeled at the de-
ployment phase. The bus macros connected to the outputs of the hardware accelerator have a
special enable/disable signal, it permits the controller to disable the macros during a configura-
tion switch to another state. Once a successful switch is carried out, the bus macros are enabled
again. Thus during the switch, no output is generated from the PRR, causing the system to
always remain in a safe state.

Although the accelerator can be placed with the fast PLB bus, it is an implementation choice
to connect it with the OPB bus. An internal memory can also be used to store the partial bit-
streams depending upon the size of the targeted configuration. Similarly, an external memory
can also be employed to speed up reconfiguration times. These choices are further discussed in
section 9.4.5.

Finally the processor submodule system is connected to an event observer, that is described
later on in detail. The event observer receives the event values and relays them to the RS232
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UART controller of the processor submodule. Users can send inputs (events), from the host
PC, related to the configuration switches of the PDR system, by means of a hyperTerminal.
A program running on the hyperTerminal gives a user the choice of switching between the
available configurations.

When a specific input value associated to an unique state is received by the PDR system, the
associated state transition is carried out. We nowmove onto providing the details related to the
Xilinx EAPR design flow for the implementation part related to this system. For this, we first
provide the integration of the generated state machine code into the reconfiguration controller.

9.4.3 State machine code for configuration switch

As detailed previously in chapter 6, the generated state machine code from our transformations
is responsible for managing the context switch of the related configurations. However, this
code needs to be integrated with a manually written hard macro code responsible for some RTL
details, such as initializing the module responsible for carrying out the internal reconfiguration:
namely the ICAP primitive module. While in chapter 8, an example of the code generated for
the configuration switch was provided, detailed information was omitted; such as that related
to the integration of an empty configuration, and the configuration switches. We now present a
more accurate version for execution in a reconfigurable controller, leaving out the code related
to the hard macro. An extract of the state machine code is illustrated below:

1

...

...

5 void Automata(State initialState, Event e)
{

static State currentState= initialState;
static State nextState = initialState;
while (true)

10 {
nextState=Transition(e, currentState);
currentState=nextState;

}
}

15

State Transition (Event e, State currentState)

{
static State s = currentState;

20 static State theStateAfterTransition;
switch(s)
{
case State_DSP: //at state DSP
switch(event)

25 {
case ’i’: //switch to If-then-else state

xil_printf("\r\n Performing reconfiguration for DECM If-then-else Configuration
\n\r");

30 XIo_Out32(XPAR_OPB_DCR_SOCKET_0_DCR_BASEADDR,0x00000000); // disable PRM
XTime_GetTime(&tstamp1);

XHwIcap_CF2Icap(&MyIcap, "config_if-then-else.bit"); //change configuration
XTime_GetTime(&tstamp2);
config_time = (unsigned int) (tstamp2-tstamp1); //clock cycles for reconfiguration

35 XIo_Out32(XPAR_OPB_DCR_SOCKET_0_DCR_BASEADDR,0x00000001); // enable PRM
xil_printf("\r\nConfig. Time : %5.2ld\r\n", config_time);
...
...
theStateAfterTransition = State_Ifelse;

40 menu();
...
...
break;

45 case ’b’: //switch to blank state
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xil_printf("\r\n Performing reconfiguration for DECM Blank Configuration \n\r");
XIo_Out32(XPAR_OPB_DCR_SOCKET_0_DCR_BASEADDR,0x00000000); // disable PRM
XTime_GetTime(&tstamp1);

50 XHwIcap_CF2Icap(&MyIcap, "config_blank.bit"); //change configuration
XTime_GetTime(&tstamp2);
config_time = (unsigned int) (tstamp2-tstamp1); //clock cycles for reconfiguration
XIo_Out32(XPAR_OPB_DCR_SOCKET_0_DCR_BASEADDR,0x00000001); // enable PRM
xil_printf("\r\nConfig. Time : %5.2ld\r\n", config_time);

55 ...
...
theStateAfterTransition = State_Blank;
menu();
...

60 ...
break;

default: // self transition in case of a random event/all
theStateAfterTransition = currentState;

65 break;
}
break;

case State_Ifelse: //at state If-then-else
70 switch(event)

{
case ’d’: //switch to DSP state

xil_printf("\r\n Performing reconfiguration for DECM DSP Configuration \n\r");
75 XIo_Out32(XPAR_OPB_DCR_SOCKET_0_DCR_BASEADDR,0x00000000); // disable PRM

XTime_GetTime(&tstamp1);
XHwIcap_CF2Icap(&MyIcap, "config_dsp.bit"); //change configuration

XTime_GetTime(&tstamp2);
config_time = (unsigned int) (tstamp2-tstamp1); //clock cycles

80 //for reconfiguration
XIo_Out32(XPAR_OPB_DCR_SOCKET_0_DCR_BASEADDR,0x00000001); // enable PRM
xil_printf("\r\nConfig. Time : %5.2ld\r\n", config_time);
...
...

85 theStateAfterTransition = State_DSP;
menu();
...
...
break;

90

case ’b’: //switch to blank state

xil_printf("\r\n Performing reconfiguration for DECM Blank Configuration \n\r");
XIo_Out32(XPAR_OPB_DCR_SOCKET_0_DCR_BASEADDR,0x00000000); // disable PRM

95 XTime_GetTime(&tstamp1);
XHwIcap_CF2Icap(&MyIcap, "config_blank.bit"); //change configuration
XTime_GetTime(&tstamp2);
config_time = (unsigned int) (tstamp2-tstamp1); //clock cycles for
//reconfiguration

100 XIo_Out32(XPAR_OPB_DCR_SOCKET_0_DCR_BASEADDR,0x00000001); // enable PRM
xil_printf("\r\nConfig. Time : %5.2ld\r\n", config_time);
...
...
theStateAfterTransition = State_Blank;

105 menu();
...
...
break;

110 default: // self transition in case of a random event/all
theStateAfterTransition = currentState;
break;
}
break;

115

case State_Empty: //at blank state
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switch(event)
{

120 case ’d’: //switch to DSP state

xil_printf("\r\n Performing reconfiguration for DECM DSP Configuration \n\r");
XIo_Out32(XPAR_OPB_DCR_SOCKET_0_DCR_BASEADDR,0x00000000); // disable PRM
XTime_GetTime(&tstamp1);

125 XHwIcap_CF2Icap(&MyIcap, "config_dsp.bit"); //change configuration
XTime_GetTime(&tstamp2);
config_time = (unsigned int) (tstamp2-tstamp1); //clock cycles for reconfiguration
XIo_Out32(XPAR_OPB_DCR_SOCKET_0_DCR_BASEADDR,0x00000001); // enable PRM
xil_printf("\r\nConfig. Time : %5.2ld\r\n", config_time);

130 ...
...
theStateAfterTransition = State_DSP;
menu();
...

135 ...
break;

case ’i’: //switch to If-then-else state

140 xil_printf("\r\n Performing reconfiguration for DECM If-then-else Configuration
\n\r");
XIo_Out32(XPAR_OPB_DCR_SOCKET_0_DCR_BASEADDR,0x00000000); // disable PRM
XTime_GetTime(&tstamp1);

XHwIcap_CF2Icap(&MyIcap, "config_if-then-else.bit"); //change configuration
145 XTime_GetTime(&tstamp2);

config_time = (unsigned int) (tstamp2-tstamp1); //clock cycles for reconfiguration
XIo_Out32(XPAR_OPB_DCR_SOCKET_0_DCR_BASEADDR,0x00000001); // enable PRM
xil_printf("\r\nConfig. Time : %5.2ld\r\n", config_time);
...

150 ...
theStateAfterTransition = State_Ifelse;
menu();
...
...

155 break;

default: // self transition in case of a random event/all
theStateAfterTransition = currentState;

160 break;
}
break;
}

return theStateAfterTransition;
165 }

...

...

The code is similar to that presented in the precedent chapter, but is enriched with details
for carrying out the actual configuration switch related to the dynamically reconfigurable hard-
ware accelerator. Themodel-to-text transformation responsible for generating the state machine
code integrates an empty configuration in the code illustrated above, along with a respective
associated event for the eventual switch. These additions are currently hard coded in the corre-
sponding JET templates, for respecting PDR semantics. An empty configuration can be used in
a scenario, when power consumption levels need to be reduced related to a reconfigurable SoC.
For the construction of an automata, the interrepetition and defaultLink concepts presented in
the RTL model are converted to variables, via the corresponding JET templates. Specifically, the
defaultLink is converted into an initial state variable, while the interrepetition determines the
current or next executing state. The main function of the configuration code initially loads the
full bitstream which is a merge of static and DSP partial bitstreams (not shown here); and calls
theAutomata function. This function itself calls a Transition function for the configuration switch
to different states (or self transitions), when receiving the appropriate events.
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The model transformations do not generate all of the code illustrated above, but leave out
certain minute details; for providing a generic template. These details are given by the de-
signer working at the Register Transfer Level, targeting a particular FPGA series. The details
are related to information such as addresses for accessing the configuration frames, the targeted
FPGA, etc. Similarly, certain ICAP related library functions are available for the hardcore Pow-
erPC processor, but are absent for the softcore Microblaze, such as the XTime timer related
headers and declared functions6, which help in determining the reconfiguration time during a
configuration switch. A Microblaze processor thus needs an explicit timer module for measur-
ing this time period. The omitted details in the generated state machine code help in producing
a basic code template for execution in any target Xilinx FPGA, supporting a hard/soft core con-
troller. Similarly, the input events related to each particular state have been given a unique
value in the model transformations. These values are entered as characters by the user from the
host PC, on the basis of the menu function presented subsequently. Finally, the state machine
code is then integrated with the hard macro code related to the ICAP module, for managing
the reconfiguration controller. We now present an extract of the function displayed on the host
PC, it permits the user to enter some unique characters, each tied to a specific configuration.
It should be mentioned that this code is also generated by the model-to-text transformation in
our design flow. The choice of assigning input events to specific characters is handled by the
transformation in an arbitrary manner.

1 void menu(void)
{

xil_printf("--------------------------------------------------------\r\n");
xil_printf(" Reconfiguration test for DECM functionality \n\r");

5 xil_printf(" Press d for DECM DSP configuration \n\r");
xil_printf(" Press i for DECM Ifelse configuration \n\r");
xil_printf(" Press b for DECM Blank configuration \n\r");

..
10 ..

}

9.4.4 EAPR Flow

Figure 9.16: The EAPR flow used for the case study

6www.xilinx.com/ise/embedded/edk_libs_ref_guide.pdf
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Figure 9.16 presents the overview of the strategy for conceiving partial dynamically recon-
figurable FPGAs using Xilinx EAPR flow. The methodology consists of several significant steps,
which we have categorized into two main phases. The EAPR methodology has been chosen as
it is openly available, and can be used to construct a wide variety of PDR systems. We now
provide the details related to this methodology and the associated phases, with respect to our
case study. In-depth details related to the mechanism of the EAPR flow can be found in [260].

9.4.4.1 Phase 1: Planning/design partitioning and synthesis

Once the code has been generated from our model driven design flow, we move on to the initial
design partition phase of our PDR system according to the EAPR flow. The processor submod-
ule for the PDR system is initially created by means of the Xilinx Platform Studio Embedded
Development Toolkit7. Figure 9.17 illustrates the block diagram of the subsystem created in tthe
platform studio. The source code for the controller is selected to be executed on the PowerPC
405_0, with a clock frequency of 100 MHz. The second PowerPC while present in the figure,
is not connected to any clock signals and is therefore disabled. A PLB Block-RAM (BRAM) in-
terface controller permits interfacing between the PLB and a Block-RAM of size 128 KB. This
size is sufficient to store the data and instructions of the executable processor code, and on-chip-
memory (OCM) is not required. Using FPGA BRAMs to store the data/instructions allows the
processor code and initialized variables to be written directly into the memory, when the FPGA
is configured initially.

Figure 9.17: The processor subsystem created via the EDK tool

According to the EAPR flow recommendations, Digital Clock Managers (DCMs) are not
present in our processor subsystem and are instantiated at the top level of the PDR architec-
ture. Once the processor subsystem has been configured, a netlist is generated for the hardware

7For the implementation, the 9.1 version of EDK has been used, as the EDK 9.2 version supporting EAPR does not
support the XUP board. Additionally, the new versions of EDK are not compatible with the EAPR tools
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design, while the software portion related to the device drivers and the controller code is com-
plied in parallel. Afterwards, we move onto integrating the generated dynamically hardware
accelerator into the PDR system. The following subsection details this integration.

Integration of the hardware design into the PDR system As elaborated earlier, [143] pro-
posed a model driven flow for creating a single static hardware accelerator, which is intended
to be implemented in a target FPGA as a black box and there is no notion of heterogeneity in the
final design. However, for implementing self dynamic reconfiguration, the PDR system is com-
posed of mandatory heterogeneous communicating components (the reconfiguration controller,
buses, memory controllers, ICAP core, etc.). It is hence essential that the hardware functionality
generated from our design flow is successfully integrated into the PDR architecture in the form
of an IP core, along with the static region. Xilinx provides the notion of an Intellectual Property-
core InterFace (IPIF) module, that acts as an hardware bus wrapper specially designed to ease
custom IP core interfacing with the IBM Coreconnect buses using IP interconnections (IPIC).

Figure 9.18: An abstract overview of the IP-Core

The advantage of the IPIF glue is that designers do not have to learn the complex protocols
related to the IBM Coreconnect buses, all they need to do is choose the required functionality
available in the IPIF, and know how to attach their own IP core to the IPIF. As the IPIF is a
parametric softcore IP, designers can eliminate the unwanted components in the interface, se-
lecting only the desired functionalities. The IPIF can also be used for other purposes such as
connecting the OPB bus to a Device Control Register (DCR) bus: another bus of the Coreconnect
technology [117]. There exist two versions of the IPIF: a PLB IPIF8 for PLB attachment, and OPB
IPIF9, for OPB attachment. A custom peripheral that connects to any of the two buses must
meet the principles of the OPB/PLB protocol: matching of interface signals, for example. In our
design flow, the dynamically reconfigurable accelerator is connected with the OPB bus but can
also be integrated with the PLB bus. An accelerator generated via the model transformations is
intended to be integrated as a slave peripheral connected to the chosen bus, for communicating
with the controller.

However at the modeling level, the designer does not have any in-depth knowledge of the
targeted PDR architecture. Thus the wrapper creation can be viewed as one of the low level
details. In order to make the accelerator compatible with the interface signals of the OPB and
in turn the IPIF module, we need to make appropriate arrangements. Initially, the IPIF wizard
present in the EDK tool can be used to generate the template for the custom peripheral, contain-
ing the communication logic (IPIF module) and the inner user logic module. We treat the user
logic (the userlogic.vhd) file as a stub in which the final hardware design (the core) is instan-
tiated. The stub allows the bus master to read/write the output and input signals of the core
respectively. Moreover, as seen earlier in the section related to the modeling of the application
functionality, in Gaspard2, we make use of user defined types on the input/output ports of our
application. These user defined types such as INTEGER RANGE -4096 TO 4095 cannot be directly

8http://www.xilinx.com/products/ipcenter/plb_ipif.htm
9http://www.xilinx.com/products/ipcenter/OPB_IPIF_Architecture.htm
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integrated into the PDR system and need to be converted into basic types such as STD LOGIC

VECTOR. The stub provides an additional hierarchy for performing the conversion between the
standard and user defined types. Figure 9.18 illustrates the final structure of our IP-core. The
average cost of the FPGA resources consumed for the creation of the IPIF wrapper is about 45
slices, for our targeted FPGA, this amounts to about 0.3% of total available slices. Afterwards
the IPIF wizard can be invoked again to import this peripheral into the PDR system, resulting
in a successful integration of the hardware accelerator.

Currently the integration of the accelerator is a manual process, however model transfor-
mations in our design flow are being extended to automatically generate a customized wrapper
for our hardware functionality, bypassing the IPIF functionalities. The transformation can create
the top level IP-Core VHDL file, an interface module and the stub module that itself contains
the core sub-module. This approach can be seen as a complementary approach as present in
[149]. Another dilemma related to this extension is elevating the low level RTL details to the
modeling level. Works such as [132, 165], using IP-XACT standard at MDE and MARTE levels
can be extremely beneficial in future.

Once all the configurations of the accelerator are imported as OPB peripherals (having dif-
ferent version names) in EDK, the project files (peripheral_xst.prj) related to each version of
the accelerator are then modified manually as specified in the EAPR flow10, before eventual
synthesis in ISE11 is carried out.

Creating the top level of the PDR system Once the above mentioned OPB peripherals are
created, we move onto creating the top level of our PDR system. The top level VHDL file:
equivalently called the top.vhd file, consists of the global logic, such as clock primitives (e.g.
DCMs and BUFG global clock buffers); instantiations of I/O ports; base design, partial reconfig-
urable region (PRR), bus macros; and signal declarations. An initial user constraint file is also
created for this top level manually. The base design instantiation corresponds to the processor
subsystem, while the PRR corresponds to the dynamic hardware accelerator.

The output signals from the instantiated PRR region are sent to appropriate bus macros.
These bus macros connect the output signals to the external ports of the FPGA, in order to send
the result to the monitoring system of the anti-collision radar detection system. We also inte-
grate an event observer in this top level vhdl file, whose functionality is provided subsequently.
Via the model transformations, we generate a code skeleton related to the top level HDL file,
which is then modified manually.

Figure 9.19: An abstract overview of the top level VHDL file. This figure is equivalent to that
presented in Figure 9.15

Integrating event observer at the RTL level As elaborated previously in this dissertation, it is
evident that control events are generally non deterministic in nature and depend upon the user
input, while data computations in Gaspard2 are deterministic and arrive in a regular manner.
Nevertheless, in Gaspard2, control events are treated in the form of control arrays similar to
data arrays. This equivalence signifies the arrival of a control event at each instant of time t,
as specified at the high level modeling diagrams. However, this is not always the reality and

10EAPR user guide: http://www.xilinx.com/support/prealounge/protected/index.htm
11The Xilinx ISE 9.1 version is used for the synthesis process related to the PDR system
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the arrival of control events usually depends upon environmental requirements, QoS criteria or
designer specifications.

In order to respect the control semantics specified earlier, the notion of an EventObserver
is thus introduced at the RTL level in the highest hierarchical reconfigurable system entity. The
internal mechanism of the observer is created due to the presence of certain model-to-text trans-
formation rules, which first determine the number of event input ports present in the mode
automata component in the RTL model. Afterwards, the rules analyze if each of these ports is
connected to a respective tiler component. If the condition is set to true and a tiler component
is attached to input each event port, that event is considered as a valid event12. Finally the ob-
server and its interior mechanism is created by a subrule. We avoided adding the concept of
an event observer at the MARTE profile level in order to distance the user from management of
the incoming events, which is viewed as a lower abstraction level detail. Figure 9.19 illustrates
the presence of the EventObserver in the partial dynamically reconfigurable system.

The EventObserver takes user inputs at irregular time intervals and produces events at each
instant, for regular arrival of control events into the program being executed in the reconfig-
uration controller. This component has input and output event ports EventIn and EventOut
respectively, as well as the Clk and Rst ports for clock and reset signals. The EventIn port is
connected to the top level UART_Rx input port of the top level structure while the EventOut
port is connected to the processor subsystem’s UART_Rx input port. The algorithm related to
the EventObserver is presented below using an informal semantic:

1 Sensitivity List (Clk, Event)
if

CLK is TRUE and Event
then

5 EventOut = Event;
else if

CLK = TRUE and NOT Event
then
EventOut = Default Value;

10 end if;
End Sensitivity List

The user input can arrive irregularly at any instant of time, where as an event value is needed
at each instant of time t in order to respect Gaspard2 semantics. The EventObserver listens on
its input port, and at each rise of clock, checks if an event is present or not. In the first case,
the event is sent to the processor subsystem and in turn the reconfiguration controller which
causes a successful state transition (or a self transition). In the second case, if there is no user
driven input event at time t, then the EventObserver generates a default event e_d causing a
self transition in the state machine. This value can be viewed as a special value among the set
of values corresponding to the all expression, related to the high level modeling illustrated in
Figure 6.31, the expression catches any event not specified in related transitions and causes a
self transition in the state graph. If ξ is the set of all possible events and E is the set of events
related to the different configurations (including the event related to an empty configuration),
then the overall relation is then expressed by the equation:

E = {e_1, e_2, e_3} , all = {ξ � E} ∪ {e_d} (9.4)

Here events e_1, e_2 and e_3 correspond to three unique events assigned to three different
configurations respectively. A self transition in the statemachine does not switches an executing
configuration, while a transition to a different state causes the controller to perform a switch to
the corresponding configuration. While this notion introduces regularity in the arrival of con-
trol events, it is possible that a control event and the eventual configuration switch causes a
disruption in the data flow of the application implemented as a reconfigurable hardware accel-
erator. It is thus critical to determine the precise moment for an effective configuration switch

12AlthoughMARTENFP/OCL constraints can also be used for this verification, they are currently not fully integrated
in Gaspard2, and thus not utilized in our design flow
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while avoiding the failure of the required application functionality. Our works could benefit
from the notion of degree of granularity proposed in [172] which effectively responds to the syn-
chronization of the control/data flow. However, the disadvantages of this approach have been
previously cited in Chapter 6. Additionally, it is possible that several control events arrive at
a time period shorter than that required for a given configuration. In that case, the events are
queued and the related configuration switches are executed sequentially.

Summary of phase 1 Once the top level of the system is created, we move onto synthesizing
the various portions: namely the OPB peripherals and the top level in ISE, while the static
(processor subsystem) portion has already been synthesized in the EDK. During the synthesis,
care should be taken to insure that the synthesis parameter IOBUF is enabled only for the top
level; and disabled for the other portions. This parameters permits integration of I/O buffers.

We now present the partial synthesis results of some of themodeled application components
in our case study carried out with the Xilinx ISE on the XUP board. Figure 9.20 shows the global
view of the synthesis of the modeled DECM application. Similarly, Figure 9.21 illustrates the
synthesis result of the AdditionTree component. The modeling of this component with the
UMLMARTE profile illustrates simple connectors, which determine the dependencies between
64 data elements, then 32, and so on. The synthesis results illustrate the equivalent hardware
components, connected by signals.

Figure 9.20: Synthesis result of the top level of the DECM

Figure 9.22 represents an extract of the synthesis results related to the RepeatedMultAdder
component in the modeled application. The interior elementary component
MultiplicationAddition is repeated 64 times, while the input and output tiler con-
nectors are transformed into equivalent components. These components resolve the data
dependencies between the input/output arrays and the patterns consumed by the various
repetitions of the elementary component. Finally, in the DECM functionality, a sliding window
is necessary in order to carry out the necessary multiplications. This data dependency is
generated by means of a tiler component in the TimeRepeatedMultiplicationAddition
component. Figure 9.23 illustrates the correspondence between this modeled concept and
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its equivalent synthesis result. The code related to the transformed tiler component at the
hardware accelerator is presented in appendix C.

Figure 9.21: Synthesis result of the AdditionTree component

Figure 9.22: Synthesis result of the RepeatedMultAdder component

9.4.4.2 Phase 2: Utilization of PlanAhead tool

Once the synthesis process has been completed, wemove onto the budgeting phase of the EAPR
methodology. The budgeting helps in determining the size and location of PRRs, as well as the
placement of bus macros between the static and dynamic regions. While the budgeting can be
done manually, it is a time consuming and error prone process. To avoid these issues, we make
use of the Xilinx PlanAhead tool13 [169] that greatly automatizes the EAPR flow, and is normally
deployed between synthesis and place-and-route phases.

PlanAhead permits the creation of static and partial reconfigurable regions, in the form of
rectangular physical blocks (PBlocks), in a graphical environment. These blocks when once
created, can be placed and sized on the floorplan of a target FPGA. The PBlocks help in physical
partitioning of the design, and can be hierarchically composed. With respect to PBlocks, different
estimations of performance are immediately available to aid the designer in optimizing the

13The version 10.1 of PlanAhead has been utilized in our case study
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Figure 9.23: Synthesis result of the tiler expressing the sliding window data dependency

design layout, before final place-and-route. As the EAPR flow is based on a modular design
methodology, the partially reconfigurable region or PRR in our design is assigned to a PBlock;
for providing related estimates of consumed FPGA resources.

The size of a PBlock related to an allocated PRR can be easily modified in PlanAhead, if
the associated resources such as slices, LUTs, etc.; are not sufficient enough for an effective al-
location. Additionally, all the different partial reconfigurable modules (PRMs) associated to a
PRR are assigned to this block. Once the optimum size and location of the PRR is determined,
bus macros are placed in a CLB column inside the PBlock that is close to the PRR boundary,
so that the macros can physically straddle the static/dynamic regions. Figure 9.24 illustrates
an example of a bus macro present between the static and dynamic regions in our PDR sys-
tem. Additionally, PlanAhead automatically generates the user constraint files for each module
containing information related to bus macros and other associated details.

Figure 9.24: Example of a bus macro straddling the static/dynamic region boundaries

The shape and layout of the PRR depends entirely upon the designer and the environmental
requirements. During the case study, the PRR containing the hardware accelerator was given a

202



9.4. IMPLEMENTING A PARTIAL DYNAMICALLY RECONFIGURABLE DECM

basic rectangular shape, having a height greater than its relative width, as illustrated in Figure
9.25. This PRR was placed on the top right side on the floorplan of the targeted FPGA. The size
of the PRR was optimized to be sufficiently large enough to incorporate both the related PRMs
(the DSP and the If-then-else implementations of the accelerator). Table 9.1 gives the FPGA
resources required for the implementation of the PRR, determined by PlanAhead.

Figure 9.25: Placement of the PRR in the PlanAhead environment

Slices 1400
Slice FlipFlops 2800

LUTs 2800
18x18 Multipliers -

BRAM16s -
TBUF -

Table 9.1: PBlock requirements for the accelerator (PRR) and its associated configurations
(PRMs)

Once the bus macros and the top level primitives are properly placed in the floor plan, de-
sign rule checks (DRCs) are executed to determine the presence of errors or warnings. After
the successful completion of DRC step, it is possible to create the corresponding static/partial
bitstreams related to the PDR system.

For this, the PlanAhead tool first generates the top level context by creating a file in native
Xilinx format: containing information related to clock resources, bus macro placements, static
routes inside PRRs, static and PRM module placements, etc. This information is then passed
onto the phases related to the static and PRM implementations. Once the static bitstream and
the different PRM bitstreams (for the PRR) are created, a merge mechanism creates a complete
design (a full bitstream comprising of a merge of the static and DSP configuration bitstreams).

This resulting bitstream is the bootup full bitstream for the targeted FPGA. Similarly, a blank-
ing bitstream is also created for the PRR, via the EAPR tools. The blanking bitstream is empty in
the sense that it does not contain any PRM logic, except the static routes crossing through the
PRR. This bitstream can be loaded when a PRM related to the PRR is not required, resulting in
reduced power consumption.

203



Gaspard2

Finally, the compact Flash memory provides the storage for the partial and full bitstreams.
The concatenated full bitstream is first converted into a SystemACE file14, in order to be utilized
by the SystemACE controller. Afterwards, when the FPGA is powered on for the first time, the
initial full configuration is loaded and the program associated to the PowerPC reconfigurable
controller begins executing; and is displayed on the screen of the host PC via a hyperTerminal
program. The user enters some predefined inputs, each input corresponding to a particular
configuration. These inputs help in providing the configuration switch related to the hardware
accelerator; and the result (the time taken for a reconfiguration between two configurations)
related to the switch is displayed accordingly on the host PC, verifying that an effective recon-
figuration has taken place.

DSP Configuration If-then-else Configuration
Slices 1272/13696 (9.287%) 1186/13696 (8.659%)

Slice FlipFlops 2084/27392 (7.608%) 1944/27392 (7.096%)
LUTs 1584/27392 (5.782%) 1836/27392 (6.702%)

Reconfiguration Time (secs) 1.45 1.41

Table 9.2: Results related to the two configurations for the hardware accelerator. The percentage
is in overview of the total FPGA resources. The results related to the blanking configuration
have not been illustrated in the table

Figure 9.26: Partial bitstream related to the DSP
configuration

Figure 9.27: Partial bitstream related to the If-
then-else configuration

Table 9.2 shows the results related to the two configurations. The first configuration con-
sumesmore FPGA resources in comparison to the second one. Additionally, the reconfiguration
time to switch from the If-then-else configuration to the DSP one is higher, comparatively to the
inverse case. This is because the ICAP core needs to modify several additional frames for the
DSP configuration, as compared to the latter. While the reconfiguration time is extremely high
for both configurations, this is due to the low bandwidth (115200 bps) of the RS232 controller
and the large size of the partial bitstreams. Using an external SRAM memory can greatly de-
crease the reconfiguration times, similarly various other optimizations can be carried out with

14Details related to SystemACE file generation can be found at http://www.xilinx.com/
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respect to the implementation, as illustrated subsequently in the next section. Figures 9.26 and
9.27 show the two partial bitstreams of the hardware accelerator respectively, while Figures 9.28
illustrates the static bitstream containing the processor subsystem and the event observer.

Figure 9.28: static bitstream

Finally 9.29 represents the initial bootup full bitstream that is a merge of the static and the
DSP configuration partial bitstreams. The functionality of the different configurations during
the configuration switch has been verified by the output to the monitoring unit in the radar
system. During a configuration switch, the DECM does not generates an output; and hence no
detection is carried out. Once a context switch occurs, the monitoring unit starts receiving the
generated DECM outputs related to the switched configuration.

The results generated by the monitoring unit after a successful reconfiguration related to a
hardware accelerator configuration are compared with those generated during a static imple-
mentation of the related configuration. A match was found between the two results, taking
into account the time taken during the reconfiguration. The match ensured that an effective
reconfiguration was carried out. The outputs of the DECM can also be verified using the Xilinx
Chipscope tool15. However, this last step has not been carried out, during this dissertation.

It should be observed that during the case study, we only focused on one of the QoS criteria
related to the available IPs, i.e., the FPGA resources consumed on an FPGA. However, other
criteria such as dynamic power consumption, DSP blocks, performance throughput can also be
selected, depending about designer requirements.

9.4.5 Design Space Exploration related to PDR

As explained previously in chapter 1, during this thesis, an application driven approach has
been adapted. This is because a large number of related works already exist in the domain of
partial dynamic reconfiguration, with special focus on optimizing architectural details. Con-
sequently, the applications needed to be executed on the reconfigurable system are usually ig-
nored. We now provide a brief exploratory study illustrating some of the optimizations pos-
sible at the RTL level. Additionally, this study proves that partial dynamic reconfiguration is
a convoluted process and is directly dependent on several critical factors such as placement

15http://www.xilinx.com/support/training/abstracts/chipscope.htm
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Figure 9.29: Full bitstream related to the PDR system

and shape of a PRR; available FPGA resources, timing constraints related to the created system;
performance required by the system, etc. The PDR system presented previously is one of the
implementation choices available to a designer. With respect to implementing PDR in a targeted
FPGA, we analyze some of the main customizations possible:

• Controller type: For implementing self reconfiguration, the reconfiguration controller can
either be an hardcore PowerPC or a softcore processor such as a Microblaze. The ad-
vantage of using an hardcore processor is that no additional resources such as slices are
required, as compared to a softcore based approach. In Figure 9.30, the different con-
figurations of the hardware accelerator are controlled by means of a softcore Microblaze
processor. The processor is connected to the slave peripherals by means of an OPB bus.
This controller introduces an additional overhead of 475 slices in the targeted FPGA. How-
ever, the reconfiguration times related to the two configurations reduce by a factor of ap-
proximately 1.7%, with the softcore processor executing at 100 MHz. This is due to fact
that while a PowerPC based system executes the related instructions in a single cycle, the
presence of extra PLB bus and PLB to OPB bridge introduces additional latency during
the reconfiguration. Normally a hardcore controller provides better performance, at the
compromise of the throughput related to reconfiguration time. Table 9.3 shows the com-
parison of the two controllers with respect to reconfiguration times.

• PRR layout/shape: Similarly, modification of shape and the layout of the PRR has a direct
impact on reconfiguration times. In Figures 9.31 and 9.32, the shape of the PRR has been
modified by rotating it 90 degrees in a counter clock wise direction, making its width
larger than the related height. The reconfiguration times for both configurations associ-
ated to this modified PRR are nearly two times greater than the time observed for the
non modified PRR, using a hardcore processor. This is due to the reason that the ICAP
performs the read-modify-write mechanism on a number of frames double to that of the
original PRR. Table 9.4 provides the FPGA resources required for the PRR, while Table 9.5
gives the reconfiguration times.

• Bus macros type and placement: Bus macro placement also has a direct influence on the
reconfiguration times, as well as system timing constraints. Unfortunately, the EAPR flow
does not provides the designer with an optimum solution for the placement of these hard

206



9.4. IMPLEMENTING A PARTIAL DYNAMICALLY RECONFIGURABLE DECM

Figure 9.30: The PDR system with a Microblaze reconfiguration controller

DSP configuration If-then-else Configuration
PowerPC 1.45 1.41
Microblaze 0.85 0.79

Table 9.3: Comparison of the reconfiguration times (in secs) for both controller types

macros. Similarly the direction and type of the bus macros depends on the designer and
target system requirements. A poorly placed bus macro can drastically change the overall
result. It is up to the designer to determine the optimum position for the bus macros. This
is one of the most painstakingly error-prone steps related to the EAPR flow.

• ICAP attachment: Moreover, for a hardcore based system; it is a designer’s choice to
attach the ICAP core with the PLB or the OPB bus. This choice is not present for a softcore
based system. A DMA (Direct Memory Access) module can also be incorporated into the
system, for enhancing the system performance. Similarly customized ICAP controllers
can be created to speed up the reconfiguration times [146].

• Attachment of the hardware accelerator: Another option related to the optimization is the
choice related to the attachment of the hardware accelerator. It can either be attached to
the PLB/OPB buses in a hardcore based system or also to the FSL/OPB buses in a softcore
based solution. Each different scenario causes different end results.

• Memory placement: Currently the stored partial bitstreams are placed in an external com-
pact Flash memory. However, the usage of an external SRAM memory can also be inte-
grated. This memory permits the partial bitstreams to be preloaded from the CF during
initialization for decreasing the reconfiguration time.

• Targeted FPGA: Finally, PDR is also greatly affected by the choice of the targeted FPGA.
Currently the EAPRmethodology has been fully tested on the Xilinx Virtex-IV and Virtex-
II/Pro series FPGAs only. While the older series FPGAs contain only a single ICAP core,
FPGAs from Virtex-IV and onwards contain two ICAP primitives operating at greater
frequencies. This hardware evolution can greatly improve the reconfiguration process.
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Additionally, the reconfiguration granularity of these architectures has also been reduced,
permitting to place different PRRs in the same FPGA device column.

Figure 9.31: DSP configuration bitstream for the
modified PRR

Figure 9.32: If-then-else configuration bitstream
for the modified PRR

Slices 1600
Slice FlipFlops 3200

LUTs 3200
18x18 Multipliers -

BRAM16s -
TBUF -

Table 9.4: PBlock requirements for the accelerator in the modified PRR

DSP Configuration If-then-else Configuration
Slices 1272/13696 (9.287%) 1186/13696 (8.659%)

Slice FlipFlops 2084/27392 (7.608%) 1944/27392 (7.096%)
LUTs 1584/27392 (5.782%) 1836/27392 (6.702%)

Reconfig. Time (secs) 2.87 2.85

Table 9.5: Results related to the two configurations

Summary As seen from the section related to dynamic reconfiguration, different combina-
tions are possible for the creation of a PDR system. Each of these scenarios result in different
end results, configuration throughputs, power consumption levels, etc. Thus it is not possible
to determine the optimum de-facto system related to self configuration. This choice depends
upon the targeted application domain, the selected architecture, designer requirements and the
various tools required for the eventual implementation. Currently the EAPR flow is greatly af-
fected by the underlying tools; and the designer has an initial hard learning curve to become an
expert for manipulating the related tools. Similarly, the compatibility between the tools and the
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architectures is also a critical issue. A case in point is that while the new Virtex-V and Virtex-VI
series FPGAs support dynamic reconfiguration, the latest versions of the synthesis tools are not
fully compatible with the EAPR flow16.

9.5 Conclusion

This chapter provides a case study in order to validate our design flow for modeling and im-
plementing dynamically reconfigurable systems. A critical portion of a complex anti-collision
radar detection system has been initially modeled using the Gaspard2 environment. After-
wards, using the model transformation chain associated to our design flow, we generate the
necessary code for implementing the PDR system. The functionality of the generated hardware
accelerator has been verified by initial simulation. Later on, the generated code is taken as input
by the EAPR flow for implementing the PDR system.

While a large part of RTL implementation related to the PDR system is carried out manu-
ally, this is due to limitations of the current design tools which makes it extremely difficult to
elevate the design abstraction levels. Similarly, architectural modifications at this level have a
significant impact of the overall results. This is evident as discussed in the last section related
to the PDR system optimizations. We now present the conclusions and perspectives related to
our thesis.

16The EAPR flow is currently only compatible with ISE/EDK 9.2, as compared to the latest versions of these tools
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Summary

The works presented in this dissertation are carried out in the context of development of dy-
namically reconfigurable SoCs, dedicated to data intensive parallel computation (DIP) applica-
tions. These contributions have been integrated in a SoC Co-Design framework: Gaspard2. The
framework benefits from a high abstraction level approach and is compliant with the MARTE
profile for design and development of real-time embedded systems. It is important to note that
through out the integration process, great attention has been paid to inspire from component
based SoC conception methodologies based on models, for resolving the problems of escalating
complexity related to SoC design. The result of the works is the proposal of a compilation chain
for the development of dynamically reconfigurable SoCs, automatized and entirely revolving
around principles related to Model-Driven Engineering. Finally, the thesis is a combination
of contributions in different domains such as SoC Co-Design, Model-Driven Engineering and
MARTE, as illustrated in the introductory chapter.

Application oriented high level design flow

The starting point of our design flow was to adapt an application-driven approach related to
the construction of a dynamically reconfigurable SoC. As explained during the course of this
document, nearly all of the efforts related to the reconfigurable domain focus on optimizing
architectural details at the RTL level. In turn, the intended application functionalities to be ex-
ecuted on these systems are generally left ignored, or are not realistic in nature. While some
researches promote elevation of design abstraction levels, they are normally incompatible with
each other and do not achieve the advantages offered by design methodologies such as Model-
Driven Engineering. Focusing on an application based design flow; we aim to provide MARTE
compliant models related to key aspects of a reconfigurable SoC: mainly the application func-
tionality linked to a dynamically reconfigurable hardware accelerator of the system; and control
semantics, which perform the switching operations related to different implementations of the
modeled application; and are in turn associated with a reconfiguration controller.

Generic control semantics

For the above mentioned control semantics, we first looked at control features present in the
domain of component based software engineering, as discussed in chapter 2. A large number
of component models exist in literature, but few offer features of dynamic adaptation and high
abstraction levels. Moreover, models concentrating on real-time embedded systems are usually
heavy weight in nature and incompatible with each other. For this we turn towards MARTE
that offers a light weight approach based on UML components, as illustrated in chapter 3. One
of our initial contributions is the proposal of a component based generic mode automata con-
trol semantics that can be applied to different levels of SoC Co-Design. The semantics can be
expressed via MARTE profile, helping a designer to define control features at high modeling
levels. While the semantics can be integrated at different design levels, we offer an interest-
ing comparison and propose a novel solution: introduction of control at a level independent of
other design levels, offering advantages of re-usable models and QoS based scenarios.
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IP based configuration approach

Subsequently, the control semantics are integrated at the IP deployment level in Gaspard2. This
amalgamation helps in introducing the notion of system configurations in Gaspard2. Each con-
figuration can be associated to different system QoS criteria and can be viewed as an implemen-
tation of the modeled application: comprised of unique collection of Intellectual Properties (IPs),
which are related to application elementary components. The combination of control and con-
figurations at the deployment level makes it possible for a designer to change a configuration
related to the modeled application. The change occurs due to the QoS choices present at the
deployment level, with each different configuration offering diverse end results.

Extension of the MARTE metamodel

The proposed contributions were then added inMARTE, resulting in an extension of the current
MARTE metamodel. Equally the MARTE profile respecting the metamodel was extended, for
helping designers to represent the previously mentioned proposals in UML graphical modeling
tools such as Papyrus. The metamodel extensions mainly relate to addition of MARTE compati-
ble state machine concepts for modeling of mode automata; and the deployment level concepts
inspired from Gaspard2. These extensions help the corresponding model transformations to
interpret the high level models specified with the MARTE profile, for creation of intermediate
models and aid in eventual code generation.

Hardware execution model for dynamic hardware accelerator

For successful translation of a high level application into a hardware accelerator, intended as the
dynamically reconfigurable region; we propose an extension of the hardware execution model
currently present in Gaspard2. While different execution models are possible for Gaspard2 ap-
plications; in the context of partial dynamic reconfiguration, we propose a parallel execution
model that preserves characteristics of hierarchy, task and data parallelism of the modeled ap-
plication, in the transformed hardware functionality.

RTL metamodel with dynamic aspects

One of the significant contributions carried out during the course of this dissertation is the en-
richment of the existing RTL metamodel in Gaspard2. The RTL metamodel proposed in our
design flow inspires from MARTE itself and adds notions such as components, behavior and
automata. The RTL metamodel itself comprises of two significant portions, the first one related
to concepts for transforming the modeled application into a hardware accelerator. Additionally,
the configurations related to the application are transformed into different implementations of
the accelerator. The second portion of the metamodel is related to the control semantics, it
converts the modeled state machines into a mode automata for eventual execution in the recon-
figurable controller. The RTL metamodel is independent from any specific targeted language
for code generation. The concepts are generic enough to produce HDL (VHDL or Verilog code)
for the hardware accelerator portion, or C/C++ or HDL code for control. Due to a personal
choice, only VHDL code has been generated from the model transformations, while the choice
of generating C/C++ code for the controller has already been explained earlier.

Model transformations

A significant contribution of this thesis is the development of MDE model-to-model/text trans-
formations in the context of Gaspard2. The model-to-model transformations written in QVTO,
take as input the UML diagram specified with the MARTE profile and transform it into suc-
cessive intermediate models, each corresponding to its proper metamodel. Each intermediate
model adds additional information, with the intended goal of bridging the gap between high
level diagrams and the generated code. The model-to-model transformations finally result in
the RTL model, which provides an abstraction level near to the electronic Register Transfer
Level. The proximity between the RTL model and the eventual code helps the model-to-text
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transformation in generating the code for different implementations of the dynamic hardware
accelerator and the reconfiguration controller.

Experimental validation

Finally we provide an experimental validation of our design methodology by providing a case
study related to an anti-collision radar detection system. A key component of this system is
modeled in Gaspard2 and is eventually converted into a dynamic hardware accelerator. The
simulation results related to different implementations of the accelerator verify that a correct
transformation has occurred. Finally, the hardware accelerator is integrated into the PDR sys-
tem in the form of an IP-core. The reconfiguration controller carries out the configuration switch
related to the different implementations, by executing the code generated from our design flow.
The outputs produced by the reconfigurable hardware accelerator are validated by amonitoring
module in the radar system, helping in validation of our design methodology.

Discussion

Reduced development time

One of the advantages of our design flow is the reduction of design time required for the speci-
fication of a complex dynamically reconfigurable system. With regards to the case study, in [72],
the authors developed a hand tuned version of the application in approximately five months.
Afterwards, they carried out the development of a parametric VHDL based correlator generator
tool. The tool was implemented in C++ and permitted to change correlation parameters, such as
the length of PRBS, data resolution, etc. With respect to an hand tuned implementation, the de-
velopment time for a model driven design flowmay be comparatively a bit lengthier. However,
once the transformations are developed, a designer can change the application specifications
in a matter of hours. Additionally, while the hand-tuned development time is related to one
specific application, the model transformations in our design flow can be used for a wide range
of applications supported by Gaspard2.

Advantages of MDE

Finally, anMDE design flow simplifies the construction of a SoC, by providing simple graphical
notations, which are easily comprehensible. These notations liberate users from heavy syntax
and grammar of classical languages, facilitating in rapid system development. Additionally,
the model transformations can be viewed as more efficient and flexible with regards to classi-
cal compilers. An example can be of the correlator generator tool discussed above. Change in
the functionality of the tool can be a complex and difficult task, as compared to model trans-
formation rules that are modular and independent from each other. Thus new functionalities
can be easily integrated, while existing ones can be modified due to the nature of the transfor-
mations. Similarly, intermediate models can be introduced in the compilation chain, helping in
evolution of a design flow. Finally, the tools associated with or dedicated to MDE are evolving,
permitting good support for MDE based development. As MARTE move towards final stan-
dardization process, future versions of UML modeling tools will support MARTE profile, from
high level models to code generation phases.

Perspectives

Need of a complex reconfiguration mechanism

Currently in our design flow, the integrated reconfiguration controller is simplistic in nature,
and depends upon external user inputs for carrying out the configuration switches. An intelli-
gent controller can be extremely beneficial in a future extension of the flow, permitting a con-
text switch without user intervention. Thus a resulting hardware accelerator from a modeled
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application can be executed on a targeted architecture, in turn actively communicating with
the controller. Upon termination of its current functional execution, the accelerator can signal
the controller to perform an effective reconfiguration. The controller thus should be capable to
integrate an efficient data management mechanism for preserving the data flow before/after
the switch. Additionally, a real-time operating system (RTOS) or middeware can be employed
for handling this mechanism in a complex reconfigurable SoC. One of the dilemmas of this ap-
proach is expressing the low level details related to a complex controller at high design abstrac-
tion levels. Another present problem is the model of computation, namely Array-OL associated
with our design flow. While our introduced extensions expand the MoC with dynamic aspects,
they are insufficient enough to address data flow management strategies. Hence a robust dy-
namic MoC is required, that can be expressed in MARTE profile and is capable of handling the
various issues related to dynamic reconfiguration.

Control at different SoC Co-Design levels

As seen earlier in the document, we have presented a generic control semantics that can be ap-
plied onto different levels of a SoC Co-Design framework. While during the course of this the-
sis, we have focused on its integration at the IP deployment level in Gaspard2, it can be equally
incorporated in other models; such as the application level. This will permit to change one
modeled application functionality by another, while respecting the control semantics. Equally,
a global controller can be integrated into the system for handling local controllers at different
design levels. Additionally, control at deployment level can be extended for the formation of
complex configurations. The granularity level of the configurations can be reduced, i.e., a con-
figuration can be allocated to a specific partition of the available application, resulting in the
creation of partial configurations. Moreover, nested configurations can be created, culminating
in the creation of a nested state graph and a subsequent mode automata having several hierar-
chical levels. In consequence, careless switching of these partial configurations may produce
instability in the end results, necessitating a mechanism for managing this extension.

Extension of current execution model

The compilation chain presented in our design flow currently transforms the whole specified
modeled application into a single hardware accelerator; however, new transformation rules can
be added to the compilation chain, making it possible to implement key kernels of the appli-
cation onto a single or separate hardware accelerators, while other non critical portions can be
sequentially executed on available resources such as hard/soft microprocessors. This adds an
additional layer of complexity in the design, for providing synchronization mechanisms of the
related control/data flow and the communication in the overall system. This manner of allo-
cation can be simplified by providing high level constructs showcasing the complete system
(application, architecture and allocation). Furthermore, while we currently focus on a parallel
hardware execution of the modeled application, a sequential execution may be interesting from
a QoS point of view. The choice of an execution should be expressible at the modeling level, pro-
viding designers with different execution choices. Additionally, parametrable code generation
can be an interesting approach, by utilizing the concepts of templates present in UML specifi-
cations. Correspondingly, current model transformations should be evolved to interpret these
new concepts specified via the MARTE profile.

Targeting heterogeneous MPSoC based systems

Similarly, MPSoC based systems can be targeted from a future extension of our design flow.
Currently, research related to this aspect has been started in the thesis of Chiraz Trabelsi in our
project-team. The goal is to implement an MPSoC system with heterogeneous processors such
as PowerPC and Microblaze, with each processor attached to a monitoring module for observ-
ing the processor execution activities. The module can then send input to a global controller for
an affective configuration of the processor in question. The development of such a system at
the MARTE profile level needs high level modeling of the system, as illustrated in appendix A.
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Additionally, new transformation rules need to be developed, as well as intermediate metamod-
els. An interesting point can be the generation of SystemC code for the system, and afterwards,
move onto HDL translation. This could bridge the gap between the simulation and synthesis
compilation chains currently existing separately in Gaspard2.
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Appendix A

High level FPGA modeling in
MARTE

One of the current limitations of our design flow is the absence of high level MARTE models for speci-
fying the targeted reconfigurable architectures. As discussed during the course of this dissertation, this
limitation is due to the absence of intermediate levels between the high design abstraction levels offered by
Model-Driven Engineering; and the low level RTL tools responsible for simulation and final implementa-
tion of dynamically reconfigurable SoCs. However, we have proposed an initial contribution in [203, 205],
as illustrated in Figure A.1, but corresponding model transformations have not been developed, due to
the limitations described before. The contributions extended the MARTE profile and related metamodel,
for expressing dynamic aspects at the modeling phase. Figure A.1 shows the modeling of a Xilinx Virtex II-
Pro XC2VP30 FPGA on the XUP board, used in our case study. The modeling is similar to that illustrated
in Figure 9.15, albeit some minute differences such as the introduction of an SRAM controller.

Figure A.1: Modeling of an FPGA with the MARTE profile

The high level modeling helps in creating a complete system (application and architecture), while the
allocation, as illustrated in Figure A.2, permits to allocate the application onto the targeted architecture.
This aspect can allow the designer different allocation choices: for example, the complete application
can be placed onto a hardware accelerator, or either available hard/soft core processors present in the
targeted architecture. Additionally, it is possible to separate the execution of the application: some key
kernels can be executed onto hardware accelerator permitting a parallel execution, while others can be
executed sequentially. The control semantics modeled in our design flow can also be allocated onto a
specific processor, eliminating some of the current present ambiguities.
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An intermediate solution for bridging the gap between MARTE based UML models and low level
tools can be the introduction of novel model transformations. The transformations should be capable of
interpreting the high level architectural models, and in turn can produce a part of input files required by
the RTL tools. These files can be either in the form of some architectural description documents (such
as generated by Xilinx EDK tool); for determining the structure of the architecture, i.e., instantiation of
submodules and their external interfaces/ports. The RTL tools can thus take these files and generate the
corresponding HDL code and software drivers for the creation of the specified architecture.

Finally, our modeling methodology can also be extended by integrating the MARTE hwPhysical ar-
rangement notation that provides rectangular grid-based placement mechanisms for bridging the gap
between UML diagrams and actual physical layout and topology of the targeted architecture. Unfortu-
nately, due to the current functional limitations of the UML modeling tools, it is not possible to express
this view. However, this view could be a potential additional aid to commercial PDR tools such as PlanA-
head. Designers can specify the FPGA layout at the MARTE specification level, helping the RTL designer
in specifying an initial layout in MARTE. At the Register Transfer Level, designers can accurately estimate
if the layout is feasible and determine the number of consumed FPGA resources. Finally using these sim-
ulation/synthesis results, the high-level models can be modified resulting in an effective DSE strategy for
PDR-based FPGA implementation.

Figure A.2: Allocating the application onto the hardware accelerator present in the FPGA
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Appendix B

MARTE proposal for configurations

During the writing of this dissertation, we observed that the current version of the MARTE specifications
has also proposed the notion of configurations1. The current MARTE proposition for the modeling of
embedded system configurations and their associated controllers is inspired from AADL; and also relies
heavily on the usage of components and finite state machines (FSMs), as illustrated in the following ex-
amples. Figure B.1 illustrates the MARTE profile concepts related to system modes and configurations. It
is evident that there is a one to one correspondence between these concepts and pure UML state machine
semantics. A mode is related to a system configuration, and mode transitions switch between the different
available configurations.

Figure B.1: Modes and Configurations in MARTE profile

Example of system configuration modeling in MARTE

Figure B.2 illustrates a component2, with the stereotype «configuration» that represents a MARTE
configuration for an allocation of an application functionality onto a hardware architecture. More
generally, this component encapsulates a model in the form of a classifier or a package. The
mode value FullProcessorMode indicating an active configuration is noted on the top right of the
Mode_SystemConfiguration1 component.

More concretely, the figure illustrates the mapping of the intra-part of an H.263 encoder dedicated
to video processing. The software application part is composed of three main components: a DCT, a
quantizer and a Huffman coding function. The application is to be allocated onto a hardware architecture:

1The concepts were introduced in MARTE Beta 3.0 specifications and are available in version 1.0 as well
2As the current specifications of the 1.0 version of the MARTE profile are not available for integration in existing

UML modeling tools, we have presented an abstract proximitive illustration
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composed of processors, a hardware accelerator, and memory devices. Here, the allocation expresses that
all functional components are executed on the processors.

Figure B.2: Processor-based homogeneous allocation

Now, Figure B.3 depicts another software/hardware allocation scenario, according to which only the
quantizer and the Huffman coding function are executed on the processors. The DCT is now executed
on a dedicated hardware accelerator offering better execution performances than a processor, due to its
parallel regular execution. Indeed, it is well-known that the DCT is one of the most resource-demanding
parts of video encoding algorithms, and particularly of the H.263 encoder.

The way mode values are produced for selecting configurations is specified via an FSM, modeled in
Figure B.4. The FSM contains two states corresponding to the illustrated configurations. Each state of
the FSM is associated with some mode value specifications. An active configuration is therefore the one
associated with a mode value, corresponding to the current state of the controller FSM. The transition from
a configuration to another is captured via the transitions of the states present in the FSM.

Open questions

The current proposal in MARTE profile raises several interesting questions. Beyond the already identified
unclarities in the semantics of UML state machines on which the configuration controller definition relies
upon, there are further concerns during the interactions between a controller and its associated configura-
tions, as discussed onwards.

Controllers can be combined at different SoC Co-Design levels to describe more complex configuration
switches, as discussed in the dissertation. Typically, these controllers can also be composed in parallel.
An expected behavior is therefore that all controllers make their transitions in parallel, within the same
global transition. These parallel controllers may synchronize through their event occurrences, the output
from one controller being an input of the other. Another interesting scenario for composing controllers is
hierarchy, where a state of a controller may itself consist of another controller.

In the current proposition of MARTE, the semantics of such multi-level compositions of configuration
controllers is not clearly discussed. For instance, in a hierarchical controller, how does one synchronize the
states at a given level with states at the sub-levels? When a configuration gets suspended from a controller
state at a sub-level, how does one manages to resume this configuration? These questions can be answered
only if the semantics aspects are precised. In the literature, there are already several proposal candidates
for defining such a semantics [12, 151, 252]. Also the question related to the transitions of the configuration
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Figure B.3: Mixed processor/hardware accelerator allocation

switches becomes important, when focusing on an execution platform. In some cases, transitions may not
be immediate in nature, but a change from one state to another needs a stabilization phase, for example,
to preserve data flow before/after an effective switch. These issues need to be addressed via some specific
control semantics.

Figure B.4: Mode specification with an FSM

The mode automata based control semantics introduced in this thesis address some of these problems,
but do not provide a complete solution. However, an interesting approach would be the merge of the
MARTE proposal of configurations, and our introduced contributions. In [201], we have illustrated an
initial effort related to this aspect, with the goal of providing future extensions.
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Appendix C

Code examples

IP Code for elementary components of the DECM functionality

CoeffGen IP

1 library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.numeric_bit.all;

5 use IEEE.numeric_std.all;
use IEEE.STD_LOGIC_ARITH.ALL;

library imran;
use imran.userlibrary.all;

10

ENTITY myCoeffGenVHDL IS
PORT
(
clk : IN STD_LOGIC;

15 reset : IN STD_LOGIC;
IPOutCoeffGen : OUT TABLE_TYPE_128_Integerrange1to1);
END myCoeffGenVHDL;

ARCHITECTURE archimyCoeffGenVHDL OF myCoeffGenVHDL IS
20

signal reference : std_logic_vector(127 downto 0);

BEGIN

25 --the PRBS
reference <= "0111111111100011100010011101100101011101111010100011110

1001010100000101111111101010101011110100001110100100011001011010110011110";

process(clk)
30 begin

if clk’event and clk=’1’ then
IPOutCoeffGen(128)<=0;
for i in 1 to 127 loop

if reference(128-i)=’0’ then
35 IPOutCoeffGen(i)<=-1;

else
IPOutCoeffGen(i)<=1;
end if;

end loop;
40 end if;



end process;

END archimyCoeffGenVHDL;

DataGen IP

1 library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.numeric_bit.all;

5 use IEEE.numeric_std.all;
use IEEE.STD_LOGIC_ARITH.ALL;

library imran;
10 use imran.userlibrary.all;

ENTITY myDataGenVHDL IS
PORT
(

15 clk : IN STD_LOGIC;
reset : IN STD_LOGIC;
OutDataGen : OUT Integer range -8 to 7);
END myDataGenVHDL;

20 ARCHITECTURE archimyDataGenVHDL OF myDataGenVHDL IS

signal CounterEmission : INTEGER:=126;
signal Signal_Received : INTEGER range -8 to 7 :=0;
signal reference : std_logic_vector(127 downto 0);

25

begin

reference <= "0111111111100011100010011101100101011101111010100011110
1001010100000101111111101010101011110100001110100100011001011010110011110";

30

OutDataGen <= Signal_Received;

--process for input signal without noise
process(reset, clk)

35

begin
if reset=’0’ then
Signal_Received <= 0;
CounterEmission <= 126;

40

elsif clk’event and clk=’0’ then
if reference(CounterEmission)= ’0’ then

Signal_Received <= 7;
else Signal_Received <= -8;

45 end if;

if CounterEmission > 0 then CounterEmission<= CounterEmission-1;
else CounterEmission <= 126;
end if;

50

end if;
end process;

END archimyDataGenVHDL;
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MultiplicationAddition IP code for DSP configuration

1 library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.numeric_bit.all;

5 use IEEE.numeric_std.all;
use IEEE.STD_LOGIC_ARITH.ALL;

ENTITY myMultiplicationVHDL IS
10 PORT

(
clk : IN STD_LOGIC;
reset : IN STD_LOGIC;
IPInData1 : IN Integer range -8 to 7;

15 IPInData2 : IN Integer range -8 to 7;
IPInCoeff1 : IN Integer range -1 to 1;
IPInCoeff2 : IN Integer range -1 to 1;
IPOutData : OUT Integer range -4096 to 4095);
END myMultiplicationVHDL;

20

ARCHITECTURE archimyMultiplicationVHDL of myMultiplicationVHDL IS

signal Tempresult1 : INTEGER range -32 to 31:=0;
25 signal Tempresult2 : INTEGER range -32 to 31:=0;

signal TempFinalresult : INTEGER range -64 to 63:=0;
signal SignalConcat : STD_LOGIC_VECTOR (6 downto 0):="0000000";
signal SignalConcat1 : STD_LOGIC_VECTOR (12 downto 0):="0000000000000";
signal minusvalue : Integer range -4096 to 4095;

30

BEGIN

rt : process(reset,clk)
begin

35 if reset = ’0’ then
Tempresult1 <= 0;
Tempresult2 <= 0;
TempFinalresult <= 0;
elsif clk’event and clk=’1’ then

40

Tempresult1 <= IPInData1*IPInCoeff1;
Tempresult2 <= IPInData2*IPInCoeff2;
TempFinalresult <= Tempresult1 + Tempresult2;

45 end if;

minusvalue <= conv_integer(TempFinalresult);
IPOutData <= -minusvalue;

50 end process;

END archimyMultiplicationVHDL;

MultiplicationAddition IP code for If-then-else configuration

1

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
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5 use IEEE.numeric_bit.all;
use IEEE.numeric_std.all;
use IEEE.STD_LOGIC_ARITH.ALL;

10 ENTITY myMultiplicationVHDL IS
PORT
(
clk : IN STD_LOGIC;
reset : IN STD_LOGIC;

15 IPInData1 : IN Integer range -8 to 7;
IPInData2 : IN Integer range -8 to 7;
IPInCoeff1 : IN Integer range -1 to 1;
IPInCoeff2 : IN Integer range -1 to 1;
IPOutData : OUT Integer range -4096 to 4095);

20 END myMultiplicationVHDL;

ARCHITECTURE archimyMultiplicationVHDL of myMultiplicationVHDL IS

signal Tempresult1 : INTEGER range -32 to 31:=0;
25 signal Tempresult2 : INTEGER range -32 to 31:=0;

signal TempFinalresult : INTEGER range -64 to 63:=0;
signal SignalConcat : STD_LOGIC_VECTOR (5 downto 0):="000000";
signal SignalConcat1 : STD_LOGIC_VECTOR (12 downto 0):="0000000000000";
signal minusvalue : Integer range -4096 to 4095;

30

BEGIN

rt : process(reset,clk)
begin

35 if reset = ’0’ then
Tempresult1 <= 0;
Tempresult2 <= 0;
TempFinalresult <= 0;

elsif clk’event and clk=’1’ then
40 if IPInCoeff1 = 1 then

Tempresult1 <= IPInData1;
else

Tempresult1 <= -IPInData1;
end if;

45 if IPInCoeff2 = 1 then
Tempresult2 <= IPInData2;

else
Tempresult2 <= -IPInData2;

end if;
50 TempFinalresult <= Tempresult1 + Tempresult2;

end if;

minusvalue <= conv_integer(TempFinalresult);
55 IPOutData <= -minusvalue;

end process;

END archimyMultiplicationVHDL;

Addition IP

1 library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
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use IEEE.numeric_bit.all;
5 use IEEE.numeric_std.all;

use IEEE.STD_LOGIC_ARITH.ALL;

library imran;
use imran.userlibrary.all;

10

ENTITY myAdditionVHDL IS
PORT
(
clk : IN STD_LOGIC;

15 reset : IN STD_LOGIC;
IPInData1 : IN Integer range -4096 to 4095;
IPInData2 : IN Integer range -4096 to 4095;
IPOutData : OUT Integer range -4096 to 4095);
END myAdditionVHDL;

20

ARCHITECTURE archimyAdditionVHDL OF myAdditionVHDL IS

signal IPOutDataTEMP : INTEGER range -4096 to 4095 :=0;
signal IPInData1TEMP : INTEGER range -4096 to 4095 :=0;

25 signal IPInData2TEMP : INTEGER range -4096 to 4095 :=0;

BEGIN

rt : process(reset,clk)
30 begin

if reset = ’0’ then
IPOutDataTEMP <= 0;
IPInData1TEMP <= 0;
IPInData2TEMP <= 0;

35 elsif clk’event and clk=’1’ then
IPInData1TEMP<=IPInData1;
IPInData2TEMP<=IPInData2;
IPOutDataTEMP <= IPInData1+IPInData2;

40 end if;

IPOutData<=IPOutDataTEMP;

end process;
45

END archimyAdditionVHDL;

QVTO rules for ADO Pre-computations in Input Tiler

1

mapping GCM::AssemblyConnector::toInputTilerSubConnector() : Sequence(mmHardwareacc::HW_SubConnector)
{

5 init
{

var tiler := self.topology.oclAsType(RSM::linkTopology::Tiler);
var repetition : RSM::shape::ShapeSpecification := null;

10 var port : AssemblyConnectorEnd := null;
var portInstance : AssemblyConnectorEnd := null;

var paving : datatypes::IntegerMatrix := tiler.paving;
15 var fitting : datatypes::IntegerMatrix := tiler.fitting;

var origin : datatypes::IntegerVector := tiler.origin;
var rep : Sequence(Integer) := Sequence{};

var i := 0;
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20

result := Sequence{};
var portEnd : Extension::AssemblyConnectorEnd := self._end[assemblyPart =

null]->asSequence()->first();
var portInstEnd : Extension::AssemblyConnectorEnd := self._end[assemblyPart !=

25 null]->asSequence()->first();
var PartShape := portInstEnd.assemblyPart.shape->asSequence();

var ShapePort := portInstEnd.endPort.shape->asSequence();
-- ports of the tiler
var inputPort := portEnd.resolveone(HW_InputPort);

30 var outputPort := portInstEnd.resolveone(HW_OutputPort);

var ShapeArray := inputPort.dim.value->asSequence();

var productAll := 0;
35 var productPart := 1;

var productPort := 1;

var index_all : Sequence(Integer) := Sequence{};
i := 0;

40 --Product is the number of repeated instances

while (i < PartShape.size->size())
{

rep += 0;
45 productPart := productPart * PartShape.size->at(i+1);

i := i + 1;
index_all += 0;

};
i := 0;

50

var shiftregister := -1;
var length_shiftregister := 0;

while(i < ShapePort.size->size())
55 {

productPort := productPort * ShapePort.size->at(i+1);
i := i + 1;
index_all += 0;

};
60 productAll := productPart*productPort;

-- modification related to infinite dimension = -1 is converted to 1
--for subconnector generation
productAll :=

if (productAll < 0)
65 then productAll * -1

else productAll
endif;
--

i := 0;
70

while (i < productAll) {
var val := i;

var repIndex : Sequence(Integer) := Sequence{};
75 var k := PartShape.size->size();

while (k>0) {
repIndex += index_all->at(k+ShapePort.size->size());
k := k - 1;

};
80

var pattIndex : Sequence(Integer) := Sequence{};
k := ShapePort.size->size();
while (k>0) {

pattIndex += index_all->at(k);
85 k := k - 1;

};

90 -- calculate tiler s
k := 1;
var ref : Sequence(Integer):= Sequence{};

while (k <= origin.vectorElem->size()) {
var va := origin.vectorElem->at(k);

95 var j := 1;
while (j <= repIndex->size()) {

va := va + repIndex->at(j)*paving.matrixElem->at(j)
.oclAsType(datatypes::IntegerVector).vectorElem->at(k);

j := j + 1;
100 };

j := 1;
while (j <= pattIndex->size()) {

va := va + pattIndex->at(j)*fitting.matrixElem->at(j)
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.oclAsType(datatypes::IntegerVector).vectorElem->at(k);
105 j := j + 1;

};

--for the condition that the input port has an infinite dimension and that the
--subconnector source index dimension is no--t 0, meaning that data is not consumed

110 --at the same tick of clock and a shift register is necessary to accomodate the shifting
--window

if (va != 0 and ShapeArray->at(k) = -1) then {
shiftregister := k;

115 length_shiftregister := ShapePort.size->at(1);
} endif;
ref += va;
k := k + 1;

};
120

var subConnectors := object mmHardwareacc::HW_SubConnector
{

sourcePort := inputPort;
125 targetPort := outputPort;

-- compute repetition from counter
sourceIndex := object mmHardwareacc::HW_Shape

{
130 value += ref;

};
targetIndex := object mmHardwareacc::HW_Shape
{

value += repIndex;
135 value += pattIndex;

}

--source and target port for each subconnector
140

} ;

i := i + 1;
result += subConnectors;

145

var newindex : Sequence(Integer) := Sequence{};
var position := 1;
var value := 1;

150 while (position<=ShapePort.size->size())
{
var int := index_all->at(position) + value;
if (int < ShapePort.size->at(position))

then {
155 newindex += int;

value := 0;
}

else {
newindex += 0;

160 value := 1;
}

endif;
position := position + 1;
};

165

while (position<=ShapePort.size->size()+PartShape.size->size())
{
var int := index_all->at(position) + value;
if (int < PartShape.size->at(position-ShapePort.size->size()))

170 then {
newindex += int;
value := 0;
}

else {
175 newindex += 0;

value := 1;
}

endif;
position := position + 1;

180 };

index_all := newindex;

};
185

if (shiftregister != -1) then {
var hw_tiler := self.resolveone(HW_InputTiler);
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var hw_signal := object HW_Signal {
name := ’Signal’ + inputPort.name ;

190

dim := object HW_Shape {
value += length_shiftregister;
};
owner := hw_tiler;

195 type := portInstEnd.endPort.resolveType();

};
var hw_delayed := object HW_delayedSubConnector {

name := ’DelayedSubconnector’ + inputPort.name;
200

sourcePort := inputPort;
targetPort := hw_signal;
dim := object HW_Shape {

value += length_shiftregister;
205 };

sourceIndex := object HW_Shape {
value += 0;

};
delay := length_shiftregister - 1;

210 tilerOwner := hw_tiler;
type := portInstEnd.endPort.resolveType();

};

215 var subconnectors := result;
var c := 1;
while (c <= subconnectors->size()) {

var subconn := subconnectors->at(c);
subconn.sourcePort := hw_signal;

220 c := c + 1;
};

hw_tiler.signal += hw_signal;
225

result += hw_delayed;
}endif;

}
230

}
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MARTE based model driven design methodology for targeting dynamically reconfigurable FPGA based
SoCs

Abstract:
The works presented in this dissertation are carried out in the context of System-on-Chip (SoC) and embedded

system design, particularly dedicated to the domain of dynamic reconfiguration related to these complex systems. We
present a design flow based on Model Driven Engineering (MDE) and the MARTE SoC Co-Design profile, to specify
and implement these SoCs; in order to elevate the abstraction levels and to decrease system complexity.

The first contribution related to this thesis is identifying parts of dynamically reconfigurable SoCs that can be mod-
eled at the high abstraction levels. This thesis targets the high level application models to be treated as dynamically
swapple regions of a reconfigurable SoC, and proposes generic control models for managing these regions during run-
time execution. While these semantics can be introduced at several high abstraction levels of a SoC Co-Design frame-
work, we specially emphasis on fusion at the deployment level, that links intellectual properties to the modeled high
level design components. Additionally, these concepts have been integrated into the MARTE metamodel to provide a
suitable extension for expressing reconfigurability features at the high level modeling.

The second contribution is the proposal of an intermediate metamodel, that isolates the concepts present at the
RTL. This metamodel integrates concepts responsible for the hardware execution of the modeled applications, and en-
riches the control semantics, resulting in creation of a dynamically reconfigurable hardware accelerator with several
available implementations. Finally, using the MDE model transformations, we are able to generate HDL code equiva-
lent to the different implementations of the reconfigurable accelerator as well as C langauge source code related to the
reconfiguration controller responsible for the switching between the different implementations.

Finally, our design flow was verified successfully in a case study related to an anti-collision radar detection system.
A key integral component of this system was modeled using the extended MARTE specifications and the generated
code was used in the conception and implementation of a dynamically reconfigurable FPGA based SoC.

Keywords: Model-Driven Engineering, MARTE, UML, SoC Co-Design, Gaspard2, Parallel DIP applications, FPGAs,
Partial Dynamic Reconfiguration, Control semantics, Mode automata.

Une méthodologie de conception dirigée par les modèles en MARTE pour cibler les systèmes sur puce
basés sur les FPGA dynamiquement reconfigurables

Résumé:
Les travaux présentés dans cette thèse sont effectuées dans le cadre des Systèmes sur puce (SoC, System on Chip) et

la conception de systèmes embarqués en temps réel, notamment dédiés au domaine de la reconfiguration dynamique,
liés à ces systèmes complexes. Dans ce travail, nous présentons un nouveau flot de conception basé sur l’Ingénierie
Dirigée par les Modèles (IDM/MDE) et le profilMARTE pour la conception conjointe du SoC, la spécification et la mise
en œuvre de ces systèmes sur puce reconfigurables, afin d’élever les niveaux d’abstraction et de réduire la complexité
du système.

La première contribution relative à cette thèse est l’identification des parties de systèmes sur puce reconfigurable
dynamiquement qui peuvent être modélisées au niveau d’abstraction élevé. Cette thèse adapte une approche dirigée
par l’application et cible les modèles d’application de haut niveau pour être traités comme des régions dynamiques
des SoCs reconfigurables. Nous proposons aussi des modèles de contrôle générique pour la gestion de ces régions au
cours de l’exécution en temps réel. Bien que cette sémantique puisse être introduite à différents niveaux d’abstraction
d’un environnent pour la conception conjointe du SoC, nous insistons tout particulièrement sur sa fusion au niveau du
déploiement, qui relie la propriété intellectuelle avec les éléments modélisés à haut niveau de conception. En outre, ces
concepts ont été intégrés dans le méta-modèleMARTE et le profil correspondant afin de fournir une extension adéquate
pour exprimer les caractéristiques de reconfiguration à la modélisation de haut niveau.

La seconde contribution est la proposition d’un méta-modèle intermédiaire, qui isole les concepts présents au
niveau transfert de registre (RTL-Register Transfer Level). Ce méta-modèle intègre les concepts chargés de l’exécution
matérielle des applications modélisées, tout en enrichissant la sémantique de contrôle, provoquant la création d’un
accélérateur matériel reconfigurable dynamiquement avec plusieurs implémentations disponibles. Enfin, en utilisant
les transformations de modèlesMDE et les principes correspondants, nous sommes en mesure de générer des codeHDL
équivalents à différentes implémentations de l’accélérateur reconfigurable ainsi que différents codes source en langage
C/C++ liés au contrôleur de reconfiguration, qui est finalement responsable de la commutation entre les différentes
mplémentations.

Enfin, notre flot de conception a été vérifié avec succès dans une étude de cas liée à un système anti-radar de détec-
tion de collision. Une composante clé intégrante de ce système a été modélisée en utilisant les spécifications MARTE
étendu et le code généré a été utilisé dans la conception et la mise en oeuvre d’un SoC sur un FPGA reconfigurable
dynamiquement.

Mots clés: Ingénierie Dirigée par les Modèles, MARTE, UML, Conception conjointe du SoC, Gaspard2, les applications
DIP parallel, FPGAs, Reconfiguration dynamique partielle, Sémantique du contrôle, Automates de modes.
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